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Résumé de la thèse

Les trois chapitres de cette thèse sont indépendants et contribuent à l’étude de l’économie
environnementale par différentes approches.

Le premier chapitre, Inter-Firm and Intra-Firm Spillover Effects of Industrial Regula-
tion, co-écrit avec Geoffrey Barrows, Raphael Calel et Hélène Ollivier, présente une nou-
velle méthode d’évaluation d’une réglementation en présence d’effets indirects inter- et
intra-entreprises. Notamment lorsque la concurrence est imparfaite, une réglementation
affectant directement certaines entreprises uniquement est aussi susceptible d’affecter in-
directement les entreprises non réglementées. Ainsi, l’approche traditionnelle des “dou-
bles différences” n’intègre pas l’intégralité des effets. Pour surmonter cette limitation,
nous développons un modèle structurel de concurrence imparfaite et d’entreprises multi-
établissements et mettons au point une approche non biaisée pour estimer les effets d’une
réglementation affectant une sous-population d’établissements. Nous appliquons notre
méthode au cas du Système européen d’échange de permis d’émission en France et mon-
trons que cette réglementation a permis de réduire les émissions de CO2 des installations
réglementées, ainsi que celles du secteur manufacturier dans son ensemble, et d’augmenter
les revenus des entreprises réglementées.

Si la qualité de l’air doit être améliorée dans les lieux les plus densément peuplés, des
politiques trop strictes peuvent aussi nuire aux industries locales et aux revenus des tra-
vailleurs. Dans le deuxième chapitre, An Optimal Distribution of Polluting Activities
Across Space, j’analyse ces forces contradictoires à l’aide d’un modèle d’économie spatiale.
Lorsque les entreprises n’internalisent pas les effets de la pollution et que les travailleurs
migrent hors des lieux pollués, les plus grandes villes peuvent alors être trop petites par
rapport à l’optimum. Imposer un prix d’émission de pollution relativement plus élevé
dans ces endroits conduirait à un bien-être plus important. L’application empirique aux
villes françaises montre que les politiques actuelles imposent des prix d’émissions plus
élevés dans les grandes villes, mais que des gains de bien-être sont encore possibles.

Les effets de la pollution de l’air sur la productivité des travailleurs sont plutôt bien
documentés. Cependant, leurs conséquences sur les performances des entreprises sont
encore peu étudiées. Dans le troisième chapitre, The Effects of Air Pollution on Exports:
Evidence from PM2.5 & French Firms, co-écrit avec Geoffrey Barrows et Hélène Ollivier,
nous examinons les effets d’augmentations de la concentration aérienne en particules fines
sur les exportations des entreprises françaises. Notre approche repose sur des données
très désagrégées, à la fois dans l’espace et dans le temps. Afin d’estimer l’impact causal
de la pollution sur les exportations, nous instrumentons les concentrations de pollution
en utilisant les variations exogènes de la direction du vent au cours du temps. Nous
constatons que des niveaux de pollution plus élevés entraînent une baisse des quantités
exportées et de leurs valeurs.

DISCIPLINE : Sciences Économiques

MOTS-CLEFS : Pollution, Politiques Environnementales, Industrie
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Thesis summary

The three chapters of this thesis are independent and contribute to environmental eco-
nomics through different approaches.

The first chapter, Inter-Firm and Intra-Firm Spillover Effects of Industrial Regulation,
co-authored with Geoffrey Barrows, Raphael Calel, and Hélène Ollivier, presents a new
method for estimating the impact of a regulation in the presence of inter- and intra-
firm spillover effects. In particular, when competition is imperfect, a regulation targeting
some firms is also likely to affect unregulated firms. Thus, the traditional difference-in-
differences approach will not evaluate the full impact of the regulation. To overcome this
limitation, we develop a structural model and an empirical strategy to estimate the effects
of a regulation affecting a sub-population of industrial facilities. We apply our method
to the European Emission Trading System and show that it reduced carbon emissions
from regulated facilities as well as from the French manufacturing sector as a whole, but
increased revenues of regulated French firms.

While pollution should be reduced in more densely populated locations, stringent regula-
tions may also harm local industries and reduce workers’ incomes. In the second chapter,
entitled An Optimal Distribution of Polluting Activities Across Space, I analyze these con-
flicting forces using a spatial economics model to identify which cities should be targeted
by air quality policies. When the effects of pollution are not internalized by firms and
workers respond to poor air quality by migrating away, then the largest cities may be
too small compared to the optimum. Imposing a higher pollution price in these locations
relative to the rest of the country would lead to higher welfare. The empirical application
on French cities shows that current policies impose higher emission prices in large cities,
but welfare gains are still possible.

There is a lot of evidence that air pollution has negative effects on the productivity of
industrial workers. However, little is known about its consequences on the economic
performance of firms that employ these workers. In the third chapter, The Effects of Air
Pollution on Exports: Evidence from PM2.5 & French Firms, co-authored with Geoffrey
Barrows and Hélène Ollivier, we examine the effects of temporary and local increases in
PM2.5 air concentration on the exports of French firms. Our approach relies on highly
disaggregated data, both in space and in time. To estimate the causal impact of pollution
on exports, we instrument local pollution concentrations using exogenous variations in
wind direction over time. We find that higher pollution levels lead to lower export values
and quantities.

DISCIPLINE: Economics

KEYWORDS: Pollution, Environmental Policies, Industry
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Résumé substantiel en français

Notre société est confrontée aujourd’hui à de nombreux dérèglements environnementaux
causés par les activités humaines. Deux de ces enjeux majeurs sont abordés dans ma thèse :
la diminution des émissions de gaz à effet de serre (GES), afin de limiter le réchauffement
climatique, et les conséquences de la pollution de l’air sur la santé et les activités humaines.
Le rôle des secteurs industriels est particulièrement important sur ces deux enjeux, justi-
fiant la mise en place de nombreuses politiques publiques visant à réduire leurs émissions
de GES et d’autres polluants locaux. Ces politiques doivent être élaborées de manière
cohérente, efficace et socialement acceptable. La recherche en économie peut contribuer à
cette démarche en étudiant rétrospectivement et prospectivement les politiques possibles.
Dans un contexte de rationalisation des politiques publiques, leur évaluation est néces-
saire afin de mesurer l’impact de l’action publique. En effet, une connaissance précise des
conséquences de la mise en place de réglementations visant à améliorer la qualité de l’air
et à réduire les émissions de GES est un prérequis à leur acceptabilité par la société ainsi
qu’à leur amélioration future.

Dans le premier temps de cette introduction, je présente le contexte environnemental et
politique dans lequel s’inscrit cette thèse. Dans un second temps, je propose une synthèse
de chacun des trois chapitres.

Changement climatique, pollution de l’air et politiques

environnementales

Deux enjeux environnementaux majeurs

Gaz à effet de serre et changement climatique : Ces dernières décennies, des
preuves solides de l’impact des activités humaines sur le climat ont été apportées. La
combustion d’énergies fossiles, comme le pétrole ou le gaz, la production de biens, les
déplacements ou encore la production d’électricité émettent des gaz à effet de serre (GES)
qui contribuent au réchauffement de l’atmosphère au fur et à mesure de leur accumulation
dans l’atmosphère (IPCC, 2021a). En pratique, la température moyenne à la surface
terrestre entre 2011 et 2020 a augmenté de plus de 1◦C par rapport à la période 1850-
1900 (IPCC, 2021a). Le dernier rapport du Groupe d’experts intergouvernemental sur
l’évolution du climat (GIEC) montre qu’ “[...] à moins de réductions immédiates, rapides
et massives des émissions de gaz à effet de serre, la limitation du réchauffement aux
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alentours de 1,5◦C, ou même à 2◦C, sera hors de portée.” (IPCC, 2021b). Au-delà des
températures, ce changement climatique impacte d’autres variables, comme l’humidité et
la sécheresse, les vents, la neige et la glace, les zones côtières et les océans. En particulier,
la fréquence des catastrophes climatiques (ouragans, inondations, canicules et sécheresses)
pourrait ainsi augmenter si l’évolution des températures n’est pas maitrisée.

Afin de limiter cette augmentation des températures, le consensus est aujourd’hui qu’il
faut réduire les émissions totales de GES. En 1997, 35 pays ont pris des engagements à
l’occasion du sommet de Kyoto afin de réduire de 5 % leurs émissions de GES. En 2015,
l’Accord de Paris sur le Climat est signé par plus de 50 pays (représentant plus de la
moitié des émissions mondiales de GES) s’engageant à limiter l’augmentation de la tem-
pérature globale à 2◦C.1 En 2020, dans le contexte de la pandémie de Covid, les émissions
mondiales ont connu un recul de 5,4 %. Cependant, il semble qu’elles soient aussitôt rev-
enues aux valeurs “pré-Covid” et que la concentration de GES dans l’atmosphère continue
d’augmenter à ce jour (UNEP, 2021). En particulier, les émissions de GES au cours de
la dernière décennie (de 2010 à 2019) ont été plus importantes que jamais (IPCC, 2022).
Cette quantité émise est du même ordre de grandeur que le “budget carbone”, c’est-à-dire
la quantité maximum pouvant encore être émise tout en limitant l’augmentation de la
température globale à 1,5◦C. Pour le moment, la France s’est engagée à réduire de 40 %
ses émissions de GES d’ici 2030 et à atteindre la neutralité carbone en 2050 (ce qui corre-
spond à une division par 6 de ses émissions par rapport à 1990).2 Les émissions françaises
en GES ont d’ailleurs baissé de 20 % entre 1990 et 2019 (CITEPA, 2021). Ces engage-
ments, ainsi que l’urgence climatique, posent donc aujourd’hui un défi et nécessitent de
mettre en place une transition suffisante pour atteindre la neutralité carbone (Ademe,
2021).

Polluants atmosphériques et effets sur la santé : L’émission de particules pollu-
antes, nocives pour la santé, est une autre conséquence négative des activités économiques.
Elle est d’ailleurs reconnue comme étant “la plus importante menace environnementale
pour la santé humaine” par l’Organisation mondiale pour la santé (OMS) dans la pub-
lication de ses dernières recommandations relatives à la qualité de l’air (WHO, 2021).
Cette menace est due aux effets négatifs sur la santé d’une série de particules polluantes
émises par diverses activités. Les principales sont les particules fines (PM10 et PM2.5),
le dioxyde d’azote (NO2), l’ozone (O3) et le dioxyde soufre (SO2).3 Les effets de ces pol-

1Les variations de températures sont mesurées par rapport au niveau de température préindustriel.
2La neutralité carbone consiste, d’une part, à diminuer ses émissions de GES au maximum, et d’autre

part, à compenser les émissions restantes.
3Les particules fines se classent généralement en deux familles correspondant à la dimension principale

de la particule : inférieure à 10µm pour les PM10 et à 2,5µm pour les PM2.5.
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luants sont multiples et touchent différents paramètres physiologiques, comme le système
respiratoire (Viehmann et al., 2015), le système cardiovasculaire (Brook et al., 2010) ou
le cerveau (Costa et al., 2019). L’exposition précoce à un air pollué peut également avoir
des effets latents, c’est-à-dire des effets qui ne se manifestent que plus tard dans la vie des
enfants affectés (Bale et al., 2010; Almond & Currie, 2011; Colmer & Voorheis, 2020). Il
est estimé que cette pollution de l’air est la cause de 4,4 millions de décès prématurés dans
le monde tout polluants confondus (WHO, 2014), et que la pollution liée aux PM2.5 cause
environ 379 000 décès prématurés dans l’Union européenne (UE) (European Environment
Agency, 2021) et 40 000 en France (Santé Publique France, 2021). Une différence pri-
mordiale entre GES et polluants atmosphériques nocifs est que, pour ces derniers, le lieu
d’émission est important pour en mesurer l’impact. En effet, si le réchauffement clima-
tique est fonction de la quantité totale d’émissions de GES accumulées dans l’atmosphère
- d’où la désignation de polluants “globaux” - les effets nocifs des particules polluantes
se produisent lorsqu’ils sont respirés par les individus - d’où la désignation de polluants
“locaux”. Ainsi c’est leur concentration atmosphérique locale qui doit être contrôlée.

Depuis les premières catastrophes (le Donora Smog en 1948 aux Etats-Unis, le Great Smog
de Londres en 1952 ou encore l’accident de Bhopal en 1984 en Inde) et les premières mises
en évidence des effets de ce type de pollution, brève ou chronique, sur la santé humaine de
nombreuses réglementations ont été mises en place afin de tenter de garantir une meilleure
qualité de l’air. Au niveau international et depuis 1979, la Convention sur la pollution
atmosphérique transfrontière longue distance, sous l’égide de l’Organisation des Nations
unies (ONU), vise à réduire la pollution liée au SO2, au NO2 et aux particules fines,
ainsi que certain métaux lourds et les polluants organiques persistants. Pour l’Union
européenne, la stratégie pour une meilleure qualité de l’air se fonde sur trois piliers prin-
cipaux : (1) la Directive sur la Qualité de l’Air Ambiant (2008/50/CE) qui met en place
des standards de qualité de l’air, en pratique des niveaux de concentration à ne pas dé-
passer, ainsi que des obligations de mesure et de mise en place de plans dans les États
membres (directive-cadre de 1996 concernant l’évaluation et la gestion de la qualité de l’air
ambiant (96/62/CE)) ; (2) la Directive sur les engagements nationaux de réduction des
émissions (directive 2001/81/CE puis 2016/2284) ; et (3) la mise en place de standards
et limites spécifiques par source d’émission, ciblant notamment les secteurs industriels
(avec par exemple la directive 2001/80/CE sur les émissions en provenance des grandes
installations de combustion ou la directive 2010/75/UE sur les émissions industrielles).

Au cours des deux dernières décennies, la qualité de l’air s’est grandement améliorée et
les concentrations d’un certain nombre de polluants ont fortement diminué dans les pays
développés (aux Etats-Unis (US EPA, 2022) et dans l’Union européenne (AEE, 2013,
2020) par exemple). Cependant, l’OMS estime que 92 % de la population mondiale con-
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tinue d’être exposée à des concentrations atmosphériques trop élevées (WHO, 2016). Bien
que les concentrations les plus élevées soient observées dans des pays en développement,
tels que l’Inde et la Chine, les valeurs sanitaires fixées par l’OMS ne sont toujours pas
atteintes dans certains pays développés. Dans le cas de l’UE, malgré la réduction de la
concentration d’un certain nombre de polluants ces dernières années, les concentrations
en particules fines (PM2.5) et en ozone (O3) restent très élevées (Sicard et al., 2021). De
plus, les PM2.5 ont aussi des effets sur la santé en dessous des seuils sanitaires fixés (Di
et al., 2017). La France a été l’un des premiers pays à mettre en place une réglementation
visant à limiter ces émissions de polluants (Massard-Guilbaud, 1999). Ainsi, la qualité de
l’air extérieur s’est améliorée ces dernières décennies et les émissions de tous les polluants
sont en baisse depuis 1990 (CITEPA, 2021). Pourtant, dans de nombreuses aggloméra-
tions, les standards européens ne sont pas encore atteints pour les particules fines (PM10)
et le dioxyde d’azote (NO2). La France a d’ailleurs été condamnée par la Cour de justice
de l’UE pour avoir “dépassé de manière systématique” les concentrations limites pour ces
polluants (CJUE, 2022).

Le rôle de l’industrie dans l’émissions de ces pollutions : Les GES et polluants
atmosphériques sont notamment émis par les activités humaines et principalement par la
combustion d’énergie fossiles.4 En particulier, les secteurs des transports, de l’industrie,
de l’agriculture et des bâtiments résidentiels et tertiaires jouent un rôle majeur dans ces
émissions. Pour les GES, en 2019, ces secteurs représentaient respectivement 31 % des
émissions totales pour les transports, 19 % pour l’industrie manufacturière et la construc-
tion, 19 % pour l’agriculture, 17 % pour le résidentiel et tertiaire, 10 % pour l’énergie,
et 4 % pour le traitement de déchets (CITEPA, 2021). L’industrie de l’énergie a vu ses
émissions se réduire de 46 % et l’industrie manufacturière de 41 %, contribuant ainsi forte-
ment à la réduction des émissions nationales entre 1990 et 2019 (CITEPA, 2021). Selon
le Réseau Action Climat, les émissions en provenance de l’industrie française ont diminué
entre 1990 et 2015 du fait de l’amélioration de l’efficacité énergétique, mais aussi à travers
une réallocation des émissions vers l’étranger, avec des fermetures d’usines, des délocal-
isations et une augmentation des importations. Ainsi, si l’empreinte carbone nationale
s’est maintenue à un niveau stable depuis une vingtaine d’années, c’est que les “émissions
importées” augmentent de façon continue et seraient même désormais plus importantes
que les émissions sur le territoire français (HCC, 2020).5

Concernant la pollution de l’air, l’industrie manufacturière fait partie des contributeurs

4Certains polluants locaux sont aussi émis lors de processus spécifiques, comme la friction des pneu-
matiques sur la route dans les transports ou les émissions dues à des réactions chimiques dans l’industrie.

5Ces émissions correspondent aux émissions se produisant à l’étranger lors de la production des biens
importés et consommés en France.
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majeurs avec le secteur des transports. En 2019, l’industrie manufacturière française con-
tribuait à 55 % des émissions de SO2, 27 % des émissions de PM10, 18 % de PM2.5 et
13 % des émissions de NOx. Depuis 1990, les émissions de SO2 ont diminué de 86 %,
celles de PM10 de 51 %, celles de PM2.5 de 58 %, et celles de NOx de 55 % (CITEPA,
2021). Pour les Etats-Unis, les émissions de ces polluants ont également diminué con-
sidérablement depuis 1990. Shapiro & Walker (2018) a montré que cette réduction était
principalement due à l’intensification des politiques environnementales (plus qu’à des ef-
fets de productivité ou de réallocation des flux commerciaux).

Ainsi, tant la réduction des émissions de GES que l’amélioration de la qualité de l’air
continuent d’être, en France comme dans le reste du monde, un enjeu central pour les
années à venir. Les politiques publiques mises en place par les gouvernements sont des
instruments puissants pouvant résoudre ces problématiques (Shapiro, 2022). Cependant,
de nombreuses questions se posent encore sur les avantages respectifs de ces instruments
ainsi que sur leur efficacité en termes environnementaux mais aussi économiques.

Les politiques environnementales

L’émission de polluants dans l’atmosphère (GES, SO2, NO2, etc.) est une externalité
négative : l’action d’un agent économique en affecte un autre sans qu’une compensa-
tion ait lieu. Cette défaillance du marché aboutit à un bien-être moindre des agents
économiques car le coût des dommages causés par l’action en question n’est pas pris en
compte par le pollueur dans ses décisions (quantités produites, investissements, etc.). La
quantité de pollution émise est donc trop importante par rapport à l’optimum social.
Dans cette situation, l’intervention publique peut permettre d’internaliser les dommages
causés par la pollution et ainsi augmenter le bien-être social. Traditionnellement, ces
interventions peuvent être séparées en deux familles distinctes. La première consiste à
fixer des standards de technologie, ou des standards sanitaires, et à les faire respecter par
les entreprises. Il s’agit de l’approche dite de command-and-control, utilisant des plafonds
d’émissions par entreprise ou des standards technologiques par exemple. Cependant, les
économistes considèrent que, dans certains cas, il est possible de corriger de manière plus
efficace une externalité négative en fixant un prix adapté. Il s’agit de la seconde famille de
politiques, dites market-based. Concernant l’émission de pollution, les deux instruments
les plus répandus sont les taxes (ou subventions) et les marchés de permis d’émissions. Une
taxe fixée au coût marginal des dommages liés à la pollution (changement climatique, im-
pacts sanitaires des particules, etc.) permet aux entreprises d’internaliser l’impact de leur
production, c’est à dire de tenir compte des effets environnementaux de leurs décisions
(Pigou, 1920). Les marchés de permis d’émissions, ou instruments dits cap-and-trade,
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peuvent également permettre cette internalisation. L’idée est de fixer la quantité totale
d’émissions, par exemple pour respecter le budget carbone ou atteindre un certain niveau
de réduction des émissions, puis de créer pour chaque unité de pollution pouvant être
émise un droit d’émission que les entreprises peuvent s’échanger sur un marché créé à cet
effet.

En pratique, le choix entre les différents instruments pour réglementer les externalités
environnementales est aujourd’hui encore largement débattu (Bretschger & Pittel, 2020).
Les approches en command-and-control ont souvent été privilégiées car perçues comme
plus claires. Les technologies les plus polluantes sont bannies au profit de technologies
plus propres. Par exemple, aux Etats-Unis c’est sur ce modèle que le Clean Air Act et le
Water Air Act ont été pensés. C’est également le cas d’une partie de la réglementation
européenne qui contraint les installations industrielles à adopter une série de standards
technologiques appelés les “meilleures techniques disponibles” (MTD). De nombreux ex-
emples de taxes sur les émissions de pollution existent également, comme la taxe sur les
activités polluantes (TGAP) en France ou les redevances NOx en Suède et en Norvège
(Bonilla et al., 2017). Cependant, lorsque les acteurs sont hétérogènes et qu’il existe de
l’incertitude sur leurs coûts respectifs de diminution de leurs émissions, les instruments en
cap-and-trade sont jugés plus efficaces (Newell & Stavins, 2003). Ce type d’instrument a
été mis en place notamment aux Etats-Unis (avec par exemple l’Acid Rain program visant
les émissions de SO2 et de NOx, le programme RECLAIM 6 pour les émissions de NOx à
Los Angeles, ou encore le marché carbone californien), au Royaume-Uni et en Chine.

Le Système d’échange de quotas d’émission de l’Union européenne (SEQE-UE), objet
du premier chapitre de cette thèse, est aujourd’hui l’un des principaux exemples de ce
type d’instrument. Ce système a été mis en œuvre par la Commission européenne et
régit environ 11 000 installations dans 31 pays participants, dont la France. Le SEQE-
UE a été annoncé en 2000 dans un document de travail de la Commission européenne,
puis officialisé par la directive établissant un système d’échange de quotas d’émissions
de gaz à effet de serre en 2003 (2003/87/CE) et lancé le 1er janvier 2005. Le système
réglemente toutes les installations de combustion dont la puissance thermique nominale
est supérieure à 20 MW, ainsi que les autres processus de production dont la capacité
ou la production est supérieure à des seuils prédéterminés propres à chaque secteur. Les
entreprises réglementées doivent restituer des permis - appelés unités de quotas de l’UE
- pour chaque tonne de GES émise au cours de l’année. La non-conformité entraîne une
amende de 100 euros par tonne de GES dépassant le nombre de permis restitués. Au
départ, la Commission européenne a planifié le SEQE en trois phases : la première phase,
conçue comme une période d’essai, s’est déroulée de 2005 à 2007 ; la deuxième phase s’est

6California Regional Clean Air Incentives Market
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déroulée de 2008 à 2012, correspondant à la première période d’engagement du protocole
de Kyoto ; et la troisième phase s’est déroulée de 2012 à 2020. Les révisions du système en
vue de la quatrième phase (2021-2030) sont aujourd’hui en cours. La mise en œuvre de la
politique était relativement décentralisée au cours des deux premières phases : les pays
participants soumettant à la Commission européenne des plans nationaux d’allocation
de quotas (PNAQ) dans lesquels ils proposaient une liste d’installations à réglementer,
des plafonds d’émission et les règles de distribution des quotas (Ellerman et al., 2015).
Pendant ces phases, les permis ont été alloués gratuitement aux installations réglementées
sur la base de leurs émissions historiques (selon la méthode du grandfathering).7 Pour la
troisième phase, le système d’allocation a amorcé une transition vers un système d’enchères
ouvertes, d’abord pour les installations de production d’énergie (à l’exception de quelques
centrales en Europe de l’Est), puis progressivement pour les autres industries réglementées.

De nombreuses évaluations de l’impact de cette politique existent aujourd’hui (Petrick
& Wagner, 2014; Löschel et al., 2018; Colmer et al., 2020b; Dechezleprêtre et al., 2018;
Jaraite & Di Maria, 2018; Calligaris et al., 2018). Cependant, les révisions du système en
vue des phases futures font l’objet d’intenses oppositions généralement motivées par l’idée
qu’une réglementation trop ambitieuse pourrait faire peser un risque sur la compétitivité
de l’industrie européenne (Demailly & Quirion, 2006; Branger et al., 2017; Joltreau &
Sommerfeld, 2018). Les lobbies industriels, en particulier ceux représentant les intérêts
des secteurs de l’acier, du ciment et des engrais, jouent un rôle important dans les discus-
sions liées aux révision du SEQE et ces oppositions menacent aujourd’hui la pérennité de
l’action environnementale (Thomas, 2021). Dans ce contexte, une évaluation du SEQE-
UE rendant compte non seulement de son impact sur les émissions de GES mais aussi de
son impact sur les performances économiques des entreprises réglementées est nécessaire.
Il s’agit de l’un des objectifs du premier chapitre de cette thèse. En effet, nous y calculons
à la fois la réduction de GES permise par le SEQE-UE en France mais nous montrons aussi
que cette réglementation a eu un effet positif sur les revenus des entreprises réglementées.

De nombreuses questions se posent également au sujet des réglementations visant à
améliorer la qualité de l’air en réduisant les émissions de polluants atmosphériques. Dans
le cas de la France, cette réglementation est basée sur les normes européennes. L’UE
fixe des plafonds de concentrations maximales dans l’air de différents polluants ainsi que
des objectifs de réduction (directives 2004/107 et 2008/50/CE) qui doivent ensuite être
appliqués dans chaque État membre. Ceux-ci doivent donc mettre en œuvre des plans
d’action spécifiques pour rester au-dessous de ces plafonds et atteindre les objectifs de
qualité de l’air. En France, ces actions sont menées à la fois par les autorités centrales
et locales. Le gouvernement français réglemente les émissions polluantes par le biais

7En France, la Caisse des Dépôts était chargée de la mise en œuvre de la réglementation pour le pays.
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d’instruments fiscaux et de normes réglementaires (Hauvuy & Riedinger, 2005; Bougon &
Lavergne, 2019). Le principal instrument fiscal est la taxe générale sur les activités pol-
luantes (TGAP) qui est une taxe nationale sur la quantité de polluants émise par an. En
2016, plus d’un millier d’installations étaient soumises à cette taxe (IGF, 2018). Cepen-
dant, la composante pollution atmosphérique de la TGAP est limitée et ne constitue
pas l’instrument le plus efficace mis en œuvre pour limiter la pollution atmosphérique
(Millock & Nauges, 2006; IGF, 2018).8 Si les grandes lignes de la réglementation des
émissions industrielles sont établies au niveau national, leur mise en œuvre est générale-
ment assurée par les autorités locales. Par exemple, le principal cadre réglementaire pour
les activités polluantes est la réglementation ICPE, qui désigne les installations classées
pour la protection de l’environnement. Le cadre ICPE est un ensemble de normes régis-
sant les activités des usines polluantes en fonction de leur impact sur l’environnement.
Elle impose notamment qu’une autorisation d’ouverture soit délivrée par l’autorité des
préfets de département pour toute installation polluante sous condition de mise en œu-
vre de normes technologiques spécifiques et après réalisation d’une enquête locale auprès
de la population. En outre, certaines de ces installations classées peuvent aussi relever
de la directive européenne sur les émissions industrielles (IED).9 La principale obligation
imposée par cette réglementation est d’adopter les MTD européennes : les autorisations
d’installations industrielles sont conditionnées à l’utilisation des techniques les moins pol-
luantes. À cet égard, la réglementation nationale actuelle se concentre principalement
sur les plus grandes usines, mais toute usine polluante plus petite non couverte par la
réglementation ICPE est réglementée au niveau de la municipalité. En outre, depuis
la loi LAURE, adoptée en 1996, d’autres autorités locales peuvent prendre des mesures
spécifiques pour améliorer la qualité de l’air locale et atteindre les objectifs nationaux
en matière de qualité de l’air. Par exemple, depuis le début des années 2000, plusieurs
“plans de protection de l’atmosphère” (PPA) ont été mis en œuvre dans différentes régions.
Dans leur zone d’application respective, nombre de ces plans ont adopté des mesures dif-
férenciées pour les zones plus ou moins densément peuplées. Certains de ces plans ont
introduit des normes environnementales plus strictes pour les industries manufacturières,
notamment dans les agglomérations dépassant un certain seuil d’habitants. Par exemple,
les trois PPA consécutifs de la région parisienne ont imposé des plafonds d’émissions in-
dustrielles de NOx et de PM plus bas que les plafonds nationaux. Ces plans prévoient
également des mesures d’urgence lorsque la concentration atmosphérique de certains pol-

8En 2016, 50 millions d’euros ont été collectés par rapport aux 3,8 milliards d’euros collectés pour la
composante carbone de la taxe sur la consommation d’énergie en 2016 (DGEC, 2016)

9Depuis 2010, la directive sur les émissions industrielles a remplacé la directive sur la prévention et la
réduction intégrées de la pollution. Ces directives sont similaires et visent à prévenir la pollution de l’air,
de l’eau et du sol.
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luants dépasse les normes nationales et européennes.

Cette différenciation des réglementations environnementales dans l’espace existe égale-
ment dans d’autres régions. Aux Etats-Unis par exemple, le Clean Air Act prévoit des
mesures spécifiques appliquées aux installations industrielles dans les comtés où les con-
centrations sont trop élevées. En Chine, dans le cadre de son plan quinquennal, le gou-
vernement fixe un objectif national de réduction des émissions industrielles qui est dé-
composé en objectifs infranationaux que les provinces et les villes se doivent d’atteindre.
En particulier, les niveaux d’ambition de ces objectifs diffèrent beaucoup suivant les ré-
gions (Yamada, 2020). Dans ce contexte, le second chapitre de ma thèse s’intéresse aux
conséquences de l’existence de réglementations différenciées régionalement. En effet, si
des réglementations plus strictes peuvent contribuer à améliorer la qualité de l’air dans
certaines villes, elles peuvent également réduire la productivité des industries locales et
affecter négativement les revenus des travailleurs. J’aborde donc dans ce chapitre le
compromis entre économie et environnement dans un contexte spatial afin d’identifier la
meilleure façon de répartir les émissions de pollution entre des villes différentes.

Enfin, l’approche traditionnelle des politiques environnementales, dite “pigouvienne”, con-
siste à estimer le coût que le dérèglement environnemental en question fait porter par la
société. Dans le cas du changement climatique ou de la pollution de l’air, il s’agit du prix
que les individus seraient prêts à payer afin d’éviter l’émission de GES ou de polluants
atmosphériques nocifs. Ce prix correspond généralement à l’équivalent monétaire de la
réduction d’utilité due à ces émissions. Dans le cas du changement climatique, des mod-
èles alliant sciences climatiques et interactions économiques entre agents sur plusieurs
générations ont notamment été élaborés afin de calculer un “coût social du carbone”
correspondant au dommage marginal causé par l’émission d’une tonne de CO2 supplé-
mentaire.10 Cette approche doit alors permettre d’identifier le niveau adéquat d’une taxe
carbone ou du prix des permis d’émission sur les marchés. Dans le cas de la pollution de
l’air, l’approche est sensiblement différente. Les dommages sont liés aux concentrations de
pollution, et non aux niveaux d’émissions. Actuellement, peu d’analyses font le lien entre
le lieu d’émission, un modèle de circulation atmosphérique et la qualité de l’air locale. Il
n’est donc généralement pas possible d’estimer un coût marginal d’émission de particules
polluantes. L’approche traditionnelle est donc d’estimer le coût total qu’impliquent les
concentrations observées, en calculant son impact monétaire sur la santé, les activités
économiques et la biodiversité.11 Cette valeur permet alors de fixer un niveau d’ambition
des politiques mises en place. À l’heure actuelle de nombreuses analyses existent sur les

10Integrated Assessment Models (IAM)
11Généralement, l’impact monétaire des effets sur la santé prend en compte à la fois les dépenses

médicales impliquées et une forme de valorisation des pertes en espérance et en qualité de vie.
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effets sanitaires de la pollution de l’air. Ces études montrent que la mauvaise qualité de
l’air implique un coût important en termes de dépenses médicales mais aussi de qualité de
vie dégradée et d’une réduction de l’espérance de vie (Waidyatillake et al., 2021). Cepen-
dant, une littérature récente s’attache à montrer que la pollution de l’air a également des
effets directs sur les activités économiques. En particulier, une mauvaise qualité de l’air
diminue la productivité des travailleurs industriels (Graff Zivin & Neidell, 2012; Chang
et al., 2016; Adhvaryu et al., 2022; He et al., 2019). C’est dans ce contexte que s’inscrit
le troisième chapitre de cette thèse qui estime les dommages causés par la pollution des
particules fines (PM2.5) aux exportations françaises. L’estimation des conséquences de
la pollution de l’air sur les entreprises pourrait avoir des implications en termes de poli-
tiques publiques. En effet, si les réglementations visant à améliorer la qualité de l’air sont
généralement perçues comme un coût supplémentaire pour les activités économiques, la
mise en lumière de bénéfices économiques directs pourrait amener à revoir à la hausse
l’ambition de ces politiques.

Synthèse des chapitres

Chapitre 1 : Une évaluation du SEQE-UE

De nombreuses réglementations, telles que le SEQE-UE, ne s’appliquent qu’à certains
sous-ensembles spécifiques d’entreprises au sein de secteurs industriels. Par exemple,
certains gouvernements n’appliquent des normes environnementales qu’aux entreprises
situées dans les régions les plus polluées (Greenstone, 2002; Fowlie et al., 2016), n’offrent
des incitations à l’embauche qu’aux entreprises situées dans des zones en difficulté (Neu-
mark & Simpson, 2015), et ciblent les subventions à l’activité vers les petites et moyennes
entreprises (Martin et al., 2017; Rotemberg, 2019; Smagghue, 2019). La méthode la plus
courante pour évaluer ces politiques consiste à comparer l’évolution des résultats des en-
treprises réglementées à ceux des entreprises non réglementées au moment du changement
de politique - il s’agit de l’estimateur dit des “doubles différences” (Card & Krueger, 2000).
Dans le cas où les résultats des entreprises réglementées suivent une tendance parallèle
à celle des entreprises non réglementées avant la mise en place de la réglementation, on
peut supposer que, en l’absence de cette réglementation, entreprises règlementées et non
réglementées auraient suivi la même évolution (c’est l’hypothèse dite des “tendances par-
allèles”). Cependant, même si cette hypothèse est vérifiée, il est probable que, dans le
cadre d’une concurrence imparfaite, le statut réglementaire d’une entreprise influence les
résultats des autres entreprises de l’échantillon. Il s’agit d’une violation de l’une des hy-
pothèses nécessaire à la validité de la méthode des doubles différences : la variable de
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traitement d’une unité ne doit pas affecter le résultat d’une autre unité. Ce problème de
contamination est largement reconnu dans la littérature, mais rarement traité empirique-
ment. Dans le cas du SEQE-UE, l’unité réglementée est l’installation, c’est à dire l’usine.
En pratique, seules les installations dépassant certains seuils d’émissions de GES sont in-
cluses et doivent justifier de leurs émissions annuelles en acquérant des permis d’émission.
Ainsi, certaines entreprises peuvent posséder à la fois des installations réglementées et non
réglementées. Cette caractéristique du SEQE-UE permet potentiellement la réallocation
d’une partie de l’activité d’une usine à l’autre au sein d’une même entreprise. Il s’agit
d’un second effet de contamination qui doit être pris en compte afin d’estimer les effets
de cette politique.

Dans le premier chapitre de cette thèse, intitulé Inter-Firm and Intra-Firm Spillover
Effects of Industrial Regulation et écrit conjointement avec Geoffrey Barrows, Raphael
Calel et Hélène Ollivier, nous proposons une nouvelle méthode permettant d’estimer les
effets d’une réglementation incomplète sur les ventes et les émissions de GES au niveau
de l’entreprise, des usines et de l’ensemble de l’industrie, tout en tenant compte des
effets de concurrence et de réallocation. Pour cela, nous spécifions un modèle d’offre
et de demande de produits différenciés en adoptant des hypothèses standards : fonction
d’utilité CES (Constant Elasticity of Substitution), fonction de production Cobb-Douglas,
hétérogénéité de la productivité des entreprises et concurrence monopolistique.12 Pour
établir un lien entre le statut réglementaire à l’échelle de l’installation et les revenus à
l’échelle de l’entreprise, nous adoptons également un modèle simple d’entreprises possé-
dant plusieurs usines (chaque usine participe à la production d’un même bien à l’échelle
de l’entreprise).13

Nous considérons l’introduction d’une politique ciblant le prix de l’un des intrants de pro-
duction pour un certain sous-ensemble d’installations dans l’économie. Nous montrons
ainsi que la variation de revenus d’une entreprise avant et après l’introduction de la poli-
tique dépend du statut réglementaire de cette entreprise (effet direct à travers les coûts de
production de cette entreprise) mais aussi du statut réglementaire de toutes les autres en-
treprises du secteur (effet indirect se “propageant” à travers les indices de prix du secteur
et des industries qui le composent). Dans un second temps, nous tirons parti de la struc-

12Ces hypothèses sont standards pour les modèles incluant l’ensemble des industries manufacturières
(voir par exemple Atkeson & Burstein (2008)). Dans certains cas, lorsque l’étude porte sur une seule
industrie, des modèles flexibles d’élasticités-prix inter-entreprises peuvent être estimés de manière struc-
turelle en utilisant des informations détaillées sur les prix à la production et les caractéristiques des
produits (Berry et al., 1995). Ces données ne sont généralement disponibles que pour des industries
particulières. Ainsi, cette méthode n’est pas adaptée à l’estimation des effets agrégés de réglementations
affectant des industries différentes (De Loecker & Syverson, 2021).

13Ce modèle implique que la concentration des ressources productives entre les usines d’une même
entreprise peut soit augmenter soit diminuer les coûts à l’échelle de l’entreprise, selon que les forces de
dispersion dominent les économies d’échelle.
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ture du modèle pour identifier les coefficients qui déterminent les effets directs et indirects
de changements du vecteur de réglementation sur les revenus et les émissions de GES de
l’ensemble des entreprises. Cette étape consiste à estimer conjointement les effets direct
et indirect de la règlementation à l’aide de la méthode des moments généralisée. L’effet
direct est obtenu en régressant la variation de revenus à l’échelle de l’entreprise sur le
changement de statut réglementaire de cette entreprise tout en incluant des effets fixes au
niveau de l’industrie. Le coefficient estimé identifie alors l’effet direct de la réglementation
sur les coûts de production (multiplié par une constante correspondant à une combinai-
son de paramètres de demande). En l’absence d’effets indirects, ce coefficient serait aussi
l’effet moyen de la réglementation sur les entreprises réglementées (l’Average Treatment
on the Treated ou ATT). Cependant, la compétition étant imparfaite (les variations de
prix de vente d’une entreprise affectent les revenus de ses compétiteurs) cette régression
ne permet pas d’identifier l’ATT. Les effets fixes inclus dans cette équation capturent les
variations d’indice de prix à l’échelle de l’industrie. Il est alors possible d’estimer l’impact
indirect de la réglementation en régressant ces effets fixes par industrie sur une moyenne
pondérée des statuts réglementaires des entreprises de cette industrie (tout en contrôlant
pour les caractéristiques du secteur).

Intuitivement, si la réglementation augmente les coûts, alors les industries ayant une den-
sité de réglementation plus élevée devraient voir une croissance plus forte de leurs indices
de prix. Des travaux antérieurs construisent des mesures similaires en utilisant la densité
réglementaire pondérée (Cai & Szeidl, 2022; Muehlegger & Sweeney, 2021; Rotemberg,
2019). Toutefois, une caractéristique clé de notre procédure est l’utilisation de la théorie
des indices des prix afin d’identifier une pondération correcte.14 Enfin, montrons com-
ment résoudre l’équilibre dit “contrefactuel” correspondant à l’absence de réglementation à
l’aide de ces seuls coefficients ainsi que de l’équilibre observé. La comparaison de ces deux
équilibres, observé et contrefactuel, permet d’identifier l’impact sur chaque entreprise et
installation industrielle de l’introduction de la politique. Il est alors possible de calculer
des valeurs d’ATT et d’ATC (Average Treatment on the Controls, c’est-à-dire l’effet moyen
de la réglementation sur les entreprises et installations non réglementées).

Après avoir montré à l’aide de simulations numériques que cette méthode produit des
estimations non biaisées, nous l’appliquons à l’évaluation de l’impact du SEQE-EU sur
l’industrie française entre 2005 et 2016. Pour cela, nous faisons appel à plusieurs sources
de données. Tout d’abord, nous utilisons les déclarations fiscales (confidentielles) de
revenus et de ventes à l’export de l’ensemble des entreprises manufacturières françaises
(base de données FARE/FICUS). Chaque entreprise est identifiée par un code admin-

14En particulier, l’hypothèse de demande CES implique des poids spécifiques par entreprises reflétant
à la fois la part de marché avant et après l’introduction de la réglementation (Sato, 1976; Vartia, 1976).
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istratif unique, le SIREN, qui nous permet de la suivre dans le temps et de combiner
des observations provenant de bases de données différentes. Ensuite, nous mesurons la
consommation d’énergie à l’aide des enquêtes EACEI (Enquête Annuelle sur la Consom-
mation d’Energie dans l’Industrie). Ces enquêtes comprennent toutes les dépenses et
consommations liées à l’énergie, avec des détails sur plusieurs types d’énergie et de com-
bustibles (quantités consommées et dépenses), au niveau de l’usine. Nous utilisons ces
données, combinées aux facteurs d’émission par type d’énergie de l’Agence française de
l’environnement et de l’énergie (ADEME), pour calculer les émissions de GES (en équiva-
lent CO2) des installations industrielles. Enfin, la Commission européenne publie la liste
des installations inclues dans le SEQE-UE et les informations leur correspondant sur une
plate-forme publique dédiée (l’European Union Transaction Log). À partir de cette liste,
nous obtenons le SIRET de chaque installation réglementée en France ainsi que la date
initiale de l’application de la réglementation à cette installation.

L’utilisation de ces données et de la méthodologie décrite ci-dessus nous permet de montrer
que le SEQE-UE a augmenté les revenus des entreprises réglementées (c’est-à-dire des
entreprises ayant au moins une usine réglementée) et a réduit les émissions des usines
réglementées. Le fait que la réglementation ait augmenté les ventes peut être surprenant,
car elle consiste, en pratique, en une augmentation du coût de l’énergie pour les entreprises
réglementées. Toutefois, les réglementations environnementales peuvent aussi déclencher
des investissements permettant de réduire les coûts et d’augmenter les ventes (Porter
& van der Linde, 1995; Ambec et al., 2013).15. En particulier, les résultats de Calel &
Dechezlepretre (2016) et Calel (2020) indiquent que le SEQE-UE a permis l’augmentation
de la R&D et de “l’innovation verte”, ce qui pourrait expliquer ces effets positifs sur les
revenus. Nous constatons également qu’au cours de ses deux premières phases, le SEQE-
UE a permis de réduire les émissions totales de CO2 des installations françaises d’environ
5 à 12 % par an selon l’année.

Chapitre 2 : Comment réglementer la pollution industrielle dans

l’espace?

Il est désormais largement reconnu que la pollution atmosphérique cause des dommages
substantiels à la santé humaine.16 Pourtant, la plupart des gens vivent dans de grandes
villes où se concentrent également certaines industries polluantes. Afin d’améliorer la
qualité de l’air dans ces zones, de nombreux gouvernements ont mis en place des régle-

15Cette hypothèse est d’ailleurs étayée par d’autres analyses du SEQE-UE (Löschel et al., 2018; Deche-
zleprêtre et al., 2018; Calligaris et al., 2018).

16Les dommages à la santé ont été mesurés même lorsque les niveaux de pollution sont inférieurs aux
normes réglementaires (Graff Zivin & Neidell, 2012, 2013; Deryugina et al., 2019).
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mentations particulières dans les agglomérations les plus peuplées et les plus polluées.
Cependant, des réglementations plus strictes peuvent nuire aux entreprises locales, aug-
menter les coûts de production et affecter le salaire réel local.17 Cet arbitrage local entre
revenus et pollution soulève la question de la différenciation des réglementations environ-
nementales dans des lieux hétérogènes?

Dans le deuxième chapitre de cette thèse, intitulé An Optimal Distribution of Polluting
Activities Across Space, je modélise les choix de localisation d’entreprises polluantes et
des travailleurs affectés par la pollution afin d’identifier l’ensemble des politiques qui met-
tent en œuvre une répartition optimale des travailleurs, des entreprises et de la pollution
dans les villes. Dans ce modèle, les choix de localisation effectués par les entreprises et les
travailleurs individuels dépendent (1) du niveau “d’aménités” offert par les villes,18 (2) des
externalités d’agglomération qui procurent un avantage de productivité aux entreprises
situées dans les zones plus peuplées et (3) des forces de congestion. En particulier, la pol-
lution atmosphérique agit comme une force de congestion : l’augmentation des émissions
de particules polluantes liée à l’activité économique locale diminue la qualité de l’air, et
les travailleurs réagissent en s’éloignant des zones les plus polluées. Les entreprises, en
revanche, n’internalisent cet effet négatif de leurs émissions sur la population locale que
dans la mesure où elles doivent payer une taxe sur ces émissions. Elles émettent alors
trop de pollution dans les plus grandes villes et cela conduit à une diminution de la main-
d’œuvre disponible, car les travailleurs quittent ces villes trop polluées. Ainsi, les niveaux
de production et la population sont inférieurs à leurs niveaux optimaux dans les villes
les plus grandes et les plus productives. Du fait de ce mécanisme, lorsque les politiques
environnementales ne ciblent pas les grandes villes en particulier, celles-ci sont trop pe-
tites par rapport à “l’optimum social”. Je montre ensuite qu’un ensemble de politiques
aboutissant à un coût d’émission de pollution plus élevé dans les grandes villes permettrait
de rendre les activités locales plus “propres”, la qualité de l’air meilleure et ces villes plus
attrayantes. Enfin, j’applique une version généralisée de ce modèle au cas de la réparti-
tion des activités polluantes à travers les zones d’emploi françaises. Je constate que les
réglementations actuelles sont plus strictes dans les grandes villes, conformément à ce que
le modèle préconise. Néanmoins, le bien-être pourrait augmenter en ciblant davantage
certaines grandes villes.

Dans ce modèle, je considère un pays unique avec un nombre discret de villes qui diffèrent
par leurs niveaux de productivité et d’aménités. L’utilité des travailleurs habitant dans
une ville est une fonction des aménités locales ainsi que de leur niveau de consommation

17C’est l’argument des “jobs versus the environment” (Morgenstern et al., 2002).
18Ce terme d’aménités désigne “un ensemble de valeurs matérielles et immatérielles attachées à nos

territoires et qui « marquent » leur attractivité” (Ribière, 2010).
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d’un bien industriel composite. Ce niveau de consommation dépend du salaire local
ainsi que de l’indice de prix local. Suivant l’approche développée par Rosen (1979) et
Roback (1982), je considère une population fixée de travailleurs identiques qui choisissent
à l’équilibre dans quelle ville habiter afin de maximiser leur utilité. Dans chaque ville,
ces travailleurs sont employés par des entreprises appartenant à des secteurs distincts
et produisant des variétés différenciées. Ces entreprises utilisent la main-d’œuvre et les
émissions polluantes comme intrants substituables pour la production.19 Les coûts de
production dépendent donc des salaires locaux, de la productivité locale du travail ainsi
que des taxes locales sur les émissions.

Cette structure permet l’introduction des deux externalités spatiales qui permettent tra-
ditionnellement d’expliquer la répartition de l’activité économique dans l’espace. Pre-
mièrement, la productivité locale incorpore le phénomène d’économies d’agglomération :
lorsque le nombre de travailleurs augmente, la productivité locale augmente également.
Ces économies peuvent résulter d’effets de diffusion des connaissances, de la mise en com-
mun de la main d’œuvre locale ou des économies d’échelle locales.20 Deuxièmement, le
bien-être des habitants d’une ville dépend d’effets de congestion : lorsque la population
locale augmente ceteris paribus, le bien-être local diminue. Cette relation peut-être due,
par exemple, à l’augmentation des prix de l’immobilier ou des temps de trajet sur le
réseau routier. Potentiellement, cet effet incorpore également l’effet négatif de la pol-
lution due aux secteurs non industriels, comme la consommation d’énergie résidentielle
ou les transports, et qui ne sont pas explicitement modélisés. Enfin, je fais l’hypothèse
que les travailleurs peuvent déménager d’une ville à l’autre en réaction à un changement
d’équilibre, sans encourir aucun coût. La nouveauté de l’article repose sur l’hypothèse
que la quantité totale d’émissions industrielles par ville affecte négativement le niveau
local d’aménités.21

Comme je le montre dans ce deuxième chapitre, ce cadre théorique est particulièrement
applicable au cas de la France. Premièrement, une grande partie des émissions de pol-
luants nocifs résulte des activités industrielles en France. Deuxièmement, les concentra-
tions atmosphériques locales de ces polluants dans plusieurs villes françaises sont sou-
vent supérieures aux recommandations de l’Organisation mondiale de la santé (OMS).
Troisièmement, les réglementations sur la qualité de l’air mises en œuvre au cours des
dernières décennies en France ont tendance à être plus strictes dans les grandes villes.

19La pollution peut être modélisée de manière équivalente comme un intrant ou un sous-produit de la
production industrielle dans une configuration similaire à Copeland & Taylor (2004).

20Combes & Gobillon (2015) fournit un aperçu de la littérature empirique qui documente les économies
d’agglomération.

21Il s’agit d’un effet qui a été identifié empiriquement (Chay & Greenstone, 2005; Davis, 2011; Khanna
et al., 2021), mais pas encore inclus dans une configuration quantitative.
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À l’aide d’un large jeu de données sur la répartition de l’activité à travers les zones
d’emplois françaises et de données d’émission de pollution et de qualité de l’air, j’estime
les élasticités clés qui déterminent l’intensité des externalités de pollution, les économies
d’agglomération et les effets de congestion. L’utilisation de données à l’échelle des in-
stallations industrielles me permet également d’estimer, pour chaque secteur industriel,
l’élasticité régissant la substitution entre émissions et main-d’œuvre dans la production
industrielle. L’observation de la répartition actuelle de la main d’œuvre, des salaires ainsi
que des émissions industrielles de PM2.5 me permet de calculer les vecteurs d’aménités,
de productivité et de coût d’émission qui expliquent cette répartition. En particulier,
je constate que le coût d’émettre des particules PM2.5 est plus élevé dans les villes les
plus productives, mais pas nécessairement dans les villes dotées des aménités les plus im-
portantes. Je caractérise ensuite les implications de cette distribution spatiale des coûts
marginaux des émissions en termes de bien-être. Je montre que des réglementations plus
strictes en matière d’émissions dans les grandes villes leur ont permis de réduire leurs
émissions polluantes et de devenir plus grandes que ce qu’elles auraient été dans le cadre
d’une réglementation uniforme. Pour finir, j’identifie enfin la distribution spatiale de coûts
d’émissions qui maximiserait le bien-être des travailleurs : il serait optimal d’augmenter
ces coûts dans les villes à haut niveau d’aménités.

Chapitre 3 : La pollution de l’air affecte-t-elle les exportations

françaises?

La pollution de l’air n’affecte pas seulement la santé des individus (Aguilar-Gomez et al.,
2022). En effet, une vaste littérature a montré les effets néfastes de la pollution sur la
productivité des travailleurs (Graff Zivin & Neidell, 2012; Chang et al., 2016; He et al.,
2019; Adhvaryu et al., 2022), sur leurs capacités cognitives (Allen et al., 2016; Heyes et al.,
2016; Archsmith et al., 2018; Chang et al., 2019) et leur participation au marché du travail
(Hanna & Oliva, 2015; Holub et al., 2021). Néanmoins, les conséquences de ces effets sur
les performances économiques des entreprises dans lesquelles les individus affectés par la
pollution travaillent sont encore peu connues. À notre connaissance, seules quelques études
relient les chocs de productivité dus à la pollution aux résultats économiques agrégés
(Dechezleprêtre et al., 2019; Fu et al., 2021; Khanna et al., 2021). Si la pollution affecte
négativement la productivité des travailleurs et la quantité de main-d’œuvre disponible,
la théorie prédit alors une augmentation des coûts de production des entreprises menant
potentiellement à une réduction de leur production et de leurs revenus. La mise en lumière
empirique de ce type de phénomènes pourrait donc révéler que l’amélioration de la qualité
de l’air a un impact économique direct positif en plus des bénéfices sanitaires considérés
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généralement.

Dans le troisième chapitre de cette thèse, intitulé The Effects of Air Pollution on Ex-
ports: Evidence from PM2.5 & French Firms, co-écrit avec Geoffrey Barrows et Hélène
Ollivier, nous fournissons une estimation causale des effets de la pollution atmosphérique
sur l’activité des entreprises françaises, et en particulier sur leurs exportations. Nos ré-
sultats indiquent que des concentrations plus élevées de PM2.5 ont un effet négatif à la
fois sur la valeur totale et sur la quantité des exportations à l’échelle de l’entreprise. En
particulier, nous nous intéressons à l’ensemble des entreprises françaises exportatrices,
entre 2009 et 2015, et constatons qu’une augmentation de 10 % des concentrations de
PM2.5 auxquelles sont confrontés les établissements détenus par une entreprise exporta-
trice entraîne une diminution d’environ 1,5 % de la valeur totale et de la quantité des
exportations de cette entreprise.

Pour obtenir ces résultats notre analyse s’appuie sur des observations exhaustives et très
désagrégées, du point de vue temporel et géographique, sur les données commerciales
des entreprises et la qualité de l’air local. Nous observons les exportations mensuelles
au niveau des entreprises françaises et les combinons avec des informations sur les coor-
données géographiques des établissements détenus par les entreprises exportatrices ainsi
qu’avec des variables environnementales locales : les concentrations atmosphériques de
PM2.5, la direction du vent, les précipitations et les températures.22 L’utilisation de don-
nées issues de la modélisation du transport et des processus chimiques relatifs aux par-
ticules polluantes présentes dans l’atmosphère permet une approche plus précise que celle
développée dans de précédents travaux s’appuyant sur les mesures de pollution par des sta-
tions de mesure potentiellement localisées dans des lieux spécifiques et non représentatifs.
De plus, notre panel d’entreprises exportatrices est issu des déclarations obligatoires aux
Douanes françaises, ce qui signifie que nous observons l’ensemble des entreprises françaises
exportatrices, et non une sous-population comme cela est fréquent dans la littérature. Un
autre avantage de nos données commerciales est leur disponibilité à une fréquence men-
suelle. En effet, la plupart des travaux sur les effets de la pollution à l’échelle individuelle
montrent que ces effets se produisent sur plusieurs jours ou semaines. L’utilisation de
données annuelles est susceptible de cacher des effets à court terme, en particulier si les
entreprises compensent les effets négatifs à court terme de la pollution en augmentant les
exportations au cours des périodes ultérieures.

Les deux obstacles principaux à l’estimation d’un effet causal de l’augmentation de la
pollution sur l’activité économique sont l’omitted variable bias, ou “biais dû à une variable

22La plupart des activités de production se déroulent en intérieur (Vette et al., 2001), nous nous
concentrons donc sur la pollution due aux PM2.5 qui est composée de particules suffisamment fines pour
pénétrer les bâtiments.
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omise”, et la reverse causality, ou “relation de causalité inverse”. Dans notre contexte,
l’omitted variable bias provient de facteurs locaux qui influencent à la fois les concen-
trations de pollution atmosphérique et l’activité économique. Une importante littérature
a mis en lumière l’effet de la température sur la santé, la main-d’œuvre disponible et
la productivité des travailleurs (Dell et al., 2014; Graff Zivin & Neidell, 2014; Addoum
et al., 2020; Aguilar-Gomez et al., 2021). Cependant, la température influence également
les concentrations de pollution. Cette double dépendance risque de biaiser les estimations
si les variations de température ne sont pas inclues dans l’analyse. Par exemple, étant
donné que des températures très élevées entraînent des concentrations plus importantes de
polluants atmosphériques, l’omission de l’effet de la température entraînerait une suresti-
mation de l’effet négatif de la pollution sur les exportations (une partie de l’effet négatif
de la température sur les exportations serait attribuée à tort à la pollution plus élevée).
Afin de contrôler l’influence des facteurs climatiques, nous combinons donc nos données
de pollution avec des données sur les températures et les précipitations.

L’obstacle de la reverse causality est dû à l’endogénéité de la pollution de l’air : un
choc positif de productivité dans un endroit donné provoque potentiellement des niveaux
de production et de consommation plus élevés mais aussi des déplacements plus nom-
breux, émettant ainsi davantage de polluants et augmentant leur concentration dans
l’atmosphère. Cela induit une corrélation positive entre productivité locale et pollution
qui ne reflète pas l’effet d’un choc de pollution exogène sur l’activité économique. Afin de
surmonter ce problème, nous mettons en place une stratégie de “variable instrumentale”
où nous exploitons les variations exogènes de la direction du vent dans les zones où sont
situées les établissements appartenant aux entreprises exportatrices. Nous montrons que
la direction du vent influence fortement les concentrations locales de PM2.5 et, après avoir
contrôlé les effets de saisonnalité, les tendances annuelles et les variables météorologiques,
nous faisons l’hypothèse que les changements locaux et à court terme de la direction
du vent n’affectent les activités économiques que par leurs effets sur les concentrations
locales de pollution. En pratique, dans chaque lieu où se trouvent des établissements ap-
partenant à des entreprises exportatrices, nous commençons par estimer des modèles dans
lesquels les concentrations mensuelles de PM2,5 sont prédites linéairement par la direction
du vent, la température, les précipitations, le mois civil (pour contrôler la saisonnalité)
et l’année (pour inclure les tendances temporelles). Nous calculons ensuite les valeurs
de pollution prédites par ces modèles en fonction de la direction du vent uniquement.
Enfin, ces niveaux de pollution prédits sont utilisés comme instruments d’une stratégie
two-stages least squares dans laquelle nous instrumentons les concentrations de PM2.5
auxquelles sont exposées les entreprises (calculées comme une moyenne pondérée des con-
centrations de PM2.5 observées dans les lieux où ces entreprises ont des établissements).
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Sous réserve de contrôler les effets des autres variables météorologiques afin de résoudre
l’omitted variable bias et satisfaire la condition d’exclusion restriction de notre instrument
(l’instrument n’influence la variable expliquée que par le biais de la variable instrumentée),
notre stratégie nous permet d’estimer un coefficient non biaisé mesurant l’effet causal de
la concentration de PM2.5 sur les exportations.
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General Introduction

Our society is confronted with numerous environmental unbalances caused by human
activities. Two of these major issues are addressed in my thesis : the reduction of green-
house gas (GHG) emissions, in order to limit global warming, and the consequences of
air pollution on human health and activities. The role of industrial sectors is particularly
important on these two issues, justifying the implementation of numerous public policies
aimed at reducing their GHG emissions and other local pollutants. These policies must
be developed in a coherent, efficient and socially acceptable way. Economics research can
contribute to this process by studying policy options retrospectively and prospectively.
In a context of rationalization of public policies, their evaluation is necessary in order to
measure the impact of public action. Indeed, a precise knowledge of the consequences
of the implementation of regulations aiming at improving air quality and reducing GHG
emissions is a prerequisite for their acceptability by society, as well as for their future
improvement.

Climate Change, Air Pollution and Environmental Policy

Two major environmental issues

Greenhouse Gases and Climate Change: There is now a strong body of evidence
of the impact of human activities on the climate. The burning of fossil fuels, such as
oil and gas, the production of goods, travel, or the generation of electricity emit GHG
that contribute to the warming of the atmosphere as they accumulate in the atmosphere.
In practice, the average temperature at the Earth’s surface between 2011 and 2020 has
increased by more than 1◦C compared to the period 1850-1900 (IPCC, 2021a). The latest
report from the Intergovernmental Panel on Climate Change (IPCC) shows that “...unless
there are immediate, rapid, and massive reductions in greenhouse gas emissions, limiting
warming to around 1.5◦C, or even to 2◦C, will be out of reach.” (IPCC, 2021b). Beyond
temperatures, this climate change impacts other variables, such as humidity and drought,
winds, snow and ice, coastal areas and oceans. In particular, the frequency of climatic
disasters (hurricanes, floods, heat waves, droughts, etc.) could increase if the temperature
increase is not controlled.

In order to limit this temperature increase, the consensus today is that we must reduce
total GHG emissions, or at least stop their increase. In 1997, 35 countries made commit-
ments at the Kyoto Summit to reduce their GHG emissions by 5%. In 2015, the Paris
Climate Agreement was signed by more than 50 countries (representing more than half
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of the world’s GHG emissions) committing to limit the global temperature increase to
2◦C.23 In 2020, in the context of the Covid pandemic, global emissions have declined by
5.4%. However, they appear to have immediately returned to “pre-Covid” values and
the concentration of GHGs in the atmosphere continues to increase to this day (UNEP,
2021). In particular, GHG emissions over the last decade (2010 to 2019) have been larger
than ever before (IPCC, 2022). This amount emitted is of the same order of magnitude
as the “carbon budget”, which is the maximum amount that can still be emitted while
limiting the global temperature increase to 1.5◦C. For the moment, France is committed
to reducing its GHG emissions by 40% by 2030 and to achieving carbon neutrality by 2050
(which corresponds to a division by 6 of its emissions compared to 1990).24 French GHG
emissions (CO2 equivalent) have also decreased by 20% between 1990 and 2019 (CITEPA,
2021). These commitments, as well as the climatic emergency, pose a challenge today and
require the implementation of a sufficient transition in order to reach carbon neutrality
(Ademe, 2021).

Air Pollutants and Health Effects: Another negative consequence of economic ac-
tivities is the emission in the atmosphere of pollutants that are harmful to health. This
is recognized to be “the most important environmental threat to human health” by the
World Health Organization (WHO) in its latest air quality guidelines. This threat is due
to the negative health effects of a series of pollutants emitted by various activities. The
main ones are fine particulate matters (PM10 and PM2.5), nitrogen dioxide (NO2), ozone
(O3), and sulphur dioxide (SO2).25 The effects of these pollutants are multiple and affect
different physiological parameters, such as the respiratory system (Viehmann et al., 2015),
the cardiovascular system (Brook et al., 2010) or the brain (Costa et al., 2019). Early
exposure to polluted air may also have latent effects, that is to say effects that do not
manifest themselves until later in the lives of affected children (Bale et al., 2010; Almond
& Currie, 2011; Colmer & Voorheis, 2020). It is also estimated that this air pollution is
the cause of 4.4 million premature deaths in the world, all pollutants combined, and that
pollution linked to PM2.5 causes about 379,000 premature deaths in the European Union
and 40,000 in France. A key difference between GHGs and harmful air pollutants is that,
for the latter, the place of emission is important for measuring their impact on health.
Indeed, while global warming is a function of the total amount of accumulated GHG
emissions - hence the designation of “global” pollutants - the harmful effects of air pollu-
tants occur when they are breathed in by individuals - hence the designation of “local”

23Temperature changes are measured relative to pre-industrial temperature levels.
24Carbon neutrality consists, on the one hand, in reducing GHG emissions as much as possible, and

on the other hand, in offsetting the remaining emissions.
25Fine particulate matters are generally classified into two families corresponding to the main dimension

of the particle: less than 10µm for PM10 and 2.5µm for PM2.5.
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pollutants. Thus it is their local atmospheric concentration that must be controlled.

Since the first disasters (Donora Smog in 1948 in the United States, the Great Smog of
London in 1952 or the accident of Bhopal in 1984 in India) and the first evidence of the
effects of this type of pollution, brief or chronic, many regulations were set up in order
to try to guarantee a better air quality.26. At the international level and since 1979, the
Convention on Long-range Transboundary Air Pollution, opened under the aegis of the
United Nations, aims to reduce pollution related to SO2, NO2 and PM, as well as certain
heavy metals and persistent organic pollutants. For the European Union, the strategy
for a better air quality is based on three main pillars: (1) the Ambient Air Quality
Directive (2008/50/EC), which sets air quality standards, in practice concentration levels
not to be exceeded, as well as measurement and planning obligations in the Member
States (1996 Framework Directive on Ambient Air Quality Assessment and Management
(96/62/EC)); (2) the Directive on National Emission Reduction Commitments (Directive
2001/81/EC and then 2016/2284); and (3) the establishment of specific standards and
limits by emission source, targeting in particular the industrial sectors (with for example
Directive 2001/80/EC on emissions from large combustion plants or Directive 2010/75/EU
on industrial emissions).

Over the past two decades, air quality has greatly improved and concentrations of a num-
ber of pollutants have decreased significantly in developed countries (in the United States
(US EPA, 2022) and the European Union (AEE, 2013, 2020), for example). However,
WHO estimates that 92% of the world’s population continues to be exposed to excessively
high air concentrations of pollution (WHO, 2016). Although the highest concentrations
are observed in developing countries, such as India and China, the health values set by
the WHO are still not reached in some developed countries. In the case of the EU, despite
the reduction in the concentration of a number of pollutants in recent years, concentra-
tions of fine particles (PM2.5) and ozone (O3) remain very high (Sicard et al., 2021).
Moreover, PM2.5 also have effects on health below the health thresholds fixed (Di et al.,
2017). France was one of the first countries to set up regulations aiming at limiting this
problem (Massard-Guilbaud, 1999). Thus, outdoor air quality has improved over the last
decades and emissions of all pollutants have been decreasing since 1990 (CITEPA, 2021).
However, in many cities, EU standards are not yet reached for fine particles (PM10) and
nitrogen dioxide (NO2). France has been condemned by the Court of Justice of the EU
for having systematically exceeded the concentration limits for these pollutants.

26Depending on the particles, an exposure to too high concentrations in a chronic or temporary way
can have harmful effects on the respiratory system, the cardiovascular system, the skin, the fertility and
the life expectancy
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The role of the industry in these emissions: GHGs and air pollutants are emit-
ted by human activities, mainly by the combustion of fossil fuels.27 In particular, the
transport sector, the industry, agricultural activities and residential and tertiary building
sectors play a major role in these emissions. For GHGs, in 2019, these sectors represented
respectively 31% of total emissions for transport, 19% for the manufacturing industry
and construction, 19% for agriculture, 17% for residential and tertiary, 10% for energy,
and 4% for waste treatment (CITEPA, 2021). The energy industry has seen its emissions
reduced by 46% and the manufacturing industry by 41%, thus highly contributing to the
reduction of national emissions between 1990 and 2019 (CITEPA, 2021). According to
the Réseau Action Climat, emissions from the French industry have decreased between
1990 and 2015, due to improvements in energy efficiency but also through a reallocation
of emissions to foreign countries, with plant closures, relocation and increased imports.
Thus, if the national carbon footprint has remained at a stable level for the last twenty
years, it is because “imported emissions” have been increasing continuously and are now
even greater than emissions on French territory (HCC, 2020).28.

Concerning air pollution, the manufacturing industry is one of the major contributors,
along with the transport sector. In 2019, the manufacturing industry contributed to
55% of national SO2 emissions, 27% of PM10 emissions, 18% of PM2.5 and 13% of NOx
emissions. Since 1990, SO2 emissions have decreased by 86%, PM10 by 51%, PM2.5 by
58%, and NOx by 55% (CITEPA, 2021). For the US, emissions of these pollutants also
decreased significantly since 1990. Shapiro & Walker (2018) showed that this reduction
was mainly due to the intensification of environmental policies (more than to productivity
or trade flow reallocation effects).

Thus, both the reduction of GHG emissions and the improvement of air quality continue
to be, in France as in the rest of the world, a central issue for the years to come. Public
policies implemented by governments are powerful instruments to solve these problems
(Shapiro, 2022). However, there are still many questions about the respective advantages
of these instruments and their effectiveness in environmental and social terms.

Environmental Policies

The emission of pollutants into the atmosphere (GHG, SO2, NOx, PM, etc.) is a negative
externality: the action of one economic agent affects another without any compensation
taking place. This market failure leads to a lower welfare of the economic agents because

27Some local pollutants are also emitted during specific processes, such as the friction of tires on the
road in transport or emissions due to chemical reactions in the industry

28These emissions correspond to the emissions occurring abroad during the production of goods im-
ported and consumed in France
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the cost of the damages caused by the action in question is not taken into account by the
polluter in her or his decisions (quantities produced, investments, etc.). The quantity of
pollution emitted is therefore too high in relation to the social optimum. In this situation,
public intervention can internalize the damage caused by pollution and thus increase social
welfare. Traditionally, these interventions can be separated into two distinct families.
The first consists of setting technology or health standards and making companies respect
them. This is the so-called “command-and-control” approach (e.g., limits on emissions per
company or technology standards). However, economists consider that, in certain cases,
it is possible to correct a negative externality more effectively by setting an appropriate
price. This is the second family of policies, known as “market-based” policies. With regard
to pollution emissions, the two most widespread instruments are taxes (or subsidies)
and emission permits markets. A tax set at the marginal cost of the damages linked to
pollution (climate change, health impacts of air pollutants, etc.) allows firms to internalize
the impact of their production, i.e. to take into account the environmental effects of their
decisions (Pigou, 1920). Emission permit markets, called cap-and-trade instruments, are
a second type of efficient instruments. The idea is to set the total quantity of emissions
allowed, for example in order to respect the carbon budget or to reach a certain level
of emission reduction, and then create for each unit of pollution that can be emitted an
emission right that firms can trade on a market created for this purpose.

In practice, the choice between different instruments for regulating environmental exter-
nalities is still a key issue today (Bretschger & Pittel, 2020). The command-and-control
approaches have often been favored because they are perceived as clearer. The most
polluting technologies are banned in favor of cleaner technologies. For example, in the
United States, this is the model on which the Clean Air Act and the Water Air Act were
designed. This is also the case in the EU where industrial installations have to adopt spe-
cific technological standards called the “best available techniques” (BAT). Many examples
of pollution taxes also exist, such as the tax on polluting activities (TGAP) in France or
the tax on NOx in Sweden or Norway (Bonilla et al., 2017). However, when the actors
are heterogeneous and there is uncertainty about their respective costs of reducing their
emissions, cap-and-trade instruments are considered more effective (Newell & Stavins,
2003). This type of instrument has notably been implemented in the United States (for
instance with the Acid Rain program, the Los Angeles RECLAIM program29 , and the
California carbon market), in the United Kingdom, and in China.

The European Union Emissions Trading Scheme (EU-ETS), the subject of the first chap-
ter of this thesis, is also one of the main examples of such instruments to this day. It has
been implemented by the European Commission, regulating approximately 11,000 power

29California Regional Clean Air Incentives Market
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and manufacturing plants across 31 participating countries, including France. The EU-
ETS was first announced in 2000 with a working paper from the European Commission,
formalized with the Emissions Trading Directive in 2003, and initiated on January 1st,
2005. It regulates all combustion installations with a rated thermal input greater than
20MW, and other productive processes with capacity or output greater than predeter-
mined industry-specific thresholds. Regulated firms must surrender permits – called EU
allowance units – for each ton of CO2 emitted during the year. Non-compliance triggers
a fine of 100 euros per ton of CO2 exceeding the number of permits surrendered. The
European Commission initially designed three phases of the EU ETS. The first phase
was designed as a trial period, running from 2005 to 2007; the second phase ran from
2008 to 2012, corresponding to the first commitment period under the Kyoto Protocol;
and the third phase ran from 2012 until 2020.30 During Phases I and II, the implemen-
tation of the policy was relatively decentralized, with participating countries submitting
National Allocation Plans (NAPs) to the European Commission in which they proposed
lists of installations to regulate, potential emission caps and allowance distribution rules
(Ellerman et al., 2015). During these two phases, free permits were allocated to regulated
installations on the basis of their historical emissions (according to the “grandfathering”
method).31 In Phase III, allocation began a transition towards an open auction system,
first for power installations (except for a few plants in Eastern Europe), and progres-
sively for other regulated industries. Furthermore, a single emission cap (declining at a
1.74% rate per year) was adopted for the entire EU market and EU-wide sector-specific
“benchmarks” were adopted for determining allowance distribution rules.

There are several impact evaluation studies of the EU-ETS (Petrick & Wagner, 2014;
Löschel et al., 2018; Colmer et al., 2020b; Dechezleprêtre et al., 2018; Jaraite & Di Maria,
2018; Calligaris et al., 2018). However, revisions of the system for future phases are sub-
ject to intense oppositions, generally motivated by the idea that a stringent regulation
could threaten the competitiveness of European industries (Demailly & Quirion, 2006),
(Branger et al., 2017), (Joltreau & Sommerfeld, 2018). Industrial lobbies, in particular
those representing the interests of the steel, cement and fertilizer sectors, play an impor-
tant role in the discussions related to the revision of the system and these oppositions now
threaten the sustainability of the environmental action (Thomas, 2021). In this context,
an evaluation of the EU-ETS that takes into account not only its impact on GHG emis-
sions but also its impact on the economic performance of regulated firms is needed. This
is one of the objectives of the first chapter of this thesis. Indeed, we calculate both the
GHG reduction implied by the EU-ETS in France but we also show that this regulation

30Revisions of the regulation in the expectation of Phase IV (2021-2030) are already well under way.
31In France, the Caisse des Dépôts was in charge of the implementation of the regulation for the country.
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has had a positive effect on the revenues of regulated firms.

Air quality regulations aiming at decreasing industrial pollutants emissions are also com-
plex and there is a large debate on the consequences. In the case of France, air quality
regulation is based on European standards. Limits for maximum air concentration of
various pollutants and reduction objectives are set at the EU level (directives 2004/107
and 2008/50/CE) to be enforced in each Member States. In turn, they must implement
specific action plans to remain within these limits and reach the air quality objectives.
In France, these actions are taken both by central and local authorities. The French gov-
ernment regulates pollutant emissions through tax instruments and regulatory standards
(Hauvuy & Riedinger, 2005; Bougon & Lavergne, 2019). The main tax instrument is the
General Tax on Polluting Activities (TGAP), which is a national tax on the quantity of
pollutant emitted per year. In 2016, more than a thousand installations were subjects to
this tax (IGF, 2018). However, the air pollution component of the TGAP is limited,32 and
does not constitute the most efficient instrument enforced to limit air pollution (Millock
& Nauges, 2006; IGF, 2018). Frameworks regulating industrial emissions are mainly set
at a national level. However, their implementation is usually enforced by local authorities.
For instance, the main regulatory framework for polluting activities is the ICPE regula-
tion, standing for Plants Classified for the Protection of the Environment. The ICPE is
a set of norms governing polluting plants activities in relation with their impact on the
environment. Notably, it requires that an opening permit is delivered by the authority
of the departmental prefects for any polluting plant under the condition of implementing
specific technology standards and after conducting a local survey of the local population.33

Moreover, some of these classified plants may fall under the EU Directive on Industrial
Emissions (IED).34 This is the case if they are running polluting installations with capac-
ities above thresholds set in the IED. The main obligation enforced under this regulation
is the BAT: authorizations for industrial installations are conditional to the use of the
least pollution intensive techniques. In that respect, the current national regulation fo-
cuses mainly on the largest plants, but any smaller polluting plant not covered by the
ICPE regulation is regulated at the municipality level. Furthermore, since the LAURE
law, adopted in 1996, other local authorities can use specific measures to improve local air
quality and reach air quality national targets. For instance, starting in the early 2000’s,
several “Atmospheric Protection Plans” (PPA) have been implemented in different ar-

32In 2016, e50 millions were collected compared to the e3.8 billions collected for the carbon component
of the energy consumption tax in 2016 (DGEC, 2016)

33These prefects are the regional authorities for the “départements” which are NUTS 3 geographic units
(larger than commuting zones).

34Since 2010, the Industrial Emissions Directive has replaced the Integrated Pollution Prevention and
Control Directive. The guidelines are similar and aim at preventing air, water, and soil pollution.
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eas. Within their respective application zone, many of these plans adopted differentiated
measures for more versus less densely populated areas. Some of these plans introduced
more stringent environmental standards for the manufacturing industries, especially in
agglomerations above a certain threshold of inhabitants. For instance, the three consec-
utive PPAs for the Paris region mandated lower industrial NOx and PM emission caps
relative to the national caps. These plans also implement emergency responses when air
concentration of certain pollutant exceed national and European standards.

This differentiation of environmental regulations across space also exists in other regions.
In the US, for example, under the Clean Air Act industrial plants in counties where air
pollution is too high have to implement specific actions. In China, as part of the five-
year plan, the government sets a national industrial emissions reduction target that is
broken down into sub-national targets that provinces and cities must meet. In particular,
the ambition levels of these targets differ greatly across regions (Yamada, 2020). In this
context, the second chapter of my thesis focuses on the consequences of such spatially
differentiated regulations. Indeed, while stringent regulations may help improve air quality
in some cities, they may also reduce the productivity of local industries and negatively
affect workers’ income. Therefore, in this chapter, I address the trade-off between the
economy and the environment in a spatial context in order to identify the best way to
allocate pollution emissions across different cities.

Finally, the traditional environmental economics Pigouvian approach, consists of estimat-
ing the cost to society of the environmental disruption in question. In the case of climate
change or air pollution, this is the price that individuals would be willing to pay to avoid
the emission of GHGs or harmful air pollutants. This price is generally the monetary
equivalent of the utility reduction due to these emissions. In the case of climate change,
models combining climate science and economic interactions between agents over several
generations have been developed in order to calculate a “social cost of carbon” correspond-
ing to the marginal damage caused by the emission of an additional ton of CO2. 35 This
approach should then make it possible to identify the appropriate level of a carbon tax or
the price of emission permits on the markets. In the case of air pollution, the approach is
significantly different. Damages are related to pollution concentrations, not to emission
levels. Currently, few analyses link the location of emissions, air flow patterns and local
air quality. It is therefore generally not possible to estimate a marginal cost of emitting
air pollutants. The traditional approach is therefore to estimate the total cost of the ob-
served concentrations, by calculating its monetary impact on health, economic activities
and biodiversity.36 This value can then be used to set a level of ambition for the policies

35These models are called Integrated Assessment Models (IAM).
36Generally, the monetary impact of health effects takes into account both the medical expenses involved
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put in place. To this day, there are many analyses on the health effects of air pollution.
These studies show that poor air quality implies an important cost in terms of medical
expenses but also a degraded quality of life and a reduction in life expectancy (Waidy-
atillake et al., 2021). However, a recent literature has also focused on showing that air
pollution has direct effects on economic activities. In particular, poor air quality reduces
the productivity of industrial workers (Graff Zivin & Neidell, 2012; Chang et al., 2016;
Adhvaryu et al., 2022; He et al., 2019). It is in this context that the third chapter of this
thesis estimates the damage caused by particulate matter pollution (PM2.5) on French
exports. Estimating the consequences of air pollution on the economic performances of
firms could have implications in terms of public policy. Indeed, if regulations aimed at
improving air quality are generally perceived as an additional cost for economic activities,
the identification of direct economic benefits could lead to an increase in the ambition of
these policies.

and a form of valuation of the losses in life expectancy and quality of life.
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Chapter 1

Inter-Firm and Intra-Firm Spillover Ef-
fects of Industrial Regulation

1.1 Introduction

Governments often regulate specific subsets of firms differently from others in the same
industry. For example, governments frequently impose environmental standards only for
firms in the most polluted regions (Greenstone, 2002; Fowlie et al., 2016), offer employ-
ment incentives only to firms in distressed neighborhoods (Neumark & Simpson, 2015),
and reserve business-promotion subsidies only for small or midsize firms (Martin et al.,
2017; Rotemberg, 2019; Smagghue, 2019). The objective of these regulations is to incen-
tivize particular outcomes at regulated firms; but if firms compete on the output market,
then regulatory effects likely spillover to unregulated firms through competitive forces,
potentially undercutting the objective of the regulation. The problem is compounded
when firms own multiple plants. Profit maximizing firms may shift resources towards or
away from regulated plants, in order to exploit or evade the regulation.

In this paper, we propose a method for estimating treatment effects of regulation on
firm-level, plant-level, and aggregate outcomes in the presence of intra-firm and inter-firm
spillover effects. The vast majority of empirical studies of regulation assumes no intra-firm
or inter-firm spillover effects. Under this assumption, treatment effects can be estimated
by standard difference-in-difference (DiD) techniques.1. But if cost shocks spillover across
or within firms – as they do in almost any model of imperfect competition – the stable unit
treatment value assumption (SUTVA) fails, invalidating DiD estimators. A handful of
recent papers explicitly address inter-firm spillover effects (Cai & Szeidl, 2022; Muehlegger
& Sweeney, 2021; Rotemberg, 2019) and intra-firm spillover effects (Giroud & Mueller,
2019; Bartram et al., 2022; Gibson, 2019; Soliman, 2020) in isolation. This paper first fol-

1The main empirical challenge confronted by DiD studies is the exogeneity of the regulation with
respect to unobserved determinants of plant-level or firm-level outcomes. A recent group of papers
also highlights the dependence of DiD estimation on the assumption of homogeneous treatment effects. If
different plants become regulated in different years, and if the regulation induces heterogeneous treatment
effects, then standard two-way fixed effect models can led to biased estimates of average treatment effects
(De Chaisemartin & d’Haultfoeuille, 2020).
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lows their example in revealing reduced-form evidence of spillovers across firms within an
industry and across plants within a regulated firm in the context of the European Union
Emission Trading Scheme (EU ETS) regulating French manufacturers. To overcome the
limitations associated with the fact that these exercises are performed separately, based
on restrictive assumptions with respect to the evolution of market shares, productivity,
and entry and exit, the paper then develops a structural model that encompasses both im-
perfect competition and intra-firm reallocation and proposes an estimator that separately
identifies the effects of regulation on regulated units (plants or firms) and unregulated
units.

Using confidential income statements for the universe of French manufacturing firms, as
well as plant-level CO2 emissions for a sample of establishments, we use our estimator to
evaluate the effects of the EU ETS on revenues and emissions of French manufacturers.
Launched in 2005, the EU ETS is the world’s largest cap-and-trade carbon emissions
market and the EU’s flagship climate policy. An important feature of the EU ETS is that
regulation applies at the sub-firm level - i.e. the plant. To minimize monitoring costs,
the regulation targets plants with fossil fuel combustion capacity or output greater than
industry-specific thresholds, thereby selecting larger plants owned by larger firms. We
count only 465 firms and 699 plants ever regulated under the EU ETS in the French man-
ufacturing sectors, among the 373,711 firms observed from 1994 to 2016. The regulation
is thus incomplete on two dimensions: not all firms are regulated within each industry,
and not all plants are regulated within a firm.

We specify a tractable model of demand and supply for differentiated products. We adopt
standard assumptions for differentiated-product models: CES demand, Cobb-Douglas
production, heterogeneous productivities, and monopolistic competition among single-
plant firms.2 We study the introduction of a regulation that targets the price of one of
the inputs for some subset of firms in the economy. We show that in this framework,
the evolution of firm-level revenues between a pre-regulation period and a post-regulation
period depends on a firm’s own regulation status (through unit costs), as well as the
regulation status of all firms in the sector (through the industry- and sector-wide price
indices). We leverage the structure of the model to identify reduced-form coefficients using
only information on the observed revenue changes and the observed vector of regulation.
Armed with these reduced-form coefficients, we can compute average treatment effects on

2These assumptions are standard for models of the manufacturing sector as a whole. See for example
Atkeson & Burstein (2008). In some cases, when researchers study a single industry, flexible patterns
of across-firm price elasticities can be estimated structurally using detailed output price and product
characteristic information (Berry et al., 1995). Data of this sort are only available for specific industries,
hence this method is not well-suited to estimating aggregate effects of regulation (De Loecker & Syverson,
2021).
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regulated firms and unregulated firms, as well as the aggregate effect on emissions.

We then extend our framework to multi-plant firms and consider a regulation that targets
a subset of plants in the economy. To link plant-level regulation status with firm-level
outcomes, we adopt a parsimonious model of across-plant aggregation. In the model, the
concentration of resources across plants within the firm can either increase or decrease
firm-level costs, depending on whether dispersion forces dominate economies of scope. We
show how to identify the net effect of concentration from variation in labor concentration
across plants within firms along with other reduced-form parameters to compute treatment
effects.

For the empirical strategy, we first build a GMM procedure to estimate three reduced-form
parameters that reflect (i) the direct effect of regulation on regulated firms’ cost, scaled by
demand-side parameters, (ii) the spillover effects of regulation on the industry-wide price
index, which affects all firms within an industry, and (iii) the effect of the concentration
of resources across plants on firms’ cost. The direct effect of regulation on cost could
also be obtained by regressing the log change in revenues on the change in firm-level
regulation, absorbing all equilibrium effects with industry-by-year fixed effects. If costs
do not influence the industry-wide price index, then this standard DiD estimation also
identifies the average treatment effect on revenues for regulated firms (ATT). However, if
costs pass through to the industry-wide price index, then the stable unit treatment value
assumption fails, and this regressions does not identify the ATT. The model indicates
that the industry-year fixed effects represent the log change in the (unobserved) industry-
wide price indices. We thus exploit two moment conditions based on firm-level regulation
status and concentration of resources across plants and two moment conditions based
on industry-wide intensity of regulation and concentration, weighted by a function of
pre-regulation and post-regulation firms’ market shares.

Intuitively, if regulation increases costs, then industries with higher regulation density
should see higher growth in their price indices. Previous work, which we designate as
the local approximation (LA) method, uses base-year weighted regulation density (Cai
& Szeidl, 2022; Muehlegger & Sweeney, 2021; Rotemberg, 2019). A key feature of our
procedure is that we rely on price index theory to guide the construction of these weights.
In particular, the CES assumption on demand indicates that firm-specific weights should
reflect both pre-regulation market shares and post-regulation market shares (Sato, 1976;
Vartia, 1976).3 Ignoring this pattern – using pre-regulation market shares only as weights

3This result is quite general. However, for the CES case, Sato (1976) and Vartia (1976) solved for the
exact expression for the weights that makes the weighted average change in firm-level prices equal to the
log change in the price index. For other functional form assumptions, we do not have analytical solutions
for these weights.
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– could induce an omitted variable bias.

Next, we estimate by OLS the input price effect of the regulation by regressing plant-level
emissions on plant-specific treatment status and labor share, controlling for firm-year fixed
effects. By exploiting within-firm variation, we capture the regulatory effect on regulated
plants’ emissions, abstracting from changes in revenues at the firm level. Lastly, we
compute treatment effects by comparing observed and counterfactual outcomes for each
group of plants and firms. To do so, we solve for counterfactual revenues under the
assumption that no firm was ever regulated.4 The counterfactual equilibrium is computed
by solving a system of equations that relate counterfactual revenues to observed revenues,
reduced-form parameters, observed regulation variables, and observed and counterfactual
Sato-Vartia weights, which must update endogeneously. This system can be solved either
with a nonlinear solver or a fixed point algorithm.

We run Monte Carlo simulations to evaluate the performance of our estimator in a finite-
sample setting and compare it to the standard DiD and local approximation methods. Our
estimator allows us to recover unbiased estimates of treatment effects in these experiments,
while the DiD and LA methods can be severely biased and can even identify treatment
effects of the wrong sign under some parameterizations.

We find that the EU ETS increased sales for regulated firms (firms with at least 1 reg-
ulated plant) and reduced emissions for regulated plants, relative to a completely unreg-
ulated counterfactual. The fact that regulation increased sales is perhaps surprising, as
the regulation effectively increased the cost of energy for regulated firms. However, as
Porter hypothesized, environmental regulation can trigger cost-saving investments that
ultimately increase sales (Porter & van der Linde, 1995; Ambec et al., 2013).5 We also find
that the policy reduced aggregate CO2 emissions from French manufacturers generated in
the production of goods for the French market by roughly 5-12% annually relative to an
unregulated counterfactual in the first two phases of the policy (2005 - 2012), depending
on the year. The DiD estimator overstates the effect on sales and reverses the sign of the
effect on emissions.

4When output is denominated in value, it is not possible to separately identify the underlying structural
parameters of the model; but we show that to compute counterfactual equilibria, it is sufficient to estimate
just a few reduced-form parameters.

5There is in fact quite a lot of support for the Porter hypothesis, especially in the context of the
EU ETS. See for example Löschel et al. (2018) Dechezleprêtre et al. (2018) and Calligaris et al. (2018).
Evidence from Calel & Dechezlepretre (2016) and Calel (2020) indicate that the EU ETS increases R&D
and green innovation, which could explain these positive effects on sales. All of these results are based
on DiD estimators, so are potentially subject to the very critique we advance in this paper. Nevertheless,
we document below that the sign of the effect on costs is the same as the sign of the DD estimate on
revenues. So while the magnitude of the effects in these papers are likely biased, the sign is correct,
according to our model.
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This paper contributes to several strands of literature. First, we contribute to a bur-
geoning literature dedicated to estimating the effects of firm-level shocks on own-firm,
competitor-firm, and aggregate outcomes. Recent examples include Cai & Szeidl (2022),
Muehlegger & Sweeney (2021), and Rotemberg (2019) who study shocks to access to
credit, shocks to input costs, and subsidies, respectively. All three papers derive linear es-
timation equations based on local approximations to the log change in industry-wide price
indices.6 By contrast, we derive the exact change in revenues between a pre-regulation
period and a post-regulation period using index price theory, and thus need not resort to
approximations. We also allow for nonrandom assignment of regulation and non-random-
walk productivity growth, which none of these papers do.7 In Monte Carlo experiments,
we show that in some cases, the linear approximation method performs quite well, while
in other cases, estimated effects can be biased.

The paper also contributes to a literature that structurally estimates the effects of en-
vironmental policies on emissions and competitiveness. Most of this literature studies
homogeneous product markets (Fowlie et al., 2016; Hintermann, 2017; Ganapati et al.,
2020; Fabra & Reguant, 2014), and often focuses on pass through from input prices to
output prices (Muehlegger & Sweeney, 2021; Hintermann, 2017; Ganapati et al., 2020;
Fabra & Reguant, 2014). A notable exception is Shapiro & Walker (2018), who study
the effects of environmental regulations on emissions from US manufacturing. Our model
shares many features with that of Shapiro & Walker (2018), but the context and empirical
strategy is quite different. Shapiro & Walker (2018) back out the implied homogeneous
environmental tax from aggregate data on sector-level emissions and revenues and study
the effects of these implied taxes on total emissions. By contrast, we study the effect of
a particular regulation on a discrete set of firms.

Third, our paper contributes to a handful of papers that studies how shocks propagate
through intra-firm networks. A number of studies use DD estimators to estimate the
effects of new regulations or other shocks that apply at the plant-level (Giroud & Mueller,

6Cai & Szeidl (2022) and Rotemberg (2019) consider differentiated product markets, while Muehlegger
& Sweeney (2021) study a homogeneous product market (gasoline). Cai & Szeidl (2022) explicitly derives
the estimation equation as a first order approximation (proposition 1). Muehlegger & Sweeney (2021)
specify an estimation equation that is linear in own-firm cost and weighted average of competitor costs.
The authors refer to their approach as a “reduced form...approximation” (footnote 14).

7Another group of papers studies equilibrium effects of demand and supply shocks in an economic
geography framework (Adao et al., 2019; Franklin et al., 2021; Bergquist et al., 2019). These papers
are similar in spirit to our work, though the emphasis in these papers is on labor supply as opposed to
imperfectly competitive output markets. Also, in theoretical work, Sraer & Thesmar (2020) combine DiD
estimation with a structural model to compute aggregate effects of firm-specific shocks, similarly to us.
A key difference between Sraer & Thesmar (2020) and our work is that Sraer & Thesmar (2020) rely
on specific assumptions on the distribution of productivities in the economy in order to aggregate over
firms and build counterfactuals. By contrast, we solve a set of simultaneous equations for a discrete set
of firms to retrieve incomes and market shares under different general equilibrium conditions.
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2019; Bartram et al., 2022; Gibson, 2019; Soliman, 2020). We show how our method
can incorporate a parsimonious model of multiplant firms, and we derive an estimation
strategy that encompasses both inter-firm and intra-firm spillovers. As a result, our
method can also be applied to study a broader set of regulations that target specific
plants, by virtue of a plant’s size or location, for instance.

Finally, our paper contributes to the literature evaluating the effect of the EU ETS on firm-
level emissions and competitiveness. Most of the studies so far have used DiD estimators
at the firm-level, comparing firms with or without a regulated plant (Petrick & Wagner,
2014; Löschel et al., 2018; Colmer et al., 2020b; Dechezleprêtre et al., 2018; Jaraite &
Di Maria, 2018; Calligaris et al., 2018)8. Identification in these papers is usually tied
to variation in across-plant concentration of economic activity. Our model of multiplant
firms provides rigorous micro-foundations for this identification strategy. Nevertheless,
our Monte Carlo experiments and empirical application indicate that the DiD approach
can lead to biased estimates as a result of failing to properly account for inter-firm and
intra-firm spillovers.

1.2 Data and Reduced-Form Evidence of Spillover Ef-

fects

In this section, we discuss the empirical context related to the European Emissions Trading
Scheme and the data for French manufacturing firms and plants. We provide reduced-form
evidence of both inter-firm and intra-firm spillovers in our empirical context.

1.2.1 The European Emissions Trading Scheme

The EU ETS is a cap-and-trade carbon policy implemented by the European Commission,
regulating approximately 11,000 power and manufacturing plants across 31 participating
countries, including France. The EU ETS was first announced in 2000 with a working
paper from the European Commission, formalized with the Emissions Trading Directive
in 2003, and initiated on January 1st, 2005. The EU ETS regulates all combustion instal-
lations with a rated thermal input greater than 20MW, and other productive processes
with capacity or output greater than predetermined industry-specific thresholds. Regu-
lated firms must surrender permits – called EU allowance units – for each ton of CO2

emitted during the year. Non-compliance triggers a fine of 100 euros per ton of CO2

exceeding the number of permits surrendered.

8See Martin et al. (2015) and Joltreau & Sommerfeld (2018) for extensive reviews.
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The European Commission initially designed three phases of the EU ETS. The first phase
was designed as a trial period, running from 2005 to 2007; the second phase ran from
2008 to 2012, corresponding to the first commitment period under the Kyoto Protocol;
and the third phase ran from 2012 until 2020.9 During Phases I and II, the implemen-
tation of the policy was relatively decentralized, with participating countries submitting
National Allocation Plans (NAPs) to the European Commission in which they proposed
lists of installations to regulate, potential emission caps and allowance distribution rules
(Ellerman et al., 2015). During these two phases, free permits were allocated to regulated
installations on the basis of their historical emissions (according to the “grandfathering”
method).10 In Phase III, allocation began a transition towards an open auction system,
first for power installations (except for a few plants in Eastern Europe), and progres-
sively for other regulated industries. Furthermore, a single emission cap (declining at a
1.74% rate per year) was adopted for the entire EU market and EU-wide sector-specific
“benchmarks” were adopted for determining allowance distribution rules.

The cap-and-trade mechanism effectively establishes a shadow price for carbon for regu-
lated installations. Absent free permit allocations, firms must purchase permits on the
open market for every ton of CO2 produced at each regulated installation, or pay the fine.
Even with free permit allocations, the opportunity cost of CO2 produced at regulated
installations increases. If the value of the marginal unit of CO2 is less than the market
price for allowances, firms have an incentive to abate the marginal unit and sell their (po-
tentially freely acquired) permits on the open market. Hence, no matter the allocation
of allowances, firms equate marginal benefit of CO2 at regulated installations with the
unique shadow price in equilibrium (Coase, 1969).

The European Commission publishes information for each regulated installation on the of-
ficial ETS regulation platform – the European Union Transaction Log. From this website,
we obtain the address of each regulated installation in France, the initial date of regula-
tion, and the unique French tax identifyer (SIREN) of the firm that owns the installation.
We then match installations to plants by SIREN and street address (see Appendix A.2.3
for details). In total, we count 1,415 installations in France ever regulated under the EU
ETS across 1,264 plants and 846 firms. We consider a plant regulated in a given year if
it has at least 1 regulated installation in the year. Broken down by phase, we count 984
plants regulated under phase I, 953 plants regulated under phase II, and 982 plants reg-
ulated under phase III. The number of regulated plants and firms by sector are reported
in Table 1.2.1.11 We count 465 firms and 699 plants ever regulated in the manufacturing

9Revisions of the regulation in the expectation of Phase IV (2021-2030) are already well under way.
10In France, the Caisse des Dépôts was in charge of the implementation of the regulation for the country.
11We aggregate 2-digit codes to standard sectoral classifications, as in Harrigan et al. (2018). For man-
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# Firms # Plants
Manufacturing

Motor vehicles & other transport equipment 11 13
Chemicals & Pharmaceuticals 85 126
Computer, Electronic & Optical products 4 4
Electrical equipment 2 2
Food, Beverages & Tobacco 104 148
Machinery & Equipment 7 9
Basic & Fabricated Metal products 40 57
Rubber, Plastic & Non-metallic mineral products 88 198
Textiles & Apparel 17 17
Wood & Paper products 99 116
Other manufacturing 8 9

Subtotal 465 699

Non-Manufacturing/Unknown 381 565

Total 846 1264

Notes:

Table 1.2.1: Treatment by Sector

sectors.

1.2.2 Firm-Level Data

We use confidential income statements and export sales for the universe of French manu-
facturing firms from the statistical agency INSEE and French Customs Bureau. All French
firms are required to report total sales each year to the French tax authority, which INSEE
then records in the FICUS database (for years 1994 - 2007) and FARE database (2008 -
2016).12 Across all data sets, firms are identified with a unique administrative code called
SIREN. In the surveys, firms declare a 4-digit activity code – the APE – from the national
activity nomenclature (NAF).13 We take the 4-digit APE code as the “industry” of the
firm since it identifies the main activity of the firm, and group aggregates of 2-digit APE
code into “sectors”, as in Harrigan et al. (2018).

At the firm level, we observe that (i) the policy is incomplete: among the 373,711 French
manufacturing firms, only 465 of them are regulated (i.e., firms with at least 1 regulated

ufacturing, we include all firms in all industries with 2-digit codes between 15 - 37 in the national activity
nomenclature NAF Rev.1. We exclude extractive industries (codes 10 to 14) and energy production and
distribution (40 and 41).

12This data is confidential and its access is subject to authorization by a Statistical Secret Committee.
13The APE (Activité Principale de l’Etablissement) corresponds to the main activity of the firm ac-

cording to the national nomenclature denominated Nomenclature des Activités Francaises (NAF).
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plant); (ii) the policy targeted large firms, as indicated by their higher sales, their average
domestic market share of 9% (in contrast to 0.2% for the non-regulated firms), and their
larger number of employees and plants. Descriptive statistics are reported in panel A
of Table 1.2.2. Due to the size difference, it is likely that outcomes for regulated and
unregulated firms would have followed different trends even without the policy.14 We
thus match regulated to unregulated firms from the same industry on both levels and
growth rates of sales in 2004, the year prior to the start of the EU ETS.15 Columns 3 and
4 show that regulated and unregulated firms in the matched sample, are closer in size,
though regulated firms are still larger on average.

Full Sample Matched Sample

regulated unregulated regulated unregulated
(1) (2) (3) (4)

Panel A: Firm Level Dataset

Sales (Millions euros)
Domestic 239.0 (1345) 3.585 (150.5) 198.8 (1343) 70.29 (386.4)
Export 110.1 (327.5) 0.910 (20.39) 92.62 (275.2) 21.21 (95.15)
Total 349.1 (1504) 4.495 (154.0) 291.4 (1489) 91.50 (438.2)

Market Share 0.093 (0.160) 0.002 (0.015) 0.061 (0.096) 0.016 (0.034)
# Workers 816.3 (1861) 22.23 (270.7) 613.2 (1060) 233.4 (517.7)
# Plants 3.719 (6.205) 1.167 (1.661) 2.905 (4.696) 2.191 (3.602)
# Regulated Plants 0.695 (1.310) 0.570 (0.997)

# Firm-year Obs 7,652 3,126,194 6,128 23,252
# Firms 465 373,711 314 1,314

Panel B: Plant Level Dataset

CO2 Emissions (’000 Kg) 91.92 (524.0) 3.047 (66.27) 75.35 (360.9) 11.84 (129.3)
# Workers 383.0 (504.6) 145.6 (282.9) 380.8 (446.7) 203.4 (376.5)

# Plant-year Obs 7,924 204,907 5,413 20,083
# Firms 405 32,630 273 1,223
# Plants 600 42,491 362 2,455

Notes: Values indicate mean of annual observations, with standard deviations in parentheses.
Data span 1994 - 2016 and includes all firms in all industries with 2-digit codes between 15 - 37
in the NAFRev.1.

Table 1.2.2: Descriptive Statistics

1.2.3 Plant-Level Data

We take plant-level information from two sources. First, we measure energy consumption
using the EACEI (Enquête Annuelle sur la Consommation d’Energie dans l’Industrie)

14Under a random walk assumption on productivity growth, then changes in revenues, for example,
would be orthogonal to levels in 2004. However, random walk is a strong assumption that is unlikely to
hold.

15We provide details on the exact matching algorithm in section 1.5.4.
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Figure 1.2.1: Regulation status by plant-level CO2 emissions in 2004

surveys. These surveys include all energy-related expenditures, with details on several
energy types and fuels (quantity consumed and expenditures), at the plant level. A plant
is identified by a stable administrative code called SIRET in which the first 9 digits
correspond to the SIREN of the firm the plant belongs to.16 All plants with more than
250 employees receive the EACEI survey each year from 1994 to 2016, with smaller plants
sampled randomly. Firms report purchases of electricity (bought from the grid and self-
generated), steam, natural gas and other types of gas, coal, lignite, coke, propane and
butane, domestic and heavy fuels, oil and other types of petroleum products for surveyed
plants. To convert energy consumption into CO2 emissions, we use emission factors by
energy type from the French Environment and Energy Agency (ADEME). Second, we take
the number of employees for each plant in each year from the Stock of Establishments.
Details about the data and the conversion factors can be found in the Data Appendix.

Descriptive statistics for both CO2 and employment are reported in panel B of Table 1.2.2.
We see that the EU ETS targeted large plants on these two dimensions: the number of
workers and CO2 emissions in an average regulated plant are higher by a factor 2.6 and
a factor 30, respectively, than in an average non-regulated plant. Figure 1.2.1 shows that
even though the regulation targeted the most polluting plants and did not regulate plants
emitting less than the median CO2 levels in 2004, the share of regulated plants within a
bin of CO2 emissions in 2004 never reaches 100%, even for the most polluting plants.

16The SIRET is a 14-digit code identifying a legal unit’s plant. It is composed of the SIREN (9-digit
identifier) of the corresponding legal unit and of 5 additional digits uniquely identifying plants within a
legal unit.
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1.2.4 Reduced-Form Evidence of Inter-Firm Spillovers

A standard difference-in-differences (DiD) approach to evaluating treatment effects of an
incomplete regulation such as the EU ETS abstracts from general equilibrium effects. For
an outcome variable v, we estimate

∆vfist = βDD
v0 Rfist + δist + ϵfist, (1.1)

where f is a firm that belongs to an industry i within a sector s, ∆vfist corresponds to
the log difference between the outcome at time t relative to the pre-period t0 = 2004, and
variable v is defined as firm-level revenues. For years post-2004, we take the log change in
total sales between a given post-period year and the year 2004 as the dependent variable.
For years prior to 2004, we invert the ratio, so that the dependent variable represents
the growth rate between a pre-period year and 2004. Treatment is identified through the
indicator variable Rfist taking the value 1 if the firm owns any regulated plant at time
t, and zero otherwise. The industry-year fixed effects δist absorb all general equilibrium
effects that are common within an industry. Thus, as long as we have E [ϵfist|Rfist, δist] =

0, we should get an unbiased estimate of the direct treatment effect on firms’ outcome v.
To achieve this, we use a matched sample of regulated and non-regulated firms for which
treatment assignment can be considered as good as random.

We would like to point out that interpreting βDD
v0 alone as an estimate of all treatment

effects is misleading in this context. Indeed, some of the general equilibrium effects
could be induced by the regulation. For instance, regulated firms may adjust their prices
post regulation in such a way that price indices would be different in a counterfactual
equilibrium without the regulation. In such context, the DiD framework correctly recovers
the direct effect of regulation, βDD

v0 , but is insufficient to compute counterfactual changes
in revenues since it misses the indirect effects.17

To investigate the indirect treatment effects that are channeled through competition forces
and therefore result in changes in industry-wide price indices, we can follow the specifi-
cations from Cai & Szeidl (2022); Muehlegger & Sweeney (2021); Rotemberg (2019) by
estimating

∆vfist = βLA
v0 Rfist + βLA

v1

∑
k∈Ωist0

θkist0Rkist + δst + ϵfist, (1.2)

17The same point is made by Baier & Bergstrand (2009) when observing that consistent estimation
of trade elasticities requires controlling for multilateral resistance terms, similarly to how we include
industry-by-year fixed effects to control for industry-wide price indices. They also argue that, in a
counterfactual scenario in which trade costs change, the multilateral resistance terms would update as
well, and hence need to be recomputed for the counterfactual scenario.
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where the first term identifies the direct effect of being regulated and the second term the
indirect effect induced by the intensity of regulation within an industry. This intensity of
regulation is computed as the pre-period market share of all will-be-regulated firms within
an industry, with θkist0 denoting the market share of firm k at period t0 = 2004 and Ωist0

the set of firms observed at period t0. We call this equation the “local approximation”
(LA) model and we show below that it follows from taking a local approximation to
the price index changes around the pre-regulation equilibrium (see appendix A.3.2 for
details). To estimate indirect treatment effects, equation (1.2) backs out from industry-
time fixed effects and includes sector-time fixed effects, δst, instead. Thus, the term∑

k∈Ωist0
θkist0Rkist somehow reflects how price indices vary within an industry due to the

regulation and how their competitors’ regulatory statuses affect each firm.18

Figure 1.2.2 panel A shows that, for the DiD method to be valid, the population of firms
must be restricted to the matched sample, otherwise the parallel trend assumption does
not hold.19 It also reveals a positive direct effect on revenues of regulated firms. Yet, this
estimate could suffer from a bias due to the potential violation of SUTVA if the outcomes
of non-regulated firms are also influenced by the regulation. Panel B reveals that it is
the case since the direct and indirect effects go in opposite directions and the indirect
effect is statistically significant and of larger magnitude than the direct effect, thereby
indicating that inter-firm spillovers exist. Yet, this approach abstracts from the multi-
plant dimension of firms, which may induce biases in the estimated treatment effects on
revenues and leave open the question of how to evaluate treatment effects on emissions
at the plant level.

1.2.5 Reduced-Form Evidence of Intra-Firm Spillovers

By targeting large firms, which often own multiple plants, the policy may not only generate
inter-firm spillovers, but also intra-firm spillovers. The EU ETS treatment is assigned at
the plant level, and not at the firm level. As a result, firms may have a few plants regulated
and other plants not regulated. To reveal the presence of across-plant reallocation forces
within the firm, we estimate

∆Zjfist = βDD
Z0 Rjfist + βDD

Z1

∑
ℓ∈Ωfist0

αℓfist0Rjfist + δist + ϵfist, (1.3)

18By assumption, competitors can only be French in this LA model since firm f ’s market share is
defined as the ratio of firm f ’s total sales over the aggregate of all French firms’ revenues.

19We note that, even with the matched sample, we barely reject the existence of pre-trends in the
post-announcement period. This is due to the fact that we use the same matched sample for all our
empirical results, following the matching algorithm described in section 1.5.4. As our model will show,
equation (1.1) is thus misspecified as it should define firm-level treatment based on the labor share of
treated plants and include a control for the concentration of activities across plants.
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Figure 1.2.2: The Regulation Effects on Firm-Level Revenues, with and without Inter-Firm
Spillovers

Notes: Panel A presents estimates of βDD
y0 derived from OLS estimation of (1.1), with the full

(matched) sample indicated with white (black) diamonds. Panel B presents estimates of βLA
y0 (white

circles) and βLA
y1 (black circles) derived from OLS estimation of (1.2). Bars indicate 95% confidence

intervals. For each period, we estimate a pooled regression, combining all years included in the period.
The vertical line indicates the beginning of the regulation.

where the outcome variable Zjfist corresponds to plant j’s CO2 emissions, where plant
j belongs to the set of plants Ωfist owned by firm f at time t. Treatment is identified
by both the plant-level regulation status Rjfist, which is a dummy variable that equals
one if plant j is regulated and zero otherwise, and by the firm-level pre-period-weighted
regulation intensity, where the weights are the plant-level labor shares.20 This specifi-
cation absorbs all general equilibrium effects that are common across firms within an
industry in the industry-time fixed effects δist and includes all plants. For comparison,
we also estimate the standard DiD model abstracting from firm-level regulation inten-
sity

∑
ℓ∈Ωfist0

αℓfist0Rjfist on a sample of plants that are either directly regulated or not
regulated within a firm that owns no other regulated plant.

Figure 1.2.3 panel A shows the results from the standard DiD model using the full
(matched) sample, which are indicated with black (white) diamonds. Here, we match
plants based on their levels and growth rates of CO2 emissions in 2004 (using propensity

20In the French manufacturing data sets, we do not observe output at the plant level. Hence, we use
labor shares instead of output shares to weight the regulation status of each plant.
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Figure 1.2.3: The Regulation Effects on Plant-Level Emissions, with and without Intra-Firm
Spillovers

Notes: Panel A presents estimates of βDD
Z0 derived from the standard DiD equation (1.3) without

firm-level regulation, using the full (matched) sample as indicated by black (white) diamonds. Panel B
presents estimates of βDD

Z0 (black) and βDD
Z1 (white) from the OLS estimation of (1.3). Bars indicate

95% confidence intervals. For each period, we estimate a pooled regression, combining all years included
in the period. The vertical line indicates the beginning of the regulation. Both panels include

industry-by-year fixed effects.

score matching). Even though regulated and unregulated plants were trending in a par-
allel fashion prior to regulation, emissions from regulated plants grew slightly faster than
unregulated plants after 2004. This effect is statistically insignificant for phases I and II,
but in phase III, we can reject 0 at the 5% level in the matched sample. This model relies
on across-firm variation rather than within-firm variation. Thus, these point estimates
combine an increase in scale (that is, in revenues), which pushes emissions upward, and
a potential change in emission intensity. Since we found positive effects of the regulation
on firm-level sales in Figure 1.2.2, it is not surprising that regulated plants increased
emissions faster than unregulated plants.

In panel B of Figure 1.2.3, we separately estimate the effect of firm-level regulation on
plant-level emissions from the effect of plant-level regulation. Here, using the matched
sample, we find that emissions from regulated plants grew slower post-regulation than
unregulated plants, conditional on firm-level regulation. Moreover, we see that emissions
from plants owned by firms with higher firm-level regulation values grew faster, post-
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regulation. This provides evidence that firms reallocated their inputs, hence emissions,
away from regulated plants and toward non-regulated plants, potentially undermining the
overall effects of the policy.

Computing treatment effects on revenues and emissions that combine the inter-firm and
intra-firm spillovers is particularly challenging absent a conceptual framework. This is
why we now build a model that renders the mechanisms behind these spillovers explicit
and then develop an empirical strategy that allows us to go beyond the limits of the
reduced-form estimators.

1.3 Model

In the section, we present a tractable model of demand and supply for differentiated
products. We start with a version in which all firms own and operate a single plant. We
introduce a regulation that increases the price of one of the inputs of some subset of firms
in the economy. We then extend the model to include multi-plant firms and a regulation
that targets a subset of plants in the economy.

1.3.1 Demand

We consider an economy where consumers have access to differentiated varieties produced
in several manufacturing sectors and an outside good (which corresponds to services). The
representative consumer’s preferences are described by the following three-tiered utility
function:

Ut = (Q0t)
a0
∏
s

[(∑
i∈Υs

(Qist)
ν

)1/ν
]as

where Qist =

( ∑
f∈Ωist

(Qfist)
ρ

)1/ρ

. (1.4)

The first tier is Cobb-Douglas across sectors, with a0+
∑

s as = 1, and the second and third
tiers are Constant Elasticity of Substitution (CES) functions across the set of industries
within a sector s, Υs, and across the set of varieties available in each industry i at time
t, Ωist. The outside good consumption at time t is denoted by Q0t while Qist represents
the aggregate consumption in industry i and Qfist the consumption level in variety f .
Varieties f are imperfect substitutes within an industry, implying 0 < ρ < 1. Similarly,
we assume 0 < ν < 1. We also assume that two varieties within an industry are closer
substitutes than goods from two different industries, ρ > ν. Let It be the national income,
which equals the expenditure level. Sector-specific expenditures Yst (also for the outside
good) are determined as follows: Yst = asIt.
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Industry and sector price indices are defined in the usual way:

Ψst =

(∑
i∈Υs

(Pist)
ν

ν−1

) ν−1
ν

, Pist =

( ∑
f∈Ωist

(pfist)
ρ

ρ−1

) ρ−1
ρ

. (1.5)

Utility maximization then implies the following expression for expenses in variety f at
time t:

yfist = (pfist)
ρ

ρ−1 (Pist)
ν−ρ

(ν−1)(1−ρ) (Ψst)
ν

1−ν Yst. (1.6)

We can see that expenditures are decreasing in variety f ’s price and in sector s’s price
index, and increasing in industry i’s price index and in sector-wide expenditures.

1.3.2 Production, Emissions and Regulation

Each manufacturing firm produces a single differentiated variety, so we use f interchange-
ably to index varieties or firms. Production in manufacturing requires two factors of
production: labor and energy, the latter being a source of CO2 emissions when consumed
(as it is the case for fossil fuels). The government sets an environmental regulation that
has two implications: first, it raises the cost of energy for regulated firms to limit their
CO2 emissions; second, it may induce regulated firms to invest in energy-efficiency im-
provements, which would decrease the amount of CO2 emissions per output. To save on
implementation costs, the government only targets a few firms within each industry.21

We model production as a Cobb-Douglas combination of labor (Lfit) and energy (Efit)

with constant returns to scale:

Qfist = (Lfist)
1−γ (Efist)

γ exp(ωfist + γµe
tRfist), (1.7)

where ωfist denotes firm f ’s Hicks-neutral productivity level at time t, Rfist ∈ {0, 1}
denotes the firm’s regulatory status at time t, and µe

t captures the regulation’s effect on
energy efficiency at time t.22 To simplify notations, we are now suppressing the s subscript
wherever possible. Productivity evolves according to a flexible Markov process:

ωfit = g(ωfit−1) + ufit, (1.8)

where g(·) is an arbitrary function of past firm-level productivity and ufit is an i.i.d.
21In the theoretical model, we keep the assignment rule general. For instance, the government could

assign treatment randomly or it could assign treatment with a probability increasing in initial size or
emission levels. We will discuss specific assignment rules in the application section.

22The energy efficiency effect of the policy varies with the stringency of the policy. Indeed, a more strin-
gent policy will foster more technological investments and R&D, thereby lowering the emission intensity
of production.
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shock with mean zero. If g(ωfit−1) = ωfit−1, then productivity follows a random walk.
Otherwise, productivity is path dependent. If g(·) is decreasing in ωfit−1, more productive
firms grow slower, whereas more productive firms grow faster if g(·) is increasing in ωfit−1.

Production generates CO2 emissions in proportion to the use of energy inputs. Emissions
(Zfit) emitted at time t by firm f are given by

Zfit = κtEfit, (1.9)

where κt is the quantity of emissions per unit of energy. This conversion factor may vary
over time due to changes in the national fuel mix and technological progress.

The outside good is produced under constant returns to scale using only labor. The term
ω0t denotes labor productivity in the outside sector at time t. The outside good is used as
the numeraire, and it is produced under perfect competition. As a result, the wage rate
wLt is pinned down by labor productivity in the outside good sector: wLt = exp (ω0t).
The manufacturing firms are therefore hiring labor at an exogenous wage rate wLt, which
does not respond to the environmental regulation.

The manufacturing firms also buy energy at an exogenous price wEt. Energy supply is
assumed to be perfectly elastic at price wEt, which is consistent with a situation in which
a state-owned company supplies energy at a controlled price. If a firm is subject to the
environmental regulation (Rfit = 1), then it also faces a price on its emissions, wZt, that
is imposed by the government. For convenience, we express the price on emissions as a
proportion of the exogenous energy price by imposing wZt ≡ wEt(e

µz
tRfit − 1)/κt, so that

the regulation equivalently raises the cost of energy for regulated firms or makes them
pay for their emissions. The effect of the regulation on the energy price is summarized by
µz
t , which can adjust over time to exogenous energy price changes and changes in κt.

Cost minimization yields the following unit cost function:

cfit = (1− γ)−(1−γ)γ−γ (wLt)
1−γ (wEt)

γ exp[−ωfit + γ (µz
t − µe

t )Rfit]. (1.10)

The effect of the regulation on the unit cost of a regulated firm depends on the net
regulation cost, τt ≡ γ(µz

t − µe
t ). This tells us that the regulation will increase a firm’s

unit cost if the energy price effect dominates, µz
t > µe

t , but it will decrease its unit cost if
the energy efficiency effect dominates, µz

t < µe
t .
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1.3.3 Profit Maximization and Equilibrium

In each period t, the set of firms operating in a given industry (Ωit) is exogenous and
common knowledge. Thus, each industry is composed of an exogenous number of firms,
Nit.23 The motivation for this assumption is that, in our empirical application, we aim at
evaluating the effect of a cost shock vector on active individual firms. We thus abstract
from the entry/exit response to these cost shocks. However, exogenous industrial dynam-
ics can lead some incumbent firms to exit and some new entrants to appear. As a result,
the set of firms in each differentiated industry Ωit varies exogenously over time.24

Firms take their production decisions based on their regulatory status Rfit, their produc-
tion function (1.7), and their productivity level (1.8). Given these characteristics, firms
choose the price that maximizes their profits:

max
pfit

Πfit = pfitQfit − cfitQfit (1.11)

where cfit is described in (1.10). As is standard in models built for differentiated varieties,
we assume that firms are monopolistic competitors, and therefore solve this maximization
program without regard for how their decision affects the price index.25 Due to constant
returns to scale in production, pricing depends only on firm-level production costs and
the standard Dixit-Stiglitz markup:

pfit =
cfit
ρ

. (1.12)

In a competitive equilibrium, all consumers maximize their utility, all firms maximize their
profits, and all markets clear. Hence, the representative consumer maximizes his utility
by spending yfit on each variety f as described by (1.6). In the outside sector, profit

23Real-world data sets indeed contain finite numbers of firms. This fact has been explored in the model
of Eaton et al. (2013), for instance. In contrast to this model, we keep the assumption that firms are
small enough to not incorporate the effect of their decisions on price indices.

24Abstracting from the entry/exit response corresponds to a short-run equilibrium as defined in Melitz
& Ottaviano (2008). Yet, we allow for exogenous variation in the set of active firms over time. This
assumption entails that incumbent firms may exit with a constant exogenous probability ϱ from t to
t + 1, and that, at the beginning of period t, an exogenous number Mist of new entrants in industry i
appear. Mist can be interpreted as the number of entrepreneurs who can create a company in industry
i at time t. Upon entry, each firm learns its productivity draw at no cost, as well as its regulation
status. Given the draws and the absence of fixed cost to serve the economy, new entrants face the same
constraints as the incumbent firms and can compute their own unit cost.

25In Appendix A.5, we consider the alternative assumption of oligopolistic firms and derive prices and
estimation equations in this setup. We also use the oligopoly equilibrium to perform an adversarial test
of our estimation strategy—we generate simulated data as if firms are oligopolists and then apply our
estimation strategy derived on the assumption of monopolistic competition. Even in that setting, our
estimator reliably outperforms the alternatives.
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maximization requires that wLt = exp (ω0t), which pins down the wage. In the manufac-
turing sector, profit maximization requires that firms set their price under monopolistic
competition as in (1.12). Finally, sector-level expenditures equates to the sum of sales
of all firms producing in this sector at time t. For simplicity, we assume that national
income It is exogenous, as in Helpman et al. (2008). In other words, we are considering
a regulation which is not so large as to markedly affect national income. For each sector,
we thus set

Yst =
∑
i∈Υs

∑
f∈Ωist

yfist. (1.13)

1.3.4 The Effect of Regulation on Revenues

If we observed technologies in such details that we could compute the cost function, it
would be possible to identify the net regulatory cost, τt, directly from equation 1.10. Such
details are unobserved in most applications, however, so it is useful to derive a method that
allows us to estimate the net regulatory cost and treatment effects based on observable
quantities.

From equation (1.6), we infer that firm f ’s revenues depend on three components: (i)
its own price, which is in turn determined by the unit cost function (1.10) given the
pricing rule (1.12), (ii) its industry and sector price indices (1.5), and (iii) its sector-wide
expenditures. The log difference in firm f ’s revenues between time t and a base year
t0 prior to the regulation, denoted by ∆yfit, will thus depend on the change of these
three components. We have ∆pfit = ∆cfit = τtRfit + ∆Afit + (1 − γ)∆wLt + γ∆wEt,
where ∆Afit ≡ ωfit0 − ωfit represents the exogenous productivity growth. Sector-wide
expenditures follow the exogenous variation in national income. The last component –
the price indices – vary depending on the changes in individual firm’s prices as follows:26

∆Pit =
∑
k∈Ω∗

it

ϕkit∆pkit +
1− ρ

ρ
∆λit, with ϕkit ≡

ϑkit−ϑkit0

lnϑkit−lnϑkit0∑
ℓ∈Ω∗

it

ϑℓit−ϑℓit0

lnϑℓit−lnϑℓit0

, (1.14)

∆Ψst =
∑
m∈Υs

Φmt∆Pmt, with Φmt ≡
Θmt−Θmt0

lnΘmt−lnΘmt0∑
h∈Υs

Θht−Θht0

lnΘht−lnΘht0

, (1.15)

where Ω∗
it denotes the set of varieties from industry i that are continuously sold be-

tween t and t0 (also referred to as the continuing good set), and ∆λit indicates the
log change in the market share of the common good set between t and t0, with λist ≡(∑

ℓ∈Ω∗
it
yℓit

)
/
(∑

ℓ∈Ωit
yℓit
)
. Terms ϕkit and Φmt indicate the weights applied to the price

26See Appendix A.3.1 for the derivation of these expressions. We refer to Feenstra (1994) and Sato
(1976); Vartia (1976) for this computation.
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changes for firm k and industry m in sector s, which are computed following Sato (1976);
Vartia (1976). The term ϑkit ≡ ykit/

∑
ℓ∈Ω∗

it
yℓit denotes the market share of firm k in

the continuing good set from industry i at time t, and Θmt denotes the market share of
industry m in sector s at time t (we assume that the set of industries does not change
over time). These Sato-Vartia weights thus differ from simpler measures of market shares
for firm f in industry i at time t, denoted by θfit ≡ yfit/Yit, and for industry i in sector
s at time t, denoted by Θit ≡ Yit/Yst.

Combining the changes in the three components that determine firm f ’ revenues (1.6)
between post-regulation period t and pre-regulation base year t0 yields

∆yfit =
ρτt
ρ− 1

Rfit +
(ν − ρ) τ

(ν − 1) (1− ρ)

∑
k∈Ω∗

it

ϕkitRkit +
(ν − ρ)

ρ (ν − 1)
∆λit

+
ντ

1− ν

∑
m∈Υ

Φmt

∑
ℓ∈Ω∗

mt

ϕℓmtRℓmt +
ν (1− ρ)

ρ (1− ν)

∑
m∈Υ

Φmt∆λmt +∆Yt

+
ρ

ρ− 1
∆Afit +

(ν − ρ)

(1− ν) (ρ− 1)

∑
k∈Ω∗

it

ϕkit∆Akit +
ν

1− ν

∑
m∈Υ

Φmt

∑
ℓ∈Ω∗

mt

ϕℓmt∆Aℓmt.(1.16)

The first term on the right hand side of equation (1.16) captures the direct effect of the
regulation on revenues, holding all else constant. This term can be positive or negative,
depending on the net regulation cost τt. The second and fourth terms capture the spillover
effects of the regulation through its impact on price indices of the continuing good set
within an industry and within a sector, respectively. Intuitively, these two terms depend
on the combined market share of regulated firms within industry i and within sector s.
The larger the market share of regulated firms, the larger the indirect effects. These
spillover terms are common within an industry. The third term measures the change in
the market share of the continuing good set in the industry, to account for entry and exit.
The fifth term is just the sector-level analogue of the third term. The last line of equation
(1.16) summarizes the revenue effects of the firm’s own idiosyncratic productivity shock,
as well as from the productivity shocks experienced by other firms in the same industry
and sector. Input prices wLt and wEt drop out of the equation, by virtue of being common
to all firms.27

27Take any component of costs x, like input prices, that are the same for all firms. This com-

ponent will cancel out of equation (1.16) since ρx
1−ρ +

(ν−ρ)
∑

k∈Ω∗
it

ϕkitx

(ν−1)(ρ−1) +
ν
∑

m∈Υ Φmt
∑

ℓ∈Ω∗
mt

ϕℓmtx

ν−1 =

x
[

ρ
1−ρ + (ν−ρ)

(ν−1)(ρ−1) +
ν

ν−1

]
= 0.
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1.3.5 The Effect of Regulation on Emissions

The first order conditions for cost minimization yield the following expression for firm f ’s
emissions at time t:

Zfit = ργκtyfit
(
wEte

µzRfit
)−1

. (1.17)

The change in emissions from pre-period t0 to period t can thus be written as:

∆Zfit = −µz
tRfit +∆yfit +∆κt −∆wEt, (1.18)

where ∆yfit corresponds to equation (1.16).

From this expression, we see that regulation affects the firm’s emissions both by altering
the scale of economic output, ∆yfit, and by encouraging substitution away from the
polluting input whose price increases by a factor µz. We will refer to these as the “scale”
and “technique” effects, respectively. The terms ∆κt and ∆wEt are not affected by the
regulation, and thus move exogenously.

1.3.6 Extension to Multi-plant Firms

We now extend our theoretical framework to the case of multi-plant firms, where the
regulation targets individual plants instead of firms. This will allow us to take account of
intra-firm spillovers in addition to the inter-firm spillovers studied above.

Firm f still produces a unique variety, but it now owns Jft plants at time t. These plants
produce intermediate outputs using Cobb-Douglas combinations of labor and energy, and
these intermediate outputs are then aggregated into a final output. This mapping of
intermediate outputs to the final product is reminiscent of the approach of aggregating
tasks to produce a final good, as in Acemoglu & Autor (2012). Presumably, firms own
multiple plants because there exists complementarities across plants, which could stem
from economies from vertical integration that improve productivity and lower overall costs
of production (Alfaro et al., 2016) or from complementarities in intangible inputs, such
as high-quality management, marketing know-how, or R&D capital (Atalay et al., 2014).

We assume that Hicks-neutral productivity, ωfit, is common to all plants j ∈ {1, 2, ...Jft}
within the firm. Regulation, however, can be plant-specific, with indicator Rjfit taking
the value 1 if plant j is subject to regulation at time t and zero otherwise. Given these
assumptions, plant-specific output and firm-level output are given by

Qjfit = (Ljfit)
1−γ (Ejfit)

γ exp(ωfit + γµe
tRjfit) (1.19)
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and

Qfit =

Jft∏
j=1

(
α
−αjfit

jfit

)1−σ

(Qjfit)
αjfit , (1.20)

where αjfit corresponds to the contribution of plant j to total output of firm f at time t,
which is assumed to be exogenous. The term σ governs how the dispersion of economic
activity across plants affects production. Its economic interpretation reflects a tension
between the costs of dispersed activity, which dominate if σ > 0, and economies of scope
(that reduce the unit cost), which dominate if σ < 0. Dispersion forces emerge whenever
a firm adds new plants, since Cobb-Douglas aggregation function makes it more profitable
to produce everything in a single plant. By contrast, economies of scope follow from the
fact that the more similar-sized plants a firm own, the more complementarities it generate
so that overall output increases. For a given amount of plants owned by a firm, the more
concentrated production is, the smaller the gain from complementarities across plants.

Cost minimization yields the following firm-level unit cost function:

cfit = (1− γ)−(1−γ)γ−γ

Jft∏
j=1

α
−αjfit

jfit

σ

(wLt)
1−γ (wEt)

γ exp (−ωfit + τtRfit) . (1.21)

This is almost identical to (1.10), except that we now define the firm’s regulatory status as
a function of plant-level regulation, Rfit ≡

∑
j αjfitRjfit, and include a term which reflects

how the dispersion of economic activity across plants affects costs,
∏Jft

j=1(α
−αjfit

jfit )σ. Since
cost minimization implies Ljfit = αjfitLfit, we can compute Rfit by using plant-specific
labor shares combined with plant-level regulation.

Defining the firm-level dispersion term by αfit ≡
∏Jft

j=1 α
−αjfit

jfit , and collecting structural
parameters into constants, the changes in firm-level revenues between a pre-regulation
period and a post-regulation period can be written as

∆yfit = β0Rfit + β1∆αfit + β2

∑
k∈Ω∗

it

ϕkitRkit + β3

∑
k∈Ω∗

it

ϕkit∆αkit + β4∆λit

+ β5

∑
m∈Υ

Φmt

∑
ℓ∈Ω∗

mt

ϕℓmtRℓmt + β6

∑
m∈Υ

Φmt

∑
ℓ∈Ω∗

mt

ϕℓmt∆αℓmt + β7

∑
m∈Υ

Φmt∆λmt

+ β8

∑
k∈Ω∗

it

ϕkit∆Akit + β9

∑
m∈Υ

Φmt

∑
ℓ∈Ω∗

mt

ϕℓmt∆Aℓmt +∆Yt + ξfit, (1.22)

with ξfit = ρ
ρ−1

∆Afit.28 Compared to equation (1.16), this multi-plant extension adds

28Other parameters are defined as β0 ≡ ρτ
ρ−1 , β1 ≡ ρσ

ρ−1 , β2 ≡ (ν−ρ)τ
(ν−1)(1−ρ) , β4 = (ν−ρ)

ρ(ν−1) , β3 ≡ (ν−ρ)σ
(ν−1)(1−ρ)
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three terms: the exogenous change in firm f ’s dispersion term, ∆αfit, and the industry-
and sector-level counterparts.

Cost minimization at the plant level implies

∆Zjfit = −µzRjfit +∆αjfit +∆κt −∆wEt +∆yfit. (1.23)

Plant-level emissions are thus affected by a firm-level scale effect and a plant-level tech-
nique effect −µz, as before, but they also depend on the share of labor allocated to plant
j.

1.4 Estimation Strategy

In this section, we develop a procedure to estimate the effects of regulation on revenues
and emissions based on the model from section 1.3. We present our procedure for esti-
mating reduced-form parameters and then show how to use these estimates to compute
the treatment effects of the regulation. Finally, we compare our estimation procedure to
existing methods in Monte Carlo experiments.

1.4.1 Estimating Parameters

The model indicates that the change in firm-level revenues between a pre-regulation period
and a post-regulation period can be written as a function of regulation assignments,
market shares, and unobserved productivity shocks (see eq. 1.22). Collecting all sector-
wide variables into sector-time fixed effects, δst, yields

∆yfit = β0Rfit + β1∆αfit + β2

∑
k∈Ω∗

it

ϕkitRkit + β3

∑
k∈Ω∗

it

ϕkit∆αkit + β4∆λit

+ β8

∑
k∈Ω∗

it

ϕkit∆Akit + δst +
ρ

1− ρ
∆Afit. (1.24)

All variables in the first line of equation (1.24) are observed, while variables in the second
line are not. Under a random walk assumption for productivity growth, ∆Afits would be
exogenous to the regulation, even if regulation depended on pre-period characteristics. In
this case, it is tempting to group

∑
k∈Ω∗

it
ϕkit∆Akit into the error term and estimate (1.24)

by OLS. However, there are two identification problems. First,
∑

k∈Ω∗
it
ϕkitRkit correlates

with
∑

k∈Ω∗
it
ϕkit∆Akit. This is because the covariance of ∆Akit and ϕkit depends on the

density of regulation in the industry. For example, if the entire industry is unregulated,

β5 ≡ ντ
1−ν β6 ≡ νσ

1−ν , β7 ≡ ν(1−ρ)
ρ(1−ν) , β8 ≡ (ν−ρ)

(1−ν)(ρ−1) , β9 ≡ ν
1−ν .
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then ϕkit depends exclusively on As and αs. By contrast, as regulation density in the
industry increases, ϕkit depends less on As and αs and more on Rfits. Hence, industries
with high regulation density (high

∑
k∈Ω∗

it
ϕkitRkit) will have low correlations between

∆Akit and ϕkit, and thus low values of
∑

k∈Ω∗
it
ϕkit∆Akit.29 Secondly, industries with higher

weighted-average productivity growth of continuing firms (high values of
∑

k∈Ω∗
it
ϕkit∆Akit)

will mechanically have higher revenue share growth of continuing firms. Hence, we would
expect ∆λit to correlate with

∑
k∈Ω∗

it
ϕkit∆Akit as well.

To address these identification problems, we build a GMM procedure to simultaneously
estimates β0, β1, and β2. Given estimates of β0, β1, β2, all other reduced-form parameters
can be computed.30 First, we re-write equation (1.24) as a system of equations:

∆yfist = β0Rfist + β1∆αfist + ηist + ξfist

ηist = β2

∑
k∈Ω∗

ist

ϕkistRkist + β1
β2

β0

∑
k∈Ω∗

ist

ϕkist∆αkist −
β2

β0

(
∆λist −

∑
k∈Ω∗

ist

ϕkistξfist

)
+ δst + ςist,

with ξfist ≡ ρ
1−ρ

(
Afist −∆Aist

)
and ςist ≡ ν

1−ν
∆Aist. Notice that the first equation

is almost identical to the DiD model (1.1), except that we control for the firm-level
dispersion term ∆αfist.31 In the second equation that regresses industry-time fixed effects
on industry-specific intensity of treatment, dispersion of activities and entry and exit
controls, we purged the error term from Sato-Vartia weights using the residuals ξfist from
the first equation.

Next, for any candidate vector β∗ = (β∗
0 , β

∗
1 , β

∗
2), we can compute

ξ̂fist = ∆yfist − β∗
0Rfist − β∗

1∆αfist −
[ 1

N∗
ist

∑
k∈Ω∗

ist

∆ykist − β∗
0Rkist − β∗

1∆αkist

]
(1.25)

and

ς̂ist =
[ 1

N∗
ist

∑
k∈Ω∗

ist

∆ykist − β∗
0Rkist − β∗

1∆αkist

]
− β∗

2

∑
k∈Ω∗

ist

ϕkistRkist

29This problem cannot be solved simply by instrumenting
∑

k∈Ω∗
it
ϕkitRkit with base-year weighted

average regulation, because base-year weighted average regulation would correlate with
∑

k∈Ω∗
it
ϕkit∆Akit

as well. Rather, we would need an instrument that does not depend on the regulation.
30We have β3 = β1 ∗β2/β0, β4 = −β2/β0, β5 = −(β0+β2), β6 = −(β1+β3), β7 = (β0+β2)/β0. Given

the use of the estimates ξ̂fist, the other two coefficients are functions of β0, β1, β2, and ρ, but the term in
ρ cancels out with the estimates ξ̂fist. We have β8 = −(β2/β0)∗ρ/(1−ρ), and β9 = (1+β2/β0)∗ρ/(1−ρ).

31Our model indicates that change in across-plant concentration ∆αfit should be controlled for because
we expect that regulation assignment correlates with this concentration measure. When ∆αfit is large,
economic activity across the firm becomes more dispersed over time. With greater dispersion, the labor
share of regulated plants falls, so Rfist falls. Hence, leaving ∆αfit for the error term generates omitted
variable bias.
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− β∗
1

β∗
2

β∗
0

∑
k∈Ω∗

ist

ϕkist∆αkist +
β∗
2

β∗
0

(
∆λist −

∑
k∈Ω∗

ist

ϕkistξ̂fist

)
− δst, (1.26)

where N∗
ist represents the number of continuing firms in industry i in post-regulation

period t.32

We then exploit the following moment conditions: (1) E
[
ξfistRfist

]
= 0 , (2) E

[
ξfist∆αfist

]
=

0, (3) E
[
ςist

(∑
k∈Ω∗

ist
ϕkistRkist

)]
= 0, and (4) E

[
ςist

(∑
k∈Ω∗

ist
ϕkist∆αkist

)]
= 0. The

first and third moment conditions hold under the assumption of random walk produc-
tivity growth. However, if productivity growth does not follow a random walk, and if
regulation correlates with pre-period characteristics, then these conditions may not hold.
To address this possibility, we control non-parametrically for observable determinants
of regulation at the firm-level. In particular, we match regulated firms to unregulated
firms in the same industry based on pre-period levels and growth of yfit and condition
on this sample when building the empirical counterpart to the first condition. To address
endogeneity of regulation at the industry level, we purge ςist of industry-level average
pre-period outputs and inputs before building the empirical moments. The second and
fourth moment conditions follow from the exogeneity of αfist.

Using (1.25) and (1.26), we build the empirical moments

Γ (β∗
0 , β

∗
1 , β

∗
2) =


∑

t

∑
f,i

̂ξfist (β∗
0 , β

∗
1)Rfist∑

t

∑
f,i

̂ξfist (β∗
0 , β

∗
1)∆αfist∑

t

∑
i

̂ςist (β∗
0 , β

∗
1 , β

∗
2)
(∑

k∈Ω∗
ist

ϕkistRkist

)
∑

t

∑
i

̂ςist (β∗
0 , β

∗
1 , β

∗
2)
(∑

k∈Ω∗
ist

ϕkist∆αkist

)


and choose β to minimize the usual GMM criterion function

βSTR = min
β∗
0 ,β

∗
1 ,β

∗
2

Γ (β∗
0 , β

∗
1 , β

∗
2)

′ WΓ (β∗
0 , β

∗
1 , β

∗
2)

where the weighting matrix W is estimated optimally using the two-step GMM estimator.

Finally, at the plant level, we estimate by OLS:

∆Zjfist = βzRjfist + δα∆αjfist + δfist + ϵjfist, (1.27)

32To control for the sector-year fixed effects, we first compute
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)
,

then regress this quantity on a vector of sector-by-year indicator variables and extract the residual.
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where δfist absorbs all determinants of emissions that are constant across plants within
the firm-year. The parameter βz represents the input price effect of the regulation on
emissions (βz = −µz), holding all else constant. By exploiting within-firm variation, this
equation may not suffer from the selection bias stemming from nonrandom treatment
assignment, as it was the case for revenues.

1.4.2 Treatment Effects

In order to assess the effects of the regulation on average and aggregate outcomes, we must
compute the counterfactual equilibrium for the case in which no firm was ever regulated
and compare it to observed outcomes. This is necessary because industry- and sector-
wide price indices will change with counterfactual regulation regimes. Because Sato-Vartia
weights depend on both pre-period market shares as well as current market shares, we
must first solve for counterfactual revenues, and then use the first order conditions to
solve for counterfactual emissions at the plant level.

At the firm level, we obtain counterfactual revenues by solving a system of non-linear
equations. Using equation (1.22), counterfactual revenue changes between t and t0 for any
firm with positive revenues in the post-regulation period (where the ′ symbol indicates a
counterfactual value) can be written as:

ln
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(1.28)

where ϕ′
fist, Φ′

ist and ∆λ′
ist indicate counterfactual Sato-Vartia weights and continuing-

good share growth, which must be solved for endogenously. Terms ς̂mst and ξ̂kist are
computed according to (1.25) and (1.26), whereas β̂0, β̂1 and β̂2 result from the GMM
procedure. The counterfactual equilibrium is the vector of counterfactual revenues y′fist
that solves the system defined by one equation (1.28) for each firm. The equilibrium can
be solved either with a numerical solver or with a fixed-point algorithm.33

33In the fixed point algorithm, we first set y′fist = yfist, compute ϕ′
fist, Φ′

ist and λ′
ist under this

assumption, compute the right hand side of (1.28), and then update y′fist. The process then repeats until
the vector y′fist converges.
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Once we have an estimate of y′fist, counterfactual emissions at the plant level are easily
computed as Z ′

jfist = Zjfiste
−̂βzRjfist(y′fist/yfist) and, at the firm level, as Z ′

fist =
∑

j Z
′
jfist.

We then compute average treatment effects at the firm level and plant level. At the
firm level, we define “treated” (T) firms as any firm with at least one regulated plant
and “control” (C) firms as any firm without any regulated plant. At the plant level, we
denote regulated plants “TT” (treated plants in treated firms), unregulated plants owned
by firms with regulated plants “CT” (control plants in treated firms), and unregulated
plants owned by firms without any regulated plant “CC” (control plants in control firms).
Then for any group X ∈ {T,C, TT, CT,CC} and outcome v ∈ {y, Z}, we define the
average treatment effect as:

ATXv
t =

1

NX
t

∑
f∈ΩX

t

vfist − v′fist
vfist

, (1.29)

where NX
t and ΩX

t correspond to the number and the set of studied firms or plants at time
t, respectively. Firm-level treatment effects vary across firms within an industry due to the
variation in the density of treatment across plants. Additionally, densities of treatment
within an industry and within a sector are also heterogeneous, which leads to variation
in average treatment effects across industries. At the aggregate level, we evaluate the
treatment effect of the regulation on total emissions as ATZt = (Ztot

t − Ztot′
t )/Ztot

t .

1.4.3 Monte Carlo Experiments

In this section, we use Monte Carlo experiments to evaluate the performance of our
estimator in a finite-sample setting and compare it to alternative estimators.

We assume the following data generating process. A fixed number of firms could po-
tentially operate in each of two periods - a pre-regulation period and a post-regulation
period. Sector-wide expenditures are drawn randomly each period, as well as firm-level
entry and exit decisions. In the pre-regulation period, firms draw their productivity, num-
ber of plants, and αjfist terms randomly. These variables completely determine marginal
cost, and hence prices and revenues, given monopolistic competition. We solve for plant-
level emissions using the first order conditions. In the second period, we set Rjfist = 1

for all plants with pre-period emissions above a given threshold. Productivity updates
according to a first order Markov process, and marginal costs update based on regula-
tion and updated productivity. Revenues, market shares and plant-level emissions are
solved again. We simulate the model for eight different parameter combinations. We vary
ρ ∈ {.8, .95}, the energy-efficiency effect of the regulation µe ∈ {0, .8}, and the probability
of exit ϱ ∈ {0, .1}. In all combinations, we set ν = .3, γ = .8, µz = .2, and σ = −1.
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For each parameter combination, we simulate 100 replications. For each replication, we
simulate 10 sectors, 5 industries per sector and 10 firms per industry.

Once the data is generated, we implement our estimation procedure, as well as alternative
estimators that fall either in the category of DiD approaches or in the category of local ap-
proximation approaches. At the firm level, we compare our estimator to the standard DiD
model, as described in equation (1.1) while making two alterations to fit our model: we
include the change in dispersion forces ∆αfit as a control and define firm-level regulation
status as the share of labor working in regulated plants. In line with common practices
in the literature, we compute treatment effects ignoring the fact that CES price indices
would differ in a counterfactual equilibrium, and thus build counterfactual outcomes as
ln(vDD′

fist ) = ln(vfist) − β̂DD
v0 Rfist. We also consider the LA model described in equation

(1.2), with the same two alterations and with an additional control
∑

k∈Ωist0
θkist0∆αkit

to fit our model. To compute treatment effects in this case, we use

ln(vLA′
fist) = ln(vfist)− β̂LA

v0 Rfist − β̂LA
v2

∑
k∈Ωist0

θkist0Rkist + (β̂LA
v0 + β̂LA

v2 )
∑
m∈Υ

Θmt0

∑
k∈Ωist0

θkist0Rkist,

exploiting the structural relationship identified in our model to compute the parameter
in front of sector-wide spillovers. Doing this, we are getting as close as possible to our
estimator while not having to solve for the counterfactual equilibrium with the system of
equations (1.28). We show in Appendix A.3.2 that this amended LA model follows from
taking a local approximation to the price index around the pre-regulation equilibrium.

Similarly, at the plant level, we consider a DiD model that regress plant-level emissions on
plant-specific regulation status and change in labor share, ∆αjfist, controlling for industry-
time fixed effects, δist, in a sample that excludes unregulated plants that are owned by
firms that owns at least one other regulated plant. We build counterfactual outcomes as
before: ln(ZDD−TT ′

jfist ) = ln(Zjfist) − βDD−TT
z0 Rjfist. Additionally, following previous work

that investigates the role of across-plant reallocation within the firm (Bartram et al.,
2022; Gibson, 2019; Soliman, 2020), we compare the evolution of plant-level outcomes for
unregulated plants owned by firms that also own regulated plants to unregulated plants
owned by firms that own no regulated plant, excluding directly regulated plants from the
sample. We call this DiD model “DD-CT” and notice that, by only including non-directly-
treated plants, the estimates capture exclusively a scale effect. Finally, even though we
have not found in the literature examples of the LA model combined with a multi-plant
structure, we can build the plant-level LA model based on our theoretical framework by
combining the firm-level regression on revenues described in (1.2) with our plant-level
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specification (1.27) to compute the following counterfactual outcomes:

ln(ZLA′
fist) = ln(Zfist)− β̂LA

z Rjfist − β̂LA
y0 Rfist − β̂LA

y2

∑
k∈Ωist0

ϑkist0Rkist

+ (β̂LA
y0 + β̂LA

y2 )
∑
m∈Υ

Θmt0

∑
k∈Ωist0

ϑkist0Rkist.

Armed with our estimates, which we call structural “STR”, as well as the different versions
of the DiD and LA estimators presented above, we compute firm-level ATT and ATC,
plant-level ATTT, ATCT, ATCC, and aggregate effects on emissions for each simulated
data set. Since we control the data generating process, we can also compute the true
treatment effect of the regulation on any given firm by comparing the firm-level outcome
in the regulated scenario to the unregulated scenario, keeping all exogenous parameters
the same.

Figure 1.4.1 plots, for each parameter combination, the true average values across 100
replications for ATT (left) and ATC (right) for revenues (top) and emissions (bottom) on
the x-axis and the average estimated value for each estimator on the y-axis for multi-plant
firms. We find that (i) our procedure (indicated in red) successfully recovers unbiased es-
timates of the ATT and ATC, even for finite samples, whereas (ii) the DiD estimator
(indicated in black) tends to overstate the effect on revenues of regulated firms in magni-
tude, while recovering the correct sign of the net regulation cost, and (iii) the LA estimator
(indicated in blue) suffers from a small bias when the true effect is small in magnitude,
but it can be severely biased in some parameterizations (for instance, when varieties are
more substitutable with ρ = .95) and even have the wrong sign.34 In the lower panels
of Figure 1.4.1 we see that the biases in the DiD and the LA estimators of the average
treatment effects on firm-level emissions follow a similar pattern as for revenues. However,
the sign of the DiD estimate does not always correspond with the sign of the true ATT,
as it does for revenues. This is because the DiD estimator in emissions conflates the scale
effect with the input-price effect; and since the DiD over estimates the scale effect, the
DiD estimator can yield the wrong sign. In general, however, we cannot sign the bias for
the LA model, nor for the DiD model (see Appendix A.4.1).

34For each parameter combination, Figure A.4.1 shows that the distribution of the biases in estimates
of the ATT for our estimator is centered on zero. We also see that even when the bias in the DiD
estimator is small (see the top left panel), the distribution is clearly centered away from zero. This can
also be the case for the LA estimator. In Appendix A.4.2, we decompose the bias in the DiD and LA
estimators into three components: specification error, weighting or spillover error, and regression error.
For the multi-plant simulation results, the specification error dominates for LA, and hence dictates the
sign of the bias. However, this is not true for all simulations, as indicated by the single-plant simulation
results shown in the same Appendix.
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Figure 1.4.1: Average Treatment Effects at the Firm Level

Notes: Subfigures plot average estimates of treatment effects on revenues (y) and emissions (z) as a
percentage of observed outcomes for each estimator across 100 replications against the average of the

true metric, for each parameter combination. Left panels show the ATTs for each parameter
combination, whereas right panels show the ATCs, all at the firm level. The black line corresponds to

the 45-degree line.

Moving to plant-level models, Figure 1.4.2 indicates that our estimator successfully re-
covers unbiased estimates of treatment effects on plant-level emissions. By contrast, the
DiD and LA estimators fail to recover unbiased estimates. Looking at the ATTT, the
biases in the DiD and the LA follow a similar pattern as for firm-level emissions. It
is thus not possible in general to sign the bias in these two estimators with respect to
plant-level emissions. Looking at the ATCT, the DiD estimator that focuses on intra-firm
reallocation can overestimate or underestimate these intra-firm spillovers, and even have
the wrong sign.35 Finally, looking at treatment effects on aggregate emissions in Figure
A.4.2, we find that aggregate emissions fall across all parameter combinations since regu-
lation always increases the cost of emissions (µz > 0). Our estimator successfully recovers
unbiased estimates of these aggregate effects whereas both the DiD and LA estimators
yield biased estimates for all parameter combinations. For both estimators, the bias can

35In our simulations, even when regulation lowers the unit costs of regulated firms, emissions from
unregulated plants in regulated firms falls on average. This is because firms with both regulated and
unregulated plants are not the biggest firms in the economy (only very large firms will have all plants
regulated). Hence, while regulation lowers marginal costs for regulated firms when τ < 0, firms with only
some regulated plants may still loose market share to fully regulated firms.
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Figure 1.4.2: Average Treatment Effect in Emissions at the Plant Level

Notes: Subfigures plot average estimates of treatment effects on emissions (z) at the plant level as a
percentage of observed emissions for each estimator across 100 replications against the average of the

true treatment effect, for each parameter combination. The first panel plots the ATTTs for each
parameter combination, the second ATCTs, and the third ATCCs. The black line corresponds to the

45-degree line. A plant is labeled “TT” if it is regulated in period 2, “CT” if the plant is unregulated in
period 2, but part of a firm with regulated plants in period 2, and “CC” if the plant is part of a firm

with no regulated plants.

be either up or down, and the estimated sign can be either positive or negative.

In the model, we assume that firms do not internalize the effect of their pricing on the
industry-wide price index. However, with a discrete number of firms, some of whom
command nontrivial market shares, it could be that, in reality, at least some firms do
internalize the effect of their pricing behavior on the CES price index. In this case, our
estimator would be misspecified. To explore the potential role of misspecification bias with
respect to strategic behavior, we simulate the economy assuming firms engage in Bertrand-
Nash pricing. All other features of the simulations remain the same. We present results
in Appendix Figures A.5.1 - A.5.4. We find that, even if firms play Bertrand-Nash, our
procedure still delivers estimates of treatment effects that matches the true values quite
well. This is reminiscent of the findings in Head & Mayer (2021) of the good empirical
performance of the CES-MC model at estimating the effect of cost changes (international
tariff changes, in their case) even though the world is more complex with firms being
strategic and consumers more sophisticated.
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1.5 Moving from Model to Data

In this section, we describe three empirical issues that we must address in moving from
the model to the data. Additionally, we describe our matching procedure.

1.5.1 Export Markets

First, the model considers only one economy, but in reality, French firms serve not only the
domestic market but also foreign markets. Our empirical strategy relies on constructing
empirical counterparts to the theoretical CES price index, which requires information on
all firms selling to a destination market. Focusing on the French market, we distinguish
between French firm sales in France vs sales abroad. For most of the analyses below,
we take domestic sales of French firms as the outcome variable. Total domestic sales
represents about 75% of total French-firm revenues, depending on the year of the sample
(see Figure A.2.3, left). For these flows, we can compute counterfactual revenues using our
method. For comparison to other methods, we sometimes present corresponding evidence
of effects on total sales.

Since our model is best suited to analyzing the domestic market, we also distinguish
between total CO2 emissions and CO2 emissions generated in production for domestic
sales. We compute this latter measure by multiplying total emissions by the domestic
revenue share. Figure A.2.3 (right) shows that our measure of total emissions (inclusive of
imputations described below) tracks trends in the National Emissions Inventory measure
reasonably well.

1.5.2 International Imports

Second, while focusing on the French market, we need to account for foreign imports into
France. While we observe the universe of French firms selling in the French market, we
do not observe flows of individual foreign firms selling in France. These missing flows
– which represent roughly a third of all French manufacturing consumption (see Figure
A.2.2) – are problematic for building the different components of the CES price indices.
To circumvent this issue, our main strategy exploits aggregate bilateral trade flows from
the BACI database (Gaulier & Zignago, 2010) for which we assume that each origin-
country-industry is associated with only one firm exporting to France.

It is however unlikely that the set of foreign firms shipping to France within an industry is
always singleton. To investigate the role of this mis-specification error, we conduct robust-
ness tests under alternative assumptions with respect to international trade. In Appendix
Figures A.1.2-A.1.5, we repeat the analysis leaving foreign imports out of the computation
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entirely. This exercise amounts to assuming Cobb-Douglas aggregation between domestic
consumption and foreign consumption at the sector level so that the share of expenditures
on domestic goods would be fixed. Under this assumption, industry-level CES price in-
dices on the French market can be separated into a CES price index for domestic varieties
and a CES price index for foreign varieties, and the two are completely independent. As
a result, we could construct the CES price index for domestic varieties using only French
firms and ignoring international imports. This is implicitly the approach taken by pre-
vious work based on local approximations (Cai & Szeidl, 2022; Muehlegger & Sweeney,
2021; Rotemberg, 2019).

1.5.3 Imputing Emissions

Third, only about 10% of all plants are included in the EACEI survey each year (see Figure
A.2.1). As long as there are no systematic differences between surveyed and unsurveyed
plants, conditional on observables, missing data poses no problem for the estimation and
we compute our estimates of the treatment effects on the set of observed plants. However,
ideally we would like to know how the regulation affected total CO2 emissions from French
manufacturing, not just the emissions from the plants observed in the EACEI. To extend
the analysis to plants beyond the EACEI, we can leverage the structure of the model
since emission intensity in revenues does not vary across plants within sector-year.36 By
taking the average of CO2/revenue for all surveyed plants at the sector-year level, we
can impute emissions for plants not included in the EACEI. See Data Appendix A.2.6
for details. This procedure is done for completeness, though we acknowledge that this
extension requires potentially strong assumptions.

1.5.4 Matching

To address nonrandom treatment assignment, we match regulated firms to unregulated
firms within an industry on pre-regulation characteristics. The model indicates that
these characteristics should include ln yfis,2004 and αfis,2004, as well as pre-period average
growth rate of firm-level sales. Intuitively, two firms with the same values for these
characteristics should have the same productivity level, and hence should grow at the
same rate in expectation following 2004, absent any effects of regulation.37 To implement
this matching exercise, we project an indicator variable for whether or not a firm ever

36In practice, observed emission intensity in revenues does vary, but this could be due to measurement
error.

37Intuitively, we need to control for αfis,2004 because it has a direct effect on costs and correlates with
regulation. If we omit αfis,2004 from the matching procedure, then regulated firms will systematically
have higher (lower) values of ωfis,2004 if σ is positive (negative).
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operates a regulated plant on ln yfis,2004, αfis,2004, and the pre-period average growth rate
of firm-level sales.38 We compute predicted regulation, and then identify all firms with
predicted regulation scores within a given bandwidth of a regulated firm in the same
industry. This procedure excludes some regulated firms from the sample for whom no
unregulated firm can be found close enough in propensity score within the same industry.

By matching regulated to unregulated firms, we attempt to minimize the selection bias
stemming from nonrandom regulation assignment. However, given that regulation is
largely determined by pre-period size, it is important to consider where variation in firm-
level regulation status comes from, conditional on size. Following Calel & Dechezlepretre
(2016), most studies of the EU ETS assume that firm-level variation in regulation status
comes from variation in the across-plant concentration of economic activity within the
firm. Previous work has merely asserted that this variation is orthogonal to unobserved
determinants of revenue growth. However, according to our model, across-plant concen-
tration of economic activity within the firm has a direct effect on costs (cfist depends
on αfist). Hence, the structure of our model indicates that identifying variation must
come from some other measure of across-plant concentration, conditional on αfis,2004.39

In appendix Table A.1.1, we show that in fact across-plant concentration as measured by∑
j∈Ωfis,2004

α2
jfis,2004 correlates with future regulation status, even conditional on αfis,2004.

Thus, we provide empirical support for the conditional version of this widely cited iden-
tification assumption.

At the plant level, our approach exploits within-firm-year variation across plants. Hence,
restricting the sample to matched regulated and unregulated plants is not necessary. We
however test for robustness using a matched sample, where we match plants based on
their pre-period CO2 emission levels and growth rates.

1.6 Results

In this section, we compute the treatment effects of the EU ETS regulation on French
manufacturing firms’ revenues and CO2 emissions using our estimation procedure and
compare to the DiD and LA methods.

38We experiment with both probit and linear probability models and find that the functional form
makes little difference in terms of selecting control firms.

39Ideally, one would want to know the emissions threshold used to determine regulation, and then
build a measure of concentration based on this threshold. Lacking data on these thresholds, we adopt a
common (though fairly arbitrary) measure of concentration and test if the measure predicts regulation,
conditional on αfis,2004.
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1.6.1 Estimating Reduced-form Coefficients
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Figure 1.6.1: Reduced-Form Coefficients for the Effects on Domestic Revenues

Notes: Markers indicate estimates of β0, β1, and β2 from our GMM estimator (in red) and from the LA
model described in section 1.4.3 (in blue) for the matched sample. Bars indicate 95% confidence

intervals. For each period, we estimate a pooled regression, combing all years included in the period.
Top (bottom) row takes log change in domestic (total) sales as the dependent variable. Right (left)

panels include all (matched) firms. The vertical line indicates the beginning of the regulation period.
All regressions include industry-by-year fixed effects. Standard errors are clustered on the industry

Figure 1.6.1 presents the estimates of β0, β1, and β2 from our GMM estimator (in red)
and from the LA model described in section 1.4.3 (in blue) for the matched sample. For
both estimators, the regulation variable Rfist is the labor share of regulated plants within
the firm-year. For each phase of the regulation period, we pool all years in the period and
estimate a single parameter value for each of β0, β1, and β2. We find that regulated firms
grew faster than unregulated firms. With our estimator, we find that the point estimate
for the direct effect β0 is around 0.16, statistically significant at the 5% level for phases I
and II but not for phase III, while the point estimate for the indirect effect β2 is around
−0.1, with a 95% confidence interval that overlaps with zero in all phases. With the LA
estimator, the magnitudes of the effects are similar, but the indirect effect is less precisely
estimated.

Also in Figure 1.6.1, we find that β1 is always positive, on the order of 0.5 and above,
and quite precisely estimated (p-values < .001). The fact that we can reject β1 = 0

indicates that the concentration of economic activity across plants within the firm indeed
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affects costs, as predicted by our multi-plant framework. Moreover, with β1 > 0, we can
conclude that σ < 0, which indicates that increased concentration of economic activity
within the firm increases costs: economies of scope dominate the increased cost from
dispersed production.

The fact that regulated firms grew faster post-regulation is perhaps surprising, given that
the regulation effectively increased the cost of energy for these firms. However, this is
in fact a fairly robust finding in the EU ETS literature. For example, Löschel et al.
(2018) Dechezleprêtre et al. (2018) and Calligaris et al. (2018) all find that regulated EU
ETS firms grew faster post-regulation than unregulated firms. This evidence is consistent
with the hypothesis that environmental regulation triggers cost-reducing technological
investments (Porter & van der Linde, 1995; Ambec et al., 2013).40

We test for parallel trends prior to 2004 by estimating the DiD model described in section
1.4.3, which controls for ∆αfit.41 Whereas in the post-2004 years, we define Rfist as the
labor share of regulated plants within the firm-year, in the years prior to 2004, we simply
take a dummy variable for whether the firm will own at least one regulated plant post
2004. Figure A.1.1 shows that, using the full dataset (left panels), regulated firms grew
faster in the pre-regulation periods and slower in the post-regulation periods than unreg-
ulated firms, conditional on industry-year fixed effects. Given the nonrandom regulation
assignment, this pattern is precisely what one should expect. Regulation targeted large
firms, and large firms tend to grow slower than small firms; hence, regulated firms grew
slower in the post-regulation period. The fact that regulated firms grew faster in the pre-
regulation period is also a function of endogenous selection: large firms grew fast prior
to 2004, which is why they became regulated. These patterns indicate that productivity
does not follow a random walk, and thus provide a strong motive for treating endogenous
selection. Once we use the matched sample (right panels), we find that regulated and
unregulated firms trended similarly prior to regulation.

In Figure 1.6.2, we present OLS estimates of equation (1.27) with the full (matched)
sample indicated by black (white) diamonds. Using firm-by-year fixed effects absorbs
any endogenous productivity growth, as well as the scale effect of the regulation, which
explains that the estimates are similar across the two samples. The plant-level regulation
status thus identifies just the price effect of the regulation. As in Figure 1.2.3, we find
that emissions from regulated plants grew slower post-regulation compared to unregulated
plants within a firm. The point estimates are imprecise for phases I and III, though for

40(Calel & Dechezlepretre, 2016) and Calel (2020) find that the EU ETS induced R&D and green
innovation in regulated firms, which could explain these positive effects on sales.

41As noted above, the estimates of this DiD model are closely related to our first two empirical moments
in the GMM procedure.
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Figure 1.6.2: Plant-level DD Estimates for Emissions

Notes: Figure presents estimates of βz derived from OLS estimation of equation (1.27). Bars indicate
95% confidence intervals. For each period, we estimate a pooled regression, combing all years included
in the period. All regressions include firm-by-year fixed effects and ∆αjfist as controls. Standard errors

are clustered on the industry.

phase II, we can reject 0 at the 5% level.

1.6.2 Estimating Average and Aggregate Treatment Effects

Armed with our estimates of β0, β1, and β2, we then solve the system of equations (1.28)
for counterfactual revenues under the scenario that Rjfist = 0 for all plants, and compute
ATT and ATC according to (1.29). We also compute the ATT and ATC for the DiD and
LA estimator following the formulas presented in section 1.4.3.

Figure 1.6.3 plots the average treatment effects by year on firm-level domestic revenues
(panel a) and plant-level domestic emissions (panel b) for all three estimators. Using our
estimator, we find that the EU ETS increased domestic sales for the average regulated
firm between 5 and 9% annually relative to the unregulated counterfactual.42 The DiD
estimator overstates this effect by 1-2 percentage points, and the LA estimator understates
the effect by 2-4 percentage points, depending on the year. Whereas the average effect on
revenues of unregulated firms is equal to zero by assumption for the DiD estimator, we

42Treatment effects vary by year because of variation in values of β0, β1, and β2 by phase, variation in
industry-wide treatment density by year, as well as variation in ∆ωfist, ∆αfist, and ∆λist.
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find that it was quite small and negative using our estimator, and slightly positive using
the LA estimator.43 Panel b of Figure 1.6.3 shows that, using both our estimator and
the LA estimator, we find that the regulation reduced domestic emissions at regulated
plants between 5 - 20% during phases I and II of the EU ETS, depending on the year
and estimator. In phase III, we find a mild increase in emissions at regulated plants.
By contrast, using the DiD estimator, we find little effect on emissions during phases I
and II, and a fairly large increase in emissions in phase III (15%). For ATCT, we find
that the DiD estimator yields a positive effect of regulation on the average unregulated
plant within a firm that owns other regulated plants. These estimates are reminiscent of
the “reallocation” effects estimated by Gibson (2019) and Soliman (2020). Compared to
our structural estimator, we find that these DiD estimates vastly overstate the effect of
regulation on these unregulated plants (i.e, an increase of 5-10% depending on the year
for the DiD model compared to 0.5% for our estimator).

Finally, in Figure 1.6.4, we plot aggregate observed CO2 emissions generated in the pro-
duction of goods for the French market by year along with the counterfactual levels
computed using our estimator and the LA and DiD estimators. In the top set of trajec-
tories, we impute emission intensity for plants excluded from the EACEI surveys, while
the bottom set of trajectories includes only plants observed in the EACEI survey. With
imputing, we find that the regulation lowered domestic emissions between 1.5 - 3.5 mega
tonnes annually through phases I and II, depending on the year, or between 4 - 10%
of observed domestic emissions. Without imputing, we find that the regulation lowered
domestic emissions between 1.4 - 2.7 mega tonnes annually through phases I and II, or
between 5 - 12% of observed domestic emissions. In both cases, the vast majority of
emission reductions came from regulated plants. In phase III, we estimate that the policy
had no effect on aggregate emissions. By comparison, the LA estimator yields slightly
larger treatment effects, though very similar to our preferred specification, while the DiD
estimator yields zero effect during phases I and II and an effect of the opposite sign in
phase III.

43The fact that regulation increased domestic revenues for both regulated and unregulated firms ac-
cording to the LA model is an artifact of averaging. For unregulated firms in particular, the sign of the
effect of regulation varies by industry within a year. Averaged over all unregulated firms, we find slightly
positive effects, but in aggregate, regulation increased domestic revenues for regulated firms as a group
and reduced domestic revenues for unregulated firms as a group.
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Figure 1.6.3: Average Treatment Effects on Domestic Revenues and Plant-Level Domestic
Emissions

Notes: Figure presents the average treatment effects on firm-level domestic revenues (panel a) for
treated firms (left) and control firms (right) and on plant-level domestic emissions (panel b) for treated
plants (ATTT), control plants in treated firms (ATCT) and control plants in control firms (ATCC) as a
percent of observed outcomes by year and estimator. Treatment effects on revenues are averaged over

all French firms in the manufacturing sector while treatment effects on emissions are computed only for
firms with observed emissions in the EACEI survey.
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Figure 1.6.4: Treatment Effects on Aggregate Domestic Emissions

Notes: Figure presents observed total CO2 emissions from French manufacturers generated in the
production of goods for the domestic market (solid black) along with counterfactual emissions

computed using STR, LA and DD methods. Bottom lines include only plants with observed emissions
in the EACEI survey, while top lines impute emission intensity for plants with no emissions data.

1.7 Conclusion

The effects of industrial regulations are hard to predict for at least two reasons. First,
firms may respond to regulation by investing in new technologies, which can affect costs
in unanticipated ways. Second, changes in pricing induced by the regulation at regulated
firms may affect the outcomes of other firms in the economy through competition on the
output market. It is well known that these across-firm dependencies likely generate bias
in difference-in-differences estimators of treatment effects. Controlling for industry-level
regulation density goes a long way to addressing the problem, but if prices change sub-
stantially between pre-regulation and post-regulation periods, then local approximation
models may lead to biased results as well.

We develop an estimation procedure to quantify the effects of industrial regulations in
the presence of inter-firm and intra-firm spillovers. We extend the literature in several
ways. First, we generalize the local approximation method to cases in which prices change
substantially between pre and post regulation periods. Second, we incorporate multiplant
production into a framework where regulation applies at the plant level. Third, we al-
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low for nonrandom assignment of regulation and nonrandom walk productivity growth.
Fourth, we consider heterogeneous effects of regulation by destination market.

We use our estimation procedure to study the effects of the EU ETS on firm-level and
aggregate outcomes for French manufacturers. We find that despite fears of loss of compet-
itiveness, the EU ETS did not cause regulated French manufacturing firms to lose market
share. On the contrary, we find that the average regulated firm increased revenues earned
on the French market by 5 to 9% annually as a result of regulation, consistent with a
technology adoption mechanism a la Porter & van der Linde (1995). The standard DD
estimator yields a higher estimate (by 1-2 percentage points), while a LA estimator yields
a lower value (by 2-4 percentage points). Overall, we find that the EU ETS reduced
aggregate emissions between 4 - 10% annually during phases I and II and had zero effect
in phase III. The LA estimator yields a similar result, while the DD estimator predicts
the opposite sign of the effect.

Our estimation procedure could be used to study other types of plant-specific shocks, such
as place-based labor regulations, or regional productivity shocks. In our context, we were
guided by the reduced-form evidence of across-firm and intra-firm spillovers, which led us
to focus on competition forces and intra-firm reallocation forces. In a different context,
researchers could potentially discover that local labor market reallocation forces are at
play, for instance. The model could therefore be enriched to accommodate other spillover
mechanisms.
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Chapter 2

An Optimal Distribution of Polluting Ac-
tivities Across Space

2.1 Introduction

It is now widely acknowledged that atmospheric pollution causes substantial damage
to human health.1 Yet, most people live in large cities that also concentrate polluting
industries. Recognizing this, governments have adopted air quality regulations that are
more stringent in large and populated cities. However, more stringent regulations can hurt
local firms, make them less productive, and, in turn, affect local workers’ income.2 This
local tradeoff between income and pollution raises the question of whether environmental
regulations should be different across heterogeneous locations. This question requires a
theory of the location choice of workers and heterogeneous firms that endogenizes local
air pollution as an externality from production. In this paper, I develop such a theory
and explore what would be an optimal distribution of polluting activities across space in
the context of France.

I first use this framework to find the set of policies that implements an optimal allocation of
workers, firms, and pollution across cities. Within this framework, location choices made
by individual firms and workers depend on (1) the level of amenities offered by cities, (2)
agglomeration externalities that provide a productivity advantage to firms located in more
populated areas, and (3) congestion forces. Local air pollution acts as a congestion force
by decreasing city-specific amenities. Workers respond to bad air quality by moving away
from it. Firms, by contrast, only internalize the negative externalities associated with
their polluting emissions insofar as they have to pay a local city-specific tax on emissions.
They do not internalize their impact on local labor supply that responds to the decrease
in amenities associated with bad air quality. Under these assumptions, I show that the
largest cities, endowed with the highest level of exogenous amenities and productivities,
are too small compared to the optimum when the emission tax is uniform across space.

1Health damage have been measured even when pollution levels fall below regulatory standards
(Graff Zivin & Neidell, 2012, 2013; Deryugina et al., 2019).

2This is the “jobs versus the environment” argument (Morgenstern et al., 2002).
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An optimal set of city-specific pollution taxes should include higher taxes in large cities
to make industrial production cleaner, air quality better, and these cities more attractive
to workers.3 Second, I explore quantitatively what would be this optimal set of city-
specific pollution taxes in the context of France and compare it to the estimated current
regulations on industrial emissions. I find that current regulations are differentiated across
space in the right direction – they are more stringent in larger cities – but welfare could
increase by raising pollution taxes in larger cities even more.

I consider a unique country with a discrete number of cities that differ in their idiosyncratic
and exogenous endowments in local amenities and industrial labor productivity. Workers
derive utility from local amenities and from the consumption of an industrial tradable
composite good. Following Rosen (1979)-Roback (1982), I assume that a fixed popula-
tion of homogenous industrial workers choose to locate in different cities in equilibrium.
In each city, continuums of heterogenous firms from distinct industrial sectors produce
differentiated varieties that aggregate into the composite good. As in Copeland & Taylor
(2004), firms use labor and polluting emissions as substitutable inputs for production.4

Production costs thus depend on local wages, local labor productivity, and local emission
taxes. Furthermore, firms face iceberg trade costs when exporting their varieties to other
cities. As is standard in economic geography models, the model includes two externalities
related to the allocation of workers across space. First, local labor productivity is endoge-
nous and reflects agglomeration economies: when the number of worker increases in a
city, so does labor productivity. Second, local welfare is influenced by general congestion
effects: as local population increases, congestion appears on the housing market and in
transportation, which reduces each worker’s welfare.5 Furthermore, workers are assumed
to move freely across cities.6

The novelty of the paper rests on the assumption that the total quantity of industrial
emissions per city negatively affects city-specific amenity level, using a constant elasticity
environmental damage function. Doing so, I consider polluting emissions as a congestion
force that affects workers’ location decision, and firms do not internalize this effect.7 In

3To be able to compare sets of city-specific pollution taxes, I keep the average tax level across cities
constant across alternative sets. In doing so, I focus only on the effects of spatially differentiated emission
taxes, not on the welfare impacts of raising tax levels.

4Pollution can equivalently be modelled as an input or a by-product of industrial production in the
standard Copeland & Taylor (2004)’s setup.

5This congestion effect potentially encompasses polluting emissions related to residential energy con-
sumption and transportation. Even though, I do not explicitly model these pollution sources, they affect
welfare negatively. I assume that these sectors are not covered by the emission tax on industrial pollution.

6The free mobility assumption leads to an equilibrium that is informative in the long run. In Appendix
B.4, I investigate the alternative assumption of no across-city migration, which is more informative in the
short run. Using the simplified setup of Section 2.2, I find that the main result holds when the central
planner maximizes the average per capita welfare of workers.

7This is an effect that has been identified empirically (Chay & Greenstone, 2005; Davis, 2011; Khanna
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the model, I consider for simplicity a representative pollutant that serves as an indicator of
the combination of harmful pollutants emitted by industrial activities (PM10, PM2.5 and
SO2). I further assume that this pollutant is essentially local in the sense that emissions
only affect local air quality within the city limits.8 I show that a central planner taking into
account the trade-off between agglomeration externalities and congestion forces decides to
differentiate local emission taxes by setting the relative level of tax in larger cities higher.

I apply this spatial equilibrium framework to the specific case of France. This empirical
setting is interesting for three reasons. First, a large share of harmful pollutant emissions
result from industrial activities in France.9 Second, local air concentrations of pollutants
in several French cities often reach levels well above World Health Organization (WHO)’s
guidelines.10 Third, air quality regulations implemented in the last decades in France
tend to be more stringent in larger cities, which are also more polluted and concentrate
more industrial polluting activities. Figure 2.1.1 illustrates salient stylized facts that I
incorporated into the model. The upper panel shows that the larger the number of workers
within a French commuting zone, the higher the mean PM 2.5 concentration in 2012. The
middle panel shows that the most populated commuting zones are also the most polluting
in terms of PM 2.5 emitted by industrial activities. The lower panel shows that the local
marginal cost of emitting PM2.5 for industrial firms tends to increase with the size of the
local labor market.11

Using an extensive set of city-level, firm-level, and plant-level data, I first estimate the
parameters of the model. I estimate key elasticities that determine the strength of pollu-
tion externalities, agglomeration economies, and general congestion effects. I also provide
novel estimates of sector-specific elasticities governing the substitution of emissions and
labor in industrial production, using an instrumental variable approach. Second, I re-
trieve the distributions of amenities, productivities, and emission taxes across cities from
the observed endogenous distributions of populations, wages, and emissions. Doing so, I
obtain the set of current city-specific marginal costs of emitting atmospheric pollutants

et al., 2021), but not yet included in a quantitative setup.
8In reality, air pollutants can potentially travel across space depending on climatic conditions (espe-

cially, wind), some pollutants more than others. Since I consider commuting zones instead of cities in the
empirical application, the assumption is however quite realistic since most pollutants do not travel very
far. Furthermore, introducing an atmospheric circulation extension is outside of this paper’s scope.

9In 2012, industrial activities (fossil fuel combustion, chemical reactions, waste treatment or other
manufacturing processes) emitted around 40% of PM2.5 and SO2 national emissions and around 25% of
PM10 national emissions (see Figure B.1.1 and Tables B.1.1, B.1.2, and B.1.3 for details).

10Figure B.1.2 shows that, in 2012, both mean and maximum air concentration measurements from
ground monitors over the country for these substances have remained above WHO guidelines.

11Assuming that homogeneous firms in different cities have access to the same Cobb-Douglas production
function between labor and PM2.5 emissions (assumptions used in the illustrative model in Section 2.2),
I compute the marginal cost of PM2.5 emissions as the ratio of total wage payments over city-level PM2.5
emissions.
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Figure 2.1.1: PM2.5 concentrations, emissions and marginal costs across commuting zones
Note: The upper panel plots the 2012 mean air concentration in PM2.5 at the commuting zone level as a function of the
local number of workers. The middle panel plots the 2012 PM2.5 emissions from industrial activities at the commuting

zone level as a function of the local number of workers. The lower panel plots the implicit marginal cost of emitting
PM2.5 in the industry as a function of the local number of workers. This cost is the ratio of total wage payments in the

commuting zone over the quantity of PM2.5 emitted by the industry.
City-level PM2.5 air concentration is from Chimere. PM 2.5 industrial emissions are from the National Spatialized

Inventory. Labor data comes from the Insee and is a count of the number of workers employed in the employment area.
All values are for 2012.

for industrial firms implied by current French air pollution regulations. I find that these
costs are higher in large cities than in small cities. Specifically, these costs are higher in
more productive cities, but not necessarily in cities endowed with more amenities.

I then characterize the welfare implications of such spatial distribution of marginal costs
of emissions. I show that more stringent emission regulations in large cities enabled them
to reduce pollution emissions and become larger than what they would have been under a
counterfactual uniform regulation. This implies higher levels of welfare for workers living
in all cities. To go further, I then identify the spatial distribution of emission taxes that
would maximize workers’ welfare. It would be optimal to raise emission taxes in cities
with high amenities, leading to further concentration of workers in these cities, and thus
exacerbating the uneven distribution of activities across space.

This paper relates to several literatures. First, it contributes to the recent quantitative
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spatial economics literature on the distribution of economic activities across space (Allen
& Arkolakis, 2014; Redding & Rossi-Hansberg, 2017; Redding, 2020; Allen et al., 2020).
Extending the framework of Rosen (1979)-Roback (1982), this literature can be decom-
posed into two main strands. The first one assumes that workers have heterogenous
preferences over amenities and investigates mainly the location decision of workers across
cities (Moretti, 2013; Diamond, 2016; Almagro & Domínguez-Iino, 2021). An influential
paper in this literature is Diamond (2016) that endogenizes local amenities to explain the
spatial distribution of skilled and unskilled workers across U.S. cities. Diamond assumes
that these amenities are positively influenced by the fraction of skilled over unskilled work-
ers. In my paper, I also introduce endogenous amenities affected by congestion forces,
based on total population levels, and by the pollution externality. The second strand con-
siders homogenous workers to explore the location decision of firms across cities and the
optimal size of cities (Henderson, 1974; Eeckhout & Guner, 2015; Borck & Tabuchi, 2018;
Gaubert, 2018; Albouy et al., 2019). Focusing on the supply side of the economy, namely
polluting industries, I make the same assumption. In this strand, Allen & Arkolakis
(2014) and Allen et al. (2020) develop a spatial quantitative model where characteristics
of heterogeneous locations determine the equilibrium distribution of economic activities
across space. They assume endogenous amenities and agglomeration economies.12 Even
though my model is an extension of these two papers, I depart from them by focusing on
a particular source of congestion externalities, namely local air pollution, and investigate
its effect on the spatial distribution of economic activities.

My paper is connected to a second literature that investigates the distribution of pollution
across cities (Glaeser & Kahn, 2010; Carozzi & Roth, 2019; Colmer et al., 2020a; Borck &
Schrauth, 2021; Eeckhout & Hedtrich, 2021) and its congestion effects (Drut & Mahieux,
2015; Leturque & Sanch-Maritan, 2019; Hanlon, 2019). Carozzi & Roth (2019) and Borck
& Schrauth (2021) both show that denser cities are also more polluted (respectively for the
US and Germany). Similarly, Colmer et al. (2020a) uncover large disparities in the spatial
distribution of PM2.5 concentration across census tracts in the US. In particular they find
that increasing local population leads to higher levels of ambient PM2.5 pollution. They
also identify a decrease of pollution in locations where regulation became more stringent
(namely census tracts in non-attainment with air quality standards under the Clean Air

12In this respect, I include the “productivity advantage of large cities” that have been identified for
France by Combes et al. (2012) and more recently by Gaubert (2018). However, I do not make any
assumption on the source of these agglomeration economies. Notably, the model does not include any
sorting mechanism that may partly explain higher productivities observed in larger cities (Baldwin &
Okubo, 2005; Combes et al., 2008). Another source of agglomeration comes from the costly trade assump-
tion. Recently Bartelme (2018) showed that trade costs between US cities explained a large fraction of
the spatial distribution of economic output. At the same time, my model embodies general counteracting
congestion forces which limit the scale of economic concentration.
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Act). In my paper, I provide a framework explaining such spatial distribution of pollution:
my setup encompasses the effect of local population, local income, and local regulations on
local emissions. Moreover, with a focus on France, Drut & Mahieux (2015) and Leturque
& Sanch-Maritan (2019) exposed that agglomeration gains were dampened by higher levels
of local air pollution. My framework includes this effect by assuming that local pollution
actually acts as a congestion force. This mechanism is supported by findings from Hanlon
(2019) who showed for the UK that local pollution industrial emissions reduced long-
run city employment and population growth. Damage from pollution also have been
found to be heterogenous across space depending on local characteristics (Aldeco et al.,
2019; Deryugina et al., 2021; Desmet et al., 2021; Alvarez & Rossi-Hansberg, 2021). The
assumption of constant elasticity of damage from pollution implicitly acknowledges this
heterogeneity to the extent that large cities concentrate most of the welfare loss due to
pollution.

Finally, my paper contributes to the literature on optimal place-based policies chosen by
a central planner. In particular, Fajgelbaum & Gaubert (2020) investigate how income
transfers across cities could maximize welfare by correcting spatial externalities, assuming
free mobility of workers across cities. Similarly, Suarez-Serrato & Zidar (2016) consider a
tax rate on firms’ profits that varies across cities. In contrast to these papers, I assume an
input-specific policy instrument that induces reallocation across inputs, therefore it affects
the endogenous amenity level per city through emissions. This place-based literature also
contains studies including endogenous pollution (Lange & Quaas, 2007; Kyriakopoulou
& Xepapadeas, 2013; Yamada, 2020; Pflüger, 2021). A paper closely related to mine is
Yamada (2020) that also considers atmospheric pollutants as a congestion force and shows
that imposing more stringent air quality regulations in a specific set of large Chinese cities
could lead to welfare gains. In contrast to this paper, I solve for the optimal distribution
of local emission regulations instead of comparing ad-hoc distributions of policies inspired
by planned policy projects.

The remainder of the paper is organized as follows. In the next section, I provide a
simplified framework to illustrate how introducing a local pollution externality into the
standard spatial equilibrium model generates new insights. In the third section I provide
some context on air quality regulations in France. A more realistic general model is
detailed in the fourth section. The fifth section presents the estimation of the model’s
parameters. Finally, the last section contains results from numerical welfare optimization
problems and discusses the results.
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2.2 Optimal Environmental Policy in a Simple Spatial

Model

Following the Rosen (1979)-Roback (1982) framework, I consider a given set of C cities in
which a fixed population of workers can live. Throughout the paper, I assume homogenous
workers.13 The per capita utility of the representative worker in city j is given by:

uj = ajZ
−γ
j L−δ

j cj, (2.1)

where aj is the local idiosyncratic endowment in amenities, Lj is the local population of
workers, Zj is the quantity of atmospheric pollutants emitted by the local industry, and
cj is the local per capita consumption of a tradable good. This utility function captures
the fact that workers value the consumption of the tradable good, which depends on their
income, as well as other characteristics of the locations they live in. In this paper, I focus
on the local detrimental welfare effect of industrial emissions of atmospheric pollutants, as
industrial activities are major emitters of several harmful pollutants.14 In equation (2.1),
a positive γ implies that local industrial emissions Zj negatively affect the local air quality
and therefore welfare (through health damages). For simplicity, I abstract from spatial
pollution spillovers and assume that local emissions only affect local welfare. Workers
also bear various agglomeration costs, which are accounted for by the general congestion
term L−δ

j . This captures local externalities from agglomeration, such as commuting costs
and housing prices.15 This general congestion term also captures the detrimental effect
on welfare of atmospheric pollution emitted by non-industrial activities (transport, res-
idential heating, or energy production). Furthermore, each city is exogenously endowed
with a fixed level of amenities aj that explains the location choices of local workers once
spatial differences in consumption and local externalities are accounted for. For instance,
amenities include geographical environmental attributes, available space, institutional and
social installations or any local external factor that explains why some locations are more
attractive than others. Workers benefit from agglomeration economies. I assume that
labor productivity in location j is equal to bjL

ν
j . Elasticity ν governs the strength of

13As shown in Allen & Arkolakis (2014), this choice for workers’ preferences is isomorphic to a model
where heterogeneous workers have idiosyncratic utility shocks, according to a Fréchet distribution, that
are independent and identically distributed across locations and individuals. Such heterogeneity across
workers is a dispersion force and is captured by the parameter δ in my model.

14In 2012, the industry emitted 40%, 42% and 23% of total PM2.5, SO2 and PM10 emissions, see
Appendix B.1.

15Allen & Arkolakis (2014) show that constant elasticity congestion costs are isomorphic to the Helpman
(1998)-Redding (2016) setup where workers spend a fixed share of their income on a non-tradable good,
which can include housing.
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agglomeration economies and bj allows for idiosyncratic labor productivity differences
between cities. Idiosyncratic productivity can vary across cities due to a wide array of
local characteristics (better local institutions or more efficient local transport networks).
Among other things, agglomeration economies can arise from local knowledge spillovers,
labor markets pooling, or local economies of scale.16

In each city, identical firms produce a homogenous tradable good using labor and emis-
sions of a representative atmospheric pollutant with a Cobb-Douglas production function
defined by an expenditure share α, with 1 > α > 0. Following Copeland & Taylor (2004),
it is equivalent to assuming that emissions are a by-product of production rather than an
input in production. Then, firms can divert a fraction of their labor force to abate emis-
sions. The efficiency of abatement is governed by α: the lower it is, the more efficient the
abatement technology is to reduce firms’ emission intensity. In location j, a unit of labor
costs the local wage wj and a unit of emissions costs the local emission tax tj. This emis-
sion tax is a policy instrument set by a central planner. It represents the local pollution
regulations (including technology standards, emission limits, or emergency responses). I
assume that proceeds from the emission tax are locally redistributed to workers. These
combined assumptions lead to the equilibrium distribution of industrial emissions across
cities (see Appendix B.3 for computing details):

Zj = α
wj

tj
Lj, (2.2)

which illustrates that industries emit more pollution in cities that are larger, and where
wages are higher. Conversely, higher emission taxes reduce local emissions.

I assume that competition is perfect and trade is costless, which implies the spatial equal-
ization of the output price and leads to the equilibrium distribution of local wages. Setting
the average wage as the numeraire would add general equilibrium effects to the equilib-
rium: when regulation changes in a given city there would be spillovers on wages in other
cities. I abstract from such effects to focus only on the interplay between agglomeration,
congestion, and industrial pollution externalities. Therefore, I normalize the output price
to 1. As a result, per capita consumption of the tradable good is equal to the local wage:
cj = wj. Output price normalization also pins down local wages in location j :

wj = bjL
ν
j t

− α
1−α

j , (2.3)

which implies that wages are higher in more productive cities as well as in larger cities

16Duranton & Puga (2004) provides a large range of models that deliver this constant elasticity function.
Combes & Gobillon (2015) provides a survey of the empirical literature that documents agglomeration
economies.
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because of agglomeration economies. It also implies that raising local emission taxes has
a negative effect on local wages.

Substituting for (2.2) and (2.3) in (2.1), the indirect utility in location j can be written
as:

uj = ajb
1−γ
j L−θ

j t
γ−α
1−α

j , with θ = δ + γ − ν(1− γ). (2.4)

The exponent θ on the population term in equation (2.4) reflects the fact that, since γ > 0,
the emission externality both reinforces congestion and weakens agglomeration economies
(when cities grow, agglomeration economies increase local wages and firms become more
pollution intensive all else held equal).

Finally, I assume free mobility of workers across locations.17 As a result, utility is equalized
across space in equilibrium and is equal to a level denoted ū. Indeed, if workers could
reach a higher level of welfare in a given city, they would move there until the marginal
gain of moving was fully compensated by the marginal cost of congestion in this city.
Combining this assumption with (2.4), we obtain, for two cities i and j:

Lj

Li

=

(
aj
ai

) 1
θ
(
bj
bi

) 1−γ
θ
(
tj
ti

) 1
θ

γ−α
1−α

, (2.5)

which implies that the distribution of workers across cities is a function of the distributions
of amenities, productivities, and emission taxes. Depending on the relative strengths of
the three externalities, local populations may be positively or negatively, correlated with
these local characteristics. Equation (2.5) also illustrates that there exists a unique spatial
equilibrium if and only if θ ̸= 0. This condition can be expressed as a condition on the
elasticity of the pollution externality: γ ̸= − δ−ν

1+ν
. Assuming that pollution is a congestion

force (i.e. γ > 0), this condition ensures that the pollution externality does not exactly
offset the combined effect of general congestions effect and agglomeration economies.
When congestion effects strictly outweigh agglomeration economies, this condition always
holds.

Without any loss of generality, I normalize the total population to 1, so that
∑

j∈C Lj = 1,
and compute the common level of welfare ū reached in equilibrium:

ū =

[∑
j∈C

a
1
θ
j b

1−γ
θ

j t
1
θ

γ−α
1−α

j

]θ
(2.6)

17This assumption is informative of long term equilibria, where within-country migration costs can be
considered as low. In Appendix B.4, I consider for robustness the alternative assumption, where local
populations are fixed and do not adjust in equilibrium.
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The optimal policy for a central planner is to maximize ū by adjusting the set of local
emission taxes across cities. In Appendix B.3, I show that 1 ≥ γ ≥ α and 1 ≥ 1

θ
γ−α
1−α

are
necessary and sufficient conditions for ū to be concave and the optimization problem to
have a unique solution. First, 1 ≥ γ means that the positive direct effect of productivity
on wages outweighs its indirect negative effect that causes firms to become more pollution
intensive when wages increase. Second, α < γ means that the negative effect on wages of
raising the local emission tax is weaker than the positive effect it has on air quality. Third,
1 ≥ 1

θ
γ−α
1−α

ensures that the whole population is not concentrated in a unique city. The
welfare function specified by equation (2.6) is homogeneous of degree γ−α

1−α
with respect to

the set of emission taxes. This implies that, if I multiply all city level emission taxes by a
common factor, workers’ welfare ū is multiplied by a power γ−α

1−α
of this factor. Therefore,

I normalize the average emission tax t̄ to 1 and focus on the distribution of taxes across
cities.

Proposition. Consider a set of cities C, with exogenous amenities {aj}j∈C and produc-
tivities {bj}j∈C, with relative populations specified in equation (2.5). If 1 ≥ γ > α and
1 > 1

θ
γ−α
1−α

, there is a unique set of emission taxes {t∗j} that maximizes the welfare function
specified in equation (2.6) under the constraint that t̄ = 1 and it is defined by:

t∗j
t∗i

=

[(
aj
ai

) 1
θ
(
bj
bj

) 1−γ
θ

] 1

1− 1
θ

γ−α
1−α

. (2.7)

Equation (2.7) indicates that the relationship between optimal emission taxes and local
characteristics depends on the sign of θ. In particular, θ > 0 means that congestion forces
outweigh agglomeration economies and more workers locate in cities with a higher level
of amenities and productivity (see equation (2.5)). In this case, equation (2.7) indicates
that, to maximize workers’ welfare, the central planner imposes higher emission taxes in
cities with a higher level of amenities and productivity.

An important implication of my model is that emission taxes should be heterogeneous
across space. However, national governments usually enforce regulations that are spatially
uniform. Therefore, it is interesting to compare the implications of enforcing the set of
emission taxes described by (2.7) to the implications of enforcing a uniform set of emission
taxes (each equal to 1). Denoting L∗

j and Lu
j the populations of city j under the optimal

and uniform sets of emission taxes, equations (2.5) and (2.7) imply:

t∗j
t∗i

=
L∗
j

L∗
i

=

(
Lu
j

Lu
j

) 1

1− 1
θ

γ−α
1−α . (2.8)
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which means that if an optimal set of emission taxes exists, taxes should be higher in
cities that are larger when the tax is uniform. Moreover, the sufficient condition for an
optimal set of taxes to exist implies that 1

1− 1
θ

γ−α
1−α

> 1. As a result, equation (2.8) indicates
that implementing the optimal set of emission taxes reinforces the spatial concentration
pattern observed under uniform taxes. When congestion forces outweigh agglomeration
forces and higher labor productivity translates in higher income, it is optimal that more
workers locate in cities with high amenities and productivity endowments (to compensate
the costs of agglomeration). However, firms do not fully internalize the detrimental impact
of their emissions on local welfare and pollute too much in cities that could attract even
more workers if they were less polluted. This is why the optimal set of emission taxes
imposes a relatively higher marginal cost of polluting in these cities, compared to cities
where it is not optimal to concentrate workers. As a result, firms in these cities are
less emission intensive, which lowers the level of emissions and makes these cities more
attractive to workers.

The set of emission taxes described by equation (2.7) corrects all externalities, even the
ones that are not caused by industrial pollution emissions. To analyze the case where
the central planner corrects for these “non-emission” externalities using external policy
instruments, one can derive the optimal set of emission taxes when the emission exter-
nality is the only externality. Assuming δ = ν = 0 in equation (2.7), the optimal set of
emission taxes still imposes higher emission costs in the same cities as in the case where
all externalities are corrected by the set of emission taxes.

Finally, equation (2.7) reveals that if there were no industrial emissions externality, that
is to say if γ = 0, the optimal set of emission taxes would still be non-uniform, to correct
for congestion and agglomeration externalities. In particular, when γ = 0, equation (2.7)
leads back to the standard result arguing that large cities (with the highest productivities
and amenities) should be even larger (Eeckhout & Guner, 2015; Gaubert, 2018; Albouy
et al., 2019). Moreover, the average tax normalization imposes that increasing emission
taxes in large cities implies decreasing them in smaller cities. Equation (2.3) shows that it
is equivalent to decreasing wages in large cities and increasing them in small cities. This
is similar to the system of optimal income transfers identified by Fajgelbaum & Gaubert
(2020) when congestion costs outweigh agglomeration economies.

2.3 General Spatial Model

In this section I extend the model to (i) an industry composed of several polluting sectors,
(ii) continuums of heterogeneous firms that compete monopolistically over differentiated
varieties, (iii) costly trade between cities, and (iv) general equilibrium effects from local
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changes in emission taxes.

2.3.1 Setup

The per capita utility of the representative worker in city j follows equation (2.1). The
industry is now composed of S distinct sectors and cj is the industrial composite:

cj =
∏
s∈S

(∑
i∈C

∫
ω∈Ωis

cijs(ω)
σs−1
σs dω

) σs
σs−1

βs

, (2.9)

with cijs(ω) the quantity of variety ω produced in city i and consumed in city j, Ωis

the continuum of varieties produced in sector s in city i, σs the elasticity of substitution
between varieties in sector s ∈ S, and βs the share of income spent on varieties from
sector s by each worker (with

∑
s∈S βs = 1). These parameters are assumed to be the

same across cities.

The aggregated price index of the industrial good in city j, Pj is such that:

Pj =
∏
s∈S

P βs

js , and Pjs =

(∑
i∈C

∫
ω∈Ωis

pijs(ω)
1−σsdω

) 1
1−σs

, (2.10)

with Pjs city and sector specific price indices, and pijs(ω) the unit price of variety ω

produced in city i in sector s and consumed in city j. I assume that there are no friction
on local labor markets, so that that wages are equal across sectors. As a result, per capita
consumption of the tradable good is given by cj =

wj

Pj
and workers’ indirect utility is:

uj = ajZ
−γ
j L−δ

j

wj

Pj

. (2.11)

In each city j there is an infinite supply of entrepreneurs in each sector s that can choose to
pay a fixed sector specific entry cost f e

s to draw a productivity ϕ from a Pareto distribution
Gjs:

Gjs(ϕ) = 1−
(

ϕ

bjs

)−θs

, (2.12)

with bjs = bjbsL
νs
j . These assumptions extend section 2.2’s assumptions of idiosyncratic

labor productivity and agglomeration economies to the case of multiple sectors and het-
erogeneous firms. In particular, the elasticities of agglomeration economies, {νs}s∈S, are
sector specific. In addition, idiosyncratic sector and city specific labor productivities
{bjs}(j,s)∈C×S are multiplicatively separable between idiosyncratic city specific productiv-
ities {bi}j∈C , that are common across sectors, and sector specific productivities {bs}s∈S,
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that are common across cities.

Each firm produces a specific variety of the industrial good using labor following the
function:

qijs(ϕ) = (1− a(ϕ))ϕlijs(ϕ) (2.13)

where qijs(ϕ) is the quantity produced by a firm of productivity ϕ in city i and sold on
city j’s market, and lijs(ϕ) is the quantity of labor used for production. Variable a(ϕ)

corresponds to the fraction of the firm’s labor force used to abate emissions caused by
production. Production releases pollution as a by-product according to:

zijs(ϕ) = (1− a(ϕ))
1
αs ϕlijs(ϕ) (2.14)

where zijs(ϕ) is the quantity of the representative pollutant emitted by a firm of pro-
ductivity ϕ in city i for the production sold in city j. {αs}s∈S are the sector specific
expenditure shares on emissions. Heterogeneity in these parameters across cities accounts
for the fact that some industrial sectors may be more emission intensive than others. I
assume that, in city j, emissions are taxed by the central planner at a rate tj, which is
the same across sectors. Local proceeds from this tax are redistributed to local workers.

These production and pollution functions closely follows Copeland & Taylor (2004) and
Shapiro & Walker (2018) and are standard in the literature. Combining equations (2.13)
and (2.14) implies the following:

qijs(ϕ) = zijs(ϕ)
αs (ϕlijs(ϕ))

1−αs , (2.15)

which is a Cobb-Douglas function that combines two inputs: emissions and labor. As a
result, total industrial emissions of the representative pollutant, in city i, are given by:

Zi =
∑
s∈S

∑
j∈C

∫
ϕ

zijs(ϕ)dGis(ϕ) (2.16)

Trade is costly between cities. To export to city j, firms in city i have to pay an origin-
destination specific iceberg cost τij. As a result, any firm sells to all cities.18 Combining
the assumption of monopolistic competition with equations (2.9) and (2.15) implies that
the unit price of a variety produced in city i in sector s by a firm with productivity ϕ and

18The model could be extended to accommodate for origin-destination fixed trade costs as in Shapiro &
Walker (2018). Productivity distributions of firms would then be left-truncated by endogenous zero-profit
productivity cutoffs. In this case, only the most productive firms in a given city would be selling goods
in all other cities.
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delivered in city j follows:

pijs(ϕ) =
σs

σs − 1

τijcis
ϕ1−αs

, with cis = καst
αs
i w1−αs

i , (2.17)

and καs = α−αs
s (1− αs)

−1+α. Revenues and profits of a firm with productivity ϕ in city i

respectively follow:

ris(ϕ) =
∑
j∈C

pijs(ϕ)qijs(ϕ), and πis(ϕ) = ris(ϕ)/σs. (2.18)

I assume that entrepreneurs enter production until their expected profits equal the fixed
entry cost of drawing a productivity from the local Pareto productivity distribution. I
express fixed entry costs in the aggregate factor price, as in Bernard et al. (2007). Thus,
for each pair of city j and sector s, I have the free entry condition:∫

ϕ

πjs(ϕ)dGjs(ϕ) = cjsf
e
s . (2.19)

In equilibrium, goods markets clear for each city and sector pair so that workers’ expen-
ditures are equal to firms’ sales. These goods markets clearing conditions can be written
for each pair of city j and sector s as:

P 1−σs
js = Ks

∑
i∈C

τ 1−σs
ij M̃is(t

αs
i w1−αs

i )−σsb
(1−αs)(σs−1)
i L

νs(1−αs)(σs−1)
i , (2.20)

with M̃is =
σs

βs
f e
sMiscis, and Mis the mass of firms that produce in sector s and city i in

equilibrium.19

The local labor markets also clear in equilibrium, so that the sum of employment over all
sectors is equal to the local population. For each city j, it can be written as:

wjLj =
∑
s∈S

βsM̃js, (2.21)

which can be combined with equations (2.19) and (2.20) to show that, for any distribution

19Ks is a sector-specific scaling constant given by Ks =
βsθs

θs−(1−αs)(σs−1)
(σs−1)σs−1

σσs
s

κ−σs
αs

b̄
(1−αs)(σs−1)
s .
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of population {Li}i∈C across cities, wages in city i follow:

wiLi =
∑
s∈S

βst
αsσs
i w

(1−αs)σs

i b
−(1−αs)(σs−1)
i L

−νs(1−αs)(σs−1)
i

×
∑
j∈C

µijs
wjLj∑

k∈C µkjst
αsσs
k w

(1−αs)σs

k b
−(1−αs)(σs−1)
k L

−νs(1−αs)(σs−1)
k

(2.22)

, where, for each sector s, µs = {µijs}(i,j)∈C2 are the terms of the inverse of the τ 1−σs ,
with τ the iceberg trade costs matrix. Note that, as long as for any (i, j), τii < τij, and
for any s, σs > 1, τ 1−σs is strictly diagonally dominant. Therefore, it can be inverted
under these conditions. Equation (2.22) illustrates the general equilibrium mechanisms
that are included in this section: when the emission tax changes in city j, it affects wages
in city j.

As in section 2.2, I assume free mobility and workers’ utility maximization. As a result,
welfare is the same across cities and equal to ū. From equation (2.1), free mobility implies
that, in each city j:

ajZ
−γ
j L−δ

j

wj

Pj

= ū. (2.23)

Finally, I assume that the total population of workers across cities is fixed and normalize
it to 1 without loss of generality, so that:∑

j∈C

Lj = 1, (2.24)

which can be combined to equation (2.23) to show that:

Lj =

(
ajZ

−γ
j

wj

Pj

)1/δ
∑

i∈C

(
aiZ

−γ
i

wi

Pi

)1/δ . (2.25)

Given equation (2.16), for any set of emission taxes and masses of firms in each sector,
emissions of pollution in city j follow:

Zj =
∑
s∈S

βsαs
M̃js

tj
, (2.26)

which, combined to equations (2.21), (2.22), and (2.25), implies that is an homogeneous
function of degree −1 with respect to the average level of emission taxes across cities.
Similarly, wages and population are homogeneous functions of degree zero with respect to
the average level of emission taxes across cities. Combining equations (2.10) and (2.10)
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implies that local price indices are homogeneous functions of degree
∑

s∈S βsαs
σs

σs−1
with

respect to the average level of emission taxes across cities. As a result, equation (2.23)
implies that workers’ welfare is a homogeneous function of degree γ−∑s∈S βsαs

σs

σs−1
with

respect to the average level of emission taxes across cities. Consequently, when investi-
gating the central planner’s welfare maximization problem, I focus on the distribution of
emission taxes across cities and keep the average emission tax to 1.

2.3.2 Equilibrium and Optimal Set of Emission Taxes

An equilibrium is defined as a set of populations {Lj}j∈C , wages {wj}j∈C , masses of
industrial firms {Mjs}(j,s)∈C×S, price indices {Pjs}(j,s)∈C×S, and welfare ū, that solves
the set of free entry conditions (2.19), goods market clearing conditions (2.20), local
labor markets clearing conditions (2.21), free mobility conditions (2.23), and the national
population clearing condition (2.24). The equilibrium is identified, to the extent that the
number of equations is equal to the number of endogenous variables. As in section 2.2, I
define the optimal set of emission taxes as the set of taxes that maximizes workers’ welfare
ū, under the constraint that the average tax remains equal to 1. In this extended version
of my model, there are no closed-form solutions, neither for the equilibrium distributions
of the endogenous variables, nor for the set of emission taxes that solves the maximization
problem. Therefore, I rely on numerical methods to solve the model.

2.4 Estimation of the Model

To perform a quantitative policy analysis, I take the model to the data. In particular, I
consider the set of French commuting zones as the set of cities in which workers live.20 This
set of commuting zones constitutes a partition of the full French metropolitan territory and
each zone is defined statistically to be an area where local inhabitants both work and live.
Using this definition of cities, I estimate the parameters of the model presented in section
2.3. First, I estimate equation (2.11) to retrieve elasticities γ and δ. Second, I use some of
the model’s predictions to estimate sector-specific expenditure shares {βs}s∈S, elasticities
of substitution {σs}s∈S, Pareto shape parameters {θs}s∈S, elasticities of agglomeration
economies {νs}s∈S, and emission elasticities {αs}s∈S. Third, I compute a matrix of road
travel time between French commuting zones and use it as a proxy for the trade cost
matrix. Finally, equipped with this estimated model, I retrieve the model’s primitives –
the level of amenities, productivities, and emission taxes – from data on the distribution
of workers, wages, and industrial PM2.5 emissions across cities in 2012.

20I use the 2010 definition of the French “zones d’emplois”.
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2.4.1 Data

In this subsection, I describe the datasets used in the quantitative exercise. Firm-level
datasets come from confidential French administrative data. I use annual balance sheets
and income statements for the universe of French firms from 1994 to 2016 as reported
in the FICUS databases for 1994-2007 and in the FARE databases for subsequent years.
A firm is identified by a stable administrative code called SIREN. The main variables of
interest are total sales, average employment (number of workers and total wages paid),
location, and the main sector of activity.

Plant-level information on energy consumption comes from the EACEI (Enquête Annuelle
sur la Consommation d’Energie dans l’Industrie) surveys, which are available from 1994
to 2016. These surveys include all energy-related expenditures, with details on energy
types and fuels (quantity consumed and expenditures) at the plant level. The types of
energies reported are electricity (consumed and self-generated), steam, natural gas and
other types of gas, coal, lignite, coke, propane and butane, domestic and heavy fuels,
oil, and other types of petroleum products. The surveys also provide the plant-level
number of employees. The surveys cover all large plants (over 20 employees) in the
industrial sectors – with the exception of the power sector – and a subset of smaller
plants (between 10 and 19 employees) that is randomly selected each year. On average,
between 8,000 and 11,000 plants are included in the annual survey. I use these surveys
to compute atmospheric emissions at the plant-level. The Ominea database (CITEPA,
2020) provides emission factors that associate to each fuel the corresponding amount of
pollutants that are emitted. For each plant, I multiply the amount of each fuel consumed
by the corresponding emission factor and sum across fuels to compute the total quantity
of pollutant emitted. To ensure the validity of this approach, I compute correlation
between these constructed emission values and actual values declared by large plants
under the European directive and publicly available in the European Pollutant Release
& Transfer Register (E-PRTR) between 2003 and 2016.21 Table B.5.1 in Appendix B.5.1
displays Pearson correlation coefficients along with statistical significance. It appears that
constructed emissions correlate well with actual emissions of these large plants.

To estimate γ, the elasticity of environmental damage from pollution, I use geographic
emissions from the Emissions Database for Global Atmospheric Research (EDGAR) from
the European Commission’s Joint Research Center (JRC). EDGAR provides annual grid-
ded emissions of atmospheric pollutants disaggregated across polluting sectors at 0.1x0.1

21Although actual plant-level measures of atmospheric pollutants emissions are publicly available at
the plant level in the European Pollutant Release and Transfer Register (E-PRTR), it only includes the
largest plants resulting in a much restricted sample of industrial plants than the EACEI sample. Using
the E-PRTR data would not allow me to estimate sector-specific emission elasticities.
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degree resolution. Data is publicly available on the JRC’s dedicated website 22. Informa-
tion on the methodology can be found in Crippa et al. (2018). The benefit from using
this dataset rather that EACEI computed emission is that EDGAR aggregated values
provide an exhaustive picture of all emissions (while EACEI surveys only account for the
largest plants). I use EDGAR’s data from 2000 to 2015. I spatially aggregate it at the
commuting zone level by intersecting the EDGAR grid with official ESRI shapefiles for
French municipalities aggregated in commuting zones.

To retrieve the model’s primitives, I use a 2012 cross-section dataset of wages, labor,
and industrial PM2.5 emissions at the commuting zone level. For wages and labor, I use
data from the Insee’s website. For PM2.5 industrial emissions, I use the National Spatial
Inventory (INS) INS (2020). The INS is a publicly available dataset reporting emissions of
around 40 pollutants from natural and anthropogenic sources.23 The data is available at
the municipality level, which is a more disaggregated spatial unit than EDGAR’s grid cells.
However, data is only available for 2004, 2007, and 2012. Therefore, I use the INS only
to retrieve the model’s primitives, which are identified through cross-sectional variation,
and rely on EDGAR for the panel estimation. Precisely, I use PM2.5 emissions from the
manufacturing industry and from production processes. These activities correspond to
codes 3 and 4 in the Selected Nomenclature for Air Pollution.

2.4.2 Estimation of Congestion and Pollution Damage Elasticities

Equation (2.11) can be re-written as a log-linear relationship between wages, utility,
amenities, price indices, local labor supply and emissions:

logwit = log uit − log ait + logPit + δ logLit + γ logZit. (2.27)

Introducing a time variable t, city i endowments in amenities and productivity may vary
over time (for instance, due to enhancements to local transport networks or to the creation
of museums, parks, etc.).

Furthermore, the free migration (no migration frictions) assumption is likely not verified
when using annual data. Therefore, in reality, welfare is potentially different across cities.
In practice, I only observe wages, populations, and emissions. Thus, I run the following
equation:

logwit = δ logLit + γ logZit + χi + µt + ϵit. (2.28)

Year fixed effects µt eliminate annual shocks that are common to all cities. City fixed

22https://edgar.jrc.ec.europa.eu/index.php/dataset_ap50
23http://emissions-air.developpement-durable.gouv.fr/index.html
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effects χi absorb city-specific fixed characteristics. The error term ϵit corresponds to city-
year specific shocks, including shocks to local amenities ait, local welfare uit, and local
price indices Pit. Equation (2.20) implies that local price indices are functions of the set
of local productivities, of the trade cost matrix and of the other endogenous variables.
Hence, city-specific shocks to local productivities or to the trade cost matrix induce shocks
on local price indices. Wages, populations and emissions are also functions of these shocks.
As a result, a standard OLS estimation strategy would produce biased estimates. Indeed,
any positive shock to local amenities in a given city positively affects local population and
emissions. Therefore, the OLS identification assumption is unlikely to hold. To overcome
this identification issue, I build shift-share instrumental variables for both local labor
supply and local emissions.

To build my instruments, I follow the recent literature on shift-share instruments that
has extended the Bartik (1991) approach (Card, 2001; Autor et al., 2013; Nunn & Qian,
2014; Bartelme, 2018; Bombardini & Li, 2020; Barrows & Ollivier, 2021). The idea is to
approximate city-specific growth rates in populations and emissions using national growth
rates of theses variables in disaggregated industries and interact them with city-specific
shares in an initial period. Thus, I build two instruments as:

L̃it =
∑
s

Lit0s
Lst

Lst0

, with s ∈ ΩL, (2.29)

and
Z̃it =

∑
s

Zit0s
Zst

Zst0

, with s ∈ ΩZ . (2.30)

Variables L̃it and Z̃it are the excluded instruments of a 2SLS strategy where I instrument
variables Lit and Zit in equation (2.28). These instruments are independent of city-year
specific unobservable shocks to local amenities, productivity or trade costs. They are
only functions of year-specific national shocks and city-specific initial sector shares in em-
ployment and emissions. National shocks, common across cities, and initial sector shares,
constant across time, do not threaten identification when year and city fixed effects are
included. As thoroughly detailed in Goldsmith-Pinkham et al. (2020), a recent extensive
analysis of shift-share instruments, in order for these two instruments to be exogenous
and the identification assumption to be respected, my strategy implicitly assumes that
unobserved shocks on productivity, amenities or trade costs are uncorrelated with initial
industry shares.24

My estimation strategy builds on annual industrial emissions data, aggregated at the
24An alternative identification assumption is that the common shocks are exogenous (Adão et al., 2019;

Borusyak et al., 2021).
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commuting zone level, and on firm and plant-level data on wages, employment and activity
codes also aggregated at the commuting zone level. Each firm is identified by a unique 9-
digits identification code (SIREN) and each plant is identified by a 15 digits identification
code (SIRET) with the 9 first digits corresponding to the SIREN of the firm to which the
plant belongs. Based on these two codes I merge firm and plant-level panels. Thus, for
each plant I have a value of the mean wage paid at the firm level. Based on plant-level
zip codes, I compute average wages across local plants at the commuting zone level. This
results in a panel of local wages across commuting zones from 2000 to 2015. The plant-level
panel also includes the number of workers employed on average over the year as well as an
activity code (in the French Activity Nomenclature). I sum across local plants for each
sector to build a panel of total sectoral employment at the commuting zone level from 2000
to 2015. The right hand side of the estimating equation only depends on the total local
employment across sectors, but the instrument defined in equation (2.29) builds on the
sector local and national disaggregation across sectors. The French Activity Nomenclature
distinguishes between hundreds of very precisely defined industries. I aggregate codes at
a more aggregated level which I call industries and end up with 16 different categories
so that ΩL is composed of agriculture, extraction activities, manufacturing activities, the
energy sector, waste management, construction, trade, transport, hotels and restauration,
telecommunications, finance, real-estate, public administrations, teaching sector, health,
arts and other activities.

I build a panel of pollutants emissions across commuting zones from 2000 to 2015 disag-
gregated across polluting sectors using the geographic emissions dataset from EDGAR.
Data is available as annual 0.1*0.1 degree-grid sets for each sectors. Each data point
corresponds to the quantity of pollutant emitted within the grid cell annually per unit
of area. Based on geographic coordinates, I attribute each cell from the EDGAR grid
to the corresponding French commuting zones (based on publicly available geographic
information on municipalities and compositions of commuting zones). When a cell over-
lays several commuting zones, I attribute emissions based on the surface share of the grid
overlaying each commuting zone. Finally, I sum emissions over all grid cells within each
commuting zone and I obtain a panel of sectoral emissions across years and commuting
zones. I build such panel for particulate matters PM10 and PM2.5, nitrous gases NOx
and ozone precursors CO and COVNM. Emissions are disaggregated across 16 pollut-
ing sectors: power industry, oil refineries and transformation industry, combustion for
manufacturing, energy for buildings, fuel exploitation, non-metallic minerals production,
chemical processes, iron and steel production, non-ferrous metals production, non energy
use of fuels, solvents and products use, food and paper, manure management, agriculture
(3 distinct activities), waste management and disposal (3 distinct activities) and fossil
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fuel fires. These are polluting activities defined by the Selected Nomenclature for Air
Pollution recommended in the emission register guidebooks implemented by the IPCC.
I exclude some polluting activities that my framework does not include (aviation, road
transportation and shipping).

Table 2.4.1 reports the first stage results. Table 2.4.2 displays the outcome of δ and γ esti-
mations. I observe that the OLS coefficients, without and with city and year fixed-effects,
underestimate the values of elasticities δ and γ. Results from the preferred strategy,
reported in columns 3 to 7 of Figure 2.4.2 are all positive and statistically significant (ex-
cept for the elasticity of environmental damages from emissions of NMVOC, that stands
for Non Methanic Volatile Organic Components). Estimated values of δ have the same
interpretation in columns 3 to 7, and correspond to the strength of congestion effects.
Estimated values of γ correspond to the elasticity of environmental damage from alterna-
tive atmospheric pollutants. The effects of PM2.5 and PM10 on welfare are the stronger
compared to other pollutants, and very close to each other. This is in line with evidence
on the negative effect of particulate matter on human health and real estate prices. An-
other harmful polluant, NOx (nitrogen dioxide), has also been found to have a negative
effect on health. However, this pollutant is not primarily emitted by industrial activities
(rather by the transport sector). This explains the lower value of γ in column 5. Finally,
the main health effect from NMVOC and CO is due to their chemical transformation in
ozone. The fact that NMVOC and CO do not directly affect health may explain the lower
values obtained for γ in columns 6 and 7. To conduct my quantitative exercise, I focus on
PM2.5 as the representative pollutant and use estimates from column 3 in my numerical
analysis.

(1) (2) (3) (4) (5) (6)
Labor PM2.5 PM10 NOx NMV OC CO

Instrument 0.181∗∗∗ 0.889∗∗∗ 0.868∗∗∗ 1.211∗∗∗ 0.960∗∗∗ 1.126∗∗∗

(0.015) (0.028) (0.026) (0.023) (0.035) (0.035)
Observations 5136 4864 4864 4864 4864 4864
City & Year FE Y es Y es Y es Y es Y es Y es

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2.4.1: First stage results for IV estimation of δ and γ
Note: Column 1 reports the first-stage regression coefficient for local levels of employment (number of workers). Columns

2 to 6 report first-stage regression coefficients for local emissions of a set of pollutants.

2.4.3 Estimation of Sector-Specific Parameters

To calibrate parameters {βs, σs, θs}s∈S, I closely follow the approach of Shapiro & Walker
(2018). I compute Cobb-Douglas parameters {βs}s∈S using the model’s prediction that
these parameters are the national shares of revenues of each sectors. I sum firm-level
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(1) (2) (3) (4) (5) (6) (7)
δ −0.01 0.09 0.91∗∗ 0.89∗∗ 1.00∗∗∗ 0.88∗∗ 0.89∗∗

(0.02) (0.05) (0.35) (0.35) (0.38) (0.34) (0.35)

γ 0.05∗∗ −0.06 0.49∗∗∗ 0.49∗∗∗ 0.08∗ 0.08 0.31∗

(0.02) (0.06) (0.17) (0.17) (0.05) (0.24) (0.16)
Observations 4864 4864 4864 4864 4864 4864 4864
City & Year FE No Y es Y es Y es Y es Y es Y es
IV No No Y es Y es Y es Y es Y es
Pollutant PM2.5 PM2.5 PM2.5 PM10 NOx NMVOC CO

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2.4.2: Estimation of δ and γ
Note: This table presents estimated coefficients δ and γ from equation (2.28). Column 1 reports coefficients estimated

through a standard OLS approach, using emissions of PM2.5. Column 2 reports coefficients estimated using city and year
fixed-effects, using emissions of PM2.5. Column 3 reports coefficients estimated using city and year fixed-effects and

instrumenting local labor and emissions of PM2.5. Columns 4 to 7 report coefficients using emissions of other pollutants
instead of PM2.5.

revenues and compute these parameters. Elasticities of substitution are recovered using
the prediction that, for each sector, the ratio of total payment to labor on value-added
is equal to (1 − αs)

σs−1
σs

. To estimate the Pareto shape parameters, I use the prediction
that the distribution of firm-level sales is Pareto with shape parameter θs/(σs − 1) and I
estimate the following equation:

logPr(x > Xis) = γ0s + γ1s log(Xis) + ϵis (2.31)

where Xics represents sales made by firm i from sector s in city c and γ1s = − θs
σs−1

.
Because Pareto distribution better fits the right part of the productivity distribution, I
restrict the sample to the upper decile of the firms sample.25

I estimate sector-specific emission elasticities {αs}s∈S at the plant level. Assuming that
for a plant i, installed in city c, and producing goods from sector s, with a productivity
ϕics, production follows qics = zαs

icsl
1−αs
ics ϕ1−αs

ics and that demand is qics = kcsp
−σs
ics , where

pics is the price charged, the relationship between plant-level employment and emissions
follows:

lics = k̃csz
αs(σs−1)

1+αs(σs−1)

ics ϕ
(1−αs)(σs−1)

1+αs(σs)

ics , (2.32)

where k̃cs =
([

(1− αs)
σs−1
σs

]
w−σs

c kcs

) 1
1+αs(σs−1) , which, in log, allows us to recover emis-

sion elasticities using the following empirical specification:

log licst = β0s + β1s log(zicst) + ϵicst. (2.33)

Appendix (B.5.2) provides the algebra corresponding to the above equation. Using a

25This is an approach developed in Hsieh & Ossa (2016) and Antràs et al. (2017).
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standard OLS strategy to estimate equation (2.33) would yield biased estimates. Indeed,
unobserved plant specific productivity shocks are correlated with the levels of employment
and emissions. This is the “transmission bias” identified in the literature on production
functions estimation. To circumvent this problem, I instrument plant-level emissions zics

with exogenous fuel-specific energy price variation. Building on Sato et al. (2019), I use a
fixed-weight energy price index that measures the plant-specific exposure to variation in
fuel prices based on each plant energy consumption across fuel types in the first period
when it is observed. I define this instrument as:

FEPIist =
∑

f∈Ωfuels

ωf,ist0pf,st, (2.34)

where FEPIist is the plant-specific energy price index built from plant i share of energy
expenditures in fuels f ∈ Ωfuels (coal, natural gas, electricity, etc.) in period t0 and
pf,st the specific fuel price common to all plants in sector s in period t. An advantage
of this emission elasticity estimation strategy is that it only requires to observe plant-
level inputs. Conveniently, the EACEI surveys combine plant-level labor and energy
consumption across fuels. Note that both the endogenous variable and the instrument
are constructed from the EACEI surveys but are not aggregated across fuels using the
same weights: the instrument is the sum of consumption weighted by fuel prices and
the emissions are the sum of consumption weighted by emission factors that are also fuel
specific. I estimate equation (2.33) for each sector using PM2.5 emissions. Table 2.4.4
displays all sector-specific coefficients that I use in my numerical analysis.

To the best of my knowledge, the only other recent work estimating industrial emission
intensities is Shapiro & Walker (2018). However, they pool observations from different
sectors and only estimate one coefficient. To allow the comparison with their results, Ta-
ble 2.4.3 reports the results that I obtain for different pollutants when industrial sectors
are pooled. The first-stage using the fixed-weight energy price index yields significant
estimates that are intuitive: on average increasing polluting fuels prices by one percent
causes a one percent decrease in atmospheric pollutant emissions. Across pollutants, the
second stage yields similar estimates for the pooled sectors emissions intensity, approxi-
mately 5%. They use plant level emission data combined with information on emissions
abatement costs from PACE surveys in the United States. Their pooled estimates are
lower than mine (1.1% for PM2.5, 1.1% for PM10, .1% for NOx, .08% for CO and .8% for
COVNM). The fact that their sample includes a wider range of economic activities that
are less pollution intensive may explain this difference.

Finally, I estimate sector-specific elasticities of agglomeration economies {νs}s∈S using a
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(1) (2) (3) (4) (5)
log (emiPM25 ) log (PM10 ) log (NOx ) log (CO) log (COVNM )

First Stage:
logFEPI −1.00∗∗∗ −1.00∗∗∗ −0.98∗∗∗ −1.07∗∗∗ −1.06∗∗∗

(0.012) (0.012) (0.010) (0.009) (0.009)
Second Stage:
α(σ−1)

1+α(σ−1)
0.049∗∗∗ 0.049∗∗∗ 0.051∗∗∗ 0.046∗∗∗ 0.046∗∗∗

(0.004) (0.004) (0.004 (0.003) (0.003)
Observations 223, 401 223, 401 223, 402 223, 406 223, 406
Year, Region & Industry FE Y es Y es Y es Y es Y es

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2.4.3: Two-stages calibration of emission elasticities α (with pooled industrial sectors)

regression of city-specific mean firm productivity with city size. To estimate productiv-
ity, I regress the logarithm of firm-level value added on city-sector specific fixed-effects.
Gievn equations (2.12) and (2.18), the residual corresponds to firm specific TFP (up to a
proportionality factor (1− αs)(σs − 1)). Finally, I compute for each sector the average of
this residual within each city and regress it on the logarithm of local population to obtain
the set {νs}s∈S.

Elasticity Pareto Elasticity
Sales of shape of Agglo. Pollution
share substitution parameter Economies elasticity
(β) (σ) (θ) (ν) (α)

Sectors (1) (2) (3) (4) (5)
Automobile & transport .02 2.27 1.85 (.19) .05 (.006) .036 (.001)
Chemicals .05 3.48 1.33 (.13) .02 (.005) .080 (.012)
Communications & Electronics .01 3.45 2.85 (.16) .00 (.004) .025 (.010)
Electrical Equipment .01 3.91 3.59 (.31) .00 (.004) .079 (.010)
Extraction .01 2.22 1.58 (.08) .02 (.006) .126 (.015)
Food, beverages & Tobacco .05 3.82 2.89 (.02) -.01 (.001) .030 (.003)
Machinery & Equipment .01 3.10 3.88 (.08) .01 (.002) .015 (.005)
Metal .02 3.06 2.29 (.02) .00 (.002) .084 (.006)
Rubber & Plastic .02 2.92 2.66 (.15) .00 (.002) .120 (.011)
Textile & Apparel .01 2.99 2.21 (.04) .02 (.002) .089 (.006)
Wood & Paper .01 2.90 2.42 (.03) .01 (.002) .035 (.005)
Other Manufacturing .02 2.47 1.49 (.01) .00 (.002) .035 (.008)
Non manufacturing .75 2.69 1.48 (.00) .00 (.000) .021 (.016)
Pooled (except NM) .01 (.001)

Table 2.4.4: Estimated parameters

2.4.4 Trade Costs Matrix

One option to retrieve bilateral trade costs would be to estimate a gravity model, however
I do not observe bilateral trade flows between French cities. The second option is to use
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a proxy for trade costs. I follow Yamada (2020) and use travel time between cities.
In particular, I rely on Baum-Snow et al. (2020) and I assume the following concave
relationship between iceberg bilateral trade costs and bilateral travel times:

τij = 1 + ρ× (hours of travel timeij)ξ. (2.35)

I compute travel time using the Open Source Routing Machine (OSRM) API Python
client osrm-py. The OSRM is a C++ routing engine for shortest paths in road networks
building in the road network data of the project OpenStreetMap. Figure 2.4.1 displays
the average travel time by road across all commuting zone. As expected, central areas
are better connected to the rest of the country.

6

8

10

12

14

16

Figure 2.4.1: Average travel time across all commuting zone
Note: On this map I plot the average travel time from each commuting zone toward all the other commuting zones.

Travel time is in hours. Travel times were computed using the Open Source Routing Machine (OSRM) API Python client
osrm-py

2.4.5 Recovering Local Characteristics

Once all parameters are estimated, I numerically solve the non-linear system of equilib-
rium conditions defined in section 2.3 by equations (2.22), (2.25), and (2.26). To do so,
I use data on the distribution of workers, wages, and industrial PM2.5 emissions across
cities in 2012 (see subsection 2.4.1 for a description of the data). This procedure allows
me to retrieve the set of idiosyncratic characteristics – amenities and productivities – as
well as the set of emission taxes across cities. Without loss of generality, I set the mean
emission tax, the mean productivity, and the sum of amenities across cities to be equal
to one. In practice, I invert the equilibrium conditions using the Levenberg–Marquardt
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algorithm as implemented in the scipy library in Python 3. This algorithm is an in-
terpolation between the standard Gauss–Newton algorithm and the method of gradient
descent that is more robust to the choice of initial values. Results from this step are
described in the next section. Appendix B.6.1 provides further details on the sources of
data for observed equilibrium distributions of wages, populations, and emissions across
French cities. Appendix B.6.2 provides descriptive statistics on wages, populations, and
emissions across French cities. Finally, appendix (B.6.3) provides descriptive statistics
on the computed exogenous distributions of amenities, productivities, and emission taxes
across French cities.

2.5 Spatially Heterogeneous Emission Regulations

2.5.1 Evidence of Spatially Heterogeneous Emission Regulations

In Figure 2.5.1, I plot the city-level emission taxes obtained through the numerical solution
of equilibrium conditions described in subsection 2.4.5. More precisely, panel (a) plots
local emission taxes as a function of population in 2012, panel (b) plots local emission
taxes as a function of amenities, and panel (c) plots local emission taxes as a function
of productivities. Throughout this section, I plot the logarithm of all variables. This
is done for visual clarity, as most distributions are very skewed. I emphasize that these
local emission taxes are not actual policy instruments implemented in France. As in
Shapiro & Walker (2018), a way to see these values is as follows: if all French emission
regulations were to be replaced by local emission taxes, Figure 2.5.1 would be the set of
taxes that leads to the distribution of PM2.5 emissions that we observe across French
cities. Equivalently, these local emission taxes can be seen as measures of how stringent
are emission regulations in each city relative the others.

Figure 2.5.1 uncovers a large heterogeneity of emission regulations across cities. The pos-
itive correlation between local taxes and populations also reveals that existing regulations
impose more stringent emissions regulations in larger cities. This observation is supported
by anecdotal evidence presented in Appendix B.2. Indeed, several French regulations, that
seek to enhance local air quality, impose higher emission marginal costs in larger cities.
The simple model from section 2.2 predicts that an optimal set of emission taxes was
positively correlated with both amenities and productivities.26 Panel (c) from Figure
2.5.1 displays a strong and positive correlation between local levels of productivities and
emission taxes that must not be too far from the optimum. However, panel (b) from

26In section 2.2, the optimal set of emission taxes is positively correlated with both amenities and
productivities when θ > 0, which is the case given values computed in section 2.4.
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Figure 2.5.1: Log-linear relationship between local relative emission taxe and local relative
population, productivity and amenity

Note: On this figure I plot the current distribution of emission taxes as a function of current populations on panel (a), of
local amenities on panel (b), and of local productivity on panel (c). The distributions of local relative emission taxes,

productivities and amenities are estimated by inverting the observed equilibrium using one tradable sector and data for
2012.

Figure 2.5.1 shows that the current distribution of emission taxes does not display such
positive correlation between emission taxes and local amenities. Therefore, the current
set of emission taxes across French cities seems to potentially be off from what the model
indicates to be the optimal distribution.

Figure 2.5.1 also highlights in blue the top ten cities where emission regulations are the
most stringent and in red the bottom ten cities where they are the less stringent. As
expected, cities with the highest levels of emission taxes are also the most productive and
cities with the lowest levels of emission costs are the least productive. Yet, among cities
with the highest levels of emission taxes, some have very high levels of amenities, whereas
others have very low levels of amenities.
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2.5.2 Welfare Impacts of Spatially Heterogeneous Emission Reg-

ulations

Results from the previous subsection highlight the spatial heterogeneity of local emission
taxes across French cities. In this subsection, I analyze how this heterogeneity affects the
distribution of emissions, population, and wages. To that end, I compare the observed
equilibrium with a counterfactual equilibrium where the level of emission taxes is uniform
across all cities. The differences between the two equilibrium can help understanding
the consequences of the spatial heterogeneity of emission taxes. Using the values of id-
iosyncratic amenities and productivities obtained previously, I compute a new equilibrium
by solving equilibrium conditions (2.22) and (2.25) using a uniform emission tax across
cities. This uniform emission tax value is the mean of all emission taxes obtained in
the previous computation, which is normalized to one. The counterfactual equilibrium is
solved numerically using the Levenberg–Marquardt algorithm. Figure 2.5.2 displays the
results from this exercise. For each endogenous variable of interest in the model, I plot a
map showing the variation in level of moving from a uniform emission tax to the current
distribution of emission taxes (that is heterogeneous across cities).

∆t

−2

−1

0

1

2

∆w

−0.015

−0.010

−0.005

0.000

0.005

0.010

∆L

−1

0

1

∆Z

−1.0

−0.5

0.0

0.5

∆w
P

0.030

0.035

0.040

0.045

0.050

∆ū
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Figure 2.5.2: Spatial reallocations and welfare effect of imposing spatially heterogeneous
emission taxes

Note: On this figure I map the changes in emission taxes, wages, industrial workers’ populations, emissions, real wages,
and welfare du to a move from a spatially uniform emission tax to the current set of emission tax.
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Because emission taxes are actually higher in larger cities, such as Paris, Lyon, Bordeaux,
or Toulouse, the map of changes in t reveals an increase in these cities and a decrease
in less populated cities. The map of ∆Z reveals a decrease in the largest cities and an
increase in the smallest cities. Hence, when the central planner implements more stringent
air quality policies in largest cities relative to smaller cities, emissions are relocated from
the most populated areas to the least populated areas. Figure 2.5.2 also plots the changes
in the level of population (∆L) to illustrate the reallocation of population across cities
due to the move from uniform to heterogeneous emission taxes. Under the free migration
assumption, workers react to changes in local air quality (and prices which are affected by
the change in local emission taxes) and move away from more polluted areas. The map
of ∆L shows that there is a reallocation of workers from small cities, where emissions
have increased, to larger cities, where emissions have decreased. As larger cities become
cleaner, more people have an incentive to live there.

Figure 2.5.3 plots the log-difference in local populations between the current equilibrium
and the counterfactual one with uniform emission taxes, as a function of initial population
(in panel (a)), of amenities (in panel (b)), and of productivities (in panel (c)). For a given
city, a positive number indicates that the local population is higher under the current
distribution of emission taxes than under the counterfactual. Panel (a) reveals that the
largest cities have larger populations because of the spatial heterogeneity in regulations.
Panels (b) and (c) show that the top ten cities for which population increases the most
are also highly productive cities but not cities with particularly high amenities. Figure
2.5.4 is similar to Figure 2.5.3, except that it shows changes in emissions instead of
populations. Panel (a) shows that the largest cities emit less pollution because of the
spatial heterogeneity in regulations. Panels (b) and (c) illustrate the fact that more
stringent regulations in more productive cities lead to lower levels of emissions there,
compared to the counterfactual. There are no clear correlation with the distribution of
local amenities. Panels (a) from Figures (2.5.3) and (2.5.4) suggest that more stringent
regulations in larger cities make them cleaner (less emissions) and in turn larger (higher
population) than what they would be under a uniform regulation.

2.5.3 Optimal Mean-Preserving Set of Heterogeneous Regula-

tions

The model can be used to assess which set of emission taxes maximizes welfare. To do so,
I numerically solve the ū maximization problem under the constraint that the mean emis-
sion tax remains equal to one. This optimization exercise yields a new spatial equilibrium
that can be compared to the current equilibrium. With this numerical solution, I present
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Figure 2.5.3: Effects of spatial heterogeneity emission stringency on local populations: under
the current policy, large cities are larger than what they would be if they faced a uniform

emission tax
Note: On this figure I plot the relative change in industrial workers’ population at the commuting zone level as a result of

a move from a uniform to the current distribution of emission taxes. This change is plotted as a function of current
populations on panel (a), of local amenities on panel (b), and of local productivity on panel (c).

normative and empirical results on the gap between the current distribution of relative
stringencies across French cities and the distribution that would maximize workers’ wel-
fare. In practice, I identify for each city an optimal level of regulation that I compare to
the current level of regulation.

Figure 2.5.5 displays the results from the maximization exercise. It plots the optimal
distribution of the logarithm of emission taxes as a function of the logarithm of: current
city population (panel a), amenities (panel b), and productivities (panel c). The current
distributions from Figure 2.5.1 are depicted in black and the optimal distributions are
depicted in red. Figure 2.5.5 reveals that increasing the relative emission regulations in
larger cities would achieve welfare gains. Figure 2.5.5 shows that the distributions in red
display less variation on the left part than on the right part. This is because the optimal
set of emission taxes results from a constrained numerical optimization algorithm: small
cities are so much smaller than large cities that the constraint on the mean emission tax
implies that optimal emission taxes are put to the minimum level possible in small cities.
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Figure 2.5.4: Effects of spatial heterogeneity emission stringency on local emissions: under the
current policy, large cities emit less pollution than what they would if they faced a uniform

emission tax
Note: On this figure I plot the relative change in industrial emissions at the commuting zone level as a result of a move
from a uniform to the current distribution of emission taxes. This change is plotted as a function of current emissions on

panel (a), of local amenities on panel (b), and of local productivity on panel (c).

These points are corner solutions. However, because distributions of cities’ characteristics
(amenities and productivities) are so skewed, only the largest cities matter for aggregate
welfare.

As discussed in section 2.2 and illustrated in panel (b) from Figure 2.5.5, increasing
the relative stringency of regulations in cities with higher amenities would be welfare-
improving. This is because cities with higher amenities are generally too small because
workers and firms do not internalize the impact of their location choices on local air quality.
Panel (a) shows the reallocation necessary to move from the current distribution of relative
emission taxes to the optimal one. These taxes need to be raised in the currently largest
cities and decreased in the smallest cities. Panel (c) from Figure 2.5.5 indicates that there
is already a strong positive correlation between the spatial distribution of emission taxes
and the distribution of idiosyncratic productivities. Solving the optimization problem
confirms that such correlation is optimal. Indeed, panel (c) shows that the coefficient of
the log-linear relationship between the local idiosyncratic levels of productivities and the
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Figure 2.5.5: Comparison between current distribution of relative emission taxes (black) and
the mean-preserving optimal distribution (red): emission taxes are lower in smaller cities and

increased in larger cities
Note: On this figure I plot the current distribution of emission taxes in black and the optimal distribution of emission

taxes as functions of current populations on panel (a), of local amenities on panel (b), and of local productivity on panel
(c). The current distribution is depicted in black and the optimal distribution is depicted in red.

relative emission taxes is currently not too far from the optimal one.

Reallocating Population Across Space

Figure 2.5.6 displays the population reallocation effect that would follow from the adoption
of the optimal distribution of relative emission taxes. In particular, it highlights in blue
the cities that would see their population increase. Only a small subset of cities (around
15 out of 300 cities) would grow larger and the rest would become smaller. Specifically,
panel (a) shows that population concentration is reinforced: the largest cities would grow
even larger. Panel (b) indicates that this reallocation mainly comes from a reallocation
of workers toward cities with higher amenities.

Figure 2.5.7 reveals the concentration effect of adopting the optimal set of emission taxes.
I ranked cities according to their current population and then plot in black the cumulative
population starting from the smallest city. The red line depicts the same cumulative sum
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Figure 2.5.6: Population reallocation when moving from the current to the optimal distribution
of relative emission taxes

Note: On this figure I plot the relative change in industrial workers’ population at the commuting zone level as a result of
a move from the current to the optimal distribution of emission taxes. This change is plotted as a function of current

populations on panel (a), of local amenities on panel (b), and of local productivity on panel (c). In blue are the cities that
would see their population increase as a result of this emission taxes distribution shift.

using what local populations would be under the optimal set of emission taxes. Since the
red line is more skewed to the right than the black line, workers become more concentrated
in the largest cities under the optimal distribution of emissions costs than under the
current set of policies.

Reallocating Emissions Across Space

Figure 2.5.8 displays the pollution reallocation effect of moving to the optimal set of
emission taxes. In particular, it highlights in green the cities that would see their local
emissions decrease. In blue are the cities for which emission would decrease and population
would increase. As expected, it is optimal to decrease emissions in the currently most
polluted cities (panel (a)), corresponding to a reallocation of emissions from cities with
high amenities to cities with low amenities (panel (b)).

Figure 2.5.9 compares the cumulative distributions of emissions under the current (in
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Figure 2.5.7: Cumulative distributions of population under the current and the optimal
distributions of emission taxes

Note: On this graph, I plot the cumulative sum of industrial workers’ population across French commuting zones as a
function of their respective ranks by industrial workers’ population. I depicted this distribution in black for the current
distribution and in red for the optimal distribution. A 45 degree line who mean that emissions are evenly spread across

cities. A curve skewed to the right indicates spatial concentration of workers in a few places.

black) and the optimal (in red) distributions of emission taxes across cities. Since the red
line is less skewed to the right than the black line, the optimal reallocation of emissions
across cities reduces spatial concentration of emissions.
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Figure 2.5.8: Emissions reallocation when moving from the current to the optimal distribution
of relative emission taxes

Note: On this figure I plot the relative change in emissions at the commuting zone level as a result of a move from the
current to the optimal distribution of emission taxes. This change is plotted as a function of current emissions on panel
(a), of local amenities on panel (b), and of local productivity on panel (c). In blue are the cities that would see their
population increase as a result of this emission taxes distribution shift. In green are the cities that would see their

emissions decrease.
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Figure 2.5.9: Cumulative distributions of pollution emissions under the current and the optimal
distributions of emission taxes

Note: On this graph, I plot the cumulative sum of industrial emissions across French commuting zones as a function of
their respective ranks by quantity of emission. I depicted this distribution in black for the current distribution and in red
for the optimal distribution. A 45 degree line who mean that emissions are evenly spread across cities. A curve skewed to

the right indicates spatial concentration of emissions in a few places.
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2.6 Conclusion

In this paper, I analyze how the spatial distribution of local air quality policies can
improve welfare. I incorporate in a simple spatial model endogenous industrial emissions
of atmospheric pollutants. As pollution has a negative effect on welfare and workers move
away from polluted areas, I show that the central planner should adopt higher emission
taxes in cities that have higher levels of amenities and productivity. I build a general
version of the model that includes heterogeneous industrial sectors and I estimate the
model’s parameters using an extensive set of data on French firms and cities. Then, I
retrieve the model’s primitives – local amenities, productivities, and emission taxes –
from data on the distribution of workers, wages, and industrial PM2.5 emissions across
cities. In the French context, I show that current regulations correspond to a set of
emission taxes that are higher in the largest cities. Finally, I numerically solve the central
planner’s welfare maximization problem. I find that further increasing emission taxes in
the largest French cities could achieve welfare gains.

This paper sheds light on a spatial tradeoff between clean air and productivity. My results
indicate that policy makers should not implement environmental policies uniformly across
locations. Rather, they should be more stringent in large cities. This has important impli-
cations in terms of environmental regulations design. The optimal set of relative emission
taxes that I identify in this paper is independent of the average level of the tax. This
means that it is applicable to any new air quality regulation: for any given objective of
pollution reduction, local regulatory burdens should follow the distribution described in
this paper. Future work should incorporate additional factors such as inequalities in expo-
sure to atmospheric pollution (Agyeman et al., 2016; Banzhaf et al., 2019; Colmer et al.,
2020a). Extending this work to include distributional effects of air quality regulations
and their impacts on inequalities in exposure to pollution (Currie et al., 2020; Shapiro &
Walker, 2021) could further help investigate optimal place-based environmental policies.
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Chapter 3

The Effects of Air Pollution on Exports:
Evidence from PM2.5 & French Firms

3.1 Introduction

Local air pollution has adverse effects on both health and non-health outcomes of individ-
uals (Aguilar-Gomez et al., 2022). In particular, a large literature has documented pol-
lution’s detrimental effects on workers’ productivity (Graff Zivin & Neidell, 2012; Chang
et al., 2016; He et al., 2019; Adhvaryu et al., 2022), employees’ cognitive abilities (Allen
et al., 2016; Heyes et al., 2016; Archsmith et al., 2018; Chang et al., 2019), and labor
force participation (Hanna & Oliva, 2015; Holub et al., 2021). However, little is known
about the aggregate consequences of pollution shocks for the economic performance of
firms employing workers exposed to these shocks and only a nascent literature connects
pollution-induced productivity shocks to economic outcomes (Dechezleprêtre et al., 2019;
Fu et al., 2021; Khanna et al., 2021). If pollution adversely affects labor productivity
and labor supply, standard microeconomic theory suggests that it should increase firms’
production costs, lower their output, and affect their revenues. The identification of such
effects could reveal that the economic benefits of enhancing air quality are larger than
previously estimated.

In this paper, we provide causal estimates of air pollution’s effects on firm-level exports
sales and quantities. Our results indicate that higher PM2.5 concentrations have a nega-
tive effect on both the total value and the quantity of exports. Focusing on the universe
of French exporting firms, between 2009 and 2015, we find that an 10% increase in the
average PM2.5 concentrations faced by plants owned by an exporting firm during the
three months preceding the export leads to a 1.5% decrease in the total value and a 1.4%
decrease in the quantity exported.1 These estimates are robust to a set of tests designed
to investigate the main limitations of our strategy. An heterogeneity analysis across low
and high labor intensity firms supports the prediction that effects of pollution on exports
are consequences of negative effects on the labor force.

1Over our period of analysis, the average monthly PM2.5 atmospheric concentration ranged between
12 and 20 µg/m3 depending on the locations.
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Our analysis builds on exhaustive and very disaggregated temporal and geographic in-
formation on firm-level trade data and local air quality. We observe French firm-level
monthly exports and combine them with information on the geographic coordinates of
plants owned by exporting firms as well as local environmental variables: PM2.5 atmo-
spheric concentrations, wind direction, precipitations, and temperatures.2 In comparison
to previous literature that relies on pollution measurements at the monitoring station
level, we use daily pollutant concentrations from a chemistry-transport model that pro-
vides local estimates of pollutant concentration over the whole French territory and not
only over locations where measurement stations are potentially endogenously located.
Furthermore, our panel of exporting firms, provided by French customs, is exhaustive
which means that we observe the universe of exporting French firms, and not only a
sub-population as is frequent in the literature. Another advantage of our trade data is
its availability at a monthly resolution. Indeed, most of the literature on worker-level
impacts of pollution finds that such effects happens over the course of several days or
weeks.

Omitted variable bias and reverse causality are the two main obstacles to estimating pollu-
tion’s causal impact on economic activity. In our context, omitted variable bias arises from
local factors that directly affect both air pollution concentrations and economic activity.
In particular, a large literature has shed light on the effect of temperature on health, labor
supply, and productivity (Dell et al., 2014; Graff Zivin & Neidell, 2014; Addoum et al.,
2020; Aguilar-Gomez et al., 2021). But temperature also affects pollution concentrations
and omitting its effect is likely to bias estimates. For instance, because very high temper-
atures cause higher concentrations of air pollutants, omitting the effect of temperature
would lead to an overestimation of the negative effect of pollution on exports. Hence, we
combine pollution data with data on temperatures and precipitations to control for these
confounding factors. Reverse causality is due to air pollution’s endogeneity: a positive
productivity shock in a given location potentially induces higher levels of production, com-
muting, or consumption, thus emitting more pollutants and increasing their atmospheric
concentration. It ensues a positive correlation between local productivity and pollution
that does not reflect the causal effect of an exogenous pollution shock on economic activ-
ity. To overcome this issue, we exploit exogenous variations in monthly wind direction in
areas where plants owned by exporting firms are located. We find that wind direction is a
strong predictor of PM2.5 concentrations and argue that, after controlling for seasonality
effects, yearly trends, and weather variables, local changes in wind direction only affect
economic activities through their effect on local PM2.5 concentrations. In practice, we

2Because most production activities are indoor (Vette et al., 2001), we focus on PM2.5 pollution,
which is composed of particles small enough to enter buildings.
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estimate for each location a model where monthly PM2.5 concentrations are predicted
by wind direction, temperatures, precipitations, calendar month (to control for seasonal-
ity), and year (to include time trends). Based on the estimated model, we then compute
predicted values for local PM2.5 concentrations based on wind direction only. Finally,
we use these predicted PM2.5 values as the excluded instrument of a 2SLS estimation
strategy, where we instrument firm-level PM2.5 concentrations averaged across plants.3

Conditional on controlling for relevant weather variables to solve the omitted variable bias
and satisfy our instrument’s exclusion restriction, our strategy allows us to recover unbi-
ased causal estimates of the effects of PM2.5 pollution. This strategy is inspired by the
recent literature that has used wind direction as an exogenous predictor of local pollution
concentration (Hansen-Lewis, 2018; Deryugina et al., 2019). We adapt the strategy to
multi-plant firms that are exposed, through their set of plants, to pollution shocks that
potentially happen in different regions. In particular, Deryugina et al. (2019) highlights
that such strategy does not require a full description of the geographical layout of each
locations where the plants are located, or to identify the sources of PM2.5 pollution (in
comparison to quasi-experimental settings). This allows for a broader geographic scale of
analysis, over a long time period.

This paper contributes to the literature that has identified the negative effect of air pol-
lution on manufacturing productivity. Aguilar-Gomez et al. (2022) reviews the scientific
background explaining how air pollution may have multiple health effects on individuals.
Exposition to pollution can affect the functioning of the heart, lungs, and brain, in the
form of both short-term impairments and latent impacts. Individuals may also suffer from
non-health impacts from pollution, resulting from the interactions between physiological
effects of pollution and behavioral responses from these individuals. Among these non-
health effects are the decreased workers’ productivity and lower labor force participation.
Most analysis are conducted at the worker level. Using data from the California air qual-
ity monitoring network, Graff Zivin & Neidell (2012) showed that a 10 parts per billion
(ppb) decrease in ozone concentrations increases agricultural workers’ productivity by 5.5
percent on the same day.4 Chang et al. (2016) finds a negative effect of outdoor PM2.5
pollution on indoor workers at a pear-packing factory: when pollution is above 15 µg/m3,
an increase by 10 µg/m3 reduces workers’ productivity by approximately 6% of average
hourly earnings. Focusing on call centers in China, Chang et al. (2019) also finds that
PM2.5 pollution decreases the productivity of workers whose occupation requires cogni-
tive rather than physical faculties. Whereas these investigations are based on day-to-day

3Fontagné et al. (2018) is an other example of paper that aggregates plant-level shocks to the firm-
level. They use plant-level shocks on electricity price to instrument export prices and estimate trade
elasticities.

4A 10 ppb increases in ozone concentration corresponds to a 20 µg/m3 increase.
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analysis and identify immediate effects of pollution on workers’ productivity, longer peri-
ods of exposure also affect productivity. He et al. (2019) find that manufacturing workers
in China suffered from prolonged exposure to PM2.5 pollution: a 10 µg/m3 increase in
PM2.5 concentration over 25 days reduces daily output by 1%. Regarding labor force
participation, Hanna & Oliva (2015) show that a decrease in local SO2 pollution in Mex-
ico City following the closure of a polluting plant led to an increase in the local labor
participation. In reverse, Holub et al. (2021) finds that PM10 shocks in Spain due to dust
clouds from Sahara led to more workers taking sick days, and therefore to a lower labor
force participation.5

If labor supply and workers’ productivity are affected by air pollution then it is likely
that it also has an impact on the activity of firms where they work. To the best of our
knowledge Dechezleprêtre et al. (2019) and Fu et al. (2021) are the only other papers
that estimate pollution’s impact on aggregate economic outcomes. Focusing on NUTS-3
EU regions, Dechezleprêtre et al. (2019) combines annual GDP data with daily satellite
data on local atmospheric PM2.5 concentrations. They show that a 1 µg/m3 increase in
PM2.5 concentration leads to a .8% drop in GDP during the same year. Fu et al. (2021)
focus on China and use firm-level annual output data to show that a 1 µg/m3 decrease
in PM2.5 leads to a .82% increase in productivity. Both papers rely on annual data,
potentially missing short-term adaptation mechanisms, such as temporal reallocation of
production. In particular, firms likely engage in adaptation strategies. For instance,
Adhvaryu et al. (2022) recently showed that firms’ managers can react to worker-level
productivity shocks caused by pollution and reallocate workers across tasks to mitigate the
impact at the firm level. In particular, Aguilar-Gomez et al. (2022) argue that adaptation
is an important mechanism through which pollution affects economic agents. Even if
they do not observe pollution itself, agents may react to its negative consequences. As
a result, even without monitoring pollution, firms may react to it because they monitor
their short-term productivity. For instance, if a local pollution shock leads to health
issues or productivity losses among workers in a given month, local firms may observe
the lower labor supply, or the reduced productivity. In reaction, they may increase their
efforts to recruit productive workers. Aguilar-Gomez et al. (2022) also highlight the fact
that that the timing of non-health pollution effects may also be different. A pollution
shock happening at a specific time may have consequences on firm-level productivity in a
longer term. This can be caused by delayed impact of pollution exposure on workers, but
also because of dynamic effects due to human capital accumulation. To that extent, the
investigation of both short and longer-term impact of pollution shocks using temporally

5On a longer term, Isen et al. (2017) shows that early childhood exposition to air pollution causes
lower earnings and labor force participation at age 30.
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disaggregated data is important.

Our paper also contributes to the literature on exports and exogenous supply-side shocks
related to climatic events. Works within this literature have mainly build on annual and
country-level data. For instance, Jones & Olken (2010) shows that higher temperatures
lowers exports from poor countries, but do not find any effect on the exports from rich
countries. More recently, as higher temporal resolution trade data has become available,
more precise investigations have been conducted. For instance, Karlsson (2021) uses
US state-level export values and shows that very high or very low temperatures have a
negative effect on the value of US exports. Using the annual version of French customs
trade data, Colmer et al. (2019) estimate that domestic exposure to temperature shocks
leads to lower economic performances. Nedoncelle (2021) uses the same annual trade
data to show that temperature shocks in destination countries lead to drops in exports by
large and multi-destination French exporters. To our knowledge, only one paper builds on
monthly and firm-level trade data to investigate the effect of climate shocks on exports:
focusing on extreme heat days in China, Li et al. (2021) find that high temperature shocks
have a persistent and negative effect on exports. In the case of France, firm-level monthly
trade data has not yet been exploited to investigate climate or pollution shocks. However,
some works exploit exogenous shocks and assess their impacts on French firms exports.
Malgouyres & Mayer (2018) consider the effect of tax credits affecting French firms’ labor
costs on their exports. Lafrogne-Joussier et al. (2022) identify which French firms were
impacted by China’s lock-down in the early stages of the Covid crisis.

The remainder of the paper is organized as follows. In the next section, we describe
the environmental, plant-geolocation, and trade data. The third section presents our
empirical strategy. In the fourth section, we describe the results and conclude in the fifth
section.

3.2 Data

3.2.1 Atmospheric Pollution in France

We observe local pollution concentrations from the CHIMERE chemistry-transport model
(Real et al., 2021). This model provides daily concentrations of PM10, PM2.5, NO2
and O3 on a grid covering the French metropolitan territories between 2009 and 2015.
The grid resolution is four by four kilometers on average meaning that pollution data
is available for several thousands of grid points across France.6 This data is the output
of a simulation of a chemistry transport model that uses information on meteorological

6To be precise, CHIMERE data is available on a grid of 0.03 degrees by 0.06 degrees cells.
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variables and pollutant emissions from various sources. PM2.5 refers to particles smaller
than 2.5 micrometer that are in suspension in the air. Because of their very small size,
such particles cause adverse health outcomes, such as asthma, lung cancer, and premature
death. We choose to focus on PM2.5 pollution because their small size also means that
they are able to penetrate most buildings, including those were production is happening
(Vette et al., 2001). The left panel of Figure 3.2.1 illustrates the spatial distribution of the
monthly PM2.5 air concentrations in µg/m3 averaged over the period 2009-2015. PM2.5
pollution is, on average, unevenly spread across space. The right panel of Figure 3.2.1
displays the spatial distribution of monthly PM2.5 concentrations standard deviations
between 2009 and 2015. Considering that local average concentrations in PM2.5 range
between 12 and 20 µg/m3, the 4 to 10 µg/m3 range of local standard deviation indicate
a high level of temporal variation in local levels of PM2.5 concentration. These local
variations across time are the source of variation that our estimation strategy exploits.
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Figure 3.2.1: Atmospheric PM2.5 Data : Maps of Average Values and Standard Deviations
Note: Monthly PM2.5 concentrations over the 84 months included in our sample (in µg/m3).

Figure 3.2.2 plots the evolution of the mean, maximum, and minimum concentrations
across the country. In our estimation strategy, we include calendar-month fixed-effects
that control for the seasonality that appears on Figure 3.2.2.

A number of studies focusing on air pollution build on monitoring stations. These stations
physically measure concentrations of pollutant in the air at the hourly level. In France,
this network provides publicly available data. However, it is spatially scarce and does
not necessarily correspond to the spatial distribution of manufacturing plants.7 For that
reason, it misses a significant amount of the spatial variation that one finds in satellite
based estimates of air pollution (Fowlie et al., 2019).

7Stations are usually located near highways.
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Figure 3.2.2: Atmospheric PM2.5 Data : Monthly Average, Minimum, and Maximum Local
PM2.5 Concentrations

Note: The black line represent monthly PM2.5 concentrations average across CHIMERE grid cells. The shaded-in-grey
area contains 90% of CHIMERE grid cells. The red and blue lines respectively represent the monthly maximum and

minimum PM2.5 concentration across CHIMERE grid cells.

3.2.2 Wind Direction and Meteorological Controls

Our strategy also exploits data on local precipitations, temperatures, and wind direction.
For precipitations and temperatures, we use the Copernicus satellite data.8 In particular,
we retrieve daily measures between 2009 and 2015 over 6,453 grid cells for the French
metropolitan territory. Each cell measures around 11 by 11 kilometers. We retrieve data
on wind direction from the MERRA database, that has a resolution of 50 by 50 kilome-
ters on average (the grid is composed of around 250 cells for the French metropolitan
territory).9 We define wind direction as the direction in which the wind is blowing ("to-
ward"). We define four main wind directions based on compass angles (each encompassing
a 90 degree angle): northward, eastward, southward, and westward. For each MERRA
hourly observation we convert the longitudinal and latitudinal wind speeds in a set of four
dummies for whether the wind blows in one of these four directions. We then aggregate
observations at the monthly level by summing the number of hours during which the
wind blows in each direction. Figure 3.2.3 illustrates the dominant winds measured in
each MERRA grid cell by plotting the average monthly percentage of hours when wind
blows in each direction.

8Data is available at https://surfobs.climate.copernicus.eu.
9Data is available at https://gmao.gsfc.nasa.gov/reanalysis/Merra/.
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Figure 3.2.3: Wind Instrument : Dominant Winds
Note: These maps plot the average percentage of hours per month during which wind blows in each direction.

We combined PM2.5 concentrations data with temperatures, precipitations, and wind
direction by overlapping CHIMERE, Copernicus, and MERRA grids. Both MERRA and
Copernicus grids are less spatially disaggregated than the CHIMERE grid. As illustrated
by Figure 3.2.4, for each grid, we compute the surface of each CHIMERE cell that inter-
sects with each cell from the other two grids. Then we convert Copernicus and MERRA
data to distribute the values across cells from the CHIMERE grid. We build a panel
of PM2.5, temperatures, precipitations, and wind direction using average values at the
monthly level, between 2009 and 2015 for each CHIMERE grid cell.

3.2.3 Trade Data

We exploit data on firm-level exports provided by the French customs office. The advan-
tage of such trade data is its high level of temporal disaggregation that allows for causal
inference and capturing firm level adaptation mechanisms. In particular, this level of
temporal disaggregation is usually not available for complete firm or plant-level produc-
tion data. This is why we focus on the effect of pollution on exports in this paper. The
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trade data is composed of firm level declarations of exports of goods to foreign markets
(outside of France within and outside the European Union). Trade transactions between
French firms and foreign countries are subjects to the Déclarations d’Echanges de Biens
mensuelles (DEB), a monthly trading declaration, for transactions with Member States of
the European Union, and to the Document d’Accompagnement Unique (DAU), the unique
accompaniment file, for transaction with countries outside of the EU. In both systems,
firms have to declare each month transactions they have made with foreign countries.
They may submit several declarations in a month, or file only one that contains all trans-
actions that have happened during the month. For transactions within the EU, DEB
follows a simplified procedure with less information when the value of the transaction is
below 460 euros. In practice, only transactions with small values (inferior to 200 euros)
are not declared. Before 2010, all observations below 1000 kilograms or 1000 euros were
not included in the database. This represented around 0.5% of the value of exchanges but
as much as 50% of the number of transactions which was misleading in some sectors such
as wine production or automobiles parts (CASD, 2019). In 2010, 90% of these data were
integrated to the base. Since 2011, all data is included.10

In practice, we have one observation per firm, good (defined in the Combined Nomen-
clature at the eight-digits level), destination, and month of sample. Each observation
indicates the total value of the export in euros, its weight in kilograms, and, if applicable,
the number of units exported. This last variable is only available for a few observations,
we follow Fontagné et al. (2018) and only use quantities measured in weight. We con-
struct our firm-level export panel according to Bergounhon et al. (2018)’s guidelines. To
reduce the computational load of our regressions, we aggregate exports across destinations
and products at the firm level. We provide a robustness test of our estimates using an
alternative version of the trade panel aggregated at the four-digits activity level. We use
data from 2009 to 2015, which represents 84 months in total. Figure 3.2.5 describes the
monthly values of French exports, and the number of exporting firms over this period.
We match these exporting firms to the set of plants they own and for which we have geo-
graphic coordinates. However, we don’t have this information for all French plants, so the
match is not perfect. As a result, some exporting firms are dropped out of our estimation
sample. The full lines in Figure 3.2.5 represent the data contained in the raw customs
datasets (all exports that are registered) and the dashed lines represent the values for
the set of exporting firms matched to plants with geographic coordinates. Figure 3.2.5
shows that almost all exports are matched with at least one geo-localized plant. This is
confirmed by the last line of Table (3.2.1) which shows that exporting firms that do not
match with any geo-localized plant only represent 6% of total exports over the period.

10Weapons and all war materials exports are not included.
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Our analysis relies on the temporal disaggregation of the trade data. To identify causal
impact of pollution, we must use exogenous variations in local exposure to PM2.5. In
particular, we control for yearly trends in pollution. This is one of the reason why having
access to sub-year data is important. However, when we observe an export made by a
firm, we cannot know when the exported goods where produced. If pollution affects export
through its negative effect on workers and production, then we need to make assumption
on the timing of production and exports. In our main strategy, presented in the next
section, we chose to estimate the effect of firm-level exposure to pollution averaged over
the three months that preceded the export. This imply that we assume that when firms
produce a good to be sold on a foreign market, they ship it sometime during the next
three months. To support this assumption, we provide some descriptive statistics on the
timing of exports at the firm level. These statistics are presented in appendix C.0.1. Table
?? shows that around 20% of exporting firms are shipping goods at one month intervals.
Moreover, these one-month-intervals exports represent around 98% of export values over
the period of analysis. Although we don’t have data on stocked good, it is likely that
firms which export every month will also produce every month. Therefore, focusing on
the effect of pollution over the three months before the export seems a valid strategy.

3.2.4 Plants Geo-localization

We match exporting firms with their set of plants using the direct correspondence between
exporters’ identification codes, the SIREN, with the first nine digits of plants’ identifica-
tion codes, the SIRET. We implement this step using the SIRENE database, which is the
list of the universe of French firms and plants in France.11

Information on the location of plants is built from the address contained in the SIRENE
database using the geocoding engine addok developed by Etalab (the public administra-
tion in charge of open data). We use the list of plant coordinates built by Christian Quest
using two instances of addok, the Base Adresse Nationale (BAN) and the Base Adresses
Nationale Ouverte (BANO) from OpenStreetMap France.12 For each plant, the address
provided in the SIRENE database corresponds to a set of geographic coordinates. On
Figure 3.2.6, we illustrate this with a map of the local density of plants belonging to
exporting firms. We represent a grid, where each cell color corresponds to a quartile in
the distribution of number of plants across all cells from this grid.

Multi-plants firms create an empirical challenge for our estimation. Exports are only

11The database is available on https://www.data.gouv.fr/fr/datasets/
base-sirene-des-entreprises-et-de-leurs-etablissements-siren-siret/.

12Data is available at https://data.cquest.org/geo_sirene/ and scripts on the corresponding
Github https://github.com/cquest/geocodage-spd.
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Number Share of Average Number Share of
Activities of Firms Exports of Plants Single-plant Firms

Agriculture 15,150 .5 1.1 91.5
Manufacturing 36,375 57.6 1.6 74.8

Retail 71,797 28.6 2.4 75.4
Other Activities 45,634 7 3.7 74.6

No Plants 49,470 6.3

Table 3.2.1: Descriptive Statistics - Trade & Plant Data
Note: This table provide some description of the match between the trade panel and the population of plants for which we
have geographic coordinates. The statistics are distributed across sectors (as defined in the SIRENE database). The last
line corresponds to exporting firms for which we don’t have any information on the coordinates of their plants. The first

column gives the number of exporting firms in the trade panel. The second column gives displays the share of total export
values that these firms represent. The third column gives the average number of plants with coordinates for each

exporting firm. The fourth column contains the share of exporting firms that only own one plant (single-plant firms).

measured at the firm-level. However, pollution shocks vary across locations, thus across
plants, within firm. Therefore, we cannot measure the exact exposition to PM2.5 pollution
of multi-plants firms exports. We choose to aggregate plant-level exposure at the firm-level
using a weighted average of PM2.5 concentrations across plants within a given firm. The
SIRENE database provides information on employment at the plant level so we choose
to use plant-level labor to weight exposure to PM2.5 concentrations.

Therefore, a firm i with employment Li, composed of plants j ∈ [1, Ni] with employments
{Lj}j∈[1,Ni] (with Li =

∑Ni

j=1 Lj), each located in CHIMERE grid cells cj, is exposed to
an average concentration of PM2.5 pollution in month t that is given by:

PM2.5it =
1

Li

Ni∑
j=1

LjPM2.5cjt, (3.1)

with PM2.5cjt the average PM2.5 concentration during month t in CHIMERE grid cells
cj. In the last section of the paper, we test the robustness of our estimates to restricting
the sample to firms that only own a single plant. The last column of Table (3.2.1) indicates
that such firms represent a large share of the population of exporting firms.

135



2.0 2.2 2.4 2.6 2.8 3.0
49.0

49.2

49.4

49.6

49.8

50.0

Exporting plants
CHIMERE grid

MERRA grid
COPERNICUS grid

Figure 3.2.4: Illustration: Combination of Exporting Plants Coordinates, CHIMERE, MERRA,
and COPERNICUS grids.

Note: This map illustrates, for a fraction of the French territory corresponding to the North of the Amiens’ region, the
process of superposition of the CHIMERE pollution grid, the MERRA and COPERNICUS weather data grids, and the

coordinates of plants belonging to exporting firms.
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Figure 3.2.5: Descriptive Statistics: Evolution of Monthly Exports and Number of Exporters
Note: The upper graph illustrates the evolution of the total value of monthly exports by French firms in billion euros. The
lower graph illustrates the number of exporting firms each month in thousands of firms. Full lines correspond to the raw

data contained in the customs file and the dashed lines correspond to the exporting firms that match with plants for
which we have geographic coordinates. The dashed lines ultimately plots the exports that are included in our estimations.
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    9, 16563

Figure 3.2.6: Plants Localization Data: Map of Plants Density
Note: This figure maps the local density of plants (in number) belonging to exporting firms across the CHIMERE grid.
Based on the geographic coordinates of each plant, we determine in which of the cell it is located. This grid corresponds

to the grid on which PM2.5 data is available.
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3.3 Empirical Strategy

Our objective is to estimate the effect of exposure to PM2.5 pollution on firm-level exports,
net of any confounding factors. In our baseline strategy, we estimate:

yit = αi + βt + γ lnPM2.5i,t +Xit + ϵit, (3.2)

where yit is either the logarithm of total value or quantity of exports made by firm i in
month t, or the export status of firm i in month t (a dummy for whether the firm exported).
The first two export variables are informative of the intensive margin effect of pollution
and the third one reflects the extensive margin effect of pollution. Indeed, depending on
the size of the effect of pollution shocks on firm productivity, the firm may either export
less goods, which would lead to a negative effect on sales and quantities, or not export at
all following the shock. In particular, if there are fixed shipping costs, firms may not be
able to ship quantities of goods that are under some threshold. Equation (3.2) includes
the effect of the logarithm of PM2.5 pollution averaged over the three months preceding
the month when the export is registered. This allows to capture variation in the time
gap between the production of the exported good and the date of export. Atmospheric
pollution highly depends on weather variables that also affect economic activities, such as
precipitations and temperatures. Equation (3.2) includes such weather control variables,
denoted as Xit (and also averaged over the three preceding months).

Due to reverse causality, a simple OLS approach is likely to yield biased estimates. In-
deed, if pollution may affect economics activities (the effect that we want to capture),
economic activities also emit pollution. For instance, higher atmospheric concentrations
of pollutants may be due to polluting manufacturing processes, energy production, or
workers’ commuting. As a result, there may be a positive correlation between yit and
lnPM2.5i,t that does not represent the causal effect of PM2.5 pollution on exports. This
may lead to biased estimates in equation (3.2). To overcome this issue, we use an instru-
mental variable approach that relies on exogenous temporal variations in wind direction
at the local level. This approach builds on previous work by Hansen-Lewis (2018) and
Deryugina et al. (2019).13 The assumption behind this strategy is that, after controlling
for confounding weather variables, wind direction only affects economic activities through
its effect on PM2.5 concentrations.

The first step of our strategy is to estimate the following model for each MERRA grid

13Hering & Poncet (2014), Broner et al. (2012), and Bondy et al. (2020) are also examples that build
on exogenous wind direction variation for causal inference.
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cell:

lnPM2.5cym =µc + νy + ρm +
∑

k∈{E,S,W}

βkWDirkcym

+ αR lnRaincym + αH lnTempcym + ϵcym, (3.3)

where PM2.5cym is the average PM2.5 concentration measured in CHIMERE grid cell c,
in year y and calendar month m. Thus, ym identifies a unique month during our period of
analysis. Rain measures total precipitations during the month and Temp is the average
monthly temperature. Variables WDirE, WDirS, and WDirW measure the number of
hours during the month when wind was blowing eastward, southward, and westward. We
omit the number of hours during which wind blows northward, which is the reference.
As a result, coefficients βE, βS, and βW represent the effect on the monthly average
PM2.5 concentrations of having one hour blowing toward the East, the South, and the
West, rather than toward the North. Equation (3.3) also includes CHIMERE grid cell
fixed-effects, µc, that account for time-invariant local characteristics that influence local
concentration of PM2.5. Geographic attributes, such as being located on a coast, a plain,
or mountains, are controlled for by this term. We also include year fixed effects, νy, to
capture overall trends and calendar month fixed effects, ρm, to account for seasonality.
The three maps starting from the left of Figure 3.3.1 display the estimates of these coef-
ficients. Grid cells are left blank when the local β coefficients are not significant at the
10% level.14 The fourth map, on the right of Figure 3.3.1, displays the R2 coefficient of
each regression. Overall, Figure 3.3.1 shows that wind direction is a good predictor of
local PM2.5 pollution, even after controlling for confounding weather factors, seasonality
effects, and time trends. For instance, Figure 3.3.1 shows that when the wind is blowing
eastward, pollution is, on average, lower than when it is blowing northward: all βE coeffi-
cients are negative. Considering that eastward winds come from the ocean, it is intuitive
that it brings down the level of pollutant concentration relative to wind blowing toward
the North.

The second step is to use the estimated model defined by equation (3.3) to compute
predicted monthly pollution values for each CHIMERE grid cell, based on local wind
direction:

P̂M2.5ct = exp

( ∑
k∈{E,S,W}

β̂kWDirkct

)
. (3.4)

Using an exponential transformation we compute the corresponding values of predicted
PM2.5 pollution, P̂M2.5it, at the firm and month level using the same weighted average

14These cells are nonetheless kept in the panel.
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Figure 3.3.1: Wind Instrument : Coefficients from the First-Stage
Note: Each map represents the distribution of estimated β coefficients from the first-stage regressions. The β coefficients

measure the impact on local PM2.5 of one more hour blowing in each three direction rather than northward.

across plants as for observed pollution, and use the logarithm of P̂M2.5it, also averaged
over the preceding months, to instrument the actual firm-level PM2.5 concentration in
equation (3.2). In the results section, we report first-stage F-statistics, which always
indicate strong first-stages.

This approach, where P̂M2.5it is the excluded instrument, differs from the standard
approach by Deryugina et al. (2019) where variables WDirE, WDirS, and WDirW are the
excluded instruments. In practice, we run Deryugina et al. (2019)’s first-stage separately
and independently for each location. This solves the issue created by multi-plants firms
that are exposed to pollution shocks in distinct regions where wind direction potentially
affects PM2.5 concentrations differently. However, in both approach, causal inference
relies on the same assumptions that variations in local wind direction are exogenous
and only affect exports through their effect on pollution, once meteorological factors are
controlled for.

3.4 Results

3.4.1 Baseline Results

Table 3.4.1 presents the results of our baseline strategy. It reports estimates of the effects
on exports of firm-level exposition to PM2.5 pollution averaged over the three months
preceding the export, logPM2.5t∈[−2,0] . In all regressions, we also control for weather
variables averaged over the same time span as pollution. Columns (1), (3), and (5)
report OLS estimates of the effect of firm-level PM2.5 shocks on exports total value,
export quantity, and export status. Columns (2), (4), and (6) report estimates obtained
through our 2SLS approach where we instrument actual firm-level PM2.5 exposition using
predicted firm-level PM2.5 exposition.

Columns (2) shows that there is a causal and negative impact of PM2.5 concentrations
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on the value of firm-level exports. A 10% increase in the average concentration of PM2.5
pollution in areas where exporting plants are located, over the three months preceding
the export, leads to a 1.5% decrease in the total value of exports. Estimates of the effect
of PM2.5 pollution on quantities exported, from column (4), reveal that the negative
effect on total value is driven by a negative effect of pollution on quantities exported. In
particular, a 10% increase in the average concentration of PM2.5 pollution in areas where
exporting plants are located leads to a 1.4% decrease in the quantity exported. Estimates
of the effect of PM2.5 pollution on the export status of exporting firms, in columns (6),
is negative but not significant which implies that an increase in PM2.5 pollution does
not affect the contemporaneous probability of exporting. OLS estimates, from columns
(1), (3), and (5), of the contemporaneous effect of PM2.5 are consistently superior to
2SLS estimates. These biases can be explained by reversed causality: higher economics
activities cause higher exports but also lead to more atmospheric pollution due to polluting
activities. This weakens the negative correlation between pollution and exports.

Value Quantity Export Status

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

logPM2.5t∈[−2,0] -0.082*** -0.154** -0.068*** -0.141* -0.005*** -0.003
(0.011) (0.068) (0.012) (0.076) (0.001) (0.007)

Obs. 2,797,719 2,797,719 2,766,587 2,766,587 9,969,875 9,969,875
FS F-Stat. 2,937 2,915 11,108
* p<0.1, ** p<0.05, *** p<0.01 - Standard errors, clustered by firm-activity, are reported in parenthesis. PM2.5
concentrations are measured in µg/m3. The dependent variable is: for columns (1) and (2) the logarithm of export
values in euros, for columns (3) and (4) the logarithm of the export quantities in kilograms, and for columns (5) and
(6) a dummy variables indicating whether the firm exported in this given month. All regressions control for weather
variables temperature and precipitation.

Table 3.4.1: Effects of PM2.5 Pollution on Firm-level Exports: Three Months Before the Export

Table C.0.2 in Appendix C.0.2 displays the result of estimating the baseline equation
using a weighted regression where we use export values as weights. Point estimates from
columns (2) and (4) confirm results from Table 3.4.1.

3.4.2 Longer-term effects of PM2.5

Because we do not know the timing between production and export, baseline results rely
on an average exposition to pollution over three months. Table 3.4.2 displays the result of
estimating equation (3.2) using values of exposition to pollution (and to control weather
variables) over the six months that precede the export. If the time gap between production
and export is larger than three months then the potential effects will be captured by this
alternative approach.
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Estimates from columns (2), (4), and (6) from table 3.4.2 provide a similar picture as those
from table 3.4.1. In particular, firm-level exposition to PM2.5 pollution averaged over six
months has a string and negative effect on export values (column (2): a 10% increase
in average PM2.5 concentrations lead to a 2.4% decrease in the value of exports). The
estimate for the effect of pollution on quantities is no longer significant (column (4)), but
its scale is similar to its counterpart from 3.4.1. The effect of pollution on the probability
of exporting (column (6)) is still not significant, but the point estimate is still negative
and larger.

Value Quantity Export Status

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

logPM2.5t∈[−5,0] -0.092*** -0.238** -0.086*** -0.175 -0.009*** -0.018
(0.015) (0.118) (0.018) (0.132) (0.002) (0.013)

Obs. 2,703,974 2,703,974 2,679,872 2,679,872 9,622,375 9,622,375
FS F-Stat. 2,273 2,251 7,732
* p<0.1, ** p<0.05, *** p<0.01 - Standard errors, clustered by firm-activity, are reported in parenthesis. PM2.5
concentrations are measured in µg/m3. The dependent variable is: for columns (1) and (2) the logarithm of export
values in euros, for columns (3) and (4) the logarithm of the export quantities in kilograms, and for columns (5) and
(6) a dummy variables indicating whether the firm exported in this given month. All regressions control for weather
variables temperature and precipitation.

Table 3.4.2: Effects of PM2.5 Pollution on Firm-level Exports: Six Months Before the Export

One can try to disentangle the “short-term” effect of pollution, over the three months
before the export, from its “long-term” effect, the three months before that. Table 3.4.3
presents estimates of the effect of pollution averages over the fifth, fourth, and third
months before the export to investigate such longer terms effects. All 2SLS estimates,
in columns (2), (4), and (6), are non significant, which implies that pollution mainly has
short terms effects on exports. This may have two explanations: first, the literature on
the effect of pollution shocks on workers points toward very short term effect (several
days, weeks at most), and second, table ?? in appendix C.0.1 shows that most exports in
our panel happen at one or two months intervals which suggest a similar timing between
production and export.
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Value Quantity Export Status

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

logPM2.5t∈[−5,−3] -0.036*** -0.029 -0.032*** -0.016 -0.006*** -0.004
(0.011) (0.063) (0.012) (0.070) (0.001) (0.007)

Obs. 2,698,780 2,698,780 2,674,723 2,674,723 9,604,444 9,604,444
FS F-Stat. 3,476 3,446 13,217
* p<0.1, ** p<0.05, *** p<0.01 - Standard errors, clustered by firm-activity, are reported in parenthesis. PM2.5
concentrations are measured in µg/m3. The dependent variable is: for columns (1) and (2) the logarithm of export
values in euros, for columns (3) and (4) the logarithm of the export quantities in kilograms, and for columns (5) and
(6) a dummy variables indicating whether the firm exported in this given month. All regressions control for weather
variables temperature and precipitation.

Table 3.4.3: Effects of PM2.5 Pollution on Firm-level Exports: : Lagged Three-months Period

3.4.3 Heterogeneity Analysis

Using the eight-digits product code available for each transaction in the trade data, we
aggregated exports at the firm-level across two-digits activities. Table C.0.3 in Appendix
C.0.3 displays the effects of PM2.5 pollution on export total values, quantities, and ex-
port status for each activity. This heterogeneity analysis reveals that aggregated results
on value and quantities from table 3.4.1 are mostly driven by negative impacts in Bever-
ages, Other Manufacturing, and Wearing Apparels. Contrasting with the non-significant
aggregated results on export status, table C.0.3 reveals negative effects of pollution on
the probability to export of firms in the Beverages, Fabricated Metal Products, Machin-
ery, and Other Manufacturing sectors. This heterogeneity of the impact of pollution on
exports across activities may be explained by a number of factors such as labor intensity,
whether the work is indoor or outdoor, air conditioning, or the degree of insulation of the
buildings. These characteristics may differ across activities. For instance, production of
electronic equipment is, in some cases (e.g. like microchips production), conducted in an
airtight environment. In such cases, workers may not be very exposed to outdoor pollu-
tion. This could explain why the analysis does not detect any effect for these activities.

Whereas information on the type of environment under which production happens is
hard to gather, we can investigate the effect of labor intensity. If the impact on exports
of outdoor pollution goes through its impact on workers’ productivity, the effect should
be larger on firms that are more labor-intensive. We combine firm-level employment
data with average shipment size (in quantity) to compute a labor intensity ratio for
each exporting firm within our panel (total number of employees across all plants over
the average export weight). Then, using the median value of this ratio, we split the
population of firms into low and high labor intensity sub-populations: LI ∈ {Low,High}.
We estimate our baseline strategy adding an interaction term between pollution and a
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dummy for whether the exporting firm is among the 50% most labor-intensive firms.15

Table 3.4.4 reports the results. Estimates from the first row corresponds to estimates
from Table 3.4.1. Estimates from the second row correspond to the additional effect of
being a labor-intensive firm when pollution increases during the three months preceding
an export. The estimates are all negative and significant at the 1% level. This means
that the negative effect of pollution on export values and quantities is stronger for more
labor-intensive firms. This result supports the story of pollution affecting export through
its effect on workers and production. In the baseline approach, pollution has no effect on
the probability of exporting. Estimates from columns (6) in Table 3.4.4 confirms this for
less labor-intensive firms but indicates that more labor-intensive firms are less likely to
export following an increase in pollution.

Value Quantity Export Status

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

logPM2.5t∈[−2,0] -0.089*** -0.149** -0.075*** -0.135* -0.002 0.004
(0.011) (0.068) (0.013) (0.076) (0.002) (0.008)

×⊮(LI = High) 0.046*** -0.086*** 0.046*** -0.103*** -0.005*** -0.017***
(0.011) (0.028) (0.011) (0.031) (0.001) (0.002)

Obs. 2,797,290 2,797,290 2,766,587 2,766,587 9,922,320 9,922,320
FS F-Stat. 1,362 1,349 5,517
* p<0.1, ** p<0.05, *** p<0.01 - Standard errors, clustered by firm-activity, are reported in parenthesis. PM2.5
concentrations are measured in µg/m3. The dependent variable is: for columns (1) and (2) the logarithm of export
values in euros, for columns (3) and (4) the logarithm of the export quantities in kilograms, and for columns (5) and
(6) a dummy variables indicating whether the firm exported in this given month. All regressions control for weather
variables temperature and precipitation.

Table 3.4.4: Effects of PM2.5 Pollution on Firm-level Exports: Heterogeneity Analysis - Labor
Intensity

3.4.4 Robustness Tests

Restricting to Single-plant Firms: In multi-plants firms, each plant may specialize
in the production of a specific set of goods As a result, the goods exported in t may
be associated with only one location. The average pollution shock across plants is thus
a noisy signal of the pollution shock experienced at the plant where the exported good
was produced. This limitation could also bias the estimates if the participation of some
plants to a given export is correlated with the exposition of this plant to PM2.5 pollution.
For instance, if a plant is exposed to high PM2.5 concentrations during a given month
and reduces its output, then the firm-level export will be composed of goods produced

15The excluded instruments are the predicted pollution as in the baseline strategy and the predicted
pollution interacted with the labor-intensity dummy.
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by other plants owned by the same firm. To test the implications of this issue we run a
robustness test including only single-plant firms. Table 3.4.5 displays the estimates of the
effect of PM2.5 on exports for this subsample of exports. Columns (2) and (4) of Table
3.4.5 confirm our main findings for the negative effect on export total value and quantity
of PM2.5 pollution.

Value Quantity Export Status

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

logPM2.5t∈[−2,0] -0.077*** -0.186** -0.058*** -0.164* -0.007*** -0.009
(0.013) (0.081) (0.015) (0.091) (0.002) (0.008)

Obs. 1,765,448 1,765,448 1,743,679 1,743,679 7,045,560 7,045,560
FS F-Stat. 2,450 2,423 9,060
* p<0.1, ** p<0.05, *** p<0.01 - Standard errors, clustered by firm-activity, are reported in parenthesis. PM2.5
concentrations are measured in µg/m3. The dependent variable is: for columns (1) and (2) the logarithm of export
values in euros, for columns (3) and (4) the logarithm of the export quantities in kilograms, and for columns (5) and
(6) a dummy variables indicating whether the firm exported in this given month. All regressions control for weather
variables temperature and precipitation.

Table 3.4.5: Effects of PM2.5 Pollution on Firm-level Exports: Restricting to Single-Plant
Firms

Controlling for the effects of other harmful atmospheric pollutants: The atmo-
spheric concentration of PM2.5 is often correlated with that of other pollutants. Some of
those are also harmful to human health and as such may also have an effect on firm-level
activities and exports. A concern regarding the interpretation of the estimates from Table
3.4.1 is that they may in fact measure the aggregated effect of several other pollutants.
This is the case even in the 2SLS approach as co-pollutants are also likely to be affected
by wind direction. In Table 3.4.6, we control for the contemporaneous firm-level concen-
trations of two other pollutants: O3 and NO2. These co-pollutants are also instrumented
using their predicted values based on wind direction. Estimates from the first row of
columns (2), (4), and (6) of Table 3.4.6 show that the estimates of Table 3.4.1 are robust
to the inclusion of other atmospheric pollutants.

Placebo test: Table 3.4.7 presents the result of a placebo test. We estimate the effect
of pollution averaged over the three months after the export has been made on the value,
quantity, and export status. The fact that the estimates on value and quantities are not
significant is reassuring on the fact that baseline results are not statistical artifacts.
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Value Quantity Export Status

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

logPM2.5t∈[−2,0] -0.064*** -0.438*** -0.062*** -0.522*** -0.014*** -0.001
(0.012) (0.096) (0.014) (0.107) (0.002) (0.011)

logO3t∈[−2,0] 0.012 0.137 0.006 0.251** -0.010*** -0.023**
(0.010) (0.091) (0.011) (0.106) (0.001) (0.011)

logNO2t∈[−2,0] -0.046*** 0.593*** -0.015 0.746*** 0.022*** 0.007
(0.017) (0.157) (0.019) (0.177) (0.002) (0.019)

Obs. 2,797,719 2,797,719 2,766,587 2,766,587 9,969,875 9,969,875
FS F-Stat. 350 347 1,092
* p<0.1, ** p<0.05, *** p<0.01 - Standard errors, clustered by firm-activity, are reported in parenthesis. PM2.5
concentrations are measured in µg/m3. The dependent variable is: for columns (1) and (2) the logarithm of export
values in euros, for columns (3) and (4) the logarithm of the export quantities in kilograms, and for columns (5) and
(6) a dummy variables indicating whether the firm exported in this given month. All regressions control for weather
variables temperature and precipitation.

Table 3.4.6: Effects of PM2.5 Pollution on Firm-level Exports: Controlling for Co-pollutants

Value Quantity Export Status

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

logPM2.5t∈[+1,+3] -0.001 0.065 0.012 0.094 -0.000 0.041***
(0.010) (0.069) (0.012) (0.079) (0.001) (0.007)

Obs. 2,746,100 2,746,100 2,710,881 2,710,881 9,849,372 9,849,372
FS F-Stat. 2,846 2,829 11,015
* p<0.1, ** p<0.05, *** p<0.01 - Standard errors, clustered by firm-activity, are reported in parenthesis. PM2.5
concentrations are measured in µg/m3. The dependent variable is: for columns (1) and (2) the logarithm of export
values in euros, for columns (3) and (4) the logarithm of the export quantities in kilograms, and for columns (5) and
(6) a dummy variables indicating whether the firm exported in this given month. All regressions control for weather
variables temperature and precipitation.

Table 3.4.7: Effects of Future PM2.5 Pollution on Firm-level Exports: a Placebo Test

3.5 Conclusion

Air pollution has large adverse effects on human health. Understanding whether such
effects are combined with other negative economic outcomes is essential to motivate the
introduction of policies that enhance local air quality. In this paper, we use very disaggre-
gated data, both spatially and temporally, on firm-level exports and PM2.5 atmospheric
concentrations to investigate whether this type of atmospheric pollutant affects firm-level
exports.

Our analysis indicates that firms export less in terms of both value and quantity when
their plants are exposed to higher PM2.5 concentrations during the three months before
the export. To provide causal estimates and overcome reverse causality biases, we rely
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on an instrumental variable approach where we predict local PM2.5 concentrations using
local temporal variation in wind direction.

After extending the strategy to longer-term effects of PM2.5 over six months before the
export, we find that the negative impact of pollution is mostly driven by effects of higher
PM2.5 concentrations during the three months before the export. We investigate hetero-
geneity in the effects of pollution between low and high labor intensity firms and observe
that the negative effect of pollution is stronger for more labor-intensive firms. In compar-
ison to the rest of the population, these more labor-intensive are also less likely to export
after facing higher PM2.5 pollution.
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Appendix A

Appendix to Chapter 1

A.1 Further Empirical Results

Probit OLS

everR everR everR everR maxR maxR
(1) (2) (3) (4) (5) (6)

ln y2004 0.614∗∗∗ 0.610∗∗∗ .0041∗∗∗ .0039∗∗∗ .0035∗∗∗ .0024∗∗∗
(0.030) (0.030) (0.00009) (0.00009) (0.00008) (0.00008)

grwthy 0.220∗∗∗ 0.222∗∗∗ .0035∗∗∗ .0034∗∗∗ .0029∗∗∗ .0028∗∗∗
(0.075) (0.074) (0.00024) (0.00024) (0.00021) (0.00021)

αf,2004 0.282 0.0412∗∗∗ 0.0154∗∗∗
(0.075) (0.248) (0.0019)∑

j∈Ωf,2004
α2
jf,2004 0.336∗∗ 0.899∗ -0.0167∗∗∗ 0.0554∗∗∗ -0.0042∗∗∗ 0.0227∗∗∗

(0.155) (0.521) (0.0011) (0.0039) (0.0009) (0.0035)

# obs 25,871 25,871 139,950 139,950 139,950 139,950

Notes: Table reports probit (columns 1 and 2), and OLS (columns 3-6) estimation of correlations
between firm-level characteristics in 2004 and future regulation. Outcome variable in columns 1-4 is
indicator variable for whether a firm ever operates a regulated plant. Outcome variable in columns
5-6 is the maximum value of Rfist ∈ [0, 1] observed for the firm. All regressions include industry
fixed effects. Columns 1-2 include only industries with some ever-regulated firms. Columns 3-6
include all industries. Standard errors are clustered at the industry level.

Table A.1.1: Predicting Regulation Status
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Figure A.1.1: Firm-level DD Estimates for Revenues

Notes: Markers indicate estimates of β0 and β1 derived from OLS estimation of DiD model described in
section 1.4.3, which controls for ∆αfit. Bars indicate 95% confidence intervals. For each period, we
estimate a pooled regression, combing all years included in the period. Top (bottom) row takes log
change in domestic (total) sales as the dependent variable. Right (left) panels include all (matched)

firms. The vertical line indicates the beginning of the regulation period. All regressions include
industry-by-year fixed effects. Standard errors are clustered on the industry
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Figure A.1.2: Point Estimates, LA Excluding Foreign Imports

Notes: Markers indicate point estimates resulting from OLS estimation of equation 1.2, excluding
foreign imports. Bars indicate 95% confidence intervals. For each period, we estimate a pooled

regression, combing all years included in the period. All regressions include sector-by-year fixed effects.
Left (right) panel takes log change in domestic (total) sales as the dependent variable. Standard errors

are clustered on the industry.
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Figure A.1.3: ATEs on Revenues, Excluding Foreign Imports

Notes: Figure presents the average treatment effects on firm-level revenues for treated firms (left) and
control firms (right) as a percent of observed firm-level revenues by year and estimator, excluding
foreign imports. Treatment effects are averaged over all French firms in the manufacturing sector.
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Figure A.1.4: ATEs on Emissions, Plant-level Excluding Foreign Imports

Notes: Figure presents the average treatment effects on plant-level emissions for TT plants (top left),
CT plants (top right) and CC plants (bottom right) generated in the production of goods for the

domestic market as a percent of observed plant-level emissions generated in the production of goods for
the domestic marke, excluding foreign imports. Average treatment effects are computed only for firms

with observed emissions in the EACEI survey.
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Figure A.1.5: Aggregate Emissions, Excluding Foreign Imports

Notes: Figure presents observed total CO2 emissions from French manufacturers generated in the
production of goods for the domestic market (solid black) along with counterfactual emissions

computed using STR, LA and DD methods, excluding foreign imports. Bottom lines include only plants
with observed emissions in the EACEI survey, while top lines impute emission intensity for plants with

no emissions data.
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A.2 Data Appendix

A.2.1 FICUS-FARE

Balance sheet information for the universe of French firms was retrieved from the FICUS
(Annual structural statistics of companies from the SUSE scheme, 1994-2007) and FARE
(Annual structural statistics of companies from the ESANE scheme, 2008-2016). These
firm-level data originate from a fiscal source, since firms need to declare their profits to
the tax authorities. Firm-level data from FICUS/FARE were linked to other data sets
based on the unique identifier of French firms (SIREN).

We identify industries and sectors based on the activity code APE (Activité Principale
de l’Etablissement), from the national activity nomenclature, namely the Nomenclature
des Activités Francaises (NAF). These 4-digit codes correspond to an industry, whereas
the first two digits of the codes are common within a sector. The NAF classification
was revised in 2003 (from the “NAF93” to the “NAFRev.1”) and again in 2008 (to the
“NAFRev.2”). If the conversion from the NAF93 to the NAFRev1 is straightforward, the
revision in 2008 deeply modified the within-sector industry decomposition and resulted in
a many-to-many mapping between NAFRev.1 and NAFRev.2. Since our analysis rests on
a structure of industries and sectors, we must assign one activity code to each firm over
time. We consider alternately the two revisions – NAFRev.1 and NAFRev.2. If a firm is
active both before and after 2008, it is assigned two stable activity codes, one for each
revision. Indeed, we assign to firms that switch industry codes their modal code within
a revision. If a firm is not active in one of the period, it is either assigned a 1-to-1 match
in nomenclatures (if available) or a code in the NAF classification that is observed most
frequently for firms with the same industry code.

A.2.2 EACEI

The information on energy use comes from the EACEI (Enquête sur les consommations
d’énergie dans l’industrie) survey. This is a survey of manufacturing establishments (iden-
tified by a unique identifier called SIRET, whose first 9 digits identify the SIREN of the
firm) that provides information on the consumption (quantity and value) of energy, bro-
ken down by energy types: electricity (bought and self-generated), steam, natural gas,
other types of gas, coal, lignite, coke, propane/butane, heavy fuel oil, heating oil and
other petroleum products. All establishments with more than 250 employees receive the
survey each year, whereas only a sample of establishments with 20 or more employees
(stratified by industries, number of employees, and region) receive it. The response rate
is nearly 90% (see Marin & Vona 2021).
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We compute CO2 emissions at the plant level by combining the quantity of energy con-
sumed with an energy-specific conversion factor that indicates the amount of CO2 released
in the atmosphere when the type of energy considered is used. We thus focus on energy-
related CO2 emissions released by each plant during production through the combustion
of fossil energy or through the indirect emissions related to electricity bought from the
grid or steam bought externally. We thus ignore any emissions released in the upstream
stages of extraction, transformation and transportation of energy. We use CO2 emission
factors for the different energy types from ADEME’s “Base Carbone”.1 Whereas the con-
version factors are constant over time for most energy types, given the proportionality
between CO2 emissions and the carbon content of fossil fuels, the amount of CO2 emis-
sions associated with the use of electricity from the grid is time varying and depends on
the energy mix of the electricity sector in France. Table A.2.1 reports these conversion
factors.

Fuel name Unit Conversion Factor
Coal t 3.07
Lignite t 1.72
Coke of coal t 3.03
Petroleum coke t 3.1
Gas from the grid MWh 0.169
Non-natural Gas MWh 0.469
Butane/Propane t 2.965
Heavy fuel oil t 3.14
Heating oil L 0.00268
Steam t 0.113
Electricity

2012 MWh 0.0552
2013 MWh 0.0526
2014 MWh 0.0492
2015 MWh 0.0408
2016 MWh 0.0379
Notes: These conversion factors have been computed
by the authors using ADEME’s “Base Carbone”. The
units for fuels are in tons (t), megawatt hours (MWh)
or liters (L). The conversion is toward tons of CO2.

Table A.2.1: CO2 Conversion Factors

To clean the data, we first identify whether there are within-plant observations that are
50 times smaller or larger than others over time. If so, we drop the entire history of plant
CO2 emissions. Next, we identify within-plant year-to-year changes that are equivalent

1We use CO2 conversion factors from the document published by ADEME entitled “Base Carbone:
Documentation des Facteurs d’Emissions de la Base Carbone” in its version 11.2.0, available from March
2015.
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to being multiplied by 10 or divided by 10. If so, we again drop the entire plant-level
history.
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Figure A.2.1: Share of Plants Covered by the EACEI Survey

Notes: Figure plots the shares of plants , labor share, and emissions shares of plants included in the
EACEI survey by year. Emissions share is computed by imputing emissions for plants excluded from

the EACEI survey.

A.2.3 EUTL

To assess the treatment status of each firm and plant, we use the European Union Trans-
action Log (EUTL), which is the central reporting tool for the EU ETS. Transactions
are reported through the EUTL with a delay of three years. The data can be down-
loaded from the EUTL webpage (https://ec.europa.eu/clima/ets/). We downloaded two
registries, one for 2014 and the other for 2018.

Within the EUTL, an installation is a regulated entity. It faces the obligation to surrender
allowances at least equal to its verified emissions of the previous year to the regulatory au-
thority. Installations either receive these allowances for free or buy them on the allowances
market. To be able to receive, transfer, and surrender allowances, each installation must
be represented by an operator holding account (OHA). For each account, the EUTL pro-
vides a primary contact for the account holder with an address. Each installation receives
a unique identifier and a registry, which corresponds to its country of location. In some
cases, the EUTL will provide information on companies related to the installation, that
is on the SIREN in the French context. SIREN identifiers are usually reported for man-
ufacturing industries, but not for the power sector and for heating units. To illustrate,
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from the registry of 2014, we obtain 1256 account holders with SIREN information and
130 without. To complement the original file, we use the Ownership links and enhanced
EUTL dataset from Jaraite, Jong, Kazukauskas, Zaklan and Zeitlberger (2016).2 From
the registry of 2018, we obtain 995 account holders with SIREN and 320 without, some
of them being identical to the ones from the registry of 2014.

To assign a treatment status to each plant, we must match the EUTL installations with the
list of SIRET owned by a firm (SIREN) in all manufacturing sectors. We first retrieve the
list of plants and their locations (city code, address) from the “Base des Etablissements”
from the French statistical agency INSEE. We then merge the installations from EUTL
with this list using SIREN and city codes, retrieving roughly 600 unique matches and
leaving 600 unmatched installations. Next, for the installations that match with several
SIRET, we use the street names and a web scraping python code to select among these
different SIRET.

A.2.4 Imports and Exports

We use the Customs data for the export sales by firm-product-destination for each year
of the sample, and aggregate at the firm level. We use BACI from CEPII for aggregate
trade flows and select all flows toward France.
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Figure A.2.2: Sales on French Market by Firm Origin

Notes: This figure plots the total sales in France across all manufacturing sectors for French firms vs
foreign firms. Foreign sales are computed from BACI.

2The dataset can be downloaded from https://cadmus.eui.eu/handle/1814/64596.
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A.2.5 Variable Definitions

Revenue is total sales, including exports. In FICUS, this is CATOTAL, whereas in
FARE this is REDI_R310. Domestic sales are the sales realized on the domestic mar-
ket (CAFRANC in FICUS, REDI_R420 in FARE). We compute them as the difference
between total sales and export sales from the French Customs dataset.

Employment is the full-time equivalent of the number of directly employed work-
ers by the plant averaged over the year. We use the variable reported in the Stock
d’Etablissements.

Energy consumption per energy type is defined as the quantity of energy used by
a plant. In EACEI, the variable is CONS_UP for the surveys from 1994 to 1999, and
CSUP for the surveys from 2000 onward.

A.2.6 Imputing Emissions

There are two empirical matters with respect to emissions. First, we don’t observe all
plants in the energy survey. Hence, we do not have emissions information for all plants.
Second, we do not observe emissions broken down by destination. Our empirical strategy
requires to compute counterfactual revenues on the domestic market. Since we cannot
compute counterfactual sales in foreign markets, we cannot compute counterfactual emis-
sions for the foreign market.

First, to address missing plants. Recall that emissions at the plant-level are given by

zjfist =
ργκt

wE
t︸ ︷︷ ︸

≡xt

eβ̂10Rjfistαjfistyfist

where we have used out estimate β̂10 in place of the underlying structural parameter −µz.
Note that the term xt =

ργκt

wE
t

does not vary by firm within a year. Hence, we can estimate
xt by taking averages over the year

x̂t =
1

Nt

∑
j

zjfist
αjfist ∗ yfist

e−̂β10Rjfist

Then for any plant whose emissions we don’t observe, we can compute

ẑjfist = x̂te
β̂10Rjfistαjfistyfist
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Then, to compute emissions related to production for the domestic market, observe that

zjfist = xte
β̂10Rjfistαjfist ∗

(
ydomfist + yforfist

)
where ydomfist indicates domestic sales and yforfist indicates foreign sales.

Then we define plant-level emissions generating in production for the domestic market

ẑdomjfist =
zjfist
yfist

∗ ydomfist

Similarly, counterfactual plant-level emissions generating in production for the domestic
market can be computed as(

ẑdomjfist

)′
=

zjfist
yfist

∗ e−̂β10Rjfist ∗
(
ydomfist

)′
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Figure A.2.3: Total vs Domestic Sales and Emissions for French Firms

Notes: Figure plots the total revenues vs revenues on the French market (domestic) for French firms
(left) and total CO2 emissions vs CO2 generated in production for domestic sales for French firms

(right). CO2 emissions are imputed for plants not included in the EACEI survey. The red line plots the
total CO2 emissions from all manufacturing sectors reported in the National Emissions Inventory of

France.

Figure A.2.4 plots total CO2 emissions (solid) vs CO2 generated in production for domestic
sales (dashed) with imputing emissions (right) and without imputing emissions (left). Our
goal will be to construct counterfactual emissions series for the two dashed lines for the
scenario in which there had been no EU ETS.
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Figure A.2.4: Emissions, with and without Imputations

Notes: Figure plots .

A.3 Theoretical Appendix

A.3.1 Proof of the exact CES price index change

In this section, we derive the change in CES price indices between t and t0 as described in
(1.15) with the definition of Sato-Vartia weights. The proof builds upon Feenstra (1994).

Using the expressions for price indices (1.5) and consumers’ optimal expenditures (1.6),
we can show that, for any firm f in the set Ωist of firms from industry i and sector s:

yfist∑
ℓ∈Ωist

yℓist
= p

ρ
ρ−1

fistP
− ρ

ρ−1

ist ,

where the LHS represents the market share of firm f within its industry at time t. For
any pair of two periods t0 and t, we define the set of continuing firms as Ω∗

ist ≡ Ωist∩Ωist0 .
We can write:

yfist∑
ℓ∈Ω∗

ist
yℓist︸ ︷︷ ︸

≡ϑfist

∑
ℓ∈Ω∗

ist
yℓist∑

ℓ∈Ωist
yℓist︸ ︷︷ ︸

≡λist

= p
ρ

ρ−1

fistP
− ρ

ρ−1

ist .

In log differences between periods t0 and t, we obtain

log
ϑfist

ϑfist0

+ log
λist

λist0

=
ρ

ρ− 1

(
log

pfist
pfist0

− log
Pist

Pist0

)
,
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which we rearrange and multiply on both sides by ϑfist − ϑfist0 to get:

ρ− 1

ρ
(ϑfist − ϑfist0) =

ϑfist − ϑfist0

log
ϑfist

ϑfist0

log
pfist
pfist0

−ϑfist − ϑfist0

log
ϑfist

ϑfist0

log
Pist

Pist0

+
1− ρ

ρ

ϑfist − ϑfist0

log
ϑfist

ϑfist0

log
λist

λist0

.

Summing over firms from the continuing set Ω∗
ist, we obtain:( ∑

ℓ∈Ω∗
ist

ϑℓist − ϑℓist0

log ϑℓist

ϑℓist0

)
log

Pist

Pist0

=
∑
ℓ∈Ω∗

ist

ϑfist − ϑfist0

log
ϑfist

ϑfist0

log
pfist
pfist0

+
1− ρ

ρ

( ∑
ℓ∈Ω∗

ist

ϑℓist − ϑℓist0

log ϑℓist

ϑℓist0

)
log

λist

λist0

,

which yields (1.14) and the definition of firm-specific Sato-Vartia weights:

ϕfist ≡
ϑfist − ϑfist0

log ϑfist − log ϑfist0

/ ∑
ℓ∈Ω∗

ist

ϑℓist − ϑℓist0

log ϑℓist − log ϑℓist0

.

Similarly, for any industry i in the set Υs of industries from sector s, we get:

Θist = P
ν

ν−1

ist Ψ
− ν

ν−1

st .

Taking the log differences between t0 and t yields:

log Pist

Pist0
− log Ψst

Ψst0

log Θist

Θist0

=
1− ν

ν
.

Multiplying each side of the equation by Θist −Θist0 gives:

Θist −Θist0

log Θist

Θist0

log
Pist

Pist0

− Θist −Θist0

log Θist

Θist0

log
Ψst

Ψst0

=
1− ν

ν
(Θist −Θist0) .

Summing over industries that belong to the stable set Υs from sector s, we obtain:

∑
i∈Υs

Θist −Θist0

log Θist

Θist0

log
Pist

Pist0

=

( ∑
h∈Υs

Θhst −Θhst0

log Θhst

Θhst0

)
log

Ψst

Ψst0

.

which yields (1.15) and the definition of industry-specific Sato-Vartia weights:

Φist ≡
Θist −Θist0

log Θist − log Θist0

/∑
h∈Υs

Θhst −Θhst0

log Θhst − log Θhst0

.
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A.3.2 Deriving the Local Approximation Estimation Equation

In what follows we show that the approach described in equation (1.2) corresponds to a
local approximation of changes around an equilibrium set at time t0.

For any vector of infinitesimal changes in firm-level prices relative to the equilibrium
obtained at time t0, noted {dpfist0}f∈Ωist0

, the change in the industry price index Pist is
given by:

dPist0 =
∑

f∈Ωist0

∂Pist

∂pfist |t=t0

dpfist0 . (A.1)

Given (1.5), we have that, at any period t:

∂Pist

∂pfist
=

( ∑
f∈Ωist

(pfist)
ρ

ρ−1

) ρ−1
ρ

−1

(pfist)
ρ

ρ−1
−1

⇒ ∂Pist

∂pfist
=

(
pfist
Pist

) 1
ρ−1

⇒ ∂Pist

∂pfist
= θfist,

which we can plug in (A.1) to obtain:

dPist0 =
∑

f∈Ωist0

θfist0dpfist0 . (A.2)

As a result, if we approximate small variation in firms’ prices with infinitesimal changes
around t0 equilibrium, we obtain ∆Pist0 ≈

∑
f∈Ωist0

θfist0∆pfist0 for the change in industry
i’s price index. We could similarly build ∆Ψst0 ≈ ∑i∈Υst0

Θfist0∆Pist0 for the change in
sector s’s price index, but controlling for sector-time fixed effects absorbs these spillovers.

A.4 Comparing to other models

A.4.1 Analytical Results on Bias in DiD and LA Models

In this section, we derive analytically the biases associated with estimating the average
treatment effects using the DiD model and the LA model described in section 1.4.3.

Firm-level treatment effects are defined as (yfit − y′fit)/yfit. Focusing on directly treated

178



firms and taking averages over all regulated firms, we have

ATT y
t =

1

NT
t

∑
s

∑
i∈Υs

∑
f∈ΩT

it

yfit − y′fit
yfit

=
1

NT
t

∑
s

∑
i∈Υs

∑
f∈ΩT

it

(
1− exp− ln(yfit/y

′
fit)
)
,

where NT is the total number of treated firms in the economy. We define the estimation
bias for ATTs as the difference between the estimate of ATTs under a specific model
and the true ATTs: Biasy,model

t ≡ E[ ̂ATT y,model
t − ATT y,true

t ]. Similarly, the industry-

level equivalent is Biasy,model
ist ≡ E[ ̂ATT y,model

ist − ATT y,true
ist ], where treatment effects are

averaged over firms within industry i only.

First, the DiD model yields the following bias in the estimation of the ATTs on revenues:

BiasyDD
t =

1

NT
Eω

∑
s

∑
i∈Υs

∑
f∈ΩT

it

(
exp− ln(yfit/y

′
fit) − exp−β̂DD

y0 Rfit

) .

Denoting by

Reg-ErroryDD
it = ln

∑f∈Ω∗
it
exp−β̂DD

y0 Rfit∑
f∈Ω∗

it
exp−β0Rfit

 ,

Spilloverit =
(ν − ρ) τ

(ν − 1) (1− ρ)

∑
k∈Ω∗

it

ϕkitRkit +
ντ

1− ν

∑
m∈Υ

Φmt

∑
ℓ∈Ω∗

mt

ϕℓmtRℓmt,

and

Spec-Errorit =
(ν − ρ)σ

(ν − 1) (1− ρ)

∑
k∈Ω∗

it

(ϕkit − ϕ′
kit)∆αkit +

νσ

1− ν

∑
m∈Υ

∑
ℓ∈Ω∗

mt

(
Φmtϕℓmt − Φ′

mtϕ
′
ℓmt

)
∆αℓmt

+
(ν − ρ)

(1− ν) (1− ρ)

∑
k∈Ω∗

it

(ϕkit − ϕ′
kit)∆Akit +

ν

ν − 1

∑
m∈Υ

∑
ℓ∈Ω∗

mt

(
Φmtϕℓmt − Φ′

mtϕ
′
ℓmt

)
∆Aℓmt

+
(ν − ρ)

ρ (ν − 1)

(
∆λit −∆λ′

it

)
+

ν (1− ρ)

ρ (1− ν)

∑
m∈Υ

(
Φmt∆λmt − Φ′

mt∆λ′
mt

)
,

we have

sign(BiasyDD
ist ) = −sign

(
E
[
Reg-ErroryDD

it + Spilloverit + Spec-Errorit
])

.

If sign(BiasyDD
ist ) is independent from the intensities of treatment, then it would not vary

by industry and we can sign BiasyDD
t . Otherwise, we cannot.
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Given that Eω

[
β̂DD
y0

]
= β0, the regression error Reg-ErroryDD

it should be in expectation
zero. Assuming that 0 < ν < ρ < 1, we have Spilloverit > 0 ⇐⇒ τ > 0. The specifica-
tion error, Spec-Errorit, tends toward zero when market shares under the counterfactual
unregulated regime remain almost identical to the observed market shares under the reg-
ulated regime (hence, ϕ′

fist ≈ ϕfist, Φ′
ist ≈ Φist and ∆λ′

it ≈ ∆λit). Under this condition,
the DiD model yields an upward bias in magnitude due to the omission of the spillovers.
By contrast, if counterfactual market shares differ widely from observed market shares,
we cannot identify the sign of the specification error.

The DiD model for firm-level emissions is only correctly specified for single-plant firms or
if emissions from all plants within a firm have been aggregated as it relies on variation
across firms. If it is the case, we have

sign(BiasZDD
ist ) = −sign

(
E
[
Reg-ErrorzDD

it + Spilloverit + Spec-Errorit
])

,

where

Reg-ErrorzDD
it = ln

 ∑
f∈Ω∗

it
exp−β̂DD

z Rfit∑
f∈Ω∗

it
exp−(β0−µz)Rfit

 .

Given that Eω

[
β̂DD
z

]
= β0 − µz, it yields the same sign of bias as for the ATTs on

revenues. When τ > 0, emissions decrease and the DiD model yields an upward bias in
magnitude when the specification error tends toward zero. However, when τ < 0, the
combination of a scale effect (β0) and a technique effect (−µz) implies that the ATTs
on firm-level emissions could be either positive or negative. Suppose emissions decrease
despite the increase in revenues, then BiasZDD

ist > 0 since Spilloverist < 0, abstracting
from the specification error. In this case, the bias can push ̂ATTZDD

ist so much upward
relative to the true ATT that it could reverse the sign of it. We summarize these results
in the following Proposition A.4.1:

Proposition. i/ The ATTs on revenues predicted by the DiD model provide information
on the sign of the net regulation cost: sign(β̂DD

y0 ) = −sign(τ).

ii/ If market shares under the counterfactual unregulated regime remain almost identical
to the observed market shares under the regulated regime (hence, ϕ′

fist ≈ ϕfist, Φ′
ist ≈ Φist

and ∆λ′
it ≈ ∆λit), the ATTs on revenues predicted by the DiD model are biased up in

magnitude.

iii/ The ATTs on firm-level emissions predicted by the DiD model is not informative about
the sign of the true effect of the regulation on these emissions.
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Proposition A.4.1 states that the DiD model reveals the correct sign of the net regulation
cost, but it overestimates the ATTs on revenues when we abstract from large changes
in market shares between the regulated and unregulated regimes. If market shares vary
widely between the regulated and unregulated regimes, we can no longer sign the bias
on the ATTs analytically. The ATTs on firm-level emissions predicted by the DiD model
may not reveal the right sign of the true ATTs. Indeed, the estimate of βDD

z0 combines a
scale effect (a change in sales) with a technique effect (a change in emission intensity) and
suffers from a bias due to the omission of within-industry spillovers. If the bias is large,
pushing the scale effect upward, then the sign of the ATTs predicted by the DiD model
may be wrong. We consider below alternative plant-level models that take into account
the existence of multiplant firms.

Second, the LA model yields the following bias in the estimation of the ATTs on revenues:

BiasyLAt =
1

NT
E

∑
f∈ΩT

t

(
exp− ln(yfit/y

′
fit) − exp

−β̂LA
y0 Rfit−β̂LA

y2

∑
k∈Ω∗

it
ϕkitRkit−β̂LA

y5

∑
m∈Υ Φmt

∑
ℓ∈Ω∗

mt
ϕℓmtRℓmt

) .

We decompose the bias into three industry-specific components. First, the specification
error, Spec-Errorit, defined above for the DiD model is also present in the LA model.
Second, the regression error is defined as:

Reg-ErroryLAist = ln

∑f∈Ω∗
it
exp−β̂LA

y0 Rfit∑
f∈Ω∗

it
exp−β0Rfit

+
(
β̂LA
y2 − β2

) ∑
k∈Ω∗

it

ϕkitRkit

+
(
β̂LA
y5 − β5

)∑
m∈Υ

Φmt

∑
ℓ∈Ω∗

mt

ϕℓmtRℓmt.

Third, the weighting error, Weighting-Errorist, which corresponds to the error coming
from using pre-period market shares instead of Sato-Vartia weights is defined as follows:

Weighting-Errorist = β̂LA
y2

( ∑
k∈Ωit

θkitRkit −
∑
k∈Ω∗

it

ϕkitRkit

)

+ β̂LA
y5

(∑
m∈Υ

Θmt

∑
ℓ∈Ωmt

θℓmtRℓmt −
∑
m∈Υ

Φmt

∑
ℓ∈Ω∗

mt

ϕℓmtRℓmt

)
.

We thus obtain:

sign(BiasLAist ) = sign
(
Reg-ErroryLAist + Weighting-Errorist + Spec-Errorit

)
.

As above, the specification error tends toward zero when market shares under the counter-
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factual unregulated regime remain almost identical to the observed market shares under
the regulated regime. Otherwise, its sign is ambiguous. We cannot determine the sign of
the weighting error, which depends on the difference between pre-period revenue shares
and Sato-Vartia weights, themselves being functions of the difference between current and
pre-period revenue shares on a continuing good set. We cannot sign the regression error
in general. Yet, as shown in section A.3.2, pre-period market shares are a correct approx-
imation of Sato-Vartia weights for infinitesimally small changes around the pre-period
equilibrium. As a result, under this condition, the LA model is unbiased. These results
are summarized in the following Proposition A.4.1:

Proposition. i/ The ATTs predicted by the LA model are unbiased if and only if firm-
level price changes relative to the pre-period t0 equilibrium are infinitesimally small.

ii/ Otherwise, the ATTs predicted by the LA model are biased, and the sign of the bias is
ambiguous.

A.4.2 Monte Carlo Experiments

We use Monte Carlo experiments to evaluate the performance of our estimator in a finite-
sample setting and compare to the DiD and LA estimators. The data generating process
is described in section 1.4.3.

For each parameter combination, Figure A.4.1 reports the distribution of the biases in
the estimates of the ATTs for our estimator (in red), for the DiD estimator (in black),
and for the LA estimator (in blue). For our estimator, we find that the distribution of
biases is centered on zero and quite precise. By contrast, we also see that even when
the bias in the DiD estimator is small (for example, the top left panel in Figure A.4.1),
the distribution is clearly centered away from zero. Specifically, we find that the DiD
estimator is biased up in magnitude on average for all parameter combinations (i.e., the
bias is on average negative when µE

t = 0 and positive when µE
t = 0.8). The bias in the

LA estimator can be small, especially with low substitutability (ρ = .8). However, when
varieties are more substitutable (ρ = .95), the LA estimator is severely biased. For the
case with ρ = .95 and µe = .8, the LA estimator yields an ATT that has the wrong sign,
on average. Looking at Figure A.4.1), we see that for these cases, the entire distribution
of estimates for the LA estimator is shifted away from zero.

We explore the biases on ATTs for aggregate emissions in Figure A.4.2.Across all param-
eter combinations, we find that aggregate emissions fall. This is because we assume that
regulation increases the cost of emissions (µz > 0). Hence, even though the regulation
reallocates resources across firms, the direct effect of the regulation on input costs domi-
nates, and total emissions fall. As we can see in Figure A.4.2, our estimator successfully
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Figure A.4.1: Distributions of ATT for revenues at the firm level, Multi-Plant Firms

Notes: Each subfigure plots the distribution of bias in the ATTs for revenues for each estimator across
100 replications for a given parameter combination. The bias is computed as ÂTT −ATT true and

denominated in percentage points (pp).

recovers unbiased estimates of these aggregate effects. By contrast, both the DiD and LA
estimators yield biased estimates for all parameter combinations. For both estimators, the
bias can be either up or down, and the estimated sign can be either positive or negative.

In Appendix section A.4.1, we decompose the bias in the DiD estimator into three com-
ponents: regression error, spillover, and specification error. We also decompose the bias
in the LA estimator into three components: specification error, weighting error, and re-
gression error. Only the specification error is the same for both estimators. Figure A.4.3
reproduces Figure 1.4.1 for these two estimators and explores the sources of their biases
by reporting the average magnitude of each of the three components of the bias, for each
parameter combination. For this set of simulation results, the spillover error dominates
for the DiD estimator whereas the specification error dominates for the LA estimator, and
hence each dictates the sign of the bias. However, this is not true for all simulations. For
instance, Figures A.4.4-A.4.5 present results for an economy with all single-plant firms
and random walk productivity growth. In this set of simulation results, Figure A.4.6
shows that, in some cases, the weighting error can dominate, thereby revealing that it is
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Figure A.4.2: Effects on Aggregate Emissions, Multi-Plant Firms

Notes: This figure plots the average aggregate effect on total emissions relative to the counterfactual
unregulated equilibrium for each estimator across 100 replications against the average of the true

metric, for each parameter combination. The black line corresponds to the 45-degree line.

not possible to sign the bias in the LA estimator in general.

184



-3
9

0
60

Es
tim

at
e 

(%
)

-20 0 26
True ATT (%)

LA
DD
45-degree Line

y ATT
-3

7
0

88
C

om
po

ne
nt

 C
on

tri
bu

tio
n

-20 0 26
True ATT (%)

Specification Error

Regulation Spillover Error

Regression Error

Bias DD

-3
7

0
88

C
om

po
ne

nt
 C

on
tri

bu
tio

n

-20 0 26
True ATT (%)

Specification Error

Weighting Error

Regression Error

Bias LA

Figure A.4.3: Sources of Bias, Multi-Plant Firms

Notes: Left panel reproduces the top left panel of Figure 1.4.1, leaving out the STR estimator. Middle
panel plots the contributions of different sources of bias to the overall bias in the DD estimator for

different parameter combinations. The terms are defined in appendix A.4.1. The average of the true
ATT on revenues by parameter combination is measured on the x-axis. Right panel plots the

contributions of different sources of bias to the overall bias in the LA estimator. In the data generating
process, firms own multiple plants and productivity follows an AR(1) process.
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Figure A.4.4: ATE for revenues and emissions at the firm level, Single-Plant Firms

Notes: Subfigures plot average estimates of treatment effects on revenues (y) and emissions (z) as a
percentage of observed outcomes for each estimator across 100 replications against the average of the
true metric, for each parameter combination. Data generating process assumes single-plant firms and

random walk productivity growth. Left panels show the ATTs for each parameter combination, whereas
right panels show the ATCs, all at the firm level. The black line corresponds to the 45-degree line.
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Figure A.4.5: Effects on Aggregate Emissions, Single-Plant Firms

Notes: This figure plots the average aggregate effect on total emissions relative to the counterfactual
unregulated equilibrium for each estimator across 100 replications against the average of the true
metric, for each parameter combination. The black line corresponds to the 45-degree line. Data

generating process assumes single-plant firms and random walk productivity growth.
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Figure A.4.6: Sources of Bias, Single-Plant Firms

Notes: Left panel reproduces the top left panel of Figure A.4.4, leaving out the STR estimator. Middle
panel plots the contributions of different sources of bias to the overall bias in the DD estimator for

different parameter combinations. The terms are defined in appendix A.4.1. The average of the true
ATT on revenues by parameter combination is measured on the x-axis. Right panel plots the

contributions of different sources of bias to the overall bias in the LA estimator. In the data generating
process, firms own a single plants and productivity follows a random walk.
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A.5 Extension to Oligopoly

A.5.1 Model with Bertrand-Nash competition

In this section, we discuss a modification to our baseline model allowing for oligopolistic
behaviors in the manufacturing sectors. The demand function, the production function,
and the emissions function are unchanged relative to the baseline model. The only model-
ing difference is that firms play a Bertrand-Nash equilibrium in prices. As a result, firms
take into account the impact of their pricing decision on price indices.

Given demand function (1.6) and unit cost function (1.21), profit-maximization yields the
following pricing rule, when firms internalize the effect of their pricing decision on the
CES price index:

pOfit = cfit

[
(ν − 1)− (ν − ρ) θfit + (1− ρ) νθfitΘit

ρ (ν − 1)− (ν − ρ) θfit + (1− ρ) νθfitΘit

]
, (A.3)

where θfit = (pfit/Pit)
−ρ
1−ρ describes the response of the within-industry price index to firm

f ’s price change, and Θit = (Pit/Ψt)
−ν
1−ν describes the response of the sector price index to

industry i’s price index change. The pricing rule thus varies with firm f ’s market share in
industry i and industry i’s market share in sector s at time t. We denote by φfit the term
in brackets in (A.3), which describes firm f ’s markup in this oligopoly setting. Hence,
pOfit = cfitφfit.

When firms have market power, given the pricing rule (A.3), changes in firm f ’s price
between post-regulation period t and pre-regulation base year t0 can be described by:

∆pOfit = ∆cfit +∆φist. (A.4)

Hence, it varies with its own cost changes and its markup changes. Combining (1.6),
(1.10) and (A.4) allows us to compute the changes in revenues between t and t0:

∆yOfit =
ρτ

ρ− 1
Rfit +

ρ

ρ− 1
∆φfit +

ρσ

ρ− 1
∆αfit +

(ν − ρ) τ

(ν − 1) (1− ρ)

∑
k∈Ω∗

it

ϕkitRkit +
(ν − ρ)

ρ (ν − 1)
∆λit

+
(ν − ρ)σ

(ν − 1) (1− ρ)

∑
k∈Ω∗

it

ϕkit∆αkit +
νσ

1− ν

∑
m∈Υ

Φmt

∑
ℓ∈Ω∗

mt

ϕℓmt∆αℓmt

+
ντ

1− ν

∑
m∈Υ

Φmt

∑
ℓ∈Ω∗

mt

ϕℓmtRℓmt +
ν (1− ρ)

ρ (1− ν)

∑
m∈Υ

Φmt∆λmt +∆Yt

+
ν − ρ

(ν − 1) (1− ρ)

∑
k∈Ω∗

it

ϕkit∆φkit +
ν

1− ν

∑
m∈Υ

Φmt

∑
ℓ∈Ω∗

mt

ϕℓmt∆φℓmt

+
ρ

ρ− 1
∆Afit +

(ν − ρ)

(1− ν) (ρ− 1)

∑
k∈Ω∗

it

ϕkit∆Akit +
ν

1− ν

∑
m∈Υ

Φmt

∑
ℓ∈Ω∗

mt

ϕℓmt∆Aℓmt. (A.5)
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Compared to (1.16), equation (A.5) includes additive terms related to firms’ markup
changes. The expression of markup φfit itself depends on parameters ρ and ν, as well as
on market share information. As a result, the effects of being treated and of the spillovers
are no longer homogeneous across firms in the same industry: these impacts will depend
on each firm’s market share and markup. We can no longer apply the same empirical
strategy to estimate treatment effects on revenues as in the baseline model.

The change in emissions from pre-period t0 to period t depends on the changes in revenues,
which differ depending on the competitive environment. We obtain

∆ZO
fit = −µzRfit +∆κt −∆wEt +∆yOfit, (A.6)

where ∆yOfit corresponds to (A.5). To estimate the treatment effects on emissions, the
same empirical strategy as in the baseline model can apply using plant-level regressions.

To estimate the treatment effect on revenues under oligopoly, we can rewrite the log
change in revenues described in (A.5) as:

∆yfit =
ρτ

ρ− 1
Rfit +

ρσ

ρ− 1
∆αfit +

ρ

ρ− 1
ln

 (ν−1)−(ν−ρ)θfit+(1−ρ)νθfitΘit

ρ(ν−1)−(ν−ρ)θfit+(1−ρ)νθfitΘit

(ν−1)−(ν−ρ)θfit0+(1−ρ)νθfit0Θit0

ρ(ν−1)−(ν−ρ)θfit0+(1−ρ)νθfit0Θit0

+ δist + ϵfit,(A.7)

where all terms that are the same within an industry i in sector s are collected into an
industry-time fixed effect δist. Endogeneity concerns emerge from the fact that θfit and Θit

correlate with firm-level productivity shocks, ∆Afit. In the oligopoly context, we could
estimate parameters ρ, ν, σ and τ directly by nonlinear GMM with the following instru-
ments: Λfist =

∑
k∈Ωist,−f

θkist0Rkist for θfit and Γfist =
∑

m∈Υs
Θmt

∑
ℓ∈Ω∗

mt,−f
θℓmst0Rℓmst

for Θit. Doing so, we would use other firms’ treatment intensity within an industry i and
within a sector s, excluding firm f , as an instrument for firm f ’s market share within
industry i and for industry i’s market share within sector s, respectively. These instru-
ments do not respond to firm f ’s productivity shocks (exclusion restriction) and predict
firm f ’s market share in an industry or a sector.

A.5.2 Monte-Carlo experiments for Oligopoly

In this section, we explore the potential role of misspecification bias with respect to strate-
gic behavior. Hence, we simulate the economy assuming all firms engage in Bertrand-Nash
pricing. All other features of the simulations remain the same. We present results in Fig-
ures A.5.1 - A.5.4. We find that, even if firms play Bertrand-Nash, our procedure still
delivers estimates of treatment effects that matches the true values quite well. We can
see minor differences relative to Figures 1.4.1-1.4.2-A.4.2, but misspecifying the nature of
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competition does not appear to generate a noticeable bias.
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Figure A.5.1: ATE for revenues and emissions at the firm level, MP Oligopoly

Notes: Subfigures plot average estimates of treatment effects on revenues (y) and emissions (z) as a
percentage of observed outcomes for each estimator across 100 replications against the average of the

true metric, for each parameter combination. Data generating process assumes firms engage in
Bertrand-Nash competition on prices. Firms own multiple plants and productivity follows an AR(1)
process. Left panels show the ATTs for each parameter combination, whereas right panels show the

ATCs, all at the firm level. The black line corresponds to the 45-degree line.
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Figure A.5.2: Distributions of ATEs for revenues at the firm level, MP Oligopoly

Notes: Each subfigure plots the distribution of bias in the ATTs for revenues for each estimator across
100 replications for a given parameter combination. The bias is computed as ÂTT −ATT true and

denominated in percentage points (pp). Data generating process assumes firms engage in Bertrand-Nash
competition on prices. Firms own multiple plants and productivity follows an AR(1) process.
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Figure A.5.3: ATE for emissions at the plant level, MP Oligopoly

Notes: Subfigures plot average estimates of treatment effects on emissions (z) at the plant level as a
percentage of observed emissions for each estimator across 100 replications against the average of the

true treatment effect, for each parameter combination. The first panel plots the ATTTs for each
parameter combination, the second ATCTs, and the third ATCCs. The black line corresponds to the

45-degree line. A plant is labeled “TT” if it is regulated in period 2, “CT” if the plant is unregulated in
period 2, but part of a firm with regulated plants in period 2, and “CC” if the plant is part of a firm

with no regulated plants. Data generating process assumes firms engage in Bertrand-Nash competition
on prices. Firms own multiple plants and productivity follows an AR(1) process.
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Figure A.5.4: Effects on Aggregate Emissions, Oligopoly

Notes: This figure plots the average aggregate effect on total emissions relative to the counterfactual
unregulated equilibrium for each estimator across 100 replications against the average of the true
metric, for each parameter combination. The black line corresponds to the 45-degree line. Data

generating process assumes firms engage in Bertrand-Nash competition on prices. Firms own multiple
plants and productivity follows an AR(1) process.
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Appendix B

Appendix to Chapter 2

B.1 Descriptive Statistics on Pollution from the Indus-

try

Over the last decades, several regulations have been implemented in France to reduce
atmospheric pollution. As a result, national levels of emissions have decreased in the
past. Figure (B.1.1), constructed from the European Emissions Database for Global
Atmospheric Research (EDGAR), shows this decrease for particulate matters 10 and
2.5 as well as for sulfur dioxide. However, observed levels of pollution in France are
still well above World Health Organization (WHO) guidelines in several areas over the
country. Using data on air concentration in PM10, PM2.5 and SO2 from ground monitors
installed in diverse locations, I illustrate this situation on Figure (B.1.2) and show that
a substantial fraction of monitors measures concentrations above the 24-hour and annual
guidelines from the WHO guidelines. There are many sources for this pollution. Figure
(B.1.1) also illustrates the distribution of the pollution sources. One can observe that for
the three pollutants highlighted, PM10, PM2.5 and SO2, industrial activities represent a
large fraction of the emissions. Tables (B.1.1), (B.1.2) and (B.1.3) present the respective
contributions of the main polluting activities: in 2012, industrial activities contributed to
respectively 23%, 40% and 42% of PM10, PM2.5 and SO2 national emissions.

% Share from: 1990 2000 2012

Industry 19.4 21.4 23.0
Energy 6.7 4.8 3.8

Transport 12.2 15.4 9.4
Residential 40.1 34.6 39.1
Agriculture 17.2 22.5 24.6

Waste 4.4 1.3 0.1

Table B.1.1: Distribution of PM10 Emissions Across Activities (data from EDGAR timeseries):
in 2012, 23% of PM10 emissions result from industrial activities.
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Figure B.1.1: 1990-2012 Evolution of PM10, PM2.5 and SO2 emissions by Activities (data from
EDGAR timeseries): for these pollutants, a substantial fraction of national emissions still result

from industrial activities.

% Share from: 1990 2000 2012

Industry 30.5 28.0 39.6
Energy 10.8 7.5 5.7

Transport 37.6 46.3 33.2
Residential 12.0 8.3 10.6
Agriculture 5.5 9.0 10.8

Waste 3.6 1.0 0.1

Table B.1.2: Distribution of PM2.5 Emissions Across Activities (data from EDGAR
timeseries): in 2012, almost 40% of PM2.5 emissions result from industrial activities.

% Share from: 1990 2000 2012

Industry 32.3 28.8 41.7
Energy 43.0 47.2 31.9

Transport 2.7 3.9 5.5
Residential 21.3 19.6 20.3
Agriculture 0.2 0.2 0.5

Waste 0.5 0.4 0.2

Table B.1.3: Distribution of SO2 Emissions Across Activities (data from EDGAR timeseries):
in 2012, almost 42% of SO2 emissions result from industrial activities.
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Figure B.1.2: Annual and 24-hour Mean Concentration Measurement from French Ground
Monitors in 2012 (data from the EEA AirBase V8): for PM10, PM2.5 and SO2, a substantial

fraction of ground monitors measures concentrations above WHO guidelines.
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B.2 Air Quality Regulations in France

Air pollution regulation in France is based on European standards. Limits for maximum
air concentration of various pollutants and reduction objectives are set at the EU level
(directives 2004/107 and 2008/50/CE) to be enforced in each Member States. In turn,
they must implement specific action plans to remain within these limits and reach the
air quality objectives. In the case of France, these actions are taken both by central and
local authorities.

The French government regulates pollutant emissions through tax instruments and regu-
latory standards (Hauvuy & Riedinger, 2005; Bougon & Lavergne, 2019). The main tax
instrument is the General Tax on Polluting Activities (TGAP), which is a national tax
on the quantity of pollutant emitted per year. In 2016, more than a thousand installa-
tions were subjects to this tax (IGF, 2018). However, the air pollution component of the
TGAP is limited,1 and does not constitute the most efficient instrument enforced to limit
air pollution (Millock & Nauges, 2006; IGF, 2018). Frameworks regulating industrial
emissions are mainly set at a national level. However, their implementation is usually
enforced by local authorities. For instance, the main regulatory framework for polluting
activities is the ICPE regulation, standing for Plants Classified for the Protection of the
Environment. The ICPE is a set of norms governing polluting plants activities in rela-
tion with their impact on the environment. Notably, it requires that an opening permit
is delivered by the authority of the departmental prefects for any polluting plant under
the condition of implementing specific technology standards and after conducting a local
survey of the local population.2 Moreover, some of these classified plants may fall under
the EU Directive on Industrial Emissions (IED).3 This is the case if they are running
polluting installations with capacities above thresholds set in the IED. The main obliga-
tion enforced under this regulation is the Best Available Technique (BAT): authorizations
for industrial installations are conditional to the use of the least pollution intensive tech-
niques. In that respect, the current national regulation focuses mainly on the largest
plants, but any smaller polluting plant not covered by the ICPE regulation is regulated
at the municipality level.

Furthermore, since the LAURE law, adopted in 1996, other local authorities can use spe-
cific measures to improve local air quality and reach air quality national targets. For

1In 2016, e50 millions were collected compared to the e3.8 billions collected for the carbon component
of the energy consumption tax in 2016 (DGEC, 2016)

2These prefects are the regional authorities for the “départements” which are NUTS 3 geographic units
(larger than commuting zones).

3Since 2010, the Industrial Emissions Directive has replaced the Integrated Pollution Prevention and
Control Directive. The guidelines are similar and aim at preventing air, water, and soil pollution.
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instance, starting in the early 2000’s, several “Atmospheric Protection Plans” (PPA) have
been implemented in different areas. Within their respective application zone, many of
these plans adopted differentiated measures for more versus less densely populated areas.
Some of these plans introduced more stringent environmental standards for the manufac-
turing industries, especially in agglomerations above a certain threshold of inhabitants.
For instance, the three consecutive PPAs for the Paris region mandated lower industrial
NOx and PM emission caps relative to the national caps. These plans also implement
emergency responses when air concentration of certain pollutant exceed national and Eu-
ropean standards. Figure (B.2.1) shows the distribution of existent PPA across commuting
zones4 and highlights the positive relationship between the size of commuting zones and
their probability to lie in the perimeter of an PPA.

Finally, both national and local regulations mandate that when air quality reaches regula-
tory thresholds, emergency actions must be launched by the departmental prefect. Figure
(B.2.2) illustrates the positive relationship between the size of these areas and the number
of emergency actions cases accounted for since 2017.

4PPA are adopted at a geographic level potentially lower than the commuting zone, which is a sta-
tistical construction. The map in Figure (B.2.1) displays commuting zone where at least one PPA is
implemented in its sub-areas.
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B.3 Illustrative Framework Appendix

In each city j, the quantity of the tradable good produced is:

Qj = Zα
j (ϕ

L
j L

prod
j )1−α, (B.1)

with Lprod
j the local population employed for production, ϕL

j the local labor productivity
and Zj the local quantity of emissions. Each input has the respective unit price wj and tj.
Moreover, remember that due to the assumption of agglomeration economies local labor
productivity ϕL

j is equal to bjL
ν
j . Local firms solve the cost minimization program:

min
Zj ,Lj

Lprod
j wj + Zjtj s.t. Qj = Zα

j (ϕ
L
j L

prod
j )1−α. (B.2)

FOCs with respect to labor and emissions yield the relative labor to emissions intensity,
which is city specific and depends on the local ratio of input prices:

Zj

Lprod
j

=
α

1− α

wj

tj
. (B.3)

Agglomeration economies are an externality and are not taken into account by firms in
their cost minimization problem. That is to say that each firm is atomistic and does not
consider that fact that the higher is local employment the larger labor productivity will
be. From this proportion of each input in production, one can compute the marginal
production price cj:

cj = κ(α)tαj

(
wj

ϕL
j

)1−α

, (B.4)

with κ(α) = (1−α)1−α

αα
which I drop in the following computations for simplicity and without

loss of generality (α remains a constant in the equilibrium and the central planner’s
optimization problem).

Given the assumption of perfect competition and not mark-up with a fixed output price
fixed to 1 on foreign markets, we then have in equilibrium that cj = 1 which gives the
expression for equilibrium wages:

wj = bjL
ν
j t

− α
1−α

j . (B.5)

The total income accounts for payments for production labor and labor employed for
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abatement (or ). As a result one can write:

wjLj = wjL
prod
j + tjZj, (B.6)

which yields the formula for local emissions as function of local population, local wages
and local emission cost:

Zj = α
wjLj

tj
. (B.7)

Given that the output price is the same across cities and normalized to 1, each worker’s
budget constraint can be written as:

wj × 1 = 1× cj. (B.8)

Using equations (B.5), (B.7) and (B.8) to substitute in the representative worker’s utility
function we get:

uj = ajb
1−γ
j L−θ

j t
γ−α
1−α

j , with θ = δ + γ − ν(1− γ). (B.9)

Given the assumption of free migration of workers, utility is equalized across cities and
I note its equilibrium level ū. The national population is fixed and normalized to 1, so
that: ∑

j∈C

Lj = 1. (B.10)

Using the fact that equation (B.9) can be rewritten as:

Lj =

[
ū−1ajb

1−γ
j t

γ−α
1−α

j

] 1
θ

, (B.11)

which illustrates that there exist a unique spatial equilibrium if and only if θ ̸= 0. This
condition can be expressed as a condition on the elasticity of the pollution externality:
γ ̸= − δ−ν

1+ν
. Assuming that pollution is a congestion force (i.e. γ > 0), this condition

ensures that the pollution externality does not exactly offset the combined effect of general
congestions effect and agglomeration economies. When congestion effects strictly outweigh
agglomeration economies, this condition always holds. We consider that this is always
the case and that θ > 0 (which is supported by empirical evidence and by the estimates
obtained in section 2.4). I substitute in equation (B.10) and extract the equilibrium
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welfare:

ū =

[∑
j∈C

a
1
θ
j b

1−γ
θ

j t
1
θ

γ−α
1−α

j

]θ
. (B.12)

Finally I solve that optimization program:

max
{ti}i∈C

ū(t1, ..., tC) s.t.
∑
j∈C

tj = 1, (B.13)

by computing the first and second order conditions of the Lagrangian:

L = ū(t1, ..., tC) + λ

(
C −

∑
j∈C

tj

)
, (B.14)

with λ the Lagrangian multiplier. Computing the derivatives of ū, I find:

tj
ū

∂ū

∂tj
=

γ − α

1− α
Lj (B.15)

and
∂2ū

∂t2j
=

1

tj

∂ū

∂tj

[(
γ − α

1− α
− 1

θ

γ − α

1− α

)
Lj −

(
1− 1

θ

γ − α

1− α

)]
. (B.16)

Then, the first order conditions are:

∀j ∈ C, ū
θ−1
θ
γ − α

1− α
a

1
θ
j b

1−γ
θ

j t∗j
1
θ

γ−α
1−α

−1 = λ, (B.17)

from which wet get equation (2.7).

The concavity condition that ensures that the set of emission taxes identified in equation
(2.7) is unique and corresponds to a maximization of workers’ welfare is:

∀j ∈ C,
∂2ū

∂t2j
< 0. (B.18)

which can be expressed as:(
γ − α

1− α

)2(
1− 1

θ

)
Lj −

(
γ − α

1− α

)(
1− 1

θ

γ − α

1− α

)
< 0. (B.19)

In particular, the left-hand side term of inequation (B.19) is a linear function of each
Lj with variations that only depend on the sign of θ − 1. We are looking for the set of
parameters for which the welfare function is concave over any set of cities (in particular,
the concavity condition must hold for city sizes infinitely close to 0 or equal to 1, if there is
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a unique city). Consequently, if θ > 1, we only need
(
γ−α
1−α

)2 (
1− 1

θ

)
<
(
γ−α
1−α

) (
1− 1

θ
γ−α
1−α

)
.

Respectively, if 0 < θ ≤ 1, we only need 0 ≤
(
γ−α
1−α

) (
1− 1

θ
γ−α
1−α

)
.

If θ > 1, the condition holds if and only if 1 > γ > α. Indeed, if θ > 1 the LHS is positive,
so the RHS must also be positive so either: (1) γ−α

1−α
< 0 and 1 < 1

θ
γ−α
1−α

, or (2) γ−α
1−α

> 0 and
1 > 1

θ
γ−α
1−α

. The first option is not possible, because if γ−α
1−α

< 0 then 1
θ
γ−α
1−α

< 0 (because
θ > 0 for an equilibrium to exist) and cannot be higher than one. The second option is
necessary for the condition to hold. As a result,

(
γ−α
1−α

)2 (
1− 1

θ

)
<
(
γ−α
1−α

) (
1− 1

θ
γ−α
1−α

)
is

equivalent to 1 > γ > α (combined with θ > 1, it also implies 1 > 1
θ
γ−α
1−α

). If 0 < θ ≤ 1,
the condition holds if and only if 1 > γ > α and θ > γ−α

1−α
. Indeed, γ−α

1−α
is necessarily

positive because θ > 0 and we cannot have γ−α
1−α

< 0 and 1 < 1
θ
γ−α
1−α

. As a result, when
0 < θ ≤ 1 the condition is equivalent to γ > α and θ > γ−α

1−α
(which implies that γ < 1).

Finally, note that θ > γ−α
1−α

is implied when 1 > γ > α and θ > 1. As a conclusion, there
is a unique solution to (B.13) if and only if 1 > γ > α and θ > γ−α

1−α
.
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B.4 Relaxing the Free Migration Assumption

Assume all the hypotheses of the simplified framework. The only difference is that, now,
the distribution of workers across locations is fixed, meaning that for every location j, Lj is
exogenously given. This assumption means that there are not adjustment of populations
to local changes of wage or air quality. This corresponds to a “very” short-term version of
the model where movement frictions are infinitely high.

In this small extension I consider that the central planner still tries to maximize welfare by
choosing the distribution of relative emission taxes that maximizes the weighted average
welfare per capita. Indeed, without free migration, welfare is not equalized across locations
anymore. Still, the central planner has to maximize an objective function. Summing the
local welfare levels using local populations as weight corresponds to computing average
welfare per capita. It puts the same weight on each worker welfare. In the equilibrium
with free migration, it corresponds exactly to the common level of welfare reached in all
locations and ũ = ū.

We note this alternative objective function ũ and define it as:

ũ =
∑
j∈C

Ljuj =
∑
j∈C

LjajL
−δ
j Z−γ

j cj (B.20)

This extension constitute the alternative to the free migration model. Both are extreme
and in reality one may find a situation that is between these two cases. Introducing costs
of moving that may allow endogenous distribution of labor across space would require
adding a dynamic side to the model. Such assumption would also call for the companion
extension to heterogenous workers to encompass the empirical fact that workers with
higher income are more likely to adjust to local pollution than low income workers;

Keeping the other assumptions of the simple model, we have:

wj = bjL
ν
j t

− α
1−α

j (B.21)

Zj = α
wjLj

tj
(B.22)

Replacing the ũ, I get that the weighted average per capita welfare is (without constant):

ũ =
∑
j∈C

L1−θ
j ajb

1−γ
j t

γ−α
1−α

j (B.23)
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with θ = γ + δ − ν(1− γ).

Assuming that the central planner solves:

max
{tj}j∈C

ũ s.t.
∑
j∈C

tj = 1 (B.24)

She finds the following distribution of relative emission taxes:

∀(j, i) ∈ C2,
t∗j
t∗i

=

(
aj
ai

) 1−α
1−γ
(
bj
bi

)1−α(
Lj

Li

) 1−α
1−γ

(1−θ)

(B.25)

Using estimated elasticities this imply that optimal taxes should be higher in larger cities
and cities more productive and with higher amenities which is in line with the result
obtained when free migration is assumed.
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B.5 Estimation Appendix

B.5.1 Building Plant-Level Pollutants Emissions from Energy Sur-

veys

Pollutant PCC Nb. Obs.
SO2 .1929* 1060
PM10 .7758* 45
NOX .8192* 1734
COVNM .2143* 4689
CO .7898* 313

Table B.5.1: Pearson correlation coefficients between actual emissions values from the E-PRTR
and estimated values from the EACEI survey (* indicates significance at the 1% level).

B.5.2 Estimation of the Sector Specific Emission Intensities

Assuming that for a plant i, installed in city c and producing goods from sector s, that
has an intrinsic productivity equal to ϕics production follows qics = zαs

icsl
1−αs
ics ϕ1−αs

ics and
that it faces demand qics = kcsp

−σs
ics , where pics is the price charged.

As I do not observe the distribution of inputs across destination, I abstract from the fact
the plants may face distinct demand functions in each destination (in the case where trade
between cities is costly). This assumption is mainly due to data constraint but considering
that, in practice, within-country trade costs are low, it is also acceptable. The variable
kcs encompasses both the size of the output market and the level of competition on this
market. What is important is that all plants within the same region face the same kcs.

Writing the expression for plant revenues:

rics = picsqics (B.26)

= k
1
σs
cs q

σs−1
σs

ics (B.27)

= k
1
σs
cs

(
zαs
icsl

1−αs
ics ϕ1−αs

ics

)σs−1
σs (B.28)

Based on the standard results from monopolistic competition with CES demand, markups
are fixed and depend on σs. Based on the standard results of cost minimization under
Cobb-Douglas production functions, plant-level expenditure shares across inputs are fixed
and given by αs. These two results combined allow the following formulation of the
relationship between revenues and employment:
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rics =
σs

σs − 1

1

1− αs

wicslics (B.29)

with wics the plant-specific unit cost of labor. In the main model of this paper I make
the assumption that this cost is the wage and is the same across sectors and firms within
a city. However, in this appendix on the estimation of emission elasticities, I temporarily
relax this assumption to show that if, in reality, there are plant specific shocks on wages
(which is likely to be the case) it does not threaten my estimation strategy.

Substituting revenues in (B.26) using (B.29):

σs

σs − 1

1

1− αs

wicslics = k
1
σs
cs

(
zαs
icsl

1−αs
ics ϕ1−αs

ics

)σs−1
σs (B.30)

⇒ l
1−(1−αs)

σs−1
σs

ics =
σs − 1

σs

(1− αs)k
1
σs
cs w

−1
icsϕ

(1−αs)
σs−1
σs

ics z
αs

σs−1
σs

ics (B.31)

⇒ lics =

[
σs − 1

σs

(1− αs)k
1
σs
cs

] 1

1−(1−αs)
σs−1
σs z

αs
σs−1
σs

1−(1−αs)
σs−1
σs

ics

(
w−1

icsϕ
(1−αs)

σs−1
σs

ics

) 1

1−(1−αs)
σs−1
σs

(B.32)

which can be simplified as:

lics = k̃cs(kcs)z
αs(σs−1)

1+αs(σs−1)

ics ϕ̃ics(ϕics, wics) (B.33)

with k̃cs a function only of kcs, so common to all plants within a city-sector pair, and ϕ̃ics

a function of plant specific productivity and wage shocks.

Using the previous relationship, I estimate:

log licst = β0s + β1s log zicst + µt + ρics + ϵicst (B.34)

to retrieve β1s = αs(σs−1)
1+αs(σs−1)

. In introduce time fixed-effects, µt, and plant fixed effects,
ρics.

However, unobserved shocks on productivity and wages at the plant level are implicitly
included in the residual ϵicst and are correlated with input use licst and zicst, OLS esti-
mates are biased. This is a sort of “transmission bias” which is frequent in the literature
estimating production functions. Th only difference here is that I do not estimate the
production function using revenues on the left-hand side. This is due to not observing
revenues at the plant level but only at the firm level. Indeed, I also only observe emissions
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of atmospheric pollutants at the plant level for subsets of plants within firms. Using plant
and firm level observations in the same equation would force me to drop observations
from multi-plants firms. As a result, the estimation sample would be too small.

I rely on an IV approach to estimate β1s. I build an instrument that uses exogenous
shocks on fuel prices as source of variation of plant-level emissions. This instrument is
a fixed-weight energy price index that measures the plant-specific exposure to variation
in fuels prices based on each plant distribution of energy consumption across fuel types
in the first period where it is observed. I build on Sato et al. (2019) to compute this
instrumental variable.

FEPIist =
∑

f∈Ωfuels

ωf,ist0pf,st (B.35)

where FEPIist is the plant-specific energy price index build from plant i share of energy
expenditures in fuels f ∈ Ωfuels (coal, natural gas, electricity, etc.) in period t0 and
pf,st the specific fuel price common to all plants in sector s in period t. The exclusion
restriction requires in this case that plant specific shares of expenditures across fuels are
not correlated with unobserved shocks that are included in ϵicst. Given (B.33), shocks in
the residual only comes from demand shocks that are common to all plants, shocks on
plant specific wage and shocks on plant specific productivity. Therefore, the exclusion
restriction is, in this case, likely to be verified.
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B.6 Application to France Appendix

B.6.1 Sources of Equilibrium Data

Empirical Distribution of Wages Across Commuting Zones: I use the distribu-
tion of average hourly wages at the commuting zone level for 2012 from the INSEE dataset
publicly available at https://www.insee.fr/fr/statistiques/2021266. This data is
aggregated geographically by the INSEE using worker level data from the Social Data
Annual Declaration (DADS - Déclaration annuelle des données sociales). I use the 2010
commuting zones (Zones d’Emploi) definition and normalize mean hourly local wages so
that the average over all commuting zones is equal to one.

Empirical Distribution of Populations Across Commuting Zones: I use the
distribution of working population at the “Communes” level for 2012 from the INSEE
dataset publicly available at https://www.insee.fr/fr/statistiques/2128672. The
“Communes” is one of the most disaggregated administrative geographic unit in France.
There are around 36,000 of them over the territory. The 2010 commuting zone’s (Zones
d’Emploi) definition is a partition of the set of French “Communes” in around 300 ar-
eas where inhabitants both work and live. I use the correspondence table between
“Communes” and Zones d’Emploi from the INSEE and publicly available at https:

//www.insee.fr/fr/information/2114596. I sum working populations at the “Com-
munes” level to get aggregated working populations at the Zones d’Emploi level. Finally
I normalize local populations so that the total national working population over the whole
set of commuting zones is equal to one.

Empirical Distribution of Emissions Across Commuting Zones: I use data from
the National Spatialized Inventory (“Inventaire National Spatialisé”) which is built by the
French ministry in charge of environmental issues. The inventory is publicly available
at http://emissions-air.developpement-durable.gouv.fr/. I exported data for the
2012 platform (data is also available for 2004 and 2007) for PM10, PM2.5, SO2, NOx
and COVNM. These datasets provide amounts of pollutants emitted disaggregated at the
“Communes” level and across broad sectors of activities following the Selected Nomencla-
ture for Air Pollution (SNAP). I aggregate emissions at the commuting zone level by using
the correspondence table corresponding to the 2010 definition of commuting zones and
summing emissions within commuting zones across “Communes”. I keep emissions from
codes 3 and 4 of the SNAP which correspond to emissions from industrial combustion
plants and industrial processes without combustion. These two codes broadly correspond
to emissions due to the manufacturing industries. I aggregate over these two emission
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sectors by summing emissions. Figure(B.6.1) displays the correlation between levels of
emissions of available pollutants. One can observe that the correlation is pretty strong. I
only retain the distribution of PM10 emissions as the empirical data for the distribution
of my model’s representative pollutant across commuting zones.
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Figure B.6.1: Correlation Between Emissions of Harmful Industrial Pollutants at the
Commuting Zone Level

B.6.2 Descriptive Statistics on Equilibrium Data

B.6.3 Descriptive Statistics on Computed Local Characteristics
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Wages Populations PM2.5 Emissions

count 303.000 303.000 303.000
mean 1.000 0.003 1.000

std 0.101 0.009 1.072
min 0.847 0.000 0.027
25% 0.938 0.001 0.352
50% 0.973 0.001 0.697
75% 1.037 0.003 1.256
max 1.585 0.136 9.830

Table B.6.1: Descriptive Statistics on the Spatial Distributions of Wages, Populations and
Emissions across French Cities

Highest Populations Highest Wages Highest Emissions

Paris Saint-Quentin-en-Yvelines Dunkerque
Lyon Paris Thionville

Toulouse Saclay Bordeaux
Roissy - Sud Picardie Rambouillet Istres - Martigues

Bordeaux Versailles Nantes
Marseille - Aubagne Poissy Toulouse

Saclay Cergy Saint-Dié-des-Vosges
Nantes Marne-la-Vallée Lyon
Lille Créteil Marseille - Aubagne

Rennes Aix-en-Provence Nancy

Table B.6.2: Top Ten Cities with Highest Populations, Wages and Emissions

Lowest Populations Lowest Wages Lowest Emissions

Sartène - Propriano Saint-Flour Corte
Corte Mauriac Issoudun

Ghisonaccia - Aléria Sartène - Propriano Loches
Le Blanc Le Blanc Figeac
Ambert Sarlat-la-Canéda L’Aigle

Calvi - L’Île-Rousse Brioude Vire
Loches Lozère Menton - Vallée de la Roya

Issoudun Villeneuve-sur-Lot Ghisonaccia - Aléria
Avallon Saint-Amand-Montrond Le Blanc

Porto-Vecchio Ussel Mauriac

Table B.6.3: Bottom Ten Cities with Lowest Populations, Wages and Emissions
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Amenities Productivities Emission Costs

count 303.000 303.000 303.000
mean 0.003 1.000 1.000

std 0.010 0.160 1.173
min 0.000 0.785 0.075
25% 0.000 0.906 0.521
50% 0.000 0.956 0.812
75% 0.002 1.045 1.153
max 0.087 2.044 18.059

Table B.6.4: Descriptive Statistics on the Spatial Distributions of Amenities, Productivities
and Emission Costs across French Cities

Highest Amenities Highest Productivities Highest Emission Costs

Bordeaux Saint-Quentin-en-Yvelines Paris
Dunkerque Paris Saclay

Nantes Saclay Orly
Lyon Rambouillet Marne-la-Vallée

Marseille - Aubagne Versailles Créteil
Toulouse Poissy Cergy
Avignon Cergy Lille

Roissy - Sud Picardie Marne-la-Vallée Poissy
Nancy Créteil Lyon
Rennes Aix-en-Provence Cannes - Antibes

Table B.6.5: Top Ten Cities with Highest Amenities, Productivities and Emission Costs

Lowest Amenities Lowest Productivities Lowest Emission Costs

Saint-Quentin-en-Yvelines Saint-Flour Saint-Dié-des-Vosges
Corte Mauriac Dunkerque

Versailles Sartène - Propriano Thionville
Rambouillet Villeneuve-sur-Lot Istres - Martigues

Issoudun Sarlat-la-Canéda Maurienne
Loches Brioude La Teste-de-Buch
L’Aigle Lozère Sartène - Propriano
Figeac Le Blanc Péronne

Étampes Saint-Amand-Montrond Dole
Ghisonaccia - Aléria Bressuire Jonzac - Barbezieux-Saint-Hilaire

Table B.6.6: Top Ten Cities with Lowest Amenities, Productivities and Emission Costs
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Figure B.6.2: Histograms of Spatial Distributions of Wages, Populations and Emissions across
French Cities

All variables are in log.
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Figure B.6.3: Cumulative Distributions of Populations and Emissions across French Cities
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populations and emissions is plotted.
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Figure B.6.5: Histograms of Spatial Distributions of Wages, Populations and Emissions across
French Cities

All variables are in log.
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Appendix C

Appendix to Chapter 3

C.0.1 Timing of Exports
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Mean Std. Deviation ∈
Nb. Months [0, 1[ [1, 2[ [2, 3[ [3, 4[ ≥ 4 1ce 2ce Total

∈ [1, 2[ 19.59 4.23 0.67 0.18 0.06 . 1.54 26.27
96.89 1.31 0.24 0.13 0.03 . 0.01 98.61

∈ [2, 3[ 0.47 3.39 2.56 0.79 0.67 . 0.93 8.80
0.00 0.38 0.16 0.10 0.15 . 0.00 0.78

∈ [3, 4[ 0.18 0.62 1.91 1.38 1.22 . 0.69 6.00
0.00 0.02 0.05 0.06 0.10 . 0.00 0.22

∈ [4, 5[ 0.09 0.20 0.73 1.06 1.81 . 0.55 4.44
0.00 0.00 0.01 0.02 0.06 . 0.00 0.09

∈ [5, 6[ 0.07 0.09 0.28 0.54 2.01 . 0.51 3.50
0.00 0.00 0.00 0.01 0.08 . 0.00 0.09

∈ [6, 7[ 0.06 0.07 0.16 0.25 1.89 . 0.42 2.86
0.00 0.00 0.00 0.00 0.03 . 0.00 0.04

≥ 7 0.27 0.21 0.40 0.43 10.80 . 5.93 18.04
0.00 0.00 0.00 0.00 0.09 . 0.03 0.12

Total 20.72 8.82 6.71 4.64 18.47 30.08 10.58 100.00
96.89 1.70 0.45 0.32 0.54 0.05 0.04 100.00

This table displays the repartition of exporting firms according to the number of months between two of
their exports. For each categorie, there is the percentage of the total number of distinct firms appearing
in the trade panel (217412 firms) and in italic if the fraction of total export values that this categorie
represents.

Table C.0.1: Descriptive Statistics - Trade Data : Timing Exports
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C.0.2 Extended Tables - Baseline Results

Value Quantity Export Status

OLS 2SLS OLS 2SLS OLS 2SLS
(1) (2) (3) (4) (5) (6)

logPM2.5t∈[−2,0] -0.102* -0.457 -0.043 -0.647** 0.000 -0.003
(0.062) (0.333) (0.053) (0.321) (.) (0.007)

Obs. 2,797,719 2,797,719 2,766,517 2,766,517 2,797,719 9,969,875
FS F-Stat. 80 80 11,108
* p<0.1, ** p<0.05, *** p<0.01 - Standard errors, clustered by firm-activity, are reported in parenthesis. PM2.5
concentrations are measured in µg/m3. The dependent variable is: for columns (1) and (2) the logarithm of export
values in euros, for columns (3) and (4) the logarithm of the export quantities in kilograms, and for columns (5) and
(6) a dummy variables indicating whether the firm exported in this given month. All regressions control for weather
variables temperature and precipitation. Observations are weighted using export values.

Table C.0.2: Effects of PM2.5 Pollution on Firm-level Exports: Weighted Regression

C.0.3 Heterogeneity Across Manufacturing Activities
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Activities Value Quantity Export Status
Agriculture -.3 -.16 -.03
196,172 obs. (.23) (.24) (.03)
Arts, entertainment and recreation .57 1 .13**
23,317 obs. (1.03) (1.1) (.05)
Communication .16 -.39 -.02
186,282 obs. (.41) (.4) (.02)
Energy –5.42 –5.42 -.25
152 obs. (6.57) (6.57) (.17)
Manufacturing - Basic Metals .12 -.16 -.03
150,226 obs. (.6) (.7) (.04)
Manufacturing - Beverages -.37*** -.43*** -.05**
260,664 obs. (.14) (.14) (.02)
Manufacturing - Chemicals .13 .11 .01
372,096 obs. (.17) (.18) (.02)
Manufacturing - Coke and Refined Petroleum Products .63 .92 -.03
31,567 obs. (.81) (.87) (.06)
Manufacturing - Computers, Electronic, & Optical -.14 -.22 -.01
363,359 obs. (.21) (.23) (.01)
Manufacturing - Electrical Equipment -.07 -.05 -.01
345,965 obs. (.27) (.3) (.02)
Manufacturing - Fabricated Metal Products .67 .39 -.05**
452,184 obs. (.46) (.51) (.02)
Manufacturing - Food -.14 -.28 0
247,291 obs. (.19) (.21) (.02)
Manufacturing - Furniture -.65 -.63 .03
115,387 obs. (.71) (.68) (.02)
Manufacturing - Leather .09 .22 0
145,115 obs. (.38) (.41) (.02)
Manufacturing - Machinery .03 .09 -.03*
558,333 obs. (.28) (.33) (.01)
Manufacturing - Motor Vehicles .05 .16 -.01
200,772 obs. (.38) (.44) (.01)
Manufacturing - Non-metallic Mineral Products .43 .05 -.01
179,739 obs. (.41) (.41) (.02)
Manufacturing - Other Manufacturing -.59** -.53* -.04***
282,914 obs. (.28) (.31) (.02)
Manufacturing - Other Transport Equipment .37 .55 -.01
74,811 obs. (.51) (.56) (.02)
Manufacturing - Paper -.08 .15 -.02
195,723 obs. (.34) (.34) (.02)
Manufacturing - Pharmaceuticals .21 .65 -.01
63,485 obs. (.41) (.45) (.04)
Manufacturing - Recorded Media .15 -.17 .08
3,589 obs. (2.09) (2.67) (.1)
Manufacturing - Rubber & Plastics -.13 -.1 -.01
424,311 obs. (.23) (.25) (.02)
Manufacturing - Textiles .11 .18 -.02
213,930 obs. (.29) (.28) (.02)
Manufacturing - Tobacco –3.36 –1.41 -.23
856 obs. (3.2) (3.36) (.22)
Manufacturing - Wearing Apparels –1.05*** -.99*** -.02
206,639 obs. (.36) (.36) (.02)
Manufacturing - Wood -.24 -.67 .01
136,617 obs. (.42) (.42) (.03)
Mining .24 -.18 .05
39,646 obs. (.66) (.85) (.05)
Other service activities 49.39*** –32.31*** -.43
4 obs. (0) (0) (.27)
Scientific and technical activities –1.95 1.74 .11
3,251 obs. (2.84) (2.82) (.07)
Water & waste management .16 .02 .07
59,117 obs. (.62) (.69) (.06)

* p<0.1, ** p<0.05, *** p<0.01 - This table presents the results of estimating equation (3.2) at the activity level. We split firm-level exports
according to NAF 2-digits level. As in the baseline strategy, we estimate the effect of exposure to PM2.5 concentrations averaged over the
three months preceding the export. Numbers are in bold when significant. We report the number of positive exports for each activity.

Table C.0.3: Effects of Pollution on Exports Across Activities
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