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     Abstract 

 

 

Crude oil water content is the source of significant problems in petroleum industry. Efficient 

oil and gas transportation is therefore a major challenge that must be addressed by the energy 

sector in order to reduce the cost of energy transportation and protect installations from 

corrosion which lead to a reduction of the total carbon footprint of the industry. It is therefore 

crucial to consider new concepts to investigate separation of water droplets suspended in oil 

medium. External forces can be applied to improve the efficiency of the separation process. 

The interactions between this multi-phase system and the electric and thermal fields are thus 

rising concerns. Hence, the aforementioned system must be modeled as multi-phase, multi-

physics, and multi-scale system. The objective of this thesis is to examine the dynamics of 

suspended fluids from a fundamental physics point of view using the the most frequently used 

mesh-less numerical strategy in Computational Fluid Dynamics (CFD) literature, called 

smoothed particle hydrodynamics (SPH). The interaction between constituents of the  multi-

phase system at the fluid-fluid interface as well as the effects of electrohydrodynamics (EHD) 

and thermocapilarity (TC) on the system need to be better clarified. Additionally, the multi-

scale nature of the spatial and temporal scales involved represents a numerical simulation 

challenge and requires particular treatment. This thesis aims to initiate a numerical 

understanding of the coupled EHD-TC phenomena by analysing the droplet dynamics in multi-

physics applications and present step-by-step validation by increasing the problem difficulties.  

This thesis demonstrates that the SPH method could be a successful alternative approach as a 

leading-edge of numerical modelling to predict and control the dynamics of complex multi-

phase multi-physics problems. To accomplish this objective, a mathematical model is proposed 

and numerical solution is developed and validated using previous numerical, experimental and 

analytical solutions. A MPI-paralelised SPH solver and High Performance Computing (HPC) 

approach are selected to efficiently address computational aspects. Several physical 

phenomena are simulated including bubble rising, deformation and break-up. At the fluid-fluid 

interface, complex hydrodynamic interactions are mathematically described using the 

continuum surface force (CSF) method, in which the gradient of interfacial tension forces and 

the Marangoni forces, due to thermal gradient, are modeled. Thermocapillarity generates 

sufficiently large stress even in low Marangoni numbers that leads to droplet migration. 

Electrohydrodynamics phenomena influence the droplet morphology depending on the electric 

conductivity and electric permittivity of ratios of the dispersed phase and the continues phase. 

We showed that when these two physics are affecting the system simultaneously, the main 

parameters that characterise the deformation, migration and break-up of the dispersed phase 

are characteristics of the applied electric field and thermal gradient, the Marangoni number and 

the fluids parameters. It is found that coupling EHD-TC phenomena affects the multi-phase 

system and can be tuned to improve phase-separation process.    

Keywords: 

Electrohydrodynamics, Thermocapillarity, Multiphase fluid flows, SPH, MPI, HPC 
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Résumé 

 

La quantité d'eau contenue dans le pétrole brut est à l'origine de problèmes importants dans 

l'industrie pétrolière. Le transport efficace du pétrole et du gaz est donc un défi majeur qui doit 

être relevé par le secteur de l'énergie afin de réduire le coût du transport de l'énergie et de 

protéger les installations de la corrosion, ce qui conduit à une réduction de l'empreinte carbone 

totale de l'industrie. Il est donc crucial d'envisager de nouveaux concepts pour étudier la 

séparation des gouttelettes d'eau en suspension dans un milieu pétrolier. Des forces externes 

peuvent être appliquées pour améliorer l'efficacité du processus de séparation. Les interactions 

entre ce système multiphasique et les champs électriques et thermiques sont donc des 

préoccupations croissantes. Par conséquent, le système susmentionné doit être modélisé 

comme un système multiphase, multiphysique et multi-échelle. L'objectif de cette thèse est 

d'examiner la dynamique des fluides en suspension d'un point de vue de physique fondamentale 

en utilisant la stratégie numérique sans maillage la plus fréquemment utilisée dans la littérature 

sur la dynamique des fluides numériques (CFD), appelée hydrodynamique particulaire lissée 

(SPH). L'interaction entre les constituants du système multiphase à l'interface fluide-fluide 

ainsi que les effets de l'électrohydrodynamique (EHD) et de la thermocapilarité (TC) sur le 

système doivent être mieux clarifiés. De plus, la nature multi-échelle des échelles spatiales et 

temporelles impliquées représente un défi de simulation numérique et nécessite un traitement 

particulier. Cette thèse a pour but d'initier une compréhension numérique des phénomènes 

couplés EHD-TC en analysant la dynamique des gouttelettes dans des applications multi-

physiques et de présenter une validation étape par étape en augmentant les difficultés du 

problème.  Cette thèse démontre que la méthode SPH pourrait être une approche alternative 

réussie en tant que pointe de la modélisation numérique pour prédire et contrôler la dynamique 

de problèmes multi-physiques complexes. Pour atteindre cet objectif, un modèle mathématique 

est proposé et une solution numérique est développée et validée en utilisant des solutions 

numériques, expérimentales et analytiques précédentes. Un solveur SPH parallélisé par MPI et 

une approche de calcul haute performance (HPC) sont sélectionnés pour traiter efficacement 

les aspects de calcul. Plusieurs phénomènes physiques sont simulés, notamment la montée, la 

déformation et la rupture des bulles. À l'interface fluide-fluide, des interactions 

hydrodynamiques complexes sont décrites mathématiquement à l'aide de la méthode de la force 

de surface continue (CSF), dans laquelle le gradient des forces de tension interfaciale et les 

forces de Marangoni, dues au gradient thermique, sont modélisés. La thermocapillarité génère 

une contrainte suffisamment importante, même pour des nombres de Marangoni faibles, qui 

conduit à la migration des gouttelettes. Les phénomènes EHD influencent la morphologie des 

gouttelettes en fonction de la conductivité électrique et de la permittivité électrique des rapports 

de la phase dispersée et de la phase continue. Nous avons montré que lorsque ces deux 

physiques affectent le système simultanément, les principaux paramètres qui caractérisent la 

déformation, la migration et la rupture de la phase dispersée sont les caractéristiques du champ 

électrique appliqué et du gradient thermique, le nombre de Marangoni et les paramètres des 

fluides. Il s'avère que le couplage des phénomènes EHD-TC affecte le système multiphasique 

et peut être réglé pour améliorer le processus de séparation des phases.    

Mots-clés : 

Electrohydrodynamique, Thermocapillarité, Ecoulements fluides multiphasiques, SPH, MPI, HPC 
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Chapter 1

Introduction

1.1 Multi-phase modeling for multi-physics problems

Multiphase flows are used to refer to systems formed by contacting more than one partially

miscible or immiscible fluids where the components possess different chemical and/or

mechanical properties. Multiphase fluids are observed in almost every process.

The energy generation in gas turbines and diesel engines or the production of nano

particles with specific properties are examples of industrial applications of multiphase flows.

The streams are modeled to describe the interaction of these phases between themselves as

well as the contribution of the individual phases. Multiphase flows form a major feature of

the oil extraction process as freshly extracted crude oil naturally contains water droplets or

gas bubbles suspended in oil (see Fig. 1.1).

It is not easy to set a precise historical start point to the studies related to multiphase flows.

It is believed that the buoyancy discovery by Archimedes on 250 BC can be considered

a commencement to the multiphase fluid dynamics development. From this moment to

development of a two phase pressure drop model by Lockhart and Martinelli [78] in 1949,

multiphase phase flows have been an intertwined part of fluid dynamics. Shortly after and
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(a) Droplets migration and evaporation in boiling
water [30].

(b) Electric fields application to move droplets on a
surface enables more efficient experiments. [54].

(c) Temperature difference propels droplets [24].

(d) Water-in-oil (left) and oil-in-water (right) emulsions [2].

Fig. 1.1 Examples of multiphase flows

by increasing demand for petroleum in early 70’s, many researchers started working on

theoretical and experimental studies on two-phase flows. From 1990s the use of numerical

models flourished that made it possible to use more complex mathematical models leading a
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more detailed characterization of multiphase systems. Based on the comprehensive review

by Tryggvason et al. [141, 142], despite significant progress made in the simulation of

flows with variable surface tension, temperature and electric fields coupling, and flows

with phase change, more work has to be done before such simulations become ubiquitous.

Coupled systems in addition to requiring the solution of a large number of equations,

typically have a significantly broader variety of length and time scales. The new generation

of multiphase flow problems are dealing more and more with this multi-physics aspect

where incorporating 1) implicit time integration and 2) accurate meshing become crucial.

The more discontinuities a process contains, the more important it is to decide whether

to go for explicit time integration with lower computational cost or expensive implicit

schemes. The same dichotomy also exists when deciding whether to choose a mesh-based

method requiring specific interface characterization strategy or mesh-free method where the

interface can be naturally distinguished and thus complex geometries easier to control. In

multi-phase multi-physics problems, both of these factors influence the computational cost

and in consequence, increase the need for more power full computers and well-parallelized

schemes. Among all CFD methods, Shadloo et al. [120] has shown that SPH is capable of

producing promising results in simulating multiphase-multiphysics fluid dynamics problems.

1.2 Multiscale approach of a multiphase simulation

Numerical simulations are controlled experiments that give us insight into the physical

phenomena. Multiphase flows have been extensively investigated by means of numerical

methods during the past few decades. Computational power has enabled simulations

of unprecedented sophistication and detail, and has enabled the resolution of combined

phenomena occurring at many different spatial and temporal scales. The main challenge in

modeling complex systems is to determine the scale, accuracy and complexity of the model

required to achieve acceptable predictive capabilities and reflect these requirements in a
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stable and efficient computational framework. The advantage of numerical simulations is

facilitating the execution of experiments that are hard to setup in laboratory environment. In

the case of droplet dynamics, numerical simulation can be easier to establish compared to

experimental studies.

The main challenges in simulating droplet dynamics arises due to the resolution of multiple

scales involved in the simulation as well as different physics interacting on and across

appropriate scales (from the electrical forces acting at the molecular level to the hydrodynamic

forces acting at the flow scale). When droplet dynamics are studies experimentally or in

the industry level, the scale is the macro-scale, in designing phase separators for instance.

However, when the same problem needs to be numerically simulated, the smaller scales will

influence and interfere the behavior of the system at macroscopic scales.

Fluid dynamics systems under a continuum assumption can be modeled using Navier-Stokes

equations. However, in multiphase flows, subject to multiple physics, the length scale and

the time scale of each physics involved (electric, hydrodynamics, thermal fields) may require

additional treatment necessary to represent and capture the physics at all different scales.

Multiphysics couplings of phenomena occur on multiple temporal and spatial scales. When

choosing algorithms one needs to take into account that combining existing codes through

software often fail to adequately address the coupling physics as one code may violate basic

physical principles assumed to hold by the other code, and sometimes algorithms suffer

from issues related to disparate temporal and/or spatial scales between coupled physical

processes [98].
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1.3 Objectives

The objectives of the thesis are the following:

• The first objective of this thesis is to set up a mathematical model allowing the

numerical simulation of a biphasic system using Smoothed Particle Hydrodynamics

(SPH) method. This model must take into account geometrical and physical

complexities of the problem. Thereafter, we validate this model using available

research data of different physics: first validation carried out in Electrohydrodynamics

(EHD) and a second one in thermocapillary (TC) conditions.

• The second objective is to develop a procedure to include the temperature-dependent

surface tension coefficient on thermocapillary flow simulations. Within the Siper

code, developed by the a team of the ICVT and used for other multiple cases. Indeed,

these simulations are relatively expensive in terms of computational resources, in

particular those required for the EHD-TC coupled use case. This procedure uses the

properties of the heat transfer library at the fluid-fluid interface already functional

for heat transfer problems. This temperature-dependency of surface tension must

confirm to already established data structure of the code and assures the accuracy of

the simulations and conformation with theoretical solutions.

• The third objective is similar to the first one but it concerns a multiphase flow tool to

solve the dynamics of the system under EHD-TC conditions. The modelling must

allow, first of all, to ensure that the coupling of two physics happens in the conditions

that were previously and separately validated. Then, it will be necessary to verify the

solution for the set of parameters obtained for specific coupled system of forces.



6 Introduction

1.4 Layout of thesis

The rest of the text is organised as follows:

Chapter 2 We present in this first section, the fundamental concepts associated with

multiphase flows and in particular the problematic of surface tension. We detail in the

following parts the equilibrium condition and the description of the thermocapillary

droplet migration. Towards the end of this section, we provide the expression of

transport equations, their characteristics and finally we breifly develope the context

using the state-of-the-art publications.

Chapter 3 To further detail the important role of each force, in particular in the presence of

electric field, we precisely detail the principles of the electrohydrodynmics (EHD)

theory in the case of leaky dielectric fluids. The choice of this case for the simulations

and the complexity of different force interactions are thereafter presented in more

details. In particular, the material properties, initial and boundary conditions of a

classic system are described. To take a deeper look at the application of EHD in heat

transfer enhancement, we develop the last section on the existing literature and the

state of the art on our specific topic.

Further on this chapter, the used numerical methods are expounded. We explicitly

develop the methods used for discretisation of the equations based on the continuous

form of the conservation equations in multiphase flows using the SPH method.

Furthermore, we present the description of the specific used code, the role of MPI

parallelisation and HPC framework from the computational point of view. The last part

of this section concerns numerical simulation of coupled EHD and thermocapillary

phenomena. A mathematical model for such multiphysics systems is proposed,

validated according to the previously mentioned principles, on the benchmark problem

setups.
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Chapter 4 The forth chapter presents the numerical results of EHD, TC and coupled EHD-

TC cases. Several validation studies are provided to make sure that the numerical

results are in agreement with available theoretical, experimental or numerical results

in the literature. Each case has been thoroughly examined and then, analysed with

supporting physical arguments.

Chapter 5 The fifth chapter includes the conclusions to this work and some perspectives to

future works are proposed.





Chapter 2

Literature Review and Theoretical

Framework

This chapter is dedicated to the presentation of the one of the most commonly used grid-less

numerical methods in CFD known as Smoothed Particle Hydrodynamics (SPH). We briefly

present the basics of this method, its advantages and limitations, and main applications to

show how SPH method has successfully been used as an alternative strategy in the numerical

simulation of multi-phase multi-physics problems. To this end, we take a close look at the

Electro-hydrodynamics (EHD) flows and the thermo-capillary flows.

2.1 Governing Equations

The balance equations used in the current thermo-capillary system are derived from the

original model proposed by Espanol and Thieulot [39] and previously applied by Shadloo

[117] assuming that two immiscible and incompressible fluids are in contact with no phase

change. We present the governing equations in Lagrangian framework.
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The continuity equation
Dρ

Dt
=−ρ∇.⃗u, (2.1)

and the momentum balance for multi-phase system subject to external electric force

ρ
Du⃗
Dt

=−∇p+η∇
2⃗u+ F⃗body +∇.Πcapillary + F⃗e, (2.2)

and in the thermo-capillary flow case assuming no viscous dissipation and surface energy

contributions, the energy balance

ρcp
DT
Dt

= ∇(κ∇T ), (2.3)

With ρ density, p pressure, η dynamic viscosity, D
Dt the material time derivative operator1,

∇.⃗u the divergence of the velocity field, κ the thermal conductivity and cp the specific heat

capacity at constant pressure. Herein, F⃗body = ρ g⃗ is the body force due to gravitational

acceleration g⃗ and Πcapillary the capillary stress tensor and F⃗e is the volumetric electric

force. The first three terms in the momentum balance are common between single-phase

and multi-phase flows, while the forth terms accounts for the fluid-fluid interface and the

last term includes the external electric force contribution.

Regarding the capillary stress tensor in equation 2.2, which is due to continuous change

of density, a mathematical derivation of the sharp interface limit from a diffuse formulation

is elaborated in [] from which the capillary stress tensor can be calculated as

∇.Πcapillary = (γκ n⃗+∇sγ)δ , (2.4)

1The material time derivative is a directional time derivative for a fixed point.
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where γ is the surface tension coefficient, κ the curvature and ⃗̂n the unit normal vector to

the interface. The tangential component of the surface tension is ∇sγ) and δ the Dirac-Delta

function defined as

δ =

{
1 at the interface
0 in the bulk.

(2.5)

This implies that the capillary stress tensor is constant inside the bulk. The surface tension

force can be modeled using the continuum surface force (CSF) model [15].

2.1.1 Continuum Surface Force model (CSF)

Morris et al. [93] introduced the first surface-tension model based on the Continuum Surface

Force (CSF) technique proposed by Brackbill et al. [15]. This method essentially computes

the local curvature of an interface. The surface tension can be defined as a force per unit

volume

F⃗s = f⃗sδs, (2.6)

with δs being the surface delta function and

f⃗s = σκ ˆ⃗n+∇sσ , (2.7)

where fs is the force per unit area, σ is the surface tension coefficient, κ is the local curvature

of the interface, and n⃗ is the unit normal vector to the interface. The term ∇sσ links the

surface tension to the the Marangoni effect due to change of the surface tension. The unit

normal vector can be computed using the color function

n⃗ =
∇c
|∇c| . (2.8)
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In the presence of an external electric force, the coupled interaction between hydrody-

namics and electrostatics of the fluid flow is modeled. In the following section, we discuss

the foundations of the ElectroHydroDynamics theory (EHD) starting from the Maxwell

equations [] as a set of coupled partial differential equations that, together with the Lorentz

force law, form the foundation of classical electromagnetism.

2.2 Theoretical elements associated with ElectroHydroDy-

namics (EHD) theory

2.2.1 EHD studies on Droplet Migration

External electric fields can influence droplet dynamic characteristics such as morphology,

velocity, and the manifestation of breakdown and coalescence. Identification and under-

standing of the underlying principles of Electrodynamics (EHD) can be applied in better

controlling and predicting the motion and deformation of droplets.

Initially, fluids were divided into the perfect electric conductor and perfect dielectric. When

the electric force imposed on a droplet suspended in a carrier fluid, the droplet starts to

deform or displace. Since the electric charge was not introduced into the background fluid,

it was assumed that the droplet migration and deformation happens as the result of dielectric

and electrostrictive forces.[6, 4, 145, 144] In contrast to the initial theory, Allan and Mason[3]

showed experimentally that a droplet subject to the electric field deforms to the oblate shape.

From these observations, Taylor[134] concluded that fluids are partially conductive and

partially dielectric with finite electrical permittivity and electrical conductivity values. To

explain the oblate shape of the isolate droplet subject to an electric field, Taylor proposed

that the electric stress accumulated on the droplet interface has indeed both normal and

tangential components. The tangential stress imbalance leads to the oblate droplet. The
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experiments performed by Vizikia and Torza [147, 139] confirmed Taylor’s model for droplet

deformation.

Taylor established a structured basis for the EHD phenomena known as leaky dielec-

tric theory that still continues to develop with analytical, experimental and numerical

studies[86, 1, 153, 154, 110, 10, 38, 22, 55, 61, 99, 83].

Numerical simulations on the leaky dielectric model commenced by Sherwood [124] who

studied the deformation of a spherical droplet subject to electric or magnetic field assuming

that the electrical permittivity and electrical conductivity of the disperse and continues phases

are finite values. A boundary-integral scheme was used to simulate droplet equilibrium shape,

breakup process as well as the steady state leaky dielectric droplet when large electric field

and Stokes flow are imposed. Thereafter the Finite Element based numerical simulations of

Tsukada [143] showed good agreement with their experimental results as well as Taylor’s

analytical solution. To address the quantitative discrepancy between obtained results from

Taylor’s theory and the experimental observations, Feng [42] used a Galerkin-finite-element

method. In this extensive study, Feng proposed a new discrimination function as well as

a new analytical formula to calculate droplet deformation. It is worth noting that later

numerical studies by Shadloo [116] compared the Taylor and Feng analytical solutions, and

suggested that Taylor’s theory gives better approximations for oblate deformations while for

prolate deformations, Feng’s theory is preferred.

Hereafter, we tend to focus our attention on the deformation and migration of droplets

in a carrier fluid subject to electric field. The influence of the surfactant on a viscous

drop deformation is investigated based on the leaky dielectric model using the level-set

method [136]. They found that the deformation is dependent on the permittivity and

conductivity ratios of two fluids as well as the direction of the electric field. The direction

of the circulation zones can be clockwise or counter clockwise in a prolate deformed shape.

When counterclockwise, surfactant addition causes greater deformation at low surfactant

concentration. They reported a strong relationship between the effect of the surfactant of
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the steady-state deformed droplet and the relative electric permittivity and conductivity of

fluids. In a related study [137], a coupled level set and volume-of-fluid (CLSVOF) algorithm

was used to simulate two-phase electrohydrodynamic flows and it was shown that a wrong

choice of interpolation scheme (weighted arithmetic mean) may lead to a transition region

thickness dependent electric field in the continuous phase. To control multiphase flow

systems using electrohydrodynamics some studies have been performed using mehsless

numerical methods. In this context, the behavior of the droplet in a uniform electric field is

analysed using Weighted Least Square (WLS) method and the performance of the method is

validated with theoretical results [156]. Another meshfree method to simulate multi-physics

and multi-phase problems is Smoothed Particle Hydrodynamics (SPH) that is implemented

EHD-driven phenomena such as bubble rising and droplet deformation. The results are

validated through the comparison between theoretical and experimental results [116, 102].

To comprehend the origins of the electric field forces, one must examine the molecular

structure of the system at the microscopic scale. In the absence of electric forces, fluids

are electrically neutral, containing zero net charges in the form of ions or free electrons.

Ionization process, on the other hand, occurs at the presence of the electric field within which

massive amounts of charged particles are injected to the system. These charged particles are

rapidly propelled in the direction dictated by the electric field provided by the electrodes.

The charged particles smash with the neutral molecules of the gas as they move between the

electrodes and, on average, "push" the latter in the in the direction of the applied electric

field. The Maxwell equations are composed of four equations with each one describing one

phenomenon respectively.

Maxwell didn’t invent all these equations, but rather he combined the four equations

made by Gauss (also Coulomb), Faraday, and Ampère’s law [43].

But Maxwell added one piece of information into Ampere’s law (the 4th equation),

Displacement Current, which makes the equation complete.
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• Gauss’s law for static electric fields.

• Gauss’s law for static magnetic fields.

• Faraday’s law which says a changing magnetic field (changing with time) produces an

electric field.

• Ampere-Maxwell’s law which says a changing electric field (changing with time)

produces a magnetic field.

We first focus on the Gauss’s law for static electric fields which states that the electric

field produced by electric charge diverges from positive charge and converges upon negative

charge. Moreover, the electric field flux passing through any closed surface is proportional

to the total charge contained within that surface. The integral and differential form of this

law are shown in 2.1.

Table 2.1 Gauss’s law for static electric fields expressed in two forms.

Integral Form Differential Form

∮

S
(E⃗ ◦ n⃗)ds =

qenclosed
ε0

∇⃗◦ E⃗ =
ρ

ε0

where the electric charge q produces an electric field E⃗. Here the n̂ is a vector with length

of one pointing in the direction perpendicular to the surface. The term E⃗ ◦ n̂ represents the

component of the electric field vector that is perpendicular to the surface under consideration

and is used to calculate the electric flux. According to the differential form, in an static

electric field, the divergence at one point equals to the electric charge volume density ρ at

that point divided by the permittivity of free space ε0.

In EHD problems, the interactions between the electric field and the electric charges

in fluids are considered. The conductivity of a of a fluid depends on the availability of

mobile charge that it carries. This determines whether a substance can have a very high
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conductivity or be a non-conductive insulator. In transport phenomena of EHD, the electric

charge distribution is not in equilibrium. The temporal change is taken into account in the

Maxwell-Ampèr’s law. The integral and differential form of this law are shown in 2.2.The

integral form of 2.2 demonstrates that an electric current I or a changing electric flux through

a surface produces a circulating magnetic field around any path that bounds that surface.

This implies that the electric currents and changes in electric fields are proportional to the

magnetic fields circulating about the areas where they accumulate.

Table 2.2 Maxwell-Ampèr’s law for electric field changing with time producing a magnetic field
expressed in two forms.

Integral Form Differential Form

∮

C
B⃗◦ d⃗l = µM

[
Ienclosed + ε0

d
dt

∫

S
(E⃗ ◦ n⃗)ds

]
∇⃗× B⃗ = µM

(
J⃗+ ε0

∂ E⃗
∂ t

)

where B⃗ and E⃗ are the vectors of the magnetic and electric fields, µM is the magnetic

permeability that determines a material’s response to an applied magnetic field, and is the

electric current density. Electric currents and the temporal change of the electric field lead

to a magnetic vortex field.

Faraday’s law of induction states that electric fields exist even without the presence of

charges. Changing magnetic flux through a surface induces an electromotive force (EMF) in

any boundary path of that surface. A changing magnetic field induces a circulating electric

field. The voltage accumulated around a closed circuit is proportional to the time rate of

change of the magnetic flux it encloses.This is in comparison with electric fields, which are

generated by charges (sources) and are not rotation-free. It is a so-called vortex field and is

therefore source-free, i.e. ∇.E = 0. The integral and differential form of this law are shown

in 2.3.
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Table 2.3 Faraday’s Law of Induction expressed in two forms.

Integral Form Differential Form

∮

C
E⃗ ◦ d⃗l =− d

dt

∫

S
(B⃗◦ n⃗)ds ∇⃗× E⃗ =−∂ B⃗

∂ t

By applying these laws in the EHD context, the influence of the dynamic charge on the

magnetic induction is so small that it can be neglected. Consequently, the electro-magnetic

part of the system can be described with a quasi-static electric field model. In addition,

no external, time-varying magnetic field is imposed on the system, which means that the

coupling between the electric and the magnetic field in Faraday’s induction law is omitted

[110].

If the divergence of the maxwell-ampèr law 2.2 is substituted by Gauss’s law for

electric fields 2.14 and observe that for a magnetic field the divergence of rotation is zero

(∇.∇× B⃗ = 0), we obtain for the conservation of charge

Dqv

Dt
+∇.⃗ j = 0 (2.9)

Where j⃗ is the total current density, which is proportional to the electric field vector

and defined by the Ohm’s law j⃗ = σ E⃗. Here the proportionality factor σ is the electrical

conductivity. In isotropic materials σ is a scalar, otherwise it is a tensor.

2.2.2 Volumetric Electric Force

In case of the application of the external electric field, a new term of electric force called as

F⃗e will be added to the right hand side of the momentum equation 2.2. The calculation of

this force reads as
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F⃗e = ∇.T e (2.10)

in which the Maxwell’s stress tensor reads

T e = D⃗E⃗ − 1
2
(D⃗.E⃗)I (2.11)

where the dielectric displacement vector is defined as

D⃗ = εE⃗ (2.12)

with E⃗ the external electric field and the electrical permitivity ε is the production of

vacuum permitivity and relative permitivity :

ε = ε0εr (2.13)

Basically as mentioned before, in this study the electrostatics and hydrodynamics of the

system are coupled together. This coupling is through the Maxwell stress tensor. The stress

induced in an incompressible liquid medium due to the presence of an electric field can be

described as 2.11. That is because in 2.11 the electrodynamic part of the system can be

regarded as quasi-static model, dynamic currents values are so low and the induced magnetic

field effects are negligible, therefore the contribution from the induced magnetic field is

neglected. Here, E⃗ is the electric intensity, and D⃗ is the electric displacement vector such

that 2.12. It is also noteworthy that in this two phase system both fluids are considered to be

leaky dielectric fluids, i.e. electric relaxation time is much shorter than viscous counterpart

(tE << tµ ).



2.2 Theoretical elements associated with ElectroHydroDynamics (EHD) theory 19

As for the Gauss Law, the divergence of the electric displacement field could be obtained

from the free electric charge density qv, that is

∇.D⃗ = qv (2.14)

Application of 2.11 and 2.14 in 2.10 will result in

F⃗e = qvE⃗ − 1
2

E⃗.E⃗∇ε. (2.15)

The electric force in equation 2.15 consists of two terms. The first term from the left is

the electric field force. Due to the interaction of the free charges with the electric field, the

electric field force acts along the electric field lines. Thereby the free charges influence the

direction of the electric field force. The electric field force thus acts between two charged

particles and corresponds to the Coulomb force in the classical sense. For a system with two

perfectly dielectric fluids, this term is omitted because in this case there is no free charge [50].

The second term is the polarization force. It results from the pairs of charges acting along the

normal direction toward the interface and originating from the gradient of permittivity. The

polarization force acts between uncharged particles or an uncharged particle and a charged

particle. This is possible because charge separation occurs within the uncharged particles,

inducing an electric dipole. The equation 2.9 can be further simplified. A homogeneous

fluid with constant fluid with constant permittivity and electrical conductivity is assumed.

If the Gaussian law for electric fields 2.14 is substituted into the equation of the current

density j⃗ = σ E⃗ and the result is then substituted into the equation of charge conservation

2.9, the following yields in both integral and differential form ( see table 2.4).

Here, te = ε

σ
is the relaxation time required to return from the deflected state to the

equilibrium state. For EHD problems, the time t can be described by the viscous time of



20 Literature Review and Theoretical Framework

Table 2.4 Gaussian law for electric fields expressed in two forms.

Integral Form Differential Form

qv = qv
0 exp

(−t
te

)
q̇v +qv σ

ε
= 0

fluid motion tµ = ρL2

µ
. Here, L is the characteristic length. Depending on the conductivity

level of each component, a two-phase system can be classified as

• Dielectric-dielectric (te >> tµ),

• Dielectric-conductive

• Conductive-conductive (te << tµ).

The distinction is made by means of the electrical conductivity and permittivity of the

fluids involved. Equation (2.18) can be used to describe the retardation of free charge in a

fluid can be described.

If a fluid is only weakly conductive, a perfect dielectric material can be assumed

(te >> tµ).

If the electrical conductivity is large, then the charge equalization at the surface is almost

instantaneous compared to the time scale of the Fluid motion (te << tµ).

This means that the conservation of charge from Eq. 2.9 in such a system reaches

equilibrium much faster than the fluid can react. Consequently, it is a conducting fluid.

In this work both fluids are considered to be leaky dielectric. In the following section we

concisely present this model and its conditions.
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2.2.3 Leaky Dielectric Model

In the mid-1960s, Taylor [135] developed a model to describe fluid motions under the

influence of an electric field. Leaky dielectric model is based on the following assumptions:

• An important modeling assumption in the multiphase flows is considering that the

dispersed phase and the continuous phase weekly conductive fluids forces from the

bulk free charge are negligible thereby the coupling between electric field and the

hydrodynamic system takes place at the boundaries.

• Fluids must have finite electric conductivity in a quasi-static electric field

• electric relaxation time is much shorter compared to its viscous counterpart (te << tµ )

Since the fluid motion is much slower than the charge balance, an equilibrium state can

be assumed for equation 2.9 (Dqv

Dt = 0). Such a system of two fluids can be classified as

conducting-conducting. The conservation of charge 2.9 yields [110]

∇.(σ E⃗ = 0). (2.16)

Having that the rotation of a gradient from a scalar field results in zero 2, and the electric

field is rotation-free3, the electric field vector can be expressed by the electric potential φ

E⃗ =−∇φ . (2.17)

Substituting the equation 2.17 in the equation 2.16 results in

∇.(σ∇φ) = 0. (2.18)

2∇×∇φ = 0
3∇× E⃗ = 0
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Using dimensional analysis performed by Saville [110], we can simplify the equation

2.18 if the tE << tµ as following

Jσ E⃗K.n = 0. (2.19)

This equation shows that the electric charge on the interface is continues. This implies

that the electric potential is also continues at the interface (JφK = 0). For a fluids with

constant electrical conductivity, the equation 2.19 is equivalent of ∇2φ = 0 which returns

electric potential. Hence, the electric field can be calculated from equation 2.17.

Looking back to the objective of this section, which is to calculate the electric field force

from equation 2.15, one needs to calculate qv using electric field E⃗. The volumentric charge

density qv, calculated from equations 2.14 and 2.12, reads as

qv = ε∇.E⃗ + E⃗∇ε (2.20)

A more detailed elaboration on the derivation of EHD system of equations can be found

in [108, 117, 26].

2.3 Numerical Simulation of Thermocapillary-driven Flows

Since surface-driven flows have been found to be an important phenomenon in many

industrial processes, and in order to expand the SPH application for complex multiphysics

phenomenon, Hopp-Hirschler et al. [58] presented an ISPH model of a thermo-capillary flow

driven by a surface tension gradient. For accurate results, this model applies CSF approach

including Marangoni forces and is using (i) density-invariant divergence-free (DIDF) [59]

(ii) corrected SPH [14, 123] and (iii) particle shifting (PS) approaches for multi-phase

systems. Their validation started from single-phase flows where they studied the effects
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Fig. 2.1 (left) Velocity and (right) temperature distributions in a buoyancy–driven cavity for Ra=10000
reproduced from [58].

of corrected ISPH, DIDF and PS approaches on particle distribution using a Taylor-Green

vortex. It was demonstrated that only PS enables a homogeneous particle distribution. In

the same study, lid-driven cavity was studied for different Reynolds numbers. The results

were compared to reference solutions taken from OpenFOAM. A convergence study showed

that by increasing the grid resolution, the SPH model converges to the OpenFOAM results.

Next, the authors validated diffusive mass transport, compared it to analytic solution and

found very accurate agreement. Then, to validate the coupling of momentum and energy

equation, they investigated non-isotherm single-phase flow.

In a case study of buoyancy-driven cavity, where the fluid is accelerated due to a

temperature difference between two walls, it was shown that the fluid density decreases

with increasing temperature. Since the gravity is not neglected, a circular flow begins to

accelerate the denser fluid downwards and the lighter fluid upwards (see figure 2.1). After

an extensive validation and convergence study by comparing SPH and OpenFOAM results,

Hopp-Hirschler et al. [58] investigated multi-phase systems. In thermo-capillary flow, a

droplet migration happens as a result of gradients of the surface tension tangential to the

interface, caused by a gradient of the temperature, even in the absence of gravity. For

sufficiently low Reynolds numbers, the shape of the droplet remains spherical during this
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motion. The setup of this test case and the convergence study compared to Tong and Browne

[138] and Ma and Bothe [82] are shown in figure 2.2.

Fig. 2.2 (left) Schematic setup of thermocapillary migration of a droplet and (right) Droplet migration
using different resolutions compared to solution from [138] and [82]. The box length to radius ratio
is L/R=4. reproduced from [58].

In thermo-capillary-driven flows, a non-isotropic pressure contribution, due to the

interface, is expected in the momentum balance. This contribution is referred to as capillary

stress in general or surface tension in an immiscible system [67]. The capillary stress tensor

in the momentum balance covers both normal and a tangential stresses. Therefore, one may

break-down the capillary stress into a normal and tangential part. The tangential part, known

as the Marangoni force, consists of the gradients of the surface energy along the interface.

First, we studied normal part of the surface tension in detail using static and dynamic test

cases. This component of the surface tension is validated using the Young-Laplace law in a

two dimensional steady-state problem. The analytic law was captured very well. Deviations

of the pressure at the interface are a result of the CSF model and where previously found in

other models as well. The error was

The notion of the thermocapillary motion of a flat liquid layer and the motion of a

spherical non-deformed droplet was published in the Russian language by Fedosov in 1956

and translated to English in 2013 [41] who solved analytically two thermocapillary cases

one of which being of importance for our study. After investigating the motion of a drop
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suspended in a viscous medium due to temperature gradient, he states that because of the

temperature difference at different points of the drop surface, the later cannot remain at

rest. Instead, it will move from the warmer regions with the lower surface tension toward

the colder regions with the higher surface tension. By doing so, the moving drop will

drag the surrounding liquid medium by applying some force to it. Based on Newton’s law

of action and reaction, there will also be an equal force in opposite direction which the

surrounding medium will apply onto the drop. This reactive force will push the drop in

the direction of the temperature gradient. Later on, a more recognized description of the

thermocapillary migration of a liquid droplet and a gas bobble was studied by Young and

colleagues in 1959 [157] who derived the analytical solution for the terminal velocity of a

single suspended bubble subject to temperature gradient as well as the temperature gradient

required for the bubble to hold at stationary state. Similar to Fedosov [41], their solution was

subject to several assumptions including an always spherical droplet, unbounded domain of

carrier fluid, and an imposed Stokes flow conditions. Before discussing the relaxation of

these constraints, one must get informed about dimesionless numberrs that could govern

the system. The term thermocapillary flow is often used to describe the Marangoni flows

induced by surface tension gradient caused from temperature gradient [33]. In case of

a suspended droplet in the background fluid, the gradient of the surface tension on the

interface, exerts a shear stress on the continues phase and generates a dynamic from the hot

to the cold region. In reaction to this movement, the droplet migrates towards the hot region

(see (c).Fig 2.3). This is due to the fact that in most fluids as the temperature increases, the

surface tension decreases to obtain a more favorable total energy condition.

The gradients of temperature can be decomposed into two basic modes.

• The first mode refers to the temperature gradients perpendicular to the interface between

phases that provoke the production of Bénard-Marangoni circulation zones[100] and

the emergence of Marangoni instability phenomenon.
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Fig. 2.3 Surface Marangoni flow induced due to surface temperature gradient from hot to cold region.
The flow propagates inside due to drag and reverse flow forms to hold mass conservation (a ). Droplet
on a solid surface with temperature gradient leans toward the cold region due to higher surface
tension at the inception of movement and Marangoni circulation forms inside it (b ). In the case of
channel flows, the carrier liquid obeys a bulk flow from hot to cold region due to surface tension
forces and the confined droplet moves to the opposite direction (toward the hot region) to conserve
the mass (c ). Schematic reproduced form [64]

• The second mode is generated from temperature gradients tangential to the interface

through which a capillary flow from low surface tension to high surface tension, with

the system aiming to attain minimum total energy, will propagate.

Essentially, surface tension gradients turn the static fluid flow system to a dynamic condition

where the hydrodynamic stress at the interface is balanced by the second mode. Figure 2.3

illustrates the Marangoni flow generated in response to the tangential component of the

surface tension gradient that leads to formation of circulation zones inside the dispersed

phase.

The aforementioned constraints are gradually relaxed in further studies. For example, the

effect of convective heat transport on the thermocapillary droplet migration was studied by

Subramian [129] for, unlike the initial work of Young [157], low Reynolds and Marangoni

numbers by keeping the inertial terms in the momentum equation. The theoretical and



2.3 Numerical Simulation of Thermocapillary-driven Flows 27

experimental studies got extended to find the migration velocity of a undeformable droplet in

low Reynolds numbers [128, 87, 130]. Based on the theoretical studies by Balasubramanian

and Subramanian [8] at the high Marangoni and high Reynolds number regime, the fluid

droplet velocity is proportional to the Marangoni number, whereas for gas bubbles the

migration velocity stays independent of the Marangoni number.

Assuming an immiscible two-phase Newtonian, viscous, incompressible, isothermal

fluid flow, the corresponding mass conservation and linear momentum conservation in a

Lagrangian formulation for the balk will be written as [117]:

Continuity (mass conservation) :
Dρ

Dt
=−ρ∇.⃗v (2.21)

Linear momentum conservation :

ρ
D⃗v
Dt

= ∇.T+ρ f⃗ b + f⃗ v (2.22)

where f⃗ b is the Body force ( gravitational force) and f⃗ v is the volumetric surface tension

force which is the summation of the Surface tension force F⃗S and the Electric field force F⃗E .

Herein, ρ is the density of each fluid, D
Dt is the material time derivative operator4, ∇.⃗v is the

divergence of the velocity vector, T is the total stress tensor which is defined as T =−pI+τ

when p is the absolute pressure, I is the identity matrix and τ is the viscous term that is

equal to µ(∇⃗v+(∇⃗v)T ) for µ being the dynamic viscosity and T the transpose operator.

Navier-Stokes equations describe the motion of fluid by which a relationship between

velocity field and stress field (shear stress, normal stress, and external forces) is established

to track fluids’ temporal and spatial dynamics.

4The material time derivative is a directional time derivative for a fixed point
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surface tension is considered to balance the normal and tangential components of the

stress boundary condition at the fluid-fluid interface. The hydrodynamic normal stress

balance at the interface reads for every n unit normal vector to the fluids surface

n.T.n−n.T̂ .n = σ(∇.n) (2.23)

where T and T̂ are the total stress tensor exerted from one fluid to the other at the interface

and σ characterizes the surface tension. Similarly, the hydrodynamic tangential stress

component must also be balanced at the interface that yields for every t unit tangential vector

to the fluid’s surface to

n.T.t −n.T̂ .t = ∇σ .t (2.24)

In order to solve this problem, a system of equations should couple the classical Navier-Stoks

equations and the heat equation:

∂T
∂ t

+u.∇T = κ∇
2T (2.25)

Thereafter, the notion of σ(T ) shows the linear dependency of the stress σ to the

temperature T that affects the boundary conditions. A concrete example is the effect of

a thermal gradient dT
dx on the vertical motion of the bubble suspended in a more viscous

fluid. The theoretical solution lies in the assumption that the bubble remains spherical and

therefore, the normal stress of the interface is completely balanced by the normal component

of the surface tension. Considering other boundary conditions and the kinematic condition,

Young and Goldstein [157], proposed the solution for the coupled system of Navier-Stocks

and heat transfer. It is found that in the low Re regime, a new force directed from the cold

fluid to the warm fluid and the magnitude of 2πR2 dσ

dx will act on the bubble, that is the

origin of the thermocapillary instability.



2.3 Numerical Simulation of Thermocapillary-driven Flows 29

The idea of the capillary motion of fluids due to surface tension gradient was first

mentioned in 1855 by Thomson [21] where he develops several experimental scenarios to

explain the capillary attraction phenomena at the surface of alcoholic liquids. However,

it took more than a decade until a more concrete theoretical explanation for the capillary

forces due to surface tension changes presented by Marangoni[85] where he measures

the capillary constant of some fluids and develops the surface tension forces in different

droplets and continuum phases are examined. In most materials there is a linear relationship

between the surface tension and the temperature gradient. The critical temperature where

the linear relationship starts to vanish, corresponds to the critical Marangoni number[148].

Bénard–Marangoni convection [13], also known as the Thermocapillary (TC) effect, refers

to the mass transfer across the fluid-fluid interface when temperature gradient leads to

surface tension gradient. The resulting unbalance shear stress generates fluid motion as

shown in Fig. 2.4

Previously mentioned investigations assume that the fluid carrying the gas bubble or liquid

Fig. 2.4 Three distinguished flow regimes can be observed by increasing temperature gradient
(left) steady flow, (middle) oscillatory flow, and (right) turbulent flow reproduced sketch from:
https://iss.jaxa.jp/
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droplet is infinitely extended while in experimental and numerical studies this condition is

not applicable and the object is confined in a finite ambient fluid or by adjacent solid. To

address this issue, the quasi-steady problem of thermocapillary migration of a bubble normal

to free fluid surface with constant temperature or infinite planar solid were investigated

[87, 105]. In another study [88] the gas bubble was placed parallel to the rigid planar surface.

Contrary to what was previously found [157], the velocity was smaller than the predicted

value. The analytical, experimental and numerical research on this phenomenon has been

extensively reviewed [60, 131, 32, 64, 111].

The droplet can be thermally actuated using two main micro manipulation principles. It

might be in direct contact with the heat source [51]. It can also be actuated using a

non-contact mechanism such as electric and magnetic fields [72], and the optical tweezers

that use a laser beam [103].

In the next section, we elaborate the numerical studies on multiphase systems.

2.4 Numerical Studies on Multiphase Flows

2.4.1 Introduction

Despite extensive research and advancements made in the numerical modelling of multiphase

flows, such as development of computing power, this topic remains a significant challenge.

In this thesis, the phenomena comprising the mixing of fluids as well as the chemical

reactions between the components are excluded from the scope of this thesis. Focusing

particularly on two-phase flows, the primary phase which occupies the bulk (higher volume

fraction) is called the "continuous phase" and the other phase that exists within the main

phase (lower volume fraction) is referred to as the "dispersed phase".
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In principle, a multiphase flow system can experience three classes of forces: (i) Line,

such as surface tension forces; (ii) Surface, such as viscous forces and pressure forces; and

(iii) Volume, such as inertia and buoyancy. The complete scope of total resulting forces on

a multiphase system should take into account both external forces (such as the electric or

magnetic forces), and the interactions between the forces acting on each phase, as well as

the traction force of one phase to the other(s). The complexity of the domain of influence of

each force raises challenges in the quantitative analysis of these systems considering the

length scales in many orders of magnitudes from sub-micron to centimeters or more in a

unique problem. A typical example could be the gas bubble or liquid droplet rising with

a radius r in the order of millimeters while the continuous phase could be in the order of

centimeters. Considering the effects of externally imposed fields, it is known that only under

the static conditions, the electric and magnetic fields influence the flow independently. In

such a situation and if the characteristic time scale of the electrostatic process is larger than

that of the magnetic phenomena, the latter could be neglected, and thus the electrostatic

equations provide an acceptable approximation [110]. In multiphase multiphysics problems

are highly non-linear which necessitate dealing with stable/unstable conditions and transient

behavior of the bubble/droplet during its deformation and migration. In the same context,

another challenging point encountered while modeling turbulent multiphase systems is to

define and find apposite eddy length and time scales in different zones of the problem (i.e.

core flow, shear layer, and recirculation zones) [65].

Lack of solid and comprehensive theories and simulations for predicting and calculating

force interactions in multi-physics multiphase flow models need to be properly addressed

to obtain a superior interpretation of the experimental observations and pave the way for

technological advancements.
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Fig. 2.5 A molecule at the fluid-fluid interface (here, magnified an colored in red) is exposed to
different tensions compared to a molecule inside the bulk.

2.4.2 A Multiphase Approach

Given that in continuum fluid mechanics, in the length scales of a few micrometers to a few

meters, fluids are considered as a single condensed matter, neglecting the intermolecular

interactions. An instinctive property of multiphase fluid flows is that despite assuming

macro-scale forces, it is equally crucial to confront molecular forces. This dichotomy of

approaches comes from the fact that at the fluid-fluid interface, different forces are exerted

from each phase to the other, that is to say, the interfacial molecular interactions need to be

considered. A classical two-phase system of water and air is shown in Fig. 2.5. In such a

situation, a molecule in the fluid balk experiences similar forces from adjacent molecules

in every direction since they are all in the same phase (isotropic distribution). Whereas, a

water molecule at the interface is only subject to downward traction forces (See Fig. 2.5).

As a consequence of the action of different forces compared to that of the bulk molecules

and hence having access to less potential energy, all molecules at the interface are trapped

in a discrimination condition which is defined as the interfacial energy. To attain a more

favorable condition, fluid particles tend to minimize surface areas. That is why a water

droplet tends to form a spherical shape in its equilibrium condition. The interfacial energy

per unit of area is called the surface tension γ . Equivalently, one can imagine that surface

tension is a negative surface pressure and therefore can be modeled as the force exerted at
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the interface per unit length. Surface tension originates at the molecular level, however, its

representative parameter in multiphase configurations γ is defined at the macroscopic scale.

2.5 CFD methods in multiphase fluids

Conventional numerical methods, also referred to as mesh-based methods, use either

front-tracking or front-capturing methods to treat the interface. In the front-capturing

procedure, the interface is determined by a three-dimensional distribution of fluid properties.

A well-known example is the volume of fluid (VOF), one of the front capturing techniques

known for its efficiency in simulating free boundaries embedded in a mesh with Eulerian or

Arbitrary Lagrangian–Eulerian cells. Nevertheless, the major drawback of VOF method

is that it is computationally costly to capture complex geometries and the results can be

more prone to inaccuracy due to mesh regeneration. The front tracking methods on the

other hand, Mess-less methods are another class of numerical methods used to simulate

multiphase flows. Here focus on the Smoothed Particle Hydrodynamics (SPH) methods.

The standard SPH schemes discretise the mass and momentum conservation which result in

diffused density discontinuities at the interface, in particular in high density ratio problems.

To address this issue, considerable advancement of the SPH in multiphase flow simulation

was initiated by Colagrossi and Landrini [27] research. They proposed the first multiphase

SPH model that does not include density gradient terms , hence the treatment of systems

with high density ratios at the interface became possible. Three years later, another approach

to facilitate the treatment of density discontinuities was proposed by Hu and Adams [59]. In

this interpolation-based formation, the density of a particle of interest i can be computed

only based on its position and the kernel radii. The mass conservation in this scheme is

guaranteed characterized in that the temporal integration of the mass conservation equation is

not needed. Table 2.5 summarizes the main numerical approaches in multiphase modelling.
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2.6 Mesh-free methods

In engineering problems there are several meshfree methods used to solve partial differential

equations (PEDs). The following list summarizes some of the main meshless methods along

with a major work on each method.

• Smoothed Particle Hydrodynamics (SPH) [48].

• Element Free Galerkin Method (EFGM) [12].

• Meshless Local Petrov-Galerkin method (MLPG) [5].

• Reproducing Kernel Particle Method (RKPM) [77].

• Point Interpolation Method (PIM)[150].

• Generalized Finite Element Method (GFEM) [7]

SPH is considered to be one of the most suitable meshless methods to simulate multiphase

flows, in particular, in the case of two non-miscible fluids interacting with each other, i.e oil

and water mixture or air bubbles suspended in water. Being a Lagrangian method, SPH is

capable to capture non-diffusive interface. This is a major advantage compared to Eulerian

mesh-based methods where one needs to establish specific interface tracking strategies

which necessitate re meshing and thus, higher computational cost. In a numerical study to

quantify slamming loads experienced by the subsea oil and gas installations, Sasson et al.

[109] compared the SPH and Reynolds Averaged Navier–Stokes (RANS) Volume of Fluid

(VOF) method and found that despite the fact that RANS results correlate slightly better

with the experimental data, the robustness and quick set up of the SPH simulations makes it

as promising as RANS method for this application.
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2.6.1 Foundation of SPH

Smoothed Particle Hydrodynamics (SPH) is one of the oldest mesh-less Lagrangian methods

which discretizes the domain into a set of nodes (material particles) within which there

is not necessarily a pre-defined relationship and hence, particles can freely move on any

arbitrarily computational domain. Initially introduced by Gingold and Monaghan and Lucy

[49, 79] for astrophysics applications, SPH was soon found to be suitable for fluid dynamics

problems where complex geometries, discontinuities or large deformations are involved.

The method was used to study phenomena such as the formation and evolution of stars

and galaxies. The collective motion of the bodies is very similar to that of a liquid or a

gas and can therefore be modeled with conventional equations of fluid mechanics. By its

independence of mesh i.e. removing the necessity to mesh generation and refinement, SPH

offers notable efficiency in calculating partial derivatives used in transport equations. With

a wide range of applications from movies’ special effects to formation of stars [91], SPH has

attracted many researchers significantly in recent years. Zainali et al. [159] have investigated

the Newtonian and non-Newtonian two-phase flows 5 using ISPH method where they used

a cubic spline for the continuum surface force (CSF) model. This approach models the

sharp interface between two fluids with a transition region of a finite thickness. Their results

show significantly improvement in the quality of the calculated interface, elimination of the

inter-phase particle penetrations, and calculation of more accurate velocity and pressure

fields ( see Figure 2.6).

Multi-phase systems could be classified based on the nature of the fluid such as gas,

liquid, or bubbly flows [71]. In this approach of classification, finite number of phases

spread through the volume of continuous phases such as droplets, drops, particles or bubbles.

Two examples of systems with this structure are shown in Figure 2.7.

5The droplet is the dispersed phase and the surrounding media is the continuous phase.



2.6 Mesh-free methods 37

Fig. 2.6 Comparison of ISPH and VOF method [159].

Depending on the percentage of volume fraction of the dispersed phase, a hierarchy of

coupling forms between the particle(s) and the background media is illustrated in Figure 2.8

Multiphase flows can also be categorized in different flow regimes by taking into account

the principal dimensionless number of the system, such as low Reynolds number suspension

flows and high Reynolds number turbulent dusty gas flows, among others.

The manifestation scope of the natural phenomena and industrial applications of

multiphase flows reflects in a wide spectrum commencing from the scales above the molecular
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Fig. 2.7 Dispersed phases or particle laden flows in (left) air bubble inside water and (right) air-oil-
in-water. reproduced from [97].

level in biofluids in the human body with applications such as the electrical impedance

measurements to full-scale two-phase oil-water separation process in the petroleum industry.

Not only are the multiphase flows naturally present in many environmental phenomena as

in stratified and free-surface flows, but they also govern the large majority of processing

technologies and contribute to the development of new multi-functional materials. To

address different aspects of multiphase flows, several books and review papers have been

published. In a comprehensive review, Shadloo et al. [114] developed industrial applications

of modeling multiphase flows and associated transport phenomena using SPH method due

to its capabilities of handling complex boundary evolution as well as modeling complicated

physics. Two-phase flow in porous media [104], Two-Phase Nanofluid flows [37], multiphase

turbulent flows [106, 118] and heat transfer in multiphase flows [66, 52, 121].
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Fig. 2.8 Dispersed Flow classification from low to high volume fraction. reproduced from [97]
.
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2.7 Smoothed Particle Hydrodynamics Method

2.7.1 Mathematical foundation of SPH

Smoothed Particle Hydrodynamics (SPH) is one of the oldest mesh-less Lagrangian methods

which discretizes the domain into a set of nodes (material particles) within which there is not

necessarily a pre-defined relationship and hence, particles can freely move on any arbitrarily

computational domain. Initially introduced by Gingold and Monaghan and Lucy [49, 79] for

astrophysics applications, SPH was soon found to be suitable for fluid dynamics problems

where complex geometries, discontinuities or large deformations are involved. The method

was used to study phenomena such as the formation and evolution of stars and galaxies. The

collective motion of the bodies is very similar to that of a liquid or a gas and can therefore be

modeled with conventional equations of fluid mechanics. By its independence of mesh i.e.

removing the necessity to mesh generation and refinement, SPH offers notable efficiency in

calculating partial derivatives used in transport equations. With a wide range of applications

from movies’ special effects to formation of stars [91], SPH has attracted many researchers

significantly in recent years.

The comment made by Monaghan [90] is a clear and concise starting phrase to introduce

two main concepts in SPH that are smoothing function and smoothing radius, as he states:

At the heart of SPH is an interpolation method which allows any function to be expressed

in terms of its values at a set of disordered points–the particles.

The term "Any function" could be interpreted as any field variable related to the

mechanical properties of the fluid such as mass, momentum, velocity, or pressure from a

physical point of view.

Moreover, To determine the appropriate "set of disordered points" a radius of neighbourhood,

sometimes called as smoothing radius, needs to be defined inside which the particles have a
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significant influence on each others hydrodynamic properties.

There are many techniques to find the suitable smoothing radius which is neither too large

to be computationally costly, nor too small to exclude important information and result in

discontinuities.

2.7.2 Kernel Function

As stated before, family of Lagrangian particle based methods for simulating the non-

axisymetric problems of astrophysics, known as Smoothed Particle Hydrodynamics (SPH),

was introduced separately by Lucy [79] and Gingold and Monaghan [49]. The studies of

[115, 75, 90] provide a general overview of the SPH approach and its numerous applications.

Here, we give a quick overview of the SPH approaches as well as the pertinent discretizations

employed in the current work. This method provides an easier computation process while

keeping the reasonable accuracy threshold. Being a mesh-less method, SPH allows the

calculation of partial derivatives used in momentum and mass conservation to be done

much faster using the concept of interpolating kernel function. The SPH method is based

on the fact that any field variable A(⃗x) (such as fluid density, flow velocity, etc ) which is

a function of spatial coordinates, can be represented by its Dirac-Delta distribution. This

exact equation could be mathematically formulated as:

A(⃗x) =
∫

Ω

A(⃗x′)δ (|⃗x− x⃗′|)dx⃗′, (2.26)

where x⃗′ is the position of any point in the volume Ω. The Dirac-Delta function δ (|⃗x− x⃗′|) is

defined to be unity for x⃗ = x⃗′ and zero otherwise. Thereafter, an interpolation function, also

known as kernel (smoothing) function, W (h, |⃗x− x⃗′|), is defined to replace the Dirac-Delta

function where h is the radius of the support volume, so-called smoothing length and its

value depends on type of the kernel function, dimension of the problem as well as type of
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the problem.

A(⃗x) =
∫

Ω

A(⃗x′)W (h, |⃗x− x⃗′|)dx⃗′, (2.27)

Having the initial particle spacing L0 in a Cartesian grid, h values can be chosen using

2L0 < h < 3L0. To ensure the convergence of the process, the kernel function must meet the

following conditions:

• Normalization condition:

∫

Ω

W (⃗x)d⃗x = 1, (2.28)

• For h going to zero, W tends toward Dirac function

lim
h→0

W (h, |⃗x− x⃗′|) = δ (|⃗x− x⃗′|), (2.29)

• W is differentiable

Moreover, there is also important to mention the compact support condition of the kernel

function as below:

W (h, |⃗x− x⃗′|) = 0
∣∣x− x′

∣∣> kh, (2.30)

The first kernel function used by Gingold and Monaghan [49] reads as

W (h, |⃗x− x⃗′|= exp
(
−(⃗x− x⃗′)2/h2

)
/(h

√
π). (2.31)

The kernel function can also be considered as a weighting average where the weight

function decreases with the increase in distance. When this distance tends to zero, the

weight function tends to Dirac delta function. Depending on the distance of the neighboring

particles, these exert a stronger or stronger influence on the considered particle.Since from

a certain distance this influence goes to zero, only particles within a certain radius are
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included.These particles carry the index j. With the help of the kernel function, the influence

of particle j on particle i is weighted. In this work the following kernel function is mostly

used according to Wendland [152] as a fourth-order kernel function.

W
(
h,
∣∣⃗x− x⃗′

∣∣)= fw

hd





(
1− q

2

)4
(1+2q) for 0 ≤ q ≤ 2

0 for 2 < q
(2.32)

Here, d is the dimension and fw is a normalization constant with fw = 3
4 ,

7
4π
, 21

16π
for d = 1,

d = 2, and d = 3 dimensions, respectively. q= |⃗x−x⃗′|
h is the non-dimensional smoothing length.

The Wendland kernels are computationally more convenient than the higher-order B-

splines, allowing large number of neighbour particles and hence better numerical convergence

(note that computational costs rise sub-linear with number of neighbor particles). One could

suggest an analogy between the Shape (approximation) function in Finite Element Method,

the probability density function in probability theory, and the interpolating kernel function

in SPH. They all are used to approximate the value of a function by being multiplied then

integrated over the entire space.

This will take us to the first golden rule of SPH by Monaghan that in order to find the

best kernel for physical interpretation of an SPH equation, one should assume the kernel

function as Gaussian. Initially, the proposed kernel functions where in such a way that each

particle had to have interaction with all other particles [48]. By introducing the concept of

Neighbouring particles6, kernel functions on a compact support based on a cubic B-spline

functions were substituted. Numerically, only a small number of particles in the entire space

affect the approximated value of the kernel function. The radius after which the value of W

6particles that are located within the range of the kernel function with respect to the particle of interest.
Outside this range, the kernel function has already dropped to zero.
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Fig. 2.9 Kernel function W (x,h) and its first derivative ∂

∂x (W (x− x′,h)) according to equation
2.32-2.33.

falls off rapidly is called the smoothing radius (h). The first-order derivative yields

∂W (h, |⃗x− x⃗′|)
∂ |⃗x− x⃗′|

=C





(
1− q

2

)3
(−5q) for q ≤ 2

0 for q > 2
(2.33)

whereC = 4
7πh2 . Figure 2.9 illustrates the kernel functionW and its derivative with smoothing

radius h = 0.75. Based on the definition of the kernel function and the equation (2.27), we

can approximate the value of each field variable by substituting the integration operation

with summation operation over finite number of interpolation points

A(⃗x)a = ∑
b

mb

ρb
A (⃗xb)W (h, |⃗xa − x⃗b|) (2.34)

Therefore, an approximated value for density as a function of position is

ρ (⃗x)a = ∑
b

mbW (h, |⃗xa − x⃗b|) (2.35)
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where the indexes a and b represent the particle of interest and the particles in the

neighbouring distance, called neighbor particles. mb and ρb are the mass and density of

particle b, respectively.

One of the fascinating features about the SPH method which distinguishes this method

from all other mesh-based methods is that in SPH instead of directly calculating the gradient

of the field variable f (⃗x), one can use the differentiation of kernel function [48].

In particular, the formulation of the first derivative of pressure using Monaghan [90] reads

ρa∇Pa = ∑
b

mb(Pb −Pa)∇aWab (2.36)

where the kernel function is abbreviated as W (h, |⃗xa − x⃗b|) =Wab.

The equation 2.36 is the pressure gradient estimation between to neighbour particles (a)

and (b).

In SPH modelling, evaluating the pressure at each point depends on the fluid properties,

in particular its degree of compressibility. In the literature two main approaches are proposed

for each type of fluid.

• Weakly Compressible SPH (WCSPH) where an artificial compressibility is used to

evaluate pressure by solving an equation of state Shao and Lo [122].

• Incompressible SPH (ISPH) where the Poisson equation is solved to impose fluid’s

incompressibility.

WCSPH has been mostly used to simulate wave propagation Chakraborty and Bal-

achandran [23] and flow through porous media Tartakovsky et al. [133]. In WCSPH, the

incompressiblity in enforced using a stiff equation of state to adjust pressure oscillations

by density variations. The main disadvantage of WCSPH comes from the fact that in this
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approach the speed of sound is used to satisfy the stability (CFL) condition. High sound

speed leads to much smaller time steps making this method computationally costly.

2.8 Interactions in EHD-TC Phenomena

At the last paragraph of his work on thermocapillary motion of droplets, Fedosov [41] and

after obtaining the validity limit for his analytical solution that is temperature change along

the drop perimeter to be less than 50 [K], he mentions that the thermocapillary drop velocity

can overcome (and sometimes, for some cases does so significantly) the electrocapillary

drop velocity for weakly conductive drops.

In recent decades, the combined interactions of electric and thermal fields applied

to multiphase fluid systems have received strong attention. From the theoretical physics

point of view, a comprehensive description of the essence of the emergence of electro-

thermo-hydro-dynamics instabilities has motivated many theoretical and experimental

studies[4, 132, 127, 125]. One the other hand, several industrial processes have applied

combined electric and thermal fields. For instance, heat exchange devices [29, 16], solar

energy[46] and microelectronic devices[155] have been the motivation behind many studies.

Moreover, the electrohydrodynamics and thermal analysis principles can also be applied in

zero to low gravity situations where buoyancy-driven forces are negligible[45, 31].

The literature of heat transfer enhancement using active techniques [4] such as imposing

electric field to the system has been extensively reviewed[70, 81]. In a numerical study

by Hassen[56], the effect of the electric field in controlling thermocapillary instabilities is

analysed. They used stream function-vorticity formalism to solve the coupled system of

equations including Navier–Stokes, Electro-hydrodynamic (EHD), and heat transfer. It is

concluded that depending on the direction and strength of the electric field, thermocapillaty

instabilities can increase or decrease.
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Another phenomenon where in thin liquid films temperature-induced Marangoni flows

and electric field can generate flow instabilities leading to pattern formation is studied by

Corbett[28]. The objective is to use EHD and thermocapillary effect in modifying surface

topography by creating smaller structures. Their linear analysis of the lubrication equation

on perfect dielectric and leaky dielectric films shows that in the former case, thermal effects

tend to overcome the effects of the electric field, while in the latter case, that is the leaky

dielectric theory, simultaneous application of the thermal and electric fields can increase the

growth rate and reduce the dominant wavelength of the instability. Nonlinear simulations

that are performed using a fourth-order accurate finite-difference scheme confirm the results

of linear stability analysis and reveal that the coupled thermocapillary and electric forces

serve to generate smaller wavelengths than when only one of these sources of instability is

used.Nazaripoor[96] extended previous 1D study to 2D based on lubrication theory. The

linear analysis agrees quantitatively with [28] and the numerical simulations support a

decreasing trend in the feature size. The mechanism of pattern formation and the shape and

size of the structures are investigated by varying Marangoni number and thermal conductivity

ratio of layers. Increase in the Marangoni number is found to produce smaller structures

and maintaining the same mechanism of pattern formation. The thermal conductivity ratio

on the other hand, modifies the mechanism where higher conductivity ratios lead to higher

thermocapillary forces in thicker zones that itself prevents the formation of uniform and

hexagonal ordered small structures called pillars. The Fig.2.10 illustrates the process of

pillars formation under the effects of thermal and electrical fields.

As mentioned earlier, gradients of surface tension affects the dynamics of a liquid droplet

in the presence of the electric field. In a theoretical analysis, Chang and Berg[25] found that

surface tension gradient caused by introducing surfactant may produce quasi-stagnant zones

along the interface either near the poles or the equator of the droplet. The Marangoni flow

may also increase or decrease the droplet terminal velocity compared to when only electric

field is applied.
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Fig. 2.10 Interface height change versus time (a) and spatiotemporal evolution of interface b(i-iv) in
combined EHD-Marangoni instabilities. Applied voltage, ψup = 5V, initial film thickness, h0 = 26nm,
relative thermal conductivity, kr = 2 and modified Marangoni number, M̄ = 0.22. Nondimensional
times, T =(i) 1.2×104,(ii) 1.5×104, (iii) 1.7×104, (iv) 2.0×104 and (v) 7.0×104.λ = 5.34µm
[96].

Modeling the multiphysics problem of droplet migration and deformation driven by TC

and EHD flows has been a challenge for a couple of reasons. First, the physical properties

of the system (i) hydrodynamic features such as dynamic viscosities, densities, interfacial

tension (ii) electric features such as conductivity and permittivity ratios, and electric field

configuration (iii) and thermal features such as thermal conductivities, specific heats, and

the equation of surface tension as a function of temperature[113, 89, 68]. Therefore, before

introducing the physical model following assumptions about the system need to be made.

• Continuous and disperse phase are incompressible Newtonian fluids;

• Surface tension between the droplet and the bulk is temperature-dependant, while

other physical parameters remain independent and constant in time.

• Thermal field is uniformly distributed and is obtained through a constant temperature

gradient applied at upper and lower solid boundaries.

• DC electric field with the electric strength lower than the critical value is applied on

the upper and lower solid boundaries.
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• Electric double-layer theory[94], as well as magnetic effects, are neglected.

A numerical investigation by Traoré[140] on the effects of electric field and thermal gradient

in parallel plates immersed in a single-phase dielectric fluid shows that when a strong unipolar

injection is applied to the top or bottom boundary, the Nusselt number N̄u =
∫ L

o

(
∂θ

∂y

)
y=o

is

significantly increased resulting in heat transfer enhancement.

[69].

Conservation of energy

To compute the effect of temperature gradient (∇T ), the conservation of energy should also

be considered for each fluid[96].

ρcp
DT
Dt

= ∇(λ∇T ), (2.37)

and

κ =
λ

ρcp
, (2.38)

resulting in:

ρcp(
δT
δ t

+v.∇T ) = κ(∇2T ). (2.39)

where κ is the thermal diffusivity, λ is the thermal conductivity, and cp is the specific

heat capacity at constant pressure.

In a recent study by Wakif et al. [149], a semi-analytic instability analysis induced by

electro-thermo-hydrodynamic (ETHD) effects in dielectric nanofluids is performed by means

of power series method where a simultaneous action of AC electric field and imposed

negative temperature gradient are considered. The fluid density as a function of temperature
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is

ρ = ρpφ
∗+ρo(1−φ

∗)[1−β (T ∗−T2)]. (2.40)

Where T ∗ the temperature, T2 the cold wall temperature, φ∗ volumetric function of nano

particles and β is the thermal expansion coefficient. In addition to density, the effective

dielectric constant ε∗ is also temperature-dependent as

ε
∗ = εo[1− e(T ∗−T2)]. (2.41)

where e has a small positive value representing the thermal expansion coefficient. Assuming

zero nanoparticle mass flux, They argued that stability of the system mainly depends on

the thermal Rayleigh number Ra = ρoβ∆T gL3

µα
, the Lewis number Le =

α

DB
, the modified

diffusivity ratio Na = DT ∆T
(φoDBT2)

and the nanoparticle Rayleigh number RN =
(ρp−ρo)φogL3

µα
.

These dimensionless parameters destabilize the nanofluidic system. That is to say, in case of

a great ETHD stability, to assure the onset of electroconvection and enhanced heat transfer,

higher velocity is required.

2.8.1 EHD Applied to Heat Transfer Enhancement

Coupling the electric and thermal fields introduces new variations in the the heat transfer

coefficient based on the heat flux, the electrode voltage and the electric field features.

Investigating the mechanism of these processes is crucial due of the extensive use of heat

exchangers to ensure large heat fluxes in industrial applications.

The literature of heat transfer enhancement using active techniques [4] such as imposing

electric field to the system has been extensively reviewed [70, 81]. The potential of

EHD forces in improving the heat transfer performance of multi-phase systems has been

extensively demonstrated. It is therefore necessary to find fluids that are both thermally
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and electrohydrodynamically efficient. Starting from single phase flows, [57] state that

the fluid should have conductive behaviour to facilitate the fluid movement. In two-phase

flows, in addtion to the conductivity of the fluids, the permitivity is also an important

parameter to to modify an interface or to create an electroconvection phenomenon. In

practice, Hydrofluorocarbons such as R123 and R134-a were suggested first, yet due to

atmospheric damages they are progressively substituted by non-ozone depleting chemicals

such as Hydrofluoroethers such as HFE-7000 and HFE-7100 [95]. Having an immense

environmental impact, this area demands more attention in future researches.

Consernig the numerical simulations on the EHD effects on heat transfer, the Lattice

Boltzmann numerical method is used to simulate the transition process from laminar to

chaotic flow in ETHD convection of a dielectric fluid [74]. In a two-dimensional square

cavity, the temperature field is uniformly imposed along with a DC electric field on the

lateral walls. To keep the injected charge density qo constant, a unipolar, autonomous,

and homogeneous injection is used in the model. To describe the charge transport the

Nerst-Planck equation is used as follows

∂q
∂ t

+∇.(qKE+qu−D∇q) = 0. (2.42)

Where u = [ux,uy] the fluid velocity vector, E = [Ex,Ey], K the ion mobility and D is

the charge diffusion coefficient. The simulations are executed for a range of electric

Raleigh number T = ε∆φ

µK and based on the results three transition states for the system are

identified (i) The quasi-periodic sequence involving four incommensurable frequencies (ii)

the intermittency sequence, and (iii) the alternating periodic-chaotic sequence.

In addition to single-phase flows, EHD has been used for decades in heat transfer enhancement

in multiphase fluid flows [62]. In particular, heat transfer in melting [80], boiling [126,

162, 101, 73, 160] and condensation [17, 36] process can be enhanced by means of the

Coulomb force associated with the liquid-extraction phenomenon and through enhancement
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of wettability over the heat transfer surface[18, 158]. An unfavorable argument against using

EHD techniques in such phase change mechanisms is the energy required to feed high voltage

DC electric field [84].On the other hand, lower pressure drop and higher performance of the

EHD-driven methods remain concrete advantages in comparison with passive heat transfer

enhancement methods(i.e. chemical composition modification). Table 2.5 summarises some

of the main thermal processes in which the EHD is used to enhance heat transfer. In the

context of the coupling mechanism when the temperature gradient is imposed on an EHD

fluid system, according to the pioneering study by Castellanos [20, 19], the temperature

equation can be obtained from the entropy equation in moving dielectric fluids. It is assumed

that the entropy of the system can be expressed as a function of temperature, mass density,

and displacement vector. In polar fluids, the flux of internal energy noted as J’ =−k∆T

where k is a function of the temperature, the electrical permittivity, and the electric field.

The other link between the thermal and electric fields lies in the reversible variations of

temperature with the electric field. For the case of EHD, the molecular polarization will be

in equilibrium with the field, thus the dielectric heating can be neglected. Similarly, when

fluids are highly insulating the contribution of Joule heating is not present. The author

concludes that imposing temperature difference affects the dynamics of the system through

buoyancy and electric forces.

In a recent numerical simulation using the Spectral Element Method (SEM), both uniform

and sinusoidal temperature boundary conditions are applied on an enclosure cavity [151].

As illustrated in Fig. 2.11, local heat transfer rate enhancement is obtained with greater

electric Rayleigh number T = ε∆φ

µK where ε the electric permittivity, φ the electric field

potential, µ the dynamic viscosity, and K is the ionic mobility.

In an extensive theoretical analysis, Douiebe et al. [35] studied the coupled buoyancy and

thermocapillary instability, known as Bénard–Marangoni problem, in an incompressible

fluid with small electrical conductivity. Having considered the effects of both the AC electric

field and the rotation, they determined the regions where the oscillatory instabilities occur.
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Fig. 2.11 Profiles of local Nusselt numbers on the hot wall at different electric Rayleigh number[151]

The system consists of a Boussinesquian fluid phase placed in a horizontal infinite layer for

which the density ρ and the dielectric constant ε are varying linearly with temperature and

can be expressed as

ρ = ρo[1−α1(T −To)] (α1 > 0), (2.43)

ε = εo[1−α(T −To)]. (2.44)

The upper free surface deforms and has a low heat conductivity leading to linearly decreasing

surface tension as a function of temperature.

γ = γo − τ(T −To)] (τ > 0). (2.45)

In the same model [35], in addition to the electric force fe, the Coriolis force fc and the

centrifugal force fg are also included in the momentum balance [63, 146].

fc = 2ρV×Ω, (2.46)

fg =
1
2

ρ∇(|Ω× r|2). (2.47)
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They found that the free surface deformation affects the coupling between electric and

capillary forces by means of the ratio as well as the strength of the AC electric field. It is

also worth noting that the Biot number (representing the heat flux flow through the interface)

h = dhT
λ

improves the coupling between the buoyancy, thermocapillary and electric forces.

In an experimental study performed by [34], the effect of electric field augmenting the heat

transfer in the evaporation/boiling process is investigated. For the microchannel evaporator,

when they apply a flux of 28.91 W/cm2, the heat exchange coefficient is improved by a factor

of 1.45 by imposing an electric field of 1.2 kV/mm. In another configuration with the R141b

as the working fluid, under a flux of 167.8 W/cm2, by applying a field of1.3 kV/mm, the heat

exchange coefficient is improved by a factor of 1.5. These observations demonstrate that for

low fluxes, heat transfer is dominated by vaporization. Under the effect of the electric field,

charges accumulate at the interface and create a shear force at the interface, creating an

electro-convection movement that promotes heat transfer.In such mechanism, the interface

is subjected to the dielectric force which extends the meniscus in the evaporator and thus

increases the transfer coefficient.In the case of large heat flows, the transfer is dominated by

boiling. Bubbles will stretch along the field lines, increasing the size of the liquid-vapour

interface and promoting their departure from the wall.

Many approaches and developments can be explored in this area, from a modeling point

of view as well as from an analysis point of view. Moreover, to delineate the governing

mechanisms on coupled EHD-TC problems, the role of electrochemistry and its interaction

with EHD principles requires more analytical and computational studies[92, 11, 112].

2.9 Summary

In this chapter we reviewed the existing researches performed on multiphase fluid flows

subject to elctrohydrodynamics (EHD), thermocapillary, and the simultaneous effects of

these phenomena in coupled systems. It mainly concerns the theoretical, experimental and
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numerical aspect of the electro-thermo convection as well as the coupled electric field and

heat transfer. The following remarks may be taken into account in the future researches

• A comprehensive study on the influence of temperature-dependent variables such as the

temperature-dependent model of the electrical permitivity and electrical conductivity

when included could enhance the model’s reliability and accuracy.

• Since in multiphase flows the simultaneous effects of the hydrodynamic, thermal

and electric fields on the stability of the system depends on several dimensionless

number, more works on the influence of non-dimensional numbers on the stability of

the system is required;

• According to both experimental and theoretical studies,the forces may lead to a

reduction in the thermal boundary layer, increased heat convection, gas bubble or

liquid droplet migration and deformation, causing interfacial instabilities or phase

migration that can result in a flow regime redistribution. Direct Numerical Simulation

(DNS) and Large Eddy Simulation (LES) approaches in the turbulent flow problems

are therefore helpful in gaining more insight into these phenomena;

• Same as previous point, numerical simulation of some classical instabilities such as

Kelvin-Helmholtz and Rose-window instabilities in leaky dielectric fluids could be

envisioned.

• Development of 3D numerical simulations capable of dealing with multi-scale

problems in spatio-temporal aspects is also an improvement axis in this topic.





Chapter 3

Modelling and simulation of multiphase

flows

In this chapter the governing equations of a multiphase system and the numerical methods

used to solve them are summarized. The new functions to model temperature-dependent

surface tension for coupled EHD-TC simulations are explained.

3.1 Numerical methods for multiphase flow

The numerical modeling of multi-phase, here in particular two-phase, flows remains a

considerable challenge despite extensive research and the progresses in computer power.

Within Computational Fluid Dynamics (CFD), the Smoothed Particle Hydrodynamics (SPH)

methods is most used due to its particle-based structure and easy implementation without

the need for a mesh generation [115]. [44].
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3.2 Governing equations

In order to describe the isothermal movement of fluids, the conservation equilibrium for

mass and momentum for an infinitesimally small fluid element need to be considered.

The conservation equation for energy is omitted for systems with constant temperature.

Assuming isotropic and incompressible fluids, the Navier-Stokes equations read as

∇ ·v = 0 (3.1)

ρ(
∂v
∂ t

+v.∇v) =−∇.p+∇.Πviscous +ρg+σκδsn (3.2)

δρ

δ t
+∇.(ρv) = 0 (3.3)

where v = (u,v,w) the fluid flow velocity, density ρ , pressure p, the gravitational accel-

eration g and the total viscous stress tensor Πviscous = µ[∇v+(∇v)T ], and the Boussinesq

approximation 1

Here, eq. 3.1 is the continuity equation, which describes the mass conservation of the

fluid flow under consideration. Equation 3.2 is is about maintaining momentum balance.

The convective force term (ρv−∇v) on the right side of eq. 3.2 describes the convective

transport within the fluid. The viscous force term (η∇2v) presents frictional effects. The

pressure term indicates the pressure the forces acting on the fluid again. One can define

f = ( f x, f y, f z) as external forces (source terms). For instance, the gravitational force g or

1Density variation is only important in the buoyancy term, and can be neglected in the rest of the equation
are assumed.
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surface forces that in 2-D can be solved by the following equations:

∂u
∂ t

=−∂u2

∂x
− ∂ (uv)

∂y
+

µ

ρ
(
∂ 2u
∂x2 +

∂ 2u
∂x2 )−

1
ρ

∂ρ

∂x
+ fx, (3.4)

∂v
∂ t

=−∂v2

∂x
− ∂ (uv)

∂x
+

µ

ρ
(
∂ 2v
∂x2 +

∂ 2v
∂y2 )−

1
ρ

∂ρ

∂y
+ fy (3.5)

0 =
∂u
∂x

+
∂u
∂y

(3.6)

It is a system of partial differential equations, which is described as three unknown which

contain the velocity in x- or y-direction and the pressure. To solve this, initial conditions and

boundary conditions are required. The mainly used boundary conditions are the Dirichlet

and Neumann conditions. A Dirichlet boundary condition will specify the value of the

variable on the edge. For the Neumann boundary condition defines the normal gradient of a

variable. Periodic boundary conditions are used to combine an infinitely large area which is

regenerated in time.

In case of non-isothermal multiphase flows, the conservation of energy yields

ρcp
∂T
∂ t

= ∇(λ∇T ), (3.7)

and

κ =
λ

ρcp
(3.8)

results in
∂T
∂ t

= κ(∇2T ) (3.9)

where κ is the thermal diffusivity, λ is the thermal conductivity and cp is the specific heat

capacity at constant pressure.

wherein the heat capacity cp and the thermal conductivity coefficient λ . In equation

3.2, the viscous dissipation can be neglected since the characteristic flow velocity is much

smaller than the speed of sound.
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3.3 Surface tension

While the equations 3.1,3.2,and 3.2 describe the conservation laws inside the balk flow, to

model the jump across the fluid-fluid interface Σ for any quantity

JφK = lim
ε→0+

[φ(x0 + εnΣ)−φ(x0 − εnΣ)] (3.10)

where the surface normal nΣ is the normal vector at the interface from one phase to the other.

To consider the no-slip condition at the interface, that equivalent to the continuity of the

tangential components of the velocity at the interface, we will have

Jρ(v−vΣ)K ·nΣ = 0, (3.11)

A similar condition must be assumed for the stress continuity at the interface, based on

the momentum conservation which reads as

Jρv⊗ (v−vΣ)+ pI−SK ·vΣ = fΣ, (3.12)

where fΣ is the surface force density and is defined as

fΣ = σκnΣ +∇Σσ (3.13)

Where the effect of the intrinsic surface viscosity is neglected and the sum of the principal

curvatures κ can be defined as

κ = ∇ · (−nΣ). (3.14)
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In the thermocapillary flows the surface tension depends linearly on the temperature,

also known as the Eötvös rule, named after the Hungarian physicist Loránd Eötvös, and can

be expressed as

σ(T ) = σ(T0)+σT (T −T0), (3.15)

Where the temperature coefficient is a material dependent property and is mostly negative,

i.e. the surface tension mitigates with the increase in the temperature. It is also necessary to

include the continuity of the temperature at the interface as

JT K = 0. (3.16)

In multiphase problems, the sharp interface limit of the capillary stress tensor [58] can

be mathematically modeled as:

∇.Πcapillary = (σκn̂+∇Sσ)δ . (3.17)

where σ is the surface tension coefficient, κ is the curvature, ∇S is the gradient of the

tangential component of surface tension, and n̂ is the normal vector to the interface. The

Dirac-Delta function δ is defined to be unity at the interface and zero elsewhere. This

implies that the capillary stress tensor is constant inside the balk. The surface tension force

can be modeled using the continuum surface force (CSF) model [15].

Considering the total stress tensor balance at the interface in multiphase system, figure 3.1

depicts the normal and tangential components of the total stress tensor, as well the unit vector.

By defining the interfacial tension σ and the stress exerted by one fluid on the other by n.T

and n.T̂ , respectively, we can derive the total stress balance at the fluid-fluid interface.

n.T −n.T̂ = σn(∇.n)−∇.σ (3.18)
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Fig. 3.1 The components of the total stress tensor and the surface tension gradient at the interface

Where in the Right Hand Side, the effect of the local curvature ∇.n is represented by the

normal curvature force per unit area of the surface σn(∇.n).

3.3.1 Laplace’s law

The Laplace’s law which was discovered by the French mathematician Piere-Simon Laplace

states that the finite thickness of a sphere and its radius (initial state of a theoretical bubble)

determines the tension on the wall when the sphere is filled with a fluid at a specific pressure.

This reveals that to reduce the tension on the wall, one needs to increase the thickness of the

sphere wall at the same pressure.This law is used in results’ chapter to verify the accuracy of

the proposed model for pressure jump calculation.

Equation 3.19 states the analytical statement of the law of Laplace [108] where p is the

pressure at the two sides of the interface. Also, σ and r are the surface tension coefficient

and radius of the bubble, respectively.

pin − pout =
σ

r
(3.19)



3.3 Surface tension 63

It is noteworthy to discuss the reason behind the different values obtained for theoretical and

numerical pressure jump at the interface. As mentioned before, the pressure and other field

variables (velocity, etc) are approximated using the numerical smoothing scheme which

converts the sharp values at the interface to smoother ones resulting in a loss of accuracy and

introduction of spurious (parasite) oscillations near the wall of the bubble. These currents

are generated because of an inappropriate evaluation of curvature of the circular bubble due

to unreliable values for unit normal vector (⃗n = ∇C
|∇C| ) in the surface tension force calculation.

3.3.2 Balance laws at the interface

The conservation laws for the interface will be as follows:

Mass conservation :

[ρ (⃗v− u⃗)].⃗n = 0 (3.20)

Linear momentum conservation :

[ρ v⃗(⃗v− u⃗)−T].⃗n∇(s)σ +κσ n⃗ (3.21)

where [] sign represents the jump for the quantity f defined on x on the interface Γ such that :

[ f ](x, t) = f+(x, t)− f−(x, t) (3.22)

f±(x, t) = lim
h→0

f (x±hn(x, t), t) (3.23)

assuming the negative and positive sign of the moving discontinuity.

Also in 3.21 n⃗ is the unit normal to the interface, ∇(s) is defined as the surface gradient

operator, σ is the surface tension and κ is the curvature. Moreover in 3.20 and 3.21, the u⃗ is

the velocity of the surface Γ(t) at a point on the surface which may be decomposed into a
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normal component, u, and a tangential component, u⃗tan .⃗n = 0

We will then have :

u⃗ = u⃗n+ u⃗tan (3.24)

3.4 Surface-tension force in SPH

3.4.1 Introduction

Surface tension has been modeled and implemented in SPH by Tartakovsky et al. [133].

In this approach the micro-scale interactions between particles are modeled using van der

Waals equation of state. This approach is less used in engineering applications as it is

dependent to the micro-scale parameters. To address this issue, macro-scale models of

surface tension based on Continuum Surface Force are widely used to compute the local

curvature of an interface. This section is dedicated to the formulation of this model and the

computation of the normal vector to the interface.

3.4.2 Continuum Surface Force model (CSF)

Morris et al. [93] introduced the first surface-tension model based on the Continuum Surface

Force (CSF) technique proposed by Brackbill et al. [15]. This method essentially computes

the local curvature of an interface. The surface tension can be defined as a force per unit

volume

Fs = fsδs (3.25)

where δs is a surface delta function and

fs = σκn̂+∇sσ (3.26)
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where fs is the force per unit area, σ is the surface tension coefficient, κ is the local curvature

of the interface, and n̂ is the unit normal vector to the interface. The term ∇sσ links the

surface tension to the the Marangoni effect due to change of the surface tension. The unit

normal vector can be computed using the color function

n̂ =
n
|n| =

∇c
|∇c| (3.27)

3.5 Numerical Simulation Tool

In this thesis, the second publication is done using Smoothed

Particle Hydrodynamics in Process Engineering (SIPER ©2016)

which is developed by a team of engineers and researchers, mainly

Manuel Hopp-Hirschler, Philip Kunz and Christian Zander, at

the Institute of Chemical Process Engineering (ICVT), Stuttgart

University. It is an in-house code for the description of multiphase

flows. For this purpose, the ICVT relies on a particle-based, grid-free method called

"Smoothed Particle Hydrodynamics" (SPH). Due to the Lagrangian property, this approach

is suitable on the one hand for the dynamic description of interfaces and for problems with

geometrically changing boundary conditions.

This program is written in C language, organized with doxygen2, uses XML-PlugIn 3

components and combines them into a deployable format under eclipse IDE 4. Massage

Passing Interface (MPI) has been implemented to parallelize the code by dividing the

2Doxygen is a free software used as documentation generator and static analysis tool for software source
trees.

3Extensible Markup Language (XML) is a meta-language that defines a set of rules for encoding documents
in a format that is both human-readable and machine-readable.

4Eclipse is an Integrated Development Environment (IDE) written mostly in Java and is used for developing
Java applications, but or applications in other programming languages via plug-ins.
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geometry and assigning multiple cores to solve PDE’s for 1D and 2D problems. This code

uses PETSc5 libraries including MPICH6 and LAPACK.7

SIPER Algorithm

The main algorithm of SIPER code is based on the following steps:

1. Via an input file the necessary simulation data is read in.

2. Initialisation Time Loop starts here

3. Search for Neighboring Particles (After each particle movement)

4. Forces predictor step (in the predictor-corrector scheme, the integration step starts

here)

5. Computing v∗ the temporary velocity

6. Forces corrector step (in the predictor-corrector scheme, the integration step ends

here)

7. Solving Pressure-Poisson equation using Stabilized BiConjugate Gradient (BiCGStab)

method [9]

8. Computing the velocity v and the pressure p at each grid point

9. Finalisation Time Loop end here

5Portable, Extensible Toolkit for Scientific Computation (PETSc), is a suite of data structures and routines
developed by Argonne National Laboratory for the scalable (parallel) solution of scientific applications modeled
by PDEs.

6MPICH is a high performance and widely portable implementation of the Message Passing Interface
(MPI) standard.

7Linear Algebra PACKage (LAPACK/BLAS) is written in Fortran 90 and provides routines for solving
systems of simultaneous linear equations, least-squares solutions of linear systems of equations, eigenvalue
problems, and singular value problems.
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To improve the condition number (a measure for sensitivity of the output to input variations)

of the SPH method the algebraic multigrid preconditioner BOOMERANG from the HYPRE

library8[40] is used.

SPH grid

SIPER uses Smoothed Particle Hydrodynamics methods to solve the governing partial

differential equations known as the Navier-Stokes equations. In SPH method, particles are

used to discretize the domain. To convert the partial differential equations into algebraic

equations using numerical methods, one needs to split the whole domain into multiple

points or particles known as grid points, by choosing an appropriate number of grid points

across the domain. This decomposition of the domain is known as a SPH grid. SIPER

uses Cartesian grids, which are composed of points in one or two dimensions. In case of

multiphase problems, each grid point will be assigned an ID that represents the phase of that

grid point. This allows us to compute the solutions of differential equations at each point

distributed uniformly across the domain.

Field variables

SIPER uses the notion of a Field in relation to the concept of fields in physics. It provides

scalar, vector, and tensor fields defined at each grid point. A vector field is a collection of n

scalar fields, similarly a tensor field is a collection of n vector fields, where n is the number

of dimensions.
8Library of High Performance Preconditioners (HYPER) is a software library for the solution of large,

sparse linear systems on massively parallel computers.
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According to Morris et al. [93] formulation, if the assumption of incompressibility is

applied, and thus the viscosity formulation simplifies to

∇τ = ν∇
2v (3.28)

which with SPH discretisation yield to

Pi = ∑
j

(
ηi +η j

)mim j

ρiρ j

1
ri j

∂Wi j

∂ ri j
vi j (3.29)

Ui =−∑
j

ηi +η j

2
mim j

ρiρ j

1
ri j

∂Wi j

∂ ri j
v2

i j (3.30)

3.6 Parallel SPH code using MPI

Highly scalable, parallel computer programs have become indispensable tools for the

advancement of numerical research. Researchers are more hopeful than ever before, in

tackling complex and huge engineering and scientific problems due to the availability of

required computational resources in past twenty years. In terms of the hardware resources

the progress seems well ahead of the progress in application (software) domain. There are

many legacy codes which are still relevant in today, but they lack the modern approach

to efficiently use the available hardware resources. Some of the computationally huge

problems which cannot be solved without the modern high-performance computing (HPC)

technologies include: microfluidic phenomena, astrophysical analysis, heat transfer analysis,

electrohydrodynamics modeling, plasma physics etc. It is unimaginable to work out these

problems on single core computers, parallel computing is the only way forward for such

problems.

In general, parallel computing refers to solving parts of a problem simultaneously on

multi-core computing machines. A problem which can be broken into multiple smaller
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and discrete parts which can be solved independently, makes a good candidate for parallel

computing. The discrete parts of the problem are solved on different computing cores and

after finishing they are synchronized to provide the solution of the whole problem. Parallel

computing offers several benefits to users: saving time and money, solving complex and

large problems, multi- tasking etc. Advancements in HPC have provided another way –

‘computational science’, of doing science along with the classical branches of experimental

and theoretical sciences. Computational scientists make use of their simulation methods

when they are more advantageous and feasible over the classical approaches of theory and

experiments.

Three broad areas of parallel computing are hardware, algorithms and software. In hardware,

adding more and more cores and providing efficient inter-communication network among

cores has increased the parallel nature of computing machines. In algorithmic terms,

scientists seek how a problem can be defined by independent physical mechanisms, and,

how it can be solved with independent set of mathematical equations. However, a bigger

challenge is posed by the inadequate software, which are not fully able to profit by the

progress made in hardware and algorithms. In terms of important characteristics, the modern

codes should be optimized, portable and future-proof with every evolving HPC technologies.

A code should make optimal use of the hardware properties such as the cache design, vector

registers, multiple cores etc. It should be developed with the standard parallel programming

models such as MPI, OpenMP, hybrid models etc.

3.7 Surface tension treatment

In multiphase flows, the matter is always classified between the bulk phase, the dispersed

phase(s) and the region between two homogeneous phases, known as interfacial state. The

physical properties of the interfacial phase being different from those of the bulk and

dispersed phases, thus giving rise new variables such as interfacial surface tension. In the
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equilibrium state, interfaces need to be considered where surface-to-volume ratio is large

which leads to large ratio of interfacial free energy to total free energy.

As mentioned earlier on this chapter, in a two-phase system for molecules within the

continuous phase the resultant force of all intermolucular interactions gets balanced (see

Fig2.5). However, for the molecules at the fluid-fluid interface, the force towards of the

continues phase is higher in magnitude, thus pulling the molecules in this direction and

creating a curved shape with two radii . The

3.7.1 Color Function

The idea of color [117] function is to assign a value to each phase of the multiphase system so

to simplify the value attribution to each field variable and avoid confusion in the calculation.

Color function can be then used specify the interface with some conditions that are to be

satisfied.

Here the smoothed color function of the particle i of phase A is defined as :

Ci =
∑ j Wi jc j

∑ j Wi j
(3.31)

c j =





1, fluid A

0, fluid B

This technique is in particular useful in smoothing the discontinuities between the quantities

at each phase using an optional weighting function, Wi j.

Furthermore, this approach provides a clear definition for the volume fraction of each fluid

i.e. CA
i =Ci and CB

i = 1−Ci defines the volume fraction corresponding to the fluid A and

fluid B, respectively such that : ∑nCn
i = 1 for all n phases.
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3.8 Particle Shifting

The general idea of the particle shifting technique is to slightly modify the equation of

evolution of the particle position (Dx
Dt = u) and thus force the particles not to evolve exactly

along the trajectories. This allows to artificially break the Lagrangian structures that are

classically observed with the SPH method. To this end, it required to add an extra velocity

term δu, called shifting velocity, to the Lagrangian velocity u :

u∗ = u+δu, (3.32)

where u∗ is the modified velocity that will be used in the equation for the evolution of the

position of the particles (Dx
Dt = u). Equivalently, equation 3.32 can also be formulated in

displacement form by time integration:

r∗ = r+δ r. (3.33)

It is worth noting that to preserve the Langrangian nature of the SPH method, in case

of application of a modified velocity, one should make sure that the shifting velocity δu is

sufficiently small enough compared to the velocity u.

3.8.1 Projection method

The continuity and momentum equations can be discretized according to the first-order

projection time integration scheme. For every time step ∆t

1. Evaluate preliminary velocity

u∗
i = un

i +∆t(−(un
i .∇)un

i +ν∇
2un

i ) (3.34)
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2. Using the preliminary velocity, build and solve pressure Poisson equation Pn+1

∆Pn+1
i =

ρ

∆t
∇.u∗

i (3.35)

3. Using the final pressure and pressure gradients, correct the velocity and project it on

to the divergence-free velocity field

un+1
i = u∗

i − (
1
ρ

∇pn+1)i∆t (3.36)

This method is relatively stable but it’s not so accurate. This is because there is a numerical

boundary layer occurrence that makes the velocity order O(∆t) and the pressure order

O(∆t0.5). This numerical boundary layer issue could limit the accuracy of the model when

mixed with an interpolation scheme that is of spatially fourth-order accuracy. One can also

use the second-order projection time integration scheme proposed by [59]

1. Evaluate preliminary velocity

u∗
i =

(4un
i −un−1

i +2∆t(−(u∗
i .∇)u∗

i − 1
ρ

∇Pn
i +ν∇2u∗

i ))

3
(3.37)

2. Using the preliminary velocity, build and solve pressure Poisson equation for pressure

increment qn+1

∆qn+1
i =

3ρ

2∆t
∇.u∗

i (3.38)

3. Evaluate the pressure at step n+1

Pn+1
i = qn+1

i +Pn
i −µ∇.u∗

i (3.39)
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4. Using the final pressure and pressure gradients, correct the velocity and project it on

to the divergence-free velocity field at step n+1

un+1
i = u∗

i − (
1
ρ

∇qn+1)i
2∆t
3

(3.40)

The second-order method is even less stable due to pressure-velocity colocation but it’s more

accurate. The velocity order O(∆t2) and the pressure order O(∆t).

3.8.2 Summary

To sum up, the code which is used in this project is an in-house program including but not

limited to many subroutines such as kernel, grid, ,and interface simulations. Nevertheless,

there are numerous studies related to the mathematical foundation of SPH including its

numerical stability, neighbouring points search algorithm, dissipation and so on and so forth

which are not mentioned in this chapter [117, 90, 91].





Chapter 4

Results

4.1 Introduction

In this chapter two cases of two-phase systems: EHD and Thermocapillary simulation

and a coupled case: EHD-TC simulations, are presented. The EHD and Thermocapillary

simulations are demonstrated using the published or submitted papers. These cases are

analyzed qualitatively and quantitatively, namely analysis of the effect of the numerical

resolution and the surface tension on EHD deformation and thermocapillary droplet

migration is described. Finally, the evolution of the droplet subject to coupled electric and

thermocapillary forces is demonstrated.

4.2 Results: Numerical Simulation of Multi-phase Electro-

Hydrodynamics Systems

The numerical simulations of complex multi-physics electrohydrodynamics (EHD) problems

using ISPH method was first studied by Shadloo [116] were the first group to suggest and
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implement a model for such problems. The code was first validated with simple EHD

deformation of droplets suspended in a neutrally buoyant Newtonian fluid. We demonstrated

a step-by-step validation of the SPH method for each individual force using the same

methodology to answer the existing gap in the literature of this topic. The following paper

extends the limits of understanding about the simulations of multi-phase EHD flows using a

simple ISPH method for different cases. In this work, a numerical simulation of multi-phase

flows under the effects of an external electric field using various scenarios ranging from

low to high deformations, droplet migration, and the effect of shear flow on the droplet’s

deformation is performed. This study answers the existed research gap, provides a broader

perspective into the capabilities of the SPH method for such applications.
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a b s t r a c t

Practically, every processing technology deals with complex multi-phase flows and pre-
dicting the fluid flow behavior is crucial for these processes. Current study discusses the
application of a mesh-less numerical methodology, i.e. Incompressible Smoothed Particle
Hydrodynamics (ISPH) to investigate the behavior of different multi-phase flow systems.
This work is presented in a coherent way with increasing test problem difficulties and
their concerned physical complexities. A wide range of problems including Laplace’s
law, bubble rising, bubble suspension under an external electric field are considered for
a code validation purpose, while the numerical results manifest very good accordance
with the experimental and theoretical data. Finally, we show the effectiveness of using
an external electric field for controlling a complex problem such as Couette flow for a
range of electrical permittivity and electrical conductivity ratios. It is noted that the
Electrohydrodynamics (EHD) effect on a suspended droplet in Couette flow case is
simulated for the first time using the SPH method.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Predicting the behavior of multi-phase flow systems has attracted for decades the attention of many industries due
to their wide ranges of applications in the chemical engineering, aerospace engineering and renewable energy sectors,
among others [1–3]. In multi-phase systems two or more fluids share interfaces which can deform/ migrate as outcome
of exerted forces and constitutional laws. Some applications of multi-phase systems include boiling, condensation, water
purification and petroleum refinement processes where these phenomena have been investigated mostly experimentally
and theoretically. However, with the ever-increasing power of Computational Fluid Dynamics (CFD) methods, numerical
simulations of these systems became of great interest among researchers [4–6].

Smoothed Particle Hydrodynamics (SPH) is a relatively recent and promising mesh-less Lagrangian method which
discretizes the domain into a set of nodes, known as material particles. These particles can freely move inside the

∗ Corresponding author at: CORIA - UMR 6614, Normandie University, CNRS - INSA of Rouen, 76000 Rouen, France.
E-mail address: msshadloo@coria.fr (M.S. Shadloo).
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0898-1221/© 2019 Elsevier Ltd. All rights reserved.
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computational domain subject to an external force or particle–particle interactions. Initially introduced by Gingold and
Monaghan [7], and Lucy [8] for astrophysics applications, SPH was soon found to be suitable for fluid dynamics problems,
where complex geometries [9–11], large deformations [12–14], multi-phase [15–17] and multi-physics problems [18–20]
are involved. A recent overview for the application of SPH can be found in [21].

One of the most important engineering problems which involves many of above cases is the Electrohydrodynamics
(EHD) one, where hydrodynamics of a fluid system is coupled with its response to an external electric field. In EHD
problems, one may control the interface between the two fluids (here, the droplet and the bulk fluid) by controlling the
flow conditions and fluid properties [22,23]. In such problems, the coupling may lead to a large interfacial deformation
(i.e. merge/breakup) or migration. Indeed, EHD is a very complex problem including multi-phase, multi-physics and multi-
scale phenomena with strong topological changes of the interface shape [24,25]. Although, there are many experimental
and theoretical studies available in the literature on the coupled modeling of EHD problems [26–28]. Nevertheless,
some discrepancies between experiments and analytical data still exist [28]. As such, numerical simulations have been
developed to tackle these difficulties and provide insight into EHD problems.

Considering the numerical simulations of EHD using SPH method, Shadloo et al. [29] were the first group to provide a
model for such problems. They validated their code with the simple EHD deformation of droplets suspended in a neutrally
buoyant Newtonian fluid. Rahmat et al. have proposed a multi phase ISPH method based on the lubrication theory and the
drainage model to simulate droplet electro-coalescence for wide ranges of simulation conditions [30,31]. Rahmat et al. [32]
also provided the first simulation results for the Rayleigh–Taylor instability under the combined effect of electric field and
gravitational forces. Yet, step-by-step validation of the SPH method for each individual force using the same methodology
is not well-documented. Additionally, numerical simulation of a multi-phase flow under the effects of an electric field
using various scenarios ranging from low to high deformations, droplet migration, and effect of shear flow on the droplet’s
deformation would provide a broader perspective into the capabilities of the SPH method for such applications. To this
end, this article aims at introducing a mesh-less numerical methodology, i.e. Incompressible SPH (ISPH) approach, to
deal with such complex problems. Additionally, we verify the applicability of some of the used algorithms for a range of
problems including hydrodynamic, capillary, gravity, shear and EHD forces.

This article is organized as follows: First, we introduce the mathematical formulation of the SPH method as well as the
numerical discretization scheme. Then, we incorporate the governing equations of the multi-phase system including the
conservation equations for mass, momentum and electrical charges in a Lagrangian form. Thereafter, a code validation
and numerical convergence study is asserted in the absence of electric field. Numerical results cover solutions with and
without electric field sections. Additionally, the effect of surface tension through Laplace law, the effect of gravitational
force, and the Couette flow for a multi-phase system are examined and validated against analytical solution and available
numerical data in the literature. Finally, conclusions are provided in the last section.

2. Mathematical formulation of SPH

The idea of SPH comes from the fact that any field variable f (x) can be calculated by an exact mathematical relation
as

f (x) =

∫
Ω

f (x′)δ(x′)dx′. (1)

Upon approximating δ(x′) by an interpolation function W (x − x′, h), this equation can be formulated as

f (x) =

∫
Ω

f (x′)W (x − x′, h)dx′, (2)

where x and x′ are the position vectors and h is the smoothing length. In our case, h = ζdx where ζ = 1.6 is a
constant value, and dx is the initial particle spacing. The interpolation function, also known as smoothing function or
kernel function, should have, among others, the following properties [33]

– Normalized over the domain∫
Ω

W (x − x′, h)dx = 1. (3)

– Produces δ function for a small enough smoothing length

lim
h→0

W (x − x′, h) = δ(x′). (4)

– Remains monotonically decreasing throughout the entire domain.
– Has a compact support, meaning that for |x − x′

| > kh

W (x − x′, h) = 0. (5)

– Is a symmetric function.

78 Results
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Initially, the kernel functions were defined such that each particle should have interactions with all others [7].
By introducing the concept of Neighboring particles,1 kernel function affect only a compact support around it were
substituted (see Eq. (5)). Depending on the smoothing length parameter h, only a few number of particles in the entire
space affect the approximated value of the kernel function (around 25 to 35 in 2D). In the current work, a cubic spline
kernel function is used both for the bulk fluid and the interface modeling while taking harmonic average.

Wij = A

⎧⎪⎨⎪⎩
2/3 − (r/h)2 + 1/2(r/h)3 r/h ∈ [0, 1)

1/6(2 − r/h)3 r/h ∈ [1, 2).
0 r/h ≥ 2

(6)

Hereafter, W (x−x′, h), will be shown by Wij and A =
15

7πh2
. Also, i, j, and r represent the index of the particle of interest,

the index of its neighbors, and the smoothing radius.
To calculate the SPH gradients, one can show that it is sufficient to differentiate the kernel functionW (x−x′, h). In other

words, in SPH there is no need to differentiate the field function f (x); instead one can differentiate the kernel function.
The latter is one of the fascinating features of the SPH method which distinguishes this method from other mesh-based
techniques. In this work, we use an improved version of the first derivative, presented in [34] as

∂ f mi
∂xki

akli =

∑
j

1
ψj

(f mj − f mi )
∂Wij

∂xli
. (7)

Also, the derivatives for vectorial and scalar quantities are calculated, respectively, as follows:

∂2f mi
∂xki ∂x

k
i
aml
i = 8

∑
j

1
ψj

(f mi − f mj )
∂Wij

∂xli

rmij
r2ij
, (8)

and

∂2fi
∂xki ∂x

k
i
(2 + akki ) = 8

∑
j

1
ψj

(fi − fj)
∂Wij

∂xki

rkij
r2ij
, (9)

where ψ is the particle number density and akli represents a corrective second rank tensor to avoid particle inconsisten-
cies [9].

3. Governing equations

Assuming an immiscible two-phase Newtonian, viscous, incompressible, isothermal fluid system, the corresponding
mass and momentum conservations in a Lagrangian formulation are given as follows

Dρ
Dt

= −ρ∇.V⃗ , (10)

and

ρ
DV⃗
Dt

= ∇.T + f⃗ b + f⃗ s + f⃗ e, (11)

where, ρ is the fluid density, D
Dt is the material time derivative operator,2 ∇.V⃗ is the divergence of the velocity vector,

T is the total stress tensor which is defined as T = −pI + τ where p is the static pressure, I is the identity matrix and
τ = µ(∇V⃗ + (∇V⃗ )T ) is the viscous dissipation term for µ being the dynamic viscosity.

Additionally, f⃗ b = ρg⃗ is the body force due to gravity and f⃗ s is the surface tension which can be calculated using the
volumetric force proposed by Brackbill et al. [35], so called the Continuum Surface Force (CSF) method, as

f⃗ s = γ κ n⃗δs. (12)

Here, γ is the surface tension coefficient, κ = −∇.n⃗ is the interface curvature, n⃗ =
∇C
|∇C |

is the unit vector normal to
the interface, and δs = |∇C | is surface Dirac-delta function, and finally, f⃗ e is the electric field force.

To avoid sharp discontinuities at the interface, the smoothed color function of the particle i is defined as

Ci =

∑
j Wijcj∑
j Wij

, (13)

1 Particles that are located within the range of the kernel function with respect to the particle of interest. Outside of this range, the kernel
function has already dropped to zero.
2 The material time derivative is a directional time derivative for a fixed point.
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where the color function c assigns a unit value to one phase and zero to the other phase in a two-phase system such that

cj =

{
1, fluid A
0, fluid B

.

Furthermore, this approach provides a clear definition for the volume fraction of each fluid, i.e. CA
i = Ci and CB

i = 1−Ci
define the volume fraction corresponding to the fluid A and fluid B, respectively, such that

∑
n C

n
i = 1 for all n phases,

here n = 2.
As mentioned before, in this study the electrostatics and the hydrodynamics are coupled together. This coupling is

achieved through the Maxwell stress tensor. Maxwell equations provide a mathematical framework for the interaction
and the connection between the electric and the magnetic fields [36]. Here, the EHD part of the system can be regarded
as quasi-static model, and dynamic currents values are so low, hence the induced magnetic field effects are negligible.
Therefore, the contribution from the induced magnetic field is neglected. Consequently, the volumetric electric force can
be written as

f⃗ e = ∇.T E . (14)

In case of an application of the external electric field on a multi-phase fluid flow, this new term for the electric force,
will be added to the right hand side of the momentum equation (see Eq. (11)), where the Maxwell’s stress tensor defines
as

T E
= D⃗E⃗ −

1
2
(D⃗.E⃗)I, (15)

where E⃗ is an external electric field, D⃗ = ϵE⃗ is the dielectric displacement vector, and ϵ is the electrical permittivity. Also,
based on the Gauss’ law [36]

∇.D⃗ = qv, (16)

where qv is the free electric charge density.
Application of Eqs. (15) and (14) will result in

f⃗ e = qv E⃗ −
1
2
E⃗.E⃗∇ϵ. (17)

In this work both fluids are considered to be leaky dielectric, (i.e. electric relaxation time is much shorter compared
to its viscous counterpart or te ≪ tv).

4. Time integration

We apply a predictor–corrector scheme to advance the governing flow equations in time considering a first-order Euler
approach. The time-step is selected based on Courant–Friedrichs–Lewy (CFL) condition in which ∆t = CCFLh/Vmax, with
Vmax being the largest magnitude of particle velocity and the CCFL is the constant taken as 0.25. During the predictor step,
we first advance all the variables to an intermediate value denoted by (*), from the variables’ value at the nth time-step
denoted by superscript (n), as

r⃗∗

i = r⃗ (n)i + V⃗ (n)
i ∆t + δr⃗ (n)i , (18)

V⃗ ∗

i = V⃗ (n)
i +

RHS

ρ
(n)
i

∆t, (19)

ψ
(∗)
i = ψ

(n)
i −∆tψ (n)

i (∇.V⃗ ∗

i ). (20)

RHS denotes the right hand side of Eq. (11), ψi =
∑

j Wij, is the number density associated with the particle of interest
i, which is calculated from the summation of kernel function at all neighboring particles j, δri is the artificial particle
displacement, defined as δrki = α

∑N
j (r

k
ij/r

3
ij )r

2
i,oVmax∆t , and its constant α is set to 0.05 according to [34].

These intermediate values will then be used to solve the Poisson equation which gives the pressure value at the next
time-step (n + 1). Using this pressure, new velocity and displacement vectors are updated as following

∇.

(
1
ρ∗

i
∇p(n+1)

i

)
=

∇.V⃗ ∗

i

∆t
, (21)

∇.V⃗ (n+1)
i = V⃗ ∗

i −
1
ρ∗

i
∇p(n+1)

i ∆t, (22)

r⃗ (n+1)
i = r⃗ (n)i + 0.5(V⃗ (n)

i + V⃗ (n+1)
i )∆t + δr⃗ (n)i . (23)
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Fig. 1. Schematic of the test case for validation and numerical convergence test, bubble rising as well as bubble deformation under the effect of
electrohydrodynamics (EHD). For the first test case g⃗ = 0 and E⃗ = 0, for the second one g⃗ ̸= 0 and E⃗ = 0 while for the third one g⃗ = 0 and E⃗ ̸= 0.

Fig. 2. Comparison of (left) the pressure jump across the droplet interface for three particle resolutions and (right) its comparison with the theoretical
pressure jump, i.e. Laplace’s law, for different cases.

5. Results

5.1. Validation and convergence

To ensure a suitable particle resolution based on the numerically computed pressure jump across the interface, in
Fig. 2 the data is represented for 60 × 60, 100 × 100 and 140 × 140 grids. To study numerical convergence, a droplet
with the radius of r = 0.01 [m] is situated at the center of a square domain, i.e. xo/r = yo/r = 2, with the side lengths of
x/r = y/r = 4 (see Fig. 1). While the Dirichlet (no-slip) boundary condition is set for the velocity at all four boundaries,
namely, BC-X1, BC-X2, BC-Y1, and BC-Y2, the Neumann boundary condition is applied for the pressure field. As for the
hydrodynamics properties, we keep both viscosity and density ratios equal to unity such that ρ1 = ρ2 = 1000 [kg/m3]
and µ1 = µ2 = 0.1 [Pa s] and set the surface tension to γ = 0.01 [N/m], given neither electrical nor gravitational force.

This problem, known as Young–Laplace problem, has an analytical solution which is ∆p = pi − po = γ /r = 1. As
can be seen in Fig. 2-Left, the pressure oscillations decrease by increasing the resolution from the coarser to the finest
and the results, converging towards the analytical solution. It is noted that the relative error is less than 1% for the
intermediate particle resolution. Therefore, we chose the 100 × 100 resolution for our simulations as it provides accurate
results with reasonable computation cost. Similar simulations, with different surface tension coefficient are tested, while
putting r = 0.5 [m] and keeping x/r and y/r ratios constant to validate the accuracy of the used method. As can be seen in
Fig. 2-Right, the pressure jump increases by an increment in the surface tension confirming the capability of the method
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Fig. 3. Time evolution of bubble rising problem with the density ratio of ρ1/ρ2 = 0.1 and viscosity ratio of µ1/µ2 = 0.1 at different dimensionless
times t∗ = 0.5, t∗ = 18.5, t∗ = 37 and t∗ = 64.8. Here the dimensionless time is defined as t∗ = t

√
(g/D) and Reynolds and Bond numbers are

Re = 35 and Bo = 10, respectively. The left half of each snapshot shows the velocity streamlines in black and the droplet interface in red, while the
right half shows the velocity magnitude’s 10 highest levels’ contour in the range of [0, 4.5] [m/s]. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

to capture the physical jump across the interface. Once more for the reported simulations, the relative error is less than
1% when the numerical results are compared to the Laplace’s law.

It is noteworthy to discuss the reason behind the different values obtained for the theoretical and numerical pressure
jump at the interface. As mentioned before, the pressure and other flow field variables (velocity, color function, etc.) are
approximated using the numerical smoothing scheme which converts the sharp values at the interface to smoother ones
resulting in a loss of accuracy and introduction of spurious oscillations near the surface of the droplet. Furthermore, it is
found that these spurious currents are generated because of an inappropriate evaluation of the curvature of the circular
droplet due to unreliable values for the unit normal vector (n⃗ =

∇C
|∇C |

) in the surface tension force calculation [37].

5.2. Bubble rising

In this section, the ISPH method is applied to test and to validate the simulation of the bubble rising problem due to
the gravitational force. The computational geometry for this test case is similar to the one shown in Fig. 1 except that
the domain size is increased in the normal direction (orthogonal), i.e. x/r = 6 and y/r = 12, and the bubble is initially
placed such that xo/r = 3 and yo/r = 2.4. The grid resolution is set to 240 × 480 in x and y direction, respectively. The
velocity boundary conditions are set to be free slip for BC − X1 and BC − X2, and no slip for BC − Y1 and BC − Y2. Also,
pressure boundary conditions are set to be Dirichlet with a constant value at BC − Y2 and Neumann for the other three
boundaries (∇p · n⃗ = 0) where n⃗ is normal direction to the given boundary.

Here, both bubble and bulk phases are set to have stationary conditions at initial time step. The bubble starts to rise
during the simulation due to the gravitational forces. This problem can be characterized by Reynolds and Bond numbers
defined as following:

Re =
ρ2g0.5(2ro)1.5

µ2
, (24)

and

Bo =
ρ2g(2ro)2

γ
. (25)

respectively.
For the first simulation, a case with low density and viscosity ratios and high surface tension is considered, where

ρ2/ρ1 = 10 with ρ1 = 100 [kg/m3], µ2/µ1 = 10 with µ1 = 1 [Pa s], and surface tension coefficient is γ = 24.5 [N/m].
Additionally, the gravity is set to be g⃗ = −1 [m/s2] in y direction such that it produces Reynolds number Re = 35, and
the Bond number Bo = 10 for this case. The time snapshot of this test case for dimensionless times of t∗ = 0.5, t∗ = 18.5,
t∗ = 37 and t∗ = 64.8 are shown in Fig. 3. As observed in this figure, the bubble starts to rise straight upwards due to the
gravity, while its velocity increases from zero to 0.36 [m/s] and remains constant until it feels the pressure coming from
the stationary upper-wall. Additionally, the bubble shape is changing from circular shape to a quasi elliptical one due to
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Fig. 4. The average normalized central position of the droplet, ȳ (top) and its average vertical migration velocity, v̄ (bottom) as a function of
dimensionless time, t∗ .

hydrodynamic pressures on its tip. The final shape comes from the competition among surface tension, gravitational, and
viscous forces. As it is observed, the shape remains unchanged after some time steps which is the main reason for the
bubble’s almost constant terminal velocity.

Fig. 4 shows the mean migration velocity and the position of the droplet with respect to dimensionless time t∗ =

t
√
(g/D), which are in agreement with the results of [31] and [38]. Here, the velocity gradient near the stationary wall

starts to deviate at the final times which could be due to the confinement effects.
To show the applicability of the proposed algorithm for capturing larger deformations and breakups, we perform a

second bubble rising test case. This time, the computational domain size is x/r = 6 and y/r = 10 with the particle
resolution of 240 × 400. The bubble is initially placed at xo/r = 3 and yo/r = 2. Here, all four boundaries have no slip
boundary condition for velocity. However, the pressure boundary conditions are kept the same as before. The gravity is
selected as g⃗ = −1 [m/s2] in y direction, while the surface tension coefficient is set to be γ = 20 [N/m]. Additionally, the
density and viscosity ratios are ρ2/ρ1 = 1000 and µ2/µ1 = 2.828/10 with ρ1 = 1 [kg/m3] and µ1 = 1 [Pa s], respectively.
These choices are for mimicking the test case presented in [15] in order to produce the fluid flow system with Reynolds
and Bond numbers of Re = 1000 and Bo = 200, respectively.

The snapshots of our current simulations are illustrated (middle) in Fig. 5 for the dimensionless times between t∗ = 3.2
and t∗ = 5.6 with a time increment of ∆t∗ = 0.4. These snapshots are compared to their experimental (top) and
Volume of Fluid method (bottom) counterparts, presented in [39] and [40], respectively. As can be seen, the proposed
ISPH approach can predict the large deformation and bubble breakup as accurate as its well established mesh based
method. The presented Volume of fluid (VoF) method uses a hybrid VoF-level-set method [40] to accurately capture the
interface.

5.3. EHD droplet deformation

In this section, we consider a suspended circular droplet under the effect of an external applied electric field. The
schematic of the computational domain is similar to what is presented in Fig. 1 with an increment in the size of the
domain. Here, we double the domain size in each direction, i.e. x/r = 8 and y/r = 8, in order to reduce the confinement
effect. In Fig. 6-left, a particle resolution of 240 × 240 is used with a circular droplet initially placed at the center of
computational domain. The initial zero velocity are assigned to both fluids and wall particles. Density ratio and viscosity
ratio are set to unity with values of ρ1 = ρ2 = 1000 [kg/m3] and µ1 = µ2 = 1 [Pa s]. The surface tension coefficient
γ = 1 [N/m]. The velocity and pressure boundary conditions are exactly the same as those imposed in Section 5.1. The
electrical boundary conditions are Dirichlet (ϕ = cte.) and Neumann boundary (∇ϕ · n⃗ = 0) conditions for horizontal
(i.e. BC − Y1 and BC − Y2) and vertical walls (i.e. BC − X1 and BC − X2), respectively, where n⃗ is normal direction to the
given boundary.
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Fig. 5. Comparison of bubble rising and break up due to gravitational and hydrodynamic forces using experiment [39], SPH method and Volume of
Fluid method [40], respectively from top to bottom rows. Here, the density ratio ρ2/ρ1 = 1000 and viscosity ratio µ2/µ1 = 10 are applied. Reynolds
and Bond numbers, as previously defined, are Re = 1000 and Bo = 200, respectively. The dimensionless time is defined as t∗ = t

√
g/ro , starting

from t∗ = 3.2 at the very first frame on the left, up to t∗ = 5.6, with a time increment of 0.4 per frame.

Fig. 6. Deformation of a suspended droplet in response to an external vertical electric field in the steady-state simulation for the cases with (left)
S = 0.5, R = 0.05 and (right) S = 0.5, R = 3.

The deformation of a suspended circular droplet under such conditions is a commonly utilized test case for validation
of a EHD solver, where two theories are available in the literature. Taylor et al. [41] estimate the droplet deformation DT

as

DT =
9fdTE2

o ϵ2ro
8(2 + R)2γ

, (26)

where fdT is the discriminating function evaluated as

fdT = R2
+ 1 − 3.5S + 1.5R. (27)
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Fig. 7. Comparison of deformation for all cases. permittivity ratio, conductivity ratio and surface tension coefficient of each simulation, S, R, γ ,
respectively, mentioned below or above the corresponding case.

Fig. 8. Schematic of the Couette flow test case.

For the same problem, Feng [42] suggests the following relation

DF =
fdFE2

o ϵ1ro
3(1 + R)2Sγ

, (28)

where fdF is estimated from

fdF = R2
+ 1 − 3S + R. (29)

In Eqs. (26) and (28), ro is the initial droplet radius before its deformation and Eo is the electric field intensity in vertical
direction which is calculated from Eo = (ϕ+

−ϕ−)/H , H being the domain height. Additionally, the permittivity ratio and
the conductivity ratio of droplet to the bulk are called S and R, presented as

S =
ϵ1

ϵ2
, R =

σ1

σ2
, (30)

where ϵ and σ are the electrical permittivity and conductivity, respectively. Also the subscripts 1 and 2 show, droplet
and bulk medium properties, respectively.

Another point in the theory of droplet deformation is to investigate the velocity recirculation vectors inside and outside
of the droplet when a vertical electric field is applied. The relative differences in the electric permittivity and conductivity
of both constituent phases define the direction of the flow rotation in either phase. This is shown for two cases in Fig. 6.
On the left side test case is adopted for S = 0.5 and R = 0.05 with the electrical permittivity of the droplet (ϵ1) being
0.5 [F/m] which is half of that of the bulk fluid. Also, the electrical conductivity of the droplet (σ1) is set to 150 [S/m]
which is three-times more than the background fluid. On the right side of Fig. 6, the test case has S = 0.5 and R = 3 with
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Fig. 9. Numerical deformation for twelve cases (Left), a close-up look at the rate of deformation at the steady state (Right). Cases without electric
field are denoted by a black + sign. The pair number on the legend box, corresponds to the electrical permittivity and electrical conductivity (S, R),
respectively.

ϵ1 = 0.5 and σ1 = 1. As can be seen in the left sub-figure, the re-circulation zone in the first quarter (i.e. the top-right
quarter inside the droplet) of the droplet orients clockwise. This should be the case for S > R and is consistent with the
results of [29]. The opposite flow circulation pattern should be expected for the case of S < R as it also presented on the
right side of the same figure.

Additionally, Eqs. (27) and (29) define the sign of Eqs. (26) and (28), respectively. The positive sign, so called prolate
deformation, indicates that the droplet is elongated in the direction parallel to the electric field. The positive sign, so called
oblate deformation, shows the droplet elongation in the opposite direction. For the comparison with the simulation results,
we define the numerical deformation as

DN =
A − B
A + B

, (31)

where A and B are the elliptic droplet diameters, parallel and perpendicular to the direction of the external electric field,
respectively, at the steady state condition. When this parameter is equal to zero, the droplet keeps its initial circular
shape. On the other hand, more deviation from zero indicates more deformation from its initial shape.

Fig. 7 provides comparison between the current ISPH results and the two aforementioned theories for multiple cases. As
can be seen, numerical data reasonably follow the available theories. However, in most of the cases, an over-prediction
is reported by the simulations. Some might be some possible reasons for such behavior can be mentioned: (i) in the
theory it is assumed that the droplet remains circular even after applying the electric field. This means the change in
the curvature is not integrated in the deformation equation, but only the surface tension coefficient. (ii) Another reason
might be due to the confinement effect. In theories, it is assumed that the droplet is suspended in an unbounded domain
for simplicity. However, providing such domain numerically, or even with twice larger computational domain, is very
expensive computationally. Finally, the hydrodynamical properties of droplets such as density and viscosity are not taken
into account theoretically and the problem is considered to be inviscid.

5.4. Couette flow

This section investigates the deformation of a droplet suspended between two parallel plates subjected to a constant
shear. The flow configuration, known as Couette flow, is presented in Fig. 8. In this case, the flow is driven by viscous
forces or pressure gradients [43]. Different cases with and without an external electric field with the magnitude of unity
perpendicular to the flow direction are simulated.

The computational domain consists of a rectangle box with the size of x/r = 16 and y/r = 4 discretized by a set of
initially equally spaced 400 × 100 particles, arranged in a Cartesian grid. The two-phase system contains a droplet with
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Fig. 10. Bubble interface at t∗ = 1. The pair number above each case corresponds to the electrical permittivity and electrical conductivity (S, R),
respectively. If zero, the electric field is not applied. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

the initial radius of ro, placed in the middle of the domain, and the balk fluid with the same density of ρ1 = ρ2 = 1000
[kg/m3] and the dynamic viscosity of µ1 = µ2 = 0.2 [Pa s]. The velocity boundary conditions are set to Dirichlet (no-slip)
on the plates (i.e. BC − Y1 and BC − Y2) and periodic for the inlet and outlets (i.e. BC − X1 and BC − X2). The pressure
boundary conditions are Dirichlet BC − Y2 and Neumann for the rest of boundaries. Also, the boundary conditions for
electrical potential are of Dirichlet at the walls (i.e. ϕ = cte in BC − Y1 and BC − Y2) and periodic for the two other sides
(i.e. BC − X1 and BC − X2).

Initially, the upper and the lower wall velocities are set to Uo/2 and −Uo/2, respectively, where Uo = 0.02 [m/s].
Additionally, particles inside the droplet are initialized to be at rest, while background fluid particles having undisturbed
Couette flow velocity. The simulations are performed for a range of electrical permittivity and electrical conductivity ratios
shown as (S, R), while neglecting the gravity and keeping the surface tension coefficient constant γ = 0.02 [N/m]. The
droplet radius is a quarter of the distance between two parallel plates (i.e. r = H/4). The dimensionless Reynolds, Weber
and Electroinertial numbers, respectively, are as follows

Re =
ρ2Uoro
µ2

, We =
ρ2U2

o ro
γ

, Ei =
ρ2U2

o

ϵ2E2
o
, (32)

where Re = 1, We = 0.2, and Ei = 50.
Fig. 9 shows the time evolution of the droplets’ deformation under the same external electric field and the shear stress

conditions, but for different working fluids having different electrical permittivity and conductivity ratios (i.e. only a
change in S and R is considered here). In this figure, the dimensionless time is defined as t∗ = tUo/ro, while the droplet
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Fig. 11. Deformation of a suspended droplet in Couette flow with S = 10 and R = 0.2 subject to electric field at t∗ = 0, t∗ = 0.4, t∗ = 0.8, t∗ = 1.2
and t∗ = 1.6, respectively, from top to bottom where dimensionless time is defined by t∗ = tUo/r . The velocity streamlines (in blue), the electric
field vectors (in black) and the droplet interface (in red) are shown at five moments. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

deformation is calculated from

Df =
Lmax − Lmin

Lmax + Lmin
, (33)

where Lmax and Lmin are major and minor droplet diameters, respectively. As can be seen in this figure, the droplet
deformation increases when an external electric field is applied regardless of S and R. Additionally, at the constant
electrical permittivity ratio, larger deformations can be achieved by an increment in the electrical conductivity ratio when
S > R. However, for the similar condition (i.e. S = cte.), smaller deformations are seen by an increment in the electrical
conductivity ratio when S < R. Similarly, at constant electrical conductivity ratio larger electrical permittivities result in
larger droplet deformations for R < S, while decreases the same for S < R. It is noted that the (5.0, 0.2) and (5.0, 0.5) test
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problems did not reach a steady profile during the simulation time, here fixed at t∗ = 1 due to large computational costs.
Fig. 10 provides a comparison on the interface shape in the absence (in blue) and the presence of the electric field (in
black) at this time. Following the previous figure, it can be seen that the droplets are more slender for larger deformation
factors.

It is notable that the angle between the major axis of the elliptic droplet and the stream-wise direction becomes smaller
with an increment in the conductivity ratio, while the cases of (5.0, 0.2) and (5.0, 0.5) are immediately distinguishable
due to their larger deformations. This elongation is due to the suppression of surface tension forces which is the result of
the larger electric field force at higher electrical conductivity ratios. It is also noted that the droplet is no longer elliptical
and is suspected to have the breakup at larger time steps.

Finally, the time snapshot of an extreme test case with the electrical permittivity ratio of S = 10 and the electrical
conductivity ratio of R = 0.2 is illustrated in Fig. 11 to show the ability of the presented method to capture very large
deformations with the interfacial topological change. Here, the interface is represented by red color, while the velocity
streamlines and electrical vectors are represented by blue and black arrows, respectively. In this case, the circular droplet
becomes elliptical soon after the start of the simulation. The elliptical interface is elongated in the stream-wise axis
direction due to the four re-circulation zones in the bulk flow just next to the interface. Soon after that, pairs of re-
circulation merge with each other at the both tips of the droplet and cause the creation of the third re-circulation in its
center. By time, the droplet gets folded in four different places and new re-circulation zones appear close to the interface
which makes the droplet very susceptible to breakup. As can be seen, this is a promising test problem to show the ability
of the present ISPH code to treat the complex multi-phase fluid behavior under an extreme EHD conditions with large
interfacial deformation.

6. Summary

In this work, we presented an effective multi-phase Incompressible Smoothed Particle Hydrodynamics (ISPH) approach
to simulate complex multi-physics electrohydrodynamics (EHD) problems. We showed a step-by-step validation of the
multiphase code for surface tensions, hydrodynamic forces and electric forces, respectively, by solving Laplace’s law,
bubble rising and buoyant droplet deformation under an applied electric field problems. Results are validated either
against available analytical or numerical results. An overall satisfactory agreement was found. Finally, we presented,
for the first time, results of droplet deformation under sheared Couette flow with external electric field for a range of
simulation parameters. Different parameters such as time resolved topological changes, droplet deformation magnitudes
as well as velocity field and electrical potential vectors were presented and compared with each other. It was shown
that the current ISPH approach is able to be easily adopted for different multi-physics problems. It is also capable of
predicting large interfacial topological changes such as folding and breakup. In future, our strategy would be to include
more complex transport and multi-physics phenomena.
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Having that interfacial flows are important phenomena in many engineering processes and to

extend the application of SPH method for complex transport and multi-physics phenomena,

Hopp-hirschler [58] used an ISPH model for thermo-capillary driven flows. Such flows are

driven by the gradient of surface tension. The model is based on CSF approach and includes

Marangoni forces. To increase the accuracy of the results, density-invariant divergence-free

(DIDF) [59], corrected SPH [14, 123], and particle shifting [116, 120] techniques are

used. We have shown that in mutiphase systems, momentum equation is affected by a

non-isotropic pressure field, due to the fluid-fluid interface which give rise to the capillary

stress tensor. For immiscible systems, this stress is referred to as the surface tension. The

normal component of this stress can be validated using the Young-Laplace law. Here we

investigate a two-dimensional problem at the steady-state.
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Abstract: This paper concerns the study of coupled effects of electrohydrodynamic (EHD) and
thermocapillary (TC) on the dynamic behaviour of a single liquid droplet. An incompressible
Smoothed Particle Hydrodynamic (ISPH) multiphase model is used to simulate EHD-TC driven
flows. The complex hydrodynamic interactions are modeled using the continuum surface force (CSF)
method, in which the gradient of the interfacial tension and the Marangoni forces are calculated with
an approximated error or 0.014% in the calculation of Marangoni force compared to the analytical
solutions which is a significant improvement in comparison with previous SPH simulation studies,
under the assumption that the thermocapillarity generates sufficiently large stress to allow droplet
migration, while the electrohydrodynamic phenomena influences the droplet morphology depending
on the electrical and thermal ratios of the droplet and the ambient fluid. This study shows that,
when applying a vertical electric field and thermal gradient, the droplet starts to stretch horizontally
towards a break-up condition at a high rate of electrical permitivity. The combined effect of thermal
gradient and electric field tends to push further the droplet towards the break-up regime. When the
thermal gradient and the electric field vector are orthogonal, results show that the droplet deformation
would take place more slowly and the Marangoni forces cause the droplet to migrate, while the
stretching in the direction of the electric field is not seen to be as strong as in the first case.

Keywords: electrohydrodynamics; thermocapillary; multiphase fluid flows

1. Introduction

Suspended bubbles or liquid droplets deform in fluid flows and in doing so demon-
strate a host of phenomena with high industrial importance. For instance, in petroleum
industry, there is a major need to accurately drive and control the demulsification process of
crude oil [1,2]. In doing so, conventional experimental techniques, such as heat treatment,
electrical field, and membrane separation, require complex and expensive setups to enable
significant insight into these complex multi-physics problems [3]. In terms of physical mod-
elling, the simulations of the dynamics of bubble rising including deformation and possible
merging or break-down, require a correct treatment of the sharp liquid-gas interfaces with a
fine modeling of the surface tension that can lead to large deformations of the interfaces. In
this article, we focus on the numerical study of a single bubble deformation under different
flow conditions. Since the numerical simulation of two-phase flows is inherently a multi-
scale problem that needs sophisticated strategies for time and space integration schemes,
both small and large scale deformations should be treated simultaneously. Moreover, in a
two phase system of leaky dielectric fluids inclusion of the temperature response to electric
and hydrodynamic response of the system requires special treatment. The application
of an external electric field to a droplet can result in large topology and velocity changes
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with possible break-down and coalescence. Understanding of the underlying principles
of Electrodynamics (EHD) can be applied to better control and predict the motion and
deformation of droplets.

From a fundamental point of view, most of the simplest multi-physics models can-
not be theoretically solved in their closed form, hence the interest in numerical solution
arises [4,5]. The classical methods such as Finite Difference [6], Finite Element [7], Finite
Volume [8], Level Set Method [9], and combined methods [10] cover the majority of the
mesh-based numerical strategies in which the accuracy of the results is highly dependent
on the numerical aspects (i.e., numerical methods, time step size and mesh refinement) [11].
Numerical methods can be classified with regards to their modeling approach. In the Eule-
rian multi-fluid approach, each phase is considered as an interpenetrating continua from
which an ensemble averaging of the multi-phase Navier–Stokes equations is calculated [12].
On the other hand, the Lagrangian mesh-free methods notably Smoothed Particle Hy-
drodynamics (SPH) [13] offers a promising and flexible framework in modeling complex
coupled multi-phase fluid problems. As listed in reference [14], among several mesh-free
methods, SPH inherently provide notable efficiency in calculating partial derivatives [15]
by considering particles which remove the necessity for mesh generation and refinement.

From physical point of view, thermocapillary instability (TC) is caused by inhomogen-
ities in interfacial tension in multi-phase systems. This in-homogeneity is a result of a
thermal gradient at the interface introduced by surfactants or temperature variations. Here,
we consider the variation of temperature on the surface of the micro-droplet. Temperature
variation creates a non-uniform surface tension, which results in interruption in the balance
of forces and the introduction of a new shear stress on the surface of the droplet. The
imposed strains by the continuous phase alter the structure of the particles of the disperse
phase. In particular, coupling the temperature gradient with an electric field leads to a
bubble destabilization and deformation. The electrostatic pressure enhances the instability
since the electrostatic force on the droplet surface is higher than the capillary pressure. On
the other hand, the capillary pressure affects the fluctuations of the free surface, which lead
to diminishing instabilities. The instability grows when the electrostatic pressure is larger
than the capillary pressure. As a result, the bubble starts to deform or migrate.

There are few experimental and theoretical studies available in the literature of EHD-
TC coupled problem. In principle, a droplet in such system evolves in order to reduce
the total free energy of the system. The total energy is defined as the sum of internal
and the kinetic energies. At steady state, the final shape of the droplet is reached at the
lowest interfacial energy level. The linear stability analysis shows a negative correlation
between the temperature and the interfacial tension. Regarding the one-dimension thin
liquid films, the EHD-TC forces lead to the creation of smaller structures (eddies) [16,17].
Nevertheless, some inconsistencies between the experimental and theoritical approaches
are reported because of the electric breakdown effects, when a sufficiently high voltage
is applied [18]. Therefore, the current paper concerns the study of complex flow physics
including thermocapillary phenomena (Marangoni forces) and electrohydrodynamics by
means of SPH simulation. The current work is an extension of our previous numerical
study in which an electric field is coupled [19].

This article is organised as follows; the governing equations of a multi-phase sys-
tem with thermal gradient and electric field are first presented, before introducing the
SPH method and the associated space and time discretization schemes. Afterwards, nu-
merical convergence studies are presented. Then we discuss the surface tension, the
electrohydrodynamics and the thermo-capillary effects, separately. Finally, the results for
electrohydrodynamics-thermo-capillary bubble deformations are presented.

2. Governing Equations

Mathematical formulations of governing equations of the coupled EHD-TC problem
consist of a set of continuity, momentum and energy balance equations.
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2.1. Continuity Equation

The continuity equation can be derived based on volume flux conservation laws as

Dρ

Dt
+ ρ∇ · v = 0 (1)

where ρ, v and Dρ/Dt represent the density, the averaged fluid velocity and the material
derivative operator, respectively.

For incompressible flows, the continuity equation reduces to ∇ · v = 0.

2.2. Momentum Equation

Assuming that the total stress tensor is symmetric, the momentum equation for a
two-phase Newtonian, immiscible, and non-reactive, fluid flow with constant electrical
permitivity and electrical conductivity can be written as

ρ
Dv
Dt

= −∇p +∇ ·Πv +∇ ·Πc + Fg + Fe (2)

where p is the pressure, Πv = µ[∇v + (∇v)T ] is the viscous stress tensor with the dynamic
viscosity µ and transpose operator T, Πc is the capillary stress tensor, Fg is the body force
due to gravity, and Fe is the electric force. Note that the sharp interface limit of the capillary
stress tensor is defined as ∇ ·Πc = (σχn +∇Sσ)δ where σ is the surface tension, χ is the
curvature, ∇S is the gradient of the surface tension in tangential direction with respect
to the surface, and n is the unit normal vector of the interface. The Dirac-delta function
δ is defined to be unity at the interface and zero elsewhere. As a result, the capillary
stress tensor is constant inside the bulk. The surface tension force is calculated using the
continuum surface force (CSF) model [19,20]. Thus, Equation (2) can be rewritten as

ρ
Dv
Dt

= −∇p + µ∇2v + (σχn +∇Sσ)δ + ρg + Fe (3)

To calculate the electric force Fe, we apply the electrohydrodynamics theory for leaky
dielectric fluids [21,22]. The electric force is obtained from

Fe = ∇ · T (4)

where T is the Maxwell stress tensor. For weak electric currents, the magnetic field is
negligible because the electric field is assumed to be irrotational (∇× E = 0). The Maxwell
stress tensor T reads

T = DE− 1
2
(D · E) Ī (5)

where E is an external electric field, D = εE is the dielectric displacement vector, and ε is
the electrical permittivity. Ī denotes the identity tensor. Using Gauss’s law,

∇ ·D = qv (6)

where qv is the free electric charge density. Knowing that the gradient of the electric field
vector is symmetric and by application of the product rule in differentiation, by taking the
divergence of the Maxwell stress tensor and combined use of Equations (4)–(6), the electric
field force per unit volume Fe can be obtained as [23]

Fe = qvE− 1
2

E · E∇ε (7)

2.3. Conservation of Energy

In the energy balance equation, we only include the heat transfer induced by the
temperature gradient (∇T) and we neglect the effect of viscous heating and other source
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terms. However, the heat transfer from one phase to the other is accounted for. The
resulting energy equation can be written as :

DT
Dt

= κ∇2T (8)

where κ is the thermal diffusivity.

2.4. Boundary Conditions

This study is based on impermeable boundary conditions. For temperature and
pressure, Dirichlet or Neumann boundary conditions are used. For the gradient of the
color only Neumann boundary conditions are applied to avoid influence of the fictitious
boundary conditions. The velocity boundary conditions are set to either slip or no-slip
conditions. Based on the features of our proposed SPH model (see Section 3), there is no
need to consider normal and surface tension boundary conditions. Boundary treatment is
done using the implementation of Cummins and Rudman [24] approach at straight walls,
also known as mirror particles. According to this approach, the fluid particles are mirrored
in every time step across the wall. The image of the particles, distanced to a certain value
from the fluid domain, represent the discretized wall particles. Thereafter, the properties
of the wall particles are chosen to apply Dirichlet and Neumann boundary conditions.
More specifically, any property of an image particle Ψ′i and a particle Ψi (such as velocity,
pressure, temperature, color) can be defied such that

Ψ′i = 2Ψwall − δwallΨi (9)

where the Ψwall is the value of the wall and the sign function is defined as

δwall =

{
+1 for Dirichlet boundary conditions.
−1 for Neumann boundary conditions with~Ψwall = 0

(10)

More details can be found in [25,26]. It is more suitable for straight wall conditions
(i.e., our currant work) compared to curved walls.

3. Smoothed Particle Hydrodynamics (SPH) Method
3.1. Mathematical Formulation of SPH

Smoothed Particle Hydrodynamics (SPH) method was developed independently by
Gingold and Monaghan [27], and Lucy [28] as a truly Lagrangian particle-based method
with a superior ability in modeling complex geometries and large fluid flow deformations.
Several studies show the wide range of applications of SPH method as presented for exam-
ple in [15,29]. In SPH, the continuum system is discretized into interpolation points, called
particles, that can move freely and carry physical properties such as mass, momentum and
temperature. An arbitrary function f (x) can be exactly reformulated as

f (x) =
∫

f (x′)W(x− x′, h)dx′ (11)

Here, the smoothing (kernel) function W is introduced. The smoothing length h
measures the radius of the kernel, while x and x′ are the position vectors of two different
particles. According to Monaghan [30], the kernel function must satisfy certain conditions.
It has to be normalized over the whole domain Ω, such as

∫
Ω W(x − x′, h)dx = 1 and

contracts to Dirac-delta function δ, so that limh→0 W(x− x′, h) = δ(x′).
Moreover, a suitable kernel function should have a compact support; i.e., for every

k ∈ IR+ if |x− x′| > kh then W(x− x′, h) = 0.
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This last condition ensures the numerical efficiency in approximating physical vari-
ables such as velocity, density or temperature. The discrete form of Equation (11) reads

f (xi) = ∑
j

f (xj)W(xi − xj, h)Vj (12)

Here, we use the 4-th order Wendland C2 kernel function [31] given by

W(x− x′, h) =
Cw

hd

{
(1− q

2
)4(1 + 2q) q ∈ [0, 2].

0 otherwise.
(13)

W ′(x− x′, h) =
Cw

hd

{
(1− q

2
)3(−5q) q ∈ [0, 2].

0 otherwise.
(14)

where q is the dimensionless smoothing length, q =
x− x′

h
. The normalization constant Cw

at each dimension d is

Cw =





3
4

d = 1

7
4π

d = 2

21
16π

d = 3

(15)

Figure 1 illustrates the kernel function W and its derivative with smoothing radius
h = 0.75.

0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Figure 1. Kernel function W(x, h) and its first derivative ∂
∂x (W(x− x′, h)) according to Equations (13)

and (14).

One of the main advantages of SPH over other mesh-less methods is that by starting
from Equation (11), one can calculate the derivatives of the function f by means of the
gradient of the kernel function. Here, we use two formulations for the first derivative for
different conditions. More details on the derivatives in SPH can be found in the following
References [32,33].
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The first formulation, called the negative formulation, Monaghan [34], is often used
for the divergence free velocity since it guaranties that the gradient of a constant field
( fi = f j) is exactly zero.

∇ f (x)i = ∑
j

mj

ρj

(
f j − fi

)
∇Wij (16)

where Wij is an abbreviated notation for W(xi− xj, h) and i is the particle of interest, among

j neighboring particles. The gradient of the kernel function ∇Wij =
xi − xj

|xi − xj|
∂W
∂x

is hence

calculated using the analytical expression of W shown in Equation (13).
The second formulation of the first derivative, known as positive formulation, pro-

posed by Monaghan [30], is often used to calculate the pressure gradient. As mentioned
in [30] the advantage of this formulation over Equation (16) is that due to the symmetric
term fi + f j, the conservation of both linear momentum and angular momentum hold when
calculating the pressure forces.

(
1
ρ
∇ f (x)

)

i
= ∑

j
mj

(
f j + fi

ρi · ρj

)
∇Wij (17)

3.2. Application of the SPH to the Governing Equations

Present section concerns the discretized formulation of the set of governing equations
in the context of SPH method.

As for the continuity equation Hu and Adams [35] proposed a conservative formula-
tion of the discrete mass conservation as following

ρi = mi ∑
j

Wij (18)

In this formulation, ρi is calculated directly from
mi
Vi

with Vi being the volume of

particle i. The error of the total volume of a wall-bounded system of particles is therefore
bounded, since the neighboring particles contribute to the particle density only by affecting
the specific volume of particle i [35].

Using the presented first and second derivatives of SPH, the discrete momentum
balance can be written as

Dv
Dt

= −∑
j

mj

ρi · ρj
(pi + pj)∇Wij

+ ∑
j

mj

ρi · ρj

(
µi + µj

) xi − xj

|xi − xj|2
∇ f (x)i · (vi − vj)

+ Fg,i + δ[σiχini + (∇Sσ)i] + Fe,i

(19)

where Fe,i corresponds to the electric field force and is the source term in the momentum
equation calculated from Equation (7) that is obtained from the discrete form of the electric
field density

E = − ρi
mi

∑
j

[(
mi
ρi

)2

+

(mj

ρj

)2
]

φij∇Wij (20)

with φij being the inter-particle average of the electric potential. The electric body force
links the electric field equations to the momentum balance.
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To close the system, the energy equation is discretized as
(

DT
Dt

)

i
= ∑

j

mj

ρj

(
λi + λj

) xij

x2
ij
∇iWij ·

(
Ti − Tj

)
(21)

where Ti is the ith particle temperature and λi is the ith particle thermal conductivity. It
must be noted that any type of phase change in the system is neglected here due to the low
temperature gradient compared to the fluid properties. If not negligible, the effect of phase
change on the energy equation can be represented in the form of additional terms.

3.3. Pressure Calculation and Temporal Discretization

One way to calculate the pressure term in the momentum balance is by enforcing
the incompressiblity condition. It is therefore called the Incompressible SPH (ISPH) [24]
method, which consists of the following steps. First, the Helmholtz-Hodge decomposition
of the momentum balance is obtained. This decomposition divides the momentum balance
into a part including pressure (divergence-free) and a pressure-free part (curl-free) shown
in Equation (19). From the curl-free contribution, one can estimate an intermediate velocity
and density, which represents a predictor step. From a Pressure-Poisson Equation (PPE),
one can compute the pressure term. Pressure is applied to correct the estimated velocity
(corrector step). This implies that in this method an estimation of velocity is projected on a
divergence-free space.In SPH, this projection method was introduced by Cummins and
Rudman [24]. The discrete equations used in the current study are reviewed in the following.
Having that the curl-fee part of the acceleration in the intermediate step (indicated with
asterisk ∗),~aa,∗ in the momentum balance can be defined as

ai,∗ =∑
j

mj

ρiρj

(
µi + µj

) rij

r2
ij
∇iWij ·

(
vi − vj

)
+ Fe,i + Fg,i

+
ni
ρi
(σiχini + (∇Sσ)i)

(22)

Next, we obtain the intermediate velocity using an explicit Euler scheme

vi,∗ = vt
i + ai,∗∆t (23)

where ∆t is the time step. Again, sing the intermediate velocity and an explicit Euler
scheme, we obtain the new particle position

xi,∗ = xt
i + vi,∗∆t (24)

This position is then used to calculate the intermediate density according to Equation (18).
Given the calculated intermediate density, the particles can be put back to their prior
position xt

i . The pressure can therefore be calculated according to the PPE

∇ ·
(∇p

ρ∗

)
=
∇ · v∗

∆t
(25)

More details about projection procedure can be found in reference [19] .
In the present model, the temporal discretization is obtained by the fractional step

method [36]. The details of the application of this method for velocity and position ad-
vancement using the so-called intermediate velocity calculation is elaborated at refer-
ences [19,26]. In the current study, two time-step integration schemes are used, namely a
predictor-corrector scheme to solve the momentum equation and an explicit Euler scheme
to sequentially couple the mass fraction to the velocity in the predictor step. A stability
criterion, based on the CFL condition is needed following the minimum time scales be-
tween convection and diffusion schemes. In the present study, we consider fixed boundary
conditions for all conducted cases. For each test mentioned further we adopt the method of
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Morris et al. [37], where the boundary conditions are projected to fixed boundary particles
to fulfill either Neumann or Dirichlet boundary conditions [25,38,39].

4. Results and Discussion

This section presents the results of the SPH model implemented in the 2D studies.
First, in order to verify the SPH model in the pressure prediction, a Young-Laplace problem
is solved with SPH model in a 2D simulation domain. Second, a linear thermal profile is
imposed on a 2D simulation domain to verify the SPH model against analytical solution
of the Marangoni force in the static case followed by a dynamic case to validate the 2D
thermoacapillary bubble rising and comparison of the SPH results with direct numerical
simulation results. Third, the effects of EHD on a single droplet immersed in continues
phase are calculated with SPH model and compared with analytical results. This includes
the flow orientation inside and outside of the droplet, the bubble deformation and the
velocity compared with analytical results. In the last section, the SPH model for two-phase
flow subject to coupled EHD and thermocapillary forces is presented and the evolution of
a 2D droplet is predicted for multiple fluid properties.

Validation of the interfacial forces begins with the investigation of a static pressure
jump. Initially, a quiescent system with a velocity field equal to zero is assumed. Since all
time derivatives are zero, the mass is conserved. Young-Laplace law relates the droplet
curvature and the pressure gradient at the interface. Based on this law, the pressure gradient
at the interface of two phases would be equal to the product of the mean curvature of the
interface and the surface tension such as

pd − pb = σ

(
1

R1
+

1
R2

)
(26)

where R1 and R2 are the radii of the curvature of a curved surface. Note that in case of
a circle R1 = R2 = R resulting in pd − pb = σ

R . The pressure jump at phase boundary
follows the Young-Laplace equation, which describes the relationship between the pressure,
the surface tension and the radius of the droplet. The schematic of the pressure inside
and outside of the bubble are shown in Figure 2-left. To investigate the accuracy of the
numerical results compared to analytical results when droplet radius R are taken 0.25 [m],
0.3125 [m], 0.375 [m] and 0.625 [m]. The L/R ratio is set to 8 in these simulations so that
the same confinement effect will be applied for all. It is shown in Figure 2-right that as
expected, a linear relationship between ∆p and 1

R is observed. The slope of each straight
ling indicates the surface tension and are equal to σ = 0.1 and σ = 0.2. This indicates
that the simulation results obtained from SPH multiphase model confirm well with Young-
Laplace law. According to Equation (26), surface tension tends to minimize the surface,
whereas the pressure difference tends to increase the surface curvature. When considering
free-surface flows and based on the geometry, the fluid-fluid interface is flat while in the
problems stated here, one phase is fully surrounded by the other and is under full tension
from all directions, leading to droplet circular shape (when no external forces are applied).

To study the effect of particle resolution, the simulation setup is designed with the
domain size of 4 [cm], sufficiently low confinement effects with L/R = 4 and a surface
tension of σ = 0.00837 [N/m]. The following relative error norms are defined.

L2(pExact ) ≡
1

pExact

√
∑i(pSPH,i − pExact )

2

∑i

L∞(pExact) ≡
1

pExact
max

i
(|pSPH,i − pExact |)

(27)

Table 1 shows that when the particle resolutions increase, both L2 and L∞ norms
decrease. We can conclude that the pressure gradient inside the bubble converges to the
analytical solution ∆p = 0.837 [Pa].
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Figure 2. (left) Schematic of the pressure inside (pd) and pressure outside (pb) the bubble used
to calculate theoretical pressure according to Young-Laplace law, (right) The validation of Young-
Laplace law. Straight lines indicate analytical results and scattered points indicate numerical results
from SPH method.

Table 1. Compariosn between the exact analytical results and SPH results in the pressure computation
in the case of 2D droplet simulation with 60, 100, and 140 particles per direction.

Mesh Resolution Absolute Value of L2 Norm Maximum L∞ Norm

60 0.049 0.937
100 0.044 0.854
140 0.025 0.821

Next, we validate the Marangoni force separately and investigate convergence of the
numerical method. First, the static capillary stress tangential to the interface under ther-
mocapillary effect at three grid resolutions is studied. A linear thermal profile is imposed
on a two-layer square (5.76 [mm] × 5.76 [mm]) domain where droplet is characterised by
ρd = 250 [kg/m3], λd = 96× 10−6 [m2/s] and the background fluid by ρb = 500 [kg/m3],
λb = 48× 10−6 [m2/s] for density and thermal conductivity, respectively. The surface
tension evolves based on the Equation (28) showing a linear relationship between the
surface tension and the temperature,

σ = σre f + σT(T − Tre f ) (28)

where σre f and Tre f are the reference values of the surface tension and the temperature,
respectively. The negative surface tension coefficient σT = −0.002 [N/mK] implies the
decrease of the surface tension σ with respect to the temperature. The linear thermal
gradient 200 [K/m] is imposed from bottom wall TC towards the upper wall TH . According
to the dependence of the surface tension to the temperature with σT = −0.002 [N/mK], the
Marangoni force acts vertically on the interface. Note that the lateral walls are adiabatic
while the top and the bottom walls are subject to TH = [291.15] K and TC = 290 [K].
Figure 3 shows the profile of interfacial Marangoni force along a horizontal line at the
center of the simulation domain, at three different particle spacing. The values form SPH
model are the normal component of the Marangoni force perpendicular to the fluid-fluid
interface which are calculated based on the Continuum Surface Force (CSF) method and as
a consequence are volumetric force calculated per particle volume. Lower particle spacing
correspond to sharper interface. If an infinite resolution was possible numerically, the
Marangoni force profile would tend to Dirac function where its magnitude is equal to
Marangoni force. From Figure 3 one can also observe that the magnitude of the Marangoni
force increases with particle resolution augmentation. Since the σT = −0.002 [N/mK], the
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interfacial Marangoni force direction is downwards. To compare the magnitude numerical
results with exact solution (σT ×∇T = 0.4 [N/m2] ). For the numerical case, magnitude of
the Marangoni force predicted by SPH method is computed by integrating the Marangoni
force part of the surface tension (not the CSF part). The comparative table of the results in
shown in Table 2. The gravity and the heat dissipation are neglected, therefore the only
acting force is the Marangoni force for which the sampled profile along the horizontal line
is depicted and one can observe that the higher the particle spacing, the wider the range of
volumetric Marangoni force at the interface. These results are in agreement with results
reported in [19,40].

Figure 3. Profile of the volumentric Marangoni force along the normal direction to the interface using
a resolution of Lo = 180 [µm], Lo = 90 [µm] and Lo = 45 [µm].

Table 2. Comparison between SPH results of the integrated Marangoni force and analytical solution.

Particle Spacing
[µm]

Numerical Result
[N]

Analytical Solution
[N]

Relative Error
Percentage

45 0.394421 0.4 0.013947
90 0.394411 0.4 0.013971

180 0.394425 0.4 0.013975

In thermocapillary droplet motion, having that surface tension depends on temperature,
assuming hot wall temperature TH and cold wall temperature TC on parallel boundaries
(TH > TC) leads to the introduction of a surface tension gradient along the interface.
Thermocapillarity consists of applying a temperature gradient along an interface to induce
a surface tension gradient. If ∇T and ∂σ denote the temperature and the surface gradient
operator, respectively, the thermocapillary tangential stress writes as

∇sσ =
∂σ

∂T
∇sT (29)

The surface tension gradients (i.e., Marangoni effect) can be used to control the dynamics
of the bubble. To this end, a square box (5.76 [mm] × 5.76 [mm]) is discretized using
32 particles in each direction. The droplet is initially placed at the center of the domain
and has a radius R = 1.4 [mm]. The velocity boundary conditions are set to be free
slip at the lateral walls, and no-slip at the top and bottom walls. Neumann Pressure
boundary conditions are used on all walls except for the left wall, where a Dirichlet
Pressure boundary condition is used due to bootstrap condition of the Pressure Poisson
Equation. The temperature is fixed at 290 [K] at the bottom wall and linearly increases to
291.15 [K] at the top wall. Assuming that both droplet and the ambient fluid are initially
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at the stationary state with ρd = 250 [kg/m3] and µd = 0.012 [Pa·s] for the droplet and
ρb = 500 [kg/m3] and µb = 0.024 [Pa·s]) for the background fluid, we consider that the
heat conductivity of the droplet (1.2 × 10−6 [W/mK]) is half of the background fluid. With
constant surface tension σre f = 0.01 [N/m] and the rate of the change of the surface tension
with temperature σT = 0.002 [N/mK] in Equation (28), Figure 4 shows the time evolution of
the droplet migration velocity subject to Marangoni force compared to results obtained by

Ma and Bothe [41]. The dimensionless velocity U∗ =
U
Uc

where the characteristic velocity

Uc =
σT |∇T|R

µb
and the dimensionless time t∗ =

t ·Uc

R
.

0 0.5 1 1.5 2

0

0.025

0.05

0.075

0.1

0.125

0.15

Ma et al.

This work

Figure 4. Comparison between droplet migration velocity in this work and Ma and Bothe [41].

Marangoni stress that is the tangential component of the surface tension gradient acts
in opposition of the surface motion and hence results in less flexibility of the interface
and droplet mobility restriction if no additional force is applied. As time passes, the time-
evolution of the non-dimensional droplet velocity which, and after some oscillations, meets
the velocity associated direct numerical simulation Ma and Bothe [41], hence the initial
unsteady leading to a steady droplet motion.

Hereafter, the EHD solver is validated by setting up a similar test to first part of the
Section 4. The direction of these streamlines is determined as the mutual relationship
between the electrical conductivity and electrical permitivity ratios of the phases. They
are defined as S = εd/εb and R = ςd/ςb for the electrical permitivity and electrical
conductivity ratios, respectively. Note that the subscript d and b refer to the droplet and
bulk fluid properties.

The recirculation zones of the fluid inside and outside of the droplet are theoretically
predicted by Taylor et al. [42] as depicted in Figure 5 with Pole-to-Equator and Equator-to-
Pole flow directions. A specific numerical simulation for the case SD4 withR < S and SD3
forR > S from Table 3 are compared with Taylor’s results in Figure 6.

A qualitative agreement of the flow orientation inside and outside of the droplet is
found between the theoretical prediction and the SPH capability in correctly capturing
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the direction of the recirculation zones. ForR > S , the streamlines start from the equator
towards the pole, while R > S situation, the opposite direction is observed. Figure 7
depicts the velocity profile on the right-half and the pressure distribution on the left-half.
Note that the recirculation zones of velocity streamlines inside (in blue) and outside (in red)
of the droplet are clearly visible.

(a) (b)

Figure 5. Schematics representation of two types of induced flows based on the Taylor’s theory: (a)
R < S and (b)R > S . Reproduced from Shadloo et al. [43].

(a) (b)

Figure 6. Comparison between the orientation of induced flows inside and outside of the droplet
with S > R: (a) Numerical results (b) Taylor’s theory [42].
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Figure 7. Pressure distribution across the left side of the droplet and the vector velocity contours
inside and outside of the droplet on the right side. The red to blue colors indicate high to low
pressure region.

Table 3. Simulation parameters for EHD cases using small deformation theory.

Case εd [F/m] ςd [S/m] S R σ [N/m]

SD1 0.3 40 0.5 2 0.01
SD2 00.5 40 0.5 2 0.01
SD3 0.5 150 0.5 3 0.01
SD4 0.5 1 0.5 0.05 0.01
SD5 3 10 5 0.5 0.03

Investigation of circular droplet deformation given small deformations subject to electric
field is presented here using two theories from literature. Taylor [42] estimates the droplet
deformation DT as

DT =
9 fdTE2

o εdR
8(2 +R)2σ

(30)

where fdT is the discriminating function evaluated as

fdT = R2 + 1− 3.5S + 1.5R (31)

For the same problem, Feng [44] suggests the following relation

DF =
fdFE2

o εbR
3(1 +R)2Sσ

(32)

where fdF is estimated from
fdF = R2 + 1− 3S +R (33)

In Equations (30) and (32), R is the initial droplet radius before its deformation and Eo
is the electric field magnitude in the vertical direction deduced from the electric potential
difference Eo = (ϕ+ − ϕ−)/h, with h being the height of the domain. Numerically, the
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droplet deformation parameter D can be defined based on the droplet’s deviation from the
circular shape,

DN =
A− B
A + B

(34)

where A and B are the elliptic droplet diameters at the steady-state condition, parallel and
perpendicular to the direction of the external electric field, respectively. When DN = 0,
the droplet is at its initial circular shape. On the other hand, more deviation from zero
indicates more deformation from its initial shape. Positive and negative values of DN refer
to deformation in the direction and perpendicular to the electric field direction, respectively.
For our study, we consider a circular droplet with R = 0.5 [m] placed at the center of a
squared domain of L = 4 [m]. The domain contains 240 particles per direction. The droplet
properties are ρd = 1000 [kg/m3] and µd = 1 [Pa·s] while the bulk fluid has identical
density and viscosity. All four boundaries are set to no-slip velocity and Neumann pressure
boundary conditions except for the top wall where a Dirichlet pressure boundary condition
is used. An electrical field is imposed on the system by E = 1 [V/m] resulting in unique
electric force value directed towards the bottom wall. Table 3 summarizes different EHD
test cases and Table 4 represents the obtained along with the theoretical values of Feng and
Taylor, and the droplet deformed shape at the steady-state. These setups are selected from
the simulations proposed by Shadloo et al. [43] and show good agreement with this study.

Table 4. Comparison of numerical (N) and theoretical results (Taylor et al. [42]: Equation (30) and
Feng [44]: Equation (32) of the droplet deformation (D) for different combinations of conductivity
and permittivities.

Case DN DT DF Bubble Shape

SD1 0.077 0.065 0.061
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Feng [44] has also proposed an analytical solution for the droplet velocity subject to
DC electric field, assuming that the droplet deformation is negligible, i.e., the final shape
of the droplet is assumed circular. The velocities inside and outside the droplet can be
theoretically calculated as

vr,in = U
[( r

R

)3
−
( r

R

)]
cos 2θ (35)

vθ,in = U
[( r

R

)
− 2
( r

R

)3
]

sin 2θ (36)
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vr,out = U

[(
R
r

)
−
(

R
r

)3
]

cos 2θ (37)

vθ,out = −U

[(
R
r

)3
]

sin 2θ (38)

where r is the radial position, vθ and vr are the tangential velocity and the radial velocity,
respectively. The characteristic velocity U can be evaluated as

U =
R−S

2S(1 +R)2
εdE2

o R
µd + µb

(39)

Our numerical results are in agreement with the analytical solutions for both the velocity
θ = 0◦ and θ = 45◦ at which one of the velocity components is maximized as shown in
Figure 8. As can be observed in this figure, theoretical velocity profile for tangential and
radial components are shown with dashed-lines and solid lines in the given order. The
simulation data for tangential and radial velocity components are respectively depicted
with filled circles and unfilled circles. The simulation input parameters correspond to SD4
as shown in Table 3 with (R = 0.5 [m], Eo = 1 [V/m]). When the droplet deformation is
sufficiently large such that the terminal shape can no longer be assumed as circular in two
dimension, the conformity of the numerical and analytical results tends to reduce. Based
on the Equations (35) and (37) the radial velocity needs to be zero at the droplet interface
(r = R). However, because of the small deformation of the droplet (r 6= R) and causes
small deviation between the numerical and analytical results. Based on the equations of
tangential components (36) and (38), having (sin 2θ = 0) leading to vθ = 0 [m/s] and
maximum values of vr that is in agreement with the observations in Figure 8.

(a)

(b)

Figure 8. Components of the velocity profile at (a) θ = 0◦ and (b) θ = 45◦ compared to the formulae
given by Feng [44].

In this section the simultaneous effects of thermocapillarity and electrohydrodynamics
on a single suspended droplet are studied. When a multiphase system is solely subject to
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electric field, the motion of the dispersed phase is forced by the electric field and damped
by the viscous forces. The instabilities caused by EHD-driven flows will occur when the
viscous drag force is much smaller than the electric force. Hence, the droplet losses its
balance and starts to migrate and/or deform. The electric force is more sensitive to the

droplet size than the viscous counterpart, augmenting more instability for larger
L
R

ratios,
where R is the initial droplet radius and L is the size of the domain.

As mentioned before, the Marangoni effect roots into the tangential component of the
surface tension gradient which if aligned with the tangential component of the electric
force, drives the flow to a more unstable configuration. Subsequently, in the next section we
will discuss the scaling parameters that lead to observation of both convective Marangoni
effects and electrohydrodynamic effects. To capture electrohydrodynamics driven droplet
deformations at the equilibrium state, the electric and the hydrodynamic time scales should
match properly based on the geometry of the system namely the droplet radius and the
channel width. The EHD time scale can be characterised by Maxwell-Wagner polarization

time t =
εd + 2εb
ςd + 2ςb

. It is worth reminding that electric charge accumulation at the fluid-fluid

interface happens when each phase has a different charge relaxation time τ =
ε

ς
where ε

and ς are electric permittivity and electric conductivity. This accumulation of the bulk free
charges at the phase boundaries will further result in creation of dipoles on the droplet.
The electric field acting on these induced free charges, will generate shear stress at the
fluid-fluid interface that can be balanced by shear viscous stress and, if thermal gradient is
applied, the tangential component of the surface tension gradient. Another aspect to take
into account regarding the instability of an EHD-TC multiphase system, is the difference
between prolate and oblate droplet deformation. Assuming a vertical potential difference
across the domain, and given that weakly conductive droplets embedded in the weakly
conductive fluids tend to flip such that the dipole aligns with the direction of the electric
field, one can expect that the oblate deformations are more prone to potential instabilities
as their dipole is in the opposite direction of the electric field.

The coupled EHD-TC problem setup consists of a square domain of size L = 0.04

[m] with
L
R

= 8 where R is the radius of the centralised droplet at xo = 0.02 [m] and
yo = 0.02 [m] with 120× 120 particle resolution in x and y directions, respectively. An
electric potential of φ = 0.04 [V] is imposed on the top boundary while other boundaries
are set to φ = 0 [V]. A linear thermal profile is imposed on the top and bottom walls
with respective temperatures of Ttop = 300 [K] and Tbottom = 290 [K] while the reference
temperature and the initial temperature are also kept at 290 [K] throughout the simulation.
The velocity boundary conditions are set to be free slip at the lateral walls, and no slip at
the top and bottom walls. Also, pressure boundary conditions are set to be Dirichlet with
a constant value at top wall and Neumann for the other three boundaries (∇p · n = 0)
where n is the normal direction to the given boundary. The density and viscosity of are
chosen to be ρd = 250 [kg/m3], µd = 0.12 [Pa·s] for the bubble and ρb = 500 [kg/m3],
µb = 0.24 [Pa·s] for the bulk phase. Both phases are set to have stationary conditions at
initial time step. The fluid electrical properties of the three cases are given in Table 5. The
time evolution of the droplet subject to thermocapillary flow and EHD forces is illustrated
in Figure 9.

Table 5. Simulation parameters of the coupled EHD-TC cases where vertical (V) and horizontal (H)
electric fields are imposed.

Case Electric Field
Direction εb [F/m] ςb [S/m] εd [F/m] ςd [S/m]

1 V 1 50 0.5 150
2 H 1 50 0.5 150
3 V 0.5 150 1 50
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t = 0[s] t = 1 [s] t = 2 [s] t = 3 [s] t = 4 [s]

Figure 9. Time evolution of the droplet interface for EHD-TC coupled simulations; case 1 (top
row), case 2 (middle row), case 3 (bottom row) with vertical temperature gradient set to 10 [K]. The
physical simulation time t = 0 [s] at the very first frame on the left, up to t = 4 [s], with a time
increment of 1 per frame. For the simulation parameters see Table 5.

Based on the results shown in Figure 9, a combination of R and S ratios and the
direction of thermal and electric potential gradients affect the deformation and migration
of the droplet.Thermocapillary induced motion due to surface tension gradient can be
decomposed into two components.The perpendicular temperature gradient component
to the fluid layer that generates Benard-Marangoni circulations inside the droplet. The
tangential temperature gradient component generate surface tension gradient along the
surface of the fluid and induce surface flow towards the regions with higher surface tension.
In our simulation, we combine these two components to obtain surface force. Furthermore,
when a droplet is suspended in an imposed flow field generated by the EHD forces, which
itself depends on theR and S relation as explained in the EHD section; both surface force
and the imposed EHD force are responsible for the deformation and migration of the
droplet. For the case 1 (top row) and case 2 (middle row), vertical and horizontal electric
field are applied, respectively, while the thermal gradient is kept vertical in both cases. All
the other parameters are kept the same. In case 1, where the electric field is oriented the
same as thermal gradient, in the vertical direction, it is observed that the droplet forms
a prolate shape. Because the viscosity of the droplet (µd = 0.12 [Pa·s]) is chosen close to
continues phase viscosity (µb = 0.24 [Pa·s]), similar to those in the thermocapillary induced
motion cases, the resistance due to the presence of the droplet is relatively low. However,
the non-uniform distribution of the electric charges on the surface of the droplet, generates
a shear force (from equator-to-pole since R > S) which, in addition to the Marangoni
stress caused by the variation of surface tension on the droplet surface, deforms the droplet.
This deformation modifies the effective viscosity of the droplet compared to its initial
state with respect to the continues field. Because the surface tension coefficient is negative
σT = −0.002 [N/m], the droplet tends to move in the opposite direction of the thermal
gradient, that is from top to bottom. But the effective viscosity modification, retards this
migration. The top side of the droplet, closer to hot wall, has lower surface tension, and
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it is as a result more prone to strong deformation caused by both internal EHD-induced
circulations and surface-force-induced circulations. In the case 2, where horizontal electric
field in applied with higher electric potential set to be at the right side of the setup, our
results show a symmetric elongation along the electric field direction while the droplet
is moving downwards. Finally, case 3 (bottom row) shows the evolution of the droplet
towards a break-up when a vertical electric field is applied taking R < S . As can be
observed, the droplet starts to deform from its center while keeping symmetrical oblate
structure thought the break-up process. Comparison between case 3 in coupled EHD-TC
cases and case 4 in Table 4 where both systems are characterised byR < S , we observe a
different orientation for the droplet due to the presence of Marangoni force. It is important
to take into account the difference between the scale of effectiveness in EHD phenomena
and Marangoni flows due to thermal gradient. The former has a really small time scale
and therefor affects the system much faster than the Marangoni flows. This highlights the
reason for-which numerical simulation of coupled physics require many trials as time-scale
and length scale are not in the same order for each physics involved.

5. Conclusions

• After independently validating the effect of thermocapillary (TC) and electrohydro-
dynamic (EHD) forces on two-phase flows, the coupled EHD-TC effects on a single
droplet migration is studied.

• The two-phase system is analysed first at each isolated condition through which
multiple field parameters such as system’s velocity and pressure are validated.

• The behaviour of the droplet subject to EHD forces and TC phenomena is characterized
using the deformation values for different material properties.

• By choosing the appropriate ratios of electrical permitivity, electrical conductivity,
thermal gradient and electric potential gradient, it is now possible to use simulations
to predict and control the migration and deformation of a droplet using SPH method.

• The results show strong agreement with previous literature. Simulation results for
a single droplet subject to direct current electric field and Marangoni flow induced
by thermal gradient in the absence of gravity reveal an insight to the evolution of the
droplet migration and deformation.

• Results show that the main parameters that influence the droplet topology include
the R and S corresponding to electrical permitivitty and electrical conductivity,
respectively as well as the orientation of the applied electric field with respect to
thermal gradient.

• ForR > S and thermal and electric gradient applied both in the vertical direction, a
prolate deformation of the droplet is observed.

• HavingR > S and an electric field perpendicular to the thermal gradient results in
symmetric and oblate deformation of the droplet while displacing the droplet in the
opposing direction of the thermal gradient.

• The investigation of the droplet break-up process under the coupled effect of the
thermal and electric field demonstrates that in the case of R < S with both electric
and thermal gradients applied vertically, the droplet’s topology evolves towards a
break-up state.

• Nevertheless, the different time-scales of each phenomenon motivates further re-
searches to provide better understanding of EHD-TC instabilities where gravity effects
are neglected.

• Regarding the limitations of this research work, it is worth mentioning that despite
having some similarities with topics such as EHD Heat transfer enhancement, it
is yet to be found sufficiently related numerical or experimental studies with the
close physics, dimensions and parameters to compare with. The approach that we
decided to choose is to validate our model extensively, using available related recent
studies, and propose our solution to a novel coupled multi-physics problem which we
believe is valid based on the validated components. We expect that new experimental
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and numerical studies emerge to discuss this configuration following to the pioneer
appearance of this work.

• For future works, we believe that uncertainty quantification and reliability analysis of
this model can be subject of future directions. In that scope, a meta-model is used to
couple the mechanical and probabilistic models.

• In this study, given that the foundations of the mathematical model, in its general
form, to explain the contribution of each force and the general mechanism affecting the
deformation of the droplet are established in this work, the parametric and sensitivity
analysis can be subject of further studies.
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Nomenclature

χ Curvature
κ Thermal diffusivity (m2/s)
µ Dynamic viscosity (Pa·s)
σ Surface tension (N/m)
R Initial droplet radius (m)
Fe Electric force (N)
g Gravity acceleration (m/s2)
cp Specific heat capacity at constant pressure (J/kg K)
ρ Density (kg/m3)
ε Electric permittivity (F/m)
ς Electric conductivity (S/m)
p Static pressure (kg/m s2)
T Temperature (K)
T Maxwell stress tensor
Ma Marangoni number
v Local average fluid velocity
Π Stress tensor
qv Free electric charge density (C/m3)
Ω Domain of integration of the kernel function
δ Dirac-delta function
Cw Normalisation constant of the kernel function
W(x, h) Kernel function
h Smoothing length of the kernel function
Vi Volume of the particle i
φ̄ij Inter-particle average of the electric potential
λi Thermal conductivity (W/m K)
Lo Characteristic length (m)
τ Bulk relaxation time (s)
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R Electrical conductivity of the droplet to bulk ratio
Eo Electric field vector magnitude (V/m) set to be Eo = 1 unless stated otherwise
S Electrical permittivity of the droplet to bulk ratio
φ Electric potential across the domain
U Characteristic velocity
+ High-electric potential
− Low-electric potential
b Bulk conditions
d Droplet conditions
v viscous stress
c capillary stress
re f Reference conditions
T Gradient with respect to temperature
∗ Dimensionless quantity
H Hot conditions
C Cold conditions
θ Tangential component
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Chapter 5

Conclusion and Future work

5.1 Synthesis

In this project a 2D numerical simulation of the coupled problem concerning multi-phase

fluid system has been studied. Several test cases have been carried out to find more about

the deformation and rising of bubbles subject to an electric field. The influence of some

parameters has also been studied through benchmark problems. This chapter is dedicated to

provide an initial conclusion to the project and some recommendations for the continuation

of this research.

• Paradoxically, as computational power increases, we become aware of the finer scale

effects and limitations that our physical model poses. Furthermore, we are more

sensitive to the spread of error and uncertainty. Therefore, despite the extended

limitations on computing power, in the near future we will continue to be hampered in

our efforts to understand more complex coupled multiscale multiphysics phenomena.

For this purpose, mathematical and computational modeling will remain the main

supporting technologies that need to be further developed and exploited.
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• Multi-phase fluid flow modelling

The numerical modelling and simulation of multi-phase fluid flows especially when

coupled with electric or magnetic field or with interaction with solid boundary has

numerous industrial applications including energy, aerospace and bio-medical sectors.

To solve the governed system of equations many grid-based and mesh-less methods

have been proposed.

• SPH method

SPH is a mesh-less Lagrangian method that solves the N-S equations on freely moving

particles of the incompressible fluid system. In the multi-phase systems, each phase is

described by its own set of material particles, thus, interface problems are inherently

simpler when it comes to distinguishing the phases, large deformations, and complex

geometries.

• Boundary conditions

As for the square or rectangular computational domain of the problem geometry, each

side is attributed to have a "tag". Assigning one of the pre-defined values to the

corresponding field variable of each tag could be interpreted as no-slip, free-slip and

"to be computed". The periodic boundary condition is also as option for some cases.

• Time and space discretization

The computational domain consists of a 2D array of initially arranged particles in

Cartesian grid for the background fluid (oil) and circular particles for the droplet or

bubble ( water or gas). The time step used in the computation is relatively small ( order

of E-5 for some cases) which is set to avoid instabilities. For a writing interval varying

between 200 to 1000, one should consider a significant computation time (order of

few days) considering that the code is developed in serial. The latter emphasizes the

interest to paralleling and distributing the computation.
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5.2 Future works

• Due to the fat that SPH is a fully Lagrangian method and its efficiency in modeling

interfaces, it has been greatly developed for multiphse and free-surface problems.

To take advantage of the Eulerian methods in the continuous phase where complex

deformations are non-existent, coupling SPH with mesh-based methods such as Finite

Volume Methods is presented for simulation of incompressible interfacial flows with

large density difference. In case of coupled multiphase- multi-physics problems,

hybrid numerical approaches, such as coupled Level Set-SPH and FEM-SPH, can be

used to improve the efficiency of the method and accuracy of the results.

• New approaches to simulate multiphase - multiphysics problems are conquering

the research summits. Recent advances in HPC and Machine Learning application

in thermal systems has been investigated in special edition with topics such as

thermal parameters prediction and flow modelling [107]. Liu et al. [76] proposed

an artificial neural network (ANN) modeling to predict the exhaust emissions and

engine performance by investigating different alcohol–gasoline fuel blends. Such

new approaches on multi-phase problems could be applied even for complicated

and nonlinear cases without the need for expensive, complex, and time-consuming

experimental studies. In an investigation to predict the viscosity of biodiesel blends in

temperatures ranging from 268.15 to 373.15K Zheng et al. [161] showed excellent

agreement between ANN predictions and experimental data. The ANN models have

also been used in the pressure drop prediction in two-phase long horizontal pipes,

Shadloo et al. [119], Haghighi et al. [53] with ANN models presenting good agreement

with experimental data. Artificial intelligence applied to heat transfer exchangers [47]

is also a new promising field of research in multi-phase multi-physics phenomena.
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