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Abstract

QUANTUM MEASUREMENTS disturb. By this, it is implied that quantum measurement can
affect the state of the measured system. Such a measurement backaction is due to the

interaction of the quantum system with the measuring device. When the measured observ-
able and the system’s Hamiltonian do not commute, the backaction can lead to a mean energy
change of the system. This energy change has been dubbed "quantum heat" and, in association
with feedback processes and/or the interaction with thermal bath(s), proves to be a genuinely
quantum resource to fuel new kinds of quantum engines. We propose such a measurement pow-
ered engine exploiting the non-commutativity of local and non-local operations on a bipartite
quantum system.

We then investigate the origin of the quantum heat. This task might appear impossible
because one cannot model the full dynamics of a measurement due to the collapse of the wave-
function. However, the energetic aspects can still be investigated by modeling the so-called
pre-measurement. During this pre-measurement step, the system interacts and gets correlated
with a quantum system, which can be viewed as a small part of the measuring apparatus and
called the quantum meter. Ideally, at the end of this process, the system’s reduced state will
be fully decohered in the measurement basis, thus corresponding to the averaged collapsed
output states given by the measurement postulate. We find that the quantum heat received by
the measured system corresponds to the energy necessary to turn on and off the coupling be-
tween the meter and the system. Using generalized definitions of heat and work, we moreover
characterize the nature of these energy exchanges.

Tracing the source of this energy one step further, we propose an autonomous description
of a measurement. This is done by considering a flying qubit measured by the quantum field of
the cavity it crosses. The interaction being position dependent, the kinetic degree of freedom
is providing the required energy to switch on and off the interaction between the qubit and
the meter field. A full quantum treatment allows us to evaluate the impact of the finite spatial
and momentum extension of the qubit wavepacket. Since the kinetic degree of freedom can
be affected by the interaction, it does not simply generate a time dependent Hamiltonian for
the other degrees of freedom. We find the correction to this ideal dynamic and analyse its
consequences on the nature of the energy fluxes.

Taking the opposite point of view, we compare the cost needed to measure a qubit state via
a cavity field, depending on their initial states. The measurement quality is quantified via its in-
formational and energy efficiency. Given energy constraints, single photon are found to bemore
efficient than coherent field, themselves better than thermal fields. These results hence pinpoint
an energetic advantage of quantum states over classical ones for measurement purposes.

The results presented in this thesis contribute to unravel the mysterious effects and mecha-
nisms of quantum measurements. Notably, they open new possibilities to further analyse quan-
tum measurement based engines and to understand the energetic resource that measurements
cost and constitute at the same time.

5





Table of Contents

Appetizer 13

1 Quantum thermodynamics and Measurement: an introduction 15
1.1 Thermodynamics: From Macro to Micro . . . . . . . . . . . . . . . . . . . . 16

1.1.1 Emergence of the core concepts . . . . . . . . . . . . . . . . . . . . 16
1.1.2 Thermodynamics of information . . . . . . . . . . . . . . . . . . . . 18

1.2 Quantum thermodynamics and measurements . . . . . . . . . . . . . . . . . 21
1.2.1 Quantum heat engines . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.2 Quantum measurement . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.3 Quantum heat: definition, nature and example . . . . . . . . . . . . . 25
1.2.4 Quantum measurement engines . . . . . . . . . . . . . . . . . . . . 27
1.2.5 Origin of the quantum heat . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2 Energetics of a bipartite quantum system 35

2.1 Classical heritage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 A difficult quantum transposition . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Bipartite quantum energetics (BQE) . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.1 Fully commuting interaction . . . . . . . . . . . . . . . . . . . . . . 41
2.4.2 Conservation of the local energies . . . . . . . . . . . . . . . . . . . 41
2.4.3 Partially commuting interaction . . . . . . . . . . . . . . . . . . . . 41

3 Energetics of a pre-measurement 43
3.1 Two-qubit system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Work value of information . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Energetics of the pre-measurement . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Pre-measurement dynamics . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Energy dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 Heat or Work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.4 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Appendix: A two qubit engine based on measurement . . . . . . . . . . . . . 62

3.5.1 Principle of the engine . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.2 Generalization of the working principle . . . . . . . . . . . . . . . . 65
3.5.3 Photonic implementation . . . . . . . . . . . . . . . . . . . . . . . . 68

7



4 Energetics of an Autonomous Measurement 69
4.1 A flying particle interacting with a fixed scatterer . . . . . . . . . . . . . . . 71

4.1.1 General situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.2 A qubit measured by a single mode cavity field . . . . . . . . . . . . 72
4.1.3 Unravelling pre-measurement’s energy exchanges . . . . . . . . . . 73

4.2 Non autonomous modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.1 Non-Autonomous dynamics . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Non-Autonomous energy exchanges . . . . . . . . . . . . . . . . . . 79

4.3 Autonomous modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Autonomous dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Autonomous measurement . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.1 Non Autonomous solution derivation . . . . . . . . . . . . . . . . . 96
4.5.2 Useful quantities for average energy calculations . . . . . . . . . . . 99

5 Resources to perform a good Measurement 103
5.1 Quantifying the energy cost of measurements . . . . . . . . . . . . . . . . . 105

5.1.1 Ideal classical case . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1.2 Measurement efficiencies . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Quantum measurement: impact of the coherences . . . . . . . . . . . . . . . 109
5.3 Measurement of a qubit by a cavity field . . . . . . . . . . . . . . . . . . . . 111
5.4 Theoretical results: influence of the meter state . . . . . . . . . . . . . . . . 114

5.4.1 On the information extracted . . . . . . . . . . . . . . . . . . . . . . 114
5.4.2 On the induced backaction . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Comparison with the experimental results . . . . . . . . . . . . . . . . . . . 120
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.7 Appendix: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7.1 Information gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7.2 Experimental implementation . . . . . . . . . . . . . . . . . . . . . 123

Conclusion 127

Résumé en français 129

Bibliography 139



List of Figures

I.1 Quantum thermodynamics mind map . . . . . . . . . . . . . . . . . . . . . . 14
1.1 Working principle of a heat engine . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Classical Maxwell Demons . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Landauer erasure and Szilard work extraction . . . . . . . . . . . . . . . . . 20
1.4 Projective measurement induced energy exchange . . . . . . . . . . . . . . . 26
1.5 Von Neumann measurement chain . . . . . . . . . . . . . . . . . . . . . . . 31
1.6 Quantum measurement: outline of the thesis . . . . . . . . . . . . . . . . . . 32
2.1 Quantum energetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2 Bipartite quantum energetics . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1 Work value of information . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Pre-measurement interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Quantum state tomorgraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 Measurement induced energy transfer and state decomposition . . . . . . . . 53
3.5 Pre-measurement dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Quantum heat dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7 Bipartite quantum energetics of pre-measurements . . . . . . . . . . . . . . . 60
3.8 Two-qubit engine protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.9 N-qubit engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.10 Bloch sphere representation and average energies evolution during a cycle . . 67
4.1 Autonomous and non autonomous cases . . . . . . . . . . . . . . . . . . . . 73
4.2 Energy fluxes in the non autonomous case . . . . . . . . . . . . . . . . . . . 81
4.3 Generalized heat and work received by a the measured IDoF (non autonomous) 82
4.4 Autonomous model and evolution decomposition . . . . . . . . . . . . . . . 84
4.5 Origin of the Quantum heat in the Autonomous modelling . . . . . . . . . . 92
5.1 Three steps of a cycle of measurement and erasure . . . . . . . . . . . . . . . 104
5.2 Work cost of an ideal classical cycle of measurement and erasure . . . . . . . 106
5.3 Measurement efficiency justification . . . . . . . . . . . . . . . . . . . . . . 108
5.4 Work cost of a quantum cycle of measurement and erasure . . . . . . . . . . 110
5.5 Circuit QED setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.6 Mutual information and entropies of an initially mixed qubit state measured by

single photon, coherent and thermal fields . . . . . . . . . . . . . . . . . . . 115
5.7 Mutual information and entropies of an initially pure qubit state measured by

single photon, coherent and thermal fields . . . . . . . . . . . . . . . . . . . 117
5.8 Backaction induced qubit decoherence (experimental and theory) . . . . . . . 119
5.9 Information gain for single photon, coherent and thermal meter state . . . . . 122

9



5.10 Frequency shifts in the dispersive regime . . . . . . . . . . . . . . . . . . . . 124
I.1 De la thermodynamique classique à la thermodynamique quantique . . . . . 130



List of Symbols

Unless stated otherwise, the notations used in this manuscript are defined as follows.1

Ssh Shannon entropy (units of log(2))
S(�); SA Von Neumann entropy of a state �; of the state of the system A

(units of log(2))
Bipartite Quantum Energetics (BQE) quantities
UA Internal energy of the subsystem A

WA Generalized work done on the subsystem A

QA Generalized heat done on the subsystem A

V ⊗
AB Generalized work done on the the interaction energy
V �
AB Generalized heat done on the the interaction energy
W A

ext External work done on the subsystem A

Pre-measurement dynamics
S;M ; SM Measured system, quantum meter and joint system made of these two parts
t0 Starting time of pre-measurement step
tm Ending time of pre-measurement step
HA;HS Bare Hamiltonian of an arbitrary system A; of a measured system S

HB;HM Bare Hamiltonian of an arbitrary system B; of a meter systemM

V AB; V SM Interaction term between A and B; S andM
� Coupling constant between a system and a meter
�AB(t) Correlation matrix of a bipartite system AB at time t

Autonomous measurement
H0; V1 Bare Hamiltonian of the internal degrees of freedom (IdoFs);

part of the interaction Hamiltonian acting on the IDoFs
x0; v0; �0 Initial average position, velocity and state of the wavepacket
q̂ = p̂ − p0 Momentum operator displaced by the initial average momentum

1Operators are written without a hat symbol to lighten the notation unless a confusion is possible.
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HNA(t) Time dependent non autonomous Hamiltonian
H̃(x) = H0 + f (x)V1 Position dependent non automomous Hamiltonian
Ũx(t) Unitary evolution associated to a classical particle

starting at position x and moving at the speed v0
C(�0, t) Correction term due do the spatial shape of the initial wavepacket
�I (t); �K(t) Reduced density matrix of the internal degrees of freedom;

of the kinetic degree of freedom

Energetic cost of a measurement
n̄in Average number of photon of the input field
f ec ; f

g
c Frequency of the cavity if the qubit is in |e⟩ (resp |g⟩)

�eth; �
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th Monochromatic thermal state at frequency f ec (resp f gc )

�pSM, th; �
p
SM, coh; �pSM, 1ph Joint system and meter state after step "p" given an initially
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�I = I∕SS ; �E = I∕SM Informational and energetic efficiencies



Appetizer

Whilst thermodynamic research extends its borders to the realm of plasma physics [1,
2], novel turbines [3] and non-equibrium aspects in biology [4] among other paths; quantum
physics expands its domain towards eagerly awaited new practical usages with the emergence
of quantum spatial communication [5, 6], quantum cryptography [7, 8], enhanced photovoltaïc
cells [9, 10] and driven by the hopes for quantum computers [11]. In the meantime, quantum
physics does not lose its affinity with pure fundamental theory by questioning the implications
of causal order superposition [12, 13, 14], pushing the limit of the quantumworld by cooling in-
creasingly larger objects [15, 16, 17, 18, 19] in the hope to witness effects of gravity in quantum
systems (perhaps decoherence), and even probing physics beyond the Standard Model [20].
At the confluence of these fields lies the, explicitly named, realm ofQuantumThermodynamics.
The richness of this transdisciplinarity goes beyond the current appetite for blurring science’s
reassuring domains. Rather, it seems to arise from the very “paradoxically fertile” nature of
this encounter. Indeed, it is no surprise that the very idea of quantification itself came from a
discrepancy at the heart of thermodynamics: the Black-Body radiation [21]. Since then, the
confrontation of quantum unexpected features with our classical intuitions lead to many other
great unravellings in quantum physics. One could think for instance about Schrödinger’s cat, il-
lustrating the conceptual void, still puzzling us to this day, regarding the frontier of the classical
and quantum worlds, or about the Einstein-Podolsky-Rosen (EPR) paradox proving that a con-
cept such as entanglement appeared unrealistic even to some of the greatest minds. Moreover,
within the classical realm, thermodynamics is perhaps the most fundamental theory since, as
even Einstein once said:

“It is the only physical theory of universal content, which I am convinced, that
within the framework of applicability of its basic concepts will never be over-
thrown.”

Thus, thermodynamics is arguably the strongest bound to quantum physics’ annoying and fas-
cinating habit to slip away from our grasp. Consequently, maybe within thermodynamics, can
we hope to dive deeper into quantum’s profound mechanisms.
This hope already resulted in great accomplishements. Although many subfields of Quan-
tum Thermodynamics are still rather young, the following introduction will simply cover the
prospects and achievements related to this thesis topics and many others are also worth ex-
ploring [22]. Interested readers might enjoy Figure. I.1’s attempt to organize a mind map of
quantum thermodynamics’ main areas of research.
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16 CHAPTER 1: Introduction

IF I WERE TO DEFINE a PhD thesis to a friend, with all the naivety of not having written mine
yet, I would compare it to the notes of a XVIII’s century navigator, once typed and orga-

nized. In other words, I view it as a personal, and yet as objective as possible, gathering of
knowledge, insights and findings: a structured report and update on a recent exploration.
Firstly, and not to lose a reader on the other side of the sea, I will zoom in the thermodynamics
of microscopic objects. Reaching the quantum world, I will highlight the stakes and prospects
raised by these new possibilities and take the opportunity to introduce useful notations and
achievements made within this quantum framework. The quantum to classical frontier remain-
ing a vivid topic of research and an attractor point to my work, quantum measurement and
their stakes will be discussed to complete our chosen tour of the beautiful field of quantum
thermodynamics.

1.1 Thermodynamics: From Macro to Micro

1.1.1 Emergence of the core concepts

In order to appreciate the depth of our conceptual thermodynamic heritage, it is insigthful to re-
member that before themiddle of the XVIII’s century the concepts of temperature and heat were
still mistaken for one another - the distinction is known to be own to Joseph Black. Often, we do
not even realize how much our unified vision of energy was a mind-blowing understanding at
the time. What a deep connection to be able to relate the energy of electrons moving in a wire
with kinetic, gravitational and chemical energy due partly to Mayer and Helmholtz. Thanks
to the work of Benjamin Thompson and James Joules, it became clear that mechanical work
could be converted in heat, as demonstrated via the paddle-wheel experiment for instance [23].
On the pratical side, creative engineers, such as James Watt, did not wait to use heat flow in
order to generate useful work for their machines. Quickly, along with the industrial revolution,
thermodynamics, which was originally focusing on the field of thermometry and the study of
the caloric (heat) exchanges, went on to characterize the spreading heat engines, depicted in
Figure. 1.1, and their corresponding cycles and efficiencies. It is thus no surprise that in 1871,
in the preface of his book, Theory of Heat, J. Clerk Maxwell defines the subject of Thermody-
namics as the investigation of the thermal and mechanical properties of substances. However,
whereas work could be completely dissipated to heat, the opposite conversion was found to be
impossible. Kelvin no-go theorem is even stating that no work can cyclically be extracted using
only a single bath. Using two baths is not enough either for a perfect retrieval of work from heat
since, as Sadi Carnot has shown, even an ideal, perfectly reversible, cycle could not transform
the total amount of heat going from a hot to a cold reservoir into work [24]. From these findings
arose the understanding that heat is a degraded form of energy that cannot be fully converted
into work. This realisation is very deep because it already prefigures the notion of time arrow.
Indeed, coming back to Carnot’s cycle, it appeared that the work extracted is less than the heat
given by the heat bath. However, by running the cycle backwards, it is possible to reverse the
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Figure 1.1: Working principle of a heat engine: The working substance (blob travelling in the
green path) receivesQH of heat by interacting with the hot bath from which some workW can
be extracted upon increasing the entropy of the cold bath, of temperature TC , byQC∕TC where
QC is the heat received by this bath.

heat flow and come back to the initial state of the engine. As such, one could simply think that
heat and work, just like two currencies, could simply be converted to one another at will given
some specific exchange rate, this "rate" being the well-known Carnot efficiency � = W ∕QH ,with W the work extracted from the working substance. However, as noticed by Clausius,
when considering any other cycle than Carnot’s, the amount of work extracted is not sufficient
to generate, when reinvested in the backward cycle, an equal and opposite heat flow that the
one used to obtain it in the first place: some extra charges apply upon each new conversion.
Clausius noticed that, for all known cycles, the heat absorbed by the working substance during
a cycle was such that ∮ dQ

T
≥ 0, with equality for the reversible Carnot cycle. This asymmetry

lead him to invent the notion of reversible entropy change of a body in contact with a bath at
temperature T defined as ΔS = Qrev∕T , where Qrev is the heat exchanged. For instance, if acontainer filled with gas at temperature T is connected to a bath, also at T , and is compressed
or expanded by staying in contact with this bath, the heat exchanged will be reversible and the
entropy will be given by the above formula. Instead, if this gas was initially at a temperature
T1 ≠ T , the thermalisation process will be such that entropy change of the gas will be

ΔS = Qrev∕T + ΔiS, (1.1)
where ΔiS is the, always positive, entropy production which quantifies the irreversibility and
where Qrev does not include the heat exchange associated to this irreversible step.At this stage, introducing the notion of entropy might seem a bit artificial, although it already
hightlights the time evolution asymmetry via the inequality ΔiS ≥ 0 which later lead to the
notion of time arrow. However, this idea becomes much deeper when related to Boltzmann
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informational entropy. Indeed, as written on his grave, Bolztmann has defined the entropy of a
system in equilibrium from the number of its microstate Ω such that:

S = kB log(Ω) (1.2)
with kB the eponym constant. In a gas made of many particles, it is often more appropri-
ate to regroup the microstates of same energy to rewrite the entropy in Gibbs’ terms S =
−kB

∑

i pi log
(

pi
) where pi is the probability of a given particle of this gas to be having the

corresponding energy Ei. This formulation is more general at it also applies to systems out
of equilibrium for which not all microstates are as likely witnessed. Entropy is thus related to
the probability distribution of the possible states: a very cold system for which all particles
are likely to be moving at low speed will have less entropy than a hot system for which the
distribution of kinetic energy will be much broader. From the perspective of thermal engines,
work extraction is possible because it uses the natural flow of entropy from the hot to the cold
reservoir. By mediating this exchange via a working substance we can gain some readily us-
able energy, however, this does not come from free since, outside of the ideal theory world, the
thermal bath will eventually converge to the same temperature in the process: hence the need
to keep the flamme burning.

1.1.2 Thermodynamics of information

From this early heritage, further insights about the thermodynamic consequence of the phys-
ical nature of information almost started as a joke. Indeed, Maxwell’s original thought ex-
periment [25] seemed like a playful game, except that it led to an apparent violation of the
second law of thermodynamics which would puzzle scientist for many years. At the end of his
book“Theory of Heat", in a section called "Limitation of the Second Law of Thermodynamics",
Maxwell imagine a way to violate the common expectation that:

“it is impossible in a system enclosed in an envelope which permits neither change
of volume nor passage of heat, and in which both the temperature and the pressure
are everywhere the same, to produce any inequality of temperature or of pressure
without the expenditure of work.”[25]

which can be seen as another statement of the second law. To do so, he considers a container
fullfilling the above conditions (no change of volume and no heat exchange) and divided in two
parts, initially at the same temperature. As in any gas, the individual particules would have
different speed according on the thermal distribution. Between the two compartments, lies a
small trap initially open.
The paradox arises by noticing that an intelligent being, later made demonic by Kelvin, know-
ing the position and velocities of the particles, could choose to open and close the trap at the
appropriate instants such that the particles get sorted into faster and slower ones. Thereby he
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would freely obtain two reservoirs of different temperature in clear violation with Maxwell’s
statement.
However simple, this pedagogical setting (for a playful and interactive simulation see: Maxwell
Demon game) became highly disturbing for physicists. Indeed, from a single bath, one could
obtain at apparently no cost, two different temperature reservoirs from which we know that
useful work can be extracted. Once the temperature difference between them would vanish we
could start again the demon game and thereby, seemingly cyclically extract work from a single
bath in clear violation of Kelvin’s statement of the second law.

Figure 1.2: Depiction of a Demon facing its original game by Maxwell as well as Szilard’s
single molecule adaptation and an adaptation of the Feynman’s ratchet thought experiment.

More than half a decade later, one of the most important steps towards understanding the
missing brick was given by Leo Szilard in his seminal paper of 1929 [26]. There, he introduced
a new version of the experiment in which the gas is replaced by a single particle, see Figure. 1.2.
By placing a piston in the middle of the container we would end up with two sides: one contain-
ing the molecule and the other empty. The pressure difference will induce the piston to move
toward the empty side and this motion can be used to extract some useful work retrieving here
too an apparent violation of the second law. In order to extract this energy however, information
about the side on which the molecule was found is needed to decide where to place the weight,
as pictured in Fig. 1.2. Thanks to the works of Shannon, Bennett [27] and Landauer [28] it
became clear that to repeat the experiment, the memory storing this information would have to
be erased and that this logically irreversible operation implied a cost of at leastW = kBT ln(2).To understand the reason behind this specific work cost, it is useful to come back to Clausius
who came to the conclusion that the change of entropy of a system in contact with a bath was

https://brandonseverin.github.io/maxwellsgame/
https://brandonseverin.github.io/maxwellsgame/
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such that:
ΔS − Q

T
≥ 0. (1.3)

Using the first law ΔU = W + Q and the definition of free energy F = U − TS, where U is
the internal energy of the system considered, he obtained his eponym inequality:

W − ΔF = TΔiS ≥ 0, (1.4)
showing that the extractable work in any such transformation is at best equal to the change of
free energy of system. Applying this finding to the case of a degenerate memory of one bit of
information, we deduce that the work required to erase this bit information, thereby changing
the Gibbs entropy from S = kB log(2) to S = 0 would cost a work W ≥ ΔF = kBT log(2).This work cost, since it exactly corresponds to the maximal work that could be extracted from
the Szilard engine, thus allowed to solved the paradox.

The main conclusion to this endeavour was that information can be used to extract useful
work but that the manipulation of information itself was coming at a cost.
This cost is needed to reset the memory. Ideally, this can be done by reversing the Szilard
procedure decribed above, i.e., starting with a container filled with a particle either on the right
or on the left and with the barrier on the side of the container, as depicted in Fig. 1.3, and then
pulling off the piston-barrier to force the particle to be reset in the right side for instance: this
is Landauer erasure.

Figure 1.3: Landauer erasure and Szilard work extraction as two opposite mechanism.
At this stage, one could wonder if it is still possible to extract work without using a memory.

Several attempts have been made to propose such engines which are usually based on fluctu-
ations. Indeed, due to the discrete nature of matter, i.e., atoms and molecules, the pressure
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felt by the piston is not constant over time but fluctuates around its average value. Of course
the larger the system is, the smaller the fluctuations will be compared to this average. In the
Feynman–Smoluchowski ratchet thought experiment, by using a ratchet that is only allowed
to rotate in one direction, thermal fluctuations were thought to be able to induce rotation of
the gear. This rotation could then be used to lift a weight for instance and therefore extract
some useful work. In the same spirit, one could take again the single particle Szilard engine
(in the classical case, where it does not cost anything to insert the barrier). There as depicted in
Fig. 1.2, without even knowing the side of the particle, one could expect it will exert a pressure
on the barrier and thus lead to a movement of the mass attached to the string, upward no matter
the direction of the barrier. To solve these new paradoxes, since such engines would violate the
second law of thermodynamics if they could work, Smolowski and Feynman; whose work were
complemented in this regard by Parrondo, Pep Español, Magnasco and Stolovitzky [29, 30];
came to the understanding that, if everything is at the same temperature (particle(s), ratchet,
mass), then no work can be extracted from the thermal fluctuations. This is because the fluc-
tuating position of the pawl will let the ratchet rotate backward with equal probability than the
thermal fluctuations will make it move forward. In the Szilard case, the effect of the particle
on the barrier will induce a motion of the weight indistinguishable from the motion due to
the fluctuations arising from the surrounding environment. This example, illustrated in the last
pannel of Fig. 1.2 can be seen as the mechanical counterpart of the electrical circuit using diode
bridges such as the one proposed by Aydin et al. [31]. Last but not least, it was recently un-
derstood that stepping away a little from the standard paradigm of measurement and feedback
described in the original proposal of Maxwell, similar effects, such as heating a hot reservoir
and cooling a cold one without providing work, can be obtained solely from the use of non
equilibrium resources [32, 33]. In this case of so-called non-equilibrium demon, it is the equi-
libration of the non-equilibrium resource that generates the entropy production necessary to
verify the second law. However simple and idealistic, these toy models have motivated many
further investigations due to the richness of the conceptual questions they raise.

1.2 Quantum thermodynamics and measurements

Quantum systems are small and well isolated enough that their dynamics can be affected by
quantification and superposition. Not only are they subject to important fluctuations but even
at an average level, i.e., averaging over many runs of the same experiment, their quantum na-
ture offers new possibilities. Such counter intuitive features include superposition; which can
be witnessed in single photon interference experiments; entanglement; which allows for the
striking "action at a distance" phenomenon; contextuality; which tells us that the result of a
measurement depends on the set of the other measurement operators jointly measured, or mea-
surement backaction; which comes from the invasiveness of quantum measurements. From
these features, it is possible to secure communications from an eventual eavesdropper, to speed
up some computations or to build very precise sensors. Thermodynamics is not left out as
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the energetic exchanges between quantum systems also inherits quantum’s fascinating’s prop-
erties: it is the purpose of quantum thermodynamics to single out and characterize these new
properties.

1.2.1 Quantum heat engines

As early as 1959 it became clear that; building on the first quantum revolution, i.e., quantifica-
tion; one could make use of quantum working substances and the individual addressability of
their energy level splittings to build quantum thermal engines [34]. Scovil and Schulz-DuBois
famously first showed that a three energy level quantum system implementing a maser could
be seen as a heat engine. A bit later, the ultimate Carnot cycle was adapted to quantum sys-
tems [35] as well as the Otto cycle [36]. Although even entanglement was reassuringly shown
not to violate the second law of thermodynamics [37], going to the quantum world unlocked
new possibilities such as extracting work from a single heat source [38], reaching efficiencies
greater than their ideal classical counterpart [39] and even greater than Carnot’s efficiency [40].
These striking phenomena were only in apparent contraction with the second law of thermo-
dynamics and led to evolutions of the expression of the second law in the quantum regime to
account for these new discovered possibilities [41, 42].

Aside from the deep insights these works provided, on both, quantum physics and the sec-
ond law, the typical thermodynamic figures of merit such as maximal power, work extracted
and efficiency were extended in the quantum regime.

Building on these first achievements, the community went further by implementing many
of these proposals at the edge of the quantum world such as a single colloïdal particle to build
a Stirling engine [43], a thermoelectric heat engine with ultracold atoms [44], a Carnot engine
with a polystyrene microsphere [45], a single-atom heat engine [46], a circuit quantum elec-
trodynamics (QED) absorption refrigerator [47] and a single-ion Otto engine [48]. The latest
experiments started using purely quantum properties such as squeezed reservoirs [49] or spin-
1/2 particles [50]. It allowed to build quantum absorption refrigerator [51] and other quantum
engines [52, 53, 54]. For a more detailed review of the past realizations regarding quantum
heat engines, see the very nice and recent work of Myers et al. [55].

One of the main new possibilities offered by quantum physics is to have pure states, i.e.,
states that are not probabilistic mixtures but which are neither in an energy eigenstate. Such
superposition states can be seen as new resources, which are costly to keep when the system is
in contact with a thermal bath [56] due to the detrimental effect of quantum irreversibility [57]
and, conversely, from which work can be extracted [58]. It is thanks to this new resource, that
quantum engines could outperform their classical counterparts [39]. Moreover, since interac-
tions can influence the different energy eigenstates, the energy distribution of a quantum system
can be used to quantify its entanglement to the surrounding environment [59].

In the quantum world, baths themselves are not necessarily thermal. They still interact in
an uncontrolled manner with quantum systems and therefore lead to stochastic terms in their
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reduced evolutions but their states can be squeezed or with population inversion all of which
can also be considered as new resources.

1.2.2 Quantum measurement

We have seen that coherences and entanglement can be used as tools to unlock new possi-
bilities for quantum engines. Measurements performed on quantum objects, a.k.a., quantum
measurements, can also unveil purely quantum effects.

The goal of measurements is usually simply to update our knowledge about a system’s
property. As we have seen in section 1.1.2, information already comes with thermodynamic
consequences as it allows, for instance, to extract useful work at the cost of resetting thememory
state. This is also the case when manipulating quantum systems and quantum engines which
are making use of the information and are usually called quantum information engines.

However, for this information to be accessible, measurements outcomes must be encoded
on macroscopic systems. The interaction chain from the quantum system to this macroscopic
meter usually causes the final state of the quantum system to be different from its initial one.
This evolution is usually not modelled and measurements are considered as instantaneous pro-
cesses. From the early days of quantum mechanics, quantum measurements indeed need a
specific treatement: "The Measurement Postulate". This postulate states that:

The result of measuring a physical quantity must be one of the eigenvalues of the
corresponding observable.

to which we should add Born’s rule, telling us that the probability to obtain a specific value akfor the observable associated to the operator A = ∑

k ak ||vk⟩ ⟨vk|| is Tr(�SA), with �S the state
of the system before the measurement. Right after the measurement, this state becomes |

|

vk⟩.These rules describe the effect of ideal and instantaneous projective measurements. The term
"projective" refering to the projection of the system state to one of the observable eigenstates.
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Box 1.1: Projective and generalized measurements

Projective measurements
The projective measure or projection-valued measure (PVM) of a system of interest S of
initial state �S , given the set of positive semi-definite, Hermitian, orthogonal projection
operators Πi = |i⟩ ⟨i|, with∑iΠi = 1, leads to the outcome k and the final state Πk�SΠk

Tr(Πk�S )with probability Tr(�SΠk). If the measurement outcome is not read, the final state reads:
∑

kΠk�SΠk.
Generalized measurements or POVM
If we now add to the model an ancillary system A and let it interact with S before pro-
jectively measuring this ancillary system, the effect this will have on S can be more gen-
eral than that of a PVM. Such type of measurement is called positive-operator-valued-
measure (POVM). From Naimark’s dilation theorem, they are a generalisation of PVM
since any POVM can be seen as a PVM acting on a larger space. Given the initial state
of the ancilla �A = ∑

j pj |j⟩ ⟨j|, the unitary operator U and the measurement projective
operators {Πi = Πei ⊗ 1S}i; the evolution will be the following:
�S ⊗ �A → U�S ⊗ �AU

† →
∑

i
ΠiU�S ⊗ �AU

†Πi ←←←←←←←←←←←←→TrA

∑

i,j
pj ⟨i|U |j⟩ �S ⟨j|U

†
|i⟩ .

(1.5)
Defining the Kraus operatorsMij =

√

pj ⟨i|U |j⟩, one retrieves similar output states as
with PVM, i.e., Mk�SM

†
k

Tr(Mk�SM
†
k )
for a read measurement of output k and ∑

kMk�SM
†
k for a

unread measurement . Of course, in order for the probabilities to make sense, and thus
to sum to one, one should have∑ijM

†
ijMij = 1.

Importantly, we call "readmeasurement", or "selectivemeasurement", measurementswhose
result is read which implies that information acquired is taken into account to update the post
measurement state. "Unread" or "unselective" measurements however assume that the mea-
surement outcome is not read and the final state therefore is in the mixed state corresponding
to each of the possible measurement outcomes with their respective probabilities. The state re-
sulting from an unread measurement therefore correponds to the average state of the read ones.
A more general class of measurements, generalised measurements, include cases in which the
system to measure first interacts with an ancillary system which is itself projectively measured
(see Box 1.1 for more information about these measurements).

When the measurement output state is not the same as its input state, we speak of measure-
ment backaction. In classical physics, an initially mixed state is also modified after a measure-
ment because our state of knowledge is updated. However, in quantum physics, even without
knowing the measurement outcome, the state of the system can still be affected which is a
crucial difference. For instance, an initially pure state, i.e., a perfectly known state, will not
necessarily end up in the same state after the measurement. Even more surprising, measuring
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such a state can increase its Von Neumann entropy, if the outcome of the measurement is not
read.

Quantum measurements are already a vast field with many pratical applications such as
sensing, quantum error correction, measurement based quantum computing, feedback con-
trolled quantum trajectories, quantum parameter estimation, to cite only a few. For more details
about these possibilities, I invite the reader to dive into the book "Quantum measurement and
control" [60].

In particular, quantummeasurements are known for their ability to destroy coherences in the
measurement basis. Coherences which, as we have seen before, can affect energy exchanges.
This phenomenon could be viewed as a drawback since it sets a fundamental limitation on
our capability to know the state of a quantum system [61]. However, as astonishing as it is,
this induced backaction can also serve as a fuelling mechanism for quantum measurement en-
gines [62].

1.2.3 Quantum heat: definition, nature and example

We know that measuring a quantum system can affect its state, except in the particular case
in which the system is initially in one of the measurement eigenstates. As a result of this
backaction, the energy of the system measured can also change.

Definition and example

Take for instance a qubit of Hamiltonian HS = ℏ!
2
�z initially in the state �St0 = |

|

 0⟩ ⟨ 0||
with |

|

|

 S
t0

⟩

= ae |e⟩ + ag |g⟩ and {ae, ag} ∈ ℂ2 . At the beginning, its average energy is thus
ℏ!
2
(|ae|2 − |ag|2). However, if we measure this qubit in the {|e⟩ , |g⟩} basis, we will obtain,

with probability |ae|2, the state |e⟩ and thus the qubit will gain ℏ!
2
(1 − |ae|2 + |ag|2) of energy

or, with probability |ag|2, the state |g⟩ and thus the qubit will lose ℏ!
2
(1 + |ae|2 − |ag|2) ofenergy. Already at this stage it might be surprising to notice that upon reading the result of

the measurement, one can change the energy of the system. Due to the stochastic nature of this
energy change, reminiscent of the one induced by a thermal bath, it was named "Quantum heat"
by Elouard et al. [63]. However, if we prepare the same initial state and repeat this procedure,
the gain and loss will compensate each other and no energy will be given to the system on
average. More generally, any projective measurement of operators Πi commuting with the
system’s Hamiltonian will lead to a zero average quantum heat. Indeed, the average energy
would be Tr(HS

∑

iΠi�St0Πi) = Tr(HS�St0), using the commutative property of the trace and the
fact that Π2i = Πi. Therefore, measuring in a basis that commutes with a system’s Hamiltonian
cannot affects its energy on average .

However, if the measuring basis does not commute with the Hamiltonian, the system can
gain or lose energy even on average. Given an system of HamiltonianHS and of pre and post
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measurement state �St0 and �Stm , respectively; the average quantum heat is defined as:

Qℎ = ⟨HS
⟩�Stm

− ⟨HS
⟩�St0

= Tr
(

HS
∑

i
Πi�St0Πi

)

− Tr(HS�St0) (1.6)

where {Πi}i is the set of measurement operators.
For instance, coming back to our example, if the qubit starts in the ground state |g⟩, i.e.,

if ae = 0, and that we projectively measure it in the {|+⟩ , |−⟩} basis, the unread measure-
ment output of this operation would be |−⟩⟨−|+|+⟩|+⟩

2
thus raising the average energy by ℏ!∕2 as

depicted in Figure. 1.4.

|𝑔⟩

𝐻 =
ℏ𝜔
2
𝜎!

ℳ

𝜎! basis

ℏ"
#

of energy given to the 
qubit on average

Figure 1.4: Exemple of a projectivemeasurement induced energy exchange. Here bymeasuring
the operator �x we can prodive ℏ!∕2 of energy on average to the system given that it was
initially in the ground state (black arrow) of its Hamiltonian ℏ!

2
�z. The final state of the unreadmeasurement is represented by the black sphere and the ones conditionned on obtaining a value

+1 (in red) or −1 (in green) for the average of �x are arrows on the equatorial plane.
In general, measuring a system in a basis that does not commute with its bare Hamiltonian

will change its average energy, except if the initial state is diagonal in the measurement basis. In
other words, quantum heat is due to coherences of the initial system’ state in the measurement
basis and hence is a purely quantum phenomena.

Nature of the quantum Heat

The nature of the energy change between quantum systems is not settled in the quantum ther-
modynamic community. Inheriting classical views, one could want to use Clausius’s second
principle and Kelvin’s no-go theorem in this regard. However, this implies defining effective
temperatures to quantum system which we know can be strongly out of equilibrium and exhibit
negative temperature among other such artifacts. These concerns have motivated the use of a
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new, more agnostic fully quantum definitions to characterize the energy exchange within iso-
lated (or closed) bipartite systems [64, 65]. In this spirit, we introduce a general framework to
treat the energetics of bipartite quantum systems (See Chapter. 3.3.4).

Regarding the energy exchanged due to quantum measurements: quantum heat, a similar
confusion reigns in the community. As an intrinsically irreversible process, leading to stochas-
tic jumps, it can be classified as a new type of heat. But one can also set aside this denomination
for thermal baths only and therefore identify the energy counterpart of backaction as work or
introduce, there also, the notion of effective temperature (usually defined from the energy and
entropy of the system).

Focusing on the first, fully quantum, step of the measurement, which can be shown to en-
compass all energy exchanges under reasonable constraints, we address this question of the
nature of the quantum heat using our bipartite quantum energetics framework.

1.2.4 Quantum measurement engines

Understanding quantum measurements from a thermodynamic standpoint is one of the grand
challenges of quantum thermodynamics, with strong fundamental and practical implications in
various fields ranging from quantum foundations to quantum computing. Quantum measure-
ment has a double status. On one hand, it is the process that allows the extraction of information
from a quantum system [66]. In the spirit of classical information thermodynamics, its “work
cost" was thus quantitatively analysed as the energetic toll to create correlations between the
system and a memory [67, 68, 69]. On the other, quantum measurements also leads to wave-
function collapse. Measurements can thus behave as a source of entropy and energy, playing a
role similar to a bath.

Even if it was not analyzed as such at the time, the first proposal for a quantummeasurement
engine using measurement backaction can be found in the work of Kim et al. [70] if the wall
insertion, necessary to split in two a box containing a single quantum particle, is interpreted
as being part of the measuring procedure. Since then, such quantum measurement engines
were extended to the measurement of internal degrees of freedom of the quantum particle in
combination with a feedback protocol [71, 72], without feedback on a spin-1∕2 interacting
with a single bath and undergoing adiabatic transformations [73, 74], with a bipartite working
substance interacting between two thermal baths as a refrigerator [75] or with a single bath
in a heat engine regime [76]. The realization that measurements can act as an energy source
is crucial because, it provides a new, purely quantum, resource to fuel quantum engines not
only due to the information they provide but also by the effect they directly have on the mea-
sured systems [77]. This changes our viewpoint on quantum measurements from mere tools to
new types of processes. And the possibilities offered by quantum measurement are numerous,
ranging from weak, to strong projective measurements, destructive or indirect ones, and with
all possible measurement basis. Moreover, quantum measurement engine prove to be excellent
platforms to study and characterize quantum measurements, which are themselves at the heart
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of the many discrepancies between interpretations of quantum physics [78].

A simple an pedagogical example, first introduced by Elouard et al. [71], is the following.
Consider a qubit with Hamiltonian H0 = ℏ! |e⟩ ⟨e|, interacting with a field modelled classi-
cally via iℏΩ

2
(|0⟩ ⟨1| ei!ot − |1⟩ ⟨0| e−i!ot) with Ω the Rabi frequency. If the qubit starts initially

in the |+⟩ state, its states will rotate under the influence of the drive reaching the state |g⟩ after
a duration �∕(2Ω). At this stage, the qubit would thus have lost ℏ!∕2 of energy compared to
its initial state. Of course, this energy lost to the driving field will would be retrieved if we wait
again for the same amount of time. However, if we projectively measure the state of the qubit
in the {|+⟩ , |−⟩} basis much before it reached |g⟩ for the first time, i.e., when the qubit is in
the state cos(�) |+⟩ − sin(�) |−⟩ with � ≪ �∕2, the qubit would already have given the energy
E+ = ℏ! cos(�) sin(�) to the field and there is a probability P+ = cos2(�) finding the qubit
back in the |+⟩ state in which case this work can be extracted over again. Of course, there is
also a probability P− = sin2(�) of finding the qubit to the state |−⟩. In this case, one can freelyrotate it back to |+⟩ and extract energy again. This feedback operation however, requires the
knowledge of the measurement result and the cost of the memory erasure should also be taken
into account. Nevertheless, if the angle � is small enough, i.e., if the duration of the evolution
before the measurement is very short, one can provide energy to the field without any feedback
operation. Indeed, without the knowledge of the measurement outcome, upon interaction with
the field for the same short duration after the measurement, this field would gain the energy
P+E+ − P−E+ = ℏ!(cos2(�) − sin2(�)) cos(�) sin(�) ≈ ℏ!� > 0. Making use of the quan-
tum Zeno effect the state stabilization would ensure to find the qubit in the |+⟩ state with near
certainty. However, one would still need feeback operations to operate this engine in a steady
state regime since, after many repetition of the evolution and unread measurements steps, the
qubit will switch to the |−⟩ state from which it will keep on loosing energy on average until
the, equally unlikely event, of switching back to the measurement output state |+⟩ occurs.

While it is possible to combine the backaction and information resources provided by quan-
tum measurement, it is also possible to involve thermal baths. Buffoni et al. proposed such a
measurement engine where two thermal bath are involved to build an engine but also a refrig-
erator [75].

1.2.5 Origin of the quantum heat

Of course, if measurements can be used to provide energy to a working substance in order to
fuel an engine, it means that they can also have a cost.We already know, thanks to the pionner-
ing works of Landauer, Bennett and Szilard [79, 27, 26], that resetting the state of any system
acting as a memory can be costly. And, since what is meant by measurement is the act of im-
printing some information about a given system’s state onto another physical system’s state,
this erasure operation is always necessary in order to restore that other physical system’s state
to its original one. In the case of a degenerate memory, i.e., a memory on which information is
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encode on states which have the same bare average energy, this erasure cost will be purely due
to the change of entropy of the meter system acting as a memory. However, in pratice, the meter
system can be of any kind, such as a cavity field, and thus can have non-degenerated energy
levels. In this more general case, pioneering works have found a bound on this resetting cost.
Combined to the cost of making the measurement, i.e., creating correlations and projectively
measuring the meter system, it was shown that the total measurement cost is proportional to the
QC-mutual information between the meter and the system [80, 68]. This means that it is possi-
ble to perform a measurement at no energetic cost, but only if no information was extracted in
the process: we only pay for what we gain. The nature of this cost is one of the central questions
of this thesis. Indeed, the energy of quantum measurement can be fully extracted in Maxwell
demon type experiments and results from the interaction with a classical object pointing toward
a work interpretation, however they result in stochastic jumps and lead to entropy change of the
measured system, properties usually associated with heat exchanges.

We point out that it was recently argued that unbiased, faithful and non-invasive measure-
ments would require infinite resources [81]. This claim is based on the third law of thermo-
dynamics which prevents us from rigourously preparing pure states. It can also be understood
as coming from the fact that projective measurements would need infinite resources to be per-
formed. This important realization should however not be confused with an energetic cost.
Indeed, whilst it is true that obtaining a pure state from a projective measurement would re-
quire infinite resources: via the interactionwith an infinitely largemeter or ameter in an initially
pure state; this resource cannot be considered as a cost since it is not used nor consummed, i.e.,
most of it remains in the final state and does not have to be provided to reset the state of the
meter.

This is however a hint regarding the perculiarity of quantum measurements. The measure-
ment postulates of quantum physics, which tell us which output states and outcomes result from
a measurement, assume idealistic projective measurements whose dynamics is not described
within the quantum formalism. The definite outcome of projective measurements is only jus-
tified by a quantum to classical cut, i.e., by the interaction of quantum systems with a classical
system which forces a specific result to emerge since it cannot be in a state of superposition.
This gap in our understanding of quantum measurements, and therefore of the quantum to clas-
sical interface, has been fascinating physicists and philosophers for more than thirty years. It
is at the heart of the many interpretations of quantum physics to which Box. 1.2 is dedicated.
Currently, we understand that from the interaction with the environment, some "pointer states"
are naturally selected which are the ones that are stable under these interactions. This "einse-
lection" consitutes the natural basis upon which the information about the system is encoded
on the meter system. This is Zurek’s famous Quantum Darwinism [82, 83]. However, this does
not explain by which dynamical evolution do the quantum states always seem to pick one of
them in the end, i.e., the problem of definite outcome. The collapse of the wavefunction to a
specific pointer state is still puzzling us [84].
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Box 1.2: Interpretations of quantum physics

There are many different ways to view and understand the measurement problem and
the main current interpretations of quantum physics provide different insights on it [85].
These interpretations include: Bohmian mechanics [86], Many world and Everttian in-
terpretations, an ontologic interpretation based on the notions of Contextual Objectivity
(CSM) [87] and Relational quantum mechanics [88].
A list of the requirements imposed on any potential solution was proposed recently [89].
This puzzle goes deep into the question of the wavefunction’s nature; does it describe
the physical state of an object or just the knowledge a certain observer has of it? Some
physicists do not think that there is a measurement problem and even argue that "there
is not real state of a physical system" [90].
On the experimental side, the manipulation of always larger objects with quantum prop-
erties, the description of many of which can be found in the last section of [91], offers
great opportunities towards testing some of the proposed measurement dynamics such
as those given by Ghirardi-Rimini-Weber (GRW) and Continuous Spontaneous Local-
ization (CLS) stochastic collapse theories.

Since the external measuring apparatus is not included in the modelling, this could be a
dead end for our quest towards the origin of the quantum heat. Indeed, even when introducing
a quantum meter, at some point, we always invoke a classical device to projectively measure
its state. This separation between the quantum and classical modelling is usually refered to as
the "Heisenberg cut". The encounter of this frontier by a quantum system is associated with an
intantaneous and stochastic "collapse" of its wavefunction.

Pre-measurement and classical measurement

Hopefully, at lot can already be said about quantum thermodynamics without collapse, i.e.,
about the thermodynamics exchanges between quantum systems at the average level. In this
spirit of we can decompose a quantum measurement into two steps:

• A pre-measurement step in which the measurement system is interacting with a quantum
meter. By choosing the interaction operator appropriately correlations are getting built
in the desired basis between the system and the meter. The resulting decoherence of the
reduced state of the system consitutes the average backaction effect.

• Once the quantum meter and the system are correlated, one should projectively measure
the quantum meter itself with a larger, classical, meter. This operation will thus project
the meter’ state and thus the system’ state correspondingly. The quantum to classical cut
is necessary only for this step.
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Figure 1.5: Von Neumann measurement chain: Case of a photodetector. Top pannel: a light
field colliding with photodectector. Bottom pannel: Representation of the measurement chain.
The dark double arrow symbolizes the interaction taking place between the system S and the
first part of the meter: M1, as well as with its neighbouring partM2 and last partM3

As a result of this decomposition, a measurement M is fully characterised by the unitary
evolution corresponding to the pre-measurement U , the Hilbert space of the meter systemHM,
the initial state of meter ||

|

 M
0

⟩ and the pointer observable ZM used to projectively measure it
in the end. The last step is considered instantaneous due to the interaction with the classical
world but the decoherence as well as the storage of information about the system’ state in the
meter is already encompassed in the first, quantum, step. One could, of course, apply the same
reasonning to the classical measurement of the meter system, invoking a second meter system
and so on and so forth. This would allow to shift always further the quantum to classical
limit, i.e., Heisenberg limit. This is exactly the idea behing Von Neumann’s measurement
chain pictured in Fig. 1.5. While this opens a wide range of possibilities, one should not forget
that it does not remove the need of a final classical measurement at the end to select a single
measurement result.

As we will show in Section. 4.1.3, under some reasonable conditions, it is possible to wit-
ness all the energy exchanges in the first, pre-measurement, step. Our approach therefore moves
from the standart paradigm of projective measurements. As depicted in Figure 1.6, in order
to analyse the energy exchanges associated to a quantum measurement, we study of the pre-
measurement process, first governed by a time dependent Hamiltonian (Chapter. 3 and 4) and
then in a fully autonomous manner (Chapter 4).
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System

ℳ
System Meter System Meter

Measurement with collapse Non autonomous pre-measurement Autonomous pre-measurement

Figure 1.6: Quantum Measurement: Depiction of the measurement procedure as an interac-
tion with a classical meter causing an instantaneous collapse of the wavefunction (left). The
pre-measurement part of this measurement can be analyzed in a non-autonomous way with a
classical degree of freedom used to generate a time dependent Hamiltonian (middle). A fully
quantum modelling of the pre-measurement process is possible with an interaction strength be-
tween the system and the quantum meter that is position dependent. The green arrow represent
the motion of the meter which could equivalent be the one of the measured system.

Studying the dynamic of closed quantum systems might seem trivial and easy but, to un-
derstand the fueling mechanism of measurement powered engines, one should remember that
the measured operator should not commute with the Hamiltonian of the system. This means
that the system state will evolve while it is measured. As generalized by the Wigner-Araki-
Yanase (WAY) theorem and detailed in Box 1.3, backaction and ideal measurement are thus
incompatible, even starting with pure initial states. By studying the pre-measurement we will
characterize the nature of the associated energy fluxes and their relation to the quality of the
measurement.
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Box 1.3: WAY theorem

An ideal quantum measurement is defined by the following properties [81]:
• accurate, which means that, for all eigenstates of the measured observable OS ,
|

|

eSi
⟩, and for the initial state of the meter ||

|

 M
0

⟩ we have |
|

eSi
⟩

⊗ |

|

|

 M
0

⟩ U
←←←←←←←→ |

|

eSi
⟩

⊗
|

|

zMi
⟩ upon the unitarity evolution U , given that {|

|

zMi
⟩

}i is the eigenbasis of themeasurement operator ZM ,
• sharp, i.e., projective and thus leading to a single value,
• repeatable meaning that we would obtain the same outcome by performing imme-

diatly the same measurement again.
A measurement verifying all these ideal properties is called a Von Neumann-Lüders’
measurement. As first noticed by Wigner in 1954 [92, 93], such an ideal measurement
cannot always be performed. It is the case if the system observable to be measured, OS ,does not commute with a conserved quantityN , which acts on the system and/or meter.
Indeed, when the unitary operator U , governing the state evolution of the system and
meter, is such that [N,U ] = 0 and that [OS , N] ≠ 0, only an approximatedmeasurement
of OS can be obtained with an error decreasing as the meter size increases [93, 61, 94].
This theorem is still valid if the repeatable condition is replaced by the Yanase condition
which states that the matrix ZM made of the pointer states of the meter |

|

Mi⟩ with
i ∈ [0, n], n being the number of such pointer states, must commute with the conserved
quantity: [ZM , N] = 0. This condition ensures that the no-go theorem about the
measurement of the system’s observable does not propagate to the measurement of the
meter pointer observable (see [95, 96] for an historical aspects and extensions).
To better understand this theorem, consider an observable OS which does not commute
with the Hamiltonian associated to the unitary evolution U . The measurement of
this observable cannot be accurate since its average value will evolve during the
pre-measurement step such that Tr(OS�S0 ) ≠ Tr(OSU †�S0U ), where �S0 is the initial
state of the system.
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1.3 Outline of the thesis
Quantum measurements are at the heart of my personal contribution towards elucidating these
problems, and, therefore, of this whole manuscript. Firstly, we proposed a new quantum mea-
surement engine, the first such engine to work with a bipartite system and to make use of
entanglement between its parts. This theoretical platform turned out to be ideal to investigate
the energetic counterpart of measurement backaction. By modelling the pre-measurement step
we gained deeper insights into the source of the extracted quantum heat, i.e., the average energy
change of the system due to the measurement.

Pushing this analysis further, we imagine, a new thought experiment in which a flying
qubit is sent to interact dispersively with the field within a cavity. Their interaction is chosen
such that the field effectively measures the qubit state thereby implementing an autonomous
measurement. In this framework, we investigate the energy and information exchange between
the kinetic degree of freedom, the field and the qubit. The quantum heat can be non-zero on
average if the measurement occurs in a basis that does not commute with the bare Hamiltonian
of the qubit. This energy is shown to come from the kinetic degree of freedom, thereby acting
as a work source to fuel the measuring process.

We then change perspective and study the resources needed to perform a goodmeasurement.
More specifically, in a circuit QED setup we witness the backaction and mutual information
obtained when measuring a qubit embedded in a cavity using different input field states. The
field acts as a meter and we show that thermal and coherent statistics can lead to similar per-
formance of the measurement.
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Energetics of a bipartite quantum system
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AS DISCUSSED in the introduction, quantum coherence effects have lead to a refinement of
our understanding of the second law of thermodynamics and the way to apply it to quan-

tum systems. The distinction, made by the first law, between heat and work energy exchanges
also has to be interpreted in quantum terms. In this section, I introduce a formalism to address
this need in the case of a bipartite closed quantum system and motivate it via some examples.

2.1 Classical heritage
In its most complete formulation, classical thermodynamics is governed by five fundamental
laws. The zeroth one states that thermal equilibrium is a transitive property. The first and
second laws, respectively, that the total energy of an isolated system is a conserved quantity
and that the entropy of such a system can only increase (or stay constant) with time. The third
law sets the minimum value of thermodynamic entropy to that of a pure state at a absolute zero
temperature (in Kelvin) which is taken to be zero. And last but not least, there is the fourth law,
i.e., Onsager’s relations, that governs the non-equilibrium flow and force reciprocities.

Coming back to the first law, as Clausius first noticed, the change in energy of a closed
system ΔU can be split into a heat Q and a work W contribution (here, unlike Clausius, we
choose to count them both as positive when entering the system) such that:

ΔU = Q +W , (2.1)
where heat is the part of energy exchange that is associated with a change of entropy of the
system of interest whilst work involves no such changes. In classical physics, the energy ex-
changes with/between bath(s) is counted as heat whereas work is associated to well-controlled

35
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and reversible energy flows such as the one induced by a conservative force. Of course, average
energy conservation remains valid in the quantum realm but the splitting between heat and work
becomes far from trivial. If we take a quantum system S of initial state �S interacting with an
environment E of state �E via a global unitary evolution U , by tracing over the environment,
the effect this evolution has on the quantum system writes:

�S → TrE(U�S ⊗ �EU
†). (2.2)

Some of our classical intuitions can hence be retrieved. For instance, when the environment
is a thermal bath, the energy change of the system comes in the form of heat [97, 98, 99].
Conversely, when the unitary evolution only acts on the system: U = US ⊗ 1E , the entropy ofthe system remains unchanged and it can only receive work [22].

Outside of these two consensual cases, depicted in the first panel of Fig. 2.1, the nature
of the energy exchange between two quantum systems is still not settle and consensual in the
community.

𝒮

𝒮

𝒮

a)

𝒮

Reversible dynamics: 
Only work exchanged 

b)

c)

d)

ℰ → 𝜌!" ℰ

ℰ
𝐻"(𝑡)

𝐻"(𝑡) 𝐻"(𝑡)

Only Heat exchanged between 𝒮 and ℰ

𝐻"

Bipartite Quantum Energetics (BQE)

Generalized BQE

Quantum Energetics: Classic-like typical cases Bipartite Quantum Energetics

Figure 2.1: Typical classical-like situations in which a quantum system interacts with a classical
environment are depicted in the left box. a) When a quantum system is closed that its Hamilto-
nian is monitored by external classical drive its evolution is unitary and it only exchanges work
with its environment. b)When this system is in contact with a bath the energy exchanged with
it is only in the form of heat. The bipartite quantum energetics formalism allows to characterize
the energy exchange between two quantum systems, when the total Hamiltonian is time inde-
pendent c) or time-dependent d)
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2.2 A difficult quantum transposition

One reason behind this ongoing puzzle is that thermal baths are not the only environments ca-
pable of changing a system’s entropy. For instance an electron spin interacting with a collection
of nuclear spins can sees its entropy increase while undergoing a rotation of its quantization
axis, therefore this environment acts as a source of heat and work at the same time. Similarily,
a qubit resonantly interacting with a small coherent field can see its state rotate but the entan-
glement with the field state implies a increase of the qubit entropy as well. As a result, heat and
work sources are often coming together when dealing with quantum systems and there is still no
consensus about a unified way to distingush them especially when dealing both with classical
and quantum systems. However, it is still important to sort them out because the nature of the
energy exchange determines their reversibility and thus quality. Inheriting from the classical
world the understanding that heat is a degraded form of energy, one can argue that it is not as
costly to ask for a heat source than for a work source, which is a key point of view of quantum
resource theory [100]. A mainstream approach to unravel these quantities is to associate the
heat to a change of the system’ state and work flux to a change of the Hamiltonian [101]. Work
would therefore be, for instance, the energy given to a systemwhen its energy levels are moving
while their population, and with them the system’s entropy, stays constant.

This definition is appreciabily simple and intuitive. For instance, when considering a system
only evolving under a time changing Hamiltonian, it implies that the system only exchanges
work with its environment. Likewise, a quantum system interacting with a weakly coupled
thermal bath and with a time-independent Hamiltonian is found to only exchange heat with
its environment. However, the Hamiltonian one considers is sometimes ambiguous. Take for
instance two qubits A and B interacting via a time-independent coupling term V AB. If we try
to quantify the work and heat received by one qubit, should we include this coupling in the
qubit Hamiltonian or not? And, if all terms in the Hamiltonian are time-independent, no work
should be transfered between the qubits since, no matter if we include the coupling term in
H or not, its derivative will always be zero and hence the work received by this subsystem.
However, a coupling such as V AB = V A ⊗ V B where V A commutes with HA but V B not
commuting with HB would be expected to imply some work exchange with qubit A since its
energy could change but its entropy will not. Thus, if we want to characterize the nature of
the energy exchange between two quantum systems, one needs to complete these initial ideas.
Even if many different definitions are known [101, 64, 102, 103, 104], there is not yet a general
agreement on a mathematical definition that would apply to all quantum systems [105]. This
question is even more important that it could have a crucial impact on the fundamental bounds
to the energy consumption of quantum information processing which is becoming a vivid topic
of research [106]. As was recently shown, this energy expenditure could rapidly come out of
reach with the growth of quantum computers and whereas the work invested could possibly be
retrieved, the heat part can never be completely recovered [107].
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2.3 Bipartite quantum energetics (BQE)
We have been developping a general framework to answer these questions building on previous
ideas [64, 108]. In this manuscript, I use the following definitions to characterize the energy
exchanges with and within a fully quantum bipartite system that I will refer to as "Bipartite
quantum energetics": BQE.
If we consider a bipartite system made of two interacting subsystems A and B the state of this
full system can always be written as:

�AB(t) = �A(t)⊗ �B(t) + �AB(t), (2.3)
where �A(t) and �B(t) are the reduced state of A and B respectively and �AB(t) is called the
correlation matix, encoding all correlations between these subsystems and defined as �AB(t) =
�AB(t)−TrB(�AB(t))⊗TrA(�AB(t)). This bipartite system is closed and even thermally isolated
and evolves under its time-dependent Hamiltonian:

HAB(t) = HA(t) +HB(t) + V AB(t) (2.4)
with HA, HB the bare Hamiltonians of the subparts and V AB their interaction operator. The
chosen definitions of heat and work, are based on the realization that the reduced equation of
motion of subsystem A can be written as:

d
dt
�A = − i

ℏ
[HA, �A] − i

ℏ
TrB([V AB, �AB]) (2.5)

where the time dependence is kept implicit. By using Eq. (2.3), we obtain:
d
dt
�A = − i

ℏ
[HA + TrB(V AB�B), �A] − i

ℏ
TrB([V AB, �AB]) (2.6)

where we can already see that some part of the interaction term can contribute to the unitary
part of the dynamics of �A. In the following we will denote this effective interaction, which
is related to the Lamb shift, as VA = TrB(V AB�B). Importantly, we do not include it in the
definition of the internal energy of the subsystem A which simply writes:

UA(t) = TrA(HA�A). (2.7)
The time derivative of this energy can then be divided into an internal work flux d

dt
WA and a

heat flux d
dt
QAby inserting Eq. (2.6) into the derivative of Eq. (2.7). It results that:
d
dt

WA = −
i
ℏ
TrA([HA,VA]�A) = − i

ℏ
TrAB([HA, V AB]�A ⊗ �B) (2.8)

d
dt

QA = −
i
ℏ
TrA

(TrB
(

[V AB, �AB]
)

HA) = − i
ℏ
TrAB

(

[HA, V AB]�AB
)

. (2.9)
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where we used the fact that TrAB
(

HA[V AB, �AB]
)

= TrAB
(

[HA, V AB]�AB
) from the cyclic

property of the trace. With completely symetric definitions for the heat and work rates with
respect to the subsystem B, we can also split the change of energy of the subsystem B in work
and heat fluxes. In themost general case in which the bare HamiltonianHB(t) is time dependent
the change of energy of the subsystem B writes:

d
dt

UB =
d
dt

WB +
d
dt

QB +
d
dt

Wext
B (2.10)

where d
dt
Wext

B is the external work flux done on the subsystem B by an external operator and
defined as:

d
dt

Wext
B (t) = TrB

(

dHB

dt
�B(t)

)

. (2.11)
Notice here that we rather use the infinitesimal variation of heat and work, which we call fluxes,
than their integrated counterpart because work and heat are path-dependent quantities and thus
need the full state history in order to be computed.

With the addition of the external works, which are the work done by the external envi-
ronment due to the possible time-dependence of the bare Hamiltonian and interaction term,
we have all the contribution to the change of energy of the subsystems. However, given the
chosen definition of internal energy of Eq. (2.7), the total energy of the bipartite system is not
simply the addition of the internal energy of each subsystem. There is an additional energy
contribution which comes from the interaction between the two subsystems. This energy is
called interaction energy and it is defined as VAB = TrAB(V AB�AB(t)). Making use again of
the decomposition of Eq. (2.3), this term can also be split in a part due to the correlations V�

ABand a part which is not, V⊗
AB. Eventually we obtain the following first law for the total bipartite

system :
d
dt

UAB =
d
dt

UA +
d
dt

UB +
d
dt

VAB (2.12)
given that the total energy is UAB = TrAB(HAB�AB(t)). At this stage, it is very important to
notice the crucial difference between this interaction energy VAB which is a number and the
effective interaction operator VA, resp. VB, which acts on the subsystem A, resp. B. In this
manuscript, we will always use subscript for energetic quantities and other real values and
superscript for density matrix and operators.

Based on these definitions, which are agnostic regarding the nature of the quantum system
A and B, we find the generalized work, generalized heat, and external work balance equation:

0 = ẆA + ẆB + V̇
⊗
AB

0 = Q̇A + Q̇B + V̇
�
AB

0 = Ẇ ext
A + Ẇ ext

B + V̇ ext
AB (2.13)

as represented in Fig. 2.2
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Interestingly, we can already notice that two interacting qubits can, for instance, exchange
generalized heat by getting correlated. This feature is consistent with our classical intuitions,
since, from these correlations, the entropy of their reduced state can change.

Since discussions are still ongoing in the quantum thermodynamic community regarding
heat and work and the case in which it is legitimate to use these terminologies,we chose to call
the two different energy terms we defined: generalized heat and generalized work to avoid any
confusions. If, by simplicity, I use the terms heat and work in this thesis, it will always refer
to the BQE quantities defined in this chapter from now on. A summary of the definition given
above is provided in Fig. 2.2 where the external work done on the interaction energy is defined
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Figure 2.2: Bipartite quantum energetics (BQE) definitions. All time dependence are implicit
to keep the expression concise. All lines and columns sum verify the equation indicated by the
signs in between cells.

as:
d
dt

VextAB(t) = TrB
(

dV AB

dt
�AB(t)

)

. (2.14)

2.4 Examples

We now apply the definitions summerized in Fig. 2.2 to several typical examples. We consider
that at time t−0 , there is no energy exchanges of any king occuring and that at time 0 the full
system starts evolving underHAB (possibly time dependent). Therefore, if an energetic flux is
null at every time it implies that the corresponding integrated quantity is also null.
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2.4.1 Fully commuting interaction

When the bare HamiltonianHA andHB both commute with V AB, i.e.,:
[HA, V AB] = [HB, V AB] = 0, (2.15)

this implies that all internal work flux and heat flux are zero. This will be the case, for instance,
in the chapter 5 of this manuscript where a qubit is dispersively measured by a cavity field under
the full Hamiltonian ℏ!qb�z + ℏa†a + ℏ�2 �z ⊗ a†a.

The only possible energy changes will therefore happend at the frontier of the bipartite
system, if the Hamiltonian is time dependent. This energy can only be in the form of work,
since it does not affect the entropy of the global system nor of each subsystems. In this case,
the only non-zero instantenous flux are such that:

TrAB(ḢAB�AB) = TrA(ḢA�A) + TrB(ḢB�B) + TrAB(V̇ AB�AB), (2.16)
i.e.,

Ẇ ext
AB = Ẇ

ext
A + Ẇ ext

B + V̇ ext
AB . (2.17)

2.4.2 Conservation of the local energies

When the sum of the bare Hamiltonians HA +HB commute with HAB but not each of them
individually, i.e.,:

[HA +HB, V AB] = 0, (2.18)
as for resonant Jaynes Cummings interaction, the interaction energy remains constant and the
two subsystems can only exchange equal and opposite heat and work. We therefore have:

Ẇ A = −Ẇ B and Q̇A = −Q̇B. (2.19)
In the next chapter, we consider a two qubit system. If we assumed the bare frequencies of
these qubits to be equal, we would be in this situation.

2.4.3 Partially commuting interaction

When only one of the bare Hamiltonians, HB for instance, does not commute with V AB and
that both bare Hamiltonians are taken time independent, i.e.,:

[HA, V AB(t)] = 0 and [HB, V AB(t)] ≠ 0. (2.20)



42 CHAPTER 2: Energetics of a bipartite quantum system

It is for instance the case when we use a system B to measure an operator that commutes
with the bare Hamiltonian of a system A. The system A will not receive any heat and work and
therefore its energy stays constant. No quantum heat will be involved in this case but the meter,
i.e., the system B, can exchange heat and work with the interaction energy.

In the opposite case, when a system is measured in a basis that does not commute with
its bare Hamiltonian but which does commute with the bare Hamiltonian of the meter, the
information is therefore encoded in the relative phases of the meter state which should thus
not start in an energy eigenstate. In this situation quantum heat can arise and the energy of the
meter system is not changing. At the end of this interaction, i.e., when V AB(t) = 0, projectively
measuring the meter state will not induce any generalized heat flux nor work flux. Therefore,
the information will be extracted from the quantum meter without affecting neither the total
average energy of AB nor the individual ones. This case will therefore be of special interest in
this manuscript.

Exploiting this useful feature, we will now focus on the specific exemple of a two qubit
system measured by a third meter qubit to characterize the involved quantum heat. Before
moving to our fourth chapter in which the measurement process is made autonomous, we will
generalize our conclusions to a subset of partially commuting interaction of the type V AB =
V A(t)⊗ V B(t).
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QUANTUM MEASUREMENT ENGINES are ideal plateforms to study the energetics of quantum
measurements [78]. In this chapter, we focus on and extend the pre-measurement analysis

of such an engine that we proposed recently [109].
At the average level, focusing on the pre-measurement step is enough to access the energy

exchanges. During this step, a qubit quantum meter M is introduced and the interaction is
chosen such that it will become correlated to the system S. Since the classical projective mea-
surement of this degenerate meter will not affect the reduced state of the system nor the one of
the meter on average, no more energy exchanges will be missing in our description. Building
on this convenient fact, we can now ask ourselves the following questions:

• When a measurement is giving (or receiving) energy to a quantum system on average,
where does this energy comes from (or go to)?

• Should this energy change of the system be considered as heat or work?
• How much energy can be extracted from imperfect measurements ?

A naive answer to the first question would be that: it is the meter that provides this missing
energy. But what if the quantum meter only has degenerate energy levels ? Then it is clear that
its energy cannot change and the question becomes more vivid.
Regarding the second one, since the term "quantum heat" was coined [63] to refer to such
energy change it would be natural to expect it to come in the form of heat. However, when
thinking about Zeno measurement, all the energy seems to be given in the form of work since
for short enough time intervals between two measurements the effect is to compensate for the
rotation induced by a classical drive for instance.
To answer these questions, we will first focus on the working substance of a two-qubits mea-
surement engine we have been proposing and then extend our conclusion to a more general
case. More information and details about the engine itself and one of its possible generalisa-
tion are given in the Appendix. 3.5 for interested readers but are not necessary to our main
discussion.

3.1 Two-qubit system
We consider a system made of two qubits A and B of respective transition frequencies !A and
!B whose evolution is governed by the Hamiltonian

H2qb = ℏ!A�
†
A�A + ℏ!B�

†
B�B

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Hloc

+ℏ
g(t)
2
(�†A�B + �

†
B�A)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
V

, (3.1)

where we have introduced the lowering operator �i = |

|

0i⟩ ⟨1i|| for the qubit i ∈ {A,B}. The
first term ofH2qb is the free Hamiltonian of the qubits. It thus features “local" one-body terms
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that we shall denote asHloc. The second term, which we denote by V , couples the qubits, giving
rise to entangled states. The coupling channel can be switched on and off, which is modelled by
the time-dependent coupling strength g(t). Without loss of generality, we consider a positive
detuning � = !B−!A and for simplicity, we denote the product states |

|

xA⟩⊗|

|

yB⟩ as |xy⟩, where
x, y ∈ {0, 1}. Importantly, the two-qubit system is closed except during the measurement part.

It is interesting to notice that any evolution under this Hamiltonian will conserve both the
total energy and the total number of excitations. As the initial state of the qubits is |10⟩, i.e., a
state with one excitation in qubit A, we can thus focus our study in the subspace spanned by the
vectors |10⟩ , |01⟩. This property allows us to picture the qubits dynamics in the Bloch sphere
representation in Fig. 3.10(a). The eigenvectors ofH2qb and of the total number of excitations
operator �†A�A + �†B�B are |

|

+�⟩ and ||−�⟩ with:
|

|

+�⟩ = sin(�∕2) |10⟩ + cos(�∕2) |01⟩ (3.2)
|

|

−�⟩ = cos(�∕2) |10⟩ − sin(�∕2) |01⟩ ,

where the angle � is given by tan(�) = g∕�. These states’ respective energies are ℏ(!A +
!B)∕2 ± ℏΩ∕2, where Ω =

√

g2 + �2 is the generalized Rabi frequency associated with the
coupling between the qubits.

We can then directly derive the evolution of the state of the system at time t after its prepa-
ration in the initial state |10⟩, to be:

| (t)⟩ = (c2�e
iΩt∕2 + s2�e

−iΩt∕2) |10⟩ − c�s�(eiΩt∕2 − e−iΩt∕2) |01⟩ , (3.3)
where c� = cos(�∕2), s� = sin(�∕2) and we neglected the very fast global oscillating phase
e
−i(!A+!B )t

2 .

3.2 Work value of information
For now on we consider the measurement of second qubit in the basis {|0⟩ , |1⟩} when the
two-qubit state is given by Eq. 3.3 at t0 = �∕Ω. In this subsection, the measurement will be
considered instantaneous, an assumption that we will relax in the following discussion.

It should now be clear that quantum measurements can provide energy via two comple-
mentary features: on the one hand their ability to directly affect the average energy of a system
via the backaction, and, on the other hand, their capability to extract information, that can be
further used to convert the energy input into work. Before focusing on the backaction energy
exchange, we analyze here the informational resource as quantified by the mutual information.
In the case of a measurement, the mutual information Imeas between the system and the memory
used in the feedback loop writes:

Imeas = SS + SM − SSM , (3.4)
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Figure 3.1: Measurement energy vs information as fuel. (a), (b) Energy Emeas (a) and entropy
Smeas inputs as a function of the detuning �, for various coupling strengths g. (c) Work extrac-
tion ratio � = W ∕Emeas (color scale) as a function of �∕g and consumed mutual information
|ΔI(S ∶ M)|. The black region corresponds to � = 0. d) Yield of information to work con-
version T meas as a function of g for various �.

where SSM is the entropy of the system SM and memoryM . The average energy Emeas input
by the measurement channel is

Emeas = ⟨V ⟩(t+0 ) − ⟨V ⟩(t−0 ) = ⟨H2qb⟩(t+0 ) − ⟨H2qb⟩(t−0 ) = ℏ� sin
2(�) ≥ 0, (3.5)

where t−0 and t+0 refer to the time just before and just after the measurement. The energy given
by the measurement is unsurprisingly positive since, at time t = 0, the qubits were in the state
|10⟩ and that, under the unitary evolution, the excitation got delocalized toward the second
qubit of higher splitting energy. This implies that the local energy increased and that the cou-
pling one became negatice. Since, ⟨V ⟩(t+0 ) = 0 and ⟨Hloc⟩(t+0 ) = ⟨Hloc⟩(t−0 ) the measurement
effect was to cancel a negative term, therefore increasing the average energy as ploted in Fig-
ure. 3.10(b). Conversely, the von Neumann entropy of the qubit pair increases by an amount
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Smeas = −Tr[�(�) log2(�(�))], that reads
Smeas = −cos2(�) log2[cos2(�)] − sin

2(�) log2[sin
2(�)]. (3.6)

Where we used log2, such that all entropies are expressed in bits. These two quantities are
plotted in Figs. 3.1(a) and 3.1(b) as a function of the detuning �, for various coupling strengths
g. Since the two-qubit system is in a pure state before the measurement, Smeas corresponds to
the two-qubit entropy after the measurement. As it appears in the figure, Emeas and Smeas are
both maximized for � = g which corresponds to an equal probability of finding the system in
|01⟩ and |10⟩ and to a maximal mutual information between the system and memory states.

Converting the measurement energy into work requires the processing of this informa-
tion during the feedback step. Here it consists of doing nothing if the high energy qubit is
found empty and to apply two �-pulses to flip the state of both qubits if not. On average
the energy Emeas can be extracted from the system in this way. The conversion is optimal
(W = Emeas) when all information is consumed, which corresponds to the ideal cycle con-
sidered until now. Non-optimal work extraction results from an incomplete consumption,
|ΔI(S ∶ M)| < Imeas(S ∶ M), yielding a conversion ratio � = W ∕Emeas < 1. Ideally,
the probability to measure the meter in the state |1⟩ (resp. |0⟩) knowing that the system is in the
state |01⟩ (resp. |10⟩) would equal one. However, if we consider a more realistic measurement,
the probability to measure the meter in |0⟩ even though the excitation is in the qubit B can be
nonzero. This can be due to the fact that our access to this information is limited (reading error)
or that the mutual information between the system and the meter is not yet equal to the system’s
entropy (incomplete measurement). In the following, we denote by p, either the reading error
probability or the degree to which the meterand system are imperfectly correlated or the lack
of information regarding the system’s state. In our analysis we will denote SS the Shannon en-
tropy of the system and I(S ∶M) the mutual information between the system and the memory.
From this error probability p, we define P (i|k), the probability that the classical memory is in
i, with i ∈ {0, 1} given that the excitation is localized in k ∈ {A,B}:

P (1|A) = p
P (1|B) = 1 − p
P (0|A) = 1 − p
P (0|B) = p. (3.7)

In order to derive the work extracted, we consider that if the meter is found in |0⟩, no pulses are
applied and no work is extracted whereas if it is found in |1⟩ the two �-pulses are applied and
±ℏ� of work is extracted or performed (work is performed rather than extracted if the �-pulses
are applied while the excitation is actually in qubit A). From this simple model we find that the
mean work extracted after one measurement reads:

W = P (B)P (1|B)ℏ� − P (A)P (1|A)ℏ�,
= sin2(�)(1 − p)ℏ� − cos2(�)pℏ�,
= ℏ�[sin2(�) − p], (3.8)
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where P (B) (resp. P (A)) is the probability for the excitation to be localized in qubit B (resp.
qubit A). In Fig. 3.1(c), p is taken to vary from zero to one-half because, when p = 1∕2, the
probabilities to read the memory in 1 or 0 does not depend anymore on the system’s state.
Notice here that if p = 0, we recover the average work extracted Emeas = ℏ� sin2(�).

The Shannon entropy and mutual information are given in bits, justifying the use of the
log2. We can now derive the mutual information, which reads:

I(S ∶M) = SS + SM − SSM
= [− cos2(�) log2(cos2(�)) − sin

2(�) log2(sin
2(�))]−

[(sin2(�)(1 − p) + cos2(�)p) log2(sin
2(�)(1 − p) + cos2(�)p)

+ (sin2(�)p + cos2(�)(1 − p)) log2(sin
2(�)p + cos2(�)(1 − p))]

+ [sin2(�)(1 − p) log2(sin
2(�)(1 − p))

+ sin2(�)p log2(sin
2(�)p)

+ cos2(�)(1 − p) log2(cos2(�)(1 − p))
+ cos2(�)p log2(cos2(�)p)]. (3.9)

Here, we notice that when p = 0, I(S ∶M) = − cos2(�) log2(cos2(�))−sin
2(�) log2(sin

2(�)) =
SS = SM , i.e., it corresponds to maximal correlation. It is then clear that without noise the
system and the meter can be maximally correlated. If we further assume � = g we obtain
I(S ∶ M) = 1. The upper boundary of the coloured area is the regime for which p = 0, i.e.,
ΔI(S ∶ M) = SS . In the lower boundary we have p = 1∕2 which leads to ΔI(S ∶ M) =
1 − sin2(�) − cos2(�) = 0 as expected. This clearly shows the work value of information—the
larger the consumed information, the larger the conversion ratio. Interestingly, the figure reveals
that work can be extracted even if ΔI(S ∶ M) = 0. This is the case when Psucc(�) > 1∕2,
which happens when �∕g < 1. Then �-pulses can be blindly applied, still leading to a net work
extractionW = ℏ�(sin2(�) − cos2(�)). This mechanism solely exploits the energy input by the
measurement, but not the extracted information; it is at play, e.g. in single temperature engines
[73, 74]. Importantly, one could think that in this regime, one could fuel an engine only from
measurement backaction (without involving any bath) by repeatedly measuring and extracting
the energy without feedback. It is indeed true for a finite duration which can be very long if
g ≫ �. However, if no feedback operation nor bath is involved to garantee a cyclic process,
the measurement will not give any energy on average over a sufficent number of repeatitions as
well explained already in the case of Zeno measurements [71]. This is why no engine can be
fuelled only from measurement backaction. By contrast, even for short time scale, information
processing is necessary when � ≥ g. Note that in all non-ideal cases where information is not
fully consumed, an additional step must be included in the cycle, to reset the qubits’ state.

From now on we suppose that the feedback is perfect, such that the information available in
thememory is fully consumed and all the energy input by themeasurement channel is converted
into work. In this situation, the net work extracted isW = Emeas. It is thus related to the size
of the memory used Smeas by the effective parameter T meas defined above. Interestingly, now
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T meas is a measure of efficiency of information-to-work conversion. Such efficiency is usually
bounded by the bath temperature in Maxwell’s demons fuelled by a thermal bath [67, 110].
T meas is plotted on Fig. 3.1(d) as a function of g for various values of the detuning �. As it
appears on the figure, it is not bounded and increases as a function of g. This reveals that in
the limit g ≫ �, a finite amount of work can be extracted by processing a vanishingly small
amount of information. This effect is similar to the Zeno regime identified in Ref. [71], where
work extraction relies on measurements whose outcomes are nearly deterministic.

3.3 Energetics of the pre-measurement

We now investigate the measurement-based fueling mechanism, based on the modeling of the
“pre-measurement process" by which the qubits are entangled with a quantum meter while still
coupled. It is well-known that such an entanglement accounts for the entropy increase of the
measured system. Below we show that it also explains the measurement energy input.

𝜒(𝑡)
|0!⟩|1!⟩

𝑔(𝑡)
𝜔!𝜔"

Figure 3.2: A local quantum measurement of qubit B allows for the creation of correlations
between the meterM and the AB system and destroys correlations between the qubits.

The measurement process takes place between t = t0 and t = tm, and is depicted in Fig. 3.2.The meter is chosen to be a third qubit M with degenerate energy levels |
|

0M⟩ and |

|

1M⟩. It iscoupled to the qubit B through the Hamiltonian:

VM = ℏ�(t)�
†
B�B ⊗ �Mx . (3.10)

�(t) is the measurement strength, with �(t) = � for t = [t0, tm] and 0 otherwise. We choose
� ≫ g, to ensure the readout takes place on small time-scales with respect to the Rabi pe-
riod. This defines the parameter � = g∕� , which is small but finite since the measurement
is implemented on still-interacting qubits. Notice that if � was not large enough the opera-
tor �†B�B would evolve significantly during the measurement leading to a low accuracy of the
measurement.
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3.3.1 Pre-measurement dynamics

Here we derive the analytical expression for the joint ABM system’ state |Ψ⟩ (t) during the
pre-measurement process, which is governed by the total Hamiltonian:

H = Hloc + V + VM

= ℏ!A�
†
A�A + ℏ!B�

†
B�B + ℏ

g
2
(�†A�B + �A�

†
B) +

ℏ�
2
�†B�B ⊗ �Mx . (3.11)

In what follows, we treat V as a perturbation with respect to the unperturbed Hamiltonian
H0 = Hloc + VM. Introducing the small parameter � = g∕� ≪ 1 and V = �V ′, the joint state
is computed up to first order in �.

To simplify our analytical expressions, we took the time just before the pre-measurement
process, denoted t−0 , to be our initial time 0 in the following analysis. At that time, the joint
state reads |

|

Ψ0⟩ = (a0 |10⟩+ b0 |01⟩)⊗ |

|

0M⟩ with |a0|2 + |b0|2 = 1. From this initial state and
the structure of the Hamiltonian in Eq. (3.11), the state at any time has the general form:

|Ψ⟩ (t) = at |100⟩ + bt |010⟩ + ct |101⟩ + dt |011⟩ , (3.12)
where at, bt, ct, dt ∈ ℂ and |at|2 + |bt|2 + |ct|2 + |dt|2 = 1. The subscript t indicates the depen-dency on time. Here, as in the rest of the chapter, we shall omit the subscriptM for the meter.

The eigenstates ofH0 are |10−⟩ , |10+⟩ , |01−⟩ , |01+⟩ with |+⟩ = |1⟩+|0⟩
√

2
and |−⟩ = |1⟩−|0⟩

√

2
.

The associated eigenvalues read E10− = ℏ!A, E10+ = ℏ!A, E01− = ℏ(!B − �∕2), E01+ =
ℏ(!B + �∕2) as we took the eigenvalues of the meter to be both zero.

We can now write the joint state as

|Ψ⟩ (t) = |

|

|

Ψ(1)
⟩

(t) + o(�)

=
∑

n∈{10−,10+,01−,01+}

n(t)e−iEnt∕ℏ |n⟩ , (3.13)

where
|

|

|

Ψ(1)
⟩

(t) =
∑

n∈{10−,10+,01−,01+}

 (1)n (t)e

−iEnt∕ℏ
|n⟩ (3.14)

contains all terms of first order or lower and 
n = 
 (1)n + o(�). Projecting the Schrödinger
equation onto the eigenstate |k⟩ ofH0 and using Eq. (3.14), we find:

iℏ d
dt

k(t) = �

∑

n
⟨k|V ′

|n⟩(t)
n(t)ei(Ek−En)t∕ℏ. (3.15)
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Thus, at order zero, we have d
dt

 (0)k (t) = 0 for all k ∈ {10−, 10+, 01−, 01+} and as the state

just before the pre-measurement reads:
|

|

|

Ψ(0)
⟩

(0) =
∑

n∈{10−,10+,01−,01+}

 (0)n |n⟩

= (a0 |10⟩ + b0 |01⟩)⊗ |0⟩

=
a0
√

2
|10+⟩ −

a0
√

2
|10−⟩ +

b0
√

2
|01+⟩ −

b0
√

2
|01−⟩ , (3.16)

we have:

 (0)10− = −

a0
√

2
; 
 (0)10+ =

a0
√

2


 (0)01− = −
b0
√

2
; 
 (0)01+ =

b0
√

2
. (3.17)

From these coefficients we obtain, at order zero,
|

|

|

Ψ(0)
⟩

(t) =
∑

n

 (0)n e

−iEnt∕ℏ
|n⟩ (3.18)

= a0e−i!At |100⟩ +
b0
2
(e−i(!B+�∕2)t − e−i(!B−�∕2)t) |011⟩ +

b0
2
(e−i(!B+�∕2)t + e−i(!B−�∕2)t) |010⟩ .

To find the first order coefficients, we use Eq. (3.15) to first order:
iℏ d
dt

 (1)k (t) = �

∑

n
⟨k|V ′

|n⟩
 (0)n e
i(Ek−En)t∕ℏ (3.19)

where V ′ = ℏ�
2
(�†A�B + �

†
B�A). Using the initial conditions 
 (1)10−(0) = 
 (1)10+(0) = 
 (1)01−(0) =


 (1)01+(0) = 0, these equations can be solved to obtain:


 (1)10− = −
��bo

2
√

2(� − �∕2)
(e−i(�−�∕2)t − 1); 
 (1)10+ =

��bo
2
√

2(� + �∕2)
(e−i(�+�∕2)t − 1)


 (1)01− =
��ao

2
√

2(� − �∕2)
(ei(�−�∕2)t − 1); 
 (1)01+ = −

��ao
2
√

2(� + �∕2)
(ei(�+�∕2)t − 1).

We can now simply write the coefficients introduced in Eq. (3.12) at zeroth order:
a(0)t = a0e−i!At + O(g∕�)

b(0)t =
b0
2
(e−i(!B+�∕2)t + e−i(!B−�∕2)t) + O(g∕�)

c(0)t = o(1)

d(0)t =
b0
2
(e−i(!B+�∕2)t − e−i(!B−�∕2)t) + O(g∕�) (3.20)
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and up to first order:

a(1)t = a0e−i!At +

 (1)10+e

−i(!A+�∕2)t − 
 (1)10−e
−i(!A−�∕2)t

√

2
+ O(g2∕�2)

b(1)t =
b0
2
(e−i(!B+�∕2)t + e−i(!B−�∕2)t) +


 (1)01+e
−i(!B+�∕2)t − 
 (1)01−e

−i(!B−�∕2)t

√

2
+ O(g2∕�2)

c(1)t =

 (1)10+e

−i(!A+�∕2)t + 
 (1)10−e
−i(!A−�∕2)t

√

2
+ O(g2∕�2)

d(1)t =
b0
2
(e−i(!B+�∕2)t − e−i(!B−�∕2)t) +


 (1)01+e
−i(!B+�∕2)t + 
 (1)01−e

−i(!B−�∕2)t

√

2
+ O(g2∕�2). (3.21)

From a more qualitative point of view, we can now obtain the density matrix of the subsys-
tem AB (tracing out the meterM) during the pre-measurement. The quantum state tomogra-
phy of this state is presented on Fig. 3.3 for three times of interest: before, during, and after the
measurement. As expected, the reduced density matrix of the two-qubit state exhibits initially
nonzero correlations which progressively decrease during the coupling to the meter.
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010011 10 01 00 11
10 01
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01 00
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Figure 3.3: Quantum state tomography of the reduced density matrix of the two qubits (a)
before the measurement process (b) during the measurement process and (c) at the end of the
measurement process. The color represents the phase and the height represents the modulus of
each element of the density matrix. One should notice here the decreasing of the cross terms
during the measurement process due to the decreasing of |bt| and the small value of |ct|.

3.3.2 Energy dynamics

At t−0 , the meterM is prepared in |
|

0M⟩, while A and B are in the entangled state |
|

 (t0)⟩, suchthat their joint state reads |
|

Ψ(t0)⟩ = i(cos(�) |
|

100M⟩ − sin(�) |
|

010M⟩). Since ⟨VM(t0)⟩ = 0,
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the measurement channel is switched on at no energy cost.The joint qubits-meter system then
evolves under the total HamiltonianH = H (0)+H (1), whereH (0) = Hloc+VM (resp. H (1) = V )
rules the evolution at zeroth order (resp. at first order) in the small parameter �. The evolution
equations are solved at first order, yielding |

|

Ψ(1)(t)
⟩

= |

|

Ψ(0)(t)
⟩

+ |�Ψ(t)⟩ where |�Ψ(t)⟩ is
of order �. The populations up to first order are plotted on Fig. 3.4(a). To lowest order in
�, the measurement is quantum non-demolition, resulting in state |

|

Ψ(0)(t)
⟩ [111, 81]. The

readout is complete at time tm = t0+�∕� where |
|

Ψ(0)(tM)
⟩

= i(cos(�) |
|

100M⟩−sin(�) ||011M⟩).Conversely, the first order correction |�Ψ(t)⟩ accounts for the remaining coupling between the
qubits during the measurement.
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Figure 3.4: Dynamics of measurement induced energy transfer. (a) Full state decomposition in
the {|

|

100m⟩ , ||101m⟩ , ||010m⟩ , ||011m⟩} basis during the pre-measurement step. (c) Expectation
values of ⟨H2qb⟩, ⟨Hloc⟩, ⟨VM⟩, and ⟨V ⟩ as a function of the pre-measurement time t ∈ [t0, tm].The curves in the figure are calculated for � = 10Ω and g = �. The grey lines indicate constant
values as guides to the eye.

At zeroth order, the full system only evolves underHloc+VM. In this case the average valueof VM(t) reads:

⟨V (0)
M ⟩∕ℏ� = ⟨Ψ(0)|VM|Ψ(0)⟩∕ℏ� (3.22)

= b∗(0)t d(0)t + d∗(0)t b(0)t = 2Re(b(0)t d∗(0)t ).

Using zeroth order coefficients given in Eq. (3.20), we find b(0)t d∗(0)t = b20
4
2i sin(�t) fromwhich it

follows that Re(b(0)t d∗(0)t ) = 0 and ⟨V (0)
M ⟩ = 0 for any time during the pre-measurement process.

To derive the average value of ⟨H (1)
loc⟩ up to first order in � we develop ⟨Ψ(1)|Hloc|Ψ(1)⟩ and keep
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only the zero and first order terms. Since c∗(0)t = 0, the average evolution ofHloc(t) reads:

⟨H (1)
loc⟩ = ℏ!Aa

∗(1)
t a(1)t + ℏ!Bb

∗(1)
t b(1)t + ℏ!Bd

∗(1)
t d(1)t + O(�)

= (a∗0ℏ!A

 (1)10+e

−i�t∕2 − 
 (1)10−e
i�t∕2

√

2
+ b∗0ℏ!B


 (1)01+ − 

(1)
01−

√

2
+ c.c.)

+ |a0|
2ℏ!A + |b0|

2ℏ!B, (3.23)

where c.c. stands for complex conjugate. Since at the beginning of the pre-measurement pro-
cess we have b0 = −i sin(�) and a0 = i cos(�), we find that, in the limit where � ≫ � this
average value writes:

⟨H (1)
loc⟩ →

�>>�
|a0|

2ℏ!A + |b0|
2ℏ!B

+ �b0a∗0ℏ!ARe[ei�t∕2 − e−i�t∕2 + e−i�t − ei�t]
+ �ℏ!Bb0a∗0Re([e−i�t∕2 − ei�t∕2])

=|a0|2ℏ!A + |b0|
2ℏ!B (3.24)

and thus ⟨H (1)
loc⟩ is constant and equal to its zeroth order value.

Finally, we study the evolution at first order of VM(t). We obtain

⟨V (1)
M ⟩ =

ℏ�
2
(b∗(0)t d(1)t + d∗(0)t b(1)t ) + O(�) =

ℏ�
2
[
b∗0
√

2
(
 (1)01+ + 


(1)
01−)]+ c.c.

→
�>>�

ℏ�
2
�b∗0a0
2

[ei�t∕2 − 1 + e−i�t∕2 − 1]+ c.c. = ℏgb∗0a0
4

[ei�t∕2 + e−i�t∕2 − 2]+ c.c.

=
t=�∕�

ℏgb∗0a0
2

[i − i − 2]+ c.c. = −ℏgb∗0a0+ c.c. = −ℏgRe(b∗0a0). (3.25)

Taking the initial state to be the one at t0 = �∕Ω, i.e., b0 = −i sin(�) and a0 = i cos(�), we findthat the average value of the interaction term VM at the end of the pre-measurement process is:

⟨V (1)
M ⟩(t = �∕�) →

�>>�
-ℏg cos(�) sin(�) = -ℏ� sin2(�), (3.26)

which is exactly what we observe in our simulations, i.e, a non-negligible average value for VMat the end of the pre-measurement process, even for � ≫ g.
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Lastly, the evolution at first order of V (t) is given by
⟨V (1)

⟩ = ⟨Ψ(0)|V |Ψ(0)⟩

=
ℏg
2
(a∗(0)t b(0)t + b∗(0)t a(0)t )

= ℏgRe(a∗(0)t b(0)t )

=
ℏg
2
Re(a*0b0(e−i(�+�∕2)t + e−i(�−�∕2)t))

= -ℏg cos(�) sin(�) cos(�t∕2)Re(e−i�t)
= -ℏ� sin2(�) cos(�t∕2)Re(e−i�t). (3.27)

This last result is very insightful when looking at the initial and final times of the pre-measurement.
Just before the pre-measurement process, at t = 0, the interaction term between the two qubits
is, as expected, ⟨V (1)

⟩(0) = -Emeas. At the end of the process, we find that at first order,
⟨V (1)

⟩(�∕�) = 0.

Comparing the first and second order In Fig. 3.5(a), we have plotted the modulus of the
first order coefficients describing the state | ⟩ during the pre-measurement process. Here,
with parameters � = 10g = 10�, we find an evolution similar to that obtained by simulation
in Fig. 4(c). This shows that, for these parameters, the first order description is sufficient to
reproduce the system state evolution.
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Figure 3.5: Pre-measurement dynamics. (a) First order probabilities of the different states
during the pre-measurement process. (b) Zeroth and first order evolution of the energetic terms:
⟨V ⟩, ⟨VM⟩, ⟨Hloc⟩ Parameters: � = 10g = 10�.

In Fig. 3.5(b), the energy of the system is split into its different components at first and
zeroth orders. At zeroth order, ⟨VM⟩ and ⟨Hloc⟩ stay constant. The term ⟨V ⟩ evolves, but this is
not in contradiction with energy conservation since, at zeroth order, the system evolves under
onlyHloc + VM. The evolution that this interaction term follows at zeroth order is qualitatively
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the same as that obtained at first order; however, at first order, since it is included in the unitary
dynamics, its increase is compensated by a similar decrease of the term ⟨VM⟩. Meanwhile, the
term ⟨Hloc⟩ stays mostly constant but, due to the first order terms, actually decreases slowly
with time.

Conclusion

Since the process is unitary, ⟨Hloc⟩, ⟨V ⟩ and ⟨VM⟩ sum up to ℏ!A which was the average initial
energy before the pre-measurement. We saw that ⟨Hloc⟩ (resp. ⟨V ⟩ and ⟨VM⟩ ) remain constant
up to first order in � (resp. at zero order) whereas the first order contribution of the binding
energy between A and B, ⟨V (1)

⟩ =
⟨

Ψ(0)(t)|
|

V |

|

Ψ(0)(t)
⟩, scales like the coherences of the AB

density matrix in the |01⟩ , |10⟩ basis. Its absolute value decreases together with the quantum
correlations between A and B, and vanishes when the readout is complete. This evolution is
compensated by an equivalent decrease of ⟨V (1)

M ⟩(t), yielding at time tm: ⟨V (1)
m (tm)⟩ = −Emeas.

Importantly, since VM scales as � , ⟨V (1)
m (tm)⟩ remains finite and of the order of g even if g∕� ≪

1. This calculation reveals the direction of the energy flow during the measurement process:

The binding energy initially localized between the qubits is transferred between the
qubits and the meter. This energy flow follows the same dynamics as the decoherence
in the local energy basis, and can be seen as its energetic counterpart. Finally, when the
readout is complete, the measurement channel must be switched off before a new cycle
can start. This switching off has a work cost of ⟨−VM(tm)⟩ = Emeas.

This gives a first answer to the question of the origin of the quantum heat energy: it comes
from the time dependent coupling to the measuring device. In the next chapter we will see how
this turning on and off can be implemented and even be made autonomous, i.e., modelled with
a time independent Hamiltonian and an additional degree of freedom.

3.3.3 Heat or Work?

Sincewe have shown that the full qubits andmeter systemABM receives energy via the switch-
ing off of their coupling VM, it is clear that the nature of this energy exchange is work as it comes
from the reversible action of a classical operator. Coming back to the perspective of our two-
qubit system however, the final energy exchange Emeas is also associated with an increase of its
entropy (at the average level of an unread measurement) resulting from its entangling interac-
tion with the meter qubitM . Moreover, this energy input by the measurement backaction was
coined "Quantum Heat" [63] for its stochastic nature, reminiscent of thermal baths. However,
as discussed in Chapter 2, quantum energy exchanges can, a priori, contain both a generalized
heat and a generalized work contribution. Using the dynamical evolution of the system and its
environment (here the meter) we can now sort out these possible contributions in the quantum
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heat Emeas.
We apply the formalism, described in Chapter. 2 and summerized in Fig. 2.2,1, to the measure-
ment Hamiltonian given in Eq. (3.11):

H = H2qb + VM

= ℏ!A�
†
A�A + ℏ!B�

†
B�B + ℏ

g
2
(�†A�B + �A�

†
B) +

ℏ�
2
�†B�B ⊗ �Mx (3.28)

and consider our two separate systems to be the two system qubits, denoted by S, on one side
and the meter qubit M on the other. The absence of a bare Hamiltonian for the meter qubit
immediately implies that Q̇M = ẆM = 0 i.e., that the meter is not exchanging any energy
during the pre-measurement process.
From the system point of view, the interaction term VS = TrM (ℏ�2 �†B�B ⊗ �Mx �S ⊗ �M ) =
ℏ�
2
�†B�B⟨�

M
x ⟩ and the resulting generalized heat and work exchanged by the system qubits can

therefore be written as:

Q̇S(t) = −
i�
2
TrSM ([H2qb, �

†
B�B ⊗ �Mx ]�

SM )

= −
i�
2
TrSM ((�A�†B�Bz − �†A�Bz �B)⊗ �Mx �

SM )

ẆS(t) = −
i
ℏ
Tr([H2qb,VS]�S)

= −
i�
2
Tr((�A�†B�Bz − �†A�Bz �B)�S)⟨�Mx ⟩, (3.29)

where we remind that S = AB. Since ẆM (t) + ẆS(t) + V̇
⊗
SM (t) = 0 and Q̇M (t) + Q̇S(t) +

V̇ �
SM (t) = 0, the interaction energy contribution can be derived by substraction. Moreover, as
�Mx commutes withH , it stays constant during the evolution, and as the initial state of the meter
qubit is |0⟩ this constant value is 0. Thus, all the work flux are zero and, the energy exchange
witnessed, simply corresponds to a generalized heat exchange between themeasurement system
and the interaction energy:

Q̇S(t) = −V̇
�
SM (t) (3.30)

as shown in Fig. 3.6.

1We remind the reader that there is no general and always applicable consensus about the definition of heat and
work (nor about the correct usage of these names) in the quantum community. Given that the formalism introduced
in Chapter. 2 has no free parameter and uses the most usual definition of the internal energy of a quantum system
we choose it to characterize the energy exchanges.
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Figure 3.6: Energetics of our two qubit engine during the measurement step. a) Time derivative
of the heat exchanges. b) Integral of the heat received by the two-qubit system. Parameters:
!A = 1, !B = 2, g = 1, � = 10g

As shown on Fig. 3.6(a), the heat received by our two-qubit working substance S increases
until the final measurement time �∕� and this increase is exactly compensated by the decrease
of correlated interaction energy V SM

� . This tells us that during the pre-measurement, heat flows
from the interaction term ⟨V M

⟩ to the system qubit explaning why it is legitimate to call the
fuel of our engine "Quantum Heat". The integral of this flow is given in Fig. 3.6(b) where
we observe that this total amont of heat exactly matches the energy input by the switching off:
Emeas.

3.3.4 Generalization

We generalize the previous reasoning to the pre-measurement process of an arbitrary system S
and meterM evolving under the Hamiltonian:

H = HS +HM + f (t)V SM (3.31)
where the function f (t) characterizes the interaction and is null outside of the pre-measurement
time interval [t0, tm

]. Hence, t0 and tm correspond to the initial and final times of the pre-
measurement process. We define the time-averaged interaction strength A such that A� =
∫ tmt0 f (t)dt with � = tm − t0. Until now, we considered a specific pre-measurement dynamics
governed by a time-independent Hamiltonian. Here, we generalize this study to an arbitrary
system and meter and allow their coupling to be turned on and off smoothly (f should only be
differentiable in ]t0, tm[ and such that f (t0) = f (tm) = 0) .
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As was the case so far, we restrict this generalisation to conservative pre-measurements:
measurements for which the energy of the (quantum) meter is a constant of motion, i.e., for
which [

HM , V SM
]

= 0. In this manner, no energy is exchanged with the meter on average.
Moreover, the interaction is chosen to be of the form V SM = V S ⊗ V M , i.e., a tensor product
between a part acting on the meter: V M and a part acting on the system: V S . This choice
is motivated by its common use in the literature of measurement processes since von Neu-
mann [112, 113, 114, 115, 109]. Such an interaction allows to identify V S as the measured
observable of the system. The outcome probabilities to obtain each of its eigenvalues are en-
coded in the probabilities of measuring the meter in some specific states: the pointer states.
These states should be different from the eigenstates of V M . Indeed, since V M andHM com-
mute, the probabilities to find the meter in the eigenstates of V M will stay constant during the
pre-measurement and hence contain no information about the system.

The average energy change of the system is given byΔES =
⟨

HS
⟩

(t+m)−
⟨

HS
⟩

(t−0 ), where
t−0 , resp. t+m, is the time immediately before, resp. after, the pre-measurement. To identify the
nature of this energy, we apply Eq. (2.8). The work flux performed on the system thus writes:
dWS∕dt = −f (t)

⟨

V M
⟩ (

d
⟨

V S
⟩

∕dt
), which can be integrated by parts to give:

WS (t0 → tm
)

= −⟨V M
⟩

[

f (t)⟨V S
⟩(t)

]t+m
t0−
+ ⟨V M

⟩ ∫

tm

t0

̇f (t)⟨V S
⟩dt

= ⟨V M
⟩ ∫

tm

t0

̇f (t)⟨V S
⟩(t)dt, (3.32)

since f (t+m) = f (t−0 ) = 0. The average value ⟨V M
⟩ was removed from the integral for being

a constant of motion, since [V M ,HSM ] = 0. Equation (3.32) shows that the energy received
by the measured system can have a non-zero work contribution. Since the quantum meter is,
by assumption, not exchanging any heat or work, this work done on S must come from an
equal and opposite work received by the coupling energy. In this case, it means that there is an
uncorrelated contribution to the change of coupling energy or equivalently, that the measure-
ment induces a rotation of the system’s state, although unwanted. This effect is reminiscent of
the WAY theorem, and can be seen as one of its energetic consequences. Indeed, due to the
non-commutativity of the measured observable with the initial HamiltonianHS +HM , a per-
fectly accurate measurement of V S is not possible given finite resources due to the evolution
of ⟨V S

⟩(t) in time.
When ⟨V M

⟩ = 0, however, even if ⟨HS
⟩(t) evolves during the measurement, this would

have no effect on the work done on S. It was the case in our previous example where the work
flux received by the systemwas null because we had ⟨V M

⟩ = ⟨�Mx ⟩ = 0. When this condition is
fullfield, the total work received by the system vanishes, no matter the shape of the interaction,
its duration, strenght or the meter size.

In general, the total energy change of the system during the pre-measurement process,
ΔUS(t−0 → t+m), is divided into heat QS(t−0 → t+m) and work WS(t−0 → t+m). It is equal and
opposite to the change of the interaction energy, since the meter is not exchanging heat nor
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Figure 3.7: Bipartite quantum energetics (BQE) for pre-measurements with V SM = f (t)V S ⊗
V M . This table corresponds to the integrated quantities defined in Fig. 2.2, from t0 to tm. Theenergy received by the measured system can have generalized heat and work contributions and
is traced back to the one received by the interaction energy and eventually to the external work
done on the bipartite system to vary the interaction strength between the system and meter.

work, as [HM ,HSM ] = 0 (from Eq. 2.12) . Hence, our framework reveals that,

ΔUS(t−0 → t+m) = ∫

t+m

t−0

df
dt

⟨V S ⊗ V M
⟩(t)dt. (3.33)

This unveils that this energy change is due to the modulation of the interaction strength during
the measurement process. Moreover, since the net coupling energy exchanged during the pro-
cess is ΔVSM = 0 as f (t−0 ) = f (t+m) = 0, ΔUS is also the total external work done on the meter
and system, i.e., ΔUS(t−0 → t+m) = W

ext
SM (t

−
0 → t+m), as shown in Figure. 3.7.To go further, it is useful to consider a square potential of amplitude A and duration �, such

that f (t) = A [

Θ
(

t − t0
)

− Θ
(

t − tm
)] and that the work done on S given in Equation (3.32)

becomes
WS (t−0 → t+m

)

= −A⟨V M
⟩(⟨V S

⟩(tm) − ⟨V S
⟩(t0))

= −A�⟨V M
⟩

(

⟨V S
⟩(tm) − ⟨V S

⟩(t0)
�

)

. (3.34)

Perhaps surprisingly, even for � much shorter than the typical evolution time evolution induced
by HS , which implies ⟨V S

⟩(tm) ≈ ⟨V S
⟩(t0), this work can be non-null in the limit of an in-

finitely short measurement. Indeed, when the pre-measurement duration � = tm − t0 goes to
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zero,
WS (t−0 → t+m

)

= −A�⟨V M
⟩

d⟨V S
⟩

dt
(t) (3.35)

and the work done on the system is found to be proportional to the derivative of the average
value of ⟨V S

⟩ at the time of the measurement. Notice that prior to the pre-measurement, this
average value was already evolving since the system was evolving underHS with [HS , V S] ≠
0. Moreover, this work is not a perturbation to a main heat exchange. On the contrary, when
the meter size increases to reach the one of a classical measuring device, the absolute value of
the average value |⟨V M

⟩| will also increase or remain null. Hence, if A� remains constant, this
will also lead to an increase work exchange with S.

Of course, one could argue that in this classical limit the duration � should be vanishingly
small and hence A� could tend to zero in such a way that A�⟨V M

⟩ goes to zero and similarily
for the workWS

(

t−0 → t+m
). This is true, however one should also be carefull about the overlap

between the meter pointer states.
Indeed, an implicit requirement regarding measurement is that the overlap between the fi-

nal states of the meter associated to the different measurement outcomes should be as small
as possible. Therefore, since in the interaction picture with respect to HS +HM , the unitary
operator will be given by UI (t) = e−i∕ℏ ∫

tm
t0
f (t)V S

I (t)⊗V
Mdt and that at lower order in �, this uni-

tary evolution becomes UI (t) = e−iA�V S⊗VM∕ℏ, if the system is in the eigenstate |
|

eSi
⟩ of V S

associated to the eigenvalue ai, the meter will evolve through e−iA�aiVM∕ℏ. Thus, the overlap
between two meter states associated with different system states, denoted by p and l, will be
|⟨eM0 |eiA�apVM∕ℏe−iA�alVM∕ℏ

|eM0 ⟩| = |⟨eM0 |eiA�(ap−al)VM∕ℏ
|eM0 ⟩|, given that the initial meter state

is �M0 = |

|

|

eM0
⟩⟨

eM0
|

|

|

. Hence taking A� = 0 would lead to a unit overlap and thus to a mea-
surement unable to extract information about the system S. Having both only heat done on
the measured system, an instantaneous measurement and extract some information seems like
a tricky task. The example of the pre-measurement of a qubit by a cavity field (also known as
dispersive readout in circuit QED) illustrates well these difficulties. In such a case we have:

V S ⊗ V M = �z ⊗ a†a (3.36)
given a coherent initial state for the meter of average photon number n̄ = |�|2, such that ||

|

eM0
⟩

=
|�⟩. Applying the previous reasonning, we find that the overlap between the meter’s pointer
states associated to |e⟩ and |g⟩ writes:

|⟨�e−iA�|�eiA�⟩| = |e−|�|2(1−e2iA� )| = e−2n̄ sin
2(A�). (3.37)

Whilst the work done on the qubit is:
Wqb (t−0 → t+m

)

= −A�n̄
(

⟨�z⟩(tm) − ⟨�z⟩(t0)
�

)

∝ A�n̄ (3.38)

As it appears, as long as ⟨�z⟩(tm)−⟨�z⟩(t0)
�

≠ 0, having both an overlap different from one and a
vanishing work implies that A�n̄ → 0 whist n̄ sin2(A�) ≠ 0. This last condition implies that
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n̄ ≠ 0 and A� ≠ 0[�] which is clearly not compatible with A�n̄→ 0 . Hence, it is not possible
to fullfill these two conditions at the same time. And the only way to have only heat done on the
measured system, an instantaneous measurement and extract some information is to measure
the qubit at a time t where d⟨�z⟩(t)

dt
= 0.

Our BQE framework therefore reveals in which conditions the external work provided by
ideal classical measurements is directly converted into heat on the measured system. It also
underlines that when the meter remains of small size, this received energy can also have a work
contribution. The BQE formalism therefore prolongates the notion of quantum heat by bringing
new insights to the nature of the energy exchange during a pre-measurements.

3.4 Conclusion
In the specific case of a two qubit system measured by a qubit meter, we derived the pre-
measurement dynamics. This allowed us to conclude that the quantum heat comes from the
turning off of the interaction between them. We then generalized this result to any system
measured via an interaction of the form V S⊗V M . This energetic counterpart of measurement
backaction was hence also traced back to the modulation of the interaction between meter and
measured system.

The nature of the quantum heat was shown to depend on the average value of the meter part
of the interaction. When ⟨V M

⟩ = 0, it is indeed received in the form of heat by the measured
system.

In the next chapter, we model the autonomous dynamics of a similar measurement, where
the switching on and off of the interaction V SM is driven by the evolution of another degree
of freedom. Therefore, we move one step closer in a full quantum measurement modelling,
still without invoking the controversial collapse of the wavefunction. This analysis could prove
useful to the design of engines exploiting decoherence as a resource which is of special inter-
est as it contributes to bridging the gap between the field of quantum measurement engines,
in which a measuring environment can serve as a work source, and the field of dissipation
engineering [116, 117], where dissipation is harnessed to produce nontrivial quantum states
and desirable quantum dynamics. Such reservoir engineering has been recently employed in
the circuit-QED architecture[118, 119, 120, 121] and could be an ideal platform on which to
realize the engine resulting for these ideas as described in the following Appendix.

3.5 Appendix: A two qubit engine based on measurement
Measurement driven engines can be fuelled by the information extracted about a working sub-
stance and/or by the measurement backaction effect. Until recently however, the working sub-
stance was usually a single qubit and the measurement step was not itself modeled . Bipartite
working substances were first introduced for Maxwell type, information-based only, quantum
heat engines [122]. Buffoni et al. were the first to propose a two-qubit engine fuelled by
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measurement backaction [75] by adapting Campisi et al. [123] swap heat engine from its in-
formation fuelled version [77]. Thanks to this new type of working substance, their engine
features all possible regimes: heater, refrigerator, thermal accelator and work extraction. Their
protocol involves two thermal baths and a measurement of the joint state of the qubits. Since
this measurement occurs in a basis that does not commute with the Hamiltonian of the qubits,
it can exchange energy with this system. Therefore heat can be transfered from a cold reser-
voir to a hot one not by a sequence of time dependent operations on the working substance, as
in classical heat engines, neither via the information obtained by measuring the system, as in
Maxwell demon type protocols, but rather due to the measurement backaction on the joint two
qubit system.

By adding a coupling between the two qubits and without the need of thermal bath (except
for the resetting phase), we proposed a two-qubit quantum engine that is powered by entangling
operations and projective local quantummeasurements. An important novelty is that the fueling
of our bipartite working substance comes from the local measurement of this global system.
Thus instead of rotating the measurement basis with respect to the Hamiltonian eigenbasis, we
chose the local Hamiltonian eigenbasis as our measurement basis. Compared to the inspiring
work of Buffoni, our setup allows to extract work by the amplification of a coherent field and
can also serve as an almost deterministic frequency upconverter. Additionnaly, we investigated
the measuring process to complete our understanding of the quantum heat injected.

3.5.1 Principle of the engine

As summerized in Fig. 3.8 the engine cycle encompasses four steps:

(i) Entangling evolution

At time t = 0, the qubits are prepared in the state |

|

 0⟩ = |10⟩ of mean energy ⟨H2qb⟩ =
⟨ 0||H2qb || 0⟩ = ℏ!A. The coupling term is switched on at time t = 0+ with a strength g.
Since |

|

 0⟩ is a product state, its mean energy does not change during this switching process,
which is thus performed at no cost. The qubits’ state then evolves into an entangled state
| (t)⟩, given in Eq. 3.3, where the initial excitation gets periodically exchanged between the
two qubits. ⟨Hloc⟩(t) and ⟨V ⟩(t) are plotted on Fig. 3.10(b). As expected from a unitary evo-
lution, their sum remains constant and equal to its initial value ℏ!A. The periodic exchange ofthe single excitation between A and B gives rise to oscillations of the local energy component.
This evolution is compensated by the opposite oscillations of the coupling energy ⟨V ⟩(t) ≤ 0.
This term appears here as a binding energy and is or purely quantum origin since without en-
tanglement between the two qubits this average energy contribution would vanish. Its presence
ensures that the total energy and the number of excitations are both conserved.
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Figure 3.8: Scheme of the two-qubit engine cycle. (i) Starting from |10⟩, the qubits get entan-
gled by coherently exchanging an excitation. (ii) A demon performs a selective energy mea-
surement on qubit B at t0 = �∕Ω. (iii) Feedback. If B is found in the excited state, a � pulse
is applied to each qubit. The energy of B is extracted and A is re-excited. If not, nothing is
done. At the end of this step, the qubits are back to their initial state. (iv) Reset of the demon’s
memory.

(ii) Measurement

The average energies ⟨Hloc⟩ and |⟨V ⟩(t)| reach a maximum when t0 = �∕Ω where |
|

 (t0)⟩ =
i(cos(�) |10⟩−sin(�) |01⟩). At this time, a local projective energymeasurement is performed on
qubit B, and its outcome is encoded in a classical memory. Here we consider an instantaneous
process, performed with a classical measuring device. We will study in more details the energy
exchanges happening during this measurement at the end of the chapter. On average, the qubits’
state becomes a statistical mixture �(�) = cos2(�) |10⟩ ⟨10| + sin2(�) |01⟩ ⟨01|, erasing the
quantum correlations between them and thus bringing the binding energy ⟨V ⟩ to zero. The
average energy input by the measurement channel is Emeas, defined in Eq. (3.5) and the change
of the two-qubit system entropy is Smeas, as given by Eq. (3.6). The ratio T meas = Emeas∕Smeas
characterizes the measurement process from a thermodynamic standpoint. For a fixed detuning
�, it diverges for large coupling such that � → �∕2 where it typically scales like T meas ∼
−ℏ�∕[2(�∕2 − �)2 log2(�∕2 − �)]. In this limit of large coupling and small detuning, quantum
measurement can input a finite amount of energy with vanishing entropy. This contrasts with
isothermal processes, where energy and entropy inputs are related by the bath temperature.

From an informational standpoint, the measurement creates classical correlations between
the qubits and the memory in the basis |10⟩ , |01⟩. If the measurement is ideal, these cor-
relations are perfect, such that the entropies of the qubits and the memory at the end of the
process are equal. They are also equal to the mutual information they share, further denoted
Imeas(S ∶M).
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(iii) Feedback

The information stored in the memory is now processed to extract the energy input by the
measurement. To do so, the coupling term is switched off at time t0+. Since the correla-
tions between the qubits have been erased by the measurement, the switching-off can be imple-
mented at no energetic cost. If the excitation is measured in B, which happens with probability
Psucc(�) = sin

2(�), A and B both undergo a resonant � pulse, such that B emits a photon while
A absorbs one. The workW = ℏ� is extracted and the qubits are reset to their initial state |10⟩.
Conversely if the excitation is measured in A, no pulse is implemented and the cycle restarts.
Eventually, the mean work extracted isW = Emeas. At the end of this feedback step, the qubits’
entropy vanishes, and a maximal amount of mutual information |ΔI(S ∶M)| = Imeas(S ∶M)
is consumed.

(iv) Erasure.

Immediately after the feedback, the memory’s entropy still equals Smeas = Imeas(S ∶ M).
The memory is finally erased in a cold bath, the minimal work cost of this operation being
proportional to Smeas [28].

3.5.2 Generalization of the working principle
One could worry about the cost for the necessary resetting of the memory that will be necessary
in order to repeat the cycles of our engine. Indeed, since we know that this reset will cost at least
kBT of work if the probability of obtaining 0 and 1 are the same, it seems quite device dependent
and arbitrary to include it since it depends on the environment temperature T . However, our
engine can be generalized to a regime in which the resetting cost vanishes solving this legitimate
concern. This generalisation builts on the realization that this two qubit engine can be seen as a
frequency up-converter. Its effect is indeed to convert an excitation at frequency !A to a higher
frequency excitation. Now, if we gradually increase the energy splitting along a chain of qubits,
the initial low energy of the first qubit can be up-converted deterministically to an arbitrarily
high energy at the last qubit by successive neighbor swap operations and local measurements.

The protocol is based on the efficient transfer of a single excitation through a chain of N
qubits of increasing frequency as depicted in Fig. 3.9(a). We denote the frequency of the qubit
i by !i = !A + (i − 1)�∕(N − 1), with i ∈ {1, 2, ..., N}. As above, � = !B − !A, suchthat the frequency of qubit N is !B and !1 = !A. At time t = 0, the qubit 1 is excited
and the coupling g between qubit 1 and qubit 2 is switched on, its Rabi frequency being ΩN =
√

g2 + (�∕(N − 1))2. At time tN = �∕ΩN , the energy of qubit 2 is measured. The process stops
if it is found in the ground state, which happens with probability cos2(�N ), where tan

(

�N
)

=
(N−1)g∕� = (N−1) tan(�). If the excitation is successfully transferred to qubit 2, the coupling
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Figure 3.9: Entanglement and measurement based up-conversion mechanism. (a) Scheme of
the frequency up-converter (See text). (b),(c) Probability of transfer PN

succ as a function of g∕�
for variousN ((b)) and as a function ofN for various g∕� ((c)).

between 1 and 2 is switched off and the coupling between 2 and 3 is switched on. The same
process is repeated between qubits k and k + 1 until the excitation gets detected in qubit N ,
which happens with probability PN

succ = sin
2(N−1)(�N ). PN

succ is plotted in Fig. 3.9(b) and 3.9(c)
as a function of g∕� and N . For fixed values of g and �, it is clearly advantageous to increase
the number of intermediate qubits. The mechanism at play is reminiscent of the quantum Zeno
effect. Indeed, the probability for the excitation to be transferred to the last qubit goes to 1 as
the number of intermediate qubits increases (for fixed �

g
) since we have:

tan
(

�N
)

=
(N − 1)g

�

sin
(

�N
)

=
(N − 1)g

√

�2 + (N − 1)2g2
= 1

√

(�∕(N − 1)g)2 + 1
= e−

1
2 ln

(

1+( �
(N−1)g )

2
)

(3.39)

and thus:
PN
succ = e

−(N−1) ln
(

1+( �
(N−1)g )

2
)

≈ e−
1

(N−1) (
�
g )
2 (3.40)
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where the latter approximation holds and, furthermore, approaches 1 as long asN −1≫ ( �
g
)2.

Using the Bloch sphere representation can help visualize the cyclic nature of the evolution as
in Fig. 3.10(a).
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Figure 3.10: Two qubit dynamics. (a) Representation of the qubits’ quantum state in the Bloch
sphere spanned by {|01⟩ , |10⟩}. The eigenstates of H2qb are denoted by |

|

�+
⟩ and |

|

�−⟩. At
the end of (i) the qubit’s state is |

|

 (t0)⟩. After an unselective measurement, the state is �(t0).(b) Evolution of ⟨H2qb⟩ (dotted brown), ⟨Hloc⟩ (dashed blue), and ⟨V ⟩ (solid magenta) as a
function of time (See text).
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3.5.3 Photonic implementation

Using the spatial distribution and polarization of photon travelling in a linear optic setup it
is possible to obtain experimentally results in good agreement with our theoretical prediction
concerning the work value of information.
As explained in:

Kunkun Wang, Ruqiao Xia, Léa Bresque, and Peng Xue,
Experimental demonstration of a quantum engine driven by entanglement and local mea-

surements
Physical Review Research 4, no. 3 (2022),

the engine is simulated by encoding the states |0⟩ and |1⟩ of the first qubit onto the left and
right transverse spatial modes of single photons, and the states of the second qubit onto their
horizontal |H⟩ and vertical polarizations |V ⟩. This results in the following mapping:

|10⟩ → |RH⟩

|01⟩ → |LV ⟩ .

To account for the pre-measurement, the longitudinal spatial modes up |U⟩ and down |D⟩ are
used as an additional third qubit. This ingenious setup also allows for the simulation of the
working principle generalization to N-qubit.

https://doi.org/10.1103/PhysRevResearch.4.L032042
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IN THE PREVIOUS CHAPTER, wewere able towitness energy exchanges during the, fully quan-
tum, step of pre-measurement. We found that the average energy change of the system due

to the measurement, i.e., the quantum heat, was paid for by switching off the interaction be-
tween the meter and the system or more generally by modulating the strength of this interac-
tion. This modulation was simply modelled by a time dependent coupling strengh �(t). Such a
time dependent evolution is a sign that some parts of the system are not included in the model
which therefore prevents us from further tracking and accessing the origin of the quantum heat.
Therefore, we now proceed to analyse the closed dynamic of a pre-measurement. This natural
endeavour toward considering fully closed, autonomous quantum system was already fruitful
in quantum optics setups [?], Maxwell Demons using tape models [124, 125] or a three level
atom [54], and quantum engines [126, 127]. It allows for a description of the dynamics fully
within the realm of quantum physics, i.e., without invoking a extra classical degree of freedom
to generate a time-dependent Hamiltonian.

Coming back to the case of quantum measurements, nothing prevents us from imagining a
situation in which the switching on and off of the coupling between the measuring apparatus
and the system is mediated by another system included in the description, thus making the
full model autonomous. This typically corresponds to what happens in many quantum optics
experiments where Rydberg atoms are send in a cavity [128]. In these cases, the interaction
between the field in the cavity and the flying particle’s internal degree of freedom varies in time
due to the change in position of the particle. Therefore, the cost of the turning on and off the
interaction should be paid for by the kinetic degree of freedom of this flying particle.

In this chapter, we will particularize this situation to the case of a cavity field which mea-
sures the flying particule’s internal degree of freedom. Choosing a conservative interaction
such that the energy of the meter field is conserved and in a situation in which the energy of
the particule’s measured IDoF changes implies that this energy can only come from the kinetic
degree of freedom of the flying particle.

We focus on the near ideal regime, in which the particle is not too massive, such that the
energy change of its KDoF could be experimentally tractable, while keeping the motion of the
particle only slightly affected by the state of the IDoF throughout the evolution. Therefore,
the flying particle’s IDoF remains measured by the scatter’s IDoF and not by the KDoF. The
KDoF serves here to provide the necessary energy to modulate this dispersive interaction. The
nature of the induced energy exchanges and the conditions for such an autonomous interaction
to induce a good measurement are some of the main questions adressed in this chapter.

The approximated solution to the Autonomous dynamic was found thanks to my
collaboration with Nicolò Piccione on this project.

Some of this chapter content will soon be published as:
Nicolò Piccione, Léa Bresque, R. Whitney, A. N. Jordan, and A. Auffèves,
How good are kinetic degrees of freedom as work sources ?
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4.1 A flying particle interacting with a fixed scatterer
In this chapter, we derive the dynamic and the energy exchanges caused by the interaction of
a flying particle with a fixed scatter. We will model this situation via a time-dependent, non
autonomous Hamiltonian and also using a more refined, autonomous, time-independent model
whose solution makes use of the non-autonomous dynamics.

These two situations are presented in Fig. 4.1 in our specific case of interest which is the
measurement of the particule’s internal degree of freedom (IDoF) via the IDoF of a cavity field
mediated by their position dependent interaction.

4.1.1 General situation

In the most general situation, we consider a one-dimensional moving particle with internal de-
gree of freedom (IDoF) sent on the potential of spatial shape f (x) generated by a fixed scatterer
which can itself have IDoF. The joint internal degrees of freedom of the particle and scatterer
will be denoted IDoFs. The IDoF of the flying particle could be for instance the spin orientation
of the particle; its orbital decomposition or its angular momentum. They are called “Internal"
as opposed to the position/kinetic one. The full Hamiltonian of this particle, of mass m, and its
scatterer is given by:

H =
p̂2

2m
+H0 + f (x̂)⊗ V1, (4.1)

where p̂ is the momentum operator, x̂ the position operator,H0 is the bare Hamiltonian of the
IDoFs and V1 is the interaction term for the IDoFs. There are thus three degrees of freedom:
kinetic degree of freedom of the flying particle (KDoF); its internal degree of freedom and the
internal degree of freedom of the scatterer. Note thatH0 could be acting on the flying particle,the scatterer or both. Moreover, the situations described by Eq. (4.1) are not limited to the case
of measurements since V1 could for instance be chosen to act only on the flying particle’s IDoFand hence implement rotation of its initial state.

When the interaction strength is of the same order than the initial kinetic energy of the par-
ticle, flying particles sent on such an effective potential can get reflected [129, 128]. Therefore,
the KDoF can be strongly influenced by the state of the IDoF. This means that the KDoF can
become strongly correlated to the state of the IDoFs. This regime is not interesting for our
purpose since, as the interaction term is position dependent, it does not commute with the bare
KDoF Hamiltonian. This implies that the energy of this possible KDoF meter would change
during the interaction. Instead, we here want to track the energy exchanges in the counter intu-
itive case in which, the system received some energy but the conservative interaction prevents
this energy to come from the meter system. In other words, we do not want the KDoF to act as
a meter for the particle IDoF because it would not correspond to a conservative measurement.

In semi-classical limit, attained for a massive-enough point-like particle, whose spatial ex-
tension is much smaller that the typical lenght of the interaction region, the reduced dynamic of



72 CHAPTER 4: Energetics of an Autonomous Measurement

the IDoFs will be well approximated by the one induced by the corresponding time dependent
Hamiltonian [130]:

HNA(t) = H0 + f (x0 + v0t)V1 (4.2)
with x0 the starting position of the particle and v0 its constant velocity. By massive enough, we
imply here that the kinetic energy of the particle should be large enough that any reflection and
recoil of the particle can be neglected and that the amount of information exchanged between
the KDoF and IDoFs is negligible. This means that the global state can always be written as a
tensor product of the kind �K ⊗ �IDoFs, where �K corresponds to the kinetic state and �IDoFs tothe internal ones. This will allow us to investigate the energetic dynamics during the switching
on and off of the interaction term V1. In this case it is as if an operator was modulating this
interaction instead of simply turning it on and off as in the previous chapter.

This modulation can be accounted for by the KDoF of the particle, making the global evo-
lution autonomous. In the limit in which the KDoF state would be unaffected by the interaction
with the IDoF, i.e., for an infinitely massive and perfectly localized particle, all the work previ-
ously attributed to the operator would now come from the KDoFwithout affecting the evolution
of the IDoFs. Therefore, the KDoF would act as a perfect work source. i.e., a degree of free-
dom, usually classical, which can exchange energy without changing entropy. Modelling the
KDoF in the quantum formalism allows us to go beyond this ideal case and describe the impact
of the finite spatial extension of the flying particle. Ultimately, the entanglement between the
KDoF and IDoFS will reduce the quality of the energy transfer between them. This will lead
to a decrease of the proportion of the IDoFS energy change that comes in the form of work.
Using an approximated version of the autonomous time independent Hamiltonian of Eq. (4.1)
will allow us to access this quantity.

4.1.2 A qubit measured by a single mode cavity field

This general case can prove useful for our endeavour to better understand the energy flows due
to quantum measurements. Therefore, we particularize it to the case of single mode cavity
meter C measuring a qubit flying whose IDoF constitute our measured system S. In this case,
we choose the bare Hamiltonian of the IDoFs to be:

H0 =
ℏ
2
!q�Θ

⏟⏟⏟
HS

+ℏ!ca†a
⏟⏟⏟

HC

(4.3)

with a and a† the photon annihilation and creation operators of the cavity,HS the Hamiltonian
of the measured qubit and HC the Hamiltonian of the electromagnetic field inside the cavity.
The interaction Hamiltonian is given by

V1 =
ℏ
2
��za

†a, (4.4)
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Figure 4.1: Non Autonomous and Autonomous interaction of a qubit with a single mode cavity.

where we also introduced the qubit and cavity’s respective resonant frequency !q and !c aswell as the coupling strength � . The qubit’s bare Hamiltonian HS contains the operator �Θ =
x�x + z�z with x, z >= 0 and x2 + z2 = 1. We will also use the polar parametrisation:
x = sin(Θ) and z = cos(Θ) and refer to �Θ’s diagonalisation basis as the initial quantization
basis.

Note that in this case, the last term of Equation. 4.1 will correspond to a three-partite inter-
action between the cavity field, the qubit and the KDoF.

4.1.3 Unravelling pre-measurement’s energy exchanges

In order to motivate the interest of looking at the non-autonomous dynamics, aside for its use
in the autonomous one, we give some more context here about the energy exchanges caused by
a pre-measurement. Indeed, although its only difference with the measurement of a qubit by
another qubit derived in the previous chapter it that here the meter is a cavity field, the impact
of these difference of the nature of the energy exchange will not be negligible.

As we have seen in Chapter 1, the collapse of the wavefunction caused by projective mea-
surement is not associated with a consensual equation that would rule the dynamic of the mea-
sured system. That is to say that we do not know the time evolution of the system and meter
during the collapse. However, averaging the effect of such projective measurements leads to
the final state obtained from an unread measurement. Since, this state can be obtain from
a fully quantum, unitary evolution by invoking an ancillary quantum meter system: the pre-
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measurement, the average energy change of the system becomes accessible.
For this purpose, the general framework is composed of a systemS of bare HamiltonianHS

is being pre-measured by a meter systemM of bare Hamiltonian HM via the time dependent
interaction term VSM such that the total Hamiltonian is:

HSM = HS +HM + V SM (t). (4.5)
When the bare Hamiltonian of the system does not commute with the interaction term, i.e.,
[HS , V SM ] ≠ 0, the system can lose or gain energy due to the measurement. Moreover, we
choose [HM , V SM ] = 0 such that the meter can not provide and take this energy: the measure-
ment is thus conservative. If V SM (t0) = V SM (tm) = 0, i.e., that the interaction term is null
before and after the measurement, this term will also not contribute to the final energy balance.

Until now, we considered the case in whichHM = 0 since there were no bare Hamiltonian
for the meter qubit in the previous chapter (See Eq. (3.11)). Moreover, the interaction term of
the form V SM = f (t)V S ⊗ V M was such that ⟨V M

⟩(t) = 0 for all time t. This lead to us to
conclude that the quantum heat was received by the system in the form of a generalized heat
and to trace back its origin to the external work done to turn on and off the interaction (See
Figure. 3.7).

Here we consider a more general case in which we still have [HM , V SM ] = 0 but with a non
zero bare Hamiltonian of the meter. More importantly, the interaction term, still of the form
V SM = f (t)V S ⊗ V M , will be such that ⟨V M

⟩(t) = ⟨a†a⟩ ≠ 0 for all time t. The labelling of
the energy exchanges as work or heat will therefore prove to be more complicate in this context.

4.2 Non autonomous modelling

4.2.1 Non-Autonomous dynamics

First here, we derive the evolution induced by the time dependent Hamiltonian given by Eq. (4.2)
using the bare Hamiltonian from Eq. (4.3) and the interaction term of Eq. (4.4). This Hamilto-
nian only acts on the IDoFs and the kinetic degree of freedom generates this time dependence.
Therefore, the entropy of the IDoFs will stay constant during this dynamics and the energy they
receive will come in the form of an external work done on their interaction energy as defined
in Equation. (2.14). We can think aboutHNA(t) as resulting from the change of position of the
particle in the position dependent potential of shape f (x) at constant velocity. The validity of
considering a fixed velocity and a motion uncorrelated from the internal state evolution will be
discussed in next section.

Since the photon number operator a†a commutes with HNA at all times, it is useful to in-
troduce the qubit Hamiltonian associated to the n photon subspace:

Hn
NA(t) = ⟨n|HNA |n⟩ (t) =

ℏ
2

(

!qz + n�(t) !qx

!qx −!qz − n�(t)

)

+ ℏ!cn (4.6)
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where, for simplicity, we took x0 = 0 and v0 = 1 and introduced �(t) ≡ �f (t). This Hamilto-
nian has for eigenstates:

|

|

eΘ,n
⟩

= cos
(

Θn∕2
)

|

|

ez⟩ + sin
(

Θn∕2
)

|

|

gz⟩
|

|

gΘ,n
⟩

= − sin
(

Θn∕2
)

|

|

ez⟩ + cos
(

Θn∕2
)

|

|

gz⟩ (4.7)
with tan(Θn(t)

)

= !qx

!qz+n�(t)
and respective eigenvalues ℏ!cn + En(t) and ℏ!cn − En(t) given

that:
En(t) =

ℏ
2

√

(!qz + n�(t))2 + (!qx)2. (4.8)
Notice that for n = 0, omitting the subscript 0 to lighten the notations, we have

�Θ ||eΘ⟩ = |

|

eΘ⟩ ,
�Θ ||gΘ⟩ = − |

|

gΘ⟩ (4.9)
and E0 = ℏ!q

2
. In this subspace, the qubit and cavity state can always be written as:

|

|

 n(t)⟩ = (An(t) ||ez, n⟩ + Bn(t) ||gz, n⟩)e
−i!cnt (4.10)

and the Schrödinger equation leads to:

iℏ

(

Ȧn(t)e−i!cnt

Ḃn(t)e−i!cnt

)

+ iℏ

(

−i!cnAn(t)e−i!cnt

−i!cnBn(t)e−i!cnt

)

= Hn
na(t)

(

An(t)e−i!cnt

Bn(t)e−i!cnt

)

. (4.11)

Which simplifies to:

iℏ

(

Ȧn(t)

Ḃn(t)

)

=

(

Zn(t) X

X −Zn(t)

)(

An(t)

Bn(t)

)

, (4.12)

by defining
X = ℏ!qx∕2, and

Zn(t) = ℏ(!qz + n�(t))∕2. (4.13)
To solve this system analytically, we need to make some further assumptions. Especially, since
we want to apply this model to the specific case of the �z operator measurement on the initial
qubit state, the total duration of the interaction, and hence the speed v0, must be carefully
chosen.
Since we want to track the origin of the quantum heat we have no other choice but to take
a bare Hamiltonian of the qubit which does not commute with �z, i.e., take x ≠ 0. However,ideally, we would like to perform the pre-measurement associated to a quantum non demolition
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(QND) measure of the qubit in the �z basis. Although measurement are usually considered
as instantaneous, we here want to zoom in the dynamics of this measurement. However, the
average value of �z should still remain almost constant in order for the measurement to provide
some information about this observable. Thus, the dynamics has to happen on a time-scale tmsuch that ⟨�z⟩(0) ≈ ⟨�z⟩(tm). Two regimes are interesting in this regard:

• the very strong interaction one: !q ≪ � , where, starting at some time t1 and until a
time t2, we have X ≪ Zn(t). In this case, the tilt of the initial quantization axis with
respect to the measurement one: Θ with tan(Θ) = x∕z, can be arbitrary and the small
parameter is � = !q∕� . Notice that with a gaussian shaped potential t1 can be taken
arbitrarily close to 0 and t2 to tm as long as � is large enough to ensure n�(t1) ≫ x!qand n�(t2) ≫ x!q. In this case, the measurement time tm will be fast enough that the
evolution under �Θ will only be a small perturbation to the dynamics.

• the small tilt regime, where x ≪ z leading to the small parameter � = x∕z and thus
Θ≪ 1. In this case X ≪ Zn(t) at every time t ∈ [0, tm].

In both these regimes, we can use a perturbative expansion with respect to the small parameter
�n = max{X∕Zn(t)}t in the appropriate time window ([t1, t2] in the strong interaction case and
[0, tm] in the small tilt one). Indeed no mather if x ≪ z or if !q ≪ � , we will have �n ≪ 1. For
notation simplicity we will take the time window associated to the small tilt case. At zeroth
order in �n, we obtain the ideal evolution:

(A |

|

ez⟩ + B |

|

gz⟩)⊗ |�⟩
0th order

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
e−i ∫

t
0HNA(t)dt

Ae−i!qzt∕2 |
|

ez⟩ ||�̃
t
−

⟩

+ Bei!qzt∕2 |
|

gz⟩
|

|

|

�̃t+
⟩

, (4.14)
with

�̃t− = �e
−i∕2 ∫ t0 �(t

′)dt′e−i!c t and �̃t+ = �e
i∕2 ∫ t0 �(t

′)dt′e−i!c t, (4.15)
since e−|�|2∕2∑n

�ne−i ∫
t
0 �(t)dtn∕2e−i!cnt

√

n!
|n⟩ = |

|

|

�e−i ∫
t
0 �dt∕2e−i!c t

⟩

.
We solve Eq. (4.12) by cutting the total time duration into slices. Over a sufficently small

duration [0, 2dt], this first slice is such that �(t) ≈ �(dt). Thus, by considering Zn constantand at first order in X∕Zn(dt), the resulting coefficients can be written as:
An(t) = An(0)e−iZn(dt)t∕ℏ −

X
2Zn(dt)

Bn(0)(−e−iZn(dt)t∕ℏ + eiZn(dt)t∕ℏ)

Bn(t) = Bn(0)eiZn(dt)t∕ℏ −
X

2Zn(dt)
An(0)(−e−iZn(dt)t∕ℏ + eiZn(dt)t∕ℏ) (4.16)

for t ∈ [0, 2dt]. Repeating this procedure for the next time intervals and going back to contin-
uous time, we obtain for t > 0:

An(t) =An(0)e−i ∫
t
0Zn(t

′)dt′∕ℏ − iBn(0)
X
ℏ ∫

t

0
ei ∫

t′
0 Zn(t

′′)dt′′∕ℏe−i ∫
t
t′ Zn(t

′′)dt′′∕ℏdt′

Bn(t) =Bn(0)ei ∫
t
0Zn(t

′)dt′∕ℏ − iAn(0)
X
ℏ ∫

t

0
e−i ∫

t′
0 Zn(t

′′)dt′′∕ℏei ∫
t
t′ Zn(t

′′)dt′′∕ℏdt′, (4.17)
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interestingly, these coefficients can also be obtained by using the Dyson serie formalism. The
mathematical details about this method and the time discretization used to go from Eq. (4.16)
to Eq. (4.17) are given in the Appendix 4.5
Using the assumption that d�

dt
≪ !2qz

2, i.e., that the spatial shape of the interaction profil is
smooth enough, these coefficients simplify to (see Appendix 4.5 for more details):

An(t) =An(0)P ∗
n (t) − Bn(0)

!qx
2

(

Pn(t)
!qz + n�(t)

−
P ∗
n (t)

!qz + n�(0)

)

Bn(t) =Bn(0)Pn(t) + An(0)
!qx
2

( P ∗
n (t)

!qz + n�(t)
−

Pn(t)
!qz + n�(0)

)

(4.18)

where the phase factor is given by Pn(t) = ei ∫
t
0Zn(t

′)dt′∕ℏ = ei!qzt∕2e
i
2 n ∫

t
0 �(t

′)dt′ . From Eq. (4.18),
we recognize the zeroth order evolution given by the time dependent phase factor and the first
order evolution in �n which is given by the terms on the right. Note that the only assumptions
about the f function here is that it is a smooth integrable C1 function. Without loss of generality,
we take ∫ tm0 f (t)dt = 1, the strength of the interaction being set by � such that ∫ tm0 �(t)dt = �
with �(t) = �f (t).
Defining UNA(t) = e−

i
ℏ ∫

t
0(H0+V1f (t))dt =

∑

nU
n
NA |n⟩ ⟨n|, Eq. (4.18) implies that:

U n
NA(t) = e

− i
ℏ ∫

t
0(H0+

ℏ�
2 n�zf (t))dt

=
⎛

⎜

⎜

⎝

P ∗
n (t) − x

2z

(

Pn(t)
1+n�(t)∕!qz

− P ∗n (t)
1+n�(0)∕!qz

)

x
2z

(

P ∗n (t)
1+n�(t)∕!qz

− Pn(t)
1+n�(0)∕!qz

)

Pn(t)

⎞

⎟

⎟

⎠

(4.19)

where we recall that Pn(t) = ei!qzt∕2ein∕2 ∫ t0 �(t′)dt′ . At the end of the interaction, when t = tm suchthat �(tm) = �(0) = � , the unitary operation U n
NA can be simplified to:

U n
NA(tm) =

⎛

⎜

⎜

⎜

⎝

e−i!qztm∕2e−in∕2 ∫
tm
0 �(t′)dt′ −ix

z

sin
(

!qztm∕2+n∕2 ∫
t
0 �(t

′)dt′
)

1+n�∕!qz

−ix
z

sin
(

!qztm∕2+n∕2 ∫
tm
0 �(t′)dt′

)

1+n�∕!qz
ei!qztm∕2ein∕2 ∫

tm
0 �(t′)dt′ .

⎞

⎟

⎟

⎟

⎠

The Equation 4.20 is the most general one, i.e., it is valid even if � = !q∕� or � = x∕z are
small parameters. Notice however than is can be simplied to

U n
NA,�(t) =

⎛

⎜

⎜

⎜

⎝

(1 − i!qzt∕2)e−in∕2 ∫
t
0 �(t

′)dt′ −!qx

2n

(

ein∕2 ∫
t
0 �(t

′)dt′

�(t)
− e−in∕2 ∫

t
0 �(t

′)dt′

�(0)

)

!qx

2n

(

e−in∕2 ∫
t
0 �(t

′)dt′

�(t)
− ein∕2 ∫

t
0 �(t

′)dt′

�(0)

)

(1 + i!qzt∕2)ein∕2 ∫
t
0 �(t

′)dt′

⎞

⎟

⎟

⎟

⎠

(4.20)

at first order in � = !q∕� .
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Coming back to the most general case and using the coefficients of Eq. (4.18) in Eq. (4.10),
we obtain the solution of the non-autonomous dynamics under the hypothesis that:

• Either !q ≪ � (large coupling regime) or x ≪ z (small tilt regime).

• The derivative of the potential d�
dt

is much smaller that !2qz2.

This solution also works in the autonomous case if (as will be shown in next section):

• the particule is massive enough that it can be considered point-like and its position does
not get correlated with the IDoF.

• the kinetic energy ⟨ p̂2
2m
⟩ is much larger that the potential amplitude ℏ

2
�⟨a†a⟩ to allow us

to neglect any reflexion of the particle wavefunction.

If the initial state of the cavity is the coherent state |�⟩ (� is taken real to lighten a bit the
notation) and the qubit in the arbitrary state An(0) |e⟩ + Bn(0) |g⟩, with A2n(0) + B2n(0) = 1,
which at time zero do not depend on n, the final solution can eventually be written as:

Box 3.2: Non Autonomous solution (cavity meter)

|

|

 NA⟩ (t) = UNA(t)
(

An(0) |e⟩ + Bn(0) |g⟩
)

⊗ |�⟩

=
∑

n
U n
NA(t)e

−�2∕2 �n
√

n!

(

An(0) |e⟩ + Bn(0) |g⟩
)

e−i!cnt |n⟩ (4.21)

= | ⟩(0) (t) + | ⟩(1) (t) (4.22)
where the zeroth and first order contributions in , resp. | ⟩(0) (t) and | ⟩(1) (t), write:

| ⟩(0) (t) = An(0)e−i!qzt∕2 ||ez, �̃
t
−

⟩

+ Bn(0)ei!qzt∕2
|

|

|

gz, �̃
t
+

⟩

| ⟩(1) (t) = −
∑

n

Bn(0)x

2z
√

n!
e−|�|2∕2

(

ei!qzt∕2(�̃t+)
n

1 + n�(t)∕!qz
−

e−i!qzt∕2(�̃t−)
n

1 + n�(0)∕!qz

)

|

|

ez, n⟩

+
∑

n

An(0)x

2z
√

n!
e−|�|2∕2

(

e−i!qzt∕2(�̃t−)
n

1 + n�(t)∕!qz
−

ei!qzt∕2(�̃t+)
n

1 + n�(0)∕!qz

)

|

|

gz, n⟩

with the complex numbers �̃t− and �̃t+ defined in Eq. (4.15).
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When � = �(t) = �(0) and that the initial state of the cavity |�⟩ is such that |�|2 ≫ 1 with
� ∈ ℝ and |�|2� ≫ 1, or if !q ≪ � , the first order contribution in � = !q∕� becomes :

| ⟩(1) (t) = −
∑

n

Bn(0)x!q
√

n!n�
�ne−|�|2∕2

(

ei!qzt∕2ein�t∕2 − e−i!qzt∕2e−in�t∕2
2

)

e−in!c t |
|

ez, n⟩

+
∑

n

An(0)x!q
√

n!n�
�ne−|�|2∕2

(

e−i!qzt∕2e−in�t∕2 − ei!qzt∕2ein�t∕2
2

)

e−in!c t |
|

gz, n⟩

= −
∑

n

iBn(0)x!q
√

n!n�
�ne−|�|2∕2 sin

(

!qzt∕2 + n�t∕2
)

e−in!c t |
|

ez, n⟩

−
∑

n

iAn(0)x!q
√

n!n�
�ne−|�|2∕2 sin

(

!qzt∕2 + n�t∕2
)

e−in!c t |
|

gz, n⟩

= −
ix!q
�

e−|�|2∕2
∑

n

�n
√

n!n
sin(n∕2�t)e−in!c t(Bn(0) ||ez, n⟩ + An(0) ||gz, n⟩) (4.23)

where the last equality is obtained by only keeping the zeroth order contribution from the sine
function in order for the full term to be of order one.

The result of Box 3.2 conveys important messages. Firstly, it clearly appears that the cavity
states evolves according on the IDoF of the particle and that the information is encoded in
the phase of the field. Two pointer states indeed emerge: |

|

�̃+
⟩ and |

|

�̃+
⟩ which only differ by a

phase factor exactly as expected from the zeroth order solution given in Eq. (4.14). However, the
first order correction tells us that when x ≠ 0, these pointer states are not perfectly correlated
with the qubit’s internal states. i.e., the information extraction is incomplete. This result is
reminiscent of the WAY theorem introduced in Box 1.3. Indeed, once the interaction is turned
on and assuming that the total Hamiltonian stays constant during the creation of correlations
between the IDoFs, we are in the case of the measurement of an observable OS = �z whichdoes not commute with the total Hamiltonian which is a conserved quantity in this time interval.

Hence, the measurement cannot be fully accurate, i.e., the final state of the meter does not
allow to know exactly the initial probabilities of the system to be in the |

|

ez⟩ and ||gz⟩ states.

4.2.2 Non-Autonomous energy exchanges

For now on focussing on the strong coupling case, for which!q ≪ � , we investigate the energy
exchange cause by the obtained non-autonomous dynamic.
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Maximizing the quantum heat

When An(0) = − sin(�∕2) and Bn(0) = cos(�∕2), i.e., for an initial state parametrized by � in
the zy plane of the Bloch sphere, the state at time t writes :
|

|

 NA⟩ (t) = − sin(�∕2)e−i!qzt∕2 ||ez, �̃
t
−

⟩

+ cos(�∕2)ei!qzt∕2 ||
|

gz, �̃
t
+

⟩ (4.24)
−
ix!q
�

e−|�|2∕2
∑

n

�n
√

n!n
sin(n∕2�t)e−in!c t(cos(�∕2) |

|

ez, n⟩ − sin(�∕2) ||gz, n⟩)

If � = Θ, the initial state corresponds to the ground state of HNA(t = 0) such that its aver-
age energy is −E0(0) = −ℏ

2
!q, as defined in Eq.4.8. We then wonder how to choose � in

order to maximize the energy received by the measured qubit during the pre-measurement.
Since the average energy of the meter cavity is not affected by the pre-measurement, due to
[HSM,HM ] = 0 and that the coupling energy is null at the beginning and end, due to the
time dependent coupling constant being such that �(0) = �(tm) ≈ 0, we have that the changein the system average energy due to the pre-measurement, is also equal to the total energy
change of the global system and meter system. At lowest order, using the quantities derived in
Appendix 4.5.2 we find that they write:

Δ⟨HS⟩ = Δ⟨HNA⟩ =
ℏ
2
!q(xΔ⟨�x⟩ + zΔ⟨�z⟩) = x2

ℏ
2
!q (4.25)

with Δ⟨.⟩ = ⟨.⟩(t+m) − ⟨.⟩(t−0 ).
The energy given to the total system is thus maximal when x2 = sin2(�) = 1, i.e., when

� = �∕2. This means that the larger the angle between the initial qubit eigenenergy basis and
measurement basis is, the more energy can be extracted. This is the case when the initial state of
the qubit, i.e., the ground state of the bare Hamiltonian of the system qubit is (|

|

ez⟩+ |

|

gz⟩)∕
√

2.

Characterizing the energy exchanges

To characterize the nature of the energy exchanges, one can apply the BQE model described in
Chapter 2, to the global HamiltonianHNA and its two associated subsystems: the qubit S and
the cavity C . Independently of their initial state, doing so we find the generalized work and
heat rates :
d
dt

WS = −
i
ℏ
TrS{[HS ,VS(t)]�S(t)} = −ℏ

2
�(t)!qx⟨a†a⟩�C ⟨�y⟩�S (t)

d
dt

QS = Tr{[HS , f (t)V1]�SC} = −
ℏ
2
�(t)!qx⟨�y ⊗ a†a⟩�QC (t)

d
dt

WC = −
i
ℏ
TrC{[HC(t),VC(t)]�C(t)} = − i

ℏ
TrC{

[ℏ
2
!ca

†a, ℏ
2
�(t)a†a⟨�z⟩(t)

]

�C(t)} = 0

d
dt

QC = Tr{[HC , V1]�SC} = 0
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since [HC , V1] = 0 and with VS(t) = �(t)�z⟨a†a⟩�C (t) and VC(t) = �(t)a†a⟨�z⟩�S (t). From these
last equations, it appears that the cavity does not receive heat nor work whereas the measured
qubit exchanges both heat and work. The external work done by modulating the interaction
strength directly affects the interaction energy VSC whose flux can be decomposed into:

V̇ ⊗
SC = −

i
ℏ
Tr([f (t)V1,HNA]�S ⊗ �C) = ℏ

2
!q�(t)⟨�y⟩�S (t)⟨a†a⟩�C

V̇ �
SC = −

i
ℏ
Tr([f (t)V1,HNA]�SC) =

ℏ
2
!q�(t)⟨�y ⊗ a†a⟩�SC (t)

V̇ ext
SC = Tr(df (t)

dt
V1�

SC) = ℏ
2
d�
dt
(t)⟨�z ⊗ a†a⟩�SC (t). (4.26)

The different quantities are summerized in the Table. 4.2. The path of the energy from the ex-
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Figure 4.2: Energy fluxes leading to a change of the qubit system’s energy due to its non au-
tonomous measurement by a cavity field meter. The quantum heat received by the system
appears to come from generalized heat and work fluxes, using the definitions of Chapter 2.
ternal work done on the total systemW ext

SC to the change of the system energy ΔUS = ∫ tmt0
dUS
dt
dt

is similar to the one presented in Figure. 3.7 but with the addition of a work exchange between
the interaction energy and the qubit system energy.

Simulating the total evolution using the python module qutip, we find that, with a gaussian
shaped potential, as shown in Fig. 4.3, the total energy received almost exactly corresponds to
the expected value of ℏ!qx2∕2.More surprisingly, the quantum heat is here found to partly come from the generalized work
done on the system. This result is in contrast to the ones found in the previous chapter where
we had ⟨V M

⟩ = ⟨�Mx ⟩ = 0 at all times. Here instead, ⟨V M
⟩�SM (t) = ⟨V M

⟩�M (t) = ⟨V C
⟩�C (t) =

⟨a†a⟩ ≠ 0 since the meter is the cavity. This quantity is very important because, as we found
in Eq. 3.32, the work done on the system, between the initial and final time t0 and tm, can be
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Figure 4.3: Non autonomous pre-measurement of a flying particule’s IDoF. Left: Total work
and heat received by the qubit during the pre-measurement. Right: Wigner distributionW (�) =
W (x = Re(�), p = Im(�)) = 1

�ℏ
∫∞−∞ ⟨x + y| �̃∗(tm) |x + y⟩ ⟨x − y| �̃(tm) |x − y⟩ e−2ipy∕ℏdy of

the final state of the pointer state associated to ||
|

�̃g
⟩

(tm) (up) and ||�̃e⟩ (tm) (down). The function
f is a gaussian function such that f (t) = 1

�
√

2�
e−(t−�)∕2�2 with � the width and � the middle

position of the potential. Parameters: !q = !c = 1; � = 100; Θ = � = �∕4; � = 2; � = 5�∕2;
� =

√

�∕2∕� ; duration = 5�, Hilbert space dimension for the cavity DoF = 20.

written as:
WS (t0 → tm

)

= ⟨V M
⟩ ∫

tm

t0

dt�̇(t)⟨V S
⟩(t). (4.27)

which is hence proportional to ⟨V M
⟩.

One could suspect that increasing the coupling constant � would lead to vanishingly small
changes in ⟨V S

⟩(t) during the interaction. This is indeed correct since, using Eq. 4.76, one has:
⟨V S

⟩(tm) − ⟨V S
⟩(0) = ⟨�z⟩(tm) − ⟨�z⟩(0) ≈ −2 sin(�)!qtm ∝

�→∞

1
�
.

assuming that the total duration time � = tm− t0 = tm should be such that n�� remain constant
(and ideally close to �) in order to extract information about the qubit. However, one cannot
remove ⟨V S

⟩ for the integral appearing in Eq. 4.27 and conclude that the work should vanish
for symetric potential for which ∫ tmt0 dt�̇(t) = 0. Indeed, for a constant potential �(t) = � for
t ∈]t0, tm[, applying the result of Eq. 3.38, the work done on the system can be rewritten as

WS (t0 → tm
)

= −A�n̄
(

⟨�z⟩(tm) − ⟨�z⟩(t0)
�

)

= 2 sin(�)!qA�n̄ (4.28)
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It is fascinating to notice that here, assuming an initial coherent state, minimizing ⟨V M
⟩ =

⟨a†a⟩ would imply using a very low number of photon in the cavity and therefore result in low
correlations between the system and meter due to large the overlap of the two pointer states
|

|

|

�̃t+
⟩ and |

|

�̃t−
⟩. This is similar to the case of the previous chapter in which the measurement of

a qubit by another qubit would have not created any correlations if the initial state of the meter
qubit was maximizing or mimizing ⟨V M

⟩qb∶qb = ⟨�x⟩.

These results confirm that a larger indeterminacy of the meter initial state in the basis of
the interaction term V M , which is here a conserved quantity, leads to a higher accuracy of the
measurement. They also pinpoint the non trivial relation between the quality of the correlation
between the system and the meter and the nature of the energy received by the system.

Note also that, no matter the choice of bipartite time-independent Hamiltonian and the
nature and initial state of the sub-systems, the work and heat fluxes are identically null if the
interaction term commutes with the bare energy of the system, i.e., when there is no quantum
heat.
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4.3 Autonomous modelling

Coming back to the general case of a flying particle interacting with a fixed scatter, we here
derive the dynamic of the IDoF from the autonomous modelling. Since the KDoF will not be
considered classical enough that it is not affected by the interaction with the scatterer anymore,
the IDoFs’ reduced dynamic will depart from the non-autonomous unitary one. We are inter-
ested here in the effect of this perturbation on the quality of the KDoF as a work source. Note
that the autonomous solution derived here is very general and could be applied to any type of
meter and even to situations other than pre-measurements.

4.3.1 Autonomous dynamics

In the previous analysis, the dynamics was non-autonomous since the total Hamiltonian was
time dependent. Here instead, we model the varying interaction by considering a quantum
description of the flying particle position during its passage through an interaction region, as
depicted in the right pannel of Figure 4.1. By including its kinetic degree of freedom into the
model we can use the Hamiltonian given in Eq.4.1 which is indeed time independent. To study

Interaction	
zone

𝑃(
𝑥,
𝑡)

𝑈( 𝑥! + 𝑣!𝑡, 𝑥!

𝑈( 𝑥 + 𝑣!𝑡, 𝑥! + 𝑣!𝑡

𝑥! 𝑥 𝑥! + 𝑣!𝑡
𝑥 + 𝑣!𝑡

𝑈(" 𝑥, 𝑥!

Figure 4.4: Top Panel: Initial space probability distribution of a heavy particle. The interaction
zone is pictured by the red dashed lines. Bottom Panel: representation of the decomposition
employed to Taylor expand the unitary evolution Ũ (x + v0t, x) around the evolution given by
Ũ (x0+v0t, x0). If the wavepacket is sufficiently localized, we can Taylor expand Ũ †(x, x0) and
Ũ (x + v0t, x0 + v0t).
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the dynamics of a heavy particle, we make use of an approximation which, to the best of our
knowledge, was first introduced in Ref. [131]. We define the operator q̂ = p̂ − p0 where p0 isthe average momentum of the initial state of the particle. By substituting back p̂ in Eq. (4.1)
we get

H ≃ v0q̂ +H0 + f (x̂)⊗ V1, (4.29)
where v0 = p0∕m and we neglected the term p20∕(2m) for being a constant and the term q̂2∕(2m),
associated to momentum fluctuations, because we assume it is negligible. Once v0 is fixed, theterm q̂2∕(2m) goes to zero form→ ∞. The regime described by Eq. (4.29) is of special interest
because it is solvable while maintaining the motion quantum. Due to the form of Eq. (4.29)
the wavepacket travels at constant speed v0 without being deformed. This can be easily seen
in the Heisenberg representation of the position operator. We get x̂H (t) = x̂H (0) + v0t, wherewe assumed t0 = 0 and the subscript H denotes Heisenberg representation. For this reason,
a system described by the Hamiltonian of Eq. (4.29) is sometimes referred to as a Quantum
Clock [131, 132, 133], especially in connection to theory of quantum measurements. We will
adhere to this terminology by referring to the Hamiltonian of Eq. (4.29) as the clock Hamilto-
nian. It may seem counter intuitive that the particle momentum can change even if its velocity
is constant. As we will show later, this effect can be traced back to the fact that the phase
of the spatial wavepacket will vary differently, with respect to the position, depending on the
interaction strength and IDoF state.

The Hamiltonian of Eq. (4.29) can be exactly solved when the exact solution of the non-
autonomous dynamics is known. The formal solution for the non-autonomous dynamics of the
IDoF associated to the evolution from x to x + v0t is given in the form of the unitary operator

Ũ (x + v0t, x) = T exp
[

− i
ℏ ∫

t

0
ds H̃(x + v0s)

]

, (4.30)

where T is the time-ordering operator and we defined the position-dependent Hamiltonian
H̃(x) ≡ H0 + f (x)V1 = HNA(

x−x0
v0
). Notice that, unlike the two last terms in Eq 4.29, H̃(x)

only acts on the IDoF and not on the KDoF.
The most generic state at time t = 0 can be written as ⟨x|�(0)|y⟩ = A0(x, y)�0(x, y), where

|x⟩ and |y⟩ are position eigenstates in the kinetic degree of freedom (KDoF) Hilbert space and
�0(x, y) is an operator in the IDoFsHilbert space associated to the couple of spacial points (x, y).We take A0(x, x) ≥ 0 and �0(x, x) to be a proper density matrix, so that A0(x, x) represents theprobability density function of finding the particle at point x at t = 0. When the initial state is
a product state, �0(x, y) does not depend on (x, y) and one can simply write �0. Moreover, if
the initial state of the KDoF is pure, A0(x, y) =  0(x) ∗

0 (y), where  0(x) is the wavefunctionof the KDoF at time t = 0. Therefore, by linearity of the Schrödinger equation, the solution for
a generic wavepacket  0(x) is given by

⟨x + v0t|| (t)⟩ =  0(x)Ũ (x + v0t, x) || int⟩ , (4.31)
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where |
|

 int⟩ is the initial state of the IDoF, which we assumed to be uncorrelated with the KDoF
at the start of the dynamics. In the most general case, at time t, the state can be written as:

⟨x + v0t|�(t)|y + v0t⟩ = A0(x, y)Ux(t)�0(x, y)U †
y (t), (4.32)

where we defined Ux(t) ≡ Ũ (x + v0t, x). By tracing over the IDoFs, the density operator for
the KDoF is

⟨x + v0t|�K(t)|y + v0t⟩ = A0(x, y) Tr
[

Ux(t)�0(x, y)U †
y (t)

]

, (4.33)

while tracing over the KDof, the density matrix of the IDoFs is

�I (t) = ∫

+∞

−∞
dxA0(x, x)Ux(t)�0(x, x)U †

x (t). (4.34)

Notice that ⟨x|�K(t)|x⟩ = A0(x − v0t, x − v0t), i.e., the position probability density function
travels at constant velocity v0 no matter the interaction due to the form of the Clock Hamil-
tonian. Thus the solution can be written in terms of the non-autonomous solution given in
Eq. (4.22) as long as the Clock Hamiltonian is a good approximation of the initial one.

If the traveling wavepacket is well localized in space (narrow but finite width) and that H̃(x)
varies on a larger scale than the wavepacket localization, we can greatly simplify Eq. (4.31).
Within the Clock Hamiltonian formalism, the wavepacket moves from left to right at constant
velocity v0. After a time t the center of the wavepacket is located at x0 + v0t. The evolution ofthe IDoF associated to x0 is simply given byUNA(t) = Ũx0(t) = Ũ (x0+v0t, x0), i.e., correspondsto the non autonomous solution. For all the other points, we can first evolve the IDoF from x
to x0 by means of Ũ (x0, x), then from x0 to x0 + v0t by means of Ũ (x0 + v0t, x0) and, finally,from x0 + v0t to x + v0t by means of Ũ (x + v0t, x0 + v0t). This consideration, illustrated in
the bottom pannel of Fig. 4.4, allows us to simplify Eq. (4.31) as long as we can legitimately
approximate Ũ (x0, x) and Ũ (x + v0t, x0 + v0t) by means of a Taylor expansion such that:

Ũx(t) = Ũ (x + v0t, x) = Ũ (x + v0t, x0 + v0t)Ũ (x0 + v0t, x0)Ũ †(x, x0). (4.35)

To obtain the contribution of the narrow wavepacket’s spatial extension on the dynamic, we use
the Dyson serie expansion of Ũ (x + v0t, x0 + v0t) = T exp

[

− i
ℏ
∫ (x−x0)∕v00 ds H̃(x + v0(t + s))

]

which writes:

Ũ (x+v0t, x0+v0t) ≈ 1− i
ℏ ∫

t′

0
dsH̃(x0+v0(t+s))−

1
2ℏ2 ∫

t′

0 ∫

t′

0
dsds′H̃(x0+v0(t+s))H̃(x0+v0(t+s′))

where t′ = �x∕v0 with �x = x − x0.
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Using the expansion H̃(x0 + v0(t + s)) ≈ H̃(x0 + v0t) + v0s)xH̃(x0 + v0t) this becomes:

Ũ (x + v0t,x0 + v0t) ≈ 1 − i
ℏ ∫

t′

0
ds(H̃(x0 + v0t) + v0s)xH̃(x0 + v0t))

− 1
2ℏ2 ∫

t′

0 ∫

t′

0
dsds′(H̃(x0 + v0t) + v0s)xH̃(x0 + v0t))(H̃(x0 + v0t) + v0s′)xH̃(x0 + v0t))

= 1 − i �x
ℏv0

H̃(x0 + v0t) − i
�x2

2ℏv20
v0)xH̃(x0 + v0t) −

1
2

(

�x
ℏv0

)2

H̃2(x0 + v0t).

(4.36)
Thus, a similar Dyson serie expansion on Ũ †(x, x0) we obtain:

Ũ †(x, x0) ≃ 1 + i �x
ℏv0

H̃(x0) +
i�x2

2ℏv0
)xH̃(x0) −

1
2

(

�x
ℏv0

)2

H̃2(x0). (4.37)

If the wavepacket starts at a position x0, far from the interaction region, introducing H̃0 ≡
H̃(x0) ≈ H0, H̃t ≡ H̃(x0 + v0t), H̃ ′

0 ≡ )xH̃(x)|x0 and H̃ ′
t ≡ )xH̃(x)|x0+v0t, and replacing

Eq.(4.36) and Eq.(4.37) into Eq. (4.35), we get:
Ũ (x + v0t, x) ≃
(

1 − i �x
ℏv0

H̃t −
i�x2

2ℏv0
)x0H̃t −

1
2

(

�x
ℏv0

)2

H̃2
t

)

UNA(t)

(

1 + i �x
ℏv0

H̃0 +
i�x2

2ℏv0
)x0H̃0 −

1
2

(

�x
ℏv0

)2

H̃2
0

)

= UNA(t) −
i
ℏv0

�x(H̃tUNA(t) − UNA(t)H̃0)

+ �x2
[

1
ℏ2v20

(
−H̃2

t UNA(t) − UNA(t)H̃
2
0

2
+ H̃tUNA(t)H̃0) −

i
2ℏv0

()x0H̃tUNA(t) − UNA(t))x0H̃0)

]

= UNA(t) − i
�x
ℏv0

U1(t) +
(

�x
ℏv0

)2

U2(t) (4.38)

with the first and second order contribution:
U1(t) = H̃tUNA(t) − UNA(t)H̃0

U2(t) = H̃tUNA(t)H̃0 −
H̃2
t UNA(t) + UNA(t)H̃

2
0

2
−
iℏv0
2

(

H̃ ′
tUNA(t) − UNA(t)H̃

′
0

)

. (4.39)

When the measurement is not tilted with respect to the bare HamiltonianH0, i.e., [H0, V1] = 0,it means that at all times [H̃t, UNA(t)] = 0. However, the spatial extension still has some
influence on the dynamics as long as H̃t ≠ H̃0. At the final time however, long after the
spatial wavepacket has left the interaction region, H̃t ≈ H̃0 and U1 and U2 vanish. Indeed,
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the component of the initial IDoF will acquire a slightly different phase during the interaction
according on each possible initial position leading to correlations between the IDoFs andKDoF.
But at the end, no matter the initial position, each of themwill have interacted with the scattered
IDoF for the same amount of time and therefore will have acquired the same phase.

We note that the initial spread of thewavepacketΔx is such that (Δx)2 = ∫∞−∞(�x)2A0(x, x)dx.Moreover, we introduce the quantity EI (t), which is the typical energy scale of the IDoFs’ bare
Hamiltonian, such that the parameter " = EI (t)Δx

ℏv0
is dimensionless. From the result of Eq. (4.38)

applied to the initial state �0 of the IDoFs, we obtain, in the case when the initial state of the
system is a product state of KDoF and IDoF, the global Autonomous solution:

Box 3.3: Autonomous solution

�(t) = ∫

∞

−∞ ∫

∞

−∞
dxdyA0(x, y) ||x + v0t⟩ ⟨y + v0t|| Ũx(t)�0Ũ

†
y (t). (4.40)

given that the global initial state is ∫∞−∞ ∫∞−∞A0(x, y) |x⟩ ⟨y| dxdy⊗ �0. And the reducedstate of the IDoFs is given by:

�IDoFs(t) ≃ �C(t) = �NA(t) +
(

EI (t)Δx
ℏv0

)2

C(�0, t) (4.41)

where the density operator �NA(t) = UNA(t)�0U
†
NA(t) is the solution of the non-

autonomous dynamics governed by the time-dependent Hamiltonian H̃(x0+v0t). More-
over, C(�0, t) is what we call the Correction Term, defined as:

C(�0, t) =
1

E2
I (t)

([

H̃t, UNA
[

H̃0, �0
]

U †
NA

]

+ UNADH̃0
(�0)U

†
NA +DH̃t

(UNA�0U
†
NA)

−
iℏv0
2
[H̃ ′

t , UNA(t)�0U
†
NA] − UNA[H̃

′
0, �0]U

†
NA

)

, (4.42)

where the time dependence of UNA is kept implicit for concision and we recall that H̃0 ≡
H̃(x0) and H̃t ≡ H̃(x0 + v0t), and that their spatial derivatives are denoted by H̃ ′

0 ≡
)xH̃(x)|x0 and H̃ ′

t ≡ )xH̃(x)|x0+v0t. We also introduced the notation DX(�) = X�X† −
(1∕2)

{

X†X, �
}.

Interestingly, the correction to the IDoF dynamics does not have a first order contribution.
If the initial state is diagonal in the bare Hamiltonian basis, i.e., [�0,H0] = 0, such as when westart in its ground state, and that at the final time �NA(tm) also commutes withH0, the correctionterm completly vanishes at the final time tm where H̃ ′

0 ≈ H̃
′
t (tm) ≈ 0, H̃0 ≈ H0 ≈ H̃t(tm). Thisis expected because in these conditions, the free evolution before and after entering the inter-

action region only comes as a phase factor on the IDoFs which are therefore in the same state
when entering (and leaving) this region no matter the initial position of the wavepacket. At the
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end of the evolution, an initial state |
|

 IDoF ⟩ (0)⊗ | (x)⟩ becomes |
|

 IDoF ⟩ (tm)⊗ | ′(x)⟩, i.e.,
no correlation remain between the KDoF and IDoFs. We must not conclude that this correc-
tion term is useless in this case however. Indeed, at intermediate times, the IDoF associated
to a position on the left of the interaction region will have reached its final state whereas those
associated to position still inside of this region not. There are thus correlations between KDof
and IDoF at intermediate times which are important to take into account to characterize the
nature of energy exchanges.

Moreover, in the perpective of the measurement of the operator V1 such that [H0, V1] ≠ 0,even when starting with a state such that [�0,H0] = 0, we will not have [�NA(tm),H0] = 0
except in very specific cases. However, before coming back to the particular measurement
case, note that the results of the above box are very general and can be applied to any massive
system with internal degrees of freedom interacting with a fixed system having itself internal
degrees of freedom, via a position dependent term. Therefore, it is not limited to the study of
quantum measurements. The KDoF could therefore very well serve as a work source to fuel
the unitary manipulation of a qubit state for instance, in the limit of a classical particle. Thus,
Equation. 4.41 is useful to access the second order departure from this ideal situation.

4.3.2 Autonomous measurement

In our specific measurement case, i.e., using the bare Hamiltonian from Eq. (4.3) and the inter-
action term of Eq. (4.4), and starting from the state �0 for which the qubit is in the ground stateof HS we have [H̃0, �0] = 0 when the particle starts far enough from the interaction region
such that H̃(x0) ≈ H0. Hence, �NA(t) is given by Eq. (4.22) and

C(�0, t) =
1

E2
I (t)

(

DH̃t
(�NA(t)) −

iℏv0
2
[H̃ ′

t , �NA(t)]
)

, (4.43)

since DH̃0
(�0) = 0 and H̃ ′

0 ≈ 0. Moreover, at the final time tm when the particle is far enough
to the right of the interaction region, H̃ ′

tm
≈ 0 and the final state of the IDoFs reads:

�C(tm) = �NA(tm) +
(

Δx
ℏv0

)2

DH0
(�NA(tm)) (4.44)

since at time tm, H̃t = H0.As a result, the final energy of the IDoF will be:

⟨H0⟩�c (tm) = ⟨H0⟩�NA(tm) +
(

Δx
ℏv0

)2

Tr(H0DH0
(�NA(tm))) = ⟨H0⟩�NA(tm) (4.45)

from the fact that DH0
(�NA(tm)) = H0�NA(tm)H

†
0 − (1∕2)

{

H†
0H0, �NA(tm)

} and the cyclicity
property of the trace. Hence, the quantum heat received by the IDoFs derived in Eq. (4.25) is
unaffected by the spatial extension of the KDoF at second order in Δx

ℏv0
.
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Efficiency of the Kinetic Degree of Freedom as a work source

Since we want to measure the IDoF of the flying particle via the cavity state, the KDoF would
ideally couple and uncouple the IDoFs for the right amount of time without getting itself corre-
lated with any of them. Assuming a gaussian shape for the initial wavepacket of the incoming
particle, the narrower this distribution is in position, the closer to the ideal non-autonomous
dynamic the evolution will be. From Heisenberg uncertainty relation, this implies that the ini-
tial momentum distribution Δp of the particle is large (at least such that Δp > ℏ∕Δx). In this
case, the IDoF’s state dependent shift in momentumwill lead to highly overlapping distribution
associated to each of these possible states. Hence, there is a trade-off between the information
acquired by the KDoF about the IDoF (which we want to avoid) and the quality of the mea-
surement (here to be understood at the proximity to the ideal non autonomous dynamics).

When the KDoF acts as an ideal work source, the entire energy change of the IDoFs (of the
meter and system) can be regarded as work, and the von Neumann entropy of the IDoFs does
not change. This is not the case for a non-ideal work source. Therefore, the ratio between work
done on the IDoF and energy change of the IDoF can be used to characterize the quality of the
KDoF as a work source.

To define the work, we use again the definition of Chapter 2 where, this time,
the two parts of the bipartite system are: all the IDoFs (of the cavity and qubit) treated as a
single system denoted I and the KDoF, denoted K .

Since the interaction between them is of the form V KI = V K ⊗V I , the work fluxes within
this bipartite system can be written as:
ẆK(t) = −

⟨

V I⟩

t
d
dt

⟨

V K⟩

t ; ẆI (t) = −
⟨

V K⟩

t
d
dt

⟨

V I⟩

t ; V̇ ⊗
KI (t) =

d
dt

[⟨

V K⟩

t

⟨

V I⟩

t

]

.

with V K = f (x̂) and V I = V1 =
ℏ
2
��z ⊗ a†a. This implies, from integrating the equation

ẆK+ẆI+V̇
⊗
IK = 0 between the initial time t = 0 and the final time t = tm, that the work done on

the IDoFs I is equal and opposite to the one done on the KDoFK since ⟨V K
⟩

0 =
⟨

V K
⟩

tm
= 0.

This does not imply, however, that the work fluxes are equal and opposite at intermediate times.
To go farther, we note that the effective interaction term acting on the IDoFs is:

VI (t) = V1 TrK
{

f (x̂)�K(t)
}

, (4.46)
where �K(t) is the reduced density matrix of the KDoF at time t. Because of the structure of the
Clock Hamiltonian, this effective Hamiltonian can be computed without the exact knowledge
of the KDoF density operator such that:

VI (t) = V1I(t), where I(t) ≡ ∫

+∞

−∞
dxf (x)A0(x − v0t, x − v0t). (4.47)

where the function I(t) only depends on the spatial profile of the potential f (x), and the initial
state of the KDoF.
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In the case of a narrow wavepacket with respect to the typical scale over which the potential
varies, we can use the approximated evolution given by �C(t) (see Eq. (4.40)) and decompose
the work flux done on the IDoFs into its ideal non-autonomous value plus another term. To
do this, we expand the function I(t) to first order in Δx∕L where L is the typical size of the
interaction region:

I(t) = I0(t) + IΔ(t),where I0(t) ≡ ∫

+∞

−∞
dxf (x)�(x − v0t − x0) = f (x0 + v0t)

and IΔ(t) ≡ ∫

+∞

−∞

1
2
d2f
dx2

|

|

|x0+v0t
(x − x0)2A0(x, x) dx =

(Δx)2

2
d2f
dx2

|

|

|x0+v0t
.

(4.48)
such that I(t) becomes I0(t) in the limit of a point-like particle.
The work flux received by the IDoFs, can then be written:

ẆI = −
i
ℏ
Tr([H0,VI (t)]�I (t)) = −

iI(t)
ℏ

Tr([H0, V1]�I (t)) (4.49)

with �I (t) the IDoFs reduced state at time t. We can now decompose this work flux into four
pieces:

ẆI = Ẇ NA
I + "2Ẇ C

I + Ẇ
Δ
I + "

2Ẇ Δ,C
I , where " ≡

EIΔx
ℏv0

, (4.50)
with the non-autonomous work flux defined as:

Ẇ NA
I ≡ −

ℏ!qx�
2

I0(t)Tr
[

�y ⊗ a†a�NA(t)
] and W NA

I = ∫

tm

0
ẆNA dt . (4.51)

The correction terms are given by:

Ẇ C
I = −

ℏ!qx�
2

I0(t)Tr
[

�y ⊗ a†aC(t)
]

,

Ẇ Δ
I = −

ℏ!qx�
2

IΔ(t)Tr
[

�y ⊗ a†a�NA(t)
]

,

Ẇ Δ,C
I = −

ℏ!qx�
2

IΔ(t)Tr
[

�y ⊗ a†aC(t)
]

. (4.52)

Since IΔ(t) is of second order in Δx, so is Ẇ Δ
I whereas Ẇ Δ,C

I is of order four and thus con-
sidered negligible. In the case of a spatially-narrow wavepacket with respect to the interaction
region length-scale, the function IΔ(t) is much smaller than I0(t) so that Ẇ Δ

I is small with
respect to Ẇ NA

I . A non-autonomous energy exchange value can also be defined as
ΔUNA

I ≡ Tr{H0�NA(tm)
}

− Tr{H0�NA(0)
}

. (4.53)
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Since this is the ideal case scenario, one has that W NA
I = ΔUNA

I . By using the IDoFs state
obtained in Eq. (4.40) we can write the total energy exchange as
ΔUI ≡ Tr

[

H0�C(tm)
]

− Tr
[

H0�C(0)
]

= ΔUNA
I + "2ΔUC , where ΔUC ≡ Tr{H0C(tm)

}

,
(4.54)

since C(0) = 0. Building on these definitions, we introduce the following figure of merit �,
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Figure 4.5: Origin of theQuantum heat in theAutonomousmodelling. The above table links the
energy exchanges between IDoFs obtained in the non-Autonomous analysis and summerized
in Table. 4.2 and the current quantification of the generalized heat and work exchanges between
the KDoF and IDoFs.
which we call “work transfer efficiency”, for the work source:

� ≡ WI∕ΔUI , where WI = ∫

tm

0
ẆI dt , (4.55)

and tm is a time such that the interaction betweenKDoF and IDoFs is practically zero. Importing
the work and total energy decomposition given by the Eq. (4.51) and (4.54), we obtain the work
transfer efficiency as a quadratic function of the wavepacket spatial extension:

�(Δx) ≃
W NA
I + "2W C

I +W
Δ
I

ΔUNA
I + "2ΔUC

≃ 1 + W Δ

ΔUNA
I

+ "2
(

W C
I − ΔU

C
I

ΔUNA
I

)

. (4.56)
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Change of Kinetic energy

The change of energy of the momentum itself can also be computed and writes:
⟨p̂⟩ = Tr(p̂�(t))

= Tr
[

−iℏ ∫ dx2 ∫

∞

−∞ ∫

∞

−∞

|

|

x2⟩
d
dx2

(

⟨x2|| x + v0t⟩ ⟨y + v0t||A0(x, y)Tr
[

Ũx(t)�0Ũ †
y (t)

])

dxdy
]

= −iℏTr
[

∫ dx2 ∫

∞

−∞

|

|

x2⟩ ⟨y + v0t||
d
dx2

(

A0(x2 − v0t, y)Tr
[

Ũx2−v0t(t)�0Ũ
†
y (t)

])

dy
]

= −iℏ ∫ dx2 ∫

∞

−∞
Tr [|

|

x2⟩ ⟨y + v0t||
] d
dx2

(

A0(x2 − v0t, y)Tr
[

Ũx2−v0t(t)�0Ũ
†
y (t)

])

dy

= −iℏ ∫ dx2
d
dx2

(

A0(x2 − v0t, y)Tr
[

Ũx2−v0t(t)�0Ũ
†
y (t)

])

|y=x2+v0t

= −iℏ ∫ dx
( d
dx
A0(x, y)

)

|y=x
Tr [Ũx(t)�0Ũ †

x (t)
]

− iℏ ∫ dxA0(x, x)Tr
[ d
dx

(

Ũx(t)
)

�0Ũ
†
x (t)

]

= ⟨p̂⟩0 − iℏ ∫ dxA0(x, x)Tr
[ d
dx

(

Ũx(t)
)

�0Ũ
†
x (t)

]

. (4.57)
In order to analyse this formula, we introduce the change of kinetic energy which is given by:

ΔUK = v0[⟨p̂⟩tm − ⟨p̂⟩0]. (4.58)
This energy change can be expanded in �x = x−x0 by recalling that Ũx(t) = UNA(t)−i �xℏv0U1(t)+
(

�x
ℏv0

)2
U2(t), which implies d

dx

(

Ũx(t)
)

= −i
ℏv0
U1(t)+2

(

�x
(ℏv0)2

)

U2(t). At zeroth order in �x, the
momentum change is thus given by −1

v0
Tr [U1(t)�0U †

NA(t)
] since, from the normalisation of the

initial state, ∫ dxA0(x, x) = 1. Therefore, at the final time tm, when U1(tm) = H0UNA(tm) −
UNA(tm)H0, the zeroth order kinetic energy change is ΔU (0)

K (tm) = ⟨H0⟩�0 − ⟨H0⟩�NA(tm). Thisshows that, as expected from energy conservation, the change of energy of the IDoFs is exactly
compensated by an equal and opposite change of kinetic energy.

Now, we analyse the impact of the spatial extension on this kinetic energy change. Given
that ∫ �xA0(x, x)dx = ∫ xA0(x, x)dx − x0 = 0, the first order contribution vanishes and at
second order, for any intermediate time, we have:

ΔU (2)
K (t) = −Tr

[

U1(t)�0U
†
NA(t)

]

+
(

Δx
ℏv0

)2
(

2Tr[U2(t)�0U †
1 (t)] − Tr[U1(t)�0U †

2 (t)]
)

At time tm, since H̃tm = H̃0 = H0 andH ′
tm
= H̃0 = 0; when [�0,H0] = 0, we have:

Tr(2U2�0U †
1 − U1�0U

†
2 ) =

3
2
(

⟨H3
0 ⟩�NA(tm) − ⟨H3

0 ⟩�0 + Tr(U †
NAH

2
0UNA�0H0) − Tr(UNAH2

0�0U
†
NAH0)

)

where of course, when [H0, UNA(t)] = 0, the change in kinetic energy vanishes because there
is no quantum heat.
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Measuring the work quantities

In order to experimentally access the work quantities described above, one particular case is of
special interest. Consider a potential of shape:

f (x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

A if x ∈ [l, L − l]
Ax
l
(1 + x

2l
) + A

2
if x ∈ [−l, 0]

Ax
l
(1 − x

2l
) + A

2
if x ∈ [0, l]

−A(x−L)
l
(1 + (x−L)

2l
) + A

2
if x ∈ [L − l, L]

−A(x−L)
l
(1 − (x−L)

2l
) + A

2
if x ∈ [L,L + l]

0 otherwise.

(4.59)

This choice might seem very specific but it is simply an almost squared shape of arbitrary am-
plitudeA and such that its second derivative is constant piecewise. The raising and diminishing
regions are of lenght 2l. Since the work flux done on the system is Ẇ = −I(t)d⟨H1⟩

dt
, we can

decompose it into:

WNA = − ∫

tm

0
I0(t)

d⟨H1⟩�NA

dt
dt ≈ −A

(

⟨H1⟩
L
�NA

− ⟨H1⟩
0
�NA

)

�2WC = −�2 ∫

tm

0
I0(t)

d⟨H1⟩C

dt
dt ≈ −�2A

(

⟨H1⟩
L
C − ⟨H1⟩

0
C

) (4.60)

where ⟨H1⟩
x
� = Tr(H1�(t = (x − x0)∕v0)), we denote I(x) = I(t = x−x0

v0
) and we neglected

the integral over [−l, l] and [L − l, L + l] which goes to 0 with l → 0. This is justified if we
assume that ⟨H1⟩’s evolution in these region is negligible. The remaining part of the work is
proportional to IΔ(t) =

(Δx)2

2
d2f
dx2

|

|

|x0+v0t
where

d2f
dx2

|

|

|xt
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A
l2

if xt ∈ [−l, 0]
−A
l2

if xt ∈ [0, l]
−A
l2

if xt ∈ [L − l, L]
A
l2

if xt ∈ [L,L + l]
0 otherwise.

(4.61)
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such that :
WΔ = − ∫

tm

0
IΔ(t)

d⟨H1⟩�NA

dt
dt = − ∫

L+l

−l
IΔ(x)

d⟨H1⟩�NA

dx
dx

≈ −
A(Δx)2

2l2

[

∫

0

−l

d⟨H1⟩

dx
dx − ∫

l

0

d⟨H1⟩

dx
dx − ∫

L

L−l

d⟨H1⟩

dx
dx + ∫

L+l

L

d⟨H1⟩

dx
dx

]

= −
A(Δx)2

l2
(

2⟨H1⟩
0
�NA

− 2⟨H1⟩
L
�NA

− ⟨H1⟩
−l
�NA

− ⟨H1⟩
l
�NA

+ ⟨H1⟩
L−l
�NA

+ ⟨H1⟩
L+l
�NA

)

(4.62)
by expansion. By assumption, we want the spatial extension of the wavepacket to be much
smaller than the typical lenght of change of the potential, i.e., Δx ≪ l. The work term WΔis therefore of second order in the small parameter Δx∕l. The contribution of the correction
term C, is smaller than this last term if �2 ≪ (Δx)2

l2
which is equivalent to EI l

ℏv0
≪ 1. In this case,

measuring the average quantities given by Eq. (4.62) would allow to deduce the heat and work
exchange between KDoF and IDoFs during the pre-measurement process.

4.4 Conclusion
When a quantum system interacts with a quantum meter and receives quantum heat, we have
seen in Chapter 3 that the incoming energy does not have to come from the meter itself but
instead can come from the time dependent global Hamiltonian bywhich the interaction is turned
on and off. In this chapter, we considered the case of a meter cavity field for which the energy
levels are not degenerate. The average value of the interaction term acting on this field was
hence chosen to be a constant, but non-null, quantity. This lead to modifications in the nature of
the quantum heat which was found to be partially received in the form of work by the measured
system. Its origin, however, is still the time-dependent modulation of the interaction between
themeter and system. Such time dependence implicitly comes from the interactionwith another
system which is assumed to be classical, i.e., large enough that it is considered unaffected by
the interaction with the quantum system and meter.

Here, we included this additional system, which is taken to be the kinetic degree of freedom
of the measured particle, in the model. Therefore, the global system was isolated and the pre-
measurement step autonomous. However, when the particle is not perfectly localized and hence
that this kinetic degree of freedom is not perfectly classical anymore, the measurement dynamic
can be affected. We found the correction to this dynamic at second order with respect to the
spatial extension of the wavepacket.

This shines a new light on the question of the origin of the "quantum heat" which is now
provided by the kinetic degree of freedom. Hence, a measurement can be fuelled by the one of
the degree of freedom of the object it measures.

To go further, it is important to consider the cost of the full measurement cycle: including
the reset of the meter state. Since we have seen how much the initial state of the meter and
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hence the average value ⟨V M
⟩ matters to the nature of the energy exchanges, it is natural to

study its impact on this total cost. We therefore compare the quality of a qubit measurement
depending on the cavity field initial state in the following chapter.

4.5 Appendix

In order to keep the main discussion efficient and in order to help an interested reader who
would like to follow the details of the derivations, we give here the explicit steps required to
reach the conclusions discussed in this chapter.

4.5.1 Non Autonomous solution derivation

Time discretization method

We solve Eq. (4.12) by cutting the total time duration into slices. Over a sufficently small
duration [0, dt], this first slice is such that �(t) ≈ �(dt) and thus by considering Zn constantand we obtain:

An(t) =
1

2
√

X2 +Z2
n

e−it
√

X2+Z2
n∕ℏ

(

An(0)
[

√

X2 +Z2
n (1 + e

2it
√

X2+Z2
n∕ℏ) −Zne

2it
√

X2+Z2
n∕ℏ +Zn

]

− Bn(0)X(−1 + e
2it
√

X2+Z2
n∕ℏ)

)

Bn(t) =
1

2
√

X2 +Z2
n

e−it
√

X2+Z2
n∕ℏ

(

Bn(0)
[

√

X2 +Z2
n (1 + e

2it
√

X2+Z2
n∕ℏ) +Zne

2it
√

X2+Z2
n∕ℏ −Zn

]

− An(0)X(−1 + e
2it
√

X2+Z2
n∕ℏ)

)

(4.63)

At first order in X∕Zn(dt), we use the following equivalence relationship:
√

Z2
n +X2 = Zn + o(X∕Zn)
1

√

Z2
n +X2

= 1
Zn

+ o(X∕Zn)

e−i
√

Z2
n+X2t∕ℏ = e−iZnt∕ℏ + o(X∕Zn) (4.64)
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omitting the time dependence for concision. For t ∈ [0, dt], the resulting coefficients thus are:

An(t) = An(0)e−iZn(dt)t∕ℏ −
X

2Zn(dt)
Bn(0)(−e−iZn(dt)t∕ℏ + eiZn(dt)t∕ℏ)

Bn(t) = Bn(0)eiZn(dt)t∕ℏ −
X

2Zn(dt)
An(0)(−e−iZn(dt)t∕ℏ + eiZn(dt)t∕ℏ) (4.65)

Solving Eq. (4.13) again starting from these new coefficients, An(dt) and Bn(dt), over the time
period t ∈ [dt, 2dt], such that Zn(t) ≈ Zn(2dt) we find:

An(2dt) =An(0)e−i(Zn(dt)+Zn(2dt))dt∕ℏ

− 1
2
Bn(0)

[

X
Zn(dt)

(−e−iZn(dt))dt∕ℏ+ eiZn(dt)dt∕ℏ)e−iZn(2dt))dt∕ℏ

+ X
Zn(2dt)

(−e−iZn(2dt)dt∕ℏ + eiZn(2dt)dt∕ℏ)eiZn(dt)dt∕ℏ
]

Bn(2dt) =Bn(0)ei(Zn(dt)+Zn(2dt))dt∕ℏ

− 1
2
An(0)

[

( X
Zn(dt)

) (−e−iZn(dt)dt∕ℏ + eiZn(dt)dt∕ℏ)eiZn(2dt)dt∕ℏ

+ ( X
Zn(2dt)

)(−e−iZn(2dt)dt∕ℏ + eiZn(2dt)dt∕ℏ)e−iZn(dt)dt∕ℏ
]

(4.66)

eventually we obtain the formula at time kdt given by:

An(kdt) =An(0)e
−i

∑k
p=0Zn(pdt)dt∕ℏ

− 1
2
Bn(0)

[

k
∑

j=1

X
Zn(jdt)

(−e−iZn(jdt)dt∕ℏ + eiZn(jdt)dt∕ℏ)
∏

l<j
eiZn(l.dt)dt∕ℏ

∏

p>j
e−iZn(p.dt)dt∕ℏ

]

Bn(kdt) =Bn(0)e
i
∑k
p=0Zn(pdt)dt∕ℏ

− 1
2
An(0)

[

k
∑

j=1

X
Zn(jdt)

(−e−iZn(jdt)dt∕ℏ + eiZn(jdt)dt∕ℏ)
∏

l<j
e−iZn(l.dt)dt∕ℏ

∏

p>j
eiZn(p.dt)dt∕ℏ

]

(4.67)

going back to continuous time we obtain (for t > 0):

An(t) =An(0)e−i ∫
t
0Zn(t

′)dt′∕ℏ − iBn(0)
X
ℏ ∫

t

0
ei ∫

t′
0 Zn(t

′′)dt′′∕ℏe−i ∫
t
t′ Zn(t

′′)dt′′∕ℏdt′

Bn(t) =Bn(0)ei ∫
t
0Zn(t

′)dt′∕ℏ − iAn(0)
X
ℏ ∫

t

0
e−i ∫

t′
0 Zn(t

′′)dt′′∕ℏei ∫
t
t′ Zn(t

′′)dt′′∕ℏdt′. (4.68)
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Dyson serie method

Interstingly, this coefficients can also be obtained by using the Dyson serie formalism with the
perturbative operator:

UI (t) = 1 − i
ℏ ∫

t

0
U †
0 (t)X�xU0(t)dt (4.69)

given that U0(t) = e−i ∫ t0Zn(t)�zdt is the zeroth order unitary operator.

Simplification of the coefficients An and Bn
In order to simplify the integral appearing in An(t), we notice that:
d
dt′

(

−ie
i!qz(2t′−t)∕2e

i
2 n ∫

t′
0 �(t

′′)dt′′e−
i
2 n ∫

t
t′ �(t

′′)dt′′

!qz + n�(t′)

)

= ei!qz(2t′−t)∕2e
i
2 n ∫

t′
0 �(t

′′)dt′′e−
i
2 n ∫

t
t′ �(t

′′)dt′′

!qz + n�(t′)
(!qz + n�(t′)) − i

ei!qz(2t′−t)∕2e
i
2 n ∫

t′
0 �(t

′′)dt′′e−
i
2 n ∫

t
t′ �(t

′′)dt′′

(!qz + n�(t′))2
(−n

d�
dt
)

(4.70)
≈ ei!qz(2t′−t)∕2e

i
2 n ∫

t′
0 �(t

′′)dt′′e−
i
2 n ∫

t
t′ �(t

′′)dt′′ = ei ∫
t′
0 Zn(t

′′)dt′′∕ℏe−i ∫
t
t′ Zn(t

′′)dt′′∕ℏ

where we neglected the second term in Eq. (4.70) by using the assumption that d�
dt
≪ !2qz

2.
We therefore conclude:

∫

t

0
ei!qz(2t′−t)∕2e

i
2 n ∫

t′
0 �(t

′′)dt′′e−
i
2 n ∫

t
t′ �(t

′′)dt′′dt′ ≈ −i

(

ei!qzte
i
2 n ∫
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0 �(t

′′)dt′′

!qz + n�(t)
− e−i!qzte−

i
2 n ∫

t
0 �(t

′′)dt′′

!qz + n�(0)

)

(4.71)
thus the coefficients of Eq. (4.17) can be rewritten as:

An(t) =An(0)e−i ∫
t
0Zn(t

′)dt′∕ℏ − Bn(0)
!qx
2

(

ei!qzt∕2e
i
2 n ∫
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t
0 �(t

′′)dt′′

!qz + n�(0)

)

Bn(t) =Bn(0)ei ∫
t
0Zn(t

′)dt′∕ℏ + An(0)
!qx
2

(

e−i!qzt∕2e
−i
2 n ∫

t
0 �(t
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!qz + n�(t)
− ei!qzt∕2e

i
2 n ∫

t
0 �(t
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)

. (4.72)

Eventually, by introducing the phase factor is given by Pn(t) = ei ∫ t0Zn(t′)dt′∕ℏ = ei!qzt∕2e
i
2 n ∫

t
0 �(t

′)dt′

we obtain:
An(t) =An(0)P ∗

n (t) − Bn(0)
!qx
2

(

Pn(t)
!qz + n�(t)

−
P ∗
n (t)

!qz + n�(0)

)

Bn(t) =Bn(0)Pn(t) + An(0)
!qx
2

( P ∗
n (t)

!qz + n�(t)
−

Pn(t)
!qz + n�(0)

)

. (4.73)
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4.5.2 Useful quantities for average energy calculations

Taking, for the initial qubit state, the ground state ofHna(0), i.e., � = Θ andAn(0) = − sin(�∕2),
Bn(0) = cos(�∕2), and choosing a strong coupling � ≫ !q, constant between t+0 and t−m, thedynamics writes (Eq. 4.24):
|

|

 NA⟩ (t) = − sin(�∕2)e−i!qzt∕2 ||ez, �̃
t
−

⟩

+ cos(�∕2)ei!qzt∕2 ||
|

gz, �̃
t
+

⟩

−
ix!q
�

e−|�|2∕2
∑

n

�n
√

n!n
sin(n∕2�t)e−in!c t(cos(�∕2) |

|

ez, n⟩ − sin(�∕2) ||gz, n⟩).

In order to derive the change of average qubit energy Δ⟨HS
⟩, we first notice that:

⟨HS
⟩(t) =

ℏ!q
2
(x⟨�x⟩(t) + z⟨�z⟩(t)). (4.74)

and that before the pre-measurement, at time t−0 = 0−:

⟨�z⟩(t−0 ) = TrC(⟨ NA|| �z || NA⟩ (t−0 )) = sin2(�∕2) − cos2(�∕2) = − cos(�)
⟨�x⟩(t−0 ) = TrC(⟨ NA|| �x || NA⟩ (t−0 )) = −2 sin(�∕2) cos(�∕2) = − sin(�)
⟨��⟩(t−0 ) = TrC(⟨ NA|| �� || NA⟩ (t−0 )) = −x sin(�) − z cos(�) = −1.

(4.75)

The last equality confirms that the chosen initial state is indeed the ground state ofHS . At first
order in !q∕� , these quantities writes at an intermediate time t ∈ [t0, tm]:
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and
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where for the before last equality we used the fact that
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1, we obtain, at first order,:
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The change in average energy of the measured system thus is:
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and when tm = � = �∕� we retrieve the expression given in Eq. 4.25:

Δ⟨HS
⟩

(0)(t) = ℏ!
2
x2

(

1 − e−2|�|2
)

≈
|�|2≫1

ℏ!
2
x2 (4.78)

Interestingly, we assumed that the initial state of the cavity meter is the pure state |�⟩. However,
as argued by Yelena Guryanova et al. [81], the preparation of such state would require infinite
resources due to Kelvin’s third law of thermodynamics. Since the pure state |�⟩ can be approach
arbitrarily close with finite resources this does not undermine the value of these calculations.
Deriving the effect of taking for the initial state of the cavity (1 − �) |�⟩ ⟨�| + �|0 >< 0|
with � ≪ 1 on our results could be useful to model an experimental implementation of this
measurement.
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THE ENERGETIC COST of manipulating quantum resources will become a more pressing is-
sue as quantum technologies and quantum ambitions florish [106]. With it, identifying

the fundamental energy constraint set by each element will be of great value.
Recently, the cost of implementing unitary gates was explored [134, 135] as well as the

global energy cost of quantum computing [107]. Quantum measurements are also very useful
tools towards building measurement based quantum computers [136, 137], in many commu-
nication protocols and for sensing applications. A lower bound to their fundamental cost was
first derived by Sagawa and Ueda [80, 68], and generalized to inefficient measurement by Ab-
delkhalek et al. [138]. Since, depending on the change of the memory’s free energy, this bound
can be negative, the measurement process is said to have no fundamental energy cost per se.
Adding the resetting step, during which the meter is brought back to its initial state as shown
in Figure. 5.1, instead sums to a positive fundamental cost which only vanishes when no infor-
mation is extracted.

Note that in the case of a classical measurement, the information storing system is usually
called memory. Since, in the quantum case, the quantummeter plays a similar role, the "meter",
denotedM , we will indifferentially refer to the "memory" and to the "quantum meter".

Creation of correlations Classical measurement

𝜌’𝑆

Meter resetting

𝜌! 𝜌’’𝑀𝜌’

𝜌’𝑆

𝑀

𝜌𝑆

Figure 5.1: The three steps of a cycle of measurement and erasure can in the most general
case affect both the system S and meter M’s respective states �S and �M , if the system has
coherences in its measurement basis. At the end, only the meter state has to be resetted which
implies that the correlations built during the pre-measurement step and represented with a red
line are destroyed.

The existence of a fundamental cost for the measurement and resetting process might come
as a suprise. Indeed, one could expect that it is simply the substraction between the final and
initial energy of the system which can be positive or negative. However, even when measuring
a system in its eigenenergy basis, as will be the case in this chapter, this cost does not vanish.
This is because correlations will be created during the pre-measurement step and will results
in an increase of the meter’s entropy. Consequently, the resetting step will have to decrease
the meter’s entropy and hence will have an energetic cost. The minimal energy cost was hence
found to be "essentially determined by the entropy change in the memory" [138] which our
quantum meter M models.

Finding such a lower bound has been a crutial step in the understanding of the energy cost
of cycle of measurement and erasure but other questions remain. Some of them were already
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adressed regarding the work extractable using the measurement output state and outcome [69]
and obtained by performing a dephasing operation [58]. Others are still pending such as the
impact of the meter’s initial state on the measurement cost and quality.

In this chapter, we explore the impact of the system’s and meter’s coherence on these quan-
tities. The measurement quality is evaluated via three figure of merit: the measurement back-
action on the qubit state, the measurement informational efficiency and the measurement en-
ergetic efficiency. They allow to quantify respectively: how much the measurement affects the
measured system, how much information is extracted from it and how much the cost amounts
to this information. Thanks to these quantifiers, we can fairly compare the energy cost of the
cycle of measurement and erasure of a qubit by a cavity field.

These theoretical results were motivated and extend the concepts of a previous work:
Xiayu Linpeng, Léa Bresque, M.Maffei, A. N. Jordan, Alexia Auffèves, and K. W. Murch
Energetic cost of measurements using quantum, coherent, and thermal light
Phys. Rev. Lett. 128, 220506 (2022)

The experimental part of this project was carried in Washington University in St. Louis, Mis-
souri, by Xiayu Linpeng under the supervision of Kater Murch

5.1 Quantifying the energy cost of measurements
In order to understand the impact of the quantum nature of the measured system S and of
the meter systemM on the measurement cost and quality, we first consider the fully classical
case. This implies that nor the measured system S nor the meterM have coherences in their
respective measurement basis; where the measurement basis of the system is the eigenbasis
of the system’s operator that we ultimately want to measure, whereas the measurement basis
of the meter is defined by the set of projective operator used to measure the meter after the
correlations are built.

In this classical case, Figure. 5.1 can be simplified by bringing together the first two steps
into a simple "measurement step", since an unread measurement of a classical system will not
affect its state. We take the point of view of an external operator who performs this measure-
ment in order to motivate the figures of merit used to characterize the measurement quality.

5.1.1 Ideal classical case

Initially, the meter and system state is separable such that the initial mutual information:
I = SS + SM − SSM ; (5.1)

where SS = S(�S), SM = S(�M ) and SSM = S(�SM ) are respectively the initial entropy of
the reduced state of S andM , and of their joint state; is null.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.220506
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Themeasurement step’s purpose is to create correlations between themeter and the system’s
states. Interestingly, the mutual information can also be rewritten in terms of the conditional
entropy S(�S|�M ) = SSM −SM , which characterize the remaining ignorance about the system
once the state of the meter is known, as:

I = SS − S(�S|�M ) ≥ 0. (5.2)
Therefore, the mutual information can be interpreted as the information acquired about the
system from knowing the meter state or, equivalently, the information that theS andM possess
on their mutual states. Thus, the larger the mutual information, the better. Ideally, we would
have I = SS , i.e., all the possible information about the system would have been extracted.
The energy required to perform this measurement step, corresponds to the total change in free

Measure Reset

𝜌! 𝜌!

𝜌" Δ𝑆! = 0

Δ𝑆" = 𝐼

Δ𝑆! = 0

Δ𝑆" = −𝐼

𝜌" 𝜌"

𝜌’𝑀

Δ𝐸! = 0 Δ𝐸! = 0

𝒲#$%& = Δ𝐹" + 𝑘'𝑇Δ𝐼 𝒲($&$) = −Δ𝐹"

Figure 5.2: Work cost of an ideal classical cycle of measurement and erasure. This full mea-
surement is splitted in two steps: the measurement during which the meter is extracting in-
formation from the measured system, and the resetting step. The dashed red lines represents
the correlations between system and meter. We denote ΔSA and ΔEA, with A ∈ {S,M}, the
change of entropy and energy of the system A.
energy of the total system SM such that:

Wmeas = ΔFSM = ΔEM + ΔES − kBTΔSSM = ΔEM + kBT (I − ΔSM ) (5.3)
where ES (resp. EM ) is the average energy of the system S (resp. M) and T is the temperature
of the available bath used in order to reset the state of the meter. The last equality comes from
the assumption that the entropy and energy of the system are unaffected by the measurement
(ΔES = 0 and ΔSS = 0) as expected for an ideal classical measurement. Moreover, since
the initial mutual information was null, ΔI is simply the final mutual information denoted I .
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When the correlation building step is done unitarily, as when the correlations are built via
a unitary pre-measurement dynamics, the second term of Wmeas vanishes since ΔSM = I
by conservation of the total entropy of SM . It means that the increase in the meter entropy
corresponds to the mutual information between meter and system. Ideally, in this case, the
mutual information should be such that I = S0S = ΔSM ≥ 0 where S0S is the initial entropy of
the system which should remain unaffected by a classical measurement process. Therefore the
measurement cost turns out to beWmeas = ΔEM , i.e., only coming from the change of average
energy of the meter.

There are now two possibilities depending on the structure of the physical system storing
the information: either the energy of the meter is unchanged or it is not. The first possibility can
happen if themeter energy level are degenerate. It is the case, for instance, when the information
is encode in the right and left position of particle in a symmetric double well potential [139]. In
this case,Wmeas = 0 and the measurement step can be performed at no cost. For an asymmetric
meter however, the measurement cost will have to include the eventual increase of the meter
energy. Note that, if the entropy of the meter increases more than themutual information, which
can happend under a non-unitary transformation, some energy could even be extracted during
this measurement process.

As depicted in Figure. 5.2, the measurement is then followed by a resetting of the meter
state. The mutual information aquired during the measurement step can be exploited by a
feedback loop in order to extract some useful work, as shown in Figure. 5.3. Hence, the energy
cost of the resetting step amounts to the change of free energy of the meter which is exactly
equal and opposite to its change during the measurement step such that:

Weras = −ΔFM = −ΔEM + kBTΔSM (5.4)

Therefore, in the case of a degenerate memory, since ΔEM = 0, the erasure cost corresponds
to the one needed in order to decrease back to its initial value the entropy of the meter. Here,
ΔSM is the positive increase of meter entropy caused by the measurement step. Eventually, the
cost for an ideal cycle of measurement and erasure writes:

Wmeas +Weras = kBT I (5.5)

which exactly corresponds to the amount of work extractable from the potential feedback loop
and which is consistent with the results of Sagawa and Ueda [68].
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M

S

M

S

M

SΔ𝑆! = 0

Δ𝑆" = 𝐼 ≥ 0 Δ𝑆" = 0

Δ𝑆! = Δ𝐼 ≤ 0

FeedbackMeasurement

Work extraction

Reset of the memory

Figure 5.3: Local entropy change in an information measurement engine. The global measure-
ment analyzed in this chapter corresponds to the region circled in dotted red. As it appears, the
mutual information can serve to decrease the entropy of the system via a feedback step which
leads to and optimal work extraction if ΔS = I .

5.1.2 Measurement efficiencies

As we have seen, the amount of information extracted during the measurement process is quan-
tified by the mutual information I reached at the end of this step. The maximal information
available however is given by the initial entropy of the system S0S . In order to quantify the
performance of the measurement at extracting the available information, we therefore define
the measurement informational efficiency as:

�I = I∕S0S . (5.6)
In the ideal case, one can gain full knowledge about the state of the system from the one of the
meter, I = S0S and thus �I = 1. In the worse case, no information is extracted and therefore
�I = 0. As described by Equation. 5.2, this happends when the state of themeter is not sufficient
to determine exactly the one of the system. This can occur if the system state evolves while
it is being measured, or if the meter initial state has some components whose evolution are
not affected by the system’ state or if the meter states associated to the each of the system
measurement basis are not orthogonal. Moreover, since the mutual information is such that
0 < I < S0S , this efficiency always remains between 0 and 1. Note that when S0S = 0, i.e., thatthe initial state of the system is pure, it is impossible to reduce our ignorance about this state
and the information extracted does not correspond to the one contained in the initial state. This
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efficiency therefore only makes sense, and remains finite, when the initial state is not pure. This
quantity can also be motivated from the schematic of an information measurement engine, as
depicted in Figure. 5.3. Indeed, the higher the mutual information given a fixed S0S , the more
negative the change of system entropy during the feedback step can be. This implies that during
the work extraction, a high mutual information will result in a larger possible increase of the
system entropy and therefore more possible work extracted.

Regarding the measurement cost, we have seen that if this step is done unitarily such that
ΔSSM = 0, thenΔSM = I andWmeas should only compensate for the change of average energy
of the meter. However, it could happend that ΔSM > I for instance due to measurement error
such as if the meter state evolved when it should not have based on the system’s state. These
errors being unknown are associated to an irreversible increase of the meter entropy. In this
case, the work cost of the measurement Wmeas = kBT (I − ΔSM ) will be negative (assuming
degenerate meter levels). But this energy will not be extractable due to its irreversible origin.
Therefore, the measurement will simply be performed at no cost while the resetting step will
still cost kBTΔSM resulting in a total measurement cost of the same amount. ThereforeWmeas+
Weras = kBTΔSM > kBT I ≥ 0. The energetic performance of the cycle of measurement and
erasure can thus be quantified via the measurement energy efficiency defined as:

�E = I∕ΔSM . (5.7)
Ideally �E = 1 and the measurement cost is minimal, whilst in the worse case, no information
is extracted while the meter entropy is increased by the measurement step such that �E = 0. Inthis case one has to use energy to perform a non informative measurement.

5.2 Quantum measurement: impact of the coherences
To this classical measurement we now add the possibility for the system and the meter to have
coherences in their respective measurement basis. It is necessary in this case to divide the
measurement step into a pre-measurement evolution during which the correlation are built and
which is denoted by 1 and the classical measurement of the meter, denoted 2 [112, 140]. As
shown in Figure. 5.4, the last, resetting step is denoted by a 3.

Since the system is measured via the classical measurement of the quantum meter, the two
types of coherences will play a role on the extracted information and modify the classical case
described so far. These coherences are the ones of the system S in the basis according to which
the meter evolves and, the ones of the meterM in the classical measurement basis.

Moreover, quantum correlations between S andM will possibly arise and can be quanti-
fied by comparing the two expressions of the mutual information introduced in Eq. (5.1) and
Eq. (5.2). While these quantities are equal for classical systems, they can be distinct in the
quantum realm. The substraction of these two quantities is called the quantum discord [141]
and is such that:

DSM = I − J{Πj}j ≥ 0 (5.8)
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1. Pre-measurement 2. Classical measurement 3. Reset of the meter

𝜌! 𝜌!𝜌’
𝑀 𝜌’’𝑀

𝜌" 𝜌’
𝑆𝜌’𝑆 𝜌’𝑆Δ!𝑆" ≥ 0

Δ!𝑆" = 𝐼! − Δ!𝑆#

Δ#𝑆" = 0

Δ#𝑆$ ≥ 0

Δ%𝑆" = 0

Δ$𝑆" ≤ −𝐼! + Δ!𝑆#

Figure 5.4: Work cost of a quantum cycle of measurement and erasure. This full measurement
is splitted in three steps: the measurement during which the meter is extracting information
from the measured system, the projective measurement of the meter and the resetting step. The
dashed red lines represents the correlations between system and meter. We denote ΔkSA and
ΔEA, with A ∈ {S,M}, with A ∈ {S,M}, the change of entropy and energy of the system A
during the step k.

with I = SS+SM−SSM the quantummutual information, and J{Πj}j = SshS −
∑

j pjSsh(Πj�SΠj∕Tr(Πj�S))the classical correlations given the specific choice of basis {Πj}j . This last quantity, usuallyrefered to as Holevo’s quantity, is the substraction of the Shannon entropy of the system’s initial
state SshS by the weigthed average of the chosen selective projective measurement.

Coherences in the meter

Here, we still consider a system initial state with no coherences in its measurement basis. When
the state of the meter has coherences in the basis in which it is classically measured, nothing
changes during the pre-measurement in that if this step is unitary the change of the meter en-
tropy is given by the mutual information. During the classical measurement however, in con-
strast with the fully classical case, the meter entropy can further increase. Therefore, the total
change of mutual information after the steps 1 and 2: ΔI12 = I2 is such that:

I2 = Δ12SS + Δ12SM − Δ12SSM ≤ Δ12SM (5.9)
since Δ12SS = 0 and Δ12SSM ≥ 0. Hence the measurement energy efficiency, which writes
from this decomposition: �E = I2∕Δ12SM , will decrease due to these meter coherences (com-
pared to a more classical meter state without these coherences).
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Coherences in the system

When themeasured system also has coherences in its measurement basis, its entropy can change
during the pre-measurement step. This is due to the destruction of the system’s coherences.
Hence during the pre-measurement, the mutual information increases by:

I1 = Δ1SS + Δ1SM ≥ Δ1SM . (5.10)
It will therefore not be a given that I1 = Δ1SM , even during this first step. This increase
of the mutual information due to Δ1SS is however of purely quantum origin and can lead to
mutual information greater than one. This is for instance the case for the state |e⟩|1⟩e+|g⟩|0⟩e

√

2
for

which the mutual information is 2. Once projectively measured in the Fock basis this state will
however become |e⟩⟨e|1⟩⟨1|e+|g⟩⟨g|0⟩⟨0|e

2
for which the mutual information is 1 due to the erasure of

the quantum correlations.
Notice that in the derivation of the work cost of the measurement, if ΔSS is not assumed to

be null, Equation. 5.3 can be rewritten:
Wmeas = ΔFM + kBT I − kBTΔSS . (5.11)

Hence, coherences in the measurement basis could potentially be exploited in order to reduce
the cycle of measurement and erasure cost since one would ideally have Wmeas + Weras =
kBT (I −ΔSS). However, this effect comes from the fact that the entropy of the system would
have increased during the full measurement. There is therefore no suprise that this entropy
increase can be exploited to do some useful work (or here to provide work necessary for the
implementation of the full measurement).

Measurement backaction

The reason behind the modifications caused by the presence of coherences in the measurement
basis of the system S is the measurement backaction [142]. This effect is due to the building
of correlation with the meter system and results in the destruction of these coherences. In
order to quantify directly its effect, on should compare the initial coherence of the system in
the measurement basis to the final one. The coherence of state �S in a given orthogonal basis
{|ei⟩}i being defined as:

C{
|
ei⟩}i(�

S) =
∑

i,j,i≠j
|⟨ei|�

S
|ej⟩| (5.12)

and is the l1 matrix norm of the state in this basis [143]. In the case of a qubit measured in the
basis {|e�⟩, |g�⟩}, one has Ceg(�S) = 2|⟨e�|�S|g�⟩|.

5.3 Measurement of a qubit by a cavity field
We now consider the case of the measurement of a qubit by a cavity field. This quantum non
demolition measurement (QND) is performed in the {|e⟩ , |g⟩} basis. By QND measurement,
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we here imply that themeasurement operator commutewith the bareHamiltonian of the system.
The creation of correlation is performed via a conditionnal excitation of the meter field which
initially starts in its ground state |0⟩.

The specificmeasurement considered in this chapter was inspired by the possibilities offered
by circuit QED plateforms. There, as depicted on Figure. 5.5, a transmon qubit can bemeasured
by the field of a cavity in which it is embedded. Since this cavity is itself connected to two
waveguides; one weakly coupled input waveguide and one strongly coupled output waveguide;
the field leaking out the cavity can then be classically measured. While our analysis remains
purely theoretical, a comparison with previous experimental results will be discuss in the end
of the chapter. More information about the experimental implementation of this measurement
is provided in Section. 5.7.2 of the Appendix.

In

Out

S
M

Classical	
Measurement

Figure 5.5: Illustration of a system S transmon qubit on its chip embedded in a 3-dimensional
aluminium cavity filled with a meter field M and with input port on the left and output port
on the right. This output port serve to collect the cavity field in order to measure it classically.
This setup operates at mK temperature.

Conditional excitation

We are interested in the influence of the system and meter states on the measurement cost and
quality. In order to investigate this aspect, we will consider two possible qubit states: a fully
mixed state:

�qbi =
|e⟩ ⟨e| + |g⟩ ⟨g|

2
, (5.13)

and a pure state with coherences in the measurement basis:

| ⟩qbi =
|e⟩ + |g⟩

√

2
, (5.14)

which will allow us to study the impact of the coherences in the measured system.
The meter field is initialized in the vacuum, | ⟩ci = |0⟩ and conditionally excited depend-

ing on the qubit state. The idea behind these transformations is that a qubit can dress a cavity’s



113

resonant frequency according on its state if they are dispersively coupled. Therefore, the field
entering the cavity is filtered according on the qubit state and on the field frequency (See ap-
pendix. 5.7.2 for more information). The resonant frequency associated to the qubit being in
the state |e⟩, resp. |g⟩, is denoted f ec , resp. f gc . We will consider here three possible kinds of
excitations all sent at the frequency f gc , i.e., only entering the cavity if the field is in the state |g⟩.
One is a purely quantum excitation which induces the following transformation:

|e⟩⊗ |0⟩ → |e⟩⊗ |0⟩ ,
|g⟩⊗ |0⟩ → |g⟩⊗ (cos(�∕2) |0⟩ + sin(�∕2) |1⟩) ,

(5.15)

where the angle � controls the average number of photon in the field (which is here between 0
and 1). Such as transformation can be unitarily implemented from the evolution associated to
the Hamiltonian:

H1p =
ℏΩ
2

|g⟩ ⟨g|⊗ (|0⟩ ⟨1| + |1⟩ ⟨0|) , (5.16)
where Ω sets the time scale of the transformation. The average number of excitations injected
in the cavity if the qubit is in the state |g⟩ will be n̄ = | sin(�∕2)|2.
The second excitation will generate a conditional coherent field in the cavity such that:

|e⟩⊗ |0⟩ → |e⟩⊗ |0⟩ ,
|g⟩⊗ |0⟩ → |g⟩⊗ |�⟩ ,

(5.17)

where |�⟩ is a coherent field at frequency f gc of average photon number n̄ = |�|2, and which
can also be implemented unitarily from:

Hcoℎ =
ℏΩ
2

|g⟩ ⟨g|⊗
(

a†ee
i!t + aee−i!t

)

. (5.18)

Eventually, we will also consider a thermal excitation such that
|g⟩ ⟨g|⊗ |0⟩ ⟨0| → |g⟩ ⟨g|⊗ �tℎ,
|e⟩ ⟨e|⊗ |0⟩ ⟨0| → |e⟩ ⟨e|⊗ |0⟩ ⟨0| ,

|g⟩ ⟨e|⊗ |0⟩ ⟨0| → |g⟩ ⟨e|⊗
∑

n

√

pn |n⟩ ⟨0|

|e⟩ ⟨g|⊗ |0⟩ ⟨0| → |e⟩ ⟨g|⊗
∑

n

√

pn |0⟩ ⟨n| ,

(5.19)

where �tℎ = ∑

n pn |n⟩ ⟨n| is a thermal field of average number of photon n̄. This value is chosen
such that, for a qubit in a state of equal populations in |e⟩ and |g⟩, the average number of photons
in the cavity will be same no matter the field statistics. Notice that this last transformation does
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not result from a unitary pre-measurement dynamics since it changes the entropy of the joint
qubit and field system, as long as the thermal field is associated to a non zero temperature. In
this case, the previous analysis should only be understood as a guide line to motivate the figure
of merit.

Conveniently, since the intial state |0⟩ always has a zero entropy, the variation of the meter
entropy will always be equal to the final meter entropy which which just denote by SM .

After this correlation building transformations, the field state is undergoing an classical
measured in the Fock state basis in order to end the measurement process over which we aver-
age.

5.4 Theoretical results: influence of the meter state

5.4.1 On the information extracted

No coherences in the system

When the qubit system initially is in the mixed state given by Eq. 5.13, the final state of the field
meter and qubit system after the interaction and unread projective measurement of the field in
the Fock basis are:

�mix1ph =
(|e⟩ ⟨e| + |g⟩ ⟨g| cos2(�∕2)) |0⟩ ⟨0|

2
+
sin2(�∕2) |g⟩ ⟨g|⊗ |1⟩ ⟨1|

2

�mixcoh =
(|e⟩ ⟨e| + |g⟩ ⟨g| e−|�|2) |0⟩ ⟨0|

2
+
∑

k≠0

e−|�|2�2k |g⟩ ⟨g|⊗ |k⟩ ⟨k|
2 ∗ k!

�mixth =
|e⟩ ⟨e|⊗ |0⟩ ⟨0|

2
+
|g⟩ ⟨g|⊗ �th

2
(5.20)

In Figure. 5.6 (a) and (b), we plot the entropy of the qubit system S and meter fieldM as
function of the average number of photon n̄ for these three different initial field states. Since the
qubit starts in a fully mixed state, its entropy is unaffected by the measurement and therefore
does not depend on n̄ and is equal to one due to the equal probabilities to obtain |e⟩ and |g⟩.
Therefore, the final mutual information and informational efficiency are equal, see Figure. 5.6
(c) and (d) which are here plotted with a different n̄ range. As it appears, the single photon field
reaches the maximal efficiency for n̄ = 1 whilst thermal and coherent fields only tend to 1 at
higher number of photons. The thermal resource does not allow to extract as much information
for an equal energetic investment as the coherent one. However, as shown in Figure. 5.6 (b)
its resetting cost will be lower since SM (�mixtℎ ) < S

M (�mixcoℎ). Nevertheless, overall the coherentfield will have a higher energy efficiency than the thermal field itself. The single photon field
being even better than the coherent one. This simple comparison exibit a case in which the
quantum nature of the meter system can prove useful in order to efficiently extract information
given fixed energetic resources.
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Figure 5.6: Mutual information and entropies of an initially mixed qubit state measured by
single photon (yellow solid), coherent (blue dashed) and thermal (red dash-dotted) fields. The
qubit system entropy a), meter field entropy b) amutual information I between them c) and
their total entropy SSM d) are plotted as functions of the average number of photon in the fields
n̄. The ultimate measurement efficiency is given by comparing the final information gain I to
the system entropy SS e). The maximum is only reached with a purely quantum measurement
resource: a single photon Fock. The energetic efficiency as quantified by the ratio between the
mutual information and the meter entropy is also presented in f).

To understand the origin of these different informational efficiencies, it is useful to notice
that all the states of Equations. 5.20 can be written as:

� =
|e⟩ ⟨e|⊗ |0⟩ ⟨0|

2
+
|g⟩ ⟨g|
2

⊗
∑

k
pdistribk |k⟩ ⟨k| , (5.21)

where pdistribk = pk in the thermal case, e−n̄ n̄k
k!
in the coherent case and n̄ if k = 1 and 1 − n̄ if
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k = 0 in the single photon case. Therefore, the mutual information reads:

Idistrib = 1 + Ssh
(

pdistrib0 + 1
2

,
pdistrib1

2
,
pdistrib2

2
...

)

− Ssh
(

1
2
,
pdistrib0

2
,
pdistrib1

2
,
pdistrib2

2
...

)

= 1 + Ssh
(

pdistrib0 + 1
2

)

− Ssh
(

1
2
,
pdistrib0

2

)

(5.22)

where Ssh(a0, a1, a2...) = ∑

i Ssh(ai) = −
∑

i ai log
(

ai
)

∕ log(2) where the ai are real number
in the range [0, 1] and Ssh is the Shannon entropy in unit of log(2). Thus, the higher mutual
information extracted by the coherent and single photon fields amount to the maximisation
of the quantity: l(pdistrib0 ) = pdistrib0

2
log

(

pdistrib0

2

)

−
(

pdistrib0 +1

2

)

log
(

pdistrib0 +1

2

)

and hence only to the
probability of measuring the initial field in the Fock state |0⟩. This is consistent with the fact
that, in this context, only the Fock state |0⟩ does not allow to discriminate between |e⟩ and |g⟩.
Moreover, since the function l(pdistrib0 ) is monotonously decreasing as pdistrib0 ∈ [0, 1] increases,
and that pth0 = 1

1+n̄
> pcoh0 = e−n̄ > p1ph0 = 1 − n̄, for all n̄ ∈ [0, 1], one indeed finds that the

single photon field leads to a higher mutual information, and thus here a higher informational
efficiency, than the coherent field itself better than the thermal field. The energy efficiency,
depends on the full distribution, i.e., on all the pdistribk and is also better for the single photon,
then coherent and eventually thermal distributions.

Coherences in the system

We now allow the system to have coherences in its measurement basis. Starting from such an
initial state of the qubit given by | ⟩qbi = |e⟩+|g⟩

√

2
, the system and meter joint states after the

pre-measurement and classical measurement in the Fock basis are:

�sup1ph =
(|e⟩ + |g⟩ cos(�∕2))(⟨e| + ⟨g| cos(�∕2)) |0⟩ ⟨0|

2
+
sin2(�∕2) |g⟩ ⟨g|⊗ |1⟩ ⟨1|

2

�supcoh =
(|e⟩ + |g⟩ e−|�|2∕2)(ℎ.c.) |0⟩ ⟨0|

2
+
∑

k≠0

e−|�|2�2k |g⟩ ⟨g|⊗ |k⟩ ⟨k|
2 ∗ k!

�supth =
√

p0
|e⟩ ⟨g| + |g⟩ ⟨e|

2
⊗ |0⟩ ⟨0| +

|e⟩ ⟨e|⊗ |0⟩ ⟨0|
2

+
|g⟩ ⟨g|⊗ �th

2
(5.23)

As Figure 5.7(b) and Figure 5.6(b) illustrate, the meter entropy is unaffected by the presence
of the coherences in the system state. The total entropy, also plotted in Figure 5.7(b) now starts
at 0 when n̄ → 0 since the initial entropy of the system is 0. Overall, the mutual information
keeps the same ordering as in the previous case, without coherence in the system, with higher
values the more quantum the field is as plotted on Figure 5.7(a).

In constrast, the system entropy, Figure 5.7(a) is strongly affected by this change and is now
equal to the mutual information SS = I . Starting from a pure system state, which is therefore
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Figure 5.7: Mutual information and entropies of an initially pure qubit state measured by single
photon (yellow solid), coherent (blue dashed) and thermal (red dash-dotted) fields. The qubit
system entropy or equivalently mutual information I a), meter field entropy or equivalently
total entropy b) are plotted as functions of the average number of photon in the fields n̄. The
mutual information is compared between the case with and without coherences in the measured
system c). The energetic efficiency, as quantified by the ratio between the mutual information
and the meter entropy is also presented in d), which only reaches it maximum value for single
photon field.

strongly perturbed by the measurement, the informational efficiency does not apply and indeed
would be infinite since the initial entropy of the system is nul. Unlike with a classical system
state, the energetic efficiency is here found to decrease with the average number of photon
involved for the thermal and coherent fields, Figure 5.7(d).

The impact of allowing coherences in the measured system is thus to induce a dependence
with respect to n̄ on the final system entropy and to modify the final mutual information. This
final mutual information is found to always be greater in the case of a pure initial system than
for a mixed one as shown in Figure. 5.7(c).

Notice that themutual information obtained in Figure. 5.7(a) corresponds to the information
the meter has on the system after the full measurement was performed. It does no quantify the
information acquired about the initial state of the system in constrast to the information gain
(See Appendix. 5.7.1). However, it quantifies the information one can exact about the system’s
projection in the {|e⟩ , |g⟩} basis from the meter state.
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5.4.2 On the induced backaction

We now move on to characterize the measurement backaction of the thermal, coherent and
single photon field statistics. In this case the initial state of the system should have coherence
and therefore we take:

| ⟩i = | ⟩qbi ⊗ |0⟩ =

(

|e⟩ + |g⟩
√

2

)

⊗ |0⟩ (5.24)

The coherence of the qubit initially is 1. In order to derive the final qubit coherence, we trace
the fields from Equation. (5.23).

Single-photon light

In the case of the quantum field this leads to:

�qb1ph =
1
2

(

1 cos(�∕2)

cos(�∕2) 1

)

(5.25)

and therefore the coherence reads |2�1ph,ge| = | cos(�∕2)| =
√

1 − n̄ ←←←←←←←←←←←←←←←→
n̄→0

e−n̄∕2.

Coherent light

For the coherent light, we obtain the qubit’s reduced state and its coherence in the {|e⟩ , |g⟩}
basis to be:

�qbcoh =
1
2

(

1 e−n̄∕2

e−n̄∕2 1

)

= e−n̄∕2 |+⟩ ⟨+| + 1 − e
−n̄∕2

2
I

|2�coh,ge| = |⟨�|0⟩| = e−|�|2∕2 = e−n̄∕2. (5.26)

Thermal light

In the case of a thermal light, the reduced state of the qubit therefore reads:

�qbth =
1
2

(

1
√

p0
√

p0 1

)

=
√

p0 |+⟩ ⟨+| +
1 −

√

p0
2

I (5.27)

|2�th,ge| =
√

p0 =
1

√

1 + n̄
←←←←←←←←←←←←←←←→
n̄→0

e−n̄∕2.
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As a result, we plot these three coherences as a function of n̄ in Figure. 5.8(b). At very low
number of photons, n̄ ≪ 1, all the field considered lead to a coherence proportional to e−n̄∕2.
Hence, in this regime, all field induces the same backaction on the qubit.
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Figure 5.8: Decoherence of themeasured qubit state for an initialy coherent, thermal and single-
photon field. a) Experimental data point and theoretical fit as a function of the total emitted
photon number assuming the measurement results from several interactions of the qubit with
fields of very low number of photons. b) Qubit coherence for different total number of photon
inside the cavity.
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5.5 Comparison with the experimental results
Experimentally, it was however measured that the coherent and thermal field lead to similar
decoherence as shown in Figure. 5.8(a). This exponential decoherence is well fitted by the
exponential decay found in Equation. (5.26). Therefore, even though thermal field can be con-
sidered as free resources, as in the framework of quantum Resource theory, and are ideed easily
obtained in pratice, in this circuit electrodynamic setup, they prove to be comparable in terms
of measuring capabilities as coherent fields.

However, this is in contradiction with the simple model described so far, since, already
below n̄ = 2, the difference between the coherent and thermal field is clearly visible in Fig-
ure. 5.8(b).

This discrepancy can be understood by noticing that, in pratice, the number of photon which
have interacted with the qubit: n(emit) were not all inside of the cavity at the same time. Experi-
mentally, the cavity is open, such that the conditional input field is continuously dissipated in a
waveguide. Indeed, unlike the single photon field, which is created by an almost instantaneous
process (see Appendix. 5.7), the thermal field is built by sending a continuous pulse on the
cavity. This results in the repeated application of N infinitesimal maps each corresponding to
n(emit)∕N average photons. According to Equation. 5.27, such unital map M will act on the
qubit state � such that:

�→
√

p0N� +
1 −√p0N

2
I (5.28)

where p0N = ⟨0| �Nth |0⟩ with �Nth a thermal field with n(emit)∕N photons on average. Upon N
application of this map, the final qubit state becomes:

MN� = pN∕20N
� +

1 − pN∕20N

2
I. (5.29)

For n(emit)∕N
1, the coherence is thus given by pN∕20N

≈ (1−n(emit)∕N)N∕2 ≈ e−n(emit)∕2 at first order in n(emit)∕N .
This pragmatic approach allows to understand of the behavior observed experimentally taking
advantage of the fact that the thermal fields have a classical statistics due to the final projective
measurement in the Fock basis.

Notice that this reasoning could also apply to the coherent case resulting in a coherence
for the qubit of (e−n(emit)∕2N )N = e−n(emit)∕2 and thus does not affect the exponential decoherence
already obtained in Equation. 5.26.

In [144], we used a similar approach but taking into account the fact that the thermal field is
broadband and hence that it can partially enter the cavity even if the qubit it excited. From this
modelling the same exponential decoherence was derived and therefore, the same backaction
obtained in the thermal and coherent field can be understood. The purpose of this chapter,
is however not to provide a realistic modelling of the measurement process in the context of a
circuit QED plateform. For this purpose, theoretical and experimental works [145, 146] provide
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a much more complete modelling using the qubit and cavity master equation. Notably, they
reach the same conclusion of a decoherence rate proportional to the average photon number n̄
in the case of a thermal field and in the strong dispersive regime due to the quantum fluctuations
in the photon number populating the resonator [145, 146].

Instead, we focused here on informational and energetic aspects in the case of a closed
cavity. Nevertheless, as shown in Figure 5.8, our conclusion that the single photon field is
much more efficient at inducing decoherence, at fixed average photon number, is also in good
agreement with the experimental datas.

5.6 Conclusion

We analysed the energetic cost of a measurement using different initial state for the field meter.
For this purpose, we introduced energetic and informational efficiencies. For the standard mea-
surement of a classical qubit state, we found that the quantum nature of the field could prove
useful in order to reach maximum efficiencies. This quantum advantage could be traced back to
the distribution of the photon number and especially to the probability of having zero photon.
It resulted in higher performances for the single-photon field compared to the coherent field,
itself outperforming the thermal field.

When the initial state of the qubit is pure, the quantumness of the meter also proves useful
in order to generate a strong backaction at a given energy cost. However, this also imply a
more negative information gain and hence a larger loss of information about the initial state
of the system. The mutual information, quantifying the information about the final system
state encoded in the meter state, is nevertheless increased by the presence of coherences in
the initial state of the system and larger for single-photon and to a lesser extent for coherent
field. However, in this case is loses its original interpretation as the information extracted on
the initial state of the system.

Since, at fixed number of photon, the final reduced state of the field in the case of an initially
thermal field is smaller than the one associated to the coherent field, after dephasing in the Fock
basis; this implies that theoretically the coherent field will cost more energy during the resetting
step than the thermal field.

The similar backaction obtain experimentally for these two fields was explained by an ef-
fective model in which the total incoming photon number is divided into small cells. Since,
at low average photon number, the thermal and coherent field have the same probabilities to
be found in the zero photon subspace, we were able to understand theoretically this behaviour
with a basic model.

Notice that the energetic cost of measurement and work extraction is upper bounded by a
positive quantity to which one should add the quantum heat when the measured system ex-
changes energy.
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5.7 Appendix:

5.7.1 Information gain

Another relevant quantity to quantify the information aquired during a measurement is the
information gain. At the level of individual trajectories, it was for instance shown via this
quantity that the backaction could lead to information loss compared to the case of a classical
state [147]. This information gain is defined as [148]:

Igain = S0S −
∑

r
p(r)SS(r) (5.30)

with r spanning over all possible final projective measurement result, SS(r) the von Neumann
entropy of the system after the global measurement conditionned on the measurement result
being r and S0S its initial entropy. Classically, this quantity is equal to the classical mutual
information.

Figure 5.9: Information gain for single photon, coherent and thermal meter state as a function
of the average photon number n̄

Here we consider the initial state of the qubit with superposition in its measurement basis
defined in Eq. (5.14). Since, the entropy of the qubit associated to the Fock state |k⟩with k > 0
is nul, since in this case the qubit is in the state |g⟩, no matter the field statistics, the information
gain writes:

Igain = −

(

1 + pdistrib0

2

)

S
⎛

⎜

⎜

⎝

1
2

⎛

⎜

⎜

⎝

1
√

pdistrib0
√

pdistrib0 pdistrib0

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

. (5.31)



123

From Figure. 5.9 it appears that the information gain is always negative, this is expected
since we here started from a perfectly known state and only lost information during the mea-
surement process. This lost of information is larger for the single photon field and the coherent
field at low number of photon. This is consistent with the larger backaction induced by these
fields discussed in the section 5.4.2.

5.7.2 Experimental implementation

In order to implement the measurement of a qubit by a field, it is possible to use a circuit
quantum electrodynamics (cQED) plateform. This is indeed the setup used to obtain the results
of Figure. 5.8(a).

Circuit QED setups are very versatile and offer many advantages such as well protected
qubit leading to coherence time T2 of the order of �swith good adressability via non destructivemeasurements. The tunability of Josephson Junctions (JJ) as well as the possibility to couple
many of them, pushed this technology amongst the top plateforms envisionned to build quantum
computers [11]. Thanks to these features, cQED offer great possibilities in terms of measuring
capabilities, for rather recent enlightning reviews see [149, 150] . It was already demonstrated,
for instance, that a qubit state could be controled via quantummeasurements [151] and that one
could measure the extractable work regenerated in a Maxwell demon experiment [152].

Qubit: In cQED plateforms, qubits are often transmon qubit. A transmon qubit, litteraly
transmission line shunted plasma oscillation qubit, is made from a Josephson junction (JJ)
shunted by a large capacitor such that EJ ≫ EC whith EC the capacitive charging energy and
EJ the Josephson one. The induced non linearity effectively builds a qubit made from the first
two level of the tunable non-harmonic oscillator that constitute the Josephson junction. The typ-
ical frequency of such a transmon qubit is in the GHz regime and can be tuned via current bias
or magnetic flux. The qubit used in the experiment has for frequency fq = !q∕2� = 5.122GHzand the anharmonicity of the non-linear oscillator is �anharm∕2� = −316MHz. Notice that the
qubit and cavity are operated inside of a cryogenic fridge at 10mK . The qubit temperature is
of the order of 50mK .

Cavity: This qubit is embedded in a superconducting circuit itself inside a 3-dimensional
aluminum cavity whose field serves as the quantum meter as illustrated in Fig. 5.5. This field
is then transmitted to the output waveguide and classically measured.

The cavity has two ports; a weakly coupled input port and a strongly coupled output port
such that intracavity photons predominantly leak out of the output port. The input field consis-
tenty comes from the input port.
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Interaction: The qubit and cavity field interact via the dispersive Hamiltonian:
HcQED = ℏ!q�z + ℏ!ca†a + ℏ��za†a, (5.32)

where � is the dispersive shift, !q∕2� the qubit frequency and !c the one of the cavity. Thedispersive shift is much larger that the dissipation rate of the cavity �, i.e., � ≫ �, ensuring us
to be in the strong dispersive regime where this Hamiltonian allows for a good modelling of the
dynamics . Notice that here, the interaction term commutes with both the measurement system
(the qubit) bare Hamiltonian and the one of the meter system (the cavity field). Therefore,
neither the system nor the meter are exchanging energy via this interaction.

Frequency

Qubit in
|e⟩ |𝑔⟩|0⟩|1⟩|2⟩|3⟩

Cavity in

2𝜒

𝑓!
"𝑓!#𝑓!𝑓$

2𝜒

Amplitude

Figure 5.10: Schematic representation of the frequency shifts in the dispersive regime of the
qubit from its interaction with the cavity (red/orange) and of the cavity from its interaction with
the qubit (yellow/green).

This interaction however induces a shift of the effective frequency of the cavity, as illustrated
in Fig. 5.10. Indeed, when regrouping the last to term of the Hamiltonian, we find that this
effective frequency,!c+�⟨�z⟩, depends on the qubit state. We denote f gc the dressed frequencyof the cavity when the qubit is in the ground state |g⟩, and f ec the one associated to the qubit
in the excited state |e⟩. This effect is the one exploited to infer the state of the qubit from the
one of the field. Similarily, the qubit’s effective frequency is affected by its interaction with the
cavity. This effect is the one used in order to characterize the number of photon in the cavity.

A summary of the notation and experimental values is given in Table. 5.1

Input field implementation

Thermal field A 300 K, 50 Ω resistor is used in order to generate thermal light.The Johnson
noise from the resistor is filtered, amplified, and attenuated before it is directed to the weakly
coupled port of the cavity, resulting in broadband light that uniformly illuminates the f gc and
f ec resonances of the cavity.

Single-photon field An effective single-photon input can be realized utilizing the |f ⟩ state
of the transmon qubit to transfer a photon into the cavity. Using a resonant rotation on the
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Table 5.1: List the experimental values corresponding to Figure. 5.8

Definition Quantity Value
Qubit frequency fq = !q∕2� 5.122 GHz
Cavity bare frequency fc = !c∕2� 5.6047 GHz
Dressed cavity frequency (qubit in |g⟩) f gc 5.6185 GHz
Dressed cavity frequency (qubit in |e⟩) f ec 5.6060 GHz
Anharmonicity of the non-linear oscillator �anharm∕2� −316MHz
Dispersive shift �∕2� −6.3MHz
Dissipation rate of the cavity �∕2� 0.5MHz
Qubit relaxation time T1 9 �s

Qubit dephasing time T ∗2 8 �s

{|e⟩ , |f⟩} manifold by the angle � will map the |e⟩ state to a superposition cos(�∕2) |e⟩ +
sin(�∕2) |f⟩. Then, two sideband pumps are applied to yield a coherent rotation between |f ⟩⊗
|0⟩ and |e⟩⊗ |1⟩. Following these rotations, the quantum state of the system changes as:

|g⟩⊗ |0⟩ → |g⟩⊗ |0⟩ ,
|e⟩⊗ |0⟩ → cos (�∕2) |e⟩⊗ |0⟩ + sin (�∕2) |e⟩⊗ |1⟩ .

Coherent light To implement the readout step using coherent light, the initially empty cavity
is probedwith a single-frequencymicrowave tone at frequency f gc . In the strong dispersive limit
(� ≫ �), as the two cavity resonances are well separated, the cavity is excited to a coherent
state |�⟩ only if the qubit is in the state |g⟩.

Characterization of the emitted photon number and measurement backaction
The emitted photon number n(emit) is obtained experimentally by deduction of the angle of
rotation � applied to generate the field in superposition between 0 and 1 photon for the single-
photon light and by integrating the intracavity photon number for the coherent and thermal
state. This intracavity photon number is itself obtained using the ac-Stark effect which causes
modifications in the qubit spectrum.

To characterize the measurement backaction, a Ramsey measurement can be used. It con-
sists of two �∕2 pulses separated with a fixed time delay . The measured qubit state population
after the Ramsey sequence oscillates due to the phase change of the second �∕2 pulse, and the
amplitude of the oscillation is proportional to the qubit coherence.
Un secret est caché
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Conclusion

QUANTUM PHYSICS is so counterintuitive that a puzzling phenomenon such as energy ex-
change caused by the measuring process could almost have gone unnoticed. Our old

intuition should not be too quickly overlooked however, and average energy conservation re-
mains a requirement in the realm of quantum physics.

As a challenge to this expectation, quantummeasurement are capable of affecting the energy
of the system they measure. This extra energy, sometimes called quantum heat, nonetheless has
to come from somewhere.

In order to track the fundamental origin of this energy and to assess its nature, we focused
on the energy exchanged induced by a pre-measurement evolution, i.e., the step during which
information is extracted by the meter. Using the notions of generalized heat and work, we
identified in which cases this energy comes in the form of heat. Moreover, we found that when
the measured system gains energy on average, this energy can come from the cost of turning
on and off the interaction with the meter system. We then described how this turning on and
off could be made autonomous by making a position dependent interaction. This allowed to
fully analyse all the energy exchange due to pre-measurements within the quantum formalism.
When the initial state of the KDoF has some finite spatial extension, it does not act a perfect
work source and gets correlated with the measured and meter degrees of freedom during the
interaction. The quality of the energy exchange between the measured system and this kinetic
degree of freedom (KDoF) could be investigated using an energetic efficiency. Even if the
correlations vanish at the end of the process, the efficiency of the work transfer between the
KDoF and the other DoF allows for the characterization of the unitarity of evolution from the
system and meter point of view, as long are there are indeed some energy exchanges.

We then explored the impact of the meter initial state on the measurement cost and quality
given energy constraints. The quality was quantified by the decoherence of the measured qubit
and the mutual information between qubit and meter field. We found that, using a specific type
of interaction and a given final classical measurement basis, the quantum field was a better
meter than the coherent field and even more than the thermal. Indeed, quantum superposition
of 0 and 1 photon are less energy demanding for the samemeasurement quality. However, since
thermal states are often treated as free resources and are usually very easy to obtain, this result
could prove useful to measurement based devices.

These results help clarify the link between measurement and energy at the quantum level
and could allow to design more energy efficient measurement for future quantum objects. They
also show that the quantum to classical cut is not necessarily a dead end to investigate funda-
mental aspects related to quantum measurements, such as the energetic ones.
What is life without fun?
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Résumé en français

TANDIS QUE les domaines de la thermodynamique et de la physique quantiques s’étendent
et fêtent respectivement leur 200ième et 120ième presque-anniversaires, leurs liens n’ont

rien perdu de leur fertilité.
La première révolution quantique, qui a émergée suite à la découverte de la quantification

des niveaux energétiques de la lumière et de la matière, est elle-même issue de l’analyse énergé-
tique du rayonnement de corps noir. Depuis, les phénomènes de superposition et l’intrication
sont devenus accessibles et leur impact sur les échanges d’énergie et d’information entre objects
quantiques est au coeur de nombreuses questions.

Introduction
La thermodynamique classique caractérise et régit l’évolution de deux quantités fondamen-
tales: l’energie et l’entropie. D’une part, elle postule la conservation de l’energie et de l’autre
l’augmentation de l’entropie totale du sytème et de son environnement au cours du temps. Ces
deux quantitiés sont liées au travers des notions de travail et de chaleur. En effet, historique-
ment, c’est en constatant que le travail extrait à partir d’un flux de chaleur est borné que Sadi
Carnot énonça pour la première fois le second principe de la thermodynamique. Le premier
principe reconnait quant à lui ces deux flux comme les deux facettes d’une même quantité:
l’énergie et érige la conservation totale de cette énergie au niveau d’une loi.

Comme l’avait déjà compris Carnot en 1824, il est possible de définir une quantité, à
partir des flux de chaleurs, qui n’est nulle que pour un cycle reversible et positive en cas
d’irreversibilité. Cette quantité est la variation d’entropie totale des bains thermiques et du
système utilisé pour extraire du travail. Puisque même lors de l’évolution inverse, donc en util-
isant un moteur thermique en réfrigérateur par exemple, la variation totale d’entropie reste pos-
itive ou nulle, cette quantité révèle une disymétrie fondamentale dans l’évolution des échanges
énergétiques. Si, lors d’un processus, l’entropie totale augmente, alors c’est que le temps aug-
mente: c’est la notion de flèche du temps. Autrement dit, l’entropie totale, au sens strict:
l’entropie de l’univers, est un indicateur qui additionne les effets des phénomènes irréversibles.

En remontant jusqu’à une description atomique de lamatière, force est de constater que cette
description classique suppose beaucoup d’idéalisation qui, bien que généralement légitimes à
l’échelle macroscopique, s’avèrent inexacte à plus petite échelle. On pourra notamment penser
aux dynamiques non markoviennes et aux régimes de couplage forts. En outre, la manipula-
tion d’objets toujours plus petits permet d’accéder à des régimes jusqu’alors inaccessibles où
les fluctuations deviennent mesurables et jouent un rôle considérable. Deux implémentations
identiques d’une expérience conduisent ainsi à des évolutions différentes dont la distribution
statistique donne accès à de nouvelles informations. C’est le cas notamment lors de l’étude des
processus hors-équilibres par le biais des théorèmes fluctuations.
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Lorsque les systèmes considérés sont suffisamment bien isolés pour exhiber des comporte-
ments et états purement quantiques, tels que l’intrication par exemple, de nouvelles possibilités
apparaissent. Les systèmes quantiques sont en particulier connus pour la taille exponentielle,
en fonction du nombre de systèmes élémentaires considérés, de l’espace algébrique auquel ils
donnent accès. Si les ordinateurs quantiques espèrent tirer partie de cette propriété, la thermo-
dynamique n’est pas en reste puisque les phénomènes quantiques ont déjà montré leur poten-
tialité en terme d’efficacité énergétique.

Une autre conséquence de la possibilité pour un système quantique d’être en état de su-
perposition, c’est-à-dire dans un état parfaitement connu et pourtant pouvant donner lieu à des
résultats différents lorsqu’il est mesuré puis repréparé à plusieurs reprises, donne également lieu
au phénomène de "Rétroaction de la mesure" ("Measurement Backaction" en anglais). Comme
son nom l’indique, la rétroaction de la mesure correspond à la modification de l’état du système
quantique mesuré sous l’effet de cette action.

L’ensemble de ces possibilités vient alors completer notre compréhension et le domaine
d’applicabilité de la thermodynamique comme illustré en Figure. I.1.

Thermodynamique Classique

Figure I.1: De la thermodynamique classique à la thermodynamique quantique

Mesure quantique

Une des mesures quantiques les plus simples est la mesure projective. D’après le postulat
de la mesure, le résultat sera une des valeurs propre oi de l’observable mesuré OS suivant la
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probabilitéPi = | ⟨ei|| �
S
|

|

ei⟩ | où �S est l’état du systèmemesuré avant lamesure. La rétroaction
de la mesure projettera cet état sur le vecteur propre deOS correspondant à la valeur propre oi:
|

|

ei⟩. Cette mesure projective est dite "lue" ou "sélective". En répétant la mesure, si le système
est bien repréparé à chaque fois dans sont état de départ �S , le résultat et l’état final pourront être
différents: c’est la stochasticité de la mesure. En moyennant sur tous les états finaux obtenus,
chacun avec sa probabilité associée, on obtient alors l’état final correspondant à une mesure
"non-lue" ou "non sélective". Il s’écrit alors∑i Pi ||ei⟩ ⟨ei|| =

∑

iΠi�SΠi, où Πi = |

|

ei⟩ ⟨ei||. Cetétat sera identique à l’état initial �S , si et seulement si �S est diagonal dans la base des états
propre de OS .

Ainsi, en mesurant l’état d’un objet quantique, il est possible (et même très commun) de
modifier son état. Plus surprenamment encore, lorsque l’observablemesuréOS et l’Hamiltonien
propre du système HS ne commutent pas, l’énergie moyenne du système peut être modifiée.
Ce changement d’énergie parfois appelé « chaleur quantique » s’écrit alors :

EM = Tr(HSΠi�SΠi) − Tr(HS�S), (5.33)

et peut être utilisé comme ressource pour alimenter de nouveaux types de machines quantiques:
les moteurs quantiques à mesure.

La chaleur quantique peut être négative ou positive suivant l’état initial et l’opérateurmesuré
et est dû à l’interaction du système avec l’appareil de mesure. Pour mieux comprendre son
origine, il est cependant necessaire de connaitre la dynamique du processus de mesure.

Cette évolution temporelle de l’état d’un système mesuré au cours de la mesure n’est pas
aujourd’hui connu à cause du phénomène de réduction du paquet d’onde. En effet, les postulats
de la physique quantique permettent de décrire l’évolution d’un système quantique isolé par
l’équation de Schrödinger mais un traitement différent doit être utilisé pour décrire l’effet de la
mesure. Cela vient du fait que l’équation de Schrödinger est linéaire et deterministe tandis que
les mesure quantiques projectives ne le sont pas.

Il est possible cependant d’obtenir l’état final prévu suite à une mesure projective non-
séléctive en faisant interagir le systèmemesuré avec un autre object quantique, appelé mesureur
quantique, dont l’état va se corréler à celui du système mesuré. C’est le processus de pré-
mesure. L’évolution globale de ce système reste régit par l’équation de Schrödinger et offre
donc un cadre idéal pour l’étude des échanges energétiques causés par la mesure.

Il est important de noter que pour obtenir de l’information à propos du système, la mesure
doit être lue et conduire à un résultat en particulier parmi tout ceux possible. Suite à l’étape de
pré-mesure, voir de plusieurs étapes de pré-mesure à la manière de Von Neumann, il est donc
nécessaire d’invoquer une mesure selective et donc une interface avec le monde classique: c’est
la séparation de Heisenberg (Heisenberg cut).
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Contenu de la thèse

Cette thèse se concentre sur l’étude des conséquences énergetiques et entropiques de la mesure
en physique quantique. La mesure est décomposée en: une étape de pré-mesure durant laque-
lle le système mesuré S interagit avec un système quantique intermediaire appelé "mesureur
quantique" et notéM , suivi d’une étape de mesure projective non lue de ce mesureur. Si cette
mesure projective n’affecte pas l’énergie moyenne du système total SM , alors l’énergie de la
mesure peut être étudié entièrement au sein du formalisme quantique, i.e., sans invoquer le
postulat de la mesure.

En utilisant ce principe, je remonte l’origine de la chaleur quantique utilisée comme source
d’énergie dans un moteur quantique à mesure. En utilisant les notions de travail et chaleur
généralisées, je caractérise la nature de cette énergie et généralise ce cas particulier. Je montre
alors que l’énergie reçue par le système correspond à celle nécessaire pour allumer et éteindre
l’interaction entre le système et l’appareil de mesure et qu’elle est idéalement rećue sous forme
de chaleur.

En remontant encore la source de cette énergie, nous proposons une version autonome de
ce mécanisme. Pour cela, le système choisi est un qubit se déplaćant à travers une cavité dont le
champ constitue l’appareil de mesure. L’interaction entre eux étant dépendante de leur position
relative, l’énergie cinétique apporte l’énergie nécessaire à faire interagir ces deux systèmes.
En modélisant cette évolution de manière purement quantique, nous caractérisons l’impact de
l’extension spatiale finie du paquet d’onde sur la nature de ces échanges d’énergie.

Du point de vue opposé, nous comparons le cout énergétique de la mesure d’un qubit en
fonction de l’état initial du champ utilisé pour le mesurer. Dans le cas d’un circuit d’électro-
dynamique quantique, nous trouvons que les états cohérents et thermiques permettent une
même qualité de mesure à énergie fixée.

Les résultats présentés et décrits dans cette thèse contribuent à améliorer notre compréhen-
sion profonde des effets et mécanismes surprenants induits par la mesure quantique. En partic-
ulier, ils permettent de mieux comprendre le fonctionnement des moteurs quantiques à mesure
et d’identifier précisément la ressource et le coût que constitue la mesure en physique quantique.

Caractériser les échanges d’énergies entre systèmes quantiques
Afin de caractériser les échanges énergétiques au sein d’un système quantique bipartite fermé
et pouvant seulement échanger de l’énergie sous forme de travail avec le monde exterieur,
un ensemble cohérent de définitions a récemment émergé. Bien que d’autres définitions ex-
istent, celle-ci permet de traiter les deux sous systèmes de manière agnostique, sans émettre
d’hypothèse sur aucun d’eux et n’invoque aucun système classique. Ainsi, afin de quantifier
la chaleur et le travail, j’utilise dans cette thèse les définitions issues de ce paradigme que
j’appellerais : «Énergétique quantique bipartite » (EQB, ou BQE en anglais).

Ces définitions, résumées dans la Figure. 2.2, sont les suivantes. Soit un système quantique
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bipartite AB évoluant selon le Hamiltonien dépendant du temps:
HAB(t) = HA(t) +HB(t) + V AB(t) (5.34)

où HA et HB sont les Hamiltoniens propre des sous parties A et B respectivement et avec
V AB le terme d’interaction entre elles. L’énergie interne de A est alors définie par: UA(t) =Tr(HA�A(t)) avec �A(t) = TrA(�AB(t)) l’état réduit du système A. Le flux de chaleur reçu par
cette sous partie A est quant à lui :

d
dt

WA = −
i
ℏ
TrAB([HA, V AB]�A(t)⊗ �B(t)) (5.35)

tandis que le flux de travail qu’elle reçoit est :
d
dt

QA = −
i
ℏ
TrAB

(

[HA, V AB]�AB(t)
)

. (5.36)
Nous avons ici introduit la matrice de correlation �AB qui joue un rôle capital dans EQB et qui
est définie par: �AB(t) = �AB(t) − �A(t)⊗ �B(t). En échangeant les rôles de A et B, on obtient
alors les flux de chaleur et travail reçus par le sous systèmeB. L’énergie totale du système n’est
cependant pas simplement la somme des énergies internes de chacun des sous systèmes et il
faut ajouter à cela l’énergie d’interaction qui s’écrit alors: VAB(t) = Tr(V AB�AB(t)) et dont la
dérivé temporelle est elle même divisée en un flux de chaleur V̇⊗

AB(t) et de travail V̇�
AB(t) selon:

V̇⊗
AB(t) = −

i
ℏ
TrAB([V AB,HAB]�A(t)⊗ �B(t))

V̇�
AB(t) = −

i
ℏ
TrAB

(

[V AB,HAB]�AB(t)
)

. (5.37)

Les échanges d’énergie lors de la pré-mesure
Durant l’étape de pré-mesure, le système S et le mesureurM intéragissent via l’Hamiltonien :

H = HS +HM + f (t)V S ⊗ V M (5.38)
où l’interaction entre ces sous-systèmes est modulée par la fonction f (t) où f (t) = 0 pour tout
temps t hors de l’intervalle [t0, tm

], i.e., avant et après l’étape de pré-mesure. Cette interaction
est un produit tensoriel entre une partie s’appliquant au système mesuré V S , qui correspond à
l’opérateur mesuré, et une partie s’appliquant sur le mesureur V M , afin de mesurer l’observable
du système V S via celui sur le mesureur V M [112, 114, 113].

Durant cette étape, des corrélations sont créées entre système et le mesureur quantique.
Idéalement, à la fin de ce processus, l’état réduit du système correspondra à la moyenne des
états projetés prévus par le postulat de la mesure lors de la mesure de l’opérateur V S .

Afin que la mesure n’affecte pas l’énergie du mesureur quantique, il est important que
[

HM , V M
]

= 0. C’est le cas lorsque les états du mesureur sont dégénérés ou alors lorsque
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V M et HM sont diagonalisables dans la même base. En outre, si [HS , V S
]

≠ 0, l’énergie du
système pourra être modifiée par la mesure, i.e., EM ≠ 0.

Le flux de travail reçu par le systèmeS, obtenu en appliquant l’équation. 5.35 est: dWS∕dt =
−f (t)

⟨

V M
⟩ (

d
⟨

V S
⟩

∕dt
), et peut être intégré pour obtenir la quantité de travail reçue pen-

dant la pré-mesure:

WS (t0 → tm
)

= −⟨V M
⟩

[

f (t)⟨V S
⟩(t)

]t+m
t0−
+ ⟨V M

⟩ ∫

tm

t0

dt ̇f (t)⟨V S
⟩ (5.39)

= ⟨V M
⟩ ∫

tm

t0

dt ̇f (t)⟨V S
⟩, (5.40)

avec t0 et tm, respectivement les instants juste avant et juste après la pré-mesure tels que f (tm) =
f (t0) = 0.

Indépendamment de la fonction f modulant l’interaction, le travail est donc nul lorsque
⟨V M

⟩0 = 0, où l’indice 0 signifie que la moyennne est effectuée sur l’état initial, i.e., à
l’instant t0. La moyenne de cet opérateur étant constante au cours de la pré-mesure, puisque
[V SM ,HM ] = 0, cette condition initiale garantie que sa valeur moyenne restera nulle au cours
de l’évolution. Dans ce cas, l’énergie reçue par le système sera uniquement de la chaleur :
ΔUS = QS

(

t0 → tm
) en accord avec le terme "chaleur quantique".

Comme illustré en Figure. 3.7, l’énergie de la mesure correspond donc à la chaleur général-
isée reçue par le système qui elle même provient du travail généralisé transmis à l’énergie
d’interaction et finalement issue du travail externe nécessaire à la modulation de l’interaction
entre le système et l’appareil de mesure. Ainsi, le coût de la mesure est exactement celui de
l’allumage et l’extinction du terme de couplage f (t)V SM et ce chemin énergetique conduit à la
suite d’égalité suivante:

EM = ΔUS (t−0 → t+m
)

= QS (t0 → tm
)

= − ∫

tm

t0

f (t)
d⟨V S ⊗ V M

⟩�SM (t)

dt
dt = ∫

tm

t0

df (t)
dt

⟨V SM
⟩�SM (t)dt,

Il est intéressant de noter qu’une telle mesure idéale est ainsi un processus thermodynamique
très inefficace puisqu’elle transforme le travail externe en chaleur reçu par le système.

Flux énergétiques lors d’une mesure autonome
Pour aller plus loin dans l’analyse du coût de la mesure d’un object quantique, il est possible de
rendre le processus de modulation de l’interaction purement autonome. L’évolution totale sera
donc effectuée selon un Hamiltonien indépendant du temps et tous les échanges énergétiques
s’effectueront entre les sous parties d’un système quantique mutlipartite.

Pour cela, nous considérons une particule de masse m avec des degrés de liberté internes
(DdLI) et un degree de liberté cinétique (DdLC) et se déplaçant selon un mouvement unidi-
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mensionnel vers le potentiel de forme spatiale f (x) selon le Hamiltonien:
H =

p̂2

2m
+H0 + f (x̂)⊗ V1, (5.41)

avec p̂ l’opérateur moment cinétique, x̂ l’opérateur position,H0 l’Hamiltonian propre des DdLI
et V1 la partie du terme d’interaction agissant sur les DdLIs (potentiellement ceux de la particule
et de l’object générant le potentiel).

Lorsque la particule est suffisammentmassive pour pouvoir être considérée comme ponctuelle,
et donc que sa réflexion sur le potentiel est négligeable, la dynamique des DdLIs est gouvernée
par l’Hamiltonien dépendant du temps et donc non-autonome, et son opérateur unitaire associé:

HNA(t) = H0 + f (x0 + v0t)V1, UNA(t) = e
− i
ℏ ∫

t
0HNA(t)dt (5.42)

où x0 et v0 sont la position et vitesse initiale de la particule. Dans ce cas, aucune information
n’est échangée entre le DdLC et les DdLIs.

Dans le cas où la particule a le DdLI d’un qubit, que ce DdLI constitue le système mesuré
S, et que le DdLI du système générant le potentiel est le champ d’une cavité C qui sert alors
de mesureur quantique, nous avons obtenu la dynamique globale du qubit et de la cavité. Cette
dynamique est donnée à l’ordre 1 par rapport à l’angle entre la base de mesure et celle de
diagonalisation de l’Hamiltonien propre du système. Cette contribution réduit les corrélations
entre le système et le mesureur quantique en cohérence avec le théorème WAY. De plus, il
apparait que l’énergie reçue par le qubit n’est plus seulement de la chaleur mais qu’une part
importante lui provient sous forme de travail. Cet apport de travail provient de la moyenne du
terme d’interaction agissant sur le mesureur qui n’est pas nul (⟨V M

⟩ ≠ 0).
Lorsque la particule ne peut plus être considérée comme ponctuelle, mais que sa fonction

d’onde est initialement étroite en position par rapport à la largueur de la zone d’interaction, la
dynamique engendrée par le Hamiltonien donnée en Equation. 5.41 peut être approximée par
celle donnée par le l’Hamiltonien "horloge":

H ≃ v0q̂ +H0 + f (x̂)⊗ V1, (5.43)
où q̂ = p̂ − p0 est l’écart au moment cinétique moyen. L’évolution de l’état joint initial:
∫∞−∞ ∫

∞
−∞A0(x, y) |x⟩ ⟨y| dxdy ⊗ �0 , selon ce Hamiltonien peut être calculé à partir de la solu-

tion associée au Hamiltonien non-Autonome donné en Equation. 5.42. Pour cela, l’évolution
unitaire est linéarisée autour de la position centrale x0 en fonction de l’écart à cette position
�x. Ainsi, il est possible d’obtenir l’état des DdLIs au temps t, qui s’écrit alors:

�DdLIs(t) ≃ �C(t) = �NA(t) +
(

EI (t)Δx
ℏv0

)2

C(�0, t) (5.44)

où �NA(t) = UNA(t)�0U †
NA(t). Le terme correctif C(�0, tm) à cette évolution non-autonome est,

au temps tm tel que la particule est loin de la zone d’interaction, est :
C(�0, tm) =

1
E2
I (t)

([

H0, UNA
[

H0, �0
]

U †
NA

]

+ UNADH0
(�0)U

†
NA +DH0

(UNA�0U
†
NA)

)

.
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sous l’hypothèse que la particule est initialement suffisamment loin du potentiel pour que
H̃0(x0 + v0t) = HNA(t) ≈ H0 et que H̃0(x + v0tm) = HNA(

x−x0
v0

+ tm) ≈ H0 et avec DX(�) =
X�X† − (1∕2)

{

X†X, �
}. Ainsi, lorsque l’état initial des DdLIs est un état propre du Hamil-

tonien H0, C(�0, tm) = DH0
(�NA(t))∕E2

I (t). à partir de ce terme correctif il est possible de
calculer l’efficacité du DdLC en tant que source de travail qui est défini par:

�(Δx) ≡
WI

ΔUI
≃ 1+

W Δ
I

ΔUNA
I

+ "2
(

W C
I − ΔU

C
I

ΔUNA
I

)

where WI = ∫

tm

0
ẆI dt and " ≡ EIΔx

ℏv0
,

et avec les termesW Δ
I etW C

I définis en Eq. (4.51). Le termeW Δ
I étant proportionel à (Δx)2,

cette efficacité est donc affectée par l’extension de la fonction d’onde à l’ordre 2 enΔx. Ainsi, il
apparait donc que la nature de l’énergie reçu par les DdLIs et donc par le degré de liberté interne
mesuré (car le DdLI de la cavité a une énergie constante) est affectée par la distribution spatiale
de la fonction d’onde de la particule. Notamment, plus l’extension spatialleΔx augmente, plus
cette énergie est donnée sous forme de chaleur, cette évolution étant d’ordre deux.

Quelles resources pour mesurer?
Nous avons précédemment étudié l’influence de l’état initial de la source de travail fournissant
l’énergie de la chaleur quantique sur la qualité de ce transfert d’énergie. Maintenant, la question
se pose de l’impact de l ’état du mesureur sur la qualité de la mesure et sur son coût.

Le coût de la mesure quantique de l’état d’un système quantique S via un autre système
quantique M , correspond à celui nécessaire pour corréler ces deux systèmes en les faisant
interagir via une opération unitaire [68]. L’énergieWmeas transmise au système total SM cor-
respond alors à la variation de leur énergie libre ΔFSM telle que:

Wmeas = ΔFSM = ΔES + ΔEM − kBTΔSSM = ΔFM + kBT I.

où I = SM + SS − SSM est l’information mutuelle, après interaction, entre S etM . Lorsque
l’état initial du système n’a pas de cohérence dans la base selon laquelle il interagit avec M ,
son entropie reste constante et donc ΔSS = 0. Ainsi, pour une mémoire aux états énergétiques
dégénérés: ΔEM = 0, puisque lors d’une opération unitaire l’entropie totale reste constante:
ΔSSM = 0 et que l’information mutuelle est initialement nulle: ΔI = I , la variation d’entropie
de M est telle que ΔSM = I . Il en résulte que Wmeas = 0 et c’est donc pourquoi la mesure
quantique n’a pas de coût fondamental. Cependant, comme les expériences de pensée de type
démon deMaxwell l’indiquent, à la suite d’une mesure il est nécessaire de restaurer l’état initial
du systèmeM pour ne pas simplement tirer partie de son entropie initiale généralement nulle
comme s’il s’agissait d’un bain à température nulle. Le coût associé s’écrit alors:

Weras = −ΔFM = −ΔEM + kBTΔSM
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et le coût du cycle de mesure et réinitialisation de l’état du mesureur est:
Wmeas +Weras = kBT I.

Ce coût est donc simplement proportionel à l’information mutuelle extraite: on ne paie idéale-
ment que proportionellement à la quantité de la mesure effectuée.

Une manière de quantifier cette qualité est d’introduire une efficacité informationnelle:
�I = I∕S0S , définit comme la proportion de l’entropie initial du système S0S qui est commu-
niquée au mesureurM . En outre, l’efficacité energétique �E = I∕�SM permet d’évaluer quelle
proportion du coût de la réinitialisation du mesureur était vraiment nécéssaire par rapport au
coût réel de cette réinitialisation.

Lorsque des cohérences sont présentes dans le mesureur à la fin de son interaction avec S
dans la base où il est finalement classiquement mesuré, l’entropie deM augmentera alors plus
que par la seule influence de son interaction avec S. Ainsi ΔSM ≥ I à la fin du processus de
mesure total incluant cette mesure classique.

Si le système S a des cohérences dans la base selon laquelle il interagit avecM , alors son
entropie augmentera ΔSS ≥ 0 due à la rétroaction de la mesure.

Pour étudier l’impact de ces effets sur �I et �E , nous considérons le cas particulier d’un qubitmesuré par le champ d’une cavité de manière dispersive comme précédemment. En revanche,
le qubit est cette fois ci mesuré dans une base qui commute avec son Hamiltonien propre et
donc aucune chaleur quantique n’est ici impliquée. Inspiré par les possibilités offertes par les
plateformes d’électrodynamique quantique sur circuit supraconducteur, l’interaction entre le
champ et le qubit est modélisé par la correspondance suivante:

Champ quantique
|g⟩⊗ |0⟩ → |g⟩⊗ (cos(�∕2) |0⟩ + sin(�∕2) |1⟩) ,
|e⟩⊗ |0⟩ → |e⟩⊗ |0⟩ ,

Champ cohérent
|g⟩⊗ |0⟩ → |g⟩⊗ |�⟩ ,
|e⟩⊗ |0⟩ → |e⟩⊗ |0⟩ ,

Champ thermique
|g⟩ ⟨g|⊗ |0⟩ ⟨0| → |g⟩ ⟨g|⊗ �tℎ,
|e⟩ ⟨e|⊗ |0⟩ ⟨0| → |e⟩ ⟨e|⊗ |0⟩ ⟨0| ,

|g⟩ ⟨e|⊗ |0⟩ ⟨0| → |g⟩ ⟨e|⊗
∑

n

√

pn |n⟩ ⟨0|

|e⟩ ⟨g|⊗ |0⟩ ⟨0| → |e⟩ ⟨g|⊗
∑

n

√

pn |0⟩ ⟨n| ,

avec n̄ = | sin(�∕2)|2 = |�|2 = Tr(a†a�th).
Lorsque l’état initial du système est |e⟩⟨e|+|g⟩⟨g|

2
, les états obtenus pour ces trois types de

champ: quantique, cohérent et thermiquemontrent un clair avantage quantique en terme d’efficacité



138 Résumé en français

informationelle et énergétique. En effet, ces indicateurs sont meilleurs pour le champ quantique
formé d’une superposition de 0 et 1 photon, puis pour le champ cohérent et enfin pour le champ
thermique. En revanche, il est intéressant de noter que l’entropie du champ thermique est moin-
dre que celle du champ coherent, au moins tant que n̄ ≤ 3.

Lorsque l’état inital possède des cohérences dans la base dans lequel il est mesuré par
M : |e⟩+|g⟩

√

2
, l’information mutuelle finale est supérieure au cas précédent sans cohérences et

l’efficacité énergétique des champs cohérents et thermiques décroit avec n̄. Les cohérences du
système décroissent également et ce d’autant plus à nombremoyen de photon fixé pour le champ
quantique puis cohérent et enfin thermique. Cet effet vient de la probabilité p0 de ces distribu-tions de se trouver dans l’état de Fock |0⟩. En effet, plus p0 est grand plus la décohérence est
importante. En revanche, expérimentalement, des résultats montrent une décohérence similaire
due aux champs thermiques et cohérents. Cela peut-être expliqué en première approximation
par les formes des fonctions p0(n̄) associées à ces champs, une fois intriqués avec l’état du qubit.
Lorsque n̄ tend vers 0 ces fonctions tendent toutes les deux vers l’exponentielle décroissante
e−n(emit) , où n(emit) est le nombre total de photons ayant interagit avec le qubit par petites por-
tions. Ainsi ces champs conduisent donc à la même décohérence dans le cas d’une injection
progressive des photons dans la cavité.

Ces résultats, encore très préliminaires, ouvrent la voix à une étude plus générale de l’impact
des cohérences sur les performances de la mesure quantique.

Conclusion

LA PHYSIQUE QUANTIQUE est si contre-intuitive que, la possibilité de changer l’énergie d’un
système quantique en le mesurant, aussi déroutante soit-elle, aurait presque pu passer

inaperçue. Notre intuition classique ne doit pas pour autant être négligée, et il reste légitime
d’exiger la conservation de l’énergie moyenne d’un système isolé, même au sein du domaine
de la physique quantique.

Les objets classiques étant beaucoup plus gros que les systèmes quantiques, l’énergie qu’ils
échangent avec ces derniers pourrait être inaccessible depuis notre point de vue classique.
Cependant, les systèmes optomécaniques et électromécaniques, par exemple, ont déjà réussi
à montrer que cette énergie pouvait être stockée dans un système mécanique et même mesurée.

Afin de retracer l’origine fondamentale de cette énergie et d’en déterminer la nature, nous
nous sommes concentrés sur l’énergie échangée lors du processus de pré-mesure, c’est-à-dire
lors de l’étape d’extraction de l’information par le mesureur. En utilisant les notions de chaleur
et de travail généralisés, nous quantifions la qualité de l’échange d’énergie entre le système
mesuré et le mesureur quantique avec lequel il interagit. Nous constatons que lorsque le sys-
tème mesuré gagne de l’énergie en moyenne, cette énergie peut provenir du coût d’allumage
et d’extinction de l’interaction avec le système de mesure. Nous avons ensuite décrit comment
cette modulation pouvait être rendue autonome en rendant l’interaction dépendante de la po-
sition relative entre le mesureur et le système. Cela permet d’analyser complètement tous les
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échanges d’énergie dus à la pré-mesure dans le cadre du formalisme quantique. On constate
que l’énergie transférée du degré de liberté cinétique (DdLC) au système mesuré est rećue sous
forme de chaleur. Lorsque l’état initial du DdLC a une extension spatiale finie, il n’agit pas
comme une source de travail parfaite et est corrélé avec le système à mesurer et le champ-mètre
pendant l’interaction. Même si les corrélations s’annulent à la fin du processus, l’efficacité
du transfert de travail entre le DdLC et les autres DdL permet de caractériser l’unitarité de
l’évolution du point de vue système et mesureur.

Nous avons ensuite exploré l’impact de l’état initial du mesureur sur le coût de l’énergie
pour des performances de mesure similaires, tel que quantifié par la décohérence du qubit
mesuré et l’information mutuelle entre le qubit et le champ qui constitue le mesureur quan-
tique. Nous avons constaté que, dans le cadre d’une expérience d’électrodynamique quantique
de circuit, le champ thermique et le champ cohérent mixte ont des performances similaires. La
superposition quantique des photons 0 et 1 devrait être moins gourmande en énergie pour la
même qualité de mesure. Cependant, étant donné que les états thermiques sont souvent traités
comme des ressources gratuites car ils sont généralement très faciles à mettre en oeuvre, ce
résultat pourrait s’avérer utile afin de mettre à l’échelle le dispositif basé sur la mesure et de
réduire l’échauffement de l’échantillon dû au processus de mesure.

Ces résultats aident à clarifier le lien entre la mesure et l’énergie au niveau quantique et
pourraient permettre de concevoir des mesures plus économes en énergie pour les futurs objets
quantiques. Ils montrent également que la frontière quantique/classique n’est pas nécessaire-
ment une vérou empéchant toute étude des aspects fondamentaux liés aux mesures quantiques
telles que les mesures énergétiques.
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