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Chapter 1

Introduction

Financial risk management is a key process for banks, investment funds, and insurance
companies to identify risks, analyze them, and make investment decisions based on either
accepting or mitigating them. In the aftermath of the 2007-2009 global economic and
financial crisis, the credibility of the financial risk management practices was seriously
damaged and the Financial Crisis Inquiry Commission pointed out dramatic failures
in the risk management process of banks and regulatory agencies. This context has
built a momentum to reshape the internal procedures and risk management practices of
financial institutions. In particular, the academic research in financial econometrics has
contributed to the introduction of new approaches for measuring and modeling risks and
the development of comprehensive methods for backtesting the financial risks.

1.1 Modeling Financial Risks
Since the Basel II accords, formal risk modeling is required for all the major inter-

national banking institutions by the various national depository institution regulators.
In the past, risk analysis was done qualitatively but now with the advent of powerful
computing software, and the advances in communication and data collection (e.g., trans-
actions and quotes for stocks, bonds, currencies, options, and other financial instruments),
quantitative risk analysis can be performed quickly and effortlessly. Because risk is fun-
damentally linked with uncertainty, modeling the financial risks implies a representation
of risks in terms of random variables. Typically, a risk measure aims to summarize into
a single figure a particular dimension of risk (kurtosis, skewness, tails, variance, etc.).

In a first part, we look at two main classes of risk measures, namely market risk
and systemic risk measures. Market risk is the risk of losses in positions arising from
fluctuations in market prices. Systemic risk is the risk associated with the collapse or
failure of a company, industry, financial institution, or an entire economy. In a second
part, we give a presentation of the risk models that are typically used for their estimation.

1



Chapter 1: Introduction

1.1.1 Financial Risk Measures
The notion of market risk is a crucial consideration in modern risk management.

Of great importance, the market risk measures have become industry standards for the
assessment of risks and the computation of capital requirements in the banking regulatory
framework (see BCBS, 2016). A typical measure of market risk is the volatility that
measures how rapidly or severely the price of an investment may change. The volatility
is a leading indicator of risk in modern portfolio theory for assembling a portfolio of
assets (Markowitz, 1952), and for any risk-based investment strategy that involves the
computation of the second-order moment (see Roncalli, 2014). For instance, considering
only risk parity investment strategies - based on the volatility measure of risk - the asset
under management of related investments is estimated at $400Bn (Financial Times, 2015).

While volatility does not distinguish between downside and upside risks, several mea-
sures are specifically devoted to the measurement of extreme downside risks, that is, the
risk of experiencing severe losses. Historically, one convention is to use the value-at-
risk (VaR), which is defined as the maximum potential loss from holding an asset (or
a portfolio) over a given period and for a given probability level. VaR has become a
cornerstone of internal risk management systems in financial institutions, as a result of
the success of the J.P. Morgan (1996) Risk-Metrics system. In credit portfolios, VaR is
also used to compute the so-called unexpected credit loss and to determine credit risk
capital requirements with the help of the asymptotic single risk factor model (see BCBS,
2005). Furthermore, the VaR is commonly used in central counterparty clearing houses
with the standard portfolio analysis of risk to estimate collateral requirements based on
a coverage level of potential losses for an individual contract or portfolio of contracts
(Chicago Mercantile Exchange, 2012).

While the convention of using VaR is historically well accepted in the risk management
industry, the measure displays several weaknesses. Artzner et al. (1999) define a set of four
properties a risk measure should satisfy and call the measures verifying these properties
"coherent". In particular, VaR (and volatility) are shown to be not coherent. VaR is also
criticized for being not sensitive to capture tail risk during periods of significant financial
market stress (BCBS, 2016). Recently, there was a shift in favor of expected shortfall
(ES), also known as conditional value-at-risk (CVaR) or tail value-at-risk (TVaR). ES
is the conditional expected loss given exceedance of VaR at a given probability level.
In comparison to VaR, ES is a coherent risk measure (Acerbi and Tasche, 2002) and
is much more tail-sensitive, capturing both the size and the likelihood of incurred loss
events. Wang and Zitikis (2021) further refine the coherent approach for VaR providing
four economic axioms for portfolio risk assessment which are also satisfied by ES.

The 2007-2009 global financial crisis has fostered extensive research on the measure-
ment of systemic risk. Of particular interest is the identification of financial institutions
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1.1 Modeling Financial Risks

that contribute strongest to the overall risk of the financial system - the so-called sys-
temically important financial institutions (SIFIs) or global systemically important banks
(G-SIBs). The Financial Stability Board (2011) defines SIFIs as "financial institutions
whose distress or disorderly failure, because of their size, complexity and systemic inter-
connectedness, would cause significant disruption to the wider financial system and eco-
nomic activity". As they pose a major threat to the system, regulators and policy makers
have called for tighter supervision, extra capital requirements, and liquidity buffers for
SIFIs, which are set up through the computation of systemic risk measures.

The ultimate goal of a systemic risk measure is to better identify the vulnerabilities
of the financial system (see De Bandt and Hartmann, 2002; Benoit et al., 2017, for a
survey). We can identify two main families of systemic risk measures. The first set
aggregates confidential bank supervisory data. A typical example is the systemic risk
score implemented for SIFIs by the Basel Committee on Banking Supervision (BCBS,
2014). Another example is the bank capital shortfall computed from the 2014 regulatory
banking stress tests under the supervision of the European Banking Authority (EBA,
2014). The second set of systemic risk measures relies on market data such as stock
returns, option prices, or CDS spreads. The most prominent examples are the delta
conditional value-at-risk (∆CoVaR) of Adrian and Brunnermeier (2016), the marginal
expected shortfall (MES) and the systemic expected shortfall (SES) of Acharya et al.
(2017), and the SRISK of Acharya et al. (2012) and Brownlees and Engle (2017). The
∆CoVaR corresponds to the difference between the conditional VaR (CoVaR) of the
financial system conditional on the firm being in distress and the CoVaR conditional on
the firm being in its median state. The MES is the firm’s expected equity loss when the
market falls below a certain threshold over a given horizon. Thus, banks with highest
MES and/or ∆CoVaR are likely to be the greatest drivers of systemic risk. The SRISK
measures the expected capital shortfall of an institution conditional on a crisis event
occurring. The SRISK takes into account the size of the firm via the market capitalization
and the book value of total liabilities. The key advantage of these measures is that they
can be computed in real time as their implementation only requires public data (see e.g.
the V-Lab website of the NYU).

1.1.2 Financial Risk Models
The first volatility risk model was developed 40 years ago, following the 1982 Rob

Engle’s publication, that introduced the autoregressive conditional heteroskedasticity
(ARCH) model, quickly followed by the generalization to GARCH of Bollerslev (1986).
The emergence of GARCH-type models is undoubtedly linked to a number of empirical
facts found out in almost all return time series. A good conditional heteroskedasticity
model should be able to capture most of these empirical facts. The main stylized feature

3



Chapter 1: Introduction

is volatility clustering. As raised by Mandelbrot (1963), large changes tend to be followed
by large changes, of either sign, and small changes tend to be followed by small changes.
A second stylized property is the presence of positive excess kurtosis, known as fat tails,
saying that the probability of having extreme events (very high or very low returns) is
higher than it would be in the Gaussian case. Several additional empirical features were
identified and included in new generation risk models. Examples of these generalizations
are the Exponential GARCH (Nelson, 1991), the Threshold GARCH (Zakoian, 1994),
and the Glosten-Jagannathan-Runkle GARCH (Glosten et al., 1993), that account for
the leverage effect, i.e., negative shocks tend to generate an increase in volatility greater
than that induced by positive chocks of the same magnitude. Another interesting model
is the log-GARCH representation. Because the log-GARCH specifies the log-volatility
instead of the volatility, it obviates the usual positivity constraints on the parameters,
and allows end-users to test for the nullity of parameters. This property is particularly
appealing when exogenous variables are included in the volatility equation (Sucarrat and
Escribano, 2012). The class of log-GARCH models, introduced by Geweke (1986), was
studied by Milhoj (1987); Francq et al. (2013); Sucarrat et al. (2016), among others.
Finally, we can cite the class of generalized autoregressive score (GAS) models where
GARCH is a special case when the measurement density is normal (Creal et al., 2013).

The use of estimators of volatility computed with high-frequency data has greatly
improved the ability to model financial market volatility. In particular, realized measures
of volatility produce a much more accurate measurement of the current level of daily
volatility than do the squared returns (see Andersen et al., 2006, for a discussion). Engle
(2002b) looks at this possibility first and gives a generalization of GARCH-type models,
called multiplicative error model (MEM), where the dependent variable is no longer the
daily return but a non-negative time series process typically built using intra-daily data
such as a realized measure of volatility, the volume, or the duration between trades.
When the dependent variable is the squared return, the MEM model reduces to the
GARCH model, and Engle (2002b) proposes to introduce weakly exogenous variables
in the volatility equation � typically the lagged realized volatility � leading to the so-
called GARCH-X model. Hansen et al. (2012) introduce a slightly different method to
GARCH-X model called Realized GARCH where the realized volatility is driven by its
own measurement equation to capture the dependence between the realized measure and
the underlying conditional variance. Recently, Francq and Thieu (2019) provide quasi-
maximum likelihood estimation (QMLE) for volatility models with covariates, including
the GARCH-X model. To investigate whether the realized volatility is a good proxy of
the volatility, they introduce the actual realized volatility into the volatility equation, and
show that the persistent parameter of the conditional variance is always highly significant,
suggesting that realized volatility is useful but not a perfect proxy of the actual volatility.
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Another direction of this literature looks at risk models that include data sampled at
different frequencies. A key advantage of these models is that daily volatility is modeled
through intraday predictors without resorting to daily aggregates such as realized volatil-
ity. A typical example is mixed data sampling (MIDAS) regression models where future
daily volatility is related to past observations of intraday predictors. Since the inclusion
of high-frequency data substantially increases the number of lagged forecasting variables,
the model embeds a parametric weight function that links intraday predictors with the
daily volatility to bypass the problem of parameter proliferation (see Ghysels et al., 2004,
2006). Within the same goal, Corsi (2009) develops the heterogeneous autoregressive
(HAR) model where predictors are defined as lagged realized volatilities aggregated at
different time horizons to account for long- and short-memory of volatility processes and
to afford a natural economic interpretation. Another avenue of research for modeling
high frequency time series data is functional data analysis (FDA). In FDA, a time series
is a sequence of observations where each variable is defined as a curve. In the context
of high-frequency volatility modeling, a curve represents the whole sequence of intraday
returns observed on a given day. This area of research has received increasing interest in
the recent time series literature. Hörmann et al. (2013) firstly examine this possibility
and proposed a functional version of the ARCH process that allows for the modeling of
the intraday curve of volatility. This method was then generalized in Aue et al. (2017)
to a functional GARCH. Due to their technical complexity, existing estimators of the
underlying functional parameters are moment based which is known to be relatively inef-
ficient in this context. To overcome the lack of efficiency, Cerovecki et al. (2019) propose
an alternative approach inspired by the classical GARCH QMLE method.

Because of their time-varying dynamics, the tail risk measures such as VaR and ES are
generally expressed conditionally on an information set and the forecasts are commonly
issued from a dynamic parametric or semiparametric model. Three main approaches are
available for their modeling. The first approach recovers tail risk measures indirectly
via models of time-varying first and second moments. Typically, a GARCH model or a
MIDAS model can be used to build conditional ES and VaR estimates under distribu-
tional assumptions. Numerous existing examples can be evoked. McNeil and Frey (2000)
combine an autoregressive model with a GARCH model, for modeling conditional mean
and variance, with a generalized Pareto distribution, to produce conditional VaR and ES
under the extreme value theory. Francq and Zakoïan (2015) provide several ways for the
computation of VaR and ES issued from GARCH-type models estimated by QMLE with
corresponding confidence intervals. De Roon and Karehnke (2017) use the halves of two
normal distributions for modeling skewed returns’ distribution and provide closed-form
formulas for ES and VaR which only require estimates of first and second moments.
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The second approach pools nonparametric methods including the so-called historical
simulation method used in the standard approaches of regulation (see e.g. Dowd, 2001,
for the case of VaR). More refined nonparametric methods have been also suggested.
Gourieroux et al. (2000) introduce a nonparametric kernel VaR estimator and derive the
corresponding asymptotic distribution. Scaillet (2004) and Scaillet (2005) develop non-
parametric kernel methods to estimate ES and conditional ES and provide the asymptotic
properties for stationary process satisfying strong mixing conditions. Chen and Tang
(2005) and Chen (2007) study the statistical properties of the historical simulation and
kernel smoothed estimation method for VaR and ES as introduced by Gourieroux et al.
(2000) and Scaillet (2004), respectively. Cai and Wang (2008) consider a weighted double
kernel local linear nonparametric estimation of conditional VaR and ES. More recently,
Martins-Filho et al. (2018) propose nonparametric estimation of VaR and ES based on
the extreme value theory assuming a generalized Pareto distribution for return tails.

The last modeling approach for tail risk measures is based on the existence of a
strictly consistent scoring function which enables M -estimation. In case such a scoring
function is existing, it is said that the considered risk measure is elicitable (see Osband,
1985; Lambert et al., 2008). For instance, VaR is elicitable because there exists a natu-
ral estimation paradigm in regression frameworks for VaR using quantile regression (see
Koenker et al., 2018). Building on that property, Engle and Manganelli (2004) intro-
duce the so-called conditional autoregressive value-at-risk (CAViaR) model defined as a
semiparametric autoregressive model for quantiles where the parameters are estimated
by quantile regression. White et al. (2015) consider a multivariate extension of CAViaR
models for modeling the dynamics of the tail interdependence among different assets.
Although it is known that ES is not elicitable on its own (Gneiting, 2011a), recent re-
sults indicate that VaR and ES are jointly elicitable implying the existence of a strictly
consistent scoring function indexed by the pair ES and VaR (Fissler and Ziegel, 2016).
Exploiting these results, Patton et al. (2019) introduce new dynamic models for ES and
VaR, drawing on the GAS framework of Creal et al. (2013), and show that the estimated
parameters of the VaR and ES models are consistent and asymptotically normal. Taylor
(2019) introduces a joint model for conditional VaR and ES, inspired by the CAViaR
specification, where parameters are estimated by maximizing the likelihood of an asym-
metric Laplace distribution. Interestingly, Taylor (2019) shows that the opposite of his
objective criterion is a special case of the scoring function of Fissler and Ziegel (2016).

Risk models are also great interest for systemic risk measurement. As for tail risk mea-
sures and volatility, a large variety of systemic risk measures are computed with market
data. Consequently, the underlying systemic risk models are designed to capture the same
kind of stylized features observed for financial time series, such as volatility clustering, fat
tails, or leverage effect. Within this context, Adrian and Brunnermeier (2016) consider
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a simple quantile regression model to forecast ∆CoVaR, while Girardi and Ergün (2013)
estimate it using a multivariate GARCH model. Brownlees and Engle (2017) implement
a bivariate GARCH model with a dynamic conditional correlation structure introduced
by Engle (2002a) to estimate the long-run MES and SRISK. Bernardi and Catania (2019)
develop a new class of flexible copula models where the dependence parameters evolve
according to a Markov switching GAS specification. Eckernkemper (2018) considers a
model for MES that captures time-varying nonlinear dependence using time-varying cop-
ula parameters endowed within a GAS dynamics. Nolde and Zhang (2020) introduce
a bivariate GARCH model based on results in extreme value theory that accounts for
asymmetry and heavy tails in financial returns. Hoga (2020) propose a dynamic model for
bivariate extremes that allows for smooth transitions between regimes of independence
and dependence where a GAS framework is used for modeling multivariate extremes.

1.2 Backtesting Financial Risks
Within the current regulatory framework, banks have the possibility to develop and

apply their own internal risk models to estimate the financial risk measures (see BCBS,
2005, and BCBS, 2019, for the credit and market risk policy frameworks, respectively).
Because the estimated risk measures are explicitly used in the regulatory capital formulas,
any underestimation of these measures may threaten the bank’s solvability. Moreover,
banks are incited to hold the lowest regulatory capital level because reducing capital
releases economic resources that can be used for profitable investments. Thus, the as-
sessment of risk models and corresponding risk measures is crucial for financial stability.

Although the financial risk measures may be conceptually valid and have good prop-
erties (see Artzner et al., 1999; Chen et al., 2013; Wang and Zitikis, 2021), the risk models
used for estimation might be not well-suited, requiring statistical validation procedures.
Jorion (2007) defines backtesting as a formal statistical framework that consists in verify-
ing if actual losses are in line with projected losses. A classification has been proposed to
distinguish between traditional backtests and comparative backtests (Fissler et al., 2016).
While traditional backtests are suited for risk models’ validation, comparative backtests
are related with risk models’ selection. In the sequel, we review both types of backtests.

1.2.1 Traditional Backtests
Over the past two decades, the need for sound risk management has triggered a

sustained effort of academics to contribute to the assessment of risk models. It has led
to a large number of contributions for traditional backtesting. The traditional backtests
typically rely on a violation process that satisfies a moment condition when the risk model
is valid. When backtesting VaR models, the violation is defined as a dummy variable that
takes the value one if the portfolio loss exceeds the VaR, and zero otherwise - hence the
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term "violation". Following Christoffersen (1998), VaR forecasts are valid if the violation
process satisfies two assumptions, namely the unconditional coverage (UC) hypothesis
and the independence (IND) hypothesis. The UC hypothesis indicates that the number
of exceedances is observed with the right frequency. The IND hypothesis means that VaR
violations observed at two different dates for the same coverage rate must be distributed
independently. When the UC and IND hypotheses are simultaneously valid, it is said
that the VaR forecasts have a correct conditional coverage (CC) and the VaR violation
process is a martingale difference sequence (see Campbell, 2007; Christoffersen, 2010,
for more details on UC, IND, and CC hypotheses). Differently, Engle and Manganelli
(2004) introduce the so-called dynamic quantile test to assess whether the violations are
independent of all past information such as the lagged VaRs and the lagged violations.
Because of the binary nature of the violations, Dumitrescu et al. (2012) refine the dynamic
quantile test using non-linear dynamic binary choice models which improve the finite
sample properties of the backtesting tests. Another streamline of the literature uses
duration-based tests accounting for the time interval between two consecutive exceedances
that follows a geometric distribution with a success probability equal to the coverage rate
of VaR (Berkowitz et al., 2011; Candelon et al., 2011; Christoffersen and Pelletier, 2004;
Pelletier and Wei, 2016). Some extensions of the traditional backtests have been proposed
to assess the validity of VaR models at several coverage rates. For instance, Colletaz et al.
(2013) introduce a backtest for the UC hypothesis at two coverage rates to distinguish
between a situation in which losses are below but close to the VaR and a situation in
which losses are substantially below the VaR. To test for the IND hypothesis at several
coverage rates, Hurlin and Tokpavi (2006) consider a multivariate portmanteau statistic.

The financial crisis of 2007-2008 and its aftermath led to numerous changes in the
financial market regulation. Of great interest, a new emphasis is placed on ES as a
measure of risk, complementing the well-known VaR measure. This update has fostered
an extensive research on the development of backtests for ES risk models. McNeil and
Frey (2000) develop a nonparametric backtesting framework for ES based on exceedance
residuals. Acerbi and Szekely (2014) develop three new ES backtests that are based on
Monte Carlo simulations. Costanzino and Curran (2015) derive a coverage backtest for
spectral risk measures in the spirit of the traditional VaR coverage backtests, which nests
ES as a spectral risk measure. Nolde and Ziegel (2017) introduce the so-called conditional
calibration tests for backtesting ES. Du and Escanciano (2017) introduce a cumulative
violation process for ES defined as the integral of the VaR violation up to the coverage rate
of ES which opens up the possibility to devise UC and IND traditional backtests for ES.
Kratz et al. (2018) propose to generalize the popular binomial backtest of VaR exceptions
at a single coverage level to a multinomial backtest of VaR exceptions at several coverage
levels, as an implicit backtest of ES. Costanzino and Curran (2018) provide a traffic
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light backtest for ES that extends the so-called traffic light backtest for VaR. Bayer and
Dimitriadis (2020) provide a regression-based backtest exploiting the joint elicitability
of the pair VaR-ES. More largely, several additional techniques have been proposed to
assess the whole return distribution encompassing ES as a special case (Berkowitz, 2001;
Kerkhof and Melenberg, 2004; Wong, 2008). For more details on traditional backtesting
methods for VaR and ES, see the survey of Argyropoulos and Panopoulou (2019).

Until recently, there were no formal backtesting tests for the systemic risk measures.
Banulescu-Radu et al. (2021) develop the first formal statistical procedures for assessing
the validity of systemic risk measures such as the MES, SES, SRISK, or ∆CoVaR. The
tests are built-up in analogy with the ES backtests of Du and Escanciano (2017) including
separate tests for the UC and IND hypotheses. In parallel, a large body of academic
research surveys the empirical predictive content of the systemic risk measures. Idier et al.
(2014) focus on firms with high systemic risk scores and their corresponding likelihood
to experience the highest financial losses in a financial crisis. Engle et al. (2015) compare
the list of SIFIs produced by the FSB with the SRISK ranking of European financial
institutions. Löffler and Raupach (2018) identify nonexotic cases in which a change in a
bank’s systematic risk, idiosyncratic risk, size, or contagiousness, increases the risk of the
system but lowers the measured systemic risk measures of the bank. Considering a panel
of Taiwan financial institutions, Lin et al. (2018) show that the industrial production
index is Granger-caused by SRISK. They also show that SRISK, MES, and CoVaR, are
quite similar in identifying SIFIs. Brownlees et al. (2020) propose a historical assessment
of the SRISK and ∆CoVaR based on two dimensions, namely the SIFI ranking challenge
and the financial crisis prediction challenge. Using a dataset spanning the 60 years before
the introduction of deposit insurance, they conclude that CoVaR and SRISK are helpful
in alerting regulators of systemically risky financial institutions. More recently, Duarte
and Eisenbach (2021) devise an index of aggregate vulnerability that tracks over time the
factors that make the financial system vulnerable to fire sales. They show that the index
strongly correlates with measures of systemic risk, including SRISK and ∆CoVaR.

Another kind of systemic risk measures deserving backtesting are the proprietary-
based methods embedded in the toolbox of regulatory agencies. A typical example is
the systemic risk score implemented by the BCBS and the FSB for SIFIs (BCBS, 2013,
2014). Another example is the bank capital shortfall computed from the 2014 regulatory
banking stress tests under the supervision of the EBA (EBA, 2014) where the main
goal is assessing the resilience of financial institutions to adverse market scenarios in the
European Union. As these measures rely on proprietary data, e.g., balance sheet, cross-
positions, size, leverage, liquidity, and interconnectedness, the data are difficult to access,
and few research works have been made for their empirical assesment. Philippon et al.
(2017) provide the first evaluation of the quality of the banking stress tests. They find that
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the estimated exposures issued from the stress tests predict relatively well the realized
losses of banks in subsequent years. Using proprietary-based data, Benoit et al. (2019)
reproduce the results associated with the systemic risk scoring methodology currently
used to track and regulate the SIFIs. They identify a number of shortcomings associated
with the current Basel approach and propose several methodological adjustments.

1.2.2 Comparative Backtests
In point forecasting, predictive methods are compared and assessed by means of an

error measure or loss function, with the absolute error and the squared error being key
examples. Following Gneiting (2011a), the forecasting models are evaluated through the
empirical mean of the individual losses computed on a test sample, which results in a
summary measure for the comparison of the predictive performance among models, such
as the mean absolute error or the mean squared error. Whatever the criterion used, the
models are compared and ranked according to the value of the empirical loss function.
Because the loss function is generally negatively oriented, a model m is preferred to
a model m1 as soon as the empirical loss of model m is lower than that of model m1.
In risk management, the evaluation of the predictive performance among risk models, or
comparative backtests, is no exception to the rule, and is typically based on loss functions,
i.e. risk models’ selection is issued by the ranking implied by a statistical loss function.

In many applied fields, the preference of forecasters goes to the prediction of the
mathematical expectation. See for instance the widely cited "Survey of Professional Fore-
casters" of the Federal Reserve Bank of Philadelphia where experts are asked for their
future expectations of the value of a variety of economic variables. In risk management,
the mathematical expectation is not a key functional because the notion of risk generally
excludes the central tendency of variables which would then quantify the expected per-
formance of a given financial position and not the risk attached with the position. For
that reason, it is common to use different functionals when measuring risks such as the
volatility, the value-at-risk, the expected shortfall, the systemic expected shortfall, etc.
Because the functional is not the mean, the employed loss function is not necessarily the
absolute error or the squared error. If the loss function is not suitable with the functional,
the risk models’ ranking is non robust, and it will lead to select a sub-optimal risk model.

Volatility is unobservable, even ex post. As a result, the evaluation of volatility
models, and the computation of forecasts errors, is performed by means of some ex-
post estimators of the volatility (see e.g. Andersen et al., 2006). Formally, the predicted
volatility issued by a given risk model is compared with a proxy of the true latent volatility.
This problem can be overcome, at least partly, if an unbiased estimator of the latent
variable is available. Several conditionally unbiased estimators have been proposed as
proxies of the volatility, such as the squared innovations, the realized volatility, and kernels
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(see Andersen and Bollerslev 1998; Barndorff-Nielsen and Shephard 2002; Zhang et al.
2005; Zhou 1996; Barndorff-Nielsen et al. 2008, among others, and further developments
as in Andersen et al. 2003; Barndorff-Nielsen et al. 2008; Hansen and Lunde 2006b), or
considering range-based variance estimators (Parkinson, 1980; Garman and Klass, 1980;
Brandt and Diebold, 2006). However, a conditionally unbiased proxy will not necessarily
lead to the same ordering between volatility models that would be obtained if the true
volatility was observed. Hansen and Lunde (2006a) show that when the evaluation is
based on a target affected by errors, the choice of the evaluation criterion is critical
to avoid a misleading ranking of volatility models. The problem of consistency of the
ordering between two or more volatility forecasts has been further refined in Patton (2011)
and Laurent et al. (2013) for univariate and multivariate volatility models, respectively.

Elicitability is a statistical property, that is satisfied by some risk measures, and is
useful for ranking and comparing the performance of risk models. The terminology is
due to Osband (1985). If a risk measure is elicitable, then there exists a loss function
for that risk measure that can be used for comparative backtests on risk models. The
risk measure VaR is elicitable implying that a consistent class of loss function is available
for comparative VaR backtests. The class of loss functions that is consistent with VaR
is known as the generalized piecewise linear class (see Gneiting, 2011b), which nests the
well-known piecewise linear function from quantile regression (see e.g. Koenker et al.,
2018). For instance using the piecewise linear loss function, Bernardi and Catania (2016)
compare the VaR forecasts delivered by alternative model specifications using the model
confidence set procedure of Hansen et al. (2011). In contrast to VaR, ES is known to be
not elicitable on its own (see Gneiting, 2011a). However, recent results from statistical
decision theory show that ES is jointly elicitable with VaR (Fissler and Ziegel, 2016).
Thus, there exists a consistent class of loss function with the pair ES-VaR where the
elements ES and VaR are not separable into the loss function. This finding opens up the
possibility to compare and rank ES and VaR forecasts issued from competing risk models.
In this context, the academic research provides comparative bactesting procedures for ES.
Ziegel et al. (2020) develop graphical checks of whether one forecast method dominates
another under a relevant class of loss function, and propose an associated hypothesis
test. Dimitriadis and Schnaitmann (2021) and Dimitriadis et al. (2021) introduce forecast
encompassing tests for ES to test whether the forecast of ES from a model m performs
not worse than any linear combination of forecasts from several competing risk models.

The systemic risk literature devoted to risk models’ selection is surprisingly underde-
veloped. As raised by Fissler and Hoga (2021), the systemic risk measures such as the
CoVaR, the conditional expected shortfall, or the MES, fail to be elicitable, which is a
strong limitation for providing comparative backtests. To bypass the lack of elicitabil-
ity of the systemic risk measures, Fissler and Hoga (2021) develop a notion of multi-
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objective elicitability that enable forecast comparison for systemic risk measures. They
devise Diebold-Mariano type tests (Diebold and Mariano, 1995) utilizing two-dimensional
scores for the CoVaR, the CoES, and the MES. Within a different context, the traditional
backtesting procedure of MES proposed by Banulescu-Radu et al. (2021) overrides the
lack of elicitability of MES exploiting the fact that MES can be expressed as an integral
of conditional VaRs which are themselves elicitable. Because the backtest relies on a
moment condition of a violation process, the procedure can be theoretically adapted to
compare the forecasts issued by different systemic risk models through the computation
of the empirical mean of the squared centered violations. Brownlees et al. (2018) eval-
uate the accuracy of tail risk forecasts for systemic risk measurement. They propose
two loss functions, namely the tail tick loss and the tail mean square error, to evaluate,
respectively, CoVaR and MES forecasts. Because MES and CoVaR can be respectively
defined as a truncated expectation and a truncated quantile of a bivariate distribution,
they apply the well-known piecewise linear and squared loss function to the firm return
given that the market return exceeds the market VaR.

1.3 Contribution
In this renewed context, the scope of our research stands at the juncture between

the modeling and the statistical validation of the financial risk measures which are im-
portantly used by academics, regulators, and practitioners. The general aim of this
dissertation is to develop and propose advanced methodologies for modeling the financial
risk measures and assessing their validity. Our research looks after several risk measures
which can be used to quantify a large scope of financial risks, namely, piq the market risk,
piiq the tail risk, and piiiq the systemic risk. For each of these risk classes, the main goal
of our research is to improve the soundness of the banking industry through advanced
econometric and statistical tools that quantify the risks held in a market portfolio, or
more generally the risks held in banks’ balance sheet. For the systematic risk, our disser-
tation contributes to the development of advanced predictive models that may generate
more accurate volatility measures compared to the current models used by practitioners
and academics. For the market risk, the goal of our work is to enhance the measurement
of tail risk in market portfolios and to promote stronger backtesting practices in the asset
management industry against the adverse shocks and potential losses experienced by the
investment companies. Finally, our work also contributes to the reinforcement of finan-
cial stability as a whole by improving bank’s monitoring via a precise identification of
the SIFIs through the systemic risk measures. This work has been concretized in three
chapters (articles) that can be studied independently one from another.

In Chapter 2 and Chapter 3, we focus our research on the volatility and the expected
shortfall which are both used to quantify the risk in investment portfolios. Chapter 2
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develops a pioneering conditional volatility model equipped with a functional variable in
the volatility equation. Contrary to the well-known GARCH-X model that includes the
realized volatility as a summary of the intra-day price variations, our functional approach
enables the inclusion of the whole information contained in the intra-day price movements.
We show numerically that the proposed volatility model may capture new sources of in-
formation in the intra-day price variations compared to the mainstream volatility models
that simply include the realized volatility. Chapter 3 develops backtesting tests for the
expected shortfall as the new standard used by banks and their regulators to quantify
the tail risk in market portfolios. Compared to the method currently used by practition-
ers and academics, our backtesting framework greatly simplifies the assessment of ES,
by focusing on the validity of several VaRs, which is more intelligible in the context of
banking regulation. Our tests detect misspecifications in all considered simulation ex-
periments. In particular, they identify the most frequent inaccuracies in risk modeling,
namely mean, variance, tail, and dynamic misspecifications. Chapter 4 looks after the
systemic risk measures that are used to summarize the systemic risk contribution of a
given financial institution into a single figure or to rank the financial institutions accord-
ing to their systemic importance as, e.g., displayed on the Volatility Lab website of the
NYU. We focus our study on the systemic risk measures that are expressed as functions
of the expected equity loss conditional on a financial crisis, as it is the case for the MES,
the SES, and the SRISK, for instance. We establish the elicitability of those indicators
leading to the identification of a general class of consistent loss function that can be either
used for estimation or to compare and rank the risk models typically used to track in
real-time the systemic risk of financial institutions. To the best of our knowledge, it is
the first loss function that can be consistently used to compare and rank the forecasts of
the systemic risk measures. In the following, we synthesize the contents of each chapter.

Chapter 2: Daily Volatility Forecasting using Intraday Returns
and Functional Covariates

Chapter 2, "Daily Volatility Forecasting using Intraday Returns and Functional Co-
variates" proposes a new volatility model, namely the AS-Log-GARCH(p,q)-pfX model,
that explicitly accounts for the influence of intra-day price variations.1 As raised by En-
gle and Patton (2001): "no-one believes that financial asset prices evolve independently
of the market around them, and so we expect that other variables may contain relevant
information for the volatility of a series." In this chapter, we move into this direction and
we develop a novel GARCH-type model that incorporates a covariate into the volatility
equation itself. Contrary to the widely used GARCH-X model that includes a sim-
ple scalar variable into the volatility equation, the AS-Log-GARCH(p,q)-pfX model is

1This chapter is based on Couperier, Francq, and Zakoian (2021).
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equipped with a functional variable into the volatility equation allowing the inclusion of
the whole sequence of intra-day returns, and not a simple summary as considered in the
GARCH-X model. Furthermore, the AS-Log-GARCH(p,q)-pfX model is explored under
a log-volatility representation to avoid positivity constraints on the parameters and to
simplify the statistical inference compared to that of the standard GARCH formulations.

Several important theoretical contributions are provided. First, we show the existence
of stationarity solutions, moments, and log-moments, for the considered model. Second,
we propose a quasi-maximum likelihood estimation (QMLE) procedure for parameter
estimation. As a result of QMLE, there is no need to specify the distribution followed by
the innovation process of the financial returns, hence the proposed model can be seen as
semi-parametric. Third, we derive the asymptotic properties of the QMLE estimates and
show that the parameters are asymptotically normally distributed. Finally, we devise a
Portmanteau goodness of fit test based on the autocovariances of the squared residuals to
assess the validity of the time-varying dynamics of the AS-Log-GARCH(p,q)-pfX model.

Our asymptotic results are illustrated in a simulation study. The parameters of the
model are calibrated using the daily returns of Bank of America from December 2000 to
December 2008 and we consider the corresponding 5-minutes squared log-returns of Bank
of America for the functional variable. Note that we consider a set of seven normalized
Legendre polynomials for approximating the functional variable and that the statistical
inference is performed using 2000 observations, i.e. about eight years of historical data.
First, we apply tests of significance to both the usual parameters in the GARCH equation
and the parameter of the functional variable. At 1%, 5%, and 10% nominal levels, our
tests of significance provide satisfactory size performance to both the common GARCH
parameters and the parameter of the functional variable, hence illustrating the validity
of our asymptotic theory. Second, we apply our Portmanteau test on additional volatility
models to judge the advantages of the AS-Log-GARCH(p,q)-pfX model against a set
of alternative models. We consider three competing models that are nested in the AS-
Log-GARCH(p,q)-pfX model, namely, the asymmetric log-GARCH model including the
realized volatility as the exogeneous variable, the asymmetric log-GARCH model without
exogeneous variable, and the log-GARCHmodel without exogeneous variable and without
asymmetry. Our simulation results are clear-cut. The validity of the three competing
models are rejected by the Portmanteau test while it is not for the AS-Log-GARCH(p,q)-
pfX model providing evidences of the superiority of the AS-Log-GARCH(p,q)-pfX model
to properly account for the intra-day time variation contained in financial market returns.

We apply our model to the daily financial returns of 10 stocks, namely Abbott,
American Express, Boeing, Bank of America, Bristol Myers, BP, Citigroup, Caterpil-
lar, Colgate-Palmolive, Cisco Systems. Our data spans from January 1999 to December
2008. We consider the 5-minutes log-returns from 9:35 AM to 4:30 PM for modeling the
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functional variable. Similary to the simulation study, we consider a set of seven normal-
ized Legendre polynomials to properly approximate the functional variable. We fit our
model on the database and test the global significance of our exogenous variable. Then,
for comparison purposes, we consider three competing models (including either, the real-
ized volatility and a leverage effect, a leverage effect alone, or neither of them) that can
been seen as simpler representations of our model. We applied our Portmanteau tests to
test the adequacy of the competing models. Then, we apply the model confidence set
procedure to select the best forecasting volatility models. Our findings are summarized as
follows. First, for seven out of ten assets, we find that our model gives satisfactory results
since we conclude to non-autocorrelated residuals in more than 80% of cases. Second, we
find that our exogenous variable is useful to model the squared daily log-returns for six
out of the ten assets. Finally, our model belongs to the superior set of models for seven
out of ten assets more often than the three competitors.

Chapter 3: Backtesting Expected Shortfall via Multi-Quantile
Regression

Chapter 3, "Backtesting Expected Shortfall via Multi-Quantile Regression", proposes
four easy-to-use tests for assessing the validity of the expected shortfall (ES) based on
quantile regression models.2 Among the number of fundamental reforms that must be
implemented until January 1st, 2022 (BCBS, 2019), the BCBS has substituted value-at-
risk (VaR) by ES for the calculation of market risk capital requirements. As an alternative
tail risk measure, ES offers a number of appealing properties that overcome the theoretical
deficiencies of VaR. In particular, ES is coherent as the measure satisfies the properties of
monotonicity, sub-additivity, homogeneity, and translational invariance (Artzner et al.,
1999; Acerbi and Tasche, 2002). Furthermore, ES quantifies the expected size of the loss
given that a loss bigger than VaR is experienced, while VaR only captures the likelihood
of an incurred loss. In its revised standards for market risk, the BCBS emphasizes the
role of ES to avoid the "perverse incentives to hold positions that featured significant tail
risks but were subject to limited risk in "normal" conditions" (BCBS, 2019, page 3).

Our research aims at providing an original backtesting framework for the ES risk
estimates which are computed for the market portfolios in the industry. As defined
by Jorion (2007), backtesting is a formal statistical framework that consists of verifying
whether actual losses are in line with projected losses. In other words, backtesting implies
a systematic comparison of the historical model-generated risk measure forecasts with
actual losses. Because the ES parameter is a key constituent for the computation of
the regulatory capital charge as part of the market risk, any underestimation of ES that

2This chapter is based on Couperier and Leymarie (2021) and has received the 2019 best paper award
of the German Finance Association (DGF).
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has not been identified in time may threaten the bank’s solvability. For that reason,
backtesting is a key requirement for ES to become an industry standard in the long run.

This chapter suggests a natural extension of the standard VaR backtesting procedures
enabling the validation of VaR risk estimates at several probability levels jointly. Our
approach is as follows. We suggest an approximation of ES defined as a sum of several
VaRs at pre-specified probability levels along the tail distribution of the risk model.
Our approximation stems from the representation of ES as the limit of a Riemann sum
involving a set of several VaRs. Then, we jointly assess the VaRs involved in the Riemann
sum as an implicit backtest of ES. Formally, we consider a multi-quantile regression
model and show that the model parameters have specific properties under the hypothesis
that the VaRs are jointly valid. We propose four backtests which correspond to various
linear restrictions on these parameters. These restrictions are implications of a Mincer-
Zarnowitz representation (Mincer and Zarnowitz, 1969). Then, we test the resulting
parameter restrictions using Wald-type inference. The procedure extends the test of
Gaglianone et al. (2011) that allows the backtesting of VaR at a single probability level.

Our approach has many advantages compared to the method currently used by prac-
titioners, regulators, and academics. First, our procedure is flexible since the user may
choose the number and values of quantiles for the assessment of ES and can easily focus
on various aspects of the tail distribution of the risk model. Second, the method encom-
passes the recommendation of the Basel III accord of verifying quantiles at risk levels
97.5%, and 99%. According to the BCBS guidelines on ES assessment "Backtesting re-
quirements are based on comparing each desk’s 1-day static value-at-risk measure [...] at
both the 97.5th percentile and the 99th percentile" (BCBS, 2016, page 57). Furthermore,
the procedure is easy to implement as it is based on the well-established VaR which may
complete the toolbox commonly used by risk managers. Finally, our procedure com-
plements the existing literature on regression-based backtests as proposed by Engle and
Manganelli (2004, JBES) and Gaglianone et al. (2011, JBES).

A simulation study is considered to assess the finite sample properties of our backtests.
To assess the empirical size, we simulate portfolio returns from a AR(1)-GARCH(1,1)
model with Student innovations which is defined as the correct data generating process
throughout the simulation study. This class of model is widely used for capturing variance
dynamics in daily asset returns (see e.g., Berkowitz and O’Brien, 2002; Berkowitz et al.,
2011; Du and Escanciano, 2017; Loser et al., 2019). Our simulation results indicate
that the use of asymptotic critical values produce substantial size distortions for the
four backtests. In order to correct the finite sample size distortions of our backtests, we
propose a pairs bootstrap algorithm (Freedman, 1981). The resulting bootstrap critical
values provides satisfactory size performances regardless of the sample size and should
accordingly be used when asymptotic theory does not apply conveniently. Finally to
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investigate the power, we consider several misspecified alternative models considering
mean, variance, tail, and dynamic measurement errors. Our tests correctly flag all the
misspecified alternatives and we verify that there is a general improvement of powers as
the sample size increases, suggesting that these tests are consistent for these alternatives.

An empirical application is also conducted to illustrate the merits of our method.
We assess the ES estimates issued from a AR(1)-GARCH(1,1) model assuming that the
portfolio returns of the investor are given by the S&P500 index over the period 2007-
2012. Our procedure concludes that the forecasts of ES are generally misleading. More
interestingly, our empirical results suggest an update of the current regulatory guidelines.
We show that the BCBS recommendation of assessing quantiles at risk levels 97.5%
and 99% is not necessarily a reasonable guideline to identify misspecified ES models.
The use of additional quantiles improve the soundness of the decision. Our results also
suggest to limit the number of quantiles in very small samples and to consider higher
values if the historical sample covers longer periods. Finally, we show numerically that
our approximation of ES as a combination of several VaRs is close to its theoretical
counterpart, which strongly supports its implementation in a risk management viewpoint.

Chapter 4: Elicitability of Marginal Expected Shortfall and Re-
lated Systemic-Risk Measures

Chapter 4, "Elicitability of Marginal Expected Shortfall and Related Systemic-Risk
Measures", identifies the first class of strictly consistent scoring function for the market-
based systemic risk measures.3 While the debate on the economic usefulness for regulators
of market-based systemic risk measures is still at play (Idier, Lame, and Mesonnier, 2014;
Zhang et al., 2015; Benoit et al., 2017, Loffler and Raupach, 2018; and Brownlees et al.,
2020), answering the remaining questions on estimation, comparison, and evaluation of
those indicators should help to finally put an end to all equivocation. If these timely
measures are estimated accurately, they react quickly to market changes, offering added
value compared to the current yearly systemic-risk scores used by the Financial Stability
Board to identify Global Systemically Important Banks (G-SIBs). For instance, the 2020
list of G-SIBs identify the same 30 G-SIBs than the year before even if we are experiencing
the COVID-19 pandemic crisis.

Elicitability is a mathematical property, that is satisfied by some risk measures. The
terminology is due to Osband (1985). If a risk measure is elicitable, then there exists a
scoring function (or loss function) for that risk measure that can be used for estimation
or for comparative tests on risk models. Without such a loss function, consistent ranking
among methods is not feasible. Importantly, value-at-risk (VaR) is elicitable, while ex-

3This chapter is based on Benoit, Couperier, Leymarie and Scaillet (2021) and has been awarded a
research grant sponsored by the Fondation Banque de France (2021-2022).
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pected shortfall (ES) is not. According to the internal models approach adopted by most
major international banks, the market risk forecasts are issued from internal risk models
(BCBS, 2019). Researchers have long debated over the connection between elicitability
and backtestability, fuelled by the adoption of ES for the calculation of market risk capital
requirements. Fortunately, recent results from statistical decision theory have overcome
the lack of elicitability of ES (Fissler and Ziegel, 2016), which finally opens the possi-
bility to compare and rank ES forecasts issued from competing and internal risk models
(Patton, Ziegel, and Chen, 2019; Ziegel et al., 2019). So far, however, elicitability has not
been established for the market-based systemic risk measures, limiting their inclusion as
banking regulation standards, as it is the case for ES and VaR, for instance.

In this chapter, we identify a general class of loss function that is strictly consistent
with the market-based systemic risk measures. Our methodological development is as
follows. First, we build a class of loss function for the marginal expected shortfall (MES)
of a financial institution and for the VaR of the financial market, jointly, establishing
the 2-elicitability of the bivariate functional (MES,VaR). Then, we generalize the class
of loss function for any systemic-risk measures that can be expressed as a function of
MES, as it is the case for SRISK and SES. Our loss function is built up in analogy with
the recent advances in statistical theory where a class of loss function for ES is identified
(Fissler and Ziegel, 2016). Indeed, ES and MES display many similarities, as they can be
both defined as truncated expectations, of a univariate, and of a multivariate distribution,
respectively. Furthermore, the MES is the partial derivative of the system ES with respect
to the weight of firm in the economy (Scaillet, 2004, Acharya et al., 2017).

Several contributions are provided to the systemic risk literature. First, we apply the
loss function as a procedure to estimate the systemic risk measures. Formally, we derive
a semi-parametric M -estimator of the MES and VaR defined as the solution to the min-
imization of the empirical loss function. While the existing estimation methods used for
the systemic risk measures, like MES or SRISK, are issued from fully parametric models
or models of second-order moment (see Acharya, Engle and Richardson, 2012; Acharya et
al., 2017; and Brownlees and Engle, 2017), our framework imposes minimal distributional
assumptions on the joint distribution of asset returns. To our knowledge, it is the first
time that modeling the MES or SRISK onto a set of explanatory variables is achieved,
as in Adrian and Brunnermeier (2016) where ∆CoVaR is explained by macro-state vari-
ables. Second, we consider the loss function for models’ performance comparison. The
loss function can be applied to compare and rank different competing risk models for the
systemic risk measures which was not yet available for those indicators. For instance, we
can gauge the correctness of the systemic-risk rankings as displayed on the Volatility Lab
website of the NYU, or to show that an ill-chosen risk model may skew the evaluation of
risk and regulatory capital levels held by banks, as defined by a systemic risk measure.
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Our estimation procedure imposes the estimation of a nuisance function into the
empirical loss function which is defined as the expected firm return conditional to the
market return being equal to its VaR. To ensure the strict consistency of the loss function,
the nuisance function is imposed to be strictly increasing with the market-VaR. We use
the nonparametric isotone estimator of Dette, Neumeyer, and Pilz (2006) to ensure the
strict monotonicity of the nuisance function. Then, we present conditions such that the
estimated parameters of the VaR and MES models are consistent in the presence of a
nonparametric estimator of a nuisance function in the criterion function (Chen, Linton,
and Van Keilegom, 2003; Delsol and Van Keilegom, 2020). Finally, we characterize the
asymptotic normality and we show that the nuisance function does affect the asymptotic
variance of the estimator (Andrews, 1994; Newey, 1994; Ichimura and Lee, 2010).

We consider a set of Monte Carlo experiments to illustrate the asymptotic theory of
our semi-parametric M -estimator for MES and VaR. We consider several sample sizes,
namely 250, 500, and 1000 daily observations, representing 1, 2, and 4 years of historical
data, respectively. The MES an VaR are computed at several probability levels, namely
0.01, 0.025, 0.05, 0.10, 0.20, that correspond to the largest bank’s expected equity loss out
of 100, 40, 20, 10, 5, trading days, respectively. First, we observe that the parameters are
estimated without bias hence illustrating the consistency of the proposed semi-parametric
M -estimator. Second, we confirm numerically that the estimated measures are normally
distributed for large sample sizes and we report accurate statistical inference. Finally,
we find that the asymptotic variance of MES and VaR is strongly decreasing with the
considered probability levels. There is much more estimation uncertainty in the MES and
VaR during the most severe market decline (probability level close to 0). Thus, in case
of adverse market conditions, systemic risk measures are strongly affected by estimation
errors, which in turn may skew the evaluation of risk and the required regulatory capital
levels. As a result, the estimation risk should be accordingly taken into account by aca-
demics and regulators when evaluating the systemic importance of financial institutions.

Finally, Chapter 5 summarizes the main findings of this thesis and puts forward several
objectives for future research.
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Chapter 2

Daily Volatility Forecasting using
Intraday Returns and Functional
Covariates1

In addition to past daily returns, intraday returns are now well-known to carry valuable
information on the daily volatility dynamics. GARCH models with exogenous scalar co-
variates (like realized volatilities) partially take into account this additional information.
In this chapter we propose a volatility model including functional covariates, for handling
the whole information conveyed by the low and high-frequency returns. We start by giv-
ing general stochastic results (strict stationarity, existence of moments and log-moments).
Then we study estimation of the model by Quasi-Maximum Likelihood (QML) and we
propose a portmanteau test of goodness-of-fit. Monte Carlo simulations and an empirical
application on financial series illustrate the interest of including functional covariates for
volatility prediction.

2.1 Introduction
As noted by Engle and Patton (2001): "no-one believes that financial asset prices

evolve independently of the market around them, and so we expect that other variables
may contain relevant information for the volatility of a series." Indeed, in addition to
past daily returns, intraday returns are now well-known to carry valuable information on
the daily volatility dynamics (see e.g. Koopman et al. (2005), Chortareas et al. (2011),
Lyócsa et al. (2021) and the references therein). The introduction of scalar exogenous
variables, or covariates, in the volatility has given rise to the class of GARCH-X-type
processes. The question of which covariates to introduce in the volatility in order to
increase the predictive power of the model is of course crucial. As in e.g. Fuertes et al.

1This chapter is based on Couperier, Francq and Zakoïan (2022).
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(2009), it seems natural to use realized volatility measures, such as realized variance,
range, power variation and bipower variation.

In these approaches, the information set does not reduce to the past returns, as in
classical GARCH models, but includes covariates and, in particular, a summary of the
intraday movements. However, using summaries may entail losses of information for
volatility modeling and predicting purposes.

Our objective in this article is to propose a volatility structure including the whole se-
quence of intraday returns as functional covariates. In functional data analysis, observed
data are transformed into curves. This area of research has received increasing interest in
the recent time series literature. In particular, functional version of GARCH models were
studied by Hörmann et al. (2013), Aue et al. (2017), Cerovecki et al. (2019), Kühnert
(2020), Sun and Yu (2020). Rice et al. (2020) showed the interest of such models for
Value-at-Risk forecasting. For the models studied in the aforementioned references, the
response is functional (the curve of the intraday squared returns) and the explanatory
variables are lagged values of this random curve. In the model we propose, the response
is scalar (daily volatility) and the explanatory variables are mixed scalar and functional.

To be more specific, recall that a functional linear regression model with scalar re-
sponse y and centered functional covariate tXpuq, u P r0, 1su is a direct extension of the
multiple linear regression model, and can be written

y � β0 �
» 1

0
βpuqXpuqdu� ε

with obvious notations. If the response y is positive, as is the case for a volatility or
a squared return, it is not obvious to impose tractable conditions on the functional pa-
rameter βp�q so that the right-hand side of the functional linear regression model be
positive with probability one. The log-GARCH specification is particularly relevant in
this framework, since no positivity constraint is required. This class, originally intro-
duced by Geweke (1986), was studied by Pantula (1986), Milhoj (1987), Sucarrat et al.
(2016), Francq et al. (2013), Francq et al. (2018), among others.

This leads us to study the model$'''&'''%
εt � σtηt

ln σ2
t � ωt �

°q
i�1 αi,t ln ε2t�i �

°p
j�1 βj ln σ2

t�j � π1xt�1

� ³1
0 δpuqXt�1puqdu

(2.1)

where pηtq is a sequence of independent and identically distributed (iid) variables
such that Eη2

1 � 1, ωt � ω � °q
i�1 ωi�1tεt�i 0u, αi,t � αi�1tεt�i¡0u � αi�1tεt�i 0u,

xt � px1,t, x2,t, . . . , xr,tq1 is a vector of r exogenous scalar covariates, Xt is an exoge-
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nous real-valued functional covariate, π � pπ1, π2, . . . , πrq1 is a vector of real numbers,
and δ is a real-valued function.

In this model, ω and the components of the vectors ω� � pω1�, . . . , ωq�q1, α� �
pα1�, . . . , αq�q1, α� � pα1�, . . . , αq�q1, and β � pβ1, . . . , βpq1 are real coefficients, which
are not a priori subject to positivity constraints.2 Moreover, noting that αi,t � 0 whence
εt�i � 0, it will not be restrictive to assume σt ¡ 0. In this model, the covariates involved
in the volatility dynamics are both scalar and functional. A recent reference dealing
with the introduction of both scalar and functional covariates in time series regression
models is Chen et al. (2020). In the applications we have in mind, Xtp�q could be an
intraday functional process. We may define Xtpuq as the price of the asset on day t at
intraday time u, where u P r0, 1s. The intraday time is represented by the interval r0, 1s.
Asymmetries typically encountered in financial series are introduced through coefficients
depending on the signs of the past returns. Asymmetries are present in both αi,t and ωt
to ensure stability by scaling,3 a most desirable property (see Francq et al., 2018).

The reminder of the paper is organized as follows. In Section 2.2, we discuss the
existence of stationary solutions and the existence of moments and log-moments. In
Section 2.3, we introduce our estimation procedure and detail its asymptotic properties.
In order to test the goodness-of-fit of our model, we also introduce a portmanteau statistic.
In Section 2.4, we conduct Monte Carlo experiments to illustrate our asymptotics results.
Section 2.5 is dedicated to the empirical applications. Finally, Section 2.6 concludes.
Proofs and technical results are reported in an appendix.

2.2 Stationarity and existence of moments
Before investigating stationarity properties, notice that a convention is required to

handle returns equal to zero. Under the convention that 0 � lnp0q � 0, the log-volatility
in (2.1) is well-defined whatever the values of the past returns (contrary to the standard
log-GARCH model which is not appropriate for series that may contain zeroes). We start
by considering particular cases of the general model (2.1) for which an explicit stationarity
condition can be established.

2The analysis and interpretation of the impacts of shocks on the volatility may however lead to some
plausible restrictions on some of these coefficients. For instance if ω1� ¡ 0, a decrease of the price at
time t� 1 will increase the volatility by a fixed scaling factor whatever the amplitude of the price drop.

3If pεtq is an element of this class of models the process pε�t q defined by ε�t � cεt with c ¡ 0 also
belongs to this class.
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2.2.1 Stationarity of the first-order model
When p � q � 1, the volatility in Model (2.1) writes, omitting subscripts,

ln σ2
t � ωt � αt ln ε2t�1 � β ln σ2

t�1 � π1xt�1 �
» 1

0
δpuqXt�1puqdu, (2.2)

where ωt � ω � ω�1tεt�1 0u, αt � α�1tεt�1¡0u � α�1tεt�1 0u.
We assume that the following assumption holds.

A0: twtu � tpηt,x1t, Xtqu is a strictly stationary and ergodic process.

Note that we do not postulate independence between the innovation ηt and the covariates.
Proposition 1 (Existence of a stationary and ergodic solution). Assume A0 and the
following condition holds

E

�
ln�

��1tη0�0u ln η2
0
��� ln� }x0} � ln�

����» 1

0
δpuqX0puqdu

����
   8. (2.3)

Then, there exists a unique strictly stationary and ergodic solution pεtq to Model (2.2) if

|α� � β|p |α� � β|q |β|r   1. (2.4)

where p � P pη0 ¡ 0q, q � P pη0   0q, and r � P pη0 � 0q. Moreover, this solution is
nonanticipative, in the sense that εt � hpwt,wt�1, . . .q, where h is a measurable function.

Notice that, except when α�, α�, β ¡ 0 or when α� � α� � 0, the strict stationarity
condition (2.4) does not entail |β|   1 as is usually the case in GARCH-type models.
For the next result we require an additional independence assumption between the error
process and the covariates.
Proposition 2 (Existence of log-moments of order m). Assume A0 and let m ¥ 1.
Suppose that for any k ¡ 0 the random vector px1t, Xtq is independent from the variables
ηt�k, k ¡ 0. Let E

��1tη0�0u ln η2
0
��m   8, E ||x0||m   8, E

���³1
0 δpuqX0puqdu

���m   8 and

p |α� � β|m � q |α� � β|m � r |β|m   1. (2.5)

Then E |ln σ2
t |m   8 and E

��1tεt�0u ln ε2t
��m   8.

2.2.2 Strict stationarity of the general model
Because coefficients equal to zero can always be added, it is not restrictive to assume

p ¡ 1 and q ¡ 1 in Model (2.1). Letting

νt � ωt �
q̧

i�1
αit ln η2

t�i � π1xt�1 �
» 1

0
δpuqXt�1puqdu,
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where ωt � ω �°q
i�1 ωi�1tηt�i 0u and αit � αi�1tηt�i¡0u � αi�1tηt�i 0u we have ln σ2

t �
νt �

°p_q
j�1pαj,t � βjq ln σ2

t�j, with αj,t � 0 when j ¡ q and βj � 0 when j ¡ p. We deduce
the matrix representation zt � Ctzt�1 � bt, where zt �

�
ln σ2

t , . . . , ln σ2
t�r�1

�1 P Rp_q,
bt � pνt, 0, . . . 0q1 P Rp_q and

Ct �

��������
α1,t � β1 α2,t � β2 . . . αp_q,t � βp_q

1 0 . . . 0
... . . . . . . ...

0 . . . 1 0

�������.

Let γpCq be the top Lyapunov exponent of the sequence tCt, t P Zu,

γpCq � lim
tÑ8

a.s.
1
t

ln ||CtCt�1 . . .C1|| � inf
t¥1

1
t
E pln ||CtCt�1 . . .C1||q . (2.6)

The choice of the norm is unimportant for the value of the top Lyapunov exponent.
However, in the sequel, the matrix norm will be assumed to be multiplicative. Note that
this exponent is well defined since E ln� }Ct}   8. We also have E ln� ||bt||   8 using
the moment condition (2.3). The proof of the following result follows by the arguments
used to establish Theorem 2.1 in Francq et al. (2013).4 It is therefore omitted.
Theorem 1 (Strict stationarity). Assume A0 and the moment condition (2.3). A suf-
ficient condition for the existence of a strictly stationary and nonanticipative solution to
model (2.1) is γpCq   0. The solution is unique, and it is non anticipative and ergodic.

It is worth noting that the existence of a stationary solution only depends on the
coefficients αi�, αi�, βj and the distribution of ηt. Note also that when p � q � 1 we
retrieve the strict stationarity condition of Proposition 2.

2.2.3 Existence of moments and log-moments for the general
model

The next result provides a sufficient condition for the existence of m-th order log-
moments.
Proposition 3 (Existence of integer log-moments). Let m ¥ 1. Assume A0 and the
moment condition (2.3). Suppose that

°p_q
i�1 |αi� � βi| _ |αi� � βi| _ |βi|   1, } ln η2

t }m  
8, }xt}m   8, and

���³1
0 δpuqXtpuqdu

���
m
  8. Then the strictly stationary solution pεtq

satisfies E| ln ε2t |m   8.
In the proof of the proposition we use the notation Cp8q for the (non random) matrix
obtained by replacing αit � βi by |αi� � βi| _ |αi� � βi| _ |βi| in Ct, for i � 1, . . . , p_ q.

4A difference is that, in the present article, the sequence Ct is not independent. However, the proof
does not require this property.
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The existence of small-order moments for the volatility or the log-volatility processes is
often useful to derive the asymptotic properties of estimators in GARCH-type models. We
start by considering the log-volatility. In the sequel, we use an alternative vector represen-
tation based on an iid sequence. Let µt � ωt�π1xt�1�

³1
0 δpuqXt�1puqdu� ln η2

t , let ε�t,q ��
1tεt¡0u ln ε2t , . . . ,1tεt�q�1¡0u ln ε2t�q�1

�1, ε�t,q � �
1tεt 0u ln ε2t , . . . ,1tεt�q�1 0u ln ε2t�q�1

�1, yt ��tε�t,qu1, tε�t,qu1, ln σ2
t , . . . , ln σ2

t�p�1
�1, ct � �

µt1tηt¡0u,01q�1, µt1tηt 0u,01q�1, µt,01p�1
�1 and let

the p2q � pq � p2q � pq matrix

At �

�������������

1tηt¡0uα� 1tηt¡0uα� 1tηt¡0uβ

Iq�1 0q�1 0pq�1q�q 0pq�1q�p

1tηt 0uα� 1tηt 0uα� 1tηt 0uβ

0pq�1q�q Iq�1 0q�1 0pq�1q�p

α� α� β

0pp�1q�q 0pp�1q�q Ip�1 0p�1

������������
,

where Ik denotes the k � k identity matrix. Model (2.1) is rewritten in matrix form as

yt � Atyt�1 � ct. (2.7)

Let γpAq be the top Lyapunov exponent of the sequence tAt, t P Zu.
Proposition 4 (Existence of a fractional log-moment). Assume that γpAq   0 and, for
some 0   s   1,

E
��1tη0�0u ln η2

0
��s   8, E ||x0||s   8, E

����» 1

0
δpuqX0puqdu

����s   8.

Then there exists a strictly stationary solution pεtq to (2.1) such that E
��1tεt�0u ln ε2t

��s  
8 and E |ln σ2

t |s   8.
We now turn to the existence of moments.

Proposition 5 (Existence of real-order moments). Assume ρ
�
Cp8q

	
  1. Let c8 �°

l¥0

���������Cp8q
	l��������, λx � }π}c8, λη � max1¤i¤q p|αi�| _ |αi�|q c8. Assume that for some

s ¡ 0, and some τ1, τ2, τ3 ¡ 0 with τ�1
1 � τ�1

2 � τ�1
3 � 1,

E exp
�
sτ1pλη _ 1q| ln η2

0|
�   8, E exp psτ2pλx _ 1q||x0||q   8,

E exp
�
sτ3pc8 _ 1q

����» 1

0
δpuqX0puqdu

����
   8.
(2.8)

Then the stationary solution of Model (2.1) satisfies
max tE|σ2

t |s, E|σ2
t |�s, E|ε2t |s, E|ε2t |�su   8.
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2.3 Statistical inference
We first introduce several finite-dimensional parametric specifications δp�q � δp�; bq

for the functional parameter of model (2.1).

2.3.1 Parametric representation of the functional part
Consider the Hilbert space of square integrable functions with domain r0, 1s : H �

L2 r0, 1s. The Hilbert space is equipped with the inner product   f, g ¡� ³1
0 fpuqgpuqdu

and the resulting norm ||.||. Let pϕkqk¥1 be an orthonormal Hilbert basis of H. For
instance, one can take the Fourier basis defined recursively by ϕ1pxq � 1, ϕ2kpxq �?

2 cosp2kπxq, ϕ2k�1pxq �
?

2 sinp2kπxq for k ¥ 1. Another example of Hilbert basis
is the sequence of the normalized Legendre polynomials defined by ϕ1pxq � 1 and, for
k ¥ 2, ϕkpxq � ckpxk �

°k�1
i�1   xk, ϕi ¡ ϕipxqq with ck a constant such that }ϕk} � 1.

Suppose that the coordinates of δ0 P H in the basis pϕkqk¥1 are defined by a parameter
of finite dimension.

A1: There exists b0 � pb1,0, b2,0, . . . , bM,0q1 in RM such that, for all k ¥ 1,   δ0, ϕk ¡�
Bkpb0q.

By Bessel’s inequality, it is known that p  δ0, ϕk ¡qk¥0 is a square-summable sequence.
This implies that   δ0, ϕk ¡ is arbitrarily small when k is large. If one assumes there
exists k0 such that   δ0, ϕk ¡� 0 for k ¡ k0, then A1 holds with bk,0 �  δ0, ϕk ¡ and
any M ¥ k0. Another way to parametrize   δ0, ϕk ¡ is to assume that the power series°8
k�0   δ0, ϕk�1 ¡ zk is a rational function, i.e. that we have the power series expansions

8̧

k�0
  δ0, ϕk�2 ¡ zk � Ψ0pzq

Φ0pzq (2.9)

where Φ0pzq � 1�°p1
i�1 φi0z

i and Ψ0pzq �
°q1
i�0 ψi0z

i, the roots of Φ0pzq being outside the
unit circle. Since Padé (1892), the approximation of an analytical function by a rational
function has proven to be a key technique in numerical analysis. Note, however, that we
are not considering here the Padé approximants of the function δ0, nor of its dual power
series

°8
k�0   δ0, ϕk�1 ¡ zk. Instead we will consider optimal L2r0, 1s approximations, for

which an algorithm is proposed in Appendix. Parameterizations of the form (2.9) are also
standard in time series, in particular to parsimoniously represent a Wold decomposition
by an ARMApp1, q1q model (see Brockwell and Davis, 1991). Under (2.9), A1 holds with
b0 � p  δ0, ϕ1 ¡, φ10, . . . , φp10, ψ00, . . . , ψq10q1. In the case p1 � q1 � 1, we have the
explicit relations B1pbq � b1 and Bkpbq � b3b

k�2
2 for k ¥ 2, with b � pb1, b2, b3q1. Note

that we assume ϕ1 � 1 in order to ensure that the parameterization is stable by linear
transformations. Indeed, with obvious notation, the linear transformation aδ0�c satisfies
A1 with b1 � ab1,0 � c, b2 � φ10, . . . , bp1�1 � φp10, bp1�2 � aψ00, . . . , bp1�q1�2 � aψq10.
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Example 1 (Rational representation of a function). As an illustration, Fig-
ure 2.1 represents the Gaussian density f of mean 0.5 and standard devia-
tion 0.1 (full black line), as well as its approximation by the truncated series°M
k�1   f, ϕk ¡ ϕk (dashed blue line) and its approximation by the "dual" ratio-

nal function
°8
k�1Bkϕk (dotted red line), where B1 �  f, ϕ1 ¡� ³1

0 fpxqdx and°8
k�0Bk�2z

k � Ψ0pzq
Φ0pzq

, with a total of M � 1 parameters for the polynomials Ψ0pzq and
Φ0pzq. The algorithm used to fit these parameters is described in Appendix. For this
illustration we took the Fourier basis pϕkqk¥1. As can be seen in the figure, the rational
approximation is more accurate than the approximation by truncation. The rational ap-
proximation is already quite good with M � 4 parameters and it is almost perfect with
M � 6 parameters.

Figure 2.1: Gaussian density, with its truncated and rational approximations based on
M parameters.
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Assuming Xt P L2r0, 1s a.s., let the random variables At,k �  Xt, ϕk ¡. For b
such that

°8
k�1B

2
kpbq   8, we have Xt

L2r0,1s� °8
k�1At,kϕk, δ

L2r0,1s� °8
k�1Bkpbqϕk and³1

0 δpuqXtpuqdu �
°8
k�1BkpbqAt,k. The notation f L2r0,1s� g, or simply f � g, means that

}f � g} � 0.

2.3.2 Quasi-maximum likelihood estimation
In this section, we estimate the parameters of the volatility model (2.1) without

assuming a particular distribution for the iid noise ηt. Let d � 1� 3q� p� r�M be the
total number of unknown parameters. We define the generic parameter

θ � �
ω,ω1

�,α
1
�,α

1
�,β

1,π1, b1
�1 P Rd,

with ω1
� � pω1�, . . . , ωq�q, α1

� � pα1�, . . . , αq�q, α1
� � pα1�, . . . , αq�q and

β1 � pβ1, . . . , βpq. The true unknown parameter is denoted by θ0 ��
ω0,ω

1
�,0,α

1
�,0,α

1
�,0,β

1
0,π

1
0, b

1
0
�1
. Let pε1, . . . , εnq be a realization of length n of the sta-
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tionary solution pεtq to model (2.1), and let px1, . . . ,xnq and pX1, . . . , Xnq be the cor-
responding observations of the exogenous scalar variables and the exogenous real-valued
functional covariate. The quasi-maximum likelihood estimator (QMLE) of θ0 is defined
as follows pθn � arg min

θPΘ
rQnpθq

where Θ � Rd is the parameter set and

rQnpθq � 1
n

ņ

t�1

r̀
t, r̀

t � r̀
tpθq � ε2trσ2

t pθq
� ln rσ2

t pθq

with rσ2
t pθq recursively defined for t ¥ 1 by

ln rσ2
t pθq � ωt �

q̧

i�1
αi,t ln ε2t�i �

p̧

j�1
βj ln rσ2

t�jpθq � π1xt�1 �
8̧

k�1
BkpbqAt�1,k

using the initial values ε0, . . . , ε1�q, σ̃2
0 ¥ 0, . . . , σ̃2

1�p ¥ 0.

2.3.2.1 Strong consistency

Let the polynomials Aθ�pzq �
°q
i�1 αi�z

i, Aθ�pzq �
°q
i�1 αi�z

i, Wθpzq �
°q
i�1 ωi�z

i

and Bθpzq � 1 �°p
j�1 βjz

j. Let Ft�1 denote the σ-field generated by tεu,xu, Xu, u   tu
and F px,Xq,η

t�1,t�s�1 denote the σ-field generated by tηt�s�k,xt�k, Xt�k, k ¡ 0u. To show the
consistency of the QMLE, we need the following assumptions.
A2: θ0 P Θ, Θ is compact.
A3: E

��1tεt�0u ln ε2t
��   8, E ||xt||   8 and

°8
k�1E|A1,k|   8.

A4: For all s ¥ 1, the support of the distribution of ηt�s given F px,Xq,η
t�1,t�s�1 contains at

least two positive values and two negative values.
A5: We have q ¡ 0 and, if p ¡ 0, at least one of the following conditions hold: a)
ω�,0 � 0, Bθ0pzq has no common root with Wθ0pzq and pωq�,0, βp,0q � 0;
b) α�,0 � 0, Bθ0pzq has no common root with Aθ0�pzq and pαq�,0, βp,0q � 0; c) α�,0 � 0,
Bθ0pzq has no common root with Aθ0�pzq and pαq�,0, βp,0q � 0.
A6: γ   0 and, for all θ P Θ,

°p
j�1 βj   1 and

°8
k�1B

2
kpbq   8.

A7: If a is a non zero vector of Rr or if δ � °8
k�1Bkpbqϕk P L2r0, 1s is such that }δ} � 0

then, conditional on Ft�1, the random variable a1xt�
³1
0 δpuqXtpuqdu is not degenerated.

A8: If Bkpbq � Bkpb0q @k ¥ 1, then b � b0.
Assumption A2 is standard to show the consistency of the QMLE of GARCH models.
The first two conditions of Assumption A6 are also standard. The last condition entails
that δ :� °8

k�1Bkpbqϕk belongs to L2r0, 1s. The first moment condition of Assumption
A3 is studied in Proposition 2. Assumptions A4, A5, A7 and A8 are identifiability
conditions. Assumption A4 prevents taking covariates, for instance of the form xt � εt�s,
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for which the information given by xt�1 is redundant with that of tεu, u   t� su. It is
similar to Assumption A4 made by Francq and Thieu (2019) in the case of GARCH-X
models. For Log-GARCH models without exogenous variables, Francq et al. (2013) made
an assumption similar to, but slightly stronger than, A5. Assumptions A7 is necessary
to avoid multicollinearity of the covariates. Under (2.9), A8 is satisfied if Φ0pzq and
Ψ0pzq have no common root and ψq1,0 � 0 or φp1,0 � 0
Theorem 2 (Consistency of the QMLE). Under Assumptions A0-A8 the QMLE of θ0

in Model (2.1) is strongly consistent, i.e. we have pθn Ñ θ0 almost surely.

2.3.2.2 Asymptotic normality

To show the asymptotic normality, the following additional assumptions are made.
A9: θ0 P Θ̊, where Θ̊ denotes the interior of Θ.
A10: κη :� Eη4

t   8.
A11: For some ν ¡ 0 and r ¡ 0,

°8
k�1

�
EA2�ν

1,k
� 2

2�ν   8 and

E exp

$&%r
��1tηt�0u| ln η2

t | � | ln σ2
t | � }xt} �

d» 1

0
X2
t puqdu

�,.-   8. (2.10)

A12: The applications Bkp�q are twice continuously differentiable in a neighborhood
V pθ0q of θ0, and

8̧

k�1
sup

θPV pθ0q

���� BBbBkpbq
����2

  8,
8̧

k�1
sup

θPV pθ0q

���� B2

BbBb1Bkpbq
����2

  8.

A13: If c is a non zero vector of RM then there exists k ¥ 1 such that c1 B
Bb
Bkpb0q � 0.

Assumptions A9 and A10 are standard. Assumptions A11 and A12 are needed to
show the existence of the hessian matrix of the objective function in a neighborhood of
θ0. In the symmetric case with q � 0 and p � 1 it is clear that the Cramer condition
(2.10) is necessary for the ratio

σ2
t pθ0q
σ2
t pθq

� exp
"
ω� � α�1tεt�0u ln ε2t�1 � π�

1

xt�1 �
» 1

0
δ�puqXt�1puqdu

*
to admit some moment in a neighborhood of θ0. Assumption A12 is very mild.
In particular, it is satisfied for the two examples of parameterization that we con-
sidered, that is to say when b � p  δ, ϕ1 ¡, . . . ,  δ, ϕM ¡q1 and when b �
p  δ, ϕ1 ¡, φ1, . . . , φp, ψ0, . . . , ψqq1. A13 is a necessary identifiability assumption, which
is also satisfied in the two parameterizations.
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Theorem 3 (Asymptotic normality of the QMLE). Under the assumptions of Theorem
2 and A9-A13, we have

?
n
�pθn � θ0

	
dÑ N �

0, pκη � 1qJ�1� as n Ñ 8, where J �
E
�
B
Bθ

ln σ2
t pθ0q B

Bθ1
ln σ2

t pθ0q
�
is a positive definite matrix.

An important advantage of log-volatility models over standard GARCH is that the
coefficients are not constrained to be non negative. Consequently, A9 may be satisfied
when components of θ0 are equal to zero, and Theorem 3 can be directly used to test the
nullity of GARCH coefficients. In other words, a parameter equal to zero—for instance
π0i � 0—does not cause the difficulties encountered in standard GARCH-X models (see
Francq and Thieu, 2019). For tests, consistent estimators of J an κη are however needed.
The next proposition shows that one can take empirical estimators. Let pηt � εt{pσt, wherepσt � rσtppθnq.
Proposition 6 (Estimation of the QMLE asymptotic variance). Under the assumptions
of Theorem 3 pκ � 1

n

ņ

t�1
pη4
t and pJ � B2

BθBθ1
rQnppθnq

are strongly consistent estimators of κη and J .

2.3.3 Goodness-of-fit portmanteau tests
For testing the adequacy of volatility models, Li and Mak (1994) and Ling and Li

(1997) proposed portmanteau tests based on the autocovariances of the squared resid-
uals. The asymptotic distribution of these tests has been further investigated by many
authors: see in particular Berkes et al. (2003a) for the standard GARCH models, Carbon
and Francq (2011) for the APARCH models, Francq et al. (2018) for Log-GARCH and
EGARCH models. Other goodness-of-fit tests exist. In particular, Escanciano and Olmo
(2010) proposed diagnostic tests of a general class of conditionally heteroskedastic time
series models. Leucht et al. (2015) also proposed specification tests of Cramér-von Mises
type for GARCH(1,1) models. Portmanteau tests remain however the most widely used
diagnostic tools for time series (see the monograph of Li, 2004).

We thus consider the null hypothesis

H0 : the process pεtq satisfies Model (2.1),

and define the autocovariances of the squared residuals at lag h, for 1 ¤ h   n, byprh � n�1 °n
t�h�1ppη2

t � 1qppη2
t�h � 1q. For any fixed integer m, 1 ¤ m   n, consider the

statistic prm � ppr1, . . . , prmq1 . Define the m� d matrix xKm whose row h, for 1 ¤ h ¤ m, is

xKmph, �q � 1
n

ņ

t�h�1
ppη2
t�h � 1qB log rσ2

t ppθnq
Bθ1 . (2.11)
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We need to slightly reinforce Assumption A4.

A4�: For all s ¥ 1, the support of the distribution of ηt�s given F px,Xq,η
t�1,t�s�1 contains at

least three positive values and three negative values.

Theorem 4 (Portmanteau adequacy test). Under H0, the assumptions of Theorem 3
and A4� we have

npr1m pD�1prm dÑ χ2
m

where pD � ppκ � 1q2Im � ppκ � 1qxKm
pJ�1xK 1

m. Therefore, H0 is rejected at the nominal
level α P p0, 1q when tnpr1m pD�1prm ¥ χ2

mp1� αqu.

2.4 Simulations
The aim of this section is to evaluate the finite sample properties of both the QMLE

of model (2.1) and the portmanteau test statistics introduced in the previous section. To
do so, we start by simulating a sequence of returns with log-volatility given by

ln σ2
t �ω � ω�1εt�1 0 �

�
α�1εt�1 0 � α�1εt�1¡0

�
ln ε2t�1

� β ln σ2
t�1 �

» 1

0
δpuqXt�1puqdu. (2.12)

We consider two sample sizes in the simulation study, namely n � 1000 and n � 2000.
To build the functional exogenous variable, we collect the 5-minute log-returns of Bank
of America from December 29, 2004 to December 30, 2008 and from December 13, 2000
to December 30, 2008, corresponding to n � 1000 and n � 2000, respectively, and we use
the data from 9:35 am to 4:00 pm. To obtain a smooth functional variable Xt, we take
the logarithm of a rolling window average on the 5-minute squared log-returns using 24
observations. Then, we project Xt on the first M � 7 normalized Legendre polynomials
ϕk and consider the coefficients At,k �  Xt, ϕk ¡ for k � 1, . . . ,M and t � 1, . . . , n.

Our simulation procedure is as follows. First, we simulate 1000 samples of size n �
1000, 2000 with standard Gaussian innovations (ηt � N p0, 1q). Note that the model
parameters displayed in Table 2.1 are calibrated via the daily log-returns of Bank of
America using the same periods than that used for the exogenous variable. Second,
we estimate the parameters of the 1000 time-series generated by QMLE as detailed in
Section 2.3.2. Our estimation results are displayed in Table 2.1. The second and third
rows disclose the mean and median estimated parameters across simulations. The fourth
and fifth rows report the corresponding Mean Absolute Errors (MAE) and Mean Squared
Errors (MSE). The sixth row displays the standard deviation across simulations. Three
remarks should be raised. First, we find that the parameter estimates are close to their
expected values. Second, we observe that the average bias of estimates decreases with the
sample size n. Finally, the standard deviation of estimates is decreasing with n confirming
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our previous findings that the developed QMLE estimators are consistent. In the last
three rows of both panels we display the coverage rates associated with 90%, 95% and 99%
asymptotic confidence intervals, that is the relative frequency of simulations for which
the true parameter lies in the confidence interval. Our simulation results are satisfactory.
We find that the statistical inference is accurate for realistic sample sizes. In average,
considering a 90% confidence level, the coverage rates are equal to 87.5% and 89.1% for
n � 1000 and n � 2000, respectively. Similarly, at a 95% and 99% confidence level, the
coverage rates are equal to 93.2% and 98.1% for n � 1000, and 93.8% and 98.4% for
n � 2000, respectively.

Table 2.1: Simulation results.

ω ω� α� α� β b1 b2 b3 b4 b5 b6 b7

n � 1000

θ0 -2.181 0.229 0.018 -0.020 0.608 0.193 0.106 -0.431 0.132 0.307 1.869 0.331
Mean -2.256 0.220 0.015 -0.023 0.598 0.199 0.105 -0.436 0.133 0.308 1.879 0.332
Median -2.218 0.209 0.014 -0.023 0.605 0.197 0.103 -0.429 0.138 0.305 1.867 0.372
MAE 0.403 0.273 0.019 0.020 0.062 0.032 0.089 0.143 0.200 0.320 0.420 0.419
MSE 0.275 0.116 0.001 0.001 0.007 0.002 0.013 0.033 0.062 0.160 0.287 0.276
Std 0.519 0.340 0.024 0.024 0.081 0.041 0.112 0.183 0.248 0.401 0.536 0.525
IC90% 86.3% 87.4% 87.1% 88.0% 85.3% 87.2% 87.5% 86.2% 89.5% 87.4% 89.1% 89.1%
IC95% 92.5% 93.4% 92.8% 93.3% 91.3% 92.0% 93.8% 92.2% 95.6% 94.0% 93.4% 94.6%
IC99% 97.1% 98.9% 98.7% 98.1% 96.2% 96.8% 98.4% 97.9% 99.0% 98.2% 98.8% 98.9%

n � 2000

θ0 -2.283 0.218 0.032 0.001 0.556 0.239 0.052 0.078 -0.368 0.545 0.506 -0.392
Mean -2.314 0.217 0.031 -0.001 0.552 0.242 0.046 0.084 -0.376 0.551 0.496 -0.390
Median -2.290 0.225 0.031 -0.001 0.555 0.240 0.048 0.084 -0.368 0.549 0.496 -0.395
MAE 0.305 0.187 0.014 0.013 0.055 0.030 0.061 0.097 0.152 0.228 0.282 0.298
MSE 0.153 0.056 0.000 0.000 0.005 0.001 0.006 0.015 0.037 0.077 0.131 0.144
Std 0.390 0.236 0.017 0.017 0.070 0.038 0.077 0.123 0.193 0.278 0.362 0.380
IC90% 87.6% 89.3% 89.8% 90.4% 86.4% 86.2% 89.5% 88.6% 89.0% 90.3% 90.3% 91.7%
IC95% 92.6% 93.9% 94.8% 94.4% 91.4% 91.9% 94.2% 94.1% 93.4% 94.9% 94.5% 95.3%
IC99% 97.2% 98.6% 99.5% 98.4% 96.8% 97.7% 98.7% 98.3% 98.6% 98.9% 98.9% 99.2%

Let us now look at the finite sample size properties of the portmanteau test statistics
introduced in Section 2.3.3. We consider three competing models that can be regarded
as sub-models of the representation (2.12). The first alternative model, hereafter denoted
by A1, is of the form (2.12), but without the functional covariate Xt and with the realized
volatility as scalar exogenous variable5. The alternative model A2 is Model (2.12) without

5The realized volatility can be seen as a summary of the intraday data since it is the sum of the
5-minutes squared log-returns on a day.
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covariates (i.e. with b � 0). The last model, henceforward denoted A3, is a Log-
GARCH(1,1) model without exogenous variable and without asymmetry. Therefore, it
is equivalent to the model (2.12) with ω� � 0, α� � α� and b � 0.
For the 1000 replications, n � 1000 and n � 2000, we estimate by QML the parameters
associated with the true model (2.12) and the three misspecified models A1, A2, and A3.
Then, we apply the corresponding portmanteau tests on the squared residuals. Table
2.2 reports the rejection rates at various nominal levels, namely α � 10%, 5%, 1%. We
consider a number of lags m � 6, 12, 18, 24, 30 to build the empirical auto-covariances
used in the portmanteau tests. The left panel of Table 2.2 reports the rejection rates
for n � 1000 and the right panel is for n � 2000. The empirical sizes are close to
their nominal values, meaning that the portmanteau test is well-sized. Several remarks
should be raised regarding the power experiments. First, we find that the rejection rates
associated with the alternative models A1, A2, and A3, are substantially higher than the
considered nominal levels, as displayed in the last nine rows. Second, we confirm that
the frequencies of rejection are increasing with the sample size n, indicating that the test
is consistent for the considered alternatives. Finally, we verify that there is a general
improvement of the empirical powers from A1 to A3 given that A3 is the most restricted
model and A1 is the closest model, compared to model (2.12). In other words, the tighter
the constraints imposed to the true model, the higher the rejection rates.

Table 2.2: Portmanteau statistics (in %).

m 6 12 18 24 30 6 12 18 24 30
n � 1000 n � 2000

True 10% 9.1 9.0 9.0 9.6 8.8 7.6 8.8 9.1 10.3 9.8
model 5% 4.3 3.9 4.4 5.1 4.9 3.8 3.8 4.3 5.2 5.3

1% 0.4 0.7 0.7 0.8 0.9 0.6 1.0 1.0 1.4 1.2
A1 10% 19.3 18.4 23.1 24.5 24.4 24.5 27.0 31.4 31.6 32.8

5% 12.6 11.4 15.3 16.3 16.0 17.2 18.8 20.9 22.4 24.2
1% 4.6 4.4 5.1 6.5 7.2 6.0 8.0 9.7 10.8 11.6

A2 10% 65.5 72.4 80.4 81.8 81.3 90.6 93.1 95.5 96.6 96.9
5% 57.5 65.8 73.5 76.8 77.0 86.5 90.9 93.2 95.3 95.2
1% 44.8 53.5 62.0 67.9 68.3 74.1 82.5 87.3 90.8 92.4

A3 10% 72.6 79.2 85.0 86.8 82.8 94.7 96.4 97.2 97.8 97.7
5% 66.7 74.8 80.9 83.8 80.2 92.6 94.8 95.9 96.9 96.9
1% 52.9 63.1 71.6 75.7 74.6 85.4 90.6 92.1 93.8 94.3

34



2.5 Empirical Study

2.5 Empirical Study
We now estimate log-GARCH models, including or not functional covariates, on a

panel of ten stocks.

2.5.1 Data description
We consider ten large capitalizations from the NYSE and the NASDAQ. The list of

tickers and company names is reported in 2.7.3. Our sample period spans from January
4, 1999 to December 31, 2008. For the dependent variable, we collect the daily log-returns
of the adjusted closing prices, yielding 2489 observations per series. For the exogenous
variable, we consider the 5-minute log-returns. The 5-minute log-returns are collected
every trading days from 9:35 am to 4:00 pm, yielding 77 observations per day.6 The daily
log-returns are collected from Yahoo Finance and the 5-minute log-returns are issued
from TickData.

The daily log-returns of the ten assets under consideration display several cluster of
volatilities and a general increase of volatility for the ten stocks at the end of the sample
corresponding to the early stages of the 2007-2009 global financial crisis. The daily log-
returns hide a great heterogeneity at the intraday level. To emphasize this, Figure 2.2
displays the 5-minutes squared log-returns of the stocks for the first 25 trading days of the
sample period, hence corresponding to January 1999. Vertical dotted lines materialize
the separation between consecutive trading days. We observe that within a given day the
profile of the 5-minutes squared log returns is quite irregular and noisy.
To reduce the noise and ease the implementation of the functional approach, we smooth
the 5-minutes squared log returns. Figure 2.3 displays the smooth 5-minutes squared
log returns (in black). As in the simulation study, we consider the logarithm of a rolling
window average with 24 observations to smooth the 5-minutes squared log-returns. Then,
we apply the normalized Legendre polynomials with M � 7 to calculate the coefficients
that will be used in our model. The corresponding approximation is reported in blue in
Figure 2.3. The approximated curves seem to capture the main information contained in
the intraday variables.

2.5.2 In-sample estimation
Our main goal is to investigate whether the intraday functional variable is useful to ex-
plain the future squared daily log-returns. In the sequel, we consider a rolling window
estimation scheme for the in-sample estimation. More formally, we use the n last observa-
tions (i.e. εt�n�1, . . . , εt) of the stock return to estimate the parameter. We set n � 1000,

6We do not include the first observation of the opening trading session, i.e. 9:30 am, because of the
unusual business activity at that time.
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Figure 2.2: 5-minute squared log-returns for the first 25 sample days for the 10 stocks.
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Figure 2.3: Transformation of the intraday variables (black curves) for the first 25 sample
days of all stocks and their corresponding approximations (blue curves).
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resulting in a 4-year rolling window. The parameter estimates are updated every day and
we then obtain a series of 1489 estimated coefficients per stock.
Table 2.3 gives a summary of the parameter estimates. The top three rows of each panel
report the mean, the median and the standard deviation of the estimated parameters. In
the fourth row referred as IRR (for Individual Rejection Rate), we test for the individual
significance of the parameters. In the last row referred as JRR (Joint Rejection Rate), we
look at the relevance of the functional variable, i.e. we test H0 : δ0 � 0 (or equivalently
b0 � 0). In both cases, we build Wald test statistics using the estimated standard
errors issued from the asymptotic theory and we report the rejection frequency at the 5%
significance level.
Two important results stand out. First, we find that the individual components of the
functional variable (taken in isolation) are informative for modeling the dependent vari-
able. For instance, we observe that the b1 coefficient is statistically significant in more
than 70% of cases, for eight out of ten assets (that is for all series but ABT and CL).
Looking at b2, we find that the coefficient is significant in more than 20% of cases for
four out of ten assets. Second, we find that the introduction of the intraday variable is
overall very useful to explain future daily volatility. Looking at the test for nullity of δ0,
we find that the corresponding rejection frequencies exceed 60% for six out of the ten
assets considered.

To go a step further, we report in Figure 2.4 the dates of rejection of the joint test at 1%
(dark shaded area) and 5% (light shaded area) significance levels, as well as corresponding
daily log-returns. Overall, we find that the introduction of the functional variable is of
main interest in period of large increase in volatility. We observe large clusters of rejection
of the null hypothesis at the end of the sample where volatility is high due to the impact
of the financial crisis on financial markets. Consequently, the introduction of intraday
log-returns in the volatility equation is likely to improve the model depending whether
the uncertainty in future prices is high or low.
Figure 2.5 reports the intraday estimated curve associated with the ten tickers. The curve
is deduced from the pb estimated coefficients and the functional basis that has been used
to rebuild the pδpuq estimated intraday curve of each asset.7 We can distinguish three
different types of profiles. First, BAC, BP, CAT and CL assets admit almost U-shape
curves. Consequently, the most informative intraday log-returns are those happening at
the beginning and the end of the day whereas the middle of the day does not really
matter. Second, BMY and CSCO display curves with almost constant values along the
day and higher values at the end of the day, while C depicts the reverse profile. In other
words, the most indicative period in a day to explain daily volatility for BMY and CSCO

7To save space, we only report the average of estimated coefficients computed over the 1489 estima-
tions.
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Table 2.3: In-sample estimation results.

ω ω� α� α� β b1 b2 b3 b4 b5 b6 b7

ABT Mean -1.800 0.652 0.053 -0.007 0.727 0.100 0.111 -0.067 -0.093 0.358 0.335 -0.118
Median -1.161 0.683 0.057 -0.010 0.823 0.090 0.079 -0.015 -0.076 0.225 0.056 -0.235
Std 1.625 0.252 0.024 0.021 0.248 0.065 0.115 0.184 0.165 0.779 0.697 0.558
IRR 79.1% 30.3% 32.3% 0.0% 92.5% 23.5% 0.0% 0.0% 0.0% 15.1% 0.6% 0.0%
JRR 17.3%

AXP Mean -2.506 0.818 0.026 -0.057 0.585 0.267 0.031 0.301 -0.085 -0.096 -0.417 -0.908
Median -2.314 0.829 0.030 -0.051 0.654 0.239 0.023 0.329 0.047 -0.041 -0.353 -0.916
Std 1.107 0.316 0.017 0.022 0.196 0.108 0.091 0.263 0.351 0.365 0.389 0.327
IRR 100.0% 64.4% 2.1% 58.7% 96.4% 100.0% 0.0% 41.0% 0.2% 5.8% 0.0% 13.6%
JRR 77.2%

BA Mean -1.971 0.110 0.036 0.036 0.603 0.177 0.083 0.273 0.028 0.561 0.132 -0.552
Median -1.507 0.230 0.025 0.044 0.699 0.138 0.087 0.256 0.063 0.474 0.160 -0.585
Std 1.264 0.348 0.033 0.022 0.244 0.115 0.093 0.239 0.184 0.441 0.485 0.513
IRR 99.9% 0.0% 28.8% 30.0% 84.3% 95.1% 1.7% 17.9% 0.0% 15.5% 0.7% 4.3%
JRR 23.4%

BAC Mean -2.245 0.924 0.026 -0.062 0.652 0.219 0.018 0.108 0.220 0.843 -0.244 0.518
Median -2.364 1.018 0.028 -0.082 0.628 0.241 0.012 0.113 0.210 0.913 -0.129 0.608
Std 0.758 0.426 0.015 0.046 0.086 0.068 0.162 0.118 0.136 0.299 0.513 0.769
IRR 99.9% 59.0% 5.4% 66.8% 99.7% 97.5% 6.6% 0.0% 0.0% 6.4% 0.0% 1.1%
JRR 64.6%

BMY Mean -2.380 0.785 0.048 -0.021 0.631 0.182 0.141 0.761 0.685 1.124 1.287 0.896
Median -2.071 0.908 0.039 -0.035 0.714 0.140 0.110 0.838 0.740 1.193 1.395 0.488
Std 1.663 0.551 0.033 0.036 0.262 0.125 0.162 0.338 0.379 0.445 0.655 0.814
IRR 76.4% 26.5% 1.2% 22.3% 72.2% 71.6% 24.3% 75.8% 38.9% 46.0% 31.3% 31.5%
JRR 61.7%

BP Mean -2.038 0.402 0.032 -0.002 0.665 0.131 0.054 0.095 -0.007 0.277 -0.043 0.305
Median -1.294 0.417 0.033 0.002 0.761 0.116 -0.021 0.054 -0.099 0.212 0.006 0.355
Std 1.603 0.192 0.012 0.016 0.211 0.048 0.192 0.186 0.302 0.299 0.574 0.552
IRR 100.0% 13.2% 19.6% 0.0% 85.8% 86.7% 21.2% 0.6% 0.0% 0.4% 0.0% 0.0%
JRR 9.9%

C Mean -2.170 0.554 0.007 -0.023 0.611 0.269 -0.065 0.347 -0.410 0.578 -0.594 -0.255
Median -2.054 0.567 0.020 -0.031 0.627 0.257 -0.047 0.326 -0.488 0.555 -0.940 -0.453
Std 0.634 0.242 0.030 0.023 0.120 0.080 0.139 0.177 0.375 0.240 0.798 0.753
IRR 100.0% 23.1% 0.0% 27.5% 99.7% 100.0% 0.9% 33.3% 26.7% 12.0% 12.8% 1.5%
JRR 82.9%
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Figure 2.4: Joint significance test for the exogenous variable.
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Table 2.3: (continued)
ω ω� α� α� β b1 b2 b3 b4 b5 b6 b7

CAT Mean -4.585 0.040 0.003 -0.020 0.284 0.210 0.381 0.124 0.367 0.647 -0.009 0.836
Median -3.11 -0.019 0.012 -0.019 0.424 0.187 0.365 0.107 0.465 0.726 0.546 0.441
Std 2.805 0.306 0.025 0.015 0.366 0.073 0.129 0.299 0.287 0.898 1.430 1.065
IRR 100.0% 0.4% 0.0% 0.0% 63.4% 73.3% 63.0% 10.9% 2.2% 23.3% 22.7% 0.0%
JRR 78.4%

CL Mean -3.126 1.163 0.060 -0.047 0.587 0.134 -0.009 -0.055 0.600 1.594 0.424 2.059
Median -2.578 1.203 0.065 -0.038 0.616 0.110 -0.005 -0.122 0.790 1.746 0.466 2.529
Std 1.294 0.386 0.016 0.039 0.097 0.076 0.092 0.221 0.478 0.509 0.428 1.572
IRR 99.9% 25.5% 4.7% 10.3% 95.8% 37.2% 0.0% 0.0% 5.4% 57.3% 0.0% 61.0%
JRR 36.2%

CSCO Mean -3.315 0.113 0.015 0.008 0.398 0.276 0.266 0.341 0.178 -0.017 0.589 0.082
Median -1.416 0.130 0.018 0.011 0.709 0.212 0.228 0.341 0.104 0.222 0.398 -0.126
Std 2.776 0.316 0.016 0.022 0.454 0.145 0.253 0.112 0.209 0.618 0.654 0.730
IRR 99.9% 15.7% 0.0% 4.7% 63.0% 99.9% 39.9% 30.5% 0.0% 3.7% 5.8% 2.6%
JRR 72.8%

is market close while it is market opening for C. Finally, we find that the profile of the
ABT, AXP and BA curves is almost sinusoidal. For this type of curve, the interpretation
is more complex as there are no clear stylized periods where intraday price is indicative
of future daily volatility.

2.5.3 Model comparison
In this section, we consider a horse race between Model (2.12) and some nested com-

petitors from the existing literature. The logic is to examine whether the more complex
version of the model, that we call AS-Log-GARCH-fX for Asymmetric log-GARCH model
with partially functional covariates model, may offer added value compared to simpler
volatility time-series models. We consider three competing models: the Log-GARCH
model (without asymmetries and exogenous variables), the AS-Log-GARCH model that
accounts for the leverage effect (but does not include exogenous variables), and the AS-
Log-GARCH-X model including both a leverage effect and an exogenous scalar variable.
We use the daily realized volatility for the exogenous variable defined as the sum of the
5-minutes squared log-returns. In the first part, we apply in-sample portmanteau good-
ness of fit tests. In a second part, we assess the out-of-sample forecast performance of
the four volatility models.

2.5.3.1 Goodness-of-fit

Table 2.4 reports the rejection rates of the null hypothesis of the portmanteau test
statistics at the nominal level α � 5%. Except for BMY, CL, and ABT (when m is
large), the AS-Log-GARCH-fX model overall passes the portmanteau tests, and generally
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Figure 2.5: Estimated intraday coefficient curve pδp�q of each asset.
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displays smaller rejection rates compared to the three competitors. Note that the rolling
window scheme produces dependent statistics, which may explain an empirical frequency
of rejection much smaller than the nominal level.

Table 2.4: Portmanteau test statistics rejection rates (in %) for four models.

m 6 12 18 24 30 m 6 12 18 24 30

ABT 0.0 0.4 44.3 28.0 26.7 BP 0.1 0.0 0.0 0.4 0.1
0.1 0.1 56.2 53.8 39.8 1.8 1.3 0.1 7.5 4.9
0.7 0.3 56.1 40.6 38.8 7.8 16.9 15.8 16.6 15.1
4.8 1.4 56.6 56.2 56.2 65.4 67.3 69.8 72.6 71.3

AXP 0.0 15.5 10.1 0.0 0.0 C 0.1 0.1 0.1 0.0 0.0
41.9 24.6 23.4 23.1 23.1 1.7 2.2 2.3 1.8 1.6
91.9 79.8 65.3 51.6 61.2 8.5 9.7 12.7 9.5 9.1
88.5 86.5 85.5 84.6 85.3 73.7 82.1 80.1 73.3 70.3

BA 15.1 16.1 11.2 0.0 0.0 CAT 0.0 0.0 0.0 0.0 0.0
24.5 33.7 12.3 6.5 3.8 0.0 0.0 0.0 0.0 0.0
33.8 36.6 30.5 12.6 52.8 0.0 0.0 0.0 0.0 0.0
45.4 49.1 50.7 46.1 53.2 0.0 0.0 0.0 0.7 0.0

BAC 0.0 0.5 0.3 3.6 13.3 CL 15.8 15.5 13.6 34.4 36.7
0.0 8.8 0.0 9.1 12.0 0.0 1.1 0.0 12.0 10.0
0.1 2.3 1.1 1.5 5.8 47.7 25.6 14.3 30.6 19.2
20.2 15.3 8.8 9.1 12.2 59.5 21.4 13.6 37.4 26.7

BMY 15.1 59.5 57.1 52.89 52.0 CSCO 0.0 0.0 0.0 0.0 0.0
0.0 53.3 53.0 52.82 52.6 0.0 0.0 0.0 0.0 0.0
0.3 78.0 53.0 52.82 51.0 0.1 0.3 0.0 0.0 0.0
37.7 93.5 93.3 92.34 91.8 0.6 0.5 0.5 0.5 0.3

For each series, the 1st row corresponds to AS-Log-GARCH-fX, the 2nd to
AS-Log-GARCH-X, the 3rd to AS-Log-GARCH, and the 4th to Log-GARCH

Figure 2.6 reports the rejection dates of the null hypothesis of non-autocorrelated
residuals with m � 6 lags. To highlight the dates of rejection, we consider light and dark
shaded bars representing rejection dates at 5% and 1% significance levels, respectively.
We find that the rejection dates are sparse. It is worth noting however that we observe
a cluster of rejection at the beginning of the sample (2003-2004) for BA and CL and in
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the middle of the sample (2005-2006) for BMY. Importantly, our model is never rejected
at the end of the sample, that is during the financial crisis. Similar conclusions hold for
larger values of m.

Figure 2.6: Rejection dates of goodness-of-fit for m � 6 (significant levels of 5% (light
shaded area) and 1% (dark shaded area)).
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2.5.3.2 Out-of-sample forecasting

We now turn to the out-of-sample (OOS) forecast performance evaluations. We esti-
mate the model parameters using the rolling-window estimation scheme used in Section
2.5.2. Then, we compute one-step ahead forecasts of the conditional variance. As a re-
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sult, for each stock we obtain a series of 1488 forecasts spanning from January 2003 to
December 2008.
We apply the model confidence set (MCS) procedure of Hansen et al. (2011) to com-
pare the volatility forecasts issued from the AS-Log-GARCH-fX model and the three
competitors. At a given confidence level, the MCS procedure makes it possible to iden-
tify buckets of models where OOS forecast performance is equivalent within the same
bucket but is statistically different between distinct buckets. The bucket including the
best outperforming models is called the superior set of models (SSM). In the sequel, we
consider a 75%-confidence level for the MCS procedure. We apply the MCS procedure
on forecasting series of size s � 500 using a rolling-window scheme. We then compute
the procedure 989 times and report the corresponding result at the end of the forecasting
series (for graphics). Formally, the result of the MCS procedure displayed at time t is
produced using the forecasts from time t� s� 1 to time t.
Table 2.5 reports the frequency at which a given model enters into the SSM. The AS-
Log-GARCH-fX model belongs to the SSM for six assets out of ten assets, i.e., ABT,
AXP, BA, BMY, C, CSCO, regardless of the considered period. Furthermore, the AS-
Log-GARCH-fX model provides the highest rate into the SSM for BAC compared to
the competitors although the model is not always into the best bucket. Finally, for the
remaining stocks, i.e., BP, CAT, CL, the AS-Log-GARCH-fX model is dominated by the
AS-Log-GARCH-X model because the latter displays the highest frequency rates into the
SSM, suggesting for these stocks that a summary of the day (instead of the entire curve)
is self-sufficient to forecast volatility.
Figure 2.7 highlights the dates where the AS-Log-GARCH-fX model enters the SSM
with at least one competitor (light shaded area) and where it enters the SSM alone (dark
shaded area). Two remarks stand out. First, at the end of the sample period, the AS-
Log-GARCH-fX is ranked among the SSM for the ten tickers suggesting that the model is
generally competitive to predict volatility in times of crisis. Second, the AS-Log-GARCH-
fX enters the SSM alone regularly. For instance, the AS-Log-GARCH-fX model enters
the SSM alone in more than 25% of times for five assets and accordingly outperforms
significantly the three competitors in terms of OOS forecasting performance.

2.6 Conclusion
In this article, we proposed a new volatility model taking advantage of the functional

information extracted from intraday data, together with the usual low frequency (daily)
information. The choice of a log-GARCH formulation allowed to introduce such extra
information without facing problems due to positivity constraints, which are particularly
important in the case of functional data. On the other hand, the absence of a lower
bound for the volatility entailed challenging difficulties in the treatment of initial values
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Figure 2.7: Evolution of the AS-Log-GARCH-fX model in SSM of the MCS procedure
(AS-Log-GARCH-fX model alone (dark shaded area) and with other models (light shaded
area)).
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Table 2.5: SSM of the MCS procedure.

AS-Log-GARCH-fX AS-Log-GARCH-X AS-Log-GARCH Log-GARCH

ABT 100.0% 87.6% 90.3% 94.8%
AXP 100.0% 32.8% 39.7% 42.7%
BA 100.0% 37.9% 25.3% 36.1%
BAC 99.7% 49.2% 25.9% 61.4%
BMY 100.0% 69.0% 69.9% 67.6%
BP 86.6% 93.6% 72.7% 63.2%
C 100.0% 37.9% 72.9% 74.1%

CAT 34.8% 95.6% 59.8% 50.9%
CL 53.2% 100.0% 44.3% 43.4%

CSCO 100.0% 32.5% 59.5% 68.3%

for the derivation of asymptotic properties of the QML estimator. Despite these technical
difficulties, the probability structure and the asymptotic theory of estimation for the pro-
posed formulation have been established, and the model is simple to use and implement.
Confronting the model to real financial data, we found that the functional data are more
informative than the commonly used summaries (such as realized volatility) for volatility
prediction. Further issues concern the use of this structure for financial risk management,
or the multivariate extensions.
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2.7 Appendix

2.7.1 Appendix A: Proofs
Proof of Proposition 1. Noticing that the signs of εt and ηt coincide, and letting at �
β�α�1tηt�1¡0u�α�1tηt�1 0u, bt � ω�ω�1tηt�1 0u�pα�1tηt�1¡0u�α�1tηt�1 0uq ln η2

t�1�
π1xt�1 �

³1
0 δpuqXt�1puqdu, the log-volatility equation can be rewritten as a stochastic

recurrence equation of the form

ln σ2
t � at ln σ2

t�1 � bt. (2.13)

Using Lemma 4.1 in Francq and Zakoïan (2019), the existence of a unique strictly
stationary, ergodic and nonanticipative solution holds provided that E ln� |at|   8,
E ln� |bt|   8 and E ln |at|   0. These conditions are met under the assumptions of
the proposition. From a strictly stationary solution pln σ2

t q of (2.13), we easily deduce a
strictly stationary solution pεtq of (2.2). �

Proof of Proposition 2. First note that the moment conditions of the proposition entail
(2.3), while (2.5) entails (2.4) by Jensen’s inequality (i.e. the condition E |at|m   1 entails
the condition E ln |at| � m�1E ln |at|m   0). Thus the strict stationary solution exists
and Equation (2.13) can be expanded as

ln σ2
t � bt �

8̧

i�0

�
i¹

j�0
at�j

�
bt�i�1.

The moment conditions in the proposition ensure that ||b0||m   8, while (2.5) is equiva-
lent to ||a0||m   1. It follows that, using the independence,

����ln σ2
t

����
m
¤ ||b0||m �

8̧

j�1
t||a0||muj ||b0||m   8.

The conclusion follows. �

Proof of Proposition 3. For any matrix M � pMijq, let AbspM q � p|Mij|q, and, if M is
a square matrix, let ρpM q denote the spectral radius of M .

We first note that the conditions of the proposition ensure the existence of a strictly
stationary solution. Indeed, the latter requires that the infinite sum

zt �
8̧

`�0
Ct . . .Ct�`bt�`�1 � bt (2.14)
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exists a.s., which holds because����� 8̧

`�0
Ct . . .Ct�`bt�`�1 � bt

����� ¤ 8̧

`�0
}Cp8q}`}bt�`}   8, a.s. (2.15)

whereCp8q denotes the (non random) matrix obtained by replacing αit�βi by |αi� � βi|_
|αi� � βi| _ |βi| in Ct, for i � 1, . . . , p_ q. The latter inequality follows from the Cauchy
rule, the moment condition (2.3) and the fact that

°p_q
i�1 |αi� � βi| _ |αi� � βi| _ |βi|   1

entails ρ
�
Cp8q

	
  1 (see for instance Corollary 2.2 in Francq and Zakoïan, 2019).

By (2.14), we have, componentwise

Abspztq ¤
¸
`¥0

�
Cp8q

	`
Abspbt�`q. (2.16)

For any matrix M , let }M}m � pE}M}mq1{m where }M} is the sum of the absolute
values of the elements ofM . For any comformable non random matrix A, it follows that
}AM}m ¤ }A}}M}m. Thus,

}Abspztq}m ¤
¸
`¥0

���Cp8q
���` }Abspb0q}m   8

using again ρ
�
Cp8q

	
  1 and the moment conditions. �

Proof of Proposition 4. The strict stationarity under the condition γpAq   0 follows as
in Theorem 1. Under this condition, there exists k ¥ 1 such that E pln ||Ak . . .A1||q   0.
Therefore, we have δ :� E ||Ak . . .A1||s   1 for some s P p0, 1q by Lemma 2.3 in Berkes
et al. (2003b). In view of

yt � ct �
8̧

n�0
AtAt�1 � � �At�nct�n�1 (2.17)

the cr-inequality and standard arguments (see e.g. Corollary 2.3 in Francq and Zakoïan,
2019) entail that E}yt}s   8, provided E}ct}s   8, which holds true under the assump-
tions of the proposition. The conclusion follows. �

Proof of Proposition 5. First notice that the existence of a strictly stationary solution is
guaranteed. Indeed, (2.15) is satisfied. Note that | ln σ2

t | ¤ ||zt|| � ||Abspztq||. In view
of (2.16) it follows that, as in Francq et al. (2013, proof of Proposition 3.1),

max
 
E|σ2

t |s, E|σ2
t |�s

( ¤ E texpps}Abspz1q}qu �
8̧

k�0

sk}Abspz1q}kk
k!
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¤
8̧

k�0

sk}Abspb0q}kk
!°

`¥0 }pCp8qq`}
)k

k!

� E exp
#
s|ν0|

¸
`¥0

}pCp8qq`}
+
.

Moreover |ν0| ¤ |ω0| � max1¤i¤q p|αi�| _ |αi�|q
°q
j�1 | ln η2

�j| � }π} ||x�1|| ����³1
0 δpuqX�1puqdu

��� . Letting ω � |ω| �°q
i�1 |ωi�|, we have

max
 
E|σ2

t |s, E|σ2
t |�s

( ¤ exp tsωc8uE
��

q¹
j�1

exp
 
sλη| ln η2

�j|
(��

exp tsλx||x�1||u exp
"
s

����» 1

0
δpuqX�1puqdu

���� c8*�   8,

where the last inequality follows from the Hölder inequality and (2.8). �

Proof of Theorem 2. First note that A3 and the Cauchy-Schwarz and Jensen inequalities
entail

E

����� 8̧
k�1

BkpbqAt�1,k

����� ¤ 8̧

k�1
E|At�1,k|

d
8̧

k�1
B2
kpbq   8.

Therefore A3 and A6 ensure the a.s. existence of

ln σ2
t pθq � B�1

θ pBq
#
ωt �

q̧

i�1
αi,t ln ε2t�i � π1xt�1 �

8̧

k�1
BkpbqAt�1,k

+
. (2.18)

We can thus set

Qnpθq � 1
n

ņ

t�1
`tpθq, `tpθq � ε2t

σ2
t pθq

� ln σ2
t pθq. (2.19)

The consistency of pθn will be obtained by showing the following intermediate results:

(i) lim
nÑ8

sup
θPΘ

���Qnpθq � rQnpθq
��� � 0 a.s.;

(ii) if σ2
1pθq � σ2

1pθ0q a.s. then θ � θ0;

(iii) E |`tpθ0q|   8 and if θ � θ0, E`tpθq ¡ E`tpθ0q;

(iv) any θ � θ0 has a neighborhood V pθq such that lim inf
nÑ8

inf
θ�PV pθq

rQnpθ�q ¡ E`1pθ0q a.s.
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In the sequel, K denotes a generic positive constant, or a positive random variable which
is measurable with respect to F0. We thus have

sup
θPΘ

��ln σ2
t pθq � ln rσ2

t pθq
��   K, a.s. for t � q � p� 1, . . . , q. (2.20)

In the case p � q � 1, we have:

ln σ2
t pθq � ln rσ2

t pθq � βt�1 �ln σ2
1pθq � ln rσ2

1pθq
�
, @t ¥ 1.

In the sequel, ρ P p0, 1q denotes a generic constant whose exact value is unimportant and
may vary from line to line. In the general case, using (2.20) and A6 one can show that
for almost all trajectories,

sup
θPΘ

��ln σ2
t pθq � ln rσ2

t pθq
�� ¤ Kρt. (2.21)

First, we complete the proof of (i) in the case p � q � 1, ω1� � 0 and α1� � α1� � α, for
which the notation is more explicit. In view of the multiplicative form of the volatility

σ2
t pθq � eβ

t lnσ2
0pθq

t�1¹
l�0

eβ
lpω�α1tεt�l�1�0u ln ε2t�l�1�π

1xt�l�1�
°8
k�1 BkpbqAt�l�1,kq, (2.22)

we have

1
t

ln
���� 1
σ2
t pθq

� 1rσ2
t pθq

����
��1

t

t�1̧

l�0
βl

�
ω � α1tεt�l�1�0u ln ε2t�l�1 � π1xt�l�1 �

8̧

k�1
BkpbqAt�l�1,k

�
� 1
t

ln
���e�βt lnσ2

0pθq � e�β
t ln rσ2

0pθq
��� .

It is known that for a sequence of random variables pYtq such that suptE|Yt|   8, we
have almost surely t�1Yt Ñ 0 as tÑ 8 (see exercise 2.13 in Francq and Zakoïan, 2019).
According to this property, the first term of the right-hand side of the last equality
tends almost surely to zero because it is bounded by a variable of the form t�1|Yt| with
E|Yt| � E|Y1|   8, under A38. The second term is equal to

t�1 ln
���βt �ln σ2

0pθq � ln rσ2
0pθq

�
e�β

tx�
��� ,

8Note that the variable Yt is successively equal to
°8
l�0 β

lα1tεt�l�1�0u ln ε2t�l�1,
°8
l�0 β

lπ1xt�l�1 and°8
l�0 β

l
°8
k�1 BkpbqAt�l�1,k.
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where x� is between ln σ2
1pθq and ln rσ2

1pθq. This second term tends to ln |β|   0 when
tÑ 8. It follows that

sup
θPΘ

���� 1
σ2
t pθq

� 1rσ2
t pθq

���� ¤ Kρt. (2.23)

Now consider general values for p and q. By A2 and the second condition of A6, we
have B�1

θ pzq � °8
i�0 cipθqzi where cipθq tends to zero at an exponential rate as i Ñ 8,

uniformly in Θ. We thus have

ln σ2
t pθq �

t�1̧

i�0

�
cipθq

#
ω � π1xt�i�1 �

8̧

k�1
BkpbqAt�i�1,k

+
� ci,ωpθq1tεt�i�1 0u

�ci,�pθq1tεt�i�1¡0u ln ε2t�i�1 � ci,�pθq1tεt�i�1 0u ln ε2t�i�1
�

�
p̧

j�1
ct,jpθq ln σ2

1�jpθq

with

sup
θPΘ

max t|cipθq|, |ci,�pθq|, |ci,�pθq|, |ci,ωpθq|u ¤ Kρi, (2.24)

sup
θPΘ

max t|ct,1pθq|, . . . , |ct,ppθq|u ¤ Kρt. (2.25)

We then obtain a multiplicative form for σ2
t pθq which generalizes (2.22), and we deduce

that
t�1 ln

���� 1
σ2
t pθq

� 1rσ2
t pθq

���� � a1 � a2,

where, in view of (2.24) and already given arguments,

a1 �� t�1
t�1̧

i�0

�
cipθq

#
ω � π1xt�i�1 �

8̧

k�1
BkpbqAt�i�1,k

+
� ci,ωpθq1tεt�i�1 0u

�ci,�pθq1tεt�i�1¡0u ln ε2t�i�1 � ci,�pθq1tεt�i�1 0u ln ε2t�i�1
� � op1q a.s.

For x�j ’s between ln σ2
1�jpθq and ln rσ2

1�jpθq, using (2.25) we have

a2 �t�1 ln
���e�°p

j�1 ct,jpθq lnσ2
1�jpθq � e�

°p
j�1 ct,jpθq ln rσ2

1�jpθq
���

�t�1 ln

������ p̧

j�1
ct,jpθq

 
ln σ2

1�jpθq � ln rσ2
1�jpθq

(
e�

°p
j�1 ct,jpθqx

�
j

�����
�t�1 ln

������ p̧

j�1
ct,jpθq

������ op1q a.s.
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Using again (2.25), it follows that lim sup
nÑ8

a2 ¤ ln ρ   0. We conclude that (2.23) holds
true in the general case. The proof of (i) then easily follows from (2.21) and (2.23).

We now show (ii). Assume that σtpθq � σtpθ0q a.s. and, by stationarity, ln σtpθq �
ln σtpθ0q for all t. The polynomials BθpBq and Bθ0pBq are invertible using the second
part of A6. Since ln σ2

t pθq � ln σ2
t pθ0q we have�

A�θ pBq
BθpBq �

A�θ0pBq
Bθ0pBq



1tεt¡0u ln ε2t �

�
A�θ pBq
BθpBq �

A�θ0pBq
Bθ0pBq



1tεt 0u ln ε2t

�
�

π1

BθpBq �
π10
Bθ0pBq



xt�1 �

8̧

k�1

�
Bkpbq
BθpBq �

Bkpb0q
Bθ0pBq



At�1,k

�
�
WθpBq
BθpBq �

Wθ0pBq
Bθ0pBq



1tεt 0u � ω0

Bθ0p1q
� ω

Bθp1q a.s. (2.26)

If
A�θ pBq
BθpBq �

A�θ0pBq
Bθ0pBq

or A
�
θ pBq
BθpBq �

A�θ0pBq
Bθ0pBq

or WθpBq
BθpBq �

Wθ0pBq
Bθ0pBq

, (2.27)

then there exist ci,� � 0 or ci,� � 0 or ci � 0 such that

8̧

i�i0

�
ci,�1tεt�i¡0u ln ε2t�i � ci,�1tεt�i 0u ln ε2t�i � ci1tεt�i 0u

� P Fx,Xt�1 (2.28)

where Fx,Xt�1 denotes the sigma-field generated by txt�k, Xt�k, k ¡ 0u. Since 1tεt¡0u ln ε2t �
1tηt¡0u pln η2

t � ln σ2
t q and 1tεt 0u ln ε2t � 1tηt 0u pln η2

t � ln σ2
t q, there exist pc�, c�, cq1 P

R3zp0, 0, 0q such that: c�1tηt�i0¡0u
�
ln η2

t�i0 � ln σ2
t�i0

�� c�1tηt�i0 0u
�
ln η2

t�i0 � ln σ2
t�i0

��
c1tηt�i0 0u � ct,i0 where ct,i0 is a measurable function of tηt�k�i0 ,xt�k, Xt�k, k ¡ 0u. This
equation is equivalent to the two equations

�
c�

�
ln η2

t�i0 � ln σ2
t�i0

�� ct,i0
�
1tηt�i0¡0u � 0

and
�
c�

�
ln η2

t�i0 � ln σ2
t�i0

�� ct,i0 � c
�
1tηt�i0 0u � 0. Note that if an equation of the

form a ln x21tx¡0u � b1tx¡0u � 0 admits two positive solutions then a � 0 and b � 0.
This result and A4 imply that c� � 0. Similarly, we obtain that c� � 0 and c � 0,
which leads to a contradiction. We conclude that (2.27) cannot hold true, and by A5,
we obtain A�θ pBq � A�θ0pBq, A�θ pBq � A�θ0pBq, WθpBq �Wθ0pBq and BθpBq � Bθ0pBq.
Then (2.26) becomes

pπ1 � π10qxt�1 �
8̧

k�1
pBkpbq �Bkpb0qqAt�1,k P Fx,Xt�1

which entails π1 � π10 and Bkpbq � Bkpb0q for all k, under A7, and thus b � b0 under
A8. We then obtain ω � ω0. Hence (ii) is proved.
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Finally, the proofs of (iii) and (iv) are identical to those given by Francq and Zakoïan
(2004) for the standard GARCH. By a standard compactness argument, we complete the
proof of the Theorem 2. �

Proof of Theorem 3. Denote by θi the i-th element of θ. Taylor expansions give

B
BθiQn

�pθn	� B
BθiQn pθ0q � B2

BθiBθ1Qn

�rθn,i	�pθn � θ0

	
, 1 ¤ i ¤ d,

where the rθn,i’s are such that
������rθn,i � θ0

������ ¤ ������pθn � θ0

������. As in Section 5 of Bardet and
Wintenberger (2009), the asymptotic normality is obtained by showing, as nÑ 8:

(i)
?
n B
Bθ
Qn pθ0q Ñ N p0, pκη � 1qJq with J is invertible,

(ii)
������ B2

BθBθ1
Qn

�rθn	� J ������Ñ 0 a.s. for any sequence
�rθn	 converging a.s. to θ0,

(iii)
?
n
������ BBθ rQn

�pθn	� B
Bθ
Qn

�pθn	������Ñ 0 a.s.

We begin to show the existence of J . First note that, in view of (2.18), A2, A3 and A6,
the process pln σ2

t pθqqt is stationary and ergodic, and satisfies E supθPΘ | ln σ2
t pθq|   8.

Note also that the Cramer condition (2.10) entails

E1tεt�0u| ln ε2t |k � E}xt}k � E

�
8̧

i�1
A2
t,i

�k

  8 for all k.

Moreover }°8
k�1BkpbqAt�1,k}2�ν ¤

b°8
k�1B

2
kpbq

°8
k�1 }At�1,k}2

2�ν . Under A11, we thus
have E supθPΘ | ln σ2

t pθq|2�ν   8. By the same arguments, the random vector B
Bθ

ln σ2
t pθq

is the stationary solution of the equation

B
Bθ ln σ2

t pθq �
p̧

j�1
βj

B
Bθ ln σ2

t�jpθq �Υtpθq, (2.29)

with

Υtpθq �
�

1,1�1

t�1,q, ε
�1

t�1,q, ε
�1

t�1,q,σ
1
t�1,ppθq,x1t�1,

8̧

k�1

B
Bb1BkpbqAt�1,k

�1

,

1�t�1,q �
�
1εt�1 0, . . . ,1εt�q 0

�1
, ε�t�1,q �

�
1εt�1 0 ln ε2t�1, . . . ,1εt�q 0 ln ε2t�q

�1
,

ε�t�1,q �
�
1εt�1¡0 ln ε2t�1, . . . ,1εt�q¡0 ln ε2t�q

�1
, σt�1,ppθq � pln σ2

t�1pθq, . . . , ln σ2
t�ppθqq1.

Under A11 and A12, the Hölder inequality implies����� 8̧

k�1

B
BbBkpbqAt�1,k

�����
2�ν

¤
d

8̧

k�1

���� BBbBkpbq
����2 8̧

k�1
}At�1,k}2

2�ν   8.
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Under A11, the other terms of the vector Υtpθq also admit moments of order 2 � ν

uniformly in Θ. We thus have

E sup
θPΘ

���� BBθ ln σ2
t pθq

����2�ν

  8, (2.30)

which entails the existence of J .
We need to establish the existence of other moments. Differentiating (2.29) and

using the previous arguments, it can be seen that the processes pB2 ln σ2
t pθq{BθiBθjqt are

stationary and ergodic, with

E sup
θPΘ

���� B2

BθBθ1 ln σ2
t pθq

����2�ν

  8. (2.31)

From (2.18), we can write

ln σ2
t pθ0q � ln σ2

t pθq � B�1
θ pBqut�1pθq. (2.32)

For instance, in the case p � q � 1 we have

utpθq �pβ0 � βq ln σ2
t pθ0q � ω0 � ω � pω�,0 � ω�q1εt 0 � pα�,0 � α�q1εt 0 ln ε2t

� pα�,0 � α�q1εt¡0 ln ε2t � pπ0 � πq1xt �
» 1

0
pδ0 � δqpuqXtpuqdu.

In the general case, we have (2.32) with

|utpθq| ¤K }θ � θ0}
#

1�
q̧

i�1

�
1ηt�1�i 0 � 1ηt�1�i�0| ln η2

t�1�i|
�

�
p_q̧

i�1
| ln σ2

t�1�i| � }xt} �
d» 1

0
X2
t puqdu

,.- . (2.33)

For B�1
|θ| pzq �

°8
j�0 πjpθqzj and V pθ0q � Θ, let KV pθ0q �

°8
j�0 supθPV pθ0q |πjpθq|. For any

stationary sequence putq of random variables of Lk, we have } supθPV pθ0q B
�1
θ pBqut}k ¤

KV pθ0q}u1}k. Therefore, for all r ¡ 0, there exists a neighborhood V pθ0q of θ0 such that

E exp
#
r sup
θPV pθ0q

B�1
θ pBqut�1pθq

+
�
����� 8̧

k�0

 
r supθPV pθ0q B

�1
θ pBqut�1pθq

(k
k!

�����
1

¤
8̧

k�0

!
r
��supθPV pθ0q B

�1
θ pBq supθPV pθ0q |ut�1pθq|

��
k

)k
k!
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¤
8̧

k�0

 
rKV pθ0q supθPV pθ0q }u1pθq}k

(k
k!

¤E
8̧

k�0

 
rKV pθ0q supθPV pθ0q }u1pθq}

(k
k! � E exp

#
rKV pθ0q sup

θPV pθ0q
}u1pθq}

+

which, in view of (2.33), is finite under A11 when V pθ0q is small enough. Noting that
E supθPV pθ0q

�
σ2
t pθ0q
σ2
t pθq

	r
� E exp

!
r supθPV pθ0q log σ2

t pθ0q
σ2
t pθq

)
, we deduce that

for all r ¡ 0, there exits V pθ0q such that E sup
θPV pθ0q

�
σ2
t pθ0q
σ2
t pθq


r

  8. (2.34)

Let us show that J is non singular. Suppose that there exists a real vector λ �
pλ1, . . . , λdq1 such that λ1 B

Bθ
ln σ2

t pθ0q � 0 a.s. By stationarity, in view of (2.29), this
implies λ1Υt � 0 a.s., with Υt � Υtpθ0q. First note that λi � 0 for i � 2, . . . , 3q � 1,
otherwise an equation of the form (2.28) would hold true (with non zero coefficients) and
we have already shown this is impossible. Let λπ � pλ3q�p�2, . . . , λ3q�p�r�1q1 and let λb
be the vector of the M last components of λ. Note that

λ1b

8̧

k�1

B
BbBkpb0qAt�1,k �

» 1

0
δcpuqXt�1puqdu, δcpuq �

8̧

k�1
λ1b

B
BbBkpb0qϕkpuq.

By A7 we must have λπ � 0 and δc � 0, that is λ1b BBbBkpb0q � 0 for all k. By A13, this
entails λb � 0. Finally, the other components of λ are also zero because ln σt cannot
be equal to a function of its past values under A4. This completes the proof of the
invertibility of J .

Now, using (2.19) we have

B
BθQnpθ0q � 1

n

ņ

t�1

�
1� η2

t

� B
Bθ ln σ2

t pθ0q.

We know that ηt and ln σ2
t pθ0q are independent and Eη2

t � 1. Therefore, using A10 and
the existence of J , the Central Limit Theorem for martingale differences (see Billingsley,
1961) completes the proof of (i).

To show (ii), first note that

B2

BθBθ1Qnpθq � 1
n

ņ

t�1

B2

BθBθ1 `tpθq,

with

B2`tpθq
BθBθ1 �

�
1� η2

t σ
2
t pθ0q

σ2
t pθq


 B2 ln σ2
t pθq

BθBθ1 � η2
t σ

2
t pθ0q

σ2
t pθq

B ln σ2
t pθq

Bθ
B ln σ2

t pθq
Bθ1 .
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Using in particular (2.31) and (2.34), it follows that

E sup
θPV pθ0q

����B2`tpθq
BθBθ1

����   8. (2.35)

Moreover, by the ergodic theorem

B2

BθBθ1Qnpθ0q Ñ J a.s.

Let Vkpθq be the ball of centre θ and radius 1{k such that Vkpθ0q � V pθ0q. Using again
the ergodic theorem, we obtain

sup
θPVkpθ0q

���� B2

BθBθ1Qnpθq � B2

BθBθ1Qnpθ0q
���� ¤ 1

n

ņ

t�1
sup

θPVkpθ0q

����B2`tpθq
BθBθ1 �

B2`tpθ0q
BθBθ1

����
ÑE sup

θPVkpθ0q

����B2`tpθq
BθBθ1 �

B2`tpθ0q
BθBθ1

���� . a.s. (2.36)

By the dominated convergence theorem, (2.35) and the continuity of the second deriva-
tives, the expectation in (2.36) is smaller than any arbitrary ε ¡ 0 when k is large enough.
This completes the proof of (ii).

From (2.29) and an equivalent representation for B
Bθ

ln rσ2
t pθq, we have

B ln σ2
t pθq

Bθ � B ln rσ2
t pθq

Bθ �
p̧

j�1
βj

�B ln σ2
t�jpθq
Bθ � B ln rσ2

t�jpθq
Bθ




�

�����
03q�1

σt�1,ppθq � rσt�1,ppθq
0r�M

���� (2.37)

with rσt,ppθq defined as σt,ppθq. By the second condition of A6, we thus have
|B ln σ2

t pθq{Bθk � B ln rσ2
t pθq{Bθk| ¤ Kρt for k � 1, . . . , 3q � 1 and k � 3q � p � 2, . . . , d.

Now consider the case k � 3q � 1 � k1 with k1 P t1, . . . , pu. Recalling the notation�
1�°p

j�1 βjz
j
	�1

� °8
i�0 cipθqzi and noting that the k-th element of the last vector of

the right-hand side of (2.37) is ln σ2
t�k1pθq � ln rσ2

t�k1pθq, we obtain

B ln σ2
t pθq

Bθk � B ln rσ2
t pθq

Bθk �
t�1̧

i�0
cipθq

�
ln σ2

t�k1�ipθq � ln rσ2
t�k1�ipθq

�
�

p̧

j�1
ct,k,jpθq

"B ln σ2
1�jpθq
Bθk � B ln rσ2

1�jpθq
Bθk

*
.
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with cipθq satisfying (2.24) and

sup
θPΘ

max t|ct,k,1pθq|, . . . , |ct,k,ppθq|u ¤ Kρt.

These relations and (2.21) show that supΘ
���� B
Bθ

ln σ2
t pθq � B

Bθ
ln rσ2

t pθq
���� ¤ Kρt, for almost

all trajectories. Point (iii) easily follows and the asymptotic normality is proved. �

Proof of Proposition 6. Let ηtpθq � εt{σtpθq and rηtpθq � εt{rσtpθq. Clearly (2.23) holds
when the power 2 is replaced by any other power. We thus have

sup
θPΘ

����� 1n ņ

t�1
η4
t pθq �

1
n

ņ

t�1
rη4
t pθq

����� ¤ 1
n

ņ

t�1
ε4t sup

θPΘ

���� 1
σ4
t pθq

� 1rσ4
t pθq

����
¤ K

n

ņ

t�1
ε4tρ

t � op1q a.s. (2.38)

Now a Taylor expansion yields

1
n

ņ

t�1
η4
t ppθnq � 1

n

ņ

t�1
η4
t �

2
n

ņ

t�1
η4
t

σ4
t pθ0q
σ4
t pθnq

B ln σ2
t pθnq

Bθ1 ppθn � θ0q

for some θn between pθn and θ0. The strong consistency of pθn, (2.30), (2.34) and A10
then entail that

1
n

ņ

t�1
pη4
t �

1
n

ņ

t�1
η4
t � op1q a.s.

The strong consistency of pκ now follows from A10 and the ergodic theorem. The con-
sistency of pJ is shown by the arguments used to establish (ii) and (iii) in the proof of
Theorem 3. �

Proof of Theorem 4. Introduce the vector rm � pr1, . . . , rmq1 where

rh � n�1
ņ

t�h�1
stst�h, with st � η2

t � 1 and 0   h   n.

Let stpθq (respectively rstpθq) be the random variable obtained by replacing ηt by ηtpθq
(respectively rηtpθq) in st. Let rhpθq (respectively rrhpθq) be obtained by replacing ηt by
ηtpθq (respectively rηtpθq) in rh. Let the vectors rmpθq � pr1pθq, . . . , rmpθqq1, rm � rmpθ0q
and rrmpθq � prr1pθq, . . . , rrmpθqq1. Note that prm � rrmppθnq.

By the arguments used to prove (2.38), it can be shown that the unknown initial
values have no asymptotic impact on the statistic prm, in the sense that

sup
θPΘ

?
n }rmpθq � rrmpθq} � op1q, a.s. (2.39)
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Now Taylor expansions show that, for h � 1, . . . ,m

?
nrhppθnq � ?

nrhpθ0q � Brhpθ�nq
Bθ1

?
nppθn � θ0q

for some θ�n between pθn and θ0. Using (2.30), (2.31) and (2.34), it can be shown that for
some neighborhood V pθ0q of θ0

E sup
θPV pθ0q

����B2stpθqst�hpθq
BθiBθj

����   8 for all i, j P t1, . . . , du.

Using the almost sure convergence of θ�n to θ0, the ergodic theorem and standard argu-
ments entail

Brhpθ�nq
Bθ Ñ E

Bstst�h
Bθ pθ0q � �E

"
st�h

B ln σ2
t pθ0q
Bθ

*
.

We have shown that

?
nprm � ?

nrm �Km

?
nppθn � θ0q � op1q a.s., (2.40)

where
Km � E

"
st�1:t�m

B ln σ2
t pθ0q

Bθ1
*
, st�1:t�m � pst�1, . . . , st�mq1.

We now derive the asymptotic distribution of
?
nprm, pθn � θ0q. Note that

?
nrm � 1?

n

ņ

t�1
stst�1:t�m � op1q dÑ N  

0, pκη � 1q2Im
(
.

We also have seen in the proof of Theorem 3 that

?
n
�pθn � θ0

	
� �J�1 1?

n

ņ

t�1
p1� η2

t q
B ln σ2

t

Bθ pθ0q � oP p1q.

The central limit theorem applied to the martingale difference"�
st
B ln σ2

t

Bθ1 pθ0q, sts1t�1:t�m


1

;σ pηu, u ¤ tq
*

then shows that

?
n

�� pθn � θ0

rm

�� 1?
n

ņ

t�1
st

�� J�1 B lnσ2
t

Bθ
pθ0q

st�1:t�m

�� oP p1q
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dÑ N

$&%0,

�� pκη � 1qJ�1 pκη � 1qJ�1K 1
m

pκη � 1qKmJ
�1 pκη � 1q2Im

�,.- . (2.41)

By (2.40) and (2.41), we obtain

?
nprm dÑ N p0,Dq , D � pκη � 1q2Im � pκη � 1qKmJ

�1K 1
m.

It can be shown that pD Ñ D almost surely. It remains to show that D is invertible.
Note that

D � pκη � 1qEVtV1
t, Vt � st�1:t�m �KmJ

�1 B
Bθ ln σ2

t pθ0q.

If this matrix were singular then there would exist λ � pλ1, . . . , λmq1 such that λ � 0
and

λ1Vt � λ1st�1:t�m �
8̧

i�0
µ1iΥt�i � 0 a.s., (2.42)

with µ1i � cipθ0qλ1KmJ
�1, using (2.29). Let s ¤ m such that λs � 0 and λh � 0 if h   s.

Denote by Rt,s a generic random variable which is F px,Xq,η
t�1,t�s�1-mesurable. Equations (2.42)

and (2.29) entail

η2
t�s �

ş

h�1
ah1ηt�h 0 � b�h 1ηt�h 0 ln ε2t�h � b�h 1ηt�h¡0 ln ε2t�h � ch ln σ2

t�h � Rt,s. (2.43)

If s ¥ 2, (2.43) entails

1ηt�1¡0
 
b�1 ln η2

t�1 �Rt,1
( � 0 and 1ηt�1 0

 
b�1 ln η2

t�1 �Rt,1
( � 0 a.s.

which implies b�1 � b�1 � 0 by A4. By the same argument, it can seen that
ah � b�h � b�h � ch�1 � 0 for h � 1, . . . , s � 1. From (2.43) we then obtain
1ηt�s¡0

 
η2
t�s � b�s ln η2

t�s �Rt,s

( � 0 and 1ηt�s 0
 
η2
t�s � b�s ln η2

t�s �Rt,s

( � 0 a.s. which
is impossible under A4�. Therefore D is invertible and the conclusion follows. �

2.7.2 Appendix B: Algorithm for rational representation of the
functional parameter

Let fpxq � °8
k�1   f, ϕk ¡ ϕkpxq P H. We want to approximate optimally this

function, in the L2r0, 1s sense, by

f̂Mpx; bq �
8̧

k�1
Bkpbqϕkpxq
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where b � pb1, φ1, . . . , φp1 , ψ0, . . . , ψq1q1 is a vector of M parameters such that

B1pbq � b1 �
» 1

0
fpxqdx,

8̧

k�2
Bkpbqzk�2 �

°q1
i�0 ψiz

i

1�°p1
i�1 φiz

i
, (2.44)

with p1 P t0, . . . ,M � 2u, q1 P t0, . . . ,M � 2u and p1 � q1 � 1 � M � 1. If, instead
of an optimal L2 approximation, one wanted to approximate the analytic power series
Rpzq :� °8

k�2   f, ϕk ¡ zk�2 around the origin, in such a way that

Rpzq � Qq1pzq
Pp1pzq

�Opzp1�q1�1q, Qq1pzq �
q1̧

i�0
aiz

i, Pp1pzq � 1�
p1̧

i�1
ciz

i,

then the solution would be given by the Padé approximant Qq1p�q{Pp1p�q of Rp�q. Note
also that the Padé approximant coincides with the optimal L2 solution when p1 � 0. We
thus propose the following algorithm:

1. Set p�1 � 0, q�1 � M � 2, b�i � p  f, ϕ1 ¡, . . . ,  f, ϕM ¡q1 and the initial error of
approximation E� � ³1

0 f
2pxqdx�°M

i�1   f, ϕi ¡2.

2. For p1 � 1, . . . ,M � 1, set q1 � M � p1 � 1, and take the initial value b �
pb1, c1, . . . , cp1 , a0, . . . , aq1q1 where

°q1
i�0 aiz

i

1�
°p1
i�1 ciz

i is the Padé approximant of R. Starting
with this initial value, solve the optimisation problem

b̂p1 � arg min
b

}f � f̂Mpx; bq}2 � arg min
b

8̧

k�2
t  f, ϕk ¡ �Bkpbqu2

where the minimum is taken for b defined by (2.44), p1 and q1 being fixed. Let
Epp1q � }f � f̂Mpx; b̂p1q}2. If Epp1q   E�, set E� � Epp1q, p�1 � p1, q�1 � q1 and
b� � b̂p1 .

At the output of the algorithm,
°8
k�1Bkpb�qϕkpxq is the optimal L2 rational approx-

imation of f , where the coefficients pBkpb�qqk¥1 are defined by M numbers b� �
pb1, φ

�
1 , . . . , φp�1 , ψ

�
0 , . . . , ψ

�
q�1
q1 such that

B1pb�q � b1 �
» 1

0
fpxqdx,

8̧

k�2
Bkpb�qzk�2 �

°q�1
i�0 ψ

�
i z

i

1�°p�1
i�1 φ

�
i z

i
.

Note that Step 1 gives the approximation of f by truncation. Therefore the rational
approximation given by the algorithm cannot be less accurate then the approximation
by truncation (based on the same number M of parameters).

2.7.3 Appendix C: Empirical application
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Table 2.6: Ticker symbols and company names

Symbol Issue name

ABT ABBOTT LABORATORIES
AXP AMERICAN EXPRESS CO
BA BOEING CO
BAC BANK OF AMERICA
BMY BRISTOL MYERS SQ
BP BP PLC
C CITIGROUP

CAT CATERPILLAR
CL COLGATE-PALMOLIVE CO

CSCO CISCO SYSTEMS

62



Chapter 3

Backtesting Expected Shortfall via
Multi-Quantile Regression1

In this chapter we propose a new approach to backtest Expected Shortfall (ES) exploiting
the definition of ES as a function of Value-at-Risk (VaR). Our methodology examines
jointly the validity of the VaR forecasts along the tail distribution of the risk model, and
encompasses the Basel Committee recommendation of verifying quantiles at risk levels
97.5%, and 99%. We introduce four easy-to-use backtests in which we regress the ex-post
losses on the VaR forecasts in a multi-quantile regression model, and test the resulting
parameter estimates. Monte-Carlo simulations show that our tests are powerful to detect
various model misspecifications. We apply our backtests on S&P500 returns over the
period 2007-2012. Our tests clearly identify misleading ES forecasts in this period of
financial turmoil. Empirical results also show that the detection abilities are higher when
the evaluation procedure involves more than two quantiles, which should accordingly be
taken into account in the current regulatory guidelines.

3.1 Introduction
In response to the market failures revealed by the global 2007-2008 financial crisis, the

Basel Committee on Banking Supervision (BCBS) has adopted the Basel III accords to
improve the banking sector’s ability to absorb shocks arising from financial and economic
stress (BCBS, 2010). Among the number of fundamental reforms that must be imple-
mented until January 1st, 2022 (BCBS, 2019), the BCBS has substituted Value-at-Risk
(VaR) by Expected Shortfall (ES) for the calculation of market risk capital requirements.
Expected Shortfall, also referred to as Conditional VaR (CVaR) or Tail VaR (TVaR),
measures the expected loss incurred on an asset portfolio given that the loss exceeds
VaR. That is, if Lt is the (integrable) ex-post loss on a portfolio at time t, Ωt�1 is the

1This chapter is based on Couperier and Leymarie (2021).
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information at time t � 1, and QLt p.q is the quantile function of Lt, the τ -level ES and
VaR are given by

ESt pτq � E rLt | Lt ¥ V aRt pτq ; Ωt�1s ,
V aRt pτq � QLt pτ ; Ωt�1q .

As an alternative tail risk measure, ES offers a number of appealing properties that
overcomes the deficiencies of the more-familiar VaR. In particular, ES is coherent meaning
that it satisfies the properties of monotonicity, sub-additivity, homogeneity, and transla-
tional invariance (see Artzner et al., 1999; Acerbi and Tasche, 2002). Furthermore, ES
gives information about the expected size of the loss given that a loss bigger than VaR
is experienced, while VaR only captures the likelihood of an incurred loss, and tells us
nothing about tail sensitivity. In its revised standards for market risk, the BCBS em-
phasizes the important role of ES to overcome the "perverse incentives to hold positions
that featured significant tail risks but were subject to limited risk in "normal" conditions."
(BCBS, 2019, page 3).

Although ES is considered as the new standard for risk management and regulatory
requirements, there are still outstanding questions about the modeling of ES (see e.g.,
De Roon and Karehnke, 2017; Patton et al., 2019; Taylor, 2019; Hautsch and Herrera,
2020), and the validation of the ES forecasts, or backtesting. Jorion (2006) defines
backtesting as a formal statistical framework that consists of verifying if actual losses
are in line with projected losses. Because ES is unobservable, its evaluation cannot be
done conventionally as a direct comparison of the observed value with its forecast, and
thus generally relies on the elicitability property. A risk measure is elicitable if there exists
a loss function such that the solution of minimizing the expected loss is the risk measure
itself. However, it has been established that, in contrast to VaR, ES does not meet the
general property of elicitability (Gneiting, 2011a), but satisfies narrower properties such
as conditional elicitability (Emmer et al., 2015), or joint elicitability with VaR (Acerbi
and Szekely, 2014; Fissler and Ziegel, 2016), making its evaluation trickier than VaR in
practice. Several contributions are tied to these properties, and provide backtests by
making explicit reference of the ES forecasts in the testing procedure (McNeil and Frey,
2000; Acerbi and Szekely, 2014; Nolde and Ziegel, 2017; Bayer and Dimitriadis, 2020).

To circumvent the lack of elicitability of ES, several alternative testing strategies
have been proposed in the literature. Following the recent classification of Kratz et al.
(2018), these backtests enter the category of implicit backtests, as they focus on the
tail distribution characteristics of the model rather than directly on ES. They generally
exploit the fact that ES can be expressed as a function of VaR, which itself is elicitable.
Assume the law of Lt is continuous. The definition of a conditional probability and a
change of variable yield a useful representation of ES in terms of VaR

ESt pτq � 1
1� τ

» 1

τ

V aRt puq du. (3.1)
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Using this connection, Costanzino and Curran (2015) derive a coverage backtest for spec-
tral risk measures such as ES in the spirit of the traditional VaR coverage backtests.
Du and Escanciano (2017) define a cumulative violation process for ES that generalizes
the violation process for VaR and propose two backtests of ES. Starting with the same
process, Löser et al. (2019) develop a backtest of ES that is theoretically valid in finite out-
of-sample size and that can be easily extended to a multivariate setting. Costanzino and
Curran (2018) provide a Trafic Light backtest for ES which extends the so-called Traffic
Light backtest for VaR. More largely, several additional techniques have been proposed
to assess the whole return distribution encompassing ES as a special case (Berkowitz,
2001; Kerkhof and Melenberg, 2004; Wong, 2008). See the survey of Argyropoulos and
Panopoulou (2016) for more details.

This article reviews the relation between ES and VaR to provide an original way
for backtesting bank’s internal ES models that has the advantage of examining a limited
number of VaRs in the tail distribution of risk models. Indeed, the definition of a Riemann
sum gives a handy approximation of ES,

ESt pτq � 1
p

p̧

j�1
V aRt pujq ,

where the risk level uj is defined by uj � τ � pj � 1q1�τ
p

for j � 1, 2, . . . , p. This
representation suggests that p quantiles with appropriate risk levels would be convenient
to assess the performance of an ES risk model. In other words, an estimate/forecast of
ESt pτq issued from a given model could be considered valid if the sequence of V aRt pujq
estimates/forecasts issued from the same model is itself valid. This testing strategy is fully
in line with the guidelines of financial supervisors. Indeed, backtesting bank’s internal
ES models at the bank-wide level "must be based on a VaR measure calibrated at a 99th
percentile confidence level" (BCBS, 2019, page 81) while it should be based at the trading
desk level on "each desk’s one-day VaR measure [...] at both the 97.5th percentile and
the 99th percentile" (BCBS, 2019, page 83). This means that backtesting requirements
within the Basel framework involve the ex-post validation of up to two quantiles issued
by bank’s internal ES models.

The main contribution of this article is to propose an original backtesting methodology
to ES based on the theory of multi-quantile regression. We develop a multivariate frame-
work, focusing on multi-quantile regression, to jointly assess VaR at multiple levels in the
tail distribution of the risk model. The method extends the seminal idea of Gaglianone
et al. (2011) to evaluate the validity of a single VaR relying on a single quantile regression.

Our procedure has many advantages. First, it encompasses the regulatory standards
that consist of verifying the validity of one or two quantiles in the tail distribution of risk
models which makes various comparisons possible. Second, it offers flexibility since the
risk manager or the supervisor may select both the number of risk levels and their magni-
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tude depending on the objective in mind (regulatory guidelines, ES statistical approxima-
tion, etc.). Third, it enters the category of regression-based backtests and complements
the existing literature on regression-based risk forecast evaluation (see e.g., Engle and
Manganelli, 2004; Christoffersen, 2011; Bayer and Dimitriadis, 2020). It also represents
an alternative to the multiple VaR exceptions backtests (see e.g., Colletaz et al., 2013;
Kratz et al., 2018). Finally, the procedure may be useful for systemic risk measures
that involve VaR and ES estimation (see e.g, Benoit et al., 2015; Tarashev et al., 2016;
Van Oordt and Zhou, 2019).

Formally, we show that the parameters of the multi-quantile regression model have
specific properties under the hypothesis of valid ES forecasts. We propose four backtests
which correspond to various linear restrictions on these parameters. These restrictions are
implications of a Mincer-Zarnowitz representation (Mincer and Zarnowitz, 1969). Then,
we test the resulting parameter restrictions using Wald-type inference. We apply QML
estimation for the quantile regression parameters and we implement a pairs bootstrap
algorithm (Freedman, 1981) to correct the finite sample size distortions of our backtests.
Finally, we introduce a procedure deduced from our regression framework to adjust the
invalid risk forecasts.

Several Monte Carlo experiments are reported and an empirical application with the
S&P500 series is conducted. Our backtests deliver good performances to flag misleading
ES risk models. We also find that the use of asymptotic critical values is prone to
substantial size distortions, while the implementation of bootstrap critical values provides
satisfactory size performances regardless of the sample size. The latter should hence be
preferred when asymptotic theory does not apply conveniently.

Our empirical results suggest an update of the current regulatory guidelines. First,
we show that the BCBS recommendation of assessing quantiles at risk levels 97.5% and
99% is not always sufficient to identify misspecified ES models. The use of additional
quantiles is recommended to improve the soundness of the decision. Second, our results
suggest to limit the number p of quantiles in small samples (with typically p ¤ 6) and
to consider higher values if the historical sample covers longer periods. Finally, we show
numerically that our approximation of ES as a combination of several VaRs is close to its
theoretical counterpart, which strongly supports its implementation in a risk management
viewpoint.

The rest of the paper is structured as follows. In Section 2, we introduce the multi-
quantile regression framework. Section 3 describes the null hypotheses, the test statistics,
their asymptotic properties, and the implementation of the bootstrap critical values.
Section 4 studies the finite sample properties of our backtests from a set of Monte Carlo
experiments. Section 5 applies our methodology to the S&P500 index and introduce a
procedure to adjust the imperfect ES risk forecasts. We conclude the paper in Section 6.
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3.2 Multi-quantile regression framework
This section describes our proposed multi-quantile regression approach. In the first

part, we discuss the usefulness of approximating ES via a finite sum of VaRs. In a second
part, we describe the multi-quantile regression model that we employ in our testing
strategy. The last part is devoted to the description of the estimation method and the
asymptotic theory.

3.2.1 ES as an approximation of VaRs
Our backtesting procedure exploits the relationship between VaR and ES. We suppose

that ES can be approximated as an average of VaRs. This assertion stems from the
representation of ES as the limit of a Riemann sum when the partition becomes infinitely
fine.
Definition 1 (ES approximation). Let τ P s0, 1r denote the coverage level. The τ -level
ES approximation is defined as a finite Riemann sum involving p VaRs such as

ESt pτq � 1
p

p̧

j�1
V aRt pujq , (3.2)

where risk levels uj, j � 1, 2, . . . , p, satisfy uj � τ �pj�1q1�τ
p
, and p denotes the number

of subdivisions taken in the definite integral.

Our approximation of ES averages VaRs in the upper tail distribution of the risk
model. The number of quantiles involved in the sum is given by p and characterizes the
approximation accuracy. In particular, p � 1 involves a single VaR at coverage level τ ,
while increasing p to infinity leads Equation (3.2) to converge to the theoretical ES. As
we rely on a Riemann sum, the approximation assigns equal weights 1{p to each element
in the sum, and the risk levels uj, j � 1, 2, . . . , p, are determined so that the interval
is equally partitioned between the two boundaries τ and 1. Several alternatives for the
approximation of a definite integral are available. Here, we rely on a Riemann sum for
its simplicity and ease of implementation. We show how to derive the above formula in
Appendix A.

In practice, p may be chosen small as the interval of the definite integral is restricted
to the extreme upper tail distribution. For instance, Gouriéroux and Liu (2012) identify
for a large class of distributions a common linear conversion pattern between VaR and ES,
so that a few VaRs are generally enough to get a good approximation of ES. Daníelsson
and Zhou (2016) show that VaR and ES are in most cases related by a small constant
and are hence almost equally informative.

Our approximation is useful for at least two reasons. First, this simple formula is
appealing in a regulatory and risk management viewpoint since the estimation of VaR
is well-established and its computation is easier compared to ES. Secondly, and it is the
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purpose of this paper, the above relationship greatly simplifies the assessment of ES, by
focusing on the validity of several VaRs, and is more intelligible in the context of banking
regulation. This approach is fully consistent with the BCBS guidelines on ES assessment
stating that backtesting bank’s internal ES models at the bank-wide level "must be based
on a VaR measure calibrated at a 99th percentile confidence level" (BCBS, 2019, page 81)
and must be based at the trading desk level on "each desk’s one-day VaR measure [...]
at both the 97.5th percentile and the 99th percentile" (BCBS, 2019, page 83)

3.2.2 Multi-quantile regression model
In the sequel, we consider an asset or a portfolio, and denote by Lt the corresponding

loss observed at time t, for t � 1, 2, . . . , T . In addition, we denote by Ωt�1 the information
set available at time t � 1, with pLt�1, Lt�2, . . .q � Ωt�1. Formally, the Ωt�1 conditional
VaR at level uj of the Lt distribution is the quantity V aRt pujq such that

Pr pLt ¥ V aRt pujq |Ωt�1q � uj. (3.3)

A VaR model is said to be correctly specified (at coverage level uj) as soon as Equation
(3.3) holds for all t. In practice, VaR forecasts are assessed through the evaluation of
this simple equality. Given the ES approximation introduced in Definition 1, this equality
may arguably be adapted for the assessment of ES models. The chief insight is to evaluate
Equation (3.3) for a number p of risk levels as set out in Definition 1. Accordingly, one
should conclude to the appropriateness of a given ES model as soon as the sequence
V aRt pujq, t � 1, 2, . . . , T , issued by the ES model satisfies Equation (3.3) jointly for
j � 1, 2, . . . , p.

We refer to the original idea of Gaglianone et al. (2011) who derive a backtest of VaR at
a single coverage level, introducing VaR as a regressor of a quantile regression model. We
generalize their approach for the assessment of multiple VaRs. To do so, we regress the ex-
post losses tLt, t � 1, 2, . . . , T u on the p VaR forecasts tV aRt pujq , t � 1, 2, . . . , T uj�1,2,...,p

in a multi-quantile regression model as follows:

Lt � β0 pujq � β1 pujqV aRt pujq � εj,t @ j � 1, 2, . . . , p, (3.4)

where β0 pujq, and β1 pujq, respectively, denote the intercept and the slope parameters
at level uj, and where εj,t is the error term at risk level uj and time t, such that the
uj-th conditional quantile of εj,t satisfies Qεj,t puj; Ωt�1q � 0. This specification could
be interpreted as a multi-quantile regression version of Koenker and Xiao (2002) and is
related to the multi-quantile CaViAR model (MQ-CaViAR) of White et al. (2015) which
allows a joint modeling of multiple conditional VaRs. Given the multi-quantile regression
model of Equation (3.4), the uj-th conditional quantile of Lt is defined as

QLt puj; Ωt�1q � β0 pujq � β1 pujqV aRt pujq @ j � 1, 2, . . . , p. (3.5)
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This equation is central for our backtesting methodology as it establishes a direct link
between the VaR forecasts (issued from the external ES model), with the true unknown
conditional quantile (issued from the ex-post observed losses). Our procedure consists in
verifying if there exists a perfect match between V aRt pujq and QLt puj; Ωt�1q. Consis-
tently with Gaglianone et al. (2011), we rely on the regression parameters, and test if the
intercept parameter β0 pujq, and the slope parameter β1 pujq, are respectively equal to
zero, and one, for j � 1, 2, . . . , p. For these values, and given Definition 1, the risk model
is accepted as a valid proxy of the true unknown data generating process to deliver the
ES forecasts.

3.2.3 Parameter estimation and asymptotic properties
Our backtesting procedure requires to consistently estimate the parameters β0 pujq,

and β1 pujq, for j � 1, 2, . . . , p. Under the hypothesis that a sequence of VaR is valid,
coefficients satisfy β0 pujq � 0, and β1 pujq � 1, for j � 1, 2, . . . , p. In what follows,
we denote by β pujq � pβ0 pujq , β1 pujqq1 the vector of parameters for the uj-th quantile
index, and we write β � �

β pu1q1 , β pu2q1 , . . . , β pupq1
�1 the stacked vector of 2p coeffi-

cients. We assume that the sequence tuj, j � 1, 2, . . . , pu is ordered in the sense that
u1   u2   . . .   up   1.

In order to estimate β, we consider a QML estimator dedicated to multi-quantile
regression, given by

pβ � arg min
βPR2p

T�1
Ţ

t�1

�
p̧

j�1
ρuj pLt � β0 pujq � β1 pujqV aRt pujqq

�
,

where ρuj pxq � xψuj pxq is the standard "check function", and ψuj pxq � uj � 1 px ¤ 0q
is the usual quantile step function. Under suitable regularity conditions, it is shown that
this estimator is consistent and asymptotically normally distributed. The conditions are
described in Appendix B and a discussion is provided on how these assumptions are
fulfilled.

Under Assumptions A0-A2 in Appendix B, the asymptotic distribution of the QML
estimator is given by ?

T
�pβ � β

	
dÑ N p0,Σq ,

where Σ denotes the asymptotic covariance matrix which takes the form of a Huber
(1967) sandwich. Its expression is given by Σ � A�1V A�1, with V � E rηtη1ts, ηt �°p
j�1∇QLt puj; Ωt�1qψuj pεj,tq, A � °p

j�1E rfj,t p0q∇QLt puj; Ωt�1q∇1QLt puj; Ωt�1qs,
where ∇QLt puj; Ωt�1q denotes the 2p gradient vector differentiated with respect to β,
εj,t � Lt � QLt puj; Ωt�1q, and fj,t p0q denotes the pdf of εj,t evaluated at zero. In Ap-
pendix C, we provide a consistent estimator pΣ of Σ that will be used to compute our test
statistics.
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Finally, Appendix D provides a discussion on the rate of convergence and interplay
of p and T when T tends to infinity. Under this asymptotic framework, it is shown
that p is increasing with T . We consider a simple illustration assuming p takes the form
of a power function. Under this assumption, T needs to diverge faster than p in order
to maintain the asymptotic theory. This condition is not importantly restrictive but
suggests the existence of an (asymptotic) upper limit for p which depends on the sample
size. Section 4 provides several Monte-Carlo experiments with various values for p and
T to give guidelines on how to choose these parameters jointly in finite samples. In
Section 5, we suggest an avenue of research using extremal conditional quantile models
(Chernozhukov, 2005; Chernozhukov and Fernández-Val, 2011) that allows examining
deeper the tail distribution of ES risk models.

3.3 Backtesting ES
In this section, we present our backtests for ES. Our procedures assess whether the

parameters β0 pujq and β1 pujq coincide with their expected values for risk levels uj, j �
1, 2, . . . , p. To this end, we propose four backtests that analyze various settings on the
regression coefficients. In the sequel, we introduce the null hypotheses, the test statistics,
and establish their asymptotic properties. Finally, we discuss the use of finite sample
critical values and provide a bootstrap algorithm when the asymptotic theory does not
apply conveniently.

3.3.1 The backtests
Formally, our goal is to test β0 pujq � 0, and β1 pujq � 1, for j � 1, 2, . . . , p. As high-

lighted by Gaglianone et al. (2011) for a unique quantile regression, the aforementioned
set of restrictions retains a Mincer and Zarnowitz (1969) interpretation for each quantile
regression in (3.4). Here, we propose to test various implications of these coefficient re-
strictions by taking into consideration four distinct null hypotheses based on a reduced
number of constraints. Many backtests test implications of a more general hypothesis.
In this context, Du and Escanciano (2017) assess two implications for the martingale
difference sequence of their cumulative violation process. McNeil and Frey (2000) and
Nolde and Ziegel (2017) propose to test the zero mean hypothesis of their residuals which
more largely behave as white noise.
Definition 2 (Null hypotheses). Denote by J1, J2, I, and S, the four backtests. The
corresponding null hypotheses H0,J1, H0,J2, H0,I , H0,S, are defined as follows:

H0,J1 :
p̧

j�1
pβ0 pujq � β1 pujqq � p, (3.6)
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H0,J2 :
p̧

j�1
β0 pujq � 0, and,

p̧

j�1
β1 pujq � p, (3.7)

H0,I :
p̧

j�1
β0 pujq � 0, (3.8)

H0,S :
p̧

j�1
β1 pujq � p, (3.9)

where notations J1 and J2 indicate the "joint" backtests, and where I and S refer to the
"intercept" backtest and to the "slope" backtest, respectively.

Equations (3.6)-(3.9) of Definition 2 gives the null hypotheses H0,J1 , H0,J2 , H0,I , H0,S.
They are devised to assess various implications that the regression coefficients should
satisfy when the ES risk forecasts are valid. The coefficients are summed across risk levels
uj, j � 1, 2, . . . , p. This aggregation substantially reduces the number of constraints.
H0,J2 is hence characterized by two constraints, and H0,J1 , H0,I , H0,S involve a single
constraint.

Our null hypotheses analyze various settings on the regression coefficients. The null
of the joint backtests, H0,J1 and H0,J2 , look at the expected value of both the intercept
and slope parameters β0 pujq and β1 pujq for j � 1, 2, . . . , p. H0,J1 sums the two types of
coefficient together, while H0,J2 sums the coefficients separately depending on whether
they are slope parameters or intercept parameters. Finally, the null hypotheses of the
intercept backtest and the slope backtest, H0,I and H0,S, focus solely on one of the
two parameter components. H0,I is built to examine the intercept parameters β0 pujq,
j � 1, 2, . . . , p, and H0,S is devoted to the analysis of the slope parameters β1 pujq,
j � 1, 2, . . . , p. These additional null hypotheses complement the joint backtests to
identify the nature of the misspecification. If the joint hypotheses are rejected, separate
tests for these two types of measurement error should be considered. They are inspired
by the prediction-realization framework of Mincer and Zarnowitz (1969). When H0,I is
rejected, the intercept parameters, β0 pujq , j � 1, 2, . . . , p, do not sum to 0, and hence,
the average of VaR risk forecasts either underestimate or overestimate the true quantiles,
if the sign of the sum is positive or negative, respectively. The rejection of H0,S indicates
that the sum of the slope parameters β1 pujq , j � 1, 2, . . . , p, does not equal p, which
highlights correlation between the forecasting errors and the quantile series.
Definition 3 (Wald-test statistics). Let us denote by W P tJ1, J2, I, Su the generic
notation for the test statistic, and consider the classical formulation of a Wald-type test
such as H0,W : RWβ � qW . The general expression of the test statistics is given by

W � T
�
RW

pβ � qW

	1 �
RW

pΣR1
W

	�1 �
RW

pβ � qW

	
, (3.10)

where T is the out-of-sample size, and pΣ denotes a consistent estimator of the asymptotic
covariance matrix.
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To assess our null hypotheses we consider Wald-type inference. Equation (3.10) of
Definition 3 gives the general expression of the test statistics. According to our notations,
substitutingW by J1, J2, I, and S, yields the four test statistics. For ease of presentation,
the null hypotheses are now presented in a classical formulation, such that H0,W : RWβ �
qW . Given the null hypotheses of Definition 2, the quantities RW and qW are as follows:
RJ1 � ιp b

�
1 1

	
, qJ1 � p, RJ2 � ιp b I2, qJ2 �

�
0 p

	1
, RI � ιp b

�
1 0

	
, qI � 0,

RS � ιp b
�

0 1
	
, qS � p, where ιp is a p-row unit vector, and I2 denotes the identity

matrix of size 2.
Proposition 7 (Chi-squared distribution). Consider the multi-quantile regression model
in Equation (3.4), Assumptions A0-A3 in Appendix B, and the null hypotheses of Def-
inition 2, the test statistics J1, I, and S, converge to a chi-squared distribution with 1
degree of freedom, and the test statistic J2 converges to a chi-squared distribution with 2
degrees of freedom.

Proposition 7 gives the asymptotic distribution of the Wald statistics J1, J2, I, S
under their respective null hypotheses H0,J1 , H0,J2 , H0,I , H0,S. As a result of coefficients’
aggregation, the asymptotic distributions are based on a small and fixed number of de-
grees of freedom no matter how p is chosen. Thus, the four backtests have unchanged
critical values whatever the number of quantiles considered in the ES approximation.
Note that we provide in Appendix E the proof for consistency of the tests under fixed
untrue hypothesis.

3.3.2 Finite sample inference
Our four backtests are asymptotically chi-squared distributed and we can employ them

if the asymptotic conditions are fulfill for realistic sample sizes. However, in the case of ES
assessment, the focus is on the extreme tail distribution, that is for risk levels above the
regulatory coverage level, i.e. τ � 0.975. This may induce scarce information and affect
the inference when the sample size is not large enough. Furthermore, our asymptotic
framework implicitly assumes that p1 � upqT diverges to infinity, where up denotes the
highest level of the multi-quantile regression. Chernozhukov (2005) and Chernozhukov
and Fernández-Val (2011) provide a refinement of this assumption based on the extreme
value theory allowing p1 � upqT Ñ k   8. However, to date this literature has only
considered single conditional extremal quantile models and it is not obvious how the
results for the single quantile models extend to multi-quantile models. To overcome these
typical deficiencies, we implement a bootstrap procedure to adjust the critical values of
our test statistics in finite samples.

In the following, we propose a pairs bootstrap algorithm (Freedman, 1981) in order to
correct the finite sample size distortions of our backtests. This is a fully non-parametric
procedure that can be applied to a very wide range of models, including quantile regression
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model (Koenker et al., 2018). This approach consists in resampling the data, keeping the
dependent and independent variables together in pairs. The procedure is valid for any
sample sizes T , and large levels uj, j � 1, 2, . . . , p, and ideally applies in our case when
the constraints of the null hypothesis are linear in the parameters. The algorithm is as
follows:

1. Estimate β and Σ on the original data tLt, V aRt pujquj�1,2,...,p, t � 1, 2, . . . , T , to
obtain pβ and pΣ, and compute the unconstrained test statistic W given by

W � T
�
RW

pβ � qW

	1 �
RW

pΣR1
W

	�1 �
RW

pβ � qW

	
.

2. Build a bootstrap sample by drawing with replacement T pairs of observations from
the original data tLt, V aRt pujquj�1,2,...,p, t � 1, 2, . . . , T .

3. Estimate the model on the bootstrap sample, to obtain pβb and pΣb, and compute
the bootstrapped test statistic W b under the null hypothesis as follows:

W b � T
�
RW

pβb �RW
pβ	1 �RW

pΣbR1
W

	�1 �
RW

pβb �RW
pβ	 .

4. Repeat B � 1 times steps 2 and 3, to obtain the bootstrap statistics W b, b �
1, 2, . . . , B.

Two remarks should be made about the algorithm. First, when we use the pairs
bootstrap we cannot impose the null hypothesis on the bootstrap data generating process
since imposing restrictions on β is unfeasible. To overcome this issue, we calculate the
bootstrap statistics by considering the difference RWβ�RW

pβ rather than RWβ�q. Since
the estimate of β from the bootstrap samples should, on average, be equal to pβ, at least
asymptotically, the null hypothesis tested by W b becomes "true" for the pairs bootstrap
data generating process. Second, the critical value cα is obtained as the α-quantile of the
bootstrap statistics W b, b � 1, 2, . . . , B. The decision rule is as follows. If the original
test statistic W is greater than the α-level bootstrapped critical value cα, we conclude to
the rejection of the null hypothesis. In addition, we compute the p-value of the test as
P � B�1 °B

b�1 1
�
W b ¡ W

�
.

3.4 Simulation study
In this section, we provide Monte Carlo simulations to illustrate the finite sample

properties (empirical size and power) of our four backtests. The simulation study is
performed on 5000 replications, and we consider sample sizes T � 250, 500, 1000, 2500.
The results associated with the bootstrap critical values are based on B � 1000 bootstrap
samples. Finally, the backtests are computed with τ � 0.975 that is the current banking
regulation coverage level.
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Beyond the traditional size and power analysis, a second important objective of this
section is to characterize the influence of the number p of quantiles used to assess the
ES forecasts. We aim at examining whether an ES backtest based on a large number of
quantiles may provide better performances than a backtest based on a small number of
quantiles, as it is recommended by the current BCBS guidelines. For that, we consider
different choices for the number of risk levels, namely p � 1, 2, 4, 6, 8, 10, 12. The p risk
levels u1, u2, . . . , up are computed in accordance with Definition 1. Notice that p � 1
coincides with the VaR backtest at level τ of Gaglianone et al. (2011) and the number of
quantiles of the bank-wide level regulatory guidances (in case τ � 0.99). With p � 2 risk
levels, our backtests are in accordance with the regulatory guidances at the trading-desk
risk management level. Finally, the case p � 4 corresponds to the framework considered
by Emmer et al. (2015).

The correct data generating process is given by the AR(1)-GARCH(1,1) specification
with Student innovations. This class of model is some of the most widely used for
capturing variance dynamics in daily asset returns (see e.g., Berkowitz and O’Brien,
2002; Berkowitz et al., 2011; Du and Escanciano, 2017; Löser et al., 2019). The ex-post
portfolio loss Lt, t � 1, 2, . . . T , is given by

Lt � δ0 � δ1Lt�1 � εt,

εt � σtηt, ηt � tv,

σ2
t � γ0 � γ1ε

2
t�1 � γ2σ

2
t�1,

(3.11)

where tv denotes the Student’s t distribution with v degrees of freedom. Given the model
in Equation (3.11), the true ES and VaR at coverage level τ are given by

ESt pτq � δ0 � δ1Lt�1 � σtm pτq , (3.12)

V aRt pτq � δ0 � δ1Lt�1 � σtF
�1
v pτq , (3.13)

with m pτq � E rηt|ηt ¥ F�1
v pτqs, and where F�1

v pτq denotes the τ -quantile of the
Student distribution with v degrees of freedom. As a robustness check of the above
model, Appendix F provides simulation results for the simple case of a GARCH(1,1)
model that excludes the conditional mean component with Lt � εt where εt is as
in Equation (3.11). Both models are calibrated using the opposite of the daily
log-returns of the S&P500 index over the period from January 2, 2013 to Decem-
ber 29, 2017, with

�pδ0, pδ1, pγ0, pγ1, pγ2, pv	 � p�0.085,�0.093, 0.034, 0.214, 0.748, 5q and
ppγ0, pγ1, pγ2, pvq � p0.034, 0.197, 0.763, 5q, respectively for the AR(1)-GARCH(1,1) model
and the GARCH(1,1) model. Finally to investigate the power, we consider several
misspecified alternatives for Lt:

74



3.4 Simulation study

A1: AR(1)-GARCH(1,1) model with underestimated conditional variances: Lt is as
Equation (3.11), with σ2

t �
�
γ0 � γ1ε

2
t�1 � γ2σ

2
t�1

� � p1� κq, where κ � 0.25, 0.50, 0.75,
respectively.

A2: GARCH in mean model: Lt � κ�σ2
t �εt, εt � σtηt, σ

2
t � γ0�γ1ε

2
t�1�γ2σ

2
t�1, ηt � tv,

where κ � �2.5,�2.5, respectively.

A3: AR(1)-GARCH(1,1) model with mixed normal innovations: Lt satifies Equation
(3.11), with ηt � p0.5X� � 0.5X�q {?10, where X� � N p3, 1q and X� � N p�3, 1q.

A4: 12-month historical simulation model: VaR and ES are given by
their empirical counterparts from the 250 previous trading days such that
V aRt pτq �percentileptLt�iu250

i�1, 100τq, and ESt pτq � 1°250
i�1 1pLt�i¥V aRt�ipτqq

°250
i�1 Lt�i �

1pLt�i¥V aRt�ipτqq.

In A1, the conditional variance of the series σt is alternately underestimated of 25%,
50%, and 75% to examine whether our tests are able to detect an underestimation of
ES stemming from a misleading appreciation of volatility. In A2, the misspecification
occurs in the conditional mean by assuming a GARCH in mean model. In A3, the
distribution of the innovations ηt is incorrect and should imply misleading ES predictions
compared to the t-distribution. Finally in scenario A4, the time-varying dynamics is
incorrectly captured by the historical simulation method. It should be noticed that our
alternatives are in line with the existing literature on tail risk assessment. Bayer and
Dimitriadis (2020) look at an alternative close to A1 by varying the coefficients related
to the GARCH component. A2 and A3 were applied by Du and Escanciano (2017) to
illustrate the performance of their unconditional and conditional ES backtests. Finally,
scenario A4 was extensively studied by Kratz et al. (2018), Bayer and Dimitriadis (2020),
Gaglianone et al. (2011), among others.
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Chapter 3: Backtesting Expected Shortfall via Multi-Quantile Regression

Figure 3.1: Empirical size of the tests at 5% significance level (AR(1)-GARCH(1,1)
model)
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asymptotic critical values, and the second row those computed with the bootstrap critical values. The columns correspond

to different sample sizes T .
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3.4 Simulation study

Figure 3.2: Empirical power of the tests at 5% significance level (AR(1)-GARCH(1,1)
model, bootstrap critical values)
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Figure 3.1 displays graphically empirical sizes of the tests at 5% significance level.
The first row reports the results of the asymptotic tests and the second row embeds those
of the bootstrap based tests. Each column is for a given sample size T , and the results are
shown as a function of p for comparison. As previously discussed, the use of conventional
asymptotic critical values (based on a χ2 distribution) induces important size distortions.
For instance, with sample size T � 500, and p � 6, the four test statistics J1, J2, I,
and S, display empirical sizes equal to 0.126, 0.273, 0.165, 0.216, respectively. These
distortions are caused by poor inference made on regression parameters in the extreme
upper tail when the sample size is not sufficiently large. On the contrary, the backtests
based on bootstrap critical values display empirical sizes that are close to the nominal
size of 5% for all reported sample sizes and risk levels. For large coverage levels and
moderate samples, it is hence recommended to use bootstrap critical values rather than
the standard asymptotic ones.
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To go further about the interrelationship between p and T , we note that the size of the
four bootstrap-based backtests slightly deteriorates for p ¡ 6 with T � 250 and T � 500
revealing that the tests are sensitive to the choice of p in small samples. In details, the
slope backtest is the most affected by these distortions, while the J1 backtest is well-
sized most of the time. On the contrary, for larger sample sizes, typically T � 1000 and
T � 2500, these distortions are negligible. Consequently, it would make sense to restrict
the number p of quantiles when applying the tests in small samples, with typically p ¤ 6,
and to consider higher values if the historical sample covers longer periods.

To provide robustness check of these results, Figure 3.7 in Appendix F reports em-
pirical sizes when the data generating process is given by a GARCH(1,1) model. We
observe the same findings as those provided with the AR(1)-GARCH(1,1) model. The
asymptotic tests are largely oversized, while the bootstrap tests are close to the nominal
size of 5% for all reported sample sizes and risk levels. Finally, there is also an asymptotic
refinement of the empirical sizes as T increases for both asymptotic and bootstrap tests.

Figure 3.2 reports the empirical powers (size-corrected) associated with our seven
alternatives. Here, we only present the simulation results associated with the bootstrap
critical values. The simulation results obtained with the asymptotic critical values are
overall the same (see Figure 3.6 in Appendix F). Overall, the tests correctly flag the
misspecified alternatives A1, A2, A3, A4, and we verify that there is a general improvement
of powers as the sample size T increases (from row 1 to row 4), suggesting that these
tests are consistent for these alternatives. For instance, with T � 500, and p � 4, the
test statistic J1 identifies the misleading scenario A3 in 49.3% of times, while it reaches
98.1% of times with T � 2500.

Second, the joint test statistics, J1 and J2, generally deliver higher power performances
compared to the intercept and slope test statistics I and S. This finding comes from the
definition of the joint null hypotheses that focus on both intercept and slope coefficients
and are thus more conservative than the null of the intercept and slope backtests. In
details for the two joint tests, we find that J1 performs generally better to detect A1 and
A4, while J2 more often identifies A2 and A3, which suggests complementarity between
the two joint backtests. Although the intercept and slope backtests exhibit lower power
performances, they provide useful informations on the type of misspecification. In details,
the slope backtest performs better in alternatives A1 and A3, while the intercept backtest
is superior for alternative A4. Thus, A1 and A3 mainly affect the expected value of the
slope parameters meaning that the errors are correlated and proportional to the true
quantiles. In contrast, alternative A4 induces distortions in the expected value of the
intercept coefficients suggesting that the origin of errors is more global as they are not
related to the true quantiles.
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Third, we observe that the selection of number p of risk levels is difficult to link with
the rejection frequencies in alternatives A1, A2, A3, since reported powers are slightly
affected by p in general. This finding is explained by the nature of these alternatives for
which the misspecification is relatively uniform along the tail, and does not require many
levels. On the contrary, in alternative A4, an increase of p is beneficial for detecting the
misleading one-year historical simulation method as power is unequivocally increasing
with p, especially when T is large. This is due to the fact that, for this alternative, the
error made along the tail is more irregular and requires the use of additional levels. In
the same spirit as in the Portmanteau tests when selecting an optimal number of lags
to flag serial correlation (Ljung and Box, 1978; Box and Pierce, 1970), it follows that
considering successive values p � 1, 2, . . . , pmax with pmax � 12, as illustrated above, may
offer useful information to improve the statistical decision.

Finally, we provide a robustness check of the powers with the GARCH(1,1) model
(see Figures 3.8 and 3.9 in Appendix F). The rejection frequencies are very close to
those associated with the AR(1)-GARCH(1,1) model. Consequently, the decision whether
to introduce or not a conditional mean in the risk model does not affect the power
performances.

3.5 Empirical application
In this section, we apply our backtests to the daily returns of the S&P500 index. In

addition, we provide a method for the adjustment of imperfect risk forecasts relying on
our backtesting framework. In the sequel, we set τ � 0.975 to coincide with the regulatory
ES coverage level. The probability levels uj, j � 1, 2, . . . , p, are calculated accordingly
with Definition 1. In addition, we consider the risk levels suggested by the BCBS at the
trading-desk level, i.e. u1 � 0.975, and u2 � 0.990, respectively. Finally, for comparison
purposes and to provide useful backtesting recommendations, we consider several values
p � 1, 2, 4, 6, 8, 10, 12.

3.5.1 Data
We consider the daily adjusted closing prices of the S&P500 index over the period

January 1, 1997 - December 31, 2012. The in-sample period spans from January 1, 1997
to June 30, 2007, and we use two out-of-sample periods (1) from July 1, 2007 to June
30, 2009, corresponding to the subprime mortgage crisis, and (2) from July 1, 2007 to
December 31, 2012, which pools the subprime mortgage crisis and the European sovereign
debt crisis, two major episodes of financial instability. We compute the daily log-returns
and denote by Lt the opposite returns. In line with our notations, a positive value
indicates a loss.
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Figure 3.3: S&P500 daily losses (%), and descriptive statistics

0 500 1000 1500 2000 2500 3000 3500 4000

Observations

-10

-5

0

5

10

E
x-

po
st

 lo
ss

es

Pre-crisis Subprime crisis Sovereign debt crisis
(1997-2007) (2007-2009) (2009-2012)

1997-2007 2007-2009 2007-2012

Nb of obs 2641 504 1384
Mean -0.028 0.105 0.005
Median -0.059 -0.032 -0.067
Variance 1.280 4.932 2.643
Skewness 0.090 0.059 0.242
Kurt. exc. 3.171 4.028 6.943
Minimum -5.574 -10.957 -10.957
Maximum 7.113 9.470 9.470

Note: The sample covers the period from January 1, 1997 to December 31, 2012. Source: finance.yahoo.com website.

The S&P500 series is depicted in Figure 3.3 with the three aforementioned sub-periods.
The in-sample period (1997-2007) is weakly volatile, while the out-of-sample crisis periods
(2007-2009 and 2007-2012) display more severe levels of volatility, with several extreme
events. Figure 3.3 also provides some descriptive statistics. The variance and the average
ex-post losses are higher in the out-of-sample periods than in the in-sample period, espe-
cially for the period 2007-2009. In addition, the series is right-skewed and has a kurtosis
excess.

To predict the ES risk measure, we fit an AR(1)-GARCH(1,1) model with Student
innovations, as defined in (3.11), using the S&P500 daily losses of the in-sample period.
The ES and VaR forecasts are defined as in Equations (3.12) and (3.13), respectively. The
set of unknown parameters is estimated by maximum likelihood. We obtain the following
coefficient estimates

!pδ0, pδ1, pγ0, pγ1, pγ2, pv) � t�0.057,�0.032, 0.007, 0.060, 0.936, 9u. As a
robustness check, we also fit a GARCH(1,1) model on the same period as defined in
the simulation study and for which we obtain the following estimates tpγ0, pγ1, pγ2, pvu �
t0.007, 0.059, 0.937, 9u.

3.5.2 Empirical results
We start by evaluating the relevancy of the ES approximation of Definition 1, con-

sisting in averaging several quantiles in the tail of the risk model. To do so, we compare
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the approximation considering p � 1, 2, 4, 6, 8, 10, 12 quantiles, with what we refer to as
"exact ES". The latter corresponds to an ES which is computed via an exact method of
calculation. The technique relies on simulations and is described in Appendix G.

Figure 3.4: In-sample ES estimates issued from the approximation and the exact calcu-
lation method (AR(1)-GARCH(1,1) model)
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Figure 3.4 reports the in-sample ES estimates obtained with the approximation and
the exact calculation method. Two remarks should be made here. First, the ES risk
forecasts issued from the approximation and the exact method strongly correlate regard-
less of the value p. The approximation performs very well to capture the ex-post losses
information. Second, we observe that the approximation is substantially improved when
p slightly increases and coincides almost completely with the exact ES using six (or more)
quantiles.

Because the approximation is obtained by combining VaRs, our finding is in accor-
dance with several papers. Gouriéroux and Liu (2012) study the relationship between
VaR and ES and show that they are related through their risk levels by some link func-
tion. Daníelsson and Zhou (2016) argue that the two measures of risk are related by a
small constant and are conceptually equally informative. This similarity also comes from
the structure of the model used to compute the risk measure. For instance, VaR and ES
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issued by an AR(1)-GARCH(1,1) model have common conditional mean and variance
across risk levels implying that these risk measures are closely related (see Equations
(3.12) and (3.13)). Finally, Figure 3.10 in Appendix H displays the same results using a
GARCH(1,1) model. Removing the conditional mean component does not affect the ap-
proximation accuracy as the two computation methods match almost perfectly for p ¥ 6.
For its ease of implementation and accuracy, the approximation is appealing to compute
and evaluate the performance of ES risk forecasts.

Table 3.1: p-values of the backtesting tests (AR(1)-GARCH(1,1) model)

p J
pbq
1 J

pbq
2 Ipbq Spbq

Panel A. 2007-2009

1 0.035 0.051 0.125 0.949
2 0.014 0.041 0.038 0.200
4 0.009 0.040 0.023 0.103
6 0.009 0.038 0.021 0.123
8 0.099 0.049 0.154 0.564
10 0.029 0.061 0.053 0.432
12 0.023 0.052 0.038 0.223
2 (regulatory levels) 0.024 0.047 0.053 0.351

Panel B. 2007-2012

1 0.056 0.040 0.176 0.554
2 0.004 0.013 0.014 0.215
4 0.002 0.004 0.003 0.096
6 0.004 0.005 0.009 0.196
8 0.008 0.008 0.041 0.538
10 0.007 0.010 0.021 0.410
12 0.004 0.006 0.008 0.245
2 (regulatory levels) 0.006 0.012 0.032 0.448

Note: p-values of the four backtests computed with p � 1, 2, 4, 6, 8, 10, 12 risk levels successively, and the two regulatory

levels u1 � 0.975, u2 � 0.990. Reported p-values are obtained using bootstrap critical values. Panel A gives the results for

the period 2007-2009 and Panel B provides results for the period 2007-2012.

Table 3.1 reports the p-values of the backtests. For a sake of clarity, we only report
the p-values obtained with the bootstrap critical values and the results are discussed at
5% significance level. Panel A provides the results over the sample 2007-2009. The test
statistic J1 leads to reject the validity of the ES predictions regardless of the number p
of quantiles (except for p � 8 where the rejection occurs at a 10% significance level).
Interestingly, we observe that the larger p, the smaller the p-value until p � 6, indicating
that the rejections are more severe when the number of risk levels increases until an
optimal number p. It supports the existence of an upper limit for p relative to the sample
size as T is relatively small (T � 504), and p should not be chosen too large. The test
statistic J2 displays higher p-values in general. The backtest based on a single VaR no
longer rejects the validity of the ES predictions, and the p-value based on the regulatory
levels of the BCBS is close to 5%, making the decision rule more unclear for those number
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of risk levels. Finally, given the p-values of the test statistic I for p � 2, 4, 6, 12, we tend
to reject the expected value on the intercept coefficients, and there is a global bias in the
quantile estimates issued by the ES model. On the contrary, the statistic S leads to the
conclusion that the slope parameters are as expected under the null hypothesis, and thus,
the magnitude of errors is not related to the true quantiles. Panel B contains the p-values
for the period 2007-2012. Overall, we obtain similar results, but the rejections are more
severe in this enlarged sample. Rejections of J1 are now experienced at a 1% significance
level and even for p ¡ 6, as opposed to panel A. This highlights the underlying link
between p and T as panel B uses T � 1384 observations enabling the use of additional
quantiles. Table 3.3 of Appendix H displays the p-values of the backtests when applying
a GARCH(1,1) model. The results are similar. Note however, for p � 1, that the p-values
are generally higher with the GARCH(1,1) model than for the AR(1)-GARCH(1,1) model.
For instance, the p-value of J1 in panel B is 0.056 with the AR(1)-GARCH(1,1) model,
while it reaches 0.199 with the GARCH(1,1) model. For that model, additional quantiles
are needed to increase the rejection capabilities of the tests.

In sum, we should be cautious in using a single quantile to assess the tail distribution
of the risk model. Such procedures may lead market practitioners to select a model that
generates mistaken ex-post forecasts. Furthermore, the results issued from the regulatory
guidelines are contrasted. One or two risk levels are not always enough to provide a
sound conclusion about the validity of bank’s internal ES models. At least in our sample,
looking at additional risk levels beyond the regulatory coverage level τ � 0.975 improves
the decision reliability on whether or not using that model.

Table 3.2: QML coefficient estimates (p � 6, AR(1)-GARCH(1,1) model)

u1 u2 u3 u4 u5 u6

Panel A. 2007-2009

β0 0.661 0.696 0.808 ��
��� 0.846 ��

��� 0.965 �
��� 1.076 �

���

(0.295) (0.296) (0.227) (0.240) (0.429) (0.265)
β1 1.005 0.953 0.911 � 0.847 ��

��� 0.804 0.689 ��
���

(0.093) (0.088) (0.056) (0.053) (0.142) (0.042)
joint � � �� �� ��

Panel B. 2007-2012

β0 0.376 0.510 � 0.692 ���
��� 0.808 ���

��� 0.777 ��
��� 0.784

(0.200) (0.182) (0.195) (0.186) (0.284) (0.611)
β1 1.031 0.974 0.902 0.851 �� 0.826 0.787

(0.073) (0.067) (0.065) (0.050) (0.107) (0.232)
joint �� �� �� �� ��

Note: Standard errors are reported in parentheses. �, ��, and ��� indicate statistical significance at the 10%, 5% and 1%

level, respectively, and are obtained with the pairs bootstrap algorithm. �, ��, and ���, indicate statistical significance at

the same levels and are obtained with the procedure of Chernozhukov and Fernández-Val (2011). Panel A gives estimation

results for the period 2007-2009 and Panel B provides estimation results for the period 2007-2012.
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Table 3.2 displays the coefficient estimates of the multi-quantile regression of Equation
(3.4) for p � 6 risk levels, to help understand the reasons that explain the rejections of
the ES forecasts. Panels A and B provide the results for periods 2007-2009 and 2007-
2012, respectively. It must be recalled that, if the risk model is correctly specified, the
intercept coefficient β0 and the slope coefficient β1 take values zero and one, respectively.
We observe in both panels that the coefficients β0 are overestimated for all the risk levels
u1, u2, . . . , u6, while the coefficient β1 is overestimated for the first level u1, and it becomes
underestimated for all the remaining risk levels u2, u3, . . . , u6. The average errors of β0

and β1 are respectively equal to 0.84 and -0.13 in panel A, and 0.66 and -0.10 in panel
B, indicating that the magnitude of errors is more important in panel A than in panel B,
and that the intercept coefficients are more affected than the slope coefficients. Finally,
we observe that the distortion of the regression coefficients with respect to their expected
values is more pronounced for the highest risk levels suggesting that the errors are more
severe far in the tail.

Furthermore, we provide in Table 3.2 one by one inference on the regression parameters
with the pairs bootstrap algorithm. The results are depicted with the symbol "�" and
are discussed at a 5% significance level. We observe that the intercept parameters are
statistically not equal to zero for the intermediary levels u3 and u4 in panel A, and the
additional u5 risk level is also significantly different from zero in panel B. For the slope
coefficients, the u4 and u6 order quantiles are statistically different from one in panel A,
and only the level u4 is misspecified in panel B. In addition, we report joint inference,
i.e. looking at both the intercept and slope coefficients. The results are provided in
the row labeled as "joint" (bottom of the panels). Similarly to the previous findings, we
find that the intermediary, and highest order quantiles u3, u4 and u6 are misleading in
panel A, whereas in panel B, all the quantiles are misspecified (except for the highest,
presumably because the coefficients have large standard errors), meaning that the entire
tail distribution is incorrectly estimated.

We conclude the study by suggesting an avenue of research to backtesting tail risk
measures under the extreme value (EV) theory. As pointed out in Section 3.2, our baseline
regression implicitly assumes that p1 � upqT Ñ 8 when T Ñ 8. Chernozhukov (2005)
shows that EV laws apply under the condition that p1 � upqT Ñ k   8 when T Ñ 8.
We consider the extremal conditional quantile model of Chernozhukov and Fernández-
Val (2011) which is valid under that extremal condition. The procedure allows testing
individual restrictions while assuming the above EV theory. In the same spirit, Bee et al.
(2018) have proposed a new conditional quantile model with EV theory refinements that
overcomes the issue of unstable inference in the tails where data are sparse. The results
are depicted in Table 3.2 with the symbol "�". Overall, we find similar results between
EV theory and pairs bootstrap. Rejection of the null is mostly experienced at the same
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levels in panel A and panel B. However, we observe that the procedure of Chernozhukov
and Fernández-Val (2011) is generally more powerful than pairs bootstrap at the highest
risk levels. For instance, the expected value of the intercept parameters β0pujq in panel A
is rejected at level 1% for j � 3, 4, 5, 6 with the EV procedure, while the pairs bootstrap
rejects the null at larger levels (5% or 10%). This robustness check greatly illustrates the
superiority of EV theory when applied to multi-quantile regression models and tail risks.
We get overall the same results with the GARCH(1,1) model (see Table 3.4 in Appendix
H).

3.5.3 Adjusted ES forecasts
In this section, we devise an adjustment for the ES risk forecasts deduced from our

backtests. Our routine accounts for both misspecification and estimation uncertainty,
without having to change the misspecified risk model. The procedure serves at identifying
whether the model overestimates or underestimates the true unknown ES, by comparing
the initial forecast with its adjusted counterpart, which may be useful for risk managers
and regulatory agencies.

The correction of imperfect risk forecasts is not new in the financial literature.
Gouriéroux and Zakoïan (2013) adjust VaR forecasts affected by estimation uncertainty.
Boucher et al. (2014) adjust imperfect VaR forecasts based on backtesting frameworks
and Lazar and Zhang (2019) recently apply the same strategy to adjust imperfect ES
forecasts. The typical method consists of modifying the coverage level τ of the risk mea-
sure to meet the null hypothesis of valid risk forecasts. Here, the originality stems from
the fact that we use a regression-based method to correct the ex-ante forecasts, while
available techniques are based on the concept of violation (Christoffersen, 1998; Kupiec,
1995) . This allows adjusting the risk forecasts by application of a regression model,
without having to rescale the coverage level τ .

For ease of notation, we assume the parameters of the multi-quantile regression to
be known. Formally, the adjusted VaR forecast at level uj, and time t, is defined as
the ex-ante prediction of the multi-quantile regression model, namely QLt puj; Ωt�1q. In
view of Equation (3.5), the initial imperfect VaR forecast is subsequently weighted by the
regression parameters β0 pujq and β1 pujq, which provides an adjustment corresponding to
the global bias caused by misspecification and estimation uncertainty. The adjusted ES
forecast at coverage level τ and time t is derived from the ES approximation as follows:

ES�t pτq �
1
p

p̧

j�1
QLt puj; Ωt�1q .

The adjusted ES forecasts are robust to model risk, as they meet the desirable proper-
ties on the regression coefficients. Indeed, if we compute the backtesting procedure with
the sequence tQLt puj; Ωt�1qupj�1 instead of the initial misleading tV aRt pujqupj�1, the pa-
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rameters would exactly coincide with the expected values under the null hypothesis, i.e.
β0 pujq � 0, and β1 pujq � 1, for the risk levels u1, u2, . . . , up.

Figure 3.5: ES forecasts and adjusted ES forecasts over the period 2007-2009 (AR(1)-
GARCH(1,1) model)
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Figure 3.5 reports the ES predictions and adjusted ES predictions for the period
2007-2009 and p � 1, 2, 4, 6, 8, 10, 12 quantiles. The adjusted ESs are issued from the pa-
rameters β0pujq and β1pujq, @j, that are estimated using the observations over 2007-2009,
enabling us to disentangle whether the ES forecasts are overestimated or underestimated.
We observe that the AR(1)-GARCH(1,1) model generally provides underestimated fore-
casts compared to the adjusted predictions. This finding is consistent with Begley et al.
(2017) for the VaR who calculate the average number of exceptions of bank’s self-reported
level of VaR and show that the number of exceptions increases considerably during the
period 2007-2009. Differently, De Nicolò and Lucchetta (2017) show that AR-type models
often underestimate tail risks for horizons up to one year ahead, while there is probably a
room for improvement using factor-augmented quantile models. Note also that the skew-
ness of the daily losses is positive in our sample (see Figure 3.3), and it would be useful
to account for asymmetry considering an asymmetric power distribution as proposed by
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Komunjer (2007). Using the AR(1)-GARCH(1,1), we observe that the underestimation
is more pronounced for the smallest predictions, the error being more severe when the
risk forecasts are originally small. Finally, the ES forecasts are slightly overestimated
when the variance of the series is larger, suggesting that the risk model may overestimate
the true volatility in turbulent financial times. This is due to the volatility persistence in
the GARCH component. Our findings are robust to (1) the use of a simple GARCH(1,1)
model, (2) the use of the two BCBS regulatory levels, and (3) the extended period 2007-
2012 (see Figures 3.11, 3.12, 3.13, and 3.14 in Appendix H).

3.6 Conclusion
The financial crisis of 2007-2008 and its aftermath has led to a reassessment of risk-

management practices and financial market regulation through the Basel III accords
(BCBS, 2010). Among the number of fundamental reforms for the market risk, the
BCBS has adopted ES in place of VaR as the new standard for risk management. One of
the major obstacle to its implementation was the deficit of simple tools for the evaluation
of its forecasts. This article introduces four easy-to-use regression-based backtests of ES.
Our econometric approach consists in regressing the ex-post losses on the VaRs forecasts
in a multi-quantile regression model, and then, testing the resulting parameter estimates
using Wald-type inference.

Several simulation studies are provided. We find that the use of asymptotic criti-
cal values may lead to important size distortions if the sample size is not large enough.
We propose a pairs bootstrap algorithm to correct these small-sample biases (Freedman,
1981) and show that our regression-based tests are reasonably sized within this bootstrap
framework. We consider several misleading alternatives in line with the existing litera-
ture on risk assessment (Gaglianone et al., 2011; Du and Escanciano, 2017; Bayer and
Dimitriadis, 2020; Kratz et al., 2018, etc.). Our methodology detects misspecifications
in all considered simulation experiments. In particular, they identify the most frequent
inaccuracies in risk modeling, namely mean, variance, tail, and dynamic misspecifications.

We apply our tests to the S&P500 index over the period 2007-2012. During this period
of financial turmoil, our backtests clearly reject the validity of the ES forecasts issued
by a AR(1)-GARCH(1,1) and a GARCH(1,1) model. We also highlight the importance
of choosing a sufficient number of quantiles to assess ES risk models. The use of one or
two quantiles is not always enough to identify whether the tail risk in bank’s internal
ES models is properly accounted for. On the contrary, four or more quantiles (until
an optimal number) deliver much more sound decisions, suggesting an update of the
regulatory guidelines.
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3.7 Appendix

3.7.1 Appendix A: Application of a finite Riemann sum to ES
In the sequel, we show how to derive the approximation of ES suggested in Definition

1. Consider the following improper Riemann integral,» b

a

fptqdt, (3.14)

where fp.q is given by the increasing function 1
1�τ V aRtp.q and where a and b are respec-

tively τ and 1 so that the above expression is identical to the ES defined in Equation
(3.1). Definition of a Riemann sum yields a useful approximation of Equation (3.14),

Sppfq � b� a

p

p̧

j�1
f

�
a� pj � 1q b� a

p



,

where p is the number of subdivisions or quantiles taken in the definite integral to ap-
proximate ES. Replacing a, b, and fp.q, by their corresponding quantities leads,

1
1� τ

» 1

τ

V aRtpuqdu � 1
1� τ

SppV aRtq � 1
p

p̧

j�1
V aRt

�
τ � pj � 1q1� τ

p



.

This verifies the ES formula of Definition 1 where risk levels uj are given by τ�pj�1q1�τ
p
.

3.7.2 Appendix B: Assumptions
This section introduces the assumptions needed to establish the asymptotic normality

and the consistency of the QML estimator and to ensure the validity of Proposition 7.
Assumption A0: tLt, V aRt pujqupj�1 is a stationary and ergodic process and measurable
with respect to Ωt�1.
Assumption A1: Lt has conditional (on Ωt�1) distribution function Ft, with continuous
and positive density ft at conditional quantile QLt pu; Ωt�1q � F�1

t pu|Ωt�1q for all u P
p0, 1q.
Assumption A2: We have E r|Lt|s   8. Furthermore, consider the quantity D0,t �
max
t�1,...,T

max
j�1,...,p

sup|QLt puj; Ωt�1q |, then we have E rD0,ts   8.
Assumption A3: The matrices A � °p

j�1E rfj,t p0q∇QLt puj; Ωt�1q∇1QLt puj; Ωt�1qs
and V � E rηtη1ts are positive definite.

Assumption A0 is standard in modeling financial times series. It is broadly accepted
that asset prices are integrated at order one, so that financial returns are stationary. This
data assumption is hence satisfied. Assumption A1 allows for nonidentical distributions
as we enable Lt to be conditional on an unknown information set Ωt�1. Assumption A2
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imposes moment conditions, and in particular ensures finite expectation for Lt. This
is satisfied by the vast majority of financial time series models, including stationary
and invertible ARMA processes, GARCH processes, etc. Assumption A3 is standard in
Wald-type inference to ensure that the variance-covariance matrix Σ is positive definite.
Furthermore, Assumptions A0 through A2 are standard in QML estimation (e.g., White,
1994), and are also widely used in the literature on quantile regression models (e.g.,
Koenker and Machado, 1999; Koenker and Xiao, 2002). They are of great importance
to establish consistency and to apply the central limit theorem of White (2001, theorem
5.24) based on the method proposed by Huber (1967).

3.7.3 Appendix C: Consistent variance-covariance matrix esti-
mation

In what follows, we provide a consistent estimator of the variance-covariance matrix
Σ. The methodology is derived from White et al. (2015). A consistent estimate of Σ can
be obtained from the decomposition of the Huber (1967) sandwich form and is thus given
by pΣ � pA�1pV pA�1. In the sequel, we provide consistent estimators pA and pV . To obtainpV , we apply a simple plug-in estimator as follows:

pV � T�1
Ţ

t�1
pηtpη1t,

where pηt is given by its estimated counterpart pηt � °p
j�1∇ pQLt puj,Ωt�1qψuj ppεj,tq, withpQLt puj,Ωt�1q � pβ0 pujq � pβ1 pujqV aRt pujq, and pεj,t � Lt � pQLt puj,Ωt�1q.

The estimation of A is trickier because it requires to consistently estimate fj,t p0q,
namely the density of the error term εj,t given Ωt�1 evaluated at zero. Because the
function is unknown, we follow Powell (1984) and use a non parametric estimator. The
method was implemented by Engle and Manganelli (2004) for instance to estimate the
variance-covariance matrix of a set of coefficients issued from the so-called CaViaR model.
Then, pA is given by

pA � p2pcTT q�1
Ţ

t�1

p̧

j�1
1 p|pεj,t| ¤ pcT q∇ pQLt puj,Ωt�1q∇1 pQLt puj,Ωt�1q ,

where pcT is a bandwidth parameter that must verify pcT {cT pÑ 1, with cT a nonstochastic
positive sequence satisfying cT � op1q, and c�1

T � opT 1{2). Throughout the paper, we
select a bandwidth parameter pcT � T�1{7 which verifies the above properties.
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3.7.4 Appendix D: On the rate of convergence and interplay of
p and T

Let us consider the highest risk level up issued from the sequence uj, j � 1, 2, . . . , p.
Given Definition 1, we have

up � 1� p1� τq{p,
where p is the number of VaRs used to approximate ES and τ is a constant number
representing the coverage level of ES. For a number p of subdivisions large enough, the
approximation of Definition 1 is close to the theoretical ES and up is close to one. In
what follows, we study this limiting case. Let us define up as a function of the sample
size T such as,

up � 1� εT , (3.15)

where the nonstochastic positive sequence εT � p1 � τq{p satisfies εT Ñ 0 when T Ñ 8.
Equation p3.15q is a common representation to extremal quantile regression (Cher-
nozhukov, 2005; Chernozhukov and Fernández-Val, 2011). Given the definition of εT
and since τ is a constant parameter, it follows that p is increasing with T . To illustrate
this point, assume p takes the form of a power function,

p � T γ, (3.16)

with γ ¡ 0. Next, we consider a QML estimator which implicitly assumes that T p1 �
upq Ñ 8 as T goes to infinity. Chernozhukov (2005) and Chernozhukov and Fernández-
Val (2011) relate this condition to an intermediate order quantile regression. Our goal is
to identify a suitable rate of convergence of p and T which ensures the above condition.
We have

TεT Ñ 8. (3.17)

Then, combining Equations (3.16) and (3.17), we get

p1� τqT 1�γ Ñ 8. (3.18)

Equation (3.18) is only satisfied when γ   1. Looking at Equation (3.16), this condition
implies that T needs to diverge faster than p to guarantee asymptotic theory.
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3.7.5 Appendix E: Proof of consistency under fixed untrue hy-
pothesis

Proof. In line with our previous notations, we term W the generic notation of the
test statistic such that W P tJ1, J2, I, Su. The test statistic is given by

W � T pRW
pβ � qW q1pRW

pΣR1
W q�1pRW

pβ � qW q.

The null hypothesis of the proposed Wald-type test can be written as H0,W : RWβ�qW �
0, against the two-sided alternative H1,W : RWβ � qW � 0. The continuous mapping
theorem implies under H1,W that

RW
pβ � qW

pÑRWβ � qW � 0.

Rearranging the term T in the test statistic and using the continuous mapping theorem
leads

WT�1 pÑ pRWβ � qW q1pRWΣR1
W q�1pRWβ � qW q.

Because pRWΣR1
W q�1 is positive definite, we get under H1,W : pRWβ �

qW q1pRWΣR1
W q�1pRWβ � qW q ¡ 0. Multiplying pRWβ � qW q1pRWΣR1

W q�1pRWβ � qW q
by T under H1,W hence gives

lim
TÑ�8

W � �8,
and therefore we get

lim
TÑ�8

PpW ¡ χ2
1�α pdW q |H1,W q � 1,

where χ2
1�α pdW q is the fractile of order 1 � α of the chi-square distribution with dW

degrees of freedom, and where α is the significance level of the test. �
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3.7.6 Appendix F: Robustness checks of the simulation study

Figure 3.6: Empirical power of the tests at 5% significance level (AR(1)-GARCH(1,1)
model, asymptotic critical values)
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Figure 3.7: Empirical size of the tests at 5% significance level (GARCH(1,1) model)
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Figure 3.8: Empirical power of the tests at 5% significance level (GARCH(1,1) model,
bootstrap critical values)
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the columns to the different misspecified alternatives A1-A4. Reported powers are size corrected.
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Figure 3.9: Empirical power of the tests at 5% significance level (GARCH(1,1) model,
asymptotic critical values)
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Note: Power of the four backtests are displayed as a function of p. The rows correspond to different sample sizes T , and

the columns to the different misspecified alternatives A1-A4. Reported powers are size corrected.

3.7.7 Appendix G: Exact calculation method of ES
This section describes the methodology for the exact computation of ES forecasts at

coverage level τ . Several techniques are available in practice. As the distribution of the
innovations is parametric, we rely on Monte Carlo simulations. For ease of notation,
we assume parameters to be known while in practice we use estimated parameters. The
algorithm is as follows:

1. Randomly draw S pseudo standardized innovations tηst uSs�1 from the Student distri-
bution, with degrees of freedom v. We set the number S � 100000 in the empirical
application.

2. Compute the ES at time t of the standardized innovation ηt as the Monte Carlo
average of the simulated innovations such that m pτq � 1°S

s�1 1pηst¥F�1
v pτqq

°S
s�1 η

s
t �

1 pηst ¥ F�1
v pτqq, where F�1

v pτq is the τ -quantile of the innovation distribution and
is obtained as F�1

v pτq � percentile
�tηst uSs�1, 100τ

�
.
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3. Compute the ES at time t as ESt pτq � δ0 � δ1Lt�1 � σtm pτq .

3.7.8 Appendix H: Robustness checks of the empirical applica-
tion

Figure 3.10: In-sample ES estimates issued from the approximation and the exact calcu-
lation method (GARCH(1,1) model)
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Table 3.3: p-values of the backtesting tests (GARCH(1,1) model)

p J
pbq
1 J

pbq
2 Ipbq Spbq

Panel A. 2007-2009

1 0.060 0.082 0.141 0.853
2 0.027 0.054 0.045 0.233
4 0.014 0.048 0.027 0.106
6 0.016 0.046 0.026 0.135
8 0.153 0.053 0.229 0.673
10 0.036 0.067 0.052 0.448
12 0.026 0.058 0.042 0.223
2 (regulatory levels) 0.036 0.064 0.085 0.406

Panel B. 2007-2012

1 0.199 0.076 0.401 0.839
2 0.011 0.029 0.050 0.458
4 0.005 0.012 0.015 0.196
6 0.008 0.011 0.036 0.317
8 0.029 0.015 0.102 0.563
10 0.010 0.020 0.021 0.360
12 0.012 0.020 0.043 0.415
2 (regulatory levels) 0.005 0.015 0.014 0.230

Note: p-values of the four backtests computed with p � 1, 2, 4, 6, 8, 10, 12 risk levels successively, and the two regulatory

levels u1 � 0.975, u2 � 0.990. Reported p-values are obtained using bootstrap critical values. Panel A gives the results for

the period 2007-2009 and Panel B provides results for the period 2007-2012.

Table 3.4: QML coefficient estimates (p � 6, GARCH(1,1) model)

u1 u2 u3 u4 u5 u6

Panel A. 2007-2009

β0 0.600 0.683 � 0.769 �� 0.811 ��
��� 0.972 �

��� 1.065 ���

(0.307) (0.298) (0.264) (0.257) (0.446) (0.266)
β1 1.011 0.955 0.917 0.853 �� 0.804 0.692 ��

���

(0.093) (0.089) (0.059) (0.055) (0.143) (0.043)
joint � � � �� ��

Panel B. 2007-2012

β0 0.338 0.388 ��� 0.601 ��
��� 0.743 ���

��� 0.753 ��
��� 0.603

(0.303) (0.198) (0.197) (0.189) (0.293) (0.799)
β1 1.025 0.987 0.911 0.860 �� 0.829 0.832

(0.122) (0.069) (0.066) (0.056) (0.109) (0.308)
joint � � � �� ��

Note: Standard errors are reported in parentheses. �, ��, and ��� indicate statistical significance at the 10%, 5% and 1%

level, respectively, and are obtained with the pairs bootstrap algorithm. �, ��, and ���, indicate statistical significance at

the same levels and are obtained with the procedure of Chernozhukov and Fernández-Val (2011). Panel A gives estimation

results for the period 2007-2009 and Panel B provides estimation results for the period 2007-2012.
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Figure 3.11: ES forecasts and adjusted ES forecasts over the period 2007-2012 (AR(1)-
GARCH(1,1) model)
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Figure 3.12: ES forecasts and adjusted ES forecasts over the period 2007-2009
(GARCH(1,1) model)
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Figure 3.13: ES forecasts and adjusted ES forecasts over the period 2007-2012
(GARCH(1,1) model)

2

4

6

8

10

12
p=1 p=2

2

4

6

8

10

12
p=4 p=6

2

4

6

8

10

12

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 E
S

 fo
re

ca
st

s

p=8

0 200 400 600 800 1000 1200

Observations

p=10

0 200 400 600 800 1000 1200

Observations

2

4

6

8

10

12
p=12

ES forecasts
Adjusted ES forecasts

100



3.7 Appendix

Figure 3.14: ES forecasts and adjusted ES forecasts over the periods 2007-2009 (on the
left) and 2007-2012 (on the right) with the two BCBS regulatory risk levels (AR(1)-
GARCH(1,1) model, GARCH(1,1) model)
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Chapter 4

Elicitability of Marginal Expected
Shortfall and Related Systemic-Risk
Measures1

A risk measure, or more generally a statistical functional, is called elicitable if it can be
defined as the minimizer of a suitable expected scoring function. This article explores
the notion of elicitability (and identifiability) for systemic-risk measures that are used to
identify the financial institutions contributing the most to the overall risk in the financial
system. Our elicitation framework applies to systemic-risk measures that are expressed as
a function of the expected equity loss conditional on a financial crisis, such as the marginal
expected shortfall (MES), the systemic expected shortfall (SES), or the systemic-risk
measure SRISK. This property paves the way to the implementation of semiparametric
M-estimation for the systemic-risk measures or to the comparison and backtesting of
the systemic-risk models used by academics and policy makers to rank the systemically
important financial institutions (SIFIs) whose failure might trigger a crisis in the entire
financial system.

4.1 Introduction
The financial crisis of 2007–2009 and its aftermath has made systemic risk a focal

point of research and policy. Very few crisis-related papers made a higher impact both
in academia and among regulators than the series of papers proposing global measures
of systemic risk based on market data (see Bisias et al., 2012; Benoit et al., 2017, for
a survey on systemic-risk measures). The most prominent examples of return-based
systemic-risk measures are the marginal expected shortfall (MES) and the systemic ex-

1This chapter is based on Benoit, Couperier, Leymarie and Scaillet (2022) and has been awarded a
research grant sponsored by the Fondation Banque de France.
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pected shortfall (SES) of Acharya et al. (2017), the systemic-risk measure (SRISK) of
Acharya et al. (2012), and Brownlees and Engle (2017), and the delta conditional value-
at-risk (∆CoVaR) of Adrian and Brunnermeier (2016).2 If these timely measures are
estimated accurately, they react quickly to market changes, offering added value com-
pared to the current yearly systemic-risk scores used by the Financial Stability Board to
identify Global Systemically Important Banks (G-SIBs). For instance, the 2020 list of
G-SIBs identifies the same 30 G-SIBs than the year before even if we are experiencing
the COVID-19 pandemic crisis. Indeed, the list published last November is based on
historical data (as of December 2019).

While the debate on the economic usefulness for regulators of return-based systemic-
risk measures is still at play (Idier et al., 2014; Zhang et al., 2015; Löffler and Raupach,
2018; Brownlees et al., 2020), solving the issues on estimation, comparison, and evaluation
of these indicators should help to finally put an end to all equivocation. These issues can
be solved if the systemic-risk indicators are shown to be elicitable.

The term elicitability is due to Savage (1971), Osband (1985), and Lambert et al.
(2008). Elicitability is achieved through the identification of a consistent scoring function
for the functional of interest. A scoring function is said to be (strictly) consistent for a
given statistical functional (e.g., the mean, median, etc.), if the expected scoring function
takes its minimum when the statistical functional is used as the forecast (Gneiting, 2011a).
Conversely, we say that a functional is elicitable if there exists a strictly consistent scoring
function for it. For example, a scoring function is consistent for the mean if no other
quantity than the mean induces a lower expected function. The class of scoring functions
that is consistent for the mean is known as the Bregman class (Bregman, 1967) and
includes the well-known squared-error function. The class of scoring functions that is
consistent for the quantile is known as the generalized piecewise linear class, including
the piece-wise linear function for quantile regression (Koenker and Bassett, 1978).

The main contribution of this work is to identify a general class of scoring function
which is strictly consistent for return-based systemic-risk measures. This class is defined
for the MES of a financial institution and for the Value-at-Risk (VaR) of the financial
market, providing a formal framework for the joint elicitability of the bivariate functional
(VaR,MES). The class is then extended to any measures expressed as a function of the
expected equity loss of a financial institution conditional on a financial crisis, as for the
SRISK for instance. As the Expected Shortfall (ES) and the MES can be both defined
as a truncated mean, our class of scoring function shares common points with that of
Fissler and Ziegel (2016) to elicit the ES and VaR associated with a single asset.

2The three articles by Acharya et al. (2012), Acharya et al. (2017), Brownlees and Engle (2017) that
defined the MES, the SES, and the SRISK, have been cited more than 4,000 times since their publication
(source: Google Scholar). For online computation of some of these measures, see the Stern-NYU V-Lab
initiative website.
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Elicitability has been proven to be a necessary axiom for estimation and for comparing
and ranking the models’ performance (Gneiting, 2011a; Ziegel, 2016; Nolde and Ziegel,
2017; Taylor, 2019, 2020). The literature on the elicitability of systemic-risk measures is
rather scant. Fissler et al. (2019) show the elicitability of a particular class of systemic-
risk measures where systemic risk is measured by the set of allocations of additional
capital that lead to acceptable outcomes (Feinstein et al., 2017). Even if these measures
exhibit interesting properties, they are not applied in practice since determining ex-
ante acceptable output is quite challenging. More recently, Fissler and Hoga (2021)
introduce the notion of multivariate scoring functions that can be applied to the MES, the
VaR, and the CoVaR. However, the notion implies a cascade system of scoring functions
which has no direct use for M-estimation and (VaR,MES)-model comparison. Fissler and
Hoga (2021) focus on getting general results for conditional identifiabiliy and conditional
elicitability of functionals of the distribution of the data while we focus on semiparametric
M-estimation of the MES and the VaR based on a univariate scoring function. The
univariate nature of our scoring function allows the use of the canonical total order
on R. On the contrary, a multivariate scoring function requires the introduction of a
lexicographic order, for example on R2 in the bivariate case. Using a bivariate scoring
function, Fissler and Hoga (2021) show that we can get joint identification for the MES
and the VaR. Using a counterexample based on independence between the return of the
financial institution and the market return, they show that the MES and the VaR fail
to be jointly elicitable. In Section 3, we show that we can restore joint elicitability if
we assume instead that the return of the financial institution and the market return are
strictly positively related, an empirical feature of our data for banks (see Section 4.5).

Our framework only imposes the introduction of an external parameter into the scor-
ing function, that is the mean of firm return conditional on the market return being
equal to its α-VaR. This quantity stems from the first-order derivative (with respect to
the market α-VaR) of the MES of the i-th financial institution times the cumulative
distribution function (cdf) of the market return. To ensure the strict consistency of our
scoring function, this parameter is imposed to be strictly increasing with the market α-
VaR.3 Following Andrews (1994); Newey (1994); Ichimura and Lee (2010), we regard this
quantity as a nuisance function issued from a criterion function. We apply an infinite
dimensional parameter estimation for the nuisance function using the non-parametric
isotone estimation of Dette et al. (2006) to ensure strict monotonicity of the conditional
mean.

Our work is related to the calculation of moments for multivariate truncated dis-
tribution. MES is defined as the first-order moment of a one-sided truncated bivariate

3This assumption suggests that the firm and market are positively correlated which is broadly ac-
cepted in the systemic risk literature. For the capital asset pricing model, this assumption is equivalent
to assuming a strictly positive beta between firm and market returns.
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distribution, and to that extent, this paper suggests avenues in statistical decision the-
ory. Useful results for truncated moments are available for some popular parametric
distribution. Rosenbaum (1961) gives explicit formulas to first and second moments of
a truncated bivariate standard normal, when the truncation is one-sided and on a single
variable. Ang and Chen (2002) extend to two-sided truncated bivariate standard nor-
mal and provide test for asymmetries of correlation in different financial market regimes.
Nadarajah (2007) calculates moments of one-sided truncated bivariate standard Student
t-distribution, while Ho et al. (2012) give general formulas for computing first and second
moments of a truncated multivariate t under the double truncation.

We develop semiparametric M-estimation for the MES and the VaR. While the ex-
isting estimation methods used for the systemic-risk measures, like MES or SRISK, are
issued from fully parametric models or models of second-order moment (e.g., M-GARCH
model, dynamic bivariate copula, etc.), our framework imposes minimal distributional
assumptions on the joint distribution of asset returns. We present conditions such that
the estimated parameters of the VaR and MES models are consistent in the presence of a
non-parametric first-step estimator in the criterion function (Chen et al., 2003; Delsol and
Van Keilegom, 2020). Then, we characterize the asymptotic normality and we show that
the estimated function does affect the asymptotic variance of the estimator (Andrews,
1994; Newey, 1994; Ichimura and Lee, 2010).4

Our work also contributes to piq forecast validation and piiq forecast comparison for
the systemic-risk measures. piq In the banking industry, forecast validation is known as
backtesting. According to Jorion (2007), backtesting is a formal statistical framework
that consists in verifying if actual losses are in line with projected losses. Theorem 5
establishes the existence of a strict identification function for the functional of interest
(VaR,MES).5 Using the identification function and without added difficulty, it is possible
to provide backtesting tests similar to those used for the standard market risk measures
such as VaR that relies on the so-called violation process (Kupiec, 1995; Christoffersen,
1998; Berkowitz et al., 2011, among others).6 piiq As regards forecast comparison, we
exploit the scoring function to rank and compare ex-post the econometric models used
to forecast the systemic-risk measures. A necessary condition for a scoring function to
consistently rank forecasting models is convexity. Proposition 8 shows that the scoring
function is quasi-convex under mild assumptions except when the nuisance function is

4The current version of this paper only deals with the case of i.i.d. sample. We leave for a latter
version the case of non i.i.d. sample that can be treated under strong mixing conditions for the nuisance
function estimate.

5Identification functions are known as moment restrictions when considering the generalized method
of moments (Newey and McFadden, 1994).

6To date, only one formal backtesting procedure for MES-based systemic-risk measures is available
(Banulescu-Radu et al., 2021), which typically overcomes the lack of identifiability exploiting the fact
that MES can be expressed as an integral of conditional VaR which are themselves identifiable.
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not strictly linear and/or not strictly increasing. In practice, the linearity is ensured for
most available econometrics models including multivariate conditional volatility models
(e.g., M-GARCH-type, realized-volatility-type).

We provide two numerical illustrations. In a simulation study, we illustrate the con-
sistency and asymptotic normality of the proposed semiparametric M-estimator for MES
and VaR. We show that our estimator has good finite sample properties and that the sta-
tistical inference gives satisfactory results. Interestingly, we show that the finite sample
performance of the estimator is affected by the choice of the nuisance parameter estima-
tor. Then in an empirical study, we perform out-of-sample forecast evaluation using the
scoring function and we rank competing MES and VaR forecasts. Our study focuses on
four major US banks over the period 2000-2016. As in Acharya et al. (2017), we con-
sider time-invariant MES and VaR which we estimate using three competing estimation
schemes: fixed, recursive, and rolling. Using the scoring function for MES and VaR,
we show that the rolling estimation scheme mainly outperforms the fixed and recursive
estimation schemes. Furthermore, we find that the scoring function takes its highest val-
ues during the 2007-2009 financial crisis suggesting that the systemic-risk measures are
subject to significant model risk in periods of financial distress.

The remainder of the paper is organized as follows. In Section 4.2, we define the MES
and introduce the concept of MES-based indicators which include SES and SRISK as
special cases. In Section 4.3, we present the class of scoring function dedicated to MES
and MES-based indicators. In Section 4.4, we introduce a semiparametric M-estimator
for MES and VaR and its corresponding asymptotic properties. In Section 4.5, we run a
simulation study to illustrate the finite sample properties of our M-estimator. Then, we
perform a short empirical application to illustrate our elicitation framework for forecast
comparison. Finally, we conclude the paper in Section 4.6.

4.2 Marginal expected shortfall and related
systemic-risk measures

Section 4.2 defines the marginal expected shortfall (hereinafter MES) and discuss its
relationship with the other existing systemic-risk measures. In the sequel, we consider
the following notations. Let Y � pYM , Yiq1 be the vector of two equity returns. Within
the systemic risk framework, Yi denotes the stock return of the i-th financial institution
and YM denotes the market return. In addition, let us denote by FYi p.q and FYM p.q
the cumulative distribution function (cdf) of Yi and YM , and by F p.q the joint cdf of
Y . Finally, we assume that the cdfs are continuous function, and the bivariate random
variable Y takes its values in R2.
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Following Acharya et al. (2017), we define the MES of a financial firm as its short-run
expected equity loss conditional on the market facing a loss greater than its value-at-risk
(hereinafter VaR). Formally, the α-level MES of the i-th financial institution is given by,

MESαi � E rYi|YM ¤ V aRα
M s , (4.1)

where V aRα
M denotes the α-level VaR of YM with FYM pV aRα

Mq � α and α P p0, 1q. In
(4.1), we use the convention that the VaR corresponds to a lower quantile of the return
distribution and has a negative sign for a loss while it receives a positive sign in the
banking regulation to compute capital requirements. Accordingly, the MES has also a
negative sign for a loss. The MES captures the expected return of the i-th financial insti-
tution given that the market is in times of distress, and as such constitutes an indicator
of the systemic risk contribution of the i-th institution. In others words, MES measures
how the financial institution adds to the financial system overall risk. Interestingly, in
the case Yi and YM are independent, the truncated and marginal probability distribution
function (pdf) of Yi are equal, and consequently, the MES simplifies to a non-truncated
expectation for Yi. Reversely, in the case Yi � YM , the MES simplifies to the ES. Fur-
thermore, MES can be expressed as the partial derivative of the system ES with respect
to the weight of firm i in the economy (Scaillet, 2004).

Several systemic-risk indicators are built-up in analogy with MES in a way that both
their formulas and economic interpretations are closely related to it. They represent
the expected capital shortfall of the i-th institution when the market falls below its α-
level VaR. These similarities with MES comes from the MES being a key constituent of
them. It is used to compute the expected market value of the i-th institution given a
market decline below a given threshold. This quantity is calculated through the long-run
marginal expected shortfall (LRMES). The LRMES is simply a MES defined in terms of
cumulative returns after h periods that we define as,

MESαi,tphq � Et

�rYi,t�h|rYM,t�h ¤ �V aRα

M,t�h

�
, (4.2)

where Et denotes the conditional expectation operator with respect to an information
set Ωt, rYt�h � prYi,t�h, rYM,t�hq1 is the vector of multi-period arithmetic firm and market
returns between t�1 and t�h, and �V aRα

M,t�h is the corresponding α-VaR of rYM,t�h used
as the market threshold.
Definition 4 (MES-type risk measure). A MES-type risk measure RM is defined as
a deterministic function of the MES with RMi,t � gt

�
MESαi,tphq, Xt

�
where MESαi,tphq

denotes the MES defined in terms of cumulative returns after h periods as in Equation
(4.2), gt denotes a monotonic function in MES, and Xt represents a set of variables
belonging to Ωt.
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This classification has been proposed by Banulescu-Radu et al. (2021) and many
systemic-risk indicators comply with Definition 4. The most prominent are the SRISK
(Acharya et al., 2012; Brownlees and Engle, 2017) and the systemic expected shortfall
(SES) (Acharya et al., 2017).7 In the following, we give a definition of these two indicators.
Acharya et al. (2017) show that the SES can be expressed as a linear function of the MES
as follows,

SESi,t �
�
kLi,t � 1� θMESαi,tphq �∆i

�
Wi,t, (4.3)

where Li,t is the leverage (Ai,t{Wi,t), Ai,t denotes the total assets, and Wi,t is the market
capitalization or market value of equity, θ and ∆i are constant terms. SES represents the
amount that a bank equity drops below its target level (defined as a fraction k of assets)
conditional on a systemic crisis and when the aggregate capital is less than k times the
aggregate assets.

Brownlees and Engle (2017) define the SRISK as the expected capital shortfall of a
financial institution, conditional on a crisis affecting the whole financial system. The
capital shortfall of the firm i on day t, denoted CSi,t, is defined as the capital reserves the
firm needs to hold for regulation and/or prudential management minus the firm’s equity,
CSi,t � k pDi,t �Wi,tq�Wi,t, with Di,t the book value of debt and k the prudential capital
ratio. We follow Acharya et al. (2012) and Brownlees and Engle (2017) to end up with,

SRISKi,t � Wi,t

�
k pLi,t � 1q � p1� kq �1�MESαi,tphq

��
. (4.4)

Equation (4.4) is similar to the definition reported by Brownlees and Engle (2017) in
Equation (1) of their paper on page 52, except that we do not adopt the same sign
convention for the MES. Here, we have defined the MES as a negative quantity according
to our Equation (4.1).

4.3 The scoring function
Section 4.3 introduces the scoring function defined for the VaR of the market and the

MES of the institution jointly. In Section 4.3.1, we give the class of scoring function and
we present the conditions under which the expected score is strictly consistent. In Section
4.3.2, we look at additional desirable properties related to the shape of the expected score
and in particular to the quasi-convexity.

7Definition 4 also encompasses the Component Expected Shortfall (CES) of Banulescu and Du-
mitrescu (2015), and the ∆-Conditional Expected Shortfall (∆CoES) of Ferreiro (2018), among others.
This definition does not include the class of network systemic-risk measures such as proposed by Billio
et al. (2012) or Hué et al. (2019).
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4.3.1 Consistency
The MES offers a number of desirable properties. It is easy to show that MES satisfies

the properties of monotonicity, sub-additivity, homogeneity, and translational invariance.
Hence MES can be recognized as a coherent risk measure (see Artzner et al., 1999; ?).
Furthermore, MES is comonotonically additive and law-invariant implying that we can
view the MES as a spectral risk measure as proved in 4.7.1 (Kusuoka, 2001; Acerbi, 2002;
Tasche, 2002; Jouini et al., 2006).

However, it has been shown that any spectral risk measures fail to be elicitable stand-
alone (Ziegel, 2016), the sole exception is the mean. The mean is elicitable stand-alone
using the Bregman class of scoring function (Bregman, 1967; Savage, 1971; Banerjee
et al., 2005). Therefore, the MES is not elicitable stand-alone which means that there is
no scoring function for which the MES uniquely minimizes in expectation. As a spectral
risk measure, the ES is also not elicitable stand-alone (see the proof of Theorem 11 in
Gneiting, 2011a).

This result has two main consequences. First, modeling the conditional MES given a
set of explanatory variables using a regression model is infeasible since the estimation of
the regression parameters through an M-estimator requires a suitable scoring function.
Second, consistent ranking of competing forecasts for the MES is infeasible. Consequently,
to date, there exists no such a regression framework modeling the MES based on a set of
covariates nor model comparison methods. Even though the MES is not elicitable stand-
alone, we show that the quantile, i.e., the VaR of the market and the MES are jointly
elicitable by introducing a class of scoring functions, whose expectation is minimized by
these two functionals. In that view, the MES is higher order elicitable as there exists
a strictly consistent scoring function for the bi-dimensional functional (VaR, MES) (see
Fissler and Ziegel, 2016, for the notion of higher order elicitability).
Theorem 5 (F -consistent scoring function). Let F be a class of distribution functions on
R

2 with finite first moments, unique α-quantiles and continuous densities. Define the set
of unknown parameters θ � pv,mq1 associated to the functional T � pV aRα

M ,MESαi q1,
T : F Ñ Θ � R2 with α P p0, 1q, Θ � Θv�Θm � tθ P R2 : m   epvqu, where e : Θv Ñ R,
v ÞÑ epvq � E rYi|YM � vs. Then the following assertions are true:

(i) The functional T is 2-elicitable with respect to F .

(ii) Let S : Θ�R2 �RÑ R be the scoring function defined by:

S pθ, y, epvqq � pG1 pyMq �G1 pvqq pα � 1 pyM ¤ vqq �G2 pmq �Gpyq

�G1
2 pmq

�
m� epvq

α
p1 pyM ¤ vq � αq � 1

α
yi1 pyM ¤ vq



,

(4.5)
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where G : R2 Ñ R is F-integrable, G1 : Θv Ñ R is such that 1 p�8, vsG1 is
F-integrable for all v P Θv, G2 : Θm Ñ R.
Let G3 : Θv Ñ R be the functions defined by:

G3pvq � epvq
α

G1
2pmq �G1pvq, (4.6)

for all m P Θm. If G2 is convex and the functions given in Equation (4.6) are
increasing, then S is F-consistent for T . S is strictly F-consistent for T as soon
as G2 is strictly convex and the functions given in Equation (4.6) are strictly in-
creasing.

(iii) The function V : Θ�R2 Ñ R
2 with components

V1 pθ, yq � α � 1 pyM ¤ vq ,
V2 pθ, yq � m� 1

α
yi1 pyM ¤ vq ,

(4.7)

is a strict F-identification function for T which satisfies Assumption (A3) (4.7.2).
Every strictly F-consistent scoring function S : Θ � R2 � R Ñ R for T which
satisfies Assumptions (A5) and (A7) (4.7.2) is necessarily of the form given in
Equation (4.5) almost everywhere as soon as Assumptions (A1) and (A6) (4.7.2)
are satisfied, G2 is strictly convex and the functions in Equation (4.6) are strictly
increasing.

Theorem 5 presents the main result of the paper. The proof for strict consistency of
the loss S pθ, y, epvqq is reported in 4.7.3. We provide the general class of scoring functions
indexed by functionsG, G1 andG2 that is strictly F -consistent for the bivariate functional
T � pV aRα

M ,MESαi q1. The first line in Equation (4.5) refers to the generalized piecewise
linear (GPL) function which is strictly consistent with the quantile, namely V aRα

M . The
second and third lines involve both MESαi and V aRα

M through the unknown parameters
m and v. It is interesting to note that the scoring function is not separable in m and v,
illustrating why MES is only elicitable with VaR.

Assertions piiq and piiiq of Theorem 5 require that G2 is strictly convex and the
functions of Equation (4.6) are strictly increasing to ensure the strict F -consistency of
S. These conditions entail that G2 is strictly increasing and strictly convex and G1 is
increasing. These conditions are similar to those considered for the bivariate functional
(VaR, ES) in Fissler and Ziegel (2016).

The function e defined in Assertion piiq represents the conditional expectation of the
firm return, Yi, given that the market return, YM , is equal to its α-VaR. This function
has a direct interpretation in Fissler and Ziegel (2016) where it is exactly equal to v.
Following Equation (4.6), e is a strictly increasing function. We regard this condition as
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having a strictly positive beta for the firm return in a CAPM model, which is satisfied
with banks equity returns.8 Interestingly, if we define the market return yM as the value
weighted average of firm returns (for all the firms that belong to the financial system),
then epvq corresponds to the first-order derivative of v with respect to the firm market
share, hence measuring how the financial institution adds to the overall risk of the financial
system, through the market VaR.9 Here, we must ensure that m   epvq since we have
MESαi � E rYi|YM ¤ V aRα

M s   E rYi|YM � V aRα
M s � epV aRα

Mq, by definition.
Theorem 5 entails that minimizing the expected loss using any scoring functions S of

the form of Equation (4.5) yields MESαi and V aRα
M , such that:

pV aRα
M ,MESαi q � arg min

θPΘ
E rS pθ, Y, epvqqs . (4.8)

The loss function of Theorem 5 is strictly F -consistent for the functionals VaR and
MES. This property remains valid under any MES-type risk measures as given in Defi-
nition 4. The proof follows from the continuous mapping theorem that is applied on the
continuous and conditionally deterministic function gt. Consequently, the class of scor-
ing functions S of Equation (4.5) can be used to compute any MES-based systemic-risk
measures including SRISK and SES.

Assertion piiiq gives the strict F -identification function V for T � pV aRα
M ,MESαi q1.

The function can be directly employed for forecasting validation, often known as back-
testing in the financial risk management industry (Jorion, 2007). We recognize, in place
of V1, the so-called violation process used to backtesting the VaR (see e.g. Kupiec, 1995;
Christoffersen, 1998; Berkowitz et al., 2011). The function V1 is only a function of the
unknown parameter v that stands for the VaR. That is why the VaR is conventionally
backtested alone using that function. Contrary to V1, V2 is a function of m and v and can
be used to backtesting the MES and the VaR jointly. As V2 is under-identified alone be-
cause of the inclusion of two unknown parameters m and v, it is best practice to evaluate
V1 and V2 jointly to ensure the system is just-identified. Applying same argument as for
standard backtesting procedures, the F -identification function V is a martingale differ-
ence sequence and it is possible to invoke unconditional coverage test and independence
test for these financial risk measures (see Christoffersen, 2010, for a survey).

8In a CAPM model, e has a closed form expression given by epvq � covpYM ,Yiq
V rYM s v and is thus strictly

increasing if the covariance between firm and market returns is strictly positive.
9The proof is as follows. Let us define YM �

°N
j�1 wjYj , where wj and Yj are weight and return of the

j-institution in the financial system, respectively. Applying expectation, we have v � E rYM |YM � vs �°N
j�1 wjE rYj |YM � vs. Taking derivative with respect to wi, i.e., share of the i-institution in the system,

it follows Bv
Bwi

� E rYi|YM � vs � epvq. With a similar reasoning, Scaillet (2004) shows that BESαM
Bwi

�
MESαi , implying that e andMES can be used in risk-based investment strategy to select asset positions
in terms of their contribution to the total portfolio risk measured by the VaR and the ES, respectively.
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It is worth noting that if we consider a single stock return Y , i.e., Yi � YM � Y , then
the quantities MESαi � E rYi|YM ¤ V aRα

M s and epvq � E rYi|YM � vs can be simplified
to ESα � E rY |Y ¤ V aRαs and v, respectively. A direct consequence is that the corre-
sponding class of loss functions of Theorem 5 encompasses the loss function of Fissler and
Ziegel (2016) dedicated to the bivariate functional T � pV aRα, ESαq1, with θ � pv, eq1
the set of unknown parameters.

4.3.2 Quasi-convexity
We now give a number of results related to the quasi-convexity of the scoring function

of Equation (4.5). Of interest, we can select G, G1, and G2 such that we obtain a F -
consistent and F -quasi-convex scoring function for T . Note that F -quasi-convexity is
a desirable property as it allows ranking competing forecasting models. If the set of
competing models under comparison includes the correctly specified model, the ranking
induced by a consistent scoring function is self sufficient. However, when comparing
misspecified models, the preference order is trickier to establish and the convexity becomes
fundamental. Under convexity, the predicted values that are far away from actual values
are penalized heavily in comparison to less deviated prediction values. Furthermore, if the
scoring function S is F -quasi-convex, then Equation (4.8) is a quasi-convex optimization
problem making the numerical optimization much easier (see e.g., Diewert et al., 1981).
Proposition 8 (F -consistent and F -quasi-convex scoring function). Let F be a class
of distribution functions on R2 with finite first moments, unique α-quantiles, continuous
densities, and MESαi pF q   0 for all F P F . Then, any function S : Θ� �R2 �RÑ R,
with Θ� � Θ�

v � Θ�
m � tθ P R2 : m   epvq and m   0u, where e : Θ�

v Ñ R, v ÞÑ epvq �
E rYi|YM � vs, which is of equivalent form as 10

S0 pθ, y, epvqq � 1
mα

�
pα � 1 pyM ¤ vqq epvq � yi1 pyM ¤ vq

�
� ln p�mq (4.9)

is a strictly F-consistent and F-quasi-convex scoring function for T � pV aRα
M ,MESαi q1,

where e is a strictly increasing and a strictly linear function of v.
Proposition 8 gives the form of the scoring function that is F -consistent and F -

quasi-convex for T . The proof for quasi-convexity of the loss S0 pθ, y, epvqq is reported in
4.7.3. To ensure the F -consistency and the F -quasi-convexity of Equation (4.9) for T , we
assume that e is a strictly increasing and strictly linear function of v. The condition for e
is stronger than the one used in Theorem 5 ensuring F -consistency only. This additional
condition might be felt as strong but at least satisfied in asset pricing models where the
market is one of the factor. It is also assumed in conditional volatility models such as

10If S is strictly F-consistent, then the function defined by S̃pθ, y, epvqq :� δSpθ, y, epvqq�ϕpyq is also
a strictly F-consistent scoring function for T , for any δ strictly positive and any F-integrable function
ϕ : R2 Ñ R. We say that S and S̃ are of equivalent form (or just equivalent).
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multivariate GARCH models that are broadly used in systemic-risk modeling (see e.g.,
Engle et al., 2015; Brownlees and Engle, 2017; Acharya et al., 2012, etc.). Note that the
linearity of e is deduced from the multiplicative form used in GARCH-type process and
the Cholesky decomposition that can be applied to the variance-covariance matrix of Y .
We report the proof in 4.7.4. Furthermore, we assume that MESαi is strictly negative to
ensure that the function S0 is well defined. This is a weak assumption in risk management
as the level α is conventionally small (usually, 1% or 5%). Consequently, we restrict the
sign of m to be strictly negative so that the function lnp�mq used in Equation (4.9) is
well defined.

The function S0 of Proposition 8 is a special case of the function S defined in Equation
(4.5). More formally, G, G1, and G2 have explicit forms with G � �1, G1 � 0, and
G2pxq � � lnp�xq, @x   0. The forms are similar to those considered by Patton et al.
(2019) for the pair (VaR, ES) who stressed that the resulting scoring function is such
that the difference between the losses of two forecasts S0pθ1, y, epv1qq and S0pθ2, y, epv2qq
is homogeneous of degree zero. It would lead to higher power in the Diebold-Mariano
tests (see Diebold and Mariano, 1995; Patton and Sheppard, 2009).11 Similarly, Nolde
and Ziegel (2017) show that for equivalent choices, there exists unique functions G1 and
G2 leading to a difference between two losses that is homogeneous of degree zero.

In the sequel, we provide a brief illustration of Proposition 8 through a simple example.
We evaluate the expected score E rS0pθ, Y, epvqqs under the normality of Y . We assume

Y � N p0,Σq, with Σ �
�� σ2

M ρiσiσM

ρiσiσM σ2
i

�, where σi, σM , and ρi, denote the volatility

of firm returns, the volatility of market returns, and the correlation between firm and
market returns. For the parameter calibration, we consider σi � 1.830, σM � 0.809,
and ρi � 0.678, which are the empirical counterparts of the daily log-return of Bank of
America and the CRSP market value-weighted index from January 1, 2012 to December
30, 2016. Under the conditions for G1, G2, and the normality of Y (ensuring linearity of
e), the expected score reads as,

E rS0pθ, Y, epvqqs � � 1
m

�
ρiσi

φpv{σMq
α

� v
ρiσi
σM

�
1� Φpv{σMq

α




� lnp�mq, (4.10)

where φ and Φ denote the pdf and cdf of the standard normal distribution.
Figure 4.1 gives the contours of E rS0pθ, Y, epvqqs as defined in (4.10) considering a grid

form and v. Only values wherem   epvq are considered. The trueMESαi and V aRα
M are

marked with a black cross and we verify that the minimum of E rS0pθ, Y, epvqqs is attained

11Homogeneity of degree 0 of a function implies that the value of this function is unchanged if we
multiply by a strictly positive constant both the competing forecasts and the observations. Consequently,
the ranking of the competing forecasts is invariant by a change in the measurement unit.
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Figure 4.1: Contours of the expected loss E rS0pθ, Y, epvqqs (α � 0.20, 0.10, 0.05, 0.01)

atMESαi and V aRα
M . Two remarks should be raised. First, the minimum of the expected

loss is moving from the upper-right side to the lower-left side of the contour plot as α
goes to zero. With our set of calibrated parameters, we have pV aR0.20

M ,MES0.20
i q �

p�0.6809,�1.7368q, pV aR0.10
M ,MES0.10

i q � p�1.0368,�2.1775q, pV aR0.05
M ,MES0.05

i q �
p�1.3307,�2.5593q, pV aR0.01

M ,MES0.01
i q � p�1.8820,�3.3068q. Formally, as we consider

a positive correlation between the firm and market returns, lowering the probability level
α leads V aRα

M to decrease andMESαi as well. Second, we observe that the contour plots
suggest that the level sets of the expected loss function are boundaries of convex sets,
which supports Proposition 8. This property is helpful to enable consistent ranking of
forecasting models.

4.4 M-estimation
This Section uses the scoring function for MESαi and V aRα

M to do M-estimation.
We introduce a semiparametric M-estimator pθ � ppv, pmq1 for VaR and MES denoted by
θ0 � pv0,m0q1 hereinafter. We show that pθ is consistent and asymptotically normally
distributed under some assumptions. To establish the asymptotic theory, we make use
of a set of results and proofs for semiparametric M-estimators involving the presence
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of an estimated nuisance parameter. We consider Chen et al. (2003) and Delsol and
Van Keilegom (2020) for the consistency and Andrews (1994), Newey and McFadden
(1994), and Ichimura and Lee (2010) for the asymptotic normality.

For a sake of completeness, we introduce additional notations at the estimation step.
We denote by Θp� pΘv�Θmqq � R2 a finite dimensional parameter space. We denote by E
an infinite dimensional parameter set defined as the space of smooth (twice differentiable)
strictly increasing functions. Thus, θ0 P Θ and e : Θv Ñ E ; v ÞÑ epvq � E rYi | YM � vs
denote the true unknown finite and infinite dimensional parameters of the estimation
problem, respectively. We assume that the function e P E depends on the unknown
parameter v. For a sake of simplicity, we will consider the notation pθ, eq � pθ, Y, epvqq
hereafter.

Denote by S a non-random measurable vector-valued function S : Θ � R2 � E Ñ R

verifying,
θ0 � arg min

θPΘ
S̄ pθ, eq , (4.11)

with S̄ pθ, eq � E rS pθ, Y, epvqqs. Assume the sets Θ and E are metric spaces and denote
by d and dE their respective metrics. We can consider the usual L1 (Manhattan) or L2

(Euclidean) norms for d and dE .
Assume that the observed data tYtuTt�1 are a random sample of Y . For each v, pepvq

is the non-parametric estimator of epvq on that sample. The nuisance parameter being
allowed to depend on v, we implicitly define dEpe, peq uniformly over v, i.e. dEpe, peq :�
sup
vPΘv

d1
Epepvq, pepvqq for some metric d1

E . We estimate θ0 by pθ P Θ. A natural sample analog
estimator of θ0, that exploits the scoring function defined in Theorem 5, is an M-estimator
that minimizes ST pθ, peq � T�1 °T

t�1 S pθ, yt, pepvqq. The resulting estimator pθ is defined
such that, pθ � arg min

θPΘ
ST pθ, peq . (4.12)

As for many criterion functions (e.g., check function), the criterion function ST pθ, peq is
not differentiable (at YM � v). Simulated annealing, particle swarm, interior-point, and
simplex methods are suitable solvers for the estimator in Equation (4.12) as they do not
rely on derivative calculation.
Theorem 6 (Consistency of pθ). Under Theorem 5 and Assumptions (B1)-(B4) given in
4.7.2, the M-estimator of θ0 defined in (4.12) is weakly consistent, i.e., we have pθ Ñ θ0,
in probability.

Theorem 6 states that pθ is a consistent estimator of θ0. We display the proof in 4.7.3.
To establish the proof, we use Assumptions (B1)-(B4) given in 4.7.2, which are simple and
primitive conditions in order to exploit the high-level arguments of Chen et al. (2003) and
Delsol and Van Keilegom (2020). The stated result highlights that, even though the true
function e is unknown and replaced by a non-parametric consistent estimator pe to make
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the criterion minimization feasible, it does not affect the consistency. Then, the estimator
in (4.12) provides consistent estimates of the two risk measuresMESαi and V aRα

M . Here,
MESαi and V aRα

M are time-invariant. It differs from the time-varying setting of Patton
et al. (2019) where the semiparametric estimation targets the parameters driving the
specification of the dynamics of the risk measures.

A particular attention must be paid on the choice of the non-parametric estimator pe of
e. In Assumption (B2) of 4.7.2, we indicate that pe must share the same conditions of the
parameter space than those defined for e in Theorem 5 in order to guarantee the strict
F -consistency of the scoring function and then the validity of the estimator in (4.12).
Consequently, pe must be a strictly increasing function of v and we cannot use standard
kernel regression because this estimator does not ensure that pe is strictly increasing in v.
As a result, we resort on isotone kernel estimators (Brunk, 1955; Hall and Huang, 2001;
Dette et al., 2006, etc.).

To go a step further, we investigate the limiting distribution of the estimator pθ. An-
drews (1994), Newey and McFadden (1994), and Ichimura and Lee (2010) focus on two-
step semiparametric estimators, where the first-stage involves some unknown infinite
dimensional parameters. We can apply Theorem 3.2 in Ichimura and Lee (2010) devel-
oped for the i.i.d. setting under additional regularity assumptions than the ones listed
in 4.7.2 to obtain the asymptotic normality of the estimator pθ in a time-series setting.
Here, we do not provide a formal theorem of the limiting distribution under a suitable
list of assumptions and skip its proof. Still, in 4.7.5, we provide the computational steps
to characterize the asymptotic variance of the limiting Gaussian distribution. Assume
that Ω0 exists. Then, ?

T
�pθ � θ0

	
dÝÑ N �

0, V �1
0 Ω0V

�1
0

�
, (4.13)

with V0 the Hessian matrix of S̄pθ, eq with respect to θ, evaluated at θ � θ0,

V0 �
��fYM pv0q

�
G1

1pv0q � G1
2pm0qe1pv0q

α

	
0

0 G2
2pm0q

�, (4.14)

and with Ω0 defined by:

Ω0 � lim
TÑ8

V

�
1
T

Ţ

t�1
Γ0pYtq

�
,

Γ0pyq �
���

G1
1pv0q � G1

2pm0qe1pv0q

α

	
p1pyM ¤ v0q � αq � G1

2pm0q

α
pepv0q � yiq pδYM pv0q � fYM pv0qq

G2
2pm0q

�
m0 � epv0q � 1pyM¤v0q

α
pepv0q � yiq

	
�,

where δYM pvq corresponds to the dirac function of YM evaluated at v. We can estimate
Ω0 by a standard HAC estimator (Newey and West, 1987).
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As highlighted in Equation (4.13), the estimator pθ is asymptotically normally dis-
tributed. The matrix V0 in Equation (4.14) corresponds to the Hessian matrix of the
expected scoring function with respect to θ evaluated at the true parameter θ0. It is
worth noting that its first diagonal element equals fYM pvq times the first-order deriva-
tive of G3 with respect to v (see Theorem 5). The latter is strictly positive since G3 is
supposed to be a strictly increasing function of v. Furthermore, the second element is
also strictly positive as G2 is strictly increasing and strictly convex. Thus, V0 is positive
definite.

Furthermore, the expression for V0 is importantly simplified compared to the one
obtained in Ichimura and Lee (2010). Surprisingly, our expression is equivalent to the
one we would have obtained if the nuisance parameter was not dependent on θ, i.e.,
epvq � e. When the nuisance parameter is a function of θ, the general formula is given in
Equation (3.6) of Theorem 3.2 in Ichimura and Lee (2010). If we compare that formula
with ours, only the first summand is different from zero and V0 becomes the Hessian
matrix when e is not a function of v. The other terms are here zeros because they can
all be expressed as a product of FYM pvq � α. Because FYM pvq � α is also the expectation
of the identification function for the parameter v, i.e., E rV1pθ, Y qs in Equation (4.7), its
value is zero when evaluated at θ0 and vanishes asymptotically when evaluated at pθ.
4.5 Numerical illustrations

Section 4.5 provides real-life applications either dedicated to MES and VaR estimation
or to the comparison of competing MES and VaR forecasts. In Section 4.5.1, we study the
finite sample performance of the M-estimator of Section 4.4. In Section 4.5.2, we build
MES and VaR forecasts on real data and give out-of-sample performance comparisons
for three competing forecasting approaches.

4.5.1 Simulation study
In what follows, we run a simulation experiment to illustrate the consistency and

asymptotic normality of the M-estimator introduced in (4.12) with the corresponding
Theorem 6 and Equation (4.13).

4.5.1.1 The experiment

As in Acharya et al. (2017), we focus on a time-invariant MES. We consider a bivariate
normal distribution for the daily demeaned return, Yt � pYM,t, Yi,tq1, such that Yt � Σ1{2zt,
with YM,t the market return and Yi,t the firm return, and where zt denotes an i.i.d.
Gaussian vector error process with E rzts � 0 and E rztz1ts � I2. We define the time-
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invariant variance-covariance matrix Σ as,

Σ �
�� σ2

M ρiσMσi

ρiσMσi σ2
i

�,
where σ2

M and σ2
i represent the volatility of market and firm returns, and ρi is the correla-

tion between both returns. The parameters of the covariance matrix are calibrated using
the daily log-returns of Bank of America and the CRSP market value-weigted index over
the period January 1, 2012 to December 30, 2016. The estimated values for unconditional
variances of market and firm returns and for the unconditional correlation are equal to
0.722, 3.506, and 0.663, respectively.

The simulation procedure is as follows. For each Monte Carlo replication b � 1, ..., B,
we simulate the series tY pbq

M,t, Y
pbq
i,t uTt�1 using the time-invariant specification. Then, we

use the resulting simulated time-series to estimate θ0 � pv0,m0q1 using the M-estimator
introduced in (4.12) and we get pθpbq � ppvpbq, pmpbqq1. We also estimate the asymptotic
variance-covariance matrix of pθpbq defined in Equation (4.13) using its sample analog. We
consider B � 1000 replications and each time the estimation procedure is run for sample
sizes T � 500, 2500 and probability levels α � 0.01, 0.05, 0.10, 0.20.

As discussed in Section 4.4, we need a consistent estimator of the nuisance parameter
e0 to guaranty the consistency of pθ. We consider the isotone non-parametric estimator
proposed by Dette et al. (2006). This estimator is a strictly increasing function of v
ensuring the validity of Theorem 6 and Equation (4.13) for the asymptotic properties
of pθ. We consider two different kernels for the non-parametric estimation, namely the
Gaussian an Epanechnikov density. We set the bandwidths of the kernels using the
Silverman rule of thumb. For a sake of comparison, we estimate the nuisance parameter
using a simple plug-in OLS estimation which also delivers a consistent estimate of θ0.
Indeed, the considered time-invariant representation implies that e is a linear function of
v.

4.5.1.2 Simulation results

Tables 4.1 and 4.2 report the simulation results of pm and pv for α � 0.01, 0.05, 0.10, 0.20

and the sample sizes T � 500 and T � 2500, respectively. The first and second columns

display the estimation results using the non-parametric isotone estimation of e while the

last column is for the OLS estimation of e. In the row [1] of each panel, we report the

true values of the parameters. Then, the rows [2] and [3] report the median parameter

estimates and the average bias of the estimated parameters computed across simulations.
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Table 4.1: Simulation results for the normal time-invariant MES and VaR (T � 500)

Non-parametric isotone OLS
Gaussian Epanechnikov
m v m v m v

α � 0.01
r1s True -3.307 -1.882 -3.307 -1.882 -3.307 -1.882
r2s Median -3.110 -1.868 -3.299 -1.870 -2.894 -1.825
r3s Avg bias 0.242 0.029 0.085 0.006 0.452 0.013
r4s Emp variance 0.235 0.038 0.163 0.038 0.404 0.089
r5s Asy variance 0.533 0.041 0.521 0.044 0.759 0.026
r6s Emp covariance 0.038 - 0.029 - 0.119 -
r7s Asy covariance 0.047 - 0.052 - 0.033 -
r8s Emp coverage 0.865 0.960 0.945 0.965 0.863 0.960
r9s Asy coverage 0.897 0.923 0.789 0.930 0.778 0.898

α � 0.05
r1s True -2.559 -1.331 -2.559 -1.331 -2.559 -1.331
r2s Median -2.442 -1.355 -2.500 -1.352 -2.398 -1.316
r3s Avg bias 0.116 -0.011 0.055 -0.017 0.167 0.008
r4s Emp variance 0.076 0.022 0.070 0.018 0.083 0.033
r5s Asy variance 0.096 0.034 0.099 0.031 0.103 0.022
r6s Emp covariance 0.014 - 0.011 - 0.020 -
r7s Asy covariance 0.022 - 0.021 - 0.017 -
r8s Emp coverage 0.937 0.978 0.968 0.981 0.913 0.970
r9s Asy coverage 0.924 0.974 0.961 0.974 0.904 0.896

α � 0.10
r1s True -2.178 -1.037 -2.178 -1.037 -2.177 -1.037
r2s Median -2.100 -1.059 -2.100 -1.067 -2.102 -1.030
r3s Avg bias 0.082 -0.019 0.070 -0.021 0.084 0.005
r4s Emp variance 0.047 0.016 0.043 0.017 0.056 0.232
r5s Asy variance 0.049 0.027 0.049 0.026 0.054 0.016
r6s Emp covariance 0.006 - 0.008 - 0.020 -
r7s Asy covariance 0.011 - 0.011 - 0.010 -
r8s Emp coverage 0.918 0.971 0.943 0.981 0.922 0.947
r9s Asy coverage 0.910 0.980 0.934 0.967 0.930 0.914

α � 0.20
r1s True -1.737 -0.681 -1.737 -0.681 -1.737 -0.681
r2s Median -1.681 -0.717 -1.680 -0.719 -1.687 -0.679
r3s Avg bias 0.050 -0.044 0.054 -0.038 0.056 0.003
r4s Emp variance 0.028 0.013 0.025 0.011 0.023 0.012
r5s Asy variance 0.025 0.021 0.025 0.020 0.025 0.014
r6s Emp covariance 0.004 - 0.004 - 0.005 -
r7s Asy covariance 0.004 - 0.004 - 0.004 -
r8s Emp coverage 0.918 0.947 0.937 0.974 0.946 0.952
r9s Asy coverage 0.913 0.986 0.927 0.982 0.937 0.902

Note: This table reports the simulation results of pm and pv for a sample size T � 500. The first and
second columns give the estimation results using the non-parametric isotone estimation for e with
Gaussian and Epanechnikov kernels, respectively. The third column uses OLS estimation for e. Row [1]
of each panel displays the values of the true parameters. Rows [2] and [3] present the median estimated
parameters and the average bias of the estimated parameters. Rows [4] and [5] report the empirical
variances of pm and pv (across simulations) and the resulting estimated asymptotic variances of the
estimators. Rows [6] and [7] report the same results for the covariance between pm and pv. Rows [8] and
[9] give the coverage rates for 95% confidence intervals built using the empirical variances and the
asymptotic variances, respectively.
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Table 4.2: Simulation results for the normal time-invariant MES and VaR (T � 2500)

Non-parametric isotone OLS
Gaussian Epanechnikov
m v m v m v

α � 0.01
r1s True -3.307 -1.882 -3.307 -1.882 -3.307 -1.882
r2s Median -3.200 -1.896 -3.260 -1.901 -3.132 -1.861
r3s Avg bias 0.113 -0.007 0.059 -0.010 0.191 0.017
r4s Emp variance 0.061 0.016 0.044 0.015 0.072 0.025
r5s Asy variance 0.093 0.021 0.095 0.020 0.120 0.013
r6s Emp covariance 0.009 - 0.006 - 0.018 -
r7s Asy covariance 0.019 - 0.019 - 0.016 -
r8s Emp coverage 0.935 0.972 0.978 0.974 0.890 0.978
r9s Asy coverage 0.951 0.956 0.977 0.947 0.901 0.859

α � 0.05
r1s True -2.559 -1.331 -2.559 -1.331 -2.559 -1.331
r2s Median -2.510 -1.355 -2.511 -1.352 -2.509 -1.330
r3s Avg bias 0.049 -0.024 0.039 -0.018 0.052 0.007
r4s Emp variance 0.015 0.008 0.017 0.007 0.010 0.015
r5s Asy variance 0.018 0.013 0.018 0.012 0.020 0.008
r6s Emp covariance 0.002 - 0.002 - 0.005 -
r7s Asy covariance 0.005 - 0.005 - 0.005 -
r8s Emp coverage 0.947 0.971 0.945 0.976 0.928 0.945
r9s Asy coverage 0.931 0.978 0.940 0.985 0.937 0.913

α � 0.10
r1s True -2.178 -1.037 -2.178 -1.037 -2.177 -1.037
r2s Median -2.150 -1.058 -2.140 -1.059 -2.152 -1.030
r3s Avg bias 0.032 -0.018 0.032 -0.021 0.029 0.005
r4s Emp variance 0.009 0.006 0.009 0.006 0.009 0.008
r5s Asy variance 0.010 0.009 0.009 0.009 0.010 0.007
r6s Emp covariance 0.001 - 0.001 - 0.002 -
r7s Asy covariance 0.002 - 0.002 - 0.002 -
r8s Emp coverage 0.939 0.974 0.932 0.973 0.944 0.941
r9s Asy coverage 0.932 0.986 0.933 0.975 0.949 0.926

α � 0.20
r1s True -1.737 -0.681 -1.737 -0.681 -1.737 -0.681
r2s Median -1.720 -0.698 -1.720 -0.698 -1.714 -0.678
r3s Avg bias 0.018 -0.018 0.019 -0.021 0.019 0.004
r4s Emp variance 0.005 0.005 0.005 0.005 0.005 0.005
r5s Asy variance 0.005 0.007 0.005 0.007 0.005 0.006
r6s Emp covariance 0.001 - 0.001 - 0.001 -
r7s Asy covariance 0.001 - 0.001 - 0.001 -
r8s Emp coverage 0.951 0.973 0.953 0.979 0.941 0.943
r9s Asy coverage 0.946 0.994 0.948 0.980 0.939 0.949

Note: This table reports the simulation results of pm and pv for a sample size T � 2500. The first and
second columns give the estimation results using the non-parametric isotone estimation for e with
Gaussian and Epanechnikov kernels, respectively. The third column uses OLS estimation for e. Row [1]
of each panel displays the values of the true parameters. Rows [2] and [3] present the median estimated
parameters and the average bias of the estimated parameters. Rows [4] and [5] report the empirical
variances of pm and pv (across simulations) and the resulting estimated asymptotic variances of the
estimators. Rows [6] and [7] report the same results for the covariance between pm and pv. Rows [8] and
[9] give the coverage rates for 95% confidence intervals built using the empirical variances and the
asymptotic variances, respectively.
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Two remarks should be raised. First, we observe that the parameters m0 and v0 are

estimated without bias, except for the smallest probability level α � 0.01 and sample size

T � 500 where the estimation is more unstable due to a lack of observations. As expected,

the observed bias vanishes for more central probability levels and when the sample size

increases (from T � 500 to T � 2500) confirming numerically that the parameters are

estimated consistently. Second, we note that the non-parametric isotone estimation with

an Epanechnikov kernel gives the best finite sample performances. We find that even for

small probability levels, the bias is very limited for that isotone estimator of the nuisance

parameter. Hence, the choice of a nuisance parameter estimator over competitors affects

the finite sample performance of the M-estimator.

In the subsequent rows of Tables 4.1 and 4.2, we report the simulation results of

variances and covariances for pm and pv. Rows [4] and [5] display the empirical variances of

pm and pv (computed across simulations) and the estimated asymptotic variances of pm and

pv issued by Equation (4.13), respectively. Rows [6] and [7] report the same information

but for the covariance between pm and pv. First, we find that the theoretical variances

and covariance that are estimated with the sample analogs are close the the empirical

variances and covariance which illustrates the validity of our asymptotic theory. Second,

we find that the estimated variances are decreasing with the sample size and increasing

as we move further into market tail events (i.e., as α decreases), as expected.

The last rows [8] and [9] report statistical inference where we print the coverage

rates. A coverage rate corresponds to the relative frequency of simulations for which

the true parameter lies in the confidence interval. Row [8] reports the coverage rates

for 95% confidence intervals constructed using the empirical variances of pm and pv. Row

[9] gives the feasible coverage rates for 95% confidence intervals using the theoretical

estimated variances according to Equation (4.13). Overall, the results for statistical

inference are satisfactory. We find that the coverage rates calculated with the empirical
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and theoretical variances are very close to 95% which suggests that our asymptotic theory

is valid. However, our simulation results are more shaded for the smallest probability

level α � 0.01 and sample size T � 500. We find that the coverage rates are below 95%

implying that statistical tests on parameters would be over-sized and a correction would

be possibly needed.

4.5.2 Empirical application

In the sequel, we illustrate the merit of the scoring function in (4.9) for out-of-sample

forecasting evaluation. We build the daily MES and VaR forecasts of four major US

banks and we compute average scoring functions to provide a comparison across three

competing forecasting approaches. Section 4.5.2.1 describes the empirical setup. Then,

Section 4.5.2.2 reports our main results.

4.5.2.1 Empirical setup

As in Acharya et al. (2017), we consider a simple time-invariant MES at probability

level α � 0.05. We assume that the daily firm and market returns Yt � pYM,t, Yi,tq1, for

t � 1, ..., T , are normally distributed. Under the normality assumption, the MES for

the i-bank return and the VaR of the market take closed-form expressions (Brownlees

and Engle, 2017) given by MESαi,t � �ρi,t
b
σ2
i,tλpΦ�1pαqq and V aRα

M,t �
b
σ2
M,tΦ�1pαq.

The term λpxq corresponds to the Mills ratio satisfying λpxq � φ pxq {Φ pxq where φ and

Φ denote the pdf and cdf of the standard normal distribution, σ2
i,t and σ2

M,t denote the

variance at time t of Yi,t and YM,t, and ρi,t is the correlation at time t between Yi,t and

YM,t. Given our statistical assumptions, the MES solely depends on the volatility of the

firm and its correlation with the market but not on the volatility of the market σ2
M,t. To

ease the notation, we write mt for MESαi,t and vt for V aRα
M,t in the following.

As we consider time-invariant MES and VaR, the parameters σ2
i,t, σ2

M,t, and ρi,t

are constant for all t. We estimate them using their empirical counterparts pρi,t �
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°T
t�1pYi,t�ȲiqpYM,t�ȲM q?°T

t�1pYi,t�Ȳiq
2
?°T

t�1pYM,t�ȲM q2
, pσ2

i,t � T�1 °T
t�1pYi,t � Ȳiq2, and pσ2

M,t � T�1 °T
t�1pYM,t �

ȲMq2, where Ȳi and ȲM denotes the empirical means of Yi,t and YM,t, respectively, and T

corresponds to the considered sample size.

To provide meaningful out-of-sample forecast evaluation, we need to perform a com-

parison of MES and VaR predictions across different competing approaches. To that end,

we select three types of estimation schemes: (i) a fixed estimation scheme, (ii) a recursive

estimation scheme, (iii) a rolling-window estimation scheme. Thus, the parameters σ2
i,t,

σ2
M,t, and ρi,t � used to compute the MES and VaR forecasts � are estimated using

different sample lengths and periods. In the fixed scheme, we estimate the parameters

using all available information from January 3, 2000, to December 31, 2004 once and for

all. Hence, the MES and VaR forecasts are time-invariant along the sample period. In

the recursive scheme, we estimate the parameters using all available information from

January 3, 2000, up to the end of each month. In the rolling-window scheme, we also

update the forecasts up to the end of each month but we only use the most recent T daily

observations for estimation. In the following, we will consider a two-year sample length,

i.e. T � 500.

The out-of-sample MES and VaR forecasts tpvt, pmtuT�nt�T�1 issued from these three com-

peting approaches are subsequently assessed through the computation of the empirical

scoring function,

Sn

�
θ, pβv	 � 1

n

T�ņ

t�T�1

1pmtα

�
pα � 1 pyM,t ¤ pvtqq pβtpvt � yi,t1 pyM,t ¤ pvtq �� ln p�pmtq ,

(4.15)

where pβt is the slope OLS estimate of the simple linear regression of Yi,t onto YM,t using

the same estimation scheme and sample period as the ones used for the computation of

pmt and pvt. Our choice of a simple OLS estimator for the nuisance parameter is consistent

with our model assumptions. Furthermore, the nuisance parameter estimator is strictly
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linear with respect to v through β and we confirm empirically that the values of pβt
are always strictly positive implying that the nuisance parameter estimator is strictly

increasing, thereby ensuring the quasi-convexity of the scoring function. We set the out-

of-sample size to n � 500, i.e., about two years of daily returns. Hereinafter, we refer to

the values of the empirical scoring function in (4.15) as average losses.

4.5.2.2 Main results

Our empirical results are reported for four major US banks, namely Bank of America

(BAC), JP Morgan (JPM), American International Group (AIG), and Lehman Brothers

(LEH). We display our results for the period 2005-2017. Note that for Lehman Brothers,

our results are only available till September 15, 2008 because of the collapse of Lehman

Brothers.

Figure 4.2: One-day ahead out-of-sample MES forecasts

Note: This figure plots the 5% MES and VaR for American International Group (AIG), Bank
of America (BAC), JP Morgan (JPM), and Lehman Brothers (LEH), over the period January
2005 to December 2016. The estimates are based on a rolling window, a recursive window,
and a fixed estimation scheme.

Figure 4.2 displays the one-day ahead out-of-sample forecasts of the MES issued by

the three competing approaches over the period January 2005 to December 2017. The

MES forecasts associated with the fixed estimation scheme is time-invariant which is

naturally expected given that a 2000-2004 fixed sample period is used to estimate σ2
i,t,
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σ2
M,t, and ρi,t. In contrast, the MES produced by the rolling and recursive estimation

schemes are time-varying and reveal a bump as of 2008 which coincides with the 2007-

2009 financial crisis. The MES forecasts produced by the rolling estimation scheme

with T � 500 observations reacts more quickly compared to the one produced by the

recursive estimation scheme that does not overweight the earliest financial information.

Interestingly within the rolling scheme, we observe a large increase of MES for Lehman

Brothers just before its bankcruptcy. Once we account for dynamics in these financial

time series, the MES captures (at least partially) the impact of the financial crisis on the

capital shortfalls of these four institutions.

Figure 4.3: Average out-of-sample losses (n � 500)

Note: This figure plots the out-of-sample losses of the 5% MES and VaR forecasts of
American International Group (AIG), Bank of America (BAC), JP Morgan (JPM), and
Lehman Brothers (LEH), over the period January 2005 to December 2016. We use
n � 500 to compute the average losses. The losses are based on three different
forecasting approaches of MES and VaR, namely a rolling window, a recursive window,
and a fixed estimation scheme.

We now turn to the out-of-sample forecast evaluation of the competing approaches

discussed in Section 4.5.2.1. Figure 4.3 displays the average out-of-sample losses that

are computed using Equation (4.15). We raise two main remarks. First, we observe

that the out-of-sample forecast performance fluctuates considerably over time. For all
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the three competing approaches, we find that the out-of-sample losses are much higher

during the 2007-2009 financial crisis than for any other periods. We conclude that the

out-of-sample forecast performance worsens a lot in times of financial instability, which

is unfortunately when systemic-risk measures are most needed. Our findings support the

statistical evidences highlighted in Banulescu-Radu et al. (2021) that the systemic-risk

measures are misleading before and during financial crisis episodes. Our loss may serve

for the early identification of systemic events. To identify structural breaks, we might

compare the out-of-sample performances of a forecasting model, judged by the average

losses, with the in-sample performances (Giacomini and Rossi, 2009). Second, although

there is a decline in forecast accuracy in times of crisis, the MES and VaR of the rolling

window estimation scheme generally outperform the ones calculated with a fixed and

recursive estimation schemes, suggesting that incorporating the most recent data before

crisis lead to higher performance in predicting future systemic crises.

4.6 Conclusion

Elicitability is useful for model selection, estimation, generalized regression, forecast

ranking (Gneiting, 2011a) and comparative backtesting as well (Nolde and Ziegel, 2017).

This mathematical property is growing in popularity in the banking industry while being

extensively used by quantitative risk managers for backtesting standard risk measures

like the value-at-risk (VaR) or the expected shortfall (ES) (see Acerbi and Szekely, 2014;

Fissler and Ziegel, 2016).

This article establishes the elicitability and the identifiability of the systemic-risk

measures that are widely used by academics and regulators to quantify how much an

entity, be it a bank or hedge fund or sovereign, contributes to the vulnerability of the

financial system. We derive a strict consistent scoring function for the marginal expected

shortfall (MES) and the value-at-risk (VaR). Our framework is then extended to any
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systemic-risk measures that can be expressed as an expected equity conditional to a

financial crisis, as it is the case for the SRISK for instance.

This finding paves the road to M-estimation, forecast comparison, and backtesting,

of those systemic-risk parameters, and thereby has immediate relevance for European

regulation aimed at containing systemic risk, i.e., Basel IV with the yearly identification

of global systemically important banks. We exploit the scoring function to develop a

joint semiparametric M-estimator for the MES and VaR. We show the consistency and we

characterize the asymptotic distribution of the estimator enabling modeling and statistical

inference for the systemic-risk indicators. We also give a discussion on how to perform

model comparison and backtesting for systemic-risk measures under our framework. A

small empirical study applied to four large US banks is provided to highlight the merit

of our elicitation framework.
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4.7 Appendix

4.7.1 Appendix A: Spectral risk measure

In this section, we show that MES is a spectral risk measure and discuss a number

of desirable properties that the systemic indicator satisfies. First, MES is a coherent risk

measure (Artzner et al., 1999) as it satisfies the following properties:

• Monotonicity:

Yi ¤ Yj ùñ MESαi � E rYi|YM ¤ V aRα
M s ¤ E rYj|YM ¤ V aRα

M s �MESαj ,

• Super-additivity:

MESαi�j � E rYi � Yj|YM ¤ V aRα
M s ¥ E rYi|YM ¤ V aRα

M s�E rYj|YM ¤ V aRα
M s �

MESαi �MESαj ,

• Positive homogeneity:

MESαi,�λ � E rλYi|YM ¤ V aRα
M s � λE rYi|YM ¤ V aRα

M s � λMESαi , @λ P R,

λ ¡ 0,

• Translation invariance:

MESαi,�a � E rYi � a|YM ¤ V aRα
M s � E rYi|YM ¤ V aRα

M s�a �MESαi �a, @a P R.

Furthermore, MES satisfies additional properties that we give below:

• Comonotonic additivity:

MESαi,j � E rYi � Yj|YM ¤ V aRα
M s � E rYi|YM ¤ V aRα

M s � E rYj|YM ¤ V aRα
M s �

MESαi �MESαj ,

• Law-invariance: if Yi and Yj have the same conditional (on YM ¤ V aRα
M)

distribution (i.e., FYi|YM¤V aRαM
and FYj |YM¤V aRαM

, respectively), then MESαi �

E rYi|YM ¤ V aRα
M s � E rYj|YM ¤ V aRα

M s �MESαj .
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A coherent, comonotonically additive, and law-invariant risk measure is said to be a

spectral risk measure (Kusuoka, 2001; Acerbi, 2002; Tasche, 2002; Jouini et al., 2006).

More formally, MES can be expressed as a function of (conditional) quantiles as follows:

MESαi �
» 1

0
CoV aRα

i pβqdβ,

where CoV aRα
i pβq � F�1

Yi|YM¤V aRαYM
pβq following the notation in Banulescu-Radu et al.

(2021).

4.7.2 Appendix B: Assumptions

To derive the F -consistency and F -quasi-convexity of the scoring function, we intro-

duce the following assumptions.

Assumption (A1). Let F be a convex class of distributions functions on R2. Assume that

for all θ P 8Θ, there are F1, F2, F3 P F such that

0 P int �conv � V̄ pθ, F1q, V̄ pθ, F2q, V̄ pθ, F3q
(��

,

where V̄ designates the expected F -identification function, intpMq and convpMq denote

the interior and the convex hull of M , respectively, with convpMq :�
"°n

i�1 λixi

���� n P

N;x1, x2, . . . , xn PM ;λ1, λ2, . . . , λn ¡ 0,
°n
i�1 λi � 1

*
, for a set M � R2.

Assumption (A2). The expected F -identification function V̄ p., F q : Θ Ñ R
2, θ ÞÑ V̄ pθ, F q

is continuous, for all F P F .

Assumption (A3). The expected F -identification function V̄ p., F q is continuously differ-

entiable, for all F P F .

Assumption (A4). The expected scoring function S̄p., F, ep.qq : Θ Ñ R, θ ÞÑ S̄pθ, F, epvqq,

is continuously differentiable, for all F P F , with θ � pv,mq1.

130



4.7 Appendix

Assumption (A5). The expected scoring function S̄p., F, ep.qq is continuously differentiable

and the gradient is locally Lipschitz continuous, for all F P F . Additionally, the expected

scoring function S̄p., F, ep.qq is twice continuously differentiable at τ � T pF q P 8Θ.

Assumption (A6). For all Y P R2, there exists a sequence pFnqnPN of distributions Fn P F

that converges weakly to the Dirac-measure δY such that the support of Fn is contained

in a compact set K for all n.

Assumption (A7). The complement of the sets

CV �
"
pθ, yq P Θ�R2

����V pθ, .q is continuous at the point y
*

CS �
"
pθ, y, epvqq P Θ�R2 �R

����Spθ, ., epvqq is continuous at the point y
*

has 4-dimensional Lebesgue measure zero.

For all θ P 8Θ, Assumption (A1) ensures that there exist F1, F2, F3 P F such that

V̄ pθ, F1q, V̄ pθ, F2q, V̄ pθ, F3q are linearly independent vectors. It is a way to guarantee that

the functional T varies sufficiently to apply Proposition 9 so as to obtain a necessary form

of the scoring function S (i.e., that the class F is sufficiently “rich”). Such assumptions

like (A1) are common in the literature (see Osband, 1985; Steinwart et al., 2014; Lambert,

2013).

In the case of the F -identification function V is continuous in its first argument θ, As-

sumption (A2) is satisfied. The same argument is valid if V is continuously differentiable

in its first argument with Assumption (A3). However, Assumptions (A2) and (A3) relate

to the expected F -identification function V̄ and therefore are much weaker requirements.

Assumptions (A4) and (A5) are equivalent conditions to Assumptions (A2) and (A3)

but in terms of scoring functions (instead of identification functions). Assumption (A5)

and the use of Rademacher’s theorem entail that the gradient of S̄ is (totally) differen-
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tiable (in its first argument) for almost all θ P Θ. Therefore using Schwarz’s theorem,

the Hessian of S̄p., F, ep.qq exists for almost all θ P Θ and is symmetric.

To derive the consistency of the estimator pθ, we introduce the following assumptions.

Assumption (B1). θ0 P Θ, Θ is a compact subset of R2.

Assumption (B2). pe P E and pe converges to e in probability.

Assumption (B3). Yt is strictly stationary and has a continuous distribution.

Assumption (B4). E | Yi,t |  8, E | G1pYM,tq |  8 and E | GpYtq |  8.

4.7.3 Appendix C: Proofs

In order to make our proofs, we introduce some intermediate Lemma, Propositions

and Corollary.

Lemma 1. A scoring function S : Θ�R2�RÑ R is strictly F-consistent for T : F Ñ Θ

if and only if the function

ψ : D Ñ R, s ÞÑ E

�
Spτ � su, Y, epτ1 � su1qq

�
has a global unique minimum at s � 0 for all F P F , τ � T pF q and u P S1, with S1 the

unit 1-sphere such that S1 � tx P R2 : ||x|| � 1u, and where D � ts P R : τ � su P Θu.

Proposition 9 (Osband’s principle). Let T : F Ñ Θ � R
2 be a surjective, elicitable and

identifiable functional with a strict F-identification function V : Θ � R2 Ñ R
2 and a

strictly F-consistent scoring function S : Θ�R2 �RÑ R. There exists a matrix-valued

function h : 8Θ Ñ R
2�2 such that for all θ P 8Θ and F P F

B1E rSpθ, Y, epvqqs � h11pθqE rV1pθ, Y qs � h12pθqE rV2pθ, Y qs ,

and

B2E rSpθ, Y, epvqqs � h21pθqE rV1pθ, Y qs � h22pθqE rV2pθ, Y qs .

(4.16)

132



4.7 Appendix

as soon as the assumptions (A1) and (A4) in 4.7.2 hold, where 8Θ denotes the interior

of Θ and B1E rSpθ, Y, epvqqs and B2E rSpθ, Y, epvqqs correspond to the partial derivatives

of E rSpθ, Y, epvqqs with respect to v and m, respectively. Additionally, h is continuous if

Assumption (A2) in 4.7.2 is valid. The function h is locally Lipschitz continuous in the

case Assumptions (A3) and (A5) in 4.7.2 are also satisfied.

Corollary 1. Let T : F Ñ Θ � R
2 be a surjective, elicitable and identifiable functional

with a strict F-identification function V : Θ � R2 Ñ R
2 and a strictly F-consistent

scoring function S : Θ � R2 � R Ñ R. Suppose Assumptions (A1), (A3) and (A5) in

4.7.2 hold. Then, for all F P F and almost all θ P 8Θ, we have the following identities for

the second-order derivatives:

B1B1E rSpθ, Y, epvqqs �B1h11pθqE rV1pθ, Y qs � h11pθqB1E rV1pθ, Y qs

� B1h12pθqE rV2pθ, Y qs � h12pθqB1E rV2pθ, Y qs ,

B2B2E rSpθ, Y, epvqqs �B2h21pθqE rV1pθ, Y qs � h21pθqB2E rV1pθ, Y qs

� B2h22pθqE rV2pθ, Y qs � h22pθqB2E rV2pθ, Y qs ,

B1B2E rSpθ, Y, epvqqs �B1h21pθqE rV1pθ, Y qs � h21pθqB1E rV1pθ, Y qs

� B1h22pθqE rV2pθ, Y qs � h22pθqB1E rV2pθ, Y qs

�B2h11pθqE rV1pθ, Y qs � h11pθqB2E rV1pθ, Y qs

� B2h12pθqE rV2pθ, Y qs � h12pθqB2E rV2pθ, Y qs

�B2B1E rSpθ, Y, epvqqs ,

(4.17)

where h is the matrix-valued function appearing in Equation (4.16). In particular, Equa-

tion (4.17) holds for τ � T pF q P 8Θ.

Proposition 10. Assume that 8Θ � R2 is a star domain. Let T : F Ñ Θ be a surjective,

elicitable and identifiable functional with a strict F-identification function V : Θ�R2 Ñ

R
2 and a strictly F-consistent scoring function S : Θ�R2�RÑ R. Suppose Assumptions

(A1), (A2), (A4), (A6) and (A7) in 4.7.2 hold. Let h be the matrix-valued function
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appearing in Equation (4.16). Then the scoring function S is necessarily of the form

Spθ, y, epvqq �
» v

z1

�
h11pu, z2qV1pu, z2, yq � h12pu, z2qV2pu, z2, yq



du

�
» m

z2

�
h21pv, uqV1pv, u, yq � h22pv, uqV2pv, u, yq



du� bpyq,

(4.18)

for almost all θ P Θ, for almost all y P R2, for some star point z � pz1, z2q1 P 8Θ and

some F-integrable function b : R2 Ñ R. In particular, regarding the expected score

E rSpθ, Y, epvqqs, Equation (4.18) holds for all θ P 8Θ, F P F .
The proof of Proposition 9 is the same than the proof of Fissler and Ziegel (2016) for

the pair (VaR, ES) and is thus omitted (see Fissler and Ziegel, 2016, Theorem 3.2). For

the same reason, the proof of Proposition 10 is not reported (see Fissler and Ziegel, 2016,

Proposition 3.4).

Propositions 9 and 10 and Corollary 1 determine necessary conditions for strictly F -

consistent scoring functions for a functional T . When a strict F -identification function

V for T is available, they offer a way on how to build a strictly F -consistent scoring

function S from V .

Proposition 11. Let Θ � R
2 be an open convex set and let the expected scoring function

S̄p., F, ep.qq : Θ Ñ R, θ ÞÑ S̄pθ, F, epvqq be a twice continuously differentiable function with

gradient BS̄ and Hessian B2S̄. Then S̄ is quasi-convex if and only if for all θ � pv,mq1 P Θ,

for all F P F and for all u P S1,

u1BS̄pθ, F, epvqq � 0

implies

(i) u1B2S̄pθ, F, epvqqu ¡ 0; or

(ii) u1B2S̄pθ, F, epvqqu � 0 and ψ : D Ñ R, ψpsq � S̄pθ � su, F, epv � su1qq is quasi-

convex,
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with S
1 the unit 1-sphere such that S

1 � tx P R2 : ||x|| � 1u, and where D �

ts P R : θ � su P Θu. Moreover, S̄ is strictly quasi-convex if and only if this implication

holds where in piiq ψ does not attain a local maximum at s � 0.

Proposition 11 is drawn from Schaible and Ziemba (1981).

Theorem 5. This proof is inspired from Fissler and Ziegel (2016).

piq By definition of elicitability, we know that if the second part of Theorem 5 piiq

is satisfies, then the functional T is 2-elicitable if the distributions in F have unique

α-quantiles.

piiq Let S : Θ � R2 � R Ñ R be of the form given in Equation (4.5) with G2 a

convex function. Let the functions G3 given in Equation (4.6) be increasing functions.

Let F P F , θ P Θ, with θ � pv,mq1 and set τ � T pF q, with τ � pτ1, τ2q1 and define

w � minpm, τ2q. Then we can rewrite (4.5) as

Spθ, y, epvqq � p1 pyM ¤ vq � αq
�
G1pvq �G1

2pwq
epvq � yi

α



�G1pyMq pα � 1 pyM ¤ vqq

� pG1
2pmq �G1

2pwqq
�
m� epvq

α
p1 pyM ¤ vq � αq � 1

α
yi1 pyM ¤ vq



�G1

2pwqpm� yiq �G2pmq �Gpyq.
(4.19)

Taking the expectation of Equation (4.19) yields that E rSpθ, Y, epvqqs �

E rSpτ, Y, epτ1qqs � U1 � U2 with

U1 �pFYM pvq � αq
�
G1pvq �G1

2pwq
epvq
α



�E

�
p1 pYM ¤ vq � 1 pYM ¤ τ1qq

�
G1pYMq �G1

2pwq
Yi
α


�
,

(4.20)

and

U2 � pG1
2pmq �G1

2pwqq
�
m� epvq

α
pFYM pvq � αq � 1

α
E rYi1 pYM ¤ vqs

�
�G1

2pwqpm� τ2q �G2pτ2q �G2pmq.
(4.21)
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Suppose that τ1   v. Rewriting the expectation term in Equation (4.20), we obtain

E

�
p1 pYM ¤ vq � 1 pYM ¤ τ1qq

�
G1pYMq �G1

2pwq
Yi
α


�
�
»
R

» v

τ1

�
G1px1q �G1

2pwq
x2

α

	
fpx1, x2qdx1dx2

�
»
R

» v

τ1

�
G1px1q �G1

2pwq
x2

α

	
fpYi|YM�x1qpx2qfYM px1qdx1dx2

�
» v

τ1

�
G1px1q �G1

2pwq
epx1q
α



fYM px1qdx1

�
��

G1px1q �G1
2pwq

epx1q
α



FYM px1q

�v
τ1

�
» v

τ1

�
G1

1px1q �G1
2pwq

e1px1q
α



FYM px1qdx1,

(4.22)

where the last line comes from integrating by parts. Using that FYM pτ1q � α if F has a

unique α-quantile, we obtain by plugging Equation (4.22) in Equation (4.20)

U1 � α

�
G1pτ1q �G1

2pwq
epτ1q
α

�G1pvq �G1
2pwq

epvq
α



�
» v

τ1

�
G1

1px1q �G1
2pwq

e1px1q
α



FYM px1qdx1

� �α
» v

τ1

�
G1

1px1q �G1
2pwq

e1px1q
α



dx1 �

» v

τ1

�
G1

1px1q �G1
2pwq

e1px1q
α



FYM px1qdx1

�
» v

τ1

�
G1

1px1q �G1
2pwq

e1px1q
α



pFYM px1q � αq dx1.

Since the termG1pxq�G1
2pwq epxqα is increasing in x P rτ1, vs by assumption and FYM pxq ¥ α

for x P rτ1, vs, it implies that U1 ¥ 0. Similarly, v   τ1 entails that U1 ¥ 0. If the function

G1pxq � G1
2pwq epxqα is strictly increasing in x, then we get the strict positivity U1 ¡ 0, if

v � τ1.

We will now focus on the term U2. We use the fact that FYM pτ1q � α if F has a

unique α-quantile and the definition of τ2 to rewrite the expectation term in Equation
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(4.21) such that

E rYi1 pYM ¤ vqs �
»
R

» v

�8

x2fpx1, x2qdx1dx2

�
»
R

» τ1

�8

x2fpx1, x2qdx1dx2 �
»
R

» v

τ1

x2fpx1, x2qdx1dx2

� ατ2 �
» v

τ1

epx1qfYM px1qdx1

� ατ2 � repx1qFYM px1qsvτ1
�
» v

τ1

e1px1qFYM px1qdx1,

(4.23)

where the last line comes from integrating by parts. We plug Equation (4.23) in Equation

(4.21) to obtain:

U2 � pG1
2pmq �G1

2pwqq
�
m� epvq

α
pFYM pvq � αq � τ2 � epvq

α
FYM pvq � epτ1q

� 1
α

» v

τ1

e1px1qFYM px1qdx1



�G1

2pwqpm� τ2q �G2pτ2q �G2pmq

� pG1
2pmq �G1

2pwqq
�
m� τ2 � 1

α

» v

τ1

e1px1q pFYM px1q � αq dx1



�G1

2pwqpm� τ2q �G2pτ2q �G2pmq

¥ G1
2pmq pm� τ2q �G2pτ2q �G2pmq

¥ 0.

We have that G1
2 and e are increasing function and FYM pxq ¥ α for x P rτ1, vs which

justify the first inequality. If G1
2 and e are strictly increasing, the inequality is strict. We

exploit the convexity of G2 to have the last inequality. Additionally, when m � τ2 and

G2 is strictly convex, we obtain a strict inequality.

piiiq Recall that the MES satisfies the following expression :

MESαi �
1
α

»
R

» V aRαM

�8

x2fpx1, x2qdx1dx2. (4.24)

We focus on the assertions on V given in Equation (4.7). Let F P F , τ � T pF q. Then

we have that E rV1pθ, Y qs � FYM pvq � α, for θ P Θ, with θ � pv,mq1. This quantity is

null if and only if v � τ1. Also, if we consider the expression given in Equation (4.24),
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we have that

E rV2pτ1,m, Y qs � m� 1
α

»
R

» τ1

�8

x2fpx1, x2qdx1dx2 � m� τ2.

Thus, V is only null if θ � τ which corresponds to a strict F -identification function for

T . Moreover, V satisfies Assumption (A3) in 4.7.2, and we have for θ P Θ that

B1E pV1pθ, Y qq � fYM pvq, B2E pV1pθ, Y qq � 0,

B1E pV2pθ, Y qq � �fYM pvq
epvq
α

, B2E pV2pθ, Y qq � 1.

Let us assume that τ � T pF q P 8Θ. Let S be a strictly F -consistent scoring function for

T satisfying Assumption (A5) in 4.7.2. Then we can apply Proposition 9 and Corollary

1 to get that there is locally Lipschitz continuous functions h : 8Θ Ñ R
2�2 such that

Equations (4.16) and (4.17) hold. If we evaluate the last equality of Equation (4.17) (i.e.,

the second cross derivatives) at the point θ � τ , we get

h21pτqB1E rV1pτ, Y qs � h22pτqB1E rV2pτ, Y qs � h12pτqB2E rV2pτ, Y qs , (4.25)

which takes the form h21pτqfYM pτ1q � h22pτqfYM pτ1q epτ1q
α

� h12pτq. The second cross

derivative of the expected scoring function at the point θ � τ has the expression

B2B1E rS pτ, Y, epτ1qqs � B2B1E rS pτ, Y, epτ1qqs � G2
2 pτ2q
α

e1 pτ1q pFYM pτ1q � αq � 0.

(4.26)

From the third equality in (4.17), combining Equation (4.25) and Equation (4.26), we

deduce that h12pτq � 0, by identification. This entails h21pτq � h22pτq epτ1q
α

. Hence, the

surjectivity of T entails that, for θ P 8Θ,

h12pθq � 0, h21pθq � h22pθqepvq
α

. (4.27)
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From Equation (4.27), we deduce that h21pθqB1E rV1pθ, Y qs � h22pθqB1E rV2pθ, Y qqs � 0

since B1E rV1pθ, Y qs � fYM pvq and B1E rV2pθ, Y qs � �fYM pvq epvqα . From this zero equality,

by taking the difference between B1B2E rSpθ, Y, epvqqs and B2B1E rSpθ, Y, epvqqs in (4.17),

and using B2E rV1pθ, Y qs � 0 and h12pθq � 0 in Equation (4.27), we deduce

pB1h21pθq � B2h11pθqqE rV1pθ, Y qs � pB1h22pθq � B2h12pθqqE rV2pθ, Y qs � 0. (4.28)

From Equation (4.28), Assumption (A1) in 4.7.2 implies that the two coefficients of the

convex combination are zero, this gives B1h21pθq � B2h11pθq and B1h22pθq � B2h12pθq. We

know that B2h12pθq � 0 from Equation (4.27) and we get

B1h22pθq � 0. (4.29)

From Equation (4.27), we have B1h21pθq � B1h22pθq epvqα � h22pθq e1pvqα , then using Equation

(4.29) we get

B2h11pθq � B1h21pθq � h22pθqe
1pvq
α

. (4.30)

From Equation (4.29), we get that there is a locally Lipschitz continuous function ϕ2 :

Θm Ñ R such that for all θ P 8Θ we have h22pθq � ϕ2pmq. Equations (4.29) and (4.30)

entail that h11pθq � e1pvq
α
G1

2pmq � ϕ1pvq for θ P 8Θ, where ϕ1 : Θv Ñ R is locally Lipschitz

continuous and G1
2 : Θm Ñ R is such that G2

2 � ϕ2.

We can apply Proposition 10 using the form of the matrix-valued function h that we

found. Let z P 8Θ be some star point. Then there is some F -integrable function b : RÑ R
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such that

Spθ, y, epvqq �
» v

z1

�
G1

2pz2qe
1puq
α

� ϕ1puq


p1 pyM ¤ uq � αq du

�
» m

z2

ϕ2puq
�
epvq
α

p1 pyM ¤ vq � αq � u� 1
α
yi1 pyM ¤ vq



du� bpyq

�
» v

z1

�
G1

2pz2qe
1puq
α

� ϕ1puq


p1 pyM ¤ uq � αq du

� pG1
2pmq �G1

2pz2qq
�
epvq
α

p1 pyM ¤ vq � αq � 1
α
yi1 pyM ¤ vq



�mG1

2pmq �G2pmq � pz2G
1
2pz2q �G2pz2qq � bpyq,

(4.31)

for almost all θ P Θ and y P R2, where G2 : Θm Ñ R. By a straightforward computa-

tion, we can check that the representation of S given in Equation (4.31) is equivalent to

the expression of S given in Equation (4.5) upon choosing an appropriate F -integrable

function G : RÑ R.

Lastly, we will show that G2 is strictly convex and that the functions G3 given in

Equation (4.6) are strictly increasing. Let us define D �
!
s P R : τ � su P 8Θ

)
, with

u � pu1, u2q P S1 and ψ : D Ñ R by ψpsq � E rS ps̄, Y, eps̄1qqs, with s̄ � τ � su. Without

loss of generality, we suppose that u2 ¥ 0. We obtain that

ψpsq �
» s̄1

z1

�
G1

2pz2qe
1prq
α

� ϕ1prq


pFYM prq � αq dr

� pG1
2ps̄2q �G1

2pz2qq
�
eps̄1q
α

pFYM ps̄1q � αq � 1
α

»
R

» s̄1

�8

x2fpx1, x2qdx1dx2



� s̄2G

1
2ps̄2q �G2ps̄2q � pz2G

1
2pz2q �G2pz2qq �E rbpY qs .

Using Lemma 1, we know that the function ψ has a minimum at s � 0, implying that

there is ε ¡ 0 such that ψ1psq   0 for s P p�ε, 0q and ψ1psq ¡ 0 for s P p0, εq. If u2 � 0,

then

ψ1psq � u1 pFYM ps̄1q � αq
�
G1

2pτ2qe
1ps̄1q
α

� ϕ1ps̄1q


.
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Since the quantities ψ1psq and u1 pFYM ps̄1q � αq are strictly positive for s ¡ 0 whatever

the sign of u1, we obtain that G1
2pτ2q e1ps̄1q

α
� ϕ1ps̄1q ¡ 0. Exploiting the surjectivity of T

we can deduce that the functions in Equation (4.6) are strictly increasing. On the other

hand, if u1 � 0, we obtain that ψ1psq � sϕ2ps̄2q. Again using the surjectivity of T , we

get that ϕ2 ¡ 0 which shows the strict convexity of G2. �

Proposition 8. By definition, the equivalence of scoring functions preserves the strict F -

consistency and the F -quasi-convexity of the scoring function S. Consequently, if S0 is

an F -consistent and F -quasi-convex scoring function for T , then these two properties

will be shared by equivalent scoring functions.

First, the loss function S0 coincides with the function S given in Theorem 5 with

specific functions G,G1 and G2 such that G � �1, G1 � 0 is increasing and F -integrable,

and @x   0, G2pxq � � lnp�xq is strictly increasing and strictly convex. Then we can

apply Theorem 5 and S0 is strictly F -consistent for T .

To show that S0 is also F -quasi-convex, we verify the criterion given in Proposition 11.

In the sequel, we consider the general form of the scoring function S given in Theorem 5.

Let F P F with continuous density f � F 1, θ P Θ�, u P S1, and u1BE rS pθ, Y, epvqqs � 0.

The first order and second order partial derivatives of the expected score E pS pθ, Y, epvqqq

have the form

B1E rS pθ, Y, epvqqs �
�
G1

1 pvq �
G1

2 pmq
α

e1 pvq


pFYM pvq � αq ,

B2E rS pθ, Y, epvqqs � G2
2 pmq

�
m� pFYM pvq � αq e pvq

α
� 1
α

» v

�8

»
R

zf py, zq dzdy
�
,

B1B1E rS pθ, Y, epvqqs �
�
G2

1 pvq �
G1

2 pmq
α

e2 pvq


pFYM pvq � αq � fYM pvq

�
G1

1 pvq �
G1

2 pmq
α

e1 pvq


,

B2B2E rS pθ, Y, epvqqs � G2
2 pmq �G3

2 pmq
�
m� pFYM pvq � αq e pvq

α
� 1
α

» v

�8

»
R

zf py, zq dzdy
�
,

B1B2E rS pθ, Y, epvqqs � B2B1E rS pθ, Y, epvqqs � G2
2 pmq
α

e1 pvq pFYM pvq � αq .
(4.32)
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Using Equation (4.32), this is equivalent to

u1 pFYM pvq � αq
�
G1

1 pvq �
G1

2 pmq
α

e1 pvq



� �u2G
2
2 pmq

�
m� pFYM pvq � αq e pvq

α
� 1
α

» v

�8

»
R

zf py, zq dzdy
�
,

and then we obtain

u1B2
E rS pθ, Y, epvqqsu � u2

1fYM pvq
�
G1

1 pvq �
G1

2 pmq
α

e1 pvq


� u2

2G
2
2 pmq

� u1 pFYM pvq � αq
�
u1

�
G2

1 pvq �
G1

2 pmq
α

e2 pvq


� 2u2

G2
2 pmq
α

e1 pvq

�u2G
3
2 pmq

G1
1 pvq � G1

2pmq

α
e1 pvq

G2
2 pmq

�
.

(4.33)

According to the Proposition 11, S is F -quasi convex if Equation (4.33) is strictly pos-

itive. The first term is strictly positive since it is a product of a density function and

the derivative of the functions introduced in Equation 4.6. The second summand is

also strictly positive, the function G2 being strictly convex. However, concerning the

third summand, the sign of the first term of the product (i.e., u1 pFYM pvq � αq) is un-

known. Consequently the term in brackets must be null entailing that G1
1 � 0, G2

1 � 0,

2 pG2
2pxqq2 � G1

2pxqG3
2 pxq, @x   0 and e2 � 0. Therefore, G1 is a constant function,

and G2 is equivalent of the function c1 lnp�xq � c0 with c1, c0 P R with c1   0 and e is

linear. �

Proof. Theorem 6. Following Chen et al. (2003) and Delsol and Van Keilegom (2020),

the consistency of pθ are obtained by showing the following intermediate results:

(i) pθ P Θ and ST
�pθ, pe	 ¤ ST pθ0, peq � opp1q.

(ii) @ δ ¡ 0, D εpδq ¡ 0 such that dpθ, θ0q ¡ δ ùñ Spθ, eq � Spθ0, eq ¡ εpδq.

(iii) P ppe P Eq Ñ 1 as T Ñ 8 and dEppe, eq � opp1q.
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(iv) limdEpẽ,eqÑ0 supθPΘ | S̄pθ, ẽq � S̄pθ, eq |� 0, with ẽ P E .

(v) supθPΘ,ẽPE
|ST pθ,ẽq�ST pθ0,ẽq�S̄pθ,ẽq�S̄pθ0,ẽq|

1�|ST pθ,ẽq�ST pθ0,ẽq|�|S̄pθ,ẽq�S̄pθ0,ẽq|
� opp1q.

As pointed out by Delsol and Van Keilegom (2020), if statements piq-pvq hold, we get

consistency irrespective of the data being i.i.d. or exhibiting serial correlation.

To show that piq is correct, we use a Taylor approximation of ST pθ0, peq at pθ,
ST pθ0, peq � ST

�pθ, pe	� pθ0 � pθq1 BST pθ, peqBθ
����
θ�pθ

�Rppθq.
By definition, pθ is the global minimum of ST

�pθ, pe	 implying that Rppθq is strictly positive

and BST pθ,peq
Bθ

���
θ�pθ

is an opp1q. We thus obtain

ST

�pθ, pe	 ¤ ST pθ0, peq � opp1q.

To assess piiq, we consider a Taylor development of Spθ, eq at θ0 and then we have:

Spθ, eq�Spθ0, eq � pθ�θ0q1 BS pθ, eqBθ
����
θ�θ0

�1
2pθ�θ0q1 B

2S pθ, eq
BθBθ1

����
θ�θ0

pθ�θ0q�o ppθ � θ0q1pθ � θ0qq ,

θ0 being the global minimum of Spθ, eq, BSpθ,eq
Bθ

���
θ�θ0

is null and B2Spθ,eq
BθBθ1

���
θ�θ0

is positive

definite. Therefore we can conclude that @ δ ¡ 0, D εpδq ¡ 0 such that dpθ, θ0q ¡ δ

implies

Spθ, eq � Spθ0, eq ¡ εpδq.

Part piiiq is automatically satisfied by Assumption (B2). Then we need to use a non

parametric estimator belonging in E , i.e., that is strictly increasing. Consequently, a

standard non parametric kernel regression estimator is not a good candidate. Also, we

have to consider a nonparametric estimator pe of e that is weakly consistent.
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To show pivq, we rewrite the expression of the expected scoring function and find that

S̄pθ, ẽq � S̄pθ, eq � pẽ� eqG1
2pmq

α
pFYM pvq � αq which directly entails:

lim
dEpẽ,eqÑ0

S̄pθ, ẽq � S̄pθ, eq.

Lastly, we need to assess the point pvq. First, note that this condition is implied

by supθPΘ,ẽPE | ST pθ, ẽq � S̄pθ, ẽq |� opp1q. This condition is satisfied if ST pθ, ẽq �

T�1 °T
t�1 Spθ, yt, ẽpvqq converges uniformly in probability to S̄pθ, ẽq, i.e., if a Uniform

Law of Large Numbers (ULLN) can be applied.

A ULLN can be applied if these additional assumptions are valid:

(vi) Spθ, y, ẽpvqq is continuous at each θ P Θ with probability one,

(vii) Spθ, y, ẽpvqq is dominated by a function Upyq, i.e., | Spθ, y, ẽpvqq |¤ Upyq,

(viii) E rUpYtqs   8.

Points pviq is satisfied by Assumption (B3).

For pviiq, suppose the parameter space Θ is r�C,Cs for some positive constant C �

pcv, cmq. The dominated function Upyq is the following:

Upyq � 2p| G1pyMq | � | G1pcvq |q� | G1
2pcmq |

2 | E rYis | � | yi |
α

� | G2pcmq | � | Gpyq | .

Then, Assumption pviiiq is correct using Assumption (B4). �

4.7.4 Appendix D: Some results on e in conditional volatility
model

Proof. Let us consider the notation Yt � pYM,t, Yi,tq1 for the daily demeaned returns.

Denote by Ωt�1 the information set available at time t � 1, with pYt�1, Yt�2, ...q � Ωt�1.

Assume the following conditional volatility model for Yt,

Yt � Σ1{2
t ηt,
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where ηt � pηM,t, ηi,tq1 denotes a bivariate i.i.d. vector error process with E rηts � 0

and E rηtη1ts � I2, and where Σt �
�

σ2
M,t ρi,tσi,tσM,t

ρi,tσi,tσM,t σ2
i,t



is the conditional variance-

covariance matrix of Yt with σ2
M,t, σ2

i,t, and ρi,t, the conditional variances of YM,t and

Yi,t, and conditional correlation between YM,t and Yi,t, respectively. Note that there

exists a broad range of specification for modeling the conditional variances σ2
M,t, σ2

i,t and

conditional correlation ρi,t (see e.g. Bauwens et al., 2006, for a survey). Let us consider

the Cholesky decomposition of Σt such as,

Σ1{2
t �

�
σM,t 0
ρi,tσi,t σi,t

b
1� ρ2

i,t

�
.

The multiplicative form of the model for Yt allows us to write,

YM,t � σM,tηM,t,

Yi,t � ρi,tσi,tηM,t � σi,t

b
1� ρ2

i,tηi,t.

Taking conditional expectation, it follows,

E rYi,t|YM,t � vt,Ωt�1s � ρi,tσi,tE rηM,t|YM,t � vt,Ωt�1s�σi,t
b

1� ρ2
i,t E rηi,t|YM,t � vt,Ωt�1sloooooooooooomoooooooooooon

�0 as ηi,tKηM,t

.

Then, substituting ηM,t by YM,t{σM,t, we get,

E rYi,t|YM,t � vt,Ωt�1s � ρi,tσi,t
σM,t

E rYM,t|YM,t � vt,Ωt�1s � ρi,tσi,t
σM,t

vt.

Applying the law of iterated expectations, we end with,

E rYi,t|YM,t � vts � E rE rYi,t|YM,t � vt,Ωt�1s |YM,t � vts � vtE

�
ρi,tσi,t
σM,t

|YM,t � vt

�
� vtE

�
ρi,tσi,t
σM,t

�
.

To ensure E rYi,t|YM,t � vts is strictly linear and strictly increasing, we need E
�
ρi,tσi,t
σM,t

�
to

be strictly positive, which is satisfied as soon as the correlation is strictly positive. It is a

realistic assumption in the systemic risk literature and asset pricing theory as the betas

capture the systematic risk of the banking sector. The result applies to a large range of
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volatility models including M-GARCH models. Furthermore, it encompasses the case of

a time-invariant variance-covariance matrix Σ. �

4.7.5 Appendix E: Characterization of the asymptotic distribu-
tion

Let S̄ pθ, eq denote the expectation of the scoring function S pθ, Y, epvqq. Let B1S̄ pθ, eq

denote a vector of the usual partial derivatives of S̄ pθ, eq with respect to the first argument

θ; and let B2
1S̄ pθ, eq correspond to the usual Hessian matrix of S̄ pθ, eq with respect to θ, for

a constant e. Furthermore, let DθS̄ pθ, eq and DeS̄ pθ, eq denote the partial Fréchet deriva-

tives of S̄ pθ, eq with respect to θ and e, respectively. Also, let DθθS̄ pθ, eq, DθeS̄ pθ, eq,

and DeeS̄ pθ, eq correspond to second-order partial Fréchet derivatives of S̄ pθ, eq. Finally,

let δYM pvq correspond to the dirac function of YM evaluated at v.

We apply Theorem 3.2 in Ichimura and Lee (2010): Assume that the observed data

tYtuTt�1 are a random sample of Y . Let Assumptions 3.1�3.6 in Ichimura and Lee (2010)

hold. Assume that Ω0 exists and V0 is a positive definite matrix. Then
?
T
�pθ � θ0

	
dÝÑ

N
�
0, V �1

0 Ω0V
�1

0
�
, with V0 being the Hessian matrix of S̄pθ, eq with respect to θ, evaluated

at θ � θ0, i.e., V0 � d2

dθdθ1
S̄ pθ, eq

���
θ�θ0

, and Ω0 such that Ω0 � E rΓ0pY q1Γ0pY qs with

Γ0pyq � ∆10pyq � E r∆10pY qs �∆20 py, e1pv0qq � E r∆20 pY, e1pv0qqs � Γ1pyq. (4.34)

The terms of Equation (4.34) are calculated as follows:

∆10pyq � B
BθS px, y, epv0qq

���
x�θ0

�
�
G1

1pv0q p1pyM ¤ v0q � αq � δYM pv0qG
1
2pm0q

α
pepv0q � yiq

G2
2pm0q

�
m0 � epv0q � 1pyM¤v0q

α
pepv0q � yiq

	 �
,

E r∆10pY qs � 0,

∆20 py, e1pv0qq � DeS pθ0, y, epv0qq e1pv0q � G1
2pm0q
α

p1pyM ¤ v0q � αq e1pv0q,

E r∆20 pY, e1pv0qqs � 0.
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Under Assumption 3.2 in Ichimura and Lee (2010), we get

DeS̄ pθ, eq pẽpvq � epvqq � E r∆2 pY, ẽpvq � epvqqs � E rgpY, θq pẽpvq � epvqqs

with ẽ P E , and gpy, θq � G1
2pmq

α
p1pyM ¤ vq � αq.

Finally, we provide an explicit form for Γ1pyq in Equation (4.34) when the first-stage

estimator is a kernel regression estimator of epvq,

Γ1pyq � pyi � epv0qqE
�BgpY, θ0q

Bθ
�
� pyi � epv0qq

�
fYM pv0qG

1
2pm0q

α
0



.

Then, using all these elements, we can rewrite Equation (4.34) and we obtain:

Γ0pyq �
���

G1
1pv0q � G1

2pm0qe1pv0q

α

	
p1pyM ¤ v0q � αq � G1

2pm0qpepv0q�yiq

α
pδYM pv0q � fYM pv0qq

G2
2pm0q

�
m0 � epv0q � 1pyM¤v0q

α
pepv0q � yiq

	 �.
We now focus on the expression of V0. By the chain rule, we get

V0 � d2

dθdθ1
S̄ pθ, eq

���
θ�θ0

� B2
1S̄ pθ0, eq �DeeS̄ pθ0, eq Bepv0q

Bθ
Bepv0q
Bθ1 � 2De

�B1S̄ pθ0, eq
� Bepv0q

Bθ1 �DeS̄ pθ0, eq B
2epv0q
BθBθ1 .

(4.35)

Focusing on each element, we have

B2
1S̄ pθ0, eq �

�
fYM pv0q

�
G1

1pv0q � G1
2pm0qe1pv0q

α

	
0

0 G2
2pm0q

�
,

DeeS̄ pθ0, eq Bepv0q
Bθ

Bepv0q
Bθ1 � 0 since S̄ pθ, eq is a linear function of e,

De

�B1S̄ pθ0, eq1
� Bepv0q

Bθ � 0 since FYM pvq � α is null when it is evaluated at θ0,

DeS̄ pθ0, eq B
2epv0q
BθBθ1 � 0 since FYM pvq � α is null when it is evaluated at θ0.
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Consequently, all the terms in Equation (4.35) are null except the first one, leading V0 to

satisfy the following expression,

V0 �
�
fYM pv0q

�
G1

1pv0q � G1
2pm0qe1pv0q

α

	
0

0 G2
2pm0q

�
.
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Conclusion

This dissertation contributes to the academic research in econometrics and risk man-

agement. Our research’s goal is twofold: piq to quantify the financial risks incurred by

financial institutions and piiq to assess the validity of the risk measures commonly used in

the financial industry or by regulators. We focus on three kind of financial risks, piq credit

risk, piiq market risk, and piiiq systemic risk. In Chapter 2 and Chapter 3, we develop

new methods for modeling and backtesting the volatility and the expected shortfall, two

measures typically used to quantify the risk in investment portfolios. In Chapter 4, we

provide new estimation methods for the systemic risk measures that are used to identify

the financial institutions contributing the most to the overall risk in the financial system.

It is now broadly accepted that intraday returns are meaningful predictors of the

daily volatility dynamics. Usual approach to account for the intraday movements is to

introduce a summary of the intraday returns through realized volatility measures. The

introduction of scalar exogenous variables in the volatility equation has given rise to

the class of GARCH-X-type processes. In Chapter 2, we develop a volatility structure

that groups the whole sequence of intraday returns as functional covariates. Contrary

to the GARCH-X model that includes a summary of the intraday returns, our approach

makes possible to account for the whole information contained in the intraday price

movements via functional data analysis (FDA). The latter makes possible to transform
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observed data into curves. Our contributions are the following. First, we develop a

functional log-GARCH model where the response variable is scalar and the explanatory

variables consist of a mix of scalar and functional variables. Second, we prove the existence

of stationarity solutions and the existence of moments and log-moments. Third, we

introduce a quasi-maximum likelihood estimator and detail the corresponding asymptotic

properties. Finally, we develop a portmanteau statistic to test the goodness-of-fit of the

model. In the empirical part, we apply our model to the intraday returns for a panel of

ten NYSE/NASDAQ assets. Our functional variable is sampled at 5-minutes frequency.

Our findings are as follows. First, we conclude to non-autocorrelated residuals in the

model in more than 80% of cases and for seven out of ten assets. Second, we find that

our functional variable is generally statistically significant which confirms that the whole

intraday sequence must be used to explain the squared daily log-returns. Finally, we fit

three competing models (including either, the realized volatility and a leverage effect,

a leverage effect, or neither of them) that are nested representations of our model. We

apply the model confidence set procedure to select the best volatility models. Our model

belongs to the superior set of models for seven out of ten assets more often than the

three competitors. A natural step forward of this work would consist in considering the

multivariate time-series extension.

The Basel Committee on Banking Supervision (BCBS) has adopted the Basel III

accords to improve the banking sector’s ability to absorb shocks arising from financial

and economic stress. Among the number of fundamental reforms, the Value-at-Risk

(VaR) has been substituted by the Expected Shortfall (ES) for the calculation of market

risk capital requirements. ES offers a number of appealing properties that overcomes the

deficiencies of the VaR. In particular, ES is a coherent risk measure. However, ES is

not elicitable contrary to VaR, making its evaluation trickier. Chapter 3 introduces an

econometric methodology to test for the validity of ES forecasts for market portfolios.
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We exploit the fact that ES can be approximated using a finite sequence of VaRs. Our

methodology examines jointly the validity of the VaR forecasts along the tail distribution

of the risk model. Our procedure encompasses the BCBS recommendation of verifying

quantiles at two specific risk levels. Our econometric approach consists in regressing the

ex-post losses on the VaRs forecasts in a multi-quantile regression model, and then, testing

the resulting parameter estimates using Wald-type inference. Our regression framework

makes possible to derive an analytical correction to adjust the misleading forecasts. In

an empirical application, we highlight the ability of our backtests to reject a misspecified

ES model. We also show the importance of choosing a sufficient number of quantiles to

assess ES risk models. In particular, we find that the use of one or two quantiles is not

always enough to identify whether the tail risk in bank’s internal ES models is properly

accounted for. On the contrary, four or more quantiles (until an optimal number) deliver

much more sound decisions, suggesting an update of the regulatory guidelines. Further

issues concern the same approach but for assessing the whole return distribution (interval

and density forecasts).

The elicitability property paves the road to many useful applications: for model selec-

tion, estimation, generalized regression, forecast ranking and backtesting. A risk measure

is said to be elicitable if there exists a loss function or a scoring function such that, the

risk measure itself is the solution to minimize the expected loss. Similarly, if such a

loss function exists we say that it is a consistent scoring function for the considered risk

measure. This mathematical property is growing in popularity in the banking indus-

try while being extensively used by quantitative risk managers for backtesting industry

standard risk measures like the VaR or more recently the ES. As it is the case for ES,

the marginal expected shortfall (MES) is not elicitable if we consider the risk measure

stand-alone. However, in Chapter 4, we establish the elicitability of the MES jointly with

the VaR of the market return. More precisely, we identify a strictly consistent scoring

151



Chapter 5: Conclusion

function for the pair of risk measures (VaR, MES). Our framework is then extended to

any systemic-risk measures that can be expressed as an expected equity conditional to a

financial crisis, as it is the case for the SRISK for instance. These systemic-risk measures

are widely used by academics and regulators to quantify how much an entity, be it a bank

or hedge fund or sovereign, contributes to the vulnerability of the financial system. We

exploit the scoring function to develop a semi-parametric M-estimator for the pair (VaR,

MES). We show the consistency of the estimator. We also characterize the asymptotic

distribution of the estimator which makes possible to model or to perform statistical

inference for the systemic-risk indicators. We also give a discussion on how to perform

model comparison and backtesting for systemic-risk measures under our framework. A

small empirical study applied to four large US banks is provided to highlight the merit

of our elicitation framework. A natural step forward of this work would be to propose

a backtesting procedure based on the identification functions (derivatives of the scoring

function) of the pair (VaR, MES) in order to assess the validity of the MES forecasts.
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Résumé en Français

Cette thèse contribue à la recherche académique en économétrie et en gestion des risques.

Nous poursuivons un double objectif : piq quantifier les risques financiers encourus par

les institutions financières et piiq évaluer la validité des mesures de risque couramment

utilisées dans l’industrie financière ou par les régulateurs. Nous nous concentrons sur

trois types de risques financiers, piq le risque de crédit, piiq le risque de marché et piiiq le

risque systémique. Dans le Chapitre 2 et le Chapitre 3, nous développons de nouvelles

méthodes de modélisation et d’évaluation adaptées à la volatilité et à l’Expected Shortfall.

Ces deux mesures de risque sont généralement utilisées pour quantifier le risque dans les

portefeuilles d’investissement. Dans le Chapitre 4, nous proposons de nouvelles méthodes

d’estimation dédiées aux mesures du risque systémique. Ces dernières ont pour but

d’identifier les institutions financières qui contribuent le plus au risque global du système

financier.

Il est maintenant largement admis que les rendements intra-journaliers sont des pré-

dicteurs significatifs de la dynamique de la volatilité quotidienne. L’approche habituelle

pour tenir compte des mouvements intra-journaliers consiste à introduire un résumé des

rendements intra-journaliers par le biais de mesures de la volatilité réalisée. L’ajout de

variables exogènes scalaires dans l’équation de la volatilité a donné naissance à la classe

des processus de type GARCH-X. Dans le Chapitre 2, nous développons une structure de

volatilité qui regroupe l’ensemble de la séquence des rendements intra-journaliers en tant

que covariables fonctionnelles. Contrairement au modèle GARCH-X qui inclut un ré-
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sumé des rendements intra-journaliers, notre approche permet de rendre compte de toute

l’information contenue dans les mouvements de prix intra-journaliers en utilisant l’analyse

des données fonctionnelles (ADF). Cette dernière permet de transformer les données ob-

servées en courbes. Nos apports sont les suivants. Premièrement, nous développons un

modèle log-GARCH fonctionnel dans lequel la variable de réponse est un scalaire et les

variables explicatives peuvent comporter des variables de type scalaires et fonctionnelles.

Deuxièmement, nous montrons l’existence de solutions de stationnarité, moments et log-

moments, pour le modèle considéré. Troisièmement, nous introduisons un estimateur du

quasi-maximum de vraisemblance et détaillons les propriétés asymptotiques correspon-

dantes. Enfin, nous développons une statistique portemanteau pour tester la qualité de

l’ajustement du modèle. Dans la partie empirique, nous appliquons notre modèle aux

rendements intra-journaliers d’un panel de dix actifs NYSE/NASDAQ. Notre variable

fonctionnelle est échantillonnée à une fréquence de 5 minutes. Nos constatations sont les

suivantes. Premièrement, nous concluons à des résidus non-autocorrélés dans le modèle

dans plus de 80% des cas et pour sept actifs sur dix. Deuxièmement, nous constatons que

notre variable fonctionnelle est généralement statistiquement significative, ce qui confirme

que toute la séquence intra-journalière doit être utilisée pour expliquer les rendements

carrés logarithmiques quotidiens. Enfin, nous ajustons trois modèles concurrents (com-

prenant soit la volatilité réalisée et un effet de levier, soit un effet de levier, soit aucun

des deux) qui sont des représentations imbriquées de notre modèle. Nous sélectionnons

les meilleurs modèles de volatilité en utilisant la procédure model confidence set (MCS).

Notre modèle appartient à l’ensemble constitué des meilleurs modèles de prévisions de la

volatilité à une fréquence plus élevée que pour les modèles concurrents pour sept actifs sur

dix. Une avancée naturelle de ce travail consisterait à développer l’extension multivariée

de ce modèle.
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Le Comité de Bâle sur le contrôle bancaire a adopté les accords de Bâle III pour

améliorer la capacité du secteur bancaire à absorber les chocs résultants de tensions fi-

nancières et économiques. Parmi les réformes fondamentales, la Value-at-Risk (VaR) a été

remplacée par l’Expected Shortfall (ES) pour le calcul des exigences de fonds propres pour

le risque de marché. L’ES offre un certain nombre de propriétés attrayantes qui répon-

dent à des défauts de la VaR. En particulier, l’ES est une mesure de risque cohérente.

Cependant, l’ES n’est pas élicitable contrairement à la VaR, ce qui rend son évaluation

plus délicate. Le Chapitre 3 présente une méthodologie économétrique pour tester la

validité des prévisions d’ES pour les portefeuilles de marché. Nous exploitons le fait que

l’ES peut être approximée en utilisant une séquence finie de VaR. Notre méthodologie

examine conjointement la validité des prévisions de VaR le long de la queue de distri-

bution du modèle de risque. Notre procédure englobe la recommandation du Comité de

Bâle qui vise à valider l’ES en examinant deux VaRs à des niveaux de risque spécifiques.

Notre approche économétrique consiste à régresser les pertes ex post sur les prévisions

de VaR dans un modèle de régression multi-quantiles, puis à tester les paramètres es-

timés résultants à l’aide d’inférences de type Wald. Notre cadre de régression permet

de dériver une correction analytique pour ajuster les prévisions incorrectes. Dans une

application empirique, nous mettons en évidence la capacité de nos backtests à rejeter un

modèle d’ES mal spécifié. Nous montrons également qu’il est crucial de choisir un nom-

bre suffisant de quantiles pour évaluer les modèles de risque d’ES. En particulier, nous

constatons qu’utiliser un ou deux quantiles n’est pas toujours suffisant pour déterminer

si le risque extrême est correctement pris en compte dans les modèles internes d’ES de la

banque. Au contraire, quatre quantiles ou plus (jusqu’à un nombre optimal) délivrent des

décisions beaucoup plus judicieuses, suggérant une mise à jour des recommandations ré-

glementaires. Ce Chapitre pourrait être étendu pour évaluer l’ensemble de la distribution

des rendements (dans le cadre de prévisions d’intervalle et de densité).
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La propriété d’élicitabilité ouvre la voie à de nombreuses applications utiles : la sélec-

tion de modèles, l’estimation, la régression, le classement de modèles de prévisions et

le backtesting. Une mesure de risque est dite élicitable s’il existe une fonction de perte

ou une fonction de score telle que la mesure de risque elle-même est la solution pour

minimiser la perte attendue. De même, si une telle fonction de perte existe, nous disons

qu’il s’agit d’une fonction de perte cohérente pour la mesure de risque considérée. Cette

propriété mathématique gagne en popularité dans le secteur bancaire tout en étant large-

ment utilisée par les gestionnaires de risques quantitatifs pour le backtesting des mesures

de risque standards de l’industrie comme la VaR ou plus récemment l’ES. Comme c’est le

cas pour l’ES, la Marginal Expected Shortfall (MES) n’est pas élicitable si l’on considère

la mesure de risque seule. Cependant, dans le Chapitre 4, nous montrons que la MES

est élicitable conjointement avec la VaR du rendement du marché. Plus précisément,

nous identifions une fonction de perte strictement cohérente pour le couple de mesures

de risque (VaR, MES). Notre cadre est ensuite étendu à toutes les mesures de risque

systémique qui peuvent être exprimées en fonds propres attendus conditionnels à une

crise financière, comme c’est le cas pour la SRISK par exemple. Ces mesures du risque

systémique sont largement utilisées par les universitaires et les régulateurs pour quantifier

dans quelle mesure une entité, qu’il s’agisse d’une banque, d’un fond spéculatif ou d’un

État, contribue à la vulnérabilité du système financier. Nous exploitons la fonction de

perte pour développer un M-estimateur semi-paramétrique pour la paire (VaR, MES).

Nous montrons la consistance de l’estimateur. Nous caractérisons également sa distribu-

tion asymptotique qui permet de modéliser ou d’effectuer des inférences statistiques pour

les indicateurs de risque systémique. Nous discutons également sur la façon d’effectuer

une comparaison de modèles et un backtesting pour les mesures de risque systémique en

exploitant la fonction de perte. Une petite étude empirique appliquée à quatre grandes

banques américaines est fournie pour souligner le mérite de notre cadre d’étude. Une
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avancée naturelle de ce travail serait de proposer une procédure de backtesting basée sur

les fonctions d’identification (dérivées de la fonction de perte) du couple (VaR, MES) afin

d’évaluer la validité des prévisions de MES.
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Résumé : Cette thèse contribue à la recherche
académique en économétrie et en gestion des
risques financiers. L’objectif est double : (i) quanti-
fier les risques financiers encourus par les institu-
tions financières et (ii) évaluer la validité des me-
sures de risque couramment utilisées dans l’indus-
trie financière ou par les régulateurs. Nous nous
concentrons sur trois types de risques financiers, (i)
le risque de crédit, (ii) le risque de marché et (iii) le
risque systémique. Dans les Chapitres 2 et 3, nous
développons de nouvelles méthodes de modélisation
et d’évaluation adaptées à la volatilité et à l’Expected
Shortfall (ES), habituellement utilisées pour mesu-
rer le risque de pertes en capital dans les porte-
feuilles d’investissement. Dans le Chapitre 4, nous
nous intéressons aux mesures du risque systémique
dont le but est d’identifier les institutions financières
qui contribuent le plus au risque global du système fi-
nancier.
Dans le Chapitre 2, nous développons une structure
de volatilité qui regroupe l’ensemble de la séquence
des rendements intra-journaliers en tant que co-
variables fonctionnelles. Contrairement au modèle
GARCH à variables exogènes déjà existant (GARCH-
X), notre approche permet de rendre compte de

toute l’information contenue dans les mouvements
de prix intra-journaliers en utilisant l’analyse des
données fonctionnelles. Le Chapitre 3 présente une
méthodologie économétrique pour tester la validité
des prévisions d’ES pour les portefeuilles de marché,
mesure à présent utilisée pour le calcul des exigences
de fonds propres pour le risque de marché suite à
l’adoption des accords de Bâle III par le Comité de
Bâle. Nous exploitons la relation entre l’ES et la Value-
at-Risk (VaR). L’approche proposée est cohérente
avec la recommandation du Comité de Bâle qui vise
à valider l’ES en examinant deux VaRs à des niveaux
de risque spécifiques. Dans le Chapitre 4, nous nous
intéressons à la propriété d’élicitabilité des mesures
de risque systémique construites à partir de données
de marchés. Une mesure de risque est élicitable s’il
existe une fonction de perte pour laquelle la me-
sure de risque est la quantité qui permet de mini-
miser la perte attendue. Nous identifions une fonc-
tion de perte strictement cohérente pour la Marginal
Expected Shortfall (MES) et la VaR du rendement
du marché conjointement et nous l’exploitons pour
développer un M-estimateur semi-paramétrique de ce
couple de mesures (VaR, MES).
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Abstract : This dissertation contributes to the acade-
mic research in econometrics and financial risk ma-
nagement. Our research’s goal is twofold: (i) to quan-
tify the financial risks incurred by financial institutions
and (ii) to assess the validity of the risk measures
commonly used in the financial industry or by regu-
lators. We focus on three kind of financial risks, (i)
credit risk, (ii) market risk, and (iii) systemic risk. In
chapters 2 and 3, we develop new methods for mo-
deling and backtesting the volatility and the Expected
Shortfall (ES), two measures typically used to quantify
the risk of incurred losses in investment portfolios. In
Chapter 4, we provide new estimation methods for the
systemic risk measures that are used to identify the fi-
nancial institutions contributing the most to the overall
risk in the financial system.
In Chapter 2, we develop a volatility structure that
groups the whole sequence of intraday returns as
functional covariates. Contrary to the well-known
GARCH model with exogenous variables (GARCH-
X), our approach makes possible to account for the

whole information contained in the intraday price mo-
vements via functional data analysis. Chapter 3 intro-
duces an econometric methodology to test for the va-
lidity of ES forecasts in market portfolios. This mea-
sure is now used to calculate the market risk capital
requirements following the adoption of the Basel III
accords by the Basel Committee on Banking Super-
vision (BCBS). Our method exploits the existing re-
lationship between ES and Value-at-Risk (VaR) and
complies - as a special case - with the BCBS recom-
mendation of verifying the VaR at two specific risk le-
vels. In Chapter 4, we focus on the elicitability pro-
perty for the market-based systemic risk measures. A
risk measure is said to be elicitable if there exists a
loss function such that the risk measure itself is the
solution to minimize the expected loss. We identify
a strictly consistent scoring function for the Marginal
Expected Shortfall (MES) and the VaR of the market
return jointly and we exploit the scoring function to de-
velop a semi-parametric M-estimator for the pair (VaR,
MES).
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