For a regular, non-critical, p-refinement of a cohomological cuspidal automorphic representation of GL 2 over a totally real number field, we prove a functional equation of its attached p-adic L-function. We obtain it from the interpolation formula between p-adic and complex L-functions and the functional equation of L-functions. We use this functional equation to prove the Trivial Zero Conjecture at the central critical point.

On the other hand, we develop a theory of overconvergent modular symbols with values in p-adic distributions on P 1 (Q p ) inspired by Stevens' overconvergent modular symbols and an idea of Colmez with the hope that one can obtain some functional equations of p-adic L-functions involving the transformation z → 1 z on P 1 (Q p ).

Sur les équations fonctionnelles des fonctions L p-adiques pour GL 2

Résumé

Pour un p-raffinement non-critique et régulier d'une représentation automorphe cuspidale cohomologique de GL 2 sur un corps de nombres totalement réel, nous prouvons l'équation fonctionnelle de sa fonction L p-adique attachée. Nous obtenons cela grâce à la formule d'interpolation reliant ses valeurs à la fonction L complexe et l'équation fonctionnelle de cette dernière. Comme application nous démontrons la Conjecture du Zéro Trivial au point critique central. D'autre part, nous développons une théorie de symboles modulaires surconvergents à valeurs dans des distributions p-adiques sur P 1 (Q p ) inspirée par les symboles modulaires surconvergents de Stevens et une idée de Colmez, dans l'espoir d'obtenir une preuve purement p-adique de l'équation fonctionnelle des fonctions L p-adiques, faisant intervenir la transformation z → 1 z sur P 1 (Q p ).
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 (4.2)] we can attach a p-adic L-function L p (π, •) which is a distribution on Gal p∞ . This p-adic L-function is the specialization of a multi-variable p-adic L-function L p ∈ D(Gal p∞ , O(X (π))), where X (π) is a family of non-critical p-refinements of cohomological cuspidal automorphic representations indexed by a neighborhood of (k, w) in the weight space (see the paragraph after Theorem 5.1.12).

Let St p denote the set of places v above p such that π v is a special representation. We put

We are ready to state our main theorem of the second part about the functional equation of p-adic Lfunctions attached to automorphic representations of GL 2 , which is a generalization of [BDJ, Theorem 6.4].

Main Theorem 0.0.3 (Theorem 5.3.5). Suppose π satisfies (2). Then the sign επ λ ⊗ω -1 of πλ is independent of the cohomological weight λ ∈ X (π). For any λ ∈ X (π), any continuous character f : Gal cyc → L × and any finite order character χ : Gal p∞ → L × , one has

We give an application of the above formula to the trivial zero conjecture. The cyclotomic p-adic L-function attached to π is defined as

The following result is a generalization of [BDJ, Theorem 7.1] under our less stringent hypothesis (2). CONTENTS Theorem 0.0.4 (Theorem 6.0.1). Suppose π satisfies (2). The p-adic L-function L p (π, s) has order of vanishing at least e = |E| at 2-w 2 and

where

The thesis is structured as follows. In the first chapter we recall the definition and basic properties of p-adic distributions on open compact subsets of Q d p , especially p-adic distributions on Z p and Z × p . In Chapter 2 we study p-adic distributions on P 1 (Q p ). Chapter 3 is devoted to overconvergent modular symbols with values in distributions on Z p or P 1 (Q p ), and the proof of Theorems 0.0.1, 0.0.2. In Chapter 4 we review p-adic L-functions attached to modular forms and the well-known functional equation of those functions (see Proposition 4.2.4). In Chapter 5 we prove our Main Theorem 0.0.3 about functional equation of p-adic L-functions attached to automorphic representations of GL 2 . Finally, Chapter 6 is devoted to prove Theorem 0.0.4 about the trivial zero conjecture at central critical points.

Notations

In this thesis, let p be a prime number. Let Qp denote the algebraic closure of the field Q p of p-adic rational numbers, and C p denotes the completion of Qp for p-adic norm. Let v p : C p → Q ∪ {+∞} be the normalized p-adic valuation such that v p (p) = 1, and denote by |•| p the corresponding p-adic norm on C p defined by |•| p = p -vp(•) . We fix an embedding ι p : Q → Qp . Let L denote a finite extension of Q p . For a ∈ Q p or C p and r ∈ |C × p | p , denote by D(a, r) (resp. B(a, r)) the closed (resp. open) disc of center a and radius r.
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Introduction

The theory of p-adic L-functions plays an important role in number theory. For a p-adic representation V of the absolute Galois group G Q such that V p = V |G Qp is semi-stable and V is critical in the sense of Deligne, let D ⊂ D st (V p ) be a regular submodule in the sense of Perrin-Riou [PR]. Coates and Perrin-Riou conjectured a p-adic L-function L p (V, D, s) satisfying an interpolation formula related to special values of the complex L-function attached to V with corrected Euler factors at p.

For a p-refinement π of an algebraic cuspidal automorphic representations π of a reductive group over a number field F , Iwasawa theory tries to relate the properties of the attached p-adic L-function L p (π, s) to the arithmetic of the restriction of V π to the p-adic cyclotomic extension of F , where V π is the conjectured p-adic Galois representation of G F attached to π. In the pioneer works of Amice-Vélu, Vishik and Mazur-Tate-Teitelbaum (see [AV], [Vis], [MTT]) they associated a p-adic L-function to normalized eigenforms of non-critical slope. These p-adic L-functions satisfy an interpolation formula related to special values of complex L-functions. The functional equation of p-adic L-functions is deduced from the functional equation of L-functions involving the twist by the matrix 1 -1 which corresponds to the transformation z → -1 z . For a modular elliptic curve E over Q, Mazur, Tate and Teitelbaum constructed in [MTT] a p-adic L-function L p (E, s) having a trivial zero at s = 1 if E has split multiplicative reduction at p. Moreover, they stated a p-adic analogue of the Birch-Swinnerton-Dyer conjecture relating the analytic properties of L p (E, s), namely the order of vanishing at s = 1 and the Fourier coefficients, and the arithmetic properties of E such as the rank of its rational points. After that, Stevens gave an another construction of p-adic L-functions attached to modular forms of non-critical slope using his theory of overconvergent modular symbols (see [START_REF] Pollack | Overconvergent modular symbols and p-adic L-functions[END_REF]). The theory of overconvergent modular symbols was generalized by Ash-Stevens and Urban to the theory of overconvergent cohomology in [START_REF]adic deformations of arithmetic cohomology[END_REF] and [Urb]. Barrera-Dimitrov-Jorza applied this idea in [BDJ] to construct p-adic L-functions for cuspidal automorphic representations of GL 2 over a totally real number field having an arbitrary cohomological weight.

The goal of this thesis is to study functional equations of p-adic L-functions attached to modular forms for both classical and Hilbert modular forms. A p-adic L-function is a p-adic distribution on certain p-adic space which is an open compact subset of Q d p for some d. This leads us to the study of p-adic distributions. While the most popular p-adic distributions are those on Z p or Z × p , one of our contributions is the study of p-adic distributions on P 1 (Q p ) inspired by an idea of Colmez. Contrary to Z p , the space P 1 (Q p ) admits the transformation z → -1 z occurring in the functional equation of L-functions, providing an additional motivation for the study of p-adic distributions on P 1 (Q p ).

Let L be a finite extension of Q p and k be an integer. We denote by A k (P 1 , L) the space of Lvalued functions on P 1 (Q p ) which are locally analytic on Q p and meromorphic at infinity with a pole of order ≤ k (see Definition 2.1.1). The space D k (P 1 , L) of L-valued distributions on P 1 (Q p ) is defined as the continuous L-dual of A k (P 1 , L) and is endowed with a right weight k action of GL 2 (Q p ) (see (2.5)). If k ≥ 0, let V † k (L) be the L-dual of the space P † k (L) of locally polynomial functions of degree ≤ k on P 1 (Q p ) with coefficients in L. The natural inclusion P † k (L) → A k (P 1 , L) induces the dual map ρ k : D k (P 1 , L) → V † k (L) which is equivariant for the action of GL 2 (Q p ). Stevens' overconvergent modular symbols are elements of the space Symb Γ0 (D k (Z p , L)) of modular symbols on a congruence subgroup Γ 0 ⊂ Γ 0 (p) with values in the space D k (Z p , L) of L-valued p-adic distributions on Z p (see §3.1.1 for the definition of abstract modular symbols). Here D k (Z p , L) is endowed with a right weight k action of a monoid Σ 0 (p) in SL 2 (Z) containing the group Γ 0 (p) and 1 p (see §1. where the map ext is the extension map of distributions, the map res is the composition of the restriction map of distributions from P 1 (Q p ) to P 1 (Q p )\Z p followed by the isomorphism of distributions on P 1 (Q p )\Z p and Z p induced by the transformation z → 1 pz . It turns out that the map ext is equivariant for the action of Σ 0 (p), so D(Z p ) is endowed with an another action of Σ 0 (p) for which the map res : D k (P 1 ) → D(Z p ) is Σ 0 (p)-equivariant. The exact sequence (1) induces the exact sequence of modular symbols:

0 → Symb Γ0 (D k (Z p )) ext → Symb Γ0 (D k (P 1 )) res → Symb Γ0 (D k (Z p )),
where the map ext is U p -equivariant. Then we can equip Symb Γ0 (D k (Z p )) a right operator V p for which the map res : Symb Γ0 (D k (P 1 )) → Symb Γ0 (D k (Z p )) is equivariant for the action of U p on the left space and V p on the right space. It turns out that V p is induced by the double coset Γ 0 p 0 0 1 Γ 0 . Although p 0 0 1 / ∈ Σ 0 (p), the action of p 0 0 1 on D k (Z p ) is defined similarly to that of Σ 0 (p) (see 3.5).

For a rational number h ∈ Q we use the superscript ≤ h (resp. V p ≤ h) to denote the subspace of modular symbols of U p (resp. V p )-slope ≤ h, which is the subspace where every eigenvalue of the corresponding operator has p-adic valuation ≤ h (see Definition 3.1.2). We define similarly if ≤ is replaced by <. The overconvergent modular symbols with values in D k (Z p , L) and D k (P 1 , L) are related by the following theorem: Theorem 0.0.1 (Corollary 3.3.11). For k ∈ Z\{0}, there is an exact sequence of modular symbols:

0 → Symb Γ0 (D k (Z p , L)) → Symb Γ0 (D k (P 1 , L)) → Symb Γ0 (D k (Z p , L)) → 0
which is equivariant for the U p -action on the first two spaces and the V p -action on the last space. The restriction on the ≤ h-slope subspace is also exact: 0 → Symb Γ0 (D k (Z p , L)) ≤h → Symb Γ0 (D k (P 1 , L)) ≤h → Symb Γ0 (D k (Z p , L)) Vp≤h → 0, and similar if ≤ h is replaced by < h.

If k = 0, the last space 0 in the above exact sequences is replaced by L.

We construct subspaces of Symb Γ0 (D k (P 1 , L)) which are finite dimensional and U p -stable. Let D(∞, 1) = {z ∈ P 1 (Q p ), v p (z) ≤ -1}, where v p is the usual p-adic valuation. Let D k (D(∞, 1), L) ⊂ D k (P 1 , L) be the subspace of distributions supported in D(∞, 1), endowed with the induced weight k action of matrices. There is also an operator V p acting on Symb Γ0 (D k (D(∞, 1), L)) defined as above.

For h, h ′ ∈ Q, denote by Symb Γ0 (D k (P 1 , L)) (Vp≤h ′ ) the subspace of Symb Γ0 (D k (P 1 , L)) consisting of modular symbols Φ such that the restriction Φ |D(∞,1) ∈ Symb Γ0 (D k (D(∞, 1), L)) has V p -slope ≤ h ′ , and putting

Symb Γ0 (D k (P 1 , L)) Up≤h,(Vp≤h ′ ) = Symb Γ0 (D k (P 1 , L)) Up≤h ∩ Symb Γ0 (D k (P 1 , L)) (Vp≤h ′ ) .
Here is the main theorem of the first part about overconvergent modular symbols: Main Theorem 0.0.2 (Theorem 3.3.23). The subspace Symb Γ0 (D k (P 1 )) Up≤h,(Vp≤h ′ ) of Symb Γ0 (D k (P 1 )) is finite dimensional and U p -stable for any k ∈ Z and h, h ′ ∈ Q, and similar if ≤ is replaced by <.

Moreover, if k ∈ N * and 0 ≤ h ≤ k + 1, there is an exact sequence:

0 → Symb Γ0 (D k (Z p , L)) ≤h → Symb Γ0 (D k (P 1 , L)) Up≤h,(Vp≤h ′ ) → Symb Γ0 (D k (Z p , L)) k+1-h≤Up≤h ′ → 0,
while if k = 0 the last space 0 is replaced by L.

In particular, there is an exact sequence:

0 → Symb Γ0 (D k (Z p , L)) ≤k+1 → Symb Γ0 (D k (P 1 , L)) Up≤k+1,(Vp≤k+1) → Symb Γ0 (D k (Z p , L)) ≤k+1 → 0
for any k ∈ N * and if k = 0 the last space 0 is replaced by L.

Meanwhile try to improve the interpolation approach, we plan to pursue this result to construct and prove functional equations of p-adic L-functions in future works. The exact sequence in the above theorem can be seen as an analogue of Stevens' control theorem for P 1 (Q p ).

The second part of the thesis is devoted to prove the functional equation of p-adic L-functions by using the interpolation formula and prove the trivial zero conjecture at central critical points as an application.

Let F be a totally real number field of different d. For each fractional ideal f of F , we choose an element ϖ f in the ring of finite adeles of F such that ϖ vf = ϖ v • ϖ f for any finite place v, where ϖ v is a uniformizer of the ring of integers O v of F v . For each finite place v of F dividing a prime number l, denote by q v the residue degree of v and δ v the valuation at v of the different d, and consider the additive character ψ v : F v → C × given by the composition of the trace map from F v to Q l and the character ψ 0,l : Q l → C × given by the value of exp(2πi•) at the l-non integer part of Q l . More explicitly,

ψ 0,l +∞ i=n a i l i = e 2πi -1 i=n ail i
, where n ∈ Z, a i ∈ N, 0 ≤ a i < l.

Let Gal p∞ be the Galois group of the maximal abelian extension of F which is unramified outside p and ∞. Denote by Gal cyc the Galois group of the cyclotomic Z p -extension F cyc ⊂ F (µ p ∞ ) of F . Let ω p be the Teichmüller lift of the cyclotomic character χ cyc : Gal p∞ → Gal(F (µ p ∞ )/F ) → Z × p . Then the character ⟨•⟩ p = χ cyc ω -1 p : Gal p∞ → 1 + 2pZ p factors through Gal cyc . Let π be a cuspidal automorphic representation of GL 2 over F of tame conductor n and cohomological weight (k, w) := w+kσ-2 2 , w+2-kσ 2 σ∈Σ ∈ (Z 2 ) Σ with Σ = Hom(F, C), where k σ ≥ 2 and k σ ≡ w (mod 2)

for any σ ∈ Σ. We assume further that π has central character ω π = ω 2 | • | w F with w even, and π v is not supercuspidal for all v|p,

where ω is a finite order character of Gal p∞ . The condition on the central character of π implies that the twist π ⊗ ω p in Section 1.1. In Section 1.2 we investigate distributions on Z p which give the foundations for our consideration of distributions on P 1 (Q p ) in Chapter 2.

Generalities

Throughout this section, let X be an open compact subset of Q d p for d ∈ N * . Roughly speaking, a p-adic distribution on X is the continuous dual of the space of locally analytic functions on X.

For a finite extension L of Q p , let A(X, L) denote the space of locally analytic functions on X with values in L. If the role of L is less important, we will omit it from notations, e.g., we write simply A(X) for A(X, L). The set A(X) is naturally an L-vector space.

For each r ∈ |C × p | p = p Q , putting

D[X, r] = {z ∈ C d p , ∃ a ∈ X such that |z -a| p ≤ r},
where the norm |•| p on Q d p is the maximal of the norms of components. Then D[X, r] is the union in C d p of closed polydiscs of radius r and center in X. Denote by A(X) [r] the space of functions f ∈ A(X) such that for every a ∈ X, the function f can be extended to a power series

i∈N d α i (a)(z 1 -a 1 ) i1 ...(z d -a d ) i d (1.1)
converging on the closed polydisc D(a, r)(C p ) = {z ∈ C d p , |z -a| p ≤ r} in C d p , where α i (a) ∈ L. In other words, f ∈ A(X) [r] if f can be extended to an analytic function on D[X, r]. In particular, if f ∈ A(X) [r], then f is analytic on every closed polydisc of radius r in X. We say that f is r-analytic on

X if f ∈ A(X)[r].
Since X is compact, D[X, r] is covered by finitely many closed polydiscs of radius r and center in X. We define the supremum norm ∥ • ∥ r on A(X) [r] by

∥f ∥ r = sup z∈D[X,r] |f (z)| p .
(1.2)

If f has expansion (1.1) on each closed polydisc D(a, r)(C p ) with a ∈ X, then it is well-known that ∥f ∥ r = sup a∈X,i∈N d |α i (a)| p r i1+...+i d .

(1.3)

The space A(X) [r] endowed with this norm is an L-Banach algebra. We denote by D(X) [r] the continuous L-dual of A(X) [r], endowed with the dual norm which we also denote by ∥•∥ r . Then D(X) [r] has the structure of Banach L-vector space.

If f ∈ A(X)[r 1 ] and r 1 > r 2 in |C × p | p , since f is analytic on D[X, r 1 ], its restriction on D[X, r 2 ] is also analytic, so f ∈ A(X)[r 2 ]. We get a natural map A(X)[r 1 ] → A(X)[r 2 ]. This map is clearly continuous, injective and norm-decreasing, hence it induces the continuous dual map D(X)[r 2 ] → D(X)[r 1 ] which is also norm-decreasing.

Lemma 1.1.1. For an open compact subset X of Q d p and for any r 1 > r 2 in |C × p | p , the inclusion map A(X)[r 1 ] → A(X)[r 2 ] has dense image, so the dual map D(X)[r 2 ] → D(X)[r 1 ] is injective.

Proof. Since X is open compact in Q d p , we can write X as a disjoint union of finitely many closed polydiscs X i of radius r 1 in Q d p . A function in A(X)[r 1 ] is then determined uniquely by its restrictions on these polydiscs X i . So the Banach space A(X)[r 1 ] is homeomorphic to the product of A(X i )[r 1 ]'s. Hence we can assume that X is a closed polydisc of radius r 1 in Q d p . By affine transformations, every bounded closed polydisc in Q d p is homeomorphic to Z d p , which is the unit closed polydisc. Therefore, we can assume that r 1 = 1 and X = Z d p . Since A(Z d p ) [1] contains all polynomials, it suffices to show that the set of polynomials in d variables is dense in

A(Z d p )[r 2 ]. Let f ∈ A(Z d p )[r 2 ]. Regarding f as a function on D[Z d p , r 2 ] = D[Z p , r 2 ] d and writing f (z) = a=(a1,...,a d ) (1 D(a,r2)(Cp) f a )(z) = a=(a1,...,a d ) 1 D(a1,r2)(Cp) (z 1 ) • • • 1 D(a d ,r2)(Cp) (z d )f a (z 1 , ..., z d ),
where a runs through a finite set of representatives of Z d p for which the discs D(a, r 2 ) cover Z d p , and f a is the restriction of f on D(a, r 2 )(C p ). By (1.1), each function f a can be approximated by polynomials in the variables z 1 , ..., z d which are linear combinations of products of the form (z [START_REF] Colmez | Fonctions d'une variable p-adique[END_REF]Théorème I.4.7] says that the binomial functions z

1 -a 1 ) n1 • • • (z d -a d ) n d for n 1 , ..., n d ∈ N. Therefore, f is the limit in A(Z d p )[r 2 ] of a sequence of functions which are linear combinations of products of the form 1 D(a1,r2)(Cp) (z 1 )(z 1 -a 1 ) n1 • • • 1 D(a d ,r2)(Cp) (z d )(z d -a d ) n d . Since the space of polynomials in one variable is dense in A(Z p )[r 2 ] for all r 2 ∈ |C × p | p = p Q (if r 2 ∈ p -N , a result of Amice proved in
→ z n , n ∈ N form an orthogonal basis of A(Z p )[r 2 ]), we deduce that each function 1 D(ai,r2)(Cp) (z i )(z i -a i ) ni can be approximated by polynomials in one variable. Therefore, f is the limit in A(Z d p )[r 2 ] of a sequence of polynomials in d variables. The injectivity of the dual map D(X)[r 2 ] → D(X)[r 1 ] is clear. Lemma 1.1.2. For an open compact subset X of Q d p , the inclusion map A(X)[r 1 ] → A(X)[r 2 ] is compact for any r 1 > r 2 in |C × p | p . The dual map D(X)[r 2 ] → D(X)[r 1 ] is also compact.
Proof. We can assume that d = 1. The compactness of the map on functions follows from [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Lemma V.1.20]. The compactness of the map on distributions is implied from Schauder's lemma (see [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Lemma 16.4]).

Since X is compact, the space A(X) is the increasing union of the Banach spaces A(X)[r] when r decreases to 0, we then equip A(X) the locally convex final topology (see [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]§5E ]). This is the finest locally convex topology for which all the inclusion maps A(X)[r] → A(X) are continuous.

Definition 1.1.3. Let D(X) denote the continuous L-dual of A(X). We call it the space of p-adic distributions on X with values in L. The value of a distribution µ ∈ D(X) at a function f ∈ A(X) is also written by X f (z)µ(z) or X f (z)dµ(z). If Y ⊂ X is an open compact subset and if µ is a distribution on X, we denote by µ |Y the restriction of µ on Y , i.e., µ |Y is the distribution on Y given by Y f (z)µ |Y (z) := X 1 Y (z)f (z)µ(z) for f ∈ A(Y ), where 1 Y is the characteristic function of Y . The inclusion maps A(X)[r] → A(X) induce the dual maps from D(X) to D(X)[r], so D(X) is endowed with a family of norms {∥•∥ r } for r ∈ |C × p | p .
Proposition 1.1.4. The family of norms {∥•∥ r } makes D(X) into a Fréchet space. Moreover, D(X) is canonically isomorphic (as topological vector spaces) to the projective limit of D(X)[r]'s endowed with its locally convex inductive limit topology. The natural maps

D(X) → D(X)[r 2 ] → D(X)[r 1 ] are injective for any r 1 > r 2 in |C × p | p .
Proof. The first two statements are direct applications of the conclusions ii., iii. in [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Prop. 16.10].

The assumptions of that proposition are satisfied since A(X) is an increasing union of A(X)[r]'s when r decreases to 0, and the inclusion maps

A(X)[r 1 ] → A(X)[r 2 ] for r 1 > r 2 are all compact by Lemma 1.1.2. The natural map D(X)[r 2 ] → D(X)[r 1 ] for r 1 > r 2 is injective by Lemma 1.1.1. Since D(X) is the projective limit of D(X)[r]'s for r ∈ |C ×
p | p and the transition maps are injective, the map D(X) → D(X)[r] is injective for any r.

Definition 1.1.5. For u ≥ 0, a distribution µ ∈ D(X) is said to be u-admissible (or u-tempered) or of order (of growth) ≤ u if there exists a constant C > 0 such that ∥µ∥ r ≤ Cr -u as r → 0 + . Equivalently, µ has order ≤ u if there is C > 0 such that for any r ∈ |C × p | p with r ≤ 1 and any f ∈ A(X)[r], we have

|µ(f )| p ≤ Cr -u ∥f ∥ r .
(1.4)

A distribution of order ≤ 0 is called a measure. The set of u-admissible distributions on X is denoted by D(X) ≤u .

Lemma 1.1.6. A distribution µ ∈ D(X) has order ≤ u if and only if there exists C > 0 such that µ satisfies (1.4) for any r ∈ p -N and any f ∈ A(X) [r].

Proof. Suppose µ satisfies (1.4) for any r ∈ p -N . Consider r ∈ |C × p | p with r ≤ 1. Take n ∈ N such that p -n-1 < r ≤ p -n . If f ∈ A(X)[r], then f ∈ A(X)[p -n-1 ], so |µ(f )| p ≤ Cp (n+1)u ∥f ∥ p -n-1 ≤ Cp (n+1)u ∥f ∥ r ≤ Cp u r -u ∥f ∥ r
(the first inequality follows from (1.4)). Therefore, ∥µ∥ r ≤ Cp u r -u for any r ≤ 1, so µ has order ≤ u.

p-adic distributions on Z p

In this section we turn our attention to distributions on Z p which is an open compact subset of Q p . We introduce an action of the monoid Σ 0 (p) on distributions in Subsection 1.2.1. In Subsection 1.2.2, we discuss admissible distributions and prove an useful lemma on a criterion for the vanishing of admissible distributions on Z × p which will be used in the proof of the functional equation of p-adic L-functions attached to automorphic representations in Chapter 5 (see Lemma 1.2.5). The rest of the section is devoted to the Amice-Vélu and Mellin transforms of distributions on Z p .

In this section let k be an integer .

Actions of Σ 0 (p)

We set

Σ 0 (p) = γ = a b c d ∈ M 2 (Z p ) : p ∤ a, p | c, ad -bc ̸ = 0 . For a matrix γ = a b c d ∈ GL 2 (Q p ), we put γ * = det(γ) • γ -1 = d -b -c a . Define the right weight k action of Σ * 0 (p) = {γ * , γ ∈ Σ 0 (p)} on A(Z p ) by f | k γ * (z) = (a -cz) k f dz -b a -cz , (1.5)
where γ = a b c d ∈ Σ 0 (p) and f ∈ A(Z p ). Note that a -cz ∈ Z × p since p|c and p ̸ | a. Then Σ 0 (p) acts on A(Z p ) on the left and on D(Z p ) on the right, given by

γ • k f = f | k γ * = (a -cz) k f dz -b a -cz , (1.6) µ | k γ (f ) = µ(γ • k f ) = µ(f | k γ * ) = µ (a -cz) k f dz -b a -cz , (1.7) where µ ∈ D(Z p ), f ∈ A(Z p ), γ = a b c d ∈ Σ 0 (p). We denote A k (Z p ) (resp. D k (Z p )) the space A(Z p )
(resp. D(Z p )) endowed with the above weight k action of Σ 0 (p). For k ∈ N, let P k denote the space of polynomials of degree ≤ k in one variable with coefficients in L, and denote by V k its L-dual. Since P k is embedded in A k (Z p ) which is stable by the action (1.6) of Σ 0 (p), the natural map D k (Z p ) → V k given by the restriction of distributions to P k is Σ 0 (p)-equivariant, where V k is endowed with action (1.7). Note that the action of Σ 0 (p) on P k and V k can be extended to an action of GL 2 (Q p ).

Proposition 1.2.1 ( [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Prop. and Def. V.4.3]). The formula (1.6) defines a continuous weight k action of Σ 0 (p) on A(Z p )[r] for any r ∈ |C × p | p . If p n divides exactly det γ and p n r < p, then for any

f ∈ A(Z p )[r], the function γ • k f belongs to A(Z p )[p n r]. Moreover, ∥γ • k f ∥ p n r = ∥f ∥ r . In particular, if det γ = 1 and r < p, then γ acts by isometry on A(Z p )[r]. We denote by A k (Z p )[r] the space A(Z p )[r] endowed with this weight k action of Σ 0 (p). Corollary 1.2.2 ([Bel, Proposition V.4.5]). The formula (1.7) defines a continuous weight k action of Σ 0 (p) on D(Z p )[r] for any r ∈ |C × p | p . Assume r < p. Let µ ∈ D(Z p )[r], γ ∈ Σ 0 (p) such that p n | det γ. Then µ | k γ ∈ D(Z p )[r/p n ]. If p n divides exactly det γ, then moreover µ | k γ r/p n = ∥µ∥ r . In particular, if det γ = 1, then γ acts by isometry on D(Z p )[r]. We denote by D k (Z p )[r] the space D(Z p )[r] endowed with this weight k action of Σ 0 (p). Remark 1.2.3. For r 1 > r 2 in |C × p | p , the inclusion maps A(Z p )[r 1 ] → A(Z p )[r 2 ] → A(Z p ) and its duals D(Z p ) → D(Z p )[r 2 ] → D(Z p )[r 1 ] are Σ 0 (p)-equivariant.

Admissible distributions

We now investigate more deeply admissible distributions on Z p . Let u ≥ 0 and given a distribution µ ∈ D(Z p ) of order ≤ u (see Definition 1.1.5). For any a ∈ Z p , n, j ∈ N, in (1.4) if we take f to be the

function 1 a+p n Zp • (z -a) j which belongs to A(Z p )[p -n ], then there exists C > 0 such that µ(1 a+p n Zp • (z -a) j ) p ≤ Cp n(u-j) .
Conversely, if there is C > 0 such that µ satisfies this inequality for any a ∈ Z p , n, j ∈ N, then µ has order ≤ u.

The following result says that an admissible distribution on Z p is uniquely determined by its values on locally polynomial functions of bounded degree (the bound depends only on the order of distribution).

Theorem 1.2.4 (Vishik, Amice-Vélu). Let L be a finite extension of Q p and u ≥ 0. i) Let µ ∈ D(Z p ) be a distribution of order ≤ u with values in L and N be an integer greater or equal to the integral part of u. Then µ is uniquely determined by the linear forms for a ∈ Z p and n ∈ N:

i µ,a+p n Zp : P N (L) → L P → a+p n Zp P (z)dµ(z).
Here P N (L) is the space of polynomials of degree less than N with coefficients in L.

ii) Conversely, suppose we are given, for every disc a+p n Z p in Z p , a linear form i a+p n Zp : P N (L) → L satisfying the additivity relation (for all a ∈ Z p , n ∈ N):

i a+p n Zp = p-1 i=0 i a+p n i+p n+1 Zp ,
and suppose there exist constants C > 0 and u ≥ 0 such that for every a ∈ Z p , j, n ∈ N with j ≤ N :

i a+p n Zp (z -a) j p ≤ Cp n(u-j) .
Then there exists a unique distribution µ on Z p of order ≤ u such that i µ,a+p n Zp = i a+p n Zp , and for any n ∈ N one has

∥µ∥ p -n ≤ Cp nu .
Proof. See [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Theorem V.2.13].

We now prove a useful lemma about a criterion for the vanishing of admissible distributions on Z × p , this is a generalization of [START_REF] Vishik | Nonarchimedean measures connected with Dirichlet series[END_REF]Lemma 2.10] (compare with the part i) of the above theorem).

Lemma 1.2.5. Let u ≥ 0, let µ be a distribution of order ≤ u on Z × p such that µ(χz j ) = 0 for any integer 0 ≤ j ≤ u and for all but finitely many Dirichlet characters χ :

Z × p → C × p . Then µ = 0.
Proof. Denote k = [u] the integer part of u. Suppose that µ(χz j ) = 0 for 0 ≤ j ≤ k and for all characters χ of conductor ≥ p n0+1 for some n 0 ∈ N. Then for any 0 ≤ j ≤ k and any n ≥ n 0 , we have

χ∈(Z/p n Z) ∨ µ(χz j ) = cond(χ)≤p n µ(χz j ) = cond(χ)≤p n 0 µ(χz j ) = χ∈(Z/p n 0 Z) ∨ µ(χz j ), (1.8)
where (Z/p n Z) ∨ is the set of characters on (Z/p n Z) × with values in C × p , and similar for (Z/p n0 Z) ∨ . On the other hand,

χ∈(Z/p n Z) ∨ µ(χz j ) = µ χ∈(Z/p n Z) ∨ χz j = µ χ∈(Z/p n Z) ∨ χ z j = µ p n-1 (p -1)1 1+p n Zp • z j since χ∈(Z/p n Z) ∨ χ(z) = 0 if z ̸ ≡ 1(mod p n ) and χ∈(Z/p n Z) ∨ χ(1) = |(Z/p n Z) × | = p n-1 (p -1). So for any n ≥ n 0 we obtain p n-1 (p -1)µ 1 1+p n Zp • z j = p n0-1 (p -1)µ 1 1+p n 0 Zp • z j , hence µ 1 1+p n Zp • z j = p n0-n µ 1 1+p n 0 Zp • z j for any n ≥ n 0 . For each a ∈ Z × p , since µ χ z a z j = χ(a) -1 µ(χz j ) = 0 if cond(χ) > p n0 , we replace χ by χ z a in (1.8) to get µ 1 a+p n Zp • z j = p n0-n µ 1 a+p n 0 Zp • z j (1.9)
for any n ≥ n 0 and 0 ≤ j ≤ k.

Since µ has order ≤ u, there exists a constant C > 0 such that for any a ∈ Z × p and n, j ∈ N: -j) .

|µ(1 a+p n Zp • (z -a) j )| p ≤ Cp n(u
Take j = k, we have

|µ(1 a+p n Zp • (z -a) k )| p ≤ Cp n(u-k) .
Moreover, for any a ∈ Z × p and n ≥ n 0 , we have

µ 1 a+p n Zp • (z -a) k = µ 1 a+p n Zp k j=0 k j (-a) k-j z j = k j=0 k j (-a) k-j p n0-n µ 1 a+p n 0 Zp • z j (by (1.9)) = p n0-n µ 1 a+p n 0 Zp • (z -a) k . So |µ(1 a+p n 0 Zp • (z -a) k )| p ≤ Cp n0+n(u-k-1) for any a ∈ Z × p and n ≥ n 0 . Since u -k -1 < 0, we infer that µ 1 a+p n 0 Zp • (z -a) k = 0 for any a ∈ Z × p . Replace a by a + p n0 b for b ∈ Z p with the note that a + p n0 b + p n0 Z p = a + p n0 Z p , we obtain µ 1 a+p n 0 Zp • (z -a -p n0 b) k = 0. Therefore, 0 = µ 1 a+p n 0 Zp k j=0 k j (-p n0 b) j (z -a) k-j = k j=0 k j (-p n0 ) j µ 1 a+p n 0 Zp • (z -a) k-j • b j 1.2. P -ADIC DISTRIBUTIONS ON Z P for any b ∈ Z p . Since the polynomial k j=0 k j (-p n0 ) j µ 1 a+p n 0 Zp • (z -a) k-j X j has infinitely many zeros X ∈ Z p , it must be zero. We deduce that µ 1 a+p n 0 Zp • (z -a) j = 0
for any a ∈ Z × p and 0 ≤ j ≤ k, so µ 1 a+p n 0 Zp • z j = 0 for any a ∈ Z × p and 0 ≤ j ≤ k since z j is a linear combination of (z -a) i for 0 ≤ i ≤ j. By (1.9), we obtain µ 1 a+p n Zp • z j = 0 for any a ∈ Z × p , n ≥ n 0 and 0 ≤ j ≤ k, hence for any n ∈ N since every characteristic function 1 a+p n Zp for 0 ≤ n < n 0 is the sum of characteristic functions of smaller discs b + p m Z p for m ≥ n 0 . Therefore, µ vanishes on the space of locally polynomial functions of degree ≤ k on Z × p . Since µ has order ≤ u, we conclude that µ = 0 by Theorem 1.2.4i).

Amice transform

Given µ ∈ D(Z p ), we associate its Amice transform A µ (T ) which is a formal power series defined by

A µ (T ) = +∞ n=0 Zp z n dµ(z) T n = Zp (1 + T ) z dµ(z).
We now describe explicitly the set of Amice transforms of all elements in D(Z p ).

Denote by R the L-algebra of formal power series with coefficients in L which converge on the open unit disc of C p . Proposition 1.2.6. The map µ → A µ (T ) is an isomorphism of L-vector spaces D(Z p ) and R.

Proof. Given µ ∈ D(Z p ), we prove A µ (T ) ∈ R. Let T 0 ∈ C p such that |T 0 | p < 1, then v p (T 0 ) > 0. Take h ∈ N such that v p (T 0 ) > 1 p h (p-1) . For n ∈ N, the binomial function z → z n has p -h -norm [ n p h ]! -1 p
by [START_REF] Colmez | Fonctions d'une variable p-adique[END_REF]Théorème I.4.7], where [•] denotes the integer part. In the view of µ as a distribution in D(Z p )[p -h ], there exists C > 0 such that |µ(f

)| p ≤ C∥f ∥ p -h for any f ∈ A(Z p )[p -h ]. Therefore, Zp z n dµ(z) p = µ z n p ≤ C z n p -h = C n p h ! -1 p = Cp vp [ n p h ]! . Since v p [ n p h ]! = [ n p h ]-Sp [ n p h ] p-1 ≤ n p h (p-1) with S p [ n p h ] is the sum of digits of expansion of [ n p h ] in the base p, we obtain Zp z n dµ(z) p ≤ Cp n p h (p-1) . So Zp z n dµ(z) T n 0 p ≤ Cp n p h (p-1) |T 0 | n p = Cp n 1 p h (p-1) -vp(T0) -→ n→+∞ 0, hence A µ (T ) converges at T 0 . We conclude that A µ (T ) ∈ R.
For each h ∈ N the binomial functions z n with n ∈ N form an orthogonal basis of A(Z p )[p -h ] by ibid., so µ is determined by its values at these functions. Hence the map µ → A µ (T ) is injective.

Conversely, given an element

A(T ) = +∞ n=0 a n T n ∈ R, we prove that the linear form µ A on A(Z p )
given by µ A z n = a n for each n ∈ N is a distribution, i.e., µ A is continuous on A(Z p ). Since A(Z p ) has the locally convex final topology induced by the inclusion maps

A(Z p )[r] → A(Z p ) for r ∈ |C × p | p , it suffices to show that µ A is continuous on A(Z p )[p -h ] for any h ∈ N. Since the set of functions [ n p h ]! z n for n ∈ N is an orthonormal basis of A(Z p )[p -h
] by ibid., we need to show the existence of a constant C > 0 (depends on h) such that

µ A n p h ! z n p = n p h ! p |a n | p ≤ C
1.2. P -ADIC DISTRIBUTIONS ON Z P for all n ∈ N. This is equivalent to

|a n | p ≤ C n p h ! -1 p = Cp [ n p h ]-Sp ([ n p h ]) p-1
.

(1.10)

Since the formal power series

+∞ n=0 a n T n converges in the open unit disc of C p , for any r ∈ |C × p | p with r < 1, we have |a n | p • r n → 0 as n → +∞, so |a n | p = o(r -n ) for any r < 1. Take r ∈ |C × p | p such that 1 < r -1 < p 1 2 1 p h (p-1)
, we deduce the existence of a constant C satisfying (1.10).

We now find the set of Amice transforms of admissible distributions on Z p . For u ≥ 0, denote by

R ≤u ⊂ R the subset consisting of formal power series +∞ n=0 a n T n such that |a n | p = O(n u ). Proposition 1.2.7. A distribution µ ∈ D(Z p ) is of order ≤ u if and only if its Amice transform belongs to R ≤u .
Proof. Let µ ∈ D(Z p ). By Lemma 1.1.6 and [START_REF] Colmez | Fonctions d'une variable p-adique[END_REF]Théorème I.4.7], µ has order ≤ u if and only if there exists C > 0 such that for any n, h ∈ N:

µ n p h ! z n p ≤ Cp hu . (1.11) Suppose µ has order ≤ u. Then there is C > 0 such that µ z n p ≤ C [ n p h ]! -1 p p hu = Cp [ n p h ]-Sp ([ n p h ]) p-1 p hu ≤ Cp n p h (p-1) +hu for any n, h ∈ N. Take h = [ log n log p ] we infer that µ z n p = O(n u ). Therefore, A µ (T ) ∈ R ≤u . Conversely, suppose A µ (T ) ∈ R ≤u . Take C 1 > 0 such that µ z n p ≤ C 1 n u for all n ∈ N. The real function x ∈ R + → g(x) = n 2x(p-1) + u log x
log p attains its minimum at x = n log p 2u(p-1) with the value

u log n log p + C 2 for C 2 = u log p + u log p [log log p -log(2u(p -1))]. For n, h ∈ N, we have µ n p h ! z n p ≤ C 1 n p h ! p • n u = C 1 • p - [ n p h ]-Sp ([ n p h ]) p-1 n u ≤ C 1 • p - n p h -1-Sp ([ n p h ]) p-1 n u = C 1 • p 1 p-1 • p - n 2p h (p-1) • p Sp([ n p h ])-n 2p h p-1 • p u log n log p = C 1 • p 1 p-1 • p Sp ([ n p h ])-n 2p h p-1 • p uh-g(p h )+u log n log p ≤ C 1 • p 1 p-1 • p Sp ([ n p h ])-n 2p h p-1 • p uh-C2
(the last inequality comes from the fact

g(p h ) ≥ u log n log p + C 2 for any h ∈ N). Since S p (a) -a 2 ≤ p-1 2 for any a ∈ N, we get µ n p h ! z n p ≤ Cp hu with C = C 1 • p 1 p-1 + 1 2 -C2
, for any n, h ∈ N. Since µ satisfies (1.11), it has order ≤ u.

Mellin transform

We now study the Z × p -part (i.e. the restriction to Z × p ) of distributions on Z p . Since Z × p is compact and abelian, any locally analytic function on Z × p is an infinite linear combination of characters Z × p → C × p , so the restriction to Z × p of a distribution on Z p is uniquely determined by its values on the set of characters

Z × p → C × p .
Definition 1.2.8. The (p-adic) weight space W is the rigid analytic space Hom cont (Z × p , G m ) of continuous group homomorphisms from Z × p to the multiplicative group G m . If A is a Banach algebra over Q p , the set of A-points of W is given by

W(A) = Hom cont (Z × p , A × ).
1.2. P -ADIC DISTRIBUTIONS ON Z P

We describe the rigid analytic structure of W by considering its C p -points. Let q = p if p ̸ = 2 and q = 4 if p = 2. There is a canonical isomorphism

Z × p ∼ = (Z/qZ) × × (1 + qZ p ) z → (ω(z), ⟨z⟩ p ),
where ω(z) is the Teichmüller lift of z mod p, that is the unique element in Z × p congruent to z modulo p such that ω(z) ϕ(q) = 1, and ⟨z⟩ p = z/ω(z).

From this isomorphism, every continuous character χ : Z × p → C × p is given by a character χ 1 : (Z/qZ) × → C × p and a continuous character χ 2 : 1 + qZ p → C × p . There are finitely many choices of χ 1 . We consider χ 2 . The multiplicative group 1 + qZ p is isomorphic to the additive group Z p by the p-adic logarithm map log p , so 1 + qZ p is procyclic with a generator γ. Hence χ 2 is determined uniquely by its image at γ. Since χ 2 is continuous and γ p n → 1 as n → +∞, it follows that χ 2 (γ) p n → 1 and this condition is equivalent to |χ 2 (γ) -1| p < 1 (see [START_REF] Schikhof | Ultrametric calculus: An introduction to p-adic analysis[END_REF]Theorem 32.2]). So χ 2 corresponds to an element in the open disc B(1, 1)(C p ). Therefore, W(C p ) is the finite disjoint union of components indexed by characters (Z/qZ) × → C × p , each of them is homeomorphic to B(1, 1)(C p ). This identification depends on the choice of uniformizer γ ∈ 1 + qZ p .

Lemma 1.2.9 ( [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Theorem V.3.4] 

if χ ∈ W(L) = Hom cont (Z × p , L × ), putting M µ (χ) = Z × p χ(z)dµ |Z × p (z).
We say that a distribution µ ∈ D(Z p ) has support in

Z × p if µ = µ |Z × p , i.e. µ |pZp = 0.
The following result says that the map µ → M µ gives a characterization of distributions on Z p supported in Z × p . Proposition 1.2.11 (Vishik, Amice-Vélu). The p-adic Mellin transform gives a homeomorphism of Fréchet spaces between the space of L-valued distributions on Z p with support in Z × p and the space R ′ of L-analytic functions on the weight space W(L).

Proof. This is Proposition II.2.2 in [AV], we explain here why Mellin transforms are analytic functions on the weight space. Let µ ∈ D(Z p ) with support in Z × p . In the view of the rigid analytic structure of W, consider an arbitrary component B(1, 1)(L) of W(L) indexed by a character κ : (Z/qZ) × → L × , for each element x belonging to this component, denote by χ x the unique character 1 + qZ p → L × given by χ x (γ) = x, where γ is a fixed generator of 1 + qZ p . Consider the function

x ∈ B(1, 1)(L) → M µ (x) = Z × p (κχ x )(z)dµ |Z × p (z). For every R ∈ |C × p | p such that R < 1, we show that M µ (x) is analytic on the closed disc D(1, R) ⊂ L.
We apply the following lemma.

Lemma 1.2.12. The expression exp p (log p (x)log p (z)/log p (γ)) defines an analytic function in two vari-

ables x ∈ L × , z ∈ Z × p such that |x-1| p < 1, |z-1| p < 1, |log p (x)log p (z)| p < p -1/(p-1) |log p (γ)| p .
Moreover, for x fixed in L satisfying |x -1| p < 1, we get an analytic function in z which equals χ x for z ∈ Z × p sufficiently close to 1.

Proof. See the proof of [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Theorem V.3.4].

From this lemma, we deduce that the function (κχ x )(z) is analytic on x ∈ D(1, R) ⊂ L and on z belonging to closed discs of radius p -m in Z × p for m ∈ N big enough depending only on R (note that [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF](V.3.2)]). We have

|log p (z)| p = |z -1| p if |z -1| p < p -1 p-1 by
Z × p (κχ x )(z)dµ |Z × p (z) = p m -1 a=1 a+p m Zp (κχ x )(z)dµ |Z × p (z) = p m -1 a=1 κ(a) a+p m Zp χ x (z)dµ |Z × p (z).
For each 1 ≤ a ≤ p m -1 with (a, p) = 1, since the function ( 

x, z) → χ x (z) is analytic on x ∈ D(1, R) ⊂ L and on z ∈ a + p m Z p ⊂ Z × p ,
Z p ) such that ∥α n,a ∥ p -m R n → 0 when n → +∞ for any a. Then M µ (x) = p m -1 a=1 κ(a) +∞ n=0 a+p m Zp α n,a (z)dµ |Z × p (z) (x -1) n = +∞ n=0 b n (x -1) n for x ∈ D(1, R), where b n = p m -1 a=1 κ(a) a+p m Zp α n,a (z)dµ |Z × p (z). It follows that |b n | p • R n ≤ ∥µ∥ p -m • max {∥α n,a ∥ p -m : 1 ≤ a ≤ p m -1} • R n → 0 when n → +∞, so the Mellin transform M µ of µ is analytic on D(1, R). Moreover, ∥M µ (x) |D(1,R) ∥ R = sup n∈N |b n | p • R n ≤ ∥µ∥ p -m • sup {∥α n,a ∥ p -m R n : 1 ≤ a ≤ p m -1, n ∈ N} = O(∥µ∥ p -m )
for any distribution µ, where R ∈ |C × p | p with R < 1 is arbitrary and m ∈ N big enough depending on R. Hence the map µ → M µ is continuous between Fréchet spaces.

We describe the Mellin transform of admissible distributions. Let u ≥ 0 serving as the order of growth.

Definition 1.2.13. An analytic function f

(x) = +∞ n=0 a n (x-1) n on B(1, 1) has order ≤ u if |a n | p = O(n u ).
A function on the weight space W has order ≤ u if its restrictions to components of W isomorphic to B(1, 1) have order ≤ u.

If u ∈ N, then an analytic function f on B(1, 1) has order ≤ u if and only if sup

|x-1|p≤R |f (x)| p = O( sup |x-1|p≤R |log p (x) u | p ) as R → 1 -.
The following result is the content of Proposition II.2.4 in [AV], see [START_REF] Vishik | Nonarchimedean measures connected with Dirichlet series[END_REF]Theorem 2.3] for the proof of one direction.

Proposition 1.2.14 (Vishik, Amice-Vélu). A distribution µ on Z × p has order ≤ u if and only if M µ has order ≤ u.

Chapter 2 p-adic distributions on P 1 (Q p )

In this chapter, we consider p-adic distributions on the topological space P 1 (Q p ) which is no longer an open compact subset of Q d p for some d as in Chapter 1. The consideration of P 1 (Q p ) is more general than that of Z p since P 1 (Q p ) can be seen as a gluing of two copies of Z p overlapping on Z × p , where one copy is the neighborhood Z p of 0 and the other one corresponds to the neighborhood D(∞, 0) := {z ∈ P 1 (Q p ), v p (z) ≤ 0} of ∞, which is isomorphic to Z p via the transformation z → 1 z . We begin by introducing the definition of certain functions and distributions on P 1 (Q p ) in Section 2.1. Then we define an action of GL 2 (Q p ) on these functions and distributions, and establish some results about an exact sequence and the zeroth homology group of congruence subgroups of SL 2 (Z) involving distributions on P 1 (Q p ) insprired by those for distributions on Z p (see Proposition 2.2.4 and Theorem 2.2.11) in Section 2.2. We finish the chapter by discussing the notion of admissible distributions on P 1 (Q p ) in Section 2.3.

We fix an integer k throughout this chapter. We extend the p-adic valuation v p to P 1 (Q p ) by defining v p (∞) = -∞.

Definition and the first results

In this section, we define various spaces of functions and distributions on P 1 (Q p ) due to Pierre Colmez. We will see that these spaces of functions and distributions have a natural structure of locally convex topology which makes them into Fréchet spaces.

Definition 2.1.1 (Colmez). An L-valued function f on P 1 (Q p ) is said to be meromorphic at infinity with a pole of order ≤ k if f is of the form f (z) = k i=-∞ a i z i on a neighborhood of ∞, where the sum -1 i=-∞ a i z i converges in this neighborhood. In other words, f is meromorphic at infinity with a pole of order ≤ k if the function z k f ( 1 z ) converges on a neighborhood of 0. Let A k (P 1 , L) denote the space of L-valued functions f on P 1 (Q p ) such that f is locally analytic on Q p and meromorphic with a pole of order ≤ k at ∞. If the role of L is less important, we will omit it from notations, e.g., we write simply A k (P 1 ) for A k (P 1 , L).

Remark 2.1.2. The condition

-1 i=-∞ a i z i converges in a neighborhood of ∞ means there is some R > 0 such that -1 i=-∞ a i z i converges in {z ∈ C p , |z| p ≥ R}, this is equivalent to |a i | p R i → 0 as i → -∞ (so that the function -1 i=-∞ a i 1 z i = +∞ n=1 a -n z n converges in {z ∈ C p , |z| p ≤ 1 R }). Definition 2.1.3. For each r ∈ |C × p | p with r < 1, denote A k (P 1 )[r] ⊂ A k (P 1
) the subspace of functions f such that f is analytic on every closed disc of radius r in Q p and f is of the form

k i=-∞ a i z i on the neighborhood {z ∈ P 1 (Q p ), |z| p ≥ 1 r } of ∞. Remark 2.1.4. If r ∈ |C × p | p , r < 1 and if a ∈ Q p such that |a| p < 1 r (resp. |a| p ≥ 1 r ), then the closed disc D(a, r) in Q p is contained in {z ∈ Q p , |z| p < 1 r } (resp. {z ∈ Q p , |z| p ≥ 1 r }) since if z ∈ D(a, r), then |z -a| p ≤ r < 1 r , so |z| p < 1 r if |a| p < 1 r , and |z| p = |a| p ≥ 1 r if |a| p ≥ 1 r . Proposition 2.1.5. For r ∈ |C × p | p , r < 1, a function f belongs to A k (P 1 )[r] if and only if f is analytic on every closed disc of radius r in {z ∈ Q p , |z| p < 1 r } and f is of the form k i=-∞ a i z i converging on {z ∈ P 1 (Q p ), |z| p ≥ 1 r }. Proof. It suffices to prove that if f (z) = k i=-∞ a i z i for z ∈ P 1 (Q p ), |z| p ≥ 1 r with r < 1, then f is analytic on every closed disc of radius r in {z ∈ Q p , |z| p ≥ 1 r }. We can assume that k = -1. Consider a closed disc D(a, r) in {z ∈ Q p , |z| p ≥ 1 r }. For i ∈ Z <0
, the function z i is analytic on D(a, r) with the Taylor expansion

z i = 1 (z -a) + a -i = 1 a( z-a a + 1) -i = 1 a +∞ n=0 - z -a a n -i = a i +∞ n=0 n -i -1 -i -1 - z -a a n , (2.1) note that | z-a a | p ≤ r 1/r = r 2 < 1.
We need the folowing lemma given in [Was,page 53].

Lemma 2.1.6.

Let P m (X) = +∞ n=0
a n,m X n , m = 1, 2, ... be a sequence of power series which converge in a fixed subset D of C p and suppose i) a n,m → a n,0 as m → +∞ for each n, and ii) for each X ∈ D and every ε > 0 there exists an n 0 = n 0 (X, ε) such that |a n,m X n | p < ε for all n ≥ n 0 and uniformly in m.

Then lim m→+∞ P m (X) = P 0 (X) = +∞ n=0 a n,0 X n for all X ∈ D.

Applying this lemma for P m (z) = -1

i=-m a i z i , m = 1, 2, ... with the expansion (2.1) of z i on the set D = D(a, r). The coefficient of (z -a) n in the expansion of

P m (z) is a n,m = -1 i=-m a i a i n-i-1 -i-1 -1 a n . For fixed n, the sequence {a n,m } ∞ m=1 converges to -1 i=-∞ a i a i n-i-1 -i-1 -1 a n as m → +∞ since a i a i n-i-1 -i-1 p ≤ |a i a i | p → 0 as i → -∞ (the limit is 0 since the sum -1 i=-∞ a i z i converges on {z ∈ P 1 (Q p ), |z| p ≥ 1 r }). The condition i) of Lemma 2.1.6 is satisfied.
Fix z ∈ D(a, r) and ε > 0, we have

|a n,m (z -a) n | p = -1 i=-m a i a i n -i -1 -i -1 - z -a a n p ≤ sup i<0 |a i | p 1 r i z -a a n p < ε
for n big enough and for every m since | z-a a | p ≤ r 1/r = r 2 < 1 and sup

i<0 |a i | p 1 r i < +∞. The condition
ii) of Lemma 2.1.6 is satisfied. We deduce that the function

-1 i=-∞ a i z i = lim m→+∞ P m (z) is analytic on D(a, r). If f ∈ A k (P 1 )[r], then f is of the form k i=-∞ a i z i on {z ∈ P 1 (Q p ), |z| p ≥ 1 r }, so the function g(z) = z k f 1
z is analytic on the closed disc D(0, r) ⊂ Q p . We identify the restriction of f to {z ∈ P 1 (Q p ), |z| p ≥ 1 r } with the function g on D(0, r). On the open disc B(0, 1 r ) ⊂ Q p , the function f is r-analytic. There is a canonical isomorphism of vector spaces:

A k (P 1 )[r] ∼ = A(D(0, r))[r] × A B 0, 1 r [r] (2.2) f → z k f 1 z |D(0,r) , f |B(0, 1 r ) .
We give A k (P 1 )[r] the r-supremum norm ∥ • ∥ r induced by that of the Banach space in the right hand side of this isomorphism, i.e., for f ∈ A k (P 1 )[r] we define

∥f ∥ r = max z k f 1 z |D(0,r) r , f |B(0, 1 r ) r .
(2.3)

Then A k (P 1 )[r] becomes a Banach space. Let D k (P 1 )[r] be the continuous L-dual of A k (P 1 )[r] endowed with the dual norm which we still denote by ∥ • ∥ r , so D k (P 1 )[r] is also a Banach space.

Proposition 2.1.7. If r 1 , r 2 ∈ |C × p | p such that 1 > r 1 > r 2 , then A k (P 1 )[r 1 ] ⊂ A k (P 1 )[r 2 ] and the inclusion map A k (P 1 )[r 1 ] → A k (P 1 )[r 2 ] is continuous. The space A k (P 1 ) is the union of the subspaces A k (P 1 )[r] for r ∈ |C × p | p , r < 1. Proof. Suppose f ∈ A k (P 1 )[r 1 ], then f is r 1 -analytic on Q p and f is of the form k i=-∞ a i z i on {z ∈ P 1 (Q p ), |z| p ≥ 1 r1 }, hence on {z ∈ P 1 (Q p ), |z| p ≥ 1 r2 } since 1 r2 > 1 r1 . The condition f is r 1 -analytic on Q p implies that f is r 2 -analytic on Q p . Therefore, f ∈ A k (P 1 )[r 2 ]. So A k (P 1 )[r 1 ] is contained in A k (P 1 )[r 2 ]. We prove ∥f ∥ r2 ≤ 1 r k 2 |f ∥ r1 for any f ∈ A k (P 1 )[r 1 ]. Firstly, z k f 1 z |D(0,r2) r2 ≤ z k f 1 z |D(0,r1) r1 since r 2 < r 1 . Secondly, on the open disc B 0, 1 r1 of Q p , we have f |B(0, 1 r 1 ) r2 ≤ ∥f |B(0, 1 r 1 ) ∥ r1 . Finally, if a ∈ Q p such that 1 r1 ≤ |a| p < 1 r2 and if z ∈ C p with |z -a| p ≤ r 2 , then |z -a| p ≤ r 2 < 1 < 1 r1 ≤ |a| p , so |z| p = |a| p , hence 1 r1 ≤ |z| p < 1 r2 . We get ∥f |{z∈Qp, 1 r 1 ≤|z|p< 1 r 2 } ∥ r2 = sup |f (z)| p : z ∈ C p , ∃ a ∈ Q p such that 1 r 1 ≤ |a| p < 1 r 2 , |z -a| p ≤ r 2 ≤ sup |f (z)| p : z ∈ C p , 1 r 1 ≤ |z| p < 1 r 2 = sup f 1 z p : z ∈ C p , r 2 < |z| p ≤ r 1 ≤ 1 r k 2 sup z k f 1 z p : z ∈ C p , r 2 < |z| p ≤ r 1 ≤ 1 r k 2 sup z k f 1 z p : z ∈ C p , |z| p ≤ r 1 = 1 r k 2 z k f 1 z |D(0,r1) r1 .
Combining all of the cases considered above we obtain ∥f

∥ r2 ≤ max (1, r -k 2 )∥f ∥ r1 = r -k 2 ∥f ∥ r1 . We deduce that the inclusion map A k (P 1 )[r 1 ] → A k (P 1 )[r 2 ] is continuous. Now consider f ∈ A k (P 1 ). There exists r ′ ∈ |C × p | p , r ′ < 1 such that f is of the form k i=-∞ a i z i on {z ∈ P 1 (Q p ), |z| p ≥ 1 r ′ }
, so f is analytic on every closed disc of radius r ′ contained in this set by Proposition 2.1.5. Since f is locally analytic on Q p and the set {z ∈

Q p , |z| p < 1 r ′ } is compact, there exists 0 < r < r ′ such that f is analytic on every closed disc of radius r in {z ∈ Q p , |z| p < 1 r ′ }. So f is analytic on every closed disc of radius r in Q p . Moreover, f (z) = k i=-∞ a i z i on {z ∈ P 1 (Q p ), |z| p ≥ 1 r } since 1 r > 1 r ′ . We deduce that f ∈ A k (P 1 )[r]. Therefore, A k (P 1
) is the union of the subspaces A k (P 1 )[r] for r < 1.

Definition 2.1.8. We give A k (P 1 ) the locally convex final topology defined by the increasing union A k (P 1 ) = r<1 A k (P 1 )[r] when r decreases to 0 (see [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]§5E]). This is the finest locally convex topology for which all the inclusion maps A k (P 1 )[r] → A k (P 1 ) are continuous. We denote D k (P 1 ) the continuous L-dual of A k (P 1 ) and call it the space of L-valued p-adic distributions on P 1 (Q p ).

Since the inclusion map

A k (P 1 )[r 1 ] → A k (P 1 )[r 2 ] is continuous for any r 1 , r 2 ∈ |C × p | p such that 1 > r 1 > r 2 , it induces the continuous L-dual map D k (P 1 )[r 2 ] → D k (P 1 )[r 1 ] on distributions on P 1 (Q p ). Proposition 2.1.9. The inclusion map A k (P 1 )[r 1 ] → A k (P 1 )[r 2 ] is compact for any r 1 , r 2 ∈ |C × p | p such that 1 > r 1 > r 2 . The dual map D k (P 1 )[r 2 ] → D k (P 1 )[r 1 ] is also compact. Proof. By isomorphism (2.2) every function f ∈ A k (P 1 )[r 1 ] is identified with a pair of r 1 -analytic functions (f ∞ , f 0 ), where f ∞ (z) = z k f 1 z is defined on D(0, r 1 ) and f 0 is the restriction of f to the open disc B(0, 1 r1 
). The r 1 -norm of f is defined by the maximal of the r 1 -norms of these two functions. Consider a bounded sequence

{f n } n∈N in A k (P 1 )[r 1 ]. Since the sequence z k f n 1 z
n∈N is analytic and bounded on D(0, r 1 ) for r 1 -norm, by Lemma 1.1.2, the sequence

z k f n 1 z |D(0,r2) n∈N of the restric- tion to D(0, r 2 ) is relatively compact for r 2 -norm. On {z ∈ Q p , |z| p < 1 r1 } the sequence {f n } is bounded for r 1 -norm. By Remark 2.1.4, if a ∈ Q p such that 1 r1 ≤ |a| p < 1 r2 , and if z ∈ C p with |z -a| p ≤ r 1 , then 1 r1 ≤ |z| p < 1 r2 . On {z ∈ Q p , 1 r1 ≤ |z| p < 1 r2 }, we have sup {∥f n|{z∈Q p , 1 r 1 ≤|z|p< 1 r 2 } ∥ r1 : n ∈ N} = sup |f n (z)| p : n ∈ N, z ∈ C p , ∃ a ∈ Q p such that 1 r 1 ≤ |a| p < 1 r 2 , |z -a| p ≤ r 1 ≤ sup |f n (z)| p : n ∈ N, z ∈ C p , 1 r 1 ≤ |z| p < 1 r 2 = sup f n 1 z p : n ∈ N, z ∈ C p , r 2 < |z| p ≤ r 1 ≤ 1 r k 2 sup z k f n 1 z p : n ∈ N, z ∈ C p , r 2 < |z| p ≤ r 1 ≤ 1 r k 2 sup z k f n 1 z p : n ∈ N, z ∈ C p , |z| p ≤ r 1 = 1 r k 2 sup z k f n 1 z |D(0,r1) r1 : n ∈ N < +∞. So the sequence {f n } is bounded for r 1 -norm on {z ∈ Q p , |z| p < 1 r2 }. By Lemma 1.1.2, the sequence of restriction of f n 's to {z ∈ Q p , |z| p < 1 r2 } is relatively compact for r 2 -norm. We conclude that {f n } is relatively compact as a sequence in A k (P 1 )[r 2 ]. Hence the inclusion map A k (P 1 )[r 1 ] → A k (P 1 )[r 2 ] is compact.
The compactness of the dual map on distributions follows from Schauder's lemma.

Proposition 2.1.10. For any

r 1 , r 2 ∈ |C × p | p such that r 1 > r 2 , the inclusion map A k (P 1 )[r 1 ] → A k (P 1 )[r 2 ] has dense image. Proof. Let f ∈ A k (P 1 )[r 2 ] and ε > 0. Since f is r 2 -analytic on Q p , it is r 2 -analytic on the open disc B 0, 1 r1 of Q p . By Lemma 1.1.1, there exists an r 1 -analytic function g 1 on B 0, 1 r1 such that g 1 -f |B(0, 1 r 1 ) r2 < ε. We use the following lemma. Lemma 2.1.11. The transformation z → 1 z is a homeomorphism between {z ∈ P 1 (Q p ), |z| p ≥ 1 r1 } and {z ∈ Q p , |z| p ≤ r 1 }. It maps {z ∈ P 1 (Q p ), |z| p ≥ 1 r2 } onto {z ∈ Q p , |z| p ≤ r 2 } and maps each closed disc D(a, r 2 ) ⊂ {z ∈ Q p , 1 r1 ≤ |z| p < 1 r2 } onto the closed disc D 1 a , r2 |a| 2 p contained in {z ∈ Q p , r 2 < |z| p ≤ r 1 }, where r 1 , r 2 ∈ |C × p | p such that 1 > r 1 > r 2 .
We have the similar statements if we take the variable z in

C p , not only in Q p . Proof. Suppose a ∈ Q p such that 1 r1 ≤ |a| p < 1 r2 and z ∈ D(a, r 2 ) (z ∈ C p or Q p ). By Remark 2.1.4, |z| p = |a| p . We have 1 z - 1 a p = |z -a| p |az| p = |z -a| p |a| 2 p ≤ r 2 |a| 2 p , so 1 z ∈ D 1 a , r2 |a| 2 p .

DEFINITION AND THE FIRST RESULTS

Conversely

, if x ∈ D 1 a , r2 |a| 2 p , let z = 1 x , we prove z ∈ D(a, r 2 ). Since | 1 z -1 a | p ≤ r2 |a| 2 p < | 1 a | p (r 2 < 1 < 1 r1 ≤ |a| p ), we deduce that | 1 z | p = | 1 a | p , so |z| p = |a| p . Therefore, r 2 |a| 2 p ≥ 1 z - 1 a p = |z -a| p |az| p = |z -a| p |a| 2 p ,
hence |z -a| p ≤ r 2 and z ∈ D(a, r 2 ). The lemma is proven.

Returning to the proof of the proposition. Since f is of the form

k i=-∞ a i z i on {z ∈ P 1 (Q p ), |z| p ≥ 1 r2 }, the function z k f 1 z is analytic on the closed disc D(0, r 2 ) of Q p . Since the set {z ∈ Q p , 1 r1 ≤ |z| p < 1 r2 } is compact, it is the disjoint union of finitely many closed discs D(a, r 2 ) of radius r 2 . By the lemma, since f is analytic on each such D(a, r 2 ) (f is r 2 -analytic on Q p ), the function z k f 1 z is analytic on D 1 a , r2 |a| 2 p
. By the lemma, the closed disc D(0, r 1 ) of Q p is partitioned by the closed disc D(0, r 2 ) and finitely

many closed discs D 1 a , r2 |a| 2 p , where the closed discs D(a, r 2 ) form a partition of {z ∈ Q p , 1 r1 ≤ |z| p < 1 r2 }. We have a family of analytic functions {z k f 1 z |D(0,r2) , z k f 1 z |D 1 a , r 2 |a| 2 p
} a on the components of this partition of D(0, r 1 ). Since D(0, r 1) is an open compact subset of Q p , by an argument similar to Lemma 1.1.1, there exists an analytic function h on D(0, r 1 ) such that

h(z) -z k f 1 z |D(0,r2) r2 < ε and h(z) -z k f 1 z |D 1 a , r 2 |a| 2 p r 2 |a| 2 p < r k 2 ε. Putting g 2 (z) = z k h 1 z , then g 2 is of the form k i=-∞ b i z i on {z ∈ P 1 (Q p ), |z| p ≥ 1 r1 }. For every closed disc D(a, r 2 ) contained in {z ∈ Q p , 1 r1 ≤ |z| p < 1 r2 }, we have ∥(g 2 -f ) |D(a,r2) ∥ r2 = sup z∈Cp,|z-a|p≤r2 |g 2 (z) -f (z)| p = sup z∈Cp,|z-1 a |p≤ r 2 |a| 2 p g 2 1 z -f 1 z p ≤ 1 r k 2 • sup z∈Cp,|z-1 a |p≤ r 2 |a| 2 p z k g 2 1 z -z k f 1 z p = 1 r k 2 h(z) -z k f 1 z |D 1 a , r 2 |a| 2 p r 2 |a| 2 p < ε.
Let g be the function on

P 1 (Q p ) given by g = g 1 on B(0, 1 r1 ) ⊂ Q p and g = g 2 on {z ∈ P 1 (Q p ), |z| p ≥ 1 r1 }. Then g ∈ A k (P 1 )[r 1 ] and ∥g -f ∥ r2 = max z k g 1 z -z k f 1 z |D(0,r2) r2 , ∥(g -f ) |D(a,r2) ∥ r2 : D(a, r 2 ) ⊂ z ∈ Q p , |z| p < 1 r 2 = max h(z) -z k f 1 z |D(0,r2) r2 , ∥(g 2 -f ) |D(a,r2) ∥ r2 : D(a, r 2 ) ⊂ z ∈ Q p , 1 r 1 ≤ |z| p < 1 r 2 , , ∥(g 1 -f ) |B(0, 1 r 1 ) ∥ r2 < ε. Therefore, A k (P 1 )[r 1 ] is dense in A k (P 1 )[r 2 ]. Corollary 2.1.12. The dual map D k (P 1 )[r 2 ] → D k (P 1 )[r 1 ] is injective for any r 1 , r 2 ∈ |C × p | p such that 1 > r 1 > r 2 .
Proof. It is immediate from Proposition 2.1.10.

The inclusion maps

A k (P 1 )[r] → A k (P 1 ) for r ∈ |C × p | p , r < 1 induce the dual maps from D k (P 1 ) to D k (P 1 )[r], so D k (P 1 ) is endowed with a family of norms {∥•∥ r : r ∈ |C × p | p , r < 1}, where D k (P 1 )[r] is endowed with the dual norm of ∥ • ∥ r on A k (P 1 )[r] defined by (2.3).
Corollary 2.1.13. This family of norms makes D k (P 1 ) into a Fréchet space. Moreover, D k (P 1 ) is canonically isomorphic (as topological vector spaces) to the projective limit of D k (P 1 )[r]'s, endowed with its locally convex inductive limit topology (see [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]§5D]). The natural maps

D k (P 1 ) → D k (P 1 )[r 2 ] → D k (P 1 )[r 1 ] are injective for any 1 > r 1 > r 2 in |C × p | p .
Proof. The first two statements are direct applications of the conclusions ii., iii. in [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Prop. 16.10].

The assumptions of that proposition are satisfied since A k (P 1 ) is an increasing union of A k (P 1 )[r]'s when r decreases to 0 by Proposition 2.1.7, and the inclusion maps A k (P 1 )[r 1 ] → A k (P 1 )[r 2 ] are compact for all 1 > r 1 > r 2 by Proposition 2.1.9. The injectivity of the map between distributions is implied from Corollary 2.1.12.

2.2 Actions of GL 2 (Q p ) and further results

In this section, after defining an action of GL 2 (Q p ) on A k (P 1 ) and D k (P 1 ) (see (2.4) and (2.5)), we set up some exact sequences involving functions and distributions on P 1 (Q p ) (see Lemma 2.2.2 and Proposition 2.2.4) which will be used to study overconvergent modular symbols with values in D k (P 1 ) in Chapter 3. We compute the zeroth homology group of congruence subgroups of SL 2 (Z) with values in D k (P 1 ) in Theorem 2.2.11. The results in this section are analogous versions for P 1 (Q p ) of those for Z p .

One of the advantages of the space P 1 (Q p ) is that it admits an action of any matrix in GL 2 (Q p ) via linear fractional transformations. The weight k action of GL 2 (Q p ) on A k (P 1 ) and D k (P 1 ) is defined similarly to (1.5), (1.7):

For γ = a b c d ∈ GL 2 (Q p ), f ∈ A k (P 1 ) and µ ∈ D k (P 1 ), we set f | k γ (z) = (cz + d) k f az + b cz + d , (2.4) µ | k γ (f ) = µ(f | k γ * ) = µ (a -cz) k f dz -b a -cz , (2.5) 
where

γ * = det γ • γ -1 = d -b -c a .
Let us consider the derivatives of functions in A k (P 1 ).

Lemma 2.2.1. If k ∈ N and f ∈ A k (P 1 )[r] for r ∈ |C × p | p , r < 1, then its (k + 1)-th derivative d k+1 f dz k+1 belongs to A -k-2 (P 1 )[r]. The map d dz k+1 : A k (P 1 )[r] → A -k-2 (P 1 )[r] is continuous. Proof. Suppose f ∈ A k (P 1 )[r] for r ∈ |C × p | p , r < 1. Since f is locally analytic on Q p , it is C ∞ - differentiable on Q p . The function f is of the form f (z) = k i=-∞ a i z i on {z ∈ P 1 (Q p ), |z| p ≥ 1 r },
where the coefficients a i satisfy the condition

|a i | p 1 r i → 0 as i → -∞ (see Remark 2.1.2)). Then d k+1 f dz k+1 = d k+1 ( i<0 a i z i ) for z ∈ P 1 (Q p ), |z| p ≥ 1 r . The function i<0 i(i -1)...(i -k) a i z i-k-1 is convergent on {z ∈ P 1 (Q p ), |z| p ≥ 1 r } since |i(i -1)...(i -k) a i | p 1 r i-k-1 ≤ |a i | p 1 r i 1 r -k-1 → 0 as i → -∞.
By the proof of Proposition 2.1.7, the function

i<0 a i z i has the Taylor expansion +∞ n=0 i<0 a i a i n -i -1 -i -1 - z -a a n around each point a ∈ Q p with |a| p ≥ 1 r , hence d k+1 f dz k+1 and i<0 i(i -1)...(i -k) a i z i-k-1 have the same
Taylor expansion around such those points a. We deduce that

d k+1 f dz k+1 = i<0 i(i -1)...(i -k) a i z i-k-1 on {z ∈ Q p , |z| p ≥ 1 r }. On the other hand, d k+1 f dz k+1 is r-analytic on Q p since f is. Therefore, d k+1 f dz k+1 ∈ A -k-2 (P 1 )[r].
We compare the r-norms of f and d k+1 f dz k+1 . We have

z -k-2 • d k+1 f dz k+1 1 z |D(0,r) r = sup i<0 |i...(i -k)a i | p 1 r i+1 ≤ sup i<0 |a i | p 1 r i+1 ≤ sup i≤k |a i | p 1 r i+1 = 1 r k+1 z k f 1 z |D(0,r) r . On each closed disc D(a, r) inside B(0, 1 r ) ⊂ Q p , if f has Taylor expansion +∞ n=0 α n (z -a) n , then d k+1 f dz k+1 = +∞ n=k+1 n(n -1)...(n -k)α n (z -a) n-k-1 on D(a, r). Therefore, d k+1 f dz k+1 |D(a,r) r = sup n≥k+1 |n...(n -k)α n | p • r n-k-1 ≤ sup n≥0 |α n | p • r n-k-1 = r -k-1 ∥f |D(a,r) ∥ r .
We conclude that

d k+1 f dz k+1 r ≤ 1 r k+1 ∥f ∥ r for any f ∈ A k (P 1 )[r], hence the map d dz k+1 : A k (P 1 )[r] → A -k-2 (P 1 )[r] is continuous. Consider the map d dz k+1 : A k (P 1 , L) → A -k-2 (P 1 , L) for k ∈ N.
Its kernel is obviously the space

P † k (L) of locally polynomial functions of degree ≤ k on P 1 (Q p )
with coefficients in L. We obtain the following complex which is left exact for each k ∈ N:

0 → P † k (L) i → A k (P 1 , L) ( d dz ) k+1 -→ A -k-2 (P 1 , L) → 0, (2.6)
where i is the inclusion map. It turns out that this complex is exact.

Lemma 2.2.2. The sequence (2.6) is exact, i.e., the map

d dz k+1 : A k (P 1 ) → A -k-2 (P 1 ) is surjective.
Moreover, this map is continuous and open.

Proof.

Let g ∈ A -k-2 (P 1 ), then g ∈ A -k-2 (P 1 )[r] for some r ∈ |C × p | p , r < 1. Take 0 < r ′ < r arbitrary. We construct a function f in A k (P 1 )[r ′ ] such that d k+1 f dz k+1 = g. If a ∈ Q p such that |a| p < 1 r ′ , and if z ∈ D(a, r), then |z -a| p ≤ r < 1 r < 1 r ′ , so |z| p < 1 r ′ , hence the closed disc D(a, r) in Q p is contained in B(0, 1 r ′ ). The disc B(0, 1 r ′ ) is the disjoint union of closed discs D(a, r ′ ) for a ∈ Q p with |a| p < 1 r ′ .
The restriction of g on D(a, r) for each such a is analytic, writing the Taylor expansion of g on D(a, r) by

g |D(a,r) (z) = +∞ n=0 α n (z -a) n , where α n satisfies |α n | p • r n → 0 when n → +∞. Then the function f a,r ′ = +∞ n=k+1 α n-k-1 n(n -1)...(n -k) (z -a) n is analytic on D(a, r ′ ) since α n-k-1 n(n -1)...(n -k) p (r ′ ) n ≤ n...(n -k) r ′ r n-k-1 |α n-k-1 | p • r n-k-1 (r ′ ) k+1 -→ n→+∞ 0.
Moreover, the (k + 1)-th derivative of f a,r ′ equals g on D(a, r ′ ). We define the restriction of f on B(0

, 1 r ′ ) by putting f = f a,r ′ on each disc D(a, r ′ ) ⊂ B(0, 1 r ′ ). On {z ∈ P 1 (Q p ), |z| p ≥ 1 r } the function g is of the form i≤-k-2 a i z i , where a i satisfies |a i | p 1 r i → 0 when i → -∞. We define the restriction of f on {z ∈ P 1 (Q p ), |z| p ≥ 1 r ′ } by i<0 a i-k-1 i(i -1)...(i -k) z i . This function is convergent on {z ∈ P 1 (Q p ), |z| p ≥ 1 r ′ } since a i-k-1 i(i -1)...(i -k) p 1 r ′ i ≤ (-i)(-i + 1)...(-i + k) r r ′ i-k-1 |a i-k-1 | p 1 r i-k-1 1 r ′ k+1 -→ i→-∞ 0.
It is obvious that

d k+1 f dz k+1 = g = i≤-k-2 a i z i on {z ∈ Q p , |z| p ≥ 1 r ′ }. So d k+1 f dz k+1 = g on Q p . Moreover, f ∈ A k (P 1 )[r ′ ] ⊂ A k (P 1 ). The surjectivity is proven. The map d dz k+1 : A k (P 1 )[r] → A -k-2 (P 1 ) is continuous for any r ∈ |C × p | p , r < 1 since it is the composition of the continuous map d dz k+1 : A k (P 1 )[r] → A -k-2 (P 1 )[r] (by Lemma 2.2.

1) and the inclusion map

A -k-2 (P 1 )[r] → A -k-2 (P 1
), which is also continuous. Hence the inductive limit of these maps, d dz k+1 : A k (P 1 ) → A -k-2 (P 1 ), is continuous by [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Lemma 5.1i.].

For the openness of d dz k+1 , we need to show that it sends any neighborhood of 0 in A k (P 1 ) to In the view of the exact sequence (2.6), the subspace P † k (L) of A k (P 1 , L) is stable by the weight k action of GL 2 (Q p ), defined by (2.4). We equip P † k (L) the topology and the action of GL 2 (Q p ) inherited from A k (P 1 , L). Then the inclusion P † k (L) → A k (P 1 , L) is continuous and GL 2 (Q p )-equivariant. We want to make the second map of (2.6), i.e. the map d dz k+1 , is also GL 2 (Q p )-equivariant.

a neighborhood of 0 in A -k-2 (P 1 ). A neighborhood of 0 in A k (P 1 ) is by definition a subset A such that A ∩ A k (P 1 )[r ′ ] is a neighborhood of 0 in A k (P 1 )[r ′ ], for any r ′ ∈ |C × p | p , r ′ < 1. Then A contains an open ball of center 0 and radius R in A k (P 1 )[r ′ ]. For any r, r ′ ∈ |C × p | p such that r ′ < r < 1, and any g ∈ A -k-2 (P 1 )[r], we have shown the existence of a function f ∈ A k (P 1 )[r ′ ] such that d k+1 f dz k+1 = g. Moreover, it is easy to see that there exists a constant C = C(r, r ′ ) > 0 depending only on r and r ′ such that ∥f ∥ r ′ ≤ C∥g∥ r . If ∥g∥ r < R/C, then ∥f ∥ r ′ < R, so f ∈ A.
Lemma 2.2.3. For each k ∈ N, the exact sequence

0 → P † k (L) i → A k (P 1 , L) ( d dz ) k+1 -→ A -k-2 (P 1 , L) ⊗ det k+1 → 0 (2.7) is GL 2 (Q p )-equivariant, where ⊗ det k+1 means the action of GL 2 (Q p ) is twisted by det k+1 .
Proof. We follow the calculations in the proof of [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Lemma V.4.13]. Although in ibid. it is made for analytic functions on Z p and we are considering functions on P 1 (Q p ), but the actions of matrices on both types of functions are the same.

Dualizing the exact sequence (2.7), we get a complex of GL 2 (Q p )-equivariant maps. In fact, this dual complex is exact.

Proposition 2.2.4. For each k ∈ N, there is a canonical GL 2 (Q p )-equivariant exact sequence: 0 → D -k-2 (P 1 , L) ⊗ det k+1 θ k -→ D k (P 1 , L) ρ k -→ V † k (L) → 0 which is the L-dual of (2.7), where V † k (L) is the L-dual of P † k (L) endowed with the weight k action of GL 2 (Q p ) defined similarly to (2.5).
Proof. The injectivity of θ k is obvious. The surjectivity of ρ k is an application of Hahn-Banach's theorem (see [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Corollary 9.4]), applicable here since the spaces P † k (L) and A k (P 1 , L) are locally convex, and the base field L is spherically complete. We prove the exactness in the middle.

Let µ ∈ D k (P 1 , L) such that ρ k (µ) = 0. Then µ(P † k (L)) = 0, so µ induces an L-linear form µ ′ on A -k-2 (P 1 , L) such that µ = µ ′ • d dz k+1 . We show that the form µ ′ is continuous. If L 0 ⊂ L is an open subset, then (µ ′ ) -1 (L 0 ) = d dz k+1 (µ -1 (L 0 )) is open in A -k-2 (P 1 , L) since µ -1 (L 0 ) is open in A k (P 1 , L) and the map d dz k+1 is open by Lemma 2.2.2. It follows that µ ′ ∈ D -k-2 (P 1 , L) and µ = θ k (µ ′ ) ∈ Im θ k . For k ∈ Z, let A (-1) k (P 1 ) ⊂ A k (P 1 ) denote the subspace of functions f such that f is of the form i≤k,i̸ =-1 a i z i in a neighborhood of ∞, endowed with the induced topology. Note that A (-1) k (P 1 ) = A k (P 1 ) if k ≤ -2.
Proposition 2.2.5. Let ∆ be the operator on A k (P 1 ) given by ∆

(f ) = f (z + 1) -f (z). Then the image of ∆ is the subspace A (-1) k-1 (P 1 ). Proof. Let f ∈ A k (P 1 ), we prove ∆(f ) ∈ A (-1) k-1 (P 1 ). There exists r ∈ |C × p | p , r < 1 such that f ∈ A k (P 1 )[r]. Since f is r-analytic in Q p , so is ∆(f ). Suppose f (z) = k i=-∞ a i z i for z ∈ P 1 (Q p ) with |z| p ≥ 1 r . We have ∆ i≤k a i z i = ∆ i≤min{-1,k} a i z i + ∆ i≤k,i≥0 a i z i ,
where we make the convention ∆ i≤k,i≥0

a i z i = 0 if k < 0. If k ≥ 0, then ∆ i≤k,i≥0 a i z i is a polynomial of degree ≤ k -1. If i ≤ -1, then for z ∈ P 1 (Q p ) with |z| p ≥ 1 r , we have ∆(a i z i ) = a i (z + 1) i -a i z i = a i z i z z + 1 -i -a i z i = a i z i 1 1 + z -1 -i -a i z i = a i z i +∞ n=0 (-z -1 ) n -i -a i z i = a i z i +∞ n=0 n -i -1 -i -1 (-z -1 ) n -a i z i = j<i b i,j z j , where b i,j = a i -j-1 -i-1 (-1) i-j . It follows that |b i,j | p ≤ |a i | p for all j. We get ∆ i≤min{-1,k} a i z i = i≤min{-1,k} ∆(a i z i ) = lim n→+∞ -n≤i≤min{-1,k} ∆(a i z i ) = lim n→+∞ j<min{-1,k} max{-n,j+1}≤i≤min{-1,k} b i,j z j (2.8) for z ∈ P 1 (Q p ), |z| p ≥ 1 r .
Let us apply an argument similar to Lemma 2.1.6, where we consider the functions around ∞ with expansion by negative powers. For each j, the sequence

max{-n,j+1}≤i≤min{-1,k} b i,j tends to j+1≤i≤min{-1,k} b i,j as n → +∞.
Moreover, if we fix z ∈ P 1 (Q p ) such that |z| p ≥ 1 r and ε > 0, then for small j, we have

max{-n,j+1}≤i≤min{-1,k} b i,j z j p ≤ max j<i<0 {|a i | p } 1 r j < ε for all n (since |a i | p 1 r
i → 0 as i → -∞, and 1 r j < 1 r i for any j < i since 1 r > 1). Therefore, by the spirit of Lemma 2.1.6 applying to the limit in (2.8), we obtain

∆ i≤min{-1,k} a i z i = j<min{-1,k} j+1≤i≤min{-1,k} b i,j z j for z ∈ P 1 (Q p ), |z| p ≥ 1 r . Hence ∆(f ) = j<min{-1,k} j+1≤i≤min{-1,k} b i,j z j + ∆ i≤k,i≥0 a i z i (2.9) in {z ∈ P 1 (Q p ), |z| p ≥ 1 r }. We deduce that ∆(f ) ∈ A (-1) k-1 (P 1 )[r], so ∆(f ) ∈ A (-1)
k-1 (P 1 ). Let us prove that ∆ :

A k (P 1 ) → A (-1) k-1 (P 1 ) is surjective. Let g ∈ A (-1) k-1 (P 1 ), then g ∈ A (-1) k-1 (P 1 )[r] for some r ∈ |C × p | p , r < 1. Fix 0 < r ′ < r with r ′ = p -n0 for some n 0 ∈ N * , we show the existence of a function f ∈ A k (P 1 )[r ′ ] such that ∆(f ) = g.
Defining a relation ∼ on the family of closed discs of radius r ′ in B(0

, 1 r ′ ) ⊂ Q p as follows: for two discs D 1 , D 2 , we denote D 1 ∼ D 2 if there exist a ∈ B(0, 1 r ′ ) and h ∈ Z such that D 1 = D(a, r ′ ) and D 2 = D(a + h, r ′ ). This is equivalent to |z 2 -z 1 -h| p ≤ r ′ for any z 1 ∈ D 1 , z 2 ∈ D 2 . So
this is an equivalence relation. There are exactly p n0 closed discs in each equivalence class, namely

D(a, r ′ ), D(a + 1, r ′ ), ..., D(a + p n0 -1, r ′ ) for some a ∈ B(0, 1 r ′ ). To construct f on B(0, 1 r ′ ), we construct f on closed discs in each such class. Note that if a ∈ B(0, 1 r ′ ), then a + Z ⊂ B(0, 1 r ′ ) since |Z| p ≤ 1 < 1 r ′ . If f is constructed and analytic on D(a, r ′ ), then f is automatically determined on D(a + 1, r ′ ) by f (z) = f (z -1) + g(z -1) for z ∈ D(a + 1, r ′ ) (note that z -1 ∈ D(a, r ′ ) if z ∈ D(a + 1, r ′ ))
. Similar, f is automatically determined on every other disc in this class, given by f

(z) = f (z -1) + g(z -1) = f (z -2) + g(z -2) + g(z -1) for z ∈ D(a + 2, r ′ )
, and so on. Therefore, it suffices to construct f analytic on D(a, r ′ ) satisfying

f (z + p n0 ) = f (z + p n0 -1) + g(z + p n0 -1) = ... = f (z) + g(z) + g(z + 1) + ... + g(z + p n0 -1) = f (z) + g 0 (z), where g 0 (z) = g(z) + g(z + 1) + ... + g(z + p n0 -1) is analytic on D(a, r). Note that z + p n0 ∈ D(a, r ′ ) if z ∈ D(a, r ′ ). Suppose g 0 has Taylor expansion g 0 (z) = +∞ n=0 α n (z -a) n in D(a, r), where α n satisfies |α n | p • r n → 0
when n → +∞. We need the following result.

Lemma 2.2.6. We can write g 0 under the form g 0 (z) = +∞ n=0 β n (z -a) [n] in D(a, r) for β n satisfies |β n | p • r n → 0 when n → +∞, where z [n] := z(z -p n0 )...(z -(n -1)p n0 ) (if n = 0 we make the convention z [0] = 1). Moreover, the r-norm of g 0 on D(a, r) equals sup {|β n | p • r n | n ∈ N}. Conversely, if g 0 is of this form, then g 0 is analytic on D(a, r).

Proof. Consider z ∈ D(a, r). For each n ∈ N, the polynomial (z -a) n is the sum of (z -a) [n] and a linear combination of (z -a) j for 1 ≤ j ≤ n -1 with coefficient divisible by (p n0 ) n-j . The induction on n yields an expansion of (z -a) n in terms of (z -a) [j] for 0 ≤ j ≤ n with integer coefficients:

(z -a) n = n j=0
γ n,j (z -a) [j] with γ n,n = 1 and γ n,j ∈ Z is divisible by (p n0 ) n-j for all j. We have

g 0 (z) = +∞ n=0 α n (z -a) n = lim N →+∞ N n=0 α n (z -a) n = lim N →+∞ N j=0 N n=j α n γ n,j (z -a) [j] .
(2.10)

Let us apply an argument similar to Lemma 2.1.6. For j ∈ N fixed, the sequence

N n=j α n γ n,j converges to +∞ n=j α n γ n,j when N → +∞ since |α n γ n,j | p ≤ |α n | p (p -n0 ) n-j = |α n | p • (r ′ ) n-j ≤ |α n | p • r n-j → 0 when n → +∞.
Moreover, for every z ∈ D(a, r) and ε > 0, if j ∈ N is big and N ≥ j, then

N n=j α n γ n,j (z -a) [j] p ≤ max j≤n≤N {|α n γ n,j | p } • |(z -a) [j] | p ≤ max n≥j {|α n | p (r ′ ) n-j } • r j ≤ max n≥j {|α n | p • r n } < ε,
here the second inequaliy is deduced from |γ n,j | p ≤ (p -n0 ) n-j = (r ′ ) n-j and |(z -a) [j] | p ≤ r j for any j ∈ N. By the spirit of Lemma 2.1.6 applied to the limit (2.10), we obtain

g 0 (z) = +∞ j=0 +∞ n=j α n γ n,j (z -a) [j] = +∞ j=0
β j (z -a) [j] ,

where

β j = +∞ n=j α n γ n,j satisfying |β j | p • r j ≤ sup n≥j {|α n γ n,j | p } • r j ≤ sup n≥j {|α n | p (r ′ ) n-j } • r j ≤ sup n≥j {|α n | p • r n } → 0 when j → +∞.
It follows that sup

{|β j | p • r j | j ∈ N} ≤ sup {|α n | p • r n | n ∈ N}. Conversely, if g 0 (z) = +∞ n=0
β n (z -a) [n] for z ∈ D(a, r), then by the same argument we deduce that g 0 is analytic in D(a, r) with Taylor expansion

+∞ n=0 α n (z -a) n for the coefficients α n satisfying sup {|α n | p • r n | n ∈ N} ≤ sup {|β j | p • r j | j ∈ N}. Therefore, ∥g 0|D(a,r) ∥ r = sup {|α n | p • r n | n ∈ N} = sup {|β j | p • r j | j ∈ N}.
The lemma is proven.

Writing g 0 (z) = +∞ n=0
β n (z -a) [n] in D(a, r) where |β n | p • r n -→ n→+∞ 0 as in the above lemma. We put -1] for any n ∈ N * . The analyticity of f on D(a, r ′ ) is deduced from Lemma 2.2.6 and from

f (z) = +∞ n=1 β n-1 (z -a) [n] np n0 in D(a, r ′ ), then f satisfies f (z + p n0 ) = f (z) + g 0 (z) for z ∈ D(a, r) since (z + p n0 -a) [n] -(z -a) [n] = np n0 (z -a) [n
β n-1 np n0 p (r ′ ) n ≤ np n0 |β n-1 | p (r ′ ) n = |β n-1 | p • r n-1 n r ′ r n-1 -→ n→+∞ 0, since |β n-1 | p • r n-1 -→ n→+∞ 0 and n r ′ r n-1 -→ n→+∞ 0. Moreover, ∥f |D(a,r ′ ) ∥ r ′ = sup n≥1 β n-1 np n0 p (r ′ ) n ≤ sup n≥1 n r ′ r n-1 • sup n≥1 |β n-1 | p • r n-1 ≤ sup n≥1 n r ′ r n-1 ∥g 0|D(a,r) ∥ r ≤ sup n≥1 n r ′ r n-1 ∥g |B(0, 1 r ′ ) ∥ r , for any closed disc D(a, r ′ ) inside B 0, 1 r ′ . Hence ∥f |B(0, 1 r ′ ) ∥ r ′ ≤ sup n≥1 n r ′ r n-1 ∥g |B(0, 1 r ′ ) ∥ r .
(2.11)

It remains to construct f on X ∞ = {z ∈ P 1 (Q p ), |z| p ≥ 1 r ′ }. The function g is of the form g(z) = i≤k-1,i̸ =-1 b i z i on the set {z ∈ P 1 (Q p ), |z| p ≥ 1 r } containing X ∞ , where b i satisfies |b i | p 1 r i → 0 when i → -∞. The topological space X ∞ is isomorphic to D(0, r ′ ) via the transformation z → 1 z . Setting g ∞ (z) = g 1 z for z ∈ D(0, r) and f ∞ (z) = f 1 z for z ∈ D(0, r ′ ), then g ∞ (z) = i≤k-1,i̸ =-1 b i z -i = 0≤i≤k-1 b i z -i + i≤-2 b i z -i = 0≤n≤k-1 b n z -n + n≥2 b -n z n =: 0≤n≤k-1 b n z -n + n≥2 bn z n =: g - ∞ (z) + g + ∞ (z), where g - ∞ (z) = 0≤n≤k-1 b n z -n , g + ∞ (z) = n≥2 bn z n and bn = b -n for n ≥ 2. We want to construct a meromorphic function f ∞ on D(0, r ′ ) with order of vanishing ord 0 (f ∞ ) ≥ -k such that g ∞ (z) = g 1 z = f 1 z + 1 -f 1 z = f ∞ z z + 1 -f ∞ (z) for z ∈ D(0, r ′ ).
Putting R(z) = z z+1 , the above condition rewrites

f ∞ (R(z)) -f ∞ (z) = g ∞ (z) = g - ∞ (z) + g + ∞ (z) for z ∈ D(0, r ′ ).
(2.12)

By induction, for each n ∈ N * , the composition R

•n (z) equals z nz+1 , so 1 R •n (z) = 1 z + n. We make the convention R •0 (z) = 1. Since g - ∞ (z) is a polynomial of 1 z of degree ≤ k -1, we can write g - ∞ (z) in the form g - ∞ (z) = k-1 n=0 c - n 1 z + 1 1 z + 2 ... 1 z + n = k-1 n=0 c - n R(z)R •2 (z)...R •n (z) . (2.13) We then put f - ∞ (z) = k-1 n=0 c - n n+1 1 zR(z)...R •n (z) for z ∈ D(0, r ′ ). It follows that f - ∞ (R(z)) -f - ∞ (z) = g - ∞ (z) (2.14) for any z ∈ D(0, r ′ ) since 1 R •(n+1) (z) -1 z = n + 1. The function f - ∞ (z)
is a linear combination of negative powers of z of degree between -k and -1. The following lemma will be used in the proof of Proposition 2.2.9.

Lemma 2.2.7. The r-norm on D(0, r) of the polynomial z k-1 g - ∞ (z), where g - ∞ (z) is written in the form (2.13), equals max 0≤n≤k-1 |c - n | p • r k-1-n . Proof. Since R •n (z) = z nz+1 and since |nz| p ≤ |z| p ≤ r < 1 if z ∈ D(0, r) ⊂ C p , it follows that |R •n (z)| p = |z| p for any z ∈ D(0, r) ⊂ C p and any n ∈ N. Hence ∥(z k-1 g - ∞ (z)) |D(0,r) ∥ r ≤ sup z∈Cp,|z|p≤r,0≤n≤k-1 |c - n | p • |z| k-1 p |R(z)...R •n (z)| p = sup z∈Cp,|z|p≤r,0≤n≤k-1 |c - n | p • |z| k-1-n p = max 0≤n≤k-1 |c - n | p • r k-1-n . (2.15) Returning to the expansion g - ∞ (z) = 0≤n≤k-1 b n z -n = 0≤n≤k-1 b n 1 z n of g - ∞ . For n ∈ N, since 1 z n is the sum of 1 z + 1 1 z + 2 ... 1 z +
n and a polynomial of 1 z of degree ≤ n -1 with integer coefficients, by induction on k we can show that all the coefficients c - n in (2.13) are integer linear combinations of the coefficients

b n , b n+1 , ..., b k-1 . It follows that |c - n | p ≤ max {|b n | p , |b n+1 | p , ..., |b k-1 | p } for any 0 ≤ n ≤ k -1. We get max 0≤n≤k-1 |c - n | p • r k-1-n ≤ max 0≤n≤k-1 max {|b n | p , |b n+1 | p , ..., |b k-1 | p } • r k-1-n ≤ max 0≤n≤k-1 max n≤i≤k-1 |b i | p • r k-1-i = max 0≤n≤k-1 |b n | p • r k-1-n = ∥(z k-1 g - ∞ (z)) |D(0,r) ∥ r .
Combining with (2.15) we get the desired formula.

By Lemma 2.2.7 and the construction of f - ∞ (z), we have

∥(z k f - ∞ (z)) |D(0,r ′ ) ∥ r ′ = max 0≤n≤k-1 c - n n + 1 p • (r ′ ) k-1-n ≤ max 0≤n≤k-1 (n + 1) r ′ r k-1-n • max 0≤n≤k-1 |c - n | p • r k-1-n = max 0≤n≤k-1 (n + 1) r ′ r k-1-n ∥(z k-1 g - ∞ (z)) |D(0,r) ∥ r .
(2.16) Lemma 2.2.8. The function g + ∞ on D(0, r) can be written under the form

g + ∞ (z) = +∞ n=2 c + n zR(z)...R •(n-1) (z), where c + n satisfies |c + n | p •r n → 0 when n → +∞. The r-norm of g + ∞ on D(0, r) equals sup{|c + n | p •r n | n ≥ 2}. Conversely, if g + ∞ is of this form, then it is analytic in D(0, r) with order of vanishing ord 0 (g + ∞ ) ≥ 2. Proof. Recall that g + ∞ (z) = n≥2 bn z n , where bn = b -n satisfying | bn | p •r n → 0 when n → +∞. We have seen that R •n (z) = z 1+nz = z +∞ j=0 (-nz) j in D(0, r) for each n ∈ N, so R •n (z) is analytic in D(0, r) with ord 0 (R •n (z)) = 1. Hence the function zR(z)...R •(n-1) (z) is analytic in D(0, r
) with order of vanishing n at 0, for any n ≥ 2. Since z n is the sum of zR(z)...R •(n-1) (z) and an infinite linear combination of z n+1 , z n+2 , ... with integer coefficients, by induction on j ≥ 2, we can write g + ∞ in the form

g + ∞ (z) = j n=2 c + n zR(z)...R •(n-1) (z) + +∞ n=j+1 d n,j z n , (2.17)
where the coefficients c + n , d n,j are integer linear combinations of b2 , ..., bn . It follows that |c

+ n | p , |d n,j | p ≤ max {| b2 | p , ..., | bn | p }.
Then for any z ∈ D(0, r) and any 2 ≤ j ≤ n -1, we have

|d n,j z n | p ≤ max {| b2 | p , ..., | bn | p } • r n -→ n→+∞ 0, since | bn | p • r n
and r n tend to 0 when n → +∞. Therefore, by (2.17) we deduce

g + ∞ (z) = lim j→+∞ j n=2 c + n zR(z)...R •(n-1) (z) = +∞ n=2 c + n zR(z)...R •(n-1) (z), and |c + n | p • r n ≤ max {| b2 | p , ..., | bn | p } • r n -→ n→+∞ 0. We also have sup {|c + n | p • r n | n ≥ 2} ≤ sup {| bn | p • r n | n ≥ 2} = ∥(g + ∞ ) |D(0,r) ∥ r . (2.18) Since |R •n (z)| p = |z| p for any z ∈ C p with |z| p ≤ r, we get ∥(g + ∞ ) |D(0,r) ∥ r = sup z∈Cp,|z|p≤r |g + ∞ (z)| p ≤ sup z∈Cp,|z|p≤r,n≥2 |c + n zR(z)...R •(n-1) (z)| p ≤ sup n≥2 |c + n | p • r n .
Combining with (2.18) we obtain ∥(g

+ ∞ ) |D(0,r) ∥ r = sup n≥2 |c + n | p • r n .
The inverse statement of the lemma is implied by Lemma 2.1.6 with the note that the function zR(z)...R (n-1) (z) is analytic in D(0, r) with order of vanishing n at 0, for any n ≥ 1.

Writing g + ∞ (z) = +∞ n=2 c + n zR(z)...R •(n-1) (z) for z ∈ D(0, r) as in Lemma 2.2.8. We then define f + ∞ (z) = +∞ n=1 c + n+1 zR(z)...R •(n-1)(z) -n
for z ∈ D(0, r ′ ). This function satisfies

f + ∞ (R(z)) -f + ∞ (z) = g + ∞ (z) (2.19) since R •n (z) -z = -nzR •n (z) for any n ∈ N (recall that R •n (z) = z nz+1 , so 1 R •n (z) = n + 1 z , hence 1 R •n (z) -1 z = n). The function f + ∞ (z) is analytic in D(0, r ′ ) since c + n+1 -n p (r ′ ) n ≤ |c + n+1 | p • n(r ′ ) n = |c + n+1 | p • r n+1 • n r ′ r n r -1 -→ n→+∞ 0, with the note that |c + n | p • r n -→ n→+∞ 0 as in the proof of Lemma 2.2.8. It follows that ∥(z k f + ∞ (z)) |D(0,r ′ ) ∥ r ′ = (r ′ ) k sup n≥1 c + n+1 -n p (r ′ ) n ≤ (r ′ ) k r -1 sup n≥1 n r ′ r n • sup n≥1 |c + n+1 | p • r n+1 = r ′ r k sup n≥1 n r ′ r n • ∥(z k-1 g + ∞ (z)) |D(0,r) ∥ r .
(2.20)

From (2.14) and (2.19), the function f ∞ defined on D(0, r ′ ) by f ∞ (z) = f - ∞ (z) + f + ∞ (z) satisfies the condition (2.12). By the construction, f ∞ (z) is meromorphic of order of vanishing ord 0 (f ∞ ) ≥ -k. The function f on X ∞ is defined by f (z) = f ∞ 1 z , then ∆(f ) = g on X ∞ and f ∈ A k (P 1 , L)[r ′ ]. The proposition is proven. Proposition 2.2.9. The map ∆ : A k (P 1 ) → A (-1)
k-1 (P 1 ) is continuous and open for any k ∈ Z. Proof. For the continuity of ∆, by the proof of Lemma 2.2.2, it suffices to show that the map ∆ :

A k (P 1 )[r] → A (-1) k-1 (P 1 )[r] is continuous for any r ∈ |C × p | p , r < 1 (by the proof of Proposition 2.2.5 we know that ∆ maps A k (P 1 )[r] into A (-1) k-1 (P 1 )[r]). Let f ∈ A k (P 1 )[r]
. We compare the r-norms of f and ∆(f ). We have

∥∆(f ) |B(0, 1 r ) ∥ r = sup {|(∆f )(z)| p : z ∈ C p , ∃ a ∈ Q p such that |a| p < 1 r , |z -a| p ≤ r} = sup {|f (z + 1) -f (z)| p : z ∈ C p , ∃ a ∈ Q p such that |a| p < 1 r , |z -a| p ≤ r} ≤ sup {|f (z)| p : z ∈ C p , ∃ a ∈ Q p such that |a| p < 1 r , |z -a| p ≤ r} = ∥f |B(0, 1 r ) ∥ r . (2.21) Suppose f is of the form k i=-∞ a i z i in {z ∈ P 1 (Q p ), |z| p ≥ 1 r }, then by (2.9) we know ∆(f ) = j<min{-1,k} j+1≤i≤min{-1,k} b i,j z j + j≥0,j≤k-1 i≥j,i≤k a i i j -a j z j = j≤k-1,j̸ =-1 b ′ j z j in {z ∈ P 1 (Q p ), |z| p ≥ 1 r }, where b i,j = a i -j-1 -i-1 (-1) i-j , b ′ j = j+1≤i≤min{-1,k} b i,j if j < -1 and b ′ j = i≥j,i≤k a i i j -a j if 0 ≤ j ≤ k -1. It follows that |b ′ j | p ≤ max j≤i≤k |a i | p . Then z k-1 • (∆f ) 1 z |D(0,r) r = sup j≤k-1,j̸ =-1 |b ′ j | p • r k-1-j ≤ sup j≤k-1,j̸ =-1 max j≤i≤k |a i | p • r k-1-j ≤ sup i≤k |a i | p • r k-1-i = r -1 z k f 1 z |D(0,r) r . (2.22)
Combining (2.21) and (2.22) we deduce that ∥∆(f )∥ r ≤ ∥f ∥ r . Therefore ∆ is continuous. We show the openness of ∆. In the proof of Proposition 2.2.5, for each g ∈ A

(-1) k-1 (P 1 )[r] and r ′ ∈ |C × p | p , r ′ < r < 1 we have constructed a function f ∈ A k (P 1 )[r ′ ] such that ∆(f ) = g. By (2.11) we have ∥f |B(0, 1 r ′ ) ∥ r ′ ≤ sup n≥1 n r ′ r n-1 ∥g |B(0, 1 r ′ ) ∥ r = sup n≥1 n r ′ r n-1 • max {∥g |B(0, 1 r ) ∥ r , ∥g |{z∈Qp, 1 r ≤|z|p< 1 r ′ } ∥ r }. Since ∥g |{z∈Qp, 1 r ≤|z|p< 1 r ′ } ∥ r } = sup |g(z)| p : z ∈ C p , ∃ a ∈ Q p such that 1 r ≤ |a| p < 1 r ′ , |z -a| p ≤ r ≤ sup |g(z)| p : z ∈ C p , 1 r ≤ |z| p < 1 r ′ ≤ 1 r ′ k-1 sup g(z) z k-1 p : z ∈ C p , 1 r ≤ |z| p < 1 r ′ ≤ 1 r ′ k-1 sup g(z) z k-1 p : z ∈ C p , |z| p ≥ 1 r = 1 r ′ k-1 sup z k-1 g 1 z p : z ∈ C p , |z| p ≤ r = 1 r ′ k-1 z k-1 g 1 z |D(0,r) r ,
we deduce that

∥f |B(0, 1 r ′ ) ∥ r ′ ≤ sup n≥1 n r ′ r n-1 • max 1 r ′ k-1 , 1 ∥g∥ r . (2.23) On X ∞ = {z ∈ P 1 (Q p ), |z| p ≥ 1 r ′ } the function f is constructed by f (z) = f ∞ 1 z and f ∞ (z) = f - ∞ (z) + f + ∞ (z), where the function f - ∞ (z) (resp. f + ∞ (z)) satisfies (2.14) (resp. (2.19)), and g - ∞ (z) (resp. g + ∞ (z)) is the negative (resp. stricly positive)-powers part of g ∞ (z) = g 1 z .
The inequalities (2.16) and (2.20) yield

z k f 1 z |D(0,r ′ ) r ′ = ∥(z k f ∞ (z)) |D(0,r ′ ) ∥ r ′ = max {∥(z k f - ∞ (z)) |D(0,r ′ ) ∥ r ′ , ∥(z k f + ∞ (z)) |D(0,r ′ ) ∥ r ′ } ≤ max max 0≤n≤k-1 (n + 1) r ′ r k-1-n , r ′ r k sup n≥1 n r ′ r n • ∥(z k-1 g ∞ (z)) |D(0,r) ∥ r = max max 0≤n≤k-1 (n + 1) r ′ r k-1-n , r ′ r k sup n≥1 n r ′ r n • z k-1 g 1 z |D(0,r) r .
(2.24)

From (2.23) and (2.24) we infer that there exists a constant C > 0 depending only on r, r ′ , k such that ∥f ∥ r ′ ≤ C∥g∥ r for any g ∈ A

(-1)

k-1 (P 1 )[r] and for f ∈ ∆ -1 (g) ∩ A k (P 1 )[r ′ ] determined by g. Returning to the openness of ∆. Let A be a neighborhood of 0 in A k (P 1 ). We prove that ∆(A) is a neighborhood of 0 in A (-1)

k-1 (P 1 ). It is equivalent to show that ∆(A) ∩ A (-1) k-1 (P 1 )[r] is a neighborhood of 0 in A (-1)
k-1 (P 1 )[r] for any r ∈ |C × p | p , r < 1. Let r < 1 and choose 0 < r ′ < r such that r ′ = p -n0 for some n 0 ∈ N * . Since A is a neighborhood of 0 in A k (P 1 )[r ′ ], there is a number R > 0 such that A contains an open ball of center 0 and radius R in

A k (P 1 )[r ′ ]. If g ∈ A (-1)
k-1 (P 1 )[r] such that ∥g∥ r < R/C, then there is a function f ∈ A k (P 1 )[r ′ ] such that ∆(f ) = g and ∥f ∥ r ′ ≤ C∥g∥ r . It follows that ∥f ∥ r ′ < R, so f ∈ A, hence g ∈ ∆(A). Therefore, ∆(A) contains the open ball of center 0 and radius R/C in A (-1)

k-1 (P 1 )[r], hence ∆(A) is a neighborhood of 0 in A (-1) k-1 (P 1 )[r].
The openness of ∆ is proven. Proposition 2.2.5 yields the following exact sequence for each k ∈ Z:

0 → ker ∆ i → A k (P 1 , L) ∆ → A (-1)
k-1 (P 1 , L) → 0, where i is the inclusion map. Dualizing this exact sequence yields the following complex

0 → D (-1) k-1 (P 1 , L) ∆ * -→ D k (P 1 , L) i * → Hom cont (ker ∆, L × ) → 0, (2.25)
where D

(-1)

k-1 (P 1 , L) is the continuous L-dual of A (-1) k-1 (P 1 , L). It turns out that this dual complex is exact. Lemma 2.2.10. If k ∈ Z <0 , there is a canonical exact sequence 0 → D (-1) k-1 (P 1 , L) ∆ * -→ D k (P 1 , L) i * → D(α,1)⊂Qp L → 0 (2.26) µ → (µ(1 D(α,1) )) D(α,1)⊂Qp .
If k ∈ Z ≥0 , the above exact sequence is replaced by

0 → D (-1) k-1 (P 1 , L) ∆ * -→ D k (P 1 , L) i * → L × D(α,1)⊂Qp L → 0 (2.27) µ → µ(1 D∞ ), (µ(1 D(α,1) )) D(α,1)⊂Qp ,
where

D ∞ is any open neighborhood of ∞ in P 1 (Q p ).
Proof. We show that the sequence (2.25) is exact. The injectivity of ∆ * is obvious. The exactness in the middle follows from the openness of ∆ :

A k (P 1 , L) → A (-1)
k-1 (P 1 , L) by Proposition 2.2.9 (see the proof of Proposition 2.2.4). The surjectivity of i * is a consequence of [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Corollary 9.4], where the field L here is spherically complete since it is a finite extension of Q p .

Let us determine the kernel of ∆ :

A k (P 1 , L) → A (-1) k-1 (P 1 , L). Let f ∈ ker ∆, then f (z + 1) = f (z) for any z ∈ P 1 (Q p ), so f (z + Z) = f (z) for all z ∈ P 1 (Q p ). Since f is continuous, it follows that f (z + Z p ) = f (z) for any z ∈ P 1 (Q p ), so f is constant in every closed disc of radius 1 in Q p . We prove that f is constant in a neighborhood of ∞. Let f ∞ (z) = f 1
z , defined in a neighborhood of 0. Then f ∞ is meromorphic of order of vanishing ord 0 (f ∞ ) ≥ -k. By (2.13) and Lemma 2.2.8, we can write f ∞ in the form

k-1 n=0 c - n zR(z)R •2 (z)...R •n (z) + +∞ n=0 c + n zR(z)...R •(n-1) (z),
where

R(z) = z z+1 . Since f ∞ (R(z)) = f ∞ (z), 1 R •(n+1) (z) -1 z = n + 1 and R •n (z) -z = -nzR •n (z), it follows that c - n = 0 for any 0 ≤ n ≤ k -1 and c + n = 0 for any n ≥ 1. Therefore, f ∞ is constant in a neighborhood of 0, so f is constant in a neighborhood of ∞. Since ord 0 (f ∞ ) ≥ -k, if k ≥ 0 this constant can be arbitrary, while if k < 0 it must be 0.
In summary, if k < 0, the kernel of ∆ :

A k (P 1 , L) → A (-1)
k-1 (P 1 , L) has the basis {1 D(α,1) } D(α,1)⊂Qp consisting of characteristic functions of all closed discs of radius 1 in Q p , while if k ≥ 0 the basis of ker ∆ has one more function, that is the characteristic function of

D ∞ . Note that if f = c ∈ L in the neighborhood {z ∈ P 1 (Q p ), |z| p ≥ R} of ∞ for R > 1 big enough, then the restriction of f on that neighborhood equals the function c • 1 D∞ - D(α,1)⊂{z∈D∞,|z|p<R} c • 1 D(α,1) .
If µ is an L-valued continuous linear form on ker ∆, then µ is uniquely determined by the values µ(1 D(α,1) ) in L for D(α, 1) ⊂ Q p if k < 0, or one more value µ(1 D∞ ) in L if k ≥ 0. Since the functions 1 D(α,1) do not belong simultaneously to A k (P 1 , L)[r] for any r ∈ |C × p | p , r < 1, it follows that the values µ(1 D(α,1) ) for D(α, 1) ⊂ Q p can be chosen arbitrarily. This explains the appearance of the last space in the sequences (2.26), (2.27).

The zeroth homology group of congruence subgroups of SL 2 (Z) with values in p-adic distributions on P 1 (Q p ) is computed in the following result:

Theorem 2.2.11. Let Γ ⊂ SL 2 (Z) be a congruence subgroup containing the matrix

1 1 0 1 . i) For any k ∈ Z\{0}, one has H 0 (Γ, D k (P 1 , L)) = 0. ii) If Γ 1 (N ) ∩ Γ 1 (p r ) ⊂ Γ ⊂ Γ 0 (N ) ∩ Γ 1 (p r ) for N, r ∈ N * with (N, p) = 1, letting c r = p [ r 2 ] + p r-[ r 2 ]-1
where [•] denotes the integral part, then

H 0 (Γ, D 0 (P 1 , L)) = L cr . If Γ 1 (N ) ∩ Γ 0 (p r ) ⊂ Γ ⊂ Γ 0 (N p r ) for N, r ∈ N * with (N, p) = 1, then H 0 (Γ, D 0 (P 1 , L)) =      L 2r if p ̸ = 2 or r = 1, L 3 if p = r = 2, L 2r-2 if p = 2 and r ≥ 3. Finally, H 0 (SL 2 (Z), D 0 (P 1 , L)) = L.
Proof. Since the matrix 1 1 0 1 belongs to Γ, its inverse γ 0 = 1 -1 0 1 also belongs to Γ. Recall that k-1 (P 1 , L) → A k (P 1 , L) induces the dual map

H 0 (Γ, V ) = V /IV (resp. V /V |I )
D k (P 1 , L) → D (-1) k-1 (P 1 , L) (2.28)
which is surjective by [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Corollary 9.4]. We consider the following cases:

• k < 0. Combining the surjective map (2.28) with the exact sequence (2.26) yields the following exact sequence:

D k (P 1 , L) ∆ * -→ D k (P 1 , L) i * → D(α,1)⊂Qp L → 0 µ → (µ(1 D(α,1) )) D(α,1)⊂Qp ,
where ∆ * : D k (P 1 , L) → D k (P 1 , L) is the composition of (2.28) and the map ∆ * : D

(-1) k-1 (P 1 , L) → D k (P 1 , L). Then ∆ * : D k (P 1 , L) → D k (P 1 , L
) is given by the right weight k action of γ 0 -1. We get the isomorphism

D k (P 1 , L)/D k (P 1 , L) | k γ0-1 ∼ = D(α,1)⊂Qp L (2.29) µ → (µ(1 D(α,1) )) D(α,1)⊂Qp . Let (x α ) ∈ D(α,1)⊂Qp L. Choose a matrix γ = a b c d in Γ such that p|c ̸ = 0. For µ ∈ D k (P 1 , L),
we have

µ | k γ-1 (1 D(α,1) ) = µ((a -cz) k 1 D(α,1) (γ -1 z)) -µ(1 D(α,1) ) = µ((a -cz) k 1 γ(D(α,1)) (z)) -µ(1 D(α,1) ),
(2.30)

where γ acts on P 1 (Q p ) by the linear fractional transformation.

The family of characteristic functions

{1 D(α,1) | D(α, 1) ⊂ Q p } is linear independent since the discs D(α, 1) are pairwise disjoint, it spans the subspace V 1 of A k (P 1 , L). The family of functions {(a -cz) k 1 γ(D(α,1)) (z) | D(α, 1) ⊂ Q p } is also linear independent, it spans the subspace V 2 of A k (P 1 , L). We show that the sum V 1 + V 2 is direct, i.e., V 1 ∩ V 2 = {0}. Let f be a function in V 1 ∩ V 2 . Since f ∈ V 1
, it has only finitely many values. Since f ∈ V 2 , it has the form

f (z) = D(α,1)⊂Qp t α (a -cz) k 1 γ(D(α,1)) (z)
for t α ∈ L and t α = 0 for all but finitely many α. Since the sets γ(D(α, 1)) are pairwise disjoint, if the coefficients t α are not simultaneously 0, then the function f would have infinitely many values since c ̸ = 0, k ̸ = 0. Therefore, all the coefficients t α are 0, so

f = 0. Hence V 1 ∩ V 2 = {0}. Defining the L-linear form µ 0 on V 1 ⊕ V 2 by µ 0|V 1 = 0, µ 0 ((a -cz) k 1 γ(D(α,1)) (z)) = x α for any D(α, 1) ⊂ Q p .
We will see that every linear form on V 1 ⊕ V 2 is continuous, so we can extend µ 0 to a continuous Llinear form µ on A k (P 1 , L) by [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Corollary 9.4]. Then µ ∈ D k (P 1 , L) and

µ | k γ-1 (1 D(α,1) ) = x α for any D(α, 1) ⊂ Q p by (2.30). We deduce that the image of D k (P 1 , L) | k Γ-1 by (2.29) is all of D(α,1)⊂Qp L. Therefore, H 0 (Γ, D k (P 1 , L)) = 0.
To see that every linear form on V 1 ⊕ V 2 is continuous, we need the following lemma:

Lemma 2.2.12. Let γ = a b c d ∈ Γ 0 (p) such that c ̸ = 0. For any α ∈ Q p such that v p (α) < -v p (c), the linear fractional transformation of γ maps the disc D(α, 1) ⊂ Q p onto the disc D γα, 1 |c| 2 p |α| 2 p which is contained in {z ∈ Q p , v p (z) = -v p (c)}. Proof. Since v p (α) < -v p (c) ≤ 0 ≤ v p (Z p ), we infer that |α| p > 1 and the disc D(α, 1) = α + Z p is contained in {z ∈ Q p , v p (z) = v p (α)}. If v p (z) = v p (α), then v p (cz) = v p (c) + v p (α) < 0 ≤ v p (d), so v p (cz + d) = v p (cz). Since γ ∈ Γ 0 (p), it follows that p|c, so p ̸ | a, hence v p (az) = v p (z) for any z. Therefore, if v p (z) = v p (α), then v p (az) = v p (α) < -v p (c) ≤ 0 ≤ v p (b), so v p (az + b) = v p (az). We get v p (γz) = v p az + b cz + d = v p (az + b) -v p (cz + d) = v p (az) -v p (cz) = -v p (c) if v p (z) = v p (α). Therefore, γ maps D(α, 1) into the set {z ∈ Q p , v p (z) = -v p (c)}. We have γz -γα = az + b cz + d - aα + b cα + d = z -α (cz + d)(cα + d) = z -α c 2 (z + d c )(α + d c ) = z -α c 2 (α + d c )(z -α + α + d c ) = 1 c 2 (α + d c )(1 + α+ d c z-α )
.

(2.31)

Since v p (α) < -v p (c) and v p ( d c ) = v p (d) -v p (c) ≥ -v p (c), so v p (α) < v p ( d c ), it follows that v p (α + d c ) = v p (α), hence |α + d c | p = |α| p . If z ∈ D(α, 1), then |z -α| p ≤ 1, so α + d c z -a p = |α| p |z -α| p ≥ |α| p > 1.
Hence

1 + α + d c z -a p = α + d c z -a p = |α| p |z -α| p .
Therefore, By the lemma, if α → ∞, then the radius of the disc γ(D(α, 1)) tends to 0, so there does not exist r ∈ |C × p | p , r < 1 such that the functions (a -cz) k 1 γ(D(α,1)) belong to A k (P 1 , L)[r] for infinitely many discs D(α, 1). Therefore, the values on the functions (a -cz) k 1 γ(D(α,1)) (z) indexed by the discs D(α, 1) of a continuous form µ 0 on V 2 can be arbitrary.

|γz -γα| p = |z -α| p |c| 2 p |α| 2 p ≤ 1 |c| 2 p |α| 2 p . It follows that γz ∈ D γα, 1
We resume with the proof of the theorem.

• k > 0. By (2.27), the isomorphism (2.29) is replaced by

D k (P 1 , L)/D k (P 1 , L) | k γ0-1 ∼ = L × D(α,1)⊂Qp L (2.32) µ → µ(1 D∞ ), (µ(1 D(α,1) )) D(α,1)⊂Qp ,
where

D ∞ is any open neighborhood of ∞ in P 1 (Q p ). Let (x ∞ , (x α )) ∈ L × D(α,1)⊂Qp L. Fix a matrix γ = a b c d ∈ Γ ∩ Γ 0 (p) such that c ̸ = 0. If µ ∈ D k (P 1 , L), we have µ | k γ-1 (1 D∞ ) = µ((a -cz) k 1 D∞ (γ -1 z)) -µ(1 D∞ ) = µ((a -cz) k 1 γ(D∞) (z)) -µ(1 D∞ ).
(2.33)

Let V ′ 1 ⊂ A k (P 1 , L) be the subspace with the basis {1 D(α,1) | D(α, 1) ⊂ Q p } ∪ {1 D∞ }. Let V ′ 2 ⊂ A k (P 1 , L) be the subspace with the basis {(a -cz) k 1 γ(D(α,1)) (z) | D(α, 1) ⊂ Q p } ∪ {(a -cz) k 1 γ(D∞) (z)}.
Similar to the above case, the sum

V ′ 1 + V ′ 2 in A k (P 1 , L) is direct. We define the continuous L-linear form µ ′ 0 on V ′ 1 ⊕ V ′ 2 by µ ′ 0|V ′ 1 = 0, µ ′ 0 ((a -cz) k 1 γ(D∞) (z)) = x ∞ , µ ′ 0 ((a -cz) k 1 γ(D(α,1)) (z)) = x α .
Extending µ ′ 0 to a continuous L-linear form µ ′ on A k (P 1 , L) by [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Corollary 9.4]. Then µ ′ ∈ D k (P 1 , L) and

µ ′ | k γ-1 (1 D∞ ) = x ∞ , µ ′ | k γ-1 (1 D(α,1) ) = x α
for any D(α, 1) ⊂ Q p by (2.30) and (2.33). So the image of

D k (P 1 , L) | k Γ-1 by (2.32) is all of L × D(α,1)⊂Qp L. Therefore, H 0 (Γ, D k (P 1 , L)) = 0.
• k = 0. Similar to (2.32) we have the isomorphism

D 0 (P 1 , L)/D 0 (P 1 , L) |0,γ0-1 ∼ = L × D(α,1)⊂Qp L (2.34) µ → µ(1 D(∞,2r) ), (µ(1 D(α,1) )) D(α,1)⊂Qp ,
where for each integer r ′ we set

D(∞, r ′ ) = {z ∈ P 1 (Q p ), v p (z) ≤ -r ′ }. The set of closed discs of radius 1 in Q p consists of Z p = D(0, 1) and the discs D(α, 1) = α + Z p for v p (α) ≤ -1. If v p (α) = -n ≤ -1 for n ∈ N * , then D(α, 1) is contained in {z ∈ Q p , v p (z) = -n}. The set {z ∈ Q p , v p (z) = -n} is partitioned by discs D(p -n β, 1) where β ∈ Z × p runs through a complete set of representatives of (Z p /p n Z p ) × . Let Γ ⊂ Γ 0 (p) be a congruence subgroup. The weight 0 action of a matrix γ = a b c d ∈ Γ on D 0 (P 1 , L) is given by µ |0,γ (f ) = µ(f (γ -1 z)),
where µ ∈ D 0 (P 1 , L) and f ∈ A 0 (P 1 , L). Since Γ ⊂ Γ 0 (p) ⊂ Σ 0 (p) (see §1.2.1), every matrix in Γ preserves Z p . We have

µ |0,γ-1 (1 Zp ) = µ(1 γ(Zp) ) -µ(1 Zp ) = 0 (2.35)
for any γ ∈ Γ and µ ∈ D 0 (P 1 , L). For the image of other closed discs of radius 1 in Q p by elements of Γ , we need the following lemmas:

Lemma 2.2.13. Let γ = a b c d ∈ Γ 0 (p) with c ̸ = 0. Inside the set {z ∈ Q p , v p (z) = -v p (c)},
there is exactly one closed disc of radius 1 (which is D(-d c , 1)) such that its image by γ is the neighborhood

D(∞, 2v p (c)) := {z ∈ P 1 (Q p ), v p (z) ≤ -2v p (c)} of ∞, other closed discs of radius 1 are mapped either onto closed discs of radius ≥ p 2 in {z ∈ Q p , -2v p (c) < v p (z) < -v p (c)} or onto closed discs of radius 1 in {z ∈ Q p , v p (z) = -v p (c)} by γ. Proof. Since p|c, we have (a, p) = (d, p) = 1, so v p ( -d c ) = -v p (c) < 0, hence D( -d c , 1) = -d c + Z p ⊂ {z ∈ Q p , v p (z) = -v p (c)}. We show that γ maps D( -d c , 1) onto D(∞, 2v p (c)). Let z ∈ D( -d c , 1), then z = -d c + z ′ for some z ′ ∈ Z p . We have γz = az + b cz + d = az ′ -1 c cz ′ = a c - 1 c 2 z ′ . Since v p ( a c ) = -v p (c) and v p ( 1 c 2 z ′ ) = -2v p (c) -v p (z ′ ) ≤ -2v p (c) < -v p (c), it follows that v p (γz) = v p ( 1 c 2 z ′ ) ≤ -2v p (c). We deduce that if z ′ runs through Z p , then γz runs through {v p (•) ≤ -2v p (c)}. Therefore, γ maps D(-d c , 1) onto D(∞, 2v p (c)). Consider a disc D(α, 1) ⊂ {z ∈ Q p , v p (z) = -v p (c)} different from D( -d c , 1), then γ(D(α, 1)) is disjoint from D(∞, 2v p (c)), hence γ(D(α, 1)) is contained in {z ∈ Q p , v p (z) > -2v p (c)}. Let z ∈ D(α, 1). Since v p (z) = -v p (c), it follows that v p (cz) = 0, so v p (cz + d) ≥ 0. On the other hand, since v p (az) = v p (z) = -v p (c) < 0 ≤ v p (b), we have v p (az + b) = v p (az) = -v p (c). Therefore, v p (γz) = v p az + b cz + d = v p (az + b) -v p (cz + d) ≤ v p (az + b) = -v p (c). So γ maps D(α, 1) into the set {z ∈ Q p , v p (z) ≤ -v p (c)}. Moreover, since z ∈ D(α, 1) = α + Z p , we have cz + d ∈ cα + d + cZ p = cα + d + p vp(c) Z p .
(2.36)

If cα + d ∈ pZ p , then cz + d ∈ pZ p , so v p (γz) < -v p (c), hence the image of D(α, 1) by γ is contained in {z ∈ Q p , -2v p (c) < v p (z) < -v p (c)}. Writing z = α + z ′ for z ′ ∈ Z p , we have γz -γα = z -α (cz + d)(cα + d) = z ′ (cz ′ + cα + d)(cα + d) = 1 cα + d • 1 c + cα+d z ′ = 1 c(cα + d) • 1 1 + α+ d c z ′ . Since α / ∈ D(-d c , 1), we have v p (α + d c ) < 0, so v p ( α+ d c z ′ ) < 0 = v p (1), hence v p (1 + α+ d c z ′ ) = v p ( α+ d c z ′ ) ≤ v p (α + d c ). Moreover, the set {1 + α+ d c z ′ | z ′ ∈ Z p } equals the set {z ′′ ∈ Q p , v p (z ′′ ) ≤ v p (α + d c )}. Therefore, γ(D(α, 1)) = D(γα, p 2vp(cα+d) ) is the closed disc of radius ≥ p 2 if cα + d ∈ pZ p . If cα + d ∈ Z × p , then cz + d ∈ Z × p by (2.36), so v p (γz) = -v p (c), hence the image of D(α, 1) by γ is contained in {z ∈ Q p , v p (z) = -v p (c)}. Since γz -γα = z -α (cz + d)(cα + d) and cz + d, cα + d ∈ Z × p , it follows that |γz -γα| p = |z -α| p ≤ 1, so γz ∈ D(γα, 1), hence γ(D(α, 1)) ⊂ D(γα, 1). Similar, by considering γ -1 = d -b -c a , we get γ -1 (D(γα, 1)) ⊂ D(α, 1) since -c(γα) + a = (cα + d) -1 ∈ Z × p , so D(γα, 1) ⊂ γ(D(α, 1)). We dedude that γ(D(α, 1)) = D(γα, 1) ⊂ {z ∈ Q p , v p (z) = -v p (c)} if cα + d ∈ Z × p .
Lemma 2.2.14. Let r ∈ N ≥2 and n ∈ N * such that -r + 1 ≤ -n ≤ -1. Let γ ∈ Γ 0 (p r ). The linear fractional transformation of γ on P 1 (Q p ) has the following properties: i) γ permutes the family of closed discs of radius 1 in {z ∈ Q p , v p (z) = -n}. Moreover, if α 0 ∈ Z × p , then γ maps the disc D(p -n α 0 , 1) onto the disc D(p -n β 0 , 1) for some β 0 ∈ Z × p such that α0 β0 is a square modulo p r-n (note that r -n > 0 since -n ≥ -r + 1). In particular, if -[ r 2 ] ≤ -n ≤ -1, then α0 β0 is a square modulo p n . Conversely, for any α 0 , β 0 ∈ Z × p such that α0 β0 is a square modulo p r-n , there exists a matrix

γ ∈ Γ(N ) ∩ Γ 0 (p r ) mapping the disc D(p -n α 0 , 1) onto the disc D(p -n β 0 , 1), where N ∈ N * such that (N, p) = 1. If moreover -[ r 2 ] ≤ -n ≤ -1, then r -n ≥ n and we can reduce to the condition α0 β0 is a square modulo p n . ii) If moreover γ ∈ Γ 1 (p r ), then γ preserves closed discs of radius 1 in {z ∈ Q p , v p (z) = -n} if -[ r 2 ] ≤ -n ≤ -1 with r ≥ 2, and γ maps a disc D(p -n α 0 , 1) for α 0 ∈ Z × p onto the disc D(p -n β 0 , 1) for some β 0 ∈ Z × p congruence to α 0 modulo p r-n if -r + 1 ≤ -n ≤ -[ r 2 ] -1 with r ≥ 3. Conversely, for any α 0 , β 0 ∈ Z × p such that α 0 ≡ β 0 (mod p r-n ) with -r + 1 ≤ -n ≤ -[ r 2 ]
-1, there is a matrix γ ∈ Γ(N p r ) mapping the disc D(p -n α 0 , 1) onto the disc D(p -n β 0 , 1), where N ∈ N * such that (N, p) = 1. Note that the disc D(p -n β 0 , 1) depends only on the congruence class of β 0 modulo p n , and

r -n < n if -n ≤ -[ r 2 ] -1. Proof. i) Consider r, n ∈ N * such that -r + 1 ≤ -n ≤ -1 and γ = a b c d ∈ Γ 0 (p r ). If α ∈ Q p such that v p (α) = -n, then v p (α) ≤ -1 < 0, so the disc D(α, 1) is contained in {z ∈ Q p , v p (z) = -n}. If z ∈ Q p such that v p (z) = -n, then v p (cz) = v p (c)+v p (z) ≥ r-n ≥ 1. Since γ ∈ Γ 0 (p r ) and r ≥ 1, it follows that p|c, so (a, p) = (d, p) = 1, hence cz + d ∈ Z × p and v p (az) = v p (z) = -n ≤ -1 < 0 ≤ v p (b). Therefore, v p (az + b) = v p (az) = -n. We get v p (γz) = v p az + b cz + d = v p (az + b) -v p (cz + d) = -n.
Therefore, γ preserves the set {z ∈ Q p , v p (z) = -n}. We have

γz -γα = z -α (cz + d)(cα + d)
.

We have seen that

v p (cz + d) = v p (cα + d) = 0 if v p (z) = v p (α) = -n, so γz ∈ D(γα, 1) if z ∈ D(α, 1), hence γ(D(α, 1 
)) ⊂ D(γα, 1). Similar, γ -1 (D(γα, 1)) ⊂ D(α, 1). Therefore, γ(D(α, 1)) = D(γα, 1). We conclude that γ permutes the family of closed discs of radius 1 in

{z ∈ Q p , v p (z) = -n} for any n such that -r + 1 ≤ -n ≤ -1. Consider α 0 ∈ Z × p , then γ maps D(p -n α 0 , 1) onto D(γ(p -n α 0 ), 1) = γ(p -n α 0 ) + Z p . We have γ(p -n α 0 ) = ap -n α 0 + b cp -n α 0 + d = p -n aα 0 + bp n cp -n α 0 + d ∈ p -n aα 0 cp -n α 0 + d + Z p , (2.37) since cp -n α 0 + d ∈ Z × p . Therefore, γ(D(p -n α 0 , 1)) = D(p -n β 0 , 1) for β 0 = aα0 cp -n α0+d
. Since p r |c, it follows that cp -n α 0 + d ≡ d (mod p r-n ). On the other hand, since ad = 1 + bc ≡ 1 (mod p r ), we have cp -n α 0 + d ≡ a -1 (mod p r-n ). Therefore, By (2.37), γ maps D(p -n α 0 , 1) onto D(p -n aα0 cp -n α0+d , 1). By the construction, p n |(x-cp -r α 0 ), so p r |(xp r-n -cp -n α 0 ), hence aα0 β0 ≡ 1 a + cp -n α 0 (mod p r ). Since p r |c and c|(ad -1), it follows that 1 a ≡ d (mod p r ). Therefore, aα0 β0 ≡ d + cp -n α 0 (mod p r ). So aα0 cp -n α0+d ≡ β 0 (mod p r ), hence mod p n since r > n. We obtain that p -n aα0 cp -n α0+d ∈ p -n β 0 + Z p . We get

β 0 ≡ a 2 α 0 (mod p r-n ), so α0 β0 is a square modulo p r-n . If -[ r 2 ] ≤ -n ≤ -1, then r -n ≥ n, so α0 β0 is a square modulo p n . Conversely, suppose α 0 , β 0 ∈ Z × p such that α0 β0 is a square modulo p r-n . By Chinese remainder theorem, since (N, p) = 1, we can choose a ∈ Z ∩ Z × p such that a ≡ 1 (mod N ) and a 2 ≡ β0 α0 (mod p r-n ). Since aα0 β0 ≡ 1 a (mod p r-n ), letting aα0 β0 = 1 a + xp r-n for x ∈ Z p . Since (a, N p) = 1,
D p -n aα 0 cp -n α 0 + d , 1 = p -n aα 0 cp -n α 0 + d + Z p = p -n β 0 + Z p = D(p -n β 0 , 1).
We conclude that γ maps the disc D(p -n α 0 , 1) onto D(p -n β 0 , 1).

If -[ r 2 ] ≤ -n ≤ -1 and α0 β0 is a square modulo p n , we construct as above accept the number a is chosen so that a 2 ≡ β0 α0 (mod p n ) and the number c satisfies c ≡ p 2n x α0 (mod p n+r ), where x ∈ Z p is given by aα0

β0 = 1 a + xp n . Then cp -n α 0 ≡ p n x (mod p r ), so cp -n α 0 ≡ 0 (mod p n ) since r > n, hence aα0 cp -n α0+d ≡ aα0 d ≡ a 2 α 0 ≡ β 0 (mod p n ). Therefore, p -n aα0 cp -n α0+d ∈ p -n β 0 + Z p . ii) Suppose γ ∈ Γ 1 (p r ) and α ∈ Q p such that v p (α) = -n. We have γα -α = aα + b cα + d -α = α(-cα + a -d) + b cα + d . (2.38)
We have seen that cα

+ d ∈ Z × p . Since a ≡ d ≡ 1 (mod p r ), v p (a -d) ≥ r. Since v p (-cα) = v p (c) + v p (α) ≥ r -n, it follows that v p (-cα + a -d) ≥ r -n, so v p (α(-cα + a -d)) ≥ r -2n. Hence v p (γα -α) ≥ min (r -2n, 0). Therefore, γα ≡ α (mod p min(r-2n,0) ). If -[ r 2 ] ≤ -n ≤ -1, then r -2n ≥ 0, so γα -α ∈ Z p , hence γ(D(α, 1)) = D(γα, 1) = γα + Z p = α + Z p = D(α, 1). If -r + 1 ≤ -n ≤ -[ r 2 ]
-1, then r -2n < 0, so γα ≡ α (mod p r-2n ). If α = p -n α 0 for α 0 ∈ Z × p , then γα = p -n β 0 for some β 0 ∈ Z × p such that β 0 ≡ α 0 (mod p r-n ). The image of the disc D(p -n α 0 , 1) by γ is the disc D(γα, 1) which is D(p -n β 0 , 1). Conversely, consider -r + 1 ≤ -n ≤ -[ r 2 ] -1 and α 0 , β 0 ∈ Z × p such that α 0 ≡ β 0 (mod p r-n ). In the proof of part i), we have constructed a matrix γ = a b c d ∈ Γ(N ) ∩ Γ 0 (p r ) mapping the disc D(p -n α 0 , 1) onto the disc D(p -n β 0 , 1), where b ∈ N p r Z and the entry a is chosen so that a ≡ 1 (mod N ) and a 2 ≡ β0 α0 (mod p r-n ). Since α 0 ≡ β 0 (mod p r-n ), we can choose a such that a ≡ 1 (mod p r ), then γ ∈ Γ(N p r ).

The lemma is proven.

We resume with the proof of the theorem. Consider the congruence subgroup Γ such that Γ

1 (N ) ∩ Γ 1 (p r ) ⊂ Γ ⊂ Γ 0 (N ) ∩ Γ 1 (p r ), where (N, p) = 1 and r ≥ 1. For µ ∈ D 0 (P 1 , L), γ ∈ Γ and α ∈ Q p , we have µ |0,γ-1 (1 D(α,1) ) = µ(1 γ(D(α,1)) ) -µ(1 D(α,1) ),
(2.39)

µ |0,γ-1 (1 D(∞,2r) ) = µ(1 γ(D(∞,2r)) ) -µ(1 D(∞,2r) ).
Since γ ∈ Γ ⊂ Γ 1 (p r ), by part ii) of Lemma 2.2.14, we have

µ |0,γ-1 (1 D(α,1) ) = 0 (2.40) if -[ r 2 ] ≤ v p (α) =: -n ≤ -1, and for any α 0 ∈ (Z p /p n Z p ) × , β0∈(Zp/p n Zp) × ,β0≡α0 (mod p r-n ) µ |0,γ-1 (1 D(p -n β0,1) ) = 0 (2.41) if -r + 1 ≤ -n ≤ -[ r 2 ]
-1, since γ permutes the family of closed discs D(p -n β 0 , 1) for β 0 ≡ α 0 (mod p r-n ). Since Z p and the set {z ∈ Q p , -r + 1 ≤ v p (z) ≤ -1} are invariant by γ by Lemma 2.2.14i), it follows that γ preserves D(∞, r) which is the disjoint union of D(∞, 2r) and closed discs of radius 1 in {z ∈ Q p , -2r < v p (z) ≤ -r}. So

µ |0,γ-1 (1 D(∞,2r) ) + D(α,1)⊂{z∈Qp,-2r<vp(z)≤-r} µ |0,γ-1 (1 D(α,1) ) = µ |0,γ-1 (1 D(∞,r) ) = = µ(1 γ(D(∞,r)) ) -µ(1 D(∞,r) ) = 0.
(2.42) Therefore, by (2.35), (2.40), (2.41), (2.42), the image via (2.34) of the subspace of D 0 (P 1 , L) generated by distributions µ |0,γ-1 for µ ∈ D 0 (P 1 , L) and γ ∈ Γ is contained in the space of all (x ∞ ,

(x α )) ∈ L × D(α,1)⊂Qp L such that x ∞ + D(α,1)⊂{z∈Qp,-2r<vp(z)≤-r}
x α = 0, (2.43)

x α = 0 if D(α, 1) = Z p or - r 2 ≤ v p (α) ≤ -1, (2.44) β0∈(Zp/p n Zp) × ,β0≡α0 (mod p r-n ) x p -n β0 = 0 for all α 0 ∈ (Z p /p r-n Z p ) × (2.45)
and all n ∈ N * such that -r + 1 ≤ -n ≤ -[ r 2 ] -1. We show that this image is all of such (x ∞ , (x α ))'s.

Since the set {z ∈ Q p , -r + 1 ≤ v p (z) ≤ -1} and Z p are stable by the action of Γ 0 (p r ) by Lemma 2.2.14i), the complement D(∞, r) in P 1 (Q p ) is also stable by Γ 0 (p r ). Therefore, the values of D 0 (P 1 , L) |0,Γ-1 at functions supported in {z ∈ Q p , -r + 1 ≤ v p (z) ≤ -1} (resp. D(∞, r)) depend only on the restrictions of D 0 (P 1 , L) on these subsets of P 1 (Q p ).

We partition D(∞, r) by D(∞, 2r) and the two following families:

F 1 = D(α, 1) | D(α, 1) ⊂ {z ∈ Q p , -2r < v p (z) < -r} , F 2 = D(α, 1) | D(α, 1) ⊂ {z ∈ Q p , v p (z) = -r} . Putting F 3 = D(α, 1) | D(α, 1) ⊂ {z ∈ Q p , v p (z) ≤ -2r} . The family of closed discs of radius 1 in {z ∈ Q p , v p (z) ≤ -r} is F 1 ∪ F 2 ∪ F 3 .
The characteristic functions of D(∞, 2r) and all discs in F 1 ∪ F 2 ∪ F 3 are linear independent in A 0 (P 1 , L) since all discs in F 1 ∪ F 2 ∪ F 3 are pairwise disjoint. Let E 0 denote the subspace of A 0 (P 1 , L) with the basis consisting of these characteristic functions. Let E ⊂ A 0 (P 1 , L) be the subspace consisting of functions supported in D(∞, r), then E 0 ⊂ E. Note that every L-linear form on E 0 is automatically continuous since the families F 1 , F 2 are finite and every subspace

A 0 (P 1 , L)[r] of A 0 (P 1 , L) for r ∈ |C × p | p , r < 1 does not contain an infinite number of discs in F 3 . Fix a disc D 0 ∈ F 2 . For each disc D ∈ F 1 , take a matrix γ D ∈ Γ(N ) ∩ Γ 1 (p r ) ⊂ Γ mapping D into D 0 as in Lemma 2.2.15i) below. Then γ -1 D (D 0 ) contains D.
So the image of D(∞, 2r) and every disc in

F 1 ∪ (F 2 \{D 0 }) ∪ F 3 by γ -1 D are disjoint from D. Defining the L-linear form µ ′ D on E 0 by µ ′ D (1 D(∞,2r) ) = 0, µ ′ D (1 D ) = -1, µ ′ D (1 D(α,1) ) = 0 for any D(α, 1) ∈ F 3 ∪ F 2 ∪ F 1 \{D}.
By [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Corollary 9.4], we can extend µ ′ D to a continuous L-linear form

µ D on E such that µ D is 0 outside D. Then (µ D ) |0,γ -1 D -1 (1 D(∞,2r) ) = µ D (1 γ -1 D (D(∞,2r)) ) -µ D (1 D(∞,2r) ) = 0 -0 = 0, (µ D ) |0,γ -1 D -1 (1 D ) = µ D (1 γ -1 D (D) ) -µ D (1 D ) = 0 -(-1) = 1, (µ D ) |0,γ -1 D -1 (1 D0 ) = µ D (1 γ -1 D (D0) ) -µ D (1 D0 ) = -1 -0 = -1, (µ D ) |0,γ -1 D -1 (1 D(α,1) ) = µ D (1 γ -1 D (D(α,1)) ) -µ D (1 D(α,1) ) = 0 -0 = 0 for any D(α, 1) ∈ (F 1 \{D}) ∪ (F 2 \{D 0 }) ∪ F 3 . The L-linear form µ ′ ∞ on E 0 given by µ ′ ∞ (1 D(∞,2r) ) = -1, µ ′ ∞ (1 D(α,1) ) = 0 for any D(α, 1) ∈ F 1 ∪ F 2 ∪ F 3 .
can be extended to a continuous L-linear form µ ∞ on E such that µ ∞ = 0 outside D(∞, 2r) by [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Corollary 9.4]. Writing the center of the disc D 0 by p -r x 0 for x 0 belongs to a congruence class of Z × p modulo p r . Defining c 0 = N p r c ′ 0 for some c ′ 0 ∈ Z ∩ Z × p such that c ′ 0 ≡ -N -1 x -1 0 (mod p r ). Then

-1 c 0 = -1 N p r c ′ 0 = p -r -1 N c ′ 0 . Since -1 N c ′ 0 ≡ x 0 (mod p r ), it follows that D( -1 c0 , 1) = D(p -r x 0 , 1) = D 0 . Let γ ∞ ∈ Γ(N ) ∩ Γ 1 (p r
) such that its lower left (resp. right) entry is c 0 (resp. 1). By Lemma 2.2.13, the image of D 0 by γ ∞ is D(∞, 2r). So the image by γ ∞ of D(∞, 2r) and every disc in

F 1 ∪ (F 2 \{D 0 }) ∪ F 3 are disjoint from D(∞, 2r). We obtain (µ ∞ ) |0,γ∞-1 (1 D(∞,2r) ) = µ ∞ (1 γ∞(D(∞,2r)) ) -µ ∞ (1 D(∞,2r) ) = 0 -(-1) = 1, (µ ∞ ) |0,γ∞-1 (1 D0 ) = µ ∞ (1 γ∞(D0) ) -µ ∞ (1 D0 ) = µ ∞ (1 D(∞,2r) ) -µ ∞ (1 D0 ) = -1 -0 = -1, (µ ∞ ) |0,γ∞-1 (1 D(α,1) ) = µ ∞ (1 γ∞(D(α,1)) ) -µ ∞ (1 D(α,1) ) = 0 -0 = 0 for any D(α, 1) ∈ F 1 ∪ (F 2 \{D 0 }) ∪ F 3 . For each disc D ′ ∈ F 2 \{D 0 }, taking a matrix γ D ′ ∈ Γ(N ) ∩ Γ 1 (p r ) mapping D ′ onto D 0 as in Lemma 2.2.15ii) below. Defining the L-linear form µ ′ 0 on E 0 by µ ′ 0 (1 D(∞,2r) ) = 0, µ ′ 0 (1 D0 ) = 1, µ ′ 0 (1 D(α,1) ) = 0 for any D(α, 1) ∈ F 1 ∪ (F 2 \{D 0 }) ∪ F 3 .
Extending µ ′ 0 to a continuous L-linear form µ 0 on E such that µ 0 = 0 outside D 0 by [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Corollary 9.4]. Since γ D ′ (D ′ ) = D 0 , the image by γ D ′ of D(∞, 2r) and every disc in

F 1 ∪ (F 2 \{D ′ }) ∪ F 3 are 2.2. ACTIONS OF GL 2 (Q P ) AND FURTHER RESULTS disjoint from D 0 . We obtain (µ 0 ) |0,γ D ′ -1 (1 D(∞,2r) ) = µ 0 (1 γ D ′ (D(∞,2r)) ) -µ 0 (1 D(∞,2r) ) = 0 -0 = 0, (µ 0 ) |0,γ D ′ -1 (1 D ′ ) = µ 0 (1 γ D ′ (D ′ ) ) -µ 0 (1 D ′ ) = µ 0 (1 D0 ) -µ 0 (1 D ′ ) = 1 -0 = 1, (µ 0 ) |0,γ D ′ -1 (1 D0 ) = µ 0 (1 γ D ′ (D0) ) -µ 0 (1 D0 ) = 0 -1 = -1, (µ 0 ) |0,γ D ′ -1 (1 D(α,1) ) = µ 0 (1 γ D ′ (D(α,1)) ) -µ 0 (1 D(α,1) ) = 0 -0 = 0 for any D(α, 1) ∈ F 1 ∪ (F 2 \{D 0 , D ′ }) ∪ F 3 . For each (x α ) ∈ D(α,1)∈F3 L, defining the L-linear form µ ′ F3 (xα) on E 0 by µ ′ F3 (xα) (1 D(∞,2r) ) = 0, µ ′ F3 (xα) (1 D(α,1) ) = 0 for any D(α, 1) ∈ F 1 ∪ F 2 , µ ′ F3 (xα) (1 D(α,1) ) = -x α for any D(α, 1) ∈ F 3 ,
and extending it to a continuous L-linear form µ F3 (xα) on E such that µ F3 (xα) = 0 outside D(∞, 2r) by [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Corollary 9.4]. Take a matrix γ F3 ∈ Γ(N ) ∩ Γ 1 (p r ) such that the p-adic valuation of its lower left entry is r. Then γ F3 ∈ Γ. The set D(∞, 2r) and all discs in F 1 ∪ F 3 are mapped by γ F3 into the set {z ∈ Q p , v p (z) = -r} by Lemma 2.2.12. The discs in F 2 are mapped by γ F3 either onto D(∞, 2r) or into the set {z ∈ Q p , -2r < v p (z) ≤ -r} by Lemma 2.2.13. Therefore,

µ F3 (xα) (1 γ F 3 (D(∞,2r)) ) = µ F3 (xα) (1 γ F 3 (D(α,1)) ) = 0 for any D(α, 1) ∈ F 1 ∪ F 2 ∪ F 3 .
We get

(µ F3 (xα) ) |0,γ F 3 -1 (1 D(∞,2r) ) = µ F3 (xα) (1 γ F 3 (D(∞,2r)) ) -µ F3 (xα) (1 D(∞,2r) ) = 0 -0 = 0, (µ F3 (xα) ) |0,γ F 3 -1 (1 D(α,1) ) = µ F3 (xα) (1 γ F 3 (D(α,1)) ) -µ F3 (xα) (1 D(α,1) ) = 0 -0 = 0 ∀D(α, 1) ∈ F 1 ∪ F 2 , (µ F3 (xα) ) |0,γ F 3 -1 (1 D(α,1) ) = µ F3 (xα) (1 γ F 3 (D(α,1)) ) -µ F3 (xα) (1 D(α,1) ) = 0 -(-x α ) = x α ∀D(α, 1) ∈ F 3 .
Let F 4 be the family of closed discs of radius 1 in {z ∈ Q p , -r + 1 ≤ v p (z) ≤ -1}. Let F 0 ⊂ A 0 (P 1 , L) be the subspace with the basis consisting of characteristic functions of all discs in F 4 . Let F ⊂ A 0 (P 1 , L) denote the subspace of functions supported in {z ∈ Q p , -r + 1 ≤ v p (z) ≤ -1}.

Then F 0 ⊂ F . Every L-linear form on F 0 is automatically continuous since F 0 is finite dimensional.

For n ∈ N * with -r + 1 ≤ -n ≤ -[ r 2 ] -1, fix a representative α 0 ∈ Z × p of each congruence class in (Z p /p r-n Z p ) × . For each β 0 ∈ (Z p /p n Z p ) × such that β 0 ≡ α 0 (mod p r-n ) and β 0 ̸ ≡ α 0 (mod p n ) (so that D(p -n β 0 , 1) ̸ = D(p -n α 0 , 1)), take a matrix γ β0 ∈ Γ(N p r ) ⊂ Γ mapping D(p -n β 0 , 1) onto D(p -n α 0 , 1) as in Lemma 2.2.14ii). Then the image by γ β0 of every disc in F 4 different from D(p -n β 0 , 1) is a disc in F 4 different from D(p -n α 0 , 1) by Lemma 2.2.14. Defining the L-linear form µ ′ α0 on F 0 by

µ ′ α0 (1 D(p -n α0,1) ) = 1, µ ′ α0 (1 D(α,1) ) = 0 for any D(α, 1) ∈ F 4 \{D(p -n α 0 , 1)}.
Extending µ ′ α0 to a continuous L-linear form µ α0 on F by [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Corollary 9.4]. We have x α = 0. Consider the distribution µ ∈ D 0 (P 1 , L) defined by

(µ α0 ) |0,γ β 0 -1 (1 D(p -n β0,1) ) = µ α0 (1 D(p -n α0,1) ) -µ α0 (1 D(p -n β0,1) ) = 1 -0 = 1, (µ α0 ) |0,γ β 0 -1 (1 D(p -n α0,1) ) = µ α0 (1 γ β 0 (D(p -n α0,1)) ) -µ α0 (1 D(p -n α0,1) ) = 0 -1 = -1, (µ α0 ) |0,γ β 0 -1 (1 D(α,1) ) = µ α0 (1 γ β 0 (D(α,1)) ) -µ α0 (1 D(α,1) ) = 0 -0 = 0 for any D(α, 1) ∈ F 4 \{D(p -n α 0 , 1), D(p -n β 0 , 1)}. Now let (x ∞ , (x α )) ∈ L × D(α,
µ = (µ F3 (xα) ) |0,γ F 3 -1 + x ∞ (µ ∞ ) |0,γ∞-1 + D∈F1 x D (µ D ) |0,γ -1 D -1 + D ′ ∈F2\{D0} x D ′ (µ 0 ) |0,γ D ′ -1
on D(∞, r), and

µ = r-1 n=[ r 2 ]+1 α0∈(Zp/p r-n Zp) × β0∈(Zp/p n Zp) × ,β0≡α0 (mod p r-n ),β0̸ ≡α0 (mod p n ) x p -n β0 (µ α0 ) |0,γ β 0 -1 on {z ∈ Q p , -r + 1 ≤ v p (z) ≤ -1}
, and µ = 0 on Z p . Then µ ∈ D 0 (P 1 , L) |0,Γ-1 and it is checked easily that

µ(1 D(∞,2r) ) = x ∞ , µ(1 D(α,1) ) = x α for any D(α, 1) ⊂ Q p .
We conclude that the image of the subspace of D 0 (P 1 , L) genereted by D 0 (P 1 , L) |0,Γ-1 via (2.34) is all of such (x ∞ , (x α ))'s. For each n ∈ N * , every closed disc of radius 1 in {z ∈ Q p , v p (z) = -n} is of the form D(p -n β, 1) for β runs through a complete set of representatives of (

Z p /p n Z p ) × . The dimension of H 0 (Γ, D 0 (P 1 , L)) if Γ 1 (N ) ∩ Γ 1 (p r ) ⊂ Γ ⊂ Γ 0 (N ) ∩ Γ 1 (p r ) is thus 1 + 1 + [ r 2 ] n=1 |(Z p /p n Z p ) × | + r-1 n=[ r 2 ]+1 |(Z p /p r-n Z p ) × | = p [ r 2 ] + p r-[ r 2 ]-1 . If Γ 1 (N ) ∩ Γ 0 (p r ) ⊂ Γ ⊂ Γ 0 (N p r ), by Lemma 2.2.14i), if n ∈ N * with -[ r 2 ] ≤ -n ≤ -1, then Γ permutes the family of discs D(p -n β 0 , 1) for β 0 ∈ Z ×
p such that β0 α0 is a square modulo p n , for each one of two equivalence classes up to square multiple of congruence classes α 0 ∈ (Z p /p n Z p ) × if p ̸ = 2 or p = 2 and n > 1, while if p = 2 and n = 1 there is only one class

α 0 ∈ (Z p /p n Z p ) × ; if -r + 1 ≤ -n ≤ -[ r 2 ] -1, then Γ permutes the family of discs D(p -n β 0 , 1) for β 0 ∈ Z × p such that β0
α0 is a square modulo p r-n , for each one of two equivalence classes up to square multiple of congruence classes α 0 ∈ (Z p /p r-n Z p ) × if p ̸ = 2 or p = 2 and -n > -r + 1, or only one equivalence class if p = 2 and -n = -r + 1. Note that the group (Z p /p n Z p ) × ∼ = (Z/p n Z) × is cyclic of order p n-1 (p -1) for any n ∈ N * , and this order is even if and only if p ̸ = 2 or p = 2 and n > 1.

Combining with (2.35) and (2.42) we deduce that the image via (2.34) of the subspace of D 0 (P 1 , L) generated by D 0 (P 1 , L) |0,Γ-1 is contained in the space of all (x ∞ , (x α )) ∈ L × D(α,1)⊂Qp L such that

x α = 0 if D(α, 1) = Z p , x ∞ + D(α,1)⊂{z∈Qp,-2r<vp(z)≤-r} x α = 0, (2.46) β0∈(Zp/p n Zp) × , β 0 α 0 is square (mod p n )
x p -n β0 = 0 (2.47)

for any equivalence class up to square multiple of congruence classes α 0 ∈ (Z p /p n Z p ) × and any

n ∈ N * such that -[ r 2 ] ≤ -n ≤ -1 if r ≥ 2, and β0∈(Zp/p n Zp) × , β 0 α 0 is square (mod p r-n ) x p -n β0 = 0 (2.48)
for any equivalence class up to square multiple of congruence classes α 0 ∈ (Z p /p r-n Z p ) × and any

n ∈ N * such that -r + 1 ≤ -n ≤ -[ r 2 ] -1 if r ≥ 3.
By the converse part of Lemma 2.2.14i) we can explain as above to deduce that the image via (2.34) of the subspace generated by D 0 (P 1 , L) |0,Γ-1 is all of (x ∞ , (x α )) satisfying the conditions (2.46), (2.47), (2.48). Therefore, the dimension of By (2.34) we have the following isomorphism:

H 0 (Γ, D 0 (P 1 , L)) if p ̸ = 2 is 1 + 1 + [ r 2 ] n=1 2 + r-1 n=[ r 2 ]+1 2 = 2r, while if p = 2 the dimension is 1 + 1 + 1 + [ r 2 ] n=2 2 + 1 + r-2 n=[ r 2 ]+1 2 =      2 if r = 1, 3 if r = 2, 2r -2 if r ≥ 3. If Γ = SL 2 (Z), then Γ ⊃ Γ 0 (p).
D 0 (P 1 , L)/D 0 (P 1 , L) |0γ0-1 ∼ = L × D(α,1)⊂Qp L (2.49) µ → µ(1 D(∞,2) ), (µ(1 D(α,1) )) D(α,1)⊂Qp .
By (2.46), the image of the subspace of D 0 (P 1 , L) generated by D 0 (P 1 , L) |0,Γ0(p)-1 by (2.49) is the space of all (x ∞ , (x α )) ∈ L × D(α,1)⊂Qp L such that

x Zp = x ∞ + D(α,1)⊂{z∈Qp,vp(z)=-1}
x α = 0, (2.50)

where x Zp corresponds to the disc Z p = D(0, 1). Since P 1 (Q p ) is partitioned by Z p , D(∞, 2) and the set {z ∈ Q p , v p (z) = -1}, for any µ ∈ D 0 (P 1 , L) and γ ∈ SL 2 (Z), we have

µ |0,γ-1 (1 Zp ) + µ |0,γ-1 (1 D(∞,2) ) + D(α,1)⊂{z∈Qp,vp(z)=-1} µ |0,γ-1 (1 D(α,1) ) = µ |0,γ-1 (1 P 1 (Qp) ) = µ(1 γ(P 1 (Qp)) ) -µ(1 P 1 (Qp) ) = 0.
Therefore, the image of the subspace of D 0 (P 1 , L) generated by

D 0 (P 1 , L) |0,SL2(Z)-1 by (2.49) is contained in the space of all (x ∞ , (x α )) ∈ L × D(α,1)⊂Qp L such that x Zp + x ∞ + D(α,1)⊂{z∈Qp,vp(z)=-1}
x α = 0, (2.51) and this image contains all (x ∞ , (x α )) satisfying (2.50). Since the image of Z p by a matrix γ ∈ SL 2 (Z) can be different from Z p (e.g. γ = 0 1 -1 0 ), we can define an L-linear form µ on the subspace of A 0 (P 1 , L) generated by the characteristic functions of Z p and γ(Z p ) so that µ |0,γ-1 (1 Zp ) = µ(1 γ(Zp) ) -µ(1 Zp ) ̸ = 0, and extending µ to a continuous L-linear form (which we still denote by µ) on A 0 (P 1 , L) by [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Corollary 9.4] to have a distribution µ ∈ D 0 (P 1 , L) such that µ |0,γ-1 (1 Zp ) ̸ = 0. We conclude that the image of the subspace of D 0 (P 1 , L) generated by D 0 (P 1 , L) |0,SL2(Z)-1 by (2.49) is the space of all (x ∞ , (x α )) ∈ L × D(α,1)⊂Qp L satisfying (2.51). So the dimension of H 0 (SL 2 (Z), D 0 (P 1 , L)) is 1.

We finish the proof of theorem by proving the following lemma:

Lemma 2.2.15. Let N, r ∈ N * with (N, p) = 1. i) For any closed disc D 0 ⊂ {z ∈ Q p , v p (z) = -r} of radius 1 and any closed disc D ⊂ {z ∈ Q p , -2r < v p (z) < -r} of radius 1, there exists a matrix γ ∈ Γ(N ) ∩ Γ 1 (p r ) such that γ maps D into D 0 . ii) For any two closed discs D 0 , D of radius 1 in {z ∈ Q p , v p (z) = -r}, there exists a matrix γ ∈ Γ(N ) ∩ Γ 1 (p r ) mapping D onto D 0 . Proof. i) Let D = D(p -r-n x, 1) and D 0 = D(p -r y, 1), where x, y ∈ Z × p and n ∈ N such that 0 < n < r. We choose c ′ ∈ Z such that c ′ ≡ -p n x + 1 y (mod p r ), c ′ ≡ 0 (mod N ). Putting c = p r c ′ , then c ≡ 0 (mod N p r ). Taking a, d ∈ Z such that a ≡ d ≡ 1 (mod N c), then a ≡ d ≡ 1 (mod N p r ) and ad ≡ 1 (mod N c). Letting b = ad-1 c ∈ N Z, then the matrix γ = a b c d belongs to Γ(N ) ∩ Γ 1 (p r ).
We check that γ maps D into D 0 . We have

γ(p -r-n x) = ap -r-n x + b cp -r-n x + d = ax + p r+n b cx + p r+n d . 2.3. ADMISSIBLE DISTRIBUTIONS ON P 1 (Q P ) Since v p (cx) = v p (c) = r < r + n = v p (p r+n d), we have v p (cx + p r+n d) = v p (cx) = r, so p r+n b cx+p r+n d ∈ p n Z p ⊂ Z p . Therefore, D(γ(p -r-n x), 1) = γ(p -r-n x) + Z p = ax cx + p r+n d + Z p . Since ax cx + p r+n d = ax p r c ′ x + p r+n d = p -r ax c ′ x + p n d and since ax c ′ x + p n d ≡ x c ′ x + p n ≡ y (mod p r )
by the construction of c ′ , we infer that D(γ(p -r-n x), 1) = p -r y + Z p = D 0 . By Lemma 2.2.12, the radius of γ(D) is strictly less than 1, so

γ(D) ⊂ D(γ(p -r-n x), 1) = D 0 .
ii) Suppose D = D(p -r x, 1) and D 0 = D(p -r y, 1) for x, y ∈ Z × p . Choosing c ′ ∈ Z such that c ′ ≡ y -1 -x -1 (mod p r ) and c ′ ≡ 0 (mod N ). Putting c = p r c ′ , then c ≡ 0 (mod N p r ). Taking a, d ∈ Z such that a ≡ d ≡ 1 (mod N c), then a ≡ d ≡ 1 (mod N p r ) and ad ≡ 1 (mod N c).

Letting b = ad-1 c ∈ N Z, then the matrix γ = a b c d belongs to Γ(N ) ∩ Γ 1 (p r ). Since c(p -r x) + d ≡ c ′ x + 1 ≡ xy -1 (mod p r ), we deduce that c(p -r x) + y ∈ Z × p .
By the proof of Lemma 2.2.13 we deduce that γ maps D onto the disc D(γ(p -r x), 1). We have

γ(p -r x) = ap -r x + b cp -r x + d = p -r ax c ′ x + d + b cp -r x + d ∈ p -r ax c ′ x + d + Z p since cp -r x + d ∈ Z × p .
On the other hand, since ax c ′ x+d ≡ ay ≡ y (mod p r ), it follows that γ(p -r x) ∈ p -r y + Z p . Therefore, γ(D) = p -r y + Z p = D 0 .

The lemma follows.

The theorem is proven.

Admissible distributions on

P 1 (Q p ) If µ ∈ D k (P 1
), then µ is uniquely determined by two distributions µ 1 , µ 2 on Z p , where µ 1 is the restriction of µ on Z p and µ 2 is defined by

µ 2 (f ) = D(∞,0) z k f 1 z dµ(z),
where D(∞, 0) = {z ∈ P 1 (Q p ), v p (z) ≤ 0}. These two distributions are related by

µ 1 |Z × p (f ) = µ 2 |Z × p z k f 1 z
for any analytic function f on Z × p .

Definition 2.3.1. For u ≥ 0, we say that a distribution µ ∈ D k (P 1 ) is u-admissible or of order ≤ u if the distributions µ 1 , µ 2 defined above have order ≤ u as distributions on Z p . We denote the set of u-admissible distributions in D k (P 1 ) by D k (P 1 ) ≤u .

ABSTRACT MODULAR SYMBOLS

If 1 0 0 l ∈ Σ for a prime number l, then we denote by T l the Hecke operator acting on Symb Γ (V ) given by the double coset Γ 1 0 0 l Γ. For example, if Γ = Γ 0 (N ) and l ̸ | N , then

ϕ |T l = ϕ   l 0 0 1   + l-1 a=0 ϕ   1 a 0 l   .
If l divides the level of Γ, we write U l instead of T l and we have

ϕ |U l = l-1 a=0 ϕ   1 a 0 l   .
The Hecke operator U p will play an important role in this thesis.

If 1 0 0 -1 normalizes Γ, then the operator T ∞ := Γ 1 0 0 -1 Γ acts on Symb Γ (V ) by the action of this matrix and this action is an involution. When 2 acts invertibly on V , we have a decomposition

Symb Γ (V ) = Symb Γ (V ) + ⊕ Symb Γ (V ) - into ±1-eigenspaces for T ∞ -action, given by ϕ = ϕ + + ϕ -for ϕ ∈ Symb Γ (V )
, where

ϕ ± = 1 2 ϕ ± ϕ   1 0 0 -1   .
The operator T ∞ commutes with all Hecke operators T l and U l , since the matrix 1 0 0 -1 commutes with 1 0 0 l for any l. Therefore, the subspaces Symb Γ (V ) ± are stable by the actions of T l and U l .

Slopes and slope decompositions

Definition 3.1.2 (Slopes). Let h be a rational number.

i) We say that a polynomial P (X) ∈ L[X] has slope ≤ h (resp. < h) if all its roots in Qp have p-adic valuation ≤ h (resp. < h). The polynomial P is said to be of finite slope if it has slope ≤ h for some h ∈ Q (i.e., P (0) ̸ = 0).

ii) If M is an L-vector space with an endomorphism named U acting on it, we define its subspace of vectors of slope ≤ h (resp. < h), denoted by M U ≤h (resp. M U <h ), as the sum of the subspaces ker P (U ) where P runs among monic polynomials of slope ≤ h (resp. < h). A vector in M is said to be of finite slope if it has slope ≤ h for some h ∈ Q. Slope of a U -eigenvector is defined by the p-adic valuation of its eigenvalue.

The notion of slope decompositions is introduced by Ash and Stevens. We follow [Urb] for its definition.

Definition 3.1.3 (Slope decompositions). Let M be a vector space over L and let U be a linear endomorphism of M . A ≤ h-slope decomposition of M with respect to U is a direct sum decomposition M = M 1 ⊕ M 2 such that i) M 1 and M 2 are stable under the action of U .

ii) M 1 is finite dimensional over L.

iii) The characteristic polynomial of U on M 1 has slope ≤ h.

iv) For any polynomial

Q ∈ L[X] of slope ≤ h, the restriction of Q(U ) to M 2 is an invertible endo- morphism of M 2 .
We denote M U ≤h for M 1 and M U >h for M 2 . The subspace M U ≤h is defined in Definition 3.1.2ii). Note that the subspace M U >h is bigger than the subspace of vectors of finite slope > h.

CLASSICAL AND OVERCONVERGENT MODULAR SYMBOLS WITH VALUES IN

D K (Z P )
By a generalization of a result of Serre (see [START_REF] Serre | Endomorphismes complément continus des espaces de Banach p-adiques[END_REF]Proposition 12] and [START_REF] Buzzard | Eigenvarieties, L-functions and Galois representations[END_REF]Theorem 3.3]), we infer that any compact endomorphism of a Banach space admits a ≤ h-slope decomposition for any h, or more general for any compact operator on a compact Fréchet space, in the sense of [START_REF] Urban | Eigenvarieties for reductive groups[END_REF]§2.3.12].

The notions of slopes and slope decompositions will be considered mainly for the operator U p on classical and overconvergent modular symbols. When we talk about the slope of a modular symbol without mentioning operator acting on it, we mean U p -slope, e.g., we write Symb Γ0 (D k (Z p )) ≤h for Symb Γ0 (D k (Z p )) Up≤h .

Classical and overconvergent modular symbols with values

in D k (Z p )

In this section, we define the classical and overconvergent modular symbols with values in D k (Z p ), endowed with an action of U p , as well as the specialization map between them. This map gives us an isomorphism when restricted to the subspace of small slope (see Theorem 3.2.1). We formulate the slope decompositions of overconvergent modular symbols with values in D k (Z p ) in Proposition 3.2.3.

Throughout this section, let Γ ⊂ SL 2 (Z) be a congruence subgroup of level prime to p. We put Γ 0 = Γ ∩ Γ 0 (p).

For k ∈ N, since Γ 0 ⊂ Σ 0 (p), it acts on the space D k (Z p ) of p-adic distributions on Z p , and on the L-dual V k of the space P k ⊂ L[X] of polynomials of degree ≤ k with coefficients in L, by the weight k actions defined by (1.7). The space of modular symbols with values in V k (resp. D k (Z p )) is called the space of classical (resp. overconvergent) modular symbols.

The natural inclusion

P k → A k (Z p ) induces the Σ 0 (p)-equivariant dual map ρ k : D k (Z p ) → V k , then induces the map ρ k : Symb Γ0 (D k (Z p )) → Symb Γ0 (V k )
which is equivariant for Hecke operators and which we call the specialization map.

Theorem 3.2.1 (Stevens' control theorem). The specialization map

ρ k : Symb Γ0 (D k (Z p )) → Symb Γ0 (V k )
is surjective. Moreover, its restriction to the subspace of U p -slope < k + 1 is an isomorphism

ρ k : Symb Γ0 (D k (Z p )) <k+1 ∼ = → Symb Γ0 (V k ) <k+1 .
Proof. See [START_REF] Pollack | Overconvergent modular symbols and p-adic L-functions[END_REF]Theorem 5.1] for surjectivity, see [START_REF] Stevens | Rigid analytic modular symbols[END_REF]Theorem 7.1] or [START_REF]Critical slope p-adic L-functions[END_REF]Theorem 5.4] for the isomorphism on small slope subspace.

A well-known result of Manin says that ∆ 0 is a finite Z[Γ]-module for any finite index subgroup Γ ⊂ SL 2 (Z) (see [Man]), so ∆ 0 is finite 

Z[Γ 0 ]-module. For each r ∈ |C × p | p , r < p, since Γ 0 acts isometrically on D k (Z p )[r] by Corollary 1.2.2, we get the space Symb Γ0 (D k (Z p )[r]). The action of Σ 0 (p) on D k (Z p )[r] induces the action of U p on Symb Γ0 (D k (Z p )[r]). The r-norm ∥ • ∥ r on D(Z p )[r] induces the r-norm ∥•∥ r on Symb Γ0 (D k (Z p )[
Symb Γ0 (D k (Z p )[r]) Up -→ Symb Γ0 (D k (Z p )[r/p]) → Symb Γ0 (D k (Z p )[r]),
where the second map is induced by the dual map

D k (Z p )[r/p] → D k (Z p )[r]. Since the second map is compact, U p is compact as an endomorphism of Symb Γ0 (D k (Z p )[r]). Proposition 3.2.3. For each h ∈ Q ≥0 , there is a ≤ h-slope decomposition Symb Γ0 (D k (Z p )) = Symb Γ0 (D k (Z p )) ≤h ⊕ Symb Γ0 (D k (Z p )) >h
and similar for Symb Γ0 (D k (Z p )[r]), where the space Symb Γ0 (D k (Z p )) ≤h is defined in Definition 3.1.2ii). Moreover,

Symb Γ0 (D k (Z p )) ≤h ∼ = Symb Γ0 (D k (Z p )[r]) ≤h for any r ∈ |C × p | p , r < p.
Proof. It follows by slope decompositions for compact operators on compact Fréchet spaces proved in [START_REF] Urban | Eigenvarieties for reductive groups[END_REF]Lemma 2.3.13]. Note that the Fréchet space Symb Γ0 (D k (Z p )) is compact and the Hecke operator U p on Symb Γ0 (D k (Z p )) is compact by Proposition 3.2.2, in the sense of [START_REF] Urban | Eigenvarieties for reductive groups[END_REF]§2.3.12]. The last isomorphism follows from [START_REF] Urban | Eigenvarieties for reductive groups[END_REF]Lemma 2.3.13].

Overconvergent modular symbols with values in D k (P 1 )

As mentioned at the beginning of Chapter 2, the consideration of P 1 (Q p ) promises a more general framework than that of Z p , so it is useful to study overconvergent modular symbols with values in D k (P 1 ).

We establish an exact sequence involving overconvergent modular symbols with values in D k (P 1 ) in Proposition 3.3.2. Like the case of D k (Z p ) in Section 3.2, there is also a U p -operator acting on these overconvergent modular symbols. The difference is that this operator U p no longer admits the slope decompositions, even the subspaces of bounded above slope are no longer finite dimensional (see Corollary 3.3.15). While proving this result, we are led to the existence of a new operator V p acting on overconvergent modular symbols with values in D k (Z p ) on the right, and we realize that the composition V p • U p equals p k+1 Id on these modular symbols (see Proposition 3.3.12). From this identity, we derive some corollaries involving the operators U p , V p (see Corollaries 3.3.13,3.3.15,3.3.17,3.3.18). We define some finite dimensional U p -stable subspaces of overconvergent modular symbols with values in D k (P 1 ) arising in an exact sequence of modular symbols in Theorem 3.3.23.

In this section, we consider the congruence subgroup Γ = Γ 1 (N ) or Γ 0 (N ) for N prime to p. We put

Γ 0 = Γ ∩ Γ 0 (p). Denote D(∞, 1) = {z ∈ P 1 (Q p ), v p (z) ≤ -1}, the complement of Z p in P 1 (Q p ).
Lemma 3.3.1. For any finite index subgroup Γ ⊂ SL 2 (Z) and short exact sequence

0 → V 1 → V 2 → V 3 → 0
of Γ-modules such that the order of any torsion element of Γ acts invertibly on V i 's, there is a canonical long exact sequence

0 → Symb Γ (V 1 ) → Symb Γ (V 2 ) → Symb Γ (V 3 ) → H 0 (Γ, V 1 ) → H 0 (Γ, V 2 ) → H 0 (Γ, V 3 ) → 0.
Proof. We have seen that the space of modular symbols is isomorphic to the first cohomology group with compact support of the modular curve. The result follows from the long exact sequence of cohomology with compact support associated to a short exact sequence of Γ-modules and the fact that

H 0 (Γ, V i ) ∼ = H 0 (H/Γ, V i ) ∼ = H 2
c (H/Γ, V i ) by Poincaré's duality, where V i is the locally constant sheaf associated to the module V i for i = 1, 2, 3. Note that H 3 c (H/Γ, V 1 ) = 0 since the real dimension of H/Γ is 2. Proposition 3.3.2. For any k ∈ N, there is an exact sequence compatible with Hecke operators:

0 → Symb Γ0 (D -k-2 (P 1 , L))(k + 1) → Symb Γ0 (D k (P 1 , L)) ρ k → Symb Γ0 (V † k (L))
→ 0 induced by the exact sequence in Proposition 2.2.4, where (k + 1) means the action of a Hecke operator

[Γ 0 sΓ 0 ] for s ∈ GL 2 (Q p ) is twisted by (det s) k+1 .
Proof. We apply Lemma 3.3.1 for the short exact sequence of Γ 0 -modules in Proposition 2.2.4 with the note that H 0 (D -k-2 (P 1 , L)) = 0 by Theorem 2.2.11.

We denote by A k (D(∞, 1)) the subspace of A k (P 1 ) consisting of functions supported in D(∞, 1).

A function f ∈ A k (P 1 ) belongs to A k (D(∞, 1)) if f |Zp = 0. Since Γ 0 (p) preserves Z p , the weight k action of Γ 0 (p) on A k (P 1 ) stabilizes A k (D(∞, 1
)), so it induces a weight k action on A k (D(∞, 1)). We set D k (D(∞, 1)) the continuous dual of A k (D(∞, 1)), endowed with the right weight k action of Γ 0 (p) defined similarly to that on D k (P 1 ) (see (2.5)). We get the space Symb Γ0 (D k (D(∞, 1))). The restriction map res :

D k (P 1 ) → D k (D(∞, 1)) µ → µ |D(∞,1) on D(∞, 1) is Γ 0 (p)-equivariant since it is the dual of the inclusion map A k (D(∞, 1)) → A k (P 1 ).
Consider the exact sequence of p-adic distributions

0 → D k (Z p ) ext → D k (P 1 ) res → D k (D(∞, 1)) → 0, (3.1) 
where the first map is the extension map given by ext(µ)(f ) = µ(f |Zp ) for µ ∈ D k (Z p ) and f ∈ A k (P 1 ). 

µ | k γ (f ) = µ(f | k γ * ) = µ f k   d -b -c a   = µ 1 γ(D(∞,1)) (z) • (a -cz) k f dz -b a -cz , (3.2) 
where µ ∈ D k (D(∞, 1)), γ = a b c d ∈ Σ 0 (p), f ∈ A k (D(∞, 1)).
Here we abuse the notation | k for the above actions on µ and f since they are defined almost similarly to (1.5), (1.7).

Proof.

For µ 0 ∈ D k (Z p ), f ∈ A k (P 1 ) and γ = a b c d ∈ Σ 0 (p), we have ext(µ 0| k γ )(f ) = (µ 0| k γ )(f |Zp ) = µ 0 (a -cz) k f dz -b a -cz |Zp = ext(µ 0 ) (a -cz) k f dz -b a -cz = ext(µ 0 ) | k γ (f ). So ext(µ 0| k γ ) = ext(µ 0 ) | k γ . The map ext is Σ 0 (p)-equivariant. Since D k (D(∞, 1)) is isomorphic to the quotient D k (P 1 )/ext(D k (Z p )
) by (3.1), there is an action of Σ 0 (p) on D k (D(∞, 1)) such that the map res is Σ 0 (p)-equivariant. We check that this action is given by (3.2).

Let

µ ∈ D k (P 1 ), f ∈ A k (D(∞, 1)) and γ = a b c d ∈ Σ 0 (p). We have res(µ | k γ )(f ) = (µ | k γ )(1 D(∞,1) • f ) = µ (a -cz) k 1 D(∞,1) (γ -1 z) • f dz -b a -cz = µ (a -cz) k 1 γ(D(∞,1)) (z) • f dz -b a -cz . We consider the condition z ∈ γ(D(∞, 1)). Since D(∞, 1) is the complement of Z p in P 1 (Q p ), it is equivalent to z / ∈ γ(Z p ). Since γ -1 (Z p ) = γ * (Z p ) = dZ p -b a -cZ p ⊂ Z p (note that p|c, p ̸ | a), it follows that Z p ⊂ γ(Z p ), so z / ∈ Z p , hence z ∈ D(∞, 1). Therefore, γ(D(∞, 1)) ⊂ D(∞, 1). We get 1 γ(D(∞,1)) = 1 D(∞,1) • 1 γ(D(∞,1)) . We obtain res(µ | k γ )(f ) = res(µ) 1 γ(D(∞,1)) (z) • (a -cz) k f dz -b a -cz = res(µ) | k γ (f ).
The lemma follows.

Remark 3.3.4. The condition z ∈ γ(D(∞, 1)) ⊂ D(∞, 1) in (3.2) ensures that dz-b a-cz ∈ D(∞, 1). The action (3.2) of Σ 0 (p) on D k (D(∞, 1)) induces the right action of U p on Symb Γ0 (D k (D(∞, 1))).
Corollary 3.3.5. For any k ∈ Z\{0}, there is a U p -equivariant exact sequence of modular symbols:

0 → Symb Γ0 (D k (Z p , L)) ext → Symb Γ0 (D k (P 1 , L)) res → Symb Γ0 (D k (D(∞, 1), L)) → 0.
If k = 0, the last space 0 in this exact sequence is replaced by L:

0 → Symb Γ0 (D 0 (Z p , L)) ext → Symb Γ0 (D 0 (P 1 , L)) res → Symb Γ0 (D 0 (D(∞, 1), L)) → L.
Proof. We apply Lemma 3.3.1 for the short exact sequence (3.1) which is Σ 0 (p)-equivariant by Lemma 3.3.3, with the note that H

0 (Γ 0 , D k (Z p , L)) = 0 for any k ∈ Z\{0} and H 0 (Γ 0 , D 0 (Z p , L)) = L by [PS13, Lemma 5.2].
It is obvious that the functor which takes subspace of slope ≤ h (or < h) is left exact, so we get a left exact sequence of ≤ h-slope modular symbols for U p -operator from the exact sequence in the above corollary for each h ∈ Q and k ∈ Z:

0 → Symb Γ0 (D k (Z p , L)) ≤h ext → Symb Γ0 (D k (P 1 , L)) ≤h res → Symb Γ0 (D k (D(∞, 1), L)) ≤h ,
and similar if ≤ h is replaced by < h.

Proposition 3.3.6. For any h ∈ Q and k ∈ Z\{0}, the map

Symb Γ0 (D k (P 1 , L)) ≤h res → Symb Γ0 (D k (D(∞, 1), L)) ≤h
is surjective. Therefore, for k ∈ Z\{0}, there is a U p -equivariant exact sequence of ≤ h-slope modular symbols:

0 → Symb Γ0 (D k (Z p , L)) ≤h ext → Symb Γ0 (D k (P 1 , L)) ≤h res → Symb Γ0 (D k (D(∞, 1), L)) ≤h → 0.
If k = 0, the last space 0 in this exact sequence is replaced by L. We have the same results if ≤ h is replaced by < h.

Proof. Consider k ̸ = 0. Let Φ 1 ∈ Symb Γ0 (D k (D(∞, 1), L)) ≤h . There is a polynomial P (X) ∈ L[X] of slope ≤ h such that Φ 1|P (Up) = 0. By Corollary 3.3.5, there exists Φ ∈ Symb Γ0 (D k (P 1 , L)) such that res(Φ) = Φ 1 . Since the map res is U p -equivariant, we have Φ |P (Up) ∈ ker (res) = Im (ext), so there is Φ 0 ∈ Symb Γ0 (D k (Z p , L)) such that Φ |P (Up) = ext(Φ 0 ).
Recall the ≤ h-slope decomposition:

Symb Γ0 (D k (Z p , L)) = Symb Γ0 (D k (Z p , L)) ≤h ⊕ Symb Γ0 (D k (Z p , L)) >h .
Writing Φ 0 = Ψ 0 +Θ 0 where Ψ 0 has slope ≤ h and Θ 0 ∈ Symb Γ0 (D k (Z p , L)) >h . There exists a polynomial

Q(X) ∈ L[X] of slope ≤ h such that Ψ 0|Q(U p ) = 0. We have Φ |(P Q)(Up) = (Φ |P (Up) ) |Q(Up) = ext(Φ 0 ) |Q(Up) = ext((Ψ 0 + Θ 0 ) |Q(Up) ) = ext(Θ 0|Q(U p ) ). Since P Q is of slope ≤ h, (P Q)(U p ) acts invertibly on Symb Γ0 (D k (Z p , L)) >h which contains Θ 0|Q(U p) , so there is Ξ 0 ∈ Symb Γ0 (D k (Z p , L)) >h such that Ξ 0|(P Q)(Up) = Θ 0|Q(U p ) . We get (Φ -ext(Ξ 0 )) |(P Q)(Up) = 0, so Φ -ext(Ξ 0 ) ∈ Symb Γ0 (D k (P 1 , L)) ≤h . Since Im (ext) = Ker (res), we have res(Φ -ext(Ξ 0 )) = res(Φ) = Φ 1 .
So the map res restricted on the subspace of ≤ h-slope modular symbols is surjective. The exactness for k ̸ = 0 is followed from Corollary 3.3.5. For k = 0, the proof is the same.

Consider the canonical isomorphism ι :

A(Z p ) → A k (D(∞, 1)) given by ι(f )(z) = z k f 1 N pz for f ∈ A(Z p ), z ∈ D(∞, 1) (note that (N, p) = 1).
Taking continuous duals induces an isomorphism of Fréchet spaces:

ι : D k (D(∞, 1)) ∼ = → D(Z p ) (3.3) µ → ι(µ) : f → µ z k f 1 N pz , where µ ∈ D k (D(∞, 1)), f ∈ A(Z p ) and z ∈ D(∞, 1). So D(Z p
) is endowed with a weight k action of Σ 0 (p) induced from the action (3.2) on D k (D(∞, 1)). We determine this action.

Let τ N p = 0 1 N p 0 . Define the right weight k action • k of Σ 0 (p) on D(Z p ) by (µ • k γ)(f ) := (µ | k τ N p γτ -1 N p )(f ) = µ k   d c/(N p) bN p a   (f ) = µ f k   a -c/(N p) -bN p d   = µ 1 c aN p +(ad-bc)Zp (z) • (d -bN pz) k f az -c/(N p) d -bN pz , (3.4) 
where µ ∈ D(Z p ), γ = a b c d ∈ Σ 0 (p) and f ∈ A(Z p ). Here we abuse the notation | k for the above actions on µ and f since they are defined almost similarly to (1.5), (1.7) (the condition z ∈ c aN p + (adbc)Z p for the action on f ensures that az-c/(N p) d-bN pz ∈ Z p ). Denote D ′ k (Z p ) the space D(Z p ) endowed with the action • k of Σ 0 (p).

Remark 3.3.7. The appearance of the Atkin-Lehner operator in (3.4) suggests that we are on correct track, for the eventual future goal to prove functional equations with the aid of p-adic distributions on

P 1 (Q p ). Lemma 3.3.8. The isomorphism (3.3) is Σ 0 (p)-equivariant for the action (3.2) on D k (D(∞, 1)) and the action (3.4) on D ′ k (Z p ). Proof. For γ = a b c d ∈ Σ 0 (p) , µ ∈ D k (D(∞, 1)) and f ∈ A(Z p ), we have ι(µ | k γ )(f ) = (µ | k γ ) z k f 1 N pz = µ 1 γ(D(∞,1)) (z) • (a -cz) k dz -b a -cz k f a -cz N p(dz -b) = µ 1 γ(D(∞,1)) (z) • z k d - bN p N pz k • f a N pz -c N p d -bN p N pz =: µ z k g 1 N pz = ι(µ)(g),
where

g(z) = 1 γ(D(∞,1)) ( 1 N pz ) • (d -bN pz) k • f ( az-c/(N p) d-bN pz ) for z ∈ Z p .
We simplify the condition 1 N pz ∈ γ(D(∞, 1)) = P 1 (Q p )\γ(Z p ). We have

1 N pz / ∈ γ(Z p ) ⇔ γ -1 1 N pz / ∈ Z p ⇔ v p d N pz -b a -c N pz < 0 ⇔ v p d -bN pz aN pz -c < 0 ⇔ v p aN pz -c d -bN pz > 0 ⇔ N pz -c/a d -bN pz ∈ pZ p (since p ̸ | a) ⇔ bN pz -bc/a bN pz -d ∈ bpZ p ⇔ 1 + d -bc/a bN pz -d ∈ bpZ p ⇔ d -bc/a bN pz -d ∈ -1 + bpZ p ⇔ bN pz -d ∈ d -bc/a -1 + bpZ p . If x ∈ -1 + bpZ p , then x = -1 + bpy for y ∈ Z p . Since |bpy| p < 1, we have 1 x = 1 -1 + bpy = -1 1 -bpy = -(1 + bpy + (bpy) 2 + ...) ∈ -1 + bpZ p . So 1 -1+bpZp ⊂ -1 + bpZ p , hence -1 + bpZ p ⊂ 1 -1+bpZp . Therefore, 1 -1+bpZp = -1 + bpZ p . We obtain bN pz -d ∈ d - bc a (-1 + bpZ p ) = bc a -d + d - bc a bpZ p .
We deduce that z ∈ c aN p + (ad -bc)Z p ⊂ Z p since p|c, p ̸ | aN . So

g(z) = 1 c aN p +(ad-bc)Zp • (d -bN pz) k • f az -c/(N p) d -bN pz = f k   a -c/(N p) -bN p d  
.

We obtain

ι(µ | k γ )(f ) = ι(µ)(g) = ι(µ) k   d c/(N p) bN p a   (f ) = ι(µ) | k τ N p γτ -1 N p (f ). Therefore, ι(µ | k γ ) = ι(µ) | k τ N p γτ -1 N p = ι(µ) • k γ. Note that τ N p normalizes Γ 0 .
We define as usual the Hecke operator U p acting on Symb Γ0 (D ′ k (Z p )) on the right induced from the action • k of Σ 0 (p) on D ′ k (Z p ). We have

(Φ • U p )(D) = p-1 a=0 (Φ • γ a )(D) = p-1 a=0 Φ(γ a D) • k γ a = p-1 a=0 Φ(γ a D) | k τ N p γaτ -1 N p for Φ ∈ Symb Γ0 (D ′ k (Z p )
) and D ∈ ∆ 0 . Corollary 3.3.9. For k ∈ Z\{0}, there is a U p -equivariant exact sequence of modular symbols:

0 → Symb Γ0 (D k (Z p , L)) ext → Symb Γ0 (D k (P 1 , L)) res → Symb Γ0 (D ′ k (Z p , L)) → 0.
The restriction on the ≤ h-slope subspace is also exact:

0 → Symb Γ0 (D k (Z p , L)) ≤h ext → Symb Γ0 (D k (P 1 , L)) ≤h res → Symb Γ0 (D ′ k (Z p , L)) ≤h → 0,
and similar if ≤ h is replaced by < h. If k = 0, the last space 0 in the above exact sequences is replaced by L.

Proof. This is immediate from Corollary 3.3.5, Proposition 3.3.6 and Lemma 3.3.8. Since p 0 0 1 = τ N p 1 0 0 p τ -1 N p and 1 0 0 p ∈ Σ 0 (p), by (3.4), there is a right weight k action of

p 0 0 1 on D k (Z p ) given by µ k   p 0 0 1   (f ) = µ f k   1 0 0 p   = µ p k 1 pZp (z) • f z p , (3.5) 
where µ ∈ D k (Z p ) and f ∈ A k (Z p ). This action is compatible with the action of Γ 0 (p). Let V p be the double coset operator Γ 0 p 0 0 1 Γ 0 acting on Symb Γ0 (D k (Z p )) on the right.

Let τ N p = 0 1 N p 0 and γ a = 1 a 0 p . Since τ N p normalizes Γ 0 , there is a decomposition:

Γ 0 p 0 0 1 Γ 0 = Γ 0 τ N p 1 0 0 p τ -1 N p Γ 0 = τ N p Γ 0 1 0 0 p Γ 0 τ -1 N p = p-1 a=0 τ N p Γ 0 γ a τ -1 N p = p-1 a=0 Γ 0 • τ N p γ a τ -1 N p . (3.6) Therefore, V p acts on Symb Γ0 (D k (Z p )) by ϕ |Vp = p-1 a=0 ϕ |τ N p γaτ -1 N p .
Lemma 3.3.10. There is a canonical isomorphism:

Symb Γ0 (D ′ k (Z p )) ∼ = → Symb Γ0 (D k (Z p )) Φ → Ψ : D → Φ(τ -1 N p D) for D ∈ ∆ 0
which is equivariant for the action of U p on the left hand side and the action of V p on the right hand side. Therefore, for any h ∈ Q,

Symb Γ0 (D ′ k (Z p )) ≤h ∼ = Symb Γ0 (D k (Z p )) Vp≤h . Proof. For Φ ∈ Symb Γ0 (D ′ k (Z p )), since Φ is Γ 0 -invariant, for any D ∈ ∆ 0 and γ ∈ Γ 0 , we have Φ(D) = (Φ • γ)(D) = Φ(γD) • k γ = Φ(γD) | k τ N p γτ -1 N p . Replacing γ by τ -1 N p γτ N p yields Φ(D) = Φ(τ -1 N p γτ N p D) | k γ .
For each

D ∈ ∆ 0 , let Ψ(D) = Φ(τ -1 N p D), then Ψ(τ N p D) = Ψ(γτ N p D) | k γ . Replacing D by τ -1 N p D, we get Ψ(D) = Ψ(γD) | k γ = Ψ |γ (D) for any D ∈ ∆ 0 and γ ∈ Γ 0 , hence Ψ ∈ Symb Γ0 (D k (Z p )). Therefore, the correspondence Φ → Ψ is an isomorphism between Symb Γ0 (D ′ k (Z p )) and Symb Γ0 (D k (Z p )).
Let Ψ 1 be the image of Φ • U p under the correspondence. We show that Ψ 1 = Ψ |Vp . For any D ∈ ∆ 0 , we have

Ψ 1 (D) = (Φ • U p )(τ -1 N p D) = p-1 a=0 Φ(γ a τ -1 N p D) • k γ a = p-1 a=0 Φ(γ a τ -1 N p D) | k τ N p γaτ -1 N p = p-1 a=0 Ψ(τ N p γ a τ -1 N p D) | k τ N p γaτ -1 N p = p-1 a=0 Ψ |τ N p γaτ -1 N p (D) = Ψ |Vp (D).
The lemma is proven.

Corollary 3.3.11. For k ∈ Z\{0}, there is an exact sequence of modular symbols:

0 → Symb Γ0 (D k (Z p , L)) ext → Symb Γ0 (D k (P 1 , L)) res → Symb Γ0 (D k (Z p , L)) → 0 (3.7)
which is equivariant for the U p -action on the first two spaces and the V p -action on the last space. The restriction on the ≤ h-slope subspaces for the corresponding operators is also exact:

0 → Symb Γ0 (D k (Z p , L)) ≤h ext → Symb Γ0 (D k (P 1 , L)) ≤h res → Symb Γ0 (D k (Z p , L)) Vp≤h → 0, (3.8) 
and similar if ≤ h is replaced by < h. If k = 0, the last space 0 in the above exact sequences is replaced by L.

Proof. This follows by Corollary 3.3.9 and Lemma 3.3.10.

The operators U p and V p on Symb Γ0 (D k (Z p )) are related by the following result:

Proposition 3.3.12. For any k ∈ Z and Φ ∈ Symb Γ0 (D k (Z p )), we have

Φ |UpVp := (Φ |Up ) |Vp = p k+1 Φ. Proof. For any D ∈ ∆ 0 , f ∈ A k (Z p ), we have Φ |UpVp (D)(f ) = p-1 a,b=0 Φ k   1 a 0 p   k   p 0 bN p 1   (D)(f ) = p-1 a,b=0 Φ k   1 a 0 p   p 0 bN p 1 D 1 pZp (z) • (-bN pz + p) k f z -bN pz + p = p-1 a,b=0 Φ 1 a 0 p p 0 bN p 1 D k   1 a 0 p   1 pZp (z) • (-bN pz + p) k f z -bN pz + p = p-1 a,b=0 Φ p + abN p a bN p 2 p D 1 pZp (pz -a) • (-bN p(pz -a) + p) k f pz -a -bN p(pz -a) + p .
Since the function 1 pZp (pz -a) on Z p is nonzero if and only if a = 0, we have

Φ |UpVp (D)(f ) = p-1 b=0 Φ p 0 bN p 2 p D (-bN p 2 z + p) k f pz -bN p 2 z + p = p-1 b=0 Φ 1 0 bN p 1 D p k (-bN pz + 1) k f z -bN pz + 1 = p-1 b=0 Φ 1 0 bN p 1 D p k f k   1 0 -bN p 1   = p-1 b=0 p k Φ 1 0 bN p 1 D k   1 0 bN p 1   (f ) = p-1 b=0 p k Φ   1 0 bN p 1   (D)(f ). Since 1 0 bN p 1 ∈ Γ 1 (N ) ∩ Γ 0 (p) ⊂ Γ 0 for all b, we have Φ   1 0 bN p 1   = Φ for all b, so Φ |UpVp = p k+1 Φ. Corollary 3.3.13. The operator U p is injective on Symb Γ0 (D k (Z p )). If Φ ∈ Symb Γ0 (D k (Z p )) is an- nihilated by P (U p ) for some polynomial P ∈ L[X], then Φ is annihilated by Q(V p ) for the polyno- mial Q(X) = X n P ( p k+1 X )
, where n is the degree of P . In particular, if α is an eigenvalue of

U p on Symb Γ0 (D k (Z p )), then α ̸ = 0 and p k+1 α is an eigenvalue of V p on Symb Γ0 (D k (Z p )). Proof. U p is injective on Symb Γ0 (D k (Z p )) since V p • U p = p k+1 Id is injective on it.
Suppose P splits in Qp as P (X) = n i=1 (X -α i ) (we can assume that P is monic). Regarding Φ as an

element of Symb Γ0 (D k (Z p )) ⊗ Qp Qp , we have Φ |(Up-α1)...(Up-αn) = 0. Let Φ 1 = Φ |(Up-α1)...(Up-αn-1) , then Φ 1|(U p -αn) = 0. So 0 = Φ 1|(U p -αn)Vp = Φ 1|(p k+1 -αnVp) .
for d l ≤ n < d l+1 , where d i is the dimension of the space M k+2+i(p-1) (Γ 1 (N )) of classical modular forms of weight k +2+i(p-1) and level Γ 1 (N ), and m i = d i -d i-1 for i > 0. Note that the set of U p -eigenvalues of overconvergent modular forms of weight k + 2 is the same as that of overconvergent modular symbols with values in D k (Z p ). Consider d l ≤ n < d l+1 , we have

v p (a n ) ≥ p -1 p + 1 (l + 1)n - l i=0 d i -n ≥ p -1 p + 1 ln - l-1 i=0 d i -n.
The dimension of a space of modular forms of given weight and level is given in [START_REF] Diamond | A first course in modular forms[END_REF]Theorem 3.5.1 and Theorem 3.6.1]. In particular, there exist positive constants c, d depend only on the level

N such that ck -d ≤ dim M k (Γ 1 (N )) ≤ ck + d for any k ≥ 0. So c(k + 2 + i(p -1)) -d ≤ d i ≤ c(k + 2 + i(p -1)) + d
for any i ≥ 0. We get

v p (a n ) ≥ p -1 p + 1 ln -c l(k + 2) + (p -1) l(l -1) 2 -ld -n = l(p -1) p + 1 n -c(k + 2) - c(p -1)(l -1) 2 -d -n. Since n ≥ d l ≥ c(k + 2 + l(p -1)) -d, we have c(p -1)(l -1) ≤ n -c(k + 2) + d. So v p (a n ) ≥ l(p -1) p + 1 • n -c(k + 2) -3d 2 -n. Since n < d l+1 ≤ c(k + 2 + (l + 1)(p -1)) + d, we have l ≥ n-c(k+2)-c(p-1)-d c(p-1)
. Hence

v p (a n ) ≥ n -c(k + 2) -c(p -1) -d c(p + 1) • n -c(k + 2) -3d 2 -n > an + b
for n big enough. This is a contradiction. So the Newton polygon of P (X) has infinitely many edges.

If a finite edge of the Newton polygon of P (X) has length M and slope λ (the length of a finite edge of a Newton polygon is the absolute value of the difference of the abscissas of its endpoints), then P (X) has exactly M roots of valuation -λ (counting with multiplicity), so U p has exactly M eigenvalues of padic valuation λ on Symb Γ0 (D k (Z p )). Therefore, U p has infinitely many eigenvalues on Symb Γ0 (D k (Z p )) with arbitrarily large slope. We deduce from Corollary 3.3.13 that V p has infinitely many eigenvalues on Symb Γ0 (D k (Z p )) with arbitrarily small slope. Therefore, Symb Γ0 (D k (Z p )) Vp≤h is infinite dimensional, then so is Symb Γ0 (D k (P 1 , L)) ≤h by (3.8).

Remark 3.3.16. The above corollary is also true for the congruence subgroup Γ 1 (N q) instead of Γ 0 = Γ 1 (N ) ∩ Γ 0 (p). The crucial point is that the slope of eigenvalues of U p on Symb Γ1(N q) (D k (Z p )) can be arbitrarily large, which can be deduced from [START_REF] Coleman | p-adic Banach spaces and families of modular forms[END_REF]Proposition I4] and [START_REF]Critical slope p-adic L-functions[END_REF]Corollary 7.4].

Corollary 3.3.17. Let Symb Γ0 (D k (Z p )) <∞ denote the subspace of Symb Γ0 (D k (Z p )) of modular symbols of finite U p -slope. The space Symb Γ0 (D k (Z p )) <∞ is stable by the actions of U p and V p . Moreover, the operators U p and V p , seen as endomorphisms on Symb Γ0 (D k (Z p )) <∞ , are isomorphisms and satisfy

U p • V p = V p • U p = p k+1 Id.
Proof. If Φ ∈ Symb Γ0 (D k (Z p )) <∞ , then there exists a polynomial P (X) of finite slope such that Φ |P (Up) = 0. We have

(Φ |Up ) |P (Up) = (Φ |P (Up) ) |Up = 0, so Φ |Up ∈ Symb Γ0 (D k (Z p )) <∞ . Therefore, Symb Γ0 (D k (Z p )) <∞ is stable by U p .
Consider Φ and P as above, since P (X) has finite slope, P (0) ̸ = 0. Writing P (X) = a(1 + XQ(X)), where a ̸ = 0 is the constant coefficient of P . Then

0 = Φ |P (Up) = a(Φ + Φ |Q(Up)Up ), so Φ = -Φ |Q(Up)Up . Hence Φ |Vp = -(Φ |Q(Up) ) |Up|Vp = -p k+1 Φ |Q(Up) ∈ Symb Γ0 (D k (Z p )) <∞
by Proposition 3.3.12 and Symb Γ0 (D k (Z p )) <∞ is U p -stable. Therefore, Symb Γ0 (D k (Z p )) <∞ is stable by V p .

By the same method, the subspace Symb Γ0 (D k (Z p )) ≤h is stable under the action of U p and V p for any h ∈ Q. Since U p is injective on the finite dimensional vector space Symb Γ0 (D k (Z p )) ≤h by Corollary 3.3.13, U p is an isomorphism on it. Combining with the identity V p •U p = p k+1 Id of Proposition 3.3.12, we deduce that V p is also an isomorphism and U p • V p = p k+1 Id on Symb Γ0 (D k (Z p )) ≤h . Since Symb Γ0 (D k (Z p )) <∞ is the union of Symb Γ0 (D k (Z p )) ≤h 's, it follows that U p and V p are isomorphisms on Symb Γ0 (D k (Z p )) <∞ and U p • V p = V p • U p = p k+1 Id on it.

For h ∈ Q, by Corollary 3.3.13, the space of modular symbols of finite U p -slope ≥ k + 1 -h in Symb Γ0 (D k (Z p )) is contained in the space Symb Γ0 (D k (Z p )) Vp≤h . If we impose the condition on the upper bound for U p -slope on both spaces, then we get an equality. We have the following result:

Corollary 3.3.18. For h, h ′ ∈ Q such that k + 1 -h ′ ≤ h, we have Symb Γ0 (D k (Z p )) Up≤h,Vp≤h ′ = Symb Γ0 (D k (Z p )) k+1-h ′ ≤Up≤h ,
where

Symb Γ0 (D k (Z p )) Up≤h,Vp≤h ′ = Symb Γ0 (D k (Z p )) Up≤h ∩ Symb Γ0 (D k (Z p ))
Vp≤h ′ and we denote by Symb Γ0 (D k (Z p )) k+1-h ′ ≤Up≤h the subspace of Symb Γ0 (D k (Z p )) consisting of modular symbols of U p -slope between k + 1 -h ′ and h.

Proof. We have seen that the right hand side is contained in the left hand side. We prove the opposite inclusion.

Let Φ ∈ Symb Γ0 (D k (Z p )) Up≤h,Vp≤h ′ . Then there is a polynomial P (X) of slope ≤ h ′ such that Φ |P (Vp) = 0. By Corollary 3.3.17, U p • V p = p k+1 Id on Symb Γ0 (D k (Z p )) Up≤h . Using the method in the proof of Corollary 3.3.13, the equality Φ |P (Vp) = 0 yields Φ |Q(Up) = 0 for the polynomial Q(X) = X n P p k+1 X , where n is the degree of P . The polynomial Q(X) has finite slope

≥ k + 1 -h ′ . Since Φ ∈ Symb Γ0 (D k (Z p )) Up≤h , there is a polynomial R(X) of slope ≤ h such that Φ |R(Up) = 0. Let S(X) = gcd(Q(X), R(X)), then S is of slope between k + 1 -h ′ and h since S|Q, S|R. We have Φ |S(Up) = 0 since Φ |Q(Up) = Φ |R(Up) = 0 and there exist polynomials R 1 , R 2 such that S = R 1 Q + R 2 R. Therefore, Φ ∈ Symb Γ0 (D k (Z p )) k+1-h ′ ≤Up≤h .
The following lemma will be very useful. Proof. The modular symbol Φ |Vp is defined by

Φ |Vp (D)(f ) = p-1 a=0 Φ   p 0 aN p 1   (D)(f ) = p-1 a=0 Φ (D a ) 1 pZp (z) • (-aN pz + p) k f z p(-aN z + 1)
,

where D ∈ ∆ 0 , D a = p 0 aN p 1 D, f ∈ A(Z p ) (we will determine the radius of convergence of f ).

We set g a (z) = 1 pZp (z) • (-aN pz + p) k f ( The lemma follows.

Corollary 3.3.20.

If Φ ∈ Symb Γ0 (D k (Z p )) is a V p -eigensymbol of slope ≤ h, then ∥Φ∥ r/p n ≥ p n(k-h) ∥Φ∥ r for any r ∈ |C × p | p with r ≤ 1 and n ∈ N.
Proof. Let Φ ∈ Symb Γ0 (D k (Z p )) be a V p -eigensymbol of eigenvalue α such that v p (α) ≤ h. For r ≤ 1, by the above lemma, we have

∥Φ∥ r = ∥α -n Φ |V n p ∥ r ≤ |α -n | p • p -nk ∥Φ∥ r/p n ≤ p n(h-k) ∥Φ∥ r/p n .
Therefore, ∥Φ∥ r/p n ≥ p n(k-h) ∥Φ∥ r .

Proposition 3.3.21. There are decompositions:

Symb Γ0 (D k (Z p )) = ker(V p ) ⊕ Im(U p ), Symb Γ0 (D k (Z p )[r]) = ker(V p ) ⊕ Im(U p )
for each r ∈ |C × p | p with r < p -1 , where U p and V p are endomorphisms of Symb Γ0 (D k (Z p )) in the first decomposition and U p (resp.

V p ) is the map from Symb Γ0 (D k (Z p )[r]) to Symb Γ0 (D k (Z p )[r]) (resp. Symb Γ0 (D k (Z p )[pr]
)) in the second decomposition. Moreover, the kernel of V p in the second decomposition is infinite dimensional. If 0 is an eigenvalue of U p on Symb Γ0 (D k (P 1 , L)), then 0 is an eigenvalue of V p on Symb Γ0 (D k (Z p , L))

Proof. We omit L from the notations for simplicity. Since U p is injective on Symb Γ0 (D k (Z p )) by Corollary 3.3.13, every eigenvalue of U p on Symb Γ0 (D k (Z p )) is nonzero. Let α be an eigenvalue of U p on Symb Γ0 (D k (P 1 )) associated with an eigensymbol Φ. Consider the map res : Symb Γ0 (D k (P 1 )) → Symb Γ0 (D k (Z p )) in (3.7). Since it is equivariant for the action of U p on the left hand side and that of V p on the right hand side, we have res(Φ) |Vp = α • res(Φ).

If res(Φ) ̸ = 0, then res(Φ) is an eigensymbol of V p on Symb Γ0 (D k (Z p )) with eigenvalue α. Otherwise, Φ ∈ ker(res) = Im(ext), so Φ is an eigensymbol of U p on Symb Γ0 (D k (Z p )) with eigenvalue α since ext is injective and U p -equivariant. If α = 0, then the former case follows since U p is injective on Symb Γ0 (D k (Z p )).

Conversely, if α is an eigenvalue of U p on Symb Γ0 (D k (Z p )) associated with an eigensymbol Φ 0 , then α is an eigenvalue of U p on Symb Γ0 (D k (P 1 )) associated with the eigensymbol ext(Φ 0 ). Now let α be a nonzero eigenvalue of Vp≤vp(α) . Since res : Symb Γ0 (D k (P 1 )) ≤vp(α) → Symb Γ0 (D k (Z p )) Vp≤vp(α) is surjective by (3.8), there is Φ 2 ∈ Symb Γ0 (D k (P 1 )) ≤vp(α) such that res(Φ 2 ) = Φ 1 . We have

V p on Symb Γ0 (D k (Z p )). Let Φ 1 ∈ Symb Γ0 (D k (Z p )) be a V p - eigensymbol with eigenvalue α, then Φ 1 ∈ Symb Γ0 (D k (Z p ))
res(Φ 2|U p -α ) = res(Φ 2 ) |Vp-α = Φ 1|V p -α = 0, so Φ 2|U p -α ∈ ker(res) = Im(ext). Let Φ 2|U p -α = ext(Φ 3 ) for Φ 3 ∈ Symb Γ0 (D k (Z p )) ≤vp(α) (since Φ 2 has slope ≤ v p (α)). If α is an eigenvalue of U p on Symb Γ0 (D k (Z p ))
, then α is an eigenvalue of U p on Symb Γ0 (D k (P 1 )). If not, then U p -α is an injective endomorphism of the finite dimensional space Symb Γ0 (D k (Z p )) ≤vp(α) , so it is an isomorphism. Then there exists Φ

4 ∈ Symb Γ0 (D k (Z p )) ≤vp(α) such that Φ 3 = Φ 4|U p -α . We have Φ 2|U p -α = ext(Φ 4 ) |Up-α , hence Φ 2 -ext(Φ 4 ) ∈ ker(U p -α). On the other hand, Φ 2 -ext(Φ 4 ) ̸ = 0 since res(Φ 2 -ext(Φ 4 )) = res(Φ 2 ) = Φ 1 ̸ = 0.
Therefore, α is an eigenvalue of U p on Symb Γ0 (D k (P 1 )) associated to Φ 2 -ext(Φ 4 ).

For any h ∈ Q, the subspace of modular symbols of slope ≤ h (or < h) of Symb Γ0 (D k (Z p )) is finite dimensional and U p -stable. We find finite dimensional U p -stable subspaces of Symb Γ0 (D k (P 1 )).

Recall the map res : Symb Γ0 (D k (P 1 ))

→ Symb Γ0 (D k (D(∞, 1))) Φ → Φ |D(∞,1) : D → Φ(D) |D(∞,1) (D ∈ ∆ 0 )
induced by the restriction map on D(∞, 1) between distributions. The matrix p 0 0 1 acts on D k (D(∞, 1)) on the right by

µ k   p 0 0 1   (f ) = µ f k   1 0 0 p   = µ p k f z p , where µ ∈ D k (D(∞, 1)), f ∈ A k (D(∞, 1)
). This action is compatible with the action of Γ 0 (p), so we can define the double coset operator V p = Γ 0 p 0 0 1 Γ 0 acting on Symb Γ0 (D k (D(∞, 1))) by

Φ |Vp = p-1 a=0 Φ |τ N p γaτ -1 N p = p-1 a=0 Φ |τ -1 N p γaτ N p (see (3.6)),
note that τ -1 N p = 1 N p τ N p . For h, h ′ ∈ Q, denote by Symb Γ0 (D k (P 1 )) (Vp≤h ′ ) the subspace of Symb Γ0 (D k (P 1 )) consisting of modular symbols Φ such that Φ |D(∞,1) ∈ Symb Γ0 (D k (D(∞, 1))) Vp≤h ′ , and put Symb Γ0 (D k (P 1 )) Up≤h,(Vp≤h ′ ) = Symb Γ0 (D k (P 1 )) Up≤h ∩ Symb Γ0 (D k (P 1 )) (Vp≤h ′ ) .

We define similarly if ≤ is replaced by <.

Theorem 3.3.23. For k ∈ Z and h, h ′ ∈ Q, the subspace Symb Γ0 (D k (P 1 )) Up≤h,(Vp≤h ′ ) of Symb Γ0 (D k (P 1 )) is finite dimensional and U p -stable, and similar if ≤ is replaced by <.

Moreover, if k ∈ N * and 0 ≤ h ≤ k + 1, there is an exact sequence:

0 → Symb Γ0 (D k (Z p , L)) ≤h → Symb Γ0 (D k (P 1 , L)) Up≤h,(Vp≤h ′ ) → Symb Γ0 (D k (Z p , L)) k+1-h≤Up≤h ′ → 0,
while if k = 0 the last space 0 is replaced by L.

In particular, there is an exact sequence:

0 → Symb Γ0 (D k (Z p , L)) ≤k+1 → Symb Γ0 (D k (P 1 , L)) Up≤k+1,(Vp≤k+1) → Symb Γ0 (D k (Z p , L)) ≤k+1 → 0
for any k ∈ N * and if k = 0 the last space 0 is replaced by L.

Proof. We drop L from the notations for simplicity. We prove for the case k ̸ = 0, the case k = 0 is proven similarly. Recall the exact sequence (3.8):

0 → Symb Γ0 (D k (Z p )) ≤h ext → Symb Γ0 (D k (P 1 )) ≤h res → Symb Γ0 (D k (Z p )) Vp≤h → 0, it induces an exact sequence 0 → Symb Γ0 (D k (Z p )) ≤h ext → res -1 (Symb Γ0 (D k (Z p )) Vp≤h,Up≤h ′ ) res → Symb Γ0 (D k (Z p )) Vp≤h,Up≤h ′ → 0, (3.9) note that ext(Symb Γ0 (D k (Z p )) ≤h ) = ker(res) ⊂ res -1 (Symb Γ0 (D k (Z p )) Vp≤h,Up≤h ′ ) and Symb Γ0 (D k (Z p )) Vp≤h,Up≤h ′ = Symb Γ0 (D k (Z p )) k+1-h≤Up≤h ′
by Corollary 3.3.18. Since the spaces Symb Γ0 (D k (Z p )) ≤h and Symb Γ0 (D k (Z p )) k+1-h≤Up≤h ′ are finite dimensional, so is the space res

-1 (Symb Γ0 (D k (Z p )) Vp≤h,Up≤h ′ ). The subspace Symb Γ0 (D k (Z p )) k+1-h≤Up≤h ′ is V p -stable in Symb Γ0 (D k (Z p )
) since V p is an automorphism on Symb Γ0 (D k (Z p )) <∞ given by V p = p k+1 U -1 p by Corollary 3.3.17. Since the map res : Symb Γ0 (D k (P 1 )) → Symb Γ0 (D k (Z p )) is equivariant for the action of U p on the left hand side and that of V p on the right hand side by Corollary 3.3.11, we deduce that res -1 (Symb Γ0 (D k (Z p )) Vp≤h,Up≤h ′ ) is U p -stable in Symb Γ0 (D k (P 1 )).

The map res : Symb Γ0 (D k (P 1 ))

→ Symb Γ0 (D k (Z p )) is the composition of Symb Γ0 (D k (P 1 )) res → Symb Γ0 (D k (D(∞, 1))) ≃ → Symb Γ0 (D ′ k (Z p )) ≃ → Symb Γ0 (D k (Z p )),
where the first map is induced by the restriction map on D(∞, 1) between distributions, the second is induced from the isomorphism ι in (3.3) between distributions, and the last is given in Lemma 3.3.10. Denote by θ : Symb Γ0 (D k (D(∞, 1))) → Symb Γ0 (D k (Z p )) the composition of the last two isomorphisms. By construction, the isomorphism θ is given by

θ(Φ)(D)(f ) = Φ(τ -1 N p D) z k f 1 N pz for Φ ∈ Symb Γ0 (D k (D(∞, 1))), D ∈ ∆ 0 , f ∈ A k (Z p ), z ∈ D(∞, 1)
. For any such Φ, D, f , we have

θ(Φ |Vp )(D)(f ) = Φ |Vp (τ -1 N p D) z k f 1 N pz = p-1 a=0 Φ(τ -1 N p γ a τ N p τ -1 N p D) | k τ -1 N p γaτ N p z k f 1 N pz = p-1 a=0 Φ(τ -1 N p γ a D) z k f 1 N z -a = p-1 a=0 θ(Φ)(γ a D)(f (pz -a)) = θ(Φ) |Up (D)(f ).
Therefore, θ(Φ |Vp ) = θ(Φ) |Up for any Φ ∈ Symb Γ0 (D k (D(∞, 1))). We deduce that a modular symbol Φ in Symb Γ0 (D k (P 1 )) belongs to Symb Γ0 (D k (P 1 )) (Vp≤h ′ ) if and only if res(Φ) ∈ Symb Γ0 (D k (Z p )) has U pslope ≤ h ′ . Therefore, the inverse image of Symb Γ0 (D k (Z p )) Vp≤h,Up≤h ′ under res in Symb Γ0 (D k (P 1 )) ≤h is Symb Γ0 (D k (P 1 )) Up≤h,(Vp≤h ′ ) . We conclude that Symb Γ0 (D k (P 1 )) Up≤h,(Vp≤h ′ ) is finite dimensional and U p -stable in Symb Γ0 (D k (P 1 )).

The desired exact sequence is exactly (3.9), where we need the condition 0 ≤ h ≤ k + 1 since Symb Γ0 (D k (Z p )) <0 = 0, note that U p has norm ≤ 1 on Symb Γ0 (D k (Z p )[r]) for any r ∈ |C × p | p by [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Lemma V.5.4]. Taking h = h ′ = k + 1 yields the special case.

The problem of finding subspaces of Symb Γ0 (D k (P 1 )) which are U p -stable and finite dimensional leads to the following question: Question 3.3.24. Is the subspace Symb Γ0 (D k (P 1 )) h1≤Up≤h2 of Symb Γ0 (D k (P 1 )) finite dimensional for h 1 ≤ h 2 ? Note that by Corollary 3.3.15 and (3.7), if we only impose one bound (upper or lower) for the U p -slope, then we would not have a finite dimensional subspace.

Proposition 3.3.25. If h, h ′ ∈ Q such that h + h ′ ≤ k, then Symb Γ0 (D k (Z p ) ≤h ) Vp<h ′ = 0. In particular, Symb Γ0 (D k (Z p ) ≤k/2 ) Vp<k/2 = 0. Recall that D k (Z p ) ≤h is the space of h-admissible distributions on Z p . Proof. By Lemma 3.3.19, the action of V p on Symb Γ0 (D k (Z p )) stabilizes the subspace Symb Γ0 (D k (Z p ) ≤h ) since Φ |Vp r ≤ p -k ∥Φ∥ r/p = O((r/p) -h ) = O(r -h ) as r → 0 + if Φ ∈ Symb Γ0 (D k (Z p ) ≤h ).
It suffices to show that if Φ ∈ Symb Γ0 (D k (Z p ) ≤h ) is a V p -eigensymbol of slope < h ′ , then Φ = 0. Let α be the eigenvalue of Φ. By Corollary 3.3.20, for any n ∈ N, we have

∥Φ∥ 1/p n ≥ p n(k-vp(α)) ∥Φ∥ 1 .
On the other hand, since Φ ∈ Symb Γ0 (D k (Z p ) ≤h ), we have

∥Φ∥ 1/p n = O(p nh ) as n → +∞.
Since k -v p (α) > k -h ′ ≥ h, we deduce that ∥Φ∥ 1 = 0, so Φ = 0.

For k ∈ N, we have the following commutative diagrams which are compatible with the actions of Σ 0 (p):

D k (Z p ) D k (P 1 ) V k ext ρ 1,k ρ 2,k D k (Z p ) ≤h D k (P 1 ) ≤h V k ext ρ 1,k ρ 2,k
where in the first diagram, the map ext is given in (3.1), the maps ρ 1,k , ρ 2,k are the duals of the inclusions P k → A k (Z p ) and P k → A k (P 1 ), respectively; while the second diagram is induced from the first by restricting on the subspace of h-admissible distributions.

Taking modular symbols, we get the following commutative diagram which is U p -equivariant:

Symb Γ0 (D k (Z p )) Symb Γ0 (D k (P 1 )) Symb Γ0 (V k ) ext ρ 1,k ρ 2,k
Take modular symbols of slope < h, we get the U p -equivariant commutative diagram

Chapter 4

Functional equation of p-adic L-functions attached to modular forms

In this chapter, we follow Stevens' construction of p-adic L-functions attached to cuspidal normalized eigenforms of non-critical slope via his theory of overconvergent modular symbols with values in D k (Z p ) studied in Chapter 3. These p-adic L-functions satisfy an interpolation property related to special values of L-functions of modular forms. From this interpolation formula and the functional equation of Lfunctions of modular forms given in [START_REF] Shimura | Introduction to the Arithmetic Theory of Automorphic Functions[END_REF]Theorem 3.66], we deduce a functional equation of these p-adic L-functions (see Proposition 4.2.4). In Section 4.1 we recall Stevens' construction of p-adic L-functions attached to modular forms. In Section 4.2 we prove a functional equation of these functions. The results in this chapter are well-known and proved by an independent work of the author, so the readers can skip it and go to the next chapter if they wish.

We fix a natural number k and a positive integer N prime to p in this chapter. Denote by H the Poincaré upper half plane.

Stevens' construction of p-adic L-functions

Some preparatory results

In this subsection, let Γ ⊂ SL 2 (Z) be a congruence subgroup of level N such that 1 0 0 -1 normalizes Γ (e.g. Γ = Γ 1 (N )). Let S k+2 (Γ) denote the space of cuspidal modular forms of weight k + 2 and level Γ. Denote by GL + 2 (Q) the subgroup of matrices of positive determinant in GL 2 (Q). Recall the right weight m action of GL + 2 (Q) on a modular form f for each m ∈ Z:

f |mγ (z) = (detγ) m-1 (cz + d) -m f az + b cz + d , where γ = a b c d ∈ GL + 2 ( 
Q) and z ∈ H (compare with the action | k of matrices on p-adic valued functions on Z p or P 1 (Q p ) in (1.5),(2.4)).

Modular forms and classical modular symbols are related via Eichler-Shimura map.

Lemma 4.1.1. There is a canonical map

S k+2 (Γ) → Symb Γ (V k (C)) f → ϕ f : D ∈ ∆ 0 → P ∈ P k (C) → D f (z)P (z)dz
which is compatible with all Hecke operators [ΓsΓ] for s ∈ GL + 2 (Q), where the integral D f (z)P (z)dz is defined by: Proof. We follow the computations in the proof of [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Lemma IV.3.1].

If D = n i=1 ({b i } -{a i }) for a i , b i ∈ P 1 (Q),

In the view of the decomposition Symb

Γ (V k (C)) = Symb Γ (V k (C)) + ⊕Symb Γ (V k (C)) -, if f ∈ S k+2 (Γ),
then the modular symbol ϕ f in the above lemma is decomposed by ϕ

+ f + ϕ - f , where ϕ ± f ∈ Symb Γ (V k (C)) ± is given by ϕ ± f (D)(P ) = 1 2 D f (z)P (z)dz ± D f (z)P (-z)dz for D ∈ ∆ 0 and P ∈ P k (C), where D = i ({-b i } -{-a i }) if D = i ({b i } -{a i }). Lemma 4.1.2. The map S k+2 (Γ) → Symb Γ (V k (C)) f → ϕ ± f
is compatible with the Hecke operators T l and U l .

Proof. Recall that ϕ

± f = 1 2 (ϕ f ± ϕ f |T∞ )
, where T ∞ acts via the matrix 1 0 0 -1 . The assertion is clear since the map f → ϕ f is compatible with any double coset operator by Lemma 4.1.1 and the fact that T ∞ commutes with T l and U l for any l.

Now let f ∈ S k+2 (Γ) be a normalized eigenform. Let H denote the polynomial ring over Z in the variables indexed by the Hecke operators T l for l ̸ | N and U l for l|N . Denote by λ : H → C the ring homomorphism associated to the system of Hecke eigenvalues of f , i.e., λ(T ) is the eigenvalue of T on f for any Hecke operator T generating H.

We let Symb Γ (V k (C)) ± [λ] be the subspace of Symb Γ (V k (C)) ± consisting of simultaneous Hecke eigensymbols of eigenvalues given by λ. 

4.1.3. The dimension of Symb Γ (V k (C)) ± [λ] is 1.
Proof. See [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Lemma IV.4.7]. This lemma is also true if we restrict coefficients to the number field K f generated by Fourier coefficients of f . Lemma 4.1.4. The dimension over

K f of Symb Γ (V k (K f )) ± [λ] is 1.
Proof. See [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Lemma IV.4.8].

By Lemmas 4.1.2 and 4.1.3, the symbol ϕ

± f is a basis of Symb Γ (V k (C)) ± [λ]. By Lemma 4.1.4, there exists a complex number Ω ± f ∈ C × such that ϕ ± f /Ω ± f ∈ Symb Γ (V k (K f )) ± [λ].
We refer to Ω ± f as the periods of f . They are determined up to multiplication by elements of K × f . If f has the Fourier expansion ∞ n=1 a n q n with q = e 2πiz for z ∈ H, we define its L-function by

L(f, s) = ∞ n=1 a n n s for s ∈ C.
This function is convergent if Re(s) is big enough, and it can be extended to an entire function on C. If χ : (Z/mZ) × → C × is a primitive Dirichlet character, we define the twisted L-function

L(f, χ, s) = ∞ n=1 χ(n)a n n s .
Then L(f, χ, s) is the L-function of the modular form f χ given by

f χ (z) = 1 τ (χ -1 ) a(mod m) χ -1 (a)f z + a m ,
where τ (χ -1 ) is the Gauss sum of χ -1 .

Construction of p-adic L-functions

A p-adic L-function is a p-adic distribution on a p-adic space. The p-adic L-functions attached to modular forms will be distributions on Z × p . In this subsection, let Γ 0 = Γ 1 (N ) ∩ Γ 0 (p). Denote by S k+2 (N, ϵ) the space of cuspidal modular forms of weight k + 2, level N and nebentypus ϵ, for a Dirichlet character ϵ of (Z/N Z) × .

We start with a normalized eigenform f ∈ S k+2 (N, ϵ). Let a p be the p-th Fourier coefficient of f , which is also the T p -eigenvalue of f . Let α, β ∈ C be two complex roots of the polynomial X 2 -a p X + ϵ(p)p k+1 , and defining the p-stabilizations (or p-refinements)

f α (z) = f (z) -βf (pz), f β (z) = f (z) -αf (pz)
of f . The functions f α and f β belong to the space S k+2 (N p, ϵ), where the character ϵ of (Z/N pZ) × is the lift of the character ϵ of (Z/N Z) × . They are also eigenforms of the same Hecke eigenvalues as f for all operators T l , U l for l ̸ = p. For the operator U p , we have Lemma 4.1.5. The forms f α and f β are eigenforms for U p of eigenvalues α and β, respectively.

Proof. See [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Lemma V.7.2].

We see α and β as elements of C p via the embedding ι p : Q → Qp . Since α, β are algebraic integers (since a p is), they belong to the ring of integers O Cp of C p . Therefore, the p-adic valuations of α and β satisfy

v p (α) ≥ 0, v p (β) ≥ 0, v p (α) + v p (β) = k + 1.
We infer that 0 ≤ v p (α), v p (β) ≤ k + 1. If v p (α) < k + 1, the form f α is said to be of non-critical slope. Otherwise, we say that it has critical slope. It is always true that at least one of the forms f α , f β is of non-critical slope. We choose one, say f α .

Stevens' construction of the p-adic L-function attached to f α is as follows:

Step 1: We attach to f α the symbols ϕ ± fα /Ω ± fα ∈ Symb Γ0 (V k (K f,ϵ )) ± which have the same U peigenvalue α as f α by Lemmas 4.1.2 and 4.1.5, where K f,ϵ is the number field generated by Fourier coefficients of f and the values of ϵ. Let L be a finite extension of Q p containing the image of K f,ϵ under the embedding ι p . We see ϕ ± fα /Ω ± fα as an element of Symb Γ0 (V k (L)) ± . Since v p (α) < k + 1, we have

ϕ ± fα /Ω ± fα ∈ Symb Γ0 (V k (L)) <k+1 .
Step 2: By Stevens' control theorem (Theorem 3.2.1), there is a unique overconvergent modular symbol Φ

± fα ∈ Symb Γ0 (D k (Z p , L)) <k+1 whose specialization is the symbol ϕ ± fα /Ω ± fα . Let Φ fα = Φ + fα +Φ - fα . We define the p-adic L-function of f α by L p (f α , •) = Φ fα ({∞} -{0}) |Z × p ∈ D(Z × p , L). Then L p (f α ) is a function on the weight space W(L). If χ : Z × p → L × is a continuous character, we can see that Φ ± fα ({∞} -{0}) |Z × p (χ) = 0 if χ(-1) = ∓1. Therefore, L p (f α , χ) = Φ ± fα ({∞} -{0}) |Z × p (χ) for ± = χ(-1). Since Φ fα ∈ Symb Γ (D k (Z p , L)) <k+1
, by [START_REF] Pollack | Overconvergent modular symbols and p-adic L-functions[END_REF]Lemma 6.2] we deduce that L p (f α ) has growth < k+1. The p-adic L-function L p (f α , •) satisfies the following interpolation property: Theorem 4.1.6. Let f ∈ S k+2 (N, ϵ) be a normalized eigenform. Let α be one of two roots of the polynomial X 2 -a p X + ϵ(p)p k+1 such that v p (α) < k + 1, where a p is the p-th Fourier coefficient of f . Then for any finite order character χ : Z × p → C × p of conductor p n and any integer j such that 0 ≤ j ≤ k, we have

L p (f α , χz j ) = e p (f, α, χ, j) p n(j+1) j! α n (-2πi) j+1 τ (χ -1 ) Ω χ(-1)(-1) j fα L f, χ -1 , j + 1 , (4.1)
where e p (f, α, χ, j) = 1 if χ is non trivial and e p (f, α, 1,

j) = (1 -α -1 ϵ(p)p k-j )(1 -α -1 p j ).
Proof. See [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Corollary V.7.10].

4.2 Functional equation of p-adic L-functions attached to modular forms 4.2.1 The operator W N on modular forms

Let W N = 0 -1 N 0 . The matrix W N normalizes the group Γ 1 (N ) since W N a b c d W -1 N = d -c/N -N b a .
Hence the double coset operator [Γ 1 (N )W N Γ 1 (N )] on modular forms of level Γ 1 (N ) is given by the action of W N . The square of this action on modular forms of weight k + 2 is the multiplication by (-N ) k .

Lemma 4.2.1. If T is a Hecke operator T l or a diamond operator on cusp forms of level Γ 1 (N ), then the adjoint T * of T equals W N T W -1 N . Here the space of cusp forms has the structure of an inner product space by Petersson scalar product.

Proof. If γ ∈ GL + 2 (Q) is diagonal, since W N normalizes Γ 1 (N ), we have W N • Γ 1 (N )γΓ 1 (N ) • W -1 N = Γ 1 (N ) • W N γW -1 N • Γ 1 (N ) = Γ 1 (N )γ * Γ 1 (N ),
where γ * = det(γ)•γ -1 . By [START_REF] Diamond | A first course in modular forms[END_REF]Proposition 5.5.2(b)] we infer that the operator W

N [Γ 1 (N )γΓ 1 (N )]W -1 N on cusp forms of level Γ 1 (N ) is adjoint of [Γ 1 (N )γΓ 1 (N )] if γ is diagonal.
In particular, adjoint of the Hecke operator T l is W N T l W -1 N for any prime l. By [DS, Proposition 5.5.2(a)] we deduce that adjoint of the diamond operator ⟨a⟩ is W N ⟨a⟩W -1 N for any a ∈ (Z/N Z) × .

If f is a complex function on H, define the function

f ρ : H → C by f ρ (z) = f (-z).
Lemma 4.2.2. If f is a modular form, then f ρ is also a modular form of the same weight and level as f . If f has nebentypus ϵ, then the nebentypus of f ρ is ϵ -1 . The form f ρ shares the same properties to be cuspidal, normalized, eigenform, old form, newform as f . If f has Fourier expansion f

(z) = ∞ n=0 a n q n , then f ρ (z) = ∞ n=0 ān q n .
Proof. It follows from the identity

(f ρ ) m   a b c d   = f m   a -b -c d   ρ (4.2) for any m ∈ Z and a b c d ∈ GL + 2 (Q). The Fourier expansion of f ρ is clear. Proposition 4.2.3 ([Bel, Proposition IV.3.24]). If f is a new form in S k+2 (Γ 1 (N )), then f | k+2 W N = W (f )f ρ , where W (f ) ∈ K × f satisfies |W (f )| = N k/2 . If f has moreover trivial nebentypus, then f | k+2 W N = W (f )f and W (f ) = ±N k/2 .
where e p (α, u, χ, j) = 1 if χ is non trivial and e p (α, u, 1,

j) = (1-α -1 ϵ(p)p k-j )(1-α -1 p j ) (1-u -1 ϵ -1 (p)p j )(1-u -1 p k-j ) . In particular, if u = ϵ -1 (p)α, then L p (f α , χz j ) = -N -k L p (f |W N ) ϵ -1 (p)α , (N z) k • (χz j ) - 1 N z . Proof. Let R(f, χ, s) = Γ (s) (2π) s N p 2n s/2 L (f, χ, s) . (4.4)
By (4.1), we have

L p (f α , χz j ) = e p (f, α, χ, j) p n(j+1) (N p 2n ) -(j+1)/2 α n (-i) j+1 τ (χ -1 )Ω χ(-1)(-1) j fα R f, χ -1 , j + 1 . (4.5) Similar, L p ((f |W N ) u , χ -1 z k-j ) = e p (f |W N , u, χ, k -j) p n(k+1-j) (N p 2n ) -(k+1-j)/2 u n (-i) k+1-j τ (χ)Ω χ(-1)(-1) k-j (f |W N )u × × R f |W N , χ, k + 1 -j . (4.6)
By [START_REF] Shimura | Introduction to the Arithmetic Theory of Automorphic Functions[END_REF]Theorem 3.66], we have

R(f, χ -1 , j + 1) = i k+2 ϵ(p) n χ -1 (N )τ (χ -1 ) 2 p -n N -k/2 R(f |W N , χ, k + 1 -j), (4.7) 
note that the weight k + 2 action of GL + 2 (Q) on modular forms in this thesis differs by that in [Shi] by the multiple N k/2 . From (4.5), (4.6), (4.7) and the identity τ (χ)τ (χ -1 ) = χ(-1)p n , we obtain

L p (f α , χz j ) = - e p (f, α, χ, j) e p (f |W N , u, χ, k -j) • Ω χ(-1)(-1) k-j (f |W N )u Ω χ(-1)(-1) j fα ϵ(p)u α n (-N -1 ) j χ -1 (-N )× × L p ((f |W N ) u , χ -1 z k-j )
= -e p (α, u, χ, j)

Ω χ(-1)(-1) k-j (f |W N )u Ω χ(-1)(-1) j fα N -k ϵ(p)u α n L p (f |W N ) u , (N z) k • (χz j ) - 1 N z .
We show that the above quotient of periods can be removed for well-chosen periods. Choose an integer 0 ≤ j ′ ≤ k such that (-1) j ′ = χ(-1)(-1) j . By a theorem of Manin-Shokurov (see [START_REF] Bellaïche | The eigenbook: Eigenvarieties, families of Galois representations, p-adic L-functions, appear in the collection[END_REF]Theorem IV.4.11]), we have

L(f α , j ′ + 1) Ω χ(-1)(-1) j fα (πi) j ′ +1 ∈ K fα ⊂ L, L((f |W N ) u , k -j ′ + 1) Ω χ(-1)(-1) k-j (f |W N )u (πi) k-j ′ +1 ∈ K (f |W N )u ⊂ L if L contains the image by ι p of α and the fields K f , K f |W N . We get Ω χ(-1)(-1) k-j (f |W N )u Ω χ(-1)(-1) j fα • L(f α , j ′ + 1) (2πi) j ′ +1 : L((f |W N ) u , k -j ′ + 1) (2πi) k-j ′ +1 ∈ L.
By (4.4) and (4.7), we obtain

L(f α , j ′ + 1) (2πi) j ′ +1 : L((f |W N ) u , k -j ′ + 1) (2πi) k-j ′ +1 ∈ L, note that L(f α , s) = (1+(α-a p )p -s )L(f, s) (since L(f (pz), s) = p -s L(f, s)), and similar for L((f |W N ) u , s). We deduce that Ω χ(-1)(-1) k-j (f |W N )u Ω χ(-1)(-1) j fα ∈ L.
Since the periods Ω ± fα , Ω ± (f |W N )u are determined up to multiplication by elements in K × fα , K × (f |W N )u , respectively, which are contained in L, we conclude that the quotient

Ω χ(-1)(-1) k-j (f |W N )u Ω χ(-1)(-1) j fα
in the functional equation can be removed. We get the desired formula. If u = ϵ -1 (p)α, then e p (α, u, χ, j) = 1 for any χ.

Corollary 4.2.5. For any locally analytic function g : Z × p → C p , one has

L p (f α , g) = -N -k L p (f |W N ) ϵ -1 (p)α , (N z) k g - 1 N z . (4.8)
Proof. Since the expressions in the left and right hand sides of (4.8) are distributions on Z × p of order < k + 1 in the variable g by the construction, it suffices to prove for locally polynomial functions g of degree ≤ k by Theorem 1.2.4i). Therefore, we can assume that g(z) = 1 a+p n Zp (z) • z j for a ∈ Z × p , n ∈ N * , j ∈ N, 0 ≤ j ≤ k. By Proposition 4.2.4, (4.8) is true for any g is of the form χz j , where χ is a finite order character Z × p → C × p and j is an integer such that 0 ≤ j ≤ k. We show that the function 1 a+p n Zp is a finite linear combination of finite order characters χ : Z × p → C × p . We use the following result. Lemma 4.2.6. Denote by (Z/p n Z) ∨ the group of characters on

(Z/p n Z) × ∼ = (Z p /p n Z p ) × . For a ∈ Z × p or a ∈ Z, (a, p) = 1, we have χ∈(Z/p n Z) ∨ χ(a) = p n-1 (p -1) , if a ≡ 1(mod p n ), 0 , otherwise. Proof. For every ψ ∈ (Z/p n Z) ∨ , since (Z/p n Z) ∨ = {χψ | χ ∈ (Z/p n Z) ∨ }, we have χ∈(Z/p n Z) ∨ χ(a) = χ∈(Z/p n Z) ∨ (χψ)(a) = ψ(a) χ∈(Z/p n Z) ∨ χ(a).
If a ̸ ≡ 1(mod p n ), there exists a character ψ such that ψ(a) ̸ = 1, so

χ∈(Z/p n Z) ∨ χ(a) = 0. If a ≡ 1(mod p n ),
then χ(a) = 1 for any χ ∈ (Z/p n Z) ∨ , so

χ∈(Z/p n Z) ∨ χ(a) = |(Z/p n Z) ∨ | = p n-1 (p -1).
The lemma follows.

By the lemma, we have

1 a+p n Zp (z) = 1 1+p n Zp z a = 1 p n-1 (p -1) χ∈(Zp/p n Zp) ∨ χ z a = χ∈(Zp/p n Zp) ∨ χ(z) p n-1 (p -1)χ(a)
.

The assertion is proven.

Corollary 4.2.7. If f ∈ S k+2 (N, ϵ) is a new form, then L p (f α , χz j ) = -e p (α, u, χ, j) • W (f )N -k ϵ(p)u α n L p (f ρ ) u , (N z) k • (χz j ) - 1 N z
for any finite order character χ : Z × p → C × p of conductor p n and any integer 0 ≤ j ≤ k, where W (f ) is given in Proposition 4.2.3.

If moreover f has trivial nebentypus, then

L p (f α , g) = -W (f ) -1 L p f α , (N z) k g - 1 N z
for any locally analytic function g on Z × p with values in C p .

continuity of p-adic L-functions when the weights vary, with the note that cohomological weights of very non-critical slope are Zariski dense in the weight space. The strategy to prove Theorem 5.0.2 is as follows: as before, we will prove this theorem for a family of automorphic representations in a neighborhood of π in the eigenvariety, so we can assume that π has very non-critical slope. Firstly, we prove for characters χ such that χ v is highly ramified (i.e. the conductor of χ v is big enough) for all v|p. To do this, we apply the interpolation formula relating p-adic and complex L-functions of π given in [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Theorem 4.2], and we deduce from the functional equation L(π, s) = ε(π, s)L(π ∨ , 1 -s) of L-functions, where π ∨ is the contragredient of π. Then we obtain the desired formula by applying Lemma 1.2.5.

Here is the outline of the chapter. In Section 5.1, we introduce the notion of cohomological and non-critical automorphic representations, and cite a result about the existence of families of such representations. In Section 5.2, we study ε-factors for GL 1 and GL 2 . We finish the chapter with the functional equation given in Section 5.3.

Notations

In the sequel, let d = [F : Q] and we denote O F the ring of integers of F and d its different. Denote by A F the ring of adeles of F and A F,f the ring of finite adeles. Then

A F = A ⊗ Q F and A F,f = A f ⊗ Q F , where A = A Q and A f = A Q,f . Let F ∞ = F ⊗ Q R.
For each finite place v, denote by q v the cardinal of the residue field of F at v, and denote δ v the valuation at v of the different d.

Let Σ be the set of infinite places of F , which are the embeddings of F into the algebraic closure Q of Q in C. Composing with the embedding ι p : Q → Qp yields a partition Σ = ⊔ v∈Sp Σ v , where S p is the set of places of F above p, and a place σ belongs to Σ v if v is the kernel of the composition O F ιp•σ -→ Zp ↠ Fp . For each fractional ideal f of F , we choose an element ϖ f ∈ A × F,f such that ϖ vf = ϖ v • ϖ f for any finite place v, where ϖ v is a uniformizer of the ring of integers O v of F v .

Recall that Gal p∞ denotes the maximal abelian extension of F which is unramified outside p and infinity. By class field theory, there is a correspondence between finite order characters of Gal p∞ and finite order Hecke characters of F which are unramified outside p. The cyclotomic character χ cyc : Gal p∞ ↠ Gal(F (µ p ∞ )/F ) → Z × p corresponds via class field theory to the character χ cyc : F × + \A × F,f → Z × p mapping y to v∈Sp N Fv/Qp (y v )|y f | F , where F × + is the set of totally positive elements of F . We extend the Teichmüller lift ω p to F × ∞ by the sign character. The character ⟨•⟩ p = χ cyc ω -1 p can be seen as the projection on the Galois group Gal cyc = Gal(F cyc /F ) of the cyclotomic Z p -extension F cyc ⊂ F (µ p ∞ ) of F .

We consider the additive character ψ : A F /F → C × given by the composition of the trace map of adeles from F to Q followed by the usual additive character ψ 0 on A Q /Q given by ψ 0|R = exp(-2πi•) and ψ 0|Q l is the value of exp(2πi•) at the l-non integer part of Q l for every prime number l. The conductor of ψ v is -δ v for any finite place v.

If χ v is a character of F × v of conductor c χv for a finite place v, we define its local Gauss sum by

τ (χ v , ψ v ) = ϖ -cχ v -δv v O × v χ v (x) ψ v (x) d v x
which is independent of the choice of uniformizer, where d v is the Haar measure on F v giving O v volume q

-δv/2 v . If χ v is unramified, then τ (χ v , ψ v ) = χ v (ϖ v ) -δv q δv/2 v
. The Haar measure on

F × v is considered to be d × v x = dvx |x| v .
For a Hecke character χ : A × F /F × → C × of conductor c χ , we define the global Gauss sum

τ (χ) = v̸ |∞ τ (χ v , ψ v ) = v|cχ τ (χ v , ψ v ) v̸ |cχ∞ χ v (ϖ v ) -δv q δv/2 v .

Families of cohomological cuspidal automorphic representations

As introduced in the beginning of the chapter, we will prove a functional equation of p-adic L-functions attached to a family of certain cuspidal automorphic representations of GL 2 (A F ). In this section, we consider a family of partial non-critical refinements of cohomological cuspidal automorphic representations of GL 2 (A F ) which are not supercuspidal above p.

Cohomology of Hilbert modular varieties

Let G = Res O F /Z GL 2 . Let K ∞ = O 2 (F ∞ )F × ∞ . Denote by K + ∞ the connected component of the unit in K ∞ , then K + ∞ = SO 2 (F ∞ )F × ∞ .
For an open compact subgroup K of G(A f ), we define the Hilbert modular variety of level K as

Y K = G(Q)\G(A)/KK + ∞ .
It projects to C + K := F × \A × F /det(K)F + ∞ by the determinant map. The fiber Y K [α] = det -1 ([α]) of each class [α] ∈ C + K has the structure of a symmetric space by the isomorphism

Γ α \G + ∞ /K + ∞ ∼ = Y K [α] g ∞ → g ∞ α 0 0 1 , where Γ α = G(Q) ∩ α 0 0 1 K α 0 0 1 -1 G + ∞ .
Therefore, Y K is a complex manifold. In the sequel we assume that K is small enough such that for all g ∈ G(A):

G(Q) ∩ gKK + ∞ g -1 = F × ∩ KF × ∞ .
(5.1)

Given a left K-module V such that F × ∩ KF × ∞ acts trivially on V, (5.2) then the group G(Q) ∩ gKK + ∞ g -1 acts trivially on V . We get the local system V:

G(Q)\(G(A) × V )/KK + ∞ → Y K
defined by γ(g, v)k = (γgk, k -1 v), where γ ∈ G(Q), g ∈ G(A), v ∈ V and k ∈ KK + ∞ . We also denote by V the sheaf of locally constant sections on Y K . If (k, w) is a cohomological weight and σ ∈ Σ, we consider the induction from B σ to G σ of the character which is trivial on the unipotent radical and given on T σ by diag(a, d) → a (w+kσ-2)/2 d (w+2-kσ)/2 a d
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.

It has a unique non-trivial finite dimensional quotient which is L kσ,w (C) and the kernel is denoted by π kσ,w .

Definition 5.1.2. We say that an automorphic representation π of GL 2 (A F ) has cohomological weight (k, w) if π ∞ ∼ = ⊗ σ∈Σ π kσ,w .

Cohomological automorphic representations of weight (k, w) play an important role since they contribute to the cuspidal cohomology group H d cusp (Y K , L ∨ k,w (C)) in the following decomposition:

H d cusp (Y K , L ∨ k,w (C)) = π H d (g ∞ , K + ∞ , L ∨ k,w (C) ⊗ π ∞ ) ⊗ π K f ,
where π runs over all cuspidal automorphic representations of G(A) and g ∞ denotes the complexified Lie algebra of G ∞ .

Definition 5.1.3. Let π be a cuspidal automorphic representation of G(A) and let v ∈ S p . We say that i) π v is regular if either it is a twist of the Steinberg representation or it is a principal series representation associated to two different characters.

ii) If π v is not supercuspidal, a refinement of π v is a one dimensional sub ν v of the Weil-Deligne representation attached to π v via the local Langlands correspondence for GL 2 (F v ).

iii) For S ⊂ S p , an S-refinement of π is a pair πS = (π, {ν v } v∈S ) where ν v is a refinement of π v for each v ∈ S. From now on, if S = S p we will omit it from the notations, e.g. we write π for πSp and call it a p-refinement of π.

Partial non-critical refinements and its families

We introduce the notion of partial non-critical refinements of automorphic representations of G(A) which is crucial for the existence of p-adic L-functions of Hilbert cusp forms constructed in [BDJ]. We state a theorem about the existence of such families parametrized by cohomological weights. The definitions in this subsection follow [BDJ].

Let S ⊂ S p . Let π = (π, {ν v } v∈Sp ) be a regular p-refinement of a cuspidal automorphic representation of cohomological weight (k, w) and tame conductor n which is not supercuspidal above p.

For an ideal f of O F we consider the following open compact subgroups of G( Ẑ):

K 0 (f) = a b c d ∈ G( Ẑ) | c ∈ f , K 1 (f) = a b c d ∈ G( Ẑ) | c ∈ f, d ∈ 1 + f .
The double coset operator K 1 (n)xK 1 (n) = ⊔ i K 1 (n)x i for x ∈ G(A f ) acts on automorphic forms of level K 1 (n) on the right by The natural inclusion L k,w (L) → A S,(k,w) induces the dual map ρ S : D S,(k,w) → L ∨ k,w (L) which is equivariant for the action of I S (see (5.3) and (5.4)) but it is not Λ S -equivariant. More explicitly, for all v ∈ S and µ ∈ D S,(k,w) , one has 

g |K1(n)xK1(n) (•) = i g(• x -1 i ).
ρ S ϖ v 0 0 1 • µ = σ∈Σv σ(ϖ v ) (w+kσ-2)/2 ϖ v 0 0 1 • ρ S (µ).
F/Q (id)Ω ω∞ω w/2 p,∞ π • 2 |{v∈Stp \E, νvω -1 v is unramified}| × × v∈Sp,πv⊗ω -1 v is unramified 1 - q -w/2 v (ν v ω -1 v )(ϖ v ) 2 v∈Sp,c νv ω -1 v >0 q - w•c νv ω -1 v +δv 2 v (ν v ω -1 v )(ϖ v ) δv τ (ν v ω -1 v , ψ v ),
where L( π ⊗ ω -1 ) is the Fontaine-Mazur L-invariant (see [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Definition 5.3]).

This is a generalization of [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Theorem 7.1]. By Corollary 5.3.8 and [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Proposition 1.15], we can assume that ω is trivial. From now on we suppose that ω = 1.

Lemma 6.0.2 ([BDJ, Lemma 7.2]). Let S = S p \{v} for some v ∈ St p such that π v is an unramified twist of the Steinberg representation. After possibly shrinking X (π), for any cohomological λ ∈ X S ∩ X (π), the local representation π λ,v is also an unramified twist of the Steinberg representation.

Given u ∈ 4O Cp and x = (x v ) v∈E ∈ (2pO Cp ) E . For any subset S ⊂ E we let x S = (x v ) v∈S and define λ S

x,u = (k λ , w λ ) ∈ X an (π) by

w λ = w -u and k λ,σ =      k σ , for σ ∈ Σ Sp\E , k σ + u , for σ ∈ Σ E\S , k σ + x v , for σ ∈ Σ S .
Letting L p (x, u) = ⟨n⟩ u/4 p L p (λ E

x,u , 2-w 2 ), (5.24) and (5.25) imply that L p (x, -u) = ε • L p (x, u), with ε = (-1) e ε π .

Then we write L p (x, u) = i≥0 A i (x)u i , where A i (x) is analytic in (x v ) v∈E and the sum runs over i even (resp. odd) if ε = 1 (resp. ε = -1). By (5.25), we have L p (π, s) = ⟨n⟩ (2s+w-2)/4 p L p ((0) v∈E , 2 -w -2s).

Since λ S x,u ∈ X an (π) ∩ X ′ S⊔(Sp\E) , we let L S (x S , u) = ⟨n⟩ u/4 p L S⊔(Sp\E) λ S

x,u , 1, 2 -w 2 , (6.1)

where L S⊔(Sp\E) is the improved p-adic L-function (see [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]§4.3]).

By [BDJ] we know that L p (x, u) = L E (x, u) and by [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Theorem 4.13(i)], for any S ⊂ E we have L p ((x S , (u) v∈E\S ), u) = L S (x S , u)

v∈E\S

(1 -ν -1 v (λ S x,u )(ϖ v )q -w/2 v ), (6.2)

where ν v (λ S x,u ) is the refinement at v of the weight λ S x,u . Writing the power series expansion 

A i (x) =
F/Q (id)Ω ω w/2 p,∞ π • 2 |{v∈Stp \E,cν v =0}| × × v∈Sp,πv is unramified 1 - q -w/2 v ν v (ϖ v ) 2 v∈Sp,cν v >0 q - w•cν v +δv 2 v ν v (ϖ v ) δv τ (ν v , ψ v ).
Proof. Since λ Ø (0),0 = (k, w), by (5.22), for any v ∈ E we have ν v (λ Ø (0),0 )(ϖ v ) = q -w/2 v .

Combining with (6.2), we get

L p ((u) v∈E , u) = L Ø (u) v∈E 1 - ν v (λ Ø (0),0 )(ϖ v ) ν v (λ Ø (u),u )(ϖ v ) = L Ø (u) v∈E ν v (λ Ø (u),u )(ϖ v ) -ν v (λ Ø (0),0 )(ϖ v ) ν v (λ Ø (u),u )(ϖ v )
.

Since each interpolation factor indexed by a place v ∈ E vanishes at u = 0, we deduce that the order of vanishing of L p ((u) v∈E , u) at u = 0 is at least e. Differentiating e times at u = 0, we deduce from (6.1) that d e du e L p ((u) v∈E , u)| u=0 = e!L Sp\E π, 1, By [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Theorem 4.13(ii)] and the definition of E-factors in Theorem 5.3.2, we have

L Sp\E π, 1, 2 -w 2 = L π, 1-w 2 N w/2 F/Q (id)Ω ω w/2 p,∞ π v∈Sp,cν v >0 q 2-w 2 cν v v ν v (ϖ v ) δv q -cν v -δv/2 v τ (ν v , ψ v )× × v∈Sp,πv is unramified 1 - q -w/2 v ν v (ϖ v ) v∈Sp\E,νv is unramified 1 - q -w/2 v ν v (ϖ v ) .

  2.1).It is also natural to consider modular symbols with values in D k (P 1 , L).The overconvergent modular symbols with values in D k (Z p , L) or D k (P 1 , L) are endowed with a right action of the Hecke operator U p given by the double coset Γ 0 1 0 0 p Γ 0 . The basic tool of Stevens' construction is a control theorem allowing to lift classical eigensymbols of small U p -slope to overconvergent 1 CONTENTS ones with values in D k (Z p , L).

  distributions on open compact subsets of Q d p We consider p-adic distributions in the first two chapters which are the central object of this thesis. In this chapter, we study p-adic distributions on p-adic spaces which are open compact subsets of Q d p for some d ∈ N * . We start by defining the general notion of distributions on an open compact subset of Q d

  Therefore, the image of A by d dz k+1 contains the open ball of center 0 and radius R/C in A -k-2 (P 1 )[r]. Hence the image of A is open in A -k-2 (P 1 ).

  for a left (resp. right) Γ-module V , where I is the augmentation ideal of Γ generated by elements γ -1 for γ ∈ Γ. The inclusion A (-1)

.

  So γ maps the disc D(α, 1) into the disc D γα, for some y ∈ Q p such that |y| p ≥ |α| p (note that |α + d c | p = |α| p ). Writing y = 1 + α+ d c z-α for z = α + α+ d c y-1 ∈ D(α, 1) (since |y| p ≥ |α| p > 1, it follows that |y -1| p = |y| p ). By (2.31) we see that x -γα = γz -γα, so x = γz. Therefore, γ(D(α, 1)) equals D γα, 1 |c| 2 p |α| 2 p .

  we can choose c ∈ Z such that c ≡ p r x α0 (mod p n+r ), c ≡ 0 (mod N ) and c ≡ 1 (mod a). Then N p r |c and (a, c) = 1. Hence (a, N p r c) = 1. Taking d ∈ Z such that ad ≡ 1 (mod N p r c). Letting b = ad-1 c ∈ N p r Z, then the matrix γ = ∩ Γ 0 (p r ).

  r]) given by ∥Φ∥ r = sup D∈∆0 ∥Φ(D)∥ r , note that ∥Φ(γD)∥ r = ∥Φ(D)∥ r for any γ ∈ Γ 0 and D ∈ ∆ 0 since Φ(γD) = Φ(D) |γ -1 and Γ 0 acts by isometry on D k (Z p )[r]. Then Symb Γ0 (D k (Z p )[r]) becomes a Banach space and it can be embedded to a product of finite copies of D(Z p )[r] indexed by a finite family of generators of Z[Γ 0 ]-module ∆ 0 . Since D k (Z p ) is the projective limit of D k (Z p )[r]'s for r ∈ |C × p | p , where the transition maps D k (Z p )[r 2 ] → D k (Z p )[r 1 ] are injective, compact (by Lemmas 1.1.1, 1.1.2) and Σ 0 (p)-equivariant for any r 2 < r 1 , we have Symb Γ0 (D k (Z p )) = lim ← -r∈|C × p |p,r<p Symb Γ0 (D k (Z p )[r]) and the transition maps are injective, compact and U p -equivariant. So Symb Γ0 (D k (Z p )) has the structure of a Fréchet space endowed with the family of norms {∥ • ∥ r : r ∈ |C × p | p , r < p}. Proposition 3.2.2. The Hecke oparator U p on Symb Γ0 (D k (Z p )[r]) is compact for any r ∈ |C × p | p , r < p. Proof. Recall the action of U p on Symb Γ0 (D k (Z p )[ra D) | k γa , where Φ ∈ Symb Γ0 (D k (Z p )[r]), D ∈ ∆ 0 and γ a = 1 a 0 p . Since γ a has determinant p and Φ(γ a D) ∈ D k (Z p )[r], the distribution Φ(γ a D) | k γa belongs to D k (Z p )[r/p] by Corollary 1.2.2. Therefore, Φ |Up ∈ Symb Γ0 (D k (Z p )[r/p]). In other words, the operator U p factors through

  Lemma 3.3.3. The exact sequence (3.1) is equivariant with the weight k actions of Σ 0 (p), where the weight k action of Σ 0 (p) on D k (D(∞, 1)) is extended from the action of Γ 0 (p) by

  Lemma 3.3.19. If Φ ∈ Symb Γ0 (D k (Z p )[r]) for r ∈ |C × p | p with r ≤ p -1 , then Φ |Vp ∈ Symb Γ0 (D k (Z p )[pr]) and Φ |Vp pr ≤ p -k ∥Φ∥ r .

  z+1) ). If z ∈ pZ p , then -aN z + 1 ∈ Z × p , so | -aN z + 1| p = 1. The transformation z → z p(-aN z+1) maps a closed disc of radius r in pZ p = D(0, p -1 ) to a closed disc of radius pr in Z p since z p(-aN z + 1) -e p(-aN e + 1) p = z -e p(-aN z + 1)(-aN e + 1) p = p|z -e| p for any z, e ∈ pZ p . It also maps a closed disc of radius r in {z ∈ C p , |z| p ≤ p -1 } to a closed disc of radius pr in C p . Therefore, if f ∈ A(Z p )[pr], then f ( z p(-aN z+1) ) ∈ A(Z p )[r] and ∥f ( z p(-aN z+1) )∥ r = ∥f ∥ pr by (1.2). We deduce that g a ∈ A(Z p )[r] and ∥g a ∥ r = p -k ∥f ∥ pr for any a if f ∈ A(Z p )[pr], since | -aN z + 1| p = 1 for any z ∈ C p such that |z| p ≤ p -1 . So Φ |Vp ∈ Symb Γ0 (D k (Z p )[pr]) and Φ |Vp pr = sup a )(g a )| p p k ∥g a ∥ r ≤ p -k ∥Φ∥ r .

  Proof. By Lemma 3.3.19, V p maps Symb Γ0 (D k (Z p )[r]) into Symb Γ0 (D k (Z p )[pr]) for any r < p -1 .The decomposition Symb Γ0 (D k (Z p )) = ker(V p ) ⊕ Im(U p ) is given byΦ = p -(k+1) (Φ |(p k+1 -VpUp) + Φ |VpUp ), where Φ |(p k+1 -VpUp) = p k+1 Φ -(Φ |Vp ) |Up ∈ ker(V p ) since V p • U p = p k+1Id by Proposition 3.3.12, andΦ |VpUp = (Φ |Vp ) |Up ∈ Im(U p ). The sum is direct since if Φ = (Φ 0 ) |Up ∈ Im(U p ) and if Φ ∈ ker(V p ), then 0 = Φ |Vp = (Φ 0 ) |UpVp = p k+1 Φ 0 , so Φ 0 = 0, hence Φ = 0. The decomposition for Symb Γ0 (D k (Z p )[r]) is proven similarly. Suppose ker(V p ) is finite dimensional in Symb Γ0 (D k (Z p )[r]), then Im(U p ) has finite codimension in Symb Γ0 (D k (Z p )[r]) by the decomposition. We infer that Im(U p ) is closed in the Banach space Symb Γ0 (D k (Z p )[r]) by[START_REF] Abramovich | An invitation to operator theory[END_REF] Corollary 2.17]. So Im(U p ) is itself a Banach space. The map U p from Symb Γ0 (D k (Z p )[r]) to Im(U p ) is therefore open by the open mapping theorem. It is also compact by Proposition 3.2.2, so the image of the open unit disc is open and relatively compact in Im(U p ). By Riesz's theorem, we deduce that Im(U p ) is finite dimensional. Hence Symb Γ0(D k (Z p )[r]) is finite dimensional since U p is injective by Corollary 3.3.13, then so is Symb Γ0 (D k (Z p )) since the natural map Symb Γ0 (D k (Z p )) → Symb Γ0 (D k (Z p )[r]) is injective. This is a contradiction. Therefore, ker(V p ) is infinite dimensional, where V p is seen as a map on Symb Γ0 (D k (Z p )[r]) for r < p -1 . Proposition 3.3.22. For k ∈ Z\{0}, the set of nonzero eigenvalues of U p on Symb Γ0 (D k (P 1 , L)) is the union of the set of eigenvalues of U p on Symb Γ0 (D k (Z p , L)) and the set of nonzero eigenvalues of V p on Symb Γ0 (D k (Z p , L)).

  then we define D f (z)P (z)dz = n i=1 bi ai f (z)P (z)dz. Here bi ai is the integral along the geodesic from a i to b i inside H := H ∪ P 1 (Q).

Lemma

  

  Let B ⊂ G be the Borel subgroup of upper triangular matrices and T be the torus of diagonal matrices. An element k = σ∈Σ k σ σ ∈ Z[Σ] can be identified with a character of Res F/Q G m as follows: for any Q-algebra A, we define the characterx ∈ (F ⊗ Q A) × → x k = σ∈Σ σ(x) kσ ∈ A × . Integral weights of G are characters of T of the form diag(a, d) → a k d k ′ for (k, k ′ ) ∈ Z[Σ] 2 . Such a weight is called dominant if k σ ≥ k ′ σ for any σ ∈ Σ. Each dominant weight (k, k ′ ) induces an irreducible algebraic representation of G(A) given by σ∈Σ (Sym kσ-k ′ σ ⊗ det k ′ σ )(A 2 ). Suppose that (k, k ′ ) is dominant. For a Q-algebra A, we define the representation L k,k ′ (A) of G(A)consisting of polynomials P of degree at most (k σ -k ′ σ ) σ∈Σ in the variables z = (z σ ) σ∈Σ with coefficients in A, where the action of G(A) ∼ = GL 2 (A) Σ is given byP |γ (z) = (det γ) k ′ (cz + d) k-k ′ (A) = Hom A (L k,k ′ (A), A) is induced a left action of G(A) given by (γ • µ)(P ) = µ(P |(det γ) -1 •γ ), (5.4) where γ ∈ G(A), µ ∈ L ∨ k,k ′ (A), P ∈ L k,k ′ (A). It follows that L ∨ k,k ′ (A) ∼ = σ∈Σ (Sym kσ-k ′ σ ⊗ det -kσ )(A 2 ). Definition 5.1.1. A dominant weight of G is cohomological if it is of the form w + k σw) ∈ Z[Σ] × Z satisfying k σ ≥ 2and k σ ≡ w (mod 2) for any σ ∈ Σ. We will write simply (k, w) for this weight.The left G(A)-module L ∨ k,w (A) induces the sheaf L ∨ k,w (A) on Y K . The condition (5.2) for L ∨ k,w (A) is equivalent to N w F/Q (x) = 1 for any x ∈ F × ∩ KF × ∞ .

For a finite

  extension L of Q p , we let A S,(k,w) = A(O F,S , L) ⊗ L σ∈Σ Sp \S L kσ,w (L)be the space of L-valued analytic functions on O F ⊗Z p which are polynomial of degree at most (k σ -2) σ∈Σv in the variables (z σ ) σ∈Σv for v ∈ S p \S. Denote by D S,(k,w) its continuous L-dual.We define a continuous right action of I S on A S,(k,w) given byf |γ (z) = (det γ) ((w+2-kσ)σ∈Σ)/2 (cz + d) k-2 f az + b cz + d , where f ∈ A S,(k,w) , γ = a b c d ∈ I S , z ∈ O F ⊗ Z p .We extend to an action of Λ S by putting all v ∈ S and integers r ≥ s.It induces a continuous left action of Λ S on D S,(k,w) , given by(γ • µ)(f ) = µ(f |(det γ) -1 •γ ) for γ ∈ Λ S , µ ∈ D S,(k,w) , f ∈ A S,(k,w) .

  Now let K ⊂ G(A f ) be an open compact subgroup satisfying (5.1) and K p ⊂ I S . The homomorphism ρ S induces a homomorphism on the cohomology:ρ S : H • c (Y K , D S,(k,w) ) → H • c (Y K , L ∨ k,w (L)) (5.5)which is equivariant for the action of U ϖv on the left space and the action of the normalized Hecke operator U • ϖv = σ∈Σv σ(ϖ v ) (w+kσ-2)/2 U ϖv on the right space, for any place v ∈ S.Let h S = (h v ) v∈S ∈ Q S ≥0. By[START_REF] Urban | Eigenvarieties for reductive groups[END_REF] Lemma 2.3.13], the cohomology groupH • c (Y K , D S,(k,w) ) admits a ≤ h S -slope decomposition H • c (Y K , D S,(k,w) ) = H • c (Y K , D S,(k,w) ) ≤h S ⊕ H • c (Y K , D S,(k,w) ) >h S ,where H • c (Y K , D S,(k,w) ) ≤h S denotes the subspace of elements having slope ≤ h v with respect to U ϖv for all v ∈ S.Henceforth we consider K = K(π S , u). The following theorem generalizes Stevens' control theorem for overconvergent modular symbols (see Theorem 3.2.1).Theorem 5.1.7 ([BDJ, Theorem 2.7]). Let h S = (h v ) v∈S ∈ Q S ≥0 be such that e v h v < min σ∈Σv (k σ -1) for any v ∈ S. Then (5.5) induces an isomorphism of ≤ h S -slope subspaces ρ S : H • c (Y K , D S,(k,w) ) ≤h S → H • c (Y K , L ∨ k,w (L)) ≤h S ,where we consider the operators {U ϖv , v ∈ S} on the left hand side and {U • ϖv , v ∈ S} on the right hand side.Definition 5.1.8. We say that πS is non-critical if the localizationρ S : H • c (Y K , D S,(k,w) ) m • πS → H • c (Y K , L ∨ k,w (L)) mπ Sof (5.5) is an isomorphism, where m • πS is the normalization of m πS with the components U ϖv -ν v (ϖ v ) of m πS for v ∈ S are replaced by U ϖv -ν v (ϖ v ) σ∈Σv σ(ϖ v ) (w+kσ-2)/2 . When S = S p we say that π is non-critical.

  conjecture at the central critical point We keep the hypotheses in Chapter 5, §5.3. Denote by E ⊂ S p the set of places v at which the local interpolation E-factor of L p (π, s) vanishes at the central point 2-w 2 . By Corollary 5.3.8 and [BDJ, Corollary 6.2], E consists of placesv ∈ St p such that ν v ω -1 v is unramified and ε π v ⊗ ω -1 v , 1-w 2 , ψ v = -1.Our main goal is to prove the following result: Theorem 6.0.1 (Trivial zero conjecture at the central critical point). Suppose π satisfies (5.14). The p-adic L-function L p (π, s) has order of vanishing at least e = |E| at 2π ⊗ ω -1 ) ω(ϖ d )L π ⊗ ω -1 ,

  n)x n , where x n = v∈E x nv v with n = (n v ) v∈E . For a multi-index n = (n v ) v∈E we denote |n| = v∈E n v and ∥n∥ = |{v ∈ E |n v ̸ = 0}|. Proposition 6.0.3 ([BDJ, Proposition 7.5]). i) If ∥n∥ < e -i, then a i (n) = 0.ii) For any i < e, we have|n|=e-i a i (n) = 0.The following result generalizes[START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF] Lemma 7.7].Lemma 6.0.4. Keeping the hypotheses and notations of Theorem 6.0.1 and assuming in addition that ω is trivial (so thatω π = | • | w F ),the analytic function L p ((u) v∈E , u) vanishes at u = 0 to order at least e and (-2) e e! • d e du e L p ((u) v∈E , u)| u=0 = L(π

  (k, w) + u((1) σ∈Σ E , (0) σ∈Σ Sp \E , -1))(ϖ v ).By[START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF] Prop. 5.2, Def. 5.3], we obtaind e du e L p ((u) v∈E , u)| u=0 = L(π)
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  If µ ∈ D(Z p ) with values in L, we call its p-adic Mellin transform the function M µ on W(L) given by:

	function on Z × p .	). Any continuous character Z × p → C × p is locally analytic as a
	We can see each p-adic distribution on Z × p as a function on W.
	Definition 1.2.10.	

  writing the restriction of χ x (z) on a + p m Z p by (z) is analytic on a+p m Z p (seen as a function in A(Z × p )[p -m ] by extending by zero outside a+p m

	α n,a	
	+∞	α n,a (z)(x -1) n where
	n=0	
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Chapter 3

Overconvergent modular symbols

In this chapter, we study overconvergent modular symbols introduced by Glenn Stevens which provide one with a powerful tool to construct p-adic L-functions attached to modular forms, as will be discussed in the next chapter. In Section 3.1, we introduce the general notion of modular symbols. Then we define the action of Hecke operators on modular symbols, especially the important operator U p , as well as the notions of slopes and slope decompositions which are considered mainly for U p . In Section 3.2 we investigate classical and overconvergent modular symbols with values in D k (Z p ), and their relation via the specialization map. We state the slope decompositions for the latter modular symbols. Section 3.3 is devoted to study overconvergent modular symbols with values in D k (P 1 ), which is one of the innovations of this thesis.

We fix an integer k in this chapter.

3.1 Abstract modular symbols

Modular symbols and Hecke operators

The notion of modular symbols is defined in [START_REF] Ash | Modular forms in characteristic l and special values of theirs L-functions[END_REF].

Let ∆ 0 = Div 0 (P 1 (Q)) denote the abelian group of divisors of degree 0 on P 1 (Q). The linear fractional transformations of GL 2 (Q) on P 1 (Q) gives ∆ 0 the structure of Z[GL 2 (Q)]-module.

Let Γ be a congruence subgroup of SL 2 (Z) and V be a right Z[Γ]-module. The group of additive homomorphisms Hom(∆ 0 , V ) is endowed with the structure of a right Γ-module given by (ϕ |γ )(D) := ϕ(γD) |γ for ϕ ∈ Hom(∆ 0 , V ), γ ∈ Γ and D ∈ ∆ 0 . Definition 3.1.1. A group homomorphism ϕ ∈ Hom(∆ 0 , V ) is called a V -valued modular symbol on Γ if ϕ |γ = ϕ for any γ ∈ Γ, i.e., ϕ(γD) = ϕ(D) |γ -1 for all γ ∈ Γ, D ∈ ∆ 0 .

We denote by Symb Γ (V ) the space of all V -valued modular symbols on Γ.

If V is an R[Γ]-module for R a commutative ring with identity, then Symb Γ (V ) has the natural structure of R-module.

Let H denote the Poincaré upper half plane and V the locally constant sheaf on the modular curve H/Γ associated to V . By [START_REF] Ash | Modular forms in characteristic l and special values of theirs L-functions[END_REF]Proposition 4.2], there is a canonical isomorphism

if the order of any torsion element of Γ acts invertibly on V . If Σ ⊂ SL 2 (Z) is a monoid acting on V and containing the group Γ and a matrice s, we define the action of the Hecke operator [ΓsΓ] on Symb Γ (V ) on setting:

Let Φ 2 = Φ |(Up-α1)...(Up-αn-2) , then Φ 1 = Φ 2|(U p -α n-1) and Φ 2|(U p-αn-1 )(p k+1 -αnVp) = 0. So 0 = Φ 2|(U p -αn-1)(p k+1 -αnVp)Vp = Φ 2|(U p -αn-1)Vp(p k+1 -αnVp) = Φ 2|(p k+1 -αn-1Vp)(p k+1 -αnVp) .

Repeating this process, we get Φ |(p k+1 -α1Vp)...(p k+1 -αnVp) = 0. Therefore, Φ is annihilated by Q(V p ) where Q is the polynomial given by

If α is an eigenvalue of U p on Symb Γ0 (D k (Z p )), then α ̸ = 0 since U p is injective and there exists Φ ∈ Symb Γ0 (D k (Z p ))\{0} such that Φ |Up = αΦ. Since Φ is annihilated by P (U p ) where P is the polynomial X -α, Φ is also annihilated by Q(V p ) where Q(X) = p k+1 -αX. Therefore, p k+1 α is an eigenvalue of V p for the eigensymbol Φ. Proof. By [START_REF] Schneider | Nonarchimedean functional analysis[END_REF]Prop. 8.2 and Prop. 8.6], every surjective continuous map between Fréchet spaces is open. On the other hand, the identity V p • U p = p k+1 Id on Symb Γ0 (D k (Z p )) of Proposition 3.3.12 implies that V p is surjective on Symb Γ0 (D k (Z p )). We get the conclusion.

Corollary 3.3.15. For any h ∈ Q and k ∈ Z, we have

Proof. Since U p acts compactly on the Fréchet space Symb Γ0 (D k (Z p )) in the sense of [START_REF] Urban | Eigenvarieties for reductive groups[END_REF]§2.3.12], by the spectral theory of compact operators, U p has only a finite or countable number of eigenvalues on Symb Γ0 (D k (Z p )). In the latter case, the sequence of these eigenvalues tends to 0, so the sequence of its slope tends to +∞. We show that this case happens. The slope of U p -eigenvalues can be determined by the Newton polygon of the characteristic power series of U p .

a n X n be the characteristic power series of U p on Symb Γ0 (D k (Z p )).

Suppose that the Newton polygon of P (X) has a finite number of edges with a unique infinite edge D 1 , as in the below image. Denote (n 0 , v p (a n0 )) the coordinates of the endpoint of D 1 , where n 0 ∈ N. Let (n 0 + 1, α) be the point on D 1 of abscissa n 0 + 1. Let D 2 denote the ray of endpoint (n 0 , v p (a n0 )) and containing the point (n 0 + 1, α + 1). By the definition of Newton polygons, there is a sequence of points {(n i , v p (a ni ))} i lying between the rays D 1 and D 2 such that n i → +∞ when i → +∞, since otherwise every point (n, v p (a n )) will lie above the ray D 2 for n big enough, so D 1 will not be an edge of the Newton polygon of P (X). Since the points (n i , v p (a ni )) lie below the ray D 2 , the values v p (a ni ) are bounded above linearly on n i , i.e., there are positive constants a, b such that v p (a ni ) ≤ an i + b for all i. We show that this is impossible.

By [START_REF] Wan | Dimension variation of classical and p-adic modular forms[END_REF]Lemma 3.1], there is a lower bound:

(by [START_REF] Pollack | Overconvergent modular symbols and p-adic L-functions[END_REF]Lemma 6.2], modular symbols in Symb Γ0 (D k (Z p )) <h take values in the space of h-admissible distributions, so the map ext takes the space Symb Γ0 (D k (Z p )) <h into Symb Γ0 (D k (P 1 ) ≤h ) <h ).

Proposition 3.3.26. The specialization maps

are surjective for all h.

On the other hand, the specialization map ρ 1,k : Symb Γ0 (D k (Z p )) <h → Symb Γ0 (V k ) <h is isomorphic by Stevens' control theorem, since h ≤ k 2 < k + 1. We get the desired result since ρ 1,k = ρ 2,k • ext.

Proof. We follow the proof in loc. cit. Let ϵ be the nebentypus of f . We write

By [START_REF] Diamond | A first course in modular forms[END_REF]Theorem 5.5.3], on the inner product space S k+2 (Γ 1 (N )), the diamond operators ⟨l⟩ and the Hecke operators T l for prime l ̸ | N have adjoints ⟨l⟩ * = ⟨l⟩ -1 , T * l = ⟨l⟩ -1 T l . So, for l ̸ | N , f is an eigenform of ⟨l⟩ * with eigenvalue ϵ -1 (l) and of T * l with eigenvalue ϵ -1 (l)a l , where a l is the l-th Fourier coefficient of f . From the identity of Petersson scalar products (f |T * l , f ) = (f, f |T l ), we have ϵ -1 (l)a l = āl . By Lemma 4.2.1, for T = T l or T = ⟨l⟩, it follows that f is an eigenform of W N T W -1 N with eigenvalue λ T given by λ T = ϵ -1 (l) (resp. āl ) if T = ⟨l⟩ (resp. T l ), for l ̸ | N . Therefore, f |W N is an engenform of any Hecke operator T l and diamond operator with the same eigenvalues as f ρ by Lemma 4.2.2.

We show that f |W N is a newform. Let g ∈ S k+2 (Γ 1 (N )) is an old form. By [START_REF] Diamond | A first course in modular forms[END_REF]Proposition 5.5.2(a)], we have

Since f |W N and f ρ are new forms in S k+2 (Γ 1 (N )) with the same eigenvalues for the Hecke operators T l and diamond operators ⟨l⟩ with l ̸ | N , by [START_REF] Diamond | A first course in modular forms[END_REF]Theorem 5.8.2] we deduce that

Finally, if f has trivial nebentypus, since a l ϵ(l) -1 = āl for any prime l ̸ | N as above (this is still true if f is only an eigenform rather than a newform), we have a l = āl for any l ̸ | N . By [START_REF] Diamond | A first course in modular forms[END_REF]Theorem 5.8.2] we deduce that f ρ = f since they are newforms in S k+2 (Γ 1 (N )) with the same eigenvalues for T l with l ̸ | N and the same (trivial) nebentypus. Hence f |W N = W (f )f . Since W 2 N acts on S k+2 (Γ 1 (N )) by the multiplication by (-N ) k = N k (k is even since the nebentypus is trivial), we have

Functional equation of p-adic L-functions

In this subsection, we prove a formula of functional equation relating the values of p-adic L-functions attached to a p-stabilization of f and f |W N , where f ∈ S k+2 (N, ϵ) is a normalized eigenform. The idea is to use the interpolation formula (4.1) relating the values of p-adic and complex L-functions, and apply the functional equation of L-functions of modular forms given in [START_REF] Shimura | Introduction to the Arithmetic Theory of Automorphic Functions[END_REF]Theorem 3.66].

Let a p be the p-th Fourier coefficient of f . As before, we choose a root α of the polynomial X 2 -

) for the Hecke operators T l and ⟨l⟩ for all l prime to N , and its p-th Fourier coefficient is āp satisfying ϵ -1 (p)a p = āp . Consider the polynomial

and this p-adic L-function has order of growth < k + 1. The functional equation of p-adic L-functions states Proposition 4.2.4. Let f ∈ S k+2 (N, ϵ) be a normalized eigenform. By choosing appropriate periods, for any finite order character χ : Z × p → L × of conductor p n and any integer 0 ≤ j ≤ k, where L is a sufficiently large finite extension of Q p , one has

for any locally analytic function g :

Chapter 5

Functional equation of p-adic L-functions attached to automorphic representations of GL 2

Throughout this chapter, let F be a totally real number field and π be a cohomological cuspidal automorphic representation of GL 2 over F (see Definition 5.1.2), such that π v is not supercuspidal for any place v of F dividing p. We choose a regular p-refinement π of π, i.e., choosing a character ν v of F × v which appears as a one dimensional sub of the Weil-Deligne representation attached to π v via the local Langlands correspondence for GL 2 (F v ), for each place v of F above p.

Assume that π is non-critical (see Definition 5.1.8). Using the theory of automorphic symbols, Barrera, Dimitrov and Jorza in [BDJ] have constructed a p-adic L-function L p (π, •) as a distribution on the Galois group Gal p∞ of the maximal abelian extension of F which is unramified outside p and infinite places, and they have shown an interpolation formula for this p-adic L-function attached to π related to special values of complex L-function of π (see Theorem 5.3.2). Moreover, they proved the following functional equation:

Theorem 5.0.1 ( [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Theorem 6.4]). Let π be a regular non-critical p-refinement of a cohomological self-dual cuspidal automorphic representation π of GL 2 over F with tame conductor n, such that π v is Iwahori spherical for any place v above p. For any p-adic valued continuous character f on Gal cyc and any finite order character χ on Gal p∞ , one has

where ϖ n is a uniformizer corresponding to the ideal n and επ = ε π,

Here Gal cyc denotes the Galois group of the cyclotomic Z p -extension

This chapter is devoted to prove a generalization of the above theorem where the hypothesis on the Iwahori sphericality of π v for v|p is relaxed to the case π v is not supercuspidal and the central character of π is allowed to have the form ω 2 for a finite order character ω of Gal p∞ (see Theorem 5.3.5). Similar to the proof in [BDJ] of the above theorem, we will prove its more general version not only for individual π but also for a family of automorphic representations in a neighborhood of π in the eigenvariety parametrized by cohomological weights. The key ingredient of the proof is the following generalization of [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Corollary 6.3]: Theorem 5.0.2. Suppose π satisfies the hypotheses in Theorem 5.0.1 except that π v is not supercuspidal for any place v above p (rather than Iwahori spherical). Then

for any finite order character χ of Gal p∞ with p-adic values and any integer r critical for the cohomological weight of π (see Definition 5.3.1), where ⟨•⟩ p = χ cyc ω -1 p : Gal p∞ → 1 + 2pZ p is the character on Gal p∞ given by the quotient of the cyclotomic character χ cyc by the Teichmüller lift ω p of χ cyc mod p.

Theorem 5.0.2 implies Theorem 5.0.1 for representations having very non-critical slope (see Definition 5.1.6), by applying [START_REF] Vishik | Nonarchimedean measures connected with Dirichlet series[END_REF]Theorem 2.3] and Lemma 1.2.5. We then deduce Theorem 5.0.1 from the For each finite place v of F , we define the Hecke operator T v given by the double coset operator

For a uniformizer ϖ v ∈ O v and δ ∈ O × v we define the Hecke operators

Remark 5.1.4. By the abuse of notation, the Hecke operator U p on automorphic forms is defined by the matrix p 0 0 1 , while we use the matrix 1 0 0 p for the action of U p on p-adic distributions, since the matrices act on automorphic forms on the left and on distributions on the right.

We fix a prime ideal u of F such that:

ii) u is unramified and π u is an unramified principal series with Hecke parameters α u ̸ = β u .

The existence of u follows from [Dim09, Lemma 2.1].

Definition 5.1.5. Let E be a number field containing the Galois closure of F , the rationality field of π f , the Hecke parameters of π u and the values of the characters ν v for v ∈ S p . Let m π be the maximal ideal corresponding to π f of the Hecke algebra

For S ⊂ S p , we consider the maximal ideal

of the Hecke algebra

. We consider the following open compact subgroup of G(A f ):

where m v is the conductor of π v .

Definition 5.1.6. The slope

This slope is independent of the choice of uniformizer. We say that πv has non-critical slope if e v h πv < min

, where e v is the ramification index of p at v. For S ⊂ S p , we say that πS has non-critical slope if πv has non-critical slope for any v ∈ S.

We say that π has very non-critical slope if

Consider the monoid

Corollary 5.1.9. If πS has non-critical slope, then πS is non-critical.

Proof. It is immediate from Theorem 5.1.7.

Definition 5.1.10 (Weight space). Let X be the (d + 1)-dimensional rigid analytic space over Q p such that

There is a morphism

(5.6)

The space X contains all cohomological weights of G which are very Zariski dense in it.

Definition 5.1.11. Fix a cohomological weight (k, w). Given a subset S of S p , we let X S , resp. X ′ S denote the rigid analytic subspaces of X consisting of weights which coincide with (k, w)

We are ready to state a result about the existence of families of partial non-critical refinements indexing by cohomological weights.

Theorem 5.1.12 ([BDJ, Theorem 2.14(iii)]). Suppose that πS is non-critical. There exists an affinoid neighborhood U S of (k, w) in X S such that we can attach to any cohomological weight λ ∈ U S a non-critical S-refined weight λ cuspidal automorphic representation πλ,S of G(A).

By the above theorem, we can take an affinoid neighborhood X (π) of (k, w) in the weight space X such that for any cohomological weight λ ∈ X (π), πλ is non-critical, the map λ → (k λ , w λ ) defined in (5.6) is injective on X (π) and w λ • ω p = ω w p . By [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Lemma 5.1], we can further assume that the tame conductor of π λ equals n for every cohomological λ ∈ X (π).

We consider the subset of X (π) consisting of weights parametrized by the variables ((k λ,σ ) σ∈Σ , w λ ) which correspond via (5.6) to characters of the form

is the natural projection map. We denote by X an (π) ⊂ X (π) a neighborhood of (k, w) in the space σ∈Σ (k σ + 2pO Cp ) × (w + O Cp ) of these analytic weights.

ε-factors for GL 1 and GL 2

The ε-factors appear in the functional equation of L-functions of cuspidal automorphic representations. In this section, we recall and list some properties of ε-factors for GL 1 and GL 2 .

Let χ be a Hecke character of F and π be a cuspidal automorphic representation of GL 2 (A F ). Then χ = ⊗ v χ v and π = ⊗ v π v where v runs through all places of F and χ v (resp. π v ) is the local component at v of χ (resp. π).

For a locally constant function Φ on F × v with compact support, we define its Fourier transform as

It follows that Φ(x) = Φ(-x). By [START_REF] Tate | Fourier analysis in number fields and Hecke's zeta functions[END_REF]Theorem 2.4.1], there is a meromorphic function γ(χ v , s, ψ v ) with s ∈ C such that

for any test function Φ. We define the local ε-factor ε(χ v , s, ψ v ) by

,

where the local L-functions for GL 1 are defined by

By the same way, we can attach to π v an ε-factor ε(π v , s, ψ v ) for any place v of F and attach to π a global ε-factor ε(π, s).

We list some properties of local ε-factors for GL 1 and GL 2 . Let v be a finite place of F . From now on we will use the symbol c (resp. c) to denote the local (resp. global) conductor of Hecke characters and automorphic representations of GL 2 over F (e.g. the conductor of χ v (resp. π v ) will be denoted by c χv (resp. c πv )). i) If χ v is unramified, by the formulas (3.4.6), (3.2.6.3) and (3.2.6.1) in [START_REF]Number theoretic background[END_REF], for any s ∈ C and any character

(Note that we take the Haar measure dx v giving O v volume q -δv/2 v but in [START_REF]Number theoretic background[END_REF], he considers the Haar measure giving O v volume 1). Therefore, for any t ∈ C, we have

(5.8)

for any π v and any χ v .

ii) For any χ v , by [START_REF]Number theoretic background[END_REF](3.2.6.2)], one has

From the identity of local ε-factors (see [START_REF] Schmidt | Some remarks on local newforms for GL(2)[END_REF](7) and ( 12)]):

v is the contragredient representation of π v and ω πv is the central character of π v ), we get the identity of local Gauss sums:

(5.11)

The identities of global ε-factors for GL 1 and GL 2 state

(5.12)

iii) If χ v is highly ramified, by [START_REF] Jacquet | A lemma on highly ramified ε-factors[END_REF]Proposition 2.2], for all characters α, β of F × v such that αβ = ω πv , one has

(5.13)

Functional equation of p-adic L-functions

This section is devoted to the proof of a generalization of Theorem 5.0.1 (see Theorem 5.3.5). Throughout this section let π = (π, {ν v } v∈Sp ) be a regular non-critical p-refinement of a cuspidal automorphic representation π of G(A) of cohomological weight (k, w) and tame conductor n such that

F with w even, and π v is not supercuspidal for any v ∈ S p , (5.14

where ω is a finite order character of Gal p∞ corresponding to a Hecke character which is unramified outside p.

By the assumption about ω π , the twist

is self-dual, its root number is given by

(the fact that ε π⊗ω -1 ∈ {±1} follows from (5.12) where we take s = 1 2 ). Denote by St p ⊂ S p the subset of places v such that π v is the twist (by ν v ) of the unitary Steinberg representation . We let St v denote the Steinberg representation at v. If v ∈ S p \St p , then

Let L be a finite extension of Q p containing the image by ι p of the number field E in Definition 5.1.5. The non-criticality of π allows us to attach a p-adic L-function L p (π, •) defined in [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF](4.2)], which is a p-adic distribution on Gal p∞ with values in L. This p-adic L-function is the specialization of a multi-variable p-adic L-function L p ∈ D(Gal p∞ , O(X (π))) (see [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF](4.8)]).

Definition 5.3.1. We say that an integer r is critical for the cohomological weight (k, w) if

The p-adic L-function L p (π, •) satisfies the following interpolation formula: [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Theorem 4.2]). Let χ be a finite order character of Gal p∞ and for v dividing p denote by c v the conductor of χ v ν v . Let r be a critical integer for (k, w). Letting N F/Q (i) = i d and denote by Ω • π the period defined in [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Definition 1.14], one has r), where

otherwise.

Note that the first and second expressions for the values of E-factors in the above theorem are multiples of those in [BDJ] by a multiple of q cv+δv/2 v since our Gauss sums differ from those in [BDJ] by the multiplication q cv+δv/2 v . We now prove a more general version of the formula comparing special values of L p (π, •) given in [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Corollary 6.3]. Note that in ibid. they assume that π has trivial central character and π v is Iwahori spherical for all v|p, while we assume only the condition (5.14).

Proposition 5.3.3. Suppose π satisfies (5.14). Let χ : Gal p∞ → L × be a finite order character and let r be an integer critical for (k, w). Then

where

Proof. We will prove not only for individual π but also for any πλ where λ ∈ X (π) is cohomological. We remark that the slope is constant in the family and equals v∈Sp e v h πv (see Definition 5.1.6). Since the cohomological weights having very non-critical slope are Zariski dense in X (π), we can assume that (k, w) is such a weight. Regarding both sides of (5.15) as functions of χ⟨•⟩ r-1 p , since L p (π, •) ∈ D(Gal p∞ , L) has growth at most v∈Sp e v h πv < min σ∈Σ (k σ -1), by Lemma 1.2.5 it suffices to prove for characters χ such that χ v is highly ramified for any v ∈ S p . Suppose that χ is such a character.

By the functional equation of the Jacquet-Langlands global L-functions:

(see [START_REF] Jacquet | Automorphic forms on GL 2[END_REF]Theorem 11.1]), we have

(5.16)

Combining with Theorem 5.3.2, we obtain

).

(5.17)

For v ∈ S p , since χ v is highly ramified, it follows that the characters χ v ν v and χ v ω πv ν -1 v are all ramified with the same conductor which equals the conductor c χv of χ v . So

Hence

Since χ v is highly ramified, by (5.9) and (5.13), we have

(5.18) Lemma 5.3.4. Suppose π satisfies (5.14). Let χ be a character of Gal p∞ such that χ v is highly ramified for all v ∈ S p . Denote by c χ = v∈Sp v cχ v the conductor of χ, one has

Proof. For an infinite place v, since π v is a discrete series, the value ε(π v , s, ψ v ) is independent of s and of twisting π v by any character of F × v (see [START_REF] Knapp | Local Langlands correspondence: The Archimedean case[END_REF](3.7)]). So

If v is a finite place not above p, then χ v and ω v are unramified since they are characters of Gal p∞ , so π v ⊗ ω -1 v and π v have the same conductor c πv⊗ω -1 v = c πv . We have

(by (5.8)).

(5.20)

For v ∈ S p , since χ v is highly ramified, applying (5.13) with α = ω| • | w v and β = ω, we get

(by (5.9)), (5.21) note that c χvωv = c χv since χ v is highly ramified. We claim that

). By [START_REF] Jacquet | Automorphic forms on GL 2[END_REF]Proposition 3.5], we get [START_REF] Jacquet | Automorphic forms on GL 2[END_REF]Proposition 3.6], we have

v )(-1) (by (5.10)).

If v ∈ St p and ν v ω -1 v is unramified, again by [START_REF] Jacquet | Automorphic forms on GL 2[END_REF]Proposition 3.6], we obtain

The lemma follows from (5.19),(5.20), (5.21) and (5.22).

From (5.17), (5.18) and Lemma 5.3.4, we obtain

where we used the formula q

) for any v ∈ S p (see (5.11)) with the note that c χvωv = c χv since χ v is highly ramified.

We get the desired formula (5.15) by replacing χ by χω 1-r p with the note that χ cyc ω -1 p = ⟨•⟩ p is an even character.

We are now ready to prove a functional equation of p-adic L-functions attached to automorphic representations.

Theorem 5.3.5. The sign επ λ ⊗ω -1 of πλ is independent of the cohomological weight λ ∈ X (π). For any λ ∈ X (π), any continuous character f : Gal cyc → L × and any finite order character χ : Gal p∞ → L × , we have

(5.23)

Proof. We prove the assertion about the functional equation. We can assume that λ is cohomological having very non-critical slope since such weights are Zariski dense in X (π). Fix χ and regard both sides of (5.23) as functions of f . Since the distributions L p (λ, χ•) and L p (λ, ω -2 χ -w λ cyc χ -1 •) in D(Gal cyc , L) have growth at most v∈Sp e v h πv < min σ∈Σ (k λ,σ -1), by [START_REF] Vishik | Nonarchimedean measures connected with Dirichlet series[END_REF]Theorem 2.3,Lemma 2.10] it suffices to check (5.23) for f is of the form χ ′ ⟨•⟩ r-1 p , where r is a critical integer for (k λ , w λ ) and χ ′ is a finite order character of Gal cyc . This is exactly formula (5.15) applied to χχ ′ , except that επ⊗ω -1 is replaced by επ λ ⊗ω -1 .

For the assertion about the sign, we follow the proof of [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Theorem 6.4]. The key ingredient is the following function:

which is well-defined, non-identically zero and meromorphic in the variables (λ, s) ∈ X (π) × O Cp . Moreover, by (5.23), ε(λ, s) = επ λ ⊗ω -1 ∈ {±1} for any cohomological weight λ ∈ X (π) having very non-critical slope such that ε(λ, s) is well-defined. The Zariski density of such weights deduces that ε(λ, s) is constant with value ε ∈ {±1}, independent of χ and λ. Definition 5.3.6. The cyclotomic (resp. multi-variable) p-adic L-function attached to π is defined by

By (5.23), we have

as analytic functions in s. By [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF](6.5)

(5.25)

Proposition 5.3.7 ( [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Remark 4.11]). For any regular non-critical cohomological p-refinement π and any finite order character χ : Gal p∞ → L × , one has

Proof. We will prove this assertion for the family of weights in X (π). By analyticity it suffices to prove for cohomological weights λ ∈ X (π) such that πλ has very non-critical slope since such weights are very Zariski dense in X (π). So we can assume that π has such property.

Since the infinity part of π is a discrete series, and since the discrete series are invariant under twisting by the sign character, it follows that π ⊗ χ has the same cohomological weight as π for any finite order character χ of Gal p∞ . Moreover, π v ⊗ χ v has the same slope as π v for any v ∈ S p since χ v (ϖ v ) is a p-adic unit. By [START_REF] Vishik | Nonarchimedean measures connected with Dirichlet series[END_REF]Theorem 2.3,Lemma 2.10] it suffices to check

for any r ∈ Z critical for the weight of π and any finite order character χ ′ of Gal cyc . By [START_REF] Barrera | p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture[END_REF]Theorem 4.2], we have

where we used the equality E( π v ⊗ χ v , χ ′ v ω 1-r p,v , r) = E(π v , χ v χ ′ v ω 1-r p,v , r) which is obvious from the definition of E-factors and the equality Ω (5.26)

Proof. This is obvious from the above proposition and the definition of cyclotomic p-adic L-functions.

Remark 5.3.9. If ω π = ω 2 | • | w where ω is any Hecke character (not only characters of Gal p∞ ), we take the right hand side of (5.26) for the definition of the cyclotomic p-adic L-functions L p (π λ , s).

Consider v ∈ S p \E such that ν v is unramified. If v ∈ St p \E, then ε π v , 1-w 2 , ψ v = 1. By (5.22) we deduce that ν v (ϖ v ) = -q -w/2 v . If v ∈ S p \ St p , then π v is a principal series, hence π v is an unramified principal series since ν v and ω πv are unramified. Therefore,

(6.4)

We get the desired formula of eth Taylor coefficient from (6.3) and (6.4).

Proof of Theorem 6.0.1

Recall that we have assumed ω = 1. Since L p (π, s) = ⟨n⟩ Theorem 6.0.1 then follows from Lemma 6.0.4.