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General Introduction

"La vie est agréable. La mort est paisible. C'est la transition qui est désagréable." "Life is pleasant. Death is peaceful. It's the transition that's troublesome."

Isaac Asimov

The overarching themes of this thesis are critical transitions and turbulence. Hence the goal of this introductory chapter is to present relevant aspects of turbulent flows and the different types of transitions to be studied.

Everyone who has ever travelled by air will know turbulence as a most unpleasant phenomenon, namely the culprit for a bumpy ride. It was Leonardo da Vinci who recognised more than 500 years ago what he termed "torbolenze" as a distinct fluid behaviour and the modern usage of the term turbulence goes back to him. However, it took several centuries for the mathematical theory of fluid mechanics in general and turbulence in particular to be developed. If turbulence makes for uncomfortable air travel, since Navier first published the equations of motion for viscous fluids in 1822, the study of turbulence has by no means been an easy ride for physicists, mathematicians, oceanographers, meteorologists and engineers either. Like other important science problems, turbulence is in some ways similar to the many-headed Hydra of Greek mythology (fittingly a water creature): progress in understanding turbulent flows has led to many new problems waiting to be unravelled, just as for each severed head, the Hydra is said to grow two new ones.

At the end of the nineteenth century, Osborne Reynolds performed pipe flow experiments which allowed him to study da Vinci's qualitative observations more systematically. Reynolds showed that the transition from a smooth, laminar to a disordered, turbulent flow state occurs for sufficiently large values of a nondimensional parameter now known as Reynolds number. This parameter is defined as Re = U /ν, in terms of the fluid's kinematic viscosity ν, the typical flow velocity U and the typical length scale over which the velocity field varies. The discovery of the Reynolds number and the associated similarity law were crucial for designing later systematic wind tunnel experiments, including those by Gustave Eiffel in his Paris lab near the foot of the tower named after him, and Ludwig Prandl in his Göttingen Modellversuchsanstalt für Strömungsforschung. In a paper published in 1912, Eiffel reported his observation of a 1 Figure 1: The turbulent wake of a sphere in a wind tunnel visualised using smoke. now famous phenomenon, known as drag crisis: the drag coefficient of a solid body in a wind tunnel, shown in figure 1, drops off sharply above a high threshold Re. Prandtl showed this to be a consequence of the boundary layers transitioning from laminar to turbulent flow.

In 1922 Lewis Fry Richardson, a pre-digital-computer-era pioneer of weather prediction, abstracted from such experimental measurements to propose what is now known as direct or forward cascade of energy, in which energy is moved from the large injection scales down to the dissipative small scales, as illustrated in figure 2. Richardson's conceptual ideas were first quantified in 1941 by Andreï Nikolaïevitch Kolmogorov who published a theory of three-dimensional (3-D) homogeneous isotropic turbulence (HIT) at high Re in 1941, which has had a profound and lasting impact on the field [START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF]. A key insight by Kolmogorov was the recognition of the energy flux across scales as a central quantity that needed to be taken into account in the description. Despite making great inroads, Kolmogorov's theory of 3-D HIT also left many important questions to be answered. For instance, the assumption of isotropy breaks down at the large spatial scales in Earth's atmosphere and oceans, which are fluid layers with a small aspect ratio, subject to the Earth's rotation and gravitational pull. Domain geometry, rotation and gravity all affect the evolution of the flow in certain directions differently than in others, thus causing anisotropy.

An important observed feature of geophysical and astrophysical flows that 3-D HIT failed to explain is the ubiquitous formation of large-scale dynamical structures, such as weather systems on Earth or the Great Red Spot and multiple jets on Jupiter. The second half of the twentieth century saw the emergence of two-dimensional (2-D) turbulence theory, motivated both by the shortcomings of 3-D HIT and Jule Charney's quasigeostrophic equations for large-scale geophysical flows [START_REF] Boffetta | Two-Dimensional Turbulence[END_REF]. The phenomenology of 2-D turbulence differs starkly from its 3-D counterpart: instead of cascading from big whorls to little whorls, as Richardson had envisioned, energy in 2-D turbulence is transferred from small to large spatial scales, thus generating larger and larger structures, in a process called inverse cascade, illustrated in figure 2. In finite domains, and in the absence of a large-scale damping mechanism, the inverse cascade leads to a concentration Figure 2: Illustration of a forward cascade from big whirls to little wirls (in the words of Richardson), and of an inverse cascade from little whirls to big whirls. Whirls here refers to structures of a certain spatial extent, one can think for instance of tornado-like vortices, that together make up a turbulent velocity field. of energy at the largest available scales in the system, giving rise to a large-scale condensate at late times. The term condensate is used here by analogy with Bose-Einstein condensates, where an overwhelming majority of the constituents of a quantum system occupy the ground state. The large spatial scales in a turbulent flow are the counterpart of the ground state in this analogy. Condensate flows feature a strong background shear, which is a relevant ingredient in many geophysical situations and often leads to a simpler theoretical analysis than HIT. Both theories of 2-D and 3-D turbulence are idealisations. In the atmosphere, for instance, very large structures such as weather systems, which are close to being 2-D in the sense that they have a small aspect ratio, coexist with smaller-scale 3-D flow features, as figure 3 illustrates. Given this combination of 2-D and 3-D features, and the striking difference between the 2-D and 3-D turbulence phenomenology, it is natural to ask the question whether the system can transition from one case to the other. Over the last few decades, the advent of powerful supercomputers has enabled detailed studies of anisotropic turbulence, providing partial answers to this question in different settings.

Rotation, density stratification and anisotropic geometry are three important mechanisms that generate anisotropy in geophysical and astrophysical turbulent flows [START_REF] Salmon | Lectures on geophysical fluid dynamics[END_REF][START_REF] Pedlosky | Geophysical fluid dynamics[END_REF][START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF]. Other mechanisms producing anisotropy arise for instance in magnetohydrodynamic flows and helically constrained flows. Each mechanism is controlled by a nondimensional parameter which is different from the Reynolds number and involves rotation rate, stratification, and aspect ratio respectively. Previous numerical studies have found that an inverse cascade of energy can emerge from a purely forward cascading system above a threshold value of the control parameters [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF]. This is highly important in situations where the smallest scales (including the dissipation scale) cannot be resolved in a model. If these smallest scales have any influence on the larger scales, that influence must be parametrised. In geophysical fluid modeling, these parametrisations of turbulence are still based on very coarse physical and empirical laws, mainly because of our poor understanding of turbulence dynamics. It is therefore crucial to understand these energy cascade processes in order to improve fluid modeling. While the existence of such transitions where an inverse cascade emerges is well established, much is yet to be learned about their detailed properties. In some flows, in particular for turbulence in a thin layer, there is strong evidence for criticality of the transition. The term criticality is used here to describe situations where an order parameter (e.g. the rate of inverse energy transfer) changes from zero to non-zero non-smoothly at a critical value of a control parameter. When the limits of infinite horizontal box size and Re → ∞ is taken, this change can be either discontinuous (1st order) or continuous with discontinuous (first/second/higher) derivative (2nd order) at the critical point [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF]. 1 If the transition is continuous, then there is necessarily a parameter range where a fraction of energy cascades forward and the remainder cascades inversely, a situation known as split or bidirectional cascade. Knowing whether the transition to an inverse cascade in a turbulent flow is critical or smooth is important, in particular since this information is paramount for further investigations of it. For instance, in a critical transition, two separated phases exist and one may thus meaningfully speak of the phase diagram of the system. This is particularly interesting when there is more than one control parameter, for example in rotating and stratified turbulence within a layer of variable depth. In such cases, a critical transition will be characterised by a codimension one submanifold in parameter space (e.g. a critical line if parameter space is 2-D, or a critical surface if parameter space is 3-D). Furthermore, near the critical points there are critical exponents to be measured, which can ideally be compared with theoretical predictions and may potentially be shared by a class of different systems, which would correspond to a universality class.

In a finite domain, in the absence of large-scale damping, a split cascade arising from an energy injection mechanism at small scales will saturate after finite time to a large-scale condensate state, with injection of energy being balanced by dissipation. The properties of the transition between condensed and non-condensed states will in general differ from the transition between forward and bidirectional energy cascades in the presence of large-scale damping or in the large-box limit. The suitable order parameter in the condensate case is the kinetic energy in the gravest, i.e. largest-scale modes in the system, while in the absence of a condensate the inverse energy flux is more appropriate.

At finite Re, a second transition is encountered in anisotropic turbulence, where the flow becomes exactly bidimensional (boundary conditions permitting) when a control parameter is increased sufficiently far beyond the first threshold where the inverse cascade appears. The appropriate order parameter then is the kinetic energy contained in Fourier modes that vary along the invariance direction (e.g. along the rotation axis in the rotating case). This transition towards bidimensionalisation has been proven to exist based on rigorous inequalities [START_REF] Gallet | Exact two-dimensionalization of rapidly rotating large-Reynoldsnumber flows[END_REF] and has also been found numerically in a simple model of thin-layer turbulence [START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF]. However, while it establishes the existence of the threshold for bidimensionalisation, since the bounding theory is built on rather conservative estimates, it does not capture the physics close to onset. In short, the theory of 3-D instabilities on turbulent two-dimensional flows is still in its infancy.

Turbulent flows involve a large number of degrees of freedom, spanning many spatial and temporal scales. Similarly, in a gas at equilibrium, there is a large number of degrees of freedom corresponding to all the gas molecules. In the latter case, it is well known that equilibrium statistical mechanics provides a description of drastically reduced complexity, which is the basis of thermodynamics. The fact that turbulent flows support finite fluxes of energy across scales implies, however, that turbulence is a non-equilibrium phenomenon [START_REF] Goldenfeld | Turbulence as a Problem in Non-equilibrium Statistical Mechanics[END_REF]. By contrast, such fluxes are required to vanish at thermal equilibrium. Both the transition from forward to bidirectional cascade and the bidimensionalisation transition are out-of-equilibrium phenomena: on both sides of the parameter threshold the flow is turbulent, but has different characteristics. This is to be contrasted with the laminar-turbulent transition in shear flows, where the flow is turbulent only on one side of the transition. Despite turbulence being an out-of-equilibrium dynamical system, some aspects of turbulent flows may be described successfully by equilibrium statistical mechanics, thereby providing a drastically simplified description of the system. For instance, in high-amplitude turbulent condensates, energy fluxes tend to be small compared to the strong large-scale flow and it can be appropriate to seek an equilibrium description of the system. In the past, equilibrium statistical mechanics approaches have proven to be particularly fruitful when applied to 2-D turbulence. One reason for this is that for 2-D turbulence in an infinite domain, the viscous energy dissipation rate vanishes as viscosity is reduced to zero, with all other parameters fixed. A particular transition of interest in that context is the emergence of reversals of the large-scale circulation in confined flows. In an ideal 2-D fluid, this is known to arise at a sharp threshold [START_REF] Shukla | Statistical theory of reversals in twodimensional confined turbulent flows[END_REF], but the detailed theoretical properties of this problem are still incompletely understood.

The remainder of this thesis is organised as follows. The first two Chapters 1 and 2 present direct numerical simulations of different sets of hydrodynamical equations, which are analysed in detail. Chapters 3 and 4 present simplified modelling and theoretical results on quasi-2-D and 2-D turbulence. More specifically, in Chapter 1, we study rapidly rotating turbulence in an elongated domain, with large-scale damping which supresses the formation of a condensate. There, we present novel numerical evidence of criticality at the transition towards a bidirectional cascade in this system, and also provide a detailed analyis of the impact of stratification on the energy cascades. In Chapter 2, the complementary problem of turbulence in a thin layer with no large-scale damping is studied, with a focus on the transition to the condensate state. The first comprehensive numerical and modelling study of thin-layer condensates is presented there. In Chapter 3, the transition between a purely bidimensional flow and one which supports finite-amplitude three-dimensional perturbations is studied in a point-vortex model which we construct. We further derive novel analytical results on a stochastic dynamical system motivated by the point-vortex model. In Chapter 4, we consider a finite-dimensional equation of motion for ideal fluids, the truncated Euler equation, through the lense of equilibrium statistical mechanics and thus describe a final type of critical transition, namely the onset of large-scale reversals in a confined turbulent flow. Novel analytical results are derived in the microcanonical ensemble, and shown to agree with a minimal numerical model. Finally, we end with a general conclusion and an outlook.
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Chapter 1

Energy cascades in rapidly rotating (and stratified) turbulence within highly elongated domains "Les paresseux parviennent à suivre la rotation de la terre tout aussi bien que les travailleurs." "The lazy manage to keep up with the Earth's rotation just as well as the industrious."

Mason Cooley

This chapter is based on publications P4 and P8, from which part of the text and figures were taken. In this chapter we encounter a first example of a critical transition in the context of rotating turbulence and study the impact of density stratification.

Rotating and statified fluid flows are commonly found in astrophysical and geophysical systems such as planetary and stellar interiors, planetary atmospheres and oceans [START_REF] Salmon | Lectures on geophysical fluid dynamics[END_REF][START_REF] Pedlosky | Geophysical fluid dynamics[END_REF][START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF], as well as industrial processes. The fluid motions in these systems are typically turbulent, with large values of both the Reynolds number Re (the ratio between inertial and viscous forces) and the Péclet number Pe (the ratio between diffusive and advective transport rates of temperature). At the same time the flow is affected by the Coriolis force due to system rotation and by the bouyancy force due to the combined action of stratification and gravity. The magnitude of the Coriolis force compared to the inertial force is measured by the nondimensional Rossby number Ro = U/(Ω ), where Ω is the rotation rate and U and are typical velocity and length scales of the flow. Similarly, the magnitude of the buoyancy force compared to the inertial force is quantified by the Froude number Fr = U/(N ), where N is the buoyancy frequency. For Ro < ∞ and/or F r < ∞, the isotropy of classical three-dimensional (3-D) turbulence is broken, since the rotation axis and gravity impose a direction in space. In particular, when the rotation rate is large, i.e. in the limit Ro → 0, the rotation tends to suppress variations of the motion along the axis of rotation and thus makes the flow quasi-two-dimensional, an effect described by the Taylor-Proudman theorem [START_REF] Hough | IX. On the application of harmonic analysis to the dynamical theory of the tides.-Part I. On Laplace's "oscillations of the first species" and the dynamics of ocean currents[END_REF][START_REF] Proudman | On the motion of solids in a liquid possessing vorticity[END_REF][START_REF] Taylor | Motion of solids in fluids when the flow is not irrotational[END_REF][START_REF] Greenspan | The theory of rotating fluids (CUP Archive)[END_REF]. Similarly, when N is large, vertical motions are suppressed, and quasi-horizontal layers, so-called "pancakes", are favoured [START_REF] Herring | Numerical experiments in forced stably stratified turbulence[END_REF][START_REF] Waite | Stratified turbulence dominated by vortical motion[END_REF][START_REF] Brethouwer | Scaling analysis and simulation of strongly stratified turbulent flows[END_REF]. A review of rotating and stratified flows is given in [START_REF] Pouquet | Dual constant-flux energy cascades to both large scales and small scales[END_REF].

When Ro is lowered below a certain threshold value Ro c in a rotating turbulent flow, a transition is encountered where the flow becomes quasi-2-D and an inverse cascade develops. In the absence of an effective large-scale damping, this inverse cascade can lead to the formation of a condensate in which the energy is concentrated at the largest scale. The formation of large-scale quasi-2-D structures in rotating flows has been observed early on in experiments [START_REF] Ibbetson | Experiments on turbulence in a rotating fluid[END_REF][START_REF] Hopfinger | Turbulence and waves in a rotating tank[END_REF][START_REF] Dickinson | Oscillating-grid turbulence including effects of rotation[END_REF] and numerical simulations [START_REF] Bartello | Coherent structures in rotating threedimensional turbulence[END_REF][START_REF] Yeung | Numerical study of rotating turbulence with external forcing[END_REF][START_REF] Godeferd | Direct numerical simulations of turbulence with confinement and rotation[END_REF][START_REF] Smith | Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence[END_REF]. Since then, various investigations have focused on different aspects of the quasi-2-D behaviour of rotating turbulence experimentally [START_REF] Baroud | Anomalous selfsimilarity in a turbulent rapidly rotating fluid[END_REF][START_REF] Baroud | Scaling in threedimensional and quasi-two-dimensional rotating turbulent flows[END_REF][START_REF] Morize | Energy decay of rotating turbulence with confinement effects[END_REF][START_REF] Staplehurst | Structure formation in homogeneous freely decaying rotating turbulence[END_REF][START_REF] Van Bokhoven | Experiments on rapidly rotating turbulent flows[END_REF][START_REF] Duran-Matute | Turbulence and columnar vortex formation through inertial-wave focusing[END_REF][START_REF] Yarom | Experimental quantification of inverse energy cascade in deep rotating turbulence[END_REF][START_REF] Machicoane | Two-dimensionalization of the flow driven by a slowly rotating impeller in a rapidly rotating fluid[END_REF] and numerically [START_REF] Mininni | Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers[END_REF][START_REF] Thiele | Structure and decay of rotating homogeneous turbulence[END_REF][START_REF] Favier | On space and time correlations of isotropic and rotating turbulence[END_REF][START_REF] Mininni | Rotating helical turbulence. I. Global evolution and spectral behavior[END_REF][START_REF] Sen | Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence[END_REF][START_REF] Biferale | Coherent structures and extreme events in rotating multiphase turbulent flows[END_REF][START_REF] Valente | Spectral imbalance in the inertial range dynamics of decaying rotating turbulence[END_REF][START_REF] Buzzicotti | Energy transfer in turbulence under rotation[END_REF][START_REF] Buzzicotti | On the inverse energy transfer in rotating turbulence[END_REF]. In particular, recent experiments were able to investigate the presence of the inverse cascade [START_REF] Yarom | Experimental observation of steady inertial wave turbulence in deep rotating flows[END_REF][START_REF] Campagne | Direct and inverse energy cascades in a forced rotating turbulence experiment[END_REF][START_REF] Campagne | Disentangling inertial waves from eddy turbulence in a forced rotating turbulence experiment[END_REF][START_REF] Campagne | Turbulent drag in a rotating frame[END_REF]. The transition from a forward to an inverse cascade in rotating turbulence was studied systematically using numerical simulations in [START_REF] Smith | Crossover from two-to threedimensional turbulence[END_REF][START_REF] Deusebio | Dimensional transition in rotating turbulence[END_REF][START_REF] Pestana | Regime transition in the energy cascade of rotating turbulence[END_REF][START_REF] Pestana | Rossby-number effects on columnar eddy formation and the energy dissipation law in homogeneous rotating turbulence[END_REF], while the transition to a condensate regime was studied in [START_REF] Alexakis | Rotating taylor-green flow[END_REF][START_REF] Yokoyama | Hysteretic transitions between quasi-twodimensional flow and three-dimensional flow in forced rotating turbulence[END_REF][START_REF] Seshasayanan | Condensates in rotating turbulent flows[END_REF].

In the case of rotating and stratified turbulence in a layer of thickness H (after the limits of large horizontal box size L, Reynolds number Re → ∞ and Péclet number Pe → ∞ have been taken) there are three parameters, which control the energy fluxes across scales in the system: the ratio h = H/ in (where here in is taken to be the forcing length scale), Ro and Fr. If criticality is present (in the sense described in the Introduction), then this 3-D space (h, Ro, Fr) will be split into two regions: one where an inverse cascade occurs, and another where no inverse cascade occurs. The two regions are separated by a critical surface given by h c (Ro, Fr) that needs to be determined. When Ro and Fr are both large (slow rotation and weak stratification), the problem reduces to that of the non-rotating rotating layer of homogeneous density and therefore lim Ro→∞ lim Fr→∞ h c (Ro, Fr) = h * c > 0, where h * c is the critical value of h for the nonrotating layer [START_REF] Celani | Turbulence in More than Two and Less than Three Dimensions[END_REF][START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF] (more on this problem in Chapter 2). Already for the purely rotating problem (Fr → ∞), the asymptotic scaling of h c with Ro at small Ro is not known. This problem was addressed in [START_REF] Deusebio | Dimensional transition in rotating turbulence[END_REF], which provided evidence for a continuous transition, with h c increasing as Ro was decreased, but could not reach small enough Ro to determine a scaling of h c with Ro. In [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF] it was argued for the purely rotating case that the scaling h c ∝ 1/Ro should be followed at Ro 1. However, so far, no evidence numerical or experimental exists to support or dismiss this conjecture.

For the yet more complex, cominbed stratified and rotating case, there are a large number of simulations showing a bidirectional cascade and a transfer of energy to the largest scales [START_REF] Smith | Generation of slow large scales in forced rotating stratified turbulence[END_REF][START_REF] Kurien | Anisotropic constraints on energy distribution in rotating and stratified turbulence[END_REF][START_REF] Marino | Inverse cascades in rotating stratified turbulence: fast growth of large scales[END_REF][START_REF] Marino | Large-scale anisotropy in stably stratified rotating flows[END_REF][START_REF] Rosenberg | Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations[END_REF][START_REF] Marino | Resolving the paradox of oceanic large-scale balance and small-scale mixing[END_REF][START_REF] Oks | Inverse cascades and resonant triads in rotating and stratified turbulence[END_REF][START_REF] Thomas | Forward flux and enhanced dissipation of geostrophic balanced energy[END_REF]. However, a complete picture of how the energy fluxes depend on parameters is still missing. Based on numerical simulations at fixed layer height, [START_REF] Marino | Resolving the paradox of oceanic large-scale balance and small-scale mixing[END_REF] argued that the ratio between the inverse energy flux to - and the direct energy flux + is given by -/ + ∝ (RoFr) -1 . However, they were only able to cover a limited parameter range and the possibility that the transition is critical as a function of RoFr cannot be excluded [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF]. Here we address this gap by performing direct numerical simulations in the simultaneous limit of asymptotically small Ro and large domain height, with and without stratification. The focus in this chapter is on the initial development of the inverse cascade when it is present, rather than the eventual condensation of energy at the large scales.

The remainder of this chapter is structured as follows. In a first part we focus on the purely rotating problem (Fr → ∞) in a second part we examine the impact of stratification. In section 1.1 we discuss theoretical aspects primarily of rotating turbulent flows, in section 1.2, we introduce the set-up of our numerical simulations and define the quantities to be measured in the purely rotating runs. In section 1.3, we describe the results of the direct numerical solutions (DNS) we performed. In section 1.4, we draw our conclusions pertaining to the rotating case and discuss remaining open problems. In section 1.5, we extend the analysis to the rotating and stratified case, both at the theoretical and the numerical levels.

Theoretical Background

Quasi-two-dimensionalisation and inertial waves

In this section we discuss the theoretical results underpinning the present study. A fundamental property of rotating flows is the fact that they support inertial wave motions, whose restoring force is the Coriolis force [START_REF] Greenspan | The theory of rotating fluids (CUP Archive)[END_REF]. Inertial waves have the peculiar anisotropic dispersion relation

ω s k (k) = 2s k Ωk /k, ( 1.1) 
where s k = ±1, Ω is the rotation rate, k is the component of k along the rotation axis and k = |k|. Similarly, we define k ⊥ as the magnitude of the component of k perpendicular to the rotation axis. In the remainder of this chapter, parallel and perpendicular will always refer to the rotation axis. Inertial waves in fast-rotating turbulence are important for understanding the direction of the energy cascade, as will be discussed below. The form of (1.1) shows that motions which are invariant along the axis of rotation, i.e. which are 2-D with three components (2D3C), have zero frequency and are thus unaffected by rotation. This allows decomposing the flow into two components, the 2D3C modes which are not directly affected by rotation, forming the slow manifold, and the remaining 3-D modes which are affected by the rotation, forming the fast manifold [START_REF] Buzzicotti | On the inverse energy transfer in rotating turbulence[END_REF].

In the limit Ro → 0, it can be shown that only resonant interactions remain present [START_REF] Waleffe | Inertial transfers in the helical decomposition[END_REF][START_REF] Embid | Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers[END_REF][START_REF] Chen | Resonant interactions in rotating homogeneous three-dimensional turbulence[END_REF]. Resonant interactions are those interactions between wavenumber triads (k, p, q) satisfying k + p + q = 0, (1.2)

ω s k (k) + ω sp (p) + ω sq (q) = 0, (1.3) 
where ω s k (k), ω sp (p) and ω sq (q) are given by (1.1). When only resonant interactions are present in the system, it can further be shown that any triad including modes from both the fast and slow manifolds leads to zero net energy exchange between the two manifolds. Thus, with only resonant interactions, the slow and fast manifolds evolve independently from each other without exchanging energy, and there is inverse energy transfer in the perpendicular components of the slow manifold. This decoupling may lead to an inverse energy cascade for the quasi-2-D part of the flow. In fact, it can be proven that for finite Reynolds number Re ≡ U /ν (where ν is viscosity, U is r.m.s. velocity and is a forcing length scale) and finite H, the flow will become exactly 2-D as Ro → 0 [START_REF] Gallet | Exact two-dimensionalization of rapidly rotating large-Reynoldsnumber flows[END_REF].

On the other hand, in the limit of large domain height H, very small values of k are possible, such that quasi-resonant triads, for which (1.3) is only satisfied to O(Ro), can transfer energy between the slow and fast manifolds. Thus the inverse energy transfer in the slow manifold may be suppressed by interaction with quasi-resonant 3-D modes. Asymptotically, for infinite domains and k /k ⊥ 1, wave turbulence theory predicts a forward energy cascade and an associated anisotropic energy spectrum [START_REF] Galtier | Weak inertial-wave turbulence theory[END_REF].

There are thus two mechanisms at play in the energy transport: the dynamics of the slow manifold transferring energy to the large scales and the 3-D interactions transferring energy to the small scales. Which of these two processes dominates depends on the two nondimensional parameters, the ratio h = H/ in , where in is the forcing length scale, and the Rossby number Ro =

1/3 in /( 2/3
in Ω) based on in and the forcing velocity scale ( in in ) 1/3 resulting from the energy injection rate in . The main criterion is whether or not 2-D modes are isolated from 3-D modes due to fast rotation. The coupling of 2-D and 3-D motions will be strong enough to stop the inverse cascade if the fast modes closest to the slow manifold (k ∼ H -1 , k ⊥ ∼ -1 in ) are 'slow' enough to interact with the 2-D slow manifold. This implies that their wave frequency ω = 2Ωk /k ⊥ ∼ 2Ω in /H is of the same order as the non-linear inverse time scale τ -1 nl ∼ 1/3 in

-2/3
in . This leads to the following prediction for the critical height H c , where the transition takes place,

h c = H c in ∝ Ω -1/3 in 2/3 in = Ro -1 . (1.4)
Importantly, the predicted height and rotation rate are linearly proportional. The criterion (1.4) suggests that the nondimensional control parameter of the transition in the limit of large h and small Ro is given by

λ = 1 h × Ro = 5/3 in Ω 1/3 in H . (1.5)

Multiscale expansion

We are going explore the regime of simultaneously large h and small Ro. Brute-force simulations at small Ro are costly, since very small time steps are required to resolve the fast waves of interest. Rather, we exploit an asymptotic expansion first introduced in [START_REF] Julien | A new class of equations for rotationally constrained flows[END_REF], which allows to test the prediction (1.4) and to investigate the properties of the transition to a split cascade. The expansion is based on the Boussinesq equations in a system rotating at the constant rate Ω = Ωê , for a linear background density profile ρ(x, t) = ρ 0 -α(x • ê ) + δρ(x, t), with position x, time t, background density ρ 0 = cst., stratification strength α > 0, and ρ 0 = cst. |ρ -ρ 0 | ρ 0 . Gravity is taken to be parallel to the rotation axis. The dimensional form of these equations reads

∂ t u + u • ∇u + 2Ωê × u = -∇p -N φê + ν∇ 2 u + f , (1.6) ∂ t φ + u • ∇φ = N u + κ∇ 2 φ, (1.7) ∇ • u = 0, (1.8) 
with velocity u, pressure (divided by the background density ρ 0 ) p, buoyancy frequency N = αg/ρ 0 , rescaled density perturbation φ = N δρ/σ, kinematic viscosity ν, and a mechanical forcing f acting only on momentum. The domain considered here is the cuboid of dimensions 2πL × 2πL × 2πH, depicted in figure 1.1, with periodic boundary conditions. For any vector F, we define the parallel and perpendicular components as We choose to consider a stochastic, white-in-time forcing injecting energy at a constant mean rate into both perpendicular and parallel motions

F = (F • ê )ê = F ê and F ⊥ = F -F .
f ⊥ • u ⊥ = f u = in /2 ⇒ f • u = in
, where • denotes an ensemble average over inifinitely many realisations. The forcing is chosen to be 2-D (independent of the parallel direction), for simplicity, and filtered in Fourier space to act only on a ring of perpendicular wavenumbers k centered on |k| = k f = 1/ in . A similar 2-D forcing has been widely used in previous studies on the transition toward an inverse cascade, such as [START_REF] Smith | Crossover from two-to threedimensional turbulence[END_REF][START_REF] Celani | Turbulence in More than Two and Less than Three Dimensions[END_REF][START_REF] Deusebio | Dimensional transition in rotating turbulence[END_REF]. In general, the transition to an inverse cascade can depend on the choice of forcing. The results presented in P3 for thin-layer turbulence suggest that a 3-D forcing, which includes non-zero parallel wavenumbers, is less efficient at generating an inverse cascade and delays the onset. A related but distinct problem, which we choose not to address in the present study, is to investigate the transfer of energy to the 2-D manifold in the case when only the 3-D modes are forced. This has recently been studied experimentally and theoretically [START_REF] Le Reun | Experimental study of the nonlinear saturation of the elliptical instability: inertial wave turbulence versus geostrophic turbulence[END_REF][START_REF] Brunet | Shortcut to geostrophy in wave-driven rotating turbulence: the quartetic instability[END_REF][START_REF] Le Reun | Near-resonant instability of geostrophic modes: beyond Greenspan's theorem[END_REF].

The forcing imposes a time scale ( 2 in / in ) 1/3 as well as a length scale in , and thus a velocity scale ( in in ) 1/3 . However, the typical scale of parallel variations is H, rather than in . We adopt the φ scale in N . As detailed in appendix 1.A, nondimensionalisation using these scales reveals that the nondimensional control parameters are indeed the Rossby number Ro = ( in in ) 1/3 /(Ω in ), the Froude number Fr = ( in in ) 1/3 /(N in ) and the rescaled domain height h = H/ in , in addition to the Reynolds number Re = ( in 4 in ) 1/3 /ν and the rescaled domain width Λ = L/ in . We consider tall boxes h = In particular, the expansion assumes that Re, Fr, Pe Ro -1 , Re, Fr, Pe H/ in , L/ in Ro -1 and L H. We note that this limiting procedure does not correspond to the weak turbulence limit, for which the limit h → ∞ is taken before the limit Ro → 0 [START_REF] Nazarenko | Wave turbulence[END_REF]. The method of multiple scales [START_REF] Sprague | Numerical simulation of an asymptotically reduced system for rotationally constrained convection[END_REF] or a heuristic derivation (see appendix 1.A) can be used to obtain a set of asymptotically reduced equations for the parallel components of velocity u and vorticity ω = (∇ × u) • ê , and density perturbation φ. In their nondimensional form, the equations read

∂ t u + u ⊥ • ∇ ⊥ u +2λ∂ ∇ -2 ⊥ ω = - 1 Fr φ + 1 Re ∇ 2 ⊥ u + f , (1.9) ∂ t ω + u ⊥ • ∇ ⊥ ω -2λ∂ u = 1 Re ∇ 2 ⊥ ω + f ω , (1.10) ∂ t φ + u ⊥ • ∇ ⊥ φ = 1 Fr u + 1 Pe ∇ 2 ⊥ φ, (1.11)
where ∂ is the partial derivative in the parallel direction,

∇ ⊥ = ∇ -ê ∂ and f ω = (∇ × f ) • ê .
The perpendicular components u ⊥ are divergence-free to leading order, ∇ ⊥ •u ⊥ = 0, which permits us to write them in terms of a stream function, u ⊥ = ê ×∇ψ, where ψ is such that ω = ∇ 2 ⊥ ψ. These nondimensional asymptotic equations are valid in the domain 2πΛ × 2πΛ × 2π. Importantly, in equations (1.9) and (1.10), all the information about H and Ω is contained in the parameter λ, which is defined by (1.5). This implies that if a transition from a direct to a split energy cascade is captured in these asymptotic equations, the single control parameter of the transition indeed is given by λ (in the limit of large Re and Λ), as predicted in by the heuristic arguments in section 1.1.1. Variants of the asymptotic equations (1.9, 1.10) have been extensively used in the past, in particular for studying rotating turbulence [START_REF] Nazarenko | Critical balance in magnetohydrodynamic, rotating and stratified turbulence: towards a universal scaling conjecture[END_REF] and rapidly rotating convection (adding energy equation) [START_REF] Sprague | Numerical simulation of an asymptotically reduced system for rotationally constrained convection[END_REF][START_REF] Julien | Statistical and physical balances in low Rossby number Rayleigh-Bénard convection[END_REF][START_REF] Julien | Heat transport in low-Rossby-number Rayleigh-Bénard convection[END_REF][START_REF] Rubio | Upscale energy transfer in three-dimensional rapidly rotating turbulent convection[END_REF][START_REF] Grooms | Model of convective Taylor columns in rotating Rayleigh-Bénard convection[END_REF], as well as dynamos driven by rapidly rotating convection (adding the energy and MHD induction equations) [START_REF] Calkins | A multiscale dynamo model driven by quasi-geostrophic convection[END_REF].

The equations (1.9) and (1.10) are closely related to well-known models in geophysical fluid dynamics. In particular, since the leading-order perpendicular velocity is in geostrophic balance and advection is purely perpendicular, the model bears a resemblance to the classical quasi-geostrophic (QG) approximation valid in thin layers, see e.g. [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF]. Indeed, equations (1.9, 1.10) have been referred to as generalised QG equations [START_REF] Julien | Generalized quasigeostrophy for spatially anisotropic rotationally constrained flows[END_REF]. A great advantage of the reduced equations over the full equations is that they can be efficiently integrated numerically, as explained below for the purely rotating case. Note that in the expansion, as a consequence of the Taylor-Proudman constraint applied in the limit Ro → 0, h → ∞, fast variations in the parallel direction are eliminated, i.e. k k ⊥ in terms of dimensional wavenumbers. In the purely rotating case Fr → ∞, equations (1.9) and (1.10) retain inertial waves with the dispersion relation, in nondimensional form,

ω(k) = ±2λ k k ⊥ .
(1.12)

The rescaled wavenumbers k ⊥ ≥ 1/Λ and k ≥ 0 and λ are all O(1) (independent of ), therefore only the inertial waves with order one frequencies, i.e. those on the parallel scale of the layer depth, are retained in the reduced equations. Fast inertial waves, i.e. those whose parallel scale is comparable to the perpendicular scale and whose frequencies are comparable to the rotation rate Ω, are filtered out. For this reason, the asymptotic reduction gives a significant improvement in efficiency (the filtering of fast inertial waves here is similar to the filtering of fast inertia-gravity waves in classical QG). We perform direct numerical simulations (DNS) of (1.9) and (1.10) to show that, as predicted by the theory outlined above, there is indeed a transition from a direct to an inverse energy cascade in this extreme parameter regime.

A homochiral triadic instability

In this subsection, for the purely rotating case Fr → ∞, we discuss a linear instability mechanism present in the asymptotically reduced governing equations (1.9, 1.10), which will be helpful for the interpretation of the DNS results. For concreteness, we work in the canonical basis and choose ê = êz . The Fourier transformed governing equations then read, in the absence of forcing or dissipation,

∂ t û (k) -2iλ k k 2 ⊥ ω(k) = -p+q+k=0 [p x q y -q x p y ] ω * (p) p 2 ⊥ û * (q), (1.13) 
∂ t ω (k) -2iλk û (k) = -p+q+k=0 [p x q y -q x p y ] ω * (p) p 2 ⊥ ω * (k), (1.14) 
where it was used that u

≡ k û (k)e ik•x , similarly ω ≡ k ω (k)e ik•x , in addition to ω = ∇ 2 ⊥ ψ, and u ⊥ = ê × ∇ψ.
It is helpful to reformulate the dynamics in a helical basis as in [START_REF] Waleffe | Inertial transfers in the helical decomposition[END_REF]. The linearisation of (1.13, 1.14) may be written as

∂ t X(k) = L(k)X(k), L(k) = iω(k) 0 1 1 0 (1.15)
with X(k) = û (k), ω (k)/k ⊥ and ω(k) = 2λk /k ⊥ , identical to (1.12) up to the sign. The eigenvectors of L(k) corresponding to the eigenvalues ±ω(k) are given by 1 1 , 1 -1 . They correspond to inertial waves of positive and negative helicity respectively, with dispersion given by (1.12). Representing X(k) in this eigenbasis leads to the new variables

Z s k k = û (k) + s k ω (k)
k ⊥ where s k = ±1. The full nonlinear system may then be written entirely in terms of the Z s k k . We consider a (not necessarily resonant) triad (k,p,q) of rescaled wavenumbers with k = (k f = 1, 0, 0) being the forcing wavenumber, implying p x = -k f -q x , p y = -q y , p z = -q z . We choose the forcing-scale mode

Z + k = u 0 , Z - k = 0 ⇔ û(k) = (û ⊥ , û ) = u 0 (0, -i/2, 1/2), i.e. the positively helical flow u(x) = (u ⊥ , u ) = u 0 (0, sin(k f x), cos(k f x)).
We take the modes at p and q to be small-amplitude inertial waves, and perform a linear stability analysis of this configuration for the homochiral case s p = s q = 1 = s k (the other cases do not give relevant results). We thus determine the growth rate σ(q) (p is uniquely determined by q) of the two inertial-wave modes, whose temporal evolution is given by Z + q , Z + p ∝ exp(σt). Figure 1.2: Left: Maximum (over q ) of the real part of the growth rate as a function of q ⊥ . The maximum is found for q ⊥ ≈ k f /2. Right: Maximum (over q ⊥ ) of the real part of the growth rate as a function of λq with k f = 1. There is a monotonic decay with q up to λq ≈ 0.35 and vanishing values beyond this point.

The left panel of figure 1.2 shows that the maximum of σ occurs for small wavenumbers at q ⊥ ≈ k f /2, while the right panel indicates that this maximum is located at q = 0. Thus the 2-D base flow becomes unstable to smaller perpendicular wavenumbers q ⊥ and for a range of parallel wavenumbers |q | 0.35/λ. Since the rescaled layer height is given by 2π, the minimum parallel wavenumber is q min = 1. Thus the q = 0 modes are unstable only if λ 0.35. For λ larger than this value all q = 0 wavenumbers are stable. For large values of λ therefore the 2-D modes q = 0 are expected to decouple from the 3-D modes q = 0 and an inverse cascade is expected. Conversely, for small values of λ the 3-D modes become unstable and can possibly redirect energy back to small scales. We find the signature of this triadic instability in the DNS results which we present in section 1.3. Additional theoretical considerations for the rotating and stratified case are given in section 1.5.

Numerical set-up and methodology

In this section, we describe the numerical set-up used in the present study. The PDEs which we solve numerically in a domain 2πΛ × 2πΛ × 2π are given by (1.9) and (1.10) with modified dissipative terms,

D ⊥ t u + 2λ∂ ∇ -2 ⊥ ω ⊥ = - (-∇ 2 ⊥ ) n u Re ⊥ - (-∇ 2 ) m u Re - u ls Re α + f , (1.16) D ⊥ t ω - 2λ∂ u = - (-∇ 2 ⊥ ) n ω Re ⊥ - (-∇ 2 ) m ω Re - ω ls Re α + f ω .
(1.17)

Here D ⊥ t = ∂ t +u ⊥ •∇ ⊥ .
The right-hand side of eqs. (1.16,1.17) expresses the dissipation terms and the forcing. For a field g we define g ls = k,k ⊥ ≤2/Λ ĝ(k) exp(ik • x), in terms of the Fourier transform ĝ(k) of g with k ∈ N 3 . The large-scale friction terms involving u ls and ω ls have been added to prevent the formation of a condensate at small wavenumbers. A technical advantage of this type of large-scale friction over more commonly used hypodissipation is that it only directly affects the small wavenumbers, which are to be damped. The term proportional to ∇ 2m (•) has been artificially added to the equations, it does not appear in the asymptotically reduced equations (1.9), (1.10), since it is asymptotically small. It has nonetheless been added to suppress exceedingly large parallel wave-numbers which are expected not to interact significantly with the slow manifold, thereby reducing the required resolution in the parallel direction and the computational cost. The hyperviscosity exponents n = 4 and m = 2 were used in all simulations.

The resulting equations (1.16, 1.17) contain five nondimensional parameters. First, Λ = L/ in stemming from the boundary conditions and λ defined in equation (1.5). In addition, there are three different Reynolds numbers based on the three dissipation mechanisms

Re ⊥ = 1/3 in 2n-2/3 in /ν n , Re = 1/3 in 2m-2/3 in /µ m and Re α = 1/3 in /( 2/3 in α),
where ν n is the hyperviscosity acting on large k ⊥ , µ m is the hyperviscosity acting on large k and α is the large-scale friction coefficient. In the present framework, we are interested in monitoring the amplitude of the inverse cascade as a function of the parameter λ in the limit of large Re ⊥ , Re , Re α and large Λ.

Before we describe the simulations performed for this work, we define a few quantities of interest which we intend to measure. The 2-D energy spectrum is defined as

E(k ⊥ , k ) = 1 2 p ⊥ k ⊥ -1 2Λ ≤p ⊥ <k ⊥ + 1 2Λ |ω (p ⊥ , k )| 2 p 2 ⊥ + |û (p ⊥ , k )| 2 , ( 1.18) 
where hats denote Fourier transforms. The 1-D energy spectrum is obtained from (1.18) by summation over k ,

E(k ⊥ ) = k E(k ⊥ , k ) ≡ E ⊥ (k ⊥ ) + E (k ⊥ ), (1.19) 
where E ⊥ contains all terms involving ω and E contains all terms involving û . The 2-D dissipation spectrum is defined as

D(k ⊥ , k ) = p ⊥ k ⊥ -1 2Λ ≤p ⊥ <k ⊥ + 1 2Λ ν n p 2n ⊥ + µ m k 2m |ω (p ⊥ , k )| 2 p 2 ⊥ + |û (p ⊥ , k )| 2 .
(1.20) The large-scale energy dissipation rate is given by:

α = α k,|k ⊥ |≤2/Λ |û(k)| 2 (1.21)
that measures the rate energy cascades inversely to the largest scales of the system. Finally, the spectral energy flux in the perpendicular direction through a cylinder of radius k ⊥ in Fourier space is defined as where u = (u ⊥ , u ), u ⊥ = ê × ∇ψ and

Π(k ⊥ ) = (u) < k ⊥ • [(u ⊥ • ∇)u] , ( 1 
(u) < k ⊥ = p p ⊥ <k ⊥ û(p) exp(ip • x).
(1.23)

The code used to solve equations (1.16, 1.17) is based on the Geophysical High-order Suite for Turbulence, using pseudo-spectral methods including 2/3 aliasing to solve for the flow in the triply periodic domain, see [START_REF] Mininni | A hybrid MPI-OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence[END_REF]. We performed three sets of experiments, one at resolution 512 2 × n z (set A) and two at 1024 2 × n z (sets B and C), where the resolution n z in the parallel direction is varied depending on λ from 128 to 512 to ensure that the flow is well resolved at minimal computational cost. We choose either Λ = 32 (sets A and B) or Λ = 64 (set C). The parameters ν n and µ m are chosen for every simulation so that the run is well-resolved at large k , k ⊥ . This is checked by verifying that the maximum dissipation is captured within the interior of the 2-D dissipation spectrum (1.20). The coefficient α was chosen so that the 1-D spectrum (1.19) does not have a maximum at k = 1 (i.e. no condensate is formed). We use random initial conditions whose small energy is spread out over a range of wavenumbers. In each of the three sets of experiments, we keep Λ and Re ν fixed and vary λ from small (less fast rotation, taller domain) to large (faster rotation, less tall domain). A summary is given in table 

2.1.
In all simulations, we monitor the 1-D and 2-D energy spectra (1.19, 1.18) as well as the large-scale dissipation rate (1.21). Simulations are continued until a steady state is reached where the large-scale dissipation rate and the energy spectrum are statistically steady, with the 1-D energy spectrum not having its maximum at k = 1. Note that in such a steady-state situation in = α + ν,µ , where ν,µ = k D(k ⊥ , k ) is the dissipation rate due to hyperviscosity in the parallel and perpendicular directions, dominantly occurring at small scales. Monitoring α thus gives the amount of energy transferred inversely up to the largest scales k = 1, 2 and allows to measure the strength of the inverse cascade. Despite the fact that we solve asymptotically reduced equations, which allows larger time steps, the required simulation time was non-negligible since convergence to the steady state was slow in some cases. In total, more than 30000 forcing-scale-based eddy turnover times τ f = -1/3 2/3 in were simulated, amounting to around two million CPU hours of computation time.

Results from direct numerical simulations 1.3.1 Transition to an inverse cascade

In this section, we present the results of the direct numerical simulations (DNS) obtained in steady state. The central goal of this work is to determine the properties of the transition from a strictly forward cascade to a state with an inverse cascade. At steady state, the amplitude of the inverse cascade is given by the large-scale dissipation rate α that measures the rate at which energy is transferred to the large scales. In the presence of an inverse cascade, α converges to a finite value in the limit of Λ, Re α , Re µ , Re ν → ∞, while it converges to zero in the absence of an inverse cascade. In Figure 1.3 we show α (time averaged at steady-state) as a function of the parameter λ from all simulations. One observes a transition from α / in ≈ 0 to finite values at λ = λ c ≈ 0.03. At λ < λ c no inverse cascade is present and a vanishingly small amount energy reaches the scales k ⊥ = 1, 2, where the large-scale dissipation acts. However, for λ > λ c an inverse cascade develops, whose strength increases monotonically with λ -λ c , leading to non-vanishing large-scale dissipation. Comparing the curves obtained from sets A, B (Re ν increased) and C (Re ν and horizontal box size Λ increased), one observes that the transition appears to become sharper with increasing Reynolds number and box size, and remains at the same point. This indicates that the transition is likely to be critical and continuous, having a discontinuous 1st derivative at λ c in the limit Re ν , Λ → ∞. Considering only the highest Re ν and Λ, i.e. set C only, we estimate from figure 1.3 that α ∝ (λ -λ c ) γ with γ ≈ 1 from a fit close to onset, within our uncertainties. However, this estimate of the critical exponent is not definitive and a larger number of simulations and parameter values are needed to ascertain its precise value with higher confidence. The left panel of figure 1.4 shows the energy flux in steady state for four values of λ from set A, namely (a) λ = 0.0031, (b) λ = 0.00279, (c) λ = 0.062 and (d) λ = 0.155. Cases (a) and (b) correspond to λ < λ c , while for cases (c) and (d) λ > λ c . All simulations present a significant forward energy flux for k > k f . For k k f the energy flux vanishes for the small-λ cases (a) & (b) (lower rotation rates, taller boxes). Some inverse flux is observed for these cases, which is however confined to around k ≈ k f /2. By contrast, for the larger-λ cases (c) & (d) (higher rotation rate, shallower box), a non-vanishing, negative energy flux is observed, which extends up to k ⊥ = 1. This implies that an inverse cascade occurs in these latter cases.

Energy Spectra

The right panel of 1. cascade, the spectrum is maximum at small wave numbers k ⊥ 2. The reason why the spectrum does not peak at the smallest wavenumber k = 1 is the damping by the large-scale friction. In cases (a) and (b), the spectrum has two local maxima, one at the forcing scale k ⊥ = k f and another one near k ⊥ = k f /2. This implies that there is transfer of energy to scales twice as large as the forcing scale. This, however, does not indicate an inverse cascade as this secondary peak remains close to the forcing scale and does not move further up to larger scales.

E(k ⊥ ) k f k f /2 (a) (b) (c) (d)
The 2-D spectra associated with cases (b) and (d) are presented in figure 2.19c. They show that the secondary maximum observed in the 1-D energy spectra at k ⊥ ≈ k f /2 for (b) stems from contributions at k > 0. For λ > λ c , the inverse energy cascade of the 2-D manifold leads to a maximum at k = 0, at small k ⊥ . Finally, figure 1.6 shows the 1-D spectra from cases (b) and (d) decomposed to their perpendicular E ⊥ (k ⊥ ) and parallel E (k ⊥ ) components. They show that perpendicular motions dominate for all wavenumbers k < k f in the case of an inverse cascade and also close to the secondary maximum at k f /2 for the flows that do not display an inverse cascade. At large k > k f , the two spectra are of the same order with E (k ⊥ ) > E ⊥ (k ⊥ ). One further observes that when an inverse cascade is present, it is occurring in the perpendicular components only. This is in agreement with expectation, since the parallel velocity component obeys an advection-diffusion equation in the slow manifold, and therefore displays a forward cascade.

The peak observed in the 1-D spectrum at k ≈ k f /2 (which occurs here for all cases that do not display an inverse cascade) is unexpected and deserves some further discussion. First we should note that this is not the first time such a feature is observed. In [START_REF] Buzzicotti | On the inverse energy transfer in rotating turbulence[END_REF], where simulations of rotating turbulence were performed, artificially excluding the k = 0 plane in Fourier space showed a similar maximum. More recently such a maximum was also observed in simulations of rotating turbulence in elongated domains [START_REF] Di Leoni | Energy transfer in turbulence under rotation[END_REF]. Since this is the statistically steady state of the system and energy does not cascade further upscale, this inverse transfer does not stem from a turbulent inverse cascade, which would continue up to the largest scales, as it does for λ < λ c . We have also verified that starting from initial conditions obtained from a run with λ > λ c and decreasing λ to a value below λ c resulted, at long times, in a state with no inverse cascade. Rather, one may suspect an instability mechanism involving the forcing-scale flow.
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Indeed, the linear stability analysis presented in section 1.1.3, considering a homochiral wavenumber triad comprising one large-amplitude mode k = (k f , 0, 0) at the forcing scale and two small-amplitude inertial waves at p, q, gives that the inertial waves with q ⊥ ≈ k f /2, and |q | 0.35k f /λ are linearly unstable. Interestingly, [START_REF] Buzzicotti | On the inverse energy transfer in rotating turbulence[END_REF] also found homochiral interactions to be responsible for the inverse energy transfer in their simulations. This instability can explain in part the transfer of energy to the k f /2 modes. We note, however, that the maximum growth occurs at q = 0 for the triad (see figure 1.2), which is not where the maximum is observed in the 2-D spectra shown in figure 2.19c. 

Convergence

In figure 1.7 we also show the 2-D energy dissipation spectra for the same cases as in figure 2.19c. The dissipation spectra demonstrate the well-resolvedness of the simulations: the maximum dissipation is within the simulation domain and not at the maximum wavenumbers (in the parallel or perpendicular direction). It is worth noting that most of the dissipation is occurring at large k ⊥ and not at large k . The artificial hyperviscosity used for the parallel wavenumbers in the simulations thus plays a minor role in dissipating energy. This is important because in the asymptotic expansion (eqs. 1.9,1.10), only the perpendicular wavenumbers participate in the dissipation.

The reason why we have nonetheless added an artificially finite Re µ becomes apparent in figure 1.8 where results from a simulation without the dissipation at large k are shown. In this case a spurious maximum forms in the 2-D energy spectrum at large k and small k ⊥ , and the dissipation spectrum tends to become invariant along k . This implies a violation of the criterion for well-resolvedness, since the maxima of the energy and dissipation spectra are not contained within the domain, but touch the domain limit at large k . This side effect can be circumvented by increasing the resolution the parallel direction significantly, but this would increase the numerical cost of the study and has therefore been avoided. It is also worth noting that for case (b) (λ = 0.0279) a higher resolution in the parallel direction was required than for case (d) (λ = 0.155). This is because the small-λ flows are more efficient at generating small scales in the parallel direction, while such generation is suppressed in large-λ flows by rotation.

Spatial Structures

Finally, figure 1.9 shows a visualisation of the flow in terms of vorticity ω at λ = 0.027 λ c (left) and λ = 0.23 > λ c (right). The same fields are shown once more with Figure 1.9: Visualisation, in the asymptotic scaling, of the flow in terms of vorticity ω at λ = 0.027 λ c (left) and λ = 0.23 > λ c (right). Positive vorticity in red, negative in blue, the edges have been coloured blue for better visualisation. For λ > λ c , on the sides of the domain one can see elongated structures along the parallel direction, while the on top of the domain well-separated vortices are seen. For λ < λ c , these elongated structures are absent. Furthermore, the flow for λ > λ c is characterised by larger perpendicular scales than the flow at λ < λ c . a reduced opacity in figure 1.10. For λ > λ c , one clearly discerns columnar vortices that are approximately invariant along the axis of rotation. In the perpendicular direction these vortices are visibly of larger scale and organised in clusters. For λ < λ c , no such anisotropic organisation of the flow can be observed.

Conclusions: purely rotating case

In the above sections we investigated fast-rotating turbulence in elongated domains using an asymptotic expansion. A linear stability calculation of a single triad of homochiral modes of our model predicted that there is a critical value of the control parameter λ below which the 3-D modes (q = 0) become unstable. Based on the fact that the 3-D modes favour a forward cascade, while the 2-D modes (q = 0) favour an inverse cascade, a transition of the cascade direction was anticipated (although the precise location of the onset was not quantitatively predicted). Indeed, the numerical simulations presented in section 1.3 indicated that there is a transition from a strictly forward cascade to a split cascade (where part of the energy cascades inversely) as the parameter λ given in (1.5) is varied. Since λ is the only control parameter appearing in the reduced equations (1.16, 1.17) that remains finite in the limits of infinite Reynolds number and infinite domain Figure 1.10: Same as in figure 1.9, but with reduced opacity and filtered in vorticity, showing the most intense vortical structures only. size, it uniquely determines the transition in the examined limit. This result implies that if the limit of infinite domain height h → ∞ is taken for fixed Ro, then λ → 0 and energy cascades forward. On the other hand, if the limit Ro → 0 is taken for a fixed domain height, then λ → ∞ and an inverse cascade will be present. The fact that a transition to an inverse cascade is observed in the asymptotic limit h ∝ Ro -1 → ∞, which is considered here numerically, confirms the theoretical arguments presented in section 1.1. The phase space of rotating turbulence in the (h, 1/Ro) plane, based on the present results, is as depicted in figure 1.11. In the limit of infinite Re and Λ two phases exist, one where there is only a forward cascade and one where there is a split cascade. They are separated by a critical line h c (Ro) that approaches the known non-rotating critical height h * c for Ro → ∞, while for small Ro, which is the limit examined in the present work, h c scales like h c = 1/(Roλ c ) with λ c 0.03.

It is worth noting that weak wave turbulence is not met in our system. This is because in our expansion the limit h → ∞ is taken together with the limit Ro → 0, keeping λ fixed, while for weak wave turbulence one must take h → ∞ first and then Ro → 0 [START_REF] Nazarenko | Wave turbulence[END_REF]. Even when the limit λ → ∞ is taken in our reduced equations, one does not recover weak wave turbulence but rather 2-D (strong) turbulence [START_REF] Gallet | Exact two-dimensionalization of rapidly rotating large-Reynoldsnumber flows[END_REF]. On the other hand, when the limit λ → 0 is taken we do obtain wave turbulence that cascades energy forward, but which is not weak since λ 1 implies that the wave periods are of the same order or longer than the eddy turnover time. Turbulence in our system is thus always strong.

Our approach was based on asymptotic reduction, allowing us to reliably achieve the extreme parameter regimes required to test the theoretical predictions at comparatively lim

Reν →∞ Λ→∞ α (λ) , (1.24) 
i.e. first the low-Rossby-number limit (at fixed λ) is taken and then the large-Reynoldsnumber limit, and not vice versa, which would correspond to studying the (Ro,h) dependence of an already fully turbulent flow. A priori, the two limits do not necessarily commute and therefore it is important to additionally study turbulent flows at finite rotations and domain heights h in the full rotating Navier-Stokes system. This has recently been examined by [START_REF] Di Leoni | Energy transfer in turbulence under rotation[END_REF], where a new meta-stable vortex crystal state was found near the transition, in which co-rotating vortices organised themselves in a crystal. Such vortex-crystal states did not appear in the asymptotic model investigated here. Possibly, the true phase space of rotating turbulence can thus be considerably more complex.

Our numerical evidence also suggests that this transition is continuous but not smooth. The inverse cascade starts at a critical value λ c with an almost linear dependence on the deviation from criticality α ∝ (λ -λ c ). Despite the simplicity of this behaviour, its origin is far from being understood. Similar scaling behavior has been found for the transition to the inverse energy cascade in thin-layer turbulence below a critical layer height H c [START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF] and for the two-dimensional magnetohydrodynamic flow studied in [START_REF] Seshasayanan | Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow[END_REF][START_REF] Seshasayanan | On the edge of an inverse cascade[END_REF]. In both cases, a critical exponent close to unity is identified for the inverse energy transfer rate close to the transition. Future research should aim to provide an understanding of the origin of this estimated critical exponent. It should also verify which other turbulent fluid flows present criticality at the transition to the inversely cascading regime and whether their critical exponent is identical to or different from unity. Experimental studies of such systems, where long-time averages can be performed, may prove invaluable in understanding this non-equilibrium phase transition.

The impact of stratification

Now, we discuss the impact of density stratification on the results presented above. The dependence of the energy cascade phenomenology in the rotating and stratified case is not yet known. We begin by discussing theoretical aspects of the rotating and stratified problem and then present the results of additional DNS.

Theoretical aspects of rotating and stratified flows

Conservation laws

For infinite Re and Pe, the system (1.9) -(1.11) conserves the total energy

E = 1 2 (u 2 + φ 2 )d 3 x.
In addition, the potential vorticity

q = 2λ∂ z φ -ω /Fr + (∂ y u )(∂ x φ) -(∂ x u )(∂ y φ) (1.25) 
(in Cartesian coordinates, with the parallel direction being z) is conserved along each fluid parcel trajectory. Eq. (1.25) is a simplified, Boussinesq version of Ertel's full potential vorticity [START_REF] Ertel | Ein neuer hydrodynamischer Erhaltungssatz[END_REF] (the full form applies to compressible flow). The material conservation of q implies that C n = q n d 3 x is conserved for all n, where the special case n = 2 is known as potential enstrophy. In 2-D turbulence, energy and enstrophy are both quadratic functionals of the stream function, with enstrophy containing higher spatial derivatives. The simultaneous conservation of the two quantities constrains the energy cascade to be to larger scales, and the enstrophy to smaller scales. By contrast, C 2 is not directly related to the kinetic or potential energy, and does not imply a straightforward constraint for cascade directions, except in a special case, which shall be discussed later.

Inertio-gravity waves and slow modes

A fundamental property of rotating and stratified flows is that they support inertiogravity waves. In the full Boussinesq equations (1.6) -(1.8), the dispersion relation of these waves reads

σ 2 (k) = 4Ω 2 k 2 + N 2 k 2 ⊥ k 2 , (1.26)
where σ is the wave frequeny, Ω is the rotation rate, N is the buoyancy frequency, k is the wave vector, k is the component of the wave vector along the rotation axis, k ⊥ the component perpendicular to the rotation axis, and

k 2 = k 2 + k 2 ⊥ .
In the framework of the reduced equations of motion (1.9) - (1.11), this simplifies, in nondimensional form, to

σ 2 (k) = 4λ 2 k 2 k 2 ⊥ + 1 Fr 2 , (1.27)
where σ and the wavenumber components are nondimensional. At large Ω, (1.26) implies high wave frequencies, requiring a small time step to be resolved numerically. In the reduced equations, all parameters are of order one, which makes numerical simuation more efficient.

The full set of linear modes of rotating stratified flow has been studied in great detail [START_REF] Leith | Nonlinear normal mode initialization and quasi-geostrophic theory[END_REF][START_REF] Bartello | Geostrophic adjustment and inverse cascades in rotating stratified turbulence[END_REF][START_REF] Sukhatme | Vortical and wave modes in 3D rotating stratified flows: random large-scale forcing[END_REF][START_REF] Herbert | Restricted equilibrium and the energy cascade in rotating and stratified flows[END_REF]. Here we just summarise some relevant results. Formally, linearising (1.9) - (1.11), one obtains an equation of the form

Ż(k) = L(k)Z(k), with Z(k) = (k ⊥ ψ(k), û (k), φ(k))
with hats denoting Fourier transforms, and a 3 × 3 matrix L. The eigenvalues of L are +σ(k), -σ(k), 0, with σ(k) > 0 given by eq. (1.27). Thus, in addition to waves with frequencies ±σ, one also finds linear eigenmodes with zero frequency at every wavenumber. The corresponding normalised eigenvector is

Z 0 (k) = 1 σ(k)k ⊥ -ik ⊥ Fr -1 , 0, 2λk , (1.28) 
which notably has a vanishing û component. These slow modes with zero frequency span the so-called slow manifold. The normalised eigenvectors of L with eigenvalues ±σ(k) are

Z ± (k) = 1 √ 2σ(k)k ⊥ 2λk , ± σ(k)k ⊥ , -ik ⊥ Fr -1 . (1.29)
which has a nonvanishing û component. We highlight that the wave modes have zero potential vorticity at the linear level. The slow modes are thus the vortical modes of the flow.

In order for wave modes to interact efficiently with the slow modes, the inverse wave frequency of the slowest waves must be comparable to the eddy turnover time scale of the turbulent 2-D flow τ in . In the purely rotating case (Fr → ∞) discussed in section 1.1, this is precisely the argument we used to predict the dependence of the energy cascades on λ: forward cascade at λ < λ c and inverse cascade at λ > λ c . For the rotating and stratified case, two cases can be anticipated based on (1.27).

Weak stratification: the passive-scalar limit

At weak stratification (Fr > 1), the system is likely to be close to the purely rotating case, such that a transition should occur when λ > λ c (Fr). While we do not predict the dependence of λ c (Fr), it seems likely that λ c = (h c Ro c ) -1 increases with stratification. This is because as the weak stratification is increased (while remaining weak), kinetic and potential energy become more strongly coupled, and more kinetic energy will be converted to potential energy, which behaves approximately like a passive scalar at weak stratification, as one easily sees from eq. (1.11). For passive scalars, it is in turn well known that the scalar variance (potential energy) cascades forward (to small scales) [START_REF] Warhaft | Passive scalars in turbulent flows[END_REF][START_REF] Falkovich | Particles and fields in fluid turbulence[END_REF][START_REF] Celani | Active and passive fields face to face[END_REF]. Therefore stratification will counteract the inverse cascade. Thus it appears reasonable that faster rotation, i.e. higher λ, should be required at weak stratification for generating an inverse energy flux. A similar effect has been observed in thin-layer turbulence, where a decrease of the critical height has been observed with increased stratification [START_REF] Sozza | Dimensional transition of energy cascades in stably stratified forced thin fluid layers[END_REF].

Strong stratification: the hydrostatic limit

For strong stratification (Fr 1) and large λ, the dominant balance in (1.9) is given by

2λ∂ ∇ -2 ⊥ ω = -φ/Fr. (1.30) 
Eq. (1.30) is a form of hydrostatic balance, which is common in geophysical flows [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF]. To see this, one can identify the stream function of the perpendicular flow as ∇ -2 ⊥ ω = ψ, which follows from u ⊥ = ê × ∇ψ. Comparing the latter relation to geostrophic balance, between Coriolis force and perpendicular pressure gradient, one further deduces that ψ is proportional to the pressure. Hence eq. (1.30) is a balance between the vertical (parallel) pressure gradient and gravity, i.e. hydrostatic balance.

We note that modes in the slow manifold defined in section 1.5.1 correspond to balanced motion in the sense that they satisfy (1.30) at the linear level. At the nonlinear level though, even if the flow starts at hydrostatic balance its nonlinear evolution can disrupt it. However, in the limit of high wave frequencies one can expect that the inertio-gravity waves will decouple from the slow manifold, which will therefore evolve independently, always satisfying eq. (1.30). Such a limit can be formally captured by letting λ → λ/ , Fr -1 → F r -1 / , u → u , with 1, while ω , φ → ω , φ. In this limit ω and φ evolve according to (1.9) and (1.11), with u acting as a Lagrange multiplier, imposing eq. (1.30) (in a similar way as pressure imposes incompressibility in 3-D Navier Stokes). Equations (1.10), (1.11), and (1.34) thus constitute a dynamic hydrostatically balanced system. Note that for λ F r -1 the dynamic hydrostatic balance just corresponds to a two-dimensionalization of the flow. However, when F r is of order one or smaller the flow is not necessarily 2-D. For small or O(1) values of λ, the dynamic hydrostatic balance limit is expected to hold when the wave frequency is much larger than typical eddy turn over time, i.e. Fr 1. We highlight the fact that the combination λFr = N H/(ΩL) ∝ N/Ω, which has been indentified as a control parameter in previous studies [START_REF] Smith | Generation of slow large scales in forced rotating stratified turbulence[END_REF][START_REF] Marino | Resolving the paradox of oceanic large-scale balance and small-scale mixing[END_REF], appears naturally here in eq. (1.30). Indeed, the nondimensional parameter (λFr) 2 is named in the literature and known as the Burger number [START_REF] Benoit | Introduction to geophysical fluid dynamics[END_REF].

If (1.30) holds at every time step, then the stream function and φ fields are directly related. This implies that, at leading order, eq. (1.25) becomes

q = -Fr -1 (2λFr) 2 ∂ 2 + ∇ 2 ⊥ ψ + O( ) ≡ -Fr -1 ∇ 2 ψ + O( ), (1.31) 
where we identified the rescaled Laplace operator ∇ 2 ≡ (2λFr) 2 ∂ 2 + ∇ 2 ⊥ . Importantly, q has exactly the same form as classical 3-D quasi-geostrophic potential vorticity, which is studied extensively in large-scale atmospheric dynamic (see chapter 5 of [START_REF] Vallis | Atmospheric and oceanic fluid dynamics[END_REF]). The potential enstrophy takes the leading-order form

C 2 = Fr -2 ∇ 2 ψ 2 d 3 x + O( ) (1.32)
while the total energy becomes, at leading order,

E = 1 2 ∇ψ 2 + O( 2 ). (1.33) 
Both energy and potential enstrophy are expressed entirely in terms of ψ, with the potential enstrophy containing higher-order spatial derivatives. This allows one to make an argument analogous to that put forward by Fjortoft in [START_REF] Fjørtoft | On the changes in the spectral distribution of kinetic energy for twodimensional, nondivergent flow[END_REF] for 2-D turbulence, and for geostrophic turbulence by Charney in [START_REF] Charney | Geostrophic turbulence[END_REF]: if E and C 2 are initially injected at a scale in and subsequently spread out over different length scales by nonlinear interactions, then it can simply be shown in Fourier space that most of the energy must be transferred to scales larger than in , and potential enstrophy to scales smaller than in , in order for the conservation laws to be satisfied (see section 3.5 of [START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF]). The direct link between the density perturbation field and the stream function given by hydrostatic balance implies that both potential and perpendicular kinetic energy cascade inversely. We note that taking the time derivative of (1.30) gives the following diagnostic (as opposed to prognostic) relation

∇ 2 u = S, (1.34) 
with the source term

S = Fr 2 Fr -1 ∇ 2 ⊥ [(u ⊥ • ∇ ⊥ )φ] + 2λ∂ [(u ⊥ • ∇ ⊥ )ω ] . (1.35)
Equation (1.34) is a variant of the omega equation, which is well known (for an arbitrary stable background density profile) in meteorology [START_REF] Hoskins | A new look at the ω-equation[END_REF][START_REF] Hoskins | The omega equation and potential vorticity[END_REF]. In the meteorological literature, pressure is often taken as the vertical coordinate in an ideal-gas atmosphere. In this coordinate system, the vertical velocity is conventionally denoted by ω by meteorologists, hence the name of the equation. The omega equation has been used extensively for diagnosing vertical velocities, which are highly relevant for weather phenomena, from observed vorticity and temperature fields.

Numerical set-up

We use an adapted numerical code to solve the reduced equations with modified dissipation terms in the domain 2πΛ × 2πΛ × 2π,

∂ t u +u ⊥ • ∇ ⊥ u + 2λ∂ ∇ -2 ⊥ ω = - φ Fr - (-∇ 2 ⊥ ) n u Re ⊥ - (-∂ 2 ) m u Re + f , (1.36) ∂ t ω +u ⊥ • ∇ω -2λ∂ u = - (-∇ 2 ⊥ ) n ω Re ⊥ - (-∂ 2 ) m ω Re + f ω , (1.37) ∂ t φ +u ⊥ • ∇φ = + u Fr - (-∇ 2 ⊥ ) n φ φ Pe ⊥ - (-∂ 2 ⊥ ) m φ φ Pe .
(1.38)

Note that there is no large-scale friction term, such that an inverse cascade can develop unhindered and accumulate energy the scale of the box. The random mechanical forcing f is identical to that in the purely rotating case and the density perturbation field φ is not forced directly. As in the purely rotating case, the parallel dissipation terms are added for numerical reasons. We choose the hyperviscosity exponents n = m = n φ = m φ = 4 for all simulations. Equations (1.36-1.38) are controlled by seven nondimensional parameters. In addition to Λ, λ and the Reynolds numbers, which are the same as for the purely rotating case, there is the Froude number Fr = (τ in N ) -1 , with τ in = ( in in ) 1/3 , and two Peclet numbers associated with perpendicular and parallel diffusion terms, respectively:

Pe ⊥ = 1/3 in 2n φ -2/3 in κ n , Pe = 1/3 in 2m φ -2/3 in κ m φ (1.39)
with the hyperdiffusivities κ n φ , κ m φ . As in the purely rotating case, we use pseudo-spectral code based on the Geophysical High-order Suite for Turbulence, including 2/3-aliasing (see [START_REF] Mininni | A hybrid MPI-OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence[END_REF]) to solve the equations in the periodic domain. A total of 71 runs were performed at a resolution of 512 3 with Λ = 32, of which 63 runs at Re ⊥ = Re = Pe ⊥ = Pe ⊥ = 9.2 × 10 3 , for different values of Fr and λ, and an additional 8 runs with Re and Pe halved, and Re ⊥ , Pe ⊥ unchanged to verify that our results do not depend on the parallel dissipation terms added for numerical reasons. The simulations required a total of around 3 million CPU hours of computational time.

In order to characterise the energy cascades, we measure several quantities in every run, which are defined below, with hats indicating Fourier transforms. The 2-D kinetic energy spectrum is defined as

E kin (k ⊥ , k ) = 1 2 k ⊥ -1 2Λ ≤p ⊥ <k ⊥ + 1 2Λ |ω (p ⊥ , k )| 2 k 2 ⊥ + |û 2 (p ⊥ , k )| 2 , (1.40)
and the 2-D potential energy spectrum as

E pot (k ⊥ , k ) = 1 2 k ⊥ -1 2Λ ≤p ⊥ <k ⊥ + 1 2Λ | φ(p ⊥ , k )| 2 , (1.41)
where hats denote Fourier transforms. The one-dimensional (1-D) energy spectrum is obtained by summing the 2-D spectra over k ,

E kin (k ⊥ ) = k E kin (k ⊥ , k ) ≡ E ⊥ kin (k ⊥ ) + E kin (k ⊥ ), (1.42 
)

E pot (k ⊥ ) = k E pot (k ⊥ , k ), (1.43) 
where E ⊥ kin contains all terms involving ω and E kin contains all terms involving û . In addition, we define the total energy spectrum

E tot = E kin + E pot .
The 2-D dissipation spectra are defined as

D kin (k ⊥ , k ) = k ⊥ -1 2 ≤p ⊥ <k ⊥ + 1 2Λ (ν n p 2n ⊥ + ν m k 2m ) |ω (p ⊥ , k )| 2 k 2 ⊥ + |û 2 (p ⊥ , k )| 2 ,
(1.44)

D pot (k ⊥ , k ) = k ⊥ -1 2Λ ≤p ⊥ <k ⊥ + 1 2Λ (κ n φ p 2n φ ⊥ + κ m φ k 2m φ )| φ(p ⊥ , k )| 2 , ( 1.45) 
giving the total dissipation spectrum D tot = D kin + D pot . Finally, the spectral energy fluxes in the perpendicular direction through a cylinder of radius k ⊥ in Fourier space are defined as

Π ⊥ kin (k ⊥ ) = (u ⊥ ) < k ⊥ • [(u ⊥ • ∇ ⊥ )u ⊥ ] , (1.46) Π kin (k ⊥ ) = (u ) < k ⊥ [(u ⊥ • ∇ ⊥ )u ] ,
(1.47)

Π pot (k ⊥ ) = φ < k ⊥ [(u ⊥ • ∇ ⊥ )φ] , (1.48) 
with the total energy flux defined as Π tot ≡ Π ⊥ kin + Π kin + Π pot , where for any field A,

A < k ⊥ (x) ≡ p p ⊥ <k ⊥ Â(p) exp(ip • x). (1.49)
Every run is initialised at a random small-energy configuration, and continued until 1. an inverse energy flux is observed, with kinetic energy piling up at the large scales, 2. or a purely forward cascade is observed and the system has reached steady state.

Simulation results

In this section we present the results of our simulations.

Figure 1.12: Regime diagram showing the direction of the kinetic energy cascade for various values of the parameters (λ, Fr -1 ). A tentative boundary between forward and split cascading states is shown by the dahsed line. The labels i), ii) and iii) indicate the three states to be examined in more detail below.

Overview of parameter space

First we provide an overview of the runs. Figure 1.12 shows a regime diagram indicating for which values of λ and Fr an inverse cascade in kinetic energy was observed. Two regions can be discerned: a finite region (red diamonds) near the origin in terms of (λ, Fr -1 ), where a forward cascading state is observed, and a surrounding region (blue circles) at larger λ (faster rotation / shallower box) and larger Fr -1 (strong stratification), where an inverse energy cascade arises. The boundary between the two is tentatively shown by the dashed line. The shape of the boundary is consistent with our theoretical expectations: first, for Fr > 1 (weaker stratification), there is a (roughly linear) increase in λ c , i.e. the critical (Roh) -1 , with Fr -1 . While we do not offer a theoretical prediction for the linear scaling, an identical scaling h c ∝ 1/N has been suggested for strongly stratified turbulence in a thin layer [START_REF] Sozza | Dimensional transition of energy cascades in stably stratified forced thin fluid layers[END_REF]. Second, when Fr is lowered beyond Fr ≈ 1, the system enters the hydrostatic regime, and a direct energy cascade turns into an inverse cascade.

Spectra

In the following, we illustrate three representative cases highlighted in figure 1.12, i) λ = 0.03 Fr -1 = 0.5 (no inverse cascade),

ii) λ = 0.07, Fr -1 = 0.5 (weak stratification, inverse cascade), The legend on the left applies to all panels.
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iii) λ = 0.045, Fr -1 = 3.5 (strong stratification, inverse cascade).

The 1-D energy spectra are shown in figure 1.13. For case i), in the forward-cascading regime, there is a spectral maximum in both perpendicular and parallel kinetic energy at k ⊥ ≈ k f /2. This is similar to what we found for the purely rotating case in section 1.1, where we suggested a possible connection with an instability mechanism. The potential energy spectrum is peaked at yet larger scales k ⊥ < k f /2. While we do not offer a theoretical explanation for the local spectral maxima at scales larger than the forcing scale, the similarity with the phenomenology of the rotating case suggests that a related instability mechanism may be at play. The potential energy spectrum is comparable to the parallel kinetic energy spectrum, except at the largest scales, where it is comparable to the perpendicular kinetic energy, and at the forcing scale, where it is smaller, since potential energy is not directly forced. For case ii), where an inverse cascade is present at weak stratification, the perpendicular kinetic energy spectrum shows a maximum at the largest scale k ⊥ = 1, where it dominates the total energy. The parallel kinetic energy and and the potential energy, by contrast, do not show a maximum at the largest scales. Finally, in case iii), where an inverse cascade is present at strong stratification, both the perpendicular kinetic energy spectrum and the potential energy spectrum shows maximum at k ⊥ = 1, with a clear power-law range at k ⊥ < k f . The shape of the potential energy spectrum is strikingly similar to the perpendicular kinetic energy, only differing by constant factor of around 0.3 over two decades in k ⊥ . One also observes a peak at the forcing scale, although the potential energy is not directly forced. These observations indicate that the density field and the parallel vorticity are non-trivially related to each other for all scales but the very smallest. As discussed in section 1.5.1, this can occur as the consequence of hydrostatic balance. This possibility will be examined more closely in section 1.5.3.3. In case iii), the parallel kinetic energy does not show a secondary maximum. The 2-D kinetic energy spectra (sum of perpendicular and parallel contributions) are shown in figure 1.14. In case i), the spectral maximum at k ⊥ ≈ k f /2 is seen to extend to k > 0. In cases ii) and iii), the spectral maximum at k ⊥ = 1 is seen to stem primarily from contributions at k = 0. The 2-D potential energy spectrum is shown figure 1.15. For cases i) and ii), there is a maximum at intermediate k ⊥ , with k = 1. By contrast, for case iii) there is a clear build-up of potential energy at k ⊥ = 1, and maximum at k = 1 (and some contributions from k = 2). In case iii), there is only little potential energy at k = 0, even though the kinetic energy spectrum peaks at k = 0, which is compatible with hydrostatic balance (1.30).

Energy fluxes

.16 shows the different components of the energy flux (normalised by the injection rate) for the three cases. In case i), the total flux vanishes at k ⊥ < k f , while it is positive at k ⊥ > k f . At k ⊥ > k f , the flux of perpendicular kinetic energy is close to zero, and negligible compared to the large forward (positive) fluxes of parallel kinetic energy and potential energy. At the largest scales, all fluxes vanish, i.e. no energy is transferred to or from the large scales by nonlinear interactions. For intermediate scales between k ⊥ = k f and k ⊥ ≈ 5, there is a wavenumber range over which there is a flux loop leading to zero net flux: the flux of pependicular kinetic energy is negative, i.e. inverse, while the kinetic energy in the parallel components of velocity and the potential energy show a positive (i.e. forward) flux, with the sum of the three cancelling out. In case ii), the flux loop persists at these intermediate scales, but the net flux is slightly negative (inverse), rather than zero. This inverse flux, which amounts to about 3% of the energy injection rate, reaches all the way to the largest scales k ⊥ = 1, as the inset in figure 1. [START_REF] Waite | Stratified turbulence dominated by vortical motion[END_REF] shows. The parallel kinetic energy and potential energy fluxes are very similar to case i), being positive definite everywhere. In case iii), there is a strong net inverse flux, making up around 30% of energy injection rate. Remarkably, while the dominant contribution to this inverse flux stems from the perpendicular kinetic energy, there is also an inverse flux of potential energy. In cases i) and ii), by constrast, the potential energy flux is positive definite. The strong stratification in case iii) breaks the passive-scalar-like evolution of the potential energy mentioned in section 1.5.1, which otherwise constrains the potential energy to cascade to small scales only. Moreover, the fact that both perpendicular kinetic energy and potential energy cascade inversely is compatible with the φ and ω fields being linked by hydrostatic balance, which is shown to be the case in section 1.5.3.3.

Well-resolvedness

For each run, we verify well-resolvedness by inspecting the total dissipation spectrum D tot defined below eqs. (1.44), (1.45). For cases i) to iii), D tot is shown in figure 1.17. Since the maximum of dissipation is in the interior of the wavenumber domain, the simulations are well resolved. The fact that we do not examine higher or smaller values of λ, nor smaller Fr, in figure 1.12 is due to this criterion of well-resolvedness. At higher or smaller λ, the dissipation spectra showed significant dissipation at the largest k and the simulations were thus not well resolved. Therefore, these parameter values were not accessible at the present resolution. Simulations at higher resolution will be needed to confirm the tentative shape of the phase boundary between forward an inverse cascades at large λ drawn in figure 1.12.

Spatial structures

.18 shows a visualisation of the density perturbation field φ. For case i) there is large-scale organisation in the perpendicular direction, and there is some visible alignment in the parallel direction, in agreement with the 2-D spectra. In case ii), the rotation rate is stronger, leading to a more pronunced alignment in the vertical direction. However, the perpendicular scales in the φ field remain small. In case iii), the amplitude of the φ field is much higher than in cases i) and ii), and there is a clearly visible large-scale organisation in the parallel and perpendicular directions. In the parallel direction, there is a layering of density in approximately two layers, which is compatible with the 2-D potential energy spectra. In the perpendicular direction, one can see that the energy is at the largest scale k ⊥ = 1, since there is one large patch of positive φ, and one of negative φ (periodic boundaries). Figure 1.19 shows a visualisation of the vorticity field. In case i), one sees no large-scale organisation in the perpendicular direction, and there is some rotation-induced alignment along the parallel direction. In case ii), the parallel alignment is more pronounced, since λ is larger, equivalent to faster rotation. In the perpendicular direction, the condensation at the large scales has not yet proceeded far enough to be visible by eye, but the 1-D spectrum in figure 1.13 unequivocally shows that energy is piling up at large scales. Finally, in case iii), there is a clearly visible, high-amplitude pair of counterrotating vortices on a small-scale background in the perpendicular direction. In the parallel direction, the alignment is weakened by the stronger stratification. We do not show visualisations of the parallel velocity field, since there it features only small-scale structures in all cases.

Figure 1.20 shows visualisations of the two terms involved in hydrostatic balance (1.30): parallel pressure gradient 2λ∂ ψ and the buoyancy force -φ/Fr. The two fields are visibly highly correlated. Together with the spectra and fluxes above, this validates the proposed explanation of the phenomenology of case iii) based on hydrostatic balance.

Conclusions: rotating and stratified case

We have investigated the impact of a stable stratificaiton on rapidly rotating turbulence within elongated domains. Using a large number of numercal simulations, we constructed a phase diagram of the system, showing that an inverse cascade arises both for Fr 1 and for large λ = (hRo) -1 , while a forward energy cascade is observed for Fr -1 1 and λ below a threshold λ c . At strong stratification, we found that approximate hydrostatic balance holds, leading to a non-trivial inverse cascade of both potential and kinetic energy. Future reseach should aim to characterise in more detail the approach to hydrostasy in this extreme parameter regime, in order to better assess its impact on the energy cascades in rotating and stratified turbulence within elongated domains. Also, whether or not the transition is critical was not studied here due to the prohobitively high numerical cost of sampling the 2-D parameter space sufficiently densely. It therefore remains an open question whether the criticality evidenced for the purely rotating case carries over to rotating and stratified turbulence.

The following remark made for the purely rotating case also applies here: since our approach was based on asymptotic reduction, thus gaining in efficiency, the question of the order of limits arises. Generally, one is interested in the large-Reynolds-number and large-Peclet-number limits, as well as the limit of large Λ = L/ in . The energy fluxes obtained upon taking these limits first, and then taking Ro → 0 will not, in general, give the same result as when the order is reversed. This calls for investigating also finite values of the parameters using the full rotating Boussinesq equations, and the full phase diagram of rotating and stratified turbulence may be more complex.

1.A Heuristic derivation of the reduced equations

In this appendix we present a heuristic derivation of the reduced equations discussed in the main text. An alterantive derivation based on the method of multiple scales is given in [START_REF] Sprague | Numerical simulation of an asymptotically reduced system for rotationally constrained convection[END_REF]. The Boussinesq equations in a reference frame rotating at the constant rate Ω = Ωê , for a linear background density profile as in the main text, are given by

∂ t u + u • ∇u + 2Ωê × u = -∇p -N φê + ν∇ 2 u + f (1.50) ∂ t φ + u • ∇φ = N φ + κ∇ 2 φ (1.51) ∇ • u = 0, (1.52) 
where u = u + u ⊥ is velocity with u = (u • ê )ê = u ê (we will use the same notation for all vectors), p is pressure (divided by the constant density ρ 0 ), φ is the rescaled density perturbation as defined in the main text, and f is the forcing. We impose triply periodic boundary conditions, the forcing is assumed to be solenoidal and to have zero average over the cuboid domain of dimensions 2πL × 2πL × 2πH. We further restrict ourselves to a stochastic forcing injecting energy at a constant mean rate into both perpendicular and parallel motions

f ⊥ • u ⊥ = f u = in /2 ⇒ f • u = in
, where • denotes an ensemble average over inifinitely many realisations. The forcing is two-dimensional (independent of the parallel direction) and filtered in Fourier space to act only on a ring of perpendicular wavenumbers k centered on |k| = k f = 1/ in , precisely as considered in the main text. Nondimensionalising (1.50, 1.51, 1.52) using the perpendicular length scale in , the parallel length scale H (in parallel derivatives), the timescale ( 2 in / in ) 1/3 and the velocity scale imposed by the forcing, ( in in ) 1/3 , as well as the φ scale N in , gives

∂ t ũ + ũ • ∇ũ + 2 Ro ê × ũ = -Eu ∇p - 1 Fr φê + 1 Re ∇2 ũ + f , (1.53) ∂ t φ + ũ • ∇ φ = 1 Fr φ + 1 Pe ∇2 φ, (1.54) 
∇ • ũ = 0, (1.55) 
where ∇ = ∇⊥ + h -1 ∇ and a tilde marks nondimensional quantities. In the above formula, Ro = ( in in

) 1/3 /(Ω in ) is the Rossby number, Eu = P/( in in ) 2/3 is the Euler number, Re = ( in in ) 1/3
in /ν is the Reynolds number and h = H/ in is the rescaled box height. Another nondimensional number is given by the rescaled box width Λ = L/ in . In the following, we shall omit tildes for simplicity. Eliminating pressure from (1.53) by applying the incompressible projection, defined for an arbitrary vector field

F as P[F] ≡ -∇ -2 ∇ × ∇ × F = F -∇ -2 ∇(∇ • F), ∇ 2 (∇ -2 f )∇ -2 (∇ 2 f ) = f ,
and considering the equations for parallel velocity u gives

∂ t u + u • ∇u - 1 h ∇ -2 ∂ {∇ • (u • ∇u)} + 2λ∇ -2 ∂ ω = 1 h 2 Fr ∇ -2 ∂ 2 φ - 1 Fr φ + 1 Re ∇ 2 u + f , (1.56) 
and considering parallel vorticity ω = ω • ê , ω = ∇ × u gives

∂ t ω + u • ∇ω -(2λê + ω) • ∇u = 1 Re ∇ 2 ω + f ω , ( 1.57) 
where

∂ = ê • ∇ , λ = (hRo) -1 = 5/3 in Ω/( 1/3
in H) is identical to definition (1.5) in the main text and f ω ≡ ê • (∇ × f ). We consider the limit of simultaneously low Rossby numbers (fast rotation) and large aspect ratios, h

≡ -1 1, Ro = O( ) 1, such that λ = O(1) (independent of ). This implies that ∇ = ∇ ⊥ + ∇ , such that ∇ 2 = ∇ 2 ⊥ +O( ) and also ∇ -2 = ∇ -2 ⊥ + O( ).
The fact that variations along the rotation axis are slow, meaning derivatives are O( ), is a consequence of the Taylor-Proudman theorem, which is usually stated as forbidding fast variations in the limit Ro → 0, hRo = O [START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF]. Unlike in conventional quasi-geostrophy (in a thin layer) where parallel velocities are O( ), both perpendicular and parallel velocities, as well as their perpendicular derivatives, are retained at leading order here. Nonetheless, just like in conventional quasi-geostrophy an important simplification arises from continuity,

∇ • u = ∇ ⊥ • u ⊥ + O( ) = 0. (1.58)
This means that the leading-order perpendicular velocity is incompressible and admits a streamfunction:

u ⊥ = ê × ∇ ⊥ ψ, hence ω = ∇ 2 ⊥ ψ. Another simplification arises from the fact that h -1 ∇ -2 ∂ {∇ • (u • ∇u))} = O( ) u • ∇u = u ⊥ • ∇ ⊥ u + O( ), (1.59) 
and

h -2 Fr -1 ∇ -2 ∂ 2 φ = O( 2 ) u • ∇u . (1.60)
Finally, one finds that the vortex stretching term in the parallel vorticity equation (1.57) vanishes to leading order ω • ∇u = O( ). Combining these results yields the leadingorder, asymptotically reduced governing equations

∂ t u + u ⊥ • ∇ ⊥ u + 2λ∇ -2 ⊥ ∂ ω = - 1 Fr φ + 1 Re ν ∇ 2 ⊥ u + f , (1.61) ∂ t ω + u ⊥ • ∇ ⊥ ω -2λ∂ u = 1 Re ν ∇ 2 ⊥ ω + f ω .
(1.62)

∂ t φ + u ⊥ • ∇ ⊥ φ = 1 Fr u + 1 Pe ∇ 2 ⊥ φ (1.63)
Equations ( 1 This chapter is based on the publications P1 and P2, from which part of the text and figures were used.

Geophysical and astrophysical flows are often subject to geometrical constraints, such as thinness in a particular direction. In this chapter, we focus on turbulence in a thin, non-rotating layer of homogeneous density, where an inverse cascade arises below a critical layer height. Not unlike the rotating and stratified flows described in the previous chapter, flows in thin layers display properties of both 2-D and 3-D turbulence, with the large scales showing 2-D-like behaviour, and the small scales showing 3-D-like behaviour. As a result, such systems are known to cascade energy both to large and to small scales [START_REF] Smith | Crossover from two-to threedimensional turbulence[END_REF]. In fact, it has been shown in [START_REF] Celani | Turbulence in More than Two and Less than Three Dimensions[END_REF][START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF][START_REF] Musacchio | Split energy cascade in turbulent thin fluid layers[END_REF] that as the height of the layer H is varied, the system transitions from a state where energy cascades only to the small scales (for large H), to a state where energy cascades to both large and small scales, when H is smaller than approximately half of the forcing length scale . In particular, using a Galerkin truncated model of the full Navier-Stokes equations, the authors of [START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF] were able to provide strong evidence of a critical transition in terms of the inverse energy flux, in the sense discussed in the previous chapter. In addition, they observed a second transition to exact two-dimensionalisation for layers of very small thickness H ∝ Re -1/2 . This second transition had been predicted theoretically using bounding techniques by [START_REF] Gallet | Exact two-dimensionalization of low-magnetic-Reynolds-number flows subject to a strong magnetic field[END_REF].

The thin layer is possibly the simplest model exhibiting the spontaneous emergergence of an inverse cascade via a critical transition. It thus deserves a detailed investigation. For finite systems and in the absence of large-scale dissipation, there are two stages in the development of the flow when an inverse cascade is present. In the first stage (at early times), energy is transferred to larger and larger scales by the inverse cascade. This process stops, however, when scales comparable to the system size are reached, after which energy starts to pile up at these largest scales. In the long-time limit, the increase of the large-scale energy saturates and a condensate is formed, where nearly all energy is found in the first few Fourier modes. In the previous chapter the focus was on the initial stage of the inverse cascade's development. In this chapter, by contrast, we are interested in the condensate state, which has not previously been studied numerically in the thin layer.

For 2-D Navier-Stokes turbulence, the possibility of spectral condensation was first conjectured in the seminal paper of Kraichnan [START_REF] Kraichnan | Inertial ranges in two-dimensional turbulence[END_REF], first reported in DNS by [START_REF] Hossain | Long-time states of inverse cascades in the presence of a maximum length scale[END_REF], further explored quantitatively in [START_REF] Smith | Bose condensation and small-scale structure generation in a random force driven 2D turbulence[END_REF][START_REF] Smith | Finite-size effects in forced two-dimensional turbulence[END_REF], and more recently in [START_REF] Chertkov | Dynamics of energy condensation in two-dimensional turbulence[END_REF][START_REF] Bouchet | Random changes of flow topology in twodimensional and geophysical turbulence[END_REF][START_REF] Chan | Dynamics of saturated energy condensation in two-dimensional turbulence[END_REF][START_REF] Frishman | Turbulence Statistics in a Two-Dimensional Vortex Condensate[END_REF][START_REF] Frishman | Jets or vortices-What flows are generated by an inverse turbulent cascade?[END_REF]. A similar condensation process has also been studied in other quasi-2D systems such as quasi-geostrophic flows [START_REF] Kukharkin | Quasicrystallization of vortices in drift-wave turbulence[END_REF][START_REF] Kukharkin | Generation and structure of Rossby vortices in rotating fluids[END_REF][START_REF] Vallis | Generation of Mean Flows and Jets on a Beta Plane and over Topography[END_REF][START_REF] Venaille | Oceanic rings and jets as statistical equilibrium states[END_REF]. In terms of the real space flow field, this spectral condensation corresponds to coherent, system-size vortices or shear layers. In 2-D flows, where the cascade of energy is strictly inverse, a steady state in the condensate regime is realised when the energy of the condensate is so large that the dissipation due to viscosity at large scales balances the energy injection due to the forcing. For split cascading systems, this is not necessarily true due to the presence of non-vanishing 3-D flow variations associated with a direct cascade. Therefore, in this case other processes exist that can redirect the energy back to the small scales where viscous dissipation is more efficient. Such mechanisms have been demonstrated for rotating turbulence, where a flux-loop mechanism has been identified [START_REF] Bartello | Coherent structures in rotating threedimensional turbulence[END_REF][START_REF] Alexakis | Rotating taylor-green flow[END_REF][START_REF] Seshasayanan | Condensates in rotating turbulent flows[END_REF]. Similar condensates have also been observed in 3-D rapidly rotating convection [START_REF] Favier | Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection[END_REF][START_REF] Rubio | Upscale energy transfer in three-dimensional rapidly rotating turbulent convection[END_REF][START_REF] Guervilly | Large-scale vortices in rapidly rotating Rayleigh-Bénard convection[END_REF].

Condensates in thin layers have been observed experimentally: the first study by Sommeria [START_REF] Sommeria | Experimental study of the two-dimensional inverse energy cascade in a square box[END_REF] was followed by the important contributions of Paret and Tabeling [START_REF] Paret | Experimental observation of the two-dimensional inverse energy cascade[END_REF][START_REF] Paret | Intermittency in the two-dimensional inverse cascade of energy: Experimental observations[END_REF], and more recently by [START_REF] Shats | Spectral condensation of turbulence in plasmas and fluids and its role in low-to-high phase transitions in toroidal plasma[END_REF][START_REF] Shats | Suppression of turbulence by self-generated and imposed mean flows[END_REF][START_REF] Xia | Turbulence-condensate interaction in two dimensions[END_REF][START_REF] Xia | Spectrally condensed turbulence in thin layers[END_REF][START_REF] Xia | Upscale energy transfer in thick turbulent fluid layers[END_REF][START_REF] Byrne | Robust inverse energy cascade and turbulence structure in three-dimensional layers of fluid[END_REF]. An up-to-date review of relevant experiments is presented in [START_REF] Xia | Two-dimensional turbulence in three-dimensional flows[END_REF]. These experiments operate primarily in the long-time limit in which the condensate is fully developed. This wealth of experimental studies of thin-layer condensates is in striking contrast with the existing numerical results which have focused exclusively on the transient growth of total kinetic energy due to the inverse cascade. In these numerical simulations, the condensate state reached after long time in the thin-lnumericallyayer case has not yet been examined due to the long computational time needed. Here we aim to fill this gap and investigate the behaviour of turbulent flow at the condensate stage for a thin layer forced at intermediate scales, using direct numerical simulations (DNS) and low-order modelling. The DNS provide a detailed picture of the behaviour of the full system, while the modelling shines light on the main physical processes involved in the problem.

The remainder of this chapter is structured as follows. In section 2.1, we present the set-up and define the quantities we will be measuring. In section 2.2, we present the results of a large number of direct numerical simulations (DNS) of thin-layer turbulence. Next, in section 2.3, we discuss the behaviour close to the two critical points and in section 2.4, we present spectra and spectral fluxes of energy. In section 2.5, we introduce The forcing is invariant along the thin direction and stochastic with fixed mean rate of energy input, while involving only wavenumbers k with |k| = k f = 2π/ (illustrated in blue). The thin direction will be referred to as the vertical, the others as the horizontal directions.

a low-order model which captures many features of the DNS results. Finally, in section 2.6, we discuss our results and summarise.

Physical setup

In this section, we describe the set-up to be investigated. We consider the idealised case of forced incompressible three-dimensional flow in a triply periodic box of dimensions L × L × H. The thin direction H will be referred to as the vertical 'z' direction and the remaining two as the horizontal 'x' and 'y' directions. The geometry of the domain is illustrated in figure 2.1. The flow obeys the incompressible Navier-Stokes equation:

∂ t u + u • ∇u = -∇P + ν∇ 2 u + f , ( 2.1) 
∇ • u = 0 (2.2)
where u is the velocity field, P is physical pressure divided by constant density and ν is (kinematic) viscosity. Energy is injected into the system by f , a stochastic force that depends only on x and y and has only x and y components, i.e. that is a two-dimensionaltwo-component (2D2C) field. We make this assumption as we did in Chapter 1, firstly to specifically force the inversely cascading components of the flow and secondly because it is widely used in previous studies such as [START_REF] Smith | Crossover from two-to threedimensional turbulence[END_REF][START_REF] Celani | Turbulence in More than Two and Less than Three Dimensions[END_REF][START_REF] Deusebio | Dimensional transition in rotating turbulence[END_REF][START_REF] Gallet | Exact two-dimensionalization of low-magnetic-Reynolds-number flows subject to a strong magnetic field[END_REF] and thus enables us to compare more easily with the literature. The force is divergence-free, hence it can be written as range of wave numbers. In some cases, in order to compare with previous studies, we used a hyper-viscosity, which amounts to replacing ν∇ 2 u by -ν n (-∇ 2 ) n u.

f = (-∂ y ψ, ∂ x ψ, 0).
The system (2.2) is characterised by three non-dimensional parameters: the Reynolds number based on the energy injection rate Re = ( 4 ) 1/3 /ν, the ratio between forcing scale and domain height Q = /H and the ratio between forcing scale and the horizontal domain size K = /L. The ratio between K and Q gives the aspect ratio

A = K/Q = H/L of the domain. The Kolmogorov dissipation length is denoted as η = ν 3/4 / 1/4 = Re 3/4 .
The simulations were performed used an adapted version of the Geophysical High-Order Suite for Turbulence (GHOST) similar to that used in Chapter 1. The resolution was varied from 128 2 × 16 grid points to 2048 2 × 128 grid points depending on the value of the parameters. To explore the space spanned by these three parameters, we have performed systematic numerical experiments: for a fixed value of Re and K = 1/8, different simulations are performed with Q varying from small to large values. The runs are continued until a steady state is reached where all quantities fluctuate around their mean value. This is repeated for eight different values of Re from Re = 203 (resolution 256 2 × 16) to 4062 (resolution 2048 2 × 128) and for one value of hyperviscosity (n = 8, ν 8 = 10 -38 as in [START_REF] Celani | Turbulence in More than Two and Less than Three Dimensions[END_REF]), as a consistency check, since many of the previous studies of thin-layer turbulence used hyper-viscosity. For Re = 305, we also perform a run with K = 1/16 (L → 2L). In addition, a very large number of runs performed at the very small resolution 128 2 × 16 enables us to extract reliable statistical information about the system close to the transition to the condensate regime. The number of runs performed for each Re are summarised in table 2.1.

To quantify the energy distribution among different scales it is convenient to work in Fourier space, as we did in Chapter 1. The Fourier series expansion of the velocity reads

u(x, t) = k ûk e ik•x , ûk = 1 L 2 H u(x, t)e -ik•x dx (2.3) where ûk = û(x) k , û(y) k , û(z) k and the sum runs over all k ∈ 2π L Z 2 × 2π H Z.
In the pseudo-spectral calculations, this sum is truncated at a finite k res . Since flow in a thin layer is a highly anisotropic system, it is important to consider quantities in the vertical and horizontal directions separately, as in Chapter 1. For this purpose, we monitor the following quantities in our simulations: first of all, the total energy spectrum as a function of horizontal wavenumber

E tot (k h ) = 1 2 k k 2 x +k 2 y =k 2 h |û k | 2 .
(2.4)

In addition, we monitor different components of domain-integrated energy, namely the total horizontal kinetic energy

1 2 U 2 h = 1 2 k kz =0 û(x) k 2 + û(y) k 2 (2.5)
(based on the (vertically averaged) 2D2C field only), the large-scale horizontal kinetic energy

1 2 U 2 ls = 1 2 k k<kmax kz =0 û(x) k 2 + û(y) k 2 , ( 2.6) 
where

k max = √ 2 2π
L , as well as the (vertically averaged) large-scale kinetic energy in the z component

1 2 U 2 z = 1 2 k k<kmax kz =0 û(z) k 2 (2.7) 
and the three-dimensional kinetic energy (3-D energy), defined as

1 2 U 2 3D = 1 2 k kz =0 |û k | 2 .
(2.8)

Results from the direct numerical simulations

In this section, we present the results obtained from our simulations. For a given set of parameters Re, Q, K, two different behaviours are possible. For thick layers Q 1, 3-D turbulence is observed, i.e. there is no inverse cascade and the energy injected by the forcing is transferred to the small scales where it is dissipated. No system-size structures appear in this case. For thin layers Q 1, a split cascade is present with part of the energy cascading inversely to the large scales and part of the energy cascading forward to the small scales. For these layers, at steady state, coherent system-size vortices appear with very large amplitudes.

A visualisation of the flow field in these two different states is shown in figure 2.2 for the 3-D turbulence and condensate states. Typical time-series of U 2 h for a thick layer (forward cascade) and a thin layer (inverse cascade) are shown in figure 2.3a. For the thick layer, the total energy fluctuates around a mean value of order ( ) 2/3 , while for the thin layer, the energy saturates to a much larger value. The energy spectra for the two runs of figure 2.3a at the steady state are shown in figure 2.3b, showing quantitatively that energy is concentrated in the large scales for the two different cases. In more detail, U 2 h for the thin layer shows two different stages: first, at early times, there is a linear increase with time and second, there is saturation at late times. Therefore, to fully describe the evolution of the system, we need to quantify the rate of the initial energy increase and the energy at which it saturates. The red-dashed line indicates a fit to the initial linear increase. This slope provides a measurement of the rate inv at which energy cascades inversely. For the steady state stage, the black dashed-dot line indicates the mean value at late times. For all runs, we measure the slope of the U 2 h curve and the steady state mean values of all corresponding energies defined in the previous section. For the runs of high resolution, to accelerate convergence, the large-scale velocity u k=1 (from a run at the early stage) was increased artificially and the run continued. Alternatively, an output of a converged run was used as initial condition. However, all cases were run sufficiently long to demonstrate that they have reached a steady state. 

U 2 h for Q = 1.25 < Q 3D and Q = 4 > Q 3D .
In the former case, U 2 h remains small. In the latter, there is an initially linear increase whose slope measures the rate of inverse energy transfer. After long time, U 2 h reaches its steady state value. Two quantities are measured: the initial slope (reddashed line) and the condensate value (horizontal black dashed-dot line). A similar evolution observed in an experiment is shown in [START_REF] Xia | Spectrally condensed turbulence in thin layers[END_REF] figure 6. Panel (b) shows the corresponding spectra: in the presence of an inverse cascade there is a maximum at the largest scale, while in its absence the maximum is near the forcing scale. the hyper-viscous runs. The slope at this early stage measures the strength of inverse energy transfer. At small Q (deep layers), the slope vanishes for all runs, showing that no inverse cascade is present. Moving to larger Q, for every Re, there is a critical value Q 3D (Re) of Q above which the slope becomes non-zero. This is the birth of the inverse cascade. Figure 2.5 shows estimates of Q 3D as a function of Re: the upper curve shows the smallest Q for which an inverse cascade was observed for that given Re while the lower curve shows the largest Q for which no inverse cascade was observed. The critical value Q 3D lies between these two curves. The point Q 3D shifts to larger Q as Re is increased but eventually for the two largest Re simulated, namely Re = 2031 and Re = 4062, as well as the hyper-viscous run, Q 3D saturates at Q 3D ≈ 2.5. (Previous findings [START_REF] Celani | Turbulence in More than Two and Less than Three Dimensions[END_REF] estimated this value to Q 3D ≈ 2, however in that work too limited a range of values of Q was used to be able to precisely pinpoint Q 3D . Another possible reason for the different result is the different value of 1/K associated with the different forcing wavenumber k f = 16 used). The saturation of Q 3D ≈ 2.5 indicates that Q 3D converges to this value at large Re. For Q > Q 3D , the slope begins increasing linearly inv ∝ Q -Q 3D . (We note that small slopes are hard to distinguish from zero slope since the difference only becomes apparent after a long simulation time.)

If Q is increased further, a point Q 2D is reached beyond which the slope becomes independent of Q. Above this second critical point, the flow becomes exactly 2-D [START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF]. The value of Q 2D increases with Re as Q 2D ∝ Re 1/2 . This scaling is verified in our work as well, as shown in the right panel of figure 2.4. The two critical points Q 3D and Q 2D at this early stage of development of the inverse cascade have been studied in detail in the past [START_REF] Celani | Turbulence in More than Two and Less than Three Dimensions[END_REF][START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF].

Here we primarily focus on the second stage of evolution: the steady state and the properties of the condensate. Figure 2.6 shows the equilibrium value of U 2 ls , as defined in equation (2.6), non-dimensonalised by the forcing energy scale ( ) 2/3 and multiplied by K 2 (to take into account different system sizes). In the left panel, it is plotted versus Q (figure 2.6a) and in the right panel it is rescaled by 1/Re (the condensate becomes more energetic for smaller Re) and plotted versus η/H = QRe -3/4 (figure 2.6b). First consider figure 2.6a. At small Q, there is very little energy in the large scales. This corresponds to the values of Q that displayed no inverse cascade at the initial stage. In the absence of an inverse cascade, the large scales only possess a small non-zero energy and are expected to be in a thermal equilibrium state [START_REF] Kraichnan | Helical turbulence and absolute equilibrium[END_REF][START_REF] Dallas | Statistical equilibria of large scales in dissipative hydrodynamic turbulence[END_REF][START_REF] Cameron | Effect of helicity on the correlation time of large scales in turbulent flows[END_REF]. For Q > Q 3D the energy in the large scale takes larger values. In all cases, the energy increases nearly linearly The increase of the large-scale energy stops at the second critical point Q 2D , where U 2 ls becomes independent of Q. It is noteworthy that the curves for various values of Re all follow the same straight line between their respective Q 3D and Q 2D with only some deviations at low Q. Furthermore, both Q 2D and the plateau value of U 2 ls depend on Re. In figure 2.6b, the same data is plotted, but with rescaled axes. The rescaling collapses the data well, with some deviations at small Q related to the convergence of Q 3D . This indicates that at large values of Q, U 2 ls scales like U 2 ls ∝ ( ) 2/3 Re. This is precisely the scaling of the condensate of 2-D turbulence [START_REF] Boffetta | Two-Dimensional Turbulence[END_REF]. The critical value where the transition to this maximum value of U 2 ls occurs is

U 2 ls ∝ (Q -Q 3D ) for Q 2D > Q > Q 3D .
Q 2D Re -3/4 = η/H 2D ≈ 0.09 -0.1.
The scaling allowing to collapse the data in figure 2.4 (transient stage) is different from that in figures 2.6, 2.8 and 2.9 (condensate state). This implies that Q 2D ∝ Re 1/2 estimated during the early stage of the inverse cascade development is different from Q 2D ∝ Re 3/4 estimated at steady state where a condensate is fully developed. The reason for this difference is that the transition to exactly 2-D motion occurs when the maximum shear in the flow (which produces 3-D motion by shear instabilities) is balanced by smallscale viscous dissipation. In the presence of the inverse cascade, an E(k) ∝ 2/3 k -5/3 spectrum is formed at k > k f , such that the peak of the enstrophy spectrum k 2 E(k) is at the forcing scale. Thus the balance between 2-D shear and 3-D damping is [START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF]. In the condensate, however, most of the energy and enstrophy are located in the largest scales and are such that energy injection is balanced by large-scale dissipation ∝ νU 2 ls /L 2 . The large-scale shear is thus U ls /L ∝ ( /ν) 1/2 which is balanced by the damping rate of 3-D perturbations at onset,

( ) 1/3 / ∼ ν/H 2 , implying H 2D ∼ Re -1/2
( /ν) 1/2 ∼ ν/H 2 ,
giving the scaling H 2D ∝ 1/4 ν 3/4 ∝ Re -3/4 . We will recover the very same steady state scaling in the section 2.5 from a low-order model. These two distinct scalings for early 3D as defined in equation (2.8). In the left panel it is nondimensionalised by the forcing energy ( ) 2/3 and plotted vs. Q (figure 2.8a), while in the right panel, it is non-dimensionalised by ( H) 2/3 , raised to the power 1 2 and plotted versus η/H = Q/Re -3/4 . Figure 2.8a shows that, beyond some non-monotonic behaviour at small Q, U 2 3D decreases monotonically with Q until it reaches zero at Q 2D and remains zero beyond this point. The 3-D energy increases with Re at a given Q. Under the rescaling in figure 2.8b, the various curves collapse nicely. In particular, the point where U 2 3D vanishes is sharp and identical for all Re, namely η/H ≈ 0.1. Comparing with figure 2.6b, one sees that this point and Q 2D coincide within the range of uncertainties. This means that beyond Q 2D , not only is U 2 ls independent of Q, but also U 2 3D vanishes. This confirms that Q 2D corresponds to the point where the motion becomes invariant along z. An approximate scaling

U 2 3D ∝ (Q -Q 2D ) 2 is seen close to onset.
Finally, figure 2.9 shows the non-dimensionalised vertical kinetic energy, once plotted versus Q and once plotted versus Q/Re 

2 z ∝ (Q c -Q) 3 with Q c ≈ Q 2D .
In other words, the critical value of Q (beyond which the vertical kinetic energy vanishes) is close to Q 2D , such that beyond Q 2D , the velocity is not only invariant along z, but also reduces to purely horizontal flow. Hence, for Q > Q 2D , the flow becomes exactly 2D2C. 3D /( H) 2/3 . Raising the coordinate to the power 1/3, the curve becomes linear close to onset. This indicates that close to onset, U 2 v scales as

U 2 z ≈ (Q c -Q) 3 , where Q c ≈ 0.09 -0.1 ≈ Q 2D .
We note that the scaling exponent is different from that found for U 2 3D .

Behaviour close to the transitions: hysteresis and intermittency

In this section, we discuss the behaviour close to the two transition points Q 2D and Q 3D . Each transition shows a different non-trivial behaviour. Close to Q 3D , we observe discontinuous transitions and hysteresis for some range of parameters, while close to Q 2D , we find both spatial and temporal intermittency with localised bursts of 3-D energy.

Close to Q 3D : Discontinuity, Hysteresis and Rare transitions

We begin by discussing the behaviour of the flow for Q close to Q 3D , where a sharp increase of the large-scale energy was observed. This sharp increase could indicate the presence of a discontinuity that could further imply the presence of hysteresis.

To verify the presence of a discontinuity we need perform many different runs varying Q is small steps as well as veryfing sensitivity to initial conditions. To do this, a hysteresis experiment has been performed at Re = 406, consisting of two series of runs, that we refer to as the 'upper branch' and the 'lower branch', see figure 2.10. On the upper branch, we start with random initial conditions and Q ≈ 2.25 for which the system reaches a condensate equilibrium with an associated non-zero value of large-scale energy. Once the run has equilibrated, we use that equilibrium state to initialise a run at Q → Q -∆Q with ∆Q = 0.1. By decreasing Q, the physical height of the box is increased. To be able to use the equilibrium state reached at one Q as initial condition for a neighbouring Q, the z-dependence of the velocity field is scaled and the velocity field is projected onto its diverge-free part. Having changed Q and applied this procedure, we let the system equilibrate to a new condensate state. This is repeated several times, down to Q ≈ 1.9. When Q is now lowered further, the condensate decays into 3-D turbulence and the large-scale energy saturates to close to zero. Reducing Q even more, U 2 ls remains small, indicating a 3-D turbulent state. The lower branch was calculated similarly, with the only difference that the experiment started in a state of 3-D turbulence (at low Q) and Q was gradually increased. For small Q, the two branches coincide, while the lower branch remains at low U 2 ls (3-D turbulence) up to Q ≈ 2.025. For Q larger than Q = 2.025, the lower branch merges with the upper branch, closing the hysteresis loop and a condensate is spontaneously formed from 3-D turbulence. In other words, for Re = 406 in the range 1.9 ≤ Q ≤ 2.025, there are multiple steady states and to which state the system will saturate depends on the initial conditions. The flow field on the upper and lower branches at Q ≈ 1.97 is visualized in 2.11.

We note that the Reynolds numbers of Re = 406 corresponding to the bifurcation diagram of figure 2.10 and Re = 203 for the statistical anlysis above are relatively low. Whether the subcritical behaviour persists at larger Re and/or larger box sizes (smaller K) is still an open question. Figure 2.7 suggests that a discontinuity continues to exist at Q = Q 3D up to high Reynolds numbers (Re = 2031 shown there). Further simulations at larger Re and possibly smaller K (larger boxes) are required to test this. A similar hysteretic behaviour has recently been reported in rotating turbulence, see [START_REF] Yokoyama | Hysteretic transitions between quasi-twodimensional flow and three-dimensional flow in forced rotating turbulence[END_REF]. More generally, multistability is observed in many turbulent flows, see [START_REF] Weeks | Transitions between blocked and zonal flows in a rotating annulus with topography[END_REF][START_REF] Ravelet | Multistability and Memory Effect in a Highly Turbulent Flow: Experimental Evidence for a Global Bifurcation[END_REF] as examples.

Given the observed hysteresis, a natural question is whether rare transitions exist between the branches of the hysteresis loop and what their statistics are. Unfortunately, at Re = 406 the numerical cost for obtaining reliable statistical information is prohibitively high. Instead, we rely on a large number of runs at the very low resolution shown in figure 2.12. According to initial conditions, the system is initially attracted to the condensate or 3-D flow state. If one observes the dynamics sufficiently long, though, rare transitions occur between the two branches. Based on similar time series, one may define a decay event as one where the system, after starting in a condensate state, crosses an arbitrary small threshold in terms of the large-scale energy, shown in figure 2.12b by a dashed line. Similarly we define a build-up events as the system reaching an energy close to the average condensate energy at the given parameters, after starting from 3-D turbulence. Then decay time and build-up time are studied by initialising the system in either the condensate or the 3-D flow state, and evolving until a decay or a build-up event has occured. The simulation is then re-initialised with a different random seed for the stochastic forcing and the procedure is repeated. In this way, one obtains the histograms shown in figure 2.13. Exponential tails are seen in the histograms, which indicates that there is no long-time memory of the initial conditions that would affect the transition time statistics. The histograms did not change significantly when only half the data was considered, which indicates that the statistics have converged. From the histograms, one can compute the mean build-up times τ b and mean decay times τ d as a function of Q. The result is shown in figure 2.14: the decay-up times increase faster than exponentially, and the build-up times decrease faster than exponentially with Q. A similar phenomenology is found in the context of the transition to turbulence in a pipe. In that problem, turbulent puffs may split of decay, each process having an associated time scale that increases as a double-exponential exp(α exp(βx)) near the transition to turbulence [START_REF] Hof | Finite lifetime of turbulence in shear flows[END_REF][START_REF] Hof | Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow[END_REF][START_REF] Avila | The onset of turbulence in pipe flow[END_REF][START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF]. Here, we are unable to confirm or refute the existence a double-exponential scaling due to remaining statistical uncertainties. It was verified, however, that if the system is forced with a deterministic (rather than stochastic) forc- ing that injects energy at a constant rate, then the transition phenomenology remains unchanged (not shown).

Close to Q 2D : Intermittent bursts

Next, we discuss the behaviour of the flow close to the second critical point Q 2D , where the flow becomes 2D2C. A typical time series of 3-D energy for Q Q 2D is shown in figure 2.15a. One observes bursty behaviour and variations over many orders of magnitude, indicating on-off intermittency [START_REF] Fujisaka | A new intermittency in coupled dynamical systems[END_REF][START_REF] Platt | On-off intermittency: A mechanism for bursting[END_REF]. On-off intermittency refers to the situation where a marginally stable attractor loses or gains stability due to noise-induced fluctuations. When instability is present, a temporary burst is produced before the system returns to the attractor. The theory of on-off intermittency caused by Gaussian white noise, presented for a simple model system in appendix 2.6, predicts that the unstable mode X follows a power-law distribution P (X) ∝ X δ-1 for X 1 where δ measures the deviation from onset (here δ ∝ (Q 2D -Q)) and all moments scale linearly with the deviation X n ∝ δ.

In our system, the 2-D flow forms the marginally stable attractor that loses stability to 3-D perturbations depending on the exact realisation of the 2-D turbulent flow. To formulate this, we decompose the velocity field into its 2-D and 3-D parts, u = u 2D +u 3D , where the 2-D part is defined as the Fourier sum of u restricted to modes with k z = 0. Filtering the 3-D component of equation (2.2), dotting with u 3D and integrating over the domain gives

1 2 ∂ t U 2 3D = -{u 3D • ∇u 2D } • u 3D -ν |∇u 3D | 2 , ( 2.9) 
where • denotes integration over the domain. The chaotic 2-D motions then act as multiplicative noise while the viscous terms provide a mean decay rate. An important 3D and and the exponent converges to minus one as the transition is approached, in agreement with on-off intermittency predictions. However, the scaling of 3-D energy with deviation from onset shown in figure 2.8b does not follow the linear prediction of on-off intermittency, but rather

U 2 3D ∝ (Q 2D -Q) 2 .
For U 2 z , figure 2.9 seems to suggest yet a different scaling, namely U 2 z ∝ (Q 2D -Q) 3 . A similar behaviour was also found in [START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF] and was attributed to the spatio-temporal character of the intermittency that not only leads to 3-D motions appearing more rarely in time as criticality is approached but also to them occupying a smaller fraction of the available volume. This appears also to be the case in our results, as demonstrated in figures 2.16 and 2.17, where u 2 3D and the vertical velocity u z are plotted for three different values of Q. As Q approaches the critical value Q 2D , the structures become smaller for u 2 3D and u z with the difference that u 2 3D shows spot-like structures in figure 2.16c which are absent for u z . This difference may be related to the two different scalings observed for U 2 3D and U 2 z with Q c -Q small: if the volume fraction of vertical motion depends on Q c -Q to a different power than that of vertical variations, two different behaviours of U 2 z and U 2 3D would follow. A more detailed quantitative investigation of the scaling of volume fraction will be needed to clarify this. We will encounter temporal on-off intermittency once more in a generalised form in Chapter 3 of this thesis.

In summary, we have found nontrivial behaviour close to both transitions: we have observed hysteresis and rare transitions near Q 3D and spatio-temporal intermittency close to Q 2D where the temporal behaviour seems to be described by on-off intermittency. Taking into account these effects will be crucial for understanding the exact nature of these transitions.

Spectra and fluxes

In this section, we discuss the spectral space properties of the three different regimes described in the previous section. For this purpose, it is necessary to define a few additional quantities. In addition to the 1-D energy spectrum defined in (2.13), is of interest to consider the 2-D energy spectrum in the (k h , k z ) plane, similar to the previous chapter,

E(k h , k z ) = 1 2 k k 2 x +k 2 y =k 2 h k z =kz |û k | 2 .
(2.10)

Moreover, the total 1-D energy spectrum may advantageously be split up into three components: the energy spectrum of the (vertically averaged) 2D2C field

E h (k h ) = 1 2 k k 2 x +k 2 y =k 2 h kz =0 û(x) k 2 + û(y) k 2 , ( 2.11) 
the energy spectrum of the (vertically averaged) vertical velocity

E z (k h ) = 1 2 k k 2 x +k 2 y =k 2 h kz =0 û(z) k 2 ,
(2.12)

and the energy spectrum of the 3-D flow defined as

E 3D (k h ) = 1 2 k k 2 x +k 2 y =k 2 h kz =0 |û k | 2 , (2.13) satisfying E tot (k h ) = E h (k h ) + E z (k h ) + E 3D (k h )
. Furthermore, we introduce three different quantities related to spectral energy flux. First, the total energy flux as a function of horizontal wave number 

Π(k h ) = u < k h • (u • ∇)u , ( 2 
Q < Q 3D , b) Q 3D < Q < Q 2D and c) Q 2D < Q.
where the low-pass filtered velocity field is

u < k h = k k 2 x +k 2 y <k 2 h ûk e ik•x .
With this definition, similar to Chapter 1, Π(k h ) expresses the flux of energy through the cylinder k 2 x + k 2 y = k 2 h due to the non-linear interactions. The 2-D energy flux as a function of k h is defined as

Π 2D (k h ) = u < k h • (u • ∇)u , ( 2.15) 
where the over-bar stands for vertical average and expresses the flux through the same cylinder due to only 2D2C interactions. Finally, we define the 3-D energy flux (due to all interactions other than those in (2.15)) as a function of horizontal wave number by

Π 3D (k h ) = Π(k h ) -Π 2D (k h ). (2.16)
It expresses the flux due to all interactions other than the ones in (2.15). Figure 2.18 shows the steady state 2-D energy spectrum in the three different regimes:

a) Q < Q 3D , b) Q 3D < Q < Q 2D and c) Q 2D < Q.
In the 3-D turbulent case a), the global maximum is at the forcing scale and k z = 0, while large k z modes have a relatively larger fraction of total energy than in cases b) and c). In cases b) and c), a condensate is present with a maximum at the largest wavenumber k h = 1, k z = 0. In case b), there is still energy in the k z = 0 modes, while in case c), the energy is entirely concentrated in the k z = 0 mode. Figure 2.19 shows the energy spectra E h (k h ), E z (k h ) and E 3D (k h ) for the same three cases a)-c). In case a) (3-D turbulence), all three spectra are of the same order, with a small excess of E h (k h ) in the large scales and an excess of E 3D (k h ) in the small scales. The small scale separation between the forcing and the dissipation scale does not allow us to observe a k -5/3 power-law regime. In case b), E h (k h ) clearly dominates in the large scales, forming a steep spectrum (close to

E h (k h ) ∝ k -4
h ). However, at wavenumbers larger than the forcing wavenumber k f = 8, E z (k h ) and E 3D (k h ) become of the same order as E h (k h ). where 2.20 shows the energy fluxes as defined in eqs. (2.14-2.16) for the same three cases examined in figure 2. [START_REF] Ibbetson | Experiments on turbulence in a rotating fluid[END_REF]. In panel (a), where the case Q < Q 3D is examined, there is no inverse flux of energy and Π(k h < k f ) is practically zero. The small inverse flux that is observed for Π 2D (k h ) at k < k f does not reach the largest scale of the system and is nearly completely balanced by Π 3D (k h ), which is forward. At wavenumbers larger than k f , the total flux is positive and is completely dominated by Π 3D . This is to be contrasted with the rightmost panel (c) with Q > Q 2D , where at small wavenumbers, the total flux is negative and is dominated by the 2-D flow, while at large wavenumbers there is a very small forward flux. For the intermediate case

Q > Q 2D ,
Q 3D < Q < Q 2D in panel (b)
, there is an inverse energy flux. This flux can be decomposed into a negative 2-D part Π 2D (k h ) and a positive 3-D part Π 3D (k h ). In other words, the 2-D components of the flow bring energy to the largest scales of the system, which is then brought back to the small scales by the 3-D components of the flow associated with a forward energy flux, thus forming a loop for the energy transfer. For this reason, we refer to this case as flux-loop condensate.

Due to finite viscosity, part of the energy that arrives at the largest scale (shown in figure 2.20b) is dissipated. Therefore, the two fluxes are not completely in balance. As Re is increased, however, the fraction of the energy that is dissipated in the large scales is decreased and the two opposite fluxes come closer to balancing each other. This is shown in figure 2.21, where the energy fluxes for the highest Re simulation and for the simulation with hyper viscosity are plotted. The two fluxes in opposite directions are closer in amplitude. At Re → ∞ it is thus expected that the inverse and forward fluxes at large scales will be in perfect balance and all the energy is dissipated in the small scales. It is worth noting, however, that the inverse cascade (negative flux) due to the Figure 2.22: Sketch of three-mode model. Solid black curve: sketch of energy spectrum E(k) of the condensate state (U 2D is finite). The energy injected at k f at a rate is distributed between large and small scales. Energy is transferred from large to small scales. Viscous dissipation occurs at all scales since Re < ∞ (short arrows on abscissa) and energy is transferred to the dissipation range (arrow at k ν = 2π/η). The spectrum E(k) shares certain features with figure 1e) of [START_REF] Xia | Upscale energy transfer in thick turbulent fluid layers[END_REF] and figure 3 of [START_REF] Celani | Turbulence in More than Two and Less than Three Dimensions[END_REF].

2-D components has much stronger fluctuations than the forward cascading flux that has lead to the non-monotonic behaviour of the flux observed in figure 2.21 at small k due to insufficient time averaging.

A three-mode model

In this section, we formulate and analyse a simple three-scale ODE model which reproduces certain features of the DNS results described in section 2.2.

As illustrated in figure 2.22, our model comprises a 2-D mode U 2D at the scale L of the domain, a mode U f at the forcing scale and a 3-D mode U 3D at the scale of the layer height H, whose interactions are spectrally non-local, thus taking into account a major result from the previous section. The model describes the system at steady state where these scales are well separated, but is not expected to capture the transient phase where all intermediate scales between L and participate due to the inverse cascade. As before, let Q = /H, K = /L and Re = ( 4 ) 1/3 /ν. Interactions between modes are modelled using eddy viscosity, which amounts to modifying the molecular viscosity ν by terms involving the small-scale velocities, modelling the effect of small-scale on largescale motions as diffusive. The conceptual foundations of eddy viscosity were laid by de Saint Venant in his effective viscosity, [START_REF] De Saint-Venant | Notea joindre au mémoire sur la dynamique des fluides[END_REF] (see [START_REF] Darrigol | Joseph Boussinesq's legacy in fluid mechanics[END_REF] for a historical review). Eddy viscosity was quantified for the first time by [START_REF] Boussinesq | Essai sur la théorie des eaux courantes[END_REF] and later widely popularised through the works of Taylor [START_REF] Taylor | I. Eddy motion in the atmosphere[END_REF][START_REF] Taylor | Diffusion by continuous movements[END_REF], see also [START_REF] Kraichnan | Eddy viscosity in two and three dimensions[END_REF]. It has been estimated in various limits both in 2-D and 3-D flows, [START_REF] Yakhot | Negative-viscosity phenomena in three-dimensional flows[END_REF][START_REF] Hefer | Inverse energy cascade in a time-dependent flow[END_REF][START_REF] Gama | Negative eddy viscosity in isotropically forced two-dimensional flow: linear and nonlinear dynamics[END_REF][START_REF] Dubrulle | Eddy viscosity of parity-invariant flow[END_REF][START_REF] Meshalkin | Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid[END_REF][START_REF] Sivashinsky | Negative viscosity effect in large-scale flows[END_REF][START_REF] Bayly | Positive-and negative-effective-viscosity phenomena in isotropic and anisotropic Beltrami flows[END_REF][START_REF] Cameron | Large-scale instabilities of helical flows[END_REF][START_REF] Alexakis | Three-dimensional instabilities and negative eddy viscosity in thinlayer flows[END_REF].

There are two notable cases where the dependence of eddy viscosity ν E on the flow amplitude U s and length scale l s is known. For Re → ∞, one expects that ν E becomes independent of ν and the only dimensionally consistent possibility for ν E is given by

ν E = c 1 U s l s .
(2.17)

where c 1 is a non-dimensional number. In the low-Re limit, on the other hand, an exact asymptotic expansion can be carried out, see [START_REF] Dubrulle | Eddy viscosity of parity-invariant flow[END_REF], which reveals that

ν E = c 2 U 2 s l 2 s ν + O(U 4 s l 4 s /ν 2 ), (2.18) 
where the non-dimensional number c 2 can be evaluated by the expansion. It may seem counter-intuitive that the low-Re limit could have any relevance for the turbulent problem, but since we have established in the DNS that the presence of Q 2D is a finite-Re phenomenon (Q 2D ∝ Re 3/4 ), we clearly need to include a finite-Re ingredient to describe it and the exact result (2.18) is selected for this purpose. The signs of the prefactors c 1 , c 2 depends on the exact form of the small-scale flow and in particular its dimensionality. While 2-D flows tend to have negative eddy viscosities and transfer energy upscale, 3-D flows are expected to have positive eddy viscosities and transfer energy downscale.

For our model, we are going to consider that interactions among the three different scales L > > H are such that the flow at the smaller scale acts as an eddy viscosity on the flow at the larger scale. These interactions are illustrated in figure 2. [START_REF] Bartello | Coherent structures in rotating threedimensional turbulence[END_REF]. In particular, the energy injected at the forcing scale k f at a rate is transferred both to the large scale L (by a negative eddy viscosity -µ) and to the small scales (by a positive eddy viscosity σ). The large scales lose energy directly to the small scales (via a positive eddy viscosity term η), while the small scales dissipate energy by transfer to the dissipation range, modelled by a non-linear energy sink. In addition, viscosity is finite, such that all scales dissipate locally. The set of equations below formalises these ideas:

d dt U 2 2D = -(ν -µ + η) U 2 2D L 2 , (2.19) d dt U 2 f = -(ν + σ) U 2 f 2 -µ U 2 2D L 2 , ( 2.20) 
d dt U 2 3D =η U 2 2D L 2 + σ U 2 f 2 - U 3 3D H -ν U 2 3D H 2 . (2.21)
Note in particular that eddy viscosities do not dissipate energy, but merely redistribute it between different scales. Adding the three model equations leads to

d dt (U 2 2D + U 2 f + U 2 3D ) = -ν U 2 2D L 2 + U 2 f 2 + U 2 3D H 2 - U 3 3D H ,
showing that the total kinetic energy only changes due to molecular viscosity ν, energy injection and the sink term representing the 3-D energy cascade to the dissipation range, U 3 3D /H. Depending on Re, either of the two expressions for eddy viscosity (eqs.

2.17,2.18) may be expected to yield an adequate description of the multi-scale interactions in the problem. A model that interpolates smoothly between the large and small ν limits, thus taking into account the finite-Re information necessary for describing Q 2D , is given by

µ = α U 2 f 2 ν + U f , η = β U 2 3D H 2 ν + U 3D H , σ = γ U 2 3D H 2 ν + U 3D H , ( 2.22) 
with α, β, γ > 0 non-dimensional coupling constants. In the limits ν → 0 and ν → ∞, the above expressions converge to the formulae for eddy viscosities described before. The nonlinear dynamical system thus defined possesses a varying number of fixed points depending on parameters. To classify them, first note that > 0 ⇒ U f = 0 at any fixed point by (2.21b) and the definition of µ in (2.22). Hence, there are four possibilities: As shown in appendix 2.B, in the zero-viscosity limit, there is neither a laminar state nor a 2-D condensate fixed point in the model. This emphasises the importance of including finite-Re information into the model for describing both Q 3D and Q 3D in a single model.

The laminar state appears for values of Re ≡ ( 4 ) 1/3 /ν below a critical value Re c for which there is no transfer, neither to large nor to small scales. Above this critical value, one of the three other states is stable, depending on the value of Q = /H. For small values of Q (large H), the system is in the 3-D turbulence state, where energy is only exchanged between the forcing scale and the small scale H. Above the critical value Q 3D , the system transitions to the flux-loop condensate state where part of the injected energy is transferred to the large scales and then back to the small scales, thus forming a loop. Finally, at sufficiently large Q above a second critical point Q 3D , the system transitions to the 2-D condensate where it follows 2-D dynamics and there is only a transfer of the injected energy to the large scales.

From this simple model, three major predictions may be derived:

• Firstly, the critical point Q 3D is predicted to converge to a Re-independent value at large Re as is shown in figure 2.23. In fact, in the infinite-Re limit of the model, there remains only one bifurcation, namely that at Q 3D between 3-D turbulence and the split cascade state.

• Secondly, the critical point Q 2D is predicted to obey • and thirdly, for Q > Q 2D , i.e. in the 2-D turbulent state, the steady-state energy is predicted to be

Q 2D ∝ Re 3/4 , ( 2 
U 2 2D = ( ) 2/3 L 2 Re. (2.24)
The detailed derivations of these results are given in Appendix 2.B. All these three main features are in agreement with the DNS and therefore the diagram that displays the different phases of the model, shown in figure 2.24a, resembles the corresponding figure 2.6a from the DNS. Indeed, the same rescaling collapses the curves in both cases, see figures 2.6b and 2.24b. We also note that for 0

< Q 2D -Q 1, it is predicted that U 2 3D ∼ (Q 2D -Q) 2 (see appendix 2.B)
, again in agreement with the DNS.

We understand the present ODE model as a mean-field description which captures the global system behaviour and averaged quantities, but does not take fluctuations into account. Due to the importance of fluctuations near criticality, the ODE model does not reproduce the detailed behaviour there. However, when a fluctuating energy input is taken into account by replacing → + σζ in (2.21 b) (ζ being white Gaussian noise), on-off intermittency is found close to Q 2D where the PDF of U 2 3D follows a power law with an exponent tending to -1 as Q → Q 2D from below (see appendix 2.B), just as in the DNS. This is a consequence of the structure of the model equations.

To conclude this section, we reiterate that the model presented above successfully captures the location of the critical points (up to a scaling factor) as well as the amplitude of the condensate U 2 2D , while not producing a hysteresis. The intermittency close to Q 2D found in DNS is reproduced by the model when additive noise is included.

Conclusions

We present the first detailed numerical study of the steady state of thin-layer turbulence as a function of the system parameters, using an extensive set of high-resolution simulations.

It is shown that the split cascade observed at early times of the flow evolution [START_REF] Celani | Turbulence in More than Two and Less than Three Dimensions[END_REF][START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF][START_REF] Musacchio | Split energy cascade in turbulent thin fluid layers[END_REF] leads to the formation of condensate states in the long-time limit. Three different states were found for large Re. (a) For very thick layers the system saturates in a regular 3-D turbulence state with no inverse cascade and negligible dissipation at large scales. (b) At intermediate layer thickness, a flux-loop condensate is formed in which part of the energy transferred to the condensate by the 2-D motions is transferred back to the small scales by the 3-D motions. (c) For very thin layers, the system becomes two-dimensional and forms a 2-D turbulence condensate, where the inversely cascading energy is balanced by the dissipation due to viscosity at large scales. The transition from 3-D turbulence to the flux loop condensate occurs at a critical height H 3D (or

Q -1 3D
) that is a decreasing (increasing) function of Re, but saturates at a Re-independent value for large Re. For values of H slightly smaller than H 2D the amplitude of the large-scale velocity U 2 ls jumps discontinuously to a large value and increases linearly after that. Close to the threshold, a hysteresis diagram was constructed where the system saturates to a different attractor (3-D turbulence or flux-loop condensate) depending on the initial conditions. Whether this hysteresis behaviour persists at larger Re and larger box-sizes 1/K remains an open question. We provided evidence of rare transitions betweeen the two branches of the hysteresis loop, whose characteristic time changes with Q faster than exponentially, which is qualitatively similar to turbulent puff decay and splitting statistics. The flux-loop condensate transitions to a 2-D turbulence condensate at a critical height H 2D that scales like H 2D ∝ Re -3/4 unlike the early stages of the development where H 2D ∝ Re -1/2 [START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF]. For the 2-D turbulence condensate, the large-scale energy was found to be inversely proportional to Re and independent from H. The transition from a flux-loop condensate to a 2-D turbulence condensate showed strong spatio-temporal intermittency leading to a scaling of the average 3-D energy as the square of the deviation from onset U 2 3D ∝ (H -H 2D ) 2 , similarly as in [START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF].

A three-mode model has been proposed which reproduces the DNS scalings of the the critical points H 2D and H 3D as well as the amplitude of the condensate in the 2-D turbulence regime. The model demonstrates the basic mechanisms involved: A 2-D flow that moves energy from the forcing scale to the condensate and a 3-D flow that takes away energy both form the large scales and the forcing scales. The model does not describe bistability or discontinuity close to Q 3D . Nonetheless, it captures the occurrence of both transitions observed in the DNS and provides several correct quantitative predictions.

We stress once more that the present work is the first numerical study of thin-layer turbulent condensation. Previous studies of the thin-layer problem were restricted to the transient inverse-cascade regime due the long computation time needed to reach the condensate state. Therefore, the present study is novel and provides an important first step towards a better understanding of thin-layer turbulent condensates (of which Earth's atmosphere and ocean may be viewed as examples, despite the idealised nature of our set-up), many open questions remain. The complexity of the physics involved close to criticality goes beyond the mean field model and requires further targeted studies. We are convinced that both critical points deserve more detailed investigations by means of numerical simulations, experiments and modelling. In Chapter 3, we introduce a pointvortex model for the dynamics of 3-D perturbations close to Q 2D . Another important remaining open problem is the formation of an inverse cascade from a 3-D forcing. While this was not discussed here, we showed in P3 that the onset of the inverse cascade is delayed as one increases the fraction of energy injected into the 3-D modes, as compared to the 2-D modes. This is important since natural forcing mechanisms like convection, which also display condensates [START_REF] Favier | Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection[END_REF][START_REF] Rubio | Upscale energy transfer in three-dimensional rapidly rotating turbulent convection[END_REF][START_REF] Guervilly | Large-scale vortices in rapidly rotating Rayleigh-Bénard convection[END_REF], do generate 3-D motion.

Concerning the realisability of the present numerical results in an experiment, it needs to be stressed that this study only considers the triply periodic domain for simplicity. When attempting to transfer the results to non-slip boundary conditions, a word of caution is therefore in order: viscous boundary layers may lead to large-scale drag, which is explicitly left out from the model set-up used here. Also, 3-D turbulence in boundary layers may infect the interior flow, thereby affecting even high wavenumbers and the two-dimensionalisation even in the bulk of the flow. However, the wealth of experimental observations of turbulent condensates in thin layers, as referenced in the introduction and summarised in [START_REF] Xia | Two-dimensional turbulence in three-dimensional flows[END_REF], suggests that the condensation phenomenon at finite height is robust across different boundary conditions, as well as across the different forcing methods used in experiments and numerical simulations. In particular, it would be very interesting to probe the discontinuity and associated phenomena reported here in an experiment. This has not been done before and experimental studies of thin-layer turbulent condensates have the advantage of allowing higher Reynolds numbers and much better time statistics.

We note that a short two weeks after the publication of P1, another paper [START_REF] Musacchio | Condensate in quasi-two-dimensional turbulence[END_REF] was published on condensates in thin-layer turbulence. However, while that study also investigated eddy viscosity effects, the focus of the two works was different, since the authors of that study focussed on a small number of DNS, rather than an extensive parameter study which we undertook here (and in P1).

2.A On-off intermittency due to Gaussian white noise

Here we give a brief overview of on-off intermittency in the simple model system

Ẋ = (µ + f (t))X -X 3 , ( 2.25) 
with a mean growth rate µ, a Gaussian white noise f (t) with f (t) = 0, and f (t)f (t ) = 2σ 2 δ(t -t ). This nonlinear stochastic differential equation is equivalent to a Fokker-Planck equation, which is a partial differential equation, for the probability density p(x, t) of X. We let a(x) = µx -x 3 , b(x) = σX. Since the noise amplitude depends on X, the noise is said to be multiplicative, making it necessary to specify the exact evaluation procedure of the noise amplitude. In the Stratonovich interpretation [START_REF] Stratonovich | A new representation for stochastic integrals and equations[END_REF], which preserves the rules of standard calculus, one the Fokker-Planck equation reads

∂ t p(x, t) = ∂ x J(x, t), ( 2.26) 
where

J(x, t) = -(a + bb )p + ∂ x (b 2 p).
The steady-state solution of this equation (satisfying p → 0 at infinity) is given by

p s (x) = N x µ σ 2 -1 e -x 2 2σ 2 , ( 2.27) 
with a normalisation constant N , such that p(x)dx = 1. It can be shown that all positive-order moments of this probability density scale linearly in µ as µ → 0 + , which is an instance of anomalous scaling. In Chapter 3, the above analysis will be extended to non-Gaussian noise.

2.B Derivation of mean field model predictions

Scalings of critical points and condensate amplitude

In the low viscosity limit, the eddy viscosities given in equation (2.22), take the form (2.17) and the resulting system of equations reads

∂ t U 2 2D = (αU f )U 2 2D L 2 - (βU 3D H)U 2 2D L 2
(2.28)

∂ t U 2 f = - (αU f )U 2 2D L 2 - (γU 3D H)U 2 f 2 (2.29) ∂ t U 2 3D = (βU 3D H)U 2 2D L 2 + (γU 3D H)U 2 f 2 - U 3 3D H (2.30)
One can easily see that these equations do not permit a fixed point with U 3D = 0 when > 0. To show this, first note that, as in the finite Re case, the forcing scale velocity U f cannot vanish at a fixed point if = 0. Assume there exists a fixed point with U 3D = 0. Then equation (2.30c) is trivially satisfied, while (2.30a) implies that U 2D = 0 or U f = 0. Since U f must be non-zero, we have U 2D = 0, which leads to a contradiction in equation (2.30b) for any = 0. Hence neither a laminar flow state nor a 2-D condensate state exists in the system in the infinite Re limit. The only two remaining fixed points are 3-D turbulence and the flux-loop condensate. The former is given by

U 2 2D = 0, U 2 f = 2/3 2 γH 4/3 , U 2 3D = ( H) 2/3 (2.31)
Using this result and considering equation (2.30a), we can find that the 3-D turbulence fixed point becomes unstable to 2-D perturbations at

H = α 2 β 2 γ 1/4
(2.32)

and thus we obtain that

Q 3D = β 2 γ α 2 1/4 . (2.33)
Hence, in the low-viscosity limit of our three-scale model, there remains only one bifurcation, namely that at Q 3D between two-dimensional turbulence and the split cascade state. The second critical point Q 2D vanishes to infinity as Q 2D ∝ Re 3/4 in this limit. Figure 2.23 demonstrates close to Q 3D that the full model converges to the solution obtained from the asymptotic form of the equations 2.30 as Re increases. This is consistent with the convergence of Q 3D in the DNS shown in figure 2.5.

At finite viscosity, one has to solve the full equations,(2.22) which is difficult analytically for the 2-D condensate state. In order to facilitate analytical progress in deriving predictions from the model, one may formally take the high viscosity limit in which the different eddy viscosities take the form of equation (2.18). The model equations then become

∂ t U 2 2D = -ν -α U 2 f 2 ν + β U 2 3D H 2 ν U 2 2D L 2 , (2.34) ∂ t U 2 f = -ν + γ U 2 3D H 2 ν U 2 f 2 -α U 2 f 2 ν U 2 2D L 2 , (2.35) ∂ t U 2 3D =β U 2 3D H 2 ν U 2 2D L 2 + γ U 2 3D H 2 ν U 2 f 2 - U 3 3D H -ν U 2 3D H 2 . (2.36)
To obtain this limiting form of the equations, it is assumed that ν U f , U 3D H, while no restriction is imposed on U 2D ; in particular, the case where the large-scale-based Reynolds number U 2D L/ν is high, which is most relevant in the condensate state, is included. The laminar flow is unstable to 3-D perturbations when Q < γ 1/4 Re 3/4 and unstable to 2-D perturbations when

Re > 1/α 1/3 .
(2.37)

When the latter condition is satisfied and H is sufficiently small (Q sufficiently large), the system is attracted to the 2-D condensate state, given by

U 2 2D = L 2 ν - ν 3 4 α , U 2 f = ν 2 α 2 , U 3D = 0.
Note that U 2 2D is inversely proportional to the viscosity and proportional to L 2 in agreement with the scaling of the data in figure 2.6b. The 2-D condensate state ceases to be an attractor of the system when H is sufficiently large for U 3D to become unstable. This occurs when

H 4 > β ν 3 + γ -β α 4 -1
.

(2.38)

Hence, we conclude that

Q 2D = β 4 ν 3 + γ -β α 1/4 = βRe 3 + γ -β α 1/4 . ( 2.39) 
Thus, for moderate values of Re, there is an approximate scaling Q 2D ∝ Re 3/4 ∝ η, the dissipation length (note that Re 3 > 1/α due to eq. (2.37)), in agreement with the results obtained in section 2.2, where we showed that the U 2 2D data points collapse under rescaling such that QRe 3/4 = η/H is on the abscissa and

U 2 2D K 2 /[Re( ) 2/3
] on the coordinate. Results from the full model equations (2.21) and (2.22) are shown in figure 2.24 where the same scaling is applied. The corresponding plots for equations (2.36) are very similar. Furthermore, an asymptotic analysis close to Q 2D described in section 2.B of this appendix reveals the scaling

U 2 3D ∝ (Q 2D -Q) 2 for Q Q 2D
, which is the same as in the DNS results shown in figure 2.8b (although no intermittency is present in the model). The other critical point Q 3D , where the 3D turbulence solution changes stability, can be evaluated numerically and is found to increase with Re indefinitely. This, however, is an artefact of the high viscosity asymptotic form of the eddy viscosities used in this subsection.

Behaviour of

U 3D near Q 2D
Here, we derive the behaviour close to H 2D in the three-scale model. First consider H = H 2D (1 + δ) and let x = (x, y, z) 

T = (U 2 2D , U 2 f , U 2 3D ) T , x = (x, ỹ, z) T = x -(x 2D , y 2D , 0)
d dt x =    -ν L 2 α 2 x 2 νL 2 -βx 2 H 2 νL 2 -αy 2 νL 2 -ν 2 -γH 2 y 2 ν 2 0 0 C    x +    0 0 -1/H 2D    z3/2 + xT Bx, (2.40) 
where C = -ν H 2 + βH 2 x 2 νL 2 + γH 2 y 2 ν 2 and the specific coefficients of the quadratic term are irrelevant here. By definition of

H 2D , C(δ = 0) = -ν H 2 2D + βH 2 2D x 2 νL 2 + γH 2 2D y 2 ν 2 = 0. Hence, for small δ, C ∝ δ. Specifically, C δ 1 ∼ 2ν H 2 2D + 2βx 2 νL 2 + 2γy 2 ν 2 δ. (2.41)
Hence, considering the z component and balancing the linear term with the z3/2 term, we deduce that

z δ 1 ∼ 2ν H 2 2D + 2βx 2 H 2 2D νL 2 + 2γy 2 H 2 2D ν 2 2 H 2 2D δ 2 . (2.42)
This means that U 2 3D ∝ δ 2 , which is precisely the scaling observed in figure 2.8b. It is important to note, however, that the asymptotic result (2.42) is only valid for very small δ and cannot be extended to δ ∼ O [START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF] where the quadratic terms are dominant.

On-off intermittency in the three-scale model

When a fluctuating energy injection rate is taken into account in the model by replacing → + σζ, where ζ ∼ N (0, 1) is Gaussian white noise, on-off intermittency in U 2 3D can be observed in the three-scale model. This is illustrated in figure 2.25 in terms of the time series of U 2 3D and the corresponding PDF, which approaches a power law with exponent -1 as Q → Q 2D . Chapter 3

Intermittency of three-dimensional perturbations in a point-vortex model

Les modèles devraient essayer de ressembler au portrait. Models should try to look similar to the portrait.

Salvador Dalí

This chapter is based on the publications P5 and P6, from which part of the text and figures were taken. In this chapter, we take a modelling approach to three-dimensional (3-D) instabilities such as those encountered close to Q 2D in the previous chapter. Such three-dimensional (3-D) instabilities on a (potentially turbulent) two-dimensional (2-D) flow are still incompletely understood, despite recent progress.The goal of this chapter is to find a simple, physically based model which can be studied in detail at lower numerical cost.

In search for a non-trivial 2-D base flow, we turn to point vortices. Point-vortex flow is a simple (but singular, i.e. weak) solution of the 2-D Euler equation describing inviscid fluid flow, in which N strongly localized vortices advect each another chaotically by their induced velocity fields [START_REF] Helmholtz | LXIII. On Integrals of the hydrodynamical equations, which express vortex-motion[END_REF][START_REF] Kirchhoff | Vorlesungen über mathematische Physik: Mechanik[END_REF][START_REF] Saffman | Difficulties with three-dimensional weak solutions for inviscid incompressible flow[END_REF][START_REF] Greengard | Singular vortex systems and weak solutions of the Euler equations[END_REF][START_REF] Goodman | Convergence of the point vortex method for the 2-D Euler equations[END_REF]. They admit a famous equilibrium statistical mechanics description due to Onsager [START_REF] Onsager | Statistical hydrodynamics[END_REF][START_REF] Eyink | Onsager and the theory of hydrodynamic turbulence[END_REF], who showed that states with negative temperatures exist in the system, where same-signed point vortices cluster to form two strong counter-rotating vortices. Such point-vortex clusters involve an organisation of vorticity at the largest scale, which resembles the condensate vortices arising from the inverse cascade in 2-D turbulence.

Point-vortex models have found numerous applications in simplified descriptions of turbulent fluid flows in the past. An early successful simulation of the inverse cascade in 2-D turbulence indeed relied on the point-vortex-based vortex-in-cell approximation, [START_REF] Siggia | Point-vortex simulation of the inverse energy cascade in two-dimensional turbulence[END_REF]. In the 1990s, there was a significant activity devoted to vortex gas modelling of (particularly decaying) 2-D turbulence [START_REF] Carnevale | Evolution of vortex statistics in two-dimensional turbulence[END_REF][START_REF] Benzi | A simple point vortex model for two-dimensional decaying turbulence[END_REF][START_REF] Weiss | Temporal scaling behavior of decaying twodimensional turbulence[END_REF][START_REF] Trizac | A coalescence model for freely decaying two-dimensional turbulence[END_REF][START_REF] Weiss | Punctuated Hamiltonian models of structured turbulence[END_REF], where merging rules for point vortices were prescribed, yielding 2-D turbulence-like behavior at reduced numerical cost. Point-vortex models have also been used to investigate stirring by chaotic advection [START_REF] Aref | Stirring by chaotic advection[END_REF], as well as Lagrangian intermittency, pair dispersion and transport in turbulence [START_REF] Rast | Point-vortex model for Lagrangian intermittency in turbulence[END_REF][START_REF] Rast | Pair dispersion in turbulence: the subdominant role of scaling[END_REF][START_REF] Rast | Turbulent transport with intermittency: Expectation of a scalar concentration[END_REF]. Recently, vortex gas scaling arguments were leveraged to find a highly accurate local closure in baroclinic turbulence [START_REF] Gallet | The vortex gas scaling regime of baroclinic turbulence[END_REF]. Other physical problems which have been fruitfully treated by point-vortex models include the stability of vortex streets and vortex sheets [START_REF] Horace | Hydrodynamics[END_REF][START_REF] Aref | Evolution and breakdown of a vortex street in two dimensions[END_REF][START_REF] Krasny | A study of singularity formation in a vortex sheet by the point-vortex approximation[END_REF][START_REF] Krasny | Desingularization of periodic vortex sheet roll-up[END_REF], quantum turbulence [START_REF] Nowak | Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas[END_REF][START_REF] Reeves | Inverse energy cascade in forced two-dimensional quantum turbulence[END_REF][START_REF] Billam | Onsager-Kraichnan condensation in decaying two-dimensional quantum turbulence[END_REF][START_REF] Griffin | Magnus-force model for active particles trapped on superfluid vortices[END_REF], plasma dynamics [START_REF] Joyce | Negative temperature states for the twodimensional guiding-centre plasma[END_REF] and stellar dynamics [START_REF] Chavanis | Statistical mechanics of twodimensional vortices and collisionless stellar systems[END_REF].

For rotating flows, flows under the action of an external magnetic field, and flows in a thin layer (see previous chapter), it has been proven using upper bound theory [START_REF] Gallet | Exact two-dimensionalization of rapidly rotating large-Reynoldsnumber flows[END_REF][START_REF] Gallet | Exact two-dimensionalization of low-magnetic-Reynolds-number flows subject to a strong magnetic field[END_REF] that a non-dimensional threshold exists in terms of the layer depth and fluid viscosity (as well as the rotation rate and or the external magnetic field, if present), where the flow undergoes exact bi-dimensionalization (for periodic or stress-free boundary conditions). Beyond this point, 3-D perturbations away from a 2-D flow decay due to the action of viscous damping. This has profound consequences for turbulent flows since the phenomenology of 2-D turbulence differs strongly from the 3-D case due to additional conserved quantities in the 2-D case. Therefore, it is important to understand quasi-2-D flows close to the onset of three-dimensionality. The bounding theory only establishes the existence of a threshold, but since it is built on rather conservative estimates, it cannot capture the physics occurring near the threshold. Very recently, in an extensive numerical study [START_REF] Seshasayanan | Onset of three-dimensionality in rapidly rotating turbulent flows[END_REF], Seshasayanan and Gallet investigated the linear stability of 3-D perturbations on a 2-D turbulent condensate background flow at the onset of three-dimensionality. The authors showed that when instability is present, the time evolution of the energy of linear 3-D modes involves phases of jump-like exponential growth occurring randomly in time, inter-spaced by plateau-like phases where growth is absent. Here, in the spirit of the wide range of applications of point vortices described above, we formulate and analyze a point-vortex model of localized 3-D perturbations in quasi-2-D turbulence, whose dynamics are qualitatively similar to the exponential growth and decay evolution found in [START_REF] Seshasayanan | Onset of three-dimensionality in rapidly rotating turbulent flows[END_REF].

The remainder of this chapter is structured as follows. In section 3.1, we provide a brief introduction to the concept of point-vortex temperature, in section 3.2, we formulate the model to be studied. In section 3.3, we describe the method of our investigation. Then, in section 3.4 we present the results of our numerical simulations and in section 3.5 we discuss the implications of our modelling results and remaining open questions. Finally, in section 3.6 we present a detailed analysis of a new form of intermittency which arises in our model.

Background: Temperature of point-vortex states

We briefly summarize the concept of the temperature of point-vortex flow, which was introduced in 1949 by Onsager [START_REF] Onsager | Statistical hydrodynamics[END_REF]. The energy of a set of point vortices is given by the Hamiltonian H, which only depends on the vortex positions (x, y). These positions are the conjugate variables of the point-vortex Hamiltonian. In bounded domains, the total Figure 3.1: Overview of point-vortex states at negative, zero and positive inverse temperatures β. Clustering occurs for β < β c < 0, a homogeneous state is found at β = 0, and pair condensation occurs for β > β pc . phase space volume is therefore finite. We denote by Ω(E) the phase space volume occupied by states whose energies H lie in the interval [E, E +dE]. Then the thermodynamic entropy is k B ln(Ω(E)/Ω 0 ), where k B is the Boltzmann constant and Ω 0 is a reference volume required for dimensional reasons. In the extreme situation where vortex dipoles (vortex-antivortex pairs) collapse, which corresponds to negative energies E < 0, the available phase space volume is vanishingly small, Ω(E) E→-∞ -→ 0. The opposite limit of large positive energies occurs when like-sign vortices concentrate at a point, in which case also Ω(E) E→∞ -→ 0. Since the total volume is non-zero, the non-negative function Ω(E) must reach a maximum at an intermediate energy -∞ < E m < ∞. The associated microcanonical inverse temperature,

β(E) ≡ ∂ ln(Ω(E)) ∂E (3.1)
is thus positive for E < E m , but vanishes at E = E m and is negative for E > E m . Negative-temperature states can generally arise in both classical and quantum systems with a finite number of degrees of freedom whose state space is bounded, such as localized spin systems [START_REF] Purcell | A nuclear spin system at negative temperature[END_REF][START_REF] Oja | Nuclear magnetic ordering in simple metals at positive and negative nanokelvin temperatures[END_REF][START_REF] Medley | Spin gradient demagnetization cooling of ultracold atoms[END_REF]. In the point-vortex system, high-energy states at negative temperatures, corresponding to condensates featuring same-sign vortex clusters, have been extensively studied since Onsager's initial contribution [START_REF] Onsager | Statistical hydrodynamics[END_REF][START_REF] Yatsuyanagi | Dynamics of two-sign point vortices in positive and negative temperature states[END_REF][START_REF] Eyink | Onsager and the theory of hydrodynamic turbulence[END_REF][START_REF] Yu | Theory of the vortex-clustering transition in a confined two-dimensional quantum fluid[END_REF].

In particular, there is a negative clustering temperature β c , which marks the onset of same-sign vortex clustering. Similarly, there is a positive pair condensation temperature β pc , at which opposite-sign vortices form dipole pairs which propagate through the domain, see [START_REF] Cornu | On the two-dimensional Coulomb gas[END_REF]. The vanishing inverse temperature at E = E m corresponds to a homogeneous state with positive and negative vortices spread out evenly over the domain. The point-vortex states at different temperatures are summarized in figure 3.1. Such point-vortex states at any given inverse temperature β may be generated using the noisy gradient method presented in appendix 4.A, which was previously introduced in [START_REF] Krstulovic | Generation and characterization of absolute equilibrium of compressible flows[END_REF]. Specifically, once a statistically stationary state is reached, this numerical method generates random point-vortex states according to the canonical distribution associated with the inverse temperature β. For a given value of β, the mean energy in the statistically stationary state can be measured from the time series. Thus, like every microcanonical temperature corresponds to an energy E according to (3.1), in the noisy gradient method every value of β corresponds to a mean energy E in steady state. The resulting mean energy as a function of temperature is shown in figure 3.2.
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E Figure 3.2: Mean point-vortex energy E of N v =
32 vortices versus β, computed using the method described in appendix 4.A in the periodic domain [0, 2π] × [0, 2π] (with a truncation at distances smaller than = 0.1, cf. appendix 4.A). This curve allows a translation from vortex energies at steady state to corresponding temperatures.

The model

Here we construct the simplified model of the interaction of 2-D and 3-D flow studied in this chapter. The model is formulated in the same spirit as shell models of turbulent cascade processes [START_REF] Biferale | Shell models of energy cascade in turbulence[END_REF]. Shell models replace the Navier-Stokes dynamics with a simpler set of coupled nonlinear ordinary differential equations, conserving a number of quantities including total energy and enstrophy in the 2-D case, with the goal of providing insights into turbulent cascade processes. The present model, as we show below, may similarly provide insights into the dynamics of 3-D instabilities on turbulent 2-D flows.

For the sake of simplicity and clarity, the theoretical formalism is presented in the infinite domain. In appendix 3.A, we provide the equations for the 2-D doubly periodic domain [0, 2πL] × [0, 2πL], where the statistical point-vortex temperature from section 3.1 is well defined.

Our main goal is to arrive at a model of minimum complexity describing the growth of 3-D perturbations on a 2-D large-scale condensate flow. Two key ingredients must be selected. Firstly, a model of the two-dimensional base flow must be chosen. Here we opt for 2-D point-vortex flow, in view of its many successful modelling applications to two-dimensional turbulent flows, as presented in the introduction. Specifically, we consider an even number N v of point vortices with circulations Γ i = Γ for odd i and Γ i = -Γ for even i, located at positions x

(i) v = (x (i) v , y (i) v ).
Secondly, the 3-D perturbations have to be modelled. While there exist 3-D vortex filament models, commonly used in quantum turbulence, which describe mutual advection of curved vortex lines [START_REF] Bustamante | Derivation of the Biot-Savart equation from the nonlinear Schrödinger equation[END_REF][START_REF] Hänninen | Vortex filament method as a tool for computational visualization of quantum turbulence[END_REF], these are significantly more complex than their 2-D counterparts -in particular, each segment of every vortex line is advected by all other vortex lines via the Biot-Savart law, and in addition proper handling of vortex reconnections is a complicating factor. Instead, here we seek a simpler description. Simulations of turbulent flows close to the onset of three-dimensionality (including those described in Chapter 3) reveal that 3-D perturbations are strongly localized (spatially intermittent) in the 2-D plane [START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF][START_REF] Seshasayanan | Onset of three-dimensionality in rapidly rotating turbulent flows[END_REF]. Indeed, close to the onset of three-dimensionality, high wavenumbers in the third dimension are suppressed by viscous damping. Hence, the 3-D instability, while being strongly localized in the 2-D plane, is also expected to have a simple spatial structure in the third dimension, and thus its intensity can be approximately characterized by a single scalar amplitude.

Combining these two insights, we model 3-D motions as a set of N p localized, pointlike entities in the plane whose detailed spatial structure in the third dimension is ignored, and whose intensity is characterized by an effective perturbation amplitude A k , for k = 1, . . . , N p . We name these entities "ergophages" and denote their positions by x

(k) p = (x (k) p , y (k) p ).
While the model describes 3-D flow, the mathematical structure of the model is effectively 2-D. We stress that this is not a contradiction, since the reduction is based on the physical properties of 3-D perturbations close to onset, and retains 3-D information.

Point vortices and 3-D perturbations induce velocity fields that advect each other according to the equations

d dt x (i) v = U (i) v + U (i) p + u (i) f (3.2) and d dt x (k) p = U (k) v + v (k) f (3.3)
where

U (i) v
is the velocity induced on vortex i by all point vortices i = j, U

p is the velocity induced on vortex i by the 3-D ergophages and U (k) v is the velocity induced on ergophage k by all N v point vortices. Finally, u

(i) f and v (k)
f are externally imposed velocity fields that could inject energy to the system. Also, note that ergophages do not advect each other, a choice which is made for simplicity -mutual advection of ergophages can easily be included in the model presented below (while this was not studied in detail, it did not seem to affect the qualitative model behavior).

In the absence of ergophages and external velocities, the model reduces to classical point-vortex flow. In this case, point vortices move due to their mutual advection, following Hamiltonian dynamics so that the velocity field U (i) v can be written as

U (i) v = Γ -1 i ∂ y (i) v H -∂ x (i) v H , ( 3.4) 
corresponding to the advection of the i-th vortex by all vortices j = i. The Hamiltonian H in R 2 is given by

H(x (1) v , . . . , x (Nv) v ) = - 1 2 Nv i,j=1 i =j Γ i Γ j log(|x (i) v -x (j) v |), (3.5) 
which is a sum over pairs depending on the vortex-vortex distances alone. The velocity field U (k) v closely resembles U (i) v , but it includes the advection due to all N v vortices, formally omitting the condition i = j in H before differentiating in (3.4) and evaluating at x

(i) v → x (k)
p . The Hamiltonian also gives the kinetic energy of the flow (up to a factor of (2π) -1 times the constant fluid density, and an additive infinite constant due to selfenergy), which is conserved. The point-vortex energy increases when same-sign vortices approach each other and when opposite-sign vortices move apart, while it decreases when same-sign vortices move apart and when opposite-sign vortices approach each other.

In the presence of ergophages, energy of the 2-D field can be transferred to the 3-D field perturbations. Thus, in order to gain energy, an ergophage must reduce the energy of a given point-vortex configuration on which it is superimposed. Each ergophage induces a 3-D perturbation velocity field u k p (x) of amplitude A 2 k . Importantly, despite the model being formally 2-D, the fact that ergophages represent 3-D structures implies that u (k) p (x) has a non-zero divergence in the (x, y) plane. This is in contrast to the velocity field U (i) v (x) induced by 2-D point vortices, whose 2-D divergence vanishes. The total velocity field induced by the ergophages is then given by

U p (x) = Np k=1 A 2 k u (k) p (x), (3.6) 
such that the velocity induced on vortex i can be written as

U (i) p = U p x (i)
v . This field modifies the point-vortex positions and thus their energy, allowing ergophages to grow under suitable conditions.

Our choice for u (k) p (x) should be the simplest possible. One might attempt to obtain an approximate profile directly from DNS results close to Q 2D . However, this is likely to complicate the model. It is shown in the appendix 3.D that the choice of a monopole, which at first does suggest itself for its simplicity, cannot produce 3-D instability. Hence the simplest non-trivial choice for u (k) p (x) is given by a dipole field,

u (k) p = ( dk • ∇) ∂ x φ (k) ∂ y φ (k) . (3.7)
where dk = (cos(ϕ k ), sin(ϕ k )) is the dipole moment with ϕ k the angle between the dipole moment and the x-axis. The potential φ (k) is given by

φ (k) (x) = - 1 2 c log(|x (k) p -x|), (3.8) 
Figure 3.3: Illustration of how a velocity field u p (steam lines) due to a 3-D perturbation at x p , can reduce point-vortex energy. This is done by increasing the distance between the same-sign vortices at x

(1) v , x (2) 
v and/or decreasing the distance between opposite-sign vortices at x

(3) v , x (4) 
v . The bold black arrow passing through x p represents the dipole moment.

where c is a coupling coefficient. An example of dipole interactions is shown in figure 3.3. In this case the perturbation velocity field makes same-sign vortices approach each other (e.g. x [START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF] v and x [START_REF] Boffetta | Two-Dimensional Turbulence[END_REF] v in figure 3.3) and opposite-sign vortices move apart (e.g. x

(3) v and x [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF] v in figure 3.3), thus reducing the point-vortex energy. Now, assume one were to interchange x

(1) v ↔ x (4) v and x (2) v ↔ x (3)
v in figure 3.3, keeping x p the same. The dipole field would then cause an increase in point-vortex energy and thus would no longer lead to any 3-D instabilities. However, it suffices to rotate the dipole moment by 180 • to recuperate a 3-D instability. This example illustrates that the dipole field can lead to 3-D instability for a given vortex configuration (even if monopole field would not), provided that the orientation of the dipole moment is suitably chosen. For simplicity the dipole moment in this work will always be chosen such as to ensure maximum (positive) energy extraction from the 2-D field. In our model we assign to the ergophages the 3-D energy

E 3D = 1 2 k A 2 k . (3.9)
The energy exchanges between 2-D and 3-D flow must be conservative. Thus any decrease of the point-vortex energy should correspond to an increase of 3-D ergophage energy. We let the amplitudes A k evolve according to

dA k dt = (γ k -ν)A k -δA 3 k (3.10)
(no implicit summation), where γ k is an instantaneous growth rate caused by interactions with the point vortices, ν (proportional to viscosity) is a linear damping coefficient and δ is a nonlinear damping coefficient due to self-interactions. Such nonlinear effects in threedimensional velocity fields are associated with a Kolmogorov forward energy cascade, whose amplitude will generally depend on system parameters, such as domain geometry and system rotation rate. Hence the coefficient δ should also depend on these system parameters. In order for the coupling to conserve energy, the growth-rate is given by

γ k = - Nv i=1 u (k) p x (i) v • ∇ x (i) v H. (3.11)
As is shown in appendix 4.B, these model equations imply that the total energy

E tot = H + 1 2 Np k=1 A 2 k = H + E 3D (3.12)
is conserved, provided µ = δ = 0 (no dissipation) and u f = 0 (no energy injection). Note that for E tot to be dimensionally consistent, A k must have dimensions of circulation. In addition to the energy, the 2-D Euler equation conserves the so-called Casimir invariants, which are of the form ω n d 2 x, (n = 2 gives the enstrophy), where ω denotes vorticity.

In the point-vortex model, the vorticity depends only on the number and circulation of vortices, both of which are conserved in our model.

In the presence of dissipation it is useful to have a driving mechanism as well, so that a non-trivial steady state is reached. This is achieved by the choice

u (i) f = f ∇ x i H + |β f | -1/2 η i (t) , ( 3.13) 
where η k (t) = (η 1 k (t), η 2 k (t)) T with independent white Gaussian noise components η i k satisfying η i k (t) = 0 and η i k η i k = 2δ i,i δ k,k δ(t -t ) for the ensemble average • . In the absence of ergophages, this noisy-gradient driving leads to a point-vortex flow with temperature β -1 f and is described in detail in appendix 4.A. We emphasize that the driving (3.13) can either increase or decrease the 2-D energy. If the 2-D energy at any given time is above the equilibrium value corresponding to the temperature β -1 f (shown in Fig. 3.2), then the driving will act to decrease energy to the equilibrium value. Conversely, if the 2-D energy is below that equilibrium value, the driving will act to increase the 2-D energy. We also point out that, as a consequence of the inverse energy cascade, 2-D flows typically feature the formation of large-scale coherent structures at late times. Such a structure is observed in the point-vortex system at negative β. At intermediate stages of the inverse cascade process, for instance if the cascade is interrupted by large-scale friction, one finds an approximately homogeneous gas of vortices [START_REF] Mcwilliams | The emergence of isolated, coherent vortices in turbulent flow[END_REF]. In the point-vortex system, this is realized when β ≈ 0. At β > 0, the point-vortex model is characterized by vortex-antivortex bound states. To the best of our knowledge, however, such states are never observed in laboratory experiments [START_REF] Xia | Upscale energy transfer in thick turbulent fluid layers[END_REF][START_REF] Kellay | Hydrodynamics experiments with soap films and soap bubbles: A short review of recent experiments[END_REF] nor numerical studies of turbulent quasi-2-D flows [START_REF] Celani | Turbulence in more than two and less than three dimensions[END_REF][START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF] (and P1). We conclude that the regime β ≤ 0 is the physically relevant one.

Finally, since the total energy is independent of the ergophage positions, we chose v f to be a simple noise term,

v (k) f = ση k (t) (3.14)
where

η i = (η (1) 
i , η

(2) i ), with η (j) i being pairwise independent zero-mean white Gaussian noise terms. The noise is added to eliminate a remaining dependence on initial conditions. Note that in our model, different ergophages do not directly affect each other, neither in terms of their amplitudes, nor their positions. They can only affect each other indirectly by altering the background 2-D flow non-negligibly and thus changing the growth rate γ k experienced by each ergophage. This is mainly motivated by our goal of maximum simplicity. Firstly, the model 3-D energy is independent of ergophage positions, thus we may decide to neglect mutual advection of ergophages in a minimal description of how 3-D energy evolves. Secondly, while in a strongly 3-D flow, the 3-D components of the flow will feed back on one another, the growth or decay of 3-D perturbations at small to moderate 3-D amplitudes on a primarily 2-D flow should be mainly determined by direct interactions between 2-D and 3-D components, rather than interactions between 3-D and 3-D components.

Equations (3.2,3.3,3.10) define the time evolution of our model, which we solve numerically in the following sections.

Numerical implementation

We developed a fully MPI-parallelized Fortran program, using a fourth-order Runge-Kutta time stepper, to simulate the model in the 2-D doubly periodic domain [0, 2πL] × [0, 2πL], based on the Weiss-McWilliams formalism introduced in [START_REF] Weiss | Nonergodicity of point vortices[END_REF]. The parallelization is implemented by assigning a subset of vortex-vortex pairs and vortex-ergophage pairs to each processor, over which to sum when computing quantities involving such pairs such as

U (i) v , U (i)
p , H and γ k . The specific model equations for the periodic domain are given in appendix 3.A. Since the periodic domain has a finite area, the statistical point-vortex temperature introduced in section 3.1 is well defined here and no vortices can escape to infinity. A regularization was introduced at distances smaller than a positive cut-off 2πL (we set /(2πL) = 0.015), similarly as in [START_REF] Krasny | Desingularization of periodic vortex sheet roll-up[END_REF]. This regularization is required to avoid blow-ups, i.e. events where the time step required by the CFL condition [START_REF] Courant | Über die partiellen Differenzengleichungen der mathematischen Physik[END_REF] for well-resolvedness becomes extremely small. The way the cut-off is introduced approximately corresponds to smearing out the delta-peaked vorticity over a circular patch of constant vorticity, also known as a Rankine vortex [START_REF] Acheson | Elementary Fluid Dynamics[END_REF]. In a realistic turbulent flow, there is a cut-off at small length scales related to viscosity. We note that vortex merging does not occur in the point-vortex model used here, with or without a cut-off (however, it may be added explicitly as in [START_REF] Carnevale | Evolution of vortex statistics in two-dimensional turbulence[END_REF][START_REF] Benzi | A simple point vortex model for two-dimensional decaying turbulence[END_REF][START_REF] Weiss | Temporal scaling behavior of decaying twodimensional turbulence[END_REF][START_REF] Trizac | A coalescence model for freely decaying two-dimensional turbulence[END_REF][START_REF] Weiss | Punctuated Hamiltonian models of structured turbulence[END_REF]). The time step ∆t for the Runge-Kutta scheme is dictated by the maximum growth rate γ k , which is associated with close encounters where some distances are of the order of . For highly condensed configurations, where N v /2 vortices form a cluster for each sign of circulation, each cluster comprises approximately N 2 v /8 vortex pairs contributing to γ k . At small distances, u

(k) p = O( -2 ) and ∇ x (i) v H = O( -1
), such that the definition of γ k implies the following upper bound for the time step,

∆t (max(γ k )) -1 ∝ 8 3 N 2 v . ( 3.15) 
For dilute vortex configurations, the largest growth rates stem from encounters between a single ergophage and a single vortex, such that ∆t 3 . This strong dependence of the required time step on the cut-off , and the number of vortices N v for dense configurations, is an important limiting factor in terms of computational cost. The operation of the highest numerical complexity at every time step is the evaluation of γ k , since it requires summing O(N 2 v ) vortex-vortex pairs for every k = 1, . . . , N p .

Simulation results

To study the model introduced in section 3.2, we first use the noisy gradient method described in appendix 4.A to generate point-vortex states with N v = 32 vortices at both positive and negative temperatures. This relatively small number of vortices is chosen in order to be able to run simulations for long times in order to obtain satisfactory statistics. The energy of the resulting equilibria as a function of their inverse temperature β is as shown in figure 3.2. We note that at this relatively low number of vortices, the transitions to a condensate and to pair condensation are not sharp. Using these states generated by the noisy gradient method as initial conditions for the point vortices, we proceed in the three following steps:

(A) The passive, linear regime: perturbation amplitudes A k /Γ 1 and δ → 0 for a given background point-vortex flow. In this limit, the evolution equation (3.10) of A k is linear and the point-vortex energy H is constant in time since U p = O(A 2 k ) is negligible with respect to the conservative Hamiltonian advection terms. To investigate this limit we set U p = 0 in (3.3) and δ = 0 in (3.10). Since there is no dissipation in the system we also set u f = 0.

(B) The passive, nonlinear regime: still A k /Γ 1, such that H still remains unaffected by the 3-D instabilities, but we include saturation of the amplitude A k due finite δ, i.e. nonlinear self-interaction (in both the linear and passive nonlinear regimes, individual 3-D perturbations evolve independently). In this limit U p = u f = 0 in (3.3) as well.

(C) The fully nonlinear regime, where the amplitudes A k /Γ = O(1), thus the induced ergophage velocity U p is finite and its effect on point vortices cannot be neglected.

In this case H is no longer conserved. To sustain the dynamics against dissipation, the "driving" term u f given in eq. (3.13) is included. 

The passive linear regime

We initialize the simulation with N v = 32 vortices at an inverse temperature β < 0, with half of the vortices having circulation Γ i = Γ, and the other half having circulation Γ i = -Γ. In addition, we introduce N p = 128 randomly placed ergophages of some small initial amplitude (the same for every perturbation). It is worth reiterating that in the linear phase of the evolution, since there is no feedback on the 2-D flow, each ergophage is evolving independently from all the others. Furthermore in the linear phase the effect of the damping parameter ν is to induce a mean exponential decay. The time evolution of A k (t, ν) for any value of ν can thus be recovered from the ν = 0 case as

A k (t, ν) = A k (t, 0)e -νt .
For this reason only the ν = 0 case is examined and the growth rate γ k of a ν = 0 case is obtained as

γ k = γ k -ν.
The configuration under investigation is illustrated in figure 3.4 for a highly condensed case (β = - 1 8 ) and a dilute case (β = - 1 128 ). Then we let the system evolve in time and obtain a time series like the one shown in figure 3.5 for the highly condensed case, where the 3-D energy (solid blue line) alternates between plateau-like phases of slow growth and phases of abrupt exponential growth. The time series bears resemblance to that obtained from the complete linear stability analysis of 3-D instabilities on a turbulent 2-D flow performed by Seshasayanan and Gallet (see fig. 1 in [START_REF] Seshasayanan | Onset of three-dimensionality in rapidly rotating turbulent flows[END_REF]). In the same figure 3.5, we also show the energy of individual ergophages, 1 2 A 2 k , by dashed lines. Their sum is equal to the blue solid line.

Two points need to be made about figure 3.5. Firstly, one observes in the time evolution of individual ergophages that there are alternating phases of slow growth/stagnation and of rapid exponential growth. Secondly, at a given time t, E 3D (t) is dominated by the ergophage with the largest amplitude A k (t). Abrupt growth events in E 3D also occur when another ergophage A k grows exponentially and "overtakes" A k , thereby leading to abrupt growth of the sum. Each of the N p localized perturbations experiences a different, time-varying growth rate γ k (t). To understand this linear growth, we need to quantify the statistical properties of these random growth rates.

In figure 3.6, we plot histograms of γ k sampled over all k = 1, . . . , N p and all time steps. In both cases, one observes a power-law range in the PDF. For the dilute case (β = -1 128 ) the power-law exponent is close to -2 while for the dense state (β = -1 8 ) it is closer to -5/3. These two exponents can be understood if one identifies the dominant interactions. In the dilute case |β| 1, where point vortices are far apart, an ergophage maximizes its energy extraction when being close to a single point vortex. It does so by displacing the vortex towards the nearest opposite-sign vortex and/or further apart from the nearest same-sign vortex. In the dense (condensate) case β < 0, |β| 1, point vortices form high-density, same-signed clusters. In order for an ergophage to maximize energy extraction, it needs to be located close to these clusters. The PDF of the growth rate γ k can then be calculated by assuming that all positions in space are equally probable and that at each time it is the interaction with the closest pair of point vortices that dominates. A detailed calculation, given in appendix 3.E, yields

P (γ) ∝ γ -2
at large γ. for the dilute limit |β| 1, while for the dense limit -β 1 one obtains

P (γ) ∝ γ -5/3
at large γ.

(3.17)

The predicted power laws agree with the PDFs obtained numerically. Note, however, that in our numerical set-up these results are valid up to a large-γ cut-off resulting from the regularization at distances less than . This is important because without this regularization, the variance and the mean would be infinite for the power-law PDFs of γ k found here. This implies that some of the results observed here have an explicit dependence on the cut-off length .

Besides the growth-rate distribution, to characterize the statistical properties of the random process γ k we also need to quantify its auto-correlation time τ ac . We define τ ac in terms of the normalized auto-correlation function Γ(τ ) = γ(t)γ(t + τ ) / γ(t) 2 , as the smallest τ for which Γ(τ ) ≤ 0.5, where Γ(0) = 1 by definition and f (γ) =

1 NpT T 0 dt Np k=1 f (γ k (t)
) is an average over time t (T is the time at the end of the simulation) and realizations (ergophages). We stress that the small-distance cut-off introduced in the velocity field, leading to a large-γ cut-off in P (γ) is essential for obtaining a finite mean growth rate γ and finite variance, since a PDF featuring powerlaw tails with exponents -2, -5/3 does not have a finite mean or variance otherwise. Figure 3.7 shows that the auto-correlation time decreases monotonically with σ (defined in (3.14)), as τ ac ∼ σ -2 . By increasing σ sufficiently, one obtains an arbitarily small auto-correlation time. When τ c γ 1, the random process γ k (t) can be approximated as uncorrelated in time.

Summarising the above findings, the increments of A k are randomly distributed according to a PDF with power law tails whose exponents are between -2 and -5/3 and approximately white in time since it is uncorrelated in time beyond a small correlation time (for sufficiently large σ). These properties imply that the evolution of A k due to γ k is well approximated by a Lévy flight process. A Lévy flight is a random process with independent stationary increments η, where the increments follow a heavy-tailed PDF. By the generalized central limit theorem [START_REF] Dubkov | Lévy flight superdiffusion: an introduction[END_REF], the sum of many such heavy-tailed increments follows a stable PDF P α, β (η) depending on two parameters α ∈ (0, 2] and β ∈ [-1, 1]. Lévy flights were first introduced in [START_REF] Mandelbrot | The fractal geometry of nature[END_REF] and have since found numerous applications in physics and beyond [START_REF] Shlesinger | Lévy flights and related topics in physics[END_REF][START_REF] Chechkin | Introduction to the theory of Lévy flights[END_REF]. The influence of α, β on the PDF P α, β (η) is as follows. For α = 2, one obtains the Gaussian distribution. For α < 2, a stable distribution features power-law tails P (η) ∝ {1+ βsign(η)}η -α-1 at |η| → ∞. The parameter β measures the asymmetry of PDF. For β = 1 and α < 1, one obtains a one-sided PDF with support on R + only. Stable PDFs are known to occur for velocity and velocity difference statistics in 2-D vortex flows in particular [START_REF] Min | Levy stable distributions for velocity and velocity difference in systems of vortex elements[END_REF]. The fact that the PDF of γ k shows power-law tails in our model can be understood as a consequence of this property of 2-D vortex flows.

If γ k is interpreted as noise, then equation (3.10) is a stochastic differential equation with multiplicative Lévy noise whose parameters depend on the 2-D flow temperature. The dense and dilute cases described above, for which the γ k PDF has power law ranges with exponents -5/3 and -2, respectively, correspond to noise parameters α = 2/3 and α = 1, respectively, and β = 1 since the linear growth rate γ k is positive definite in the model by construction.

The theory of systems with multiplicative Gaussian white noise has found a plethora of applications, in particular to noise-induced transitions [START_REF] Horsthemke | Noise induced transitions[END_REF] and the phenomenon of on-off intermittency [START_REF] Platt | On-off intermittency: A mechanism for bursting[END_REF][START_REF] Aumaître | Noise-induced bifurcations, multiscaling and on-off intermittency[END_REF][START_REF] Benavides | Multiplicative noise and intermittency in bedload sediment transport[END_REF]. While the role of long-time correlated noise in on-off intermittency has been considered before [START_REF] Ding | Distribution of the first return time in fractional Brownian motion and its application to the study of on-off intermittency[END_REF][START_REF] Alexakis | Planar bifurcation subject to multiplicative noise: Role of symmetry[END_REF][START_REF] Alexakis | Critical exponents in zero dimensions[END_REF][START_REF] Pétrélis | Anomalous Exponents at the Onset of an Instability[END_REF], the case of on-off intermittency with heavy-tailed noise has not previously been studied explicitly, to our knowledge. Section 3.6 is devoted to this topic. Here we summarize only the relevant results. It is shown in section 3.6 that in the case α < 1 and β = 1, which applies here, the system (3.10), with γ k interpreted as white Lévy noise, is unstable for all values of ν: since the mean value of γ k → +∞, viscosity ν, no matter how large, cannot stop the growth of A k . If, however, the possible values γ k are restricted ("truncated") to be below some maximum, so that a finite value of γ k exists, then there is a critical value of viscosity ν c above which all trajectories converge to zero A k → 0. However, this critical value depends on the truncation value of γ k , which implies that the threshold ν c will depend on the regularization cut-off . At long time scales the system displays on-off intermittency.

The passive nonlinear regime

We solve the model equations for N p = 32 passive nonlinear dipole ergophages evolving on a highly condensed background flow of N v = 32 point vortices at temperature β = -1/8, fixing the nonlinear damping coefficient at δ = 1. For a given ν, we initialize the ergophages at random positions and with small amplitudes. We let the system evolve for long times, such that the perturbation amplitude either decays or reaches a statistically steady state. We then measure the steady-state time average of the moments

M n = A n , in terms of f (A) = lim T →∞ 1 T Np T 0 Np k=1 f (A k )dt.
We also define the "zeroth" moment as M 0 = exp( log(A) ), By the inequality of arithmetic and geometric means the moments are ordered

M 0 ≤ M 1 ≤ M 1/2 2 ≤ M 1/3 3 ≤ . . . . The resulting bifurcation diagram of M 0 , M 1 , M 2 as a function of ν is shown in figure 3.8.
On-off intermittency predicts that all non-zero moments scale linearly with ν c -ν, M n ∝ (ν c -ν), while the zeroth moment scales as M 0 ∝ exp(-cst./(ν c -ν)). Comparing this with the bifurcation diagram shown in figure 3.8, where the scalings from the Gaussian case are shown by dashed lines, one sees that the time-averaged moments and the Gaussian scalings agree well within the errorbars. This is a consequence of the truncation in the model, which subjects the statistics to a convergence to the Gaussian case, albeit "ultraslow" [START_REF] Mantegna | Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight[END_REF], by the central limit theorem after the sample averaging and/or long-time averaging procedures.

Another prediction of on-off intermittency with Gaussian white noise is that the PDF of the unstable field shows an integrable powerlaw divergence at zero amplitude with an exponent that approaches the value -1 from above as ν → ν c , while an exponential cut-off is expected for large values of A k . Figure 3.9 shows the PDF of A k . At small values of A the PDF displays a power law A κ with κ approaching -1 as ν → ν c in agreement with the Gaussian on-off prediction. At large A the PDF shows a steeper power-law scaling. In section 3.6, the asymptotics P (A) ∝ A -3 log -2/3 (A) at large values of A are derived analytically from a fractional Fokker-Planck equation associated with eq. 

P (A)

A -1 Figure 3.11 shows time series of the 2-D energy H in the fully nonlinear regime for ν/ν c = 0.15 for different values of δ. For large δ = 10 6 , the 3-D instabilities cannot grow to large amplitudes and therefore do not disrupt the highly energetic condensate. For δ = 10 5 , a slightly less energetic condensate persists, but is disrupted at random times by catastrophic events which reduce the 2-D flow energy significantly, just to rebuild again thanks to the driving. These are the traces of the jumps associated with Lévy flight dynamics which remain present in the nonlinear regime. Disruptive events occur when an ergophage comes very close to the point-vortex clusters shown in the top panel of figure 3.4, extracting the cluster's energy by partially breaking it up. With decreasing values of δ, the ergophages disrupt the condensate further and further until they reduce its energy to close to zero, driving all point vortices apart. The snapshots of the point-vortex configurations for different δ at a fixed time are shown in figure 3.12. They illustrate the gradual disruption of the condensate as δ is decreased from δ = 10 6 to δ = 10 -2 .

A -3 log 2/3 (A)
For each simulation, we use the correspondence between mean energy and inverse temperature visualized in figure 3.2 to assign a vortex temperature based on the measured average point-vortex energy at late times. We repeat this procedure for several values of ν and δ to obtain the diagram shown in figure 3.13.

For ν/ν c > 1, 3-D perturbations decay and the 2-D condensate is stable for all values of δ. As discussed below equation (3.13), where the driving mechanism is defined, Figure 3.12: Snapshots of the point-vortex configuration corresponding to the time indicated by the vertical dashed line in fig. 3.11. As δ is decreased, the 3-D perturbations are allowed to grow stronger and disrupt the condensate more and more. the forced system converges to a finite average energy at late times in the absence of ergophages. In other words, the forcing does not inject a constant energy, but acts rather like a thermostat that aims to maintain the system at a fixed temperature. For ν/ν c < 1, β increases with decreasing δ. This is the onset three-dimensionality, which we characterized in detail in the passive nonlinear regime. For smaller values of δ, the perturbation amplitudes saturate at larger values, thus disrupting the 2-D condensate more strongly. When δ is small enough, the 2-D flow reaches β = 0, which corresponds to a total disruption of the condensate. For ν = 0, this occurs at δ = 1. Since the energy-β curve shown in figure 3.2 is very steep at small energies, small deviations in the energy do not necessarily correspond to vanishing β. Furthermore, we note that positive values of β induced by the ergophagues were never observed. Since such states would correspond to flows comprised of long-lived bound vortex-antivortex pairs, the absence thereof is consistent with DNS and experiments of turbulent quasi-2-D flows, where such configurations are not observed.

The role of the remaining parameters β f , , N v , N p , which are not varied in Fig. 3.13, is discussed now. Changing β f would alter the 2-D background flow. Decreasing β f would give a more condensed background flow, reducing the surface area of the vortex clusters and thus the chances that an ergophage comes close enough to a cluster to disrupt it. This would require longer simulations and/or larger N p to obtain reliable statistics. At larger β f , the background state ceases to be a condensate, which is undesirable given our focus on condensed base flows. Changing would affect the minimum inter-vortex distance in the clusters. Decreasing , the required time step decreases rapidly according to (3.15), which is numerically challenging, while larger would be incompatible with the requirement of strong localization of 3-D perturbations. Changing also affects the mean growth rate and thus ν c . Finally, we do not expect N v , N p to qualitatively change the system behavior. A larger number of vortices making up the condensate implies more 2-D energy for ergophages to extract. With more ergophages, in turn, it is more likely that ergophages approach the vortex clusters and thus deplete the condensate. Based on the above discussion, while we did not undertake a systematic parameter study, we expect the qualitative model behavior to be robust to parameter changes within appropriate bounds.

In summary, above the onset of three-dimensionality, studied in detail in the passive nonlinear case, the 2-D vortex temperatures depend on the linear and nonlinear damping coefficients of the 3-D flow, ranging from a stable condensate to a complete disruption of the latter. The jump-like Lévy flight dynamics discussed for the linear and weakly nonlinear regimes traces through to the nonlinear regime, and shows in the time series in figure 3.11 by random disruptions of the 2-D condensate followed by a subsequent rebuilding of the latter due to the driving.

Conclusions: point-vortex model

We have formulated and analyzed a point-vortex model of localized 3-D instabilities on 2-D flows. Although the coupling of the 3-D perturbations to the 2-D flow in the model is ad-hoc and does not stem directly from the Navier-Stokes equations, it has some attractive properties, such as conserving energy and reducing to the classical point-vortex model in certain limits. Most importantly, the model has led to some very interesting behaviors and predictions that could apply to more realistic quasi-2-D systems exhibiting spectral condensation.

First of all the model predicts fluctuating growth rates with power-law tails, which lead to a Lévy flight in (logarithmic) perturbation amplitude. This may be related to recent DNS results [START_REF] Seshasayanan | Onset of three-dimensionality in rapidly rotating turbulent flows[END_REF], where abrupt, jump-like 3-D instabilities were observed on a strongly condensed, turbulent 2-D background flow. We point out that in [START_REF] Seshasayanan | Onset of three-dimensionality in rapidly rotating turbulent flows[END_REF], despite the fact that modern GPU computing power was harnessed and after integrating for long times, the time series in their Fig. 1 only contains a few abrupt growth events, far too few to deduce reliable statistical information about the growth rate. This underscores the need for a simplified model like the one presented here, where such information is more readily accessible. Furthermore the model suggests that the onset of the instability depends on the regularization cut-off . In realisitic flows, a small-scale cut-off is provided by viscosity.

A new type of intermittency near the onset of an instability was discovered. The corresponding situation of on-off intermittency in the presence of ideal, non-truncated Lévy noise, is discussed in section 3.6.

In the passive nonlinear regime of the model, we observed a continuous transition from finite to vanishing 3-D amplitudes, with on-off intermittent behavior close to onset. However, a deviation from the predictions for Gaussian noise was observed at large values of the 3-D amplitude, in the form of a power-law tail whose exponent matches theoretical predictions derived from a fractional Fokker-Planck equation in section 3.6. This exponent also implies that the saturation amplitude of the second and higher moments would depend on the regularization cut-off , but not the mean.

In the fully nonlinear, strongly coupled regime, where the vortex temperature is affected by the presence of perturbations, we characterized the dependence of vortex temperature on the ergophage damping coefficients and showed that at large amplitude of the 3-D perturbations this temperature reduces to β = 0. We also showed that at intermediate values of the parameters δ and ν, a highly energetic condensate, present when 3-D perturbations are small, is disrupted at random times by catastrophic events where 3-D perturbations grow and the condensate amplitude is reduced significantly, after which it recovers. Such events have also been observed in simulations of thin-layer and rotating flows [START_REF] Seshasayanan | Onset of three-dimensionality in rapidly rotating turbulent flows[END_REF] (and P1, P2).

In view of the limitations of existing theories, our model provides a new perspective on 3-D instabilities growing on 2-D flows, which will be useful in analysing and understanding the much more complex results of DNS and potentially guide further theoretical developments.

Lévy on-off intermittency

So far, we have encountered on-off intermittency twice in this thesis, in relation to 3-D perturbations on a 2-D base flow. More generally, on-off intermittency is a common phenomenon in nonequilibrium physical systems, which is characterized by an aperiodic switching between a large-amplitude "on" state and a small-amplitude "off" state. It was originally studied theoretically in the context of low-dimensional deterministic chaos and nonlinear maps [START_REF] Fujisaka | A new intermittency in coupled dynamical systems[END_REF][START_REF] Platt | On-off intermittency: A mechanism for bursting[END_REF][START_REF] Ott | Blowout bifurcations: the occurrence of riddled basins and on-off intermittency[END_REF][START_REF] Heagy | Characterization of on-off intermittency[END_REF] and has since then been observed in numerous experimental setups ranging from electronic devices [START_REF] Hammer | Experimental observation of on-off intermittency[END_REF], spin-wave instabilities [START_REF] Rödelsperger | On-off intermittency in spin-wave instabilities[END_REF], liquid crystals [START_REF] John | On-off intermittency in stochastically driven electrohydrodynamic convection in nematics[END_REF][START_REF] Vella | On-off intermittency in chaotic rotation induced in liquid crystals by competition between spin and orbital angular momentum of light[END_REF] and plasmas [START_REF] Feng | On-off intermittencies in gas discharge plasma[END_REF] to multistable laser fibers [START_REF] Huerta-Cuellar | Experimental characterization of hopping dynamics in a multistable fiber laser[END_REF], sediment transport [START_REF] Benavides | Multiplicative noise and intermittency in bedload sediment transport[END_REF], human balancing motion [START_REF] Cabrera | On-off intermittency in a human balancing task[END_REF][START_REF] Cabrera | Stick balancing: On-off intermittency and survival times[END_REF] and blinking quantum dots in semiconductor nanocrystals [START_REF] Margolin | Power law blinking quantum dots: Stochastic and physical models[END_REF][START_REF] Frantsuzov | Universal emission intermittency in quantum dots, nanorods and nanowires[END_REF]. As described in the previous chapter, on-off intermittency has also been observed in numerical simulations of turbulence in thin layers [START_REF] Benavides | Critical transitions in thin layer turbulence[END_REF][START_REF] Van Kan | Condensates in thin-layer turbulence[END_REF] and magneto-hydroydnamic dynamo flows [START_REF] Sweet | Blowout bifurcations and the onset of magnetic activity in turbulent dynamos[END_REF][START_REF] Alexakis | Effect of the Lorentz force on on-off dynamo intermittency[END_REF][START_REF] Raynaud | Intermittency in spherical Couette dynamos[END_REF].

From a theoretical perspective, on-off intermittency arises in the presence of multiplicative noise close to an instability threshold. Therefore it is natural to study it using appropriate stochastic models, such as

dX dt = (f (t) + µ)X -γX 3 , ( 3.18) 
i.e. a supercritical pitchfork bifurcation [START_REF] Strogatz | Nonlinear dynamics and chaos with student solutions manual: With applications to physics, biology, chemistry, and engineering[END_REF] with a fluctuating growth rate, where µ is the deterministic growth rate, and f (t) is usually zero-mean, Gaussian, white noise,

f (t) = 0, f (t)f (t ) = 2δ(t -t )
, in terms of the ensemble average • (this is the situation discussed in appendix 2.6). Here, we adopt the Stratonovich interpretation [START_REF] Stratonovich | A new representation for stochastic integrals and equations[END_REF] of eqn. (3.18), unless stated otherwise. We may take X to be non-negative, since sign changes are incompatible with the exact solution of (3.18) given in [START_REF] Aumaître | Noise-induced bifurcations, multiscaling and on-off intermittency[END_REF] and in appendix 3.F. For Gaussian noise, the exact stationary probability density function (PDF) is known to be p(x) = N x -1+µ e -γ 2 x 2 with normalisation N , for µ > 0 [232] (see appendix 2.B). For µ ≤ 0, the distribution approaches δ(x) at late times, with the cumulative distribution function (CDF) (the integral of the PDF up to x) converging to 1 for all x > 0. In that case, all moments of the stationary density vanish. For µ > 0 the moments of X scale as X n ∝ µ cn with the critical exponents c n = 1 for all n > 0, see [START_REF] Aumaître | Noise-induced bifurcations, multiscaling and on-off intermittency[END_REF]. The c n for Gaussian noise are different from their deterministic "mean field" values, which are c n = n/2. This is an instance of anomalous scaling, a phenomenon which has received much attention in various areas of physics, in particular in the context of continuous phase transitions at equilibrium and critical phenomena [START_REF] Kadanoff | Static phenomena near critical points: theory and experiment[END_REF][START_REF] Goldenfeld | Lectures on phase transitions and the renormalization group[END_REF], as well as in turbulence [START_REF] Eyink | Analogies between scaling in turbulence, field theory, and critical phenomena[END_REF][START_REF] Goldenfeld | Turbulence as a problem in non-equilibrium statistical mechanics[END_REF].

In the point-vortex model which we defined and studied in detail in the above sections, the 3-D perturbation amplitude obeyed equation (3.18) with an approximately white noise whose PDF had power-law tails due to the power-law structure of the velocity fields involved. This finding prompts the general question of how the properties of on-off intermittency are affected by power-law-distributed white noise. Here, we introduce Lévy on-off intermittency as the idealised case where f (t) is given by Lévy white noise, whose PDF is an α-stable distribution featuring power-law tails associated with extreme events in terms of noise amplitude [START_REF] Shlesinger | Lévy flights and related topics in physics[END_REF][START_REF] Chechkin | Introduction to the theory of Lévy flights[END_REF]. The Gaussian distribution (which is a special case of α-stable distributions) is of fundamental importance due to its stability: by the central limit theorem [START_REF] Feller | An introduction to probability theory and its applications[END_REF], it constitutes an attractor in the space of PDFs with finite variance. Similarly, by the generalized central limit theorem [START_REF] Gnedenko | Limit distributions for sums of independent[END_REF][START_REF] Uchaikin | Chance and stability: stable distributions and their applications[END_REF], non-Gaussian α-stable distributions constitute an attractor in the space of PDFs whose variance does not exist. Non-Gaussian fluctuations, which may often be modeled as α-stable, are found in incompletely thermalized systems or, in general, in systems driven away from thermal equilibrium: non-equilibrated heat reservoirs can be considered as a source of non-Gaussian noise [START_REF] Shlesinger | Lévy flights and related topics in physics[END_REF][START_REF] Dybiec | Resonant activation in the presence of nonequilibrated baths[END_REF].

If X(t) solves equation (3.18) with f (t) being Lévy white noise, then Y = log X(t) is said to perform a Lévy flight in a particular anharmonic potential. Lévy flights were first introduced by Mandelbrot in [START_REF] Mandelbrot | The fractal geometry of nature[END_REF] and have since found numerous applications, such as anomalous diffusion, for instance in different fluid flows, [START_REF] Shlesinger | Lévy dynamics of enhanced diffusion: Application to turbulence[END_REF][START_REF] Solomon | Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow[END_REF][START_REF] Metzler | The random walk's guide to anomalous diffusion: a fractional dynamics approach[END_REF][START_REF] Dubkov | Lévy flight superdiffusion: an introduction[END_REF], the statistics of 2-D fluid turbulence [START_REF] Dubrulle | Truncated Lévy laws and 2D turbulence[END_REF], plasma turbulence [START_REF] Del Castillo-Negrete | Nondiffusive transport in plasma turbulence: a fractional diffusion approach[END_REF], finance [START_REF] Schinckus | How physicists made stable lévy processes physically plausible[END_REF], climatology [START_REF] Ditlevsen | Anomalous jumping in a double-well potential[END_REF][START_REF] Ditlevsen | Observation of α-stable noise induced millennial climate changes from an ice-core record[END_REF], animal foraging [START_REF] Viswanathan | Lévy flight search patterns of wandering albatrosses[END_REF][START_REF] Sims | Scaling laws of marine predator search behaviour[END_REF], human mobility [START_REF] Rhee | On the levywalk nature of human mobility[END_REF] (although a debate about the applicability in the latter two cases is ongoing [START_REF] Gonzalez | Understanding individual human mobility patterns[END_REF][START_REF] Edwards | Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer[END_REF]), COVID-19 spreading [START_REF] Gross | Spatiotemporal propagation of COVID-19 pandemics[END_REF], human balancing motion [START_REF] Cabrera | Human stick balancing: tuning Lévy flights to improve balance control[END_REF] and more [START_REF] Metzler | The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics[END_REF][START_REF] Applebaum | Lévy processes-from probability to finance and quantum groups[END_REF]. We stress that, while Lévy flights are characterized by rare, large jumps that may be called intermittent, the phenomenon of on-off intermittency is distinct from Lévy flights, in that it specifically arises from multiplicative noise near an instability threshold. Fluctuations obeying heavy-tailed distributions have also been observed for neuron activity patterns in the human brain [START_REF] Roberts | The heavy tail of the human brain[END_REF]. Moreover, Lévy walks, a class of random processes similar to Lévy flights with increments following a heavy-tailed PDF, but with each step taking finite time [START_REF] Shlesinger | Lévy walks versus Lévy flights[END_REF][START_REF] Zaburdaev | Lévy walks[END_REF], have been proposed as a model of blinking quantum dots in semiconductor nanocrystals [START_REF] Jung | Lineshape theory and photon counting statistics for blinking quantum dots: a Lévy walk process[END_REF][START_REF] Margolin | Nonergodicity of blinking nanocrystals and other Lévy-walk processes[END_REF]. We highlight that blinking quantum dots and human balancing motion are two examples which exhibit both Lévy statistics and on-off intermittency.

A significant body of theoretical literature is devoted to Lévy flights in potentials, driven by additive Lévy noise, [START_REF] Jespersen | Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions[END_REF][START_REF] Chechkin | Stationary states of non-linear oscillators driven by Lévy noise[END_REF][START_REF] Chechkin | Bifurcation, bimodality, and finite variance in confined Lévy flights[END_REF][START_REF] Chechkin | Lévy flights in a steep potential well[END_REF][START_REF] Dybiec | Stationary states in Langevin dynamics under asymmetric Lévy noises[END_REF][START_REF] Denisov | Steady-state Lévy flights in a confined domain[END_REF][START_REF] Dybiec | Stationary states in single-well potentials under symmetric Lévy noises[END_REF][START_REF] Padash | First-passage properties of asymmetric Lévy flights[END_REF], as well as to stochastic processes driven by multiplicative Lévy noise [START_REF] Srokowski | Fractional Fokker-Planck equation for Lévy flights in nonhomogeneous environments[END_REF][START_REF] Srokowski | Multiplicative Lévy processes: Itô versus Stratonovich interpretation[END_REF][START_REF] La Cognata | Dynamics of two competing species in the presence of Lévy noise sources[END_REF][START_REF] Srokowski | Nonlinear stochastic equations with multiplicative Lévy noise[END_REF][START_REF] Srokowski | Multiplicative Lévy noise in bistable systems[END_REF]. For additive noise, it has been shown that Lévy flights in a quartic or steeper potential possess finite mean and variance, for all parameters of the Lévy noise [START_REF] Chechkin | Bifurcation, bimodality, and finite variance in confined Lévy flights[END_REF]. Many classical problems which are well studied for Gaussian noise have been revisited using Lévy noise, such as the escape from a potential well [START_REF] Chechkin | Barrier crossing of a Lévy flight[END_REF][START_REF] Dybiec | Escape driven by α-stable white noises[END_REF][START_REF] Chechkin | Barrier crossing driven by Lévy noise: Universality and the role of noise intensity[END_REF][START_REF] Koren | Leapover lengths and first passage time statistics for Lévy flights[END_REF][START_REF] Capała | Lévy noise-driven escape from arctangent potential wells[END_REF], noiseinduced transitions and stochastic resonance [START_REF] Zeng | Effects of Lévy noise in aperiodic stochastic resonance[END_REF][START_REF] Dybiec | Lévy noises: Double stochastic resonance in a single-well potential[END_REF][START_REF] Dybiec | Lévy stable noise-induced transitions: stochastic resonance, resonant activation and dynamic hysteresis[END_REF][START_REF] Xu | Lévy noise-induced stochastic resonance in a bistable system[END_REF][START_REF] Yamapi | Lévy noise induced transitions and enhanced stability in a birhythmic van der Pol system[END_REF], oscillators under the influence of noise [START_REF] Chechkin | Stationary states of non-linear oscillators driven by Lévy noise[END_REF][START_REF] Sokolov | Harmonic oscillator under Lévy noise: Unexpected properties in the phase space[END_REF][START_REF] Tanaka | Low-dimensional dynamics of phase oscillators driven by Cauchy noise[END_REF], the Verhulst model [START_REF] Dubkov | Verhulst model with Lévy white noise excitation[END_REF], the Lévy rachet [START_REF] Dybiec | Transport in a Lévy ratchet: Group velocity and distribution spread[END_REF] and Josephson junctions subject to Lévy noise [START_REF] Guarcello | THE ROLE OF NON-GAUSSIAN SOURCES IN THE TRANSIENT DYNAMICS OF LONG JOSEPHSON JUNCTIONS[END_REF][START_REF] Guarcello | Voltage drop across Josephson junctions for Lévy noise detection[END_REF][START_REF] Guarcello | Anomalous transport effects on switching currents of graphene-based Josephson junctions[END_REF][START_REF] Valenti | Switching times in long-overlap Josephson junctions subject to thermal fluctuations and non-Gaussian noise sources[END_REF][START_REF] Guarcello | Effects of Lévy noise on the dynamics of sine-Gordon solitons in long Josephson junctions[END_REF][START_REF] Guarcello | Josephson-based threshold detector for Lévy-distributed current fluctuations[END_REF]. However, despite this impressive body of work, while the impact of colored noise [START_REF] Ding | Distribution of the first return time in fractional Brownian motion and its application to the study of on-off intermittency[END_REF][START_REF] Aumaître | Low-frequency noise controls onoff intermittency of bifurcating systems[END_REF][START_REF] Aumaître | Effects of the low frequencies of noise on on-off intermittency[END_REF][START_REF] Aumaître | Noise-induced bifurcations, multiscaling and on-off intermittency[END_REF][START_REF] Alexakis | Critical exponents in zero dimensions[END_REF][START_REF] Pétrélis | Anomalous Exponents at the Onset of an Instability[END_REF] and higher dimensions [START_REF] Alexakis | Planar bifurcation subject to multiplicative noise: Role of symmetry[END_REF] on on-off intermittency have received attention, the theory of on-off intermittency due to multiplicative Lévy noise close to an instability threshold has not been studied systematically before, to the best of our knowledge.

Here, we show theoretically and numerically that for Lévy white noise, the phenomenology of equation (3.18) can differ starkly from the case of Gaussian white noise.

In some cases, the origin never changes stability -there is no critical point. When there is a critical point, the critical behavior and the properties of on-off intermittency near instability onset depend non-trivially on the parameters of the Lévy noise. It is shown that in stationary state a finite or infinite number of integer-order moments may exist, depending on the parameters of the noise.

The remainder of this section is structured as follows. In subsection 3.6.1, we present the theoretical background of this study. In subsection 3.6.2, we analyse the linear (γ = 0) regime. In subsection 3.6.3, we present analytical results on the nonlinear (γ > 0) statistically stationary state and verify our results against numerical solutions of the stationary fractional Fokker-Planck and Langevin equations. Finally in subsection 3.6.4, we discuss our results and conclude.

Theoretical background

Here, we introduce aspects of the theory of stable PDFs and describe how they are related to Lévy flights.

Properties of α-stable probability densities

For parameters α ∈ (0, 2], β ∈ [-1, 1], the α-stable PDF for a random variable Y is denoted by ℘ α,β (y) and defined by its characteristic function (i.e. Fourier transform),

ϕ α,β (k) = exp -|k| α [1 -iβsgn(k)Φ(k)] , (3.19) 
with

Φ(k) = tan πα 2 α = 1 -2 π log(|k|) α = 1 , ( 3.20) 
see [START_REF] Uchaikin | Chance and stability: stable distributions and their applications[END_REF]. A standard method for simulating stable random variables is given in [START_REF] Chambers | A method for simulating stable random variables[END_REF]. Note that (3.19) is not the most general form possible: there may be a scale parameter in the exponential, which we set equal to one. One refers to α as the stability parameter. For α = 2, where β is irrelevant since Φ = 0, one recovers the Gaussian distribution.

In the following, we consider α < 2. The parameter β (entirely unrelated to the vortex temperature of the previous sections), which is known as the skewness parameter, measures the asymmetry of of the distribution, where β = 0 corresponds to a symmetric PDF, while |β| = 1 is referred to as maximally skewed. When β = 0, the most probable value of y, given by the maximum of ℘ α,β (y), differs from the average valye of y, which is equal to zero here when it exists. We highlight the symmetry relation

℘ α,β (y) = ℘ α,-β (-y), (3.21) 
which follows directly from the definition. Importantly, there are two different possible asymptotic behaviors that a stable distribution can display. When |β| < 1, there are two long ("heavy") power-law tails, at y → ±∞,

℘ α,β (|y| → ∞) ∝ {1 + βsign(y)}|y| -1-α . (3.22)
The presence of power-law tails implies that the stable PDF has a finite mean (equal to zero), but a diverging variance for 1 < α < 2, while both mean and variance diverge for α ≤ 1. For β = ±1, the asymptotics given in (3.22) break down on one side. In this case, there is a short exponential tail on the side where the power law breaks down and only a single long power-law tail remains. For 1 ≤ α < 2, ℘ α,β=±1 (y) is supported on R. By contrast, for α < 1 and β = ±1, the probability density is one-sided, with the exponential tail vanishing at the origin, such that ℘ α,β=1 (y) = 0 at y ≤ 0 and ℘ α,β=-1 (y) = 0 at y ≥ 0, which is consistent with the symmetry (3.21). Both for 1 < α < 2, β = -1 as y → +∞, and for α < 1, β = 1 as y → 0 + , the leading-order asymptotic form of the short tail of the stable PDF can be obtained by Laplace's method and is given by

℘ α,β (y) ∼ c 0 y 1-α/2 α-1 exp -c 1 y α α-1 , ( 3.23) 
where c 0 , c 1 are positive, α-dependent constants, cf. theorem 4.7.1 in [START_REF] Uchaikin | Chance and stability: stable distributions and their applications[END_REF]. Note that this reduces to a Gaussian when α = 2. By the symmetry of eq. (3.21), the same result holds, with y replaced by -y, for 1 < α < 2, β = +1 as y → -∞ and at α < 1, β = -1 as y → 0 -. The different behaviors are illustrated for three cases in figure 3.14. Unfortunately, useful explicit expressions for the stable PDF only exist in a small number of special cases. 

Lévy flights and the space-fractional Fokker-Planck equation

Consider the Langevin equation (3.18) with f (t) being white "Lévy" noise. More precisely, for a given time step dt, we let f (t)dt = dt 1/α F (t), where F (t) obeys the alphastable PDF ℘ α,β (F ), defined by (3.19), and is drawn independently for any time t, [START_REF] Dubkov | Lévy flight superdiffusion: an introduction[END_REF].

Since the Langevin equation (3.18) involves a multiplicative noise term, one needs to decide on an interpretation thereof. As has been discussed in the literature, [START_REF] Srokowski | Multiplicative Lévy processes: Itô versus Stratonovich interpretation[END_REF][START_REF] Srokowski | Multiplicative Lévy noise in bistable systems[END_REF], like in the Gaussian case, the two standard interpretations are the Stratonovich [START_REF] Stratonovich | A new representation for stochastic integrals and equations[END_REF] interpretation, which preserves the rules of standard calculus, and the non-anticipating Itô [START_REF] Itô | Stochastic integral[END_REF] interpretation. According to the choice of interpretation, the probability density will be governed by a different form of the (space-)fractional Fokker-Planck equation (FFPE), so called since it involves fractional derivatives in the state variable. First consider the Stratonovich interpretation, such that Y = log(X) obeys the following equation with additive noise,

dY dt = µ -γe 2Y + f (t), (3.24) 
which says that Y (t) performs a Lévy flight in the potential V (Y ) = -µY + γ 2 e 2Y . The density associated with Y (t), denoted by p y (y, t), then obeys the FFPE

∂ t p y (y, t) = -∂ y µ -γe 2y p y (y, t) + D α,β y p y (y, t), (3.25) 
[300], where the fractional derivative operator

D α,β y g(y) = - (1 + β)D α + g(y) + (1 -β)D α -g(y) 2 cos απ 2 , ( 3.26) 
for an arbitrary function g(y), is known as the Riesz-Feller fractional derivative of order α and skewness β [START_REF] Mainardi | The fundamental solution of the space-time fractional diffusion equation[END_REF]. It can be expressed in terms of the left and right Riemann-Liouville fractional derivatives, which for 1 < α < 2 are given by [START_REF] Chechkin | Lévy flights in a steep potential well[END_REF][START_REF] Samko | Fractional integrals and derivatives[END_REF],

(D α + g)(y) = 1 Γ(2 -α) d 2 dy 2 y -∞ g(z)dz (y -z) α-1 (3.27)
and

(D α -g)(y) = 1 Γ(2 -α) d 2 dy 2 ∞ y g(z)dz (z -y) α-1 .
(3.28)

For 0 < α < 1, the definitions are similar [START_REF] Samko | Fractional integrals and derivatives[END_REF],

(D α + g)(y) = + 1 Γ(1 -α) d dy y -∞ g(z)dz (y -z) α , ( 3.29) 
and [START_REF] Samko | Fractional integrals and derivatives[END_REF], which is often invoked. However, our analysis will be performed mostly in physical space. Once the solution to equation (3.25) is known, then the probability density p x (x, t) associated with the original variable X(t) is given by

(D α -g)(y) = - 1 Γ(1 -α) d dy ∞ y g(z)dz (z -y) α . (3.30) For α = 2, one has D α,β y = ∂ 2 y . The Riemann-Liouville fractional derivatives have a simple Fourier transform, F[D α ± f ](k) = (±ik) α F[f ](k), see chapter 7 of
p x (x, t) = 1 x p y (log(x), t). ( 3.31) 
If one adopts the Itô interpretation instead of the Stratonovich interpretation, then the FFPE is given by

∂ t p x (x, t) = -∂ x (µx -γx 3 )p x (x, t) + D α,β x (x α p x (x, t)), (3.32) 
as derived in [START_REF] Denisov | Generalized Fokker-Planck equation: Derivation and exact solutions[END_REF].

We continue in the Stratonovich interpretation. In the absence of nonlinearity, when γ = 0, one can solve in Fourier space for a delta-peaked initial condition, e.g. X(0) = 1, which leads to the fundamental solution given in [START_REF] Mainardi | The fundamental solution of the space-time fractional diffusion equation[END_REF],

p x (x, t) = ℘ α,β log(x)-µt t 1/α t 1/α x (3.33)
where ℘ α,β (•) is the α-stable PDF whose Fourier transform is given in eq. (3.19). The corresponding cumulative probability distribution (CDF) is

P (x < χ) = P α,β log(χ) -µt t 1/α , ( 3.34) 
in terms of the α-stable

CDF P α,β (z) = z -∞ ℘ α,β (z )dz . Clearly, equation (3.33) 
holds for the Gaussian case of α = 2, the familiar log-normal distribution. By analogy with the latter, for 0 < α < 2 the PDF in eq. (3.33) is known as the log-stable PDF and the associated process as the log-stable process. For 0 < t < ∞, the moments of the log-stable PDF are only finite for β = -1. This is because it is the only case where the α-stable PDF does not have a heavy tail of the form (3.22) at +∞. When a heavy tail is present (β > -1), then averaging over e ny = x n for any n > 0 does not give a finite result. For this reason the associated stochastic process with β = -1 is also known as the finite-moment log-stable process. It is well known, in particular in finance, see [START_REF] Carr | The finite moment log stable process and option pricing[END_REF] (there, only 1 < α < 2 is considered).

Linear theory

Here we study the late-time limit of solution (3.33) corresponding to eq. (3.18) with γ = 0, starting from a localized initial condition at x > 0, to determine the stability of the origin x = 0. This will be helpful later for interpreting the nonlinear (γ > 0) results.

The Gaussian case

First, for illustration, consider the Gaussian case α = 2 in (3.33), which gives the lognormal PDF for X

p x (x, t) = 1 x √ 2πt exp -(log(x) -µt) 2 2t . ( 3.35) 
The probability P (x < χ) to find the system at x < χ after time t is given by the CDF in eq. (3.34), which here equals

P (x < χ) = 1 2 1 + erf log(χ) -µt √ 2t , ( 3.36) 
where erf(x) is the error function. Considering the limit of late times t → ∞ for fixed χ, using that erf(x → ±∞) = ±1, one deduces that P (x < χ) → 1 if µ < 0, while P (x < χ) → 0 if µ > 0. This indicates that at µ = 0 the origin x = 0 goes from asymptotically stable to unstable. Alternatively, one might attempt to determine the stability of the origin by studying the moments of X as a function of time. For α = 2, the FFPE in (3.25) reduces to the the ordinary Fokker-Planck equation

∂ t p y (y, t) = -µ∂ y p y (y, t) + ∂ 2 y p y (y, t). ( 3.37) 
Multiplying by exp(ny) = x n and integrating over y, one arrives, upon integrating by parts, at the relation

∂ t X n = µn + n 2 X n , ( 3.38) 
which implies that

X n (t) = X n 0 e λn(µ)t , (3.39) 
for an initial condition X(0) = X 0 , with the growth rate λ n (µ) = (nµ+n 2 ). Importantly, the value of µ where the growth rate of X n vanishes, denoted µ c (n), depends on n and is given by µ c (n) = -n. We have shown based on the CDF that the system is stable for µ < 0. However, equation (3.39) indicates that for n large enough, X n grows exponentially in time even for µ < 0. This is due to rare transient excursions to large y, which give a non-negligible contribution since e ny is large. Thus, the moments are not the correct indicator for stability in the system (3.18) with γ = 0 and one needs to be careful when concluding stability based on them. However, as discussed in [START_REF] Seshasayanan | Growth rate distribution and intermittency in kinematic turbulent dynamos: Which moment predicts the dynamo onset?[END_REF], the limit of µ c (n) as n → 0 does indicate the correct threshold, namely µ = 0. This is because that limit is related to the growth of log(X(t)) , which weighs large-X contributions less strongly.

The general α-stable case: moments

In the general α-stable case the solution is the log-stable distribution given in (3.33).

When β > -1, moments X n diverge for any n > 0, as described above. Thus no stability criterion can be derived based on the moments. For the special case β = -1, the moments X n exist and can be calculated. While the moments have been given in the literature before in the Itô interpretation, see [START_REF] Carr | The finite moment log stable process and option pricing[END_REF], we give a novel (to our knowledge) derivation in the Stratonovich interpretation. For β = -1 the FFPE reads

D α,β=-1 y f (y) = -sec(απ/2)D α -f (y), (3.40) 
with D α -given by (3.27). Following the steps made in the Gaussian case, we multiply (3.25) by e ny and integrate over y. Fractional integration by parts obeys

∞ -∞ f (y)(D α + g)(y)dy = ∞ -∞ (D α -f )(y)g(y)dy, (3.41) 
for sufficiently well-behaved functions f and g such that the fractional derivatives and integrals exist, [START_REF] Samko | Fractional integrals and derivatives[END_REF]. Here, this requires β = -1. Furthermore, note that

D α + (e ny ) = n α e ny , ( 3.42) 
which for 0 < α < 1 and 1 < α < 2 follows directly from the definition of D α + in eqs. (3.27), (3.29) upon changing integration variables to u = y -z. One obtains

∂ t X n = [nµ -sec(πα/2)n α ] X n , (3.43) such that (X(t)) n = X n 0 e λ S n t , (3.44) 
with λ S n = [nµ -sec(απ/2)n α ] . (3.45) 
Hence, the value of µ where the growth rate vanishes depends on n,

µ c (n) = sec(απ/2)n α-1 . ( 3.46) 
For α = 2, this reduces to the Gaussian result. For completeness, we note that the growth rate in the Itô interpretation given in [START_REF] Carr | The finite moment log stable process and option pricing[END_REF] is similar (see their eq. ( 8)),

λ I n = λ S n + n sec(απ/2). (3.47) 
We have verified equation (3.44) for both α > 1 and α < 1 by computing the moments of the exact solution (3.33) numerically (not shown). However, the moments which we just computed for β = -1 are ill-suited for studying the linear stability problem. This is because, as in the Gaussian case, the moments are dominated by rare large-amplitude events. However, taking the limit n → 0 in µ c (n) following [START_REF] Seshasayanan | Growth rate distribution and intermittency in kinematic turbulent dynamos: Which moment predicts the dynamo onset?[END_REF], where large amplitudes are weighted less strongly, one predicts the threshold to be at µ = 0 for α > 1 and at µ = ∞ for α < 1. In the following section, we consider the CDF of the log-stable process to deduce the asymptotic stability of the origin and show in particular that the n → 0 predictions are correct.

The general α-stable case: the CDF

Consider the log-stable CDF given in eq. (3.34). Figure 3.15 shows the time evolution of the CDF for β = 0 and α = 1.5 (top panel), α = 0.5 (bottom panel), both for µ = 1. One observes that for α > 1, probability shifts to the right due to the drift, indicating leakage to positive infinity. Conversely, for α < 1, the CDF approaches a constant value, strictly Figure 3.15: CDF of log-stable law (3.33) for β = 0, α = 1.5 (top panel) and α = 0.5 (bottom panel) with µ = 1 and time t increasing in the order red, orange, green, blue, cyan, grey. Clearly, the CDF shifts to the right as time increases in the top panel indicating that probability is leaking to +∞, but takes the constant value 0.5 in the bottom panel, indicating that the probability leaking to both +∞ and -∞. larger than zero and strictly smaller than one, indicating that probability is leaking to both positive and negative infinity.

More precisely, for 1 < α < 2 and β < 1, µ > 0 one may use eqns. (3.22) and (3.34) to show that at late times (t → ∞), for any given χ, the probability for x < χ, is given by

P (x < χ) ∝ (1 -β)t |µt -log(χ)| α ∝ (1 -β)t 1-α .
(3.48)

Thus P (x < χ) decreases as time progresses, in agreement with our conclusion based the top panel of figure 3.15. A similar argument for µ < 0 and the same range of α shows that in this case P (x > χ) decreases in time.

For β = 1 and in the same range of α, with µ > 0, taking the same limit t → ∞ with χ fixed, one finds using (3.23) and (3.34) that

P (x < χ) ∝ t 1-α 2α e -c 1 µ α α-1 t , (3.49) 
which also decays, this time exponentially fast, as t increases. Similarly for µ < 0 and the same range of α, one can show that P (x > χ) decreases in time. In short, we find that for any α in the range 1 < α < 2, the probability leaks to log(x) → sign(µ)∞ as t → ∞ for the linear (γ = 0) problem.

If 0 < α < 1, then for any µ and fixed χ as t → ∞, the argument of the CDF in (3.34), (log(χ) -µt)t -1/α → 0, such that

P (x < χ) → P α,β (0), (3.50) 
where the right-hand side is the α-stable CDF evaluated at zero, which is a µ-independent constant. For β = 0, the constant is 0.5 by symmetry, as illustrated in figure 3.15, but in general, it will depend on β in a continuous way. In particular, for β = 1, P α,β=1 (0) = 0, since the stable PDF is only supported at positive values in this case. On the other hand, for β = -1, the constant is P α,β=-1 (0) = 1, since the PDF is only supported at negative values. In short, we find that for any α in the range 0 < α < 1 the probability leaks to both log(x) → -∞ and log(x) → +∞, with the exceptions of β = ±1, where probability leaks to log(x) → β∞.

In the marginal case α = 1, the fact that (log(χ) -µt)/t → -µ for any fixed χ implies

P (x < χ) → P α=1,β (-µ), (3.51) 
where the right-hand side is the α-stable CDF evaluated at -µ, which is a positive constant for any finite µ and any β ∈ [-1, 1]. Hence, at α = 1, probability leaks to both log(x) → -∞ and log(x) → ∞ for all µ. Only the fraction of the weight escaping in each direction depends on µ.

We note that all of the results obtained above from the exact linear (γ = 0) solution can be understood in terms of a competition between the drift µt and the widening of the PDF, which goes as t 1/α . For α > 1, the drift is dominant over the widening and probability leaks to log(x) → sign(µ)∞. On the other hand, for 0 < α ≤ 1, the drift no longer dominates and probability spreads out to both log(x) → ±∞, except for one-sided noise.

In summary, translating the results back to the original variable x, we have shown that in the log-stable process, for 1 < α < 2, for any β ∈ [-1, 1], all the probability leaks to x → +∞ for µ > 0, while for µ < 0 all the probability accumulates at the origin x = 0. On the other hand, for 0 < α < 1, the probability leaks both x → 0 and to x → ∞ independently of µ, except for one-sided noise at β = ±1. There, all the probability leaks to x = 0 for β = -1 and to x → ∞ for β = 1. At α = 1, the probability leaks to both x = 0 and x = ∞, independently of β and µ. Table 3.1 summarizes the late-time behavior of the linear solution.

Finally, we point out that in the only case where the moments exist, at β = -1, they do not straightforwardly indicate asymptotic stability. For 1 < α < 2, and µ < 0, the origin is stable. Yet, moments of sufficiently high order will grow. For 0 < α ≤ 1, the origin is stable independently of µ, but there also, high-order moments grow. However, taking the moment order n → 0 predicts the correct thresholds µ = 0 for α > 1 and µ = ∞ (no instability at any finite µ) for α < 1.

Nonlinear theory

Now we study the effect of the nonlinear term in equation (3.18) with γ > 0 in the development of the instability. The nonlinearity will prevent the leakage of probability to x → ∞ that was observed for many cases in the linear regime, thus leading to a stationary distribution that we try to estimate here.

For illustration, typical solutions of the nonlinear Langevin equation (3.18) are shown in figure 3.16. The realizations are generated efficiently by integrating eq. (3.18) using its exact solution given in appendix 3.F. Three different cases are shown: in panel a) 

β -1 (-1, 1) 1 (1, 2] sign(µ)∞ sign(µ)∞ sign(µ)∞ 1 +∞ & -∞ +∞ & -∞ +∞ & -∞ (0, 1) -∞ +∞ & -∞ +∞ Table 3
.1: Summary of the late-time behavior of the (linear) log-stable process (3.33).

For a given combination of α and β, it is indicated where the weight of the probability will leak to in terms of the variable Y = log(X).

α = 1.5, β = 0, in panel b) α = 0.5, β = 1, in panel c) α = 0.5, β = -1.
For each case, two typical time series are shown, one for positive µ and one for negative µ at fixed γ = 1. In panel a), at negative µ, X decays to zero. At positive µ, there is on-off intermittency: X fluctuates over many orders of magnitude, but does not decay. There is a qualitative change of behavior between µ > 0 and µ < 0. Typical trajectories at β = 0, 1 < α < 2 resemble those in panel a). In panel b), the origin is unstable for both positive and and negative µ. In panel c) the origin is stable for both positive and negative µ.

Exact relation for the second moment

One important property of equation

(3.18) is that if f (t) exists (i.e. for 1 < α ≤ 2), then for X > 0 it implies that d dt log(X) = µ -γ X 2 + f (t) . ( 3.52) 
Assuming f (t) = 0, then for γ > 0, µ < 0 the right-hand side is negative, resulting in log(X) ≤ µt, (

which tends to -∞ as t → ∞. However, if µ > 0, then a stationary state is reached for which d log(X) /dt = 0 and the second moment satisfies

X 2 = µ/γ. ( 3.54) 
By contrast with the linear regime, for which it was shown above that moments are not a reliable indicator of stability, moments in the nonlinear regime are pertinent to the stability of the origin. This is due to the fact that the nonlinearity in equation (3.18) impedes excursions to large amplitudes, which are the reason why high moments may grow exponentially in the linear case (γ = 0), even when the origin is stable. Equation (3.54) thus already indicates that for 1 < α ≤ 2 the system is unstable when µ > 0 in agreement with the predictions of section 3.6.2.3. Note, however, that stability or instability cannot be concluded from (3.54) for 0 < α ≤ 1, since eq. (3.54) is not valid there.

From equation (3.52) and the above discussion following from it, it follows that µ + f (t) = µ controls the growth/decay of moments in the nonlinear regime, if f (t) exists. This is true even if f (t) is asymmetric.

Asymptotics of the PDF at large x

In this section, we study the fractional Fokker-Planck equation under the assumption of stationarity to derive the asymptotics of the stationary density for x → ∞. Here, we need to consider β > -1 and β = -1 separately.

The case β > -1

Let β > -1, and consider the FFPE in the Stratonovich interpretation, i.e. equation (3.25). For y → ∞, we neglect D - α D + α and µ γ exp(2y) to find the following equation for the stationary distribution associated with the process Y = log(X), denoted by p y,st (y),

γe 2y p y,st (y) ≈ (1 + β) d dy y -∞ py,st(z) (y-z) α-1 dz 2 cos(πα/2)Γ(2 -α) . (3.55)
Asymptotically, the integral is dominated by z y. Hence (y -z) α-1 ≈ y α-1 . The remaining integral can be approximated as y -∞ p y,st (z)dz ≈ ∞ -∞ p y,st (z)dz = 1. The resulting equation implies the following asymptotic behavior for the stationary density at large y,

p y,st (y) ∼ C(1 + β) γ y -α exp(-2y). (3.56) 
The prefactor is given by

C = sin(πα/2)Γ(α)/π, (3.57) 
which has been simplified using Euler's reflection formula Γ(α)Γ(1 -α) = π/ sin(πα).

In terms of the stationary distribution p x,st (x) associated with the original process X, this gives

p x,st (x) ∼ C(1 + β) γ log(x) -α x -3 , (3.58) 
for x → ∞. While the above derivation is valid for 1 < α < 2, one may repeat the same steps for 0 < α < 1 with the corresponding fractional derivative from eqns. (3.29), and finds the same result. For α > 1, there is both a finite mean and a finite variance. For α < 1, the variance in infinite, but the mean is finite. We note that the derivation given here is inspired by a similar argument from [START_REF] Chechkin | Lévy flights in a steep potential well[END_REF]. Further, if one chooses the Itô interpretation, then one may derive the large-x asymptotics in a similar way. One begins by considering the stationary solutions of the associated Itô FFPE for p x (x, t), i.e. equation (3.32). Then one takes the limit x → ∞, assuming D α + D α -, and using µx γx 3 to find

γx 3 p x,st (x) ≈ (1 + β) d dx x -∞ z α px,st(z)dz (x-z) α-1 2 cos(πα/2)Γ(2 -α) . (3.59) Now, x -∞ z α px,st(z)dz (x-z) α-1 ≈ 1 x α-1
∞ -∞ z α p x,st (z)dz by a similar reasoning as for the Stratonovich case. The remaining integral cannot be performed explicitly, but it is an x-independent constant. Hence, one finds the asymptotic proportionality

p Itô x,st (x) ∝ (1 + β)x -3-α , ( 3.60) 
for large x. This result is remarkable, since the power law matches exactly the one found for additive noise in a quartic potential, [START_REF] Chechkin | Lévy flights in a steep potential well[END_REF]. In particular, the third moment is finite in the Itô interpretation for 1 < α < 2 (where it diverges in the Stratonovich case), and the variance is finite for 0 < α < 1 (where it diverges in the Stratonovich case).

The observation that the asymptotic form of the tails of the stationary PDF are altered by a state-dependent Lévy noise amplitude in the Stratonovich interpretation, but not in the Itô interpretation, has been made in previous studies with different functional forms of multiplicative noise [START_REF] Srokowski | Fractional Fokker-Planck equation for Lévy flights in nonhomogeneous environments[END_REF][START_REF] Srokowski | Multiplicative Lévy processes: Itô versus Stratonovich interpretation[END_REF]. In the following, we will adopt the Stratonovich interpretation.

The case β = -1

The asymptotics in (3.58) and (3.60) break down for β = -1, which is the nonlinear version of the finite-moment log-stable process. For Gaussian noise, α = 2, the stationary PDF in y is known to be p y,st (y) = N e µy e -γ 2 e 2y , which decays faster than e ny at large y for any n > 0. For 1 < α < 2 and β = -1, the stable PDF has a short tail +∞, decaying faster than a Gaussian (since α/(α -1) > 2 in eqn. (3.23)). This implies that the stationary PDF under such Lévy noise will decay faster than in the Gaussian case. Hence, the moments of x for any order n > 0 exist there also. In terms of p y,st (y), one expects a double-exponential function as in the Gaussian case. However, unfortunately, we cannot derive these large-x asymptotics explicitly as we did for β > -1, since the Riemann-Liouville derivative of such functions is not known in simple terms. Rather, we will rely on numerical solutions to confirm that the PDF of y indeed decays faster than exponentially at y → +∞. At 0 < α < 1, β = -1, since the origin is stable for all µ in the linear regime, it will continue to be stable in the nonlinear regime (the nonlinearity in equation (3.18) is strictly negative). Thus the stationary PDF is δ(x) in this case, i.e. the CDF converges to 1 for all x > 0 in the long-time limit.

Asymptotics of the PDF at x → 0

We now investigate the asymptotic behavior of the stationary density for x → 0. Here we need to distinguish between the cases β = 1 and β < 1.

The case β = 1

Consider β = 1 and µ > 0. The FFPE (3.25) in steady state, taking y → -∞ and neglecting γe 2y µ, reads

0 = -µ∂ y p y,st (y) - 1 cos(απ/2) (D α + f )(y). (3.61) 
Making an exponential ansatz p y,st (y) ∝ e Ay and using the fractional derivative of the exponential given in equation (3.42) leads to

0 = -µAe Ay - 1 cos(απ/2)
µA α e Ay , (

implying

A ≡ A α (µ) = (-µ cos(απ/2)) 1/(α-1) (3.63) 
In terms of the original variable x, this corresponds to

p x,st (x) ∝ x -1+Aα(µ) , (3.64) 
which for α > 1 is integrable when µ > 0. The term integrable is used here to mean that the integral of a given function over its domain converges. When α > 1 and µ ≤ 0, on the other hand, the solution is non-integrable, which is associated with the absence of a steady-state solution in the space x > 0. In that case, the stationary density is given by δ(x), with the CDF converging to 1 for all x in the long-time limit. For α < 1 and -∞ < µ < 0, the same result (3.64) holds with A > 0, such that the solution is integrable. For α < 1, µ > 0, the solution again ceases to be integrable. From the Langevin equation (3.24) one deduces that this is due to the fact that in this case Ẏ > 0 for Y < 1 2 ln (µ/γ), since the noise is strictly positive, and thus the probability to be at Y ≤ 1 2 ln(µ/γ) vanishes at late times. The stationary PDF is thus only supported at values of y above the deterministic saturation point 1 2 ln(µ/γ) and vanishes for all smaller y. Hence, the exponential ansatz is inappropriate and breaks down. This indicates that for α < 1, µ > 0, we cannot neglect the nonlinear term in equation (3.18), since it is the only one that decreases Y .

The above discussion confirms the intuition based on the linear solution (including an arrest of the leakage of probability to +∞ by the nonlinear term in eq. (3.18)). For β = 1, α > 1 a critical transition occurs at µ = 0, from all weight of the stationary PDF being at x = 0 (origin stable) to non-zero weight at x > 0 (origin unstable). On the other hand, for 0 < α < 1, β = 1, the origin is always unstable.

The case β < 1

Let β < 1 and µ > 0. We follow once again the arguments of [START_REF] Chechkin | Lévy flights in a steep potential well[END_REF], starting from eq. (3.25). Consider y → -∞, such that µ γe 2y , and neglect D α

+ D α -to find -µp y,st (y) = (1 -β) d dy ∞ y py,st(z)dz (z-y) α-1 2 cos(πα/2)Γ(2 -α) . (3.65)
Using normalisation of the PDF, as for the large-x limit at β > -1, we find that the stationary PDF is asymptotically given by

p y,st (y) ∼ (1 -β)C µ (-y) -α , ( 3.66) 
for y → -∞, where C is given by (3.57). In terms of the original variable, this corresponds to

p x,st (x) ∼ C(1 -β) µ x -1 (log(1/x)) -α (3.67)
for x → 0. While the above derivation is for 1 < α < 2, the case 0 < α < 1 leads to the same result. Clearly, this solution breaks down at negative µ, since the predicted PDF ceases to be positive. In this case, the stationary distribution is δ(x). For α < 1, the fact that the solution (3.66) is not integrable at y = -∞ implies that there is no stationary state at x > 0. Instead, the stationary density in that case is δ(x), for all µ. For 1 < α < 2 and µ > 0, on the other hand, (3.66) gives a consistent, integrable stationary PDF. 

β p x,st (x → 0) p x,st (x → ∞) -1 C(µx) -1 log -α (1/x) exponential decay (-1, 1) C(µx) -1 log -α (1/x) Cγ -1 x -3 log -α (x) 1 ∝ x -1+Aα(µ) Cγ -1 x -3 log -α (x)
Table 3.2 summarizes the different asymptotic behaviors obtained above. The closest resemblance with the α = 2 case is seen in the large-x exponential decay at β = -1 (which is Gaussian for α = 2), and the small-x µ-dependent power-law at β = 1 (where A α=2 (µ) = µ). The asymptotics in the remaining cases are qualitatively different from the Gaussian case. A criterion for a system to be on-off intermittent is whether the stationary density p x,st (x) diverges at x = 0. In previous studies of on-off intermittency with various types of noise, there is generally a critical value µ c > 0 above which the intermittent behavior disappears [START_REF] Aumaître | Low-frequency noise controls onoff intermittency of bifurcating systems[END_REF][START_REF] Aumaître | Effects of the low frequencies of noise on on-off intermittency[END_REF]. The asymptotic results presented above imply that for 1 < α ≤ 2, on-off intermittency will cease when -1 + A α (µ) = 0 at β = 1, since the singularity at x = 0 disappears at this point. However, at β < 1, the x -1 log -α (1/x) behavior at small x remains present for all µ > 0. This implies that there is no value of µ where on-off intermittency ceases to be present in that case, by contrast with all previously known cases of on-off intermittency.

Summarising, a critical transition occurs at µ = 0 for 1 < α < 2, from a stable origin at µ < 0 to an unstable origin at µ > 0. This is as predicted in the linear theory. When α < 1, β < 1, the origin is stable for all µ, and for α < 1, β = 1, the origin is always unstable. These results are also consistent with the linear theory, taking into account saturation by the nonlinearity.

PDFs and Moments

Here we will attempt to deduce the moments based on the asymptotic behavior of the PDFs discussed in the previous sections complemented by numerical solutions of the stationary FFPE, using a heuristic approach. The numerical solutions are computed using the finite-difference scheme described in appendix 3.G. The case 1 < α < 2, β = 1

We begin by showing the results from the numerical solution of the FFPE. Figure 3.17 indicates an agreement with the theoretical results of the previous section, for x 1 (i.e. y → -∞) and x 1 (i.e. y → ∞). In order to calculate the scaling of the different moments with µ we can model the PDF as log α (x * ) for continuity. To determine the two unknowns N and x * , we impose normalisation of the PDF and the second moment identity (3.54). At small µ, the dominant part of the weight is at negative y, i.e. at small x, as visible in figure 3.17. This implies as µ → 0 + . In addition,

p x,st (x) ≈ 1 N x -1+Aα(µ) : x < x * Bx -3 log -α (x) : x ≥ x * , ( 3 
N ∼ x Aα(µ) * A α (µ) , ( 3 
X 2 = 1 2+Aα(µ) + 1 α-1 log 1-α (x * ) x 2+Aα(µ) * N (3.70)
and moments of order higher than two diverge. By equation (3.54) we have X 2 = µ/γ. For 0 < µ 1, this implies,

x * ≈ 2µ/(A α (µ)γ), (3.71) 
such that

X ≈ A α (µ)x * ∝ µ α 2(α-1) , ( 3.72) 
where A α (µ) was inserted from equation (3.63). Figure 3.18 shows that this agrees with the numerical solution of the stationary FFPE for the examplary case α = 1.5, β = 1.

The case 1 < α < 2, β = -1 

≈        0 : y ≥ 0 D(-y) -λ : 0 > y ≥ y * 2C/µ (-y) -α : y * > y , ( 3.73) 
where C = Γ(π) sin(πα/2)/π. The portion of the PDF at y > 0 makes a negligible contribution to its normalisation and any moments of X, due to the faster-than-exponential decay at y > 0. The value of λ can only be determined numerically, with relatively large errorbars. Thus fixing λ numerically (e.g. λ ≈ 0.6 for α = 1.5, β = -1 in figure 3. [START_REF] Ibbetson | Experiments on turbulence in a rotating fluid[END_REF]), there are two unknowns D and y * which we determine by imposing normalisation of the PDF and the second moment identity (3.54). The tail at y → -∞ fits the prediction (3.66) (dashed lines on the right). Before that limiting scaling is observed at y → -∞, an intermediate, flatter power-law range occurs at y < 0, whose exponent is independent of µ, but whose amplitude decreases and whose range increases as µ decreases. At large positive y, there is a faster-thanexponential decay as predicted (compare with figure 3.21 at y > 0).

Formally, Figure 3.19 suggests that y * → -∞ as µ → 0 + . In eq. (3.75), this implies that the second integral, from -∞ to y * , is exponentially suppressed for small µ. For large |y * |, the lower limit of the first integral may be replaced by -∞. This leads to

1 = D 1 -λ (-y * ) 1-λ + 2C µ(α -1) (-y * ) 1-α , ( 3 
D ≈ 2 1-λ γΓ(1 -λ) µ, (3.76) y * ≈ - 2C (α -1) 1/(α-1)
µ -1/(α-1) .

(3.77) employ the same approximate form for the PDF as for β = -1,

p y,st (y) ≈        0 : y ≥ 0 E(-y) -ν : 0 > y ≥ y * * (1 -β)C/µ|y| -α : y < y * * , ( 3.79) 
where once more C = Γ(α) sin(απ/2)/π. We may again determine ν numerically, albeit with significant uncertainty. In figure 3.21, where α = 1.5, β = 0, we observe ν ≈ 0.25.

As for β = -1, the portion of the PDF at y > 0 makes a subdominant contribution to the normalisation and the moments of order n < 2. To determine E, ν, we need two conditions. By contrast with the case β = -1, we impose continuity at y * * instead of (3.54), and normalisation of the PDF. Formally, Solving these two equations gives

E(-y * * ) -ν = (1 -β) C µ (-y * * ) -α , (3.80) 1 = E 1 -ν (-y * * ) 1-ν + (1 -β)C µ(α -1) (-y * * ) 1-α . ( 3 
y * * = 1 1 -ν + 1 α -1 (1 -β)Cµ -1/(α-1) (3.82) 
E =y ν-α * * (1 -β)C µ = {(1 -β)C} 2α-ν-1 α-1 1 1-ν + 1 α-1 1 α-1 µ 1-ν α-1 . (3.83)
This implies that the first moment exhibits the anomalous scaling

X = e y ≈ E 0 -∞ e y (-y) -ν dy ∝ µ 1-ν α-1 . (3.84)
Note that, by contrast with the case β = -1, the critical exponent in (3.84) depends on the exponent ν of the intermediate power-law range at negative y, which we have not determined theoretically as a function of α, β, but only measured numerically. The critical scaling of the first moment predicted in eq. (3.84) is shown to be consistent with the numerically obtained moments in figure 3.22 for the case α = 1.5, β = 0. The prediction (3.84) for the critical exponent at n = 1 was also verified for different values of α at β = 0 (not shown).

The case 0 < α < 1, β = 1

In this case the origin is unstable for all µ, and a non-trivial stationary state exists due to the nonlinearity in equation (3.18). The point-vortex model presented the previous sections, where α = 2/3, β = 1, falls into this parameter range. The asymptotic theoretical results suggest that for µ < 0, the PDF can be modeled as where C = sin(απ/2)Γ(α)/π, A α (µ) given by (3.63), and the two unknowns B and y * are in principle determined by continuity at y * and normalisation. We note that the second moment does not exist because y -α is not integrable at infinity for α < 1. Moments of order higher than two also diverge. However, X n does exist for all 0 < n < 2.

For illustration, we consider the special case α = 1/2, γ = 1 and take the limit µ → 0 -, where A α (µ) → ∞. Clearly then p y,st (y) → 0 at y < 0. Further, since

2C ∞ 0 e -2y y -1/2 dy = 1, (3.86) 
taking y * ≈ 0 as µ → 0 -gives a consistently normalized model of the PDF. For this special case, α = 1/2, γ = 1, the n-th moment of the PDF for 0 < n < 2 may be computed to be

X n = 2C ∞ 0 e (n-2)y y -α dy = 2 2 -n , ( 3.87) 
for µ small and negative. Note that the result is independent of µ and diverges as n → 2 -. For n = 1, equation (3.87) was found to be satisfied to within a few percent relative error by averaging over sample trajectories (not shown) using the method in appendix 3.F.

Conclusions: Lévy on-off intermittency

Drawing inspiration from the dynamics of a point-vortex model, we have studied the general stochastic process obeying the Langevin equation (3.18) with Lévy white noise.

The theory of on-off intermittency was generalized, from the known case of Gaussian noise, to Lévy noise by studying the FFPE (3.25) analytically and numerically. First the linear (γ = 0) solution was analysed, which showed leakage of the probability to x = 0, x = ∞ or both, depending on the noise parameters α and β. Then we computed the nonlinear (γ > 0) stationary solutions of the stationary FFPE, for which the leakage of probability to large x is arrested by the nonlinearity in equation (3.18). We showed that for 1 < α ≤ 2 the origin is stable at µ < 0 and unstable at µ > 0. For 0 < α < 1, there is no transition: the origin is always stable, or always unstable, for any µ ∈ R, due to the divergent mean of the noise. In addition to the Gaussian case α = 2, where the stationary PDF for µ > 0 is given by p x,st (x) = N x -1+µ e -γ 2 x 2 and all critical exponents are equal to 1, we identify a total of five qualitatively distinct regimes in the parameter space α ∈ (0, 2], β ∈ [-1, 1], illustrated in figure 3.23, (i) "Critical 1" with 1 < α < 2, β = 1. For µ > 0 and small x, the PDF is p x,st (x) ∝

x -1+Aα(µ) , with A α (µ) ∝ µ 1 α-1 . This matches the Gaussian small-x result for A critical transition occurs at µ = 0 for 1 < α < 2, and for the Gaussian case α = 2. For 0 < α ≤ 1, the origin is either always stable or always unstable, independently of µ.

α = 2. At x 1, the PDF is p x,st (x) ∝ x -3 (log(x)) -α , i.e. X n < ∞ for n ≤ 2 but X n = ∞ for n > 2. As µ → 0 + , one has X n ∝ µ cn , with c 1 = α 2(α-1) and c 2 = 1. (ii) "Critical 2" with 1 < α < 2, |β| < 1. The PDF is p x,st (x) ∝ µ -1 x -1 (log(1/x)) -α
at small x > 0. This is in stark contrast with the Gaussian result; the logarithmic term here is crucial for integrability at x = 0. At x 1, the PDF is p x,st (x) = Cx -3 (log(x)) -α as in case (i), s.t. only moments of order n ≤ 2 are finite. At x < 1, but not too small, there is an intermediate range where approximately p x,st (x) ∝ x -1 (log(x)) -ν , where the exponent ν was determined numerically. It remains an open problem to compute it theoretically as a function of α, β. For small µ > 0, we found X n ∝ µ cn , with c 1 ≈ 1-ν α-1 and c 2 = 1.

(iii) "Critical 3" with 1 < α < 2, β = -1. At small x and µ > 0, the PDF is p x,st (x) ∝ µ -1 x -1 (log(1/x)) -α as for case (ii). For large x, the PDF p x,st (x) decays faster than any power of x. At x < 1, but not too small, there is an intermediate range similar to that in (ii) where approximately p x,st (x) ∝ x -1 (log(x)) -λ , with a different exponent λ which was determined numerically. It remains an open problem to compute λ theoretically as a function of α, β. However, the critical exponents are independent of λ: for small µ > 0, one finds X n ∝ µ cn , with c n = 1 for all n > 0. This is as in the Gaussian case.

(iv) "Unstable" with 0 < α < 1, β = 1. Since the noise is strictly positive and has infinite mean, the origin x = 0 is always unstable, independently of µ. At small x and for all µ < 0, the PDF is p x,st (x) ∝ x -1+Aα(µ) . For µ > 0, the PDF vanishes at x < µ/γ. For µ < 0 small, in the special case α = 1/2, γ = 1, the n-th moment was shown to be X n = 2/(2 -n) for 0 < n < 2. For n ≥ 2, all moments X n diverge.

(v) "Stable" with 0 < α < 1, β < 1 or α = 1 for any β. The origin is always stable in this case, the stationary PDF is δ(x) for all µ as long as γ > 0.

In summary, we have shown that instabilities under the influence of multiplicative heavy-tailed (non-equilibrium) noise, modeled as Lévy white noise, can display anomalous critical exponents differing from those for thermal Gaussian noise, where c n = 1 for all n. Anomalous critical exponents different from the Gaussian results have been found previously, for instance for instabilities subject to colored noise [START_REF] Pétrélis | Anomalous Exponents at the Onset of an Instability[END_REF]. Here, we add the scenario of Lévy white noise, which leads to several new possibilities of anomalous scaling, as discussed above.

Our work serves as a first step in the study of instabilities in the presence of multiplicative Lévy noise. There are many directions that can be further pursued. First of all the values of the power-law exponents λ, ν in eqs. (3.79), (3.73) remain unknown leading to only a non-rigorous estimate of the scaling exponents of the different moments with µ. Furthermore, the behavior of the system under truncated Lévy noise [START_REF] Mantegna | Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight[END_REF][START_REF] Koponen | Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process[END_REF][START_REF] Schinckus | How physicists made stable lévy processes physically plausible[END_REF][START_REF] Chechkin | Bifurcation, bimodality, and finite variance in confined Lévy flights[END_REF][START_REF] Chechkin | Lévy flights in a steep potential well[END_REF], combined Lévy-Gaussian noise [START_REF] Zan | Stochastic dynamics driven by combined Lévy-Gaussian noise: fractional Fokker-Planck-Kolmogorov equation and solution[END_REF], a finite-velocity Lévy walk [START_REF] Xu | Lévy walk dynamics in an external harmonic potential[END_REF], different nonlinearities [START_REF] Pétrélis | Modification of instability processes by multiplicative noises[END_REF], higher dimensions [START_REF] Graham | Stabilization by multiplicative noise[END_REF][START_REF] Mallick | Stability analysis of a noise-induced Hopf bifurcation[END_REF][START_REF] Alexakis | Planar bifurcation subject to multiplicative noise: Role of symmetry[END_REF] and its time statistics [START_REF] Heagy | Characterization of on-off intermittency[END_REF][START_REF] Hammer | Experimental observation of on-off intermittency[END_REF][START_REF] Rödelsperger | On-off intermittency in spin-wave instabilities[END_REF][START_REF] Feng | On-off intermittencies in gas discharge plasma[END_REF][START_REF] John | On-off intermittency in stochastically driven electrohydrodynamic convection in nematics[END_REF][START_REF] Vella | On-off intermittency in chaotic rotation induced in liquid crystals by competition between spin and orbital angular momentum of light[END_REF][START_REF] Huerta-Cuellar | Experimental characterization of hopping dynamics in a multistable fiber laser[END_REF][START_REF] Aumaître | Noise-induced bifurcations, multiscaling and on-off intermittency[END_REF][START_REF] Bertin | On-off intermittency over an extended range of control parameter[END_REF] would also be interesting to understand. Finally, since Lévy statistics are found in many physical systems, we permit ourselves speculate that the anomalous critical exponents predicted here for instabilities in the presence of power-law noise may be observable experimentally.

We stress that Lévy noise is a theoretical idealization. From an experimental point of view, one can always compute all the moments of a random signal, firstly since it will be of finite duration T , and secondly because on physical grounds, infinite fluctuation amplitudes are unrealistic, such that a large cut-off is required. In a hypothetical experimental observation of Lévy on-off intermittency, one could repeatedly increase the duration T of the runs and measure the moments from finite samples of increasing length. As the observation time is increased, the moments which are finite for ideal Lévy noise will converge as T increases. Those moments that diverge for ideal Lévy noise will keep growing as T increases. The effect of the noise truncation is to render all moments of the noise increments finite. This implies that the non-generalized central limit theorem applies, imposing a convergence to Gaussian statistics at late times. However, it is well known that for large cut-off values, this convergence is "ultra-slow" [START_REF] Mantegna | Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight[END_REF][START_REF] Schinckus | How physicists made stable lévy processes physically plausible[END_REF]. Hence, our predictions for ideal Lévy noise can be expected to be correct at intermediate observation times, large enough for the tails of the distribution to have been sampled, but short enough to avoid the eventual convergence to Gaussian statistics.

3.A The point-vortex model equations for periodic boundary conditions

In the main text, the model is presented in infinite space for clarity. Here, we describe the case of 2-D doubly periodic domain [0, 2πL] × [0, 2πL], in which an overall neutral set of an even number N v of point vortices with circulations Γ n = (-1) n Γ, located at positions x

(i) v = x (i) v , y (i) v
move due to their mutual advection. We describe this configuration using the Weiss-McWilliams formalism introduced in [START_REF] Weiss | Nonergodicity of point vortices[END_REF]. In addition, as in the main text, we introduce to N p localized 3-D perturbations ("ergophages"), idealized as being point-like, at positions x 

Equations of motion and Hamiltonian

The equations of motion of the point vortices and ergophages in the periodic domain are given by the same equations as in the infinite space, (3.2) and (3.3) along with (3.4). The Hamiltonian in the periodic domain differs from that in the infinite plane, and is given by

H({x (i) v -x (j) v }) = - 1 2 Nv i,j=1 i =j Γ i Γ j h(x (i) v -x (j) v ), (3.88) 
with

x ij vv ≡ x (i) v -x (j) v ≡ (x ij vv , y ij vv )
and the vortex-pair energy function in the periodic domain given by

h(x, y) = ∞ m=-∞ ln cosh(x/L -2πm) -cos(y/L) cosh(2πm) - x 2 2πL 2 , ( 3.89) 
where the infinite sum over m stems from the sum over all copies of the periodic domain, as shown in [START_REF] Weiss | Nonergodicity of point vortices[END_REF]. A useful alternative notation for the 2-D point-vortex advection is given in [START_REF] Weiss | Nonergodicity of point vortices[END_REF] as

Γ -1 i +∂ y (i) v H -∂ x (i) v H = Nv j=1 j =i Γ j -S y ij vv , x ij vv +S x ij vv , y ij vv , ( 3.90) 
in terms of the rapidly converging series

S(x, y) = 1 L ∞ m=-∞ sin(x/L) cosh(y/L -2πm) -cos(x/L) . ( 3.91) 
Equation (3.90) relies on the identities ∂h/∂x(x, y) = S(x, y) = ∂h/∂y(y, x). We note that at small distances, the periodic copies are negligible and one recovers the results valid in the infinite plane. In particular, for x, y 1, S(x, y) ≈ xL/(x 2 + y 2 ). This enables us to transfer all results pertaining to small distances in the infinite plane to the periodic case.

Interactions

As in the main text, each of the localized 3-D perturbations is assigned an amplitude A k ≥ 0, k = 1, . . . , N p , with an associated energy A 2 k /2, such that the total energy is 123 again given by (3.12), with H given by (3.88). For the velocity U (i)

p induced by the ergophages on the point vortices, we choose again the form given in equation (3.6). The expression for the dipole field given in equations (3.7) and (3.8) must be adapted to satisfy the periodic boundary conditions. This is done by tiling R 2 with infinitely many copies of the domain [0, 2πL] × [0, 2πL] and summing over all copies. For a periodic monopole, one obtains u

(k) p,monopole (x) = ∇φ k (x), (3.92) 
where the potential φ k , is given by

φ k (x) = h x -x (k) p , y -y (k) p , ( 3.93) 
in terms of the vortex-pair energy function h(x, y) defined in (3.89). The dipole field arises from the difference between two monopoles at small distances, and it is therefore equal to the derivative of the monopole field along the dipole moment dk = (cos(ϕ k ), sin(ϕ k )),

u (k) p (x) = ( d • ∇ x )u (k) p,monopole (x) (3.94)
As in the main text, if the A k obey (3.10) with γ k given by (3.11), then the total energy is conserved in time for arbitrary ûp , provided that µ = δ = 0 (no dissipation), and u f = 0.

The dipole phase ϕ k is an important degree of freedom, which can be adjusted for sustained growth of ergophage amplitude. Indeed, one can rewrite the growth rate as

γ k = Θ k cos(ϕ k ) + Σ k sin(ϕ k ), (3.95) 
with

Θ k = - Nv i=1    ∂ 2 φ k (x (i) v ) ∂x (i) v 2 ∂H ∂x (i) v + ∂ 2 φ k (x (i) v ) ∂x (i) v ∂y (i) v ∂H ∂y (i) v    (3.96)
and

Σ k = - Nv i=1    ∂ 2 φ k (x (i) v ) ∂x (i) v ∂y (i) v ∂H ∂x (i) v + ∂ 2 φ k (x (i) v ) ∂y (i) v 2 ∂H ∂y (i) v    . (3.97)
The form of (3.95) implies that for any vortex configuration, there is an optimum value of the phases ϕ k , for which the growth rate γ k is at its (positive) maximum, is given by

ϕ * k = arctan (|Σ k /Ω k |) , ( 3.98) 
The above formulae also apply to dipole ergophages in the infinite domain with the potential (3.8). We let ϕ k = ϕ * k for all k at every instant, implying growth of 3-D instabilities in the inviscid case.

Numerical implementation of the model

We implemented the equations corresponding to (3.2, 3.3, 3.10) with (3.94) and (3.98) in a fully MPI-parallelized Fortran program using a fourth-order Runge-Kutta time stepper. For the numerical implementation, a regularization was introduced at distances smaller than 2πL, for > 0, in a manner inspired by [START_REF] Krasny | Desingularization of periodic vortex sheet roll-up[END_REF]. Specifically, we replace

h(x, y) → ∞ m=-∞ ln   cosh x-2πmL L -cos y L + 2 cosh(2πm)   - x 2 2πL 2 (3.99)
and

S(x, y) → 1 L ∞ m=-∞ sin(x/L) cosh(y/L -2πm) -cos(y/L) + 2 .
(3.100)

As mentioned in the main text, the parallelization is implemented straightforwardly by splitting up the sums over vortex-vortex pairs and vortex-parasite pairs into chunks, each of which is assigned to one processor. The choice of the time step is discussed in the main text.

3.B Method for generating point-vortex configurations at a given temperature

Consider N point vortices located at positions 

(x i , y i ), i = 1, . . . ,

= η

(2) i = 0 and η (j) i (t)η (j ) i (t ) = 2δ(t -t )δ i,i δ j,j , in terms of the ensemble average • . Denote by X the state vector with entries X 2n-1 = x n , X 2n = y n for n = 1, . . . , N . Further, let ∇ X denote the 2N -dimensional gradient operator with respect to X, then the Fokker-Planck equation for the probability density P (X, t) associated with the given gradient dynamics reads

∂ t P = ∇ X • F, where F = sgn(T )(∇ X H)P + k B |T |∇ X P. (3.103)
In steady state, the flux of probability vanishes if there is no absorption or injection of probability at the boundaries. Solving the zero-flux condition gives the stationary probability density P s (X)

P s (X) = 1 Z exp - H(X) k B T , ( 3.104) 
which is the Boltzmann equilibrium distribution of the system at temperature T . Thus, solving equations (3.101, 3.102) numerically, the system reaches a steady state which is precisely the equilibrium at temperature T . Importantly, adding the Hamiltonian advection term U (i) v as in (3.2) does not change this equilibrium, since the associated terms in the Fokker-Planck equation cancel for every index i (being the divergence of a curl).

3.C Conservaton of energy

For the evolution equations (3.2, 3.10, 3.11), for µ = δ = 0 and no forcing, one finds that the total energy is conserved, since

dE tot dt = dH dt + Np k=1 A k dA k dt (3.105) = Nv i=1 U (i) p • ∇ x (i) v H + Np k=1 A k (γ k A k ) (3.106) = Nv i=1 Np k=1 A 2 k u (k) p (x (i) v ) • ∇ x (i) v H - Np k=1 Nv i=1 A 2 k u (k) p (x (i) v ) • ∇ x (i) v H (3.107) =0 (3.108)
This conservation of energy is independent of the modelling choice of the velocity field u p and of the particular form of the Hamiltonian. Hence the conservation holds for arbitrary boundary conditions.

3.D Details on monopole and dipole fields

The simplest possible choice for the velocity induced by 3-D perturbations, u p (x), in infinite space is an isotropic radial profile,

u (k) p (x) = x -x (k) p |x -x (k) p | 2 , ( 3.109) 
i.e. a monopole profile. Since it decays at infinity, it is admissible in the infinite plane. In a periodic domain, however, it needs to be adapted to the boundary conditions by summing over an infinite grid of images:

u p (x) (k) = ∞ n,m=-∞ x -x (k) p - 2πn 2πm x -x (k) p - 2πnL 2πmL 2 = S(x -x (k) p , y -y (k) p ) S(y -y (k) p , x -x (k) p ) , ( 3.110) 
where S(x, y) is as defined by the rapidly converging series given in (3.91) and regularized in (3.100). Equation (3.110) provides an alternative expression for the periodic monopole field, equivalent to that in (3.93). We note that the infinite sum is exactly the double series calculated by Weiss and McWilliams in [START_REF] Weiss | Nonergodicity of point vortices[END_REF]. The corresponding growth rate of perturbation k given in (3.11) can be rewritten as

γ k = c 2 Np i,j=1 i =j Γ i Γ j ∇h| x ij vv • ∇h| x ik vp -∇h| x jk vp (3.111) with x ij vv = x (i) v -x (j) v and x ik vp = x (i) v -x (k) 
p . It has been used that from eq. (3.91) that ∂h/∂x(x, y) = S(x, y) = ∂h/∂y(y, x). For simplicity, since the sum is over vortex pairs, consider a single such pair with circulations Γ 1 , Γ 2 at arbitrary positions x 1 , x 2 . Place a single ergophage at position (x, y). The sum over i, j in (3.111) reduces to a single term. Applying the averaging operator over ergophage positions,

F ≡ 1 4π 2 L 2 2πL 0 2πL 0 F (x, y)dxdy,
to the growth rate gives zero, since h is 2πL-periodic in both the x and y directions. We conclude that the mean growth rate of a monopole ergophage due to a single vortex pair vanishes, for arbitrary vortex positions. Thus the mean total ergophage growth rate, being the sum of pair contributions, also vanishes. Assuming that for a given vortex configuration, all ergophage positions are equally likely, then the resulting mean growth rate vanishes in the absence of dissipation. When dissipation is added, then 3-D perturbations must decay at long times. This is illustrated by a long run with N p = 32 passive nonlinear monopole ergophages and N v = 32 point vortices in figure 3.24. Therefore, the monopole model is insufficient and the dipole model suggests itself as having the minimal complexity to capture mean growth of 3-D perturbations.

3.E Power laws in growth rate probability density

For the dipole parasites introduced in the main text, consider the growth rate of the amplitude of a given ergophage at location x p , associated with a vortex pair of circulation 

(A) = 1 Np k f (A k )
, from a passive nonlinear simulation with N p = 32 ergophages inducing a monopole field, experiencing disspation ν, δ > 0. The zeroth moment decays exponentially, indicating that the mean growth rate is negative. Both moments clearly decay at late times as predicted theoretically.

Γ 1 , Γ 2 at positions x 1 = ( /2, 0), x 2 = (-/2, 0). We are interested in the tails of the probability density function (PDF), where the ergophage is very close to one or several point vortices, hence boundary conditions are irrelevant and we perform the analysis in the infinite plane. The localized perturbation has a dipole moment d = (cos(ϕ), sin(ϕ)) attached to it as well as an amplitude A, whose growth rate is given by

γ = Γ 1 Γ 2 cos(ϕ) (x -2 ) 2 + y 2 - 2[( 2 -x) cos(ϕ) -y sin(ϕ)]( 2 -x) [(x -2 ) 2 + y 2 ] 2 - cos(ϕ) (x + 2 ) 2 + y 2 + 2[( 2 + x) cos(ϕ) + y sin(ϕ)]( 2 + x) [( 2 + x) 2 + y 2 ] 2 . (3.112)
There are two limits of interest to be considered, namely the dilute limit corresponding to small inverse vortex temperatures |β| 1 and the dense limit corresponding to large(magnitude) inverse vortex temperatures, i.e. pairs of opposite-sign vortices for β > 0 and clusters of same-sign vortices for β < 0.

The dilute limit

In this case, the tails of the PDF of γ are generated by events in which the perturbation is closer to a single point vortex than to any other vortices, i.e. x p = x 1 + r(cos(φ), sin(φ)), r . In this case,

γ ∼ Γ 1 Γ 2 r 2 [sin(ϕ) sin(2θ) -cos(ϕ) cos(2θ)] = - Γ 1 Γ 2 r 2 cos(2θ + ϕ). (3.113)
Since we consider the case where ϕ is optimal at every position, one finds ϕ = -2θ + nπ, n ∈ N and

γ ∼ |Γ 1 Γ 2 | r 2 ⇔ r(γ) ∼ γ |Γ 1 Γ 2 | (3.114)
Assuming that all ergophage positions are equally probable, then the probability of of being at distance between r and r + dr is proportional to the ring area 2πrdr. This can be inverted using (3.114) to obtain a prediction for the PDF of γ, namely

P (γ) = r(γ) dr(γ) dγ ∝ 1 γ 2 (3.115)

The dense limit

In this case, the tails of the PDF of the growth rate stem from encounters of the localized perturbation with pairs of vortices, i.e. x p = r(cos(θ), sin(θ)), r . Then, one finds at leading order in that

γ ∼ Γ 1 Γ 2 -2 cos(ϕ) cos(θ) r 3 +2 y sin(ϕ)(y 2 -3x 2 ) -2x cos(ϕ)(x 2 -x 2 ) r 6 ∼ - 2Γ 1 Γ 2 r 3 cos(3θ -ϕ) Again assuming that ϕ is optimal, then ϕ = -3θ + nπ, n ∈ N, such that γ ∼ 2|Γ 1 Γ 2 | r 3
, which leads to the growth rate PDF, again under the assumption that all ergophage positions are equally probable

P (γ) = r(γ) dr(γ) dγ ∝ 1 γ 1 3 + 4 3 = 1 γ 5/3 ,
with an exponent -5/3, whose magnitude is less than 2. For both cases (dense and dilute), the PDF has neither a finite mean, nor a finite variance. We note that the exponent -5/3 found here bears no relation to Kolmogorov's spectral exponent, it is merely a consequence of the modelling choices made.

3.F Solution of the Langevin equation

Equation (3.18) is of the form of a Bernoulli differential equation. Hence, it admits an exact solution, which can be derived by dividing (3.18) by X 3 and letting Z(t) = 1/X 2 (t), such that dZ(t) dt + 2r(t)Z(t) = 2γ. (3.116) This gives

X(t) = sign(x 0 ) e -2µt-2L(t) x 2 0 + 2γ t 0 e 2µ(t -t)+2(L(t )-L(t)) dt 1 2 , ( 3.117) 
which is non-negative if x 0 ≥ 0. We denote dL/dt = f (t) with f (t) white Levy noise, i.e. L(t) is a free Levy flight. This solution is also given in [START_REF] Aumaître | Noise-induced bifurcations, multiscaling and on-off intermittency[END_REF], where it is stressed that it holds for any type of noise with L(t) being the integral of the noise. By contrast with other nonlinear equations involving multiplicative Lévy noise, such as [START_REF] Dubkov | Verhulst model with Lévy white noise excitation[END_REF], where the analytical solution of the nonlinear Langevin equation gives access to the exact timedependent PDF, this is impossible here since the result depends the integral of L(t), in addition to L(t). However, the expression is useful for numerical evaluation to generate realisations of the random process. It is advantageous over a direct iterative numerical integration since it does not require smaller time steps at large nonlinearity. Nonetheless, for large values of L(t ) -L(t), the exponential in the integrand may produce an overflow error. This can be avoided by choosing integration step dt and the total integration time t not too large.

3.G Finite-difference scheme for the fractional Fokker-Planck equation

We recall the stationary space-fractional Fokker-Planck equation in the Stratonovich interpretation in terms of Y = log(X), which reads

0 = -∂ y [(µ -γe 2y )p st (y)] + D α,β y p st (y), (3.118) 
where the fractional derivative is given by

D α,β y p st (y) = - [(1 + β)D α + p st + (1 -β)D α -p st ] 2 cos(πα/2) (3.119) = - [D α + + D α -+ β(D α + -D α -)]p st 2 cos(πα/2) . ( 3 

.120)

We consider 1 < α < 2, for which Riemann-Liouville derivatives are given by (3.27), and (3.28). Integrating once in y gives

0 = -(µ -γe 2y )p st (y) + K α d dy ∞ -∞ p st (z)[1 + βsign(y -z)] |y -z| α-1 dz, ( 3.121) 
where K α = -(2 cos(πα/2)Γ(2 -α)) -1 . To simplify discretization further, it is advantageous to rewrite the term stemming from the fractional derivative in the Grünwald-Letnikov form, cf. [START_REF] Liu | Numerical solution of the space fractional Fokker-Planck equation[END_REF], thereby transferring the y-derivative into the integral. This gives

0 = -(µ -γe 2y )p st (y) + K α ∞ -∞ p st (z)[1 + βsign(y -z)] |y -z| α-1 dz. (3.122)
For discretization we consider a large domain [y min , y max ], meshed by intervals [y n-1 , y n ],

whose N + 1 endpoints are y n , where p st (y n ) = p n , with n = 0, . . . , N . We prescribe an arbitrary initial condition p -1 > 0. Then, using a backward difference scheme for f (z) and regularising |y -z| α-1 → |y -z| α-1 + (0 < 1), we find a matrix equation

b n = N m=0 L n,m p m , (3.123) 
where n = 1, . . . , N ,

b n = -K α p -1 ((1 + βsign(y n -y 0 ))) |y n -y 0 | α-1 + (3.124)
and

L n,m = -µ + γe 2y 0 + K α (1 + βsign(y 0 -y m ))) |y n -y m | α-1 + (3.125) +K α θ(N -1 -m) (1 + βsign(y n -y m+1 )) |y n -y m+1 | α-1 + , ( 3.126) 
where θ(x) designates the Heaviside function. Finally, the steady density p m , m = 1, . . . , N is obtained by inverting the matrix L n,m and normalising the result. For β < 1 we chose a non-uniform grid, composed of a logarithmically spaced grid at y < -O(100), combined with a uniform grid in the region O(100) > y > -O(100). The total grid size was N = 24000. For β = 1, a uniform grid was used with N = 16000 (the PDF does not extend to y < 0 as far). Choosing on the order of the smallest grid resolution to the appropriate power α -1 gives results consistent with exact theoretical predictions, as described in the text. This chapter is based on publication P7, from which part of the text and figures were taken. Here, we will study two specific types of turbulent flows through the lense of equilibrium statistical mechanics. Turbulent flows involve a large number of degrees of freedom, spanning many spatial and temporal scales. Similarly, in a gas at equilibrium, there is a large number of degrees of freedom corresponding to all the gas molecules. In the latter case, it is well known that equilibrium statistical mechanics provides a description of drastically reduced complexity. Turbulent flows are, however, non-equilibrium phenomena [START_REF] Goldenfeld | Turbulence as a problem in non-equilibrium statistical mechanics[END_REF], since they involve finite fluxes of energy and other invariants across scales due to nonlinear interactions. For instance, energy is transferred from large to small scales in homogeneous and isotropic three-dimensional turbulence [START_REF] Frisch | Turbulence: the legacy of AN Kolmogorov[END_REF] whereas in twodimensions it flows from small to large scales [START_REF] Boffetta | Two-Dimensional Turbulence[END_REF]. At first sight, this makes the two cases starkly different. However, despite turbulence being an out-of-equilibrium phenomenon overall, equilibrium theory does remain relevant under certain circumstances. In three dimensions, this has been claimed to be the case at scales larger than the injection scale. At these scales, the energy flux is zero and the system can possibly be modeled using equilibrium dynamics [START_REF] Dallas | Statistical equilibria of large scales in dissipative hydrodynamic turbulence[END_REF][START_REF] Cameron | Effect of helicity on the correlation time of large scales in turbulent flows[END_REF][START_REF] Alexakis | On the thermal equilibrium state of large scale flows[END_REF][START_REF] Forster | Large-distance and long-time properties of a randomly stirred fluid[END_REF]. In addition, understanding equilibrium dynamics is important for systems that display a transition from a forward to an inverse cascade, such as those discussed in Chapters 1 and 2 of this thesis; in these systems the large scales transition from an equilibrium state to an out-of-equilibrium state. Another instance of equilibrium properties in three-dimensional turbulence is the so-called bottleneck, which manifests itself at the smallest scales of the inertial range (the range of scales below the forcing scale and above the dissipation scales), where the power-law spectrum becomes less steep [START_REF] Donzis | The bottleneck effect and the Kolmogorov constant in isotropic turbulence[END_REF][START_REF] Falkovich | Bottleneck phenomenon in developed turbulence[END_REF][START_REF] Martinez | Energy spectrum in the dissipation range of fluid turbulence[END_REF][START_REF] Lohse | Bottleneck effects in turbulence: scaling phenomena in r versus p space[END_REF]. The bottleneck was interpreted as 'incomplete thermalisation' in [START_REF] Frisch | Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence[END_REF], where it was argued that the scales involved in the bottleneck are asymptotically at equilibrium for hyper-viscous flows as the order of the hyper-viscosity goes to infinity. This prediction was recently shown to be consistent with numerical evidence [START_REF] Agrawal | Turbulent cascade, bottleneck, and thermalized spectrum in hyperviscous flows[END_REF].

Arguably the most successful application of equilibrium statistical mechanics to turbulence has been the case of two-dimensional (2-D) flows in finite domains, where energy accumulates in the mode(s) associated with the largest available spatial scale, forming a so-called condensate [START_REF] Kraichnan | Inertial ranges in two-dimensional turbulence[END_REF][START_REF] Robert | Statistical equilibrium states for two-dimensional flows[END_REF][START_REF] Naso | Statistical mechanics of twodimensional Euler flows and minimum enstrophy states[END_REF][START_REF] Bouchet | Statistical mechanics of two-dimensional and geophysical flows[END_REF][START_REF] Shukla | Statistical theory of reversals in twodimensional confined turbulent flows[END_REF]. An important property of such 2-D turbulent flows is that, in contrast with three dimensions, the energy dissipation vanishes when the viscosity tends to zero. Thus energy fluxes through the system also vanish in that limit [START_REF] Tabeling | Two-dimensional turbulence: a physicist approach[END_REF]. In addition to the energy, 2-D Euler flow also conserves the integral of the square of vorticity, known as enstrophy. Whether the dissipation of enstrophy vanishes in the zero-viscosity limit of the 2-D Navier-Stokes equations is known to depend on the choice of forcing mechanism for forced 2-D turbulence [START_REF] Eyink | Dissipation in turbulent solutions of 2D Euler equations[END_REF][START_REF] Alexakis | Energy and enstrophy dissipation in steady state 2d turbulence[END_REF]. For instance, monochromatic and constant-injection-rate forcing leads to vanishing enstrophy dissipation as viscosity goes to zero. For decaying 2-D turbulence, the answer depends on the initial conditions having finite enstrophy or not [START_REF] Tran | Enstrophy dissipation in freely evolving two-dimensional turbulence[END_REF][START_REF] Tran | Vanishing enstrophy dissipation in twodimensional Navier-Stokes turbulence in the inviscid limit[END_REF]. In either case, at scales larger than the forcing scale both energy and enstrophy fluxes vanish at steady state [START_REF] Kraichnan | Inertial ranges in two-dimensional turbulence[END_REF]. Thus these scales may be considered to be in equilibrium.

Two main approaches from statistical physics can be considered, which will be described in more detail below. Firstly the microcanonical ensemble, which applies to closed systems, and secondly the canonical and grand canonical ensembles, which apply to open systems subject to fluctuations of energy and other quantities (typically particle number) around a mean value. The first attempt in this direction was undertaken by Onsager in 1949 [START_REF] Onsager | Statistical hydrodynamics[END_REF], who formulated a microcanonical description of idealised (singular) point-vortex flow to explain the self-organisation of 2-D turbulence (see [START_REF] Eyink | Onsager and the theory of hydrodynamic turbulence[END_REF] for a review of Onsager's contributions to turbulence). Since Onsager's initial contribution, the statistical mechanics of singular point vortices has continued to attract a great deal of attention [START_REF] Joyce | Negative temperature states for the twodimensional guiding-centre plasma[END_REF][START_REF] Lundgren | Statistical mechanics of two-dimensional vortices[END_REF][START_REF] Caglioti | A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description[END_REF][START_REF] Eyink | Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence[END_REF][START_REF] Kiessling | The micro-canonical point vortex ensemble: beyond equivalence[END_REF][START_REF] Chavanis | Kinetic theory of Onsager's vortices in two-dimensional hydrodynamics[END_REF][START_REF] Esler | Statistical mechanics of a neutral pointvortex gas at low energy[END_REF][START_REF] Dritschel | Ergodicity and spectral cascades in point vortex flows on the sphere[END_REF][START_REF] Esler | Equilibrium energy spectrum of point vortex motion with remarks on ensemble choice and ergodicity[END_REF][START_REF] Eyink | Onsager and the theory of hydrodynamic turbulence[END_REF]. A generalization of the point-vortex statistical description was proposed by the celebrated Robert-Sommeria-Miller (RSM) theory proposed in the early 1990s [START_REF] Robert | A maximum-entropy principle for two-dimensional perfect fluid dynamics[END_REF][START_REF] Miller | Statistical mechanics of Euler equations in two dimensions[END_REF][START_REF] Robert | Statistical equilibrium states for two-dimensional flows[END_REF][START_REF] Miller | Statistical mechanics, Euler's equation, and Jupiter's Red Spot[END_REF][START_REF] Eyink | Onsager and the theory of hydrodynamic turbulence[END_REF][START_REF] Chavanis | Dynamical and thermodynamical stability of two-dimensional flows: variational principles and relaxation equations[END_REF]. The full 2-D Euler equations conserve vorticity for every fluid parcel. Hence the integral of any power of vorticity is conserved, not only the enstrophy. This implies an infinite family of conserved quantities (known as Casimir invariants), which was taken into account. A detailed description of RSM theory and its further developments can be found in [START_REF] Bouchet | Statistical mechanics of two-dimensional and geophysical flows[END_REF], a concise introduction is also given in [START_REF] Eyink | Onsager and the theory of hydrodynamic turbulence[END_REF]. The basic object of the theory is a local "microscopic" distribution function n(σ, r), the probability density associated with vorticity ω(r) lying between σ and σ + dσ at the space point r. The idea is that after evolving for a long time, the vorticity field develops very fine scales so that a small neighborhood of the point r will contain many values of the vorticity with levels distributed according to n(σ, r). From this distribution, a maximum principle for a generalised entropy leads to a mean-field equation for the "macroscopic" stream function, whose solution yields the equilibrium flow configuration. Specifically, RSM theory has been successfully applied to Jupiter's Great Red Spot [START_REF] Bouchet | Emergence of intense jets and Jupiter Great Red Spot as maximum entropy structures[END_REF], ocean rings and currents [START_REF] Venaille | Oceanic rings and jets as statistical equilibrium states[END_REF] and zonal flows [START_REF] Bouchet | Zonal flows as statistical equilibria[END_REF].

Here we follow an alternative equilibrium statistical description of turbulence, which can be obtained by considering the equilibrium state of the truncated (incompressible) Euler equations (TEE). The TEE retain only a finite number of Fourier modes [START_REF] Lee | On some statistical properties of hydrodynamical and magnetohydrodynamical fields[END_REF][START_REF] Hopf | Statistical hydromechanics and functional calculus[END_REF][START_REF] Kraichnan | Helical turbulence and absolute equilibrium[END_REF][START_REF] Orszag | Lectures on the statistical theory of turbulence[END_REF]. When the Euler equation is studied numerically, for instance with periodic boundary conditions, these are precisely the equations which pseudo-spectral numerical codes solve. In 1952, Lee [START_REF] Lee | On some statistical properties of hydrodynamical and magnetohydrodynamical fields[END_REF] investigated this system and showed that the TEE satisfy Liouville's theorem of conservation of phase space volume. In three dimensions, assuming ergodicity, Lee [START_REF] Lee | On some statistical properties of hydrodynamical and magnetohydrodynamical fields[END_REF] predicted that at equilibrium this system will be such that every state u of a given energy E is equally probable. This leads to the prediction that the energy spectrum E(k) (defined as the mean energy of the wave vector k) is given by E(k) = E/N , where N is the total number of wave vectors. This is equivalent to the microcanonical ensemble in statistical physics, which has been extensively studied for small systems [START_REF] Gross | Microcanonical thermodynamics and statistical fragmentation of dissipative systems. The topological structure of the N-body phase space[END_REF][START_REF] Gross | Microcanonical thermodynamics: phase transitions in" small" systems[END_REF], and it here amounts to equipartition of energy among all the degrees of freedom (i.e. among all Fourier amplitudes). Two decades later, Kraichnan [START_REF] Kraichnan | Helical turbulence and absolute equilibrium[END_REF] considered the TEE, for which he proposed a different approach, by considering that the complex amplitudes of the Fourier modes involved followed a canonical distribution that was controlled by the mean values of the invariants of the system: energy and helicity. Kraichnan's approach corresponds to a grand canonical ensemble, as total energy and helicity are allowed to fluctuate around a mean value. The grand canonical approach allowed Kraichnan to generalise Lee's result to a modified energy spectrum in the presence of helicity. A review of these results can be found in [START_REF] Orszag | Lectures on the statistical theory of turbulence[END_REF]. We note that a microcanonical statistical description of finite-dimensional 3-D TEE taking both the energy and the helicity constraint, has not been achieved. This is because, as we will see for the 2-D case, the presence of an additional invariant significantly complicates the integrals involved.

In two dimensions the TEE and the grand canonical ensemble statistics were investigated again by Kraichnan [START_REF] Kraichnan | Statistical dynamics of two-dimensional flow[END_REF]. The 2-D TEE can be written in terms of the stream function ψ(r) at position r (related to velocity via u = ê3 × ∇ψ),

∂ t ω + P K J(ψ, ω) = 0, (4.1) 
where

ω = ∇ 2 ψ is vorticity, J(f, g) = (∂ x f )(∂ y g) -(∂ x g)(∂ y f ) is the Jacobian operator,
x, y are the space coordinates, and P K is a projection operator that sets equal to zero all Fourier modes except those that belong to a particular set K.The TEE possess exactly two invariants, namely

energy E = 1 2 |u| 2 d 2 x, and enstrophy Ω = 1 2 |∇ × u| 2 d 2 x. (4.2)
In Fourier space, energy and enstrophy are distributed over the different modes. This is quantified by the 2-D energy spectrum, which, in terms of the Fourier transform ψ(k) of ψ(r), reads

E(k) = 1 2 k 2 | ψ(k)| 2 . (4.3)
Note that E(k) is the energy contained in the single mode with wave vector k, and is not summed over the wave number shell of radius |k|, by contrast with the commonly used isotropic energy spectrum. At late times the solution of the TEE reaches a statistically steady state whose properties are fully determined by E and Ω. Kraichnan's [START_REF] Kraichnan | Statistical dynamics of two-dimensional flow[END_REF] grand canonical ensemble assumes again that the Fourier amplitudes follow a canonical distribution:

P (u) = Z -1 exp(-αE -βΩ), ( 4.4) 
where Z is a normalisation constant, P (u) is the probability density function (PDF) associated with the system having the velocity field u. The constants α, β are Lagrange multipliers, analogous to inverse temperature and inverse chemical potential in a gas at equilibrium. It implies the average energy spectrum E(k) = (α + βk 2 ) -1 . Note, that (4.4) is not exact for the TEE, since it allows for fluctuations of energy and enstrophy, which are invariants of the TEE. The alternative is to assume only ergodicity and use the microcanonical description of Lee [START_REF] Lee | On some statistical properties of hydrodynamical and magnetohydrodynamical fields[END_REF]. This amounts to attributing uniform probability in the subset of phase space that satisfies the energy constraint E = E 0 and enstrophy constraint Ω = Ω 0 where E 0 and Ω 0 is the initial energy and enstrophy of the system. Explicitly, the PDF is given by:

P (u) = Z -1 δ(E -E 0 )δ(Ω -Ω 0 ), (4.5) 
with normalisation Z (different from that in (4.4)) and E and Ω defined in (4.2). In geometrical terms, this distribution in phase space is non-zero only at the intersection between the manifold determined by the energy constraint and the manifold determined by the enstrophy constraint in the N -dimensional phase space. Not surprisingly, it is nontrivial to obtain analytical results using the microcanonical ensemble, as the integrals involved in computing any mean quantity have to be performed over a high-dimensional (co-dimension 2), complicated submanifold in phase space. Both the microcanonical and the canonical ensembles correspond to invariant measures, in the sense that they are time-invariant solutions of Liouville's equation for the probability density, because they both depend on conserved quantities only [START_REF] Orszag | Lectures on the statistical theory of turbulence[END_REF].

In general, working in the canonical ensemble greatly simplifies computations. While it is found in many cases that the canonical results asymptotically agree with the microcanonical ones as the number of degrees freedom tends to infinity (the thermodynamic limit), there are also examples of ensemble inequivalence in this limit, in particular in systems with long-range interactions, [START_REF] Lewis | The equivalence of ensembles for lattice systems: some examples and a counterexample[END_REF][START_REF] Ellis | Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles[END_REF][START_REF] Ellis | Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows[END_REF][START_REF] Venaille | Statistical ensemble inequivalence and bicritical points for two-dimensional flows and geophysical flows[END_REF][START_REF] Venaille | Solvable phase diagrams and ensemble inequivalence for two-dimensional and geophysical turbulent flows[END_REF][START_REF] Bouchet | Statistical mechanics of two-dimensional and geophysical flows[END_REF]. Moreover, for systems in which the energy is concentrated in only a small number of modes, as is the case in large-scale condensates, there is a priori no reason to expect the two statistical ensembles to yield the same result. In this case, for exactly conservative systems such as the TEE, the micro-canonical ensemble is the more appropriate choice, since it respects the conservation laws and only assumes the dynamics to be ergodic. Therefore, despite the technical difficulty it entails, the study of the microcanonical ensemble is highly relevant to the TEE.

In this work, we propose a novel approach to the microcanonical statistical mechanics of TEE flows. We explicitly compute the intersection volume and deduce different statistical quantities based on the microcanonical distribution (4.5) for two examples. First, we consider a condensate flow and compute the microcanonical average energy spectrum. Second, we extend the work of [START_REF] Shukla | Statistical theory of reversals in twodimensional confined turbulent flows[END_REF] to show that the statistics of reversals of the largest-scale velocity in a simple free-slip flow in a square domain are correctly predicted by an explicitly geometrical microcanonical calculation.

Energy spectrum of condensate flows

Microcanonical calculation

In this section we calculate the energy distribution among modes. Consider a 2-D flow with boundary conditions leading to a discrete set of Fourier modes, e.g. in a periodic domain,

ψ(r) = k∈K ψ(k)e ik•r (4.6)
with complex amplitudes ψ(k) satisfiying the condition ψ(-k) = ψ * (k), required for ψ to be real, the summation being over the set

K = 2π n Lx , m Ly (n, m) ∈ Z 2 ∩ k ∈ R 2 |0 < |k| ≤ k max for a domain size L x × L y ,
or to a discrete set of sine modes, e.g. for a [0, π] 2 free-slip domain,

ψ(r) = k=(n,m)∈K ψ(k) sin(mx) sin(ny), (4.7) 
with real amplitudes ψ(k) depending on k in

K = {k = (m, n) |0 < |k| < k max ; m, n ∈ N + }.
In the following, we always denote by N the number of elements in the set K, independently of whether the amplitudes ψ(k) are real or complex. If the amplitudes are complex, the real and imaginary parts of ψ are separate degrees of freedom, but only for half the wave vectors. In either case (real or complex amplitudes) the number of degrees of freedom is equal to the number of wave vectors N . We label the degrees of freedom by an index i = 1, . . . , N , and denote the associated wave vector by k i , with wavenumber k i = |k i |. In order to obtain a real-valued phase space whose components are indexed in such a way that the corresponding wavenumber is a non-decreasing function of the index, we introduce the following new variables: if ψ(k) is real, then r i := ψ(k i )k i / √ 2, and the index i covers all wave vectors. If ψ is complex, then r i := Re{ ψ(k i )}k i if i is even, r i := Im{ ψ(k i )}k i if i is odd and i covers half the wave vectors so that k i and -k i together cover all wave vectors. The labeling is such that the k i are ordered so that k i ≤ k i+1 and let also

k 1 = k 2 = • • • = k M < k M +1 be the first M equal smallest wavenumbers. For instance, in a periodic square spatial domain [0, 2π] 2 , M = 4 with k 1 = • • • = k 4 = 1,
corresponding to the real and imaginary parts of k = (1, 0), (0, 1), (-1, 0), (0, -1), taking into account that ψ is real. For free-slip boundary conditions in a [0, π] 2 domain, one finds M = 1 with k 1 = √ 2. Geometrically, with this notation, constant energy trajectories in phase space satisfy r 2 i = E, i.e. they live on the surface of an N-dimensional sphere of radius √ E. Constant enstrophy trajectories follow k 2 i r 2 i = Ω and thus live on the surface of an N-dimensional ellipsoid with the longest ellipse semi-axis is Ω 1/2 /k 1 , the shortest semi-axis is Ω 1/2 /k N . The two hyper-surfaces intersect when Ek 2 1 ≤ Ω ≤ Ek 2 N . Phase space trajectories of the TEE that conserve both energy and enstrophy thus live on this intersection of the two hyper-surfaces. Note that this the N -dimensional analogue of the energy and angular momentum conservation for a freely spinning top (see §37 of [355]).

Our goal is to calculate the temporal mean energy spectrum E(k i ) = r 2 i for a flow with initial energy E and enstrophy Ω. The assumption of ergodicity allows us to replace the temporal mean by an average over phase space volume thus

r 2 i = 1 Z r 2 i δ   N j=1 r 2 j -E   δ   N j=1 r 2 j k 2 j -Ω   j dr j , ( 4.8) 
where

Z = δ   N j=1 r 2 j -E   δ   N j=1 r 2 j k 2 j -Ω   j dr j . ( 4.9) 
In particular, we are interested in the limiting case where

Ω = Ek 2 1 (1 + 2 ), with 1, (4.10) 
such that almost all energy is concentrated in the small-k modes. This case is closely related to the situation met in forced 2-D turbulence, where the inverse cascade leads to a high condensation of energy at the smallest wavenumbers, displaying quasi-equilibrium statistics. Also, in this case, because energy is concentrated in a few modes, the thermodynamic limit N → ∞ could fail. A priori we cannot tell if the two limits → 0 and N → ∞ commute.

In geometrical terms 1 means that the largest ellipse semi-axis, Ω 1/2 /k 1 , is slightly larger than the sphere radius, E 1/2 , as sketched in the left panel of figure 4.1. The delta functions restrict the integrals to values of r 1 , r 2 , . . . , r M ∈ [-E 1/2 , E 1/2 ], to be of order one, while r M +1 , r M +2 , . . . , r N are of order . We define x 2 := M i=1 r 2 i as the energy in the largest scale and y 2 := N i=M +1 r 2 i as the energy in the remaining scales. The equations then become

x 2 + y 2 = E and k 2 1 x 2 + q 2 M +1 (Φ)y 2 = Ek 2 1 (1 + 2 ), (4.11) 
where

q 2 M +1 (Φ) =   N n=M +1 k 2 n r 2 n     N n=M +1 r 2 n   (4.12)
Note that q 2 M +1 (Φ) depends on the values r M +1 , . . . , r N , but not on x and y. Using spherical coordinates in the subspace (r M +1 , . . . , r N ), it can be expressed in terms of a set of angles Φ. Similarly, for the subspace (r 1 , . . . , r M ), we introduce another set of spherical coordinates, with a set of angles denoted by Θ. The transformation to the two spherical coordinate systems is given in appendix 4.A. The values of x 2 and y 2 that satisfy (4.11) can be then be expressed in terms of q M +1 (Φ) as

x 2 = E - k 2 1 2 E q 2 M +1 -k 2 1 , y 2 = k 2 1 2 E q 2 M +1 -k 2 1 . ( 4.13) 
To compute the integrals in (4.8), (4.9), fix the angle coordinates Θ, Φ (and thus the q M +1 (Φ)), and consider the volume with energy in the range [E, E +dE] and enstrophy in [Ω, Ω + dΩ], with dE, dΩ infinitesimal. Then, in the x, y plane the N-spherical shell and the N-ellipsoidal shell intersect forming a parallelogram, shown in figure 4 The area of the parallelogram is thus, to leading order,

δA = δRδL dEdΩ 4E 1/2 (q 2 M +1 -k 2 1 )|y A | = dEdΩ 4 Ek 1 q 2 M +1 -k 2 1 .
(4.17)
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The remaining part of the calculation amounts to integrating this infinitesimally small area element over all remaining degrees of freedom (i.e. the angles Φ, Θ). This rather lengthy, but straightforward calculation is done in the appendix and gives that for all i > M ,

E(k i ) = r 2 i = 2 Ek 2 1 (N -M )(k 2 i -k 2 1 ) (4.18) 
Conservation of energy thus yields, at leading order, M . Furthermore, using the definition of in eq. (4.10), we find that, at leading order 2 ∼ δ 2 (N -M )

E(k i ) = r i 2 = 1 M   E - N j=M +1 r 2 j   = E/M + O( 2

M

. This gives at leading order

r 2 i c =    E M : 1 ≤ i ≤ M E 2 k 2 1 (N -M )(k 2 i -k 2 1 ) : M + 1 ≤ i ≤ N, ( 4.23) 
which is identical to the microcanonical results, although the latter involved no thermodynamic large-N limit, but only a small-limit. The agreement of the two calculations indicates that the two limits → 0 and N → ∞ commute in this case. The microcanonical result provides an added value, since it is valid for any N , even in the absence of the thermodynamic limit, under the hypothesis of ergodicity. In the condensate state examined here, where most of the energy is concentrated in few modes, there is no guarantee that the grand canonical result applies. In fact, in the example presented in the next section, we show that the microcanonical and grand canonical ensembles give different results.

Reversals in free-slip flow in the square domain 4.2.1 Microcanonical calculation

In the problem examined below, one can easily show that the grand canonical description fails. We consider the TEE in a square (x, y) ∈ [0, π] 2 =: D with free-slip boundary conditions. This allows one to write the stream function as a double-sine series with real coefficients ψ n,m ψ(x, y) = m,n ψ n,m sin(mx) sin(ny), (

with a truncation that retains N modes (m, n). As described in section 4. For this system it is clear that if Ω < Ek 2 2 , then the amplitude of the r 1 mode cannot be reduced to zero because that would correspond to a Ω ≥ Ek 2 2 situation. Thus, if r 1 is positive/negative at t = 0 it will remain positive/negative at all times (note the importance of ψ 1,1 ∈ R at this step in the argument). A 3-D geometric illustration of this result is shown in left most panel of figure 4.2 where it is shown that the intersection of a sphere with an ellipsoid results in two disjoint lobes. This is in contradiction with the grand canonical description, which assumes a Gaussian PDF P(u) ∝ exp (α + βk 2 i )r 2 i and thus r i = 0 is always the most probable value for r i . It is, however, not an issue in the microcanonical ensemble, which follows the geometrical description illustrated in figure 4.2. For Ω ≥ Ek 2 2 , the amplitude r 1 can change sign (i.e. the large-scale flow can reverse) with a probability that becomes smaller and smaller as Ω approaches the critical value Ω c = Ek 2 2 from above. Based on this insight, we define ε by Ω =: k 2 2 E(1 + ε). (4.26)

At ε = 0, the system undergoes a transition where reversals appear. We emphasize that ε is different from used in the previous section. In particular, ε may take both signs and need not be small. The possibility of reversals in the large-scale circulation has been discussed previously in [START_REF] Chavanis | Classification of self-organized vortices in twodimensional turbulence: the case of a bounded domain[END_REF]. In this section we explicitly calculate the reversal probability and its scaling with the deviation from onset ε, using the microcanonical description as before. Denote by S(E) the spherical shell in N dimensions, with energy in [E, E + dE] for infinitesimal dE. Similarly, denote by E(Ω) the ellipsoidal shell in N dimensions, with enstrophy in [Ω, Ω + dΩ] for infinitesimal dΩ. We wish to compute the following microcanonical probability

P (r 1 ∈ [z, z + dz]) = Vol ( r i ∈ S(E) ∩ E(Ω)| r 1 ∈ [z, z + dz])
Vol (S(E) ∩ E(Ω)) , (4.27) Figure 4.2: Three-dimensional illustration of the intersection between an ellipse and a sphere, studied here in N dimensions. As the second semi-axis exceeds the sphere radius, the intersection transitions from two disjoint lobes to a single connected set -this is the transition to reversals studied here.

or equivalently, the probability density p(z), satisfying P (r 1 ∈ [z, z + dz]) =: p(z)dz. Similar to section 4.1, we will denote z = r 1 , r 2 = x cos(θ), r 3 = x sin(θ), y 2 = N i=4 r 2 i . This gives

z 2 + x 2 + y 2 =E, (4.28) 
k 2 1 z 2 + k 2 2 x 2 + q 2 (Φ)y 2 =Ω, (4.29) 
where q 2 = q 2 M +1 is given by eq. (4.12) with M = 3, and the angles Φ are defined by adopting spherical coordinates for (r 4 , . . . , r N ), as described explicitly in the appendix 4.B. By eliminating y and x from (4.28) and (4.29), respectively, one finds

x 2 = E q 2 (Φ) -(1 + ε)k 2 2 q 2 (Φ) -k 2 2 =a - q 2 (Φ) -k 2 1 q 2 (Φ) -k 2 2 =b z 2 , y 2 = (k 2 2 -k 2 1 )z 2 + εk 2 2 E q 2 (Φ) -k 2 2 .
(4.30)

These relations imply several important constraints described in detail in appendix 4.B. We highlight the following: for fixed ε ≥ 0, there is a value z c (ε) of |z|, such that at |z| ≤ z c (ε) all angles Φ are consistent with x 2 = Ea -bz 2 > 0 in (4.30). In this case integrals over Φ, which arise when computing p(z), must be performed over the whole (N -4)-sphere. For |z| > z c , only a non-trivial subset of the (N -4)-sphere satisfies Ea -bz 2 > 0, which complicates Φ integration. We proceed by fixing z, θ, Φ and considering the x, y plane. The intersection between the spherical energy shell and the ellipsoidal enstrophy shell in this plane is a parallelogram of height The result does not include normalisation, which will depend on E, ε and the k i . Eq. 4.35 was verified by a Monte-Carlo computation, uniformly sampling from the spherical shell S(E), retaining only the points in the intersection with E(Ω) (not shown). For small ε > 0, it implies that p(z = 0) ∝ ε , reproducing (4.36) for M = 2. We further note that eq. (4.35) also applies to TEE flow in a channel with mixed free-slip-periodic boundary conditions as studied in [START_REF] Dallas | Transitions between turbulent states in a two-dimensional shear flow[END_REF], with

q 2 (Φ) -k 2
k 1 = 1, k 2 = √ 2.
If either (i) ε < ε c , |z| > |z c |(ε), or (ii) ε ≥ ε c , then the integration boundaries are zdependent and p(z) in (4.35) is modified by a non-trivial z-dependent factor f (z, ε) given in eq. (4.34). The integral can in principle be computed numerically for small N , which we have verified for the for the simplest non-trivial case N = 5 (not shown). However, this becomes increasingly costly for higher values of N . If ε > ε c , then f (z, ε) decreases strictly monotonically as |z| increases, competing against the square root term, which increases from z = 0. For sufficiently large ε, the PDF develops a maximum at z = 0. Eventually, p(z) approaches a Gaussian centered on z = 0, as is seen in [START_REF] Shukla | Statistical theory of reversals in twodimensional confined turbulent flows[END_REF]. Only in that special case may one attempt to describe the reversal statistics using the canonical ensemble, while the present microcanonical description also captures the behaviour of the system close to ε = 0.

Comparison with numerical simulations

In this section, we confront the analytical predictions derived above with numerical solutions of the minimal 13-mode model that is given explicitly in [START_REF] Shukla | Statistical theory of reversals in twodimensional confined turbulent flows[END_REF]. This minimal model corresponds to the TEE in the square domain with free-slip boundaries and k max = 2 √ 5. We initialise simulations in a state with E(k) = 1 2(α+βk 2 ) . For fixed β, we vary α, and in each case normalise such that the total energy is E = 1/2. Thus we generate states with equal E, but different Ω, or equivalently, different ε. We use a fourth-order Runge-Kutta scheme to integrate the 13-mode TEE for long times (up to O(10 11 ) time steps). From this, we obtain time series such as the one shown in the left panel of figure 4.3, from which we may construct histograms of z. The right panel of figure 4.3 shows the resulting PDF, p(z), for different values of ε. One observes that the value p(z = 0) decreases with ε and the weight of the PDF shifts to larger |z|. An excellent agreement is found between the theoretical predictions, shown by the black dashed lines in figure 4.3, and the results of the numerical integration. The normalisation constant, which is the unique parameter not predicted by the theory, was determined by fitting the theoretical prediction to the data. We reiterate that Kraichnan's canonical description (4.4) is inadequate here, given the bi-modal shape that is far from being Gaussian, which indicates that the microcanonical description is required. While the exact normalisation constant is not given by (4.35), the scaling prediction of equation (4.36) for N = 13 is that p(z = 0) ∝ 4 . This is confirmed in the left panel of figure 4.4. Geometrically, the fraction of the intersection volume close to z = 0 shrinks rapidly as → 0 + . This suggests that transitions from one lobe to the other will be controlled by the bottleneck illustrated in figure 4.2.

A further interesting characteristic of the system is the average waiting time t r at small ε, just as p(0). This translates the aforementioned fact that the width of the bottleneck controls the reversals for small ε. It is interesting to note that in the Kramers problem [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF], which consists of the escape of a Brownian particle from a potential well, a similar relation is found between the mean first-escape time and the probability to be at the edge of the well. There, the constant of proportionality can be computed in terms of the curvature of the potential. In the TEE, by contrast, there is no underlying potential which generates the dynamics. Therefore, a priori, the constant of proportionality cannot be derived in the same way as for the Kramers problem. The chaotic motion of the higher-dimensional Truncated-Euler dynamics may possibly be modeled by noise. Alternatively, instanton theory, which has already proven to be a powerful tool for studying transitions in multistable hydrodynamic systems [START_REF] Bouchet | Langevin dynamics, large deviations and instantons for the quasi-geostrophic model and two-dimensional Euler equations[END_REF][START_REF] Laurie | Computation of rare transitions in the barotropic quasi-geostrophic equations[END_REF], provides a promising approach to studying the reversal statistics here.

Since p(0) ∝ ε (N -5)/2 for small ε, the PDF p(z) near z = 0 will converge to zero as N → ∞. This points to a question of non-commuting limits. Taking ε → 0 + first and then increasing N will likely yield a different result. Specifically, first taking N to be large and then increasing ε from ε = 0 must be expected to display an onset of reversals at ε = ε thr > 0. By contrast, for finite N the onset is at ε = 0, even though, as described by [START_REF] Shukla | Statistical theory of reversals in twodimensional confined turbulent flows[END_REF], an ergodicity delay takes place for small ε, which becomes more severe with increasing N as our calculation indicates.

The strict absence of reversals at ε < 0 is related to the exact conservation properties of the TEE. A forced-dissipative Navier-Stokes flow with the same average energy and enstrophy values close to ε = 0 may behave differently, since the conservation laws do not apply exactly, and energy and enstrophy always fluctuate. Nonetheless, our result on average reversal times may potentially have some relevance for experiments [START_REF] Herault | Experimental observation of 1/f noise in quasi-bidimensional turbulent flows[END_REF][START_REF] Gallet | Reversals of a large-scale field generated over a turbulent background[END_REF], since it allows one to relate the number of modes in the system to an experimentally simple-to-measure quantity. In an experiment, if one controls the average energy and enstrophy of the flow, then one may hope to infer information on the effective number of modes active in the system by measuring reversal time statistics. In a realistic turbulent flow, the truncation is related to viscosity.

Conclusions

We have provided two examples of explicit microcanonical computations, involving the exact solution of phase space volume integrals for the TEE system. In the case of a strongly condensed TEE flow, we showed that the microcanonical average energy spectrum is identical to Kraichnan's canonical prediction at leading order, for any number of modes. In the second example, we extended the results of [START_REF] Shukla | Statistical theory of reversals in twodimensional confined turbulent flows[END_REF] and explicitly computed the functional form of the PDF of the large-scale mode z of TEE flow confined in a square domain with free-slip boundaries. The prediction for the PDF in confined TEE flow was validated using a minimal 13-mode model. Our theoretical results on free-slip flow in a square domain also apply to the mixed free-slip-periodic flow studied in [START_REF] Dallas | Transitions between turbulent states in a two-dimensional shear flow[END_REF]. We further analysed the statistics of waiting time between reversals. In particular we observe numerically that the inverse of the mean time between reversals scales as ε N -5 2

with the distance from threshold ε. This is proportional to the scaling of p(z = 0), depending strongly on ε and the number of modes N . While our TEE-based computation does not take into account forcing and dissipation, it was established by [START_REF] Shukla | Statistical theory of reversals in twodimensional confined turbulent flows[END_REF][START_REF] Dallas | Transitions between turbulent states in a two-dimensional shear flow[END_REF] that many properties of the large scales of Navier-Stokes flow in the same domain are well described by the TEE equations. At a practical level, reversal times are easily accessible in experiments such as [START_REF] Herault | Experimental observation of 1/f noise in quasi-bidimensional turbulent flows[END_REF][START_REF] Gallet | Reversals of a large-scale field generated over a turbulent background[END_REF]. Thus, a potential link with experiments could be made by measuring transition times for flows with different energy and enstrophy, which may be controlled by the forcing in an experiment. Our result relates the number of modes N to the mean reversal time. Thus, one may be able to deduce an effective number of active dynamical modes in a laboratory flow from simply measuring reversal times.

This study provides a first step towards an explicit, geometric microcanonical theory of TEE flows, thus complementing the impressive existing body of literature on the statistical mechanics of turbulent flows. Future studies should aim to extend the microcanonical results presented here to 3-D TEE flows conserving both energy and helicity. Aperiodically reversing flows are observed in realistic geophysical flows, for instance in the form of the Quasi-Biennial Oscillation [START_REF] Baldwin | The quasibiennial oscillation[END_REF] and reversals of the large-scale magnetic field in dynamo flows [START_REF] Berhanu | Magnetic field reversals in an experimental turbulent dynamo[END_REF]. Similar transitions of the large-scale dynamics occur in many models for the dynamics of geo-and astrophysical flows, such as the primitive and quasi-geostrophic equations. If aspects of these transitions can be described using a TEE-type reduction, then a microcanonical approach similar to the one described here could be a useful tool for understanding statistical properties of these transitions. An interesting possible extension of the work presented here, which goes beyond the dichotomy of choosing between the microcanonical and canonical ensembles, is to consider generalised canonical ensembles such as the ones formulated in [START_REF] Costeniuc | Generalized canonical ensembles and ensemble equivalence[END_REF].

4.A Details on the condensate case

Coordinate transform

In order to be able to perform integrals efficiently, we define two sets of spherical coordinates in terms of angle variables Θ = (θ 1 , θ 2 , . . . , θ M -1 ) and Φ = (φ M +1 , φ M +2 , . . . , φ N -1 ). (understanding that dΘ := 1 for M = 1, and letting N ≥ M + 2, so that Φ contains at least one angle variable), see [START_REF] Blumenson | A derivation of n-dimensional spherical coordinates[END_REF]. We stress that the angles Θ drop out of equation (4.11), while a non-trivial dependence on the angles Φ remains. As a consequence, Θ integrations will be trivial, while those over Φ must be performed iteratively. Therefore, we define the differential dΘ without an index, but dΦ M +1 with an index to keep track of the iterations. In terms of the spherical coordinates given above, the quantity q M +1 (Φ) defined in equation (4.12) satisfies

q 2 (Φ) = N -1 n=M +1 k 2 n   n-1 i=M +1 sin 2 (φ i )   cos 2 (φ n ) + k 2 N N -1 i=M +1
sin 2 (φ i ).

(4.43)

Angular integration

With the infinitesimal area element derived in the main text, we can now perform the angular integration. We first consider the N-dimensional volume of the intersection Z, given in (4.9) as

Z = dEdΩ 4 Ek 1 q 2 M +1 -k 2 1 .x M -1 y N -M -1 dΦ M +1 dΘ. (4.44)
Note that the integrand is independent of Θ. After substituting the expressions for y, x from (4.13) and integrating over the angles Θ, the integral becomes where S M -1 is the surface of the unit-radius (M -1)-sphere (S 0 := 1). Integrating over φ M +1 , making the substitution u =

Z = 1 4 S M -1 ( k 1 ) N -M -2 E N 2 -2 dEdΩ 1 q 2 M +1 -k 2
q 2 M +2 -k 2 M +1 k 2 M +1 -k 2 1
tan(φ M +1 ), gives

I = 1 q 2 M +2 -k 2 1 N -M -1 2 dΦ M +2 (k 2 M +1 -k 2 1 ) 1/2 1 1 + u 2 N -M 2 u N -M -2 du . ( 4 

.46)

As shown below, further simplifications are not necessary for obtaining the final result. The integrals (4.8) can be performed by a procedure similar to that just presented for eq. (4.9). Here two cases must be distinguished. For i = 1, . . . , M , to leading order, we need to compute

r 2 i = 1 Z g 2 i (Θ)dEdΩ 4 Ek 1 q 2 M +1 -k 2 1
x M +1 y N -M -1 dΦ M +1 dΘ. (4.47)

4.B Details on the free-slip case

Coordinate transformation

In order to simplify the integration, we transform from the r i to the following set of coordinates, with Φ = (φ 4 , . . . , φ N -1 ). We restrict our attention to N ≥ 5, so that Φ always contains at least one angle variable. The variable names are chosen by analogy with section 4.1.

r 1 =z,

Constraints

The expressions for x and y given in eq. (4.30) imply several important constraints.

1. For ε < 0, imposing y 2 ≥ 0 gives

z 2 ≥ z 2 min = |ε|k 2 2 E/(k 2 2 -k 2 1 ). (4.55) 
This is consistent with the geometrical insight. It implies p(z = 0) = 0 for ε ≤ 0.

A transition from no reversals to reversals occurs at ε = 0.

2. For ε ≥ 0, a ≤ 1 and b > 1 in (4.30). Further, a and -b increase as q 2 increases. This implies that in order for x 2 = aE -bz 2 to be greater than or equal to zero for all Φ, one must have

z 2 ≤ z c (ε) 2 := E k 2 4 -k 2 2 (1 + ε) k 2 4 -k 2 1 . (4.56)
As long as this is satisfied, integrals over the angles Φ, which need to be performed for computing p(z), are over the whole unit (N -4)-sphere.

3. In order for z 2 c ≥ 0, it is necessary that

ε ≤ ε c = k 2 4 /k 2 2 -1. (4.57) 
If ε > ε c or |z| > |z c |, the Φ integration is nontrivial due to z-dependent integration limits.

4. For a given ε, there is a value z 2 max of z 2 such that x 2 ≥ 0 in (4.30) cannot be satisfied for any Φ for |z| > z max . The PDF p(z) vanishes for z ≥ z max . It is given by

z 2 max = E k 2 N -(1 + ε)k 2 2 k 2 N -k 2 1 . (4.58)

General conclusions and outlook

The study of turbulence has a long history, as we have described in the introduction, and it goes without saying that the results presented in this thesis are but a small step on a journey that is far from over. Here, we have described novel results on a number of critical transitions in hydrodynamical turbulence and in models inspired by turbulent flows. First, the emergence of an inverse cascade in rapidly rotating and stratified turbulence was approached using an asymptotically reduced set of equations. Second, condensate formation in thin-layer turbulence was numerically analysed in detail for the first time, and bidimensionalisation of the flow was studied. Third, the problem of 3-D instabilities on a disorganised 2-D background flow was investigated using a newly formulated pointvortex model, which motivated a detailed examination of a related transition in an idealised stochastic dynamical system. Finally, the emergence of reversals in confined flows was studied analytically in the context of ideal fluid dynamics.

The methods which we employed in studying these transitions ranged from direct numerical simulations and asymptotic expansions, through modelling and stochastic dynamics to statistical mechanics. This broad toolkit matches the wide variety encountered in terms of transition phenomenology in the different examples. The different methods employed here each have got their own history of applications in turbulence research. Asymptotic expansions as the one we used for rapidly rotating flows are a powerful tool for simplifying the study of extreme parameter regimes relevant for geophysical applications. Statistical mechanics and stochastic dynamics in particular have already supplied many new tools that find applications in the description of turbulence. In our view it seems highly likely that turbulence research will continue to build on methods from theoretical physics in general, and statistical mechanics in particular; methods from field theory may also prove to be of utility on this quest. Moreover, laboratory experiments have always been a major force in fluid dynamics research, and they will most probably continue to provide decisive insights.

Our results serve as a first step towards a better understanding of the rich critical behaviours at the non-equilibrium transitions in turbulent flows described in Chapters 1 and 2 of this thesis. Specifically, our modelling efforts provide a new perspective on 3-D perturbations growing on 2-D background flows. However, a full theoretical framework for the description of these transitions is still lacking. Future efforts should aim at making progress in this critical direction. At a practical level, a better understanding of the direction and strength of energy cascades as a function of the parameters in rotating and stratified turbulence would be highly relevant for developing more accurate parametrisations for large-scale models in weather and climate simulations, which still rely on crude diffusive representations of turbulence.

We stress that the progress presented in this thesis is minute both in comparison to the long history of the subject, and also in comparison to the long way that we are still away from any hope of solving 'turbulence' altogether (howsoever one defines this lofty goal). Drawing once again on the analogy with the Hydra from the introduction, we may hope that this thesis has taken care of a head or two, but sure enough, many new challenges will arise in their stead. Nonetheless, we are convinced that our results serve as a first step in an important direction, and that the cross-pollination between theoretical physics and fluid dynamics will continue to bear sweet fruits in the future.
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 3 Figure 3: Satellite picture of the atmosphere over the Atlantic ocean. Several tropical cyclones, hundreds of kilometers in diameter, are seen to coexist with smaller-scale patchy cloud fields that are a marker of vertical velocities and 3-D motion. SOURCE: NOAA GOES-East Image Viewer.
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 11 Figure 1.1: Stratified flow in a long, rapidly rotating box. Black to grey colours represent stratification.

- 1 1,

 1 under the influence of fast rotation, Ro = O( ) 1, such that λ = (hRo) -1 = O(1) (independent of ), while Re = O(1), Λ = O(1), Fr = O(1), Pe = O(1).
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 3013 Figure 1.3: Large-scale dissipation rates as defined by (1.21) measured in steady state from sets A, B and C for different values of λ. Error bars correspond to standard deviation in steady state. The black dashed line is a linear fit based on set C. Right: all values of λ, Left: zoom close to λ = λ c .
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 14 Figure 1.4: Left: Steady-state energy flux in the perpendicular direction as a function of perpendicular wavenumber for four different values of λ from set A. Right: Corresponding steady-state 1-D energy spectra. Dashed line shows power law with exponent -5/3 for reference. Spectrum (a) being lower than the others at the small scales is only a fluctuation.
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 215 Figure 1.5: Steady-state 2-D energy spectra as defined in (1.18) from set A for λ = 0.0279 (left) and λ = 0.155 (right). Color bar logarithmic with base 10.
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 16217 Figure 1.6: Left: Decomposition of spectrum at λ = 0.0279 into contributions E ⊥ from perpendicular motions and E from parallel motions. Right: same as left for λ = 0.155.
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 218 Figure 1.8: Left: 2-D dissipation spectrum from a run at Re µ = ∞ from set A, with λ = 0.01 < λ c . A maximum at large k forms, which is absent at Re µ < ∞. Right: 2-D dissipation spectrum from a run at Re µ = ∞ from set A, with λ = 0.01 < λ c . By contrast with the runs at Re µ < ∞, the dissipation spectrum tends to become independent along k . Color bars are logarithmic with base 10.
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 113 Figure 1.13: Double logarithmic plots of the contributions to the 1-D energy spectra according to equations (1.42) and (1.43). Left: case i), center: case ii), right: case iii). The legend on the left applies to all panels.
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 114 Figure 1.14: Filled contour plots of the 2-D kinetic energy spectrum E kin (k ⊥ , k ) defined in equation (1.40), as a function of k ⊥ , k for cases i) to iii) (left to right).
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 115 Figure 1.15: Filled contour plots of 2-D potential energy spectrum E pot (k ⊥ , k ) defined in (1.41) versus k ⊥ , k for cases i) to iii) (left to right).
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 116 Figure 1.16: Average energy fluxes (non-dimensionalised by the injection rate ) for cases i) to iii) (left to right). The shaded area around curves shows one standard deviation of fluctuations about the average. In the central panel, the inset shows a zoom on negative-flux range.

Figure 1 . 17 :

 117 Figure1.17: Filled contour plots of 2-D dissipation spectra versus k ⊥ , k for cases i) and iii) (case ii similar). The runs are well resolved since the maximum of dissipation is in the interior of the wavenumber domain.

Figure 1 . 18 :

 118 Figure 1.18: Visualisation of the φ field. Left: case i, center: case ii, right: case iii. The black arrow indicates the parallel direction, it is the same for all other visualisations. The colour scale is the same in all three images, with blue colours representing negative values and red colours positive values.
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 119 Figure 1.19: Visualisation of the vorticity field. Left: case i, center: case ii, right: case iii.The colour scale is the same in all three images, with blue colours representing negative values and red colours positive values.
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 120 Figure 1.20: Visualisation of the two terms involved in the hydrostatic balance relation (1.30). Red colours correspond to positive values and blue colours to negative values. The left panel shows 2λ∂ ψ, the right panel -φ/Fr. The two fields are clearly correlated.
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 2 .61, 1.62) and (1.63) are complemented by the geostrophic balance relation in the perpendicular direction, u ⊥ = ê × ∇ ⊥ ψ, which implies ω = ∇ 2 ⊥ ψ, making (1.61, 1.62) and (1.63) three equations for the thee unknowns u , ω and φ.ChapterCondensates in thin-layer turbulence"Das Geheimnis des Lebens ist wie eine Zwiebel. Man muß viele Schichten lösen, ehe man zum Kern vordringt!" Gudrun Zydek
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 21 Figure 2.1: The domain used is a box of height H and square base of side length L.The forcing is invariant along the thin direction and stochastic with fixed mean rate of energy input, while involving only wavenumbers k with |k| = k f = 2π/ (illustrated in blue). The thin direction will be referred to as the vertical, the others as the horizontal directions.
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 22 Figure 2.2: Visualisations of the squared vorticity field in the steady state of 3-D turbulence (2.2a) and 2-D turbulence (2.2b) regimes. The boxes below show the corresponding side views. Note the astonishing similarity between this figure and figures 1 a), b) of the experimental study by Xia et al 2011.
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 223 Figure 2.4 shows the slopes of the initial total energy increase inv , measured as illustrated in figure2.3a for all our numerical simulations. The slopes are non-dimensionalised by the energy input rate and plotted versus Q for all different values of Re including

Figure 2 . 4 :

 24 Figure 2.4: Panel (a): initial slopes, measured as indicated in figure 2.3a, nondimensionalised by the energy injection rate , as a function of Q (∝ 1/H) for all Re used. The same symbols are used in all plots in this section. Thick layers are at small Q (left) and thin layers at large Q (right). Panel (b): the same data collapsed by a rescaling of the abscissa by √ Re and the coordinate by the maximum value obtained for that Reynolds number.

Figure 2 . 5 :

 25 Figure 2.5: Estimated value of Q 3D as a function of Re. The top line shows the smallest value of Q for which an inverse cascade was observed and the bottom line shows the largest value of Q for which no inverse cascade was observed. The rightmost point indicates the results from the hyper-viscous runs.
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 26 Figure 2.6: Left panel: U 2 ls as defined in eq. (2.6), nondimensionalised by ( ) 2/3 /K 2 as a function of Q. Right panel: the same data (excluding hyper-viscous run), with large-scale energy rescaled by 1/Re and plotted vs. Q/Re 3/4 showing a satisfactory data collapse. The value Q 3D /Re 3/4 (where U 2 ls plateaus) coincides for all Re at Q/Re 3/4 ≈ 0.09-0.1.
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 327 Figure 2.7: Zoomed-in version of figure 2.6a showing that there is a discontinuity in U 2 ls /( ) 2/3 at Q 3D for all Reynolds numbers up to the second highest simulated.
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 28 Figure 2.8: Left panel: U 2 3D as defined in equation (2.8), non-dimensionalised by ( ) 2/3 and plotted versus Q. Right panel: the same information as figure (2.8a), but in terms of the square-root of the 3-D kinetic energy rescaled by ( H) 2/3 , plotted versus Q/Re 3/4 . This rescaling indicates that U 2 3D ∝ (Q 2D -Q) 2 close to the transition.

Figure 2 .

 2 Figure 2.8 shows U 23D as defined in equation(2.8). In the left panel it is nondimensionalised by the forcing energy ( ) 2/3 and plotted vs. Q (figure 2.8a), while in the right panel, it is non-dimensionalised by ( H) 2/3 , raised to the power1 2 and plotted versus η/H = Q/Re -3/4 . Figure2.8a shows that, beyond some non-monotonic behaviour at small Q, U 2 3D decreases monotonically with Q until it reaches zero at Q 2D and remains zero beyond this point. The 3-D energy increases with Re at a given Q. Under the rescaling in figure2.8b, the various curves collapse nicely. In particular, the point where U 2 3D vanishes is sharp and identical for all Re, namely η/H ≈ 0.1. Comparing with figure 2.6b, one sees that this point and Q 2D coincide within the range of uncertainties. This means that beyond Q 2D , not only is U 2 ls independent of Q, but also U 2 3D vanishes. This confirms that Q 2D corresponds to the point where the motion becomes invariant along z. An approximate scaling U 2 3D ∝ (Q -Q 2D ) 2 is seen close to onset.

Figure 2 . 9 :

 29 Figure 2.9: Left panel: U 2 z as defined in equation (2.7) as a function of Q. Right panel: The various curves collapse when the abscissa η/H and the coordinate to be U 23D /( H) 2/3 . Raising the coordinate to the power 1/3, the curve becomes linear close to onset. This indicates that close to onset, U 2 v scales asU 2 z ≈ (Q c -Q)3 , where Q c ≈ 0.09 -0.1 ≈ Q 2D . We note that the scaling exponent is different from that found for U 2 3D .
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 210 Figure 2.10: Hysteresis curve of U 2 ls non-dimensionalised by the forcing energy. Two experiments are shown, the 'lower branch' starting from small Q (deep layer) and increasing Q and the 'upper branch' starting from large Q (thin layer) and decreasing Q.

  Figure 2.11: Figures 2.11a and 2.11b visualise the typical flow field after long simulation time at Q ≈ 1.97 in the hysteresis experiment on the upper (2.11b) and lower (2.11a) branches. The lower branch flow field shows small scale structures and no large-scale organisation, reminiscent of 3-D turbulence. By contrast, the upper branch flow field is characterised by two large-scale vortices in addition to smaller-scale structures in between them.
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 212 Figure 2.12: Time series of rare transitions to and from a condensate state at Q = 1.55 (left) and Q = 1.556 (right), both inside the hysteresis loop at this value of Re and resolution. The different curves correspond to different realisations of the random forcing.
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 21357214 Figure 2.13: Histograms of build-up times (left) and decay times (right), for different values of Q, with the forcing time scale τ f = ( ) 2/3 . Exponential tails are visible, which become longer as the transition is increased.
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 215 Figure 2.15: Plots showing temporal intermittency at Re = 203.Figure 2.15a shows a typical time series (on lin-log axes) of 3-D energy close to Q 2D . Specifically, Q = 5, while Q 2D ≈ 5.13at this value of Re.Figure 2.15b shows PDFs corresponding to this time series as well as for different values of Q (PDFs shifted by a constant factor for better visibility). The ifferent symbols mark different values of Q, while the dotted lines correspond to power laws with exponents -1 (bottom), -0.8 (middle) and -0.3 (top).

  Figure 2.15: Plots showing temporal intermittency at Re = 203.Figure 2.15a shows a typical time series (on lin-log axes) of 3-D energy close to Q 2D . Specifically, Q = 5, while Q 2D ≈ 5.13at this value of Re.Figure 2.15b shows PDFs corresponding to this time series as well as for different values of Q (PDFs shifted by a constant factor for better visibility). The ifferent symbols mark different values of Q, while the dotted lines correspond to power laws with exponents -1 (bottom), -0.8 (middle) and -0.3 (top).
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 2 Figure 2.15: Plots showing temporal intermittency at Re = 203.Figure 2.15a shows a typical time series (on lin-log axes) of 3-D energy close to Q 2D . Specifically, Q = 5, while Q 2D ≈ 5.13at this value of Re.Figure 2.15b shows PDFs corresponding to this time series as well as for different values of Q (PDFs shifted by a constant factor for better visibility). The ifferent symbols mark different values of Q, while the dotted lines correspond to power laws with exponents -1 (bottom), -0.8 (middle) and -0.3 (top).
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 216217 Figure 2.16: Snapshots of u 2 3D for Re = 203 and Q = 2.5 (figure 2.16a), Q = 5.0 (figure 2.16b) and Q = 5.125 (figure 2.16c), (corresponding to figure 2.15). The colorbar is chosen in each plot such that the maximum of u 2 3D appears in black. As Q increases towards Q 2D ≈ 5.13, the localisation of U 2 3D increases. In figure 2.16c, u 2 3D is concentrated in small columnar structures (upper and lower, right-hand corner) absent in figure 2.17c.

Figure 2 .

 2 [START_REF] Herring | Numerical experiments in forced stably stratified turbulence[END_REF] shows that temporal intermittency is present in the thin-layer system. Panel (a) shows a typical time series of 3-D energy at Q Q 2D which fluctuates over six orders of magnitude. In particular, as mentioned before, there are burst-like excursions in 3-D energy. In figure2.15b, PDFs constructed from this time series and similar ones for different values of Q are shown along with dotted lines indicating power laws with exponents -1, -0.8 and -0.3. The PDFs are very close to a power law for a significant range of U 2

Figure 2 . 18 :

 218 Figure 2.18: Logarithmic surface plots of E(k h , k z ) at steady state in the three regimes a) Q< Q 3D , b) Q 3D < Q < Q 2D and c) Q 2D < Q.

Figure 2 . 19 :

 219 Figure 2.19: Energy spectra, E h (k h ), E z (k h ), E 3D (k h ) at Re = 609 for 3-D turbulence (figure 2.20a), 2-D turbulence (figure 2.19c) and an intermediate case Q ∈ (Q 3D , Q 2D ) (figure 2.19b) flux-loop condensate (cf. main text). For 3-D turbulence (Q = 1.25 < Q 3D ), the 2-D energy spectrum peaks at the forcing scale and is an order of magnitude bigger than the other components. In the flux-loop condensate (Q = 4), 2-D energy is maximum at k = 1 and 3-D and vertical energy are non-zero. In 2-D turbulence (Q = 16 > Q 2D ), 2-D energy is maximum at k = 1, with vanishing 3-D and vertical energy.

Figure 2 . 20 :

 220 Figure 2.20: Three different components of spectral energy flux, Π(k h ), Π 2D (k h ) and Π 3D (k h ), are shown for the same three cases and in the same order as in figure 2.19.
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 221 Figure 2.21: Flux loop condensate steady state fluxes for Re = 4062 in panel (a) and the hyperviscous run in panel (b).

  (a) laminar state: U 2D = U 3D = 0 (all energy in forcing scale), (b) 3-D turbulence state: U 2D = 0 and U 3D = 0, (c) 2-D condensate state: U 2D = 0 and U 3D = 0 and (d) flux-loop condensate state: U 2D = 0 and U 3D = 0.
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 223224 Figure 2.23: Steady state U 2 3D from the full model for four different Re as well as for the Re = ∞ limit. The Re = 500 and the Re = ∞ cases are almost indistinguishable. The parameters used are L = = 1, α = 1, β = 5, γ = 0.5.
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 225 Figure 2.25: Time series and PDF showing on-off intermittency close to Q 2D ≈ 1.638 in the 3-scale model with a fluctuating energy injection rate. Parameters: panel (a) Q = 1.63775, L = 10 , Re = 2, α = 0.001, β = 10, γ = 0.9, σ = 0.1, panel (b) q = 1.635, 1.636, 1.637, 1.63775 (bottom to top), other parameters identical. Dashed lines in panel (b) are power laws with exponents -0.3 -0.74, -0.99 (bottom to top). Cf. figures 2.15 & 2.8b.
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 343522 Figure 3.4: Snapshots from two simulations with N p = 128 perturbations (black dots) evolving on a point-vortex flow consisting of N v = 32 individual vortices, which is highly condensed at β = -1 8 (top) and dilute at β = -1 128 (bottom).
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 1636 Figure 3.6: Two histograms of the growth rate γ k , sampled over all time steps and all 128 ergophages from the run corresponding to the two linear simulations with a dilute vortex state at β = -1/128 (top) and a condensed vortex state at β = -1/8 (bottom) visualized in figure 3.4. Power-law ranges with exponents -2 and -5/3 can be discerned, as predicted for dilute and dense vortex base states, respectively.
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 37 Figure 3.7: Log-log plot of the auto-correlation time τ ac of the growth rate γ (see text for the definition of τ ac ) in a passive, linear simulation at β = -1/16, non-dimensionalized by the mean growth rate, versus the squared amplitude of the noise acting on 3-D perturbations, non-dimensionalized by the r.m.s. vortex circulation.
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 38 Figure 3.8: Bifurcation diagram for N p = 32 passive nonlinear (i.e. independent) dipole ergophages on the background flow at β = -1/8, δ = 1. The values of X n is averaged over the statistically steady state. Error bars are given by the sample standard deviation of the time series in steady state. The dashed lines show the scalings from the Gaussian noise case.
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 39 Figure 3.9: Steady state PDF of ergophage amplitudes from the numerical solution of the model in the passive nonlinear regime for δ = 1, ν/ν c = 0.15 on the background flow at β = -1/8.
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 311 Figure 3.11: Time series of the 2-D energy H, normalized by the equilibrium energy E(β f ) at temperature β -1 f , in the fully nonlinear regime at ν/ν c = 0.15 for different values of δ. At δ = 10 5 , the flow is close to a 2-D condensate, up to abrupt events when the condensate is disrupted. For decreasing values of δ, ergophages grow to larger amplitudes and lower the energy of the 2-D flow further. The vertical dashed line indicates the time at which the snapshots in fig. 3.12 are taken.
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 313 Figure 3.13: Plot of mean temperature of the point-vortex flow in a fully nonlinear regime in the presence of N p = 32 perturbations for varying δ, different curves show different ν. At ν/ν c > 1, the flow temperature is exactly that of the forcing, i.e. β = β f = -1/8, since all 3-D perturbations decay.
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 231151314 Figure 3.14: Illustration of long power-law tails and short exponential tails in the stable distributions discussed in the text.
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 316 Figure 3.16: Semi-logarithmic plots of time series X(t) (see eq. (3.18)). Panel a): α = 1.5, β = 0, γ = 1. Orange (top): µ = 0.2 -X(t) varies over 20 orders of magnitude, displaying on-off intermittency. Blue (bottom): µ = -0.2 -X decays to zero. A critical transition occurs between the two, at µ = 0. Panel b): α = 0.5, β = 1, γ = 1. Orange (top): µ = 1. Blue (bottom): µ = -1. The origin is unstable for all µ. Panel c): same as panel b) but with β = -1. Here, the origin is stable for all µ.
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 317 Figure 3.17: Semi-log plot of numerically obtained stationary PDF for α = 1.5, β = 1.0, varying µ = 0.1, 0.33, 0.55, 0.78, 1.0, at γ = 1 fixed. The dashed line on the right is the theoretical prediction (3.58) for the cut-off by non-linearity. The dashed lines on the left show shows the prediction p y,st (y) ∝ exp(A(µ)y) from (3.64).
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 68 where x * and N are model parameters, A α (µ) is as given in equation (3.63) and B = x 2+Aα(µ) *
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 69318 Figure 3.18: First and second moment of X for α = 1.5, β = 1 versus µ at γ = 1. The first moment scales as predicted in (3.72), shown by the curved dashd line, and the second moment is linear, in agreement with (3.54).
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 319 Figure 3.19: Log-log plot of the numerically obtained stationary PDF p y,st (y) versus |y| for α = 1.5, β = -1. Five different values of µ are shown (0.01, 0.025, 0.085, 0.3, 1.0) for γ = 1.The tail at y → -∞ fits the prediction (3.66) (dashed lines on the right). Before that limiting scaling is observed at y → -∞, an intermediate, flatter power-law range occurs at y < 0, whose exponent is independent of µ, but whose amplitude decreases and whose range increases as µ decreases. At large positive y, there is a faster-thanexponential decay as predicted (compare with figure 3.21 at y > 0).
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Figure 3 . 21 :

 321 Figure 3.21: Log-log plot of the numerically obtained stationary PDF p y,st (y) versus |y| for α = 1.5, β = 0. Five different values of µ are shown (0.01, 0.025, 0.085, 0.3, 1.0) for γ = 1. The tail at y → -∞ fits the prediction of (3.66) shown in dashed straight lines on the right. At intermediate y < 0, a flatter power-law range is seen, with exponent independent ν of µ (ν ≈ 0.25 here), but with amplitude decreasing and width increasing as µ decreases. The tail at y 1 matches the prediction (3.58), shown by the curved dashed line.

. 81 )Figure 3 . 22 :

 81322 Figure 3.22: First and second moment of X for α = 1.5, β = 0 versus µ at γ = 1. The scaling of the first moment is compatible with the prediction of (3.84), shown by the curved dashed line, with ν ≈ 0.25 from figure 3.21. The second moment is linear in µ, satisfying the identity (3.54).

p

  y,st (y) = Be Aα(µ)y : y < y * 2C γ e -2y y -α : y ≥ y * , (3.85)

Figure 3 . 23 :

 323 Figure 3.23: The parameter space of (3.18) with white Lévy noise, α ∈ (0, 2], β ∈ [-1, 1].A critical transition occurs at µ = 0 for 1 < α < 2, and for the Gaussian case α = 2. For 0 < α ≤ 1, the origin is either always stable or always unstable, independently of µ.

  advected by the 2-D point-vortex motions through the 2-D domain, and whose amplitude A k may grow by extracting energy from the 2-D flow.

Figure 3 . 24 :

 324 Figure 3.24: Lin-log plot of the time series of the first moment M 1 = A and the zeroth moment M 0 = exp( log(A) ) of ergophage amplitude, in terms of the sample average f (A) = 1

Figure 4 . 1 :

 41 Figure 4.1: Left: A cross-section of the geometry studied here. The greatest semi-axis of the ellipsoid is slightly larger than the sphere's radius, such that the largest-scale modes k 1 , . . . , k M are O(1), while r M +1 , . . . , r N are O( ). Right: Zoom on the intersection area.
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 211222 E(k i ). For highly condensed flows, where E(k i ) E(k j ) for any i ≤ M , j ≥ M + 1, one requires α/β = -k 2 higher-order terms, (4.22)where again M is the number of modes with |k| = k 1 . These expressions imply that Ω = k 2 1 E + O(1), and β -1

2 , k 2 = k 3 = √ 5 , k 4 = √ 8 ,

 2258 1 4.1.1, the summation in (4.24) is over the setK = {(m, n) ∈ N 2 + |0 < √ m 2 + n 2 < k max }.We again enumerate all retained modes by a single index i as (m(i), n(i)), non-decreasing in k i := m(i)2 + n(i)2 , i.e. k 1 = √ . . . . We also define the more convenient variables r i = ψ m(i),n(i) k i / √ 2, as in the previous section. Then energy and enstrophy conservation read, once again

  z, ε) denotes the subset of the N -4-dimensional Φ unit sphere contributing to the integral at a given z and ε. First consider 0 ≤ ε < ε c and |z| ≤ |z c (ε)|. In this case, S(x, ε) = S N -4 is the whole unit N -4-sphere, and the Φ integral gives a z-independent constant. Thus, we obtain p(z) ∝

  ε, the normalisation becomes independent of ε to leading order). The bottleneck (the term is used here without any relation to the bottleneck phenomenon referenced in the introduction) illustrated in figure4.2 thus becomes thinner as decreases and as N increases. Moreover, for small ε > 0, there is a power-law range p(z) ∝ |z| N -5 at intermediate |z|, which becomes steeper as N increases. It thus becomes less likely to reach states close to z = 0 as N increases. In the above calculation, the two real modes (1, 2) and (2, 1) are associated with the second wavenumber k 2 . If instead, there are M degrees of freedom associated with k 2 (e.g. M = 1 in a non-square rectangular free-slip domain), then one can show that (4.36) is replaced by p(z = 0) ∝ ε N -M -3 2

Figure 4 . 3 :

 43 Figure 4.3: Left: time series of the amplitude z of the large-scale mode. Right: PDF p(z) versus z for = 0.3, 0.23, 0.14, 0.08, 0.05 (top to bottom at z = 0). The black dashed line indicates the theoretically predicted functional form, the prefactor is determined by fitting. The endpoints of the dashed lines are given by z = ±z c (ε) defined in eq. (4.56). Beyond this point, eq. (4.35) ceases to be valid, and is replaced by (4.34) which is harder to evaluate.

Figure 4 . 4 :

 44 Figure 4.4: Left: p(z = 0) versus ε. The dashed line indicates the scaling ε 4 predicted theoretically. Right: Inverse of mean reversal time as a function of ε. The scaling at small ε is proportional to p(0).

If M = 1 ,- 1 i=M

 11 we simply let r 1 = x and no angles Θ are required. If M > 1, then the first M variables arer n = x n-1 i=1 sin(θ i ) cos(θ n ) = xg n (Θ) for 1 ≤ n ≤ M -1,(4.37)r M = x M -1 i=1 sin(θ i ) = xg M (Θ).(4.38)The remaining N -M variables are given byr n = y n-1 i=M +1 sin(φ i ) cos(φ n ) = yf n (Φ) for M + 1 ≤ n ≤ N -1, (4.39) r N = y N +1 sin(φ i ) = yf N (Φ). (4.40)The volume element dV is given bydV = x M -1 y N -M -1 dx dy dΘ dΦ M +1 with dΘ = sin M -2 (θ 1 ) sin M -3 (θ 2 ) . . . sin(θ M -2 )dθ 1 dθ 2 . . . dθ M -1 , (4.41) dΦ M +1 = sin N -M -2 (φ M +1 ) sin N -M -3 (φ M +2 ) . . . sin(φ N -2 )dφ M +1 dφ M +2 . . . dφ N -1 ,(4.42) 

r 2

 2 =x cos(θ)r 3 =x sin(θ) i ) cos(φ n ) = yf n (Φ) for 4 ≤ n ≤ N -1,

Table 1 .

 1 1: Summary of the different simulations performed, where the resolution n z in the parallel direction is varied between 128 and 512 in order to ensure well-resolved simulations. For each column, "# runs" different values of λ, as defined in (1.5), were investigated, Re µ lists the maximum value in each set and #τ eddy gives the number of eddy turnover times τ f =

	.22)

  The efficiency of numerical integration of the reduced equations is due to the filtering of fast inertial waves by the Taylor-Proudman constraint. We stress, however, that a question of order of limits arises. By solving the asymptotically reduced equations and investigating increasing Re ν and Λ in that framework, we are taking limits in the order

		h	
			Forward cascade	Split cascade
		h ~ 1 * c	λ h=1/(Ro ) c
				1/Ro
	Figure 1.11: Phase space of rotating turbulence. The solid curved line indicates the crit-
	ical line between forward and split cascade phases. The dashed straight line represents
	the major result obtained here: the asymptote of the critical line at large 1/Ro and large
	h.		
	moderate numerical cost. The asymptotics are valid under the conditions Ro	1,
	Re	Ro -1 , Re H. lim H/( in ) and L Reν →∞ lim Ro→0 α (λ) as opposed to	lim Ro→0
		Λ→∞	λ=cst.	λ=cst.

Table 2 .

 2 The spectrum of f is concentrated in a ring of wavenumbers of radius k f ≡ 2π/ . It is delta-correlated in time, which leads to a fixed mean injection rate of energy u • f = , where • denotes an ensemble average over infinitely many realisations. We use random initial conditions whose small energy is spread out over a 1: Summary of the different runs performed. For each Re and K several runs for different values of Q have been performed. The horizontal resolution is n x , n y , while n z stands for the vertical resolution at Q = 2. The vertical resolution was changed with Q to maintain an isotropic grid, Kn x = Kn y = Qn z wherever possible.

	Re	203	203	305	406 609 870 2031 4062 Hyper
	1/K	8	8	8 & 16	8	8	8	8	8	8
	n x = n y	128	256 256 & 512 256 512 512 1024 2048 1024
	n z	16	16	16	16	32	32	64	128	64
	# runs O(10 4 ) 40	40	40	30	30	10	2	4

  With the chosen coordinate, the close coincidence of the experiments with K = 1/8 and K = 1/16 at Re = 305 (blue symbols) indicates a scaling of U 2 ls ∝ L 2 . If we zoom in on Q 3D (see the figure 2.7), we observe clear signs of small but discontinuous jumps of U 2 ls at Q 3D that are not visible in the zoomed out figure 2.6a. These cases are examined in more detail in the next section.

  3/4 . The general features of figure 2.9a are similar to figure 2.8a: like 3-D energy, vertical kinetic energy decreases with Q until it reaches zero and it increases with Re. The collapsing curves in figure 2.9b indicate an approximate scaling U

  the spectra E z (k h ) and E 3D (k h ) have reduced to values close to the round-off error and are not plotted. The 2-D spectrum E

h (k h ) displays again a steep power-law behaviour close to E h (k h ) ∝ k -4

h . Figure

  T , where x 2D and y 2D are the values of U 2 2D and U 2 f respectively at H = H 2D . Then equations (2.36) can be rewritten exactly in the form

Table 3 .

 3 2: Summary of the different asymptotic behaviors of p x,st (x) obtained in the previous sections for α < 2. The domain of validity of the formulas is discussed in the text. The constants C and A α (µ) are given in eqns. (3.57), (

  .[START_REF] Ibbetson | Experiments on turbulence in a rotating fluid[END_REF] shows the numerically obtained PDF. It matches the theoretically predicted asymptotics in the y → ±∞ limits. In addition, an intermediate, shallower range is observed at intermediate negative y before the predicted asymptotic behavior at y → -∞ is realized. Figure3.19 suggests that this intermediate range is a power law. A close inspection shows that it is only approximately a power law since it has a finite curvature in the log-log diagram. Notwithstanding this caveat, we propose a simplistic model approximately describing the numerical result p y,st (y)

  N in a given finite domain, with associated Hamiltonian H. Pick a positive or negative temperature T ∈ R.

	Consider the stochastic gradient dynamics defined by
				dx i dt	= -sgn(T )	∂H ∂x i	+ k B |T |η	(1) i (t),	(3.101)
				dy i dt	= -sgn(T )	∂H ∂y i	+ k B |T |η	(2) i (t).	(3.102)
	where η	(1) i (t) and η	(2) i (t) are pairwise independent delta correlated Gaussian noise terms,
	i.e. η	(1) i			

  .1, of height δR = dE 2 √ E and base length δL defined as the distance between the points (x A , y A ) and (x B , y B ) given by the intersection of the curves x 2 A +y 2 A = E and k 2 1 x 2 A +q 2 M +1 y 2 A = Ω, and x 2 B +y 2 B = E and k 2 1 x 2 B +q 2 M +1 y 2 B = Ω+dΩ, respectively. A straightforward Euclidean calculation gives, to first order in , δL 2 = (y B -y A ) 2 + (x B -x A ) 2 (4.14)

	=	dΩ M +1 -k 2 2(q 2 1 )	2	1 x 2 A	+	1 A y 2	(4.15)
		dΩ 2 M +1 -k 2 4(q 2 1 ) 2 y 2 A	,				(4.16)

2 Comparison with Kraichnan's canonical ensemble prediction

  From Kraichnan's canonical ensemble probability density (4.4), one can compute the canonically averaged 2-D energy spectrum (energy of the single mode with wave vector k i ) r 2

				).	(4.19)
	4.1.i c . One finds	E(k i ) =	1 2(α + βk 2 i )	,	(4.20)

with α, β determined by E = 1 2 i E(k i ), and Ω = 1

  A -x B ) 2 + (y A -y B )2 , where A is a point at energy E and enstrophy Ω, while B is a point at energy E and enstrophy Ω + dΩ, as in the previous chapter. This situation is the one depicted in figure4.1. We take dE, dΩ infinitesimally small. The parallelogram area is δA(z, ϕ) = δRδL.(4.32)The base length δL satisfiesδL 2 =(x A -x B ) 2 + (y A -y B ) 2

	δR = B ) 2 A -x 2 (x 2 4x 2 + dΩ 2 4(q 2 -k 2 2 ) 2 E -z 2 2 √ (y 2 A -y 2 dE E -z 2 B ) 2 4y 2 x 2 y 2 . Putting these expressions together, we can compute the sought-after probability density (4.30) = p(z) ∝ δAxdθy N -4 dΦ = dEdΩ 4 2π y N -5 (q 2 -k 2 2 ) dΦ, (4.33) where the normalisation is omitted. Using (4.30) to express x, y as a function of z and Φ gives N -5 and base length δL = (x = p(z) ∝ (k 2 2 -k 2 1 )z 2 + εk 2 2 E 2	(4.31)

S(z,ε)

Criticality is etymologically related to crisis. The drag crisis may be classified as a critical transition, since the drag coefficient is constant for a wide range of Re, and drops sharply beyond a threshold in Re.
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Figure 3.10: PDF of sample mean A , over n sample realizations (independent ergophages) from the passive nonlinear point-vortex model with parameters δ = 1, ν/ν c = 0.15. For n sample = 1, the PDF is close to the theoretical prediction for the non-truncated system, and converges to a Gaussian PDF (thin dashed line) as n sample is increased. interpretation), which fits the present data well. Since A -1 log -α (A) is only integrable at A → ∞ for α > 1, the scaling P (A) ∝ A -3 log -2/3 (A) implies that without a cut-off, the only finite integer-order moment of A is the mean, while the variance and all higher moments diverge. With a cut-off at length , all moments are finite, but only the mean is of order one, while all higher moments depend on the cut-off value , increasing as the latter is decreased. This is an important difference from the Gaussian noise case. We note, however, that this difference is diminished as larger samples are used due to the imposed truncation and the law of large numbers. This is demonstrated in figure 3.10 which focuses on this power-law tail far from threshold ν/ν c = 0.15, and averaging A over independent samples leads to a convergence towards a Gaussian distribution. For a single realization, however, we observe a form close to the theoretical prediction for the non-truncated Lévy process.

The fully nonlinear regime

We now enable ergophages to feed back on the point-vortex flow and include the driving velocity u f . Initialising simulations at a condensed vortex state with β = -1/8, N v = 32 vortices, N p = 32 ergophages at random locations with small initial amplitudes A k for given values of ν, δ and using a forcing temperature β f = -1/8, we let the system evolve in time and measure the mean energy around which the energy fluctuates at late times. The choice β = β f for the initial condition is arbitrary, the system will relax to the same stationary state at late times, independently of what initial condition is chosen. However, since we are interested in the stability of condensate flows, it is a natural initial Note that, as expected, y * → -∞ as µ → 0 + . The two results (3.76), (3.77) imply that the moments of X of arbitrary order n > 0 scale linearly, since large negative y are exponentially suppressed:

Note that the critical exponent in the final result is independent of the value of λ, and identical to the Gaussian noise case. The result of eq. (3.78) is confirmed in figure 3.20, where the integer moments up to order four, determined from the numerical solution of the stationary FFPE, are all shown to scale linearly with µ.

.21 shows that the PDF, which matches the predicted asymptotics at y → ±∞, strongly resembles the case of β = -1 in that in addition to the asymptotic power-law range, an intermediate, approximately power-law range is seen at negative y. Again, close inspection shows that the intermediate range shows small deviations from a power law. However, the most marked difference from the case β = -1 is that the decay for |β| < 1 is only exponential in y at positive y, not faster than exponential as for β = -1.

In particular, the asymptotics at positive y imply a slow, power-law convergence of the second moment since p st (y)e 2y ∝ y -α at y 1. Bearing this in mind, we nonetheless

For i = M + 1, . . . , N , the integral to be computed is given, to leading order, by

We first explicitly consider i = M + 1.

The last integral J can again be calculated by use of the substitution u =

u N -M -2 du . 

To find r 2 i for i = M + 2, . . . , N , we may simply choose a different set of spherical coordinates with k M +1 → k i at the outset. This amounts to replacing k M +1 by k i in (4.52). Hence, for all

For i = 1, . . . , M , all values of i give the same result by symmetry (all k i being equal for i ≤ M ). Conservation of energy thus yields, at leading order, 

ABSTRACT

Turbulence is ubiquitous in the universe, and comprises a wide range of space and time scales. In three dimensions (3D), energy is transferred from large to small scales (direct cascade). In two dimensions (2D), the opposite is true (inverse cascade). This thesis harnesses direct numerical simulations (DNS) of the Navier-Stokes equations, modelling and methods from statistical physics to study different scenarios where the largest scales in a turbulent flow change their properties abruptly at a critical parameter value. In each case, the physics close to the critical point is characterised in detail.

First, rotating turbulence in an elongated domain is studied using an asymptotic expansion, with a single parameter combining layer height and rotation rate. At a critical parameter value, energy begins to be transferred inversely. Density stratification is found to impact the energy cascades nontrivially.

The second scenario concerns turbulence in a thin layer of variable depth, forming large-scale vortices (LSV) below a critical height. The flow is studied numerically and a mean field model is proposed, explaining observed scaling laws. The transition to LSVs is shown to be subcritical.

Third, a simplified model of 3D perturbations on 2D flow is presented. The model facilitates a stability analysis of LSV at a reduced cost, reproducing intermittent growth in perturbation amplitude recently observed in DNS. The perturbation growth rate fluctuates following a heavy-tailed distribution. The mathematical structure of the model is studied in detail using a Langevin equation with Lévy noise.

Finally, exact results on the microcanonical statistical mechanics of truncated 2D Euler flows are presented. By evaluating phase space integrals, we compute the reversal statistics for the largest-scale mode in a square domain with free-slip boundaries. We validate the microcanonical results numerically by using a minimal model, in contrast with the canonical ensemble, which is shown to fail in this example.
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