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Introduction

The word steganography comes from ancient Greek with the combi-
nation of stegands (oTeyavoo), meaning “cover”, and grapho (ypagw)
meaning “I write”. Steganography is the practice of concealing a mes-
sage discreetly within another content without arousing an analyst’s
suspicion. Steganography differs from cryptography in that cryptog-
raphy conceals only the content of the message through encryption.
Steganography conceals the presence of the message itself.

We can find ancient examples of back to 440 BC of use of steganog-
raphy, but its utilization carries on today. It is used today in both
legitimate and malicious usages. It allows civilians to communicate
in an authoritarian state that controls the communications and allows
the traffic of illegal content such as child pornography.

Electronic files containing multimedia content (such as text, audio
signals, or images) are good candidates for cover for several reasons:
(i) they are frequently and massively exchanged so their presence in
a communication channel will not raise the alarm per se, (ii) they are
large files where a secret can be more easily inserted, (iii) we can use
computational intelligence and resources to design clever ways to per-
form the insertion. However, the technique of steganography entirely
depends on the nature of the content. Hiding a message in a .mp3 is
different from embedding it in a .pdf file. Therefore, the steganogra-
pher requires a deep understanding of the structure of those files. The
subject of this thesis is to hide a message in digital images by slightly
modifying an original image. It is what we call steganography by cover
modification.

Chapter 1 offers a description of the usual representation of digi-
tal images and the JPEG format. Then we present a naive scheme for
steganography to give intuition to the reader about how easy steganog-
raphy can be and how it can be easily detectable.

Then we present the two steps on which rely the most common
techniques used in steganography. The first one is to design a distor-
tion function (which is often additive w.r.t. the image coefficients) to
adapt the embedding of the message to the content of the cover, and
thereby avoid risky areas (such as smooth textures like sky or walls),
whose modification is highly detectable. The second part is to embed
the message into the cover while minimizing the distortion function
(which is the sum of the impact of embedding into each DCT coefhi-
cient individually). Those are two independent tasks that are research
areas of their own. In this work, we only improve the first part, i.e. as-
signing a cost to each image coeflicient. The second part is discarded,
and we use a theorem providing us a way to simulate the optimal
coding function (i.e. minimizing the additive distortion function) by
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sampling a stego image.

Steganalysis, aiming at detecting the presence of a message in an
image, has the antagonist role from steganography. It consists in ex-
tracting features which are relevant to discriminate the modified im-
ages from the original ones.

Practical steganographic security depends on the advances in ste-
ganalysis domain. To measure steganography security, we consider the
worst-case attack by following Kerckhoffs’s principle, stating that the
steganalyst is aware of the steganographic technique, except the se-
cret key. We finish the chapter by presenting the specific steganalysis
tools relying on particular feature extractions, each adapted to detect
a distinct embedding strategy.

Chapter 2 introduces the basics of machine learning. We first
present its ambition of generalization by learning through examples.
Convolutional Neural Networks (CNN) achieve outstanding perfor-
mances in many computer vision tasks at the cost of designing a good
architecture. The perform well in steganalysis too. They accurately
discriminate cover from stego images and detect invisible-to-the-eye
modifications applied to an image. This new method automatizes the
traditional feature extraction step. It is replaced by the learning of
parameters via an optimization algorithm.

Then we explain the importance of the differentiability of the oper-
ations within deep learning models because it is an essential ingredient
for optimization algorithms.

We present at the end an overview of the existing architectures
adapted to steganalysis. We implemented in this thesis some of those
architectures to conduct experiments.

We conclude by a weakness of deep learning models. Malicious
users who know the model can easily bypass a classifier. It is the ideal
security breach that steganographic schemes can exploit.

Chapter 3, presenting our first contribution, starts with the follow-
ing observation: for a steganographer aware of the steganalysis model,
state-of-the-art offers adversarial embedding schemes to adapt the dis-
tortion function (attaching a cost to each image coefficient) to avoid
the detection by a model. Nevertheless, the steganalyzer could reply
by training a new classifier to detect the new technique. It leads to
an endless game between two competitive players with opposite ambi-
tions. The issue of the situation relies on the pair of actions of both
rivals. In other words, each player wonders “How can I anticipate
what the other will play such as I behave optimally.” This is the exact
context of competitive games.

Our first contribution consists of introducing game theory notions to
solve the steganographic game. The introduction of the problem from
the game theory point of view leads to a formal definition of the best

embedding function. Nash equilibrium !

in a zero-sum game defines
it as the one minimizing the optimal detector. Unfortunately, it is a
min max optimization problem over infinite sets of actions, where the

objective function has no explicit expression. We propose a practical

!'We do not formally play the Nash
equilibrium because we only consid-
ered in this work pure strategies.
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solution by constructing an iterative game, where at each step, players
play a new action. The set of actions is consequently increasing, but
finite, such as the game is solvable at each step. At each iteration comes
the creation of (i) a new distortion function defeating the optimal over
a finite number of detectors and (ii) a new detector to identify the
new stegos. By doing so, we show that the game converges and that
steganography is improved. To do the experiments, we used ADV-
EMB, which proposes a heuristic to avoid a detector.

Chapter 4 consists in improving the resolution of the min max
problem that ADV-EMB solves in our first contribution with a heuris-
tic. We propose to remove the heuristics and to use a more powerful
optimization technique i.e. gradient descent. Because we are simu-
lating the embedding, it requires us to compute the gradient of the
expectation of the detectability of the optimal detector with respect
to probability distribution parameters. We show how to approximate
such gradient by doing continuous (instead of discrete) modifications
to the cover thanks to the Gumbel distribution while complying with
an entropy constraint. We provide an iterative gradient descent more
powerful than ADV-EMB as it can defeat a set of classifiers.

CONTRIBUTIONS
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Basics of steganography and

steganalysis

In November 1940 in France, the Vichy Government installed the
Service des Controles Techniques in charge of watching French people
through their letter correspondences. Eve, an employee of the SCT,
opens an envelope and finds a letter with a music sheet attached.

My Dearest Bob,
I would be glad if you could share with me your thoughts
about the music I wrote.

Yours always,
Alice
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Click here to listen to the music.

She quickly glances at it, closes it and classifies it as non-sensitive
letter, and stacks it on the corresponding pile in order to send it to
Bob as Alice expected.

Once Bob receives it, he follows the rule that he agreed with Alice.
He reads all notes preceded by a sharp or flat symbol, then converts it

to a letter of the Latin alphabet according to the following decoding
table:

Stacking all those letters in the order of appearance in the sheet
(from left to right, both of staves at the same time) leads to the decoded
message “attack leave”. As soon as Bob discovers it, he understands
that his security is at stake and immediately leaves for another shelter.
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In this example, Alice modifies the
five first measures of the piece Liebe-
strdume composed by Liszt to embed
her message.
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This fictional example illustrates the concept of steganography and
steganalysis. Since the formal definition of the prisoners’ problem by
Simmons [5] in 1983, steganography and steganalysis have been con-
sidered as a hide and seek game.

Steganography is the art of dissimulation. When Alice wants to com-
municate a secret message to Bob, steganography consists of hiding a
message in a content, while Alice and Bob previously shared the de-
coding method. There are limitless possibilities for the nature of the
content as long as it looks legitimate: it could be a music sheet or a
poem, an image.

Steganalysis is the adversarial act of detecting if a message is hidden
in a content. Fuve, as in the expression eavesdropping, wants to stop
Alice and Bob from keeping secrets from her. She has the power to cut
the communication channel between the two of them, which encourages
them to be the least suspicious as possible.

History is full of amusing anecdotes about past usages of steganog-
raphy. To our knowledge, the first utilization goes back to ancient
Greece. In the book Histories written by Herodotus, Histiaeus tattoos
a secret message on the skull of a slave. The messenger goes under-
cover when his hair grows back, and Aristogoras decodes the message
by simply shaving him.

Another famous use of steganography is writing using invisible ink
on regular paper. The ink can be made of lemon juice, and the message
can be read by exposing the paper to a heat source.

In this thesis, we will limit ourselves to a particular type of content:
digital images. The following section aims at introducing the image
format before explaining how to apply steganography in images.

IMAGE REPRESENTATION

From photons to digital data

Photography, which means etymologically “coloring with light” is the
ambitious challenge to convert into an object the environment which
created a physical sensation in a human.

This technique is more than standard today, as it is part of our
daily lives as all of our smartphones can take pictures. However, until
the last century, photography was not ordinary, requiring considerable
technological and scientific progress.

Two dominant photographic sensors exist: CCD (Charge-Coupled
Device) and CMOS (Complementary Metal Oxide Semiconductor) us-
ing the photoelectric effect. It quantifies the number of photons hitting
a photographic cell array to translate it to numerical data.

In order to reproduce coloured photography, researchers first looked
for the biological composition of the human eye. It is in 1802 that
Young discovered [8] that it exists three types of photoreceptors (now

The prisoners’ problem tells the story
of two accomplices in a crime locked
in separated cells. They want to coor-
dinate an escape plan, but a warden
watches their communication. The
guardian will only permit the ex-
changes if the information contained
in the messages is innocuous. The
prisoners have to deceive the warden
by finding a way of communicating se-
cretly in the exchanges, i.e., of estab-
lishing a subliminal channel between
them.

Human cones
1.0 4

=]
wt
1

o
(=1
1

Channels of the Nikon D700
1.0 A

—— B
+G

—— R

o
L

Normalized response (linear energy)

00 1 T T T
400 600 800
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Figure 1.1: Normalized response
of the three cones S, M, L of the
human eye [6] (top) and of the
three color channels of a Nikon
D700 device [7] (bottom).
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known as cone cells) in the human eye, each of which are sensitive to a
particular range of visible light, named short, medium, or large given
their size.

A few years later, Maxwell demonstrated theoretically in 1855 [9]
that any monochromatic light stimulating three receptors should be
able to be equally stimulated by a set of three different monochro-
matic lights. This would mean that a superposition of three colours
could reproduce every sensation of colour, therefore called primary
colours. Therefore, the first colour photography was produced by tak-
ing pictures three times of the same scene with three coloured filters.

Today, the representation of colour digital images still relies on the
superposition of three colour channels: red, green, and blue, so three
types of sensors are used. Figure 1.1 shows both absorption spectrums
of receptors in the eye and in a Nikon D700 camera look alike.

In order to take at one instant a picture with three kinds of pho-
toreceptors, the most common solution is to use a colour filter array
(CFA). It is a mosaic of tiny colour filters placed over the pixel sensors
of an image sensor to capture colour information. Multiple subjective
designs of the CFA exist. The most popular one is the Bayer Filter,
plotted in Figure 1.2.

The raw image data captured by the image sensor is then converted
to a full-colour image (with intensities of all three primary colours
represented at each pixel) by a demosaicing algorithm which is tailored
for each type of colour filter.

Gray scale images are coded only with one channel. It contains the
luminance Y, which is equal to a linear combination of the three color
channels R, G and B:

Y = 0.299R + 0.587G + 0.114B (1.1.1)

G

In this thesis, we will work only with the luminance channel, i.e.,
with grayscale images. Images are therefore coded with an integer in a
specific range of values. For example, 8-bits coded images have pixels
coded with an integer between 0 and 255. The natural representation
is the spatial representation that is given at the output of the camera
sensor. However, the research area of image classification or pattern

Figure 1.2: The Bayer CFA.
Each two-by-two submosaic con-
tains 2 green, 1 blue, and 1 red
filter, each filter covering one

pixel sensor.

Figure 1.3: Three colors (left)
channels, which when super-
posed produce a color image
(fourth image). The last image
is the luminance computed with
Equation 1.1.1.
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recognition motivated the challenge of finding a new representation of
images where the content of images can be represented in fewer features
than the number of pixels in the image. This goal is close to the one of
data compression, which favours a sparse representation. It is essential
in this thesis to present the most famous compression algorithm JPEG
because we will work with that kind of image. Nevertheless, we will
firstly present the DCT transform.

There were many suggestions of transforms suggested by Karhunen-
Loéve [10], Fourier [11] or Welsh/Hadamard [12]. The most popular is
the Discrete Cosine Transform [13], proposed by Nasir Ahmed in 1972
and can be computed by using a fast algorithm.

Discrete Cosine Transform (DCT)

For an 8 x 8 block of luminance values x[¢, j], i,7 =0,...,7, the 8 x 8
block of DCT coefficients d[k,], k,1 € [0,7] is computed as a linear
combination of luminance values

7

dlk, 1] = f[i, KI5, 1x[i, 5], (1.1.2)
i,j=0

where f[i, k] = %COS k(2 + 1), wl0] = 1/v2 and w[k > 0] = 1.
The coefficient d]0, 0] is called the DC coefficient while the remaining
coefficients are called AC coefficients. The DCT is inversible, and its

inverse called IDCT is given by

X[k, 0] = > flk, if[1, j]d[i, 5]. (1.1.3)

i,7=0

The DCT can be interpreted as a change of basis, where the unit
vectors are 64 units images of size 8 x 8.

Those 64 unit images indexed by 4, j are given by F; ;[k, 1] = £[k,i]f[l, j],

they are plotted on Figure 1.4. An example of decomposition of a spa-
tial block is shown on Figure 1.5.

DCT transform is the core of the JPEG compression, whose purpose
is to reduce the number of bits needed to code the image at a price of
data loss.

JPEG compression

The first step of JPEG compression is to apply DCT transform to each
8 x 8 (non-overlapping) block of the spatial image.

Then there is a quantization step, which is the step which produces
data loss. During quantization, the DCT coefficient [i, j] is divided by
quantization step q[i, j] from the quantization matrix q and rounded!
to their closest integers:

d[i, j]
qli, j

D[i,j] = round( ) Vi, j € [0,7]. (1.1.4)

It is shown on section 2.2.2 that this

operation can be interpreted as 64 op-
erations of convolution with a kernel
of size 8 x 8, with a stride of 8.

! Depending on the implementation,

the rounding operation
tion 1.1.4 can be changed.

in Equa-
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The larger are the quantization steps, the fewer bits are needed
to code all the image coeflicients, but the more the image quality is
damaged.

The JPEG standard recommends a set of quantization matrices
indexed by a quality factor f which is an integer between 1 and 100.
They are given for the luminance channel by:

» 200 —2f if f> 50
qf[i,j]=ﬂ00r<5o+sxq50[l’]]> with § = fois

100 5000/f i f < 50.

(1.1.5)

In order to decompress a JPEG image, one must do the inverse
steps of the compression in the reverse order, except the rounding step
because it is an irreversible operation. The decompression operation,
noted JPEG ™!, is composed of the dequantization of the image (i.e.
multiplying each coefficient by the corresponding quantization step)
then the application of the IDCT. The more the quality factor is close
to 100, the more the decompressed image is close to the original image,
as shown in Figure 1.6. We can see in Figure 1.7 an original image of
size 32 x 32, then the decompressed versions of this image compressed

+d[0, 1]x l +d[0, 2]x lI .. +d[7,7]x

Figure 1.4: Visualization of the
64 DCT Filters F; ;, where i is
for the row and j for the col-
umn. Horizontal frequencies in-
crease from left to right (with in-
creasing j), and vertical frequen-
cies increase from top to bot-
The
constant-valued basis function

tom (with increasing i).

at the upper left is often called
the DC basis function, and the
corresponding DCT coefficient
d[0,0], the DC coefficient.

Figure 1.5: Decomposition of a
8 x 8 spatial image into a linear
combination of 64 DCT filters.

Example of quantization matrix for lu-
minance at quality factor 75 and 95:

8 6 5 8 12 20
6 6 7 10 13 29
7 7 8 12 20 29
|79 11 15 26 44
5=19 11 19 28 34 55
12 18 28 32 41 52
25 32 39 44 52 61
36 46 48 49 56 50
2 1 1 2 2 4 5
1 1 1 2 3 6 6
11 2 2 4 6 7
|12 2 3 5 9 s
WB=19 2 4 6 7 11 10
2 4 6 6 8 10 11
5 6 8 9 10 12 12
7 9 10 10 11 10 10

26
30
35
40
52
57
60
52

© 0o

=
o O

31
28
28
31
39
46
51
50



20

at different quality factors. For low-quality factors, artefacts due to
8 x 8 block-wise DCT transform are apparent.

Figure 1.6: Mean Square Error

» (MSE) of the compression error,
20

depending on the quality factor
f. MSE(x) =37, z[i, j]%, and
15 the compression error is equal to
* x — JPEG ™! (JPEG (x)). Note
that the MSE for f = 100 is not
* equal to 0.

MSE

10

20 40 60 80 100

Figure 1.7: Vigzualization of ef-

The two only representations used in this thesis are spatial and

fect of image JPEG compression
JPEG. Embedding a message in an image depends on its representa- 8 . P
for three quality factors, f = 25,

tion. We will see in the next section the very basics of steganography
50 and 100.

by introducing a simple example in the spatial domain.

1.2 NAIVE STEGANOGRAPHIC SCHEMES

1.2.1  LSB replacement

A very straightforward steganographic scheme is LSB replacement. For
a grayscale digital image where a binary number codes the value of each
pixel (for example with 8-bits code integer between 0 and 255), the
Least Significant Bit is the last bit of the pixel (as the representation
is binary, the LSB contains the parity of the pixel). LSB replacement
consists of hiding the message bits in the LSBs of pixels, such as at
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maximum the pixel is modified by +1 when it is even, and by —1
when it is odd. Figure 1.8 shows the illustration of an original image
containing 8 pixels (70, 73,77,81,79,75,75,79) coded on 8 bits, and for
which the LSBs are replaced by the 8 message bits (1,1,0,0,1,1,1,0).

Original image Message Modified image
(Base 10) (Base 2) (Base 2) (Base 2) (Base 10)

70 01000110 1 01000111 71
73 01001001 1 01001001 73
7 01001101 0 01001100 76
81 01010001 0 01010000 80
79 01001111 1 01001111 79
0] 01001011 1 01001011 (0]
0] 01001011 1 01001011 (0]
79 01001111 0 01001110 78

Because we only allow modifications on the LSB of the pixels, we
assume that the human eye will not detect the change. The assumption
is still widely used in all steganography schemes: with a wide range
of shades (for example here, 8 bits coded images for which the range
is a size of 2% = 256, from black to white), adding —1 or +1 to some
pixels in a spatial image, whatever the quantity, is assumed to have no
impact on the detectability of a human eye.

In Figure 1.9, we can easily observe what would happen if we use
more significant bits to hide the message. Alice can replace the two,
three, ..., seven, or eight least significant bits to embed more informa-
tion in the same content). For the 8-LSB, this means replacing all the
image bits with the message bits. Even the 2-LSB replacement method
creates embedding artefacts in the sky that are highly suspicious.

1-LSB 2-LSB 3-LSB 4-LSB

This example highlights the main compromise of steganography:
hiding as much data as possible, while being the least detectable. Those
are two adversarial challenges, as we suppose that hiding more data
will lead to higher detectability and vice versa.

Given Figure 1.9, replacing only the least significant bit seems to

Figure 1.8: Example showing
the embedding of a binary mes-
sage of length 8 in a same-sized
cover, by replacing the Least
Significant Bit of each pixel in
the cover (red bits) by the mes-
sage bit (blue bits). Finally, 4
pixels have been modified (bold
pixel values in the stego array).

Figure 1.9: Effect on the stego
image of embedding with -
LSB replacement with different
depths, from ¢ =1 to 8.
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be the maximum Alice can do to remain undetectable. However, it
is not enough, as we can design an elementary steganalysis detector
able to detect this kind of embedding, as will be shown in the next
section 1.2.2. We insist that the steganalyzer is very simple to point
out how naive this steganographic scheme is. Then, in section 1.2.3,
we will show the importance of the embedding scheme by designing
another one that reduces the number of modifications applied to the

cover.

Importance of respecting natural statistics

Even in the LSBs, there is information on the image content which
must be preserved. Natural images have a particular distribution for
two reasons: first (i) because of some common characteristics of the
object in the picture, and second (ii) because the camera introduces
a particular noise that can be modelled. Let us focus only on the
first reason. For example, Figure 1.10 shows a cover image (top left
image), and then, on the right, is plotted its LSBs (which are binary
numbers, hence only two colours are used, black and white). The sky
area includes long sequences of pixels with the same parity. Hiding a
message in those areas is risky, as it introduces some noise in a usually
smooth area, as one can see in the red square zoomed areas. With the
same logic, hiding a message in the tree area (green squares) seems less
dangerous, as the hidden message could be interpreted as the natural
noise of the image. The different distribution of LSB in smooth areas
gives us the intuition that a steganalyzer can be easily designed.

Cover LSB of Cover

oy

LSB of Stego

We can imagine a steganalysis detector inspired by the Histogram

Figure 1.10: Visualization of the
impact of the insertion of a mes-
sage of length n? inside an image
of size n x n. LSBs are plotted
by representing a black or white
pixel for an even or odd value of
the pixel (i.e. LSB equals to 0
or 1). The eight images on the
right are zooms of two regions of
size 32 x 32 plotted on the left
by coloured squares: a relatively
smooth region in the sky (red) or
textured region in a tree (green).
We tuned the dynamic of colours
in the zoomed images to improve

visualization.
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attack proposed in [14], which compares, in the LSB plane, the ratio of
equal adjacent pixels compared to the ratio of different adjacent pixels.
So in other words, it computes the following quantities:

e the ratio of two adjacent with the same parity, and

e the ratio of two adjacent pixels with different parity.

Indeed, most natural images contain smooth areas, like the sky or
house walls, where many consecutive pixels are equal, so the first ra-
tio is expected to be higher than the second one. In contrast, for the
modified images, there are no such areas. The chance that two consec-
utive pixels have the same parity depends directly on the probability
distribution of the message, as the LSBs are equal to the message. For
a message where each bit has a chance 1/2 of being equal to 0 or 1,
the two ratios are equal to 1/2. In Figure 1.11, we insert a random
message in several images (stegos images) by LSB replacement and
plot the ratio of adjacent pixels? with different parity, compared to
the ratio in the original images (cover images). We observe that in
most natural images, the ratio is below 0.5, but for all stego images,
it is equal to 0.5. It is a satisfying primary steganalyzer tool that only
consists of finding a suitable threshold.

0.6 I Cover W Stego

o

o

1

N I I —
1 1] |
[ 1 1 | |
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[ 1 | ]
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Index of image

LSB replacement needs to be improved to preserve some elementary
statistics (as the occurrence of continuities between adjacent pixels).
The quality of preservation is measured through a so-called distortion
function which is minimal when the model is preserved. The defini-
tion of distortion functions is itself a challenge. The following one is
embedding a message while reaching the minimum of the distortion.
It depends on the coding method (or coding function).

Importance of the coding function

The coding method is the pair of embedding and extracting methods
that Alice and Bob previously agreed on to hide and read the message
inside the image. If Alice wants to embed a message of m bits in an
image of n pixels, the coding method of LSB replacement consists of
replacing the first m LSBs of the image with the message bits and
leaving the last n — m bits unchanged. Note that the secret key often

2 For the experiment, we look at hori-
zontally adjacent pixels.

Figure 1.11: Ratio of adjacent
pixels with different parity in 16
original image (blue bars) and
in their 16 stegos version (or-
ange bars). Two pixels, repre-
sented as squares, are adjacent
when they share a common ver-
tical vertice.
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contains an integer which is the seed of pseudo-random permutation
aiming at shuffling the cover image so that m bits randomly located
in the original image are changed3. On average, a pixel has a prob-
ability of Z* of being changed (which is called rate of modification).
Section 1.4.1 present the general definitions of those objects.

Alice wants to minimize the embedding impact while embedding.
For simplicity, it is measured by the number of modifications, as she
thinks that the least number of changes, the best it is. It is an em-
pirically defined distortion function. LSB replacement is not the most
efficient coding method w.r.t. this distortion among the coding meth-
ods embed in the LSBs of pixels. The following pair of embedding and
extracting functions achieve embedding of the same amount of message
bits while doing fewer changes on average. It stands on the following
idea: instead of hiding the message in the first pixels, one can embed
the message as a whole.

First, let’s take a very simple example where the message m =
(mg,my) is of size 2 and the image x = (z¢, 1, x2) contains 3 pixels.
We here consider only the LSB of pixels, so x € {0,1}?. The image
containing the message is y = (yo, y1,¥2)-

We recall that LSB replacement consists of replacing the LSB of the
two first pixels zg and x1, such as

Yo = Mo
Yy =ma

is the coding and decoding rule, so the image containing the message
is equal to y = (mg, m1, z2) (the last pixel is never changed).
Now let’s see a better scheme where the decoding rule is:

{moyo+y1 (1.2.1)

b
mi; =y1 + Y2

where the + operation is for binary numbers, such as it is equivalent to
the zor operation. This has the advantage to make Alice do at most 1
change. Indeed, there are four equiprobable possibilities for the value
of the pair (zg + 1 — mo, 1 + 2 — mq) :

(om )= () () (0) = ():

When it is equal to null vector, no change needs to be made as x
already carries the message and y = x in this case. For the three other
cases, only one pixel needs to be changed, and the encoding rule can
then be written as:

3In practice, Alice and Bob share
a secret integer k. It permits
both to generate the same pseudo-
random permutation of the set of pix-
els. For example, NumPy function
np.random.seed (k) can be used before
calling a random permutation. Before
Alice embeds the image, she shuffles
the image coefficients according to the
permutation generated with k. When
Bob receives the image, it can apply
the same permutation, such as he de-
codes the correct message.
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This encoding technique is called matriz embedding using binary
Hamming codes and can be generalizable for every message hidden in
Without detailing the exact method,
Hamming matrices H are of the size m x (2™ — 1), and were first

a image of n = 2™ — 1 pixels.

designed by Hamming in 1950 via Hamming codes [15], which are a
family of linear error-correcting codes. Their construction has the good
property that it always allows Alice to embed the message by changing
the value of exactly one pixel with probability 1 — 1/2™, and not to
change any pixel with probability 1/2™. This leads to a modification
rate of (1 —1/2™)/n = 1/(n + 1), which is substantially better than
the previous rate of m/2n, as summarized in Table 1.1.

LSB replacement ‘ Hamming code
—1/2™
n

5 |

Finally, we designed an encoding function that gives a lower distor-
tion than LSB replacement for a fixed couple (m,n) if n = 2™ — 1,
where the distortion is defined as the number of modifications. Hence,
the natural questions follow: could better encoding/extracting func-
tions be designed? Does it depend on the chosen distortion function?
In other words, is there a theoretical boundary of the performance of
the encoding/extraction functions, w.r.t. a chosen distortion function?
We first need to introduce some general definitions in section 1.3, and
the answers will be exposed in section 1.4.4.

INFORMATION THEORETIC MEASURES FOR STEGANOGRA-
PHY AND STEGANALYSIS

At the beginning of the 20th century, telegrams were the primary
medium of long-distance communication, but it was costly. In or-
der to reduce the costs, data compression was an exciting challenge
because its purpose is to transmit the same information but with a
shorter sequence of characters. We will show in the next section that
Shannon introduced a significant result in data compression, which is

firmly tight to our problem, as embedding information in images can

The Hamming matrix-matrix used in
the example of Equation 1.2.1 is

01 1
H*(110>

For LSB replacement, each coefficient
has a chance of m/n to embed a bit,
and if it does, it has a chance 1/2 to be
modified. This gives an average mod-
ification rate of m/2n.

Table 1.1: Average modification
rate (i.e. number of modifica-
tion per pixel) obtained by ei-
ther LSB replacement or ma-
trix embedding using hamming

codes, with n = 2™ — 1.
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be seen as a kind of compression.

Information theory and Shannon’s Theorem

Shannon was trying to solve the question “how much information is
contained in some piece of data?”’. He proposed a solution by finding
how many bits of information can code a binary sequence of length n.
To do so, he first introduced the notion of entropy:

Definition 1.3.1 (Entropy of a first-order source X). Consider an
alphabet A = {a1,--- ,aq}, and (X1,---,X,,) is a tuple of n #d real-
izations of the first-order source X, such as¥i € {1,--- ,q}, we denote
by m; the probability of X takes the value a;, so P(X = a;) = m;. We
define the entropy of the source X as

H(m) = - milog, (m;). (1.3.1)
i=1

This notion is often qualified as measuring the “amount of uncer-
tainty” in a probability distribution. Nearly deterministic distributions
(where the outcome is nearly sure) have low entropy; distributions
closer to uniform have high entropy.

Shannon built this measure to write his central theorem [16], which
stands that the length of any binary coding function of a set of n
realizations of X is at least nH (7) in average. In other words, it gives
an average of the number of bits needed to encode symbols drawn from
a distribution 7. However, equivalently, this gives an upper bound of
the data transmitted by a single realization of a distribution 7, equal
to H(m).

Entropy is a significant notion in steganography as the entropy of
the probability distribution over the stego images determines the num-
ber of message bits one can embed in it. Hiding a message of m bits in
a cover content requires finding a distribution 7 over the set of stego
images ) such as H(mw) = m.

Nevertheless, steganography is not only about embedding a mes-
sage; it is also to be undetectable. The following introduces the theo-
retical measure of steganography security.

Divergence of Kullback-Leibler

If we have two probability distributions P(z) and Q(z) over the same
random variable X, we can measure how different these two distribu-
tions are using the Kullback-Leibler (KL) divergence:

P(x)
Q(z)

The KL divergence has the property of being equal to 0 if and only
if P and @ are identical distributions.

Perfect steganography should preserve the distribution of the cover

DKL(PIIQ) = Eswp | 10g 5= | = Evnpllog P(z) ~ log Q(a)]. (1.3.2)

images. In this context, Christian Cachin in 1998 [17] proposed a

It can also be shown that H(m) <
logy g by concavity of the logarithm,
and this upper bound is achieved when
m =--- =mg = 1/q. See for example
Figure 1.12 for ¢ = 2.

1.0

B
= 0.5
=

0.0

0.0 0.5 1.0

Figure 1.12: Entropy H(r) for
an alphabet A = {a1,a2} of
length 2, w.rt. 7 = P(X = a;)
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distance based on Kullback-Leibler between the stego and the cover
distributions to determine the security of the steganographic method.
If the KL divergence is equal to 0, the warden cannot differentiate the
stego images from the cover ones since both distributions for stego and
cover objects are identical. However, it is not feasible in practice to
design such a steganographic system under this strict bound because it
is not a trivial task to determine the distribution of the cover images.

The following section presents the practical elements of steganogra-
phy and steganalysis.

THE STEGO GAME IN PRACTICE

Steganographic scheme

In Fridrich’s work of modern steganography [14], the possible stegano-
graphic methods are divided into three categories: cover selection,
cover synthesis and cover modification. When a steganographer pos-
sesses a large natural image database, he can select the most suit-
able cover for data embedding, for example, by choosing the one that
needs the least number of modifications to embed the message. The
steganographer could also artificially synthesize a secret message into
a texture image. In this report, we will only focus on steganography
by cover modification. In this scenario, Alice chooses an initial im-
age, which is called cover and modifies it in order to embed a secret
message to obtain a so-called stego image.

Both Alice and Bob share a secret key k and a pair of function Emb
and Ext which are necessary to embed in the cover and extract from
the stego. So it is natural to define the following objects:

T set of image objects
K(x) set of stego keys for x € 7 , (1.4.1)
M(x) set of all message that can be embeded in x € Z

and
Emb: ITxKxM—=T
: (1.4.2)
Ext: ITxK—>M
such as Vx € Z,Vk € K(x),Vm € M(x):
Ext(Emb(x,k,m), k) = m. (1.4.3)

We assume that the cover and stego objects have already been sub-
ject to some key-dependent permutation for simplicity of notation. We
omit the dependence on the key from now on.

We denote X C 7 the set of cover images and Y(x) = {Emb(x, m), m €

M(x)} the set of stegos images that can be obtained from x € X.
Most steganographic schemes work with a representation of cover

and stego using finite set of symbols from some alphabet ¥ using a

symbol assignment function Symb : X — X. Here, symbols are a g-ary

27
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alphabel ¥ = {0,1,2,--- ,¢ — 1} and all operations will be performed
in mod ¢ arithmetic, so that Symb is the function equals to x — =
mod ¢. Let cover and stego objects be represented as vectors x € X"
, ¥ € X" respectively, with n being the number of pixels. Therefore,
images are represented as one dimensionnal objects, and image ele-
ments can be indexed by an integer ¢ comprised between 1 and n. The
communicated message is also a ¢-ary vector m € ¥X™ with m < n
being the length of the message.

Another important point is to define which protagonist knows what
about the situation. Kerckhoffs introduced in La cryptographie mil-
itaire [18] in 1883 the basics of security of cryptology which is that
everybody is supposed to know everything, except the secret key. The
security of a system relies only on the secrecy of the key but never on
the privacy of the design.

This principle is also used in steganography and steganalysis. The
embedding and extraction functions, and the distributions of all ran-
dom variables, are all known to Eve.

Cost based steganography

In practice, Alice would like to achieve security while embedding a
message. So it means respecting a condition on entropy as explained
in section 1.3 while minimizing the detectability. Minimizing the KL
divergence introduced in section 1.3.2 is ideal but difficult in prac-
tice; instead, Alice defines a distortion function and minimizes it while
embedding afterwards.

The following mapping D typically measures the distortion:

D: X,y —RTU{+oc}

1.4.4
x,y +—Dxy). ( )

We can cite for example the family of distortion introduced in [14],
for x = (-Ti)ie[l,n] EX,y= (yi)ie[l,n] ey

Dy(x,y) =Y |z — il (1.4.5)
i=1

which is called L; norm for v = 1 and energy of embedding changes
for v = 2. Another distortion could also be:

n

D(x,y) = Z[mz # vil, (1.4.6)

3

which counts the number of embedding changes.

Those distortions functions are additive, i.e., the impact of modi-
fication of each pixel can be obtained as a sum of individual impact.
We give the following general definition:

Definition 1.4.1 (Additive distortion). A distortion is additive if it
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has the following property:

n
D(X7Y) = ZD(Xa (an ey Li—15 Yy Ti1y - - - 7xn))
! (1.4.7)
= ZD(X,X—I— ei(y; — 1;)),

where €; is an unitary vector of length n contained all 0 except a 1 at
index i.

The additivity hypothesis is widely used in steganography because
of its simplicity. It is a heavy assumption, as it neglects the obvi-
ous dependence of modifications between pixels on the detectability.
Working under this assumption makes the definition of the distortion
equivalent to the definition of a set of costs of modification where each
component evaluates the impact of changing each pixel at index i by
adding some value b:

p? = D(x,x + be;), (1.4.8)

such as the distortion can we rewritten as D(x,x +b) = .7 pi, or
D(x,y) =3 p{" "

Once the distortion is defined, it is up to Alice to embed a message
according to it. We will see in the next section that Alice can have
two different behaviours.

Steganography and steganalysis metrics

Paper [19] introduces two kinds of senders. The first one (DLS) max-
imizes the message length for a given distortion applied to the cover;
the second (PLS) is the inverse of the DLS.

Definition 1.4.2 (DLS). For a given cover x € X, the Distortion-
Limited Sender (DLS) attempts to find a distribution © on Y(x) that
has the highest entropy and whose expected embedding distortion does
not exceed a given D.:

maximize H(w) = — Z 7(y)log m(y) (1.4.9)
yeY(x)
subject to Er[D]= Y w(y)D(x,y) = D.. (1.4.10)
yeY(x)

Alternatively, in practice, it may be more meaningful to consider
the following complementary task, which is to embed a given payload

with minimal possible distortion:

Definition 1.4.3 (PLS). The Payload-Limited Sender (PLS) attempts
to find a distribution w that communicates a required payload mwhile
minimizing the distortion:

minimize E;[D] = Z m(y)D(x,y) (1.4.11)
yeY(x)
subject to H(mw) = m. (1.4.12)

A theoretical result exists about the probability distribution 7 achiev-

ing the maximization or the minimization.

The steganographic noise or signal is
defined by the embedding modifica-
tions made to the cover, so y —x. This
vector is often denoted b =y —x, and
its components b;. In the case of LSB
replacement, b € {—1,0,1}™.
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Theoretical bound

The PLS and DLS are constrained optimization problems. They can
be theoretically solved using Lagrange multipliers (proof in [14]). The
following theorem gives the probability distribution 7, and the mini-
mum average distortion:

Theorem 1.4.4 (Optimal distribution w.r.t. distortion). For a given
cover x and the set of reachable stegos Y(x), the solutions of the PLS
and DSL problem are both reached for the following distribution:

1
™ (y) = e MY, (1.4.13)
where A is the scaling factor :
A= Y Py, (1.4.14)

yEY(x)

and where \ is determined from either from the entropy constraint,

either by the distortion constraint, depending on the sender:

> #*(y)D(x,y)=D. if DLS
yeyeo . (1.4.15)
- Z 7*(y)logy, 7*(y) =m  if PLS
yeYV(x)

With m or D in the feasibility region of their corresponding con-
straints, the value of \ is unique*. This follows because both the ex-
pected distortion and the entropy are monotonically decreasing in A.

As explained in the previous section 1.4.3, the distortion is often
considered as additive. In that case, the optimal distribution 7* of the
Theorem 1.4.4 can be rewritten® as a product of marginal probabilities
of changing the individual pixels:

n _Apyz*“”z
™(y) = H c H7T —x;). (1.4.16)
ZbeF e
The definition of the marginal probability given by
e P!
wr(b) = (1.4.17)

o
Zb/qu e M
is very important and is widely used in the next sections. For example,
if the modification b are in {—1,0,+1}, then

Given that theoretical bound, the efficiency of a coding function
Emb can be evaluated w.r.t the distortion function D by comparing
E[D] to Ey~~+«[D(x,y)], as the probability 7* is given in Theorem 1.4.4.
If we observe that the embedding function gives an average distortion
equal to the theoretical bound, we know that the embedding function
is optimal, and there cannot exist another scheme that gives a lower

4In general, finding a solution for X is
achieved by binary search as the func-

tions are monotonous.

A= Z e~ DY)
YEYV(x)
N = L
yeY(x)
n T
R I
YEV(x) 1
n b
i1t
i beF,

so that
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distortion. For example, Figure 1.13 compares the average distortion
per pixel of two previously designed coding functions (LSB replace-
ment and matrix embedding using Hamming codes) with the optimal
one, with binary changes and L; distortion. It is interesting to see that
when the message length is smaller than the number of pixels, LSB re-
placement is suboptimal (we already observed this in section 1.2.3),
but we see that matrix embedding using Hamming codes is also sub-

optimal.
0.5 1 Theoretical bound : Er[D]/n
—— LSB replacement
0ad Hamming coding
< 031
=
a
&
0.2 4
0.114
0.0 4

T T
0.0 0.2 0.4 0.6 0.8 1.0
Relative payload o = m/n

The theorem is important because it reveals the separation principle
which consists in separating the image model (needed for calculating
the distortion) and the coding algorithm used in a practical implemen-
tation. Under this separation, better steganography can be derived
using (%) better coding or using (i¢) a better image model. One crucial
outcome is that, to study the effect of the image model on stegano-
graphic security, no coding algorithm is needed. Flippling each pixel ¢
according to the probability distribution 7 can simulate the optimal
coding.

Embedding while reaching the optimal bound

Syndrom Treillis Code [20] is introduced by Tomas Filler in 2011 and
is a technique allowing to reach this theoretical bound for any additive
distortion. It uses matrix embedding and linear coding, such that it
can embed any message with linear complexity. The overall idea is
shortly introduced, but the details of this embedding scheme will not
be explained here as it requires a solid theoretical background in linear
coding.

The cover object x is modified to y such that the message m is
men

communicated as a syndrome of a parity check matrix H € , l.e.

Hy = m. (1.4.18)

Since m < n, the solution of Hy = m is not unique. This freedom

Figure 1.13: Comparison of the
theoretical minimal average dis-
tortion given by Theorem 1.4.4,
compared to average distortion
given by LSB replacement or
matrix embedding using Ham-
ming coding, in the context of
F, = F2 = {0,1} and where the
distortion is defined by the L
norm. The z-axis is the relative
payload « which is equal to the
number of bits of message to em-
bed per pixel. The y-axis is the
average distortion per pixel.
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is used to select y which not only communicates the message but also
minimizes distortion measured by the function D(x,y).

The STC algorithm proposes the Viterbi algorithm to solve the
above problem introduced in Equation 1.4.18, provided that

e the distortion function is additive, i.e.

Z:Dxx—i—el Zpy‘ i

e H is a sparse block-diagonal matrix constructed by repeatedly plac-
ing sub-matrix H € X% next to each other and shifted down by
one, as shows Figure 1.14. The parameter h is known in convolu-
tional codes as the constraint height, and its value affects the per-
formance of the algorithm: larger h will find solutions with lower
distortion, at higher computational cost.

fack:

It is a game-changing paper as the steganography research field from
this point is almost only focused on designing new distortion functions.

In this manuscript, the steganographic scheme will only consist,
for a given cover image x, in designing additive distortion functions
characterized by the set of individual costs pi»’. A steganalyzer tests
the performance of this distortion function by analyzing stego images
drawn from the optimal distribution, i.e. 7* which is directly computed
from Equations 1.4.15 and 1.4.16 for a given payload m or distortion
D..

The next section 1.5 presents state-of-the-art distortion functions
in chronological order, with illustrations in Appendix.

PRACTICAL DISTORTION FUNCTIONS

The design of distortion functions is a vast subject of research. Re-
searchers often use a trial and error method, with state-of-the-art ste-
ganalysis providing feedback. All following distortion functions are
designed (or approximated) as additive and for +1 embedding.

HUGO

Before 2010, steganalysis methods were more developed than steganog-
raphy. Presentation of the Highly Undetectable steGO [21] scheme
made much noise as it was introduced during the BOSS (Break Our

Figure 1.14: Block diagonal ma-
trix used in Syndrome-Trellis
Codes, as proposed in [20].
trunc H denotes H with bottom
rows appropriately removed.
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Steganographic System) competition and was achieving excellent per-
formance. It gave a hard time to contestants and made the compe-
tition very challenging. The idea is to adapt the cost directly from
the SPAM features [22], which were used by the best steganalyzer at
the time. Costs responsible for the detection of LSB matching were
identified using Fisher Discriminant and were heuristically tuned.

MG

The Multivariate Gaussian model [23] comes in 2013 with a compu-
tation of costs made to decrease the KL divergence between the dis-
tribution of cover and stego images. To do so, cover images are mod-
eled as a sequence of independent (but not necessarily identically dis-
tributed) quantized Gaussians, whose distribution is denoted by p®).
The distribution of stego pixels, which are also independant and de-
noted ¢, are derived in order to decrease Dg, (p(i)Hq(i) (m)) For
small change rates, the KL divergence is well-approximated with its
leading quadratic term:

n ) . 1
ZDKL (p(l)Hq(Z) (m)) ~ 573211-(0) (1.5.1)
i=1 i

where I;(0) is the steganographic Fisher information (FI)S:

2

> . (1.5.2)
;=0

The optimal choice of 7; that minimizes the total KL divergence in

(1)
1 de (771)
I;(0) = Z p(vi) ( dr,
j

J

Equation 1.5.1 subjects to the payload constraint in Equation 1.4.15.
The problem is solvable by using the method of Lagrange multipliers.
It gives an equation that must be solved numerically for each pixel 1.

In order to theoretically embed a message while producing stegos
according to the distribution defined by the previous equation, one can
derive costs as follows:

ASO

The Adaptive Steganographic scheme by Oracle (ASO) [24] is also
published in 2013 and is the first spatial steganographic scheme whose
distortion function is directly computed from an oracle which is the
steganalyzer. The detectors (the best at the time) are in the paper the
Kodovsky’s ensemble classifiers noted f.

The costs are computed like:

pi= S Ufu(x +ex) — fulx)]. (L5.4)

k

This scheme relies on a new philosophy. The costs are directly made
to escape a specific steganalyst, whereas previous schemes are indirect.

6 Fisher information is a quantity that
frequently appears in the theoretical
steganography and, in general, in sig-
nal detection and estimation. FI ap-
pears in the leading term of the Taylor
expansion of the KL divergence so that
zero KL divergence implies zero FI.
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UNIWARD

The embedding distortion of UNIWARD [25] in 2014 comes with a
general formula for both spatial and JPEG domain, and it is computed
as a sum of relative changes of coefficients in a directional Daubechies
wavelet filter bank decomposition of the cover image. The specificity
of filters forces the embedding changes to parts of the cover object that
do not resonate with the filter, such as textures or noisy regions while
avoiding smooth regions or clean edges.

For x,y two images in the spatial domain, the S-UNIWARD distor-
tion function between the two is defined as:

W) - W)

K2

Dxy) 2> >

k=11i=1

, (1.5.5)

o+ ‘W}’“) (x)]

where ¢ > 0 is a constant stabilizing the numerical calculations. For
images in the JPEG domain, the same formula is applied but by first
decompressing the image in the spatial domain by applying the inverse
JPEG transform J~!: D(J~1(x)), J7(y))).

W) (.) is the operation of convolution by K %) which are filters from
the Daubechies wavelet filter bank build from 8 Daubechie wavelet 1D
h low-pass and g high-pass (plotted on Figure 1.15). The three 16 x 16
filters K =h.g", K® =g.-h", K®) =g.gT computed from those
vectors are plotted on Figure 1.16

For simplification, an additive approximation is made such as:

pl(x) = D(x,x + e;b). (1.5.6)

For +1 embedding, b € {—1,0,1}, so p) = 0 and p; ' = p;”*. Hence
the distortion can be described by only the cost of modification p;, as
well as the optimal probability of change m; for pixel 3.

SI-UNIWARD

In the same paper presenting UNITWARD [25], another cost function
is designed depending moreover on the raw DCT coefficient obtained
from the precover p, called side information. If x is a JPEG, there
exists an original precover p such as x was obtained by JPEG compres-
sion of p, i.e. through DCT transform (by blocks of 8 x8), quantization
and rounding. u is defined as J(p) ie the (non-rounded) DCT coef-
ficients of the uncompressed precover p. In this scenario, Alice has
access to different objects than usual because precover is the raw data
given by the photographic sensors of the camera.

The idea of the side-informed (SI) cost function is to take into ac-
count the rounding error, which is the absolute difference between x
and the image obtained from p with JPEG compression but without
the last rounding step.

The SI-UNIWARD cost function is defined by:

DB (x,y) £ D (p,J ' (y)) — D (p. /7 (x)). (1.5.7)

h
0.5 1 ‘
0,0-....--‘.1‘.1. X"‘
0 5 10 15
g
0.5 ‘
0_0_.1 -I.T-...-.--
—0.5 ‘
0 5 10 15
Figure 1.15: Daubechies 8

wavelet decomposition vectors:

h low-pass and g high-pass.

KO —h.gT

K® —g.qn'

KO =g.gl

Figure 1.16: Daubechies wavelet
filter bank K1), K K®) build
from h and g.
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This approach favours changes on the elements whose rounding er-
rors are close to +1/2 because they are the coefficients the more natu-
rally prone to be modified during compression if they are changed by
a small perturbation.

The additive approximation proposed in [25] is corrected in pa-
per [26] and leads to the following definition

A () = (1= 2)e]) b (p) (1.5.8)

where e is equal to the rounding error ie ¢; = u; — x;.

HILL

The HILL (HIgh-pass, Low-pass, and Low-pass) [27] scheme from 2014
is outstanding by its simplicity and efficiency. It aims at joining low
costs to textured regions and high costs to pixels belonging to ho-
mogeneous areas. Charaterization of texture is achevied by a 3 x 3
high-pass filter H and by two low-pass filters Ly of size 3 x 3 and Lq
of size 15 x 15. The symmetric costs are obtained by the following

formula:

1

S S— 1.5.
xxH|xL, 2 (15.9)

p

The design of the filters required much investigation. The authors
tried multiple versions of the low and high pass filters.

Synchronization of modifications

In order to reduce the detectability of an insertion scheme, a possible
strategy is to synchronize the modifications. If in the spatial domain,
a pixel is modified by a (+1) operation, it may be interesting to favor
a (+1) insertion rather than a (+0) or (-1) one on a neighboring pixel,
in order to favor the appearance of a stego signal whose variations are
similar to those of the image. Such synchronization may be introduced
by embedding the message in chunks then modifying the distortion
according to the embedding sequentially.

The use of lattices is made to embed successively pieces of the mes-
sage, where the natural sampling grid of coefficients encoding the image
is split into an ensemble of disjoint grids, as shown in Figure 1.17. A
piece of the message is hidden in the first lattice (for example A1) by
minimizing the additive distortion; then, the distortion is calculated
for the second lattice given the modifications made to the first lattice.

Clustering Modification Direction (CMD [28]), is an example of such
synchronization scheme. It can be used with the cost proposed by
HILL in section 1.5.6. For example, for cost of modification +1, and
1; is the average of modification made in adjacent coefficients of coef-
ficient 4, the new cost p/t! is given by:

SRS B
Pt = { zlle i Z: z 8’ (1.5.10)

-1 2 -1
H = 2 —4 2 |. Ly and Lo
-1 2 -1

are constant matrices, of value 1/9 and

1/225.

A
Az
As
Ay

Figure 1.17: Example of repar-

tition of image coefficients into

four latttices A1, Ao, Ag, Ay.
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It favours a +1 modification of a pixel (by lowering its cost by an
arbitrary factor 1/9) if the neighbourhood has been modified by +1
changes in average.

UERD

Computation of costs proposed by UERD [29] (Uniform Embedding
RevisiteD) associates in 2015 each quantized DCT coeffcient of the
JPEG image depending on the quantization step ¢; and to the energy
of sourrounding blocks. The energy Dp = ), qi|z;| of the block B
is defined as the sum of coefficients mulitplied with the quantization
step. The symmetric cost of +1 or —1 are defined as:

_ di
Dp+0.255 5, D’

where the sum is over the 8 blocks surrounding B where B is the block

pi (1.5.11)

containing pixel 1.

MiPOD

MiPOD [30], as Minimizing the Power of Optimal Detector, published
in 2016, is close to MG [23] presented in section 1.5.2 because the
steganographic scheme works under the assumption of cover being
modeled by a Gaussian distribution. Its difference is that MG min-
imizes the KL divergence between the cover and stego distributions
in the asymptotic limit of a small payload, while MiPOD minimizes
the power of the most powerful detector, which is achieved without
the additional assumption of a small payload. The optimal detector is
obtained via the optimal Likelihood-Ratio Test (LRT).

ADV-EMB

Finally, ADVersarial EMBedding [31], also called ADV-EMB comes in
2019 and its philosophy is close to ASO’s (see section 1.5.3) because
it aims at updating a portion of the costs depending on the output of
a detector. When the steganalysis task is produced by a differentiable
classifier f, the costs of +1 or —1 modifications are updated according
to:

. © igion [ 21()
§ = pla? "o (F7), (1.5.12)

with « set to 2. Section 3.1 details the exact scheme of ADV-EMB
profoundly because it is an attack that we reproduced in our contribu-
tion. Now that we introduced most steganographic schemes, it is time
to introduce the main steganalysis methods.

PRACTICAL STEGANALYSIS METHODS

Steganalysis tools have always been constructed in order to detect
some already existing steganographic schemes, as we can see in Fig-
ure 1.20 and 1.21. They were for a long time designed heuristically
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by custom features extraction followed by co-occurrence or histogram
construction and finally a classical classification method, as pictured
in Figure 1.18. The classification method is often reached with SVM,
which is a machine learning algorithm. It is not explained here, and
we will focus only on features extraction.

Non-automatic methods rely on finding the significant character-
istics in an image to discriminate the covers from the stegos. This
empirical step is called feature extraction. Because stegos are often
obtained by a slight modification to the cover, it is widely assumed
that the relevant features can be computed by modelization of noise
residuals of cover images. It is the weak signal obtained by linear and
non-linear filters applied in the camera (for example during demosaic-
ing operation).

The computation of residuals depends on the format of the image
(spatial or JPEG), and the methods are presented in the following
subsections. The most recent steganalysis do not require feature ex-
traction, but instead an architecture design of the CNN, as chapter 2

shows.

image residuals histograms class

Rich models

Rich models [32] designed in 2012 is a complex model consisting of
multiple submodels, each capturing slightly different embedding arte-
facts. SRM and JRM (for spatial or JPEG) aim at extracting the
features from the noise residuals computed using high-pass filters be-
cause the stego signal is not contained in the content of the image
but inside the noise. Then, one or several co-occurrence matrices of
neighbouring samples from the truncated and quantized residuals are
computed, such as finally a classifier is trained given those matrices.

DCTR

The DCTR [33] features (Discrete Cosine Transform Residual), pub-
lished in 2014, use 64 kernels of the discrete cosine transform. The
decompressed JPEG image is convoluted with each DCT kernel firstly,
and then the first-order statistics of quantized noise residuals are ob-
tained by subsampling residual images. The DCTR features can achieve
better detection performance while preserving relatively low feature di-

mensions.

GFR

The GFR [34] methodology (Gabor Filter Rich models, 2015) is in-
spired from the previous DCTR, but it differs from the filters used.

Figure 1.18: General steps of
steganalysis. The last step is
classification, outputing if the
image is in the cover or stego
class.
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Instead of the 64 DCT kernels, it creates steganalysis features using
2D Gabor filters with different scales and orientations.

A Gabor filter, named after Dennis Gabor, is a linear filter regularly
used for texture analysis. It analyzes whether there is any specific
frequency content in the image in specific directions in a localized
region around the point or region of analysis. An example of a Gabor
filter is in Figure 1.19.

As for DCTR, after the steganalysis features are extracted from the
image, the classification operation is applied.

LSB replacement

o b

Figure 1.19: Example of 2D Ga-
hor filter

Histogram attack

+-1 embedding
(or LSB matching )

F5 embedding algorithm
High capacity despite better steganalysis: F5- a
steganographic algorithm (20071)

OutGuess
Defending against statistical steganalysis (2001)

JPEG Jsteg

CONCLUSIONS OF CHAPTER

Detecting hidden messages using higher-order statistics
and Support Vector Machines (2002)

Steganalysis of JPEG images: breaking the F5 algorithm
(2002)

oM
Steganalysis using Image Quality Metrics (2003)

A fast and effective steganalytic technique against Jsteg-
like algorithms (2003)

WAM
New blind steganalysis and its implication (2006)

SPAM
Steganalysis by subtractive pixel adjacency matrix (2010)

Figure 1.20: Historical point of
view of the mouse-and-cat game
(up to bottom) of steganography
(left column) advancees and ste-

We presented in this chapter the essential knowledge to understand
how works steganography and steganalysis with digital images.
When Alice transmits a message m to Bob by embedding it into
a natural image x, she modifies x to obtain the stego y = x + b by
adding the stego signal b. Alice and Bob previously agree about the
coding/decoding method and a secret key. Commonly, Alice designs

ganalysis (right column) (part

1/2).
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HUGO
Using high-dimensional image models to perform highly
undetectable steganography (2010)

SPAM
Steganalysis by subtractive pixel adjacency matrix (2010)

A new methodology in steganalysis: breaking highly
undetectable steganography (HUGO) (2011)

wow
Designing steganographic distortion using directional
filters (2012)

SRM and JRM
Rich models for steganalysis of digital images (2012)

UED
An efficient JPEG steganographic scheme using uniform
embedding (2012)

UNIWARD
Digital image steganography using universal distortion
(2013)

MG
Multivariate gaussian model for designing additive
distortion for steganography (2013)

PSRM
Random projections of residuals for digital image
steganalysis (2013)

HILL
A new cost function for spatial image steganography
(2014)

MCNUQ
Non-uniferm quantization in breaking HUGO (2014)

Adaptative steganalysis against WOW embedding
algorithm (2014)

MaxSRM
Selection-channel-aware rich model for steganalysis of
digital images (2014)

DCTR
Low-complexity features for JPEG steganalysis using
undecimated DCT (2015)

GFR
Steganalysis of adaptative JPEG steganography using 2D
Gabor Filters (2015)

Improving steganographic security by synchronizing the
selection channel (2015)

GNCNN
Deep learning for steganalysis via convolution neural
networks (2015)

MiPOD
Content-adaptative steganography by minimizing
statistical detectability (2016)

XuNet
Structural design of convolutional neural networks for
steganalysis (2016)

Ye-Net
Deep learning hierarchical representations for image
steganalysis (2017)

ADV-EMB
CNN-based adversarial embedding for image
steganography (2019)

J-XuNet
Deep convolution network to detect J-UNIWARD (2017)

SPAR-RL
An automatic cost learning framework for image
steganography using deep reinforcement learning (2021)

Yedroudj-net
An efficient net for spatial steganalysis
(2018)

SRNet
Deep residual network for steganalysis of digital images
(2019)

Figure 1.21: Historical point of
view of the mouse-and-cat game.

(part 2/2).
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b such as Hy = m, where the matrix H is generated with the shared
key.

Alice tries to adapt the embedding to the image’s content to re-
spect the natural aspect of images. She tries to determine what fea-
tures to preserve and designs a distortion function assigning a cost of
modification to each image coeflicient (often, the distortion function is
assumed additive). Then Alice uses a coding method to find b, such
as Bob decodes the correct message while minimizing the distortion
function (the value of the minimum depends on the length of the mes-
sage). In practice, we simulate the embedding and draw b according
to a probability distribution given by the theoretical lower bound of
the distortion limited by the length of the message.

We studied many distortion functions, from the simplest one, equals
to the number of modifications made to the cover, to more elaborated
ones like HILL analyzing the smooth and textured regions to attribute
respectively high or low costs.

Then we explained how to measure the security of a steganographic
scheme. Cachin defines it as the KL divergence between the distribu-
tion of cover and stego images. However, it is non-practical as the dis-
tribution of natural covers is not available in general. In practice, the
security is measured by the performance of steganalysis tools, under
Kerckhoffs’ principle, stating that Eve knows the embedding scheme,
except the secret key.

Therefore, we studied the classical method of steganalysis. It starts
with an extraction feature part, followed by the classification phase.
The more basic features rely on the distribution of variations between
adjacent coefficients in an image, and a threshold can do the classifica-
tion. More complex features rely on noise extraction and histograms
computation.

Today, the most performant tools are achieved by deep learning
models, where the features extraction phase is automated. It is the
subject of the next chapter.
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2.1.1

Basics of Deep Learning for

steganalysis

MACHINE LEARNING

In nature, as our measure instruments become more and more sophis-
ticated and precise, the phenomena happening around us appear to
be predictable or intrinsically bound. For example, the trajectory of
planets seem to follow a ceaseless elliptical movement, or the objects
seem always to fall with the same acceleration. As soon as we were
able to measure those observations, also called data, humans had the
abstraction ability to describe those patterns with very general for-
mulas made of a combination of symbols. Those theories, also called
models, are made such as it confirms their observations. It also has
the powerful ambition to predict the results of future situations. In
other words, they are made to be general.

Machine learning is a category of computer algorithms that aims at
producing models automatically through experience and by the use of
data. From the so-called training data, we expect the algorithm to be
able to generalize and to perform well on new data: if it does so, we
say that the program learns.

Those tools are mainly used when we do not manage to conceive a
straightforward (typically rule-based) algorithm, often because of the
high dimensionality of the problem. In this case, we expect machine
learning to find the model that humans did not manage to find because
of its complexity. It is why it is used in steganalysis.

Because the program is on a computer, we must first translate the
task mathematically. Then, for some input data z, we want to learn
a model f such that the output y = f(x) fulfills the desired task. The
following section illustrates an example of designing such function f,
which fits natural observations.

Purpose of machine learning with an example

For example, let us imagine that a scientist observes that some mea-
surable quantity x seems correlated to another quantity y and wishes
to find the law bounding the two. They collect 20 examples of values
(z4,y;) and plots them on a graph on Figure 2.1. Note that measure-
ment always comes with some noise.

Finding the model f will allow him to know the supposed value of
y = f(x) associated with a new value of  that he/she did not measure,
or vice versa.

To do so, he needs to choose some hypotheses about the model. For

2
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example, it could be that a quadratic equations bonds the variables
z and y, i.e. it might exists some real numbers a, b, ¢ such as f(z) =
az? 4+ br +c = y.

Under this assumption, we can search the three unknowns a,b,c
such as f(x;) = y;Vi. To do so, we could rely on a loss function L
evaluating the model f by making the loss minimal when f general-
izes well, and higher when f does not. This gives us a mathematical
function L to minimize, because it reaches its minimum for a satisfying
model. We will see in section 2.3 that minimization can be achieved
via an optimization algorithm. We often require the loss function to
be differentiable in order to simplify the optimization process.

Once the loss is chosen, we can finally apply an optimization algo-
rithm to update typically iteratively the parameters of the model a, b, c.
Figure 3.9 shows three different steps of the optimization process (it
is a multistep algorithm).

Step = 0 Step = 100 Step = 200
Error = 0.76 Error = 0.14 Error = 0.04
* 3 * 3 .
2 i j ;
32 ;2 .
Lot S /
* st L 7
e CLANEE AP G
1L ! . e ‘
& 0-etle] e o] "%e-gt
4 0 1 0 1 0 1
X xT X

Fitting the data is not a goal itself because fitting the data perfectly
without error can be made by interpolating the data with a lagrangian
polynomial as shown the right plot in Figure 2.3. This phenomenon
is called overfitting, as the “too good” fitting of the model alters pre-
diction on unseen samples. It shows a compromise between error on
available samples and the model’s error evaluated on unseen samples.

In order to avoid overfitting, we could promote sparsity by choosing

Figure 2.1: Set of experimental
points {(z;,y;)} measured by a

scientist.

The loss of the model f could be for
example the sum of the squares of
distances between the real value y;
and the predicted values f(z;) (also
called mean squared error or MSE) :
MSE; = % 3305, (f(@:) — i)

Figure 2.2: Evolution of the
model f defined as f(z) = ax?®+
bx + ¢ during the optimization
of the parameters a, b, ¢ for min-
imizing the loss.

For a given set of points {(x;,y;)} with
no two x; values equal, the Lagrange
polynomial £ is the polynomial of low-
est degree that assumes at each value
z; the corresponding value y; so that
the functions coincide akt each point. ¢
T;—Tm

is given by £; (x;) = [[Tn=0 3*=,
mzj T
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a model with as few parameters as possible. It could be achieved via
regularization as welll. Figure 2.3 shows the effect of regularisation by
a parsimonious choice of the model: the left plot is where a model has
not enough parameters (2), and the right plot for too many parameters
(15). They produce respectively underfitting and overfitting and both
are bad models for unseen examples.

Train loss = 0.522
) Validation loss = 0.292

Train loss = 0.01
) Validation loss = 0.014

Train loss = 0.0
Validation loss = 853.87

: i Pl
oo :
2 . 2 / 294, 4 :
4 mEo +
> e N / > T i i
1 19, I I :
e N L4 BLLLF
- . ! 1 1 1
01 % &° 0 2" 07 i LRATI
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&Z € €T

On a more general note, machine learning consists in the steps inside
the while loop of the following algorithm:

Data: Data split in train, validation and test set

Result: A satisfying model fitting test data

while Model does not generalize well on the validation data do
1. Design the model which could suit the situation, i.e. the

parameters 6 of some function f and how they are linked

together to produce y = fy(x) ;

2. Choose a loss function that penalizes a model which does
not fit the train data and equivalently favours a model
which fits the train data ;

3. Apply an optimization algorithm whose aim is to
minimize the loss defined before ;

4. Evaluate the loss of the optimized model on the
validation data.

end
Algorithm 1: Loop of a machine learning model designer
Each of the three first steps 1-3 are the subjects of the three next
sections. Section 2.2 shows the range of specific models of convolutional
neural networks. Section 2.2.9 is for the design of a loss function.
Finally, section 2.3 explains what an optimization problem is and how

to solve it.

CONVOLUTION NEURAL NETWORK (CNN)

Deep learning is a category of machine learning models inspired by
the human brain’s architecture. A deep learning model, also called
Artificial Neural Network (ANN), is a function f composed of several
base operations (parametrized by parameters ) presented from sec-
tion 2.2.2 to 2.2.6. When an input (often multidimensional) is fed to
the model, it is typically subject to several successive transformations.
As shown in Figure 2.4, the result of the transformations at different
levels is called layer. The layer might be described as input, hidden or

1 Adding a regularization loss can ap-
ply regularization to a model. Often,
it penalizes parameters with extreme
values.

Figure 2.3: Value of the loss on
the training (red points) or vali-
dation set (green points) for dif-
ferent models trained each on
the same train set: (left) y; =
az; + b, (middle) y; = az? +
bxz;+c and (right) the lagrangian
polynomial of degree 15 interpo-
lating the training data.



2.2.1

44

output layer depending on its position in the architecture sequence.

X 91— Y —0— z —g3—f(x)

input layer hidden layers output layer

Because the layers might be multidimensional vectors, they may be
composed of several elements. Each element in a layer is called neuron.
We show in Figure 2.5 the classical representation of neural networks

where a circle represents each neuron.

T2 Y1

~
. =

RRBH

input layer hidden layers output layer

The adjective deep refers to the multiple stacked operations which
compose the model. The more there are layers, the deeper the model
is. The base functions are often differentiable because it simplifies the
optimization process as shown in section 2.3.

The whole structure of a neural network is often called a graph,
as we can draw each variable in nodes and draw lines labelled by a
function between them, like in Figure 2.5. In the case of images, a
particular class of ANN exists, which are called convolution neural
network (CNN). It differs by the type of operations executed in the
graph, which are introduced from 2.2.1 to 2.2.9.

Computational graph

Neural network architectures can be seen as directed graphs whose
variables are in the nodes. The nodes are connected with a line when a
variable is obtained from another with a basic operation. The graph
contains all the symbolic path from the input data z to the output
3. We can execute a forward propagation with the current value of
variables contained in the nodes if we feed some data in the input.

As explained in Algorithm 1, the first step of machine learning is
designing a model fy such that it exists a vector of parameters 6* for
which fy« fits the test data. For example, on Figure 2.6 is shown the
graph of the model used in section 2.1.1.

The symbolic graph and all its symbolic operations are called hyper-
parameters. They are designed during the loop of Algorithm 1. The

Figure 2.4: Representation of
the 4-layers neural network.
The input x can be mutlidi-
mensional, like all other layers

Y, 2, f(x).

Figure 2.5: Classical representa-
tion of neural networks. The line
between layers significate oper-
ations between neurons. Those
operations are parametrized by
learnable parameters.

We will see in section 2.3.3 that the
graph is used as well to do a backward
propagation during the learning pro-
cess.
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variables contained in the nodes are often randomly initialized and are
supposed to be optimized during step 3: they are called parameters.

Designing the graph of fp is essential, and it requires knowledge
and experience as it may vary depending on the requested task. Hope-
fully, many research fields are interested in designing the best graphs,
depending on the mission. When the input is images, a specific type
of graphs provided with particular operations is used: they are called
Convolution Neural Networks. They are trainable in practice (with not
too many parameters) and adapted to the structure of images. They
are built upon convolution operations which are denoted with the %
symbol.

Definition of a convolution

The convolution operation was first very useful in signal processing.
This operation is often called filtering, as it aims at selecting a type
of pattern in the input signal. Because we are working with images
represented with 2D discrete vectors, we give the following definition:

Definition 2.2.1 (Convolution for 2D discrete data). The convolution
between image x € M™"2 and K € M¥**2 s defined by the following
matric O € M™mvm2:

pt+k1  q+ko
Olp,ql = (x+K)[p.gl = > > x[i,jlK[i—p,j—ql. (221)
i=p+1j=q+1

The output size can be obtained from the size of x and K: m; =
ny—ki1+1 and mg =ng — ko + 1.

Usually, the size of the filter (k1, ko) is smaller than the input image
size (n1,ngy), so that we can see K as a small matrix superposed to the
input images x (for a term to term multiplication then summation)
sliding in both directions to obtain a matrix of size less or equal than
the input image, as illustrated in Figure 2.7.

-

We can design custom filters for a variety of tasks. For example,
the following 3 x 3 kernel are (a) an averaging or low-pass filter, (b) a
vertical edge detector and (c) a horizontal edge detector. Visualization
of the output of those filters is shown in Figure 2.8.

(a) (b) (c)

1/9 1/9 1/9 -1 0 1 -1 -1 -1
1/9 1/9 1/9 -1 0 1 0 0 0
1/9 1/9 1/9 -1 0 1 11 1

Figure 2.6: Example of the com-
putational graph of the model
y = ax? 4+ bx + c. Red nodes
are optimizable parameters. z®

are intermediate expressions.

Figure 2.7: 3x 3 filter (gray) slid-
ing on 5 x 5 input image (blue)
to produce 3 x 3 output (red).
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Input

Convolution in a CNN

When a convolution operation appears in the architecture of a CNN,
the filters (or kernels) are seen as parameters waiting to be optimized
during the training phase. Indeed, we gave in the previous section 2.2.2
the example of easily solvable tasks as detecting edges. However, there
exists more complex tasks such as detecting an animal in an image.
The design of the filter is not straightforward; the purpose of deep
learning is to find the correct parameters, which are the values of
filters. In this way, the filters will be correctly designed to detect some
patterns for a specific task. Values of the filters are also called weights.

In the context of a CNN, the coding of convolution operation re-
quires another hyperparameter which is striding. Striding decreases
the output size. It is a way to apply subsampling to the data. It is
coded by a single integer (it could be coded with an integer for each
dimension for input data). The stride controls the step size of the
sliding. The default stride is 1. An example with value 2 is shown on
Figure 2.9

Finally, we saw that 2D convolutions are well-adapted operations
made to images for preserving the grid-like information. Their main
advantage is to lower the number of parameters to optimize the archi-
tecture.

Pooling

Pooling operations are used to reduce the dimension of the layers.
Thus, it reduces the number of parameters to learn and the amount of
computation performed in the model. The two most used pooling are
average pooling and mazximum pooling.

Average pooling is a convolution operation, with a constant filter
whose sum equals 1. This filter is not a parameter; it does not change

Figure 2.8: Input (left) con-
volved with filter (a), (b) or (c).

Figure 2.9: 3x3 filter (gray) slid-
ing on 5x5 input image (blue) to
produce 5 x 5 output (red) with
stride of 2 and no padding.
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during the training.

Mazimum pooling looks like a convolution operation, but the slid-
ing filter does not produce a term to term multiplication followed by
summation; it does a maximum operation.

Usually, those operations are applied with a stride equal to the filter
window size with no padding?. Figure 2.10 shows an example of such

pooling.

Activation functions

The activation operation introduces nonlinearities in a layer. If it were
not used, the network would remain a linear function of its input, lim-
iting the range of possible modelling. It is shown in [35] that using
non-linear function is capital as it allows to learn the basic XOR op-
eration.

There exists many activations functions, and historical the used

ones are defined below:

Step() 0if x <0, (2.2.2)
ep(x) = , 2.
lifx>0
Sigmoid(z) L (2.2.3)
igmoid(z) = —— 2.
& 1+e 2’
e L _ e
tanh(z) = ———. 2.2.4
anh(e) = = (22.4)

In modern neural networks, the default recommandation is to use
the rectified linear unit, or ReLU [36], defined by

ReLU(z) = max{0,x}. (2.2.5)

All the defined functions are depicted in Figure 2.11. The definitions
are extended for vector input by applying the function term-wise.

Step(x)
Sigmoid(z)
tanh(z)
o

2 Padding consists in adding pixels as
a frame around the image whose val-
ues depend on the kind of padding
(zero padding fill the pixels with 0 for
example). Padding is often used such
that the size of the output equals the
size of the input.

Input image

3 6 2 1

2 x 2 Average pooling

2 x 2 Max pooling Stnd? 2
Stride 2 |
¥ R
6 7 7/2 3
4 8 52 | 5

Figure 2.10: Effect of maximum
pooling or average pooling ap-
plied an input image.

ReLU(x)

The activation function is applied after a convolution operation or
is the final computational step of a fully connected layer, defined in

the next section.

Fully connected layer

After several convolutional and pooling layers, the final classification
is done via fully connected layers, or also called dense layer. A linear

o 4

Figure 2.11: Activation func-
tions defined from Equa-
tion 2.2.2 to 2.2.5.
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transformation connects all neurons in input of a fully connected layer
to all neurons of its outputs. If x € R, y € R™ are respectively the
input and output vectors, we have

y=Wx+b (2.2.6)

where M € R™*™ and b € R™. The operation x — Wx + b is at
the core of the fully connected layer. The elements of W and b are
optimized during training ; they are respectively called weights and
bias.

Ideally, fully connected layers could be applied in each layer. But for
images with a lot of features, this would make too many parameters so
the learning would be too costly. It is why it is replaced by convolution
operations with kernels with less parameters.

The fully connected layer is usually the last layer applied in a CNN.
However, the output of the model needs to be relevant depending on
the required task. The following section explains how to tune the
output of the dense layer, such that it solves a classification problem.

Output of CNN

The model needs to be designed depending on the desired task. When
fo aims at predicting a discrete value, i.e. a class, the problem is a
classification problem. We will only consider this case. A class is a
discrete category, and each sample of the input data is assumed to
belong to exactly one of the categories. The classification task is to
find which category belongs each sample. To do so, we index the finite
number n of classes by an integer value, from 1 to n for an n-classes
classification problem. The label y; of the input data x; is therefore
an integer between 1 and n.

We must design fp such as it outputs the class of the input sample.

The usual solution is to organize the last (dense) layer so that its
output is a vector with n elements, and then to apply an argmax
function to this vector. If z is the output of the dense layer,

§ = argmax z = arg max z; (2.2.7)
i

The drawback is that this function is not differentiable. To solve this
problem, a differentiable approximation is made. It is called softmax,
it is written o and is defined as:

o(z) = (ZJ peRELE Zj er) . (2.2.8)

The softmax function takes as input a vector of n real numbers and

normalizes it into a probability distribution consisting of n probabili-
ties proportional to the exponentials of the input numbers.

This function has the advantage of keeping the same value of the
arg max function, i.e. argmaxz = argmaxo(z).

On Figure 2.12 is compared the two elements of the output of the
softmax function with the one-hot representation of the arg max func-

It is essential to have a differentiable
approximation because for optimiza-
tion the loss function must be differ-
entiable. The role of the loss function
is explained in the next section.
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tion, ie one-hot o argmax(z) = (0,...,0,1,0,...,0) where the output
coordinate y; = 1 if and only if ¢ is the argmax of (z1,...,2,). The
example is for n = 2.

% o

1.0

0.0

WWMM'

Usual graph of a CNN

Finally, we can combine all previously introduced operations to build
an elementary model for a CNN composed of four layers.

First, let’s define the typical layer of our model. It is a convolution
operation followed by an activation function a and a pooling layer
pool(+). The layer whose kernel of convolution is k can be written as
fx : x = pool(a(x + k)).

For final classification, the models ends by a fully connected layer
followed by an activation function and a softmax function o. We note
fte : x = a(Wx + b). Finally, the entire model is written as

y= fg(X) = Goffc Ofk3 osz Ofkl(x)

where 6 is the set of all optimizable variables i.e. containing k;, W
and b. y is described as the predicted probabilities of the class of the
input given by the model. The predicted class is given by arg maxy.
In order to compare y to the true label of input data x, we need to
apply a loss function.

Loss function

The loss function, or also called objective function, criterion, cost func-
tion or error function, is the function which translates mathematically
the ability of the model to produce outputs equal to the true labels y.
It penalizes situations where the output vector of probabilities diverges
from the one-hot representation of the true labels, and favors the op-
posite case. It is again a subjective choice. For a binary classification
problem, true label of sample i is written y; € {0, 1} and the predicted
probabilities of class by f is p{ € [0,1] (the predicted probability of
class 1 is equal to 1 — p?). The more popular function is the cross
entropy, defined by:

Figure 2.12: Comparaison of
argmax;c (o132 (left) with the
first element of softmax(zo, 21),

ie. 0 = (right), for ev-

e®0
%0 fe*1
ery pair of values of (z9,21) €
[—4,4)%
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N
L({yi}i {p9}: Z yilogp) + (1 —yi)log (1—pf)] . (2.2.9)

The sum is made over all the samples. An illustration of the cross
entropy function is shown in Figure 2.13 for N = 1. We can observe
that the loss function is differentiable w.r.t p and reaches its unique

minimum for p = y.

This function is differentiable w.r.t. vector variable y. The whole
design of the graph and the loss function are made such as the loss
function is differentiable w.r.t. models variables, ie #. It makes those
variables optimizable, as the following section shows.

OPTIMIZATION

In general, an optimization problem consists of maximizing or min-
imizing a real function f by choosing input values z from within a
feasible set X.

This problem is written

minimize f subject to x € X, (2.3.1)

or it can be written also as minimize,cx f. The minimum value of f
is written mingex f and the input for which f is minimized is written
argmingey f = z*.

The optimization problem can be constrained or unconstrained de-
pending on X. The problem is unconstrained if and only if X" is equal
to the definition domain of f.

However, for future sections, we will only focus on unconstrained

optimization problems, which can also be called minimization problem.

Solving a minimization problem can be tricky. Minimizing a func-
tion might be achieved by computing the zeros of its derivative, but it
might not always be easy, especially when f is a function defined in a
high dimension space. When we cannot compute the minimum ana-
lytically, the most famous solution is applying an iterative algorithm,
such as the gradient descent algorithm.

The concept of gradient descent

The derivative of a function f is helpful in minimizing it because it
provides the information about how to change z in order to make
a slight improvement in y = f(x). For example, if f'(z) < 0, we
know that making a small positive change to x will decrease y. If we
generalize for the other case, we are updating x by adding a small
value that has the opposite sign of the derivative. The step needs to
be relatively small as the information the derivative gives is local.
The definition of the derivative can be generalized for a function
of multiple variables, and the derivative is then called gradient. The

0.00 025 050 0.75 1.00

Figure 2.13: Cross entropy L be-
tween y the true label of some
input x and (p, 1 —p) the output
vector of probabilities given by a
model for the same input x.

The * symbol is often added in up-
perscript to describe an optimal value.
The f function is called the objective
or cost function.
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gradient is a vector composed of all the partial derivatives of a function,
where for f: x € R" — f(x) € R, the i-th partial derivative denoted
I measures how f changes as only the variable x; increases at point

51’1'

x. The gradient Vf : R® — R™ of f is defined at the point x =

(z1,...,2n) in a n-dimensional space as the vector:
Oy
81‘1
Vix) =Vxy=|[ = |. (2.3.2)
Oy
Ox,,

An arrow can illustrate a gradient. It gives the direction of variation
of a function. For minimizing the function f, we can again use the
information given by the gradient as the negative gradient points at
the steepest slope. The Gradient Descent algorithm, also called the
steepest descent algorithm, proposes to update iteratively the value of
x as X' := x — eVxy. An example of gradient descent applied to f
which is a function of 2 variables is shown on Figure 2.14.

(i2)f

This fundamental algorithm is at the core of various and more com-
plex optimization algorithms.

Optimization algorithm

The Stochastic Gradient Descent (SGD) is the most famous algorithm
for optimization in machine learning. When the input is large (because
there are many samples and /or because it is represented with many di-
mensions), the gradient Vo L(y,¥) is often too costly to compute. SGD
replaces the actual gradient (calculated from the entire data set) with
an estimate thereof (calculated from a randomly selected subset of the

Figure 2.14: Gradient descent
algorithm applied to f(z,y) =
0.1 (sin 102 + cos 10z) + 22 + 2,
from starting point (—1.5, —1.5),
with a step a = 0.1. At each
point (z;,y;) of the iterative al-
gorithm, an arrow representing
the gradient of f is plotted.
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data). Especially in a big data context, it reduces the computational
burden, achieving faster iterations in trade for a lower convergence rate
as explained in [37].

It exists many more optimization algorithms, which avoids some
critical situations encountered by SGD. However, we focus on how to
compute the gradient through the CNN structure.

Backpropagation in a CNN

Let fg be a model parametrized by 6, and L(y,y) a loss function mea-
suring the quality of the model. It compares ¥ = fp(x) the predicted
output probabilities and y the true output of input train data x. The
optimization problem is arg ming L(y, fo(x)).

As explained in section 2.3.1, it can be achieved iteratively by ap-
pyling an optimization algorithm, by computing VyL(y,y) in order
to update 8, where 6 is a vector of all optimizable parameters in the
CNN.

Backpropagation, also called backprop is the method to compute the
gradient of the loss w.r.t. #. Backpropagation is an algorithm that ap-
plies the chain rule with a specific order of operations (depending on
the graph) that is highly efficient.

Let x be a real number, and let f and g both be functions mapping
a real number to a real number. Suppose that y = f(x) and 2 =
g(f(x)) = g(y). Then the chain rule of calculus states that:

0 _0:0y
oxr  Oyox’

We can generalize this beyond the scalar case. Suppose that x € R™,

(2.3.3)

y € R, g maps from R™ to R™ and f maps from R" to R, then:

0z 0z 0y;
— = _— . 2.3.4

In vector notation, this may be equivalently written as

Vxz = 9y | Vyz (2.3.5)
* \ox Y h
where (%) is the Jacobian matrix of y w.r.t x. It is the matrix of

all the first-order partial derivatives of the elements of y.

Using the chain rule, it is straightforward to express the gradient
of a scalar with respect to any node in the computational graph that
produced that scalar.

For example, let’s take a simple layer | = L(y,y) where y = o(xxk).
X is considered as input data, k as an optimizable convolutional filter
and o the softmax function. y is the true output associated with x
and ¥ is the predicted probabilities. x * k is denoted u(¥). In order to
optimize the filter, one needs to compute Vyl. The chain rule states

ONT /oo 8T
that Vil = (83{()) (%) - Vgl. The graph of this operation as

well as the chain rule is given in Figure 2.15.

It f
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- ) =
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of f at point x has a size
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(2.3.6)

(2.3.7)
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Now that the gradient Vil can be computed with backpropagation,
we can use it to apply gradient descent to k, with step size a € RT:

k:=k — oVl

Now that the basis of CNN and how to optimize it were presented,
here comes the practical techniques for CNN applied to steganalysis.

DEEP LEARNING FOR STEGANALYSIS

Convolution neural networks were firstly applied to objection recog-
nition and image classification tasks. However, deep learning is very
well suited for steganalysis, as the task is challenging. Top steganog-
raphy techniques hide data very efficiently, and it requires much time
to compute the good features relevant for discriminating cover and
stego images. Deep learning achieves good results, but it also takes
heuristics and time because it requires the design of the architecture
of the CNN. The following subsections present the general hyperpa-
rameters for a model’s training, then the different architectures used
in chronological order.

General hyperparameters

Because it is impossible to optimize the loss over all images in the
train set at the same time, we optimize it through mini-batches, which
contains a subset of the train set. When the whole train set, split into
mini-batches, has been fed to the network, we say that an epoch has
elapsed. Often, we try to use the largest mini-batches as possible, as
it is assumed to improve the convergence process.

The use of pair training is a hyperparameter specific to steganaly-
sis. It consists of building mini-batches containing pairs of cover and
stego versions of an image. Its efficiency has been recently subject to
controversies, as it may help for the beginning of the training but gives

Figure 2.15: (Left) Computa-
tional graph of the operation
I = L(y,o(x = k)) with inter-
mediary values u¥ = x x k
and y = o(u™). (Right) Same
graph where the gradient of
three nodes are computed w.r.t.
their forward node. Those gradi-
ents are plotted in green. Then,
combinations of those three gra-
dients leads to the computation
of Vil (blue node) needed to up-
date the red node. Optimizable
variables are in red and input
data is in grey.
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the worse performance at the end, as shown in [38].

Transfer learning is a technique to initialize the weights of a network
by a pre-trained model on another task. Curriculum learning is a type
of transfer learning to enable a faster convergence for low payloads. For
an embedding rate below 0.2 bpnzAC (for JPEG images), the network
might have trouble converging, as the stego is slightly changed from
the cover. Curriculum learning helps the network by using higher pay-
loads first and then decreasing the payload until reaching the desired
payload.

GNCNN

The GNCNN, as Gaussian-Neuron CNN; is proposed by Qian et al. [39]
in 2015 and is the first CNN designed for steganalysis.

It has a general architecture that inspired later designs. It starts
with an image processing layer to encode the prior knowledge on the
design of the network. In this layer, input data is filtered with a
predefined high-pass filter K}, which is constant during training.

Then, multiple convolution layers are applied. A convolutional layer
comprises three kinds of operations: convolution, non-linearity, and
pooling. The non-linearity operation f is a Gaussian function, given
byf(x) = e 5.

Finally, the classification module consists of three fully connected
layers. The two first contains 128 neurons, followed by a Gaussian
activation function, whereas the last one contains two neurons and is
followed by a softmax function.

The performance of this network is close to SRM on BOSSbase [40].

Xu-Net

Xu-Net [41] is another network proposed by Xu et al. in 2017 and
stands out by the use of Batch Normalization [42] (BN) layers and
shortcut connections. BN is supposed to reduce internal covariate
shift [42] in order to speed up the training.

It takes in input uncompressed JPEG images without the last round-
ing step, i.e. spatial images with floating pixels. It starts with a pre-
processing layer with a DCT filter bank of size 4 x 4, followed by an
absolute and truncation step.

Then there are 20 convolutional layers followed and a global av-
erage pooling layer. This part is responsible for learning optimized
functions to transform each pre-processed input into a 384-D feature
Batch-Normalization and ReLU follow all
Several shortcut connections are applied,

vector for classification.
the convolutional layers.
which are element-wise additions between two hidden layers along dif-
ferent depths. It makes the depth following the shortest path equals
5, whereas the longest path has 20 layers. Shortcuts favour gradient
propagation by avoiding the case of gradient vanishing, causing ineffi-

cient training.

bpnzAC stands for "bit per non-zero
AC coeflicients". It is the quantity of-
ten used to measure the ratio of mes-
sage hidden in a JPEG image. Be-
cause there might be a lot of zeros in
an image, we hide only in non-zero co-
efficients which are non-equal to the
DC coefficient (which is the coefficient
at top left for every DCT block, con-
taining the block average value.)

-1 2 -2 2 -1

. 2 -6 8 —6 2
Kpw=—| -2 8 —12 8 -2
12 2 —6 8 —6 2

-1 2 -2 2 -1

(2.4.1)

BOSSbase is a dataset of 10000 im-
ages created for the BOSS competi-
tion. It is used in all of our experi-
ments made is this thesis. The images
were obtained from never-compressed
cover images coming from 7 different
cameras. All images were created from
full-resolution color images in RAW
format (CR2 or DNG). The images
were first resized so that the smaller
side was 512 pixels long, then they
were cropped to 512 X 512 pixels, and
finally converted to grayscale.

The problem of gradient vanishing is
that in some cases, the gradient will
be vanishingly insignificant, effectively
preventing the weights from chang-
ing their value. In the worst case,
this may ultimately stop the neural
network from further training. The
chain rule amplifies this phenomenon
because of its multiplicative nature, so
deeper networks are more prone to this
issue.



2.4.

2.4.

4

ot

o

BASICS OF DEEP LEARNING FOR STEGANALYSIS 55

The convolution kernels have a unified size of 3x3 along spatial
dimensions. Pooling is achieved by convolutional layers with stride 2,
after which the spatial sizes of data are cut by half and the number of
channels doubles.

Its performance slightly surpasses SRM on BOSSbase.

SRNet

The philosophy of SRNet [43] is to not use any fixed pre-processing
layer at the beginning of the network because fixed or constrained pre-
processing kernels or kernels initialized to SRM filters or DCT bases
can be detrimental for the overall network performance depending on
the characteristics of the stego signal.

The overall design consists of four different types of layers, two
of which involve shortcuts. The network consists of three serially con-
nected segments: the front segment whose role is to learn effective noise
residuals, the middle segment that compactifies the feature maps, and
the last segment is a simple linear classifier. All convolutional layers
employ 3 x 3 kernels, and all non-linear activation functions are ReLLU.

The error rate of SRNet on JPEG images of size 256 x 256 with
J-Uniward embedding at 0.4 bpnzAC is 6.70%.

Efficient-Net

In the Alaska IT [44] JPEG steganalysis Challenge, many participants
used the popular EfficientNet [45] pre-trained on ImageNet [46] and
refined for steganalysis in the JPEG domain. It showed that CNNs
trained on computer vision tasks are a good starting point for transfer
learning in steganalysis. Such architectures achieved better perfor-
mance than the popular SRNet.

The recent Paper [47] suggests many surgical modifications in order
to further improve their performance for steganalysis, like removing
the stride in the first layer or adding convolution blocks. They reach
a wAUC of 0.9746 for 256 x 256 JPEG images with J-Uniward at
0.4bpnzAC on BOSSbase+BOWS2 [48] database.

This enumeration of architectures gives a brief overview of the ex-
cellent performances of deep learning to detect embedding into cover
images. However, in the case of a malicious user, we will show in the

next section that the security of neural networks might be at stake.

A WEAKNESS OF CNN: ADVERSARIAL EXAMPLES

We saw how differentiability is an essential notion in deep learning
because it allows the optimization of the parameters of the networks
by backpropagation. Nevertheless, it has a notable drawback: this
makes the classifiers easily subject to attacks.

Szegedy et al. [49] made an intriguing discovery in 2013: several ma-
chine learning models are vulnerable to adversarial examples. These
machine learning models misclassify only slightly different examples

The weighted area under the receiver
operating characteristic (ROC) curve
(wAUC) is defined by

1
WAUC = / w (PD (PFA)) PD (PFA) dPFA
0

where Pp (Prpa) is the probability of
detection of a stego image as a func-
tion of the probability of false alarm,
which defines the ROC curve. The
weighting function w(Pp) o 2 if Pp <
0.4 and w(Pp) « 1 if Pp > 0.4 nor-
malizes the wAUC to be in the interval
[0, 1].
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from correctly classified examples drawn from the data distribution
by computing an adversarial noise by differentiation. It makes those
classifiers very vulnerable to malicious users. The usual illustration of
this phenomenon is given in Figure 2.16. The Figure shows a hyperpa-
rameter of adversarial perturbation, which can be small (left) or large
(right), which makes the example closer or further from the decision

boundary.

In steganalysis, this is a great opportunity for Alice as she wants to
avoid Eve’s detectors. For example, in Figure 2.17 are taken a cover
image x and a stego y obtained from it which are correctly classified
by f a detector. Alice could compute the adversarial noise Vy f(y)
and subtract it (after multiplying by a factor «) to the stego such as
it will be misclassified.

\%
L0 v (y) 0.3

-0.1

—0.2

-0.3

It gives a way to produce adversarial vectors but which are neither
images (because the noise contains continuous values which are not
quantized or rounded) neither stegos (because adding a noise will de-
stroy the embedding of the message, which is the initial purpose of
steganography). In 2019 there is a paper that proposes an alterna-
tive named ADV-EMB to produce adversarial stego images, evoked in
section 1.5.10. It is an algorithm that we will use in our experiments.

CONCLUSION OF THE CHAPTER

We studied in this chapter the elementary bricks of Deep Learning and
a particular type of model, Convolutional Neural Networks, adapted to
computer vision tasks. The operation of 2D convolution decreases the

Figure 2.16:
tion of an adversarial exam-

Usual illustra-

ple, where a classifier f, dis-
criminating between red X and
blue Y distributions, is fooled
by the orange point y’ ob-
tained from a1 Vy f(y) (left) or
asVy f(y) (right) subtracted to
initial point y. y’ is classified as
belonging to X whereas it should
be classified in the other class.
Here a1 < as.

Figure 2.17: For f a classifier
which outputs the stego class
probability, (left) evaluation of
adversarial images y — aVy f(y)
by f w.r.t size of step «a in
x axis, compared to evaluation
of a cover x classified in cover
class and a stego y classified
in the stego class by f (dashed
lines). (Right) Plot of the gradi-
ent Vy f(y)-
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number of parameters to learn. It is well suited to the grid structure
of an image too.

We also learned the fundamental algorithm of Gradient Descent
which is at the heart of optimization processes to learn the parameters
of a network. Their application to deep learning models is achieved by
backpropagation. It is possible because the networks are differentiable
functions.

We finally presented in a historically order four structures designed
to perform steganalysis. Over the years, the architectures for steganal-
ysis tasks became better performing. At the date of the manuscript,
the best models are pre-trained on large databases then finetuned to
steganalysis tasks.

However, deep learning models are not robust against malicious
attacks. It represents the perfect opportunity for the steganographer
to take advantage of CNN’s drawbacks. ADV-EMB is an algorithm
adapted to steganography that adapts the distortion function to avoid
a differentiable classifier. In the next chapter, we see how sequentially
Alice can construct a better embedding function undetectable by a
whole range of classifiers.

o7






The iterative minmax protocol

Traditionally, each new publication shows better performance mea-
sured by the latest techniques just created by the opponent. For ex-
ample, HUGO [21] aims at avoiding the SPAM [22] detector, and a
few years later, Rich Models [32] tries to detect HUGO. As shown in
Figures 1.20 and 1.21, Alice and Eve have been iterating between each
other to build better and better embedding functions and detectors for
years of research. The whole idea of our first contribution is to build
an algorithm that will play this iterative scheme automatically.

We saw in previous chapters that it exists:

e steganalysis based on CNN to detect stego images. Machine learning
enables the detection of any embedding function at the cost of the
learning process through examples and good architecture design.

e steganographic schemes which rely on fooling directly a specific de-
tector f, like ASO does by adjusting its distortion w.r.t. the output
of f. This technique, just like ADV-EMB [50], is called an adver-
sarial embedding scheme.

Using both of those methods may seem like an endless game, where
Alice and Eve could infinitely adapt their method depending the one
chosen by their opponent, as shows Figure 3.1. It is precisely the con-
text of game theory, where two opponents with an antagonist objective
play a game.

We propose an algorithm inspired by the methodology of game the-
ory. It allows Alice to simulate the game played between her and Eve.
It is general and can be applied to any pair of adversarial embedding
schemes / differentiable detectors. The experiments of this chapter
use the adversarial attack presented in section 3.1 as a potential can-
didate, and two different CNNs, namely XU-Net [41] and SRNet [43],
as detectors.

Under the condition that the set of detectors that Alice assumes
Eve to have is sufficiently rich (e.g. CNNs), and that she has an
algorithm enabling to avoid detection by a single classifier (e.g. adver-
sarial embedding [50], Dynamic programming based Syndrome Trel-
lis Code [51]), we show that the proposed algorithm converges to an
efficient steganographic algorithm. It is made possible by using a
min max strategy which consists at each iteration in selecting the least
detectable stego image for the best classifier among the set of Eve’s
learned classifiers.

The structure of this chapter is as follows:

o We firstly give more details about the ADV-EMB method.

e We introduce key notions of game theory useful to build our pro-
posed algorithm.

3

3.1 The ADV-EMB scheme
3.2 The steganographic game
Reminders on game theory

The steganographic game

Nash equilibrium and the min-
max strategy

Solving the simple stegano-
graphic game
3.3 Theoretical properties

Convergence of the algorithm
Connections with generative ad-
versarial networks

3.4 Implementation of the pro-
tocol

Alice’s strategy
Assumed Eve’s detectors
Operational embedding algorithm

3.5 Experimental settings

Steganographic detectors
Calibrating classifier’s output
Other implementation and ex-
perimental settings

3.6 Experimental comparison
to prior art

Results
2D plot of ADV-EMB

3.7 Optimizing against more
architectures

Performance analysis
Compositions of training sets

3.8 Note on the initialization
of CNNs

3.9 Flaws of ADV-EMB

3.10 Conclusions of this chapter
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e We analyze theoretical and practical convergence issues with links
to other iterative strategies (see section 3.3.1);

e We propose a way to attack a set of classifiers with possibly differ-
ent architectures. The set is combined using an appropriate new
calibration function, which further improves both the quality and
versatility of the algorithm;

e We address the problem of Curriculum Learning and show how
bad learning can jeopardise the performances of the steganographic

scheme.

e We also propose an extended evaluation of the protocol using dif-
ferent quality factors, embedding rates, initial distortion functions,

o We consider embedding in the spatial domain, using HILL as an
embedding scheme, and we show that the behaviour of the proposed
algorithm is consistent with what is obtained in the JPEG domain.

THE ADV-EMB SCHEME

The pioneering work of Szegedy et al. [49] demonstrated that classifiers
based on neural networks could be forced to misclassify an image by
adding a specific signal of small amplitude, as it was introduced in
section 2.5. While in the field of computer vision, the attacker has the
freedom to change the image, attacking a steganographic detector is
more difficult due to the constraint that the resulting stego image has
to carry a particular message. Note that this property was known in
steganography long before (see [19], [24] and recently also [51]).

A method ADV-EMB inspired by those in the field of adversarial
learning was proposed in [50], and due to low computational com-
plexity, it is used in this work. ADV-EMB modifies costs of DCT
coeflicients such that changes of coefficients during embedding are cor-
related with the gradient of the soft output of a CNN steganalyzer,
making the image less detectable. Since the embedding function hepyyp
is not differentiable with respect to costs, ADV-EMB comes with an
heuristic which consists in modifying costs pj‘ and p; of some exist-
ing cost function p (e.g. J-Uniward, UERD, see section 1.5) in the
following way:

pifa it 2L (x) <0,

e =& pf if 2L (x) =0, (3.1.1)
pia if é% (x) >0,
and
p; Ja if gj (x) >0,
p "M =1 e i gL (x) =0, (3.1.2)
p; o if gﬂi (x) <0,

where g—i is the partial derivative of f with respect to the value of the
i*"-DCT coefficient at its current value z; and « is a parameter set to
recommended value 2.

The partial derivative of f is computed for a semi-stego object s

(in which a portion of the message is embeded) such as the final stego
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object y is assigned to a low probability of being stego (i.e. a small
f(y)) after embedding. Therefore, for instance if ngi (s) > 0, a positive
increment on s; would increase this probability and consequently, this
situation is penalized by increasing the corresponding modification cost
pi by a factor a.

Since steganalyzers are usually not good models of cover images,!
modulating costs of all coefficients would probably lead to very de-
tectable models. The solution adopted by ADV-EMB is to dispatch
DCT coefficients into common and adjustable groups, L. / L,, corre-
sponding to (1 — 3) / B fractions of coefficients, and then modify only
coefficients in the adjustable group. The image coeflicients belonging
to each group at chosen at random. By minimizing 5, ADV-EMB
changes costs of a minimal number of coefficients. ADV-EMB finds
the minimal 8 by exhaustive search in 8 € {0.1,0.2,...,1.0}. The
gradient used to modulate costs is calculated after coefficients from
the common group are used for embedding a 1 — 3 fraction of bits
of the message m. The procedure, for a given ratio 3, to obtain the
stego y from the cover x with an initial symmetric cost map {p'};,
is illustrated in Figure 3.2.

A, sign V. (5)
>0 >0
embedding in common group <0 <0
containing a ratio of 1 — 8
of coefficients gradient of f >0 <0
> - >0
<0|>0 <0
>o[>o0f [>0
<0
{p; '} (o'}
Ja Ja xa xa
= = Ja T cmbcdding i‘n adjust'fmblc group
containing a ratio of
of coefficients f
Ja xa xa /a - > y —» f(y)
/o xa
xa| /a xa Ja|xa Ja
e| [ [ xa|xa| [xa
Xa Ja

cost for coefficient in the adjustable group

@ cost for coefficient in the common group

cost for coefficient which was already used for embedding

This heuristic helps decrease the output of a classifier. In Figure 3.3
is given an example of the adversarial impact of ADV-EMB to defeat
a trained classifier f, w.r.t. the ratio S of coefficients in the adjustable
group. For a ratio g = 0, all image coefficients are in the common
group (the cost map is the initial non-modified one); stegos are de-
tected on average by f (as expected). However, for 8 > 0, the de-
tectability is decreased. It can be seen as an adversarial impact on f,

! Steganalyzer models discriminate
cover from stego images, but they do
not model cover images themselves.

Figure 3.2: Scheme of ADV-
EMB, for a given ratio 8. At the
beginning the cost map {pF'};
is symmetric. All costs are dis-
patched in two different groups:
common or adjustable. Firstly a
ratio of 1 — 3 of the message in
embedded in the common group
to give an image s. Then the
gradient of the output of s given
by f w.r.t. coefficients s; is com-
puted. The sign of the gradient
is used to udpate the value of
the costs in the adjustable group
given Equations 3.1.2,3.1.1, such
as the costs map {p;}i, {p; ' }s
are no longer symmetric. Finally
the rest of the message is embed-
ded in the adjustable group. Fi-
nally we obtain the stego image
y which contains all bits of the

message.
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as we saw in Figure 2.17. Here we finally obtain an adversarial object
which is a stego image.

1.0 4 1.0
0.8 1 0.8 -
0.6 0.6
0.4 - 0.4 -
0.2 - 0.2 -
0.0 1% 0.0
00 02 04 06 08 10 00 02

Although a significant question here stands. What is next ? We can
imagine that a newly trained classifier could easily detect the attack
produced by ADV-EMB. That is the whole point of our contribution,
which aims at iterating by producing stegos secured w.r.t. a class of
classifiers. To do so, we must first introduce basic notions of game
theory.

THE STEGANOGRAPHIC GAME

Reminders on game theory

Game theory is the mathematical study of interaction among indepen-
dent, self-interested agents, also called players. It has been applied
to many disciplines to model competing agents’ behaviours, like in
economics or biology. It applies when each agent can choose an ac-
tion among a set of possible actions, and the outcome depends on the
combination of the actions taken by all agents independently. Self-
interested agents mean that each player has their vision of the states
of the world they like and wants those to happen.

As explained in book [52], the dominant approach to model an
agent’s interests is utility theory. This theoretical approach aims to
quantify an agent’s degree of preference across a set of available alter-
natives. This can be achieved by defining a utility function, which is a
mapping from states of the world to real numbers. These numbers are
interpreted as measures of an agent’s level of satisfaction in the given
states.

Games with n players (having discrete actions) can be entirely de-
scribed by a n + 1-dimensional table storing the utilities of each player
(contained in the first dimension) and all possible combinations of
actions of all n players described as the intersection of n rows in the
last n dimensions.

The difficulty of game theory comes when two agents may have

0.4 0.6 0.8 1.0

Figure 3.3: (Left) Detectabil-
ity of 50 stegos images pro-
duced with ADV-EMB with g €
{0,0.1,...,0.9,1} against a clas-
sifier f trained to detect J-
Uniward on 512 x 512 images
at QF 75 with a payload of 0.4
bpnzAC and (right) average and
variance of the same detectabil-
ity over 100 images.

The first dimension contains n rows,
and every other dimension contains as
many rows as the number of actions
available to each player.
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different utility functions, like in the simple two-players game presented
in Figure 3.4. Here the maximum reward is not reached for the same
couple of actions of both players: the first player maximizes his utility

for actions (ag, ba) whereas the second one for (aq,by).

uz(ai, b;)
bo by b
ap | —1 2 4
ar | 1 | -3 | -2

In a two-players zero-sum game, the sum of both utilities are equals
to 0, such as a gain for a player drives to a loss for the other. It is the
case of the game presented in Figure 3.5.

ui(a;, b;)
bo b1 by
ap | =1 | 2 4
ay 1 -3 | -2

In the case of a two-player zero-sum game in which players’ actions
are discrete, the game can be described entirely with a single table
where the rows and columns are for actions of both players, and cells

ao

a1

ug(ag, b)) = —uy(as, b;)

ago

ap

contain the utility of one of the players.

Game theory’s view is interesting in our problem because Alice and
Eve can be seen as two players with antagonistic goals (like in a zero-
sum game), and the performance of each player depends on the action

of the other.

The steganographic game

We define the normal-form of the steganographic game (following the

model defined in [52]):

us(a;, b;)
bo by b
0 1 | -3
-1 2 -2

bp b1 by
1 | -2| -4
-11] 3 2
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Figure 3.4: Description  of
a two players game where
first player 1 has two actions
(ap,a1), second player 2 has
three (bg,b1,b2), and wq,us

(ag,a1) X (bo, b1,b2) — R are the
utility functions of two players.

Figure 3.5: Game with same
player 1’s utility than in Fig-
ure 3.4, but where this time util-
ity of second player us is equal to

—Ui-

When actions are continuous, utility
functions can be displayed as a surface
in a 3D space.

Definition 3.2.1. the steganographic game, denoted G is a tuple (M, m, Ay, Ae, )

where :

o N is a set of 2 players, indexed by p where p € {a,e} (for Alice and

Eve)

e m is the length of the message to embed in each image
o A, A is a possibly infinite set of actions of Alice and Eve.

— A, is the set of all embedding functions hemp : X € X =y € Y
which maps a cover to a stego image, obtained by the embedding
of a message of size m
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— A, is the set of all possible detectors f providing a stego proba-
bility class, which discriminates cover from stego images.

o U= (ug,Ue) where u, : Ay, x Ae — R is a real-valued utility function
for player p. For a couple of action (hemy, f) € AqxAe, Eve’s utility
is defined as the accuracy of classification under equal prior, i.e. the
average of the true positive rate and true negative rate, given by

te(hemb, f) = Exnpy [f(x) <0.5] + B ponen [f(¥)20-5]. (3.2.1)

Alice’s utility is the opposite of Fve’s utility because her goal is to
fool Eve: ugy = —ue.

This steganographic game is a zero-sum game, i.e. for all action
profile (hemb, f) € Aq X Ae, g (hemb, f) + te(homb, f) = 0.

The usual vizualization of the game in the table form is shown on
Figure 3.6, where the cell at the intersection of row k! , with column
J7 contains value ue(hi_,, f7).

Eve’s actions A,

TR S S A A

. . 3
Alice’s actions A,  homp

For a given game, each player thinks of which actions to take to
maximize their utility, given that the outcome might be uncertain.
The planning of actions is called a strategy.

Nash equilibrium and the minmaz strategy

Given a game G, each player can elaborate a strategy. A player’s
strategy is the action that the player chooses to play for a given setting,
where the outcome depends on the actions of all players at the same
time.

In 1950 is introduced by John Nash the most influential solution
concept in game theory, the Nash equilibrium. Intuitively, a Nash
equilibrium is a stable strategy: no agent would want to change his
strategy if he knew what strategies the other agents were following.

Nash equilibria in zero-sum games can be viewed graphically as a
saddle in a high-dimensional space as shown in Figure 3.7 (in a 3D
space with two players). At a saddle point, any deviation of any agent
lowers his utility and increases the utility of the other agent.

Other scores such as FP50 [53] (the
false positive rate when the false neg-
ative rate equals 50%) or MD5 [54]
(the miss detection rate when the false
positive rate equals 5%) could also be
used.

Figure 3.6: The steganographic
game where the rows are Alice’s
actions (the embedding func-
tions) and columns for Eve’s
actions (the classifiers).  The
dashed cells show that the table
is very huge and it has been re-
duced for illustration.

We will limit ourselves in this work
to pure strategies which consist in se-
lecting a single action and playing it.
Other kinds of existing strategies are
mized strategies, where a player can
randomise over the set of available ac-
tions according to some probability
distribution.
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us(z,y)

wi(z,y)

The min max strategy is another strategy that maximizes player’s
worst-case payoff in the situation where all the other players happen to
play the strategies which cause the most significant harm to him. The
theoretical min max strategy in two players’ zero-sum games equals the
Nash equilibrium. It is why min max was the strategy chosen in our
contribution. Because we only consider pure strategies? in this work,
there is no equality with the Nash equilibrium.

Because of the Kerckhoffs’ principle presented in section 1.4.1 which
assumes a worst case attack from Eve, we chose in this work that Alice
should consequently select an algorithm heyp, € A, minimizing the
utility of Eve’s best detector. Alice consequently wishes to solve the
following optimization problem:

argmin max  Ue(hemb, f)-

3.2.2
hemb€Ag fdet EAe ( )

This optimization problem in (3.2.2) is challenging to solve because
the expectation in the utility function does not have an analytical
formula (because distributions are unknown), also because the inner
maximum and outer minimization are both over infinite sets. To make
the problem tractable, we propose an iterative protocol in order to
approach this solution.

Solving the simple steganographic game

The algorithm we propose, displayed in Figure 3.8, comes for initial-
isation with an initial embedding function and a detector. At each
further iteration, both players create a new action. Alice begins by
avoiding Eve’s best detector among existing actions, according to a
min max strategy. Then Eve plays second by creating a new detector
trying to detect the just created stegos by Alice.

We utilise the fact that when Alice is searching for a suitable algo-
rithm, the classifier in (3.2.2) does not have to be workable in practice.
Specifically, the classifiers are (unreasonably) assumed to be selected
for each image separately in this work. This assumption is not realis-
tic and overly pessimistic3 for Alice since it upper bounds the actual

Figure 3.7: Nash equilibrium in
the two players zero-sum game
described by the utilities of both
players u; and us = —u; is the
saddle point noted by a black
dot. For this given couple of ac-
tions (zg,yo0), the colored lines
show that any change of action
of each player will decrease their
utility (given in the left for first
player and in the right for sec-
ond).

2 Future possible works should con-
sider mixed strategies in order to play
Nash equilibrium.

31t is unlikely that Eve should be able
to train a perfect classifier selector
that maps each image to the best clas-
sifier she possesses for this image.
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Initialization
k=0 k=1 k=2 k=3
f° o ot ot
hgmb D h‘?mb hgmb h‘gmb
hémb h’imb himb
hzmb h’gmb
h‘gmb

detectability achievable by Eve, but it decreases the computational
complexity.
At k* iteration, the proposed protocol consists on the two following

macro-steps :

Data: 2°,... , Z*"1 stego bases, X = {x(l), ..,X(N)} cover
base, and set of detector F*~+ = {f9 .-, fi 1]

1. Creation of a stego set Y* by using an embedding function hemi,
maximally secure with respect to the set of detectors
FrRb = L0 fhes oo fi 1), de. for a given image x it uses

function

hemp = argmin max  f(hemn(X)); (3.2.3)

hemb eAa fEJ:k71

2. Creation of a new detector fé“eﬂ which should be optimal for stego

images produced in step 1 and appends it to the pool, i.e.
FE= UL,

Algorithm 2: Two macro-steps of the k! iteration of the proposed
protocol.

Notice that the distortion function/embedding algorithm is not fixed,
but it is implicitly defined by the set of detectors F* and a set of A, of
Alice’s strategies. It means that for each image, Alice picks the most
secure algorithm for a given image with respect to detectors F* she
believes Eve might own.

The above algorithm 2 is general, as Alice can use any set of embed-
ding functions, A,, even those evading a specific detector as discussed
in the previous section, and she can assume any set of steganographic
detectors A.. In practice, one can guess that the larger both sets are,
the more secure the resulting algorithm will be. The only caveat is
that, due to the operation consisting in minimizing output of detec-
tors in Equation (3.2.3), detectors should have comparable outputs.
This problem of calibration is described in detail in section 3.5.2.

The very good property of convergence of this protocol is shown in
the next section.

Figure 3.8: Building an iterative
game where the number of ac-
tions for each player increases.

This protocol 2 is very general. It is
at the core of both contributions. The
algorithm 3 is the practical application
of it. For example, it leverages ADV-
EMB to solve Equation 3.2.3.
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THEORETICAL PROPERTIES

Convergence of the algorithm

The following theorem proves the convergence of our protocol under
mild conditions on F.

Theorem 3.3.1. Let F = {f : X — R} be a set of functions and
let F1,F2,...,F* ... be a sequence of subsets such that F' C F? C
...CFkc...c F. Suppose all functions f € F are bounded by some
constant ¢, i.e. (e € R)(Vf € F)(vx € I)(f(x) < ¢).

Then the limit f(x) = limg_ o max e rr f(X) exists.

nax

Proof. Define function fF,, (x) = max ¢z« f(x). Then for every x € T
the sequence fl. (%), f2..(%X),..., fF. . (%),... is non-decreasing and
because of the boundedness assumption Vf € F , f(x) < ¢, the se-
quence is bounded by c¢ as well. The monotone convergence theorem

then states that the sequence f*

¥ (X) converges to some value, which

is denoted by f(x), which proves pointwise convergence of f¥.  to
f. O

The above theorem implies that, when k is large, the maximization
w.rt. f e F*1is replaced by f (or a function e-close to f). The
algorithm defines detectability f(z) as a limit

flx) = kh_)n;o }22}}2 f(x). (3.3.1)

Note that the security of the resulting steganographic algorithm
depends on two factors: (i) the set of all possible detectors F; (ii) the
attacking quality on the classifier f € F. Thus, improving any of them
should improve the quality of the scheme.

Theorem 3.3.1 assumes functions f € F to be bounded. This condi-
tion can be trivially ensured for any function based on machine learn-
ing classifiers, as they are already bounded (e.g., Neural Networks),
or they can be trivially bounded by applying some scaling or passing
their output through abounded and monotonous functions like sigmoid
or tanh.

Furthermore, the usual functions involved in a neural network are
not only bounded but also Lipschitz continuous. Indeed, dot product,?
convolution, max pooling, ReLU, sigmoid or tanh are all Lipschitz
continuous, and the sum and composition of such functions also are,
i.e., neural networks are Lipschitz continuous. This observation leads
to a stronger form of convergence.

If each f € F is Lipschitz continuous with common constant, then
it is known that f is also Lipschitz continuous with the same constant
provided that f achieves a finite value for some x. Since f is bounded,
it is finite everywhere and thus Lipschitz continuous.

In addition, since all functions f*_ . and function f are defined on

max
RE*W and the sequence fX  is monotonically

a compact subset of
increasing then Dini’s theorem [55] applies which gives uniform con-

vergence.

4 To make sure that each instance of
an architecture has the same (maxi-
mal) Lipschitz constant, it is sufficient
to add a regularisation term to the ob-
jective function.
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Roughly speaking, uniform convergence indicates that the series of
functions on which the min-step of the algorithm operates converges
everywhere in the input space, at least with a rate that does not depend
on x. Although this rate lower bound is unknown, it can be argued
that the algorithm could be stopped when ||f%_ . — f*~1|| is no greater
than a given threshold. However, given the stochasticity of neural
networks training and the time spend on it, it appears safer to stop

after a predefined number of iterations as proposed in Algorithm 3.

Connections with generative adversarial networks

The proposed algorithm is to some extent related to a popular machine
learning tool known as Generative Adversarial Networks (GANSs) [56],
which has been recently used in steganography to learn the cost func-
tion [57]. The differences between Algorithm 3 and GANs are discussed
below.

In theory [58], the solution of GANs corresponds to a Nash equilib-
rium of the zero-sum game with the cost function defined in (3.2.2).
The main difference between GANs [57] and our contribution is there-
fore in the generator.

In [57], the generator is implemented ezplicitly by an optimized
network assigning costs to individual coefficients, which are then used
in the embedding simulator. It is in sharp contrast to this contribu-
tion, where the generator is tmplicit and corresponds to an attack of
a particular classifier (or a set of them). Therefore, this algorithm’s
convergence (or training) should be more straightforward, more sta-
ble, and Alice is saved from the hassle of designing an architecture
for the generator. Indeed, Ref. [57] reports the error of detection by
XU-Net of a GAN JPEG stego images with payload 0.4 bpnzAC equal
to 11.8%, whereas that of the steganography proposed here is equal to
20.7%, which makes the proposed approach twice more secure.

However, an advantage of GAN-based steganography is that it can
directly estimate embedding costs, which the proposed scheme in this
section cannot do yet, but it is solved in the next chapter.

IMPLEMENTATION OF THE PROTOCOL

Because the protocol proposed in previous section 3.2.4 is very general,
the following two subsections discuss particular choices of Alice’s and
Eve’s strategies used in this contribution.

Alice’s strategy

In our experiments, the set of steganographic algorithms used by Alice
is the union of ADV-EMB attacks against all Eve’s detectors fqer € Ae
with 8 € {0.1,0.2,0.3,...,0.9,1.0} and J-Uniward. The stego retained
by ADV-EMB is the one minimizing 8 and which crosses the boundary
decision of cover/stego of a detector. This set of algorithms has an
infinite size theoretically. But if the optimality of ADV-EMB attack
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against a given detector fge; is assumed, it is sufficient during the k*®
iteration to consider attacks against a limited set of detectors F¥~1 =
{f% ..., f*~1}, as we cannot do better against this set. Thus, the
min max problem in step 1 of each iteration is over a finite set, and
hence computationally feasible.

An important implementation detail here is that stego images cre-
ated by attacking F*~! = {0 ..., f*~1} and outputs of all detectors
on them can be cached and used in subsequent iterations. This means
that at every iteration, Alice needs to (i) create (adversarial) stego
images against the detector f*~1 appended to F*~! in the previous
iteration, and (ii) calculate outputs of f¥~! for stego images created
in iterations 1,2,3, ..., k. This setting significantly decreases the com-
putational complexity.

Here, we emphasize on the differences w.r.t. strategies proposed
in [50] which we call last iteration and random strategies:

o In last iteration strategy, Alice’s embedding algorithm is ADV-EMB
attacking only the last trained detector f*~1.

e In random strategy, Alice’s embedding algorithm is ADV-EMB at-
tacking a detector f € F* where each stego image of the training
set is sampled uniformly over the previous iterations.

Again, note that Alice behaves more strategically (and conservatively),
as she uses the algorithm producing the least detectable stego image by
an unrealistic detector (in the sense that we assume that Alice knows
a piece of information not accessible in practice). The rationale here is
the fact that for the next iteration, Eve might learn a better detector
than the last trained, for example by training a new classifier from the
ensemble of already trained classifiers.

3.4.2  Assumed Eve’s detectors

The term FEve’s detectors is ambiguous, as it can refer to the set of de-
tectors A, used by Alice during the optimization of Equation (3.2.2),
and the set of detectors used by real Eve to detect Alice’s steganog-
raphy. The mismatch between these two can be devastating and the
whole history of steganography is precisely about this mismatch. To
clarify, the former will be called assumed Eve’s detectors and denoted
A, and the latter real Eve’s detectors denoted A,.

In the optimization of Equation (3.2.2), the set of detectors A, has
to be reasonably complete, otherwise, no security guarantees can be
given about the resulting embedding algorithm. In this contribution,
A, contains all detectors having the architecture of XU-Net [41] and/or
SRNet [43]. The current limitation is the feasibility of the ADV-EMB
attack, which can attack only differentiable detectors. However, very
general approaches [19], [51] can be used to alleviate this limitation at
the expense of computational complexity. Another approach would be
to train differentiable surrogates, but any investigation in this direction
is currently outside of the scope of this contribution.
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Operational embedding algorithm

X

(a) Tteration k =0

(b) Iteration k =1

An operational version of the algorithm that relies on ADV-EMB
is given by Algorithm 3 (in this case, a single convnet architecture is
used to train classifiers and calibration can be omitted). The first few
steps of the algorithm are illustrated in Figure 3.9. One can observe
how classifiers in F* surrounds the distribution of cover images and
thereby restricting the choice of embedding algorithms.

Data: 20 initial stego base, X = {x(l), ..,x(N)} cover base,
set of detector O = { O}, kmax

k <+ 1;

while k£ < kp.x do

Obtain adversarial base ZF = {z’(cl), - z’(“N)} where

z(,, = ADV-EMB (X(n), fs-1);

n)
Create stego base Y* = {yé“l), ..,yé“N)} to be least
detectable with respect to detectors in F*~1,

ko _ ; .
Vi ze{i?i?}%ﬂ)}fgﬂ}ugglf(z) ’
Train a new classifier f* to discriminate X from Y* ;
FE= P UMl
k+—k+1.
end

Return stego base YFmax

Algorithm 3: Operational algorithm executed by Alice to generate
a stego base.

EXPERIMENTAL SETTINGS

This section details the choices of A, and A, used in the experiments
below, together with other essential details such as calibration of clas-
sifier scores, database of images, etc.

Steganographic detectors

Since state-of-the-art steganalysis detectors are based on Convolu-
tional Neural Networks (CNNs) [59]-[61] it should not be surprising
that they are used here as well. These architectures were presented in

(c) Iteration k = 2

(d) Iteration k = 3

Figure 3.9: Initialization and the
three first iterations of the algo-
rithm with only one stego image.
For simplification of representa-
tion, we assume that Euclidean
distances (the dashed lines) be-
tween one adversarial image z
and the boundary of the classi-
fier f7 represents the soft output
of the classifier f7(z). The gray
lines with bigger dash represent
positive distance (so when the
image is in the stego region), and
smaller dash represent negative
distances (when the image is in
the cover region). For iteration
k, all values f7(z) (for 0 <i <k
and 0 < j < k—1) are computed,
in order to select the stego y*
from {z°, .., z"} according to the
min max strategy. Then f* (in
grey shade) is trained to discrim-

inate y* from cover images.
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the previous chapter (see Section 2.4), but the readers are also referred
to [56] for a general introduction and to [41], [59], [60] for their uses in
steganography.

For the purpose of this work, it is sufficient to view neural networks
as an efficient procedure selecting f from a large class of functions F
minimizing the empirical error:

1

perr(f%-)(ay) =¥ Z L{f(x) <7}+
X =
1
— 1{f(x)>7}. (3.5.1
31 LU > @a)
An essential property of CNNs for ADV-EMB attack is their dif-
of

ferentiability, which means that a gradient 7 with respect to their
inputs exists for almost every x and for every f € F.

The set of classifiers F is also the set of Eve’s actions A, and is equal
to all convolutional neural networks with a given set of architectures
(here XU-Net [41] or SRNet [43]).

3.5.2  Calibrating classifier’s output

As mentioned above, the space of classifiers A, can contain CNNs of
different architectures and even classifiers based on a very different
paradigm. In these cases, it is crucial to make their output compa-
rable, such that minmax selection in step 1 of each iteration (Equa-
tion (3.2.3)) compares meaningful quantities. A situation is illustrated
in the top row in Figure 3.10 showing histograms of outputs of two clas-
sifiers on cover and stego images. Clearly, the left tail of the empirical
distribution on stego images of Classifier B (denoted by fg ()) for
simplicity) is more spread than that of Classifier A, which means that
the inner maximization in Equation (3.2.3) would prefer Classifier A
over the Classifier B, although the latter is more precise.

We therefore propose to calibrate the output of a detector f by its
empirical distribution function F' : [0,1] — [0,1] estimated on cover

images as
, 1
F(t) = N Z]l[f(X(w)»l] (1),
i=1

where {x(i)}i[il are cover images. The calibrated detector, denoted f,
and is then defined as a composition

fx) = F(f(x)).

The effect of the calibration is shown in the bottom row in Fig-
ure 3.10. We can see that after the calibration, Classifier B would be
selected by min max strategy as desired.

3.5.3  Other implementation and experimental settings

Embedding The embedding algorithm used to initialise the algorithm
and to calculate default costs for changing elements is J-Uniward [25]
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Classifier A without ECDF Classifier B without ECDF
fA) FB(X)
) Q)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Classifier A with ECDF Classifier B with ECDF
FA@) #3(x)
) 2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

or UERD [29]. The experiments use the JPEG version of the popu-
lar BossBase database [62] of size 512 x 512 in grayscale format and
compressed with Quality Factor (QF) 75 or 95. Unless stated other-
wise, all images are embedded using an embedding rate of 0.4 bits per
non-zero AC DCT coefficient (bpnzAC) at each algorithm iteration.

Classification/Steganalysis  Our implementations of XU-Net and SR-
Net use TensorFlow [63] library. In each iteration of the algorithm,
a new steganalyzer f* is trained by classifying cover objects X and
stego objects V¥ given at the second step of the loop of Algorithm 3.
Those classifiers are trained using full-size images of 512 x 512 DCT
coefficients, 2 x 4000 Cover and Stego objects for training, 2 x 1000
for validation set and using remaining 2 x 5000 to estimate error rates.
The training database is shuffled after each epoch. In each batch, we
apply data augmentation based on random mirroring and rotation of
the batch images by 90 degrees. 280 epochs are used for training us-
ing ADAM optimization algorithm. The configuration achieving the
best validation accuracy is used as the result of training. For XU-
Net, the classifier is trained starting with randomly initialised weights
(zero-mean Gaussian with standard deviation 0.01), initial learning
rate is set to 0.001 and decreased after each 5000 steps to 0.9 times
the current value. The remaining parameters of ADAM are kept to
the default setting. The size of mini-batch is 32 (16 cover-stego pairs).
The configuration of SRNet is the one proposed in the paper [43], ex-
cept the training, which lasts for 280 epochs. The size of mini-batch
is 16 (8 cover-stego pairs). The experiments were run on an Nvidia
GPU Quadro P6000 (24 GB of memory). Training XU-Net takes ap-
proximately 20 hours at each iteration k, SRNet 30 hours, and the
generation of an adversarial database 5 hours multi-threaded on 36

cores.

Figure 3.10: Effect of calibration
allowing to make the output of
two classifiers comparable on the
same data base for the min max
strategy.
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Attack The ADV-EMB attack adjusting costs of DCT coefficients is
implemented as described in section 3.1. Because XU-Net / SRNet uses
a spatial image without rounding as input to compute partial deriva-
tives g—i with respect to the i*"-DCT coefficient, IDCT is treated as an
additional layer placed before the first layer of XU-Net / SRNet. The
partial derivative is consequently handled by automatic differentiation
using the function tf.gradient() from the TensorFlow library and
differentiating with respect to the image coded in the JPEG domain.

Since there is a possibility that embedding using ADV-EMB fails for
some images, which means that even when we modify all costs p;, p;-
of all DCT coeflicients, the corresponding stego image is classified as
stego. As suggested in [50], in this case, the costs are all set to their

current values without any modification, which corresponds to setting
£ =0in ADV-EMB.

3.6 HEXPERIMENTAL COMPARISON TO PRIOR ART

This section summarises an extensive experimental study of the algo-
rithm’s properties and comparison to the prior art. First, the conver-
gence of the algorithm is studied when the set of assumed and real
Eve’s detectors Ae and A, are the same and when they are different.
Then the proposed algorithm is compared to the prior art: the min max
strategy is compared to “last iteration” and “random iteration” of [50].

The steganalytic detectors used by real Fve inludes XU-Net, SR-
Net, and linear classifiers [64] with DCTR [33] and GFR [34] feature
sets. The reported error is probability under equal priors, P, =
minp,, %(PrFA +Pryvp), with Prpa and Pry,p standing for the false-
alarm and missed detection empirical probabilities.

Unless said otherwise, reported error rates always follows Kerkhoff’s
principle, which means that the detector is always trained after Alice
publishes her embedding algorithm.

3.6.1 Results

Error rate P, of XU-Net detector for eight iterations of the algorithm
when Alice assumes that Eve will use XU-Net as detector is shown in
the top row of Figure 3.11. Errors are shown for different payloads
and different quality factors. The algorithm succeeds at significantly
increasing the security in all cases. For example it makes the stego-
images with payload 0.4 bpnzAC in JPEGs with QF 95 undetectable
by XU-Net. The undetectability was not reached within eight iter-
ations for other cases, but the improvement in security is still huge.
Notice that the error is not strictly monotonically improving, which
we attribute to (i) the training of detectors does not reach the global
minimum and (ii) the ADV-EMB attack might not succeed in avoid-
ing all detectors — a phenomenon described in more details below in
sections 3.7.2 and 3.8.

The most interesting case occurs when the detectors assumed by
Alice and those actually used by Eve differ as to if models used by
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Alice are not sufficiently rich, she might anticipate a detectable em-
bedding. The middle row in Figure 3.11 again shows the error of
XU-Net, SRNet, DCTR, GFR classifiers after the first eight iterations
of the algorithm when Alice assumes XU-Net (left) or SRNet (right)
in her optimization. Notably, the algorithm still improves the secu-
rity even in case of a mismatch. We assume that this is because both
XU-net and SRNet are sufficiently rich models.

The two bottom rows in Figure 3.11 compare the proposed algo-
rithm to “last” and “random” strategies proposed in [50]. We see that
the proposed algorithm is markedly better than both prior art solu-
tions. It should not be surprising as, unlike them, it directly optimizes
undetectability measured by Kerckhoffs’ principle.

Figure 3.12 shows histograms of the iteration at which attacked
detector of each stego image of Alice’s stego-sets was created. This
distribution is very far from the “last” strategy, which would contain
a single peak at k — 1 for iteration k. The distribution is more like a
“random” strategy, which should be uniform on {0,1,2,...,k — 1} at
iteration k. The reason why the proposed algorithm is more secure than
the “random” strategy is that stego images are not selected randomly,
but deterministically according to min max criterion.

The security (P, of classifiers) of the algorithm when the ADV-
EMB attack is initialised with UERD costs and A, is learned using the
XU-Net architecture is shown in Figure 3.13. The security is similar
to that achieved when the ADV-EMB is initialised with J-Uniward
costs. It improves in the case of mismatch between assumed and real
detectors (left figure), and it also improves over the prior art (right
figure).

2D plot of ADV-EMB

It can be interesting to visualise the cover and stego dataset at different
iterations, like proposed in Figure 3.9. To do so, we propose in Fig-
ure 3.14 to represent images in the 2D place by defining its coordinates
by the raw logit of output stego class (before softmax step). We can
observe that blue and orange points (respectively for cover and stego
produced with J-Uniward) seem in majority correctly labelled by the
three classifiers. On the other hand, J!, as expected, is undetected by
19, but detected by f! (after retraining). We can see that f2, trained

Figure 3.12: Evolution of com-
position of the stego data set Yk
over min max strategy iterations
k for two experiments : classifier
XU-Net, QF 75, initialization of
costs with J-Uniward, and for
an embedding rate of 0.3 or 0.4
bpnzAC. For each plot, bars give
the proportion (in %) of images
taken from Z¢ (0 < i < k) to
generate yk (where ¢ is on the

x-axis).

Normally, we can not trace a deci-
sion boundary from only a single class
logit. However, for the simplicity
of visualisation (because logits give
sparse clouds), we assume that the de-
cision boundary is given by threshold
0 (dashed grey line).
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QF 75, 0.4 bpnzAC, UERD
A. = {XU-Net}

A, = {XU-Net, DCTR, GFR}

QF 75, 0.4 bpnzAC, UERD
A, = A, = {XU-Net}
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to detect y2, also well detects V1. Tt is possible that Y1 and )? share
some images (because of the min max step).

fl
f2

cover stego cover stego

f() fl

OPTIMIZING AGAINST MORE ARCHITECTURES

Performance analysis

In the previous section, the set of classifiers A, used by Alice contained
neural networks with the same architecture differing only in weights.
But as was repeatedly emphasised, the set A, should be as complete as
possible, which means CNNs with different architectures. Below, A,
contains all neural networks with XU-Net and SRNet architectures.
This was achieved by extending the set F* in each iteration by two
networks, one with XU-Net and one with SRNet architecture. Out-
puts of these detectors are always calibrated as was described above in
Sectionf 3.5.2. Otherwise, the experimental settings and the algorithm
are unchanged.

The error of four steganalyzers (DCTR and GFR are not in A.)
for the first eight iterations when the algorithm optimized embedding
message with payload 0.4 bpnzAC in JPEG images with QF 75 is
shown in Figure 3.15. The behaviour is similar as observed above
as the algorithm improves the undetectability significantly. Table 3.1
summarises the increase of the undetectability (error rate) against J-

Figure 3.13: Evolution of P,
for XU-Net, an embedding rate
QF 75, for
an initialization of costs with
UERD. (Left) Evolution of Pe,,
of the min max strategy and of

of 0.4 bpnzac,

two blind steganalyzers based
on GFR and DCTR features.
(Right) Evolution for the 3
strategies minmax, last itera-

tion and random.

Figure 3.14: Plots
clouds of sets of cover X (blue),

showing

adversarial stegos obtained with
ADV-EMB at first three itera-
tions Y , V!, V? (respectively
orange, green and red).
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Uniward as measured by different classifiers (in rows) when A, contains
either XU-Net, SRNet, or both (in three last columns). In line with
theoretical expectations, Algorithm 3 with A, containing both archi-
tectures achieves highest undetectability (minus noise) with respect
to all four tested detectors. Specifically, the detectability by SRNet
presently considered the most powerful detector jumps from 6.3% to
16.3%, which is almost a three-fold improvement in security. This also
means that the proposed algorithm delivers the most secure stegano-
graphic algorithm at the time of writing.

QF 75, 0.4 bpnzAC, J-Uni
A, = {XU-Net, SRNet}

A, = {DCTR, GFR}

Figure 3.15: Evolution of P,
for the experiment with double

307 P 3 adversary : where QF 75, 0.4
bpnzAC, J-Uniward, and where
~ there are two assumed stegana-
E\‘: lyzers : XU-Net and SRNet, and
- with two more real steganalyzers
based on DCTR and GFR fea-
tures.
0 2 1 6 8
Iteration k
- . A, (for QF 75, 0.4 bpnzac, J-Uniward)
Ae J-Uniward
{XU-Net} {SRNet} {XU-Net, SRNet}
{XU-Net} 7.1% + 13.6% + 71% + 13.5%
{SRNet} 6.3% + 5.9% + 6.9% + 10.0%
{DCTR} 16.5% +9.1% + 41% + 11.8%
{GFR} 10.5% + 14.6% + 14.8% + 18.7%
Table 3.1: The first column

Compositions of training sets

Figure 3.15 showing P, of all steganalyzers with respect to iteration
on the algorithm suggests that Alice should be sending stego-images
created by ADV-EMB attacking SRNet, as these detectors produce
the lowest error. Figure 3.16 shows distribution of algorithms used
to create stego-images for each iteration. Surprisingly, even though
SRNet has a lower error rate, stego-images are consistently created by
attacking XU-Net, which is everything but intuitive.

We believe that this problem stems from the weakness of ADV-
EMB attack, which calculates gradients of detectors outputs only once
during embedding (see details in section 3.1). It can lead to cases when
trying to evade one classifier (e.g. SRNet), the image is detectable
by a different classifier (e.g. XU-Net). It is measured in terms of
transferability of attacks, defined as

o Ty =P §ri(2hy) < 0~5’f§<711(Z§<U) < 0.5),

shows the baseline detectability
of J-Uniward : it gives the er-
ror rate of four types of detectors
(in rows). Then, the next three
columns show the gain in error
rate Poy(k = 8) — Pore(k = 0) for
three experiments, QF 75 and
embedding rate of 0.4 bpnzAC,
J-Uniward, and with minmax
strategy.  First with A, =
{XU-Net}, second with A, =
{SRNet} and third with A4, =
{XU-Net, SRNet} (so with dou-
Bold:
tion of error rate when there is

ble adversaries). evolu-
a match between A, and A, in
the experiment. For each col-
umn, non-bold results are for

mismatches.
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which expresses the probability that stego-images created by ADV-
EMB against XU-Net will be undetectable by SRNet and vice versa.
Transferability shown in Figure 3.17 for each iteration is generally very
low, but that of ADV-EMB attacking XU-Net is generally higher than
that of attacking SRNet. This implies that ADV-EMB has to be some-
how adapted to attack a set of classifiers instead of just one, but this
work is clearly outside of the scope of this contribution. Figure 3.17
shows the probability of failure of ADV-EMB attack, which generally
increases as the algorithm progresses, as the distribution of cover im-
ages (and its support) is better captured, as illustrated in Figure 3.9.

NOTE ON THE INITIALIZATION OF CNNSs

Ref. [65] introduced the concept of Curriculum Learning (CL), which is
a technique used to improve the learning of a classifier for low payloads
or low-quality factors by training them on more manageable problems.
We have experimented with this approach by initialising learning of a
classifier at iteration k& with parameters of the classifier trained at the
previous iteration k — 1. Alternatively and as used in all experiments
above, the classifiers were initialised entirely at random.

Figure 3.16: Composition of Y*
set with two steganalyzers, an
embedding rate of 0.4 bpnzac,
QF 75.

the proportion of stego chosen

Green bar represent

among Z° (so with the costs
of J-Uniward). > 0,
blue (resp. red) bars repre-

For ¢

sent the proportion of stego cho-
sen among Zi (resp. Zip),
i.e. the adversarial stego con-
tents attacking f;{L} (resp. fg}tl).

Figure 3.17: (Left) Evolution
of the transferability T%,, T&p
over iteration k of adversarial
(Right)
Evolution of the frequency of

data bases Z% ., Zk..

failure for multiple embedding
rates
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Figure 3.18 shows error rate of both algorithms when A, contains
only XU-Net detectors. The experiment used JPEG images with QF
75, 0.4 bpnzAC, and costs in ADV-EMB were initialised by J-Uniward.
The experimental results show that the algorithm where curriculum
learning is not used achieved higher accuracy of detection than the
one using it. We believe that the detectors with curriculum learning
might be stuck in a suboptimal local minimum.

Random seed
QF 75, 0.4 bpnzAC, J-Uni
A, = {XU-Net}
A, = {XU-Net, DCTR, GFR}

Previous seed
QF 75, 0.4 bpnzAC, J-Uni
A, = {XU-Net}
A, = {XU-Net, DCTR, GFR}

Iteration k Iteration k

Fraws or ADV-EMB

But the algorithm ADV-EMB has weaknesses. First, we can notice
that the ratio 3, controlling the size of the adjustable group so how
adversarial is the attack, is increasing with iterations, and the attacks
fail at some point as shows Figure 3.19. We recall the ratio 5 of ADV-
EMB is the smallest ratio of modified coefficients among all coefficients
such as the stego is misclassified by the previous classifier. For k = 1,
the attack is easy, and a low ratio 3 of costs are updated to defeat f°.
But for further iterations, a bigger and bigger (5 is required, and there
are more and more failures.

) -

—0.10.2 05 0.8 —0.102 05 0.8
k=5 k=6

I || | PR |||

-0.10.2 0.5 0.8 -0.10.2 0.5 0.8
k=17 k=28

U | [T P | || PP T 17 TP 0T 1 [ P

-0.10.2 05 0.8 -0.10.2 05 08 -0.10.2 05 08 -0.10.2 05 0.8
B B B B

We can evaluate the efficiency of the attack by measuring the value

Figure 3.18: Effect of the ini-
tialization of CNN on the P,
of the algorithm (with XU-Net,
initialization of costs with J-
Uniward, QF75, minmax strat-
egy and an embedding rate of 0.4
bpnzAC). (Left) f* was seeded
by f*~!, and (right) f* is ran-
domly seeded.

Figure 3.19: Histograms of value
of 8 needed to produce Z*, i.e.
the adversarial stego version z*
of x such as fF¥=1(zF) < 0.5.
Results plotted from the exper-
iment with images at QF 75, J-
Uniward and payload of 0.4 bpn-
zAC, from k = 1 to 8. The bar
for B = —0.1 is for the quan-
tity of failures, meaning that
it counts how many images are
classified as stego with a § =1
(meaning all cost are changed
and the image still doesn’t fool

).
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of the minimum reached during Alice’s move in the protocol given by
Algorithm 3. Figure 3.20 shows, w.r.t. iteration k the evolution of
the average output of classifier f* evaluated over all stego images in
the database of yé“n), n € [1, N] where we recall that yé“n) is defined as

follows:

k .
= a a . 3.9.1
Yo ze{zggf-lg% >}fg11'-"351f (=) ( )

Note that because f: Z — [0,1], & > [f(yé“n))] < 1. For high
n€[l,N]
payload (for example 0.4), you can observe that the min max value is

reaching the maximum value 1.

=
==
1

e
oo
1

1 2 3 4 5 6 7 8
Iteration k

The value of min max increasing close to 1 is compatible with the
high error rate of classification given in the protocol. For protocol at
0.4 bpnzAC, XU-Net at iteration 8 gives an error rate of 22.0%. But
we show on Figure 3.21 that any classifier f* gives an error rate below
25.6% to classify the whole set of stego obtained via Equation 3.9.1 at

iteration 8.

“000 IO P = 44.3% 1, Popp =29.8%  f2, Por = 27.8%  f3, Popr = 25.6%

2500 ‘ ‘ ‘ ‘

0

000 f4 Py =298%  f° P.,.=266% fS P,.=305% f7, P, =26.8%
5 -

(=]

Finally, observation from Figure 3.20 means that the solving of
equation minmax becomes more and more difficult, as the values

Figure 3.20: Evolution of the

value  of % > [f(yé“n))}
n€[l,N]
w.r.t. iteration k for protocols

with JPEG images at QF 75,
with J-Uniward and XU-Net,
and for four payloads from 0.1
to 0.4 bpnzAC (4 colored lines).

Figure 3.21: Histograms of stego
class probability given by differ-
ent classifier f*, k € {0,...,7}
evaluated on cover images (blue
bars) and stego images y?n) (or-
ange bars) obtained via Equa-
tion 3.9.1 for protocol at QF 75,
J-Uniward, XU-Net at payload
0.4 bpnzAC.
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reache nearly the maximal value 1 (0.97 for payload 0.4). It can be
explained by the following observation. The general protocol in Algo-
rithm 2 suggests to Alice to solve
hemb = argmin  max hemb (X)).
o = srgmin s (s ()

But our practical algorithm proceeds in two steps: (i) compute z'(“n) =

ADV-EMB (X(,), fr—1) (adversarial image defeating fr—1) then (ii)

ick y* . = argmin max Z).
P Y ze~{z‘(’g),4.7zzc )}fEJ-'k—lf( )

It produces a terrible flaw because z* produced by ADV-EMB aims
only at fooling f*~! and might be detectable by other classifiers, such
as the min max value could be higher than hoped. We show in Fig-
ure 3.22 that other classifiers detect this new embedding in the set
of Alice. Indeed, the blue diagonal show that at each new iteration
k > 1, Z* fools only f*~1. However, with the red squares below the
blue diagonal, we can see that the new database does not fool other
classifiers f!,1 <1<k — 1.

FAN AR S A A L A L A

CONCLUSIONS OF THIS CHAPTER

This contribution builds a min max optimization upon the Kerckhoffs’
principle. Since direct optimization of this criterion is computation-
ally infeasible, we simplify the optimization problem by giving Eve an
unrealistic advantage — she can choose her detector after she observes
Alice’s image. We advocate this simplification to be fair, as it is used
exclusively by Alice during optimization of her steganographic scheme,
and the evaluation of the security of the resulting algorithm is fair and
does as is standard within the field.

Figure 3.22: For the protocol
with JPEG images at QF 75
and payload 0.4 bpnzAC, with
J-Uniward and XU-Net, aver-
age output of each classifier
f7 (columns) evaluated on each
adversarial stego database Z’
(rows). Blue color is for images
detected as cover (the probabil-
ity of stego class is below 0.5),
whereas red if for images classi-
fied as stego.
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Although the proposed algorithm is general, the realisation used
in this contribution relied on two recent innovations: convolutional
neural networks implementing a general class of steganographic detec-
tors and adversarial embedding capable of embedding a message while
being undetectable by a given detector. The extensive experimental
results demonstrate the superiority of the proposed algorithm with
respect to the prior art in the JPEG domain. Specifically, the most
secure version increases the error rate of classification of JPEGs with
embedded message of size 0.4 bpnzAC by SRNet by 10% comparing
to J-Uniward: it jumps from 6.3% to 16.3%. This increase in security
should not be surprising since the presented algorithm automatically
plays the game, which the community plays implicitly since the birth
of the field.

The purpose of our second contribution is to improve Alice’s adapta-
tive steganographic method to bypass a detector by building a method
with fewer heuristics.



4.1

Differentiable steganography
with Backpack

INTRODUCTION

We saw that state of the art steganographic algorithms rely on the
principle of minimising a distortion function, which needs to be addi-
tive for practical reasons. Before hiding the message (embedding), a
steganographic algorithm assigns an embedding cost to each modifi-
able coefficient (e.g. a pixel or DCT coefficient if the cover object is
an image). The message is then hidden by syndrome trellis codes [66],
which minimises the additive distortion function under the constraint
of communicating a message. For research purposes, the act of embed-
ding a concrete message is skipped in favour of a mere simulation [67],
[68]. Presently, the design of new steganographic algorithms, therefore,
boils down to defining the embedding costs.

An evolution, compared to heuristic, is to automate the design of de-
tection functions by constructing stegnalyzers iteratively via a min max
protocol. It does not use the fixed estimator of embedding changes; in-
stead, the distortions associated with each DCT sample are optimised
through adversarial embedding (ADV-EMB) [31] for a given image and
steganalyst. The set of steganalysts created by the min max protocol
plays the role of non-additive distortion functions, as they measure
the detectability of a given image. Indeed the adversaries (here the
classifiers) capture mid-range dependencies between DCT coefficients
which are by definition non-additive. In order to overcome this is-
sue, the embedding can induce correlations by either using lattices
(like ADV-EMB in sections 1.5.10) and/or by crafting specific non-
symmetric additive costs as done here.

This chapter proposes a method called Backpack (for BACKPropa-
gable AttaCK)! fixing flaws of ADV-EMB by finding embedding costs
by gradient descent with constraint on message length included by
means of implicit differentiation. To put the proposed method into a
broader context, it optimises parameters of additive distortion function
(embedding costs) by challenging a non-additive distortion function (a
set of steganalyzers) for a given image and message length. In this
sense, the method is general. The experimental evaluation demon-
strates its advantages compared to ADV-EMB by improving the se-
curity of a steganographic algorithm found by minmax protocol [2]
by 11% when the distortion function is a deep neural network with a
Xu-Net [41] architecture.

This contribution is organised as follows. The next section 4.2 re-
calls important prior arts for explaining how from a cost map, we can

4
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simulate the optimal embedding of a message and define the problem.
Section 4.3 shows step by step how to calculate the gradient of a differ-
entiable steganalyzer with respect to embedding costs. Experimental
section 4.4 shows the effect of the proposed scheme on the security of
the obtained embedding costs.

BACKGROUND

In this section, we begin by introducing the problem; then, we recall
the non-back-propagable pipeline to simulate a stego from a cost map.

Problem formulation

The problem we solve is for a given cover object x to find an embedding
cost map p minimizing detectability of a stego object y = x + b by
a non-additive distortion function f(y) (read steganalyst), where b ~
Py(blp,A) and f being almost everywhere differentiable with respect
to y. We therefore focus on simulation of embedding changes. The
stego object y = x + b is a realization of a random variable and
we minimize the expected detectability over all possible stego objects

written as :

arg I;Iin Eb~p, (blp,n) [f(x +b)], (4.2.1)
o,

subject to the entropy constraint:
H(Py(blp, \)) = m]. (4.2.2)

We want to tackle the above problem using a classical optimisation
method to remove all heuristics. Here we propose to use the very fa-
mous gradient descent with respect to p. However, its use for this
problem is complex for two reasons: first, the optimisation problem
contains an implicit constraint on the entropy; second, the gradient of
the expectation of f with respect to p does not have an analytical ex-
pression, and its exact computation would be prohibitively expensive.
To compute it exactly, one would need to sum over the support of all
stego images (for a given cover), which has |B|" (recall that |B]| is the
cardinality of embedding changes and n is the number of coefficients
that can be modified during embedding).

We are therefore interested into finding a computable value of:

VoEbe Py (blpn) [f (X + D)) (4.2.3)

The rest of this section, therefore, focuses on an approximation
of (4.2.3) that would be sufficiently accurate while being computa-
tionally cheap. We will first present the forward pipeline, which is all
the successive operations made from the cost p to obtain a stego image

y.
The forward pipeline

It was presented in the previous chapter in section 1.4.4 that practi-
cally, steganography by cover modification can be simulated by draw-
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ing a stego simulating the impact of the embedding reached by an
optimal coding function (see section 1.4.4). Those steps, shown in
Figure 4.1, have already been presented, but it will be recalled here
following steps 1 to 5 on the Figure.

length of the message

cover

|m| x
1
A(p, |ml) 2 3 4 5
(implicit)
P(p, ) draw f
p A ™ b y f(y)
cost probability modification stego

Steps 1 and 2: computing optimal probabilities. The first two steps are
intrinsically binded, it is why they are presented at the same time. For
a given size of message |m| in bits and an additive distortion function
described by its cost map p, a theoretical results gives the distribution
of stego images provided by the optimal coding function. The prob-
ability distribution of stego modifications Py (b|p,\) = [[;—, P, (b; =
jlp, A) gives independant probability distributions P, over the image
coefficients (thanks to the additivity property of the distortion func-
tion). The probability of modification of cover coefficient indexed by

i by value j is equal to

i
e M

gk

dkep€

Let’s define the functions p{ (p, A) which take as input the cost p =

! = Py, (b = jlp, \) = =pl(p, ).

(3

(4.2.4)

{p{ }i,; and the scalar A, and yield outputs Wf .

Looking at its definition above, one might think that ’/le only de-
pends on the values p¥, Vk € B. But it also depends on scalar A tuned
such that the entropy of the probability distribution P, is equal to the
length of the message, i.e

H(m) = —zn:ZWj log 7! = |m)|.

i=1jeB

(4.2.5)

Finally, A is itself a function of p and |m|, because of the entropy
constraint of Equation 4.2.5. But it exists no explicit expression of this
function. Because we do want to emphasize on the fact that A depends
on those two variables, we will sometime write A as A = A(p, jm|).

Solving equation H(Py(b|p,\)) = |m]| in order to find A is usually
achieved by binary search. An animation of such solving is shown on
Figure 4.2.

At the end of steps 1 and 2, the pipeline gives for each coefficient
indexed by 4 a probability distribution P,,, described by (Wf ).jeB-

Figure 4.1: Pipeline to obtain a
simulated stego image y from a
cover image x, a cost map p and
a size of the message | m|. Op-
erations, labeled by number in
red, are plotted by arrows. Vari-
ables are located in rectangles,
and blue variables are the inputs
of the pipeline. Steganalysis can
be applied at the end by evalu-
ating a detector f on the stego

image.

One can check that V1 < i < n, P,
is a distribution probability. Indeed
Vb € B, we have 0 < 7rg < 1 and

ZkEB Wf =1
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—— H(Py(blp,N))
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Step 8: Drawing a modification. The probability map m = (ﬂ'f ) con-
tains the optimal probability of modification j for each image coeffi-
cient indexed by ¢. It means that the modification b; is drawn according
to the probability law P;,, which can be written as

b; = j with probability 77{ . (4.2.6)

The modfications applied to each pixel can be drawn independently
according to Pp,. At the end, we obtain a modification map b = (b;),,
where b; € B.

Step 4: applying the modifications to the cover. The stego object y
is obtained simply by term-wise summation of vector b to the cover
vector x, i.e. VO <1 < n,y; = z; +b;. We say that y is a simu-
lated stego because it is obtained from modifications drawn according
to some probability distribution (step 3). In order to facilitate the
understanding of those objects, it is shown in Figure 4.3 the shape of
them.

Step 5: evaluating the stego. At the end of the pipeline, one can eval-
uate the stego by a detector f. This last step is related to steganalysis,
but we introduce it because this section aims at providing a way to
avoid a detector f.

Re-parametrization trick

The idea we propose is to optimise the cost p w.r.t. the detectability
of a detector f by a classical method of optimisation. For example, we
could use a gradient descent technique on the costs in order to decrease
f(y). But we would need to compute the gradient V,E[f(y)], as if for
a given p, we could update it by the following formula

P — P — avabNPb(b|p,)\)[f(X+b)]7 (427)

Figure 4.2: For an arbitrary cost
map p, entropy H of probabili-
ties obtained by Equation 4.2.4
A The
arbitrary target entropy |m| is

from p and A, w.r.t.

plotted by an horizontal black
dashed line. A(p,|m]|) is ob-
tained at the end of the binary
search, read at the abscissa of
the red vertical line. The anima-
tion (GIF readable with Adobe
Reader) shows the evolution of
the value of A during the search.

To each simulated stego corresponds a
real stego coded using STC with a pay-
load size slightly smaller than |m| [68].
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image size

image size j e

where a > 0 is the step size of the gradient descent.

The first idea is to reparameterize the distributions P, such as
we can compute the sample b; as a deterministic function B of m; =
(ﬂg ),j € B and a vector of independent random variables r; drawn
from distribution R. We have b; = B(m;,r;). The path-wise gradients
from b; to 7r; can then be computed without encountering any stochas-
tic nodes. This decomposition is illustrated on Figure 4.4, replacing
the draw step (3) in initial Figure 4.1. This is a very general scheme,
and many pairs of (B,r) could fit for drawing according to a discrete

distribution.
3
draw
random number
I
B
T b y
probability modification

Decoupling modification probabilities from the stochasticity of the
randomly drawn modifications will allow to compute the gradient of
DCT coefficients y; w.r.t. the distribution parameters 7Tg , as it is
shown in section 4.3.1. This reparametrization allows also to permute
the gradient and the expectancy:

prPb(Eb|P,>\) [f (X + b)] :vPrNER[f(X + B(Tl', I‘))} (4.2.8)

— E [Vof(x+ Bm),

by ~ P,

—1  with probability 7r,i_1
bi=4¢ 0 with probability «{
+1  with probability 7rj' L
Figure 4.3: Vizualization of

shapes of the cost p, the prob-
ability w and the modification
maps b, in the case where B =
{-1,0,+1}. Note that we illus-
trated an image as being two-
dimensional, but an element in
this 2D space is indexed by a sin-
gle integer ¢ in order to lighten
the notations.

Figure 4.4:
the drawing step (3) of Fig-

Decomposition of

ure 4.1 into (i) a purely ran-
dom step which is the sampling
of input r, and (ii) a determin-
istic function which involves the
probabilities 7.

where 7 depends on the variable p. The main advantage of re-parametrization

is that the gradient in Equation (4.2.3) can be now estimated using k
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Monte Carlo samples rq,...,r; as

K
E [Vof(x+ B(mx)] ~ % ; Vof(x+B(mr,).  (429)

The number K of drawn samples rq, ..., rgx, controls the trade-off be-
tween the variance of the estimate and the computational complexity.
In experiments presented in this chapter, K was selected to the highest
number which the GPU memory allowed.

Now the problem is focused on how to compute V,, f(y) = V, f(x+
B(m,r)), for fix random values r. It is the subject of the next section.

The backward pipeline and the associated problems

Given the pipeline in Figure 4.1, the computation of the gradient is the
backward operation from the right to the left, and could be computed
by the chain rule of the steps 1 to 5. Explicity, it gives:

Jy Ob dmw

Vof(y) = Vyf(}’)afbafw%- (4.2.10)

The last term of the chain rule is the total derivative of = w.r.t. p.
It is necessary because m = pl(p, ) is a function a two dependant
variables, because A = A(p, |m|).

Given the value of the total derivative, this gradient depends of
o Om
Ip’ O

In this formula, there are two problems, shown in Figure 4.5.

2N
and e

Suppose that f is a function of two
variables,  and y, and that y depends
on x, we have:

(@ y(x) _ 0f 0z  0f Oy

dx 9z dx Oy oz
|m]| r X
1 2 3 4 5
P A ™ b y f(y)
ol Dy, 2f(y)
aw{
op),

The considerable difficulty is the computation of the gradient of the
modifications b; with respect to the probabilities 7r§‘ Because b; is an
integer drawn according to the probabilities (77 );eg, there is no direct
expression of the gradient.

The second issue comes from the computation of A with respect to
the cost p. Because we saw that no explicit expression of A exists, the
gradient is not straightforward.

Now that we understand the importance of solving those two prob-
lems, the next section, which is the core of this contribution, proposes
solutions to tackle this problematic differentiation.

Figure 4.5: The backward
pipeline to compute V,f(y)
with the chain rule. The 1 and 3
backward steps are the two crit-
ical points for the gradient.
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DIFFERENTIABLE STEGANOGRAPHY

To simplify the notation, the calculation of the expected gradient is
introduced for a single coefficient. It means that the modification b
of a coefficient is a scalar with probability distribution described by a
vector 7 of length |B|. Since embedding changes are assumed to be
independent (the additivity of our distortion function constrains it),
the generalisation to all coefficients of an object is straightforward.

Calculating the gradient of the expectation of a discrete probabil-
ity distribution with respect to its parameters is a very well studied
problem. From the vast prior art, we have chosen the method [69]
relying on the Gumbel distribution. This technique has the advantage
of giving a general formula to draw samples according to any discrete
distribution so that it can be used without a modification for n-ary
coding, and its theoretical properties are well analysed.

Transforming step 8 into a differentiable step

In order to simplify the notation, let’s focus on a single image co-
efficient « which is changed by value b, according to the categorical
distribution defined by the probability vector m = (77),ez.

As explained in section 4.2.3, drawing according to a discrete dis-
tribution is made through a pair of (B,r) where B is a deterministic
function and r some random values. A smart and intuitive way to do
so is to divide an interval [0,1] into |B| buckets of size 7, and then
returning the index of the bucket in which a random variable with
uniform distribution on [0,1] falls. This operation, called Stair, is a
function of 7 and the random variable u. The function is plotted for
B ={-1,0,+1} and for a given 7 on Figure 4.6. However, the deriva-

tive of Stair w.r.t. 7 is either equal to 0 or undefined, which makes
the gradient irrelevant for gradient descent.

An alternative approach proposed in [70], is to draw g = (¢7)jen
a vector of independant number sampled from the standard Gumbel

distribution G(0, 1), and to apply the following deterministic function:

b = HG(m,g) = argmax(g’ + log7?). (4.3.1)
JjEB

In the above function HG (called Hardmaz Gumbel), the arg max
can be conveniently replaced by the softmax function:

1 z1 ezn)
ey R

softmax (21,...,2,) = W(e ’

which is a well known approximation of arg max, as can be seen from

. 21 Zn
lim softmax (—, ey —
T—0 T T

):(0,0...,0,1,0,...,0),

where the 1 is on arg max; z; position and 7 controlling the smoothness
of the approximation is called temperature.
Replacing arg max in Equation (4.3.1) by a softmax approximation

+1t

o S
a ! 70 atl

—11

Figure 4.6: Plot of the Stair

function with respect to its sec-
ond variable u, for a given proba-
bility vector w = (Wj)je{,l’()’l}.
The Gumbel distribution with loca-

tion p and scale 8 > 0 is defined by
its probability density function:

d(win ) = e+

with 2 = ZZE. The probability den-
sity of the standard Gumbel distribu-
tion with p = 0 and 8 = 1 is plotted
on Figure 4.7.
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with temperature leads to :

b = SG,(mw,g)= Zj 2, (4.3.2)
jeB

with z = softmax (g—l—logw) . (4.3.3)
T

The last Equation (4.3.2) is easily differentiable with respect to =

since the calculation can treat the random numbers g as constants, but

introduces a bias when 7 > 0. Figure 4.8 gives the comparison of the

Hardmax and the Softmax Gumbel, where the last one is differentiable

w.r.t. distributions parameters.

Hardmax Gumbel

g—l g(J g+1

C j
10 7T+1 argmax z
& Ses

Softmax Gumbel

log7™!| log °
ob
onl
g ! ¢ g+t
2
logw™t| log7® |logn™! softmax ———
jeB T

0 +1

0.1

by
0.05 —0.05

0.85

Figure 4.9 offers a visualization of the influence of 7 on the output of

the Softmax-Gumbel (SG) function, for a fixed realization of a random

vector g and fixed probability vector 7.
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Figure 4.7: Probability density
function of the standard Gumbel
distribution.

Figure 4.8: (Top) Pipeline to
draw in category set B =
{-1,0,+1} according to prob-
abilities (77)jep with (¢7);en
sampled from G(0,1). At
the end, the b € B modifi-
cation is categorical but non-
differentiable w.r.t. probabili-
ties. (Bottom) Reparametriza-
tion trick with temperature 7, by
replacing the non-differentiable
argmax by a softmax function.
The final modification I;T is con-
tinuous, but differentiable w.r.t.
The -

product. The backpropagation,

. operation is a dot
illustrated by a plain colored ar-
row, is therefore possible.

Figure 4.9: For a given value
of triplet ¢ = (g7%,¢%g™)
(where ¢ ~ G(0,1) are inde-
pendently drawn from Gumbel
standard distribution), value of

= SG(p,9)

is plotted the z-axis for all pos-

the modification BT

sible triplets of probabilities p =
(=% p™!
7. The triplets are plotted in the

), and for 4 values of

trilinear coordinate system.
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4.3.2  Using the gradient of an implicit function to backpropagate through
steps 2-1.

Last step is about computing Z—’p’. The chain rule gives, because 7rg =
p; (p, A(p, [m])):
dm_om0p 0w
dp 9pdp  OA (4.3.4)
“op " on
Although function A is implicit, its gradient V,A(p, jm|)) can be

computed. Recall that for a given p, A is a solution of an entropy
constraint (Equation (4.2.5)), therefore it holds that

H(Pyo(p,\)) = H(Po(p, Alp, [m]))) = |m],

and therefore H(Py(p, A(p,|/m]|))) — |m| = 0. Applying the chain rule
to this equation gives :

%H(Pb(p,f\(p, ml))) = VpH(”)%z * 81;(;)

VoA =0,

from which the desired gradient of A(p,|m|) can be expressed as

Vod=— (agi’r))l Y, H(m). (4.3.5)

4.3.3  Final approximation of the gradient, with continuous modifications

In order to be able to compute g—g, we propose to use the Softmax
gumbel approximation, such that discrete modifications are no longer
needed but smooth ones b, controlled by a temperature 7. The stego,

obtained by the summation of the modifications to the cover, are there-
k

fore noted y = x+b,. We can also show that gg - equals to the identity
matrix, because W = [i = j]. So we can remove it from the chain
J

rule formula.
Combining Equation (4.2.8) with Equations (4.2.9), (4.2.10), (4.3.4)
and (4.3.5) yields to a closed form expression for the gradient :

Vo E_ [f3)]~
b,~Py_(b-|p,\)

1 E ~ 36& or  Om [OH(w) -1
<K;Vykf(y;€) aﬂ-)<ap_a)\< O\ ) VpH(ﬂ-)>_

(4.3.6)

For practical computation, this formula is not required, as it can be
handled automatically by auto-differentiation. Only Equation (4.3.5)
is needed to specify the gradient of a non explicitly differentiable func-
tion A.

However, for the curiosity of the reader, we show below the explicit
of(¥)

value, for a unique sample of stego, the value of opl
L

expressed from
all computations on the following table.
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Optimizing embedding costs

Results presented in the above sections allows us to efficiently ap-
proximate the gradient of Equation (4.2.3) by estimating a gradient
of its smooth approximation while complying with a constraint on
the entropy. It allows to use gradient descent method to minimise
detectability with respect to all detectors in a set F* as needed in
min max protocol.

The proposed algorithm with pseudocode shown in Algorithm 4 uses
a continuous approximation of discrete embedding changes to optimise
the embedding costs p. In every iteration, it checks if the detectability
of stego images with discrete embedding costs is below some thresh-
old. If yes, the algorithm terminates; otherwise, it continues. If the
detectability of stego images with a continuous approximation is be-
low a given threshold, the temperature is halved. In practice, there is
also a limit on the maximum number of iterations. All expectations
in the pseudocode are estimated from a single sample, as described in
section 4.2.3. The threshold on detectability is the detectability of the
unmodified cover object.

The progress of the proposed algorithm on minimising the detectabil-
ity of a single stego object against a single detector is shown in Fig-
ure 4.10. Although the optimisation uses continuous approximation
of stego objects (blue line), the main goal is to create stego objects

n

Table 4.1: Analytic formulas of
the gradients needed to compute

Vof(¥)

tions are shown in Appendix 5.

Details of the calcula-

a%c (1 —l—logﬂ',’;))] .
k
(4.3.7)
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Data: A JPEG cover image x, initial embedding costs p°,
initial 7°

Result: An adversarial embedding costs p

p < p°

T+ 79

6 max; Ep__po o [f1(x+br) = f1(x)];

0 + max; Epp(rp) [f(x +b) — f1(x)];

while True do

while 6 > 0 and 0 > 0 do
Update p by one step of gradient descend with g—;’;;
0 < max; EBTNP(A,p) [fi(x + B‘r) - fl(x)]a
0 < max; Ep p(x p)[f'(x +b) — f(x)];
end
if 0 <0 then
| Return p
else
while 0 <0 do
T 35
0 — max; EBTNP(A,p) [fl(x + BT) - fl(x)]a
end
end
end

Algorithm 4: The proposed algorithm optimizing embedding
costs to minimize detectability of a stego object with respect to
a set of steganalyzers F*.

with discrete embedding change (orange line). We can observe that
in the very beginning, when temperature is high, there is a big differ-
ence between detectability of continuous approximations and that of
real stego objects. But as the algorithm progresses and temperature
decreases, this difference becomes negligible.

There are still hyperparameters in the Backpack algorithm:

e in practice, the while loops should be monitored by a maximum
step, to ensure the algorithm will end. It is called Ny, qy.

e the initial tempeature 7y, decreasing policy for the temperature (ie
when and how to decrease).

e the stopping condition: when to exit the gradient descent?
e the number of samples used to estimate the gradient.

e the learning rate of the optimizer, which achieves a step of the
gradient descent.

The proposed algorithm is iterative; therefore, it does not suffer
the weakness of ADV-EMB described in section 3.9, and it is well
suited to minimise detectability measured as a maximum over a set of
steganalyzers.
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EXPERIMENTAL EVALUATION

Backpack is below compared to ADV-EMB by each method imple-
menting step 2 in the min max protocol (see section 3.2.4). Note that
due to the weakness described in section 3.9 the ADV-EMB algorithm
is computationally less expensive, since it is sufficient to optimise it
against the last steganalyzer f*, whereas Backpack needs to be opti-
mised with respect to all classifiers f € F*.2

Ezxperimental settings

Figure 4.10: Effect of decreasing
the temperature 7 during opti-
mization of a embedding costs
for a given cover image. Is plot-
ted on the left y-axis the aver-
age and variance of detectabil-
ity (1 for stego class and 0 for
cover class) given by classifier
f° (for which fo(x) = 0) over
20 sampled simulated continu-
ous stego object (blue plot where
§ =x+b,) and for 20 sampled
simulated discrete stego object
(orange plot, where s = x + b),
over the 33 steps of optimization
on the z-axis.

2 Note that due to the max function,
it attacks in each iteration of Algo-
rithm 4 a single steganalyzer from the
set F¥_ but this single classifier is po-
tentially different at every iteration.

Images The experiments use the JPEG version of the BossBase database [71]

of size 512 x 512 in grayscale format and compressed with Quality Fac-
tor (QF) 100 and 75. All images are embedded using an embedding
rate of 0.4 bits per non-zero AC DCT coefficient (bpnzAC) at each
algorithm iteration.

Steganalysis A proper evaluation of minmax protocol (and its vari-
ants) requires two sets of steganalyzers and their overlap depends on
who knows what. The first set of classifiers, F is available to Alice,
who runs the minmax protocol. In this work, this set contains all
classifiers with XuNet architecture [41] (differing in weights). The sec-
ond set, F, of classifiers is available to Eve. In our experiments, F
contains all classifiers with SrNet and XuNet architectures, classifiers
trained with DCTR [33] or GFR [34] features. XuNet and SrNet were
implemented in TensorFlow [63]. This experimental setup allows inves-
tigating two different setups, which practically express the assumptions
that whether or not Alice knows which class of steganalyzers Eve uses.

At each iteration of the min max protocol, a new steganalyzer f*
is trained by classifying cover objects C and stego objects S¥ created
in the previous iteration at the second step of the min max protocol.
Steganalyzers are trained on full-size images of 512 x 512 coefficients,
2 x 4000 cover and stego objects for training, 2 x 1000 for validation
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set and using remaining 2 x 5000 to estimate error rates. The training
database is shuffled after each epoch. In each batch, we apply data
augmentation based on random mirroring and rotation of the batch
images by 90 degrees. 280 epochs are used for training using Adam
optimizer [72]. The configuration achieving the best validation accu-
racy is used as the result of training. XuNet, the classifier is trained
starting with randomly initialised weights (zero-mean Gaussian with
standard deviation 0.01), the initial learning rate is set to 0.001 and
decreased after each 5000 steps to 0.9 times the current value. The
remaining parameters of Adam are kept to default setting. The size
of mini-batch is 32 (16 cover-stego pairs). The configuration of SrNet
is the one proposed in the paper [43], except the training uses 280
epochs. The size of mini-batch is 16 (8 cover-stego pairs).

Optimisation of embedding costs Both compared methods requires
initialisation of embedding costs, for which those of J-Uniward [73]
were used (this has been done in [31]). The ADV-EMB method for ad-
justing costs is implemented as described in section 1.5.10. Backpack
uses Adam [72] with a learning rate of 0.05 to optimize the embed-
ding costs p in Algorithm 4. The maximum number of steps during
Backpack optimisation was 500 until iteration 5, and was 2000 until the
end of the protocol. Gradients of expected error (Equation (4.2.9)) are
computed with & = 30 samples until fourth iteration of min max proto-
col, with k = 20 samples until its eight iteration, and then with & = 10
samples. Although a single sample is frequently sufficient, more sam-
ples improve predicted gradients’ accuracy and can be calculated in
parallel on the GPU in the same batch. However, as min max protocol
progresses, the gradient needs to be calculated with increasingly more
models, which occupies the memory of GPU and therefore, we had to
decrease the number of samples progressively. The initial temperature
was set to 70 = 10. The error of steganalyzers was measured by Equa-
tion (3.5.1), which is the usual average error on the cover and stego
objects assuming the equal prior probability of their occurrence (de-
noted as P,). Since the goal of steganography is to be undetectable,
a higher value is better.

Discussion of results

Perr (%)

XuNet | SrtNet DCTR GFR
J-Uniward (k = 0) 16.9 13.1 26.6 26.8
100 | ADV-EMB (k = 8) 26.5 18.9 26.5 324
Backpack (k = 38) 37.4 | 25.3 30.7 37.3
J-Uniward (k = 0) 7.5 6.0 16.2 10.0
75 | ADV.EEMB (k=7) || 220 | 107 267  25.8

(k=7) || 47.6 | 156 32,9 315

QF hemb

Backpack

The main bulk of experimental results are presented in Figure 4.11

Table 4.2: Values of P,,, plotted
inFigure4.11atk=0and k=7
or k = 8 for QF 75 or QF 100, for
both ADV-EMB and Backpack.
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and in Table 4.2 showing error P, of XuNet, SrNet, DCTR, and
GFR steganalyzers on testing data with respect to the iteration of
min max protocol. The proposed Backpack method is superior to the
ADV-EMB. The P, error of a XuNet steganalyzer trained after eight
iterations is 37% on images created with the proposed method while it
is 26% on those created by ADV-EMB (also after eight iterations) and
16% on those created by J-Uniward. This means that if [2] is consid-
ered by state of the art, the proposed method has improved by 11% (as
measured by XuNet for which it has been optimised). These results
are for JPEG 100 and in the optimistic case for Alice where she knows
which type of steganalyzer Eve will use (but Eve optimises her stegan-
alyzer on Alice’s stego images from her final iteration such that Ker-
ckhoffs’ principle is not violated). It is interesting to observe that even
though Alice is not explicitly optimising against SrNet, DCTR, and
GFR steganalyzers, she is still improving the security of her stegano-
graphic algorithm with respect to them, although the curve is not as
steep as that for XuNet.

The evolution of P, also suggests that GFR steganalyzers relies
on a similar type of information as XuNet (on JPEG images with QF
100), but DCTR and SrNet use different types, as the improvement in
the security is not as high.

Experimental results on JPEG images with QF 75 are similar to
those on QF 100 though there is a notable difference in the behaviour
of steganalyzer using DCTR features. On QF 100, this steganalyzer
is almost insensitive to the improvement in security with respect to
XuNet, whereas on QF 75, it reflects the improvement. It suggests

Figure 4.11:
w.r.t iterations of the protocol
with QF 100 (top line) or QF
75 (bottom line), an embedding
rate of 0.4 bpnzAC, cost initial-
ized with J-Uniward and applied

P,... of test sets

with our attack (left column)
or ADV-EMB attack (right col-
umn). Assumed class of detec-
tors is XuNet architecture, and
real detectors are XulNet, SrNet,
DCTR and GFR.
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that at QF 100, it is detecting artefacts, which are not present at
QF 75, and XulNet cannot see these artefacts. It might be caused by
rounding artefacts described in [74].

Unlike ADV-EMB, Backpack does not contain any regularisation
minimising the number of modified coefficients. For example, it can
be trivially added by defining a prior on the distribution of embedding
changes, but we believe it should be learned from data rather than
added explicitly. Moreover, the min max protocol should theoretically
correct too detectable embedding changes in subsequent iterations.
Nevertheless, the steady increase in steganographic security as mea-
sured by XuNet steganalyzers do not indicate that such regularisation
is needed.

ADDITIONAL ANALYSIS OF THE RESULTS

Performance of Backpack compared to ADV-EMB

We can observe that Backpack solves a major weakness of ADV-EMB
highlighted in section 3.9. Figure 4.12, compared to Figure 3.22, shows
better performance at attacking all classifiers in the set of Eve’s avail-
able actions.

1.0

0.8

- 0.6

- 0.4

0.2

0.0

Indeed, and contrary to ADV-EMB, until iteration 4 the images in
the set Z* defeat on average all previous classsifier f!,1 < k (see the
blue cells). With the same condition of experiment, the task is more
and more difficult, it is why Z° do not provide as good results as for
lower iteration. At iteration 6, we changed the parameters of Backpack
and increased the number of steps for the gradient descent. It gives a
more powerful attack, as you can see the last row of the image.

Figure 4.12: For the proto-
col with Backpack with JPEG
images at QF 75 and payload
0.4 bpnzAC, with J-Uniward
and XU-Net, average detectabil-
ity given by each classifier f7
(columns) evaluated on each
adversarial stego database Z?
(rows). Blue color is for images
detected as cover (the probabil-
ity of stego class is below 0.5),
whereas red if for images classi-
fied as stego.
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Analysis of the correlations between DCT coefficients

Among the several steganographic techniques, we saw in section 1.5.7
that synchronising the modifications while embedding can increase the
security of the scheme, for example by using lattices. We show in this
section that it can also be achieved via the definition of an asymmetric
additive distortion function, and it is why we observe correlations for
the embedding with Backpack.

The correlation between two random variables X and Y with ex-
pected values ux and py and standard deviations o x and ox is defined
as:

corr(X,Y) = cov(X,Y)  E[X —px) (Y - ’Lty)].
IX0Y oxOy

(4.5.1)

We can show that symmetric costs can not introduce correlations
between coefficients because the covariance between two modes is equal
to 03. It is the case of J-Uniward (see section 1.5.4) with ternary
embedding, because it gives a symmetric additive distortion function,
ie. pi_l = pZTH for every coefficient 1.

ADV-EMB (see section 1.5.10) might favour correlations for two
reasons. First, because the message is embedded sequentially in two
steps like it is done in synchronisation with lattices: (i) first piece
embedded in the common group, then (ii) last piece embedded in the
adjustable group, where the costs have been modified according to
modifications made in the common group. Second, because the costs
are asymmetric, like for Backpack.

Obviously, ADV-EMB introduces asymmetric costs, i.e. costs p~! #
pT! because of its update rule shown in Equations (3.1.1) and (3.1.2).
The asymmetry on cost leads to an asymmetry on probabilities, which
is plotted in Figure 4.13. It shows the log histograms of the differ-
ences between probabilities of +1 and —1 modifications of coefficient
of several covers. A null difference for a coefficient is equivalent to
symmetric costs. For both ADV-EMB and Backpack, there is a high
quantity of differences close to 0, as a lot of costs are set to a high value
in both directions. But the repartition of the differences is significantly
different. In the case of ADV-EMB, we can observe that the absolute
difference cannot be higher than 0.28. It might be due to the update
rule of ADV-EMB, which makes the ratio between p~! and p™! equals
to either 1, 1/a? or o?. In the case of Backpack, the gradient descent
may lead to considerable differences between probabilities, as we can
see some reaching 0.5 in absolute value.

We can also observe that the quantity of asymmetric costs increases
with iteration k, i.e. there are more coefficients with asymmetric costs
in V! than in VY, and more in Y? than in Y!, etc. For ADV-EMB,
this might be due to the increase of the number of costs modified with
iterations k, as it was shown in Figure 3.19. For Backpack, this might
be because more and more steps of the gradient descents might be
required.

By analysing the covariance matrix of the stego signal of quantised

3 Let us consider ternary embedding,
and B; the random variable modelling
the modification made to a mode 3.
Let’s note bilc the random variable
modeling the modification made to
a specific coefficient k belonging to
mode ¢ (there are N samples for each
mode 7). We have

Ep®)] = a L) _pm1) _ ),

SO

1
BB = > m =
k

We have also

EpMbP) =y BB b)) 46
—1,(k) +1,(k) _ +1,0k) —1,(k)
i J K3 J

k k
— WP,

- T

then

cov(B;, Bj) = E[B; B;] — E[B;]E[B;]
1 & k) (k
= Nkzlug T — pipy

For symmetric costs, ,ul(.k) = 0V, so

corr(B;, Bj) = cov(B;, Bj) = 0.
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ADV-EMB Backpack
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JPEG coefficients (i.e. b =y —x the signal added to the JPEG Cover
image to create the Stego image), we highlight the fact that the stego
signal exhibits correlations between coefficients. These weak correla-
tions are within the same block (intra-block correlations) or between
adjacent blocks (inter-block correlations). It is shown on Figure 4.14
how the correlations are plotted on a 256 x 256 grid.

Correlation matrix
256

How to flatten the initial image

8

256

Intra-block correlations
Inter-adjacent-block correlations

Inter-diagonal-block correlations

There is, as expected, no correlations for J-Uniward, but there are
for ADV-EMB and Backpack. The correlation patterns are similar to
the patterns of correlations analysed on the sensor noise in the DCT
domain (see [75]). However, if in [75] these correlations have been
shown to favour continuities between blocks, the correlations induced
by adversarial embedding are on the opposite sign, and they code
discontinuities between blocks.

An experiment consisting of generating first a cover image using
J-Uniward and then computing an adversarial signal using projected
gradient descent (PGD [76]) exhibits very similar patterns than with
adversarial embedding (see figure 4.15). We consequently presume
that the adversarial signal is generated in order to compensate for the

Figure 4.13: Log histograms of
{r;! — !} for DCT coefficients
of 100 cover images, obtained at
iteration 1, 2 and 3 for protocol
with (left) ADV-EMB or (right)
backpack, for images at QF 75
with payload 0.4 bpnzAC.

Figure 4.14: How the image is
flatten in order to build the cor-
relation matrix (left). If ¢ is the
index of the row or the column
of a coefficient in the correlation
matrix (right), [#/64], |i/8] and
i mod [8] give respectively the
index of the block (1,2,3 or 4),
the index of the row and the in-
dex of the column of the coef-
ficient within its block, in the
original image.
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blocking artefacts created by the embedding. It would explain the
sign of the correlations. Our rationale is that the proportion S of the
DCT coefficients used to produce the adverse stego signal in ADV-
EMB conveys the signal whose role is to remove the blocking artefacts
generated by additive schemes such as J-Uniward.

J-UNIWARD

b

PGD

On the necessity to train correctly.

Another experiment we conduct is optimizing the embedding to more
architectures than XU-Net (like we did in chapter 3 with Figure 3.15).
We add SRNet and Efficient-Net in the protocol and observe the evo-
lution of the error rate in Figure 4.16 (left).

FEzperimental settings This implementation used Pytorch. Efficient-
Net BO (with a the first stride set to 1 to avoid the destruction of the

)V? with ADV-EMB

T
e R e

S
B

V? with Backpack
. :

PR %o
S w - dowar
pET toy s

Covariance ma-

Figure 4.15:
trix computed by the stego sig-

nal b = y — x, for (up-
left) stegos obtained with J-
Uniward, or (up-right) stegos
in V° produced in the proto-
col with ADV-EMB, or (bottom-
left) vector obtained with simple
gradient descent from J-Uniward
stegos or (bottom-right) stegos
obtained with Backpack. Stegos
at QF 100 paylaod 0.4 bpnzAC,
using 7000 images of BOSSBase
decomposed into non overlap-
ping 16 x 16 blocks. (2 thresh-
olding are applied to reduce the
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stego noise) was initialised with the training on ImageNet. Starting
from iteration 4, the GPU can not load all models (4 * 3 = 12) to
compute Z4. Therefore, we only defeat the last models from 3 past
iterations (the 9 last models). At iteration 1, we estimated the gradient
with K = 5 samples, at iteration 2, we used K = 2 examples, and
starting from iteration 3, we used K = 1.

Computational cost At iteration 3, the optimisation of the cost map
takes, in average, 16.12 minutes per image, on GPU Nvidia V100 with
16Go of memory.

Results
culties converging, we fed the network with newly sampled stegos in

For this experiment, because Efficient-Net might have diffi-

each batch from the optimised cost maps obtained with Backpack. We
can therefore apply Curriculum Learning (see section 2.4.1) easily be-
cause we simulate the embedding of a message of any length with the
cost map. However, we observe a suboptimality associated with this
training strategy. When we finetune the training by finally training on
the stego images, we obtain a lower error rate (Figure 4.16, right).

Training with the cost maps

Retraining with the stego

0.5 7
***** EfNet
0.4- XU-Net
SRNet
0.3 1 g —— P~
0.2 ST
014~
0¢0 T T T T T T T T 0¢0 T T T T T T T
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Iteration &

First, it might be surprising because the stego images were initialy
sampled from the cost maps. But the gradient descent Backpack,
where an average estimates the expectation between K samples, could
select particular stegos which are far from the probability distribution
given by the optimised cost map. Secondly, it shows the importance
of correctly training a classifier during the protocol, as the error rate
can be overestimated.

We use the optimised cost map obtained in this experiment to eval-

uate a possible payload mismatch.

Payload mismatch

From the optimised cost map with respect to three architectures of
classifiers obtained with Backpack, we investigate the following ques-

Iteration &

Figure 4.16: Experiment with
A, = {XU-Net, SRNet, EfNet}

(the targeted classi-
fiers, plain  lines) and
A. = A, U {DCTR,GFR}

(the  untargeted  classifiers,
dashed lines), for images at QF
75, payload 0.4 bpnzAC. (Left)
Error rate of classifiers when
they are trained with newly
sampled stegos at 0.4 bpnzAC
from the optimized cost maps.
(Right) Error rate of finetuned
classifiers on the stegos obtained

from the optimization.
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tion: “Are the resulted costs optimised to other payloads?” because we
recall that we can use a cost map to embed a message of any length.

We proceed to the following experiment. We simulated embedding
at payloads 0.1, 0.2, 0.3 and 0.5 in the cover from the optimized cost
map obtained in experiment in section 4.5.3 at payload 0.4 bpnzAC.
Then we trained the three architectures to detect the obtained stegos.
We plot on Figure 4.17 the error rate of every model at each payload,
compared to J-Uniward.

XuNet SRNet
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Il J-UNIWARD
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I
||
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I
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Embedding rate (bpnzAC) Embedding rate (bpnzAC)

It is interesting to notice that J-Uniward has an intuitive behaviour,
meaning that the smaller is the payload, the less detectable it is for each
model. We do not observe the same behaviour for the optimised costs
with Backpack. The Backpack costs give a worst result that J-Uniward
for embedding rates of 0.1 and 0.2. For embedding rate starting from
0.3 it gives better results. For Efficient-Net, it is surprising how the
cost seems overfitted to the embedding rate 0.4, because it is where it
is the least undetectable.

Where to stop?

There is still a remaining question: how far should we cross the decision
boundary when we fool a classifier?

This question is asked because we are solving a subgame of the real
game with an infinite set of actions. When Alice plays the min max
strategy, Eve can answer by creating a new action. There Alice hopes
that the stego she creates will not be detected by the next detector.
Eve’s utility function is the output probability of stego class of a de-
tector. When the probability is below 0.5, the stego fools the classifier.

For our first contribution, we proposed to stop whenever the decision
boundary is crossed, so whenever the stego probability class is below
0.5. We have the intuition that crossing the boundary too far would
make the stego too detectable afterwards. For our second contribution,
we decided to stop when the detectability of the stego becomes below
the detectability of cover. It has the advantage of not modifying a
stego whose cover is already misclassified. However, all these ideas are
not relying on an optimised process, and it would be interesting to

I FEEN ITER
NN RN

Efficient-Net

0.3

01 02 03 04 05
Embedding rate (bpnzAC)

e
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Figure 4.17:  Error rate of
three models (XuNet, SrNet
and Efficient-Net) trained to de-
tect stegos sampled for the cost
maps at different embedding
rates (from 0.1 to 0.5) where the
cost are optimized with Back-
pack during a min max protocol
at payload 0.4bpnzAC.
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evaluate the best boundary.

CONCLUSION AND OVERVIEW

This contribution framed adversarial attacks against steganalyzers into
a perspective of the general steganographic problem, which is the min-
imisation of non-additive distortion functions. It has shown that ad-
versarial attacks can be seen as an optimisation of an approximation
of non-additive distortion function by its additive counterpart defined
implicitly by costs of changing embedding coefficients.

The proposed method, called Backpack, relies on the fact that most
state of the art steganalyzers, mainly those implemented by convolu-
tion neural networks, allow calculating gradients of their output with
respect to the input (using back-propagation). Backpack approximates
discrete embedding changes by samples from Gumbel-Softmax distri-
bution, which is a standard approach in machine learning. It also uses
differentiation of implicit function to handle constraints on message
length effectively.

The experimental experimentally confirms the theoretical correct-
ness of the approach. The security of a steganographic scheme as
measured by XuNet on 512 x 512 JPEG images compressed with qual-
ity factor 100 with a payload of 0.4 bits per non-zero AC coeflicient
has increased to 37.3% whereas that of the previous state of the art
known to authors was 26.5% under the same setting. Interestingly,
although the steganographic algorithm was optimised with respect to
XuNet steganalyzer, the security with respect to other steganalyzers
achieved by SrNet, GFR or DCTR features has increased as well.






Conclusion and perspectives

At the beginning of this manuscript, we started by presenting naive
steganography by hiding a bit of message per image coeflicient, and we
saw how highly detectable it is. We learned that it is crucial to adapt
the embedding to the image content to respect its natural statistics.
Distortion functions hold the role of deciding where to hide the data
without being detectable.

On the other hand, convolutional neural networks perform well to
spot a modified image. Given their learning examples, they can be
trained to detect a specific embedding method. However, deep learn-
ing tools are susceptible to be targeted by an adversarial method, i.e.
the stenographer can adapt its distortion function to avoid a specific
classifier.

Each character can adapt its strategy depending on the action of the
other. For this reason, we brought game theory notions to tackle this
problem. We constructed a game for each cover image, where Alice can
choose among multiple stego versions of the cover and where Eve can
choose a detector. Eve’s utility of the game is the probability of the
stego class of the detector evaluated on the stego, and Alice’s utility
is the opposite. We, therefore, construct multiple zero-sum games.

In practice, the set of actions available to each player is enormous,
so those games are not constructible. We propose instead to construct
iteratively sub-games, where at each step, each player creates new
action which is optimal to the game. Alice can create a new embed-
ding function following a min max strategy via her adversarial scheme.
Then Eve can learn a new classifier to detect the optimal stegos.

In that way, this thesis proposes an automatic procedure to improve
the distortion function to fool a specific model. It is a very general
scheme, and we can adapt it as long as Alice possesses an adversarial
embedding scheme compatible with Eve’s targeted detector.

In Chapter 3, we use for our experiments the ADV-EMB adversar-
ial scheme, which can avoid a specific differentiable trained model. We
choose XU-Net and SRNet for the detectors. In all our experiments,
we show the performance of our protocol compared to the initial dis-
tortion J-UNIWARD or UERD. Specifically, the most secure version
increases the error rate of SRNet for messages with payload 0.4 hidden
in JPEGs by 10% comparing to J-UNIWARD: it jumps from 6.3% to
16.3%. We also show that the error rate of non-targeted classifiers
(DCTR and GFR) increases.

In Chapter 4, we propose to improve the ADV-EMB algorithm
by removing the heuristic. We propose Backpack, a method to dif-
ferentiate through a probability distribution parameters. It enables

O
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to optimize the expectation of the optimal detector with respect to
the distortion function via gradient descent, while complaining to a
constraint on entropy. In our experiments, we compare this new ad-
versarial scheme in our protocol to ADV-EMB. We observe that Back-
pack increases the security and the error rate of classifiers no longer
saturates with the iterations. For a protocol with images at QF 75, a
payload of 0.4 against XU-Net, we reach an error rate of 47.6%.

Perspectives

An interesting perspective, introduced in Section 3.2.3, is the con-
sideration of mixed strategy, on the opposite of pure strategies that
we were playing for our two contributions. It is easily solvable, as
the scipy.linprog library can find the Nash equilibrium because any
two-players zero-sum game can be expressed as a linear program [52].

Another is motivated by the computational cost of the protocol.
The main limitation is the computational cost of our technique (see
Section 4.5.3). This is all the more serious as neither cost maps nor
the classifiers obtained at the end of a protocol can be used to embed
in another cover source or embed a message of another length.

First, it requires many GPU resources to backpropagate through
models with many parameters for each image several times. Second,
we show that the cost maps are not transferable to hide a message
with other payloads. We show that the classifiers are no relevant ad-
versaries to optimize the cost map for other cover sources. Therefore,
it is required to re-run an entire protocol to adapt the cost map for
new parameters (for example, changing the QF or the development
process of the image), which is a costly operation. Because the proto-
col is specific to a payload and a cover source, it is very motivating to
accelerate the convergence process.

Optimization of hyperparameters of Backpack Optimizing the adver-
sarial embedding scheme (Alice’s new action in the protocol) to pro-
duce stego not too detectable at the next step is a way to speed up
the convergence. As explained in Section 4.3.4, there are hyperpa-
rameters in the Backpack algorithm: the maximum number of steps,
the learning rate, the number of samples, the decreasing policy for the
temperature and the stopping condition.

We suggested in 4.5.5 to optimize the stopping condition of the
resolution of the minmax. The convergence of the protocol might be
improved if the resolution is optimized, such as images are not too
detectable at the next step.

The Backpack technique requires to load mutliple models at the
same time in the GPU, such as we can optimize the cost map with
respect to the optimal detector. At some point, especially if we want
to optimize w.r.t. different architectures, it is motivating to decrease
the GPU loading. A solution could be to use distillation, which is the
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process of transferring knowledge from a large model to a smaller one.
The challenge it that smaller classifier should remain an interesting
opponent, meaning that computing adversarial content to the distilled
network should stay adversarial to the original networks.
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Vizualisation of various costs

maps

JPEGlOO (X) JPEG95 (X) JPEG75 (X) JPEG50(X)

Figure 1: Original image

B.6 IN SPATIAL DOMAIN

S-UNIWARD

HILL

Figure 2: Spatial embedding: S-

NIWARD and HILL
B.7 IN JPEG DOMAIN UNIWARD and cost maps



120

S-UNIWARD

HILL

Figure 3: Spatial embedding: S-
UNIWARD and HILL embed-
d:uég A changes

T, Q

m,a=0.8

QF = 100

m,a=0.1 m,a = 0.2

QF = 95

QF =75

QF = 50

Figure 4: J-UNIWARD cost
maps at different QF, and prob-
ability maps at different relative
payload per non-zero AC coeffi-

cient



QF =75 QF =95 QF = 100

QF = 50

VIZUALISATION OF VARIOUS COSTS MAPS 121

P m,a=0.1 m,a = 0.2 moa=0.4

Figure 5: J-UNIWARD cost
maps at different QF, and prob-

ability maps at different relative
payload per non-zero AC coeffi-

cient



122

Figure 6: UERD cost maps
at different QF, and probability
maps at different relative pay-
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Abstract

Steganography is a technique that Alice can use to send a message to
Bob secretly. It consists of concealing a message discreetly within a
public content without arousing the steganalyst Eve’s suspicion, who
observes the communication channel and can cut it. Digital images
offer an enormous potential to hide a message by modifying its coef-
ficient slightly. In this thesis, we present an automatic procedure to
improve steganography by cover modification.

To increase security, Alice should adapt the embedding to the con-
tent to avoid risky areas, such as the sky or walls. Her mission consists,
therefore, of designing a distortion function defining which coefficients
should not be changed. On the other hand, Eve can use state-of-the-
art detectors by training a deep learning model to detect which image
was modified. They are very performant to detect invisible-to-the-eye
modifications made to a cover.

In this manuscript, we propose using game theory notions to tackle
the problem, as we can see Alice and Eve playing a competitive game
with antagonistic ambitions. It helps us define the problem correctly
and highlights the min max optimization problem Alice wants to solve.

Our first contribution proposes a practical solution to solve the opti-
mization problem by constructing a fictional iterative game where the
two players can play optimally. First, (i) Alice can create new stegos by
adapting her distortion function to defeat Eve’s optimal differentiable
detector. Then (ii) Eve can create a new classifier optimized to detect
Alice’s best stegos. In that way, we propose an automatic procedure
that improves Alice’s scheme w.r.t a differentiable detector. We used
for our experiments the algorithm ADV-EMB [31] for step (i). The
results show that the automatic protocol gives stegos undetectable by
a specific detector and even unexpected classifiers.

Our second contribution proposes an improvement of ADV-EMB.
When its solutions rely on a heuristic, we propose to adopt a clas-
sical optimization technique, gradient descent, to approach the res-
olution of the optimization problem. The key idea was to apply a
re-parametrization trick that allows differentiating the expectation of
the detectability given by a detector with respect to the distortion
function. This new method provides a more powerful attack, which
again improves Alice’s discretion.






Résumé en francais

La stéganographie est une technique qu’Alice peut utiliser pour envoyer
secrétement un message & Bob. Cela consiste a dissimuler discrétement
un message au sein d’un contenu public sans éveiller les soupgons du
stéganalyste Eve, qui observe le canal de communication et peut le
couper. Par exemple, écrire & I’encre invisible est une technique de
stégaganographie, et chauffer une feuille pour vérifier la présence d’un
message est une technique de stéganalyse. Les images numériques,
d’une part de leur la banalité de leur présence sur internet et d’autre
part pour leur structure toujours compliquée a modéliser, offrent un
potentiel énorme pour cacher un message en modifiant légérement ses
coeflicients. Dans cette thése, nous présentons une procédure automa-
tique pour améliorer la stéganographie en modifiant des images na-
turelles.

D’une maniére générale, I’état-de-1’art conseille, pour augmenter la
sécurité, qu’Alice doit adapter I'incorportation du message au contenu
afin d’éviter les zones a risque, comme le ciel ou les murs. Sa mission
consiste donc & concevoir une fonction de distorsion définissant quels
coefficients de l'image ne doivent pas étre modifiés. Pour simplifier
les calculs, la fonction de distortion est souvent définie comme une
somme de coiits de modifications indépendants. C’est-a-dire que a
chaque coefficient i de I'image est associé un cotit p® correspondant a
I'impact de la modification du coefficient par I’ajout de la valeur b.

L’additivité des cofits dans la définition de la distortion permet
d’utiliser I'algorithme efficace Syndrome Treillis Code (STC) pour cacher
n’importe quel message dans une image. En théorie, cette méthode
basée sur de la programmation linéaire, permet d’atteindre la borne
minimale de distortion tout en cachant le message, cela produit ainsi
une image stégo optimale. Seulement cette méthode, bien que pro-
duisant une méthode efficace par rapport a la complexité du probléme,
reste coliteuse a exécuter. C’est pourquoi en pratique l’état-de-I’art
suggére de simuler 'insertion du message. Avec une longueur d’un
message fictif donné, nous pouvons calculer la distribution de proba-
bilité des modifications & appliquer a I'image pour cacher ce message
tout en minimisant parfaitement la distortion. Ainsi a chaque pixel
est associé une distribution de probabilité discréte de modification ;
simuler 'insertion revient a tirer au hasard une modification selon cette
distribution. Les paramétres de la distribution s’obtiennent par une
formule directe des cotlits de modification p, et d’un scalaire A defini
implicitement pour satisfaire une condition sur ’entropie, devant étre
égale a la longueur du message a cacher.

D’autre part, Eve peut utiliser des détecteurs de pointe en entrai-
nant un modéle d’apprentissage profond pour détecter quelles images
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ont été modifiées. Ils sont trés performants pour détecter des modi-
fications invisibles & U'ceil nu effectuées a4 une image. L’état-de-’art a
vu se développer plusieurs architectures adaptées a telles taches, pour
analyser les signaux faibles dans les images. Les architectures utilisées
dans cette thése seront XU-Net, SRNet et Efficient-Net.

Ainsi, Alice et Eve ont deux roles opposés : Alice veut transmettre
un message sans étre détectée par Eve, alors que cette derniére veut
détecter la présence d’un message dans les images transmises publique-
ment par Alice. Dans ce manuscrit, nous proposons d’utiliser des no-
tions de théorie des jeux pour aborder le probléme, car nous pouvons
voir Alice et Eve comme jouant & un jeu compétitif avec des ambi-
tions antagonistes. Cela nous aide & définir correctement le probléme
et met en évidence le probléme d’optimisation min max qu’Alice veut
résoudre. La premiére étape de maximisation se fait sur l’ensemble
des actions d’Eve, supposant qu’elle choisit son meilleur classifieur, et
la deuxiéme étape est une étape de minimisation sur ’ensemble des
actions d’Alice, choisissant la meilleure réponse face a 'action d’Eve
pour minimiser son taux de bonne classification.

Seulement ce probléme d’optimisation s’avére étre trés compliqué
a résoudre, & cause du nombre d’actions disponibles & chaque joueur.
En effet, il existe une inifinité de possibilité pour les deux, ce qui rend
la résolution du probléme min max complexe.

Notre premiére contribution propose une solution pratique pour ré-
soudre le probléme d’optimisation en construisant un jeu itératif fictif
ou les deux joueurs peuvent jouer de maniére optimale. A la place de
résoudre ce jeu d’'un coup, nous proposons de résoudre successivement
plusieurs jeux de plus en plus difficiles, mais a chaque fois résolubles.
A chaque iteration, chaque joueur propose une meilleure action, visant
a la fin & améliorer la stéganographie vis-a-vis d’une architecture de
stéganalyse.

Plus précisémement, tout d’abord, le jeu commence par la création
de la part d’Alice d’un ensemble d’images stégos, et de la part d’Eve la
création d’un steganalyste discriminant bien ces stégos des images na-
turelles covers. Puis chaque itération, chaque joueur va proposer une
nouvelle action. D’abord (i) Alice peut créer de nouvelles stégos en
adaptant sa fonction de distorsion pour vaincre le détecteur dérivable
optimal d’Eve. Puis (ii) Eve peut créer un nouveau classificateur op-
timisé pour détecter les meilleurs stégos d’Alice. De cette fagon, nous
proposons une procédure automatique qui améliore le schéma d’Alice
par rapport & un détecteur dérivable. Nous avons utilisé pour nos ex-
périences l'algorithme ADV-EMB [31] pour I’étape (i). Les résultats
montrent que le protocole automatique donne des stégos indétectables
par un détecteur spécifique mais aussi par des classifieurs non consid-
érés jusqu’alors.

Notre deuxiéme contribution propose une amélioration de ADV-
EMB. Le but d’'une attaque de la part d’Alice consiste a minimiser
I'espérance de la détéctabilité du meilleur classifieur d’Eve par rap-
port a la fonction de distortion (ie les cotts de modification additifs).
Nous observons que c’est ce qu’effectue ADV-EMB, mais est limité
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au bout de quelques itérations du protocole de notre premiére contri-
bution, ne fournissant plus une attaque assez performante. De plus,
cet algorithme est basé sur une heuristique. Nous proposons, dans
notre deuxiéme contribution, d’adopter pour aborder la résolution du
probléme d’optimisation une technique d’optimisation classique, la de-
scente de gradient, afin de minimiser ’espérance de la détectabilité,
tout en enlevant le paramétre heuristique de ADV-EMB. Nous sus-
pectons que cette méthode n’était pas appliquée jusqu’alors & cause
d’une difficulté encontrée lors du calcul du gradient. En effet, il né-
cessite de calculer en outre le gradient d’un tirage aléatoire discret
par rapport aux paramétres de la distribution. La reparamétrisation
du probléme permet d’avoir une expression formelle du gradient, mais
a cause de la discretisation du tirage, le gradient a une valeur soit
nulle soit non définie. Ainsi, I'idée principale est d’approximer la fonc-
tion de discretisation par une fonction dérivable, controlée par une
valeur A. Ainsi, nous pouvons finalement différencier ’espérance de
la détectabilité donnée par un détecteur par rapport a la fonction de
distorsion. Cette nouvelle méthode fournit une attaque plus puissante,
qui améliore encore plus la discrétion d’Alice.
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Digital images steganography using adversarial embedding

Steganography is a technique Alice can use to secretly send a message to Bob. This consists of discreetly con-
cealing a message within public content without arousing the suspicion of the steganalyst Eve, who observes
the communication channel. In this thesis, we present an automatic procedure to improve steganography
via natural image modification. To increase security, Alice must adapt the embedding of the message to the
content by designing a distortion function defining which coefficients of the image must not be modified. On
the other hand, Eve can use advanced detectors by training a deep learning model to detect which images
have been altered. In this manuscript, we propose to use notions of game theory to approach the problem,
because we can see Alice and Eve as playing a competitive game with antagonistic ambitions. This helps us
to define the problem correctly and highlights the min max optimization problem that Alice wants to solve.
Our first contribution proposes a practical solution to solve the optimization problem by building a fictitious
iterative game where both players can play optimally. First, (i) Alice can create new stegos by adapting
her distortion function to defeat Eve’s optimal derivable detector. Then (ii) Eve can create a new classifier
optimized to detect Alice’s best stegos. In this way, we propose an automatic procedure which improves
Alice’s scheme compared to a derivable detector. The results show that the automatic protocol gives stegos
undetectable by a specific detector but also by classifiers not considered until now. Our second contribution
proposes an improvement of ADV-EMB previously used for the (i) step. While this algorithm is based
on a heuristic, we propose to adopt a classical optimization technique, gradient descent, to approach the
resolution of the optimization problem. The main idea is to apply reparametrize the sampling such that it is
possible to differentiate the expectation of the detectability given by a detector with respect to the distortion
function. This new method provides a more powerful attack, which further improves Alice’s discretion.
Keywords: Security, Steganography, Steganalysis

Stéganographie d’tmages numériques via l’utilisation de réseaux de neurones
sous présence d’un adversaire

La stéganographie est une technique qu’Alice peut utiliser pour envoyer secrétement un message & Bob.
Cela consiste a dissimuler discrétement un message au sein d’un contenu public sans éveiller les soupgons
du stéganalyste Eve, qui observe le canal de communication. Dans cette thése, nous présentons une procé-
dure automatique pour améliorer la stéganographie en modifiant des images naturelles. Pour augmenter la
sécurité, Alice doit adapter I'incorportation du message au contenu en concevant une fonction de distorsion
définissant quels coefficients de I'image ne doivent pas étre modifiés. D’autre part, Eve peut utiliser des
détecteurs de pointe en entrainant un modéle d’apprentissage profond pour détecter quelles images ont été
modifiées. Dans ce manuscrit, nous proposons d’utiliser des notions de théorie des jeux pour aborder le
probléme, car nous pouvons voir Alice et Eve comme jouant & un jeu compétitif avec des ambitions antag-
onistes. Cela nous aide a définir correctement le probléme et met en évidence le probléme d’optimisation
min max qu’Alice veut résoudre. Notre premiére contribution propose une solution pratique pour résoudre
le probléme d’optimisation en construisant un jeu itératif fictif o les deux joueurs peuvent jouer de maniére
optimale. Tout d’abord, (i) Alice peut créer de nouvelles stégos en adaptant sa fonction de distorsion pour
vaincre le détecteur dérivable optimal d’Eve. Puis (i) Eve peut créer un nouveau classificateur optimisé
pour détecter les meilleurs stégos d’Alice. De cette fagon, nous proposons une procédure automatique qui
améliore le schéma d’Alice par rapport & un détecteur dérivable. Les résultats montrent que le protocole
automatique donne des stégos indétectables par un détecteur spécifique mais aussi par des classifieurs non
considérés jusqu’alors. Notre deuxiéme contribution propose une ameélioration de ADV-EMB jusqu’alors
utilisé pour l’étape (i). Alors que cet algorithme repose sur une heuristique, nous proposons d’adopter
une technique d’optimisation classique, la descente de gradient, pour aborder la résolution du probléme
d’optimisation. L’idée principale est de reparamétriser I’étape d’échantillonage de sorte que ’on puisse dif-
férencier ’espérance de la détectabilité donnée par un détecteur par rapport a la fonction de distorsion.
Cette nouvelle méthode fournit une attaque plus puissante, qui améliore encore plus la discrétion d’Alice.
Mots clés : Sécurité, Stéganographie, Stéganalyse
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