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Abstract

This thesis manuscript is devoted to the study of Plug & Play methods applied to inverse
problems encountered in image restoration. Since the work of Venkatakrishnan et al. (2013)
in 2013, Plug & Play (PnP) methods are often applied for image restoration in a Bayesian
context. These methods aim at computing Minimum Mean Square Error (MMSE) or Maxi-
mum A Posteriori (MAP) for inverse problems in imaging by combining an explicit likelihood
and an implicit a-priori defined by a denoising algorithm. In the literature, PnP methods
differ mainly in the iterative scheme used for both optimization and sampling. In the case of
optimization algorithms, recent works guarantee the convergence to a fixed point of a certain
operator, fixed point which is not necessarily the MAP. In the case of sampling algorithms
in the literature, there is no evidence of convergence. Moreover, there are still important
open questions concerning the correct definition of the underlying Bayesian models or the
computed estimators, as well as their regularity properties, necessary to ensure the stability
of the numerical scheme. The aim of this thesis is to develop simple but efficient restora-
tion methods while answering some of these questions. The existence and nature of MAP
and MMSE estimators for PnP prior is therefore a first line of study. Three methods with
convergence results are then presented, PnP-SGD for MAP estimation and PnP-ULA and
PPnP-ULA for sampling. A particular interest is given to denoisers encoded by deep neural
networks. The efficiency of these methods is demonstrated on classical image restoration
problems such as denoising, deblurring or interpolation. In addition to allowing the estima-
tion of MMSE, sampling makes possible the quantification of uncertainties, which is crucial
in domains such as biomedical imaging. Lastly, the influence of the denoiser on the posterior
is investigated and a comparison between the Bayesian probabilities reported by the model
and the frequentist probabilities arising from a large number of repetitions of an experiment
is drawn.
Keywords: inverse problems, Plug & Play methods, Langevin algorithms, Markov chain,
Monte-Carlo methods, stochastic gradient descent, denoising, deblurring, interpolation.
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Résumé

Ce manuscrit de thèse est consacré à l’étude des méthodes Plug & Play appliquées à des
problèmes inverses rencontrés en restauration d’images. Depuis les travaux de Venkata-
krishnan et al. (2013) en 2013, les méthodes Plug & Play (PnP) sont souvent appliquées
pour la restauration d’image dans un contexte Bayésien. Ces méthodes visent à calculer
les estimateurs Minimum Mean Square Error (MMSE) ou Maximum A Posteriori (MAP)
pour des problèmes inverses en imagerie en combinant une vraisemblance explicite et un
a-priori implicite défini par un algorithme de débruitage. Dans la littérature, les méthodes
PnP diffèrent principalement par le schéma itératif utilisé que cela soit pour l’optimisa-
tion ou l’échantillonnage. Dans le cas des algorithmes d’optimisation, des travaux récents
garantissent la convergence vers un point fixe d’un certain opérateur, point fixe qui n’est
pas nécessairement le MAP. Dans le cas des algorithmes d’échantillonnage de la littéra-
ture, il n’existe pas de preuves de convergence. Par ailleurs, il reste d’importantes questions
ouvertes portant sur la bonne définition des modèles Bayésiens sous-jacents ou encore des
estimateurs calculés, ainsi que leurs propriétés de régularité, nécessaires pour assurer la
stabilité du schéma numérique. Le but de cette thèse est de développer des méthodes de
restauration simples mais efficaces tout en répondant à ces interrogations. L’existence et
la nature des estimateurs MAP et MMSE pour des a-priori PnP constitue donc un pre-
mier axe d’étude. Deux méthodes avec des résultats de convergence sont alors présentées,
PnP-SGD pour l’estimation du MAP et PnP-ULA pour l’échantillonnage. Un intérêt parti-
culier est porté aux débruiteurs encodés par des réseaux de neurones profonds. L’efficacité
de ces méthodes est démontrée sur des problèmes classiques de restauration d’image tels le
débruitage, le défloutage ou l’interpolation. En plus de permettre l’estimation du MMSE,
l’échantillonnage rend possible la quantification d’incertitudes, ce qui est crucial dans des
domaines tels que l’imagerie biomédicale. Enfin, l’influence du débruiteur sur l’a-posteriori
estimée est questionnée et une comparaison entre les probabilités données par notre modèle
et les probabilités fréquentistes provenant d’un grand nombre d’expériences est faite.
Mots-Clefs : problèmes inverses, méthodes Plug & Play, algorithmes de Langevin, chaîne de
Markov, méthodes de Monte-Carlo, descente de gradient stochastique, débruitage, déflou-
tage, interpolation.
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coup de tête, ces promesses lancées sur un morceau d’oreiller, ce sentiment d’immortalité,
ces rires qui prouvent le silence et ces jeux toujours plus déjantés. Clara ce sont aussi ces
réveils matinaux difficiles, ces corvées de ménage partagées, ces discussions parfois pénibles
une fois la nuit tombée, des pleurs parfois. C’est cette envie de rester avec toi pour et malgré
tout ça. C’est ce que j’appelle Amour. Merci à toi, qui me soutiens et m’aides à traverser
les épreuves de la vie comme personne. Parce que, oui la vie est dure mais elle est aussi très
belle. Surtout avec toi. Je t’aime. Je te rappelle aussi que tu es Bombur au cas où tu l’aurais
oublié. Je te le rappellerai sans doute ce soir en rentrant ou demain au réveil.
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Ce manuscrit est dédié à ma mère, qui a toujours su m’accompagner. J’aimerais que cela
ne s’arrête jamais.

Il est aussi dédié à mon ami Baptiste L. Ce manuscrit, c’est une sorte de mausolée, ma
manière de ne jamais t’oublier.

x



Contents

1 Introduction (en français) 1
1.1 Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Position du problème . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Sur l'estimation du Maximum A-Posteriori avec des a-prioris Plug-&-Play pour la
descente de gradient stochastique 7

1.4.2 Méthodes Bayésiennes utilisant des a-prioris Plug & Play: quand Lagevin ren-
contre Tweedie 8

1.4.3 Etude approfondie des a-prioris PnP pour l'échantillonnage 8
1.4.4 Publications et Pré-publications 9
1.4.5 Liste des présentations 9

2 Introduction 11
2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 OnMaximum-a-Posteriori estimation with Plug & Play priors and stochastic gra-
dient descent 17

2.4.2 Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie 17
2.4.3 In-depth study of data-driven priors for sampling 18
2.4.4 Publications and Preprints 18
2.4.5 List of presentations 18

3 Background 21
3.1 Inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Inverse problems 22
3.1.2 Examples of inverse problems in imaging science 22
3.1.3 Ill-posedness 24
3.1.4 Regularization 25
3.1.5 Variational Approaches in imaging science and their regularizers 26

3.2 Bayesian Approach in imaging science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Learning Approach with Deep Neural Networks in imaging science . . . . . . . . . . . . . . 28

3.3.1 Neural networks 28
3.3.2 Learning process with neural networks 30
3.3.3 Neural networks for point estimation 31
3.3.4 Neural networks for sampling 31

xi



3.3.5 Limitations of the pure neural network based approaches 33
3.4 A survey of Plug & Play methods for estimating the MAP in imaging . . . . . . . . . . . . . 33

3.4.1 Plug & Play MAP estimators using proximal splitting 34
3.4.2 Plug & Play MAP estimators using gradient descent 36

3.5 Posterior sampling in imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 A survey of Plug & Play methods for sampling the posterior distribution . . . . . . . . . . . 39

4 On Maximum-a-Posteriori estimation with Plug & Play priors and stochastic gradient descent 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 PnP maximum-a-posteriori estimation: analysis and computation . . . . . . . . . . . . . . . 42

4.2.1 Analysis of maximum-a-posteriori estimation with PnP priors 42
4.2.2 PnP-SGD and convergence 44

4.3 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Image dataset 47
4.3.2 Algorithms 47
4.3.3 Parameters settings and convergence conditions 47
4.3.4 Denoising 51
4.3.5 Deblurring 55
4.3.6 Interpolation 56

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Bayesian inference with Plug & Play priors: theory methods and algorithms . . . . . . . . 62

5.2.1 Bayesian modelling and analysis with Plug & Play priors 62
5.2.2 Bayesian computation with Plug & Play priors 66

5.3 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 Notation 68
5.3.2 Convergence of PnP-ULA 68
5.3.3 Convergence guarantees for PPnP-ULA 72

5.4 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.1 Implementation guidelines and parameter setting 75
5.4.2 Convergence analysis of PnP-ULA in non-blind image deblurring and inpainting 77
5.4.3 Point estimation for non-blind image deblurring and interpolation 80
5.4.4 Deblurring and interpolation: uncertainty visualisation study 84

5.5 Accelerated sampling using stochastic orthogonal Runge-Kutta-Chebyshev methods
with data-driven priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 In-depth study of data-driven priors for sampling 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Qualitative comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 Potential analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4 Coverage ratio analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Conclusion and Perspectives 113

xii



A Proofs of Chapter 4 117
A.1 Proof of Proposition 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.2 Proof of Proposition 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.3 Proof of Proposition 4.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B Proofs of Chapter 5 121
B.1 Organization of the supplementary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
B.2 A general framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.3 Strongly log-concave case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.4 Posterior approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B.5 Technical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.6 Proofs of Section 5.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.6.1 Proof of Proposition 5.3.1 131
B.6.2 Proof of Proposition 5.3.2 and Proposition B.3.1 132
B.6.3 Proof of Proposition 5.3.3 and Proposition B.3.2 133

B.7 Proofs of Section 5.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
B.7.1 Proof of Proposition 5.3.5 137
B.7.2 Proof of Proposition 5.3.6 137

B.8 Proofs of Appendix B.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.8.1 Proof of Proposition B.4.1 138
B.8.2 Proof of Proposition B.4.2 138

xiii



List of Figures

1.1 Illustration des limites du paradigme variationnel. Deux solutions possibles
à un problème inverse en imagerie médicale délivrent 2 diagnostics différents.
En effet, la solution de droite présente une lésion contrairement à celle de
gauche. Quelle solution doit-on choisir ? Quelle confiance avons-nous dans la
lésion ? Ces questions peuvent être répondues dans le cadre bayésien. Images
tirées de (Repetti et al., 2019). . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Principe d’un DPPM. pθ correspond à la distribution de débruitage que nous
apprenons par inférence variationnelle et q à la distribution de bruitage. Im-
age issue de (Kawar et al., 2022). . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 llustration du principe des méthodes d’unrolling. Dans ce cas, le réseau
de neurones vise à résoudre un problème inverse de super-résolution via un
schéma ADMM linéarisé. Il existe trois modules constitutifs : le module a-
priori P qui est appris pendant l’apprentissage, le module relatif aux données
D comprend des informations sur le processus d’observation et le module de
mise à jour U . Image tirée de (Laroche et al., 2022). . . . . . . . . . . . . . . 6

2.1 Illustration of the advantage of the Bayesian framework over the variational
paradigm. Two possible solutions to an inverse problem in medical imaging
leading to two possible different diagnoses. Indeed, the solution on the right
presents a lesion whereas the one on the left does not. Which solution should
we select ? How confident are we on the lesion ? These questions can be
answered in the Bayesian framework. Illustrations from (Repetti et al., 2019). 13

2.2 Principle of a DPPM. pθ corresponds to the denoising diffusion distribution
we learn by variational inference and q to the noising process distribution.
Image taken from (Kawar et al., 2022). . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Illustration of the deep-unrolling principles. In this case, the neural network
aims at solving a super-resolution inverse problem via a linearised ADMM
scheme. There are three constitutive modules: the prior module P that is
learnt during the training, the data module D which incorporates information
about the observation process and the update module U . Image taken from
(Laroche et al., 2022). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Examples of the different types of blur. In both cases the blur kernel is
spatially-varying, with a mix of sharp and blurry objects for both images. . . 23

3.2 Example of imaging inverse problems. . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Simplified neural network. Each node corresponds to a neuron and each edge

corresponds to a weight. Neurons of the same colour are grouped into layers.
Image from Wikipedia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xiv



3.4 Structure of a VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Dataset (part 1): First three images in our dataset, and examples of degraded
images for the three inverse problems considered in this chapter. For denois-
ing, we add a Gaussian noise with variance σ2 = (30/255)2. For deblurring,
the operator A correponds to a 9 × 9 uniform blur operator, and we add
Gaussian noise with variance σ2 = (1/255)2. For interpolation, we hide 80%
of the pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Dataset (part 2): Last three images in our dataset, and examples of degraded
images for the three inverse problems considered in this chapter. For denois-
ing, we add a Gaussian noise with variance σ2 = (30/255)2. For deblurring,
the operator A correponds to a 9 × 9 uniform blur operator, and we add
Gaussian noise with variance σ2 = (1/255)2. For interpolation, we hide 80%
of the pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Plug & Play denoising for σ2 = (30/255)2 with the prior implicit in Dε for
ε = (5/255)2 and different values of the regularization parameter α. This
table shows means and standard deviations for PSNR and SSIM values over
K=10 independent noise realizations for each of the six images and different
values of the regularization parameter α. Initialization plays a very minor role
in this case and all algorithms achieve similar (nearly optimal) performance
for α = 0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Plug & Play denoising for σ2 = (30/255)2, ε = (5/255)2 and with α =
0.25. Although the results obtained by the different methods are close from a
quantitative point of view, they look for different compromises. For example,
PnP-ADMM looks for sharper edges than PnP-SGD but tends to hallucinate
structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Convergence diagnosis for Plug & Play denoising for σ2 = (30/255)2, ε =
(5/255)2 with α = 0.25 and TV− L2 initialization. Left: Evolution of the
average PSNR computed for K = 10 independent noise realizations for each
image. A thousand of iterations seem to be sufficient to leave the burn-
in phase and enter the stationary phase. The decay of the discretization
step-size δk does not alter the results, which suggests that the algorithm has
converged. Right: Evolution of the average gradient norm of the log-posterior
computed over the 10 experiments for each image. In less than 500 iterations,
it stabilizes around 0.4 for each image. These plots suggest that the algorithm
has converged. The decrease observed after 5000 iterations is explained by
the decay of the discretization step-size δk and does not alter the final result. 54

4.6 Plug & Play deblurring. Image are blurred with a 9 × 9 uniform kernel, a
Gaussian noise of standard deviation σ2 = (1/255)2 is added. The denoiser
Dε is trained at ε = (5/255)2. The plots shows mean and standard devi-
ation values of PSNR and SSIM over K=10 independent noise realizations
for each of the six images and different values of the regularization parame-
ter α. Initialization plays a very minor role in this case and all algorithms
achieve similar (nearly optimal) performance for α = 0.3, except for FBS
which requires a larger (sub-optimal) α to converge. . . . . . . . . . . . . . . 55

4.7 Plug & Play deblurring, for a 9 × 9 kernel, an additive Gaussian noise of
standard deviation σ2 = (1/255)2, for ε = (5/255)2 and for the nearly optimal
value of α = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xv



4.8 Convergence diagnosis for Plug & Play deblurring with σ2 = (1/255)2,
ε = (5/255)2, α = 0.3 and TV− L2 initialization. Left: Evolution of the
average PSNR computed for K = 10 independent noise realizations for each
of the 6 images. As expected the convergence is slower for the deblurring
problem. 4000 iterations seem to be required to enter the stationary phase for
all images except Cameraman, that needs on average 1.5e4 iterations. Right:
Evolution of the average gradient norm of the log-posterior computed over the
10 experiments for each image. For all images, the gradient norm stabilizes
around 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9 Interpolation results for the Simpson’s image with p = 0.8, σ = 0 each column
corresponds to a different initial condition. . . . . . . . . . . . . . . . . . . . 59

5.1 Original images used for the deblurring and interpolation experiments. . . . . 74
5.2 Images of Figure 5.1, blurred using a 9× 9-box-filter operator and corrupted

by an additive Gaussian white noise with standard deviation σ = 1/255. . . . 75
5.3 Images of Figure 5.1, with 80% missing pixels. . . . . . . . . . . . . . . . . . . 76
5.4 Marginal posterior standard deviation of the unobserved pixels for the in-

terpolation problem. Uncertainty is located around edges and in textured
areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5 Evolution of the L2 distance between the final MMSE estimate and the sam-
ples generated by PnP-ULA for the interpolation problem after the burn-in
phase. Samples randomly oscillate around the MMSE. It means that they
are uncorrelated. For the images Cameraman, Simpson or Bridge, we note
a change of range for the L2 distance. It could be interpreted as a mode
switching as our posterior is likely not log-concave. . . . . . . . . . . . . . . . 79

5.6 ACF for the interpolation problem. The ACF are shown for lags up to 5e5
for all images in the pixel domain. After 5e5 iterations, sample pixels are
nearly uncorrelated in all spatial directions for the images Traffic, Alley,
Bridge and Goldhill. For the images Cameraman and Simpson, in the slowest
direction, samples need more iterations to become uncorrelated. . . . . . . . . 79

5.7 Log-standard deviation maps in the Fourier domain for the Markov chains de-
fined by PnP-ULA for the deblurring problem. First line: images Cameraman,
Simpson, Traffic. Second line: images Alley, Bridge and Goldhill. For
the first three images, we clearly see that uncertainty is observed on frequen-
cies that are near the kernel of the blur filter (shown on the right), and is
also higher around high frequencies (i.e. around edges and textured areas in
images). For the last three images, very high uncertainty is observed around
some specific frequencies. In the direction of these frequencies, the Markov
chain is moving very slowly and the mixing time of the chain is particularly
slow, as shown on Figure 5.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.8 Evolution of the L2 distance between the final MMSE estimate and the sam-
ples generated by PnP-ULA for the deblurring problem after the burn-in
phase. For images as Cameraman or Simpson, samples randomly oscillate
around the MMSE. On the contrary, for images as Bridge or Goldhill, the
plot is structured, meaning that samples are still correlated. . . . . . . . . . . 81

xvi



5.9 ACF for the deblurring problem. The ACF are shown for lags up to 1.75e5
for the three images Cameraman, Simpson and Traffic (see the two plots
to the left) and independence seems to be achieved in all directions. For
the three other images, independence is not achieved in the slowest direction
(corresponding to the most uncertain frequency of the samples in the Fourier
domain) even after 1e6 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.10 Left: PSNR evolution of the estimated MMSE for the interpolation problem.
After 5e5 iterations, the convergence of the first order moment of the poste-
rior distribution seems to be achieved for all images. Middle and right: PSNR
evolution of the estimated MMSE for the deblurring problem. The conver-
gence for the posterior mean can be fast for simple images such as Cameraman,
Simpson, and Traffic (for these images the PSNR evolution is shown for the
first 5e5 iterations). Increasing δ increases the convergence speed for these
images by a factor close to 2. For more complex images, such as Alley or
Goldhill, the convergence is much slower and is still not achieved after 3e6
iterations with PPnP-ULA for δ = 6δth. . . . . . . . . . . . . . . . . . . . . . 82

5.11 Results comparison for the interpolation task of the images presented in Fig-
ure 5.3 using PnP-ULA (first row) and PnP-SGD initialized with a TVL2
restoration (second row). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.12 Results comparison for the interpolation task of the images presented in Fig-
ure 5.3 using PnP-ULA (first row) and PnP-SGD initialized with a TVL2
restoration (second row). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.13 Results comparison for the deblurring task of the images presented in Fig-
ure 5.2 using PnP-ULA with α = 1 (first row), PnP-SGD with α = 0.3
(second row) and α = 1 (third row). PnP-ULA was initialized with the ob-
servation y (see Figure 5.2) whereas PnP-SGD was initialised with a TVL2
restoration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.14 Results comparison for the deblurring task of the images presented in Fig-
ure 5.2 using PnP-ULA with α = 1 (first row), PnP-SGD with α = 0.3
(second row) and α = 1 (third row). PnP-ULA was initialized with the ob-
servation y (see Figure 5.2) whereas PnP-SGD was initialised with a TVL2
restoration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.15 Marginal posterior standard deviation for the deblurring problem. On simple
images such as Simpson (see fig. 5.1), most of the uncertainty is located
around the edges. For the images Alley, Bridge and Goldhill, associated
with a highly correlated Markov chain in some directions, some areas are
very uncertain. They correspond to the zones where the rotated rectangular
pattern appears in the MMSE estimate. . . . . . . . . . . . . . . . . . . . . . 87

5.16 Evolution of the Root Mean Squared Error (RMSE) between the final stan-
dard deviation and the estimated current standard deviation for the interpo-
lation and deblurring problems. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.17 Marginal posterior standard deviation of the Alley and Simpson images for
the interpolation problem at different scales. The scale i corresponds to a
downsampling by a factor 2i of the original sample size. . . . . . . . . . . . . 88

5.18 Marginal posterior standard deviation of the images Alley and Simpson for
the deblurring problem at different scales. The scale i corresponds to a down-
sampling by a factor 2i of the original sample size. . . . . . . . . . . . . . . . 89

xvii



5.19 Results obtained with SKROCK for s = 10 and s = 15 gradient evaluations
on a deblurring inverse problem with A a 9×9 bloc filter and with an additive
Gaussian white noise with standard deviation σ = 1/255. SKROCK achieves
similar results to PnP-ULA in term of MMSE and standard deviation point
estimations. In order to draw a fair comparison, we let run the algorithm
during n/s iterations with n = 1e7. . . . . . . . . . . . . . . . . . . . . . . . . 90

5.20 Ergodicity test of the Markov chain generated by SKROCK for the deblurring
inverse problem. The 2 plots on the left correspond to ACF computed in the
Fourier domain with s = 10 and s = 15. A similar meta-stability behaviour is
observed as with PnP-ULA. However, it is less pronounced and the number
of posterior score evaluation seems to decrease this phenomenon. The plot
on the right corresponds to the evolution of the Euclidean distance between
the samples generated by the SKROCK Markov chain and the original image
over time δ × t. None of these Markov chains is ergodic. . . . . . . . . . . . . 91

6.1 Architecture of the SN-DnCNN. Figure taken from (Ryu et al., 2019). . . . . 94
6.2 Architecture of the light DRUNet. Figure taken from (Hurault et al., 2022a) 95
6.3 Architecture of the FINE network. Here C corresponds to the number of

channels. C = 1 for grayscale images, C = 3 for color images. Figure taken
from (Pesquet et al., 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 MMSE estimates and two samples obtained with PnP-ULA using SN-DnCNN
and FINE induced priors for the deblurring problem for Simpson and
Goldhill. The blur operator A is a 9 × 9 block-filter and the observation
noise is an additive Gaussian white noise with standard deviation σ = 1/255.
Samples generated with the FINE priors are less diverse but more robust to
instabilities. The Markov chain computed with SN-DnCNN is not ergodic. . . 98

6.5 Marginal posterior standard deviation computed for the deblurring problem
with the SN-DnCNN and FINE induced priors. For the Sn-DnCNN prior
uncertainty is more concentrated around edges and higher, whereas for the
FINE prior uncertainty is more diffuse but 4 times smaller. . . . . . . . . . . 100

6.6 MMSE and marginal posterior standard deviation obtained with PnP-ULA
using the Prox-GSD induced prior for the deblurring problem for Color
Simpson. The blur operator A is a 9 × 9 block-filter and the observation
noise is an additive Gaussian white noise with standard deviation σ = 5/255. 101

6.7 Samples generated by PnP-ULA for Color Simpson and their associated
potential values for Prox-GSD. If produced samples look good in a first
phase, they deteriorate over time. Abnormal structures appear around high-
frequency areas. The Prox-GSD induced prior seems to promote images with
these unnatural structures as the sample potential is at its lowest after 5e6
iterations and the data fitting term do not penalize this evolution. . . . . . . 102

6.8 Cumulative histograms of the pixel values of different samples generated by
PnP-ULA for Color Simpson with the Prox-GSD induced prior. The pixel
magnitude of the generated samples tend to increase over time. After 5e6
iterations, at least 30% of the pixels are outside [0, 1]. The Prox-GSD induced
prior does not regularize enough the posterior distribution tails. It seems that
the neural network did not learn the range of values of the images. . . . . . 103

xviii



6.9 MMSE and marginal posterior standard deviation obtained with P-PnP-ULA
using the Prox-GSD induced prior for the deblurring problem inverse for
Color Simpson with the projection convex compact set C = [0, 1]d. The blur
operator A is 9×9 bloc-filter and the observation noise is an additive Gaussian
white noise with standard deviation σ = 5/255. The hard projection onto C
allows to alleviate diverging samples. Consequently the MMSE does not ex-
pose parasite structures. The log standard deviation is showed as uncertainty
is very low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.10 Samples generated by P-PnP-ULA for Color Simpson for Prox-GSD. . . . . 104
6.11 MMSE and marginal posterior standard deviation obtained with P-PnP-ULA

using the Prox-GSD induced prior for the deblurring problem inverse for
Color Fox with the projection set C = [0, 1]d. The blur operator A is 9 ×
9 bloc-filter and the observation noise is an additive Gaussian white noise
with standard deviation σ = 5/255. A grid pattern on the MMSE ruins the
restoration and increases uncertainty. . . . . . . . . . . . . . . . . . . . . . . . 105

6.12 Samples generated by P-PnP-ULA for Fox with Prox-GSD. A quick deteri-
oration of the samples is observed. It seems to come from high-frequency
motifs in the fox coat that eventually propagates to the whole image. . . . . . 105

6.13 Comparison of the results generated by PnP-ULA with the SN-DnCNN and
the FINE induced priors for a grayscale version of Fox after 1e7 iterations.
Both restorations do not exhibit artefacts ruining the visual impression as
with Prox-GSD (see Figure 6.11). The SN-DnCNN induced posterior pro-
poses an MMSE restoration with sharper edges and better quantitative re-
sults. The associated uncertainty is higher and less spread than with the
FINE induced posterior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.14 Evolution of the L2 distance between the final MMSE estimate and the sam-
ples generated by PnP-ULA with the SN-DnCNN and the FINE induced
posterior for the deblurring problem after the burn-in phase for Fox. . . . . 107

6.15 Evolution of the approximated posterior potential Ured for Simpson and
Goldhill with the SN-DnCNN and FINE induced priors for the deblurring
inverse problem. For the FINE prior, the original image potential is not al-
ways below the potential of the generated samples. For Goldhill, the orignal
image is not a good solution for this inverse problem in terms of potential.
With the SN-DnCNN induced prior, this potential does not regard the origi-
nal images as a good solution. for Goldhill, it seems to promote images with
the grid pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.16 Evolution of the exact posterior potential U for Color Simpson and Fox for
the deblurring inverse problem and PnP-ULA or P-PnP-ULA with Prox-
GSD. Without the hard projection onto the convex compact set C = [0, 1]d,
the posterior induced by the Prox-GSD promotes samples as in Figure 6.7
with diverging pixel values. A hard projection onto C alleviates this issue.
However, it still promotes samples with poor-perceptual quality. . . . . . . . 109

6.17 Coverage ratio analysis for the posterior induced by the SN-DnCNN and
the FINE denoisers. Both posterior distributions are not accurate in the
frequentist sense as the empirically estimated posterior probabilities do not
match the theoretical ones. Both posterior models are over-confident. . . . . . 110

xix



List of Tables

4.1 Plug & Play denoising for σ2 = (30/255)2 with the prior in Dε for ε =
(5/255)2. This table shows mean PSNR values over K=10 independent noise
realizations for each of the six images. The regularization parameter α = 0.25
is nearly optimal for all algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Plug & Play deblurring. Image are blurred with a 9 × 9 uniform kernel, a
Gaussian noise of standard deviation σ = 1/255 is added. The denoiser Dε

is trained at ε2 = (5/255)2. This table shows mean PSNR values over K=10
independent noise realizations for each of the six images. The regularization
parameter α = 0.30 is nearly optimal for all algorithms. . . . . . . . . . . . . 56

4.3 Interpolation with p = 0.8, σ = 0 with random, TV-L2 and oracle initializa-
tion. Mean and standard deviation of PSNR and SSIM measures computed
on K=4 random tests for each of the 6 images. Note the effectiveness of the
coarse-to-fine scheme with either random or TV-L2 initialization: Coarse to
fine SGD is only 0.33 dB away from the solution obtained with oracle init,
which should be quite close to the global optimum. ADMM is only 0.22 dB
away from the solution obtained with oracle init. . . . . . . . . . . . . . . . . 60

5.1 Largest discretization step-sizes useable for PnP-ULA (without enforcing the
strong convexity in the tails), SKROCK with s = 10 and SKROCK with
s = 15. SKROCK allows us to take way larger step-size. It makes the
the state-space exploration faster and it should guarantee a faster sample
decorrelation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Noise levels of the different denoisers used within the PnP-ULA framework.
These denoiser noise levels were found to achieve the best results from a
perceptual and quantitative point of view for the non-blind deblurring inverse
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xx





1
Introduction (en français)

1.1 Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Position du problème . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Sur l'estimation du Maximum A-Posteriori avec des a-prioris Plug-&-Play pour la
descente de gradient stochastique 7

1.4.2 Méthodes Bayésiennes utilisant des a-prioris Plug & Play: quand Lagevin ren-
contre Tweedie 8

1.4.3 Etude approfondie des a-prioris PnP pour l'échantillonnage 8
1.4.4 Publications et Pré-publications 9
1.4.5 Liste des présentations 9
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De nombreux problèmes nécessitent d’inférer un signal à partir de données partiellement ob-
servées et souvent bruitées. Typiquement, ces problèmes apparaissent en ingénierie biomédi-
cale, en géophysique, en astronomie ou encore en finance. Ces problèmes sont appelés prob-
lèmes inverses car les résoudre revient à inverser le processus d’observation de la quantité
d’intérêt afin de recupérer un signal à partir des données observées. De tels problèmes sont
souvent modélisés par l’Equation (1.1)

y = Ax+ n , (1.1)

où y correspond aux données observées, x à la quantité que nous souhaitons inférer, A à
l’opérateur de dégradation, qui modélise le processus d’observation en l’absence de bruit et
n au bruit de mesure.
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Les problèmes inverses rencontrés sont souvent mal-posés, c’est-à-dire qu’une petite per-
tubation au moment de l’observation peut produire de grandes erreurs dans le signal que
l’on souhaite retrouver ou qu’il existe plusieurs signaux possibles consistants avec les don-
nées observées. Tenir compte de ce caractère mal-posé est crucial, spécifiquement dans des
domaines où des décisions sont prises à partir du signal restauré, comme en imagerie médi-
cale. Par ailleurs, les problèmes inverses en imagerie sont souvent des problèmes en haute
dimension, ce qui rend leur résolution d’autant plus difficile.

1.2 Position du problème . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dans beaucoup d’applications, les signaux admissibles appartiennent à un petit sous-
ensemble de l’espace ambiant. Par exemple en imagerie, il est communément supposé que
les images naturelles sont concentrées sur une variété de l’espace ambiant (Fefferman et al.,
2016). Ceci a motivé le développement de régularisateurs qui apportent une connaissance a
priori sur le signal que l’on souhaite restaurer.

Les approches variationnelles sont très populaires pour résoudre les problèmes inverses
en imagerie. Elles commencent par construire une fonction objectif que l’on cherche à
minimiser. Cette fonction objectif résulte généralement de la somme de deux termes, le
terme d’attache aux données qui mesure la distance entre l’observation y et la solution à
notre problème et le terme de régularisation qui promeut des images avec certaines pro-
priétés recherchées ou qui se trouvent dans le voisinage d’une variété. Comme exemples
de régularisateurs classiques, on peut citer la variation totale (TV) (Rudin et al., 1992) qui
favorise des images avec des gradients parcimonieux (en particulier les images constantes par
morceaux), ou encore les régularisateurs favorisant des solutions parcimonieuses dans des
domaines transformés tels que les bases d’ondelettes (Donoho and Johnstone, 1994). Bien
que beaucoup de progrés aient été réalisés dans ce domaine, les régularisateurs explicites
ne parviennent généralement pas à capturer la complexité des images naturelles. De plus,
ces régularisateurs sont souvent convexes afin de tirer profit des méthodes d’optimisation
idoines, ce qui peut limiter l’expressivité des modèles associés.

Les problèmes inverses mal posés peuvent également être abordés dans un cadre bayésien.
Dans ce cadre, les données observées et le signal à reconstruire sont considérés comme des
réalisations de variables aléatoires. Dans le paradigme Bayésien, nous cherchons à déterminer
la distribution a posteriori, i.e. la distribution de x sachant les données observées y en
appliquant la loi de Bayes

p(x|y) = p(x)p(y|x)/
∫

p(z)p(y|z)dz , (1.2)

où p(y|x) est appelée la vraisemblance et exprime notre connaissance de la dégradation subie
par l’image x pour aboutir à l’observation y, et où p(x) est appelé la distribution a priori
et encode l’information dont nous disposons à propos de x avant d’observer y.

La distribution a posteriori décrit toutes les solutions possibles au problème inverse con-
sidéré, compte tenu des données observées. Elle représente une solution bien plus complète
que celle proposée dans le contexte variationnel qui fournit une simple estimation de la
quantité d’intérêt x. En effet, connaître la distribution a posteriori permet tout d’abord
de proposer différentes solutions au problème inverse. De plus, il est possible de quantifier
l’incertitude des solutions proposées, ce qui est un avantage indéniable, notamment dans
les applications où la prise de décision est basée sur la restauration proposée. Par exem-
ple, la Figure 1.1 montre les limites du paradigme variationnel puisque deux solutions à
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Figure 1.1: Illustration des limites du paradigme variationnel. Deux solutions possibles à un problème inverse en
imagerie médicale délivrent 2 diagnostics différents. En effet, la solution de droite présente une lésion

contrairement à celle de gauche. Quelle solution doit-on choisir ? Quelle confiance avons-nous dans la lésion ?
Ces questions peuvent être répondues dans le cadre bayésien. Images tirées de (Repetti et al., 2019).

un problème inverse en imagerie médicale conduisent à deux diagnostics distincts, l’une des
restaurations présentant une lésion et l’autre pas. Cependant, les images étant des objets
vivant dans des espaces de haute dimension, il est impossible d’un point de vue computa-
tionnel d’estimer cette distribution a posteriori. Par ailleurs, se pose également la question
du choix de la distribution a priori. En pratique, elle doit encoder des informations significa-
tives sur la quantité d’intérêt x et ne pas impliquer des opérations de calcul trop intensives.
C’est pourquoi les a priroris explicites non-appris ont longtemps été limités à des modèles
log-concaves simples (Bardsley, 2012; Louchet and Moisan, 2013; Durmus et al., 2018).

Le développement récent des réseaux de neurones constitue une véritable avancée en im-
agerie. Les méthodes basées sur l’apprentissage profond permettent aujourd’hui d’obtenir
des résultats de pointe dans de nombreux domaines, tels que la vision par ordinateur, la
reconnaissance du langage ou encore les prévision météorologiques, et cela pour une grande
variété de tâches. Ces approches consistent à adapter un modèle générique à un problème
spécifique en entraînant notre modèle sur des données d’entraînement et cela de manière ag-
nostique, c’est-à-dire sans connaissance sur la manière dont sont générées les données. Grâce
aux ressources informatiques dont nous disposons, notre modèle apprend automatiquement
une structure au sein des données fournies. Le succès des méthodes par apprentissage pro-
fond est fondé sur l’abondance des données d’apprentissage. Cependant, les données relatives
à un problème inverse ne sont pas toujours disponibles en abondance. En effet, elles peu-
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vent coûter très cher à générer. En outre, ces méthodes purement axées sur les données sont
très spécifiques au problème. Un petit changement dans le processus d’observation implique
un nouveau processus d’apprentissage qui est coûteux en temps et en calcul. Ceci limite
l’utilisation de ces approches pour la résolution de problèmes inverses. Cependant, depuis
les années 2010, de nombreux efforts ont été faits pour développer des méthodes combinant
les approches basées sur les données et celles exploitant les informations que nous avons sur
le problème inverse pour résoudre les problèmes inverses.

Un première famille de méthodes consiste à apprendre un régularisateur/a-priori à partir
des données. Dans ce qui suit nous décrivons certaines de ces approches.

• Méthodes Plug & Play (PnP):
(Venkatakrishnan et al., 2013) proposent d’utiliser des réseaux de neurones afin de
définir un régularisateur implicite via un algorithme de débruitage tout en conser-
vant une vraisemblance explicite. Cette dernière est généralement supposée connue et
calibrée (Arridge et al., 2019). L’idée vient du fait que de nombreux algorithmes clas-
siques d’optimisation font intervenir l’opérateur proximal du potentiel a-priori qui agit
comme un débruiteur. Les approches Plug & Play mettent en relation un algorithme
de débruitage avec un opérateur proximal ou un gradient associé à la densité a-priori.
Elles sont principalement utilisées pour de l’estimation ponctuelle (Ryu et al., 2019;
Sun et al., 2019, 2020; Xu et al., 2020; Zhang et al., 2021; Hurault et al., 2022a,b). Elles
obtiennent souvent des résultats de pointe sur une grande variété de tâches (Zhang
et al., 2021). Les méthodes Plug & Play sont également appliquées pour l’échantillon-
nage comme dans (Kadkhodaie and Simoncelli, 2020; Guo et al., 2019). Ces méthodes
sont flexibles et ne nécessitent que l’entraînement d’un réseau de neurons de débruitage,
qui est léger par rapport à d’autres réseaux neurones. Leurs fondements théoriques
sont un domaine de recherche actif et si nous commenccons à mieux les comprendre
pour l’estimation ponctuelle, à notre connaissance, aucun résultat de convergence n’a
été donné pour l’échantillonnage avant les travaux présentés dans ce manuscrit.

• Méthodes basées sur le score-matching:
Le score-matching a été conçu à l’origine pour l’apprentissage de modèles statistiques
non normalisés basés sur des échantillons i.i.d. et provenant d’une distribution de
données inconnue (Hyvärinen, 2005). Cependant, dans sa forme originale, le score-
matching n’est pas adapté aux problèmes de haute dimension. C’est pourquoi (Bengio
et al., 2013) propose une variante du score-matching original pour estimer le score
d’une densité cible légèrement bruitée. Pour éviter les gradients mal définis, (Song
and Ermon, 2019) entraîne un réseau de neurones qui approxime le score de différentes
densités cibles bruitées et l’incorpore dans un schéma de Langevin recuit afin de générer
de nouveaux échantillons à partir de la distribution empirique associée aux données
d’entraînement. (Kawar et al., 2021b,a) adaptent cette méthode afin de résoudre des
problèmes inverses classiques d’imagerie en échantillonnant la distribution a-posteriori.
Bien que ces méthodes produisent des résultats impressionnants, le réseau de neurones
utilisé pour approximer les scores est souvent très lourd et exigeant en termes de calcul.
En effet, il vise à approximer directement le score de la densité a-priori induite par
un ensemble de données. Il s’agit d’une tâche plus complexe que le simple débruitage.
De plus, dans les méthodes actuelles, le score de l’a-priori est associé à un jeu de
données spécifique (comme les chambres CelebA-HQ ou LSUN). Ainsi, l’image que
nous souhaitons estimer pour résoudre le problème inverse considéré doit appartenir à
la même classe d’images que les images de l’ensemble d’entraînement. Enfin, il n’est
toujours pas clair quelles distributions sont échantillonnées.
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Figure 1.2: Principe d’un DPPM. pθ correspond à la distribution de débruitage que nous apprenons par
inférence variationnelle et q à la distribution de bruitage. Image issue de (Kawar et al., 2022).

• Modèles probabilistes de diffusion du bruit (DDPMs) (Ho et al., 2020) :
Ils ont été développés dans un contexte génératif. Leur objectif est de produire de
nouveaux échantillons à partir d’un jeu de données. Ces échantillons doivent être issus
de la même distribution que celle des échantillons du jeu de données. Un DDPM est une
chaîne de Markov paramétrée et entraînée par inférence variationnelle pour produire
des échantillons correspondant aux données d’entraînement. Les transitions de cette
chaîne sont apprises pour inverser un processus de diffusion de bruit. Ce processus
de bruitage est généralement une chaîne de Markov qui ajoute progressivement du
bruit aux données d’apprentissage jusqu’à ce que celles-ci ressemblent à du bruit pur.
Ensuite, après avoir appris le processus de débruitage, nous pouvons, à partir du bruit
pur, générer de nouveaux échantillons. Dans le cas le plus simple, le processus de
bruitage consiste à ajouter de petites quantités de bruit gaussien et les noyaux de
transitions conditionnelles sont également gaussiens. Cela permet un paramétrage
particulièrement simple du réseau de neurones.
Fort du succès de ces approches pour la génration d’images, (Kawar et al., 2022;
Saharia et al., 2021) adaptent les méthodes DDPM en ajoutant des informations sur
les données observées dans le modèle afin de résoudre différents problèmes inverses.
Ils obtiennent d’excellents résultats pour ces différents problèmes inverses. (Kawar
et al., 2022) réussissent même à résoudre des problèmes inverses avec des images très
différentes de l’ensemble d’entraînement. Cependant, comme pour les méthodes basées
sur le score-matching, ces approches ne présentent aucune garantie de convergence.
Cela signifie que nous ne savons pas à quelle distribution appartiennent les échantillons
générés. En outre, ces méthodes sont souvent exigeantes en termes de calcul et difficiles
à entraîner car elles comportent de nombreux hyper paramètres.

Un autre type d’approches, appelé Deep-Unrolling, consiste à entraîner un réseau de neu-
rones, dont l’architecture est inspirée d’un schéma optimisation, afin d’approcher un opéra-
teur qui résoud un problème inverse.

• Deep unrolling:
L’opérateur est généralement défini via un schéma itératif avec un nombre fini d’itéra-
tions N . Ce type de méthodes est associé au paradigme variationnel puisque l’opéra-
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Figure 1.3: llustration du principe des méthodes d’unrolling. Dans ce cas, le réseau de neurones vise à résoudre
un problème inverse de super-résolution via un schéma ADMM linéarisé. Il existe trois modules constitutifs : le

module a-priori P qui est appris pendant l’apprentissage, le module relatif aux données D comprend des
informations sur le processus d’observation et le module de mise à jour U . Image tirée de (Laroche et al., 2022).

teur est conçu pour minimiser une fonction objectif. Les méthodes basées sur l’un-
rolling optimisent les paramètres de cet algorithme itératif et apprennent une régular-
isation de bout en bout en minimisant cette fonctionnelle sur un ensemble de données
d’apprentissage. Elles produisent d’excellents résultats en moins d’itérations que la
simple application de l’algorithme d’optimisation. Les schémas d’optimisation clas-
siques tels que Quadratic Qplitting (Afonso et al., 2010) ou Alternating Direction
Method of Multipliers (ADMM) (Glowinski and Marroco, 1975; Boyd et al., 2011)
sont souvent appliqués. Figure 1.3 illustre le principe de l’unrolling.
Chaque couche du réseau de neurones correspond à une opération de l’algorithme
d’optimisation. Les méthodes d’unrolling incorporent directement le modèle de dégra-
dation dans le processus d’apprentissage. Ainsi celui-ci n’est pas agnostique. Cela
permet au réseau de neurones d’extraire plus d’informations des données. Ces méth-
odes ont prouvé leur efficacité sur de nombreuses applications : (Gregor and LeCun,
2010; Chen and Pock, 2017; Diamond et al., 2017; Adler and Öktem, 2018a; Gilton
et al., 2019; Zhang et al., 2020; Laroche et al., 2022). Cependant, comme les couches
du réseau de neurones comprennent des informations sur le processus de dégradations,
elles sont spécifiques au problème.

Dans le cadre de cette thèse, nous nous concentrons sur les méthodes Plug & Play. Ces
méthodes présentent de nombreux avantages. Elles sont flexibles et facilement adaptables à
tout problème inverse car elles découplent le termes associé au processus d’observation de
celui-ci du régularisateur,ce qui les rend très génériques. En outre, elles ne nécessitent pas de
ressources informatiques aussi importantes que pour les autres méthodes, car il est possible
d’intégrer presque n’importe quel algorithme de débruitage pré-entraîné dans leurs schémas.
Pour l’informatique embarquée dans les petits appareils, la possibilité de résoudre plusieurs
problèmes de restauration à l’aide d’un seul réseau de débruitage est par exemple d’un
grand intérêt. Par ailleurs, il est également possible de concevoir et d’entraîner son propre
débruiteur, ce qui reste moins coûteux que d’entraîner un réseau neurones pour apprendre
le score d’une densité.

L’objectif de cette thèse est de mieux comprendre les méthodes Plug & Play aussi bien
d’un point de vue théorique que pratique. D’un point de vue théorique, il est important
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de savoir dans quelles conditions les modèles Bayésiens cadre Plug & Play sont bien défi-
nis et bien posés par exemple. D’importantes questions sur la convergence de ces algo-
rithmes doivent également être abordées. Par exemple, les sous-ensembles vers lesquels ces
algorithmes convergent lors de l’estimation de ponctuelle ne sont pas toujours clairement
définis sous des hypothèses réalistes. Lors de l’échantillonnage à partir de la distribution
a-posteriori, il n’existe tout simplement aucune garantie de convergence.

1.3 Contenu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cette thèse est divisée en cinq chapitres.
Dans le Chapitre 3, nous présentons les principaux concepts apparaissant dans cette thèse.

Nous introduisons tout d’abord les problèmes inverses et leur nature mal posée qui les rend
difficiles à résoudre. Après avoir passé en revue les méthodes historiques permettant de
les résoudre, nous nous concentrons sur les approches Plug & Play pour l’estimation de
ponctuelle et l’échantillonnage.

Le Chapitre 4 présente PnP-SGD, un schéma basé sur la descente de gradient qui vise à
estimer la MAP avec un a priori Plug & Play. Après avoir prouvé l’existence et la stabilité
de l’estimateur MAP, nous montrons que ce problème est bien posé sous des hypothèses réal-
istes. PnP-SGD converge vers un point au voisinage de l’ensemble des points stationnaires
de la distribution a-posteriori.

Le Chapitre 5 présente deux algorithmes d’échantillonnage avec un a priori Plug & Play,
PnP-ULA et PPnP-ULA. Les questions théoriques pour le problème d’estimation MMSE
sont abordées sous des hypothèses réalistes. Ensuite, des résultats de convergence et sur
les bornes d’erreurs non-asymptotiques sont présentés. Enfin, l’efficacité de ces méthodes
est prouvée sur des problèmes inverses classiques et une première étude de quantification de
l’incertitude est effectuée.

Le Chapitre 6 étudie l’influence des a-prioris profonds sur la distribution a-posteriori
générée par PnP-ULA. Dans un premier temps, nous étudions les solutions proposées par
les distributions a-posteriori induites par différents débruiteurs d’un point de vue quantitatif.
Ensuite, nous cherchons à interpréter ces résultats en termes de potentiel. Cela nous permet
de mieux comprendre les solutions promues par notre débruiteur. Enfin, nous étudions la
précision de la distribution échantillonnée d’un point de vue fréquentiste, afin de déterminer
si la distribution que nous avons échantillonnée est réaliste et modélise correctement la
réalité.

Le Chapitre 7 conclut cette thèse et propose des perspectives pour de futures études.

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dans cette section, nous détaillons les différentes contributions de cette thèse.

1.4.1 Sur l'estimation du Maximum A-Posteriori avec des a-prioris Plug-&-Play pour
la descente de gradient stochastique

Nous abordons la résolution d’un problème inverse en calculant l’estimateur MAP avec un a-
priori Plug & Play et sous un schéma de descente de gradient stochastique (SGD). Le réseau
de neurones convolutionnels (Ryu et al., 2019) est utilisé comme a-priori. L’algorithme
développé est appelé Plug & Play SGD (PnP-SGD). Nous soulignons le fait qu’il s’agit d’un

7



problème d’optimisation hautement non convexe. Alors que les approches concurrentes pro-
duisent d’excellents résultats, elles manquent souvent de preuves de convergence (Zhang
et al., 2021) ou alors celles-ci sont dérivées sous des hypothèses irréalistes (Sun et al., 2019,
2020; Ryu et al., 2019) ou du moins difficilement vérifiables (Cohen et al., 2020). Dans ce
chapitre, nous abordons tout d’abord des questions théoriques importantes liées notamment
à l’existence de l’estimateur MAP, sa stabilité et son caractère bien posé. Nous montrons
qu’il s’agit d’un problème (faiblement) bien posé. De plus, des résultats de convergence sont
présentés sous des hypothèses réalistes sur le débruiteur utilisé. Asymptotiquement, PnP-
SGD converge vers des points dans le voisinage de l’ensemble des points stationnaires de la
distribution a-posteriori. Nous rapportons enfin une série d’expériences démontrant l’effi-
cacité de PnP-SGD et comparant cet algorithme avec d’autres schémas PnP. Nous montrons
que PnP-SGD fournit de bons résultats par rapport aux méthodes PnP.

Ce travail va être publié dans le Journal of Mathematical Imaging and Vision (JMIV)
dans un numéro spécial.

1.4.2 Méthodes Bayésiennes utilisant des a-prioris Plug & Play: quand Lagevin ren-
contre Tweedie

Les a-prioris Plug & Play incorporés dans les schémas d’échantillonnage de Monte Carlo ne
sont pas très courants en imagerie, bien qu’ils commencent à être étudié. À notre connais-
sance, il n’existe aucune preuve de convergence pour de tels schémas. En plus des problèmes
de convergence de ces algorithmes, comme pour le problème de l’estimation MAP, d’im-
portantes questions restent ouvertes quant à savoir si les modèles et estimateurs bayésiens
sous-jacents sont bien définis, bien posés et possèdent les propriétés de régularité de base
requises pour effectuer de calculs dans le cadre Bayésien. Ce chapitre développe la théorie de
l’analyse et du calcul bayésiens avec des a-prioris PnP. Nous présentons l’algorithme Plug &
Play Unadjusted Langevin Algorithm (PnP-ULA) pour l’échantillonnage de Monte-Carlo et
l’estimation de l’erreur quadratique moyenne minimale (MMSE). En utilisant des résultats
récents sur la convergence quantitative des chaînes de Markov, nous établissons des garanties
de convergence détaillées pour cet algorithme sous des hypothèses réalistes sur les opérateurs
de débruitage utilisés. Une attention particulière aux débruiteurs basés sur les réseaux de
neurones profonds est portée. Nous montrons également que ces algorithmes ciblent approx-
imativement un modèle bayésien optimal en théorie de la décision et bien posé. L’efficacité
de PnP-ULA est démontrée sur plusieurs problèmes inverses classiques en imagerie tels que
le déflouttage et l’interpolation.

Ce travail a été publié dans SIAM Journal on Imaging Science.

1.4.3 Etude approfondie des a-prioris PnP pour l'échantillonnage
Si le cadre Bayésien donne accès à la distribution a-posteriori, qui sous-tend toute inférence
sur le signal que nous souhaitons récupérer à partir des données observées, il est intéressant
de déterminer quelles solutions sont promues par des débruiteurs aux propriétés différentes.
En outre, vérifier si le modèle bayésien estimé est significatif d’un point de vue fréquentiste
est également une question de première importance. En effet, nous cherchons à vérifier si
le modèle Bayésien est exact et modélise correctement la distribution a-posterior empirique.
D’un point de vue pratique, nous vérifions si les probabilités calculées avec notre modèle
bayésien correspondent aux probabilités empiriques. Nous effectuons cette tâche avec trois
débruiteurs MMSE différents induisant des a-prioris d’image différents.
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In several areas of science and industry, there is a need to reliably infer a signal from noisy
observed data. Typical examples are encountered in biomedical engineering, geophysics,
astronomy or finance. These problems are called inverse problems because they consist in
inverting the observation process, to retrieve a signal given observed data. Such problems
can often be modelled by Equation (2.1)

y = Ax+ n , (2.1)

where y corresponds to the observed data, x the quantity we wish to recover/to infer, A to
the forward operator that models the physics behind the observation process in the absence
of noise and n to the measurement noise.

These inverse problems encountered in real life are often ill-posed. It means that a little
perturbation in the measurements can lead to large errors in the signal we wish to reconstruct
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or that there exist several possible signal values that are consistent with the observed data.
It is a question of prime importance especially in fields where decisions are taken based
on this reconstruction like for image-guided diagnosis in medicine. Furthermore, imaging
inverse problems involve high-dimensional objects, making the task more challenging.

2.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In many applications, the admissible signals belong to a small subset of the ambient space.
For example, in modern imaging science we tend to believe that natural images are concen-
trated on a low-dimensional manifold of the ambient space (Fefferman et al., 2016). It has
motivated the development of regularizers/priors that incorporate prior knowledge on the
data we wish to retrieve.

Variational approaches are very popular to deal with inverse problems in imaging science.
They consist in building an objective function we seek to minimize. This objective function
is generally the sum of two terms, the data-fidelity term that measures the discrepancy
between the observation y and the proposed restoration and the regularization term which
promotes images with desired properties or which are located in the neighbourhood of some
sub-manifold. As classical regularizers, we can cite the Total Variation (TV) semi-norm
(Rudin et al., 1992) that promotes images with sparse gradients, hence favors images that
are piecewise-constant, or regularizers enforcing sparsity in transformed domains as wavelet
basis (Donoho and Johnstone, 1994). Although a lot of progress has been made, hand-
crafted regularizers do not succeed in capturing the whole complexity in natural images.
In addition, these regularizers are often designed to be convex in order to take advantage
of convex optimization tools, which might limit their effectiveness. For instance, solutions
provided by the TV regularizer within the variational framework can suffer from staircasing
(Louchet and Moisan, 2013).

Ill-posed inverse problems can also be tackled in a Bayesian framework. In this framework
both the observed data and the signal to be reconstructed are the result of random phenom-
ena. Both are seen as the realizations of random variables. In the Bayesian paradigm, we
seek to determine the posterior distribution, ie the distribution of the model parameter x
given the observed data y by applying the Bayes’ rule

p(x|y) = p(x)p(y|x)/
∫

p(z)p(y|z)dz , (2.2)

where p(y|x) is called the likelihood and is directly related to the noise distribution and p(x)
is the prior which encodes the information we have about x.

The posterior distribution describes all possible solutions to the inverse problem consid-
ered, given observed data. It represents a far more complete solution to the inverse problem
than retrieving the quantity of interest x as in the variational paradigm, and offers a lot
of possibilities. First of all, knowing the posterior distribution allows to propose different
estimates of the posterior distribution as a solution to the inverse problem. In addition,
it allows to perform uncertainty quantification studies on the proposed solutions. It is a
huge advantage, especially in applications where decision making is based on a proposed
restoration. For example, Figure 2.1 shows the limitations of the variational paradigm as
two solutions to an inverse problem in medical imaging lead to two distinct diagnoses as one
of the restorations presents a lesion. However, recovering the whole posterior in imaging
science is rarely doable from a computational point of view, as we have to deal with high-
dimensional objects. It also raises the question of the choice of the prior distribution. To
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Figure 2.1: Illustration of the advantage of the Bayesian framework over the variational paradigm. Two possible
solutions to an inverse problem in medical imaging leading to two possible different diagnoses. Indeed, the

solution on the right presents a lesion whereas the one on the left does not. Which solution should we select ?
How confident are we on the lesion ? These questions can be answered in the Bayesian framework. Illustrations

from (Repetti et al., 2019).

be useable, it has to contain meaningful information about the quantity of interest x and
not to imply too intensive computational operations. In this framework, hand-crafted priors
were restricted for a long time to simple log-concave models (Bardsley, 2012; Louchet and
Moisan, 2013; Durmus et al., 2018).

The recent development of neural networks is a real breakthrough in imaging science.
Deep Learning based methods achieve today state-of-the-art results in a lot of different
fields such as computer vision, speech recognition, weather forecasting and playing games
and for a large variety of tasks. These approaches consist in adapting a generic model to
a specific problem through learning against training data. Thanks to the computational
resources we have at our disposal, they automatically learn a structure within the data they
are fed with. Their success is based on the abundance of training data and the agnosticism
from a prior knowledge of how these data are generated. However, data related to an inverse
problem are not always available in abundance. Because they can cost too much to produce.
Besides, these purely data-driven methods are very problem specific. A small change in the
observation process implies a new time-consuming and computationally expensive learning
process. It limits the use of these approaches to tackle inverse problems. However, since the
2010’s, a lot of effort has been made to develop methods combining data- and knowledge-
driven approaches for solving inverse problems.
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A first type of methods consists in learning a regularizer/prior from the data. In the
following, we describe some of these approaches.

• Plug & Play (PnP) methods: (Venkatakrishnan et al., 2013) propose to use neural
networks in order to define an implicit regularizer via a denoising algorithm while
keeping an explicit likelihood density, which is usually assumed to be known and
calibrated (Arridge et al., 2019). The idea comes from the fact that many classical
optimization algorithms involve the proximal operator of the prior potential which
acts as a denoiser. Plug & Play approaches either relate a denoising algorithm to a
proximal operator or a gradient associated with the prior density. They are mostly
used to perform point estimation (Ryu et al., 2019; Sun et al., 2019, 2020; Xu et al.,
2020; Zhang et al., 2021; Hurault et al., 2022a,b) where they often achieve state-of-
the-art results on a large variety of tasks (Zhang et al., 2021) but are also applied for
sampling as in (Kadkhodaie and Simoncelli, 2020; Guo et al., 2019). These methods
are flexible and only require to train a denoising neural network which is light in
comparison to other neural networks. Their theoretical foundations are an active field
of research and if we begin to better understand them for point estimation, to the best
of our knowledge, no convergence result has been given for sampling before the work
presented in this manuscript.

• Score-matching based methods: Score-matching is originally designed for learning non-
normalized statistical models based on i.i.d. samples from an unknown data distri-
bution (Hyvärinen, 2005). However, in its original form, it scales poorly with the
dimension. That is why (Bengio et al., 2013) propose a variant of the original score
matching to estimate the score of a slightly perturbed target density. To avoid ill-
defined gradients, (Song and Ermon, 2019) train a neural network that approximated
the score of different perturbed target densities and plug it into an annealed Langevin
scheme to generate new samples from the empirical distribution associated with the
training data. (Kawar et al., 2021b,a) adapt this method in order to solve classical
imaging inverse problems by sampling from the posterior distribution. Although, it
delivers impressive results, the neural network used to approximate the scores is often
very heavy and computationally demanding. Indeed, it aims to directly approximate
the score of the prior density induced by a dataset. It is a more complex task than
simple denoising. Furthermore, in the current methods the score of the prior is as-
sociated with a specific dataset (such as CelebA-HQ or LSUN bedrooms). Then, the
image we wish to retrieve to solve the considered inverse problem must be in the same
class as images of the training set. Finally, it is still not clear which distributions are
sampled exactly.

• Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020): were devel-
oped in a generative context. Their goal is to produce new samples from a distribution
given a dataset. A DDPM is a parameterized Markov chain trained using variational
inference to produce samples matching the training data. Transitions of this chain are
learned to reverse a noising diffusion process. This noising process is usually a Markov
chain that gradually adds noise to the training data until the training data looks like
pure noise. Then, after learning the denoising process we are able given pure noise
to generate new samples. In the simplest case, the noising process consists in adding
small amounts of Gaussian noise and the conditional transition kernels are Gaussian
too. It allows for a particularly simple neural network parameterization.
Based on the success of these approaches in generative modelling, (Kawar et al., 2022;
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Figure 2.2: Principle of a DPPM. pθ corresponds to the denoising diffusion distribution we learn by variational
inference and q to the noising process distribution. Image taken from (Kawar et al., 2022).

Saharia et al., 2021) adapt this framework in order to solve different inverse problems
by adding information about the observed data in the model. They achieve great
results for the different inverse problems. (Kawar et al., 2022) even succeed to solve
inverse problems with images very different from the training set. However, as for
score-matching based methods, these approaches do not have any convergence guar-
antees. It means that we do not know to which distribution the generated samples
belong. In addition, theses methods are often computationally demanding and difficult
to train as they have a lot of hyper parameters.

A second kind of approaches, called Deep-Unrolling, consists in training a neural network,
whose architecture is inspired by optimization scheme, to approximate an operator that
solves a given inverse problem.

• Deep unrolling: The operator is generally defined via an iterative scheme with a given
finite number of iterations N . It is associated with the variational framework as the
operator is designed to minimize a functional. The unrolling based methods both
optimize the parameters of this iterative algorithm and learn a regularization in an
end-to-end manner by minimizing this functional over a training set. It produces great
results in fewer iterations than simply applying the optimization algorithm. Classical
optimization schemes such as half-quadratic splitting (Afonso et al., 2010) or Alter-
nating Direction Method of Multipliers (ADMM) (Glowinski and Marroco, 1975; Boyd
et al., 2011) are considered. Figure 2.3 illustrates the principle of deep-unrolling meth-
ods.
Each layer of the neural network corresponds to an operation of the iterative optimiza-
tion algorithm. Deep unfolding methods directly incorporate the degradation model
into the learning process, making it not agnostic any more. It allows the neural net-
work to extract more information from the data. These methods have proved their
efficiency over many applications (Gregor and LeCun, 2010; Chen and Pock, 2017;
Diamond et al., 2017; Adler and Öktem, 2018a; Gilton et al., 2019; Zhang et al., 2020;
Laroche et al., 2022). However, because the neural network layers include information
about the measurement process, they are very problem-specific.

In this thesis, we focus on Plug & Play methods. These methods have numerous advan-
tages. They are flexible and easily adaptable to any inverse problem as they decouple the
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Figure 2.3: Illustration of the deep-unrolling principles. In this case, the neural network aims at solving a
super-resolution inverse problem via a linearised ADMM scheme. There are three constitutive modules: the prior

module P that is learnt during the training, the data module D which incorporates information about the
observation process and the update module U . Image taken from (Laroche et al., 2022).

observation related terms from the plugged regularizer. It makes them really universal. In
addition, they do not require massive computational resources as we can plug almost any
pre-trained denoising algorithm within their schemes. For embedded computing in small
devices, being able to solve several restoration problems by using a single denoising network
is of huge interest for instance. Besides, it is also possible to design and train its own de-
noising neural network, which is still less expensive than training a score matching neural
network.

The goal of this thesis is to better understand Plug & Play methods both from a theoret-
ical and a practical point of view and to pave the way for further studies. From a theoretical
point of view, it is important to know under which conditions the Bayesian models derived
within a Plug & Play framework are well defined and well posed for instance. There are also
important questions about the convergence of these algorithms that need to be addressed.
For instance, the subsets towards which these algorithms converge when performing point
estimation is not always clearly defined under realistic assumptions. When sampling from
the posterior distribution, there are simply no convergence guarantees.

2.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This thesis is divided in 5 chapters.
In Chapter 3 we present the main concepts appearing in this thesis. We firstly intro-

duce inverse problems and their ill-posed nature that makes them difficult to solve. After
reviewing historical methods to tackle them, we focus on Plug & Play approaches for point
estimation and sampling.

Chapter 4 introduces PnP-SGD, a gradient descent based scheme that aims at estimating
the MAP with a Plug & Play prior. After proving the existence, the stability of the MAP,
we show that this problem is well-posed under realistic assumptions. PnP-SGD converges
towards a point in the vicinity of the set of the stationary points of the posterior distribution.

Chapter 5 presents two sampling algorithms, PnP-ULA and PPnP-ULA, with a Plug &
Play prior. Theoretical questions for the MMSE estimation problem are addressed under
realistic assumptions. Then, covergence results and non-asymptotic error bounds are pre-
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sented. Finally, the efficiency of the methods is proved on a classical inverse problems and
a first uncertainty quantification study is delivered.

Chapter 6 investigates the influence of deep priors in the posterior distribution. First, we
study the solutions proposed by the posterior distributions induced by different denoisers
from a quantitative point of view. Then, we seek to interpret these results in terms of
potential. It allows us to better understand the solutions promoted by our denoiser. Finally,
we investigate the accuracy of the sampled distribution from a frequentist point of view, in
order to determine if the distribution we sampled from is realistic and properly models the
reality.

Chapter 7 concludes this thesis and proposes perspectives for further studies.

2.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we detail the contributions of this thesis.

2.4.1 On Maximum-a-Posteriori estimation with Plug & Play priors and stochastic
gradient descent

We address the problem of solving an inverse problem by computing the MAP estimator
with a Plug & Play prior using a stochastic gradient descent (SGD) scheme. A state-of-
the-art Convolutionnal neural network is used in place of the prior (Ryu et al., 2019). The
algorithm developed is called Plug & Play SGD (PnP-SGD). We emphasize the fact that it
is a highly non-convex optimization problem. Where previous approaches show impressive
results, they either lack convergence proofs (Zhang et al., 2021) or they are derived under
unrealistic (Sun et al., 2019, 2020; Ryu et al., 2019) or at least not easily checkable (Cohen
et al., 2020) assumptions. In this chapter, we firstly address key theoretical questions related
the existence of such an estimator, its stability and its well-posedness. We show that it is a
(weakly) well-posed problem. In addition, convergence results are presented under realistic
assumptions on the denoiser used. Asymptotically, PnP-SGD converges towards points in
the vicinity of the set of stationary point of the posterior distribution. We finally report a
range of imaging experiments demonstrating PnP-SGD as well as comparisons with other
PnP schemes. We show that PnP-SGD provides good results in comparison with state-of-
the-art PnP methods that are clearly interpretable.

This work will be published on Journal of Mathematical Imaging and Vision (JMIV)
under a special issue.

2.4.2 Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Plug & Play priors within Monte Carlo sampling schemes for general Bayesian computa-
tion are not very common in imaging science although they begin to be an active field of
research. To the best of our knowledge, there is no proof of convergence. Algorithm con-
vergence issues aside, as for the MAP estimation problem, there are important open ques-
tions regarding whether the underlying Bayesian models and estimators are well defined,
well-posed, and have the basic regularity properties required to support efficient Bayesian
computation schemes. This chapter develops theory for Bayesian analysis and computation
with PnP priors. We introduce Plug & Play Unadjusted Langevin Algorithm (PnP-ULA)
for Monte Carlo sampling and Minimum Mean Squared Error (MMSE) estimation. Us-
ing recent results on the quantitative convergence of Markov chains, we establish detailed
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convergence guarantees for this algorithm under realistic assumptions on the denoising oper-
ators used, with special attention to denoisers based on deep neural networks. We also show
that these algorithms approximately target a decision-theoretically optimal Bayesian model
that is well-posed. PnP-ULA is demonstrated on several canonical problems such as image
deblurring and inpainting, where it is used for point estimation as well as for uncertainty
visualisation and quantification.

This work was published on SIAM Journal on Imaging Science.

2.4.3 In-depth study of data-driven priors for sampling
If the Bayesian framework gives an access to the posterior distribution, which underpins all
inference about the signal we wish to recover from the observed data, it is interesting to
determine what solutions are promoted by denoisers with different properties. In addition,
checking if the estimated Bayesian model is meaningful from a frequentist point of view is
also a question of prime importance. Indeed, we aim at verifying if the Bayesian model is
accurate and correctly models the empirical posterior distribution. From a practical point of
view, we check if the computed probabilities with our Bayesian model match the empirical
ones. We perform this task on three different MMSE denoisers inducing different image
priors.

2.4.4 Publications and Preprints
• R. Laumont, V. D. Bortoli, A. Almansa, J. Delon, A. Durmus, and M. Pereyra. Bayesian
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Imaging Sciences, 15(2):701–737, 2022. doi: 10.1137/21M1406349. URL https://
doi.org/10.1137/21M1406349
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3.1 Inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1.1 Inverse problems
From a practical viewpoint solving an inverse problem boils down to determine causes from
an observed phenomenon. It consists of retrieving the model parameter x ∈ X from observed
data y ∈ Y where x and y are generally related by the following equation ∗

y = A(x) + n (3.1)

where X is the parameter space and Y is the data space. Both spaces are vector spaces
with appropriate topologies. Elements of both spaces consist in possible parameter and data
vectors. A : X → Y is an operator called the forward operator and maps parameters to
data. Classically it is assumed to be known and continuous. n ∈ Y is the realization of a
Y-valued random variable that characterizes the observation process stochasticity.

In imaging science, the model parameter x is usually an image in Rd. We consider two
main types of representation for images:

• Pixel-wise representation x ∈ RH×W×C where H and W are respectively the height
and the width of the picture whereas C corresponds to the number of channels. For
instance, C = 1 if we are dealing with grayscale images and C = 3 if it is with RGB
images. Eventually, d = HWC.

• Coordinate-based representation x = uθ(x1, x2) ∈ RC , with (x1, x2) ∈ Ω2 ⊂ R2. uθ

are the intensity values of the C channels located in (x1, x2) and is parametrized by
θ ∈ Θ with Θ the set of possible parameters for uθ.

Classically, images are encoded by the discrete pixel-wise representation. It is the rep-
resentation we will use in the following. However, we point out that recent works aim at
developing neural networks learning a continuous intensity map from spatial locations. They
succeed in accurately modelling natural scenes and globally improve the results when dealing
with high-frequency structures as proved in (Sitzmann et al., 2020) for example.

3.1.2 Examples of inverse problems in imaging science

Most inverse problems in imaging aim at reconstructing an unknown image x ∈ Rd from a
degraded observation y ∈ Cm under some assumptions on their relationship. In this case
A is called the degradation operator and models deterministic instrumental aspects of the
observation process, and n is an unknown (stochastic) noise term taking values in Cm. In this
section, we introduce some classical inverse problems we may deal with in this manuscript.
These problems differ from each other because of the degradation operator A, which is often
assumed to be linear.

3.1.2.a Image denoising
In denoising, we have A = Id and (3.1) becomes

y = x+ n (3.2)
∗There also exist other types of inverse problems where the noise n is not additive but multiplicative for

instance. However, they are out of the scope of this thesis. See (Aguerrebere, 2014, Chapter 2) or (Dunlop,
2019) for example.
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Optical blur Motion blur

Figure 3.1: Examples of the different types of blur. In both cases the blur kernel is spatially-varying, with a mix
of sharp and blurry objects for both images.

In the simplest case, the noise distribution is known. However, we can face a correlated
or a spatially varying noise distribution, what increases the difficulty.

From a practical point of view, a digital photography can suffer from noise if the acqui-
sition time is too short or if the light intensity in the scene is too low.

3.1.2.b Image deblurring

In image deblurring, we have ∀x ∈ Rd, Ax = k ∗x where k is a blurring kernel and ∗ stands
for the convolution operator.

There are two major types of blur, the motion blur and the optical blur. Motion blur arises
when either the acquisition system or the photo’s subject is moving during the acquisition
time. Optical blur is caused by an incorrect focus on some elements of the picture, by light
diffraction and by chromatic aberrations in the lens. Figure 3.1 illustrates these two types of
blur. More realistic blur operators are encoded by spatially-varying kernel. In addition, the
convolution kernel k is not necessarily known, making this problem even more to difficult to
solve as we need to firstly or jointly estimate k. In this case we talk about blind deblurring.

3.1.2.c Image interpolation
The degradation operator A is a masking operator that masks certain pixels in a (random)
manner. A is the identity matrix with random rows missing. Then, (3.1) becomes

y = x|mask + n (3.3)

3.1.2.d Image inpainting
The inpainting problem is very much related to the interpolation problem. The difference is
that a whole pixel region is masked. This problem is more complicated than interpolation.

Figure 3.2 illustrates some classical imaging inverse problems.
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Original Denoising Deblurring Interpolation Inpainting

Figure 3.2: Example of imaging inverse problems.

3.1.3 Ill-posedness
The inverse problems we are facing in imaging science are usually ill-posed. It means that
they are sensitive to variations in the data vector y. The paternity of the term ”ill-posed” is
attributed to the French mathematician Jacques Hadamard who firstly defined a well-posed
problem.

Definition 3.1.1 (Well-Posedness) An inverse problem is called well-posed if

1. There exists at least one solution. (Existence)

2. There is at most one solution. (Uniqueness)

3. The solution depends continuously on data. (Stability)

According to Hadamard, an inverse problem is said to be ill-posed, if one of these con-
ditions does not hold. If the two first conditions appear to be normal, the third one can
be easily explained from a practical point of view. If the inverse operator of A is either
unbounded or discontinuous, the additive observation noise can be dramatically amplified
during the inversion process. Then, two distinct but close observations ỹ and ȳ can lead to
very different reconstructions x̃ and x̄, what is not desirable.

Ill-posedness is often encountered. One can easily prove that every compact operator
between 2 infinite-dimensional Hilbert spaces with infinite range has a discontinuous inverse
and then its associated inverse problem is ill-posed. If A is linear, one can also interpret
instability in terms of singular-values. The faster the decay of the singular values, the more
ill-posed is the inverse problem.

Let us consider some special cases where the degradation operator A is linear and the
parameter and data spaces involved are Euclidean.

1. Assume A : Rd → I(A) ( Rm with d < m and there exists a unique inverse operator
A−1 : I(A)→ Rd. As the observation noise n does not necessarily belong to I(A), we
cannot simply invert A although its inverse exists.

2. Assume A : Rd → Rm with d > m. In this case, we have more unknowns that equations
and the system is said to be underdetermined. Consequently, there are several possible
solutions to one observation y.

3. Assume A : Rd → Rd and there exists A−1 : Rd → Rd. We note λ1 and λd respectively
the smallest and largest eigenvalue. If κ = λd/λ1 is large, then the matrix is nearly
singular and the problem is sensitive to small perturbations in the observation y. The
problem is then said to be ill-conditioned. Thus, the naive restoration x̃ = A−1y =
x+ A−1n is dominated by A−1n and does not constitute a good restoration.
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In addition if n = 0 in Equation (3.1), the problem is ill-posed if A is not invertible.
Subsequently, it is clear that the interpolation and inpainting inverse problems are
ill-posed.

3.1.4 Regularization
When facing an ill-posed inverse problem, Hadamard suggests in (Hadamard, 1923) to model
it differently instead of trying to solve it. However, major inverse problems faced in mathe-
matical physics are usually unstable as showed in shown in (Calderon, 1958; Calderon and
Zygmund, 1989; Zygmund, 2011) for instance.

The goal of regularization is to develop stable methods in order to estimate x from data y
assuming the knowledge of the degradation operator A and to prove some properties of the
estimated solution. In the fact, regularization aims at computing a mapping Rθ : Y → X
which is continuous in Y for a fixed regularization parameter θ and such that Rθ(y)→ x as
y → Ax.

There exist 4 major types of regularization methods.

• Approximate analytic inversion The idea behind these methods is to stabilize A−1 by
smoothing the inverse operator. It is often very problem-specific. The Filtered Back-
Projection introduced by (Natterer, 2001; Natterer and Wübbeling, 2001) used in CT
reconstruction is a good example of such methods.

• Iterative methods with early stopping With this kind of methods, we typically aim
at minimizing the functional z 7→ ‖Az − y‖22. Applying gradient based methods,
this functional usually decreases before growing up. We talk about semi-convergent
behaviour. The goal of these methods is to design a stopping criterion that plays the
role of a regularizer (see (Natterer and Wübbeling, 2001) for example).

• Discretization The idea is to look for an approximate solution of (3.1) in a specific
subspace using Projection or Galerkin methods (see (Natterer, 1977) for example).

• Variational methods This approach boils down to solve an optimization problem

Rθ(y) = arg minz∈X {L(Az, y) + Sθ(z)} .

with L : Y × Y → R a function quantifying the similarity between two elements of
the data space, often called the the data-fidelity term, Sθ : X → R a regularization
function associated with the regularization parameter θ. This term allows to promote
solutions with desirable features. It stabilizes the algorithm by encoding a-priori in-
formation about x. Designing a good regularizer consists in a challenging task and is
an active field of research. The classical Tikhonov regularization uses Hilbert-space
norms to regularize the inverse problem and was introduced in (Tikhonov, 1943). The
value of θ has also a huge impact on the proposed solution and it can be learned or set
manually. The data-fidelity term is often chosen with respect to the observation noise
distribution and generally as an affine transformation of the negative log-likelihood in
order to have a statistical interpretation. Typically in digital photography or in tomog-
raphy applications, the observation noise is modelled by a Poisson distribution, which
leads to a Kullback-Leibler (KL) divergence for the data-fidelity term. Otherwise, the
observation noise is often modelled by a Gaussian distribution.
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It is a very adaptive framework with a plug-and-play structure as the degradation
operator A, the data-fidelity term and the regularizer are chosen in accordance to the
properties of the tackled inverse problem. It also involves terms with clearly defined
roles.

3.1.5 Variational Approaches in imaging science and their regularizers
In this section we focus on variational approaches in imaging science, which can usually be
written

Rλ(y) = arg minz∈X {L(Az, y) + λS(z)} , (3.4)

where λ > 0 and balances the trade-off between the regularization and data-fidelity.
As previously explained, adding a regularization term allows to add information about

the properties of the solution of the tackled inverse problem. This supplementary piece of
information can favour a solution over another and can turn an ill-posed inverse problem
into a well-posed one. The appeal for these methods in imaging is due to two main reasons.
First, they are very adaptable as explained before. Second, with the progress in (convex)
optimization, they scale very well to high dimensional problems. Finding a good regularizer
capturing the richness of images consists in an active field of research.

• Total variation (TV). TV was introduced in (Rudin et al., 1992) for the denoising
inverse problem. It reads

∀z ∈ Rd, S(z) = TV(z) =

∫
Ω

d|Dz| (3.5)

where Ω ⊂ Rd and corresponds to the image domain.
Discretizing (3.5), we get

∀z ∈ Rd, TV(z) =
∑

(i,j)∈[0,nrows]×[0,ncols]

‖∇i,jz‖p (3.6)

with p = 1 or 2 and ∇i,jz = [zi+1,j − zi,j , zi,j+1 − zi,j ].
It is a regularization widely used in imaging science as it promotes images with sparse
gradients and assumes that images are piecewise constant objects. However, it strug-
gles to restore images with high-frequency structures and tends to add jumps. We
talk about staircasing effect. In order to alleviate this issue, other regularization terms
based on TV were designed such as the Total Generalized Variation (TGV) (Bredies
et al., 2010) or the Infimal-Convolution Total Variation (ICTV) (Chambolle and Lions,
1997).

• Sparsity in transformed domains. The regularizer can be written S(z) = ‖Wz‖1 with
W : Rd → Z. This regularization favours sparsity of the image coefficients in a
representation space Z. Z is typically the space spanned by a learned dictionary
(Elad and Aharon, 2006) or by a wavelet basis Beck and Teboulle (2009) or a wavelet
frame (Donoho and Johnstone, 1994).
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• Expected Patch Log-Likelihood (EPLL). This approach is intrinsically related to the
Bayesian approach described in Section 3.2. It consists in learning a prior p on a
set of image patches and then to minimize (3.4) with S(z) = −

∑
i log p(Piz) and

Pi is a matrix extracting the i-th path from the image in vectorized form out of
all overlapping patches. The authors of (Zoran and Weiss, 2011) used a Gaussian
mixture model prior p whose parameters have been learned from a patch dataset with
an Expectation-Maximization (EM) algortihm.

The variational approach consists in solving an optimization problem. There rarely exist
closed-form solutions except in simple cases like, for example, when the data-fidelity and
regularization terms are both quadratic. With more complex regularizers, we have to apply
iterative schemes. The recent progress in convex optimization allows to efficiently tackle
high-dimensional optimization problems even if the objective function is not smooth. As
iterative schemes commonly used in imaging, we can cite the Alternating Direction Method
of Multipliers (ADMM) (Glowinski and Marroco, 1975; Boyd et al., 2011), the first-order
primal-dual algorithm (Chambolle and Pock, 2011). However, the convergence guarantees
only concern convex regularizers, which limits their reliability in more general contexts.

3.2 Bayesian Approach in imaging science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Bayesian paradigm is a complete statistical inferential methodology providing a natural
framework to regularise inverse problems so as to deliver accurate and well-posed solutions.
It is the framework of this thesis and it includes most of the variational methods. In this
context, both data and model parameters are considered as the realization of some random
variables. Accordingly, the relationship between x and y is described by a statistical model
with likelihood function p(y|x) or by the potential F (x, y) = − log p(y|x). The knowledge
about x before observing y is encoded by the marginal or prior distribution for x, typically
specified via a density function p or by its potential U(x) = − log p(x). Unless explicitly
stated otherwise, we henceforth assume that all densities are defined w.r.t. to the appropri-
ate Lebesgue measure. The likelihood and prior define the joint distribution with density
p(x, y) = p(y|x)p(x), from which we derive the posterior distribution with density

p(x|y) = p(y|x)p(x)/p(x, y) = p(y|x)p(x)/
∫
Rd

p(y|z)p(z)dz . (3.7)

However, the Bayesian framework proposes far more than a simple reconstruction based
on an observation y, as it produces (after applying the Bayes’ theorem) the posterior distri-
bution. It describes all the possible solutions given the observation y. In addition, having
access to the posterior distribution allows to estimate uncertainty. Most imaging meth-
ods seek to derive estimators reaching some kind of consensus between prior and likelihood
and summarizing the posterior distribution, for instance the Minimum Mean Square Error
(MMSE) or Maximum A Posteriori (MAP) estimators

x̂map = arg maxx∈Rd p(x|y)=arg minx∈Rd {F (x, y) + U(x)} , (3.8)
x̂mmse = arg minu∈Rd E[‖x− u‖2|y] = E[x|y] =

∫
Rd x̃p(x̃|y)dx̃ . (3.9)

Computing the MAP is very appealing as it boils down to solve an optimization prob-
lem as in the variational case. Consequently, computing the MAP under a specific prior
p(x) ∝ e−λS(x) is equivalent to solve an optimization with the regularization term λS(x).
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Estimating the MMSE is on the contrary more difficult as it implies estimating high-
dimensional integrals. Although computing the MAP is attractive from a computational
point of view, it is still not correctly understood from a theoretical point of view in the
Bayesian framework. Indeed, an estimator is a Bayes estimator if it minimizes the expected
cost for a given cost function C under the posterior distribution p(x|y)

RC(x̃) = Ep(y)Ep(z|y)[C(z, x̃)] =
∫
y∈Y

∫
z∈X
C(z, x̃)p(z|y)dz p(y) dy . (3.10)

As explained in (Pereyra, 2019), if the posterior is not log-concave, we do not know if
the MAP minimizes (3.10) under a cost function C. On the contrary, the MMSE estimator
minimizes (3.10) with C : X × X → R, (z1, z2) 7→ ‖z1 − z2‖22.

At this point, we point out the fact that if both the prior and the likelihood are Gaussian,
then the MAP and the MMSE estimators are equal.

The quality of the inference about x given y depends on how accurately the specified
prior represents the true marginal distribution for x. Most works in the Bayesian imaging
literature consider relatively simple priors promoting sparsity in transformed domains or
piece-wise regularity (e.g., involving the `1 norm or the total-variation pseudo-norm (Rudin
et al., 1992; Chambolle, 2004; Louchet and Moisan, 2013; Pereyra, 2016)), Markov random
fields (MRF, 2011), or learning-based priors like patch-based Gaussian or Gaussian mixture
models (Zoran and Weiss, 2011; Yu et al., 2011; Aguerrebere et al., 2017; Teodoro et al.,
2018b; Houdard et al., 2018). Special attention is given in the literature to models that have
specific factorisation structures or that are log-concave, as this enables the use of Bayesian
computation algorithms that scale efficiently to high-dimensions and which have detailed
convergence guarantees, (Pereyra, 2016; Durmus et al., 2018; Repetti et al., 2019; Girolami
and Calderhead, 2011; Chen et al., 2014).

Methods related to the Bayesian approach are described in Section 3.5.

3.3 Learning Approach with Deep Neural Networks in imaging sci-
ence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With the development of computational resources, a lot of efforts have been made to develop
artificial neural networks and their applications. They are mapping inspired by the working
of human brains. They consist in interconnected nodes called neurons. As in the human
brain, artificial neurons are trained to indirectly react to some stimuli and fire when they
perceive one. Their expressivity makes them a powerful tool to solve inverse problems
(Cybenko, 1989; Hornik, 1991). In this section, we expose some basics components about
neural networks. We are only interested in feedforward neural networks.

3.3.1 Neural networks
Neural networks are oriented graphs where each node is called a neuron. Neurons are
grouped into layers. The first layer is called the input layer and the last one the output
layer. Every layers between theses layers are called hidden layers.

When using a neural network, we have to determine an architecture, ie basic components
composing our neural network such as the activation functions, the connection type between
layers, the number of layers, etc, ... There exist different types of architectures. In this
section, we present different types of architectures used in imaging science when performing
point estimation.
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Figure 3.3: Simplified neural network. Each node corresponds to a neuron and each edge corresponds to a
weight. Neurons of the same colour are grouped into layers. Image from Wikipedia.

FEEDFORWARD NEURAL NETWROK Let us consider a neural network with H layers and H−2
hidden layers. We denote {n0, n1, ..., nH} ∈ NH+1 each layer size and fh(x) the result
obtained when computing the result of the h−th layer for the input x ∈ Rn0 . The mapping
fh : Rn0 → Rn0 is defined by

fh(x) =

{
x if h = 0
σ(Whfh−1(x) + bh) otherwise, (3.11)

where Wh ∈ Rnh−1×nh is a matrix with entries corresponding to the weights of each edge,
bh ∈ Rnh is the bias added by the h-th layer and σ is an activation function, usually non-
linear, like the Rectified Linear Unit (ReLU) or the sigmoid function. (Wh, bh)h∈{1,2,..H,}
are parameters to learn.

If every neuron from a layer are connected to each neuron of the following one, we talk
about fully-connected neural network.

The depth of neural network corresponds to its number of hidden layers. Works such
as (Eldan and Shamir, 2016) and (Daniely, 2017) support the idea, the deeper is a neural
network, the more expressive it is.

CONVOLUTIONAL NEURAL NETWORK (CNN) However, when dealing with images, which are
high-dimensional objects, fully-connected neural networks imply too many parameters to set.
We might want to opt for a different architecture. In this case, we prefer to use convolutional
neural networks. They are feedforward neural networks with a specific structure. The
equation (3.11) also describes their working process, except that (Wh)h∈{1,...,H} results from
the concatenation of convolutional operators. Then a neuron in the h-th layer results from
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a combination of only a few neurons of the h − 1-th layer located in the same region. The
weights performing these convolutions are shared between neurons that is why they involve
less parameters. In addition to have a lot less parameters, CNNs are approximately shift-
invariant (due to boundary effects), which is a desirable property when dealing with images.
Indeed, important features can be located anywhere in the input space and CNNs can then
detect feature regardless their locations. On the contrary, fully-connected neural networks
for instance are not shift-invariant. Then, to be able to detect a specific feature, they have
to see this feature in different locations to be sure that the neurons of each region can spot
it.

Moreover, within a layer, other operations can be added. A very common operation is
max-pooling that allows to reduce the dimension of the input signal by summarizing a zone by
its largest element. Furthermore, we emphasize the use of U-Nets that were firstly developed
for image segmentation in the biomedical context (see (Ronneberger et al., 2015)). These
CNNs have successive layers where pooling operations are replaced by upsampling operators
allowing the network to propagate context information to higher resolution layers.

RESIDUAL NEURAL-NETWORK (RES-NET) They were presented in (He et al., 2016). Skip con-
nections are used to jump over some layers. Typical ResNet models are implemented with
double- or triple- layer skips that contain nonlinearities like ReLU and batch normalization
in between. The equation (3.12) describes the working process of such networks.

fh(x) =

{
x if h = 0
σ(Whσ(Wh−1fh−2(x) + bh−1) + bh + fh−2(x)) otherwise. (3.12)

Adding skip connections allows us to avoid the problem of vanishing gradients that con-
siderably slows down the neural netowrk training phase. Then it eases the neural networks
learning. In addition, skip connections mitigates the degradation problem sometimes en-
countered when training a neural network as reported by (He et al., 2016). Indeed, with an
increasing depth, which is often associated with a better expressivity, the neural network
accuracy gets saturated and finally degrades.

3.3.2 Learning process with neural networks
Training a neural network means, given a specific architecture, learning the best set of
parameters θ = Wh, bhh∈{1,...,H} to solve our inverse problem. In supervised learning, we
seek to determine it over a training set (xi, yi){i=1,...,N} consisting in input-output examples,
where xis and yis are respectively the target solutions and their associated observations.
These pairs are considered as i.i.d samples from the joint distribution with density p(x, y).
The goal is to find θ∗ such that

θ∗ = arg minθ∈Θ

∑N
i=1 L(xi, fθ(xi) , (3.13)

where Θ is the set of admissible parameters, L is the cost function. This cost function is
often quadratic.

The optimal parameter θ∗ is often computed using stochastic optimization algorithms
such as the stochastic gradient descent (Goodfellow et al., 2016) or Adam (Kingma and Ba,
2014).

If the size of the training set N is large enough, according to the law of large numbers,
we have E(X,Y )[L(x, fθ(y))] ≈

∑N
i=1 L(xi, fθ(yi)).
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3.3.3 Neural networks for point estimation
In the last few years, deep neural networks have become ubiquitous to solve inverse problems
in imaging, showing unmatched performance for point estimation for some specific problems
like image denoising. Deep networks can be trained without explicitly using the knowledge
of the forward model (3.1) (Dong et al., 2014; Zhang et al., 2017, 2018; Gharbi et al., 2016;
Schwartz et al., 2018; Gao et al., 2019) or on the contrary can use this model explicitly via
unrolled optimization techniques (Gregor and LeCun, 2010; Chen and Pock, 2017; Diamond
et al., 2017; Gilton et al., 2019). Then, the goal is to learn a deep neural network approx-
imating an operator R : Y → X that is implicitly defined via an iterative scheme. This
scheme often aims at finding the minimum of a functional.

Also, imaging approaches based on neural networks struggle to support more advanced
inference by comparison to a Bayesian treatment by Monte Carlo sampling, which can
support a wide breadth of statistical analyses beyond point estimation, particularly Bayesian
decision-theoretic approaches to deal with advanced forms of uncertainty quantification (e.g.,
hypothesis tests, p-values, model misspecification tests), as well as approaches to deal with
automatic calibration of partially unknown models and objective model comparison (Robert,
2007).

3.3.4 Neural networks for sampling
MONTE-CARLO DROPOUT In order to go further than simple point estimation, (Gal and
Ghahramani, 2016) develop a new theoretical framework casting dropout training in deep
neural networks where dropout consists in randomly omitting each hidden unit with proba-
bility P . Then, a neural network with dropout can be interpreted as a variational Bayesian
approximation and allows to perform uncertainty quantification.

GENERATIVE MODELING WITH NEURAL NETWORKS To go further than simple point estima-
tion, generative neural networks were developed. These neural networks are trained in
order to sample from a target distribution π ∈ P(Rd) given an empirical distribution
π̂ = (1/N)

∑N
i=1 δxi

where the xi are samples of the target distribution π. These methods
consist in learning a mapping g that transforms samples of a easy-to-sample distribution
π0 ∈ P(Rp), like a Gaussian distribution, into samples from the target distribution π. There
exist 3 major types of neural networks to sample from a distribution namely Variational
Auto-Encoders (VAEs) (Kingma and Welling, 2019), Normalizing Flows (NFs) and Gen-
erative Adversarial Networks (GANs). In this section, we briefly introduce these neural
networks.

VAEs have a similar structure to autoencoders which consist of two networks.

• The Encoder G : Rd → Rp maps the samples from π0 to a latent variable in Rp.
Usually, p < d.

• The Decoder D : Rp → Rd maps back latent variables in Rp to images in Rd.

The latent space corresponds to a space where it is easier to manipulate the data. It
supports the idea that images are concentrated on a low-dimensional sub-manifold.

The idea behind VAE is to model the latent space in a probabilistic manner. Then the
encoder and the decoder are both associated with distributions as shown in Figure 3.4. In
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Figure 3.4: Structure of a VAE

this case we sample a latent variable z from π0 in the latent space and use the decoder to
map into an image.

We want to encourage the latent space to follow the distribution π0 which is usually
Gaussian.

GANs consist of two neural networks trained in a competitive manner (Goodfellow
et al., 2014).

• The Generator G : Rp → Rd maps the samples from π0 to images in Rd.

• The Discriminator D : Rd → [0, 1] tries to distinguish samples from π̂ for which
D(xi) = 1 from artificial images generated from π0 and for which D(G(z)) = 0.

The loss reads
min
G

max
G
{Ex logD(x) + Ez log[1−G(D(z))]} .

NFs are such that p = d. The goal is to train an invertible neural network T that maps
images to latent representation z = T (x) classically normally distributed (Papamakarios
et al., 2019). Then, we have

π(x) = π0(T (x))× |det JT (x)| . (3.14)

We have an explicit expression of the target density π. In order to be exploitable, |det JT |
has to be easily computable. That is why T is often composed of simple transformations
with triangular Jacobians.

In addition, stochastic normalizing flows (SNFs) were introduced in (Wu et al., 2020) and
consist of a sequence of deterministic flow transformations and stochastic sampling methods
with tractable paths, such as Markov Chain Monte Carlo (MCMC) or overdamped Langevin
dynamics.

There are several survey papers for VAEs (Kingma and Welling, 2019), GANs (Creswell
et al., 2018; Wang et al., 2017) and NFs (Papamakarios et al., 2019; Kobyzev et al., 2021)
providing a comprehensive review of the literature for distribution learning.

Sampling the posterior distribution Based on the success of the generative neural
networks previously introduced, a lot of effort has been made to sample from the posterior
distribution using a neural network in order to solve inverse problems. The basic idea is to
add an input to the networks for the observation y. (Mirza and Osindero, 2014) introduced
conditional GANs (cGANs), constructed by simply feeding the observation y, we wish to
condition on to both the generator and discriminator. cGANS were applied to solve inverse
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problems such as image reconstruction in ultra low dose 3D helical CT (Adler and Öktem,
2018b) or Partial-Differential-Equation (PDE) based inverse problems (Ray et al., 2022).
(Goh et al., 2022) proposes to train a VAE to solve a PDE-based inverse problem and to
perform uncertainty quantification. Eventually, (Lugmayr et al., 2020) is an example where
a NF is trained to solve an ill-posed inverse problem in imaging, super-resolution. The
network learns the conditional distribution of the solution to the inverse problem given the
low-resolution input y. SNFs were firstly applied to tackle inverse problems in (Hagemann
et al., 2022).

3.3.5 Limitations of the pure neural network based approaches
One disadvantage of using neural networks to solve imaging inverse problems is that in
order to achieve state-of-the-art performance it is usually necessary to train the network
for a specific problem configuration. Then, the network must be retrained if the forward
model, ie A or the noise distribution change, or any model parameters change significantly.
Solutions encoded by end-to-end neural networks are mostly problem specific and not easily
adapted to reflect changes in the problem (e.g., in instrumental settings). There also exist
concerns regarding the stability of such approaches for general reconstruction problems
(Antun et al., 2020, 2021).

Furthermore sampling neural networks generally lack convergence proofs. Then, it is not
clear which distribution we are sampling from.

In order to address these limitations, we consider Plug & Play methods for posterior
sampling and Maximum-a-Posteriori estimation. Related work on PnP MAP estimation is
discussed in Section 3.4 and our contributions to this subject are detailed in Chapter 4.
Related work on PnP posterior sampling is discussed in Section 3.6 and our contributions
to this subject are detailed in Chapters 5 and 6.

3.4 A survey of Plug & Playmethods for estimating theMAP in imag-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Plug & Play methods try to combine the strengths of the Bayesian paradigm and the neural
networks. It consists to specify an implicit prior defined via a denoiser. These data-driven
regularisation approaches learn an implicit representation of the prior density p(x) (or its
potential U(x) = − log p(x)) while keeping an explicit likelihood density, which is usually
assumed to be known and calibrated (Arridge et al., 2019)

In the context of imaging inverse problems, Plug & Play methods aim at using a carefully
chosen denoiser Dε : Rd → Rd to implicitly define an image prior. This is achieved by
relating Dε to a proximal operator or a gradient associated with the prior density. In the
first case, Dε replaces a MAP estimator for a denoising problem. In the second case, Dε

replaces a Minimum Mean Square Error (MMSE) estimator for a denoising problem, related
to the gradient of a log-prior via Tweedie’s identity †(Robbins, 1956; Miyasawa et al., 1961;
Efron, 2011).

†Notice that although it is conceptually helpful to distinguish these two cases (in order to make a historical
and practical survey of the subject), there are clear theoretical connections between the two approaches.
Indeed, under regularity conditions on the Bayesian model involved, MAP denoisers can be expressed as
MMSE denoisers under an alternative (albeit often unknown) Bayesian model (Gribonval, 2011). However
this equivalence can not always be exploited in practice and has been mostly ignored in the literature on
Plug & Play methods until very recently with the work of Xu et al. (Xu et al., 2020) to be presented later.
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In what follows, we describe how these approaches have been widely used to compute the
MAP estimator as a solution to the considered inverse problem. In our discussion, we pay
particular attention to questions related to algorithmic convergence, and to the interpreta-
tion of the computed solutions, as this has been an important focus of the literature.

3.4.1 Plug & Play MAP estimators using proximal splitting

Let D†
ε denote the MAP estimator to recover x from a noisy observation xε ∼ N (x, ε Id)

under the assumption that x has marginal density p(x) ∝ exp[−U(x)]; that is,

D†
ε(xε) = arg min

x∈Rd

{1
2
‖xε − x‖2 + εU(x)} = proxεU (xε) .

When we set the PnP denoiser Dε such that Dε = D†
ε, any optimization scheme making use

of a proximal descent on the prior can be used to solve (3.8) via Dε.
For instance, the alternating direction method of multipliers (ADMM) (Glowinski and

Marroco, 1975; Boyd et al., 2011) writes the augmented Lagrangian of (3.8) as

Eε(x, z, v) = F (x, y) + ‖x− z‖2/(2ε) + v>(x− z) + U(z) .

The joint optimization of the augmented Lagrangian is given by

(x̂map, ẑmap) = arg minx,z∈Rd maxv∈RdEε(x, z, v).

This provides the solution x̂map = ẑmap of (3.8) when ε→ 0.
In practice, the joint optimization is solved by an alternate minimization scheme on x

and z and a gradient ascent on u = εv,

xk+1 = arg minx Eε(x, zk, uk/ε) = proxεF (·,y)(zk − uk) , (3.15)
zk+1 = arg minz Eε(xk+1, z, uk/ε) = proxεU (xk+1 + uk) = Dε(xk+1 + uk) , (3.16)
uk+1 = uk + xk+1 − zk+1 . (3.17)

Similarly, when F (., y) is differentiable, the simpler Forward-backward splitting (FBS)
scheme (Combettes and Pesquet, 2011), which only requires to compute ∇F , can be written
in a Plug-and-Play fashion as

xk+1 = proxεU (xk − ε∇F (xk, y)) = Dε(xk − ε∇F (xk, y)) . (3.18)

A fully proximal version of this algorithm, called Backward-backward splitting (BBS) (Com-
bettes and Pesquet, 2011), writes

xk+1 = proxεU (proxεF (xk)) = Dε(proxεF (xk)) . (3.19)

BBS aims at solving a slightly modified version of (3.8) where F is replaced by its Moreau
envelope with parameter ε. The same algorithm can be derived using half-quadratic splitting
to solve (3.8).

When U is convex, such splitting schemes and many variants (including primal-dual
methods, ISTA or FISTA, etc.) are well understood and proved to converge to the global
optimum (Boyd et al., 2011). They have also been successfully used for non-convex U like
patch-based Gaussian mixture models (GMM) as pioneered for external learning by (Zoran
and Weiss, 2011). The use of splitting schemes with non-convex GMM priors was later
refined with convergence guarantees for scene-adapted learning (Teodoro et al., 2018a).
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Following the seminal work of (Venkatakrishnan et al., 2013), this kind of splitting
schemes have become ubiquitous in cases where U (and hence D†

ε) are unknown and unspeci-
fied, but a denoiser Dε is available and assumed to be a good approximation of D†

ε = proxεU .
As popular and efficient these methods have become, their convergence properties have re-
mained largely unknown. Indeed, for most denoisers Dε, there is no guarantee that there
exists a potential U such that Dε = proxεU . (Sreehari et al., 2016) establish some sufficient
conditions for this to happen: Dε must be differentiable, and its Jacobian JDε should be
symmetric with eigenvalues within the [0, 1] interval to ensure non expansiveness. These as-
sumptions hold for transform-domain thresholding denoisers and for variants of Non Local
Means (Buades et al., 2005a) where symmetry is explicitly enforced (Sreehari et al., 2016).
More recently, it has also been shown (Nair et al., 2021) that a special class of linear de-
noisers (including Non Local Means (Buades et al., 2005a)) are proximal operators of some
closed, proper functions. This approach necessitates to work with a non standard inner
product though. The previous proofs do not hold for most popular denoisers, including
BM3D (Dabov et al., 2006), Non Local Bayes (Lebrun et al., 2013) and neural networks
denoisers like DnCNN (Zhang et al., 2017), as observed in (Reehorst and Schniter, 2018).

CONSENSUS EQUILIBIRUM / FIXED POINT INTERPRETATION. Since it remains difficult to show
that PnP schemes converge to the MAP or even a critical point of (3.8), several authors
have proposed to analyse these schemes from a consensus equilibrium point of view (Buzzard
et al., 2018; Ahmad et al., 2020), or similarly to consider and analyse these approaches as
fixed-point algorithms (Sun et al., 2019; Ryu et al., 2019). The fixed points attained by these
algorithms cannot be interpreted as MAP estimators, but should be seen as solving a set of
equilibrium equations involving both the denoiser and the data term. For instance, for PnP-
FBS, the idea is to show convergence to the set of points x satisfying x = Dε(x−ε∇F (x, y)).
It can easily be shown that the fixed points of several of these PnP algorithms (in particular
PnP-ADMM and PnP-FBS) coincide (Meinhardt et al., 2017; Sun et al., 2019).

Assuming that such fixed points exist, Sun et al. (2019) show convergence of PnP-ISTA
(which is equivalent to PnP-FBS above) under the assumptions that ∇F is Ly-Lipschtitz,
εLy 6 1 and Dε is θ-averaged, see (Bauschke et al., 2011, Definition 4.33) for a definition.
This assumption on the denoiser is probably too strong, since most denoisers cannot be
considered as averaged operators. (Sun et al., 2020) reformulate PnP-ADMM with different
convergence conditions, and still assume quite restrictive conditions on the denoiser Dε

‡.
(Ryu et al., 2019) propose a convergence analysis of PnP-ADMM, PnP-FBS and PnP-

DRS (PnP Douglas-Rachford Splitting), based on the weaker assumption that the residual
operator Dε − Id is L-Lipschitz with a Lipschitz constant which depends both on the data
fitting term F and the denoiser Dε. The proof also requires F to be µ-strongly convex (which
excludes all cases where A is not full rank and de facto excludes some of the applications
considered in (Ryu et al., 2019)) and it imposes quite restrictive assumptions on relative
values of µ, ε and L.

In a similar direction, (Xu et al., 2020) very recently proposed a convergence study for
PnP-ISTA, with the assumption that ∇F is Ly-Lipschitz with εLy 6 1. However, they
assume that Dε is an exact MMSE denoiser, i.e. Dε(xε) = E[X|Xε = xε], where X ∼ p
and Xε −X ∼ N (0, ε Id). Therefore their theoretical results do not carry to many classical
denoisers, such that those learned from training data and implemented by neural networks.

‡In (Sun et al., 2020), the residual Id−Dε is assumed to be firmly non expansive, which is equivalent to
say that Dε is firmly non expansive, see (Bauschke et al., 2011, Proposition 4.4).
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ASSUMPTIONS ON ALGORITHM PARAMETERS. Most of the convergence proofs for PnP algo-
rithms impose restrictive assumptions on the choice of parameters used in the iterative
schemes. This may exclude interesting ranges of parameters for several inverse problems.
For instance, for PnP-FBS, the parameter ε (which can be interpreted as the step of the
proximal or gradient descents) and the Lipschitz parameter Ly of ∇F must typically be
chosen such that Lyε 6 C with C ∈ [1, 2] (see (Ryu et al., 2019; Xu et al., 2020), the exact
value of C depends on the convergence proof). If F (x, y) = 1

2ασ2 ‖Ax− y‖2, with ‖A‖ ≤ 1,
it implies that 1

α 6 σ2

ε . The parameter ε is imposed by the denoiser Dε (the denoiser is
trained for a noise of variance ε), and σ is given by the quantity of noise in the forward
model. If, for instance, the forward model involves a noise standard deviation σ which is
5 times smaller than the one used for the denoiser Dε, it means that the penalty α (which
balances the respective weights of the data and prior terms) should be chosen larger than
25, which implies that the algorithm will only converges for huge regularizations. We will
see in Section 4.3 that for this kind of reason the PnP-FBS algorithm often fails to converge
for classical imaging inverse problems, or converges only for values of α which are not inter-
esting in practice. Fully proximal algorithms such as PnP-ADMM or PnP-BBS are much
more robust in practice, even when the conditions of their theoretical convergence are not
fully met. The PnP-SGD algorithm that we will introduce in the following does not suffer
from the same convergence limitations.

AMP ALGORITHMS. It is worth mentioning at this point that the Plug-and-Play framework
has also been shown to be very efficient with Approximate Message Passing algorithms (Ah-
mad et al., 2020). These algorithms have excellent convergence properties for data terms of
the form ‖Ax−y‖2 with A belonging to specific classes of random matrices. This restriction
on A does not hold for the inverse problems considered in this thesis so we focus instead on
classical optimization scheme such as the ones described above.

3.4.2 Plug & Play MAP estimators using gradient descent
Now, assume that Dε = D?

ε , where D?
ε is the MMSE estimator to recover x from the noisy

observation xε with (Xε|X = x) ∼ N (x, ε Id) when X has marginal density p; that is,

D?
ε(xε) = E[X|Xε = xε] =

∫
Rd zp(z)Gε(xε − z)dz/

∫
Rd p(z)Gε(xε − z)dz , (3.20)

where Gε is a Gaussian kernel with variance ε, meaning that for all x ∈ Rd,

Gε(x) = (2πε)−d/2 exp[−‖x‖2/(2ε)] .

We introduce the following class of smooth approximations of p(x), defined for any x ∈ Rd

by
pε(x) =

∫
Rd p(x̃)Gε(x− x̃)dx̃ . (3.21)

In this case, Tweedie’s identity (Efron, 2011) establishes the following relationship between
the MMSE denoiser D?

ε and (3.21), for any x ∈ Rd

∇Uε(x) = −∇ log pε(x) = (x−D?
ε(x))/ε , (3.22)

where Uε = − log(pε). This relation can be used to plug the MMSE denoiser D?
ε in any

gradient descent scheme involving ∇Uε as follows

Xk+1 = Xk − δ∇F (Xk, y)− δ∇Uε(Xk) + δZk+1 , (3.23)
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or

Xk+1 = Xk + δ∇ log p(y|Xk) +
δ

ε
(D?

ε(Xk)−Xk) + δZk+1 , (3.24)

where {Zk : k ∈ N} is a sequence of i.i.d Gaussian random variables with zero mean and
identity covariance matrix and δ > 0 is the gradient descent step-size.

It is at the core of the algorithm PnP-SGD presented in Chapter 4.
Similarly to the MAP denoiser D†

ε, the MMSE denoiser D?
ε is usually not known, so

PnP methods rely on other denoisers Dε that are believed to be good approximations of
D?

ε . Observe that CNN denoisers are usually trained to minimize an empirical quadratic
risk on a large database of natural images. As a consequence, they naturally produce good
approximations of MMSE denoisers D?

ε for realistic image priors. This makes approaches
based on Tweedie’s identity particularly attractive. On the other hand, learning mechanisms
to produce good approximations of MAP denoisers D†

ε are much less widespread, although
under some conditions, MMSE denoisers can be shown to be MAP denoisers on a different
prior (see (Gribonval, 2011; Xu et al., 2020; Hurault et al., 2022b)).

A similar relation is derived by (Romano et al., 2017) where they present the Reg-
ularization by Denosing (RED) method, which proposes an insightful Bayesian formu-
lation of denoiser-based priors as image-adaptive Laplacian regularisations. Instead of
using Tweedie’s identity, the RED method solves (3.8) via different optimization algo-
rithms (including gradient descent and ADMM) with explicit regularization Uε(x) =
(1/2)〈x, x−Dε(x)〉. As shown in (Reehorst and Schniter, 2018), under the assumptions
that Dε is locally homogeneous and has symmetric Jacobian, this implies that for any
x ∈ Rd, ∇Uε(x) = x −Dε(x), which is (up to a scaling factor 1/ε) the same expression as
Tweedie’s identity in (3.22). Unfortunately, as pointed out before, these assumptions on Dε

are not strictly satisfied by most commonly used denoisers (Reehorst and Schniter, 2018),
although we note that Jacobian symmetry can be explicitely enforced (Milanfar, 2013). The
convergence of the RED algorithms for denoisers that do not verify the above-mentioned
assumption remains unproven. As an alternative interpretation the RED algorithm can be
seen as a way to approximate the score ∇Uε by (x − Dε(x))/ε in the optimality equation
∇F + ∇Uε = 0. Here the optimal MMSE denoiser D?

ε is again replaced by some other
denoiser.

More recently, (Cohen et al., 2020) studies a projected RED estimator which seeks to
minimize a data fidelity term subject to the constraint that the solution belongs to the set
of fixed points {x ∈ Rd : x = Dε(x)}, thus sharing strong link with the consensus equilibrium
interpretation of proximal-based PnP estimators. It is reported in (Cohen et al., 2020) that
when Dε is a demi-contractive mapping, its fixed points define a convex set, which allows the
construction of provably convergent algorithms for this alternative RED estimator. However,
as pointed out in (Pesquet et al., 2020), verifying that a given denoising operator is demi-
contractive is not easy and, to be the best of our knowledge, it is not yet clear what denoisers
verify this property. Furthermore, from a Bayesian inference viewpoint, additional studies
would be required in order to determine when this projected RED estimator defines or
approximates a MAP estimator for a suitable Bayesian model.

In a similar direction, two very recent works (Hurault et al., 2022a,b) show how to train
efficiently a denoiser that explicitly satisfies Dε(x) = x − ∇gε(x) for some functional gε.
Plugging this denoiser in appropriate PnP schemes, they are able to prove convergence to
stationary points of an explicit cost function.

The PnP-SGD optimisation algorithm that will be presented in Chapter 4 is very close
to the gradient descent version of RED presented in (Romano et al., 2017). We will show
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that it converges to the vicinity of the solution of (3.8) under much milder conditions than
previously assumed. In particular, the convergence guarantees hold even when Dε is not
an exact MAP or MMSE denoiser, which is often the case in practice. Importantly, our
convergence guarantees hold for the neural network denoiser used in (Ryu et al., 2019) (a
variant of DnCNN (Zhang et al., 2017) with a contractive residual) and also for the native
Non Local Means (Buades et al., 2005b).

3.5 Posterior sampling in imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section we review some of the methods commonly used in imaging for sampling. There
is a vast literature on Bayesian computation methodology for models related to imaging sci-
ences (see, e.g., (Pereyra et al., 2015)). Here, we briefly summarise efficient high-dimensional
Bayesian computation strategies derived from the Langevin stochastic differential equation
(SDE)

dXt = ∇ log p(Xt|y) +
√
2dBt = ∇ log p(y|Xt) +∇ log p(Xt) +

√
2dBt , (3.25)

where (Bt)t>0 is a d-dimensional Brownian motion. When p(x|y) is proper and smooth,
with x 7→ ∇ log p(x|y) Lipschitz continuous§, then, for any initial condition X0 ∈ Rd, the
SDE (3.25) has a unique strong solution (Xt)t>0 that admits the posterior of interest p(x|y)
as unique stationary density Roberts et al. (1996). In addition, for any initial condition
X0 ∈ Rd the distribution of Xt converges towards the posterior distribution in total variation.
Although solving (3.25) in continuous time is generally not possible, we can use discrete time
approximations of (3.25) to generate samples that are approximately distributed according
to p(x|y). A natural choice is the Unadjusted Langevin algorithm (ULA) Markov chain
(Xk)k>0 obtained from an Euler-Maruyama discretisation of (3.25), given by X0 ∈ Rd and
the following recursion for all k ∈ N

Xk+1 = Xk + δ∇ log p(y|Xk) + δ∇ log p(Xk) +
√
2δZk+1 , (3.26)

where {Zk : k ∈ N} is a family of i.i.d Gaussian random variables with zero mean and iden-
tity covariance matrix and δ > 0 is a step-size which controls a trade-off between asymptotic
accuracy and convergence speed (Dalalyan, 2017; Durmus and Moulines, 2017). The approx-
imation error involved in discretizing (3.25) can be asymptotically removed at the expense
of additional computation by combining (3.26) with a Metropolis-Hastings correction step,
leading to the so-called Metropolis-adjusted Langevin Algorithm (MALA) (Roberts et al.,
1996).

It is interesting to draw comparison between ULA and SGD. As for the SGD update
rule, the red term in the ULA update rule points towards the target distribution modes.
However, the square root on on δ in the green term allows exploration and consists in the
main difference with SGD.

When the prior density p(x) is log-concave but not smooth, one can still use ULA by
approximating the gradient of U(x) = − log p(x) in (3.26) by the gradient of the smooth
Moreau-Yosida envelope Uλ(x), given for any x ∈ Rd and λ > 0 by ∇Uλ(x) = 1

λ (x −
proxλ

U (x)). ¶ For example, one could use the Moreau-Yosida ULA Durmus et al. (2018),
§That is, there exists L > 0 such that for any x1, x2 ∈ Rd, ‖∇ log p(x1|y)−∇ log p(x2|y)‖ 6 L‖x1 − x2‖
¶Recall: The Moreau-Yosida envelope is defined as Uλ(x) = infx̃ U(x̃) + 1

2λ
‖x − x̃‖2 and the proximal

operator is defined as proxλ
U (x) = arg minx̃∈Rd U(x̃) + 1

2λ
‖x− x̃‖22.
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given by X0 ∈ Rd and the following recursion for all k ∈ N

Xk+1 = Xk + δ∇ log p(y|Xk) +
δ

λ

[
proxλ

U (Xk)−Xk

]
+
√
2δZk+1 . (3.27)

Notice that proxλ
U is equivalent to MAP denoising under the prior p(x), for additive white

Gaussian noise with noise variance λ. The Plug & Play ULA methods studied in Chapter 5
are closely related to (3.27), with a state-of-the-art Gaussian denoiser “plugged” in lieu of
proxλ

U . However, instead of approximating ∇U via a Moreau-Yosida envelope as above, we
use Tweedie’s identity (3.22) relating ∇U to an MMSE denoiser (see Section 5.2).

3.6 A survey of Plug & Play methods for sampling the posterior dis-
tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A natural strategy to reconcile the strengths of the Bayesian paradigm and neural networks
is provided by Plug & Play approaches. As explained in Section 3.4, Plug & Play approaches
seek to derive an approximation of the gradient ∇U (called the Stein score) Bigdeli et al.
(2017); Bigdeli and Zwicker (2017) based on the Tweedie’s formula using a denoising al-
gorithm Dε within a Monte Carlo sampling scheme. To the best of our knowledge, the
idea of leveraging a denoising algorithm to approximate the score ∇U within an iterative
Monte Carlo scheme was first proposed in the seminal paper (Alain and Bengio, 2014) in the
context of generative modelling with denoising auto-encoders, where the authors present a
Monte Carlo scheme that can be viewed as an approximate Plug & Play MALA. This scheme
was recently combined with an expectation maximisation approach and applied to Bayesian
inference for inverse problems in imaging in (Guo et al., 2019) where the goal was to tackle
blind imaging inverse problems. Similarly, the recent work (Kadkhodaie and Simoncelli,
2020) proposes to solve imaging inverse problems by using a Plug & Play stochastic gra-
dient strategy that has close connections to an unadjusted version of the MALA scheme
of (Alain and Bengio, 2014). However, (Kadkhodaie and Simoncelli, 2020) only deals with
noiseless inverse problems. (Kawar et al., 2021b,a) also suggest to plug an MMSE denoiser
into an annealed Langevin scheme instead of a score-matching neural network as in (Song
and Ermon, 2019) in order to sample from the posterior distribution. However, they only
show results obtained with NCSNv2 network proposed by (Song and Ermon, 2019).

While these approaches have shown some remarkable empirical performance, they rely on
hybrid algorithms that are not always well understood and that in some cases fail to converge.
Indeed, their convergence properties remain an important open question, especially when
Dε is implemented as a neural network that is not a gradient mapping. Consequently, the
generated samples do not necessarily represent the posterior of interest p(x|y). In contrast,
PnP-ULA and PPnP-ULA that are presented in Chapter 5 allow to sample from the posterior
distribution of an inverse problem with a deep Plug & Play prior also providing convergence
guarantees and non-asymptotic error bounds.
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As explained in Section 3.4, several recent works have proposed and studied the use of PnP
methods in order to tackle inverse problems. Most of the literature focuses on MAP es-
timation. If these methods can deliver accurate results, particularly when combined with
state-of-the art denoisers, their theoretical analysis stayed for a long time poorly under-
stood. Moreover, they often relied on unrealistic assumptions on the properties of the image
denoiser. This chapter is mostly inspired by the preprint article (Laumont et al., 2021)
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and aims at developing efficient PnP algorithms with convergence guarantees under rea-
sonable assumptions in order to perform MAP estimation for Bayesian models with PnP
priors. First, we address key questions related to the existence, the stability and the well-
posedness of the inverse problem in Sections 4.2 and 4.2.1. Then, a convergence proof for
MAP computation by PnP stochastic Gradient Descent (PnP-SGD) under realistic assump-
tions is presented in Section 4.2.2. Finally, the efficiency of the algorithm is demonstrated
over a range of classical inverse problems such as denoising, deblurring and interpolation in
Section 4.3.

Proofs ans convergence results were derived by Valentin De Bortoli and are exposed in
Appendix A for the sake of completeness.

4.2 PnP maximum-a-posteriori estimation: analysis and computa-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.1 Analysis of maximum-a-posteriori estimation with PnP priors
We are interested in MAP estimation for Bayesian models involving PnP priors that are
defined implicitly by an image denoising algorithm Dε. We pay special attention to the
highly practically relevant case in which Dε approximates the optimal MMSE denoiser D?

ε

associated to p, i.e., D?
ε = E[X|Xε = xε] for (Xε|X = x) ∼ N (x, ε Id) when X has marginal

density p. As mentioned in Section 3.4.2, state-of-the-art denoisers based on neural networks
are often trained to approximate D?

ε by using a sample of clean images {xi}Ni=1 from p,
corresponding noisy samples {x′

i}Ni=1 with X ′
i|Xi = xi ∼ N (xi, ε Id), and choosing Dε to

approximately minimize the empirical MSE loss
∑N

i=1 ‖Dε(x
′
i)−xi‖2. Similarly, many state-

of-the-art patch-based image denoisers are also designed to approximate D?
ε .

The fact that Dε is only an approximation of D?
ε leads to several complications in the

analysis and computation of MAP solutions. For example, unlike D?
ε , Dε does not define

a gradient mapping in general, and key results such as Tweedie’s identity (Efron, 2011) do
not hold. Moreover, in the case of neural network denoisers trained from samples {xi}Ni=1

from p, the model is unknown as it is only available through {xi}Ni=1, making it difficult to
check that basic regularity properties required for MAP estimation are satisfied.

Rather than imposing strong assumptions on Dε, we address these difficulties by formu-
lating our analysis in the M-complete Bayesian framework, in which we assume that the
posterior p(x|y) associated with the true prior p(x) exists but remains largely unknown, and
all inference on x|y are conducted by using operational approximations of this true model
(Bernardo and Smith, 2000). In particular, we focus on the class of smooth approximations
of p(x|y) given for any ε > 0 and x ∈ Rd by

pε(x|y) =
pε(x)p(y|x)∫

Rd pε(x̃)p(y|x̃)dx̃
, (4.1)

where pε(x) is the smooth approximation of the prior p(x) defined in (3.21). We will study
MAP estimation for pε(x|y) to establish that the procedure is well defined, well posed,
amenable to efficient computation, and that it provides a useful approximation to MAP
estimation with the true posterior p(x|y). Following on from this, Section 4.2.2 will study
the computation of MAP solutions for pε(x|y) by using PnP SGD with a generic denoiser
Dε that approximates D?

ε , where we will pay particular attention to the conditions on Dε

required to ensure convergence, as well as to the bias introduced by using Dε instead of D?
ε .
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It is established in Chapter 5 that, under basic assumptions on the likelihood function
p(y|x) detailed in H1 below, the posterior approximation pε(x|y) is well defined, proper,
and can be made as close to the true posterior p(x|y) as desired by reducing the value of
ε, with the approximation error vanishing as ε → 0. Crucially, Chapter 5 also establishes
that, under H1 and mild assumptions on the optimal MMSE denoiser D?

ε (essentially, that
the denoising problem underlying D?

ε is well posed in the sense of Hadamard), then x 7→
pε(x|y) is differentiable with x 7→ ∇ log pε(x|y) Lipschitz continuous. We conclude that the
approximation pε(x|y) is well defined and amenable to computation by first-order schemes,
such as SGD to compute critical points of pε(x|y) and perform MAP estimation.

H1 For any y ∈ Rm, supx∈Rd p(y|x) < +∞, p(y|·) ∈ C1(Rd, (0,+∞)). In addition, there
exists Ly > 0 such that ∇ log p(y|·) is Ly Lipschitz continuous.

With the above-mentioned properties of pε(x|y) in mind, we wonder if computing a MAP
solution for pε(x|y) provides useful information about a MAP solution for p(x|y). More
precisely, we study if critical points for pε(x|y) are stable w.r.t. variations in ε, and if
they converge to critical points of p(x|y) as ε → 0. Proposition 4.2.1 below establishes
that this is indeed the case. In words, MAP solutions computed with pε(x|y) are in the
neighbourhood of MAP solutions for p(x|y), with ε controlling a trade-off between the
computational efficiency of first-order schemes and the accuracy of the delivered solutions
w.r.t. p(x|y). When ε is large, the approximation of the posterior is smoother so gradient
descent can be used with larger steps to improve convergence speed (as the gradients have
a smaller Lipschitz constant).

Formally, we investigate the stability of the set of stationary points Sε,K = {x ∈ K :
∇ log pε(x|y) = 0} w.r.t. ε > 0, where K is a compact set. We show that for any sequence
(εn, xn)n∈N such that limn→+∞ εn = 0 and for any n ∈ N, xn ∈ Sεn,K every cluster point
of (xn)n∈N belongs to SK = {x ∈ K : ∇ log p(x|y) = 0}. In other words, we show that the
stationary points of the approximate posterior are close to the ones of the true posterior.

Proposition 4.2.1 Assume H1 and that p ∈ C1(Rd, (0,+∞)) with ‖p‖∞ + ‖∇p‖∞ < +∞.
Then for any compact set K ⊂ Rd and (xεn)n∈N such that limn→+∞ εn = 0 and for any
n ∈ N, xεn ∈ Sεn,K, we have that any cluster point x? of xεn satisfies x? ∈ SK.

Proof: The proof is postponed to Appendix A.1. �

Note that the above result can be strengthened to show the convergence at the levels of
sets. More precisely, we can show that any cluster point of {SK,ε}ε>0 is a subset of SK in
the sense of the Haussdorff distance, see (Munkres, 2000) for a definition.

As a third and final point in our analysis, we study if MAP estimation for pε(x|y) is a well-
posed estimation procedure, which is an essential requirement for meaningful inference. One
would ideally seek to establish the existence of a unique global maximiser that is Lipschitz
continuous w.r.t. perturbations of the observed data y. Unfortunately, this is not possible
without imposing very strong assumptions on the model. Instead, Proposition 4.2.2 below
shows that, under some assumptions on the likelihood p(y|x), the set of critical points of
pε(x|y) is locally Lipschitz continuous w.r.t. perturbations of y, which is a weaker form of
well-posedness. Notice that the assumptions on the likelihood can be relaxed when D?

ε is
contractive, but this is usually unrealistic. This highlights a limitation of MAP estimation
by comparison to other Bayesian estimators, namely MMSE estimation, which is shown in
Chapter 5 to be well-posed under significantly weaker assumptions.
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Proposition 4.2.2 Assume H1 and that (x, y) 7→ p(y|x) ∈ C2(Rd × Rm,R). Let ε > 0, we
have that (x, y) 7→ pε(x|y) ∈ C2(Rd×Rm,R+). Let y0 ∈ Rm denote some observed data and
x?
y0
∈ Rd a local maximiser of the posterior x 7→ pε(x|y0) with ∇2 log pε(x?

y0
|y0) negative.

Then there exists an open set V0 ⊂ Rm and a function x?(y) ∈ C1(V0,Rd) such that y0 ∈ V0

and for any y ∈ V0, x?(y) is a strict local maximizer of x 7→ pε(x|y).

Proof: The proof is postponed to Appendix A.2. �

To conclude, a major challenge in understanding Bayesian inference with PnP priors and
providing guarantees for the delivered solutions is that the underlying prior and posterior
densities p(x) and p(x|y) are unknown. Also, the image denoiser Dε used to construct PnP
schemes is not usually directly related to the model. Instead, when it approximates the
optimal MMSE denoiser D?

ε , it is indirectly related to the model via Tweedie’s identity
and the smooth approximations pε(x) and pε(x|y). We establish that these operational
approximations are useful for MAP inference for x|y, in the sense that they are well defined,
proper, and MAP solutions for pε(x|y) can be made arbitrarily close to the true MAP
solutions through the choice of ε. Importantly, under some assumptions, MAP solutions
for pε(x|y) are well posed and amenable to efficient computation by first order optimisation
methodology.

4.2.2 PnP-SGD and convergence
We are now ready to study the computation of MAP solutions for pε(x|y) by using PnP
SGD with a generic denoiser Dε that approximates D?

ε . We pay particular attention to the
conditions on Dε required to ensure convergence, and to the bias introduced by using Dε

instead of D?
ε .

We begin by using Tweedie’s identity to express SGD to compute critical points of pε(x|y)
as the following sequence: X0 ∈ Rd and for any k ∈ N

Xk+1 = Xk − δk∇F (Xk, y)− δk/ε(Xk −D?
ε(Xk)) + δkZk+1 , (4.2)

where (δk)k∈N ∈ (R+)
N is a sequence of step-sizes, ε > 0, and {Zk : k ∈ N} a family of i.i.d.

Gaussian random variables with zero mean and identity covariance matrix. We recall that
the sequences (Xk)k∈N and (Zk)k∈N are defined on an underlying probability space (Ω,F ,P).

As mentioned previously, in most practically relevant cases D?
ε is an abstract quantity

that cannot be computed. Instead, we have a different denoiser Dε that can be assumed
to be a good approximation of D?

ε . For example, when we have access to samples {xi}Ni=1

from p we can consider a noisy version of these samples {x′
i}Ni=1 with level ε > 0 and train

a neural network based denoiser Dε to minimize the loss
∑N

i=1 ‖Dε(x
′
i) − xi‖2. This loss

corresponds to the empirical version of E[‖Dε(xε) − x‖2] (with x ∼ p and Xε ∼ N (x, ε Id)
condtionally to x) whose minimizer is the MMSE D?

ε .
Using a generic denoiser Dε in our SGD scheme in lieu of D?

ε we obtain the Plug & Play
SGD algorithm associated with following recursion: X0 ∈ Rd and for any k ∈ N

Xk+1 = Xk + δk(bε(Xk) + Zk+1) , (4.3)
bε(x) = ∇ log(p(y|x)) + α(Dε(x)− x)/ε , (4.4)

where we note that we have introduced a regularization parameter α > 0 that controls the
amount of regularisation enforced by Dε. The original SGD algorithm is recovered by setting
α = 1 and Dε = D?

ε .
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Algorithm 1 PnP-SGD
Require: n, nburnin ∈ N, y ∈ Rm, ε, α, δ > 0

Initialization: Set X0 = x̃ and k = 0.
for k = 0 : N do
Zk+1 ∼ N (0, Id)
if k 6 nburnin then
Xk+1 = Xk + δ0∇ log(p(y|Xk)) + (δ0α/ε)(Dε(Xk)−Xk) + δ0Zk+1

end if
if k > nburnin then
Xk+1 = Xk + δk∇ log(p(y|Xk)) + (δkα/ε)(Dε(Xk)−Xk) + δkZk+1

δk+1 = δ0(k + 1− nburnin)
−0.8

end if
end for
return XN

We now turn to the proof of convergence of PnP-SGD.
The asymptotic estimates we derive in this chapter are only valid for sequences which

remain in a compact set K, which is a classical assumption in stochastic approximation
(Tadić et al., 2017; Delyon et al., 1999; Delyon, 1996; Metivier and Priouret, 1984). Under
tighter conditions on x 7→ log pε(x|y) this limitation can be circumvented using the global
asymptotic results of (Tadić et al., 2017, Theorem A1.1). Another way to remove this
restriction would be to consider an additive term of the form x 7→ (x−ΠC(x))/λ in bε (where
ΠC is the projection onto some compact convex set C and λ > 0 some hyperparameter) which
ensures the stability of the numerical scheme. We leave this analysis for future work. In
practice, we have not observed any stability issues for PnP-SGD provided that the stepsize
is chosen appropriately see Section 4.3.3.

In what follows, we show that the bias of PnP-SGD depends on the distance between Dε

and the MMSE estimator D?
ε , using recent results from (Tadić et al., 2017).

H2 Assume that there exist ε0 > 0, L > 0 and a function M : R+ → R+ such that for any
ε ∈ (0, ε0], R > 0, x1, x2 ∈ Rd and x ∈ B(0, R) we have

‖Dε(x1)−Dε(x2)‖ 6 L ‖x1 − x2‖ , ‖Dε(x)−D?
ε(x)‖ 6 M(R) , (4.5)

where we recall that
D?

ε(x1) =
∫
Rd x̃ gε(x̃|x1)dx̃ , (4.6)

with x̃ 7→ gε(x̃|x) the probability density of X given Xε = x where Xε ∼ N (X, ε Id) condi-
tionally to X and X ∼ p.

The first part of (4.5) regarding the smoothness property of the denoiser can be explicitly
verified for a certain class of neural networks by adding a spectral regularization term for
each layer of the neural network, see (Ryu et al., 2019; Miyato et al., 2018). The second
condition follows from carefully selecting the loss of the neural network as in the Noise2Noise
network introduced in (Lehtinen et al., 2018) and controlling the population error. We refer
the reader to Chapter 5 for more details regarding the role of the bounding function M(R).
In particular, for neural network denoisers, Proposition 3.1 in Chapter 5 explains how to
promote low values of M(R) during training by using a particular loss function. In addition,
Chapter 5 makes connections with universal approximation results (see e.g., (Bach, 2017,
Section 4.7)).
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We are now ready to state Proposition 4.2.3 which ensures that stable PnP-SGD sequences
are close to the set of stationary points of x 7→ log pε(x|y) where x 7→ log pε(x|y) is given in
(4.1). The distance to this set of stationary points is controlled by the approximation error
of the Dε.

H3 For any y ∈ Rm, x 7→ − log p(y|x) is real-analytic ∗ † ‡.

In the following, d stands for the distance induced by the Euclidean norm.

Proposition 4.2.3 Assume H1, H2 and H3. Let α > 0 and ε ∈ (0, ε0]. Assume that
limk→+∞ δk = 0,

∑
k∈N δk = +∞ and

∑
k∈N δ2k < +∞. Let R > 0, K ⊂ B(0, R) be a

compact set, X0 ∈ Rd and Aε,K ∈ F given by

Aε,K = {ω ∈ Ω : there exists k0 ∈ N such that for any k > k0, Xk(ω) ∈ K.} , (4.7)

where (Xk)k∈N is given by (4.3). Then there exist Cε,K > 0 and rε,K ∈ (0, 1) such that
lim supk→+∞ d(Xk(ω),Sε,K) 6 Cε,KM(R)rε,K for any ω ∈ Aε,K, with

Sε,K = {x ∈ K : ∇ log pε(x|y) = 0} , (4.8)

where x 7→ pε(x|y) is given in (4.1).

Proof: The proof is postponed to Appendix A.3. �

The proof can be extended to the case where Zk = 0 using (Tadić et al., 2017, Theorem
2.1). In this case the assumption that

∑
k∈N δ2k < +∞ can be replaced by limk→+∞ δk = 0.

The following experimental section demonstrates the PnP-SGD algorithm on three canon-
ical imaging inverse problems, namely image denoising, deblurring and interpolation, along
with other standard PnP algorithms.

4.3 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we study the behaviour of several PnP algorithms for three classical inverse
problems: denoising, deblurring and interpolation. We recall that in each of these problems
we consider a prior model p(x) ∝ exp[−U(x)] which is unknown and that the inference x|y
is obtained by approximation of this model. For the deblurring and denoising problems, the
log-posterior of the degradation model can be written for any x, y ∈ Rd as

− log p(x|y) = ‖Ax− y‖2/(2σ2) + αU(x) + C , (4.9)
∗A function f : Rd → R is said to be real-analytic if for any x0 = (x1

0, . . . , x
d
0) ∈ Rd there exists

(an1,...,nd )n1,...,nd∈N ∈ RNd and r > 0 such that for any x = (x1, . . . , xd) ∈ B(x0, r)

f(x) =
∑

n1∈N · · ·
∑

nd∈N an1,...,nd

∏d
j=1(x

j − xj
0)

nj .

†The assumption that x 7→ log(p(y|x)) is real-analytic is satisfied in all of our experiments since there
exists A ∈ Rp×d and σ > 0 such that for any x ∈ Rd and y ∈ Rm, log p(y|x) = ‖Ax− y‖2/(2σ2).

‡From Liouville’s theorem one could think that the simultaneously verifying that ∇ log p(y|·) is Lipschitz
continuous and that x 7→ log(p(y|x)) is real-analytic restricts our analysis to models for which ∇2 log p(y|·) is
constant (i.e., Gaussian models), but this is not the case because Liouville’s theorem applies entire functions,
which are a subclass of the real-analytic class.
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where A is a d×d matrix, C > 0 is a constant and the parameter α > 0 balances the weights
of the log-likelihood F (x, y) and the log-prior U . In this case, we have for any x, y ∈ Rd,
F (x, y) = ‖Ax − y‖2/(2σ2). In our interpolation experiments, we change the likelihood so
that pixels are either visible or hidden. In this case the log-posterior can be written for any
x ∈ Rd and y ∈ Rm as

− log p(x|y) = ιQx=y + αU(x) + C , with ιC(x) =

{
0 if x ∈ C
+∞ otherwise,

(4.10)

with Q an m× d matrix consisting of m random lines from the d× d identity matrix.

4.3.1 Image dataset
In Figures 4.1 and 4.2 we present the 6 original images used in the experiments. These
images contain both geometric structures, constant areas and textured regions. On the
same figures, we display degraded versions of each image for each set of experiments. For
the denoising experiment, the level of the Gaussian noise is fixed to σ2 = (30/255)2. In the
case of deblurring, the operator A correponds to a 9× 9 uniform blur operator, and we add
Gaussian noise with variance σ2 = (1/255)2. Finally, in the context of interpolation, we
hide 80% of the pixels.

4.3.2 Algorithms
In this section, we evaluate PnP-SGD (Algorithm 1) along with three other classical PnP
algorithms: PnP-ADMM (Algorithm 2), PnP-FBS (Algorithm 3) and PnP-BBS (Algo-
rithm 4). Note that in the case of interpolation, the log-likelihood is not differentiable, since
ιC is not differentiable. In Section 4.3.6 we will present an extension of these PnP algorithms
to this setting using proximal operators.

In order to take into account the parameter α > 0 into Algorithms 2 to 4, we slightly
modify the target function. Instead of minimizing x 7→ − log p(x|y) we aim at minimizing
x 7→ − log p(x|y)/α. Doing so, the parameter α > 0 can be included in the parameters of
the log-likelihood which becomes (x, y) 7→ F (x, y)/α. All algorithms are implemented using
Python and the PyTorch library. Our experiments are run on an Intel Xeon CPU E5-2609
server with an Nvidia Titan XP graphic card.

Algorithm 2 PnP-ADMM
Require: n ∈ N, y ∈ Rm, ε > 0, α > 0, x0 ∈ Rd

Initialization: Set x0 = z0, and uk = 0.
for k = 0 : N do
xk+1 = prox(ε/α)F (·,y)(zk − uk)
zk+1 = Dε(xk+1 + uk)
uk+1 = uk + (xk+1 − zk+1)

end for
return xN+1

4.3.3 Parameters settings and convergence conditions
In this section, we recall and discuss the choice of the different parameters, as well as the
convergence conditions for PnP-SGD. We also discuss the convergence properties of PnP-
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Alley Bridge Cameraman
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Figure 4.1: Dataset (part 1): First three images in our dataset, and examples of degraded images for the three
inverse problems considered in this chapter. For denoising, we add a Gaussian noise with variance

σ2 = (30/255)2. For deblurring, the operator A correponds to a 9× 9 uniform blur operator, and we add
Gaussian noise with variance σ2 = (1/255)2. For interpolation, we hide 80% of the pixels.

Algorithm 3 PnP-FBS
Require: n ∈ N, y ∈ Rm, ε > 0, α > 0, x0 ∈ Rd

for k = 0 : N do
xk+1 = Dε (xk − (ε/α)∇F (xk, y))

end for
return xN+1

Algorithm 4 PnP-BBS
Require: n ∈ N, y ∈ Rm, ε > 0, α > 0, x0 ∈ Rd

for k = 0 : N do
xk+1 = Dε(prox(ε/α)F (·,y)(xk))

end for
return xN+1
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Goldhill Simpson Traffic
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Figure 4.2: Dataset (part 2): Last three images in our dataset, and examples of degraded images for the three
inverse problems considered in this chapter. For denoising, we add a Gaussian noise with variance

σ2 = (30/255)2. For deblurring, the operator A correponds to a 9× 9 uniform blur operator, and we add
Gaussian noise with variance σ2 = (1/255)2. For interpolation, we hide 80% of the pixels.
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ADMM and PnP-FBS following the guidelines of (Ryu et al., 2019; Xu et al., 2020).
Recall that from (4.1), we denote Ly the Lipschitz constant of the log-likelihood gradient

x 7→ ∇F (., y). For F (x, y) = ‖Ax − y‖2/(2σ2), Ly = ‖A?A‖/σ2, with A? the adjoint of
A. F is µ-strongly convex if and only if A is invertible, in which case µ = λmin(A)2/σ2,
where λmin(A) is the smallest singular value of A. In our experiments we have λmin = 1 for
denoising and λmin = 0 for deblurring and interpolation. In our experiments, the operator
A is always chosen such that ‖A?A‖ = 1. Note that if F is replaced by F/α, as it the case
in Algorithms 2 to 4, we have that Ly and µ are replaced by Ly/α and µ/α.

DENOISER. In all experiments, the denoising operator Dε is chosen as the pretrained denois-
ing neural network introduced in (Ryu et al., 2019). This denoiser is trained so that Id−Dε

is L-Lipschitz with L < 1. Note that this corresponds to the first part of (4.5) in H2. In (Ryu
et al., 2019) three pretrained denoisers, at noise level ε = (5/255)2, (15/255)2, (40/255)2 are
proposed. In this work, we only use the first one in our denoising and deblurring experi-
ments. The interpolation problem requires a more subtle strategy relying on a coarse to fine
approach, described in Section 4.3.6.

PNP-SGD. In Algorithm 1, we consider a burn-in regime with a constant step δ0 until
some iteration nburnin. After this initial phase, we set (δk)k∈N to be a decreasing sequence
satisfying the conditions of Proposition 4.2.3. In the case of denoising or deblurring, δ0 is
given by

δ0 = δstable/6, where δstable := 2/Ltot , Ltot = αL/ε+ ‖A∗A‖/σ2 , (4.11)

where Ltot is the Lipschitz constant of ∇ log p(.|y). Note that setting δ0 = δstable ensures
that the deterministic scheme: x0 ∈ Rd and for any k ∈ N, xk+1 = xk+ δ0∇ log p(xk|y), sat-
isfies that (log p(xk|y))k∈N is non-decreasing. After the burn-in period, we use a decreasing
sequence of step-sizes (δk)k∈N such that for any k ∈ N we have

δk := δ0 × (k − nburnin)
−0.8 , (4.12)

which satisfies the conditions required in Proposition 4.2.3 for convergence. Note that con-
trary to existing work, any value of α > 0 can be used in Algorithm 1 provided that δ0 is
defined accordingly using (4.11).

PNP-ADMM. The convergence results of (Ryu et al., 2019) for PnP-ADMM require the
strong convexity of F . In our experiments, this condition is met for denoising experiments
(since A = Id), but not for interpolation nor deblurring if the blur operator is not invertible
(which is the case for a 9 × 9 uniform blur). In the denoising case, following (Ryu et al.,
2019), PnP-ADMM converges to a fixed point if L ∈ [0, 1) and L/(1+ L(1− 2L)) < ε/(ασ2).
In practice, L and ε being set, this condition can only be satisfied for small values of the
regularisation parameter α, which often lead to poor-quality results. However, Algorithm 2
experimentally converges to a fixed point with interesting visual properties for larger values
of α. This suggests that it might be possible to prove the convergence of PnP-ADMM under
weaker conditions than the ones of (Ryu et al., 2019).

PNP-FBS. Similarly to PnP-ADMM the convergence results obtained by (Ryu et al., 2019)
for PnP-FBS are only valid in a strongly convex setting. In our case this corresponds to
the denoising experiment here. The condition on the Lipschitz constant of the denoiser Dε
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is L/(1 + L) < ε/(ασ2) < (L + 2)/(L + 1). In Section 4.3.4, we show that these conditions
are not met in our experiments. In practice, we still observe convergence of the algorithm
for the denoising experiments. This is no longer case in non-strongly convex problems,
see Section 4.3.5 and Section 4.3.6. In (Xu et al., 2020), convergence towards the set of
stationary points of the log-posterior is established for PnP-FBS provided that Dε = D?

ε ,
i.e. Dε is the optimal MMSE. In addition, (Xu et al., 2020) require that εLy 6 1. This
condition implies that ε‖A?A‖ 6 ασ2. Since ‖A?A‖ = 1 for all our experiments, this implies
α > ε/σ2. In experiments with large noise level (as it is the case for our denoising setting),
this leads to acceptable values of α. However, when σ is small in comparison to ε (which is
the case for deblurring), the regularisation parameter α for which the convergence is ensured
is too highlighted in Section 4.3.3.

4.3.4 Denoising
For these denoising experiments, we add a Gaussian noise of variance σ2 = (30/255)2 (see
the second row of Figures 4.1 and 4.2 for examples of degraded images). In this experiment
we use a denoiser Dε trained for a noise level ε = (5/255)2 on a dataset {xi, x

′
i}Ni=1 with

xi ∼ p and x′
i ∼ N (xi, ε Id) for any i ∈ {1, . . . , N}. Using this denoiser in Algorithms 1 to 4,

we aim at denoising y with noise level σ2.
We run all algorithms for several values of the regularization parameter α and for two

different initializations: first a TV-L2 initialization, i.e. applying a simple TV-L2 restoration
to the noisy image following (Rudin et al., 1992; Chambolle and Pock, 2011), and second
an oracle initialization (using the original image without degradation). Although the noisy
observation y is a natural initialization, we observed that initializing at y usually leads to
unsatisfactory results for all PnP schemes with a small value of ε. We believe that this arises
from the high non-convexity of the problem. Our goal here is to assess the dependency of
the algorithm on initialization, since the log-posterior we study is highly non-convex.

For PnP-SGD, the initial step-size δ0 and the sequence (δk)k∈N are defined as explained
in Section 4.3.3. For these denoising experiments, the resulting value of δ0 is already quite
small, such that decreasing δk after the burn-in phase effectively stops the search for a better
optimum and does not change the result. The number of iterations nburnin for the burn-in
was set between 5000 and 25000 for SGD. Within that range, we stop this phase as soon
as |PSNR(Xk+1) − PSNR(Xk)| < 0.1 × δ0. This conservative choice allows to make sure
that the algorithm reaches its steady state, so that the oracle initialization (starting from an
overestimated value of PSNR) does not overestimate the global maximum and the non-oracle
initializations (starting from an underestimated value of PSNR) do not under-estimate it.
In practice, convergence is reached after a few hundreds of iterations in most cases and only
rarely did the algorithm iterate beyond 5000. Increasing δ0 to δ0 = 0.9×δstable also permits
to achieve faster convergence, but in this case adding a decreasing phase for (δk)k∈N after
the burn-in regime is important to achieve the same asymptotic results.

For the splitting-based algorithms (ADMM, BBS, FBS), practical convergence is very fast
and 100 iterations are largely sufficient in all cases. Observe that since we use a denoiser
trained for a noise level ε = (5/255)2, and our denoising experiments are run for σ2 =
(30/255)2, theoretical convergence of PnP-ADMM following (Ryu et al., 2019) requires that
α < (1+L(1−2L))/36L. The exact value of L for the denoising considered in (Ryu et al., 2019)
is not available, but our experiments suggest that L ≈ 1. This implies that only drastically
small values of α meet the previous condition. As a result, this condition is not satisfied
with the choices of α that are experimentally optimal but does not prevent the algorithm
to converge in practice. In the same way, provided that L ∈ [0, 1), convergence of PnP-FBS
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following (Ryu et al., 2019) implies that α is at least larger than 18, see Section 4.3.3. Yet,
interesting values of α for this denoising experiment are far smaller. The condition provided
in (Xu et al., 2020), α > ε/σ2 = 1/3 gives more realistic values for α but we remind that in
this case we must assume that Dε = D?

ε .
Figure 4.3 summarizes the results of this denoising experiment on 10 independent random

noise realizations on each of the 6 images in the dataset, for PnP-SGD, PnP-ADMM and
PnP-BBS (PnP-FBS is not shown here for the sake of clarity, but it shows a very similar
behavior). We first observe that initialization seems to play a very minor role for all the
algorithms considered in this problem. A TV-L2 initialization is sufficient to reach virtually
the same reconstruction quality as the oracle initialization. This might be explained by the
fact that denoising is a relatively simple inverse problem. Second, all algorithms produce very
similar results, with an optimal value of α around 0.25, see Figure 4.3. Table 4.1 summarizes
the denoising results of all algorithms (including PnP-FBS) obtained for this nearly optimal
setting of α = 0.25. In Figure 4.4 we display the results of the different algorithms for this
denoising experiment. If the PSNR values are quite close, it seems that the algorithms make
different compromises in terms of visual results. For example, the estimator obtained with
PnP-ADMM seems to exhibit sharper edges. However, it also seems to hallucinate more
false structures than other algorithms.

TV-L2 init TV-L2 vs. oracle init
SGD vs ADMM vs BBS SGD ADMM BBS

Figure 4.3: Plug & Play denoising for σ2 = (30/255)2 with the prior implicit in Dε for ε = (5/255)2 and
different values of the regularization parameter α. This table shows means and standard deviations for PSNR

and SSIM values over K=10 independent noise realizations for each of the six images and different values of the
regularization parameter α. Initialization plays a very minor role in this case and all algorithms achieve similar

(nearly optimal) performance for α = 0.25.

Figure 4.5 delivers a first convergence diagnosis of PnP-SGD for the denoising task. The
evolution of the average PSNR computed for each image over the 10 different experiments
suggests that only a thousand of iterations seem to be needed to reach the stationary regime.
This impression is confirmed by the evolution of the average gradient norm of the log-
posterior, as after 1000 iterations, a plateau around 0.4 is reached. The decay after 5000
iterations is due to the forced decay of the δk as the algorithm has left the burn-in phase
during which the discretization step-size was held constant.
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Denoising σ2 = (30/255)2, ε = (5/255)2, TV-L2 init, α = 0.25
PnP-SGD PnP-ADMM PnP-BBS PnP-FBS

Overall PSNR 27.65 27.37 27.65 27.56
Simpsons 30.04 30.10 30.41 30.35
Traffic 27.36 27.09 27.31 27.27
Cameraman 28.54 28.21 28.74 28.48
Alley 27.16 26.82 26.98 26.96
Bridge 26.28 25.83 26.18 26.03
Goldhill 26.55 26.18 26.30 26.30

Table 4.1: Plug & Play denoising for σ2 = (30/255)2 with the prior in Dε for ε = (5/255)2. This table shows
mean PSNR values over K=10 independent noise realizations for each of the six images. The regularization

parameter α = 0.25 is nearly optimal for all algorithms.

SGD (PSNR=26.58 dB, SSIM=0.69) ADMM (PSNR=26.17 dB, SSIM=0.68)

BBS (PSNR=26.33 dB, SSIM=0.64) FBS (PSNR=26.31 dB, SSIM=0.67)

Figure 4.4: Plug & Play denoising for σ2 = (30/255)2, ε = (5/255)2 and with α = 0.25. Although the results
obtained by the different methods are close from a quantitative point of view, they look for different

compromises. For example, PnP-ADMM looks for sharper edges than PnP-SGD but tends to hallucinate
structures.
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Evolution of the PSNR. Evolution of the gradient norm.

Figure 4.5: Convergence diagnosis for Plug & Play denoising for σ2 = (30/255)2, ε = (5/255)2 with α = 0.25
and TV − L2 initialization. Left: Evolution of the average PSNR computed for K = 10 independent noise

realizations for each image. A thousand of iterations seem to be sufficient to leave the burn-in phase and enter
the stationary phase. The decay of the discretization step-size δk does not alter the results, which suggests that
the algorithm has converged. Right: Evolution of the average gradient norm of the log-posterior computed over

the 10 experiments for each image. In less than 500 iterations, it stabilizes around 0.4 for each image. These
plots suggest that the algorithm has converged. The decrease observed after 5000 iterations is explained by the

decay of the discretization step-size δk and does not alter the final result.
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4.3.5 Deblurring
We now turn to the deblurring problem. In this section, images are blurred with a uniform
9× 9 kernel, and a small Gaussian noise of standard deviation σ = 1/255 is added in order
to define the degradation model. We now compare the behavior of Algorithms 1 to 3.

Experiments with PnP-SGD follow the same rules as for the denoising problem and the
same observations are valid. When running PnP-ADMM we use approximately 200 itera-
tions to ensure the convergence whereas for PnP-FBS and PnP-BBS, we use approximately
500 iterations. Except for PnP-SGD (using Proposition 4.2.3), these PnP algorithms are
not guaranteed to converge according to (Ryu et al., 2019) since A is not invertible. In
practice PnP-FBS indeed converges only for very large values of the regularization param-
eter α, whereas other PnP algorithms converge for all our experiments. As highlighted in
Section 4.3.3 this suggests that convergence for PnP-ADMM and PnP-FBS occur under
weaker conditions than the ones prescribed in (Ryu et al., 2019).

Figure 4.6 summarizes the results of deblurring on 10 independent random noise real-
izations on each of the 6 images in the dataset, for PnP-SGD, PnP-ADMM and PnP-BBS
(PnP-FBS is not shown here because it does not converge most of the time), for TV-L2 and
oracle initializations. Again, initialization appears to play a minor role in the final results.

Observe that all algorithms show very similar performance (when they converge) for these
deblurring experiments. While PnP-SGD is slower to converge, it is ensured to approximate
the MAP theoretically. Table 4.2 summarizes the deblurring results of all algorithms (in-
cluding PnP-FBS) obtained for the nearly optimal setting of α = 0.3. In Figure 4.7 we
display the results of the different algorithms for this deblurring experiment. Interestingly,
we note that visual results for this deblurring problem are much more similar to each other
than for denoising experiments.

TV-L2 init TV-L2 vs. oracle init
SGD vs ADMM vs BBS SGD ADMM BBS

Figure 4.6: Plug & Play deblurring. Image are blurred with a 9× 9 uniform kernel, a Gaussian noise of standard
deviation σ2 = (1/255)2 is added. The denoiser Dε is trained at ε = (5/255)2. The plots shows mean and
standard deviation values of PSNR and SSIM over K=10 independent noise realizations for each of the six

images and different values of the regularization parameter α. Initialization plays a very minor role in this case
and all algorithms achieve similar (nearly optimal) performance for α = 0.3, except for FBS which requires a

larger (sub-optimal) α to converge.
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Deblurring a 9× 9 kernel with σ2 = (1/255)2, ε = (5/255)2, TV-L2 init, α = 0.3
PnP-SGD PnP-ADMM PnP-BBS PnP-FBS

Overall PSNR 29.88 29.73 29.62 NaN
Simpsons 33.51 33.93 33.70 NaN
Traffic 29.41 29.27 29.10 NaN
Cameraman 30.68 30.43 30.39 NaN
Alley 29.26 28.99 28.90 NaN
Bridge 28.08 27.77 27.65 NaN
Goldhill 28.33 28.01 27.97 NaN

Table 4.2: Plug & Play deblurring. Image are blurred with a 9× 9 uniform kernel, a Gaussian noise of standard
deviation σ = 1/255 is added. The denoiser Dε is trained at ε2 = (5/255)2. This table shows mean PSNR
values over K=10 independent noise realizations for each of the six images. The regularization parameter

α = 0.30 is nearly optimal for all algorithms.

SGD (PSNR=28.04 dB, SSIM=0.84) ADMM (PSNR = 27.77 dB, SSIM=0.83) BBS (PSNR=27.64 dB, SSIM=0.82)

Figure 4.7: Plug & Play deblurring, for a 9× 9 kernel, an additive Gaussian noise of standard deviation
σ2 = (1/255)2, for ε = (5/255)2 and for the nearly optimal value of α = 0.3.

As for the denoising problem, we study the convergence of PnP-SGD studying the evo-
lution of the average PSNR and gradient norm of the log-posterior over the iterations.
Figure 4.8 shows the evolution of the average PSNR computed for each image over the 10
different experiments. It suggests that 4000 of iterations seem to be needed to have a stable
PSNR for all images except Cameraman, which requires on average 1.5e4 iterations. This
difference between the other images could be explained by the fact that α = 0.3 is a more
sub-optimal regularization parameter for this image. This impression is confirmed by the
evolution of the average gradient norm of the log-posterior, as after 6000 iterations, a plateau
around 0.2 is reached. These plots also suggest that the convergence is slower for deblurring
than for denoising.

4.3.6 Interpolation

The interpolation problem consists in trying to recover x ∈ Rd from a small proportion of its
pixels, namely from the measurements vector y = Qx, where Q is a m× d matrix consisting
of m random lines from the d × d identity matrix, and m = qd � d. In our experiments
we set q = 20%. In this case, since measurements are not affected by noise, the data-fitting
term takes the form of a hard constraint, i.e. for any x ∈ Rd and y ∈ Rm we have

F (x, y) = ιCy
(x), where Cy = {x : y = Qx} .
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Evolution of the PSNR. Evolution of the gradient norm.

Figure 4.8: Convergence diagnosis for Plug & Play deblurring with σ2 = (1/255)2, ε = (5/255)2, α = 0.3 and
TV − L2 initialization. Left: Evolution of the average PSNR computed for K = 10 independent noise

realizations for each of the 6 images. As expected the convergence is slower for the deblurring problem. 4000
iterations seem to be required to enter the stationary phase for all images except Cameraman, that needs on

average 1.5e4 iterations. Right: Evolution of the average gradient norm of the log-posterior computed over the
10 experiments for each image. For all images, the gradient norm stabilizes around 0.2.

The non-differentiability of F is not problem when using ADMM and BBS since in this
case the proximal operator of γF (·, y) is not only defined but admits a closed-form (which is
independent of γ = ε/α). More precisely, we have for any x ∈ Rd and y ∈ Rm, proxγιC (x) =
P?Px + Q∗y in terms of the (d −m) × d matrix P containing all the lines of the identity
matrix which are not contained in Q. However, SGD and FBS cannot be directly applied to
this problem because they require F to be differentiable. Nevertheless we can apply these
algorithms to an equivalent formulation in the reduced space Rd−m of unknown pixels, as
shown in the following subsection.

4.3.6.a Adapting SGD to the non-differentiable inpainting problem
In what follows, we denote by x̃ := Px ∈ Rn the vector of n = d−m unknown pixels in x.
Given the unknown pixels x̃ = Px and the measurements y = Qx we can reconstruct x via
the affine mapping fy : Rn → Rd defined for any x ∈ Rd and y ∈ Rm by fy(x̃) = P∗x̃+Q∗y.

The solution of the original problem xmap = arg minx F (x, y) +U(x) can then be written
as

xmap = arg minx∈Cy
U(x) = fy( arg minx̃ U(fy(x̃))) , x̃map = arg minx̃ U(fy(x̃)) , (4.13)

and x̃map can be found by gradient descent on Ũ = U ◦fy. Using the chain rule and Tweedie’s
formula, we have that the gradient of Ũ is given for any x ∈ Rd and y ∈ Rm by

∇Ũ(x̃) = P∇U(fy(x̃)) = (1/ε)P(Id−Dε) ◦ fy(x̃) . (4.14)

Finally, since the affine operators P and fy are 1-Lipschitz we have that L̃ 6 (1/ε), where L̃
is the Lipschitz constant of ∇Ũ .
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4.3.6.b Parameter settings and results
The interpolation problem we consider is extremely ill-posed since 80% of the pixels are
only constrained by the image prior. Since our implicit prior pε(x) is most likely far from
log-concave, the posterior shows a particularly large number of local optima. For this reason
all methods are extremely sensitive to the initial condition. The initial conditions used in
the previous experiments may misguide both ADMM and SGD to a wrong local optimum.

To deal with this more difficult case, we consider a different approach, combining:

• A coarse to fine scheme where we start by solving the MAP problem for large values of
ε, and then use the result of this coarse MAP as an initialization for the next smaller
value of ε. In our experiments we used ε = (40/255)2, (15/255)2, (5/255)2, both for
ADMM and for SGD;

• For each value of ε, a burn-in phase of 2000 iterations with δ0 = 2.5δstable, followed
by a phase of 1000 decreasing steps, as defined in (4.12).

Table 4.3 summarizes the results of different algorithmic strategies to solve our inpainting
problem, on our set of 6 images with K = 4 random realizations for each image, and
Figure 4.9 shows an example of results on the Simpsons image.

We can observe in Table 4.3 that the coarse-to-fine scheme is beneficial to both SGD
and ADMM, allowing to reach a reconstruction quality which comes very close to the oracle
initialization. This benefit is also clear on the visual results shown on Figure 4.9. In the
case of a random initialization, the coarse to fine strategy is needed to avoid the apparition
of spurious geometric structure in the background. In the case of the TV− L2 initialization,
it yields better continuity in the fine black lines of the image. This holds both for ADMM
and SGD.

In these interpolation experiments, we also observed that using larger initial step-sizes at
the beginning and using the stochastic gradient descent instead of a simple gradient descent
are important to obtain good MAP estimates. This could be explained by the non-convex
nature of this problem: the stochastic term and the larger step sizes are required to avoid
getting trapped in spurious local optima.

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this chapter we studied MAP estimation in Bayesian imaging models with PnP priors
defined by image denoising algorithms. First, we sought to better understand, from a
theoretical point of view, MAP estimation for solving imaging inverse problems. That
is why we first addressed key questions about the definition, the stability and the well-
posedness of this problem. We established that, under mild conditions, MAP solutions are
well-posed. For computation, we proposed a PnP-SGD optimisation method that is provably
convergent under mild and realistic assumptions on the denoiser. It paves the way for further
studying more elaborate PnP schemes to estimate the MAP. The proposed approach was
then illustrated on a range of imaging inverse problems by using a deep network denoiser
that satisfied our conditions for convergence.

In future work, we would like to continue our theoretical and empirical investigation of
Bayesian PnP models, methods and algorithms. First, we would like to develop provably
convergent accelerated algorithms based on more elaborated optimization schemes. Further-
more, developing methods to automatically adjust the regularisation parameter α directly
from the observed data y in a manner akin to (Vidal et al., 2020), is also a crucial question.
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Figure 4.9: Interpolation results for the Simpson’s image with p = 0.8, σ = 0 each column corresponds to a
different initial condition.
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PSNR SSIM
Method mean std dev mean std dev

Random initialization
SGD ε = (5/255)2 23.43 2.75 0.7715 0.0517
SGD ε = (40/255)2, (15/255)2, (5/255)2 26.32 1.76 0.8074 0.0702
ADMM ε = (5/255)2 19.34 3.09 0.6787 0.0629
ADMM ε = (40/255)2, (15/255)2, (5/255)2 25.94 2.19 0.8292 0.0745

TV-L2 initialization
SGD ε = (5/255)2 26.01 1.53 0.8042 0.0684
SGD ε = (40/255)2, (15/255)2, (5/255)2 26.34 1.80 0.8074 0.0699
ADMM ε = (5/255)2 25.38 1.74 0.8216 0.0754
ADMM ε = (40/255)2, (15/255)2, (5/255)2 25.87 2.13 0.8266 0.0764

Oracle initialization
SGD ε = (5/255)2 26.67 1.66 0.8116 0.0700
SGD ε = (40/255)2, (15/255)2, (5/255)2 26.36 1.76 0.8079 0.0702
ADMM ε = (5/255)2 26.16 2.18 0.8330 0.0742
ADMM ε = (40/255)2, (15/255)2, (5/255)2 25.93 2.14 0.8269 0.0768

Table 4.3: Interpolation with p = 0.8, σ = 0 with random, TV-L2 and oracle initialization. Mean and standard
deviation of PSNR and SSIM measures computed on K=4 random tests for each of the 6 images. Note the

effectiveness of the coarse-to-fine scheme with either random or TV-L2 initialization: Coarse to fine SGD is only
0.33 dB away from the solution obtained with oracle init, which should be quite close to the global optimum.

ADMM is only 0.22 dB away from the solution obtained with oracle init.

So far, we set this parameter by experimenting, which is time consuming, computationally
demanding and not theoretically grounded. It can also lead to model miss-specification
that hurts the proposed MAP restoration. It certainly explains the results obtained for
Cameraman on the deblurring task with α = 0.25. It would also be interesting to extend the
decision-theoretic foundation of MAP estimation in log-concave models of (Pereyra, 2019) to
encompass MAP estimation in (not log-concave) PnP Bayesian models. Indeed, computing
the MAP to solve an inverse problem (in the general case where the prior is not necessarily
log-concave) is still not understood from a Bayesian point of view, as we do not know if
it minimizes any cost function under the posterior distribution (Bassett and Deride, 2019;
Pereyra, 2019).

In the following chapter, we go further than simple point estimation. Indeed, as explained
in Chapter 2, although it is practical to summarize the posterior distribution by one point,
we have no information about the uncertainty on the proposed solution. It can be prob-
lematic, especially in contexts where a decision is based on the proposed restoration like in
medicine. In the next chapter, we propose two Plug & Play sampling algorithms with de-
tailed convergence guarantees and non-asymptotic error bounds under realistic assumptions
to tackle this issue.
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As explained in Chapter 2, although computing the MAP is appealing, it is only well-
understood in log-concave cases. We may wish to compute other estimators such as the
MMSE, which is theoretically well-founded within the Bayesian framework. Furthermore,
we may want to better exploit the resources provided by the Bayesian framework and not
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to simply summarize the posterior distribution to 1 point. For example, we could wish to
quantify uncertainty on the proposed restoration or perform model calibration.

In this chapter we present our work on Monte Carlo sampling with PnP priors for general
Bayesian computation. First, we answer primordial questions concerning the well-posedness,
and the stability of the related Bayesian models and estimators in Section 5.2. Then, we
present the Plug-and-Play Unadjusted Langevin Algorithm (PnP-ULA) and Projected Plug-
and-Play Unadjusted Langevin Algorithm (PPnP-ULA), two Monte-Carlo sampling algo-
rithms with detailed convergence guarantees under realistic assumptions on the denoising
operators used. A special attention is given to deep neural network denoisers (see Sec-
tion 5.3). Section 5.4 illustrates the methods on classical imaging inverse problems such as
denoising, deblurring and interpolation where it is used to perform MMSE point estimation
and as well as for uncertainty visualization and quantification. Finally, we propose to speed-
up the state-space exploration of the proposed sampling algorithms using a state-of-the-art
discretization scheme and show the results in Section 5.5.

Convergence results were derived by Valentin De Bortoli and are exposed in Appendix B
for the sake of completeness.

This chapter is mostly based on the article (Laumont et al., 2022) published in SIAM
Journal on Imaging Sciences. Section 5.5 is entirely new.

5.2 Bayesian inference with Plug & Play priors: theory methods and
algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2.1 Bayesian modelling and analysis with Plug & Play priors
This section presents the same formal framework for Bayesian analysis and computation with
Plug & Play priors as in Section 4.2.1. In order to address ill-posedness, we also introduce
prior knowledge about x by specifying an image denoising operator Dε for recovering x from
a noisy observation xε with (Xε|X = x) ∼ N (x, ε Id) with noise variance ε > 0. A case of
particular relevance in this context is when Dε is implemented by a neural network, trained
by using a set of clean images {x′

i}Ni=1. As explained in Section 4.2.1, a central challenge
in the formalisation of Bayesian inference with Plug & Play priors is that the denoiser Dε

used is generally not directly related to a marginal distribution for x, so it is not possible
to derive an explicit posterior for x|y from Dε. As a result, it is not clear that plugging Dε

into gradient-based algorithms such as ULA leads to a well-defined or convergent scheme
that is targeting a meaningful Bayesian model.

To overcome this difficulty, in a manner akin to Chapter 4, we analyse in this chapter
the Bayesian models through the prism of M-complete Bayesian modelling (Bernardo and
Smith, 2000). We recall that, in this paradigm, there exists a true -albeit unknown and
intractable- marginal distribution for x on (Rd,B(Rd)), where B(Rd) denotes the Borel σ-
field of Rd, noted µ, and a posterior distribution for x|y. If it were possible, basing inferences
on these two distributions would be optimal both in terms of point estimation and in terms
of delivering Bayesian probabilities accurate in a frequentist viewpoint. When µ admits a
density w.r.t. the Lebesgue measure on Rd, we denote it by p?. In the latter case, the
posterior distribution for x|y associated with the marginal µ also admits a density∗ that is

∗Strictly speaking, the true likelihood p?(y|x) may also be unknown, this is particularly relevant in the
case of blind or myopic inverse imaging problems. For simplicity, we restrict our experiments and theoretical
development to the case where p(y|x) represents the true likelihood. Generalizations of our approach to the
blind or semi-blind setting are discussed, e.g. by (Guo et al., 2019) - formalising these generalisations is an
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given for any x ∈ Rd and y ∈ Rm by

p?(x|y) = p(y|x)p?(x)/
∫
Rd p(y|x̃)p?(x̃)dx̃ . (5.1)

Unlike most Bayesian imaging approaches that operate implicitly in an M-closed manner
and treat their postulated Bayesian models as true models (see (Bernardo and Smith, 2000)
for more details), we explicitly regard p? (or more precisely µ) as a fundamental property
of the unknown x, and models used for inference as operational approximations of p? spec-
ified by the practitioner (either analytically, algorithmically, or from training data). This
distinction will be useful for using the oracle posterior (5.1) as a reference, and Plug & Play
Bayesian algorithms based on a denoiser Dε as approximations to reference algorithms to
perform inference w.r.t. p?. The accuracy of the Plug & Play approximations will depend
chiefly on the closeness between Dε and an optimal denoiser D?

ε derived form p? that we
define shortly.

In this conceptual construction, the marginal µ naturally depends on the imaging appli-
cation considered. It could be the distribution of natural images of the size and resolution
of x, or that of a class of images related to a specific application. And in problems where
there is training data {x′

i}Ni=1 available, we regard {x′
i}Ni=1 as samples from µ. Lastly, we

note that the posterior for x|y remains well defined when µ does not admit a density; this
is important to provide robustness to situations where p? is nearly degenerate or improper.
For clarity, our presentation assumes that p? exists, although this is not strictly required †.

Notice that because µ is unknown, we cannot verify that p?(x|y) satisfies the basic desider-
ata for gradient-based Bayesian computation: i.e., p?(x|y) need not be proper and differen-
tiable, with ∇ log p?(x|y) Lipschitz continuous. To guarantee that gradient-based algorithms
that target approximations of p?(x|y) are well defined by construction, we introduce a reg-
ularised oracle µε obtained via the convolution of µ with a Gaussian smoothing kernel with
bandwidth ε > 0. Indeed, by construction, µε has a smooth proper density pε given for any
x ∈ Rd and ε > 0 by

p?ε(x) = (2πε)−d/2
∫
Rd exp [−‖x− x̃‖22/(2ε)]p?(x̃)dx̃ .

Equipped with this regularised marginal distribution, we use Bayes’ theorem to involve the
likelihood p(y|x) and derive the posterior density p?ε(x|y), given for any ε > 0 and x ∈ Rd

by
p?ε(x|y) = p(y|x)p?ε(x)/

∫
Rd p(y|x̃)p?ε(x̃)dx̃ , (5.2)

which inherits the regularity properties required for gradient-based Bayesian computation
when the likelihood satisfies H1, which for presentation clarity we recall below.

H1 For any y ∈ Rm, supx∈Rd p(y|x) < +∞, p(y|·) ∈ C1(Rd, (0,+∞)) and there exists
Ly > 0 such that ∇ log(p(y|·)) is Ly Lipschitz continuous.

More precisely, Proposition 5.2.1 below establishes that the regularised prior p?ε(x) and
posterior p?ε(x|y) are proper, smooth, and that they can be made arbitrarily close to the orig-
inal oracle models p?(x) and p?(x|y) by reducing ε, with the approximation error vanishing
as ε→ 0.

Proposition 5.2.1 Assume H1. Then, for any ε > 0 and y ∈ Rm, the following hold:

important perspective for future work.
†Operating without densities requires measure disintegration concepts that are technical (Schwartz).
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(a) p?ε and p?ε(·|y) are proper.

(b) For any k ∈ N, p?ε ∈ Ck(Rd). In addition, if p(y|·) ∈ Ck(Rd) then p?ε(·|y) ∈
Ck(Rd,R).

(c) Let k ∈ N. If
∫
Rd ‖x̃‖k p?(x)dx̃ < +∞ then

∫
Rd ‖x̃‖k p?ε(x̃|y)dx̃ < +∞.

(d) limε→0 ‖p?ε(·|y)− p?(·|y)‖1 = 0.

(e) In addition, if there exist κ, β > 0 such that for any x ∈ Rd, ‖p?−p?(·−x)‖1 6 ‖x‖β,
then there exists C > 0 such that ‖p?ε(·|y)− p?(·|y)‖1 6 Cεβ/2.

Proof: The proof is postponed to Appendix B.8.2. �

Under H1 and p(y|·) ∈ C1(Rd), x 7→ ∇ log p?ε(x|y) is well-defined and continuous. How-
ever, x 7→ ∇ log p?ε(x|y) might not be Lipschitz continuous and hence the Langevin SDE
(3.25) might not have a strong solution. This requires an additional assumption on µ.

To study the Lipschitz continuity of x 7→ ∇ log p?ε(x|y), as well as to set the grounds for
Plug & Play methods that define priors implicitly through a denoising algorithm, we use
again the oracle MMSE denoiser D?

ε defined in (3.20). For presentation clarity, we recall it
below.

∀ (x, ε) ∈ Rd × R∗
+, D?

ε(x) = (2πε)−d/2
∫
Rd x̃ exp [−‖x− x̃‖2/(2ε)]p?(x̃)dx̃ .

Under the assumption that the expected mean square error (MSE) is finite, D?
ε is the MMSE

estimator to recover an image x ∼ µ from a noisy observation xε ∼ N (x, ε Id) (Robert, 2007).
Again, this optimal denoiser is a fundamental property of x and it is generally intractable.
Motivated by the fact that state-of-the-art image denoisers are close-to-optimal in terms of
MSE, in Section 5.3 we will characterise the accuracy of Plug & Play Bayesian methods for
approximate inference w.r.t. p?ε(x|y) and p?(x|y) as a function of the closeness between the
denoiser Dε used and the reference D?

ε .
To relate the gradient x 7→ ∇ log p?ε(x) and D?

ε , we use Tweedie’s identity (Efron, 2011)
which states that for all x ∈ Rd

ε∇ log p?ε(x) = D?
ε(x)− x , (5.3)

and hence x 7→ ∇ log p?ε(x|y) is Lipschitz continuous if and only if D?
ε has this property. We

argue that this is a natural assumption on D?
ε , as it is essentially equivalent to assuming that

the denoising problem underpinning D?
ε is well-posed in the sense of Hadamard (recall that

an inverse problem is said to be well posed if its solution is unique and Lipschitz continuous
w.r.t to the observation (Stuart, 2010)). As established in Proposition 5.2.2 below, this
happens when the expected MSE involved in using D?

ε to recover x from xε ∼ N (x, ε Id),
where x has marginal µ, is finite and uniformly upper bounded for all xε ∈ Rd.

Proposition 5.2.2 Assume H1. Let ε > 0. ∇ log p?ε is Lipschitz continuous if and only if
there exists C > 0 such that for any xε ∈ Rd∫

Rd ‖x−D?
ε(xε)‖2 gε(x|xε)dx 6 C , (5.4)

where gε(·|xε) is the density of the conditional distribution of the unknown image x ∈ Rd

with marginal µ, given a noisy observation xε ∼ N (x, ε Id). See Section 5.3.2 for details.

Proof: The proof is postponed to Lemma B.6.2. �
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These results can be generalised to hold under the weaker assumption that the expected
MSE for D?

ε is finite but not uniformly bounded, as in this case x 7→ ∇ log p?ε(x|y) is locally
instead of globally Lipschitz continuous (this technical extension is postponed to future
work). The pathological case where D?

ε does not have a finite MSE arises when µ is such
that the denoising problem does not admit a Bayesian estimator w.r.t. to the MSE loss.
In summary, the gradient x 7→ ∇ log p?ε(x|y) is Lipschitz continuous when µ carries enough
information to make the problem of Bayesian image denoising under Gaussian additive noise
well posed.

Notice that by using Tweedie’s identity, we can express a ULA recursion for sampling
approximately from p?ε(x|y) as follows:

Xk+1 =Xk + δ∇ log p(y|Xk) + (δ/ε) (D?
ε(Xk)−Xk) +

√
2δZk+1 . (5.5)

where we recall that {Zk : k ∈ N} are i.i.d standard Gaussian random variables on Rd and
δ > 0 is a positive step-size. Under standard assumptions on δ, the sequence generated by
(5.5) is a Markov chain which admits an invariant probability distribution with a density
provably close to p?ε(x|y), with δ controlling a trade-off between asymptotic accuracy and
convergence speed. In the following section we present Plug & Play ULAs that arise from
replacing D?

ε in (5.5) with a denoiser Dε that is tractable.
Before concluding this section, we study whether the oracle p?(x|y) is itself well-posed,

i.e., if p?(x|y) changes continuously w.r.t. y under a suitable probability metric (see (Latz,
2020)). We answer positively to this question in Proposition 5.2.3 which states that, under
mild assumptions on the likelihood, p?(x|y) is locally Lipschitz continuous w.r.t. y for an
appropriate metric. This stability result implies, for example, that the MMSE estimator
derived from p?(x|y) is locally Lipschitz continuous w.r.t. y, and hence stable w.r.t. small
perturbations of y. Note that a similar property holds for the regularised posterior p?ε(x|y).
In particular, Proposition 5.2.3 holds for Gaussian likelihoods (see Section 5.3 for details).

Proposition 5.2.3 Assume that there exist Φ1 : Rd → [0,+∞) and Φ2 : Rm → [0,+∞)
such that for any x ∈ Rd and y1, y2 ∈ Rm

‖log(p(y1|x))− log(p(y2|x))‖ 6 (Φ1(x) + Φ2(y1) + Φ2(y2)) ‖y1 − y2‖ , (5.6)

and for any c > 0,
∫
Rd(1 + Φ1(x̃)) exp[cΦ1(x̃)]p

?(x)dx̃ < +∞. Then y 7→ p?(·|y) is locally
Lipschitz w.r.t ‖ · ‖1, i.e. , for any compact set K there exists CK > 0 such that for any
y1, y2 ∈ K , ‖p?(·|y1)− p?(·|y2)‖1 6 CK ‖y1 − y2‖.

Proof: The proof is a straightforward application of Proposition B.5.1. �

To conclude, starting from the decision-theoretically optimal model p?(x|y), we have
constructed a regularised approximation p?ε(x|y) that is proper and smooth by construction,
with gradients that are explicitely related to denoising operators by Tweedie’s formula.
Under mild assumptions on p(y|x), the approximation p?ε(x|y) is well-posed and can be
made arbitrarily close to the oracle p?(x|y) by controlling ε. Moreover, we established that
x 7→ ∇ log p?ε(x) is Lipschitz continuous when the problem of Gaussian image denoising
for µ under the MSE loss is well posed. This allows imagining convergent gradient-based
algorithms for performing Bayesian computation for p?ε(x|y), setting the basis for Plug &
Play ULA schemes that mimic these idealised algorithms by using a tractable denoiser Dε

such as neural network, trained to optimise MSE performance and hence to approximate
the oracle MSE denoiser D?

ε .
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5.2.2 Bayesian computation with Plug & Play priors
We are now ready to study Plug & Play ULA schemes to perform approximate inference
w.r.t. p?ε(x|y) (and hence indirectly w.r.t. p?(x|y)). We use (5.5) as starting point, with D?

ε

replaced by a surrogate denoiser Dε, but also modify (5.5) to guarantee geometrically fast
convergence‡ to a neighbourhood of p?ε(x|y). In particular, geometrically fast convergence is
achieved here by modifying far-tail probabilities to prevent the Markov chain from becoming
too diffusive as it explores the tails of p?ε(x|y). We consider two alternatives to guarantee
geometric convergence with markedly different bias-variance trade-offs: one with excellent
accuracy guarantees but that requires using a small step-size δ and hence has a higher
computational cost, and another one that allows taking a larger step-size δ to improve
convergence speed at the expense of weaker guarantees in terms of estimation bias.

First, in the spirit of Moreau-Yosida regularised ULA (Durmus et al., 2018), we define
Plug & Play ULA (PnP-ULA) as the following recursion: given an initial state X0 ∈ Rd and
for any k ∈ N,

(PnP-ULA) Xk+1 =Xk + δ∇ log p(y|Xk) + (δ/ε) (Dε(Xk)−Xk)

+ (δ/λ)(ΠC(Xk)−Xk) +
√
2δZk+1 ,

(5.7)

where C ⊂ Rd is some large compact convex set that contains most of the prior probability
mass of x, ΠC is the projection operator onto C w.r.t the Euclidean scalar product on Rd,
and λ > 0 is a tail regularisation parameter that is set such that the drift in PnP-ULA
satisfies a certain growth condition as ‖x‖ → ∞ (see Section 5.3 for details).

An alternative strategy (which we call Projected PnP-ULA, i.e. PPnP-ULA, see Algo-
rithm 6) is to modify PnP-ULA to include a hard projection onto C, i.e. (Xk)k∈N is defined
by X0 ∈ C and the following recursion for any k ∈ N

Xk+1 = ΠC

[
Xk + δ∇ log p(y|Xk) + (δ/ε)(Dε(Xk)−Xk) +

√
2δZk+1

]
, (5.8)

where we notice that, by construction, the chain cannot exit C because of the action of
the projection operator ΠC. The hard projection guarantees geometric convergence with
weaker restrictions on δ and hence PPnP-ULA can be tuned to converge significantly faster
than PnP-ULA, albeit with a potentially larger bias. These two schemes are summarised in
Algorithm 5 and Algorithm 6 below. Note the presence of a regularisation parameter α in
these algorithms, which permits to balance the weights between the prior and data terms.
For the sake of simplicity, this parameter is set to α = 1 in Section 5.3 and Section 5.4
but will be taken into account in the supplementary material Appendix B. Section 5.3.2
and Section 5.3.3 present detailed convergence results for PnP-ULA and PPnP-ULA. Im-
plementation guidelines, including suggestions for how to set the algorithm parameters of
PnP-ULA and PPnP-ULA are provided in Section 5.4.

Lastly, it is worth mentioning that Algorithm 5 and Algorithm 6 can be straightforwardly
modified to incorporate additional regularisation terms. More precisely, one could consider
a prior defined as the (normalised) product of a Plug & Play term and an explicit analytical
term. In that case, one should simply modify the recursion defining the Markov chain by
adding the gradient associated with the analytical term. In a manner akin to (Durmus et al.,
2018), analytical terms that are not smooth are involved via their proximal operator.

Before concluding this section, it is worth emphasising that, in addition to being impor-
tant in their own right, Algorithm 5 and Algorithm 6 and the associated theoretical results

‡Geometric convergence is highly desirable property in large-scale problems and guarantees that the
generated Markov chains can be used for Monte Carlo integration.
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Algorithm 5 PnP-ULA
Require: n ∈ N, y ∈ Rm, ε, λ, α, δ > 0, C ⊂ Rd convex and compact
Ensure: 2λ(2Ly + αL/ε) 6 1 and δ < (1/3)(Ly + 1/λ+ αL/ε)−1

Initialization: Set X0 ∈ Rd and k = 0.
for k = 0 : N do
Zk+1 ∼ N (0, Id)
Xk+1 = Xk+δ∇ log(p(y|Xk))+(αδ/ε)(Dε(Xk)−Xk)+(δ/λ)(ΠC(Xk)−Xk)+

√
2δZk+1

end for
return {Xk : k ∈ {0, . . . , N + 1}}

Algorithm 6 PPnP-ULA
Require: n ∈ N, y ∈ Rm, ε, λ, α, δ > 0, C ⊂ Rd convex and compact

Initialization: Set X0 ∈ C and k = 0.
for k = 0 : N do
Zk+1 ∼ N (0, Id)
Xk+1 = ΠC

(
Xk + δ∇ log(p(y|Xk)) + (αδ/ε)(Dε(Xk)−Xk) +

√
2δZk+1

)
end for
return {Xk : k ∈ {0, . . . , N + 1}}

set the grounds for analysing more advanced stochastic simulation and optimisation schemes
for performing Bayesian inference with Plug & Play priors, in particular accelerated opti-
misation and sampling algorithms (Pereyra et al., 2020). This is an important perspective
for future work.

5.3 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we provide a theoretical study of the long-time behaviour of PnP-ULA, see
Algorithm 5 and PPnP-ULA, see Algorithm 6. For any ε > 0 we recall that p?ε is given by
the Gaussian smoothing of p with level ε, for any x ∈ Rd by

p?ε(x) = (2πε)−d/2
∫
Rd exp[−‖x− x̃‖2 /(2ε)] p?(x̃)dx̃ . (5.9)

One typical example of likelihood function that we consider in our numerical illustration, see
Section 5.4, is p(y|x) ∝ exp[−‖Ax− y‖2 /(2σ2)] for any x ∈ Rd with σ > 0 and A ∈ Rm×d.
We define π the target posterior distribution given for any x ∈ Rd by (dπ/dLeb)(x) =
p?(x|y). We also consider the family of probability distributions {πε : ε > 0} given for any
ε > 0 and x ∈ Rd by

(dπε/dLeb)(x) = p(y|x)p?ε(x)
/∫

Rd

p(y|x̃)p?ε(x̃)dx̃ . (5.10)

Note that in the supplementary material Appendix B we investigate the general setting
where p?ε is replaced by (p?ε)

α for some α > 0 that acts as a regularisation parameter. We
divide our study into two parts. We recall that πε is well-defined for any ε > 0 under H1,
see Proposition 5.2.1. We start with some notation in Section 5.3.1. We then establish
non-asymptotic bounds between the iterates of PnP-ULA and πε with respect to the total
variation distance for any ε > 0, in Section 5.3.2. Finally, in Section 5.3.3 we establish
similar results for PPnP-ULA.
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5.3.1 Notation

Denote by B(Rd) the Borel σ-field of Rd, and for f : Rd → R measurable, ‖f‖∞ =
supx̃∈Rd |f(x̃)|. For µ a probability measure on (Rd,B(Rd)) and f a µ-integrable function,
denote by µ(f) the integral of f w.r.t. µ. For f : Rd → R measurable and V : Rd → [1,∞)
measurable, the V -norm of f is given by ‖f‖V = supx̃∈Rd |f(x̃)|/V (x̃). Let ξ be a finite
signed measure on (Rd,B(Rd)). The V -total variation distance of ξ is defined as

‖ξ‖V = sup‖f‖V 61

∣∣∫
Rd f(x̃)dξ(x̃)

∣∣ . (5.11)

If V = 1, then ‖·‖V is the total variation denoted by ‖·‖TV. Let U be an open set of Rd. For
any pair of measurable spaces (X,X ) and (Y,Y), measurable function f : (X,X ) → (Y,Y)
and measure µ on (X,X ) we denote by f#µ the pushforward measure of µ on (Y,Y) given
for any A ∈ Y by f#µ(A) = µ(f−1(A)). We denote P(Rd) the set of probability measures
over (Rd,B(Rd)) and for any m ∈ N, Pm(Rd) = {ν ∈P(Rd) :

∫
Rd ‖x̃‖mdν(x̃) < +∞}.

We denote by Ck(U,Rm) and Ck
c (U,Rm) the set of Rm-valued k-differentiable functions,

respectively the set of compactly supported Rm-valued and k-differentiable functions. Let
f : U → R, we denote by ∇f , the gradient of f if it exists. f is said to be m-convex with
m > 0 if for all x1, x2 ∈ Rd and t ∈ [0, 1],

f(tx1 + (1− t)x2) 6 tf(x1) + (1− t)f(x2)− mt(1− t) ‖x1 − x2‖2 /2 . (5.12)

For any a ∈ Rd and R > 0, denote B(a,R) the open ball centered at a with radius R. Let
(X,X ) and (Y,Y) be two measurable spaces. A Markov kernel K is a mapping K : X×Y →
[0, 1] such that for any x̃ ∈ X, P(x̃, ·) is a probability measure and for any A ∈ Y, P(·,A) is
measurable. For any probability measure µ on (X,X ) and measurable function f : Y→ R+

we denote µP =
∫

X P(x, ·)dµ(x) and Pf =
∫

Y f(y)P(·,dy). In what follows the Dirac mass
at x̃ ∈ Rd is denoted by δx̃. For any x̃ ∈ Rd, we denote τx̃ : Rd → Rd the translation
operator given for any x̃′ ∈ Rd by τx̃(x̃

′) = x̃′ − x̃. The complement of a set A ⊂ Rd, is
denoted by Ac. All densities are w.r.t. the Lebesgue measure (denoted Leb) unless stated
otherwise. For all convex and closed set C ⊂ Rd, we define ΠC the projection operator onto
C w.r.t the Euclidean scalar product on Rd. For any matrix a ∈ Rd1×d2 with d1, d2 ∈ N, we
denote a> ∈ Rd2×d1 its adjoint.

5.3.2 Convergence of PnP-ULA
In this section, we fix ε > 0 and derive quantitative bounds between the iterates of PnP-
ULA and πε with respect to the total variation distance. To address this issue, we first show
that PnP-ULA is geometrically ergodic and establish non-asymptotic bounds between the
corresponding Markov kernel and its invariant distribution. Second, we analyse the distance
between this stationary distribution and πε.

For any ε > 0 we define gε : Rd × Rd → [0,+∞) for any x1, x2 ∈ Rd by

gε(x1|x2) = p?(x1) exp[−‖x2 − x1‖2 /(2ε)]
/∫

Rd

p?(x̃) exp[−‖x2 − x̃‖2 /(2ε)]dx̃ . (5.13)

Note that g(·|Xε) is the density with respect to the Lebesgue measure of the distribution
of X given Xε, where X is sampled according to the prior distribution µ (with density p?)
and Xε = X + ε1/2Z where Z is a Gaussian random variable with zero mean and identity
covariance matrix. Throughout, this section, we consider the following assumption on the
family of denoising operators {Dε : ε > 0} which will ensure that PnP-ULA approximately
targets πε.
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H4 (R) We have that
∫
Rd ‖x̃‖2p?(x̃)dx̃ < +∞. In addition, there exist ε0 > 0, MR > 0 and

L > 0 such that for any ε ∈ (0, ε0], x1, x2 ∈ Rd and x ∈ B(0, R) we have

‖(Id−Dε)(x1)− (Id−Dε)(x2)‖ 6 L ‖x1 − x2‖ , ‖Dε(x)−D?
ε(x)‖ 6 MR , (5.14)

where we recall that
D?

ε(x1) =
∫
Rd x̃ gε(x̃|x1)dx̃ . (5.15)

H2 and H4 are very similar, except that the Lipschitz continuity condition concerns
Id−Dε in H4 and Dε in H2. The Lipschitz continuity condition in (5.14) will be useful
for establishing the stability and geometric convergence of the Markov chain generated by
PnP-ULA. This condition can be explicitly enforced during training by using an appropriate
regularization of the neural network weights (Ryu et al., 2019; Miyato et al., 2018). Regard-
ing the second condition in (5.14), MR is a bound on the error involved in using Dε as an
approximation of D?

ε for images of magnitude R (i.e., for any x ∈ B(0, R)), and it will be
useful for bounding the bias resulting from using PnP-ULA for inference w.r.t. πε (recall
that the bias vanishes as MR → 0 and δ → 0). For denoisers represented by neural networks,
one can promote a small value of MR during training by using an appropriate loss function.
More precisely, consider a neural network fw : Rd → Rd, parameterized by its weights and
bias gathered in w ∈ W where W is some measurable space, for any ε > 0, one could target
empirical approximation of a loss of the form `ε : W → [0,+∞) given for any w ∈ W by
`ε(w) =

∫
Rd×Rd ‖x − fw(xε)‖2p?ε(xε)gε(x|xε)dxεdx. Note that such a loss is considered in

the Noise2Noise network introduced in (Lehtinen et al., 2018).
With regards to the theoretical limitations stemming from representing Dε by a deep

neural network, universal approximation theorems (see e.g., (Bach, 2017, Section 4.7)) sug-
gest that MR could be arbitrarily low in principle. For a given architecture and training
strategy, and if there exists M̃R > 0 such that infw∈W supx∈B(0,R) M̃−1

R ‖fw(x)−D?
ε(x)‖} 6 1

then the second condition in (5.14) holds upon letting Dε = fw† for an appropriate choice
of weights w† ∈ W. This last inequality can be established using universal approxi-
mation theorems such as (Bach, 2017, Section 4.7). Moreover, for any other w ∈ W,
`ε(w) >

∫
Rd×Rd ‖x − D?

ε(xε)‖2p?ε(xε)gε(x|xε)dxdxε = `?ε, since for any xε ∈ Rd, D?
ε(xε) =∫

Rd x̃ gε(x̃|xε)dx̃, see (5.15). Consider w† ∈ W obtained after numerically minimizing `ε
and satisfying `ε(w

†) 6 `?ε + η with η > 0. In this case, the following result ensures that
(5.14) is satisfied with MR of order η1/(2d+2) for any R > 0 and letting Dε = fw† .

Proposition 5.3.1 Assume that for any w ∈ W∫
Rd(‖x‖2 + ‖fw(xε)‖2)p?ε(xε)gε(x|xε)dxdxε < +∞ . (5.16)

Let R, η > 0 and w† ∈ W such that `ε(w?) 6 `?ε + η. In addition, assume that

sup
x1,x2∈B(0,2R)

{
‖x2 − x1‖−1

(‖fw†(x2)− fw†(x1)‖+ ‖D?
ε(x2)−D?

ε(x1)‖)
}
< +∞ , (5.17)

where D?
ε is given in (5.15). Then there exists CR, η̄R > 0 such that if η ∈ (0, η̄R] then for

any x̃ ∈ B(0, R), ‖fw†(x̃)−D?
ε(x̃)‖ 6 CRη

1/(2d+2).

Proof: The proof is postponed to Appendix B.6.1. �

Note that (5.16) is satisfied if for any w ∈ W, supx∈Rd ‖fw(x)‖(1 + ‖x‖)−1 < +∞ and
H4 holds.
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We recall that PnP-ULA, see Algorithm 5, is given by the following recursion: X0 ∈ Rd

and for any k ∈ N

Xk+1 = Xk + δbε(Xk) +
√
2δZk+1 , (5.18)

bε(x) = ∇ log p(y|x) + Pε(x) + (proxλ(ιC)(x)− x)/λ , Pε(x) = (Dε(x)− x)/ε , (5.19)

where δ > 0 is a step-size, ε, λ > 0 are hyperparameters of the algorithm, C ⊂ Rd is a closed
convex set, {Zk : k ∈ N} a family of i.i.d. Gaussian random variables with zero mean
and identity covariance matrix and proxλ(ιC) the proximal operator of ιC with step-size λ,
see (Bauschke et al., 2011, Definition 12.23), where ιC is the convex indicator of C defined
for x ∈ Rd by ιC = +∞ if x /∈ C and 0 if x ∈ C. Note that for any x ∈ Rd we have
proxλ(ιC)(x) = ΠC(x), where ΠC is the projection onto C.

In what follows, for any δ > 0 and C ⊂ Rd closed and convex, we denote by Rε,δ :
Rd × B(Rd) → [0, 1] the Markov kernel associated with the recursion (5.18) and given for
any x ∈ Rd and A ∈ B(Rd) by

Rε,δ(x,A) = (2π)−d/2

∫
Rd

1A(x+ δbε(x) +
√
2δz) exp[−‖z‖2 /2]dz . (5.20)

Note that for ease of notation, we do not explicitly highlight the dependency of Rε,δ and bε
with respect to the hyperparameter λ > 0 and C.

Here we consider the case where x 7→ log p(y|x) satisfies a one-sided Lipschitz condition,
i.e. we consider the following condition.

H5 There exists m ∈ R such that for any x1, x2 ∈ Rd we have

〈∇ log p(y|x2)−∇ log p(y|x1), x2 − x1〉 6 −m ‖x2 − x1‖2 . (5.21)

We refer to the supplementary material Appendix B.3 for refined convergence rates in the
case where x 7→ log p(y|x) is strongly m-concave. Note that if H5 is satisfied with m > 0 then
x 7→ log p(y|x) is m-concave. Assume H1 then H5 holds for m = −Ly. However, it is possible
that m > −Ly which leads to better convergence rates for PnP-ULA. As a result even when
H1 holds we still consider H5. In order to deal with H5 in the case where m 6 0, we set
C ⊂ Rd to be some convex compact set fixed by the user. Doing so, we ensure the stability
of the Markov chain. The choice of C in practice is discussed in Section 5.4. In our imaging
experiments, we recall that for any x ∈ Rd we have, p(y|x) ∝ exp[−‖Ax− y‖2 /(2σ2)]. If A
is not invertible then x 7→ log p(y|x) is not m-concave with m > 0. This is the case, in our
deblurring experiment when the convolution kernel has zeros in the Fourier domain.

We start with the following result which ensures that the Markov chain (5.18) is geometri-
cally ergodic under H4 for the Wasserstein metric W1 and in V -norm for V : Rd → [1,+∞)
given for any x ∈ Rd by

V (x) = 1 + ‖x‖2 . (5.22)

Proposition 5.3.2 Assume H1, H4(R) for some R > 0 and H5. Let λ > 0, ε ∈ (0, ε0] such
that 2λ(Ly + L/ε−min(m, 0)) 6 1 and δ̄ = (1/3)(Ly + L/ε+ 1/λ)−1. Then for any C ⊂ Rd

convex and compact with 0 ∈ C, there exist A1,C > 0 and ρ1,C ∈ [0, 1) such that for any
δ ∈ (0, δ̄], x1, x2 ∈ Rd and k ∈ N we have∥∥δx1

Rk
ε,δ − δx2

Rk
ε,δ

∥∥
V
6 A1,Cρ

kδ
1,C(V

2(x1) + V 2(x2)) , (5.23)

W1(δx1Rk
ε,δ, δx2Rk

ε,δ) 6 A1,Cρ
kδ
1,C ‖x1 − x2‖ , (5.24)

where V is given in (5.22).
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Proof: The proof is postponed to Appendix B.6.2. �

The constants A1,C and ρ1,C do not depend on the dimension d but only on the parameters
m, L, Ly, ε and C. Note that a similar result can be established for Wp for any p ∈ N∗ instead
of W1. Under the conditions of Proposition 5.3.2 we have for any ν1, ν2 ∈P1(Rd)∥∥ν1Rk

ε,δ − ν2Rk
ε,δ

∥∥
V
6 A1,Cρ

kδ
1,C

(∫
Rd

V 2(x̃)dν1(x̃) +
∫
Rd

V 2(x̃)dν2(x̃)
)

, (5.25)

W1(ν1Rk
ε,δ, ν2Rk

ε,δ) 6 A1,Cρ
kδ
1,C

(∫
Rd

‖x̃‖dν1(x̃) +
∫
Rd

‖x̃‖dν2(x̃)
)

. (5.26)

First, (P1(Rd),W1) is a complete metric space (Villani, 2009, Theorem 6.18). Second,
for any δ ∈ (0, δ̄], there exists m ∈ N∗ such that fm is contractive with f : P1(Rd)→P1(Rd)
given for any ν ∈P1(Rd) by f(ν) = νRε,δ using Proposition 5.3.2. Therefore we can apply
the Picard fixed point theorem and we obtain that Rε,δ admits an invariant probability
measure πε,δ ∈P1(Rd).

Therefore, since πε,δ is an invariant probability measure for Rε,δ and πε,δ ∈ P1(Rd),
using (5.25), we have for any ν ∈P1(Rd)∥∥νRk

ε,δ − πε,δ

∥∥
V
6 A1,Cρ

kδ
1,C

(∫
Rd

V 2(x̃)dν(x̃) +
∫
Rd

V 2(x̃)dπε,δ(x̃)

)
, (5.27)

W1(νRk
ε,δ, πε,δ) 6 A1,Cρ

kδ
1,C

(∫
Rd

‖x̃‖dν(x̃) +
∫
Rd

‖x̃‖dπε,δ(x̃)

)
. (5.28)

Combining this result with the fact that for any t > 0, (1 − e−t)−1 6 1 + t−1, we get that
for any n ∈ N∗ and h : Rd → R measurable such that supx∈Rd{(1 + ‖x‖2)−1 |h(x)|} < +∞∣∣∣∣∣n−1

n∑
k=1

E[h(Xk)]−
∫
Rd

h(x̃)dπε,δ(x̃)

∣∣∣∣∣ (5.29)

6 A1,C(δ̄ + log−1(1/ρ1,C))

(
V 2(x) +

∫
Rd

V 2(x̃)dπε,δ(x̃)

)/
(nδ) , (5.30)

where (Xk)k∈N is the Markov chain given by (5.18) with starting point X0 = x ∈ Rd.
In the rest of this section we evaluate how close the invariant measure πε,δ is to πε. Our

proof will rely on the following assumption which is necessary to ensure that x 7→ log p?ε(x)
has Lipschitz gradients, see Proposition 5.2.2.

H6 For any ε > 0, there exists Kε > 0 such that for any x ∈ Rd,∫
Rd

∥∥∥∥x̃− ∫
Rd

x̃′gε(x̃
′|x)dx̃′

∥∥∥∥2 gε(x̃|x)dx̃ 6 Kε , (5.31)

with gε given in (5.13).

We emphasize that H6 is not needed to establish the convergence of the Markov chain.
However, we impose it in order to compare the stationary distribution of PnP-ULA with
the target distribution πε. Depending on the prior distribution density p?, H6 may be
checked by hand. Finally, note that H6 can be extended to cover the case where the prior
distribution µ does not admit a density with respect to the Lebesgue measure.

In the following proposition, we show that we can control the distance between πε,δ and
πε based on the previous observations.
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Proposition 5.3.3 Assume H1, H4(R) for some R > 0, H5 and H6. Moreover, let
ε ∈ (0, ε0] and assume that

∫
Rd(1 + ‖x̃‖4)p?ε(x̃)dx̃ < +∞. Let λ > 0 such that

2λ(Ly + (/ε)max(L, 1 + Kε/ε) − min(m, 0)) 6 1 and δ̄ = (1/3)(Ly + L/ε + 1/λ)−1. Then
for any δ ∈ (0, δ̄] and C convex and compact with 0 ∈ C, Rε,δ admits an invariant probability
measure πε,δ. In addition, there exists B0 > 0 such that for any C convex compact with
B(0, RC) ⊂ C and RC > 0, there exists B1,C > 0 such that for any δ ∈ (0, δ̄]

‖πε,δ − πε‖V 6 B0R
−1
C +B1,C(δ

1/2 + MR + exp[−R]) , (5.32)

where V is given in (5.22).

Proof: The proof is postponed to Appendix B.6.3. �

We now combine Proposition 5.3.2 and Proposition 5.3.3 in order to control the bias
of the Monte Carlo estimator obtained using PnP-ULA. In the supplementary material
Appendix B.4 we also provide bounds on |n−1

∑n
k=1 E[h(Xk)]−

∫
Rd h(x̃)dπ(x̃)| by controlling

‖π − πε‖V .

Proposition 5.3.4 Assume H1, H4(R) for some R > 0, H5 and H6. Moreover, let > 0,
ε ∈ (0, ε0] and assume that

∫
Rd(1 + ‖x̃‖4)p?ε(x̃)dx̃ < +∞. Let λ > 0 such that 2λ(Ly +

(1/ε)max(L, 1 + Kε/ε)−min(m, 0)) 6 1 and δ̄ = (1/3)(Ly + L/ε+ 1/λ)−1. Then there exists
C1,ε > 0 such that for any C convex compact with B(0, RC) ⊂ C and RC > 0 there exists C2,ε

such that for any h : Rd → R measurable with supx∈Rd{|h(x)| (1 + ‖x‖2)−1} 6 1, n ∈ N∗,
δ ∈ (0, δ̄] we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫
Rd

h(x̃)dπε(x̃)

∣∣∣∣∣
6
{
C1,εR

−1
C + C2,ε,C(δ

1/2 + MR + exp[−R] + (nδ)−1)
}
(1 + ‖x‖4) . (5.33)

Proof: The proof is straightforward combining Proposition 5.3.2 and Proposition 5.3.3. �

5.3.3 Convergence guarantees for PPnP-ULA
We now study the Projected Plug & Play Unadjusted Langevin Algorithm (PPnP-ULA). It
is given by the following recursion: X0 ∈ C and for any k ∈ N

Xk+1 = ΠC(Xk + δbε(Xk) +
√
2δZk+1) , (5.34)

bε(x) = ∇ log p(y|x) + Pε(x) , Pε(x) = (Dε(x)− x)/ε , (5.35)

where δ > 0 is a step-size, ε > 0 is an hyperparameter of the algorithm, C ⊂ Rd is a closed
convex set, {Zk : k ∈ N} a family of i.i.d. Gaussian random variables with zero mean and
identity covariance matrix and where ΠC is the projection onto C. In what follows, for any
δ > 0 and C ⊂ Rd closed and convex, we denote by Qε,δ : Rd × B(Rd)→ [0, 1] the Markov
kernel associated with the recursion (5.34) and given for any x ∈ Rd and A ∈ B(Rd) by

Qε,δ(x,A) = (2π)−d/2

∫
Rd

1Π−1
C (A)(x+ δbε(x) +

√
2δz) exp[−‖z‖2 /2]dz . (5.36)

Note that for ease of notation, we do not explicitly highlight the dependency of Qε,δ and bε
with respect to the hyperparameter C.

First, we have the following result which ensures that PPnP-ULA is geometrically ergodic
for all step-sizes.
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Proposition 5.3.5 Assume H1, H4(R) for some R > 0. Let λ, ε, δ̄ > 0. Then for any
C ⊂ Rd convex and compact with 0 ∈ C, there exist ÃC > 0 and ρ̃C ∈ [0, 1) such that for any
δ ∈ (0, δ̄], x1, x2 ∈ C and k ∈ N we have

‖δx1Qk
ε,δ − δx2Qk

ε,δ‖TV 6 ÃCρ̃
kδ
C . (5.37)

Proof: The proof is postponed to Appendix B.7.1. �

In particular Qε,δ admits an invariant probability measure πC
ε,δ. The next proposition

ensures that for small enough step-size δ the invariant measures of PnP-ULA and PPnP-
ULA are close if the compact convex set C has a large diameter.

Proposition 5.3.6 Assume H1, H4(R) for some R > 0 and H5. In addition, assume that
there exists m̃, c > 0 such that for C = Rd and for any ε > 0 and x ∈ Rd, 〈bε(x), x〉 6
−m̃ ‖x‖2 + c. Let λ > 0, ε ∈ (0, ε0] such that 2λ(Ly + L/ε − min(m, 0)) 6 1. Then there
exist Ā > 0 and η, δ̄ > 0 such that for any C ⊂ Rd convex and compact with 0 ∈ C and
B(0, RC/2) ⊂ C ⊂ B(0, RC) and δ ∈ (0, δ̄] we have

‖πε,δ − πC
ε,δ‖TV 6 Ā exp[−ηRC] , (5.38)

where πε,δ is the invariant measure of Rε,δ and πC
ε,δ is the invariant measure of Qε,δ.

Proof: The proof is postponed to Appendix B.7.2. �

It is worth mentioning at this point that in our experiments, see Section 5.4, the proba-
bility of the iterates (Xn)n∈N leaving C with PnP-ULA or with PPnP-ULA is so low that
the projection constraint is not activated. As a result, if implemented with the same step-
size both algorithms produce the same results. We do not suggest completely removing the
constraints as this is important to theoretically guarantee the geometric ergodicity of the
algorithms.

Regarding the choice of the step-size, we observe that the bound δ̄ = (1/3)(Ly + L/ε +
1/λ)−1 used in PnP-ULA is conservative and our experiments suggest that PnP-ULA is
stable for larger step-sizes.

5.4 Experimental study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This section illustrates the behaviour of PnP-ULA and PPnP-ULA with two classical imag-
ing inverse problems: non-blind image deblurring and interpolation. For these two problems,
we first analyse in detail the convergence of the Markov chain generated by PnP-ULA for
different test images. This is then followed by a comparison between the MMSE Bayesian
point estimator, as calculated by using PnP-ULA and PPnP-ULA and the MAP estimator
provided by the recent PnP-SGD method presented in Chapter 4. To simplify comparisons,
for all experiments and algorithms, the operator Dε is chosen as the pretrained denoising
neural network introduced in (Ryu et al., 2019), for which (Dε − Id) is L-Lipschitz with
L < 1.

For the deblurring experiments, the observation model takes the form

y = Ax+ n , (5.39)

where x ∈ Rd is the unknown original image, y ∈ Rm the observed image, n is a realization
of a Gaussian i.i.d. centered noise with variance σ2 Id (with σ2 = (1/255)2), and A is a 9×9
box blur operator. The log-likelihood for this case writes log p(y|x) = −‖Ax− y‖2/(2σ2).
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In the interpolation experiments, we seek to recover x ∈ Rd from y = Ax where the
matrix A is an m × d matrix containing m randomly selected rows of the d × d identity
matrix. We focus on a case where 80% of the image pixels are hidden and the observed
pixels are measured without any noise. Because the posterior density for x|y is degenerate,
we run PnP-ULA on the posterior x̃|y where x̃ := Px ∈ Rn denotes the vector of n = d−m
unobserved pixels of x, and map samples to the pixel space by using the affine mapping
fy : Rn → Rd defined for any x̃ ∈ Rn and y ∈ Rm by

fy(x̃) = P>x̃+ A>y.

Note that we can write the log-posterior Ũε(x̃) = − log pε(x̃|y) on the set Rn of hidden pixels
in terms of fy and the log-prior Uε(x) = − log pε(x) on the set Rd:

Ũε = Uε ◦ fy.

Using the chain rule and Tweedie’s formula, we have that for any x ∈ Rd and y ∈ Rm

bε(x̃) = −∇Ũε(x̃) = −P∇Uε(fy(x̃)) = (1/ε)P(Dε − Id)(fy(x̃)) . (5.40)

Since P and fy are 1-Lipschitz, bε = −∇Ũε is also Lipschitz with constant L̃ 6 (L/ε).
Figure 5.1 shows the six test images of size 256 × 256 pixels that were used in the ex-

periments. We have selected these six images for their diversity in composition, content
and level of detail (some images are predominantly composed of piece-wise constant regions,
whereas others are rich in complex textures). This diversity will highlight strengths and
limitations of the chosen denoiser as an image prior. Figure 5.2 depicts the corresponding
blurred images and Figure 5.3 the images to interpolate.

Cameraman. Simpson. Traffic.

Alley. Bridge. Goldhill.

Figure 5.1: Original images used for the deblurring and interpolation experiments.
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PSNR=20.30/SSIM=0.70 PSNR=22.44/SSIM=0.66 PSNR=20.34/SSIM=0.49

PSNR=22.64/SSIM=0.46 PSNR=21.84/SSIM=0.49 PSNR=22.61/SSIM=0.45

Figure 5.2: Images of Figure 5.1, blurred using a 9× 9-box-filter operator and corrupted by an additive
Gaussian white noise with standard deviation σ = 1/255.

5.4.1 Implementation guidelines and parameter setting
In the following, we provide some simple and robust rules in order to set the parameters of
the different algorithms, in particular the discretization step-size δ and the tail regularization
parameter λ.

CHOICE OF THE DENOISER The theory presented in Section 5.3 requires that Dε satisfies
H4(R). As default choice, we recommend using a pretrained denoising neural network such
as the one described in (Ryu et al., 2019). The Lipschitz constant of the network is controlled
during training by using spectral normalization and therefore the first condition of H4(R)
holds. Moreover, the loss function used to train the network is given by `ε as introduced in
Section 5.3.2. Therefore, under the conditions of Proposition 5.3.1, we get that the second
condition of H4(R) holds.

STEP-SIZE δ The parameter δ controls the asymptotic accuracy of PnP-ULA and PPnP-
ULA, as well as the speed of convergence to stationarity. This leads to the following bias-
variance trade-off. For large values of δ, the Markov chain has low auto-correlation and
converges quickly to its stationary regime. Consequently, the Monte Carlo estimates com-
puted from the chain exhibit low asymptotic variance, at the expense of some asymptotic
bias. On the contrary, small values of δ produce a Markov chain that explores the parameter
space less efficiently, but more accurately. As a result, the asymptotic bias is smaller, but
the variance is larger. In the context of inverse problems that are high-dimensional and
ill-posed, properly exploring the solution space can take a large number of iterations. For
this reason, we recommend using large values of δ, at the expense of some bias. In addition,
in PnP-ULA, δ is also subject to a numerical stability constraint related to the inverse of the
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Figure 5.3: Images of Figure 5.1, with 80% missing pixels.

Lipschitz constant of bε(x) = ∇ log pε(x|y); namely, we require δ < (1/3)Lip(bε)−1 where

Lip(bε) =

{
αL/ε+ 1/λ for the inpainting problem
αL/ε+ Ly + 1/λ otherwise

where L and Ly are respectively the Lipschitz constant of the denoiser residual (Dε − Id)
and the Lipschitz constant of the log-likelihood gradient. In our experiments, L = 1 and
Ly = ‖A>A‖/σ2, so we choose δ just below the upper bound δth = 1/3(Lip(bε))−1 where
A> is the adjoint of A. For PPnP-ULA, we set δ < (L/ε + Ly)

−1 (resp. δ < (L/ε)−1 for
interpolation) to prevent excessive bias.

PARAMETER λ The parameter λ controls the tail behaviour of the target density. As previ-
ously explained, it must be set so that the tails of the target density decay sufficiently fast
to ensure convergence at a geometric rate, a key property for guaranteeing that the Monte
Carlo estimates computed from the chain are consistent and subject to a Central Limit
Theorem with the standard O(

√
k) rate. More precisely, we require λ ∈ (0, 1/2(L/ε+2Ly)).

Within this admissible range, if λ is too small this limits the maximal δ and leads to a
slow Markov chain. For this reason, we recommend setting λ as large as possible below
(2L/ε+ 4Ly)

−1.

OTHER PARAMETERS The compact set C is defined as C = [−1, 2]d, even if in practice no
samples where generated outside of C in all our experiments, which suggests that the tail
decay conditions hold without explicitly enforcing them. In all our experiments, we set
the noise level of the denoiser Dε to ε = (5/255)2. The initialization X0 can be set to a
random vector. In our experiments (where m = d), we chose X0 = y in order to reduce
the number of burn-in iterations. For m 6= d we could use X0 = A>y instead. Concerning
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the regularization parameter α, by default we set α = 1, but in some cases it is possible
to marginally improve the results by fine tuning it. All algorithms are implemented using
Python and the PyTorch library, and run on an Intel Xeon CPU E5-2609 server with a
Nvidia Titan XP graphic card or on Idris’ Jean-Zay servers featuring Intel Cascade Lake
6248 CPUs with a single Nvidia Tesla V100 SXM2 GPU. Reported running times correspond
to the Xeon + Titan XP configuration.

5.4.2 Convergence analysis of PnP-ULA in non-blind image deblurring and inpainting
When using a sampling algorithm such as PnP-ULA on a new problem, it is essential to
check that the state space is correctly explored. In order to provide a thorough convergence
study, we first run the algorithm for 25×106 iterations. We use a burn-in period of 2.5×106

iterations, and consider only the samples computed after this burn-in period to study the
Markov chain in close-to-stationary regime. In Section 5.4.3, we will see that much less
iterations are required if the goal is only to compute point estimators with PnP-ULA. For
simplicity, the algorithm is always initialized with the observation y in our experiments with
PnP-ULA (for interpolation, this means that unknown pixels are initialized to the value 0).

There is no fully comprehensive way to empirically characterise the convergence properties
of a high-dimensional Markov chain, as different statistics computed from the same chain
align differently with the eigenfunctions of the Markov kernel and hence exhibit different
convergence speeds. In problems of small dimension, we would calculate and analyse the d-
dimensional multivariate autocorrelation function (ACF) of the Markov chain, but this is not
feasible in imaging problems. In problems of moderate dimension, one could characterise the
range of convergence speeds by first estimating the posterior covariance matrix (which, for
256×256 images, would be a 2562×2562 matrix) and then performing a principal component
analysis on this matrix to identify the directions with smallest and largest uncertainty, as
these would provide a good indication of the subspaces where the chain converges the fastest
and the slowest. However, computing the posterior covariance matrix is also not possible in
imaging problems because of the dimensionality involved. Here we focus on approximations
of the posterior covariance which make sense for the particular inverse problem we study.
More precisely, we use the diagonalization basis of the inverse operator, i.e. the Fourier basis
for the deblurring experiments, and the basis formed by the unknown pixels for the inpainting
experiments. Under the assumption that the posterior covariance is mostly determined by
the likelihood, this strategy allows broadly identifying the linear statistics that converge
fastest and slowest, without requiring the estimation and manipulation of prohibitively large
matrices.

INTERPOLATION We first focus on the interpolation problem. Figure 5.4 shows a map of the
pixel-wise marginal standard deviations, for all images. We observe that pixels in homo-
geneous regions have low uncertainty, while pixels on textured regions, edges, or complex
structures (a reflection on the window shutter in the Alley image for instance) are the most
uncertain.

For the same experiments, Figure 5.5 shows the Euclidean distance between the final
MMSE estimate (computed using all samples) and the samples of the chain, every 2500
samples (after the burn-in period, and hence in what is considered to be a close-to-stationary
regime). Fluctuations around the posterior mean and the absence of temporal structure in
the plots of Alley or Goldhill are a first indication that the chain explores the solution
space with ease. However, in some other cases such as the Simpson image, we observe meta-
stability, where the chain stays in a region of the space for millions of iterations and then
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Figure 5.4: Marginal posterior standard deviation of the unobserved pixels for the interpolation problem.
Uncertainty is located around edges and in textured areas.

jumps to a different region, again for millions of iterations. This is one of the drawbacks of
operating with a posterior distribution that is not log-concave and that may exhibit several
modes.

Lastly, Figure 5.6 displays the sample ACFs of the fastest and slowest converging statistics
associated with the interpolation experiments (as estimated by identifying, for each image,
the unknown pixels with lowest and highest uncertainty). These ACF plots measure how
fast samples become uncorrelated. A fast decay of the ACF is associated with good Markov
chain mixing, which in turn implies accurate Monte Carlo estimates. On the contrary, a
slow decay of the ACF indicates that the Markov chain is moving slowly, which leads to
Monte Carlo estimates with high variance. As mentioned previously, because computing
and visualising a multivariate ACF is difficult, here we show the ACF of the chain along the
slowest and the fastest directions in the spatial domain (for completeness, we also show the
ACF for a pixel with median uncertainty). We see that independence is reached very fast in
the subspaces of low or median uncertainty, and is much slower for the few very uncertain
pixels.

DEBLURRING We now focus on the non-blind image deblurring experiments, where, as ex-
plained previously, we perform our convergence analysis by using statistics associated with
the Fourier domain. Figure 5.7 depicts the marginal standard deviation of the Fourier coef-
ficients (in absolute value), for all images. For the three images Cameraman, Simpsons and
Traffic, all the standard deviations have a similar range of values, and the largest values
are observed around frequencies in the kernel of the blur filter (shown on the right of the
same figure) and for high frequencies. Conversely, for the three images Alley, Bridge and
Goldhill, very high uncertainty is observed in the vicinity of four specific frequencies. This
suggests that the denoiser used is struggling to regularise these specific frequencies, and

78



Cameraman. Simpson. Traffic.

Alley. Bridge. Goldhill.

Figure 5.5: Evolution of the L2 distance between the final MMSE estimate and the samples generated by
PnP-ULA for the interpolation problem after the burn-in phase. Samples randomly oscillate around the MMSE.
It means that they are uncorrelated. For the images Cameraman, Simpson or Bridge, we note a change of range

for the L2 distance. It could be interpreted as a mode switching as our posterior is likely not log-concave.

Fastest direction Median direction Slowest direction

Figure 5.6: ACF for the interpolation problem. The ACF are shown for lags up to 5e5 for all images in the pixel
domain. After 5e5 iterations, sample pixels are nearly uncorrelated in all spatial directions for the images

Traffic, Alley, Bridge and Goldhill. For the images Cameraman and Simpson, in the slowest direction,
samples need more iterations to become uncorrelated.
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Inverse Fourier

transform of

the blur kernel.

Figure 5.7: Log-standard deviation maps in the Fourier domain for the Markov chains defined by PnP-ULA for
the deblurring problem. First line: images Cameraman, Simpson, Traffic. Second line: images Alley, Bridge
and Goldhill. For the first three images, we clearly see that uncertainty is observed on frequencies that are
near the kernel of the blur filter (shown on the right), and is also higher around high frequencies (i.e. around

edges and textured areas in images). For the last three images, very high uncertainty is observed around some
specific frequencies. In the direction of these frequencies, the Markov chain is moving very slowly and the

mixing time of the chain is particularly slow, as shown on Figure 5.9.

consequently the posterior distribution is very spread along these directions and difficult
to explore by Markov chain sampling as a result. Interestingly, this phenomenon is only
observed in the images that are rich in texture content.

Moreover, Figure 5.8 depicts the Euclidean distance between the MMSE estimator com-
puted from entire chain (i.e. all samples) and each sample (we show one point every 2500
samples). We notice that many of the images exhibit some degree of meta-stability or slow
convergence because of the presence of directions in the solution space with very high un-
certainty. Again, this is consistent with our convergence theory, which identifies posterior
multimodality and anisotropy as key challenges that future work should seek to overcome.

Lastly, we show on Figure 5.9 the sample ACFs for the slowest and the fastest directions
in the Fourier domain§. Again, in all experiments, independence is achieved quickly in the
fastest direction. The behaviour of the slowest direction for the three images Alley, Bridge
and Goldhill suggests that the Markov chain is close to the stability limit and exhibits
highly oscillatory behaviour as well as poor mixing.

5.4.3 Point estimation for non-blind image deblurring and interpolation
We are now ready to study the quality of the MMSE estimators delivered by PnP-ULA
and PPnP-ULA and report comparisons with MAP estimation by PnP-SGD introduced in
Chapter 4.

§The slowest direction corresponds to the Fourier coefficient with the highest (real or imaginary) variance.
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Cameraman. Simpson. Traffic.

Alley. Bridge. Goldhill.

Figure 5.8: Evolution of the L2 distance between the final MMSE estimate and the samples generated by
PnP-ULA for the deblurring problem after the burn-in phase. For images as Cameraman or Simpson, samples

randomly oscillate around the MMSE. On the contrary, for images as Bridge or Goldhill, the plot is
structured, meaning that samples are still correlated.

Fast direction Slow direction Fast direction Slow direction

Figure 5.9: ACF for the deblurring problem. The ACF are shown for lags up to 1.75e5 for the three images
Cameraman, Simpson and Traffic (see the two plots to the left) and independence seems to be achieved in all
directions. For the three other images, independence is not achieved in the slowest direction (corresponding to

the most uncertain frequency of the samples in the Fourier domain) even after 1e6 iterations.
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Figure 5.10: Left: PSNR evolution of the estimated MMSE for the interpolation problem. After 5e5 iterations,
the convergence of the first order moment of the posterior distribution seems to be achieved for all images.

Middle and right: PSNR evolution of the estimated MMSE for the deblurring problem. The convergence for the
posterior mean can be fast for simple images such as Cameraman, Simpson, and Traffic (for these images the
PSNR evolution is shown for the first 5e5 iterations). Increasing δ increases the convergence speed for these

images by a factor close to 2. For more complex images, such as Alley or Goldhill, the convergence is much
slower and is still not achieved after 3e6 iterations with PPnP-ULA for δ = 6δth.
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QUANTITATIVE RESULTS Figure 5.10 illustrates the evolution of the PSNR of the mean of the
Markov chain (the Monte Carlo estimate of the MMSE solution), as a function of the number
of iterations, for the six images of Figure 5.1. These plots have been computed by using a
step-size δ = δth that is just below the stability limit and a 1-in-2500 thinning. We observe
that the PSNR between the MMSE solution as computed by the Markov chain and the truth
stabilises in approximately 105 iterations in the experiments where the chain exhibits fast
convergence, whereas over 106 are required in experiments that suffer from slow convergence
(e.g., deblurring of Alley, Bridge and Goldhill). Moreover, we observe that using PPnP-
ULA with a larger step-size can noticeably reduce the number of iterations required to obtain
a stable estimate of the posterior mean, particularly in the image deblurring experiments.
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PSNR=25.06/SSIM=0.89 PSNR=30.62/SSIM=0.93 PSNR=26.90/SSIM=0.85
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P-
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D

.

PSNR=23.94/SSIM=0.88 PSNR=28.90/SSIM=0.90 PSNR=24.20/SSIM=0.81

Figure 5.11: Results comparison for the interpolation task of the images presented in Figure 5.3 using PnP-ULA
(first row) and PnP-SGD initialized with a TVL2 restoration (second row).

VISUAL RESULTS Figures 5.11 to 5.14 show the MMSE estimate computed by PnP-ULA on
the whole chain including the burn-in for the 6 images, for the interpolation and deblurring
experiments. We also provide the MAP estimation results computed by using PnP-SGD (see
Chapter 4), which targets the same posterior distributions. We report the Peak Signal-To
Noise Ratio (PSNR) and the Structural Similarity Index (SSIM) (Wang and Bovik, 2009;
Wang et al., 2004) for all these experiments.

For the interpolation experiments, PnP-SGD struggles to converge when initialized with
the observed image (see Section 4.3). For this reason, we warm start PnP-SGD by using an
estimate of x obtained by minimizing the Total Variation pseudo-norm under the constraint
of the known pixels. For simplicity, PnP-ULA is initialized with the observation y. We
observe in Figure 5.11 and Figure 5.12 that the results obtained by computing the MMSE
Bayesian estimator with PnP-ULA are visually and quantitatively superior to the ones
delivered by MAP estimation with PnP-SGD. In particular, the sampling approach seems
to better recover the continuity of fine structures and lines in the different images.
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Figure 5.12: Results comparison for the interpolation task of the images presented in Figure 5.3 using PnP-ULA
(first row) and PnP-SGD initialized with a TVL2 restoration (second row).

For the deblurring experiments, the results of PnP-SGD are provided by using a regular-
isation parameter α = 0.3 (which was shown to yield optimal results on this set of images
in Section 4.3) and for α = 1, which recovers the model used by PnP-ULA. Observe that for
the three first images (shown on Figure 5.13), the MMSE result is much sharper than the
best MAP result, and the PSNR / SSIM results also show a clear advantage for the MMSE.
For the other three images (results are shown on Figure 5.14), the quality of the MMSE
solutions delivered is slightly deteriorated by the slow convergence of the Markov chain and
the poor regularisation of some specific frequencies, which leads to a common visual arte-
fact (a rotated rectangular pattern). Using a different denoiser more suitable for handling
textures, or combining a learnt denoiser with an analytic regularisation term, might correct
this behaviour and will be the topic of future work.

A partial conclusion from this set of comparisons is that the sampling approach of PnP-
ULA, when it samples the space correctly, seems to provide much better results than the
MAP estimator for the same posterior. Of course, this increase in quality comes at the cost
of a much higher computation time.

5.4.4 Deblurring and interpolation: uncertainty visualisation study
One of the benefits of sampling from the posterior distribution with PnP-ULA is that we can
probe the uncertainty in the delivered solutions. In the following, we present an uncertainty
visualisation analysis that is useful for displaying the uncertainty related to image structures
of different sizes and located in different regions of the image (see (Cai et al., 2018) for
more details). The analysis proceeds as follows. First, Figure 5.4 and Figure 5.15 show
the marginal posterior standard deviation associated with each image pixel, as computed
by PnP-ULA over all samples, for the interpolation and deblurring problems. As could be
expected, we observe for both problems that highly uncertain pixels are concentrated around
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Figure 5.13: Results comparison for the deblurring task of the images presented in Figure 5.2 using PnP-ULA
with α = 1 (first row), PnP-SGD with α = 0.3 (second row) and α = 1 (third row). PnP-ULA was initialized

with the observation y (see Figure 5.2) whereas PnP-SGD was initialised with a TVL2 restoration.

the edges of the reconstructed images, but also on textured areas. The dynamic range of the
pixel standard deviations is larger for the interpolation problem than for deblurring, which
suggests that the problem has a higher level of intrinsic uncertainty.

Figure 5.16 shows the evolution of the RMSE between the standard deviation computed
along the samples and its asymptotic value, respectively for the interpolation and deblurring
problems. Estimating these standard deviation maps necessitates to run the chain longer
than to estimate the MMSE, as could be expected for second order statistical moment.

Following on from this, to explore the uncertainty for structures that are larger than
one pixel, Figure 5.17 and Figure 5.18 report the marginal standard deviation associated
with higher scales. More precisely, for different values of the scale i, we downsample the
stored samples by a factor 2i before computing the standard deviation. This downsampling
step permits quantifying the uncertainty of larger or lower-frequency structures, such as the
bottom of the glass in Simpson for the deblurring experiment. At each scale, we see that the
uncertainty of the estimate is much more localized for the interpolation problem (resulting
in higher uncertainty values in some specific regions) and more spread out for deblurring,
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Figure 5.14: Results comparison for the deblurring task of the images presented in Figure 5.2 using PnP-ULA
with α = 1 (first row), PnP-SGD with α = 0.3 (second row) and α = 1 (third row). PnP-ULA was initialized

with the observation y (see Figure 5.2) whereas PnP-SGD was initialised with a TVL2 restoration.

certainly because of the different nature of the degradations involves.

5.5 Accelerated sampling using stochastic orthogonal Runge-Kutta-
Chebyshev methods with data-driven priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If PnP-ULA shows interesting results for point estimation, we saw previously that it can
have some difficulties to correctly explore the state space. In addition, samples generated by
the PnP-ULA Markov chain can be highly correlated, which should be avoided if we want
accurate Monte-Carlo estimates Figure 5.9.

These problems can be partially explained by a too coarse discretization scheme of the
Langevin SDE. If the Euler-Maruyama scheme is straightforward to apply, it does not take
into account the geometry of the posterior distribution. Indeed, the discretization step-size
δ is the same in all the directions of the space and is only determined by the Lipschitz
constant of the posterior score. If the posterior distribution is very anisotropic, then all the
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Figure 5.15: Marginal posterior standard deviation for the deblurring problem. On simple images such as
Simpson (see fig. 5.1), most of the uncertainty is located around the edges. For the images Alley, Bridge and
Goldhill, associated with a highly correlated Markov chain in some directions, some areas are very uncertain.

They correspond to the zones where the rotated rectangular pattern appears in the MMSE estimate.

directions of the space are not explored with the same efficiency.
(Pereyra et al., 2020) propose to apply an orthogonal Runge-Kutta-Chebyshev based

stochastic approximation presented in (Abdulle et al., 2018). This method allows us to
take larger step-size δ, which leads to better exploring faculty. It requires s posterior score
evaluations at specific points determined by Chebyshev polynomial extrapolation where s
belongs to {1, ..., 15}. We recall that Chebyshev polynoms of first order are determined as
follows:

∀x ∈ R, Tk(x) =

 1 if k = 0
X if k = 1
2xTk−1(x)− Tk−2(x) otherwise.

The Plug & Play SKROCK algorithm is detailed in Algorithm 7.
The more we evaluate posterior scores, the larger we can set the discretization step-size.

Indeed, we have:

δSKROCK,s = lsδPnP−ULA, with ls = (s− 0.5)2(2− 4/3η) and η = 0.05.

Table 5.1 compares the different discretization step-sizes useable when applying
SKROCK. Applying SKROCK allows us to take way greater step-sizes. However if in-
creasing the number of posterior score evaluations s stabilizes the scheme, what guarantees
a faster state space exploration, it also increases the asymptotic bias. In the following,
we will take δ = 0.9δSKROCK,s and let run the the algorithm during N/s iterations with
N = 1e7 in order to guarantee the same number of forward pass into the neural network
denoiser. It is less iterations than with PnP-ULA but it corresponds to a greater absolute
time where the absolute time is defined as follows T = δ × t, with t the current iteration.
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Interpolation. Deblurring.

Figure 5.16: Evolution of the Root Mean Squared Error (RMSE) between the final standard deviation and the
estimated current standard deviation for the interpolation and deblurring problems.

Scale 1 Scale 2 Scale 3 Scale 4

Figure 5.17: Marginal posterior standard deviation of the Alley and Simpson images for the interpolation
problem at different scales. The scale i corresponds to a downsampling by a factor 2i of the original sample size.

δPnP−ULA δSKROCK,s=10 δSKROCK,s=15

4.929e− 6 7.673e− 4 1.796e− 3

Table 5.1: Largest discretization step-sizes useable for PnP-ULA (without enforcing the strong convexity in the
tails), SKROCK with s = 10 and SKROCK with s = 15. SKROCK allows us to take way larger step-size. It

makes the the state-space exploration faster and it should guarantee a faster sample decorrelation.
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Scale 1 Scale 2 Scale 3 Scale 4

Figure 5.18: Marginal posterior standard deviation of the images Alley and Simpson for the deblurring problem
at different scales. The scale i corresponds to a downsampling by a factor 2i of the original sample size.

Algorithm 7 SK-ROCK
Require: n ∈ N, y ∈ Rm, ε, α, δ > 0, s ∈ {3, ..., 15}, η = 0.05

Compute ls = (s− 0.5)2(2− 4/3η)
Ensure: δ < (ls/3)(Ly + αL/ε)−1

Compute ω0 = 1 + η/s2, ω1 = Ts(ω0)/T
′

s(ω0), µ1 = ω1/ω0, ν1 = sω1/2, k1 = sω1/ω0

Initialization: Set X0 ∈ Rd and k = 0.
for k = 0 : N do
Zk+1 ∼ N (0, Id)
K0 = Xk

X̃k = Xk + µ1

√
2δZk+1

K1 = Xk + µ1δ[∇ log(p(y|X̃k)) + (α/ε)(Dε(X̃k)− X̃k)] + k1
√
2δZk+1

for j = 2 : s do
Compute µj = 2ω1Tj−1(ω0)/Tj(ω0), µj = 2ω0Tj−1(ω0)/Tj(ω0), kj = 1− νj
Kj = µjδ∇ log(p(y|Kj1) + (αδ/ε)(Dε(Kj−1)−Kj−1) + µjKj−1 + kjKj−2

end for
Xi+1 = Ks

end for
return {Xk : k ∈ {0, . . . , N + 1}}
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Figure 5.19: Results obtained with SKROCK for s = 10 and s = 15 gradient evaluations on a deblurring inverse
problem with A a 9× 9 bloc filter and with an additive Gaussian white noise with standard deviation

σ = 1/255. SKROCK achieves similar results to PnP-ULA in term of MMSE and standard deviation point
estimations. In order to draw a fair comparison, we let run the algorithm during n/s iterations with n = 1e7.

In the following, we tackle the non-blind deblurring inverse problem presented in Sec-
tions 4.3 and 5.4 on Goldhill. We are particularly interested in this image as PnP-ULA
struggles to properly restore this picture and does not generate an ergodic Markov chain.

The point estimation results obtained with SKROCK are very similar to the ones com-
puted with PnP-ULA as we can see on Figure 5.19. A grid pattern, ruining the visual
impression, is still present for the MMSEs. The marginal posterior standard deviations es-
timated with SKROCK also suffer from high uncertainty on piecewise constant areas. It is
due to this grid pattern that appears around high-frequency structures and which spreads
out. We point out that the uncertainty magnitude is higher when using SKROCK instead
of PnP-ULA. The state-space exploration is actually quicker. Then, the higher magnitude
could be explained by the exploration of an area of the state-space unseen by PnP-ULA.

Figure 5.20 shows the ACF plots of the SKROCK Markov chains with s = 10 and 15 com-
puted in the Fourier domain as for PnP-ULA. It is interesting to note that the meta-stable
behaviour of the Markov chain observed with PnP-ULA is attenuated. Although, we do not
have any convergence guarantees as for PnP-ULA, it is a positive side-effect that should urge
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ACF (s = 10) ACF (s = 15) ‖x−Xt‖22

Figure 5.20: Ergodicity test of the Markov chain generated by SKROCK for the deblurring inverse problem.
The 2 plots on the left correspond to ACF computed in the Fourier domain with s = 10 and s = 15. A similar

meta-stability behaviour is observed as with PnP-ULA. However, it is less pronounced and the number of
posterior score evaluation seems to decrease this phenomenon. The plot on the right corresponds to the

evolution of the Euclidean distance between the samples generated by the SKROCK Markov chain and the
original image over time δ × t. None of these Markov chains is ergodic.

us to apply this algorithm. In addition as SKROCK covers the state-space more rapidly than
PnP-ULA, it can also highlight more quickly undesirable properties of the Markov chain.
For instance, Figure 5.20 shows the evolution of the Euclidean distance between the original
image and the samples generated by SKROCK. After 1e7 neural network applications, the
Markov chain is still not ergodic. It highlights the difficulties encountered with the prior
plugged into our scheme.

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This chapter presented theory, methods, and computation algorithms for performing
Bayesian inference with Plug & Play priors. This mathematical and computational frame-
work is rooted in the Bayesian M-complete paradigm and adopts the view that Plug & Play
models approximate a regularised oracle model. We established clear conditions ensuring
that the involved models and quantities of interest are well defined and well posed. Fol-
lowing on from this, we studied two Bayesian computation algorithms related to biased
approximations of a Langevin diffusion process, for which we provide detailed convergence
guarantees under easily verifiable and realistic conditions. For example, our theory does not
require the denoising algorithms representing the prior to be gradient or proximal opera-
tors. We also studied the estimation error involved in using these algorithms and models
instead of the oracle model, which is decision-theoretically optimal but intractable. To the
best of our knowledge, this is the first Bayesian Plug & Play framework with this level of
insight and guarantees on the delivered solutions. We illustrated the proposed framework
with two Bayesian image restoration experiments - deblurring and interpolation - where we
computed point estimates as well as uncertainty visualisation and quantification analyses
and highlighted how the limitations of the chosen denoiser manifest in the resulting Bayesian
model and estimates. From a Bayesian computation viewpoint, we also test the efficiency
of accelerated algorithm with SKROCK (Pereyra et al., 2020) and prove their use although
no convergence proofs are currently available. It is still an active field of research.

In future work, we would like to continue our theoretical and empirical investigation of
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Bayesian Plug & Play models, methods and algorithms. From a modelling viewpoint, it
would be interesting to consider priors that combine a denoiser with an analytic regularisa-
tion term. It could allow us to promote samples with some desired properties and enrich the
prior. Furthermore, it could compensate for a lack of regularization by the neural network.
In the same direction, we would like to consider other neural network based priors. This
problematic is at the core of Chapter 6. But we could also consider generative priors as in
(Bora et al., 2017) or autoencoder-based priors as in (González et al., 2021). Another field
of research concerns the possible generalization to other smoothings and their properties
in the context of Bayesian inverse problems. We are also very interested in strategies for
training denoisers that automatically verify the conditions required for exponentially fast
convergence of the Langevin SDE, for example by using the framework recently proposed in
(Pesquet et al., 2020) to learn maximally monotone operators, or the data-driven regulariz-
ers described in (Kobler et al., 2020; Mukherjee et al., 2021). The recent works of (Hurault
et al., 2022a,b) also offer interesting perspectives from a theoretical point of view. (Hurault
et al., 2022a,b) learn a denoiser which results from the gradient of some known non-convex
functional. It could be interesting to see how it affects the convergence results. Besides,
with regards to experimental work, we intend to study the application of this framework to
uncertainty quantification problems, e.g., in the context of medical imaging. The idea would
be to train a denoising neural network on a specific dataset related to the inverse problem
considered and to apply SKROCK in order to sample from the posterior distribution and
perform detailed uncertainty quantification study.

If PnP-ULA and PPnP-ULA allow to sample from the posterior distribution and conse-
quently to estimate any posterior probabilities, it is interesting to check if these probabilities
coincide with the empirical probabilities we can compute. The idea behind is to check if the
posterior model is accurate and models the true unavailable model. These questions are at
the core of the last chapter of this thesis.
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In this chapter, we are interested in the role of the prior p and its associated denoiser
Dε in sampling algorithms. We focus on deep denoisers trained on a dataset in order to
automatically learn a-priori information about the data we deal with. Eventually, we wish
to investigate if there are denoisers more likely to model the true albeit unknown posterior
model

This chapter is motivated by the analysis of the results exposed in Section 5.4 for the
deblurring problem, where a meta-stability behaviour was observed for images with high-
frequency structures. Some PnP-ULA restorations present artefacts like a grid-pattern.
Visualizing the standard deviation of the marginal posterior at each pixel, we note these
areas are highly uncertain, meaning that the algorithm is not confident in the proposed
structures. The goal of this chapter is to test the efficiency of different denoisers and to infer
information about the posterior sampled distribution. To do so, we are going further than
simply performing point estimation. A closer look will be given at posterior credible sets
or credible regions. They are the regions of the state space in which most of the posterior
distribution mass lies (Robert, 2007). A set Cβ is a posterior credible region with confidence
1−β if P (x ∈ Cβ |y) = 1−β. For every β ∈ (0, 1), there exist an infinite number of credible
regions associated with the confidence level 1 − β. The region C∗

β that has the minimum
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Figure 6.1: Architecture of the SN-DnCNN. Figure taken from (Ryu et al., 2019).

volume is called the highest posterior density region (HPD) (Robert, 2007) and is associated
with a positive scalar Mβ such that

C∗
β = {x ∈ Rd, p(x|y) > Mβ} . (6.1)

In the case where the target posterior distribution p(x|y) admits a positive density w.r.t the
Lebesgue measure x 7→ exp[−U(x)], the HPD is given by

C∗
β = {x ∈ Rd, U(x) 6 ηβ} , (6.2)

where ηβ = log(Mβ). The quantity U is generally called the potential.
Consequently, the HPD region with confidence (1−β) is only characterised by the thresh-

old ηβ . Let us point out that when we want to estimate posterior credible sets and HPD
regions we have to solve very high-dimensional integrals of the form

∫
Cβ

p(x|y)dx. They will
be estimated using Monte-Carlo methods. A first interrogation concerns the presence or not
of the original image in the posterior credible sets.

In this chapter, we consider three different denoisers:

• The Spectral Normalized Deep Convolutional Neural Network (SN-DnCNN) (Ryu et al., 2019):
It is the denoiser used in the experiments of Chapters 4 and 5. It is a 17-layers
convolutional neural network with ReLU activation functions and batch normalization
that learns the residual mapping. It is trained with L2-loss so that the residual
mapping is contractive, ie with a Lipschitz constant smaller than 1. To do so, at each
forward pass of the neural network during the training, the spectral norm of each
layer operator is estimated with the power method and then the layers are normalized
by their estimated spectral norm.
The code of SN-DnCNN is available at https://github.com/uclaopt/Provable_
Plug_and_Play/.

• The proximal gradient-step denoiser (Prox-GSD) (Hurault et al., 2022b): This de-
noiser Dε is trained to act like the gradient-step of an explicit functional gε. We
have then for all x ∈ Rd Dε(x) = x −∇gε(x). gε corresponds to the potential of the
approximate prior pε introduced in Section 5.2. In (Hurault et al., 2022b), gε is defined
such that ∀x ∈ Rd, gε(x) =

1
2‖x −N(x, ε)‖22 with N(., ε) a neural network. This po-

tential was previously introduced in (Romano et al., 2017; Bigdeli and Zwicker, 2017).
Although considered but disregarded in (Romano et al., 2017), it has the advantage
to be sufficiently general without requiring too restrictive hypotheses on N(., ε) to get
convergent PnP-optimization schemes. In (Hurault et al., 2022b), N(., ε) is a light
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Figure 6.2: Architecture of the light DRUNet. Figure taken from (Hurault et al., 2022a)

Dilated-Residual U-Net (DRUNet) with only two residual blocks as described in Fig-
ure 6.2. DRUNet was introduced in (Zhang et al., 2021) and achieves state-of-the-art
results in terms of denoising by combining U-Net and Res-Net structures.
In order to be differentiable, it has softplus activation functions. Let us point out that
this denoiser, contrary to SN-DnCNN takes the noisy image and the noise level map
as inputs.
The training is performed in two steps. The first step consists in training the denoiser
with the classical L2-loss. The second step enforces the non-expansivity of the residual
denoiser with the following loss function

L(ε) = Ex∼p,nε∼N (0,ε)[‖Dε(x+ nε)− x‖2 + µmax(‖JId−Dε(x+ nε)‖S , 1− ν)] (6.3)

where ‖‖S denotes the spectral norm, ν = 0.1 and µ = 0.001.
It is worth mentioning at this point that this denoiser is also the proximal operator of
some non-convex potential Φε as shown in (Hurault et al., 2022b).
The main advantage of using this denoiser is that it is the gradient of some known
potential gε. Consequently, it would allow us to estimate exact HPD regions or to
perform automatic model calibration using maximum likelihood maximization as in
(Vidal et al., 2020).
The code of Prox-GSD is available at https://github.com/samuro95/Prox-PnP.

• The Firmly Non-Expansive (FINE) network (Pesquet et al., 2020):
This network is inspired by the DnCNN architecture detailed in (Zhang et al., 2017).
The batch normalization layers have been removed and the ReLU activation functions
have been replaced by LeakyReLUs.
This FINE network is incorporated within the framework of Maximally Monotone
Operators (MMO). We consider a multivalued operator B defined on a Hilbert space
H, B : H → 2H , with 2H the family of all subsets of H. 2H is called the power set of
H.The notation B : H → 2H means that H maps every point x ∈ H to a set Bx ⊂ H.
B is characterized by its graph

gra B = {(x, u) ∈ H ×H|u ∈ Bx}.

95

https://github.com/samuro95/Prox-PnP


Figure 6.3: Architecture of the FINE network. Here C corresponds to the number of channels. C = 1 for
grayscale images, C = 3 for color images. Figure taken from (Pesquet et al., 2020).

B is maximally monotone if and only if for every (x, u) ∈ H ×H,

u ∈ Bx⇔ (∀y ∈ H), (∀v ∈ By) 〈x− y, u− v〉 > 0. (6.4)

It concretely means that there is no maximal operator B̃ which contains gra B. For
example, if B is not maximal, then there exists (x, u) /∈ B such that B̃ = B ∪ {(x, u)}
is monotone. Furthermore, a multivalued operator B is fully characterized by its
resolvent defined as JB = (Id − B)−1 where the inverse corresponds to the inversion
of a graph. The authors of (Pesquet et al., 2020) exploit the fact that an operator
B is maximally monotone if and only if there exists a non-expansive operator, ie
1−Lipschitz, Q such that JB = 1

2 (Id + Q). In the case where B corresponds to the
subdifferential of a certain convex potential g, the resolvent is the proximal operator
of g. The authors of (Pesquet et al., 2020) learn a non-expansive operator Q so that
the operator J̃ = 1

2 ((Id +Q)) corresponds to the resolvent of a maximally monotone
operator B∗. Finally, the training loss of this neural network reads

L = Ex∼p,nε∼N (0,ε),ρ∼U[0,1][‖J̃(yε)− x‖22 + λ max{‖∇Q(zε,ρ)‖2S , 1− ν}] (6.5)

with yε = x+ nε, zε,ρ = ρx+ (1− ρ)J̃(x+ nε), λ = 0.002 and ν = 5e− 2.
The code of the FINE denoiser is available at https://github.com/basp-group/
PnP-MMO-imaging.

We consider these three denoisers because they all allow to estimate the Lipschitz constant
L of the residual operator Dε − Id.

We did not perform any training and only considered pretrained neural networks. That
is why we will show in the following color images for Prox-GSD, which is only trained on a
color base.

If not specified, the compact ensuring the strong convexity in the tails is C = [−1, 2]d.
In a first part, we draw a comparison of the point estimators computed using the different

denoisers with PnP-ULA in Section 6.2. Then, we look at results obtained in terms of
potential using an approximated potential when we do not know if the denoiser is associated
with a potential in Section 6.3. Doing so, we can better understand the images promoted
by the plugged prior. Finally, in Section 6.4 we perform a coverage study with the FINE
and SN-DnCNN induced priors to see if they are accurate from a frequentist point of view,
meaning that they deliver probabilities which are coherent with the true posterior model.

∗And in this case J̃ is firmly non-expansive, meaning that for every (x, y) ∈ H, ‖Bx − By‖22 6
〈x− y,Bx−By〉. This assumption is stronger than ensuring the residual non-expansivity.
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SN-DnCNN FINE Prox-GSD√
ε 5/255 2.25/255 15/255

Table 6.1: Noise levels of the different denoisers used within the PnP-ULA framework. These denoiser noise
levels were found to achieve the best results from a perceptual and quantitative point of view for the non-blind

deblurring inverse problem.

6.2 Qualitative comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we aim at analysing the results produced by our sampling algorithms from
a visual perspective on a non-blind deblurring inverse problem presented in (5.39) with
different denoiser induced priors. This section is motivated by the observation of meta-
stable phenomena for certain images such as Goldhill or Alley when dealing with this
inverse problem. The proposed MMSE restorations, although achieving good PSNR scores,
present a grid-pattern that harms the visual impression. It urges to look for other priors
derived from other denoisers.

First, we draw a comparison between the results generated with the SN-DnCNN and
FINE induced priors. In both cases, the standard deviation of the additive Gaussian white
noise is σ = 1/255. The comparison is drawn on Simpson and Goldhill presented in
Figure 5.1. Then, we look at the results when the prior score is derived from a Prox-GSD
denoiser. In this case, we cannot draw a direct comparison with other denoiser induced
priors as the Prox-GSD denoiser only works with RGB images and we did not perform
training on grayscale images. In order to speed up the convergence, as an application of
Prox-GSD is 4 times slower than for the other two denoisers, we set the additive Gaussian
white noise standard deviation to σ = 5/255.

The PnP-ULA discretization step-size is set such that δ = 0.9δstable where δstable is
defined as in Section 5.4.

Table 6.1 gives the different denoiser noise levels applied into the PnP-ULA framework.
They correspond to the noise levels achieving the best results from a perceptual and quan-
titative point of view for the non-blind deblurring inverse problem.

Figure 6.4 compares different restorations for the deblurring inverse problem on Simpson
and Goldhill. The SN-DnCNN induced posterior distribution produces the MMSE restora-
tions which always reach the best scores in terms of PSNR or SSIM. If these quantita-
tive results are confirmed by the visual impression on Simpson, the MMSE restoration for
Goldhill presents an abnormal grid pattern that negatively affects it. This pattern is found
after around 5e5 iterations in the PnP-ULA samples and spreads to the whole image along
the iterations. It only appears for images with high-frequency structures. At this point the
Markov chain generated by PnP-ULA is not ergodic and we should not compute MMSE
or standard deviations. The FINE MMSEs never exhibit such pattern for either image.
However, their edges look smoother, which explains the lower PSNR and SSIM scores. In
addition, for Simpson, an almost piecewise constant picture, PnP-ULA with SN-DnCNN
tends to generate more diverse samples. These differences are visible around contours such
as clouds.

Figure 6.5 shows the standard deviation of the marginal posterior at each pixel com-
puted with PnP-ULA for the SN-DnCNN and FINE denoisers. With FINE, the uncertainty
magnitude is lower than with SN-DnCNN. For example, it is 3 and 6.4 times smaller for
respectively Simpson and Goldhill. It means that the FINE posterior distribution generate
less diverse samples and it could interpret as a distribution concentrated. Furthermore, the
grid pattern appearing over time for Goldhill causes uncertainty that propagates even on
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Figure 6.4: MMSE estimates and two samples obtained with PnP-ULA using SN-DnCNN and FINE induced
priors for the deblurring problem for Simpson and Goldhill. The blur operator A is a 9× 9 block-filter and the

observation noise is an additive Gaussian white noise with standard deviation σ = 1/255. Samples generated
with the FINE priors are less diverse but more robust to instabilities. The Markov chain computed with

SN-DnCNN is not ergodic.
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piecewise constant areas. Besides, uncertainty is more spread out with FINE than with
SN-DnCNN. It seems that PnP-ULA with a FINE induced prior is more uncertain on the
location of contours whereas with the SN-DnCNN prior uncertainty concerns more the edge
magnitude. At this point, it is difficult to explain these differences. If the properties of
SN-DnCNN limit less its expressivity in comparison with FINE and could explain the larger
variety of the generated samples, we cannot explain the strange structures produced with
the SN-DnCNN induced prior. It could be due to the neural network properties or a lack
of training. To answer this question, we should retrain both denoisers on the same training
set. This is currently under investigation.

We also test PnP-ULA with the Prox-GSD denoiser introduced by (Hurault et al., 2022b)
on RGB images. The tackled inverse problem is slightly more difficult as the additive Gaus-
sian white noise has a larger standard deviation σ = 5/255. The goal was to speed-up the
convergence of the sampling algorithm as applying the Prox-GSD denoiser is computation-
ally more expensive.

Figure 6.6 shows the MMSE and marginal posterior distribution standard deviation at
each pixel estimated after 1e7 iterations for Color Simpson. The MMSE is contaminated
by packs of exploding pixels organized in lines that seriously ruin the restoration quality.
The standard deviation plot reveals that if contours are more uncertain, piecewise constant
areas are also corrupted by a lot of noise.

Figure 6.7 and Figure 6.8 allow to better understand the phenomenon that deteriorates
the estimated MMSE. Figure 6.7 shows samples generated by PnP-ULA with the Prox-GSD
denoiser plugged into the prior score. After 5e5 iterations, samples are noisy deblurred
solutions to the deblurring inverse problem. After 1.63e6 iterations, the magnitude of some
pixels increases and goes outside [0, 1]. This phenomenon arises at an edge, here the boat
mast. Then, it steadily diffuses to the whole image and corrupts it. Figure 6.8 shows the
cumulative histogram of the pixel values for different samples. The pixel magnitude increases
over time, and so does the number of pixels greater than 1 and smaller than 0. In the end,
after 1e7 iterations, 20% of the pixels go outside [0, 1].

To alleviate this pixel magnitude increase, we decide to exploit the knowledge we have
about the original image that the denoiser does not seem to take into account. We know
that it belongs to [0, 1]d. Consequently, we apply P-PnP-ULA with C = [0, 1]d. Adding a
projection onto the convex compact C = [0, 1]d after an ULA step constrains the sample
to belong to [0, 1]d. Figure 6.9 exposes the estimated MMSE and the marginal posterior
standard deviation derived using P-PnP-ULA. After 5e6 iterations for the same inverse
problem. The computed MMSE is a much better solution than the MMSE derived with
PnP-ULA both from a visual and a quantitative point of view. It indeed achieves a great
PSNR score although it is a little smooth. The uncertainty magnitude is reasonable and
comparable to the one estimated for Simpson with PnP-ULA and SN-DnCNN. Edges are
the most uncertain parts of the restoration.

Samples produced applying PPnP-ULA are presented in Figure 6.10. They appear to be
good although noisy, and they do not exhibit any of the default observed with PnP-ULA.
We point out here that applying PPnP-ULA allows to pick a larger step-size and conse-
quently to more quickly and better explore the state-space. Whereas after 5e6 iterations,
samples generated by PnP-ULA with Prox-GSD were totally corrupted and did not consti-
tute possible solutions to the deblurring inverse problem, samples with PPnP-ULA are far
better.

PPnP-ULA does not solve all the problems when plugging Prox-GSD into the prior score.
Figure 6.11 shows the empirical first and second order moment of the posterior distribution
sampled using PPnP-ULA with Prox-GSD for Fox and computed after 1e6 iterations. Fox
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Figure 6.5: Marginal posterior standard deviation computed for the deblurring problem with the SN-DnCNN
and FINE induced priors. For the Sn-DnCNN prior uncertainty is more concentrated around edges and higher,

whereas for the FINE prior uncertainty is more diffuse but 4 times smaller.
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Color Simpson Blurry observation (PSNR=25.18)

MMSE Standard deviation

Figure 6.6: MMSE and marginal posterior standard deviation obtained with PnP-ULA using the Prox-GSD
induced prior for the deblurring problem for Color Simpson. The blur operator A is a 9× 9 block-filter and the

observation noise is an additive Gaussian white noise with standard deviation σ = 5/255.
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n = 5e5, PSNR=23.69 n = 1.63e6, PSNR=22.67 n = 1.634e6, PSNR=22.43
U(Xn) = 24112.473 U(Xn) = 24089.926 U(Xn) = 24094.4

n = 1.64e6, PSNR=21.77 n = 1.7e6, PSNR=16.19 n = 5e6, PSNR=4.34
U(Xn) = 24013.79 U(Xn) = 24101.984 U(Xn) = 22920.855

Figure 6.7: Samples generated by PnP-ULA for Color Simpson and their associated potential values for
Prox-GSD. If produced samples look good in a first phase, they deteriorate over time. Abnormal structures

appear around high-frequency areas. The Prox-GSD induced prior seems to promote images with these
unnatural structures as the sample potential is at its lowest after 5e6 iterations and the data fitting term do not

penalize this evolution.
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n = 5e5 n = 1.63e6 n = 1.634e6
U(Xn) = 24112.473 U(Xn) = 24089.926 U(Xn) = 24094.4

n = 1.64e6 n = 1.7e6 n = 5e6
U(Xn) = 24013.79 U(Xn) = 24101.984 U(Xn) = 22920.855

Figure 6.8: Cumulative histograms of the pixel values of different samples generated by PnP-ULA for Color
Simpson with the Prox-GSD induced prior. The pixel magnitude of the generated samples tend to increase over
time. After 5e6 iterations, at least 30% of the pixels are outside [0, 1]. The Prox-GSD induced prior does not
regularize enough the posterior distribution tails. It seems that the neural network did not learn the range of

values of the images.

MMSE (PSNR=33.51) Standard deviation Log Standard deviation

Figure 6.9: MMSE and marginal posterior standard deviation obtained with P-PnP-ULA using the Prox-GSD
induced prior for the deblurring problem inverse for Color Simpson with the projection convex compact set
C = [0, 1]d. The blur operator A is 9× 9 bloc-filter and the observation noise is an additive Gaussian white
noise with standard deviation σ = 5/255. The hard projection onto C allows to alleviate diverging samples.

Consequently the MMSE does not expose parasite structures. The log standard deviation is showed as
uncertainty is very low.
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n = 1e6, PSNR=24.25 n = 4e6, PSNR=24.13 n = 5e6, PSNR=24.25

Figure 6.10: Samples generated by P-PnP-ULA for Color Simpson for Prox-GSD.

is an interesting image for it has high-frequency textures. The estimated MMSE exhibits
stripes that severely damages the restoration and makes it a bad solution to the inverse
problem we aim at solving. The stripes mask is also perceptible on the standard deviation
plot and constitutes the main source of uncertainty in the restoration. It reminds the grid
pattern observed for Goldhill, Alley and Bridge when sampling from the posterior with
the SN-DnCNN induced prior. As explained in Figure 5.7, high uncertainty was observed for
some frequencies in the kernel of the blur operator for the samples generated by PnP-ULA.
The denoiser used did not succeed in regularizing these frequencies.

Figure 6.12 shows that these stripes come from high-frequency textures present around
the fox snout and that rapidly spread over the fox coat over time. After only 1e5 iterations
samples are already corrupted by these motifs.

Although we cannot draw a direct comparison between Prox-GSD and the other denoisers
previously tested as they only work on grayscale images, we apply PnP-ULA to a grayscale
version of Fox. The idea is to see if these denoisers also struggle with this image. Figure 6.13
shows that these two denoisers induced posteriors do not struggle when dealing with this
image. It would rather highlight the extreme sensitivity of the Prox-GSD induced posterior
when dealing with images with high-frequency textures.

For completeness, we also show the Euclidean distance between the MMSE estimator
computed from entire chain (i.e. all samples) and each stored sample (we show one point
every 1000 samples) with both denoisers in Figure 6.14. Whereas samples generated with
the FINE prior look totally uncorrelated, we observe a light meta-stability behavior for
those generated with the SN-DnCNN prior. This could be explained by a very anisotropic
posterior distribution induced by this denoiser.

6.3 Potential analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section we aim at understanding how the results exposed in Section 6.2 are explained
in terms of potentials. As a neural network denoiser does not necessarily derive from a
potential, we firstly present an approximation of the prior potential introduced in (Romano
et al., 2017). It allows us to build a posterior potential Ured for the SN-DnCNN and FINE
denoisers and to see the posterior potential evolution over time. As Prox-GSD is the gradient
of some known potential gε, we can perform this study with the real potential U . These
results are interesting as they allow to see the images promoted by our posterior distribution
with our plug-and-play prior.
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Fox Blurry Observation (PSNR=21.69)

MMSE Standard deviation

Figure 6.11: MMSE and marginal posterior standard deviation obtained with P-PnP-ULA using the Prox-GSD
induced prior for the deblurring problem inverse for Color Fox with the projection set C = [0, 1]d. The blur
operator A is 9× 9 bloc-filter and the observation noise is an additive Gaussian white noise with standard

deviation σ = 5/255. A grid pattern on the MMSE ruins the restoration and increases uncertainty.

n = 5e4, PSNR=21.88 n = 7.5e4, PSNR=21.49 n = 1e5, PSNR=20.92 n = 1e6, PSNR=16.60

Figure 6.12: Samples generated by P-PnP-ULA for Fox with Prox-GSD. A quick deterioration of the samples is
observed. It seems to come from high-frequency motifs in the fox coat that eventually propagates to the whole

image.
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Figure 6.13: Comparison of the results generated by PnP-ULA with the SN-DnCNN and the FINE induced
priors for a grayscale version of Fox after 1e7 iterations. Both restorations do not exhibit artefacts ruining the
visual impression as with Prox-GSD (see Figure 6.11). The SN-DnCNN induced posterior proposes an MMSE
restoration with sharper edges and better quantitative results. The associated uncertainty is higher and less

spread than with the FINE induced posterior.
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SN-DnCNN FINE

Figure 6.14: Evolution of the L2 distance between the final MMSE estimate and the samples generated by
PnP-ULA with the SN-DnCNN and the FINE induced posterior for the deblurring problem after the burn-in

phase for Fox.

When we use a classical denoiser, we do not know if there exists such a potential U asso-
ciated with the posterior distribution. To alleviate this issue, we consider an approximated
potential Ured introduced by Romano et al. in (Romano et al., 2017) and given for any
x ∈ Rd by

∀x ∈ Rd, Ured(x) = ‖Ax− y‖2/(2σ2) + (α/2)xT (x−Dε(x)). (6.6)

This potential is interesting because, if α ← α/ε, its gradient is equal to the gradient of
the approximated log-posterior density considered in PnP-ULA and detailed in Algorithm 5.
Indeed, if the denoiser Dε is locally homogeneous, non-expansive and its Jacobian JDε is
symmetric †, we have according to (Romano et al., 2017) and (Reehorst and Schniter, 2018)
that

∇Ured = −∇ log pY |X(y|x) + α/ε(x−Dε(x)). (6.7)

Figure 6.15 shows the evolution of the approximated potential of the samples generated
by PnP-ULA with SN-DnCNN or FINE for Simpson and Goldhill on the deblurring inverse
problem introduced in Section 6.2. For the FINE induced prior, the original image Simpson
is explained by this approached potential as its value is below the potential values of the
samples generated by PnP-ULA. It is not the case for Goldhill, as the potential values of
the samples is below the potential of the original image. It can be explained by a wrong
model-specification. With the SN-DnCNN induced prior, it seems that the original image
does not look like an admissible solution as the potential of the original image is higher
than the ones of the samples. For Goldhill, it seems that this posterior strongly promotes
images presenting a grid-pattern.

The main advantage of using the Prox-GSD prior is that we have access to the posterior
potential. We can then have an idea of the types of images that are promoted by this prior.
Based on Figure 6.8, we can see that this posterior tends to promote images outside [0, 1]d.
The results observed in Figures 6.6 and 6.7 are not due to instabilities in the PnP-ULA

†In (Reehorst and Schniter, 2018), it is proved that if the Jacobian symmetry assumption does not hold,
then there does not exist any potential Ured associated with (6.7). Furthermore the authors conducted a
study to know for which denoisers this assumption holds. Interestingly, it is proved that for classical denoisers
such as BM3D (Dabov et al., 2006), Non Local Means (NLM) (Buades et al., 2005a), TNRD (Chen and
Pock, 2017) or DnCNN (Zhang et al., 2017), the assumption on the Jacobian symmetry does not hold.
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Figure 6.15: Evolution of the approximated posterior potential Ured for Simpson and Goldhill with the
SN-DnCNN and FINE induced priors for the deblurring inverse problem. For the FINE prior, the original image
potential is not always below the potential of the generated samples. For Goldhill, the orignal image is not a
good solution for this inverse problem in terms of potential. With the SN-DnCNN induced prior, this potential
does not regard the original images as a good solution. for Goldhill, it seems to promote images with the grid

pattern.
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Color Simpson (PnP-ULA) Color Simpson (P-PnP-ULA) Fox (P-PnP-ULA)

Figure 6.16: Evolution of the exact posterior potential U for Color Simpson and Fox for the deblurring inverse
problem and PnP-ULA or P-PnP-ULA with Prox-GSD. Without the hard projection onto the convex compact
set C = [0, 1]d, the posterior induced by the Prox-GSD promotes samples as in Figure 6.7 with diverging pixel
values. A hard projection onto C alleviates this issue. However, it still promotes samples with poor-perceptual

quality.

scheme but by the nature of the prior. Although this denoiser was trained with images in
[0, 1]d, it firstly seems that it has not learnt the image range of values. Consequently, it
does not regularize enough the posterior tails and does not sufficiently constrain the mass
probability inside [0, 1]d. The hard projection onto [0, 1]d allows to alleviate this issue (even if
it adds some bias). Adding this constraint, the original image appears to be a good solution
to our inverse problem for color Simpson, although the sample potentials are higher. Even
if we constrain the samples to belong to [0, 1]d, it does not necessarily produce good-looking
restorations. Fox is a good example of this phenomenon. Of course, the original image is now
an admissible solution to the inverse problem as we enforce the posterior probability mass
to belong to [0, 1]d. However the posterior still struggles when dealing with high-frequency
structures as seen in Figure 6.12 and none of the samples generated appears to be a good
solution to the inverse problem considered.

6.4 Coverage ratio analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If the FINE and SN-DnCNN priors produce good restorations, it is interesting to question the
quality of these priors from a frequentist point of view. The posterior probabilities computed
are true only in the paradigm defined by the model. The aim of this section is then to check
if they also are meaningful in a frequentist sense. This part is very much inspired by the
work (Holden et al., 2022). As explained in (Holden et al., 2022), in a frequentist approach,
the posterior probabilities should match the observed frequency over a large number of trials.
It means that for m observations of the modelled quantities {x1, x2, ..., xm}, we should have
if m is sufficiently large

1

m

m∑
i=1

1A(xi) ≈ P(x ∈ A) =

∫
A

p(x|y)p(y)dy

In this section we test the coverage of the credible intervals derived by the posterior model
induced by the SN-DnCNN and the FINE denoisers. To do so, we consider a dataset D =
{xi}mi=1 of clean images resulting from the concatenation of the datasets set3c, CBSD10,
CBSD68 and proceed as follows:
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Figure 6.17: Coverage ratio analysis for the posterior induced by the SN-DnCNN and the FINE denoisers. Both
posterior distributions are not accurate in the frequentist sense as the empirically estimated posterior

probabilities do not match the theoretical ones. Both posterior models are over-confident.

• Considering the clean image xi, we generate an observation yi ∼ p(y|x = xi). The
observation process considered is the same as in Section 4.3.5 where the degradation
operator A encodes a 9×9 bloc-filter with additive Gaussian white noise with standard
deviation σ = 1/255.

• For each observation yi, we sample from the posterior distribution using PnP-ULA over
5e5 iterations. It is initialized at the observation yi. Then, we empirically estimate the
posterior credible sets for different levels β using the RED potential Ured. The objective
is to estimate the regions Aβ,i such that P(x ∈ Aβ,i) = 1− β, ie the (1− β)-quantiles
of the posterior distribution for β ∈ {0.05, 0.10, 0.15, 0.20}.

• Finally, we check the proportion of clean images that belong to the credible sets of
level β. The prior is considered to be true in the frequentist sense, if this proportion
is close to 1− β.

Figure 6.17 shows that the estimated posterior distributions induced by both denoisers are
not accurate in the frequentist sense. The observed frequencies do not match the posterior
probabilities. Our posterior models are conservative and tend to overestimate uncertainty.
It is partially explained by the ill-posedness of the deblurring inverse problem we are dealing
with, that makes exploration difficult in some directions of the state-space. It could also
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mean that the prior is misspecified. In this case, the regularization parameters used are
maybe not the best to explain the true model. One way to compensate this could be to
calibrate the posterior model by maximum likelihood optimization as in (Vidal et al., 2020).
Finally, it is also possible that our denoisers did not properly learn the structure underlying
the natural images, ie the sub-manifold where they live. If it is due to their structures that
limit their expressivity or a lack of training is currently under investigation.

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this chapter, we investigated the influence of deep priors on the solutions of an ill-posed
non-blind deblurring problem. We considered three denoisers with different properties. The
comparison was drawn under different scopes. First, we looked at the generated results from
a visual point of view. Then, we compared them in terms of potential in order to better
understand which properties were promoted with the induced priors. Finally, we checked
the frequentist accuracy of the FINE and SN-DnCNN induced priors.

The FINE posterior produces over-smooth samples but does not generate solutions with
unrealistic artefacts. On the other hand, the SN-DnCNN posterior generates more diverse
samples both from a visual and quantitative point of view in comparison to the FINE
posterior. However, it can create artefacts that ruin the restoration for images with more
detailed areas. Neither the SN-DnCNN posterior nor the FINE posterior is accurate in a
frequentist sense and both tend to be conservative and to overestimate uncertainty. The
Prox-GSD posterior really struggles with high-frequency structures.

At this point, we cannot explain these differences as the neural networks were trained on
different training sets. For future work, we would like to go further in the prior analysis.
First, we would like to train the FINE and SN-DnCNN denoiser on MNIST in order to see
if their architectures and properties allow them to learn simple data structures. Then, we
would like to train SN-DnCNN on ImageNet as FINE to see if their differences are due to their
different properties. This is a major point that needs to be clarified as it could change the
denoising neural netowrks we should use within Plug & Play sampling algorithms. Finally,
we would like to test frequentist accuracy of different sampling methods such as score-
matching and DDRM to better understand from which distribution they sample from.
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7
Conclusion and Perspectives

In this thesis, we paved the way for a better understanding of the Bayesian Plug & Play
methods for solving inverse problems. In Chapter 3 we introduced inverse problems and
their inherent difficulties. We proposed a short review of the different recent strategies to
combine deep neural networks and optimization schemes to solve such inverse problems.
Our focus on Plug & Play methods was explained by their simplicity, their versatility, their
ability to work with pre-trained networks. The mathematical and computational framework
developed in this thesis is rooted in the Bayesian M-complete paradigm and adopts the
view that Plug & Play models approximate a regularised oracle model. This is a major
difference with the literature on Plug & Play methods that generally postulate and plug a
prior assumed to be the true prior.

Chapter 4 exposed our first contribution on posterior maximization in Bayesian imaging
with PnP priors. First, it clarified some theoretical major points about MAP estimation with
PnP priors. Then it proposed an algorithm for MAP estimation, PnP-SGD (Algorithm 1),
with convergence guarantees under realistic and checkable assumptions. For instance, we
demonstrated that PnP-SGD converges to points in the vicinity of stationary points of the
true posterior even if only an approximated MMSE denoiser is plugged into the SGD scheme.
It is a major difference with most works on Plug & Play, which either proves convergence
towards fixed points of some operator (Sun et al., 2019, 2020; Ryu et al., 2019) or towards
stationary points of a distribution (Xu et al., 2020; Hurault et al., 2022a,b).

Chapter 5 presented our second contribution on posterior sampling in Bayesian imaging
with PnP priors. It focused on MMSE restorations for inverse problems. First, it dealt
with fundamental interrogations such as existence, stability and well-posedness of MMSE
estimators under clear conditions. Then, two sampling algorithms were proposed, PnP-ULA
(Algorithm 5) and PPnP-ULA (Algorithm 6). Convergence guarantees and non-asymptotic
error bounds were derived under realistic assumptions. To the best of our knowledge, this
is the first Bayesian Plug & Play framework with this level of insight and guarantees on the
delivered solutions.
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Finally, Chapter 6 investigated the role of the plugged prior when sampling from the
posterior. The goal was to interrogate the importance of the denoiser properties and the
solutions they promote for a given inverse problem. SN-DnCNN (Ryu et al., 2019) and
FINE (Pesquet et al., 2020) induced posteriors were shown to be both over-confident and
inaccurate in a frequentist sense, although they deliver excellent MMSE restorations. The
differences between the results obtained with both denoisers cannot currently be precisely
explained, as they were not trained on the same training set. This is an important question
that we plan to investigate further in the future.

During the period of this Phd thesis, several advances have been made in the inverse
problem literature both for point estimation and sampling. Among those advances, we can
cite neural networks performing point estimation not trained to solve an inverse problem
but a whole class of inverse problems. It allows to generalize end-to-end approaches. For
example, (Zhang et al., 2018, 2021) proposed denoising neural networks taking a noise map
as input in addition to the noisy image. These neural networks adapt to any Gaussian
denoising inverse problem. Furthermore, (Debarnot and Weiss, 2022) proposed a neural
network based method to directly estimate a spatially-variant blur kernel. Advances were
also proposed in Bayesian sampling with the outbreak of score matching (Song and Ermon,
2019) and DDPM (Kawar et al., 2022) based methods. However, we still believe that Plug &
Play methods remain relevant for their simplicity and their strong theoretical foundations.

One limitation of Plug & Play methods is their slowness. There are several possible
directions to improve this aspect. Although, there are no convergence results available,
SKROCK, presented in Section 5.5, takes a first step in this direction. To go further we
could think of different discretization schemes of the Langevin SDE, which incorporate
second order moment information for instance (Panloup et al., 2020). Another possibility to
speed up the convergence of PnP-ULA that we considered consists in plugging an invertible
denoiser such as NFs (Lugmayr et al., 2020; Gritsenko et al., 2019) or other invertible neural
networks (Liu et al., 2020). We would benefit from the greater stability of implicit schemes
and it would allow us to take larger step-sizes. Another possible deep prior could be the
generative VAE proposed by (González et al., 2021). In this case, the log-posterior is quasi
bi-concave and exhibits a more sampling-friendly geometry. It could also be applied for
MAP estimation.

In Chapter 6, we saw that the Plug & Play induced posteriors were not accurate. One ex-
planation could be that the parameters (α, ε) were not the best ones explaining the posterior
model. (Vidal et al., 2020) propose a method to automatically set the regularization param-
eters by maximizing the likelihood in an empirical fashion. It is an axis of improvement we
consider for future work.

The posterior inaccuracy raises other fundamental questions. Under which conditions
can a denoiser accurately model the true posterior ? Or more, generally, can a Plug & Play
posterior model accurately represent the posterior distribution ? In the literature, particular
attention has been given to enforcing the Lipschitz constant of the denoiser or its residual
(Ryu et al., 2019; Sun et al., 2019; Xu et al., 2020; Pesquet et al., 2020). In Chapter 6 we
began to answer these questions from an experimental point of view. Building a (firmly)
non-expansive denoiser does not seem to be enough. We plan to go further in this direction
in future works.

As explained in Chapter 2, score-matching and DDPM based methods do not come
with convergence guarantees and non-asymptotic error bounds but their results are very
promising. So do neural networks based methods for sampling. However, the analysis is
often limited to sample presentation. We could wish to analyse these distributions from a
more statistical perspective and check if they are accurate in a frequentist sense for instance.
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We may also wonder how these methods explore state-space in comparison with PnP-ULA.
(Andrle et al., 2021) recently showed that invertible neural networks for sampling produced
equivalent results to MCMC methods but outperformed them in terms of computational
time for a specific inverse problem.

From a more practical point of view, we wish to adapt our MAP estimation and sam-
pling methods to more realistic and concrete inverse problems. We thought for example
of low-photon imaging problems where the data exhibit statistical properties that cannot
be reflected by the Gaussian model. They arise when the number of photons emitted or
reflected by an object or scene of interest is measured. They concern numerous areas of
imaging science such as emission tomographic imaging (Hohage and Werner, 2016), fluores-
cence microscopy (Hohage and Werner, 2016; Bertero et al., 2018), astronomical imaging
(Hohage and Werner, 2016; Starck and Murtagh, 2007), and single-photon light detection
and ranging (LIDAR) (Altmann et al., 2016; Halimi et al., 2016; Rapp and Goyal, 2017; Shin
et al., 2015). Mildly low-photon problems generally have Poisson statistics, whereas more
challenging problems exhibit approximately Bernoulli/binomial or geometric data (Altmann
et al., 2017a,b). These inverse problems are often associated with severe identifiability issues,
poor stability, high uncertainty about the solution and poor regularity conditions. We also
thought to tackle problems with additive spatially varying noise, which can be met in med-
ical imaging. In parallel Magnetic Resonance Imaging (pMRI), which is an MRI allowing a
faster acquisition time, we cannot assume a stationary noise model (Aja-Fernandez et al.,
2015). Eventually, in RAW digital photography and satellite imaging, it is common to use
a Gaussian noise model in addition to a Poisson noise and to approximate such noise model
by a Gaussian distribution with a spatially-varying variance (Aguerrebere, 2014, Chapter
2).

Eventually, the Plug & Play models presented in this thesis approximate a regularised
oracle model. The regularization is obtained by convolving the true but inaccessible prior
p with a Gaussian kernel Gε. However, we could think of other types of smoothing which
might be more adapted to specific types of inverse problems with different measurement
noise distributions.
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In this supplementary chapter we present some extensions and gather the proofs related
to Chapter 4 for completeness. The main author of this chapter is Valentin de Bortoli.

A.1 Proof of Proposition 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof: Let K ⊂ Rd be a compact set and (xn, εn)n∈N such that limn→+∞ εn = 0 and for any
n ∈ N, xn ∈ Sεn,K. Let x? ∈ S a cluster point of (xn)n∈N. Hence, for any n ∈ N∗ there exist
an increasing sequence (kn)n∈N ∈ NN such that limn→+∞ xkn = x?.

In what follows, we show that limn→+∞∇ log(pεkn
(xkn)) = ∇ log p(x?). First, we show

that
lim

n→+∞
max(|p− pεkn

|∞,K, ‖∇p−∇pεkn
‖∞,K) = 0 . (A.1)

Indeed, let f ∈ C(Rd,Rm) with m ∈ N such that ‖f‖∞ < +∞ and denote fε ∈ C(Rd,Rm)
given for any x ∈ Rd by

fε(x) =
∫
Rd f(x̃)Gε(x− x̃)dx̃ , (A.2)

where we recall that for any x ∈ Rd, Gε(x) is a Gaussian kernel with variance ε. For ease
of notation, we define G = G1. Let η > 0. Then, there exists R > 0 such that for any ε > 0
we have ∫

‖x̃‖>R
‖f(x− ε1/2x̃)− f(x)‖G(x̃)dx̃ 6 2‖f‖∞

∫
‖x̃‖>R

G(x̃)dx̃ < η/2 . (A.3)
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Let K′ = K + B(0, R). We have that K′ is compact and therefore f is uniformly continuous
on K′. Hence there exists ξ > 0 such that for any x ∈ K, ε ∈ (0, ξ] and y ∈ B(0, R) we have

|f(x− ε1/2y)− f(x)| 6 η/2 . (A.4)

Hence, combining (A.3) and (A.4) we get that for any x ∈ K and ε ∈ (0, ξ]

‖fε(x)− f(x)‖ 6
∫
Rd ‖f(x− x̃)− f(x)‖Gε(x̃)dx̃ (A.5)

6
∫
Rd ‖f(x− ε1/2x̃)− f(x)‖G(x̃)dx̃ (A.6)

6
∫

B(0,R)
‖f(x− ε1/2x̃)− f(x)‖G(x̃)dx̃ (A.7)

+
∫

B(0,R)c ‖f(x− ε1/2x̃)− f(x)‖G(x̃)dx̃ 6 η . (A.8)

Hence limε→0 ‖f − fε‖∞,K = 0. Therefore using this result and that p ∈ C1(Rd,R) with
‖p‖∞ + ‖∇p‖∞ < +∞ we get that

lim
n→+∞

max(|p− pεkn
|∞,K, ‖∇p−∇pεkn

‖∞,K) = 0 . (A.9)

Combining this result, the fact that limn→+∞ xkn = x? and that p > 0, we get that
limn→+∞∇ log(pεkn

)(xkn
) = ∇ log p(x?). Indeed, we have that for any n ∈ N

‖∇ log(pεkn
(xkn))−∇ log p(x?)‖ (A.10)

6 ‖∇ log(pεkn
(xkn))−∇ log p(xkn)‖+ ‖∇ log p(xkn)−∇ log p(x?)‖ . (A.11)

We conclude using (A.9) and that log p ∈ C(Rd,R). Finally, we obtain that

0 = limn→+∞
{
∇ log p(y|xkn

) +∇ log pεkn
(xkn

)
}
= ∇ log p(y|x?) +∇ log p(x?) . (A.12)

Hence, x? ∈ SK. �

A.2 Proof of Proposition 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof: First, using that p ∈ C(Rd,R+) we have that for any v ∈ Rd and c ∈ R there exists
A ∈ B(Rd) such that

∫
A |〈x, v〉 − c| p(x)dx > 0, meaning that there is no lower-dimensional

affine space of Rd to which x belongs almost surely. Hence, we can apply (Gribonval, 2011,
Lemma II.1) and D?

ε ∈ C∞(Rd,Rd).
We have that for any x ∈ Rd and y ∈ Rm, ∇ log pε(x|y) = ∇ log p(y|x)+D?

ε(x). Hence, we
get that (x, y) 7→ pε(x|y) ∈ C2(Rd×Rm,R+). Since −∇2 log p(x?

y0
|y0) is positive there exist

U1 ⊂ Rd open and V1 ⊂ Rm open such that for any x ∈ U1 and y ∈ V1, −∇2 log pε(x|y) is
positive. Hence, for any y ∈ V1, x ∈ U1 is a strict local maximizer if and only ∇ log pε(x|y) =
0.

We have that ∇x(∇x log pε)(x?
y0
|y0) is invertible. Therefore using the implicit function

theorem, there exist V0 ⊂ Rm open and x? ∈ C1(V0,U1) such that for any y ∈ V0,
∇ log pε(x?(y)|y) = 0, i.e. x?(y) is a strict local maximizer of x 7→ log pε(x|y), since
−∇2 log pε(x?(y)|y) is positive, which concludes the proof. �

A.3 Proof of Proposition 4.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof: In order to prove this theorem we are going to apply (Tadić et al., 2017, Theorem
2.1). In particular, in order to follow the notation of (Tadić et al., 2017, Theorem 2.1), we
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define for k ∈ N, ζk = Zk+1 and ηk = bε(Xk)−∇ log p(y|Xk)−∇ log pε(Xk). Let ε > 0 and
ω ∈ Aε,K. Using H2 we have for any k ∈ N,

‖bε(Xk)−∇ log p(y|Xk)−∇ log pε(Xk)‖ = ε−1‖Dε(Xk)−D?
ε(Xk)‖ 6 M(R)/ε . (A.13)

Hence, we obtain that (Tadić et al., 2017, Assumption 2.1, Assumption 2.2) are satisfied.
In what follows, we show that (Tadić et al., 2017, Assumption 2.3.c) holds. We have that
for any x ∈ Rd, pε(x) = (p ∗ Gε)(x), where ∗ denotes the convolution product. Since
p,Gε ∈ L1(Rd) we get that for any ξ ∈ Rd, p̂ ∗Gε(ξ) = p̂(ξ)Ĝε(ξ). Since p ∈ L1(Rd),
‖p̂‖∞ < +∞ using Riemann-Lebesgue theorem and in addition Ĝε(ξ) = exp[−ε ‖ξ‖2 /2].
Hence, p̂ ∗Gε ∈ L1(Rd) and we obtain that for almost every x ∈ Rd

pε(x) =
∫
Rd p̂(ξ)Ĝε(ξ) exp[i〈x, ξ〉]dξ . (A.14)

In the rest of the proof, we denote p̄ε : Cd → C given for any z = (z1, . . . , zd) ∈ Cd by
p̄ε(z) =

∫
Rd p̂(ξ)Ĝε(ξ) exp[i〈z, ξ〉]dξ where for any z1, z2 ∈ Cd we have 〈z1, z2〉 =

∑d
j=1 z

j
1z̄

j
2.

We have that p̄ε is analytic using the dominated convergence theorem. Since for any x ∈ Rd,
pε(x) > 0 and p̄ε ∈ C(Cd,C), there exists an open set U ⊂ Cd such that for any z ∈ U,
<(p̄ε(z)) > 0. Since log : C\({t ∈ C : <(t) 6 0}) → C is analytic we obtain that
z 7→ log p̄ε(z) is analytic on U. Hence, x 7→ log p(y|x) + log pε(x) is real-analytic on Rd. We
conclude using (Tadić et al., 2017, Theorem 2.1).

�
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In this supplementary chapter we present some extensions and gather the proofs related to
Chapter 5 for completeness. The main author of this chapter is Valentin de Bortoli.

In this chapter, we first introduce a more general framework in Appendix B.2. Then
in Appendix B.3 we present our improved convergence results in the case where the log-
likelihood is strongly log-concave. Posterior approximation bounds in our general setting
are gathered in Appendix B.4. Then we turn to the proof of these results. We first derive
technical results in Appendix B.5. Proofs of Section 5.3.2 and Section 5.3.3 are presented

121



in Appendix B.6 and Appendix B.7 respectively. Finally, proofs of Appendix B.4 are given
in Appendix B.8.

B.2 A general framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We start by considering a slightly more general framework than the one previously intro-
duced. More precisely, instead of p? we consider a general distribution p and instead of
considering pε as a prior we consider a tamed version of this density by introducing another
hyperparameter α > 0. In what follows, we describe this setting in details. We start by
recalling a mild assumption on the likelihood.

H1 For any y ∈ Rm, supx∈Rd p(y|x) < +∞, p(y|·) ∈ C1(Rd, (0,+∞)) and there exists
Ly > 0 such that ∇ log(p(y|·)) is Ly Lipschitz continuous.

For any ε > 0 we recall that pε is given by the Gaussian smoothing of p with level ε, for
any x ∈ Rd by

pε(x) = (2πε)−d/2
∫
Rd exp[−‖x− x̃‖2 /(2ε)] p(x̃)dx̃ . (B.1)

One typical example of likelihood function that we consider in our numerical illustration, see
Section 5.4, is p(y|x) ∝ exp[−‖Ax− y‖2 /(2σ2)] for any x ∈ Rd with σ > 0 and A ∈ Rm×d.
Before turning to the analysis of the convergence of the introduced algorithms we state
the following proposition which ensures the regularity of the posterior model w.r.t to the
observation y.

We consider the following assumption on x 7→ p(y|x) and the prior p for some hyperpa-
rameter α > 0 and an observation y ∈ Rm.

H7 The following hold:

(a)
∫
Rd p(y|x̃)pα(x̃)dx̃ < +∞ and for any ε > 0,

∫
Rd p(y|x̃)pαε (x̃)dx̃ < +∞.

(b)
∫
Rd ‖x̃‖2p(x)dx < +∞.

Note that if α = 1, H7-(a) hold under H1, see Proposition 5.2.1. Under H7-(a), define π the
target probability distribution for any x ∈ Rd by

(dπ/dLeb)(x) = p(y|x)pα(x)
/∫

Rd

p(y|x̃)pα(x̃)dx̃ . (B.2)

Note that for ease of notation, we do not explicitly highlight the dependency of the posterior
distribution π with respect to the hyperparameter α > 0, since it is fixed in the rest of this
section. We also consider the family of probability distributions {πε : ε > 0} given for any
ε > 0 and x ∈ Rd by

(dπε/dLeb)(x) = p(y|x)pαε (x)
/∫

Rd

p(y|x̃)pαε (x̃)dx̃ . (B.3)

We also recall the assumption on the denoiser Dε, see Section 5.3.2 for details.

H2 There exist ε0 > 0, MR > 0 and L > 0 such that for any ε ∈ (0, ε0], x1, x2 ∈ Rd and
x ∈ B(0, R) we have

‖(Id−Dε)(x1)− (Id−Dε)(x2)‖ 6 L ‖x1 − x2‖ , ‖Dε(x)−D?
ε(x)‖ 6 MR , (B.4)

where we recall that
D?

ε(x1) =
∫
Rd x̃ gε(x̃|x1)dx̃ . (B.5)
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B.3 Strongly log-concave case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We now present an improvement on the results of Section 5.3.2 in the case where the log-
likelihood x 7→ log p(y|x) is strongly concave. We recall that the Markov chain is given by
the following recursion: X0 ∈ Rd and for any k ∈ N

Xk+1 = Xk + δbε(Xk) +
√
2δZk+1 , (B.6)

bε(x) = ∇ log p(y|x) + αPε(x) + (proxλ(ιC)(x)− x)/λ , Pε(x) = (Dε(x)− x)/ε , (B.7)

In the strongly concave setting we set C = Rd, i.e. ∀x ∈ C, proxλ(ιC)(x) = x. We
recall that in our image processing applications, we have that for any x ∈ Rd, p(y|x) ∝
exp[−‖Ax− y‖2 /(2σ2)] and that x 7→ p(y|x) is strongly log-concave if and only if A is
invertible. This is the case for denoising tasks where A = Id and for deblurring tasks with
convolution kernels which have full Fourier support.

We start with the following result which ensures that the Markov chain (B.6) is geometri-
cally ergodic under H4 for the Wasserstein metric W1 and in V -norm for V : Rd → [1,+∞)
given for any x ∈ Rd by

V (x) = 1 + ‖x‖2 . (B.8)

The following proposition is the counterpart of Proposition 5.3.2.

Proposition B.3.1 Assume H1, H7 and H4(R) for some R > 0. Let α > 0 and ε ∈ (0, ε0].
If there exists m > 0 such that log(p(y|·)) is m-concave with m > 2αL/ε then there exist A1 > 0
and ρ1 ∈ [0, 1) such that for any δ ∈ (0, δ̄], x1, x2 ∈ Rd and k ∈ N we have∥∥δx1

Rk
ε,δ − δx2

Rk
ε,δ

∥∥
V
6 A1ρ

kδ
1 (V 2(x1) + V 2(x2)) , (B.9)

W1(δx1Rk
ε,δ, δx2Rk

ε,δ) 6 A1ρ
kδ
1 ‖x1 − x2‖ , (B.10)

where V is given in (B.8) and δ̄ = m(Ly + αL/ε)−2/2.

Proof: The proof is postponed to Appendix B.6.2. �

We recall the assumption on gε which ensures that x 7→ log(pε(x)) has Lipschitz gradients.

H6 For any ε > 0, there exists Kε > 0 such that for any x ∈ Rd,∫
Rd

∥∥∥∥x̃− ∫
Rd

x̃′gε(x̃
′|x)dx̃′

∥∥∥∥2 gε(x̃|x)dx̃ 6 Kε , (B.11)

with gε given in (5.13).

The following proposition is the counterpart of Proposition 5.3.3.

Proposition B.3.2 Assume H1, H7, H4(R) for some R > 0 and H6. Moreover, let α > 0,
ε ∈ (0, ε0] and assume that

∫
Rd(1 + ‖x̃‖4)pαε (x̃)dx̃ < +∞. In addition, if there exists m > 0

such that log(p(y|·)) is m-concave with m > (2α/ε)max(L, 1+Kε/ε) and δ̄ = m(Ly+αL/ε)−2/2,
then for any δ ∈ (0, δ̄], Rε,δ admits an invariant probability measure πε,δ and there exists
B1 > 0 such that for any δ ∈ (0, δ̄]

‖πε,δ − πε‖V 6 B1(δ
1/2 + MR + exp[−R]) , (B.12)

where V is given in (B.8) and B1 does not depend on R.
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Proof: The proof is postponed to Appendix B.6.3. �

The bound appearing in (B.12) depends on an extra hyperparameter R > 0 which may
be optimized if H2(R) holds for any R > 0 and {MR : R > 0} can be expressed in a closed
form. In particular if there exists M ∈ (0, 1) such that for any R > 0, MR = M×R then there
exists B1 > 0 such that for any δ ∈ (0, δ̄] and R > 0

‖πε,δ − πε‖V 6 B1(δ
1/2 + M log(1/M)) , (B.13)

by setting R = log(1/M). Similarly if there exists M > 0 such that for any R > 0, MR = M
then there exists B1 > 0 such that for any δ ∈ (0, δ̄] and R > 0

‖πε,δ − πε‖V 6 B1(δ
1/2 + M) , (B.14)

by letting R→ +∞.
We now combine Proposition B.3.1 and Proposition B.3.2 in order to control the bias of

the Monte Carlo estimator obtained using PnP-ULA. This proposition is the counterpart of
Proposition 5.3.4.

Proposition B.3.3 Assume H1, H7, H2(R) for some R > 0 and 6. Moreover, let α > 0,
ε ∈ (0, ε0] and assume that

∫
Rd(1 + ‖x̃‖4)pαε (x̃)dx̃ < +∞. In addition, if there exists m > 0

such that log(p(y|·)) is m-concave with m > (2α/ε)max(L, 1+Kε/ε) and δ̄ = m(Ly+αL/ε)−2/2,
then there exists C1,ε > 0 such that for any h : Rd → R measurable with supx∈Rd{|h(x)| (1+
‖x‖2)−1} 6 1, n ∈ N∗, δ ∈ (0, δ̄] we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫
Rd

h(x̃)dπε(x̃)

∣∣∣∣∣ 6 C1,ε(δ
1/2 + MR + exp[−R] + (nδ)−1)(1 + ‖x‖4) .

(B.15)

Proof: The proof is straightforward upon combining Proposition B.3.1 and Proposi-
tion B.3.2. �

In particular, applying Proposition B.3.3 to the family {hi}di=1 where for any i ∈
{1, . . . , d}, hi(x) = xi we get that∥∥∥∥∥n−1

n∑
k=1

E [Xk]−
∫
Rd

x̃dπε(x̃)

∥∥∥∥∥ 6 C1,ε(δ
1/2 + MR + exp[−R] + (nδ)−1)(1 + ‖x‖4) , (B.16)

and n−1
∑n

k=1 Xk is an approximation of the MMSE given by
∫
Rd x̃dπε(x̃).

B.4 Posterior approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We consider the following general regularity assumption.

H8 (α) There exist κ > 0, β > 0 and q : Rd → (0,+∞) such that
∫
Rd q(x̃)dx̃ = 1, ‖q‖∞ <

+∞ and for almost every x ∈ Rd,
∫
Rd |p(x̃)− p(x− x̃)| qmin(1−1/α,0)(x̃)dx̃ 6 eκ(1+‖x‖2) ‖x‖β.

124



In the case where α > 1, H8(α) is equivalent to the following assumption: there exist
κ > 0 and β > 0 such that for almost every x ∈ Rd, ‖µ− (τx)#µ‖TV 6 eκ(1+‖x‖2) ‖x‖β, where
we recall that µ is the probability distribution with density with respect to the Lebesgue
measure proportional to p and that for any x̃ ∈ Rd, τx(x̃) = x̃−x. Note that since p ∈ L1(Rd)
we have limx→0 ‖µ− (τx)#µ‖TV = 0. In H8(α) for α < 1 we assume more regularity for
x 7→ (τx)#µ in total variation in order to obtain explicit bounds between πε and π.

In the following proposition we provide easy-to-check conditions on the density of the
prior distribution µ so that H8(α) holds.

Proposition B.4.1 Assume that there exists U : Rd → R such that for any x ∈ Rd,
p(x) = e−U(x)/

∫
Rd e−U(x̃)dx̃. Assume that U is γ-Hölder, i.e. there exists Cγ > 0 such

that for any x1, x2 ∈ Rd, i.e. ‖U(x1)− U(x2)‖ 6 Cγ ‖x1 − x2‖γ . Then H8(α) is satisfied for
α > 1. In addition, assume that γ 6 2 and that there exist c1, $ > 0 and c2 ∈ R such that
for any x ∈ Rd, U(x) > c1 ‖x‖$ + c2 then H8(α) holds for any α > 0.

Under H8(α) we establish the following result which ensures that πε is close to π in total
variation for small values of ε.

Proposition B.4.2 Assume H1, then the following hold:

(a) If α = 1, then limε→0 ‖πε − π‖TV = 0 .

(b) Assume that ‖p‖∞ < +∞ then for any α > 1, limε→0 ‖πε − π‖TV = 0.

(c) Assume that ‖p‖∞ < +∞ and H8(α) then there exist ε1 > 0 and A0 > 0 such that
for any ε ∈ (0, ε1] we have ‖πε − π‖TV 6 A0ε

β min(α,1)/2.

Note that a related result in the case where p(x) = e−U(x)/
∫
Rd e−U(x̃)dx̃ with U Lips-

chitz continuous and α = 1 can be found in (Vono et al., 2019, Corollary 1) with explicit
dependency with respect to the dimension d. However, note that Proposition B.4.2 dif-
fers from (Vono et al., 2019, Corollary 1) since the Gaussian smoothing approximation is
applied to the prior distribution and the estimate is given on the posterior distribution in
Proposition B.4.2, whereas in (Vono et al., 2019, Corollary 1) the Gaussian smoothing ap-
proximation is applied to the posterior distribution and the estimate is given on the posterior
distribution as well.

The following proposition is an extension of Proposition B.3.3 and Proposition 5.3.4. The
main difference is that the approximation is expressed with respect to the true posterior π
and not πε for some value ε > 0. Let ε1 > 0 be given by Proposition B.4.2. In order to state
this proposition, we recall the following assumption which is a relaxation of the strongly
log-concave condition.

H5 There exists m ∈ R such that for any x1, x2 ∈ Rd we have

〈∇ log p(y|x2)−∇ log p(y|x1), x2 − x1〉 6 −m ‖x2 − x1‖2 . (B.17)

Note that the posterior is strongly log-concave if and only if m > 0.

Proposition B.4.3 Assume H1, H7, H2, H6 and H5. Let α > 0 and assume that for any
ε ∈ (0,min(ε0, ε1)],

∫
Rd(1+‖x̃‖4)(pαε +pα)(x̃)dx̃ < +∞ and H8(α). Then there exists C0 > 0

such that for any ε > 0 and λ > 0 such that 2λ(Ly +(α/ε)max(L, 1+ Kε/ε)−min(m, 0)) 6 1
and δ̄ = (1/3)(Ly +αL/ε+1/λ)−1, there exists C1,ε > 0 such that for any C convex compact
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with B(0, RC) ⊂ C and RC > 0, there exists C2,ε,C > 0 such that for any h : Rd → R
measurable with supx∈Rd{|h(x)| (1 + ‖x‖2)−1} 6 1, n ∈ N∗, δ ∈ (0, δ̄] and R > 0 we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫
Rd

h(x̃)dπ(x̃)

∣∣∣∣∣
6
{
C0ε

β min(α,1)/4 + C1,εR
−1
C + C2,ε,C(δ

1/2 + MR + exp[−R] + (nδ)−1)
}
(1 + ‖x‖4) .

(B.18)

In addition, if there exists m > 0 such that log(p(y|·)) is m-concave with m > 2(α/ε)max(L, 1+
Kε/ε) and δ̄ = m(Ly + αL/ε)−2/2, then there exists C1,ε > 0 such that for any h : Rd → R
measurable with supx∈Rd{|h(x)| (1 + ‖x‖2)−1} 6 1, n ∈ N∗, δ ∈ (0, δ̄] and R > 0 we have∣∣∣∣∣n−1

n∑
k=1

E [h(Xk)]−
∫
Rd

h(x̃)dπ(x̃)

∣∣∣∣∣
6 C0ε

β min(α,1)/4 + C1,ε(δ
1/2 + MR + exp[−R] + (nδ)−1)(1 + ‖x‖4) . (B.19)

Proof: In the general case where log(p(y|·)) is not assumed to be m-concave with m > 0, the
proof is completed upon combining Proposition 5.3.4, Proposition B.4.2 and the fact that
for any probability distribution ν1, ν2, ‖ν1 − ν2‖V 6 ‖ν1 − ν2‖1/2TV (ν1[V

2] + ν2[V
2])1/2. The

proof is similar in the case where log(p(y|·)) is m-concave upon replacing Proposition 5.3.4
by Proposition B.3.3. �

B.5 Technical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we gather technical results which will be used throughout our analysis. Let
b ∈ C(Rd,Rd) such that for any x ∈ Rd, the following Stochastic Differential Equation
admits a unique strong solution

dXt = b(Xt)dt+
√
2dBt , (B.20)

where (Bt)t>0 is a d-dimensional Brownian motion and X0 = x. In this case, (B.20) defines
a Markov semi-group (Pt)t>0 for any x ∈ Rd and A ∈ B(Rd) by Pt(x,A) = P(Xt ∈ A)
where (Xt)t>0 is the solution of (B.20) with X0 = x. Consider now the generator of (Pt)t>0,
defined for any f ∈ C2(Rd,R) by

Af = 〈∇f, b(x)〉+∆f . (B.21)

We say that a Markov semi-group (Pt)t>0 on Rd×B(Rd) with extended infinitesimal gener-
ator (A,D(A)) (see e.g. Meyn and Tweedie (1993) for the definition of (A,D(A))) satisfies a
continuous drift condition Dc(W, ζ, β) if there exist ζ > 0, β > 0 and a measurable function
W : Rd → [1,+∞) with W ∈ D(A) such that for all x ∈ Rd

AW (x) 6 −ζW (x) + β . (B.22)

Similarly, we consider the Markov chain (Xk)k∈N given by the following recursion for any
k ∈ N and x ∈ Rd

Xk+1 = Xk + γb(Xk) +
√

2γZk , (B.23)
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with X0 = x, γ > 0 and {Zk : k ∈ N} a family of i.i.d Gaussian random variables with
zero mean and identity covariance matrix. We define its associated Markov kernel Rγ :
Rd × B(Rd)→ [0, 1] as follows for any x ∈ Rd and A ∈ B(Rd)

Rγ(x,A) =
∫
Rd

1A(x+ γb(x) +
√
2γz) exp[−‖z‖2 /2]dz . (B.24)

We say that Rγ satisfies a discrete drift condition Dd(W,λ, c) if there exist λ ∈ [0, 1), c > 0
and a measurable function W : Rd → [1,+∞) such that for all x ∈ Rd

RγW (x) 6 λW (x) + c . (B.25)

The following two lemmas are classical, see for instance (Bortoli et al., 2020, Lemma 18,
Lemma 19). We recall these results and their proofs for the sake of completeness.

Lemma B.5.1 Assume that there exist L, c > 0 and m > 0 such that for any x1, x2 ∈ Rd we
have

〈b(x1), x1〉 6 −m ‖x1‖2 + c , ‖b(x1)− b(x2)‖ 6 L ‖x1 − x2‖ . (B.26)
Let γ̄ = m/L2. Then the following results hold:

(a) For any $ ∈ N∗ there exist λ ∈ (0, 1], c, β > 0 and ζ > 0 such that for any γ ∈ (0, γ̄],
Rγ satisfies Dd(W,λγ , cγ) and (Pt)t>0 satisfies Dc(W, ζ, β) with W (x) = 1 + ‖x‖2$.

(b) For any $ > 0, there exist λ ∈ (0, 1], c, β > 0 and ζ > 0 such that for any γ ∈ (0, γ̄],
Rγ satisfies Dd(W,λγ , cγ) and (Pt)t>0 satisfies Dc(W, ζ, β) with W (x) = exp[$

√
1 + ‖x‖2].

Proof: We divide the proof into two parts.

(a) Let $ ∈ N∗ and γ ∈ (0, γ̄] with γ̄ = m/(4L2). Let Tγ(x) = x− γb(x). In the sequel, for
any k ∈ {1, . . . , $}, c, c̃k > 0 and λ, λ̃k ∈ [0, 1) are constants independent of γ which may
take different values at each appearance. Let ε ∈ (0, 1/2). Using (B.26), the fact that for
any a, b > 0, (a + b)2 6 (1 + ε)a2 + (1 + ε−1)b2 and the fact that for any a, b > 0 we have
(a+ b)1/2 6 a1/2 + b1/2, we get that for any x ∈ Rd with ‖x‖ > (2c/(εm))1/2

‖Tγ(x)‖ =
(
‖x‖2 + 2γ〈b(x), x〉+ γ2 ‖b(x)‖2

)1/2
(B.27)

6
(
(1− 2γm + (1 + ε)γ2L2) ‖x‖2 + 2γc + (1 + ε−1)γ2 ‖b(0)‖2

)1/2
(B.28)

6
(
(1− γm + (1 + ε)γ2L2) ‖x‖2 + (1 + ε−1)γ2 ‖b(0)‖2

)1/2
(B.29)

6 exp[−γ((2− ε)m− (1 + ε)L2γ̄)/2] ‖x‖+ (1 + ε−1/2)γ ‖b(0)‖ . (B.30)

Note that (2 − ε)m − (1 + ε)L2γ̄ < 0 since ε ∈ (0, 1/2) and γ̄ = m/L2. On the other hand
using (B.26) and the fact that for any a, b > 0 with a > b and ea − eb 6 ea(a− b), we have
for any x ∈ Rd with ‖x‖ 6 (2c/(εm))1/2

‖Tγ(x)‖ 6 (1 + γL) ‖x‖+ γ ‖b(0)‖ (B.31)
6 exp[−γ((2− ε)m− (1 + ε)L2γ̄)/2] ‖x‖ (B.32)

+ (2c/(εm))1/2
{

exp[γL]− exp[−γ((2− ε)m− (1 + ε)L2γ̄)/2]
}
+ γ ‖b(0)‖

(B.33)
6 exp[−γ((2− ε)m− (1 + ε)L2γ̄)/2] ‖x‖+ γ(2c/(εm))1/2 exp[γ̄L](L + 2m) + γ ‖b(0)‖ .

(B.34)
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Combining (B.27) and (B.34), there exist λ ∈ [0, 1) and c > 0 such that for any γ ∈ (0, γ̄]
and x ∈ Rd,

‖Tγ(x)‖ 6 λγ ‖x‖+ γc . (B.35)

Note that using (B.35), for any k ∈ {1, . . . , 2$} there exist λ̃k ∈ (0, 1) and c̃k > 0 such that

‖Tγ(x)‖k 6 {λ̃γ
k ‖x‖+ γc̃k}k (B.36)

6 λ̃γk
k ‖x‖

k
+ γ2k max(c̃k, 1)k max(γ̄, 1)k−1{1 + ‖x‖k−1} (B.37)

6 λ̃γ
k ‖x‖

k
+ c̃kγ{1 + ‖x‖k−1} 6 (1 + ‖x‖k)(1 + c̃kγ) . (B.38)

Therefore, combining (B.36) and the Cauchy-Schwarz inequality we obtain that for any
γ ∈ (0, γ̄] and x ∈ Rd∫

Rd

(1 + ‖y‖2$)Rγ(x,dy) = 1 + E[(‖Tγ(x)‖2 + 2
√

2γ〈Tγ(x), Z〉+ 2γ ‖Z‖2)$] (B.39)

= 1 +

$∑
k=0

k∑
`=0

(
$

k

)(
k

`

)
‖Tγ(x)‖2($−k)

2(3k−`)/2γ(k+`)/2E[〈Tγ(x), Z〉k−` ‖Z‖2`] (B.40)

6 1 + ‖Tγ(x)‖2$ (B.41)

+ 23$/2
$∑

k=1

k∑
`=0

(
$

k

)(
k

`

)
‖Tγ(x)‖2($−k)

γ(k+`)/2E[〈Tγ(x), Z〉k−` ‖Z‖2`]1{(1,0)}c(k, `)

(B.42)

6 1 + ‖Tγ(x)‖2$ (B.43)

+ γ23$/2
$∑

k=1

k∑
`=0

(
$

k

)(
k

`

)
‖Tγ(x)‖2$−k−`

γ̄(k+`)/2−1E[‖Z‖k+`
]1{(1,0)}c(k, `) (B.44)

6 1 + λ̃γ
2$ ‖x‖

2$
+ c̃2$γ{1 + ‖x‖2$−1} (B.45)

+ γ23$/222$ max(γ̄, 1)2$ sup
k∈{1,...,$}

{(1 + c̃kγ̄)E[‖Z‖k]}(1 + ‖x‖2$−1
) (B.46)

6 1 + λγ ‖x‖2$ + γc(1 + ‖x‖2$−1
) (B.47)

6 λγ/2(1 + ‖x‖2$) + γc(1 + ‖x‖2$−1
) + λγ(1 + ‖x‖2$)− λγ/2(1 + ‖x‖2$) . (B.48)

Using that λγ − λγ/2 6 − log(1/λ)γλγ/2/2, we get that for any γ ∈ (0, γ̄], Rγ satisfies
Dd(W,λγ , cγ). We now show that there exist ζ > 0 and β > 0 such that (Pt)t>0 satisfies
Dc(W, ζ, β). First, for any x ∈ Rd we have

∇W (x) = 2$ ‖x‖2($−1)
x , ∆W (x) = 2$(2$ − 1) ‖x‖2($−1) (B.49)

Combining this result, the Cauchy-Schwarz inequality and (B.26), we obtain that for any
x ∈ Rd

AW (x) = 〈∇W (x), b(x)〉+∆W (x) (B.50)

6 −2m$ ‖x‖2$ + 2$c ‖x‖2$−1
+ 2$(2$ − 1) ‖x‖2($−1) (B.51)

6 −m$ ‖x‖2$ + sup
x∈Rd

{2$(c+ 2$ − 1) ‖x‖2$−1 − m$ ‖x‖2$} (B.52)

6 −m$W (x) + sup
x∈Rd

{2$(c+ 2$ − 1) ‖x‖2$−1 − m$ ‖x‖2$}+ m$ . (B.53)
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Hence letting ζ = m$ and β = supx∈Rd{2$(c + 2$ − 1) ‖x‖2$−1 − m$ ‖x‖2$} + m$, we
obtain that (Pt)t>0 satisfies Dc(W, ζ, β).

(b) First, we show that for any γ ∈ (0, γ̄], Rγ satisfies Dd(Φ, λ
γ , c), where Φ(x) = (1 +

‖x‖2)1/2 = W
1/2
2 (x) and W2(x) = 1 + ‖x‖2. Using the first part of the proof, there exist

λ0 ∈ [0, 1) and c0 > 0 such that for any γ ∈ (0, γ̄] with γ̄ = m/(4L2) we have that Rγ satisfies
Dd(W2, λ

γ
0 , c0γ). Using Jensen’s inequality we obtain that for any γ ∈ (0, γ̄] and x ∈ Rd

with ‖x‖ > R and R = max(1, ((2c0λ−γ̄
0 )/ log(1/λ0))

1/2) we have

RγΦ(x) 6 (RγW2(x))
1/2 6 exp[(γ/2){log(λ0) + λ−γ̄

0 c0R
−2}]Φ(x) 6 λ

γ/4
0 Φ(x) . (B.54)

In addition, using that for any a, b > 0 with a > b we have ea − eb 6 ea(b − a), we get for
any x ∈ Rd with ‖x‖ 6 R

RγΦ(x) 6 (RγW2(x))
1/2 6 exp[(γ/2){log(λ0) + λ−γ̄

0 c0}]Φ(x) (B.55)
6 exp[(γ/2){log(λ0) + λ−γ̄

0 c0R
−2}]Φ(x) (B.56)

+ λ−γ̄
0 c0(1−R−2) exp[(γ/2){log(λ0) + λ−γ̄

0 c0R
−2}]Φ(R) .

(B.57)

Hence, there exist λ1 ∈ [0, 1) and c1 > 0 such that for any γ ∈ (0, γ̄] we have that Rγ satisfies
Dd($Φ, λγ

1 , c1γ). Now let W (x) = exp[Φ(x)]. Using the logarithmic Sobolev inequality
(Boucheron et al., 2013, Theorem 5.5) we get for any γ ∈ (0, γ̄] and x ∈ Rd with ‖x‖ > R
and R = 1 + ($2 + c1)

−1 log(1/λ1)

RγW (x) 6 exp[Rγ$Φ(x) + γ$2] 6 exp[−(1− λγ
1)Φ(x) + γ($2 + c1)]W (x) (B.58)

6 exp[−γ log(1/λ1)R+ γ($2 + c1)]W (x) 6 λγ
1W (x) .

(B.59)

In addition, using that for any a, b > 0 with a > b we have ea − eb 6 ea(b − a), we get for
any x ∈ Rd with ‖x‖ 6 R

RγW (x) 6 exp[Rγ$Φ(x) + γ] 6 exp[γ($2 + c1)]W (x) (B.60)
6 λγ

1W (x) + γ exp[γ̄($2 + c1)]((1 + c1) + log(1/λ1))W (R) . (B.61)

Therefore, there exist λ ∈ [0, 1) and c > 0 such that for any γ ∈ (0, γ̄] we have that Rγ

satisfies Dd(W,λγ , cγ). We now show that there exist ζ > 0 and β > 0 such that (Pt)t>0

satisfies Dc(W, ζ, β). First, for any x ∈ Rd we have

∇W (x) = $xΦ−1(x)W (x) , ∆W (x) = {$Φ−1(x)(1−‖x‖2 /Φ2(x))+$2 ‖x‖2 /Φ2(x)}W (x) .
(B.62)

Therefore using (B.26) we obtain that for any x ∈ Rd with ‖x‖ >
√
2(1 + (c+ 1 +$)/m)

AW (x) 6 $(−mΦ−1(x) ‖x‖2 + c+ 1 +$)W (x) 6 −(m/2)W (x) , (B.63)

which concludes the proof.

�

Lemma B.5.2 Assume that there exist λ ∈ (0, 1], c, β > 0, ζ, γ̄ > 0 such that for any
γ ∈ (0, γ̄], Rγ satisfies Dd(W,λγ , cγ) and (Pt)t>0 satisfies Dc(W, ζ, β). Then, there exists
C > 0 such that for any x ∈ Rd, t > 0 and k ∈ N∗ we have

Rk
γW (x) + PtW (x) 6 CW (x) . (B.64)
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Proof: There exists Cc > 0 such that for any x ∈ Rd and t > 0, PtW (x) 6 CcW (x) using
(Bortoli and Durmus, 2020, Lemma 25-(b)). Using that for any t > 0, (1− e−t)−1 6 1+1/t
we get that for any γ ∈ (0, γ̄], x ∈ Rd and k ∈ N∗

Rk
γW (x) 6 W (x) + cγ

∑
k∈N

λkγ 6 (1 + c(γ̄ + log(1/λ)))W (x) , (B.65)

which concludes the proof upon letting C = Cc + 1 + c(γ̄ + log(1/λ). �

Proposition B.5.1 Assume that there exist Φ1 : Rd → [0,+∞) and Φ2 : Rm → [0,+∞)
such that for any x ∈ Rd and y1, y2 ∈ Rm

‖log(qy1
(x))− log(qy2

(x))‖ 6 (Φ1(x) + Φ2(y1) + Φ2(y2)) ‖y1 − y2‖ , (B.66)

and for any c > 0,
∫
Rd(1 + Φ1(x̃)) exp[cΦ1(x̃)]p(x)dx < +∞. Then y 7→ πy is locally

Lipschitz w.r.t the total variation ‖·‖TV, where for any x ∈ Rd, y ∈ Rm we have

(dπy/dLeb)(x) = qy(x)p(x)

/∫
Rd

qy(x̃)p(x̃)dx̃ . (B.67)

Proof: Let y1, y2 ∈ K with K a compact set. Let y0 ∈ K and DK be the diameter of K. Using
Lemma B.8.2 we get that

‖πy1
− πy2

‖TV 6 2cy1

∫
Rd

|qy1
(x)− qy2

(x)| p(x)dx , (B.68)

with cy1
=
∫
Rd qy1

(x)p(x)dx. Combining this result with the fact that for any a, b ∈ R we
have

∣∣ea − eb
∣∣ 6 |a− b|max(ea, eb) we get that

‖πy1 − πy2‖TV 6 2cy1

∫
Rd

|qy1(x)− qy2(x)| p(x)dx (B.69)

6 2cy1

∫
Rd

(Φ1(x) + Φ2(y1) + Φ2(y2)) ‖y1 − y2‖ (B.70)

× exp[(2Φ1(x) + Φ2(y1) + Φ2(y0) + Φ2(y2))DK]p(x)dx (B.71)
6 2cy1

(Φ2(y1) + Φ2(y2)) exp[Φ2(y1) + Φ2(y0) + Φ2(y2)] (B.72)

×
∫
Rd

(1 + Φ1(x)) exp[2DKΦ1(x)]p(x)dx× ‖y1 − y2‖ , (B.73)

which concludes the proof. �

B.6 Proofs of Section 5.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We recall that the Markov chain (Xk)k∈N, defined in (B.6), is given by

Xk+1 = Xk + δbε(Xk) +
√
2δZk+1 , (B.74)

bε(x) = ∇ log(p(y|x)) + α(Dε(x)− x)/ε+ (x−ΠC(x))/λ , (B.75)

where δ > 0 is a stepsize, α, ε, λ > 0 are hyperparameters of the algorithm, C ⊂ Rd is a
closed convex set with 0 ∈ C, ΠC is the projection on C and {Zk : k ∈ N} a family of i.i.d.
Gaussian random variables with zero mean and identity covariance matrix.
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In this section, we prove the convergence of PnP-ULA and control the bias of its invariant
measure in the general framework introduced in Appendix B.2 (i.e. α 6= 1) under two
different assumptions on the posterior: either the posterior is log-concave as in Appendix B.3
or the posterior satisfies a more general one-sided Lipschitz condition as in Section 5.3.2.
Note that in Section 5.3.2 the results are only stated for α = 1. The statements of the
propositions can be generalized to α > 0 by replacing 2λ(Ly + L/ε−min(m, 0)) 6 1 and δ̄ =
(1/3)(Ly+L/ε+1/λ)−1 by 2λ(Ly+αL/ε−min(m, 0)) 6 1 and δ̄ = (1/3)(Ly+αL/ε+1/λ)−1 in
Proposition 5.3.2 and 2λ(Ly+(a/ε)max(L, 1+Kε/ε)−min(m, 0)) 6 1 and δ̄ = (1/3)(Ly+L/ε+
1/λ)−1 by 2λ(Ly+(α/ε)max(L, 1+Kε/ε)−min(m, 0)) 6 1 and δ̄ = (1/3)(Ly+αL/ε+1/λ)−1

in Proposition 5.3.3 and Proposition 5.3.4.

B.6.1 Proof of Proposition 5.3.1
Let R > 0. Let X and Z be random variables with distribution µ and zero mean Gaussian
with identity covariance matrix. Let Xε = X + ε1/2Z. We recall that the distributions of X
and Xε have density with respect to the Lebesgue measure given by p and pε respectively.
In addition, the conditional density of X given Xε is given by gε. By definition D?

ε(Xε) =
E[X|Xε] and therefore we have

`ε(w
†) = E

[
‖X − fw†(Xε)‖2

]
(B.76)

= E
[
‖X −D?

ε(Xε)‖2
]
+ 2E [〈X −D?

ε(Xε), D
?
ε(Xε)− fw†(Xε)〉] + E

[
‖fw†(Xε)−D?

ε(Xε)‖2
]

(B.77)

= E
[
‖X −D?

ε(Xε)‖2
]
+ E

[
‖fw†(Xε)−D?

ε(Xε)‖2
]
= `?ε + E

[
‖fw†(Xε)−D?

ε(Xε)‖2
]
.

(B.78)

Combining this result, the condition that `ε(w†) 6 `?ε+η and the Cauchy-Schwarz inequality
we get that

E[‖fw†(Xε)−D?
ε(Xε)‖] 6

√
η . (B.79)

Since fw† and D?
ε are locally Lipschitz, there exists CR > 0 such that for any x1, x2 ∈

B(0, 2R) we have

|‖fw†(x2)−D?
ε(x2)‖ − ‖fw†(x1)−D?

ε(x1)‖| 6 CR ‖x2 − x1‖ . (B.80)

Assume that supx̃∈B(0,R) ‖fw†(x̃) − D?
ε(x̃)‖ > η$ with $ = (2d + 2)−1 and denote xR ∈

B(0, R) such that we have supx̃∈B(0,R) ‖fw†(x̃) − D?
ε(x)‖ = ‖fw?(xR) − D?

ε(xR)‖. Using
(B.80) we have

E[‖fw†(Xε)−D?
ε(Xε)‖] >

∫
B(0,2R)∩B(xR,C−1

R η$)

‖fw†(x̃)−D?
ε(x̃)‖pε(x̃)dx̃ (B.81)

> (‖fw†(xR)−D?
ε(xR)‖ − η$)

∫
B(0,2R)∩B(xR,C−1

R η$)

pε(x̃)dx̃ .

(B.82)

Combining this result and (B.79) we obtain that

‖fw†(xR)−D?
ε(xR)‖ 6 η1/2

(∫
B(0,2R)∩B(xR,C−1

R η$)

pε(x̃)dx̃

)−1

+ η$ , (B.83)
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Setting MR = η1/2(
∫

B(0,2R)∩B(xR,C−1
R η$)

pε(x̃)dx̃)−1+η$ concludes the first part of the proof.
Denote vd the volume of the unit d-dimensional ball. We have that Leb(B(xR, C

−1
R η$)) =

C−d
R η$dvd. Using the Fubini theorem, the Lebesgue differentiation theorem (Bogachev,

2007, Theorem 5.6.2), the dominated convergence theorem and the fact that for η ∈
(0, (CRR)1/$], B(0, 2R) ∩ B(xR, C

−1
R η$) = B(xR, C

−1
R η$) we get that

lim
η→0

Leb(B(xR, C
−1
R η$))−1

∫
Rd

1B(xR,C−1
R η$)∩B(xR,C−1

R η$)(x)pε(x)dx (B.84)

= lim
η→0

∫
Rd

|B(xR, C
−1
R η$)|−1(2πε)−d/2

∫
Rd

1B(xR,C−1
R η$)(x) exp[−‖x− x̃‖2/(2ε)]p(x̃)dxdx̃

(B.85)

=

∫
Rd

(2πε)−d/2 exp[−‖xR − x̃‖2/(2ε)]p(x̃)dxdx̃ = pε(xR) > 0 . (B.86)

Using this result we have,

lim sup
η→0

η−$MR = 1 + lim sup
η→0

η1/2−$(d+1)η$d

(∫
B(0,2R)∩B(xR,C−1

R η$)

pε(x̃)dx̃

)−1

(B.87)

= 1 + Cd
Rvdp

−1
ε (xR) < +∞ , (B.88)

which concludes the proof.

B.6.2 Proof of Proposition 5.3.2 and Proposition B.3.1
We divide this section into two parts. First, we prove the general case where log(p(y|·)) is
not assumed to be strongly concave but only satisfying a one-sided Lipschitz condition, i.e.
Proposition 5.3.2. Then we turn to the proof of Proposition B.3.1.

(a) Let λ > 0 such that 2λ(Ly + αL/ε) 6 1 and δ̄ = (1/3)(Ly + αL/ε+ 1/λ)−1. Let C be a
compact convex set with 0 ∈ C. Using H2, (B.6) and that Id−ΠC is non-expansive we have
for any x1, x2 ∈ Rd

‖bε(x1)− bε(x2)‖ 6 (Ly + αL/ε+ 1/λ) ‖x1 − x2‖ . (B.89)

Denote RC = sup{‖x1−x2‖ : x1, x2 ∈ C}. Using (B.6), the Cauchy-Schwarz inequality and
that 2λ(αL/ε− m) 6 1 we have for any x1, x2 ∈ Rd

〈bε(x1)− bε(x2), x1 − x2〉 6 (−m + αL/ε) ‖x1 − x2‖2 − ‖x1 − x2‖2 /λ+RC ‖x1 − x2‖ /λ
(B.90)

6 −‖x1 − x2‖2 /(2λ) +RC ‖x1 − x2‖ /λ . (B.91)

Hence, for any x1, x2 ∈ Rd with ‖x1−x2‖ > 4RC we obtain that 〈bε(x1)− bε(x2), x1−x2〉 6
−‖x1 − x2‖2/(4λ). We also have that for any x ∈ Rd

〈bε(x), x〉 6 −‖x‖2 /(4λ) + sup
x̃∈Rd

{
(RC/λ+ ‖b(0)‖) ‖x̃‖ − ‖x̃‖2 /(4λ)

}
. (B.92)

We conclude the proof of Proposition 5.3.2 upon using Lemma B.5.1, Lemma B.5.2, (Bortoli
and Durmus, 2020, Corollary 2) with γ̄ ← (4λ)−1(Ly +αL/ε+1/λ)−2 > δ̄ and the fact that
for any probability distribution ν1, ν2,

‖ν1 − ν2‖V 6 ‖ν1 − ν2‖1/2TV (ν1[V
2] + ν2[V

2])1/2 . (B.93)
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(b) Using that log(p(y|·)) is m-concave with 2αL/(mε) 6 1, we obtain that for any x1, x2 ∈ Rd

〈bε(x1)− bε(x2), x1 − x2〉 6 −m ‖x1 − x2‖2 /2 , (B.94)
‖bε(x1)− bε(x2)‖ 6 (Ly + αL/ε) ‖x1 − x2‖ . (B.95)

This concludes the proof of Proposition B.3.1 upon using (Bortoli and Durmus, 2020, Corol-
lary 2) with γ̄ ← m(Ly + αL/ε)−2 > δ̄ and (B.93).

B.6.3 Proof of Proposition 5.3.3 and Proposition B.3.2
Before proving Proposition 5.3.3 and Proposition B.3.2, we show the following lemma which
is a straightforward consequence of Girsanov’s theorem (Liptser and Shiryaev, 2001, The-
orem 7.7). A similar version of this lemma can be found in the proof of (Durmus and
Moulines, 2017, Proposition 2).

Lemma B.6.1 Let T > 0, b1, b2 : [0,+∞) × Rd → Rd measurable such that for any
i ∈ {1, 2} and x ∈ Rd, dX(i)

t = bi(t,X(i)
t )dt +

√
2dBt admits a unique strong solution with

X(i)
0 = x with Markov semigroup (P(i)

t )t>0 and where (Bt)t>0 is a d-dimensional Brownian
motion. In addition, assume that for any x ∈ Rd and P(

∫ T

0
{‖bi(t,X(i)

t )‖2+‖bi(t,Bt)‖2}dt <
+∞) = 1. Let V : Rd → [0,+∞) measurable, then for any x ∈ Rd we have∥∥∥δxP(1)

T − δxP(2)
T

∥∥∥
V

6
(

δxP(1)
t [V 2] + δxP(2)

t [V 2]
)1/2(∫ T

0

E
[
‖b1(t,X(1)

t )− b2(t,X(1)
t )‖2

]
dt

)1/2

. (B.96)

Proof: Let T > 0 and x ∈ Rd. For any i ∈ {1, 2}, denote µx
(i) the distribution of (X(i)

t )t∈[0,T ]

on the Wiener space (C([0, T ] ,R),B(C([0, T ] ,R))) with X(i)
0 = x. Similarly denote µx

B the
distribution of (Bt)t∈[0,T ] witgh B0 = x. Using the generalized Pinsker inequality (Durmus
and Moulines, 2017, Lemma 24) and the transfer theorem (Kullback, 1997, Theorem 4.1)
we get that∥∥∥δxP(1)

T − δxP(2)
T

∥∥∥
V
6
√
2
(

δxP(1)
t [V 2] + δxP(2)

t [V 2]
)1/2

KL1/2(µ(1)|µ(2)) . (B.97)

Since for any i ∈ {1, 2} we have P(
∫ T

0
{‖bi(X(i)

t )‖2 + ‖bi(Bt)‖2}dt < +∞) = 1, we can apply
Girsanov’s theorem (Liptser and Shiryaev, 2001, Theorem 7.7) and µB-almost surely for any
w ∈ C([0, T ] ,R) we get

(dµx
(1)/dµx

B)((wt)t∈[0,T ]) = exp

[
(1/2)

∫ T

0

〈b1(wt),dwt〉 − (1/4)

∫ T

0

‖b1(wt)‖2 dt

]
, (B.98)

(dµx
B/dµx

(2))((wt)t∈[0,T ]) = exp

[
−(1/2)

∫ T

0

〈b2(wt),dwt〉+ (1/4)

∫ T

0

‖b2(wt)‖2 dt

]
.

(B.99)
Hence, we obtain that

KL(µx
(1)|µ

x
(2)) = E

[
log((dµx

(1)/dµx
(2))(X

(1)
t ))

]
= (1/4)

∫ T

0

E
[∥∥∥b1(X(1)

t )− b2(X(2)
t )
∥∥∥2]dt ,

(B.100)
which concludes the proof. �
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In the following lemma, we show that under H6, ∇ log(pε) is Lipschitz continuous.

Lemma B.6.2 Assume H6. Then for any x1, x2 ∈ Rd we have

‖∇ log(pε(x1))−∇ log(pε(x2))‖ 6 (1 + Kε/ε) ‖x1 − x2‖ /ε . (B.101)

Reciprocally, if there x 7→ ∇ log(pε(x)) is Lipschitz-continuous then H6.

Proof: Let ε > 0. We recall that for any x ∈ Rd we have

pε(x) =

∫
Rd

exp[−‖x− x̃‖2 /(2ε)]p(x̃)dx̃ . (B.102)

Using the dominated convergence theorem we obtain that log(pε) ∈ C∞(Rd,R). In particular
we have for any x ∈ Rd

∇2 log(pε(x)) = −ε−1 Id+ε−2

∫
Rd

(x− x̃)⊗2gε(x̃|x)dx̃− ε−2

(∫
Rd

(x− x̃)gε(x̃|x)dx̃
)⊗2

(B.103)

= −ε−1 Id+ε−2

∫
Rd

(
x̃−

∫
Rd

x̃′gε(x̃
′|x)dx̃′

)⊗2

gε(x̃|x)dx̃ (B.104)

Therefore, using H6 we obtain that for any x ∈ Rd we have

‖∇2 log(pε(x))‖2 6 ε−1 + ε−2Kε , (B.105)

which concludes the first part of the proof. Reciprocally, since x 7→ ∇ log(pε(x)) is Lipschitz-
continuous with constant K > 0 we get that for any basis vector (ei)i∈{1,...,d} we have that
e>i ∇2 log(pε(x))ei 6 K. Combining this result with (B.103), we get that

ε−2

∫
Rd

∥∥∥∥x̃− ∫
Rd

x̃′gε(x̃
′|x)dx̃′

∥∥∥∥2 gε(x̃|x)dx̃ 6 Kd+ ε−1d , (B.106)

which concludes the proof. �

In what follows we prove Proposition 5.3.3. The proof of Proposition B.3.2 is similar and
left to the reader.

Proof of Proposition 5.3.3 Let λ > 0 such that 2λ(Ly + αL/ε − m) 6 1 and δ̄ = (1/3)(Ly +
αL/ε + 1/λ)−1. We divide the proof into two parts. First, we show that for any C convex
compact with 0 ∈ C there exists B1,C > 0 such that for any δ ∈ (0, δ̄] and R > 0

‖πε,δ − π̃ε‖V 6 B1,C(δ
1/2 + MR + exp[−R]) , (B.107)

with π̃ε given by

(dπ̃ε/dLeb)(x) ∝ exp[−d2(x,C)/(2λ)]p(y|x)pαε (x) , (B.108)

Second, we show that there exists B0 > 0 such that for any C convex compact with 0 ∈ C

‖πε − π̃ε‖V 6 B0 diam−1/4(C) , (B.109)

which concludes the proof upon using the triangle inequality.
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(a) Let C convex compact with 0 ∈ C. We introduce (X̄t)t>0 solution of the following
Stochastic Differential Equation (SDE): X̄0 = X0 and

dX̄t = b̄ε(X̄t)dt+
√
2dBt , (B.110)

b̄ε(x) = ∇ log(p(y|x)) + α∇ log(pε(x)) + proxλ(ιC)(x) , (B.111)

with (Bt)t>0 a d-dimensional Brownian motion. b̄ε is Lipschitz continuous using
Lemma B.6.2, hence this SDE admits a unique strong solution for any initial condition
X0 with E[‖X0‖2] < +∞, see (Karatzas and Shreve, 1991, Chapter 5, Theorem 2.9). We
denote by (Pt,ε)t>0 the semigroup associated with the strong solutions of (B.110). Similarly
to the proof of Proposition B.3.1, replacing (Bortoli and Durmus, 2020, Corollary 2) by
(Bortoli and Durmus, 2020, Corollary 22), there exist ÃC > 0 and ρ̃C ∈ [0, 1) such that that
for any x1, x2 ∈ Rd and t > 0

‖δx1
Pt,ε − δx2

Pt,ε‖V 6 ÃCρ̃
t
C(V

2(x1) + V 2(x2)) , (B.112)
W1(δx1Pt,ε, δx2Pt,ε) 6 ÃCρ̃

t
C ‖x1 − x2‖ . (B.113)

Combining (B.112), Proposition B.3.1, the fact that (P1(Rd),W1) is a complete metric
space and the Picard fixed point theorem we obtain that for any δ ∈ (0, δ̄] there exist
πε,δ, π̃ε ∈ P1(Rd) such that πε,δRε,δ,C = πε,δ and for any t > 0, π̃εPt,ε = π̃ε. Note that by
(Roberts et al., 1996, Theorem 2.1) we have for any x ∈ Rd

(dπ̃ε/dLeb)(x) ∝ exp[−d2(x,C)/(2λ)]p(y|x)pαε (x) , (B.114)

since proxλ(ιC) = ∇d2(·,C)/(2λ). Let f : Rd → R measurable and such that for any x ∈ Rd,
|f(x)| 6 V (x). Let m ∈ N∗ such that m > δ̄−1, x ∈ Rd and k ∈ N we have

∥∥∥δxRkm
ε,1/m[f ]− δxPkm

km,ε[f ]
∥∥∥ =

∥∥∥∥∥∥
k−1∑
j=0

δxRjm
ε,1/m(Rm

ε,1/m − P1,ε)Pk−j−1,ε[f ]

∥∥∥∥∥∥ (B.115)

Using (B.112), Lemma B.5.1 and Lemma B.5.2 there exists Ba > 0 such that for any x ∈ Rd

and k ∈ N we have
‖δxPk,ε,C[f ]− π̃ε[f ]‖ 6 Baρ̃

k
CV

2(x) . (B.116)

Let T = 1, b1(t, (wt)t∈[0,T ]) =
∑m−1

j=0 1[j/m,(j+1)/m)(t)bε(wjδ) and b2(t, (wt)t∈[0,T ] = b̄ε(wt).
Let X(1)

t and X(2)
t the unique strong solution of dXt = b(t, (Xt)t∈[0,1]) +

√
2Bt with X0 = x

with x ∈ Rd and b = b1, respectively b = b2. Note that (X(2)
t )t>0 = (X̄t)t>0 and (X(1)

k/m) =

(Xk)k∈N. For any i ∈ {1, 2}, denote P(i)
t the Markov semigroup associated with X(i)

t . For
any x ∈ Rd we have∥∥∥δxRm

ε,1/m,C − δxP1,ε,C

∥∥∥
TV

=
∥∥∥δxP(1)

1 − δxP(2)
1

∥∥∥
TV

. (B.117)

Using H2(R) and the fact that for any a, b > 0, (a + b)2 6 2(a2 + b2), we have for any
t ∈ [j/m, (j + 1)/m), j ∈ {0, . . . ,m− 1} and (wt)t∈[0,1] ∈ C([0, 1] ,Rd)∥∥b1(t, (wt)t∈[0,1])− b2(t, (wt)t∈[0,1])

∥∥2 =
∥∥bε(wj/m)− b̄ε(wt)

∥∥2 (B.118)

6 2
∥∥bε(wj/m)− bε(wt)

∥∥2 + 2
∥∥b̄ε(wt)− bε(wt)

∥∥2 (B.119)

6 2L2
b

∥∥wj/m − wt

∥∥2 + 4α2M2
R/ε

2 + 4α21B(0,R)c(‖wt‖)/ε2 , (B.120)
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where Lb is the Lipschitz constant associated with bε. In addition using Itô’s isometry we
have for any t ∈ [j/m, (j + 1)/m)

E[‖X(1)
t −X(1)

j/m‖
2] = 2E[‖

∫ t

j/m
dBt‖2] 6 2dδ . (B.121)

Finally, using Lemma B.5.1, Lemma B.5.2, the logarithmic Sobolev inequality (Boucheron
et al., 2013, Theorem 5.5), the Cauchy-Schwarz inequality and the Markov inequality, there
exists B̃b > 0 such that for any t > 0 and x ∈ Rd

P(‖X(1)
t ‖ > R) 6 exp[−2R]E

[
exp[2‖X(1)

t ‖
]

(B.122)

6 exp[−2R]E1/2
[
exp

[
4
√
2‖
∫ t

`t/m
dBt‖

]]
E1/2 [exp[4‖X`t‖] (B.123)

6 B̃b exp[−2R] exp[2Φ(x)] , (B.124)

where `t = btmc and Φ(x) =
√
1 + ‖x‖2. Combining this result, (B.120), (B.117), (B.121)

and Lemma B.6.1, we obtain that there exists Bb > 0 such that for any x ∈ Rd and R > 0∥∥∥δxRm
1/m,C − δxP1,C

∥∥∥
V
6 2Bb(

√
δ + MR + exp[−R])(1 + ‖x‖4) exp[Φ(x)] (B.125)

6 48Bb(
√
δ + MR + exp[−R]) exp[2Φ(x)] , (B.126)

Combining this result and (B.116) we obtain that for any k ∈ N, j ∈ {0, . . . , k − 1}, x ∈ Rd

and R > 0 we have∣∣∣(δxRm
1/m,C − δxP1,C)Pk−j−1,C[f ]

∣∣∣ 6 BaBb(
√
δ+MR+exp[−R])ρ̃k−j−1

C exp[2Φ(x)] . (B.127)

Using this result, Lemma B.5.1, Lemma B.5.2 and (B.115) we obtain that there exists Bc > 0
such that for any m ∈ N∗ with m−1 > δ̄∥∥πε,1/m,C − π̃ε

∥∥
V
6 lim sup

k→+∞

∥∥∥δ0Rkm
ε,1/m,C − δ0Pkm

km,ε,C

∥∥∥
V
6 Bc(

√
δ+MR+exp[−R]) . (B.128)

The proof in the general case where δ ∈ (0, δ̄] is similar and we obtain that there exists
Bc > 0 such that for any δ ∈ (0, δ̄]

‖πε,δ − π̃ε‖V 6 Bc(
√
δ + MR + exp[−R]) . (B.129)

(b) For any C compact convex with 0 ∈ C we define π̃ε and ρε,C such that for any x ∈ Rd

ρε,C(x) = exp[−d2(x,C)/(2λ)]p(y|x)pαε (x) , (dπ̃ε/dLeb)(x) = ρε,C(x)

/∫
Rd

ρε,C(x̃)dx̃ .

(B.130)
Similarly, define ρε and πε such that for any x ∈ Rd

ρε(x) = p(y|x)pαε (x) , (dπε/dLeb)(x) = ρε(x)

/∫
Rd

ρε(x̃)dx̃ . (B.131)

Since for any x ∈ Rd, ρε,C(x) 6 ρε(x) we get
∫
Rd ρε,C(x̃)dx̃ 6

∫
Rd ρε(x̃)dx̃. Hence we obtain

using the Cauchy-Schwarz inequality and the Markov inequality

KL(πε|πC) 6
∫
Rd

log(ρε(x̃)/ρε,C(x̃))dπε(x̃) (B.132)

6
∫

Cc
‖x̃‖2 dπε(x̃) 6 P1/2 (X /∈ C)E1/2[‖X‖4] 6 E[‖X‖4]R−2

C . (B.133)
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with X a random variable with distribution πε. We conclude using the generalized Pinsker
inequality (Durmus and Moulines, 2017, Lemma 24).

�

B.7 Proofs of Section 5.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B.7.1 Proof of Proposition 5.3.5

Let α, λ, ε, δ̄ > 0, δ ∈ (0, δ̄] and C ⊂ Rd convex and compact with 0 ∈ C. For any x1, x2 ∈ Rd

we have
‖bε(x1)− bε(x2)‖ 6 (Ly + αL/ε) ‖x1 − x2‖ . (B.134)

Denote (Xn, Yn)n∈N the Markov chain obtained using the coupling described in (Bortoli and
Durmus, 2020, Section 3) with initial condition (x1, x2) ∈ C. Using (Bortoli and Durmus,
2020, Corollary 7-(b)) we get that for any ` ∈ N

E
[
1∆c

Rd
(X(`+1)d1/δe, Y(`+1)d1/δe)

]
6 (1− β)E

[
1∆c

Rd
(X`d1/δe, Y`d1/δe)

]
, (B.135)

where ∆Rd = {(x, x) : x ∈ Rd} and β ∈ (0, 1) with

β = 2{−(1 + δ̄)(1 + Ly + (αL/ε))diam(C)} , (B.136)

where is the cumulative distribution function of the univariate Gaussian distribution with
zero mean and unit variance. In addition, using that the coupling is absorbing, we have that
for any k ∈ N,

E
[
1∆c

Rd
(Xk, Yk)

]
6 E

[
1∆c

Rd
(Xbk/d1/δecd1/δe, Ybk/d1/δecd1/δe)

]
, (B.137)

Combining this result and (B.135), we get that for any k ∈ N∥∥δx1
Qk

ε,δ − δx2
Qk

ε,δ

∥∥
TV 6 E

[
1∆c

Rd
(Xk, Yk)

]
6 (1− β)bk/d1/δec . (B.138)

Using that bk/d1/δec > kδ/(1 + δ)− 1 concludes the proof upon letting ρ̃C = (1− β)1/(1+δ̄)

and ÃC = (1− β)−1.

B.7.2 Proof of Proposition 5.3.6

Let α, λ > 0, ε ∈ (0, ε0] such that 2λ(Ly +αL/ε−min(m, 0)) 6 1 and δ̄1 = (1/3)(Ly +αL/ε+
1/λ)−1. Recall that for any x1, x2 ∈ Rd

‖bε(x1)− bε(x2)‖ 6 (Ly + αL/ε+ 1/λ) ‖x1 − x2‖ . (B.139)

Using this result, the fact that for any x ∈ Rd, 〈bε(x), x〉 6 −m̃ ‖x‖2 + c and (Douc et al.,
2019, Theorem 19.4.1) there exist δ̄2 > 0, B̃ > 0 and ρ̃ ∈ (0, 1] such that for any δ ∈ (0, δ̄2],
x ∈ Rd and k ∈ N ∥∥δxRk

ε,δ − πε,δ

∥∥
V
+
∥∥δxQk

ε,δ − πC
ε,δ

∥∥
V
6 B̃ρ̃kδV (x) , (B.140)
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with B̃ and ρ̃ which do not depend on R. In addition, using Lemma B.5.1, for any k ∈ N
and δ ∈ (0, δ̄2] we have

Rk
ε,δV (x) 6 λ̃kδV (x) + c̃δ , (B.141)

with λ̃ ∈ [0, 1) and c̃ > 0 which do not depend on R > 0. For any δ ∈ (0, δ̄2] we have

λδ + cδ 6 λδ(1 + cδλ−δ̄2) 6 (λ exp[cλ−δ̄2 ])δ . (B.142)

Let A = λ exp[cλ−δ̄2 ], we have that for any x ∈ Rd, Rε,δV (x) 6 AδV (x). Therefore we
get that (V (Xn)A

−n)n∈N is a supermartingale. Hence using Doob maximal inequality and
Markov inequality we get that

P

(
sup

k∈{0,...,n}
‖Xk‖ > R

)
6 V (x)Anδ exp[−R] . (B.143)

Therefore, we get that for any k ∈ N∥∥πε,δ − πC
ε,δ

∥∥
TV 6 (V (0) + c̃δ̄2)A

kδ exp[−R] + B̃ρ̃kδV (0) . (B.144)

We conclude upon letting k = br/(2 log(A)δ)c.

B.8 Proofs of Appendix B.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B.8.1 Proof of Proposition B.4.1
The first part of the proposition is straightforward. Using Pinsker’s inequality (Boucheron
et al., 2013, Theorem 4.19) we have for any x ∈ Rd

‖µ− (τx)#µ‖2TV 6 2KL((τx)#µ|µ) 6 2
∫
Rd ‖U(x̃+ x)− U(x̃)‖dµ(x̃) 6 2Cγ ‖x‖γ

. (B.145)

For the second part of the proof, since there exist c1, $ > 0 and c2 ∈ R such that for any
x ∈ Rd, U(x) > c1 ‖x‖$ + c2 then for any k ∈ N∗ and α > 0,

∫
Rd(1 + ‖x‖)kp(x) < +∞. Let

q(x) = (1+‖x‖)−(d+1)/
∫
Rd(1+‖x̃‖)−(d+1)dx̃. Then using that for any t > 0, |et − 1| 6 |t| e|t|

we get that for any x ∈ Rd

∫
Rd

|p(x̃)− p(x− x̃)| q1−1/α(x̃)dx̃

6 Cγ ‖x‖γ exp[Cγ ‖x‖γ
]

∫
Rd

(1 + ‖x̃‖)(d+1)(1/α−1)p(x̃)dx̃
(∫

Rd

(1 + ‖x̃‖)−(d+1)dx̃
)1−1/α

,

(B.146)

which concludes the proof.

B.8.2 Proof of Proposition B.4.2
First we show the following technical lemma.

Lemma B.8.1 For any x, y > 0 and β > 0, (x+ y)β − xβ 6 2β(yβ + x(β−1)∧0y).
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Proof: The result is straightforward if β ∈ (0, 1], since in this case (x + y)β 6 xβ + yβ .
Assume that β > 1. If x = 0 the result holds. Now assume that x > 0. If y > x then
(x + y)β − xβ 6 2βyβ . Assume that y 6 x. Since f : t 7→ (1 + t)β − 1 is convex we obtain
that for any t ∈ [0, 1], f(t) 6 2βt. Using this result we have

(x+ y)β − xβ 6 xβf(y/x) 6 2βxβ−1y , (B.147)

which concludes the proof. �

Before proving Proposition B.4.2 we state the following lemma.

Lemma B.8.2 Let π1, π2 two probability measures and q1, q2 : Rd → [0,+∞) two measur-
ables functions such that for any x ∈ Rd, (dπi/dLeb)(x) = qi(x)/ci with ci =

∫
Rd qi(x̃)dx̃.

Denote D =
∫
Rd |q1(x)− q2(x)|. We have

‖π1 − π2‖TV 6 2c−1
1 D . (B.148)

Proof: We have

‖π1 − π2‖TV =

∫
Rd

∣∣∣∣q1(x)c1
− q2(x)

c2

∣∣∣∣dx 6 c−1
1 (D + |c2 − c1|) , (B.149)

which concludes the proof using that |c2 − c1| 6 D. �

We now give the proof of Proposition B.4.2.

Proof: Let α > 0. For any ε > 0 and x ∈ Rd denote p̄(x) = p(y|x)pα(x) and p̄ε(x) =
(py|x)pαε (x), where we recall that for any x ∈ Rd

pε(x) = (2πε)−d/2

∫
Rd

p(x̃) exp[−‖x− x̃‖2 /(2ε)]dx̃ . (B.150)

For any ε > 0 we have∫
Rd

|p̄(x)− p̄ε(x)|dx 6 ‖p(y|·)‖∞
∫
Rd

|pα(x)− pαε (x)|dx . (B.151)

Using Lemma B.8.1 and that ‖pε‖∞ 6 ‖p‖∞ < +∞, we have for any ε > 0 and x ∈ Rd∫
Rd

|p̄(x)− p̄ε(x)|dx 6 2α ‖p(y|·)‖∞ (1 + ‖p‖(α−1)∧0
∞ ) (B.152)

×
{∫

Rd

|p(x)− pε(x)|dx+

∫
Rd

|p(x)− pε(x)|α dx
}

.

(B.153)

Using Jensen’s inequality, for any q : Rd → (0,+∞) with
∫
Rd q(x̃)dx̃ = 1 we have∫

Rd

|p(x)− pε(x)|α dx 6

(∫
Rd

∣∣∣p(x)− pε(x)q
1−1/α(x)

∣∣∣dx)α

. (B.154)

Combining this result with (B.152) we get that∫
Rd

|p̄(x)− p̄ε(x)|dx 6 2α ‖p(y|·)‖∞ (1 + ‖p‖(α−1)∧0
∞ )

×
{∫

Rd

|p(x)− pε(x)|dx+

(∫
Rd

|p(x)− pε(x)| q1−1/α(x)dx
)α}

. (B.155)
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If α > 1, choosing q such that ‖q‖∞ 6 1 we get∫
Rd

|p̄(x)− p̄ε(x)|dx 6 2α ‖p(y|·)‖∞ (1 + ‖p‖(α−1)∧0
∞ ) (B.156)

×
{∫

Rd

|p(x)− pε(x)|dx+

(∫
Rd

|p(x)− pε(x)| (x)dx
)α}

.

(B.157)

Hence since p ∈ L1(Rd) and {x̃ 7→ (2πε)−d/2 exp[−‖x̃‖2 /(2ε)] : ε > 0} is a family
of mollifiers, we have limε→0

∫
Rd |p(x)− pε|dx = 0. Combining this result, (B.157) and

Lemma B.8.2 concludes the first part of the proof.
Now let α > 0 and assume H8(α). If α > 1 then using (B.152) we have∫
Rd

|p̄(x)− p̄ε(x)|dx 6 2α(1 + 2α−1) ‖p(y|·)‖∞ (1 + ‖p‖(α−1)∧0
∞ )

∫
Rd

|p(x)− pε(x)|dx .

(B.158)
If α < 1 then using that ‖q‖∞ < +∞, we get that∫

Rd

|p̄(x)− p̄ε(x)|dx 6 2α ‖p(y|·)‖∞ (1 + ‖q‖1/α−1
∞ )(1 + ‖p‖(α−1)∧0

∞ )

×
{∫

Rd

|p(x)− pε(x)| q1−1/α(x)dx+

(∫
Rd

|p(x)− pε(x)| q1−1/α(x)dx
)α}

. (B.159)

Hence, in any case, there exists C̃0 > 0 such that∫
Rd

|p̄(x)− p̄ε(x)|

6 C̃0

{∫
Rd

|p(x)− pε(x)| qmin(1−1/α,0)(x)dx+

(∫
Rd

|p(x)− pε(x)| qmin(1−1/α,0)(x)dx
)α}

.

(B.160)

Using Jensen’s inequality and the change of variable x̃ 7→ ε1/2x̃, we have for any ε ∈
(0, (4κ)−1]∫

Rd

|p(x)− pε(x)| qmin(1−1/α,0)(x)dx (B.161)

6
∫
Rd

∫
Rd

|p(x)− p(x− x̃)| qmin(1−1/α,0)(x)(2πε)−d/2 exp[−‖x̃‖2 /(2ε)]dxdx̃

(B.162)

6
∫
Rd

exp[κ ‖x̃‖2] ‖x̃‖β
(2πε)−d/2 exp[−‖x̃‖2 /(2ε)]dx̃ (B.163)

6 εβ/2(2π)−d/2

∫
Rd

exp[κε ‖x̃‖2] ‖x̃‖β exp[−‖x̃‖2 /2]dx̃ (B.164)

6 εβ/2(2π)−d/2

∫
Rd

‖x̃‖β exp[−‖x̃‖2 /4]dx̃ 6 C0ε
β/2 , (B.165)

with C0 = (2π)−d/2
∫
Rd ‖x̃‖β exp[−‖x̃‖2 /4]dx̃. Hence, we have∫

Rd

|p̄(x)− p̄ε(x)|dx 6 C1(ε
β/2 + εβα/2) , (B.166)
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with C1 = C̃0(C0 + Cα
0 ). Let ε1 = min((cC1)

−2/β/2, (cC1)
−2/(βα)/2, (4κ)−1) and c =∫

Rd p̄(x)dx. Combining (B.166) with Lemma B.8.2, we get that for any ε ∈ (0, ε1]

‖π − πε‖TV 6 2c−1C1(ε
β/2 + εβα/2) , (B.167)

which concludes the proof upon letting A0 = 2c−1C1. �
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