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Abstract

This manuscript present the theoretical work done during my PhD, on the electric
double layer in the non-equilibrium state. The contact of an electrolyte solution with a
solid surface gives rise to two opposite charge layers, a �xed layer of ions and a di�use
layer of counterions.The coupling of the di�use layer with the liquid �ow causes various
electrokinetic and viscoelectric e�ects. To study these e�ects, we consider two generic
situations of con�ned electrolyte solution between a sphere and a substrate, where the
sphere moves in the normal or the radial direction with respect to the substrate. Exper-
imentally, this situations are realized by a colloidal sphere mounted on an AFM close to
the substrate.

Our investigation on the coupling between the di�use layer and the liquid, is a comple-
tion to several previous works. We have used Onsager equations to evaluate the charge-
�ow coupling e�ects, by mean of transport coe�cients evaluated numerically and ana-
lytically at the equilibrium state. The coupling showed an enhancement of the viscous
and dynamic responses but still weak compared to the measured responses. Our results
con�rms the fact that the �ow-charge coupling only is insu�cient to interpret the exper-
imental �ndings. The description based on the charge-�ow coupling misses an additional
element which is the salt contained in the electrolyte solution.

For this purpose, we took into account the salt in the electrolyte solution and studied
the e�ect of the salt-charge-�ow coupling, by means of Onsager coe�cients calculated in
the equilibrium state as preliminary approach. The result we found does not explain the
measured responses either. We realized then the fact that the sphere vibrations signi�-
cantly modi�es the salt density and keeps it far from its equilibrium state, given the slow
backdi�usion of the salt and the weak thermodynamic force, which does not succeed in
counteracting the salt advected by the sphere motion.

Chapter 5 provided the evidence that salt-dependent Onsager coe�cients, must be
calculated in the non-equilibrium state rather than the equilibrium state. Therefore we
proposed at chapter 6, a theoretical model to calculate the coupling coe�cients in the
non-equilibrium state, taking into account the time dependence of the salt in the conti-
nuity equation.

Keywords : out of equilibrium electric double layer, electroviscous force, electroki-
netic lift force, onsager coe�cients, salt di�usion, relaxation time.



Résumé

Ce manuscrit présente le travail théorique e�ectué pendant mon doctorat, sur la double
couche électrique dans l'état hors équilibre. Le contact d'une solution électrolyte avec une
surface solide donne naissance à deux couches de charges opposées, une couche d'ions �xe
et une couche di�use de contre-ions. Le couplage de la couche di�use avec l'écoulement
du liquide provoque, divers e�ets électrocinétiques et viscoélectriques. Pour étudier ces
e�ets, nous considérons deux situations exprimantale, une solution électrolytique con�née
entre une sphère et un substrat, où la sphère se déplace dans la direction verticale dans
un cas et dans la direction parallèle au substrat dans un autre cas. Expérimentalement,
ces deux situations sont réalisées par une sphère colloïdale montée sur le cantiliver d'un
AFM et un substrat.

Notre investigation sur le couplage entre la couche di�use et l'écoulement, est un tra-
vail complémentaire aux travaux précédents. Nous avons utilisé des équations simples qui
nous ont permis d'évaluer les e�ets du couplage, à partir des coe�cients d'Onsager que
nous avons évalués numériquement et analytiquement à l'état d'équilibre. Le couplage a
montré une amélioration des réponses visqueuses et dynamiques, mais toujours faible par
rapport aux réponses mesurées. Notre résultat con�rme le fait que le couplage charge-
écoulement est insu�sant pour interpréter les résultats expérimentaux. La description
basée sur le couplage charge-écoulement manque un élément supplémentaire qui est le sel
contenu dans la solution d'électrolyte.

Pour cela, nous avons pris en compte le sel de la solution électrolyte et on a étudié
l'e�et du couplage sel-charge-�ux, par le biais des coe�cients d'Onsager calculés à l'état
d'équilibre dans le cadre d'une approche préliminaire. Le résultat que nous avons trouvé
n'explique pas non plus les résultats expérimentaux, et on a réalisé ensuite que les vibra-
tions de la sphère modi�ent signi�cativement la densité du sel et la maintiennent loin de
son état d'équilibre, étant donné la rétrodi�usion lente du sel et la faible force thermo-
dynamique qui ne parvient pas à contrecarrer le sel advecté par le mouvement de la sphère.

Le chapitre 5 a fourni une preuve que les coe�cients d'Onsager dépendant du sel,
doivent être calculés dans l'état hors-équilibre plutôt que dans l'état d'équilibre. Nous
avons donc proposé au chapitre 6, un modèle théorique pour calculer les coe�cients de
Onsager dans l'état hors équilibre, en tenant compte de la dépendance temporelle du sel
dans l'équation de continuité.

Mots-clés: double couche électrique hors équilibre, force électrovisqueuse, force de
portance électrocinétique, coe�cients d'Onsager, di�usion de sel, temps de relaxation.
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Chapter 1

Introduction

In the past decades, con�ned �uid investigations at the micrometer scale have made
a signi�cant progress, and inspired the researchers to explore con�ned �uids at the
nanoscale [1�4]. Recently nano�uidics has known notable advancements theoretically
and experimentally, as a result of the dedicated work on this novel �eld of research. New
properties have been discovered and harnessed for many applications [5�7], among these
widespread applications one can mention:

The energy harvesting technique, based on the osmotic power conversion to a mechan-
ical or electrical energy. Bocquet et al succeeded in manufacturing a device consisting of
two reservoirs connected to a nanotube of boron nitride BN via an impermeable mem-
brane. This device can produce a power density of 4 kW.m−2, meaning an e�ciency 1000
bigger than the e�ciency of the current harvesting devices.

This performance is due on one hand to BN tube, characterized by a high surface
charge density sensitive to pH, and on the other hand to the low friction with the �ow
crossing it [8, 9].

The desalination technique involving reverse osmosis processes, where the salt water
is pushed through a semipermeable membrane that serves as a �lter, letting through only
the pure water without salt, thus producing a pure water. [10�12].

The development of high e�ciency batteries. Daiguji et al pointed out that the e�-
ciency of a nano�uidic battery consisting of a nanochannel connected to an anode and
a cathode, can be improved by increasing the surface charge density of the nanochannel
and decreasing its height, afterwords the analysis of Yan et al revealed that the slip length
can signi�cantly improve the e�ciency of this kind of batteries [13,14].

The nano�uidic diodes manufacturing, based on an asymmetric conical nanopore, one
half of which carries a positive charge on its surface and the other half carries a negative
charge. Depending on the applied voltage, the concentrations of ions inside the nanopore
can be increased or decreased.

This variations in the concentration lead to the generation of a high electric current, in
one half of the nanopore and a negligible one in the other half. Therefore the nano�uidic
diodes can imitates the electronic diodes, which allow the electric current to circulate
only in one direction in a circuit, as shown in the work of Vlassiouk et al and Karnik et
al [15, 16].

In addition to these applications, we get too many others in biotechnology and clinical
diagnostics, such as (lab-on-a-chip) a device which combine various laboratory functions
on a single chip to perform several analyses simultaneously. In this device nano�uids tech-
nologies may used in order to increase its performance by manufacturing nanochannels

10



1.1. ELECTRIC DOUBLE LAYER AT CHARGED SURFACES 11

which may replace the microchannels currently used [17�19].

All the proprieties emerging from a liquid con�ned at the nanometric scale, are linked
to the charged surfaces of the con�nement structure. This charge surface arises from the
interaction between the solid surfaces of the structure, and the electrolyte solution made
of NaCl dissolved in water for example.

The solid surface-electrolyte solution interaction, generates an organized distribution
of two layers of opposite charges. The �rst layer is formed on the solid surface while the
second one is formed near to the �rst layer, these double layers are separated by a thin
layer which adhere to the surface (a compact layer), this latter can be considered as a
dielectric in a conventional capacitor [20,21].

Several experimental techniques and theoretical models, have been developed for a
better understanding of the double layer properties. Experimentally on can mention the
electrophoresis technique, used to measure ions mobility under the e�ect of an electric
�eld [22, 23]. Later on the electrophoresis theory developed by Smoluchowski, provided
the analytic expression of the mobility well known as the Smoluchowski mobility [24,25].

Another widely used technique is the capacitance measurements, this technique quan-
ti�es the quantity of the charges stored in a double layer capacitor. Providing a thorough
understanding on the structure as well as the composition of the electric double layer in
terms of physical factors, including ion size and concentration [26�28].

Regarding the forces, which arise from the electrolyte solution con�nement at the
nanometric scale. The atomic force microscopy provides a pretty complete understanding
of interactions, that arise from a con�ned sample between the AFM probe and a substrate.

This technique provides a thorough and quantitative description, of the forces arising
from the double layer interactions in the static and dynamic cases, ranging from Van der
Waals forces to the repulsive forces between the bottom surface of the probe and the
sample [29, 30].

Theoretically, many models are established either to interpret experimentally made
measurements, or to predict the new properties of the con�nement. Generally all the
theoretical approaches are based on the classical Poisson Boltzmann mean �eld theory,
which adopts Boltzmann distribution and Poisson's equation, to describe the density
of charges in the free layer from an average electrostatic potential generated from all
charges [31, 32].

1.1 Electric double layer at charged surfaces

It is well known that the interaction of an electrolyte solution with a solid surface, induces
two oppositely charged layers in the solid and the liquid mediums respectively. Where
the �rst charged layer in the solid surface is balanced by a second layer of an equal but
oppositely charged cloud of counterions, these two layers are known as electric double
layer EDL [33,34].

Some of the counterions form a compact "bound" layer (few angstroms) in the vicinity
of the solid surface, known as Stern layer [35,36]. Whereas the remaining counterions close
to the surface exhibit a thermal motion and form the di�use layer (free layer) [37, 38].
Su�ciently far from the surface in the bulk we consider that the electrolyte solution is
neutral as shown in �gure (1.1).

For the sake of simplicity, we deal in our investigation, only with a di�use layer of
monovalent counterions, since divalent and trivalent counterions show very important
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correlations [113,114].
From a purely electric perspective we can model the electric double layer, as a planar

capacitor where Stern layer is considered to act as a dielectric [39�41].

λ

The bulk

Diffuse layer

Surface charge σ

Stern layer

Figure 1.1: Schematic representation of the electric double layer structure. The blue
circles refers to the counterions whereas the red circles account for the coions.

It is worthy to explain some of the charging surfaces mechanisms, which lead to the
E.D.L establishement. We can think of the ionization which is the dissociation of chemical
groups of the solid surface and the physical adsorption of ions from the liquid medium.

The ionization or dissociation reaction, is a reaction in which groups of ionic com-
pounds dissociate in electrolyte solution, into cations and anions. For example the disso-
ciation of protons from the carboxylic groups, (R− COOH −→ R− COO−+H+) resulting
in a negatively charged surface [42]. This process depend strongly on the electrolyte solu-
tion pH, where the surfaces are generally charged positively for lower pH, and negatively
for higher pH.

Adsorption is a surface phenomenon, in which ions from the electrolyte solution attach
to a solid surface [43]. This process occur through preferred adsorbing sites e.g., the
adsorption of OH− groups to water-hydrocarbon interfaces making the surface negatively
charged with a positive charge excess in the liquid.

1.2 Electrostatic interactions of nearby surfaces

We aim in this section, to understand the origin of the electrostatic repulsion of two close
parallel surfaces. For this purpose, let's consider two �at plates parallel to each other
having a uniform negative charge density with positive counterions in the gap between
them. The dielectric constant of the medium ϵ considered to be homogeneous.

During the surface charging, a coulombic attractive force rises to pull back the counte-
rions onto the surfaces. This attraction is balanced by the osmotic pressure which tends to
achieve the state of equilibrium through the redistribution of counterions, the equilibrium



1.2. ELECTROSTATIC INTERACTIONS OF NEARBY SURFACES 13

between the electrostatic interactions and the entropy shapes the charge density pro�le,
which we de�ne as the di�erence between the counterions and the coions densities [21].

The variations of the free energy of the whole system (which can be given by the sum
of the electrostatic interactions, and the entropy between the di�erent ions) with respect
to the distance of separations, between the two surfaces d [31]. Results in a pressure called
the disjoining pressure, �rst introduced by Deryagin and Kusakov [44]. Relying on the
linear superposition of the double layers of both surfaces, one can get the approximation
expression [21],

P = 64kBTρ0(4λ/b)
2e−z/λ, (1.1)

where λ is the di�use layer thickness, b is the bejerrum length and kB Boltzmann constant,
z measures the distance between the planar surfaces, ρ is the bulk concentration of ions.

Near the midplane between similarly charged surfaces (1.2), the electric �eld vanishes
and the disjoining pressure, is merely given by the excess of the osmotic pressure. Thus
the repulsion between the solid surfaces originates from the excess of the osmotic pressure
at the midplane, this latter tends to set apart the two surfaces [21]. Further details about
the disjoining pressure as well as the excess osmotic pressure are given in the appendix
(7.1) .

Figure 1.2: Schematic representation of the electrostatic repulsion of two parallel sur-
faces, the solid arrows expresses the electrostatic interactions between charges whereas
the dashed arrows indicates the repulsive force between the surfaces.

The system of two solid surfaces interacting through an electrolyte solution, can give
rise to several kinds of forces. Indeed for medium separations (in the mean �eld approxi-
mation), we have seen that the surfaces repel each other.

This repulsion can be transformed into attraction force, if the two surfaces are brought
much closer to each other, so the counterions between the surfaces experience correlated
electrostatic interactions, which dominate the osmotic pressure in the gape between the
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surfaces. Thus the two charged surfaces with −σ, are attracted to the correlated counte-
rions that can be modeled as a solid surface charged with +2σ [45].

Similarly the attractive Van Der Waals forces, due to the thermal �uctuations of the
neighboring atoms dipoles of the surfaces [46]. Can be measured if the surfaces are close
enough and a quantity of salt is added to reduce su�ciently the di�use layer thickness.

It is worth to mention, that the electrostatic interactions of nearby surfaces are de-
scribed earlier by the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO
theory), which assumes that the interaction between two solid surfaces in aqueous solu-
tion, can be approximated by a superposition of van der Waals and the double layer
forces [47].

Peshel et al treated experimentally the interaction of two planar surfaces of silica
immersed in LiCl, NaCl and KCl solutions [48]. They found good agreement between the
experimental �ndings for both EDL repulsive and Van der Waals attractive forces and
the theory predictions, especially for separations higher than 4nm.

For smaller separations, they con�rmed the existence of an additional repulsive force
measured earlier by Israelachvili and Adams [49]. Pashlay referred this supplementary
repulsive force to the hydration e�ects [50].

Further new forces which are not predicted by the DLVO model, are measured recently
by Smith et al [51], they pointed out that the origin of these new forces is still unknown
and requires further research to elucidate it.

1.3 Electrokinetic phenomena

The electrokinetic phenomena refer mainly, to the relative motion between the contents
of the electric double layers. More precisely the transport of the di�use layer content near
a �xed charged surface under the in�uence of an external force.

This relative motion between the constituents of the di�use layer and the charged solid
surface, is at the origin of many interfacial transport phenomena such as electroosmosis,
electrophoresis, di�usioosmosis and di�usiophoresis.

Electroosmosis and di�usioosmosis expresses the generation of a �ow in the in-
terfacial structure, by the application of an external force.

The electroosmosis is the motion of the liquid near a charged solid surface, under the
e�ect of an electric �eld applied parallel to the surface (1.3). When the counterions of the
di�use layer move under the e�ect of the electric �eld, they drag the liquid along them
producing a �ow [52,53].

The electroosmotic velocity v which expresses the velocity of the liquid with respect
to the solid surface can be given by,

v = µeoE, (1.2)

where the electroosmotic mobility is given by the Smoluchowski formula,

µeo =
ϵζ

η
, (1.3)

with the permittivity ϵ and ζ the electrostatic potential at the solid surface, η is the
electrolyte solution dynamic viscosity. Further details on the derivation of (1.3) are given
in chapters 3 and 5.
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1

E

Figure 1.3: Schematic illustration of the electroosmotic e�ect. The blue circles refer to the
counterions whereas the red circles express the coions, the black dashed arrows account
for the applied electric �eld. The free ions in the bulk region where the salinity is given
by n0 give rise to a constant velocity pro�le.

The di�usioosmosis is the �ow adjacent to a stationary wall or pore surface, derived
by a concentration gradient in the solution ,see �gure below. Where the di�erence in
the ion concentrations near and far from the solid surface, generates a di�erence in the
thermodynamic force density −kBT∇n, this latter causes the liquid �ow generation [54,
55]. For more insights about the di�usioosmosis e�ects see appendix (7.2).

Velocity profile
−𝑘𝐵𝑇𝛻n

Figure 1.4: Schematic illustration of the di�usioosmotic process. The solid black arrow
expresses the thermodynamic force, the red arrow refers to the liquid �ow and the dashed
black arrows account for the ions density near and far from the solid surface.

For further illustration let's consider an electrolyte solution between two uncharged
solid surfaces. In such cases the salt di�uses homogeneously in the channel, thus the salt
di�usion can not generate a liquid �ow. However in the case of charged solid surfaces, the
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interaction potential between the surfaces and the salt in the channel, induces a di�erence
in the salt density near and far the solid surface.

This di�erence in the salt density, give rise to a di�erence in the thermodynamic force
−kBT∇n, which generates a liquid �ow in the channel.

Electrophoresis and Di�usiophoresis are processes which bearing on the motion
of particles, such as colloid particles under the e�ect of a solute gradients (applied electric
�eld for the case of electrophoresis).

Di�usiophoresis or Chemiophoresis is a compound processes, based on the motion of a
colloid (negatively charged for example) along an imposed salt gradient. The latter gives
rise to both an electricoosmotic and di�usioosmotic �ows on the colloid surface in the
direction opposite to the salt gradient, see �gure below. The total �ow induced balances
the salt gradient e�ect and pushes forward the colloid particle [56,57].

−𝑘𝐵𝑇𝛻𝑛

High concentration Low concentration

E

Figure 1.5: Schematic view of the di�usiophoresis e�ect. Top and bottom solid arrows
expresses the salt gradient and the generated electric �eld respectively. The curved arrows
account for the di�usioosmosis and electroosmosis �uxes near the colloid surface, whereas
the red arrow show the particle motion direction. Note that the di�use layer thickness of
the colloid particle depend on the salt concentration.

The di�usiophoretic velocity (v) of a particle due to a solute gradient can be written
as [57],

v = µp∇ lnn, (1.4)

where (µp) is the di�usiophoretic mobility and (n) is the salt density.
The electrophoresis e�ect, describes the motion of charged particles under the e�ect of

an electric �eld. This process is used for the migration and separation of charged particles,
under the in�uence of an electric �eld [58]. This technique based on ion displacement has
many applications in biology, chemistry and molecular biology.

Technically the separation can be realized, by means of two electrodes of opposite
charge connected to an electrolyte solution, the separation of the ionic particles results
from di�erences in their velocity (v), which is the product of the particle's mobility (µ)
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and the electric �eld (E) [58],
v = µE, (1.5)

where µ is the electrophoretic mobility, for a particle with a radius much greater than the
Debye length. The electrophoretic mobility is simply given by the Smoluchowski formula,

µ =
ϵζ

η
. (1.6)

All these processes are widely investigated previously by both theoretical and experi-
mental approaches. In the following chapters we will elucidate some of them, through the
mathematical description of the �uxes generated from the transport of the �ow, salt and
the di�use layer contents.

1.4 Con�nement with an open geometry!

Unlike the common investigations on the transport phenomena, in a con�ning structures
made of two �nite �at plates [59]. In the present work we use an open geometry made
of a sphere moving either perpendicular (squeezing motion) or parallel (sliding motion)
to a �xed �at substrate. Experimentally this open geometry can be realized by a sphere
mounted on the cantilever of an Atomic Force Microscopy (AFM) [60], and a substrate
made of mica. See appendix (7.3) for more details.

The sphere motions squeezes the sample against the substrate, generating a radial
gradient of pressure ∇rP which drags the sample contents inducing a liquid current com-
bined to the charge current. The liquid and charge transport are at the origin of several
electrokinetic phenomena.

In this work we deal also with the electrokinetic phenomena, resulting from the ad-
vection of the salt contained in the electrolyte solution, through the motions of the AFM
sphere. We de�ne the salt density simply by the sum of the coions and counterions
densities.

In the open geometry, the salt density of the electrolyte solution advected under the
e�ect of ∇rP in the lubrication zone, where the sample width h is much smaller than
the sphere radius R (further details on this approximation are given in chapter 3) can
be subject to exchanges by mean of di�usion with the outer zone (reservoirs), where the
lubrication approximation is no longer applicable as shown in the �gure below.

Our approach consists in studying the salt density divination between the lubrication
and reservoirs zones, to see whether the salt pro�le remains in the equilibrium state under
the e�ect of ∇rP or not. If it remains in the equilibrium state then Poisson Boltzmann
equation can provide a complete description of the salt density variations.

If the salt density density is found to be in a non-equilibrium state, we call upon
the continuity equation which describe the salt density variations between the lubrication
zone and the reservoirs tp determine the e�ective derivation, i.e the resolution of the salt
continuity equation coupled to the salt current generated from the sphere vibrations in
order to determine the e�ective quantity of salt present in the lubrication area in the
steady state.

The continuity equation reads as,

∂tn+∇ · js = 0, (1.7)
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where n is the salt density, ∂t refers to the time derivative and js is the salt current density
which can be generally given by,

js = −D∇n+ nv + µneE, (1.8)

with D = µkBT is the di�usion coe�cient, v refers to the velocity pro�le of the �uid
resulting from the upper sphere motions, the third term refers to the conduction of the
salt density by the coulomb force generated from the charge density advection, µ is the
mobility.

R

Substrate

Lubrication zone ReservoirReservoir

n0n0

r

z

Figure 1.6: Schematic illustration of the salt exchanges between lubrication zone and
reservoirs. solid arrows expresses the salt advection out the lubrication zone whereas the
dashed arrows refers to the salt di�using from the reservoirs to the lubrication zone.

Unlike the salt density pro�le, the charge density pro�le remains always in its equi-
librium state. Due to the signi�cant electrostatic interactions which take place between
the sample and the solid surfaces. Thus the liquid �ow induced by the sphere motions
displace a small quantity of charge δρ from the charge density pro�le ρ de�ned by the
de�rence between the counterions and the coions densities.

The advected quantity δρ is brought back very quickly to the charge pro�le to restore
the equilibrium state, by mean of high radial electric �eld resulting from δρ advection,
in order to ensure the surfaces charge density screening. The continuity equation for the
charge density takes the form,

∂tρ+∇ · jc = 0, (1.9)

where ρ is the charge density made basically of counter ions and jc is the charge density
current de�ned in the same way as the salt density current.

jc = −D∇ρ+ ρv + µveE. (1.10)



1.5. SPHERE-PLANE RELATIVE MOTION 19

1.5 Sphere-plane relative motion

In the previous section, we have given a global overview of the con�nement geometry
employed in our investigation. In this section we give a detailed description of the relative
motions between the sphere and the substrate, in particular the squeezing and sliding
motions and their e�ects on the sample content, followed by a qualitative description of
the couplings between the liquid and the charge currents, as well as the di�erent e�ects
resulting from this coupling.

1.5.1 Squeezing motion

Consider a sample of a weak monovalent electrolyte solution containing just two species
of ions, having the charge +z1q and −z2q respectively (with z1 = −z2 the ions valency
and q is the elementary charge), con�ned between a substrate and the lower surface of a
vibrating sphere . The �lm width, the radius of the sphere and its velocity are referred
to as h0, R and V respectively, where h0 << R as shown in the �gure below.

r

z

Figure 1.7: Schematic view showing the squeezing motion of the di�use layer. V expresses
the sphere vibrations velocity in the normal direction, whereas the black arrows account
for the velocity pro�le resulting from squeezing out the sample �lm.

The vertical motion of the sphere squeezes the uncompressible electrolyte �lm onto
the substrate, generating a gradient of pressure ∇P which give rise to a liquid �ow as well
as a charge �ow in the radial direction. The electric �eld established from the counterions
advection generate an electroosmotic back �ow which decreases the forward liquid �ow.

The decay in the forward �ow can be interpreted as an enhancement of the medium
viscosity caused by the di�use layer perturbations. This e�ect widely known as the �rst
e�ect is at the origin of the electroviscous damping enhancement [61,62].

For separations of few nanometers the "viscoelectric" e�ect (second e�ect) which ex-
presses the viscosity dependence on the electric �eld may enhance also the dynamic vis-
cosity. Hsu et al in a recent work showed that the decrease on both electroosmotic
mobility and the conductance at high charge concentrations arises from the viscolelctric
e�ects [63�65].

Cox determined in his paper [66] the force exerted on a sphere moving in an electrolyte
solution, with an approach based on a singular perturbation expansion using a parameter
ε ≡ (λ/L), where the sphere size L is much bigger then the di�use layer thickness λ, with



1.5. SPHERE-PLANE RELATIVE MOTION 20

a Peclet number of the order O(1). He showed that the distortion of the di�use layer
induces a tangential streaming potential combined to a pressure gradient.

According to Cox, the force induced from the streaming potential gradient within the
di�use layer combined to the pressure gradient, is the largest contribution to the electro-
viscous force with an order of O(ε4). While he considered Maxwell's stress contribution
O(ε6) is negligible.

Schnitzer et al demonstrated in the thin limit that the Peclet number scales with λ2,
meaning that this number cannot be around O(1). With their assumptions they fond
that the electroviscous force is of the order O(ε2) and includes both Maxwell's stress and
the viscous stress contributions [67,68].

Liu et al studied the hydrodynamic dumping enhancement, by measuring experimen-
tally the viscosity enhancement due to Maxwell's and the viscous stresses, they developed
a semi analytical model qualitatively in agreement with the measured data. Quantita-
tively they found a viscosity enhancement much larger than the experimental one [61].

1.5.2 Sliding motion

In the case of a sliding motion, the system remains the same except the fact that the
sphere moves at a constant speed V without rotation in the direction parallel to the
substrate, as shown in the �gure(1.8).

r

z

Figure 1.8: Schematic view of the sliding motion, V expresses the radial velocity of the
sphere, whereas the black arrows account for the shearing pro�le derived from the sliding
motion of the sphere.

The black arrows show the shear �ow caused by the sliding motion between the sphere
and the immobile substrate. This �ow generates an electric �eld from the counterions
advection.

The e�ect of the radial electric �eld on the sphere can be determined using Maxwell's
stress tensor [69]. Knowing that the diagonal elements of the stress tensor are pressures
and the o� diagonals are shears, in the case of bidimension geometry, the electrostatic
pressure acting in the normal direction on the AFM sphere expresses the lift force, which
tends to derive away the sphere from the substrate. This e�ect is known as the electroki-
netic lift force [70�72].

Bike and Prieve found inconsistencies between the experimental �ndings and their
quantitative predictions on the electrokinetic lift force. According to their model the
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theoretical lift force turns out to be weaker by orders of magnitude compared to the
experimental observations.

They also showed that the lift force is inversely proportional to the �uid conductivity.
From experiments made on pure glycerol and water/glycerol solutions, they demonstrated
the fact that the electrokinetic lift force may reach signi�cant values in some �uids char-
acterized by lower conductivities [73,74].

Cox showed in his 1997 paper, that signi�cant values of the lift force can be measured
assuming a Peclet number of O(ε4). Where he found in the thin double layer limit a lift
force of O(ε4) ( [66]).

Shnitzer et al based on their studies on the streaming potential phenomena in the thin
Debye layer [67, 68, 75]. They revisited Cox's work and showed that the Peclet number
scales with λ2 and the lift force with O(ε3) [76].

The discrepancy found between the calculated and measured lift force in Bike and
Prieve work, is approved by the model proposed by Shnitzer et al, since both models
underestimate the experimental lift force by orders of magnitude.
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1.6 Thesis plan

This thesis deals with the electrical double layer in the out-of-equilibrium state, resulting
from the con�nement of an electrolyte solution between a substrate and a vibrating sphere
mounted on an AFM. Our study is based on two aspects, the �rst is the squeezing motion
where the sphere vibrates in the normal direction and squeeze out the sample against the
substrate, and the second aspect is the sliding motion where the sphere moves parallel to
the substrate.

The �rst chapter presents a general overview of the electric double layer, the electroki-
netic phenomena and a detailed explanation of the squeezing and the sliding motions. In
order to provide the reader with a basic understanding of the concepts related to small
scale charge transport.

The second chapter is devoted to the electrostatic aspect of the electric double layer.
We �rst derive the one dimensional Poisson Boltzmann equation used to describe the
electrostatic potential in the gap between the surfaces. In a second step we give a detailed
study on the e�ects of the boundary conditions on the electrostatic phenomena and as
�nal step we derive the non-equilibrium thermodynamic force expression.

Chapter 3 deals mainly with the hydrodynamic aspect of the con�nement. In this
chapter we �rst give the Stokes equation that describes the variations of the velocity
pro�le generated by the sphere vibrations, then we explain the legitimacy of using the
well known lubrication approximation in our approach, and �nally the general expression
of the velocity components.

Chapter 4 is dedicated to the study of the non-equilibrium electrostatic double layer,
through the charge-�ow coupling. We �rst de�ne the currents induced by the sphere
motions. After that we calculate Onsager's coe�cients analytically and numerically in
the case of wide and narrow channels. Finally we calculate the electroviscous force as well
as the lift force and compare them with the experimental �ndings.

Based on the discrepancy between the experimental �ndings and the theoretical pre-
dictions. We conclude in this chapter that the charge-�ow coupling is insu�cient to
describe the electrostatic double layer in the non-equilibrium state.

Chapter 5 is similar to chapter 4. We have kept the same approach and we have
performed the same calculations by including the salt density as a third element. The
evaluation of Onsager's coe�cients dependent on the salt, in the equilibrium state is
irrelevant to interpret the experimental �ndings, given the discrepancy found between the
experimental and the theoretical predictions of the electroviscous force.

From this preliminary result, we have realized the requirement of calculating Onsager's
coe�cients depending on the salt in the non-equilibrium state. Thus we give in the
last chapter a theoretical model that can be relevant to calculate Onsager's coe�cients
depending on the salt in the non-equilibrium state.



Chapter 2

Electrostatics

Poisson Boltzmann equation is a widely used equation, for studying the electrostatic
properties of biological macromolecules, physiological interfaces, as well as the distribution
of electrons in plasmas and semiconductors.

This fundamental equation is used in our investigation, to de�ne the electrostatic
potential generated from the distribution of ions between the sphere lower surface and
the substrate.

Poisson Boltzmann equation is a nonlinear equation derived from Poisson's equation,
which relates the electrostatic potential variations to the charge density by mean of Boltz-
mann distribution [77,78].

2.1 Poisson Boltzmann mean �eld theory

It is practically unfeasible mathematically, to �nd an analytical solution that describes
all the electrostatic interactions between the ions in the di�use layer.

The Mean �eld theory (MFT), assumes that all the ions interactions can be approx-
imated by the interaction of an ion with a mean electrostatic �eld, resulting from the
average spatial distribution at thermodynamic equilibrium of all ions [79, 80]. In other
words the MFT theory reduces a multibody system to a one body system, this approxi-
mation is valid when a given ions has many random interactions which tend to cancel out
each other.

The well known Boltzmann distribution for ions at the equilibrium state is given by,

n± = n0 exp
zeψ

kBT
. (2.1)

The ions density is a rapidly varying function of the electrostatic potential governed by
Poisson equation,

∇2ψ =
en±

ϵ
, (2.2)

where ∇2 is the Laplace operator, which expresses the electrostatic potential variations in
3 dimensions, analytic solutions can be found for this partial di�erential equation under
some speci�c conditions.

Combining Boltzmann distribution with Poisson's equation, yields the non linear Pois-
son Boltzmann equation which links the charges density distribution to the electrostatic
potential [81],

∇2ψ =
en0

ϵ
exp

±eψ
kBT

. (2.3)

23
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2.2 1D Poisson Boltzmann equation

Since we deal with an electrolyte solution, with two ionic species trapped between two
surfaces in a bidimensional geometry. We retain only the potential variations in the
normal direction to the surfaces which depend on z, assuming a constant potential in the
radial direction according to r.

Equation (2.1) provide the distribution expression of the counterions n+ as well as the
co-ions n− between the surfaces,

n± = n0e
∓ϕ, (2.4)

with the dimensionless potential ϕ = eψ/kBT , and Boltzmann constant kB = 1.38 ×
10−23J.K−1, T is the ambient temperature.

The resulting expressions for the charge density reads as,

ρ = e(n+ − n−) = 2en0 sinhϕ, (2.5)

where n0 is the bulk salinity.
Based on the assumptions given above Poisson Boltzmann equation in one dimension

can be given by [31],
∂2ϕ

∂z2
= λ−2 sinhϕ, (2.6)

where the Debye length λ expresses the di�use layer thickness,

λ =
1√

8πlBn0

. (2.7)

And lB is the Bjerrum length,

lB =
e2

4πϵkBT
. (2.8)

The Bjerrum length expresses the distance, at which the electrostatic potential energy for
two elementary charges is equal to the thermal energy kBT , for water at room temperature
lB ∼ 0.7nm.

2.2.1 Electrostatic potential for in�nite half-space

Practically, the geometry of the in�nite half-space can be realized by moving away one
of the con�ning surfaces at su�ciently large distances (in�nity), taking into account the
electric double layer of a single surface (substrate for example) [21], as shown in the �gure
below,
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Figure 2.1: Schematic view of in�nite half-space geometry, where the solid surface carries
a charge density σ, the di�use layer thickness is equal to λ and the bulk salinity to n0.

To determine the analytic expression of the electrostatic potential at an in�nite half-
space, one can use the constant charge boundary condition (CC),

∂ϕ

∂z

∣∣∣∣
z=0

=
σ

ϵ
. (2.9)

For a monovalent electrolyte solution, the integration of Poisson Boltzmann equation
(2.6) yields the analytic expression of the electrostatic potential,

ϕ(z) = −2 ln

(
1 + γe−z/λ

1− γe−z/λ

)
. (2.10)

For more details on the analytic expressions of ϕ and γ derivation see appendix (7.4).
The electrostatic �eld resulting from this potential can be determined, by a simple

derivation of the expression (2.10) with respect to z, the derivation yields,

E∞(z) =
4γez/λ

λ(e2z/λ − γ2)
, (2.11)

where the integration constant γ is given by,

γ =

√
b2

λ2
+ 1− b

λ
, (2.12)

b is the well known Gouy Chapman length, which expresses the distance at which the
thermal energy kBT is equal to the electrostatic potential energy, of a single charge in-
teracting with a constant surface charge density σ [21] 1. This length is given by the
ratio,

b =
2ϵkBT

eσ
(2.13)

=
e

2πlBσ
, (2.14)

1eσ/2ϵ expresses coulomb interaction, between the single charge and the charge density σ.
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b is inversely proportional to the charge density σ, for strongly charged surfaces b is only
few angstroms,

Knowing the electrostatic potential expression, one can readily calculate the densities
of co-ions and counterions by applying Boltzmann distribution (2.4),

n± = n0

(
1± γe−z/λ

1∓ γe−z/λ

)2

. (2.15)

Note that this expression is valid, to describe the total electrostatic potential gener-
ated from one surface. Equation (2.10) will be used afterwards to describe the electric
double layers con�nement at distances very large compared to the Debye length, where
the electrostatic potential generated from the surfaces does not overlap.

The �gure (2.2) shows the variations of n+ and n− densities as a function of z. One
can notice that the counter ion density is dominant for small distances, this dominance
can be attributed to the screening e�ects that ensure the solid surface screening. For
quite large distances the densities of co-ions as well as the counterions equal to the bulk
density n0.

n+

n0

n-

0 50 100 150 200 250 300
0.00000

0.00005

0.00010

0.00015

z(nm)

n +
,n

-
(n
m

-
3
)

Figure 2.2: Plot of coions n− and counterions n+ pro�les as a function of z on a linear
scale. In the framework of in�nite half-space geometry, with a surface charge density
σ = 0.02nm−2 and a di�use layer thickness λ = 30nm.

2.2.2 Electrostatic potential in a narrow channel

As we mentioned in the introduction, it is paramount to study the electric double layers
in a narrow channel, where the thickness of the water �lm con�ned between the surfaces
is equal or smaller then Debye length h ⩽ λ. In this approximation we consider that the
two surfaces are located in the positions z = −h/2 and z = h/2 respectively.

When we con�ne the electrolyte solution on such distances, new e�ects emerges from
the overlapping between the surfaces potentials, a�ecting the viscous as well as the electric
proprieties of the electrolyte solution.

In order to establish the analytic expression of the electrostatic potential between close
surfaces, the overlapping e�ect must be taken into account when solving the non linear
Poisson Boltzmann equation, see appendix (7.5) for more details.

The solution of Poisson Boltzmann equation (2.6) describing the electrostatic potential
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between nearby surfaces is expressed in terms of Jacobi elliptic functions [82�84] as,

ϕ(z, k) = ln(k) + 2 ln

(
cd(z, k)

)
, (2.16)

the �rst term depends on the parameter k, describing the �nite value of the electrostatic
potential at midplane k = exp(ϕ(0)), whereas the second term depends on both k and
the vertical coordinates z through the function cd.

It is worthy to note that the parameter k depends implicitly on the channel height h,
λ and σ, as shown in the �gure (2.3),
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Figure 2.3: The parameter k variation as a function of the reduced height of the channel.
The blue solid lines refers to the variations derived from ( CP), whereas the green and
the red expresses the variations derived from (CR) and (CC) respectively.

The parameter k is proportional to the channel height and inversely proportional to
the surface charge density σ. From the �gure above we can notice that, the boundary
conditions (CC, CR and CP) are relevant only for very small heights.

The equation (2.16) can be evaluated only numerically except for very small separa-
tions, where Taylor's expansions can provide an analytic expression of ϕ(z, k).

The electrostatic �eld can be given simply, by the derivative of the electrostatic po-
tential (2.16) with respect to z,

E(z) =
(k2 − 1)nd(z, k)sd(z, k)√

kλcd(z, k)
, (2.17)

using the electrostatic potential and Boltzmann distribution one can readily �nds the
densities of co-ions and counterions,

n±(z, k) = n0e
∓ϕ(z,k), (2.18)

1- Channel with a �xed height

Consider an electrolyte solution con�ned in a narrow channel, made of two surfaces sep-
arated by a �xed height h, the channel is connected on its both ends to a reservoirs of
salinity n0, as shown in the �gure (2.4),
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h
Reservoir n0Reservoir n0

Figure 2.4: Schematic view of a narrow channel with a �xed height h, connected to two
reservoirs. The dashed line expresses the midplane.

As discussed before, the electrostatic potential in the channel depends only on the
vertical coordinate z, therefore it can be described using equation (2.16). At midplane
the electrostatic potential as well as counterions and co-ions densities equals to,

ϕ = ln k

n± = n0e
∓ ln k.

(2.19)

In the reservoir the densities n± = n0, whereas inside the channel at the midplane,
the densities are slightly deviated from their densities in the reservoirs (2.19), yet this
deviation is constant because the parameter k takes a constant value given that λ, σ as
well as h are constants.

2- Sphere-plane geometry

Know let's consider an electrolyte solution con�ned between a sphere of a radius R and
a substrate, as shown in the �gure (2.5).

In the lubrication area for small angle θ, the channel width is a slowly varying function
of the radial coordinate r, according to the Darjaguin approximation,

h(r) = h0 +
r2

2R
, (2.20)

with h0 is the minimum value of the height, further details on this approximation are
given in chapter 3.

Since the variations of h are very small in the lubrication zone, we can consider that
the variations of the electrostatic potential in it, are similar to that of a narrow channel
with a �xed height. i.e the electrostatic potential depends only on the vertical coordinate
z and it is described by (2.16). Yet in the outer zone (reservoirs) (2.16), is no longer
applicable, accept at the midplane where the electrostatic potential equal to zero ϕ = 0,
given k = 1 in this region, see �gure (2.3).
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Figure 2.5: Schematic view of the open geometry. The blue circles refers to the counterions
whereas the red circles refers to the co-ions. The �lm height h is a slowly varying function
of the radial coordinate r.

Note that the electrostatic potential, as well as the counterions and co-ions densities
(2.19) varies along the midplane, these variations are expressed through the parameter
k dependency on the �lm height h. Nevertheless these variations remains weak at the
equilibrium state where the chemical potential is equal to zero.

2.3 CC, CP and CR boundary conditions

For quite simple geometries, analytical solutions for the nonlinear Poisson Boltzmann
equation can be found, relying on boundary conditions which represent a major key to
the derivation of the electrostatic potential analytical expression.

The boundary conditions, constant charge (CC), constant potential (CP) and charge
regulation (CR), are the most commonly used boundary conditions, in the studies which
involve around the electrostatic phenomena at the interfaces.

2.3.1 Constant charge boundary condition (CC)

Constant charge boundary condition is e�ective, when both solid surfaces carries a uniform
surface charge σ, which remains constant for all the inter-surfaces separations. In this
speci�c case the potential is not constant and the electric �eld on the negatively charged
solid surfaces situated at z = 0 and z = h satis�es,

∂ϕ

∂z

∣∣∣∣
z=0,h

= ∓σ
ϵ
. (2.21)
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Figure (2.6) shows the variations of the normalized pro�les of n±(z), ρ(z), the potential
ϕ as well as the electric �eld E, as a function of z.

The quantity of co-ions is very small compared to counterions especially in the vicinity
of the plates, this distribution is expected since the counterions of the di�use layer, screens
the negative charge σ of the surfaces. At su�ciently large distances from the walls both
n± are equal to the bulk density n0.

The charge density pro�le de�ned as ρ = n+ − n−, is basically made of counterions
and tend to zero in the bulk region, the integration ρ(z) over z yields 2σ.

Since the electrostatic potential depends on the distribution of counterions in the
di�use layer, we notice similar variations between ϕ and ρ (2.6). Note that the potential
is derived from the superposition of the potentials of both surfaces, this approximation
remains valid as long as there is no overlap between the potentials.

The electric �eld reach its maximum close to the surfaces and tend to zero in the bulk
region where the liquid medium is neutral.
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Figure 2.6: Plot of the normalized pro�les of n±(z) and ρ(z) (up), the electrostatic poten-
tial and the electric �eld variations as a function of z (down), for an univalent electrolyte
solution between two negatively charged surfaces. The calculations for this curves are
performed using (CC) boundary condition with σ = 0.02nm−2.
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2.3.2 Constant potential boundary condition (CP)

Constant potential boundary condition (CP) [85], is e�ective when both solid surfaces
carries a �xed electrostatic potential which satis�es,

ϕ(±h/2) = ϕ0, (2.22)

where ϕ0 is the electrostatic potential value at the interface. For (CP) the surface charge
density varies with the separation distance between the surfaces h.

The �gure (2.7) shows the variations of the normalized charge density pro�le (CP)
boundary condition, with the parameters λ = 30nm and σ = 0.02nm−2.
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Figure 2.7: Plot of the normalized charge density pro�le as a function z, on a linear scale.
The calculations are performed using (CP) boundary condition with ϕ0 = −3.39

2.3.3 Charge regulation boundary condition (CR)

In most cases, the ionizable sites on the surface are not fully dissociated, therefore absorp-
tion reactions come into play making the surface charge density and the surface potential
varying [86,87]. If we consider that the protons can bind to acid groups HA, the equilib-
rium condition at the surface yields,

HA ⇋ H+ +A−. (2.23)

Expressing the proton concentration at the surface as [H+], the concentration of negative
sites as [A−] and the undissociated sites as [AH]. One can de�ne the surface dissociation
constant as,

Kd =
[H+][A−]

[AH]

=
α

1− α
ns,

(2.24)

where α is the fraction of sites e�ectively dissociated, with ns = [H+]∞e
−ϕ0 the hydronium

concentration at the surface, from equation (2.24) one readily �nd,

α =
1

1 + ns/Kd

. (2.25)
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For very large Kd, α = 1 which means that none of the sites have been dissociated, there-
fore we recover the constant charge boundary condition (CC). For distances su�ciently
far from the solid surface the results found in (CP ) and (CR), converge towards the
results found by (CC).

The surface charge density can be expressed as,

σ′ =
α

S
, (2.26)

where the area per site S is de�ned in a way that for quite large distances σ′ = σ.
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Figure 2.8: Charge density pro�le variations as a function z on a linear scale. For (CC),
(CR) and (CP) boundary conditions with λ = 60nm, the surface charge σ = 0.008nm−2,
the dissociation constant Kd = 10−3, pH = 5 and pK = 3.6. The inset shows the
convergence between the curves far away from the surfaces.

Figure (2.8) shows the variations of the normalized charge density pro�le for di�erent
boundary conditions. It is obvious that the boundary conditions have an e�ect on the
charge density only near the solid surfaces. For su�ciently far distances all the pro�les
converge (�gure shown in inset).

(CC) boundary condition gives an overestimation of the e�ective charge density in the
in the vicinity of the solid surface, whereas (CP) gives an underestimation of it. This is
reasonable because in reality neither the potential nor the surface charge density remains
constant. Therefore (CR) is the most relevant boundary condition which describes the
exchanges at the solid-liquid interface permanently.

2.4 Out of equilibrium force

When we apply an external perturbations on the di�use layer counterions (the sphere
vibrations in our case), the electrostatic equilibrium occurs very quickly in the vertical
direction, by means of ions di�usion, we can estimate the vertical relaxation time by,

τz =
h20
D
, (2.27)

for a channel with a height h0 ∼ 200nm and ions-di�usion coe�cient D ∼ 10−9m2/s, the
relaxation time τz ∼ 4 × 10−5s which is very small compared to the sphere vibrations
ω−1
0 ∼ 10−2s.
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However in the radial direction the ions di�use slowly. We de�ne the relaxation time
as the time required for the ions to recover their equilibrium state after perturbation, thus
the radial relaxation time can be estimated by,

τr =
r2

D
, (2.28)

r is the distance of the ion from its starting position at time t which can be approximated
by r ∼

√
Rh0.

For R = 47µm and h0 = 200nm, one �nds τs = 9.4× 10−3s. This value is comparable
to ω−1

0 .
We de�ne the out of equilibrium thermodynamic force as the variations of the free

enthalpy with respect to the radial coordinate r as following,

f = −∇r(g+ + g−), (2.29)

where g is the chemical potential given by,

g± = ±eϕ̂+ kBT ln n̂±, (2.30)

with ϕ̂ is the electrostatic potential and n̂± the ions densities in the out of equilibrium
state,

n̂± = n̂0e
∓ϕ̂, (2.31)

where n̂0 is an e�ective salinity given by n̂0 =
√
n+n−. Both ϕ̂ and n̂0 depends on the

deviation of the co-ions and counterions densities n̂± from their densities at the equilibrium
state n±.

Inserting (2.30) in (2.29) one readily gets the thermodynamic force,

X = −kBT (n̂+ + n̂−)∇r ln n̂0 (2.32)

In the quasi-static case, where the sphere vibrations are very small, it can be assumed
that the deviation of the salt pro�le from its equilibrium state is relatively small. Therefore
one can consider that n̂(z) ∼ n(z) in the calculations afterwards. This assumption is the
basis for the calculations carried out in chapter 5 which deals with the salt-charge-�ow
coupling.



Chapter 3

Hydrodynamics

Navier Stokes equation is di�erential equation widely used to describe �uid �ows [88�90].
For the derivation of this equation, let's consider a Newtonian 1 and incompressible liquid.
To describe fully our system we need �rst to the incompressibility condition given by,

∇ · v = 0, (3.1)

where v is the velocity �eld vector.
And a second equation derived from the application of Newton' second law on a �uid

particle,

ρ

(
∂tv+ v∇v

)
= f−∇P + η∇2v, (3.2)

where ρ is the density of the liquid, η the dynamic viscosity, P is the hydrodynamic pres-
sure modulated by the sphere oscillations. The left hand term represent the acceleration
which consists of the time derivative of the velocity combined to a convective term v∇v.
The right hand consist of the pressure gradient which is responsible for the �uid �ow and
a body force term f and a viscous term.

3.1 Stokes equation

The linear stokes equation is derived from the general Navier Stokes equation, when the
viscous forces in the system η∇2

zv are assumed to be signi�cantly greater than the inertial
forces ρ(v·∇)v. This assumption is applicable for �uids characterized by a small Reynolds
number (Re << 1), a number which expresses the nature of the �ow regime [91]. It can
be de�ned as,

Re =
vr

η
, (3.3)

with v is the �uid velocity and r expresses the �ow range in the lubrication area.
The velocity variations with time are negligible since the liquid medium is viscous. All

this approximations are linked to the creeping �ow approximations, used to study sphere
the �ows resulting from an immersed in a �uid [91]. Applying this approximation to (3.2)
yields,

η∇2v = ∇P − eρE + n(z)X, (3.4)

1A Newtonian �uid, is a �uid in which the viscous stresses arising from its �ow are at every point
linearly correlated to the local strain rate.

34
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where eρ is the charge density, E is the radial electric �eld established from the charge
density advection and X is the thermodynamic force.

The source term in(3.4) consists of a pressure gradient ∇P which give rise to the liquid
�ow, that carries a long with it the charge and salt densities. The Coulomb force eρE
resulting from the interaction between the charge density and the radial electric �eld, and
the thermodynamic force.

Reynolds was the �rst who treated the liquid �ow con�ned between two surfaces, for
the case of an open geometry made of a �at substrate and a sphere [82,83].

3.2 Lubrication approximation

Lubrication approximation is used in �uid dynamics to describe the �ow of a �uid in a
geometry, in which one dimension is signi�cantly smaller than the other. i.e the thickness
of the liquid �lm separating the two surfaces is very small compared to the curvature
radius of the sphere R and the �at substrate Rs.

Derjaguin developed a theory used to evaluate the force resulting from two interacting
bodies, using their energy densities of interaction, multiplied by the e�ective radius of the
two bodies [92, 93], for the case of an open geometry the e�ective radius is equivalent to
the radius of the sphere Reff = R, given the radius of the �at plate tends to in�nity.

R
R-δh

h ℎ0

δh

Sphere

Substrate

r

Figure 3.1: Schematic representation of the Derjaguin approximation for the sphere-plane
geometry.

Figure (3.1), shows a schematic illustration of Derjaguin approximation, r designate
the radial distance where the lubrication approximation is valid, h0 refers to the minimum
separation between the two bodies, h is the full separation and δh is the small variation
of the separation h.

Using Pythagorean theorem, one can �nd that the separation h(r) can be approxi-
mated by,

h(r) = h0 +R−
√
R2 − r2, (3.5)
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Using Taylor expansion on the last term on (3.5), the separation h(r) can be approximated
by,

h(r) = h0 +
r2

2R
(r << R), (3.6)

h(r) is a slowly varying function of the radial coordinate r, we can say that locally over
a distance (r << R) the lower surface of the sphere and the substrate are parallel �at
plates.

Performing the di�erentiation of h(r) in (3.6) one �nds,

Rdh = rdr, (3.7)

this equation is used later on to evaluate the integrations, by changing the surface element
rdr by Rdh which is more convenient for the calculations.

Lubrication �ow

The lubrication approximation has consequences on the �ow of the electrolyte solution
between the substrate and the sphere. More precisely on the velocity components as well
as the forces in the radial and vertical directions [94].
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Figure 3.2: Schematic illustration of the lubrication �ow.

The equation (3.4) projection with respect to (r) and (z) yields,

η

(
∂2vr
∂r2

+
∂2vr
∂z2

)
= −∂P

∂r
− eρEr − n(z)

∂X

∂r
(3.8)

η

(
∂2vz
∂r2

+
∂2vz
∂z2

)
= −∂P

∂z
− eρEz + n(z)

∂X

∂z
, (3.9)

for (3.8) and (3.8) one must add the mass conservation equation for an incompressible
liquid,

∇ · v = 0 (3.10)
∂vr
∂r

+
∂vz
∂z

= 0. (3.11)
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Since the �ow is laminar within the lubrication region, we can consider that the angle
between the velocity vector and a �ow line is very small (θ << 1),

tan θ ∼ θ ∼ vz
vr

(3.12)

vz ∼ vrθ ∼ Uθ, (3.13)

given the slow variation of the height h(r) with respect to r in the lubrication area. The
velocity components variations with respect to z can be approximated by,

∂vr
∂z

∼ U

h0
(3.14)

∂vz
∂z

∼ Uθ

h0
, (3.15)

where U is the velocity. Using (3.11) and (3.13) one can deduce the variations of vr with
respect to r,

∂vz
∂z

= −∂vr
∂r

∼ Uθ

h0
. (3.16)

For the second derivative of the velocity components with respect to z one readily gets,

∂2vr
∂z2

∼ U

h20
(3.17)

∂2vz
∂z2

∼ Uθ

h20
. (3.18)

For the second derivative of the velocity components with respect to r we take ∂r ∼ 1/r0,
therefore,

∂2vr
∂r2

∼ Uθ

h0r0
(3.19)

∂2vz
∂r2

∼ Uθ

r20
, (3.20)

the terms given in (3.19)and (3.20) are very small compared to the terms related to the
second derivatives with respect to z (3.17) and (3.18), therefore we can neglect them [91].

We neglect also the term depending on θ in (3.18) compared to (3.17), since θ is
assumed to be very small θ << 1. Thus one retains from the velocity components only
the term ∂2vr/∂z

2.
Regarding the forces, it is trivial that ∂X/∂z = 0 for the thermodynamic force, whereas

Ez is negligible, given the signi�cant electrostatic interactions in z direction.

3.3 1D Stokes equation

Taking into account the approximations given above. In a stationary regime the velocity
pro�le of the incompressible electrolyte solution �ow, in the lubrication area satis�es the
1D Stokes equation given by,

η∂2zv = ∂rP − eρE + n(z)X, (3.21)

with v ≡ vr. We work in the linear regime, which allow us to write the solution of the
equation (3.21) as the sum of three components , a pressure driven term vp(z), electroos-
motic term vE(z) and a di�usioosmotic driven term vs(z) [95].
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3.4 Velocity pro�le components

In the lubrication area we can assimilate the lower sphere surface, as a �at solid surface
situated at z = h/2 and the immobile substrate surface at z = −h/2, this geometry
is privileged just for convenience. The velocity pro�le components are derived from the
double integration of the Stokes equation taking into account the appropriate boundary
conditions for each component.

3.4.1 Pressure driven velocity

The �rst component is the pressure driven velocity obtained from (3.21), taking into
account just the liquid and discarding both the charge and salt densities, by setting both
Er and X equal to zero,

η∂2zvp = ∂rP, (3.22)

equation (3.22) links the second derivative of the velocity pro�le to the force ∂rP . Mean-
ing that the determination of the velocity pro�le requires the performance of a double
integration based on an adequate choice of boundary conditions. The �rst integration
gives the variations of the shear stress τzr, which we consider null at the midplane of the
channel, where the velocity pro�le reaches its maximum value v(0) = vmax,

τzr = η∂zvmax = 0, (3.23)

this condition is a result of the velocity pro�le symmetry, imposed by the non slip condition
on the two surfaces v(±h/2) = 0, performing the integration one readily �nds,

vp(z) =
∂rP

η

∫ h/2

z

dz′
∫ z′

0

dz′′ (3.24)

= −h
2 − 4z2

8

∂rP

η
. (3.25)

This integration yields the Poiseuille pro�le p(z), which causes the salt and charge
advection [96]. Figure (3.3) shows the Poiseuille pro�le p(z) variations,
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Figure 3.3: Poiseuille pro�le p(z) variations as a function of the height z, on a linear scale.
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3.4.2 Electroosmotic velocity

The second component in the velocity �eld is the electroosmotic velocity vE(z), which
describe the pro�le resulting from the di�use layer content distribution. This velocity can
be derived from (3.21) by taking both ∇P and X equal to zero,

η∂2zvE = ρeE. (3.26)

The integration is carried out in the same way as the previous case of the pressure driven
velocity, the particularity in this case lies in the charge density ρ which we describe by
mean of Poisson equation.

We carry out a double integration, considering the shear stress condition at midplane
as well as the non slip boundary condition (v(±h/2) = 0) one �nds,

vE(z) =

∫ h/2

z

dz′
∫ z′

0

ρ(z′′)dz′′
eE

η
(3.27)

vE(z) = f(z)
eE

η
, (3.28)

the electrophoretic mobility in equation (3.28) can be reexpressed as,

f(z) = ϵ(ψ(z)− ζ), (3.29)

where the electrophoretic mobility f(z) describe the motion that ions exhibit as a result
of them experiencing the electric �eld.

For a channel with a height h very large, we recover the Smoluchowski electrophoretic
mobility f(z) = −ϕ0/4πlBη [97].
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Figure 3.4: Electrophoretic mobility pro�le variations as a function of z, on a linear scale.
The pro�le is calculated in a symmetric geometry using (CC) boundary condition with
σ = 0.02nm−2. The thickness of the di�use layer λ = 30nm.

3.4.3 Di�usioosmotic velocity

The last component is the di�usioosmotic velocity, which is delicate to determine since
it is related to the di�usion osmosis phenomenon. This component describe the pro�le
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produced from the salt density distribution, derived from (3.21) by taking both ∇P and
Er equal to zero.

For an electrolyte solution con�ned between uncharged surfaces, the salt content dif-
fuses in the radial direction in a homogeneous way and does not drag the liquid along
with it. However in the case of charged surfaces, the interaction potential between the
salt in the radial direction and the surfaces creates an inhomogeneity in the salt density.

Close to the surfaces the salt density is greater than the midplane density, which
corresponds to the density between uncharged surfaces. The di�erence between the salt
gradient in the two region generate a liquid �ow (di�usioosmosis).

The midplane salt density can be considered as an inert density, since it does not carry
any liquid, therefore it should be subtracted from the total salt pro�le nt(z) and we write
n(z) = nt(z)− n(0), with n(0) the salt density at midplane.

The di�usioosmotic velocity yields from the double integration of the equation,

η∂2zvs = n(z)X, (3.30)

unlike the electroosmotic velocity pro�le, the establishment of a general analytic expres-
sion for the di�usioosmotic velocity vs(z), which remains valid for small and large sep-
arations between the surfaces is impossible. The salt density can not be linked to the
electrostatic potential as in the case of the electroosmotic velocity where the charge den-
sity was described by Poisson's equation.

In the quasi-static case, we calculate the velocity from the e�ective salt density at the
equilibrium state, thus the di�usioosmotic velocity pro�le can be expressed as,

vs(z) =
H(z)

η
X, (3.31)

where H(z) is the di�usiophoretic mobility [98], which describes the motion that ions
exhibit as a result of them experiencing the salt gradient, this pro�le is readily calculated
by performing the double integration of the salt density, taking in account the shear stress
condition ∂zn = 0 and the non slip boundary conditions,

H(z) =

∫ h/2

z

dz′
∫ z′

0

dz′′n(z”), (3.32)

with,
n(z) = nt(z)− n(0), (3.33)

with n(0) the inert salt density at midplane, for two surfaces su�ciently distant this quan-
tity equal to the bulk salinity n0. Figure (3.5) shows the variations of the di�usiophoretic
mobility as a function of the separation distance z.
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Figure 3.5: Di�usiophoretic mobility pro�le variations as a function of z on a linear scale.
The pro�le is calculated in a symmetric geometry using (CC) boundary condition with
σ = 0.02nm−2. The thickness of the di�use layer λ = 30nm

Further details on the velocity pro�le components are given in he appendix (7.6).



Chapter 4

Charge- �ow coupling

We know that the sphere motions induces a volume current Jv, as well as a charge current
Jc from the advection of the di�use layer content. In this chapter we aim to characterize
the coupling between these two currents, by studying the e�ect of this coupling, on the
electroviscous force as well as the electrokinetic lift force.

4.1 Irreversible processes and linear laws

In thermodynamics, the concept of irreversibility refers to processes in which the changes
in the thermodynamic state of a system and its environment, cannot be restored to their
initial state by in�nitesimal modi�cations without expenditure of energy.

To deal with irreversible processes in systems, with perturbations not too important
compared to the state of equilibrium, the system may break down into small subsystems
where each subsystem is assumed to be in local equilibrium and can be treated as an
individual thermodynamic system, characterized by small number of equilibrium variables.

Onsager transport equations provide linear relations between the �uxes and the forces
which generates it, this linearity is widely investigated and proved experimentally in a
wide variety of di�erent irreversible processes.

For a complete set of n �uxes and forces, which characterize several irreversible pro-
cesses that occur simultaneously, Onsager's equations take the following form [99�102],

Ji =
n∑

i=1

LijΥj, (4.1)

where Υ is the forces and Lij are Onsager coe�cients or transport coe�cients which are
independent of the forces, these coe�cients can be written in matrix form (Onsager matrix
L).

Onsager matrix consists of diagonal coe�cients Lii that link the forces to their con-
jugated �ows, e.g an applied electric �eld on an electrolyte solution generate a coulomb
force eρE that induces a charge �ow (conjugate �ow).

The o� diagonals elements Lij relate the forces to the non conjugate �uxes. Taking
the above example if we apply now, to the electrolyte solution a gradient of pressure,
the charge advection by this latter force contributes to the charge �ow generation (non
conjugate �ow).

Onsager added a signi�cant concept on the theory of irreversible thermodynamics
which rely on the symmetry of the phenomenological coe�cients,

Lij = Lji, (4.2)
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these relations are called the Onsager reciprocal relations which are veri�ed experimen-
tally.

The charge-�ow coupling can be studied from the coe�cients linking the charge and
volume currents Jc and Jv to the forces ∇P and eE.

4.2 Volume and charge currents

The sphere motions generates two kinds of currents, a volume current Jv induced from
the radial pressure gradient ∇P acting on the liquid. Associated to a charge current Jc
resulting from the advection and the conduction of the di�uses layer counterions by ∇P
and the radial force eρE respectively.

As we discussed earlier these currents can be described by Onsager's linear equations,
as a consequence the transport coe�cients which relates them to the forces can be written
in a matrix form as, Jv

Jc

 =

Lvv Lvc

Lcv Lcc

−∇P
eE

 . (4.3)

The diagonal elements Lii connect each force with its conjugate �ow, i.e, the radial gradi-
ent of pressure to the volume current and the force eE to the charge current, while the o�
diagonal elements Lij determines the in�uence of the forces on a non conjugate �ow,i.e,
the in�uence of the ∇P on the charge current and the force eE on the volume current.

4.2.1 Volume current

The volume current rises from the velocity �eld integrated over the �lm width.

Jv =

∫ h/2

−h/2

v(z)dz, (4.4)

where,
v(z) = vp(z) + vE(z). (4.5)

In this section we deal with the charge-�ow coupling, therefore we disregard the ther-
modynamic force in Stokes equation (3.4). Thus the velocity �eld pro�le consists of the
pressure driven velocity pro�le vp(z) combined with the electroosmotic velocity pro�le
vE(z).

For the sake of simplicity we consider that the electric mobility and the di�usion co-
e�cients of coions and counterions are identical as a �rst approximation. Meaning that
the conduction and the di�usion of the ions contained in the di�use layer, are done in the
same way in the radial direction regardless their positive or negative charge.

µ+n+ + µ−n− = µ(n+ + n−) = µnt (4.6)

D+n+ +D−n− = D(n+ + n−) = Dnt. (4.7)

Using the general analytic expression for vp(z) and vE(z) in (4.4) and performing the
integral one obtains,

Jv = Lvc
eE

η
− Lvv

∇P
η
. (4.8)
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Lvv results from the integration of the velocity pro�le vp(z) (3.25), this latter coe�cient
describes the Poiseillle �ow between two parallel surfaces. this coe�cient relates ∇P to
its conjugate �ow Jv.

Lvv =

∫ h/2

−h/2

dz
h2 − 4z2

8
(4.9)

=
h3

12
. (4.10)

Lvc describes the electroosmotic e�ect responsible for the liquid advection in the chan-
nel by mean of the radial electric �eld, this latter describes the contribution of the force
eE to the volume current. It is calculated by integrating the electrosomotic velocity
vE(z)(3.29) in (4.4),

Lvc =

∫ h/2

−h/2

f(z)dz. (4.11)

The relation (4.8) is closed by the incompressibility condition between the volume
current and the imposed velocity V (t).

rV (t)

2
− Jv = 0. (4.12)

In the absence of the charge density the sphere vibrations animated by the velocity V gen-
erates a radial pressure∇P0 = −3ηRV/h20. The charge density advection under the sphere
vibrations, modi�es the pressure pro�le P0. This modi�cation is evaluated afterwards in
this chapter by mean of the Onsager's coe�cients.

Jv is a surface density current, for more details about (4.10) see appendix (7.7).

4.2.2 Charge current

The charge density current is generated simply from the advection of the charge density
by the velocity �eld v(z) combined with the salt electrophoresis. The charge current is
given by the integration of the charge density current over the �lm width,

jc = ρ(z)v(z) + n(z)µeE (4.13)

Jc =

∫ h/2

−h/2

jcdz. (4.14)

Inserting the general expressions of the pressure and electroosmotic driven velocities, in
the equation above and performing the simple integration one readily gets,

Jc = Lcc
eE

η
− Lcv

∇P
η
, (4.15)

Lcv account for the pressure driven charge current, this coe�cient describe the advec-
tion of the charge by the pressure driven velocity pro�le. This letter must be symmetric to
Lvc according to Onsager's theory. Lcv can be calculated by integrating the electrosomotic
velocity vE(z)(3.29) in (4.14),

Lcv =

∫ h/2

−h/2

ρ(z)
h2 − 4z2

8
dz, (4.16)
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Lcc account for the electric conductivity, that comprises the advection of the charge density
by the electroosmotic velocity combined with the conduction of ions by means of the
electric �eld, it is readily calculated by inserting (3.29) in (4.14),

Lcc =

∫ h/2

−h/2

dz

(
ρ(z)f(z) + µnt(z)

)
. (4.17)

The relation (4.15) closed to the continuity equation, allows the calculation of the
forces generated by the charge �ow. The continuity equation reads,

∇ · Jc = −∂tC, (4.18)

with C =
∫
ρ(z)dz more details are given in the appendix (7.8)

4.3 Analytic expressions of Onsager's coe�cients

In this section we provide in a �rst step the analytic expressions of the transport coe�-
cients in the wide channel approximation. Where the �lm width is considered to be much
larger than the di�use layer thickness λ .

In a second step we provide the analytic expressions for the coe�cients in the narrow
channel where the �lm width is comparable to the Debye length λ. These coe�cients are
used afterwards to determine the coupling parameter between the volume and the charge
currents.

The analytic expression of the coupling parameter as well as the force, are compared
afterwards to numerical calculations in order to determine the relevance of the approxi-
mations used for the analytic calculations see appendix (7.10).

4.3.1 Wide channel approximation WCA

The wide channel approximation is used purposely in order to get analytic expressions for
the coe�cients, therefore the forces in the case where h/λ >> 1. In this approximation
the overlap between the potentials of the two surfaces is not taken into account.

Since the two surfaces are largely separated one can neglect the e�ect of one surface on
the other, and consider just a single solid surface located at a position z = 0 in a contact
with an electrolyte solution where the counterions occupy the half plane z > 0.

• Onsager Coe�cients in WCA

From the charge density pro�le (2.2) it is obvious that the quantity of counterions close
to the solid surfaces is very important and decrease exponentially to reach its minimum
for distances far enough from the two surfaces.

The variations of the electrophoretic mobility f(z) are linked to the charge density
pro�le. For very small separations the counterions stay very close to the solid surfaces to
ensure the surface charge screening, therefore the electrophoretic mobility is very small.
As we moves away from the surface the counterions becomes free, thus the mobility in-
creases before reaching a stationary state where the electrophoretic mobility equals to
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−ϵϕ0/η [25].

Figure (4.1) expresses the variations of electrophoritic mobility f(z) = vE(z)/eE in
linear scale as a function of the separation distance h.

0 100 200 300 400 500 600

0.365

0.370

0.375

0.380

0.385

z(nm)

f(
x)
(n
m

-
1
)

Figure 4.1: Electrophoretic mobility variations as a function of z on a linear scale. The
pro�le is obtained in the WCA, using the boundary condition (CC) with σ = 0.02nm−2

and a di�use layer thickness λ = 30nm. The dashed line refers to Smoluchowski mobility.
The variations are relevant in the range of separations where the WCA is valid h ∼ 5λ.

Now that we know the velocity pro�le variations in the W.C.A, we can calculate
Onsager coe�cients starting with the o� diagonal coe�cients.

Lvc account for the electroosmotic e�ect given by Smoluchowski electrophoretic mo-
bility times the �lm width h.

Lvc = − ϕ0h

4πlB
, (4.19)

these equation shows the linearity of the electroosmotic pro�le with respect to the elec-
trolyte �lm width, i.e, the quantity of liquid dragged by the electric �eld depends only on
the �lm width. Since the electrophoretic mobility µ = ϕ0/4πlB remains constant.

Lcv account for the charge �ow carried by the Poiseuille �ow, symmetric to Lvc.

Lcv = − ϕ0h

4πlB
, (4.20)

this coe�cient describes the contribution of the pressure gradient on the charge current,
i.e, the advection of the charges by mean of the Poiseuille �ow caused by ∇P .
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Figure 4.2: Plot of Lvc and Lcv as a function of h on a linear scale. The calculation
is performed using (CC) boundary condition, with σ = 0.02nm−2 and λ = 30nm. The
variations are plotted in an range of values where the WCA approximation is valid.

The conductivity Lcc includes the charge density advection by the electroosmotic veloc-
ity vE(z), combined with the conduction of the salt ions by the electrophoresis e�ect [103].

Lcc =
sinh(ϕ0

4
)2

λπ2 l2B
+
n0h+ σ

3πa
, (4.21)

the �rst term in (4.21) account for the surface conductivity which is proportional to sur-
face charge density σ via sinh(ϕ0/2). This term is independent on the �lm width h, this
means that the advection of charge by vE(z) for separations large enough compared to λ
remains always constant.

The second term describes simply the conduction of the salt content by the radial
electric �eld. It is characterized by two contributions, the �rst is linked to the di�use layer
counter ions electrophoresis, and the second is related to the bulk conduction 2µn0h, this
latter is dominant for large separations. α is the hydrodynamic radius of ions.
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Figure 4.3: Plot of Lcc variations as a function of h on a linear scale. The calculations
are performed using (CC) boundary condition with σ = 0.02nm−2 and λ = 30nm. The
black solid line refers to the surface conductance, the dashed red line designate the bulk
conductance and the blue solid line expresses the combination of both contributions. The
variations are plotted in an range of values where the WCA approximation is valid.

Figure (4.3) shows a plot in a linear scale, of the di�erent components of the electric
conductivity as a function of h. We notice that the surface conductance (black solid line)
is very small compared to the bulk conductance (dashed red line). Thus the conduction
for wide separations in WCA is dominated by the bulk conductance.

For more details on Lcv as well as Lcc calculated in the wide channel approximation
(WCA), see appendix (7.9).

4.3.2 Narrow channel approximation NCA

As we mentioned in the introduction, it is paramount to study the electric double layers
in a narrow channel, where the thickness of the water �lm con�ned between the surfaces
is equal or smaller then the Debye length h ⩽ λ.

In this approximation, we consider that the two surfaces are located in positions
z = −h/2 and z = h/2 respectively. When we work on such distances new proprieties
emerges from the overlapping between the potentials of the surfaces, thus a�ect the viscous
as well as the electric proprieties of the liquid medium.

In order to establish the analytic expression of the electrostatic potential in NCA,
the overlapping e�ect must be taken into account when solving the non linear Poisson
Boltzmann equation, see appendix (7.5).

To establish the analytical expressions of Onsager coe�cients for a narrow channel,
where the separation distance between the surfaces is comparable to the Debye length λ.
We apply Taylor expansions with respect to the vertical coordinate on the electrostatic
potential given by the equation (2.16) and expand the elliptic function cd to the second
order in z,

ϕ(z, k) = ln(k)− 4πlBσ
z2

h
, (4.22)

where the parameter k is given by,

k = ld +
√
1 + l2d. (4.23)
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The dimensionless quantity ld characterizes the contribution of the surface and the bulk
to the conductivity ld = σ/n0h. This quantity represent the Dukhin number [97], de�ned
as the ratio between the surface charge density to the �uid bulk density multiplied by the
separation distance h.

The e�ects of the overlapping between the potentials also in�uence the electric charge
density ρ. Indeed when the con�nement surfaces approach su�ciently each other, the
counter ions cloud of the di�use layer form a homogeneous gas density, which depends
only on the separation distance h, thus we write,

ρ = ϵ∂2zψ = 2σ/h. (4.24)

• Onsager Coe�cients in N.C.A

Using (4.22) and relying on the general de�nition of the coe�cients given by (4.11) and
(4.16). One readily gets the o� diagonal symmetric coe�cients, which describes the
electroosmotic and the pressure induced charge current respectively,

Lvc = Lcv =
σh2

6
. (4.25)

Unlike the case of wide channel approximation, in which the non diagonal coe�cient
are given by Smoluchowski electrophoretic mobility times the separation distance h. In the
case of narrow channel approximation they depends only on the surface charge density and
the separation distance squared h2 (�gure 4.4). These changes in Lvc and Lcv coe�cients
are due to the overlapping e�ects.
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Figure 4.4: Plot of Lvc and Lcv as a function of h on a linear scale. The calculations
are performed using (CC) boundary condition, with σ = 0.02nm−2 and λ = 30nm. The
variations are plotted in an range of values where the NCA approximation is valid.

Lcc =
σ2h

3
+
n0h

√
1 + (σ/n0h)2

3πα
. (4.26)

The advection part of Lcc (�rst term) is remarkably di�erent, compared to the case of
wide channel approximation. This di�erence is manifested in the �lm height dependency,
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where in NCA the advection of the charge density varies linearly with the separation
distance h (�gure 4.5), whereas in the WCA we noticed that the conduction is constant.

The second term of conductivity Lcc due to the salt electrophoresis depend on σ and
varies linearly with h also,
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Figure 4.5: Plot of Lcc variations as a function of h on a linear scale. The calculations
are performed using (CC) boundary condition, with σ = 0.02nm−2 and λ = 30nm. The
black solid line refers to the surface conductance, the dashed red line designate the bulk
conductance and the blue solid line refers to the combination of both contributions. The
variations are plotted in an range of values where the NCA approximation is valid.

The variations of the electric conductivity components in the NCA are very similare
to that of the WCA with a dominance of the bulk conductivity.

4.4 Mobility e�ect

The conduction of the ions in a liquid medium by a certain conductive force, depends on
the mobility of these ions. The ions mobility characterizes how quickly an ion can move
through the liquid medium when pulled by a conducting force, this latter can be given
by,

µ =
1

6παη
, (4.27)

where α is the hydrodynamic radius and η is the dynamic viscosity.
In the previous section, we considered that the mobility of coions and counterions are

the same, i.e, a similar hydrodynamic radius has been imposed on the di�erent ions. This
approximation does not reveal the real behavior of the two species under the in�uence of
a conductive force.

In reality the counter ions have a larger hydrodynamic radius than that of the co-ions.
For example if we consider an electrolyte solution of NaCl, the hydrodynamic radius of
Na+ ions is equal approximately to 0.19nm while that of Cl− is equal to 0.13nm.

The di�erence between the coions and counterions mobilities, a�ect the electric con-
ductivity Lcc [103], on its second part related to the electrophoreses e�ect. Taking into
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account the di�erence in mobilities, the new expression for Lcc can be given by,

Lcc =

∫ h/2

−h/2

dz

(
ρ(z)f(z) + µ+n+ + µ−n−

)
(4.28)

=
sinh(ϕ0

4
)2

λπ2 l2B
+
∑
±

µ±n0

(
h− 4γλ

γ ∓ 1

)
. (4.29)

For similar mobilities we take the mean values of (αNa+)
−1 and (αCl−)

−1 respectively,
to determine the equivalent hydrodynamic radius,

1

α
=

1

2

(
1

α+

+
1

α−

)
. (4.30)

Figure (4.6) shows a plot of the conductivity transport coe�cient in the wide channel
approximation, in the case of similar mobilities µ± = µ and dissimilar mobilities µ+ ̸= µ−.
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Figure 4.6: Plot of the conductivity coe�cient Lcc as a function of h. The calculations are
performed using (CC) boundary condition with σ = 0.02nm−2 and λ = 30nm. αNa+ =
0.19nm, αCl− = 0.13nm and the equivalent radius α = 0.15nm. The black solid line
shows Lcc variations in the case of similar mobilities while the dashed red line expresses
the variations in the case of di�erent mobilities.

The linear variations of the coe�cient Lcc with respect to h, in WCA refers to the
dominance of the bulk conductivity. The ions mobility in the case of similar mobilities (the
counterions mobility) is smaller then the e�ective ions mobilities in the case of dissimilar
mobilities. This di�erence translate the dominance of the black curve over the dashed
curve in �gure(4.6).

For the case of narrow channel the conductivity coe�cient Lcc is given by,

Lcc =
σ2h

3
+
∑
±

µ±

(
± σ + n0h

√
1 + (σ/n0h)2

)
. (4.31)

As we did for the case of WCA, it is crucial to compare the electric conductivity in
the case of similar and dissimilar mobilities, in order to highlight the e�ect of the mobility
on Lcc for small separations. Figure (4.7) shows the plot of Lcc in the narrow channel
approximation for both cases.
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Figure 4.7: Plot of the conductivity coe�cient on the narrow channel approximation as
a function of h. The blue solid line shows Lcc variations for similar mobilities, while the
dashed red color designate the variations under di�erent mobilities.

For the case of narrow channel the linear behavior translates the dominance of the salt
electrophoresis, the dominance of conductivity in the case of similar mobility (blue) due
to an equivalent mobility smaller than the e�ective mobilities of ions (the same reason as
in the case of the wide channel).

The di�erence in the conductivity Lcc due mobility e�ect in the case of NCA and WCA
is very small, we consider from now on, that the mobility of the coions and counterions
are similar in order to study the coupling parameter and the forces which depends on it.

4.5 The coupling parameter ξ

The coupling between the di�use layer counterions and the liquid �ow, may enhance the
viscous damping acting on the vibrating sphere. In this section we aim to predict theoret-
ically this enhancement and check the relevance of our model, to interpret the measured
enhancement realized experimentally by coworkers.

For this purpose it is worth to mention that, the charge density pro�le remains always
in the equilibrium state described by Poisson Boltzmann equation no matter the kind of
the force acting on it. Given the importance of the electrostatic interaction in the vertical
direction, the energy cost to be spent in order to move the charges in the radial direction
is enormous, thus few counterions may be transported in the radial direction. Moreover
the counterions transport leads to the establishment of a strong electric �eld which bring
back the counterions to their equilibrium state, in a time τ ∼ 10−6s very small compared
to the characteristic time of the sphere vibrations, thus the charge current vanishes very
quickly and we write,

Jc = 0, (4.32)

from this equation we can readily derive the expression of the electric �eld E, and insert
it afterwards in the incompresibility condition (4.12) to evaluate the pressure gradient
given by,

∇P = −6ηrV

h3
1

1− ξ
, (4.33)
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where 6ηrV/h3 is the pressure gradient in the absence of the charge density.

ξ =
LcvLvc

LvvLcc

, (4.34)

ξ is the coupling parameter, which describes the coupling between the di�use layer content
and the �ow, through the diagonal and o� diagonal elements of the Onsager's matrix. In
WCA the evaluation of this coe�cient yields,

ξ =
9αλϕ2

0

4h(λπl2B(hn0 + σ) + 3α sinh(ϕ0/4)2)
, (4.35)

where α is the equivalent hydrodynamic radius, equal to 0.15nm, σ the surface charge
density and ϕ0 is the potential value at the solid surface.

For su�ciently large distances, the coupling parameter varies with the separation
distance as h−2, whereas in the NCA the coupling parameter varies linearly with h,

ξ =
πασ2

(πασ2 + n0

√
1 + (σ/n0h)2)

. (4.36)

Figure (4.8) shows the variations of the charge-�ow coupling parameter, as a function
of the separation distance h in a logarithmic scale. For a surface surface charge density
σ = 0.02nm2 and a di�use layer thickness λ = 30nm.
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Figure 4.8: Charge-�ow coupling parameter variations as function of the separation dis-
tance h on a logarithmic scale, the calculations are performed using (CC) boundary condi-
tion with σ = 0.02nm2. The solid green line expresses the numerical calculations whereas
the black lines expresses the analytique predictions for both narrow and wide channel
approximations.

From �gure (4.8), it is obvious that the numerical calculation (green solid line) and
the analytical calculation (black solid lines) are well matched.

We can see that, the analytical curve is well aligned with the numerical one, for the
case of NCA and WCA approximations. The coupling coe�cient reaches its maximum
value around h ∼ 3λ, in this �gure the maximum value is about 0.2, i.e. a correction of
20% compared to the non coupling case.
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It is worth to mention the impossibility to describe analytically and in a complete way
the phenomena linked to the electric double layer. We can clearly notice that the validity
of the analytical approximations is limited just for the ranges where h >> λ for WCA
and h << λ for NCA. Thus we must rather consider numerical approaches for a better
understanding of EDL, for more details on the numerical evaluations see appendix (7.10).

Regarding the impact of the boundary conditions on the coupling parameter ξ, it is im-
portant to evaluate this parameter within the (CC), (CP) and (CR) boundary conditions
mentioned earlier, in order to compare and determine their in�uence on ξ.
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Figure 4.9: The coupling parameter ξ variations as function of h on a logarithmic scale, the
calculations are performed using (CC), (CP) and (CR) boundary conditions, for (CC) the
surface charge density σ = 0.02nm−2, whereas for (CP) boundary condition the potential
at the surface ϕ0 = −3.39, for (CR) the parameters as chosen in a way that for large
separations the (CR) curve match the (CC) curve.

It is quite obvious that the various boundary conditions are relevant for very small
separations, where we can see that the coupling coe�cients take di�erent values for each
boundary condition, with more realistic values given by (CR) boundary condition.

All the curves converge towards the maximum value, meanings that the di�erent
boundary conditions have a very small e�ect on ξ, in the range of separations where
h ∼ 3λ as shown in the �gure (4.9). It is more convenient to use afterwards the constant
charge boundary condition (CC) to evaluate the forces at the maximum value of ξ.

Since the charge-�ow coupling may modify the physical characteristics of the system.
Our following objective is to study the new properties that emerge from the coupling
e�ect on the viscous damping force as well as the electrokinetic lifting force, applied on
the lower surface of the sphere during its motion in the quasistatic case.
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4.6 Electrostatic repulsive force

The static repulsive force is derived from the surface integration of the excess osmotic
pressure [104�106] given by,

ΠO = kBT (ne − 2n0) (4.37)

= 2n0kBT

(
coshϕm − 1

)
, (4.38)

where ne = 2n0 cosh(ϕm) and ϕm are the salt density excess and the electrostatic potential
at midplane respectively. For more insights on the excess osmotic pressure see appendix
(7.11))

Using the surface element of integration dS = 2πRdh (Derjaguin approximation (3.7)),
the static repulsive force can be given by [107],

K(h0) = 2πR

∫ ∞

h0

dhΠO(h). (4.39)

Note that for larger distances where h >> λ the potential vanishes, as a consequence
the disjoining pressure as well as the repulsive force vanishes.

Experimentally the repulsive force is measured by simply making contact between the
AFM sphere and the sample, we avoid any vertical or radial motion of the sphere, using
small frequencies of the vibration.

This force is very useful to determine the surface charge density as well as the di�use
layer thickness, of the symmetric system used in the experiments. For this purpose we
�t the static repulsive force which expresses the elastic behavior of the sample, with the
theoretical predictions K.

Practically we change the values of the parameters λ and σ, until we get the right
theoretical curve which �ts well the experimental data �gure (4.10), where the surface
charge density of the lower sphere surface is estimated by 0.028nm−2 and the di�use layer
thickness by 47nm.

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●●

●●
●

●●

0 50 100 150 200

0.5

1

5

10

50

100

h0(nm)

K
(n
N
)

Figure 4.10: Plot of the static repulsive force K as a function of h0. The blue color
designate the theoretical predictions while the black circles expresses the experimental
�ndings. The experimental data are averaged so that each point corresponds to the
average value of 100 measured values. The parameters used for the �tting are σ =
0.028nm−2 and λ = 47nm respectively.
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The static repulsive force gives rise to a restoring force −K0Z, which tends to coun-
terbalance the static repulsive force, where K0 is an e�ective spring coe�cient [61].

Since the restoring force is a consequence of the static repulsive force, the spring
coe�cient can be established from the derivation of the repulsive force with respect to
the radial coordinate r as,

K0 = −dK
dr

= 2πrΠO. (4.40)

The sti�ness constant K0, which expresses the elastic e�ects of the electrolyte solution
con�nement is not going to be studied in this work, the focus is rather on the viscous
e�ects only.

4.7 Electroviscous Force

The measurements of the electroviscous force, which rises from the electrolyte sample
con�nement, are made by an AFM sphere vibrating vertically near to its resonance fre-
quency, with a sinusoidal motion Z = A sin(ω0t). The constant amplitude of vibrations
is very small compared to the �lm width h (A << h) [108],

The tip velocity can be expressed as,

V = Ż(t) = Aω0 cos(ω0t), (4.41)

where ω0 and A are the vibrations sphere frequency and amplitude respectively. The e�ect
of the coupling parameter ξ, can be evaluated from the hydrodynamic pressure resulted
from the integration of the modi�ed pressure gradient over the channel height,

P (h) = 6ηV R

∫ ∞

h

dh′

h′3
1

1− ξ(h′)
, (4.42)

we choose h as a variable of integration just for convenience. In the absence of the
charge-�ow coupling the Pressure reads as,

P0(h0) =
−3ηV R

h20
, (ξ = 0), (4.43)

this pressure vanishes quickly for large radial distances.
The electroviscous force is given simply by the surface integral of the pressure P (h),

with an elementary surface element of integration dS = 2πRdh,

F (h0) = −2πR

∫ ∞

h0

dhP (h), (4.44)

this latter can be reexpressed as an electroviscous drag coe�cient Γ, times the imposed
velocity V and we write F (h0) = −ΓV [61] with,

Γ = −πηR
∫ ∞

h0

dh

∫ ∞

h

dh′

h′3
1

1− ξ(h′)
. (4.45)

In the absence of the coupling the viscous force F0, is proportional to the hydrodynamic
drag Γ0. Where Γ0 = 6πR2η/h0 which is larger then the Stokes drag coe�cient by a factor
of R/h0 1.

1The drag force exerted on spherical objects with very small Reynolds numbers moving in a viscous
�uid
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To check the relevance of our theoretical model, which attempts to predict the viscous
drag enhancement by mean of the charge density e�ect. We compare the electroviscous
drag coe�cient Γ measured experimentally from squeezing out the electrolyte solution
sample, with the theoretical one resulting from equation (4.45).
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Figure 4.11: Plot of the drag coe�cients variations as a function of h0 on a logarithmic
scale. With σ = 0.028nm−2 and λ = 47nm. The red color refers to the viscous drag coef-
�cient while the green color expresses the electroviscous drag coe�cient. The open circles
account for the experimental data while the solid lines on the theoretical predictions. The
experimental data are averaged, so that each point corresponds to the average value of
100 measured values.

Figure (4.11) shows a comparison between the experimental (open circles) and theo-
retical (solid lines) drag coe�cient, in the presence (green) and the absence (red) of the
charge �ow-coupling. For the case of viscous drag, we can notice good agreement between
the experimental �ndings and the theoretical prediction.

For the electroviscous drag coe�cient, we notice a disagreement between the experi-
mental �ndings measured at ω0 = 100Hz and the theoretical predictions. The measured
coe�cient is bigger then the theoretical one, especially for small separations. For lager
separations the experimental curves tend towards the curve which describes the viscous
drag coe�cient, this translates the fact that the charge-�ow coupling in the bulk tends
towards zero, consequently the tip of the AFM measures the viscous force only.

The �gure (4.11) provide a proof of the frequency dependence of the electroviscous
response, especially for small separations. Since the relaxation time of the charge current
is very small, the frequency dependence clearly indicates that the charge is not the relevant
quantity to predict the experimental �ndings.

The missing quantity is the salt density of the electrolyte solution, in chapter 5 we deal
with the e�ect of this quantity in details through the salt-charge-�ow coupling parameter.

4.8 Electrokinetic lift force

Prieve and coworkers following their study on latex microspheres motion in a liquid so-
lution, they noticed the generation of a repulsive force when a charged particle moves
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parallel along a charged macroscopic surface. This force commonly known as electroki-
netic lift force appears to act in the normal direction to the microspheres surface [73,74].

In this section we attempt to study this force, through a sliding motion of a sphere
parallel to the substrate. In order to provide an analytic expression for this force in the
wide and narrow channel approximations, to compare it afterwards with the lift force
measured experimentally.

Let's consider a con�ned electrolyte solution between a substrate and a sphere, moving
along the radial direction parallel to the substrate, both the lower sphere surface and the
substrate carries the same charge density σ (symmetric geometry), �gure 1.8.

The sliding motion induces a linear shear �ow in the radial direction given by,

vs =
z

h
V, (4.46)

where V is the sphere vibrations velocity, considered negligible given the small frequencies
ω0 ∼ 10Hz used in the experiment,

V = V0Cos(ω0t) (4.47)

V ≃ V0. (4.48)

The linear shear �ow is associated with a pressure �eld, generated by the sphere
motion, this latter is given by,

P0 =
ηV

R

(
R

h0

) 3
2
(
6

5

ρ̂

ĥ2
+O(

h0
R
)

)
cos(θ), (4.49)

this equation represent the solution of the non linear Reynolds equation [109], where R
is the radius of the sphere, η the dynamic viscosity, h0 the minimum distance sphere-
surface, θ the polar angle, r̂ is a reduced radial coordinate r̂ = r/

√
Rh0 and ĥ the reduced

separation distance [90] given by,

ĥ =
h

h0
= 1 +

ρ̂2

2
, (4.50)

this expression for ĥ is valid only in the lubrication zone where h0 << R, regarding the
speed of the sphere in the radial direction.

It is already known that the relaxation time of the charge current, is very small
compared to the characteristic time of the sphere vibrations (see appendix (7.12) for
more details on the charge current relaxation time), therefore we can say that the charge
current is negligible Jc = 0 and we write,

eE =
Lcv

Lcc

∇P0, (4.51)

since the charge advection by the shear �ow vanishes, in a symmetric geometry where the
charge density on the lower sphere surface and the substrate is the same,

LV =
1

h

∫ h/2

−h/2

dzzρ1(z)− σ2, (4.52)

where σ2 is the surface charge density of the sphere moving at the velocity V , and ρ1(z)
is the charge density pro�le of the immobile substrate, with

∫
ρ1(z)dz =

∫
ρ2(z)dz = σ2.
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According to Bike and Prieve, the electrostatic contribution to the disjoining pressure
is dominant. According to this assumption, we aim to determine the electric lift force
generated from the radial electric �eld, then study the coupling between the charge density
and the �ow, to see whether the coupling has a signi�cant e�ect on the lift force or note.

The lift force results from the normal component of the stress tensor acting on the
sphere surface,which can be de�ned as,

σnn = P0 +
ϵ

2
E2

||, (4.53)

where E|| is the radial part of the electric �eld, and ϵ is the permittivity of the medium
considered homogeneous and constant. The lift force is given by the surface integral of
the stress tensor as,

F =

∫
dSσnn = − ϵ

2

∫
rdrdθE2

||. (4.54)

Owing to the dependence of P0 on the angle θ 2 the integral of the antisymmetric
pressure over dS vanishes.

Inserting the coupling parameter calculated from Onsager coe�cients, in the pressure
gradient ∇P and performing the surface integral one gets,

F = −(24
√
6ηV ϕ0α)

2Rπ3λ4

125h30kBT lB
Γ(

σ

n0h0
). (4.55)

The �rst term in (4.55) recovers the result of Bike and Prieve, that was found for a su�-
ciently large separations [73, 74]. The second term describe the surface charge correction
to the lift force, for large distances where h0 >> σ/n0, we get Γ(0) = 1, a full expression
of the correcting function Γ is given by,

Γ(x) =
(5x+ 4)

x2(2x+ 1)
[2x(3 + 6x+ x2) + 3(1 + 3x+ 2x2) ln(1/(x+ 1))], (4.56)

where x = σ/n0h0.
For small distances where h0 << σ/n0, using Taylor expansions one �nds,

Γ(x) ∼ 16

5x2
, (4.57)

thus the lift force at small separations varies as 1/h0,

F = −(3ηV ϕ0α)
2Rπ

40h0kBT l3Bσ
2
. (4.58)

Figure (4.12) shows the variations of the lift force predicted by our theoretical model,
as a function of the separation between the lower sphere-substrate surfaces. The solid line
refers to the total force given by equation (4.55).

The black dashed line translates the variations for su�ciently large separations where
the force varies as 1/h30, the blue dashed line indicates the variations for very small
separations where the force varies as 1/h0.

2The pro�le of the pressure is antisymmetric P0(r, θ) = −P0(r, π − θ)
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Figure 4.12: Plot of the theoretical lift force as a function of the channel height h0. Where
the surface charge density σ = 0.02nm−2 and the screening length λ = 30nm. The solid
line refers the total force (4.55), whereas the black dashed line refers to Bike �ndings and
the blue dashed line to the force at small separations.

The black dashed line in the �gure expresses the analytic results found by Bike et
al [74], for a force measured between two su�ciently distant spheres, this latter coincides
perfectly with our analytic model.

As it has been mentioned before, the main interest for the forces study lies in the
small separations range. For the case on the lift force, the theoretical predictions (4.55)
have shown variations following the law h−1, to check the relevance of these predictions,
we compare them simply with the numerical calculations.
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Figure 4.13: Plot of the lift force variations as a function of the channel height h0 on a
logarithmic scale. The black curve indicates the numerical evaluations without coupling
e�ect, the blue one refers to the numerical lift force with the coupling e�ect, the dashed
red line indicates the curve found by Bike and Prieve.

Figure (4.13) shows a comparison, between the curves of the lift force calculated analyt-
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ically and numerically, with arbitrarily chosen parameters σ = 0.02nm−2 and λ = 30nm.
For su�ciently wide separations we notice a good agreement between the analytical curve
(red) and the numerical one, the variations of both curves follow the law 1/h30 predicted
by Bike and Prieve [74].

For small separations we notice that the numerical curve shows a plateau, whereas the
theoretical model revealed a variations as 1/h0. This means that the approximation used
to calculate the analytical lift force for small distances is irrelevant and the law 1/h0 does
not describe the physical reality.

The discrepancy obtained for small distances, is due to the e�ect of overlapping poten-
tials, i.e. The analytical function of the lift force (4.58), for small separations is calculated
from a potential, which does not take into account the e�ects of overlapping. While in
the numerical calculation the overlapping is taken into account through Jacobi's functions
(2.16).

The blue curve shows the coupling e�ect on the lift force, we notice an enhancement
of the lift force for small separations where the charge-�ow coupling is signi�cant, this
enhancement disappears in the bulk region for large separations.

Given that the numerical calculations are more relevant for small separations. In the
following we rely on the numerical �ndings to �t the experimental curve of the lift force.

To �t the experimental data, it is necessary to �nd the right values of Debye length λ
and the surface charge density σ. For that we proceed in the same way used to determine
these two parameters in the case of the electroviscous force,i.e, We �t the static repulsive
force measured experimentally by the theoretical model which describes the repulsive force
K (4.39).
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Figure 4.14: Plot of the static repulsive force K variations as a function of h0 on a
logarithmic scale. The blue circles refers to the averaged experimental data while the red
one is account for the theoretical predictions. The parameters used for the �tting are
σ = 0.0055nm−2 and λ = 52nm. The experimental data are averaged so that each point
corresponds to the average value of 100 measured values.

Figure (4.15) shows a comparison, between the experimental �ndings for the lift force
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(black circles) and the numerical evaluations given by the solid (solid lines). The blue
curve shows the e�ects of the charge-�ow coupling on the lift force, the coupling e�ect is
small and has a little e�ect on the force.
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Figure 4.15: Comparison between the numerical evaluation and the measured lift force
with respect to the separation distance h0 on a logarithmic scale. With σ = 0.0055nm−2

and λ = 52nm. The black circles indicates the averaged experimental �ndings where each
point corresponds to the average value of 100 measured values, while the blue and the
black curves designates the theoretical predictions with and without coupling respectively.

Despite the fact that the experimental curve follows the law of 1/h30 for very large
separations, the di�erence between the latter and the numerical curve remains signi�cant,
this di�erence is noticed in previous works by Bike and Prieve [73,74] and it may be linked
to the overestimation of the electrical conductivity of the medium expressed in our case
by the coe�cient Lcc.

This discrepancy between the theoretical predictions and the experimental �ndings
con�rms the previous results found by Bike and Prieve [73,74], Cox [66] and Schnitzer et
al [75], and it shows that the charge-�ow coupling is insu�cient to describe the measured
lift force.

From �gure (4.15), one can conclude that the charge density only, is insu�cient to
interpret the experimental �ndings for the lift force, thus it is necessary to take into
account the salt contained in the electrolyte solution to properly describe this force.
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4.9 Conclusion

In this chapter, we �rst studied the e�ect of the charge-�ow coupling on the electroviscous
force, in the case of a sphere squeezing a sample of an electrolyte solution against a
substrate, then we investigated the electrokinetic lift fore due to the motion of a sphere
parallel to a substrate.

The investigation of both phenomena, were based on an assumption which stipulates
that the charge density pro�le always remains in the equilibrium state, thus the Onsager
coe�cients related to the charge density were calculated in the equilibrium state.

The �rst conclusion that can be drawn from this study, is the impossibility to study
the forces generated from the perturbations of the electric double layer, by an analytical
model that remains valid for all the separations between the sphere and the substrate.

As we have seen in the case of the electroviscous force, we notice a qualitative agree-
ment between the theoretical predictions and the experimental �ndings. Quantitatively
we have a di�erence for very small separations. This di�erence can be linked to our ap-
proach based only, on the charge density e�ects without including the compensated salt
density e�ect.

For the case of the lift force also, we have a qualitative agreement regarding the
variations of the force for large distances, but quantitatively we have a very important
disagreement.

Our theoretical prediction, show clearly that the coupling between the charge and the
�ow only, is not su�cient to interpret the experimental �ndings on both forces. This
discrepancy found between the experimental measurements and the theoretical �ndings,
con�rm the conclusions of Bike and Prieve [73,74] and Schnitzer et al [75].

Before concluding on the relevance of our approach, which consists on evaluating the
coupling parameter ξ from Onsager coe�cients calculated at the equilibrium state. We
take into consideration in the following chapter the salt density contained in the electrolyte
solution, which is the missing quantity that the dynamic response interpretation has
revealed, �gure (4.11).

Regarding the calculation of Onsager coe�cients and the di�erent forces in the case of
the salt-charge-�ow coupling. We adopt the same approach which consists in calculating
the coe�cients in the equilibrium state. More details about these calculations are given
in the following chapter.



Chapter 5

Salt-charge-�ow coupling

This chapter describes a preliminary study about the salt-charge-�ow coupling e�ect on
the electroviscous force. Assuming at �rst that the deviations of the salt and charge
densities are very small compared to the equilibrium state, this assumption allows the
calculation of the transport coe�cients at the equilibrium state.

Given the charge current relaxation time τc ∼ 10−6s, that is much smaller than the
typical sphere vibrations time ω−1

0 ∼ 10−2s (Further details are in (7.12)).
Since the charge density is irrelevant to interpret the experimental �ndings for the

electroviscous force as well as the lift force. The salt density contained in the electrolyte
solution, could be the missing element that allows a better description of the electric
double layer in the dynamic case. We de�ne the salt density as the sum of the co-ions
and counterions densities (97),

nt = n+ + n− (5.1)

= 2n0 coshϕ. (5.2)

Figure (5.1) shows the salt density pro�le variations in a symmetric geometry, where the
variations of the electrostatic potential ϕ are given in the framework of (CC) boundary
condition.

-100 -50 0 50 100

2

3

4

5

6

z(nm)

n(
z)
/n
0

Figure 5.1: Salt density variations as a function of z on a linear scale. The pro�le
is calculated in (CC) boundary condition where σ = 0.02nm−2 and λ = 30nm. For
su�ciently large distances the salt density equals to 2n0.
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For two surfaces far enough apart, the salt pro�le consist of the counterions density
close to the surfaces, plus the bulk density 2n0. This quantity is inert n(0) = 2n0 therefore
it must be substituted from the salt density, in order to determine the salt density at the
equilibrium state, used afterwards to calculate Onsager coe�cients. In the superposition
approximation, the integration of the salt over the separation distance h yields 2σ+2n0h.

We assume that the sphere motions force a small quantity of salt n̂0 (from the salt
pro�le at the equilibrium state) to move in the radial direction, at the same time this latter
di�uses and restore the equilibrium state. We consider that the salt density remains close
to its equilibrium state at each moment and we write Js = 0.

The quantity n̂0 is characterized by a non uniform variation in the radial direction,
which makes its analytical derivation very tricky, how can we calculate this quantity? A
relevant question that makes one think on a model that allows to evaluate it.

5.1 Salt-charge and volume currents

The currents Jv, Jc and Js can be written in a matrix form as following,
Jv

Jc

Js

 =


Lvv Lvc Lvs

Lcv Lcc Lcs

Lsv Lsc Lss



−∇P
eE

X

 (5.3)

Same as the case of the charge-�ow coupling, the diagonal coe�cients of the matrix
(L), link each force with its conjugate current, whereas the o� diagonal coe�cients links
the forces to the non conjugate currents.

The sphere's motion advects the salt, producing in turn various processes such as
di�usioosmosis and di�usiophoresis, these processes are further detailed by Onsager coef-
�cients in this chapter.

5.1.1 The volume current

The volume current can be given by the velocity �eld integrated over the channel height,

JV =

∫ h/2

−h/2

v(z)dz, (5.4)

where,
v(z) = vp(z) + vE(z) + vs(z), (5.5)

where vp(z) is the pressure driven velocity, vE(z) is the electroosmotic velocity generated
from the body force eE acting on the ions.

vs(z) is the di�usioosmotic velocity induced from, the non equilibrium thermodynamic
force X (2.32) acting on the ions. this latter force is an entropic force not a body force,
it means that this force can be null on a given region on the system (3.31).

Given the negligible e�ect of the mobility on Onsager's coe�cients (chapter 3, Mo-
bility e�ect). We consider the case of similar mobilities and di�usion coe�cients, i.e,
the conduction and the di�usion of the coions and counterions, is done in the same way
regardless their charge.

µ+n+ + µ−n− = µ(n+ + n−) = µnt (5.6)

D+n+ +D−n− = D(n+ + n−) = Dnt (5.7)
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By taking into account the analytical expressions of the various velocity components
(3.25,3.28, 3.32) and performing the integral (5.4) above one �nds,

Jv = Lvc
eE

η
− Lvv

∇P
η

+ Lvs
X

η
. (5.8)

It is worth mentioning that the coe�cients used in the charge-�ow coupling remains
the same in the case of salt-charge-�ow coupling, by these coe�cients we specify Lvv, Lcc,
Lvc and its symmetrical coe�cient Lcv.

Lvs account for the di�usioosmotic e�ect, this coe�cient describe the advection of the
liquid by mean of the di�usioosmotic velocity pro�le,

Lvs =

∫ h/2

−h/2

H(z)dz, (5.9)

where the di�usiophoretic mobility is given by (3.32).
The relation (5.8) is closed by the incompressibility condition between the volume

current and the imposed velocity V (t).

rV (t)

2
− Jv = 0. (5.10)

In the absence of the charge and salt densities, the sphere vibrations with a velocity V
give rise to a radial pressure gradient ∇P0 = −3ηRV/h20 generated from the liquid �ow.

In the presence of the charge and salt densities this pro�le P0 is subject to a modi�-
cation that can be evaluated afterwards by mean of the coupling parameter ξ.

Jv is a surface density current, for more details about (5.10) see appendix (7.7).

5.1.2 Charge current

The charge current includes the charge density advection by the velocity �eld v(z) in-
tegrated over the channel height, associated with the ions conduction integrated as well
over the channel height,

Jc =

∫ h/2

−h/2

c(z)v(z)dz +

∫ h/2

−h/2

µ

(
nt(z)eE + ρ(z)X

)
dz. (5.11)

Using the general formula of the velocity pro�le components (3.25,3.28, 3.32), and
performing the integral one �nds the expression of the charge current.

This equation is similar to (4.15), except for the third term described by the coe�cients
Lcs, which results from the advection of the charge density by the di�usioosmotic velocity.

Jc = Lcc
eE

η
− Lcv

∇P
η

+ Lcs
X

η
, (5.12)

Lcs expresses a contribution to the charge current induced by the di�usioosmotic
velocity pro�le, combined to the conduction of the charge density by the thermodynamic
force X.

Lcs = 2

∫ h/2

0

dz ρ(z)H(z) + 2µ

∫ h/2

0

dz ρ(z). (5.13)

The relation (5.12) is closed by the continuity equation, allowing to calculate the forces
generated by the charge current, the continuity equation read as,

∇ · Jc = −∂tc. (5.14)
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5.1.3 Salt current

The salt current consists of two contributions, a contribution from the salt current density
js integrated over the channel height, combined with the conduction of the ions within
the sample.

js = n(z)vs(z) + µ

(
ρ(z)eE + nt(z)X

)
. (5.15)

Js =

∫ h/2

−h/2

jsdz, (5.16)

with n(z) the e�ective salt density, derived from the subtraction of the inert salt density
at midplane n(0) from the total salt density nt(z), n(z) = nt(z)− n(0) .

Using the de�nition of the velocity components (3.25, 3.28, 3.32), and performing the
integral given by (4.16), one can �nds,

Js = Lsc
eE

η
− Lsv

∇P
η

+ Lss
X

η
. (5.17)

Lsv account for salt �ow or salt advection carried by Poiseuille �ow.

Lsv =

∫ h/2

0

dzn(z)
(h2 − 4z2)

8
. (5.18)

Lss includes the salt �ow generated by di�usioosmotic velocity vs(z), combined with
ions conduction by X,

Lss = 2

∫ h/2

0

dz

(
n(z)H(z) + µnt(z)

)
. (5.19)

Lsc describes the salt �ow induced by the electroosmotic velocity, combined to the
conduction of the charge density by the body force eE,

Lsc = 2

∫ h/2

0

n(z)f(z)dz + 2µ

∫ h/2

0

dz ρ(z). (5.20)

The relation(5.17), is closed by the salt continuity equation (96,98) given by.

∇ · Js = −∂tN, (5.21)

where the radial salt density N , is given simply by the integration of the salt density over
the �lm width N =

∫
n(z)dz. More details are given in (7.8)

5.2 Analytic expressions of Onsager's coe�cients

In this section we give the analytical expressions of the coe�cients, in the case of wide
channel approximation where the channel height is greater than Debye length, and narrow
channel approximation where the separation is comparable or even smaller than Debye
length.

Afterwards we calculate the salt-charge-�ow coupling parameter analytically, in order
to compare it with the numerical evaluations, to see the relevance of our theoretical model.
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5.2.1 Wide channel approximation WCA

As mentioned before the wide channel approximation, is an approximation used in order
to get analytic expressions of the coe�cients in case where h >> λ. In this approximation
the overlap between the potentials of the surfaces is not taken into account, because of
the large distance which separates the two solid surfaces.

Given the larger separation between the surfaces, we neglect the e�ect of one of the
surfaces, considering just a single solid surface located at z = 0, in a contact with an
electrolyte solution where the counterions occupy the half plane z > 0 (in�nite half space
geometry). The analytic expression of the electrostatic potential remains the same as in
(2.10).

It is worth to mention that the coe�cient, which involve the salt density are calculated
from the e�ective salt density at the equilibrium state, after subtracting the bulk salinity
2n0 from the total salt density nt(z).

Onsager Coe�cients in WCA

From the salt pro�le given in �gure (5.1), we have for small separations, the quantity of
counterions close to the solid surfaces is very important and decrease exponentially, to
reach its minimum for distances far enough from the surfaces.

The variations of the di�usiophoretic mobility pro�le [98], are linked to the salt density
pro�le. In fact for very small separations the counterions remains close to the solid
surfaces to ensure σ screening, therefore a very small quantity will be di�used. As one
moves away from the solid surface the counterions get freer and freer, consequently the
di�usion increases before reaching a stationary state where the ions di�usion attained its
maximum.

This variations are well presented in �gure (5.2), which illustrates the variations of
the di�usiophoretic mobility H(z) in linear scale as a function of the separation z.
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Figure 5.2: Di�usiophoretic mobility variations as a function of z on a linear scale. The
pro�le is calculated in WCA, using the boundary condition (CC) with σ = 0.02nm−2 and
λ = 30nm. The variations are relevant in the range of separations where the WCA is
valid h ∼ 5λ.

The coe�cient Lvs describe the di�usioosmotic e�ect [110], given simply by the di�u-
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siophoretic mobility times the channel width h,

Lvs =
h

πlB
ln(cosh(

ξ̂

4
)), (5.22)

these equation shows the linear variations of the di�usioosmotic, with respect to the
channel height, i.e, the quantity of liquid dragged under the e�ect of salt di�usion depends
only on the separation distance. Since the electrophoretic mobility 1

πlB
ln(cosh( ξ̂

4
)) remains

constant.
Lsv is the symmetric coe�cient for Lvs, its account for salt �ow carried by Poiseuille

�ow.

Lsv =
h

πlB
ln(cosh(

ξ̂

4
)), (5.23)

this coe�cient describes, the contribution of the pressure gradient on the salt current
generation, i.e, the advection of the salt density by mean of the Poiseuille �ow caused by
∇P .

The �gure 5.3 shows the variations of the coe�cients Lsv and Lvs, as a function of h.
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Figure 5.3: Plot of Lvs and Lsv as a function of h on a linear scale. the calculations
are performed using (CC) boundary condition, with σ = 0.02nm−2 and λ = 30nm. The
variations are plotted in an range of values where WCA approximation is valid.

The coe�cient Lss combine the salt �ow generated by di�usioosmotic velocity vs(z)
[111], combined to ions conduction by mean of the thermodynamic force X,

Lss = 64n2
0λ

3

(
ln(1− γ2)− γ2

γ2 − 1

)
+
n0h+ σ

3πa
. (5.24)

The �rst term in (5.24), expresses the salt advection by mean of the di�usioosmotic
velocity, it consists of the di�usioosmotic contribution proportional to the di�usiophoretic
mobility ln(1 − γ2). The second term represent the electroosmotic contribution propor-
tional to the electrophoretic mobility γ2/γ2 − 1.

Note that the �rst term is independent on h, which means that the advection of salt
by vs(z) in the WCA remains always constant.
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The third term describes simply, the conduction of the salt content by the thermo-
dynamic force X, it is characterized by two contributions, one from the surface charge
density σ, and the other from to the bulk conduction 2µn0h.

200 300 400 500 600
0.00

0.01

0.02

0.03

0.04

h(nm)

L s
s

Figure 5.4: Plot of Lss variations as a function of h on a linear scale. The calculations
are performed using (CC) boundary condition, with σ = 0.02nm−2 and λ = 30nm. The
black solid line refers to the �rst term in (5.24), the dashed red line expresses the second
term, whereas the blue solid line refers to the combination of both contributions. The
variations are plotted in an range of values where the WCA approximation is valid.

The black solid line in the �gure above, refers to the �rst term in Lss, while the red
dashed on to the second term which expresses the dominance of the bulk conduction for
large separations. The blue solid line expresses the coe�cient Lss.

The coe�cient Lsc describe salt adviction by The electroosmotic velocity vE(z), com-
bined to the charge density conduction by the body force eE,

Lsc = −64n2
0λ

3

(
γ

−1 + γ2
+ arctanh(γ)

)
+ 2µσ. (5.25)

The coe�cient Lcs symmetric to Lcs, describe the charge advection by the di�usioos-
motic velocity vs(z), combined to the charge density conduction by the thermodynamic
force X.

Lcs = −64n2
0λ

3

(
γ

−1 + γ2
+ arctanh(γ)

)
+ 2µσ. (5.26)

The variations of these two coe�cients, which they are independent on the separation
distanceh are presented in the �gure below.
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Figure 5.5: Plot of Lsc and Lcs variations as a function of h in a linear scale. The calcula-
tions are performed using (CC) boundary condition, with σ = 0.02nm−2 and λ = 30nm.
The black solid line refers to the �rst term in (5.26), the dashed red line expresses the
second term, whereas the blue solid line refers to the combination of both contributions.
The variations are plotted in an range of values where the WCA approximation is valid.

The black solid line in �gure 5.5 refers to the �rst term in Lcs, while the red dashed one
indicates the charge density conduction and the blue solid line expresses the combination
of both contributions.

For more details on Onsager's coe�cients expressions in the WCA, see appendix (7.9)

5.2.2 Narrow channel approximation NCA

The study of an electrolyte solution, con�ned at distances comparable or even smaller
than the Debye length λ, is of a primary importance to highlight the new proprieties,
that emerges from the electrostatic potential overlapping.

For this purpose let's consider a channel formed by two surfaces located at z = −h/2
and z = h/2 respectively, where h ≤ λ. When we work on such distances new properties
emerge from the overlapping, that occur between the potentials (2.16) of the surfaces,
and a�ect the viscous and electrical properties of the liquid medium. To investigate these
proprieties, we use the electrostatic potential given by the equation (2.16).

Since the salt density is involved in the coe�cients calculation, it is necessary to remind
that the inert quantity of salt must be subtracted from the salt density. We have seen
that in the case of a wide channel approximation the subtracted quantity was 2n0 [110],
for a symmetrical geometry and in the narrow channel approximation the quantity of salt
that must be subtracted is n(0, k) which represent the quantity of salt at midplane.

Onsager Coe�cients in N.C.A

An approached method relies on Taylor expansions, can be used in order to get the
analytic expressions for the coe�cients, but this approach is limited just for very small
separations h. By expanding the Jacobi's function cd in (2.16) to the second order in z
one readily get,

ϕ(z, k) = ln(k)− 4πlBσ
z2

h
, (5.27)
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with the parameter k given by,

k = ld +
√

1 + l2d, (5.28)

ld = σ/n0h is the Dukhin length, which expresses the ratio between the bulk to the surface
charge density contributions, to the electric conductivity.

Like the case of charge-�ow coupling, the surface charge ρ(z) is considered to be an
homogeneous gas in the NCA. Its analytical expression can be obtained, from the �rst
order of sinhϕ (2.5) with respect to z,

ρ = ϵ∂2zψ = 2σ/h. (5.29)

For the e�ective salt density, we expand coshϕ in (5.2) to the second order with respect
to z,

n̂ =
σ2

n0h2
z2

λ2
(5.30)

= n0
l2d
λ2
z2. (5.31)

Using (5.29), (5.31) and the general de�nitions of the symmetrical coe�cients (5.9)
and (5.18), that translate the di�usioosmotic e�ect as well as the pressure induced salt
current, we can easily derive their analytical expressions given by,

Lsv = Lvs =
σ2h3

240n0λ2
, (5.32)

we have seen in the case of the wide channel approximation, that both coe�cients are
simply given by the di�usiophoretic mobility times the channel height h. In the present
case we notice that these coe�cients varies as h3, these shifts in the height dependency
between the two cases are due to overlapping e�ects.
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Figure 5.6: Lsv and Lvs variations as a function of h on a linear scale. The calculations
are performed using (CC) boundary condition with σ = 0.02nm−2 and λ = 30nm. The
variations are plotted in an range of values where the NCA approximation is valid.
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The advective part (�rst term) of the coe�cient Lss, varies with the separation distance
as h3, while the second term varies linearly with h. The second term is not dominant as
in the case of WCA, and has a little e�ect as shown in the �gure (5.7) (red dashed line).
The shift in the channel height dependency in NCA and WCA cases, is due to overlapping
e�ects.

Lss =
σ4h3

4032n2
0λ

4
+
n0h

√
1 + (σ/n0h)2

3πα
. (5.33)
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Figure 5.7: Plot of Lss variations as a function of h on a linear scale. The calculations are
performed using (CC) boundary condition, with σ = 0.02nm−2 and λ = 30nm. The black
solid line expresses the �rst term in (5.33), the dashed red line expresses the second term,
while the blue solid line refers to the combination of both contributions. The variations
of Lss are plotted in an range of values where the NCA approximation is valid.

The same remark is applicable on the coe�cients Lcs and Lsc. Indeed the advective
part varies with the separation distance as h2, while the conductive part (second term in
5.34) remains the same as in WCA, since coulomb force eE conduction a�ect all the ions.

Lcs = Lsc =
σ3h2

120n0λ2
+ 2µσ. (5.34)
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Figure 5.8: Plot of Lsc and Lcs variations as a function of h on a linear scale. The calcu-
lations are performed using (CC) boundary condition, with σ = 0.02nm−2 and λ = 30nm.
The black solid line refers to the �rst term in (5.34), the dashed red line expresses the
second term, whereas the blue solid line refers to the combination of both contributions.
The variations are plotted in an range of values where the NCA approximation is valid.

5.3 Salt-charge-�ow coupling parameter ξ

After our attempt to interpret the experimental results, of the eletroviscous force by the
charge-�ow coupling only. In the following step we take into account the e�ect of salt
density, and we calculate the coupling coe�cient of the salt-charge-�ow to investigate its
relevance to interpret the experimental �ndings.

As in the case of charge-�ow coupling where we consider that Jc = 0. For the salt-
charge-�ow coupling we consider that the vertical pro�le of the salt density remains on
its equilibrium state, assuming a relative motion of the sphere characterized by low fre-
quencies, which advects a small amount of salt δn in the radial direction. This advected
quantity di�uses back to restore the equilibrium state, and we write,

Js = 0. (5.35)

In the case of a liquid sample that contains neither charge nor salt, the radial pressure
gradient that results from the vertical sphere motions is given by ∇P0,

∇P0 = −6ηrV/h3, (5.36)

the presence of the charge and salt densities modi�es the radial pressure gradient, this
modi�cation can be evaluated by mean of the coupling parameter ξ.

From the modi�ed pressure gradient ∇P , we can calculate the pressure then the
electroviscous force. The expression of the modi�ed pressure gradient can be deduced
using Onsager matrix,

∇P = L−1
vv Jv, (5.37)

Jv = Lvv∇P0 describes the volume current, induced only from the liquid �ow in the
absence of charge and salt. ∇P is the modi�ed or enhanced pressure gradient. L−1

vv

expresses the �rst element of Onsager's inverse matrix, only this element is taken into
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account, since we deal only with the force ∇P , this component translates the e�ect of
charge and salt on the force ∇P ,

∇P = L−1
vv Lvv∇P0. (5.38)

The coupling parameter which combine the e�ects of the charge, salt and volume cur-
rents, can be derived from the combination of the currents. The charge current relaxation
time is very short compared to the oscillations sphere (7.12), thus the charge current
vanishes very quickly Jc = 0.

For the salt current, the di�usion of δn advected under the sphere motion, allows
the reestablishment of n(z) equilibrium by backdi�usion , thus we write Js = 0. The
governing equations for the currents became,

Jv = Lvc
eE

η
− Lvv

∇P
η

+ Lvs
X

η
. (5.39)

0 = Lcc
eE

η
− Lcv

∇P
η

+ Lcs
X

η
. (5.40)

0 = Lsc
eE

η
− Lsv

∇P
η

+ Lss
X

η
. (5.41)

A simple way to derive the expression of the coupling parameter ξ, is to reexpress
the electric �eld from equation (5.41) as function of X and eE, and insert it in equation
(5.40) and (5.39) to get,

Jv = −
(
Lvv −

LcvLvc

Lcc

)∇P
η

+

(
Lvs −

LvcLcs

Lcc

)
X

η
. (5.42)

Js = −
(
Lsv −

LscLcv

Lcc

)∇P
η

+

(
Lss −

LcsLsc

Lcc

)
X

η
, (5.43)

the three equations have been reduced to two equations, which only depend on two forces
∇P and X, with four coe�cients which account for the e�ects of charge, salt and the
�ow. We can reexpress these equations as,

Jv = −LV V
∇P
η

+ LV S
X

η
(5.44)

0 = −LSV
∇P
η

+ LSS
X

η
, (5.45)

The coe�cients LV V ,LV S,LSV and LSS, describe the Poiseuille �ow, di�usioosmotic
and the salt driven �ow by ∇P and the salt advection coe�cients. The corrections in
(5.42) and (5.43) discard the contributions from the charges and salt to the main processes,
therefore the coe�cients listed in (5.44 and 5.45) are smaller than the uncorrected ones.

Figure (5.9) shows the variations of, the corrected and the uncorrected di�usioosmotic
coe�cients (right) as well as the salt conduction (left), as a function of h. The small
di�erence between Lss and LSS is due to the small values of Lcs (5.5 and 5.8).
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Figure 5.9: Plot of Lss, LSS (left) and Lsv, LSV (right) variations as a function of h
on a linear scale. The calculations are performed using (CC) boundary condition, with
σ = 0.02nm−2 and λ = 30nm. We notice in both �gures that the variations of the
corrected coe�cients LSS and LSV are smaller compared to the uncorrected coe�cients
Lss and Lsv.

Inserting the expression of X from (5.45) in (5.44) and using the incompressibility
condition (7.7), one can readily derive the coupling parameter expression1,

ξ =
LSS(Lvv − LV V ) + LV SLSV

LvvLSS

=
LssLcvLvc − 2LcsLcvLsv + LccLsvLvs

LccLssLvv − LvvLcsLsc

,

(5.46)

this result is general and it expresses the coupling between salt, charge and liquid �ow.
Neglecting some of the o� diagonal coe�cients which describe the salt or the charge

in (5.46), one can deduce the coupling parameters for the charge-�ow coupling as well as
salt-�ow coupling. Indeed if we consider that the o�-diagonal elements that describe the
salt e�ect are zeros, we recover the expression of the charge-�ow coupling ξc,

ξc =
LcvLvc

LccLvv

. (5.47)

In case we consider that the o�-diagonal elements which describe the charge e�ect are
zeros, we deduce the expression of the salt-�ow coupling ξs,

ξs =
LsvLvs

LssLvv

. (5.48)

1We can deduce the expression of the coupling parameter based on the matrix calculation from the
relation ξ = 1− 1/LvvL

−1
vv
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Figure 5.10: Plot of the salt-charge-�ow coupling parameter ξ variations as a function of
h on a logarithmic scale. The calculations are performed using (CC) boundary conditions
with σ = 0.02nm−2 and λ = 30nm. The dashed black lines refers to the analytic expression
of ξ in WCA as well as NCA, whereas the blue solid line refers to the numerical evaluations
(7.10).

The salt-charge-�ow coupling coe�cient varies as h−2 for su�ciently large distances
as the black dashed line shows in (5.10). While for small separations the coe�cient is
marked by a plateau as indicated by the black dashed line. The analytic expressions for
the parameter ξ in the WCA as well as NCA are given in the appendix (7.13).
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Figure 5.11: Coupling parameters ξ variations as a function of h on a logarithmic scale.
the blue curve refers to the salt-charge-�ow coupling, the green one to the charge-�ow
coupling and the red curve to the salt-�ow coupling. The coe�cients are calculated using
(CC) boundary condition with σ = 30nm−2.

Figure (5.12) shows the variations of the coupling parameter ξ as a function of h, the
slopes of the curves shows that ξ ∝ h−2 in the case of wide channel approximation. For
small separations the dependence in h is di�erent from one curve to another.

It is also remarkable how the salt-�ow coupling ξs is very weak, compared to ξ and ξc
especially for small separations. This variations can be explained by the signi�cant values
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that LssLvv may take compared to the coe�cients LvsLsv (5.48) and slow back di�usion
of the salt.

The salt-charge-�ow coupling parameter take signi�cant values and provide an en-
hancement of 99%, this value can be linked to very small values that the denominator ξ
parameter may take, i.e. the values of the quantity (LssLcc − L2

cs) , in the denominator
of the parameter ξ worth very small values for small separations.

In order to explain this �ndings, let's compare the variations of the salt as well as
the charge densities. Since the e�ective salt density n(z) is obtained by subtracting the
midplane density from the total salt density, one can deduce that the salt density pro�le
n(z) is comparable to the charge density pro�le ρ(z), particularly in the range of small
separations, as shown in the �gure below.
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ρ(z)
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Figure 5.12: Comparison between the variations of n(z) and ρ(z) as a function of z on
a linear scale. The calculations of the densities are performed using the (CC) boundary
condition with σ = 0.02nm−2 and λ = 30nm.

Considering the variations of n(z) and ρ(z) in �gure (5.12), and the coe�cients cal-
culated at the equilibrium state. One can deduce easily that LssLcc ∼ L2

cs (5.46), which
explain the small values of the quantity (LssLcc − L2

cs).

5.4 Electroviscous force

In order to calculate the viscous force enhancement resulting from the salt-charge-�ow
coupling, we follow the same approach used in the case of charge-�ow coupling. Starting
from the enhanced gradient of pressure given by,

∇P = ∇P0
1

1− ξ
, (5.49)

and calculating the corrected pressure by integrating (5.49), then go up to the viscous
force [61], used afterwards to �t the experimental �ndings,

F (h0) = −2πR

∫ ∞

h0

dhP (h). (5.50)

From (5.49) one can deduce that the higher coupling e�ect occur when ∇P > ∇P0,
and the lower e�ect when ∇P ∼ ∇P0. The coupling parameter ξ must be less than 1 in
order to maintain the system stable.
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The lower sphere surface charge density σ as well as the di�use layer thickness λ, used
in the experiment can be determined by �tting the electrostatic repulsive force with the
analytical predictions K (4.39) as we did in the case of charge-�ow coupling, illustrated
in �gure (4.10).

The electroviscous force theoretical predictions based on the salt-charge-�ow coupling
are compared to the experimental �ndings used in the previous chapter. For this purpose,
we use the same �tting parameters σ = 0.028nm−2 and λ = 47nm derived from the �gure
(4.10).
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Figure 5.13: Plot of the drag coe�cient variations as a function of the separation h0
on a logarithmic scale. The surface charge density σ = 0.028nm−2 and the di�use layer
thickness λ = 47nm. The red color refers to the hydrodynamic drag coe�cient, while the
green color expresses the electroviscous drag coe�cient generated from the salt-charge-
�ow coupling. The open circles account for the averaged experimental data, where each
point corresponds to the average value of 100 measurements. The solid lines refers to the
theoretical predictions.

Figure (5.13) shows a comparison between the experimental �ndings (open circles),
and the theoretical predictions of the drag coe�cient (solid lines), in the presence (green)
and the absence (red) of the coupling e�ects. The experimental hydrodynamic drag
match the theoretical predictions, whereas the theoretical prediction over estimate the
electroviscous drag especially for small separations where the coupling parameter ξ ∼ 1.
For lager separations the electroviscous drag curve tends to the hydrodynamic drag curve,
which characterizes the drag in the bulk region.

The theoretical over estimation of the electroviscous drag coe�cient, is simply linked
to high values of the parameter ξ therefore to the quantity (LssLcc−L2

cs) which take very
small values.

The small values of (LssLcc − L2
cs) in ξ, are the result of our assumptions on the salt

density pro�le as well as the salt current. Therefore we can say that the sphere vibrations
lead to a signi�cant and permanent deviation of the salt density from its equilibrium state,
resulting in a signi�cant salt current Js ̸= 0,given the slow back di�usion of the salt.

The only possible way to increase the value of the quantity (LssLcc − L2
cs), is by

evaluating the coe�cients depending on the salt in the non equilibrium state, since ρ(z)
remains always in the equilibrium state.
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It is worth noting that the theoretical predictions of the lift force calculated using
the salt-charge-�ow coupling parameter, shows an overestimated values compared to the
experimental results, in the same way as in the case of the electroviscous force, illustrated
in the �gure above.

5.5 Conclusion

In this chapter we studied the e�ect of the salt-charge-�ow coupling, on the electroviscous
force resulting from the con�nement of an electrolyte solution sample between an AFM
sphere and a substrate.

The transport coe�cients are calculated, using the assumption of a charge and salt
densities at the equilibrium state in the normal direction to the substrate.

The �rst conclusion that can be drawn from this study, is the impossibility to study
the forces generated from the perturbations of the electric double layer, by an analytical
model which remains valid for all the separations between the sphere and the substrate.

The salt-charge -�ow coupling parameter ξ calculated from the transport coe�cients
in the equilibrium state, revealed an over estimation of the coupling especially for small
separations, this over estimation is due to the low values of the quantity (LssLcc − L2

cs),
this conductivity must be increased in order to �t well the the experimental �ndings of
the electroviscous force.

The discrepancy between theory and experiment, clearly indicates the irrelevance of
our assumptions, based on a salt density pro�le which remain on its equilibrium state,
under the sphere vibrations. Thus we conclude that the coe�cients which depend on the
salt density, must be calculated in the non equilibrium state.

In the following chapter we show that the dynamics of the salt content is signi�cantly
more complex. In particular we characterize the non equilibrium state of the compensated
ions. and we give a method which may lead to a better calculation of the coe�cients in
the non equilibrium state.



Chapter 6

Perspectives

In this chapter we discuss the out-of-equilibrium state of the ions in thin �lm. We show
that salt density deviates too much from their equilibrium state, under the e�ect of the
sphere vibrations. As a consequence, the transport coe�cients Lij must be calculated in
the out-of-equilibrium state. Meaning that, Onsager relations that link the currents to
the forces, depend in a non linear way to the sphere vibrations.

Finally propose an iterative method to calculate Onsager coe�cients, which depend
on salt in the out of equilibrium state.

6.1 Out-of-equilibrium ion densities in a narrow chan-

nel

It has been concluded from the results of the previous chapter, that the quantity of salt
advected from the salt pro�le in the lubrication zone, is very important and gives rise to
signi�cant exchanges with the outre zone .

That is to say that the densities n± in the lubrication zone, are signi�cantly modi�ed
and remain always far from their equilibrium state, since it depends strongly on the the
sphere vibrations (time dependence ∂tn ̸= 0). Therefor the out of equilibrium salt pro�le
often does not reach its steady state.

The salt density remains far from the equilibrium state, because of the weak thermo-
dynamic force X which does not succeed in counteracting the salt advection, given the
slow backdi�usion of the salt.

In the case of sliding motion for example, the sphere according to its radial motion
drags a signi�cant quantity of salt. This leads to an accumulation of the salt density in
the outer zone as shown in �gure (6.1), this di�erence is due to the very slow backdi�usion
of the salt.

81
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Figure 6.1: Schematic view of the salt advection in the case of a sliding motion. The red
circlers refers to the salt density in and out the lubrication zone.

Another aspect that must be taken into account for a complete description of the salt
content, is the density of the compensated salt which can be de�ned as,

2n− = nt − ρ, (6.1)

where nt is the total salt density and ρ is the charge density. The compensated salt (
described by the coions density) shows a signi�cant lack compared to the counterions
density as shown in �gure (6.1),

N-

N+

N-

1 10 100 1000

10-8

10-6

10-4

0.01

h(nm)

N
+
,N

-

Figure 6.2: Plot of the mean ions densities N± as a function of h on a linear scale. N±
expresses the mean density of coions and counterions, integrated over the channel height.
The calculations are performed using (CC) boundary conditions with σ = 0.02nm−2 and
λ = 30nm.
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The red lines refers to the contreions density, whereas the green solid lines indicates
the coions density. For small separations h ∼ 1nm the counterions density is thousand
time smaller than the bulk value, whereas the density of counterions is thousand time
larger. For su�ciently large distances h ∼ 1000nm the coions reach the bulk density
while the counterions are still more.

The salt advected from the outer zone to the inner zone (the lubrication zone) by
mean of the sphere decompression, leads to an increase in the density of the compensated
salt in the lubrication zone, consequently an increase in the salt-charge-�ow coupling.

6.2 Out of equilibrium Onsager coe�cients

Knowing that the salt density in the radial direction is mainly in the non equilibrium state.
We can express the salt content as a pro�le which remains in the steady state following
the vertical coordinate z, times a radial salt density tht remains in non equilibrium state.
Thus Onsager coe�cients dependent on the salt can be reexpressed as,

Lsv = NMsv, Lss = NM (1)
ss +N2M (2)

ss , Lsc = NMsc, (6.2)

where N express the salt density integrated over the channel height h. Mij is a pro�le in-
dependent on the radial salt, but depend on the vertical coordinate z. If the coe�cient Lss

for example, we have the �rst term which express the salt advection by mean of the di�u-
sioosmotic velocity, and a second term account for the conduction by mean of the force X.

The coe�cients Mij are calculated from the mean value of cosh Ψ̂, integrated over the
separation distance h. Where the function cosh Ψ̂ is given by,

cosh Ψ̂ = k̂cd

(
z√
k̂λ

|k̂2
)2

+ k̂−1cd

(
z√
k̂λ

|k̂2
)−2

, (6.3)

where the electric potential Ψ expressed in term of Jacobi's functions, is evaluated in the
out of equilibrium state, i.e the salt density variations between the inner and outer zone
modi�es the salinity in the lubrication zone, thus the di�use layer thickness expressed
by Debye length λ and the parameter k in (2.16) varies. As a consequence Ψ must be
calculated in the out of equilibrium state.

Once the coe�cients are calculated in the out of equilibrium state, one use the cor-
rected gradient pressure in order to calculate the electroviscous force with the correction
parameter ξ as we did in the chapter 4 and 5.

6.3 Slow relaxation of excess salinity

We de�ne the relaxation time as the time required for the salt to recover its equilibrium
state after advection. The radial relaxation time can be estimated by,

τr =
r2

D
, (6.4)

r is the distance of the particle from its starting position at time t, which can be approx-
imated by r ∼

√
Rh0.
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For R = 47µm, h0 = 50nm for a narrow channel, and a di�usion coe�cient D ∼
10−9m2/s one �nd τs = 2.35× 10−3s which is slightly smaller than the sphere vibrations
frequencies ω−1

0 ∼ 10−2s.
We notice a big di�erence between the relaxation time of the charge density compared

to the salt density relaxation time, we have τc << τs. This di�erence can be explained
by, the weakness of the thermodynamic force X compared to Coulomb force generated
after the charge advection.

Figure 6.3: Schematic view of the thermodynamic force X e�ect, on the salt density. The
black circles refers to the salt density. The black arrows to the salt advection, whereas
the red arrows designate the e�ect of the force X, generated from the salt backdi�usion

.

Figure (6.4) shows a comparison between the variations of the elastic response in the
static case as well as the dynamic case,
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Figure 6.4: Elastic response variations as a function of h0 on a log-linear scale. The
calculations are performed using (CC) boundary condition with σ = 0.028nm−2. The
solid line refers to the theoretical predictions for the static response. The �lled and the
empty circles refers to the measured elastic response in the static and the dynamic case
respectively.
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For small separations where h0 < λ, the measured elastic response at ω0 = 100Hz
shows a di�erence from the response measured at the static state. The �gure shows the
evidence of the elastic response dependence of the sphere vibration frequencies, this de-
pendence is the result of the phase shift between the vibration time and the salt di�usion.

6.4 Discretization of the salt dynamics

Let's consider a radial salt current density generated from the relative motion of the
sphere, the current combine the salt advection by the velocity �eld with the conduction
of the salt,

Js = nt(z)v(z) + µntX −D∇nt, (6.5)

where nt is the salt density, D = kBTµ the di�usion coe�cient, v the velocity pro�le
and X is the thermodynamic force (2.32), we choose the radial coordinate for convince in
order to evaluate the continuity equation given by,

∂tn = −∇ · Js = −∂r(rJs)
r

. (6.6)

The discretization consist of evaluating the continuity equation, as well as the salt
current density, on a lattice which expresses the radial distance r in a discrete way as
rq = qa, where a the step and q the number of steps. The salt current density can be
written following this model as,

Jq = vqnq + µfqnq −D(nq+1 − nq). (6.7)

From the continuity equation we can deduce the local variation of the salt density, in
every site in the lattice during a given times τ as,

δnq = τ∂tnq = τ
rq−1Jq−1 − rqJq

rq
. (6.8)

The salt density in the steady state can be determined, by iterating equation (6.7)and
(6.8) with the iteration step nq → nq + δnq.

The salt density in the steady state expresses the salt density which remain unchanged,
in the lubrication area regardless the exchanges that can take place between the reservoirs
and the lubrication area.

we consider that the force X as well as the velocity pro�le v vanishes out of the
lubrication zone (the reservoirs). For this purpose we set an upper value m for the
number of steps in which this conditions for X and v comes true, at the steady state
and far enough of the solid surfaces the salt density equals the bulk density nm = n0 this
condition closes the equations (6.7)and (6.8).

This iterative method allows to calculate the new out-of-equilibrium salt density N =∫
nds and calculate afterwards the values of the non-equilibrium Onsager coe�cients.





Chapter 7

Appendices

7.1 Osmotic pressure

In the introduction we gave a brief discussion on the osmotic pressure process, which
occurs when two solutions characterized by two di�erent concentrations are separated by
a permeable membrane.

Solvent molecules are transferred from the solution, with a lower concentration to the
solution with a higher concentration of solute, this transfer continues until reaching the
equilibrium.

In a con�ned geometry its already known, that the distribution of the counter ions
is governed by the electrostatic interactions and the entropy between them. The counter
ions radial pressure in the gape between two �at surfaces can be given by [21],

∂zP = ρ∂zµ, (7.1)

where µ is the chemical potential and ρ is the charge density. We know that the charge
density pro�le variations occur between the solid surface and the bulk, where the charge
density is almost zero in the bulk.

From these considerations we integrate the equation (7.1) from the position of the
solid surface a to the bulk (∞), the evaluation of these integral yields,

P (∞)− P (a) =

∫ ∞

a

(
ρ∂zϕ(z)dz + kBT∂zρdz

)
(7.2)

P (∞)− P (a) =

∫ ∞

a

(
ρ∂zϕ(z)dz + kBTdρ

)
, (7.3)

with ϕ(z) the electrostatic potential given by (2.10), in the bulk region where the charge
density vanishes, we consider that the osmotic pressure vanishes as well. Using Poisson's
equation we get,

P (a) = −
∫ ∞

a

(
− ∂2zϕ(z)∂zϕ(z)dz + kBTdρ

)
, (7.4)

the �rst term of integration in equation(7.4) can be simpli�ed by mean of the equation,

∂zϕ(z)∂
2
zϕ(z) =

1

2
∂z(∂zϕ(z))

2, (7.5)

equation (7.4) and (7.5) yields,

P (a) =

(
− 1

2
(∂zϕ(z))

2
∞ + kBTρ∞

)
−
(
− 1

2
(∂zϕ(z))

2
a + kBTρa

)
, (7.6)

87
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its already known that Boltzmann distribution, relates the charge distribution to the
electrostatic potential by mean of Boltzmann factor. Thus in order to simplify (7.6) we
di�erentiate the charge density with respect to z,

∂zρ = ρ0∂zϕ(z)e
−ϕ(z) (7.7)

= ρ∂zϕ(z), (7.8)

using equation (7.5) and Poisson's relation on ρ, one readily get,

∂zρ =
−1

2
∂z(∂zϕ(z))

2, (7.9)

the integration of the equation above re�ects the relationship, between the charge density
variations and the generated electrostatic pressure. The di�erence between the charge
density in the vicinity of the solid surface and the bulk give rise to an electrostatic pressure.

ρ = ρ0 +
1

2
(∂zϕ(z))

2, (7.10)

by associating equation (7.6) to (7.10) and considering the charge density in the bulk
equal to zero, we �nd the expression of the osmotic pressure given by,

PO = ρkBT, (7.11)

in the case of the osmotic pressure generated by the salt content, the expression (7.11)
remains the same except that, instead of taking the charge density as a source of pressure,
we take the e�ective salt density n(z) we get,

P0 = n(z)kBT, (7.12)

with n(z) is simply given by,
n(z) = nt(z)− n0, (7.13)

where n0 is the inert quantity of salt in the present case of (in�nite half-space), for the
case of two surfaces con�ning a sample of an electrolyte solution the inert quantity equal
to the quantity of salt at midplane n(0).

7.2 Di�usioosmotic pressure gradient

To give more insights about the di�usioosmosis e�ects, let's consider an electrolyte so-
lution interacting only with a solid surface through a potential κ(z). At the thermal
equilibrium the salt content is governed by Boltzmann distribution given by,

n(z) = n0e
−κ(z)/kBT , (7.14)

where n0 is the bulk density, kB Boltzmann constant and T is the temperature. The
interaction is assumed to be in the normal direction to the solid surface along the di�use
layer length λ.

If the potential of interaction κ(z) is positive, the quantity of salt in the vicinity of
the solid surface is much smaller then the bulk quantity n0 (a depletion near the solid
surface), meaning that for a positive potential the interaction is repulsive. For a negative
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potential the interaction is attractive and therefore there is an accumulation of salt near
to the solid surface [110].

The application of a salt gradient ∇n0 parallel to the solid surface generate a salt
current but do not induces a �ow, in fact this applied gradient in the bulk give rise to an
osmotic pressure, balanced by the hydrostatic pressure Ph, thus the pressure in the radial
direction in the bulk remains always steady, hence the absence of a �ow in the region far
from the solid surface (the bulk),

kBTn(r)− Ph = constant. (7.15)

However near the solid surface, within the di�use layer thickness λ in the normal direction
to the solid surface, the equilibrium between salt density and pressure can be reached in
a time very small compared to the relaxation time of the salt gradient. Hence equation
(7.14) can be reexpressed as a radial density n0 times a given function which describes as,

n(r, z) = n0(r)e
−κ(z)/kBT , (7.16)

where the fast variations of the exponential function, describe the interactions between
the salt gradient and the solid surface and n0(r) account for the radial extension of the
salt.

In the normal direction, the equilibrium between the pressure gradient and the osmotic
pressure gradient yields,

−∂zP (r, z)− ∂zκ(z)n(r, z) = 0, (7.17)

the association of equation (7.16) with the equation (7.17), integrated with respect to z
yields,

P (r, z)− kBTn(r, z) = Ph − kBTn(r) = constant (7.18)

Equation (7.18) describe the pressure variations, induced from the salt content variations
near and far from the solid surface.

In order to highlight the e�ect of these variations on the �ow generation, we need
simply to di�erentiate this equation with respect to the radial coordinate r.

∂rP = kBT∂r

(
n(r, z)− n0(r)

)
(7.19)

7.3 AFM measurement

In this section we give a brief description of the Atomic force microscopy (AFM) func-
tioning. The technique used by our colleague in the group MAALI Abdelhamid, to carry
out the experimental measurement on the electroviscous force as well as the electrokinetic
lift force. The data from his measurements are used afterwards to compare the relevance
of our theoretical model based on the charge-�ow as well as the salt-charge-�ow evaluated
in the equilibrium state.

The experimental setup consists of an electrolyte solution, con�ned between a �at solid
substrate (mica) and a lower surface of a vibrating sphere with 47µm radius R mounted
on the cantilever of an AFM. For a general functioning the assembly sphere/cantilever
commonly referred to as the probe scans the sample surface by up and down, side to side
motion. The probe is monitored through a laser beam re�ected from the cantilever to a
photo-detector as shown in the �gure (7.1).
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The detector measure the cantilever de�ections and covert it to an electrical signal,
the intensity of the signal is proportional to the cantilever displacement [112].

In order to measure the force which rises from the contact between the tip and the
electrolyte sample, we consider that the tip is vibrating vertically near to its resonance
frequency with a sinusoidal motion,

Z = A sin(ω0t), (7.20)

a feedback loop is used in this mode to ensure a constant amplitude of vibrations, very
small compared to the �lm width h0 (A << h0).

The tip velocity given by the black arrow in the �gure (7.1) can be expressed as,

V = Ż(t) = Aω0 cos(ω0t), (7.21)

where ω0 and A are the vibrations sphere frequency and amplitude respectively.

ℎ0

U

Figure 7.1: Experimental setup scheme

The tip vibrations induce a �ow that disturb the static equilibrium of the di�use layer
content. The distortion of the EDL lead to many dynamic e�ects, thus the generation of
di�erent type of forces sensed by the tip. It is worth to mention that the AFM measure-
ments can be extended for the study of two parallel sliding surfaces e�ects, using a tip
with a transnational motion in the radial direction, with respect to the subtract as shown
in the �gure above (green arrow), U is the radial velocity which characterizes the sliding
motion.

7.4 PB equation solution in asymmetric geometry

We can get the solution of the equation 2.6 by multiplying both sides by 2∇ϕ to get,

2∇ϕ∇2ϕ = 2∇ϕ 1

λ2
sinhϕ, (7.22)
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with ϕ = eψ/kBT is a normalized potential, the integration of the left side yields,

2∇ϕ∇2ϕ = ∇(∇ϕ)2, (7.23)

inserting (7.23) in (7.22) and performing integration of it, one gets,

∇ϕ = ±
√

2

λ2
(cosh(ϕ) + c1), (7.24)

in order to determine the constant c1, we consider the limits where z → ∞, in this case
ϕ→ 0 and ∇ϕ→ 0, yielding,

∇ϕ = ±2

λ
sinh

ϕ

2
, (7.25)

here the surface charge σ is a negative quantity, so ϕ < 0 and ∇ϕ > 0 , thus we choose
the negative solution,

∇ϕ = −2

λ
sinh

ϕ

2
, (7.26)

The integration of the equation (7.26) yields the analytic expression of the electrostatic
potential [21, 31],

ϕ =

∫
dϕ

sinh(ϕ
2
)
= −2

λ

∫
dz

= 2 ln

(
1 + γe−

z
λ

1− γe−
z
λ

)
. (7.27)

In order to de�ne the integration constant γ, we use the charge constant boundary con-
dition (CC) given by,

ϕ′(0) =
−σ
ϵ
, (7.28)

evaluating the equation (7.4) at z = 0, one can get the equation which relates γ to the
potential at the surface ϕ0.

ϕ0 = −4arcth(γ), (7.29)

with,
γ =

√
(b/λ)2 + 1− b/λ. (7.30)

7.5 PB equation solution in symmetric geometry

In order to establish the electrostatic potential in the symmetric case, we consider an
electric �eld that vanishes a the midplane [82],

−∂ϕ
∂z

∣∣∣∣
z=0

= 0 (7.31)

applying this condition on (7.24) one gets,

∇ϕ = ±
√

2

λ2
(cosh(ϕ) + coshϕ(0)), (7.32)

by introducing the variable,

Φ = eϕ/κ (7.33)

κ = eϕ(0), (7.34)
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and considering a negative surface charge density, including (7.33) and (7.34) in (7.32)
one gets,

dΦ√
Φ(1− Φ)(1− κ2Φ)

=
−dz
λκ

, (7.35)

considering Φ = sin2 θ and insert it in (7.35), one gets after integration,

−z
λκ

=

∫ arcsin
√
Φ

π/2

dθ√
1− κ2 sin2 θ

(7.36)

with φ = arcsin
√
Φ, we de�ne the incomplete elliptic integral of a �rst kind as,

u =

∫ φ

0

dθ√
1− k sin2 θ

= F (φ|k) (7.37)

with the corresponding complete integral F (π/2|k). The inversion of the Jacobi amplitude
u, yields the function sn(u|k) given by,

sn(u|k) = sinφ (7.38)

with,

cn(u|k) =
√

1− sn2(u|k) (7.39)

dn(u|k) =
√
1− cn2(u|k) (7.40)

cd(u|k) = cn(u|k)/dn(u|k), (7.41)

performing the integral of (7.36) one gets,∫ arcsin
√
Φ

π/2

dθ√
1− κ2 sin2 θ

=

∫ φ

0

dθ√
1− κ2 sin2 θ

−
∫ π/2

0

dθ√
1− κ2 sin2 θ

(7.42)

−z
λκ

= −u = sn−1
√
Φ−K(κ), (7.43)

using the periodicity condition cd(u|k) = sn(K(k)− u|k)) we �nd,
Φ = sn2(K(k)− u) = cd2(u|k2) (7.44)

using (7.33) and applying the logarithm function ln, we recover the electrostatic potential
given by

ϕ = ln k + 2 ln cd(u|k2), (7.45)

using(7.43) we get the argument u = z/2λ
√
k, thus for the function cd we get,

cd(z, k) = JacobiCD

(
z

2λ
√
k
, k2

)
(7.46)

7.6 Velocity pro�le components

This section provides the complete calculation of the velocity pro�le v(z) components,
and gives more details on the double integration calculation of the velocity v(z) from
Stokes equation. We privilege the symmetric geometry where the lower sphere surface is
located at z = h/2 and the immobile substrate surface at z = −h/2.

The velocity pro�le components are derived from the double integration of the Stokes
equation given by (3.21).
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7.6.1 Pressure driven velocity

The �rst component is the pressure driven velocity obtained from (3.21). Considering the
situation where a viscous liquid is con�ned between two uncharged solid surfaces, this is
practically realized by setting both eE and ∇ ln n̂0 equal to zero,

η∂2zvp = ∇P, (7.47)

this equation requires the performance of a double integration taking into account two
boundary conditions. The �rst is the variations of the shear stress which we consider
null at the midplane of the channel, where the velocity pro�le reaches its maximum value
v(0) = vmax,

τ = η∂zvmax = 0, (7.48)

this condition is the result of the symmetry in the velocity pro�le, imposed the non slip
condition (the second boundary condition) on the two surfaces v(±h/2) = 0,

η

∫ z′

0

∂2z′′vp(z
′′)dz′′ =

∫ z′

0

dz”∇P (7.49)

η

(
∂z′vp(z

′)− ∂z′vp(0)

)
= z′∇P, (7.50)

where η∂z′vp(0), is the dynamic constraint which vanishes at the midplane, the �rst inte-
gration yields,

η∂z′vp(z
′) = z′∇P, (7.51)

and the second integration yields,∫ h/2

z

∂z′vp(z
′)dz′ =

1

η

∫ h/2

z

z′dz′∇P (7.52)

vp(h/2)− vp(z) =
h2 − 4z2

8η
∇P, (7.53)

using the non slip boundary condition, one readily �nds that vp(h/2) = 0. Thus the
pressure driven velocity is simply given by [96],

vp(z) = −h
2 − 4z2

8η
∇P. (7.54)

The type of substrate used in liquid con�nement, can signi�cantly a�ect the velocity
pro�le at the liquid/solid interface. In such cases we use the slip boundary condition
related to a slip length b, de�ned as an extrapolated distance relative to the wall where
the tangential velocity component vanishes. This length relates the velocity pro�le near
the wall to the shear rate,

vp(h/2) = b∂zvp(z)|h/2 (7.55)

= −b
h

2η
∇P , (7.56)

therefore the pressure driven velocity in the case of slip length can be given by,

vp(z) = −h
2 − 4z2

8η
∇P − b

h

2η
∇P. (7.57)
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7.6.2 Electroosmotic velocity

The electroosmotic velocity vE(z) describes the pro�le generated from the di�use layer
content, this latter can be derived from (3.21), by taking both the forces ∇P and ∇ ln n̂0

equal to zero,
η∂2zvE = ρeE, (7.58)

the integration and boundary conditions used to determine the pro�le of the electroos-
motic velocity, remain the same as the case of the pressure driven velocity vp(z). In order
to simplify the integration, let's use Poisson's equation which allow to replace the charge
density ρ, by the second derivative of the electrostatic potential ϕ

The �rst integration provides the shear stress variations which vanishes at midplane,

η

∫ z′

0

∂2z′′vE(z
′′)dz′′ = ϵ

∫ z′

0

∂2z′′ϕ(z”)dz”eE (7.59)

η

(
∂z′vE(z

′)− ∂z′vE(0)

)
= ϵ

(
∂z′ϕ(z

′)− ∂z′ϕ(0)

)
eE, (7.60)

where η∂z′vp(0) and ∂z′ϕ(0) is the shear stress and the electric �eld respectively, which
vanishes at the midplane, thus the �rst integration yields,

η∂z′vE(z
′) = ϵ∂z′ϕ(z

′)eE, (7.61)

performing the second integration one can readily �nds,∫ h/2

z

∂z′vp(z
′)dz′ =

ϵ

η

∫ h/2

z

∂z′ϕ(z
′)eE (7.62)

vE(h/2)− vE(z) =
ϵ

η
(ϕ0 − ϕ(z))eE, (7.63)

using the non slip boundary condition v(h/2) = 0 ,and the electrostatic potential value
at the solid/liquid interface ψ̂(±h/2) = ϕ0, one �nds [97],

vE(z) =
ϵ

η
(ϕ(z)− ϕ0)eE. (7.64)

In the case of slip boundary condition. The velocity pro�le near the wall is related to the
shear rate by,

vE(h/2) = b∂zvE(z)|h/2 (7.65)

= −b
ϵ

η
ϕ′(h/2)eE, (7.66)

therefore the electroosmotic velocity in the case of slip length can be given by,

vE(z) =
ϵ

η
(ϕ(z)− ϑ)eE, (7.67)

where ϑ = ϕ0

(
1 − b

ϕ′(h/2)

ϕ0

)
, is the new value of the electrostatic potential at the

solid/liquid interface ϑ shows the e�ect of the slip length b on ϕ0 potential.
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7.6.3 Di�usioosmotic velocity

The last component is the di�usioosmotic velocity, which describe the pro�le generated
from the salt density pro�le, derived from (3.21) by taking both forces ∇P and eE equal
to zero,

η∂2zvE = n(z)X, (7.68)

with n(z) the e�ective salt density derived from the subtraction of the inert salt density,
at midplane from the total salt density.

Unlike the electroosmotic velocity pro�le, the establishment of a general and sim-
ple analytic expression for the di�usioosmotic velocity vs(z) is impossible, since the salt
density can not be linked to the electrostatic potential by Poisson's equation. Thus the
di�usioosmotic velocity pro�le can be calculated as,

vs(z) =
H(z)

η
X, (7.69)

where H(z) is the di�usiophoretic mobility [98] calculated from the Stokes equation. By
performing the double integration of the salt density taking in account the boundary
conditions related to the shear stress and the non slip conditions,

H(z) =

∫ h/2

z

dz′
∫ z′

0

dz′′n(z”). (7.70)

The di�usioosmotic velocity can be calculated as well in the case of a slip length by
evaluating the equation,

vs(h/2) = b∂zvs(z)|h/2. (7.71)

7.7 Incompressibility condition

The channel height modulated by the sphere vibrations can be expressed as,

h(r, t) = h0 + Z(t) +
r2

2R
, (7.72)

where h0 is the minimum channel height and Z(t) is the tip-sample surface.

In case where the sphere moves in the normal direction to the substrate (squeezing
motion) as well as in the radial direction (sliding motion), we express the sphere velocity
by,

dh

dt
= v =

∂Z

∂t
+ U

∂h

∂r
, (7.73)

for the squeezing motion, only the vertical oscillations of the sphere are retained. Thus the
volume �ow Jv can be given simply by integrating the velocity pro�le v over the channel
height [91],

JV =

∫
vdz, (7.74)

locally the divergence of the volume �ow yields the velocity pro�le ∇ · Jv = v = dZ/dt.
Expressing the divergence operator in the radial coordinate we get,

∂Z

∂t
=

1

r

∂rJV
∂r

, (7.75)
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performing the integration of (7.75) one get,

JV =
rV

2
. (7.76)

7.8 Charge and salt pro�les in the WCA

In the wide channel approximation (in�nite half-space), where the solid surface at a
position z = 0 we consider that h >> λ, thus we can set h→ ∞.

The radial counterions density determined simply by performing the integral of n+

from the solid surface position z = 0 to in�nity,∫ ∞

0

n+(z)dz =

∫ ∞

0

n0

(
1 + γe−z/λ

1− γe−z/λ

)
dz (7.77)

= n0h− 2n0λ+ σ +
1

2

√
16n2

0λ
2 + σ2, (7.78)

and the radial coions density yields,∫ ∞

0

n−(z)dz =

∫ ∞

0

n0

(
1− γe−z/λ

1 + γe−z/λ

)
dz (7.79)

= n0h− 2n0λ− σ +
1

2

√
16n2

0λ
2 + σ2, (7.80)

yielding a radial charge density,
C = 2σ, (7.81)

and a radial salt density ,

N = 2n0h− 4n0λ+
√

16n2
0λ

2 + σ2, (7.82)

after subtraction of the integrated inert salt value 2n0h one get,

N = −4n0λ+
√

16n2
0λ

2 + σ2 (7.83)

In case where the electrostatic potential is very weak. One use Debye Hückel approxima-
tion to derive the analytic expression of C and N , see appendix (7.14)

7.9 Onsager coe�cients in WCA

In this section we provide an illustration of how to calculate the analytical expressions
of Onsager's coe�cients. Taking as a �rst example the coe�cient Lcv which is relatively
simple to calculate compared to other coe�cients.

Lcv account for the charge �ow carried by the Poiseuille �ow. In the in�nite half-space
geometry where the solid surface is located in z = 0, Lcv is given by,

Lcv =

∫ h

0

ρ(z)
z(h− z)

2
dz, (7.84)

the code used to calculate Lcv is given in the �gure below,
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efface
Clear[γ, λ, h, np, nm];

élément
Element[{γ, λ , n0 , h},

nombres réels
Reals];

np[z_] := n0
(1 + γ*Exp[-z/λ])

(1 - γ*Exp[-z/λ])

2

; (* counter-ions density*)

nm[z_] := n0
(1 - γ*Exp[-z/λ])

(1 + γ*Exp[-z/λ])

2

; (* co-ions density*)

ρ[z_] := np[z] - nm[z]; (* charge density*)

lcv[h_] :=
intègre
Integrate[ρ[z]*z*(h - z), {z, 0, h}];

imprime
Print[ " lcv = ", lcv[h]];

Figure 7.2: Screen shot of the code used to calculate the coe�cient Lcv.

This code yields the result,

Lcv = 8n0λ
2

[
h

(
arcoth(γ) + arcoth(γe−h/λ)

)
= +λ

(
Li2(

−1

γ
) + Li2(

1

γ
) + Li2(

−eh/λ
γ

)− Li2(
eh/λ

γ
)

)]
,

(7.85)

considering that for large separations e−h/λ −→ 0 and using the relation,

arcoth(γ) = arcth(γ) + iπ, (7.86)

One gets the analytic expression of Lcv in the case of wide channel approximation. Using
the relation ϕ0 = −4arcth(γ) and taking just the real part of (7.85),

Lcv =
−hϕ0

4πlB
. (7.87)

The calculation of the coe�cients Lcc is more complicated compared to Lcv. We de�ne
the electric conductivity Lcc in the in�nite half-space geometry as,

Lcc =

∫ h

0

(
ρ(z)f(z) + µn(z)

)
dz, (7.88)

with the electrophoretic mobility f(z) given by,

f(z) =

∫ z

0

dz′
∫ h/2

z′
dz′′, (7.89)

the second term in (7.88) is very simple to derive
∫
ndz = 2n0h + 2σ, whereas the �rst

term is more delicate. We can calculate it using the code,
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efface
Clear[λ, γ, h, np, nm];

élément
Element[{λ, γ, h, n0},

nombres réels
Reals]

np[z_] := n0
(1 + γ*Exp[-z/λ])

(1 - γ*Exp[-z/λ])

2

;

nm[z_] := n0
(1 - γ*Exp[-z/λ])

(1 + γ*Exp[-z/λ])

2

;

c[z_] := np[z] - nm[z];

I1[h_, zp_] :=
intègre
Integratec[zpp], zpp, zp,

h

2
;

I2[h_, z_] :=
intègre
Integrate[I1[h, zp], {zp, 0, z}];

Lcc[h_] :=
intègre
Integrate[(c[z]*I2[h, z]), {z, 0, h}];

Lcc[h]

Figure 7.3: Screen shot of the code used to calculate the �rst term of the electric conduc-
tivity Lcc.

This code yields,

Lcc :=

32 n02 γ 
h/λ

+ γ
2
 λ

3

2 -1 + 
h/λ

 ArcCoth
-
h
λ γ


2 h
λ - γ

2
-1 + γ

2


+
2 -1 + 

h/λ
 ArcTanh[γ]


2 h
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2
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2
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Figure 7.4: Analytic expression of the �rst term in Lcc calculated in WCA.

To simplify this expression we proceed as follows,
- we get rid of the terms proportional to e−h/λ since h >> λ in the WCA.
- we further simplify the new expression by rearranging the terms to have a very simple

analytical expression given by,

Lcc =
sinh(ϕ0

4
)2

λπ2 l2B
+
n0h+ σ

3πa
. (7.90)

For the coe�cients calculated in the chapter salt-charge-�ow coupling coe�cients. We
used the same approach and we can give as an example of coe�cient involving the salt
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density the coe�cients Lsv given by,

Lsv =

∫ h

0

n(z)
z(h− z)

2
dz, (7.91)

the code used to calculate Lsv is given in the �gure below,

efface
Clear[γ, λ, h, np, nm];

élément
Element[{γ, λ , n0 , h},

nombres réels
Reals];

np[z_] := n0
(1 + γ*Exp[-z/λ])

(1 - γ*Exp[-z/λ])

2

; (* counter-ions density*)

nm[z_] := n0
(1 - γ*Exp[-z/λ])

(1 + γ*Exp[-z/λ])

2

; (* co-ions density*)

nn[z_] := np[z] + nm[z] - 2 n0; (* salt density*)

lsv[h_] :=
intègre
Integrate[nn[z]*z (z - h), {z, 0, h}];

Figure 7.5: Screen shot of the code used to calculate Lsv in the WCA.

This code yields,

Lsv = 4n0λ
2

[
− h

(
ln(1− 1

γ2
) + ln(1− eh/2λ

γ2
)

)
+ λ

(
Li2(

1

γ2
) + Li2(

eh/2λ

γ2
)

)]
, (7.92)

taking into account the real and imaginary parts of the polylog functions Li2, the depen-
dencies in h2 are simpli�ed. Thus we �nd after rearrangements of the terms,

Lsv =
h

λlB
ln

(
cosh(

ϕ0

4
)

)
. (7.93)

7.10 Numerical evaluations

For the sake of simplicity we choose the symmetric geometry where the immobile surface
at position z = −h/2, and the lower sphere surface at z = h/2. This choice is very con-
venient to exploit the symmetric proprieties of the system, and set up the right boundary
conditions in order to determine Jacobi's function parameter k.
To determine the parameter k we can use the boundary conditions (CC), (CP) or (CR)
depending on the results seeking for. To give an example let's consider the constant charge
boundary condition given by the equation (2.21) in the symmetric case, where the electric
�eld is proportional to the surface charge density σ at z = h/2,

σ

ε
=

1

βq
ϕ′(

h

2
, k), (7.94)
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performing the derivation of the electrostatic potential with respect to z, yields the electric
�eld linked to the surface charge density by the simple relation,

S =
k2 − 1√

k

nd(h
2
, k) sd(h

2
, k)

cd(h
2
, k)

(7.95)

The right hand of this equation depend on the channel height, while the left hand quantity
is given by S = σλq/kBTϵ, which depends on the surface charge density and the di�use
layer thickness, thus we can reexpress S as,

S =
2λ

b
(7.96)

= 4πlBσλ, (7.97)

Using the code that we developed,

efface
Clear[ψ, λ, cd, sn, sd, cn, nc, nd];

(* Jacobi's functions *)

cd[z_, k_] :=
cd de Jacobi
JacobiCD

z

2 λ k
, k2; sd[z_, k_] :=

sd de Jacobi
JacobiSD

z

2 λ k
, k2; nd[z_, k_] :=

nd de Jacobi
JacobiND

z

2 λ k
, k2;

(* Potential with parameter k *)

ψ[z_, k_] :=
logarithme
Log[k] + 2

logarithme
Log[cd[z, k]];

(* S expression *)

s := -4 π σ lB λ;

γ :=
2

s
+

4

s2
+ 1 ;

ζ := 4*
arc tangente hyperbolique
ArcTanh[γ];

(* the parameters values *)

n = 5; λ = 30; σ = 0.01; lB = 0.7; dd = 0.01*λ; hmin = 0.01*λ; k0 = 0.01;

n0 =
1

8 π lB λ
2
;

(*************************************)

boucle do
Do hh = hmin + dd*i; (* channel height*)

f :=
k2 - 1

k

nd hh

2
, k×sd hh

2
, k

cd hh

2
, k

; (* Implicit eq for k as a function of s *)

a :=
trouve racine
FindRoot[{f s}, {k, k0}];

Rk :=
évalue
Evaluate[

partie réelle
Re[k] /. a];

k0 = Rk; (* the parameters values *)

, {i, 0, n};

Figure 7.6: Screen shot of the code used to calculate the parameter k.

We can get the value of k by choosing some experimental values for λ , σ, h and
evaluate numerically the implicit equation (7.95). To �nd the root of it which represent
the parameter k, this latter equals 0 for h = 0 and 1 for h→ ∞ see �gure (2.3).

Once we have determined the values of k for the di�erent values of h, we can evaluate
Onsager coe�cients numerically and compare them with the analytic results.

The �gure below shows a comparison, between the analytic and the numeric evalua-
tions of Onsager's coe�cients Lcc and Lss.
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Figure 7.7: Lcc and Lss variations as a function of h on a logarithmic scale. The black solid
line refers to the analytic expressions calculated in the case of WCA, whereas the open
circles refers to the numerical evaluations using the potential (2.16). The calculations are
performed using the (CC) boundary condition with σ = 0.02nm−2

.

From this �gures we can see good agreement between the analytic expressions, and
the numerical evaluations of the coe�cients Lcc and Lss, this agreement is valid also for
all the other coe�cients.

7.11 Electrostatic repulsion between two solid surfaces

Let's consider two solid surfaces similarly charged and brought su�ciently close to each
other. The surfaces are located at position z = ±h/2, the energy of the counterions cloud
in the gape between the two surfaces can be described, in term of their free energy which
consist of the electrostatic energy (the electrostatic interactions between the ions) and
the entropy of the ions in the medium, which tends to maximizes their con�gurations in
order to reach the system stability. We can express the free energy [21,31] as,

F = U − TS

= A

∫
Ωdz.

(7.98)

Performing the integration of energy density Ω, over a volume element is equivalent to
perform the integration with respect to z times a given area A, where Ω is given by,

Ω =
ϵ

8π
(∇ϕ)2 + kBT

(
n+ ln

n+

n0

+ n− ln
n−

n0

− (n+ + n− − 2n0)

)
. (7.99)

The osmotic pressure can be derived from the variations of F/A with respect to the
separation distance between the surfaces h.

Π = −AdF
dh
, (7.100)

note that the temperature and the chemical potential are considered to be constant, since
we have two similarly charged surfaces. The electric �eld at midplane is zero, thus the
derivation above yields the expression of the pressure between the surfaces which is given
simply by the excess osmotic pressure as,

Π = kBT (nm − 2n0), (7.101)



7.12. CHARGE CURRENT RELAXATION TIME 102

where nm is the salt density at midplane and n0 is the bulk density at the equilibrium
state.

7.12 Charge current relaxation time

In this section we give an approximation of the relaxation time of the charge current,
using the continuity equation,

∂tC = ∇ · Jc (7.102)

we discard the di�usion term amusing that the di�usion time in the radial direction
(2.28) of the channel is much longer then the charge relaxation time. We couple the
above equation to Gauss law given by,

∇ · E =
ρ

ϵ
, (7.103)

integrating (7.103) over the channel height one get,

h∇ · E =
C

ϵ
, (7.104)

Inserting (7.104) in (7.102) one get,

∇ · ∂tE =
1

hϵ
∇ · Jc, (7.105)

since the variations of the channel height are very small (linear response-regime) are very
small compared to the minimum value h0. We can consider that the coe�cients are
constant, thus we write,

∂tE =
1

h0ϵ
(Lcv∇P − LcceE), (7.106)

using Fourier transformation the time derivative ∂tE reads as iωE. Inserting this latter
expression in (7.106) one get,

eẼ

η
=
Lcv

Lcc

∇P̃
η

1

1 + iωτ
(7.107)

with the relaxation time,
1

τ
=
e2Lcc

h0ϵη
, (7.108)

using the term in Lcc (the dominant term) one gets,

1

τ
=

kBT

6παηλ2
, (7.109)

for an equivalent hydrodynamic radius α = 0.15nm, λ = 30nm and a dynamic viscosity of
water at an ambient temperature one get τ ∼ 2.6× 10−7s. Which is very small compared
to the sphere vibrations time ω−1

0 ∼ 10−2s, as well as the di�usion time given by (2.28),
which validate our assumption.

Fore more details on the charge currents relaxation time see Marcela Rodriguez Matus
thesis.
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7.13 Salt-charge-�ow coupling parameter ξ

The expressions of the salt-charge-�ow coupling parameter in the WCA as well as NCA,
are given by,

ξWCA=

3 ζ2 
h n0+σ

3 π α
+ 64 n02 λ3 -

γ2

-1+γ2
+ Log1 - γ2 - 8 ζ 

σ

3 π α
- 64 n02 λ3 

γ

-1+γ2
+ ArcTanh[γ] LogCosh

ζ

4
 +

16 LogCosh
ζ

4


2 π (h n0+σ)
α

+

3 Sinh
ζ

4

2

lB2 λ

3 π2

4 h lB2 π2 -
σ

3 π α
- 64 n02 λ3 

γ

-1+γ2
+ ArcTanh[γ]

2
+

h n0+σ
3 π α

+64 n02 λ3 -
γ2

-1+γ2
+Log1-γ2

π (h n0+σ)
α

+

3 Sinh
ζ

4

2

lB2 λ

3 π2

ξNCA=

π α 4 h2 π α σ6 + 33 600 n03 λ4 σ2 1 +
σ2

h2 n02
+ 21 n0 σ4 -80 λ2 + h2 1 +

σ2

h2 n02

33 600 n04 λ4 + 4 h2 π2 α2 σ6 + 33 600 n03 π α λ4 σ2 1 +
σ2

h2 n02
+ 5 n0 π α σ4 -336 λ2 + 5 h2 1 +

σ2

h2 n02

With σ the surface charge density, α the equivalent hydrodynamic radius, and ζ ≡ ϕ0

the electrostatic potential at the solid surfaces.

7.14 Debye Hückel approximation

The approximation of Debye Hückel is applicable in the case of monovalent counterions,
1 where the electrostatic potential is is very weak. In this case we can develop the second
term of (2.6) (sinhϕ) as Taylor's series [21,31],

sinhϕ(z) ≃ ϕ(z), (7.110)

thus the resolution of (2.6) yields the potential ϕ(z) given by,

ϕ(z) = Ce−
z
λ , (7.111)

the constant of integration C is determined using (CC) boundary condition,

ϕ′(0) =
−σ
ε

(7.112)

where σ is the surface charge density, therefore we get,

ϕ(z) =
2λ

b
e−

z
λ , (7.113)

where b is the Gouy Chapman length,

b =
e

2πlBσ
, (7.114)

the counter and coions expressions, can be derived using Boltzmann distribution,

n±(z) ≃ n0(1± πlBσλe
− z

λ ). (7.115)

The integration of the charge density ρ in Debye Hückel approximation yields,

C = 2σ (7.116)

And the radial salinity as,
N = 2n0h (7.117)

1This approximation is not suitable for divalent and trivalent counterions [113,114].
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Theoretically and experimentally, we study electroviscous phenomena resulting from charge-flow coupling in
a nanoscale capillary. Our theoretical approach relies on Poisson-Boltzmann mean-field theory and on coupled
linear relations for charge and hydrodynamic flows, including electro-osmosis and charge advection. With
respect to the unperturbed Poiseuille flow, we define an electroviscous coupling parameter ξ , which turns out to
be maximum where the film height h0 is comparable to the Debye screening length λ. We also present dynamic
atomic force microscopy data for the viscoelastic response of a confined water film in sphere-plane geometry; our
theory provides a quantitative description for the electroviscous drag coefficient and the electrostatic repulsion
as a function of the film height, with the surface charge density as the only free parameter. Charge regulation sets
in at even smaller distances.

DOI: 10.1103/PhysRevE.105.064606

I. INTRODUCTION

Solid surfaces in contact with water are mostly charged,
resulting in intricate interactions of the diffuse layer of coun-
terions with liquid flow along the solid boundary [1–3].
Charge-flow coupling is at the origin of various electrokinetic
and electric-viscous effects [4]. Besides classical applications
of capillary electrophoresis ranging from microfluidics to
medical analysis, recently ac charge-induced electro-osmosis
has been used for the assembly of active materials. From
micron-size colloidal building blocks [5], surface osmotic ef-
fects have been discussed in view of energy applications and
desalinization of sea water [6].

The underlying physical mechanisms operate on the scale
of the Debye screening length [7], which is of the order
of a few tens of nanometers. Following the derivation of
the electro-osmotic coefficient by Helmholtz [8] and Smolu-
chowski [9], electrokinetic effects have been extensively
studied in the limit of thin double layers, where the screening
length is much smaller than the depth of the liquid phase. Thus
Bikerman and Dukhin [10] derived the surface contribution to
the electric conductivity of a salt solution, and Hückel [11]
and Henry [12] showed the colloidal electrophoretic mobility
to depend on the ratio of particle size and screening length.
Gross and Osterle studied charged membranes separating
two electrolyte solutions at different pressure and electro-
chemical potentials, and numerically calculated the trans-
port coefficients of nanopores comparable to the screening
length [13].

*M.R.M., Z.Z., and Z.B. contributed equally to this work.
†abdelhamid.maali@u-bordeaux.fr
‡alois.wurger@u-bordeaux.fr

Prieve and collaborators studied charge effects on the
motion of a colloidal sphere moving close to a solid sur-
face [14–18]. For a particle sliding parallel to the surface at
velocity V , they observed a normal lift force proportional to
V 2. This dependence suggests as an underlying mechanism
the Maxwell stress εE2, with permittivity ε and the parallel
electric field arising from the streaming potential, E ∝ V [15].
Yet the measured lift force [17] by far exceeds the calculated
value [18]; this discrepancy has not been elucidated so far.

Quite a different situation occurs for the squeezing motion
of a colloidal sphere vibrating in normal direction with a si-
nusoidal displacement Z (t ), as shown schematically in Fig. 1.
The velocity V = dZ/dt is by orders of magnitude smaller
than that of sliding motion, resulting in a negligibly weak
electrokinetic lift. For uncharged surfaces, the only force at
work is the hydrodynamic drag −γ0V with coefficient γ0.
The presence of electric double layers gives rise to several
electrokinetic forces,

K − kZ − γV, (1)

where the electrostatic repulsion K is well known from static
atomic force microscopy (AFM) experiments [19]. For a me-
chanically driven system as in Fig. 1, the dynamic response
consists of a restoring force −kZ with an effective spring con-
stant k and an enhanced drag coefficient γ , due to the coupling
of the charged diffuse layers to the radial flow profile [20,21].
Bike and Prieve calculated the charge contribution γ − γ0 for
the case where the sphere-plane distance h0 is much larger
than the Debye screening length λ [15]. Subsequent numerical
studies discussed the enhancement factor for both narrow and
wide channels, and found a maximum to occur at λ/h0 ≈ 1
[22,23]. The first unambiguous experimental observation of
the electroviscous effect was reported very recently by Liu
et al., who performed dynamic AFM experiments in weak
electrolyte solutions [21].

2470-0045/2022/105(6)/064606(11) 064606-1 ©2022 American Physical Society
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FIG. 1. Schematic view of charge-flow coupling in sphere-plane
geometry. (a) A colloidal sphere of radius R is placed above a solid
surface. The film height h varies with the radial coordinate r and
takes its minimum value h0 at r = 0; this distance satisfies h0 � R.
(b) The sphere vertically vibrates with velocity V (t ). This squeezing
motion induces a radial Poiseuille flow in the confined water film
containing mobile ions of either sign.

The present work intends to clarify whether charge-flow
coupling accounts quantitatively for the electroviscous drag
on the squeezing motion illustrated in Fig. 1. Section II
provides a brief reminder of Poisson-Boltzmann theory, and
the static repulsive force K and the spring constant k. In
Sec. III we develop the formal apparatus for charge-flow
coupling, relying on Onsager’s phenomenological relations
for generalized fluxes and forces, without resorting to the
linearization approximation in the electroviscous coupling pa-
rameter. We derive the electroviscous drag coefficient γ in
terms of the Onsager transport coefficients Li j . In Sec. IV we
compare analytical approximations for the limiting cases of
narrow and wide channels with the numerical computation.
Section V is devoted to a discussion of the effect of charge
regulation on both electrostatic and electroviscous properties.
In Sec. VI we present dynamic-AFM measurements and com-
pare with our theoretical findings.

II. ELECTROSTATICS

Here we briefly discussed the electrostatic properties in the
absence of external driving. Solid materials in contact with
water in general carry surface charges. Due to electrostatic
screening, the released counterions are confined in a diffuse
layer of charge density ρ, which is related to the electrostatic
potential ψ through Gauss’s law:

∇2ψ = −ρ

ε
. (2)

In the framework of Poisson-Boltzmann mean-field theory,
the concentrations of monovalent ions read n± = n0e∓eψ/kBT ,
where the bulk value n0 corresponds to dissolved salt, to car-
bonic acid absorbed from air, or to the dissociation of water.
The resulting expression for the charge density,

ρ = e(n+ − n−) = 2en0 sinh
eψ

kBT
, (3)

then closes Gauss’s law.

A. 1D Poisson-Boltzmann theory

This work deals with thin films as in Fig. 1, where the
minimum height is much smaller than the radius of the vi-
brating sphere, h0 � R. Then electrostatic and hydrodynamic
properties are relevant in the lubrication area only, which
corresponds to the range where the radial coordinate r takes
values much smaller than R and where the height h(r) of the
aqueous film is a slowly varying function of r. For notational
convenience we define the origin of the vertical coordinate z
such that the solid boundaries are at z = ±h/2.

Throughout this paper we assume a homogeneous surface
charge and use the 1D Poisson-Boltzmann equation where ψ

and ρ depend on the vertical coordinate z only,

e

kBT

d2ψ

dz2
= λ−2 sinh

eψ

kBT
. (4)

Here we introduce two characteristic length scales: the Debye
screening length

λ = 1√
8πn0	B

, (5)

which gives the thickness of the diffuse layer in an electrolyte
solution [24], and the Bjerrum length

	B = e2

4πεkBT
, (6)

which gives the distance where the electrostatic interaction of
two elementary charges is equal to the thermal energy. Typical
values in water are λ = 1...300 nm and 	B = 0.7 nm.

For fixed surface charge density −eσ , the potential satisfies
the boundary condition

eσ

ε
= ∓ dψ

dz

∣∣∣∣
z=±h/2

. (7)

For fixed surface potential one has ψ (±h/2) = ζ . Note that
the potential ψ (z) and its surface value ζ depend on the film
height h and thus on r.

B. Disjoining pressure and repulsive force

For the sake of notational simplicity we assume a sym-
metric system with the same charge density σ on the two
opposite surfaces. Then the disjoining pressure is given by the
excess osmotic pressure of the mobile ions at z = 0, which
reads � = (nm − 2n0)kBT . With the excess number density
nm = 2n0 cosh[ψ (0)/kBT ], one readily finds

� = 2n0kBT

(
cosh

eψ (0)

kBT
− 1

)
. (8)

The dependence of the osmotic pressure on the film height h
arises from the potential ψ (z = 0) [24]. At distances h larger
than the screening length λ, this potential vanishes, and so
does the disjoining pressure.

The repulsive force K between the two surfaces is obtained
as the surface integral the osmotic pressure. The film height
being much smaller than the curvature radius, we use the
Derjaguin approximation [25]. For distances much smaller
than the radius of the oscillating sphere, the height of the water
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film h = h0 + R − √
R2 − r2 is well approximated by

h(r) = h0 + r2

2R
, (r � R). (9)

Writing the surface element as dS = 2πdrr = 2πRdh, one
readily obtains

K (h0) =
∫

dS� = 2πR
∫ ∞

h0

dh�(h). (10)

The disjoining pressure gives rise to a static restoring force
−kZ , with spring constant

k(h0) = − dK

dh0
= 2πR�(h0). (11)

The discussion and numerical evaluation of the force K and
the rigidity k are postponed to Sec. V below.

III. CHARGE-FLOW COUPLING: FORMAL APPARATUS

Here we derive the formal expression for the electroviscous
drag coefficient γ defined in (1). Resorting to lubrication
approximation, we give the coupled hydrodynamic and charge
flows in radial direction, which are imposed by the mechanical
driving, as illustrated in Fig. 1. Then we derive expressions for
the hydrodynamic pressure and the resulting drag force.

We consider charged surfaces in sphere-plane geometry in
contact with an electrolyte solution, as shown schematically
in Fig. 1. The vertical distance varies with time according
to h0 + Z (t ), with a small sinusoidal amplitude |Z| � h0 and
frequency ω, resulting in the velocity V = dZ/dt . Experimen-
tally, this is realized by a vibrating sphere of radius R mounted
on the cantilever of an atomic force microscope.

A. Lubrication approximation

The vertical oscillation modulates the hydrodynamic
pressure P in the film and imposes a flow JV . For an incom-
pressible fluid, there is a simple geometrical relation between
the vertical velocity V of the cantilever and the volume flow
carried by the radial fluid velocity v,

πr2V = 2πrJV = 2πr
∫ h/2

−h/2
dzv(z, r). (12)

Note that the height h(r) varies with the radial position r
according to (9).

The fluid mechanical problem simplifies significantly
when resorting to the lubrication approximation [26]. In the
range of validity of Eq. (9), the vertical component of the
velocity field is negligible, and the radial component v obeys
a simplified Stokes equation,

η∂2
z v = ∂rP − ρE , (13)

with the viscosity η and where only the vertical component of
the Laplace operator ∇2v has been retained. The right-hand
side comprises the radial pressure gradient ∂rP and the force
exerted by a radial electric field E and the charge density ρ of
the diffuse layer.

B. Nonequilibrium fluxes and forces

Using the Derjaguin approximation, the electrostatic prop-
erties can be calculated from the one-dimensional (1D)
Poisson-Boltzmann equation (4) with slowly varying gap
height h(r). Yet this equilibrium state is perturbed by charge-
flow coupling. Indeed, advection of counterions by the radial
velocity v results in a radial charge distribution and an electric
field E . Through the electro-osmotic force ρE in (13), the field
backreacts on the flow properties.

For an axisymmetric geometry, both E and the pressure P
depend on the radial coordinate r only, and the velocity field
v = vP + vE and charge current j = jP + jE point in radial
direction. Integrating over the vertical variable z we obtain the
fluxes of volume and charge,

JV =
∫ h/2

−h/2
dz(vP + vE ) ≡ −Lvv∇P + LvcE , (14)

JC =
∫ h/2

−h/2
dz( jP + jE ) ≡ −Lcv∇P + LccE , (15)

where the second identity defines the linear transport coef-
ficients Li j with respect to the generalized forces −∇P =
−dP/dr and eE .

The first term in Eq. (14) arises from the pressure-driven
flow profile vP(z). Assuming no-slip boundary conditions
vP(±h/2) = 0, the Stokes equation (13) with E = 0 is readily
integrated,

vP = −h2 − 4z2

8η
∇P, (16)

resulting in

Lvv = h3

12η
. (17)

The second term in (14) accounts for the electro-osmotic
velocity profile [27]

vE (z) = −1

η

∫ h/2

z
dz′

∫ z′

0
dz′′ρ(z′′)E

= ε

η
[ψ (z) − ζ ]E , (18)

where the second identity follows from twice integrating
Gauss’ law ε∂2

z ψ = −ρ. This leads to the electro-osmotic
transport coefficient

Lvc = 1

E

∫ h/2

−h/2
dzvE (z). (19)

The electric current (15) consists of advection of counteri-
ons in the Poiseuille flow profile vP,

Lcv = 1

η

∫ h/2

−h/2
dzρ(z)

h2 − 4z2

8
, (20)

and Ohm’s law with the conductivity Lcc. This latter coeffi-
cient reads as

Lcc =
∫ h/2

−h/2
dz

(
ρ

ε

η
(ψ − ζ ) + e2(μ+n+ + μ−n−)

)
, (21)
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where the first term accounts for advection by the electro-
osmotic velocity field vE and the second one for electrophore-
sis of salt ions, with mobilities μ±.

Electrokinetic phenomena in a channel between two
electrolyte reservoirs at different electrochemical potential
are characterized by a constant streaming current JC �= 0
[6,13,14]. Contrary to this open geometry, the periodically
driven squeezing motion of Fig. 1 does not allow for a steady
current but gives rise to the electric field E . Strictly speaking,
there is a small current which develops the space charges
related to the electric field, δρ = ε div E , and which vanishes
when averaged over one cycle. Because of the strong electric
interactions, the space charges develop almost instantaneously
such that the electric field is in phase with the pressure gradi-
ent, and that advection and conduction currents cancel each
other in (15),

JC = 0. (22)

This relation holds true as long as the charge relaxation time
τ is much shorter than the period of the external driven,
ωτ � 1.

C. Drag force

With the above condition of zero charge current, Eq. (15)
implies a relation between the radial electric field and the
pressure gradient,

E = Lcv

Lcc
∇P. (23)

Inserting this in the volume current (14) and solving for the
pressure gradient, we find

∇P = −6ηrV

h3

1

1 − ξ
, (24)

where the coupling of the double layer to the flow is accounted
for by the ratio of off-diagonal and diagonal transport coeffi-
cients Li j ,

ξ = LvcLcv

LvvLcc
. (25)

From (24) it is clear that the dimensionless parameter ξ

describes the effect of charge-flow coupling on the hydro-
dynamic pressure. For ξ = 0 one recovers the well-known
expression for the pressure gradient in capillary. The stability
of the dynamic equations (14) and (15) requires a positive
determinant of the matrix of the transport coefficients Li j , that
is, det L > 0 or ξ < 1.

When integrating the excess hydrodynamic pressure in the
capillary, it turns out to be convenient to use the variable h
instead of r. In the lubrication approximation (9) one has dh =
drr/R and

P(h) = 6ηRV
∫ ∞

h

dh′

h′3
1

1 − ξ (h′)
. (26)

Finally, the viscous force on the cantilever is given by the
surface integral of the pressure. With dS = 2πdrr = 2πRdh
one finds for the drag coefficient

F (h0) = −2πR
∫ ∞

h0

dhP(h). (27)

In Eq. (1) we have defined the electroviscous drag coefficient
through F = −γV ; the above relations give

γ = 12πηR2
∫ ∞

h0

dh
∫ ∞

h

dh′

h′3
1

1 − ξ (h′)
. (28)

In the absence of electroviscous coupling, one readily ob-
tains the pressure

P0(h) = 3ηV R

h2
, (ξ = 0), (29)

which is maximum at the center of the film and vanishes as
P0 ∝ r−4 at large radial distance. The corresponding lubrica-
tion drag coefficient [28],

γ0 = 6πηR2

h0
, (ξ = 0), (30)

is by a factor R/h0 larger than the Stokes drag coefficient
6πηRV on a sphere of radius R in a bulk liquid.

IV. ELECTROVISCOUS DRAG COEFFICIENT

As a main formal result of this paper, Eq. (28) expresses
the electroviscous drag enhancement in terms of the coupling
coefficient ξ which quantifies the charge-flow coupling. Here,
we evaluate Eq. (28) both analytically and numerically.

A. Wide-channel approximation h � λ

If the height of the water film is much larger than the Debye
length, the electrostatic potential is given by [24]

ψ = −4kBT

e
arctanh(βe−z/λ), (31)

where the parameter

β =
√

1 + (2π	Bλσ )2 − 1

2π	Bλσ
(32)

depends on the Debye length λ and the surface charge
density −eσ , with σ > 0.

In this case there are analytical expressions for the trans-
port coefficients Li j . The off-diagonal terms are given by the
Helmholtz-Smoluchowski electrophoretic mobility,

Lvc = −hεζ

eη
= − hζ̂

4πηlB
, (33)

where in the second identity we define the dimensionless ζ

potential in units of the thermal energy ζ̂ = eζ/kBT . The
electrical conductivity reads

Lcc = sinh(ζ̂ /4)2

π2ηλ	2
B

+
∑
±

μ±n0

(
h − 4βλ

β ∓ 1

)
, (34)

where the first term accounts for electro-osmotic advection
and the second for ion electrophoresis, with surface contribu-
tions parameterized by β.

For wide channels, h � λ, the conductivity is dominated
by bulk-ion electrophoresis. Discarding the electro-osmotic
and surface terms, and using the definition of the screening
length (5), results in the coupling parameter

ξ = λ2
∗

2h2
, (35)
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FIG. 2. Electroviscous enhancement of the drag coefficient
γ (h0), in units of the purely viscous coefficient γ0 at h0 = λ∗. In
the absence of charge-flow coupling as in (30), the dotted line gives
γ0(h0)/γ0(λ∗) = λ∗/h0. Dashed lines are calculated from the pertur-
bation series (38) for γ , truncated at (λ∗/h0 )2n with n = 1, 2, 3, 100.
The full line represents the complete series (37), which is defined for
h > λ∗ only.

with the length scale

λ∗ = 6ζ̂

√
a

	B
λ. (36)

Here and in the following, the mobilities are expressed
through ion radii, μ± = 1/6πηa±, with the mean value 1/a =
2/a+ + 2/a−.

Then the pressure (26) and the drag coefficient (28) can be
integrated in closed form,

γ

γ0
= h0

λ∗
ln

h0 + λ∗
h0 − λ∗

+ h2
0

λ2∗
ln

h2
0 − λ2

∗
h2

0

. (37)

In Fig. 2 we plot γ as a (red) solid line. At the distance h0 = λ∗
the electroviscous coupling parameter ξ is equal to unity and,
as a consequence, a logarithmic branch point appears in the
pressure integral (26), resulting in γ /γ0 = 2 ln 2 ≈ 1.39. At
smaller distances the wide-channel approximation for pres-
sure and force integrals is not defined.

It turns out instructive to rewrite (37) as a series in powers
of λ∗/h0,

γ

γ0
= 1 + 1

6

λ2
∗

h2
0

+ 1

15

λ4
∗

h4
0

+ 1

28

λ6
∗

h6
0

+ · · · . (38)

In Fig. 2 we plot this series truncated at (λ∗/h0)2n with n =
1, 2, 3, 100 and compare both with (37) and with the uncou-
pled lubrication drag coefficient (30). Retaining a few terms
only suggests a smooth behavior, whereas Eq. (37) is defined
for h0 � λ∗ only. The first correction term, proportional to
λ2

∗/h2
0, corresponds to the electroviscous coefficient of Bike

and Prieve [15].
Noting that the ion radius is usually smaller than the Bjer-

rum length 	B = 0.7 nm and ζ̂ of the order of unity, one finds
that λ∗/λ takes values between 1 and 10.

B. Narrow-channel approximation

In the case of a narrow channel, h � λ, the overlapping
double layers of the surfaces result in a constant charge
density

ρ = −ε∂2
z ψ = 2σ/h, (39)

in other words, the counterions form a homogeneous gas [24].
The electrostatic potential is readily integrated,

ψ (z) = kBT

e

(
ln m − 4π	Bσ

h
z2

)
, (40)

where the parameter m describes the finite value of the poten-
tial ψ (0) = (kBT/e) ln m at z = 0.

With these expressions for ρ and ψ the transport co-
efficients are readily calculated. Retaining contributions of
leading order in h only, we find

Lvc = eσh2

6η
, Lcc = e2σ

3ηa+
, (41)

resulting in the coupling parameter

ξ = σa+h. (42)

Note that for narrow channels the conductivity is independent
of salinity and gap height [29], whereas the parameter ξ is
linear in h.

C. Numerical evaluation of ξ and γ

In the general case, the electrostatic potential is obtained in
terms of the Jacobi elliptic function cd(u|m2) [30],

ψ (z) = kBT

e

[
ln m + 2 ln cd

(
z

2λ
√

m

∣∣∣∣m2

)]
. (43)

Because of cd(0|m2) = 1, the second term vanishes at z = 0,
and the potential at z = 0 is determined by ln m. The pa-
rameter m depends on the ratio of the channel height and
the Debye length: For h � λ one has m = 1 and recovers
the analytic expression (31) for a charged surface limiting an
infinite half-space. In the narrow-channel limit one finds

m = hn0

2xσ
, (hn0 � σ ), (44)

and expanding the Jacobi function to second order in z, one
recovers the potential defined in Eq. (40) above.

The electric potential is calculated numerically from (43)
with the boundary condition (7). Then the electroviscous
coupling parameter ξ defined in (25) is obtained by perform-
ing the integrals (20) and (21) for a given film distance h.
The numerical results are given in terms of the gap height
h0, the surface charge density σ , and the Debye screening
length λ. We use the viscosity of water at room temper-
ature, η = 0.9 × 10−3 Pa s, and the ion mobilities μ± =
1/6πηa± with the radii of sodium a+ = 1.9 Å and of chlorine
a− = 1.3 Å [31].

Figure 3 shows the variation of ξ as a function of h for
different values of surface charge concentration σ in compar-
ison with narrow-channel and wide-channel approximations.
As a surprising feature, ξ is roughly linear in σ . The log-log
plot shows the power laws ξ ∝ h and ξ ∝ h−2 in the limits of
narrow and wide channels, respectively. The maximum occurs
at hmax ≈ 3λ. The narrow-channel result (42) provides a good
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FIG. 3. Numerical calculation of the electroviscous coupling pa-
rameter ξ as a function of h, for surface charge density σ = 0.003
and 0.03 nm−2, and Debye length λ = 50 nm. Dotted and dashed
lines correspond to the approximations of narrow and wide channels,
respectively, whereas the solid lines give the numerical solution.

description for h � λ, whereas the wide-channel expression
(VII A) converges for h � λ∗ only. In the intermediate range,
which covers at least one decade in h, neither of them is valid.

In Fig. 4 we plot the enhancement factor γ /γ0 − 1 of the
viscous force (27), with parameters as in Fig. 3. As expected
for the electroviscous coupling parameter ξ , there is a max-
imum at h0 ≈ λ. The enhancement factor depends equally
strongly on the surface charge and the Debye length.

V. CHARGE REGULATION

So far we have assumed that the surface charge density σ

remains constant upon varying the film height h0. This is not
the case, however, for weakly dissociating acidic groups HA
which release and recover protons according to [32]

HA � H+ + A−. (45)

For narrow channels the potential (43) takes a finite value
ψ (0) = (kBT/e) ln m at z = 0, which favors recombination of
the surface groups, thus reducing the effective charge density
σ and surface potential ζ .

FIG. 4. Electroviscous drag enhancement γ /γ0 − 1 as a function
of h0 for different values of the surface charge density σ .

A simple and widely studied model relies on the dissocia-
tion constant

Z = [H+][A−]

[HA]
= ns

α

1 − α
, (46)

where we have defined the dissociated fraction α and the
hydronium concentration at the surface ns = e−eζ/kBT [H+]∞.
Solving for α, one finds the fraction of dissociated sites

α = 1

1 + ns/Z
, (47)

and the number density of surface charges

σ = α

S
. (48)

The electrostatic potential is obtained by closing the above
relations with the boundary condition (7). The area per site S is
chosen such that at large distance (where ζ = ζ∞), σ takes the
value indicated for the case of constant charge. An alternate
approach, which is often used for systems with more complex
charging procedure but essentially leads to the same results,
is via a proper minimization of the relevant thermodynamic
potential [33].

In the following we compare the electrostatic and elec-
troviscous properties calculated at constant charge (cc) with
the charge-regulated case (cr), and also with that of constant
potential (cp), where the boundary condition (7) is replaced
with

ψ (±h/2) = ζ∞. (49)

Here ζ∞ is the surface potential at large distance, calculated
with the surface charge σ according to (31). All curves labeled
“cr” are calculated with Z = 10−3 M.

A. Electroviscous coupling

In Fig. 5 we plot the coupling parameter ξ for the cases
of constant charge and constant surface potential, and observe
a behavior similar to what has been reported previously for
the disjoining pressure [34]. At distances smaller than the
screening length, h < λ, the curves of ξ for different boundary

FIG. 5. Electroviscous coupling parameter ξ as a function of
the distance h for constant charge (cc), charge regulation (cr), and
constant potential (cp).
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FIG. 6. Electroviscous enhancement γ /γ0 − 1 as a function of
the distance h0 for different boundary conditions.

conditions diverge significantly. Yet note that the electrovis-
cous coupling is strongest in the range λ < h < 10λ, where
charge regulation is of little importance.

The electroviscous enhancement of the drag force γ with
respect to the uncoupled expression γ0 is shown in Fig. 6. The
maximum occurs at a distance slightly below the screening
length. For the given electrostatic parameters, it reaches a
value of about 35%, which depends little on the electrostatic
boundary condition. The electroviscous drag component dis-
appears at much higher distances of about 10λ.

B. Disjoining pressure and static repulsion

Now we consider the static repulsive force arising from
the overlap of the diffuse layers on the opposite surfaces and
which is independent of the external driving. According to
(43), the potential at z = 0 reads as ψ (0) = (kBT/e) ln m, and
the disjoining pressure (8) is determined by the parameter m,

� = n0kBT

(
m + 1

m
− 2

)
. (50)

In Fig. 7 we plot � calculated for constant charge (cc), con-
stant potential (cp), and charge regulation (cr). For distances
shorter than the screening length, these different boundary
conditions result in significant differences. In agreement with
previous work, we find a constant pressure for cp [24] and
power laws � ∝ hs with s = −1 and − 1

2 for cc and cr, re-
spectively [34].

The dashed line corresponds to the widely used approxi-
mation [1]

�s(h) = 64β2n0kBTe−h/λ, (h � λ), (51)

which relies on the linear superposition of the double lay-
ers at the opposite surfaces, and where the parameter β =
tanh(eζ∞/4kBT ) is given by the surface potential ζ∞ at h0 →
∞, as defined in Eq. (32).

The repulsive force (10) between the two surfaces is
calculated in Derjaguin approximation, in analogy to (27),
resulting in

K = 2πR
∫ ∞

h0

dh�(h). (52)

FIG. 7. Disjoining pressure between charged surfaces as a func-
tion of the distance h0. The solid curves give the numerical solution
(8) for constant surface charge σ = 0.018 nm−2 (cc), constant po-
tential ζ (cp), and the charge-regulated intermediate case (cr) with
dissociation constant Z = 10−3M. The approximative expression
(51) is plotted as a dashed line. The inset shows the ratio �/�s,
highlighting the deviation of the disjoining pressure � from the
approximate expression �s, which sets in well above 200 nm.

For the pressure in superposition approximation we ob-
tain Ks = 2πRλ�s(h0) and, after expressing the salt content
through the Debye length,

Ks = 16Rβ2kBT

λ	B
e−h0/λ, (h0 � λ). (53)

A comparison of the numerically exact force K with the
exponential approximation Ks is given in Fig. 8. Both expres-
sions agree beyond 200 nm, or h0 > 7λ. The inset shows that
the force calculated for constant potential (cp) remains about
10% below Ks, whereas those for constant or regulated charge
(cc or cr) show a more complex behavior: they first decrease
below Ks yet at even smaller h0 by far exceed the analytic
approximation Ks [1].

VI. AFM FORCE MEASUREMENT

A. Experimental detail

We performed a dynamic AFM measurement with col-
loidal probe following the method described in [35]. A
spherical borosilicate particle (MO-Sci Corporation) with a
radius of R = 47 ± 1 μm was glued at the end of a cantilever
(CSG30, NT-MDT) using epoxy (Araldite, Bostik, Coubert).
The stiffness of the ensemble of cantilever and particle was
calibrated by the drainage method [36], resulting in kc =
0.8 ± 0.1 N/m. The resonance frequency and bulk quality
factor were obtained from the thermal spectrum as ω0/2π =
3340 Hz and Q = 4.7, respectively.

The experiment was performed using an atomic force mi-
croscope (Bioscope, Bruker, USA) equipped with a liquid cell
(DTFML-DD-HE) which allows us to work in liquid environ-
ment. The mica surface was driven by a piezo (Nano T225,
MCL Inc., USA) to approach the particle with a very small
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FIG. 8. Static force between charged surfaces as a function of
the distance h0. The solid curve gives the numerical solution (10)
for constant charge (upper red), constant potential (lower blue), and
charge regulation (middle green). The approximative expression (53)
is plotted as a dashed line. The inset shows the ratio K/Ks; note that
all curves coincide at large distance, which is not visible in the main
figure.

velocity such that the drainage force can be neglected, and
meanwhile the probe was also driven with a base oscillation
amplitude Ab = 3.5 nm and frequency of ω/2π = 100 Hz.
The amplitude A and phase ϕ of the cantilever deflection
were measured by a lock-in amplifier (Signal Recovery, model
7280), and the dc component of the cantilever deflection was
also recorded, from which the separation distance h0 and
electrostatic force K between the sphere and the mica surface
were extracted. The mica surface and cantilever probe are
immersed in low-salinity water. We also performed control
experiments at large salinity. All measurements were done at
room temperature, 21 ◦C.

B. Static force

Figure 9 shows the electrostatic repulsive force between the
mica surface and the colloidal probe. The data roughly show
an exponential behavior, as expected for a screened double-
layer interaction. The upper (red) curve is calculated from
Eq. (52) for constant charge number density σ = 0.028 nm−2

and the lower (blue) one for constant surface potential ζ =
−95 mV. In the range where both curves coincide, h0 > λ,
the best fit is obtained with a screening length λ = 47 nm,
corresponding to an electrolyte strength n0 = 43 μM.

C. Spring constant and drag coefficient

Driving of the probe induces an oscillation of the
tip-surface distance according to h0 + Z (t ). Modeling the can-
tilever as a damped harmonic oscillator [21] and solving its
equation of motion for the force F exerted by the surrounding
liquid, we obtain in complex notation

F = −kcZ

[
1 −

(
ω

ω0

)2

+ i
ω

ω0Q

]
Aeiϕ − A∞eiϕ∞

Aeiϕ + Ab
, (54)

FIG. 9. Static repulsion K between the AFM sphere and the solid
surface as a function of the distance h0. The squares give experimen-
tal data. The blue and red curves are calculated from (52) for constant
potential and constant surface charge, respectively, with the parame-
ter values R = 55 μm, surface charge density σ = 0.028 nm−2, and
screening length λ = 47 nm.

with amplitude A and phase ϕ of the mica surface. The
tip-surface distance reads as Z (t ) = eiωt (Aeiϕ + Ab), and the
values A∞ and ϕ∞ are measured far from the surface,
where the viscoelastic force F is negligible. All measurements
are done in the linear-response regime |Z| � h0.

In view of Eq. (1) we split F/Z in its real and imaginary
components. Writing the velocity as V = iωZ , we readily
obtain the complex response function,

F = −(k + iωγ )Z, (55)

where the “spring constant” k and the drag coefficient γ ac-
count for the elastic and viscous components of the tip-surface
interactions.

In Fig. 10 we plot the measured real and imaginary coef-
ficients as a function of the separation distance h0 at low or
high salinity, at the oscillation frequency of ω/2π = 100 Hz.
At large salinity electrokinetic effects disappear because of

FIG. 10. Real and imaginary parts k and ωγ of the response
function, measured at a vibrational frequency ω/2π = 100 Hz and
at low or high salinity, as a function of the distance h0.
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FIG. 11. Elastic response k measured at ω/2π = 100 Hz (open
symbols) and for the static case (full symbols) as a function of h0.
The solid line gives the static rigidity k, calculated from Eq. (11), for
constant potential. The experimental data are binned such that each
point corresponds to the mean value of 100 measured values.

electrostatic screening, and k vanishes accordingly, whereas
the drag coefficient follows the law γ0 ∝ 1/h0, expected from
Stokes hydrodynamics [26]. Quite a different behavior occurs
at low salinity, where we observe a strong elastic component
k which decays roughly exponentially with h0, and an electro-
viscous enhancement of the drag coefficient.

In Figs. 11 and 12, the experimental findings are compared
with theory. Regarding the elastic response, Fig. 11 shows
both the static stiffness −dK/dh0 (full symbols) and the
dynamic response k(ω) at finite frequency ω/2π = 100 Hz
(open symbols). The theory curve represents the spring con-
stant (11), which is related to the variation of the disjoining
pressure with distance and which is calculated from (8) at
constant potential (cp). The data roughly follow the expo-

FIG. 12. Comparison of the drag coefficient measured at
ω/2π = 100 Hz (circles) with theory (solid curves). At high salin-
ity (λ < 1 nm, red), the data are well fitted by ωγ0 with the drag
coefficient given by (30). At low salinity (λ = 47 nm, green) we
observe a significant electroviscous enhancement, which is qualita-
tively accounted for by ωγ calculated from (28). For narrow gaps the
measured data exceed the theory curve by up to 60%.

nential law expected for double-layer interactions, and they
provide strong evidence that the dynamic elastic response
k(ω) comprises a frequency-dependent contribution which is
most significant at small distances, h0 < λ, and which is not
captured by the electrostatic disjoining pressure �.

In Fig. 12 we plot the viscous response function ωγ . At
high salinity, the electric double layer is thin (λ < 1 nm),
such that charge-flow coupling effects are absent. Indeed,
the drag coefficient is well fitted by the viscous contribution
γ0 = 6πηR2/h0, as expected from (30). At low salinity, the
large screening length λ = 47 nm, comparable to h0, results in
charge-advection and electro-osmotic flow, which increase the
hydrodynamic pressure and thus enhance the drag coefficient.
The theory curve is calculated numerically from Eq. (28), with
the same parameters σ = 0.028 nm2 and λ = 47 nm as in
Figs. 9 and 11. If the overall behavior of the data is rather
well described by the theoretical expression, a significant
discrepancy occurs for small gaps, where the data exceed the
theoretical curve by up to 60%. Comparison with the elastic
coefficient shown in Fig. 11 suggests a frequency dependence
of the dynamic response function k(ω) + iωγ (ω), which is
not captured by the quasistatic coefficients k and γ derived in
the present work.

VII. DISCUSSION

A. Validity of the wide-channel approximation

If the double layers on either side of the water film do not
overlap, their properties are given by the Poisson-Boltzmann
potential (31) calculated for an infinite half-space. As the
surfaces get closer, the diffuse layers start to interact, resulting
in electrostatic repulsion and electroviscous coupling. In the
range where the distance h0 is moderately larger than the
Debye length λ, widely used approximations result in an
exponentially screened electrostatic repulsion [37] and in a
power-law dependence of the electroviscous drag [15].

Its range of validity is obviously related to the Debye
length λ, yet our analysis shows that in reality it is limited
by a significantly larger distance λ∗, defined in (36). With
typical values of the ζ potential ranging from 25 to 100 mV,
the parameter λ∗ may be up to 10 times larger than the actual
screening length λ. This is clearly displayed by the electrovis-
cous coupling parameter plotted in Fig. 3. The wide-channel
approximation converges only at h0 � λ. As a consequence,
at distances of the order of or smaller than λ∗, the force can be
calculated only numerically.

B. The effect of charge regulation

There are two length scales indicating a qualitative change
of the electrostatic properties, as illustrated by the parameter
m of the Jacobi elliptic function cd(u|m2) in Eq. (43), which
is plotted in Fig. 13. For very large channels one has m = 1,
which means that the double layers at opposite surfaces do
not interact. The onset of the electrostatic coupling occurs at a
film height λ∗ which increases with the surface charge density
σ , as shown by the curves of Fig. 13.

On the other hand, the electrostatic boundary conditions
and charge regulation are relevant at smaller distances, and
their onset shows the opposite behavior as a function of the
surface charge density. Indeed, for σ = 0.001 nm−2 the three
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FIG. 13. The parameter m of the electrostatic potential (43) as a
function of reduced channel height h/λ for three values of the surface
charge density σ and for constant charge (cc, red), constant potential
(cp, blue), and charge regulation (cr, green). There are two different
length scales: The onset of electrostatic coupling of the two diffuse
layers, where m starts to decrease below 1, occurs at a distance h∗ =
2πσ	Bλ2 which increases with σ . On the other hand, the electrostatic
boundary condition and charge regulation (cc, cr, cp) are relevant
at shorter distances, and there onset occurs at a distance which is
inversely proportional to the surface charge density.

curves (cc, cp, cr) start diverging at h = λ, whereas for σ =
0.1 nm−2 this occurs at much smaller distances.

These features can be observed for both the electrostatic
repulsion and electroviscous effects. Regarding the former,
the two length scales for the onset of nonexponential behavior
and charge regulation effects are clearly visible in the inset
of Fig. 8. Similarly, the electroviscous coupling parameter
ξ in Fig. 5 and the enhancement of the drag coefficient in
Fig. 6 show characteristic wide-channel power laws for h �
λ, whereas charge regulation effects occur at distances shorter
than the screening length.

C. Electrokinetic lift force

In this work we have considered the electroviscous force
(27) only. As pointed out by Bike and Prieve [15], there is
an additional electrokinetic force given by the diagonal part
1
2εE2 of the Maxwell stress tensor,

Fel = 2πR
∫ ∞

h0

dh
εE2

2
, (56)

with the electric field (23). Because of E ∝ V , this “lift force”
is quadratic in the driving velocity V ∝ cos ωt . As a conse-
quence, Fel ∝ cos2 ωt is always repulsive and oscillates with
the double frequency, contrary to the electroviscous force
F = −γV , which is opposite to the velocity and oscillates
with ω.

The present experiments on squeezing motion do not show
any indication of the lift force Fel. This does not come as a
surprise: inserting the wide-channel expressions of the trans-
port coefficients Li j and a typical velocity V = 100 nm/s, we
find

Fel ∼ εζ 2

(
λ2

h2
0

aηV R

kBT

)2

∼ 10−17 N, (57)

FIG. 14. Numerical calculation of the electroviscous enhance-
ment of the drag coefficient γ /γ0 − 1 as a function of h0, for
σ = 0.03 nm−2 and λ = 50 nm. The solid line is calculated with
the full pressure (24) and the dashed line that with the linearized
expression (58).

which is much smaller than the electroviscous force F ∼
10−9 N.

For sliding motion along the surface, on the contrary, the
lift force Fel turns out to be important. Due to the symmetry
properties of the unperturbed pressure P0, the corresponding
vertical force vanishes, F = ∫

dSP0 = 0 [15]. Moreover, the
horizontal speed Ẋ of the sliding motion is typically of the
order of 10 mm/s, much larger than the vertical velocity V =
Ż in the present experiment.

D. Comparison with previous work

Electroviscous effects on squeezing motion have been
studied in several previous papers [15,21–23]. All of these
works start, more or less explicitly, from the volume and
charge currents (14) and (15). Yet when calculating the charge
current JC they use the unperturbed pressure gradient ∇P0 =
−6ηrV/h3 instead of ∇P. This perturbative approach cor-
responds to a linearization of the pressure gradient in the
coupling parameter ξ ,

∇P1 = ∇P0(1 + ξ ), (58)

instead of the exact expression (24).
As a consequence, electroviscous effects appear as an ad-

ditive correction to the unperturbed drag force F0. Thus the
wide-channel force of Bike and Prieve [15] is identical to the
first two terms of (38), whereas our expression (37) corre-
sponds to the full series in λ∗/h0. Similarly, the numerical
calculations of Chun and Ladd [22] and Zhao et al. [23] are
done with the linearized pressure gradient P1.

In Fig. 14 we compare the electroviscous enhancement of
the drag force, calculated with the numerically exact pressure
gradient (24) and with the linearized form P1. For the pa-
rameters λ = 50 nm and σ = 0.03 nm−2, the linearized drag
coefficient (dashed line) is by 28% larger than γ0, whereas the
increase of the full expression (solid line) attains 40%. This
difference is not surprising in view of the coupling parameters
shown in Fig. 3; in the intermediate range where ξ reaches
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values of the order of unity, one expects a significant nonlinear
behavior.

VIII. SUMMARY

We have studied the electroviscous and electrostatic forces
exerted on a vibrating AFM tip across a nanoscale water film.
We briefly summarize the main findings.

(i) In the framework of Onsager relations for generalized
fluxes and forces, we derive the drag coefficient (28) in terms
of the electroviscous coupling parameter ξ . With the surface
charge σ and the screening length λ taken from the elec-
trostatic repulsion (Fig. 9), we find an almost quantitative
agreement with experimental data (Fig. 12), with a discrep-
ancy attaining 60% in the narrow-gap limit.

(ii) This analysis relies on a quasistatic approximation (22),
where the radial charge distribution in the water film is as-
sumed to follow instantaneously the external driving. The fits
of the viscous and elastic components of the response function
(55), measured at ω/2π = 100 Hz and shown in Figs. 11 and
12, suggest that this approximation is justified at distances
larger than the screening length yet ceases to be valid for
h0 < λ. Our experimental data strongly suggest that in this
range both the spring constant k and the drag coefficient γ

vary with frequency. The nature of the underlying relaxation
process is not clear at present.

(iii) Previous work relied on the linearization approxi-
mation (58) for the hydrodynamic pressure gradient. This
linearization significantly underestimates the enhancement of
the drag coefficients for the parameters of Fig. 14 by about
40%.

(iv) Charge regulation turns out to be of minor importance
in the experimentally most relevant range. Indeed, the elec-
troviscous coupling sets in at large distances and is maximum
at h0 ∼ 3λ (Fig. 3), whereas the electrostatic boundary con-
ditions and charge regulation effects are significant in narrow
channels only, as shown in Figs. 5–9.
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