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Titre: Quantification de la distribution de noyaux en 3D en 
microscopie à feuille de lumière en utilisant l’apprentissage 
profond  

Résumé: 
 
Ces dernières années, la popularité des cultures cellulaires en 3D, telles que les organoïdes ou les 
sphéroïdes, a explosé en raison de leur capacité à offrir des modèles précieux pour étudier la biologie 
humaine. Ces modèles sont en effet bien plus pertinents sur le plan physiologique que les cultures en 
2D. Il est ainsi crucial de pouvoir segmenter leurs noyaux de manière précise et robuste étant donné 
que la quantification de la distribution de ces noyaux est au fondement d'une multitude de mesures 
quantitatives de fonctions cellulaires importantes. Or, aujourd'hui, l'acquisition automatique de 
centaines d'organoïdes est devenue une réalité grâce aux progrès des systèmes de microscopie 
récents. Néanmoins, cette grande quantité de données crée de nouveaux goulots d'étranglement. En 
effet, les méthodes traditionnelles de traitement d'images nécessitent d’adapter leurs paramètres en 
fonction des conditions d'imagerie, empêchant de facto une analyse automatique et sans biais. Cette 
situation a entraîné le développement rapide de méthodes basées sur l'apprentissage profond, telles 
que StarDist, qui ont démontré des performances impressionnantes pour la segmentation précise des 
noyaux. Un autre avantage de ces méthodes est leur capacité à réduire considérablement le temps de 
traitement des données. Cependant, les approches d'apprentissage profond nécessitent une grande 
quantité de données pour entrainer et générer des modèles de segmentation précis et généraux. 
Malheureusement, la plupart des données annotées disponibles sont en 2D, ce qui entrave l'utilisation 
de ces méthodes pour la segmentation des noyaux en 3D. 
 
L'objectif de ce doctorat était d’implémenter un pipeline permettant la segmentation automatique et 
robuste des noyaux de cultures 3D, une tâche que j'ai réalisée en trois étapes. Tout d'abord, j'ai annoté 
manuellement 4657 noyaux 3D provenant de 6 organoïdes/sphéroïdes différents. Ce jeu de données 
annoté de noyaux 3D représente actuellement le seul jeu de données de vérité terrain disponible de 
cette taille pour les noyaux 3D, une ressource importante pour la communauté pour l'entraînement et 
l’évaluation de nouvelles méthodes. Deuxièmement, j'ai réalisé que l’annotation de structures 3D 
prend énormément de temps et qu'il y a un manque d'outil disponible pour aider les annotateurs à 
garder une trace des annotations effectuées. J'ai donc développé le Napari Annotation Helper (NAHP), 
un plugin Napari conçu pour aider les utilisateurs à garder une trace des annotations encours, pour 
réduire les erreurs d'annotation et pour extraire des informations statistiques des images d'intensité.  
Troisièmement, j'ai entraîné un modèle de segmentation 3D StarDist avec l'ensemble de données de 
vérité terrain que j'ai créé. Ce modèle a été utilisé pour segmenter automatiquement des centaines 
d'organoïdes et quantifier la distribution spatiale de leurs noyaux, une preuve de concept que mon 
pipeline peut être utilisé pour répondre à des questions biologiques spécifiques. 

 
 
 
 

Mots clés: Apprentissage profond , Segmentation, Microscopie à feuille de 

lumière, Haute-résolution, StarDist, Traitement d'images. 
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Title: 3D deep-learning based quantification of the nuclei 
distribution for light-sheet microscopy 

Abstract:  
 
In recent years, the popularity of 3D cell cultures, such as organoids or spheroids, has exploded due to 
their ability to offer valuable models to study human biology, far more physiologically relevant than 
2D cultures. Being able to segment nuclei accurately and robustly is crucial as quantifying the nuclei’s 
distribution is the basis of a variety of quantitative measurements of important cell functions. 
Nowadays, automatically acquiring hundreds of organoids has become a reality thanks to the advances 
in microscopy systems. Nevertheless, this high amount of data creates new bottlenecks as traditional 
image processing methods require adapting their parameters depending on the imaging conditions, 
preventing automatic and bias-free analysis. This has resulted in the rapid development of deep 
learning-based methods, such as StarDist, that demonstrated amazing performances for accurately 
segmenting nuclei. An additional benefit is their ability to reduce data processing time significantly. 
Still, deep learning approaches require a large amount of ground truth data to generate accurate and 
general segmentation models. Unfortunately, most datasets currently available are 2D, hampering the 
use of these methods for segmenting nuclei in 3D. 
 
The goal of this Ph.D. was to implement a pipeline enabling the automatic and robust segmentation of 
3D cultures’ nuclei, a task I achieved in three steps. First, and because of the lack of available ground 
truth in 3D, I manually annotated 4657 3D nuclei spanning from 6 different organoids/spheroids. This 
3D nuclei annotated dataset currently represents the only available ground truth dataset of this size 
for 3D nuclei, a significant resource for the community for training methods and benchmarking their 
results. Second, I realized that labeling 3D structures are very time-consuming and that there is a lack 
of available tools to help annotators keep track of the annotations performed. Thus, I developed the 
Napari Annotation Helper (NAHP), a Napari plugin designed to help users keep track of annotations, 
reduce annotation errors and extract statistical information from the intensity images to annotate.  
Third, I trained a StarDist 3D segmentation model with the ground truth dataset I created. This model 
was used to automatically segment hundreds of organoids and quantify their nuclei spatial 
distribution, a proof of concept that my pipeline can be used to answer specific biological questions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords: Deep learning, Segmentation, Light-sheet microscopy, High-

Resolution Microscopy, StarDist, Image Processing 
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Glossary 
 
2D image: standard format in which images are acquired by a standard camera. In our case, the camera 
used is the microscope camera. 
3D image: term typically used to indicate a z-stack of 2D images.  
Image stack: see 3D image. 
Data Science Bowl 2018 (DSB2018): the data science competition held in 2018 whose main task was 
to segment cell nuclei in microscopy images. The official data set is an open-source dataset usually 
referred to as the DSB2018 dataset and is often used to benchmark nucleus segmentation methods. 
Convolutional neural network (CNN): a class of deep neural networks including convolutional layers 
based on blocks responsible for appropriate image feature retrieval (via convolutions) and scaling (with 
pooling blocks). 
Deep neural network (DNN): is an artificial neural network machine learning architecture that includes 
several hidden layers and can be trained to solve more complex tasks on more complex data compared 
to shallow neural networks. 
Ground truth (GT): is information known to be real or true, provided by direct observation and 
measurement.  
Star-shaped polygon: is a polygon that contains a point from which the entire polygon boundary is 
visible. 
Convex polygons: All interior angles are less than 180°, and all vertices point outwards, away from the 
interior. Convex polygons are star-shaped 
Wavelet transformation (WT): Wavelet transforms are mathematical tools for analyzing data where 
features vary over different scales. For signals, features can be frequencies varying over time, 
transients, or slowly varying trends. For images, features include edges and textures. Wavelet 
transforms were primarily created to address the limitations of the Fourier transform. 
Convolution: In image processing, convolution is the process of transforming an image by applying a 
kernel over each pixel and its local neighbors across the entire image.  
Kernel: A kernel is a matrix of values whose size and values determine the transformation effect of the 
convolution process over an image. 
Encoding: to convert data into a required format. For example, a color RGB image can be encoded into 
the HSV format (hue-saturation-value) 
Decoding: to convert a coded message into intelligible language 
Intersection over union (IoU): is a number that quantifies the degree of overlap between two 
bounding boxes. In the case of object segmentation, IoU evaluates the overlap between the ground 
truth and the segmentation.  
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Abbreviations 
 
2D, 3D: Two, three-dimensional 
CLAHE: Contrast limited adaptive histogram equalization 
CNN: Convolutional neural network 
CPU: Central processing unit 
CWT: Continuous wavelet transformation 
DL: Deep learning 
DLNN: Deep learning neural network 
DSB2018: Data Science Bowl 2018 data set 
DWT: Discrete Wavelet Transform.  
FN: False negative 
FP: False positive 
GUI: Graphical user Interface 
GPU: Graphics processing unit 
GT: Ground truth 
IoU: Intersection over union 
JND: Just noticeable difference 
CVD: Color vision deficiency 
LUT: Look up table 
LSM: Light sheet microscopy 
ML: Machine learning 
NA: Numerical aperture 
NAHP: Napari Annotation Helper 
NN: Neural network 
PSF: Point spread function 
TIRF: Total Internal Reflection Fluorescence  
TP: True positive 
WLT: Wavelet Transformation  
SPIM: Selective plane illumination microscopy (SPIM) 
soSPIM: Single objective selective-plane illumination microscopy 
SWT: Stationary wavelet transform  
3D-XY: Images obtained after applying the À-Trous Wavelet transformation using a B3 Spline 5x5 filter 

in x-y directions.  

3D-XYZ: Images obtained after applying the À-Trous Wavelet transformation using a B3 Spline 5x5 filter 

in x, y, and z directions. 
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method in which patterns inferred from the unlabeled input data. .................................................... 31 

Figure 14: Semi-supervised learning. Semi supervised learning is a machine learning method in which 

models are trained using labeled data and unlabeled data. ................................................................. 31 

Figure 15:Early stopping principle. If the performance of the model on the validation dataset starts to 

degrade (e.g. loss begins to increase, or accuracy begins to decrease), then the training process is 

stopped. early stopping could potentially improve generalization when other regularizes are absent.
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controls how quickly the model is adapted to the problem. ................................................................ 33 

Figure 18: Activation functions diagrams. An activation function is a function that is added into an 
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Figure 20: Semantic segmentation (left) vs Instance segmentation (right) diagram (Varatharasan et 
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contrast, instance segmentation identifies individual objects within these categories. ...................... 37 

Figure 21:U-net architecture. U-Net is an architecture for semantic segmentation. U-net consists of a 
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Figure 22: Residual learning building block. In this block a layer ℓ − 1 is skipped over activation from ℓ 

− 2. Edited from (K. He et al., 2016). ..................................................................................................... 40 

Figure 23: Example network architectures for ImageNet. Left: the VGG-19 model as a reference. 
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Figure 25: Architecture of StarDist 2D (Schmidt et al., 2018).a) comparison between pixel 

classification and object detection using bounding boxes. b) StarDist segmentation methodology. c) 
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Figure 26: a) STARDIST-3D method is trained to densely predict object probabilities p and radial 

distances dk to object boundaries. b) Schematic of STARDIST-3D architecture based on ResNet. c) 

During non-maximum suppression process (Weigert et al., 2020)....................................................... 43 

Figure 27: Latitude–longitude lattice (top) and Fibonacci lattice (bottom). In the Fibonacci lattice, the 

points are much more evenly spaced, and the axial anisotropy is much smaller in comparison with 

the latitude-longitude lattice. Edited from (González, 2010). .............................................................. 44 

Figure 28: a, JeWell chips in a six-well dish (left) and close-up image of the JeWells array with a 

density of 16 JeWells per mm2 (right). Inset shows a zoom on a JeWell inverted pyramidal 

microcavities flanked with four 45° mirroring surfaces. Scale bars, 3 cm (left), 500 μm (right) and 70 

μm (inset). b, Schematic of the seeding procedure. c, Photograph of the imaging setup comprising a 

commercial inverted microscope, combined with JeWell chips, a laser scanning unit, and its custom-

made control software. d, Principles of the soSPIM. Edited from (Beghin et al., 2022). ...................... 47 
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of Virgile Viasnoff at the Mechanobiology Institute of the National University of Singapore. ............ 48 
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up the labeling process but due to its unsatisfactory performance this idea was discarded. .............. 50 

Figure 33: Semi-annotation process diagram.2D labels are distinguish by different color. However, in 
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Figure 34: 3D Manual and Semi-automatic annotation results, where a) is a neuroectoderm organoid 
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neuroectoderm organoid labeled using a semi-automatic process. .................................................... 52 
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Figure 36: CIELAB color space. L axis describes the luminous intensity of the color, the coordinates a 

and b represent the main color axes, with red at positive a and green at negative a; yellow on 

positive b and blue on negative b. The C axis represents chroma or saturation, the H stand for hue, 
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 1 . Introduction 
 
 
 
 
 

1.1 Importance of fluorescence microscopy in biological research  
 
To understand the nature and function of many biological processes and structures, it is necessary to 
identify and localize specific proteins, molecules, and macromolecules within the cellular environment. 
These cells, which help build up tissue and organs, are generally translucent in their natural state. Their 
immense number of constituents are optically indistinguishable from one another, making the 
identification of proteins and molecules a matter of high interest for the research community 
(Sanderson, 2018). 
 
To achieve the identification of the different cell components, we need the ability to separate a specific 
protein or structure of interest from its surrounding environment. It also requires good contrast so 
that the fine structure details can be distinguished. By allowing the selective and specific detection of 
molecules at small concentrations with a good signal-to-background ratio, fluorescence microscopy 
has rapidly become a tool of choice for examining biological specimens, whether fixed or alive 
(Sanderson, 2018; Yuste, 2005). Besides, thanks to the large spectral range of fluorophores and 
fluorescence markers available on the market, it allows simultaneous imaging of different biological 
structures. 
 
Fluorescence is a phenomenon occurring when a fluorescent molecule (or fluorophore) absorbs a 
photon, subsequently emitting a new photon with a different wavelength. The difference in energy 
between the emitted and absorbed photons is called Stokes shift (Figure 1), and its magnitude 
determines how easily these photons can be separated (Sanderson, 2018). This shift is critical as it 
provides contrast in optical microscopy: one has only to choose a specific spectral filter to filter out 
the excitation light, only detecting the fluorophores’ emitted light. Nevertheless, this fluorescence 
lifecycle only occurs a limited number of times until photobleaching, a structural change of the 
molecule that prevents it from absorbing further photons, resulting in a limited observation time.  
 
Through tagging with some of the many fluorophores that exist, single proteins become visible on the 
microscope. And since those available fluorophores cover a wide spectral range, simultaneous imaging 
of different biological samples in crowded environments with great accuracy has become a reality. In 
the end, contrast, specificity, and a simple implementation into an optical system have propelled 
fluorescence microscopy to a prominent position in life sciences.  
 

1.2 Resolution in Fluorescence microscopy 
 
The theoretical resolution achievable by fluorescence microscopy is limited to the micrometer scale as 
it is subject to the laws of light diffraction. In the microscopy context, resolution depicts the distance 
between two-point sources that can be recognized as distinct. Therefore, the spatial resolution 
determines the finest details a microscope can image (Jerome & Price, 2018; Sanderson, 2018). 
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The primary cause of lateral image blurring in a microscope is light diffraction. When photons from an 
infinitesimally small point are focused through a lens, the resulting two-dimensional image is a central 
bright circle surrounded by a series of halos, known as the Airy pattern. The intensity distribution of 
the Airy pattern is called the point spread function, or PSF. The width of its main lobe depends critically 
on two factors: the wavelength of the emitted photon and the amount of light collected by the imaging 
system. Ultimately, the image of a biological sample is just the sum of the PSF of all its fluorescent 
molecules. This implies that, when a sample is illuminated, the localization of a molecule is possible 
when the main lobe of its Airy disk is distinguishable from those of neighboring molecules. However, 
when the separation between molecules is not enough, we are unable to locate them precisely (Figure 
2) 
 
In the nineteenth century, Lord Rayleigh determined the resolution limit of a microscope using the Airy 
disk. Rayleigh’s resolution criterion states that two adjacent objects are just resolved when the 
maximum of the PSF of one object coincides with the first minimum of the other, in the image plane 
(Jerome & Price, 2018; Sanderson, 2018). This can be expressed as: 
 

𝑟 = 0.61
𝜆

𝑁𝐴
=  0.61

𝜆

n(sin 𝜃)
 

(1) 

Where:  
r = minimum resolved distance, 
λ = wavelength 
NA = is the numerical aperture of the objective 
n = refractive index of the medium  
θ = half of the collecting angle of the lens 
 
If we desire to image a 3D object, it is important to consider the axial resolution along the z-axis as well 
as the lateral spatial resolution. In this case, the ability of a microscope to separate two point sources 
having the same lateral x-y position but a different z axial position is critical, and the PSF also becomes 
a three-dimensional object. In the z-axial direction, the PSF is broader and more spread out, causing a 
resolution decrease along this axis to be three to four times worse than in x-y directions. This brings 
our attention to another important concept, the depth of field. The depth of field is defined as the 
thickness of the optical section along the z-axis within which objects in the specimen plane are in 
acceptably sharp focus. The larger the numerical aperture of the objective, the smaller the depth of 
field will be (Jerome & Price, 2018; Sanderson, 2018). The minimum distance resolved in the z-axis by 
an objective, assuming no spherical or chromatic aberration, can be given as:  
 

Figure 1: a) Jablonski Diagram representing the fluorescence timeline and the different energetic levels through 
which a molecule can transit. b) Diagram of the loss of energy of a fluorescent molecule and internal conversion 

that results in a wavelength shift of the emission spectrum (the Stokes Shift). 
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𝑑𝑧 = 
2𝑛𝜆

𝑁𝐴2
 

            (2) 

Where:  
 
n = refractive index of the immersion medium 
λ = wavelength 
NA = is the numerical aperture of the objective 
 
 

 
It is worth reiterating that all criteria for resolution are intimately dependent upon the Airy disk size. 
We can circumvent some of its limitations, but if we use a lens for imaging, we cannot completely get 
rid of the consequences of the diffraction of light. 
 

1.3 High-resolution microscopy 
 
Fluorescence microscopy (Figure 3) is one of the most used imaging modalities to image living and 
fixed biological samples and has become the main tool for biology and biomedical science. Despite its 
inherent limitations caused by the diffraction limit, its importance has driven researchers to improve 
its effective resolution by optimizing its contrast. This has fueled the development of several types of 
fluorescence microscopes.  

Figure 2: Airy disk and resolution limit. The numerical aperture NA of an optical system determines the ability of 
an optical system to collect the emitted photons through a collection angle 𝛼. The image of point source at the 

focal plane of an optical system is a 2D pattern called the point spread function (PSF). The resolution of an optical 
system, i.e., the ability to distinguish two close emitting point sources, is defined by the Rayleigh criterion. 
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Widefield microscope (Figure 4a) is one of the most basic and used fluorescence microscopes. It uses 
a parallel beam to illuminate the whole specimen at once to excite the fluorophores. While its way of 
illuminating the samples allows simple and fast imaging, it also means that the sensor collects out-of-
focus light, which is detrimental to the image contrast and the microscope's effective resolution. This 
also gives widefield a poor z-axis resolution, making it unsuitable for 3D imaging (Jerome & Price, 2018; 
X. Wang & Lai, 2021).  
 
Improving the effective resolution can be achieved by limiting the thickness on which the sample is 
imaged, de facto reducing out-of-focus blur. One example is Total Internal Reflection Fluorescence 
(TIRF) microscopy (Figure 4b), that confines the excitation light to a thin slice. Total internal reflection 
is an optical phenomenon occurring when a beam is totally internally reflected in the coverslip due to 
the refractive index difference between the glass and the imaging medium. This creates a standing 
wave propagating along the interface between the glass coverslip and the watery medium of the 
sample, creating an evanescent field whose amplitude decays exponentially. In a typical experiment 
setup, the fluorophores near the interface will be excited by the evanescent field (Sanderson, 2018; X. 
Wang & Lai, 2021, 2021). Due to the low penetration depth of the evanescent wave, there is almost 
no background fluorescence, resulting in an extremely high contrast signal. One major drawback of the 

Figure 3: The basic setup of a fluorescence microscope. Fluorescence microscopy uses a light to illuminate the 
sample (light source), this light excites fluorescent dye in the sample, which then emits light of a longer 

wavelength. The excitation filter filters out all wavelengths of the light source, except for the excitation range of 
the fluorophore under inspection. The dichroic filter or beamsplitter reflects the excitation signal towards the 
fluorophore and transmits the emission signal towards the detector. The emission filter is located within the 

imaging path of the microscope. It filters out the entire excitation range and transmits the emission range of the 
fluorophore under inspection. The objective transmits the excitation light from the sample to form the image. The 

light passes down through the dichroic mirror before reaching the detector. The emission filter is located within 
the imaging path of the microscope and its job is to filter out the entire excitation range and to transmit the 

emission range of the fluorophore under inspection (Sanderson 2018). 
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TIRF method is that the penetration depth of the evanescent field can only be approximately 60 to 200 
nm beyond the upper surface of the coverslip, making it unsuitable for imaging structures deeper in 
the cell.  
 
As opposed to confining the excitation light, another solution is to provide widefield excitation while 
preventing out-of-focus light from being detected. In the case of confocal microscope (Figure 4c) a 
pinhole is placed in a plane optically conjugated to the image plane, preventing both the illumination 
of the entire field of view and out-of-focus light from being detected (Sanderson, 2018; X. Wang & Lai, 
2021). This illumination method helps to overcome the background glare and provides good sectioning 
in the axial direction, making it possible to create blur-free images in three dimensions. Nevertheless, 
confocal microscopes are temporally limited since they use a point scanning excitation, possibly 
resulting in noisier images than widefield. Besides the lasers' high energy, they can easily cause 
photobleaching of fluorophores and phototoxicity of biological tissue, particularly in living cells 
(Jerome & Price, 2018; Sanderson, 2018). However, spinning disk confocal microscopy, that uses a 
multiple-point scanning system, has been developed to overcome this limitation. In this configuration, 
the sample is both illuminated, and the emitted light detected through a spinning disk with pinholes. 
This configuration allows faster acquisition and lower light requirements. However, some resolution is 
lost due to the crossing between multiple fluorescence points and fixed pinhole sizes (X. Wang & Lai, 
2021).  
 
Multi-photon microscopy (Figure 4d) employs femtoseconds laser pulses to ensure that two photons 
(occasionally three) will hit a molecule within 1 femtosecond of difference. One key benefit of this 
process is its ability to restrict excitation to a tiny focal volume in thick samples (~0.1μm²). As a result, 
multiphoton microscopy offers low phototoxicity and higher spatial and temporal resolution in 
comparison with other in vivo imaging methods. This type of microscope is also suitable for imaging 
thick samples, offering an invaluable tool for studying cellular and subcellular mechanisms within the 
tissue (Dunn & Young, 2006; Sanderson, 2018). Nevertheless, it is also a laser-scanning technique, 
which brings some inherent temporal limitations. 
 
Selective Plane Illumination Microscopy or better known as SPIM (Figure 4f) employs two objectives in 
a perpendicular geometry, resulting in a planar illumination of the sample from the side. In this 
configuration, only a well-defined volume around the focal plane of the detection optics is illuminated, 
providing good optical sectioning, and strongly reducing photo-bleaching. The thickness of the 
illuminating light sheet and the detection lens NA determine the axial resolution of the instrument 
(Cella Zanacchi et al., 2011; Engelbrecht & Stelzer, 2006; Huisken et al., 2004). Finally, the fluorescence 
signal emitted from the in-focus section is detected in parallel for the entire field of view, which 
provides high imaging speeds. 
 
The main disadvantage of SPIM lies in its specific geometry, as extra optics are required to generate 
the light sheet. This induces significant constraints on both the imaging system and the sample 
mounting, preventing automatic acquisition of a vast amount of samples. In addition, SPIM 
microscopes, like any other fluorescence imaging system, suffer from scattering and absorption within 
the tissue. This issue can be mitigated by multi-view reconstruction, which involves collecting multiple 
datasets of the same object from different directions and combining their high-quality information into 
a single image in a postprocessing step (Huisken et al., 2004). 
 
To circumvent this mechanical limitation, one can use a unique objective to create the light sheet and 
collect the fluorescence signal. The single objective selective plane illumination microscopy (Figure 5), 
soSPIM system (Galland et al., 2015), developed by the Sibarita team, takes benefit from this idea by 
using 45° mirrors to reflect an incoming laser beam in order to create a light sheet perpendicular to 
the detection objective optical axis. The first benefit of this technology is the possibility to use high 
numerical aperture objectives. Another benefit is related to the embedding of those 45°mirrors inside 
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dedicated microfabricated devices called Jewells. Their fabrication is standardized, and hundreds to 
thousands of them are accessible in one 96-well plate, significantly improving the imaging throughput 
of the system. It allows standardizing and parallelizing the culture and the imaging of 3D cell cultures 
(Beghin et al., 2022). 
 

 
During the elaboration of this project, the images we will use were taken using the soSPIM system at 
the Mechanobiology Institute of the National University of Singapore by the team of Virgile Viasnoff1. 
The detail of the images will be discussed in further sections of this manuscript.  

 
1 https://www.mbi.nus.edu.sg/science-features/so-spim-fcs/ 

Figure 4: Main illuminations techniques used in fluorescence microscopy. (a) Wide-Field microscopy (WF), (b) Total 
Internal Reflection Fluorescence (TIRF), (c) Confocal microscopy (CF), d) Multiphoton microscopy, (f) Light sheet, or 

selective plane illumination microscopy (SPIM). 
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Figure 5: Schematic representation of the soSPIM system. The excitation light source is reflected onto a 45° mirror 
creating a thin light sheet illuminating the sample perpendicularly to the image plane. This geometry enables 3D-

volume imaging by simply synchronizing the movements of the objective and the excitation beam. 
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 2 . Deep Learning for 
Biological Research 

 
 
 
 
Microscopy imaging techniques are essential for studying fundamental biological processes. The 
improvement of microscopes' optic and electronic systems, analysis software, fluorophores, and 
computers have helped understand many fundamental biological principles (Sanderson, 2018). The 
new generations of microscopes allow researchers to acquire more images than ever before at a much 
higher speed with a higher spatial resolution and a larger field of view. However, as all these seem to 
be advantages, it is worth mentioning that the high production of image datasets makes it very 
challenging to analyze them using traditional approaches. Therefore, automatizing the analysis process 
has de facto become a priority. Deep neural networks have proven their ability to improve image 
analysis pipelines compared to traditional approaches (H. Wang et al., 2018). In addition, the 
combination of their ability to automatize the processing of a large number of microscopic images with 
their improved robustness and generalization have resulted in a fast-paced adoption in biology. 
However, limited training sets and low image quality are the main issues to overcome.  
 
One of the most important tasks in biological research is segmenting cell nuclei, since identifying and 
quantifying their localization and organization are the basis of a variety of quantitative measurements 
of important cell functions. Until recently, the dominant approaches for this task have been based on 
classic image processing algorithms like Otsu thresholding and watershed. However, traditional 
methods also require expertise to properly adjust analysis parameters, a process usually highly 
dependent on the different experimental conditions. Deep learning neural networks have 
revolutionized image analysis techniques, proving to give an outstanding performance in nuclei 
segmentation. Besides, deep learning has helped to create fully automated and robust methods able 
to work with a wide variety of experimental conditions, different cell lines, and types of light 
microscopy (Caicedo et al., 2019). However, the robustness of most traditional machine learning 
methods is highly dependent on image quality, the extracted image features, and the performance of 
the feature classification methods. For this reason, it is essential to know the basic concepts of deep 
learning in order to get the most out of them. 
 

2.1 Introduction to Deep Learning main concepts 
 
Artificial neural networks (ANNs) are algorithm-based systems that try to mimic biological neural 
networks; i.e., these algorithms try to mimic the way human brains process information. This has made 
neural networks able to provide strong solutions to real-world challenges and help to address 
problems in several areas like classification, prediction, filtering, optimization, pattern recognition, 
among others. In contrast with biological neural networks, artificial neural networks pretend to 
abstract the complexity of the human brain focusing on what may theoretically matter most from an 
information-processing point of view. As well as their biological counterparts, ANNs seek to use the 
same information processing features like nonlinearity, high parallelism, resilience, fault tolerance, 
learning, the capacity to handle imprecise and fuzzy information and the ability to generalize (Thakur, 
2021). 
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Artificial neural networks learn how to identify and classify objects in a similar way as biological neural 
networks. They execute tasks by analyzing samples and inferring rules without the need for direct 
interaction with a user. ANN-based models are empirical in nature; nonetheless, they may give 
practically correct answers to precisely or imprecisely defined issues, as well as phenomena that can 
only be understood through experimental data and field observations (Thakur, 2021). 
 
Artificial neural networks are basically constructed following the next assumptions: 
 

• Information is processed by a large number of basic components known as neurons. 

• Signals are transferred from one neuron to the next via connecting linkages. 

• Each connecting link has a weight associated with it, which transforms the signal conveyed in 
a conventional neural network.  

• Each neuron determines its output signal by applying an activation function (typically 
nonlinear) to its net input (sum of weighted input signals) (Thakur, 2021). 

 
Being artificial neural networks, deep learning neural networks are computational models that are 
composed of multiple processing layers and learn representations of data with multiple levels of 
abstraction (H. Wang et al., 2018). Deep learning architectures such as deep neural networks, deep 
belief networks and recurrent neural networks have been applied to improve the algorithms used in 
speech recognition, visual object recognition, object detection and many other domains. These 
algorithms discover intricate structure in large data sets by using a backpropagation algorithm. In 
consequence, the machine learns how it has to adjust its parameters to output an accurate result. 
These adjustable parameters, often called weights, are real numbers that can be seen as ‘knobs’ that 
define the input–output function of the machine (Aggarwal, 2018; Chollet, 2018; Thakur, 2021). Before 
talking about the basic concepts, we need to highlight two key aspects: 
 

• Deep learning models consist of multiple layers or stages of nonlinear information processing. 

• The deeper we go in a neural network, the more abstract the features extracted become. 
 

2.1.1 Types of neural networks  
 
To describe neural networks, we will begin by describing the simplest possible neural network, one 
which comprises of a single "neuron", this simple neural network being referred as perceptron (Figure 
6). In this case, the input is mapped directly to the output by a function known as the "activation 
function." The edges from the input to the output contain the weights w1 . . . wd, with which the 
features are multiplied and added at the output node after the activation function converts the 
aggregated value into a class label. This type of neural network is known as single-layer neural network 
(Aggarwal, 2018; Chollet, 2018).  
 

 

Figure 6: Architecture of a single neuron or perceptron. x1, x2, and x3, represent the inputs, w1, w2 and w3 the 
weights, f represents the activation function and y the corresponding output. 
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Neural networks are modeled as a collection of single neurons arranged in layers (Figure 7) to build a 
net, with cycles being forbidden. Neural networks are mainly composed of three layers, the input, the 
output, and one or more hidden layers. The input layer gets the data and passes it to the hidden layers. 
The hidden layers, in which weights are applied to the inputs, direct the inputs through an activation 
function and send their output to the output layer. This architecture is known as feed-forward because 
successive layers feed into one another in the forward direction from input to output. Unlike all layers, 
the output layer uses a converting function that converts values into probabilities. Those values can 
then be passed to a threshold function to determine the class scores (e.g., in classification) or a real-
valued target (e.g., in regression) (Kotsiantis, 2017). 
 

 
The neural networks’ learning ability strongly depends on the weight between neurons. For regular 
neural networks, the most common layer type is the fully connected layer in which neurons between 
two adjacent layers are fully pairwise connected. These types of networks are called fully connected 
neural networks. Therefore, the architecture of the neural network is almost fully defined, once the 
number of layers and the number/type of nodes in each layer have been defined (Aggarwal, 2018; 
Goodfellow et al., 2016).  
 
Neural networks come in different varieties, and they are frequently employed in a variety of machine 
and deep learning applications. Convolutional neural networks are the most common networks used 
in computer vision and image processing.  
 

2.1.2 Convolutional neural networks  
 
For a convolutional neural network (CNN), an image is seen as a grid-structured composed of pixels, 
where each pixel has similar features to its neighbors. Therefore, each input image has a strong spatial 
dependency within its local regions. Convolutional neural networks (Figure 8) learn the spatial 
dependencies within the different image regions; this means that CNN tends to create similar feature 
values from local regions with similar patterns. Contrary to densely connected layers that learn global 
patterns, convolutional layers learn local patterns. This key characteristic gives convnets two 
interesting properties: translation invariance and the capacity to learn spatial hierarchies of patterns 
(Aggarwal, 2018; Chollet, 2018; Zuo et al., 2015).   
 

Figure 7: Diagram of a dense neural network with 3 fully connected layers, input layer, hidden layer and output 
layer.  
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The translation invariant property means that after learning a certain pattern, the network will be able 
to recognize it everywhere, needing fewer data to learn representations that have generalization 
power. 
 
Besides, a CNN's ability to learn spatial hierarchies of patterns means that different layers will learn 
different spatial patterns. For example, the first convolutional layer will learn small local features like 
edges; the second convolution layer will learn larger patterns made of the features of the first layers, 
and so on. This allows convnets to efficiently learn increasingly complex and abstract visual concepts 
(Aggarwal, 2018; Chollet, 2018). 
 

 
Convolutional neural networks are usually comprised of three types of layers, convolutional, pooling 
and fully connected layers. The convolution layers extract patches from the input image or feature 
maps and perform convolutional operations over all the patches. This means that a filter (also called 
kernel) will slide over the different patches to extract the different features contained in the input 
image or feature maps. The width and height of a features map are determined by the size of the filters 
used in the convolutional layer, while the depth is determined by the number of filters employed in 
the layer (Figure 9). Because it directly affects the number of parameters, the number of filters used 
in each layer regulates the model's capacity. Therefore, a considerable number of filters are required 
to capture a broad variety of possible shapes that combined generate the final image. The most 
commonly used kernels are those of size 3x3 or 5x5 (Aggarwal, 2018; Chollet, 2018).  
 
After passing through a convolutional layer, the dimensionality of the input feature map can be 
reduced, increased, or remain constant. If we want the layer’s feature map output to be of the same 
size as the input feature map, we need to apply an operation called padding. Padding consists in adding 
columns and rows on each side of the output feature map until its matches the input feature map size. 
This process is called “same padding,” which means that the padding will be done such as the output 
has the same width and height as the input. When no zeros are added to the output feature map, the 
process is called “valid padding” (Aggarwal, 2018; Chollet, 2018). Padding types diagram can be seen 
in Figure 10. 
 
 

Figure 8: Schematic representation of a convolutional neural network with two hidden layers. 
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Another factor that influences the feature maps' output size is the kernel stride. The stride is the step 
size used to slide the filter over the input image or feature map. In general, the stride is equal to 1, but 
depending on the size of the feature maps desired, larger strides can be used (Figure 11) (Aggarwal, 
2018). 
 
The pooling layer gets the feature maps from the convolutional layers as input. It reduces the number 
of parameters and the computational complexity of the model, and it is typically achieved by using the 
"max" function. The max-pooling uses a 2x2 kernel with a stride value of 2 to extract the maximum 
value contained under this filter and downsample the feature maps by a factor of 2; this operation 
helps to reduce the number of features to process. Using a filter that extracts the maximum value of 
vicinity helps the network differentiate the input image's distinct features better than other 
downsampling methods. It is important to mention that the pooling operation does not change the 

Figure 9: The convolution between an input layer of size 32 × 32 × 3 and a filter of size 5 × 5 × 3 produces an output 
layer with spatial dimensions 28 × 28. The depth of the resulting output depends on the number of distinct filters and 

not on the dimensions of the input layer or filter. Edited from (Aggarwal, 2018). 
 

Figure 10: Example of same and valid padding process. This diagram shows the result of a convolution with a 3x3 
kernel and an input after applying valid and same padding. 
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depth of the feature map on which the operation is applied (Aggarwal, 2018; Chollet, 2018; O’Shea & 
Nash, 2015). 
 

 
Finally, the fully connected layers perform the same work as the layers on the artificial neural networks 
(ANNs) and attempt to reproduce class scores from the activations, i.e., this layer is used to perform 
the class classifications. Although all convnets have fully connected layers, they can differ in nature 
depending on the purpose of the neural network; for example, in classification or segmentation 
(Aggarwal, 2018; O’Shea & Nash, 2015). 
 
In the following sections, we will provide examples of how convolutional neural networks are used to 
address the challenges that segmenting biological imaging can present. I will also talk about the CNNs 
used during the development of this project as U-Net and StarDist. It is important to mention that even 
though we did not work with all of these examples during this project, we think it is necessary to talk 
about them due to their importance in image analysis and biological research. 
 

2.1.3 Training methods  
 

2.1.3.1 Supervised learning:  
Supervised learning algorithms (Figure 12) learn to associate some input with a certain output given a 
pairwise training data set of input x, or training data, and output y, also known as target. By learning 
to associate certain inputs with their corresponding expected output, supervised learning algorithms 
are able to produce a general hypothesis. This hypothesis is then used to make predictions about data 
never seen by the algorithm. The main goal of supervised training is to minimize the error between 
the target output and the output computed by the algorithm (Chollet, 2018; Goodfellow et al., 2016). 
 
To perform supervised learning each instance is given with a known label to the neural network as 
input, and unlabeled data is given as test data, although to evaluate its performance, the test labels 
need to be known. The target and test labels can be continuous, categorical, or binary (Kotsiantis, 
2017). Almost all popular deep learning applications today, including optical character recognition, 

Figure 11: Stride diagram. S=1 means no gap; the filter is applied to all the pixels. S=2 means gap of 1, the filter is 
applied to alternative cells. This halves the dimension of the output vector.   
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audio recognition, image classification, and language translation, fall into this group. In the case of 
image segmentation, the input data is an image, and the output or target is a pixel-level mask, also 
known as annotation (Chollet, 2018). 
 

 

2.1.3.2 Unsupervised learning 
In contrast with supervised algorithms, unsupervised learning (Figure 13) makes no initial assumptions 
about how the data are related. Instead, they seek to discover and characterize the hidden distribution 
of data (Shariff et al., 2010).  
 
In unsupervised learning, the data is given to the algorithm unlabeled. Meaning that algorithms learn 
data features and cluster the data according to those features by themselves. The few features the 
unsupervised algorithms learnt are used to recognize the class of the new data introduced. Contrary 
to supervised learning algorithms, which goal is to minimize the error or the misclassification between 
computed and target outputs, unsupervised learning algorithms aim to maximize the similarities 
between cluster prototypes and items from the dataset, meaning that unsupervised learning depends 
on the data similarities with the clusters prototypes. This way of learning algorithms can be extremely 
useful to distinguish images in which the general phenotype, or the effects of added drugs, are 
unknown. Examples of unsupervised methods can be found in High-content screening analysis (HCA), 
where unsupervised learning is used to build subcellular location trees for large numbers of randomly 
tagged proteins (Jo, 2021; Mahesh, 2018; Shariff et al., 2010). 
 

Figure 12: Supervised training diagram. Supervised learning is a machine learning method in which models are 
trained using labeled data. 
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2.1.3.3 Semi-Supervised learning 
Semi-supervised machine learning (Figure 14) is a combination of supervised and unsupervised training 
methods; this means that it uses labeled as well as unlabeled data to perform certain learning tasks. 
 
Semi-supervised classification methods are particularly relevant to scenarios where labeled data is 
scarce, as constructing a reliable supervised classifier would be uncanny. However, a better classifier 
can be achieved by adding a sufficient volume of unlabeled data to the training set. Nevertheless, those 
unlabeled data are required to properly sample the distribution of the raw data (Shariff et al., 2010; 
van Engelen & Hoos, 2020).  
 

 
Figure 14: Semi-supervised learning. Semi supervised learning is a machine learning method in which models are trained 

using labeled data and unlabeled data. 

 

2.1.4 Batch and epoch 
 
While training a neural network, instead of sending the entire input in one go, we randomly divide the 
input into a pre-defined number of chunks of equal size called batches. Training data on batches makes 
the model more generalized because when using small batch sizes, the model tends to converge more 
rapidly and efficiently to a global minimum, thanks to this reduced size (Cole Matt R., 2019; Keskar et 

Figure 13: Unsupervised learning diagram. Unsupervised learning is another machine learning method in which 
patterns inferred from the unlabeled input data. 
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al., 2017). One iteration of training all those batches in both forward and backpropagation is defined 
as an epoch. The number of epochs is critical: while one would expect that a higher number would 
result in a better network accuracy, the risk of overfitting is to be considered (Cole Matt R., 2019). 
 
Early stopping (Figure 15) is a technique used to reduce the possibility of having an overfitting model 
without compromising its accuracy. This technique evaluates the network performance on the test set 
after each epoch (or every N epochs). If the network outperforms the previous best model saved, a 
copy of the network at the current epoch is saved. The final model is the model that has the best test 
set performance (“Early Stopping,” n.d.). Another regularization technique to prevent overfitting is the 
dropout. Dropout (Figure 16) prevents over-fitting of the network by randomly and temporarily 
removing some of the hidden layers’ neurons and their connections for each epoch of the training 
process (Srivastava et al., 2014).   
 
Because large datasets can take a longer time to train, to not lose the training progress, it is advisable 
to implement checkpointing of the model’s parameters (weights) at every certain number of epochs; 
but only if it is the best weights at that point in time. This practice is called checkpointing and is the 
term used to describe when a “snapshot” of the model’s parameters after a certain number of training 
epochs is saved. Saving the best weights allows us to keep a copy of the progress at a given epoch in 
case you want to tune your hyperparameters at any given epoch or resume the training process from 
any epoch with a checkpoint performance (Ku Wee Kiat, 2018). 
 

 
Figure 15:Early stopping principle. If the performance of the model on the validation dataset starts to degrade (e.g. loss 

begins to increase, or accuracy begins to decrease), then the training process is stopped. early stopping could potentially 
improve generalization when other regularizes are absent. 

 

 
Figure 16: Dropout process. Dropout is a regularization method that approximates training a large neural network with 

different using different versions of the same neural network in parallel. 
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2.1.5 Learning rate 
 
Learning rate (Figure 17) is a hyper-parameter that controls how much we are adjusting the weights 
of our network with respect to the gradient loss. We can also define it as the rate at which we descend 
towards the minima of the cost function. The lower the value, the slower we travel along the 
downward slope. We should choose the learning rate very carefully as very large value increase risks 
of missing the optimal solution, and very low ones result in time-consuming network convergence 
(Aggarwal, 2018). 
 

 

2.1.6 Cost / Loss 
 
Loss functions are used to measure how well a network models the data. The goal is therefore to 
minimize its value as it computes the distance between the network output and the expected output 
derived from the training data (Cole Matt R., 2019).  This means that if the loss function has a very high 
value, the predictions made by our model will be very different from the actual results (Aggarwal, 
2018; Chollet, 2018). Loss functions are divided into two categories, regression loss like mean absolute 
error and classification loss like binary cross entropy. These loss functions are defined as follows:  
 

• Mean absolute error: calculates the average of the absolute difference between the actual and 

predicted value.  

𝐿(𝑦, �̂�) =
1

𝑁
∑|𝑦𝑖 − �̂�1|

𝑁
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• Binary cross entropy: It gives the probability value between 0 and 1 for a classification task. 

Cross-Entropy calculates the average difference between the predicted and actual probabilities. 

𝐿(𝑦, �̂�) = −
1

𝑁
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Some other examples of loss functions are Mean absolute errors (MAE) and categorical cross entropy.  
 
 

Figure 17: Learning rate diagram. The learning rate is a tuning parameter used in machine learning controls how 
quickly the model is adapted to the problem. 
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2.1.7 Activation Functions 
 
The activation functions (Figure 18), unique for each neuron, are used to normalize the neurons' 
output. These functions translate the input signals to output signals and constrain the range the output 
can take by applying a non-linear operation. For this, an artificial neuron calculates a "weighted sum" 
of its input by multiplying the inputs' features by the weights assigned to them and sends it to the 
output node. In many settings, the artificial neuron includes a variable called bias, which is usually 
added when the binary class distribution predicted by the neurons is highly imbalanced, and an 
invariant part of the prediction exists. This bias is incorporated using a bias neuron and allows to shift 
the activation function by adding a constant (i.e., the given bias) to the input (Aggarwal, 2018; Avinash 
Sharma V, 2017). The following equation describes the artificial neuron's output:  
 

 𝑢(𝑥) =∑𝑤 ∗ 𝑥 + 𝑏 

 
The most basic activation function is the identity or linear function, which is often used in the output 
node when the target is a real value. Sigmoid and hyperbolic activation functions were used early in 
the development of neural networks. The sigmoid function’s output is a value between (0, 1). This 
activation function is usually used in computations that should be interpreted as probabilities. 
Although similar in shape to the sigmoid function, the hyperbolic tangent function is used when the 
outputs of the computations are desired to be both positive and negative; its output is a value between 
[-1, +1] (Aggarwal, 2018). Although sigmoid and tanh functions have been used to introduce non-
linearity to the neural networks, in recent years ReLU (Rectified Linear Units) activation function, a 
piecewise linear function, has replaced them. Rectified linear units preserve many of the properties 
that make linear models easy to optimize with gradient-based methods and also preserve many 
properties that make linear models generalize well by learning complex relationships from the data. 
Also, ReLU adds more sensitivity to the weighted sum preventing neurons from getting saturated 
(Abien Fred Agarap, 2018; Aggarwal, 2018; Goodfellow et al., 2016). 
 

 
Figure 18: Activation functions diagrams. An activation function is a function that is added into an artificial neural 

network in order to help the network learn complex patterns in the data. ReLU is a widely used activation function, 
especially with Convolutional Neural networks. 
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2.1.8 Fine-tunning 
 
Utilizing a pretrained network is an efficient technique for applying deep learning to small image 
datasets. A pretrained network is a network that was previously trained on a large dataset, typically 
on a large-scale image-classification task. Higher layers in the convolutional base encode more 
specialized characteristics, while lower layers encode more generic, reusable features. Because more 
specific features need to be applied to the new situation, it is more beneficial to fine-tune the more 
specific features. Thus, a good strategy to fine-tune only the top two or three layers in the 
convolutional base(Aggarwal, 2018; Chollet, 2018; Thakur, 2021). Fine-tuning process consists of the 
following steps: 
 

• Pretrain a neural network model on a big dataset 

• Create a new neural network model, i.e., the target model. This copies all model designs and 
their parameters on the source model except the output layer. It is assumed this model 
parameters contain the knowledge learned from the source dataset and this knowledge will 
also be applicable to the target dataset. Besides, is important to use a pretrained network 
which output is closely related to the labels of the source dataset. 

• Add an output layer to the target model, whose number of outputs is the number of categories 
in the target dataset. Then randomly initialize the model parameters of this layer. 

• Train the target model on the target dataset.The output layer will be trained from scratch, 
while the parameters of all the other layers are fine-tuned based on the parameters of the 
source model. 

 

2.1.9 Evaluation methods  
 
Evaluating the performance of deep learning models is essential to determine their accuracy. Some of 
the metrics commonly used are based on the number of true positives (TP), false positives (FP), and 
false negatives (FN). A true positive (TP) element represents an object correctly predicted to belong to 
a certain class (according to the target mask). A false negative (FN) is an object wrongly classified as 
not belonging to the given class, while a false positive (FP) is an object wrongly classified as belonging 
to a class. In the case of image segmentation, a TP is a predicted mask that overlaps a mask in the GT 
with an amount above a certain threshold; a FP is a predicted mask that have no correspondence in 
the GT or a correspondence that is below the set threshold; finally, FN are GT objects that do not have 
a corresponding object in the predicted mask.  
 
The intersection over union, IoU (Figure 19), is a standard way to define if a detection has been well 
done. IoU is a coefficient of similarity between two datasets and measures the overlapping between 
the predicted objects and the ground truth objects (Padilla et al., 2020), classifying each object as TP, 
FP, or FN according to a previously set IoU threshold t. If IoU ≥ t, then the prediction is considered as 
correct. On the contrary, if IoU < t, prediction is considered incorrect (Ong et al., 2019). Evaluating the 
performance of deep learning models is essential to determine their accuracy.  
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Figure 19: Intersection over union (IOU) diagram. This metric is known to be good for measuring the overlap between 

two bounding boxes or objects on a masks. 

 
The assessment of many object detections and image segmentation models is mostly based on the 
precision P and recall R. Precision reflects the proportion of predicted objects correctly matching the 
ground truth. Recall, on the other hand, computes the proportion of ground truth being correctly 
identified in the predicted objects. Both range from 0 to 1, with higher scores indicating better results 
of the model (Manal El Aidouni, 2019; Padilla et al., 2020). 
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Another important metric is the F-measure better known as F-score. It is calculated from the recall and 
precision; it computes the overlap between predicted segmentation and ground truth. This metric is 
one of the most used to evaluate a neural network performance (Müller et al., 2022). The F-score is 
given by the following formula:  
 

𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=  

𝑡𝑝

𝑡𝑝 + 
1
2
(𝑓𝑝 + 𝑓𝑛) 

 

 

2.1.10   Deep Learning for nuclei segmentation  
 

2.1.10.1 Image segmentation  
In computer vision, image segmentation is the process of dividing a digital image into multiple regions 
based on the pixels' different properties to extract meaningful information for easy analysis (Sultana 
et al., 2020). Traditional segmentation methods frequently rely on hand-design chosen features, where 
researchers or users of such tools need to be actively involved in selecting those features, i.e., each 
method needs to be fine-tuned for each experiment. In contrast, deep learning-based methods require 
minimal input parameters from the user and do not require fine-tuning between experiments, which 
makes them more straightforward to apply than classical approaches (Hollandi et al., 2022). 
Furthermore, deep neural networks have proven to be capable of learning a hierarchy of increasingly 
complex features directly from in-domain data and perform pixel classification to assigning each pixel 
on the image a class, being able to distinguish objects from the background or one object from another 
one of the same kind (Havaei et al., 2017). These two different ways to classify pixels on an image are 
called semantic segmentation and instance segmentation; these concepts can be defined as: 
 

• Semantic segmentation: is called semantic segmentation when each pixel is labeled as 

belonging to a class, for example, distinguishing between the background and cells' nucleus 

but without making any distinction among nuclei. In this case, a label will be assigned to the 
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background, usually zero, and another one to all the nuclei, usually one. Then, when our neural 

network performs the segmentation, it will assign the same labels to pixels belonging to the 

background and nuclei, respectively, giving, as a result an image with the same number labels 

as the ground truth images (Figure 20a). 

• Instance segmentation: instance segmentation is one step ahead of semantic segmentation. 

In this case, instead of assigning the same label to all pixels belonging to the same type of 

objects, every object of the same class will receive a different label assigned. Therefore, each 

class instance on the image has a unique ID, and the resulting image will be an image where 

pixel boundaries separate all the objects. As a result, there will be a clear distinction between 

which pixels belong to an object and which pixels belong to the image's background but also, 

it will be clear boundaries between objects (Figure 20b). 

 

 

Some of the most well know convolutional neural networks used for nuclei segmentation are Mask-
RCNN (Kaiming He et al., 2017), U-Net (Ronneberger et al., 2015), and StarDist (Schmidt et al., 2018; 
Weigert et al., 2020). During the development of this project, I focused my attention on developing 
nuclei instance segmentation using StarDist 2D and StarDist 3D. Because of this, I will mostly describe 
these neural networks and their corresponding backbones, U-net and ResNet (K. He et al., 2016). 
 

2.1.10.2 Deep learning algorithms for nuclei segmentation 
 

2.1.10.2.1 U-net 

U-net is one of the most used CNN to perform image segmentation and is focused on segmenting 
biomedical and biological microscopy images. U-Net has been applied to general pixel-classification 
tasks in 2D images and 3Dimage stacks with one or multiple channels. In addition, U-Net has been 
adapted to detect and segment arbitrary structures in biological tissue using the corresponding 
training data with precise segmentation results, showing its capabilities to outperform previous 
segmentation algorithms. Some of the tasks where U-net has been applied successfully include 
prediction of a single reference point per cell, cell nuclei segmentation, cell segmentation, and medical 
image segmentation (Falk et al., 2019; Siddique et al., 2021).  
 
U-net takes its name from the shape of its architecture (Figure 21), consisting of a contracting path, 
encoder, and an expansive path, decoder. The contracting path (Figure 21, green side) follows the 
architecture of a traditional convolutional neural network. The U-Net encoder consists of the repeated 

Figure 20: Semantic segmentation (left) vs Instance segmentation (right) diagram (Varatharasan et al., 2019). 
Semantic segmentation treats multiple objects within a single category as one entity in contrast, instance 

segmentation identifies individual objects within these categories. 
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application of 3x3 unpadded convolutions, followed by a rectified linear unit (ReLU) and a 2x2 max 
pooling operation with stride 2 for downsampling. Each of these downsampling steps will double the 
number of feature channels. On the other hand, the expansive path (Figure 21, orange side) consists 
of an upsampling of the feature map followed by a 2x2 convolution (“up-convolution”) that halves the 
number of feature channels, at the same time a concatenation with the correspondingly cropped 
feature map from the contracting path is performed. This concatenation is followed by two 3x3 
convolutions, each followed by a ReLU, the result passes to the next decoder layer, and the process is 
repeated. At the final layer, a 1x1 convolution is used to map each 64-component feature vector to 
the desired number of classes. The upsampling path helps U-Net to propagate context information to 
higher resolution layers by combining high-resolution features from the decoding and the output of 
the encoder layers, creating a high-resolution segmentation map. It is important to mention that U-
net neural network is a supervised deep learning algorithm whose output is smaller than its input due 
to the unpadded convolutions. It has also been proven that when basic data augmentations are 
implemented on the dataset, U-Net can be used with very few images and still have very high accuracy 
(Ronneberger et al., 2015). 
 

 
U-Net results can be extended from semantic to instance segmentation with some post-processing or 
using annotated images with three classes, background, edges, and nuclei, instead of two, background 
and nuclei. U-net is also known for performing very accurately even when using just a few images to 
train it (Ronneberger et al., 2015). Although U-net already offers good results, several papers have 
been published where U-net is the base of new segmentation algorithms. Some of the architectures 
developed using U-Net as a backbone are 3D U-Net (Çiçek et al., 2016), U-Net ++ (Zhou et al., 2018), 
U-NetPlus (Hasan & Linte, 2019), W-Net (Xia & Kulis, 2017), Cellpose (Stringer et al., 2020), and StarDist 
2D (Schmidt et al., 2018) among others. Most of these new architectures are used to analyze and 
segment biomedical and biological images as U-Net (Siddique et al., 2021).  
 
3D U-Net is an augmentation of the basic U-net framework that enables 3D volumetric segmentation, 
where all the 2D operations are replaced by 3D operations (Çiçek et al., 2016). U-net++ consists of an 
encoder and decoder connected through a series of nested dense convolutional blocks. The main idea 

Figure 21:U-net architecture. U-Net is an architecture for semantic segmentation. U-net consists of a contracting 
path(green) and an expansive path(orange). Edited from (Ronneberger et al., 2015).  
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is to bridge the semantic gap between the feature maps of the encoder and decoder prior to fusion to 
propagate more semantic information between the two paths (Zhou et al., 2018). U-NetPlus uses a 
pre-trained encoder for the downsampling paths and a re-design of the U-net upsampling path where 
transposed convolutions are replaced by an upsampling operation based on nearest-neighbor (NN) 
interpolation (Hasan & Linte, 2019). The W-Net architecture consists of a U-Net-base encoder and U-
Net-base decoder that reconstructs original input images and predicts the segmentation maps without 
labeling information (Xia & Kulis, 2017). Cellpose architecture replaces the feature concatenation on 
the upsampling path in U-net architecture with direct summation to reduce the number of parameters. 
Also, it replaces the standard building blocks of a U-net with residual blocks. Cellpose architecture also 
doubles the depth of the network as typically done for residual networks. In addition, it uses global 
average pooling on the smallest convolutional maps to obtain a representation of the “style” of the 
image. (Stringer et al., 2020). StarDist neural network is the algorithm I used to develop this project, 
and it will be described in detail in the next section.  
 

2.1.10.2.2 ResNet 

Residual Network (ResNet) is one of the most popular deep learning algorithms; it is used in several 
computer vision tasks because it is easy to train, although it can be a very deep neural network. ResNet 
addresses the degradation converging problem caused when the depth of a neuronal network 
increases. This means that: with the network depth increasing, accuracy gets saturated and degrades 
rapidly. This neural network introduces deep residual learning framework; this type of neural network 
uses shortcut connections that enable the flow of information across layers without attenuation that 
would be caused by multiple stacked non-linear transformations, resulting in improved optimization 
(K. He et al., 2016; Targ et al., 2016).  
 
To clearly define ResNet first, we need to define residual learning. Consider H(x) as an underlying 
mapping to be fit by a few stacked layers, where x represents the inputs to the first of these layers. We 
can say that multiple nonlinear layers can asymptotically approximate complicated functions, which is 
equivalent to saying that these layers can also asymptotically approximate a residual function, H(x)-x. 
Meaning that, rather than using stacked layers to approximate H(x), we explicitly let these layers 
approximate a residual function F(x): = H(x)-x, causing H(x) to become F(x) + x. Residuals connect layers 
that are not neighbored in chain-like neural networks. These new constructions break the convention 
of stacking layers to build a chain-like neural network. They introduce loops into neural networks, 
which were previously chain-like (F. He et al., 2019; K. He et al., 2016). The reformulation of this 
convolutional neural network architecture was done to assess the degradation problem presented 
when the depth of a neural network increases. The residual learning function is presented in every few 
layers of the neural network, which building block can be seen in Figure 22; this building block can be 
represented by the equation 𝑦 = 𝐹(𝑥, {𝑊𝑖}) + x, where 𝐹(𝑥, {𝑊𝑖}) represents the residual mapping to 
be learned and can represent multiple convolutional layers. The operation F + x is performed by a 
shortcut connection and element-wise addition. The shortcut connections perform identity mapping, 
and their outputs are added to the outputs of the stacked layers. This shortcut does not add any extra 
parameter or computation complexity to the neural network, which makes ResNet stand out from 
other algorithms (K. He et al., 2016).  
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ResNet base-line is inspired by VGG nets (Simonyan, K., et al 2014) where the convolutional layers 
mostly have 3×3 filters and follow the next design rules: (i) for the same output feature map size, the 
layers have the same number of filters; and (ii) if the feature map size is halved, the number of filters 
is doubled so as to preserve the time complexity per layer. The downsampling is performed by 
convolutional layers that have a stride =2. The network ends with a global average pooling layer and a 
1000-way fully-connected layer with softmax. By inserting shortcut connections into the VGG net we 
turn the network into its counterpart residual version, i.e., ResNet (K. He et al., 2016). ResNet 
architecture can be seen in Figure 23 

Figure 22: Residual learning building block. In this block a layer ℓ − 1 is skipped over activation from ℓ − 2. Edited 
from (K. He et al., 2016). 
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Figure 23: Example network architectures for ImageNet. Left: the VGG-19 model as a reference. Middle: a plain 
network with 34 parameter layers (3.6 billion FLOPs). Right: a residual network with 34 parameter layers. The 

dotted shortcuts increase dimensions. Taken from (K. He et al., 2016) . 
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2.1.10.2.3 StarDist 2D and StarDist 3D  

StarDist 2D and StarDist 3D are instance segmentation methods based on U-Net. StarDist is a top-down 
segmentation method in which individual cell instances are localized first using a rough shape 
representation, and then the initial shape is refined in an additional step. Contrary to other image 
segmentation methods that use axis-aligned bounding boxes as nuclei shape representation, StarDist 
predicts cell nuclei shape using star convex polygons and star-convex polyhedral for 2D and 3D objects, 
respectively (Figure 25 a) (Schmidt et al., 2018). A star-shaped polygon (Figure 24) is a polygon that 
contains a point z from which all points of the polygon boundary is visible (Ghosh, 2007) A convex 
polygon is a polygon in which all interior angles are less than 180° and all vertices 'point outwards'; all 
convex polygons are star-shaped (Wolfram Research, Inc, 2022; Wolfram Research, Inc., 2022). Star-
convex polyhedrons are the 3D version of the star-convex polygons. This method to predict a cell nuclei 
shape allows StarDist to predict the shape representation of cell nuclei without the need to perform a 
refinement since star-convex polygons are well-suited to approximate the typically roundish shapes of 
cell nuclei in microscopy images. 
 
To predict the shapes of the nuclei, StarDist 2D predicts a star-convex polygon for every pixel. Then, 

along a set of n predefined radial directions with equidistant angles, it regresses the distances, 𝑟𝑖,𝑗
𝑘 , of 

each pixel belonging to an object to its boundary (Figure 25 b). Separately, it predicts the probability 
of every pixel to belong to an object to only consider polygon proposals from pixels with sufficiently 
high probabilities (Figure 25 b). Then, the pixel’s object probability, 𝑑𝑖,𝑗, is computed using the 

normalized Euclidian distance to the nearest background pixel. After, Non-maximum suppression 
(NMS) is used to output the final set of polygons, each representing an individual object instance 
(Schmidt et al., 2018). Non-maximum suppression (NMS) is a post-processing algorithm that merges 
all detections belonging to the same object. NMS algorithm selects high-scoring detections and deletes 
close-by less confident neighbors since they are likely to cover the same object (Hosang et al., 2017).  
 

 
The main advantages of using StarDist 2D algorithms to perform cell nuclei segmentation are its 
capacity to accurately segment merged cells and its ability to perform well with very crowded nuclei. 
Besides, StarDist 2D can predict a reasonable complete shape from only partially visible nuclei at the 
image boundary. 

Figure 24: Examples of convex and star-shaped polygons. Convex polygons are star-shaped. 
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In the case of StarDist 3D, the shape of cell nuclei is described using a star-convex polyhedron, which 
computation is similar to the star-shape polygons of the 2D case. Noticeably, an ellipsoid representing 
the nuclei shape is computed using an evenly distributed set of n predefined unit rays (Weigert et al., 
2020). To take into consideration the anisotropy of the images, StarDist 3D generates an anisotropically 

scaled vector, �⃗� 𝑘 = (
𝑥𝑘

𝑠𝑥
,
𝑦𝑘

𝑠𝑦
,
𝑧𝑘

𝑠𝑘
), where 𝑠 =  (𝑠𝑥 , 𝑠𝑦, 𝑠𝑘) is the anisotropy factor calculated as the 

median bounding box size of all objects in the training images, and 𝑥𝑘 , 𝑦𝑘 , and 𝑧𝑘 are points over a 
spherical Fibonacci lattice (Figure 27). Therefore, the ellipsoids unit rays used to define the shape of 

the polyhedrons are 𝑟 𝑘 = 
�⃗⃗� 𝑘

|�⃗⃗� 𝑘|
 . Finally, the surface of the star-convex polyhedrons represented by the 

distances 𝑑𝑖,𝑗 is then given by its vertices 𝑑𝑘 ∙ 𝑟 𝑘 and the final convex hull determine during the NMS 

process (Figure 26c) (Weigert et al., 2020).  
 

 

Figure 25: Architecture of StarDist 2D (Schmidt et al., 2018).a) comparison between pixel classification and object 
detection using bounding boxes. b) StarDist segmentation methodology. c) StarDist neural network.  

Figure 26: a) STARDIST-3D method is trained to densely predict object probabilities p and radial distances dk to 
object boundaries. b) Schematic of STARDIST-3D architecture based on ResNet. c) During non-maximum 

suppression process (Weigert et al., 2020). 
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2.1.11  Advantages and challenges of the use of Deep Learning algorithms for 

nuclei segmentation 
 
Many image analysis workflows like counting cells, tracking moving populations, localizing proteins, 
and classifying phenotypes involve the segmentation of cell nuclei as a first step to extract meaningful 
biological information. Because of this, researchers have focused their efforts on designing and 
improving nuclear and cellular segmentation methods. The use of deep learning in the nuclei 
segmentation task has proven to overcome traditional image segmentation methods and has shown 
an accuracy closer to human expertise. In addition, these approaches can be more generalized, robust, 
and fully automated, allowing the analysis of a high number of images in a shorter period of time 
(Caicedo et al., 2019). 
 
The most widely used deep learning algorithm in nuclei image segmentation is U-Net, as it is also used 
in various U-net-based architecture methods. Similarly, other neural networks such as Mask-RCNN and 
ResNet have been adapted to perform this task.  
 
Although U-net and Mask-RCNN are the main benchmarking neural networks, there exist other 
algorithms developed to perform nuclei segmentation. For example, R2U-Net, a recurrent residual U-
net, uses recurrent residual modules instead of feedforward convolutional layers resulting in a network 
that combines ResNet and U-net (Alom et al., 2018). Methods like the one presented in (Narotamo, 
2019), where U-net is combined with YOLO (Redmon et al., 2016), combines the computational 
efficiency of YOLO’s object detection with U-net’s powerful segmentation generating a nuclei 
segmentation method powerful and computationally efficient. Furthermore, region proposal-based 
neural networks like Mask-RCNN and YOLO, when combined with U-net, help to remove duplicate 
bounding box proposals while the segmentation module learns contextual information from the 
predictions to improve instance differentiation (Mela & Liu, 2021). (Vuola et al., 2019) present a 
segmentation method that combines Mask-RCNN and U-net, and instead of using weighted border 
pixels as the original U-net, it adds extra output channels that predict borders between neighboring 
nuclei. Other nuclei segmentation methods like the one presented in (Guerrero-Pena et al., 2018) and 
(Van Valen et al., 2016) take advantage of multiclass weighted loss function for segmenting individual 
touching cells in cluttered regions, where the latter uses the segmentation of the cell nuclei to seed a 
refinement of the cellular interior segmentation using active contours. Finally, in (Naylor et al., 2019), 
they focus the attention of the neural network on the center of the nuclei and generate an erode 
segmentation using distance maps.  
 

Figure 27: Latitude–longitude lattice (top) and Fibonacci lattice (bottom). In the Fibonacci lattice, the points are 
much more evenly spaced, and the axial anisotropy is much smaller in comparison with the latitude-longitude 

lattice. Edited from (González, 2010). 
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As we can see, several methods exist to perform nuclei segmentation, each of which approaches the 
problem differently and offers different advantages such as more computational efficiency or better 
capability of segmenting touching objects. By taking account of the axial anisotropy and by being 
capable of segmenting images with low SNR, I considered that StarDist 3D was the best choice to 
achieve the objectives proposed at the beginning of this project. However, and as it was emphasized 
in most of the presented papers, there is a lack of ground truth data for training 3D deep learning-
based methods. I tackled this problem in the next section of this manuscript. 
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 3 . Annotation process for 
ground truth generation 

 
 
 
 
 
Main contributions presented in this Section: 

• A ground truth dataset of 7 organoids manually annotated representing more than 4,500 
individual 3D nuclei. 

• A Napari plugin designed to facilitate the 3D annotation of objects starting from 2D masks. 
 
 
Nuclei segmentation is an important task in cell analysis that requires accurate and reliable 
segmentation methods. One of its biggest challenges is segmenting densely packed cell nuclei when 
many nuclei are touching each other in the x, y and z direction. Unfortunately, this step is still a 
bottleneck nowadays, mainly caused by its complexity and the speed difference between the data 
generation and analysis. Indeed, model-based methods struggle both in analyzing very complex data 
and in generalizing for different conditions. On the contrary, deep learning approaches, and especially 
the supervised ones, can succeed in both venues at the expanse of having enough data to train with. 
As a result, availability of ground truth data has become the main bottleneck for data-based methods 
(Behl et al., 2020; Chen et al., 2018).  
 
A high-quality ground truth dataset is crucial to the success of any supervised deep learning algorithm. 
Consequently, its creation is time-consuming, challenging, and error-prone because it relies on human 
efforts. Hopefully, there exist open-source datasets that can be used to train and test segmentation 
algorithms (Broad Institute, 2021; Caicedo et al., 2019; Kai & Kaizhu, 2021). While these datasets are 
an invaluable resource for the community, with tens of thousands of manually annotated nuclei across 
different samples, conditions, and microscopes, they are mostly limited to 2D. Of all those, only one 
stack is fully annotated in 3D, roughly corresponding to 800 nuclei (Kai & Kaizhu, 2021). Unfortunately, 
this one stack is not sufficient to robustly train a segmentation network, resulting in a dire need from 
the community for more high-quality annotations of nuclei in 3D.  
 
In this section, I will explain how I improved my 3D annotation pipeline from a basic manual process 
to a semi-automatic one by way of developing an annotation plugin for Napari called Napari 
annotation helper (NAHP). 
 

3.1.1 High-content imaging of organoids with the soSPIM system 
 
In recent years, the popularity of 3D cell cultures has exploded due to their ability to offer valuable 
models to study human biology, far more physiologically relevant than 2D cultures (Jensen & Teng, 
2020; Kapałczyńska et al., 2016). As a result, an increasing number of 3D organotypic cultures 
(organoids) are being developed to mimic intestines, liver, brain, kidney, lung, and many other organs. 
In addition, 3D cell cultures allow the design of tissues and organs with essential structural and 
physiological features in a controlled manner, helping to reduce the time and cost of drug development 
(Sakalem et al., 2021; Shao et al., 2020).  Nevertheless, using 3D cultures to their full extent has 
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remained elusive, as it demands new approaches such as fast, automated multi-scale imaging to 
quantify and control organoid diversity. 
 
In collaboration with the team of V. Viasnoff at the Mechanobiology Institute of the National University 
of Singapore, our team has expanded the soSPIM to tackle this issue. This new imaging platform is 
capable of streamlining organoid culture with fast light-sheet 3D imaging and can perform 3D imaging 
of up to 300 organoids in 1 hour with subcellular resolution (Beghin et al., 2022). To briefly summarize, 
we have designed new miniaturized 3D cell culture devices, called JeWell chips, that comprise 
thousands of well-arrayed microwells with pyramidal shapes flanked with 45° mirrors (JeWells) to 
enable soSPIM imaging. An insight into the image acquisition process can be seen in Figure 28. 
 

 
The JeWell’s geometry offers several advantages: (1) it ensures that only one single organoid grows in 
each well, (2) it standardizes the organoid culture and, (3) it can be used as a proxy to automatically 
align and calibrate the light sheet and to correct for drifts, automatizing imaging of the samples. We 
tested our platform on various organoids and tumoroids (hepatocytes, neuroectoderm, intestinal, 
HCT116). As an illustration, Figure 29 depicts a collection of 96 neuroectoderm organoids 
differentiated from hESCs, fixed at day 8 and immunostained for nuclei (DAPI, 405 nm), Sox2 (488 nm) 
and N-cadherin (actin, 647 nm) inside a JeWells chip. We acquire 96 organoids with three wavelengths 
in 1 hour, representing 173 GB of raw data, an amount of data inconceivable to manually analyze. In 
this context, my work was to develop a robust and automatic pipeline for the 3D segmentation of the 
organoids’ nuclei. 
 

Figure 28: a, JeWell chips in a six-well dish (left) and close-up image of the JeWells array with a density of 16 JeWells 
per mm2 (right). Inset shows a zoom on a JeWell inverted pyramidal microcavities flanked with four 45° mirroring 

surfaces. Scale bars, 3 cm (left), 500 μm (right) and 70 μm (inset). b, Schematic of the seeding procedure. c, 
Photograph of the imaging setup comprising a commercial inverted microscope, combined with JeWell chips, a laser 
scanning unit, and its custom-made control software. d, Principles of the soSPIM. Edited from (Beghin et al., 2022). 
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3.2 Annotation process 
 
A large amount of data needs to be collected and labeled to train and test supervised neural networks. 
The first step of my work was to generate a corpus of ground truth data necessary to train a high-
quality StarDist (Schmidt et al., 2018) model as we can observe in 2D StarDist segmentation results 
using original-DAPI and DSB2018 datasets section. Therefore, I had to select a subset of representative 
image stacks from the dozens that were already acquired. From all the conditions and 3D culture 
models that were imaged, I determined that I should only focus on organoids labeled with DAPI and 
Sox2, as DAPI stains nuclei and Sox2 is an early development marker present in differentiated nuclei 
(Kapuscinski, 1995; Sarkar & Hochedlinger, 2013). I also decided that different types of 3D cell cultures, 

Figure 29: Representative gallery of 96 neuroectoderm organoids from a library of >400 organoids (median plane 
of the 3D stacks) labeled with actin (gold), Sox2 (magenta) and DAPI (blue) acquired in an automated workflow in 

less than 1 hour. Edited from (Beghin et al., 2022). 

Figure 30: Examples of the images taken using SOX2 immunostaining and DAPI labeling by the team of Virgile 
Viasnoff at the Mechanobiology Institute of the National University of Singapore. 
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i.e., neuroectoderm organoids and cancer spheroids, had to be included in the corpus for a better 
model generalization. I first selected 3 image stacks from a batch of neuroectoderm organoids that 
exhibited interesting morphologies, as they were all labeled with both DAPI and Sox2 as can be seen 
in Figure 30 and the ones label with just DAPI can be seen in Figure 31.Depending on the samples, 
these images may have been cropped in the x, y and z directions to avoid mirror reflections and frames 
in which the signal was insufficient to distinguish any nuclei. I then started to annotate them manually. 
 

 

3.2.1 From manual annotation  

 
Manual annotation only requires 3 components: (1) an image to annotate, (2) a software that can open 
the image and handle the creation and transfer of regions of interest (ROIs) into another image, and 
(3) a user that will delineate the different objects with ROIs. As I wanted to annotate nuclei in 3D, one 
obvious improvement to prevent a full manual annotation would have been to pre-process the image 
stacks to segment the nuclei in 2D, and then connect the 2D labels to create 3D labels.  
 
There exists software that performs semi-automatic annotation using machine learning with a widely 
varying spectrum of functionalities, such as Ilastik (Berg et al., 2019), QuPath (Bankhead et al., 2017), 
LabKit (Arzt et al., 2022), and DeepCell Label (DeepCell Label, 2016). Ilastik offers well-established 
machine learning-based image processing tasks, allowing for a wide range of applicability. Ilastik gives 
people with no prior knowledge of machine learning the ability to apply any of the workflows available, 
such as pixel or object classification workflows (Berg et al., 2019). On the other hand, QuPath can be 
used for a variety of image analysis applications. It incorporates extensive annotation and visualization 

Figure 31: Examples of the images taken using DAPI labeling by the team of Virgile Viasnoff at the Mechanobiology 
Institute, National University of Singapore. 
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tools using building blocks to create custom workflows, linking these together for batch processing 
with powerful scripting functionality (Bankhead et al., 2017). LabKit is a Fiji plugin for the segmentation 
of microscopy images offering easy to use manual and automated image segmentation routines that 
can be rapidly applied to single- and multi-channel images. As well as Ilastik, LabKit allows the user to 
segment their images by manually drawing dense labels on the entire image using random forest to 
perform pixel classification (Arzt et al., 2022). DeepCell Label is an instance labels annotation tool able 
to annotate 2D, 3D, and timelapse images (DeepCell Label, 2016). Other annotation tools can be found 
in (Hollandi et al., 2022). 
 

 
Even though a lot of those software allows semi-automatic annotation, it is not always straightforward 
to apply them to the images used during this project. The combination of uneven illumination, 
similarity between nuclei and background intensity values, high nuclei density, and presence of both 
in-focus and out-of-focus objects in the same images makes the annotation tools unable to properly 
segment them (Figure 32). Besides, the size of the images can also generate memory allocation 
problems, as when using Ilastik and QuPath, further delaying the task. Unfortunately, using the pre-
trained StarDist 2D model also resulted in very poor segmentations (see StarDist 2D segmentation 
results using the original -DAPI dataset section for a detailed explanation). Because of this, it was 
necessary to resort to manual annotation to create a ground truth to train and test StarDist and obtain 
accurate results. 
 
While FIJI (Schindelin et al., 2012) seemed to be an ideal choice for annotating images, I rapidly realized 
it was more adapted for creating semantic segmentation annotations. Indeed, modifying the ROIs’ 
label on the fly is complex, an important limitation when annotating touching and overlapping objects. 
For this reason, I decided to use Napari (Sofroniew & Lambert, 2019), where I could directly create 
instance annotation. Napari is designed for browsing, annotating, and analyzing large multi-

Figure 32: Results of the segmentation done using Ilastik. Ilastik software was used hoping to speed up the 
labeling process but due to its unsatisfactory performance this idea was discarded. 
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dimensional images (Sofroniew & Lambert, 2019). Thanks to its label layer, I could easily switch 
between different types of annotated regions, such as polygons, dots, or free-hand drawings. In the 
end, creating a label falls down to selecting a label value and painting the shape of the nucleus directly 
on the image. My annotation process was thus twofold.  
First, I manually labelled all the nuclei in 2D on all the frames of the image stack. Then, I reconnected 
all the 2D labels of each individual nucleus to create 3D labels. This means that all these 2D labels, for 
an individual nucleus, were given the same unique value. It is essential to mention that relabeling does 
not need to be sequential, as it does not affect the segmentation result. However, for convenience, I 
started with 1 and made it sequential. 
 
Even if close to optimal from a quality standpoint, manual annotation has more downsides than 
upsides. Among its limitations, the most noticeable are that it is very time-consuming and that it 
requires significant effort to produce only a limited amount of data when images are too crowded or 
have very challenging lighting or SNR conditions. In my case, one stack’s frame took around 1 hour to 
be fully annotated, equivalent to approximately two full working weeks to annotate a 70-frame stack. 
Importantly, I had access to a WACOM CINTIQ model DTH-W1310 tablet to accelerate the annotation 
process. Annotating with a simple mouse would have been even longer and more tiring. 
 
Unfortunately, two weeks per stack adds up to several months for a ground truth corpus of critical 
size. Being able to speed-up this process was therefore critical. Because of this, searching for methods 
to speed up the process was necessary. 
 

3.2.2 To semiautomatic annotation  

 
While still insufficient to properly train StarDist in 3D, these 3 annotated stacks represented thousands 
of 2D annotations. I realized that I could thus resort back to pre-processing my image stacks to segment 
the nuclei in 2D. Combined with the open-source ground truth datasets presented above, I was able 
to train a high-quality model for StarDist in 2D (see Section StarDist 2D segmentation results using the 
original -DAPI and DSB2018 for more information). I then chose 4 new stacks labeled with DAPI (Figure 
31), 1 neuroectoderm organoid and 3 cancer spheroids, and runt the trained StarDist 2D model to 
segment all the nuclei in 2D. After that, I uploaded these images to Napari to transform the 2D 
segmentation into 3D annotated images. The use of the graphic tablet again facilitated this process. In 
Figure 33 we can observe the difference between labels done in 2D and 3D, where each color 
represents a different label number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 33: Semi-annotation process diagram.2D labels are distinguish by different color. However, in the Fiji 
orthogonal view, some of the 3D nuclei annotation can be distinguishable by its color, meanwhile due to the 

bright-contrast configuration some are display in white although they have different values. 
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While simple, this pipeline modification helped diminish the time spent for annotating by an 
impressive half as I only needed 1 week to annotate an image stack versus 2 weeks with a full manual 
process. Nevertheless, the 2D segmentations still required some corrections, whether it be annotating 
missing nuclei, erasing segmentation errors or correcting the object boundaries if necessary. 
Unfortunately, Napari was far from perfect for this task, and the gain in time could therefore have 
been even higher with a dedicated tool. 
 

3.2.3 Annotation results 
 
At the end of this process, I fully annotated 7 stacks, roughly summing up to around 4,700 3D nuclei. 
Examples of those annotations are shown in Figure 34. At that time, this amount was sufficient to train 
a high-quality StarDist model in 3D. In the next chapter, I will present the resulting quantifications in 
the context of the collaboration with Singapore. 
 
While I was finished with the annotations for the Singapore collaboration, I realized that the team was 
on the verge of acquiring new organoids and spheroids models. As it meant the necessity to perform 
some new annotations, I decided to use my experience to develop a Napari plugin designed to help 
with reconnecting 2D labels to 3D ones.   
 

 

3.3 Napari annotation helper (NAHP) 
 
Napari Annotation Helper or NAHP is a python-developed Napari plugin using magicgui (Magicgui, 
2020) and pyqt5(Riverbank Computing, n.d.) python packages. NAHP’s objective is to assist users in 
performing annotation faster and more easily by providing a set of functions that will help them avoid 
annotation errors, object-label mismatch, label repetition, and confusion when tracking the labels 
added to an image. 
 
Noticeably, NAHP uses 2D segmented image stacks (preferably with instance labels) as input to 
generate 3D annotations. As this 2D segmentation step is not incorporated into NAHP, users are free 
to use any segmentation method they want as a starting point. Typically, I used my trained StarDist 2D 
model to get these 2D segmented image stacks.  
 
NAHP consists of three main sections, first, I will address the labels loading widget that contains color-
blind inclusive features helping users to distinguish 3D labels from previously segmented 2D labels. 

Figure 34: 3D Manual and Semi-automatic annotation results, where a) is a neuroectoderm organoid labeled 
manually, b) a cancer spheroid labeled using a semi-automatic process and c) is a neuroectoderm organoid labeled 

using a semi-automatic process. 
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Then, I will explain the functions developed to help with the annotation process. Finally, I will present 
another set of functions designed to extract new quantitative measurements from the labels. 
 

3.3.1 Labels layer features 
 
NAHP requires to load two images, the one to annotate and the one containing the previously 2D 
segmentations. The image loading functions are available through two widgets called "Fluorescence" 
and "Labels". 
 
As both 2D and 3D labels are identified and differentiated by integer values, it is critical to be able to 
distinguish them. Based on the safe assumption that there will not be more than a few thousands 
individual nuclei in the organoids we are acquiring, I decided to add 10,000 to each label value of the 
2D segmentations. This addition results in having labels greater than 10,000 for all 2D labels, while the 
3D labels will begin at 1. 
 
Using this trick also allowed me to visually separate 2D and 3D labels. Accessible through a drop-down 
button, the user can choose one base color (red, blue, magenta, orange, yellow, or white) that will be 
used for all the 2D labels. Simultaneously, a look-up table (LUT) is created which purpose is to generate 
colors that are visually as far away from this chosen base color. Thanks to it, every new 3D label will 
have a different color that will be distinguishable from the 2D segmentation. In spirit of inclusion, I also 
added the possibility to generate a color-blind LUT. Figure 35 shows the fluorescence image and labels 
widgets. In the following sections, I will discuss in depth how the different LUTs are generated. 
 

 

3.3.1.1 Color vision color palette 
Ensuring that two colors are distinguishable is done by computing the color difference, which is their 
distance in a device-independent color space. A device-independent color space is a space in which 
the color coordinates used to specify the color produce the same color regardless of the device on 
which they are applied. The computation of the color difference allows quantifying the features used 
to describe color, such as hue, chroma, lightness, and brightness. Color coordinates, like RGB 
coordinates, can be located in a color-geometrical space like the Euclidian geometrical space. 
Nevertheless, as most color spaces are not perceptually linear, Euclidian distance is not well adapted. 
As a result, better perceptually uniform color spaces have been developed, particularly, the CIELAB 

Figure 35: Intensity and label file upload functions. Labels layer features : Intensity image loader (dark green), 
labels loader (light green), labels’ color base dropdown menu (yellow), and look-up table or color palette options 

(orange). 
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color space (Figure 36). The CIELAB color difference formula, ΔE00 o CIEDE2000, is accepted as the more 
accurate color difference formula (Lindbloom, 2017; Sharma et al., 2005).  
 

 
The minimum color difference value to define two colors as perceptually different is called "the just 
noticeable difference" or JND and is equivalent to ΔE00 = 1. Two colors having a color difference ΔE00 
>1 are thus distinguishable. While it is known that having a ΔE00 = 7 already corresponds to an obvious 
perceptual difference, I still chose to only add colors to the LUT that would have a ΔE00 > 15. Figure 37 
shows an example of the different color difference values mentioned between the default color base 
and another red colors. An example of color-vision LUT compared with the default color base can be 
seen in Figure 38. 
 

 

Figure 36: CIELAB color space. L axis describes the luminous intensity of the color, the coordinates a and b 
represent the main color axes, with red at positive a and green at negative a; yellow on positive b and blue on 

negative b. The C axis represents chroma or saturation, the H stand for hue, the hue coordinates move in a circle 
around the "equator" to describe the color family (red, yellow, green, and blue) and all colors in between (X-Rite, 

Incorporated, 2018, p.). 

Figure 37: The color difference between the default color base (Red) and other possible red colors to illustrate 
how the color difference influences the creation of the color vision color palette. 
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3.3.1.2 Color blind color palette 
Color blindness or color vision deficiency (CVD) is the inability of a person to perceive differences 
between certain colors. The most common types of color blindness are deuteranomaly (green-
weakness), deuteranopia (green-blindness), protanomaly (red-weakness), and protanopia (red-
blindness). People suffering from any of those CVD forms have issues distinguishing red or green, even 
when these colors are just a part of others, resulting in the whole spectrum of colors being affected 
(Aytac, 2018; SHAFFER, 2016).  
 
People who have red-green color blindness may be able to perceive intense red and green. However, 
other shades of red and green are perceived as yellow-brown, and brown and orange as shades of 
brown. A safe way to generate a CVD-friendly color palette is using a combination of colors where at 
least one of them is not associated with red-green color blindness, such as blue with orange, red, or 
brown (SHAFFER, 2016). Figure 39 shows how rainbow colors can be perceived by a person that suffers 
from CVD. 
 

 
In contrast with the color vision LUT, I decided that the color-blind LUT would use a limited number of 
colors, as more colors would equal to more risks of having indistinguishable colors. I therefore chose 
six colors that appear alternately during the annotation process, with them ensuring high contrast and 
no bad combinations from a perception standpoint (Figure 40). Figure 41 and Figure 42 show how the 

Figure 38: Normal color vision color palette colors calculated using a ΔE> 15 in comparison with the default base 
color, red = (255, 0, 0). 

Figure 39:How the rainbow colors may look to a color-blind person (Aytac, 2018). This image demonstrates the 
importance of implementing a color-blind palette in NAHP. 
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color vision LUT and the color blind LUT are perceived by a person with deuteranopia or protanopia, 
as simulated by the Visolve (Ryobi Systems Co., 2020) software. 
 

 

 

 

Figure 40: Colors used to create the color-blind color palette. This set of colors was chosen because it allows me to 
avoid multiple colors based on green and red, allowing color-blind users to distinguish them easily.  

Figure 41: Color-vision color palette under deuteranopia y protanopia simulations done with Visolve. These 
images show how colors containing red and green can be perceived by a color-blind person when using the color-

vision color palette during the annotation process. 

Figure 42: Color-blind color palette under deuteranopia y protanopia simulations done with Visolve. These images 
show how colors containing red and green can be perceived by a color-blind person when using the color-blind 

color palette during the annotation process. 
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3.3.2 Functions to facilitate annotation 
 
To develop a plugin that makes annotating easier, I wanted to address practical situations that 
frequently resulted in errors. I mainly identified three situations: label tracking, label localization and 
error localization. Next, I will describe how I tackled each situation.  
 
Label tracking. During annotation, I kept track of all the added labels by writing their values in a 
classical notebook. In addition to the time spent registering all the labels, this solution was problematic 
because even minimal distractions could lead to confusion about what was the current label value, 
and what should be the next one. Consequently, I added a widget that keeps track of all the 3D labels 
already added and that only displays the last one (Figure 43a). In addition, I added a second widget 
which purpose is to identify 2D labels that still must be re-labeled as 3D labels in the current frame. 
The idea is to help identifying labels in crowded regions or very small labels (a few pixels) that are 
otherwise very hard to locate. Similar to the other widget, it keeps track of all the remaining 2D labels 
and only displays the first one (Figure 43b).  
 
Label localization. During annotation, it is often necessary to find a specific annotated item, whether 
to correct it, delete it, or continue with its annotation. The “Label coordinates” widget prints the 5 first 
coordinates of any label chosen by the user, whether it be 2D or 3D (Figure 43c). 
 

 
 
 
 

Figure 43: NAHP annotation functions. a) The Last label added function shows the value of the last label added to 
the annotated image, b) 2D label remained function shows the original 2D labels remaining in the corresponding 
frame, i.e., the 2D labels that need to be relabeled, c) label coordinates function shows the x and y coordinates of 

a certain label, and d) Label errors function shows the errors done during the annotation process. 
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Error localization. Juggling with labels makes it very easy for human errors. The two most common 
errors are two objects sharing the same label or a missing label within a labeled object, as illustrated 
in Figure 44. Hopefully, those errors are easy to identify as one would expect one connected 
component per object. I therefore implemented a function that screens all the 3D labels, identifies the 
ones that are not contiguous in the x, y, or z direction, and prints them (Figure 43d).  
 
I expect that these 4 functions will help reducing both the number of errors and the time spent 
annotating. 
 

 

3.3.3 Annotation helper extra functions 
 
Finally, I decided to include a set of functions designed to obtain extra information from the annotated 
images.  
 
Nuclei individualization. Being able to individualize the labeled nuclei is important as it can help with 
several tasks such as examining the labeling quality or generating simulations. Therefore, I decided to 
add a function that individualizes the nuclei and cleverly organizes them for visualization. This function 
requires the number of labels to individualize and generates 3 layers: one for the label itself, one for 
the corresponding part of the fluorescence images and one for the bounding box (Figure 45). Because 
the nuclei voxels have different sizes, concatenating all the voxels together was not computationally 
efficient and led to images with huge dimensions. As the image voxels extracted can be seen as carton 
boxes, I addressed the concatenation problem as an "optimal bin packing problem", i.e., how to pack 
a set of n 3D boxes with minimal space waste (Figure 46) (Maarouf et al., 2008). Specifically, I relied on 
a Python package called 3dbinpacking (3D Bin Packing, 2020; Dube et al., n.d.). 
 
 
 
 

Figure 44: Possible errors during annotation process. a) two different objects with the same label value, these 
objects can be located on the same frames or not, b) missing label along the z-axis. 
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Nuclei localization. Jointly to the individualization process, I added the possibility of localizing the 
individualized nuclei directly in the original fluorescence image stack. This is done by duplicating the 
label layer and setting all the non-individualized labels to 0, making them invisible (Figure 47).  
 
Properties table. This function computes, for each 3D label, several quantitative measurements. It 
uses both the labeled and fluorescence image stacks and display in a panda-compatible table several 
features: label id, area, centroid, bbox (bounding box), intensity maximum, intensity mean, and 
intensity minimum (Figure 47). 
 
Centroid localization. Finally, this function uses the centroid column computed in the “Properties 
table” and create a new point layer, allowing displaying the centroids directly on the fluorescence 
image stack (Figure 47). 
 

Figure 46: Optimal bin packing problem diagram. a) image voxels represented by “carton boxes”. b) image voxels 
arrange in the most efficient way. 

Figure 45: Nuclei individualization example. The individualization function allows us to have an insight of the nuclei 
morphologies and to perform a nuclei profiling analysis. 
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Area and Intensity thresholding sliders. I implemented these 2 sliders to filter the 3D labels with 
respect to their area and intensity, allowing the user to generate new label layers (Figure 48). 
 
The implementation of all the functions mentioned above can be seen in Figure 49. This is the view of 
NAHP Napari plugin.  
 

 
 
 
 

Figure 47: Nuclei localization image example with centroids localization and properties table displayed. These functions 
allow us to have statistical information about the nuclei contained in the image. Table properties function allows the user 

to export the table into a csv file. 

Figure 48:Examples of new annotations generated using the area (magenta) and intensity (yellow) sliders vs. the 
original annotations done. These sliders will allow user to generate extra annotation what can be really helpful to 

increase our GT dataset.   
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3.4 Discussion 
 
During the past years, there has been a great effort in benchmarking 2D and 3D nuclei segmentation 
methods using different datasets covering samples from various species. However, most of them are 
of limited size, and only a few include 3D labels (Lin et al., 2021). During the development of the ground 
truth dataset presented in this thesis, I annotated 4657 3D nuclei, making it one of the biggest 3D 
nuclei annotated datasets. This dataset can be used for training, testing, and validating nuclei 
segmentation algorithms, and it aims to be a milestone in the field of 3D nuclei segmentation. More 
specifically, I hope it will be widely adopted as a benchmarking dataset for new 3D segmentation 
algorithms.  
 
In parallel, I developed Napari Annotation Helper (NAHP) to facilitate the annotation process within 
the team. While developed specifically for the 3D annotation of cell nuclei, I hope NAHP can also apply 
to a variety of other images that present 3D structures. The main aim of NAHP was to drastically reduce 
the annotation time while limiting the number of errors. 
 
I achieved this goal by implementing a set of functions addressing some of the most concerning 
problems that arise when annotating, such as the confusion caused by constant changes in label value 
and transition between frames. All the widgets I added to NAHP help users by indicating critical 
information, such as the last 3D label added, the remaining 2D labels to handle or the coordinates of 
a specific label. Combined with the functions for detecting and localizing labelling errors, NAHP allows 
a swift reconnection of 2D labels into 3D objects. Moreover, I added several quantitative 
measurements of the 3D labels as additional features, to help users understand their data via filtering 
and visualization.  
 
Ultimately, I believe that the work done in this part of my thesis will have a meaningful impact on the 
community. Indeed, I tackled the two main directions in relation with ground truth generation: I both 
developed a tool to facilitate it and provided a corpus of 3D labels of substantial size. In the future, 
these two directions will be more and more needed by the community.  
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 4 . Quantifying the nuclei 
organization of 3D cell cultures 
with StarDist 

 
 
 
 
 
Main contributions presented in this Section: 

• A complete pipeline to train StarDist in 2D and 3D using the ground truth dataset and the 
plugin presented in Section 3. 

• An application of this pipeline on a biological model (spheroids and neuroectoderm organoids) 
to quantify their nuclei organization in 3D.  

 
 
In recent years, deep-learning based methods have taken by storm the biomedical field with dozens 
of techniques being developed each year. For segmenting nuclei, StarDist and Cellpose have been 
released and have easily surpassed traditional image processing methods. As I had to segment close 
to one hundred stacks of 3D cultures as part of a collaboration with team of V. Viasnoff, StarDist 
appeared to be the perfect solution. Unfortunately, no accurate pre-trained model for StarDist in 3D 
existed because of the lack of ground truth in 3D. Therefore, I had to create this dataset, train StarDist 
in 3D and quantify the nuclei organization of these samples. Along the way, I realized a few interesting 
observations on the functioning of StarDist.  
 

4.1 Image preparation 
 
After installing my Python environment to run StarDist, it became rapidly obvious that I would not be 
able to directly use the images acquired with the soSPIM system. Indeed, the size of those 3D images 
would not fit into my graphics card memory, and as I had no access to a GPU server, I realized I would 
need to resize them. As StarDist was provided with Jupyter notebooks, I had access to example of 
images on which StarDist was trained. I was therefore able to determine in a clever way what resizing 
was required to suit the networks' hyperparameters requirements and field of view. 
 
I defined the resized ratio as the ratio between the average nuclei size of our original labeled images 
(Table 1, dataset) and the StarDist 2D and StarDist 3D sample images' nuclei (Schmidt, 2021a, 2021b), 
respectively. The average length of the nuclei in our dataset was 127 pixels, while the average nuclei 
size in StarDist 2D and StarDist 3D sample datasets was 49 and 28 pixels, respectively. Doing a simple 
computation, I determined that the resized ratio was 1:2.6 for StarDist 2D and 1:4.5 for StarDist 3D. 
After determining the resizing ratios, I used Fiji's resized function with no interpolation to avoid change 
in the label’s values. It is important to mention that resizing not only helps to adapt the images to the 
neural network's hyperparameter but also to cope with memory allocation problems. Figure 50 shows 
a diagram of the resizing process and Figure 51 show some examples of the images after the 
preparation process. 
 
I also had to convert the images from 32 bits to 16 bits. 
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Table 1:Image sizes in pixels before and after preprocessing. 

Dataset 
Original image 

size 

Image size 
after cropping 

and slicing 

Image size 
for StarDist 
2D training 

Image size for 
StarDist 3D 

training 

Original 

sample 1 

2048x2048x100 
1532x1398x85 589x537 340 x310x85 

sample 2 

sample 3 886x1110x80 341x427 197x247x80 

Complementary 

sample 1 
1024x1024x71 1024x1024x71 

394x394 

228x22x71 
sample 2 

sample 3 
1024x1024x50 1024x1024x50 228x22x50 

sample 4 

 

 

Figure 51: Examples of images samples after cropping and preprocessing. Original data set sample 1 and 3. 

Figure 50: Re-sizing process diagram. The resizing process allow us to avoid memory allocation problems and have 
image patches inside the neural network flied of view.  
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4.2 Nuclei segmentation results  
 
During my PhD, I realized around 70 different trainings using different types of image combinations 
and preprocessing methods. Although many experiments were performed, not all yielded relevant 
information. In the following sections, I will only discuss the most relevant experiments for this 
project's development and their respective results.  
 
As convention, the first three image stacks that I fully manually annotated will be called "original-DAPI 
dataset" when using the DAPI-stained images and "original-SOX dataset" when using the Sox2-stained 
images. Of the four stacks that were subsequently annotated in 3D from 2D segmented labels, three 
were used for training and will be referred to as “complementary dataset”, while the last one was used 
for evaluating the models’ accuracy and will be named the " prediction dataset." 
 
To implement StarDist 2D and StarDist 3D, I used: 

● A set of Jupyter notebooks containing the training and prediction implementation. These 
notebooks can be found in StarDist GitHub:  

o StarDist 2D: https://github.com/stardist/stardist/tree/master/examples/2D 

o StarDist 3D: https://github.com/stardist/stardist/tree/master/examples/3D  

● Anaconda Navigator to launch the Jupyter notebooks used. 
 

4.2.1 StarDist 2D implementation 
 
Although our focus was to perform 3D nuclei segmentation, it rapidly became obvious that I could take 
benefit of StarDist 2D in order to speed up the annotation process. But, as I said before, several ground 
truth datasets exist for nuclei segmentation in 2D. I was therefore able to train different StarDist 2D 
models, whether it be with these existing datasets, our data or a combination of both. 
 
To implement StarDist 2D, each frame of the fluorescence image stack is saved as an individual file and 
paired with its corresponding mask. StarDist 2D trainings were performed using the same 
configuration, with the corresponding details being shown in Table 2. In all cases, the training lasted 
around 15 min, and the prediction took around 40 seconds. 
 

Table 2: StarDist 2D segmentation model details. 

StarDist 2D model training configuration 

No. of epochs 200 

Patch size 256, 256 

Train steps per epoch 100 

Train batch size 1 

 

4.2.1.1 StarDist 2D segmentation results using Data Science Bowl 2018. 
The first attempt to train StarDist 2D was made using the same dataset used in the Jupyter notebook 
example provided on StarDist’s GitHub website, which happens to be the DSB2018 (Booz Allen 
Hamilton, Inc., 2018). Using this dataset, I developed a segmentation model using the same 
configuration mentioned in Table 2. To test the accuracy of the corresponding segmentation model, 
the prediction dataset was separated in individual frames to create a 2D test dataset.  
 
The DSB2018 dataset comprises images acquired with two major types of light microscopy (brighfield 
and fluorescence) under different experimental conditions and nuclei densities. The DSB2018 contains 
497 images with an average of 43 nuclei per image. Even so, no sample acquired with light-sheet 

https://github.com/stardist/stardist/tree/master/examples/2D
https://github.com/stardist/stardist/tree/master/examples/3D
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microscopy was present. This unfortunately means that this set does not encapsulate the type of data 
we wanted to segment, as both the illumination scheme and the nuclei density and organization or 
our 3D cell cultures was absent. This discrepancy between the training dataset and the prediction 
dataset can be observed in the segmentation results, as this model presents certain problems when 
segmenting overexposed areas, very crowded regions, cell divisions, and dim objects as shown in 
Figure 52.  
 

 
Due to the results obtained with the segmentation model trained using the DSB2018 dataset, I realized 
it was necessary to train a model with images representing our data.  
 

4.2.1.2 StarDist 2D segmentation results using the original -DAPI dataset 
I trained StarDist 2D using the original-DAPI dataset, which images were preprocessed and resized 
according to the methods mentioned in the Image section. To develop this model, I used Original-
sample 1 and sample 3 for training, Original-sample 2 for validating and Complementary-sample 2 for 
testing. Figure 53 shows some examples of the segmentation obtained using this trained StarDist 2D 
model. Unfortunately, even visually it was obvious that this model was performing very poorly, with a 
majority of the nuclei being missed. 
 
Figure 54 shows the different metrics computed during the testing phase of the training, as well as the 
computation of the true positives (TP), false positives (FP), and false negatives (FN) according to the 
different intersection over union (IoU) thresholds. As usual, the values of the metrics decrease with 
the incrementation of the IoU threshold values, highlighting the importance of correctly defining the 
IoU threshold. In the literature, segmentations algorithm performance is evaluated using single values 
of IoU, with the most common ones being between 50% and 75% (Padilla et al., 2020). Because of this, 
I decided to use an IoU threshold of 0.6 to define my model’s accuracy. With this value, I got an 
accuracy of 0.8 and an F1-score of 0.9. 
 
Although the accuracy values are high, the model performed very poorly. This may be related to two 
causes: first, the training set only comprises of a couple of hundreds of images, which is certainly 
insufficient to achieve a good model generalization. Second, the image from the prediction set was 
acquired in a different condition than the one from the original-DAPI set. This also could explain why 
the model performed poorly. This is a clear example that to determine if segmentation is accurate or 
not, just looking at the number is not enough; inspecting the images is always necessary. 
 

Figure 52: Prediction using the StarDist 2D model developed using DSB2018. In this zoom made in the different 
frames we can observe the over- and under-segmentation performed by this segmentation model. 
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Consequently, I decided to develop a new StarDist 2D model using the original-DAPI and the DSB2018 
dataset. By merging those, I expected to obtain better results thanks to combining images taken under 
different imaging conditions, with different nuclei densities and using different cell culture methods.  
 

 

 

Figure 54: StarDist 2D training performance using DAPI stained cell images. Although these graphs give the 
impression that the model works accurately due to the high values shown by the different metrics, a quick 

inspection of the segmentation obtained contradicts these conclusions. 

Figure 53: Fluorescence image vs. StarDist 2D segmentation comparison using original-DAPI training dataset. In 
these images we can observe the poor performance achieved by this model. 
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4.2.1.3 2D StarDist segmentation results using original-DAPI and DSB2018 datasets 
To develop this model, the original-DAPI images were preprocessed accordingly to the steps 
mentioned in the Image Preparation section while the images from the DSB2018 dataset remained 
unmodified. I will refer to this training as original+DSB2108 in the text. Figure 55 shows examples of 
the segmentation obtained using this model. To develop this model, I used Original-sample 1 and 
sample 3 for training Original-sample 2 for validating plus randomly assign images of the DSB for 
training and validating phases, and Complementary-sample 2 for testing. 
 
The improvement in the segmentation when applying this model to the prediction set can be seen 
when comparing Figure 53 and Figure 55. Figure 56 shows that adding the DSB218 dataset to the 
training dataset highly improved the segmentation model accuracy. This improvement can be due to 
the employment of images with different nuclei density, illumination, and experimental conditions 
together with images taken using the soSPIM, which represent the illumination condition we need our 
model to learn. Thanks to this, our models not only learn to segment kernels in different distributions 
but also with different types of illumination, which is one of the characteristics of our images. All this 
is further evidence that training a neural network using images that reflect diverse imaging and 
experimental conditions is always a wise decision.  
 
From the results obtained from this experiment, we can see that the diversity of images benefited the 
accuracy of the segmentation results. These results demonstrated that I managed to train a very 
accurate StarDist 2D model thanks to a diverse training set. This model can therefore be used to 
segment all the frames of 3D cultures image stacks, a critical step for performing semi-automatic 3D 
labeling. 
 

 
 
 

Figure 55: Fluorescence image vs. StarDist 2D segmentation comparison using original-DAPI and the DSB2018 datasets. 
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4.2.2 StarDist 3D implementation 
 
I then used the StarDist 2D original-DAPI+DSB2018 model to segment the complementary dataset in 
2D and perform their 3D annotation, as described in the previous chapter. Using original-DAPI, original-
SOX, and complementary datasets, I trained several sets of StarDist 3D models. Of all the trainings 
performed, three gave relevant results, one using the original-SOX dataset, another one using original-
DAPI and complementary dataset, and the last one using original-SOX and complementary dataset. I 
will refer to these training as Sox2, DAPI, and SOX-DAPI. All carried out trainings had the same 
configuration, as shown in Table 4. 
 

4.2.2.1 3D StarDist segmentation results using original-SOX dataset 
As mentioned before, just the original dataset composed of three stacks was acquired using both the 
SOX2 and DAPI labeling. In this case, I developed a segmentation model using two of these images as 
training dataset and the last one as prediction dataset using the configuration shown in Table 3.  
 

Table 3: StarDist 3D segmentation model details. 

StarDist 3D model training configuration 

Time 2.5 hours 

No. of epochs 200 

Patch size 48, 128, 128 

Train steps per epoch 100 

Train batch size 2 

Total number of stacks 2 

Number of stacks for training 1 

Number of stacks for evaluation 1 

Number of stacks for validation 1 

 
Some examples of the results obtained can be seen in Figure 57 and its 3D view can be seen in Figure 
58. In Figure 59, the reader can observe the performance of the corresponding training. This image 
shows that the training presents a poor performance for IoU values above 0.6, where all the metrics 
descend rapidly to very low values. By computing the corresponding IoU values between GT and 
predicted objects using the method presented in Caicedo et al., 2019, I obtained the amount of TP, FP, 
and FN for an IoU = 0.5 along its F1-score, as can be seen in Table 4. This result are not a surprise since 
all images were taken under the same experimental conditions and preprocessed using the same 
method. Although the results observed for this first implementation of StarDist 3D seemed promising, 

Figure 56: StarDist 2D training performance using original-DAPI and DSB2018 datasets. 
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I was aware that more data were needed to develop a better segmentation model applicable to a wide 
range of organoids.  
 

Table 4: True positives, false positives, and false negatives of the predictions done using Sox2 labeled images image 

Model Prediction Total nuclei TP FP FN F1-score 

StarDist 
Sample1&3 

Sample 2 705 322 111 383 0.566 

 

 

 

Figure 57: Fluorescence image stack vs. original-SOX training prediction. 

Figure 58: 3D view of the original-SOX training prediction. 
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4.2.2.2 3D StarDist segmentation results using original-DAPI, original-SOX and 

complementary datasets. 
As the original training dataset was only composed of 3 images, and it was clear that it was not 
sufficient to train an accurate StarDist 3D model, I annotated the complementary dataset. After 
completion, I performed a set of trainings using original-SOX, original-DAPI, and the complementary 
dataset combined. The first training was done using original-DAPI and the complementary dataset, and 
the second was performed using original-SOX and the complementary dataset. To develop these 
models, I used the Original dataset (SOX and DAPI respectively) plus complementary-sample 1 and 3 
for training, complementary- sample 2 for validating, and Complementary-sample 4 for testing.  
 
I decided to implement these two training because I wanted to compare the results obtained when 
using a single and a mix of nuclei labels. Because the complementary images were only labeled with 
DAPI, I will refer to these two trainings as DAPI and SOX-DAPI. 
 
Both trainings were performed using the same configuration to assure the comparison is possible. 
Figure 60 and Figure 61 show two frames from the prediction dataset corresponding to the 
segmentation done using each model. These frames were chosen because they best represent the 
results obtained. These frames are located at the center of the stack, where all the nuclei are on focus 
and does not exhibit any blur, which is not the case for the nuclei located in the first or last frames of 
the stack. In addition, Figure 62 shows the performance plots for the corresponding validation process 
of these trainings. 
 
Overexposed regions present some segmentation problems in both cases, which is not surprising 
because this is the more difficult area to segment due to challenging illumination. Figure 61 shows that 
the SOX-DAPI model performs better than the DAPI model in the areas where the light reflection is 
higher, as seen in Figure 60. SOX-DAPI model seems to under-segment objects in frames with low 
illumination, and the DAPI model seems to over-segment them, giving segmentations that do not 
correspond to the size or position of the nuclei present in the frames. However, the segmentation of 
the nuclei located in the middle frames of the stack seems to be very similar in size and location in 
both cases. 
 
The behavior of both segmentation nuclei seems to be very similar with 1041 and 1037 objects 
segmented for SOX-DAPI and DAPI respectively. However, it is important to notice that although small, 
the performance of the SOX-DAPI model appears to be better than the DAPI model. This can be due to 
using different immunostaining labels, creating a more generalized model. Although the TP, FP, and 
FN were not computed due to a lack ground truth, as the prediction dataset was not labeled, using 

Figure 59: StarDist 3D training performance comparison between trainings performed with Sox2 stained cells. 
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only two immunostaining labels and six images to train StarDist 3D produced very good results, even 
though this is still considered a very limited dataset. Finally, the SOX-DAPI model was the one I used to 
segment almost one hundred of 3D cultures of our collaborators, and to quantify the nuclei 
organization as can be seen in the next Section. 
 
 
 

Figure 60: Fluorescence image stack vs. original-DAPI training prediction. 

Figure 61: Fluorescence image vs. SOX-DAPI training prediction. 
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4.2.3 Quantification of the nuclei organization in 3D cultures using StarDist 

3D  
 
As part of a collaboration with the team of V. Viasnoff located in Singapore, our team wanted to 
upgrade the soSPIM system to allow acquiring automatically hundreds of 3D cultures. It’s in this 
context that I trained the SOX-DAPI StarDist 3D model, to segment the organoids they acquired. In 
total, I segmented 96 organoids, resulting in 55,976 identified nuclei. The next step was to assess the 
results' accuracy, as I used all the labeled datasets to train the model. For this, I performed a careful 
visual assessment to count the amount of FP and FN and computed the F1-score on four of the 96 
organoids segmented. The four organoids chosen can be seen in Figure 63, and the corresponding 
results obtained for each of the images selected are shown in Table 5: Example of the segmentation 
results presented in (Beghin et al., 2022). 
 

Table 5: Example of the segmentation results presented in (Beghin et al., 2022) 

Image TP FP FN F1-score 

Sample 1 694 3 25 0.98 

Sample 2 301 4 6 0.98 

Sample 3 705 9 27 0.97 

Sample 4 475 2 14 0.98 

 

Figure 62: StarDist 3D training performance comparison between DAPI and SOX-DAPI trainings. These figure shows 
clearly the difference between TP, FP and FN objects for each of the models for particular IoU values. 
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Besides analyzing the quality of the performed segmentation, we were also interested in knowing if 
the illumination side of the soSPIM system could induce a spatial bias in the segmentation results. For 
this, we decided to perform a segmentation of images taken with an illumination coming from the left 
side and from the right side of the same organoids, and compared its segmentation as shown in Figure 
64. The cyan segmentation was done using the image taken from the left side, and the magenta 
segmentation was obtained from the image taken from the right side; in white, we can see the results 
superposition. From the results shown in Figure 64b, it is observable that there is no spatial bias in the 
segmentation performed, i.e., the segmentation remains constant with the change in illumination 
configuration. 
 
One interest in being able to segment and quantify the nuclei organization is that we are then able to 
pinpoint the location of specific cellular events in this distribution. In Singapore, the team of V. Viasnoff 
trained a Yolo network (Redmon et al., 2016), a deep-learning network designed to identify the 
location of specific cellular events such as mitosis. First, I used the segmentations obtained previously 
with my SOX-DAPI model to perform a 3D reconstruction of the segmented nuclei by surface rendering 
with the PoCA software (Levet, 2021) developed in the team. I then precisely located the position of 
the different cell cycle events inside the segmented nuclei, making it possible to obtain extra 
information that could allow a deeper analysis of cell nuclei development, like measuring the time for 
a cell to go from G0 to mitosis or using the mitosis position as the starting point for nuclei tracking 
inside the sphere. Figure 65a shows the 3d rendering reconstruction of the cell nuclei, and Figure 65b 
and 64c show the 3D localization of each cell cycle phase represented in 3D by a sphere. The color 
code for the proliferation stages is blue for early G1 (G1-phase, growing cell phase), yellow for G1/S/G2 
(S-phase, DNA replication phase and G2-phase, Organelles and proteins develop in preparation for cell 
division), and red for mitosis, middle and right panels. 
 
 
 

Figure 63: Examples of some of the 96 organoids acquired and segmented presented in (Beghin et al., 2022). 
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4.3 The Wavelet transform (WT) as a preprocessing step to improve 

StarDist segmentation 
 
As in light-sheet microscopy the illumination comes from a side, shadowing is to be expected 
depending on the size of the sample being imaged. In our case, this results in uneven illumination with 
part of the sample exhibiting blurred nuclei. Another issue specific to the soSPIM system is that, 

Figure 65: Subcellular quantification of cell proliferation in oncospheres. a) StarDist segmentation contours and 3D 
reconstruction of segmented nuclei by surface rendering. b) detection of three different stages of cell division. c) 
3D localization of individual proliferating nucleus represented in 3D. The colors code for the proliferation stages 

(blue for early G1, yellow for G1/S/G2, red for mitosis, middle and right panels) .Edited from (Beghin et al., 2022). 

Figure 64: Nuclei segmentation spatial bias analysis. a) 3D segmentation comparison between left-side and right-
side illumination images. b) Quantification of the difference between the absolute number of nuclei detected in 

the two illumination directions and nuclei distribution. Edited from (Beghin et al., 2022). 
 



76 
 

sometimes, reflection of the light on the Jewell mirrors will be present in the image and saturates it. 
Because of this, I decided to use the À-Trous Wavelet transformation as a preprocessing step, as these 
wavelets have been traditionally used to denoise and filter images in image processing, such as 
detecting edges and overcoming random noise while preserving sharp details (Dammertz et al., n.d.; 
Zhang & Li, 2001).  
 

4.3.1 The Stationary Wavelet transform theory 
 
A wavelet (Debnath & Shah, 2015; POLIKAR, 2016) is a mathematical function that divides a given 
function or continuous-time signal into different scale components providing a time-frequency 
representation of the signal analyzed. The wavelet transformations (WT) are classified into discrete 
(DWTs) and continuous wavelet transforms (CWTs) (POLIKAR, 2016). The continuous wavelet 
transformation was developed as an alternative approach to the Short Time Fourier transform (STFT) 
(Debnath & Shah, 2015; POLIKAR, 2016). The wavelet analysis is done in a similar way to the STFT 
analysis, in the sense that the signal is multiplied with a function, the wavelet, and the transform are 
computed separately for different segments of the time-domain signal (POLIKAR, 2016) 
 
The CWT is a similarity measure between the base functions (wavelets) and the analyzed signal. CWT 
coefficients refer to the closeness of the signal to the wavelet at the current scale. For example, If the 
signal has a major component of the frequency corresponding to the current scale, then the wavelet 
at the current scale will be similar or close to the signal at the particular location where this frequency 
component occurs (POLIKAR, 2016).  
 
 
On the other hand, DWT provides sufficient information for analysis and synthesis of the original signal, 
with a significant reduction in the computation time. DWT is a time-scale representation of a digital 
signal using digital filtering techniques. When applying this transformation, the signal is passed through 
a series of high (resp. low) pass filters to analyze its high (resp. low) frequencies (POLIKAR, 2016).  
 
The Stationary wavelet transform (SWT) or À-Trous (with holes) Filter is similar to the DWT. (Al Jumah, 
2013; Debnath & Shah, 2015). In conventional DWT, at each level, the input signal is firstly convolved 
with low g[m] and high h[m] pass filter and then decimated by a factor of two to obtain wavelet 
transform coefficients. In SWT, the input signals are convolved with low (g[m]) and high (h[m]) pass 
filters as in DWT, but no decimation is performed, and the two new sequences have the same length 
as the original sequence. (Goebel et al., 2008; Qayyum et al., 2017; Somayeh, 2021). The SWT 
decomposition diagram can be seen in Figure 66. 
 
When applied to an image, SWT can be seen as a convolution between an image and a 3x3 filter, the 
no-decimation of the image is achieved by padding out the filter with zeroes at each level, as can be 
seen in Figure 67, resulting in the non-zero entries remaining constant (Al Jumah, 2013; Qayyum et al., 
2017).The different coefficients obtained from when applying the SWT to an image can be seen in 
Figure 68.The wavelet filter used as part of our preprocessing pipeline is the B3 spline (Dammertz et 
al., 2010; Zhang & Li, 2001), which matrix expression is:  
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Figure 66: a) Stationary wavelet transformation (SWT) decomposition diagram. Filters in each sample are the up-
sampled versions of the previous b) Stationary wavelet filters. Edited from (Hurley, 2018). SWT is commonly used 

in signal processing and pattern recognition. 

Figure 67:Three levels of the À-Trous wavelet transform. Arrows indicate pixels corresponding to non-zero entries 
in the filter hi and are used to compute the center pixel at the next level. Orange dots are positions that full the 

undecimated wavelet transform would consider but that are skipped by the À-Trous algorithm. Edited from 
(Dammertz et al., n.d.). 

Figure 68: Image scales obtained using À-Trous Wavelet; adding the coefficient to the next image generated will 
give us the reconstructed version of the original image. 
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4.3.2 Thresholding of the wavelet coefficients 
 
As an image can be deconstructed using a WT, it can also be reconstructed using the wavelet 
coefficients. Interestingly, those coefficients can be thresholded before the reconstruction to denoise 
the original image (Figure 69), as it was demonstrated that Gaussian noise tends to be represented by 
small values in the wavelet domain (Chang et al., 2000). There exist two main ways to perform 
thresholding of the wavelet coefficients:  
 

● Visu-Shrink: this approach employs a single, universal threshold to all wavelet coefficients. 
This threshold is designed to remove additive Gaussian noise with high probability, resulting 
in an overly smooth image appearance. A more visually agreeable result can be obtained by 
specifying a sigma smaller than the true noise standard deviation (Chang et al., 2000; scikit-
image, 2014; van der Walt et al., 2014)  

● Bayes-Shrink: is an adaptive approach to wavelet soft thresholding where a unique threshold 
is estimated for each wavelet sub-band. This generally improves what can be obtained with a 
single threshold (Chang et al., 2000; Don & Johnstone, 1994; scikit-image, 2014; van der Walt 
et al., 2014).  

 
Importantly, these thresholds also depend on the mode argument, that can be either hard or soft 
thresholding: 
 

● hard: data values for which their absolute value is less than a certain parameter are replaced 
with a substitute value. Data values with absolute value greater or equal to the thresholding 
value stay untouched (PyWavelets, 2022).  

● soft: data values with absolute value less than a certain value are replaced with a substitute 
value. Data values with absolute value greater or equal to the thresholding value are shrunk 
toward zero by value (PyWavelets, 2022).  

 

 

4.3.3 StarDist 3D implementation using Stationary Wavelet Transform 

preprocessed images 
 
To perform computation of the SWT, I used a python package specialized in À-Trous transformation, 
the libatrous python package (Zindy, 2019). In addition to providing different kernels or filters for the 
wavelets, the libatrous library gives also access to 2D and 3D À-Trous Wavelet transformations by 
controlling on which dimensions the separable filter kernel is applied. 
 
I decided to apply the À-Trous Wavelet using a B3 Spline 5x5 filter, which enhances the edges of the 
objects, to our image stacks in the x and y directions to generate what I called the 3D-XY wavelet 

Figure 69: Image reconstruction using thresholded coefficients. During this  project we perform the reconstruction 
of the original image using coefficients 2, 3 and 4. 
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dataset. Then, I applied the filter to our images in the x, y, and z directions; I called this set of images 
the 3D-XYZ wavelet dataset. In both cases, I computed the first five scales of the wavelet 
transformation as can be seen in Figure 70. 

 
After computing the WT, I trained four different segmentation models. Because of the practical 
implementation of StarDist, the two first ones were done using reconstructed RGB images for each 
frame of the image stack, with channel 1 (resp. 2 and 3) being the SWT scale 2 (resp. 3 and 4), and the 
two models depending on the wavelet being used (3D-XY and 3D-XYZ). For the third and fourth 
segmentation models, I reconstructed the 3D image stacks after applying the Baye-Shrink and Visu-
Shrink methods to the SWT coefficients. In all cases, I used those reconstructed images combined with 
the labeled stacks to perform the training.  
 

4.3.3.1 RGB wavelet reconstruction image segmentation 
I trained two StarDist 3D segmentation models using the RGB reconstructed images, RGB 3D-XY, and 
RGB 3D-XYZ as training datasets. After completing the corresponding trainings, lasting 3.5 hours each 
approximately, I performed the corresponding prediction, lasting around 40 seconds each. To develop 
these models, I used Original-DAPI plus complementary-sample 1 and 3 for training, complementary- 

sample 2 for validating, and Complementary-sample 4 for testing. As in 3D StarDist segmentation 
results using original-DAPI, original-SOX and complementary datasets.  
 
The goal of these trainings was to determine if adding these preprocessing steps would help overcome 
the segmentation problems present in the areas with high illumination, i.e., the refection area. 
Through a visual comparison of the predictions obtained and the fluorescence images, I observed that 
the prediction that gave a better nuclei segmentation of the ones located in overexposed areas was 
achieved using the model trained with the RGB 3D-XY dataset. However, the rest of the prediction did 
not seem to be affected by the wavelet dimensionality used to reconstruct the images. 
 
Figure 71 shows a comparison between a fluorescence image and its RGB 3D-XY and RGB 3D-XYZ 
versions, while the Figure 72 and Figure 73 show the results after applying the corresponding trained 
StarDist 3D models, with 1156 and 874 objects segmented respectively. We can observe that RGB 3D-
XY performs better than RGB 3D-XYZ since the latter tends to over-segment the nuclei in both the 

Figure 70: Example of wavelet scales computed using À-Trous algorithm. These images were obtained using the 
Jupyter Notebook available at (Zindy, 2019). 
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overexposed areas and the dim ones, which are the regions of extreme importance during our 
evaluation. The validation plots corresponding to these trainings are shown in Figure 74. The 
performance of the models trained using RGB reconstructed images gives satisfactory results, with a 
TP close to 400 in both cases. Its accuracy can also be observed in the metric vs. IoU plot, where the 
F1, recall, precision, and accuracy metrics are above 0.8 for the first three metrics and above 0.5 for 
the accuracy. 

Although these results seem promising, the similarity between these and the results obtained with the 
SOX-DAPI segmentation model is very high, as can be seen in Figure 75 and 76. Nevertheless, I think 
further experiments must be done using these models to decide if this preprocessing step should be 
or not added to the segmentation pipeline. 
 

 

Figure 71: Fluorescence image stack (frame 35) and RGB image reconstructions using 3D-XY wavelet and 3D-XYZ 
wavelet scale 2, scale 3, and scale 4 as RGB color channels respectively. 

Figure 72: Fluorescence image stack vs. 3D-XY wavelet image training prediction. 
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Figure 73: Fluorescence image stack vs. 3D-XYZ wavelet image training prediction. 

Figure 74: StarDist 3D training performance comparison between trainings performed with RGB 3D-XY wavelet 
images (a), and RGB 3D-XYZ wavelet images(b). 
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Figure 75: Comparison between SOX-DAPI and RGB3D-XY segmentation results. 

Figure 76: Comparison between SOX-DAPI (a) and RGB 3D-XY (b) performance plots. 
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4.3.3.2 StarDist 2D results using thresholded wavelet image reconstruction 
In parallel to using the WT coefficients to train StarDist, I also investigated the benefit that thresholding 
those coefficients could bring. I therefore tested different combinations of the thresholding methods 
and modes and finally decided to use the hard method to perform the respective coefficient 
thresholding, since it presented the best contrast between object and background. In the case of Visu-
Shrink threshold, the thresholding of the images was done using the universal threshold defined as 

𝜆𝑢 =  𝜎 √2 ∙ log (M), where M is the number of pixels on the image and σ the noise variance of such 

image. The noise variance is computed by 𝜎 =
𝑀𝑒𝑑𝑖𝑎𝑛|𝑦𝑖,𝑗|

0.6745
. To compute Bayes-Shrink threshold the 

threshold value for each image is computed using 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝜎2/𝜎𝑥 (Chang et al., 2000; scikit-
image, 2014).  
 
To reconstruct the images, I exclusively used and thresholded the WT coefficient scales 2, 3 and 4. 
Figure 77 shows examples of the reconstructions performed using Baye Shrink and Visu Shrink with 
mode hard thresholding methods and different wavelet scales. 
 

 
Using the reconstructed images as a training dataset, I trained StarDist 2D using 200 epochs. To 
develop this model, I used Original-DAPI plus complementary- datasets for training, and validating, and 
Complementary-sample 4 for testing. In this case, the training and validation samples were chosen 

randomly by StarDist 2D Jupyter notebook as in 2D StarDist segmentation results using original-
DAPI and DSB2018 datasets. 
 
The prediction obtained and its comparison with the 2D ground truth can be observed in Figure 78. It 
is noticeable that both models performed well in the areas that present over exposed sections. In 
Figure 78, the white nuclei show the intersection between the 2D GT, and the segmentation performed 
using the different models. These images demonstrate that the Visu-Shrink-hard model performs 
slightly better because it contains close to 12% less false negatives than Bayes-Shrink. 
 
Figure 79 shows the training performance for the two models. The behavior of the metrics indicates 
very good values even above the IoU = 0.8, a fact also reflected in the high number of true positives 
nuclei computed. In both cases, the value of the TP does not decrease drastically until reaching an IoU 
= 0.8, which is considered a very high value of IoU.  
 

Figure 77: Example of image reconstruction using Bayes-Shrink and Visu-Srink and threshold with mode hard. a) image 
reconstruction performed using Bayes-Shrink method with model hard using scale 2, 3 and 4. b) image reconstruction 

performed using Visu-Shrink method with model hard using scale 2, 3 and 4. 
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Although these results look very promising, I was not able to go further due to lack of time. In the 
future, I would like to use the preprocessing pipeline shown in this section to perform 3D segmentation 
and see if the results obtained exceed those presented in this paper. 
 

Figure 78: StarDist 2D segmentation results obtained using reconstructed images to perform the training and 
segmentation. a) segmentation results obtained when training StarDist with images reconstructed using Bayes-Shrink 
method with model hard using scale 2, 3 and 4. b) segmentation results obtained when training StarDist with images 

reconstructed using Visu-Shrink method with model hard using scale 2, 3 and 4. 

Figure 79: StarDist 2D training performance comparison between trainings performed with images reconstructed using 
Bayer Shrink (a) and Visu Shrink (b) thresholding methods using hard mode. 
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4.4 Discussion 
 
As the use of 3D cell cultures becomes more and more widespread in the scientific community, the 
limitations of analyzing them with traditional methods puts an obstacle in the research pipeline. On 
the other hand, deep-learning methods, such as StarDist or Cellpose, have demonstrated their ability 
to achieve accurate results in segmenting nuclei. However, the segmentation quality of these models 
strongly depends on the size, accuracy and diversity of the training dataset (Stringer et al., 2020). 
Therefore, it is necessary to analyze the variables that affect the algorithm's performance. The results 
presented in this thesis allow us to see how a dataset's diversity can highly influence a segmentation 
algorithm's behavior.  
 
As seen in the StarDist 2D implementation section, I demonstrated that the diversification in 
experimental conditions, nuclei density, and nuclei size is critical to improve the results of StarDist in 
2D. I thus illustrated that the best combination for a training dataset is a dataset exhibiting a wide 
variety of sizes and conditions, while still ensuring that some of your own data are present.  
 
I then demonstrated a similar pattern for StarDist in 3D. In this case I did not have access to any free 
ground truth datasets. Nevertheless, I was able to bring some diversity to the model by using both the 
SOX and DAPI immunostaining labeling in the training set. The main objective to train these models 
was to be able to automatically segment 3D cell cultures labeled with DAPI. Therefore, training a model 
with only the SOX labeled image stacks gave poor results. It was to be expected for two reasons: first, 
the images acquired for the DAPI labeling were too different from the SOX ones, and the network was 
not   acquainted with them. Second, the training set was too small, as only three stacks were labeled 
with SOX. However, training StarDist 3D with all my labeled images, combining both SOX and DAPI 
labeling, resulted in good enough segmentations to be used to automatically segment close to one 
hundred 3D cell cultures (Beghin et al., 2022). I then demonstrated that one could use this accurate 
nuclear segmentation models to bring interested biological insights, for instance determining where 
in the 3D cell culture are located nuclei at different development stage. 
 
Finally, I wanted to see if using wavelet as preprocessing step in the segmentation pipeline could 
improve the segmentation accuracy by overcoming some issues inherent to the soSPIM system such 
as shadowing or uneven illumination. To enhance essential features in our images, I decided to use the 
stationary wavelet transform as a preprocessing step, in an attempt to overcome the uneven 
illumination and enhance nuclei edges. Thanks to the wavelet transformation applied to the images, 
its illumination became more homogeneous, and nuclei edges sharper, thus overcoming one of the 
major problems presented in our images. Furthermore, looking at the results obtained from the 
wavelet segmentation models, we can observe that objects were better segmented in the overexposed 
regions compared to segmentations done using the original images, tackling one of the main problems 
when segmenting soSPIM images. Although the segmentation results obtained from wavelet models 
in other areas of the images did not show substantial improvement; however, those are not the areas 
we are mainly concerned about. This gives us the idea that a good perspective for the future of these 
projects could be to develop a StarDist segmentation model using the original images and the wavelet 
images as part of the training dataset to see if this model can segment fluorescence images without 
the need to preprocess them. Combining wavelet and original images could be a way to generalize our 
training dataset even more and obtain a better segmentation of the overexposed areas of the 
fluorescence images. 
 
StarDist 2D segmentation models developed using wavelet reconstructed images, RGB 3D-XY and RGB 
3D-XYZ, seem to perform the same as the models developed using the original + DSB2018 images, even 
though the reconstructed images appeared to have better illumination distribution and sharper nuclei 
edges. This could be because the wavelet dataset is not general enough or because the algorithm's 
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limit has been reached. Additionally, the segmentations performed using Bayes-Shrink, and Visu-shrink 
models present good segmentation in the overexposed areas; however, due to lack of time, I was not 
able to explore the possible result of 3D segmentation, although I suspect that if StarDist 2D gave very 
good results, using this preprocessing in 3D segmentation will also give promising results 
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 5 . Conclusions and perspectives 
 
 
 
 
 
As 3D cultures are increasingly adopted by the scientific community, the segmentation and 
quantification of its constituents in 3D has become critical. In parallel, deep learning-based methods 
have taken by storm the biomedical field with reasons as they allow, under certain conditions, a fast 
and automatic segmentation of structures exhibiting complex shapes. Naturally, deep-learning 
methods such as CellPose (Stringer et al., 2020) and StarDist (Weigert et al., 2020) have been 
developed to segment nuclei in 3D with great successes. But while successful some limitations still 
exist, the main one being linked to the availability of labeled ground truth in 3D. In the course of my 
PhD, I developed a 3D nuclei segmentation pipeline that resulted in three main contributions, along 
with some interesting insights and results. 
 
My first main contribution is related to the availability of ground truth datasets for nuclei segmentation 
in 3D. At the time I started it was basically non-existent. In the context of a collaboration with the team 
of V. Viasnoff located in Singapore, I labeled several 3D cultures cells to generate a ground truth 
dataset of sufficient size for training an accurate StarDist model in 3D. This corpus contains 4 
neuroectoderm organoids image stacks, 1 neuroectoderm organoid, and 3 cancer spheroids, and 
represents more than 4,500 individual nuclei in 3D. I have specifically chosen these samples to ensure 
that they were from different experimental conditions and exhibited varying labeling, nuclei density, 
and cell type, bringing diversity to the training set. Because of its variety and size, this ground truth 
dataset stands as the only one of its kind and will benefit to the whole community. Hopefully, it will 
become a reference for developing new segmentation algorithms and improving existing ones.  
 
Although annotating is very time-consuming, developing the right tools to make this task easier, faster, 
and error-proof has not caught enough attention from the scientific community. My second main 
contribution have been the development of a Napari plugin called “Napari Annotation Helper” (NAHP). 
Starting from an image stack already labeled in 2D (by using StarDist in 2D for instance), this plugin 
allows users to immediately know what was the last finished 3D label, to identify the remaining 2D 
labels to be treated and to easily identify annotation errors. It also helps users to obtain significant 
statistical information from the annotated images. Ultimately, this tool facilitates the 3D annotation 
process and is therefore beneficial to our team and can motivate other research teams to carry out 
new labeling. 
 
Finally, my last main contribution has been to use a trained StarDist 3D model in production and 
demonstrate that it can be used to quantify interesting biological phenomena. This model was trained 
with the ground truth dataset I labeled and was used to segment almost 100 organoids and spheroids 
acquired by the team in Singapore. These segmentations were later used to quantify several features 
of both the soSPIM system and the biological samples. For instance, I was able to pinpoint different 
cell cycle events inside the segmented nuclei distribution and obtain extra information allowing deeper 
analysis of the cell nuclei development. In another example, I segmented one organoid acquired twice 
with a light sheet coming from a different direction. Comparison of the two segmentations shown that 
we had similar results, demonstrating that using multi-view reconstruction was unnecessary.  
 
Nevertheless, I have found several more interesting insights and results by training a multitude of 
StarDist models, both in 2D and 3D. I first verified a well-known fact in the deep-learning field: you 
should always train a network with some of your data. When I tried the pre-trained StarDist model in 
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2D, that was trained with the Data Science Bowl 2018 dataset, I obtained poorly segmented nuclei. On 
the contrary, combining the DSB2018 dataset with some of the images belonging to our ground truth 
dataset gave really accurate results. This was due to increased diversity, demonstrating that having a 
dataset with images taken under different experimental conditions and with different nuclei density 
was able to achieve very good 2D segmentations. Similarly, training StarDist in 3D with our ground 
truth dataset brought better results when I used two different labels. 
 
Another interesting result was achieved when I decided to preprocess the data before training StarDist. 
Because of its advantages, I used a stationary wavelet transform since it tends to homogenize 
intensities in the image, resulting in enhancing the nuclei’s edges. It therefore allows to overcome 
uneven illumination, a common artifact in light sheet microscopy. By having more nuclei segmented 
in the saturated region of the images, I managed to slightly increment the segmentation accuracy.  
 
I then decided to threshold the wavelet coefficients to improve the model accuracy even more, as this 
technique is widely used in image processing for denoising and filtering. While I was unfortunately only 
able to test it in 2D because of a lack of time, the results seemed very promising with a trained model 
exhibiting the best metrics of all my trainings. This is again certainly related to a better segmentation 
in overexposed areas. These results lay the groundwork for promising future research, and I hope that 
in the future this work will be extended to 3D. 
 
Another promising future direction of our research is the extension of the NAHP plugin by 
implementing new functions to improve the user experience and convert it into an essential tool for 
annotators. For example, functions such as visualizing the final annotations, incorporating wavelet 
transformation functions to visualize better images with challenging illumination, and coloring nuclei 
according to certain user-selected properties, among others, can be added to NAPH to increment the 
user’s capability to obtain extra annotations from the ones performed and to be able to obtain extract 
statistical information form the images to annotate. 
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Appendix 1 : Software Used 
 

 
Fiji: Fiji is a distribution of the open-source software ImageJ that focuses on biological-image analysis. 
Fiji enables rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new 
algorithms into I ImageJ plugins that can be shared with end users through an integrated update 
system.  
 

 
Napari: Napari is designed for browsing, annotating, and analyzing large multi-dimensional images. It 
is built on top of Qt (for the GUI), vispy (for performant GPU-based rendering), and the scientific Python 
stack (NumPy, scipy). It includes critical viewer features out-of-the-box, such as support for large multi-
dimensional data and layering and annotation. Napari can be coupled to leading machine learning and 
image analysis tools (e.g. scikit-image, scikit-learn, TensorFlow, PyTorch), enabling more user-friendly 
automated analysis. 
 

 
Jupyter notebook: Jupyter Notebook is an open-source web-based interactive application that use to 
create and contain live code, equations, visualizations, and text. Jupyter Notebook allows users to 
configure and arrange workflows in data science, scientific computing, computational journalism, and 
machine learning.  
 

 
Anaconda Navigator: Anaconda Navigator is a desktop graphical user interface (GUI) that allows you 
to launch applications and easily manage conda packages, environments, and channels without using 
command-line commands. Navigator can search for packages on Anaconda.org or in a local Anaconda 
Repository. 
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Appendix 2 : Color difference formula 
 
The color difference is the distance between two colors in a color-independent color device. The 
computation of the color difference allows the quantification and examination of the adjectives that 
are usually used to describe colors: hue, chroma, lightness, and brightness. Color coordinates, like RGB 
coordinates, can be located in a color-geometrical space like the Euclidian geometrical space. Because 
of this, it is understandable that if we have two color points, c1 = (R1, G1, B1) and c2 = (R2, G2, B2), 
and wish to find the distance between them, we would like to use the standard Euclidean distance 
formula: 
 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑅2 − 𝑅1)
2 + (𝐺2 − 𝐺1)

2 + (𝐵1 − 𝐵2)
2 

 
The Euclidean distance computes the distance between two points, assuming the space containing 
them is linear, which is not the case for most color spaces. Using the standard Euclidean distance 
formula to compute the color difference between two colors in any of these spaces gives inaccurate 
results. To measure the color difference between two colors more accurately, scientists have worked 
on developing perceptually uniform color spaces like CIELAB and CIELUV and their corresponding color 
difference formulas. The CIELAB color space, also referred to as L*a*b*, was defined in 1976 by the 
International Commission on Illumination (CIE). CIELAB defines colors using three color coordinates: 
L* for perceptual lightness, and ±a* and ±b* for the four unique colors of human vision: red, green, 
and blue. The CIELAB color difference formula, CIEDE2000, is accepted as the more accurate color 
difference formula  (Lindbloom, 2017; Sharma et al., 2005). The CIEDE2000 formula is given by:  
 

∆𝐸00 = √(
∆𝐿′

𝑘𝐿𝑆𝐿
)
2

+ (
∆𝐶′

𝑘𝐶𝑆𝐶
)
2

+ (
∆𝐻′

𝑘𝐻𝑆𝐻
)
2

+ 𝑅𝑇 (
∆𝐶′

𝑘𝐶𝑆𝐶
)(

∆𝐻′

𝑘𝐻𝑆𝐻
) 

 
Where:  
 
∆𝐿′ = 𝐿2

∗ − 𝐿1
∗  

 
∆𝐶′ = 𝐶2

′ − 𝐶1
′ 

 

∆𝐻 = 2√𝐶1
′𝐶2
′  sin(

∆ℎ′

2
) 

 

𝐶�̅�
′ = √(𝑎𝑖

′)
2
+ 𝑏∗𝑖

′ 

 

ℎ𝑖
′ = {

0, 𝑏𝑖
∗ = 𝑎𝑖

′ = 0 

tan−1(𝑏𝑖
∗, 𝑎𝑖

′ ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

∆ℎ′ = 

{
 

 
0 ,       𝐶1

′𝐶2
′ = 0     

ℎ1
′ − ℎ2

′  , |ℎ1
′ − ℎ2

′ | ≤ 180°; 𝐶1
′𝐶2
′ ≠ 0    

(ℎ1
′ − ℎ2

′ ) − 360°, (ℎ1
′ − ℎ2

′ ) > 180°; 𝐶1
′𝐶2
′ ≠ 0    

(ℎ1
′ − ℎ2

′ ) + 360°, (ℎ1
′ − ℎ2

′ ) < −180°; 𝐶1
′𝐶2
′ ≠ 0 

 

 
The CIELAB color space, L*1, a*1, b*1 and L*2, a*2, b*2, uses: 
 

• A hue rotation term (RT) 
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𝑅𝑡 = −sin(2Δ𝜃)𝑅𝑐 

Where: 
 

𝑅𝑐 = 2√
𝐶̅′
7

𝐶̅′
7
+ 257

  

𝐶̅′ = 
(𝐶1

′ − 𝐶2
′)

2
 

 

• Compensation for lightness (SL) 
 

𝑆𝐿 =  1 +
0.015(�̅� − 50)2

√20 + (�̅� − 50)2
 

Where:  

�̅�′ = 
(𝐿1
∗ − 𝐿2

∗ )

2
 

 

• Compensation for chroma (SC) 
 

𝑆𝐶 = 1 + 0.045(
𝐶1
′ + 𝐶2

1

2
)  

Where: 

𝐶�̅�
′ = √(𝑎𝑖

′)
2
+ 𝑏∗𝑖

′ 

𝑎𝑖
′ = (1 + 𝐺)𝑎𝑖

∗ 

𝐺 = 0.5(1 − √
𝐶�̅�𝑏
∗ 7

𝐶�̅�𝑏
∗ 7

+ 257
) 

 

• Compensation for hue (SH) 

 

𝑆𝐻 = 1 +  0.015𝐶̅
1𝑇  

 
Where: 

𝑇 = 1 − 0.17 cos(ℎ̅′ − 30°) + 0.24 cos(2ℎ̅′) + 0.32 cos(3ℎ̅′ − 6°) − 0.20 cos(4ℎ̅ − 63°) 

ℎ̅′ = 

{
 
 
 

 
 
 
ℎ1
′ + ℎ2

′

2
,                         |ℎ1

′ − ℎ2
′ | ≤ 180°; 𝐶1

′𝐶2
′ ≠ 0                                     

ℎ1
′ + ℎ2

′ + 360°

2
 , |ℎ1

′ − ℎ2
′ | > 180°; (ℎ1

′ + ℎ2
′ ) < 360°; 𝐶1

′𝐶2
′ ≠ 0

ℎ1
′ + ℎ2

′ − 360°

2
,           |ℎ1

′ − ℎ2
′ | > 180°; (ℎ1

′ + ℎ2
′ ) ≥ 360°; 𝐶1

′𝐶2
′ ≠ 0

ℎ1
′ + ℎ2

′ ,                                 𝐶1
′𝐶2
′ = 0                                                                    
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Appendix 3 : Publication 
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