Now, considering the inequalities (3.69) and (3.70), it follows that the following inequalities hold
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INTRODUCTION

State of the art

Electrical machines are designed to transform electrical energy into mechanical energy, mechanical energy into electrical energy or modify the level of the same electrical energy according to the required use, so that electrical machines can be classified into three groups: Generators, transformers and motors. Generators transform mechanical energy into electrical energy. Transformers use electrical energy and have the ability to change the dimension of this energy and motors are used to transform electrical energy into mechanical energy, in such a way that, since the electrical machine was invented, they have been used in domestic products, industrial process, electricity production, robotics, electric vehicles, etc.

Regarding to the motors, these can be mainly classified into two groups: Direct Current (DC) motors and Alternating Current (AC) motors. DC motors have been traditionally used for decades in different applications. However, their commutators, brushes, and required maintenance are the main disadvantages of these devices. On the other hand, AC motors can be classified into two groups: Asynchronous or induction motors and synchronous motors. The main difference between these machines is that the rotor speed of the synchronous motor has the same frequency as the magnetic field, unlike induction motors, where the rotor speed is slower than the magnetic field generated in the stator, i.e., the speed is asynchronous. The predominant motor technology for many years has been cage induction motors. Their superior dynamic behavior coupled with their brushless nature, which allows operation without the presence of commutators or slip rings, makes them suitable for high performance controlled operation in electric drive applications. Advances in the area of power electronics and automatic control technologies have contributed significantly to their establishment as standard motors in electric drives. However, induction motor technology also has numerous disadvantages, both in construction and in operation. For example, its relatively small air gap length and its inferiority to synchronous motors in terms of overall efficiency and power factor are the main drawbacks. Also, induction motors have windings on the rotor, which increases the temperature of the machine. Nevertheless, a clear indication towards the possible limitation in the use of induction motors and their eventual replacement has not yet been established. [START_REF] Melfi | Induction versus permanent magnet motors[END_REF].

Consequently, permanent magnet synchronous motors (PMSM) have attracted increasing interest within the scientific community, especially for high power density applications, highlighting the need for their investigation. The most important advantages of permanent magnent synchronous motor lie in the fact that permanent magnets constitute a strong and independent excitation system, i.e., field current needed for induction machine is not necessary, and secondary copper loss does not occur, therefore high efficiency can be achieved [START_REF] Menon | A comprehensive survey on permanent magnet synchronous motor drive systems for electric transportation applications[END_REF]. This feature allows substantial overloading of the motor while providing higher torque density values. The fact that no electromagnetic drive system is employed further improves its transient behaviour, while small size and maintenance are also two significant benefit factors. The above advantages have led PMSM to be considered a viable and attractive solution for control drives [3], [4]. Interior permanent magnet synchronous motor (IPMSM) is the most popular in the fields of electric drive application due to torque capability, power density, simple structure, efficiency and can operate in high speeds [START_REF] Noguchi | Trends of permanent-magnet synchronous machine drives[END_REF]. In variable speed motor drives, speed controllers are applied by using encoders [START_REF] Kabashima | A novel magnetic rotary encoder for servo motors[END_REF]. This devices can measure angular position and with this information, the speed can be extracted [START_REF] Chy | Development and implementation of a new adaptive intelligent speed controller for ipmsm drive[END_REF]- [START_REF] Ghafarri-Kashani | Robust speed control of pmsm using mixed nonlinear h∞/smc techniques[END_REF], as can be seen in Figure 1. However, implementing encoders to control the electric motor requires additional electronics, preventative maintenance, and additional wiring. For these reasons, this technique has become less attractive due to high cost and lower reliability, encouraging researchers to avoid its implementation and study the sensorless strategy. Nowadays, sensorless strategy is an indirect technique under development to estimate angular position from measurable currents and voltages of the IPMSM, increasing robustness and reliability, eliminating wiring, and reducing signal noise [START_REF] Wang | Position sensorless permanent magnet synchronous machine drives-a review[END_REF]- [START_REF] Sul | Sensorless control of ipmsm for last 10 years and next 5 years[END_REF]. In Figure 2, a general structure for sensorless case is shown. In the literature, various approaches to the sensorless technique have been 

Model-based method for sensorless control

According to model-based method, this method is applied in high and medium speed regions; and rotor position is acquired from the stator voltages and currents without requiring additional high frequency signal injection. Back-electromotive force (EMF)-based technique [START_REF] Liang | Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation[END_REF]- [START_REF] Liu | Improved sensorless control of permanent-magnet synchronous machine based on third-harmonic back emf[END_REF] is commonly applied in this method. Considering that back-EMF induced in motor is directly proportional to rotor speed, with this information is possible effectively estimate the rotor position [START_REF] Naidu | Rotor position estimation scheme of a permanent magnet synchronous machine for high performance variable speed drive[END_REF]. Several observers based on the dynamical model of the electrical motor have been used for estimating angular position, for example, Luenberger observer [START_REF] Lascu | Pll position and speed observer with integrated current observer for sensorless pmsm drives[END_REF], [START_REF] Bernard | Estimation of position and resistance of a sensorless pmsm: a nonlinear luenberger approach for a nonobservable system[END_REF], extended Kalman filter (EKF) [START_REF] Niedermayr | Implementation and experimental validation of ultra-high speed pmsm sensor-less control by means of extended kalman filter[END_REF], [START_REF] Al-Ghossini | Adaptivetuning of extended kalman filter used for small scale wind generator control[END_REF] and sliding mode observer [START_REF] Bist | Sensorless control based on sliding mode observer for pmsm drive[END_REF], [START_REF] Tejan | Rotor position sensorless technique using high-speed sliding mode observer for pmsm drive[END_REF]. However, being that the model-based approach has a direct dependency on the dynamical model, parametric uncertainties can lead to performance degradation of control systems. It is known that parameters vary depending on operation conditions, e.g., mechanical parameters, viscous coefficient and inertia, could vary according to the applied load torque, weight, road type and tires quality in automotive applications; and electrical parameters, inductance and resistance, could vary depending on the temperature variations or magnetic circuit saturation.

An alternative to overcome this challenge is the development of algorithms for online or offline parameter identification. Among offline algorithms for parameter estimation can be found the DC Current Decay Test [START_REF] Sellschopp | Dc decay test for estimating d-axis synchronous machine parameters: a two-transfer-function approach[END_REF], [START_REF] Turner | The dc decay test for determining synchronous machine parameters: measurement and simulation[END_REF] and the AC standstill method [START_REF] Gao | An improved ac standstill method for inductance measurement of interior permanent magnet synchronous motors[END_REF], [START_REF] Sun | An improved ac standstill method for testing inductances of interior pm synchronous motor considering cross-magnetizing effect[END_REF] to measure inductances. However, there are disadvantages with these strategies due to the fact that it requires additional equipment and the measurement errors are caused by the estimation at a single operating point. Now, among online parameter estimation techniques, recursive least square is a technique that uses known variables as currents and voltages to estimate unknown parameters, for instance, in [START_REF] Underwood | Online parameter estimation and adaptive control of permanent-magnet synchronous machines[END_REF] has been proposed a strategy to identify stator resistance, machine torque and inductances. Similarly, EKF is an optimal recursive estimator that considers the effects of the measurement noise, for instance, in [START_REF] Shi | Online identification of permanent magnet flux based on extended kalman filter for ipmsm drive with position sensorless control[END_REF] has been proposed a permanent magnet flux identification technique of the IPMSM. Other methods for online parameter estimation are given in [START_REF] Hamida | An adaptive interconnected observer for sensorless control of pm synchronous motors with online parameter identification[END_REF]- [START_REF] Rafaq | Online parameter identification for model-based sensorless control of interior permanent magnet synchronous machine[END_REF] in order to constantly update the machine parameters. However, a highly efficient microprocessor is required to handle the relatively complex procedure.

Another alternative to overcome the challenge of parametric uncertainties is the use of robust techniques. A technique that has been widely studied in recent decades is sliding modes proposed by [START_REF] Utkin | Variable structure systems with sliding modes[END_REF]. Its main advantage is its robustness against disturbances and parametric uncertainties. This technique has found wide application in different areas such as fault reconstruction, condition monitoring and fault detection [START_REF] Spurgeon | Sliding mode observers: a survey[END_REF]. Classical sliding mode technique has been adopted in electrical machines for the angular position estimation, for instance [START_REF] Jung | Sliding mode observer for sensorless control of ipmsm drives[END_REF]. However, the main drawback of this strategy is the chattering caused by the switching (discontinuity) of the signum function, generating high-frequency oscillation components in the estimated signal of the sliding mode observer (SMO). Then, low-pass filters are often used, causing phase delay, such that classical sliding mode is not a good alternative. One option to reduce the chattering phenomenon is to replaced the signum function by a sigmoid function [START_REF] Saadaoui | A sliding-mode observer for high-performance sensorless control of pmsm with initial rotor position detection[END_REF], [START_REF] Ren | Sensorless pmsm control with sliding mode observer based on sigmoid function[END_REF], showing relatively a good performance. Similarly, the popular super twisting [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF] and high-order sliding mode techniques [START_REF] Ferreira De Loza | High-order slidingmode observer-based input-output linearization[END_REF] have achieved a clear improvement in the chattering reduction as well as good performance and finite-time convergence in presence of disturbances and uncertainties. In [START_REF] Wang | High-order terminal sliding-mode observer for chattering suppression and finite-time convergence in sensorless spmsm drives[END_REF], a high order terminal SMO is proposed in order to achieve finite time convergence of the estimated states and chattering suppression. In [START_REF] Zhang | A third-order super-twisting extended state observer for dynamic performance enhancement of sensorless ipmsm drives[END_REF], a third order super-twisting extended state observer is designed to improve the estimation of angular position, speed and disturbance of IPMSM; achieving a fast convergence. On the other side, in [START_REF] Liang | Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation[END_REF], a super-twisting slidingmode observer with online stator resistance, position and speed estimation for sensorless control is proposed. However, during observer tuning, choosing constant gains in the observer sometimes results in an overestimation of gains that causes chattering, increasing the error in the estimates. Adaptive observers have been proposed in order to avoid this overestimation and reduce the chattering. For instance, in [START_REF] Liang | Adaptive second-order sliding-mode observer for pmsm sensorless control considering vsi nonlinearity[END_REF] is addressed an adaptive super twisting for online tuning according to the perturbation value, such that, angular position error is reduced in a wide-speed range. In [START_REF] Baratieri | New variable gain super-twisting sliding mode observer for sensorless vector control of nonsinusoidal back-emf pmsm[END_REF], an adaptive super-twisting sliding mode observer with time-varying gains is introduced, to minimize the chattering and estimate back-EMF that is required for the angular position estimation. Another strategies are addressed in [START_REF] Wu | Adaptive super-twisting sliding mode observer based robust backstepping sensorless speed control for ipmsm[END_REF], [START_REF] Zhan | An adaptive second-order sliding-mode observer for permanent magnet synchronous motor with an improved phase-locked loop structure considering speed reverse[END_REF]. However, these approaches need to choose several parameters to tune the system, increasing the tuning time.

In summary, the main drawback of the model-based methods is the loss of observability at low speeds due to the fact that there is a direct dependency of the back-EMF with speed rotor, i.e., the magnitude of the back-EMF decreases proportionally with the speed.

Saliency-based method for sensorless control

As previously mentioned, model-based angular position estimation is possible at high and medium speed. However, it can fail at low and zero speed. Therefore, saliency-based methods are an alternative to achieve this challenge. In saliency-based methods a sufficient excitation, either by high frequency (HF) voltage or current signal injection or by using pulsewidth-modulated (PWM) inverter switching, is mandatory in order to maintain a persistent excitation in the system to extract angular position information and estimate the angular position at low and zero speed [START_REF] Jansen | Transducerless position and velocity estimation in induction and salient ac machines[END_REF]- [START_REF] Messali | A resilient adaptive sliding mode observer for sensorless ac salient pole machine drives based on an improved hf injection method[END_REF].

Voltage injection techniques can be classified according to the shape of the test signal: sine or square wave injection techniques. In addition, one can distinguish between rotating and pulsing test signal injection. For the HF rotary signal injection scheme, a balanced voltage signal is injected into the stationary reference frame to form a rotary excitation that is superimposed on the fundamental excitation. Then, by applying a synchronous reference frame filter, the negative sequence carrier current containing the position information can be derived and used to estimate the rotor position. For pulsed signal injection methods, a pulsed HF carrier signal is injected on the d-axis or q-axis in the estimated synchronous reference frame, such that, the angular position can be estimated by minimizing the amplitude modulated carrier current response that is measured along the axis orthogonal to the injection axis [START_REF] Zhang | Ipmsm sensorless control using high-frequency voltage injection method with random switching frequency for audible noise improvement[END_REF]- [START_REF] Wang | Low-frequency pulse voltage injection scheme-based sensorless control of ipmsm drives for audible noise reduction[END_REF]. However, the performance of sensorless control with the conventional HF pulsed or rotating sinusoidal signal is still insufficient for some applications, as the filtering process limits the dynamic bandwidths.

To overcome the limitations of sensorless control with conventional sinusoidal signal injection, square wave injection in the stationary reference frame or in the estimated rotor reference frame has been developed. The injection frequency can be increased to the PWM switching frequency, and thus the filtering process can be eliminated and the dynamic performance can be improved [START_REF] Yang | Novel random square-wave voltage injection method based on markov chain for ipmsm sensorless control[END_REF]- [START_REF] Ni | Square-wave voltage injection algorithm for pmsm position sensorless control with high robustness to voltage errors[END_REF].

Nevertheless, in saliency-based methods, additional losses and audible noise are negative effects caused by injected signal reducing the system performance. Reducing the amplitude of the signal could be an option to remove the disadvantages. However, this would cause a degradation in the estimation of the angular position. In order to overcome these disadvantages, a new alternative has been presented in [START_REF] Surroop | Commande sans capteur de moteurs électriques par injection de signal[END_REF] to improve the performance. Nevertheless, the use of saliency-based methods is still limited.

Control techniques for speed regulation

Now, regarding speed controls used in electrical machines, several nonlinear control methods have been applied to enhance the control performance in presence of uncertainties and disturbances, for instance, in [START_REF] Wu | Adaptive super-twisting sliding mode observer based robust backstepping sensorless speed control for ipmsm[END_REF], [START_REF] Wu | A terminal sliding mode observer based robust backstepping sensorless speed control for interior permanent magnet synchronous motor[END_REF] were proposed robust backstepping controllers with integral and sliding mode actions to achieve speed regulation despite uncertainties and disturbances. A robust control has been proposed in [START_REF] Cai | Robust control of pmsm using geometric model reduction and µ-synthesis[END_REF], and sliding mode controls in [START_REF] Zaihidee | Application of fractional order sliding mode control for speed control of permanent magnet synchronous motor[END_REF]- [START_REF] Xia | Improved integral sliding mode control methods for speed control of pmsm system[END_REF].

As previously mentioned, sliding mode technique is one of the most studied techniques in recent years due to robustness against disturbances and uncertainties. Nevertheless, just like observers, controllers based on sliding mode have chattering problems and overestimation of gains. Therefore, adaptive laws for sliding mode controllers of the motor have been proposed to remove these drawbacks [START_REF] Junejo | Adaptive speed control of pmsm drive system based a new sliding-mode reaching law[END_REF]- [START_REF] Liu | Continuous adaptive integral-type sliding mode control based on disturbance observer for pmsm drives[END_REF]. Some adaptive laws have also been proposed in a general way for the sliding mode control. For instance in [START_REF] Haghighi | Design of an adaptive super-twisting decoupled terminal sliding mode control scheme for a class of fourth-order systems[END_REF], an adaptive super-twisting control is proposed, removing the requirement to know the upper bounds of external disturbance and reducing the chattering phenomenon without affecting the control performance. In [START_REF] Utkin | Adaptive sliding mode control with application to super-twist algorithm: equivalent control method[END_REF], the chattering problem and its relation with the high activity of control action have been studied. In this way, an adaptive law is developed to get a minimum possible value of control. Another proposal was introduced in [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF], offering continuous control signal, adaptation for dealing with unknown uncertainty/perturbations, non-overestimation of control gains, and reduced chattering. In [START_REF] Edwards | Adaptive dual-layer super-twisting control and observation[END_REF], adaptive gains have been proposed for a super-twisting control in order to adapt in such a way that the gains are as small as possible, and yet large enough to sustain a sliding motion. Nonetheless, due to large number of control gain parameters, tuning these strategies could be complex.

Contributions in this work

In this work, the main contributions are the following:

-An extraction of the angular error (θθ) is made, and based on a virtual system without parameters of the IPMSM, two Adaptive High-Order Sliding Mode Observers (AHOSMOs) are designed to estimate angular position, speed and acceleration over a wide speed range. The robustness is improved, overcoming the disadvantages of other methods (model-based and saliency-based methods) that require knowledge of the machine parameters, use of filters as well as high-frequency signal injection to estimate angular position. -Two Adaptive Super-Twisting Controllers (ASTWCs) are designed in order to track a desired speed reference and a desired d-axis current reference. These controller are interconnected with the AHOSMO achieving a sensorless control strategy. -The gains for both, controllers and observers, are reparameterized in terms of a single parameter. The main advantage of this strategy is that adaptive laws are easy to implement, which avoids overestimation of gains that increases chattering, reduces time to adjust gains, and reduces damage to actuators.

-Closed-loop stability analysis under the action of the observer is improved thanks to it is simpler to analyse and the separation principle holds.

Thesis organization

This manuscript is organized as follows:

Chapter 1

In the chapter 1, an introduction to the PMSM is given. The different configurations for PMSM according to permanent magnet position is addressed. After that, the Park an Concordia transformation are introduced. From these transformation, the electrical equations of the PMSM can be used to compute the dynamical model of the IPMSM in a αβ stationary reference frame and in a dq synchronous reference frame. Moreover, the thesis problem statement and benchmark for the observers and the controllers are presented, the benchmark will be used in simulation and experimentation. In addition, a specific benchmark is presented and will be used to show the performance of the observer in different operation point.

Chapter 2

In the chapter 2, a method for the extraction of the angular position estimation error in PMSM is presented. This information can be extracted by using α, β currents, i.e., the dynamical model of the electrical machine is not used. Then, considering the extraction of the angular error and a virtual system without machine parameters, the design of two Adaptive High Order Sliding Mode Observers are addressed to estimate angular position, speed and acceleration. The gains of the observers have been reparameterized in terms of a single parameter facilitating the design of an adaptive law for each observer. Simulation tests of the proposed observers and a comparative study are carried out.

Chapter 3

In the chapter 3, the design of two Adaptive Super-Twisting Controllers is introduced. These controllers have been designed considering reparameterized gains in terms of a single parameter. It has allowed to design an adaptive law for each control, which reduces time to adjust gains and avoids overestimation of gains that can increase chattering. Moreover, a stability analysis based on Lyapunov approach is given. After that, the proposed controllers are evaluated under simulation tests. In addition, a comparative study is carried out considering constant gains and adaptive gains.

Chapter 4

From the angular position estimation error extraction, the proposed observers in chapter 2 are able to estimate the angular position and speed. These estimates will be interconnected with the proposed controllers presented in chapter 3. Therefore, in chapter 4 is presented the sensorless control scheme. The stability analysis in closed-loop under the estimates of the observer is introduced. Finally, simulation and experimental tests are carried out in order to show the performance and effectiveness of the proposed schemes.

Chapter 5

Finally, a general conclusion about the proposed work is addressed. Moreover, some perspectives for this work are introduced.

Publications

In this thesis, different publications have been accepted or submitted in indexed journals and scientific conferences. 

DYNAMICAL MODEL OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

In this chapter, a summary of the PMSM is addressed. Second, the Concordia and Park transformations are recalled. From these transformations, the dynamical model of the IPMSM in a αβ stationary reference frame and a dq synchronous reference frame can be calculated. Subsequently, the problem statement of this thesis is introduced and, finally, the benchmark used for simulation and experimental tests is addressed.

Permanent magnet synchronous motor

The PMSM control system has attracted much attention in the field of AC adjustable speed drives with the rapid development of automatic control technology, power electronics, high-speed microprocessors, sensors, special converters, and permanent magnetic materials. Until recently, the widespread use of PMSM was in some cases restrained by relatively high prices for magnetic materials with high specific magnetic energy values. However, in recent years, prices for such materials have significantly decreased. This may imply future growth of PMSM drive systems in the industry and technology. The reason are their indisputable advantages, such as a high efficiency factor, low noise emissions, simple construction, easy maintenance and low rotor inertia. Then, they are widely used in household appliances, transportation, aviation and robotics [START_REF] Sul | Sensorless control of ipmsm: past, present, and future[END_REF], [START_REF] Sul | Sensorless control of ipmsm for last 10 years and next 5 years[END_REF], [START_REF] Singh | Various techniques of sensorless speed control of pmsm: a review[END_REF]. Now, according to the operation and configuration of the PMSM, it has a speed of rotation directly proportional to the frequency of the alternating current network that feeds it. The stator has a three-phase wound, represented by the axes a, b, c, with 120 • degree phase difference between them. The rotor produces a magnetic field with the permanent magnets, this removes the need of a DC source to generate it. Then, according
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to the configuration of the permanent magnets in the rotor, there exists a classification of PMSM and this is given as follows.

a) Surface permanent magnet synchronous motor

In this type of motors the magnets are placed on the surface of the rotor, as shown in Figure 1.1. The inductances of this type of motor do not depend on the position of the rotor. This type of motor has d-axis inductance equal to q-axis inductance, such that the reluctance torque generated by the motor is zero. In this motor, the magnets are on the surface and are exposed to a demagnetizing field. Furthermore, the relative permeability of permanent magnets is similar to that of air, which leads to a low inductance of the machine, since the effective length of the air gap is large. The air gap reluctance is theoretically constant for the different positions of the rotor, then, the starting torque of the surface permanent magnet machine is low. In addition, the magnets are subject to centrifugal forces, which can cause the magnets in the rotor to detach. 

b) Inset permanent-magnet synchronous motor

In this type of motor, the magnets are inserted on the surface of the rotor as shown in Figure 1.2, and d-axis inductance is slightly different from q-axis inductance. The iron parts between the permanent magnets have interpolar spaces that add saliency. The value of this salience depends on the height of the magnets relative to the iron and the aperture of the magnets. 

c) Permanent magnet synchronous motor with flux concentration

In this type of motor, the magnets are located inside the rotor as can be seen in Figure 1.3. The magnets are placed radially into the rotor and buried deep inside the rotor. In this configuration, the magnets are in the directions of the circumference. The magnetic poles are then formed at the level of the ferromagnetic parts of the rotor by concentrating the flux coming from the permanent magnets. One of the main advantages of this type of PMSM is the concentration of the flux generated by the magnets and a higher inductance is obtained. Just like interior magnet machines, in this machine, the magnets are also well protected against demagnetization and mechanical stress. The synchronous reactance on the q axis is greater than on the d axis. 

d) Interior permanent-magnet synchronous motor

The IPMSM has the magnets integrated inside the rotor as can be seen in Figure 1.4, to protect the permanent magnets in deflux mode or in case of short circuit and improve the mechanical resistance. With interior magnets, the active air gap space is less than that of the equivalente machine with surface magnets. The d-axis and q-axis inductances of the IPMSM are different, L d < L q . Therefore, there is the reluctance torque, and the torque density can be higher than the equivalent surface permanent magnet machine. Due to that the magnets are internal and effectively shielded from the armature reaction field, the interior magnet machine is suitable for applications with constant power over a wide speed range. Moreover, the IPMSM inductances values change according to the rotor position and create a geometric saliency which is an important feature for low speed control. The work carried out in this document addresses the case of the IPMSM, since its configuration is recommended due to its torque capacity, power density, simple structure, efficiency and can operate at high speeds. Moreover, considering that the values of the inductances change according to the position of the rotor and create geometric saliency, this is an important feature for low speed operation.

Concordia and Park transformations

Concordia and Park transformations are coordinate changes used to change a balanced three-phase system to an equivalent system with two orthogonal axes. It can be used to 

Concordia transformation

The Concordia transformation is employed to simplify the analysis of three-phase system (a, b, c) in a coordinates system (α, β) as follows.

     x α x β x o      = Q T o      x a x b x c      (1.1)
where Q o is given by

Q o = 2 3           1 0 1 √ 2 - 1 2 √ 3 2 1 √ 2 - 1 2 - √ 3 2 1 √ 2           (1.2)
Moreover, this transformation has direct and inverse transform symmetry and can preserve the active and reactive powers. Since in a balanced system x a + x b + x c = 0 and thus

x o = 0, then one can also consider the simplified transformation

  x α x β   = Q T      x a x b x c      (1.3)
which is simply the original Concordia transformation with the 3rd equation excluded, where Q is expressed as follows

Q = 2 3         1 0 - 1 2 √ 3 2 - 1 2 - √ 3 2         (1.4)
In Figure 1.5, the representation of the concordia transformation is illustrated, where θ e represents the angular position and the x α and x β components represent the coordinates of the rotating space vector x R in a fixed reference frame whose α-axis is aligned with phase x a axis.

Park transformation

The Park transformation transforms the components-αβ to reference system-dq, the objective of this transformation is to convert the variables sinusoidally in time to constant values dq, in permanent regime. 

  x d x q   = T T   x α x β   (1.5)
where T is given by

T =   cos(θ e ) -sin(θ e )
sin(θ e ) cos(θ e )   = e jθe (1.6)

In Figure 1.6, the representation of the Park transformation is illustrated.

Electrical equations of the Permanent Magnet

Synchronous Motor

The three-phase stator voltage equations, represented in the three-phase stationary frame (abc -axes), can be expressed as follows Moreover, ψ abc is defined as follows

v abc = R s i abc + dψ abc dt (1.
ψ abc = L ss      i a i b i c      +      ψ af ψ bf ψ cf      (1.8)
where

     ψ af ψ bf ψ cf      = ψ r      cos (pθ) cos pθ -2π 3 cos pθ + 2π 3      (1.9)
and p represents the number of poles, θ the mechanical angular position, ψ r is the permanent-magnet flux linkage and L ss is expressed as follows 

L ss = L so + L sv (1.
L so =      L so M so M so M so L so M so M so M so L so      (1.11)
and

L sv = L sv      cos (2pθ) cos 2pθ -2π 3 cos 2pθ + 2π 3 cos 2pθ -2π 3 cos 2pθ + 2π 3 cos (2pθ) cos 2pθ + 2π 3 cos (2pθ) cos 2pθ -2π 3      (1.12)
defining M so , L so and L sv as the mutual and own inductances, respectively; for M so = -1 2 L so . Moreover, L so and L sv are positive parameters depending on the machine. Now, the system (1.7) can be written as follow

     v a v b v c      = R s      i a i b i c      + d dt          [L ss ]      i a i b i c      +      ψ af ψ bf ψ cf               (1.13)
and considering the Concordia transformation (1.3), the system (1.7) expressed in αβ stationary reference frame is the following

  v α v β   = R s   i α i β   + d dt   ψ α ψ β   (1.14)

Dynamical model of the Interior Permanent Magnet Synchronous Motor in dq synchronous reference frame

In this section, the dynamical model of the IPMSM is introduced. Then, from the three-phase stator voltage equations in a three-phase stationary frame (abc -axes) given by

v abc = R s i abc + d dt {L ss i abc + ψ af bf cf } (1.15)
the following equation can be written 

v abc = R s i abc + d dt
d dt {ψ af bf cf } = d dt      ψ af ψ bf ψ cf      = -ψ r pΩ      sin (pθ) sin pθ -2π 3 sin pθ + 2π 3      (1.17)
and Ω represents the mechanical speed. Then, replacing (1.17) in (1.16), the following equation is obtained

     v a v b v c      = R s      i a i b i c      + d dt          L ss      i a i b i c               -ψ r pΩ      sin (pθ) sin pθ -2π 3 sin pθ + 2π 3      (1.18)
Now, taking into account the following transformation

  x d x q   = T T Q T      x a x b x c      (1.19)
where x represents a variable (voltage, current or flux). Then, combining (1.19) with (1.18) and multiplying the left side of (1.19) by QT, the following system is obtained

QTT T Q T      v a v b v c      =R s QTT T Q T      i a i b i c      + d dt          L ss QTT T Q T      i a i b i c               -ψ r pΩQTT T Q T      sin (pθ) sin pθ -2π 3 sin pθ + 2π 3      (1.20) such that QT   v d v q   =R s QT   i d i q   + d dt    L ss QT   i d i q      + QT   0 ψ r pΩ   (1.21)
Consider that Q T Q = I 2×2 and T T T = I 2×2 , where I 2×2 is a identity. Then, multiplying the left side of above equation by

T T Q T , it follows that   v d v q   =R s   i d i q   + T T Q T d dt    L ss QT   i d i q      +   0 ψ r pΩ   (1.22)
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  v d v q   =R s   i d i q   + T T d dt {Γ ss T}   i d i q   + T T Γ ss T d dt   i d i q   +   0 ψ r pΩ   (1.23)
where

Γ ss = QL ss Q = 3 2 L sv   cos (2pθ) sin (2pθ) sin (2pθ) -cos (2pθ)   + 3 2 L so   1 0 0 1   (1.24)
Now, L so and L sv are defined as follows

L so = L d + L q 3 L sv = L d -L q 3 (1.25)
where L d and L q are the dq-axes winding inductance. Therefore, Γ ss given by (1.24) can be expressed by

Γ ss = L d -L q 2   cos (2pθ) sin (2pθ) sin (2pθ) -cos (2pθ)   + L d + L q 2   1 0 0 1   =   L α L αβ L αβ L β   (1.26) 
Then, the solution for T d dt {Γ ss T} in (1.23) is given by

T d dt {Γ ss T} = pΩ   0 -L q L d 0   (1.27)
and the solution for T T Γ ss T is given by

T T Γ ss T =   L d 0 0 L q   (1.28)
Therefore, the system (1.23) expressed in a dq reference frame is given by

  v d v q   =R s   i d i q   + pΩ   0 -L q L d 0     i d i q   +   L d 0 0 L q   d dt   i d i q   +   0 ψ r pΩ   (1.29)

Mechanical equations

The equation for the mechanical model is given by

dθ dt = Ω (1.30)
where θ is mechanical angular position and Ω mechanical speed. Moreover, the following equality is defined as follows

J dΩ dt + f vΩ = T e -T l (1.31)
where J represents the inertia, f v the viscous friction coefficient, T l the load torque and T e the electromagnetic torque. The electromagnetic torque T e is defined as follows

T e = p(ψ α i β -ψ β i α ) = p(ψ d i q -ψ q i d ) (1.32)
where the terms ψ d and ψ q are defined by

ψ d = L d i d + ψ r , ψ q = L q i q (1.33)
Then, the electromagnetic torque can be expressed as follows

T e = p(L d -L q )i d i q + pψ r i q (1.34)
Therefore, the mechanical system for the IPMSM is given by

dθ dt = Ω dΩ dt = p J (L d -L q )i d i q + p J ψ r i q - T l J - f vΩ J (1.35)

Dynamic model of the Interior Permanent Magnet Synchronous Motor: Electrical and mechanical equations

The dynamical model of the IPMSM with electrical and mechanical equations is the following In this section the dynamical model of the IPMSM in a αβ stationary reference frame is addressed. Then, transforming (1.29) into αβ stationary reference frame, the following system is obtained

Σ elec :          di d dt = - R s L d i d + p Ω L q L d i q + v d L d di q dt = - R s L q i q -p Ω L d L q i d + v q L q -p Ω ψ r L q (1.36) Σ mech :        dθ dt = Ω dΩ dt = p J (L d -L q ) i d i q + p J ψ r i q - f v J Ω - 1 J T l (1.37)
  v α v β   =   R + d dt L α d dt L αβ d dt L αβ R + d dt L β     i α i β   + pΩ   -sin(θ e ) cos(θ e )   (1.38) 
where θ e = pθ is the electrical angular position and

L α = L o + L 1 cos(2θ e ), L β = L o - L 1 cos(2θ e ), L α,β = L 1 sin(2θ e ), L o = (L d + L q ) 2 and L 1 = (L d -L q ) 2 .
The system (1.38) can be written in a compact form as follows

v αβ = A αβ + B αβ + C αβ + D αβ (1.39)
where

v αβ = v α v β T , A αβ = R s i α i β T B αβ = d dt    L o   i α i β      , C αβ = pΩψ r   -sin(θ e ) cos(θ e )   , D αβ = d dt    L 1   cos(2θ e ) sin(2θ e ) sin(2θ e ) -cos(2θ e )     i α i β     
The system structure (1.39) is not easy for mathematical processing, having functions of rotor position θ e , which makes the equation difficult to solve. An easy way to solve this issue is to use the estimated position θe instead of θ e . This is possible if the amplitude of

D αβ is smaller enough than C αβ , i.e., |L 1 i α,β | << ψ r .
In fact, the approximation made in (1.38) and (1.39) is based on the assumption that this condition is valid. Then, it is true for motors with relatively small reluctance torque. However, if the motor reluctance torque cannot be neglected, such as the permanent magnet torque, the sensorless estimation could be unstable. On the other side, in (1.39), the system contains the terms 2θ e . The reason why term 2θ e appears in (1.39) is due to that impedance matrix is asymmetric. Therefore, if the impedance matrix is rewritten symmetrically as

  v d v q   =   R s + pL d -pΩL q pΩL q R + pL d     i d i q   +   0 (L d -L q )(pΩi d -iq ) + pΩψ r   (1.40)
then, the αβ stationary reference frame can be written as follows

1.4. Problem statement   v α v β   =   R s + pL d pΩ(L d -L q ) -pΩ(L d -L q ) R + pL d     i α i β   + [(L d -L q )(pΩi d -iq ) + pΩψ r ]   -sin(θ e ) cos(θ e )  
(1.41) The system (1.41) is a transformation of (1.38) without any approximation. It is a general form of the mathematical model of IPMSM. Moreover, if L d = L q , the model of the surface permanent magnet synchronous motor is obtained and if ψ = 0, it is possible to obtain the synchronous reluctance motor.

Problem statement

In industrial applications, the control of IPMSM requires the knowledge of the angular position and speed, which usually are not available by measurement. Then, one solution is to estimate angular position and speed by using observers based on model. Frequently, the mathematical model used for control and observer design is given in dq synchronous reference frame (1.36)-(1.37) [START_REF] Wu | Adaptive super-twisting sliding mode observer based robust backstepping sensorless speed control for ipmsm[END_REF], [START_REF] Hamida | High-order sliding mode observers and integral backstepping sensorless control of ipms motor[END_REF] or in a αβ stationary reference frame (1.41) [START_REF] Wang | Adaptive compensation method of position estimation harmonic error for emf-based observer in sensorless ipmsm drives[END_REF], [START_REF] Ichikawa | Sensorless control of an interior permanent magnet synchronous motor on the rotating coordinate using an extended electromotive force[END_REF]. However, parametric uncertainties and external disturbances affect the estimation and they must be considered. Then, one solution to overcome this drawback is to design a robust observer to estimate the angular position and speed of the IPMSM. In this work, in order to estimate the angular position and overcome the issues caused by the parametric uncertainties present in the model of the IPMSM, an observer based on an angular position estimation error (e θe ) extraction is considered, using a parameterfree virtual system. Then, a different strategy has been proposed by considering only the measurable signals of the IPMSM, i.e., the currents i α and i β , which can be obtained from the abc triphasic components of the IPMSM and can be used for extracting the electrical angular position estimation error e θe . Notice that, to overcome the use of the mathematical model of the IPMSM depending on parameters; mechanical angular position and mechanical speed will be estimated by the following parameter free virtual system

dθ e dt = ω, dω dt = α, dα dt = ρ(t) (1.42)
where θ e = pθ is the electrical angular position, ω = pΩ is the electrical speed, p the number of pole pairs and α is the acceleration, where the time derivative of the acceleration It is clear that the mechanical sub-system (1.37) of the IPMSM does not depend on the acceleration, however, to estimate the position and the speed, the mechanical subsystem has been extended including the acceleration in order to improve the estimation of those variables. In other words, the first two equations of (1.42) are enough to have a good estimation with low transient modes. However, with fast dynamics, speed estimation errors could increase due to that its derivative is supposed to be equal to zero. To overcome this problem, the machine acceleration-α is also estimated to achieve a more precise estimation in transient mode. Therefore, the virtual system (1.42) will be used to estimate angular position, speed and acceleration by using an extraction of the angular position estimation error e θe .

The main objectives in this work are:

Observation objective: By extracting the electrical angular position estimation error given by e θe = θ e -θe (1.43) and based on a virtual system, design an adaptive observer to estimate the angular position, speed and acceleration.

Control objective: Design an adaptive control to track a desired speed reference Ω * and a reference current i * d , despite the presence of disturbances.

The sliding mode approach is the strategy that will be used in the observer and control design due to its robustness and finite time convergence. Moreover, in order to reduce the tuning time in the observer and control, the gains will be reparameterized in terms of a single parameter. In addition, adaptive laws will be designed for the observer and control to avoid overestimations of gains that can cause the increase of chattering and damage the system.

Benchmark

Benchmark

In this section, the benchmark for the IPMSM is introduced. Simulation and experimental tests are going to be evaluated in order to show the performance of the proposed strategies. The parameters of the IPMSM are presented in the Table 1.1 q-axis winding inductance 0.0099 H

f v Viscous friction coefficient 0.0034 kg-m 2 /s
The simulation and experimentation are carried out by using different profiles of load torque and speed, as shown in Figure 1.7. As mentioned in the introduction, electrical parameters could vary during the operation of the motor due to magnetic saturation or temperature variations; mechanical parameters could vary depending on the load torque, weight, road type and so on. However, since it is not possible to have access to motor parameters experimentally, the experimen-
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tal tests are carried out over a large time interval to see the effect of the parameters on the estimation based on a virtual system without parameters. In addition, a simulation test is carried out under resistance, inertia and inductance variations, as shown in Figure 1.8 in order to show the robustness of the proposed strategy. On the other hand, from 

Hardware description

The experimental setup is shown in Figure 1.10 which is composed by an IPMSM rated at 3 kW supplied by a three-phase voltages source inverter. The inverter is powered by 400 V DC voltage. The pulse width modulation (PWM) technique is generated by a dSPACE DS1103 with a switching frequency of 10 kHz. The digital board of dSPACE receives the stator currents and the dc link voltages data with a 10 kHz frequency, and the measured torque data with a 2 kHz frequency. The load torque is generated by a PMSM mechanically coupled with the shaft of the IPMSM, while angular position is measured by encoder. Moreover, a Kalman-filter applied to the measured position is used to calculate the rotor speed. 

Conclusion

The basics of permanent magnets synchronous motor, including their main dynamical models, have been addressed in this chapter. It is well known that these dynamical model depends on parameters as stator resistance, inductance's and so on. Therefore, the use of dynamical models in the design of observer represents a problem as the parameters of the motor vary during the operation. For this reason, a parameter-free virtual system has Part , Chapter 1 -Dynamical model of Interior Permanent Magnet Synchronous Motor been introduced to avoid the parametric uncertainties. The virtual system will be used in the design of observer in the following chapter, taking into account the benchmark presented in this chapter.

Chapter 2

NEW STRATEGY FOR THE ROTOR POSITION AND SPEED ESTIMATION OF

PERMANENT MAGNET SYNCHRONOUS MOTOR

In this chapter a strategy to extract the angular position estimation error of the PMSM is addressed. After this, two adaptive observers based on sliding mode approach will be introduced. These observer use the information of the angular position estimation error extraction in order to estimate the angular position, speed and acceleration. Furthermore, the observer gains are reparameterized based on a single parameter to simplify the tuning procedure. Some test are addressed for each observer and a comparative study is carried out.

Extraction of angular position estimation error

A methodology to extract the angular position estimation error (1.43) of PMSM from a αβ stationary reference frame, is addressed. Then, considering that the currents-i αβ are measurable and in order to extract e θe , consider Park transformation, such that the currents i d and i q are expressed as

i dq = T T (θ e ) i αβ (2.1) with i dq =   i d i q   , T T (θ e ) =   cos(θ e ) sin(θ e ) -sin(θ e ) cos(θ e )   , i αβ =   i α i β   , ( 2.2) 
where currents i dq and angular position θ e are not measurable. Therefore, considering that there exists a control law for current-i d and current-i d tracks a reference current-i * d . Then, in order to extract e θ , the following equation is introduced

Λ θ 1 = I qn -I dn + i * d √ 2 (2.3)
and the terms I dn and I qn are defined as follows,

I dnqn = M( θe + ϕ) T -T (θ) i dq (2.4)
with I dnqn = [I dn I qn ] T and the transformation matrix M( θe + ϕ) expressed as follows

M( θe + ϕ) =   cos( θe + ϕ) sin( θe + ϕ) -sin( θe + ϕ) cos( θe + ϕ)   , ( 2.5) 
defining θe as the estimated angular position and ϕ is an offset angle that must be chosen appropriately to extract e θe . In addition, notice that (i * d , i αβ , ϕ) are known values and θ will be computed by using the observer presented later, then

Λ θ 1 = Λ θ 1 ( θe , i αβ , i * d , ϕ) (2.6)
can be computed taking into account that

T -T (θ e ) i dq = i αβ =   i α i β   =   cos(θ e )i d -sin(θ e )i q sin(θ e )i d + cos(θ e )i q   (2.7)
Now, from transformation matrix M( θe + ϕ), the currents i αβ can be transformed into alternate synchronous reference frame. Then, the terms I dn and I qn are defined as follows

I dn = cos(e θe -ϕ)i d -sin(e θe -ϕ)i q , I qn = sin(e θe -ϕ)i d + cos(e θe -ϕ)i q (2.8)
where I dn and I qn are functions of e θe . Nonetheless, extraction of e θe in this structure is not possible. Therefore, in order to overcome this drawback, a selection for ϕ = π 4 is made. In consequence, (2.3) is expressed in terms of e θe as follows

Λ θ 1 = i q √ 2 sin(e θe ) -i d √ 2 cos(e θe ) + i * d √ 2 (2.9)
Considering that Λ θ 1 is calculated by using measurable currents i αβ ; and assuming i d

Extraction of angular position estimation error

tracks a desired reference i * d . Then, the above equation can be rewritten as follows

Λ θ 1 = i q √ 2 sin(e θe ) + i * d √ 2 [1 -cos(e θe )]
(2.10) and using a trigonometric identity, the following equation is obtained

Λ θ 1 = i q √ 2 sin(e θe ) + i * d √ 2 2(sin( e θe 2 )) 2 (2.11)
Therefore, for a small angular error e θe , an approximation for Λ θ 1 is stated as

Λ θ 1 ≈ i q e θe √ 2 + i * d √ 2 e 2 θe .
(2.12)

Moreover, consider that quadratic term is smaller than linear term. Then, Λ θ 1 is given by

Λ θ 1 ≈ i q e θe √ 2 (2.13)
Notice that (2.13) depends of the current i q . It is worth mentioning that the changes in the current i q are directly proportional to the electromagnetic torque T e [see [START_REF] Zheng | Stable adaptive pi control for permanent magnet synchronous motor drive based on improved jitl technique[END_REF]]. As can be seen in Figure 2.1, different profiles of speed and electromagnetic torque have been plotted and the behavior of the current i q is shown. Then, from Figure 2.1, current i q can be positive or negative depending on the electrical machine operation. Then, multiplying
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Λ θ 1 sign(i q ) ≈ i q sign(i q ) √ 2 (e θe ) ≈ √ 2 |i q |e θe (2.14)
Taking into account that i qmax > |i q |. Finally, it follows that

Λ θ ≈ µ e θe (2.15)
with Λ θ = Λ θ 1 sign(i q ), and µ = i qmax √ 2, where i qmax is the maximum value of i q . Nevertheless, i q is not available for measurement. Then, in (2.15), i q will be replaced by the estimated current îq . In fact, îq is obtained from the transformation of the measured currents i α and i β from the stator reference frame to synchronous reference frame as shown by these equations

  îd îq   = T T ( θe )   i α i β   (2.16) 
where

T T ( θe ) =   cos( θe ) sin( θe ) -sin( θe ) cos( θe )  
and since θe will be calculated by the proposed observer, then, îq = -sin( θe )i α + cos( θe )i β (2.17)

The initial rotor position information is needed for practical implementation to obtain îq . This problem is addressed in the literature by several research works (as it could be seen in [START_REF] Harke | Implementation issues for fast initial position and magnet polarity identification of pm synchronous machines with near zero saliency[END_REF]- [START_REF] Harke | Fast and smooth initial position and magnet polarity estimation of salient and near zero saliency pm synchronous machines[END_REF]) and is supposed to be solved. In the experimental implementation, the rotor is moved very slightly by applying short voltage in order to detect the initial rotor position information. Once this information is obtained, the current îq could be calculated using equation (2.17). Based on the calculated îq , the rotor position estimation error could be extracted by

e θe ≈ Λ θ µ = Λ θ 1 sign( îq ) µ (2.18)
where Λ θ 1 is computed from (2.3). In the sequel, (2.18) will be used in the observer for estimating the angular position, speed and acceleration.

Observer design based on a sliding modes approach: Proposal 1

Observer design based on a sliding modes approach: Proposal 1

In this section, an observer is designed by using the sliding mode approach. Consider the following class of nonlinear system given by

ẋ1 = x 2 ẋ2 = x 3 ẋ3 = ρ(t) y = x 1 (2.19)
where x 1 , x 2 and x 3 are the states, ρ(t) is an unknown and bounded term and y ∈ ℜ the output of the system. Assumption 2.1. The term ρ(t) is bounded and unknown, i.e., |ρ(t)| ≤ ϱ 1 for ϱ 1 > 0. Now, an observer based on sliding mode for the system (2. [START_REF] Lascu | Pll position and speed observer with integrated current observer for sensorless pmsm drives[END_REF]) is expressed as follows

ẋ1 = x2 + K 1,1 |e 1 | 2 3 sign(e 1 ) ẋ2 = x3 + K 2,1 |e 1 | 1 3 sign(e 1 ) ẋ3 = K 3,1 sign(e 1 ) ŷ = x1 (2.20)
where x1 , x2 and x3 are the estimated states and ŷ is the estimated output. Moreover, the gains for the observer are reparameterized based on a single parameter L o as follows

K 1,1 = 3L 5 3 o , K 2,1 = 2L 10 3 o , K 3,1 = 4 9 L 5 o (2.21)
where L o is an arbitrarily chosen gain large enough. However, if L o is too large, it could cause an overestimation and increase the chattering amplitude, causing damage to the actuator. Currently, the design of an adaptive law for the gains is the best alternative to mitigate this problem.
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Adaptive observer design

Now, an adaptive observer will be designed for the system (2.19). Then, the following

observer ẋ1 = x2 + K1,1 |e 1 | 2 3 sign(e 1 ) ẋ2 = x3 + K2,1 |e 1 | 1 3 sign(e 1 ) ẋ3 = K3,1 sign(e 1 ) ŷ = x1 (2.22)
is an AHOSMO-1 and its gains are defined as follows

K1,1 = 3L 5 3 o (t), K2,1 = 2L 10 3 o (t), K3,1 = 4 9 L 5 o (t) (2.23)
where L o (t) > 0 is an adaptive parameter that will be introduced later.

Remark 2.1: The demonstration to calculate the proposed gains has been introduced in Appendix A (see A.1.1).

Taking into account the observer (2.22), an analysis of convergence will be introduced and an adaptive law for L o (t) will be designed. Then, defining the following estimation errors

e 1 = x 1 -x1 e 2 = x 2 -x2 e 3 = x 3 -x3 (2.24)
the following dynamics can be calculated ė1 = e 2 -3L

5 3 o (t)|e 1 | 2 3 sign(e 1 ) ė2 = e 3 -2L 10 3 o (t)|e 1 | 1 3 sign(e 1 ) ė3 = ρ(t) - 2 3 2 L 5 o (t)sign(e 1 ) (2.25) 
Now, taking into account the dynamics of the estimation errors, the following change of variable is established as follows

ζ 1 = e 1 L 2 o (t) , ζ 2 = e 2 L 2 o (t) , ζ 3 = e 3 L 2 o (t) (2.26)
and taking the first derivative in time, the dynamical system in terms of the new variables is given by

ζ1 = -3L o (t)|ζ 1 | 2 3 sign(ζ 1 ) + ζ 2 -2ζ 1 Lo (t) L o (t) ζ2 = -2L 2 o (t)|ζ 1 | 1 3 sign(ζ 1 ) + ζ 3 -2ζ 2 Lo (t) L o (t) ζ3 = - 2 3 2 L 3 o (t)sign(ζ 1 ) + ρ(t) L 2 o (t) -2ζ 3 Lo (t) L o (t) (2.27)
On the other side, the following new change of variable is introduced

ξ 1 = |ζ 1 | 2 3 sign(ζ 1 ), ξ 2 = ζ 2 L o (t) , ξ 3 = 3ζ 3 |ζ 1 | 1 3 2L 2 o (t)
(2.28) and the dynamical system can be expressed by using the new variables as follows

ξ1 = 2L o (t) 3|ζ 1 | 1 3 [-3ξ 1 + ξ 2 ] - 4 Lo (t) 3L o (t) ξ 1 ξ2 = 2L o (t) 3|ζ 1 | 1 3 [-3ξ 1 + ξ 3 ] - 3 Lo (t) L o (t) ξ 2 ξ3 = 2L o (t) 3|ζ 1 | 1 3   -ξ 1 + 3 2 2 |ζ 1 | 2 3 ρ(t) L 5 o (t) + ξ 3 2|ζ 1 | 2 3 (-3ξ 1 + ξ 2 )   - 14 Lo (t) 3L o (t) ξ 3
(2.29)

The resulting system (2.29) can be expressed in the following compact form

ξ = α o A o -P -1 o C T o C o ξ + Φ o -N o ξ Lo (t) L o (t) (2.30)
where 

α o = 2L o (t) 3|ζ 1 | 1 3 and ξ =      ξ 1 ξ 2 ξ 3      , A o =      0 1 0 0 0 1 0 0 0      , C o = 1 0 0 , P o =      1 -1 1 -1 2 -3 1 -3 6      , N o =        4 3 0 0 0 3 0 0 0 14 3        , Φ o =        0 0 3 2 2 |ζ 1 | 2 3 ρ(t) L 5 o (t) + ξ 3 2|ζ 1 | 2 3 (-3ξ 1 + ξ 2 )        . Part ,
Lo (t) =   k 1 2 o |e 1 | 2 3 L 1 3 o (t) -γ 1 2 o L 2 o (t)   (2.31
) 

is
V (ξ,Lo(t)) = V (ξ) + V (Lo(t)) (2.32) defining V (ξ) = ξ T P o ξ and V (Lo(t)) = γ o 2 L o (t) 2 .
Then, considering the Lyapunov candidate function, it is possible to take its first derivative in time and replace the suitable expressions, it follows that

V(ξ,Lo) =α o ξ T A T o P o + P o A o ξ -2α o ξ T C T o C o ξ - Lo (t) L o (t) ξ T [P o N o + N o P o ] ξ + γ o Lo (t)L o (t) + 2α o ξ T P o Φ o (2.33) Taking into account that A T o P o + P o A o = -P o + C T o C o .
Then, equation (2.33) can be rewritten as follows

V(ξ,Lo(t)) = -α o ξ T P o ξ -α o ξ T C T o C o ξ - Lo (t) L o (t) ξ T [P o N o + N o P o ] ξ + γ o Lo (t)L o (t)+ 2α o ξ T P o Φ o (2.34) Now, taking into account that P o N o +N o P o = R o , and defining R o as a symmetric positive- definite matrix. Then, ξ T R o ξ ≥ λ min (R o ) λ max (P o ) V (ξ) = k o V (ξ)
, where λ min (R o ) and λ max (P o ) are the minimum and maximum singular values of R o and P o , respectively. Moreover,

-α o ξ T C T o C o ξ < 0, for L o (t) > 0. Then, V(ξ,Lo(t)) ≤ -α o V (ξ) - Lo (t) L o (t) k o V (ξ) -γ o L 2 o (t) + 2α o ξ T P o Φ o (2.35)
Considering that

k o V (ξ) -γ o L 2 o (t) = k 1 2 o V 1 2 (ξ) + γ 1 2 o L o (t) k 1 2 o V 1 2 (ξ) -γ 1 2 o L o (t)
and

f (V (ξ) ,Lo(t)) = k 1 2 o V 1 2 (ξ) + γ 1 2 o L o (t) > 0. Then, equation (2.35) is written as V(ξ,Lo(t)) ≤ -α o V (ξ) -f (V (ξ) ,Lo(t)) Lo (t) L o (t) k 1 2 o V 1 2 (ξ) -γ 1 2 o L o (t) + 2α o ξ T P o Φ o (2.36)
On the other side, using the following inequalities

|ζ 1 | 4 3 = |ξ 1 | 2 ≤ ||ξ|| 2 (2.37) 
and

λ min (P o )||ξ|| 2 ≤ V (ξ) ≤ λ max (P o )||ξ|| 2 (2.38)
where λ min (P o ) and λ max (P o ) are the minimum and maximum singular values of P o . Then, the following inequality is satisfied

|ζ 1 | 2 3 ≤ ||ξ|| ≤ V (ξ) λ min (P o ) 1 2
(2.39) Therefore, from above inequality, it follows that

V(ξ,Lo(t)) ≤ -α o V (ξ) -f (V (ξ) ,Lo(t)) Lo (t) L o (t)   k 1 2 o |e 1 | 2 3 L 4 3 o (t) -γ 1 2 o L o (t)   + 2α o ξ T P o Φ o (2.40)
Choosing an adaptive law as follows Lo (t) =

  k 1 2 o |e 1 | 2 3 L 4 3 o (t) -γ 1 2 o L o (t)   L o (t). Then, V(ξ,Lo(t)) ≤ -α o V (ξ) -f (V (ξ) ,Lo(t))   k 1 2 o |e 1 | 2 3 L 4 3 o (t) -γ 1 2 o L o (t)   2 + 2α o ξ T P o Φ o (2.41)
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Assuming that e 1 tend to zero faster than L o (t). Equation (2.41) is given by

V(ξ,Lo(t)) ≤ -α o V (ξ) -f (V (ξ) ,Lo(t)) γ o L 2 o (t) + 2α o ξ T P o Φ o (2.42)
From Assumption 2.2, taking the norm to the nonlinear term 2α o ξ T P o Φ o and the inequality (2.38), then, it follows that

V(ξ,Lo(t)) ≤ - 2L o (t) 3|ζ 1 | 1 3 [1 -σ o ] V (ξ) -f (V (ξ) ,Lo(t)) γ o L 2 o (t) (2.43)
where

σ o = 2||P o ||ℏ λ min (P o ) . Furthermore, from |ζ 1 | 2 3 = |ξ 1 | ≤ |ξ 1 | 2 ≤ ||ξ|| 2
, the following inequality is satisfied,

|ζ 1 | 1 3 ≤ ||ξ|| ≤ V (ξ) λ min (P o ) 1 2 (2.44) Then, V(ξ,Lo(t)) ≤ -L o (t)Γ o V 1 2 (ξ) -f (V (ξ) ,Lo(t)) γ o L 2 o (t) (2.45) 
where

Γ o = 2 [1 -σ o ] λ 1 2 min (P o ) 3
. Rewritten (2.45) as follows

V(ξ,Lo(t)) ≤ -L o (t) √ 2γ 1 2 o   Γ o √ 2γ 1 2 o V 1 2 (ξ) + f (V (ξ) ,Lo) γ 1 2 o √ 2 L o (t)   (2.46)
and defining

η 0 = L o (t) √ 2γ 1 2
o and φ = min

  Γ o √ 2γ 1 2 o , f (V (ξ) ,Lo(t))   . It follows that V(ξ,Lo(t)) ≤ -η   V 1 2 (ξ) + γ 1 2 o √ 2 L o (t)   (2.47)
where η = η 0 φ. On the other hand, considering that Jensen´s inequality [START_REF] Jensen | Sur les fonctions convexes et les inégalités entre les valeurs moyennes[END_REF] is expressed as follows

[|a| q + |b| q ] 1 q ≤ |a| + |b| (2.48) and defining a = V 1 2 (ξ) , b = V 1 2
(Lo(t)) and q = 2. Then, the following inequality is satisfied

|V 1 2 (ξ) | 2 + |V 1 2 (Lo(t)) | 2 1 2 ≤ |V 1 2 (ξ) | + | γ 1 2 o √ 2 L o (t)| (2.49) and V 1 2 (ξ,Lo(t)) ≤ V 1 2 (ξ) + γ 1 2 o √ 2 L o (t). (2.50)
Finally, the Lyapunov dynamic equation is satisfied as follows

V(ξ,Lo(t)) ≤ -ηV 1 2
(ξ,Lo(t))

(2.51)

As mentioned before, V(ξ,Lo(t)) is a Lyapunov function, with L o (t) sufficiently large, satisfying η > 0. Then, V(ξ,Lo(t)) is negative definite and can guarantee the convergence of the observer in finite time. On the other side, taking into account the equation v = -ηv 1 2 , whose solution is defined by v(t) = (v(0)

1 2 -1 2 ηt) 2 .
Then, the comparison principle can be applied in order to estimate the convergence time T 1 . Therefore, V (ξ,Lo(t)) < v(t) when V (ξ(0)),Lo(0)) < v(0), then ξ has a finite-time convergence in an estimated time defined by

T 1 = 2V 1 2
(ξ(0)),Lo(0)) η for L o (t) sufficiently large. Thus, V (ξ,Lo(t)) tends to zero in finite-time, which involves that the estimation errors e i , for i = 1, 2, 3; tend to zero in finite time.

Remark 2.2. As can be seen, the system (2.30) has a singularity when e 1 = 0.

The singularity arise due to the change of variable

ξ 1 = |ζ 1 | 2 3 sign(ζ 1 ), ξ 2 = ζ 2 L o (t)
,

ξ 3 = 3ζ 3 |ζ 1 | 1 3 2L 2 o (t)
; converting system (2.25) into system (2.30), whose domain is defined

as follows D = {(ξ 1 , ξ 2 , ξ 3 ) ∈ ℜ 3 | ξ 1 ̸ = 0}
. Nonetheless, considering convergence analysis, the singularity does not appear when the system is expressed in terms of the original coordinates (see for more details [START_REF] Moreno | Strict lyapunov functions for the super-twisting algorithm[END_REF], [START_REF] Liu | Output feedback stabilization using super-twisting control and high-gain observer[END_REF]).

Adaptive observer design for the IPMSM

Consider the adaptive law-1 in Theorem 2.1 and the virtual system (1.42), then, an adaptive observer based on the virtual system (1.42) is designed as follows

θe = ω + K1,1 |e θe | 2 α = K3,1 sign( Λ θ µ ) (2.53)
Then, the observer (2.53) is used to estimate the angular position, speed and acceleration.

As previously mentioned, θ = θe p is the estimated mechanical angular position and Ω = ω p is the mechanical speed. In Figure 2 

Simulation results

In this section, a simulation result is introduced to show the AHOSMO-1 performance in open-loop. Simulation test has been carried out in Matlab-Simulink environment, using a sampling time of 1 × 10 -3 with a fixed-step ode4 solver. Moreover, the test has been made by considering the profiles and parametric uncertainties given by Figure 1.7 and Figure 1.8, respectively. The parameters of the adaptive observer are given in the Table 2.1. In Figure 2.3, the estimation of the angular position is given. It is possible to see that 

Observer design based on a sliding modes approach: Proposal 2

In this section, a second observer is designed for a class of nonlinear system given by (2.19). Then, an observer for the system (2. [START_REF] Lascu | Pll position and speed observer with integrated current observer for sensorless pmsm drives[END_REF]) is expressed as follows

ẋ1 2 = x2 + K 1,2 |e 1 2 | 2 3 sign(e 1 2 ) ẋ2 2 = x3 + K 2,2 |e 1 2 | 1 3 sign(e 1 2 ) ẋ3 2 = K 3,2 sign(e 1 2 ) ŷ = x1 2 (2.54)
where x1 2 , x2 2 and x3 2 represent the estimated states and ŷ is the estimated output. Moreover, the gains for the observer are reparameterized in terms of L o 2 as follows

K 1,2 = 3L o 2 K 2,2 = 2L 2 o 2 K 3,2 = 2 3 2 L 3 o 2 (2.55)
where L o 2 > 0 is a constant positive parameter large enough. However, if L o 2 is too large, it could cause an overestimation and increase the chattering amplitude, causing damage to the actuator. For this reason, in the next section, an adaptive law for the gains will be designed.

Adaptive observer design

Now, a second adaptive observer is proposed for the system (2.19). Consider the following system

ẋ1 2 = x2 + K1,2 |e 1 2 | 2 3 sign(e 1 2 ) ẋ2 2 = x3 + K2,2 |e 1 2 | 1 3 sign(e 1 2 ) ẋ3 2 = K3,2 sign(e 1 2 ) ŷ = x1 2 (2.56)
which is an AHOSMO-2 and its reparameterized gains in terms of a single parameter are defined by

K1,2 = 3L o 2 (t) K2,2 = 2L 2 o 2 (t) K3,2 = 2 3 2 L 3 o 2 (t) (2.57)
where L o 2 (t) is an adaptive parameter that will be introduced later.
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Remark 2.3: The demonstration to compute the proposed gains has been introduced in Appendix A (See A.1.2). Now, an analysis of convergence for the observer (2.56) and an adaptive law for the parameter L o 2 (t) are introduced. Then, consider the following estimation errors

e 1 2 = x 1 -x1 2 , e 2 2 = x 2 -x2 2 , e 3 2 = x 3 -x3 2 (2.58)
and their dynamics as follows

ė1 2 = e 2 2 -3L o 2 (t)|e 1 2 | 2 3 sign(e 1 2 ) ė2 2 = e 3 2 -2L 2 o 2 (t)|e 1 2 | 1 3 sign(e 1 2 ) ė3 2 = ρ(t) - 2 3 2 L 3 o 2 (t)sign(e 1 2 ) (2.59)
Now, a change of variable is introduced as follows

ξ 1 2 = |e 1 2 | 2 3 sign(e 1 2 ) L o 2 (t) ξ 2 2 = e 2 2 L 2 o 2 (t) ξ 3 2 = 3e 3 2 |e 1 2 | 1 3 2L 3 o 2 (t) (2.60) 
Then, it follows that the dynamical system can be expressed by using the new variables. Therefore, the following system can be obtained

ξ1 2 = 2L o 2 (t) 3|e 1 2 | 1 3 [-3ξ 1 2 + ξ 2 2 ] - Lo 2 (t) L o 2 (t) ξ 1 2 ξ2 2 = 2L o 2 (t) 3|e 1 2 | 1 3 [-3ξ 1 2 + ξ 3 2 ] - 2 Lo 2 (t) L o 2 (t) ξ 2 2 ξ3 2 = 2L o 2 (t) 3|e 1 2 | 1 3   -ξ 1 2 + 3 2 2 |e 1 2 | 2 3 ρ(t) L 4 o 2 (t) + L o 2 (t)ξ 3 2 2|e 1 2 | 2 3 [-3ξ 1 2 + ξ 2 2 ]   - 3 Lo 2 (t) L o 2 (t) ξ 3 2 (2.61)
and can be simplified as follows

ξo 2 = α o 2 A o -P -1 o C T o C o ξ o 2 + Φ o 2 -D o 2 ξ o 2 Lo 2 (t) L o 2 (t) (2.62) defining α o 2 = 2L o 2 (t) 3|e 1 2 | 1 3
and the following terms as follows 60 

ξ o 2 =      ξ 1 2 ξ 2 2 ξ 3 2      , A o =      0 1 0 0 0 1 0 0 0      , C o = 1 0 0 , P o =      1 -1 1 -1 2 -3 1 -3 6      , ( 2.63 
) 

D o 2 =      1 0 0 0 2 0 0 0 3      , Φ o 2 =        0 0 3 2 2 |e 1 2 | 2 3 ρ(t) L 4 o 2 (t) + L o 2 (t)ξ 3 2 2|e 1 2 | 2 3 [-3ξ 1 2 + ξ 2 2 ]        . ( 2 
P o + A T o P o + P o A o -C T o C o = 0 (2.
V (ξo 2 ,Lo 2 (t)) = V (ξo 2 ) + V (Lo 2 (t)) (2.67) defining V (ξo 2 ) = ξ T o 2 P o ξ o 2 and V (Lo 2 (t)) = γ o 2 2 L 2 o 2 (t).
Then, considering the Lyapunov candidate function, it is possible to take its first derivative in time and replace the suitable expressions, it follows that 

V(ξo 2 ,Lo 2 (t)) =α o 2 ξ T o 2 A T o P o + P o A o ξ o 2 -2α o 2 ξ T o 2 C T o C o ξ o 2 -2 Lo 2 (t) L o 2 (t) ξ T o 2 P o D o 2 ξ o 2 + γ o 2 Lo 2 (t)L o 2 (t) + 2α o 2 ξ T o 2 P o Φ o 2 (2.68)
V(ξo 2 ,Lo 2 (t)) = -α o 2 ξ T o 2 P o ξ o 2 -α o 2 ξ T o 2 C T o C o ξ o 2 -2 Lo 2 (t) L o 2 (t) ξ T o 2 P o D o 2 ξ o 2 + γ o 2 Lo 2 (t)L o 2 (t) + 2α o 2 ξ T o 2 P o Φ o 2 (2.69)
On the other hand, using the following inequalities

|e 1 2 | 4 3 L 2 o 2 (t) = |ξ 1 2 | 2 ≤ ||ξ o 2 || 2 (2.70)
and

λ min (P o )||ξ o 2 || 2 ≤ V (ξo 2 ) ≤ λ max (P o )||ξ o 2 || 2 (2.71)
where λ min (P o ) and λ max (P o ) are the minimum and maximum singular values of P o . Moreover,

λ min (P o D o 2 )||ξ o 2 || 2 ≤ ξ T o 2 P o D o 2 ξ o 2 ≤ λ max (P o D o 2 )||ξ o 2 || 2 (2.72) 
where λ min (P o D o 2 ) and λ max (P o D o 2 ) are the minimum and maximum singular values of

P o D o 2 . Then, V(ξo 2 ,Lo 2 (t)) ≤ -α o 2 ξ T o 2 P o ξ o 2 -α o 2 ξ T o 2 C T o C o ξ o 2 -2λ min (P o D o 2 )||ξ o 2 || 2 Lo 2 (t) L o 2 (t) + γ o 2 Lo 2 (t)L o 2 (t) + 2αξ T o 2 P o Φ o 2 (2.73)
In this way,

V(ξo 2 ,Lo 2 (t)) ≤ -α o 2 ξ T o 2 P o ξ o 2 -α o 2 ξ T o 2 C T o C o ξ o 2 -k o 2 ||ξ o 2 || 2 Lo 2 (t) L o 2 (t) + γ o 2 Lo 2 (t)L o 2 (t) + 2α o 2 ξ T o 2 P o Φ o 2 (2.74)
where

k o 2 = 2λ min (P o D o 2 ) > 0.
The above equation can be established as follows

V(ξo 2 ,Lo 2 (t)) ≤ -α o 2 ξ T o 2 P o ξ o 2 -α o 2 ξ T o 2 C T o C o ξ o 2 + 2α o 2 ξ T o 2 P o Φ o 2 - Lo 2 (t) L o 2 (t) k o 2 ||ξ o 2 || 2 -γ o 2 L 2 o 2 (t) (2.75)
Now, the last term of the above equation can be expressed as follows Lo 2 (t)

L o 2 (t) k o 2 ||ξ o 2 || 2 -γ o 2 L 2 o 2 (t) = Lo 2 (t) L o 2 (t) k 1 2 o 2 ||ξ o 2 || + γ 1 2 o 2 L o 2 (t) k 1 2 o 2 ||ξ o 2 || -γ 1 2 o 2 L o 2 (t) (2.76)
and

f (ξo 2 ,Lo 2 (t)) = k 1 2 o 2 ||ξ o 2 || + γ 1 2 o 2 L o 2 (t) > 0. Then, V(ξo 2 ,Lo 2 (t)) ≤ -α o 2 ξ T o 2 P o ξ o 2 -α o 2 ξ T o 2 C T o C o ξ o 2 + 2α o 2 ξ T o 2 P o Φ o 2 -f (ξo 2 ,Lo 2 (t)) Lo 2 (t) L o 2 (t) k 1 2 o 2 ||ξ o 2 || -γ 1 2 o 2 L o 2 (t) (2.77)
From inequalities (2.70) and (2.71), the following inequality is satisfied

|e 1 2 | 2 3 L o 2 (t) ≤ ||ξ o 2 || ≤ V (ξo 2 ) λ min (P o ) 1 2 (2.78) Then, from (2.78), it follows that V(ξo 2 ,Lo 2 (t)) ≤ -α o 2 V (ξo 2 ) -α o 2 ξ T o 2 C T o C o ξ o 2 + 2α o 2 ξ T o 2 P o Φ o 2 -f (ξo 2 ,Lo 2 (t)) Lo 2 L o 2 (t)   k 1 2 o 2 |e 1 2 | 2 3 L o 2 (t) -γ 1 2 o 2 L o 2 (t)   (2.79)
Choosing an adaptive law as follows

Lo 2 (t) =   k 1 2 o 2 |e 1 2 | 2 3 L o 2 (t) -γ 1 2 o 2 L o 2 (t)   L o 2 (t) (2.80) Then, V(ξo 2 ,Lo 2 (t)) ≤ -α o 2 V (ξo 2 ) -α o 2 ξ T o 2 C T o C o ξ o 2 -f (ξo 2 ,Lo 2 (t))   k 1 2 |e 1 2 | 2 3 L o 2 (t) -γ 1 2 o 2 L o 2 (t)   2 +2α o 2 ξ T o 2 P o Φ o 2
(2.81) and assuming that e 1 2 tend to zero faster than L o 2 (t), and 

-α o 2 ξ T o 2 C T o C o ξ o 2 < 0, for L o 2 (t) > 0. Equation (2.81) is given by V(ξo 2 ,Lo 2 (t)) ≤ -α o 2 V (ξo 2 ) -f (ξo 2 ,Lo 2 (t)) γ o 2 L 2 o 2 (t) + 2α o 2 ξ T o 2 P o Φ o 2 (2.
V(ξo 2 ,Lo 2 (t)) ≤ -α o 2 V (ξo 2 ) + 2α o 2 ||ξ o 2 || 2 ||P o ||ℏ 2 -f (ξo 2 ,Lo 2 (t)) γ o 2 L 2 o 2 (t) (2.83)
Now, from inequality (2.71). Then, it follows that

V(ξo 2 ,Lo 2 (t)) ≤ - 2L o 2 (t) 3|e 1 2 | 1 3 [1 -σ o 2 ] V (ξo 2 ) -f (ξo 2 ,Lo 2 (t)) γ o 2 L 2 o 2 (t) (2.84)
where

σ o 2 = 2||P o ||ℏ 2 λ max (P o 2 ) . Furthermore, from |e 1 2 | 2 3 L o 2 (t) = |ξ 1 2 | ≤ |ξ 1 2 | 2 ≤ ||ξ o 2 || 2 , the following inequality is satisfied |e 1 2 | 1 3 L 1 2 o 2 (t) ≤ ||ξ o 2 || ≤ V (ξo 2 ) λ min (P o ) 1 2
(2.85) and considering that (2.84) can be written as follows

V(ξo 2 ,Lo 2 (t)) ≤ - 2L o 2 (t) 3|e 1 2 | 1 3 L 1 2 o 2 (t) L 1 2 o 2 (t) [1 -σ o 2 ] V (ξo 2 ) -f (ξo 2 ,Lo 2 (t)) γ o 2 L 2 o 2 (t) (2.86) Then, V(ξo 2 ,Lo 2 (t)) ≤ -L 1 2 o 2 (t)Γ o 2 V 1 2 (ξo 2 ) -f (ξo 2 ,Lo 2 (t)) γ o 2 L 2 o 2 (t) (2.87)
where

Γ o 2 = 2 [1 -σ o 2 ] λ 1 2
min (P o ) 3

. Rewritten (2.87) as follows

V(ξo 2 ,Lo 2 (t)) ≤ -L o 2 (t) √ 2γ 1 2 o 2   Γ o 2 √ 2γ 1 2 o 2 L 1 2 o 2 (t) V 1 2 (ξo 2 ) + f (ξo 2 ,Lo 2 (t)) γ 1 2 o 2 √ 2 L o 2 (t)   (2.88)
and defining

η 0 2 = L o 2 (t) √ 2γ 1 2 o 2 and φ o 2 = min   Γ o 2 √ 2γ 1 2 o 2 L 1 2 o 2 (t) , f (ξo 2 ,Lo 2 (t))
  . We can write the following equation

V(ξo 2 ,Lo 2 (t)) ≤ -η   V 1 2 (ξo 2 ) + γ 1 2 o 2 √ 2 L o 2 (t)   (2.89)
where η = η 0 2 φ o 2 . On the other hand, considering that Jensen´s inequality [START_REF] Jensen | Sur les fonctions convexes et les inégalités entre les valeurs moyennes[END_REF] is expressed

as follows [|a o 2 | q + |b o 2 | q ] 1 q ≤ |a o 2 | + |b o 2 | (2.90)
and defining

a o 2 = V 1 2 (ξo 2 ) , b o 2 = V 1 2
(Lo 2 (t)) and q = 2. Then, the following inequality is satisfied

|V 1 2 (ξo 2 ) | 2 + |V 1 2 (Lo 2 (t)) | 2 1 2 ≤ |V 1 2 (ξo 2 ) | + | γ 1 2 o 2 √ 2 L o 2 (t)| (2.91) such that V 1 2 (ξo 2 ,Lo 2 (t)) ≤ V 1 2 (ξo 2 ) + γ 1 2 o 2 √ 2 L o 2 (t) (2.92)
Finally, the Lyapunov dynamic equation is satisfied as follows

V(ξo 2 ,Lo 2 (t)) ≤ -ηV 1 2 
(ξo 2 ,Lo 2 (t))

(2.93)

As mentioned before, V(ξo 2 ,Lo 2 (t)) is a Lyapunov function, with L o 2 (t) sufficiently large, satisfying η > 0. Then, V(ξo 2 ,Lo 2 (t)) is negative definite and can guarantee the convergence of the observer in finite time. On the other side, taking into account the equation v = -ηv 1 2 , whose solution is defined by v(t) = (v(0)

1 2 -1 2 ηt) 2 .
Then, the comparison principle can be applied in order to estimate the convergence time T 1 2 . Therefore, V (ξo 2 ,Lo 2 ) < v(t) when V (ξo 2 (0)),Lo 2 (0)) < v(0), then ξ o 2 has a finite-time convergence in an estimated time defined by

T 1 2 = 2V 1 2 
(ξo 2 (0)),Lo 2 (0)) η for L o 2 (t) sufficiently large. Thus, V (ξo 2 ,Lo 2 (t)) tends to zero in finite-time, which involves that the estimation errors e i 2 , for i = 1, 2, 3; tend to zero in finite time.

Remark 2.4. As we can see, the system (2.62) has a singularity when e 1 = 0. The singularity arise due to the change of variable

ξ 1 2 = |e 1 2 | 2 3 sign(e 1 2 ) L o 2 (t) , ξ 2 2 = e 2 2 L 2 o 2 (t) , ξ 3 2 = 3e 3 2 |e 1 2 | 1 3 2L 3 o 2 (t)
converting system (2.59) into system (2.62), whose domain is defined as follows

D ∈ = (ξ 1 2 , ξ 2 2 , ξ 3 2 ) ∈ ℜ 3 | ξ 1 2 ̸ = 0 .
Nonetheless, considering convergence analysis, the singularity does not appear when the In Figure 2.7, angular position estimation and its estimation error are illustrated, showing good effectiveness during the estimation despite parametric uncertainties. In Figure 2.8, speed estimation and its speed estimation error can show that the strategy based on the virtual system without parameters has a good performance. Moreover, it is compensated with the estimation of the acceleration (see Figure . 2.9-a) to avoid large estimation errors in the speed and angular position. In addition, in Figure . 2.9-b, the adaptive parameter L o (t) is introduced, showing the profile it takes to achieve the correct estimation of the estimates. 

Comparative study

In this section, from simulations, a comparative study is approached. A comparison among an observer based on back-electromotive force, an observer based on mechanical system by using first-order sliding modes and an observer based on high frequency signal injection is carried out by simulation test under parameter variations (see Figure 1.8). First, an observer based on back-electromotive force is introduced in Figure 2.10 for estimating angular position and speed. In this class of observers, the use of low pass filter generates a phase-delay in the estimation of the angular position, and the parameter variations causes an error increment. After that, an observer based on mechanical system by using first-order sliding modes is shown in Figure 2.11, estimating speed, angular position and load torque. The chattering effect can be seen in the angular error and the speed estimation error. Moreover, the effect of parameter variations causes an error increase in the estimation of the load torque. Another strategy often used in sensorless methods is the observer based on high frequency signal injection, which considers an extraction of angular error from high frequency signal injection. In Figure 2.12, this strategy is introduced in order to estimate angular position and speed. Then, from the errors in speed and angular position, it is possible to see the performance of this strategy under the variation of parameters. A disadvantage of this strategy is the sensitivity to variations in inductance.

A performance index, Integral Absolute Error (IAE), is computed in order to show numerically the performance of each observer for the angular position estimation error and the speed estimation error as can be illustrated in Figure 2.14 and Figure 2.13, respectively.

The proposed observers (AHOSMO-1, AHOSMO-2) based on virtual system achieve a better performance compared with the other strategies. The improvement can be shown from the performance index, validating the effectiveness of the proposed observers. Therefore, it is possible to say that extraction of the angular error e θe introduced in section 2.1 has been achieved successfully. In addition, a simulation test to show the convergence of the observer has been carried out, as can be seen in Figure 2.15. The initial conditions for the estimated speed and estimated angular position are Ω(0) = 20 rad/s and θ(0) = 5.5 rad, respectively. We can see as the convergence is ensured such that convergence of the observer is achieved in finite time.

On the other hand, this work proposes adaptive observers for the observer. Therefore, In addition, the proposed adaptive laws, for the parameters L o (t) and L o 2 (t) of the observers AHOSMO-1 and AHOSMO-2, have been numerically evaluated at 5 seconds, as can be show in Table 2.3. The final value of each gain at 5 seconds can show that both adaptive laws have a similar behavior with respect to the energy used. However, the adaptive for L o 2 (t) has slightly higher values, such that it could be concluded that the adaptive law L o (t) is more conservative. 

Proposed observer analysis

The performance of the proposed observer based on the extraction of e θe is evaluated in a simulation and experimental test considering the profiles of Figure 1.9. A low-speed and zero region is taken into account due to that in this region most of the observers present observability problems. It is well known that IPMSM is not observable when the angular speed is equal to zero. However, in the proposed strategy, the angular position estimation error e θe extracted depends on the dynamics of the current-i q directly. Therefore, the observability is ensured for a current-i q different to zero, i.e., i q ̸ = 0, such that this condition is satisfied when the load torque or the speed are different to zero. In this way, the load torque profile considered in the validation has values equals to zero and different to zero with small values.

A simulation test is introduced in Figure 2.18 and an experimental test is introduced in Figure 2.19. Then, from Figure 2.18 and Figure 2.19, it is shown that at the beginning, the speed is 0 rad/s with a load torque going from 0.05 N.m to 1 N.m. Then, the observer converges to real angular position and speed. After that, from 1.5 s to 4s the load torque is 0 N.m and the speed is still 0 rad/s until 3 s. Therefore, from 1.5 s, the observer diverges, since, there exist a loss of observability when both speed and load torque are zero, since at that moment the electric machine is standstill and there is not a persistent current-i q in Λ θ . However, from 3 s the speed increase until 2.5 rad/s, such that, the current-i q is different to 0, then the observer tends towards real speed and angular position. Therefore, from 3.5 s is possible to see the convergence in the angular position. Then, the speed stays at low speed (2.5 rad/s) for 2 s with a load torque different to 0 N.m, such that, a good estimation is achieved for the observer. After that, the speed increases until 30 rad/s and stays there for 3 s, and the load torque tends to 0 N.m and stays there from 8.5 s to 11 s, such that, the observer achieves a very accurate estimate. Finally, the speed decreases until 2 rad/s and from 13 s until 16 s, the speed continues to decrease until it reaches 0 Part , Chapter 2 -New strategy for the rotor position and speed estimation of Permanent Magnet Synchronous Motor rad/s with an small load torque of 0.05 N.m. From this test it can be concluded that the observability depends on i q directly, which must be different from zero (i q ̸ = 0) to ensure the observability.

Conclusion

The extraction of the angular position estimation error has been the main challenge in this work in order to apply a sensorless technique. In this chapter, an new alternative for the extraction of the angular error e θ in PMSM was presented. Considering that measurable currents i αβ can be taken from the abc triphasic components of the machine, this information has been considered and represented by using the Park transformation. Moreover, taking into account some ideas of the saliency method-based, one equation was defined without considering the high frequency signal injection characteristic. Then, after some calculations, one approximation of the angular error was obtained. It is worth mentioned that the extraction of the angular position error does not require the use of additional elements like filters and high frequency signal injection.

A sensorless scheme requires information of the angular position and speed. Then, the extracted angular error has been a key piece to design two adaptable observers based on a virtual system without machine parameters to estimate angular position and speed of the IPMSM. These adaptive observer have been designed by considering reparameterized gains, i.e., all gains are in terms of a single parameter to reduce the tuning time and facilitate the design of adaptive laws for the observers. Simulation tests were introduced as well as a comparative study. The effectiveness and performance of the adaptive observers based on the extraction of the angular error has been illustrated.

Chapter 3

CONTROLLER DESIGN FOR THE INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

In this chapter, two adaptive controllers are designed. The gains of these controllers are based on a single parameter to reduce the tuning time. The controllers will be applied to track a reference of direct-axis current and speed. Some tests for the adaptive controllers are addressed and a comparative study is introduced.

Control design based on Super-Twisting approach:

Proposal-1

Consider the class of nonlinear system given by

χ1 = χ 2 χ2 = f (χ) + g(χ)u + δ(t) y = Cχ (3.1)
where χ = [χ 1 χ 2 ] T is a state vector, for χ ∈ ℜ 2 ; u ∈ ℜ is the input, f (χ) and g(χ) are nonlinear terms, y ∈ ℜ is the output of the system, δ(t) is a time-varying external disturbance and C = [1 0]. where e 1χ = χ 1 -χ ref is a tracking error, e 2χ = χ1 -χref and ϑ 11 > 0; whose dynamic is given by Ṡ = ϑ 11 e 2χ + f (χ) + g(χ)u + δ(t) -χref (3.3)

A control input is chosen as follows

u = 1 g(χ) -ϑ 11 e 2χ -f (χ) + χref + V st , ( 3.4) 
with

V st = -K c1 |S| 1 2 sign(s) -K c2 sign(S)dt (3.5)
where

K c1 = 2L 2 c and K c2 = L 4 c 2
are reparameterized based on a single parameter L c , such that L c is a constant positive parameter large enough. Then, equation (3.4) is a super twisting control for the system (3.1). However, tuning with constant gains sometimes causes gain overestimation. Therefore, in the next section, an adaptive control will be presented to avoid this problem.

Adaptive super-twisting control design

Consider the following control

u = 1 g(χ) -ϑ 11 e 2χ -f (χ) + χref + V st , ( 3.6) 
with

V st = -Kc1 |S| 1 2 sign(s) - t 0 Kc2 sign(S)dτ (3.7)
which is an Adaptive Super-Twisting Control (ASTWC-1) for the system (3.1) and their reparameterized gains, in terms of a single parameter, are defined by

Kc1 = 2L 2 c (t) Kc2 = L 4 c (t) 2 (3.8)
where L c (t) is an adaptive parameter that will be introduced later.

Remark 3.1. A demonstration to compute the proposed gains has been introduced in Appendix A (See A.2.1).

A stability analysis and the adaptive law design for the parameter L c (t) will be introduced in the sequel.

Consider that the dynamic of the sliding surface (3.3) in closed-loop with the control (3.6) is given by

Ṡ = -Kc1 |S| 1 2 sign(S) - t 0 Kc2 sign(S)dτ + δ(t) (3.9)
where (3.9) can be expressed as follows

     Ṡ = -Kc1 |S| 1/2 sign(S) + ν + δ(t) ν = -Kc2 sign(S) (3.10)
then, sliding variable S and its time derivative Ṡ converge to 0 in finite time. 

Σ ST W :      Υ1 = -Kc1 |Υ 1 | 1/2 sign(Υ 1 ) + Υ 2 , Υ2 = -Kc2 sign(Υ 1 ) + d(t) (3.11)
with d(t) = δ(t). Consider the following change of coordinates

z 1 = Υ 1 L 2 c (t) z 2 = Υ 2 L 2 c (t) (3.12) 
and its first derivative in time as follows

ż1 = -2L c (t)|z 1 | 1 2 sign(z 1 ) + z 2 - 2z 1 Lc (t) L c (t) ż2 = - L 2 c (t) 2 sign(z 1 ) + d(t) L 2 c (t) - 2z 2 Lc (t) L c (t) (3.13)
After that, a new change of variable is given by

£ 1 = |z 1 | 1 2 sign(z 1 ) £ 2 = z 2 L c (t) (3.14)
then the dynamics, in terms of these new variables, are given by Part , Chapter 3 -Controller design for the Interior Permanent Magnet Synchronous motor

£1 = L c (t) 2|z 1 | 1 2 [-2£ 1 + £ 2 ] -£ 1 Lc (t) L c (t) £2 = L c (t) 2|z 1 | 1 2   -£ 1 + 2|z 1 | 1 2 d(t) L 4 c (t)   -3£ 2 Lc (t) L c (t) (3.15)
To make some calculations easier, system (3.15) can be expressed in compact form as follows

£ = α c A c -P -1 c C T c C c £ + Φ c -N c £ Lc (t) L c (t) (3.16) with α c = L c (t) 2|z 1 | 1 2
, and

£ = £ 1 £ 2 T , C c = 1 0 , A c =   0 1 0 0   , N c =   1 0 0 3   , Φ c =     0 2|z 1 | 1 2 L 4 c (t) (d(t))     P c =   1 -1 -1 2   ,
where P c is a symmetric positive-definite matrix, solution of the following equation 

P c + A T c P c + P c A c -C T c C c = 0 (3.
Lc (t) = k 1 2 c |S| 1 2 -γ 1 2 c L 2 c (t) (3.18)
is an adaptive law-1 for L c (t), with k c > 0 and γ c > 0 chosen appropriately, where

k c > γ c > 0.
Then, the trajectories of Σ ST W converge towards a vicinity of the origin in finite time.

Proof

Consider a Lyapunov candidate function as follows

V (£,Lc(t)) = V (£) + V (Lc(t)) (3.19) with V (£) = £ T P c £ and V (Lc(t)) = γ c 2 L 2 c (t), for γ c > 0.
Then, taking its first derivative in time and replacing the suitable expressions, it follows that

V(£,Lc(t)) =α c £ T A T c P c + P c A c £ -2α c £ T C T C£ - Lc (t) L c (t) £ T [P c N c + N c P c ] £ + γ c Lc (t)L c (t) + 2α c £ T P c Φ c (3.20) From A T c P c + P c A c = -P c + C T c C c
, it follows that above equation can be expressed as follows

V(£,Lc(t)) = -α c £ T P c £ -α c £ T C T c C c £ - Lc (t) L c (t) £ T [P c N c + N c P c ] £ + γ c Lc (t)L c (t) + 2α c £ T P c Φ c (3.21)
Now, considering that P c N c + N c P c = R c and defining R c as a symmetric positive-definite matrix. Then,

£ T R c £ ≥ λ min (R c ) λ max (P c ) V (£) = k c V (£)
, where λ min (R c ) and λ max (P c ) are minimum and maximum singular values of R c and P c , respectively; moreover, considering that

-α c £ T C T c C c £ < 0; for L c (t) > 0. Then, V(£,Lc(t)) ≤ -α c V (£) - Lc (t) L c (t) k c V (£) -γ c L 2 c (t) + 2α c £ T P c Φ c (3.22)
Now, from (3.22), the term

k c V (£) -γ c L 2 c (t) = k 1 2 c V 1 2 (£) + γ 1 2 c L c (t) k 1 2 c V 1 2 (£) -γ 1 2 c L c (t) and defining f (V (£) ,Lc(t)) = k 1 2 c V 1 2 (£) + γ 1 2 c L c (t) > 0. It follows that V(£,Lc(t)) ≤ -α c V (£) -f (V (£) ,Lc(t)) Lc (t) L c (t) k 1 2 c V 1 2 (£) -γ 1 2 c L c (t) + 2α c £ T P c Φ c (3.23)
Consider that the following inequalities are satisfied,

|z 1 | = |£ 1 | 2 ≤ ||£|| 2 (3.24)
and

λ min (P c )||£|| 2 ≤ V (ξ) ≤ λ max (P c )||£|| 2 (3.25)
where λ min (P c ) and λ max (P c ) are the minimum and maximum singular values of P c . Then,
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it follows that the following inequality hold,

|z 1 | 1 2 ≤ ||£|| ≤ V (£) λ min (P c ) 1 2 (3.26) for z 1 = Υ 1 L 2 c (t) = S L 2 c (t)
. Now, taking into account the above inequality, equation (3.23) can be expressed as

V(£,Lc(t)) ≤ -α c V (£) -f (V (£) ,Lc(t)) Lc L c (t)   k 1 2 c |S| L 2 c (t) 1 2 -γ 1 2 c L c (t)   + 2α c £ T P c Φ c (3.27)
Therefore, an adaptive law can be chosen as follows,

Lc (t) =   k 1 2 c |S| L 2 c (t) 1 2 -γ 1 2 c L c (t)   L c (t) (3.28)
Then, it follows that

V(£,Lc(t)) ≤ -α c V (£) -f (V (£) ,Lc(t))   k 1 2 c |S| L 2 c (t) 1 2 -γ 1 2 c L c (t)   2 + 2α c £ T P c Φ c (3.29)
Assuming that S tends to zero faster than L c (t). Then, (3.29) is given by

V(£,Lc(t)) ≤ -α c V (£) -f (V (£) ,Lc(t)) γ c L 2 c (t) + 2α c £ T P c Φ c (3.30)
Moreover, from Assumption 3.3 and taking into account the norm for the term 2α c £ T P c Φ c , it follows that

V(£,Lc(t)) ≤ -α c V (£) + 2α c ℘||£|| 2 ||P c || -f (V (£) ,Lc(t)) γ c L 2 c (t) (3.31)
and considering the inequality (3.25), it is obtained the following

V(£,Lc(t)) ≤ - L c (t) 2|z 1 | 1 2 [1 -σ c ]V (£) -f (V (£) ,Lc(t)) γ c L 2 c (t) (3.32) with σ c = 2℘||P c || λ min (P c )
. Moreover, taking into account (3.26), the above equation can be expressed as follows

V(£,Lc(t)) ≤ -L c (t)Γ c V 1 2 (£) -f (V (£) ,Lc(t)) γ c L 2 c (t) (3.33) with Γ c = [1 -σ c ]λ 1 2 min (P c ) 2
. Now, equation (3.33) will be factored as follows

V(£,Lc(t)) ≤ -L c (t) √ 2γ 1 2 c   Γ c √ 2γ 1 2 c V 1 2 (£) + f (V (£) ,Lc(t)) γ 1 2 c √ 2 L c (t)   (3.34) Thus, selecting η 1 = L c (t) √ 2γ 1 2 c and φ c = min   Γ c √ 2γ 1 2 c , f (V (£) ,Lc(t))   , it is possible to express the following equation V(£,Lc(t)) ≤ -η 2   V 1 2 (£) + γ 1 2 c √ 2 L c (t)   (3.35)
with η 2 = η 1 φ c . Then, from Jensen´s inequality [START_REF] Jensen | Sur les fonctions convexes et les inégalités entre les valeurs moyennes[END_REF],

[|a c | m + |b c | m ] 1 m ≤ |a c | + |b c |, (3.36) 
defining

a c = V 1 2 (£) , b c = V 1 2
(Lc) and m = 2. Thus, the following inequality can be established

|V 1 2 (£) | 2 + |V 1 2 (Lc(t)) | 2 1 2 ≤ |V 1 2 (£) | + γ 1 2 c √ 2 |L c (t)| (3.37)
In this way

V 1 2 (£,Lc(t)) ≤ |V 1 2 (£) | + γ 1 2 c √ 2 |L c (t)| (3.38)
Therefore, the dynamic of Lyapunov function can be expressed as

V(£,Lc(t)) ≤ -η 2 V 1 2 (£,Lc(t)) . (3.39)
Then, from the Lyapunov function, V(£,Lc(t)) is negative definite and ensures convergence in finite-time, for L c (t) sufficiently large, satisfying η 2 > 0. Moreover, the comparison principle is taken into account to estimate the convergence time. Thus, considering the equation v = -η 2 v 1 2 and its solution defined as v(t) = (v(0) V (£,Lc(t)) < v(t) when V (£(0),Lc(0)) < v(0), such that, £ has a convergence in finite-time in an estimated time given by

T 2 = 2V 1 2 (£(0),Lc(0)) η 2
. Therefore, £ tends to zero as well as S tends to zero in finite-time.

Control design for IPMSM

The design of controllers for the speed and the direct-axis current are presented by considering the adaptive law-1 given by Theorem 3.1.

Control loop for speed-Ω

Consider a sliding surface given by

S Ω = ϑ 12 e 1 Ω + e 2 Ω (3.40)
where e 1 Ω = Ω -Ω * is speed tracking error, e 2 Ω = Ω -Ω * and ϑ 12 > 0. Therefore, the dynamic of the sliding surface S Ω is given by

ṠΩ = ϑ 12 e 2 Ω + a 1 b 1 + a 2 b 2 + a 3 b 2 -b 3 -Ω * + v q c 1 (3.41)
where

a 1 = p(L d -L q )i q J , a 2 = p(L d -L q )i d J , a 3 = pψ r J , b 1 = v d L d - R s i d L d + L q pΩi q L d , b 2 = - R s i q L q - L d pΩi d L q - ψ r pΩ L q , b 3 = f v J p(L d -L q )i d i q J + pψ r i q J - f v Ω J and c 1 = p(L d -L q )i d JL q + pψ r JL q
. Then, the control input v q is given by

v q = 1 c 1 -ϑ 12 e 2 Ω -a 1 b 1 -a 2 b 2 -a 3 b 2 + b 3 + Ω * + V st-Ω (3.42) with V st-Ω = -Kc1 Ω |S Ω | 1 2 sign(S Ω ) - t 0
Kc2 Ω sign(S Ω )dτ (3.43) where

Kc1 Ω = 2L 2 c Ω (t), Kc2 Ω = L 4 c Ω (t) 2
and according to Theorem 3.1, L c Ω (t) is an adaptive parameter given by

Lc

Ω (t) = k 1 2 c Ω |S Ω | 1 2 -γ 1 2 c Ω L 2 c Ω (t) (3.44)
with k c Ω > γ c Ω > 0. Therefore, 3.42 is an ASTWC-1 for the speed of the IPMSM.

Control loop for current-i d

A sliding surface is given by

S i d = ϑ 13 e i d + t 0 e i d dτ (3.45)
where e i d = i d -i * d is a current tracking error and ϑ 13 > 0. Moreover, the dynamic of the sliding surface S i d is given by

Ṡi d = - ϑ 13 R s i d L d + ϑ 13 pΩL q i q L d + ϑ 13 v d L d -ϑ 13 i * d + e i d (3.46)
Then, the control input v d can be chosen as follows

v d = L d ϑ 13 ϑ 13 R s i d L d - ϑ 13 pΩL q i q L d + ϑ 13 i * d -e i d + V st-i d (3.47) with V st-i d = -Kc1 i d |S i d | 1 2 sign(S i d ) - t 0 Kc2 i d sign(S i d )dτ (3.48)
where Kc1 i d = 2L 

i d (t) = k 1 2 c i d |S i d | 1 2 -γ 1 2 c i d L 2 c i d (t) (3.49)
with k c i d > γ c i d > 0. Therefore, 3.47 is an ASTWC-1 for the current-i d of the IPMSM.

Simulation result

Consider the adaptive law-1 established by Theorem 3.1 and the system (1.36)-(1.37) in closed-loop with the controllers given by (3.42) and (3.47). Then, simulation result are introduced in this section in order to show the performance of the system under the action of adaptive controllers. The parameters of the adaptive control are given in Table 3.1. The profile given by the Figure 1.7 and the parameter variation given by Figure 1.8 are considered in this test. In the first instance, it is possible to see the behavior of the adaptive gains in Figure 3.1, L i d (t) and L Ω (t), respectively. Then, considering this adaptive laws, Figure 3.3 -ASTWC-1. Behaviour of the currents i dq the speed (see Figure 3.2) has been controlled. The tracking error can show a minimum error under the action of the load torque and parameters variations. In fact, in Figure 3.1, it is possible to see the reaction of the adaptive parameter in the controller when the load torque change its value, so that the adaptive gains adjust their values in order to reject system disturbances. Moreover, in Figure 3.3, the currents i dq are introduced. The current-i d tracks a reference current equal to zero and the current-i q takes different values according to the speed and load torque. A good performance of ASTWCs-1 can be seen in this simulation test.

In Chapter 4, the ASTWCs-1 of the IPMSM will be interconnected with the AHOSMO-1 presented in Chapter 2. From this, the sensorless scheme for the IPMSM will be introduced.

Control design based on Super-Twisting approach:

Proposal-2

In this section, a second adaptive control is designed for the system given by (3.1).

Consider that at [START_REF] Gutierrez | A simplified version of adaptive super-twisting control[END_REF], an adaptive super-twisting control was proposed with reparameterized gains, taking into account the following structure: where e 1χ = χ 1 -χ ref is a tracking error, e 2χ = χ1 -χref and ϑ 21 > 0; whose dynamic is given by

Ṡ2 = ϑ 21 e 2χ + f (χ) + g(χ)u + δ(t) -χref (3.51)
Then, a control input was chosen as follows

u = 1 g(χ) -ϑ 21 e 2χ -f (χ) + χref -K G1 |S 2 | 1 2 sign(S 2 ) - t 0 K G2 sign(S 2 )dτ , (3.52)
where

K G1 = 2L G (t) and K G2 = L 2 G (t) 2
have been reparameterized based on a single parameter L G (t) > 0. Then, for the above controller, the following adaptive law was proposed

LG (t) = - k G √ 2 |L G (t) -L G ref | + L G (t) 2 |S 2 | 1 2 (L G (t) -L G ref ) + 2 L G (t) 2 |S 2 | 1 2 + 1 L G (t) t 0 L 2 G (τ )sign(S 2 )dτ -t 0 L 2 G (τ ) 2 sign(S 2 )dτ (3.53) for L G ref , k G > 0.
In this section, an adaptive law will be designed by using the same reparameterized gains. However, the proposed adaptive law in this work has been simplified. Next, an adaptive law will be designed.

Adaptive super-twisting control design

Based on [START_REF] Gutierrez | A simplified version of adaptive super-twisting control[END_REF], in this section the design of one adaptive super-twisting control is introduced in order to simplify the adaptive law given by (3.53). Then, the following equation

u = 1 g(χ) -ϑ 21 e 2χ -f (χ) + χref + V st , ( 3.54) 
with

V st = -Kc3 |S 2 | 1 2 sign(S 2 ) - t 0 Kc4 sign(S 2 )dτ (3.55)
is an Adaptive Super-Twisting Control (ASTWC-2) for the system (3.1) and the reparameterized gains, in terms of a single parameter, are given by

Kc3 = 2L c 2 (t) Kc4 = L 2 c 2 (t) 2 (3.56)
where L c 2 (t) > 0 is an adaptive parameter.

Remark 3.2. A demonstration to calculate the proposed gains has been introduced in the Appendix A (See A.2.2).

An stability analysis and an adaptive law for the parameter L c 2 (t) will be presented in the sequel. Consider that the dynamic of the sliding surface (3.51) in closed-loop with the control (3.54) is given by

Ṡ2 = -Kc3 |S 2 | 1 2 sign(S 2 ) - t 0 Kc4 sign(S 2 )dτ + δ(t) (3.57)
where the super-twisting (STW) control (3.57) can be expressed as follows 

     Ṡ2 = -Kc3 |S 2 | 1 2 sign(S 2 ) + ν 2 + δ(t) ν2 = -Kc4 sign(S 2 ) (3.
Σ ST W 2 :        ż1 2 = -2L c 2 (t)|z 1 2 | 1 2 sign(z 1 2 ) + z 2 2 ż2 2 = - L 2 c 2 (t) 2 sign(z 1 2 ) + d(t) (3.59)
with d(t) = δ(t). Consider the following change of variable

£ 1 2 = |z 1 2 | 1 2 sign(z 1 2 ) L c 2 (t) £ 2 2 = z 2 2 L 2 c 2 (t) (3.60)
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£1 2 = L c 2 (t) 2|z 1 2 | 1 2 [-2£ 1 2 + £ 2 2 ] -£ 1 2 Lc 2 (t) L c 2 (t) £2 2 = L c 2 (t) 2|z 1 2 | 1 2   -£ 1 2 + 2|z 1 2 | 1 2 d(t) L 3 c 2 (t)   -2£ 2 2 Lc 2 (t) L c 2 (t) (3.61)
To make some calculations easier, system (3.61) can be expressed in compact form as follows £c

2 = α c 2 A c -P -1 c C T c C c £ c 2 + Φ c 2 -D c 2 £ c 2 Lc 2 (t) L c 2 (t) (3.62) with α c 2 = L c 2 (t) 2|z 1 2 | 1 2
and

£ c 2 = £ 1 2 £ 2 2 T , C c = 1 0 T A c =   0 1 0 0   P c =   1 -1 -1 2   D c 2 =   1 0 0 2   Φ c 2 =     0 2|z 1 2 | 1 2 L 3 c 2 (t) [d(t)]     (3.63)
Furthermore, P c is a symmetric positive-definite matrix, solution of the following algebraic Lyapunov equation 

P c + A T c P c + P c A c -C T c C c = 0 (3.
(t) = k 1 2 c 2 |S 2 | 1 2 -γ 1 2 c 2 L 2 c 2 (t) (3.65)
is an adaptive law-2 for L c 2 (t), with k c 2 > 0 and γ c 2 > 0 chosen appropriately, where

k c 2 > γ c 2 > 0.
Then, the trajectories of Σ ST W 2 converge towards a vicinity of the origin in finite time.

Proof A Lyapunov candidate function is introduced as follows

V (£c 2 ,Lc 2 (t)) = V (£c 2 ) + V (Lc 2 (t)) (3.66) with V (£c 2 ) = £ T c 2 P c £ c 2 and V (Lc 2 (t)) = γ c 2 2 L 2 c 2 (t), for γ c 2 > 0.
Then, taking first time derivative of (3.66) and replacing the suitable expressions, it follows that

V(£c 2 ,Lc 2 (t)) =α c 2 £ T c 2 A T c 2 P c + P c A c 2 £ c 2 -2α c 2 £ T c 2 C T c C c £ c 2 -2 Lc 2 (t) L c 2 (t) £ T c 2 P c D c 2 £ c 2 + γ c 2 Lc 2 (t)L c 2 (t) + 2α c 2 £ T c 2 P c Φ c 2 (3.67) From A T c P c + P c A c = -P c + C T c C c
, it follows that equation (3.67) can be rewritten as follows

V(£c 2 ,Lc 2 (t)) = -α c 2 £ T c 2 P c £ c 2 -α c 2 £ T c 2 C T c C c £ c 2 -2 Lc 2 (t) L c 2 (t) £ T c 2 P c D c 2 £ c 2 + γ c 2 Lc 2 (t)L c 2 (t) + 2α c 2 £ T c 2 P c Φ c 2 (3.68)
Now, consider that the following inequalities are satisfied

|z 1 2 | L 2 c 2 (t) = |£ 1 2 | 2 ≤ ||£ c 2 || 2 (3.69)
and

λ min (P c )||£ c 2 || 2 ≤ V (£c 2 ) ≤ λ max (P c )||£ c 2 || 2 (3.70)
where λ min (P c ) and λ max (P c ) are the minimum and maximum singular values of P c . Moreover,

λ min (P c D c 2 )||£ c 2 || 2 ≤ £ T c 2 P c D c 2 £ c 2 ≤ λ max (P c D c 2 )||£ c 2 || 2 (3.71)
where λ min (P c D c 2 ) and λ max (P c D c 2 ) are the minimum and maximum singular values of 

P c D c 2 . Then, V(£c 2 ,Lc 2 (t)) ≤ -α c 2 £ T c 2 P c £ c 2 -α c 2 £ T c 2 C T c C c £ c 2 -2λ min (P c D c 2 )||£ c 2 || 2 Lc 2 (t) L c 2 (t) + γ c 2 Lc 2 (t)L c 2 (t) + 2α c 2 £ T c 2 P c Φ c 2 (3.72) such that, V(£c 2 ,Lc 2 (t)) ≤ -α c 2 V (£c 2 ) -α c 2 £ T c 2 C T c C c £ c 2 - Lc 2 (t) L c 2 (t) k c 2 ||£ c 2 || 2 -γ c 2 L 2 c 2 (t) +2α c 2 £ T c 2 P c Φ c 2 (3.
k c 2 ||£ c 2 || 2 -γ c 2 L 2 c 2 (t) = k 1 2 (3.75) for |£ 1 2 | = |z 1 2 | 1 2 L c 2 (t) = |S 2 | 1 2 L c 2 (t)
. Therefore, taking into account the inequality given by (3.75), equation (3.74) can be expressed as

V(£c 2 ,Lc 2 (t)) ≤ -α c 2 V (£c 2 ) -α c 2 £ T c 2 C T c C c £ c 2 + 2α c 2 £ T c 2 P c Φ c 2 -f (£c 2 ,Lc 2 (t)) Lc 2 (t) L c 2 (t)   k 1 2 c 2   |S 2 | 1 2 L c 2 (t)   -γ 1 2 c 2 L c 2 (t)   (3.76)
Then, choosing an adaptive law as follows

Lc 2 (t) =   k 1 2 c 2   |S 2 | 1 2 L c 2 (t)   -γ 1 2 c 2 L c 2 (t)   L c 2 (t) (3.77)
the following expression is obtained

V(£c 2 ,Lc 2 (t)) ≤ -α c 2 V (£c 2 ) -α c 2 £ T c 2 C T c C c £ c 2 + 2α c 2 £ T c 2 P c Φ c 2 -f (£c 2 ,Lc 2 (t))   k 1 2 c 2   |S 2 | 1 2 L c 2 (t)   -γ 1 2 c 2 L c 2 (t)   2 (3.78)
Assuming that S 2 tends to zero faster than L c 2 (t) and

-α c 2 £ T c 2 C T c C c £ c 2 < 0; for L c 2 (t) > 0. Then, (3.78) is given by V(£c 2 ,Lc 2 (t)) ≤ -α c 2 V (£c 2 ) -f (£c 2 ,Lc 2 (t)) γ c 2 L 2 c 2 (t) + 2α c 2 £ T c 2 P c Φ c 2 (3.79)
Moreover, taking into account the norm for the term 2α c 2 £ T c 2 P c Φ c 2 and Assumption 3.5, it follows that

V(£c 2 ,Lc 2 (t)) ≤ -α c 2 V (£c 2 ) + 2α c 2 ℘ 2 ||£ c 2 || 2 ||P c || -f (£c 2 ,Lc 2 (t)) γ c 2 L 2 c 2 (t) (3.80)
Now, consider the inequality (3.70), then,

V(£c 2 ,Lc 2 (t)) ≤ - L c 2 (t) 2|z 1 2 | 1 2 [1 -σ c 2 ]V (£c 2 ) -f (£c 2 ,Lc 2 (t)) γ c 2 L 2 c 2 (t) (3.81) with σ c 2 = 2℘ 2 ||P c || λ max (P c )
. The above equation can be written as

V(£c 2 ,Lc 2 (t)) ≤ - L c 2 (t) 2|z 1 2 | 1 2 Lc 2 (t) Lc 2 (t) [1 -σ c 2 ]V (£c 2 ) -f (£c 2 ,Lc 2 (t)) γ c 2 L 2 c 2 (t) (3.82)
Therefore, from (3.75), the above equation can be expressed as follows

V(£c 2 ,Lc 2 (t)) ≤ -Γ c 2 V 1 2 (£c 2 ) -f (£c 2 ,Lc 2 (t)) γ c 2 L 2 c 2 (t) (3.83) with Γ c 2 = [1 -σ c 2 ]λ 1 2 min (P c ) 2
. Now, equation (3.83) will be factorized

V(£c 2 ,Lc 2 (t)) ≤ -L c 2 (t) √ 2γ 1 2 c 2   Γ c 2 L c 2 (t) √ 2γ 1 2 c 2 V 1 2 (£c 2 ) + f (£c 2 ,Lc 2 (t)) γ 1 2 c 2 √ 2 L c 2 (t)   (3.84) Thus, selecting η 1 2 = L c 2 (t) √ 2γ 1 2 c 2 and φ c 2 = min   Γ c 2 L c 2 (t) √ 2γ 1 2 c 2 , f (£c 2 ,Lc 2 (t))   , it is possible to express the following equation V(£c 2 ,Lc 2 (t)) ≤ -η 2 2   V 1 2 (£c 2 ) + γ 1 2 c 2 √ 2 L c 2 (t)   (3.85) with η 2 2 = η 1 2 φ c 2 .
On the other side, Jensen´s inequality [START_REF] Jensen | Sur les fonctions convexes et les inégalités entre les valeurs moyennes[END_REF] is given by

[|a c 2 | m + |b c 2 | m ] 1 m ≤ |a c 2 | + |b c 2 | (3.86)
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defining a c 2 = V 1 2 (£c 2 ) , b c 2 = V 1 2
(Lc 2 (t)) and m = 2. Thus, the following inequality can be established

|V 1 2 (£c 2 ) | 2 + |V 1 2 (Lc 2 (t)) | 2 1 2 ≤ |V 1 2 (£c 2 ) | + γ 1 2 c 2 √ 2 |L c 2 (t)| (3.87) and V 1 2 (£c 2 ,Lc 2 (t)) ≤ |V 1 2 (£c 2 ) | + γ 1 2 c 2 √ 2 |L c 2 (t)| (3.88)
Finally, the dynamic of Lyapunov function can be expressed as follows

V(£c 2 ,Lc 2 (t)) ≤ -η 2 2 V 1 2 (£c 2 ,Lc 2 (t)) (3.89) 
Then, from the Lyapunov function, V(£c 2 ,Lc 2 (t)) is negative definite and ensures convergence in finite-time, for L c 2 (t) sufficiently large, satisfying η 2 2 > 0. Moreover, the comparison principle is taken into account to estimate the convergence time. Thus, considering the equation v = -η 2 2 v 1 2 and its solution defined as v(t) = (v(0)

1 2 -1 2 η 2 2 t) 2 . Then, V (£c 2 ,Lc 2 (t)) < v(t) when V (£c 2 (0),Lc 2 (0)) < v(0), such that, £ c 2 has a convergence in finite- time in an estimated time given by T 2 2 = 2V 1 2 (£c 2 (0),Lc 2 (0)) η 2 2
. Therefore, £ tends to zero as well as S 2 tends to zero in finite-time.

Control design for IPMSM

In this section, the design of controllers for the speed and the direct-axis current are presented by considering the adaptive law-2 given by Theorem 3.2.

Control loop for Ω

Consider a sliding surface given by

S Ω 2 = ϑ 22 e 1 Ω + e 2 Ω (3.90) 
where e 1 Ω = Ω -Ω * is speed tracking error, e 2 Ω = Ω -Ω * and ϑ 22 > 0. Therefore, the dynamic of the sliding surface S Ω is given by

ṠΩ 2 = ϑ 22 e 2 Ω + a 1 b 1 + a 2 b 2 + a 3 b 2 -b 3 -Ω * + v q c 1 (3.91) 
where

a 1 = p(L d -L q )i q J , a 2 = p(L d -L q )i d J , a 3 = pψ r J , b 1 = v d L d - R s i d L d + L q pΩi q L d , b 2 = - R s i q L q - L d pΩi d L q - ψ r pΩ L q , b 3 = f v J p(L d -L q )i d i q J + pψ r i q J - f v Ω J - T l J and c 1 = p(L d -L q )i d JL q + pψ r JL q .
Then, the control input v q is given by

v q = 1 c 1 -ϑ 22 e 2 Ω -a 1 b 1 -a 2 b 2 -a 3 b 2 + b 3 + Ω * + V st-Ω 2 (3.92) 
with

V st-Ω 2 = -Kc3 Ω |S Ω 2 | 1 2 sign(S Ω 2 ) - t 0 Kc4 Ω sign(S Ω 2 )dτ (3.93) where Kc3 Ω = 2L c Ω 2 (t), Kc4 Ω = L 2 c Ω 2 (t)
2 and according to Theorem 3.2, L c Ω 2 (t) is an adaptive parameter given by

Lc Ω 2 (t) = k 1 2 c Ω 2 |S Ω | 1 2 -γ 1 2 c Ω 2 L 2 c Ω 2 (t) (3.94) 
with k c Ω 2 > γ c Ω 2 > 0. Therefore, 3.92 is an ASTWC-2 for the speed of the IPMSM.

Control loop for i d

Now, a sliding surface is introduced

S i d 2 = ϑ 23 e i d + t 0 e i d dτ (3.95) 
where e i d = i d -i * d is a current tracking error and ϑ 23 > 0. Moreover, the dynamic of the sliding surface S i d is given by

Ṡi d 2 = - ϑ 23 R s i d L d + ϑ 23 pΩL q i q L d + ϑ 23 v d L d -ϑ 23 i * d + e i d (3.96)
Then, the control input v d can be chosen as follows

v d = L d ϑ 23 ϑ 23 R s i d L d - ϑ 23 pΩL q i q L d + ϑ 23 i * d -e i d + V st-i d 2 (3.97) with V st-i d 2 = -Kc3 i d |S i d 2 | 1 2 sign(S i d 2 ) - t 0 Kc4 i d sign(S i d 2 )dτ (3.98) where Kc3 i d = 2L c i d 2 (t) , Kc4 i d = L 2 c i d 2 (t)
2 and according to Theorem 3.2, L c i d 2 (t) is an adaptive parameter given by

Lc i d 2 (t) = k 1 2 c i d 2 |S i d 2 | 1 2 -γ 1 2 c i d 2 L 2 c i d 2 (t) (3.99) with k c i d 2 > γ c i d 2 > 0. Therefore, 3
.97 is an ASTWC-2 for the current-i d of the IPMSM.

Simulation results

Consider the adaptive law established by Theorem 3.2 and the system (1.36)-(1.37) in closed-loop with the controllers given by (3.92) and (3.97). Then, similarly to the previous adaptive law introduced in section 3.1.1, simulation result are illustrated in this section in order to show the performance of the system in closed-loop under the action of adaptive controllers. The parameters of the adaptive controllers (ASTWCs-2) are given in Table 3 3.97) are shown, respectively. Moreover, considering the adaptive gain for the speed controller, in Figure 3.5 is illustrated the speed tracking and its tracking error. Then, according to the adaptive parameter L Ω 2 (t), the tracking error is minimized when there are changes in the load torque, such that, it possible to see the value increase in adaptive gain in order to reduce the error. On the other hand, the currents-i dq are introduced in Figure 3.6. The behaviour of the adaptive parameter L i d 2 (t) for the current-i d control can be seen in Figure 3.4, obtaining a good performance for a current-i d reference equal to zero. Therefore, we can say that the controllers based on adaptive gains have had a satisfactory result in the presence of disturbances and parametric uncertainties. In addition, an evaluation for the proposed adaptive laws is given. The adaptive parameters L c Ω (t), L c i d (t), whose solution is given by Theorem 3.1, are evaluated at a specific time (5s). Similarly, the adaptive parameters

.2. Table 3.2 -Parameters for ASTWCs-2 Values L c Ω 2 (0) ϑ 22 γ c Ω 2 k c Ω 2 L c i d 2 (0) ϑ 23 γ c i d 2 k c i
L c Ω 2 (t), L c i d 2
(t), whose solution is given by Theorem 3.2, are evaluated at a specific time (5s), as can be seen in Table 3.3. The final value in each gain can show that the adaptive parameter (L cΩ 2 ) is more conservative for the speed controller. However, for the current controller, both strategies have achieved to adjust the gains with similar values. Therefore, it is possible to say that the adaptive law given by Theorem 3.1 provides more energy in the presence of disturbances (Load torque).

In Chapter 4, the ASTWCs-2 of the IPMSM will be interconnected with the AHOSMO-2 presented in Chapter 2. From this, the sensorless scheme for the IPMSM will be introduced. 
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Kc1 Ω Kc2 Ω L c i d (5) Kc1i d Kc2i d
24.9 1248 1.9 e 5 2.07 8.57 9.19 ASTWCs-2

L c Ω 2 (5) Kc3 Ω Kc4 Ω L c i d 2
(5) Kc3i d Kc4i d 285.4 570.7 4.07e 4 4.3 8.61 9.27

Comparative study

In this section, two comparative studies are addressed. First, considering constant gains, the proposed controllers based on reparameterized gains are compared with two similar strategies of the literature. After that, the proposed adaptive controllers are compared with three adaptive strategies of the literature. The performance of each strategy will be shown by considering simulation tests.

Comparative study with constant gains

In this work have been proposed two strategies with parameterized gains in order to tune the gains in an easier way, i.e., the gains are based on a single parameter. Then, a comparative study will be carried out by considering only constant gains, i.e., the proposed adaptive laws are not considered. Therefore, considering that ( * = Ω, i d ), the gains for the proposal 1 are given by

K c1 * = 2L 2 c * , K c2 * = L 4 c * 2
where L c * is positive constant. Similarly, the gains for the proposal 2 are given by

K c3 * = 2L c * 2 , K c4 * = L 2 c * 2 2
where L c * 2 is positive constant. Then, considering the proposed strategies in this work, two similar strategies have been taken from the literature to compare the performance of each of them.

Levant [90]

Super-twisting strategy was proposed in [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF]. However, in [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF], the supertwisting control has two gains, which results complex to tune, causing overestimation of gains. For this reason, in [START_REF] Levant | Principles of 2-sliding mode design[END_REF] was proposed an alternative to tune the gains as follows

σ L = -k 1 L |s| 1/2 sign(s) + ν L νL = -k 2 L sign(s) (3.100)
where s is the sliding surface,

k 1 L = 1.5L 1/2
L and k 2 L = 1.1L L where L L is the parameter to be tuned.

Moreno [85]

A second alternative to tune the gains of the super twisting was proposed in [START_REF] Moreno | Strict lyapunov functions for the super-twisting algorithm[END_REF]. In this strategy the super twisting is given by

σ M = -k 1 M |s| 1/2 sign(s) + ν M νM = -k 2 M sign(s) (3.101)
and its gains are defined by

k 1 M = µ M 2γ M (1 -β M )α M L M k 2 M = (β M + 1) (1 -β M ) L M
where µ M , α M , β M and γ M are positive constants, such that 0 < β M < 1 and γ M > 1, satisfying the following inequality

µ M - 2 γ M α M > α 2 M -β M (1 + µ M )α M + 1 4 (1 + µ M ) 2 (3.102)
Now, the comparative study will be introduced by considering the best values of each strategy in order to make a fair comparison.

In this way, the parameter value L c * in the proposal-1 is given by L c * = 16 and the parameter value L c * 2 in the proposal-2 is given by L c * 2 = 254. Now, considering the strategy (3.100) and applying the strategy in the speed and current controller, a value of L L = 30000 is chosen.

On the other hand, in (3.101), the chosen values are the following: µ M = 3.5, α M = 2.8, tracking is illustrated. In Figure 3.7, the proposed strategies are compared with (3.100) and in Figure 3.8, the proposed strategies are compared with (3.101). Then, it is possible show that the adjust of gains of (3.100) is not enough to attenuate the disturbance, it can be seen at 4 s (see Figure 3.7). In Figure 3.8 is possible to illustrate a similar behaviour among the strategies. On the other side, the currents i dq are illustrated in Figure 3.9 Similarly, in Figure 3.11 and Figure 3.12, the voltages-dq are introduced. A behaviour with more chattering in the signal can be seen for the strategy (3.100)(See Figure 3.11). On the other side, considering the strategy (3.101), in Figure 3.12 can be seen a similar performance of the voltages with proposed strategies. In addition, a performance index Finally, we can conclude that in (3.100), the value for L L need to be very large, which turns out to be somewhat complex to find a more precise value. Moreover, the main disadvantage in (3.101) is that it is necessary to find and adjust different parameters for satisfying the inequality and after that, gain adjustment can be done. However, the proposed strategies in this work only need to adjust one parameter satisfying the tracking with a good performance, which has allowed to design the proposed adaptive laws for the controller in the sections 3.1.1 and 3.2.1.

β M = 0.
It is worth mentioning that the choice of constant gains could generate an overestimation of the gains and cause chattering in the signals. A simulation test is shown in Figure 3.14, where the proposed strategy given in the section 3.1.1 (Proposal 1) has been considered using constant gains. The parameter value L c * can be seen with different values, 10 at the beginning, 40 at 4.5 seconds and 70 at 10 seconds, respectively. At the beginning, the gain is small and the tracking is achieved with less precision, after that, at 4.5 seconds, the gains is increased achieving a correct estimation. However, at 10 seconds, it is possible to illustrate the chattering effect for a value of L c * = 70. Similarly, this can be illustrate for the voltages and currents. 

(t) = - k G * √ 2 |L G * (t) -L ref | + L G * (t) 2 |S * | 1 2 L G * (t) -L ref ) + 2 L G * (t) 2 (|S * | 1 2 + 1 L G * (t) L 2 G * (τ )sign(S * )dτ - L 2 G * (τ ) 2
sign(S * )dτ The ASMC, ASTW and SAST are compared with the proposal 1 (ASTWC-1) given by Theorem 3.1 and the proposal 2 (ASTWC-2) given by Theorem 3.2 under the same conditions in order to evaluate the performance of each adaptive control in terms of tracking error and tuning process (number of parameters).

Simulation test has been carried out in Matlab-Simulink environment, using a sampling time of 1×10 -3 with a fixed-step ode4 solver. The profile for the speed and the disturbance (Load Torque) are given by Figure 1.7 and the parameters used in the adaptive strategies 

γ i d = 2, µ i d = 0.1, ϵ i d = 2, ωΩ = 5, γ Ω = 2, µ Ω = 0.1, ϵ Ω = 2. SAST: k Gi d = 15, k GΩ = 10, L ref = 0.1. ASTWC-1: k c i d = 1, γ c i d = 0.1, k c Ω = 90, γ c Ω = 0.05. ASTWC-2: k c i d 2 = 100, γ c i d 2 = 0.06, k c Ω 2 = 200
, γ c Ω 2 = 0.001. In Figure 3.16, the Adaptive Sliding Mode Controller (ASMC) is addressed. An increase in the chattering can be seen in the voltages. It has been improved in the Adaptive Super Twisting (ASTW)(See Figure 3.17). However, to get good results, it is necessary to adjust different parameters in the adaptive law. Then, in order to reduce the number of parameters for tuning the adaptive controller, a Simplified Adaptive Super Twisting (SAST) is illustrated in Figure 3.18 achieving good results in the tracking errors. However, the structure of the adaptive law is complex. Therefore, considering a reparameterization of gains, similarly to SAST, in this work an effort has been made to simplify adaptive law, achieving better results, as shown in Figure 3.19 and Figure 3.20, ASTWC-1 and ASTWC-2, respectively. The tracking errors has been greatly decreased as well as the time of convergence. Moreover, the adaptive laws only need two parameters to be adjusted, similarly as the SAST. Nevertheless, the structure is less complex.

In order to compare the strategies, a performance index, Integral Absolute Error (IAE), is considered. From Figure 3.21, it can be concluded that the two proposed strategies 

Conclusion

In this chapter, two adaptive controllers based on super-twisting approach have been introduced. The gains of the controllers have been reparameterized in terms of a single parameter to reduce the tuning time. From reparameterized gains, an adaptive law was designed for each controller in order to avoid overestimation of gains and the classical chattering. Simulation tests have been carried out in closed-loop. Some tests were performed to justify the use of adaptive laws. Moreover, considering constant and adaptive gains, a comparative study was carried out taking into account some important results from the literature, to show the performance of each of them with respect to the proposed strategies, so that the proposed strategies can show an easier adjustment with good performance, effectiveness and a less complex structure.
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Now, adding and subtracting the term c 1 v q (x) in the sliding surface, it follows that

ṠΩ = ϑ 12 e 2 Ω + a 1 b 1 + a 2 b 2 + a 3 b 2 -b 3 -Ω * + c 1 v q (x) + c 1 [v q (x) -v q (x)] (4.2)
Notice that the term c 1 [v q (x) -v q (x)] is Lipschitz, i. e., there exists a positive constant

µ 11 such that ||c 1 [v q (x) -v q (x)]|| ≤ µ 11 ||x -x||.
Then, applying the control input v q (x) in (4.2), the dynamic of the sliding surface is given by

ṠΩ = -2L 2 c Ω (t)|S Ω | 1 2 sign(S Ω ) - t 0 L 4 c Ω (t) 2 sign(S Ω )dτ + c 1 [v q (x) -v q (x)] + δ Ω (t) (4.
3)

The dynamic of S Ω can be expressed as follows

       ṠΩ = -2L 2 c Ω (t)|S Ω | 1/2 sign(S Ω ) + ν Ω + δ Ω (t) + c 1 [v q (x) -v q (x)] νΩ = - L 4 c Ω (t) 2 sign(S Ω ) (4.4)
Now, defining the following change of coordinates Υ 1 Ω = S Ω and Υ 2 Ω = ν Ω + δ Ω (t). It follows that

Υ1 Ω = -2L 2 c Ω (t)|Υ 1 Ω | 1/2 sign(Υ 1 Ω ) + Υ 2 Ω + c 1 [v q (x) -v q (x)] Υ2 Ω = - L 4 c Ω (t) 2 sign(Υ 1 Ω ) + d Ω (t) (4.5)
with d Ω (t) = δΩ (t). To analyze the stability of the system (4.5), consider the following change of coordinates as follows

z 1 Ω = Υ 1 Ω L 2 c Ω (t) z 2 Ω = Υ 2 Ω L 2 c Ω (t) . ( 4.6) 
whose dynamics are given by

ż1 Ω = -2L c Ω (t)|z 1 Ω | 1 2 sign(z 1 Ω ) + z 2 Ω + c 1 [v q (x) -v q (x)] L 2 c Ω (t) - 2z 1 Ω Lc Ω (t) L c Ω (t) ż2 Ω = - L 2 c Ω (t) 2 sign(z 1 Ω ) + d Ω (t) L 2 c Ω (t) - 2z 2 Ω Lc Ω (t) L c Ω (t) (4.7)
After that, in order to represent system in a simple form, a new change of variable is introduced as follows

£ 1 Ω = |z 1 Ω | 1 2 sign(z 1 Ω ) £ 2 Ω = z 2 Ω L c Ω (t) (4.8)
then, the dynamical behavior, in the new coordinates, is given by

£1 Ω = L c Ω (t) 2|z 1 Ω | 1 2 -2£ 1 Ω + £ 2 Ω + c 1 [v q (x) -v q (x)] L 3 c Ω (t) -£ 1 Ω Lc Ω (t) L c Ω (t) £2 Ω = L c Ω (t) 2|z 1 Ω | 1 2   -£ 1 Ω + 2|z 1 Ω | 1 2 d Ω (t) L 4 c Ω (t)   -3£ 2 Ω
Lc Ω (t)

L c Ω (t) (4.9)
which can be represented in a compact form as follows

£Ω = α Ω A Ω -P -1 Ω C T Ω C Ω £ Ω + Φ Ω -N Ω £ Ω Lc Ω (t) L c Ω (t) (4.10) with α Ω = L c Ω (t) 2|z 1 Ω | 1 2 , £ Ω = £ 1 Ω £ 2 Ω T , C Ω = 1 0 , A Ω =   0 1 0 0   , P Ω =   1 -1 -1 2   , N Ω =   1 0 0 3   , Φ Ω =       c 1 [v q (x) -v q (x)] L 3 c Ω (t) 2|z 1 Ω | 1 2 L 4 c Ω (t) [d Ω (t)]      
, where, from Assumption 3.3, the nonlinear term Φ Ω satisfies the following inequality,

||Φ Ω || ≤ ς 11 ||£ Ω || for ς 11 > 0.
Following the same steps of the previous analysis, consider the control input v d , expressed in terms of the estimates as follows 

v d (x) = L d ϑ 13   ϑ 13 R s îd L d - ϑ 13 p ΩL q îq L d + ϑ 13 i * d -e i d -2L 2 c i d (t)|S i d | 1 2 sign(S i d ) - t 0 L 4 c i d (t)
d = - ϑ 13 R s i d L d + ϑ 13 pΩL q i q L d + ϑ 13 L d v d (x) -ϑ 13 i * d + e i d + ϑ 13 L d [v d (x) -v d (x)] (4.13)
where the term 

ϑ 13 L d [v d (x) -v d (x)] is
d = -2L 2 c i d (t)|S i d | 1 2 sign(S i d ) - t 0 L 4 c i d (t) 2 sign(S i d )dτ + ϑ 2 L d [v d (x) -v d (x)] + δ i d (t) (4.14)
which can be represented as follows 

       Ṡi d = -2L 2 c i d (t)|S i d | 1/2 sign(S i d ) + ν i d + δ i d (t) + ϑ 2 L d [v d (x) -v d (x)] νi d = - L 4 c i d (t)
i d = -2L 2 c i d (t)|Υ 1 i d | 1/2 sign(Υ 1 i d ) + Υ 2 i d + ϑ 2 L d [v d (x) -v d (x)] Υ2 i d = - L 4 c i d (t) 2 sign(Υ 1 i d ) + d i d (t) (4.16) 
with d i d (t) = δi d (t). Then, from (4.16), consider the following change of coordinates,

z 1 i d = Υ 1 i d L 2 c i d (t) and z 2 i d = Υ 2 i d L 2 c i d (t)
, whose dynamics are given by

ż1 i d = -2L c i d (t)|z 1 i d | 1 2 sign(z 1 i d ) + z 2 i d + ϑ 13 L d [v d (x) -v d (x)] L 2 c i d (t) - 2z 1 i d Lc i d L c i d (t) ż2 i d = - L 2 c i d (t) 2 sign(z 1 i d ) + d i d (t) L 2 c i d (t) - 2z 2 i d Lc i d (t) L c i d (t) (4.17)
After that, a new change of variable is introduced as

£ 1 i d = |z 1 i d | 1 2 sign(z 1 i d ) £ 2 i d = z 2 i d L c i d (t) (4.18)
whose dynamics are given by

£1 i d = L c i d (t) 2|z 1 i d | 1 2   -2£ 1 i d + £ 2 i d + ϑ 13 L d [v d (x) -v d (x)] L 3 c i d (t)   -£ 1 i d Lc i d (t) L c i d (t) £2 i d = L c i d (t) 2|z 1 i d | 1 2   -£ 1 i d + 2|z 1 i d | 1 2 d i d (t) L 4 c i d (t)   -3£ 2 i d Lc i d (t) L c i d (t) (4.19)
Then, system (4.19) can be rewritten in a compact form as follows

£i d = α i d A i d -P -1 i d C T i d C i d £ i d + Φ i d -N i d £ i d Lc i d (t) L c i d (t) (4.20) with α i d = L c i d (t) 2|z 1 i d | 1 2 , £ i d = £ 1 i d £ 2 i d T , C i d = 1 0 , A i d =   0 1 0 0   , P i d =   1 -1 -1 2   , N i d =   1 0 0 3   , Φ i d =        ϑ 13 L d [v d (x) -v d (x)] L 3 c i d (t) 2|z 1 i d | 1 2 L 4 c i d (t) [d i d (t)]       
.

From Assumption 3.3, the term Φ i d is Lipschitz, i.e. there exists ς 12 > 0, such that

||Φ i d || ≤ ς 12 ||£ i d || .
Then, considering the adaptive observer-1 given in section 2.2.1 and the adaptive control-1 given in section 3.1.1 the dynamics in closed-loop, controller-observer, are established as follows If ∀t > T 1 , such that ξ tend to zero, then, e i tend to zero. Therefore, from Theorem 2.1, the observer converges in finite time to zero, it follows that the terms c 1 [v q (x) -v q (x)] and

                     ξ = α o A o -P -1 o C T o C o ξ + Φ o -N o ξ Lo (t) L o (t) £Ω = α Ω A Ω -P -1 Ω C T Ω C Ω £ Ω + Φ Ω -N Ω £ Ω Lc Ω (t) L c Ω (t) £i d = α i d A i d -P -1 i d C T i d C i d £ i d + Φ i d -N i d £ i d Lc i d (t) L c i d (t)
ϑ 13 L d [v d (x) -v d (x)
] contained in Φ Ω and Φ i d , respectively; tend to zero in finite time.

Therefore, the system given by (3.16) is obtained. Finally, from the same procedure given in the proof of the Theorem 3.1, the stability of the closed-loop system is proved.

Simulation and experimental results: Scheme 1

In this section, simulation and experimental results have been evaluated in order to show the performance of the proposed strategy. The adaptive observer introduced in section 2.2.1 and the adaptive control introduced in section 3.1.1 have been interconnected to illustrate the performance of the control in closed-loop under the action of the observer estimates, i.e., controller+observer (ASTWC-1 + AHOSMO-1). A scheme of the proposed sensorless control-1 is shown in 

Simulation tests

measurable currents-i αβ with a power noise of 1 × 10 -7 in order to illustrate a realistic situation. The parameter variation given in Figure 1.8 and the profile given in Figure 1.7 are considered. Therefore, from simulations, the behaviour of adaptive law L o for the its estimation error are plotted. Small overshoots can be seen under the load torque variations. However, the performance of the adaptive observer is good under these variations.

On the other hand, the estimated angular position compared with the real angular position is plotted in Figure 4.4. It easy to see that angular position error converges to zero ensuring observability for a wide speed range, i.e., high, medium and close to zero. In Figure 4.5, the estimation of acceleration is plotted and an estimation with noise can be seen due to the application of the additive noise in the currents-i αβ . Now, taking into account the estimates of the observer, the controllers of speed and current-i d are applied 

Experimental test

The proposed strategy is implemented taking into account the profiles defined in Figure 1.7. Moreover, as previously mentioned, during the experiments an encoder is used to measure the real angular position. Then, considering measured position, a Kalman-filter is applied in order to calculate the rotor speed. Therefore, from this information, it is possible to know if the proposed observer does a correct estimation and the controller a correct reference tracking. Now, considering the proposed adaptive observer, the speed, angular position and acceleration are going to be estimated to control the speed and current-i d of IPMSM using adaptive controllers. A comparison is carried out with the same proposed strategy using constant gains in order to see the improvement with the implementation of adaptive gains. It is worth mentioning that during the experiments with constant gains, the constant gains have been chosen in order to avoid damaging the hardware. Experimental validation has been carried out considering the following parameters: for the case with constant gains, the observer is implemented with L o = 4.5; ϑ 12 = 180 and L c Ω = 35 in the speed controller; and ϑ 13 = 20 and L c i d = 20 in the current-i d controller. On the other hand, the adaptive observer and adaptive control parameters are given in Table 4.2. The behaviour of the Then, the speed and the angular position have been estimated using constant gain and adaptive gain as can be shown in Figure 4.9 and Figure 4.10, respectively. At first glance, it is not possible to see the improvement in detail through speed estimation error and angular error. However, in Figure 4.11, in order to show numerically the improvement, a performance index is computed: Integral Absolute Error (IAE). Therefore, it possible to see that proposed adaptive observer improves the estimation adjusting the gains in order to obtain a minimum error. On the other side, the estimation of the acceleration is shown in Figure 4.12 using constant gains and adaptive gains. Then, the estimation with adaptive gains has an improvement avoiding overestimation with large gains and reducing the chattering. Now, the estimates of the observer have been used in the controllers to control the machine in closed-loop. In Figure 4.13, the speed tracking and its tracking error are shown. A comparative study using constant gains and adaptive gains is given. It is clear that an improvement can be seen numerically in Figure 4.11 using the adaptive gains in the scheme. On the other hand, the currents-i dq are plotted in Therefore, as can be seen the proposed strategy only requires the current-i αβ signals for extracting the angular position estimation error e θe , directly, without any additional information or elements, then, e θe can be used in the observer based on the virtual system to estimate angular position, speed and acceleration, such that the proposed strategy has been validated experimentally, with good effectiveness at low, medium and high speed in closed loop. Moreover, as can be seen in simulation, the tracking errors and estimation errors show the effect of adding white noise. It is clear that the chattering has been attenuated. However, the effects of white noise are present in the signals. On the other hand, during the experimental test, these errors are more important compared to those obtained Proof: Since the control input v q (x) depends on estimates Ω, îd and îq ; and taking into account the sliding surface given by (3.91), then the dynamic of the sliding surface is given as follows

ṠΩ 2 = ϑ 22 e 2 Ω + a 1 b 1 + a 2 b 2 + a 3 b 2 -b 3 -Ω * + c 1 v q (x) (4.22)
Now, adding and subtracting the term c 1 v q (x) in the sliding surface, it follows that

ṠΩ 2 = ϑ 22 e 2 Ω + a 1 b 1 + a 2 b 2 + a 3 b 2 -b 3 -Ω * + c 1 v q (x) + c 1 [v q (x) -v q (x)] (4.23)
Notice that the term c 1 [v q (x) -v q (x)] is Lipschitz, i. e., there exists a positive constant

µ 21 such that ||c 1 [v q (x) -v q (x)]|| ≤ µ 21 ||x -x||.
Applying the control input v q (x) in the above system, the dynamic of the sliding surface 

Ω 2 = -2L c Ω 2 (t)|S Ω 2 | 1 2 sign(S Ω 2 )- t 0 L 2 c Ω 2 (t) 2 sign(S Ω 2 )dτ +c 1 [v q (x)-v q (x)]+δ Ω (t) (4.24)
Then, the dynamic of S Ω 2 can be expressed as follows

       ṠΩ 2 = -2L c Ω 2 (t)|S Ω 2 | 1 2 sign(S Ω 2 ) + ν Ω 2 + δ Ω 2 (t) + c 1 [v q (x) -v q (x)] νΩ 2 = - L 2 c Ω 2 (t) 2 sign(S Ω 2 ) (4.25)
Now, defining the following change of coordinates z 1 Ω 2 = S Ω 2 and z 2 Ω 2 = ν Ω 2 + δ Ω (t). The system (4.25) is given by

ż1 Ω 2 = -2L c Ω 2 (t)|z 1 Ω 2 | 1 2 sign(z 1 Ω 2 ) + z 2 Ω 2 + c 1 [v q (x) -v q (x)] ż2 Ω 2 = - L 2 c Ω 2 (t) 2 sign(z 1 Ω 2 ) + d Ω (t) (4.26)
with d Ω (t) = δΩ (t). Now, a change of variable is introduced

£ 1 Ω 2 = |z 1 Ω 2 | 1 2 sign(z 1 Ω 2 ) L c Ω 2 (t) £ 2 Ω 2 = z 2 Ω 2 L 2 c Ω 2 (t) (4.27)
then, the dynamical behavior of system (4.27), in the new coordinates, is given by

£1 Ω 2 = L c Ω 2 (t) 2|z 1 Ω 2 | 1 2   -2£ 1 Ω 2 + £ 2 Ω 2 + c 1 [v q (x) -v q (x)] L 2 c Ω 2 (t)   -£ 1 Ω 2 Lc Ω 2 (t) L c Ω 2 (t) £2 Ω 2 = L c Ω 2 (t) 2|z 1 Ω 2 | 1 2   -£ 1 Ω 2 + 2|z 1 Ω 2 | 1 2 d Ω (t) L 3 c Ω 2 (t)   -2£ 2 Ω 2 Lc Ω 2 (t) L c Ω 2 (t) (4.28)
which can be represented in a compact form as follows

£Ω 2 = α Ω 2 A Ω 2 -P -1 Ω 2 C T Ω 2 C Ω 2 £ Ω 2 + Φ Ω 2 -D Ω 2 £ Ω 2 Lc Ω 2 (t) L c Ω 2 (t) (4.29) with α Ω 2 = L c Ω 2 (t) 2|z 1 Ω 2 | 1 2
and

£ Ω 2 =   £ 1 Ω 2 £ 2 Ω 2   A Ω 2 =   0 1 0 0   C Ω 2 = 1 0 (4.30) P Ω 2 =   1 -1 -1 2   D Ω 2 =   1 0 0 2   Φ Ω 2 =        c 1 [v q (x) -v q (x)] L 2 c Ω 2 (t) 2|z 1 Ω 2 | 1 2 L 3 c Ω 2 (t) [d Ω (t)]        (4.31)
From Assumption 3.5, the nonlinear term Φ Ω 2 satisfies the following inequality,

||Φ Ω 2 || ≤ ς 21 ||£ Ω 2 || for ς 21 > 0.
Following the same steps of the previous analysis, consider the control input v d , expressed in terms of the estimates as follows

v d (x) = L d ϑ 23   ϑ 23 R s îd L d - ϑ 23 p ΩL q îq L d + ϑ 23 i * d -e i d -2L c i d 2 (t)|S i d 2 | 1 2 sign(S i d 2 ) - t 0 L 2 c i d 2 (t) 2 sign(S i d 2 )dτ   (4.32) 
Then, from sliding surface (3.96) and the control input (4.32) depending on the estimated states, the dynamic of the sliding surface is given by Ṡi

d 2 = - ϑ 23 R s i d L d + ϑ 23 pΩL q i q L d + ϑ 23 L d v d (x) -ϑ 23 i * d + e i d (4.33)
Adding and subtracting the term

ϑ 23 L d v d (x) in (4.33), it follows that Ṡi d 2 = - ϑ 23 R s i d L d + ϑ 23 pΩL q i q L d + ϑ 23 L d v d (x) -ϑ 23 i * d + e i d + ϑ 23 L d [v d (x) -v d (x)] (4.34)
where the term

ϑ 23 L d [v d (x) -v d (x)] is Lipschitz, i.e., there exist a positive constant µ 22 such that || ϑ 23 L d [v d (x) -v d (x)]|| ≤ µ 22 ||x -x||.
Moreover, applying the control input v d (x) in the above system, the dynamic of the sliding 

Ṡ i d 2 = -2L c i d 2 (t)|S i d 2 | 1 2 sign(S i d 2 ) - t 0 L 2 c i d 2 (t) 2 sign(S i d 2 )dτ + ϑ 23 L d [v d (x) -v d (x)] + δ i d (t) (4.35) which can be represented as follows          Ṡi d 2 = -2L c i d 2 (t)|S i d 2 | 1 2 sign(S i d 2 ) + ν i d 2 + δ i d (t) + ϑ 23 L d [v d (x) -v d (x)] νi d 2 = - L 2 c i d 2 ( 
= -2L c i d 2 (t)|z 1 i d 2 | 1 2 sign(z 1 i d 2 ) + z 2 i d 2 + ϑ 23 L d [v d (x) -v d (x)] ż2 i d 2 = - L 2 c i d 2 (t) 2 sign(z 1 i d 2 ) + d i d (t) (4.37) with d i d (t) = δi d (t) Now, a new change of variable is introduced £ 1 i d 2 = |z 1 i d 2 | 1 2 sign(z 1 i d 2 ) L c i d 2 (t) £ 2 i d 2 = z 2 i d 2 L 2 c i d 2 (t) (4.38)
whose dynamics are given by

£1 i d 2 = L c i d 2 (t) 2|z 1 i d 2 | 1 2   -2£ 1 i d 2 + £ 2 i d 2 + ϑ 23 L d [v d (x) -v d (x)] L 2 c i d 2 (t)   -£ 1 i d 2 Lc i d 2 (t) L c i d 2 (t) £2 i d 2 = L c i d 2 (t) 2|z 1 i d 2 | 1 2   -£ 1 i d 2 + 2|z 1 i d 2 | 1 2 d i d (t) L 3 c i d 2 (t)   -2£ 2 i d 2 Lc i d 2 (t) L c i d 2 (t) (4.39) 
Then, system (4.39) can be rewritten in a compact form as follows

£i d 2 = α i d 2 A i d 2 -P -1 i d 2 C T i d 2 C i d 2 £ i d 2 + Φ i d 2 -D i d 2 £ i d 2 Lc i d 2 (t) L c i d 2 (t) (4.40) with α i d 2 = L c i d 2 (t) 2|z 1 i d 2 | 1 2
and

£ i d 2 =   £ 1 i d 2 £ 2 i d 2   A i d 2 =   0 1 0 0   C i d 2 = 1 0 (4.41) P i d 2 =   1 -1 -1 2   D i d 2 =   1 0 0 2   Φ i d 2 =         ϑ 23 L d [v d (x) -v d (x)] L 2 c i d 2 (t) 2|z 1 i d 2 | 1 2 L 3 c i d 2 (t) [d i d (t)]         (4.42)
From Assumption 3.5, the term Φ i d 2 is Lipschitz, i.e. there exists ς 22 > 0, such that

||Φ i d 2 || ≤ ς 22 ||£ i d 2 ||.
Then, considering the adaptive observer given in section 2.3.1 and the adaptive control given in section 3.2.1, the dynamics in closed-loop, controller-observer, are establishes as follows

                       ξo 2 = α o 2 A o 2 -P -1 o 2 C T o 2 C o 2 ξ o 2 + Φ o 2 -D o 2 ξ o 2 Lo 2 (t) L o 2 (t) £Ω 2 = α Ω 2 A Ω 2 -P -1 Ω 2 C T Ω 2 C Ω 2 £ Ω 2 + Φ Ω 2 -D Ω 2 £ Ω 2 Lc Ω 2 (t) L c Ω 2 (t) £i d 2 = α i d A i d 2 -P -1 i d 2 C T i d 2 C i d 2 £ i d 2 + Φ i d 2 -D i d 2 £ i d 2 Lc i d 2 (t) L c i d 2 (t) (4.43) 
If ∀t > T 1 2 , such that ξ o 2 tend to zero, then, e i 2 tend to zero. Therefore, from Theorem 2.2, the observer converges in finite time to zero, it follows that the terms c 1 [v q (x) -v q (x)] and

ϑ 23 L d [v d (x) -v d (x)] contained in Φ Ω 2 and Φ i d 2
, respectively; tend to zero in finite time.

Therefore, the system given by (3.62) is obtained. Finally, from the same procedure given in the proof of the Theorem 3.2, the stability of the closed-loop system is proved.

Simulation and experimental results: Scheme 2

In this section, simulation and experimental results have been evaluated in order to show the performance of the proposed strategy. The adaptive observer introduced in section 2.3.1 (AHOSMO-2) and the adaptive control introduced in section 3. 

Simulation test

Simulation test is carried out in Matlab-Simulink environment, using a sampling time of 1 × 10 -3 with a fixed-step ode4 solver. Moreover, white noise was added in the measurable currents-i αβ with a power noise of 1 × 10 -7 in order to illustrate a realistic situation. Moreover, the adaptive laws have been implemented by considering the parameters of the Considering the adaptive laws, in Figure 4.17, the speed estimation and its estimation error are introduced, showing a minimum error. In Figure 4.18, the angular position Moreover, the currents-i dq are plotted in Figure 4.21. Therefore, from the illustrations, it is possible to see that the behaviour of the adaptive laws with the system in closed loop (controller+observer) have a good performance. Moreover, the extraction of e θe introduced in section 2.1 has been achieved successfully.

Experimental test

One experimental test is addressed to see in real time the performance of the strategy. The proposed strategy is implemented taking into account the profiles defined in Figure 1.7. Moreover, as previously mentioned, a sensor (encoder) has been used to measure the real angular position in the experiments. From this information, a Kalman-filter is applied The estimates of the observer are interconnected in the controllers to control the speed and the current of the IPMSM. In Figure 4.26, the tracking of the speed and the tracking error are showed. The tracking error shows that the performance of the proposed strategy is good and the tracking is ensured with good accuracy even close to zero.

Moreover, the tracking of the current i d and the behaviour of the current i q are showed in Figure 4.27. The current i d tracks a reference equal to 0, and the current i q has a As can be seen the proposed strategy only requires the angular position estimation error e θe to estimate angular position, speed and acceleration using an observer based on a parameter free virtual system. From this information, the sensorless scheme is possible. The proposed strategy has been validated experimentally, with good effectiveness at low, medium and high speed in closed loop.

On the other hand, it is possible to see in simulation that the tracking errors and estimation errors show the effect of adding white noise. It is clear that the chattering has been attenuated. However, the effects of white noise are present in the signals. On the other hand, during the experimental test, these errors are more important compared to those obtained in the simulation. It is well-known that in the experiments the effect caused by external disturbances (inverter effect) and the noise appears in the measured signals. However, the proposed strategy works well and attenuate the effects of chattering, uncertain parameters and unmodeled dynamics.

Conclusion

In this chapter, experimental and simulation tests were introduced to show the performance of the proposed sensorless control. The experimental tests have been carried out in Laboratoire des Sciences du Numérique de Nantes (LS2N) of the Ecole Centrale De Nantes, France. The extraction of the angular position estimation error has been successfully achieved from the measurable currents i αβ and the observers have been implemented obtaining good results. Then, angular position, speed and acceleration have been estimated. These estimates have been interconnected with the controller in closed-loop to control the electrical machine. In this way, the sensorless control applied in the experimental setup has shown a good performance under a wide speed range, even very close to zero.

An stability analysis under the action of the observer estimates has been introduced. This analysis is simpler due to that the separation principle holds.

CONCLUSION

In this work a new alternative for sensorless control of the IPMSM was proposed. The main contributions of this work were the following:

-A strategy to extract the angular error e θe was proposed, and based on a virtual system without parameters of the IPMSM, two Adaptive High-Order Sliding Mode Observers (AHOSMOs) have been designed to estimate angular position, speed and acceleration over a wide speed range, and overcome the issues caused by parametric uncertainties. The angular position estimation error is independent of all machine parameters and high frequency signal injection characteristics. Therefore, this improved the feasibility of design, which reduces the cost of the implementation.

-Two Adaptive Super-Twisting Controllers (ASTWCs) were designed to track a desired speed reference and a desired d-axis current reference. These controllers were interconnected with the AHOSMOs achieving a sensorless control strategy.

-The gains for both, control and observer, were reparameterized in terms of a single parameter to reduce the tuning time. The main advantage of this strategy is that adaptive laws are easy to implement, which avoids overestimation of gains that increases chattering, reduces time to adjust gains, and reduces damage to the system.

-The closed-loop stability analysis under the action of the observer has been improved because the separation principle holds.

This work has been presented as follows:

In the first place, a state of the art of electrical machines and their main characteristics, as well as their applications, where control is required, was presented. After this, the two main classifications of sensorless control methods were presented, as well as their advantages and disadvantages. Then, the organization of the thesis was addressed. In addition, a list of publications in indexed journals and conferences has been presented.

In chapter one, a summary of the different types of PMSM was presented, as well as Part , Chapter 4 -Conclusion and future works a brief introduction to the IPMSM. Considering that the dynamic model of the IPMSM is necessary for the design of control strategies, the modeling of the IPMSM was carried out. In addition, the problem statement of this work is presented in order to justify why the thesis project is carried out as well as the objectives to follow. On the other hand, in order to test the performance of the different proposals of this thesis, the benchmark used in simulation and experimental tests is provided, as well as the description of the hardware of the experimental setup.

In chapter two, a new method to extract the angular position estimation error e θe in PMSM was introduced. The information of e θe was extracted by considering the currents i αβ without machine model information. The extraction of e θe has been used to design observers based on a virtual system without machine parameters in order to overcome the issues caused by parametric uncertainties. Then, two adaptive observers have been designed. Both adaptive observers have been proposed with reparameterized gains, i.e., the gains depend on a single parameter. Based on this reparametrization, an adaptive law was designed for each observer. The designed observers have been applied considering the extraction of the angular error to estimate the angular position, speed and acceleration. Simulation results and a comparative study were introduced.

In chapter three, two adaptive controls based on super twisting were proposed. Both adaptive controllers have the reparameterized gains in terms of a single parameter such as the proposed adaptive observers in chapter two. This has allowed designing an adaptive law for each control in order to improve its performance, avoiding large gains and saving tuning time. Simulation results were presented to show the performance of this strategies. Moreover, considering some results of the literature, a comparative study was introduced.

In chapter four, two scheme of sensorless control were introduced. The interconnection among the proposed observers and controllers is carried out to show the performance of the system under the action of observer estimates. Then, two sensorless controllers were applied to the IPMSM. Simulation and experimental results have been illustrated showing a good performance and effectiveness for a wide speed range, showing that the extraction of e θe has been made successfully. Therefore, thanks to the virtual system without parameters of the IPMSM, greater precision has been achieved in the estimates. It is worth mentioning that thanks to the robustness of the sliding modes, good results have been obtained in the tracking of references despite uncertainties and disturbance.

In this work, a new alternative to sensorless control has been introduced. Therefore, based on the presented alternative, it is possible to show that to extract the angular error of the electrical motor, it is not always necessary to use dynamic equations of the motor, allowing to design observers without the use of a dynamic model of the machine. Some perspectives are given below: For the design of observers in the sensorless control of electrical motor, it is necessary to know the initial condition of the motor rotor, which is an open problem that requires further study to improve the performance of the proposed schemes. In addition, when the electrical machine is stopped and it is desired to know the angular position for the control application, it is necessary to inject high frequency signals to excite the system, which generates noise in the signals and the need to use filters. For this reason, it is necessary to investigate more about the elimination of filters and high frequency injection to avoid phase shifts in the obtained signal as well as acoustic noise, so that the speed control at zero speed can be less complex. and taking into account the dynamics of the estimation errors, the following change of variable is established as follows ) 2 K3,1

ζ 1 = e 1 L 2 o (
L 5 o (t)             =      3 3 1      (A.17)
Therefore, the gains for the observer are computed and reparameterized in terms of L o (t) as follows K1,1 = 3L 

A.1.2 Adaptive observer: Proposal 2

In this section, a second observer is designed for a class of nonlinear system given by (A.8). The gains of the proposed observer will be determined and computed in terms of a single parameter. Moreover, in order to simplify the state space representation, the following new change of variable is introduced

£ 1 = |z 1 | 1 2 sign(z 1 ) £ 2 = z 2 L c (t) (A.39)
and the dynamical system can be expressed by using the new variables as follows 

£1 = L c (t) 2|z 1 | 1 2 - Kc1 L 2 c (t) £ 1 + £ 2 -£ 1 Lc (t) L c (t) £2 = L c (t) 2|z 1 | 1 2   - 2 
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 1 Figure 1 -Control of an electric motor by using encoder
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 2 Figure 2 -Control of an electric motor without the use of an encoder (sensorless case)
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 11 Figure 1.1 -PMSM rotor permanent magnets layout: a) Surface permanent magnets.
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 112 Figure 1.2 -PMSM rotor permanent magnets layout: b) Inset permanent magnets.

Figure 1 . 3 -

 13 Figure 1.3 -PMSM rotor permanent magnets layout: c) Flux concentrating.
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 14 Figure 1.4 -PMSM rotor permanent magnets layout: d) Interior permanent magnets.
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 2 Concordia and Park transformationssimplify the study of electric motors.
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 7 where v abc = v a v b v c T represents stator voltages, R s is stator resistance, i abc = i a i b i c T represents stator currents and ψ abc = ψ a ψ b ψ c T represents stator fluxes.
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 17 Figure 1.7 -Load torque and speed profiles used during experimental and simulation tests
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 18 Figure 1.8 -Parameter variations in simulation tests
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 191 Figure 1.9 -Load torque and speed profiles considering a low-speed region with a very small load torque.
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 21 Figure 2.1 -Different scenarios to see the behavior of speed, electromagnetic torque and current-i q .
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 22 Figure 2.2 -Scheme of the proposed AHOSMO-1.
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 21 Parameters for AHOSMO-1 Values L o (0) γ 0 k o 1.5 0.003 120 observer has a good performance during the estimation.
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 23 Figure 2.3 -AHOSMO-1. Rotor angular position estimation and its estimation error
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 2 Figure 2.4 -AHOSMO-1. Rotor speed estimation and speed estimation error
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 25 Figure 2.5 -AHOSMO-1. Estimation of acceleration (a) and behaviour of the adaptive law (b)
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 26 Figure 2.6 -Scheme of the proposed AHOSMO-2.
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 27 Figure 2.7 -AHOSMO-2. Rotor angular position estimation and its angular error
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 28 Figure 2.8 -AHOSMO-2. Rotor speed estimation and speed estimation error
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 29 Figure 2.9 -AHOSMO-2. Estimation of the acceleration (a) and behaviour of the adaptive law (b)
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 2 Figure 2.10 -Simulation test: Observer based on back-electromotive force
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 2 Figure 2.12 -Simulation test: Observer based on high frequency signal injection
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 213 Figure 2.13 -Performance index for the angular position estimation error
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 214 Figure 2.14 -Performance index for speed estimation error
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 215 Figure 2.15 -Simulation test: Initial condition for the speed (Top) and initial condition for the angular position (Bottom)
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  , where is possible to illustrate how
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 2 Figure 2.16 -AHOSMO-1. State estimation using different constant gains
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 5 Figure 2.18 -Simulation test: Convergence of proposed adaptive observer and behaviour of current i q , applying different profiles of small load Torque and low-speed.
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 219 Figure 2.19 -Experimental test: Convergence of proposed adaptive observer and behaviour of current i q , applying different profiles of small load Torque and low-speed.
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 31 The nonlinear terms f (χ) and g(χ) are globally Lipschitz with respect to χ[START_REF] Bornard | A high gain observer for a class of uniformly observable systems[END_REF]. Now, a sliding surface S is defined as follows S = ϑ 11 e 1χ + e 2χ(3.2) 

17 ) 3 . 3 .Theorem 3 . 1 .

 173331 AssumptionThe terms in Φ c are uniformly bounded with respect to u and locally Lipschitz with respect to £, i.e., ||Φ c || ≤ ℘||£||, for ℘ > 0. Consider the system (3.11) and the Assumption 3.1, 3.2 and 3.3 are fulfilled. Furthermore,
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 313132 Figure 3.1 -ASTWC-1. Behaviour of adaptive law for the speed and current-i d controllers
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  [START_REF] Shtessel | A novel adaptive-gain supertwisting sliding mode controller: methodology and application[END_REF] where k c 2 = 2λ min (P c D c 2 ) > 0. Now, from (3.73), the term Part , Chapter 3 -Controller design for the Interior Permanent Magnet Synchronous motor
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 34 Figure 3.4 -ASTWC-2. Behaviour of adaptive law for the speed and current-i d controllers
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 36 Figure 3.6 -ASTWC-2. Behaviour of the currents-i dq

  8, γ M = 12 and L M = 600. Similar values are applied in the speed and current controller.
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 39 Figure 3.9 -Currents-i dq . Comparative study among Levant strategy and proposed strategies

Figure 3 .

 3 Figure 3.11 -Voltages-v dq . Comparative study among Levant strategy and proposed strategies
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 3313 Figure 3.12 -Voltages-v dq . Comparative study among Moreno strategy and proposed strategies
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 314 Figure 3.14 -Proposal 1. Performance using different constant gain values
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 316 Figure 3.16 -Control performance using ASMC strategy
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 3 Figure 3.18 -Control performance using SAST strategy
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 3 Figure 3.20 -Control performance using proposed ASTWC-2 strategy
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 321 Figure 3.21 -Performance index: Comparative study using adaptive gains

  16-3.20, a reduced level of chattering can be illustrated in all strategies, except for ASMC.
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 441 Figure 4.1 -Proposed sensorless control: Scheme-1.
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 47 Figure 4.7 -Simulation test: Behaviour of the currents-i dq
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 48 Figure 4.8 -Experimental test. Adaptive laws: Control (L c i d (t), L c Ω (t)) and observer (L o (t)).
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 49 Figure 4.9 -Experimental test: Speed estimation and estimation error.
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 410 Figure 4.10 -Experimental test: Angular position estimation and estimation error.
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 411 Figure 4.11 -Performance index for the estimation and tracking of states during experiments
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 414 Figure 4.14 -Experimental test: Profiles of the currents-i dq
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 415 Figure 4.15 -Proposed sensorless control: Scheme-2.
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 417 Figure 4.17 -Simulation test: Speed estimation and estimation error
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 419 Figure 4.19 -Simulation test: Estimation of acceleration
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 421 Figure 4.21 -Simulation test: Behaviour of the currents-i dq
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 422 Figure 4.22 -Experimental test: Behaviour of adaptive gains for the observer and controllers
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 423 Figure 4.23 -Experimental test: Speed estimation and estimation error
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 424425 Figure 4.24 -Experimental test: Angular position estimation and angular position estimation error
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 4 Figure 4.26 -Experimental test: Speed tracking and tracking error
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 427 Figure 4.27 -Experimental test: Behaviour of the currents-i dq

ė1 = e 2 - 2 3 1 3

 221 K1,1 |e 1 | sign(e 1 ) ė2 = e 3 -K2,1 |e 1 | sign(e 1 ) ė3 = ρ(t) -K3,1 sign(e 1 ) (A.10)

  16) Then, from (A.6), it is obtained that Go = P -1 o C T o . Then, setting Go equal to (A.7), it follows that

2 3 1 3 2 3 1 3

 2121 Consider the following sliding mode observer for the system (A.8),ẋ1 2 = x2 + K1,2 |e 1 2 | sign(e 1 2 ) ẋ2 2 = x3 + K2,2 |e 1 2 | sign(e 1 2 ) ẋ3 2 = K3,2 sign(e 1 2 ) ŷ = x1 2 (A.20)where x1 2 , x2 2 and x3 2 are the estimated states, ŷ is the output of the system and K1,2 , K2,2 and K3,2 are the gains of the observer. Now, an analysis of convergence for the observer will be introduced. Then, defining the following estimation errors. Consider the following estimation errors e i 2 = x 1 -xi 2 , for i = 1, 2, 3; and their dynamics as followsė1 2 = e 2 2 -K1,2 |e 1 2 | sign(e 1 2 ) ė2 2 = e 3 2 -K2,2 |e 1 2 | sign(e 1 2 ) ė3 2 = ρ(t) -K3,2 sign(e 1 2 ) (A.21)Taking into account the dynamics of the estimation errors, the following change of variable is established as followsξ 1 2 = |e 1 2 |

  .[START_REF] Ferreira De Loza | High-order slidingmode observer-based input-output linearization[END_REF]) can be expressed in compact form as follows£ = α c A c -Gc C c £ + Φ c -N c £ Lc (t) (A.34), it is obtained that Gc = P -1 c C T c .Then, setting Gc equal to (A.35), it
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1.3.2 Dynamical model of the Interior Permanent Magnet Syn- chronous Motor in αβ stationary reference frame

  

	Part , Chapter 1 -Dynamical model of Interior Permanent Magnet Synchronous Motor

Table 1 .

 1 .

		1 -IPMSM nominal parameters	
	Symbol	Parameter	Value	Unit
	R s	Stator resistance	1.4	ohms
	J	Moment of inertia	7.3e -3 kg.m 2
	p	Number of pole pairs	5	
	T l	Torque	4	N-m
	ψ r	Permanent-magnet flux linkage 0.18	Wb
	L d	d-axis winding inductance	0.0057 H
	L q			

  Chapter 2 -New strategy for the rotor position and speed estimation of Permanent Magnet Synchronous Motor Assumption 2.2. The terms in vector Φ o are locally Lipschitz with respect to ξ [83], i.e., ||Φ o || ≤ ℏ||ξ||, for ℏ > 0.

	Moreover, P o is a symmetric positive-definite matrix, whose solution is given by
	P o + A T o P o + P o A o -C T o C o = 0
	Theorem 2.1. Consider the dynamic system (2.19) and the Assumptions 2.1 and 2.2 are
	satisfied. Furthermore,

  The term in the vector Φ o 2 is locally Lipschitz with respect to ξ o 2 [83], i.e., ||Φ o 2 || ≤ ℏ 2 ||ξ o 2 ||, for ℏ 2 > 0.

.64) Assumption 2.3. Moreover, P o is a symmetric positive-definite matrix, whose solution is given by

  Part , Chapter 2 -New strategy for the rotor position and speed estimation of Permanent Magnet Synchronous Motor Taking into account that A T o P o + P o A o = -P o + C T o C o . Then, equation (2.68) can be rewritten as follows

  82) Taking the norm to the nonlinear term 2α o 2 ξ T o 2 P o Φ o 2 and from Assumption 2.3, then (2.82)

	Part , Chapter 2 -New strategy for the rotor position and speed estimation of Permanent
	Magnet Synchronous Motor
	is given by

Table 2 .

 2 2. 

	Table 2.2 -Parameters for the AHOSMO-2
		Values	
	L o 2 (0)	γ o 2	k o 2
	8	0.0001 80

Table 2 .

 2 

	3 -Value for the gains of both adaptive observers at 5 seconds
		AHOSMO-1	
	L o (5)	K1,1	K2,1	K3,1
	4.14 32.07 228.5 542.9
		AHOSMO-2	
	L o 2 (5)	K1,2	K2,2	K3,2
	11.53 34.58 265.8 680.9

  Lipschitz, i.e., there exist a positive constantµ 12 such that || ϑ 13 L d [v d (x) -v d (x)]|| ≤ µ 12 ||x -x||.Moreover, applying the control input v d (x) in the above system, the dynamic of the sliding surface is given by Ṡi

  = S i d and Υ 2 i d = ν i d + δ i d (t). The system Ṡi d can be expressed as follows Υ1

		(4.15)
	2	sign(S i d )
	Now, defining Υ 1 i d	

Table 4 .

 4 

	1 -Parameters for the sensorless control-1 in simulation test.
	AHOSMO-1	ASTWC-1
	γ 0	k o	ϑ 12 γ c Ω k c Ω ϑ 13 γ c i d k c i d
	0.01	90	400 0.1 3	200 0.002 0.8

Table 4 .

 4 

	2 -Parameters for the sensorless control-1 in experimental test.
	AHOSMO-1			ASTWC-1		
	γ 0	k o	ϑ 12	γ c Ω	k c Ω ϑ 13	γ c i d	k c i d
	0.07	35	180 0.0003 0.1 20 0.0009 0.2
	adaptive laws for the observer and controllers are illustrated in	

  Part , Chapter 4 -Sensorless control of the Interior Permanent Magnet Synchronous Motor

	is given by
	Ṡ

  Part , Chapter 4 -Sensorless control of the Interior Permanent Magnet Synchronous Motorsurface is given by

  = S i d 2 and z 2 i d 2 = ν i d 2 + δ i d (t). The system Ṡi d 2 can be expressed as follows ż1 i d 2

	t)	(4.36)
	2	sign(S i d 2 )
	Now, defining z 1 i d 2	

Table 4 .

 4 3. The behaviour of adaptive law L o 2 (t) for the observer; and the adaptive laws

Table 4 .

 4 

	3 -Parameters for the sensorless control-2 in simulation test
	AHOSMO-2	ASTWCs-2
	γ o 2 0.016 200 k o 2	ϑ 22 γ c Ω 2 k c Ω 2 ϑ 23 400 0.008 120 200 0.0011 120 γ c i d 2 k c i d 2
	L	

c Ω 2 (t) and L c i d 2 (t) for speed and current-i d controllers are shown in the Figure 4.16, respectively.

Table 4 .

 4 

	4 -Parameters for the sensorless control-2 in experimental test
	AHOSMO-2	ASTWCs-2
	γ 0 2 0.001	k o 2 3	ϑ 22 180 0.0001 35 γ c Ω 2 k c Ω 2 ϑ 23 γ c i d 2 20 0.0005 30 k c i d 2

Then, in Figure

4

.23, it possible to see the convergence of the estimated speed towards

  The resulting system (A.14) can be expressed in the following compact formξ = α o A o -Go C o ξ + Φ o -N o ξ

															Lo (t) L o (t)	(A.15)
	where α o =	2L o (t) 3 3|ζ 1 | 1	, ξ = ξ 1 ξ 2 ξ 3	T and
			K1,1										
	Go =	t) where L o (t) > 0 is the single adaptive parameter. The dynamical system in terms of the , ζ 2 = e 2 L 2 o (t) , ζ 3 = e 3 L 2 o (t) (A.11) new variables is given by             L 5 3 o (t) 3 K2,1 2L 10 3 o (t) ( 3 2 L 5 o (t) ) 2 K3,1              , N o =      
										ζ1 = -	K1,1 L 2 3 o (t)	|ζ 1 |	2 3 sign(ζ 1 ) + ζ 2 -2ζ 1	Lo (t) L o (t)
										ζ2 = -	K2,1 L 4 3 o (t)	|ζ 1 |	1 3 sign(ζ 1 ) + ζ 3 -2ζ 2	Lo (t) L o (t)	(A.12)
										ζ3 = -	K3,1 L 2 o (t)	sign(ζ 1 ) +	ρ(t) L 2 o (t)	-2ζ 3	Lo (t) L o (t)
		Moreover, in order to simplify the state space representation, the following new change of
		variable is introduced					
								ξ 1 = |ζ 1 |	2 3 sign(ζ 1 ),	ξ 2 =	ζ 2 L o (t)	,	ξ 3 =	1 3 o (t) 3ζ 3 |ζ 1 | 2L 2	(A.13)
		and the dynamical system can be expressed by using the new variables as follows
			ξ1 =	2L o (t) 3|ζ 1 | 1 3	  -	K1,1 L 5 3 o (t)	ξ 1 + ξ 2	  -	4 Lo (t) 3L o (t)	ξ 1
			ξ2 =	2L o (t) 3|ζ 1 | 1 3	  -	3 K2,1 2L 10 3 o (t)	ξ 1 + ξ 3	  -	3 Lo (t) L o (t)	ξ 2	(A.14)
			ξ3 =	2L o (t) 3|ζ 1 | 1 3	  -(	3 2	) 2 K3,1 L 5 o (t)	ξ 1 +	3 2	2 |ζ 1 | L 5 2 3 ρ(t) o (t)	+	ξ 3 2|ζ 1 |	2 3	(-3ξ 1 + ξ 2 )   -	14 Lo (t) 3L o (t)	ξ 3

  such that, the compact system (A.15) can be rewritten asξ = α o A o -P -1 o C T o C o ξ + Φ o -N o ξ

	5 3 o (t)	K2,1 = 2L	10 3 o (t)	K3,1 =	4 9	L 5 o (t)	(A.18)
					Lo (t) L o (t)	(A.19)

-

  K1,2 ξ 1 2 + L o 2 (t)ξ 2 2 (A.[START_REF] Bist | Sensorless control based on sliding mode observer for pmsm drive[END_REF] and can be written in a compact form as followsξo 2 = α o 2 A o -Go 2 C o ξ o 2 + Φ o 2 -D o 2 ξ o 2 , ξ o 2 = ξ 1 2 ξ 2 2 ξ 3 2

														Lo 2 (t) L o 2 (t)	(A.24)
	where α o 2 =	2L o 2 (t) 3 3|e 1 2 | 1								T and
				K1,2								
	Go 2 =	           	L o 2 (t) 3 K2,2 2L 2 o 2 (t) 3 2 2 K3,2 L 3 o 2 (t)	           	, D o 2 =	     1 0 0  0 2 0 0 0 3    	, Φ o 2 =	      	3 2	2 |e 1 2 | L 4 o 2 (t) 2 3 ρ(t)	+	0 0 2 2|e 1 2 | ξ 3 2 3
												2 3 sign(e 1 2 ) L o 2 (t)	ξ 2 2 =	e 2 2 L 2 o 2 (t)	ξ 3 2 =	3e 3 2 |e 1 2 | 2L 3 o 2 (t)	1 3	(A.22)
	where L o 2 (t) is the single adaptive parameter. The dynamical system in terms of the new
	variables is given by				
			ξ1 2 =	2L o 2 (t) 3|e 1 2 | 1 3	-	K1,2 L o 2 (t)	ξ 1 2 + ξ 2 2 -	Lo 2 (t) L o 2 (t)	ξ 1 2
			ξ2 2 =	2L o 2 (t) 3|e 1 2 | 1 3	-	3 K2,2 2L 2 o 2 (t)	ξ 1 2 + ξ 3 2 -	2 Lo 2 (t) L o 2 (t)	ξ 2 2
			ξ3 2 =	2L o 2 (t) 3|e 1 2 | 1 3	  -	3 2	2	K3,2 L 3 o 2 (t)	ξ 1 2 +	3 2	2 |e 1 2 | L 4 o 2 (t) 2 3 ρ(t)	+	ξ 3 2 2|e 1 2 |	3 2	 
							-	3 Lo 2 (t) L o 2 (t)	ξ 3 2

-

  K1,2 ξ 1 2 + L o 2 (t)ξ 2 2 Then, from (A.6), it is obtained that Go 2 = P -1 o C T o .Then, setting Go 2 equal to (A.7), it follows that such that, the compact system (A.24) can be rewritten asξo 2 = α o 2 A o -P -1 o C T o C o ξ o 2 + Φ o 2 -D o 2 ξ o 2

								
								     	.
								(A.25)
			K1,2				
		            (	L o 2 (t) 3 K2,2 2L 2 o 2 (t) 3 2 ) 2 K3,2 L 3 o 2 (t)	           	=	 3      3 1    		(A.26)
	Therefore, the gains for the observer (A.20) are computed and reparameterized in terms
	of L o 2 (t) as follows						
	K1,2 = 3L o 2 (t)	K2,2 = 2L 2 o 2 (t)	K3,2 =	2 3	2	L 3 o 2 (t)	(A.27)
								Lo 2 (t) L o 2 (t)	(A.28)
	A.2						

Reparameterized gains for the proposed controllers

  Consider the following algebraic Lyapunov equation in order to compute the control gainsP c + A T c P c + P c A c -C T c C c = 0 (A.29)with d(t) = δ(t). Now, consider the following change of coordinates

		z 1 =	Υ 1 L 2 c (t)	z 2 =	Υ 2 L 2 c (t)	(A.37)
	where L c (t) is the single adaptive parameter. The dynamical system in terms of the new
	variables is given by				
	ż1 = -ż2 = -	Kc1 L c (t) Kc2 L 2 c (t)	|z 1 | sign(z 1 ) + 1 2 sign(z 1 ) + z 2 -d(t) L 2 c (t) -2z 2 Lc (t) 2z 1 Lc (t) L c (t) L c (t)	(A.38)

sign(e θe ) ω = α + K2,1 |e θe | 1 3 sign(e θe ) α = K3,1 sign(e θe ) (2.52)where θe , ω and α are the estimation of electrical angular position, electrical speed and acceleration, respectively. However, θ e is not measured directly, such that, the observer

3.1. Control design based on Super-Twisting approach: Proposal-1

Part , Chapter 2 -New strategy for the rotor position and speed estimation of Permanent Magnet Synchronous Motor system is expressed in terms of the original coordinates (see for more details [START_REF] Moreno | Strict lyapunov functions for the super-twisting algorithm[END_REF], [START_REF] Liu | Output feedback stabilization using super-twisting control and high-gain observer[END_REF]).

Adaptive observer design for the IPMSM

Consider the adaptive law-2 in Theorem 2.2 and the virtual system (1.42), then, an AHOSMO-2 for the virtual system (1.42) is designed as follows θe = ω + K1,2 |e θe | 2 3 sign(e θe ) ω = α + K2,2 |e θe | 1 3 sign(e θe ) α = K3,2 sign(e θe ) (2.94) where θe , ω and α are the estimation of electrical angular position, electrical speed and acceleration, respectively. However, θ e is not measured directly, such that, the observer (2.94) cannot be implemented. Therefore, considering the methodology to extract e θe introduced in section 2.1, then, Λ θ can be expressed in terms of the estimation error e θe as Λ θ = µe θe , with µ > 0. Thus, e θe = θ e -θe can be replaced by θ e -θe = Λ θ µ into the observer (2.94), i.e., the AHOSMO-2 for the IPMSM is given by θe

Then, the observer (2.95) is used to estimate the angular position, speed and acceleration. In Figure 2.6, a scheme of the proposed adaptive observer-2 is introduced. As previously mentioned, θ = θe p is the estimated mechanical angular position and Ω = ω p is the estimated mechanical speed.

Simulation results

Considering the second adaptive observer introduced in this section. Simulation results in open-loop are going to introduced to estimate angular position, speed and acceleration. As previously mentioned, simulation test has been carried out in Matlab-Simulink environment, using a sampling time of 1 × 10 -3 with a fixed-step ode4 solver. The profiles

Comparative study with adaptive strategies

The adaptive laws introduced in Theorem 3.1 and Theorem 3.2 are compared with three proposed strategies in the literature.

The term V st- * for * = Ω, i d will be defined for each controller.

Firstly, an Adaptive Sliding mode Control (ASMC) has been introduced in [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF], with the control input V st- * given by

where K * (t) is an adaptive law defined by

where K * (0) > 0, K * > 0, µ * > 0 and ϵ * = 2K * (t)T e with T e is the sampling time.

Secondly, an Adaptive Super twisting (ASTW) was introduced in [START_REF] Shtessel | Lyapunov design of adaptive super-twisting controller applied to a pneumatic actuator[END_REF], where the control input V st- * is given by 

where ϖ, γ * , µ * and ϵ * are positive constants.

The third adaptive law was introduced in [START_REF] Gutierrez | A simplified version of adaptive super-twisting control[END_REF] and a simplified adaptive super twisting (SAST) was proposed, with the control input V st- * given by

where

and L G * (t) > 0 is an adaptive parameter, Chapter 4

SENSORLESS CONTROL OF THE INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

In this Chapter, two sensorless control scheme for the IPMSM are introduced, i.e., the proposed observers are interconnected with the proposed controllers in closed-loop. First, the stability analysis for the first scheme is addressed, interconnecting in closed-loop the adaptive observer given in the section 2.2.1 (AHOSMO-1) with the adaptive control given in the section 3.1.1(ASTWC-1). Simulation and experimental results are introduced for this strategy. After that, the adaptive observer given in the section 2.3.1 (AHOSMO-2) is interconnected in closed-loop with the adaptive control given in the section 3.2.1 (ASTWC-2). An stability analysis is introduced and simulation and experimental results are illustrated for this strategy.

Closed-loop analysis: Scheme 1

Consider the proposed control in section 3.1.1 (ASTWC-1) using the estimates provided by the proposed observer in section 2.2.1 (AHOSMO-1). Then, the stability analysis of the system in closed-loop with the control-observer scheme is established as follows Proof: Since the control input v q (x) depends on estimates Ω, îd and îq ; and taking into account the sliding surface given by (3.41), then the dynamic of the sliding surface is given by ṠΩ 

Closed-loop analysis: Scheme 2

Consider the proposed control given in the section 3.2.1 (ASTWC-2) using the estimates provided by the proposed observer given in section 2.3.1 (AHOSMO-2). Then, the stability analysis of the system in closed-loop, control-observer scheme, is established as follows 

Appendix A

REPARAMETERIZED GAINS

A.1 Reparameterized gains for the proposed observers

Consider the following algebraic Lyapunov equation in order to compute the observer gains

where P o is a symmetric positive-definite matrix,

then the solution of P o for (A.1) is given by

Now, consider the following LTI system

where x ∈ ℜ 3 is a state vector and y ∈ ℜ the output. Then, an observer for the system (A.4) is given by ẋ

where K o is the gain. Then, the estimation error is given by e = x -x and its dynamics can be expressed by ė

Then, the gain K o has the following values

A.1.1 Adaptive observer: Proposal 1

In this section, the gains of the proposed observer will be determined and computed in terms of a single parameter. Consider the following class of nonlinear system given by

where x 1 , x 2 and x 3 are the states, ρ(t) is bounded function whose bound is unknown, and y ∈ ℜ the output of the system. Now, a sliding mode observers for the system (A.8) is given by

where x1 , x2 , and x3 are the estimated states, ŷ is the estimated output and K1,1 , K2,1 and K3,1 are the gains. Now, an analysis of convergence for the observer will be introduced. Then, defining the following estimation errors e i = x i -xi , for i = 1, 2, 3; the dynamics are given by where P c is a symmetric positive-definite matrix,

Then the solution of P c for A.29 is given by

Similarly, as the previous section A.1, consider the following LTI system

where x c ∈ ℜ 2 is a state vector and y c ∈ ℜ the output. Then, an observer for the system (A.32) is given by ẋc

where K c are the gains. Then, the estimation error is given by e c = x c -xc and its dynamics can be expressed by

Then, the gain K c has the following values

A.2.1 Adaptive control: Proposal 1

In this section, the gains of the proposed controller (3.6) will be determined and computed in terms of a single parameter. Consider the following system

Therefore, the gains for the controller (3.6) are computed and reparameterized in terms of L c (t) as follows

Finally, the compact system (A.41) can be expressed as follows

A.2.2 Adaptive control: Proposal 2

In this section, the gains of the proposed controller (3.54) will be determined and computed in terms of a single parameter. Consider the following system as follows

with d(t) = δ(t). Now, introducing the following change of variable

where L c 2 (t) is the single adaptive parameter. Then the dynamics of the system, in terms of these new variables, are given by

System (A.48) can be expressed in compact form as follows

Then, from (A.34), it is obtained that Gc2 = P -1 c C T c . Then, setting Gc2 equal to (A.35), it follows that

Therefore, the gains for the controller (3.54) are computed and reparameterized in terms of L c 2 (t) as follows

Finally, the system (A.49) can be expressed as follows Then, the main advantage of this strategy is the adaptable laws are easy to implement, avoiding overestimates of gains that increases of chattering, reducing the time to tune the gains, and reducing the damage of the actuators. Furthermore, a strategy for angular position estimation error extraction is propo-sed. Then, from this information and using a parameter-free virtual system, AHOSMO is designed for estimating the angular position and speed in a wide speed range, where the estimated variables provided by this observer are obtained with greater precision, despite the variations of the parameters, achieving greater robustness. These estimated states are used in the proposed robust control to track a desired reference of speed and direct-axis current. A stability analysis of the closedloop system is presented, using a Lyapunov approach. In addition, the proposed strategy is validated throughout experimental and simulation set-up in order to show its effectiveness.