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INTRODUCTION

State of the art

Electrical machines are designed to transform electrical energy into mechanical energy,
mechanical energy into electrical energy or modify the level of the same electrical energy
according to the required use, so that electrical machines can be classified into three
groups: Generators, transformers and motors. Generators transform mechanical energy
into electrical energy. Transformers use electrical energy and have the ability to change
the dimension of this energy and motors are used to transform electrical energy into
mechanical energy, in such a way that, since the electrical machine was invented, they
have been used in domestic products, industrial process, electricity production, robotics,
electric vehicles, etc.

Regarding to the motors, these can be mainly classified into two groups: Direct Current
(DC) motors and Alternating Current (AC) motors. DC motors have been traditionally
used for decades in different applications. However, their commutators, brushes, and re-
quired maintenance are the main disadvantages of these devices. On the other hand, AC
motors can be classified into two groups: Asynchronous or induction motors and syn-
chronous motors. The main difference between these machines is that the rotor speed of
the synchronous motor has the same frequency as the magnetic field, unlike induction
motors, where the rotor speed is slower than the magnetic field generated in the stator,
i.e., the speed is asynchronous. The predominant motor technology for many years has
been cage induction motors. Their superior dynamic behavior coupled with their brush-
less nature, which allows operation without the presence of commutators or slip rings,
makes them suitable for high performance controlled operation in electric drive applica-
tions. Advances in the area of power electronics and automatic control technologies have
contributed significantly to their establishment as standard motors in electric drives. How-
ever, induction motor technology also has numerous disadvantages, both in construction
and in operation. For example, its relatively small air gap length and its inferiority to syn-
chronous motors in terms of overall efficiency and power factor are the main drawbacks.
Also, induction motors have windings on the rotor, which increases the temperature of
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General introduction

the machine. Nevertheless, a clear indication towards the possible limitation in the use of
induction motors and their eventual replacement has not yet been established.[1].

Consequently, permanent magnet synchronous motors (PMSM) have attracted increas-
ing interest within the scientific community, especially for high power density applications,
highlighting the need for their investigation. The most important advantages of perma-
nent magnent synchronous motor lie in the fact that permanent magnets constitute a
strong and independent excitation system, i.e., field current needed for induction machine
is not necessary, and secondary copper loss does not occur, therefore high efficiency can
be achieved [2]. This feature allows substantial overloading of the motor while providing
higher torque density values. The fact that no electromagnetic drive system is employed
further improves its transient behaviour, while small size and maintenance are also two
significant benefit factors. The above advantages have led PMSM to be considered a viable
and attractive solution for control drives [3], [4].
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Figure 1 – Control of an electric motor by using encoder

Interior permanent magnet synchronous motor (IPMSM) is the most popular in the
fields of electric drive application due to torque capability, power density, simple struc-
ture, efficiency and can operate in high speeds [5]. In variable speed motor drives, speed
controllers are applied by using encoders [6]. This devices can measure angular position
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and with this information, the speed can be extracted [7]–[10], as can be seen in Figure 1.
However, implementing encoders to control the electric motor requires additional electron-
ics, preventative maintenance, and additional wiring. For these reasons, this technique has
become less attractive due to high cost and lower reliability, encouraging researchers to
avoid its implementation and study the sensorless strategy. Nowadays, sensorless strategy
is an indirect technique under development to estimate angular position from measurable
currents and voltages of the IPMSM, increasing robustness and reliability, eliminating
wiring, and reducing signal noise [11]–[13]. In Figure 2, a general structure for sensorless
case is shown. In the literature, various approaches to the sensorless technique have been
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Figure 2 – Control of an electric motor without the use of an encoder (sensorless case)

addressed. Among sensorless control methods, model-based method and saliency-based
method are the most popular.

Model-based method for sensorless control

According to model-based method, this method is applied in high and medium speed
regions; and rotor position is acquired from the stator voltages and currents without re-
quiring additional high frequency signal injection. Back-electromotive force (EMF)-based
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technique [14]–[17] is commonly applied in this method. Considering that back-EMF in-
duced in motor is directly proportional to rotor speed, with this information is possible
effectively estimate the rotor position [18]. Several observers based on the dynamical
model of the electrical motor have been used for estimating angular position, for example,
Luenberger observer [19], [20], extended Kalman filter (EKF)[21], [22] and sliding mode
observer [23], [24]. However, being that the model-based approach has a direct dependency
on the dynamical model, parametric uncertainties can lead to performance degradation
of control systems. It is known that parameters vary depending on operation conditions,
e.g., mechanical parameters, viscous coefficient and inertia, could vary according to the
applied load torque, weight, road type and tires quality in automotive applications; and
electrical parameters, inductance and resistance, could vary depending on the temperature
variations or magnetic circuit saturation.

An alternative to overcome this challenge is the development of algorithms for online
or offline parameter identification. Among offline algorithms for parameter estimation can
be found the DC Current Decay Test [25], [26] and the AC standstill method [27], [28]
to measure inductances. However, there are disadvantages with these strategies due to
the fact that it requires additional equipment and the measurement errors are caused
by the estimation at a single operating point. Now, among online parameter estimation
techniques, recursive least square is a technique that uses known variables as currents
and voltages to estimate unknown parameters, for instance, in [29] has been proposed a
strategy to identify stator resistance, machine torque and inductances. Similarly, EKF is
an optimal recursive estimator that considers the effects of the measurement noise, for
instance, in [30] has been proposed a permanent magnet flux identification technique of
the IPMSM. Other methods for online parameter estimation are given in [31]–[33] in order
to constantly update the machine parameters. However, a highly efficient microprocessor
is required to handle the relatively complex procedure.

Another alternative to overcome the challenge of parametric uncertainties is the use
of robust techniques. A technique that has been widely studied in recent decades is slid-
ing modes proposed by [34]. Its main advantage is its robustness against disturbances
and parametric uncertainties. This technique has found wide application in different ar-
eas such as fault reconstruction, condition monitoring and fault detection [35]. Classical
sliding mode technique has been adopted in electrical machines for the angular position
estimation, for instance [36]. However, the main drawback of this strategy is the chattering
caused by the switching (discontinuity) of the signum function, generating high-frequency
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oscillation components in the estimated signal of the sliding mode observer (SMO). Then,
low-pass filters are often used, causing phase delay, such that classical sliding mode is not
a good alternative. One option to reduce the chattering phenomenon is to replaced the
signum function by a sigmoid function [37], [38], showing relatively a good performance.
Similarly, the popular super twisting [39] and high-order sliding mode techniques [40] have
achieved a clear improvement in the chattering reduction as well as good performance and
finite-time convergence in presence of disturbances and uncertainties. In [41], a high order
terminal SMO is proposed in order to achieve finite time convergence of the estimated
states and chattering suppression. In [42], a third order super-twisting extended state ob-
server is designed to improve the estimation of angular position, speed and disturbance of
IPMSM; achieving a fast convergence. On the other side, in [14], a super-twisting sliding-
mode observer with online stator resistance, position and speed estimation for sensorless
control is proposed. However, during observer tuning, choosing constant gains in the ob-
server sometimes results in an overestimation of gains that causes chattering, increasing
the error in the estimates. Adaptive observers have been proposed in order to avoid this
overestimation and reduce the chattering. For instance, in [43] is addressed an adaptive
super twisting for online tuning according to the perturbation value, such that, angular
position error is reduced in a wide-speed range. In [44], an adaptive super-twisting sliding
mode observer with time-varying gains is introduced, to minimize the chattering and es-
timate back-EMF that is required for the angular position estimation. Another strategies
are addressed in [45], [46]. However, these approaches need to choose several parameters
to tune the system, increasing the tuning time.

In summary, the main drawback of the model-based methods is the loss of observability
at low speeds due to the fact that there is a direct dependency of the back-EMF with
speed rotor, i.e., the magnitude of the back-EMF decreases proportionally with the speed.

Saliency-based method for sensorless control

As previously mentioned, model-based angular position estimation is possible at high
and medium speed. However, it can fail at low and zero speed. Therefore, saliency-based
methods are an alternative to achieve this challenge. In saliency-based methods a sufficient
excitation, either by high frequency (HF) voltage or current signal injection or by using
pulsewidth-modulated (PWM) inverter switching, is mandatory in order to maintain a
persistent excitation in the system to extract angular position information and estimate
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the angular position at low and zero speed [47]–[50].
Voltage injection techniques can be classified according to the shape of the test signal:

sine or square wave injection techniques. In addition, one can distinguish between rotating
and pulsing test signal injection. For the HF rotary signal injection scheme, a balanced
voltage signal is injected into the stationary reference frame to form a rotary excitation
that is superimposed on the fundamental excitation. Then, by applying a synchronous
reference frame filter, the negative sequence carrier current containing the position infor-
mation can be derived and used to estimate the rotor position. For pulsed signal injection
methods, a pulsed HF carrier signal is injected on the d-axis or q-axis in the estimated
synchronous reference frame, such that, the angular position can be estimated by mini-
mizing the amplitude modulated carrier current response that is measured along the axis
orthogonal to the injection axis [51]–[55]. However, the performance of sensorless control
with the conventional HF pulsed or rotating sinusoidal signal is still insufficient for some
applications, as the filtering process limits the dynamic bandwidths.

To overcome the limitations of sensorless control with conventional sinusoidal signal
injection, square wave injection in the stationary reference frame or in the estimated
rotor reference frame has been developed. The injection frequency can be increased to
the PWM switching frequency, and thus the filtering process can be eliminated and the
dynamic performance can be improved [56]–[61].

Nevertheless, in saliency-based methods, additional losses and audible noise are neg-
ative effects caused by injected signal reducing the system performance. Reducing the
amplitude of the signal could be an option to remove the disadvantages. However, this
would cause a degradation in the estimation of the angular position. In order to over-
come these disadvantages, a new alternative has been presented in [62] to improve the
performance. Nevertheless, the use of saliency-based methods is still limited.

Control techniques for speed regulation

Now, regarding speed controls used in electrical machines, several nonlinear control
methods have been applied to enhance the control performance in presence of uncertainties
and disturbances, for instance, in [45], [63] were proposed robust backstepping controllers
with integral and sliding mode actions to achieve speed regulation despite uncertainties
and disturbances. A robust control has been proposed in [64], and sliding mode controls
in [65]–[67].
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As previously mentioned, sliding mode technique is one of the most studied techniques
in recent years due to robustness against disturbances and uncertainties. Nevertheless, just
like observers, controllers based on sliding mode have chattering problems and overesti-
mation of gains. Therefore, adaptive laws for sliding mode controllers of the motor have
been proposed to remove these drawbacks [68]–[70]. Some adaptive laws have also been
proposed in a general way for the sliding mode control. For instance in [71], an adaptive
super-twisting control is proposed, removing the requirement to know the upper bounds
of external disturbance and reducing the chattering phenomenon without affecting the
control performance. In [72], the chattering problem and its relation with the high activ-
ity of control action have been studied. In this way, an adaptive law is developed to get a
minimum possible value of control. Another proposal was introduced in [73], offering con-
tinuous control signal, adaptation for dealing with unknown uncertainty/perturbations,
non-overestimation of control gains, and reduced chattering. In [74], adaptive gains have
been proposed for a super-twisting control in order to adapt in such a way that the gains
are as small as possible, and yet large enough to sustain a sliding motion. Nonetheless,
due to large number of control gain parameters, tuning these strategies could be complex.

Contributions in this work

In this work, the main contributions are the following:
— An extraction of the angular error (θ − θ̂) is made, and based on a virtual sys-

tem without parameters of the IPMSM, two Adaptive High-Order Sliding Mode
Observers (AHOSMOs) are designed to estimate angular position, speed and ac-
celeration over a wide speed range. The robustness is improved, overcoming the
disadvantages of other methods (model-based and saliency-based methods) that re-
quire knowledge of the machine parameters, use of filters as well as high-frequency
signal injection to estimate angular position.

— Two Adaptive Super-Twisting Controllers (ASTWCs) are designed in order to track
a desired speed reference and a desired d-axis current reference. These controller
are interconnected with the AHOSMO achieving a sensorless control strategy.

— The gains for both, controllers and observers, are reparameterized in terms of a
single parameter. The main advantage of this strategy is that adaptive laws are
easy to implement, which avoids overestimation of gains that increases chattering,
reduces time to adjust gains, and reduces damage to actuators.
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— Closed-loop stability analysis under the action of the observer is improved thanks
to it is simpler to analyse and the separation principle holds.

Thesis organization

This manuscript is organized as follows:

Chapter 1
In the chapter 1, an introduction to the PMSM is given. The different configurations

for PMSM according to permanent magnet position is addressed. After that, the Park
an Concordia transformation are introduced. From these transformation, the electrical
equations of the PMSM can be used to compute the dynamical model of the IPMSM
in a αβ stationary reference frame and in a dq synchronous reference frame. Moreover,
the thesis problem statement and benchmark for the observers and the controllers are
presented, the benchmark will be used in simulation and experimentation. In addition, a
specific benchmark is presented and will be used to show the performance of the observer
in different operation point.

Chapter 2
In the chapter 2, a method for the extraction of the angular position estimation error

in PMSM is presented. This information can be extracted by using α, β currents, i.e., the
dynamical model of the electrical machine is not used. Then, considering the extraction
of the angular error and a virtual system without machine parameters, the design of two
Adaptive High Order Sliding Mode Observers are addressed to estimate angular position,
speed and acceleration. The gains of the observers have been reparameterized in terms of
a single parameter facilitating the design of an adaptive law for each observer. Simulation
tests of the proposed observers and a comparative study are carried out.

Chapter 3
In the chapter 3, the design of two Adaptive Super-Twisting Controllers is introduced.

These controllers have been designed considering reparameterized gains in terms of a single
parameter. It has allowed to design an adaptive law for each control, which reduces time
to adjust gains and avoids overestimation of gains that can increase chattering. Moreover,
a stability analysis based on Lyapunov approach is given. After that, the proposed con-
trollers are evaluated under simulation tests. In addition, a comparative study is carried
out considering constant gains and adaptive gains.
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Chapter 4
From the angular position estimation error extraction, the proposed observers in chap-

ter 2 are able to estimate the angular position and speed. These estimates will be inter-
connected with the proposed controllers presented in chapter 3. Therefore, in chapter 4
is presented the sensorless control scheme. The stability analysis in closed-loop under the
estimates of the observer is introduced. Finally, simulation and experimental tests are
carried out in order to show the performance and effectiveness of the proposed schemes.

Chapter 5
Finally, a general conclusion about the proposed work is addressed. Moreover, some

perspectives for this work are introduced.
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Chapter 1

DYNAMICAL MODEL OF INTERIOR

PERMANENT MAGNET SYNCHRONOUS

MOTOR

In this chapter, a summary of the PMSM is addressed. Second, the Concordia and
Park transformations are recalled. From these transformations, the dynamical model of
the IPMSM in a αβ stationary reference frame and a dq synchronous reference frame
can be calculated. Subsequently, the problem statement of this thesis is introduced and,
finally, the benchmark used for simulation and experimental tests is addressed.

1.1 Permanent magnet synchronous motor

The PMSM control system has attracted much attention in the field of AC adjustable
speed drives with the rapid development of automatic control technology, power elec-
tronics, high-speed microprocessors, sensors, special converters, and permanent magnetic
materials. Until recently, the widespread use of PMSM was in some cases restrained by
relatively high prices for magnetic materials with high specific magnetic energy values.
However, in recent years, prices for such materials have significantly decreased. This may
imply future growth of PMSM drive systems in the industry and technology. The reason
are their indisputable advantages, such as a high efficiency factor, low noise emissions,
simple construction, easy maintenance and low rotor inertia. Then, they are widely used
in household appliances, transportation, aviation and robotics [12], [13], [75].

Now, according to the operation and configuration of the PMSM, it has a speed of
rotation directly proportional to the frequency of the alternating current network that
feeds it. The stator has a three-phase wound, represented by the axes a, b, c, with 120◦

degree phase difference between them. The rotor produces a magnetic field with the
permanent magnets, this removes the need of a DC source to generate it. Then, according
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to the configuration of the permanent magnets in the rotor, there exists a classification
of PMSM and this is given as follows.

a) Surface permanent magnet synchronous motor

In this type of motors the magnets are placed on the surface of the rotor, as shown in
Figure 1.1. The inductances of this type of motor do not depend on the position of the
rotor. This type of motor has d−axis inductance equal to q−axis inductance, such that
the reluctance torque generated by the motor is zero. In this motor, the magnets are on
the surface and are exposed to a demagnetizing field. Furthermore, the relative perme-
ability of permanent magnets is similar to that of air, which leads to a low inductance
of the machine, since the effective length of the air gap is large. The air gap reluctance
is theoretically constant for the different positions of the rotor, then, the starting torque
of the surface permanent magnet machine is low. In addition, the magnets are subject to
centrifugal forces, which can cause the magnets in the rotor to detach.
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a)

Figure 1.1 – PMSM rotor permanent magnets layout: a) Surface permanent magnets.

b) Inset permanent-magnet synchronous motor

In this type of motor, the magnets are inserted on the surface of the rotor as shown
in Figure 1.2, and d-axis inductance is slightly different from q-axis inductance. The iron
parts between the permanent magnets have interpolar spaces that add saliency. The value
of this salience depends on the height of the magnets relative to the iron and the aperture
of the magnets.
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Figure 1.2 – PMSM rotor permanent magnets layout: b) Inset permanent magnets.

c) Permanent magnet synchronous motor with flux concentration

In this type of motor, the magnets are located inside the rotor as can be seen in Figure
1.3. The magnets are placed radially into the rotor and buried deep inside the rotor. In
this configuration, the magnets are in the directions of the circumference. The magnetic
poles are then formed at the level of the ferromagnetic parts of the rotor by concentrating
the flux coming from the permanent magnets. One of the main advantages of this type of
PMSM is the concentration of the flux generated by the magnets and a higher inductance
is obtained. Just like interior magnet machines, in this machine, the magnets are also well
protected against demagnetization and mechanical stress. The synchronous reactance on
the q axis is greater than on the d axis.
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Figure 1.3 – PMSM rotor permanent magnets layout: c) Flux concentrating.
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d) Interior permanent-magnet synchronous motor

The IPMSM has the magnets integrated inside the rotor as can be seen in Figure 1.4,
to protect the permanent magnets in deflux mode or in case of short circuit and improve
the mechanical resistance. With interior magnets, the active air gap space is less than
that of the equivalente machine with surface magnets. The d-axis and q-axis inductances
of the IPMSM are different, Ld < Lq. Therefore, there is the reluctance torque, and the
torque density can be higher than the equivalent surface permanent magnet machine.
Due to that the magnets are internal and effectively shielded from the armature reaction
field, the interior magnet machine is suitable for applications with constant power over
a wide speed range. Moreover, the IPMSM inductances values change according to the
rotor position and create a geometric saliency which is an important feature for low speed
control.
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d)

Figure 1.4 – PMSM rotor permanent magnets layout: d) Interior permanent magnets.

The work carried out in this document addresses the case of the IPMSM, since its
configuration is recommended due to its torque capacity, power density, simple structure,
efficiency and can operate at high speeds. Moreover, considering that the values of the
inductances change according to the position of the rotor and create geometric saliency,
this is an important feature for low speed operation.

1.2 Concordia and Park transformations

Concordia and Park transformations are coordinate changes used to change a balanced
three-phase system to an equivalent system with two orthogonal axes. It can be used to
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simplify the study of electric motors.
Concordia transformation
The Concordia transformation is employed to simplify the analysis of three-phase system
(a, b, c) in a coordinates system (α, β) as follows.
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where Qo is given by
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Moreover, this transformation has direct and inverse transform symmetry and can preserve
the active and reactive powers. Since in a balanced system xa + xb + xc = 0 and thus
xo = 0, then one can also consider the simplified transformation
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which is simply the original Concordia transformation with the 3rd equation excluded,
where Q is expressed as follows
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In Figure 1.5, the representation of the concordia transformation is illustrated, where
θe represents the angular position and the xα and xβ components represent the coordi-
nates of the rotating space vector xR in a fixed reference frame whose α−axis is aligned
with phase xa axis.
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Park transformation
The Park transformation transforms the components−αβ to reference system−dq, the
objective of this transformation is to convert the variables sinusoidally in time to constant
values dq, in permanent regime.
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Figure 1.5 – Concordia transformation
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Figure 1.6 – Park transformation
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xd
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where T is given by

T =
cos(θe) −sin(θe)
sin(θe) cos(θe)

 = ejθe (1.6)

In Figure 1.6, the representation of the Park transformation is illustrated.

1.3 Electrical equations of the Permanent Magnet
Synchronous Motor

The three-phase stator voltage equations, represented in the three-phase stationary
frame (abc− axes), can be expressed as follows

vabc = Rsiabc + dψabc

dt
(1.7)

where vabc =
[
va vb vc

]T
represents stator voltages, Rs is stator resistance, iabc =[

ia ib ic
]T

represents stator currents and ψabc =
[
ψa ψb ψc

]T
represents stator fluxes.

Moreover, ψabc is defined as follows

ψabc = Lss
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and p represents the number of poles, θ the mechanical angular position, ψr is the
permanent-magnet flux linkage and Lss is expressed as follows

Lss = Lso + Lsv (1.10)

where
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defining Mso, Lso and Lsv as the mutual and own inductances, respectively; for Mso =
−1

2Lso. Moreover, Lso and Lsv are positive parameters depending on the machine.
Now, the system (1.7) can be written as follow


va

vb

vc

 = Rs


ia

ib

ic

+ d

dt

[Lss]


ia

ib

ic

+


ψaf

ψbf

ψcf


 (1.13)

and considering the Concordia transformation (1.3), the system (1.7) expressed in αβ

stationary reference frame is the followingvα

vβ

 = Rs

iα
iβ

+ d

dt

ψα

ψβ

 (1.14)

1.3.1 Dynamical model of the Interior Permanent Magnet Syn-
chronous Motor in dq synchronous reference frame

In this section, the dynamical model of the IPMSM is introduced. Then, from the
three-phase stator voltage equations in a three-phase stationary frame (abc− axes) given
by

vabc = Rs iabc + d

dt
{Lss iabc + ψafbfcf} (1.15)

the following equation can be written

vabc = Rsiabc + d

dt
{Lssiabc} + d

dt
{ψafbfcf} (1.16)

where
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d

dt
{ψafbfcf} = d

dt


ψaf

ψbf

ψcf

 = −ψrpΩ


sin (pθ)

sin
(
pθ − 2π

3

)
sin

(
pθ + 2π

3

)
 (1.17)

and Ω represents the mechanical speed. Then, replacing (1.17) in (1.16), the following
equation is obtained


va

vb

vc

 = Rs


ia

ib

ic

+ d

dt

Lss


ia

ib

ic


− ψrpΩ


sin (pθ)

sin
(
pθ − 2π

3

)
sin

(
pθ + 2π

3

)
 (1.18)

Now, taking into account the following transformation

xd

xq

 = TTQT


xa

xb

xc

 (1.19)

where x represents a variable (voltage, current or flux). Then, combining (1.19) with (1.18)
and multiplying the left side of (1.19) by QT, the following system is obtained

QTTTQT


va

vb

vc

 =RsQTTTQT


ia

ib

ic

+ d

dt

LssQTTTQT


ia

ib

ic




− ψrpΩQTTTQT


sin (pθ)

sin
(
pθ − 2π

3

)
sin

(
pθ + 2π

3

)


(1.20)

such that

QT

vd

vq

 =RsQT

id
iq

+ d

dt

LssQT

id
iq

+ QT

 0
ψrpΩ

 (1.21)

Consider that QTQ = I2×2 and TTT = I2×2, where I2×2 is a identity. Then, multiplying
the left side of above equation by TTQT , it follows thatvd

vq

 =Rs

id
iq

+ TTQT d

dt

LssQT

id
iq

+
 0
ψrpΩ

 (1.22)
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and can be rewritten as followsvd

vq

 =Rs

id
iq

+ TT d

dt
{ΓssT}

id
iq

+ TT ΓssT
d

dt

id
iq

+
 0
ψrpΩ

 (1.23)

where

Γss = QLssQ = 3
2Lsv

cos (2pθ) sin (2pθ)
sin (2pθ) −cos (2pθ)

+ 3
2Lso

1 0
0 1

 (1.24)

Now, Lso and Lsv are defined as follows

Lso = Ld + Lq

3 Lsv = Ld − Lq

3 (1.25)

where Ld and Lq are the dq−axes winding inductance. Therefore, Γss given by (1.24) can
be expressed by

Γss = Ld − Lq

2

cos (2pθ) sin (2pθ)
sin (2pθ) −cos (2pθ)

+ Ld + Lq

2

1 0
0 1

 =
 Lα Lαβ

Lαβ Lβ

 (1.26)

Then, the solution for T
d

dt
{ΓssT} in (1.23) is given by

T
d

dt
{ΓssT} = pΩ

 0 −Lq

Ld 0

 (1.27)

and the solution for TT ΓssT is given by

TT ΓssT =
Ld 0

0 Lq

 (1.28)

Therefore, the system (1.23) expressed in a dq reference frame is given by
vd

vq

 =Rs

id
iq

+ pΩ
 0 −Lq

Ld 0

id
iq

+
Ld 0

0 Lq

 d

dt

id
iq

+
 0
ψrpΩ

 (1.29)

Mechanical equations

The equation for the mechanical model is given by

dθ

dt
= Ω (1.30)
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1.3. Electrical equations of the Permanent Magnet Synchronous Motor

where θ is mechanical angular position and Ω mechanical speed. Moreover, the following
equality is defined as follows

J
dΩ
dt

+ fvΩ = Te − Tl (1.31)

where J represents the inertia, fv the viscous friction coefficient, Tl the load torque and
Te the electromagnetic torque. The electromagnetic torque Te is defined as follows

Te = p(ψαiβ − ψβiα) = p(ψdiq − ψqid) (1.32)

where the terms ψd and ψq are defined by

ψd = Ldid + ψr, ψq = Lqiq (1.33)

Then, the electromagnetic torque can be expressed as follows

Te = p(Ld − Lq)idiq + pψriq (1.34)

Therefore, the mechanical system for the IPMSM is given by

dθ

dt
= Ω

dΩ
dt

= p

J
(Ld − Lq)idiq + p

J
ψriq − Tl

J
− fvΩ

J

(1.35)

Dynamic model of the Interior Permanent Magnet Synchronous Motor: Elec-
trical and mechanical equations

The dynamical model of the IPMSM with electrical and mechanical equations is the
following

Σelec :


did
dt

= −Rs

Ld

id + pΩ Lq

Ld

iq + vd

Ld
diq
dt

= −Rs

Lq

iq − pΩ Ld

Lq

id + vq

Lq

− pΩ ψr

Lq

(1.36)

Σmech :


dθ

dt
= Ω

dΩ
dt

= p

J
(Ld − Lq) idiq + p

J
ψriq − fv

J
Ω − 1

J
Tl

(1.37)
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1.3.2 Dynamical model of the Interior Permanent Magnet Syn-
chronous Motor in αβ stationary reference frame

In this section the dynamical model of the IPMSM in a αβ stationary reference frame
is addressed. Then, transforming (1.29) into αβ stationary reference frame, the following
system is obtainedvα

vβ

 =
R + d

dt
Lα

d
dt
Lαβ

d
dt
Lαβ R + d

dt
Lβ

iα
iβ

+ pΩ
−sin(θe)
cos(θe)

 (1.38)

where θe = pθ is the electrical angular position and Lα = Lo + L1cos(2θe), Lβ = Lo −

L1cos(2θe), Lα,β = L1sin(2θe), Lo = (Ld + Lq)
2 and L1 = (Ld − Lq)

2 . The system (1.38)
can be written in a compact form as follows

vαβ = Aαβ +Bαβ + Cαβ +Dαβ (1.39)

where vαβ =
[
vα vβ

]T
, Aαβ = Rs

[
iα iβ

]T

Bαβ = d

dt

Lo

iα
iβ

 , Cαβ = pΩψr

−sin(θe)
cos(θe)

 , Dαβ = d

dt

L1

cos(2θe) sin(2θe)
sin(2θe) −cos(2θe)

 iα
iβ


The system structure (1.39) is not easy for mathematical processing, having functions of
rotor position θe, which makes the equation difficult to solve. An easy way to solve this
issue is to use the estimated position θ̂e instead of θe. This is possible if the amplitude of
Dαβ is smaller enough than Cαβ, i.e., |L1iα,β| << ψr. In fact, the approximation made in
(1.38) and (1.39) is based on the assumption that this condition is valid. Then, it is true for
motors with relatively small reluctance torque. However, if the motor reluctance torque
cannot be neglected, such as the permanent magnet torque, the sensorless estimation
could be unstable. On the other side, in (1.39), the system contains the terms 2θe. The
reason why term 2θe appears in (1.39) is due to that impedance matrix is asymmetric.
Therefore, if the impedance matrix is rewritten symmetrically asvd

vq

 =
Rs + pLd −pΩLq

pΩLq R + pLd

 id
iq

+
 0
(Ld − Lq)(pΩid − i̇q) + pΩψr

 (1.40)

then, the αβ stationary reference frame can be written as follows
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1.4. Problem statement

vα

vβ

 =
 Rs + pLd pΩ(Ld − Lq)
−pΩ(Ld − Lq) R + pLd

iα
iβ

+ [(Ld − Lq)(pΩid − i̇q) + pΩψr]
−sin(θe)
cos(θe)


(1.41)

The system (1.41) is a transformation of (1.38) without any approximation. It is a general
form of the mathematical model of IPMSM. Moreover, if Ld = Lq, the model of the surface
permanent magnet synchronous motor is obtained and if ψ = 0, it is possible to obtain
the synchronous reluctance motor.

1.4 Problem statement

In industrial applications, the control of IPMSM requires the knowledge of the angular
position and speed, which usually are not available by measurement. Then, one solution
is to estimate angular position and speed by using observers based on model. Frequently,
the mathematical model used for control and observer design is given in dq synchronous
reference frame (1.36)-(1.37) [45], [76] or in a αβ stationary reference frame (1.41) [77],
[78]. However, parametric uncertainties and external disturbances affect the estimation
and they must be considered. Then, one solution to overcome this drawback is to design
a robust observer to estimate the angular position and speed of the IPMSM.
In this work, in order to estimate the angular position and overcome the issues caused
by the parametric uncertainties present in the model of the IPMSM, an observer based
on an angular position estimation error (eθe) extraction is considered, using a parameter-
free virtual system. Then, a different strategy has been proposed by considering only the
measurable signals of the IPMSM, i.e., the currents iα and iβ, which can be obtained from
the abc triphasic components of the IPMSM and can be used for extracting the electrical
angular position estimation error eθe .
Notice that, to overcome the use of the mathematical model of the IPMSM depending on
parameters; mechanical angular position and mechanical speed will be estimated by the
following parameter free virtual system

dθe

dt
= ω,

dω

dt
= α,

dα

dt
= ρ(t) (1.42)

where θe = pθ is the electrical angular position, ω = pΩ is the electrical speed, p the
number of pole pairs and α is the acceleration, where the time derivative of the acceleration
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is equal ρ(t), which is an unknown and bounded function depending on the angular
position, speed, currents and parameters. Therefore, from the information of θe and ω,

it is possible to compute the mechanical angular position
(
θ = θe

p

)
and the mechanical

speed
(

Ω = ω

p

)
.

It is clear that the mechanical sub-system (1.37) of the IPMSM does not depend on
the acceleration, however, to estimate the position and the speed, the mechanical sub-
system has been extended including the acceleration in order to improve the estimation
of those variables. In other words, the first two equations of (1.42) are enough to have a
good estimation with low transient modes. However, with fast dynamics, speed estimation
errors could increase due to that its derivative is supposed to be equal to zero. To overcome
this problem, the machine acceleration−α is also estimated to achieve a more precise
estimation in transient mode. Therefore, the virtual system (1.42) will be used to estimate
angular position, speed and acceleration by using an extraction of the angular position
estimation error eθe .

The main objectives in this work are:

Observation objective: By extracting the electrical angular position estimation error
given by

eθe = θe − θ̂e (1.43)

and based on a virtual system, design an adaptive observer to estimate the angular posi-
tion, speed and acceleration.

Control objective: Design an adaptive control to track a desired speed reference Ω∗

and a reference current i∗d, despite the presence of disturbances.

The sliding mode approach is the strategy that will be used in the observer and control
design due to its robustness and finite time convergence. Moreover, in order to reduce the
tuning time in the observer and control, the gains will be reparameterized in terms of a
single parameter. In addition, adaptive laws will be designed for the observer and control
to avoid overestimations of gains that can cause the increase of chattering and damage
the system.
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1.5. Benchmark

1.5 Benchmark

In this section, the benchmark for the IPMSM is introduced. Simulation and experi-
mental tests are going to be evaluated in order to show the performance of the proposed
strategies. The parameters of the IPMSM are presented in the Table 1.1.

Table 1.1 – IPMSM nominal parameters
Symbol Parameter Value Unit
Rs Stator resistance 1.4 ohms
J Moment of inertia 7.3e−3 kg.m2

p Number of pole pairs 5
Tl Torque 4 N-m
ψr Permanent-magnet flux linkage 0.18 Wb
Ld d-axis winding inductance 0.0057 H
Lq q-axis winding inductance 0.0099 H
fv Viscous friction coefficient 0.0034 kg-m2/s

The simulation and experimentation are carried out by using different profiles of load
torque and speed, as shown in Figure 1.7.
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Figure 1.7 – Load torque and speed profiles used during experimental and simulation
tests

As mentioned in the introduction, electrical parameters could vary during the opera-
tion of the motor due to magnetic saturation or temperature variations; mechanical pa-
rameters could vary depending on the load torque, weight, road type and so on. However,
since it is not possible to have access to motor parameters experimentally, the experimen-
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tal tests are carried out over a large time interval to see the effect of the parameters on
the estimation based on a virtual system without parameters. In addition, a simulation
test is carried out under resistance, inertia and inductance variations, as shown in Figure
1.8 in order to show the robustness of the proposed strategy. On the other hand, from

Figure 1.8 – Parameter variations in simulation tests

simulation, the performance and effectiveness of the proposed observer based on the ex-
traction of the angular error eθ during a time interval of 16 s will be shown by using the
profiles of Figure 1.9, at high, low and zero speed, and under different load torque values.

1.5.1 Hardware description

The experimental setup is shown in Figure 1.10 which is composed by an IPMSM
rated at 3 kW supplied by a three-phase voltages source inverter. The inverter is powered
by 400 V DC voltage. The pulse width modulation (PWM) technique is generated by a
dSPACE DS1103 with a switching frequency of 10 kHz. The digital board of dSPACE
receives the stator currents and the dc link voltages data with a 10 kHz frequency, and the
measured torque data with a 2 kHz frequency. The load torque is generated by a PMSM
mechanically coupled with the shaft of the IPMSM, while angular position is measured by
encoder. Moreover, a Kalman-filter applied to the measured position is used to calculate
the rotor speed.
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Figure 1.9 – Load torque and speed profiles considering a low-speed region with a very
small load torque.
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Figure 1.10 – Experimental setup

1.6 Conclusion

The basics of permanent magnets synchronous motor, including their main dynamical
models, have been addressed in this chapter. It is well known that these dynamical model
depends on parameters as stator resistance, inductance’s and so on. Therefore, the use
of dynamical models in the design of observer represents a problem as the parameters of
the motor vary during the operation. For this reason, a parameter-free virtual system has
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been introduced to avoid the parametric uncertainties. The virtual system will be used
in the design of observer in the following chapter, taking into account the benchmark
presented in this chapter.
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Chapter 2

NEW STRATEGY FOR THE ROTOR

POSITION AND SPEED ESTIMATION OF

PERMANENT MAGNET SYNCHRONOUS

MOTOR

In this chapter a strategy to extract the angular position estimation error of the PMSM
is addressed. After this, two adaptive observers based on sliding mode approach will be
introduced. These observer use the information of the angular position estimation error
extraction in order to estimate the angular position, speed and acceleration. Furthermore,
the observer gains are reparameterized based on a single parameter to simplify the tuning
procedure. Some test are addressed for each observer and a comparative study is carried
out.

2.1 Extraction of angular position estimation error

A methodology to extract the angular position estimation error (1.43) of PMSM from
a αβ stationary reference frame, is addressed. Then, considering that the currents−iαβ

are measurable and in order to extract eθe , consider Park transformation, such that the
currents id and iq are expressed as

idq = TT (θe) iαβ (2.1)

with

idq =
id
iq

 , TT (θe) =
 cos(θe) sin(θe)
−sin(θe) cos(θe)

 , iαβ =
iα
iβ

 , (2.2)

where currents idq and angular position θe are not measurable. Therefore, considering
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that there exists a control law for current-id and current-id tracks a reference current-i∗d.
Then, in order to extract eθ, the following equation is introduced

Λθ1 = Iqn − Idn + i∗d
√

2 (2.3)

and the terms Idn and Iqn are defined as follows,

Idnqn = M(θ̂e + ϕ) T−T (θ) idq (2.4)

with Idnqn = [Idn Iqn]T and the transformation matrix M(θ̂e + ϕ) expressed as follows

M(θ̂e + ϕ) =
 cos(θ̂e + ϕ) sin(θ̂e + ϕ)
−sin(θ̂e + ϕ) cos(θ̂e + ϕ)

 , (2.5)

defining θ̂e as the estimated angular position and ϕ is an offset angle that must be chosen
appropriately to extract eθe . In addition, notice that (i∗d, iαβ, ϕ) are known values and θ̂

will be computed by using the observer presented later, then

Λθ1 = Λθ1(θ̂e, iαβ, i
∗
d, ϕ) (2.6)

can be computed taking into account that

T−T (θe) idq = iαβ =
iα
iβ

 =
cos(θe)id − sin(θe)iq
sin(θe)id + cos(θe)iq

 (2.7)

Now, from transformation matrix M(θ̂e + ϕ), the currents iαβ can be transformed into
alternate synchronous reference frame. Then, the terms Idn and Iqn are defined as follows

Idn = cos(eθe − ϕ)id − sin(eθe − ϕ)iq, Iqn = sin(eθe − ϕ)id + cos(eθe − ϕ)iq (2.8)

where Idn and Iqn are functions of eθe . Nonetheless, extraction of eθe in this structure is
not possible. Therefore, in order to overcome this drawback, a selection for ϕ = π

4 is made.
In consequence, (2.3) is expressed in terms of eθe as follows

Λθ1 = iq
√

2 sin(eθe) − id
√

2 cos(eθe) + i∗d
√

2 (2.9)

Considering that Λθ1 is calculated by using measurable currents iαβ; and assuming id
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tracks a desired reference i∗d. Then, the above equation can be rewritten as follows

Λθ1 = iq
√

2 sin(eθe) + i∗d
√

2 [1 − cos(eθe)] (2.10)

and using a trigonometric identity, the following equation is obtained

Λθ1 = iq
√

2 sin(eθe) + i∗d
√

2
[
2(sin(eθe

2 ))2
]

(2.11)

Therefore, for a small angular error eθe , an approximation for Λθ1 is stated as

Λθ1 ≈ iqeθe

√
2 + i∗d√

2
e2

θe
. (2.12)

Moreover, consider that quadratic term is smaller than linear term. Then, Λθ1 is given by

Λθ1 ≈ iqeθe

√
2 (2.13)

Notice that (2.13) depends of the current iq. It is worth mentioning that the changes in

Figure 2.1 – Different scenarios to see the behavior of speed, electromagnetic torque and
current-iq.

the current iq are directly proportional to the electromagnetic torque Te [see [79]]. As can
be seen in Figure 2.1, different profiles of speed and electromagnetic torque have been
plotted and the behavior of the current iq is shown. Then, from Figure 2.1, current iq can
be positive or negative depending on the electrical machine operation. Then, multiplying
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sign(iq) in both side of the equation, it follows that

Λθ1sign(iq) ≈ iqsign(iq)
√

2 (eθe)
≈

√
2 |iq|eθe

(2.14)

Taking into account that iqmax > |iq|. Finally, it follows that

Λθ ≈ µ eθe (2.15)

with Λθ = Λθ1sign(iq), and µ = iqmax

√
2, where iqmax is the maximum value of iq.

Nevertheless, iq is not available for measurement. Then, in (2.15), iq will be replaced by
the estimated current îq. In fact, îq is obtained from the transformation of the measured
currents iα and iβ from the stator reference frame to synchronous reference frame as shown
by these equations îd

îq

 = TT (θ̂e)
iα
iβ

 (2.16)

where TT (θ̂e) =
 cos(θ̂e) sin(θ̂e)
−sin(θ̂e) cos(θ̂e)

 and since θ̂e will be calculated by the proposed

observer, then,
îq = −sin(θ̂e)iα + cos(θ̂e)iβ (2.17)

The initial rotor position information is needed for practical implementation to obtain îq.
This problem is addressed in the literature by several research works (as it could be seen
in [80]–[82]) and is supposed to be solved. In the experimental implementation, the rotor
is moved very slightly by applying short voltage in order to detect the initial rotor position
information. Once this information is obtained, the current îq could be calculated using
equation (2.17). Based on the calculated îq, the rotor position estimation error could be
extracted by

eθe ≈ Λθ

µ
= Λθ1sign(̂iq)

µ
(2.18)

where Λθ1 is computed from (2.3). In the sequel, (2.18) will be used in the observer for
estimating the angular position, speed and acceleration.
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2.2 Observer design based on a sliding modes ap-
proach: Proposal 1

In this section, an observer is designed by using the sliding mode approach. Consider
the following class of nonlinear system given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = ρ(t)
y = x1

(2.19)

where x1, x2 and x3 are the states, ρ(t) is an unknown and bounded term and y ∈ ℜ the
output of the system.

Assumption 2.1. The term ρ(t) is bounded and unknown, i.e., |ρ(t)| ≤ ϱ1 for ϱ1 > 0.

Now, an observer based on sliding mode for the system (2.19) is expressed as follows

˙̂x1 = x̂2 +K1,1|e1|
2
3 sign(e1)

˙̂x2 = x̂3 +K2,1|e1|
1
3 sign(e1)

˙̂x3 = K3,1sign(e1)
ŷ = x̂1

(2.20)

where x̂1, x̂2 and x̂3 are the estimated states and ŷ is the estimated output. Moreover,
the gains for the observer are reparameterized based on a single parameter Lo as follows

K1,1 = 3L
5
3
o , K2,1 = 2L

10
3

o , K3,1 =
(4

9

)
L5

o (2.21)

where Lo is an arbitrarily chosen gain large enough. However, if Lo is too large, it could
cause an overestimation and increase the chattering amplitude, causing damage to the
actuator. Currently, the design of an adaptive law for the gains is the best alternative to
mitigate this problem.
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2.2.1 Adaptive observer design

Now, an adaptive observer will be designed for the system (2.19). Then, the following
observer

˙̂x1 = x̂2 + K̃1,1|e1|
2
3 sign(e1)

˙̂x2 = x̂3 + K̃2,1|e1|
1
3 sign(e1)

˙̂x3 = K̃3,1sign(e1)
ŷ = x̂1

(2.22)

is an AHOSMO-1 and its gains are defined as follows

K̃1,1 = 3L
5
3
o (t), K̃2,1 = 2L

10
3

o (t), K̃3,1 =
(4

9

)
L5

o(t) (2.23)

where Lo(t) > 0 is an adaptive parameter that will be introduced later.

Remark 2.1: The demonstration to calculate the proposed gains has been introduced
in Appendix A (see A.1.1).

Taking into account the observer (2.22), an analysis of convergence will be introduced
and an adaptive law for Lo(t) will be designed. Then, defining the following estimation
errors

e1 = x1 − x̂1

e2 = x2 − x̂2

e3 = x3 − x̂3

(2.24)

the following dynamics can be calculated

ė1 = e2 − 3L
5
3
o (t)|e1|

2
3 sign(e1)

ė2 = e3 − 2L
10
3

o (t)|e1|
1
3 sign(e1)

ė3 = ρ(t) −
(2

3

)2
L5

o(t)sign(e1)

(2.25)

Now, taking into account the dynamics of the estimation errors, the following change of
variable is established as follows

ζ1 = e1

L2
o(t)

, ζ2 = e2

L2
o(t)

, ζ3 = e3

L2
o(t)

(2.26)

and taking the first derivative in time, the dynamical system in terms of the new variables
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is given by

ζ̇1 = −3Lo(t)|ζ1|
2
3 sign(ζ1) + ζ2 − 2ζ1

L̇o(t)
Lo(t)

ζ̇2 = −2L2
o(t)|ζ1|

1
3 sign(ζ1) + ζ3 − 2ζ2

L̇o(t)
Lo(t)

ζ̇3 = −
(2

3

)2
L3

o(t)sign(ζ1) + ρ(t)
L2

o(t)
− 2ζ3

L̇o(t)
Lo(t)

(2.27)

On the other side, the following new change of variable is introduced

ξ1 = |ζ1|
2
3 sign(ζ1), ξ2 = ζ2

Lo(t)
, ξ3 = 3ζ3|ζ1|

1
3

2L2
o(t)

(2.28)

and the dynamical system can be expressed by using the new variables as follows

ξ̇1 = 2Lo(t)
3|ζ1|

1
3

[−3ξ1 + ξ2] − 4L̇o(t)
3Lo(t)

ξ1

ξ̇2 = 2Lo(t)
3|ζ1|

1
3

[−3ξ1 + ξ3] − 3L̇o(t)
Lo(t)

ξ2

ξ̇3 = 2Lo(t)
3|ζ1|

1
3

−ξ1 +
(3

2

)2 |ζ1|
2
3ρ(t)

L5
o(t)

+ ξ3

2|ζ1|
2
3

(−3ξ1 + ξ2)
− 14L̇o(t)

3Lo(t)
ξ3

(2.29)

The resulting system (2.29) can be expressed in the following compact form

ξ̇ = αo

[(
Ao − P−1

o CT
o Co

)
ξ + Φo

]
−Noξ

L̇o(t)
Lo(t)

(2.30)

where αo = 2Lo(t)
3|ζ1|

1
3

and

ξ =


ξ1

ξ2

ξ3

 , Ao =


0 1 0
0 0 1
0 0 0

 , Co =
[
1 0 0

]
, Po =


1 −1 1

−1 2 −3
1 −3 6

 ,

No =


4
3 0 0
0 3 0
0 0 14

3

 , Φo =


0
0(3

2

)2 |ζ1|
2
3ρ(t)

L5
o(t)

+ ξ3

2|ζ1|
2
3

(−3ξ1 + ξ2)

 .
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Assumption 2.2. The terms in vector Φo are locally Lipschitz with respect to ξ [83], i.e.,
||Φo|| ≤ ℏ||ξ||, for ℏ > 0.

Moreover, Po is a symmetric positive-definite matrix, whose solution is given by

Po + AT
o Po + PoAo − CT

o Co = 0

Theorem 2.1. Consider the dynamic system (2.19) and the Assumptions 2.1 and 2.2 are
satisfied. Furthermore,

L̇o(t) =
k 1

2
o

|e1|
2
3

L
1
3
o (t)

− γ
1
2
o L2

o(t)
 (2.31)

is an adaptive law-1 of Lo(t), for γo > 0 and ko > 0 chosen appropriately, where ko > γo >

0. Then, the system (2.22) is an Adaptive High Order Sliding Mode Observer (AHOSMO-
1) for the dynamic system (2.19) such that estimation errors ei, for i = 1, 2, 3; converge
to zero in finite time.

Proof
A Lyapunov candidate function is considered as follows

V(ξ,Lo(t)) = V(ξ) + V(Lo(t)) (2.32)

defining V(ξ) = ξTPoξ and V(Lo(t)) = γo

2 Lo(t)2. Then, considering the Lyapunov candi-
date function, it is possible to take its first derivative in time and replace the suitable
expressions, it follows that

V̇(ξ,Lo) =αoξ
T
[
AT

o Po + PoAo

]
ξ − 2αoξ

TCT
o Coξ − L̇o(t)

Lo(t)
ξT [PoNo +NoPo] ξ

+ γoL̇o(t)Lo(t) + 2αoξ
TPoΦo

(2.33)

Taking into account that AT
o Po + PoAo = −Po + CT

o Co. Then, equation (2.33) can be
rewritten as follows

V̇(ξ,Lo(t)) = −αoξ
TPoξ−αoξ

TCT
o Coξ− L̇o(t)

Lo(t)
ξT [PoNo +NoPo] ξ+γoL̇o(t)Lo(t)+2αoξ

TPoΦo

(2.34)
Now, taking into account that PoNo+NoPo = Ro, and defining Ro as a symmetric positive-
definite matrix. Then, ξTRoξ ≥ λmin(Ro)

λmax(Po)
V(ξ) = koV(ξ), where λmin(Ro) and λmax(Po)
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are the minimum and maximum singular values of Ro and Po, respectively. Moreover,
−αoξ

TCT
o Coξ < 0, for Lo(t) > 0. Then,

V̇(ξ,Lo(t)) ≤ −αoV(ξ) − L̇o(t)
Lo(t)

[
koV(ξ) − γoL

2
o(t)

]
+ 2αoξ

TPoΦo (2.35)

Considering that

[
koV(ξ) − γoL

2
o(t)

]
=
[
k

1
2
o V

1
2

(ξ) + γ
1
2
o Lo(t)

] [
k

1
2
o V

1
2

(ξ) − γ
1
2
o Lo(t)

]

and f(V(ξ),Lo(t)) =
[
k

1
2
o V

1
2

(ξ) + γ
1
2
o Lo(t)

]
> 0. Then, equation (2.35) is written as

V̇(ξ,Lo(t)) ≤ −αoV(ξ) − f(V(ξ),Lo(t))
L̇o(t)
Lo(t)

[
k

1
2
o V

1
2

(ξ) − γ
1
2
o Lo(t)

]
+ 2αoξ

TPoΦo (2.36)

On the other side, using the following inequalities

|ζ1|
4
3 = |ξ1|2 ≤ ||ξ||2 (2.37)

and
λmin(Po)||ξ||2 ≤ V(ξ) ≤ λmax(Po)||ξ||2 (2.38)

where λmin(Po) and λmax(Po) are the minimum and maximum singular values of Po. Then,
the following inequality is satisfied

|ζ1|
2
3 ≤ ||ξ|| ≤

(
V(ξ)

λmin(Po)

) 1
2

(2.39)

Therefore, from above inequality, it follows that

V̇(ξ,Lo(t)) ≤ −αoV(ξ) − f(V(ξ),Lo(t))
L̇o(t)
Lo(t)

k 1
2
o

|e1|
2
3

L
4
3
o (t)

− γ
1
2
o Lo(t)

+ 2αoξ
TPoΦo (2.40)

Choosing an adaptive law as follows L̇o(t) =
k 1

2
o

|e1|
2
3

L
4
3
o (t)

− γ
1
2
o Lo(t)

Lo(t). Then,

V̇(ξ,Lo(t)) ≤ −αoV(ξ) − f(V(ξ),Lo(t))

k 1
2
o

|e1|
2
3

L
4
3
o (t)

− γ
1
2
o Lo(t)

2

+ 2αoξ
TPoΦo (2.41)
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Assuming that e1 tend to zero faster than Lo(t). Equation (2.41) is given by

V̇(ξ,Lo(t)) ≤ −αoV(ξ) − f(V(ξ),Lo(t))
[
γoL

2
o(t)

]
+ 2αoξ

TPoΦo (2.42)

From Assumption 2.2, taking the norm to the nonlinear term 2αoξ
TPoΦo and the inequal-

ity (2.38), then, it follows that

V̇(ξ,Lo(t)) ≤ −2Lo(t)
3|ζ1|

1
3

[1 − σo]V(ξ) − f(V(ξ),Lo(t))
[
γoL

2
o(t)

]
(2.43)

where σo = 2||Po||ℏ
λmin(Po)

. Furthermore, from |ζ1|
2
3 = |ξ1| ≤ |ξ1|2 ≤ ||ξ||2, the following

inequality is satisfied,

|ζ1|
1
3 ≤ ||ξ|| ≤

(
V(ξ)

λmin(Po)

) 1
2

(2.44)

Then,
V̇(ξ,Lo(t)) ≤ −Lo(t)ΓoV

1
2

(ξ) − f(V(ξ),Lo(t))
[
γoL

2
o(t)

]
(2.45)

where Γo = 2 [1 − σo]λ
1
2
min(Po)

3 . Rewritten (2.45) as follows

V̇(ξ,Lo(t)) ≤ −Lo(t)
√

2γ
1
2
o

 Γo
√

2γ
1
2
o

V
1
2

(ξ) + f(V(ξ),Lo)
γ

1
2
o√
2
Lo(t)

 (2.46)

and defining η0 = Lo(t)
√

2γ
1
2
o and φ = min

 Γo
√

2γ
1
2
o

, f(V(ξ),Lo(t))

. It follows that

V̇(ξ,Lo(t)) ≤ −η

V 1
2

(ξ) + γ
1
2
o√
2
Lo(t)

 (2.47)

where η = η0φ. On the other hand, considering that Jensen´s inequality [84] is expressed
as follows

[|a|q + |b|q]
1
q ≤ |a| + |b| (2.48)

and defining a = V
1
2

(ξ), b = V
1
2

(Lo(t)) and q = 2. Then, the following inequality is satisfied

[
|V

1
2

(ξ)|
2 + |V

1
2

(Lo(t))|
2
] 1

2
≤ |V

1
2

(ξ)| + | γ
1
2
o√
2
Lo(t)| (2.49)
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and

V
1
2

(ξ,Lo(t)) ≤ V
1
2

(ξ) + γ
1
2
o√
2
Lo(t). (2.50)

Finally, the Lyapunov dynamic equation is satisfied as follows

V̇(ξ,Lo(t)) ≤ −ηV
1
2

(ξ,Lo(t)) (2.51)

As mentioned before, V̇(ξ,Lo(t)) is a Lyapunov function, with Lo(t) sufficiently large, satis-
fying η > 0. Then, V̇(ξ,Lo(t)) is negative definite and can guarantee the convergence of the
observer in finite time. On the other side, taking into account the equation v̇ = −ηv 1

2 ,
whose solution is defined by v(t) = (v(0) 1

2 − 1
2ηt)

2. Then, the comparison principle can
be applied in order to estimate the convergence time T1. Therefore, V(ξ,Lo(t)) < v(t) when
V(ξ(0)),Lo(0)) < v(0), then ξ has a finite-time convergence in an estimated time defined by

T1 =
2V

1
2

(ξ(0)),Lo(0))

η
for Lo(t) sufficiently large. Thus, V(ξ,Lo(t)) tends to zero in finite-time,

which involves that the estimation errors ei, for i = 1, 2, 3; tend to zero in finite time.
Remark 2.2. As can be seen, the system (2.30) has a singularity when e1 = 0.

The singularity arise due to the change of variable ξ1 = |ζ1|
2
3 sign(ζ1), ξ2 = ζ2

Lo(t)
,

ξ3 = 3ζ3|ζ1|
1
3

2L2
o(t)

; converting system (2.25) into system (2.30), whose domain is defined

as follows D = {(ξ1, ξ2, ξ3) ∈ ℜ3| ξ1 ̸= 0} . Nonetheless, considering convergence anal-
ysis, the singularity does not appear when the system is expressed in terms of the original
coordinates (see for more details [85], [86]).

2.2.2 Adaptive observer design for the IPMSM

Consider the adaptive law-1 in Theorem 2.1 and the virtual system (1.42), then, an
adaptive observer based on the virtual system (1.42) is designed as follows

˙̂
θe = ω̂ + K̃1,1|eθe|

2
3 sign(eθe)

˙̂ω = α̂ + K̃2,1|eθe|
1
3 sign(eθe)

˙̂α = K̃3,1sign(eθe)

(2.52)

where θ̂e, ω̂ and α̂ are the estimation of electrical angular position, electrical speed and
acceleration, respectively. However, θe is not measured directly, such that, the observer
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(2.52) cannot be implemented. Therefore, considering the methodology to extract eθe

introduced in section 2.1, then, Λθ can be expressed in terms of the estimation error eθe

as Λθ = µeθe , with µ > 0. Thus, eθe = θe − θ̂e can be replaced by θe − θ̂e = Λθ

µ
into the

observer (2.52), i.e., the AHOSMO-1 for the IPMSM is given by

˙̂
θe = ω̂ + K̃1,1|

Λθ

µ
|

2
3 sign(Λθ

µ
)

˙̂ω = α̂ + K̃2,1|
Λθ

µ
|

1
3 sign(Λθ

µ
)

˙̂α = K̃3,1sign(Λθ

µ
)

(2.53)

Then, the observer (2.53) is used to estimate the angular position, speed and acceleration.

As previously mentioned, θ̂ = θ̂e

p
is the estimated mechanical angular position and Ω̂ = ω̂

p
is the mechanical speed. In Figure 2.2, a scheme of the proposed AHOSMO-1 (2.53) is
introduced.
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Figure 2.2 – Scheme of the proposed AHOSMO-1.
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2.2.3 Simulation results

In this section, a simulation result is introduced to show the AHOSMO-1 performance
in open-loop. Simulation test has been carried out in Matlab-Simulink environment, using
a sampling time of 1 × 10−3 with a fixed-step ode4 solver. Moreover, the test has been
made by considering the profiles and parametric uncertainties given by Figure 1.7 and
Figure 1.8, respectively. The parameters of the adaptive observer are given in the Table
2.1. In Figure 2.3, the estimation of the angular position is given. It is possible to see that

Table 2.1 – Parameters for AHOSMO-1
Values

Lo(0) γ0 ko

1.5 0.003 120

observer has a good performance during the estimation.

Figure 2.3 – AHOSMO-1. Rotor angular position estimation and its estimation error

In Figure 2.4 is introduced the speed estimation and its estimation error. The speed
estimation error can show that observer is not affected by parametric uncertainties. More-
over, thanks to the estimation of the acceleration [see Figure 2.5-a)], a minimum error
can be seen during speed profile change. This error is caused by the fast dynamic in the
speed, for this reason, the acceleration estimation has been included to compensate those
errors in fast transient modes, minimizing the estimation error.
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Figure 2.4 – AHOSMO-1. Rotor speed estimation and speed estimation error

On the other hand, in Figure 2.5-b), the behaviour of adaptive law for the observer
is introduced, which takes values in order to achieve a good estimation of the observer
avoiding overestimation of gain. Therefore, in this open-loop test for the first adaptive
observer, good results have been obtained by simulation.

Figure 2.5 – AHOSMO-1. Estimation of acceleration (a) and behaviour of the adaptive
law (b)
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2.3 Observer design based on a sliding modes ap-
proach: Proposal 2

In this section, a second observer is designed for a class of nonlinear system given by
(2.19). Then, an observer for the system (2.19) is expressed as follows

˙̂x12 = x̂2 +K1,2|e12|
2
3 sign(e12)

˙̂x22 = x̂3 +K2,2|e12|
1
3 sign(e12)

˙̂x32 = K3,2sign(e12)
ŷ = x̂12

(2.54)

where x̂12 , x̂22 and x̂32 represent the estimated states and ŷ is the estimated output.
Moreover, the gains for the observer are reparameterized in terms of Lo2 as follows

K1,2 = 3Lo2 K2,2 = 2L2
o2 K3,2 =

(2
3

)2
L3

o2 (2.55)

where Lo2 > 0 is a constant positive parameter large enough. However, if Lo2 is too large,
it could cause an overestimation and increase the chattering amplitude, causing damage
to the actuator. For this reason, in the next section, an adaptive law for the gains will be
designed.

2.3.1 Adaptive observer design

Now, a second adaptive observer is proposed for the system (2.19). Consider the fol-
lowing system

˙̂x12 = x̂2 + K̃1,2|e12|
2
3 sign(e12)

˙̂x22 = x̂3 + K̃2,2|e12|
1
3 sign(e12)

˙̂x32 = K̃3,2sign(e12)
ŷ = x̂12

(2.56)

which is an AHOSMO-2 and its reparameterized gains in terms of a single parameter are
defined by

K̃1,2 = 3Lo2(t) K̃2,2 = 2L2
o2(t) K̃3,2 =

(2
3

)2
L3

o2(t) (2.57)

where Lo2(t) is an adaptive parameter that will be introduced later.

59



Part , Chapter 2 – New strategy for the rotor position and speed estimation of Permanent
Magnet Synchronous Motor

Remark 2.3: The demonstration to compute the proposed gains has been introduced
in Appendix A (See A.1.2).
Now, an analysis of convergence for the observer (2.56) and an adaptive law for the
parameter Lo2(t) are introduced. Then, consider the following estimation errors

e12 = x1 − x̂12 , e22 = x2 − x̂22 , e32 = x3 − x̂32 (2.58)

and their dynamics as follows

ė12 = e22 − 3Lo2(t)|e12|
2
3 sign(e12)

ė22 = e32 − 2L2
o2(t)|e12|

1
3 sign(e12)

ė32 = ρ(t) −
(2

3

)2
L3

o2(t)sign(e12)

(2.59)

Now, a change of variable is introduced as follows

ξ12 = |e12| 2
3 sign(e12)
Lo2(t) ξ22 = e22

L2
o2(t) ξ32 = 3e32|e12| 1

3

2L3
o2(t)

(2.60)

Then, it follows that the dynamical system can be expressed by using the new variables.
Therefore, the following system can be obtained

ξ̇12 = 2Lo2(t)
3|e12| 1

3
[−3ξ12 + ξ22 ] − L̇o2(t)

Lo2(t)ξ12

ξ̇22 = 2Lo2(t)
3|e12| 1

3
[−3ξ12 + ξ32 ] − 2L̇o2(t)

Lo2(t) ξ22

ξ̇32 = 2Lo2(t)
3|e12| 1

3

−ξ12 +
(3

2

)2 |e12| 2
3ρ(t)

L4
o2(t) + Lo2(t)ξ32

2|e12| 2
3

[−3ξ12 + ξ22 ]
− 3L̇o2(t)

Lo2(t) ξ32

(2.61)

and can be simplified as follows

ξ̇o2 = αo2

[(
Ao − P−1

o CT
o Co

)
ξo2 + Φo2

]
−Do2ξo2

L̇o2(t)
Lo2(t)

(2.62)

defining αo2 = 2Lo2(t)
3|e12| 1

3
and the following terms as follows

60



2.3. Observer design based on a sliding modes approach: Proposal 2

ξo2 =


ξ12

ξ22

ξ32

 , Ao =


0 1 0
0 0 1
0 0 0

 , Co =
[
1 0 0

]
, Po =


1 −1 1

−1 2 −3
1 −3 6

 , (2.63)

Do2 =


1 0 0
0 2 0
0 0 3

 , Φo2 =


0
0(3

2

)2 |e12| 2
3ρ(t)

L4
o2(t) + Lo2(t)ξ32

2|e12| 2
3

[−3ξ12 + ξ22 ]

 . (2.64)

Assumption 2.3. The term in the vector Φo2 is locally Lipschitz with respect to ξo2 [83],
i.e., ||Φo2|| ≤ ℏ2||ξo2||, for ℏ2 > 0.

Moreover, Po is a symmetric positive-definite matrix, whose solution is given by

Po + AT
o Po + PoAo − CT

o Co = 0 (2.65)

Theorem 2.2. Consider the dynamic system (2.19) and the Assumptions 2.1 and 2.3 are
satisfied. Furthermore,

L̇o2(t) =
[
k

1
2
o2|e12|

2
3 − γ

1
2
o2L

2
o2(t)

]
(2.66)

is an adaptive law-2 of Lo2(t), for γo2 > 0 and ko2 > 0 chosen appropriately, where
ko2 > γo2 > 0. Then, the system (2.56) is an Adaptive High-Order Sliding Mode Observer
(AHOSMO-2) for the dynamic system (2.19) such that estimation errors ei2, for i = 1, 2, 3;
converge to zero in finite time.

Proof
A Lyapunov candidate function is considered as follows

V(ξo2 ,Lo2 (t)) = V(ξo2 ) + V(Lo2 (t)) (2.67)

defining V(ξo2 ) = ξT
o2Poξo2 and V(Lo2 (t)) = γo2

2 L2
o2(t). Then, considering the Lyapunov can-

didate function, it is possible to take its first derivative in time and replace the suitable
expressions, it follows that

V̇(ξo2 ,Lo2 (t)) =αo2ξ
T
o2

[
AT

o Po + PoAo

]
ξo2 − 2αo2ξ

T
o2C

T
o Coξo2

− 2 L̇o2(t)
Lo2(t)ξ

T
o2PoDo2ξo2 + γo2L̇o2(t)Lo2(t) + 2αo2ξ

T
o2PoΦo2

(2.68)
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Taking into account that AT
o Po + PoAo = −Po + CT

o Co. Then, equation (2.68) can be
rewritten as follows

V̇(ξo2 ,Lo2 (t)) = − αo2ξ
T
o2Poξo2 − αo2ξ

T
o2C

T
o Coξo2 − 2 L̇o2(t)

Lo2(t)ξ
T
o2PoDo2ξo2

+ γo2L̇o2(t)Lo2(t) + 2αo2ξ
T
o2PoΦo2

(2.69)

On the other hand, using the following inequalities

|e12| 4
3

L2
o2(t) = |ξ12|2 ≤ ||ξo2||2 (2.70)

and
λmin(Po)||ξo2||2 ≤ V(ξo2 ) ≤ λmax(Po)||ξo2||2 (2.71)

where λmin(Po) and λmax(Po) are the minimum and maximum singular values of Po.
Moreover,

λmin(PoDo2)||ξo2 ||2 ≤ ξT
o2PoDo2ξo2 ≤ λmax(PoDo2)||ξo2||2 (2.72)

where λmin(PoDo2) and λmax(PoDo2) are the minimum and maximum singular values of
PoDo2 . Then,

V̇(ξo2 ,Lo2 (t)) ≤ − αo2ξ
T
o2Poξo2 − αo2ξ

T
o2C

T
o Coξo2 − 2λmin(PoDo2)||ξo2||2 L̇o2(t)

Lo2(t)
+ γo2L̇o2(t)Lo2(t) + 2αξT

o2PoΦo2

(2.73)

In this way,

V̇(ξo2 ,Lo2 (t)) ≤ − αo2ξ
T
o2Poξo2 − αo2ξ

T
o2C

T
o Coξo2 − ko2||ξo2||2 L̇o2(t)

Lo2(t)
+ γo2L̇o2(t)Lo2(t) + 2αo2ξ

T
o2PoΦo2

(2.74)

where ko2 = 2λmin(PoDo2) > 0. The above equation can be established as follows

V̇(ξo2 ,Lo2 (t)) ≤ − αo2ξ
T
o2Poξo2 − αo2ξ

T
o2C

T
o Coξo2 + 2αo2ξ

T
o2PoΦo2

− L̇o2(t)
Lo2(t)

[
ko2 ||ξo2||2 − γo2L

2
o2(t)

] (2.75)
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Now, the last term of the above equation can be expressed as follows

L̇o2(t)
Lo2(t)

[
ko2||ξo2||2 − γo2L

2
o2(t)

]
= L̇o2(t)
Lo2(t)

[
k

1
2
o2||ξo2|| + γ

1
2
o2Lo2(t)

] [
k

1
2
o2||ξo2 || − γ

1
2
o2Lo2(t)

]
(2.76)

and f(ξo2 ,Lo2 (t)) =
[
k

1
2
o2 ||ξo2|| + γ

1
2
o2Lo2(t)

]
> 0. Then,

V̇(ξo2 ,Lo2 (t)) ≤ − αo2ξ
T
o2Poξo2 − αo2ξ

T
o2C

T
o Coξo2 + 2αo2ξ

T
o2PoΦo2

− f(ξo2 ,Lo2 (t))
L̇o2(t)
Lo2(t)

[
k

1
2
o2 ||ξo2|| − γ

1
2
o2Lo2(t)

] (2.77)

From inequalities (2.70) and (2.71), the following inequality is satisfied

|e12 | 2
3

Lo2(t) ≤ ||ξo2|| ≤
(

V(ξo2 )

λmin(Po)

) 1
2

(2.78)

Then, from (2.78), it follows that

V̇(ξo2 ,Lo2 (t)) ≤ − αo2V(ξo2 ) − αo2ξ
T
o2C

T
o Coξo2 + 2αo2ξ

T
o2PoΦo2

− f(ξo2 ,Lo2 (t))
L̇o2

Lo2(t)

k 1
2
o2

|e12 | 2
3

Lo2(t) − γ
1
2
o2Lo2(t)

 (2.79)

Choosing an adaptive law as follows

L̇o2(t) =
k 1

2
o2

|e12| 2
3

Lo2(t) − γ
1
2
o2Lo2(t)

Lo2(t) (2.80)

Then,

V̇(ξo2 ,Lo2 (t)) ≤ −αo2V(ξo2 )−αo2ξ
T
o2C

T
o Coξo2−f(ξo2 ,Lo2 (t))

k 1
2

|e12| 2
3

Lo2(t) − γ
1
2
o2Lo2(t)

2

+2αo2ξ
T
o2PoΦo2

(2.81)
and assuming that e12 tend to zero faster than Lo2(t), and −αo2ξ

T
o2C

T
o Coξo2 < 0, for

Lo2(t) > 0. Equation (2.81) is given by

V̇(ξo2 ,Lo2 (t)) ≤ −αo2V(ξo2 ) − f(ξo2 ,Lo2 (t))
[
γo2L

2
o2(t)

]
+ 2αo2ξ

T
o2PoΦo2 (2.82)

Taking the norm to the nonlinear term 2αo2ξ
T
o2PoΦo2 and from Assumption 2.3, then (2.82)
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is given by

V̇(ξo2 ,Lo2 (t)) ≤ −αo2V(ξo2 ) + 2αo2 ||ξo2||2||Po||ℏ2 − f(ξo2 ,Lo2 (t))
[
γo2L

2
o2(t)

]
(2.83)

Now, from inequality (2.71). Then, it follows that

V̇(ξo2 ,Lo2 (t)) ≤ −2Lo2(t)
3|e12| 1

3
[1 − σo2 ]V(ξo2 ) − f(ξo2 ,Lo2 (t))

[
γo2L

2
o2(t)

]
(2.84)

where σo2 = 2||Po||ℏ2

λmax(Po2) . Furthermore, from |e12 | 2
3

Lo2(t) = |ξ12| ≤ |ξ12|2 ≤ ||ξo2||2, the following
inequality is satisfied

|e12| 1
3

L
1
2
o2(t)

≤ ||ξo2|| ≤
(

V(ξo2 )

λmin(Po)

) 1
2

(2.85)

and considering that (2.84) can be written as follows

V̇(ξo2 ,Lo2 (t)) ≤ − 2Lo2(t)
3|e12 |

1
3 L

1
2
o2 (t)

L
1
2
o2 (t)

[1 − σo2 ]V(ξo2 ) − f(ξo2 ,Lo2 (t))
[
γo2L

2
o2(t)

]
(2.86)

Then,
V̇(ξo2 ,Lo2 (t)) ≤ −L

1
2
o2(t)Γo2V

1
2

(ξo2 ) − f(ξo2 ,Lo2 (t))
[
γo2L

2
o2(t)

]
(2.87)

where Γo2 = 2 [1 − σo2 ]λ
1
2
min(Po)

3 . Rewritten (2.87) as follows

V̇(ξo2 ,Lo2 (t)) ≤ −Lo2(t)
√

2γ
1
2
o2

 Γo2
√

2γ
1
2
o2L

1
2
o2(t)

V
1
2

(ξo2 ) + f(ξo2 ,Lo2 (t))
γ

1
2
o2√
2
Lo2(t)

 (2.88)

and defining η02 = Lo2(t)
√

2γ
1
2
o2 and φo2 = min

 Γo2
√

2γ
1
2
o2L

1
2
o2(t)

, f(ξo2 ,Lo2 (t))

. We can write

the following equation

V̇(ξo2 ,Lo2 (t)) ≤ −η̃

V 1
2

(ξo2 ) + γ
1
2
o2√
2
Lo2(t)

 (2.89)

where η̃ = η02φo2 . On the other hand, considering that Jensen´s inequality [84] is expressed
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as follows
[|ao2|q + |bo2|q]

1
q ≤ |ao2| + |bo2| (2.90)

and defining ao2 = V
1
2

(ξo2 ), bo2 = V
1
2

(Lo2 (t)) and q = 2. Then, the following inequality is
satisfied [

|V
1
2

(ξo2 )|
2 + |V

1
2

(Lo2 (t))|
2
] 1

2
≤ |V

1
2

(ξo2 )| + |γ
1
2
o2√
2
Lo2(t)| (2.91)

such that

V
1
2

(ξo2 ,Lo2 (t)) ≤ V
1
2

(ξo2 ) + γ
1
2
o2√
2
Lo2(t) (2.92)

Finally, the Lyapunov dynamic equation is satisfied as follows

V̇(ξo2 ,Lo2 (t)) ≤ −η̃V
1
2

(ξo2 ,Lo2 (t)) (2.93)

As mentioned before, V̇(ξo2 ,Lo2 (t)) is a Lyapunov function, with Lo2(t) sufficiently large,
satisfying η̃ > 0. Then, V̇(ξo2 ,Lo2 (t)) is negative definite and can guarantee the convergence of
the observer in finite time. On the other side, taking into account the equation v̇ = −η̃v 1

2 ,
whose solution is defined by v(t) = (v(0) 1

2 − 1
2 η̃t)

2. Then, the comparison principle can be
applied in order to estimate the convergence time T12 . Therefore, V(ξo2 ,Lo2 ) < v(t) when
V(ξo2 (0)),Lo2 (0)) < v(0), then ξo2 has a finite-time convergence in an estimated time defined
by

T12 =
2V

1
2

(ξo2 (0)),Lo2 (0))

η̃

for Lo2(t) sufficiently large. Thus, V(ξo2 ,Lo2 (t)) tends to zero in finite-time, which involves
that the estimation errors ei2 , for i = 1, 2, 3; tend to zero in finite time.
Remark 2.4. As we can see, the system (2.62) has a singularity when e1 = 0. The
singularity arise due to the change of variable

ξ12 = |e12 | 2
3 sign(e12)
Lo2(t) , ξ22 = e22

L2
o2(t) , ξ32 = 3e32|e12 | 1

3

2L3
o2(t)

converting system (2.59) into system (2.62), whose domain is defined as follows

D∈ =
{
(ξ12 , ξ22 , ξ32) ∈ ℜ3| ξ12 ̸= 0

}
.

Nonetheless, considering convergence analysis, the singularity does not appear when the
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system is expressed in terms of the original coordinates (see for more details [85], [86]).

2.3.2 Adaptive observer design for the IPMSM

Consider the adaptive law-2 in Theorem 2.2 and the virtual system (1.42), then, an
AHOSMO-2 for the virtual system (1.42) is designed as follows

˙̂
θe = ω̂ + K̃1,2|eθe|

2
3 sign(eθe)

˙̂ω = α̂ + K̃2,2|eθe|
1
3 sign(eθe)

˙̂α = K̃3,2sign(eθe)

(2.94)

where θ̂e, ω̂ and α̂ are the estimation of electrical angular position, electrical speed and
acceleration, respectively. However, θe is not measured directly, such that, the observer
(2.94) cannot be implemented. Therefore, considering the methodology to extract eθe

introduced in section 2.1, then, Λθ can be expressed in terms of the estimation error eθe

as Λθ = µeθe , with µ > 0. Thus, eθe = θe − θ̂e can be replaced by θe − θ̂e = Λθ

µ
into the

observer (2.94), i.e., the AHOSMO-2 for the IPMSM is given by

˙̂
θe = ω̂ + K̃1,2|

Λθ

µ
|

2
3 sign(Λθ

µ
)

˙̂ω = α̂ + K̃2,2|
Λθ

µ
|

1
3 sign(Λθ

µ
)

˙̂α = K̃3,2sign(Λθ

µ
)

(2.95)

Then, the observer (2.95) is used to estimate the angular position, speed and acceleration.
In Figure 2.6, a scheme of the proposed adaptive observer-2 is introduced. As previously

mentioned, θ̂ = θ̂e

p
is the estimated mechanical angular position and Ω̂ = ω̂

p
is the

estimated mechanical speed.

2.3.3 Simulation results

Considering the second adaptive observer introduced in this section. Simulation results
in open-loop are going to introduced to estimate angular position, speed and acceleration.
As previously mentioned, simulation test has been carried out in Matlab-Simulink envi-
ronment, using a sampling time of 1 × 10−3 with a fixed-step ode4 solver. The profiles
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Figure 2.6 – Scheme of the proposed AHOSMO-2.

in Figure 1.7 and the parameter variations in Figure 1.8 have been used. Moreover, the
parameters of the adaptive observer are given in Table 2.2.

Table 2.2 – Parameters for the AHOSMO-2
Values

Lo2(0) γo2 ko2

8 0.0001 80

In Figure 2.7, angular position estimation and its estimation error are illustrated,
showing good effectiveness during the estimation despite parametric uncertainties. In
Figure 2.8, speed estimation and its speed estimation error can show that the strategy
based on the virtual system without parameters has a good performance. Moreover, it
is compensated with the estimation of the acceleration (see Figure. 2.9-a) to avoid large
estimation errors in the speed and angular position. In addition, in Figure. 2.9-b, the
adaptive parameter Lo(t) is introduced, showing the profile it takes to achieve the correct
estimation of the estimates.
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Figure 2.7 – AHOSMO-2. Rotor angular position estimation and its angular error

Figure 2.8 – AHOSMO-2. Rotor speed estimation and speed estimation error

2.4 Comparative study

In this section, from simulations, a comparative study is approached. A comparison
among an observer based on back-electromotive force, an observer based on mechanical
system by using first-order sliding modes and an observer based on high frequency signal
injection is carried out by simulation test under parameter variations (see Figure 1.8).
First, an observer based on back-electromotive force is introduced in Figure 2.10 for es-
timating angular position and speed. In this class of observers, the use of low pass filter
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Figure 2.9 – AHOSMO-2. Estimation of the acceleration (a) and behaviour of the adaptive
law (b)

generates a phase-delay in the estimation of the angular position, and the parameter vari-
ations causes an error increment. After that, an observer based on mechanical system by
using first-order sliding modes is shown in Figure 2.11, estimating speed, angular position
and load torque. The chattering effect can be seen in the angular error and the speed
estimation error. Moreover, the effect of parameter variations causes an error increase in
the estimation of the load torque. Another strategy often used in sensorless methods is the
observer based on high frequency signal injection, which considers an extraction of angu-
lar error from high frequency signal injection. In Figure 2.12, this strategy is introduced
in order to estimate angular position and speed. Then, from the errors in speed and an-
gular position, it is possible to see the performance of this strategy under the variation of
parameters. A disadvantage of this strategy is the sensitivity to variations in inductance.

A performance index, Integral Absolute Error (IAE), is computed in order to show
numerically the performance of each observer for the angular position estimation error
and the speed estimation error as can be illustrated in Figure 2.14 and Figure 2.13,
respectively.

The proposed observers (AHOSMO-1, AHOSMO-2) based on virtual system achieve
a better performance compared with the other strategies. The improvement can be shown
from the performance index, validating the effectiveness of the proposed observers. There-
fore, it is possible to say that extraction of the angular error eθe introduced in section 2.1
has been achieved successfully.
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Figure 2.10 – Simulation test: Observer based on back-electromotive force

Figure 2.11 – Simulation test: Observer based on mechanical system by using first-order
sliding modes

In addition, a simulation test to show the convergence of the observer has been carried
out, as can be seen in Figure 2.15. The initial conditions for the estimated speed and
estimated angular position are Ω̂(0) = 20 rad/s and θ̂(0) = 5.5 rad, respectively. We can
see as the convergence is ensured such that convergence of the observer is achieved in
finite time.

On the other hand, this work proposes adaptive observers for the observer. Therefore,
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Figure 2.12 – Simulation test: Observer based on high frequency signal injection
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Figure 2.13 – Performance index for the angular position estimation error

two simulation tests have been carried out to show the advantages of using adaptive gain
instead of constant gains. These demo tests have been applied in AHOSMO-1 taking
into account that gains K1,1, K2,1 and K3,1 are a function of the parameter Lo. Then,
in Figure 2.16, a test is introduced by considering constant gains, i.e., Lo is constant.
During this test, the gain Lo has taken 3 values; 4, 6 and 8, respectively. It is possible to
see that estimation of speed, angular position and acceleration has a good performance
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Figure 2.14 – Performance index for speed estimation error

Figure 2.15 – Simulation test: Initial condition for the speed (Top) and initial condition
for the angular position (Bottom)

when Lo = 4, avoiding the increase of chattering. However, at 5 seconds when Lo = 6,
it is possible to see the increase of chattering in the estimation errors and estimated
acceleration. Similarly occurs when Lo = 8 at 10 seconds. It is due to a gain overestimation,
causing chattering in the estimations. Then, in order to avoid this issue, the use of adaptive
gain have been an alternative, as shown in Figure 2.17, where is possible to illustrate how
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Figure 2.16 – AHOSMO-1. State estimation using different constant gains

Figure 2.17 – AHOSMO-1. State estimation using adaptive gains

the gain Lo(t) is adapted and finds the best value, avoiding an overestimation of gain,
reducing chattering in the estimate and achieving a good estimation. Therefore, it has
been shown that an adaptive gain can improve the result obtained by constant gains.

In addition, the proposed adaptive laws, for the parameters Lo(t) and Lo2(t) of the
observers AHOSMO-1 and AHOSMO-2, have been numerically evaluated at 5 seconds,
as can be show in Table 2.3. The final value of each gain at 5 seconds can show that
both adaptive laws have a similar behavior with respect to the energy used. However, the
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adaptive for Lo2(t) has slightly higher values, such that it could be concluded that the
adaptive law Lo(t) is more conservative.

Table 2.3 – Value for the gains of both adaptive observers at 5 seconds
AHOSMO-1

Lo(5) K̃1,1 K̃2,1 K̃3,1

4.14 32.07 228.5 542.9
AHOSMO-2

Lo2(5) K̃1,2 K̃2,2 K̃3,2

11.53 34.58 265.8 680.9

2.5 Proposed observer analysis

The performance of the proposed observer based on the extraction of eθe is evaluated in
a simulation and experimental test considering the profiles of Figure 1.9. A low-speed and
zero region is taken into account due to that in this region most of the observers present
observability problems. It is well known that IPMSM is not observable when the angular
speed is equal to zero. However, in the proposed strategy, the angular position estimation
error eθe extracted depends on the dynamics of the current−iq directly. Therefore, the
observability is ensured for a current−iq different to zero, i.e., iq ̸= 0, such that this
condition is satisfied when the load torque or the speed are different to zero. In this way,
the load torque profile considered in the validation has values equals to zero and different
to zero with small values.

A simulation test is introduced in Figure 2.18 and an experimental test is introduced
in Figure 2.19. Then, from Figure 2.18 and Figure 2.19, it is shown that at the beginning,
the speed is 0 rad/s with a load torque going from 0.05 N.m to 1 N.m. Then, the observer
converges to real angular position and speed. After that, from 1.5 s to 4s the load torque is
0 N.m and the speed is still 0 rad/s until 3 s. Therefore, from 1.5 s, the observer diverges,
since, there exist a loss of observability when both speed and load torque are zero, since
at that moment the electric machine is standstill and there is not a persistent current−iq
in Λθ. However, from 3 s the speed increase until 2.5 rad/s, such that, the current−iq is
different to 0, then the observer tends towards real speed and angular position. Therefore,
from 3.5 s is possible to see the convergence in the angular position. Then, the speed stays
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Figure 2.18 – Simulation test: Convergence of proposed adaptive observer and behaviour
of current iq, applying different profiles of small load Torque and low-speed.

Figure 2.19 – Experimental test: Convergence of proposed adaptive observer and be-
haviour of current iq, applying different profiles of small load Torque and low-speed.

at low speed (2.5 rad/s) for 2 s with a load torque different to 0 N.m, such that, a good
estimation is achieved for the observer. After that, the speed increases until 30 rad/s and
stays there for 3 s, and the load torque tends to 0 N.m and stays there from 8.5 s to 11
s, such that, the observer achieves a very accurate estimate. Finally, the speed decreases
until 2 rad/s and from 13 s until 16 s, the speed continues to decrease until it reaches 0
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rad/s with an small load torque of 0.05 N.m. From this test it can be concluded that the
observability depends on iq directly, which must be different from zero (iq ̸= 0) to ensure
the observability.

2.6 Conclusion

The extraction of the angular position estimation error has been the main challenge
in this work in order to apply a sensorless technique. In this chapter, an new alternative
for the extraction of the angular error eθ in PMSM was presented. Considering that
measurable currents iαβ can be taken from the abc triphasic components of the machine,
this information has been considered and represented by using the Park transformation.
Moreover, taking into account some ideas of the saliency method-based, one equation
was defined without considering the high frequency signal injection characteristic. Then,
after some calculations, one approximation of the angular error was obtained. It is worth
mentioned that the extraction of the angular position error does not require the use of
additional elements like filters and high frequency signal injection.

A sensorless scheme requires information of the angular position and speed. Then, the
extracted angular error has been a key piece to design two adaptable observers based on
a virtual system without machine parameters to estimate angular position and speed of
the IPMSM. These adaptive observer have been designed by considering reparameterized
gains, i.e., all gains are in terms of a single parameter to reduce the tuning time and
facilitate the design of adaptive laws for the observers. Simulation tests were introduced as
well as a comparative study. The effectiveness and performance of the adaptive observers
based on the extraction of the angular error has been illustrated.
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Chapter 3

CONTROLLER DESIGN FOR THE

INTERIOR PERMANENT MAGNET

SYNCHRONOUS MOTOR

In this chapter, two adaptive controllers are designed. The gains of these controllers are
based on a single parameter to reduce the tuning time. The controllers will be applied to
track a reference of direct-axis current and speed. Some tests for the adaptive controllers
are addressed and a comparative study is introduced.

3.1 Control design based on Super-Twisting approach:
Proposal-1

Consider the class of nonlinear system given by

χ̇1 = χ2

χ̇2 = f(χ) + g(χ)u+ δ(t)
y = Cχ

(3.1)

where χ = [χ1 χ2]T is a state vector, for χ ∈ ℜ2; u ∈ ℜ is the input, f(χ) and g(χ)
are nonlinear terms, y ∈ ℜ is the output of the system, δ(t) is a time-varying external
disturbance and C = [1 0].

Assumption 3.1. The nonlinear terms f(χ) and g(χ) are globally Lipschitz with respect
to χ [87].

Now, a sliding surface S is defined as follows

S = ϑ11e1χ + e2χ
(3.2)
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where e1χ = χ1 − χref is a tracking error, e2χ = χ̇1 − χ̇ref and ϑ11 > 0; whose dynamic is
given by

Ṡ = ϑ11e2χ + f(χ) + g(χ)u+ δ(t) − χ̈ref (3.3)

A control input is chosen as follows

u = 1
g(χ)

[
−ϑ11e2χ − f(χ) + χ̈ref + Vst

]
, (3.4)

with
Vst = −Kc1|S|

1
2 sign(s) −

∫
Kc2sign(S)dt (3.5)

where Kc1 = 2L2
c and Kc2 = L4

c

2 are reparameterized based on a single parameter Lc, such
that Lc is a constant positive parameter large enough. Then, equation (3.4) is a super
twisting control for the system (3.1). However, tuning with constant gains sometimes
causes gain overestimation. Therefore, in the next section, an adaptive control will be
presented to avoid this problem.

3.1.1 Adaptive super-twisting control design

Consider the following control

u = 1
g(χ)

[
−ϑ11e2χ − f(χ) + χ̈ref + Vst

]
, (3.6)

with
Vst = −K̃c1|S|

1
2 sign(s) −

∫ t

0
K̃c2sign(S)dτ (3.7)

which is an Adaptive Super-Twisting Control (ASTWC-1) for the system (3.1) and their
reparameterized gains, in terms of a single parameter, are defined by

K̃c1 = 2L2
c(t) K̃c2 = L4

c(t)
2 (3.8)

where Lc(t) is an adaptive parameter that will be introduced later.
Remark 3.1. A demonstration to compute the proposed gains has been introduced in

Appendix A (See A.2.1).
A stability analysis and the adaptive law design for the parameter Lc(t) will be intro-

duced in the sequel.
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Consider that the dynamic of the sliding surface (3.3) in closed-loop with the control
(3.6) is given by

Ṡ = −K̃c1|S|
1
2 sign(S) −

∫ t

0
K̃c2sign(S)dτ + δ(t) (3.9)

where (3.9) can be expressed as follows
Ṡ = −K̃c1|S|1/2sign(S) + ν + δ(t)

ν̇ = −K̃c2sign(S)
(3.10)

then, sliding variable S and its time derivative Ṡ converge to 0 in finite time.

Assumption 3.2. δ(t) and its time derivative δ̇(t) are bounded for unknown positive
constants, i.e., |δ(t)| < δM , |δ̇(t)| ≤ ∆M ; with δM ,∆M > 0, ∀t ≥ 0 [88].

Now, introducing the following change of variable: Υ1 = S and Υ2 = ν + δ(t). System
(3.10) is expressed as

ΣST W :

Υ̇1 = −K̃c1|Υ1|1/2sign(Υ1) + Υ2,

Υ̇2 = −K̃c2sign(Υ1) + d(t)
(3.11)

with d(t) = δ̇(t). Consider the following change of coordinates

z1 = Υ1

L2
c(t)

z2 = Υ2

L2
c(t)

(3.12)

and its first derivative in time as follows

ż1 = −2Lc(t)|z1|
1
2 sign(z1) + z2 − 2z1L̇c(t)

Lc(t)

ż2 = −L2
c(t)
2 sign(z1) + d(t)

L2
c(t)

− 2z2L̇c(t)
Lc(t)

(3.13)

After that, a new change of variable is given by

£1 = |z1|
1
2 sign(z1) £2 = z2

Lc(t)
(3.14)

then the dynamics, in terms of these new variables, are given by
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£̇1 = Lc(t)
2|z1|

1
2

[−2£1 + £2] − £1
L̇c(t)
Lc(t)

£̇2 = Lc(t)
2|z1|

1
2

−£1 + 2|z1|
1
2d(t)

L4
c(t)

− 3£2
L̇c(t)
Lc(t)

(3.15)

To make some calculations easier, system (3.15) can be expressed in compact form as
follows

£̇ = αc

[(
Ac − P−1

c CT
c Cc

)
£ + Φc

]
−Nc£

L̇c(t)
Lc(t)

(3.16)

with αc = Lc(t)
2|z1|

1
2
, and

£ =
[
£1 £2

]T
, Cc =

[
1 0

]
,

Ac =
0 1
0 0

 , Nc =
1 0
0 3

 , Φc =

 0
2|z1|

1
2

L4
c(t)

(d(t))

 Pc =
 1 −1
−1 2

 ,
where Pc is a symmetric positive-definite matrix, solution of the following equation

Pc + AT
c Pc + PcAc − CT

c Cc = 0 (3.17)

Assumption 3.3. The terms in Φc are uniformly bounded with respect to u and locally
Lipschitz with respect to £, i.e., ||Φc|| ≤ ℘||£||, for ℘ > 0.

Theorem 3.1. Consider the system (3.11) and the Assumption 3.1, 3.2 and 3.3 are
fulfilled. Furthermore,

L̇c(t) = k
1
2
c |S|

1
2 − γ

1
2
c L2

c(t) (3.18)

is an adaptive law-1 for Lc(t), with kc > 0 and γc > 0 chosen appropriately, where
kc > γc > 0. Then, the trajectories of ΣST W converge towards a vicinity of the origin in
finite time.

Proof
Consider a Lyapunov candidate function as follows

V(£,Lc(t)) = V(£) + V(Lc(t)) (3.19)

with V(£) = £TPc£ and V(Lc(t)) = γc

2 L
2
c(t), for γc > 0. Then, taking its first derivative in
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time and replacing the suitable expressions, it follows that

V̇(£,Lc(t)) =αc£T
[
AT

c Pc + PcAc

]
£ − 2αc£TCTC£ − L̇c(t)

Lc(t)
£T [PcNc +NcPc] £

+ γcL̇c(t)Lc(t) + 2αc£TPcΦc

(3.20)

From AT
c Pc + PcAc = −Pc + CT

c Cc, it follows that above equation can be expressed as
follows

V̇(£,Lc(t)) = − αc£TPc£ − αc£TCT
c Cc£ − L̇c(t)

Lc(t)
£T [PcNc +NcPc] £

+ γcL̇c(t)Lc(t) + 2αc£TPcΦc

(3.21)

Now, considering that PcNc +NcPc = Rc and defining Rc as a symmetric positive-definite
matrix. Then, £TRc£ ≥ λmin(Rc)

λmax(Pc)
V(£) = kcV(£), where λmin(Rc) and λmax(Pc) are mini-

mum and maximum singular values of Rc and Pc, respectively; moreover, considering that
−αc£TCT

c Cc£ < 0; for Lc(t) > 0. Then,

V̇(£,Lc(t)) ≤ −αcV(£) − L̇c(t)
Lc(t)

[
kcV(£) − γcL

2
c(t)

]
+ 2αc£TPcΦc (3.22)

Now, from (3.22), the term

[
kcV(£) − γcL

2
c(t)

]
=
[
k

1
2
c V

1
2

(£) + γ
1
2
c Lc(t)

] [
k

1
2
c V

1
2

(£) − γ
1
2
c Lc(t)

]

and defining f(V(£),Lc(t)) =
[
k

1
2
c V

1
2

(£) + γ
1
2
c Lc(t)

]
> 0. It follows that

V̇(£,Lc(t)) ≤ −αcV(£) − f(V(£),Lc(t))
L̇c(t)
Lc(t)

[
k

1
2
c V

1
2

(£) − γ
1
2
c Lc(t)

]
+ 2αc£TPcΦc (3.23)

Consider that the following inequalities are satisfied,

|z1| = |£1|2 ≤ ||£||2 (3.24)

and
λmin(Pc)||£||2 ≤ V(ξ) ≤ λmax(Pc)||£||2 (3.25)

where λmin(Pc) and λmax(Pc) are the minimum and maximum singular values of Pc. Then,
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it follows that the following inequality hold,

|z1|
1
2 ≤ ||£|| ≤

(
V(£)

λmin(Pc)

) 1
2

(3.26)

for z1 = Υ1

L2
c(t)

= S

L2
c(t)

. Now, taking into account the above inequality, equation (3.23)
can be expressed as

V̇(£,Lc(t)) ≤ − αcV(£) − f(V(£),Lc(t))
L̇c

Lc(t)

k 1
2
c

(
|S|
L2

c(t)

) 1
2

− γ
1
2
c Lc(t)

+ 2αc£TPcΦc (3.27)

Therefore, an adaptive law can be chosen as follows,

L̇c(t) =
k 1

2
c

(
|S|
L2

c(t)

) 1
2

− γ
1
2
c Lc(t)

Lc(t) (3.28)

Then, it follows that

V̇(£,Lc(t)) ≤ − αcV(£) − f(V(£),Lc(t))

k 1
2
c

(
|S|
L2

c(t)

) 1
2

− γ
1
2
c Lc(t)

2

+ 2αc£TPcΦc (3.29)

Assuming that S tends to zero faster than Lc(t). Then, (3.29) is given by

V̇(£,Lc(t)) ≤ −αcV(£) − f(V(£),Lc(t))γcL
2
c(t) + 2αc£TPcΦc (3.30)

Moreover, from Assumption 3.3 and taking into account the norm for the term 2αc£TPcΦc,
it follows that

V̇(£,Lc(t)) ≤ −αcV(£) + 2αc℘||£||2||Pc|| − f(V(£),Lc(t))γcL
2
c(t) (3.31)

and considering the inequality (3.25), it is obtained the following

V̇(£,Lc(t)) ≤ − Lc(t)
2|z1|

1
2
[1 − σc]V(£) − f(V(£),Lc(t))γcL

2
c(t) (3.32)

with σc = 2℘||Pc||
λmin(Pc)

. Moreover, taking into account (3.26), the above equation can be
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expressed as follows

V̇(£,Lc(t)) ≤ −Lc(t)ΓcV
1
2

(£) − f(V(£),Lc(t))γcL
2
c(t) (3.33)

with Γc = [1 − σc]λ
1
2
min(Pc)

2 . Now, equation (3.33) will be factored as follows

V̇(£,Lc(t)) ≤ −Lc(t)
√

2γ
1
2
c

 Γc
√

2γ
1
2
c

V
1
2

(£) + f(V(£),Lc(t))
γ

1
2
c√
2
Lc(t)

 (3.34)

Thus, selecting η1 =
[
Lc(t)

√
2γ

1
2
c

]
and φc = min

 Γc
√

2γ
1
2
c

, f(V(£),Lc(t))

, it is possible to

express the following equation

V̇(£,Lc(t)) ≤ −η2

V 1
2

(£) + γ
1
2
c√
2
Lc(t)

 (3.35)

with η2 = η1φc. Then, from Jensen´s inequality [84],

[|ac|m + |bc|m]
1
m ≤ |ac| + |bc|, (3.36)

defining ac = V
1
2

(£), bc = V
1
2

(Lc) and m = 2. Thus, the following inequality can be established

[
|V

1
2

(£)|
2 + |V

1
2

(Lc(t))|
2
] 1

2
≤ |V

1
2

(£)| + γ
1
2
c√
2

|Lc(t)| (3.37)

In this way

V
1
2

(£,Lc(t)) ≤ |V
1
2

(£)| + γ
1
2
c√
2

|Lc(t)| (3.38)

Therefore, the dynamic of Lyapunov function can be expressed as

V̇(£,Lc(t)) ≤ −η2V
1
2

(£,Lc(t)). (3.39)

Then, from the Lyapunov function, V̇(£,Lc(t)) is negative definite and ensures conver-
gence in finite-time, for Lc(t) sufficiently large, satisfying η2 > 0. Moreover, the com-
parison principle is taken into account to estimate the convergence time. Thus, consid-
ering the equation v̇ = −η2v

1
2 and its solution defined as v(t) = (v(0) 1

2 − 1
2η2t)2. Then,
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V(£,Lc(t)) < v(t) when V(£(0),Lc(0)) < v(0), such that, £ has a convergence in finite-time in

an estimated time given by T2 =
2V

1
2

(£(0),Lc(0))
η2

. Therefore, £ tends to zero as well as S tends
to zero in finite-time.

3.1.2 Control design for IPMSM

The design of controllers for the speed and the direct-axis current are presented by
considering the adaptive law-1 given by Theorem 3.1.

Control loop for speed−Ω

Consider a sliding surface given by

SΩ = ϑ12e1Ω + e2Ω (3.40)

where e1Ω = Ω − Ω∗ is speed tracking error, e2Ω = Ω̇ − Ω̇∗ and ϑ12 > 0. Therefore, the
dynamic of the sliding surface SΩ is given by

ṠΩ = ϑ12e2Ω + a1b1 + a2b2 + a3b2 − b3 − Ω̈∗ + vqc1 (3.41)

where a1 = p(Ld − Lq)iq
J

, a2 = p(Ld − Lq)id
J

, a3 = pψr

J
, b1 = vd

Ld

− Rsid
Ld

+ LqpΩiq
Ld

, b2 =

−Rsiq
Lq

−LdpΩid
Lq

−ψrpΩ
Lq

, b3 = fv

J

[
p(Ld − Lq)idiq

J
+ pψriq

J
− fvΩ

J

]
and c1 = p(Ld − Lq)id

JLq

+

pψr

JLq

. Then, the control input vq is given by

vq = 1
c1

[
−ϑ12e2Ω − a1b1 − a2b2 − a3b2 + b3 + Ω̈∗ + Vst−Ω

]
(3.42)

with
Vst−Ω = −K̃c1Ω |SΩ|

1
2 sign(SΩ) −

∫ t

0
K̃c2Ωsign(SΩ)dτ (3.43)

where K̃c1Ω = 2L2
cΩ

(t), K̃c2Ω =
L4

cΩ
(t)

2 and according to Theorem 3.1, LcΩ(t) is an adaptive
parameter given by

L̇cΩ(t) = k
1
2
cΩ|SΩ|

1
2 − γ

1
2
cΩL

2
cΩ

(t) (3.44)

with kcΩ > γcΩ > 0. Therefore, 3.42 is an ASTWC-1 for the speed of the IPMSM.
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Control loop for current−id

A sliding surface is given by

Sid
= ϑ13eid

+
∫ t

0
eid
dτ (3.45)

where eid
= id − i∗d is a current tracking error and ϑ13 > 0. Moreover, the dynamic of the

sliding surface Sid
is given by

Ṡid
= −ϑ13Rsid

Ld

+ ϑ13pΩLqiq
Ld

+ ϑ13vd

Ld

− ϑ13i̇
∗
d + eid

(3.46)

Then, the control input vd can be chosen as follows

vd = Ld

ϑ13

(
ϑ13Rsid
Ld

− ϑ13pΩLqiq
Ld

+ ϑ13i̇
∗
d − eid

+ Vst−id

)
(3.47)

with
Vst−id

= −K̃c1id
|Sid

|
1
2 sign(Sid

) −
∫ t

0
K̃c2id

sign(Sid
)dτ (3.48)

where K̃c1id
= 2L2

cid
(t) and K̃c2id

=
L4

cid
(t)

2 and according to Theorem 3.1, Lcid
(t) is an

adaptive parameter given by

L̇cid
(t) = k

1
2
cid

|Sid
|

1
2 − γ

1
2
cid
L2

cid
(t) (3.49)

with kcid
> γcid

> 0. Therefore, 3.47 is an ASTWC-1 for the current−id of the IPMSM.

3.1.3 Simulation result

Consider the adaptive law-1 established by Theorem 3.1 and the system (1.36)-(1.37)
in closed-loop with the controllers given by (3.42) and (3.47). Then, simulation result are
introduced in this section in order to show the performance of the system under the action
of adaptive controllers. The parameters of the adaptive control are given in Table 3.1.
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Table 3.1 – Parameters for the ASTWCs-1
Values

LcΩ(0) ϑ12 γcΩ kcΩ Lcid
(0) ϑ13 γcid

kcid

20 400 0.05 90 20 200 0.1 1

Figure 3.1 – ASTWC-1. Behaviour of adaptive law for the speed and current-id controllers

Figure 3.2 – ASTWC-1. Speed tracking and speed tracking error
The profile given by the Figure 1.7 and the parameter variation given by Figure 1.8 are

considered in this test. In the first instance, it is possible to see the behavior of the adaptive
gains in Figure 3.1, Lid

(t) and LΩ(t), respectively. Then, considering this adaptive laws,
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Figure 3.3 – ASTWC-1. Behaviour of the currents idq

the speed (see Figure 3.2) has been controlled. The tracking error can show a minimum
error under the action of the load torque and parameters variations. In fact, in Figure
3.1, it is possible to see the reaction of the adaptive parameter in the controller when
the load torque change its value, so that the adaptive gains adjust their values in order
to reject system disturbances. Moreover, in Figure 3.3, the currents idq are introduced.
The current−id tracks a reference current equal to zero and the current−iq takes different
values according to the speed and load torque. A good performance of ASTWCs-1 can be
seen in this simulation test.

In Chapter 4, the ASTWCs-1 of the IPMSM will be interconnected with the AHOSMO-
1 presented in Chapter 2. From this, the sensorless scheme for the IPMSM will be intro-
duced.

3.2 Control design based on Super-Twisting approach:
Proposal-2

In this section, a second adaptive control is designed for the system given by (3.1).

Consider that at [89], an adaptive super- twisting control was proposed with reparam-
eterized gains, taking into account the following structure:
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A sliding surface S2 was defined by

S2 = ϑ21e1χ + e2χ
(3.50)

where e1χ = χ1 − χref is a tracking error, e2χ = χ̇1 − χ̇ref and ϑ21 > 0; whose dynamic is
given by

Ṡ2 = ϑ21e2χ + f(χ) + g(χ)u+ δ(t) − χ̈ref (3.51)

Then, a control input was chosen as follows

u = 1
g(χ)

(
−ϑ21e2χ − f(χ) + χ̈ref −KG1|S2|

1
2 sign(S2) −

∫ t

0
KG2sign(S2)dτ

)
, (3.52)

where KG1 = 2LG(t) and KG2 = L2
G(t)
2 have been reparameterized based on a single

parameter LG(t) > 0. Then, for the above controller, the following adaptive law was
proposed

L̇G(t) =
− kG√

2
|LG(t) − LGref

| + LG(t)
2 |S2|

1
2

(LG(t) − LGref
) + 2

LG(t)2

(
|S2|

1
2 + 1

LG(t)
∫ t

0 L
2
G(τ)sign(S2)dτ

)(
−
∫ t

0
L2

G(τ)
2 sign(S2)dτ

)
(3.53)

for LGref
, kG > 0. In this section, an adaptive law will be designed by using the same repa-

rameterized gains. However, the proposed adaptive law in this work has been simplified.
Next, an adaptive law will be designed.

3.2.1 Adaptive super-twisting control design

Based on [89], in this section the design of one adaptive super-twisting control is
introduced in order to simplify the adaptive law given by (3.53). Then, the following
equation

u = 1
g(χ)

(
−ϑ21e2χ − f(χ) + χ̈ref + Vst

)
, (3.54)

with
Vst = −K̃c3|S2|

1
2 sign(S2) −

∫ t

0
K̃c4sign(S2)dτ (3.55)
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is an Adaptive Super-Twisting Control (ASTWC-2) for the system (3.1) and the repa-
rameterized gains, in terms of a single parameter, are given by

K̃c3 = 2Lc2(t) K̃c4 =
L2

c2(t)
2 (3.56)

where Lc2(t) > 0 is an adaptive parameter.
Remark 3.2. A demonstration to calculate the proposed gains has been introduced in

the Appendix A (See A.2.2).
An stability analysis and an adaptive law for the parameter Lc2(t) will be presented

in the sequel. Consider that the dynamic of the sliding surface (3.51) in closed-loop with
the control (3.54) is given by

Ṡ2 = −K̃c3|S2|
1
2 sign(S2) −

∫ t

0
K̃c4sign(S2)dτ + δ(t) (3.57)

where the super-twisting (STW) control (3.57) can be expressed as follows
Ṡ2 = −K̃c3|S2|

1
2 sign(S2) + ν2 + δ(t)

ν̇2 = −K̃c4sign(S2)
(3.58)

Assumption 3.4. The disturbance δ(t) and its time derivative δ̇(t) are bounded for un-
known positive constants δM , ∆M , respectively, i.e., |δ(t)| < δM , |δ̇(t)| ≤ ∆M ; ∀t ≥ 0
[88].

Now, introducing the following change of variable z12 = S2 and z22 = ν2 + δ(t). Then,
system (3.58) is rewritten as

ΣST W2 :


ż12 = −2Lc2(t)|z12| 1

2 sign(z12) + z22

ż22 = −
L2

c2(t)
2 sign(z12) + d(t)

(3.59)

with d(t) = δ̇(t). Consider the following change of variable

£12 = |z12| 1
2 sign(z12)
Lc2(t) £22 = z22

L2
c2(t) (3.60)

then the dynamics, in terms of these new variables, are given by
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£̇12 = Lc2(t)
2|z12| 1

2
[−2£12 + £22 ] − £12

L̇c2(t)
Lc2(t)

£̇22 = Lc2(t)
2|z12| 1

2

−£12 + 2|z12 | 1
2d(t)

L3
c2(t)

− 2£22

L̇c2(t)
Lc2(t)

(3.61)

To make some calculations easier, system (3.61) can be expressed in compact form as
follows

£̇c2 = αc2

[(
Ac − P−1

c CT
c Cc

)
£c2 + Φc2

]
−Dc2£c2

L̇c2(t)
Lc2(t) (3.62)

with αc2 = Lc2(t)
2|z12 | 1

2
and £c2 =

[
£12 £22

]T
, Cc =

[
1 0

]T

Ac =
0 1
0 0

 Pc =
 1 −1
−1 2

 Dc2 =
1 0
0 2

 Φc2 =


0

2|z12 | 1
2

L3
c2(t) [d(t)]

 (3.63)

Furthermore, Pc is a symmetric positive-definite matrix, solution of the following algebraic
Lyapunov equation

Pc + AT
c Pc + PcAc − CT

c Cc = 0 (3.64)

Assumption 3.5. The terms in the vector Φc2 are uniformly bounded with respect to u

and locally Lipschitz with respect to £c2, i.e., ||Φc2|| ≤ ℘2||£c2||, for ℘2 > 0.

Theorem 3.2. Consider the system (3.59) and the Assumption 3.1, 3.4 and 3.5 are
fulfilled. Furthermore,

L̇c2(t) = k
1
2
c2|S2|

1
2 − γ

1
2
c2L

2
c2(t) (3.65)

is an adaptive law-2 for Lc2(t), with kc2 > 0 and γc2 > 0 chosen appropriately, where
kc2 > γc2 > 0. Then, the trajectories of ΣST W2 converge towards a vicinity of the origin
in finite time.

Proof
A Lyapunov candidate function is introduced as follows

V(£c2 ,Lc2 (t)) = V(£c2 ) + V(Lc2 (t)) (3.66)

with V(£c2 ) = £T
c2Pc£c2 and V(Lc2 (t)) = γc2

2 L2
c2(t), for γc2 > 0. Then, taking first time

derivative of (3.66) and replacing the suitable expressions, it follows that
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V̇(£c2 ,Lc2 (t)) =αc2£T
c2

[
AT

c2Pc + PcAc2

]
£c2 − 2αc2£T

c2C
T
c Cc£c2

− 2 L̇c2(t)
Lc2(t)£T

c2PcDc2£c2 + γc2L̇c2(t)Lc2(t) + 2αc2£T
c2PcΦc2

(3.67)

From AT
c Pc + PcAc = −Pc + CT

c Cc, it follows that equation (3.67) can be rewritten as
follows

V̇(£c2 ,Lc2 (t)) = − αc2£T
c2Pc£c2 − αc2£T

c2C
T
c Cc£c2 − 2 L̇c2(t)

Lc2(t)£T
c2PcDc2£c2

+ γc2L̇c2(t)Lc2(t) + 2αc2£T
c2PcΦc2

(3.68)

Now, consider that the following inequalities are satisfied

|z12|
L2

c2(t) = |£12|2 ≤ ||£c2 ||2 (3.69)

and
λmin(Pc)||£c2||2 ≤ V(£c2 ) ≤ λmax(Pc)||£c2||2 (3.70)

where λmin(Pc) and λmax(Pc) are the minimum and maximum singular values of Pc. More-
over,

λmin(PcDc2)||£c2||2 ≤ £T
c2PcDc2£c2 ≤ λmax(PcDc2)||£c2||2 (3.71)

where λmin(PcDc2) and λmax(PcDc2) are the minimum and maximum singular values of
PcDc2 . Then,

V̇(£c2 ,Lc2 (t)) ≤ − αc2£T
c2Pc£c2 − αc2£T

c2C
T
c Cc£c2 − 2λmin(PcDc2)||£c2||2 L̇c2(t)

Lc2(t)
+ γc2L̇c2(t)Lc2(t) + 2αc2£T

c2PcΦc2

(3.72)

such that,

V̇(£c2 ,Lc2 (t)) ≤ −αc2V(£c2 )−αc2£T
c2C

T
c Cc£c2 − L̇c2(t)

Lc2(t)
[
kc2||£c2||2 − γc2L

2
c2(t)

]
+2αc2£T

c2PcΦc2

(3.73)
where kc2 = 2λmin(PcDc2) > 0. Now, from (3.73), the term
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[
kc2 ||£c2||2 − γc2L

2
c2(t)

]
=
[
k

1
2
c2||£c2|| + γ

1
2
c2Lc2(t)

] [
k

1
2
c2 ||£c2 || − γ

1
2
c2Lc2(t)

]

Moreover, since f(£c2 ,Lc2 (t)) =
[
k

1
2
c2||£c2|| + γ

1
2
c2Lc2(t)

]
> 0. Then, equation (3.73) can

be expressed as follows

V̇(£c2 ,Lc2 (t)) ≤ − αc2V(£c2 ) − αc2£T
c2C

T
c Cc£c2 + 2αc2£T

c2PcΦc2

− f(£c2 ,Lc2 (t))
L̇c2(t)
Lc2(t)

[
k

1
2
c2||£c2|| − γ

1
2
c2Lc2(t)

] (3.74)

Now, considering the inequalities (3.69) and (3.70), it follows that the following inequalities
hold

|£12| ≤ ||£c2|| ≤
(

V(£c2 )

λmin(Pc)

) 1
2

(3.75)

for |£12| = |z12| 1
2

Lc2(t) = |S2|
1
2

Lc2(t) . Therefore, taking into account the inequality given by (3.75),

equation (3.74) can be expressed as

V̇(£c2 ,Lc2 (t)) ≤ − αc2V(£c2 ) − αc2£T
c2C

T
c Cc£c2 + 2αc2£T

c2PcΦc2

− f(£c2 ,Lc2 (t))
L̇c2(t)
Lc2(t)

k 1
2
c2

 |S2|
1
2

Lc2(t)

− γ
1
2
c2Lc2(t)

 (3.76)

Then, choosing an adaptive law as follows

L̇c2(t) =
k 1

2
c2

 |S2|
1
2

Lc2(t)

− γ
1
2
c2Lc2(t)

Lc2(t) (3.77)

the following expression is obtained

V̇(£c2 ,Lc2 (t)) ≤ − αc2V(£c2 ) − αc2£T
c2C

T
c Cc£c2 + 2αc2£T

c2PcΦc2

− f(£c2 ,Lc2 (t))

k 1
2
c2

 |S2|
1
2

Lc2(t)

− γ
1
2
c2Lc2(t)

2 (3.78)

Assuming that S2 tends to zero faster than Lc2(t) and −αc2£T
c2C

T
c Cc£c2 < 0; for Lc2(t) >

0. Then, (3.78) is given by

V̇(£c2 ,Lc2 (t)) ≤ −αc2V(£c2 ) − f(£c2 ,Lc2 (t))γc2L
2
c2(t) + 2αc2£T

c2PcΦc2 (3.79)
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Moreover, taking into account the norm for the term 2αc2£T
c2PcΦc2 and Assumption 3.5,

it follows that

V̇(£c2 ,Lc2 (t)) ≤ −αc2V(£c2 ) + 2αc2℘2||£c2||2||Pc|| − f(£c2 ,Lc2 (t))γc2L
2
c2(t) (3.80)

Now, consider the inequality (3.70), then,

V̇(£c2 ,Lc2 (t)) ≤ − Lc2(t)
2|z12| 1

2
[1 − σc2 ]V(£c2 ) − f(£c2 ,Lc2 (t))γc2L

2
c2(t) (3.81)

with σc2 = 2℘2||Pc||
λmax(Pc)

. The above equation can be written as

V̇(£c2 ,Lc2 (t)) ≤ − Lc2(t)
2|z12 |

1
2 Lc2 (t)

Lc2 (t)

[1 − σc2 ]V(£c2 ) − f(£c2 ,Lc2 (t))γc2L
2
c2(t) (3.82)

Therefore, from (3.75), the above equation can be expressed as follows

V̇(£c2 ,Lc2 (t)) ≤ −Γc2V
1
2

(£c2 ) − f(£c2 ,Lc2 (t))γc2L
2
c2(t) (3.83)

with Γc2 = [1 − σc2 ]λ
1
2
min(Pc)

2 . Now, equation (3.83) will be factorized

V̇(£c2 ,Lc2 (t)) ≤ −Lc2(t)
√

2γ
1
2
c2

 Γc2

Lc2(t)
√

2γ
1
2
c2

V
1
2

(£c2 ) + f(£c2 ,Lc2 (t))
γ

1
2
c2√
2
Lc2(t)

 (3.84)

Thus, selecting η12 =
[
Lc2(t)

√
2γ

1
2
c2

]
and φc2 = min

 Γc2

Lc2(t)
√

2γ
1
2
c2

, f(£c2 ,Lc2 (t))

, it is

possible to express the following equation

V̇(£c2 ,Lc2 (t)) ≤ −η22

V 1
2

(£c2 ) + γ
1
2
c2√
2
Lc2(t)

 (3.85)

with η22 = η12φc2 .

On the other side, Jensen´s inequality [84] is given by

[|ac2|m + |bc2|m]
1
m ≤ |ac2| + |bc2 | (3.86)
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defining ac2 = V
1
2

(£c2 ), bc2 = V
1
2

(Lc2 (t)) and m = 2. Thus, the following inequality can be
established [

|V
1
2

(£c2 )|
2 + |V

1
2

(Lc2 (t))|
2
] 1

2
≤ |V

1
2

(£c2 )| + γ
1
2
c2√
2

|Lc2(t)| (3.87)

and

V
1
2

(£c2 ,Lc2 (t)) ≤ |V
1
2

(£c2 )| + γ
1
2
c2√
2

|Lc2(t)| (3.88)

Finally, the dynamic of Lyapunov function can be expressed as follows

V̇(£c2 ,Lc2 (t)) ≤ −η22V
1
2

(£c2 ,Lc2 (t)) (3.89)

Then, from the Lyapunov function, V̇(£c2 ,Lc2 (t)) is negative definite and ensures conver-
gence in finite-time, for Lc2(t) sufficiently large, satisfying η22 > 0. Moreover, the compar-
ison principle is taken into account to estimate the convergence time. Thus, considering
the equation v̇ = −η22v

1
2 and its solution defined as v(t) = (v(0) 1

2 − 1
2η22t)2. Then,

V(£c2 ,Lc2 (t)) < v(t) when V(£c2 (0),Lc2 (0)) < v(0), such that, £c2 has a convergence in finite-

time in an estimated time given by T22 =
2V

1
2

(£c2 (0),Lc2 (0))

η22

. Therefore, £ tends to zero as
well as S2 tends to zero in finite-time.

3.2.2 Control design for IPMSM

In this section, the design of controllers for the speed and the direct-axis current are
presented by considering the adaptive law-2 given by Theorem 3.2.

Control loop for Ω

Consider a sliding surface given by

SΩ2 = ϑ22e1Ω + e2Ω (3.90)

where e1Ω = Ω − Ω∗ is speed tracking error, e2Ω = Ω̇ − Ω̇∗ and ϑ22 > 0. Therefore, the
dynamic of the sliding surface SΩ is given by

ṠΩ2 = ϑ22e2Ω + a1b1 + a2b2 + a3b2 − b3 − Ω̈∗ + vqc1 (3.91)
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where a1 = p(Ld − Lq)iq
J

, a2 = p(Ld − Lq)id
J

, a3 = pψr

J
, b1 = vd

Ld

− Rsid
Ld

+ LqpΩiq
Ld

,

b2 = −Rsiq
Lq

− LdpΩid
Lq

− ψrpΩ
Lq

, b3 = fv

J

(
p(Ld − Lq)idiq

J
+ pψriq

J
− fvΩ

J
− Tl

J

)
and c1 =

p(Ld − Lq)id
JLq

+ pψr

JLq

.
Then, the control input vq is given by

vq = 1
c1

(
−ϑ22e2Ω − a1b1 − a2b2 − a3b2 + b3 + Ω̈∗ + Vst−Ω2

)
(3.92)

with
Vst−Ω2 = −K̃c3Ω |SΩ2 |

1
2 sign(SΩ2) −

∫ t

0
K̃c4Ωsign(SΩ2)dτ (3.93)

where K̃c3Ω = 2LcΩ2
(t), K̃c4Ω =

L2
cΩ2

(t)
2 and according to Theorem 3.2, LcΩ2

(t) is an
adaptive parameter given by

L̇cΩ2
(t) = k

1
2
cΩ2 |SΩ|

1
2 − γ

1
2
cΩ2L

2
cΩ2

(t) (3.94)

with kcΩ2
> γcΩ2

> 0. Therefore, 3.92 is an ASTWC-2 for the speed of the IPMSM.

Control loop for id

Now, a sliding surface is introduced

Sid2
= ϑ23eid

+
∫ t

0
eid
dτ (3.95)

where eid
= id − i∗d is a current tracking error and ϑ23 > 0. Moreover, the dynamic of the

sliding surface Sid
is given by

Ṡid2
= −ϑ23Rsid

Ld

+ ϑ23pΩLqiq
Ld

+ ϑ23vd

Ld

− ϑ23i̇
∗
d + eid

(3.96)

Then, the control input vd can be chosen as follows

vd = Ld

ϑ23

(
ϑ23Rsid
Ld

− ϑ23pΩLqiq
Ld

+ ϑ23i̇
∗
d − eid

+ Vst−id2

)
(3.97)

with
Vst−id2

= −K̃c3id
|Sid2

|
1
2 sign(Sid2

) −
∫ t

0
K̃c4id

sign(Sid2
)dτ (3.98)
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where K̃c3id
= 2Lcid2

(t) , K̃c4id
=
L2

cid2
(t)

2 and according to Theorem 3.2, Lcid2
(t) is an

adaptive parameter given by

L̇cid2
(t) = k

1
2
cid2

|Sid2
|

1
2 − γ

1
2
cid2

L2
cid2

(t) (3.99)

with kcid2
> γcid2

> 0. Therefore, 3.97 is an ASTWC-2 for the current−id of the IPMSM.

3.2.3 Simulation results

Consider the adaptive law established by Theorem 3.2 and the system (1.36)-(1.37) in
closed-loop with the controllers given by (3.92) and (3.97). Then, similarly to the previous
adaptive law introduced in section 3.1.1, simulation result are illustrated in this section in
order to show the performance of the system in closed-loop under the action of adaptive
controllers. The parameters of the adaptive controllers (ASTWCs-2) are given in Table
3.2.

Table 3.2 – Parameters for ASTWCs-2
Values

LcΩ2
(0) ϑ22 γcΩ2

kcΩ2
Lcid2

(0) ϑ23 γcid2
kcid2

100 400 0.001 300 500 200 0.06 100

Figure 3.4 – ASTWC-2. Behaviour of adaptive law for the speed and current-id controllers
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Figure 3.5 – ASTWC-2. Speed tracking and speed tracking error

In Figure 3.4, the adaptive gains for the controllers (3.92) and (3.97) are shown,
respectively. Moreover, considering the adaptive gain for the speed controller, in Figure
3.5 is illustrated the speed tracking and its tracking error. Then, according to the adaptive
parameter LΩ2(t), the tracking error is minimized when there are changes in the load
torque, such that, it possible to see the value increase in adaptive gain in order to reduce
the error. On the other hand, the currents−idq are introduced in Figure 3.6. The behaviour
of the adaptive parameter Lid2

(t) for the current−id control can be seen in Figure 3.4,
obtaining a good performance for a current−id reference equal to zero. Therefore, we can
say that the controllers based on adaptive gains have had a satisfactory result in the
presence of disturbances and parametric uncertainties. In addition, an evaluation for the
proposed adaptive laws is given. The adaptive parameters LcΩ(t), Lcid

(t), whose solution
is given by Theorem 3.1, are evaluated at a specific time (5s). Similarly, the adaptive
parameters LcΩ2

(t), Lcid2
(t), whose solution is given by Theorem 3.2, are evaluated at a

specific time (5s), as can be seen in Table 3.3. The final value in each gain can show that
the adaptive parameter (LcΩ2) is more conservative for the speed controller. However,
for the current controller, both strategies have achieved to adjust the gains with similar
values. Therefore, it is possible to say that the adaptive law given by Theorem 3.1 provides
more energy in the presence of disturbances (Load torque).

In Chapter 4, the ASTWCs-2 of the IPMSM will be interconnected with the AHOSMO-
2 presented in Chapter 2. From this, the sensorless scheme for the IPMSM will be intro-
duced.
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Figure 3.6 – ASTWC-2. Behaviour of the currents−idq

Table 3.3 – Value for the gains of both adaptive controllers at 5 seconds
ASTWCs-1

LcΩ(5) K̃c1Ω K̃c2Ω Lcid
(5) K̃c1id

K̃c2id

24.9 1248 1.9 e5 2.07 8.57 9.19
ASTWCs-2

LcΩ2
(5) K̃c3Ω K̃c4Ω Lcid2

(5) K̃c3id
K̃c4id

285.4 570.7 4.07e4 4.3 8.61 9.27

3.3 Comparative study

In this section, two comparative studies are addressed. First, considering constant
gains, the proposed controllers based on reparameterized gains are compared with two
similar strategies of the literature. After that, the proposed adaptive controllers are com-
pared with three adaptive strategies of the literature. The performance of each strategy
will be shown by considering simulation tests.

3.3.1 Comparative study with constant gains

In this work have been proposed two strategies with parameterized gains in order to
tune the gains in an easier way, i.e., the gains are based on a single parameter. Then, a
comparative study will be carried out by considering only constant gains, i.e., the proposed
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adaptive laws are not considered. Therefore, considering that (∗ = Ω, id), the gains for the

proposal 1 are given by Kc1∗ = 2L2
c∗, Kc2∗ = L4

c∗
2 where Lc∗ is positive constant. Similarly,

the gains for the proposal 2 are given by Kc3∗ = 2Lc∗2 , Kc4∗ =
L2

c∗2

2 where Lc∗2 is positive
constant. Then, considering the proposed strategies in this work, two similar strategies
have been taken from the literature to compare the performance of each of them.

Levant [90] Super-twisting strategy was proposed in [39]. However, in [39], the super-
twisting control has two gains, which results complex to tune, causing overestimation of
gains. For this reason, in [90] was proposed an alternative to tune the gains as follows

σL = −k1L
|s|1/2sign(s) + νL

ν̇L = −k2L
sign(s)

(3.100)

where s is the sliding surface, k1L
= 1.5L1/2

L and k2L
= 1.1LL where LL is the parameter

to be tuned.
Moreno [85] A second alternative to tune the gains of the super twisting was proposed

in [85]. In this strategy the super twisting is given by

σM = −k1M
|s|1/2sign(s) + νM

ν̇M = −k2M
sign(s)

(3.101)

and its gains are defined by

k1M
= µM

√
2γM

(1 − βM)αM

√
LM k2M

= (βM + 1)
(1 − βM)LM

where µM , αM , βM and γM are positive constants, such that 0 < βM < 1 and γM > 1,
satisfying the following inequality

µM − 2
γM

αM > α2
M − βM(1 + µM)αM + 1

4(1 + µM)2 (3.102)

Now, the comparative study will be introduced by considering the best values of each
strategy in order to make a fair comparison.

In this way, the parameter value Lc∗ in the proposal-1 is given by Lc∗ = 16 and the
parameter value Lc∗2 in the proposal-2 is given by Lc∗2 = 254.

Now, considering the strategy (3.100) and applying the strategy in the speed and
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current controller, a value of LL = 30000 is chosen.
On the other hand, in (3.101), the chosen values are the following: µM = 3.5, αM = 2.8,

βM = 0.8, γM = 12 and LM = 600. Similar values are applied in the speed and current
controller.

Figure 3.7 – Speed tracking. Comparative study among Levant strategy and proposed
strategies

Figure 3.8 – Speed tracking. Comparative study among Moreno strategy and proposed
strategies

Then, taking into account the information for each strategy, a comparison for the speed
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tracking is illustrated. In Figure 3.7, the proposed strategies are compared with (3.100)
and in Figure 3.8, the proposed strategies are compared with (3.101). Then, it is possible
show that the adjust of gains of (3.100) is not enough to attenuate the disturbance, it can
be seen at 4 s (see Figure 3.7). In Figure 3.8 is possible to illustrate a similar behaviour
among the strategies. On the other side, the currents idq are illustrated in Figure 3.9

Figure 3.9 – Currents−idq. Comparative study among Levant strategy and proposed
strategies

Figure 3.10 – Currents−idq. Comparative study among Moreno strategy and proposed
strategies
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and Figure 3.10. According to comparison, strategy (3.100) presents more chattering in
the current−id, while the strategy (3.101) has a similar behaviour with the proposed
strategies.

Similarly, in Figure 3.11 and Figure 3.12, the voltages−dq are introduced. A behaviour
with more chattering in the signal can be seen for the strategy (3.100)(See Figure 3.11).
On the other side, considering the strategy (3.101), in Figure 3.12 can be seen a similar
performance of the voltages with proposed strategies. In addition, a performance index

Figure 3.11 – Voltages−vdq. Comparative study among Levant strategy and proposed
strategies

(Integral Absolute Value-IAE) is considered. In Figure 3.13 is possible to show that the
strategy (3.101) and the proposed strategies have a similar performance, except (3.100).
Finally, we can conclude that in (3.100), the value for LL need to be very large, which
turns out to be somewhat complex to find a more precise value. Moreover, the main
disadvantage in (3.101) is that it is necessary to find and adjust different parameters
for satisfying the inequality and after that, gain adjustment can be done. However, the
proposed strategies in this work only need to adjust one parameter satisfying the tracking
with a good performance, which has allowed to design the proposed adaptive laws for the
controller in the sections 3.1.1 and 3.2.1.

It is worth mentioning that the choice of constant gains could generate an overesti-
mation of the gains and cause chattering in the signals. A simulation test is shown in
Figure 3.14, where the proposed strategy given in the section 3.1.1 (Proposal 1) has been
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Figure 3.12 – Voltages−vdq. Comparative study among Moreno strategy and proposed
strategies
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Figure 3.13 – Performance index: Comparative study using constant gains

considered using constant gains. The parameter value Lc∗ can be seen with different val-
ues, 10 at the beginning, 40 at 4.5 seconds and 70 at 10 seconds, respectively. At the
beginning, the gain is small and the tracking is achieved with less precision, after that, at
4.5 seconds, the gains is increased achieving a correct estimation. However, at 10 seconds,
it is possible to illustrate the chattering effect for a value of Lc∗ = 70. Similarly, this can

103



Part , Chapter 3 – Controller design for the Interior Permanent Magnet Synchronous motor

be illustrate for the voltages and currents.

Figure 3.14 – Proposal 1. Performance using different constant gain values

For this reason, the design of adaptive laws is necessary to avoid this issue. In Figure
3.15, the action of the adaptive parameters, LcΩ and Lcid

, are shown such that the gains
are adjusted according to the need of the controller to achieve the minimum error, avoiding
overestimation of gains and chattering in the signals.

Figure 3.15 – Proposal 1 (ASTWC-1). Performance using adaptive gains
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3.3.2 Comparative study with adaptive strategies

The adaptive laws introduced in Theorem 3.1 and Theorem 3.2 are compared with
three proposed strategies in the literature.

The term Vst−∗ for ∗ = Ω, id will be defined for each controller.

Firstly, an Adaptive Sliding mode Control (ASMC) has been introduced in [91], with
the control input Vst−∗ given by

Vst−∗ = −K∗(t)sign(S∗) (3.103)

where K∗(t) is an adaptive law defined by

K̇∗(t)

K̄∗|S∗|sign(|S∗| − ϵ∗) if K∗ > µ∗

µ∗ if K∗ ≤ µ∗

(3.104)

where K∗(0) > 0, K̄∗ > 0, µ∗ > 0 and ϵ∗ = 2K∗(t)Te with Te is the sampling time.

Secondly, an Adaptive Super twisting (ASTW) was introduced in [92], where the
control input Vst−∗ is given by

Vst−∗ = −α∗(t)|S∗|
1
2 sign(S∗) −

∫ t

0

β∗(t)
2 sign(S∗)dτ (3.105)

with α∗(t) and β∗(t) defined by

α̇∗(t) =

ϖ
√

γ∗
2 sign(|S∗| − µ∗) if α∗ > 0

0 if α∗ = 0
(3.106)

β∗(t) = 2ϵ∗α∗

where ϖ, γ∗, µ∗ and ϵ∗ are positive constants.

The third adaptive law was introduced in [89] and a simplified adaptive super twisting
(SAST) was proposed, with the control input Vst−∗ given by

Vst−∗ = −KG1∗|S∗|
1
2 sign(S∗) −

∫ t

0
KG2∗sign(S∗)dt (3.107)

where KG1∗ = 2LG∗(t) and KG2∗ = LG∗(t)2

2 and LG∗(t) > 0 is an adaptive parameter,
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solution of

L̇G∗(t) =
−kG∗√

2
|LG∗(t) − Lref | + LG∗(t)

2 |S∗|
1
2(

LG∗(t) − Lref ) + 2
LG∗(t)2 (|S∗|

1
2 + 1

LG∗(t)
∫
L2

G∗(τ)sign(S∗)dτ
)(

−
∫ L2

G∗(τ)
2 sign(S∗)dτ

)
(3.108)

for Lref > 0 and kG∗ > 0.

Figure 3.16 – Control performance using ASMC strategy

Figure 3.17 – Control performance using ASTW strategy
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Figure 3.18 – Control performance using SAST strategy

Figure 3.19 – Control performance using proposed ASTWC-1 strategy

The ASMC, ASTW and SAST are compared with the proposal 1 (ASTWC-1) given
by Theorem 3.1 and the proposal 2 (ASTWC-2) given by Theorem 3.2 under the same
conditions in order to evaluate the performance of each adaptive control in terms of
tracking error and tuning process (number of parameters).

Simulation test has been carried out in Matlab-Simulink environment, using a sampling
time of 1×10−3 with a fixed-step ode4 solver. The profile for the speed and the disturbance
(Load Torque) are given by Figure 1.7 and the parameters used in the adaptive strategies
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Figure 3.20 – Control performance using proposed ASTWC-2 strategy

have been chosen in order to get the best results.
ASMC: K̄id

= 20, µid
= 0.5, K̄Ω = 20, µΩ = 0.5 Te = 1 × 10−3.

ASTW: ω̄id
= 5, γid

= 2, µid
= 0.1, ϵid

= 2, ω̄Ω = 5, γΩ = 2, µΩ = 0.1, ϵΩ = 2.
SAST: kGid

= 15, kGΩ = 10, Lref = 0.1.
ASTWC-1: kcid

= 1, γcid
= 0.1, kcΩ = 90, γcΩ = 0.05.

ASTWC-2: kcid2
= 100, γcid2

= 0.06, kcΩ2
= 200, γcΩ2

= 0.001.
In Figure 3.16, the Adaptive Sliding Mode Controller (ASMC) is addressed. An increase

in the chattering can be seen in the voltages. It has been improved in the Adaptive
Super Twisting (ASTW)(See Figure 3.17). However, to get good results, it is necessary
to adjust different parameters in the adaptive law. Then, in order to reduce the number
of parameters for tuning the adaptive controller, a Simplified Adaptive Super Twisting
(SAST) is illustrated in Figure 3.18 achieving good results in the tracking errors. However,
the structure of the adaptive law is complex. Therefore, considering a reparameterization
of gains, similarly to SAST, in this work an effort has been made to simplify adaptive
law, achieving better results, as shown in Figure 3.19 and Figure 3.20, ASTWC-1 and
ASTWC-2, respectively. The tracking errors has been greatly decreased as well as the
time of convergence. Moreover, the adaptive laws only need two parameters to be adjusted,
similarly as the SAST. Nevertheless, the structure is less complex.

In order to compare the strategies, a performance index, Integral Absolute Error (IAE),
is considered. From Figure 3.21, it can be concluded that the two proposed strategies
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Figure 3.21 – Performance index: Comparative study using adaptive gains

(ASTWC-1, ASTWC-2) can guarantee a high level of accuracy in the tracking error.
Moreover, from the Figures. 3.16-3.20, a reduced level of chattering can be illustrated in
all strategies, except for ASMC.

3.4 Conclusion

In this chapter, two adaptive controllers based on super-twisting approach have been
introduced. The gains of the controllers have been reparameterized in terms of a single
parameter to reduce the tuning time. From reparameterized gains, an adaptive law was
designed for each controller in order to avoid overestimation of gains and the classical
chattering. Simulation tests have been carried out in closed-loop. Some tests were per-
formed to justify the use of adaptive laws. Moreover, considering constant and adaptive
gains, a comparative study was carried out taking into account some important results
from the literature, to show the performance of each of them with respect to the proposed
strategies, so that the proposed strategies can show an easier adjustment with good per-
formance, effectiveness and a less complex structure.
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Chapter 4

SENSORLESS CONTROL OF THE

INTERIOR PERMANENT MAGNET

SYNCHRONOUS MOTOR

In this Chapter, two sensorless control scheme for the IPMSM are introduced, i.e., the
proposed observers are interconnected with the proposed controllers in closed-loop. First,
the stability analysis for the first scheme is addressed, interconnecting in closed-loop the
adaptive observer given in the section 2.2.1 (AHOSMO-1) with the adaptive control given
in the section 3.1.1(ASTWC-1). Simulation and experimental results are introduced for
this strategy. After that, the adaptive observer given in the section 2.3.1 (AHOSMO-
2) is interconnected in closed-loop with the adaptive control given in the section 3.2.1
(ASTWC-2). An stability analysis is introduced and simulation and experimental results
are illustrated for this strategy.

4.1 Closed-loop analysis: Scheme 1

Consider the proposed control in section 3.1.1 (ASTWC-1) using the estimates pro-
vided by the proposed observer in section 2.2.1 (AHOSMO-1). Then, the stability analysis
of the system in closed-loop with the control-observer scheme is established as follows

Theorem 4.1. Consider the dynamical model of the IPMSM (1.36)-(1.37) in closed-loop
with the controllers (3.42) and (3.47) using the estimates provided by the observer (2.53).
Then, tracking errors e1Ω and e1id

; and estimation error eθe converge to zero in finite time.

Proof: Since the control input vq(x̂) depends on estimates Ω̂, îd and îq; and taking
into account the sliding surface given by (3.41), then the dynamic of the sliding surface
is given by

ṠΩ = ϑ12e2Ω + a1b1 + a2b2 + a3b2 − b3 − Ω̈∗ + c1vq(x̂). (4.1)
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Now, adding and subtracting the term c1vq(x) in the sliding surface, it follows that

ṠΩ = ϑ12e2Ω + a1b1 + a2b2 + a3b2 − b3 − Ω̈∗ + c1vq(x) + c1[vq(x̂) − vq(x)] (4.2)

Notice that the term c1[vq(x̂) − vq(x)] is Lipschitz, i. e., there exists a positive constant
µ11 such that ||c1[vq(x̂) − vq(x)]|| ≤ µ11||x̂ − x||. Then, applying the control input vq(x)
in (4.2), the dynamic of the sliding surface is given by

ṠΩ = −2L2
cΩ

(t)|SΩ|
1
2 sign(SΩ) −

∫ t

0

L4
cΩ

(t)
2 sign(SΩ)dτ + c1[vq(x̂) − vq(x)] + δΩ(t) (4.3)

The dynamic of SΩ can be expressed as follows
ṠΩ = −2L2

cΩ
(t)|SΩ|1/2sign(SΩ) + νΩ + δΩ(t) + c1[vq(x̂) − vq(x)]

ν̇Ω = −
L4

cΩ
(t)

2 sign(SΩ)
(4.4)

Now, defining the following change of coordinates Υ1Ω = SΩ and Υ2Ω = νΩ + δΩ(t). It
follows that

Υ̇1Ω = −2L2
cΩ

(t)|Υ1Ω|1/2sign(Υ1Ω) + Υ2Ω + c1[vq(x̂) − vq(x)]

Υ̇2Ω = −
L4

cΩ
(t)

2 sign(Υ1Ω) + dΩ(t)
(4.5)

with dΩ(t) = δ̇Ω(t). To analyze the stability of the system (4.5), consider the following
change of coordinates as follows

z1Ω = Υ1Ω

L2
cΩ

(t) z2Ω = Υ2Ω

L2
cΩ

(t) . (4.6)

whose dynamics are given by

ż1Ω = −2LcΩ(t)|z1Ω |
1
2 sign(z1Ω) + z2Ω + c1[vq(x̂) − vq(x)]

L2
cΩ

(t) − 2z1ΩL̇cΩ(t)
LcΩ(t)

ż2Ω = −
L2

cΩ
(t)

2 sign(z1Ω) + dΩ(t)
L2

cΩ
(t) − 2z2ΩL̇cΩ(t)

LcΩ(t)

(4.7)

After that, in order to represent system in a simple form, a new change of variable is
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introduced as follows

£1Ω = |z1Ω |
1
2 sign(z1Ω) £2Ω = z2Ω

LcΩ(t) (4.8)

then, the dynamical behavior, in the new coordinates, is given by

£̇1Ω = LcΩ(t)
2|z1Ω | 1

2

[
−2£1Ω + £2Ω + c1[vq(x̂) − vq(x)]

L3
cΩ

(t)

]
− £1Ω

L̇cΩ(t)
LcΩ(t)

£̇2Ω = LcΩ(t)
2|z1Ω | 1

2

−£1Ω + 2|z1Ω | 1
2dΩ(t)

L4
cΩ

(t)

− 3£2Ω

L̇cΩ(t)
LcΩ(t)

(4.9)

which can be represented in a compact form as follows

£̇Ω = αΩ
[(
AΩ − P−1

Ω CT
ΩCΩ

)
£Ω + ΦΩ

]
−NΩ£Ω

L̇cΩ(t)
LcΩ(t) (4.10)

with αΩ = LcΩ(t)
2|z1Ω | 1

2
, £Ω =

[
£1Ω £2Ω

]T
, CΩ =

[
1 0

]
,

AΩ =
0 1
0 0

 , PΩ =
 1 −1
−1 2

 , NΩ =
1 0
0 3

 , ΦΩ =


c1[vq(x̂) − vq(x)]

L3
cΩ

(t)
2|z1Ω | 1

2

L4
cΩ

(t) [dΩ(t)]

 ,

where, from Assumption 3.3, the nonlinear term ΦΩ satisfies the following inequality,
||ΦΩ|| ≤ ς11||£Ω|| for ς11 > 0.
Following the same steps of the previous analysis, consider the control input vd, expressed
in terms of the estimates as follows

vd(x̂) = Ld

ϑ13

ϑ13Rsîd
Ld

− ϑ13pΩ̂Lq îq
Ld

+ ϑ13i̇
∗
d − eid

−2L2
cid

(t)|Sid
|

1
2 sign(Sid

) −
∫ t

0

L4
cid

(t)
2 sign(Sid

)dτ
 (4.11)

Then, from sliding surface (3.46) and the control input (4.11) depending on the estimated
states, the dynamic of the sliding surface is given by
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Ṡid
= −ϑ13Rsid

Ld

+ ϑ13pΩLqiq
Ld

+ ϑ13

Ld

vd(x̂) − ϑ13i̇
∗
d + eid

(4.12)

Adding and subtracting the term ϑ13

Ld

vd(x) in (4.12), it follows that

Ṡid
= −ϑ13Rsid

Ld

+ ϑ13pΩLqiq
Ld

+ ϑ13

Ld

vd(x) − ϑ13i̇
∗
d + eid

+ ϑ13

Ld

[vd(x̂) − vd(x)] (4.13)

where the term ϑ13

Ld

[vd(x̂)−vd(x)] is Lipschitz, i.e., there exist a positive constant µ12 such

that ||ϑ13

Ld

[vd(x̂) − vd(x)]|| ≤ µ12||x̂ − x||. Moreover, applying the control input vd(x) in
the above system, the dynamic of the sliding surface is given by

Ṡid
= −2L2

cid
(t)|Sid

|
1
2 sign(Sid

)−
∫ t

0

L4
cid

(t)
2 sign(Sid

)dτ+ ϑ2

Ld

[vd(x̂)−vd(x)]+δid
(t) (4.14)

which can be represented as follows

Ṡid

= −2L2
cid

(t)|Sid
|1/2sign(Sid

) + νid
+ δid

(t) + ϑ2
Ld

[vd(x̂) − vd(x)]

ν̇id
= −

L4
cid

(t)
2 sign(Sid

)
(4.15)

Now, defining Υ1id
= Sid

and Υ2id
= νid

+ δid
(t). The system Ṡid

can be expressed as
follows

Υ̇1id
= −2L2

cid
(t)|Υ1id

|1/2sign(Υ1id
) + Υ2id

+ ϑ2

Ld

[vd(x̂) − vd(x)]

Υ̇2id
= −

L4
cid

(t)
2 sign(Υ1id

) + did
(t)

(4.16)

with did
(t) = δ̇id

(t). Then, from (4.16), consider the following change of coordinates,

z1id
=

Υ1id

L2
cid

(t) and z2id
=

Υ2id

L2
cid

(t) , whose dynamics are given by

ż1id
= −2Lcid

(t)|z1id
|

1
2 sign(z1id

) + z2id
+

ϑ13
Ld

[vd(x̂) − vd(x)]
L2

cid
(t) −

2z1id
L̇cid

Lcid
(t)

ż2id
= −

L2
cid

(t)
2 sign(z1id

) + did
(t)

L2
cid

(t) −
2z2id

L̇cid
(t)

Lcid
(t)

(4.17)
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After that, a new change of variable is introduced as

£1id
= |z1id

|
1
2 sign(z1id

) £2id
=

z2id

Lcid
(t) (4.18)

whose dynamics are given by

£̇1id
=

Lcid
(t)

2|z1id
| 1

2

−2£1id
+ £2id

+
ϑ13
Ld

[vd(x̂) − vd(x)]
L3

cid
(t)

− £1id

L̇cid
(t)

Lcid
(t)

£̇2id
=

Lcid
(t)

2|z1id
| 1

2

−£1id
+

2|z1id
| 1

2did
(t)

L4
cid

(t)

− 3£2id

L̇cid
(t)

Lcid
(t)

(4.19)

Then, system (4.19) can be rewritten in a compact form as follows

£̇id
= αid

[(
Aid

− P−1
id
CT

id
Cid

)
£id

+ Φid

]
−Nid

£id

L̇cid
(t)

Lcid
(t) (4.20)

with αid
=

Lcid
(t)

2|z1id
| 1

2
, £id

=
[
£1id

£2id

]T
, Cid

=
[
1 0

]
,

Aid
=
0 1
0 0

 , Pid
=
 1 −1
−1 2

 , Nid
=
1 0
0 3

 , Φid
=


ϑ13
Ld

[vd(x̂) − vd(x)]
L3

cid
(t)

2|z1id
| 1

2

L4
cid

(t) [did
(t)]

 .

From Assumption 3.3, the term Φid
is Lipschitz, i.e. there exists ς12 > 0, such that

||Φid
|| ≤ ς12||£id

|| .
Then, considering the adaptive observer-1 given in section 2.2.1 and the adaptive control-
1 given in section 3.1.1 the dynamics in closed-loop, controller-observer, are established
as follows 

ξ̇ = αo

[(
Ao − P−1

o CT
o Co

)
ξ + Φo

]
−Noξ

L̇o(t)
Lo(t)

£̇Ω = αΩ
[(
AΩ − P−1

Ω CT
ΩCΩ

)
£Ω + ΦΩ

]
−NΩ£Ω

L̇cΩ(t)
LcΩ(t)

£̇id
= αid

[(
Aid

− P−1
id
CT

id
Cid

)
£id

+ Φid

]
−Nid

£id

L̇cid
(t)

Lcid
(t)

(4.21)
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If ∀t > T1, such that ξ tend to zero, then, ei tend to zero. Therefore, from Theorem
2.1, the observer converges in finite time to zero, it follows that the terms c1[vq(x̂)−vq(x)]
and ϑ13

Ld

[vd(x̂) − vd(x)] contained in ΦΩ and Φid
, respectively; tend to zero in finite time.

Therefore, the system given by (3.16) is obtained. Finally, from the same procedure given
in the proof of the Theorem 3.1, the stability of the closed-loop system is proved.

4.2 Simulation and experimental results: Scheme 1

In this section, simulation and experimental results have been evaluated in order to
show the performance of the proposed strategy. The adaptive observer introduced in
section 2.2.1 and the adaptive control introduced in section 3.1.1 have been interconnected
to illustrate the performance of the control in closed-loop under the action of the observer
estimates, i.e., controller+observer (ASTWC-1 + AHOSMO-1). A scheme of the proposed
sensorless control-1 is shown in Figure 4.1.
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Figure 4.1 – Proposed sensorless control: Scheme-1.

4.2.1 Simulation tests

Simulation test has been carried out in Matlab-Simulink environment, using a sam-
pling time of 1 × 10−3 with a fixed-step ode4 solver and white noise was added in the
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measurable currents−iαβ with a power noise of 1 × 10−7 in order to illustrate a realistic
situation. The parameter variation given in Figure 1.8 and the profile given in Figure
1.7 are considered. Therefore, from simulations, the behaviour of adaptive law Lo for the

Figure 4.2 – Simulation test: Behaviour of the adaptive gains, observer and control

observer; and the adaptive laws LcΩ and Lcid
for the speed and current−id controllers,

respectively, are shown in Figure 4.2. The adaptive laws have been implemented by con-
sidering the parameters of the Table 4.1. Then, in Figure 4.3, the speed estimation and

Table 4.1 – Parameters for the sensorless control-1 in simulation test.
AHOSMO-1
γ0 ko

0.01 90

ASTWC-1
ϑ12 γcΩ kcΩ ϑ13 γcid

kcid

400 0.1 3 200 0.002 0.8

its estimation error are plotted. Small overshoots can be seen under the load torque vari-
ations. However, the performance of the adaptive observer is good under these variations.
On the other hand, the estimated angular position compared with the real angular posi-
tion is plotted in Figure 4.4. It easy to see that angular position error converges to zero
ensuring observability for a wide speed range, i.e., high, medium and close to zero. In
Figure 4.5, the estimation of acceleration is plotted and an estimation with noise can be
seen due to the application of the additive noise in the currents−iαβ. Now, taking into
account the estimates of the observer, the controllers of speed and current−id are applied
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Figure 4.3 – Simulation test: Speed estimation and estimation error

Figure 4.4 – Simulation test: Angular position estimation and angular position error

in closed-loop in order to control the IPMSM. Therefore, IPMSM has been controlled and
rotor speed tracking is plotted in Figure 4.6 showing a tracking with good performance.
Similarly, in Figure 4.7, the current-id tracks the desired reference i∗d = 0 and the cur-
rent iq takes different values according to the speed and load torque profiles. Then, from
these figures, the effectiveness of the proposed scheme based on sliding mode is shown
by simulations under parameter variations. Finally, from simulations can be shown that
the angular position estimation error eθe has been extracted successfully showing good
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Figure 4.5 – Simulation test: Estimation of acceleration

Figure 4.6 – Simulation test: Speed tracking and tracking error

performance in closed loop.

4.2.2 Experimental test

The proposed strategy is implemented taking into account the profiles defined in Figure
1.7. Moreover, as previously mentioned, during the experiments an encoder is used to
measure the real angular position. Then, considering measured position, a Kalman-filter
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Figure 4.7 – Simulation test: Behaviour of the currents−idq

is applied in order to calculate the rotor speed. Therefore, from this information, it is
possible to know if the proposed observer does a correct estimation and the controller a
correct reference tracking.

Now, considering the proposed adaptive observer, the speed, angular position and
acceleration are going to be estimated to control the speed and current−id of IPMSM using
adaptive controllers. A comparison is carried out with the same proposed strategy using
constant gains in order to see the improvement with the implementation of adaptive gains.
It is worth mentioning that during the experiments with constant gains, the constant gains
have been chosen in order to avoid damaging the hardware. Experimental validation has
been carried out considering the following parameters: for the case with constant gains, the
observer is implemented with Lo = 4.5; ϑ12 = 180 and LcΩ = 35 in the speed controller;
and ϑ13 = 20 and Lcid

= 20 in the current−id controller. On the other hand, the adaptive
observer and adaptive control parameters are given in Table 4.2. The behaviour of the

Table 4.2 – Parameters for the sensorless control-1 in experimental test.
AHOSMO-1
γ0 ko

0.07 35

ASTWC-1
ϑ12 γcΩ kcΩ ϑ13 γcid

kcid

180 0.0003 0.1 20 0.0009 0.2

adaptive laws for the observer and controllers are illustrated in Figure 4.8.
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Figure 4.8 – Experimental test. Adaptive laws: Control (Lcid
(t), LcΩ(t)) and observer

(Lo(t)).

Figure 4.9 – Experimental test: Speed estimation and estimation error.
Then, the speed and the angular position have been estimated using constant gain and
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adaptive gain as can be shown in Figure 4.9 and Figure 4.10, respectively. At first glance,
it is not possible to see the improvement in detail through speed estimation error and
angular error. However, in Figure 4.11, in order to show numerically the improvement,

Figure 4.10 – Experimental test: Angular position estimation and estimation error.

a performance index is computed: Integral Absolute Error (IAE). Therefore, it possible
to see that proposed adaptive observer improves the estimation adjusting the gains in
order to obtain a minimum error. On the other side, the estimation of the acceleration is
shown in Figure 4.12 using constant gains and adaptive gains. Then, the estimation with
adaptive gains has an improvement avoiding overestimation with large gains and reducing
the chattering. Now, the estimates of the observer have been used in the controllers to
control the machine in closed-loop. In Figure 4.13, the speed tracking and its tracking
error are shown. A comparative study using constant gains and adaptive gains is given.
It is clear that an improvement can be seen numerically in Figure 4.11 using the adaptive
gains in the scheme. On the other hand, the currents−idq are plotted in Figure 4.14. Then,
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Figure 4.11 – Performance index for the estimation and tracking of states during experi-
ments

Figure 4.12 – Experimental test: Estimation of the acceleration.

the closed-loop in IPMSM is achieved successfully.

Therefore, as can be seen the proposed strategy only requires the current−iαβ signals
for extracting the angular position estimation error eθe , directly, without any additional
information or elements, then, eθe can be used in the observer based on the virtual system
to estimate angular position, speed and acceleration, such that the proposed strategy has
been validated experimentally, with good effectiveness at low, medium and high speed in
closed loop. Moreover, as can be seen in simulation, the tracking errors and estimation
errors show the effect of adding white noise. It is clear that the chattering has been atten-
uated. However, the effects of white noise are present in the signals. On the other hand,
during the experimental test, these errors are more important compared to those obtained
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Figure 4.13 – Experimental test: Speed tracking and tracking error

in the simulation. It is well-known that in the experiments the effect caused by external
disturbances (inverter effect) and the noise appears in the measured signals. However, the
proposed strategy works well and attenuate the effects of chattering, uncertain parameters
and unmodeled dynamics.

4.3 Closed-loop analysis: Scheme 2

Consider the proposed control given in the section 3.2.1 (ASTWC-2) using the esti-
mates provided by the proposed observer given in section 2.3.1 (AHOSMO-2). Then, the
stability analysis of the system in closed-loop, control-observer scheme, is established as
follows

Theorem 4.2. Consider the dynamical model of the IPMSM (1.36)-(1.37) in closed-
loop with the controllers (3.92)-(3.97) using the estimates provided by the observer (2.95).
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Figure 4.14 – Experimental test: Profiles of the currents−idq

Then, tracking errors e1ω and e1id
; and estimation error eθe converge to zero in finite time.

Proof: Since the control input vq(x̂) depends on estimates Ω̂, îd and îq; and taking
into account the sliding surface given by (3.91), then the dynamic of the sliding surface
is given as follows

ṠΩ2 = ϑ22e2Ω + a1b1 + a2b2 + a3b2 − b3 − Ω̈∗ + c1vq(x̂) (4.22)

Now, adding and subtracting the term c1vq(x) in the sliding surface, it follows that

ṠΩ2 = ϑ22e2Ω + a1b1 + a2b2 + a3b2 − b3 − Ω̈∗ + c1vq(x) + c1[vq(x̂) − vq(x)] (4.23)

Notice that the term c1[vq(x̂) − vq(x)] is Lipschitz, i. e., there exists a positive constant
µ21 such that ||c1[vq(x̂) − vq(x)]|| ≤ µ21||x̂− x||.
Applying the control input vq(x) in the above system, the dynamic of the sliding surface
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is given by

˙SΩ2 = −2LcΩ2
(t)|SΩ2 |

1
2 sign(SΩ2)−

∫ t

0

L2
cΩ2

(t)
2 sign(SΩ2)dτ+c1[vq(x̂)−vq(x)]+δΩ(t) (4.24)

Then, the dynamic of SΩ2 can be expressed as follows

ṠΩ2 = −2LcΩ2

(t)|SΩ2 | 1
2 sign(SΩ2) + νΩ2 + δΩ2(t) + c1[vq(x̂) − vq(x)]

ν̇Ω2 = −
L2

cΩ2
(t)

2 sign(SΩ2)
(4.25)

Now, defining the following change of coordinates z1Ω2
= SΩ2 and z2Ω2

= νΩ2 + δΩ(t). The
system (4.25) is given by

ż1Ω2
= −2LcΩ2

(t)|z1Ω2
|

1
2 sign(z1Ω2

) + z2Ω2
+ c1[vq(x̂) − vq(x)]

ż2Ω2
= −

L2
cΩ2

(t)
2 sign(z1Ω2

) + dΩ(t)
(4.26)

with dΩ(t) = δ̇Ω(t). Now, a change of variable is introduced

£1Ω2
=

|z1Ω2
| 1

2 sign(z1Ω2
)

LcΩ2
(t) £2Ω2

=
z2Ω2

L2
cΩ2

(t) (4.27)

then, the dynamical behavior of system (4.27), in the new coordinates, is given by

£̇1Ω2
=

LcΩ2
(t)

2|z1Ω2
| 1

2

−2£1Ω2
+ £2Ω2

+ c1[vq(x̂) − vq(x)]
L2

cΩ2
(t)

− £1Ω2

L̇cΩ2
(t)

LcΩ2
(t)

£̇2Ω2
=

LcΩ2
(t)

2|z1Ω2
| 1

2

−£1Ω2
+

2|z1Ω2
| 1

2dΩ(t)
L3

cΩ2
(t)

− 2£2Ω2

L̇cΩ2
(t)

LcΩ2
(t)

(4.28)

which can be represented in a compact form as follows

£̇Ω2 = αΩ2

[(
AΩ2 − P−1

Ω2 C
T
Ω2CΩ2

)
£Ω2 + ΦΩ2

]
−DΩ2£Ω2

L̇cΩ2
(t)

LcΩ2
(t) (4.29)
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with αΩ2 =
LcΩ2

(t)
2|z1Ω2

| 1
2

and

£Ω2 =
£1Ω2

£2Ω2

 AΩ2 =
0 1
0 0

 CΩ2 =
[
1 0

]
(4.30)

PΩ2 =
 1 −1
−1 2

 DΩ2 =
1 0
0 2

 ΦΩ2 =


c1[vq(x̂) − vq(x)]

L2
cΩ2

(t)
2|z1Ω2

| 1
2

L3
cΩ2

(t) [dΩ(t)]

 (4.31)

From Assumption 3.5, the nonlinear term ΦΩ2 satisfies the following inequality, ||ΦΩ2 || ≤
ς21||£Ω2|| for ς21 > 0.
Following the same steps of the previous analysis, consider the control input vd, expressed
in terms of the estimates as follows

vd(x̂) = Ld

ϑ23

ϑ23Rsîd
Ld

− ϑ23pΩ̂Lq îq
Ld

+ ϑ23i̇
∗
d − eid

−2Lcid2
(t)|Sid2

|
1
2 sign(Sid2

) −
∫ t

0

L2
cid2

(t)
2 sign(Sid2

)dτ
 (4.32)

Then, from sliding surface (3.96) and the control input (4.32) depending on the estimated
states, the dynamic of the sliding surface is given by

Ṡid2
= −ϑ23Rsid

Ld

+ ϑ23pΩLqiq
Ld

+ ϑ23

Ld

vd(x̂) − ϑ23i̇
∗
d + eid

(4.33)

Adding and subtracting the term ϑ23

Ld

vd(x) in (4.33), it follows that

Ṡid2
= −ϑ23Rsid

Ld

+ ϑ23pΩLqiq
Ld

+ ϑ23

Ld

vd(x) − ϑ23i̇
∗
d + eid

+ ϑ23

Ld

[vd(x̂) − vd(x)] (4.34)

where the term ϑ23

Ld

[vd(x̂)−vd(x)] is Lipschitz, i.e., there exist a positive constant µ22 such

that ||ϑ23

Ld

[vd(x̂) − vd(x)]|| ≤ µ22||x̂− x||.
Moreover, applying the control input vd(x) in the above system, the dynamic of the sliding
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surface is given by

˙Sid2
= −2Lcid2

(t)|Sid2
|

1
2 sign(Sid2

) −
∫ t

0

L2
cid2

(t)
2 sign(Sid2

)dτ + ϑ23

Ld

[vd(x̂) − vd(x)] + δid
(t)

(4.35)
which can be represented as follows


Ṡid2

= −2Lcid2
(t)|Sid2

| 1
2 sign(Sid2

) + νid2
+ δid

(t) + ϑ23

Ld

[vd(x̂) − vd(x)]

ν̇id2
= −

L2
cid2

(t)
2 sign(Sid2

)
(4.36)

Now, defining z1id2
= Sid2

and z2id2
= νid2

+ δid
(t). The system Ṡid2

can be expressed as
follows

ż1id2
= −2Lcid2

(t)|z1id2
|

1
2 sign(z1id2

) + z2id2
+ ϑ23

Ld

[vd(x̂) − vd(x)]

ż2id2
= −

L2
cid2

(t)
2 sign(z1id2

) + did
(t)

(4.37)

with did
(t) = δ̇id

(t) Now, a new change of variable is introduced

£1id2
=

|z1id2
| 1

2 sign(z1id2
)

Lcid2
(t) £2id2

=
z2id2

L2
cid2

(t) (4.38)

whose dynamics are given by

£̇1id2
=

Lcid2
(t)

2|z1id2
| 1

2

−2£1id2
+ £2id2

+
ϑ23
Ld

[vd(x̂) − vd(x)]
L2

cid2
(t)

− £1id2

L̇cid2
(t)

Lcid2
(t)

£̇2id2
=

Lcid2
(t)

2|z1id2
| 1

2

−£1id2
+

2|z1id2
| 1

2did
(t)

L3
cid2

(t)

− 2£2id2

L̇cid2
(t)

Lcid2
(t)

(4.39)

Then, system (4.39) can be rewritten in a compact form as follows

£̇id2
= αid2

[(
Aid2

− P−1
id2
CT

id2
Cid2

)
£id2

+ Φid2

]
−Did2

£id2

L̇cid2
(t)

Lcid2
(t) (4.40)
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with αid2
=

Lcid2
(t)

2|z1id2
| 1

2
and

£id2
=
£1id2

£2id2

 Aid2
=
0 1
0 0

 Cid2
=
[
1 0

]
(4.41)

Pid2
=
 1 −1
−1 2

 Did2
=
1 0
0 2

 Φid2
=



ϑ23
Ld

[vd(x̂) − vd(x)]
L2

cid2
(t)

2|z1id2
| 1

2

L3
cid2

(t) [did
(t)]

 (4.42)

From Assumption 3.5, the term Φid2
is Lipschitz, i.e. there exists ς22 > 0, such that

||Φid2
|| ≤ ς22||£id2

||.
Then, considering the adaptive observer given in section 2.3.1 and the adaptive control

given in section 3.2.1, the dynamics in closed-loop, controller-observer, are establishes as
follows 

ξ̇o2 = αo2
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Ao2 − P−1

o2 C
T
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)
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]
−Do2ξo2

L̇o2(t)
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AΩ2 − P−1

Ω2 C
T
Ω2CΩ2

)
£Ω2 + ΦΩ2

]
−DΩ2£Ω2

L̇cΩ2
(t)
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[(
Aid2
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id2
Cid2

)
£id2

+ Φid2

]
−Did2
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L̇cid2
(t)

Lcid2
(t)

(4.43)

If ∀t > T12 , such that ξo2 tend to zero, then, ei2 tend to zero. Therefore, from Theorem
2.2, the observer converges in finite time to zero, it follows that the terms c1[vq(x̂)−vq(x)]
and ϑ23

Ld

[vd(x̂) − vd(x)] contained in ΦΩ2 and Φid2
, respectively; tend to zero in finite time.

Therefore, the system given by (3.62) is obtained. Finally, from the same procedure given
in the proof of the Theorem 3.2, the stability of the closed-loop system is proved.

4.4 Simulation and experimental results: Scheme 2

In this section, simulation and experimental results have been evaluated in order to
show the performance of the proposed strategy. The adaptive observer introduced in sec-
tion 2.3.1 (AHOSMO-2) and the adaptive control introduced in section 3.2.1 (ASTWC-2)
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have been interconnected to illustrate the performance of the control in closed-loop under
the action of the observer estimates, i.e., controller+observer (ASTWC-2 + AHOSMO-2).
A scheme of the proposed sensorless control strategy-2 is shown in Figure 4.15.
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Figure 4.15 – Proposed sensorless control: Scheme-2.

4.4.1 Simulation test

Simulation test is carried out in Matlab-Simulink environment, using a sampling time
of 1 × 10−3 with a fixed-step ode4 solver. Moreover, white noise was added in the measur-
able currents−iαβ with a power noise of 1×10−7 in order to illustrate a realistic situation.
Moreover, the adaptive laws have been implemented by considering the parameters of the
Table 4.3. The behaviour of adaptive law Lo2(t) for the observer; and the adaptive laws

Table 4.3 – Parameters for the sensorless control-2 in simulation test
AHOSMO-2
γo2 ko2

0.016 200

ASTWCs-2
ϑ22 γcΩ2

kcΩ2
ϑ23 γcid2

kcid2

400 0.008 120 200 0.0011 120

LcΩ2
(t) and Lcid2

(t) for speed and current−id controllers are shown in the Figure 4.16,
respectively.
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Figure 4.16 – Simulation test: Behaviour of adaptive gains for the observer (Lo2(t)) and
controllers (LΩ2(t), Lid2

(t))

Considering the adaptive laws, in Figure 4.17, the speed estimation and its estimation
error are introduced, showing a minimum error. In Figure 4.18, the angular position

Figure 4.17 – Simulation test: Speed estimation and estimation error

estimation and its angular position estimation error are plotted. As can be seen, the
estimation is ensured over a wide speed range in presence of parametric uncertainties
(see Figure 1.8). Moreover, in Figure 4.19, acceleration has been estimated in order to
compensate the fast dynamics in the system and reduce the estimation error in the speed
and angular position.

Information from observer estimates has been interconnected with the controllers in
closed-loop, as can be seen in the scheme 4.15. Then, in Figure 4.20, speed tracking and
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Figure 4.18 – Simulation test: Angular position estimation and angular position error

Figure 4.19 – Simulation test: Estimation of acceleration

its tracking error are illustrated with a good performance.
Moreover, the currents−idq are plotted in Figure 4.21. Therefore, from the illustrations,

it is possible to see that the behaviour of the adaptive laws with the system in closed loop
(controller+observer) have a good performance. Moreover, the extraction of eθe introduced
in section 2.1 has been achieved successfully.

4.4.2 Experimental test

One experimental test is addressed to see in real time the performance of the strategy.
The proposed strategy is implemented taking into account the profiles defined in Figure
1.7. Moreover, as previously mentioned, a sensor (encoder) has been used to measure the
real angular position in the experiments. From this information, a Kalman-filter is applied
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Figure 4.20 – Simulation test: Speed tracking and tracking error

Figure 4.21 – Simulation test: Behaviour of the currents−idq

to calculate the rotor speed. Therefore, it is possible to know if the proposed observer does
a correct estimation of the speed and angular position. Similarly, it possible to know if the
controller does a correct reference tracking. The adaptive laws have been implemented by
considering the parameters given in Table 4.4 and are shown in Figure 4.22.

Table 4.4 – Parameters for the sensorless control-2 in experimental test
AHOSMO-2
γ02 ko2

0.001 3

ASTWCs-2
ϑ22 γcΩ2

kcΩ2
ϑ23 γcid2

kcid2

180 0.0001 35 20 0.0005 30

Then, in Figure 4.23, it possible to see the convergence of the estimated speed towards
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Figure 4.22 – Experimental test: Behaviour of adaptive gains for the observer and con-
trollers

the real speed with good performance. In Figure 4.24, the estimation of the angular

Figure 4.23 – Experimental test: Speed estimation and estimation error

position and its angular error are plotted and a small error is obtained. It is possible to
see a good performance over wide speed range, i.e., high, medium and low speed. However,
the error increases when the speed is very close to zero. On the other hand, in Figure 4.25,
the acceleration has been estimated in order to compensate the estimation error of angular
position and speed.
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Figure 4.24 – Experimental test: Angular position estimation and angular position esti-
mation error

Figure 4.25 – Experimental test: Estimation of acceleration

The estimates of the observer are interconnected in the controllers to control the speed
and the current of the IPMSM. In Figure 4.26, the tracking of the speed and the tracking
error are showed. The tracking error shows that the performance of the proposed strategy
is good and the tracking is ensured with good accuracy even close to zero.

Moreover, the tracking of the current id and the behaviour of the current iq are showed
in Figure 4.27. The current id tracks a reference equal to 0, and the current iq has a
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Figure 4.26 – Experimental test: Speed tracking and tracking error

behaviour according to the load torque and the speed.

Figure 4.27 – Experimental test: Behaviour of the currents−idq

As can be seen the proposed strategy only requires the angular position estimation
error eθe to estimate angular position, speed and acceleration using an observer based on
a parameter free virtual system. From this information, the sensorless scheme is possible.
The proposed strategy has been validated experimentally, with good effectiveness at low,
medium and high speed in closed loop.
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4.5. Conclusion

On the other hand, it is possible to see in simulation that the tracking errors and
estimation errors show the effect of adding white noise. It is clear that the chattering
has been attenuated. However, the effects of white noise are present in the signals. On
the other hand, during the experimental test, these errors are more important compared
to those obtained in the simulation. It is well-known that in the experiments the effect
caused by external disturbances (inverter effect) and the noise appears in the measured
signals. However, the proposed strategy works well and attenuate the effects of chattering,
uncertain parameters and unmodeled dynamics.

4.5 Conclusion

In this chapter, experimental and simulation tests were introduced to show the perfor-
mance of the proposed sensorless control. The experimental tests have been carried out
in Laboratoire des Sciences du Numérique de Nantes (LS2N) of the Ecole Centrale De
Nantes, France. The extraction of the angular position estimation error has been success-
fully achieved from the measurable currents iαβ and the observers have been implemented
obtaining good results. Then, angular position, speed and acceleration have been esti-
mated. These estimates have been interconnected with the controller in closed-loop to
control the electrical machine. In this way, the sensorless control applied in the experi-
mental setup has shown a good performance under a wide speed range, even very close
to zero.

An stability analysis under the action of the observer estimates has been introduced.
This analysis is simpler due to that the separation principle holds.
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CONCLUSION

In this work a new alternative for sensorless control of the IPMSM was proposed. The
main contributions of this work were the following:

— A strategy to extract the angular error eθe was proposed, and based on a virtual
system without parameters of the IPMSM, two Adaptive High-Order Sliding Mode
Observers (AHOSMOs) have been designed to estimate angular position, speed and
acceleration over a wide speed range, and overcome the issues caused by parametric
uncertainties. The angular position estimation error is independent of all machine
parameters and high frequency signal injection characteristics. Therefore, this im-
proved the feasibility of design, which reduces the cost of the implementation.

— Two Adaptive Super-Twisting Controllers (ASTWCs) were designed to track a de-
sired speed reference and a desired d-axis current reference. These controllers were
interconnected with the AHOSMOs achieving a sensorless control strategy.

— The gains for both, control and observer, were reparameterized in terms of a single
parameter to reduce the tuning time. The main advantage of this strategy is that
adaptive laws are easy to implement, which avoids overestimation of gains that in-
creases chattering, reduces time to adjust gains, and reduces damage to the system.

— The closed-loop stability analysis under the action of the observer has been im-
proved because the separation principle holds.

This work has been presented as follows:
In the first place, a state of the art of electrical machines and their main characteristics,

as well as their applications, where control is required, was presented. After this, the
two main classifications of sensorless control methods were presented, as well as their
advantages and disadvantages. Then, the organization of the thesis was addressed. In
addition, a list of publications in indexed journals and conferences has been presented.

In chapter one, a summary of the different types of PMSM was presented, as well as
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a brief introduction to the IPMSM. Considering that the dynamic model of the IPMSM
is necessary for the design of control strategies, the modeling of the IPMSM was carried
out. In addition, the problem statement of this work is presented in order to justify why
the thesis project is carried out as well as the objectives to follow. On the other hand,
in order to test the performance of the different proposals of this thesis, the benchmark
used in simulation and experimental tests is provided, as well as the description of the
hardware of the experimental setup.

In chapter two, a new method to extract the angular position estimation error eθe in
PMSM was introduced. The information of eθe was extracted by considering the currents
iαβ without machine model information. The extraction of eθe has been used to design
observers based on a virtual system without machine parameters in order to overcome
the issues caused by parametric uncertainties. Then, two adaptive observers have been
designed. Both adaptive observers have been proposed with reparameterized gains, i.e.,
the gains depend on a single parameter. Based on this reparametrization, an adaptive law
was designed for each observer. The designed observers have been applied considering the
extraction of the angular error to estimate the angular position, speed and acceleration.
Simulation results and a comparative study were introduced.

In chapter three, two adaptive controls based on super twisting were proposed. Both
adaptive controllers have the reparameterized gains in terms of a single parameter such as
the proposed adaptive observers in chapter two. This has allowed designing an adaptive
law for each control in order to improve its performance, avoiding large gains and saving
tuning time. Simulation results were presented to show the performance of this strategies.
Moreover, considering some results of the literature, a comparative study was introduced.

In chapter four, two scheme of sensorless control were introduced. The interconnection
among the proposed observers and controllers is carried out to show the performance
of the system under the action of observer estimates. Then, two sensorless controllers
were applied to the IPMSM. Simulation and experimental results have been illustrated
showing a good performance and effectiveness for a wide speed range, showing that the
extraction of eθe has been made successfully. Therefore, thanks to the virtual system
without parameters of the IPMSM, greater precision has been achieved in the estimates.
It is worth mentioning that thanks to the robustness of the sliding modes, good results
have been obtained in the tracking of references despite uncertainties and disturbance.

In this work, a new alternative to sensorless control has been introduced. Therefore,
based on the presented alternative, it is possible to show that to extract the angular error
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of the electrical motor, it is not always necessary to use dynamic equations of the motor,
allowing to design observers without the use of a dynamic model of the machine.

Some perspectives are given below:
For the design of observers in the sensorless control of electrical motor, it is necessary

to know the initial condition of the motor rotor, which is an open problem that requires
further study to improve the performance of the proposed schemes. In addition, when the
electrical machine is stopped and it is desired to know the angular position for the control
application, it is necessary to inject high frequency signals to excite the system, which
generates noise in the signals and the need to use filters. For this reason, it is necessary
to investigate more about the elimination of filters and high frequency injection to avoid
phase shifts in the obtained signal as well as acoustic noise, so that the speed control at
zero speed can be less complex.
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Appendix A

REPARAMETERIZED GAINS

A.1 Reparameterized gains for the proposed observers

Consider the following algebraic Lyapunov equation in order to compute the observer
gains

Po + AT
o Po + PoAo − CT

o Co = 0 (A.1)

where Po is a symmetric positive-definite matrix,

Ao =


0 1 0
0 0 1
0 0 0

 , Co =
[
1 0 0

]
, (A.2)

then the solution of Po for (A.1) is given by

Po =


1 −1 1

−1 2 −3
1 −3 6

 (A.3)

Now, consider the following LTI system

ẋ = Aox

y = Cox
(A.4)

where x ∈ ℜ3 is a state vector and y ∈ ℜ the output. Then, an observer for the system
(A.4) is given by

˙̂x = Aox̂ +Ko(y − ŷ)
ŷ = Cox̂

(A.5)
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where Ko is the gain. Then, the estimation error is given by e = x − x̂ and its dynamics
can be expressed by

ė = (Ao −KoCo)e (A.6)

Then, the gain Ko has the following values

Ko =


Ko1

Ko2

Ko3

 = P−1
o CT

o =


3
3
1

 (A.7)

A.1.1 Adaptive observer: Proposal 1

In this section, the gains of the proposed observer will be determined and computed
in terms of a single parameter.
Consider the following class of nonlinear system given by

ẋ1 = x2

ẋ2 = x3

ẋ3 = ρ(t)
y = x1

(A.8)

where x1, x2 and x3 are the states, ρ(t) is bounded function whose bound is unknown,
and y ∈ ℜ the output of the system.
Now, a sliding mode observers for the system (A.8) is given by

˙̂x1 = x̂2 + K̃1,1|e1|
2
3 sign(e1)

˙̂x2 = x̂3 + K̃2,1|e1|
1
3 sign(e1)

˙̂x3 = K̃3,1sign(e1)
ŷ = x̂1

(A.9)

where x̂1, x̂2, and x̂3 are the estimated states, ŷ is the estimated output and K̃1,1, K̃2,1

and K̃3,1 are the gains.
Now, an analysis of convergence for the observer will be introduced. Then, defining the
following estimation errors ei = xi − x̂i, for i = 1, 2, 3; the dynamics are given by
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ė1 = e2 − K̃1,1|e1|
2
3 sign(e1)

ė2 = e3 − K̃2,1|e1|
1
3 sign(e1)

ė3 = ρ(t) − K̃3,1sign(e1)

(A.10)

and taking into account the dynamics of the estimation errors, the following change of
variable is established as follows

ζ1 = e1

L2
o(t)

, ζ2 = e2

L2
o(t)

, ζ3 = e3

L2
o(t)

(A.11)

where Lo(t) > 0 is the single adaptive parameter. The dynamical system in terms of the
new variables is given by

ζ̇1 = − K̃1,1

L
2
3
o (t)

|ζ1|
2
3 sign(ζ1) + ζ2 − 2ζ1

L̇o(t)
Lo(t)

ζ̇2 = − K̃2,1

L
4
3
o (t)

|ζ1|
1
3 sign(ζ1) + ζ3 − 2ζ2

L̇o(t)
Lo(t)

ζ̇3 = − K̃3,1

L2
o(t)

sign(ζ1) + ρ(t)
L2

o(t)
− 2ζ3

L̇o(t)
Lo(t)

(A.12)

Moreover, in order to simplify the state space representation, the following new change of
variable is introduced

ξ1 = |ζ1|
2
3 sign(ζ1), ξ2 = ζ2

Lo(t)
, ξ3 = 3ζ3|ζ1|

1
3

2L2
o(t)

(A.13)

and the dynamical system can be expressed by using the new variables as follows

ξ̇1 = 2Lo(t)
3|ζ1|

1
3

− K̃1,1

L
5
3
o (t)

ξ1 + ξ2

− 4L̇o(t)
3Lo(t)

ξ1

ξ̇2 = 2Lo(t)
3|ζ1|

1
3

− 3K̃2,1

2L
10
3

o (t)
ξ1 + ξ3

− 3L̇o(t)
Lo(t)

ξ2

ξ̇3 = 2Lo(t)
3|ζ1|

1
3

−(3
2)2 K̃3,1

L5
o(t)

ξ1 +
(3

2

)2 |ζ1|
2
3ρ(t)

L5
o(t)

+ ξ3

2|ζ1|
2
3

(−3ξ1 + ξ2)
− 14L̇o(t)

3Lo(t)
ξ3

(A.14)

The resulting system (A.14) can be expressed in the following compact form
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ξ̇ = αo

[(
Ao − G̃oCo

)
ξ + Φo

]
−Noξ

L̇o(t)
Lo(t)

(A.15)

where αo = 2Lo(t)
3|ζ1|

1
3

, ξ =
[
ξ1 ξ2 ξ3

]T
and

G̃o =



K̃1,1

L
5
3
o (t)

3K̃2,1

2L
10
3

o (t)

(3
2)2 K̃3,1

L5
o(t)


, No =


4
3 0 0
0 3 0
0 0 14

3

 ,Φo =


0
0(3

2

)2 |ζ1|
2
3ρ(t)

L5
o(t)

+ ξ3

2|ζ1|
2
3

− K̃1,1

L
5
3
o (t)

ξ1 + ξ2



 .

(A.16)
Then, from (A.6), it is obtained that G̃o = P−1

o CT
o . Then, setting G̃o equal to (A.7), it

follows that 

K̃1,1

L
5
3
o (t)

3K̃2,1

2L
10
3

o (t)

(3
2)2 K̃3,1

L5
o(t)


=


3
3
1

 (A.17)

Therefore, the gains for the observer are computed and reparameterized in terms of Lo(t)
as follows

K̃1,1 = 3L
5
3
o (t) K̃2,1 = 2L

10
3

o (t) K̃3,1 =
(4

9

)
L5

o(t) (A.18)

such that, the compact system (A.15) can be rewritten as

ξ̇ = αo

[(
Ao − P−1

o CT
o Co

)
ξ + Φo

]
−Noξ

L̇o(t)
Lo(t)

(A.19)

A.1.2 Adaptive observer: Proposal 2

In this section, a second observer is designed for a class of nonlinear system given by
(A.8). The gains of the proposed observer will be determined and computed in terms of
a single parameter.
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Consider the following sliding mode observer for the system (A.8),

˙̂x12 = x̂2 + K̃1,2|e12|
2
3 sign(e12)

˙̂x22 = x̂3 + K̃2,2|e12|
1
3 sign(e12)

˙̂x32 = K̃3,2sign(e12)
ŷ = x̂12

(A.20)

where x̂12 , x̂22 and x̂32 are the estimated states, ŷ is the output of the system and K̃1,2, K̃2,2

and K̃3,2 are the gains of the observer. Now, an analysis of convergence for the observer
will be introduced. Then, defining the following estimation errors.
Consider the following estimation errors ei2 = x1 − x̂i2 , for i = 1, 2, 3; and their dynamics
as follows

ė12 = e22 − K̃1,2|e12|
2
3 sign(e12)

ė22 = e32 − K̃2,2|e12|
1
3 sign(e12)

ė32 = ρ(t) − K̃3,2sign(e12)

(A.21)

Taking into account the dynamics of the estimation errors, the following change of variable
is established as follows

ξ12 = |e12| 2
3 sign(e12)
Lo2(t) ξ22 = e22

L2
o2(t) ξ32 = 3e32|e12| 1

3

2L3
o2(t)

(A.22)

where Lo2(t) is the single adaptive parameter. The dynamical system in terms of the new
variables is given by

ξ̇12 = 2Lo2(t)
3|e12| 1

3

[
− K̃1,2

Lo2(t)ξ12 + ξ22

]
− L̇o2(t)
Lo2(t)ξ12

ξ̇22 = 2Lo2(t)
3|e12| 1

3

[
− 3K̃2,2

2L2
o2(t)ξ12 + ξ32

]
− 2L̇o2(t)

Lo2(t) ξ22

ξ̇32 = 2Lo2(t)
3|e12| 1

3

−
(3

2

)2 K̃3,2

L3
o2(t)ξ12 +

(3
2

)2 |e12| 2
3ρ(t)

L4
o2(t) + ξ32

2|e12| 2
3

[
−K̃1,2ξ12 + Lo2(t)ξ22

]
− 3L̇o2(t)

Lo2(t) ξ32

(A.23)
and can be written in a compact form as follows
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ξ̇o2 = αo2

[(
Ao − G̃o2Co

)
ξo2 + Φo2

]
−Do2ξo2

L̇o2(t)
Lo2(t)

(A.24)

where αo2 = 2Lo2(t)
3|e12| 1

3
, ξo2 =

[
ξ12 ξ22 ξ32

]T
and

G̃o2 =



K̃1,2

Lo2(t)
3K̃2,2

2L2
o2(t)(3

2

)2 K̃3,2

L3
o2(t)


, Do2 =


1 0 0
0 2 0
0 0 3

 ,Φo2 =


0
0(3

2

)2 |e12| 2
3ρ(t)

L4
o2(t) + ξ32

2|e12| 2
3

[
−K̃1,2ξ12 + Lo2(t)ξ22

]
 .

(A.25)
Then, from (A.6), it is obtained that G̃o2 = P−1

o CT
o . Then, setting G̃o2 equal to (A.7), it

follows that 

K̃1,2

Lo2(t)
3K̃2,2

2L2
o2(t)

(3
2)2 K̃3,2

L3
o2(t)


=


3
3
1

 (A.26)

Therefore, the gains for the observer (A.20) are computed and reparameterized in terms
of Lo2(t) as follows

K̃1,2 = 3Lo2(t) K̃2,2 = 2L2
o2(t) K̃3,2 =

(2
3

)2
L3

o2(t) (A.27)

such that, the compact system (A.24) can be rewritten as

ξ̇o2 = αo2

[(
Ao − P−1

o CT
o Co

)
ξo2 + Φo2

]
−Do2ξo2

L̇o2(t)
Lo2(t)

(A.28)

A.2 Reparameterized gains for the proposed controllers

Consider the following algebraic Lyapunov equation in order to compute the control
gains

Pc + AT
c Pc + PcAc − CT

c Cc = 0 (A.29)

148



where Pc is a symmetric positive-definite matrix,

Ac =
0 1
0 0

 , Cc =
[
1 0

]
. (A.30)

Then the solution of Pc for A.29 is given by

Pc =

 1 −1

−1 2

 . (A.31)

Similarly, as the previous section A.1, consider the following LTI system

ẋc = Acxc

yc = Ccxc

(A.32)

where xc ∈ ℜ2 is a state vector and yc ∈ ℜ the output. Then, an observer for the system
(A.32) is given by

˙̂xc = Acx̂c +Kc(yc − ŷc)
ŷc = Ccx̂c

(A.33)

where Kc are the gains. Then, the estimation error is given by ec = xc − x̂c and its
dynamics can be expressed by

ėc = (Ac −KcCc)ec = (Ac − P−1
c CT

c Cc)ec (A.34)

Then, the gain Kc has the following values

Kc =
Kc1

Kc2

 = P−1
c CT

c =
2
1

 (A.35)

A.2.1 Adaptive control: Proposal 1

In this section, the gains of the proposed controller (3.6) will be determined and
computed in terms of a single parameter.

Consider the following system

ΣST W :

Υ̇1 = −K̃c1|Υ1|1/2sign(Υ1) + Υ2,

Υ̇2 = −K̃c2sign(Υ1) + d(t)
(A.36)
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with d(t) = δ̇(t). Now, consider the following change of coordinates

z1 = Υ1

L2
c(t)

z2 = Υ2

L2
c(t)

(A.37)

where Lc(t) is the single adaptive parameter. The dynamical system in terms of the new
variables is given by

ż1 = − K̃c1

Lc(t)
|z1|

1
2 sign(z1) + z2 − 2z1L̇c(t)

Lc(t)

ż2 = − K̃c2

L2
c(t)

sign(z1) + d(t)
L2

c(t)
− 2z2L̇c(t)

Lc(t)

(A.38)

Moreover, in order to simplify the state space representation, the following new change of
variable is introduced

£1 = |z1|
1
2 sign(z1) £2 = z2

Lc(t)
(A.39)

and the dynamical system can be expressed by using the new variables as follows

£̇1 = Lc(t)
2|z1|

1
2

[
− K̃c1

L2
c(t)

£1 + £2

]
− £1

L̇c(t)
Lc(t)

£̇2 = Lc(t)
2|z1|

1
2

− 2K̃c2

L4
c(t)

£1 + 2|z1|
1
2d(t)

L4
c(t)

− 3£2
L̇c(t)
Lc(t)

(A.40)

System (A.40) can be expressed in compact form as follows

£̇ = αc

[(
Ac − G̃cCc

)
£ + Φc

]
−Nc£

L̇c(t)
Lc(t)

(A.41)

with αc = Lc(t)
2|z1|

1
2
, £ =

[
£1 £2

]T
and

G̃c =


K̃c1

L2
c(t)

2K̃c2

L4
c(t)

 , Nc =
1 0
0 3

 , Φc =

 0
2|z1|

1
2

L4
c(t)

(d(t))

 . (A.42)

Then, from (A.34), it is obtained that G̃c = P−1
c CT

c . Then, setting G̃c equal to (A.35), it
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follows that 
K̃c1

L2
c(t)

2K̃c2

L4
c(t)

 =
2
1

 (A.43)

Therefore, the gains for the controller (3.6) are computed and reparameterized in terms
of Lc(t) as follows

K̃c1 = 2L2
c(t) K̃c2 = L4

c(t)
2 (A.44)

Finally, the compact system (A.41) can be expressed as follows

£̇ = αc

[(
Ac − P−1

c CT
c Cc

)
£ + Φc

]
−Nc£

L̇c(t)
Lc(t)

(A.45)

A.2.2 Adaptive control: Proposal 2

In this section, the gains of the proposed controller (3.54) will be determined and
computed in terms of a single parameter.

Consider the following system as follows

ΣST W2 :

ż12 = −K̃c3|z12| 1
2 sign(z12) + z22

ż22 = −K̃c4sign(z12) + d(t)
(A.46)

with d(t) = δ̇(t). Now, introducing the following change of variable

£12 = |z12| 1
2 sign(z12)
Lc2(t) £22 = z22

L2
c2(t) (A.47)

where Lc2(t) is the single adaptive parameter. Then the dynamics of the system, in terms
of these new variables, are given by

£̇12 = Lc2(t)
2|z12| 1

2

[
− K̃c3

Lc2(t)£12 + £22

]
− £12

L̇c2(t)
Lc2(t)

£̇22 = Lc2(t)
2|z12| 1

2

− 2K̃c4

L2
c2(t)£12 + 2|z12| 1

2d(t)
L3

c2(t)

− 2£22

L̇c2(t)
Lc2(t)

(A.48)
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System (A.48) can be expressed in compact form as follows

£̇c2 = αc2

[(
Ac − G̃c2Cc

)
£c2 + Φc2

]
−Dc2£c2

L̇c2(t)
Lc2(t) (A.49)

with αc2 = Lc2(t)
2|z12 | 1

2
, £c2 =

[
£12 £22

]T

G̃c2 =


K̃c3

Lc2(t)
2K̃c4

L2
c2(t)

 Dc2 =
1 0
0 2

 Φc2 =


0

2|z12 | 1
2

L3
c2(t) [d(t)]

 (A.50)

Then, from (A.34), it is obtained that G̃c2 = P−1
c CT

c . Then, setting G̃c2 equal to (A.35),
it follows that 

K̃c3

Lc2(t)
2K̃c4

L2
c2(t)

 =
2
1

 (A.51)

Therefore, the gains for the controller (3.54) are computed and reparameterized in
terms of Lc2(t) as follows

K̃c3 = 2Lc2(t) K̃c4 =
L2

c2(t)
2 (A.52)

Finally, the system (A.49) can be expressed as follows

£̇c2 = αc2

[(
Ac − P−1

c CT
c Cc

)
£c2 + Φc2

]
−Dc2£c2

L̇c2(t)
Lc2(t) (A.53)
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Titre : Stratégies de commande des machines synchrones à aimants permanents sans capteurs 
mécaniques par modes glissants 

Mots clés : MSAP, Contrôle sans capteur, Observateurs adaptatifs, Contrôleurs adaptatifs, Mode glissant 

Résumé : Cette thèse propose deux commandes 
adaptatives sans capteur basées sur l'approche en 
mode glissant pour les moteurs synchrones à 
aimants permanents internes (MSAP). Les stratégies 
proposées sont composées d'un observateur 
adaptatif en mode glissant d'ordre élevé (OAMGOE) 
en boucle fermée avec un contrôle adaptatif basé sur 
la super torsion, où les gains de contrôle et 
d'observateur de la stratégie proposée sont 
paramétrés en termes d'un seul paramètre. Ensuite, 
le principal avantage de cette stratégie est que les 
lois adaptables sont faciles à mettre en œuvre, 
évitant les surestimations des gains qui augmentent 
le broutage, réduisant le temps de réglage des gains 
et réduisant les dommages des actionneurs. En 
outre, une stratégie d'extraction d'erreur d'estimation 
de position angulaire est proposée. 
 

Ensuite, sur la base de ces informations et en 
utilisant un système virtuel sans paramètre, 
OAMGOE est conçu pour estimer la position 
angulaire et la vitesse dans une large plage de 
vitesse, où les variables estimées fournies par cet 
observateur sont obtenues avec une plus grande 
précision, malgré les variations des paramètres, 
atteignant une plus grande robustesse. Ces états 
estimés sont utilisés dans la commande robuste 
proposée pour suivre une référence de vitesse 
souhaitée et une référence de courant d'axe d 
souhaitée. Une analyse de stabilité du système en 
boucle fermée est présentée, en utilisant une 
approche de Lyapunov. De plus, la stratégie 
proposée est validée tout au long du montage 
expérimental et de simulation afin de montrer son 
efficacité. 

 

Title : Control strategies for permanent magnet synchronous machines without mechanical sensors by 
sliding modes 

Keywords : IPMSM, Sensorless control, Adaptive observers, Adaptive controllers, Sliding mode 

Abstract : This thesis proposes two adaptive 
sensorless controls based on sliding mode approach 
for interior permanent magnet synchronous motor 
(IPMSM). The proposed strategies are composed of 
an Adaptive High-Order Sliding Mode Observer 
(AHOSMO) in closed-loop with an Adaptive Super-
Twisting Control (ASTWC), where the control and 
observer gains of the proposed strategy are 
reparameterized in terms of a single parameter. 
Then, the main advantage of this strategy is the 
adaptable laws are easy to implement, avoiding 
overestimates of gains that increases of chattering, 
reducing the time to tune the gains, and reducing the 
damage of the actuators. Furthermore, a strategy for 
angular position estimation error extraction is propo- 

 

sed. Then, from this information and using a 
parameter-free virtual system, AHOSMO is 
designed for estimating the angular position and 
speed  in a wide speed range, where the estimated 
variables provided by this observer are obtained 
with greater precision, despite the variations of the 
parameters, achieving greater robustness.  These 
estimated states are used in the proposed robust 
control to  track a desired reference of speed and 
direct-axis current. A stability analysis of the closed-
loop system is presented, using a Lyapunov 
approach. In addition, the proposed strategy is 
validated throughout experimental and simulation 
set-up in order to show its effectiveness. 
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