
HAL Id: tel-03982091
https://theses.hal.science/tel-03982091

Submitted on 10 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reinforcement learning applied to airline revenue
management

Giovanni Gatti Pinheiro

To cite this version:
Giovanni Gatti Pinheiro. Reinforcement learning applied to airline revenue management. Artificial
Intelligence [cs.AI]. Université Côte d’Azur, 2022. English. �NNT : 2022COAZ4047�. �tel-03982091�

https://theses.hal.science/tel-03982091
https://hal.archives-ouvertes.fr

CONFIDENTIAL & RESTRICTED

Apprentissage par Renforcement

appliqué au Revenue Management

des compagnies aériennes

Giovanni Gatti Pinheiro
Laboratoire d'Informatique, Signaux et Systèmes de Sophia Antipolis

Présentée en vue de l’obtention

du grade de docteur en informatique

d’Université Côte d’Azur

Dirigée par : Jean-Charles Régin

Co-encadrée par : Michel Defoin-Platel

Soutenue le : 8 septembre 2022

Devant le jury, composé de :

A. Dutech, Chargé des recherches, INRIA

B. Scherrer, Chargé des recherches, INRIA

G. Gallego, Professor, Hong Kong University of

Science and Technology

J. Martinet, Professeur, Univ. Côte d’Azur

J.-C. Régin, Professeur, Univ. Côte d’Azur

M. Defoin-Platel, Head of MLI, Amadeus SAS

THÈSE DE DOCTORAT

CONFIDENTIAL & RESTRICTED

Apprentissage par Renforcement
appliqué au Revenue Management

des compagnies aériennes

Jury :

Président du jury :

Jean Martinet, Professeur des universités, Université Côte d’Azur

Rapporteurs :

Alain Dutech, Chargé des recherches, INRIA

Bruno Scherrer, Chargé des recherches, INRIA

Guillermo Gallego, Department Head & Chair Professor, Hong Kong University of Science

and Technology

Examinateurs :

Michael Defoin-Platel, Doctor & Head of Machine Learning and Innovation, Amadeus SAS

Directeur :

Jean-Charles Régin, Professeur des universités, Université Côte d’Azur

Invités :

Michael D. Wittman, Doctor & Researcher, Amadeus IT Group

Thomas Fiig, Doctor & Chief Scientist, Amadeus IT Group

Reinforcement Learning applied to
airline Revenue Management

Résumé

Inspiré par les récentes réussites de l’apprentissage par renforcement (RL), telles que le

contrôle des champs magnétiques d’un tokamak ou l’obtention de performances supérieures

à l’humain au jeu de Go et aux échecs, ce travail étudie des moyens d’appliquer le RL au

domaine de recherche du revenue management (RM).

Il existe de nombreux problèmes ouverts dans le domaine du RM qui reposent sur des

heuristiques conçues par des experts. Cependant, ces heuristiques sont souvent difficiles

à développer et à maintenir, et elles ne capturent qu’une fraction limitée des complexités

inhérentes aux scénarios réels. Au lieu de cela, nous proposons d’aborder ces problèmes

ouverts avec des méthodes RL génériques.

Afin d’illustrer l’argument central de ce travail, nous choisissons d’aborder le problème

du earning while learning (EWL), qui est l’un des nombreux problèmes ouverts dans le

domaine du RM. Pour résoudre le problème du EWL, le système doit maximiser les revenus

à long terme en optimisant les prix des billets d’avion tout en faisant face à un comportement

de demande inconnu. Autrement dit, le système n’a pas accès à la façon dont la demande

future réagira aux changements de prix, et il doit estimer le comportement de la demande à

partir des données de réservation passées.

Nous formalisons et concevons des interactions entre le système d’apprentissage et le

comportement inconnu de la demande, puis un réseau de neurones artificiels (ANN)

est entraîné avec un algorithme actor–critic pour résoudre le problème EWL. Le ANN

entrainé, que nous appelons l’agent RL, réalise une meilleure performance de revenus

que les méthodes heuristiques de pointe. Ensuite, nous discutons des moyens d’adapter

l’agent RL pour résoudre d’autres problèmes pertinents dans RM, tels que la concurrence,

l’auto-concurrence et le comportement non stationnaire de la demande. L’approche proposé

met en évidence que la simplicité de l’agent RL, ainsi que sa capacité à résoudre des

problèmes complexes, est un puissant atout inexploré.

Les découvertes présentées dans ce travail suggèrent que le RL peut profondément

transformer le domaine de RM. Les méthodes RL peuvent remplacer les systèmes RM

par un système d’apprentissage générique de bout en bout qui est entraîné en offline pour

résoudre de nombreux problèmes complexes. Par conséquent, les chercheurs et les analystes

du RM n’auraient qu’à décrire formellement le comportement de la demande utilisé pour

l’entraînement et à déléguer la recherche de solutions à l’agent RL. Ceci modifie l’orientation

de la recherche de comment résoudre les problèmes vers quels problèmes doivent être

résolus. Nous croyons qu’un tel changement de perspective peut accélérer considérablement

le processus de recherche dans le domaine du RM.

Mots clés— revenue management, apprentissage par renforcement, apprentissage profond,

actor–critic, demand learning

Abstract

Inspired by the recent successful applications of reinforcement learning (RL) to real–world

problems, such as controlling magnetic fields of a tokamak or achieving superhuman

performance in board games, this work investigates ways to apply RL to the research field

of revenue management (RM).

There are many open problems in the field of RM that rely on expert–designed heuristics.

However, these heuristics are often hard to develop and maintain, and they only capture a

limited fraction of the inherent complexities of real–world scenarios. Instead, we propose

addressing these open problems with generic RL methods.

To illustrate the central argument of this work, we choose to address the challenging

earning–while–learning (EWL) problem, which is one of the many open problems in the

field of RM. When addressing the EWL problem, the system needs to maximize long–term

revenue by optimizing the prices of airline tickets while facing an unknown demand

behavior. In other words, the system does not have access to how future demand will react

to price changes, and it must estimate the demand behavior from past booking data.

We formalize and design interactions between the learning system and the unknown

demand behavior, then an artificial neural network (ANN) is trained with an actor–critic

algorithm to solve the EWL problem. The trained ANN, which we refer to as the RL

agent, achieves a better revenue performance than state–of–the–art heuristic methods.

Following, we discuss ways to adapt the RL agent to address other relevant issues in RM,

such as competition, self–competition, and non–stationary demand behavior. The proposed

approach highlights that the simplicity of the RL agent, alongside its ability to address

complex issues, is a powerful unexplored asset.

The discoveries presented in this work suggest that RL can profoundly transform the field

of RM. RL methods may replace RM systems with a generic end–to–end learning system

trained offline to address many complex issues. Consequently, RM researchers and analysts

would need only to describe formally the demand behavior used for training, and delegate

the search for solutions to the RL agent, changing the research focus from how to solve

problems to what problems need to be solved. We believe that such a change of perspective

can significantly speed up the research process in the field of RM.

Keywords— revenue management, reinforcement learning, deep learning, actor–critic,

demand learning

Intelligence is the computational part of the ability to

achieve goals. A goal achieving system is one that is more

usefully understood in terms of outcomes than in terms

of mechanisms.

— Richard S. Sutton
*

*
When discussing the John McCarthy’s definition of intelligence.

Acknowledgments

I want to thank my PhD advisor, Prof. Jean Charles-Régin, for his guidance and support.

I also would like to thank Alain Dutech, Bruno Scherrer, Guillermo Gallego, and Jean

Martinet for agreeing to be on my thesis jury and for their interest in my work.

I gratefully acknowledge the funding provided by Amadeus over the many years of research

through the French CIFRE program.

My special thanks to Dominique Pouchoulin, a non-RL and non-RM specialist, who bravely

agreed to proofread the manuscript and provided essential feedback on the accessibility of

the material.

Many people crossed my research over the years and inevitably impacted this work. I want

to thank you all: Oksana Riou, Riccardo Jadanza, and Abderrahim Mehdaoui. I also give

a warm thank you to all the Amadeus research team, especially to Mike Wittman, which

whom I had fruitful discussions that led to insights into the many ideas presented in this

thesis.

This research would not be possible without the support of my loving wife, Audrey, who

encouraged me to pursue my dreams with no hesitation.

I save the last and likely the most important thank you to Michael. During these past years,

Michel was to me what Obi-Wan was to Luke: a mentor, a supporter, and a friend. He made

it all possible.

Contents

Contents v

Preface x

Summary of Notation xi

1 Introduction 1
1.1 Welcome to revenue management . 1

1.2 Airline revenue management systems in a nutshell 3

1.3 Open problems in revenue management 4

1.4 Goals and assumptions . 7

1.5 Dissertation structure . 8

1.6 Summary . 9

2 Revenue Management Systems 11
2.1 The single–leg problem . 11

2.2 Forecasting . 12

2.3 Optimization . 17

2.3.1 Fare ratio at 50% of demand . 20

2.3.2 Markov decision process . 20

2.3.3 Dynamic programming . 29

2.4 Summary . 34

3 Pricing Optimization with Reinforcement Learning 35
3.1 The nature of reinforcement learning . 35

3.2 A brief introduction to the mathematical theory of reinforcement learning 37

3.2.1 Temporal–difference learning . 37

3.2.2 Q-Learning . 41

3.2.3 Connections to dynamic programming 43

3.2.4 Reinforcement learning with function approximation 47

3.3 Model–based and model–free reinforcement learning 51

3.4 Reinforcement learning applied to revenue management 52

3.5 The (possibly) false promise of model–free revenue management 54

3.6 Summary . 56

4 Earning while Learning 58
4.1 Balancing earning and learning . 58

4.2 Methods for earning and learning . 63

4.3 Optimizing for earning and learning . 66

4.4 A new perspective . 71

4.5 A brief review of actor–critic methods . 74

4.5.1 Stochastic policies . 74

4.5.2 Policy gradient methods . 76

4.5.3 Continuing tasks . 80

4.6 Revisiting the earning–while–learning problem through reinforcement learn-

ing . 83

4.6.1 Evaluating the methods on the single–leg problem 85

4.6.2 Ablation studies . 95

4.6.3 Discussion on reinforcement learning 100

4.7 Summary . 102

5 Beyond Earning while Learning 104
5.1 In depth view of partial observability . 104

5.2 Revisiting non–stationarity and competition 106

5.2.1 Non–stationarity . 106

5.2.2 Self–competition . 109

5.2.3 Competition . 111

5.3 Learning the state–update function . 113

5.4 What about forecasting? . 116

5.5 Summary . 117

6 Conclusions 119

Appendix 122

Bibliography 138

List of Terms 146

List of Figures

1.1 Leg–based vs. hub-and-spoke architectures. 2

1.2 The revenue management system in a nutshell. 3

1.3 Searching for a flight. 5

1.4 A simplified revenue management system. 8

2.1 Historical database layout. 13

2.2 A forecasting example . 16

2.3 An unconstrained optimization example . 19

2.4 Backup diagram . 21

2.5 The backup diagram for Example 2.3.5. 32

2.6 An example of an RMS policy obtained with dynamic programming 33

3.1 An illustration of the agent-environment interaction 36

3.2 Game of Go . 36

3.3 An illustration of RL and trajectory sampling 44

3.4 The backup diagram for Example 3.2.3. 45

3.5 The state–space distribution for Example 3.2.4. 47

3.6 Atari console. 49

3.7 Space invaders. 49

3.9 Model–based vs. model–free RL . 52

3.8 Reaction chamber of the DIII-D, San Diego. 52

3.10 Learning in airline revenue management. 55

4.1 Intuition to earning while learning in the context of an exponential demand

model. 58

4.2 Experimental settings for demonstrating how policy influences demand model

learning. 59

4.3 Policies used for earning wile learning experiment. 60

4.4 An illustration of how the system’s pricing policy impacts demand learning. . 62

4.5 Policy distribution according to various the trade–off parameters. 69

4.6 Information example . 70

4.7 The state–estimator function. 72

4.8 Episodic vs. continuing formulation. 73

4.9 Actor–critic typical training loop. 80

4.10 Average reward example. 82

4.11 ANN architecture for earning while learning. 85

4.12 The anatomy of training and evaluation. 87

4.13 The clipped interval. 89

4.14 Optimizing the trade–off parameter. 90

4.15 Comparison of average performance for single parameter estimation. 91

4.16 Comparison between heuristic and RL policies for single parameter estimation. 92

4.17 Comparison of average performance for two parameter estimation. 93

4.18 Comparison between RMS and RL policies for two parameter estimation. . . 94

4.19 Ablation studies. 96

4.20 Time–distributed architecture. 98

4.21 Discounted return vs. average reward. 99

4.22 Reinforcement learning trajectory in the earning–learning space during the

training phase. 101

5.1 State–update function for RMS. 106

5.2 Shock detection example. 108

5.3 State–update function for non–stationarity. 109

5.4 State–update function for self–competition. 111

5.5 State–update function for competition. 113

5.6 Generic state–update function. 115

5.7 Optimizing and forecasting as an auxiliary task. 117

List of Tables

4.1 Earning-while-learning literature review. 65

4.2 Training hyperparameters. 86

4.3 Summary of experimental results. 95

Preface

Reinforcement learning (RL) first came to the attention of Amadeus researchers after the

great successes in Atari and Go, and the earliest experiments applying RL methods to

revenue management (RM) performed by our team raised mixed feelings. Initially, the team

believed that the only advantage of RL was its ability to optimize pricing policies without

building explicit demand models, as is the current practice in modern revenue management

systems. In principle, this alternative model–free approach to RM would enable the system

to adapt to the complexities of human behavior. However, the team found that RL may

not be suited for RM applications, mainly because it needs large amounts of data that are

perhaps not available for real–world use cases. Thus, the most important conclusion of this

early research was that more investigation was needed to evaluate the full potential of RL

applied to RM.

RM and RL are both active fields where discoveries are made almost daily, but, to our

surprise, the research on the intersection of these two fields is just in its infancy, and there

are many unexplored opportunities. During the past years, we interacted with several

researchers in RL and RM, and we experienced that many misunderstandings of each

other’s fields are slowing down progress. For this reason, much of our time was dedicated

to clarifying the concerns of each research field and explaining what the open challenges

are.

We see this dissertation as a consolidation of this work. Our goal is to create a bridge between

these two research fields so that RM and RL researchers understand each other and work

together. For this reason, when writing this dissertation, we assume that a typical reader may

have little knowledge about RM or RL. Therefore, Chapters 1, 2, and 3 focus on clarifying the

basics in a language that can be easily understood by researchers from any of these fields.

We propose along the way short exercises to demystify and illustrate the mathematical

concepts that, from our experience, can sometimes be a barrier to entry. Unfortunately, we

cannot explain in detail the history and the mathematics of all components of our work. For

this reason, we pay less attention to deep learning literature, presenting artificial neural

network concepts only at the highest level to facilitate understanding for non–specialists.

After setting up the basic concepts, we present the core of our research. We illustrate how

RL can change the way researchers think and solve problems by using it to address one of

the most challenging open problems in RM. Finally, we conclude with our current vision of

the impacts RL can bring to the field of RM.

Summary of Notation

Capital letters are used for random variables, whereas lower case letters are used for

real–valued quantities and scalar functions. Real–valued vectors are written in bold and

lower case.

� equality relationship that is true by definition

≈ approximately equal

≫ much greater than

← assignment

𝑥 mod 𝑦 returns the remainder of a division 𝑥/𝑦
arg max𝑎 𝑓 (𝑎) value 𝑎 at which 𝑓 (𝑎) assumes the maximal value

𝑥! factorial operator

Pr{𝑋 = 𝑥} probability that random variable 𝑋 assumes value 𝑥

Pr{𝑋} probability of observing event 𝑋

Pr{𝑋 |𝑌} probability of observing event 𝑋 given the condition 𝑌

𝔼[𝑋] expectation of a random variable 𝑋

𝔼[𝑋 |𝑌] expectation of a random variable 𝑋 given the condition 𝑌

Var[𝑋] variance of a random variable 𝑋, i.e., 𝔼[(𝑋 − 𝔼[𝑋])2]
U(𝑎, 𝑏) uniform distribution with closed interval [𝑎, 𝑏]
𝟙{·} indicator function, i.e., returns one if the predicate is true, else zero

Γ(𝑥) Gamma function

Γ(𝑥, 𝑧) incomplete Gamma function

𝑂(·) big O notation (limiting behavior of a function when the argument tends

towards infinity)

𝑓 : X → Y function 𝑓 from elements of set X to elements of set Y
𝑓 (𝑥; 𝜔) function of 𝑥 parameterized by 𝜔

∇ 𝑓 (𝑥;𝑤) gradient of function 𝑓 (𝑥)with respect the parameter 𝑤

𝑋 ∼ 𝑝 random variable 𝑋 selected from distribution 𝑝(𝑥) � Pr{𝑋 = 𝑥}
𝑋0 , · · · , 𝑋𝑛−1 ∼ 𝑝 𝑛 random variables selected from the distribution 𝑝(𝑥)
𝑋𝑡:𝑡+𝑛 ∼ 𝑝 𝑛 + 1 random variables selected from the distribution 𝑝(𝑥) from time step

𝑡 to time step 𝑡 + 𝑛

x · y, xTy inner product of two vectors x and y
∥ x ∥ Euclidean norm (or, L2 norm) of vector x, i.e.,

√
x · x

ℕ0 set of natural numbers, including zero

ℝ set of real numbers

ℝ+ set of positive real numbers including zero, i.e., {𝑥 ∈ ℝ | 𝑥 ≥ 0}

ℝ𝑛
real coordinate space of dimension 𝑛, i.e., the set of 𝑛-tuples of real values

T total time steps to departure of a flight (also the number of active flights

in the horizon)

𝐶 flight’s total capacity

𝐻 episode horizon

𝑓 , 𝑓𝑖 fare (e.g., $50, $70)

𝑡 discrete time step

𝜏 time steps to departure

t departure date

𝑐 remaining capacity

𝑑(𝑓 ;𝝍) demand model that returns the expected number of customers willing to

pay for fare 𝑓

𝑢(𝑥) probability of observing 𝑥 customer arrivals according to the Poisson

distribution with constant mean

𝑧(𝑓 ; 𝜙), 𝑧(𝑓), 𝑧 customer purchase probability

𝑓0 lowest fare which the purchase probability is one

𝑜(𝑡 , 𝑓) the number of times fare 𝑓 is offered across all flights at sale date 𝑡

𝑏(𝑡 , 𝑓) the number of bookings made for fare 𝑓 at sale date 𝑡 across all flights

𝑆
[𝑖]
𝑡 inventory state at time 𝑡 for the 𝑖-th active flight in the horizon

𝐴
[𝑖]
𝑡 action (fare) at time 𝑡 for the 𝑖-th active flight in the horizon

𝝍,𝝍∗ generic set of parameters of the demand model

�, �∗ arrival rate parameter

𝜙, 𝜙∗ arrival rate parameter

𝐹5 , 𝐹
∗
5

the fare ratio of the lowest fare at which the purchase probability is 50%

(alternative representation of the price sensitivity parameter)

S set of all states (including the terminal state)

A set of all available actions

𝑆𝑡 state at time 𝑡

𝐴𝑡 action at time 𝑡

𝑅𝑡 reward at time 𝑡

𝑆0 initial state

𝑆𝑇 terminal state

𝑝(𝑠′ | 𝑠, 𝑎) probability of transition to state 𝑠′ from state 𝑠 taking action 𝑎

𝑟(𝑠, 𝑎) expected immediate reward from state 𝑠 after taking action 𝑎

𝐺𝑡 return following time 𝑡

𝜋 policy function (decision–making rule)

𝜋∗ optimal policy function

𝜋(𝑠) the action to be taken deterministically in state 𝑠

𝝅 pricing policy as a multinomial distribution

𝜋(𝑎 | 𝑠;𝜽) probability of taking action 𝑎 in state 𝑠 given parameter vector 𝜽

𝑣𝜋(𝑠) value of state 𝑠 under policy 𝜋 (expected return)

𝑞𝜋(𝑠, 𝑎) value of taking action 𝑎 in state 𝑠 under policy 𝜋

𝑣∗ optimal value function

𝑞∗ optimal action–value function

𝔼𝜋[𝑋] expectation of random variable 𝑋 under policy 𝜋

�̂�𝜋[𝑋] empirical average of random variable 𝑋 under policy 𝜋

𝑉(𝑠) tabular estimation of the value for state 𝑠

𝑄(𝑠, 𝑎) tabular estimation of the action–value for state–action pair 𝑠, 𝑎

𝛿𝑡 temporal–difference error at 𝑡 (random variable)

𝑞(𝑠, 𝑎; w) approximate value of state–action pair 𝑠, 𝑎 given weight vector w
x(𝑠, 𝑎) the vector of features visible when in state taking action 𝑎

ℎ(𝑠, 𝑎;𝜽) preference of selecting action 𝑎 in state 𝑠 based on 𝜽

�(𝑠) on–policy distribution over states

𝛾 discount rate parameter

𝛼 learning rate parameter

𝜖 probability of taking a random action when following an 𝜖-greedy policy

� the trade–off parameter

[1]: Talluri and Van Ryzin (2004), The
theory and practice of revenue management

Introduction 1
1.1 Welcome to revenue man-

agement 1
1.2 Airline revenue manage-

ment systems in a nutshell 3
1.3 Open problems in revenue

management 4
1.4 Goals and assumptions . . 7
1.5 Dissertation structure . . . 8
1.6 Summary 9

In this chapter, we briefly discuss what revenue management is,

its many practical aspects, building blocks, and open problems.

Among these open problems, we select one that will be the

focus of our work, and we derive the problem assumptions used

throughout the following chapters.

1.1 Welcome to revenue management

Anyone selling a product or a service has many decisions to make.

A grocery store selling food needs to decide what products to sell

(e.g., fruits and vegetables), how often to resupply these products

to the store, and how to organize products on shelves. Likewise,

an airline company selling tickets has to decide where and when

to fly, how much to price for its services, how many seats should

be available per cabin (e.g., first, business and economic classes),

and which aircraft model to buy (e.g., Airbus A380), to name

few. Some of these decisions relate to supply–chain management,
i.e., how to deliver a product or a service to customers (e.g.,

resupply products in a grocery store). Other decisions, known

as demand–management decisions, are concerned with planning

and managing the demand for products and services (e.g., how

to price products) [1].

A “rational” seller aims at maximizing profits, which can be

achieved by maximizing revenue while minimizing costs. Mini-

mizing costs is the goal behind supply–chain management while

maximizing revenue is the goal behind demand management.

Revenue management (RM) is the research field concerned with

the methodology, the processes, and the technology necessary

for making such demand–management decisions [1].

Even though the theory and practice of RM are, in some sense, as

old as trade itself, RM is relatively new as a scientific field. In 1978,

the United States enacted the Airlines Deregulation Act, later

followed by European states, giving airline companies control

over routes, schedules, and fares. The deregulation led to rapid

changes in the industry and increased pressure for innovation,

giving rise to the modern field of RM. Over the following years,

the RM practices developed within the airline industry were

adopted quickly by other industries such as retail, car rental, and

hotel, among many others [1].

1 Introduction 2

Leg-based

architecture

Hub-and-spoke

architecture

Cities

Leg

Hub

Figure 1.1: Leg–based vs. hub-and-

spoke architectures. Each point repre-

sents a city (or, an airport), and each

segment connecting two cities are legs.

There may be many flights through each

leg, often departing with a particular

frequency (e.g., daily flights). (Left) The

leg–based architecture uses a point–to–

point approach. (Right) The hub–and–

spoke architecture directs all traffic to a

larger city when connecting to smaller

cities.

[2]: Fiig, Cholak, et al. (2015), “What

is the role of distribution in revenue

management?–Past and future”

[3]: Dadoun, Defoin-Platel, et al. (2021),

“How recommender systems can trans-

form airline offer construction and re-

tailing”

[4]: Dadoun, Troncy, et al. (2021), “Pre-

dicting your next trip: A knowledge

graph-based multi-task learning ap-

proach for travel destination recommen-

dation”

The science and methods behind RM are constantly evolving to

adapt to new technologies, customer behavior, and market condi-

tions. The first revenue management systems (RMSs) emerged in

the 1980s, and they performed revenue maximization by control-

ling the yield of each leg separately (also known as leg control;

see Figure 1.1 left). By the 1990s, airlines started operating in hub–

and–spoke models, in which flights between two smaller cities

(spokes) connect through a large city (hub). Thus, demand for

spoke–hub and spoke–spoke overlap, requiring RMSs to predict

demand and optimize decisions at the network level (also called

network control; see Figure 1.1 right). In the early 2000s, the

popularization of the Internet brought customers much greater

transparency over airlines’ offers as they could compare offers

from a wide range of options. At the same time, the Internet

also enabled the possibility of updating prices worldwide al-

most instantaneously while accurately keeping track of sales

and inventory, allowing airlines to react to market changes with

unprecedented precision and speed. In the 2010s, the financial

crisis and the consolidation of the Internet as a distribution chan-

nel boosted low–cost carriers that operated with the emphasis on

minimizing costs by eliminating traditional services and ameni-

ties, causing a “commoditization” of the industry [2]. However,

history never stops, and it is hard to foresight the next revolution.

In response to the commoditization, will the airline industry

move towards personalized offers with merchandising [3]? Or,

will innovative ideas such as inspiring customers to their next

travel destination change their relationship with airlines [4]?

Or perhaps, as we discuss in the following chapters, the next

revolution may come from within the RMS itself.

Throughout this work, we focus on a specific facet of RM, where

the airline company’s flights have a fixed inventory capacity
(i.e., the number of seats available for bookings in each flight),

and it seeks to control this capacity through pricing decisions

to maximize revenue. The inventory is perishable (i.e., flight

departs), and any unsold capacity at the expiration date (i.e.,

flight departure) is lost. The airline’s prices are governed solely

1 Introduction 3

Historical
Database

Forecasting MR
transform.

Optimization Inventory
Demand

predictions
Historical
bookings

and o�ers

Indep. class

demand

Bid

prices

Adjusted
fares

Booking
requests

Observed bookings

and o�ers

Figure 1.2: The revenue management system in a nutshell. “MR transform.” abbreviates “Marginal revenue transformation.”

[5]: Fiig, Härdling, et al. (2014), “De-

mand forecasting and measuring fore-

cast accuracy in general fare structures”

[6]: Cooper, Homem-de-Mello, et al.

(2006), “Models of the spiral-down ef-

fect in revenue management”

[7]: Fiig, Isler, et al. (2010), “Optimiza-

tion of mixed fare structures: Theory

and applications”

by the forces of supply and demand: The airline must find a

balance between pricing too high and losing potential buyers

and pricing too low and losing potential profits.

1.2 Airline revenue management systems in a
nutshell

The fundamental design of modern RMSs is divided into several

distinct components, as illustrated in Figure 1.2 [5]. We refer to

the first component as the historical database, which stores the

booking data and the offers for every flight operated by the airline.

This data contains the daily number of bookings observed for

each offer made by the system. The historical booking data feeds

the forecasting module, which predicts how future demand will

respond to prices, i.e., how much more/less demand the system

can expect to observe by increasing/decreasing prices. These

forecasting predictions assume demand independence between

classes of customers (e.g., business or leisure travelers), with no

possibility for customers to choose a lower fare when a specific

set of restrictions are in place (e.g., minimum stay requirements,

cancellation penalties, refundability conditions). In practice, the

assumption of independent demand is not entirely true, possibly

causing a “spiral down” of the demand into lower fare classes,

resulting in significant revenue losses [6]. To address this issue,

the marginal revenue transformation module maps conditional

demand models, where customers are free to purchase other

itineraries or lower fares with a different set of restrictions, into

independent demand and adjusted fares, where customers are

assumed to be willing to purchase only a particular product [7].

Using the adjusted demand and fares, the fourth component,

called the optimization module, is responsible for optimizing the

pricing policy according to capacity constraints. The optimization

1 Introduction 4

[8]: Meng, Zhao, et al. (2019), “Revenue

management for container liner ship-

ping services: Critical review and future

research directions”

[9]: Kimes and Ho (2019), “Imple-

menting Revenue Management in Your

Restaurants: A Case Study with Fair-

mont Raffles Hotels International”

[10]: Bouchet, Troilo, et al. (2016), “Dy-

namic pricing usage in sports for rev-

enue management”

[11]: Fiig, Wittman, et al. (2019), “To-

wards a competitor-aware RMS”

[12]: Kumar, Wang, et al. (2021), “Com-

petitive revenue management models

with loyal and fully flexible customers”

[13]: Pande (2020), What are the world’s
busiest air routes right now?

[14]: Gallego and Phillips (2004), “Rev-

enue management of flexible products”

module outputs bid prices used in the last and final component,

the inventory module, to evaluate customer purchase requests in

real–time.

1.3 Open problems in revenue management

RM is an active area of research yet in expansion in many

industries, such as cargo, restaurants, and special events [8–10].

There are still many problems to be solved, sometimes industry–

oriented, and it is far beyond our scope to develop the complete

anatomy of the field and its research prospects. Instead, we focus

on a short list of issues, often seen as critical, that we believe could

be addressed with the use of artificial intelligence (AI). These

issues are pricing under competition, self–competition, earning

while learning, model–free optimization, and non–stationarity.

One of the most important open problems in airline RM is pricing
under competition [11, 12]. When traveling between two cities,

customers can choose from several options often offered by

different airlines (see Figure 1.3 (a)). For example, the busiest

route in the world in 2019 was between Seoul to Jeju, deploying

about 17 million seats over the year with flights operated by ten

airlines [13]. Therefore, airlines compete for the same demand

by offering advantages over the others (e.g., price discounts).

The most noticeable impact of competition is that the airline

may lose potential customers and thus profits. Every unsold

capacity eventually perishes, i.e., flight departs, and a revenue

opportunity is lost. Even though decreasing prices may attract

more demand, it may impact revenue negatively because less

revenue is produced for each booking. A more subtle impact

relates to data collection. In practice, as airlines only have access

to their booking data (which does not contain no-purchase

information), estimating the total demand volume is challenging.

With the presence of a competitor, correctly estimating the

demand behavior is even more difficult because the observed

demand is now dependent on the competitor’s prices (which

may vary in time).

Perhaps another issue as important as the competition, but much

less evident is the self-competition problem, sometimes referred to

as cannibalization [14]. When booking, customers may adapt their

preferences to the airline’s offers (see Figure 1.3 (b)). For example,

customers may prefer to travel at inconvenient hours, delay their

departure, shorten their stay, or choose a longer itinerary to save

money. As an airline usually provides several flights between

two destinations, it may observe losses in revenue because its

flights compete with each other for the same demand. This issue

1 Introduction 5

(a) Example of competition: Many competing airlines operate from Paris to New York.

(b) Example of self–competition: A single airline operating flights from Nice to Paris, and, customers may decide

to delay or anticipate their trip.

Figure 1.3: Screenshot of a flight search with Google Flights engine.

https://www.google.com/flights

1 Introduction 6

[15]: McLennan (1984), “Price disper-

sion and incomplete learning in the long

run”

[16]: Chen and Gallego (2022), “A

primal-dual learning algorithm for per-

sonalized dynamic pricing with an in-

ventory constraint”

[17]: Bondoux, Nguyen, et al. (2020),

“Reinforcement learning applied to air-

line revenue management”

[18]: Keskin and Zeevi (2017), “Chas-

ing demand: Learning and earning in a

changing environment”

is only not challenging from the modeling perspective but also

from the optimization perspective because optimizing the prices

of many flights in a combined way is a complex task due to the

large search spaces involved.

Another intriguing issue calling attention is known as the earning–
while–learning problem [15, 16]. When optimizing pricing strate-

gies, airlines do not know the true demand behavior, which must

be estimated from historical booking data. Moreover, airlines’

current pricing decisions impact the collected data and thus the

quality of future estimations. In practice, the RMSs may need

to compromise immediate revenue (earning) by performing

price experiments hoping that the information gained about the

demand behavior (learning) will lead to better future pricing

decisions.

Furthermore, RMSs usually rely on expert–designed models

describing how the demand behaves when facing choices (also

known as customer choice models). However, human behavior

is not necessarily logical and rarely deterministic, and therefore

difficult to understand and model. One could wonder if we could

eliminate the need for such demand models, discovering the pric-

ing strategy exclusively from data without any explicit help from

experts. In theory, the general nature of reinforcement learning

allows the optimization of prices from direct interactions with

the demand, i.e., model–free optimization. In practice, it is currently

unclear if such an approach is feasible because interactions with

the customers are expensive and limited, requiring systems to

find near-optimal solutions from little data [17]. This data efficiency
problem is central to applying AI techniques to RM.

Lastly, the demand behavior is not static, as RM pricing optimiza-

tion techniques often assume [18]. The general economy may

present growth or crisis, new airlines may join or leave markets,

and customer interests may shift from some destinations to oth-

ers, impacting how much customers are willing–to–pay for the

airline’s services. Such changes in demand behavior may occur

over short or long periods, or they may impact airlines locally

(such as a new competitor in a segment) or globally (such as a

pandemic). The airline’s ability to quickly adapt pricing strate-

gies to changing market conditions, or non–stationary demand

behavior, is fundamental to its success (and survival).

1 Introduction 7

1.4 Goals and assumptions

There are many open issues in airline RM, and we believe that AI

has the potential to solve them. Because of their general nature,

AI methods bring many advantages over classical techniques,

mostly changing how we approach problems where the solutions

are centered less on expert design and intuition and more on

formulation and representation. Therefore, our primary goal

is to demonstrate the power of AI and discuss how to use it to

address the main problems of RM.

We cannot hope to address so many issues in detail, and thus we

concentrate on one representative problem. Among the several

candidate problems presented earlier, we prefer the earning

while learning (EWL) one because many real–world complexities,

such as competition, cannibalization, and non-stationarity, can

be ignored. Indeed, our primary motivation for choosing this

problem is that we can make simplifying assumptions that

facilitate the implementation and debugging. Moreover, when

considering only the EWL problem, we can compare the final

learned solution to the optimal performance obtained when the

true demand behavior is known at all times, providing an upper

bound of performance improvement, easing the search for the

learning system’s design and interpretation of the results.

When studying the EWL problem, we assume that the company

offers a single flight a day with a fare structure with no restrictions

and a monopoly where the airline is the exclusive service provider.

Furthermore, the airline provides the service over a single leg
from point A to point B, meaning connections and round–trips

are not possible. In other words, customers can only travel to

a unique destination, and they can only decide to book or not

based on the price chosen by the airline. We refer to such settings

as the single–leg problem, which we develop further in Section

2.1. Even though such assumptions are not realistic, they are

sufficient to display the problem properties we aim at. Yet, we

believe that most of our work can be adapted to real–world

systems, but we recognize that further research is needed to do

so.

Under such assumptions, there is no need to represent explicitly

many of the RMS components presented in Section 1.2. We con-

sider a simplified theoretical view of RMS illustrated in Figure

1.4. This simplified structure consists of the historical database

that stores historical bookings and offers for every flight from

point A to point B, the forecasting module that predicts the

future demand response to changes in prices, and the optimiza-

tion module that computes the prices that maximize revenue.

1 Introduction 8

Historical
Database

Forecasting OptimizationDemand

predictions

Pricing

decisions

Historical
bookings

and offers

Figure 1.4: A simplified revenue management system. Image from [19] under license CC BY 4.0.

[19]: Gatti Pinheiro, Defoin-Platel, et al.

(2022), “Outsmarting human design in

airline revenue management”

Customers interact with the offered prices by either choosing to

book or not. The resulting bookings are stored in the historical

database for future use (only purchase decisions are available to

the system).

1.5 Dissertation structure

This work is organized as follows. Chapter 2 introduces the state–

of–the–art RMS when considering the problem assumptions

developed earlier. We describe in detail how each module of

the simplified RMS works, i.e., how booking data are stored,

how the parameters of a demand model are estimated from the

historical data, and how the calibrated demand model is used

for price optimization.

Following, Chapter 3 presents the basic concepts behind re-

inforcement learning (RL), which is a field in AI concerned

with learning through interactions with an environment. Then,

we expose breakthroughs and some popular methods, such as

Q-Learning and Deep Q-Networks. We also introduce a brief

history of how the field of RM has used RL and some potential

pitfalls.

Chapter 4 presents the problem of earning while learning and

how researchers addressed this problem in the past. We show

how to adapt one of the most promising heuristic methods to

airline RM constraints and how to modify the problem formula-

tion to use RL to solve this problem without human supervision.

Then, we compare the experimental results between human–

designed heuristic methods and the solution obtained through

RL. The contents of this chapter represent the major contributions

of our work, and it was first presented in [19].

https://creativecommons.org/licenses/by/4.0/

1 Introduction 9

[1]: Talluri and Van Ryzin (2004), The
theory and practice of revenue management

Chapter 5 discusses adaptations of the proposed framework

to address several other open issues in airline RM, such as

competition, cannibalization, and non–stationarity. The contents

of this chapter are also a contribution, and they are original to

this dissertation.

Finally, in Chapter 6, we close our work with a summary of

our findings, some last thoughts, and a conclusion about the

potential consequences for the practice and science of RM.

1.6 Summary

Businesses have many decisions to make, and such decisions are

either related to supply–chain management, where the goal is to

minimize costs, or demand management, where the goal is to

maximize revenue [1]. The research field of revenue management

(RM) addresses theoretical and practical questions of demand–

management decisions, such as, but not limited to, pricing

decisions. In RM, the goal is to maximize revenue, which can be

achieved by controlling supply and demand through prices. If

the prices are set too high, the airline can lose customers, and

if excessively low, it may lose potential profits. The system’s

objective is to find the right balance.

There are many open problems in airline RM, such as pric-

ing under competition, cannibalization, earning while learning,

model–free optimization, and non–stationarity, to cite a few.

These problems are very challenging, many of them have been

investigated for years by researchers, but no definitive solutions

have been found as far as we know. We do not expect to address

all these problems in this work, but in Chapter 4, we show how

artificial intelligence (AI) can tackle the earning–while–learning

problem. Chapter 5 discusses how this same technique could

address the other issues. We close this dissertation in Chapter

6, where we discuss the consequences of AI on the practice and

research of RM.

The revenue management systems (RMSs) have several building

blocks, but only some of these blocks are required for the studies

we develop. For this reason, we assume a simplified structure of

RMS, which consists of the historical database, forecasting, and

optimization modules. The historical database stores the data

from offers and bookings for every flight, which the forecasting

module uses to predict how future demand will answer to prices.

Finally, the optimization module computes the pricing policy

1 Introduction 10

that adjusts prices according to the flight’s current capacity con-

straints. Then, customers interact with such prices by choosing

whether to book or not.

1: In literature, the linear demand

model is often used as well [20].

[21]: Gallego and Van Ryzin (1994), “Op-

timal dynamic pricing of inventories

with stochastic demand over finite hori-

zons”

Revenue Management Systems 2
2.1 The single–leg problem . 11
2.2 Forecasting 12
2.3 Optimization 17
2.3.1 Fare ratio at 50% of de-

mand 20
2.3.2 Markov decision process 20
2.3.3 Dynamic programming . 29
2.4 Summary 34

This chapter reviews the basic forecasting and pricing optimiza-

tion techniques employed in revenue management systems. We

present the RM problem in its simplest form, ignoring complex-

ities, such as seasonality and network optimization, that are

unnecessary for studying the earning–while–learning and other

issues we seek to address in this work.

2.1 The single–leg problem

One important property of airline revenue management is that

airlines manage several flights at the same time. Even if we

consider that the airline operates only one leg from point A to

point B, the flights of this leg depart with a certain regularity

(e.g., once a day or once a week). We consider that a new flight

is open for sale every day, and another flight departs closing

for new bookings. Each flight is open for sale T days before

departure (also known as the booking horizon), and the airline

must manage T active flights simultaneously. For the sake of

generality, from now on, we call “a day” “a time step” (because,

in principle, it could be any unit of time).

We assume that the customers are only willing to book the flight

departing at a specific time step and either choose to book or

not to book at all, meaning that customers are not willing to

anticipate or delay their travel according to prices. The RMS’s

goal is to select the prices for every active flight to maximize the

airline’s long–term revenue. The system can only change the price

decisions for active flights at each time step. For simplicity, we

assume that overbooking and cancellations are not possible and

that the flight has a single cabin class (e.g., first–class, business, or

economic), being C the flight’s capacity for this unique cabin.

Arguably one of the simplest demand models
1
, known as the

exponential model [21], considers that, for each time step, cus-

tomers willing to travel arrive (e.g., they query the airline’s

website) according to a Poisson distribution with mean �, named

the arrival rate parameter, and each arriving customer purchases

according to an exponential decay probability for the selected

fare 𝑓 defined as

𝑧(𝑓 ; 𝜙) = Pr{purchase | 𝑓 , 𝜙} � 𝑒−𝜙(𝑓 / 𝑓0−1) , (2.1)

2 Revenue Management Systems 12

[22]: Fiig, Weatherford, et al. (2019),

“Can demand forecast accuracy be

linked to airline revenue?”

[23]: Weatherford (2016), “The history

of forecasting models in revenue man-

agement”

where 𝜙 is the price sensitivity parameter and the constant 𝑓0 is

the lowest fare such that the customers’ purchase probability is

one (Pr{purchase | 𝑓0} = 1).

As mentioned earlier, the simple demand model presented here

does not assume any dependency on time, in particular, no

seasonality and nor on departure’s day–of–week (e.g., Sunday,

Monday, etc.). In practice, the customer arrival rate is often chosen

to be a function of time �(𝑡) to accommodate such customer

preferences, and the customer price sensitivity is also chosen

to be a function of time 𝜙(𝑡) to allow the system to model the

increasing customers’ willingness–to–pay as the time approaches

the departure date (e.g., last–minute buyers). Even though these

complexities can be ignored without loss of generality for most

problems considered in this work, we illustrate, in Chapter 5,

possible ways to adapt the proposed algorithms to more complex

demand behaviors.

The arrival rate and price sensitivity parameters drive the cus-

tomer behavior at the leg level, i.e., customers for all active flights

of the single–leg share the same behavior. This is aligned with

reality because RMSs usually estimate an independent set of

demand model parameters for every origin and destination oper-

ated by the airline (seasonality, day–of–week, and other customer

preferences are represented by a subset of parameters in the

demand model). As we assume that the demand model is the

same for every active flight in the single–leg problem, one could

wonder why the modeling of parallel flights is necessary. When

computing forecasts, real–world systems aggregate the data of

many flights with the same origin and destination, and we seek

to reproduce this behavior. The importance of such a choice

will be evident when presenting the earning–while–learning

problem in Chapter 4.

2.2 Forecasting

When optimizing the pricing strategy, RMS first needs to pre-
dict demand for different prices. The forecasting module is

responsible for such predictions and is crucial for the airline’s

profitability. In the airline industry, researchers calculated that a

bias of ±20% in the estimation of the demand price sensitivity

(i.e., how the expected demand increases or decreases according

to the offered price) can reduce revenue by up to 4% [22]. In fact,

much of the RM research is dedicated to improving forecasting

accuracy [23].

2 Revenue Management Systems 13

T
im

e
 s

te
p

s
to

D
e

p
a

rt
u

re
 (
�
)

T

Used for paremeter estimation

(historical data for the last T time steps)

Time

Sale date (t)

T T

Active �ightsDeparted �ights

(o�er, #bookings)

Booking data
for sale date t

Flight departing
next time step

Flight departing
in T time steps

o(t, f) =
o�ers
for fare f

at sell date t

b(t, f) =
bookings

for fare f
at sell date t

Figure 2.1: The historical database scheme. The historical database keeps records for the last T time steps. At the end of

every time step, the booking data collected for that step are immediately added to the historical data and the oldest record is

erased. The booking data of each sale date can be further separated by individual entries for each flight, where each entry

consists of a pair, in which the first entry is the offer (i.e., the selected fare) and the second entry is the number of observed

bookings for that offer. This data can be queried with the help of 𝑜(𝑡 , 𝑓) and 𝑏(𝑡 , 𝑓) functions.

The forecasting module can be represented by a parametric

function 𝑑(𝑓 ;𝝍) that returns the expected number of customers

willing to pay for fare 𝑓 , where 𝝍 represents the parameters

of the demand model. Considering that customers follow the

exponential model described in the previous section, we can

write

𝑑
(
𝑓 ;𝝍 = (�, 𝜙)

)
= 𝔼[# of purchases | 𝑓 ,𝝍]

= � · 𝑒−𝜙
(

𝑓

𝑓
0

−1

)
, (2.2)

As the true demand behavior, which we denote by 𝝍∗ = (�∗ , 𝜙∗),
is unknown by RMS, the system needs to estimate these demand

model parameters from historical booking data. We represent

the historical booking data with the help of two functions. The

first one, 𝑜(𝑡 , 𝑓) ∈ ℕ0, returns the number of times fare 𝑓 is

offered across all flights at the sale date 𝑡. Similarly, the second

one, 𝑏(𝑡 , 𝑓) ∈ ℕ0, returns the number of bookings made for fare

𝑓 at the sale date 𝑡 across all flights. Note that the number of

customer arrivals is not directly observable (it is not possible to

distinguish customers not willing to purchase at price 𝑓 from no

customer arrival at all)
*
. Every time step, the system estimates

the parameters of the demand model from historical offers and

bookings and uses this calibrated model to optimize the pricing

policy. Given the simplicity of our demand model, we assume

that the historical database contains the booking data collected

*
In real–world systems, these two functions also have a dependency over the

time to departure 𝜏, i.e., 𝑜(𝑡 , 𝜏, 𝑓) and 𝑏(𝑡 , 𝜏, 𝑓), that we ignore because we

removed seasonality and other temporal effects on the demand behavior.

2 Revenue Management Systems 14

[24]: Newman, Ferguson, et al. (2014),

“Estimation of choice-based models us-

ing sales data from a single firm”

2: We find that limited–memory BFGS

is quite effective, which is an algorithm

in the family of quasi-Newton methods.

[25]: Oliphant (2006), A guide to NumPy

for the last T sale dates, i.e., when new data are appended, the

oldest flight data are removed (first–in, first–out). The historical

database layout is illustrated in Figure 2.1.

To estimate model parameters, first, we write the log–likelihood

function as [24]

LL(�, 𝜙) =
∑
𝑓

𝑡−1∑
𝑗=𝑡−T

[
𝑏(𝑗 , 𝑓) ln

(
𝑑(𝑓 ; �, 𝜙)

)
− 𝑜(𝑗 , 𝑓) 𝑑(𝑓 ; �, 𝜙)

]
, (2.3)

and then search for the model parameters maximizing
2 LL(�, 𝜙).

Assuming that the demand behaves independently of time, the

log–likelihood function above can be re-written in a very com-

putationally and memory-efficient vectorized representation

(demonstrated in Example 2.2.1) that can be implemented with li-

braries specialized in vectorial operations such as NumPy [25].

2 Revenue Management Systems 15

Example 2.2.1

A common assumption in RMSs is that the system can choose

price 𝑓 from a finite set { 𝑓0 , 𝑓1 , . . . , 𝑓𝑛−1} containing 𝑛 fares

(or price points) [17, 21] [17]: Bondoux, Nguyen, et al. (2020),

“Reinforcement learning applied to air-

line revenue management”

[21]: Gallego and Van Ryzin (1994), “Op-

timal dynamic pricing of inventories

with stochastic demand over finite hori-

zons”

. This set is known as the fare structure.
Given that the assumed model 𝑑(𝑓 ; �, 𝜙) is constant in time

(i.e., no seasonality), the historical database only needs to

keep track of the number of bookings and offers made for

each fare during the last T sale dates without the precision

of when these bookings and offers were made. In other

words, we can represent the historical data at time 𝑡 by two

vectors, o𝒕 = [𝑜0 , 𝑜1 , . . . , 𝑜𝑛−1] and b𝒕 = [𝑏0 , 𝑏1 , . . . , 𝑏𝑛−1],
where 𝑜𝑖 and 𝑏𝑖 represent the number of offers and bookings

made for fare 𝑓𝑖 in the last T sale dates, respectively, i.e.,

𝑜𝑖 =
∑𝑡−1

𝑗=𝑡−T
𝑜(𝑗 , 𝑓𝑖) and 𝑏𝑖 =

∑𝑡−1

𝑗=𝑡−T
𝑏(𝑗 , 𝑓𝑖). How can we

reformulate eq. (2.3) for these two vectors o𝒕 and b𝒕?

Answer. The first step to answering this question is to realize

that the log–likelihood function in eq. (2.3) can be written as

LL(�, 𝜙) =
𝑛−1∑
𝑖=0

𝑡−1∑
𝑗=𝑡−T

[
𝑏(𝑗 , 𝑓𝑖) ln

(
𝑑(𝑓𝑖)

)
− 𝑜(𝑗 , 𝑓𝑖) 𝑑(𝑓𝑖)

]
=

𝑛−1∑
𝑖=0

[
ln

(
𝑑(𝑓𝑖)

) 𝑡−1∑
𝑗=𝑡−T

𝑏(𝑗 , 𝑓𝑖) − 𝑑(𝑓𝑖)
𝑡−1∑

𝑗=𝑡−T

𝑜(𝑗 , 𝑓𝑖)
]

=

𝑛−1∑
𝑖=0

[
ln

(
𝑑(𝑓𝑖)

)
𝑏𝑖 − 𝑑(𝑓𝑖) 𝑜𝑖

]
,

where we dropped, for the sake of readability, the explicit

parametrization of the demand model 𝑑(𝑓 ; �, 𝜙).

We can also write the evaluation demand model as a vector

d𝝍 = [𝑑0 , 𝑑1 , . . . , 𝑑𝑛−1], where each component 𝑑𝑖 represents

the evaluation of the demand model at fare 𝑓𝑖 , i.e., 𝑑𝑖 =

𝑑(𝑓𝑖 ;𝝍). Now we can write the log–likelihood function in its

vectorized form as

LL(�, 𝜙) = ln(d𝝍) · b𝒕 − d𝝍 · o𝒕 . (2.4)

Such an implementation only requires keeping a count of the

number of offers and bookings by fare, using just 𝑂(2𝑛)mem-

ory. It is also computationally efficient because the number of

multiplication/subtract operations is kept at a minimum.

2 Revenue Management Systems 16

Example 2.2.2

Suppose a leg has one flight a day, and each flight is open for

bookings one year before its departure (T = 365). If the system

uses one year of booking data for parameter estimation, in

total, there are 365 flights x 365 offers per flight= 133225 offers

in the historical database. Let’s assume that RMS selected

20% of the time the lowest fare 𝑓0 = $50 (26645 offers), 60%

of the time fare 𝑓1 = $150, and, for the remaining time, fare

𝑓2 = $200. At time t, the system’s historical database contains

o𝒕 = [26645, 79935, 26645] and b𝒕 = [3650, 3298, 603]. Using

the log–likelihood estimation defined in eq. (2.4), we find

that the parameters that better explain the observed data are

� = 0.137 and 𝜙 = 0.6. How can we quickly verify that such

an estimation is correct?

50 100 150 200 250 300

fare ($)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

d
(f

)

Figure 2.2: The dots represent the his-

torical booking data, here obtained by

computing 𝑏𝑖/𝑜𝑖 . The line illustrates a

typical fit of the demand behavior func-

tion 𝑑(𝑓 ;𝝍) after maximizing the log–

likelihood function eq. (2.3).

Answer. At the lowest fare 𝑓0, we observe that the historical

database has a total of 𝑜0 = 26645 offers and 𝑏0 = 3650

bookings. Given that, at 𝑓0, the purchase probability is one,

the ratio between the number of bookings by the number of

offers gives an estimation of the arrival rate � ≈ 𝑏0/𝑜0 ≈ 0.137.

Analogously, we can verify that the model predictions 𝑑(𝑓 ;𝝍)
for the other fares match the observed data.

𝑑($150; �, 𝜙) = 0.041264 ≈ 𝑏1

𝑜1

= 0.041258

𝑑($200; �, 𝜙) = 0.022646 ≈ 𝑏2

𝑜2

= 0.022631

Figure 2.2 illustrates the historical database points and the

fitted demand model for this example.

2 Revenue Management Systems 17

2.3 Optimization

The optimization module is responsible for computing the pric-

ing strategy that maximizes revenue. The greatest challenge

behind such a task lies in the stochastic nature of the demand

behavior: The number of customer arrivals at each time step

is uncertain, and each arriving customer may decide to book

or deny an offer. Furthermore, because the number of seats

available in a flight is limited and adding new seats to a cabin

is not practical, the pricing strategy must consider the flight’s

capacity constraints. Also, the remaining time to departure is

a constraint that needs to be accounted for because the time to

sell any remaining capacity is limited (flights eventually depart).

Therefore, the pricing optimization methods must be able to

compute prices according to demand forecasts while addressing

both constraints. For example, the RMS may decrease prices to

capture more customers when the flight has capacity in excess,

or, conversely, it may increase prices to capture only customers

willing to book at higher prices when the flight has a deficit of

capacity.

To develop some intuition on price optimization, let’s first con-

sider the case where the capacity is unconstrained, i.e., the flight’s

total capacity is far greater than the expected number of arriving

customers (C ≫ T · �∗). Considering that the demand behaves

according to the exponential demand model described in Section

2.1 and that the fare structure is a finite set, the expected revenue

𝑅(𝑓) for fare 𝑓 can be computed by the product of the fare and

the expected demand 𝑑(𝑓 ;𝝍), thus

𝑅(𝑓 ;𝝍) = 𝔼[revenue | 𝑓 ,𝝍]
= 𝑓 · 𝑑(𝑓 ;𝝍).

The fare maximizing the expected revenue 𝑅(𝑓), named the

optimal fare, can be trivially obtained with

𝑓∗ = arg max

𝑓

𝑅(𝑓 ;𝝍),

where arg max𝑥 𝑓 (𝑥) denotes the value of 𝑥 such that 𝑓 (𝑥) as-

sumes its maximal value. In other words, the system can test

the value of 𝑅(𝑓𝑖) for each fare 𝑓𝑖 and then select the fare 𝑓𝑖 such

that 𝑅(𝑓𝑖) assumes its maximal value (see the following Example

2.3.1 for the case of a continuous fare structure). Even though

2 Revenue Management Systems 18

appealing by its simplicity, such a method is inappropriate when

the flight’s capacity is constrained because it only optimizes for

the expected demand behavior without adapting the prices to a

potential deficit or excess of demand.

This section describes how airlines typically compute their pric-

ing strategy according to time and capacity constraints. But

before that, we use this concept of the optimal fare under uncon-

strained capacity to derive a more intuitive way of specifying

and interpreting the customer price sensitivity 𝜙 that we use

throughout this work.

2 Revenue Management Systems 19

Example 2.3.1

When the fare structure is a finite set, we can compute the fare

that maximizes the revenue by testing every price point and

selecting only the one that yields the most revenue. However,

when the system can choose the price 𝑓 from a continuous

fare structure, i.e., prices can be chosen within an interval

𝑓 ∈ [𝑓0 , 𝑓max], this “brute force” strategy is no longer possible

because there is an infinite number of values in between

two real numbers. Instead, we can use the property that the

expected revenue function 𝑅(𝑓) presents a unique maximum

value in the interval [𝑓0 , 𝑓max] and compute the optimal fare

directly. How can the optimal fare be obtained when the fare

structure is continuous?

50 100 150 200 250 300

fare f ($)

0

1

2

3

4

5

6

7

8

R
(f

)

f*

Figure 2.3: Following the example

from Figure 2.2, one can compute the

revenue function 𝑅(𝑓) and the fare max-

imizes revenue 𝑓∗ = $83, represented by

the vertical dashed line.

Answer. As 𝑅(𝑓) assumes its maximum value when its deriva-

tive is zero, the optimal price can be obtained with

𝑑

𝑑𝑓∗
𝑅(𝑓∗) = 0

𝑑

𝑑𝑓∗
[𝑓∗ · 𝑑(𝑓∗; �, 𝜙)] = 0

𝑑(𝑓∗; �, 𝜙) + 𝑓∗ · 𝑑(𝑓∗; �, 𝜙) ·
−𝜙
𝑓0

= 0

𝑓∗ =
𝑓0

𝜙
(2.5)

Figure 2.3 illustrates the revenue curve when �∗ = 0.137,

𝜙∗ = 0.6, and 𝑓0 = $50. With such settings, the optimal fare is

given by 𝑓∗ = $50/0.6 ≈ $83.

Note that, when 𝜙 ≥ 1, the optimal fare is simply the lowest

(𝑓∗ = 𝑓0). When the optimal fare is 𝑓∗ = 𝑓0 (or, 𝑓∗ = 𝑓𝑚𝑎𝑥), we

can reconfigure the fare structure (i.e., change the pricing

range) to give the system more flexibility on prices. In practice,

airlines manually calibrate the fare structure to match the real

market conditions, and, in a well–calibrated fare structure,

the revenue–maximizing price lies somewhere in the interval

] 𝑓0 , 𝑓max[.

2 Revenue Management Systems 20

[26]: Belobaba and Hopperstad (2004),

“Algorithms for revenue management

in unrestricted fare markets”

[1]: Talluri and Van Ryzin (2004), The
theory and practice of revenue management
[21]: Gallego and Van Ryzin (1994), “Op-

timal dynamic pricing of inventories

with stochastic demand over finite hori-

zons”

2.3.1 Fare ratio at 50% of demand

The price sensitivity can also be referred to in terms of the fare

ratio to the lowest fare 𝑓 ′/ 𝑓0 at which the purchase probability

is 50% [26], denoted by 𝐹5, which is defined as

Pr{purchase | 𝑓 ′} � 1

2

𝑒
−𝜙

(
𝑓 ′
𝑓
0

−1

)
=

1

2

𝐹5 �
𝑓 ′

𝑓0
=

ln(2)
𝜙
+ 1. (2.6)

To understand why specifying the 𝐹5 parameter rather than

the price sensitivity is sometimes more convenient, consider

computing the revenue–maximizing fare under unconstrained

capacity in terms of the 𝐹5. Under such a condition, we can

write

𝑓∗ =
𝑓0

𝜙
from eq. (2.5)

= 𝑓0
𝐹5 − 1

ln(2) use eq. (2.6)

=
𝑓0

ln(2)𝐹5 −
1

ln(2) .

Therefore, the revenue–maximizing fare has an affine relation-

ship (i.e., 𝑦(𝑥) = 𝑎𝑥+𝑏) to the 𝐹5 parameter under the assumption

of the exponential demand model and unconstrained capacity,

greatly simplifying interpretation. In this work, we use the price

sensitivity in equations and for introducing definitions, while

we save the 𝐹5 parameter for everything related to experimental

settings.

2.3.2 Markov decision process

To address the stochastic behavior of the demand while consid-

ering time and capacity constraints, the optimization problem

is often formulated as a Markov decision process (MDP) [1, 21],

defined by a tuple 𝑀 = ⟨S ,A, 𝑟 , 𝑝⟩ where S is the state space,

A is the action space, 𝑟 : S × A → ℝ+ is the reward function,

𝑝 : S×A×S → [0, 1] the state–transition probability function.

For each active flight, the system faces a sequence of pricing

decisions over T time steps. At each time step 𝑡 (e.g., day), the RMS

2 Revenue Management Systems 21

τ : remaining time

c : remaining capacity

ai : priceSt St+1At = π(St)

τ, c τ-1, c

τ-1, c-1

τ-1, c-2

p(St+1|St, At)

Fares

a1

a2

a3

..
.

..
.

Rt+1 = r(St, At)
0 bookings

1 booking

2 bookings

States

Remaining time steps to departure

R
e

m
a

in
in

g
 c

a
p

a
ci

ty

Figure 2.4: The backup diagram for our

MDP formulation. The system observes

state 𝑆𝑡 and it takes an action 𝐴𝑡 from

a finite set of options {𝑎
1
, 𝑎2 , 𝑎3 , . . . }.

Then, a transition happens according

to the state–transition probabilities de-

fined by 𝑝(𝑠′ | 𝑠, 𝑎). Finally, the sys-

tem observes a new state 𝑆𝑡+1
and re-

ceives the corresponding reward 𝑅𝑡+1

defined by the expected reward func-

tion 𝑟(𝑠, 𝑎). Image adapted from [19]

under license CC BY 4.0.

3: We follow the convention of [27], i.e.,

we use 𝑅𝑡+1
rather than 𝑅𝑡 .

observes the inventory state of an active flight 𝑆𝑡 ∈ S , denoted by

the tuple 𝑆𝑡 = (𝜏, 𝑐), where 𝜏 = T− 𝑡 is the number of time steps

to departure, and 𝑐 is the flight’s remaining capacity. Then, it

takes an action (i.e., it selects a fare) 𝐴𝑡 ∈ A = { 𝑓0 , 𝑓1 , . . . , 𝑓𝑛−1}
according to its pricing policy 𝜋 : S → A. Multiple customers

can arrive and interact with the RMS by choosing whether to

book or not at the selected action 𝐴𝑡 = 𝑓 . At time step 𝑡 + 1, with

probability 𝑝(𝑆𝑡+1 |𝑆𝑡 , 𝐴𝑡 ;𝝍), the remaining capacity 𝑐 decreases

by the number of bookings made at the previous time step.

Finally, the RMS receives a reward equal to the immediately

expected revenue
3 𝑅𝑡+1 = 𝑟(𝑆𝑡 , 𝐴𝑡).

Interactions with customers continue until the flight departs and

no further actions are possible, or when the flight’s remaining

capacity is exhausted and no more bookings are possible. When

at least one of these two termination conditions is met, we say

that the system reached a terminal state, denoted by 𝑆𝑇 , marking

the end of an episode. On the contrary, the first state, for which the

flight has all the capacity and time to departure is called the initial
state, denoted by 𝑆0 = (T, 𝐶). The MDP backup diagram for a

single transition is illustrated in Figure 2.4.

The interaction between the system and customers gives rise to

a sequence or a trajectory in the state–action space

𝑆0 , 𝐴0 , 𝑅1 , 𝑆1 , 𝐴1 , 𝑅2 , . . . , 𝑆𝑇−1 , 𝐴𝑇−1 , 𝑅𝑇 , 𝑆𝑇 .

As RMS seeks to optimize long–term revenue, we can write the

objective as a function of the return (or total revenue) defined

as

https://creativecommons.org/licenses/by/4.0/

2 Revenue Management Systems 22

[17]: Bondoux, Nguyen, et al. (2020),

“Reinforcement learning applied to air-

line revenue management”

[21]: Gallego and Van Ryzin (1994), “Op-

timal dynamic pricing of inventories

with stochastic demand over finite hori-

zons”

𝐺𝑡 �
𝑇∑

𝑘=𝑡+1

𝛾𝑘−𝑡−1𝑅𝑘 .

The system seeks a policy function 𝜋 which actions 𝐴𝑡 = 𝜋(𝑆𝑡)
maximize, for every time step 𝑡, the expected return 𝔼𝜋[𝐺𝑡 | 𝑆𝑡],
where 𝔼𝜋[·] denotes the expected value of a random variable (in

this case, the discounted sum of rewards or the total revenue for a

sample episode) while following policy 𝜋. By following the policy

𝜋, we mean that the system selects the actions 𝐴𝑡 , 𝐴𝑡+1 , . . . , 𝐴𝑇−1

according to the decisions of the policy function𝜋. The parameter

𝛾 ∈ [0, 1] is named the discount rate, and it defines how farsighted

the system is concerning revenue maximization: a reward (or

immediate revenue) received 𝑘 time steps in the future is worth

the fraction 𝛾𝑘−1
less as if received immediately. As the discount

rate approaches one, i.e. 𝛾→ 1, the policy function cares about

future rewards more strongly. In the case of airline RM, the

discount rate is often chosen to be 𝛾 = 1 [17, 21] because the MDP

has no loops and the episode’s horizon T is finite, guaranteeing

that the return is a finite quantity (the choice of 𝛾 = 1 is usually

implicit in RM literature).

The final step consists in computing the policy function 𝜋(𝑠)
that maximizes the expected return (i.e., the expected long–term

revenue). But to do so, we need first to compute the “mechanics”

of the MDP for the exponential demand model, described by the

state–transition probability function 𝑝(𝑠′ | 𝑠, 𝑎) and the expected

immediate reward function 𝑟(𝑠, 𝑎). This is the central subject of

the following sections.

The state–transition probability

The state–transition probability function 𝑝(𝑠′ | 𝑠, 𝑎) returns the

probability of observing the next state 𝑠′ from state 𝑠 taking

action 𝑎,

𝑝(𝑠′ | 𝑠, 𝑎) � Pr{𝑆𝑡+1 = 𝑠′ | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎}. (2.7)

As this function defines a discrete probability distribution, by

definition the sum of all possible outcomes must sum to one,

i.e.,

∑
𝑠′

𝑝(𝑠′ | 𝑠, 𝑎) = 1. (2.8)

2 Revenue Management Systems 23

[21]: Gallego and Van Ryzin (1994), “Op-

timal dynamic pricing of inventories

with stochastic demand over finite hori-

zons”

To compute this function according to the exponential demand

model defined in eq. (2.2), the typical approach consists in

dividing the time step into smaller units of time, often referred

to as micro–times, at which we assume that at most one customer

can arrive [21]. However, such an assumption is only a product of

mathematical convenience and has no support from a real–world

use case. As demonstrated below, this probability function can

be computed without introducing the micro–time assumption.

The probability of observing 𝑥 arrivals at any time step follows

a Poisson distribution, which is defined as

𝑢(𝑥) � Pr{𝑋 = 𝑥 | �} = �𝑥𝑒−�

𝑥!

, (2.9)

and each arriving customer purchases according to the exponen-

tial probability 𝑧(𝑓 ; 𝜙) defined in eq. (2.1).

As the selected fare is not allowed to change due to the discrete

nature of time in the MDP, for notation simplicity, we denote the

purchase probability simply by a constant value of 𝑧 = 𝑧(𝑓 ; 𝜙).
We can write the probability of observing 𝑘 bookings as

Pr{0 bookings | 𝑓 } = 𝑢(0)︸︷︷︸
no arrivals

+ 𝑢(0) (1 − 𝑧)︸ ︷︷ ︸
1 arrival, no purchases

+ 𝑢(2) (1 − 𝑧)2︸ ︷︷ ︸
2 arrivals, no purchases

+ . . . ,

Pr{1 booking | 𝑓 } = 𝑢(1) 𝑧︸︷︷︸
1 arrival, 1 purchase

+
(
2

1

)
𝑢(2) 𝑧(1 − 𝑧)︸ ︷︷ ︸

2 arrivals, 1 purchase

+
(
3

1

)
𝑢(3) 𝑧 (1 − 𝑧)2︸ ︷︷ ︸

3 arrivals, 1 purchase

+ . . . ,

Pr{2 bookings | 𝑓 } = 𝑢(2) 𝑧2 +
(
3

2

)
𝑢(3) 𝑧2 (1 − 𝑧) +

(
4

2

)
𝑢(4) 𝑧2 (1 − 𝑧)2 + . . . ,

which can be written compactly as,

2 Revenue Management Systems 24

Pr{𝑘 bookings | 𝑓 } =
+∞∑
𝑖=𝑘

(
𝑖

𝑘

)
𝑢(𝑖) 𝑧𝑘 (1 − 𝑧)𝑖−𝑘

=

+∞∑
𝑖=𝑘

𝑖!

(𝑖 − 𝑘)! 𝑘!

𝑢(𝑖) 𝑧𝑘 (1 − 𝑧)𝑘 use

(
𝑖

𝑘

)
=

𝑖!

(𝑖 − 𝑘)! 𝑘!

=

+∞∑
𝑖=𝑘

𝑖!

(𝑖 − 𝑘)! 𝑘!

�𝑖𝑒−�

𝑖!
𝑧𝑘 (1 − 𝑧)𝑘 apply 2.9

=
𝑧𝑘𝑒−�

𝑘!

+∞∑
𝑖=𝑘

�𝑖

(𝑖 − 𝑘)! (1 − 𝑧)𝑖−𝑘 rearrange terms

=
𝑑𝑘𝑒−�

𝑘!

+∞∑
𝑗=0

� 𝑗+𝑘

𝑗!
(1 − 𝑧)𝑗 replace 𝑗 = 𝑖 − 𝑘

=
𝑧𝑘𝑒−��𝑘

𝑘!

+∞∑
𝑗=0

(
�(1 − 𝑧)

) 𝑗
𝑗!

rearrange terms

=
𝑧𝑘𝑒−��𝑘

𝑘!

𝑒�(1−𝑧) use 𝑒𝑥 =

+∞∑
𝑗=0

𝑥 𝑗

𝑗!

=
(�𝑧)𝑘
𝑘!

𝑒−�𝑧 rearrange terms

=
𝑑(𝑓)𝑘
𝑘!

𝑒−𝑑(𝑓). use 𝑑(𝑓) = �𝑧(𝑓) (2.10)

Then, in the general case, where the capacity of the plane has

not been exhausted yet, and the remaining capacity is greater

than the number of bookings considered, we can write the

state–transition probability as

𝑝(𝑠′ = (𝜏 − 1, 𝑐 − 𝑘) | 𝑠 = (𝜏, 𝑐), 𝑎 = 𝑓) = Pr{𝑘 bookings | 𝑓 } if 𝑐 > 𝑘.

Finally, the case for which all units of remaining capacity are

sold in a single time step (𝑐 = 𝑘) can be written as
4

4: The customers are not aware of the

airline’s capacity constraints, thus any

arrivals after the exhaustion of capacity

are automatically rejected, no matter if

customers were willing to pay or not.

𝑝
(
𝑠′ = (𝜏 − 1, 0) | 𝑠 = (𝜏, 𝑐), 𝑎 = 𝑓

)
=

+∞∑
𝑖=𝑐

Pr{𝑖 bookings | 𝑓 }

= 1 −
𝑐−1∑
𝑖=0

Pr{𝑖 bookings | 𝑓 }. use eq. (2.8) (2.11)

2 Revenue Management Systems 25

5: Because computers are limited to bi-

nary representation, they need to rep-

resent real numbers discretely. Thus,

from a computational perspective, every

floating–point carries an error, which

is often small enough for most applica-

tions.

[28]: (2019), IEEE Standard for floating-
point arithmetic

[29]: Virtanen, Gommers, et al. (2020),

“SciPy 1.0: fundamental algorithms for

scientific computing in Python”

Even though tempting, the computation of eq. (2.11) can lead to

arbitrarily large errors because each term of the sum carries an

estimation error
5

due to floating–point representation [28]. Such

errors may add up, making the total error of the sum greater

than each term individually. Since the sum can have many terms,

the total error may be significant, stacking and propagating

when performing optimization. In fact, in our experience, these

errors create a measurable inconsistency in results to theoretical

estimations.

The workaround is to rewrite eq. (2.11) in terms of the Gamma

function Γ(𝑥) �
∫ ∞

0

𝑡𝑥−1𝑒−𝑡𝑑𝑡 and the incomplete Gamma func-

tion Γ(𝑥, 𝑧) �
∫ ∞
𝑧

𝑡𝑥−1𝑒−𝑡𝑑𝑡 as

𝑝
(
𝑠′ = (𝜏 − 1, 0) | 𝑠 = (𝜏, 𝑐), 𝑎 = 𝑓

)
= 1 −

𝑐−1∑
𝑖=0

Pr{𝑖 bookings | 𝑓 } from eq. (2.11)

= 1 −
𝑐−1∑
𝑖=0

𝑑(𝑓)𝑖
𝑖!

𝑒−𝑑(𝑓) use eq. (2.10)

= 1 −
Γ(𝑐, 𝑑(𝑓))

Γ(𝑐) use

Γ(𝑥, 𝑧)
Γ(𝑥) = 𝑒−𝑧

𝑥−1∑
𝑖=0

𝑧 𝑖

𝑖!
(2.12)

Most standard scientific libraries such as SciPy [29] provide

efficient and precise implementations for computing the Gamma

functions in eq. (2.12).

2 Revenue Management Systems 26

Example 2.3.2

Consider a flight with a remaining capacity 𝑐 = 2 at an

arbitrary remaining time 𝜏, thus, with an inventory state

𝑆𝑡 = (𝜏, 2). The lowest fare is 𝑓0 = $50, and the system’s

policy selects fare 𝐴𝑡 = 𝜋(𝑆𝑡) = $100 for this state. There are

three possible outcomes for the next time step. First, there

may be no bookings, resulting in state 𝑠′ = (𝜏 − 1, 𝑐 = 2). Or,

there may be a single booking 𝑠′′ = (𝜏 − 1, 𝑐 = 1). Finally,

RMS may observe two bookings 𝑠′′′ = (𝜏 − 1, 𝑐 = 0). If the

demand behavior follows the exponential model in eq. (2.2)

with �∗ = 1.5 and 𝐹∗
5
= 2, which are the state–transition

probabilities for each one of the possible outcomes?

Answer. First, for convenience, we can compute the Gamma

function and the demand model with

𝜙 =
ln(2)
𝐹5 − 1

≈ 0.7

𝑑(𝑓 = 100) = 1.5𝑒−0.7(100/50−1) = 0.745

Γ(𝑐 = 2) = 1

Γ(2, 𝑑(100)) = 0.828.

Using eq. (2.10), we can write

𝑝(𝑠′ | 𝑆𝑡 , 𝐴𝑡) =
𝑑(100)0

0!

𝑒𝑑(100) = 0.475

𝑝(𝑠′′ | 𝑆𝑡 , 𝐴𝑡) =
𝑑(100)1

1!

𝑒𝑑(100) = 0.353.

Thus, at fare $100, we expect to observe 0 bookings in the time

step with probability 47.5%, and 1 booking with probability

35.3%.

The probability of observing 2 bookings, which corresponds

to the exhausting all remaining units of capacity, can be

computed with eq. (2.12),

𝑝(𝑠′′′ | 𝑆𝑡 , 𝐴𝑡) = 1 − 𝑝(𝑠′ | 𝑆𝑡 , 𝐴𝑡) − 𝑝(𝑠′′ | 𝑆𝑡 , 𝐴𝑡)

= 1 − Γ(2, 𝑑(100))
Γ(2) = 0.172.

We expect to observe that the 2 remaining units of capacity

are sold in the time step with probability 17.2%.

2 Revenue Management Systems 27

The reward function

As the system’s goal is to maximize total revenue, the reward

signal 𝑅𝑡 represents the immediate expected revenue given by

𝑟(𝑠 = (𝜏, 𝑐), 𝑎 = 𝑓) = 𝑓 ·
𝑐∑
𝑗=1

𝑗 · Pr{ 𝑗 bookings | 𝑓 } (2.13)

As in the case of the transition probability, the issue with such a

formulation is that the sum may lead to arbitrarily large errors

when the number of terms (i.e., the capacity) increases. Instead,

we can perform the same trick as in the previous section and

rewrite it for the Gamma function as

𝑟(𝑠, 𝑎) = 𝑓
𝑐∑
𝑗=1

𝑗 · Pr{ 𝑗 bookings | 𝑓 } from eq. (2.13)

= 𝑓

[
𝑐−1∑
𝑗=1

𝑗
𝑑(𝑓)𝑗
𝑗!

𝑒−𝑑(𝑓) + 𝑐

(
1 − Γ (𝑐, 𝑑 (𝑓))

Γ (𝑐)

)]
use eq. (2.10) and eq. (2.12)

= 𝑓

[
𝑐

(
1 − Γ (𝑐, 𝑑(𝑓))

Γ(𝑐)

)
+ 𝑑(𝑓)𝑒−𝑑(𝑓)

𝑐−1∑
𝑗=1

𝑑(𝑓)𝑗−1

(𝑗 − 1)!

]
rearrange terms

= 𝑓

[
𝑐

(
1 − Γ (𝑐, 𝑑(𝑓))

Γ(𝑐)

)
+ 𝑑(𝑓)𝑒−𝑑(𝑓)

𝑐−2∑
𝑖=0

𝑑(𝑓)𝑖
𝑖!

]
replace 𝑖 = 𝑗 − 1

= 𝑓

[
𝑐

(
1 −

Γ (𝑐, 𝑑(𝑓))
Γ(𝑐)

)
+ 𝑑(𝑓)

Γ (𝑐 − 1, 𝑑(𝑓))
Γ(𝑐 − 1)

]
. use

Γ(𝑥, 𝑧)
Γ(𝑥) = 𝑒−𝑧

𝑥−1∑
𝑖=0

𝑧 𝑖

𝑖!
(2.14)

In our experience, this formulation yields better precision and

CPU performance.

2 Revenue Management Systems 28

Example 2.3.3

As in the previous example, consider the case where the flight

has a remaining capacity 𝑐 = 2 at an arbitrary remaining time

𝜏. The base fare is 𝑓0 = $50, and the system’s policy selects

fare 𝐴𝑡 = 𝜋(𝑆𝑡) = $100. The demand behavior follows the

exponential model in eq. (2.2) with �∗ = 1.5 and 𝐹∗
5
= 2. What

is the expected immediate revenue 𝑟(𝑆𝑡 , 𝐴𝑡)?

Answer. First, we can compute the state–transition probabili-

ties and gamma functions with

𝜙 =
ln(2)
𝐹5 − 1

≈ 0.7

𝑑(𝑓 = 100) = 1.5𝑒−0.7(100/50−1) = 0.745

Γ(1) = 1.0

Γ(2) = 1.0

Γ (2, 𝑑 (100)) = 0.828

Pr{1 booking | $100} = 0.353

Pr{2 bookings | $100} = 0.172,

then we can compute the expected immediate revenue with eq. (2.14)

𝑟 (𝑆𝑡 , 𝐴𝑡) = $100 ·
(
Pr{1 bookings | $100} + 2 Pr{2 bookings | $100}

)
= $100

[
2

(
1 − Γ(2, 𝑑(100))

Γ(2)

)
+ 𝑑(100)Γ(1, 𝑑(100))

Γ(1)

]
= $69.7.

The expected immediate revenue for this time step is $69.7.

2 Revenue Management Systems 29

Example 2.3.4

The function 𝑑(𝑓 ;𝝍), as defined in eq. (2.2), represents the

expected demand for fare 𝑓 . Therefore, it may be tempting to

set 𝑅𝑡 = 𝑓 · 𝑑(𝑓 ;𝝍). Why is this incorrect?

Answer. The issue with such an approach is that a part of

this demand (or all the demand) may be rejected according

to the capacity constraints, which such formulation does

not take into account. Indeed, the result of eq. (2.14) con-

verges to 𝑓 · 𝑑(𝑓 ;𝝍) when the capacity approaches infinity,

as demonstrated below.

lim

𝑐→∞
𝑟(𝑠, 𝑎) = lim

𝑐→∞
𝑓

[
𝑐

(
1 −

Γ (𝑐, 𝑑(𝑓))
Γ(𝑐)

)
+ 𝑑(𝑓)

Γ (𝑐 − 1, 𝑑(𝑓))
Γ(𝑐 − 1)

]
from eq. (2.14)

= 𝑓

[
lim

𝑐→∞
𝑐

(
1 −

Γ (𝑐, 𝑑(𝑓))
Γ(𝑐)

)
+ 𝑑(𝑓) lim

𝑐→∞

Γ (𝑐 − 1, 𝑑(𝑓))
Γ(𝑐 − 1)

]
rearrange terms

= 𝑓

[
lim

𝑐→∞
𝑐

(
1 − Γ (𝑐, 𝑑(𝑓))

Γ(𝑐)

)
+ 𝑑(𝑓)

]
use lim

𝑥→∞
Γ(𝑥, 𝑧)
Γ(𝑥) = 1

= 𝑓 · 𝑑(𝑓) use lim

𝑥→∞
𝑥

(
1 − Γ(𝑥, 𝑧)

Γ(𝑥)

)
= 0

2.3.3 Dynamic programming

Once the mechanics of the MDP have been defined, our attention

turns toward optimizing the pricing policy. As discussed in Sec-

tion 2.3.2, the system’s goal is to maximize the total amount of

reward it receives, meaning that RMS does not seek to maximize

the expectation of immediate reward but rather the expectation

of cumulative reward in the long run. The system searches for a

pricing policy 𝜋 that tells how to vary prices according to the

current inventory state to maximize the expected cumulative

reward 𝔼𝜋[𝐺𝑡 |𝑆𝑡].

To evaluate and compare policies, we define a value function
𝑣𝜋(𝑠) that outputs the expected return when starting in 𝑠 and

following policy 𝜋 subsequently,

𝑣𝜋(𝑠) � 𝔼𝜋
[
𝐺𝑡

�� 𝑆𝑡 = 𝑠
]
. (2.15)

In other words, the value function outputs the expected long–

term reward that a policy collects. Note that we can compute the

value function for any given policy, and different policies yield

different value functions. Furthermore, a practical property is

that the value of the terminal state is zero 𝑣𝜋(𝑆𝑇) � 0 because it

2 Revenue Management Systems 30

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

[30]: Bellman (1957), Dynamic Program-
ming

indicates the end of an episode, where no further rewards can

be obtained.

Similarly, we can define the value of starting from state 𝑠, selecting

action 𝑎, and following policy 𝜋 thereafter as

𝑞𝜋(𝑠, 𝑎) � 𝔼𝜋
[
𝐺𝑡

�� 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
]
. (2.16)

This function is known as the action–value function for policy 𝜋.

A policy 𝜋 is said to be better than or equal to another policy

𝜋′, i.e., 𝜋 ⩾ 𝜋′, if and only if the value function of this policy is

equal or greater than the value function of another policy for

all states, i.e., 𝑣𝜋(𝑠) ⩾ 𝑣𝜋′(𝑠) ∀𝑠 [27]. The RMS looks for a policy

that is better or equal to all others, which we call an optimal
policy, denoted by 𝜋∗. The value function for the optimal policy

is defined as

𝑣∗(𝑠) � max

𝜋
𝑣𝜋(𝑠) ∀𝑠,

or if written in terms of the action–value function,

𝑞∗(𝑠, 𝑎) � max

𝜋
𝑞𝜋(𝑠, 𝑎) ∀𝑠, 𝑎.

A useful property is that 𝑣∗ can be written in terms of 𝑞∗ as

𝑣∗(𝑠) = max

𝑎
𝑞∗(𝑠, 𝑎)

= max

𝑎
𝔼𝜋∗

[
𝑅𝑡+1 + 𝛾𝐺𝑡+1

���� 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]
use eq. (2.16)

= max

𝑎
𝔼

[
𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1)

���� 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]
use eq. (2.15)

= max

𝑎

[
𝑟(𝑠, 𝑎) + 𝛾

∑
𝑠′∈S

𝑝(𝑠′ | 𝑠, 𝑎) 𝑣∗(𝑠′)
]
.

This is known as the Bellman optimality equation for 𝑣∗, popular-

ized by Richard Bellman [30], who named it the “basic functional

equation”. We can also write the Bellman optimality equation in

terms of the action–value function as

2 Revenue Management Systems 31

𝑞∗(𝑠, 𝑎) = 𝔼

[
𝑅𝑡+1 + 𝛾 max

𝑎′
𝑞∗(𝑆𝑡+1 , 𝑎

′)
���� 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]
= 𝑟(𝑠, 𝑎) + 𝛾

∑
𝑠′∈S

𝑝(𝑠′ | 𝑠, 𝑎)max

𝑎′
𝑞∗(𝑠′, 𝑎′). (2.17)

Dynamic programming (DP) refers to the collection of algorithms

that can solve the above equation when assuming that the

state–transition probability function is completely known [27].

Indeed, if the mechanics of the MDP are completely known, the

MDP presents no loops, and the state–space is small enough,

we can keep in memory the values for each state–action pair

and compute eq. (2.17) backward from the terminal state 𝑆𝑇 ,

where 𝑞(𝑆𝑇 , 𝑎) � 0 ∀𝑎. Once the action–value function has been

computed, the optimal policy can be obtained with 𝜋∗(𝑠) =
arg max𝑎 𝑞∗(𝑠, 𝑎).

2 Revenue Management Systems 32

τ=1,
c=1

0.6

$10

$20

0.4τ=2,
c=1

0.25

0.75

$10

$20
0.6

0.4

0.25

0.75

τ=0,

c=1

τ=0,

c=0

τ=1,

c=0

S0 S1

Figure 2.5: The backup diagram for Ex-

ample 2.3.5. Terminal states are repre-

sented with squares.

Example 2.3.5

Consider a flight with only two units of time T = 2 and a

single unit of capacity C = 1. At each time step, the system

can choose among two possible fares, 𝑓 ∈ {10, 20}. When

selecting the base fare 𝑓0 = 10, the probability of observing

a booking is 0.6, but when selecting the highest fare 𝑓 = 20,

the probability of observing a booking decreases to 0.25. The

backup diagram for the corresponding MDP is illustrated

in Figure 2.5. Assuming the discount rate 𝛾 = 1, which is the

optimal policy for each state?

Answer. As the action-value function for the terminal states is

zero (𝑞∗(𝑆𝑇 , 𝑎) � 0), we can compute the Bellman optimality

equation in eq. (2.17) “backtracking” from these terminal

states. For state 𝑆1 = (𝜏 = 1, 𝑐 = 1), we can write

𝑞∗(𝑆1 , 10) = 0.4 · 0 + 0.6 · 10 = 6,

𝑞∗(𝑆1 , 20) = 0.75 · 0 + 0.25 · 20 = 5.

Thus, as fare of $10 corresponds to the action that yields the

most revenue in expectation, the optimal policy selects this

fare, i.e. 𝜋∗(𝑆1) = arg max 𝑓 ∈{10,20} 𝑞(𝑆1 , 𝑓) = $10. However,

as demonstrated below, the decision changes for the initial

state 𝑆0 = (𝜏 = 2, 𝑐 = 1).

𝑞∗(𝑆0 , 10) = 0.4 (0 + 1 · 6) + 0.6 (10 + 1 · 0) = 8.4,

𝑞∗(𝑆0 , 20) = 0.75 (0 + 1 · 6) + 0.25 (20 + 1 · 0) = 9.5.

Therefore, the optimal policy selects the highest fare for

the initial state 𝜋∗(𝑆0) = arg max 𝑓 ∈{10,20} 𝑞(𝑆0 , 𝑓) = $20. In

summary, to maximize the expected revenue, the system must

select the fare of $20 for the first time step, and if the unit of

capacity is not sold, the system must select the fare of $10 for

the second time step.

2 Revenue Management Systems 33

Example 2.3.6

What is the optimal policy for a flight with horizon T = 365

and capacity C = 50, with a fare structure of 10 price points

𝑓 ∈ {$50, $70, . . . , $230}, where the lowest fare is 𝑓0 = $50,

and the demand follows the exponential model from eq. (2.2)

with �∗ = 80/365 arrivals and 𝐹∗
5
= 2.75?

Answer. In Figure 2.6 (left), we represent the policy matrix

computed with DP, as described earlier in this section. For each

inventory state (remaining capacity and days to departure),

the matrix indicates the price point maximizing the long–

term revenue. The initial state 𝑆0 = (365, 50) is located in the

top–right corner, and, at this state, the optimal price point

is 𝜋(𝑆0) = $130. If capacity decreases faster than time, the

optimal policy increases the prices. In practice, the trajectories

in the state–action space follow the inverse diagonal of the

policy matrix, i.e., it starts in the top–right corner and moves

towards the bottom-left corner.

In practice, many states from state–space rarely are experi-

enced. Thus, when representing the policy, it is natural to

weight every action by its probability of being selected. In Fig-

ure 2.6 (right), we plot the “rollout” policy that displays the

distribution of selected fares obtained by sampling episodes.

For example, we can see that price point $230 is often chosen

by the optimal policy matrix represented on the left. However,

the states where such a price point occurs are rarely observed.

Consequently, the price point $230 is seldom selected.

0 20 40 60 80
100

120
140

160
180

200
220

240
260

280
300

320
340

360

Time steps to departure (�)

0

5

10

15

20

25

30

35

40

45

50

R
e

m
a

in
in

g
 c

a
p

a
ci

ty
 (

c)

$130

$150

$170

$190
$210

$230

�(s)

50 70 90
110

130
150

170
190

210
230

Fare ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

Rollout policy

Figure 2.6: The optimal policy is computed with dynamic programming for the exponential demand model with �∗ = 80/365

and 𝐹∗
5
= 2.75.

2 Revenue Management Systems 34

2.4 Summary

The fundamental design of a revenue management system is

composed of a historical database, a forecaster, and an optimizer.

The forecaster uses the historical booking data to fit a parametric

demand model, which is used for optimizing the pricing policy.

One of the simplest models is the exponential demand model,

which assumes that customers arrive according to a Poisson pro-

cess and decide to purchase or not according to the exponential

decay probability as a function of the fare. An approximation

of the demand model parameters can be obtained through the

maximum log–likelihood estimation.

We can describe the pricing problem as a finite–state Markov de-

cision process (MDP), where states are the number of remaining

time steps to departure and the remaining units of capacity, the

actions are the fares that the system is allowed select, and the

rewards are the immediate expected revenue for each time step.

The system’s goal is to find the mapping between states and

actions (policy) to maximize the reward signal (i.e., long–term

revenue).

The collection of algorithms that can solve this optimization prob-

lem, called dynamic programming (DP), relies on the concept of

value functions to organize the search for optimal policies. DP

methods require the perfect knowledge of the MDP mechanics,

i.e., the complete distribution of state–transition probabilities.

To implement the DP algorithm, the system needs to translate

the exponential demand model to the transition probabilities

required by the Bellman optimality equation. Because the MDP

presents no loops, the action–value function can be computed by

backtracking from terminal states. Finally, the optimized pricing

policy can be trivially obtained by selecting the fare maximizing

the action–value function for each state.

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

[32]: Ludvig, Sutton, et al. (2008), “Stim-

ulus representation and the timing of

reward-prediction errors in models of

the dopamine system”

[33]: Takahashi, Schoenbaum, et al.

(2008), “Silencing the critics: under-

standing the effects of cocaine sensiti-

zation on dorsolateral and ventral stria-

tum in the context of an actor/critic

model”

[34]: Tomov, Schulz, et al. (2021), “Multi-

task reinforcement learning in humans”

Pricing Optimization with
Reinforcement Learning 3

3.1 The nature of reinforce-
ment learning 35

3.2 A brief introduction to
the mathematical theory
of reinforcement learning 37

3.2.1 Temporal–difference
learning 37

3.2.2 Q-Learning 41
3.2.3 Connections to dynamic

programming 43
3.2.4 Reinforcement learning

with function approxima-
tion 47

3.3 Model–based and model–
free reinforcement learn-
ing 51

3.4 Reinforcement learn-
ing applied to revenue
management 52

3.5 The (possibly) false
promise of model–free
revenue management . . 54

3.6 Summary 56

Applying the techniques of reinforcement learning to RM is not

a new concept. This chapter reviews the basic concepts behind

reinforcement learning, how researchers applied it to airline RM,

and the limits of current approaches.

3.1 The nature of reinforcement learning

Learning from our own experience is probably one of the first

ideas that occur when we think about the nature of learning. An

infant learning how to walk needs to learn how to translate the

sensory information, such as sight and sense of balance, into

muscle contraction and relaxation that corresponds to the act

of walking. The child learns to walk from experience obtained

through trial–and–error with the surrounding environment
*
.

This idea of learning from experience is central to reinforce-

ment learning (RL), which concentrates on the computational

approaches for learning through interaction with an environ-

ment [27].

The modern field of RL comes from the intertwining of the branch

of psychology that focuses on the investigation of animal learning

theory and the field of mathematics that focuses on optimal

control and its solutions based on value functions and DP [27].

Even though the parallels between the mathematical models

and experimental studies from psychology and neuroscience are

striking [32–34], we only focus on applying the mathematical

methods to address decision problems in the field of airline

RM.

The term reinforcement learning can sometimes be confusing be-

cause it often refers to a set of methods that addresses a particular

class of problems and the field that studies this class of problems.

By RL, we refer to the field of study that addresses optimal con-

trol of incompletely–known Markov decision processes, in contrast

to classical solution methods that require the complete knowledge

of the MDP dynamics (i.e., the state–transition probability and

expected reward functions), such as DP.

In the center of RL, we find the agent representing the decision–

maker. The agent’s task is to map observations (i.e., states) from

*
Children may also learn how to walk by observing adults and other children.

Topics of such imitation learning [31] are beyond our scope.

3 Pricing Optimization with Reinforcement Learning 36

Environment

Reward

Observation

Action

Agent

Figure 3.1: The RL agent interacts with

its environment. The environment emits

observations and rewards. The agent

maps the observations into actions,

which in turn may influence the envi-

ronment’s future observations. The RL

agent seeks to select actions in order to

maximize the collected rewards.

1: The performance metric is most often

chosen to be, but not limited to, the sum

of the observed discounted rewards (i.e.,

the return).

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

the environment into actions while maximizing a numerical re-
ward signal defining the agent’s goal. In principle, the agent

is uninformed of which actions to take and needs to discover,

through trial–and–error, the actions yielding the most rewards.

Usually, the agent starts performing poorly, often as good as

choosing actions at random, and, by accumulating experience,

the agent’s performance gradually increases
1
. In the most in-

teresting cases, selecting an action impacts the future observed

states and thus the future rewards. The trial–and–error nature

and delayed rewards are the two most distinctive features of

RL [27]. In Figure 3.1, we illustrate how the several elements of

an RL system interact.

The definition of observations, actions, and rewards depends on

the task. For example, when researchers developed an RL agent

capable of defeating Lee Sedol, the 18-time world champion in

the game of Go [35]

[35]: Silver, Huang, et al. (2016), “Mas-

tering the game of Go with deep neural

networks and tree search”

(see Figure 3.2), the observations were a

19 × 19 × 48 image stack in which each point on the 19 × 19

Go board was represented by 48 binary or integer features.

These features described whether the position was occupied or

unoccupied by a stone and if the stone was an opponent stone

or not, conveying the raw state of the board. Other features were

motivated by the game rules, such as the number of adjacent

unoccupied points or any features the design team considered

important. The action was where to place the next stone, and

the reward signal was +1 for victory, −1 for defeat, and zero

otherwise.

Figure 3.2: Screenshot showing Al-

phaGo’s move B37 described by Michael

Redmond, a 9-dan professional player,

as ”creative” and ”the reason people be-

come pros” during the second game of

the DeepMind vs. Lee Sedol challenge.

Image adapted from en.wikipedia.org

under license CC BY-SA 3.0.

Beyond the environment, the agent, and the reward signal,

there are three main subelements in the RL system. The first is

the policy, which is the function that maps observations from the

environment into actions. The goal of the RL agent is to find the

policy maximizing the reward signal. The policy represents a

lookup table, a complex computation process, a set of rules, or

a parameterized function, to cite a few. It can be deterministic,

https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
https://creativecommons.org/licenses/by-sa/3.0/

3 Pricing Optimization with Reinforcement Learning 37

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

2: The model is optional and often not

present.

[36]: Sutton (1988), “Learning to predict

by the methods of temporal differences”

producing a single action to take, or stochastic, returning a

probability distribution for all available actions [27].

The second subelement is the value function, which is responsible

for identifying what is good or bad from the perspective of the

reward signal in the long run. Whereas rewards define good

and bad decisions instantaneously, the value function seeks to

predict if a particular state is good or bad regarding future

rewards when following a given policy [27]. In the problems

we address, the solution often requires short–term sacrifice to

achieve long–term goals.

The third and last subelement is the model of the environment
2
.

The model represents anything the RL agent can use to predict

how the environment responds to actions. There are essentially

two types of models: The distribution models, which describe

every possible outcome weighted by their probabilities when

transitioning from one state to another, and the sample models,
which produce just one example from all possible outcomes. RL

systems using models and planning are known as model–based
methods, contrary to pure trial–and–error learners, called model–
free methods [27].

3.2 A brief introduction to the mathematical
theory of reinforcement learning

This section reviews some mathematical methods for addressing

the optimal control of incompletely-known MDPs. We seek to

explain and illustrate some of the most fundamental concepts

behind the RL methods used throughout this work.

3.2.1 Temporal–difference learning

There are many ways to use the experience to optimize policies,

but the most influential methods use the concept of temporal–

difference learning (or TD-learning) [36]. To explain this concept,

we first concentrate on the prediction problem, where the system’s

policy 𝜋 is given and fixed, and the goal is to evaluate how good

this policy is concerning reward maximization. In other words,

we seek to compute an approximation of the value function

defined in eq. (2.15), denoted as 𝑉(𝑠), from experience generated

by interactions between the policy 𝜋 with the environment, i.e.,

𝑉(𝑆𝑡) ≈ 𝑣𝜋(𝑆𝑡). The collected experience are sample trajecto-

ries in the state–action space 𝑆0 , 𝐴0 , 𝑅1 , · · · , 𝑆𝑇 , as described

in Section 2.3.2.

3 Pricing Optimization with Reinforcement Learning 38

Algorithm 1: Tabular TD(0) for estimating 𝑣𝜋, adapted from [27]

Input: The policy 𝜋 to be evaluated and the learning rate 𝛼 ∈ [0, 1].
1 initialize 𝑉(𝑠), for all 𝑠 ∈ S arbitrarily, except that 𝑉(𝑆𝑇) � 0;

2 Loop forever
3 initialize 𝑆← 𝑆0;

4 for each step of episode do
5 𝐴← 𝜋(𝑆);
6 take action 𝐴, observe 𝑅, 𝑆′;
7 𝑉(𝑆) ← 𝑉(𝑆) + 𝛼

[
𝑅 + 𝛾𝑉(𝑆′) −𝑉(𝑆)

]
;

8 𝑆← 𝑆′;

Perhaps the simplest TD-method, known as TD(0), updates the

estimate of the value function 𝑉(𝑆𝑡) at time 𝑡 + 1 using the

observed reward 𝑅𝑡+1 and the next state 𝑆𝑡+1 according to

𝑉(𝑆𝑡) ← 𝑉(𝑆𝑡) + 𝛼
[
𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1)︸ ︷︷ ︸

target

− 𝑉(𝑆𝑡)︸︷︷︸
estimate︸ ︷︷ ︸

TD-error

]
, (3.1)

where ‘←’ denotes that the current value is updated with the

evaluation of the right–hand side of the equation, and the param-

eter 𝛼 ∈ [0, 1] is the learning rate, often referred to as the step–size.

The value function 𝑉(·) is represented as a table holding sepa-

rated estimations for every encountered state. The updates are

performed as soon as the experience is collected, as described in

Algorithm 1.

To capture the intuition behind the TD(0) algorithm, note that the

quantity in between the brackets of eq. (3.1) plays the role of an

error, also known as the TD-error, which returns the difference

between the current estimate 𝑉(𝑆𝑡) and a new better estimate

given by𝑅𝑡+1+𝛾𝑉(𝑆𝑡+1). This form arises in many RL algorithms,

and we often denote the TD-error with

𝛿𝑡 � 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) −𝑉(𝑆𝑡). (3.2)

A remarkable aspect of the TD(0) algorithm relates to its similar-

ity to the iterative average �̄� of random observations 𝑋𝑖 , given

by

3 Pricing Optimization with Reinforcement Learning 39

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

�̄�𝑖+1 = �̄�𝑖 +
1

𝑖

[
𝑋𝑖︸︷︷︸

target

− �̄�𝑖︸︷︷︸
estimate

]
,

︸ ︷︷ ︸
error

where �̄�0 � 0. In other words, TD(0) is essentially performing

averages, where the target is the next reward added to the

current estimation of the value of the observed next state 𝑋𝑖 =

𝑅𝑡 + 𝛾𝑉(𝑆𝑡+1), and the old estimate is given by the current

estimation of the value function for the observed state �̄�𝑖 = 𝑉(𝑆𝑡).
The learning rate 𝛼 = 1/𝑖 decreases as the agent experiences

new sample observations.

Contrary to the equation of the iterative average, we presented

the learning rate 𝛼 in eq. (3.1) as a fixed value. However, it is a

common practice to vary the learning rate as training progresses.

Let’s denote 𝛼𝑛(𝑠) as the learning rate parameter used to process

the reward received after the 𝑛-th observation of state 𝑠. To guar-

antee the convergence of the TD(0) algorithm, the learning rate

needs to decrease while following the stochastic approximation

conditions [27]

∞∑
𝑛=1

𝛼𝑛(𝑠) = ∞ and

∞∑
𝑛=1

𝛼2

𝑛(𝑠) < ∞. (3.3)

The simplest way to ensure such a condition is to set 𝛼𝑛(𝑠) = 1/𝑛,

joining the iterative average equation. If the learning rate is

constant 𝛼𝑛(𝑠) = 𝛼, then the system never converges completely,

adapting its responses with more emphasis to the most recently

received rewards.

3 Pricing Optimization with Reinforcement Learning 40

Example 3.2.1

To provide some intuition on the TD(0) algorithm, we present

an adaptation of Example 6.4 from [27] [27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

. In many cases of

interest, the learning system has available only a finite amount

of experience for training, e.g., 10 episodes. In such cases, a

typical approach is to repeatedly input the available batch of

data into the learning method until convergence. The TD(0)

algorithm converges deterministically to a single answer

independently of the learning rate 𝛼 parameter as long as 𝛼 is

sufficiently small. Consider yourself the predictor of returns

for an unknown Markov reward process. Markov reward

processes are like Markov decision processes but without

actions. Suppose you observe the following eight episodes

(1) B, 1

(2) B, 1

(3) B, 1

(4) B, 1

(5) B, 1

(6) B, 1

(7) B, 0

(8) A, 0, B, 0

The first episode starts in B and immediately terminates with

a reward of 1. The six following episodes are similar, except

for the last two. In the seventh episode, we observe an episode

that starts in B and terminates with a reward of 0. The last

episode starts in state A, then it transitions to state B with

a reward of 0 and terminates with a reward of 0 as well.

Given such a batch of observations, what could be reasonable

estimates for 𝑉(𝐴) and 𝑉(𝐵)?

Answer. We have observed state B once in all eight episodes,

where in six of these episodes, the experienced reward transi-

tioning for the terminal state is 1. Thus,

𝑉(𝐵) = 6

8

= 0.75

For state A, we observe it only once, in the eighth episode,

where it transitioned to state B with a reward of 0. Because

the value of state B is 𝑉(𝐵) = 3/4, and we did not observe any

rewards from state A to state B, it is reasonable to bootstrap

the value of state A from the value of state B as 𝑉(𝐴) =
𝑉(𝐵) = 3/4.

3 Pricing Optimization with Reinforcement Learning 41

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

[37]: Watkins (1989), “Learning from

delayed rewards”

3.2.2 Q-Learning

In most use cases, we are interested in finding the optimal

control policy, which is not possible with model–free methods

based only on the value function estimation, such as TD(0).

Instead, the system needs to estimate the value of each action

explicitly for inferring a policy [27]. Therefore, our goal is to

approximate the action–value function 𝑄(𝑠, 𝑎) ≈ 𝑞∗(𝑠, 𝑎), which

outputs the expected return when starting at state 𝑠, taking

action 𝑎, and following the optimal policy afterward. One of the

most influential RL methods for learning this function is named

Q-Learning [37], which was one of the first breakthroughs in RL

because it enabled early convergence proofs. The Q-Learning

update is defined as

𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼
(
𝑅𝑡+1 + 𝛾 max

𝑎
𝑄(𝑆𝑡+1 , 𝑎) −𝑄(𝑆𝑡 , 𝐴𝑡)

)
.︸ ︷︷ ︸

TD-Error

(3.4)

Similar to TD(0), Q-Learning computes estimations based on the

TD-errors, but differently from TD(0), Q-Learning uses action–

value estimates 𝑄(𝑠, 𝑎) rather than value estimates 𝑉(𝑠). For

Q-Learning, correct convergence only requires that all state–

action pairs are updated continuously and that the learning rate

decreases according to the stochastic approximation conditions

presented in eq. (3.3) [27].

To guarantee that all state–action pairs are continuously updated,

the RL agent needs to try different actions when experiencing

the same state (within different episodes or the same episode

if the MDP has loops). However, the RL agent must select the

action that yields the most rewards to maximize the expected

return.

Actions maximizing the expected return according to the RL

agent’s current knowledge of its environment are named greedy
actions, and the act of selecting such actions is known as exploita-
tion. On the contrary, selecting nongreedy actions is called explo-
ration, and such actions allow the agent to improve its knowledge

of how the environment responds to nongreedy actions. Exploita-

tion is the correct thing to do when maximizing the expected

return. However, the agent cannot hope to know with certainty

the right thing to do because all the agent has available to make

decisions are estimations of action values (and the agent needs

to try these actions to learn the value of nongreedy actions). As it

3 Pricing Optimization with Reinforcement Learning 42

Algorithm 2: Q-Learning for estimating 𝜋 ≈ 𝜋∗, adapted from [27]

Input: Learning rate 𝛼, discount rate 𝛾 ∈ [0, 1] and 𝜖 > 0

1 initialize 𝑄(𝑠, 𝑎) arbitrarily, except that 𝑄(terminal, ·) = 0;

2 Loop forever
3 initialize 𝑆← 𝑆0;

4 for each step of the episode do
5 choose 𝐴 from 𝑆 using the policy derived from 𝑄 (e.g., 𝜖-greedy);

6 take action 𝐴, observe 𝑅, 𝑆′;
7 𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼

[
𝑅 + 𝛾 max𝑎 𝑄(𝑆′, 𝑎) −𝑄(𝑆, 𝐴)

]
;

8 𝑆← 𝑆′;

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

is impossible to select greedy and nongreedy actions simultane-

ously, we face a “conflict” between exploration and exploitation,

often referred to as the exploration–exploitation trade–off [27].

Perhaps the simplest way to enforce that the RL agent explores

its environment is by setting some small probability 𝜖, such

that the agent randomly selects among all possible actions with

equal probability, and the rest of the time, the RL agent selects

the greedy action. The policies that follow such an exploration

method are called 𝜖-greedy policies, and they are defined as

𝜋(𝑠) =
{

arg max𝑎 𝑄(𝑠, 𝑎) if {X > 𝜖 | X ∼ U(0, 1)}
random action otherwise

(3.5)

where X ∼ U(0, 1) is a random variable sampled according to

the uniform distribution in the range [0, 1].

The Q-Learning algorithm presented in Algorithm 2 is similar

to TD(0) from Algorithm 1. The agent observes states, interacts

with its environment through actions, and receives rewards. The

agent updates the value function at each time step according

to the error between its expectations and observed rewards.

The Q-Learning algorithm differs mainly with respect to the

value function update rule and the presence of the 𝜖-greedy

exploration.

3 Pricing Optimization with Reinforcement Learning 43

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

[38]: Heinrich and Silver (2016), “Deep

reinforcement learning from self-play

in imperfect-information games”

[39]: Vinyals, Babuschkin, et al. (2019),

“Grandmaster level in StarCraft II using

multi-agent reinforcement learning”

Example 3.2.2

If the environment has |A| = 5 possible actions, and the

designer chooses 𝜖 = 0.1, which is the probability of taking

the greedy action?

Answer. The greedy action can be selected as an exploitation

action with probability 1− 𝜖 = 0.9, or as an exploration action

with probability 1/|A| = 0.2. Thus, the probability of taking

the greedy action is given by

Pr

{
𝐴 = arg max

𝑎

𝑄(𝑆, 𝑎)
}
= (1 − 𝜖) + 𝜖

1

|A|
= 0.9 + 0.1 · 0.2
= 0.92

3.2.3 Connections to dynamic programming

Dynamic programming and Q-Learning, represented by eqs. (2.17)

and (3.4), seek to compute optimal action–value function through

two different means. One of the most important advantages of

Q-Learning is that it approximates 𝑞∗ from sample data. In other

words, the system does not need the state–transition probabil-

ities 𝑝(𝑠′ | 𝑠, 𝑎) and the expected reward 𝑟(𝑠, 𝑎) functions, as

in the previous chapter. This is appealing because it enables

learning from direct experience with the world without the need

to build any models (model–free). Furthermore, even if learning

is performed from experience generated with interactions of a

simulated model, “in surprisingly many cases it is easy to gen-

erate experience sampled according to the desired probability

distributions, but infeasible to obtain the distributions in explicit

form” [27], as required by DP. For example, it is much easier

to develop a sample model environment for Poker [38] than to

compute all possible outcomes weighted by their probabilities.

Another issue related to DP is the curse of dimensionality. To

compute the state–action value function in eq. (2.17), the system

must perform at least one single sweep across the state–action

space. In many problems of interest, the state–action space can

be arbitrarily large, making it impossible to perform even a

single sweep in a reasonable amount of time. For example, in

StarCraft II, the action space alone is estimated to be the size

of 10
26

[39], making it computationally impractical for exact

methods. On the other hand, RL generates trajectories and

performs updates at the state–action pairs encountered along

the way, directing the learning towards state–action pairs that

3 Pricing Optimization with Reinforcement Learning 44

Start States

Revelant States Irrelevant States

unreachable from

optimal policy

Figure 3.3: From a given set of start

states, some states may be visited very

rarely or they may not even be reachable

while following an optimal policy. For

such states, there is no need to specify

optimal actions. Figure was adapted

from [27] under license CC BY-NC-ND

2.0.

3: Adaptations of DP were proposed to

incorporate trajectory sampling, such

as real–time dynamic programming,

which is an on–policy trajectory sam-

pling version of the value–iteration al-

gorithm of DP [27]. This class of algo-

rithms is not considered in our work,

because we concentrate on the optimiza-

tion of unknown MDPs where the state–

transition probability function is not

available to the system.

occur more frequently, thus focusing computational resources

where they are most needed (see Figure 3.3). We call such a

way of generating experience and performing updates trajectory
sampling3

. Even though trajectory sampling is simple and efficient,

it is not enough when addressing problems with arbitrarily large

state–action spaces because tabular RL methods, such as Q-

Learning, must keep the memory of the value for all possible

state–action pairs, which is impractical for large optimization

problems. In the following sections, we discuss ways to address

this issue.

https://www.creativecommons.org/licenses/by-nc-nd/2.0/
https://www.creativecommons.org/licenses/by-nc-nd/2.0/

3 Pricing Optimization with Reinforcement Learning 45

STS0

S1

S2

0.6

0.4

0.4

1.

0.6

Figure 3.4: The backup diagram for Ex-

ample 3.2.3.

Example 3.2.3

Consider the three–state Markov chain illustrated in Figure

3.4. Markov chains are like the Markov decision processes,

but without actions or rewards, where the system observes

only a sequence of states. As usual, the system starts every

episode in state 𝑆0, and, in the following time step, it may

transition to state 𝑆1 with a probability of 0.6 or transition

to state 𝑆2 with a probability of 0.4. Similarly, when in state

𝑆1, the system can transition to the terminal state 𝑆𝑇 with a

probability of 0.6, or reach state 𝑆2 with a probability of 0.4.

From state 𝑆2, the system always transitions to the terminal

state. Which is the probability of observing state 𝑆2 during

an episode?

Answer. The state 𝑆2 can be reached from two conditions,

either from state 𝑆1 with a probability of 0.4 or from state 𝑆0

with a probability of 0.4. In other words, we can write

Pr{𝑆2} = 0.4 · Pr{𝑆1} + 0.4 · Pr{𝑆0}

The probability of observing the initial state is one because

every episode starts in this state, i.e., Pr{𝑆0} � 1. The only

way to reach state 𝑆1 is from state 𝑆0, which happens with a

probability of 0.6, thus Pr{𝑆1} = 0.6. Finally, the probability

of experiencing state 𝑆2 for any arbitrary trajectory is

Pr{𝑆2} = 0.4 · 1 + 0.4 · 0.6 = 0.64

3 Pricing Optimization with Reinforcement Learning 46

Example 3.2.4

When we defined the MDP for single–leg optimization in

Section 2.3.2, we said that every selling episode for each flight

starts at the initial state 𝑆0 = (T, 𝐶) and terminates when the

flight departs 𝑆𝑇 = (0, ·) or when the remaining capacity is

exhausted 𝑆𝑇 = (·, 0). As the MDP has no loops, the probabil-

ity of observing a state while following a deterministic policy

𝑎 = 𝜋(𝑠) can be computed by recursively evaluating the prob-

ability of experiencing previous states, as presented in the

previous example. Which is the probability of observing any

arbitrary state 𝑠 in the MDP while following policy 𝜋?

Answer. Let Pr{𝑠 |𝜋,𝝍} denote the probability of observing

any state while following the policy 𝜋 when demand behaves

according to 𝑑(𝑓 ;𝝍). Furthermore, for any state–action pair

𝑠, 𝑎, we can write the probability of observing the next state

𝑠′ according to eq. (2.10) described in Section 2.3.2. The prob-

ability of experiencing any state 𝑠′ depends on the transition

probabilities from other states preceding this one and ac-

tions taken for each previous states according to the policy 𝜋.

Mathematically,

Pr{𝑠′ | 𝜋,𝝍} =
∑
𝑠∈S

Pr{𝑠 | 𝜋,𝝍} · 𝑝(𝑠′ |𝑠,𝜋(𝑠);𝝍).

Because any trajectory deterministically starts in state 𝑆0,

we can write Pr{𝑆0 | 𝜋,𝝍} � 1, allowing us to efficiently

compute the recursive formula above for all states in a DP-like

algorithm (starting from state 𝑆0, we can forward propagate

the probability of experiencing every state until we reach the

terminal states).

Figure 3.5 illustrates the state–space distribution (i.e., the

probability of observing each state) while following the op-

timal policy for a flight with C = 50 units of capacity and

T = 365 time steps to departure when the demand follows

�∗ = 80/365 and 𝐹∗
5
= 2.75. States that are more likely to be

experienced during an episode are represented by a darker

color. The first thing we bring to attention is that not all states

have the same importance because some are more likely to

be experienced than others. Furthermore, we also see that a

significant amount of the states (43.8%) have less than 0.1%

probability of being experienced during a sample episode

(states represented in white). While DP dedicates equal com-

putational resources (e.g., CPU time) for all states, RL cuts off

the zones of the state–space that play little role in the average

3 Pricing Optimization with Reinforcement Learning 47

[35]: Silver, Huang, et al. (2016), “Mas-

tering the game of Go with deep neural

networks and tree search”

performance, dedicating computational resources where its

impact is more important.

0 20 40 60 80
100

120
140

160
180

200
220

240
260

280
300

320
340

360

Time steps to departure (�)

0

5

10

15

20

25

30

35

40

45

50

R
e

m
a

in
in

g
 c

a
p

a
ci

ty
 (

c)

Figure 3.5: The state–space distribution

for Example 3.2.4. States more likely to

be experienced are represented with a

darker color. States represented in white

are have less than 0.1% change of being

experienced.

3.2.4 Reinforcement learning with function
approximation

The methods presented so far (DP and Q-Learning) hold individ-

ual estimations for every state–action pair, and, for this reason,

they are known as tabular methods. In many tasks, the state

space is combinatorial and large, and these methods cannot be

used. For example, the number of board combinations for the

game of Go is larger than the number of atoms in the visible

universe [35]. In such cases, we cannot expect to find the optimal

policy or optimal value function even within the limit of infinite

data. Instead, we seek an approximate solution obtained with

limited computational resources.

The problem with large state spaces is not only the memory

needed for storing large tables but also the time required to

fill them accurately: Many of the states encountered by the

learning system may never be observed twice. Thus, making

reasonable decisions requires the RL agent to generalize from

past observations that share similarities, in some sense, to the

current observation.

Fortunately, generalization from sample data is a subject exten-

sively studied in many fields of science, such as machine learning,

artificial neural networks (ANNs), and statistical curve fitting,

and many ideas from these fields are exploitable in RL. This form

of generalization is also known as function approximation, and it

attempts to construct an approximation of the entire function

based on examples. In principle, the agent can represent the

value function by a parameterized function 𝑞(𝑠, 𝑎; w) ≈ 𝑞𝜋(𝑠, 𝑎)
where w is the weight vector. For example, 𝑞(𝑠, 𝑎; w) could be a

3 Pricing Optimization with Reinforcement Learning 48

simple linear function in features of the state–action pair, with w
as the vector of feature weights. Or, 𝑞(𝑠, 𝑎; w) could be computed

by a deep ANN where w represents the connection weights in

all layers. In theory, RL can use any of the methods studied in

these fields. However, according to the application, some fit more

easily than others. In Chapter 4, we pay particular attention to

policy and value function approximation with ANNs because of

their ability to generalize from sample data and because ANNs

are derivable functions, thus fitting well in the RL framework, as

we discuss in the next section.

Example 3.2.5

Consider a designer has the task of training an RL agent to

win a car race. At each time step, the system collects the 𝑥-𝑦

coordinates of the car as well as the current 𝑥-𝑦 velocities, and

the actions consist of accelerating or slowing down at the 𝑥-𝑦

axis. The rewards are straightforward, +1 if the car wins the

race, zero otherwise. The corresponding state–action feature

vector is x(𝑠, 𝑎) = [𝑥, 𝑦, 𝑣𝑥 , 𝑣𝑦 , 𝑎𝑥 , 𝑎𝑦], where 𝑥, 𝑦 are the

coordinates, 𝑣𝑥 , 𝑣𝑦 are the velocities, and 𝑎𝑥 , 𝑎𝑦 represent the

acceleration. The designer chooses to approximate the action–

value function with linear approximation, i.e., 𝑞(𝑠, 𝑎; w) =
x(𝑠, 𝑎) ·w ≈ 𝑞∗(𝑠, 𝑎), where the w ∈ ℝ6

is the weight vector.

Suppose that for time step 𝑡, the evaluated feature vector

corresponds to x(𝑆𝑡 , 𝐴𝑡) = [2, 1,−1, 1, 0, 2], and the trained

weights are given by w = [1,−1.5, 0.5, 0.5, 3, 0.2]. What is the

estimated action–value 𝑞(𝑆𝑡 , 𝐴𝑡 ; w)?

Answer. As the designer defined the action value to be the

inner product between the feature vector and the weight

parameters, the estimated action value can be obtained with

𝑞(𝑆𝑡 , 𝐴𝑡 ; w) =
5∑
𝑖=0

𝑥𝑖 𝑤𝑖

= (2 · 1) + (1 · −1.5) + (−1 · 0.5)
+ (1 · 0.5) + (0 · 3) + (2 · 0.2)

= 0.9

3 Pricing Optimization with Reinforcement Learning 49

Deep Q-Networks

One of the most difficult challenges in applying RL to real–world

problems is deciding how to represent and store value functions

and policies. Unless the state–action space is small enough to

allow exhaustive representation through a table, some degree of

function approximation is necessary. Function approximation

relies on features that are often carefully handcrafted based

on expert knowledge and intuition on the task being solved.

These features must be readily accessible to the learning system

and carry the necessary information for reaching the desired

performance.

Figure 3.6: Atari console. Image from px-

here.com.

In one of the most remarkable studies in the field of RL, the

agent reaches super–human performance in a large fraction of

the 49 classic Atari 2600 games [40, 41]

[40]: Mnih, Kavukcuoglu, et al. (2013),

“Playing atari with deep reinforcement

learning”

[41]: Mnih, Kavukcuoglu, et al. (2015),

“Human-level control through deep re-

inforcement learning”

(see Figure 3.6), using the

so-called deep Q-network (DQN) that combined Q-Learning with

a deep convolutional ANN. Convolutional ANNs are networks

specialized in processing spatial arrays of data such as images.

DQN demonstrates that a generic ANN can automate the process

of feature engineering.

SPACE INVADERS SCORE: 24567

CREDIT 00

Figure 3.7: Screenshot of Space Invaders,

one of the 49 Atari 2600 games which

the RL agent achieved super–human

performance. Image adapted from open-

clipart.org.

Humans playing any 49 Atari games see 210 × 160 pixel image

frames with 128 colors at 60Hz, which, could be, in principle,

used for training the agent (see Figure 3.7). However, to reduce

memory and processing requirements, researchers preprocessed

each frame, reducing them to an 84 × 84 array of luminance

values. Because the full states of many of the Atari games cannot

be observed only by the most recent frame, the four most recent

frames were stacked, creating a total input dimension of 84×84×4.

The actions naively corresponded to the joystick’s buttons, such

as up, down, right, or left. The rewards were +1 if the game’s

score increased from one time step to the next, -1 if lowered, and

0 otherwise. The DQN training used an 𝜖-greedy policy with 𝜖
decreasing linearly over the first million frames and remaining

low subsequently.

The ANN approximates the action–value function 𝑞(𝑠, 𝑎; w) ≈
𝑞∗(𝑠, 𝑎) through Q-Learning, i.e., for an experienced tuple 𝑆𝑡 , 𝐴𝑡 ,

𝑅𝑡+1, 𝑆𝑡+1, we can write

𝑞(𝑆𝑡 , 𝐴𝑡 ; w) ≈ 𝔼∗
[
𝑅𝑡+1 + 𝛾 max

𝑎
𝑞∗(𝑆𝑡+1 , 𝑎)

�� 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
]
.

The ANN connection weights w are obtained by minimizing

a sequence of the loss functions L𝑖(w𝑖) that changes at each

iteration 𝑖,

https://pxhere.com/en/photo/1386915
https://pxhere.com/en/photo/1386915
https://openclipart.org/detail/281437/space-invaders
https://openclipart.org/detail/281437/space-invaders

3 Pricing Optimization with Reinforcement Learning 50

L𝑖(w𝑖) = �̂�𝜋

[(
𝑅𝑡 + 𝛾 max

𝑎
𝑞(𝑆𝑡+1 , 𝑎; w𝑖−1) − 𝑞(𝑆𝑡 , 𝐴𝑡 ; w𝑖)︸ ︷︷ ︸

TD−error

)
2

]
.

where �̂�𝜋[·] indicates the empirical average over a finite batch

of samples collected while following policy 𝜋. When optimiz-

ing the loss function, the weight parameters of target 𝑅𝑡 +
𝛾 max𝑎 𝑞(𝑆𝑡+1 , 𝑎; w𝑖−1) are held fixed to the values of the pre-

vious iteration, i.e., w𝑖−1. These targets depend on the ANN

weights, differently than most supervised learning tasks where

they are fixed before learning begins.

Differentiating the loss function with respect to the weights gives

us,

∇L𝑖(w𝑖) = �̂�𝜋

[(
𝑅𝑡 + 𝛾 max

𝑎
𝑞(𝑆𝑡+1 , 𝑎; w𝑖−1) − 𝑞(𝑆𝑡 , 𝐴𝑡 ; w𝑖)

)
∇𝑞(𝑆𝑡 , 𝐴𝑡 ; w𝑖)

]
,

which can be optimized through the stochastic gradient descent

according to the semi–gradient update rule

w𝑖+1 = w𝑖 − 𝛼 · �̂�𝜋

[(
𝑅𝑡 + 𝛾 max

𝑎
𝑞(𝑆𝑡+1 , 𝑎; w𝑖−1) − 𝑞(𝑆𝑡 , 𝐴𝑡 ; w𝑖)

)
∇𝑞(𝑆𝑡 , 𝐴𝑡 ; w𝑖)

]
. (3.6)

As presented in the training pseudocode in Algorithm 3, the

training experience is collected through interactions with an Atari

emulator, and the sampled transitions are stored in an experience
replay buffer of fixed size. At each training iteration, a mini–
batch of samples is extracted from the experience replay buffer,

and the ANN weights are updated according to eq. (3.6). The

experience replay buffer plays a central role in the training

stability because it reduces the variance of updates by removing

the correlation between successive updates in the weight vector

(as it would happen in tabular Q-Learning presented in Section

3.2.2). Another important aspect of DQN is that the targets 𝑅𝑡 +
𝛾 max𝑎 𝑞(𝑆𝑡+1 , 𝑎; w𝑖−1) are fixed to a previous estimation when

optimizing the loss function, making these targets independent

of the parameters being optimized. Such an approach simplifies

the procedure while avoiding oscillations or divergence, bringing

it closer to the simpler supervised–learning case while allowing

the agent to bootstrap.

3 Pricing Optimization with Reinforcement Learning 51

Algorithm 3: Deep Q-Learning for Atari, adapted from [40]

Input: The learning rate 𝛼 ∈ [0, 1], the buffer capacity 𝑁 and the exploration

rate 𝜖.

1 initialize the replay memory M with capacity 𝑁 ;

2 initialize the action–value function weights w arbitrarily;

3 Loop forever
4 initialize 𝑆0 = 𝑋0 with the first image 𝑋0 and preprocess sequence

𝑥0 = 𝑋(𝑆0);
5 for 𝑡 = 1, . . . 𝑇 do
6 choose 𝐴𝑡 = max𝑎 𝑞(𝑋(𝑆𝑡), 𝑎; w)with probability 1 − 𝜖, otherwise

choose a random action;

7 take action 𝐴𝑡 , observe reward 𝑅𝑡+1 and next image 𝑋𝑡+1;

8 set 𝑆𝑡+1 = {𝑋𝑡−2 , · · · , 𝑋𝑡+1} and preprocess 𝑥𝑡+1 = 𝑋(𝑆𝑡+1);
9 store transition (𝑥𝑡 , 𝐴𝑡 , 𝑅𝑡+1 , 𝑥𝑡+1) in M;

10 sample random minibatch of transitions (𝑥 𝑗 , 𝑎 𝑗 , 𝑟𝑗+1 , 𝑥 𝑗+1) from M;

11 set 𝑦 𝑗 =

{
𝑟 𝑗+1 for terminal 𝑥 𝑗+1

𝑟 𝑗+1 + 𝛾 max𝑎 𝑞(𝑥 𝑗+1 , 𝑎; w) for non-terminal 𝑥 𝑗+1

;

12 perform a gradient descent step on

(
𝑦 𝑗 − 𝑞(𝑥 𝑗 , 𝑎 𝑗 ; w)

)
2

according to

eq. (3.6) ;

[35]: Silver, Huang, et al. (2016), “Mas-

tering the game of Go with deep neural

networks and tree search”

[39]: Vinyals, Babuschkin, et al. (2019),

“Grandmaster level in StarCraft II using

multi-agent reinforcement learning”

3.3 Model–based and model–free
reinforcement learning

One of the most important aspects of RL methods is their ability

to learn directly from experience. As illustrated in Figure 3.9 (left),

the experience used for training can be obtained through direct
interactions with an environment (i.e., model–free or direct

learning), or, conversely, as illustrated in Figure 3.9 (right), the

experience may be simulated from interactions of a model of

the environment (i.e., model–based or indirect learning). For

example, the agent can learn from direct interactions, or, instead,

a model of the environment can be built from some initially

collected experience, and then used to generate the training data

that feeds the RL agent [27]

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

.

The best choice between model–free and model–based depends

on the properties of the problem that is being addressed. How

cheap is it to obtain fresh experience? Are the rules of the

game known in advance? Are data from expert play available?

How long can we accept the system to follow a suboptimal

policy? Many of the recent advances of RL applied to real–world

applications involve some degree of training through interactions

with a model of the environment. For example, when training

the RL agent to play Go [35] and StarCraft II [39], researchers

combined model–based self–play and supervised learning from

a dataset of human expert games. Or, when controlling magnetic

3 Pricing Optimization with Reinforcement Learning 52

value/policy

experiencemodel

planning

model learning

acting

Model-based RL

value/policy

experience

direct RL
acting

Model-free RL

Figure 3.9: Model–based and model–

free methods. Figure adapted from [27]

under license CC BY-NC-ND 2.0.

4: Tokamaks are devices that use mag-

netic fields to confine the plasma, cur-

rently being developed to produce con-

trolled thermonuclear fusion power.

[42]: Degrave, Felici, et al. (2022),

“Magnetic control of tokamak plasmas

through deep reinforcement learning”

fields of a tokamak
4

[42] (see Figure 3.8), where the laws of

physics are known, researchers implemented a trustworthy

simulated model of a real–world tokamak, which was then used

for training the agent, and only after training, the agent was

deployed in a real–world tokamak.

Figure 3.8: Experimental tokamak fu-

sion reactor DIII-D. Figure from com-

mons.wikimedia.org under license CC

BY-SA 4.0.

The RMS general layout displayed in Figure 1.4 is remarkably

similar to model–based RL in Figure 3.9 (right). The RMS in-

teracts with real–world customers, and then, from the collected

experience, it builds a demand model used for planning the pric-

ing policy through DP. Analyzing the RMS from this perspective

opens the question of what other ways we could design it. Could

RMS learn directly from experience without first building a

demand model explicitly? Could we complement real data with

simulated data for training? How much of each? The financial

risks of training the agent directly through interactions with a

real–world demand may be too consequential, suggesting that,

like many other real–world applications of RL, at least some level

of model learning may be necessary. Naturally, this raises the

question of what model should be used. The number of options

is substantial, ranging from traditional parametric models, such

as the one developed in Chapter 2, or non-parametric models,

that use artificial neural networks, each having pros and cons.

3.4 Reinforcement learning applied to revenue
management

Applying RL to airline RM has been a relatively new stream of

research, where most of the studies can be grouped into three

categories. The first seeks to exploit the ability of RL to deal

with large–scale optimization tasks. Indeed, optimizing realistic

demand models considering multiple fare classes, stochastic

demand behavior, overbooking, and class–dependent random

cancellations is a challenge in RM because they result in an

optimization problem that is difficult to compute with classical

https://www.creativecommons.org/licenses/by-nc-nd/2.0/
https://commons.wikimedia.org/wiki/File:2017_TOCAMAC_Fusion_Chamber_N0689.jpg
https://commons.wikimedia.org/wiki/File:2017_TOCAMAC_Fusion_Chamber_N0689.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

3 Pricing Optimization with Reinforcement Learning 53

[43]: Gosavi, Bandla, et al. (2002), “A

reinforcement learning approach to air-

line seat allocation for multiple fare

classes with overbooking”

[44]: Gosavi (2004), “A reinforcement

learning algorithm based on policy it-

eration for average reward: Empirical

results with yield management and con-

vergence analysis”

[45]: Lawhead and Gosavi (2019),

“A bounded actor-critic reinforcement

learning algorithm applied to airline

revenue management”

[1]: Talluri and Van Ryzin (2004), The
theory and practice of revenue management

[17]: Bondoux, Nguyen, et al. (2020),

“Reinforcement learning applied to air-

line revenue management”

[46]: Kastius and Schlosser (2021), “Dy-

namic pricing under competition using

reinforcement learning”

[47]: Shihab, Logemann, et al. (2019),

“Autonomous airline revenue manage-

ment: A deep reinforcement learning

approach to seat inventory control and

overbooking”

[48]: Ham (2021), Know your worth: valu-
ing new pricing policies with reinforcement
learning

methods such as DP. Instead, RL could be used to optimize such

problems [43–45].

Other studies point out the opportunities behind the online

model–free nature of RL algorithms. As discussed in Section 1.4,

the RMS typically uses historical booking data to fit a demand

model, then it uses such a demand model to forecast future

demand, and finally, the forecast is passed to an optimization

routine that computes the optimal prices. New bookings are

fed back into the system, and this process repeats cyclically

over time. In contrast, adaptive methods update the pricing policy

directly from observations, without assistance from the complex

cycles of forecasting and optimization [1]. RL can be seen as

a type of adaptive method because it can adjusts its pricing

strategies without the need for explicit demand models. This

has been perhaps one of the most influential motivations for its

application in RM. Indeed, it is very tempting to remove the

need for expert–designed models while simplifying the system’s

architecture and enabling the system to accommodate to new

situations autonomously [17, 46, 47].

Another application of RL is not directly related to improving

RMSs, but rather improving how we evaluate them. When

deciding whether to upgrade the RMS, managers generally

would like to have more information on how much revenue

improvement such a change may bring, so they can better balance

the benefits and risks of such a decision. One study suggests that

RL can be used to evaluate the quality of different pricing policies

directly from historical booking data before deployment [48].

In summary, the RM community has shown interest in RL mainly

because of its capabilities of dealing with large–scale stochastic

optimization problems, its model–free nature, and the possibility

to support managerial decisions. However, we believe there is

still space for many creative applications of RL algorithms in the

field of RM. Chapter 4 illustrates yet another possible application:

Some complex problems of interest in the literature of RM are

addressed with expert–designed heuristics, that even though

effective, they lack proof of optimality in part due to the natural

complexity of the problem. When the problem is so complex that

the optimal solution cannot be described by a simple set of rules,

to make progress, we can only hope that the next idea performs

better in practice than the previous ones. Such a manual search

procedure requires a significant amount of expert time and

dedication. Instead, we propose to use RL to automate the search

for new policies to address these complex issues without explicit

human help.

3 Pricing Optimization with Reinforcement Learning 54

[17]: Bondoux, Nguyen, et al. (2020),

“Reinforcement learning applied to air-

line revenue management”

[47]: Shihab, Logemann, et al. (2019),

“Autonomous airline revenue manage-

ment: A deep reinforcement learning

approach to seat inventory control and

overbooking”

3.5 The (possibly) false promise of model–free
revenue management

Building RMSs capable of adapting autonomously to new market

conditions directly from interactions with customers is a very ap-

pealing idea already explored in some studies [17, 47]. However,

interactions with real customers are expensive, and airline RMSs

need to optimize pricing policies with limited booking data

(experience). Even though learning directly from interactions is a

powerful idea, this approach has the issue regarding the quantity

of experience needed to obtain acceptable performance.

To illustrate the issue, consider an airline optimizing one flight

with infinite capacity, representing the scenario in which the

flight’s remaining capacity is much larger than the expected

number of customer arrivals. Let’s assume that the demand

follows the exponential model defined in eq. (2.2), with the

arrival rate �∗ = 1, the price sensitivity 𝐹∗
5
= 1.95, and the

base fare 𝑓0 = $50. For simplicity, suppose that RMS and the

customers interact only for a single time step before departure

and that the system can choose between two fares 𝑓 ∈ {$70, $90}.
In this scenario, we can straightforwardly compute the action

values with

𝑞∗($70) = $70 · 𝑑($70) ≈ 52.2,

𝑞∗($90) = $90 · 𝑑($90) ≈ 50.2.

The optimal fare is 𝑓∗ = arg max 𝑓 ∈{$70,$90} 𝑞∗(𝑓) = $70 because it

delivers the highest expected revenue. This computation is simple

because we know the true demand model, and the expectations

can be obtained directly without interactions with the demand.

Instead, a learning system would need to discover which of the

two fares is optimal through trial and error (i.e., through sample

data).

To perform learning, we use the same demand model, but

instead, we generate examples through a sample model for

each fare independently. As described in Chapter 2, this sample

model generates customer arrivals according to the Poisson

distribution, and the arriving customers decide or not to purchase

at the selected fare according to an exponential probability. The

collected revenue 𝑅𝑖 of each experience is obtained trivially by

the product of the number of bookings 𝐵𝑖 observed during the

time step and the selected fare, i.e., 𝑅𝑖 = 𝐵𝑖 · 𝑓 . Throughout

the experiment, we gradually increase the number of samples 𝑛

of interactions with a simulated demand, and the action–value

3 Pricing Optimization with Reinforcement Learning 55

0 2 4 6 8 10 12

sample size (n x 1000)

0.5

0.6

0.7

0.8

0.9

1

P
r{

Q
($

7
0

)
>

 Q
($

9
0

)}

Figure 3.10: We compute the probability

that the action–value estimation of the

optimal fare is larger the suboptimal

fare with respect the sample size.

[49]: Jaderberg, Mnih, et al. (2016),

“Reinforcement learning with unsuper-

vised auxiliary tasks”

[50]: Dabney, Rowland, et al. (2018),

“Distributional reinforcement learning

with quantile regression”

[51]: Gatti Pinheiro, Bondoux, et al.

(2021), Towards a distributional reinforce-
ment learning approach to revenue manage-
ment

estimate for each fare can be obtained by simply averaging the

revenue observed after each interaction, given by

𝑄(𝑎) = 1

𝑛

𝑛∑
𝑖=1

𝑅𝑖 . (3.7)

To correctly decide which is the optimal fare, the learning system

does not need to compute the action–value function exactly but

only that the estimated action value of the optimal fare 𝑄($70) is
higher than the estimated value for the suboptimal fare 𝑄($90).
Thus, we measure the learning efficiency as the probability that

the action value for the optimal fare is larger than the suboptimal

fare, i.e., Pr{𝑄($70)) > 𝑄($90)}. Figure 3.10 displays the result

of this experiment. To learn the optimal policy with a probability

of 0.95, the agent needs about 6000 examples for each fare. This

number is so high because the variance of the learned objective

(i.e., revenue) is much larger (Var[𝑅𝑖 | 𝑓 = $70] = 3637.5) than

the difference between the expectations 𝑞($90) − 𝑞($70) = 2.0.

This example explains why learning through samples in RM is

difficult: The demand behavior is very stochastic, requiring large

amounts of observations to support any conclusion. Furthermore,

adding more states and actions can only make this issue worse.

In contrast, model–based RMSs are much more data–efficient

because experts inject domain knowledge represented by the

demand model, thus easing learning. However, this does not

mean that all hopes are lost and that learning about the demand

behavior without expert assistance is impossible. Perhaps, the

data efficiency could be improved significantly by combining

data from many flights, increasing the number of predictions

the agent needs to do (such as the number of expected bookings)

in the form of auxiliary tasks [49] or predicting the shape of the

distribution with distributional RL [50, 51]. Even though this

research direction deserves further investigation, it is not the

focus of our work. Instead, in Chapter 4, we discuss another

approach where a sample model is employed to train the agent

to solve specific tasks prior to deployment.

3 Pricing Optimization with Reinforcement Learning 56

3.6 Summary

Reinforcement learning (RL) is a field of study that focuses on

the optimal control of incompletely–known Markov decision

processes and has strong connections to psychology and neu-

roscience. At the center of RL, we find the agent which learns

through interaction with its surrounding environment. At each

time step, the agent collects observations from the world, takes

an action, and receives a scalar reward that indicates whether the

agent is doing well or not in its task. In most tasks of interest, the

agent must compromise short–term rewards to increase future

rewards. Learning from trial–and–error and delayed rewards

are the two most distinctive features of RL.

An RL system has several distinct blocks. The policy is the

function mapping observations to actions; the value function
indicates what is good or bad from the long–term perspective;

the model represents anything the agent can use to predict how the

environment will respond to its actions. The model is an optional

block and often not present. RL methods using a model of the

environment are known as model–based methods, in contrast to

pure trial–and–error methods known as model–free methods.

The most popular RL methods use some level of value–function

bootstrapping, which uses the approximations of future states to

update the estimation of current states (updating a guess from

guess). The quantity used for the updates is referred to as the

time–difference error or TD-error. One of the most influential

TD-methods is Q-Learning, which converges to the optimal

action–value function if the learning rate decays appropriately

and all states are visited continuously. This second condition

can be satisfied by selecting nongreedy actions with a minimal

probability, such as in the 𝜖-greedy policy. This requirement gives

rise to a conflict between exploitation, i.e., the act of maximizing

reward, and exploration, i.e., improving the knowledge of how

the environment behaves for nongreedy actions.

Many concepts behind RL, such as bootstrapping, come from

the Bellman optimality equation and dynamic programming.

The two most important differences between these two classes

are that DP requires complete knowledge of the state–transition

probability function and that the state–action space is small

enough to allow the computation of the optimal action–value

function. Instead, RL learns directly from interaction with the

environment and it performs trajectory sampling, focusing com-

putational resources where they are most needed.

If the state–action space is too large, some degree of function

approximation is required, which can be done by approximating

3 Pricing Optimization with Reinforcement Learning 57

the action–value function 𝑞(𝑠, 𝑎; w) ≈ 𝑞∗(𝑠, 𝑎)with a parameter

vector w. In one of the most popular methods, known as deep

Q-network (DQN), this parameter vector w represents the con-

nection weights of an artificial neural network. The DQN has

shown great success in many areas, perhaps most remarkably

reaching super–human performance levels while playing Atari

games.

In the past, researchers applied RL methods to revenue manage-

ment (RM) because of their capacity to deal with large stochastic

optimization problems, their model–free nature, and their ability

to evaluate pricing policies before deployment. Ideally, we wish

for an autonomous revenue management system that learns and

adapts through its own experience. However, today, it is unclear

if such an approach is feasible because modern model–free RL

methods need larges amounts of data for learning, which are

usually not available in airline RM. Instead, in Chapter 4, we

show that RL can be used to address problems that until now rely

exclusively on expert intuition and heuristic optimization.

Earning while Learning 4
4.1 Balancing earning and

learning 58
4.2 Methods for earning and

learning 63
4.3 Optimizing for earning

and learning 66
4.4 A new perspective . . . 71
4.5 A brief review of actor–

critic methods 74
4.5.1 Stochastic policies . . . 74
4.5.2 Policy gradient methods 76
4.5.3 Continuing tasks 80
4.6 Revisiting the earning–

while–learning problem
through reinforcement
learning 83

4.6.1 Evaluating the meth-
ods on the single–leg
problem 85

4.6.2 Ablation studies 95
4.6.3 Discussion on reinforce-

ment learning 100
4.7 Summary 102

As discussed in Chapter 2, the pricing policy obtained with

dynamic programming is optimal only if the demand behavior

is known by the revenue management system. However, this

assumption is unrealistic primarily because the presumed shape

of the demand model may not reflect the real–world demand

behavior. Even if assuming it does, RMS has only an estimate

of the demand behavior obtained from historical booking data.

Optimizing prices while interacting with an unknown demand

behavior is called the earning–while–learning problem, and it is

the central subject of this chapter.

4.1 Balancing earning and learning

When optimizing pricing policies, RMSs assume that the esti-

mation of the demand behavior is perfect. Unfortunately, this

is never true because the parameters of the demand model are

obtained from historical bookings, thus subject to noise and

estimation errors. For this reason, much of the research in RM

has been dedicated to improving forecast quality [23]

[23]: Weatherford (2016), “The history

of forecasting models in revenue man-

agement”

.

Perhaps one of the most surprising facts is that the RMS policy

impacts the quality of the estimated demand model parameters.

To understand why first consider Figure 4.1 (a). The demand

model defined by the exponential curve could be, in principle,

computed with any two points of this curve. If, for whatever

reason, the system prices exclusively a single price point, as illus-

trated in Figure 4.1 (b), then it would be impossible to discover

the true demand model because there is an infinite number of

exponential curves that fit this unique point. However, RMS

50 100 150 200 250

fare ($)

0

0.5

1

1.5

2

2.5

3

3.5

d(f)

Unique �t

(a) Unique fit.

50 100 150 200 250

fare ($)

0

0.5

1

1.5

2

2.5

3

3.5

d(f)

In�nite
possibilities

(b) Many fits.

50 100 150 200 250

fare ($)

0

0.5

1

1.5

2

2.5

3

3.5

d(f)

Truth

Data

Possible fits

(c) RMS scenario.

Figure 4.1: Intuition to earning while learning in the context of an exponential demand model.

4 Earning while Learning 59

usually presents price variability, and the scenario from Figure

4.1 (b) is unrealistic. The scenario from Figure 4.1 (a) is also

unrealistic since perfectly estimating two points of the demand

curve would require an infinite amount of data. In practice,

what happens in RMS is better represented in Figure 4.1 (c). The

demand curve approximations of each price have inherited noise

and uncertainty around them that is proportional to how many

times RMS selected that price. Therefore, many possible curves

could explain the data, and the forecasting module returns the

best (that does not necessarily correspond to the true demand

behavior). As the amount of data available for demand model

estimation is fixed to the size of the historical database, RMS can

only “trade” experimented prices (which price points are esti-

mated) and how many times each price is selected (the amount

of uncertainty around the estimation).

To further illustrate this fact, consider the experiment in Figure

4.2. We set the RMS policy to a fixed strategy that selects prices

according to a predefined probability distribution. This policy

interacts with a demand that behaves according to the exponen-

tial model. Then, the system stores the resulting bookings of

these interactions in the historical database. This stored data is

used to estimate the demand model parameters as usual. Finally,

by choosing different pricing strategies, we can analyze how

the system’s policy can influence the quality of the estimated

demand model parameters.

As a measure of the quality of the learned demand model, we

choose the average accuracy of the estimated parameters given

by

Accuracy =
1

𝑛

𝑛∑
𝑖=1

(
1 −
∥𝚿𝑖 −𝝍∗∥
∥𝝍∗∥

)
, (4.1)

where 𝚿𝑖 = (�𝑖 , 𝜙𝑖) is a sample estimation of the arrival rate and

price sensitivity parameters, ∥ · ∥ denotes the Euclidean norm,

and 𝑛 is the number of collected samples. Ideally, the system

should estimate the demand behavior parameters precisely, i.e.,

𝚿𝑖 ≈ 𝝍∗, which is equivalent to obtaining the parameter error

Historical
Database

ForecastingPricing

decisions
Historical
bookings

and o�ers
� Booking

decisions

�
*

i

Fixed

strategy

Fixed

unknown

behavior

Estimated

demand model

parameters

Figure 4.2: Experimental settings

demonstrating how policy influences

demand model learning.

4 Earning while Learning 60

∥𝚿𝑖 − 𝝍∗∥ close to zero and the parameter accuracy close to

one.

We analyze the revenue performance and the accuracy of the

estimated demand behavior parameters of each of the five poli-

cies illustrated in Figure 4.4 (on page 62; a copy of the policies

is available in Figure 4.3 on the margins of this page). The true

demand behavior parameter is 𝝍∗ = (�∗ , 𝐹∗5) = (60/365, 2.75),
and the system can choose among any of the ten price points

𝑓 ∈ {$50, $70, $90, . . . , $230}, where the lowest fare is 𝑓0 = $50.

The flight has a capacity of C = 50, and the booking horizon has

T = 365 time steps.

50 70 90 110 130 150 170 190 210 230

Prices ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 �

(a) accuracy = 0.676 ± 0.001.

50 70 90 110 130 150 170 190 210 230

Prices ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 �

(b) accuracy = 0.983 ± 0.001.

50 70 90 110 130 150 170 190 210 230

Prices ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 �

(c) accuracy = 0.988 ± 0.001.

50 70 90 110 130 150 170 190 210 230

Prices ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 �

(d) accuracy = 0.905 ± 0.001.

50 70 90 110 130 150 170 190 210 230

Prices ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 �

(e) accuracy = 0.864 ± 0.001.

Figure 4.3: Policies used for earning wile

learning experiment.

The first aspect we seek to demonstrate is that concentrating pric-

ing decisions can negatively impact the accuracy of the estimated

demand model parameters. For example, the policy in Figure

4.4 (a) chooses the price 𝜋(𝑠) = $130 for every encountered state,

while the policy in Figure 4.4 (b) selects any fare with equal

probability (e.g., 𝜖 = 1). Even though policy (a) is better than

policy (b) in terms of revenue performance, policy (a) is much

worse in terms of parameter accuracy (0.676) than policy (b)

(0.983).

Furthermore, the prices selected by the system can also influ-

ence the quality of the estimated demand model. For example,

consider the case in which two different policies choose between

two prices, each with the same probability (50% each). Policy (c)

selects the most extreme prices of the fare structure, while policy

(d) selects the two center prices. We observe that the parameter

accuracy for policy (c) is higher (0.998) than policy (d) (0.905),

demonstrating that the prices the system selects play a central

role in the quality of the demand model.

Finally, even the slightest levels of price experimentation can have

strong positive effects on the average quality of the estimated

demand model. For example, policy (e) selects the fare $130

with a probability of 0.9 and fares $110 and $150 with an equal

probability (0.05 each). Even though the accuracy of policy

(e) is far better (0.864) than the accuracy of policy (a), which

concentrates all choices into a single price point, both policies

present a similar revenue performance.

In principle, we seek the policy that generates the most revenue

while keeping the accuracy of the estimated parameters under

control. In Figure 4.4 (g), we plot how each policy behaves in

terms of earning (revenue performance) and learning (accuracy

of the learned parameters). Even though policy (a) presents

the best revenue output, it is obviously not an achievable goal

because the resulting accuracy of estimated parameters is very

low and thus not a stable compromise. Policies (b) and (c) are far

4 Earning while Learning 61

from optimality considering the revenue perspective, therefore

undesirable solutions. Lastly, policies (d) and (e) show a high

revenue performance while displaying a far better parameter

accuracy. However, it is unclear whether the compromise found

by these two policies is a stable one. We also illustrate where

RMS currently fits in this balance (Figure 4.4 (f) displays the

RMS rollout policy). Indeed, RMS finds an equilibrium point on

its own due to its natural price variability, which results from

misestimations of the true demand behavior: At time step 𝑡, the

price corresponding to the estimated price sensitivity 𝜙𝑡 is $150,

but, in a later time step, say 𝑡 + 𝑘, the system chooses price $110

corresponding to a new estimated price sensitivity 𝜙𝑡+𝑘*
. In

other words, the average distribution of offers in the historical

database, which can be roughly visualized by the rollout policy

in Figure 4.4 (f), is a result of T distinct policies, each computed

according to an instantaneous (mis)estimation of the demand

model.

Although RMS was not designed to control the accuracy of the

estimated parameters of the demand, its ability to find a balance

between earning and learning is impressive and one of the

reasons for being so difficult to outperform it in the earning–while–
learning (EWL) problem (the next section presents an overview

on historical methods). However, these experimental settings

are particularly favorable to RMS because the number of offers

in the historical database is large (T
2 = 365

2
) for the number

of optimized demand model parameters (i.e., two parameters

𝜓 = (�,𝜓)). In practice, real–world RMSs must estimate dozens

of parameters from roughly the same quantity of data.

The central question is: How RMS should select prices while

facing an unknown demand behavior, where the best estimates

of this demand behavior can only be accessed from historical

bookings? We have seen that current pricing decisions impact

future knowledge of demand behavior. Thus, RMS may have to

compromise immediate revenue by efficiently performing price

experiments expecting that the information gained about the

demand behavior will lead to better future pricing decisions. In

the following sections, we review the various heuristic meth-

ods proposed by researchers for addressing this question and

demonstrate how to adapt one of the most promising methods to

the single–leg problem. We close by showing how RL methods

can be used to tackle the EWL problem and by comparing the

solution discovered with RL to the adapted method designed by

experts.

*
The arrival rate for this experimental settings is relatively low, and there is

little capacity constraining. Thus, the pricing optimization mostly leads to a

pricing policy that selects a single price as discussed in Section 2.3.

4 Earning while Learning 62

50 70 90 110 130 150 170 190 210 230

Prices ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 �

(a) accuracy = 0.676 ± 0.001.

50 70 90 110 130 150 170 190 210 230

Prices ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 �

(b) accuracy = 0.983 ± 0.001.

50 70 90 110 130 150 170 190 210 230

Prices ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 �

(c) accuracy = 0.988 ± 0.001.

50 70 90 110 130 150 170 190 210 230

Prices ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 �

(d) accuracy = 0.905 ± 0.001.

50 70 90 110 130 150 170 190 210 230

Prices ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 �

(e) accuracy = 0.864 ± 0.001.

50 70 90 110 130 150 170 190 210 230

Prices ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 �

(f) RMS accuracy = 0.922 ± 0.001.

0.7 0.75 0.8 0.85 0.9 0.95 1

Learning

�1.5

�1

�0.5

0

0.5

1

E
a

rn
in

g

(a)

(b)

(c)

(e) (d)

RMS

n
o

rm
a

li
ze

d
 r

e
ve

n
u

e

accuracy of learned parameters

(g) Earning and learning. The revenue metric (vertical

axis) is normalized so one represents the maximum

possible expected revenue, and zero represents the

revenue output of the random policy.

Figure 4.4: An illustration of how the system’s pricing policy impacts demand learning.

4 Earning while Learning 63

[52]: Hansen (1954), Report of the Uppsala
meeting

[53]: Hawkins (1957), “Methods of esti-

mating demand”

[54]: Lobo and Boyd (2003), “Pricing

and learning with uncertain demand”

[55]: Chhabra and Das (2011), “Learn-

ing the demand curve in posted-price

digital goods auctions”

[56]: Kwon, Lippman, et al. (2012), “Op-

timal markdown pricing strategy with

demand learning”

[57]: Besbes and Zeevi (2011), “On the

minimax complexity of pricing in a

changing environment”

[58]: Keskin and Zeevi (2014), “Dy-

namic pricing with an unknown de-

mand model: Asymptotically optimal

semi-myopic policies”

[16]: Chen and Gallego (2022), “A

primal-dual learning algorithm for per-

sonalized dynamic pricing with an in-

ventory constraint”

[59]: Chen and Gallego (2021), “Non-

parametric pricing analytics with cus-

tomer covariates”

[60]: Aoki (1973), “On a dual control

approach to the pricing policies of a

trading specialist”

[61]: Chong and Cheng (1975), “Multi-

stage pricing under uncertain demand”

[15]: McLennan (1984), “Price dispersion

and incomplete learning in the long

run”

[62]: Rothschild (1974), “A two-armed

bandit theory of market pricing”

4.2 Methods for earning and learning

The EWL problem relates to price optimization and control

(earning), and to statistical learning and economics (learning

about the demand behavior). Even though these fields are more

than a century old each, for a long time, researchers studied

them independently. In the past, researchers often assumed that

some reliable previous knowledge about the demand behavior

was available to the seller when performing price optimization.

Perhaps the earliest works to combine these two research fields

date back to 1954 when the first analytical analysis was developed

considering dynamic pricing with unknown model parameters

of the demand behavior [52]. This early result did not receive the

deserved attention, maybe because of the technical difficulties

of implementing pricing variation on the time (e.g., updating

catalogs). Some attempts made by commercial firms to estimate

the demand curve for their products were unsuccessful, typically

due to difficulties in obtaining reliable estimates and changes in

competitor pricing [53]. The rise of modern computers and the

Internet made it much easier to track sales and change prices

accurately, allowing the industry to address the EWL problem

in practice.

The literature on the EWL problem can be organized according

to the method used for learning about the demand behavior.

Many studies consider that the demand behavior is learned

through the Bayesian framework [54–56], others concentrate on

the parametric framework (based on ordinary least–squares or

maximum likelihood estimation) [57, 58], and yet some other

studies are oriented towards non–parametric demand models [16,

59]. Even though we have a strong interest in parametric models,

many discoveries generalize across frameworks, and thus they

are presented below.

One of the most influential early works addressing the EWL

problem proposes to learn the demand model parameters in a

Bayesian fashion [60]. In theory, dynamic programming could

compute the optimal Bayesian policy, but no closed-form ana-

lytical expression exists in many situations of interest. Thus, the

proposed workaround, known as certainty equivalent pricing

(CEP), consists of selecting, at each time step, the price that would

be optimal if the current demand model parameter estimates

were correct. CEP is optimal under certain conditions, such as

when only the intersect of a linear demand function is being

estimated but is sub–optimal when learning both the slope and

intersect of a linear demand model [61]. However, further analyt-

ical studies [15, 62] pointed to a more fundamental problem: The

sequence of prices may converge to a sub–optimal price even

4 Earning while Learning 64

[58]: Keskin and Zeevi (2014), “Dy-

namic pricing with an unknown de-

mand model: Asymptotically optimal

semi-myopic policies”

[18]: Keskin and Zeevi (2017), “Chas-

ing demand: Learning and earning in a

changing environment”

[54]: Lobo and Boyd (2003), “Pricing

and learning with uncertain demand”

[63]: Besbes and Zeevi (2009), “Dynamic

pricing without knowing the demand

function: Risk bounds and near-optimal

algorithms”

[64]: Boer and Zwart (2015), “Dynamic

pricing and learning with finite inven-

tories”

[65]: Ferreira, Simchi-Levi, et al. (2018),

“Online network revenue management

using thompson sampling”

[66]: Boer and Zwart (2014), “Simulta-

neously learning and optimizing using

controlled variance pricing”

[67]: Elreedy, Atiya, et al. (2021), “Novel

pricing strategies for revenue maximiza-

tion and demand learning using an

exploration-exploitation framework”

[68]: Hwang and Masud (2012),

“Multiple objective decision mak-

ing—methods and applications: A state-

of-the-art survey”

[69]: Aviv and Pazgal (2005), “Dy-

namic pricing of short life-cycle prod-

ucts through active learning”

[62]: Rothschild (1974), “A two-armed

bandit theory of market pricing”

[70]: Cope (2007), “Bayesian strategies

for dynamic pricing in e-commerce”

[71]: Xia and Dube (2007), “Dynamic

pricing in e-services under demand un-

certainty”

[72]: Thompson (1933), “On the like-

lihood that one unknown probability

exceeds another in view of the evidence

of two samples”

[73]: Auer, Cesa-Bianchi, et al. (2002),

“Finite-time analysis of the multiarmed

bandit problem”

[74]: Pathak, Agrawal, et al. (2017),

“Curiosity-driven exploration by self-

supervised prediction”

with unlimited data. This phenomenon was named incomplete
learning, and it was theoretically demonstrated that the system

must follow a policy that accumulates information about the

demand behavior at an adequate rate without deviating too

much from the greedy policy to avoid it [58]. Several heuristic

methods combining this principle with a classical parametric

demand model [18, 54, 63–65] have been studied, in which con-

trolled variance pricing (CVP) [66] has arguably been the most

influential method. The CVP algorithm imposes a constraint

on the greedy pricing policy that requires the selected prices

not to be too close to the average of previously selected prices.

This constraint seeks to guarantee sufficient price dispersion by

imposing a “taboo interval” over prices that the system is not

allowed to choose from.

Another remarkable heuristic method found to outperform CVP

in simulated studies and real–world benchmarks combines the

revenue maximization and the uncertainty of the parameters

of the learned model into a single objective function [67] in the

form of

𝑈(𝑓) = 𝑅(𝑓) − �
∑
𝑖

𝜎𝑖(𝑓)
𝜓𝑖

(4.2)

where � is the trade–off parameter, 𝑅(𝑓) represents the expected

revenue for fare 𝑓 , 𝜓𝑖 is the 𝑖-th parameter of the estimated

demand model 𝝍 = (𝜓0 ,𝜓1 , . . . ,𝜓𝑘), and 𝜎𝑖(𝑓) represents the

corresponding estimated uncertainty of the 𝑖-th demand model

parameter after selecting fare 𝑓 . At each time step, the system

selects the fare maximizing the objective function𝑈(𝑓). The main

idea of this heuristic is to include the uncertainty of the demand

model parameters in the optimization objective as a penalty

term (this linear combination of several goals, i.e., earning and

learning, into a single objective function is similar to linear

scalarization in multi–objective theory [68]). If the uncertainty

over the parameters becomes too large, the system shifts from a

revenue–maximizing to an information–maximizing fare. The

trade–off parameter, �, can be used to tune the importance that

the system should pay to the uncertainty of the demand model

parameters.

Another stream of research brings attention to the similarities be-

tween the EWL problem and other problems investigated in ma-

chine learning, such as active learning [69] and the exploration–

exploitation trade–off [62, 70, 71]. The literature on these topics

is large, and some of the most popular techniques are Thompson

sampling [72], upper confidence bound [73], and intrinsic curios-

ity [74]. However, in the EWL problem, a model of the demand

4 Earning while Learning 65

Table 4.1: Earning-while-learning literature review.

Study Demand Model Capacity
Constraining

Multi–Flight

CEP [60]

Bayesian,

non-parametric,

parametric

✓ ✓

CVP [66] parametric

(Chen and Gallego) [16] non-parametric ✓

(Elreedy et al.), see eq. (4.2) [67] parametric

behavior is present, and the model describes how each possible

price relates to the others. This is very different from solving

the exploration–exploitation trade–off in the general case, which

often assumes that each possible choice delivers a response

independent of the others. The ability to exploit the existence of

a demand model is key to solving the EWL problem.

The key studies in Table 4.1 are organized according to the

important requirements for successful integration with airline

RM. For the first requirement, we seek methods that are directly

compatible with parametric demand models. Furthermore, these

methods must either comply with pricing under limited inven-

tory capacity or be adaptable to current practices for pricing

optimization. For our last requirement, these methods must

consider that the historical booking data are generated by many

flights simultaneously (multi–flight) or must be integrated easily

into this scenario. These three requirements sum up the core

conditions to apply the EWL methods to airline RM.

In the next section, we adapt the algorithm proposed in eq. (4.2)

to multi–flight optimization, in which many flights of a single–leg

must be optimized simultaneously. Unfortunately, to our knowl-

edge, there are no extensions to this algorithm for addressing

capacity constraints, making this new algorithm unrealistic for

most scenarios of interest. However, this new algorithm demon-

strates how RL solutions compare to expert–designed methods,

providing a benchmark for the most simplistic scenarios. In

short, if RL is better than heuristic methods when assuming

unconstrained capacity, then, in our understanding, there is little

reason to search for ways to “fix” these heuristic methods.

4 Earning while Learning 66

[67]: Elreedy, Atiya, et al. (2021), “Novel

pricing strategies for revenue maximiza-

tion and demand learning using an

exploration-exploitation framework”

[75]: Gatti Pinheiro, Defoin-Platel, et al.

(2022), “Optimizing revenue maximiza-

tion and demand learning in airline rev-

enue management”

4.3 Optimizing for earning and learning

Most of the research developed around the EWL problem as-

sumes that only the pricing decision of an individual product is

being optimized at a time. However, in the airline industry, many

flights depart every day, and the system must optimize all flights

at each time step. In practice, when optimizing prices, modern

RMSs assume that each active flight is independent of the others,

splitting the problem of optimizing T active flights into T smaller

optimization problems. This “divide to conquer” strategy may

no longer be correct when tackling the EWL problem because

each flight is no longer truly independent. The data collected for

each flight are aggregated and used for model calibration. Then,

the calibrated model is used to optimize the prices of future time

steps. Thus, the pricing decision of each flight has longstanding

consequences for the quality of future model calibration. Fur-

thermore, each price decision contributes to the quality of the

estimation of future demand models, making each decision a

small part of a whole, suggesting that some collaboration across

flights may be needed.

In this section, we show how to adapt the heuristic method

in eq. (4.2) [67] to the single–leg problem assuming that capacity

is unconstrained, i.e., the number of average customer arrivals

is far smaller than the flights’ total capacity, which implies that

optimizing prices can be done simply by selecting the fare that

satisfies 𝑓∗ = arg max 𝑓 ∈A[𝑓 𝑑(𝑓 ;𝝍)] (no need to compute DP, as

presented in Chapter 2) [75]. To start, the revenue and model

uncertainty terms of eq. (4.2) need to be adapted to multi–flight

optimization.

First, let’s address the revenue function. We define the multi–

flight pricing policy as a multinomial distribution specified

according to the parameter vector 𝝅 = [𝜋0 ,𝜋1 , . . . ,𝜋𝑛−1]. Each

𝜋𝑖 component of this distribution represents the probability of

selecting the price point 𝑓𝑖 for every active flight for sale date 𝑡.

Then, the expected revenue 𝑅(𝑓) can be written in terms of 𝝅
as

𝑅(𝝅) = T

𝑛−1∑
𝑖=0

𝑓𝑖 𝜋𝑖 𝑑(𝑓𝑖 ;𝝍). (4.3)

As explained above, without capacity constraints, the optimal

pricing policy proposes the revenue–maximizing fare with proba-

bility 1 and 0 to all other fares, i.e., arg max𝜋 𝑅(𝝅) sets probability

one to the fare maximizing arg max 𝑓 ∈A 𝑓 𝑑(𝑓 ;𝜓) and zero to all

others. For example, if the optimal fare corresponds to 𝑓∗ = 𝑓2,

4 Earning while Learning 67

then the vector 𝜋 maximizing the revenue function is given by

𝜋 = [0, 0, 1, 0, . . . , 0].

For the next step, the model uncertainty term 𝜎𝜙(𝑓) of eq. (4.2)

needs to be rewritten in terms of the policy 𝝅. Without loss of

generality, we consider that only the customer price sensitivity is

being estimated and the customer arrival rate is perfectly known

by the system. In principle, such an assumption is not necessary

but greatly simplifies the mathematical derivations.

The precision of the estimated error 𝜎𝜙(𝜋) is not derivable

directly but it is lower bounded by the inverse of the Fisher

information, i.e., 𝜎2

𝜙(𝜋) ≥ 1/I(𝝅) (in the literature of statistics

this is known as the Cramér–Rao bound). One limitation of

choosing to set the uncertainty term to its lower bound is that the

system may not give the correct importance to the penalty term

of eq. (4.2) when optimizing prices for the case where the true

error is much larger than the lower bound. In such a scenario, the

system will behave closer to the traditional revenue–maximizing

objective rather than aggressively trying to improve the demand

model uncertainty.

The Fisher information is given by

I(𝝅) � −𝔼
[
𝜕2

𝜕2𝜙
LL(𝜙)

���� 𝜙,𝝅]
= −𝔼

[
𝜕2

𝜕2𝜙

𝑛−1∑
𝑖=0

𝑡−1∑
𝑗=𝑡−T

[
𝑏(𝑗 , 𝑓𝑖) ln

(
𝑑(𝑓𝑖 ; �∗ , 𝜙)

)
− 𝑜(𝑗 , 𝑓𝑖) 𝑑(𝑓𝑖 ; �∗ , 𝜙)

] ���� 𝜙, 𝑓𝑖 ∼ 𝝅

]
use eq. (2.3)

= 𝔼

[
𝜕

𝜕𝜙

𝑛−1∑
𝑖=0

(
𝑓𝑖

𝑓0
− 1

)
𝑡−1∑

𝑗=𝑡−T

[
𝑏(𝑗 , 𝑓𝑖) − 𝑜(𝑗 , 𝑓𝑖) 𝑑(𝑓𝑖 ; �∗ , 𝜙)

] ���� 𝜙, 𝑓𝑖 ∼ 𝝅

]
first derivative

= 𝔼

[
𝑛−1∑
𝑖=0

(
𝑓𝑖

𝑓0
− 1

)
2 𝑡−1∑
𝑗=𝑡−T

𝑜(𝑗 , 𝑓𝑖) 𝑑(𝑓𝑖 ; �∗ , 𝜙)
���� 𝜙, 𝑓𝑖 ∼ 𝝅

]
second derivative

=

𝑛−1∑
𝑖=0

𝔼

[
𝑡∑

𝑗=𝑡+T−1

𝑜(𝑗 , 𝑓𝑖)
���� 𝑓𝑖 ∼ 𝜋𝑖

]
︸ ︷︷ ︸

expected historical offers at next time step 𝑡+1

𝑑(𝑓𝑖 ; �∗ , 𝜙)
(
𝑓𝑖

𝑓0
− 1

)
2

rearranging terms

=

𝑛−1∑
𝑖=0

©«
𝑡−1∑

𝑗=𝑡+T−1

𝑜(𝑗 , 𝑓𝑖)︸ ︷︷ ︸
already observed

+𝔼
[
𝑜(𝑡 , 𝑓𝑖)

���� 𝑓𝑖 ∼ 𝜋𝑖

]
︸ ︷︷ ︸

expected future offers

ª®®®®®®®¬
𝑑(𝑓𝑖 ; �∗ , 𝜙)

(
𝑓𝑖

𝑓0
− 1

)
2

=

𝑛−1∑
𝑖=0

(
𝑡−1∑

𝑗=𝑡−T+1

𝑜(𝑗 , 𝑓𝑖) + T𝜋𝑖

)
𝑑(𝑓𝑖 ; �∗ , 𝜙)

(
𝑓𝑖

𝑓0
− 1

)
2

. (4.4)

4 Earning while Learning 68

Finally, the objective function 𝑈(𝑓) in eq. (4.2) can be rewritten

as a function of 𝑈(𝝅) instead.

arg max

𝜋
𝑈(𝝅) = 𝑅(𝝅) − � 1√

I(𝝅)
subject to

𝜋0 ,𝜋1 , . . . ,𝜋𝑛−1 ≥ 0

𝑛−1∑
𝑖=0

𝜋𝑖 = 1.

The trade–off parameter � can be manually calibrated to optimize

revenue. When � = 0, the system maximizes revenue only,

potentially decreasing the quality of the learned demand model.

As the trade–off parameter � increases, the system focus will

gradually shift from revenue to information maximization.

Once the probability distribution𝝅 is obtained, the system selects

the fare for each active flight independently according to 𝝅. The

greatest weakness of this method is its reliance on the assumption

of unconstrained capacity.

4 Earning while Learning 69

Example 4.3.1

Consider that, at a certain time step, the historical data consists

of 𝒐𝑡 = [0, 10, 15, 0] and 𝒃𝑡 = [0, 3, 2, 0], the arrival rate is

perfectly known �∗ = 0.5, and the fare structure is given

by F = {$50, $115, $185, $250}. What is the corresponding

policy 𝝅 when � = 1500? And, what if � = 2000?

Answer. First, we need to compute the price sensitivity pa-

rameter from historical bookings. This can be achieved by

maximizing the log–likelihood in eq. (2.3), which gives us

𝜙 = 0.466. Next, we can compute the policy 𝝅 maximizing

the objective function 𝑈(𝝅) using the algorithm described

in this section. The resulting policies are displayed in Figure

4.5. When � = 0, the policy selects fare $115 with probability

one, greedily maximizing revenue according to the latest

estimation of the price sensitivity parameter. As � increases,

the system gradually changes its decisions to favor actions

that bring more information about the demand behavior.

One could wonder why this example needs so “large” values

of �. In principle, � needs to be adjusted for the range of

values assumed by the revenue and information maximization

objectives in eq. (4.2) (e.g., the revenue objective could assume

values of magnitude 10
2

while the information objective could

be in the range of 10
−2

). In other words, if the designer wants

� to vary in a specific interval, let’s say � ∈ [0, 1], then the

objectives in eq. (4.2)would need to be normalized accordingly.

We prefer to keep the original implementation because of its

simplicity and adjust � to the problem instead.

50
115

185
250

Fare ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

(a) � = 0.

50
115

185
250

Fare ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

(b) � = 1500.

50
115

185
250

Fare ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

(c) � = 2000.

Figure 4.5: Policy distribution according to various the trade–off parameters.

4 Earning while Learning 70

50 100 150 200 250

fare ($)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

I(
f)

Figure 4.6: We plot the function 𝐼(𝑓)
which returns the amount of informa-

tion obtained by each fare.

Example 4.3.2

The equation eq. (4.4) gives the expected amount of observed

information at the next time step after following the policy

defined by 𝜋 while considering the data already observed

during the previous time steps. Note that the amount of

information each offer adds is equal to 𝐼(𝑓) = 𝑑(𝑓 ; �∗ , 𝜙)(𝑓𝑓0 −
1)2 and that the function 𝐼(𝑓) has a unique maximal value,

meaning that there is a price that provides more information

than any other. Assuming that the demand behaves according

to 𝐹∗
5
= 1.9 and the base fare is 𝑓0 = 50, which are the fares that

provide the lowest and the highest amount of information?

Answer. The lowest amount of information is obtained by

the base fare 𝐼(𝑓0) = 0, which is not surprising because we as-

sumed that the customer arrival rate is known. Intuitively, the

base fare gives the most information about the customer ar-

rival rate but does not bring any value to the estimation of the

customer price sensitivity because the purchase probability

is one at this fare.

The fare maximizing the amount of information can be com-

puted by equating its derivative to zero.

𝑑

𝑑𝑓

[(
𝑓

𝑓0
− 1

)
2

𝑑(𝑓 ; �∗ , 𝜙)
]
= 0

2

(
𝑓

𝑓0
− 1

)
1

𝑓0
𝑑(𝑓 ; �∗ , 𝜙) −

(
𝑓

𝑓0
− 1

)
2

𝑑(𝑓 ; �∗ , 𝜙)
𝜙

𝑓0
= 0

𝜙

(
𝑓

𝑓0
− 1

)
= 2

𝑓 =

(
2

𝜙
+ 1

)
𝑓0.

According to the settings, the information–maximizing fare is

𝑓 = (2

0.770
+ 1) · 50 ≈ $180. In Figure 4.6, we plot the function

𝐼(𝑓) for this example.

4 Earning while Learning 71

[19]: Gatti Pinheiro, Defoin-Platel, et al.

(2022), “Outsmarting human design in

airline revenue management”

[76]: Barreto, Dabney, et al. (2017), “Suc-

cessor features for transfer in reinforce-

ment learning”

[77]: Schaul, Horgan, et al. (2015), “Uni-

versal value function approximators”

4.4 A new perspective

We discuss in this section an alternative way to formulate the

EWL in the single–leg problem [19]. The first main idea explored

in this section relies on bringing in the estimated parameters of

the demand model into the state representation, which allows

us to train a single RL agent for a wide range of possible demand

behaviors, as defined by 𝜓∗. We propose that instead of re-

training the agent for each demand behavior it may encounter,

the system can be trained just once in an off–line manner and

then deployed to interact with real–world demand without

further training. Thus, the agent must be ready for each possible

demand behavior it may find (i.e., multitasking). By doing so,

we also realize that, as the system does not have access to the

true demand behavior, it must rely on an approximation of the

demand behavior derived from the estimated demand model

parameters (i.e., partial observability). The second main idea

relates to the multi–flight optimization aspect of the single–leg

problem, which allows us to define the MDP as a task that never

ends, where the revenue maximization goal extends beyond

the departure of individual flights (continuing task). Below, we

review these three aspects of the EWL problem: multitasking,

partial observability, and continuing task.

Most importantly, the parameters of true demand behavior can

assume any value, and each value defines a different task, i.e.,

different demand behavior parameters define different sets of

transition probabilities and reward signals. Training a learning

system to perform many tasks is related to the field of multitasking
in reinforcement learning, which concentrates on building value

functions [76] that can generalize across tasks so anything learned

in one task can be exploited by another similar one. In our case,

given two tasks, each defined by different demand behavior

parameters, the transition probabilities and the expected revenue

obtained by any policy should be close as long as the two demand

behavior parameters are close to each other, suggesting the

existence of a certain smoothness in the space of value functions.

Because of this presumed smoothness, we can use the concept

of universal value function approximators [77] that can exploit

it.

In Chapter 2, the demand model parameters are estimated from

historical booking data and, once calibrated, used to compute

the transition probabilities essential to dynamic programming.

However, these same parameters can be seen as an identification

of the current state of the demand behavior, i.e., the true state of

the environment could be represented by the true demand be-

havior parameters and the current inventory capacities. Indeed,

4 Earning while Learning 72

Historical
Database

ForecastingPricing

decisions
Historical
bookings

and o�ers
� Booking

decisions �

�
*

�
*

State-estimator function

Figure 4.7: The state–estimator function. The system does not have access to the true state of the demand behavior 𝜓∗, but

it does have an access to a noisy estimate of the true demand behavior 𝜓 ≈ 𝜓∗ that can be obtained through maximum

likelihood estimation as described in Chapter 2. The combination of the historical database and parameter estimation plays

the role of a state–estimator function.

[78]: Kaelbling, Littman, et al. (1998),

“Planning and acting in partially ob-

servable stochastic domains”

if these two quantities were perfectly known, the system could

compute the policy that is optimal for revenue maximization,

referred to from now on as the revenue–maximizing policy. In

reality, the system does not have access to the true state of the

environment (i.e., not fully observable) because the true demand

behavior parameters are unknown and must be estimated from

historical booking data. This situation recalls partial observabil-
ity [78] in Markov decision processes, where the system does

not have access to the true state of the environment and must

optimize actions based only on the noisy observations. The stan-

dard approach for addressing partially–observable problems is

to build a state–estimator function that uses past observations

to approximate a belief state of the true state of the environment.

In our case, this is the role of the forecaster module, which uses

past booking data to build a belief of the true demand behavior

(see Figure 4.7). The particularity of the EWL problem is that

the quality of this belief state depends on the policy the system

follows.

The third and last aspect to consider is related to the continuing
nature of the EWL problem. Traditional RMS optimizes the pric-

ing policy by splitting the active flights into several independent

optimizations, as illustrated in Figure 4.8 (left). We denote the

𝑖-th active flight in the selling horizon with the superscript [𝑖],
such that 𝑆

[𝑖]
𝑡 implies the inventory state at the time step 𝑡 for the

𝑖-th active flight in the selling horizon. For each flight, the pricing

policy is optimized for the flight’s departure and current capacity.

At departure, the expected revenue for flight 𝑖 is defined to be

zero 𝑣
[𝑖]
∗ (𝑆[𝑖]𝑇) � 0, reflecting that no new revenue is generated

by a departed flight. However, this is not really true because the

collected flight data still presents some value (which could be

measured in terms of future revenue) for the period in which the

system uses it for demand model learning. But measuring the

intrinsic value of a flight’s data in terms of revenue is no simple

4 Earning while Learning 73

Figure 4.8: An illustration of the episodic and continuing formulations for the single–leg problem. Image from [19] under

license CC BY 4.0.

task because it depends on the contents of the flight’s data, how

long the data are kept in the historical database and how these

data complete the data obtained by other flights. In contrast,

when optimizing the active flights altogether, as illustrated in Fig-

ure 4.8 (right), the state is now represented as a tuple of the

inventory states of all active flights, i.e., 𝑆𝑡 = (𝑆[0]𝑡 , . . . , 𝑆
[T−1]
𝑡 ,𝝍),

and the reward signal is the sum of all immediate rewards

obtained by each active flights, i.e, 𝑅𝑡 =
∑

T−1

𝑖=0
𝑟(𝑆[𝑖]𝑡 , 𝐴

[𝑖]
𝑡). The

value function for the latest observed state 𝑣(𝑆𝑡) represents the

sum of revenues obtained for the next days until the end of time,

i.e., 𝑣(𝑆𝑡) = 𝔼𝜋[
∑∞

𝑖=0
𝛾𝑖𝑅𝑡+𝑖+1]. Note that this new formulation

of the Markov decision process does not present start or end

states, and we call it the continuing formulation. Furthermore,

this formulation enables the intrinsic value of information to be

captured by the value function because this function estimates

the value of current flights for an infinite horizon. Consequently,

the system only needs to search for a policy that improves the

value function (long–term revenue when including exploration)

rather than a policy that balances exploration and exploitation.

In short, the properties of the EWL problem applied to the

single–leg can be summarized as

▶ Multitasking: The agent is trained to react to many possible

situations (or many possible values of 𝜓∗), in contrast to

RMS that plans a pricing policy according to a specific set

of transition probabilities;

▶ Partial–observability: The system does not have access to

the true state of the demand behavior and must rely on a

noisy estimate;

▶ Continuing task: Optimization is performed over infi-

nite horizons rather than the classic episodic definition

presented in Chapter 2.

https://creativecommons.org/licenses/by/4.0/

4 Earning while Learning 74

1: “Toy problems” are problems that

have no immediate practical interest, of-

ten used as an expository problem that

illustrates a trait shared with another

more complicated problem.

[79]: Degris, White, et al. (2012), “Off-

policy actor-critic”

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

Our attention now turns to optimize a pricing policy under the

above conditions. The problem’s dimensionality makes it impos-

sible to solve with exact methods such as DP. The cardinality

of the action space alone is |A|T, making it impractical even

for toy problems
1
. Furthermore, the observation space has a

finite component with size (T · 𝐶)T and a continuous component

representing the estimated demand model parameters. The sec-

ond observation component, 𝝍, makes it far too complicated to

compute the state–transition probability function because it de-

pends on the distribution of the future estimated demand model

parameters. These estimated demand model parameters are a

result of interactions between complex systems (the historical

data and the demand model optimization method), thus hard

to describe analytically. Instead, it is trivial to build a sample

model for training.

The above problem description fits RL, leaving the question of

which RL method is suitable to address it. Among the many

RL methods in the literature, algorithms that use policy param-

eterization, such as actor–critic methods, are well adapted to

large action spaces [79], thus in the center of interest. In the next

section, we present the theory behind the actor–critic framework

and how it can be adapted to solve the EWL in the single–leg

problem.

4.5 A brief review of actor–critic methods

Actor–critic methods refer to a class of RL methods that learns

the policy and value functions, contrary to Deep Q-Networks,

presented in Chapter 3, that learn only the action–value function.

This section aims at developing the intuition of how these

methods work by reviewing the basic principles behind actor-

critic algorithms.

4.5.1 Stochastic policies

Throughout Chapter 2, the policy is defined as a function that

maps deterministically states to actions 𝜋 : S → A. In such a

case, the policy function cannot exist without the action–value

function (i.e.,𝜋(𝑠) = arg max𝑎 𝑞(𝑠, 𝑎)), and computing the action–

value function 𝑞(𝑠, 𝑎) exactly or as an estimate has been the focus

of dynamic programming and Q-Learning. Alternatively, the

policy function can represent the probability of selecting an

action given a state 𝜋 : A× S → [0, 1] [27], known as a stochastic
policy.

4 Earning while Learning 75

[35]: Silver, Huang, et al. (2016), “Mas-

tering the game of Go with deep neural

networks and tree search”

[80]: Berner, Brockman, et al. (2019),

“Dota 2 with large scale deep reinforce-

ment learning”

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

[81]: Şimşek, Algorta, et al. (2016), “Why

most decisions are easy in tetris – and

perhaps in other sequential decision

problems, as well”

Perhaps one of the most common ways to model a stochastic

policy is by defining it in terms of the soft–max distribution

𝜋(𝑎 |𝑠;𝜽) � 𝑒 ℎ(𝑠,𝑎;𝜽)∑
𝑎′∈A 𝑒 ℎ(𝑠,𝑎′;𝜽)

(4.5)

where ℎ(𝑠, 𝑎;𝜽) ∈ ℝ is the action preference, in which actions

with the highest values have more probability of being selected.

These preferences themselves may be parameterized arbitrarily

with a simple linear model, such as

ℎ(𝑠, 𝑎;𝜽) � 𝜽Tx(𝑠, 𝑎) (4.6)

where x(𝑠, 𝑎) ∈ ℝ𝑑
is a feature vector for state–action pair (𝑠, 𝑎).

The action preferences can be computed by a deep artificial

neural network, where 𝜽 represents the weights of all network

connections [35, 80].

There are many reasons to prefer modeling a stochastic rather

than a deterministic policy. The first one is that stochastic policies

can be differentiable functions, allowing us to use the policy

gradient theorem (which is reviewed in the following sections).

With the policy gradient theorem, the RL agent can learn a policy

directly without learning the action–value function first. Fur-

thermore, stochastic policies can represent deterministic ones,

while the opposite is generally not possible. For example, if the

optimal policy is deterministic then the system can set the action

preferences to be significantly higher for the optimal actions.

Another advantage is that, in problems with significant function

approximation, the best approximate value of the optimal policy

may be a stochastic policy, e.g., bluffing in Poker is better done

with a certain probability rather than deterministically. RL meth-

ods using stochastic policies can explicitly model (and learn!)

these probabilities [27].

But perhaps the most straightforward reason to model a stochas-

tic policy is that it might be a simpler function to approximate.

Problems vary in complexity regarding the functional form of the

policy and action–value functions, and approximating the policy

rather than action values may be easier for some problems. For

example, in Tetris, policy gradient methods often yield a supe-

rior performance while learning much faster than action–valued

methods [81].

4 Earning while Learning 76

2: There are two main choices for the

performance metric 𝐽(𝜽), one for the

episodic and another for the continuing

task formulation (in continuing tasks,

there are no start nor terminal states).

For now, we focus on the episodic formu-

lation, where the performance metric is

defined as 𝐽(𝜽) � 𝑣𝜋�(𝑠0), where 𝑣𝜋� is

the true value function for 𝜋� , and the

policy defined by 𝜽. We save the discus-

sion about the continuing formulation

for later in this work.

[82]: Sutton, McAllester, et al. (1999),

“Policy gradient methods for reinforce-

ment learning with function approxi-

mation”

4.5.2 Policy gradient methods

Policy gradient methods seek to approximate the policy function

directly without requiring the computation of the action–value

function. The value functions can still be used for learning the

policy, but they are not necessary for action selection. These

methods approximate the parameters of the stochastic policy

function𝜋(𝑎 | 𝑠;𝜽) that maximizes a performance measurement
2

𝐽(𝜽) while updating the parameter 𝜽 according to stochastic

gradient ascent

𝜽𝑡+1 = 𝜽𝑡 + 𝛼∇𝐽(𝜽), (4.7)

According to the policy gradient theorem (see [27]), we can

write

∇𝐽(𝜽) ∝
∑
𝑠

�(𝑠)
∑
𝑎

𝑞𝜋(𝑠, 𝑎)∇𝜋(𝑎 | 𝑠;𝜽)

= 𝔼𝜋

[∑
𝑎

𝑞𝜋(𝑆𝑡 , 𝑎)∇𝜋(𝑎 | 𝑆𝑡 ;𝜽)
]
, (4.8)

where �(𝑠) represents the on–policy distribution under 𝜋, such

that �(𝑠) ≥ 1,
∑

𝑠 �(𝑠) = 1, where this function often represents

the fraction of the time step in 𝑠 when following policy 𝜋.

We could stop here and write the all–actions policy gradient

algorithm [82] as

𝜽𝑡+1 = 𝜽𝑡 + 𝛼
∑
𝑎

𝑞(𝑆𝑡 , 𝑎; w)∇𝜋(𝑎 | 𝑆𝑡 ;𝜽), (4.9)

where 𝑞(𝑠, 𝑎; w) is an approximation of 𝑞𝜋(𝑠, 𝑎).

4 Earning while Learning 77

Example 4.5.1

Suppose that, in a problem, the RL agent needs to decide

between two actions (let’s say, right or left). The designer

decides to use an artificial neural network (ANN) with a

single unit (or neuron) for this task, where the output of

the ANN represents the policy function as the probability of

taking the right action (R). There are many possible choices

of activation functions that this single unit could use (e.g.,

hyperbolic tangent, rectified linear activation), and, because

the designer is modeling a probability, he believes that the

sigmoid function is the most appropriate choice. In other

words, the designer chooses the output of the network to be

given by

𝜋(𝑎 = R | 𝑠;�) = 1

1 + 𝑒−�x(𝑠) , (4.10)

where x(𝑠) ∈ ℝ is the feature vector for state 𝑠 that the

designer may choose casually (e.g., it could be a linear combi-

nation of the states’ attributes). Naturally, the probability of

selecting the left action is given by 𝜋(L | 𝑠;�) = 1 − 𝜋(R | 𝑠;�).
Assuming such a policy definition, which is the all–actions

policy gradient update function from eq. (4.9)?

Answer. The first step for writing the all–actions policy update

equation consists in computing the gradient of the policy

function for the learned parameter �, which can be written as

∇�𝜋(𝑎 = R | 𝑠;�) = 𝜕

𝜕�

[
1

1 + 𝑒−�x(𝑠)

]
= (−1) · −x(𝑠)𝑒−�x(𝑠)(

1 + 𝑒−�x(𝑠))2

= x(𝑠) · 1

1 + 𝑒�x(𝑠) ·
𝑒−�x(𝑠)

1 + 𝑒−�x(𝑠)

= x(𝑠) 𝜋(R | 𝑠;�) (1 − 𝜋(R | 𝑠;�))
= x(𝑠) 𝜋(R | 𝑠;�) 𝜋(L | 𝑠;�).

Analogously, we can write

∇�𝜋(𝑎 = L | 𝑠;�) = 𝜕

𝜕�
[1 − 𝜋(𝑎 = R | 𝑠;�)]

= −x(𝑠) 𝜋(R | 𝑠;�) 𝜋(L | 𝑠;�),

4 Earning while Learning 78

[83]: Williams (1992), “Simple statisti-

cal gradient-following algorithms for

connectionist reinforcement learning”

which gives us the final update equation

�𝑡+1 = �𝑡 + 𝛼 𝜋(R | 𝑆𝑡 ;�) 𝜋(L | 𝑆𝑡 ;�) 𝑥(𝑆𝑡)
[
𝑞(𝑆𝑡 , R;𝑤) − 𝑞(𝑆𝑡 , L;𝑤)

]
.

The above update equation makes very clear how the all–

actions method work. At every time step, the weight pa-

rameter � increases when the estimation of the action value

for right is greater than left (𝑞(𝑠, R;𝑤) > 𝑞(𝑠, L;𝑤)), conse-

quently strengthening the probability of selecting right. On the

contrary, the weight parameter � decreases when the action

estimation of left is larger than right (𝑞(𝑠, L;𝑤) > 𝑞(𝑠, R;𝑤)),
thus reducing the probability of selecting right.

REINFORCE

The REINFORCE method is an influential policy gradient al-

gorithm [83], also known as a Monte–Carlo algorithm because

it uses only the episode return for learning, i.e., it does not

perform bootstrapping like in DP or Q-Learning. Continuing

from eq. (4.8), we can write

∇𝐽(𝜽) ∝ 𝔼𝜋

[∑
𝑎

𝜋(𝑎 | 𝑆𝑡 ;𝜽)𝑞𝜋(𝑆𝑡 , 𝑎)
∇𝜋(𝑎 | 𝑆𝑡 ;𝜽)
𝜋(𝑎 | 𝑆𝑡 ;𝜽)

]
= 𝔼𝜋

[
𝑞𝜋(𝑆𝑡 , 𝐴𝑡)

∇𝜋(𝐴𝑡 | 𝑆𝑡 ;𝜽)
𝜋(𝐴𝑡 | 𝑆𝑡 ;𝜽)

]
replace 𝑎 by the sample 𝐴𝑡 ∼ 𝜋

= 𝔼𝜋 [𝑞𝜋(𝑆𝑡 , 𝐴𝑡)∇ ln𝜋(𝐴𝑡 | 𝑆𝑡 ;𝜽)] use

∇𝑥
𝑥

= ∇ ln 𝑥 (4.11)

= 𝔼𝜋 [𝐺𝑡∇ ln𝜋(𝐴𝑡 | 𝑆𝑡 ;𝜽)] use 𝑞𝜋(𝑆𝑡 , 𝐴𝑡) = 𝔼𝜋[𝐺𝑡 | 𝑆𝑡 , 𝐴𝑡],

which yields the REINFORCE update

𝜽𝑡+1 = 𝜽𝑡 + 𝛼 𝐺𝑡 ∇ ln𝜋(𝐴𝑡 | 𝑆𝑡 ;𝜽𝑡).

This formulation is appealing because of its intuitive form. Each

increment is proportional to the return 𝐺𝑡 in the direction of the

probability of taking the chosen action divided by the probability

of taking that action. When the return is positive, the update

increases the probability of repeating the action 𝐴𝑡 , otherwise

decreasing it when the return is negative.

The REINFORCE method suffers mainly from two issues. The

first one is that the agent must wait until the end of the episode

to compute the return 𝐺𝑡 , thus unsuitable for continuing tasks

4 Earning while Learning 79

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

3: For simplicity, only the one–step
temporal–difference error is presented,

but many choices for computing this

quantity are available in the litera-

ture [84], ranging from n-step bootstrap-

ping to eligibility traces, which are out-

side of our scope.

(or tasks that never end). The second issue relates to the variance

of the return 𝐺𝑡 . The return is a product of many stochastic

interactions with the environment. Such stochasticity may come

from the policy or the probabilistic nature of transitions. As a

result, the learning process must average across many episodes

to converge properly, requiring small learning rates and large

amounts of experience.

Actor–critic

The actor–critic methods use the value functions to evaluate the

expectation of the policy gradient theorem in eq. (4.8). These

methods compute two parameterized functions: The actor ap-

proximates the policy function 𝜋(𝑎 | 𝑠;𝜽) ≈ 𝜋(𝑎 | 𝑠), and the

critic estimates the value function 𝑣(𝑠; w) ≈ 𝑣𝜋(𝑠). Like in TD(0)

and Q-Learning, these methods also use the temporal–difference

error for updating the value estimate for a state by using the

value estimates of future states. This bootstrapping significantly

reduces the variance of returns, thus accelerating learning on

the cost of the introduced bias of the value function misestima-

tions that can decrease the method’s asymptotic performance.

Generally, this is a beneficial trade–off [27].

To derive our first actor–critic algorithm [27], we can continue

from eq. (4.11)

∇𝐽(𝜽) ∝ 𝔼𝜋 [(𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡) − 𝑣𝜋(𝑆𝑡+1)) ∇ ln𝜋(𝐴𝑡 | 𝑆𝑡 ;𝜽)]
≈ 𝔼𝜋 [(𝑅𝑡+1 + 𝛾𝑣(𝑆𝑡 ; w) − 𝑣(𝑆𝑡+1; w)) ∇ ln𝜋(𝐴𝑡 | 𝑆𝑡 ;𝜽)] use 𝑣(𝑠; w) ≈ 𝑣𝜋(𝑠)
= 𝔼𝜋 [𝛿𝑡∇ ln𝜋(𝐴𝑡 | 𝑆𝑡 ;𝜽)] use eq. (3.2) (4.12)

where 𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑣(𝑆𝑡 ; w) − 𝑣(𝑆𝑡+1; w) is the TD-error
3

pre-

sented in Chapter 3. The policy gradient update rule is given

by

𝜽𝑡+1 = 𝜽𝑡 + 𝛼�𝛿𝑡∇ ln𝜋(𝐴𝑡 | 𝑆𝑡 ;𝜽𝑡), (4.13)

and, similarly, the update for the value function weights is given

by

w𝑡+1 = w𝑡 + 𝛼𝑤𝛿𝑡∇𝑣(𝑠; w𝑡), (4.14)

where 𝛼� and 𝛼𝑤 are the learning rate for the actor and the critic

respectively.

4 Earning while Learning 80

4: Most function approximation meth-

ods require identically and indepen-

dently distributed input data, which is

not the case for RL, which collects data

through trajectories in the state–action

space.

[85]: Casas (2017), “Deep deterministic

policy gradient for urban traffic light

control”

[86]: Haarnoja, Zhou, et al. (2018), “Soft

actor-critic: Off-policy maximum en-

tropy deep reinforcement learning with

a stochastic actor”

[87]: Wĳmans, Kadian, et al. (2019), “Dd-

ppo: Learning near-perfect pointgoal

navigators from 2.5 billion frames”

[88]: Horgan, Quan, et al. (2018), “Dis-

tributed prioritized experience replay”

Learner

sample batch

new policy parameters

Figure 4.9: The rollout workers perform

interactions with the agent’s current pol-

icy and store the collected trajectories in

a training batch. This data collection is

often performed in parallel across many

instances. The collected training batch is

sent to the trainer that will compute eqs.

(4.15) and (4.16), updating the agent’s

policy and value function. This new pol-

icy is submitted to the rollout workers

for further collection of experience. This

loop continues until convergence or any

other stop criteria defined by the de-

signer.

Actor–critic in practice

The actor–critic method described in the previous section up-

dates the learned parameters after every experience collected

from the environment. However, such an approach is not con-

venient for some of the most popular function approximation

methods
4

(such as deep learning), being suitable only for didactic

purposes. In practice, most popular actor–critic methods collect

a batch of data across several interactions with the environment

before updating the actor and the critic parameters. The idea is

to approximate the expectation in eq. (4.12), by

∇𝐽(𝜽𝑡) ≈ �̂�𝜋 [𝛿𝑡∇ ln𝜋(𝐴𝑡 |𝑆𝑡 ;𝜽𝑡)] . (4.15)

where �̂�𝜋[·] indicates the empirical average over a finite batch of

samples collected while following policy 𝜋. The parameters for

the value function 𝑣(𝑠; w) can be updated according to

w𝑡+1 = arg min

w
�̂�𝜋

[
(𝑅𝑡+1 + 𝛾𝑣(𝑆𝑡+1; w𝑡) − 𝑣(𝑆𝑡 ; w))2

]
, (4.16)

which can be computed through stochastic gradient descent. Note

that the target 𝑅𝑡+1 + 𝛾𝑣(𝑆𝑡+1; w𝑡) remains fixed and only the

weights of 𝑣(𝑆𝑡 ; w) are adjusted by the optimization algorithm.

This allows turning an unsupervised learning problem, with

unknown value targets, into a supervised learning problem,

where the current value estimations are adjusted to fixed targets

from a previous estimation.

In general, actor–critic algorithms collect a batch of experiences,

then compute eqs. (4.15) and (4.16), and finally deploy the new

policy function for renewed data collection. Figure 4.9 illustrates

the typical training loop. The actor–critic algorithms can differ in

how experiences are collected and used for training. For example,

many algorithms may reuse experience by introducing a replay

buffer [85, 86], while others may distribute the training process

by computing the gradients remotely on each rollout worker [87,

88].

4.5.3 Continuing tasks

When defining goals in episodic Markov decision processes

(MDPs), the discount rate can be set to one 𝛾 = 1 (see eq. (2.15))

because it is possible to search for a policy 𝜋 maximizing it

as long as the return 𝐺𝑡 is bounded (i.e., it does not diverge).

4 Earning while Learning 81

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

However, in the case of continuing problems that go on and on

forever without any particular start or terminal states, setting the

discount rate to one is not possible anymore, and an appropriate

value should be chosen carefully. If too small, the agent can be

too shortsighted, preferring short–term rewards to long–term

goals. In an alternative classical setting for formulating objectives

in MDPs that overcomes this limitation, known as the average
reward, the agent pays attention to delayed rewards as much as

it does to immediate rewards [27]. The average reward defines

the quality of a policy 𝑟(𝜋) as the average reward rate while

following that policy, denoted as

𝑟(𝜋) � lim

ℎ→∞

1

ℎ

ℎ∑
𝑡=1

𝔼[𝑅𝑡 | 𝑆0 , 𝐴0:𝑡−1 ∼ 𝜋]

= lim

𝑡→∞
𝔼 [𝑅𝑡 | 𝑆0 , 𝐴0:𝑡−1 ∼ 𝜋] ,

where the expectation is conditioned on the initial state 𝑆0

and the subsequent action sequence 𝐴0 , 𝐴1 , . . . , 𝐴𝑡−1, which are

selected according to policy 𝜋. This formulation assumes that

the start state 𝑆0 and the policy’s early decisions have only a

temporary effect: In the long run, the expectation depends only

on the policy and the transition probabilities. This property is

known as ergodicity, and it is sufficient to guarantee the existence

of the limits in the above equations [27].

With the average reward setting, the differential value function

𝑣𝜋(𝑠) = 𝔼𝜋[𝐺𝑡 | 𝑆𝑡 = 𝑠] is defined in terms of the differential
return

𝐺𝑡 � 𝑅𝑡+1 − 𝑟(𝜋) + 𝑅𝑡+2 − 𝑟(𝜋) + 𝑅𝑡+3 − 𝑟(𝜋) + (4.17)

The differential value functions can be also written in terms of

the Bellman equation

𝑣𝜋(𝑠) =
∑
𝑎

𝜋(𝑎 | 𝑠)
∑
𝑠′

𝑝(𝑠′ | 𝑠, 𝑎) [𝑟(𝑠, 𝑎) − 𝑟(𝜋) + 𝑣𝜋(𝑠′)]

𝑞𝜋(𝑠, 𝑎) =
∑
𝑠′

𝑝(𝑠′ | 𝑠, 𝑎)
[
𝑟(𝑠, 𝑎) − (𝜋) +

∑
𝑎′

𝜋(𝑎′ | 𝑠′)𝑞𝜋(𝑠′, 𝑎′)
]
,

and there is also the differential TD-error, which can be written

as

4 Earning while Learning 82

[89]: Wan, Naik, et al. (2021), “Learning

and planning in average-reward markov

decision processes”

[90]: Zhang, Wan, et al. (2021), “Average-

reward off-policy policy evaluation with

function approximation”

𝛿𝑡 � 𝑅𝑡+1 − �̄�𝑡+1 + 𝑣(𝑆𝑡+1; w𝑡) − 𝑣(𝑆𝑡 ; w𝑡)

where �̄�𝑡 is an estimate at time 𝑡 of the average reward 𝑟(𝜋). There

are several methods for computing the differential return [89],

and it has already been extended successfully to the actor–critic

framework [90]. One of the simplest ways to estimate the average

reward 𝑟(𝜋) is by simply averaging the reward obtained over long

horizons of simulated experience, which is possible because, in

the typical actor–critic framework, the training data are generated

in batches.

Example 4.5.2

To better understand the average reward formulation, we

propose Exercise 10.6 from [27] [27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

. Consider the Markov reward

process represented in Figure 4.10, which has three states, A,

B, and C, and the rewards are +1 upon the arrival in state A

and otherwise is zero. What are the differential values for the

three states?

A

BC

+1 0

0

Figure 4.10: Markov reward process.

Answer. The first step consists of computing the average

reward �̄� that is given by

�̄� = lim

ℎ→∞

1

ℎ
𝔼

[
ℎ∑

𝑡=1

𝑅𝑡

]
= lim

ℎ→∞

1 + 0 + 0 + 1 + 0 + 0 + 1 + 0 + . . .

ℎ
=

1

3

.

where the instantaneous reward is given by𝑅𝑡 = 𝟙{𝑡 mod 3 ≡
0}, and 𝟙{·}, called the indicator function, assumes the value

of one when the condition is met, or zero otherwise. The

value function for state A is given by

4 Earning while Learning 83

𝑣(𝐴) � 𝔼

[
∞∑
𝑡=1

(𝑅𝑡 − �̄�)
]

= lim

𝛾→1

[
∞∑
𝑡=1

𝛾𝑡−1(𝑅𝑡 − �̄�)
]

= lim

𝛾→1

[
−1

3

− 1

3

𝛾 + 2

3

𝛾2 +
+∞∑
𝑡=4

𝛾𝑡−1(𝑅𝑡 − �̄�)
]

= lim

𝛾→1

−1

3

(
1 + 𝛾 − 2𝛾2

)
+ 𝛾3

∞∑
𝑡=1

𝛾𝑡−1(𝑅𝑡 − �̄�)︸ ︷︷ ︸
𝑣(𝐴)

↔ 𝑣(𝐴) = lim

𝛾→1

−1

3

1 + 𝛾 − 2𝛾2

1 − 𝛾3

= lim

𝛾→1

−1

3

(𝛾 − 1)(2𝛾 + 1)(−1)
(𝛾 − 1)(𝛾2 + 𝛾 + 1)(−1)

= −1

3

.

Lastly, the value for states B and C can be obtained through

bootstrapping from state A with

𝑣(𝐶) =
(
1 − 1

3

)
+ 𝑣(𝐴) = 1

3

,

𝑣(𝐵) =
(
0 − 1

3

)
+ 𝑣(𝐶) = 0.

4.6 Revisiting the earning–while–learning
problem through reinforcement learning

As discussed in Section 4.4, the system seeks to optimize a

policy function 𝜋(𝑎 | 𝑠) that can coordinate pricing decisions

across multiple flights. This policy observes a state containing

the current inventory states of all flights together with the

estimated forecast demand parameters 𝑆𝑡 = (𝑆[0]𝑡 , . . . , 𝑆
[T−1]
𝑡 ,𝝍),

and it seeks to maximize the combined revenue of all flights,

i.e, 𝑅𝑡 =
∑

T−1

𝑖=0
𝑟(𝑆[𝑖]𝑡 , 𝐴

[𝑖]
𝑡). We propose to compute such a policy

with the actor–critic framework, in which the pseudocode is

presented in Algorithm 4. The training environment uses a

sample model where each active flight interacts with a simulated

demand following the ordinary assumptions (Poisson arrivals,

4 Earning while Learning 84

Algorithm 4: Actor–critic for EWL

Input: The training range 𝝍∗ ∈ [𝝍min
,𝝍

max
] and the episode horizon 𝐻 ≫ T

1 Loop forever
2 initialize an empty training batch B;

3 sample 𝝍∗ uniformly within training range;

4 warmup historical booking database according to 𝑑(𝑓 ;𝝍∗) and while

following the random policy;

5 for 𝑡 = 1, . . . , 𝐻 − 1 do
6 estimate 𝝍 from historical booking data;

7 set 𝑆𝑡 = (𝑆[0]𝑡 , . . . , 𝑆
[T−1]
𝑡 ,𝝍);

8 select 𝐴𝑡 = (𝐴[0]𝑡 , . . . , 𝐴
[T−1]
𝑡) ∼ 𝜋(𝑎 | 𝑆𝑡 ;𝜽);

9 simulate demand response according to 𝑑(𝑓 = 𝐴𝑡 ;𝝍∗);
10 observe 𝑆𝑡+1 and 𝑅𝑡+1 =

∑
T−1

𝑖=0
𝑟(𝑆[𝑖]𝑡 , 𝐴

[𝑖]
𝑡);

11 store 𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1 , 𝑆𝑡+1 to B;

12 recompute the rewards 𝑅′
𝑖
= 𝑅𝑖 − 𝑟(𝜋) ∀𝑅𝑖 ∈ B, see eq. (4.17);

13 update 𝜽 and w according to eq. (4.15) and eq. (4.16), respectively, using

the collected experience B;

[91]: Hochreiter and Schmidhuber

(1997), “Long short-term memory”

[92]: Luong, Pham, et al. (2015), “Ef-

fective approaches to attention-based

neural machine translation”

[93]: Badrinarayanan, Kendall, et al.

(2017), “Segnet: A deep convolutional

encoder-decoder architecture for image

segmentation”

[94]: Bahdanau, Cho, et al. (2014), “Neu-

ral machine translation by jointly learn-

ing to align and translate”

negative exponential purchase probability), and the estimation

of the demand model parameters is performed as usual (as

described in Section 2.2). The only difference to standard methods

is how the total return is obtained. At each time step, the RL

agent observes the sequence of inventory states and the latest

model parameters and selects the fares for each active flight. This

continues from any particular starting point without termination,

suggesting the use of the average reward.

About the modeling of the policy and the value functions in

Algorithm 4, we propose the use of artificial neural networks

(ANNs). We recognize that there may be many possible designs

for the ANN, and finding the best one is not the focus of our

work. The architecture illustrated in Figure 4.11, which uses a

long short–term memory (LSTM) [91], the Luong–style attention

mechanism [92] following the encoder–decoder architecture [93],

is found to deliver stable training. This type of ANN is inspired

by research focused on sequence–to–sequence predictions, such

as natural language processing. The attention module is also a

standard component in the ANNs presented in these fields, and it

has been shown to dramatically improve the LSTM performance

when input and output sequences grow too large [94]. In essence,

the attention module computes “attention” weights that tell for

each prediction (or the output of the LSTM) how much emphasis

it should give for each input when making decisions. Perhaps

the most critical aspect of this design is the LSTM decoder in

the actor–network. The number of output units grows linearly

to the number of parallel active flights (the agent must compute

4 Earning while Learning 85

Actor Network

LSTM

Encoder

LSTM

Decoder

Linear Linear

Softmax Softmax

�
[0]

�
[T–1]

c[0] �[0] �[T–1]

LSTM

Decoder

LSTM

Encoder
... ...

......

� c[T–1] �

Critic Network

c[0]

... v

� c[T–1] �

Figure 4.11: The RL agent uses two sepa-

rate artificial neural networks. The critic

network approximates the value func-

tion, and the actor network computes

the policy function. The long short–term

memory (LSTM) encoder takes the re-

maining capacity inputs 𝑐[𝑖]. The LSTM

decoder takes the remaining time in-

puts 𝜏[𝑖] and outputs the probability

of selecting each fare in the fare struc-

ture 𝜋[𝑖] for each active flight. Image

from [19] under license CC BY 4.0.

for each active flight the probability of selecting each fare in the

fare structure) and can quickly cause the ANN to have too many

outputs to learn. The LSTM decoder allows the ANN to share

the learned parameters between the outputs of each active flight,

enabling a more compact and efficient representation.

4.6.1 Evaluating the methods on the single–leg problem

In this section, we evaluate and compare RMS, the heuristic

method defined in Section 4.3, and the RL described earlier

while performing experiments with a simulated demand. The

experiments are separated into two distinct scenarios. In the first

one, the RL agent is compared to the heuristic method while

estimating a single demand model parameter (price sensitivity

𝜙). In this first experiment, we assume the single–leg problem

under unconstrained capacity (i.e., infinite inventory capacity).

Even though the unconstrained capacity is an unrealistic assump-

tion for most real–world scenarios, this experiment provides

a baseline to measure the effectiveness of methods presented

earlier when solving the EWL in the single–leg problem. In the

second one, the solution obtained by RL is compared with stan-

dard RMS (which behaves as certainty equivalent pricing) when

capacity is constrained. Furthermore, we assume the system

must estimate two model parameters from historical booking

data (arrival rate � and price sensitivity 𝜙). This scenario aims

at demonstrating the RL agent’s ability to optimize prices un-

der capacity constraints (which is not possible with the work

developed in Section 4.3) and learn how to solve more complex

settings (such as controlling the uncertainty over two model

parameters).

https://creativecommons.org/licenses/by/4.0/

4 Earning while Learning 86

Table 4.2: Training hyperparameters. “ep.” abbreviates episode. The RLLib implementation of PPO dedicates one CPU to

the master thread, which is not used for generating experience.

Experiment Hyperparameter Value

unconstrained

capacity

train batch size 102

eps.

CPU
× 440

time steps

ep.
× 23 CPUs = 1,032,240

learning rate (𝛼) 3 · 10
−5

entropy coefficient (see [95]

[95]: Schulman, Wolski, et al. (2017),

“Proximal policy optimization algo-

rithms”

) 0.005

value function clip (see [95]) 30

eligibility trace (see [84]

[84]: Schulman, Moritz, et al. (2015),

“High-dimensional continuous control

using generalized advantage estima-

tion”

) 0.15

constrained

capacity

train batch size 175

eps.

CPU
× 440

time steps

ep.
× 23 CPUs = 1,771,000

learning rate (𝛼) 3 · 10
−6

entropy coefficient 0.015

value function clip 30

eligibility trace 0.1

[96]: Liang, Liaw, et al. (2018), “RLlib:

Abstractions for distributed reinforce-

ment learning”

Throughout the experiments, we consider that each flight has

capacity 𝐶 = 50 (representing, for example, the number of

seats in the business cabin), the fare structure has ten price

points A = {$50, $90, . . . , $230}, the booking horizon has T = 22

time steps, the demand follows the exponential model, and the

historical database keeps the booking data for the most recent T

flights.

For the RL training setup, the proximal policy optimization

algorithm (PPO) [95], an actor–critic algorithm, is used because

of its simplicity and stability. The training workload is distributed

in a cluster with 4 GPUs and 24 CPUs with RLLib [96]. The

hyperparameters
5

5: A hyperparameter is a parameter

that controls the learning process (e.g.,

the learning rate), in contrast to the val-

ues of other parameters that are derived

during training (e.g., the connection

weights of an ANN).

presented in Table 4.2 were obtained through

automated tuning for each experiment independently (some of

these parameters are PPO specific, and a formal presentation

is beyond our scope). Under such configurations, the agent’s

performance stabilizes in about 100 training steps, taking 95

hours of computation. The source code is available at [97]

[97]: Gatti Pinheiro, Defoin-Platel, et al.

(2022), Talos

.

Figure 4.12 illustrates the training and evaluation procedures.

For each episode, the parameters of true demand behavior

are sampled arbitrarily from a pre-defined range of possibilities

(Figure 4.12 (a)). Then, the historical database is warmed up while

following the random policy, which is necessary to enable the

first estimation of the demand model parameters (Figure 4.12 (b)).

Next, the loop of forecasting, optimization, and interactions with

the demand is performed for 𝐻 = 20 × T = 440 time steps (440

time steps are enough for our goals, but this number could be

larger; Figure 4.12 (c)). Note that price optimization can be either

done with RL, DP, or with the heuristic from Section 4.3. The

optimization module can be switched to evaluate a particular

method or train the RL agent. The RL agent is trained by iterating

4 Earning while Learning 87

�
min

�
max

�
*

(a) Demand behavior sampling.

�
*Random policy

�0

(b) Historical database warmup.

Forecasting

H = 440 steps

�
*

Optimization
method

goes here

Dynamic
programming

U(�)
Heuristic

Reinforcement
learning

(c) Episode rollout.

Master
eqs. (4.15) and (4.16)

Forecasting

�
*

�

Rollout WorkersIndependent �
* ...

�

Actor's neural

network weights

Experience batch B

(d) Distributed training.

t=T–1t=0

t=65

Used for training

Used for evaluation

Warmup
period

(e) Training vs. evaluation.

Figure 4.12: The anatomy of training and evaluation.

4 Earning while Learning 88

between data collection (i.e., experience batch) obtained by

running many independent episodes across several workers and

updating the actor and critic’s ANN weights with eqs. (4.15)

and (4.16). After each update of the ANN weights (learning),

the actor’s new policy, represented by the weights 𝜽, is updated

across all rollout workers simultaneously (to perform policy

rollouts, only the actor is required; Figure 4.12 (d)). Concerning

the data used for training, only interactions between the system

and the demand are kept, including data from the warmup

period. However, when performing an evaluation, the first 3×T =

66 time steps are eliminated because we are only interested in

the stable regime of each method (optimization methods may

be temporarily helped by the high parameter accuracy due to

the initialization of the historical database with the random

policy; Figure 4.12 (e)). Furthermore, when evaluating the RL

agent, the actor and critic’s neural network weights are not

updated.

Experiment 1: estimating only the price sensitivity under
unconstrained capacity

This section considers the case where the system must estimate

only the price sensitivity parameter 𝜙, and the true arrival rate

�∗ = 4/22 is fixed and known at all time steps. The methods are

evaluated under a low number of arrivals because estimating

the demand price sensitivity is challenging due to the scarcity of

booking data, making efficient price experimentation essential

for success. Even though the capacity is finite, 𝐶 = 50, given the

low arrival rate �∗ = 4/22, it is unlikely that it will ever exhaust

even if the base fare (the fare whose purchase probability is one)

𝑓0 = $50 is always selected (Pr{50 bookings | 𝐴0 , . . . , 𝐴T−1 =

𝑓0} < 10
−16

). Therefore, from the optimization perspective, the

capacity is practically infinite, allowing us to implement the

heuristic method, as presented in Section 4.3.

The system performs model calibration at every time step. Both

the heuristic method and RL are evaluated within the interval

𝐹∗
5
∈ [2.1, 3.8]. In this interval, the revenue–maximizing fare if

the true demand behavior was known covers almost the entirety

of the fare structure. In theory, the system does not know any-

thing about the evaluation interval, and any positive value of the

price sensitivity could be assumed. However, to avoid extreme

evaluations for the price sensitivity parameter, the estimates are

limited to the range 𝐹5 ∈ [1.5, 4.3] (this parameter clipping ap-

plies to all methods: RL, RMS, and heuristic). Safety mechanisms

like this one are often present in real–world systems. Figure 4.13

4 Earning while Learning 89

F5
e alua ion

in er al

clipped interval

�
ϕ

(a
|

s)

fares

$50
$70

$210
$230

�
ϕ

(a
|

s)

fares

$50
$70

$210
$230... ...

1.5 4.3

Figure 4.13: An illustration of the

clipped and evaluation intervals and

its corresponding revenue–maximizing

policy. Image from [19] under license CC

BY 4.0.

illustrates the relationship of these two intervals to the revenue–

maximizing policy when the true demand price sensitivity is

known at all times.

We focus the analysis on the revenue performance, represented

by the average collected revenue normalized for the revenue–

maximizing policy (which knows the true demand price sen-

sitivity at every time step) and the random policy (that selects

fares from a uniformly random distribution). Furthermore, we

also look at the mean square error (MSE) of the estimated price

sensitivity (representing the demand model quality), defined

as

𝑀𝑆𝐸(𝜙) � 1

𝑛

𝑛∑
𝑖=1

(Φ𝑖 − 𝜙∗)2 ,

where Φ𝑖 represents as sample estimation of the price sensitivity

parameter.

Calibrating the heuristic method. As we are interested in the

system’s overall performance within the evaluation interval,

the trade–off parameter � is calibrated to maximize the aver-

age collected revenue for the system’s pricing policy 𝜋 when

sampling the 𝐹∗
5

parameter uniformly within the evaluation

interval. We sample randomly 160 values for the exploration

rate in the interval � ∈ [0, 8000], and, for each sampled value,

we further sample 2560 values of 𝐹∗
5

randomly in the evaluation

interval. Each episode is simulated as described earlier for 440

time steps. In other words, the performance metric is the aver-

age of the revenue obtained by the 2560 episodes of 440 time

steps, each having a different 𝐹∗
5

parameter selected randomly

in the evaluation interval or, mathematically, we approximate

𝔼𝐹∗
5
∼𝑈(2.1,3.8)[𝑟(𝜋; 𝐹∗

5
)]. Figure 4.14 (left) shows the system’s per-

formance as a function of the trade–off parameter. When � = 0,

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

4 Earning while Learning 90

0 1000 2000 3000 4000 5000 6000 7000 8000

�

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

A
v
e

ra
g

e
 n

o
rm

a
li
ze

d
 r

e
v
e

n
u

e

0 1000 2000 3000 4000 5000 6000 7000 8000

�

0.01

0.013

0.017

0.02

0.024

0.027

0.031

0.034

0.038

0.042

0.045

ϕ
 m

e
a

n
 s

q
u

a
re

d
 e

rr
o

r

Figure 4.14: Optimizing the trade–off parameter � (99% confidence level). (Left) The average revenue is normalized to

the revenue–maximizing policy that knows the true demand price sensitivity at every time step and the random policy

that selects fares from a uniformly random distribution. We plot a separate estimation of the average behavior for RMS,

represented by the dashed horizontal line and its corresponding confidence interval. (Right) The mean squared error of the

price sensitivity estimation. Image from [75] under license CC BY 4.0.

the system greedily chooses the revenue–maximizing price only,

behaving like RMS. As the trade–off parameter increases, the

MSE of the price sensitivity estimation decreases Figure 4.14

(right), and the revenue performance increases Figure 4.14 (left),

until the point that increasing the trade–off parameter translates

into a loss of revenue due to excessive price experimentation.

The best revenue performance was obtained for � = 2167, with a

normalized expected revenue of 78.0%, representing an absolute

improvement of 7.0% compared to RMS.

Results. The analysis is separated into two distinct parts. In

the first one, we compare how each method behaves within the

evaluation interval. Then, we perform a more detailed analysis

of the final pricing policy obtained for each method.

The average revenue performance and the price sensitivity MSE

in Figure 4.15 are computed as a function of the 𝐹∗
5

for 3565 inde-

pendent evaluation runs. For the heuristic method, a constant

value for the trade–off parameter � = 2197 is chosen, which is the

value that maximizes the expected revenue for the evaluation in-

terval. In Figure 4.15 (left), we observe that RL outperforms RMS

and heuristic methods in the entire interval, except for 𝐹∗
5
= 3.8.

The reason RL underperforms the heuristic method for 𝐹∗
5
= 3.8

will be explained in the second experiment of this section when

the final policies obtained are illustrated. In Figure 4.15 (right),

we plot the MSE over the estimation of the price sensitivity. All

methods have larger values for price sensitivity MSE for the

lower values of 𝐹∗
5
, which decreases as the 𝐹∗

5
increases. Such an

effect is because the true arrival rate parameter �∗ is known by

the system. As the 𝐹∗
5

increases, so does the optimal fare. The

further the selected price is from the base fare 𝑓0, the higher

https://creativecommons.org/licenses/by/4.0/

4 Earning while Learning 91

Heuristic RLRMS

2.1
2.2

2
2.3

4
2.4

6
2.5

9
2.7

1
2.8

3
2.9

5
3.0

7
3.1

9
3.3

1
3.4

4
3.5

6
3.6

8
3.8

F₅*

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
v
e

ra
g

e
 n

o
rm

a
li
ze

d
 r

e
v
e

n
u

e

2.1
2.2

2
2.3

4
2.4

6
2.5

9
2.7

1
2.8

3
2.9

5
3.0

7
3.1

9
3.3

1
3.4

4
3.5

6
3.6

8
3.8

F₅*

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ϕ
 m

e
a

n
 s

q
u

a
re

d
 e

rr
o

r

Figure 4.15: The comparison between the average performance of RMS, heuristic method, and RL (99% CL). (Left) The

system’s performance is better the higher the average normalized revenue is. The revenue performance is normalized

between the revenue–maximizing (which requires the perfect knowledge of the demand parameters at all time steps) and

random policies. (Right) The estimation of MSE of the demand model (lower errors are better). Images from [19] under

license CC BY 4.0.

the amount of information collected by that price, which can

be verified with eq. (4.4). Therefore, the estimation of the price

sensitivity is “easier” for higher values of the 𝐹∗
5

parameter, and,

naturally, there is less value in price experimentation. In general,

RL and heuristic methods display much less average MSE on

the estimation of the customer’s price sensitivity than RMS. The

effect is more important for lower values of the 𝐹∗
5

parameter,

where the system’s policy approaches the base fare 𝑓0, reducing

the amount of information obtained by the interaction with the

demand. Finally, the RL agent pricing policy displays a better

estimation of the demand price sensitivity and generates more

revenue on average than the heuristic method and RMS.

Figure 4.16 shows the pricing policy obtained through Monte–

Carlo rollouts for both heuristic and RL methods. When 𝐹∗
5
= 2.71

(Figure 4.16 (a)), RL displays a performance advantage over the

heuristic method (see Figure 4.15) with lower price sensitivity

MSE. The reason is clear when comparing the two policies.

RL tends to price closer to the revenue–maximizing fare: It

chooses fares $110, $130, and $150 more frequently (83.6%)

than the heuristic method (69.9%). RL is slightly more efficient

than the heuristic method for the price sensitivity MSE,because

RL tends to price the higher fares 𝑓 ≥ $130 more frequently

(70.7%) than the heuristic method (65.1%) (in this problem,

higher prices contain more information about the demand price

sensitivity than the lower prices). When 𝐹∗
5
= 3.8 (Figure 4.16

(b)), RL generates less revenue than the heuristic method, and

they both display the same price sensitivity MSE. Analyzing

https://creativecommons.org/licenses/by/4.0/

4 Earning while Learning 92

Revenue-maximizing Heuristic RL

50 70 90 110 130 150 170 190 210 230

fare ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 (
�

)

50 70 90 110 130 150 170 190 210 230

fare ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 (
�

)

(a) 𝐹∗
5
= 2.71.

50 70 90 110 130 150 170 190 210 230

fare ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 (
�

)

50 70 90 110 130 150 170 190 210 230

fare ($)

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
il
it

y
 m

a
ss

 (
�

)

(b) 𝐹∗
5
= 3.8.

Figure 4.16: The comparison between heuristic and RL rollout policies. For convenience, we represent the revenue–maximizing

policy. Image from [19] under license CC BY 4.0.

the heuristic and RL policies closely, we see that the largest

difference is that the heuristic method selects the highest fare

$230 more often (39.6%) than RL (2.4%). This is surprising

because, under the evaluation settings, the highest price is near–

optimal for revenue maximization and demand model learning

(see eq. (4.4)). The reason fare $230 is preferred by the heuristic

is that, when 𝐹∗
5
= 3.8, the price sensitivity clipping happens

at 𝐹5 = 4.3 (20.1%; the same is observed with RL), causing the

heuristic algorithm to select fare $230. When the price sensitivity

parameter is clipped (and the estimated uncertainty of the price

sensitivity is unavailable), the system cannot know whether it

was clipped due to large errors or because the true value is close

to the limits. Compared to the heuristic (which has access to the

estimation of the price sensitivity uncertainty, see eq. (4.2)), RL

takes a more conservative approach, distrusting the parameter

estimation and pricing fares ($170, $190, and $210) that are often

better for demand price sensitivity estimation and that work

well for high values of 𝐹∗
5
.

https://creativecommons.org/licenses/by/4.0/

4 Earning while Learning 93

RLRMS

2.1
2.2

2
2.3

4
2.4

6
2.5

9
2.7

1
2.8

3
2.9

5
3.0

7
3.1

9
3.3

1
3.4

4
3.5

6
3.6

8
3.8

F₅*

0.8

0.85

0.9

0.95

A
v
e

ra
g

e
 n

o
rm

a
li
ze

d
 r

e
v
e

n
u

e

2.1
2.2

2
2.3

4
2.4

6
2.5

9
2.7

1
2.8

3
2.9

5
3.0

7
3.1

9
3.3

1
3.4

4
3.5

6
3.6

8
3.8

F₅*

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

ϕ
 m

e
a

n
 s

q
u

a
re

d
 e

rr
o

r

2.1
2.2

2
2.3

4
2.4

6
2.5

9
2.7

1
2.8

3
2.9

5
3.0

7
3.1

9
3.3

1
3.4

4
3.5

6
3.6

8
3.8

F₅*

0.1

0.15

0.2

0.25

ν
 m

e
a

n
 s

q
u

a
re

d
 e

rr
o

r

(a) �∗ = 70/22.

2.5
2.6

1
2.7

3
2.8

4
2.9

5
3.0

7
3.1

8
3.3

3.4
1

3.5
2

3.6
4

�*

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

A
v
e

ra
g

e
 n

o
rm

a
li
ze

d
 r

e
v
e

n
u

e

2.5
2.6

1
2.7

3
2.8

4
2.9

5
3.0

7
3.1

8
3.3

3.4
1

3.5
2

3.6
4

�*

0.004

0.006

0.008

0.01

0.012

0.014

ϕ
 m

e
a

n
 s

q
u

a
re

d
 e

rr
o

r

2.5
2.6

1
2.7

3
2.8

4
2.9

5
3.0

7
3.1

8
3.3

3.4
1

3.5
2

3.6
4

�*

0.15

0.2

0.25

0.3

�

 m
e

a
n

 s
q

u
a

re
d

 e
rr

o
r

(b) 𝐹∗
5
= 2.9.

Figure 4.17: The comparison between the average performance of RMS, RL and revenue–maximizing policy (99% CL). Image

from [19] under license CC BY 4.0.

Experiment 2: estimating the price sensitivity and arrival rate
under constrained capacity

For our second experimental setting, we consider that the system

must estimate the demand model parameters (arrival rate � and

price sensitivity 𝜙) from historical bookings. The true arrival rate

can assume any value in the range �∗ ∈ [55/22, 80/22], making

the flights’ capacity 𝐶 = 50 finite in practice. As in the previous

experiment, the true price sensitivity can adopt any value in the

range 𝐹∗
5
∈ [2.1, 3.8], and the RL agent is trained over the clipped

interval wider than the evaluation interval (� ∈ [50/22, 85/22]
and 𝐹5 ∈ [1.5, 4.3]).

Results. As in the previous section, we first analyze how the RMS

and the RL agent perform in the evaluation interval concerning

revenue performance and model quality. Then, we compare

how the two policies differ for a specific value of true demand

behavior parameters.

In Figure 4.17(a), we show how the average normalized revenue

and the MSE for the demand model parameters respond to

different values of true price sensitivity within the evaluation

interval. In the left chart, we see that RL outperforms RMS in

the entire interval, with a larger advantage over higher values

https://creativecommons.org/licenses/by/4.0/

4 Earning while Learning 94

RMS RL

50 70 90 110 130 150 170 190 210 230

fare ($)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro

b
a

b
il
it

y
 m

a
ss

 (
�

)

50 70 90 110 130 150 170 190 210 230

fare ($)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro

b
a

b
il
it

y
 m

a
ss

 (
�

)

Figure 4.18: The comparison between RMS (left) and RL (right) rollout policies for �∗ = 70/22, 𝐹∗
5
= 2.5. The RL policy

performs better (89.9%) than RMS (80.6%) with respect to the revenue performance, but worse MSE for both demand model

parameters. Image from [19] under license CC BY 4.0.

of the 𝐹∗
5

parameter. In the center and right charts, we see

that the MSEs of both parameters are close to each other, but

RL consistently demonstrates a worse MSE performance. The

same behavior is also present when the true customer price

sensitivity is fixed, and only the arrival rate varies, as in Figure

4.17(b). This may seem paradoxical: How can RL have a better

revenue performance while having a worse estimation of the

demand model parameters? Unfortunately, we do not completely

understand the RL strategy to precisely answer this question,

and we can only speculate about its strategy. As it is observed in

the following analysis, instead of reducing model uncertainty,

the agent can learn to select a “safe price” unlikely to lose

much revenue, especially when the estimated demand model

parameters are too extreme (i.e., close to the clipping limits).

In the second analysis, Figure 4.18 displays the RMS and the

RL agent pricing policies when the true arrival rate and price

sensitivity are fixed at �∗ = 70/22 and 𝐹∗
5
= 2.5. We choose this

point because the flights’ average load factor is 70%, which brings

a natural price variability and a high amount of booking data,

being a favorable situation for estimating the demand model

parameters (the historical data contains, on average, 1078 book-

ings). Given these two properties, obtaining a good estimation

of the demand model parameters is relatively easy for RMS,

which puts the value of price experimentation in question. RMS

achieves a normalized revenue performance of 80.6%, with an

MSE for the price sensitivity and the arrival rate of 0.007 and

0.20, respectively. The agent is better for revenue maximization,

with a normalized revenue performance of 89.9%, but has a

worse model quality with an MSE for the price sensitivity and

the arrival rate of 0.008 and 0.26, respectively. When comparing

the two policies, the major difference is that the agent prefers to

price center fares $130, $150, and $170 more frequently (72.1%)

than RMS (65.3%). This strategy harms the overall model quality

https://creativecommons.org/licenses/by/4.0/

4 Earning while Learning 95

Table 4.3: Summary of experimental results.

Experiment Method Average
normalized

revenue

Price sensitivity
MSE

Arrival rate MSE

Unconstrained

capacity

RMS (CEP) 0.702 ± 0.007 0.0401 ± 0.0026 —

heuristic 0.783 ± 0.003 0.0148 ± 0.0008 —

RL 0.868 ± 0.002 0.0109 ± 0.0005 —

Constrained

capacity

RMS 0.862 ± 0.003 0.0072 ± 0.0002 0.162 ± 0.003
RL 0.912 ± 0.002 0.0090 ± 0.0003 0.219 ± 0.004

because it decreases the price variability of the historical data.

However, it turns out that the center fares are better for revenue

maximization than higher fares such as $210 and $230 because

they are less extreme given the true demand behavior. This aligns

with our intuition that the RL agent prefers “safer prices” when

“price experimentation” is less suitable.

Table 4.3 presents a summary of the performance of each method

for the two investigated scenarios. The results in this table

correspond to the average behavior of 3565 episodes randomly

sampled in the evaluation range for each method.

4.6.2 Ablation studies

To gain more insight into the contribution to the system’s final

performance of the several ideas presented in the past sections,

we remove the various features one by one when performing

training. Then, we measure how the final performance is im-

pacted by each change. Three essential changes are analyzed.

First, we study how the estimated demand model parameters

influence the agent’s final policy. Then, we analyze the encoder–

decoder architecture by comparing it with another simpler archi-

tecture specifically designed to suppress some of its properties.

Finally, we investigate the importance of the average reward by

comparing it to the discounted formulation.

State representation

We mask the estimated demand model parameters from the RL

agent during training to evaluate how much each parameter

impacts the system’s performance. The masking procedure is

straightforward: The parameter value is forced to zero before

inputting it into the agent. Figure 4.19 compares earning and

learning of the final policy obtained by the agent when only the

arrival rate � parameter is hidden from the agent, or only the

4 Earning while Learning 96

0.8 0.82 0.84 0.86 0.88 0.9

accuracy of learned parameters
Learning

0.7

0.75

0.8

0.85

0.9

0.95

1

E
a

rn
in

g

Revenue-maximizing
policy

RL baseline

RL with
time-distributed

architecture

RMS

RL with
price sensitivity

only (�)

RL with
arrival rate

only (�)

RL without
demand model

parameters (� and �)

n
o

rm
a

li
ze

d
 r

e
ve

n
u

e

Figure 4.19: Ablation studies.

[5]: Fiig, Härdling, et al. (2014), “De-

mand forecasting and measuring fore-

cast accuracy in general fare structures”

[22]: Fiig, Weatherford, et al. (2019),

“Can demand forecast accuracy be

linked to airline revenue?”

price sensitivity parameter 𝜙 is hidden, or when both parameters

𝜓 = (�, 𝜙) are hidden simultaneously. This figure is computed

using the forecasting module to estimate both arrival rate and

price sensitivity, and the true demand behavior parameters are

sampled uniformly in the evaluation interval. For reference, we

provide the revenue–maximizing policy (which knows the true

demand behavior parameters at all time steps), RMS, and finally,

the RL agent trained without any masking (that we refer to as

baseline).

As expected, baseline produces more normalized average rev-

enue (0.916± 0.002; 99% confidence level) than all three versions

where masking is applied. The presence of the estimated demand

model parameters is decisive: Without it, the agent’s revenue per-

formance drops dramatically (0.687 ± 0.010). The estimation of

the price sensitivity (0.856±0.002) is more important to the agent

than the estimation of the arrival rate (0.797 ± 0.003), aligning

with expert intuition [5, 22] that it is more important, for revenue

maximization, to correctly choose the lowest opening fare (which

is associated with the price sensitivity parameter, as discussed

in recall Section 2.3) than controlling capacity constraints (which

is related to the arrival rate parameter).

With respect to learning (horizontal axis), there is a general

trend that the estimated demand model parameters have lower

accuracy as more information about the true state of the environ-

ment is available. This behavior can be linked to the degree of

“determinism” of the final learned policy. How much any policy

is deterministic can be measured with its entropy that is given

4 Earning while Learning 97

by

H(𝜋) � −𝔼𝜋

[∑
𝑎

𝜋(𝑎 | 𝑆𝑡) ln(𝑎 | 𝑆𝑡)
]
.

For example, assuming a fare structure with 𝑛 = 10 price points

and a horizon with T = 22 time steps, when training starts and

the agent follows the near–random policy, i.e., 𝜋(𝑎[𝑖]
𝑗
| 𝑆𝑡) ≈ 0.1,

we can write

H = −
T−1∑
𝑖=0

𝑛−1∑
𝑗=0

𝜋(𝑎[𝑖]
𝑗
| 𝑆𝑡) ln𝜋(𝑎[𝑖]

𝑗
| 𝑆𝑡)

= −220 · 0.1 · ln(0.1)
≈ 51.

The learned policies when both estimated parameters are hid-

den, or only the arrival rate is provided to the agent have higher

entropy (H ≈ 23) than the learned policy when only the price

sensitivity is provided (H ≈ 19). Furthermore, the lowest entropy

is obtained by the baseline policy (H ≈ 16), which is still signifi-

cantly higher than the fully deterministic revenue–maximizing

policy (H = 0). In other words, the agent’s policy is more deter-

ministic as more information is available. As the agent’s policy

becomes more deterministic, this determinism degrades the

quality of the estimated demand model accuracy. In a sense, the

agent starts following the random policy and tries to reduce the

policy entropy as much as possible, which generally increases of

the noise in the estimated demand model parameters. Gradually

it finds a balance that depends on how trustworthy information

is available in the observations.

In summary, without both estimated demand model parameters,

the agent is unable to perform better than RMS (0.861 ± 0.003),

meaning that these parameters are required for success.

Artificial neural network architecture

The baseline uses the encoder–decoder architecture illustrated

in Figure 4.11. In principle, this architecture allows the agent to

observe the remaining capacities of the active flights altogether

while coordinating the pricing strategy across these flights. To

measure how influential this architecture is to revenue maximiza-

tion, we propose the simpler architecture illustrated in Figure

4 Earning while Learning 98

Actor Network

Feed

forward

Linear Linear

Softmax Softmax

�
[0]

�
[T–1]

c[0]�[0] �[T–1]

Feed

forward
...

� c[T–1] �

Critic Network

c[0]...

v

c[T–1]�

Figure 4.20: Time–distributed architec-

ture.

4.20 that uses a time–distributed feedforward network that

optimizes decisions locally. The outputs of this ANN are the

probabilities of selecting prices while considering the remaining

capacity and time of each active flight independently of each

other. The critic architecture is also changed to use a feedforward

ANN as well. The critic architecture is also changed to use a

feedforward ANN as well. In Figure 4.19, we observe that the

time distributed architecture achieves a lower final average rev-

enue performance (0.894 ± 0.002) than baseline (0.916 ± 0.002)

but better than RMS (0.861 ± 0.003).

The quality of the critic network predictions can be evaluated

with the explained variance of the value function defined as

EV(𝜋) � 1 − Var𝜋[𝐺𝑡 − 𝑣(𝑆𝑡 ; w)]
Var𝜋[𝐺𝑡]

,

where Var𝜋[·] denotes the variance of a random variable while

following policy 𝜋. Roughly, the critic predictions are better

as the explained variance is closer to one. The critic network

performances can be compared using this metric for both time

distributed and encoder–decoder architectures. Indeed, the critic

from these two architectures display similar final performances

(EV ≈ 0.933). Thus, the observed loss of revenue performance is

more likely due to the actor than the critic network, suggesting

that encoding the active flights’ capacities and communicating

local decisions are valuable features for the actor network.

Computing the return

The continuing nature of the EWL problem suggests using the

average reward rather than the more classical discounted return

4 Earning while Learning 99

0 50 100 150 200

Training steps

0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
 n

o
rm

a
li
ze

d
 r

e
v
e

n
u

e
� = 0.85 � = 0.95

� = 0.99 baseline

0 50 100 150 200

Training steps

0

0.2

0.4

0.6

0.8

1

A
v
e

ra
g

e
 n

o
rm

a
li
ze

d
 r

e
v
e

n
u

e

� = 0.85

� = 0.95

� = 0.99

baseline

Figure 4.21: Discounted return vs. average reward. (Left) Training progress when the true demand model parameters 𝜓∗ are

known by the agent at all time steps. (Right) Training progress when the true demand model parameters are unknown by

the agent and must be estimated from historical booking data.

formulation. To evaluate the importance of such a choice, the

average reward computation in Algorithm 4 (line 12) can be re-

placed by the discounting formulation, i.e., 𝐺𝑡 =
∑∞

𝑘=0
𝛾𝑘𝑅𝑡+𝑘+1.

Then, we can compare the properties of these two algorithms.

Recall that the discount rate must be less than one (𝛾 < 1)

when working with continuing tasks because the value func-

tion may diverge otherwise (𝑣(𝑠) → ∞). First, we compare the

performance of these two algorithms in the case that the true

demand behavior parameters 𝜓∗ are known at all time steps.

This is different from the EWL problem where the demand

model parameters must be estimated from historical bookings,

but it allows the verification that all methods converge to the

same answer as the discount rate approaches one. Figure 4.21

(left) compares the baseline performance to various values of the

discount rate during training. As one would expect, the agent is

more farsighted as the discount rate increases, thus converging

to a better solution. When 𝛾 = 0.99, the agent reaches a similar

average revenue performance (0.993 ± 0.001) as when 𝛾 = 0.95

(0.993 ± 0.001), but the worst performance is when 𝛾 = 0.85

(0.978 ± 0.001). Nonetheless, baseline, which uses the average

reward, is the best–obtained solution (0.996 ± 0.001).

When comparing the discounting formulation to the average

reward in the EWL problem setting, see Figure 4.21 (right), the

best–obtained solution is, again, the average reward (0.928 ±
0.002). However, in contrast to the previous scenario where

the true demand behavior parameters are perfectly known, the

best–obtained solution for the discounted formulation is when

𝛾 = 0.95 (0.922 ± 0.002), followed by 𝛾 = 0.85 (0.910 ± 0.002)

and 𝛾 = 0.99 (0.904 ± 0.002). Furthermore, the RL agent takes

more training steps to converge as the value of the discount

rate increases. Even though the final performance difference

between the average reward and discounted return has little

practical meaning, the average reward formulation leads to faster

4 Earning while Learning 100

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

[98]: Singh, Jaakkola, et al. (1994),

“Learning without state-estimation in

partially observable Markovian deci-

sion processes”

[66]: Boer and Zwart (2014), “Simulta-

neously learning and optimizing using

controlled variance pricing”

[67]: Elreedy, Atiya, et al. (2021), “Novel

pricing strategies for revenue maximiza-

tion and demand learning using an

exploration-exploitation framework”

convergence and better results while eliminating the need to

tune the discount rate hyperparameter. This finding aligns with

other studies in the RL literature that question the worthiness

of the discounted formulation for continuing tasks when using

significant function approximation [27] or when the true state of

the environment is not fully observable [98].

To develop some intuition on why the average reward formula-

tion provides the best result, consider that the states, represented

by feature vectors, do little to distinguish between each other,

which is the case when the true underlying state of the environ-

ment cannot be directly observed (such as in the EWL problem).

There are no start or terminal states, only an infinite sequence

of actions and rewards without a beginning or an end, and the

performance must be assessed from those. One way to measure

performance is by averaging the rewards over a long interval,

which is the idea behind the average reward formulation. Al-

ternatively, the discounted returns could be computed, but, as

they can vary according to a random variable that is not fully

observable, it would be needed to average these returns across

long intervals. If done this way, the average of discounted returns

is found to be proportional to the average reward 𝑟(𝜋)/(1 − 𝛾)
(see “The Futility of Discounting in Continuing Problems” [27]),

which is essentially the average reward.

4.6.3 Discussion on reinforcement learning

Perhaps one of keys to RL success was the simplification of the

multi–objective optimization aspect of the EWL problem into a

single optimization dimension: Revenue maximization. Instead

of describing the EWL problem as an explicit requirement of

balancing revenue maximization and model learning, common

to heuristic methods [66, 67], the RL agent is asked to maximize

revenue only and has the flexibility to trade–off between earning

and learning as it finds best suitable. Figure 4.22 shows how

RL trades earning and learning throughout its training. Before

training begins, RL starts following a near–random policy at

the bottom right. As training progresses, RL policy improves its

revenue performance (earning) at the expense of the demand

behavior parameter’s accuracy (learning). At some point in train-

ing, RL displays the same revenue performance as RMS while

presenting a better estimation of the demand model parameters.

As training continues, RL can further improve revenue by sacri-

ficing the demand model quality, ultimately converging towards

the equilibrium point represented by the dot at the end of its

trajectory, where it cannot further improve revenue.

4 Earning while Learning 101

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

Learning

0

0.2

0.4

0.6

0.8

1

E
a

rn
in

g

Revenue-maximizing
policy

RMS

RL

Near-random
policy

accuracy of learned parameters

n
o

rm
a

li
ze

d
 r

e
ve

n
u

e

Figure 4.22: RL trajectory in the earning–

learning space during the training

phase. The earning axis represents the

average normalized revenue for the

evaluation interval, while the learn-

ing axis represents the average esti-

mated demand parameters accuracy.

The revenue–maximizing policy is ob-

tained by providing the true demand

behavior parameters to the optimizer

while keeping the estimation of param-

eters of the demand model as usual.

The balance found by the revenue–

maximizing policy is unstable, thus not

being an answer to the problem. Image

from [19] under license CC BY 4.0.

[99]: Silver, Singh, et al. (2021), “Reward

is enough”

Since controlling model uncertainty is required to succeed in

the task, the agent has the mission of identifying when and how
much price experimentation should be done (if ever done). Such

an approach has strong connections to the “reward is enough”

hypothesis [99], which suggests that associate abilities of in-

telligence (e.g., social intelligence, perception, knowledge rep-

resentation, planning, etc.) can be understood as subserving

the maximization of reward (i.e., the measure of success in the

task). In our case, we claim that controlling the quality of the

estimated demand model is the associated ability required to

achieve reward (or revenue) maximization. RL is trusted to find

the solution to all the complexities of the EWL problem from

nothing more than the standard RMS raw inputs without any

human guidance.

Lastly, RL also displays some practical benefits compared to

heuristic methods, such as the one developed in Section 4.3. The

RL agent does not need any external indication of the level of

trust in the estimated demand model parameters (represented

by the estimation of demand model uncertainty 𝜎𝜓 in heuristic

methods). The advantage of not requiring a measure of uncer-

tainty is that, for realistic–sized demand models having many

parameters to be calibrated, computing these quantities and

balancing their importance in the optimization heuristic may

not be a trivial task. Furthermore, training the RL agent im-

poses other constraints, such as computation requirements and

fine–tuning of the algorithm’s hyperparameters, that may be

easier to address and less time–consuming than heuristic–based

methods.

https://creativecommons.org/licenses/by/4.0/

4 Earning while Learning 102

[67]: Elreedy, Atiya, et al. (2021), “Novel

pricing strategies for revenue maximiza-

tion and demand learning using an

exploration-exploitation framework”

4.7 Summary

Optimizing prices under an unknown demand behavior is also

referred to as the earning–while–learning (EWL) problem, and, in

recent years, this problem has attracted attention from academia

and industry, particularly since the COVID-19 pandemic, which

significantly impacted the global economy and the airline indus-

try. We believe recovery requires effective price experimentation

to learn the new and evolving demand price sensitivity.

The system’s current pricing policy impacts the booking data it

collects and the quality of future forecasts, raising the question

of how to perform efficient price experimentation to improve the

quality of future forecasts and increase long–term revenue.

The EWL problem has been investigated earlier, and proposed

solutions rely on heuristic optimization. Unfortunately, many of

these heuristics have no obvious extension to the single–leg prob-

lem, which requires methods to manage capacity constraints

and price optimization of multiple active flights. One of the

most promising approaches [67] can be efficiently adapted to

the single–leg problem under the assumption of unconstrained

capacity, leading to a new objective that allows the user to man-

ually calibrate the system’s emphasis to price experimentation

and revenue maximization when optimizing prices.

The EWL problem can be formulated to the single–leg as the

price optimization of several parallel flights at once (rather than

each flight individually), given the observed capacity constraints

and the most recent observed estimated parameters. This change

in the problem definition makes it intractable with classical

methods due to the large size of the state–action space and the

difficulties of modeling the future distributions of the estimated

demand model parameters. In contrast, reinforcement learning

(RL) methods can be adapted to this new formulation. The class

of actor–critic methods are the most promising ones because

they use policy parameterization, which allows them to optimize

across large action spaces.

Policy gradient methods approximate a stochastic parameterized

policy function through stochastic gradient ascent to maximize

long–term reward. In addition to policy parameterization (actor),

actor–critic methods also learn the weights of a parameterized

value function (critic). The critic is not used for decision–making

but only for learning the policy, and it allows reducing the vari-

ance of the observed returns, easing the learning procedure.

Beyond the large state–action spaces, the EWL problem also

presents a continuing nature, i.e., balancing between earning

4 Earning while Learning 103

and learning is a task that never finishes. For tasks having this

nature, there is an alternative formulation of goals in Markov

decision processes (MDPs) referred to as the average reward.

As long as the MDP has the property of ergodicity, the value

functions can be rewritten for the average reward (in contrast

to the discounted formulation presented in previous chapters),

which allows us to plug this formulation straightforwardly in

the actor–critic framework.

We choose to model the agent with artificial neural networks

(ANNs) following the long short–term memory encoder–decoder

architecture with attention. This model limits the number of

outputs the ANN needs to learn by sharing the weights for each

component of the output vector. During the ablation studies, it

was observed that the most important aspect of our algorithm

is having the demand behavior estimated parameters in the

representation of the state, followed by the encoder–decoder

architecture, and, finally, the average reward formulation.

When evaluating RMS, heuristic method, and RL in a capacity

unconstrained scenario, RL generally provides a better revenue

output than the other methods while reducing errors in the

estimation of the demand model parameters. When comparing

RMS and RL in a constrained capacity scenario, RL is also better

for revenue maximization but worse in the estimation of the

demand model parameters. One possible explanation is that RL

learned to price safely rather than reduce errors of the estimated

demand model parameters. This strategy is fairly unexplored by

past research on the EWL problem.

This chapter’s results highlight the RL capability of finding better

solutions than human–designed heuristics, presenting itself as

an alternative path to improve RMSs. The next chapter discusses

how to adapt the method present here to other issues of RM and

its consequences.

[100]: Jaeger (1998), “A short introduc-

tion to observable operator models of

stochastic processes”

[101]: Thon (2018), “Spectral learning of

dequential systems”

[102]: Monahan (1982), “State of the art –

a survey of partially observable Markov

decision processes: theory, models, and

algorithms”

Beyond Earning while Learning 5
5.1 In depth view of partial

observability 104
5.2 Revisiting non–

stationarity and com-
petition 106

5.2.1 Non–stationarity 106
5.2.2 Self–competition 109
5.2.3 Competition 111
5.3 Learning the state–

update function 113
5.4 What about forecasting? 116
5.5 Summary 117

Reinforcement learning may have the power to transform the

field of revenue management. This chapter presents possible

ways to adapt the method previously described to address other

long–standing issues in airline RM and how researchers and

practitioners can interact with such RL–based systems.

5.1 In depth view of partial observability

In the earning–while–learning problem presented in Chapter

4, the true state of the environment is not directly observable

because the parameters regulating the demand behavior are

unknown (and estimated from past bookings). When the system

does not have access to the complete state of the environment,

the MDP is said to be partially observable. Optimization un-

der partially observable MDPs (POMDPs) is a research topic in the

field of RL, and many studies have been conducted throughout

the years [100–102]. Even though the literature around this topic

is large and outside our scope, we present some key concepts es-

sential for further understanding our work and how to improve

it.

The RL algorithms presented in Chapters 3 and 4 rely heavily

on the concept of a state, i.e., the returns of the policy and

value functions are approximations of observed states. Indeed,

function parametrization includes important aspects of partial

observability since the parameters can be adjusted independently

of state variables that are not directly observable. However, some

issues need more explicit treatment of partial observability for

further investigation.

Without loss of generality, let’s assume that the reward signal is

computed directly from observations or that the reward is one of

its components. The interactions with the environment have no

complete states or rewards but rather an alternating sequence of

observations 𝑂𝑡 ∈ O and actions 𝐴𝑡 ∈ A. This sequence at time

𝑡, called the history, is denoted by

𝐻𝑡 � 𝑂0 , 𝐴0 , 𝑂1 , 𝐴1 , 𝑂2 , 𝐴2 , . . . , 𝐴𝑡−1 , 𝑂𝑡 .

5 Beyond Earning while Learning 105

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

[98]: Singh, Jaakkola, et al. (1994),

“Learning without state-estimation in

partially observable Markovian deci-

sion processes”

This sequence represents everything the agent knows about

the environment without looking outside the stream of data

and could be used, in principle, for accessing the unobservable

true state of the environment. For the history to be useful, the

system needs to transform this history into an internal state 𝑆𝑡
that is provided to the policy function 𝜋(𝑆𝑡). The function that

maps the history into the system’s internal state is denoted by

𝑆𝑡 = ℎ(𝐻𝑡). For example, ℎ could be the identity function, such

that ℎ(𝐻𝑡) = 𝐻𝑡 . Even though simple, the identity function is not

a practical choice because the state would never recur and the

agent would never experience the same state twice. Therefore,

the function ℎ needs to represent the history into a compact

summary useful for predicting the future. Furthermore, there

are also computational aspects to be considered. The amount

of data captured data grows with 𝑡, and, at a certain point, it

becomes large and unwieldy. For these reasons, rather than a

function taking in whole histories, the system needs a function

having the same effect by doing so incrementally, i.e.,

𝑆𝑡+1 = 𝑢(𝑆𝑡 , 𝐴𝑡 , 𝑂𝑡+1),∀𝑡 ≥ 0,

with the first 𝑆0 initialized arbitrarily. The above recursive func-

tion is known as the state–update function [27].

These functions, ℎ and 𝑢, are said to have the Markov property if

and only if two arbitrary histories H and H
′
that are mapped to

the same state (e.g., ℎ(H) = ℎ(H′)) present the same probabilities

for their next observation, i.e.,

ℎ(H) = ℎ(H′) ⇒ Pr{𝑂𝑡+1 = 𝑜 |𝐻𝑡 = H, 𝐴𝑡 = 𝑎} = Pr{𝑂𝑡+1 = 𝑜 |𝐻𝑡 = H
′, 𝐴𝑡 = 𝑎}.

The ability of the system to predict anything depends on how

strong this Markov property is. When the environment is fully

observable, only the last transition of the history (i.e., 𝐻𝑡−1:𝑡 =

𝑂𝑡−1 , 𝐴𝑡−1 , 𝑂𝑡) is enough to identify the complete state of the

environment. However, if the Markov property is only approx-

imately satisfied, the long–term predictions can degrade dra-

matically, impacting the system’s performance [27]. Hence, one

effective way to learn when the Markov property is not strong

consists of approximating a stochastic policy while maximizing

the average reward [98], as presented in the previous chapter.

In the case of airline RM, the system must rely on a noisy

approximation of the true state obtained from past observations.

Specifically, the historical database keeps track of the latest

5 Beyond Earning while Learning 106

Action

Forecasting+
ObservationSystem's state

State-update function

Figure 5.1: An illustration of the state–

update function for Algorithm 4.

[103]: Gatti Pinheiro, Fiig, et al. (2022),

“Demand change detection in airline

revenue management”

[18]: Keskin and Zeevi (2017), “Chas-

ing demand: Learning and earning in a

changing environment”

T observations and actions and transforms this history (data

stream) into the estimated parameters of the demand model

(compact summary). These estimated parameters depend on

the true state of the environment that is not directly observable.

In Algorithm 4, concatenating the latest observation with the

estimated demand behavior parameters, as illustrated in Figure

5.1, acts as the state–update function, and its output behaves

as the system’s internal state. Taking such a perspective, one

could wonder which other ways we could build this state-update

function. The following sections explore how this function can

be adapted to address other issues in airline RM while keeping

the same algorithmic structure for training presented in Chapter

4.

5.2 Revisiting non–stationarity and
competition

As discussed in Chapter 1, alongside the earning–while–learning

problem, there are at least three other open issues in airline

RM that can be addressed with RL: pricing under competition,

self–competition (or cannibalization), and non–stationarity. This

section discusses how the RL architecture proposed in Chapter

4 could be adapted to address these issues.

5.2.1 Non–stationarity

Airlines use past booking data to predict future demand when

optimizing prices. However, the past may not represent the

future because of abrupt changes in market conditions, such as

pandemics, economic crises [103], and smooth changes, such as

economic growth [18]. In other words, real–world demand is

not stationary as assumed in Chapter 4 but changes over time.

5 Beyond Earning while Learning 107

For this reason, to adapt Algorithm 4 to non–stationary demand

behavior, the first and most straightforward change consists

in making the true demand behavior a function of time, i.e.,

𝝍∗(𝑡).

But, which function 𝝍∗(𝑡) should be chosen? If there is reliable

information on how the demand behavior will change in the

future, the functional form of such a change can be specified in

the true demand behavior parameters used for training. However,

in principle, future changes in the true demand behavior are

unknown, and the agent may perform poorly if the real–world

demand behavior changes differently than specified in training.

Instead, the system needs to identify different regimes and react

accordingly.

Perhaps one way to design 𝝍∗(𝑡) consists in looking into how

demand behavior changed in the past and reproducing such

changes during training. Even though this might be a piece

of a solution, there are no guarantees that past changes in de-

mand behavior will represent future changes, e.g., the COVID-19

pandemic was unprecedented in the airline industry. Alterna-

tively, one could generate many 𝝍∗(𝑡) functions and pick among

them arbitrarily during training. For example, 𝝍∗(𝑡) could be

a function increasing/decreasing linearly in time or any other

functional form that seems relevant. The agent should be better

prepared to react to unseen changes when the specified fami-

ly/range of 𝝍∗(𝑡) during training is large in variety and realistic

in functional form. Put differently, the future is not foreseeable,

but the agent can be trained in numerous fabricated scenarios,

and, perhaps, it may find the real world to be similar enough to

others experienced in training, bootstrapping its strategy from

one of these trained scenarios.

Even though specifying 𝝍∗(𝑡) is an important step, it may not

be the only one needed. The system’s internal state needs to

be enriched so the agent can better recognize the situations

it may find, i.e., the internal state must have a strong Markov

property. One of the most immediate ways to enrich the system’s

internal state is by introducing the uncertainty of the estimated

demand model parameters, which computation is presented

in Chapter 4. However, the uncertainty of the demand model

parameters only tells the agent about the believed quality of

the estimated demand model parameters, but nothing about

the nature of changes in demand behavior, such as abrupt and

smooth changes, nor the intensity of such changes. In other

words, when given only the demand model parameters and

their corresponding uncertainty, the system cannot distinguish

a large uncertainty due to the poor quality of the historical data

5 Beyond Earning while Learning 108

state-action space

S0

St�n

rollout

trajectories

observed

trajectory

St

(a) Example of normality.

state-action space

S0

St−n

St

(b) Example of outlier.

Figure 5.2: The system generates trajectories (blue) from an arbitrary state in the past 𝑆𝑡−𝑛 while following its pricing policy

and simulated customers generated according to the calibrated demand model. The system can compare the simulated

trajectories to the observed trajectory between states 𝑆𝑡−𝑛 and 𝑆𝑡 .

caused by the system’s pricing policy from the one originated

by a change in the customer behavior.

A shock detector is a function/module that tracks demand changes

in real–time. Roughly, a shock detector compares freshly ob-

served data with the model predictions. As the demand model

is built with data from past interactions, a change in demand

behavior can be detected when the newly obtained data do not

fit within model predictions (i.e., low probability of observing

this new data). For example, the probability of observing specific

states can be computed using the model of the demand behavior,

as explained in Example 3.2.4 (on page 47). A probable cause

for experiencing unlikely states (or states where the probability

of being experienced is below a certain threshold, such as the

white region in Figure 3.5) is a change in the demand behavior,

thus being a practical signal to monitor.

The shock detection mechanism described above uses only the

information about states (state–space distribution), however, the

information about actions can also be used (state–action space

distribution). The demand shock detector is presented formally

in the Appendix, but Figure 5.2 illustrates the procedure of the

state–action space shock detector. The system chooses any arbi-

trary observed state 𝑆𝑡−𝑛 and, from this state, it simulates a set of

trajectories with Monte–Carlo rollouts while using its policy and

generating demand according to its estimated demand model.

Trajectories in the state–action space can be summarized with the

state–transition probability function and compared to the “ex-

pected” ones obtained through simulation. When the observed

trajectory matches the distribution of simulated ones, as repre-

sented in Figure 5.2 (a), the shock detector concludes with the

absence of a change in demand behavior. On the contrary, when

the observed trajectory is too extreme for the simulated ones, as

represented in Figure 5.2 (b), the shock detector concludes with

5 Beyond Earning while Learning 109

Forecasting+ ObservationSystem's state

State-update function

Shock
detector

�, ��

Figure 5.3: Representation of the state–

update function for non–stationarity.

[14]: Gallego and Phillips (2004), “Rev-

enue management of flexible products”

[104]: Bront, Méndez-Diaz, et al. (2009),

“A column generation algorithm for

choice-based network revenue manage-

ment”

a change in demand behavior.

The shock detector can also provide information about the

“direction” of a change in the demand behavior. For example,

suppose that several active flights are observing an excess of

demand that is very unlikely due to chance. When the system’s

capacity goes down too quickly, its natural response is to increase

prices (see Figure 2.6), but note that this scenario is somewhat

different from the one assumed in Chapter 2: Many flights are

observing their capacities decrease faster than expected despite

price increases. This phenomenon indicates a positive shock,

where there are more customer arrivals or these customers are

more willing to pay. In contrast, if the system observes many

active flights having fewer bookings than expected, then the

system may be experiencing a negative shock. Furthermore, the

shock detector provides an estimate of the “intensity” of such

changes because the likelihood of observing a trajectory is related

to how much the demand behavior has changed.

In summary, as represented in Figure 5.3, the estimated parame-

ters, their uncertainties, and the shock detector may consist of a

rich set of signals that can help the agent evaluate the situation.

The agent can be trained to recognize and interpret these signals

through examples of non-stationary demand behavior included

in the training, and the designer can implement these examples

according to his goals and intuition.

5.2.2 Self–competition

When optimizing prices, airlines consider the independence of

the demand for flights of the same leg. As discussed in Chapter

4, this is inaccurate because the booking data collected for

each flight is appended to the historical database and later

used for estimating the demand model parameters. However,

there is a second reason why this is not true. In the real world,

customers may anticipate or delay their trip to save money,

forcing flights from the airline to compete for the same demand,

i.e., self–competition (or cannibalization) [14, 104]. Throughout

5 Beyond Earning while Learning 110

[105]: Garrow (2016), Discrete choice mod-
elling and air travel demand: theory and
applications

this work, we deliberately assumed this was not possible to keep

the problem statement simple, but, in practice, this assumption

is far from realistic.

The first step to address the self–competition requires modifying

the simple binary customer choice model (accept or reject the

offer) assumed so far. There are many ways to design a customer

choice model that accommodates complex behaviors [105], but,

for illustration, consider the multinomial discrete choice model. This

choice model defines the probability of selecting each option,

let’s say, option A and option B, according to the soft–max

distribution

Pr{A |A, B; 𝝎} � 𝑒 ℎ(A; 𝝎)

1 + 𝑒 ℎ(A; 𝝎) + 𝑒 ℎ(B; 𝝎) ,

where ℎ(𝑜; 𝝎) ∈ ℝ is a preference function causally specified.

For example, the preference function could be the dot–product

between the features of the evaluated option x(𝑜) and the feature

weights 𝝎, i.e., ℎ(𝑜; 𝝎) � x(𝑜) · 𝝎. The features of an option

can be anything relevant to customers when making a choice

(e.g., if customers are choosing between different models of

smartphones, the features could represent memory, display size,

and camera quality). The probability of choosing none of the

available options is given by

Pr{∅ |A, B; 𝝎} = 1 − Pr{A |A, B; 𝝎} − Pr{B |A, B; 𝝎}

= 1 − 𝑒 ℎ(A; 𝝎)

1 + 𝑒 ℎ(A; 𝝎) + 𝑒 ℎ(B; 𝝎) −
𝑒 ℎ(B; 𝝎)

1 + 𝑒 ℎ(A; 𝝎) + 𝑒 ℎ(B; 𝝎)

=
1

1 + 𝑒 ℎ(A; 𝝎) + 𝑒 ℎ(B; 𝝎) .

Let’s assume customers arriving for the 𝑖-th active flight follow

a Poisson distribution with mean �(𝑖). These customers aim at

purchasing the flight departing at time 𝑖 = 𝑡 + 𝜏, but they can

anticipate, delay or abandon their trip according to the offers

made for all active flights at the instant they arrive. Customers

choose between flights according to the multinomial discrete

choice model, and the probability of purchasing the 𝑖-th active

flight can be denoted by

𝑧
(
𝑖
��� 𝑓 [0] , . . . , 𝑓 [T−1]

; 𝝎
)
= Pr

{
purchase 𝑖-th flight

��� 𝑓 [0] , . . . , 𝑓 [T−1]
; 𝝎

}
.

5 Beyond Earning while Learning 111

Forecasting+ ObservationSystem's state

State-update function

�

Figure 5.4: Representation of the state–

update function for self–competition.

[106]: Gallego, Ratliff, et al. (2015), “A

general attraction model and sales-

based linear program for network rev-

enue management under customer

choice”

Finally, the exponential demand model (from eq. (2.2)) can be

rewritten as a function of the 𝑖-th active flight as

𝑑(𝑖; 𝝎) = �(𝑖) 𝑧
(
𝑖
��� 𝑓 [0] , . . . , 𝑓 [T−1]

; 𝝎
)
.

In practice, the true parameters of the demand model 𝝎 are

unknown and need to be approximated from historical data,

which may be achieved by adapting the likelihood function

in eq. (2.3).

Then, the system needs to optimize its offers to maximize rev-

enue. For the same reasons discussed in Chapter 4, this last step

quickly becomes intractable to dynamic programming meth-

ods as the horizon T increases because the state–action space

quickly becomes too large, requiring the development of heuris-

tic methods to assist price optimization [106]. Instead, adapting

Algorithm 4 to self–competition is straightforward. For the first

step, we introduce the multinomial choice model to the true

demand behavior (i.e., update the environment). Then, the new

model parameters are estimated from historical bookings; these

estimations are then appended to the system’s internal state, as

illustrated in Figure 5.4 (i.e., update the state–update function).

Everything else stays unchanged: The learning system updates

the learned weights through RL while generating experience

according to a specified demand model in which parameters

are sampled arbitrarily from a range for a predefined number of

time steps.

5.2.3 Competition

Perhaps the most unrealistic assumption made in this work is that

the airline is the only service provider (monopoly). In practice,

many airlines may operate the same leg, allowing customers to

select which offer best suits them. In other words, the probability

that customers will book a flight from the airline depends not

only on its prices but also on the offers made by the other

airlines.

5 Beyond Earning while Learning 112

1: In game theory, the Nash equilibrium

is one of the common ways to define

the solution in non–cooperative games,

where no player has anything to gain by

changing only one’s own strategy.

[17]: Bondoux, Nguyen, et al. (2020),

“Reinforcement learning applied to air-

line revenue management”

[11]: Fiig, Wittman, et al. (2019), “To-

wards a competitor-aware RMS”

In a certain sense, competition is very similar to self–competition,

but it presents particular characteristics and thus must be treated

separately. The most remarkable difference is that the historical

booking data for the competing airlines are not directly observ-

able, i.e., airlines have access to their booking data only and not

the booking data from the others, making it much harder to

estimate the parameters of a dependent demand model. Price

optimization is also more complex because it depends on the

pricing strategy of competing airlines, which can change over

time and is unknown (the other airlines’ remaining capacities

and pricing optimization may not be publicly available infor-

mation). Furthermore, the systems of competing airlines may

need some iterations of adapting strategies until convergence to

a Nash equilibrium
1

[17].

To illustrate how the system may be adapted to competition, let’s

assume that customers can choose among two different airlines

(duopoly). For each active flight, the airline selects a fare 𝑓al,

while the competing airline selects a fare 𝑓oal (‘oal’ abbreviates

“other airline”). We can rewrite the purchase probability as

𝑧(𝑓𝑎𝑙 | 𝑓𝑜𝑎𝑙 ; 𝝎) = Pr{purchase at fare 𝑓al | 𝑓oal; 𝝎}

where 𝝎 represents the customer preferences. These purchase

probabilities can be described with the multinomial discrete

choice model or any other choice model that the designer consid-

ers relevant. In theory, the customer preference parameters 𝝎 can

be estimated from historical data by modifying the maximum

likelihood estimation in eq. (2.3) or by any other supervised

learning method.

For using the above demand model for optimization, the system

needs to know how the competitor will price their offers in the

future, which is unknown when making a choice. However, the

competitor’s historical prices are available to the airline and can

be used to predict how, to some extent, the competitor may price

its products in the future [11]. Roughly, the system can learn the

parameters 𝝌 of a pricing prediction function that approximates

the competitor’s pricing policy 𝜋(𝜏; 𝝌) ≈ 𝜋oal(𝑆oal

𝑡 = (𝜏, 𝑐oal))
while using the competitor’s historical prices, where 𝑐oal

is the

unknown remaining capacity of the other airline.

Once the system computes the pricing prediction function, it

must optimize its pricing policy accordingly. In principle, the

system can perform price optimization with DP if the customer

choice model can be mapped to the state–transition probability

function, as in Chapter 2. Alternatively, integrating competition

5 Beyond Earning while Learning 113

Forecasting+ ObservationSystem's state

State-update function

Price
predictor

�, �

Historical
bookings

Historical
competitor

prices

foal

Figure 5.5: Representation of the state–

update function for competition.

into Algorithm 4 requires adapting observations to include the

competitor’s prices and current inventory states, and extending

the system’s internal state to include the new demand model

parameters and the predicted competitor’s price, as illustrated

in Figure 5.5. On the environment side, the customer choice

model needs to be updated to match the desired behavior (e.g., a

multinomial choice model for duopoly) and add the presence of a

competitor pricing system that could be a legacy RMS or another

learning agent. Similar to the previous sections, everything else

stays unchanged, illustrating the simplicity and the powerful

general nature of Algorithm 4.

5.3 Learning the state–update function

In the previous sections, we discussed how to adapt Algorithm 4

to many other problems of airline RM. The adaptations focused

on the inputs and outputs of a state–update function, which is

responsible for translating the observable components of the

demand behavior into the system’s internal state. The agent’s

performance should improve as the Markov property of this

internal state becomes stronger, and the correct design of this

function requires expert knowledge about the problem.

Developing and calibrating the state–update function can be

difficult, requiring a significant amount of the expert’s time

and many trial–and–error attempts. Ideally, we would like to

automate the search procedure and integrate the design of the

state–update function into the learning process itself. But, how

could it be achieved?

Before addressing how, let’s first consider more deeply why. In

artificial intelligence research, we observe the recurrent pattern

that generic–learning methods, such as RL and deep learning,

tend to outperform human–knowledge–based methods, such

as the heuristic methods discussed in this work. For example,

in speech recognition, early participants of the competition

5 Beyond Earning while Learning 114

[107]: Sutton (2019), The bitter lesson

[35]: Silver, Huang, et al. (2016), “Mas-

tering the game of Go with deep neural

networks and tree search”

[108]: Silver, Schrittwieser, et al. (2017),

“Mastering the game of go without hu-

man knowledge”

sponsored by the Defense Advanced Research Projects Agency used

methods that took advantage of human knowledge about speech,

such as words and phonemes, contrary to the more computation–

intensive generic–learning methods. Nonetheless, the learning

methods won out over the human–knowledge–based methods

until they became the dominant trend in the field. Similarly, early

methods in computer vision searched for edges, generalized

cylinders, or scale–invariant features. Today, this has been all

replaced by modern ANNs that use only the notions of convolu-

tion methods. These examples illustrate that, in the short term,

methods using human knowledge of the domain can display

better results, but, in the long run, the only thing that matters

is leveraging data and computation power. Even though these

two perspectives do not need to oppose each other, they do

in practice because time spent in one is time not spent in the

other [107]. There is little reason to believe that the case of airline

RM is any different.

Perhaps one of the most striking and enlightening examples of

how RL can be used to learn its representations comes from

Go. As presented in Chapter 3, when training an RL agent

to play Go, researchers defined observations as 19 × 19 × 48

image stacks, in which each point of the 19 × 19 Go board was

represented by 48 binary or integer features designed according

to what the research team believed to be important. Furthermore,

researchers introduced further human support to the learning

system by warming up the ANN to predict moves from expert

play [35]. This version of the RL agent, later re–branded as

AlphaGo Lee, shocked the field of AI when it defeated the

18-time world champion Lee Sedol. Not long after, researchers

developed a new version of the agent, branded as AphaGo Zero,

which bested the previous version, AlphaGo Lee, by 100 games

to 0 [108]. AlphaGo Zero is different from AlphaGo Lee in many

ways, but two of the most significant differences are that the

agent is trained exclusively with self–play (no use of expert

games) and that it uses only black and white stones as the input

features. More precisely, the ANN took as input the 19 × 19 × 17

image stacks of 17 binary features, in which the first 8 feature

planes were the raw representation of the positions of the current

player’s stones in the current and past board configurations, the

following 8 feature planes were similar, representing the current

and past board configurations for the opponent stones, and the

final feature plane had a constant value indicating the color of the

current play (0 for white, 1 for black). The need for representing

past board configurations and the color features was motivated

by some rules of Go that forbid repetition (ko rule) and that

White is given “compensation points” (komi) for not getting the

first move (Black moves first), making only the current board

5 Beyond Earning while Learning 115

Action

ObservationSystem's state

State-update function

L(�)

Stacked
observations
and actions

Actor

Critic

Figure 5.6: Representation of a generic

state–update function using artificial

neural networks. The red path illus-

trates backpropagation.

2: Unlike recurrent neural networks,

such as long short–term memory net-

works, transformers do not necessarily

process data in order, i.e., they use the at-

tention mechanism to provide a context

for any position in the input sequence.

[109]: Parisotto, Song, et al. (2020), “Sta-

bilizing transformers for reinforcement

learning”

position not a Markov state (weak Markov property).

Instead of designing the state–update function ourselves, as

illustrated in the past sections, we can imagine a system similar

to AlphaGo Zero that uses an ANN to encode a stack of past

observations into the summarized system’s internal state. This

ANN could use an encoder–decoder architecture similar to the

one presented in Figure 4.11 or a powerful transformer architec-

ture
2

[109] that can encode information over long horizons.

Consider that the system’s internal state representation can be

obtained through a parametrized state–updated function 𝑆𝑡 =

𝑢(𝑆𝑡−1 , 𝐴𝑡−1 , 𝑂𝑡 ;𝜽𝑢). The agent’s goal is to learn the parameters

𝜽𝑢 such that the state representation 𝑆𝑡 is useful for making

predictions. The parameters of this function can be learned

directly through RL by backpropagating from actor and critic

networks to the same shared body (state–update function), as

illustrated in Figure 5.6. The parametrized state–update function

would try to learn representations (summarized history) to

support the decisions made by the actor and critic networks.

To backpropagate learning to the same shared body, such as the

state–update function, at the same time as updating the actor and

critic networks, the system’s prediction multi–objective needs to

be rewritten into a single optimization objective, which can be

achieved with

𝐿(𝜽𝑢 , 𝜽𝜋 , 𝜽𝑣) = 𝐿𝜋(𝜽𝑢 , 𝜽𝜋) − 𝑘 𝐿𝑣(𝜽𝑢 , 𝜽𝑣), (5.1)

where 𝑘 is an arbitrary coefficient, 𝜽𝜋 and 𝜽𝑣 are the ANN

independent weights for actor and critic, respectively. 𝐿𝜋 is the

policy gradient objective given by

5 Beyond Earning while Learning 116

𝐿𝜋(𝜽𝑢 , 𝜽𝜋) = �̂�[𝛿𝑡 ln𝜋(𝐴𝑡 |𝑂𝑡 ;𝜽𝑢 , 𝜽𝜋)],

and 𝐿𝑣 is the value function objective given by

𝐿𝑣(𝜽𝑢 , 𝜽𝑣) = �̂�
[
(𝑅𝑡+1 + 𝛾𝑣(𝑂𝑡+1;𝜽𝑢 , 𝜽𝑣) − 𝑣(𝑂𝑡 ;𝜽𝑢 , 𝜽𝑣))2

]
.

This objective 𝐿(𝜽𝑢 , 𝜽𝜋 , 𝜽𝑣) can be (approximately) maximized

with stochastic gradient ascent, as in Algorithm 4.

Learning the state–update function while solving the task can

allow us to address the earning–while–learning, non–stationarity,

self–competition, and competition problems using the same

generic training architecture. Finally, the designer is left with the

task of defining, on the environment side, the functional form of

customer behavior that needs to be optimized.

5.4 What about forecasting?

When using ANNs to encode past observations, the task of

mapping interactions with the demand into a summarized state is

transferred to the learning system. In principle, performing price

optimization does not require explicit forecasting. Naturally, this

raises a question about the necessity of the forecasting module.

However, the forecasting module is not only employed for price

optimization. Anticipating the travel demand can support many

managerial decisions, such as deciding whether to open or close

services to specific destinations, the staffing levels at the airport

(for check-in, lounge, security), or the aircraft type the airline

needs to buy. Therefore, the forecasting module cannot be simply

given up.

Perhaps the most immediate solution consists in maintaining

a separate forecasting module that is not used for price op-

timization. Nonetheless, this might not be the best solution.

Alternatively, we could add a new head to the output of the RL

agent (alongside the value prediction and the policy) that is

responsible for demand forecasting, as illustrated in Figure 5.7.

To train this new head, update the objective function in eq. (5.1)

needs to be updated to accommodate this new auxiliary task

𝐿(𝜽𝑢 , 𝜽𝜋 , 𝜽𝑣 , 𝜽𝑑) = 𝐿𝜋(𝜽𝑢 , 𝜽𝜋) − 𝑘1 𝐿𝑣(𝜽𝑢 , 𝜽𝑣) − 𝑘2 𝐿𝑑(𝜽𝑢 , 𝜽𝑑),

5 Beyond Earning while Learning 117

v(S)

Actor

Critic

�(S|A)

d�(S)

Forecasting

Internal
state S

Figure 5.7: Representation of a generic

neural network that shares an internal

representation for price optimization,

value function prediction, and forecast-

ing tasks. In this example, the head re-

sponsible for forecasting the demand is

here represented by a vector 𝒅𝜓 where

each component is the expected de-

mand for each price point in the fare

structure.

[27]: Sutton and Barto (2018), Reinforce-
ment learning: An introduction

[49]: Jaderberg, Mnih, et al. (2016),

“Reinforcement learning with unsuper-

vised auxiliary tasks”

[74]: Pathak, Agrawal, et al. (2017),

“Curiosity-driven exploration by self-

supervised prediction”

[110]: Bellemare, Dabney, et al. (2017), “A

distributional perspective on reinforce-

ment learning”

where 𝐿𝑑 represents the new forecasting prediction objective,

and 𝜽𝑑 represents the ANN weights of the layers dedicated to

forecasting. We can add as many heads as tasks one would like

the system to learn, allowing the agent to predict and control

many signals and not just the long–term revenue.

Why is this solution any better? One possible answer is that the

ability to predict and control many signals may be a form of an

environmental model [27]. For example, forecasting demand has

a strong relationship with price optimization but may have a

shorter delayed response than rewards and less variance between

actions and outcomes. Consequently, the RL agent can use the

same internal representations for predicting demand to optimize

prices, potentially reducing the amount of data needed to learn

the main task, which is revenue maximization. There are no

specific reasons why this has to be true, but, in this case, it seems

plausible. Researchers have already experimented with learning

auxiliary tasks, such as predicting pixels, distribution of returns,

and predicting future states [49, 74, 110]. In many cases, this

approach has shown significant success, accelerating learning

on the main task.

5.5 Summary

As revenue management systems (RMSs) cannot observe the

true demand behavior directly, they fall in the category of par-

tially observable problems. Optimization of partially observable

Markov decision processes is a topic of research in the field of

reinforcement learning (RL), and many methods for addressing

this issue have been proposed in the past.

The sequence of observations and actions can be transformed

into a summarized view, named the internal state, as typically

done by RMSs when it estimates the parameters of the demand

5 Beyond Earning while Learning 118

model. The agent should perform better in its task as stronger

the Markov property of this internal state is.

A function summarizing the history of observations is referred to

as the state–update function. There are many ways to build this

function according to the task at hand. For example, if addressing

non–stationarity, the internal state can be enriched with a shock

detection signal, whereas, when addressing competition, the

competitor’s price prediction can be added.

Instead of manually designing the state–update function, arti-

ficial neural networks can learn representations through back-

propagation and RL. By integrating the design of this function

into the learning process, the search procedure is automated,

thus reducing the expert’s design effort.

Even though explicit forecasting and many other modules could

be, in principle, eliminated from the system, this may not be

desirable because some of these modules have roles beyond price

optimization. Instead, the RL agent’s outputs can be extended to

address such auxiliary tasks. Perhaps another reason to extend

the agent to auxiliary tasks is that it may improve data efficiency,

as many studies in the field of RL have found.

[111]: Xie, Berseth, et al. (2018), “Feed-

back control for cassie with deep rein-

forcement learning”

[112]: Akkaya, Andrychowicz, et al.

(2019), “Solving rubik’s cube with a

robot hand”

[113]: Bellemare, Candido, et al. (2020),

“Autonomous navigation of strato-

spheric balloons using reinforcement

learning”

[17]: Bondoux, Nguyen, et al. (2020),

“Reinforcement learning applied to air-

line revenue management”

[46]: Kastius and Schlosser (2021), “Dy-

namic pricing under competition using

reinforcement learning”

[47]: Shihab, Logemann, et al. (2019),

“Autonomous airline revenue manage-

ment: A deep reinforcement learning

approach to seat inventory control and

overbooking”

[35]: Silver, Huang, et al. (2016), “Mas-

tering the game of Go with deep neural

networks and tree search”

[42]: Degrave, Felici, et al. (2022),

“Magnetic control of tokamak plasmas

through deep reinforcement learning”

Conclusions 6
Many fields of research, such as robotics and navigation [111–113],

are being revolutionized by reinforcement learning (RL), and

revenue management (RM) may be one of the next ones. Early

studies bringing RL into the field of RM [17, 46, 47] focused on

the model–free aspects of RL, i.e., the ability to optimize prices

without relying on expert–designed demand models. Although

this is an appealing idea, it is unclear whether learning online

from real–world demand is possible, as discussed in Section

3.5.

Most successful applications of RL to real–world problems use

a degree of a model of the environment, such as the rules of

the game when training the agent to play Go [35] or the laws of

physics when training the agent to control the magnetic fields

of a tokamak [42]. Across all these fields, there is one constant

motivational factor for using that RL: Researchers seek to address

complex control problems through generic learning methods

with little or no human support.

As discussed in Chapter 1, there are many open problems in

the field of RM that have long relied upon expert intuition and

heuristic methods, such as earning while learning (EWL), com-

petition, self–competition, and non–stationarity. These heuristics

are not easy to adapt to the sophisticated demand models of

modern real–world revenue management systems (RMSs), being

perhaps the main reason why these systems, to the best of our

knowledge, do not implement them. We believe that heuristic

methods are not to be blamed, but rather the complex nature of

these problems: Addressing such complex problems requires

powerful tools. Therefore, in this work, our goal is to demonstrate

that an RL agent can be trained offline to address RM complex

problems without expert guidance.

It was demonstrated, in Chapter 4, how to design an RL agent

capable of discovering solutions to the EWL problem that deliv-

ers better revenue performance than state–of–the–art heuristic

methods. Furthermore, in Chapter 5, it was described how this

same RL agent could be adapted to address other open issues as

well. We argue, in Section 5.3, how to design an RL agent that

can learn its internal representations, further simplifying the

system’s design. Consequently, RM experts would be left only

with the task of specifying the demand model used for training.

In other words, the “model–free” aspect of RL enables price

6 Conclusions 120

[99]: Silver, Singh, et al. (2021), “Reward

is enough”

optimization of complex demand behaviors without the need

for adapting the many modules of an RMS. Price optimization

can be delegated to an end–to–end system that learns to solve

problems exclusively by maximizing the standard reward signal

(i.e., revenue maximization) without the need for any particular

engineering of this signal [99].

Relying on RL for guiding the search for solutions to complex

problems is perhaps the most significant change in the RM re-

search field. RL shifts the researchers’ focus from how to solve

problems toward what problems need to be solved, i.e., the

agent’s task is to discover the solution of a problem specified by

the human designer. RL experts could focus on investigating dif-

ferent ANN architectures, more adapted RL methods, enhanced

computation capabilities, and changes in the modeling of the

observation/action space, while RM experts could concentrate

on designing the training environment (e.g., customer choice

model) that the RL agent relies upon for training. Hopefully,

such an approach may accelerate the research process in the RM

domain.

The impact of RL goes beyond the research field. RL brings a new

set of organizational challenges. For example, in the case of airline

RM, the revenue performance would no longer be measured

and optimized at the flight level but rather at the level of the

whole airline network, making it difficult to assign the revenue

responsibility to a specific RM analyst. Furthermore, RM analysts

spend a significant amount of time monitoring, investigating,

and fixing forecast mistakes made by the system. However,

RL reduces the interpretability of the system choices and the

flexibility of manipulating its outputs. Instead, RM analysts

could focus on identifying new training situations and enriching

the demand model used for training the agent, representing a

significant transformation of their duties.

RL can also impact the operational aspects of RMSs. By having

shorter research, tuning, and moving into production loops,

RL enables a much faster response to new market situations.

Furthermore, RL replaces the complex nested control structures

of the RMS with a single computational unit, making it much

easier to upgrade (changes in artificial neural network structure

or uploading new training weights) and query (interrogate the

artificial neural network for its predictions). The agent’s ability

to learn from generic inputs can also be a critical asset since the

system could use various other alternative sources of data (such

as weather forecasts) that today are often difficult to integrate

into real–world RMSs.

In summary, RL may transform the field of RM profoundly. It

6 Conclusions 121

can accelerate research, simplify the system’s architecture, and

speed up deployment to production systems. This enhanced

organization can improve response time to changing markets

and competition.

Appendix

Vol.:(0123456789)

Journal of Revenue and Pricing Management
https://doi.org/10.1057/s41272-022-00385-8

RESEARCH ARTICLE

Demand change detection in airline revenue management

Giovanni Gatti Pinheiro1,3 · Thomas Fiig2 · Michael D. Wittman2 · Michael Defoin‑Platel1 · Riccardo D. Jadanza4

Received: 10 September 2021 / Accepted: 1 May 2022
© The Author(s), under exclusive licence to Springer Nature Limited 2022

Abstract
Demand shocks—unobservable, sudden changes in customer behavior—are a common source of forecast error in airline
revenue management systems. The COVID-19 pandemic has been one example of a highly impactful macro-level shock that
significantly affected demand patterns and required manual intervention from airline analysts. Smaller, micro-level shocks
also frequently occur due to special events or changes in competition. Despite their importance, shock detection methods
employed by airlines today are often quite rudimentary in practice. In this paper, we develop a science-based shock detec-
tion framework based on statistical hypothesis testing which enables fast detection of demand shocks. Under simplifying
assumptions, we show how the properties of the shock detector can be expressed in analytical closed form and demonstrate
that this expression is remarkably accurate even in more complex environments. Simulations are used to show how the
shock detector can successfully be used to identify positive and negative shocks in both demand volume and willingness-
to-pay. Finally, we discuss how the shock detector could be integrated into an airline revenue management system to allow
for practical use by airline analysts.

Keywords Change point detection · Demand forecast error · Airline revenue management · Demand shock · Forecasting ·
Markov decision process

Introduction

Motivation for shock detection in airline revenue
management

Airline revenue management (RM) analysts often spend a
significant portion of their time searching for and correcting
forecast errors in the airline’s revenue management system
(RMS). These forecast errors can be costly to airlines—one
study found that as little as a 10% error in an RMS demand
forecast can be associated with a 1% decrease in airline rev-
enue (Fiig et al. 2019).

Forecast errors fundamentally occur due to a mismatch
between the demand model parameters assumed by the RMS
forecaster and the customer behavior in the marketplace.
Usually, shifts in customer behavior are automatically cap-
tured by the RMS during forecast parameter re-estimation,
which typically uses a historical database consisting of
departed flights. However, when customer behavior suddenly
changes, the RMS can struggle to adapt quickly, since it
takes time for the new behavior to enter the historical data-
base and be detected by the parameter re-estimation.

We refer to these sudden, abrupt changes in customer
behavior as demand shocks. Demand shocks vary in intensity
and can occur at the macro- or micro-level. The COVID-19
pandemic is one example of a highly impactful macro-level
demand shock that affected demand across a wide range of
flights and origin–destination (O&D) markets, while micro-
level demand shocks affecting a handful of flights or markets
frequently occur due to entry or exit of a competitor, special
events such as conferences, concerts, or sporting competi-
tions, changes in airline schedules, etc., that were not already
anticipated and corrected by the airline analyst.

Airline analysts typically identify and address demand
shocks via relatively simplistic alerting mechanisms. For

 * Michael D. Wittman
 Michael.WITTMAN@amadeus.com

1 Amadeus S.A.S., Avenue Jack Kilby,
06270 Villeneuve-Loubet, France

2 Amadeus IT Group, Lufthavnsboulevarden 14, 2. tv,
2770 Kastrup, Denmark

3 University of Nice Sophia-Antipolis, Nice, France
4 Enerbrain SRL, Strada alla Villa d’Agliè 26, 10132 Turin,

Italy

123

 G. Gatti Pinheiro et al.

example, Weatherford (2019) describes how an analyst
might set an alert to trigger if certain criteria for a flight
departure date, such as current load factor (LF), falls above
or behind a predefined threshold (e.g., greater than ±5 p.p.
compared to the previous year) at a given time prior to
departure. If an individual flight is alerted, the analyst would
then apply a demand intervention to adjust the forecast for
that flight. Vinod (2021) also describes a similar workflow
where analysts define alerts by comparing key performance
indicators (KPIs) from the RMS to predefined thresholds,
conduct a root-cause analysis, and then apply interventions
to forecasting or availability in response to a triggered alert.

These methods for detecting demand shocks face several
limitations. First, they are often quite rudimentary and rely
on imprecise heuristics or rules of thumb. Since analysts are
not provided with guidance on how to set the alert thresh-
olds, they may either miss impactful shocks (false negatives,
Type II error) or be overwhelmed with alerts that, after
investigation, turn out to be normal behavior (false posi-
tives, Type I error).

Additionally, these threshold-based approaches often
evaluate flights one at a time, ignoring wider-scale demand
shocks that affect multiple departure dates or markets at the
same time. They also do not directly consider the effect of
offered prices on demand behavior. For example, they may
alert an analyst to a flight with a very high current load factor
without considering whether the prices offered for that flight
were higher or lower than the previous year. In contrast, our
method considers the offered prices for each flight when
determining whether or not a demand shock has occurred.

Finally, traditional approaches to shock detection often
consider KPIs taken at a single snapshot when the alerts
were generated. Our method utilizes all accessible infor-
mation—bookings and demand forecast given the control
policy—across the entire booking horizon of each flight.
Our approach also aggregates data across multiple active
flights, allowing for faster and more accurate detection of
shocks. Since analysts are often responsible for hundreds or
thousands of flight departure dates at a time, this approach
allows for greater efficiency and less time spent identifying
demand shocks.

Contributions

In this paper, we introduce a science-based framework for
demand shock detection that aims to improve airline ana-
lysts’ ability to identify sudden changes in demand. Our
detector is based on well-known approaches for statistical
hypothesis testing which we have adapted for the shock
detection problem in airline revenue management. Given
an observed set of booking activity for one or more active
(non-departed) flights, we compute the log likelihood that
those observations occurred given the offered prices and the

RMS’s demand forecast. If the log likelihood—assuming no
shock—deviates from a calculated acceptance range, this
indicates a poor model description by the forecast param-
eters and leads to the conclusion that a demand shock has
occurred.

We show how the statistical properties of the shock detec-
tor, such as Type I error, Type II error, time since shock, etc.,
can be described in analytical closed form under simplifying
assumptions about the demand environment and RMS pol-
icy. We find that the properties that we derive also generalize
well to more complex environments with capacity constrain-
ing or time-dependent willingness-to-pay. We then show that
the properties of the shock detector based on simulations
can be accurately predicted from the analytical closed form
expression, even in these complex environments.

Finally, we demonstrate how the shock detector outputs
could be used in practice via an alert center application to
allow for efficient prioritization of shocks for investigation.

Literature review

Academic research relating to detecting change in stochastic
processes—so-called Change Point Detection (CPD)—has
been conducted for nearly one hundred years. As described
in a literature review by Lai (1995), the first CPD mecha-
nisms date back to the 1930s and have been frequently used
in manufacturing and quality control applications to detect
systematic shifts in time series data. Table 1 summarizes
some of the relevant literature in the field.

We distinguish between CPD in an online and offline set-
ting. In online testing, the dataset is not available upfront but
is gradually collected over time. For every new observation,
a test is performed. If no change is detected, we continue to
the next time step, while if a change is detected, we stop and
raise an alarm. The online form is not of main interest in this
paper because for our purpose, the full dataset of booking
activity on active flights is given up front.

Basseville and Nikiforov (1993) provide a theoreti-
cal framework of many CPD mechanisms, including the
well-known Cumulative Sum (CuSum) method, which is
available in both online and offline forms. CuSum works
by accumulating deviations between observations and their
expectations and identifying a change if the accumulated
deviations become too extreme with respect to a predefined
threshold. CuSum is frequently used when analyzing time
series data to identify moments when the underlying demand
generating process appears to have changed.

As Besbes and Zeevi (2011) point out, many CPD mecha-
nisms assume that the post-shock behavior is known, reduc-
ing the problem to identifying the shock as quickly as possi-
ble. We will discuss shock detection with and without known
post-shock demand behavior. Classical CPD mechanisms

124

Demand change detection in airline revenue management

also assume that all samples are drawn from the same under-
lying distribution, while in the airline RM problem, the
sample distribution is dependent on the states in state space
which have been visited. Our methodology addresses this
problem by calculating the probability of observing a par-
ticular trajectory of state-action pairs in state-action space.

Also related to our setting is a series of papers in the
operations research literature that consider online “learning
while earning” under conditions of demand uncertainty. In
these papers, a retailer sets prices for a product that exhib-
its unknown demand behavior, and periodically estimates
the parameters of the demand model from sales data. The
retailer’s goal is to learn the demand behavior as quickly
as possible to maximize long-term revenue by charging the
optimal price. Common among many “learning while earn-
ing” papers is that the selling period is indefinite, and that
the retailer continues to collect information about the envi-
ronment in perpetuity. The retailer must then decide which
historical data to use in their estimation of customer behav-
ior, since old data may have been collected under a different
demand model.

Besbes and Zeevi (2011) and Broder and Rusmevichien-
tong (2012) consider scenarios where the demand behavior
undergoes a single demand shock. The retailer knows both
the pre-shock and post-shock demand behavior but does
not know when the shock occurs. They describe how price
experimentation strategies can help the retailer identify the
time of the shock and maximize the long-term revenue.

“Learning while earning” can also be applied in environ-
ments with multiple demand shocks. Garivier and Moulines
(2011) describe how a multi-armed bandit approach can be
used to perform price experimentation in order to minimize
revenue regret in such a setting. Den Boer (2015) considers
a dynamic pricing problem with a more complex demand
model with parameters that change continuously over time.

Keskin and Zeevi (2017) describe several methods for esti-
mating demand behavior in an environment with multiple
demand shocks while assuming a given limit of how much
the demand parameters can change from one period to the
next.

Few “learning while earning” papers consider a setting
similar to airline RM where capacity is constrained and the
selling horizon is finite. An exception is Besbes and Sauré
(2014), who study a situation in which a demand forecast
model experiences a single demand shock. The retailer does
not know the time of the demand shock nor the post-shock
behavior, but the post-shock behavior is revealed to the
retailer at the time of the shock. The goal is to set a pric-
ing policy to maximize revenue given an unknown shock
that will be revealed at some point in future. den Boer and
Keskin (2020) also review a dynamic pricing problem with
a finite selling horizon. Their demand function allows for
multiple discontinuity points and unknown pre- and post-
shock demand behavior. Their focus is not on shock detec-
tion, but rather on theoretically constructing a pricing policy
that incorporates the possibility of demand discontinuities.

Our work is also related to a series of papers that describe
the demand change process as a Markov process. Keller and
Rady (1999) study a setting where demand shifts between
two known linear demand functions. The retailer knows the
demand functions but does not know which demand function
is active. Aviv and Pazgal (2005) describe an environment
with Poisson demand where the demand function fluctu-
ates between multiple “core states” with different demand
behavior via a Markov process. They use this framework to
describe static environments, those with decreasing demand,
and those with increasing demand. The retailer bases their
prices on a partial observation of the Markov Decision Pro-
cess (MDP), by assuming a prior belief of the current core
state.

Table 1 Selected literature on change point detection

Paper Subject Capacity
constraint?

Time horizon # of shocks Post-shock
params
known?

Demand model

Besbes and Zeevi (2011) “Learning while earning” No Infinite One Yes Parametric
Garivier and Moulines (2011) “Learning while earning” No Infinite Multiple No Parametric
Broder and Rusmevichientong (2012) “Learning while earning” No Infinite One Yes Non-parametric
Besbes and Sauré (2014) “Learning while earning” Yes Finite One Yes Parametric
den Boer (2015) “Learning while earning” No Infinite Multiple No Parametric
Keskin and Zeevi (2017) “Learning while earning” Yes Infinite Multiple No Parametric
den Boer and Keskin (2020) “Learning while earning” Yes Finite Multiple No Parametric
Keller and Rady (1999) MDP demand No Infinite One Yes Parametric
Aviv and Pazgal (2005) MDP demand No Finite Multiple Yes (in exp.) Parametric
Hadoux et al. (2014) Change−point detection N/A Both One Yes Non-parametric
This paper Shock detection Yes Finite One No Parametric

125

 G. Gatti Pinheiro et al.

Perhaps most similar to our work is the paper by Hadoux
et al. (2014). They describe how the CuSum method can be
adapted in an online setting to detect changes in state transi-
tions in an MDP. Their method is not directly applicable in
the airline RMS setting, since they do not consider how a
change intersects multiple flight departures at different times
during an episode. In contrast, our shock detection method
can detect a shock that simultaneously affects all flights
across a given market. Further, their paper assumes known
post-shock parameters, whereas we also consider the most
relevant case for RMS of unknown post-shock parameters.

Problem formulation

We consider the optimization problem for a single flight
leg without overbooking and cancelations. The flight has
capacity C . The booking horizon is divided into time steps
t = 0,… , T , where T is departure (e.g., if the time steps rep-
resent days to departure for one year ahead, then T = 365).
The time step denotes the left end point of the time interval
[t, t + 1[, t = 0,… , T − 1 . We assume the fare structure to
be fenceless (that is, all classes in the fare structure have
identical restrictions and all customers will buy-down to the
lowest available class) with m equidistant fare levels (price
points) f0 < ⋯ < fm−1 in increasing order. This assump-
tion on the fare structure is introduced purely for simplicity
in the analysis; the methodology can be extended to other
restricted, semi-restricted, or fare family fare structures
without loss of generality.

Suppose that demand arrives following a negative expo-
nential demand model d�(f) = λe−γ(f∕f0−1) , where � = (�, �) ,
𝜆 > 0, 𝛾 > 0 are the demand parameters that represent the
demand volume per time step and the willingness-to-pay,
respectively. In practice, RMS is unaware of the true demand
parameters � = (�, �) and instead estimates the parameters
�̂ = (�̂, �̂) using historical booking data. This negative expo-
nential demand model has been extensively studied in the lit-
erature (e.g., Gallego and van Ryzin 1994; Fiig et al. 2010),
but the demand model could in practice take any functional
form.

The single flight optimization problem can be repre-
sented as a finite time Markov Decision Process (MDP)
(Talluri and van Ryzin 2005). Formally, an MDP is defined
as a tuple (S,A, r, p) where S is the state space, A is the
action space, r ∶ S ×A × S → ℝ is the reward function
which in our problem takes a finite number of values
corresponding to multiples of the price points in the fare
structure, and p ∶ S ×A × S → [0, 1] is the state transition
probability function. In this setting, we can define the state
space as the set of pairs st = (c, t) of remaining capacity
c = 0,… ,C and time steps t = 0,… , T , the action space

A =
{
f0,… , fm−1

}
 as the set of possible price points, the

state transition probability function as the probability of
receiving a specific number of bookings (zero or more) in
a time step, and the reward function as the revenue col-
lected after transitioning to a new state.

The state transition process can be represented as follows:
at time t , the system is in state s

t
= (c, t) , the agent (RMS)

selects an action (fare) at ∈ A according to a deterministic
policy � ∶ S → A . The system enters into a subsequent state
st+1 with probability pt = p�

(
st, at, st+1

)
 , where we use the

index � to indicate that the transition probability depends on
the demand parameters. The environment then returns an
immediate reward rt = r

(
st, at, st+1

)
 . The process is repeated

until termination at t = T , as shown in Fig. 1. In the follow-
ing, we will use an asterisk to denote optimality.

The objective of the agent is to select the optimal policy
�∗(st) that maximizes the expectation of the sum of future
rewards until departure, v∗

�
st
�
= ��∗

�∑T−1

k=t
rk

�
 . The optimal

policy can be extracted from the state-action value function
q∗
(
st, at

)
 which is the revenue to go from state st , given the

agent takes an action at and then acts following the optimal
policy until termination. The Dynamic Program for the state-
action value function and its relation to the value function
v∗
(
st
)
 is given below.

where st ∈ S, at ∈ A, and t = 0,… , T − 1. The optimal state
value function v∗

(
st
)
= maxatq

∗
(
st, at

)
 is given employing

the revenue maximizing action �∗
(
st
)
= argmaxatq

∗
(
st, at

)
.

q∗
(
st, at

)
=

∑

st+1∈S

p�
(
st, at, st+1

)

×

[
r
(
st, at, st+1

)
+ max

at+1

q∗
(
st+1, at+1

)]
,

Fig. 1 Single resource MDP back-up diagram. The system is initially
in state st . The agent chooses an action at that causes the system to
transition with probability p�

(
st, at, st+1

)
 into a reachable subsequent

state st+1 , yielding a reward r
(
st, at, st+1

)
.

126

Demand change detection in airline revenue management

Anatomy of a demand shock

We define a trajectory
as the path a f light takes through state-action space.
Hence, a trajectory is a sequence of state-action pairs
which records the offered prices and the subsequent
bookings received in each time step t . Once a trajec-
tory reaches its terminal state sT , the f light departs.
Note that we omit the rewards in our definition of the
trajectory, since in our setting there is a deterministic
reward of moving from one state st to the successor
state st+1 : namely, rt = (ct − ct+1)at , where ct − ct+1 is the
change in remaining capacity.

While a trajectory represents the path of a single flight
through state-action space, it is also of interest to consider
a collection of multiple trajectories—for example, multiple
departure dates of a flight that departs once per day. We
define the departure horizon 1,… , Tdep as the set of depar-
ture dates (indexed by days to departure) for active flights,
where Tdep is the furthest active departure date from today’s
date (e.g., Tdep = 365 if flights are available for sale one year
out).

In the remainder of the paper, and without loss of gen-
erality, we assume for ease of exposition that the booking
horizon and departure horizon have the same cardinality
(T = Tdep), and that the time step is one day.

We define a trajectory set J as a set of one or more tra-
jectories , i = 1,… ,N where N is the cardinality of the
trajectory set. The departure date of trajectory is denoted
tdep(i), where tdep ∶ {1,… ,N} → {1,… , Tdep} . This notation
allows us to represent any flight schedule or aggregation of
multiple flights per departure day in the trajectory set.

The triangle in Fig. 2 illustrates a trajectory set contain-
ing a total of Tdep future departure dates (e.g., one year).
The horizontal axis indexes the departure horizon (depar-
ture dates) and the vertical axis indexes the booking hori-
zon (time steps). Each trajectory (active flight) in the trajec-
tory set can be represented as a vertical line in the triangle;
one such trajectory , representing a flight that departs in
65 days from now, is illustrated in the figure.

We consider a demand shock that simultaneously
affects the entire trajectory set as follows: prior to the
demand shock, the state transition probabilities for
all trajectories are governed by a vector of pre-shock
demand parameters �0 =

(
�0, �0

)
 , which are assumed

to be known to the RMS. This region is shown in the
dark blue area on the left side of the triangle marked
“pre-shock.” After the demand shock, the state transition
probabilities for all trajectories are governed by a vec-
tor of post-shock demand parameters �1 =

(
�1, �1

)
, which

are unknown to the RMS. This region as shown in the
light blue area on the right side of the triangle marked
“post-shock.” The demand shock occurs at the separation
between the pre-shock and post-shock regions, which is
shown as the red diagonal line.

Let �shock refer to the number of time steps that have
elapsed since the demand shock occurred, which is also
unknown to the RMS. Note that �shock is not a fixed quan-
tity—it increases with time. At the onset of a shock,
�shock = 0 . All active flights are not yet impacted by the
shock (Fig. 2, the dark blue area covers fully the trian-
gle). As system time progresses, �shock increases and more
and more of the active flights’ history are impacted by the

Fig. 2 Two-dimensional time aspects of RMS historic database for a
given flight. The triangle contains live sales data. Prior to the shock,
the data are generated according to the pre-shock parameters, while

after the shock (represented by the diagonal line) the data are gener-
ated according to the post-shock parameters

127

 G. Gatti Pinheiro et al.

shock until eventually at �shock = Tdep all of the active flight
data are generated under the post-shock parameters (Fig. 2,
the light blue area covers fully the triangle).

For trajectory i, let tshock(i) = T − tdep(i) − �shock be the
time step at which the demand shock occurred for that
trajectory. The state transition probabilities for trajectory
i are as follows:

As a concrete example, consider the situation where
we have one flight per departure day, T = Tdep = 365 ,
and �shock = 100 . For trajectory , tdep(65) = 65 and
tshock(65) = 200 . Hence, we see that for t < 200 we follow
the pre-shock parameters, while for t ≥ 200 we follow the
post-shock parameters.

Methods for demand change detection

In this section, we provide a framework for detecting
demand shocks. This framework provides a science-based
approach to detecting anomalous flights in practice, as we
will discuss in the section “Practical implementation of
the shock detector.”

In this section, we will first assume for the purpose of
deriving the statistical properties of the shock detector that
the post-shock demand parameters �1 =

(
�1, �1

)
 are known.

Subsequently, we discuss the case of unknown post-shock
parameters.

Let J obs represent an observed trajectory set—the set
of active flights for which we wish to detect whether a
demand shock has occurred. We construct a hypothesis
test for the occurrence of a shock as follows:

Note that the alternative hypothesis is indexed by �shock ,
since the time step tshock(i) = T − tdep(i)− �shock at which the
shock occurs for each trajectory in J obs is dependent on �shock.

To test H�shock
 against H0 , we compute the log likelihood

of obtaining the observed trajectory set under each hypoth-
esis. First, we compute the likelihood of observ-
ing a single trajectory assuming no shock has occurred
while following a deterministic policy at ∼ �∗

(
st
)
:

p𝜃
(
st, at, st+1

)
=

{
p𝜃0

(
st, at, st+1

)
for t < tshock(i)

p𝜃1

(
st, at, st+1

)
for t ≥ tshock(i)

H0 ∶ � = �0 ∀i, t

H𝜏shock
∶

{
𝜃 = 𝜃0 for t < tshock(i) ∀i

𝜃 = 𝜃1 for t ≥ tshock(i) ∀i

Analogously, we compute , the likelihood of a
trajectory given a shock that occurred �shock time steps ago.
Recall that if there is a shock, the state transition probabili-
ties will be governed by demand parameters �0 until time
tshock(i) − 1 = T − tdep(i) − �shock − 1 and demand parameters
�1 thereafter.

We extend the likelihood computations from single trajec-
tories to the observed trajectory set J obs by taking the prod-
uct of likelihood functions over the trajectories in the set:

where we have suppressed the departure day index for
readability.

We then compute the likelihood ratio test statistic D
(deviance) by comparing the log likelihood of the observed
trajectory set under the null hypothesis and under the alter-
native hypothesis.

where �
(
J

obs
)
= logL

(
J

obs
)
 denotes the corresponding

log-likelihood function. Large values of the deviance indi-
cate a poor model description and thus lead to a rejection
of H0. To determine the critical region for the deviance, we
need to determine its sampling distribution. This can be done
in closed form for a simple MDP, as we show below.

Closed form expressions for the log‑likelihood
functions

Consider again the negative exponential model d�(f) , with
pre-shock and post-shock parameters �0 =

(
�0, �0

)
 and

�1 =
(
�1, �1

)
 , respectively. Assume no capacity constrain-

ing and that the timesteps are sufficiently close that we can
ignore multiple bookings in a time step. These assumptions
simplify the mathematical derivation, and we will discuss in
the section “Shock detection in the general case—parametric

D

2
= log

Lshock

(
J obs

)

L0

(
J

obs
) = ��shock

(
J

obs
)
− �0

(
J

obs
)
,

128

Demand change detection in airline revenue management

bootstrapping” how the framework can be extended in the
general case.

Given the simplifying assumptions, we can compute
closed form expressions for the log-likelihood functions.

The optimal pre-shock policy in all states is �∗
�0
= f0∕�0 .

Let p0 = d�0

(
�∗
�0

)
 and p1 = d�1

(
�∗
�0

)
 . The transition prob-

abilities under the pre- and post-shock environments are
thus: pre-shock: p�0 = p0 (booking) and p�0 = 1 − p0 (no
booking); post-shock: p�1 = p1 (booking) and p�1 = 1 − p1
(no booking). Let n0 , n1 denote the number of state transi-
tions in the pre-shock and post-shock regions of J obs ,
respectively, and let x0, x1 denote the bookings in the pre-
shock and post-shock region of J obs , respectively.

The likelihood function Lshock

(
J

obs
)
 and the correspond-

ing log-likelihood function and its sample distribution can
be computed:

Note that this expression for the log-likelihood includes
the no-shock log-likelihood as a special case. Indeed, the
no-shock case is obtained by setting the post-shock and pre-
shock booking probability equal p1 = p0.

Until now we have considered the likelihood of observing
a specific set of trajectories. Now we change point of view
and focus on the sample distribution of the log-likelihood
function. Thus, we consider the log-likelihood function
depending on the random variables X0 and X1.

Using Xi ∼ Bin(ni, pi) , i = 0, 1 we can approximate
these distributions with Normal distributions. Observe
now that the expression for the log-likelihood function
is linear of the form aX0 + bX1 + c , where X0 and X1 are
normally distributed and a, b, c are constants. Hence, the
log-likelihood function also becomes normally distributed
�shock

(
J

obs
)
∼ N

(
�shock, �

2

shock

)
 where

Similarly, we obtain �0

(
J

obs
)
∼ N

(
�0, �

2

0

)
, with

Lshock

(
J

obs
)
= p

x0

0

(
1 − p0

)
n0−x0

p
x1

1

(
1 − p1

)
n1−x1

�shock

(
J

obs
)
=

1∑

i=0

x
i
log

(
p
i

1 − p
i

)
+ n

i
log(1 − p

i
)

�shock

(
J

obs
)
=

1∑

i=0

X
i
log

(
p
i

1 − p
i

)
+ n

i
log(1 − p

i
)

�shock =

1∑

i=0

nipilog

(
pi

1 − pi

)
+ nilog(1 − pi)

�2
shock

=

1∑

i=0

nipi
(
1 − pi

)(
log

(
pi

1 − pi

))2

Let m be the number of flights per departure day in
J

obs (which can also be fractional, e.g., every second
day). The sample size becomes N = mT, and the total
number of state transitions n0 + n1 = NT∕2 , which is
the area of the triangle of active flights. Analogously, the
number of state transitions in the pre-shock area becomes
n0 =

m(T−�shock)
2

2
≈

NT

2
− N�shock , and n1 ≈ N�shock for

𝜏shock ≪ T . Note that n0, n1 and N are integers, thus the rela-
tions above are approximations.

Thus, the separation between the two Normal distribu-
tions grows proportionally to sample size and time since
shock.

That the variance �2
shock

≈ �2
0
 follows from n1 ≪ n0

(assuming 𝜏shock ≪ T , which holds for shocks that are
detectable within a reasonable time frame of at most a
few months). Further, it follows from the above expression
that the variance grows proportionally with sample size.

Closed form expressions for the statistical power

In this section, we continue with the simplified ana-
lytical model and compute the statistical power of the
shock detector. Let �(x) and Φ(x) denote the pdf and cdf
of the standard Normal distribution. Assume 𝜇shock > 𝜇0
(similar expressions can be obtained for 𝜇shock < 𝜇0).
We choose a significance level � (one-sided). Let
z1−� = Φ−1(1 − �) denote the quantile. The acceptance
region of the one-sided hypothesis test is shown as the
(1 − �)100% confidence interval and the rejection region
is correspondingly shown as the complement, as illus-
trated in Fig. 3.

The power Pow of the statistical test is the probability
of rejection of H0 . Hence, the power is computed as the
shaded area, c.f. Figure 3 panel (a).

�0 = (n0 + n1)

[
p0log

(
p0

1 − p0

)
+ log(1 − p0)

]

�2
0
= (n0 + n1)p0

(
1 − p0

)(
log

(
p0

1 − p0

))2

�shock − �0 ≈ N�shock

×

[
log

(
1 − p1

1 − p0

)
+ p1log

(
p1

1 − p1

)
− p0log

(
p0

1 − p0

)]

�2
shock

≈ �2
0
=

NT

2
p0
(
1 − p0

)[
log

(
p0

1 − p0

)]2

129

 G. Gatti Pinheiro et al.

Finally, define the alarm time �alarm as the expected
number of days after a shock at which the statistical power
of the detector reaches a given threshold 1 − �.

To understand how the shock evolves to affect the data
over time, see Fig. 3 panel (b), which illustrates how the
shock distribution (black dashed curve) propagates from
left to right with increasing �shock . Also shown is the no-
shock distribution (blue curve), which remains static.

At the onset of a shock, �shock = 0 , �shock = �0 and
�shock = �0 , and the statistical power Pow = �. Detection at
this point will be entirely random. At the other extreme,
�shock = Tdep , the shock distribution is shifted to the right and
the statistical power Pow ≈ 1, which means all shocks will
eventually be identified successfully.

In between these two extremes (for example, at
�shock = 50), the shock distribution has been shifted such

Pow = Pr(�shock

(
J obs

)
> 𝜇0 + z1−𝛼𝜎0)

= ∫
∞

𝜇0+z1−𝛼𝜎0

1

𝜎shock
𝜙

(
x − 𝜇shock

𝜎shock

)
dx

= 1 − Φ

(
𝜇0 − 𝜇shock + z1−𝛼𝜎0

𝜎shock

)

�alarm = argminτshock[Pow ≥ 1 − �]

that the statistical power reaches the predefined threshold:
Pow = 1 − � . This defines the alarm time.

We can obtain an analytical expression for the alarm time
by inverting the power equation employing the relationship
1 − Φ(x) = Φ(−x) and inserting the analytical expressions
for �shock − �0, �shock, �0:

where g
(
p0, p1

)
is a shock scenario-specific factor which

depends on the pre-shock booking probability p0 and the
post-shock booking probability p1.1 The approximate expres-
sion is obtained by a series expansion around p0 to first
order.

Thus, we have computed a closed form relation-
ship between alarm time (�alarm), shock scenario-spe-
cific factor (g), significance level (�) , statistical power
(1 − �) , and sample size (N) . Below we will discuss their
interdependence:

• Shock scenario‑specific factor (g) From the analytical
expression, observe that g

(
p0, p1

)
 is a hyperbola where

the alarm time is inversely proportional to shock size ex-
pressed as ||p1 − p0

|| . This makes intuitive sense. Small
shocks will have a high g

(
p0, p1

)
 factor and be hard to

detect, while large shocks will have a low g
(
p0, p1

)
 factor

and be easy to detect.
• Significance level (�) The significance level � express-

es the probability of incorrectly flagging a shock when
in fact no shock has occurred (false positive, so-called
Type I error). For example, if we choose � = 0.05 , then
5% of flagged shocks will be false alerts. Decreasing the
value of � will result in less shocks being flagged, while
at the same time also leading to less false positives.

• Statistical power (1−�) The statistical power expresses
the probability of correctly identifying a shock that has
occurred. If we choose e.g., (1 − �) = 80%, it implies that
given that there has been a shock, we correctly identify
80% of the trajectory sets as having experienced a shock,

�alarm ≈ g(p0, p1)
z1−� + Φ−1(1 − �)

√
N∕T

g

(
p0, p1

)
=

√
p0

(
1 − p0

)[
log

(
p0

1−p0

)]2
∕2

||||
log

(
1−p1

1−p0

)
+ p1log

(
p1

1−p1

)
− p0log

(
p0

1−p0

)||||

≈

√
p0

(
1 − p0

)
∕2

|p1 − p0|
+ O

(
p1 − p0

)0

(b)

(a)

Fig. 3 Log-likelihood distributions generated for the null hypothesis
f0(�) and the alternative hypothesis fshock(�) at �shock = 50 . Param-
eters: �0 = (

70

365
, 0.447) and �1 = (

70

365
, 0.555)

1 The absolute value of the denominator allows us to cover both
cases 𝜇shock > 𝜇0 and 𝜇shock < 𝜇0 in the same expression.

130

Demand change detection in airline revenue management

while we incorrectly classify the remaining 20% as no
shock (so-called Type II error). All else equal, increasing
the power results in an increase in alarm time.

• Sample size (N) The alarm time scales with the in-
verse square root of the sample size, which can be used
to set the appropriate level of aggregation. Increas-
ing the sample size leads to faster detection but at the
same time loses granularity. Therefore, it could be an
option to configure multiple shock detectors (possibly
overlapping) at various sample sizes and significance
levels to detect shocks of different sizes and granulari-
ties. For example, the detectors could focus on lower-
impact shocks that affect a wide range of markets, or
larger-impact shocks affecting a single flight or a single
market.

• Alarm time (�alarm) The alarm time is the expected time
delay before a shock is detected at a specified statistical
power. The alarm time depends on the factors discussed
and can, for a given shock scenario, be controlled by set-
ting appropriate values for significance level, statistical
power, and sample size.

End‑to‑end shock detection example

In this example, we describe how each of the properties
above can be calculated for a specific demand shock.
We consider a market AAA-BBB where we have 1
flight per day for one year out, and a one-year booking
horizon. Demand arrives following a negative exponen-
tial demand model d�(f) = λe−γ(f∕f0−1) , with pre-shock
parameters �0 =

(
�0, �0

)
=(70

365
, 0.447) . We will consider

the case where a shock has occurred �shock = 50 days ago
with post-shock parameters �1 =

(
�1, �1

)
=(56

365
, 0.447) ,

corresponding to a negative shock in the ar r ival
rate of 20%. Using the notation from above, we can
summarize:

Known to RMS:
• Sample size: N = 365

• Pre-shock: �0 = (70∕365, 0.447) ⇒ p0 = 0.1121

• Pax expected (no-shock): NTp0∕2 = 7467

Unknown to RMS:
• Time since shock: �shock = 50

• Post-shock: �1 = (56∕365, 0.447) ⇒ p1 = 0.0897

• Number of state transitions in post-shock region:
n1 = N�shock = 20440

• Number of state transitions in pre-shock region:
n0 =

NT

2
− n1 ≈ 46172

Generation of the trajectory set J obs:
Let Zi(t) be the number of bookings for trajectory at

time t. Then Zi(t) is Bernoulli distributed with Zi(t)~B(p0)
for 0 ≤ t < tshock(i) and Zi(t)~B(p̂1) for tshock(i) ≤ t < T − i,
where tshock(i) = T − tdep(i)− �shock as before denotes the
separation in time between the pre-shock and post-shock
region. Given estimates of post-shock parameters and time
since shock �̂shock , we compute the number of state tran-
sitions n1 = N�̂shock , n0 =

NT

2
− N�̂shock and aggregate the

number of bookings in the two regions (which depend on
the estimates):

Maximum likelihood estimation:
Inserting these values into �shock

(
J

obs
)
 provides the max-

imum likelihood estimates (MLE):

We assume that the shock has only affected the demand
volume (i.e., �1 = �0), the reason being that we are unable to
estimate the price elasticity parameter because we generated
all data with constant price, corresponding to the optimal
price without capacity constraining, and for simplicity, we
drop the “MLE” superscript.

Observations and estimations:
• Observed total bookings: x0 + x1 = 7146

• Current impact: 2(x0 + x1)∕(p0NT) − 1 = −4.3%

• MLE post-shock: ̂�1 = (57.05∕365, 0.447) ⇒ p̂1 = 0.0914

• MLE volume impact: (57.05 − 70)∕70 = −18.5%

• MLE time since shock: �̂shock = 56

Shock detection computations:
• Shock specific factor: g

(
p0, p̂1

)
≈ 10.76

• p-value < 10−4 (probability of no shock—Type I error)
• Power: (1 − �) = Φ

�
�̂shock

√
N∕T∕g

�
p0, p̂1

�
− z1−�

�
=

99.9% for � = 0.01

• Alarm time: �alarm = 34 days (for � = 0.01 , 1 − � = 0.8)

To summarize, applying the shock detection framework,
we have estimated that a demand shock occurred �̂shock = 56
days ago, causing a volume impact of −18.5% compared
to the pre-shock parameters. Since the shock has not fully
propagated across all days to departure, we observe only a
−4.3% reduction in bookings compared to expectations. This
information allows the airline analyst to proactively adjust

x0 =
∑T

i=1

∑T−i−�̂shock−1

t=0
zi(t), x1 =

∑T

i=1

∑T−i−1

t=T−i−�̂shock
zi(t)

�̂MLE

shock
, �̂MLE

1
= argmax

�̂shock,�1

(
�shock

(
J

obs
))

131

 G. Gatti Pinheiro et al.

the demand forecast in line with the customer behavior after
the demand shock.

Finally, to compare with methods currently used in the
industry, we compute the time to shock detection if we were
to alert flights individually. Using the same pre-shock and
post-shock parameters and inserting N = 1, it would take one
year (�alarm = 365 days) to reach a power of 1 − � ≈ 0.8 at
� = 0.1 . If we instead use the entire trajectory set of N = 365
flights, as done in the example above, we can detect the
shock in �alarm = 34 days with the same statistical power at
a much stronger significance level (� = 0.01), providing both
significantly faster time to detection and improved accuracy.

Shock detection in the general case—parametric
bootstrapping

The analytical results in the previous sections made two
important assumptions: that the state transition probabili-
ties are state independent and that at most one booking
occurred at each time step. When the transition probabili-
ties are state dependent (that is, the offered price depends
on the state) and multiple arrivals can occur in a time step,
we can no longer express the sample distribution in closed
form. In this case, we use parametric bootstrapping (Efron
and Tibshirani 1986) to construct the log-likelihood sam-
ple distribution used in the shock detector.

To perform the bootstrapping, we create an ensemble
of independent “virtual copies” {J 1

,… ,J
K} of the

observed trajectory set J obs . Each virtual copy matches
the dimensions (departure dates, booking horizon, cardi-
nality) of J obs , and is initialized empty. For each virtual

copy J k
, trajectories are then generated by following a

random walk through state-action space assuming the a
priori (pre-shock) demand parameters and the RMS policy
�∗
�0

 , which is constructed from solving the Dynamic Pro-
gram as described previously.

We then compute observations �
k
= �

0

(
J

k
)
 of

the log-likelihood function for each trajectory set
J

k ∈ {J 1
,… ,J

K} using the state transition probabili-
ties corresponding to the no-shock case. Let f0(�) denote
the “empirical” probability distribution functions (epdf)
obtained from the ensemble (not to be confused with fare
levels, that are also denoted by f). Analogously, we com-
pute the epdf for the post-shock demand parameters, which
we denote fshock(�) . We will return to these distributions
below, and in Fig. 4.

Further let F0(�) denote the corresponding empirical
cumulative distribution function (ecdf). In this way, the
ensemble produces a sample distribution of the log-like-
lihood function. As before, we determine the acceptance
region of the one-sided hypothesis test as the (1 − �)100%
confidence interval] − ∞,F−1

0
(1 − �)] from the sample

distribution F0(�).
To perform the hypothesis test, we evaluate the log likeli-

hood, �0

(
J

obs
)
 of the observed trajectory set J obs for the

active flights. If �0

(
J

obs
)
 falls outside of the acceptance

region, we reject the null hypothesis and flag that a demand
shock has occurred.

In the section “Closed form expressions for the log-likeli-
hood functions,” we determined closed form expressions for
the log-likelihood sample distribution �0 ∼ N

(
�0, �

2
0

)
, and

�shock ∼ N
(
�shock, �

2
shock

)
, for the pre- and post-shock distri-

butions, respectively. These normally distributed pdfs can
be compared to the corresponding epdfs f0(�) and fshock(�)
obtained using parametric bootstrapping, as explained
above.

Figure 4 shows one such example of comparing the
pdfs (analytical model) and epdfs (parametric bootstrap-
ping), under identical demand parameters at �shock = 0 and
�shock = 50 . Note that the distributions from the analytical
model are shifted with respect to the empirical distributions
due to the differences in demand assumptions. This offset
implies that we cannot rely solely on the analytical model
to determine the critical regions.

Importantly, however, the offset between the pdf and the
epdf appears to be constant independent of demand param-
eters in the considered scenario and with the assumptions
made so far. This also means that the deviance metric that
measures the difference between the log-likelihood func-
tions under the pre-shock and post-shock demand parameters
(i.e., the difference between the two epdfs) can accurately be
approximated using the analytical model (i.e., the difference
between the two pdfs). This implies that even though we

Fig. 4 Log-likelihood sample distributions for the analytical model
and parametric bootstrapping shock detectors for �shock = 0 and
�shock = 50 . Parameters: �0 = (

70

365
, 0.447) and �1 = (

70

365
, 0.555)

132

Demand change detection in airline revenue management

cannot use the analytical model to construct explicit values
for the critical regions, we can trust the analytical closed
form expression for the power (because it relies only on the
difference between the no-shock and shock distributions),
without having to resort to an entirely simulation-based
approach.

Simulation studies

In this section, we validate the theoretical properties of
the shock detector. We construct a simulation environ-
ment in which bookings arrive according to a specified
pre-shock demand model until a demand shock occurs at
a predetermined time. Both the shock impact and the time
since shock are unknown to the detector. We then measure
the number of days necessary for the detector to identify
the shock. For each scenario, the shock detection perfor-
mance computed using the analytical model is included
for reference.

In our simulation environment, we retain the fenceless
fare structure, capacity, and negative exponential
demand model from previous sections while representing
the willingness-to-pay parameter � in terms of the more
widely used business term frat5 = 1 + log(2)∕� . The frat5
represents the ratio of the lowest fare at which half of
the demand will buy up (Belobaba and Hopperstad 2004).
The underlying pre-shock demand parameters are
�0 =

(
�0, frat50

)
=
(

70

365
, 2.55

)
 , which under the optimal

policy �∗
0
 produces an expected load factor of 82%.

We evaluate the performance of the detector under vari-
ous positive and negative shocks in demand volume and
willingness-to-pay, which are shown in Table 2. We use a
trajectory set J obs consisting of N = 365 flights. We set the
confidence level to 96% (� = 0.04). Then, we measure the

statistical power of the shock detector across 2000 independ-
ent simulations. The results are shown in Fig. 5, where the
alarm time �alarm at which the statistical power reaches 80%
is marked for each scenario.

Overall, we see that the statistical power exhibits an
S-shape evolution from a power level of Pow

(
�shock = 0

)
= �

to Pow
(
�shock = 100

)
≈ 1 . This behavior can intuitively be

observed by looking at the overlap between the underlying
no-shock and shock distributions at various �shock shown
for scenario (c).

As predicted in the section “Shock detection in the general
case—parametric bootstrapping” the analytical closed form
expression for the statistical power provides a very accurate
approximation of the power of the detector, even though the
demand assumptions differ between the two models. We also
observe that negative shocks in demand volume and willing-
ness-to-pay can be detected more quickly than positive shocks.
For example, in scenario (a), a negative shock in willingness-to-
pay can be detected in about two weeks with 80% power, while
an equivalent positive shock in scenario (b) takes one month to
detect. This is because a negative shock in willingness-to-pay
will result in a sudden loss of bookings received at higher price
points, which is easier for the detector to identify compared to
the slight increase of bookings associated with a positive shock
in willingness-to-pay.

Next, in Fig. 6, we investigate the sensitivity of the shock
detector with respect to the number of flights in the trajec-
tory set. For simplicity, we assume that fight schedules are
equally spaced across the year (for example, a departure
once a week, twice a week, etc.).

Adding more flights dramatically improves performance
of the detector, and the scaling law �alarm ∝ 1∕

√
N proven

by the analytical model can clearly be seen in Fig. 6. Note
again that the analytical model provides an accurate descrip-
tion of the power of the detector as a function of sample size,
although the analytical model predicts a slightly faster shock
detection than is realized by the detector.

For our last experiment, we study how �alarm varies with
the intensity of the shock. We evaluate five positive and five
negative shocks with different intensities for both volume
and willingness-to-pay. Figure 7 presents the findings.

The pre-shock settings are shown at the center of each
chart's horizontal axis. The region to the right of the center
line shows positive shocks of increasing intensity, and the
region to the left shows negative shocks of increasing inten-
sity. The alarm time �alarm is shown in the left axis of each
panel. Again, the analytical model closely approximates the
performance of the detector in all shock scenarios. Further-
more, as shocks get more extreme, the less time it takes to
detect them.

Table 2 Demand shock scenarios evaluated in the simulation studies

Scenario Demand shock parameters

Shock type �1 frat51

(a) Negative 0.192 1.8
(b) Positive 0.192 3.3
(c) Negative 0.123 2.55
(d) Positive 0.260 2.55
(e) Negative 0.192 1.8
(f) Both 0.123 to 0.260

(10 steps)
2.55

(g) Both 0.192 1.8 to 3.3
(10 steps)

133

 G. Gatti Pinheiro et al.

Practical implementation of the shock
detector

In this section, we discuss how the theoretical shock detector
mechanism described in previous sections could be used in
practice via an alert center application in an RMS. Figure 8
shows how the shock detector can be integrated into a typical

RMS process flow of demand forecasting, optimization and
availability control.

Following the flow in Fig. 8, incoming bookings and
RMS controls (i.e., offered prices for active flights) are
stored in the active flight/flow database. Note that RMS
controls are stored even if no bookings are observed. Once
a flight departs, it moves from the live flight/flow database to
the departed flight/flow database. These data are used by the
forecasting module, which estimates the forecast parameters
and computes the demand forecasts for all possible control
policies (Fiig et al. 2014). Finally, the optimization module
calculates bid prices used in the availability calculation to
determine the RMS controls.

The input data for the shock detection algorithm—the
trajectory set J obs—can be compiled from the active flight
database and the forecasting module. This corresponds to
the transition probabilities p�

(
st, at, st+1

)
 that are used to

compute the observed value of the log-likelihood func-
tion assuming no shock �0

(
J

obs
)
 . As discussed in the

section “Shock detection in the general case—paramet-
ric bootstrapping,” we can then employ parametric boot-
strapping to construct the empirical distribution function
F0(�) , which is used to construct acceptance and rejection
regions used to detect a shock affecting J obs.

The data produced from the demand shock detection
mechanism could be used as part of an alert center dashboard
to draw the analyst’s attention to aggregations of flights that

(a)

(c) (d)

(b)

Fig. 5 Statistical power as a function of days since shock �shock for the bootstrapped shock detector and analytical model for scenarios (a)–(d)
from Table 2

(e)

Fig. 6 Average days to detection, �alarm estimated from when the sta-
tistical power of the test reaches 80%: 1 − �(�alarm) = 0.8 as a function
of number of flights in the trajectory set for scenario (e)

134

Demand change detection in airline revenue management

have experienced a demand shock. The alert center would
operate as an offline process that daily or weekly scans the
airline’s entire network to provide lists of O&D markets,
regions, or other aggregations of flights that experienced a
shock. The shock detector can be configured through a vari-
ety of criteria—for example, the shock impact or Type I and
Type II error levels—to alert users to shocks with significant
business relevance while limiting the number of false alerts.

The shock detector can also generate additional KPIs to
display along with the list of markets or other aggregations
that have experienced a shock. In Fig. 8, we have illustrated
some of this information, such as the demand shock impact,
time since shock, expected bookings, observed bookings,

p-value, and statistical power, following the End-to-end
shock detection example presented previously.

Such information would allow airline analysts to sort and
rank shocks in order of recency or revenue impact, allowing
analysts to prioritize their shock investigation and decide on
corrective actions. In this example where the shock detec-
tor has identified an 18% reduction in demand volume, the
analyst may choose to apply an intervention to lower the
demand forecast for future flights in the market, to ensure
that the RMS does not overprotect capacity.

Extensions and future work

In this paper, we have made several simplifying assumptions
for ease of exposition. For example, we have formulated the
detection methodology for a single flights or multiple flights,
but not across O&D markets. However, the concepts and
methodologies generalize easily to the O&D market level.
The transition probabilities at the traffic flow level are one
of the byproducts of a conditional demand forecast (Fiig
et al. 2014) which the airline would already have computed
in order to perform the network optimization. The offered
prices (actions) for each traffic flow are also available from
the historical booking data for the trajectory. The shock
detector would then simply use the relevant transition prob-
abilities and offered prices associated with each traffic flow
when computing the log likelihood of a trajectory, and when
generating the trajectories used in parameter bootstrapping.

Additionally, there are several avenues of future work that
could be explored to improve the performance of the shock
detector. First, the speed of shock detection could be further

Fig. 7 Average days to detection, �alarm estimated from when the statistical power of the test reaches 80%: 1 − �(�alarm) = 0.8 as a function of
shock intensity for scenarios (f) and (g)

(f) (g)

Fig. 8 Implementation of shock detection in practice

135

 G. Gatti Pinheiro et al.

improved from the method presented here. One possibility
would be to apply a weight decay to the state transition prob-
abilities p�(st, at, st+1) such that more recent observations are
weighted more in the calculation of the log-likelihood func-
tion. Alternatively, the shock detection mechanisms could
focus on transitions from only the most recent sales dates,
as opposed to the set of all transitions in the trajectory set.
Such an idea has recently been successfully applied to adapt
the RMS forecast to widespread demand changes caused by
the COVID-19 pandemic (Fiig et al. 2020).

Finally, we have shown that the analytical model well
represents the performance of the bootstrapped shock detec-
tor in a case with a simple demand model. It is also worth
investigating whether these properties continue to hold in
more complex cases, including across multiple fare families
and time-dependent demand volumes or willingness-to-pay.

Conclusions

Sudden, unobservable changes in customer behavior can
create significant demand forecast error, which can be
costly to airlines. Identifying these demand shocks can be
a time-consuming process for airline analysts, who often
set arbitrary performance thresholds to flag flights or
markets with abnormal booking behavior. Analysts often
struggle to determine appropriate thresholds to accurately
identify meaningful demand shocks while limiting the
amount of false positive alerts.

In this paper, we introduced a science-based framework
for demand shock detection. Our shock detector computes
the log likelihood that a set of active flights followed the
observed trajectories in state-action space, assuming that
demand was governed by the pre-shock forecast param-
eters. If the log likelihood of the trajectory set falls outside
an acceptance region, this indicates a poor model descrip-
tion by the forecast parameters and thus leads to the con-
clusion that a shock has occurred.

We demonstrated how with simple state-independent
transition probabilities, we could analytically compute a
closed form relationship between alarm time (�alarm), shock
scenario-specific factor (g), significance level (�) , statisti-
cal power (1 − �) , and sample size (N) . For more complex
environments with state-dependent transition probabilities,
we demonstrated how a parametric bootstrapping approach
could be used to construct the acceptance region for the
shock detector. We found through simulations that the
shock detector exhibited the expected statistical proper-
ties and was well described by the analytical model.

We described how our framework could be integrated
into an RMS and used to display an estimate of shock
impact and time since shock to airline analysts in an alert
center application, allowing the airline analyst to easily

and quickly identify shocks and prioritize them. This lim-
its the burden on airline analysts and allows them to focus
their energy on responding to changes in demand, rather
than on merely identifying such changes.

Acknowledgements We thank Roger Härdling for sharing his knowl-
edge on statistical testing methodologies.

References

Aviv, Y., and A. Pazgal. 2005. A partially observed markov deci-
sion process for dynamic pricing. Management Science 51 (9):
1400–1416.

Basseville, M. and I.V. Nikoforov. 1993. Detection of Abrupt Changes.
Prentice Hall.

Belobaba, P.P. and C. Hopperstad. 2004. Algorithms for revenue
management in unrestricted fare markets. In Proceedings of the
INFORMS section on revenue management, Cambridge, MA.

Besbes, O., and D. Sauré. 2014. Dynamic pricing strategies in the
presence of demand shifts. Manufacturing & Operations Ser-
vice Management 16 (4): 513–528.

Besbes, O., and A. Zeevi. 2011. On the minimax complexity of pricing
in a changing environment. Operations Research 59 (1): 66–79.

Broder, J., and P. Rusmevichientong. 2012. Dynamic pricing under a
general parametric choice model. Operations Research 60 (4):
965–980.

den Boer, A.V. 2015. Tracking the market: Dynamic pricing and learn-
ing in a changing environment. European Journal of Operational
Research 247: 914–927.

den Boer, A.V., and N.B. Keskin. 2020. Discontinuous demand func-
tions: Estimation and pricing. Management Science 66 (10):
4516–4534.

Efron, B., and R. Tibshirani. 1986. Bootstrap method for standard
errors, confidence intervals, and other measures of statistical
accuracy. Statistical Science 1 (1): 54–77.

Fiig, T., K. Isler, C. Hopperstad, and P. Belobaba. 2010. Optimiza-
tion of mixed fare structures: Theory and applications. Journal
of Revenue and Pricing Management 9 (1): 152–170.

Fiig, T., R. Härdling, S. Pölt, and C. Hopperstad. 2014. Demand
forecasting and measuring forecast accuracy in general fare
structures. Journal of Revenue and Pricing Management 13
(6): 413–439.

Fiig, T., L.R. Weatherford, and M.D. Wittman. 2019. Can demand
forecast accuracy be linked to airline revenue? Journal of Rev-
enue and Pricing Management 18 (4): 291–305.

Fiig, T., M.D. Wittman, L. Andersen, C. Föcker, R. Härdling, T.
Tofteby, C. Trescases, and L. Zannier. 2020. Revenue manage-
ment forecasting in times of change: Addressing the need for
speed. Presented at the 2020 AGIFORS annual symposium.

Gallego, G., and G. van Ryzin. 1994. Optimal dynamic pricing of
inventories with stochastic demand over finite horizons. Man-
agement Science 40 (8): 999–1020.

Garivier, A., and E. Moulines. 2011. On upper-confidence bound
policies for switching Bandit problems. In ALT 2011: Algorith-
mic Learning Theory, 174–188.

Hadoux, E., A. Beynier, and P. Weng. 2014. Sequential decision-
making under non-stationary environments via sequential
change-point detection. In Proceedings of the 2014 learning
over multiple contexts (LMCE), Nancy, France, 1–13.

Keller, G., and A. Rady. 1999. Optimal experimentation in a changing
environment. The Review of Economic Studies 66 (3): 475–507.

136

Demand change detection in airline revenue management

Keskin, N.B., and A. Zeevi. 2017. Chasing demand: Learning and
earning in a changing environment. Mathematics of Operations
Research 42 (2): 277–307.

Lai, T.L. 1995. Sequential changepoint detection in quality control
and dynamical systems. Journal of the Royal Statistical Society
B 57 (4): 613–644.

Talluri, K.T., and G.J. van Ryzin. 2005. The theory and practice of
revenue management. New York: Springer.

Vinod, B. 2021. An approach to adaptive robust revenue management
with continuous demand management in a COVID-19 era. Jour-
nal of Revenue and Pricing Management 20 (1): 10–14.

Weatherford, L. 2019. Performance of dynamic user influence strate-
gies in PODS under seasonality and system volatility. Journal of
Revenue and Pricing Management 18: 2–26.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Giovanni Gatti Pinheiro is a Ph.D. student in Reinforcement Learn-
ing applied to Revenue Management in the University of Nice
Sophia-Antipolis.

Thomas Fiig is a Director, Chief Scientist at Amadeus, where he is
responsible for revenue management strategy and scientific method-
ologies. He holds a Ph.D. in Theoretical Physics and Mathematics and

a BA in Finance from the University of Copenhagen, Denmark. He
has published several articles, recently focused on methodologies for
origin-and-destination forecasting and optimization of simplified fare
structures and dynamic pricing.

Michael D. Wittman is an Expert, Revenue Management Science &
Research at Amadeus, where he works on developing new models for
forecasting and optimization in revenue management and dynamic pric-
ing. He holds a Ph.D. in Air Transportation Systems from MIT and is
the author of a dozen articles published in peer-reviewed academic
journals. His work has won awards and recognition from AGIFORS
and INFORMS.

Michael Defoin‑Platel is a Head of Machine Learning Services at Ama-
deus. He received a Ph.D. in Artificial Intelligence from the University
of Nice. He has been conducting academic research in fundamental and
applied AI during 10 years before moving to the industry. He is now
responsible for the development of AI in Amadeus products.

Riccardo D. Jadanza is a Head of Artificial Intelligence Research,
leader and coordinator of the data scientist “Brain” team at Enerbrain,
where he works mainly on studying, developing, and implementing
Machine Learning techniques for energy management optimization in
HVAC systems in all kinds of buildings. He holds a Ph.D. in Math-
ematics from the Polytechnic University of Torino and has previously
worked in the field of Complex Systems and in the Revenue Manage-
ment division at Amadeus.

137

Bibliography

Here are the references in citation order.

[1] Kalyan T. Talluri and Garrett J. Van Ryzin. The theory and practice of revenue management. Vol. 1.

Springer, 2004 (cited on pages 1, 9, 20, 53).

[2] Thomas Fiig, Umit Cholak, Mathilde Gauchet, and Benjamin Cany. “What is the role of

distribution in revenue management?–Past and future”. In: Journal of Revenue and Pricing
Management 14.2 (2015), pp. 127–133 (cited on page 2).

[3] Amine Dadoun, Michael Defoin-Platel, Thomas Fiig, Corinne Landra, et al. “How recom-

mender systems can transform airline offer construction and retailing”. In: Journal of Revenue
and Pricing Management 20.3 (2021), pp. 301–315 (cited on page 2).

[4] Amine Dadoun, Rapahël Troncy, Michael Defoin-Platel, and Gerardo Ayala Solano. “Pre-

dicting your next trip: A knowledge graph-based multi-task learning approach for travel

destination recommendation”. In: Workshop on Recommenders in Tourism (2021), pp. 23–38

(cited on page 2).

[5] Thomas Fiig, Roger Härdling, Stefan Pölt, and Craig Hopperstad. “Demand forecasting and

measuring forecast accuracy in general fare structures”. In: Journal of Revenue and Pricing
Management 13.6 (2014), pp. 413–439 (cited on pages 3, 96).

[6] William L. Cooper, Tito Homem-de-Mello, and Anton J. Kleywegt. “Models of the spiral-

down effect in revenue management”. In: Operations research 54.5 (2006), pp. 968–987 (cited

on page 3).

[7] Thomas Fiig, Karl Isler, Craig Hopperstad, and Peter P. Belobaba. “Optimization of mixed

fare structures: Theory and applications”. In: Journal of Revenue and Pricing Management 9.1

(2010), pp. 152–170 (cited on page 3).

[8] Qiang Meng, Hui Zhao, and Yadong Wang. “Revenue management for container liner

shipping services: Critical review and future research directions”. In: Transportation Research
128 (2019), pp. 280–292 (cited on page 4).

[9] Sheryl E. Kimes and Jeannette Ho. “Implementing Revenue Management in Your Restaurants:

A Case Study with Fairmont Raffles Hotels International”. In: (2019) (cited on page 4).

[10] Adrien Bouchet, Michael Troilo, and Brian R. Walkup. “Dynamic pricing usage in sports for

revenue management”. In: Managerial Finance (2016) (cited on page 4).

[11] Thomas Fiig, Michael D. Wittman, and Clement Trescases. “Towards a competitor-aware

RMS”. In: Oct. 2019 (cited on pages 4, 112).

[12] Ravi Kumar, Wei Wang, Ahmed Simrin, Sivarama Krishnan Arunachalam, et al. “Competitive

revenue management models with loyal and fully flexible customers”. In: Journal of Revenue
and Pricing Management 20.3 (2021), pp. 256–275 (cited on page 4).

[13] Pranjal Pande. What are the world’s busiest air routes right now? June 2020. url: https:

//simpleflying.com/busiest-air-routes-june-2020/ (cited on page 4).

https://simpleflying.com/busiest-air-routes-june-2020/
https://simpleflying.com/busiest-air-routes-june-2020/

[14] Guillermo Gallego and Robert Phillips. “Revenue management of flexible products”. In:

Manufacturing & Service Operations Management 6.4 (2004), pp. 321–337 (cited on pages 4,

109).

[15] Andrew McLennan. “Price dispersion and incomplete learning in the long run”. In: Journal
of Economic dynamics and control 7.3 (1984), pp. 331–347 (cited on pages 6, 63).

[16] Ningyuan Chen and Guillermo Gallego. “A primal-dual learning algorithm for personalized

dynamic pricing with an inventory constraint”. In: Mathematics of Operations Research (2022)

(cited on pages 6, 63, 65).

[17] Nicolas Bondoux, Anh Quan Nguyen, Thomas Fiig, and Rodrigo Acuna-Agost. “Reinforce-

ment learning applied to airline revenue management”. In: Journal of Revenue and Pricing
Management 19.5 (2020), pp. 332–348 (cited on pages 6, 15, 22, 53, 54, 112, 119).

[18] N. Bora Keskin and Assaf Zeevi. “Chasing demand: Learning and earning in a changing

environment”. In: Mathematics of Operations Research 42.2 (2017), pp. 277–307 (cited on pages 6,

64, 106).

[19] Giovanni Gatti Pinheiro, Michael Defoin-Platel, and Jean-Charles Régin. “Outsmarting

human design in airline revenue management”. In: Algorithms 15.5 (2022), p. 142 (cited on

pages 8, 21, 71, 73, 85, 89, 91–94, 101).

[20] Omar Besbes and Assaf Zeevi. “On the (surprising) sufficiency of linear models for dynamic

pricing with demand learning”. In: Management Science 61.4 (2015), pp. 723–739 (cited on

page 11).

[21] Guillermo Gallego and Garrett Van Ryzin. “Optimal dynamic pricing of inventories with

stochastic demand over finite horizons”. In: Management science 40.8 (1994), pp. 999–1020

(cited on pages 11, 15, 20, 22, 23).

[22] Thomas Fiig, Larry R. Weatherford, and Michael D. Wittman. “Can demand forecast accuracy

be linked to airline revenue?” In: Journal of Revenue and Pricing Management 18.4 (2019), pp. 291–

305 (cited on pages 12, 96).

[23] Larry R. Weatherford. “The history of forecasting models in revenue management”. In:

Journal of Revenue and Pricing Management 15.3 (2016), pp. 212–221 (cited on pages 12, 58).

[24] Jeffrey P. Newman, Mark E. Ferguson, Laurie A. Garrow, and Timothy L. Jacobs. “Estimation

of choice-based models using sales data from a single firm”. In: Manufacturing & Service
Operations Management 16.2 (2014), pp. 184–197 (cited on page 14).

[25] Travis E. Oliphant. A guide to NumPy. Vol. 1. Trelgol Publishing USA, 2006 (cited on page 14).

[26] Peter P. Belobaba and Craig Hopperstad. “Algorithms for revenue management in unre-

stricted fare markets”. In: Meeting of the INFORMS Section on Revenue Management, Mas-
sachusetts Institute of Technology, Cambridge, MA. 2004 (cited on page 20).

[27] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press,

2018 (cited on pages 21, 30, 31, 35–44, 51, 52, 74–76, 79, 81, 82, 100, 105, 117).

[28] IEEE Standard for floating-point arithmetic. Tech. rep. Piscataway, NJ, USA: IEEE, 2019 (cited on

page 25).

[29] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, et al. “SciPy 1.0: fun-

damental algorithms for scientific computing in Python”. In: Nature methods 17.3 (2020),

pp. 261–272 (cited on page 25).

[30] R. Bellman. Dynamic Programming. Rand Corporation research study. Princeton University

Press, 1957 (cited on page 30).

[31] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, et al. “An algorithmic

perspective on imitation learning”. In: arXiv:1811.06711 (2018) (cited on page 35).

[32] Elliot A. Ludvig, Richard S. Sutton, and E. James Kehoe. “Stimulus representation and the

timing of reward-prediction errors in models of the dopamine system”. In: Neural computation
20.12 (2008), pp. 3034–3054 (cited on page 35).

[33] Yuji Takahashi, Geoffrey Schoenbaum, and Yael Niv. “Silencing the critics: understanding

the effects of cocaine sensitization on dorsolateral and ventral striatum in the context of an

actor/critic model”. In: Frontiers in neuroscience 2 (2008), p. 14 (cited on page 35).

[34] Momchil S. Tomov, Eric Schulz, and Samuel J. Gershman. “Multi-task reinforcement learning

in humans”. In: Nature Human Behaviour 5.6 (2021), pp. 764–773 (cited on page 35).

[35] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, et al. “Mastering the game of Go

with deep neural networks and tree search”. In: nature 529.7587 (2016), pp. 484–489 (cited on

pages 36, 47, 51, 75, 114, 119).

[36] Richard S. Sutton. “Learning to predict by the methods of temporal differences”. In: Machine
learning 3.1 (1988), pp. 9–44 (cited on page 37).

[37] Christopher John Cornish Hellaby Watkins. “Learning from delayed rewards”. In: (1989)

(cited on page 41).

[38] Johannes Heinrich and David Silver. “Deep reinforcement learning from self-play in imperfect-

information games”. In: arXiv:1603.01121 (2016) (cited on page 43).

[39] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, et al. “Grandmaster

level in StarCraft II using multi-agent reinforcement learning”. In: Nature 575.7782 (2019),

pp. 350–354 (cited on pages 43, 51).

[40] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, et al. “Playing atari with

deep reinforcement learning”. In: arXiv:1312.5602 (2013) (cited on pages 49, 51).

[41] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, et al. “Human-level

control through deep reinforcement learning”. In: nature 518.7540 (2015), pp. 529–533 (cited

on page 49).

[42] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, et al. “Magnetic control

of tokamak plasmas through deep reinforcement learning”. In: Nature 602.7897 (2022),

pp. 414–419 (cited on pages 52, 119).

[43] Abhuit Gosavi, Naveen Bandla, and Tapas K. Das. “A reinforcement learning approach to

airline seat allocation for multiple fare classes with overbooking”. In: Special issue on advances
on large-scale optimization for logistics, production and manufacturing systems (2002) (cited on

page 53).

[44] Abhĳit Gosavi. “A reinforcement learning algorithm based on policy iteration for average

reward: Empirical results with yield management and convergence analysis”. In: Machine
Learning 55.1 (2004), pp. 5–29 (cited on page 53).

[45] Ryan J. Lawhead and Abhĳit Gosavi. “A bounded actor-critic reinforcement learning

algorithm applied to airline revenue management”. In: Engineering Applications of Artificial
Intelligence 82 (2019), pp. 252–262 (cited on page 53).

[46] Alexander Kastius and Rainer Schlosser. “Dynamic pricing under competition using rein-

forcement learning”. In: Journal of Revenue and Pricing Management (2021), pp. 1–14 (cited on

pages 53, 119).

[47] Syed Arbab Mohd Shihab, Caleb Logemann, Deepak-George Thomas, and Peng Wei.

“Autonomous airline revenue management: A deep reinforcement learning approach to seat

inventory control and overbooking”. In: arXiv:1902.06824 (2019) (cited on pages 53, 54, 119).

[48] Jon Ham. Know your worth: valuing new pricing policies with reinforcement learning. AGIFORS

61st Annual Symposium, 2021. Sept. 2021 (cited on page 53).

[49] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, et al. “Rein-

forcement learning with unsupervised auxiliary tasks”. In: arXiv:1611.05397 (2016) (cited on

pages 55, 117).

[50] Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. “Distributional reinforce-

ment learning with quantile regression”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 32. 1. 2018 (cited on page 55).

[51] Giovanni Gatti Pinheiro, Nicolas Bondoux, and Alix Lhéritier. Towards a distributional
reinforcement learning approach to revenue management. SophI.A Summit. Nov. 2021 (cited on

page 55).

[52] Bent Hansen. Report of the Uppsala meeting. Aug. 1954 (cited on page 63).

[53] Edward R. Hawkins. “Methods of estimating demand”. In: Journal of Marketing 21.4 (1957),

pp. 428–438 (cited on page 63).

[54] Miguel Sousa Lobo and Stephen Boyd. “Pricing and learning with uncertain demand”. In:

INFORMS Revenue Management Conference. Citeseer. 2003 (cited on pages 63, 64).

[55] Meenal Chhabra and Sanmay Das. “Learning the demand curve in posted-price digital

goods auctions”. In: The 10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 1. 2011, pp. 63–70 (cited on page 63).

[56] H. Dharma Kwon, Steven A. Lippman, and Christopher S. Tang. “Optimal markdown pricing

strategy with demand learning”. In: Probability in the Engineering and Informational Sciences
26.1 (2012), pp. 77–104 (cited on page 63).

[57] Omar Besbes and Assaf Zeevi. “On the minimax complexity of pricing in a changing

environment”. In: Operations research 59.1 (2011), pp. 66–79 (cited on page 63).

[58] N. Bora Keskin and Assaf Zeevi. “Dynamic pricing with an unknown demand model:

Asymptotically optimal semi-myopic policies”. In: Operations Research 62.5 (2014), pp. 1142–

1167 (cited on pages 63, 64).

[59] Ningyuan Chen and Guillermo Gallego. “Nonparametric pricing analytics with customer

covariates”. In: Operations Research 69.3 (2021), pp. 974–984 (cited on page 63).

[60] Masanao Aoki. “On a dual control approach to the pricing policies of a trading specialist”.

In: IFIP Technical Conference on Optimization Techniques. Springer. 1973, pp. 272–282 (cited on

pages 63, 65).

[61] Chee-Yee Chong and David Cheng. “Multistage pricing under uncertain demand”. In: Annals
of Economic and Social Measurement, Volume 4, number 2. NBER, 1975, pp. 311–323 (cited on

page 63).

[62] Michael Rothschild. “A two-armed bandit theory of market pricing”. In: Journal of Economic
Theory 9.2 (1974), pp. 185–202 (cited on pages 63, 64).

[63] Omar Besbes and Assaf Zeevi. “Dynamic pricing without knowing the demand function:

Risk bounds and near-optimal algorithms”. In: Operations Research 57.6 (2009), pp. 1407–1420

(cited on page 64).

[64] Arnoud V. den Boer and Bert Zwart. “Dynamic pricing and learning with finite inventories”.

In: Operations research 63.4 (2015), pp. 965–978 (cited on page 64).

[65] Kris Johnson Ferreira, David Simchi-Levi, and He Wang. “Online network revenue manage-

ment using thompson sampling”. In: Operations research 66.6 (2018), pp. 1586–1602 (cited on

page 64).

[66] Arnoud V. den Boer and Bert Zwart. “Simultaneously learning and optimizing using

controlled variance pricing”. In: Management science 60.3 (2014), pp. 770–783 (cited on

pages 64, 65, 100).

[67] Dina Elreedy, Amir F Atiya, and Samir I Shaheen. “Novel pricing strategies for revenue

maximization and demand learning using an exploration-exploitation framework”. In: Soft
Computing 25.17 (2021), pp. 11711–11733 (cited on pages 64–66, 100, 102).

[68] Ching-Lai Hwang and Abu Syed Md. Masud. “Multiple objective decision making—methods

and applications: A state-of-the-art survey”. In: 164 (2012) (cited on page 64).

[69] Yossi Aviv and Amit Pazgal. “Dynamic pricing of short life-cycle products through active

learning”. In: Olin School Business, Washington Univ., St. Louis, MO (2005) (cited on page 64).

[70] Eric Cope. “Bayesian strategies for dynamic pricing in e-commerce”. In: Naval Research
Logistics (NRL) 54.3 (2007), pp. 265–281 (cited on page 64).

[71] Cathy H Xia and Parĳat Dube. “Dynamic pricing in e-services under demand uncertainty”.

In: Production and Operations Management 16.6 (2007), pp. 701–712 (cited on page 64).

[72] William R. Thompson. “On the likelihood that one unknown probability exceeds another in

view of the evidence of two samples”. In: Biometrika 25.3/4 (1933), pp. 285–294 (cited on

page 64).

[73] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the multiarmed

bandit problem”. In: Machine learning 47.2 (2002), pp. 235–256 (cited on page 64).

[74] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. “Curiosity-driven

exploration by self-supervised prediction”. In: International conference on machine learning.

PMLR. 2017, pp. 2778–2787 (cited on pages 64, 117).

[75] Giovanni Gatti Pinheiro, Michael Defoin-Platel, and Jean-Charles Régin. “Optimizing revenue

maximization and demand learning in airline revenue management”. In: arXiv:2203.11065
(2022) (cited on pages 66, 90).

[76] André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, et al. “Successor features for

transfer in reinforcement learning”. In: Advances in neural information processing systems 30

(2017) (cited on page 71).

[77] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. “Universal value function

approximators”. In: International conference on machine learning (2015), pp. 1312–1320 (cited on

page 71).

[78] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. “Planning and acting

in partially observable stochastic domains”. In: Artificial intelligence 101.1-2 (1998), pp. 99–134

(cited on page 72).

[79] Thomas Degris, Martha White, and Richard S. Sutton. “Off-policy actor-critic”. In: arXiv:1205.4839
(2012) (cited on page 74).

[80] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, et al. “Dota 2 with large

scale deep reinforcement learning”. In: arXiv:1912.06680 (2019) (cited on page 75).

[81] Özgür Şimşek, Simón Algorta, and Amit Kothiyal. “Why most decisions are easy in tetris –

and perhaps in other sequential decision problems, as well”. In: International Conference on
Machine Learning (2016), pp. 1757–1765 (cited on page 75).

[82] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. “Policy gradient

methods for reinforcement learning with function approximation”. In: Advances in neural
information processing systems 12 (1999) (cited on page 76).

[83] Ronald J. Williams. “Simple statistical gradient-following algorithms for connectionist

reinforcement learning”. In: Machine learning 8.3 (1992), pp. 229–256 (cited on page 78).

[84] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, et al. “High-dimensional

continuous control using generalized advantage estimation”. In: arXiv:1506.02438 (2015)

(cited on pages 79, 86).

[85] Noe Casas. “Deep deterministic policy gradient for urban traffic light control”. In: arXiv:1703.09035
(2017) (cited on page 80).

[86] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor”. In: International
conference on machine learning. PMLR. 2018, pp. 1861–1870 (cited on page 80).

[87] Erik Wĳmans, Abhishek Kadian, Ari Morcos, Stefan Lee, et al. “Dd-ppo: Learning near-

perfect pointgoal navigators from 2.5 billion frames”. In: arXiv:1911.00357 (2019) (cited on

page 80).

[88] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, et al. “Distributed prioritized

experience replay”. In: arXiv:1803.00933 (2018) (cited on page 80).

[89] Yi Wan, Abhishek Naik, and Richard S. Sutton. “Learning and planning in average-reward

markov decision processes”. In: International Conference on Machine Learning (2021), pp. 10653–

10662 (cited on page 82).

[90] Shangtong Zhang, Yi Wan, Richard S. Sutton, and Shimon Whiteson. “Average-reward

off-policy policy evaluation with function approximation”. In: arXiv:2101.02808 (2021) (cited

on page 82).

[91] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780 (cited on page 84).

[92] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. “Effective approaches to

attention-based neural machine translation”. In: arXiv:1508.04025 (2015) (cited on page 84).

[93] Vĳay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: A deep convolutional

encoder-decoder architecture for image segmentation”. In: IEEE transactions on pattern analysis
and machine intelligence 39.12 (2017), pp. 2481–2495 (cited on page 84).

[94] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation by

jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473 (2014) (cited on

page 84).

[95] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, et al. “Proximal policy

optimization algorithms”. In: arXiv:1707.06347 (2017) (cited on page 86).

[96] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, et al. “RLlib: Abstractions for

distributed reinforcement learning”. In: (2018), pp. 3053–3062 (cited on page 86).

[97] Giovanni Gatti Pinheiro, Michael Defoin-Platel, and Jean-Charles Regin. Talos. Version 0.1.0.

Oct. 2022. url: https://github.com/GiovanniGatti/talos (cited on page 86).

[98] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. “Learning without state-estimation

in partially observable Markovian decision processes”. In: Machine Learning Proceedings
(1994), pp. 284–292 (cited on pages 100, 105).

[99] David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. “Reward is enough”. In:

Artificial Intelligence (2021), p. 103535 (cited on pages 101, 120).

[100] Herbert Jaeger. “A short introduction to observable operator models of stochastic processes”.

In: 1 (1998), pp. 38–43 (cited on page 104).

[101] Michael Thon. “Spectral learning of dequential systems”. PhD thesis. Jacobs University

Bremen, 2018 (cited on page 104).

[102] George E. Monahan. “State of the art – a survey of partially observable Markov decision

processes: theory, models, and algorithms”. In: Management science 28.1 (1982), pp. 1–16 (cited

on page 104).

[103] Giovanni Gatti Pinheiro, Thomas Fiig, Michael D. Wittman, Michael Defoin-Platel, et al.

“Demand change detection in airline revenue management”. In: Journal of Revenue and Pricing
Management (2022). (accepted, see Appendix) (cited on page 106).

[104] Juan José Miranda Bront, Isabel Méndez-Diaz, and Gustavo Vulcano. “A column generation

algorithm for choice-based network revenue management”. In: Operations research 57.3 (2009),

pp. 769–784 (cited on page 109).

[105] Laurie A. Garrow. Discrete choice modelling and air travel demand: theory and applications.
Routledge, 2016 (cited on page 110).

[106] Guillermo Gallego, Richard Ratliff, and Sergey Shebalov. “A general attraction model and

sales-based linear program for network revenue management under customer choice”. In:

Operations Research 63.1 (2015), pp. 212–232 (cited on page 111).

[107] Richard S. Sutton. The bitter lesson. Mar. 2019. url: http://incompleteideas.net/IncIdeas/

BitterLesson.html (cited on page 114).

[108] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, et al. “Mastering

the game of go without human knowledge”. In: Nature 550.7676 (2017), pp. 354–359 (cited

on page 114).

[109] Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, et al. “Stabilizing transformers for

reinforcement learning”. In: International Conference on Machine Learning (2020), pp. 7487–7498

(cited on page 115).

[110] Marc G Bellemare, Will Dabney, and Rémi Munos. “A distributional perspective on reinforce-

ment learning”. In: International Conference on Machine Learning (2017), pp. 449–458 (cited on

page 117).

[111] Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan Hurst, et al. “Feedback control for

cassie with deep reinforcement learning”. In: International Conference on Intelligent Robots and
Systems (2018), pp. 1241–1246 (cited on page 119).

[112] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, et al. “Solving rubik’s

cube with a robot hand”. In: arXiv:1910.07113 (2019) (cited on page 119).

https://github.com/GiovanniGatti/talos
http://incompleteideas.net/IncIdeas/BitterLesson.html
http://incompleteideas.net/IncIdeas/BitterLesson.html

[113] Marc G. Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, et al. “Autonomous

navigation of stratospheric balloons using reinforcement learning”. In: Nature 588.7836

(2020), pp. 77–82 (cited on page 119).

Special Terms

A
AI Artificial Intelligence. 4

ANN Artificial Neural Network. 47

C
CEP Certainty Equivalent Pricing. 63

D
DP Dynamic Programming. 31

E
EWL Earning while Learning. 7, 61

M
MDP Markov Decision Process. 20

MSE Mean Squared Error. 89

P
POMDP Partially Observable Markov Decision Process. 104

R
RL Reinforcement Learning. 8, 35

RM Revenue Management. 1

RMS Revenue Management System. 2

	Contents
	Preface
	Summary of Notation
	Introduction
	Welcome to revenue management

	Welcome to revenue management
	Airline revenue management systems in a nutshell

	Airline revenue management systems in a nutshell
	Open problems in revenue management

	Open problems in revenue management
	Goals and assumptions

	Goals and assumptions
	Dissertation structure

	Dissertation structure
	Summary

	Summary
	Revenue Management Systems
	The single–leg problem

	The single–leg problem
	Forecasting

	Forecasting
	Optimization

	Optimization
	Fare ratio at 50% of demand
	Markov decision process
	Dynamic programming
	Summary

	Summary
	Pricing Optimization with Reinforcement Learning
	The nature of reinforcement learning

	The nature of reinforcement learning
	A brief introduction to the mathematical theory of reinforcement learning

	A brief introduction to the mathematical theory of reinforcement learning
	Temporal–difference learning
	Q-Learning
	Connections to dynamic programming
	Reinforcement learning with function approximation
	Model–based and model–free reinforcement learning

	Model–based and model–free reinforcement learning
	Reinforcement learning applied to revenue management

	Reinforcement learning applied to revenue management
	The (possibly) false promise of model–free revenue management

	The (possibly) false promise of model–free revenue management
	Summary

	Summary
	Earning while Learning
	Balancing earning and learning

	Balancing earning and learning
	Methods for earning and learning

	Methods for earning and learning
	Optimizing for earning and learning

	Optimizing for earning and learning
	A new perspective

	A new perspective
	A brief review of actor–critic methods

	A brief review of actor–critic methods
	Stochastic policies
	Policy gradient methods
	Continuing tasks
	Revisiting the earning–while–learning problem through reinforcement learning

	Revisiting the earning–while–learning problem through reinforcement learning
	Evaluating the methods on the single–leg problem
	Ablation studies
	Discussion on reinforcement learning
	Summary

	Summary
	Beyond Earning while Learning
	In depth view of partial observability

	In depth view of partial observability
	Revisiting non–stationarity and competition

	Revisiting non–stationarity and competition
	Non–stationarity
	Self–competition
	Competition
	Learning the state–update function

	Learning the state–update function
	What about forecasting?

	What about forecasting?
	Summary

	Summary
	Conclusions
	Appendix
	Bibliography
	List of Terms

