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Abstract

Post-Compromise Security (PCS) is a property of secure-channel establishment schemes
which limits the security breach of an adversary that has compromised one of the endpoints
to a certain number of messages, after which the channel heals. An attractive property,
especially in view of Snowden’s revelation of mass-surveillance, PCS features in prominent
messaging protocols such as Signal.

In this thesis, we first present two variants of Signal which improve the PCS property.
Moreover, by viewing PCS as a spectrum, rather than a binary property which schemes
might or might not have, in the second part of the thesis we introduce a framework for
quantifying and comparing PCS security, with respect to a broad taxonomy of adversaries.
The generality and flexibility of our approach allows us to model the healing speed of a broad
class of protocols, including Signal and our variant SAMURAI, but also an identity-based
messaging protocol named SAID, and even a composition of 5G handover protocols. We
also apply the results obtained for this last example in order to provide a quick fix, which
massively improves its post-compromise security.

The last part of this thesis is dedicated to the question of deep attestation in virtualized
infrastructures. Deep attestation is a particular case of remote attestation, i.e.,verifying
the integrity of a platform in the presence of a remote server. We focus on the remote
attestation of hypervisors and their hosted virtual machines (VM), for which two solutions
are currently supported by ETSI (European Telecommunications Standards Institute). The
first is single-channel attestation, requiring for each VM an attestation of that VM and the
underlying hypervisor through the physical TPM. The second, multi-channel attestation,
allows to attest VMs via virtual TPMs and separately from the hypervisor – this is faster
and requires less overall attestations, but the server cannot verify the link between VM and
hypervisor attestations, which is naturally available for single-channel attestation.

We design a new approach which provides linked remote attestation which achieves
the best of both worlds: we benefit from the efficiency of multi-channel attestation while
simultaneously allowing attestations to be linked. Moreover, we formalize a security model
for deep attestation and prove the security of our approach. Our contribution is agnostic of
the precise underlying secure component (which could be instantiated as a TPM or something
equivalent) and can be of independent interest.
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Résumé

La Sécurité Après-Compromission (PCS pour Post-Compromise Security) est une propriété
de sécurité concernant les schémas d’établissement de canal sécurisé. Elle vise à limiter les
failles de sécurité que pourrait introduire un attaquant en compromettant un utilisateur. Le
phénomène de guérison, qui est le résultat de la PCS, permet d’éjecter l’attaquant ce qui
rend le canal à nouveau sécurisé. Cette propriété intéressante, surtout depuis les révélations
d’Edward Snowden concernant la surveillance de masse, se retrouve dans la plupart des
protocoles de messageries populaires, notamment Signal.

Dans cette thèse, nous présentons dans un premier temps deux variantes de Signal; ces
deux protocoles (MARSHAL et SAMURAI) sont construits pour améliorer la propriété de PCS.
En faisant l’observation que la PCS n’est pas une propriété binaire mais plutôt un spectre de
possibilités, nous proposons dans un second chapitre un modèle pour quantifier et comparer
la PCS en fonction du type d’adversaire considéré. Nous détaillerons d’ailleurs tous les
adversaires possibles pour notre contexte. La généralité et flexibilité de notre approche
nous permet de modéliser une vaste diversité de protocoles, en particulier Signal mais aussi
une nos variantes décrite dans le premier chapitre, ainsi qu’une autre variante (SAID) de
Signal mais basée sur l’identité. Un dernier cas est analysé, montrant l’expressivité de
notre modèle, celui d’une série de procédure pour le réseau 5G nommée protocoles relais
(handover). L’étude de ce dernier cas nous amène à proposer une amélioration concernant
la PCS pour un protocole de relais.

La dernière partie de cette thèse se concentre sur un problème lié à la sécurité, l’attestation
dans le contexte de virtualisation. L’attestation en profondeur, un type d’attestation, permet
de vérifier l’intégrité d’une plateforme à l’aide d’un serveur de vérification à distance. Nous
nous concentrons sur l’attestation d’hyperviseurs et de machines virtuelles. Il existe deux
solutions standardisées, la première permet d’attester l’hyperviseur et la machine virtuelle en
même temps alors que la deuxième permet d’attester indépendamment ces deux composants.
Nous proposons une solution qui regroupe les avantages de ces deux alternatives (sécurisée
et efficace) dans un modèle inédit. Le but est de formaliser un modèle de sécurité visant à
prouver la sécurité de notre approche.
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Introduction

In this work, we focus on a specific field of science, called cryptography. While early forms
of cryptography (also referred to as "classical cryptography") featured a race between a
cryptographic design and ever-evolving attacks against it, the modern approach is to use
scientific methods which enforce formal security definitions and a rigorous approach. A
correlated event marking the evolution from classical to modern cryptography is the rise
of computer science initiated by Alan Turing. The democratisation of computers (as an
object) has fuelled a virtualisation of interactions and processes in our daily lives, such as
communications, payment, elections, etc.

It is crucial to understand that no security for such technologies can be absolute and
universal. Even powerful methodologies, such as provable security or automated verification,
can only provide a partial understanding of the properties achieved by a cryptographic
primitive or protocol in a given setting. Even then, the guarantees provided only hold if
the remaining components involved in the deployment of the primitive or protocol (e.g.,
concrete implementations, OS characteristics, or even the user’s behaviour) follow a certain
pattern, or model. However, by providing at least this partial rigorous formalism, we can
ensure that the aspect of the primitive that we do examine – in our case, its cryptographic
design – is sound, and therefore no attacker can exploit it to its nefarious purposes. In
particular, in this thesis we focus on the provable security of cryptographic protocol design.

One aspect described in this work is the establishment of a secure channel between two
parties. How can they securely communicate and how much trust should they put in the
channel? While those questions are critical, we must also stop a moment and ask ourselves
why it is important to secure data. While answering this question is clearly out of reach
in a purely scientific approach (as it also includes social, political and economical aspects),
we can observe a paradigm shift caused by Snowden’s revelations. There was a before,
where data security was not a concern for the majority of citizens, and an after where mass
surveillance by governmental agencies became a known fact and everybody’s concern. This
is how security for everyday services became a perceived necessity, especially for messaging
protocols.

In this work, we propose a partial answer to how to improve security for such protocols.
Trevor Perrin and Moxie Marlinspike designed Signal, an asynchronous messaging

protocol (in 2013). They received the Levchin prize in 2017 for their work itself and also for
the impact on society it brought. Signal enlarged the possibility of using secure applications
to communicate at a large scale. Numerous applications used Signal to provide end-to-
end encryption, for instance WhatsApp, Facebook Messenger, Skype (through the private
conversations), etc . . . , making Signal the go-to solution for a high level of security in
asynchronous messaging. This situation is reinforced by the Message Layer Security (MLS)
development by both industrial and researchers. The goal is to retrieve all the qualities of
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Introduction

Signal to use it in group messaging (as Signal has only pairwise communications). The
main security properties for messaging protocols are provided using Signal, for example the
asynchronous property (Alice and Bob need not be online at the same time to communicate),
confidentiality (only Alice and Bob know the content of each message), authentication (Alice
is sure she is talking to Bob and vice-versa), or Perfect-Forward Secrecy (the communication
before a compromise is secure). Yet, Signal is known to pioneer Post-Compromise Security,
an unprecedented property allowing some guarantee against an active attacker.

The PCS property has become a must-have in asynchronous messaging, since messaging
sessions are much longer than in typical secure-channel establishment – thus, on the one
hand, the security of each channel is much likelier to be compromised during its lifetime,
and on the other hand, the consequences could be much more serious Post-compromise
security allows a compromised channel to recover its original security, even after the latter is
downgraded by potential attacks. If an attacker has access to a communication by revealing
some secrets (but not all) then the protocol eventually recovers from it and heals. The
channel’s healing returns the attacker to the position of an outsider, thus removing the
important threat of passive mass surveillance. In other words, in order to continue learning
information from the previously-compromised channel, the adversary has no choice but to
renew its active threat.

Two questions naturally arises from those observations:

• Can we quantify the interval that passes between the moment of compromise and the
subsequent healing?

• Can we improve the PCS notion of Signal?

Two chapters are dedicating to answering (in the affirmative) these questions. First, we
propose two protocols, MARSHAL and SAMURAI, then our generic approach to analyse PCS
notion.

MARSHAL and SAMURAI. We propose two variants of Signal. The latter has an interesting
property called Post-Compromise Security (PCS) which enables the protocol to fight against
an attacker. This phenomenon, called healing, occurs when an attacker manages to reveal
some (but not all) secrets about a communication between two honest parties. The PCS
ensures that, at some point after the compromise, the protocol meets its security again. The
main idea behind PCS is key evolution.

There are two main issues for the context of messaging protocols. First, majority of
protocols (like Signal) are proposing asynchronous feature meaning that Alice and Bob need
not be online at the same time in order to communicate. This means that the key evolution
must be also asynchronous in the sense that no strong interactivity can be considered (for
instance sigma protocols are interactive; we cannot include such kind of process in messaging
protocols without loosing the asynchronous feature). For Signal, the key evolution is
computed with Diffie-Hellman values allowing some sort of non-interactivity.

Yet, the key evolution must be computed by correct parties. This corresponds to the
second issue of PCS in messaging protocols context. By allowing the session keys to evolve
within the communication, some malleability is added throughout the session. The keys are

2



Introduction

evolving but by which party (or parties for group messaging)? It is critical to ensure that
a computation is done by authorized parties and not an attacker. Letting the cryptographic
guarantees evolve leads the potential attackers to have a wider range to inject flaws into
the communication (compared to a constant value). One solution to this problem is the
persistent authentication developed by Blazy et al. for their SAID protocol, an identity
based Signal-like protocol.

Our two protocols, MARSHAL and SAMURAI are mainly designed around those two
issues. The key evolution is done for each session keys (message keys in our concern) instead
of speaker alternation (e.g., Alice sends the messages then this Bob sending messages). Thus
we compute more frequently the evolution of keys than in Signal. This approach is better
in terms of security but the performances are altered although the running times remain
practical. We also add the persistent authentication in our protocols to avoid communication
hijack (meaning that the attacker completely impersonates one party to the others). Notice
that the security is strengthened thanks to the persistent authentication but, in the meantime,
this inhibits any deniability feature. So we increase security albeit privacy is the cost.

Our approach in both protocols is to stay close to Signal design. Unlike other works
with modular design, our protocols give straightforward comparison to Signal and highlight
the crucial components for enhancing PCS (as given in the previous paragraph, i.e., the
frequency of asymmetric ratchet and persistent authentication).

Although MARSHAL and SAMURAI have the same level of security in terms of PCS
(also for others but this is not our main concern here), they differ by their performances.
Surprisingly, their differences are not the cause of PCS issue but from another property
called out-of-order. Our approach (sticking close to Signal) makes the design of variants
tricky because several security properties need to be guaranteed while PCS is improved.
Thus, changing some part of the protocol requires to balance some other parts in order to
keep the same level of security or usability. In our case, the out-of-order messages directly
impacts the key derivation (especially the message keys) because some messages could be
lost during the communication. Keeping this feature while ensuring an asymmetric ratchet
implies to keep some information from previous stages. In MARSHAL, for a given chain
(i.e., without changing the speaker), some of the auxiliary data 1 of all the previous stages
are appended to the next stage. This ensures the receiver to always being able to recover that
session key even if some stages are lost in between. The major drawback is the size of the
auxiliary data which grows linearly in the size of a chain. Yet, SAMURAI overcomes this
problem by deriving independently the chain key (by symmetric ratchet) and the message
key (by asymmetric ratchet). This implies that the auxiliary data is minimal for each stage
because there is only information about that very stage (and not from the previous ones)
while ensuring out-of-order messages.

The difference between MARSHAL and SAMURAI does lie in their memory management
of the associated data for messages inside a chain; although their respective security are
identical (especially for PCS).

The work on MARSHAL can be found in:

1those are associated data of the AEAD scheme which are needed for the receiver in order to derive the key
session, and also for other security properties like authentication

3
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Olivier Blazy, Pierre-Alain Fouque, Thibaut Jacques, Pascal Lafourcade, Cristina Onete,
and Léo Robert. MARSHAL: messaging with asynchronous ratchets and signatures for
faster healing. In Jiman Hong, Miroslav Bures, Juw Won Park, and Tomás Cerný, editors,
SAC ’22: The 37th ACM/SIGAPP Symposium on Applied Computing, Virtual Event, April
25 - 29, 2022, pages 1666–1673. ACM, 2022

A generic framework to quantify PCS. The previous chapter is dedicated to improve
a protocol for a specific security property, but how can we formalize and quantify such
improvement? This question is trivial for binary (in the sense yes/no output) properties but
tricky for properties with unclear process. For instance, considering the Perfect Forward
Secrecy (PFS) is pointless to propose an improvement. Indeed, the PFS ensures that
previous communications from a compromise is secure, this is a plain result meaning that
some protocols have this property and some do not, there is no in-between. Yet, the PCS
is interesting to analyse because of its wide spectrum of application. A protocol with PCS
feature will (conditionally) recover its security after a compromise but this will occur at
some point in the future. The essence of those properties implies that there is no clear
timeline within their activation. So some protocols have or have not the PCS property but
we need to analyze deeper for protocols having it.

We propose in this chapter such analysis for PCS property. The goal is to be able to
compare protocols having the PCS. The results obtained are manifold.

First, we can compare protocols by giving a framework for secure-channel establishment
with key evolution protocols. Our generic approach allows the comparison of protocols
which are, at first glance, incomparable. We embed our model with a metric that gives a
quantification to the PCS. A major interest is the possibility to deduce which protocol is
better.

We do not cover all the protocols featuring PCS. Yet, we adopt a specific strategy to
ensure the liability and accuracy of our model. We choose to analyse first Signal which is
well analysed in the literature and used in numerous messaging protocols. Our model is
based on this protocol as the notion of PCS is crucial for it. Then we analyse SAMURAI
and SAID, which both are variants of Signal. While SAMURAI is described in the previous
chapter and close to Signal, the other variant SAID lies in a different framework.

Indeed, SAID is an identity-based protocol. The concept of identity-based cryptography
was introduced by Shamir in [Sha84] with the purpose of diminishing our reliance on public-
key infrastructure. In this paradigm, there is an authority (e.g., a Key Distribution Center)
that generates keys for users. The principle of identity-based cryptography lies in associating
users with their short, easy-to-remember identities (e.g., an email address or a phone num-
ber). The first instantiations of identity-based encryption were presented in [BF03], then
signature schemes [BNN09] and Authenticated Key Exchange (AKE) protocol [JHJ05].

Finally, we show the expressiveness of our model with protocols that are completely
different (i.e., the 5G handover procedures). The analysis conducted brings a variant we
designed, which improves existing standard.

We also give a taxonomy of adversaries. The results obtained by our metric are classified
by types of adversaries. The latter are a mix of known adversaries in the literature and new
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ones from our analysis. We consider adversaries composed of three characteristics: the
reach (a fine-grained classification depending on the possible keys to be revealed), the power
(passive or active), the access (insider or outsider). By combining those components, there
are 12 possible adversaries giving 12 results for PCS for each protocol.

The results from our metric give also a deeper understanding on the mechanisms compos-
ing the PCS. From the 5G handover analysis, we observe that key evolution in a deterministic
manner (i.e., symmetric ratchet) is disastrous for healing. It simply comes from the fact that
key derivation can be computed efficiently in one way. Thus it is crucial to add some un-
expected values (i.e., random elements used for computing Diffie-Hellman values) to break
the routine. An other aspect is the frequency of such non-deterministic computations. As an
example, consider Signal with SAMURAI where the latter has asymmetric ratchet for each
stage compared to only when the speaker changes for the former. Finally, we also observe
the effect of persistent authentication (i.e., signing auxiliary data along each message) for
active adversaries.

This work will appear in the Usenix conference:
Olivier Blazy, Ioana Boureanu, Pascal Lafourcade, Cristina Onete, and Léo Robert. How
fast do you heal? A taxonomy for post-compromise security in secure-channel establishment.
Usenix Security Symposium, page to appear, 2023. https://eprint.iacr.org/2022/
1090

Authorized Linked Attestation. This chapter has a different context from the previous
ones. We focus on attestation, which is the process where a verifier can check if a property
of an entity is correct. In virtualized infrastructures, both software and hardware parts are
entangled and a variant of attestation called deep attestation ensures that both sides are
attested. The components we consider are threefold, a root of trust (hardware part), virtual
machines and hypervisors managing them. The goal of deep attestation is thus to attest a
virtual machine and the hypervisor with the root of trust.

We propose a solution which balances two existing solutions. Indeed, the single-channel
attestation is secure but poorly scalable while the multi-channel allows attestation at large
scale but with little guaranty toward security. Our solution is both secure and scale efficiently.
This assertion is reinforced by two arguments, first we propose a formal treatment of our
new protocol to prove its security. Second, we show the performances of our construction
with a proof-of-concept. So our approach shows confidence both in theoretical and practical
aspects.

The model we designed to construct our solution in deep attestation context is the
first in the literature, and solutions already existed but not formally proved. We choose
composition-based approach where sequence of increasingly stronger primitives are layered
to obtain our authorized linked attestation. The goal is to attest each component individually
by an authorized entity, and being able to link those attestations.

This solution is straightforward but the treatment we made is hard since attestation
is a generic term regrouping numerous possible applications which have different goals.
Despite being practical, we believe that our construction within its formal treatment can be
of independent interest to this line of research.

5
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This work appears in:
Ghada Arfaoui, Pierre-Alain Fouque, Thibaut Jacques, Pascal Lafourcade, Adina Nedelcu,
Cristina Onete, and Léo Robert. A cryptographic view of deep-attestation, or how to do
provably-secure layer-linking. In Giuseppe Ateniese and Daniele Venturi, editors, Applied
Cryptography and Network Security - 20th International Conference, ACNS 2022, Rome,
Italy, June 20-23, 2022, Proceedings, volume 13269 of Lecture Notes in Computer Science,
pages 399–418. Springer, 2022

Outline of this manuscript. We first introduce the basic notions needed throughout this
work in Chapter 1. Then, in Chapter 2, we present two protocols (MARSHAL and SAMURAI)
which improved the level of PCS achieved by Signal. The next part, in Chapter 3, describes a
more generic approach to PCS and broaden the use case of Signal. Chapter 4 focuses on the
topic of deep attestation, for which security is formalized, and then proved for a particular
scheme of our design. We also provide a short summary in French of the findings of this
thesis in Appendix A.

Other publications. We list some publications from other works that are not developed in
this thesis.

The subjects of those published papers are card-based ZKP protocols, physical secret
sharing, generic construction of signature scheme, improvements of public-key schemes,
and finally an unplugged activity to show that perfect anti-virus does not exist. We give an
abstract of each publications. Note that the list is not chronological but sorted by topic.

• Daiki Miyahara, Léo Robert, Pascal Lafourcade, So Takeshige, Takaaki Mizuki, Kazu-
masa Shinagawa, Atsuki Nagao, and Hideaki Sone. Card-Based ZKP Protocols for
Takuzu and Juosan. In Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara,
editors, 10th International Conference on Fun with Algorithms (FUN 2021), volume
157 of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1–20:21,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik

Abstract: Takuzu and Juosan are logical Nikoli games in the spirit of Sudoku. In
Takuzu, a grid must be filled with 0’s and 1’s under specific constraints. In Juosan,
the grid must be filled with vertical and horizontal dashes with specific constraints.
We give physical algorithms using cards to realize zero-knowledge proofs for those
games. The goal is to allow a player to show that he/she has the solution without
revealing it. Previous work on Takuzu showed a protocol with multiple instances
needed. We propose two improvements: only one instance needed and a soundness
proof. We also propose a similar proof for Juosan game.

• Léo Robert, Daiki Miyahara, Pascal Lafourcade, Luc Libralesso, and Takaaki Mizuki.
Physical zero-knowledge proof and np-completeness proof of suguru puzzle. Inf.
Comput., 285(Part):104858, 2022

Abstract: Suguru is a paper and pencil puzzle invented by Naoki Inaba. The goal of
the game is to fill a grid with numbers between 1 and 5 while respecting three simple
constraints. We first prove the NP-completeness of Suguru puzzle. For this we design
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gadgets to encode the PLANAR-CIRCUIT-SAT in a Suguru grid. We then design
a physical Zero-Knowledge Proof (ZKP) protocol for Suguru. This ZKP protocol
allows a prover to prove that he knows a solution of a Suguru grid to a verifier without
leaking any information on the solution. To construct such a physical ZKP protocol,
we only rely on a few physical cards and adapted encoding. For a Suguru grid with
𝑛 cells, we only use 5𝑛 + 5 cards. Moreover, we prove the three classical security
properties of a ZKP: completeness, extractability, and zero-knowledge

Preliminary paper appears in: Léo Robert, Daiki Miyahara, Pascal Lafourcade, and
Takaaki Mizuki. Physical zero-knowledge proof for suguru puzzle. In Stéphane
Devismes and Neeraj Mittal, editors, Stabilization, Safety, and Security of Distributed
Systems - 22nd International Symposium, SSS 2020, Austin, TX, USA, November 18-
21, 2020, Proceedings, volume 12514 of Lecture Notes in Computer Science, pages
235–247. Springer, 2020

• Léo Robert, Daiki Miyahara, Pascal Lafourcade, and Takaaki Mizuki. Card-based
ZKP for connectivity: Applications to nurikabe, hitori, and heyawake. New Gener.
Comput., 40(1):149–171, 2022

Abstract: During the last years, several card-based Zero-Knowledge Proof (ZKP)
protocols for Nikoli’s puzzles have been designed. Although there are relatively
simple card-based ZKP protocols for a number of puzzles, such as Sudoku and Kakuro,
some puzzles face difficulties in designing simple protocols. For example, Slitherlink
requires novel and elaborate techniques to construct a protocol. In this work, we focus
on three Nikoli puzzles: Nurikabe, Hitori, and Heyawake. To date, no card-based ZKP
protocol for these puzzles has been developed, partially because they have a relatively
tricky rule that colored cells should form a connected area (namely, a polyomino); this
rule, sometimes referred to as “Bundan-kin” (in Japanese), complicates the puzzles,
as well as facilitating difficulties in designing card-based ZKP protocols.

Preliminary paper appears in: Léo Robert, Daiki Miyahara, Pascal Lafourcade, and
Takaaki Mizuki. Interactive physical ZKP for connectivity: Applications to nurik-
abe and hitori. In Liesbeth De Mol, Andreas Weiermann, Florin Manea, and David
Fernández-Duque, editors, Connecting with Computability - 17th Conference on Com-
putability in Europe, CiE 2021, Virtual Event, Ghent, July 5-9, 2021, Proceedings,
volume 12813 of Lecture Notes in Computer Science, pages 373–384. Springer, 2021

• Pascal Lafourcade, Daiki Miyahara, Takaaki Mizuki, Léo Robert, Tatsuya Sasaki, and
Hideaki Sone. How to construct physical zero-knowledge proofs for puzzles with a
"single loop" condition. Theor. Comput. Sci., 888:41–55, 2021

Abstract: We propose a technique to construct physical Zero-Knowledge Proof (ZKP)
protocols for puzzles that require a single loop draw feature. Our approach is based
on the observation that a loop has only one hole and this property remains stable by
some simple transformations. Using this trick, we can transform a simple big loop,
which is visible to anyone, into the solution loop by using transformations that do not
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disclose any information about the solution. We illustrate our technique by applying
it to construct physical ZKP protocols for two Nikoli puzzles: Slitherlink and Masyu.

• Jannik Dreier, Jean-Guillaume Dumas, Pascal Lafourcade, and Léo Robert. Optimal
Threshold Padlock Systems. Journal of Computer Security, pages 1–34, 2021

Abstract: In 1968, Liu described the problem of securing documents in a shared
secret project. In an example, at least six out of eleven participating scientists need
to be present to open the lock securing the secret documents. Shamir proposed a
mathematical solution to this physical problem in 1979, by designing an efficient
𝑘-out-of-𝑛 secret sharing scheme based on Lagrange’s interpolation. Liu and Shamir
also claimed that the minimal solution using physical locks is clearly impractical
and exponential in the number of participants. In this work, we relax some implicit
assumptions in their claim and propose an optimal physical solution to the problem
of Liu that uses physical padlocks, but the number of padlocks is not greater than
the number of participants. Then, we show that no device can do better for 𝑘-out-of-
𝑛 threshold padlock systems as soon as 𝑘 ≥

√
2𝑛, which holds true in particular for

Liu’s example. More generally, we derive bounds required to implement any threshold
system and prove a lower bound of 𝑂 (log(𝑛)) padlocks for any threshold larger than
2. For instance we propose an optimal scheme reaching that bound for 2-out-of-𝑛
threshold systems and requiring less than 2 log2(𝑛) padlocks. We also discuss more
complex access structures, a wrapping technique, and other sublinear realizations like
an algorithm to generate 3-out-of-𝑛 systems with 2.5

√
𝑛 padlocks. Finally we give

an algorithm building 𝑘-out-of-𝑛 threshold padlock systems with only 𝑂
(
log(𝑛)𝑘−1)

padlocks. Apart from the physical world, our results also show that it is possible to
implement secret sharing over small fields.

• Xavier Bultel, Pascal Lafourcade, Charles Olivier-Anclin, and Léo Robert. Generic
construction for identity-based proxy blind signature. In Esma Aïmeur, Maryline
Laurent, Reda Yaich, Benoît Dupont, and Joaquín García-Alfaro, editors, Foundations
and Practice of Security - 14th International Symposium, FPS 2021, Paris, France,
December 7-10, 2021, Revised Selected Papers, volume 13291 of Lecture Notes in
Computer Science, pages 34–52. Springer, 2021

Abstract: Generic constructions of blind signature schemes have been studied since
its appearance. Several constructions were made leading to generic blind signatures
and achieving other properties such as identity-based blind signature and partially
blind signature. We propose a generic construction for identity- based Proxy Blind
Signature (IDPBS). This combination of properties has several applications in the real
world, in particularly in e-voting or e-cash systems and it has never been achieved
before with a generic construction. Our construction only requires two classical
signatures schemes: a blind EUF-CMA blind signature and a SUF-CMA unique
signature. The security of our generic identity-based proxy blind signature is proven
under these assumptions

• Pascal Lafourcade, Léo Robert, and Demba Sow. Linear generalized elgamal encryp-
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tion scheme. In Pierangela Samarati, Sabrina De Capitani di Vimercati, Mohammad S.
Obaidat, and Jalel Ben-Othman, editors, Proceedings of the 17th International Joint
Conference on e-Business and Telecommunications, ICETE 2020 - Volume 2: SE-
CRYPT, Lieusaint, Paris, France, July 8-10, 2020, pages 372–379. ScitePress, 2020

Abstract: ElGamal public key encryption scheme has been designed in the 80’s. It is
one of the first partial homomorphic encryption and one of the first IND-CPA prob-
abilistic public key encryption scheme. A linear version has been recently proposed
by Boneh et al. In this work, we present a linear encryption based on a generalized
version of ElGamal encryption scheme. We prove that our scheme is IND-CPA secure
under linear assumption. We design a generalized ElGamal scheme from the general-
ized linear. We also run an evaluation of performances of our scheme. We show that
the decryption algorithm is slightly faster than the existing versions.

• Pascal Lafourcade, Léo Robert, and Demba Sow. Fast short and fast linear cramer-
shoup. In Gabriela Nicolescu, Assia Tria, José M. Fernandez, Jean-Yves Marion, and
Joaquín García-Alfaro, editors, Foundations and Practice of Security - 13th Interna-
tional Symposium, FPS 2020, Montreal, QC, Canada, December 1-3, 2020, Revised
Selected Papers, volume 12637 of Lecture Notes in Computer Science, pages 121–136.
Springer, 2020

Abstract: A linear Cramer-Shoup encryption scheme version was proposed by
Shacham in 2007. Short Cramer-Shoup encryption scheme was designed by Ab-
dalla et al., in 2014. This scheme is a variant of the Cramer-Shoup encryption scheme
that has a smaller size. They proved that it is an IND-PCA secure encryption under
DDH and the collision-resistance assumptions. We design a faster version of Short
Cramer-Shoup encryption scheme denoted Fast Short Cramer-Shoup encryption. We
also propose a faster version of linear Cramer-Shoup encryption called Fast Linear
Cramer-Shoup. We prove that the Fast Short Cramer-Shoup is IND-PCA secure under
DDH and the collision-resistance assumptions. We also, show that our linear encryp-
tion is CCA secure under the Linear assumption. Finally we run an evaluation of
performances of our schemes.

• Pascal Lafourcade, Léo Robert, and Demba Sow. Fast cramer-shoup cryptosystem.
In Sabrina De Capitani di Vimercati and Pierangela Samarati, editors, Proceedings
of the 18th International Conference on Security and Cryptography, SECRYPT 2021,
July 6-8, 2021, pages 766–771. SCITEPRESS, 2021

Abstract: Cramer-Shoup was the first practical adaptive CCA-secure public key
encryption scheme. We propose a faster version of this encryption scheme, called
Fast Cramer-Shoup. We show empirically and theoretically that our scheme is faster
than three versions proposed by Cramer-Shoup in 1998. We observe an average gain of
60% for the decryption algorithm. We prove the IND-CCA2 security of our scheme.
The proof only relies on intractability assumptions like DDH.

• Matthieu Journault, Pascal Lafourcade, Malika More, Rémy Poulain, and Léo Robert.
How to teach the undecidability of malware detection problem and halting problem.
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In Lynette Drevin, Suné von Solms, and Marianthi Theocharidou, editors, Informa-
tion Security Education. Information Security in Action - 13th IFIP WG 11.8 World
Conference, WISE 13, Maribor, Slovenia, September 21-23, 2020, Proceedings, vol-
ume 579 of IFIP Advances in Information and Communication Technology, pages
159–169. Springer, 2020

Abstract: Malware detection is a term that is often associated to Computer Science
Security. The underlying main problem is called Virus detection and consists in
answering the following question: Is there a program that can always decide if a
program is a virus or not? On the other hand, the undecidability of some problems
is an important notion in Computer Science : an undecidable problem is a problem
for which no algorithm exists to solve it. We propose an activity that demonstrates
that virus detection is an undecidable problem. Hence we prove that the answer to
the above question is no. We follow the proof given by Cohen in his PhD in 1983.
The proof is close to the proof given by Turing in 1936 of the undecidability of the
Halting problem. We also give an activity to prove the undecidability of the Halting
problem. These proofs allow us to introduce two important ways of proving theorems
in Computer Science : proof by contradiction and proof by case disjunction. We
propose a simple way to present these notions to students using a maze. Our activity
is unplugged, i.e., we use only a paper based model of computer, and is designed for
high-school students. This is the reason why we use Scratch to write our ”programs“.
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Chapter 1

Background on Provable
Security

Contents
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1.3.2 Gap Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . . . 16
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1.7 Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

We aim at presenting, in a manner that is as detailed and as comprehensive as possible,
all the basic components needed to grasp our work.

We consider two entities, denoted Alice and Bob, trying to communicate via a channel.
An attacker, called Eve, could be listening or modifying the contents of the messages
exchanged over this channel. This context is depicted in Figure 1.1.

In what follows we present several types of properties that cryptographic schemes might
need to achieve, against which adversaries that security must be guaranteed, as well as the
various tools that can help construction solutions that have the security we are aiming for.

Alice Bob

Eve

Listen Modify

Unsecured canal of communication

Figure 1.1 The context of secure communications.
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Background on Provable Security 1.1. Notations

1.1 Notations

We define the mathematical basis and notations we use through the manuscript.

Let 𝑔 be a generator of a cyclic group G of prime order 𝑞. A user’s Diffie-Hellman
public key is an exponentiation of 𝑔 to the private exponent 𝑘: 𝑝𝑘 = 𝑔𝑘 mod 𝑝 for a
large prime 𝑝.

We end names of public keys in pk and private keys ending in k. For instance Rchpk
is a ratchet public key with corresponding private key rchk.

A key generated by party P is denoted by ikP while the public key is denoted ipkP.

Stage-specific keys have stages as superscript e.g.„ mk1,1.

𝐷𝐻 (𝑥, 𝑦) = 𝑥𝑦 denotes the exponentiation of 𝑥 ∈ G to a power 𝑦 ∈ Z𝑞.

𝑎 | |𝑏 is the concatenation of two bitstrings 𝑎 and 𝑏.

𝑥
$←− S means that 𝑥 is uniformly chosen at random from the set S.

|S| is the cardinality of set S. For a bitstring 𝑥, we denote by |𝑥 | its length.

P[𝐸] is the probability that event 𝐸 occur.

The syntax of a primitive (or protocol) is characterized by tuple of (polynomial time)
algorithms. For example, a public-key encryption scheme 𝐸 is composed of (Gen,Enc,Dec)
with:

• Gen: takes as input a security parameter 1𝜆 to output a key pair (sk, pk);

• Enc: takes as input a public key pk and a message 𝑚 ∈ M to output a ciphertext
𝑐 ← Enc(pk, 𝑚);

• Dec: takes as input a private key sk and a ciphertext 𝑐 to output a plaintext 𝑚 ←
Dec(sk, 𝑐) or an error message ⊥.

Moreover, we require that for every 𝜆, every (sk, pk), and every message𝑚, it holds that:

Dec(sk,Enc(pk, 𝑚)) = 𝑚

1.2 Security Properties

The proofs given in this work are computational, written for game-based definitions. The
security properties are captured through games, or security experiments, played between
an adversary and a challenger (which represents all the honest parties using the primi-
tive/protocol). Both participants have access to the algorithms of the primitive/protocol but
not necessarily their secret values 1. Moreover, the adversary could have access to external

1As described by one the Kerckhoffs’ principle (or Shannon maxim) which states that the only source of
secret is from the keys and not the algorithms.
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Background on Provable Security 1.2. Security Properties

resources which is modelled by oracles. They represent the possible interactions with honest
parties (i.e.,A could stop a message), with the primitive (i.e.,A could query an encryption
of a given message).

We assume that the adversary (denoted A) is a probabilistic polynomial time (PPT)
algorithm. If the adversary calls oracle O with public parameter pparam on input 𝑥 to output
𝑦 then we write it as 𝑦 ← AO(𝑥 ) (pparam). Note that oracle could be queried adaptively, in
this case we write simply 𝑦 ← AO(·) (pparam).

Negligible functions. The concept of negligible function is used to prove security in the
sequence-of-games approach [Sho06] where two events can be considered equivalent as
long as their corresponding probabilities that they occur are close enough (i.e., negligible).

Definition 1 (Negligible function) A function 𝑓 : N→ R is negligible if for all polynomial
𝑝, there exists an integer 𝑛 ∈ N such that for all 𝑥 > 𝑛:

| 𝑓 (𝑥) | < 1
𝑝(𝑥)

Note that for all integer 𝑐 > 1 and for all positive polynomial 𝑝 of degree ≥ 1, 1
𝑐𝑝 (𝑥)

is
negligible.

Probability. We admit the following relations, given 𝐸 and 𝐹 two events:

P[𝐸] = P[𝐹] · P[𝐸 |𝐹] + P[¬𝐹] · P[𝐸 |¬𝐹]

P[𝐸 ∧ 𝐹] = P[𝐸] · P[𝐹] if 𝐴 and 𝐵 are independent

Lemma 1 (Difference Lemma [Sho06]) Let 𝐴, 𝐵, 𝐹 be events defined in some probability
distribution, and suppose that 𝐴 ∧ ¬𝐹 ⇐⇒ 𝐵 ∧ ¬𝐹. Then |P[𝐴] − P[𝐵] | ≤ P[𝐹]

This lemma is important when proving the security of cryptographic constructions, such
as primitives, protocols, etc. Indeed, some proofs rely on a sequence of games, where the
initial game is the initial experiment (capturing the security property) and the last game
gives explicit analysis of the adversary to win the game (e.g., a negligible probability if the
scheme is secure).

Hopping from one game to the next is achieved by a slight modification, either of the
scheme or the way the adversary interacts with it, but such that the attacker cannot tell that
such a difference exists.

One way to prove that the hop from one game to another is sound (i.e., the adversary
cannot distinguish between the two games) is by employing the Difference Lemma 1.

1.2.1 Reductions

Security proofs of new cryptosystems, in modern cryptography, consist of constructing a
reduction ℜ (or multiple ones), which turns an efficient adversary A against the primitive
(or protocol) into an other adversary ℜA that solves a well-studied problem assumed to be
hard (some of them are given below in 1.3). If we assume that the underlying hard problem
is not solvable in polynomial time, then the protocol’s security cannot be broken by the
original adversary.
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Background on Provable Security 1.2. Security Properties

Basically, the reduction ensures that the cryptosystem is at least as hard to break as it
is to solve a computational problem (assumed to be hard). Note that although we give only
the general idea without further substantial details, the authors of [KM07] give analysis and
critique on provable security results.

The quality of the reduction is given by how well the reduction behaves (in terms of
running time and success probability) with respect to how fast/efficient the adversary was
in the first place. Denote the running time of the reduction ℜA by 𝜏ℜA (𝜆) and the success
probability by 𝜖ℜA (𝜆) of ℜA for some security parameter 𝜆 ∈ N. If we also express them,
respectively, for A as 𝜏A (𝜆) and 𝜖A (𝜆) then we have:

𝜏ℜA (𝜆)/𝜖ℜA (𝜆) = ℓ(𝜆) · 𝜏A (𝜆)/𝜖A (𝜆) ,

where ℓ(𝜆) is the loss of the reduction with respect to the original adversary. For an efficient
reduction, the loss is bounded by a polynomial. If ℓ(𝜆) is constant, then the reduction is
tight.

1.2.2 Security Games

We now describe usual security games for public key encryption schemes, namely the
indistinguishability under chosen-plaintext attacks (IND-CPA) and the indistinguishability
under chosen-ciphertext attacks (IND-CCA). In each case, the game starts with the challenger
running the key-generation algorithm to output a key pair (sk, pk). The public key is handed
to the adversary and the challenger draws a random bit 𝑏 ∈ {0, 1}. Then A outputs two
messages 𝑚0, 𝑚1 (with the restriction 𝑚0 and 𝑚1 have the same length i.e., |𝑚0 | = |𝑚1 |).
The challenger sends to A the encryption of 𝑚𝑏 and finally A outputs a bit 𝑏′.

We say that A wins if and only if 𝑏′ = 𝑏. Depending on the game, the adversary has
access to different oracles. In IND-CPA, the adversary has only access to the encryption
oracle OE (which is, in practice, natural since the public key is known). For IND-CCA, the
adversary has also access to the decryption oracle OD with the restriction that the challenge
ciphertext cannot be an input. We differentiate the IND-CCA game in two depending on the
call to the decryption oracle. If the oracle can be queried only before the challenge, then the
game is called IND-CCA1 and if the oracle can also be called after the challenge then the
game is denoted IND-CCA2.

Definition 2 (IND-CPA) Let 𝐸 = (Gen,Enc,Dec) be a public-key encryption scheme, we
define experiment IND-CPA as:

ExpIND-CPA
𝐸 (𝜆,A):

(pk, sk) ← Gen(1𝜆)
𝑏

$←− {0, 1}
(𝑚0, 𝑚1) ← AOE (1𝜆, pk)
𝑐 ← Encpk (𝑚𝑏)
𝑏′ ← AOE (pk, 𝑐)
return (𝑏 = 𝑏′)
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Background on Provable Security 1.3. Cryptographic assumptions

We define the advantage of A against the IND-CPA security of 𝐸 as:

AdvIND-CPA
𝐸 (𝜆,A) =

����P [1← ExpIND-CPA
𝐸,A (𝜆)

]
− 1

2

����
We define the IND-CPA advantage against 𝐸 as:

AdvIND-CPA
𝐸 (𝜆) = max

A

{
AdvIND-CPA

𝐸,A (𝜆)
}

We say that is 𝐸 IND-CPA-secure if AdvIND-CPA
𝐸 (𝜆) is negligible.

Definition 3 (IND-CCA) Let 𝐸 = (Gen,Enc,Dec) be a public-key encryption scheme, we
define experiment IND-CCA as:

ExpIND-CCA
𝐸 (𝜆,A):

(pk, sk) ← Gen(1𝜆)
𝑏

$←− {0, 1}
(𝑚0, 𝑚1) ← AOE ,OD (1𝜆, pk)
𝑐 ← Encpk (𝑚𝑏)
𝑏′ ← AOE ,OD (pk, 𝑐)
return (𝑏 = 𝑏′)

We define the advantage of A against the IND-CCA security of 𝐸 as:

AdvIND-CCA
𝐸 (𝜆,A) =

����P [1← ExpIND-CCA
𝐸,A (𝜆)

]
− 1

2

����
We define the IND-CCA advantage against 𝐸 as:

AdvIND-CCA
𝐸 (𝜆) = max

A

{
AdvIND-CCA

𝐸,A (𝜆)
}

We say that 𝐸 is IND-CCA-secure if AdvIND-CCA
𝐸 (𝜆) is negligible.

1.3 Cryptographic assumptions

We present some common assumptions made in modern cryptography.

1.3.1 DL, CDH, DDH

Let 𝑝 be a prime number and 𝜆 = |𝑝 | its bit-size. Let G be a cyclic group, of order 𝑝,
generated by an element 𝑔.

Definition 4 (Discrete Logarithm (DL)) Solving the discrete logarithm problem in (G, 𝑝, 𝑔)
is assumed to be hard meaning that there exists a negligible function 𝜖 such that for all PPT
A:

P

[
𝑥

$←− Z𝑝; 𝑥′ ← A(𝑔𝑥) : 𝑥 = 𝑥′
]
= 𝜖 (𝜆)

Definition 5 (Computational Diffie-Hellman (CDH)) Solving the Computational Diffie-
Hellman problem in (G, 𝑝, 𝑔) is assumed to be hard meaning that there exists a negligible
function 𝜖 such that for all PPT A:

P

[
(𝑥, 𝑦) $←− (Z𝑝)2; 𝑧 ← A(𝑔𝑥 , 𝑔𝑦) : 𝑧 = 𝑔𝑥 ·𝑦

]
= 𝜖 (𝜆)
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Definition 6 (Decisional Diffie-Hellman (DDH)) Solving the Decisional Diffie-Hellman
problem in (G, 𝑝, 𝑔) is assumed to be hard meaning that there exists a negligible func-
tion 𝜖 such that for all PPT A:�����P

[
(𝑥, 𝑦, 𝑧0)

$←− (Z𝑝)3; 𝑧1 = 𝑥 · 𝑦;
𝑏

$←− {0, 1}; 𝑏′ ← A(𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧𝑏 )
: 𝑏 = 𝑏′

]
− 1

2

����� = 𝜖 (𝜆)
1.3.2 Gap Diffie-Hellman

The Gap Diffie-Hellman (GDH) problem introduced in [OP01] by Okamoto and Pointcheval
combines the CDH problem and the DDH. Indeed, the GDH problem resembles the CDH
problem while allowing the adversary to have access to the DDH oracle. This somewhat
hybrid notion is used for instance for schemes that derive keys from some secret (which is a
DH value) by using some Key Derivation Function (KDF, described in 1.6). In this setting,
the challenger needs to return valid session keys without knowing the discrete logarithm of
all the key-shares. The DDH oracle guarantees consistency of the derived keys. The oDDH
oracle takes three inputs, 𝑔𝑎, 𝑔𝑏 and 𝐶 from some group G and returns 1 if and only if
𝑔𝑎𝑏 = 𝐶.

Definition 7 (Gap Diffie-Hellman [OP01]) Solving the Gap Diffie-Hellman problem in
(G, 𝑝, 𝑔) is assumed to be hard meaning that there exists a negligible function 𝜖 such
that for all A ∈ poly(𝜆):

P

[
(𝑥, 𝑦) $←− (Z𝑝)2; 𝑍 ← AoDDH(𝑔𝑎 ,𝑔𝑏 ,𝐶 ) (𝑔𝑥 , 𝑔𝑦) : 𝑍 = 𝑔𝑥 ·𝑦

]
= 𝜖 (𝜆)

1.4 Authenticated Encryption with Associated Data (AEAD)

AEAD stands for Authenticated Encryption with Associated Data, first introduced in [Rog02].
Authenticated encryption provides confidentiality for the encrypted data, and authenticity
and integrity for both the encrypted plaintext and the AD. These guarantees can be expressed
separately, or monolithically in a single definition. We take the latter approach, following
the definition of Hoang et al. [HKR15].

Definition 8 (AEAD-scheme) An authenticated encryption scheme with associated data
(AEAD-scheme) is composed of a tuple of three algorithmsAEAD = (K, AEAD.Enc, AEAD.Dec).
Associated to AEAD are sets Nonce = {0, 1}𝜆 (with 𝜆 the security parameter), Message ⊆
{0, 1}∗ (satisfying 𝑀 ∈ Message =⇒ 𝑀 ′ ∈ Message for any 𝑀 ′ of same length of 𝑀)
and finally Header ⊆ {0, 1}∗.

The key space K is a nonempty set of strings. The encryption algorithm AEAD.Enc is a
deterministic algorithm with inputs 𝐾 ∈ K, 𝑁 ∈ Nonce, 𝐻 ∈ Header, 𝑀 ∈ Message, and
outputs 𝐶 = AEAD.Enc𝐾 (𝑁, 𝐻, 𝑀). The decryption algorithm AEAD.Dec is a deterministic
algorithm with inputs 𝐾 ∈ K, 𝑁 ∈ Nonce, 𝐻 ∈ Header, 𝐶 ∈ {0, 1}∗, and outputs a string in
Message or a symbol ⊥ subject to the restriction that AEAD.Dec𝑁,𝐻

𝐾
(Enc𝐾 (𝑁, 𝐻, 𝑀)) = 𝑀

for all 𝐾, 𝑁, 𝐻, 𝑀 .

The AEAD security property is defined in terms of two oracles oAEnc and oADec, which
both depend on the same secret bit 𝑏, the same key 𝐾 and the same list of existing ciphertexts
Lenc. In the security game the adversary aims to find the value of the hidden bit 𝑏.
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oAEnc𝑏 (𝑁, 𝐻, 𝑀) oADec𝑏 (𝑁, 𝐻, 𝑐)
if 𝑏 = 0 if 𝑐 ∉ Lenc
𝑐 ← Enc𝐾 (𝑁, 𝐻, 𝑀) if 𝑏 = 0

else 𝑚 ← Dec𝐾 (𝑁, 𝐻,𝐶)
𝑐 ← {0, 1} |Enc𝐾 (𝑁,𝐻,𝑀 ) | else
Lenc ← Lenc ∪ {𝑐} 𝑚 ← ⊥
return 𝑐 else

𝑚 ← ⊥
return 𝑚

Figure 1.2 The AEAD security game

ExpAEAD
Π
(𝜆,A):

𝐾 ←$ K
𝑏 ← {0, 1}
𝑏∗ ← AoAEnc( ·, ·, · ) ,oADec( ·, ·, · ) ()
A wins iff.: 𝑏 = 𝑏∗

Figure 1.3 The experiment ExpAEAD
Π
(𝜆,A).

We define the advantage of an adversary A in the ExpAEAD
Π
(𝜆,A) security game by:

AdvAEAD
Enc,Dec(A) =

���P[A wins] − 1
2

���.
Definition 9 (AEAD) An authenticated encryption with associated data scheme AEAD is
(𝑞, 𝜖)-AEAD-secure if for any PPT adversary making at most 𝑞 queries to the oAEnc oracle
it holds that:

AdvAEAD
Enc,Dec(A) ≤ 𝜖 .

We say an AEAD scheme is 𝑞-AEAD secure if 𝜖 is negligible (as a function of the security
parameter which is removed for simplicity) for any PPT adversary A.

1.5 Hash Functions

A cryptographic hash function is a function 𝐻 that takes an input of arbitrary size and
compresses it to a shorter output. The size of the output depends on the security parameter
𝜆. By noting ℓ(𝜆), or simply ℓ, the size of the output, we have:

𝐻 : {0, 1}∗ → {0, 1}ℓ

There are many properties we might want hash functions to have, but there is one
specifically we are interested in: the collision resistance. It says that it should be hard to find
two different inputs outputting the same value. Note that the size of the output is smaller
than hash function’s domain so there are always collisions, but we want to avoid them as
much as possible.

Definition 10 (Collision-Resistance) A hash function 𝐻 : {0, 1}∗ → {0, 1}ℓ is collision-
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resistant if for all adversary A there exists a negligible function 𝜖 such that:

P[(𝑥, 𝑥′) ← A(𝐻) : 𝐻 (𝑥) = 𝐻 (𝑥′)] ≤ 𝜖

Random Oracle Model (ROM). An ideal hash function with output considered as random
and uniformly distributed in its output space is called a random oracle.. When a security
proof includes a hash function assumed to be a random oracle, we say that the proof is in
the random oracle model [BR93c].

Notice that any security proof provided in the ROM by idealizing at least one of the
employed hash functions will only hold in the real world (with the real hash functions) as
long as the latter behaves identically (from an adversarial standpoint) to a random oracle.

There exist some security gaps between these two worlds, as discussed in [Nie02].
Random oracles are helpful for programming security reductions where the challenger may
want to choose specific outputs to return (e.g., complete a simulation, force the adversary to
launch an attack); this is possible as long as outputs are uniformly distributed (which is not
the case for hash functions). For this reason, proofs in the ROM are easier to construct, and
often require less security assumptions than those outside this model.

1.6 Hash Key Derivation Function (HKDF)

Some protocols with key evolution (e.g., Signal) use Hash Key Derivation Function (HKDF)
algorithm [Kra10] which has two main components: Extract and Expand. The Extract
operation has an input key material and an optional salt. The Expand operation takes a
secret (usually the output of a previous Extract), a label (publicly-known string), and an
input. We first describe the more generic notion of a KDF and then the implementation
based on HMAC (which is the actual HKDF scheme).

Definition 11 (secure-KDF [Kra10]) We say that KDF is (𝑡, 𝑞, 𝜖)-secure with respect to a
source keying material Σ if no adversaryA running in time 𝑡 and making at most 𝑞 queries
can win the experiment of Figure 1.4 with probability larger than 1

2 + 𝜖 .

Note that the adversary has access to both 𝛼 and 𝑟 .

Generic KDF. An extract-the-expand key derivation function KDF has two modules:

• a randomness extractor XTR: it produces “close-to-random” (in the statistical or
computational sense) outputs; it may be deterministic or keyed via a salt value.

• a variable length output PRF where the key is the output from XTR (which we denote
𝑃𝑅𝐾).

There are two steps to produce the 𝐿-bit key material 𝐾𝑀:

1. 𝑃𝑅𝐾 = 𝑋𝑇𝑅(salt, Σ)

2. 𝐾𝑀 = 𝑃𝑅𝐹 (𝑃𝑅𝐾, info, 𝐿)
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ExpKDF
Π
(𝜆,A)

(𝜎, 𝛼) ← Σ

𝑟
$←− {0, 1}∗

𝛼, 𝑟 are sent to A
for 𝑖 = 1...𝑞′ ≤ 𝑞, (𝑐𝑖 , ℓ𝑖) ← A();

KDF(𝛼, 𝑟, 𝑐𝑖 , ℓ𝑖) is sent to A
A chooses ℓ, 𝑐 ∉ {𝑐1, . . . , 𝑐𝑞′}
𝑏

$←− {0, 1}
if 𝑏 = 0,A is provided KDF(𝛼, 𝑟, 𝑐, ℓ)
else A is provided random string of ℓ bits.

step 4. is repeated up to 𝑞 − 𝑞′ queries
(with the restriction 𝑐 ≠ 𝑐𝑖)
A outputs bit 𝑏′ and wins iff.: 𝑏 = 𝑏′

Figure 1.4 The experiment ExpKDF
Π
(𝜆,A).

HMAC based KDF. We give the instantiation of the KDF solely based on HMAC which
is called HKDF. In this scheme, HMAC is employed both for extraction and for expansion,
which work as follows:

HKDF(salt, Σ, info, 𝐿) = 𝐾 (1) | | . . . | |𝐾 (𝑡)

where:

𝑃𝑅𝐾 =HMAC(salt, Σ)

𝐾 (1) =HMAC(𝑃𝑅𝐾, info| |0)

𝐾 (𝑖 + 1) =HMAC(𝑃𝑅𝐾, 𝐾 (𝑖) | |info| |𝑖)

with 𝑡 =
⌈
𝐿
𝑘

⌉
and the last value 𝐾 (𝑡) being truncated to its first 𝑑 = 𝐿 mod 𝑘 bits. Notice that

length of the HMAC output is equal to the input key length (so the scheme is well defined).

1.7 Signature Schemes

Authentication is achieved, in asymmetric setting, by use of signature schemes 2. While the
signature literature is extremely vast, we only give here the formal details needed for the
following sections.

Definition 12 (Signature [Kat10]) A signature scheme is composed of three probabilistic
polynomial-time algorithms:
Setup: a key-generation algorithm which takes in input the security parameter and outputs

a pair of keys (pk,sk).
Sign: the signing algorithm which takes in input a secret key sk and a message𝑚 to produce

a signature 𝜎. We write this as Signsk (𝑚).

2the corresponding notion in symmetric could be given by the MAC
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Verify: the verification algorithm which takes as input a public key pk, a message 𝑚, and
a signature 𝜎 to return 1 (success) or 0 (failure). We write this as Verifypk (𝑚, 𝜎).

The security property guaranteed by most digital signature schemes, existential unforge-
ability against adaptively-chosen message attacks (EUF-CMA) , is expressed in terms of the
stateful signing oracle oSign described below:
oSign(·): The signing oracle assumes the existence of a previously initialized list Lsign of

messages and of a signature public-private key pair (pk,sk) (which the challenger will
instantiate as shown in Figure 1.5). On input an adversarially chosen message 𝑚, the
oracle runs 𝜎 ← Signsk (𝑚), updates Lsign ← Lsign ∪ 𝑚, and outputs the signature
𝜎 to the adversary.

The EUF-CMA security experiment is depicted in Figure 1.5.

ExpEUF−CMA
Π

(𝜆,A)
1.(sk, pk) ← aSetup(1𝜆)
Lsign ← ∅
2.(𝑚∗, 𝜎∗) ← AoSign( ·) (pk)
A wins iff.:
Verifypk (𝑚∗, 𝜎∗) = 1
AND 𝑚∗ ∉ Lsign

Figure 1.5 The experiment ExpEUF−CMA
Π

(𝜆,A).

We define the advantage of an adversary A against the ExpEUF−CMA
Π

(𝜆,A) experiment
as its success probability, taken over all the random coins of the challenger and the adversary;
we denote this advantage as AdvEUF−CMA

Sign (A). We generally parametrize the notion by the
number of queries 𝑞 = |Lsign | the adversary makes to its signing oracle and by the upper
bound 𝜖 on its advantage, as follows:

Definition 13 (EUF-CMA) A signature scheme (Setup, Sign, Verify) is (𝑞, 𝜖) − EUF −
CMA−secure if for any PPT adversary making at most 𝑞 queries to the oSign oracle it holds
that:

AdvEUF−CMA
Sign (A) ≤ 𝜖 .

We say a signature scheme is 𝑞 − EUF − CMA−secure if 𝜖 is negligible (as a function of
the security parameter) for any PPT adversary A.

In the following, we assume that all signature schemes involve hashing, and omit the
hashing in the notation, i.e., SIGNsk (𝑚) := Signsk (𝐻 (𝑚)) for a hash function 𝐻.
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Chapter 2

Improving the Post-Compromise
Security of Signal

Communication between peers are a cornerstone in our today’s societies. The widespread
and popular usage of cryptography is mandatory (see [Rog16] for detailed arguments)
especially after the revelations of Edward Snowden about mass surveillance. Ensuring
security and privacy for day-to-day communication services has naturally arisen since. The
research community, but also the industry and even regular users, became eager to develop
and communicate by using secure messaging protocols.

We propose two variants of Signal, that we call MARSHAL and SAMURAI. Both aim
at improving the Post-Compromise Security of Signal. Although MARSHAL and SAMURAI
have the same level of security, SAMURAI outperforms MARSHAL in terms of memory
management (and thus practicality).
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2.1 Introduction

Numerous asynchronous messaging protocols have been designed, for instance Signal [MP16a],
OTR [BGB04], Matrix [mat19], Wire [Gmb21], ART [CCG+18] and MLS [BBR+22].

The main goal of those protocols is to ensure the confidentiality and authenticity of the
exchanged messages with respect to a PitM1 while allowing the communicating partners to

1Person-in-the-Middle is a politically-correct version of Man-in-the-Middle.

21



Improving the Post-Compromise Security of Signal 2.1. Introduction

be online at different time. That is, if Alice wants to talk to Bob, both are not needed to be
online simultaneously in order to communicate.

Depending on the protocol, other security properties are featured. The case of Signal
is interesting because of two of its properties (depicted below): Perfect Forward Secrecy
(PFS) et Post-Compromise Security (PCS).

PFS:
compromise

PCS:
compromise

Figure 2.1 PFS and PCS illustrations. The dashed lined indicates a compromised state
while the thick parts represent a secure state.

Signal guarantees Perfect Forward Secrecy (PFS), which ensures that compromising
the long-term keys will not endanger the confidentiality of past communications. In addi-
tion, however, Signal also provides an orthogonal property called Post-Compromise Security
(PCS), which is much more rare than PFS. The PCS notion, formalized in [CCG16], guar-
antees security even after a compromise. Depending on which keys are revealed, an attacker
has access to some part of the communication until a given moment where the protocol
heals. As the honest parties add randomness to the protocol, the attacker can no longer use
the information it previously had to breach the security of the channel. This powerful yet
conditional property is first analysed (in Signal context) in [CGCD+17].

The design of Signal is dedicated to long-term communication between peers. Hence,
the sessions created are meant to last for long time. The PCS becomes a crucial property in
this context: if a communication partner is compromised (thus loosing the confidentiality
of the communication) then the PCS property guarantees that at some point in the future,
the communication will heal from prior confidentiality breaches. In practice, a fast healing
is preferable as the revealed part of the communication should be as short as possible.

In a nutshell, Signal can be split into 4 phases:

• Initial key exchange: non-interactive key-exchange (X3DH) through the help of a
server;

• Symmetric ratchet: derivation of message keys through a KDF (see 1.6) for a party
sending multiple messages without a reply from the partner; this step ensures PFS;

• Asymmetric ratchet: when the speaker changes, a new Diffie-Hellman is injected in
the derivation of keys; this step ensures PCS;
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• Authenticated Encryption: each message is AEAD (see 1.4) encrypted using a
fresh message key, with an associated (authenticated) data consisting of auxiliary
information that is necessary for the message’s receiver to ratchet its keys.

In our work, we focus on key-updates, up to the transmission of messages; however, we
focus less on the security of the X3DH, detailed in Section 2.2). Some works as [BFG+22,
BFG+20, HKKP21] study the handshake of Signal (in the post-quantum paradigm). Other
works focus on Signal for group communication [CPZ20] and multi-device [CDDF20,
WBPE21]. The work of [KBB17] use ProVerif and CryptoVerif to analyze a modified
version of the Signal protocol while their main goal is to provide a methodology for auto-
mated verification toward secure messaging protocols in general. Their work is compatible
with a potential security analysis of our protocol; however, in this manuscript we take the
complementary approach of providing a computational security analysis of Signal, as the
one provided by [CGCD+17].

2.1.1 Contributions

Signal’s PCS guarantee is limited by two main factors: the lack of persistent authentication
(noticed by Blazy et al. [BBB+19]) and the frequency of asymmetric ratchets, which is our
key motivation. Our goal is to design a PCS-improved protocol (actually there will be two
protocols) sticking as close as possible to Signal. As we use Signal as the backbone of our
design, it is more straightforward to compare the three protocols.

For this, we design two protocols, MARSHAL [BFJ+22] (Messaging with Asynchronous
Ratchets and Signatures for faster HeALing) and SAMURAI (Signal-like Asynchronous Mes-
saging with Message-loss resilience, Ultimate healing and Robustness against Active Imper-
sonations) adding a faster healing and persistent authentication. Both protocols guarantee the
same level of healing (i.e., they have the same security given a compromise), but SAMURAI
is more efficient in terms of complexity and memory.

These strong properties come at a cost. Apart from registering an additional DH element
and having to perform DH computations at each stage, MARSHAL adds to the complexity of
Signal in two ways: (1) requiring the transmission of a number of DH elements that is linear
in the maximal depth of the chain; (2) using signatures to transmit the encrypted messages
and stage metadata. The former allows us to provide message-loss resilience: if this is not
needed, metadata size can be reduced. The second source of complexity, the signatures,
serves a double purpose: they help preserve AKE security, and they restrict an adversary’s
ability to impersonate parties upon corruption.

In order to facilitate the understanding of our contributions, we give in Figure 2.2, a
toy-example of a Signal conversation between an initiator Alice and the responder Bob.
Each message comes at a protocol stage2, denoted by (𝑥, 𝑦). The 𝑦 value increases when
the speaker changes (Alice starts at 𝑦 = 1, then 𝑦 turns to 2 when Bob speaks, etc.). The 𝑥
value increases with each new message from the same speaker, and is reset to 1 for each new
value of 𝑦. Each stage (𝑥, 𝑦) is associated with a message key mk𝑥,𝑦 , used to encrypt and
authenticate that stage’s message. To evolve from a key mk𝑥,𝑦 to mk𝑥+1,𝑦 (next message,

2We use a different notation of stages from [CGCD+17].
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same speaker), the two peers use a key-derivation function (KDF) with no further freshness.
This is called a symmetric ratchet, denoted by [S] in Figure 2.2. To update a key mk𝑥,𝑦

to mk1,𝑦+1 (new speaker), a DH share is used as freshness into the KDF. This is called an
asymmetric ratchet, denoted by [A].

Sender Key(s) AD Message MARSHAL/SAMURAI Signal

Alice mk1,1: (1,Rchpk1
A) Hi Bob ✓ ✓

[S] mk2,1 (2,Rchpk1
A) How are you ? × ×

[S] mk3,1-mk17,1 (3,Rchpk1
A)-(17,Rchpk1

A) (... 15 messages) ✓ ×
[S] mk18,1 (18,Rchpk1

A) Cinema tonight ? ✓ ×

Bob : [A] mk1,2 (1,Rchpk2
B) Hi Alice ✓ ×

[S] mk2,2 (2,Rchpk2
B) I’m good, thanks ✓ ×

[S] mk3,2-mk12,2 (3,Rchpk2
B)-(12,Rchpk2

B) (... 10 messages) ✓ ×

Alice : [A] mk1,3 (1,Rchpk3
A) Great ✓ ✓

Figure 2.2 Toy example for Signal and MARSHAL and SAMURAI. Messages are encrypted
with the keys in the second column (indexed by the stage) and have the associated data
(AD) in the third column. The labels [A] and [S] indicate asymmetric and symmetric
ratcheting respectively. The security (✓) and insecurity (×) of messages is given, assuming
Alice is compromised at message 2. Italics show that several messages are sent in the
same chain.

2.1.2 Related Work

Ratcheted key-exchange (RKE) was introduced as a unidirectional, single-move primitive
by Bellare et al. [BSJ+17], who used it to define and instantiate ratcheted encryption. This
security model was later extended by work such as [PR18,JS18] to treat double ratchets, but
also more generic RKE. A crucial difference between generic RKE and our work is that we
focus on the full message transmission process, as in the case of [CGCD+17,BBB+19]. The
work in [CDV21] proposes generic constructions for ratcheting algorithms.

The work of Alwen et al. [ACD19] provides a complete security model for protocols
like Signal, which also handles out-of-order messages (called in [ACD19] an immediate
decryption). Alwen et al. view asynchronous messaging protocols as a composition of three
parts: a hash function that generates pseudorandom output (PRF-PRNG), a primitive called
forward-secure AEAD (FS-AEAD) which captures symmetric ratchets, and continuous key-
agreement (CKA) which captures asymmetric ratchets. While this work does capture Signal
and allows for modular security proofs, it is not so well suited to the analysis of our protocol,
for three main reasons. First, MARSHAL (and SAMURAI) do not employ any symmetric
ratcheting; second, we want to capture the properties of the actual message transmission;
third, we do not use AEAD solely, but rather combine it with a public-key authentication
mechanism. This would minimally indicate a need to modify the FS-AEAD primitive. We
therefore prefer a security model that is less modular, but comes closer to the protocol (as
in [BBB+19]). We have adapted one of the properties they consider to our security model,
namely that of message-loss resilience.

The works of [JMM19,DV19] provide efficient instantiations of bidirectional ratcheted
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key-exchange by using relatively inexpensive primitives (unlike previous work such as e.g.,
that of Poettering and Rössler [PR18]). However, these protocols are different and do
not follow the structure of Signal. In addition, features such as out-of-order messages are
not included, and some of these constructions require the parties to receive each message.
Starting from Signal’s structure, we preserve properties such as out-of-order messages, and
have stronger healing by persistent authentication and more frequent asymmetric ratchets.

Our work comes closest to the SAID protocol of Blazy et al. [BBB+19], whose notion
of persistent authentication prevents hijacking attacks. SAID therefore authenticates each
ratchet by using identity keys. As long as the identity keys are safely stored, session-hijacking
cannot happen because the adversary cannot convince Bob he is ratcheting with the correct
person. While we also ensure persistent authentication, our work uses the backbone of
Signal and its security assumptions: public-key cryptography and a semi-trusted middle
server. By contrast, Blazy et al. constructed their protocol in the paradigm of identity-based
cryptography.

An interesting work, but which is orthogonal to ours was presented at CCS ’19 by Chase
et al. [CDGM19]. They focus on the long-term keys of two parties, and present a way of
updating those in case access is lost to a user’s current account. We did not consider updates
to long-term key in this paper; instead we focus on the actual session and message keys.

Outline. We start by describing the Signal protocol in Section 2.2 to better explain our
first variant MARSHAL in Section 2.3. Then we present in Section 2.4, our second variant
SAMURAI, which has the same security as MARSHAL but with better efficiency. Finally, we
propose implementations of those protocols to evaluate their practical costs in Section 2.5
before concluding in Section 2.6.

2.2 Description of Signal

Before completely detailing Signal protocol, we give first a generic description of its core
operating. Indeed, Signal is based on the double ratchet algorithm proposed in [MP16b].
After presenting it, we give the detailed description of Signal.

2.2.1 Double ratchet algorithm

The term ratchet refers to the fact that a given key is derived from a previous one. The
output key is indistinguishable from a random value (as a PRF), and it is hard to inverse the
derivation (i.e., no one can recover the input by knowing only the output). There are two
types of ratcheting, symmetric and asymmetric. In both cases, the keys are chained through
a KDF (see 1.6).

Symmetric ratchet. The keys are chained through a KDF with no additional value added
during the process. We denote the input keys and output keys with the term chain key ck. In
the case of Signal, there is an other output used to encrypt the message, namely the message
key mk.

The symmetric ratchet can be resumed as:
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ck1 ck2 ck3

mk1 mk2

KDF KDF . . .

Notice that once a chain key ckx (for a given 𝑥) is known then all the subsequent keys
ckx′>x and mkx′≥x can be efficiently computed (induced by the definition of KDF). However
the inverse is not true meaning that there is no efficient way of computing ckx−1 from the
knowledge of ckx (which captures the PFS property).

Asymmetric ratchet. To prevent an attacker to recover the full chain when compromising
a chain key, random values are added in each derivation. Now, the output chain key is not
fully determined by its input chain key. The freshness added in each state of the chain is a
Diffie-Hellman value (denoted 𝐷𝐻) ensuring that both partner can derive the keys. We call
the input and output root keys rk to differentiate with the symmetric ratcheting. Note that
there is also an additional output key which is simply a chain key ck.

The asymmetric ratchet is illustrated as follows:

rk1 rk2 rk3

ck1 ck2

KDF KDF

𝐷𝐻1 𝐷𝐻2

. . .

The key schedule of Signal is based on those two algorithms which are composed
together to form the double ratchet algorithm. We now proceed to the detailed description
of this protocol.

2.2.2 The Signal protocol

The Signal protocol can be described in terms of four operations, some only occurring once
per user (like registration), some, once per session (like session setup), and others recurring
at specific intervals. We depict all the steps apart from registration in Figure 2.3, abstracting
the way in which credentials are stored and recovered from the semi-trusted server.

• Registration: Each party P registers by uploading on a semi-trusted server a number
of (public) keys: a long-term key denoted ipkP, a medium-term key prepkP signed
with ikP, and optional ephemeral public keys ephpkP.

• Session Setup: Alice wants to initiate communication with Bob. She retrieves Bob’s
credentials from the server, generates an initial ratchet key-pair (rchk1

A,Rchpk1
A) and an

ephemeral key-pair (EpkA, ekA), and uses the X3DH protocol [MP16a] to generate an
initial shared secret ms (master secret): ms := (prepkB) ikA | | (ipkB)ekA | | (prepkB)ekA | |
(ephpkB)ekA . This value is used in input to a key derivation function (KDF𝑟 ), outputting
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Alice (ikA, ipkB, prepkB, ephpkB) Bob (ikB, ipkA, prekB, ephkB)
Session initialization: initiator Alice, responder Bob.

Generate: ekA, rchk1, $←− Z𝑞,
Compute: EpkA ← 𝑔ekA ; Rchpk1 ← 𝑔rchk1 ;
Compute: 𝑚𝑠← prepkikA

B | |ipkekA
B | |prepkekA

B | |ephpkB
ekA

Initial keys: rk1, ck1,1 ← KDF𝑟
(
prepkrchk1

B | |𝑚𝑠
)

ck2,1,mk1,1 ← HKDF(ck1,1)

First message: stage (1, 1), Alice is the sender, Bob, the receiver.

Set AD1,1← (𝑥 = 1) | |Rchpk1 | |EpkA | |ipkB | |ipkA
𝑐←AEmk1,1 (𝑀1,1 |AD=AD1,1 )
−−−−−−−−−−−−−−−−−−−−−−−→ Compute: 𝑚𝑠← ipkprekB

A | |EpkikB
A | |EpkprekB

A | |EpkephkB
A

Set: ck1,1 ← KDF𝑟 ((Rchpk1)prekB | |𝑚𝑠)
and: ck2,1,mk1,1 ← HKDF(ck1,1)
AE decrypt 𝑐 to 𝑀1,1.

ℓ-th message: stage (ℓ, 1), Alice is the sender, Bob, the receiver.

Stage keys: ckℓ+1,1,mkℓ,1 ← HKDF(ckℓ,1)
Set ADℓ,1← (𝑥 = ℓ) | |Rchpk1 | |ipkB | |ipkA

𝑐←AEmkℓ,1 (𝑀ℓ,1 |AD=ADℓ,1 )
−−−−−−−−−−−−−−−−−−−−−−−→ Set ckℓ+1,1,mkℓ,1 ← HKDF(ckℓ,1)

AE decrypt 𝑐 to 𝑀ℓ,1.

Switching speakers: Bob comes online and begins a new ratcheting chain.

rchk2 $←− Z𝑞
Set 𝑡𝑚𝑝, ck1,2 ← KDF𝑟

(
rk1,Rchpk1rchk2 )

and: ck2,2,mk1,2 ← HKDF(ck1,2)

Bob’s message, stage (1, 2): Bob is the sender, Alice is the receiver.

Set AD1,2← (𝑥 = 2) | |Rchpk2 | |ipkB | |ipkA

Set 𝑡𝑚𝑝, ck1,2 ← KDF𝑟
(
rk1,Rchpk2rchk1 ) 𝑐←AEmk1,2 (𝑀1,2 |AD=AD1,2 )

←−−−−−−−−−−−−−−−−−−−−−−−
and: ck2,2,mk1,2 ← HKDF(ck1,2)
AE decrypt 𝑐 to 𝑀ℓ,1.

Second speaker switch: Alice is back online.

rchk3 $←− Z𝑞
Set rk2, ck1,3 ← KDF𝑟

(
𝑡𝑚𝑝,Rchpk2rchk3 )

and: ck2,3,mk1,3 ← HKDF(ck1,3)

Figure 2.3 A Signal protocol session between initiator Alice and responder Bob.

the root key rk1 and the chain key ck1,1. The latter is used to derive the first message
key mk (1,1) that Alice uses to communicate with Bob. The following associated data
(AD) is appended to that message: the value 1 (for the index 𝑥), Alice’s ephemeral
public key EpkA, the ratchet key Rchpk1, as well as Alice’s and Bob’s identities.

• Symmetric Ratchet: Whenever a sender P chooses a new message to send, the stage
changes from (𝑥, 𝑦) to (𝑥 + 1, 𝑦) and a new symmetric ratchet takes place. At stage
(𝑥, 𝑦), the message key is mk𝑥,𝑦 , derived from a stage secret ck𝑥,𝑦 . In fact, given
ck𝑥,𝑦 , the sender computed (at stage (𝑥−1, 𝑦)) the values ck𝑥+1,𝑦 and mk𝑥,𝑦 . At stage
(𝑥 + 1, 𝑦), the sender inputs ck𝑥+1,𝑦 to the key-derivation function KDF𝑚 and receives
the output ck𝑥+2,𝑦 and mk𝑥+1,𝑦 . The key mk𝑥+1,𝑦 is then used for the authenticated
encryption of the sender’s message at stage (𝑥 + 1, 𝑦). The AD sent at this stage will
be the ratchet key Rchpk𝑦 and the stage index3 𝑥 + 1. The same process takes place

3In the original protocol, the sender also sends the identity public keys of Alice and Bob; since these values
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on the receiving side, in order to authenticate and decrypt messages.

• Asymmetric Ratchet: If the speaker changes (that is, Alice stops sending messages
and Bob starts instead, or vice-versa), the new speaker inserts fresh Diffie-Hellman
elements into the key-derivation. Assume that we are at stage (𝑥, 𝑦) and the speaker
changes (thus yielding stage (1, 𝑦 + 1)). Different computations are made depending
on whether the new speaker is the initiator or the responder.

1. First assume that initiator Alice was the speaker at stages (·, 𝑦); therefore 𝑦 is
even at each stage (·, 𝑦) and the encrypted message included associated data
Rchpk𝑦 . When Bob comes online, he chooses a new ratchet key rchk𝑦+1, and the
public key Rchpk𝑦+1 is then computed. A temporary value 𝑡 and the chain key
ck (1,𝑦+1) are calculated from the root key4 rk𝑦 and the Diffie-Hellman product
(Rchpk𝑦)rchk𝑦+1 via KDF𝑟 . Then, the chain and message keys are computed
as described in the previous item. From that point onward, keys evolve by
symmetric ratcheting until the speaker changes again.

2. Now assume that the responder was the speaker at stages (·, 𝑦); therefore 𝑦
is odd and at each stage (·, 𝑦) the encrypted message includes associated data
Rchpk𝑦 . When Alice comes online, she chooses new ratcheting information
rchk𝑦+1,Rchpk𝑦+1 and computes a new root key rk𝑦+1 and the base chain key
ck (0,𝑦+1) from the value 𝑡 computed at stage (1, 𝑦) (see previous bullet point)
and the Diffie-Hellman product (Rchpk𝑦)rchk𝑦+1 . From here the key derivation
proceeds as described in the bullet point on symmetric ratcheting.

𝐾𝐷𝐹

ms

X3DH

𝐷𝐻 (rchk0,1
A , prepkB) ck1,1 𝐾𝐷𝐹 ck2,1

mk1,1

𝐾𝐷𝐹 ck3,1

mk2,1

. . . chain 𝑦 = 1

𝐾𝐷𝐹𝐷𝐻 (rchk0,1
A ,Rchpk0,2

B )

rk1

ck1,2 𝐾𝐷𝐹 ck2,2

mk1,2

𝐾𝐷𝐹 ck3,2

mk2,2

. . . chain 𝑦 = 2

𝐾𝐷𝐹𝐷𝐻 (rchk0,2
B ,Rchpk0,3

A ) ck1,3

tmp

rk2

𝐾𝐷𝐹 ck2,3

mk1,3

𝐾𝐷𝐹 ck3,3

mk2,3

. . . chain 𝑦 = 3

Figure 2.4 The key schedule of Signal. Each stage (𝑥, 𝑦) has its x-coordinate corresponding
to a message (horizontal moves) inside a chain (vertical moves) for y-coordinate.

are public and constant for all stages, we omit them.
4Root keys are only computed when one reverts back to the initiator, so in our notation, on stages (1, 𝑦) for

even values of 𝑦.
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2.3 MARSHAL

The protocol we propose, Messaging with Asynchronous Ratchets and Signatures for faster
HeALing (MARSHAL), runs –like Signal– in several stages: registration, session setup, and
communication. We describe in Figure 2.5 the session-setup and communication phases of
MARSHAL. As a novelty, MARSHAL requires two types of ratchet keys: same-user ratchet
keys, and cross-user ratchet keys. Same-user ratchet keys are indexed by stage, and generated
whenever a new message is sent: for instance Rchpk2,1 denotes the ratchet public key at
stage (2, 1) (the second message sent in the first message chain). Cross-user ratchet keys are
only generated at the beginning of a chain of messages and indexed only by the 𝑦-component
of the stage (called a chain index). We denote by T

𝑖
the public key generated during the 𝑖-th

message chain and by T0 an initial public key registered by the session’s responder.
While stages are indexed as (𝑥, 𝑦) with 𝑥, 𝑦 ≥ 1, special indexes 𝑥 = 0 and 𝑦 = 0 denote

special ratchet keys used for initialization. The first same-user ratchet key Rchpk0,1 is only
used to compute the master secret of a session. Additionally, a ratchet key T0 is registered
by each user. The initiator of a session uses its correspondent’s initial ratchet key during
the first chain of communication (𝑦 = 1). Note that this method of ratcheting uniquely
associates stages and chain indexes to the party generating them.

2.3.1 Registration

To use MARSHAL, each party P must first register, by generating private keys and uploading
the corresponding public keys to the server: a long-term identity key ikP; a medium-term
prekey prekP, and a signature on that key (generated with the identity key ikP); multiple
ephemeral one-time-use prekeys ephpkP; multiple medium-term stage keys T0. The last of
these keys is a cross-user ratchet key (see above): a novelty with respect to Signal, which
will help Alice asymmetric-ratchet in the first chain of messages, when she has not yet had
a message (and therefore a ratcheting key) from Bob. In addition to these keys users will
also generate and subsequently use a pair of long-term signature keys (𝑠𝑘𝑃, 𝑝𝑘𝑃). These
keys will not be registered on the server, but rather included in the associated data in each
partner’s first respective chain of messages.

2.3.2 Session Setup

Whenever Alice A wants to contact Bob B, she runs a protocol similar to that of Signal
and [MP16a], with some small tweaks.

The master secret. To initiate a session with B, Alice queries the server for Bob’s following
values: the identity key ipkB, a signed prekey prepkB, a one-time prekey ephpkB (if available),
and a medium-term stage key T0

𝐵
, denoted in short T0. Having received those keys, A

generates its own ephemeral key ekA. The master secret𝑚𝑠 is a concatenation of DH values,
as computed in Signal.

First keys. Alice randomly generates a same-user ratchet key-pair (rchk0,1,Rchpk0,1). She
computes a DH of her ratchet key and prepkB, and the result is fed to a key derivation
function along with 𝑚𝑠 to produce a chain key ck1,1.
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Alice (ikA, ipkB, prepkB, ephpkB, T0 ) Bob (ikB, ipkA, prekB, ephkB, T0 )

Session initialization: initiator Alice, responder Bob.

ekA, rchk0,1, t1, rchk1,1 $←− Z𝑞;
T1 = 𝑔𝑡1 ; EpkA = 𝑔ekA ;
Rchpk0,1 = 𝑔rchk0,1 ; Rchpk1,1 = 𝑔rchk1,1

𝑚𝑠 = prepkikA
B | |ipkekA

B | |prepkekA
B | |ephpkB

ekA

ck1,1 = HKDF
(
prepkrchk0,1

B | |𝑚𝑠
)

(ck2,1,mk1,1) = HKDF(ck1,1 , 𝜎1,1 | | (ipkB)rchk1,1 )
First message: stage (1, 1), Alice is the sender, Bob, the receiver.

𝐴𝐷𝑦=1 = EpkA | |ipkA | |ipkB | |prepkB | |
ephpkB | |T0 | |Rchpk0,1 | |T1

𝐴𝐷1,1 = (1, 1) | |Rchpk1,1 | |𝜎1,1 𝑐1,1, SIGN𝑠𝑘𝐴 (𝑐1,1 ) ,

𝑐1,1 = AEAD.Encmk1,1 (𝑀1,1; 𝐴𝐷1 | |𝐴𝐷1,1)
𝑝𝑘𝐴,SIGNikA (𝑝𝑘𝐴)−−−−−−−−−−−−−−−−→ Verify signature on 𝑝𝑘𝐴 and 𝜎1,1

𝑚𝑠 = ipkprekB
A | |EpkikB

A | |EpkprekB
A | |EpkephkB

A
ck1,1 = HKDF((Rchpk0,1)prekB | |𝑚𝑠)
(ck2,1,mk1,1) = HKDF(ck1,1, 𝜎1,1 | | (Rchpk1,1) ikB)
𝑀1,1 = AEAD.Decmk1,1 (𝑐1,1).

ℓ-th message: stage (ℓ, 1), Alice is the sender, Bob, the receiver.

rchkℓ,1
$←− Z𝑞, set Rchpkℓ,1 = 𝑔rchkℓ,1

(ckℓ+1,1,mkℓ,1) = HKDF(ckℓ,1, 𝜎ℓ,1 | |ipkrchkℓ,1
B )

𝐴𝐷ℓ,1 = (ℓ, 1) | |{Rchpk𝑥,1}1≤𝑥≤ℓ | |𝜎ℓ,1 𝑐ℓ,1, SIGN𝑝𝑘𝐴 (𝑐ℓ,1 ) ,

𝑐ℓ,1 = AEAD.Encmkℓ,1 (𝑀ℓ,1; 𝐴𝐷1 | |𝐴𝐷ℓ,1)
𝑝𝑘𝐴,SIGNikA (𝑝𝑘𝐴)−−−−−−−−−−−−−−−−→ Verify leftover signatures

(ckℓ+1,1,mkℓ,1) = HKDF(ckℓ,1, 𝜎ℓ,1 | | (Rchpkℓ,1) ikB)
𝑀ℓ,1 = AEAD.Decmkℓ,1 (𝑐ℓ,1).

Switching speakers: Bob comes online and begins a new ratcheting chain.

t2, rchk1,2 $←− Z𝑞; T2 = 𝑔t2 , Rchpk1,2 = 𝑔rchk1,2

ck1,2 = HKDF( T1
ikB | |ipkA

t2 )

(ck2,2,mk1,2) = HKDF(ck1,2, 𝜎1,2 | | (ipkA)rchk1,2 )
Bob’s message, stage (1, 2): Bob is the sender, Alice is the receiver.

𝐴𝐷𝑦=2 = T2
𝑐1,2, SIGN𝑝𝑘𝐵 (𝑐1,2 ) , 𝐴𝐷1,2 = (1, 2) | |Rchpk1,2 | |𝜎1,2

Verify signature on 𝑝𝑘𝐵 and 𝜎1,2
𝑝𝑘𝐵 ,SIGNikB (𝑝𝑘𝐵 )←−−−−−−−−−−−−−−−− 𝑐1,2 = AEAD.Encmk1,2 (𝑀1,2; 𝐴𝐷2 | |𝐴𝐷1,2)

ck1,2 = HKDF((ipkB)t1 | | (T2)
ikA)

(ck2,2,mk1,2) = HKDF(ck1,2, 𝜎1,2 | | (Rchpk1,2) ikA)
𝑀1,2 = AEAD.Decmk1,2 (𝑐1,2)

Figure 2.5 MARSHAL protocol execution between Alice and Bob for the first few stages.
The grey boxes indicate modifications with respect to Signal protocol [CGCD+17]. The
transmitted data is also different but not in grey for more clarity.

Signature keys. A also needs a signature key (Section 2.3.1). We choose to use a second
pair of signature keys, (𝑠𝑘𝑃, 𝑝𝑘𝑃). If desired, these keys could coincide with (ikP, ipkP)–
however, this is not compulsory. By differentiating those two pairs of keys, we allow future
implementations to be somewhat agnostic of the underlying mathematical structure of the
signature keys (whereas this is impossible for identity-keys, whose structure must support,
e.g., group exponentiations/scalar multiplications). Moreover, we limit the load on the
centralized PKI server by not including the signature keys amongst the credentials stored for
each party; instead users can authenticate those keys at session initialisation.

30



Improving the Post-Compromise Security of Signal 2.3. MARSHAL

2.3.3 Communication phase

MARSHAL ratcheting. Our protocol heals faster than Signal because both parties ratchet
asymmetrically at every stage. Thus, even at stage (1, 1), Alice needs ratcheting randomness
from Bob, which in MARSHAL comes in the form of the registered public key T0 (see
Section 2.3.1). For stages (1, 𝑚) with integer 𝑚 ≥ 1, the party whose turn it is to speak will
generate a cross-user ratcheting value t𝑚 and compute the corresponding public value T𝑚.
The T𝑚 value is sent as part of the metadata of all messages with chain index 𝑚, and will be
used for the ratchet at stage (1, 𝑚 + 1).

Moreover at each stage (ℓ, 𝑚) for ℓ, 𝑚 ≥ 1, the current speaker also generates a same-
user key-pair (rchkℓ,𝑚,Rchpkℓ,𝑚) which will be used to generate chain and message keys
for stage mkℓ+1,𝑚. To account for out-of-order messages the concatenation of all the public
ratchet keys is included as metadata to each stage message.

MARSHAL auxiliary data. Each message is sent end-to-end encrypted, together with some
additional metadata, which is meant to tell Bob how to run the key-schedule. At each stage
(ℓ, 𝑚) with ℓ, 𝑚 ≥ 1, the auxiliary value consists of two elements: AD𝑦=𝑚 and ADℓ,𝑚. The
former includes elements of the metadata that are universal across the chain (i.e.,all stages
(·, 𝑚)), whereas the second includes metadata that is stage-specific.

We detail each of the classes of stages (cf. Figure 2.5 and 2.6).

X3DH

ms

𝐷𝐻 (rchk0,1, prepkB)

𝐻𝐾𝐷𝐹 ck1,1 𝐻𝐾𝐷𝐹 ck2,1

mk1,1

𝜎1,1 | |
𝐷𝐻 (ipkB, rchk1,1)

𝐻𝐾𝐷𝐹 ck3,1

mk2,1

𝜎2,1 | |
𝐷𝐻 (ipkB, rchk2,1)

. . . chain 𝑦 = 1

𝐷𝐻 (T1, ikA) | |
𝐷𝐻 (T2, ikB) 𝐻𝐾𝐷𝐹 ck1,2 𝐻𝐾𝐷𝐹 ck2,2

mk1,2

𝜎1,2 | |
𝐷𝐻 (ipkA, rchk1,2)

𝐻𝐾𝐷𝐹 ck3,2

mk2,2

𝜎2,2 | |
𝐷𝐻 (ipkA, rchk2,2)

. . . chain 𝑦 = 2

𝐷𝐻 (T2, ikB) | |
𝐷𝐻 (T3, ikA) 𝐻𝐾𝐷𝐹 ck1,3 𝐻𝐾𝐷𝐹 ck2,3

mk1,3

𝜎1,3 | |
𝐷𝐻 (ipkB, rchk1,3)

𝐻𝐾𝐷𝐹 ck3,3

mk2,3

𝜎2,3 | |
𝐷𝐻 (ipkB, rchk2,3)

. . . chain 𝑦 = 3

Figure 2.6 MARSHAL key schedule diagram, where 𝜎𝑥,𝑦 = SIGN𝑠𝑘𝐴

(
T
𝑦−1 | |Rchpk𝑥,𝑦

)
for 𝑦 odd and 𝜎𝑥,𝑦 = SIGN𝑠𝑘𝐵

(
T
𝑦−1 | |Rchpk𝑥,𝑦

)
for 𝑦 even. The grey boxes indicate

modifications with respect to Signal protocol [CGCD+17].

Alice’s first message. At session setup, Alice has generated its cross-user ratchet keys
(t1, T1), and computed the chain key ck1,1. Now she generates the same-user ratchet key
rchk1,1 and computes Rchpk1,1 = 𝑔rchk1,1 . The message and chain-keys are computed as fol-
lows (ck2,1,mk1,1) ← HKDF(ck1,1, 𝜎1,1 | | (ipkB)rchk1,1)where𝜎1,1 := SIGN𝑠𝑘𝐴

(
𝑇0 | |Rchpk1,1) .

In the following, we will denote:
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𝜎𝑥,𝑦 :=


SIGN𝑠𝑘𝐴

(
T
𝑦−1 | |Rchpk𝑥,𝑦

)
, for 𝑦 odd

SIGN𝑠𝑘𝐵

(
T
𝑦−1 | |Rchpk𝑥,𝑦

)
, for 𝑦 even

At chains 𝑦 = 1 and 𝑦 = 2, apart from cross-user ratchet keys, each user will need
to include metadata that is universal for the session, and which helps at session setup.
The metadata for AD𝑦=1 includes public identity keys of Alice and Bob, medium-term
and ephemeral keys of Bob as recovered by Alice from server, T0 from the server, Alice’s
ephemeral public key used in the computation of the master secret, and two of Alice’s ratchet
public keys: its first same-user ratchet key Rchpk0,1, and its first cross-user ratchet key t1.
Finally, the stage-specific data contains: stage index (1, 1) and same-user ratcheting public
key Rchpk1,1. Alice computes 𝑐1,1 = AEAD.Encmk1,1 (𝑀1,1; AD𝑦=1 | |AD1,1) and sends 𝑐1,1, a
signature on it, Alice’s public signature key 𝑝𝑘𝐴, and a signature on it.

Alice’s (ℓ, 1) message, ℓ > 1. Having already computed t1, T1, AD𝑦=1, ratcheting mate-
rial Rchpk1,1,Rchpk2,1, . . . ,Rchpkℓ−1,1, and the key ck𝑙,1, Alice generates new same-user
ratcheting key rchkℓ,1 and computes Rchpkℓ,1 = 𝑔rchkℓ,1 . The key update relies on both
long-term keys, for persistent authentication, and this same-user ratcheting key, for healing:

(ckℓ+1,1,mkℓ,1) ← HKDF(ckℓ,1, 𝜎ℓ,1 | |ipkrchkℓ,1
B )

The stage-specific metadata consists of the stage (ℓ, 1) and all the ratcheting keys
{Rchpk𝑥,1}1≥𝑥≥ℓ . Then Alice computes 𝑐ℓ,1 and sends: the ciphertext, a signature on it, its
signature public key, and a signature on that.

Note that this procedure applies to all messages (ℓ, 𝑚) for ℓ > 1 and 𝑚 ≥ 1, in replacing
the 𝑦 stage-index above, from 1 to 𝑚.

Decryption (Bob side). When B comes online, he first needs to compute the same session-
setup values as Alice, including the master secret 𝑚𝑠 and the first chain key ck1,1. To do so,
B queries the server for A’s registered identity key and verifies that it is identical to the one
included in AD𝑦=1. Then, B verifies the signature on 𝑝𝑘𝐴, and, if the verification returns 1, it
stores that key as A’s signature key. From now on, B will use that key to verify A’s signatures.
In particular, the verification of 𝑝𝑘𝐴 is only done for the first message that Bob actually
checks in the 𝑦 = 1 chain. Once 𝑝𝑘𝐴 is validated, B retraces Alice’s steps to compute 𝑚𝑠,
the chain keys, and eventually, the first message key. Then he uses authenticated decryption
to decrypt the first message.

Bob’s first message. B generates a new cross-user ratcheting value t2 with corresponding
public value T2 and a same-user ratcheting key rchk1,2 and computes Rchpk1,2 := 𝑔rchk1,2 .

Bob computes:
ck1,2 ← HKDF

(
(𝑇1) ikB | |ipk𝑡0A

)
then its first sending keys:

(ck2,2,mk1,2) ← HKDF(ck1,2, 𝜎1,2 | | (ipkA)rchk1,2)
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Then analogously to Alice’s first message, Bob splits the metadata into the two auxiliary
values AD𝑦=2 and AD1,2. The signed public key 𝑝𝑘𝐵 is also appended to each of the messages
in stages with chain-index 𝑦 = 2, cf. Figure 2.5.

Switching speakers. Similar computations will take place: generating cross-chain ratch-
eting public keys and new same-user ratcheting keys at every new message. The only
differences with respect to stages (1, 1) and (1, 2) respectively will be that now the parties
will no longer need to compute long-term keys or the master secret. In addition, starting
from chain-index 𝑦 ≥ 3, the public key for signatures is no longer included in the message
transmission.

Out-of-order messages/multiple messages. MARSHAL handles both out-of-order and lost
messages to the same extent as Signal. Indeed, at each stage, the receiving party gets a list
of ratcheting elements used along that chain, which will allow it to update correctly, even
if some messages were lost in between. The parties will update their state in the order they
receive the messages. In other words, say that Bob receives a message from Alice at stage
(1, 1), but then the next received message comes at stage (4, 1) (thus, Bob is missing (2, 1)
and (3, 1)). Nevertheless, Bob will use the metadata at stage (4, 1) to ratchet, thus computing
the keys for stages (2, 1) and (3, 1) as well. If subsequently Bob receives message (2, 1)
with conflicting metadata, Bob disregards that.

In the same way, if multiple messages are received for some stage, the receiver will rely
on the metadata (and message) received first, chronologically speaking. We give further
details in 2.3.4.6.

2.3.4 Security Analysis

Our security models adapt and extends that of Blazy et al. [BBB+19]. We provide the general
intuition for our framework and security games below, and then provide full proof.

The guarantees we want to prove for MARSHAL are AKE security (including authenti-
cation), post-compromise security, and out-of-order resilience within a fully adversarially
controlled network. The first two properties make up a single security definition, written
as a game between the adversary and the challenger. The adversary can register malicious
users, corrupt users to obtain long-term secrets, reveal stage- and session-specific ephemeral
values, access (a function of) the party’s secret key as a black box, prompt new instances
of existing parties, and send/receive messages. The adversary ultimately has to distinguish
from random a real message key generated by an honest instance speaking with another
honest instance.

The following theorem describes the security of MARSHAL in terms of PCS-AKE
security and MLR-security. This security holds in the random oracle model (KDF are
replaced by random oracles).

Theorem 1 If the GDH [OP01] assumption holds, if the signature scheme employed is
EUF-CMA-secure, then the MARSHAL protocol is PCS-AKE secure in the random oracle
model (we model the two KDFs as RO1,RO2). In addition, MARSHAL is MLR-secure.

We prove the security of our protocol with respect to a security model which is derived
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from the identity-based setup of [BBB+19], rather than the one used by Cohn-Gordon et al.
for their original analysis of Signal. This is chiefly because in [CGCD+17], Cohn-Gordon
et al. bypass a feature of the protocol which we consider essential: sending metadata as AD
attached to AEAD. Instead [CGCD+17] assumes that the metadata is sent unauthenticated.
We prefer not to modify the protocol, and use the less composable security notion proposed
(for the same reasons as we described here) by Blazy et al.. The proof of this theorem is not
technically complex, but includes a lot of special cases (as in [CGCD+17]). This is a direct
consequence of having excluded only trivial attacks from the winning conditions (given
further). However, this was done in order to provide a more direct and honest comparison
to the Signal protocol; indeed, with our winning conditions, Signal fails to attain security,
whereas MARSHAL can be proved secure.

2.3.4.1 Syntax

We work in an environment with parties P ∈ P, which have long-term key pairs (sk, pk),
indexed by type. For instance in MARSHAL users have both identity and signature keys.
Protocol sessions take part between two party instances. The 𝑖-th instance of P is denoted
𝜋i

P. Beside long-term credentials, party instances also store:
pid: identifier of the instance’s purported partner, denoted 𝜋i

P.pid.
sid: the session identifier 𝜋i

P.sid: an evolving set of instance-specific values5.
sidsk: instance-specific private keys (like ephemeral session keys), denoted sidsk𝑖P.
sidpk: the public keys sidpk𝑖P corresponding to sidsk𝑖P.
stages: a list with elements (𝑠, ·), associating stages 𝑠 = (𝑥, 𝑦) to values 𝑣 ∈ {0, 1} depend-

ing on whether a message was received (1) or not (0). We write 𝑠 ∈ 𝜋i
P if, and only if,

(𝑠, 𝑣) ∈ 𝜋i
P.stages.

𝑇𝑟: the instance’s transcript 𝜋i
P.𝑇 , associating to each stage 𝑠 all data sent or received at that

stage (in plaintext) – denoted 𝜋i
P.𝑇 [𝑠].

rec: a list of subsets 𝜋i
P.rec, indexed by stage 𝑠 and indicating messages and metadata

received, in order. A special symbol ⊥ is used for sending stages.6. By default, each
element of the list is set to the special value ⊥. If the stage 𝑦 is a sending stage for the
party P, then this value remains ⊥. We note this attribute as 𝜋i

P.rec.
var: a set 𝜋i

P.var of ephemeral values used to compute stage keys, indexed by stage. For
MARSHAL this includes rchk𝑠P, mk𝑠 and ckx−1,y.

While Signal only allows one conversation per pair of parties, MARSHAL permits multiple
conversations between the same two peers. Compared to Blazy et al. [BBB+19], we add the
private/public key-pair (sidsk, sidpk), which allows us to separate one-time session-specific
randomness required for the master secret from stage-specific, recurring randomness. In
addition, the same-user ratcheting at every stage compels us to extend 𝜋.rec to include all
the messages and metadata received, not just the first one.

5In the case of our protocol, sid will be instantiated as a concatenation of all the auxiliary information sent
throughout the protocol, ordered by stage.

6We adopt the corresponding notion from [BBB+19], in order to handle out-of-order messages. We note
that in [BBB+19] this index is just a single value denoting the first received message. In our case, we need to
extend this notion, since asymmetric ratcheting is done at every step.
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As in Cohn-Gordon et al. [CGCD+17], we abstract the semi-trusted server from the setup,
assuming it behaves honestly. It implies an authentication of each user upon registration. We
define asynchronous messaging protocols AsynchM to be tuples of five algorithms (aKeyGen,
aStart, aRGen, aSend, aReceive), such that:
aKeyGen(1𝜆) → (sk, pk) : outputs long-term credentials.
aStart(P, role, pid) → 𝜋i

P : creates a new instance of (existing) party P with partner
pid, such that P has a role role ∈ {𝐼, 𝑅} (initiator/responder). The new instance is
instantiated with that party’s long-term keys.

aRGen(1𝜆) → (rchk,Rchpk) : outputs a public/private ratcheting key-pair.
aSend(𝜋i

P, 𝑠, 𝑀, 𝐴𝐷, 𝑎𝑢𝑥) → (𝜋
i
P, 𝐶, 𝐴𝐷

∗, 𝑎𝑢𝑥∗) ∪ ⊥ : runs the sending part of the pro-
tocol for 𝜋i

P on stage 𝑠, message 𝑀 associated data 𝐴𝐷, and auxiliary data 𝑎𝑢𝑥; it
outputs a ciphertext 𝐶 with new associated and auxiliary data.

aReceive(𝜋i
P, 𝑠, 𝐶, 𝐴𝐷

∗, 𝑎𝑢𝑥∗) → (𝜋i
P, 𝑀, 𝐴𝐷, 𝑎𝑢𝑥) ∪ ⊥ : runs the receiving part of the

protocol for instance 𝜋i
P on stage 𝑠, ciphertext 𝐶, associated data 𝐴𝐷∗, and auxiliary

data 𝑎𝑢𝑥∗; it outputs a message 𝑀 and some (possibly transformed) associated and
auxiliary data.

Definition 14 (Matching conversation) Two instances 𝜋i
A and 𝜋

j
B of an asynchronous-

messaging protocol have matching conversation if and only if 𝜋i
A.sid = 𝜋

j
B.sid and 𝜋i

A.pid = B
and 𝜋j

B.pid = A.

Correctness. Assume 𝜋i
A and 𝜋

j
B have matching conversation (A is the initiator). The

protocol guarantees correctness if, in the absence of an adversary, for every stage 𝑠 = (𝑥, 𝑦)
with 𝑠 ∈ 𝜋i

A and 𝑠 ∈ 𝜋j
B it holds simultaneously:

• Both instances have identical keys mk𝑥,𝑦 and ck𝑥−1,𝑦 at stage 𝑠.
• Assuming (𝜋u

P, 𝑠, 𝐶, 𝐴𝐷
∗, 𝑎𝑢𝑥∗) was output by aSend on input (𝜋i

P, 𝑠, 𝑀, 𝐴𝐷, 𝑎𝑢𝑥)
for (P, 𝑢) ∈ {(𝐴, 𝑖), (𝐵, 𝑗)} if (𝜋v

Q, 𝑠, 𝐶, 𝐴𝐷
∗, 𝑎𝑢𝑥∗) is input to aReceive, then 𝑀 is

the message output by 𝜋v
Q for (Q, 𝑣) = {(𝐴, 𝑖), (𝐵, 𝑗)} \ (P, 𝑢).

2.3.4.2 Threat Model

We analyze MARSHAL with a fully adversarially-controlled network. The security properties
we want to prove are confidentiality (in AKE model), authenticity (in AEAD model) and
post-compromise (healing of the protocol). We capture these properties in a single security
definition, by considering an attacker that can register malicious users, corrupt users to
obtain their long-term secret key, reveal stage- and session-specific ephemeral values, access
(a function of) the party’s secret key as a black box, and manage communication by prompting
parties to instantiate on new sessions, and by sending and receiving messages. We first give
our unified security definition, then explain intuitively how it covers the properties mentioned
above.

The adversary plays the security game against a challenger, which simulates all the
honest parties. The attacker’s goal is to distinguish from random a message key generated
by an instance of an honest party, speaking to an instance of another honest party, for some
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given stage. In order to formalize this game, instances will also need to keep track of the
following attribute:
𝜋

Q
P .b[𝑠]: the challenge bit takes a binary value chosen identically and independently at

random at every new stage 𝑠 ∈ 𝜋Q
P of an instance. The value of 𝜋Q

P .b[𝑠] for every
stage 𝑠 does not change, and is used by the test algorithm in our security game.

2.3.4.3 Oracles

Our security game will begin in the presence of an honest set of parties P of cardinality
nP , which are assumed to have long-term credentials (sk, pk) output by the key-generation
algorithm aKeyGen. A set P∗ is initialized to ∅ and will store maliciously-generated parties.
We assume that each party P ∈ P has a unique identifier.

The adversary is given all the public keys, and will have access to the following oracles:
oUReg(P, pk) → ⊥ ∪ OK: the user-registration oracle allows the adversary to register

malicious parties. This oracles first checks that P ∉ P – if the contrary is true, than
the oracle returns a special symbol ⊥. Else, the party P is added to P∗ and the
challenger stores its public key pk. The adversary receives a message OK.

oReveal.XSid(P, ktype) → sk ∪ ⊥: if P ∈ P, then the corruption oracle reveals the long-
term keys sk of the specified type ktype7 of user P. Else the oracle returns a special
symbol ⊥.

oStart(P, role, pid) → 𝜋i
P ∪ ⊥: on input a user identifier P ∈ P, a role ∈ {𝐼, 𝑅}, and a

partner identifier pid (indicating a user Q), this initialization oracle checks if P and pid
are registered and if P ∈ P, and if not, it returns ⊥. For existing users, with P ∈ P it
runs aStart(P, role, pid) and returns the handle 𝜋i

P to the adversary.
oReveal(𝜋i

P, ktypes, 𝑠) → key.set ∪ ⊥: on input a session identifier 𝜋i
P, a list of non-

longterm key types8 included in a set ktypes, and a stage 𝑠 = (𝑥, 𝑦), this revelation
oracle first checks that P ∈ P. If that is not the case, the oracle outputs ⊥. Else, for
each of the key types in var, the challenger first verifies that a value is stored for that
key and stage9. If that is not so, the oracle outputs ⊥ for the value of that key; else, it
outputs the contents of that value.

oAccessSK(P, fct, q.input) → ⊥∪q.rsp: on input a party P, some function fct, and a query
q.input the black-box access oracle to (one of) the party’s secret key(s)10 first checks
if P ∈ P (else, the oracle outputs ⊥). If so, the oracle runs the function fct on sk and
the additional input q.input and outputs q.rsp.

oTest𝑏 (𝜋i
P, 𝑠) → ⊥∪ 𝐾: on input a party instance 𝜋i

P and a stage 𝑠, this oracle checks if at
least one of the following conditions is true:

• P ∈ P; or

7In our protocol, for instance, users have two long-term keys, a public DH value and a signature key.
8Such key types could include ratcheting keys, chain keys, message keys, or any kind of session-specific or

stage-specific key type.
9Note that we have two types of session-specific values stored for each instance: stage-specific values are

stored by the attribute var, while session-specific ephemeral values are stored in sidsk𝑖P.
10In our protocol each party will have two keys, one for signing and another long-term DH value. In our use

of this oracle the function description fct will specify the function to compute (written as a text), and amongst
the input to the query q.input we will actually have, as text, the name of the key that we require – either the
signature, or the DH key.
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• 𝜋i
P does not exist; or

• 𝑠 ∉ 𝜋i
P; or

• within the attribute var, the key mk𝑠 = ⊥; or
• this oracle has already been called before, for either (𝜋i

P, 𝑠) or (𝜋j
Q, 𝑠) such that

𝜋
j
Q and 𝜋i

P have matching conversation;
If at least one condition is true, then the oracle returns ⊥. Otherwise, the oracle sets
𝑏 := 𝜋i

P.b[𝑠]. If 𝑏 = 1, then the oracle retrieves the value mk𝑠 from var and sets
𝐾 := mk𝑠. If 𝑏 = 0, 𝐾 is set to a random value from the key space.

oSend𝑏 (𝜋i
P, 𝑠, 𝐴𝐷) → ⊥ ∪ 𝐴𝐷

∗: Like in [BBB+19], this oracle works in two modes:
honest and adversary-driven, and its role is to prompt the given instance to send a
message. If the input 𝐴𝐷 is set to ⊥, then the oracle 𝜋i

P will update honestly, whereas
if 𝐴𝐷 ≠ ⊥, the oracle uses the information given by the adversary to update. More
formally, the sending oracle first verifies that all the following conditions hold:

• P ∈ P;
• 𝜋i

P exists;
• P is the sender at stage 𝑠; i.e., the 𝑦-component of 𝑠 is odd if P was instantiated

as an initiator for 𝜋i
P, and 𝑦 is even if P is the receiver in this session;

• 𝑠 ∉ 𝜋i
P;

• 𝜋i
P can actually update to stage 𝑠 = (𝑥, 𝑦); that is, there exists a stage 𝑠′ ∈ 𝜋i

P
such that 𝑠 ∈ next(𝑠′, sender);

If any of these conditions do not hold, the sending oracle returns ⊥. Else, the oracle
first checks if 𝐴𝐷 = ⊥. If so, the oracle uses the honest ratchet-key generation
algorithm to generate fresh ratcheting material, then calls the sending algorithm for
the correct stage keys and a special message ⊥. Finally in this case, we set a value
SHU(𝜋i

P, 𝑠) := 1, which indicates that this message was sent by an honest user. If,
on the other hand, 𝐴𝐷 ≠ ⊥, the adversary interprets 𝐴𝐷 as a concatenation of 𝑀∗,
sidsk∗, and var. It then simulates the sending algorithm by using values from the
given data and generating random ones if some values are missing (as relevant for
that stage11), and SHU(𝜋i

P, 𝑠) is set to 0. Finally, in both cases, we output a possibly
modified associated data value 𝐴𝐷∗ output by the sending algorithm.

oReceive(𝜋i
P, 𝑠, 𝐴𝐷) → ⊥: once more this oracle works in two modes: honest and

adversary-driven, and its goal is to allow the adversary to simulate what happens
when a party instance receives a message. The oracle verifies that all the following
conditions hold:

• P ∈ P;
• 𝜋i

P exists;
• P is the receiver at stage 𝑠;
• there exists 𝑠′ ∈ 𝜋i

P such that 𝑠 ∈ next(𝑠′, receiver);
If any of these conditions are untrue, then the oracle returns ⊥. Then, the receiving
algorithm is run on the input given to the oracle (including an empty ciphertext ⊥ and
the associated data value 𝐴𝐷). If there exists an instance 𝜋j

Q such that Q ∈ P, and 𝜋i
P

11For instance, in our protocol, some values stored in sidsk are only used for certain stages (notably the first
stage (1,1)). If the stage input to the oracle differs from that stage, then the values in sidsk∗ are ignored.
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and 𝜋j
Q have matching conversation, then if SHU(𝜋j

Q, 𝑠) = 1 and 𝐶, 𝐴𝐷 were output
by the oSend oracle for 𝜋j

Q at stage 𝑠, then we set RHU(𝜋i
P, 𝑠) := 1 (the message was

honestly received at stage 𝑠). Else, we set RHU(𝜋i
P, 𝑠) := 0.

Like in Blazy et al. [BBB+19], A is not given the true ciphertext, which can help A to
distinguish the message keys. However,A can use oSend and its own, chosen input private
keys to force parties to ratchet. ThenA receives 𝐴𝐷, a signature on 𝐴𝐷 (in 𝑎𝑢𝑥), and other
elements like 𝑠𝑘P and a signature on it.

2.3.4.4 Post-compromise security game

Our PCS AKE game is parametrized by the security parameter 𝜆 and a number nP of
honest parties. The challenger starts by generating the nP honest parties and long-term
secrets, giving the public keys and all system parameters to A. The adversary can access
all the oracles except oTest. At each new stage of each honest-party instance, the challenger
generates a fresh test bit 𝜋i

P.b[𝑠
★] for that instance and stage.

At some point,A outputs a party instance 𝜋★P and a stage 𝑠★. The challenger runs oTest
on these inputs, outputting the returned key 𝐾 (either the real message key of stage 𝑠★or a
randomly-chosen key from the same key-space, depending on 𝜋i

P.b[𝑠
★]. Finally, A outputs

a bit 𝑑, which is the adversary’s guess for 𝑏★. We say A wins the experiment if 𝑑 = 𝑏★ and
if the adversary has played the game such that the active danger event Act.Dan(sid,mkx★,y★)
as defined at below is not triggered. If the adversary terminates without outputting 𝑑, the
challenger picks 𝑑 uniformly at random, treating it as A’s final output.

Definition 15 (PCS-AKE security) Let Π be an asynchronous messaging protocol. Π

is said to be PCS-AKE secure if for any polynomial time adversary A, the adversary’s
advantage is negligibly close to 0 as a function of the security parameter. We define:

AdvPCS−AKE
Π (A) :=

���P[A wins ExpPCS-AKE
Π (𝜆,A)] − 1

2

���
where ExpPCS-AKE

Π
(𝜆,A) is defined in 2.7.

Trivial attacks. We retroactively restrictA’s otherwise full control of the oracles to rule out
attacks that trivially break security. For instance, the oTest oracle is queried on a malicious
party, it will win right away, since the protocol is designed to let both endpoints compute
message keys. In general, such restrictions to the adversary indicate potential weaknesses in
the protocol (which the adversary exploits): the more restrictions, the weaker the protocol’s
security.

In Signal querying oReveal for the chain and ratchet keys used at stage 𝑠 = (𝑥, 𝑦) allows
A to know: all chain and message keys for stages (𝑥∗, 𝑦) with 𝑥∗ ≥ 𝑥; and all chain and
message keys at stages (𝑥∗, 𝑦 + 1) with 𝑥 ≥ 1. Moreover, A can hijack the conversation,
using oReceive to learn future keys. These attacks are weaknesses specific to Signal, but
they do not translate to MARSHAL. In fact, MARSHAL provides strictly stronger security
than Signal.

As an example, consider the Signal protocol. Consider an adversary which casts a Reveal
query for a party instance 𝜋i

P at some stage 𝑠 = (𝑥, 𝑦) for which P is the sender. The attacker
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ExpPCS-AKE
Π

(𝜆,A)

(P = {P1, · · ·PnP }) ← C(𝜆, nP)
(sk𝑖 , pk𝑖) ← CaKeyGen(1

𝜆 ) ∀𝑖 ∈ {1, · · · , nP}
P∗ ← ∅

OPCS ←
{

oUReg(·, ·), oReveal.XSid(·, ·), oStart(·, ·, ·), oReveal(·, ·, ·), oSend(·, ·, ·, ·),
oReceive(·, ·, ·, ·), oAccessSK(·, ·, ·),RO1(·),RO2(·)

}
;

(𝜋★P , 𝑠
★) ← AOPCS (1𝜆)

𝐾 ← oTest𝑏★ (𝜋★P , 𝑠
★)

𝑑 ← AOPCS (𝜆, nP , 𝐾)

A wins iff. 𝑑 = 𝑏★ and ¬Act.Dan(𝜋★P .sid, 𝜋★P .mks∗)

Figure 2.7 Description of the PCS AKE game, denoted ExpPCS-AKE
Π

(𝜆,A) between adver-
sary A and challenger C. The game is parametrized by the security parameter 𝜆 and the
number of honest parties nP . The set of accessible oracles by A is denoted O.

thus learns the chain key ck𝑥,𝑦 and the current private ratchet key rchk𝑥,𝑦 . Due to the fact
that in Signal, parties ratchet symmetrically along a single ratchet chain (while 𝑦 remains
constant), A is able to compute all chain and message keys for stages 𝑠∗ = (𝑥∗, 𝑦∗) such
that 𝑦∗ = 𝑦 and 𝑥∗ ≥ 𝑥. In addition, the adversary can use its knowledge of rchk𝑥,𝑦 to also
compute chain and message keys at stages 𝑠∗ = (𝑥∗, 𝑦∗) such that 𝑥 ≥ 1 and 𝑦∗ = 𝑦 + 1.
Finally, the adversary can also use its knowledge of these message keys in order to choose
its own ratcheting material on chain 𝑦∗ = 𝑦 + 2 and successfully hijack the conversation.
From this point, all future stages will be compromised. In the security analysis of Signal,
security can only be proved if each of these attack avenues is closed to the adversary, i.e.,
defined as a trivial attack. The adversary will, for instance, not be allowed to query oTest on
a stage (𝑥∗, 𝑦∗) if it has queried oReveal for the chain key ck𝑥,𝑦 such that 𝑦∗ = 𝑦 and 𝑥∗ ≥ 𝑥,
or if it has queried oReveal for the ratchet private key at stage (𝑥, 𝑦) such that 𝑦∗ = 𝑦 + 1.
However, as opposed to the case in the paragraph above, which applied by construction to
all messaging protocols, the three attacks in the present paragraph are weaknesses of the
Signal protocol only.

2.3.4.5 Winning conditions

Recall that the adversary’s goal is to guess the test bit correctly for the stage and instance
queried to oTest. However, we need to rule out trivial attacks, which we present as predicates
(conjunctions and disjunctions of Boolean events). Each Boolean event is called a danger to
a specific value, and we divide these into passive (compromising a party’s state, but without
hijacking) and active (A will also attempt hijacking) attacks.

Say A has queried oTest for instance 𝜋i
A of initiator Alice, and stage 𝑠∗ = (𝑥∗, 𝑦∗) (the

winning conditions are mirrored for Bob). Assume 𝜋i
A has session identifier sid, and let 𝜋j

B
be an honest instance with which 𝜋i

A has matching conversation (party B is the partner of
𝜋i

A).
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Before giving the formal definition of our danger predicates, we illustrate in Figure 2.8
to Figure 2.14 the pictographic view of those danger to ease their understanding.

Danger(ms)

Danger(sid, ephpkekA
B )∧Danger(sid, prepkekA

B )∧Danger(sid, ipkekA
B )∧Danger(prepkikA

B ) Danger(rev_ms)
( )

∨

oReveal(𝜋j
B, ephkB, (0, 0))

∨oReveal(𝜋i
A, ekA, (0, 0))

oReveal(𝜋j
B, prekB, (0, 0))

∨oReveal(𝜋i
A, ekA, (0, 0))

oReveal.XSid(B, ik)
∨oReveal(𝜋i

A, ekA, (0, 0))
∨oAccessSK(B,EpkikB

A , (ik,EpkA))

oReveal.XSid(A, ik)
∨oReveal(𝜋j

B, prekB, (0, 0))
∨oAccessSK(A, prepkikA

B , (prepkB, ik))

oReveal(𝜋i
A,ms, (0, 0))

∨oReveal(𝜋j
B,ms, (0, 0))

Figure 2.8 Conditions for A to learn ms.

Danger(ck1,1)

Danger(rev_ck1,1)Danger(ms)∧

)
∨Danger((prepkB)rchk0,1)

(
oReveal(𝜋i

A, ck1,1, (1, 1))
∨oReveal(𝜋j

B, ck1,1, (1, 1))
oReveal(𝜋j

B, prekB, (0, 0))
∨oReveal(𝜋i

A, rchk0,1, (0, 0))

Figure 2.9 Conditions for A to learn ck1,1.

( Danger(ck1,y)

Danger((Ty−1)
ikB)∧Danger((ipkA)

ty−2) Danger(rev_ck1,y)
)
∨

oReveal.XSid(B, ik)
∨oReveal(𝜋i

A, T1, (1, 𝑦))
∨oAccessSK(B, (T

𝑦−1)
ikB , (ik, T

𝑦−1))

oReveal.XSid(A, ik)
∨oReveal(𝜋j

B, T𝑦−2, (1, 𝑦))
∨oAccessSK(A, (T

𝑦−2)
ikA , (ik, T

𝑦−2))

oReveal(𝜋i
A, ck1,𝑦)

∨oReveal(𝜋j
B, ck1,𝑦)

Figure 2.10 Conditions for A to learn ck1,𝑦 .

Danger(ckx,y)

Danger(ckx−1,y)∧Danger((Rchpkx−1,y) ikB)
( )

∨ Danger(rev_ckx,y)

oReveal.XSid(B, ik)
∨oReveal(𝜋i

A, rchk𝑥−1,𝑦 , (𝑥 − 1, 𝑦))
∨oAccessSK(B, (Rchpk𝑥−1,𝑦) ikB

, (ik,Rchpk𝑥−1,𝑦))

oReveal(𝜋i
A, ck𝑥,𝑦 , (𝑥, 𝑦))

∨oReveal(𝜋j
B, ck𝑥,𝑦 , (𝑥, 𝑦))

Figure 2.11 Conditions for A to learn ck𝑥,𝑦 where 𝑦 is odd (i.e., Alice’s chain).

Danger(ckx,y)

Danger(ckx−1,y)Danger((Rchpkx−1,y) ikA) ∧

( )
∨ Danger(rev_ckx,y)

oReveal.XSid(A, ik)
∨oReveal(𝜋i

A, rchk𝑥−1,𝑦 , (𝑥 − 1, 𝑦))
∨oAccessSK(A, (Rchpk𝑥−1,𝑦) ikA

, (ik,Rchpk𝑥−1,𝑦))

oReveal(𝜋i
B, ck𝑥,𝑦 , (𝑥, 𝑦))

∨oReveal(𝜋j
A, ck𝑥,𝑦 , (𝑥, 𝑦))

Figure 2.12 Conditions for A to learn ck𝑥,𝑦 where 𝑦 is even (i.e., Bob’s chain).

We divide the adversary’s trivial attacks into two categories. The first category includes
ways in which the adversary can learn a key mk computed by an honest party in conversation
with another honest party (passive attacker). The second category includes attacks in
which the adversary attempts to hijack the conversation and thus dictate the keys of the
conversation (active attacker). In that second case, the keys are shared by an honest entity
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Active adversary

Passive adversary∧Authentication

Forgery ability
∨ Access to 𝑠𝑘A

Figure 2.13 General description of an active adversary.

Act.Dan(mkx,y)

Danger(𝜎xh,yh)Danger(ckx−1,y) ∧∧Danger(ipkrchkxh ,yh

B )

Adversarially
generated Danger(ckx−2,y)

oReveal.XSid(A)
∨oAccessSK(𝑠𝑘A)

Figure 2.14 Conditions forA to hijack the communication at stage 𝑠 = (𝑥, 𝑦) with 𝑦ℎ odd.

and the adversary.

Passive attacks. In the following, we assume that the adversary will ultimately input the
values 𝜋i

P and with 𝜋i
P.sid = sid ≠ ⊥ and a value 𝑠∗ = (𝑥∗, 𝑦∗) to oTest such that the oracle

did not return ⊥ (as per the conditions described above). Let us assume that P = A and is
the initiator of the protocol, whereas the partnered instance is B (the responder) 12.

• The adversary could learn mk𝑠
∗ trivially by just querying it to oReveal, either

to 𝜋i
A or to an instance 𝜋

j
B having matching conversation with 𝜋i

A. The queries
oReveal(𝜋i

A,mk, 𝑠∗) and oReveal(𝜋j
B,mk, 𝑠∗) are thus forbidden.

• The adversary can also learn the mk𝑠
∗ in session sid for a stage 𝑠∗ = (𝑥∗, 𝑦∗) if it knows

the input value to the HKDF computation that yields it. If 𝑦∗ is odd, then the input
values are of the form ck𝑥

∗,𝑦∗ ∥𝜎𝑥∗,𝑦∗ ∥(Rchpk𝑥
∗,𝑦∗) ikB . If 𝑦∗ is even, then the input to

the HKDF is of the form ck𝑥
∗,𝑦∗ ∥𝜎𝑥∗,𝑦∗ ∥(Rchpk𝑥

∗,𝑦∗) ikA . In each case, the adversary
needs all the three values concatenated in the input. We focus below on each of these
three values.

ck𝑥
∗,𝑦∗ : The adversary could learn this value by a number of different ways. The easiest

way is forA to query oReveal for ck𝑥
∗,𝑦∗ either from 𝜋i

A (the challenge instance) or from a
partnering instance 𝜋j

B. Another way is for A to compute the value ck𝑥
∗,𝑦∗ from sid itself.

1. Computing the value ms of the target session sid does not directly give ck𝑥
∗,𝑦∗ for stage

𝑠∗ of that session, but it may help. An adversary trivially learns this value if it knows
prepkikA

B | |ipkekA
B | |prepkekA

B | |ephpkB
ekA . We define Danger(prepkikA

B ) as the event that the
adversary has issued (at least) one of the following queries: a oReveal.XSid query for

12We make this assumption strictly in the interest of the legibility of the following analysis; the roles are in
fact easily interchangeable.
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A, a oReveal query for prekB, or an oAccessSK query for the exponentiation result.
Similarly, Danger(sid, ipkekA

B ) is defined as the event that the adversary issues one of the
following queries13: a oReveal.XSid query for B, a oReveal query for ekA from session
sid, or an oAccessSK query for the exponentiation. In addition, Danger(sid, prepkekA

B )
represents the event that A has issued one of the following queries: a oReveal query
on the prekB value used in sid or a oReveal query on ekA from sid. Furthermore,
Danger(sid, ephpkB

ekA) is the event that the adversary issues one of the following
queries: a oReveal query for ephkB from sid or a oReveal query for ekA from sid.
Finally, Danger(rev_ms) is the event that the adversary issues one of the following
queries: either oReveal(𝜋i

A,ms) or oReveal(𝜋i
B,ms) We define Danger(sid,ms) as

the event that all the following events occur: Danger(prepkikA
B ), Danger(sid, ipkekA

B ),
Danger(sid, prepkekA

B ), Danger(sid, ephpkB
ekA), or Danger(rev_ms).

This is formally defined in Definition 16.

2. If 𝑥∗ = 1 and 𝑦∗ = 1, then an adversary can trivially compute the ck1,1 value of sid if
it knows ms and (prepkB)rchk0,1

. We define Danger(sid, (prepkB)rchk0,1) to be the event
that the adversary issues one of the following queries: a oReveal query for prekB used
in sid or a oReveal query for rchk0,1 in sid. Then, let Danger(sid, ck1,1) be the event
that both these events occur for the target session sid: Danger(sid,ms) (see the previous
bullet point) and Danger(sid, (prepkB)rchk0,1).

3. If 𝑥∗ = 1 and 𝑦∗ > 1, then an adversary can trivially compute ck𝑥
∗,𝑦∗ if it knows

(T1)
ikB | | (ipkA)t0 . We define Danger(sid, (T1)

ikB) to be the event that the adversary
makes at least one of these three queries: a oReveal.XSid query for ikB, a oReveal
query for the t1 value used in sid, or an oAccessSK query to find the result of the
exponentiation. Similarly, Danger(sid, (ipkA)t0) is defined as the event that the adversary
issues at least one of the following queries: a oReveal.XSid query for the key ikA

of party A, a oReveal query for t0, or an oAccessSK query for the exponentiation.
Then, let Danger(sid, ckx∗,y∗) be defined as the event that both these events occur:
Danger(sid, T1)

ikB) and Danger(sid, (ipkA)t0).

4. If 𝑥∗ > 1 and 𝑦∗ is odd, then the adversary can trivially compute ck𝑥
∗,𝑦∗ if it knows

ck𝑥
∗−1,𝑦∗ ∥𝜎𝑥∗−1,𝑦∗ ∥(Rchpk𝑥

∗−1,𝑦∗) ikB (recall that A is the initiator and B is the respon-
der). The value 𝜎𝑥∗−1,𝑦∗ is just a signed value on publicly-known keys (present in the
AD of the ciphertext), thus the adversary already knows this input. Additionally, we de-
fine Danger(sid, (Rchpkx∗−1,y∗) ikB) to be the event that the adversary issues at least one
of the following queries: a oReveal.XSid query for ikB, a oReveal query for rchk𝑥

∗−1,𝑦∗

from either 𝜋i
A or 𝜋j

B, or an oAccessSK query for the exponentiation result. Finally,
we must look at the trivial attacks allowing the adversary to learn ck𝑥

∗−1,𝑦∗ . This last
part must be defined recursively: notably Danger(sid, ckx∗−1,y∗) is the event that all the

13Note that when we defined Danger(prepkikA
B ), the session identifier sid was not given as a parameter to

that value; yet, when we defined Danger(sid, ipkekA
B ) with sid as a parameter. This is because the former

endangered value (prepkikA
B ) contains long- and medium-term values (which can be obtained from any session

that involves A and B within some time-space, for which prepkB is valid); by contrast, the latter value includes
the session-specific ekA and we thus need the value sid to pinpoint which value ekA we mean.
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following events occur: Danger(sid, (Rchpkx∗−1,y∗) ikB), and either an oReveal query for
ck𝑥

∗−1,𝑦∗ or – if 𝑥∗ > 2 – Danger(sid, ckx∗−2,y∗).

5. If 𝑥∗ > 1 and 𝑦∗ is even, then the adversary can trivially compute ck𝑥
∗,𝑦∗ if it knows

ck𝑥
∗−1,𝑦∗ ∥𝜎𝑥∗−1,𝑦∗ ∥(Rchpk𝑥

∗−1,𝑦∗) ikA . Again, the signature is known. Furthermore,
Danger(sid, (Rchpkx∗−1,y∗) ikA) denotes the event that the adversary issues at least one
of the following queries: a oReveal.XSid query for ikA, a oReveal query for rchk𝑥

∗−1,𝑦∗

from either 𝜋i
A or 𝜋j

B, or an oAccessSK query for the exponentiation result. Finally,
we must look at the trivial attacks allowing the adversary to learn ck𝑥

∗−1,𝑦∗ . This last
part must be defined recursively: notably Danger(sid, ckx∗−1,y∗) is the event that all the
following events occur: Danger(sid, (Rchpkx∗−1,y∗) ikA), and either an oReveal query for
ck𝑥

∗−1,𝑦∗ or – if 𝑥∗ > 2 – Danger(sid, ckx∗−2,y∗).

(Rchpk𝑥
∗,𝑦∗) ikB : For an odd value of 𝑦∗, we define Danger(sid, (Rchpkx∗,y∗) ikB) to be

the event that the adversary makes at least one of the following queries: a oReveal.XSid
query on ikB, a oReveal query on rchk𝑥

∗,𝑦∗ , or an oAccessSK query for the result of the
exponentiation. If 𝑦∗ is even, this value is undefined.

(Rchpk𝑥
∗,𝑦∗) ikA : For an even value of 𝑦∗, we define Danger((Rchpkx∗,y∗) ikA) as the event

that the adversary makes at least one of the following queries: a oReveal.XSid query for A,
a oReveal query on rchk𝑥

∗,𝑦∗ , or an oAccessSK for the result of the exponentiation. If 𝑦∗

is odd, this value is undefined.

Definition 16 (Danger(sid,ms)) We define the event that the master secret of some target
session sid is known to the adversary by Danger(sid,ms), notably as follows:

Danger(sid,ms) =
(
oReveal(𝜋i

A,ms) ∨ oReveal(𝜋i
B,ms)

)
∧Danger(prepkikA

B )
∧Danger(sid, ipkekA

B )
∧Danger(sid, prepkekA

B )
∧Danger(sid, ephpkB

ekA),

with :

Danger(prepkikA
B ) = oReveal.XSid(A, ik)

∨ oReveal(𝜋j
B, prekB, (0, 0))

∨ oAccessSK(A, prepkikA
B , (prepkB, ik))

Danger(sid, ipkekA
B ) = oReveal.XSid(B, ik)

∨ oReveal(𝜋i
A, ekA, (0, 0))

∨ oAccessSK(B,EpkikB
A , (ik,EpkA))

Danger(sid, prepkekA
B ) = oReveal(𝜋j

B, prekB, (0, 0))
∨oReveal(𝜋i

A, ekA, (0, 0))
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Danger(sid, ephpkB
ekA) = oReveal(𝜋j

B, ephkB, (0, 0))
∨oReveal(𝜋i

A, ekA, (0, 0)).

We note that the reveal queries take in input the value of the stage at which the ephemeral
values were generated (i.e., stage (0,0)).

Summarizing the analysis above, we define by Danger(sid,mkx∗,y∗) as follows: if 𝑦∗ is
odd, then Danger(sid,mkx∗,y∗) is the event that the adversary issues a oReveal query for
mk𝑥

∗,𝑦∗ or alternatively that it triggers all the following events: Danger(sid, (Rchpkx∗,y∗) ikB)
and Danger(sid, ckx∗,y∗); if 𝑦∗ is even, then Danger(sid,mkx∗,y∗) is the event that the adversary
issues a oReveal query for mk𝑥

∗,𝑦∗ or alternatively that it triggers all the following events:
Danger(sid, (Rchpkx∗,y∗) ikA) and Danger(sid, ckx∗,y∗).

Active attacks. We now concentrate on active attacks, in which the adversary attempts
to know the keys by being a legitimate end point at the target stage. Interestingly, while
targeting an instance of a maliciously-registered party (or an instance partnering such an
instance) immediately gives the adversary all the keys in that session, corruption does not
have the same effect. In the following, we focus on active attacks by the adversary, which
will invariably involve both long-term and ephemeral keys of previous stages.

Let 𝑠∗ = (𝑥∗, 𝑦∗) be the target stage input by the adversary to its oTest query, and let 𝜋i
P

be the party instance targeted by this query. We will require several additional restrictions.
• As defined at the beginning of this section, the adversary may not query oTest on an

instance of a malicious party, nor on an instance partnering a malicious party (i.e., we
declare the adversary to lose if it has triggered Danger(𝜋i

P)).
• The first bullet point ensures the adversary cannot be an endpoint of the targeted

conversation. However, A could in fact only hijack a session and thus learn some
values. In Signal, successful hijacking leads to the adversary controlling the full
conversation. For MARSHAL, healing occurs quickly except for a few extreme cases,
which we rule out below.

We describe how A can hijack the communication between A and B, i.e., how A can
use its own keying material to impersonate one of the communicating partners.

We say a stage 𝑠ℎ = (𝑥ℎ, 𝑦ℎ) is hijacked if for that stage the adversary actively imper-
sonates the sending party, i.e.,it sends (via oReceive) the receiving party a message that: (i)
was not actually sent by the sender; and simultaneously (ii) includes ephemeral information
that diverges from the state of the actual sender. In other words, if the adversary takes a
message sent by the actual sender, then queries the signature oracle for a fresh signature on
the same data (thus the messages now differ because the signature would not be the same),
this does not count as hijacking (condition (i) is satisfied, but not condition (ii)). However,
if the adversary inserts new ephemeral values in the AD of the message for that stage, then
somehow obtains a correct signature, then this counts as hijacking. Formally, we have the
following definition.

Definition 17 Let 𝑠ℎ := (𝑥ℎ, 𝑦ℎ) be a communication stage of a protocol session sid, for
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which we assume without loss of generality that party A is the sender (through instance 𝜋i
A)

and B is the receiver (through instance 𝜋j
B). We say that A has hijacked stage 𝑠ℎ if, and

only if, the following conditions hold simultaneously:
• A has queried oReceive(𝜋j

B, 𝑠ℎ, 𝐴𝐷ℎ);
• the value 𝐴𝐷ℎ was never output by an oSend(𝜋i

A, 𝑠ℎ, ·) query;
• there exists a value 𝑣 ∈ 𝐴𝐷ℎ, but such that 𝑣 ∉sidsk𝑖A∪𝜋i

i .var[𝑠ℎ].
We call stage 𝑠ℎ successfully hijacked if, in addition to the conditions above, it also

holds that the oReceive query in the first bullet point has yielded an output that is different
from ⊥.

For active attacks, our adversary will have to first hijack an initial stage. In Signal, if
the adversary succeeds in doing this for one specific stage, it will immediately – without
access to long-term credentials – gain access to a number of future stages. By comparison,
in MARSHAL the adversary only gains trivial access to stage keys if it directly attacks each
stage independently or obtains long-term access to the user’s long-term keys.

Assume that the tested stage is 𝑠∗ := (𝑥∗, 𝑦∗) and that the adversary has hijacked the
session at some stage 𝑠ℎ := (𝑥ℎ, 𝑦ℎ) (without loss of generality, by compromising party
party A, the sender at stage 𝑠ℎ). We define the active danger to the message key of stage
𝑠∗ (denoted Act.Dan(sid,mkx∗,y∗)) as a complementary event to the danger event previously
defined for a passive adversary. In other words, both types of sequences of queries will be
ruled out when considering the adversary’s success.

Let Hijack(sid, sh) be the event that the adversary successfully hijacked session sid. We
note that there are many different values the adversary could replace, each leading to a
complex chain of events that would need to be triggered to actively endanger mk𝑥

∗,𝑦∗ . In the
interest of legibility, we reduce these chains of events to only events that legitimately allow
the adversary direct access to that message key: reveal queries on it, access to signatures, or
access to identity keys. In particular, we are ruling out more attacks than strictly necessary,
thus weakening the adversary. However, note that in so doing, we stress the one aspect of
our protocol that distinguishes it from Signal. In our protocol, the adversary will need to
keep accessing long-term keys from Alice or Bob in order to endanger the message key (or
query reveal for that key directly).

Let party A be the sender at stage 𝑠ℎ of a session sid such that 𝜋i
A.sid = sid, and let 𝜋j

B
be partnering 𝜋i

A (if such a partner exists). We divide our analysis of Act.Dan(sid,mkx∗,y∗)
(given oTest is queried on stage 𝑠∗) into two cases (for clarity):

𝑦∗ = 𝑦ℎ + 2𝑠, where 𝑠 ∈ N and 𝑠∗ comes after 𝑠ℎ14. In other words,A tests a stage for
which party A (the party A impersonated during hijacking) is the sender. We define
Act.Dan(sid,mkx∗,y∗) to be the event that the following events occur: Hijack(sid, sh),
the adversary has queried oTest for 𝜋j

B, and (at least) one of the two following: a
oReveal.XSid query for 𝑠𝑘A, or oAccessSK access to ℎ(𝑐∗) (receiving 𝜎) such that
A has queried oReceive with input 𝜋j

B, 𝑠
∗, (AD, 𝜎) with AD ∈ 𝑐∗.

𝑦∗ = 𝑦ℎ + 2𝑠 + 1, where 𝑠 ∈ N and 𝑠∗ comes after 𝑠ℎ. In other words, A tests a
stage for which party B (the party to which A impersonated A during the hijack) is
the sender. We define Act.Dan(sid,mkx∗,y∗) to be the event that the following events

14Concretely, 𝑦∗ ≥ 𝑦ℎ and if 𝑦∗ = 𝑦ℎ, then 𝑥∗ ≥ 𝑥ℎ.
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occur: Hijack(sid, sh), the adversary has queried oTest for 𝜋j
B, and (at least) one of

the two following: a oReveal.XSid query for ikA, or oAccessSK access to (𝑅∗) ikA such
that A has received (AD, 𝜎) as output of an oSend query with input 𝜋j

B, 𝑠
∗,⊥.

2.3.4.6 Message-loss resilience

For the message-loss resilience game we need an additional notion. Let 𝜋i
P be such that

𝑠 ∈ 𝜋i
P for some stage 𝑠. We denote by next(𝜋i

P, 𝑠) the stages reachable for that instance
from stage 𝑠. This depends on P’s role (sender or receiver) at stage 𝑠 = (𝑥, 𝑦). If P was
a sender, then next(𝜋i

P, 𝑠) = {(𝑥
′, 𝑦) |𝑥′ ≥ 𝑥 + 1}. If P was a receiver, then next(𝜋i

P, 𝑠) =
{(𝑥′′, 𝑦 + 1) |𝑥′′ ≥ 1}.

The message-loss resilience game begins like PCS-AKE, by creating nP honest parties
and their long-term credentials. We provide an illustration of it in Figure 2.15. The adversary
receives the public keys, then gets access to the oracles oStart, oReveal.XSid, oReveal,
oAccessSK, and a crippled version of oSend and oReceive (A must always use these
oracles in honest mode). The adversary finally stops, outputting a protocol instance/stage
pair 𝜋i

P, 𝑠
∗, for which the challenger must produce the key mk𝑠

∗ (or ⊥ if it does not know it).
We say A wins if, and only if, the challenger has output ⊥ and there exists a stage 𝑠 ∈ 𝜋i

P
such that 𝑠∗ ∈ next(𝜋i

P, 𝑠).

ExpMLR
Π
(𝜆,A)

(P = {P1, · · ·PnP }) ← C(𝜆, nP)
(sk𝑖 , pk𝑖) ← CaKeyGen(1

𝜆 ) ∀𝑖 ∈ {1, · · · , nP}

OMLR ←
{

oReveal.XSid(·, ·), oStart(·, ·, ·), oReveal(·, ·, ·), oSend∗(·, ·, ·, ·),
oReceive∗(·, ·, ·, ·), oAccessSK(·, ·, ·)

}
;

(𝜋★P , 𝑠
★) ← AOMLR (1𝜆)

mk ← C

A wins iff. mk ≠ ⊥

Figure 2.15 Description of the MLR game, denoted ExpMLR
Π
(𝜆,A) between adversary A

and challenger C. The game is parametrized by the security parameter 𝜆 and the number
of honest parties nP . Oracles oSend∗ and oReceive∗ are the crippled versions of the
original oSend and oReceive, restricted to honest mode only.

2.3.4.7 Security proofs

We give the proof of theorem 1:

Theorem 1 If the GDH [OP01] assumption holds, if the signature scheme employed is
EUF-CMA-secure, then the MARSHAL protocol is PCS-AKE secure in the random oracle
model (we model the two KDFs as RO1,RO2). In addition, MARSHAL is MLR-secure.

Proof 1 The security statement is parametrized by the maximal number of stages nS run
by any given instance, the number of parties generated by the adversary nP, the number
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of medium-term keys nprek deployed, and the number of instances n𝜋 created by any given
party.

We prove the statement in a sequence of game hops, as follows.

G0: This is the ExpPCS-AKE
Π

(𝜆,A) described in Figure 2.7. We denote by Adv0 the maximal
advantage an adversary A to win this game.

G1: This game is identical toG0, except, whenever prompted to generate randomness within
a protocol step, any honestly-created instance of the protocol will produce unique,
random values. In other words, we remove the probability of having a collision for
any of the private material, including:

– Long-term keys: ik, 𝑠𝑘 ;
– Medium-term keys: prek, t0;
– Session-setup ephemeral keys: ek, rchk0,1;
– Stage-specific ephemeral keys: same-user ratchet keys rchk𝑥,𝑦 with 𝑥 ≥ 0, and,

at every fresh 𝑦 > 0, a new cross-user ratcheting key t𝑦 .

For ease of notation, we will upper-bound the number of fresh cross-user ratcheting
keys by the total number of stages nS (the bound is tight if we have only one message
per chain). Let Adv1 be the advantage of the adversary A in this game.

It holds that:

Adv0 ≤
(nP+nP ·nprek+n𝜋 · (2+2nS )

2
)

𝑞
+ Adv1 .

G2: This game is identical to G1, except that the challenger guesses and outputs (privately
w.r.t. the adversary) a tuple consisting of an instance 𝜋i

P and a stage index 𝑠∗. The
game is lost if these do not coincide with the tuple output by the adversary to oTest.
Let the advantage of the adversary in this hop be Adv2. Then:

Adv1 ≤
1

nPn𝜋nS
Adv2.

Note that the challenger’s guess 𝜋i
P, 𝑠
∗ gives it more information than just the target

instance and stage. In particular, the challenger now knows: the target party P, the
role of P in the target session (initiator/responder), the role of party P in 𝜋i

P at stage
𝑠∗ (sender/receiver), as well as the role of P at every prior or future stage in that
conversation.

G3: This game hop is identical to G2 except that the challenger will now refuse to answer
the adversary’s hijacking queries (oReceive queries with adversarially-chosen input
substituted for output of honest oSend queries) for the following queries:

– If A queries oReceive maliciously for an instance of some party other than P;
– If A queries oReceive maliciously for an instance of P other than 𝜋i

P;
– If A queries oReceive maliciously for the target instance 𝜋i

P for a stage 𝑠 that
comes after 𝑠∗;

– If A queries oReceive maliciously for 𝜋i
P, such that: 𝑠 precedes 𝑠∗ and 𝜋i

P
already has a message key mk set for the target stage or any other stage in that
chain at the time of the oReceive query.

We argue that the adversary’s advantage in this game, denoted Adv3, is undiminished
with respect to G2 , because: (1) as of G1 we have unique session identifiers; (2) we

are using random oracles for the key derivation; (3) once key material is accepted
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for the target stage (or an ulterior one in the same stage), that automatically sets the
ratcheting information, which cannot be reset by the malicious oReceive query. Thus:

Adv2 = Adv3;

Note that, starting from this game, the only hijacking attempts that will work are those
for the target instance, for stages prior to the target stage.

G4: This game behaves identically to the previous game, except that the adversary instantly
loses (the game returns a random bit) if the following conditions hold:

– The adversary successfully hijacks the session run by 𝜋i
P by a malicious oReceive

query to 𝜋i
P at some stage 𝑠ℎ prior to 𝑠∗;

– The adversary has not triggered Danger(𝜋i
P.sid,mks∗).

We claim that the advantage of the adversary in this game, denoted Adv4 is such that:

Adv3 ≤ max
[
AdvEUF−CMA

Sign (B),AdvGDH(C)
]
+ Adv4,

for reductions B against the unforgeability of the signature scheme and C against the
Gap-DH problem.

To understand this claim, we first note that the adversary can find itself in one of two
situations: at target stage 𝑠∗, the target instance 𝜋i

P is either the sender, or the receiver.
The two situations are mutually exclusive, and as soon as the challenger guesses the
target instance and stage, it will know which of those situations it is in.

Moreover, note that once successful hijacking is achieved, the instance 𝜋i
P will no

longer be partnered with its honest partner (whichA has successfully impersonated),
but rather, with the adversary itself.

We now consider the two options described above.

Suppose first that 𝜋i
P is the receiver at stage 𝑠∗. In this case, we can construct a

reduction B to the unforgeability of the signature scheme. This reduction generates
all the private keys with the exception of 𝑠𝑘Q, where Q = 𝜋i

P.pid. Then the reduc-
tion simulates the game faithfully, querying its signature oracle whenever it needs a
signature on behalf of Q.

In order to win its game A will need to query oTest for the honest instance 𝜋i
P at

stage 𝑠∗. Suppose that A has not queried oReceive for 𝜋i
P at stage 𝑠∗. In this case,

our reduction will fail, but so willA, since 𝜋i
P will have no key mk𝑠

∗ set. Since 𝜋i
P no

longer has an honest partner, A cannot receive honest input from that partner. As a
result, the only way for the adversary to make P ratchet to stage 𝑠∗ is to produce a valid
message at stage 𝑠∗ (since P is the receiver at that stage), including a valid signature
using 𝑠𝑘Q. Note also thatA may not simply query corrupt Q for that signature key (a
query that B would not be able to respond to), nor can it use oAccessSK (since either
of those actions would trigger the active danger event). Hence, the adversary’s only
choice is to forge the signature.

We have two situations. Either A does not produce that message/signature pair – in
which case, both A and B lose, or A does produce the message/signature pair, in
which case B can forward it, and wins.

Now we turn to the other situation, in which 𝜋i
P is the sender at the target stage 𝑠∗.

In this case, we construct an adversary C against the GDH problem that wins with at
least as much probability as A wins its game.
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The reduction C will simulate the game correctly, except that it will embed, as it
elements 𝑔𝑎, 𝑔𝑏, the public identity key of Q (𝑝𝑘Q) and the public ratcheting key
Rchpk𝑠

∗ (forwarded by P at stage 𝑠∗). We note that the only way the adversary can
distinguish mk𝑠

∗ from random is if it queried input that includes (Rchpk𝑠
∗)𝑠𝑘Q to the

random oracle RO2. Note that the reduction generates all the other keys, and uses
its DDH oracle to ensure consistency with respect to the challenge elements. When
the adversary queries RO2 with an input that allows the DDH oracle to return 1, the
reduction forwards that input as its guess for 𝑔𝑎𝑏.

We have two cases. Either A never queries a correct input to RO2, in which case
both A and C fail, or A does query the correct input, in which case C wins.

This gives the required bound.

Note that we have now effectively ruled out active attacks made by the adversary. We
can now focus on only passive attacks.

From this point on, we will have to move through the options given in the winning
conditions, starting from the target stage.

G5: This game is identical to the previous one, except we substitute the key mk𝑠
∗ to a random

(consistent) value if the adversary does not trigger the event Danger(𝜋i
P.sid, (pkR)rchks∗ ),

where R is the receiving party in the target session at stage 𝑠∗ (thus, R could be either
P or its partner). In the following we show that except for breaking the GDH problem,
the adversary’s probability to win the two games is identical.

Let Adv5 be the adversary’s advantage in G5. It holds that:

Adv4 ≤ AdvGDH(D0) + Adv5,

where D0 is an adversary that breaks the GDH problem.

The reduction is very similar to the second case of game G4 (reduction C). The
adversary cannot simply leak the value of mk𝑠

∗ (as per the winning conditions) and
it cannot perform an active attack (as per the previous game). Its only option is to
query RO2 for the correct input that yields mk𝑠

∗ , including the value (𝑝𝑘R)rchk𝑠
∗
. The

reduction only has to embed its challenge tuple into that value and return it when A
queries it to the random oracle.

As of this game, we can therefore assume that the adversary A triggers the event
Danger(𝜋i

P.sid, (pkR)rchks∗ ) (or if that is not the case,A can only win with probability
1
2 ). Note that, as per the winning conditions, the adversary cannot now also trigger the
event Danger(𝜋i

P.sid, cks∗). In addition: honest instances cannot produce ratcheting
keys duplicating rchk (𝑥

∗−( 𝑗−5) ,𝑦∗ ) (as per G1), and while 𝑝𝑘R will be used in other
instances, the reduction knows the other share in the DH product. Finally, note that
in order to win, the adversary must input a value for ck𝑠

∗ to RO2.

G6-G5+𝑥∗: At each subsequent game hop G5+ 𝑗 , with 𝑗 ∈ {1, . . . , 𝑥∗ − 1}, we move one step
backwards along the 𝑥 axis of the challenge stage 𝑠∗ = (𝑥∗, 𝑦∗). At each step, we will
replace ck𝑥

∗− 𝑗 ,𝑦∗ to a random (consistent key if the Danger(𝜋i
P.sid, (pkR)rchk (x

∗−j,y∗) )
event is not triggered, where 𝑗 is the number of the game hop. Note that as soon as
this is true for at least one ck value, the adversary’s success probability turns to 1

2 .
For each game we use the same argument as above to prove:

Adv 𝑗 ≤ AdvGDH(D 𝑗) + Adv 𝑗+1.
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Here, D 𝑗 is at each time a new reduction ( 𝑗 ∈ {1, . . . , 𝑥∗ − 1}) against the GDH
problem. The latter will be embedded at each time in the input to RO2, which is of
the form: (𝑝𝑘R)rchk (𝑥

∗− 𝑗,𝑦∗) .

After every individual game hop, the conclusion is the same: in order to produce the
correct input to RO2, the adversary somehow has to have a correct value for the chain
key – without triggering the danger event to that value.

G6+𝑥∗: At this point we have arrived at the beginning of the message chain with index 𝑦∗. We
have two situations: either 𝑦∗ ≥ 2 or 𝑦∗ = 1 (and the challenger will know at this
point which situation it is in). We suppose for now that 𝑦∗ ≥ 2 (if not, the proof skips
directly to the next game, ignoring this one). We split this game into two sub-hops:

G𝐴: This game is identical to the previous, but we change ck1,𝑦∗ to random if the
adversary has not triggered the danger event for (ipkR)

t
𝑦∗−2 , where R is the

receiver at chain 𝑦∗. We claim that the adversary does not lose anything by this
modification of the game, except if it can break the GDH problem. The reduction
is similar to those above, and we lose a term AdvGDH(E0,𝐴). Thus:

Adv5+𝑥∗ ≤ Adv𝐴 + AdvGDH(E0,𝐴).

G𝐵: At this point, we replace all keys ck1,𝑦∗ through to ck𝑠
∗ and mk𝑠

∗ by random,
consistent values. Indeed, due to the winning-condition restrictions, at this
point, the adversary is no longer allowed to trigger the danger event for 𝑝𝑘

t
𝑦∗−1

S ,
where S is the sender at stage 𝑦∗. At this point, except by breaking the GDH
assumption, A is no longer able to distinguish the ck1,𝑦∗ from random, which,
due to our previous games, will no longer allow it to distinguish any of the
intermediate values from random (as it cannot endanger any of the intermediate
challenge keys either). Note that at the end of this game, the adversary’s winning
probability will become 1

2 , thus ending the proof:

Adv𝐴 =
1
2
.

G7+𝑥∗: The alternative to the previous game is the situation in which 𝑦∗ = 1. We note that
due to the previous games and the winning restrictions, the adversary may not at this
point endanger ck1,1. Thus in game G7+𝑥∗ , we replace ck1,1 by a random, consistent
value if the adversary does not trigger Danger((prepkR)rchk0,1) for a responder P𝑅.
Once more our reduction to GDH will rely on the fact that such an adversary must
break the GDH assumption to distinguish ck1,1 from random. It holds that:

AdvG5+𝑥∗ ≤ AdvG7+𝑥∗ + AdvGDH(F ).

G8+𝑥∗: This game hop consists of case-by-case reductions for the security of the master secret
ms, similar to the analysis given by Cohn-Gordon et al. in Appendix C1 of the
full version of their Signal-analysis paper. We notably replace this master secret by
a consistent, but random value. For each case, we focus on which values are not
endangered by the adversary (the winning conditions will not allow the adversary,
by that point in the game, to know all the parts). In each case, we will lose a term
equivalent to a reduction to GDH, yielding:

AdvG7+𝑥∗ ≤ Adv8+𝑥∗ + AdvGDH(G1) + AdvGDH(G2)
+ AdvGDH(G3) + AdvGDH(G4).
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At this point we can proceed to replace all the intermediate values of ck from the
beginning of the session until the target stage 𝑠∗ = (𝑥∗, 𝑦∗) (note that we are in the
case where 𝑦∗ = 1). We also replace mk𝑠

∗ by random. We argue that, due to the
previous gamehops, the adversary has no means of endangering this value, and as
such, we can guarantee that no such input has been made to the random oracles. At
this point the adversary’s advantage will be 1

2 , thus concluding the proof: Adv8+𝑥∗ =
1
2 .

We note that when putting the full advantage inequality together, we can upper bound
the value of 𝑥∗ by nS.

2.4 SAMURAI

The design of MARSHAL aims at improving the healing of Signal. However, in order to
handle the message-loss resilience (see Section 2.3.4.6), all the data corresponding to a
given chain must be included in each message. This leads to a linear growth in the metadata
inside a chain in the length of the chain. The memory content grows proportionally to the
number of messages for a given chain.

We propose a variant called Signal-like Asynchronous Messaging with Message-loss
resilience, Ultimate healing and Robust against Active Impersonations (SAMURAI) with a
modification on the key derivation inside a chain (compare to MARSHAL). Informally, we
split the derivation of the chain keys ck from the message keys mk. This allows to compute
all the ck as in Signal, i.e., the ck are derived from symmetric ratchet, while the mk are
computed via asymmetric ratchet. Hence, the key derivation of a given is the balance
between symmetric and asymmetric ratcheting taking the best of both algorithms. We can
illustrate this hybrid ratcheting as:

ck1 𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻1

ck2

mk1

𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻2

mk2

. . .

2.4.1 Description of SAMURAI

We now describe in details our protocol SAMURAI: Signal-like Asynchronous Messaging
with Message-loss resilience, Ultimate healing and Robust against Active Impersonations.

2.4.1.1 Registration

Parties using SAMURAI must first register by generating key pairs and uploading the public
part to the server. For party P to register, it uploads a long-term identity key ipkP, a medium-
term key prepkP (signed with the identity key ikP), multiple ephemeral pre-keys ephpkP,
multiple medium-term stage keys T0. The latter key is a novelty toward Signal, it will be
used to initiate a communication by instantiating the first chain. An additional key pair is
also generated (but not uploaded to the server), a long-term signature keys (SKMP,PKMP).
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X3DH

ms 𝐻𝐾𝐷𝐹 ck1,1

𝐷𝐻 (prepkB, rchk0,1)

𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻1,1

ck2,1

mk1,1

𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻2,1

ck3,1

mk2,1

. . . chain 𝑦 = 1

𝐷𝐻 (T0, ikA) | |
𝐷𝐻 (T1, ikB)

𝐻𝐾𝐷𝐹 ck1,2 𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻1,2

ck2,2

mk1,2

𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻2,2

ck3,2

mk2,2

. . . chain 𝑦 = 2

𝐷𝐻 (T1, ikB) | |
𝐷𝐻 (T2, ikA)

𝐻𝐾𝐷𝐹 ck1,3 𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻1,3

ck2,3

mk1,3

𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻2,3

ck3,3

mk2,3

. . . chain 𝑦 = 3

Figure 2.16 SAMURAI key schedule.

These keys will be used throughout the communication and appended in the associated data
in each partner’s first respective chain of messages.

2.4.1.2 Setup

If Alice wishes to speak with Bob (both registered as described in the above paragraph), she
needs to run a setup phase similar to Signal.

Computing the Master Secret ms. As in Signal, the shared secret is computed with X3DH
algorithm [MP16b]. In details, when Alice wants to initiate a session with Bob, she queries
the server for Bob’s following values: the identity key ipkB, a signed pre-key ephpkB (if
any), and a medium-term key T0

B, denoted T0 for simplicity. Upon receiving those keys, A
generates its own ephemeral key ekA. Finally, the master secret is computed as:

𝑚𝑠 = prepkikA
B | |ipkekA

B | |prepkekA
B | |ephpkB

ekA

Initialising the first chain. Alice randomly generates a ratchet key pair (rchk0,1,Rchpk0,1).
She computes a DH value using its ratchet key and prepkB passed as input (along with ms)
to a key derivation function to produce the first chain key ck1,1.

2.4.1.3 Communication

Our protocol SAMURAI heals faster than Signal thanks to its perpetual asymmetric ratcheting
occurring at each stage. Hence, for stage (1, 1), Alice needs ratcheting information from Bob
which is given by the public key T0 generated during registration. Then, for each starting
chain stage (1, 𝑚) with 𝑚 > 1, the party initiating the chain generates a random value t𝑚
with public part T𝑚. The latter is sent as part of associated data of all messages for chain 𝑚
and will be used to initiate chain 𝑚 + 1.

Inside a chain, i.e., at stage (ℓ, 𝑚) for ℓ > 1, the current speaker generates key ratchet
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(rchkℓ,𝑚,Rchpkℓ,𝑚) used to derive message key. The crucial point of SAMURAI is that two
derivations coexist within a given chain. The chain keys ckℓ,𝑚 are derived as in Signal,
i.e., ckℓ,𝑚 = HMAC(ckℓ−1,𝑚), while the message keys are derived only when the message is
received by the communication partner, i.e., mkℓ,𝑚 = HKDF(ckℓ,𝑚, 𝜎ℓ,𝑚 | | (Rchpkℓ,𝑚) ikB).
Thus deriving the chain key is independent of the values mk (but the inverse is not true
though).

The notations we use are the followings:

𝐷𝐻𝑥,𝑦 :=

{
𝜎𝑥,𝑦 | |𝐷𝐻 (ipkB, rchk𝑥,𝑦), for 𝑦 odd
𝜎𝑥,𝑦 | |𝐷𝐻 (ipkA, rchk𝑥,𝑦), for 𝑦 even

with

𝜎𝑥,𝑦 :=


SIGN𝑠𝑘𝐴

(
T
𝑦−1 | |Rchpk𝑥,𝑦

)
, for 𝑦 odd

SIGN𝑠𝑘𝐵

(
T
𝑦−1 | |Rchpk𝑥,𝑦

)
, for 𝑦 even

The value 𝜎 is a signature on elements that are used to derived the message key. It
ensures the persistent authentication (as introduced in [BBB+19]) of the values that are part
of the evolution of the message keys. The aim of such signature is to minimize the possibility
of an attacker to hijack a session by injecting its own key material. Indeed, the PCS property
allows to regularly randomize key derivation for communicating partners which can “eject”
a passive attacker but an active attacker could also use this feature to inject its own values.
From this observation, we can infer that authentication toward key evolution is critical which,
we believe, is ensured by this value 𝜎.

We detail the first rounds of communication in Figure 2.16 and 2.17.

Alice’s first message. At session setup, Alice has generated its cross-user ratchet keys
(t1, T1), and computed the chain key ck1,1. Now she generates the same-user ratchet key
rchk1,1 and computes the corresponding public part Rchpk1,1 = 𝑔rchk1,1 . The message and
chain-keys are computed as follows:

ck2,1 ← HMAC(ck1,1)

mk1,1 ← HKDF(ck1,1, 𝐷𝐻1,1)

In chains 𝑦 = 1 and 𝑦 = 2, both communicating partners are including in their messages
some metadata that are used for session setup and also specific to the session. The metadata
for AD𝑦=1 thus includes the public identity keys of Alice and Bob, the medium-term and
ephemeral keys of Bob as recovered by Alice from server, the value T0 from the server,
Alice’s ephemeral public key used in the computation of the master secret, and two of
Alice’s ratchet public keys: its first same-user ratchet key Rchpk0,1, and its first cross-user
ratchet key t1.

There are also stage-specific metadata (which are included in each message, especially
for chain 𝑦 > 2). Those information includes: the stage index (1, 1) and the same-user
ratcheting public key Rchpk1,1.

Finally, when Alice wants to send her first message, she computes the authenticated
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Alice (ikA, ipkB, prepkB, ephpkB, T0 ) Bob (ikB, ipkA, prekB, ephkB, T0 )

Session initialization: initiator Alice, responder Bob.

ekA, rchk0,1, t1, rchk1,1 $←− Z𝑞;
T1 = 𝑔𝑡1 ; EpkA = 𝑔ekA ;
Rchpk0,1 = 𝑔rchk0,1 ; Rchpk1,1 = 𝑔rchk1,1

𝑚𝑠 = prepkikA
B | |ipkekA

B | |prepkekA
B | |ephpkB

ekA

ck1,1 = HKDF
(
prepkrchk0,1

B | |𝑚𝑠
)

ck2,1 = HMAC(ck1,1)
mk1,1 = HKDF(ck1,1 , 𝜎1,1 | | (ipkB)rchk1,1 )

First message: stage (1, 1), Alice is the sender, Bob, the receiver.
𝐴𝐷𝑦=1 = EpkA | |ipkA | |ipkB | |prepkB | |

ephpkB | |T0 | |Rchpk0,1 | |T1
𝐴𝐷1,1 = (1, 1) | |Rchpk1,1 | |𝜎1,1 𝑐1,1, SIGN𝑠𝑘𝐴 (𝑐1,1 ) ,

𝑐1,1 = AEAD.Encmk1,1 (𝑀1,1; 𝐴𝐷1 | |𝐴𝐷1,1)
𝑝𝑘𝐴,SIGNikA (𝑝𝑘𝐴)−−−−−−−−−−−−−−−−→ Verify signature on 𝑝𝑘𝐴 and 𝜎1,1

𝑚𝑠 = ipkprekB
A | |EpkikB

A | |EpkprekB
A | |EpkephkB

A
ck1,1 = HKDF((Rchpk0,1)prekB | |𝑚𝑠)
ck2,1 = HMAC(ck1,1)
mk1,1 = HKDF(ck1,1, 𝜎1,1 | | (Rchpk1,1) ikB)
𝑀1,1 = AEAD.Decmk1,1 (𝑐1,1).

ℓ-th message: stage (ℓ, 1), Alice is the sender, Bob, the receiver.

rchkℓ,1
$←− Z𝑞, set Rchpkℓ,1 = 𝑔rchkℓ,1

ckℓ+1,1 = HMAC(ckℓ,1)
mkℓ,1 = HKDF(ckℓ,1, 𝜎ℓ,1 | |ipkrchkℓ,1

B )
𝐴𝐷ℓ,1 = (ℓ, 1) | |Rchpkℓ,1 | |𝜎ℓ,1 𝑐ℓ,1, SIGN𝑝𝑘𝐴 (𝑐ℓ,1 ) ,

𝑐ℓ,1 = AEAD.Encmkℓ,1 (𝑀ℓ,1; 𝐴𝐷1 | |𝐴𝐷ℓ,1)
𝑝𝑘𝐴,SIGNikA (𝑝𝑘𝐴)−−−−−−−−−−−−−−−−→ Verify leftover signatures

ckℓ+1,1 = HMAC(ckℓ,1)
mkℓ,1 = HKDF(ckℓ,1, 𝜎ℓ,1 | | (Rchpkℓ,1) ikB)
𝑀ℓ,1 = AEAD.Decmkℓ,1 (𝑐ℓ,1).

Switching speakers: Bob comes online and begins a new ratcheting chain.

t2, rchk1,2 $←− Z𝑞; T2 = 𝑔t2 , Rchpk1,2 = 𝑔rchk1,2

ck1,2 = HKDF( T1
ikB | |ipkA

t0 )
ck2,2 = HMAC(ck1,2)
mk1,2 = HKDF(ck1,2, 𝜎1,2 | | (ipkA)rchk1,2 )

Bob’s message, stage (1, 2): Bob is the sender, Alice is the receiver.
𝐴𝐷𝑦=2 = T2

𝑐1,2, SIGN𝑝𝑘𝐵 (𝑐1,2 ) , 𝐴𝐷1,2 = (1, 2) | |Rchpk1,2 | |𝜎1,2

Verify signature on 𝑝𝑘𝐵 and 𝜎1,2
𝑝𝑘𝐵 ,SIGNikB (𝑝𝑘𝐵 )←−−−−−−−−−−−−−−−− 𝑐1,2 = AEAD.Encmk1,2 (𝑀1,2; 𝐴𝐷2 | |𝐴𝐷1,2)

ck1,2 = HKDF((ipkB)t1 | | (T0)
ikA)

ck2,2 = HMAC(ck1,2)
mk1,2 = HKDF(ck1,2, 𝜎1,2 | | (Rchpk1,2) ikA)
𝑀1,2 = AEAD.Decmk1,2 (𝑐1,2)

Figure 2.17 SAMURAI protocol execution between Alice and Bob for the first few stages.
The grey boxes indicate modifications with respect to Signal protocol [CGCD+17]. The
transmitted data is also different and not in grey for more clarity.

encryption:
𝑐1,1 = AEAD.Encmk1,1 (𝑀1,1; AD𝑦=1 | |AD1,1)

and sends: 𝑐1,1, a signature on it, Alice’s public signature key 𝑝𝑘𝐴, and a signature on it.

Alice’s (ℓ, 1) message, ℓ > 1. Alice has computed t1, T1, AD𝑦=1, and the key ckℓ,1; she
now generates new same-user ratcheting key-pair (rchkℓ,1,Rchpkℓ,1). The key update relies
on both long-term keys, for persistent authentication, and this same-user ratcheting key, for
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healing:

ckℓ+1,1 ← HMAC(ckℓ,1)

mkℓ,1 ← HKDF(ckℓ,1, 𝐷𝐻𝑥,𝑦)

The stage-specific metadata consists of the stage (ℓ, 1) and the ratcheting key Rchpkℓ,1.
Then Alice computes 𝑐ℓ,1 and sends: the ciphertext, a signature on it, its signature public
key, and a signature on that.

Note that this procedure applies to all messages (ℓ, 𝑚) for ℓ > 1 and 𝑚 ≥ 1, in replacing
the 𝑦 stage-index above, from 1 to 𝑚.

Decryption (Bob side). Bob needs to first compute the setup value as Alice did, namely the
master secret ms and the chain key ck1,1. For this, Bob asks the server for Alice’s identity
key and verifies if it corresponds to the one given in AD𝑦=1. If the latter verification is valid,
Bob also checks the signature on 𝑝𝑘𝐴, and, if the verification returns 1, it stores that key
as A’s signature key. With all the public values Bob has recovered, he can compute ms (as
Alice did), the chain key and the first message key using the metadata of the first message.
With the latter, Bob can decrypt the authenticated message.

Bob’s first message. B generates a new cross-user ratcheting value along with its public
part (t2, T2) and a same-user ratcheting key-pair (rchk1,2,Rchpk1,2). Bob computes:
ck1,2 ← HKDF

(
(𝑇1) ikB | |ipk𝑡0A

)
, then its first sending keys:

ck2,2 ← HMAC(ck1,2)

mk1,2 ← HKDF(ck1,2, 𝐷𝐻1,2)

Then analogously to Alice side, Bob splits the metadata into the two auxiliary values
AD𝑦=2 and AD1,2. The signed public key 𝑝𝑘𝐵 is also appended to each of the messages in
stages with chain-index 𝑦 = 2, cf. Figure 2.17.

2.4.2 Security Analysis

Since MARSHAL and SAMURAI are equivalent (in terms of PCS), we do not consider a
security analysis in the same framework for both. To avoid repetitions in the security
analysis of SAMURAI we chose the model given in the next chapter dedicated to analyse
protocol in the PCS angle. Thus, the security analysis of SAMURAI is done in Section 3.3.2.2
providing a wider analysis for our variants.

2.5 Implementation

We have implemented both MARSHAL and SAMURAI to evaluate their performances toward
Signal. Since the level of PCS is improved by using additional tools (e.g., Diffie-Hellman
value, signature), we need to ensure that the overhead remains acceptable in practice. Our
implementation is a proof-of-concept rather than a fully integrated solution to MARSHAL
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and SAMURAI; indeed our implementation covers registration and messaging phase but we
exclude out-of-order message decryption.

The performance evaluation is done via two aspects, the execution time and the memory
consumption. The three protocols are implemented in Java based on the initial implemen-
tation of Signal 15. We used low-level libsignal functionalities but had to re-implement
its more abstract layers, to fit with MARSHAL and SAMURAI. The libsignal library uses
interfaces in order to store and recover keys and session state data; it allows us to abstract the
central server and simulate exchanges between two parties within the same process. Our im-
plementation uses similar elliptic curve material than the one for Signal. For signatures, we
use XEd25519 on Curve25519. We use similar authenticated encryption algorithms relying
on AES with 128-bit keys. However, while Signal uses CBC mode and an hmac256-MAC,
we prefer to use AES-GCM with a 12-byte IV and a 16-byte tag.

We have divided our analysis in three experiments:

• Session Setup: A run-time experiment to evaluate the time for starting a session.

• Scenario: This experiment tries to replicate a usual communication between two
users.

• Same Chain: We analyse both run-time and memory in this experiment where new
messages are derived inside a given chain.

2.5.1 Session Setup and Scenario run-time

All the results indicated in this section are the mean result over 1000 executions of each
given test. See Table 2.1 for the results. We only consider run-time in those two experiments
since this is the most noticeable metric in those cases. We do analyse the memory evaluation
but in the Same Chain experiment where the memory parameter renders a crucial parameter.

Session setup. The first differences between Signal, MARSHAL and SAMURAI occur during
registration and session setup. For the setup, Alice and Bob need to generate two new
elements: a signature key and a Diffie-Hellman public value. While the master secret
of both sessions is similar, the first chain and message keys are generated differently in
Signal and MARSHAL/SAMURAI. Our Session-Setup tests covers: key-generation steps of
both Alice and Bob, publishing a PreKeyBundle, initiating a session that uses that bundle,
including the encryption and decryption of a first message.

Scenario. This experiment gives a trend for the protocols in a regular communication
context. The goal is to evaluate the average run-time for a practical example. The scenario
experiment includes the session setup, the first message of Alice, a first reply of Bob (thus
initialising a new chain), then 3 messages of Alice, and finally 3 of Bob.

Interpretation. We notice in Table 2.1 that MARSHAL and SAMURAI take twice as long as
Signal for the session setup test. This is partly because we also require the use of signatures
in our variant. Note that the signature scheme used is the same as Signal; however, a faster
signature scheme could significantly improve performance. We also note that, while the

15Available at https://github.com/signalapp/libsignal-protocol-java
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Test Signal MARSHAL SAMURAI
Session Setup 4.26 6.42 6.31

Scenario 6.74 21.6 21.6
Table 2.1 Average run-time for each test in ms.

relative increase in run-time is significant, the absolute measurement is still low in both
tests. Notice also that MARSHAL and SAMURAI are alike in those experiments as expected:
SAMURAI improves the performances in terms of memory toward MARSHAL but not the
run-time. The next test, Same Chain, is dedicated to differentiate MARSHAL and SAMURAI.

2.5.2 Same Chain experiment

The last experiment concerns the run-time and memory management in a given chain. We
increase the number of messages (up to 600) inside a chain to characterize each protocol.
We give the results in Figure 2.18 and Figure 2.19.

200 300 400 500 600
Number of messages

0

100

200

300

400

500

600

700

M
em

or
y 

al
lo

ca
te

d 
(M

B)

SameChain (Memory)
Signal
Marshal
Samurai

Figure 2.18 Average memory consumption depending on the number of messages in a
given chain.

From the results, we can see that MARSHAL is the most memory consuming protocol.
This comes from the out-of-order message feature where metadata from all the previous
messages (inside the chain) need to be included within a new message. The performance of
SAMURAI is better than MARSHAL yet still far from Signal.
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Figure 2.19 Average execution time depending on the number of messages in a given chain.
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2.6 Conclusion

We propose two variants of the widely used asynchronous messaging protocol Signal. With
MARSHAL and SAMURAI, we achieve better security at comparatively little cost. Unlike
alternative approaches to designing ratcheted key-exchange, which follow a modular design
(typically based on KEMs), we try to stick close to Signal’s original structure, thus showing
how to achieve better post-compromise security.

Our protocols depart from the key observation that Signal’s comparative lack of PCS
is due to the frequency of asymmetric ratchets and lack of persistent authentication. The
latter is fixed by adding long-term keys at every new stage. The former is dealt with by
adding asymmetric ratchets at every stage. To do so, we require a long-term key stored
on the semi-trusted Signal server, and we ensure that message-loss resilient is achieved by
providing the a list of correct ratcheting keys at every stage of a given chain.

The main difference between MARSHAL and SAMURAI does not lie in the security but
rather on the performance side. A feature we want to keep (for practical issue) is the out-of-
order message property. In MARSHAL, a stage, inside a chain, is derived using all the data
from previous stages thus auxiliary information grows linearly when continuing a chain.
The fix of SAMURAI allows to remove this dependence with a constant size of auxiliary
information while keeping the out-of-order feature.

Finally, we have implemented our protocols to evaluate the practical cost of our modifica-
tions. Our implementation does not require fundamental changes to the basic cryptographic
primitives used in Signal. In addition, experiments show that significant benefits to post-
compromise security our protocol brings do not come at a too-significant cost, the run-times
of our ratchets and message-exchanges remaining under 10 ms mark in Java implementation.
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Chapter 3

Measuring the PCS Healing

Numerous messaging protocols have arisen with their own specifities and security properties.
We propose a way to compare them in a generic framework for a specific feature: the Post-
Compromise Security. To show the validity of our model, we first analyse Signal. Then
we show that comparison is possible by applying it to two variants of Signal, SAID and
SAMURAI. Finally, we show the expressive aspect of our framework by taking a use case in
the 5G network procedures.
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3.1 Introduction

In the previous chapter, we introduced two variants enhancing the Post-Compromise Security
(PCS) of Signal messaging protocol. The latter was used as a basis for group messaging
schemes, such as ART [CCG+18] and MLS [BBR+22]; the protocol can also be used directly
if group messaging is implemented as a composition of pairwise secure channel between
all the participants. Other messaging protocols, such as OTR [BGB04], Matrix [mat19],
Wire [Gmb21], also guarantee some measures of PCS. The rise of asynchronous messaging
protocols comes after Snowden’s revelations, who exposed the reality of mass surveillance by
security agencies such as the NSA or GCHQ. It is now confirmed that powerful adversaries
can, and do, fully corrupt the private information stored on a targeted device, thus learning
most (if not all) of its secrets. Even then, secure channels open prior to the adversary’s
intrusion can still preserve confidentiality and authenticity if Perfect Forward Secrecy (PFS)
is guaranteed. Unfortunately, however, all sessions following the party’s compromise will
no longer guarantee either confidentiality or authenticity.
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The lack of future security is particularly problematic for secure channels that are meant
to last for a long time, such as those generated by asynchronous messaging applications.
Say that a civilian, Alice, has a journalist friend, Bob, with whom she communicates via
a secure messaging application. While abroad, Alice receives sensitive documents from a
whistle-blower, whose request is that she sends them to Bob. She messages Bob about them.
But as she travels back home, Alice’s phone might be compromised at border control. At
this point, she would like to have three guarantees: that her past communication with Bob
is secure; that no one can impersonate her to bait Bob; and that in a little while, she will be
able to resume talking to Bob without (for instance) destroying her phone.

The PFS of the channel could guarantee the first of these requirements. For the second
and third, Alice requires the PCS [CCG16]. This attractive feature implies that the secure
channel established in Signal by Alice and Bob can repair (or “heal") its security, even after
a full compromise.

Cohn-Gordon et al. [CGCD+17] showed that in the original Signal protocol, Alice can
recover security after she and Bob have switched speakers (i.e., exchanged sender/receiver
roles) twice in the conversation. So, if Bob was the current sender when Alice’s phone was
compromised, then Alice must first send (at least) a message, and wait for Bob’s reply before
they are safe again. All messages sent between the moment of corruption and Bob’s second
reply are compromised by the attacker.

Even more problematic is the case in which the attacker uses the data recovered from
Alice to insert itself into the communication, choosing whether it wants to just impersonate
Alice to Bob, impersonate Bob to Alice, or both, and set itself up as a permanent Person-
in-the-Middle between them. For active attackers, Alice’s conversation with Bob will never
heal.

In our chosen example, the healing speed makes a huge difference to Alice. She would
moreover ideally like to know that healing depends entirely on her (rather than, say, on Bob
returning online). Finally, from a designer’s point of view it is crucial to understand how
different protocols handle different adversaries: would the attacker only require short-term
(potentially more vulnerable) values, or does it need long-term secrets?

While protocols with PCS can be analysed independently, a natural question arises when
we want to find the “best” PCS-protocol: can we express the speed of healing given a
generic framework? From this, there are two crucial points to investigate, the quantification
of healing speed (i.e., its metric) and a model for underlying protocols.

Our first approach is naturally directed toward secure channel establishment schemes,
e.g., asynchronous messaging protocol like Signal [CGCD+17], since the setup can be easily
modulable for the latter. Indeed, we can have only two parties, Alice and Bob (further
substituted to a client and a server), with a clear evolution of the states define as stages (see
Figure 3.1).We index stages by pairs of positive integers (𝑥, 𝑦), and consider an evolution of
stages that is either horizontal (from stage (𝑥, 𝑦) to (𝑥 + 1, 𝑦)), or vertical (from stage (𝑥, 𝑦)
to (1, 𝑦 + 1)). Stages with the same 𝑦 value are said to be on the same chain. An intuitive
way of quantifying the healing speed from this model is to simply count the messages loss
after a compromise, corresponding to the number of stages that are compromised.
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Our goal is not to propose a survey on each protocol featuring PCS notion but a precise
framework and why it is working. For this, we take Signal protocol which is well analysed
and accepted by the community for many years. Yet, for showing the expressiveness of
our model, we add a variant of Signal, SAID, further allowing the comparison between the
two protocols. Those two protocols being relatively equivalent (considering all types of
secure channel establishment protocols), we also add the 5G handovers suites to widen our
framework and show its full expressiveness.

NIKE, AKE

1, 1 2, 1 3, 1 . . . Alice talking

1, 2 2, 2 3, 2 . . . Bob talking

1, 3 2, 3 3, 3 . . . Alice talking

...

Figure 3.1 Stages for secure channel establishement. The NIKE (Non-Interactive Key
Exchange) and AKE (Authenticated Key Exchange) are sub-protocols used to derive
shared secrets. The latter are not part of our analysis.

3.1.1 Example

Suppose that an attacker manages to compromised a single (but full) chain of stages while
being ejected from the communication at the beginning of the new chain (Figure 3.2a).
During that compromise, depending on its type, the attacker will learn a subset of private
keys which it might, or might not depending on type, be able to use in an active attack. Our
metric measures the number of messages required, per message-chain, for the security of the
channel to heal after this corruption. Thus, in this example, Signal is (∞, 1)-PCS resistant
with respect to some class of adversaries because the honest parties lose channel security for
at most∞ stages obtained through horizontal evolution, and at most 1 stage obtained through
vertical evolution, starting from the last stage (𝑥∗, 𝑦∗) at which the adversary compromised
either endpoint (i.e., the protocol heals at the latest at stage (1, 𝑦∗+1), having lost potentially
the confidentiality of all the messages in chain 𝑦∗ with 𝑥 ≥ 𝑥∗).

Blazy et al. [BBB+19] showed how to improve the guarantees provided by Signal,
by reducing the duration before the scheme heals and making it harder for Big Brother
to impersonate the two parties. However, it seems difficult to compare the two schemes
directly. Blazy et al.’s protocol (called SAID) is identity-based, whereas Signal is not. The
former makes use of a secure element to store some long-term credentials, whilst the latter
does not. At a high level, both protocols guarantee post-compromise security – so are they
perhaps equivalent?
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(a) Toy example for Signal

X3DH

1, 1 2, 1 3, 1 . . . Alice talking

1, 2 2, 2 3, 2 . . . Bob talking

1, 3 2, 3 3, 3 . . . Alice talking

...

(b) Toy example for SAID.

IDBS

1, 1 2, 1 3, 1 . . . Alice talking

1, 2 2, 2 3, 2 . . . Bob talking

1, 3 2, 3 3, 3 . . . Alice talking

...

Figure 3.2 Example of compromise and healing for Signal and SAID. The dashed circles
represent compromised stages while thick circles represent healed stage.

In the example of Figure 3.2b, there is one compromised stage and an immediate healing
occurring the next stage. In this example, there is a (1, 0)-PCS security for SAID which is an
optimal healing toward the given compromise (recall that analysing PCS security depends
on a compromise so there is always a stage lost).

From the toy examples of Figure 3.2, a natural question arises: is SAID better than
Signal for PCS? Looking at the numbers and the answer is clearly yes but those protocols
are not equivalent and the answer becomes uneasy to tell. Indeed, SAID is an identity-based
protocol with a Key Distributor Center (versus a semi-honest server for Signal) and a specific
key hierarchy. One goal for our metric is to give generic framework to make this comparison
possible and fair.

3.1.2 Goals for our metric

We want to formally define a post-compromise security (PCS) metric for a broad class of
protocols, which we call SCEKE schemes (for Secure-Channel Establishment schemes with
Key-Evolution). Crucially, SCEKE protocols allow key material to evolve over time, with
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channel keys being used only for a short duration of time (i.e., a stage).
The goal of PCS adversaries against SCEKE protocols is to learn something about a

target channel (also called message) key, following a compromise of that party or its partner.
During that compromise, depending on its type, the attacker will learn a subset of private
keys which it might, or might not depending on type, be able to use in an active attack. Our
metric measures the number of messages required, per message-chain, for the security of the
channel to heal after this corruption. Optimal healing corresponds to (1, 0)-PCS security,
while the worst healing is (∞,∞)-PCS security, i.e., the protocol’s security never heals.
Those extreme cases are quite straightforward but our model becomes necessary for cases
in between.

Apart from quantifying the speed of recovery, the goal is also to provide a taxonomy of
adversaries, classified by 3 sets of characteristics: their access (is it a trusted party or not),
their power (active or passive), and their reach (which values does it compromise?). A weak
adversary may only be able to compromise stage-specific values (which are always within
memory). A very strong adversary might be a trusted party (like Signal’s credential server),
able to actively hijack sessions and to fully compromise all the data belonging to a party.

To showcase the broad reach of our metric, we use it to compare 4 schemes that would
otherwise be hard to compare: the PKI-based Signal asynchronous messaging protocol
(analyzed by Cohn-Gordon et al. [CGCD+17]), the identity-based SAID asynchronous-
messaging protocol [BBB+19], our own variant of Signal built specifically toward PCS,
SAMURAI; and the 5G handover protocols in mobile networks. For the latter protocol,
there is no attempt (to our knowledge) to model and analyze the post-compromise security
afforded by sequential compositions of handovers. We also show how to easily tweak 5G
handovers in order to obtain much faster healing.

Other protocols. Although we choose to showcase our metric by means of the three
protocols cited above, our framework can be applied to other PCS-providing protocols, such
as OTR, Matrix’ Olm protocol for 2-party rooms, and Wire. Signal ratchets are actually
a combination of OTR and SCIMP ratchets1. Notably, the former provides PCS security.
However, note that OTR’s focus is privacy, not necessarily (PCS-)security, and thus limits
and encrypts any explicit long-term-authentication steps. This gives it a relatively weak
security in our framework when we consider active adversaries, but interestingly provides
less advantages for insider attackers. An interesting future research question is how to
optimally balance the kind of privacy desired by OTR and its PCS healing speed.

The Olm protocol used by Matrix resembles Signal (some differences exist with respect
to the type of keys used, signed or unsigned) and would provide similar metric results in our
framework – which is why we do not treat it. On the other hand, Wire is more complicated
to analyse. Although the core protocol relies on an independent implementation of Signal,
its use of cookies and access tokens for authentication and synchronization complicates
matters, particularly with respect to powerful adversaries such as insiders. Moreover, the
ability to have multiple synchronized devices raises the questions of modelling individual-
device compromise and device revocation, for which we would need an extended framework,

1See https://signal.org/blog/advanced-ratcheting/.
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akin to what is needed to capture MLS security (see below).
A limitation of our approach is that we only consider two-party protocols: as such, even

if our taxonomy of adversaries is easily extendable to multi-party schemes, such as ART
and MLS [CCG+18, BBR+22], our metric is not. A particular difficulty with extending
our framework to multiple parties is the dynamic addition and removal of participants. In
two-party schemes, we have two types of evolution, which correspond –roughly– to one,
or the other participant’s messages. In that case, our metric quantifies the response to the
question: if Alice is compromised, after how many of her, and Bob’s messages will the
channel security heal? However, when we have a dynamically-adaptable set of parties, we
would need to account – not only how many turn-switches there are between Alice and non-
Alice participants, but also over added and removed users. It is not immediately apparent
how best to achieve this, which is why we leave the extension of our metric to multi-party
protocols as future work.

3.1.3 Related work

Our work is the first (to our knowledge) to quantify PCS-security in terms of healing speed
and adversaries ranked by their access, degree of activity, and power. However, we note that
exact provable-security approaches in asynchronous messaging (such as the analyses we use
in this paper for Signal [CGCD+17] and SAID [BBB+19]) already take an important step
in comparing the security of protocols, by precisely formalizing attackers and their winning
conditions. Our main added contributions here, however, are: generalizing a framework that
goes beyond just asynchronous messaging in the shape of SCEKE protocols (we instantiate
SCEKE using 5G handover protocols); providing a taxonomy of adversarial types in terms
of their power, access, and reach; and thus creating a metric that can compare instantiations
of secure-channel establishment protocols with key evolution.

Although comparatively infrequent, taxonomies and metrics have already been intro-
duced in cryptography. An eminent example is the taxonomy of privacy notions by Pfitz-
mann and Hansen [PH10], which ranks and classifies subtly-different terms referring to user
privacy (such as anonymity, privacy, unlinkability, undetectability, etc.). Unlike them, we
focus on the privacy of information (channel security) and narrow the scope of our analysis
down to a specific type of protocol; moreover, while we classify attacks by three types of
parameters, our taxonomy focuses on a precise quantification of healing speed, which is out
of scope for [PH10] due partly because of its generality.

Our methodology better resembles taxonomy efforts such as [FG94, DLL12], whose
purpose is to categorize security definitions in information-flow, or electronic voting, re-
spectively. Our work, however, focuses on a very different type of protocol than in these two
fields; moreover, we use a provable-security, rather than formal-methods approach.

The specificities of our model resemble those of Fischlin and Günther [FG14], which
extend prior work by Bellare and Rogaway [BR93a, CK01]; however, we consider security
with respect to the complementary property of Post-Compromise Security, and also consider
stage evolution in two directions (horizontal and vertical). Finally, our metric allows the
quantification of the speed of healing, rather than the secure/insecure label typically produced
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in the asymptotic case of the left-of-right indistinguishability game in AKE. A parallel line of
work recently introduced by Brzuska et al. [BCK22] analyzes, in a compositional framework
(using state-separating proofs [BDF+18]), the security of the multi-party asynchronous
messaging protocol MLS. Unlike that technique, ours is not composable2, but we do take
into account authentication, which is crucial in the case of active adversaries.

Finally, we note that our main contribution in this work is the taxonomy of attackers and
quantification of PCS-security. This is why we carefully chose only four protocols (with
apparently incomparable degrees of PCS) to analyze: Signal, SAID, SAMURAI and the 5G
Handover protocols. Our instantiation of SCEKE protocols only feature two endpoints, and
we thus do not treat, for instance, the case of multi-party asynchronous messaging and/or
multiple groups as is done by Cremers et al. [CHK21].

That said, our result can apply when considering the security of group asynchronous
messaging instantiated via pairwise channels. Our framework also captures sequential
ratchets of the type described in the literature of ratcheted key-exchange protocols, a line of
work begun by Bellare et al. [BSJ+17] and continued through numerous publications.

3.1.4 Outline

We give the formal definition of SCEKE protocol in Section 3.2. This generic protocol is
constructed to model protocols in order to be able to compare them. For this define SCEKE
protocol in 3.2.1, the adversary in 3.2.2 (e.g., the available oracles for A), the class of
adversaries in 3.2.3 (defining a fine-grained access to sequence of queries), and finally our
metric in 3.2.4.

Then, in Section 3.3, the plausibility of our model is checked using the analysis of already
provably secure protocols (e.g., Signal); the analysis is extended to less studied protocol 5G
handovers in 3.3.4. We present the latter procedures which are then fitted to our model; this
analysis brings a solution to improve the protocol.

Finally, we conclude in Section 3.4 by interpreting the results given by our model.

3.2 Our PCS metric for SCEKE protocols

Our taxonomy of adversaries and quantification of healing apply to a generalization of
two-party secure-channel establishment protocols that feature key-evolution. Although
post-compromise security usually refers to secure channels that are long-lived, such as those
featured in asynchronous messaging, we note that this can be expanded to scenarios in which
specific secure-channels are short lived, but then evolve into secure channels whose keys
were derived from past sessions.

3.2.1 Definition of SCEKE Protocols

We formally characterize secure-channel establishment with key-evolution (SCEKE) proto-
cols. Such schemes allow parties Alice and Bob to initially establish a secure channel (by

2This is, technically speaking, because we quantify PCS-security within the winning conditions.
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agreeing on some initial key-material), and then to maintain that secure channel over a long
period of time by sequential evolutions of the key material to ensure two basic properties:

PFS: We want to guarantee that, if a user or an instance are fully corrupted at a given
moment, that keys established before that corruption are still secure;

PCS: In addition, if a user or instance are fully corrupted at some moment, then through
evolution, the security of future keys in that same, long session will be once more
guaranteed after a given interval.

Our metric will measure the minimal interval needed for security to return, with respect
to several classes of adversaries (which we present in Section 3.2.3). We begin by describing
a general syntax for SCEKE protocols. The latter are composed of parties (which are not
equivalent) evolving in sessions through specific proceedings (i.e., stages).

Parties and super-users. We consider protocols featuring two types of participants: parties
P belonging to some set P, and a super-user Ŝ, which is usually an entity playing a special
part (like a PKI-providing centralized server used in Signal to store user public keys, or the
key-derivation center present in identity-based infrastructures). Regular parties can and do
run protocol sessions in order to establish a secure channel with key evolution, while the
super-user does not.

Prior to the system coming online, a setup algorithm is run by one or several parties.
We associate super-user Ŝ with a pair of private and public keys (Ŝ.sk, Ŝ.pk), and each
party P with private/public identity-credentials (ikP, ipkP). Each of these keys could be a
concatenation of credentials, or – if absent – could be void (denoted by ⊥). The public keys
are assumed to exist prior to the user registering to the system.

After setup, the next step is user-registration, at which point each party P will register
with the super-user. At this point, Ŝ begins to build a database of entries, indexed by party
identifiers P, which must be unique per party. The contents of the entries are different per
protocol, and indeed play a crucial part in how post-compromise secure a protocol is with
respect to a specific, powerful type of adversary – notably an insider attacker as we formalize
below.

Sessions, instances, and stages. Once they have registered with the super-user, parties can
then run protocol sessions with each other. Following typical authenticated key-exchange
formalizations, a protocol session happens between two party-instances. The 𝑖-th instance
of P is denoted 𝜋i

P.
From the point of view of the two parties, each protocol session has three types of

steps: an initialisation step, which only occurs once per protocol instance (at the beginning);
a recurring sending step, which happens every time the instance processes and sends a
message to its partner; and a recurring receiving step, which corresponds to an instance
receiving – and processing – a message from its partner. The last two types of actions
depend on a notion that is crucial to our framework, that of stage.

We associate stages to a variable (protocol-specific) number of messages, during which
the parties store an unevolving, specific message key. When that key evolves, we have moved
on to the next stage. We index stages by a tuple (𝑥, 𝑦) with 𝑥, 𝑦 ≥ 1, such that the first
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communication stage is (1, 1). From this point onward, encrypted communications will
use the same key mk1,1, until that key evolves into a new key, through either horizontal or
vertical evolution, as follows:

Horizontal evolution: Stage (𝑥, 𝑦) turns into (𝑥 + 1, 𝑦) , we increment the stage’s 𝑥
coordinate, but not its 𝑦 coordinate. This is the weaker of the two ways to transform keys.

Vertical evolution: Stage (𝑥, 𝑦) turns into (1, 𝑦 + 1), we increment the stage’s 𝑦 coor-
dinate and “reset" its 𝑥 coordinate to 1. This is the stronger of the two ways to transform
keys.

The vagueness of our definitions of stages is intentional, since we aim to capture a
generic type of key-evolution. As a single rule, however, honest parties can never evolve
“backwards" (e.g., send a message at stage (𝑥, 𝑦) and then again at (𝑥 − 1, 𝑦) or at (·, 𝑦 − 1)).
We depict the evolution across stages in Figure 3.1.

Formalization. More formally, instance 𝜋i
P of parties P ≠ Ŝ keep track of the following

attributes:
pid: partner identifier for the session, denoted 𝜋i

P.pid.
sid: session identifier 𝜋i

P.sid: an evolving set of instance-specific values.
stages: a list with elements (𝑠, 𝑣), with stages 𝑠 = (𝑥, 𝑦) and values 𝑣 ∈ {0, 1} for which a

message was received (𝑣 = 1) or not (𝑣 = 0). By abuse of notation we write 𝑠 ∈ 𝜋i
P if,

and only if, (𝑠, 𝑣) ∈ 𝜋i
P.stages.

𝑇𝑟: transcript 𝜋i
P.𝑇 , indexed for stage 𝑠 describing all data sent or received for this stage.

We denote 𝜋i
P.𝑇 [𝑠].

rec: a list of subsets 𝜋i
P.rec, indexed by stage 𝑠 and indicating messages and metadata

received, in order. A special symbol ⊥ is used for sending stages.
var: a set 𝜋i

P.var of ephemeral values used to compute stage keys, indexed by stage. If a
value is used for more than one stage, it will appear under every single stage that it is
required for.

Definition 18 (SCEKE Protocol) A Secure-Channel Establishment protocol with Key-
Evolution (SCEKE) is a tuple of five algorithms and two interactive protocols: SCEKE =

(aSetup, aKeyGen,ΠUReg,ΠStart, aSend, aReceive, aRGen), such that:
aSetup(1𝜆) → (Ŝ.sk, Ŝ.pk, pparam) : outputs the public/private long-term keys of the

super-user and some public system parameters pparam, which will be implicitly taken
in input to all other algorithms.

aKeyGen(1𝜆) → (ik, ipk) : this algorithm is run by a party P to output public/private long-
term credentials (ik, ipk). Either of those keys could be a special symbol ⊥. These
keys will be used in practice to authenticate the party when registering (and perhaps
also during the protocol).

ΠUReg(P, Ŝ) → ({sk, pk}, 𝑏) : this interactive protocol is run by a party P with the super-
user Ŝ. The latter will output a bit 𝑏 (if the user is registered correctly, that bit will
be 1), while the former will output public/private credentials (sk, pk) for P. The
super-user may decide to add some or all of the entries to its database.

ΠStart(P, role, pid, Ŝ) → (𝜋i
P, 𝑏) : it is run interactively between P and the super-user Ŝ,

for the purpose of creating an instance of P that will purportedly be talking to an
instance of pid, such that P plays a given role ∈ {𝐼, 𝑅}, either initiator or responder.
In the event of a success, Ŝ outputs 𝑏, while P outputs a handle 𝜋i

P on its 𝑖-th instance.
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Some initial key material might be already set up during this phase (such as a master
secret).

aSend(𝜋i
P, 𝑠, 𝑀, 𝐴𝐷) → (𝜋

i
P, 𝐶, 𝐴𝐷

∗) ∪ ⊥ : the inputs are a state instance 𝜋i
P, a stage 𝑠,

a message 𝑀 , associated data 𝐴𝐷, and outputs the same instance with updated state
𝜋i

P, a ciphertext 𝐶, associated data 𝐴𝐷∗ or a special symbol ⊥.
aReceive(𝜋i

P, 𝑠, 𝐶, 𝐴𝐷
∗) → (𝜋i

P, 𝑀, 𝐴𝐷) ∪ ⊥ : it takes in input an instance 𝜋i
P, a stage 𝑠,

a ciphertext 𝐶, associated data 𝐴𝐷∗, and outputs the same instance 𝜋i
P (with updated

state), a message 𝑀 and some (possibly transformed) associated data 𝐴𝐷, or special
symbol ⊥.

aRGen(1𝜆) → (rchk,Rchpk) : outputs a public/private key-pair used to refresh keys. We
use the typical denomination of ratchet keys for these, although our concept here is
more general, as we state no specific purpose for the resulting keys. Either one or
both output keys could be a special symbol ⊥.

Before defining the correctness of communication protocol, we give the definition of
matching conversation. This ensures that the communicating party of some user is indeed
the intended partner.

Definition 19 (Matching conversation) Let SCEKE be a SCEKE protocol, and A, B two
users of instances 𝜋i

A and 𝜋j
B respectively. 𝜋i

A and 𝜋j
B have matching conversation if and

only if:

• 𝜋i
A.sid = 𝜋

j
B.sid, and

• 𝜋i
A.pid = B and 𝜋j

B.pid = A.

Definition 20 (Correctness) If 𝜋i
A and 𝜋

j
B have matching conversation, then a SCEKE

protocol SCEKE is correct if both conditions holds:
• for each stage 𝑠 = (𝑥, 𝑦), both instances have identical mk𝑥,𝑦 , and
• A uses aSend to output (𝜋i

P, 𝐶, 𝐴𝐷
∗) from a message 𝑀 and B inputs𝐶 for aReceive

then 𝜋i
A and 𝜋j

B are still matching.

3.2.2 Adversarial model

Our adversary is a Probabilistic Polynomial-Time adversary A, which manipulates honest
parties by means of oracles. We present in the next section a taxonomy of adversaries based
on several characteristics – depending on their type, such attackers could have access to only
a subset of the oracles we present below.

For reasons that will become apparent when we present our taxonomy, we divide the
private keys that parties use during SCEKE sessions into three categories:

• Cross-session Keys: These are keys that (intentionally) repeat in at least two sessions3.
More formally, a key 𝑘 is cross-session if there exist distinct instances 𝜋i

P, 𝜋j
P of

registered party P, and distinct stages 𝑠 ∈ 𝜋i
P and 𝑠′ ∈ 𝜋j

P such that 𝑘 ∈ 𝜋i
Pvar[𝑠]

and 𝑘 ∈ 𝜋j
Pvar[𝑠′]. By definition, the keys ikP and sk (identity and registration keys)

belonging to P are included in this category. We denote the set of cross-session keys
of party P as P.𝑋sid.

3We thus formally exclude collisions in randomness
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• Cross-stage Keys: These are keys that (intentionally) repeat in at least two stages
of the same session, but do not repeat in two distinct sessions. More formally, there
exists an instance 𝜋i

P and distinct stages 𝑠 ∈ 𝜋i
P and 𝑠′ ∈ 𝜋i

P, such that 𝑘 ∈ 𝜋i
Pvar[𝑠]

and 𝑘 ∈ 𝜋i
Pvar[𝑠′], but 𝑘 ∉ P.𝑋sid. We denote the set of cross-stage keys belonging

to instance 𝜋i
P as 𝜋i

P.𝑋stage.

• Stage-specific Keys: These keys only occur in one stage of one protocol instance 𝜋i
P,

in other words: 𝑘 ∈ 𝜋i
P.var[𝑠] for some stage 𝑠, but 𝑘 ∉ (P.𝑋sid

⋃
𝜋i

P.𝑋stage). We
denote by 𝜋i

P.1stage the set of all stage-specific keys of instance 𝜋i
P.

Oracle access. The adversary can register malicious users, corrupt users to get any of the
three types of keys included above (through three separate oracles), and manipulate com-
munication by instantiating new sessions and sending/receiving messages. The adversary
ultimate goal is to learn at least one bit about a target message key that is freshly and honestly
generated. Thus, each session needs to also store the following attribute:

𝜋i
P.b[𝑠]: a challenge bit randomly chosen for each instance for stage 𝑠. If 𝑏 = 1, the output is

the real message key, else the output is a random key.

We describe the precise game played by the adversary in Section 3.2.4, and a number
of interesting adversarial types in Section 3.2.3. However, in all these games, the adversary
has access to (a subset of) the following oracles:
oUReg(P): runs aKeyGen on party P i.e., A can register malicious P to an honest Ŝ.
oStart(P, role, pid, ℎ𝑜𝑛): runs ΠStart to create a new instance of an existing honest party

with the role role and intended partner pid. The added value ℎ𝑜𝑛 is a bit, which, if
set to 1, runs the protocol with the challenger posing as Ŝ, whereas if ℎ𝑜𝑛 = 0, the
protocol is run with the adversary posing as Ŝ.

oTest𝑏 (𝜋i
P, 𝑠): for honest parties, valid instances, valid stages and correctly generated

session key, returns the true message key (if 𝜋i
P.b[𝑠] = 1) or a random key of the same

length (𝜋i
P.b[𝑠] = 0). This oracle can only be queried once.

oSend(𝜋i
P, 𝑠, 𝐴𝐷): two modes for this oracle: honest or maliciously-controlled. For

𝐴𝐷 = ⊥ (other values are valid), 𝜋i
P generates new key pair using aRGen for stage 𝑠

then it runs aSend, and outputs the additional data. Otherwise, the oracle simulates
the sending algorithm with adversarially-chosen 𝐴𝐷.

oReceive(𝜋i
P, 𝑠, 𝐴𝐷): oracle also in two modes. In honest mode, 𝐴𝐷 is valid since

outputted by oSend at stage 𝑠 by 𝜋i
P’s partner. For the adversarial mode, 𝐴𝐷 is always

considered correct (allowing communication hijacking for instance).
oReveal.XSid(P): corrupts P, giving A access to P.𝑋sid.
oReveal.XStage(𝜋i

P, 𝑠): for stage 𝑠, it leaks the set of keys 𝜋i
P.𝑋stage

⋂
𝜋i

Pvar[𝑠] of cross-
stage values.

oReveal.1Stage(𝜋i
P, 𝑠): for stage 𝑠, it leaks the set 𝜋i

P.1stage
⋂
𝜋i

Pvar[𝑠] of stage-specific
values.

Like in the model used for SAID [BBB+19],A does not have access to the real ciphertext,
which can help to distinguish the message keys.
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3.2.3 A taxonomy of adversaries

We classify adversaries in terms of 3 criteria: reach, power, and access. Although attackers
play more or less the same security game and have the same security goals, they might have
access to more or less private values belonging to honest parties, and they might be allowed
different sequences of oracle queries. Our classification of adversaries is the composition
of the 3 criteria defined below. The classes of adversaries are illustrate in Figure 3.3

A

REACH POWER ACCESS

Medium

Global

Local

Active

Passive

Passive

Active

Active

Passive

Insider
Outsider

Insider
Outsider

Insider
Outsider
Insider
Outsider

Insider
Outsider
Insider
Outsider

Figure 3.3 Taxonomy of adversary.

Reach. Our model features three types of corruption oracles: oReveal.XSid, oReveal.XStage,
and oReveal.1Stage, revealing, respectively, the party’s cross-session (long-term) keys,
cross-stage keys, and stage-specific keys. Of these, the latter are assumed to be the least
protected because as they are the least impactful during key-evolution. We distinguish the
following adversarial classes:

• Local adversaries: are only allowed access to the oReveal.1Stage oracle;
• Medium adversaries: may query both oReveal.1Stage and oReveal.XStage, but not

oReveal.XSid;
• Global adversaries: may query all three oracles.

Power. We distinguish between attackers which extract information from honest participants
via their reveal oracles, and stronger adversaries, which extract data and then use it to hijack
honest sessions, or for other (evil) purposes. This reasoning leads to a classification between:

• Active adversaries: The attacker may use the malicious modes of the oSend and
oReceive oracles on the target instance 𝜋i

P, or on the instance it has matching conver-
sation with. We define below one potential strategy of such attackers, namely session
hijacking, but active adversaries are not restricted to only it. In short, (successfully)
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hijacking a session enables the adversary to insert its own key material and increase
the interval required before healing (or make the channel unable to heal at all);

• Passive adversaries: These attackers may not use the malicious modes of the sending
and receiving oracles on the target instance, nor its partner.

We define the hijacking of a session run between 𝜋i
A and its partner 𝜋j

B at some stage
𝑠ℎ = (𝑥ℎ, 𝑦ℎ) (for which we assume w.l.o.g. that A is the sender) the event that the following
conditions hold simultaneously:

1. A has queried oReceive(𝜋j
B, 𝑠ℎ, 𝐴𝐷ℎ);

2. 𝐴𝐷ℎ were never output by an oSend(𝜋i
A, 𝑠ℎ, ·) query;

3. there exists a value 𝑣 ∈ 𝐴𝐷ℎ, but such that 𝑣 ∉ 𝜋i
A.var[𝑠ℎ] ∪ 𝜋i

B.var[𝑠ℎ].
We call stage 𝑠ℎ successfully hijacked if in addition the oReceive query in 1. yielded an

output different from ⊥.

Access. The last criterion in our taxonomy is access. Typically, channel-security is defined
with respect to a Person-in-the-Middle attacker. However, some such protocols also feature
a centralized entity with more extensive access and thus greater potential to wreak havoc –
in our framework, the super-user Ŝ. We divide attackers into two categories:

• Insider adversaries: they are in fact the super-user. Throughout the game, they receive
from the challenger all the private keys and database information amassed by Ŝ.

• Outsider adversaries: these attackers do not receive any Ŝ data. Since additionally A
has no oracle-access to corrupting Ŝ, the latter will remain honest.

Adversarial types. We consider adversaries whose types are a composition of three char-
acteristics, in the order (power, reach, access). The weakest adversary is a passive local
outsider. The strongest is an active global insider. All other characteristics being equal,
active attackers are stronger than passive ones; also, global attackers are stronger than
medium ones, which are in turn stronger than local ones; finally, insiders are stronger than
an outsiders.

Nevertheless, intermediate adversaries with more than two varying characteristics are
not as easy to compare. This is particularly the case for insider attacks, for which the infor-
mation obtained by the insider is highly protocol-specific. The same holds for active local
adversaries versus passive global ones. In our case, moreover, comparing such adversaries
asymptotically is not as interesting as quantifying, for each adversary, the exact healing
speed of the scheme. In Figure 3.4, we recap the adversary’s access to oracle depending on
its type.

3.2.4 A metric for PCS

The adversaryA plays against a challengerC in the following security game Exp𝑃𝐶𝑆SCEKE(𝜆,A),
which is also depicted in Figure 3.5:

• C runs aSetup and forwards all the public values to A. C also simulates the
registration of all the honest parties.

• A has access to algorithms aKeyGen and aRGen and, depending on its type, may
adaptively query a subset of these oracles (see also Figure 3.4):

– oUReg(P) (all attackers);
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1Stage ✓ ✓ ✓ ✓

XStage ✓ ✓ ✓ ✓

XSession ✓ ✓ ✓ ✓

Access Ŝ.sk ✓ ✓ ✓ ✓ ✓ ✓

oReceive H H H H H H ✓ ✓ ✓ ✓ ✓ ✓

oSend H H H H H H ✓ ✓ ✓ ✓ ✓ ✓
Figure 3.4 Available oracles depending on type, labelled reach∥power∥access. For in-

stance, LAO denotes Local Active Outsider adversary. We omit oTest, oUReg and oStart
oracles since all adversaries may query them. H denotes an honest call to the oracle.

– oStart(P, role, pid, 1) (outsider A) and oStart(P, role, pid, 0) (for insiders);
– oSend(𝜋i

P, 𝑠,⊥) (passive A) and oSend(𝜋i
P, 𝑠, 𝐴𝐷) (active A);

– oReceive(𝜋i
P, 𝑠,⊥) (passive A) and oReceive(𝜋i

P, 𝑠, 𝐴𝐷) (active A);
– oReveal.XSid(P) (global A);
– oReveal.XStage(𝜋i

P, 𝑠) (medium A);
– oReveal.1Stage(𝜋i

P, 𝑠) (local A).
• At some point,A outputs a party instance 𝜋★P and a stage 𝑠★ = (𝑥★, 𝑦★). The challenger
C runs oTest𝑏 (𝜋★P , 𝑠

★) and outputs the true 𝜋★P .mk𝑠 or a random key.
• The attacker may continue to use its oracles/algorithms, until it outputs a final bit 𝑑.

Exp𝑃𝐶𝑆SCEKE(𝜆,A)
(Ŝ.sk, Ŝ.pk, pparam) ← CaSetup(1𝜆 )
(P = {P1, · · ·PnP }) ← C(𝜆, nP)
(iki, ipki) ← CaKeyGen(1

𝜆 ) ∀𝑖 ∈ {1, · · · , nP}

Otype ←
{

oUReg(·), oStart(·, ·, ·, ·), oReveal[A.reach] (·, ·), oSend(·, ·, ·, ·),
oReceive(·, ·, ·, ·),RO1(·),RO2(·)

}
;

(𝜋★P , 𝑠
★) ← AOtype (1𝜆)

𝐾 ← oTest𝑏★ (𝜋★P , 𝑠
★)

𝑑 ← AOtype (𝜆, nP , 𝐾)

A wins iff. 𝑑 = 𝑏★ and (¬oUReg(P) ∨ ¬oUReg(𝜋i
P.pid)) = ⊤

Figure 3.5 The PCS game Exp𝑃𝐶𝑆SCEKE(𝜆,A) between adversary A and challenger C,
parametrized by the security parameter 𝜆 and number of honest parties nP . A can
query a set of oracles Otype, subject to type. We denote by oReveal[A.reach] the precise
reveal oracle allowed to A, subject to its reach (local, medium, or global).

We say that A wins Exp𝑃𝐶𝑆SCEKE(𝜆,A) if and only if 𝑑 = 𝜋★P .b[𝑠
★], and if the winning

conditions below hold. The advantage of the adversary is computed as:

| Pr[A wins Exp𝑃𝐶𝑆SCEKE(𝜆,A)] −
1
2
|
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Further winning conditions. In order to win the Exp𝑃𝐶𝑆SCEKE(𝜆,A) game,A must guess the
real-or-random bit 𝑏 for the target message key, and must do so by a non-trivial attack (for
instance, it would be trivial to win by revealing the target message key, and then attempting
to distinguish it). Attacks are classified as trivial or non-trivial depending on adversary type.
We express them as a conjunction of predicates parametrized byA’s type and resulting PCS
security.

Definition 21 ((𝜒,Υ)-PCS security) A SCEKE protocol is (𝜒,Υ)-PCS-secure against an
adversary A, for 𝜒,Υ ∈ N and A of one of the 12 types above if, and only if, assuming
oTest will be queried for instance 𝜋i

P, the last stage for which A queried oReveal.XStage
or oReveal.1Stage for either 𝜋i

P or its matching instance is 𝑠∗ = (𝑥∗, 𝑦∗) and the following
conditions hold:

• The adversary has a non-negligible advantage to win the game Exp𝑃𝐶𝑆SCEKE(𝜆,A) when
querying oTest for 𝑠Test = (𝑥Test, 𝑦Test) such that:

– If Υ = 0, 𝑥Test < 𝑥
∗ + 𝜒 and 𝑦Test = 𝑦

∗;
– If Υ > 0, 𝑥Test is arbitrary and 𝑦Test < 𝑦

∗ + Υ.
If, moreover, the adversary is allowed to query oReveal.XSid, then A has a non-
negligible chance to win for all instances of party P which are not yet instantiated, or
have not yet reached stage 𝑠 = (𝑥, 𝑦) such that:

– If Υ = 0, then 𝑥 ≥ 𝜒 and 𝑦 ≥ 1;
– If Υ > 0, then 𝑥 > 1 and 𝑦 ≥ Υ.

• The adversary has a negligible advantage to win if oTest is queried for 𝑠Test other than
those specified in the first bullet point.

We allow both 𝜒 and Υ to take a special value ∞, which corresponds to ”an arbitrary
number of stages” obtained through horizontal and respectively through vertical evolution.

3.3 Use-cases of our metric

We apply our metric to 4 use cases: the PKI-based messaging protocol Signal, the Identity-
Based messaging protocol SAID, our own variant SAMURAI (or equivalently MARSHAL)
and the suite of mobile 5G Handover protocols. Although seemingly very different, they all
can be modelled as SCEKE schemes, which shows the generality of our framework.

Since our first idea was to being able to compare variants of Signal toward PCS, secure
asynchronous-messaging protocols are natural instantiations of SCEKE. To prevent Person-
in-the-Middle attacks, Signal users register their data on a centralized credential server,
which will be our super-user Ŝ. By contrast, the SAID protocol relies on identity-based
cryptography, run with a Key-Distribution Center. Our SCEKE framework will allow us to
consider the security of the protocol with respect to these powerful insiders, a fact often
overlooked by prior analyses [CGCD+17,BBB+19].

Another aspect of protocols like Signal and SAID that is modelled in the SCEKE
framework is the evolution from one stage to another. Asynchronous-messaging protocols
are essentially turn-based conversations. The initiator of the session, say Alice, uses Bob’s
credentials and some randomness to calculate initial key material. She is the first to speak, at
stage (1, 1), sending one encrypted message only. For as long as Alice is sending messages,
there is no randomness added by Bob (i.e., the evolution of stages is horizontal). When
Bob replies, he will include its own key material and randomness into the conversation (i.e.,
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Keys Signal SAMURAI SAID 5G-SCEKE’s
Cross-Session ik,prek ik,prek,SKM ik, ID.sk,IBS.sk K
Cross-Stage rk,rchk, 𝑡𝑚𝑝 𝑇 ms, rk,rchk K

𝐴𝑀𝐹
= rk

Single-Stage ephk, ms, mk,
ck

ephk, ms, mk,
ck, rchk

mk, ck, 𝑟 rchk =v ,
K
𝐴𝑆

= mk,
K
𝑔𝑁𝐵

= ck
Table 3.1 Taxonomy on keys used in Signal, SAID and our 5G handover procedures model.

The grey box indicates additional key of 5G-SCEKE+ compared to 5G-SCEKE

vertical evolution of stages). A crucial point here is that healing is possible only when the
speaker is changing (e.g., Bob replies). However, for SAMURAI case, the randomness is
added in each step so there is no need to wait for one partner to reply. This property needs
to be carefully handled in the model.

The major strength of our model comes from the ability to compare protocols. This is
possible by giving classes of elements for which they are equivalent. Since the key material
is closely related to PCS notion (i.e., what consequences for which keys) and protocols (i.e.,
the key hierarchy), we need to categorize each key falling into the taxonomy of keys we gave
above. We summarize the key material in Table 3.1 which will be detailed further depending
on the protocol.

Finally, before giving all the details of the use-cases, we show the result produced by
our model in Table 3.6. We give an interpretation of our results after analysing them in our
framework.

Outsider Reach Signal SAMURAI SAID 5G-SCEKE 5G-SCEKE+

Passive
Global (∞, 2) (1, 0) (∞, 2) (∞,∞) (1, 0)

Medium (∞, 2) (1, 0) (∞, 2) (∞,∞) (1, 0)
Local (∞, 1) (1, 0) (1, 0) (∞, 1) (1, 0)

Active
Global (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)

Medium (∞,∞) (1, 0) (∞,∞) (∞,∞) (∞,∞)
Local (∞, 1) (1, 0) (1, 0) (∞, 1) (1, 0)

Insider Reach Signal SAMURAI SAID 5G-SCEKE 5G-SCEKE+

Passive
Global (∞, 2) (1, 0) (∞, 2) (∞,∞) (∞,∞)

Medium (∞, 2) (1, 0) (∞, 2) (∞,∞) (∞,∞)
Local (∞, 1) (1, 0) (∞, 1) (∞,∞) (∞,∞)

Active
Global (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)

Medium (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)
Local (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)

Figure 3.6 Results for our metric on PCS-security for Signal, SAMURAI, SAID, 5G han-
dover and its variant denoted 5G-SCEKE+.

3.3.1 The Signal protocol

Signal is a natural instantiation of SCEKE protocols. Like most asynchronous-messaging
schemes, conversations on this medium are turned-based. The two speakers, who need not
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be online simultaneously, will alternate messages. Each message corresponds to one stage
precisely (i.e., each message key is used only once). There are two types of evolutions, at
any given point in the conversation: either the same person who was speaking will send a
new message (corresponding to a horizontal evolution), or the speaker will change (thus, a
vertical evolution).

Signal also features a natural super-user in the form of a centralized credential server
storing user public keys. Our SCEKE framework will allow us to consider the security of
the protocol with respect to this powerful insider, a fact often overlooked by prior analy-
ses [CGCD+17,BBB+19].

We begin this section by showing how to model Signal as a SCEKE protocol. Then we
quantify its PCS-security with respect to all the adversaries we described in Section 3.2.3.

3.3.1.1 Signal description as SCEKE

We consider a set P of users that need to be registered before they can use Signal. Our
super-user Ŝ is a centralized PKI server.

Setup. During the global setup of the protocol, a number of algorithms are chosen by Ŝ,
including a signature algorithm whose keys are public Diffie-Hellman keys, the hash func-
tions and KDFs used, and a secure-channel establishment protocol to be used at registration
(such as TLS). Simultaneously, the super-user generate a (certified) pair of private/public
long-term keys (Ŝ.sk, Ŝ.pk) which it uses in order to establish secure channels with the users
(these could, for instance, be signature keys to be used in a TLS-DHE handshake like that
included in TLS 1.3). We do not make any assumptions with respect to the type of keys
considered, but we assume that honest super-users generate strong key material. All the
chosen algorithms are part of the public system parameters.

Key generation. During key-generation, each party generates signature identity keys
(ikP, ipkP) for the signature scheme chosen at setup.

User registration. We assume that the super-user and parties P run a secure-channel estab-
lishment protocol that minimally allows for the authentication of both parties. Subsequently,
each user P registers a key-bundle consisting of: a long-term identity key ipkP, a medium-
term key prepkP signed with ikP, and optional ephemeral public keys ephpkP. Both ipkP

and prepkP are used across multiple sessions, whereas each ephemeral public key ephpkP

is only used in one session and then removed from the server. We stress that the server is
never given the user’s private keys – in that sense, it is only semi-trusted (believed to be
honest-but-curious).

Instance initialisation. In order to communicate with each other, both the initiator and
the responder need to create session instances (which will hopefully then have matching
conversation). Say that Alice (the initiator) wants to begin a session with Bob. She begins
by querying the semi-trusted server, over an authenticated channel, for Bob’s credentials,
which allows Alice to establish the master secret as the concatenation of Diffie-Hellman
products:

ms := (prepkB) ikA | | (ipkB)ekA | | (prepkB)ekA | | (ephpkB)ekA
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using newly-generated randomness ekA. Alice will also use the randomness-generating
algorithm aRGen to output a ratcheting key-pair (rchk1,Rchpk1).

The master secret will yield an intermediate root key rk1 and the first chain key ck1,1;
the latter will be input to a key-derivation function (KDF) in order to output a new key ck2,1

and the first message key mk1,1, which will be used to authenticate and encrypt Alice’s first
message to Bob, corresponding to stage (1, 1) of the session. Alice will include as metadata
to that message the public key EpkA, the identities of Alice and Bob, an identifier of the keys
prepkB and ephpkB that she used, and the ratcheting public key Rchpk1. This metadata will
pass as Associated (Authenticated) Data (AAD) to the AEAD ciphertext.

We note that Bob cannot respond to Alice in this session until she has sent at least one
message to him; hence, the message at stage (1, 1) is always sent by the initiator of the
session to its responder.

Bob will also need to do the same computations as Alice. In order to produce his
instance, he will use an authenticated channel to retrieve Alice’s information from Ŝ. Then,
Bob uses his private keys prekB and ephkB, as well as the metadata appended in Alice’s
message, to compute the master secret and retrace the rest of Alice’s computations. We
recall that stages for which Alice will be speaking are indexed (·, 𝑦) with an odd 𝑦. The
stages for which Bob is the message-sender are indexed (·, 𝑦) for even 𝑦.

Sending and receiving. For the remainder of the session, Alice and Bob exchange encrypted
messages. On stages with odd 𝑦, Alice is the sender and Bob is the receiver, while on stages
with even 𝑦, it is the other way around. Each stage corresponds to a single encrypted message.
In each message, the included metadata allows the receiver to make his keys evolve, either
horizontally (he receives and decrypts a new message) or vertically (the receiver decides to
starts talking).

The cryptographic material will evolve as follows:
• Symmetric ratcheting: In Signal, when the sender at stage (𝑥, 𝑦) wants to send a new

message (for stage (𝑥 + 1, 𝑦)), symmetric ratcheting occurs. Recall that during key
derivation, the chain key ck𝑥,𝑦 will yield both the message-key at stage (𝑥, 𝑦) and the
next chain key ck𝑥+1,𝑦 . The symmetric ratchet consists of feeding ck𝑥+1,𝑦 to the KDF
to obtain ck𝑥+2,𝑦 and mk𝑥+1,𝑦 .

• Asymmetric ratcheting: When the message-sender changes (the stage evolves from
(𝑥, 𝑦) to (1, 𝑦 + 1)), an asymmetric ratchet occurs. At this point, the new sender
introduces new randomness into the conversation in the form of a public ratchet
key Rchpk𝑦+1; this value will be used, together with the former sender’s last ratchet
key Rchpk𝑦 , in a Diffie-Hellman product to form a value we denote as DH0,𝑦+1 =

𝐷𝐻 (Rchpk𝑦 ,Rchpk𝑦+1) = (Rchpk𝑦)rchk𝑦+1 . The exception to this rule is stage (0, 1),
for which DH0,1 = 𝐷𝐻 (Rchpk1, prepkB), assuming Bob is the session’s responder.
The value DH𝑦+1 is used to compute a temporary, chain-specific secret, which is either
a root key (for odd 𝑦 + 1) or a temporary key 𝑡𝑚𝑝𝑦+1 (for even 𝑦 + 1). The latter keys
are fed into a KDF in order to derive ck1,𝑦+1.

Recall that Figure 2.4 gives this key-derivation process.
Each Signal stage (𝑥, 𝑦) is associated with metadata, consisting of the identities of the
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ms ephk ck mk rk rchk ik prek
oReveal.1Stage ✓ ✓ ✓ ✓

oReveal.XStage ✓ ✓ ✓ ✓ ✓ ✓

oReveal.XSid ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RevSessKey ✓

RevLongTermKey ✓

RevMedTermKey ✓

RevRand ✓ ✓

RevStateInit ✓

RevStateMiddle ✓
Figure 3.7 Revealed keys per oracle queries: ✓s indicate revealed keys. The 3 upper rows

list oracles in our model, while the bottom ones are oracles from [CGCD+17]. Notice
that for Signal, we split oracle RevState into RevStateInit (which can be used only at the
beginning of a stage-chain) and RevStateMiddle (for queries inside a chain i.e., 𝑥 > 1).

two speakers, the ratchet public key Rchpk𝑦 , and the index 𝑥 of the message. Exceptionally,
for messages sent at stages (·, 1), the metadata must also include the public key EpkA

corresponding to Alice’s private key ekA used during session initialisation. This metadata
is sent as Associated Authenticated Data (AAD) within each AEAD-encrypted ciphertext4.
Thus, this data passes in clear, but is authenticated as part of the ciphertext.

Signal with acknowledgements. More recent implementations of Signal have slightly
evolved from the core protocol we described in this thesis, and have added an acknowledge-
ment, which essentially reduces message-chain length to 1. In addition, root and ratchet
keys become stage-local keys, thus augmenting security against local adversaries to (∞, 2).

Signal with two-factor authentication. A way to reduce the impact of insider attacks is to
have users verify the identity keys of other users prior to instantiating sessions with them –
a type of two-factor authentication. However, such verifications are not without dangers, as
described in recent literature [DH21].

Comparing security models. Our framework can be seen, in many ways, as a generalization
of Cohn-Gordon et al.’s Signal-specific security model [CGCD+17]. They described a real-
or-random key-indistinguishability experiment akin to ours, for which the Person-in-the-
Middle adversary A can test stages freely in order to distinguish their message-keys from
random. A wins assuming that it guesses correctly and that a given freshness predicate
holds.

We begin by stating that the adversary described by [CGCD+17] is a passive outsider:
they rule out adversarial interventions within the target session, and do not consider security
with respect to the super-user. Finally, the oracles they consider are slightly different from
ours, as we describe below.

From Figure 3.7, we can infer that:

4AEAD stands for Authenticated Encryption with Associated Data.
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oReveal.1Stage =⇒ RevSessKey ∧ RevRand ∧ RevStateMiddle
oReveal.XStage =⇒ RevRand ∧ RevStateInit
oReveal.XSid =⇒ RevLongTermKey ∧ RevRand

Thus the adversaries captured in [CGCD+17] can adopt more fine-grained strategies
than ours. For instance, in our model, if the adversary wants a particular cross-stage key,
it essentially will receive all such keys. As a consequence, we lose the ability to rank,
say, cross-stage keys in terms of how dangerous they are to healing. Yet, (instantiations
of) the predicates described above are in fact also found amongst the winning conditions
of [CGCD+17], signifying that the same

Yet, in reality (as described in the proofs), the winning predicates of [CGCD+17] imply
that the adversary does not essentially benefit from the additional freedom given by those
fine-grained queries. Thus, while our two frameworks are syntactically incomparable, they
are akin in spirit. In addition, our model allows us to account for additional adversary types,
including active adversaries and insiders.

3.3.1.2 The PCS-security of Signal

Key-material. We begin the analysis by categorizing the key material that goes into the key-
derivation of Signal, depending on whether it is stage-specific, cross-stage, or cross-session.

The keys used in Signal for a single stage only are: the message5 keys mk𝑥,𝑦 , the chain
keys ck𝑥,𝑦 , the master secret ms, and also a particular key used only at stage (1, 1), namely
ephk.

On the other hand, private ratchet keys rchk𝑥,𝑦 and the keys used at the roots of each
chain (denoted rk𝑦 for odd 𝑦 and 𝑡𝑚𝑝𝑦 for even 𝑦) are stored throughout the existence of the
chain, until the next vertical evolution. In other words, they are cross-stage keys. We give a
summary of the key material in Table 3.1.

Theorem 2 Consider the Signal protocol modelled as a SCEKE scheme, as presented above.
The following results hold in the random oracle model (by replacing the KDFs with random
oracles), under the Gap Diffie-Hellman assumption, and assuming the AKE security of the
channels established between honest users and an honest Ŝ:

• Signal is (∞, 1)-PCS secure against: local outsiders (passive and active), local passive
insiders;

• Signal is (∞, 2)-PCS secure against: medium passive adversaries (outsiders and
insiders), and global passive attackers (outsiders and insiders);

• For all other adversaries, Signal is (∞,∞)-PCS secure.

Note that the results are also systematized in Figure 3.6. The proofs of this theorem
consist of two types of statements: first, we need to show an attack for the stages that are
vulnerable to the attacker, then we need to prove that beyond those stages, security holds.
The second parts of the proofs can be found afterwards, but we briefly indicate the attacks
providing the first part of the proofs below.

5We explicitly do not consider the fact that in Signal keys can actually be precomputed in the case of
out-of-order arrivals, since this is not the most frequent way in which the protocol is used.
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Local Passive Outsider We claim that in this case, the protocol is (∞, 1)-PCS-secure.
Assume that the adversary’s last oReveal.1Stage query is at stage (𝑥, 𝑦); although the
channel will be insecure for all the messages in chain 𝑦 that follow after stage (𝑥, 𝑦), the
channel will heal at stage (1, 𝑦 + 1).

The security loss is a result of the symmetric ratchets: once ck𝑥,𝑦 is compromised,
A will learn all the chain and message keys derived symmetrically from it. On the other
hand, the ratchet key rchk𝑦 is not amongst the information revealed through oReveal.1Stage.
When it is used in input at stage (1,y+1), A can no longer compute keys derived from this
key.

Medium Passive Outsider By using its additional oReveal.XStage oracle, the adversary
can now also learn ratchet keys rchk, and root/temporary keys. We claim that Signal is
(∞, 2)-PCS-secure against this type of attacker.

This is mainly because knowledge of the ratchet key rchk𝑦 allows A to compute
DH0,𝑦+1 = 𝐷𝐻 (Rchpk𝑦 ,Rchpk𝑦+1) at the beginning of chain 𝑦 + 1 and derive all the
keys in chain 𝑦 + 1. Fortunately, this will stop at stage (1, 𝑦 + 2), since A cannot use rchk𝑦

to compute DH0,𝑦+2, thus giving our bound. We note that this is one of the main results
in [CGCD+17].

Global Passive Outsider With the attacker having now additional access to oReveal.XSid
oracle, it can obtain user identity keys and pre-keys. However, these values cannot help
a passive adversary beyond learning the master secret ms, which it can learn anyway by
querying the oReveal.1Stage oracle. Thus, Signal is (∞, 2)-PCS-secure against this type of
attacker.

Local Active Outsiders We begin by handling this weakest form of active outsider attacks.
Recall that the difference between passive and active attackers is that the latter can actively
use the information it captures through corruption.

Consider now an attacker with only access to oReveal.1Stage, having performed its last
reveal query at stage (𝑥, 𝑦). With the key ck at hand,A can now generate correct chain and
message keys for the remainder of chain 𝑦, and send its own messages to the receiver of that
chain, change the order of the messages, etc. This power, however, stops at stage (1, 𝑦 + 1),
because the adversary has no access to either root, or temporary keys, which are fed into the
beginning of the key derivation at each chain. This indicates (∞, 1)-PCS security.

A much more insidious attack is the following: the adversary queries oReveal.1Stage
at stage (1, 𝑦) for some 𝑦, before the sending party for chain 𝑦. It chooses its own ratchet
key for chain 𝑦, which we denote ˆRchpk and inserts that into the metadata of a ciphertext
that it sends the receiver at stage (1, 𝑦) using the keys it has just recovered. At this point,
the true sender and the true receiver will have different ratchet keys for chain 𝑦, and they
will no longer have matching conversation. Fortunately, the attacker will not be able to truly
insert itself in the conversation – again because it is missing the root/temporary keys. Thus,
although it is a Denial of Service (DoS) attack impacting the PCS-security within chain 𝑦,
thus yielding (∞, 1)-PCS security.

Other Active Outsiders For medium and global active adversaries, the attacker has access
to oReveal.XStage, and so to the root key it was missing in the previous cases. As a result,
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the attacker can now turn the DoS into a full hijack: it inserts ˆRchpk towards the receiver, and
then uses the root key it learns via oReveal.XStage to keep up with all future ratchets from
now on. This compromises all the future keys in these sessions, yielding an (∞,∞)-PCS
security.
Insider Passive Attacks In the case of a passive attacker, knowledge of the super-user’s
private key Ŝ.sk will not help the adversary beyond an outsider adversary’s capacity. This
is the situation that corresponds to an honest-but-curious server – for which Cohn-Gordon
et al. considered (and proved) the security we also explained for the outsider case. This
explains why we have the same bounds for the insider and outsider passive adversaries.
Insider Active Attacks At the opposite end of the scale are insider active attacks, which
basically capture a fully malicious centralized server. At user registration, the malicious
super-user behaves as normal. However, at session setup, when Alice wants to talk to Bob, Ŝ
forwards a key-bundle of its own making, to which it has the corresponding private keys. The
attacker then does the same when Bob asks for Alice’s credentials (forwarding keys from the
same bundles, thus ensuring that it can run a Person-in-the-Middle attack between the two
users. This type of attack requires no reveal queries on any of the user key material – hence,
Signal provides (∞,∞)-PCS security (no healing at all) for all insider active attackers.

Security proofs. We now give the security proofs of Signal for each adversary’s type. Those
proofs aim at providing an upper bound (while the attacks previously presented were lower
bound) of our metric.

We assume that all KDFs are modelled as random oracles. Each key 𝑘 has |k| possible
values. Note that the key space might be of same size for all keys (e.g., |k|, the order of the
group for all 𝑘). The security statements are parametrized by the maximal number of stages
nS, the maximal number of message nx−max in a given chain, the maximal number of chain
ny−max, run by any given instance, the number of parties generated by the adversary nP and
the number of sessions n𝜋 created by any given party.

The proofs are organized through game hops where the first game is the original security
game (see Figure 3.5 of Sec. 3.2.4).
G0 : This game corresponds to the original security game (Figure 3.5 of Sec. 3.2.4).

The advantage of A against this game is Adv0.
G1 : In this game C guesses P, Q, the session index of the target session, and the target

stage 𝑠★ = (𝑥★, 𝑦★) for which A has queried oTest.
If A queries another parties, session or tested stage then C aborts the game and returns

a random bit. Therefore we have the following:

Adv0 ≤ nP
2 · n𝜋 · nx−max · ny−max · Adv1

The next games are dedicated to ensure that no DH values collide. Moreover, we assume
the uniqueness of the identity key for each party.
G2 : This game is the same as G1 except that the challenger aborts if two values ephk

collide. We have:
Adv1 ≤

(
n𝜋
2

)
· 2−|ephk | + Adv2
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At this point, the uniqueness of the master secret ms is guaranteed. Indeed, ms is
computed using ik and also ephk thus by uniqueness of the former and the latter, we have
uniqueness of the shared secret ms. Moreover, the sessions are also unique by uniqueness
of the ephemeral keys.
G3 : We modify the previous game to avoid collisions of honestly-generated ratchet keys

rchk. We have:

Adv2 ≤
(
n𝜋 · ny−max

2

)
· 2−|rchk | + Adv3

G4 : In this game, we ensure that there is no collision for honestly-generated prek. We

can upper-bound the total number of pre-keys by the number of sessions n𝜋 :

Adv3 ≤
(
n𝜋
2

)
· 2−|prek | + Adv4

Notice that we can generalize games from G2 to G4 to a single game G2′ , by considering

thatC can maintain a listLDH of DH values (ik,ephk,rchk,prek) which are honestly-generated
during the protocol. If two values appear in that list, the challenger aborts and the adversary
looses the game. By considering uniqueness of identity key for each party, there are |P |
number of identity keys, n𝜋 · ny−max number of ratchet keys, at most n𝜋 number of medium-
term keys and n𝜋 number of ephemeral keys. Thus we have |LDH | = |P | + n𝜋 · ny−max + n𝜋 .
Moreover, if we consider that each DH key in LDH lies in the same group of order 𝑞 then a
collision occurs with probability 1/𝑞 so we have:

Adv1 ≤
( | LDH |

2
)

𝑞
+ Adv2′

G5 : The challenger needs to guess the index 𝑖 of the pre-key of Q used in the tested

session. Since there are n𝜋 possible values, we have:

Adv4 ≤ n𝜋 · Adv5

For clarity, we keep the notation prekQ instead of prek𝑖Q (signed pre-key of index 𝑖).

At this point, we will use the uniqueness and secrecy of prepkrchk0,1
P

Q in order to prove
indistinguishability from random of rk1. Note that the value ms (the second input of the
KDF) can be learned by any reach’s adversary. 6

G6 : In this game the challenger accepts collision of ikP and prekP. We need to add this

condition since the next game will use a GDH challenge where the DH pair might collide
with probability 1/𝑞, thus:

Adv5 ≤
1
𝑞
+ Adv6

Those previous games are shared between all possible adversaries of our model. We
now partition our analysis given types of adversary.

6ms is a single stage key so any local, medium or global adversary can reveal it.

83



Measuring the PCS Healing 3.3. Use-cases of our metric

Local Passive Outsider. In this case, the adversary can only reveal single stage keys (via
the oReveal.1Stage oracle) in a passive way, and it has no information on the server-stored
keys. Recall that (cf Figure 3.6), the Signal protocol is (∞, 1)-PCS secure.
G7 : We modify G6 such that the challenger aborts as soon as A queries the random

oracle (representing the KDF) on ( • ∥(prepkQ)rchk0,1
P ) where the first part of the input is

analogous to ms. Since our analysis is done in the random oracle model, the only way forA
to compute the output is to give the exact input. If so, we show that when this event occur, we
can construct an adversary B winning a GDH challenge. Recall that the GDH experiment
has input (𝑔𝑎, 𝑔𝑏) to return 𝑔𝑎𝑏 with a DDH oracle access with input (𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧) and output
1 if 𝑔𝑥𝑦 = 𝑔𝑧 .
B simulates G6 for A and plays against its GDH challenger. Instead of sending 𝑔𝑎

and 𝑔𝑏 to A, it sends rchk0,1
P and prekQ respectively. Notice that A cannot query the

oReveal.1Stage oracle on prekQ nor rchk0,1
P since those keys are cross-stage keys (so B does

not have to know the private parts of those keys). However, since B has replaced long-term
and medium-term keys of two parties (where those keys could be used in other sessions),
it must ensure a valid simulation for those (non-tested) stages. In either cases, B randomly
chooses the value rk1 but answers consistently with calls to the random oracle by maintaining
a list. This list maps the session key with the public keys associated. Whenever A calls
the random oracle, B checks if the public parts are in the list and returns the corresponding
value if they are in the list, and draws a random element and adds it to the list otherwise. The
special case is when A sends CDH(prepkQ,Rchpk0,1

P ) to the random oracle. In that case,
the DDH oracle returns 1 when B queried it thus finding a solution to the GDH experiment.
Finally, by noting 𝜖𝐺𝐷𝐻 the advantage of B solving the GDH problem, we have:

Adv6 ≤ Adv7 + 𝜖𝐺𝐷𝐻

G8 : This game ensures the indistinguishability of the rk/tmp outputs by the random

oracle, up to and including 𝑦★. For this, we apply the modifications of G6 and G7 for a

number of times equal to the maximum number of chains ny−max:

Adv7 ≤ ny−max ·
[(

n𝜋
2

)
· 2−|prek | + 𝜖𝐺𝐷𝐻

]
+ Adv8

Note that the same argument cannot be applied to other outputs of the random oracle
(such as the chain key ck.,𝑦

★) since those values could be revealed by the adversary (which
is handled in the next game).
G9 : In this game, we ensure that the value ck0,𝑦★ is unique. If there are two equal values

in a session, or in two different (honest) sessions, then the challenger aborts and returns a
random bit.

Recall that the random oracle model implies that a call to the KDF duplicates the output
if the same inputs are used, or if true randomness repeats (with negligible probability), thus
we have:

Adv8 ≤ nx−max ·
(
nx−max · ny−max

2

)
· 2−|ck | + Adv9
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At this point, the chain key ck0,𝑦★ is indistinguishable from random to A (which is due
to the indistinguishability of rk/tmp values from random of G8 ).

Depending on the adversary’s reach, here local, some reveal can be queried such as the
chain key ck or mk. Here, the argument we used is related to the winning conditions (i.e.,
freshness of the tested stage). Indeed, for a local passive outsider adversary, the winning
conditions are parametrized by a (∞, 1) bound meaning that no oReveal.1Stage can be
queried for a stage of index 𝑥 > 0 and 𝑦 = 𝑦★ − Υ + 1 = 𝑦★. Informally, we exclude reveal
queries for stages of the same chain of the tested stage; this is a direct consequence of the
symmetric ratcheting of Signal where the knowledge of one chain key implies knowledge
of all the chain. Notice that our metric is also a lower bound since any strictly lower (𝜒,Υ)
value implies Υ = 0 meaning thatA could reveal the chain key on a stage with 𝑦 = 𝑦★. This
yields a trivial attack on the session keys because of the symmetric ratcheting property.

We conclude this proof by stating that:

G9 ≤ 2−|ck | + 2−|mk |

Indeed, there are two possibilities for the adversary to recover mk𝑥
★,𝑦★, either guessing

directly this value (with negligible probability 2−|mk |) or give as input to the random oracle
the value ck𝑥

★−1,𝑦★ (with negligible probability 2−|ck |).
We have shown an upper bound of our metric in the sense that we ensure the security for

at least a given number of stages. However, the security could be faster, i.e., find a smaller
metric with unchanged security. We need to show that our metric is tight meaning that we
need an extra argument to show that no security can be guaranteed with smaller metric.

In this case, a local passive outsider adversary, Signal is (∞, 1)-PCS secure if we exhibit
an attack which compromises at least (∞, 1) stages within the adversary’s type. The attack
in this case is simple,A can reveal ck1,𝑦 , for a given 𝑦 on any peer, via the oReveal.1Stage
oracle. This leads to compromising the full chain 𝑦 because of the symmetric ratchet
deriving the keys (both ck and mk). The adversary has then compromised (∞, 1) stages but
no more because the next chain is initialised with cross-stage keys (i.e., rchk).

Medium Passive Outsider. In this case, the adversary can reveal single and cross stages
keys (via the oReveal.XStage oracle) in a passive way, and it has no information on the
server-stored keys. Recall that (cf Figure 3.6), the Signal protocol is (∞, 2)-PCS secure.
G7 : The challenger aborts if A gives as second input CDH(prepkQ,Rchpk0,1

P ) to

the random oracle (the first input is a value corresponding to ms). The keys prepkQ and
Rchpk0,1

P are now in the adversary’s reach possibility, via query to oReveal.XStage oracle.
Yet, the winning conditions of this type of adversary exclude such query for a stage of chain
(minimum) index 𝑦 = 𝑦★ − 1 for 𝑦 > 0. So if A tests a stage of index 𝑦 = 1 or 𝑦 = 2 then
the winning conditions ruled out any call to oReveal.XStage for such chain. As in the local
case, we show that under the GDH assumption, it holds that:

Adv6 ≤ Adv7 + 𝜖𝐺𝐷𝐻

The reduction is the same as in the local case (where the reveal calls in the latter were
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excluded by the adversary’s reach and by the winning conditions for the medium case).
Notice that in this game, the advantage of A is the same as the local case, however the
argument is different. For the local case, the adversary has no access to cross-stage keys
while in this case, the adversary can query the oReveal.XStage. Yet, the winning conditions
for the medium case exclude such queries.

The rest of the proof is done the same way as for the local case, where in G8 the

indistinguishability of rk/tmp is ensured by the winning conditions (same reason as in the
previous game).

We conclude the proof by showing an attack that compromised two chains since Signal
is (∞, 2)-PCS secure for a medium passive outsider adversary. The adversary can reveal
rchk0,2 and rk1 to get all the needed information to derive the keys of chain 2. It can also
derive the tmp value used to initialise the next chain. So A has all the inputs to completely
derive chain 3 (the other input to initialise the chain is CDH(rchk0,3, rchk0,2) which is
computable by the adversary).

Global Passive Outsider. This case is actually the same as for medium case. Indeed, the
argument for game hops of medium adversary implies the winning conditions for indistin-
guishability of keys in G6 and G7 . The attack exhibiting our metric can also be the same,

while the global case could compromised the first two chains (while the medium adversary
can only compromised chains starting from the second one). We can conclude that, for
global passive outsider adversary, Signal is (∞, 2)-PCS secure.

Local Active Outsider. For an active adversary, we need to ensure that the keys stored
on the server are generated, and signed, by the corresponding party (and not A). Indeed,
during the registration step, a party P sends its identity key and pre-keys signed with the
identity key. For an active adversary, some keys might be maliciously generated and sent to
the server. In the case of LAO, the adversary cannot request long-term keys from its set of
oracles (only ephemeral keys). Thus, we prove that the adversary needs to forge a signature.
G7 : Recall that inG5 , the challenger aborts if the chosen pre-key is different from the one

used in the tested session. So the reduction to the EUF-CMA game of the signature scheme
is straightforward since the challenger already knows the index of the forged signature.

For the reduction, the adversary has access to a signing oracle which updates a list of
keys and signatures at each call (for avoiding trivial forgery where the signature has been
already queried). We denote by 𝑞𝑠 the number of queries to this oracle. We assume here
that there is an adversary A able to produce a valid signature on prepk (for a given index 𝑖)
and we construct B, which uses A, to break the EUF-CMA signature scheme. B uses its
own oracle to forward query to A, thus:

Adv6 ≤ Adv7 + 𝜖𝐸𝑈𝐹−𝐶𝑀𝐴

From now, the following games are the same as in the local passive outsider.

Medium/Global Active Outsider. For those two adversaries, Signal is (∞,∞)-PCS secure
meaning that no healing is possible. So we just exhibit an attack resulting in the impossibility
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of PCS property. The attack is simple, the adversary injects its own initial ratchet key rchk0,1
★

and reveal ms (which is in the reach’s capability of medium and global adversaries) during
the initialisation phase. Thus A hijack the communication, where Bob is convinced to
communicate with Alice, but Alice has no access to the communication (since the chain
keys are different). In this case, Bob will continue the communication as long as A is
following the protocol (it does not need to deviate from the protocol anymore).

Passive Insider. Each of those three types of adversaries (local, medium and global)
corresponds to passive outsider adversaries. Indeed, the difference between outsider and
insider is that the latter poses as the super user Ŝ. In the case of Signal, this corresponds
to the semi-trusted server which receives the public bundle keys upon registration. Because
of the passive access type, the adversary cannot interfere with those keys so there is no
difference with outsider adversary (the public keys stored by the server are also accessible by
outsider adversary). For Signal, there is no difference between passive insider and passive
outsider given the reach capability (local, medium, global). For this reason, the metric is the
same for local, medium or global between outsider and insider, in the passive access type.

Active Insider. The case of active insider is the strongest type of adversary. Indeed, A
can interfere with the protocol (e.g., stop, modify messages) while compromising the server.
This critical case (either local, medium or global) cannot include healing as the adversary
can manipulate the keys from the start of the communication. An active insider adversary
can simply remove honestly-generated keys sent to the server and replace them by its own
malicious key material. In this case, the adversary plays a PiTM (Personn in The Middle)
forwarding messages through Alice to Bob (and vice-versa) by its own. The communication
between Alice and Bob cannot heal thus leading to a (∞,∞)-PCS secure protocol for active
insider adversary.

3.3.2 SAMURAI protocol

SAMURAI uses Signal backbone structure while improving PCS. The infrastructure in both
protocols are identical: two speakers exchange messages initialised through a super-user
storing the public keys. Notice that, as in Signal, the server is never given the private keys
of users thus considered semi-trusted (in the honest-but-curious model).

We start by showing how to model SAMURAI as a SCEKE protocol, then we quantify
its PCS healing rate with respect to our taxonomy of adversary (defined in Section 3.2.3).
Recall that our metric is determined in two steps: first we show an attack thus finding a lower
bound then we show, via a security proof, an upper bound meaning that the communication
is secure again (if so).

3.3.2.1 SAMURAI as a SCEKE

The description of SAMURAI is close to the one of Signal. The main changes concern the
key material. We give a quick description while further details are given in Section 3.3.1
and also in Section 2.4.1 for the full description of SAMURAI. We consider a set P of users
that need to be registered before they can use Signal. Our super-user Ŝ is a centralized PKI
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server.

Setup. This phase constitutes the setup of Ŝ in terms of algorithm routines that will be
used during use. For instance, Ŝ setups hash functions, KDFs, signature scheme. It is also
generating a key pair (Ŝ.sk, Ŝ.pk) which it uses in order to establish secure channels with
the users. All the chosen algorithms are part of the public system parameters.

Key generation. During key-generation, each party generates signature identity keys
(ikP, ipkP) for the signature scheme chosen at setup, a signature key pair (SKMP,PKMP)
used for authentication during the communication. Each party also uploads a cross-stages
key to the server denoted 𝑇0

P (later simply denoted 𝑇0). The latter will be used to initiate the
first chain.

Instance initialisation. In order to securely communicate, Alice and Bob, need to compute
a master secret ms following the X3DH protocol. If Alice initiates the communication, she
retrieves the public keys of Bob from the semi-trusted server and computes:

ms := (prepkB) ikA | | (ipkB)ekA | | (prepkB)ekA | | (ephpkB)ekA

using newly-generated randomness ekA.
The master secret yields the first chain key ck1,1; the latter will be input to a KDF in

order to output a new key ck2,1. For the message key to be generated, a new ratchet key
(rchk1,1) is generated with its corresponding public part. Alice also generates a key pair
(𝑡1, 𝑇1), the public part will be used by Bob to initiate its sending chain (chain 𝑦 = 2). Alice
then computes a Diffie-Hellman value with rchk1,1 and ipkB. As for SAID (described later
in 3.3.3.2), the protocol uses a persistent authentication mechanism to enforce that the key
evolution is due to the matching partner. Basically, Alice signs with SKMA the keys she used
to continue the chain (both the newly generated ratchet key and the key 𝑇1). This signature
concatenated with the DH value and the former ck1,1 derive the first message key mk1,1.
As for Signal, Alice includes as metadata all information needed for Bob to recompute the
chain.

3.3.2.2 The PCS-security of SAMURAI

Key-material. In order to express the PCS-security of SAMURAI, we need first to charac-
terized the key material. In other words, each key must be categorise in one of our three
classes: single stage, cross-stage and cross-session key. We give a summary of the key
material in Table 3.1.

The keys used in SAMURAI for a single stage only are:

• the message keys mk𝑥,𝑦

• the chain keys ck𝑥,𝑦

• the master secret ms

• the ratchet key rchk𝑥,𝑦
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• and also a particular key used only at stage (1, 1), namely ephk.

The cross-stage keys, stored throughout the chain until a next vertical move, is 𝑡𝑦 since
the responder uses this key to initialise its own chain.

Finally, the cross-session keys (for party P) are the one appearing on multiple sessions
(say Alice with Bob and Alice with Charlie). For SAMURAI those keys are:

• the identity key ikP

• the prekey prekP

• the signature key SKMP.

Theorem 3 Consider the SAMURAI protocol modelled as a SCEKE scheme. The following
results hold in the random oracle model (by replacing the KDFs with random oracles),
under the Gap Diffie-Hellman assumption, and assuming the AKE security of the channels
established between honest users and an honest Ŝ:

• SAMURAI is (1, 0)-PCS secure against passive attackers, local and medium active
outsiders;

• For all other adversaries, SAMURAI is (∞,∞)-PCS secure.

The results of the theorem are given in Figure 3.6. The proofs are split in two phases,
first we show an attack for a given adversary then we proove the further stages are secure.
Passive Adversaries We consider all types of passive adversaries (global, medium, local
and insider, outsider). We claim that SAMURAI is (1, 0)-PCS secure against a passive
adversary. Note that this is the best level of security in the sense that only one stage is
revealed by the adversary (which is the stage being compromised by definition). Suppose
that the strongest adversary (i.e., global passive insider) compromises stage (𝑥, 𝑦); thus
all keys are revealed but without any other tampering by the adversary (which is passive).
However, the next stage of the same chain (𝑥 + 1, 𝑦) is derived through a newly generated
ratchet key rchk𝑥+1,𝑦 which is out of reach from the adversary. If we consider the next chain,
the adversary can derive the chain keys ck.,𝑦+1 but again, the rachtet keys rchk.,𝑦+1 used to
derive the message keys are out of reach. All the security is based on those ratchet keys
freshly generated at each stage; the adversary can tamper them by either revealing those keys
for each stage or inject its own key material (which is not possible for the passive case).
Local & Medium Active Adversaries Considering those types of adversaries, SAMURAI
is (1, 0)-PCS secure. The adversary, in both cases, has an active capability but no access to
the long term keys (e.g., the signature key). The only modification from the previous case
(passive adversary) is that A can completely intervene in the protocol. So the adversary
could inject its own key material in otder to hijack the communication. Yet, the evolution
of key is made with peristent authentication meaning that the changes are signed by the
current speaker. Since the adversary has no access to the signature key, it won’t be able to
authenticate malicious key material without being notice by the communicated peers.
Other Adversaries The considered adversaries (active insiders and global active outsider),
can bypass the PCS and making the protocol unable to heal at any point. This corresponds
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to a (∞,∞)-PCS security; the adversary can hijack the communication by injecting its own
key material into the communication. For insiders, the attack is the same as for Signal, the
adversary is actually the super-user (i.e., the semi-honest server) with active capability. So
during registration, the adversary can simply “forget” the keys of a given party and replaces
it by its own keys. Thus when a peer wishes to talk to the corrupted party, the adversary is
impersonating the receiver completely (and can continue the protocol as usual).

For the global active outsider, the attack is different because the adversary cannot
interfere during the registration phase between a party and the super-user (recall that we
suppose a secure channel between those two). But, eventually, the adversary can replace the
key material since it now has access to the signature key. The attack has the same effect than
for insider case.

Security proofs. We now complete our metric results by proving an upper bound of the
previous attack (except the ones for which there is no healing). The goal of the following
proofs is to show that after (𝜒,Υ) stages from the reveal query, the communication is back
to its security: the adversary can no longer distinguish with non-negligible probability the
session key (i.e., the message key) from a random value uniformly distributed.

We assume that all KDF calls are modelled as random oracles. Recall also that our
security statements are given by a maximal number of stages nS, a maximal number of
message nx−max in a given chain, a maximal number of chain ny−max run by any given
instance, a number of parties generated by the adversary nP and a number of sessions n𝜋
created by any given party.

There are two cases to consider for the type of adversary:

• passive adversary: this case regroups in fact the 3 passive insider adversaries and also
the 3 passive outsider adversaries. The difference between the insider and outsider
concerns access or not to the super-user data. When looking at an upper bound, any
argument with stronger adversary is also true with weaker adversary. So our proof for
the passive insider implies a proof for the outsider case.

• medium active outsider adversary: this case implies a proof for the local adversary
since medium reach is stronger than local reach (recall that the set of keys which can be
revealed by a local adversary is included in the set of keys for the medium adversary).

Note that those two cases are distinct without any possible implications from one to
another. This comes from the fact that in the first case, the adversary is stronger in terms of
access (insider has more capability than outsider) while the power is weaker (passive against
active). There is no clear hierarchy a priori 7 in those two types of adversary.
G0 : This game corresponds to the original security game (Figure 3.5 of Sec. 3.2.4).

The advantage of A against this game is Adv0.
G1 : In this game C guesses P, Q, the session index of the target session, and the target

7This statement depends, in fact, of the protocol. For Signal, the insider gets no further advantage than
outsider because the server only stores public keys (without access to the private parts). Yet, for SAID, the
server generates the key pairs for each party thus an insider is stronger than outsider. However, an insider has
the capability of impersonating the server so if the adversary is active than it is strictly stronger than an outsider.
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stage 𝑠★ = (𝑥★, 𝑦★) for which A has queried oTest.
If A queries another parties, session or tested stage then C aborts the game and returns

a random bit. Therefore we have the following:

Adv0 ≤ nP
2 · n𝜋 · nx−max · ny−max · Adv1

The next games are dedicated to ensure that no DH values collide. Moreover, we assume
the uniqueness of the identity key and signature key for each party.
G2 : This game is the same as G1 except that the challenger aborts if two values ephk

collide. We have:
Adv1 ≤

(
n𝜋
2

)
· 2−|ephk | + Adv2

At this point, the uniqueness of the master secret ms is guaranteed. Indeed, ms is
computed using ik and also ephk thus by uniqueness of the former and the latter, we have
uniqueness of the shared secret ms. Moreover, the sessions are also unique by uniqueness
of the ephemeral keys.
G3 : We modify the previous game to avoid collisions of honestly-generated ratchet keys

rchk. We have:

Adv2 ≤
(
n𝜋 · ny−max · nx−max

2

)
· 2−|rchk | + Adv3

G4 : In this game, we ensure that there is no collision for honestly-generated prek. We

can upper-bound the total number of pre-keys by the number of sessions n𝜋 :

Adv3 ≤
(
n𝜋
2

)
· 2−|prek | + Adv4

G5 : The challenger needs to guess the index 𝑖 of the pre-key of Q used in the tested

session. Since there are n𝜋 possible values, we have:

Adv4 ≤ n𝜋 · Adv5

For clarity, we keep the notation prekQ instead of prek𝑖Q (signed pre-key of index 𝑖).
G6 : In this game, we ensure that there is no collision for honestly-generated 𝑇0 . We can

upper-bound the total number of such keys by the number of sessions n𝜋 . In addition, we
ensure that the challenger guesses the correct index for 𝑇0 (recall that several cross-stages
keys are uploaded to the server) thus we have:

Adv5 ≤
(
n𝜋
2

)
· 2−|T0 | + n𝜋 · Adv4

G7 : We rule out any collision for honestly-generated keys 𝑇𝑦 (𝑦 > 0). We have:

Adv6 ≤
(
n𝜋 · ny−max · nx−max

2

)
· 2−|T | + Adv7

G8 : In this game the challenger accepts collision of ikP and rchk. We need to add this

condition since the next game will use a GDH challenge where the DH pair might collide
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with probability 1/𝑞, thus:

Adv7 ≤
1
𝑞
+ Adv8

Those previous games are shared between all possible adversaries of our model. We
now partition our analysis given types of adversary.

Passive Insider. The passive insider adversary corresponds to the passive outsider adversary.
Indeed, SAMURAI (and also Signal) includes a semi-trusted server which receives the public
keys used to setup a session. So an adversary posing as Ŝ is equivalent to an outsider
adversary for the passive case. All attacks in the insider case is alos possible in the outsider
case (and vice-versa). for simplicity, we consider A as outsider.
G9 : We modifyG8 such that the adversary aborts as soon asA queries the random oracle

on ( • ∥(prepkQ)rchk0,1
P ) where the first part of the input is analogous to ms. The random

oracle model implies that A needs to give the exact inputs to retrieve the correct output.
If A can compute such inputs (i.e., (prepkQ)rchk0,1

P ) then we can construct an adversary B
winning a GDH challenge. Notice that we apply the same game hop of Signal for the local
passive outsider (G7 ).

The GDH experiment has input (𝑔𝑎, 𝑔𝑏) and returns 𝑔𝑎𝑏 with a DDH oracle access
which for input (𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧) outputs 1 if 𝑔𝑥𝑦 = 𝑔𝑧 .
B simulates G8 for A and plays against its GDH challenger. Instead of sending 𝑔𝑎

and 𝑔𝑏 to A, it sends rchk0,1
P and prekQ respectively. Since B has replaced long-term and

medium-term keys of two parties (where those keys could be used in other sessions), it must
ensure a valid simulation for those (non-tested) stages. In either cases, B randomly chooses
the value ck1,1 but answers consistently with calls to the random oracle by maintaining a
list. This list maps the session key with the public keys associated. Whenever A calls the
random oracle, B checks if the public parts are in the list and returns the corresponding
value if they are in the list, and draws a random element and adds it to the list otherwise. The
special case is when A sends CDH(prepkQ,Rchpk0,1

P ) to the random oracle. In that case,
the DDH oracle returns 1 when B queried it thus finding a solution to the GDH experiment.
Finally, by noting 𝜖𝐺𝐷𝐻 the advantage of B solving the GDH problem, we have:

Adv8 ≤ Adv9 + 𝜖𝐺𝐷𝐻

G10 : We show that A can query the random oracle on 𝐷𝐻 (T0, ikA) | |𝐷𝐻 (T1, ikB) with

negligible probability. We split the analysis of such event for the left and right part of the
computation and apply the same technique as the previous game (with GDH experiment).
Notice that this should be applied for a number of times equal to the maximum number of
chains ny−max:

Adv9 ≤ 2 · ny−max ·
[(

n𝜋
2

)
· 2−| ik | + 𝜖𝐺𝐷𝐻

]
+ Adv10

G11 : We modify the previous game such that if A queries the random oracle on

(ck𝑥
★,𝑦★∥ • ∥(ipkQ)rchk𝑥

★,𝑦★

P ) with • being the signature on elements needed to derive the
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session (message) key. We apply the same technique as inG9 to show that ifA can compute

DH(ipkQ, rchk𝑥
★,𝑦★

P ) then we can construct adversary B winning a GDH challenge. Note
that A cannot query oReveal.XStage oracle because of the winning conditions; the tested
stage cannot be the same as the compromised one (our metric is (1, 0) meaning that the
security should be recovered from the previous compromised stage). It should also be noted
that we do not give condition on ck𝑥

★,𝑦★ sinceA might have revealed it via oReveal.XStage
from a previous stage and derived it with calls to the random oracle. Finally, we have:

Adv10 ≤ Adv11 + 𝜖𝐺𝐷𝐻

We conclude the proof by noting that Adv11 ≤ 2−|mk | since the only possibility forA to
recover mk𝑥

★,𝑦★ is to guess directly this value.

Medium Active Outsider. The difference from the previous is that now the adversary has
active capability (the oSend and oReceive oracles can be used in the malicious mode). Note
thatA cannot impersonate the super-user Ŝ which is equivalent to a passive insider adversary
(the super-user only stores public keys so a passive adversary cannot learn information from
it).

The games for this case are the same as the passive case except for the last one. Indeed,
the G11 ensures that A cannot compute DH(ipkQ, rchk𝑥

★,𝑦★

P ) but here, the adversary has

active capability meaning that it could choose its own key material. So instead of the ratchet
key rchk𝑥

★,𝑦★

P , the adversary could generate its own ratchet key rchk𝑥
★,𝑦★

A thus hijacking the
session key without Q noticing it.

Yet, the argument from preventing this attack is the signature of the ratchet key (among
other values) sent along the encrypted message.

We show that if A can generates its own ratchet key for the tested stage (recall that
it cannot compute the honest value without non-negligible probability of winning a GDH
challenge) then we can construct adversary B winning a EUF-CMA challenge.

For the reduction, the adversary has access to a signing oracle which updates a list of
keys and signatures at each call (for avoiding trivial forgery where the signature has been
already queried). We denote by 𝑞𝑠 the number of queries to this oracle. We assume here
that there is an adversary A able to produce a valid signature on rchk (for simplicity we
omit the other values) and we construct B, which usesA, to break the EUF-CMA signature
scheme. B uses its own oracle to forward query to A, thus:

Adv10 ≤ Adv11 + 𝜖𝐸𝑈𝐹−𝐶𝑀𝐴

We conclude by observing that Adv11 ≤ 2−|mk | since the only possibility forA to recover
mk𝑥

★,𝑦★ is to guess directly this value.

3.3.3 SAID protocol

SAID was introduced in 2019 by Blazy et al., whose main goal was to strengthen the au-
thentication guarantees provided in messaging protocols. Another main difference between
Signal and SAID is that the latter was constructed in the identity-based (IB) setting, which
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not only replaces Signal’s credential server by a Key-Distribution Center (KDC), but which
also comes with some substantial modifications within the protocol.

IBS

msAB 𝐾𝐷𝐹𝑟 ck1,1 𝐾𝐷𝐹𝑚 ck2,1

mk1,1

tag1,1 | |msAB

𝐾𝐷𝐹𝑚 ck3,1

mk2,1

tag2,1 | |msAB

. . . chain 𝑦 = 1

msAB | |Δ1 𝐾𝐷𝐹𝑟

rk1

ck1,2 𝐾𝐷𝐹𝑚 ck2,2

mk1,2

tag1,2 | |msAB

𝐾𝐷𝐹𝑚 ck3,2

mk2,2

tag2,2 | |msAB

. . . chain 𝑦 = 2

msAB | |Δ2 𝐾𝐷𝐹𝑟 ck1,3

rk2

rk3

𝐾𝐷𝐹𝑚 ck2,3

mk1,3

tag1,3 | |msAB

𝐾𝐷𝐹𝑚 ck3,3

mk2,3

tag2,3 | |msAB

. . . chain 𝑦 = 3

Figure 3.8 The key schedule of SAID.

3.3.3.1 The SAID protocol

Unlike Signal, SAID protocol was designed in the identity-based paradigm, allowing parties
to derive other parties’ public keys from their identities (thus removing the need for certifi-
cation). In order to associate private keys that are secure and unpredictable to each identity
public key, a special entity (the Key Distribution Center) will initially run a global setup,
then generate and distribute the private keys to the protocol participants.

In this section, we use an identity-based signature scheme which supersedes Signal’s
key storage server, thus providing persistent authentication and the additional advantage of
public verification with respect to a known identity (in lieu of a given verification key).

Identity-based signatures. An identity-based signature [FZL10] scheme is made up
of four possibly randomized algorithms IBSig=(aIBS.Setup, aIBS.Extract, aIBS.Sign,
aIBS.Vfy) with the following properties:

• aIBS.Setup: takes in input a security parameter 𝜆 (in unary) and outputs: public
parameters IBS.ppar, a public key IBS.mpk, and a private key IBS.msk;

• aIBS.Extract: takes in input all public parameters, the master secret key msk, and
an identity of a user P, and outputs a private signing key for that user: IBS.skP;

• aIBS.Sign: takes in input all public parameters, a private key IBS.skP, and a message
𝑀 , and outputs a signature 𝜎;

• aIBS.Vfy: takes in input the public parameters, the identity P of the purported signer,
a message 𝑀 and a signature 𝜎, and outputs a bit, either 1 if the signature verifies for
the given identity and message, and 0 otherwise.

The Existential Unforgeability against Chosen-Message Attacks (EUF-CMA) notion for
identity-based signatures is similar to the one for tradition signature schemes, and we do not
recall it here, referring to [FZL10] instead.
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We proceed to describe how users Alice and Bob (denoted A and B), with Alice playing
the role of the initiator, can register, start, and run a session of our protocol. In the interest
of clarity, we will use the same notation for this protocol as for the presentation of Signal.
Specifically: we begin counting stages at 1 on both the horizontal and vertical components;
we use the horizontal component (x) to index messages from the same sender, while the
vertical one is used for switching speakers; our notations for ratchet keys only contain the
stage (as this immediately implies their owner); and we use chain keys ck𝑥,𝑦 instead of base
keys, and message keys mk𝑥,𝑦 instead of keys.

The SAID protocol has four main phases:

• Parameter Generation: run once, by a trusted party (typically the 𝐾𝐷𝐶), to set up
the public parameters of the protocol;

• User Registration allow users to register to the 𝐾𝐷𝐶, thus receiving their identity-
based cryptographic data;

• Session Initialization performed by a user A to begin a chat with a registered user
B. In this phase, A generates a long-term master-secret which will then be used
throughout the protocol (entering as input to the aSend algorithm);

• Messaging takes place when two users communicate in a session. This phase in
characterized by sequences of symmetric and asymmetric ratchets.

Parameter generation. The Key-Distribution Center (𝐾𝐷𝐶) will first set up the mathe-
matical structure within which the SAID protocol will run. These parameters are universal
to all the users and all the sessions that will ever be run.

• For the identity-based signature scheme, we need to generate public parameters
IBS.ppar and a master key-pair (IBS.msk, IBS.mpk);

• For the AEAD cipher suites, the 𝐾𝐷𝐶 will need to establish the set of possible keys,
nonces, messages, and headers;

• We generate groupsG1,G2,G𝑇 generated by 𝑔1, 𝑔2, and 𝑔𝑇 respectively, and a bilinear
pairing 𝑒

• In addition to the IB Signature scheme, we will also need to embed user identities
into group keys. To do so, we need a master secret key and master public key:
ID.msk

$←− Z𝑝 and ID.mpk = 𝑔ID.msk
2 ∈ G2;

• The 𝐾𝐷𝐶 chooses hash functions 𝐻, 𝐻2 with range G∗1;

• The protocol requires two key-derivation functions (KDFs), like in the case of Sig-
nal: KDF𝑟 for root- and chain-key derivation, and KDF𝑚 for message and chain-key
derivation (typically instantiated as HKDF).

The cumulative public parameters pparam output by the 𝐾𝐷𝐶 will include all the public
values and algorithms above. The master secrets, kept by 𝐾𝐷𝐶 only, are IBS.msk and
ID.msk.
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Alice (A, IBS.skA, ID.sk𝐴) Bob (B, IBS.skB, ID.sk𝐵)
Session initialization: initiator Alice, responder Bob.

Generate: rchk1, 𝑟, tag1,1 $←− Z𝑝
Compute: Rchpk1 ← 𝑔1

rchk1 and ℎ← 𝑔𝑟2
Let: meta1 ← (A,B,Rchpk1)
𝜎 ← aIBS.Sign(IBS.ppar, IBS.skA, {meta1, ℎ})
Compute: msAB ← 𝑒(𝐻 (B), ID.mpk𝑟 )
Initial keys: (rk1, ck1,1) ← KDF𝑟 (msAB, 𝑔1)

(mk1,1, ck2,1) ← KDF𝑚(msAB, ck1,1, tag1,1)

First message: stage (1, 1), Alice is the sender, Bob, the receiver.
AD1,1 ← (meta1, ℎ, 𝑥 = 1, tag1,1, 𝜎)

𝑐←AEmk1,1 (𝑀1,1 |AD=AD1,1 )
−−−−−−−−−−−−−−−−−−−−−−−→ Let: meta1 ← (A,B,Rchpk1)

Check 1 = aIBS.Vfy(IBS.ppar,A, {meta, ℎ}, 𝜎)
Compute msAB ← 𝑒(ID.sk𝐵, ℎ)

Initial keys: (rk1, ck1,1) ← KDF𝑟 (msAB, 𝑔1, tag1,1)
(mk1,1, ck2,1) ← KDF𝑚(msAB, ck1,1)

AE decrypt 𝑐 to 𝑀1,1.
ℓ-th message: stage (ℓ, 1), Alice is the sender, Bob, the receiver.

Generate: tagℓ,1
$←− Z𝑝

Keys: (mkℓ,1, ckℓ+1,1) ← KDF𝑚(msAB, ckℓ,1, tagℓ,1)
Set ADℓ,1 ← (meta1, ℎ, (𝑥 = ℓ), tagℓ,1, 𝜎)

𝑐←AEmkℓ,1 (𝑀ℓ,1 |AD=ADℓ,1 )
−−−−−−−−−−−−−−−−−−−−−−−→ Set (mkℓ,1, ckℓ+1,1) ← KDF𝑚(msAB, ckℓ,1, tagℓ,1)

AE decrypt 𝑐 to 𝑀ℓ,1.
Switching speakers: Bob comes online and begins a new ratcheting chain.

Generate: rchk2, tag1,2 $←− Z𝑝
Compute: Rchpk2 ← 𝑔1

rchk2

Set: Δ2 ←
(
Rchpk1) rchk2

Compute: (rk2, ck1,2) ← KDF𝑟 (msAB,Δ
2, rk1)

(mk1,2, ck2,2) ← KDF𝑚(msAB, ck1,2, tag1,2)
Bob’s message, stage (1, 2): Bob is the sender, Alice is the receiver.

Let: meta2 ← (A,B,Rchpk2)
AD1,2 ← (meta2, (𝑥 = 1), tag1,2)

Set: Δ2 ←
(
Rchpk2) rchk1 𝑐←AEmk1,2 (𝑀1,2 |AD=AD1,2 )

←−−−−−−−−−−−−−−−−−−−−−−−
Compute: (rk2, ck1,2) ← KDF𝑟 (msAB,Δ

2, rk1)
(mk1,2, ck2,2) ← KDF𝑚(msAB, ck1,2, tag1,2)
AE decrypt 𝑐 to 𝑀ℓ,1

Second speaker switch: Alice is back online.

Generate: rchk3, tag1,3 $←− Z𝑝
Compute: Rchpk3 ← 𝑔1

rchk3

Set: Δ3 ←
(
Rchpk2) rchk3

Compute: (rk3, ck1,3) ← KDF𝑟 (msAB,Δ
3, rk2)

(mk1,3, ck2,3) ← KDF𝑚(msAB, ck1,3, tag1,3)
Let: meta3 ← (A,B,Rchpk3)
AD1,3 ← (meta3, (𝑥 = 1), 𝑁1, tag1,3)

Figure 3.9 The SAID protocol. Note that, for message-chains with index higher than
2, parties add to their associated data the number of messages they had sent at the
immediately-previous message chain for which they played the part of senders.

User Registration. A user A registers to the system by sending her identity, A, to the 𝐾𝐷𝐶.
The𝐾𝐷𝐶 returns the user’s secret signing key IBS.skA ← aIBS.Extract(IBS.ppar, IBS.msk,
A) and her secret identification key ID.sk𝐴 ∈ G1 generated as 8 ID.sk𝐴 = 𝐻2(A)ID.msk. The
𝐾𝐷𝐶 also adds A into a list of registered users, and replies to any future attempt to register
A with the error message ’username taken’.

Session Initialization. In SAID, any registered user A can initiate a session with another reg-

8The user’s secret identification key is essentially a Boneh-Franklin key for identity based encryption [BF03].
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istered user B (without requiring the online presence of the 𝐾𝐷𝐶), following the procedure
depicted at the beginning of Figure 3.9, which we also detail below.

A begins by choosing a random ratchet secret key rchk1 $←− Z𝑝 and computes its corre-
sponding public key Rchpk1 = 𝑔

rchk1

1 . As in Signal, these ratchet keys are not used yet, but
the target responder B will need them to make his first asymmetric ratchet and respond to
A’s messages. In addition, A picks a random value 𝑟 $←− Z𝑝 and computes ℎ = 𝑔𝑟2 . At this
point A uses its identity-based signature credentials to generate a signature on the metadata
of the first message chain meta1 ← (A,B,Rchpk1) and the public value ℎ:

𝜎 ← aIBS.Sign(IBS.ppar, IBS.skA, {meta1, ℎ}).

The values ℎ and 𝜎 will be part of the associated data (AD) of all the messages sent
by Alice along the first message-chain. The master secret shared between A and B is
msAB = 𝑒(𝐻 (B), ID.mpk)𝑟 . To generate the initial root key rk1 and chain-key ck1,1, the
values (msAB, 𝑔1) are input to KDF𝑟 . By using the computed ck1,1, A can perform its first
symmetric ratchet, obtaining the message key mk1,1 and channel key ck2,1 as the output of
KDF𝑚(msAB, ck1,1, tag1, 1) for the freshly-generated tag1, 1. Finally, A authenticates and
encrypts the message 𝑀1,1 with associated data AD = (meta1, ℎ, (1, 1), 𝜎), sending the
resulting ciphertext 𝑐 to Bob.

Upon receiving this ciphertext, Bob first verifies the identity-based signature 𝜎, then
retraces Alice’s steps to obtain the message key that will allow it to authenticate and decrypt
the message it has received.

Messaging. Following the way Signal works, in SAID the key material also evolves through
symmetric and asymmetric ratcheting.

Symmetric Ratcheting. A user performs a symmetric ratchet when she wishes to obtain a
chain- and a message-key, to either encrypt one more message, without having received
a reply; or to decrypt one more message before responding. In particular, recall that a
symmetric ratchet increases the 𝑥 counter of the stage, so if the starting stage is (𝑥, 𝑦), after
the symmetric ratchet we land at stage (𝑥 + 1, 𝑦).

The process of a symmetric ratchet, also show in the transition from stage (1, 1) to (ℓ, 1)
in Figure 3.9 also shows user Alice using the shared master secret and the chain key of stage
(𝑥, 𝑦) to output the message key for stage (𝑥, 𝑦) and the chain-key for stage (𝑥 + 1, 𝑦).

Note that, as it is in Signal, KDF𝑚 is split into two parts, as shown below: one which
generates the next chain-key, and one which generates the encryption key. Only the latter of
these two uses the random tag as input, in order to handle out-of-order messages, i.e., the
chain-keys could be computed simply from the previous ones, but not the encryption keys.

(msAB, ck𝑥,𝑦) HMAC−−−−→ ck𝑥+1,𝑦

(msAB, ck𝑥,𝑦 , tag𝑥,𝑦) HMAC−−−−→ 𝑡
HKDF−−−−→ mk𝑥,𝑦

The random tag will be included in the associated data to enable the responder to generate
the same key mk𝑥,𝑦 .

97



Measuring the PCS Healing 3.3. Use-cases of our metric

Asymmetric Ratcheting. Whenever a message is sent by the party who is not the sender
of the last message in the chat, an asymmetric ratchet happens. Asymmetric ratcheting
increases the 𝑦 counter and resets the 𝑥 counter of the chat state, so if the starting stage is
(𝑥, 𝑦), after the asymmetric ratchet we land at stage (1, 𝑦 + 1).

As depicted in Figure 3.9, assuming A was the sender at stage (𝑥, 𝑦), then, to send
his response B selects a random ratchet secret key rchk𝑦 and computes the shared secret
Δ𝑦 = (Rchpk𝑦−1)rchk𝑦 . He then inputs the shared master secret, the newly computed secret
value Δ𝑦 , and the current root key (of level 𝑦 − 1) to KDF𝑟 and obtains the root key for
message-chain 𝑦, together with the new chain-key for stage (1, 𝑦). Finally, B performs a
symmetric ratchet to generate the message-key for stage (1, 𝑦) (and the next base-key for
stage (2, 𝑦)).

Note that, furthermore, as depicted in Figure 3.9, the associated data sent along with the
message at stage (𝑥, 𝑦) contains Alice and Bob’s identity, the ratchet public key of the current
sender for message-chain 𝑦, the horizontal-index counter (𝑥 = 1), and the number 𝑁𝑦−1 of
messages sent by the same party at level 𝑦 − 2 (this value is not used for message-chains
𝑦 = 1 and 𝑦 = 2), and, finally, the tag tag𝑥,𝑦 .

3.3.3.2 SAID description as SCEKE

Our generic SCEKE protocols feature a more careful modelling of the user-registration
process, which is now an interactive protocol, prone to attacks by an adversary. As a
result, we add two details to the description of Signal, notably keypairs for the KDC and
protocol participants – which will allow them to establish the secure channel they require at
registration. Although these keys do not explicitly feature in SAID, Blazy et al. [BBB+19]
do suppose the existence of a mutually-secure channel during that process.

Setup. SAID requires as a building block an identity-based signature scheme IBSig =

(aIBS.Setup, aIBS.Extract, aIBS.Sign, aIBS.Vfy). It also needs a type-3 pairing 𝑒.
At system setup the KDC generates some global public and private parameters required for
running SAID. In particular, it must generate global setup values (IBS.msk, IBS.mpk) for the
IB signature scheme and also parameters ID.msk

$←− Z𝑝 (private) and ID.mpk = 𝑔ID.msk
2 ∈ G2

(public) for embedding identities into private identity keys.
We moreover allow Ŝ to generate a pair of private/public keys for the key-establishment

protocol of its choosing (for instance TLS 1.3), denoting them Ŝ.sk, Ŝ.pk, and then appends
ID.msk and IBS.msk to Ŝ.sk.

Key generation. In addition to the material described in [BBB+19], we have parties initially
register some non-identity-based keypairs (ik, ipk), to be used during registration.

Registration. During registration, users first establish a secure channel to the KDC (us-
ing, on the user side (ik, ipk) and on the super-user side, (Ŝ.sk, Ŝ.pk)). Over this chan-
nel, the user (say Alice) sends her identity A (for instance a phone number, an email
address, etc.), to the 𝐾𝐷𝐶. The 𝐾𝐷𝐶 returns the user’s secret signing key IBS.skA ←
aIBS.Extract(IBS.ppar, IBS.msk,A) and her secret identification key ID.sk𝐴 = 𝐻2(A)ID.msk.
In other words, the KDC will know all the users’ private keys.

98



Measuring the PCS Healing 3.3. Use-cases of our metric

Instance initialisation. In SAID, the parties no longer need the super-user to instantiate a
session. Its contribution is thus deemed void. The session’s initiator Alice will choose some
randomness 𝑟 and compute msAB = 𝑒(𝐻 (B), ID.mpk)𝑟 : in other words, Alice embeds the
identity of Bob into the master secret. Alice also generates a random tag: tag1,1, and uses it
together with the master secret to derive the root key rk1 and the first chain key ck1,1. The
presence of a fresh tag at each stage is a specificity of SAID, which will ensure that keys are
unlikely to repeat.

As in Signal, a KDF is then used to obtain the second chain key ck2,1 and first message
mk1,1 from the input values msAB and ck1,1.

Unlike in Signal, in SAID the master secret value msAB is used at every stage, thus
requiring the knowledge (on the part of Bob) of his private identity-key, and on the part of
Alice, of the secret 𝑟 that was signed with her IB signing key. In [BBB+19] all parties P
store values ikP and master secrets msP· of started sessions, and ms·P of responded sessions
in a trusted execution environment – which we abstract in our work.

Sending and receiving. Stages and keys evolve in SAID in a similar way as in Signal:
• Symmetric ratcheting: To go from stage (𝑥, 𝑦) to (𝑥 + 1, 𝑦), the current speaker

generates a new tag tag𝑥+1,𝑦 and then uses it, together with the chain key ck𝑥+1,𝑦 , in
order to output ck𝑥+2,𝑦 and mk𝑥+1,𝑦 . In actual fact, the process contains two substeps,
which are detailed in Appendix 3.3.3.1.

• Asymmetric ratcheting: When speakers change, the key material is freshened up
with Diffie-Hellman randomness (like in Signal). The key schedule for the new chain
takes in input the master secret, a value Δ𝑦+1 = 𝐷𝐻 (Rchpk0,𝑦−1,Rchpk0,𝑦), and the
root key rk𝑦 , outputting rk𝑦+1 and ck1,𝑦+1. The chain key, master secret, and a freshly
generated tag tag1,𝑦+1 are fed to a KDF in order to obtain the first message key of the
chain, mk1,𝑦+1.

As in the case of Signal, the public key material that allows the receiver to ratchet
correctly is sent as metadata. For the first chain of messages, Alice will send the following
values as Associated Authenticated Data (AAD): the public value ℎ = 𝑔𝑟2 corresponding to
the secret 𝑟 that the initiator fed into the master secret computation; the the stage’s horizontal
index 𝑥 = 1; metadata consisting of a public ratchet key Rchpk1 = 𝑔

rchk1

1 , the tag of the
current message, the user identities; and a signature over all those values except the tag:
𝜎 ← aIBS.Sign(IBS.ppar, IBS.skA, {meta1, ℎ}).

For all the messages in chain 𝑦 = 2, the auxiliary data is of the same form, except that of
course we no longer need a value ℎ. Starting from 𝑦 = 3, another auxiliary value is added:
the number 𝑁𝑦−2 of messages that the sender sent in its previous sending chain (i.e., chain
𝑦 − 2). Recall that we depict the key-schedule of SAID in Figure 3.8.

Comparing security models. Our framework follows closely the model by Blazy et
al. [BBB+19], which describes a real-or-random key-indistinguishability experiment for
identity-based secure messaging. Their adversaries are either passive or active outsiders in
our taxonomy. The model of [BBB+19] has several features identical to ours: a global setup,
malicious-user registration procedures, sending, and receiving oracles.

Since new-session instantiation is not interactive for SAID, our model boils down to
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𝑟 mk ck tag ms rk rchk ik ID.sk IBS.sk
oReveal.1Stage ✓ ✓ ✓ ✓

oReveal.XStage ✓ ✓ ✓

oReveal.XSid ✓ ✓ ✓

oCorrupt ✓ ✓ ✓ ✓

oReveal ✓ ✓ ✓ ✓ ✓

oHSM BB BB BB BB
Figure 3.10 Comparison of leakage oracles for SAID (our framework and [BBB+19]). We

denote by “BB” a black-box access to an oracle.

Blazy et al.’s on this account.
However, [BBB+19] gives different leakage possibilities to its adversaries than we do,

through three specific oracles (presented in the lower half of Figure 3.10). The first is corrup-
tion, which yields our cross-session keys, but also all the master secret values of all ongoing
sessions. A can also reveal a subset of cross- and single-stage keys (specified by name);
by contrast, our framework only splits access by key-type (e.g., querying oReveal.XStage
yields all cross-stage keys together). Finally, [BBB+19] allows A black-box access to a
long-term value: we denote this in Figure 3.10 by a “BB" annotation. We describe in detail
our classification of keys as stage-local, cross-stage, and cross-session in Table 3.1 and in
the following paragraph.

Although oReveal providesA more fine-grained access to the local and cross-stage keys
(as it can reveal them individually), the SAID protocol proofs make no use of this particular
granularity: in other words, security relies on the fact that the adversary is never given access
to the master secret (obtained in [BBB+19] by a oCorrupt query) simultaneously with the
chain or root key allowing A to compute a target message key.

3.3.3.3 The PCS-security of SAID

Key-material. We divide the key material input into the key-schedule of SAID in a similar
way as we did with Signal. The results, also shown in Table 3.1, are the following:

• Stage-specific keys: In this category, we have chain and message keys as in Signal,
together with the newly-generated tags. In addition, we feature the randomness 𝑟 used
at the beginning of the protocol, within the computation of the master secret;

• Cross-stage keys: Interestingly enough, the master secret is now a cross-stage key,
because it is input at every stage of the protocol, not just the first one. Other cross-stage
keys include root and ratchet keys;

• Cross-session keys: The long-term keys of the protocol are: the initial private key ik,
as well as identity-based signature and identity keys (denoted ID.sk and IBS.sk).

Theorem 4 Consider the SAID protocol modelled as a SCEKE scheme. The following
results hold in the random oracle model (by replacing the KDFs and hash functions with
random oracles), under the Bilinear Computational Diffie-Hellman assumption, and assum-
ing the EUF-CMA security of the IB-signature scheme IBSig and the AKE security of the
channels established between honest users and an honest Ŝ at registration:
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• SAID is (1, 0)-PCS secure against local outsiders (passive and active);
• SAID is (∞, 1)-PCS secure against local passive insiders;
• SAID is (∞, 2)-PCS secure against: medium passive adversaries (outsiders and in-

siders), and global passive attackers (outsiders and insiders);
• For other adversary types, SAID is (∞,∞)-PCS secure.

Analysis. The results regarding SAID in this paper are partly based on the proofs by Blazy
et al. [BBB+19]; however we note that their security model is slightly different from ours.
For instance, Blazy et al. use a trusted execution environment to safeguard all the values of
ms that a party ever computes in its lifetime – thus essentially placing it at the same level
as the party’s long-term keys. We choose to keep the master secret at a cross-stage level,
where it technically belongs. In so doing we quantify the security of SAID when a TEE is
not employed.
Local Outsiders We consider passive and active outsiders together. We claim that SAID
is (1, 0)-PCS-secure – which is actually optimal in our framework. The main reason this is
the case is that the master secret value is input in SAID at every ratchet; hence, denying the
adversary access to it results in denying A the ability to make keys evolve without further
corruption. This guarantees the optimal PCS security of SAID.
Other passive adversaries For global and medium passive insider and outsider adversaries
the PCS security limitations are given, as for Signal, by the fact that, on the one hand, the
adversary is able to learn a ratchet key rchk𝑥,𝑦 at the last corruption stage (𝑥, 𝑦), and on the
other hand, it is a passive attacker and can thus not use that ratchet key for longer than two
chains. Moreover, in this case, even passive knowledge of Ŝ.sk is not helpful. In this case,
SAID is (∞, 2)-PCS secure.

In the case of a local passive insider, as in the case of Signal, the adversary is crippled
by its lack of knowledge or root and ratcheting keys.
Other active outsiders Knowledge of the master secret is fundamental in SAID. Since
we do not consider TEEs, both medium and global active outsiders are allowed access to the
master secret, and can hijack the session by including fresh asymmetric ratcheting elements
once the corruption has been done. In this situation, as in Signal, the protocol never heals
((∞,∞)-PCS security).
Active insiders We recall that the master secret keys used by the KDC at setup will now
be part of the adversary’s knowledge, as well as the database of entries containing identities
and private keys. This allows the adversary to learn the private keys, both for signatures and
their identity keys. This enables the the active, malicious KDC to impersonate Alice towards
Bob and Bob towards Alice, thus endangering all their future keys ((∞,∞)-PCS security).

Security proofs.
G0 : This game corresponds to the original security game (Figure 3.5 of Sec. 3.2.4).

The advantage of A against this game is Adv0.
G1 : In this game C guesses P, Q, the session index of the target session, and the target

stage 𝑠★ = (𝑥★, 𝑦★) for which A has queried oTest.
If A queries another parties, session or tested stage then C aborts the game and returns
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a random bit. Therefore we have the following:

Adv0 ≤ nP
2 · n𝜋 · nx−max · ny−max · Adv1

Moreover, we assume the uniqueness of the identity key, and identity-based related keys
(identification and signature ones) for each party. The latter condition is ensured by the
𝐾𝐷𝐶 maintaining a list of keys and removing possible duplicates.

Local Passive Outsider. We prove that SAID has the best healing, i.e., (1, 0)-PCS security
meaning that only the compromised stage is accessible to the adversary. Recall that a local
adversary can query the oReveal.1Stage oracle to reveal single-stage keys, which for SAID
correspond to ck and mk. First we show that the master secret ms is indistinguishable from
random, then we show that a tested stage is fresh (with an indistinguishable session key from
a random value) even after an immediate compromised stage.
G2 : This game aborts if the adversary calls the random oracle with input msPQ. The

adversary has only one value to guess, the random 𝑟 while the other values are already
determined (the identity of Q, and the master public key of Ŝ). Guessing 𝑟 corresponds to a
large failure event so:

Adv1 ≤
1
𝑞
+ Adv2

From this game, we assume that the master secret is unique between each pair of
communicating partners.
G3 : We show that ck1,𝑦 is indistinguishable from random. In this game, the challenger

aborts if the adversary query the random oracle with input (•∥Δ★∥rk★) where • corre-
sponds to ms. We show by reduction to GDH that if A can query the random oracle with
Δ★ = 𝐷𝐻 (Rchpk0,𝑦★,Rchpk0,𝑦★+1) with non-negligible probability then we can construct
B breaking the GDH problem. We apply the same technique as in Signal (cf. G7 ), that

is B sends Rchpk0,𝑦★ := 𝑔𝑎 and Rchpk0,𝑦★+1 := 𝑔𝑏 to A. If A does not send the query
corresponding to Δ = Δ★ then B simulates completely the game forA while the special case
is whenA sends CDH(Rchpk0,𝑦★,Rchpk0,𝑦★+1) to the random oracle. In this case, when B
queries its DDH oracle (returning 1) it finds a solution to the GDH experiment. Finally, we
have:

Adv2 ≤ Adv3 + 𝜖𝐺𝐷𝐻

G4 : This game is the same as the previous except that the challenger aborts ifA queries

the random oracle with rk for up to and including 𝑦★. We use hybrid argument where the
first game is G4 and each iteration are the next rk until rk★. Between each game, the root

keys are indistinguishable since the new root key is the output of the random oracle and A
can only query oReveal.1Stage. Since the adversary’s probability to guess the root key is
2−|rk | for ny−max number of chains, we have:

Adv3 ≤ Adv4 +
1

2−|rk | − 1
G5 : This game aborts if the adversary queries the random oracle with (ck★,msPQ,
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tag★). This game proceeds as the previous one with a subcase to handle. Indeed, key
ck is in the adversary’s reach (single-stage for a local adversary). Thus A could reveal
this keys by querying oracle oReveal.1Stage. However, as defined in 3.2.4, the adversary
wins with non-negligible probability for a query on stage 𝑠★ which is the tested stage. Yet,
the adversary has negligible probability to win if the tested stage is after the reveal query.
Indeed, SAID is (1, 0)-PCS secure meaning that A could reveal a key on stage 𝑥★ − 1 but
distinguishes the session key with negligible probability.

Suppose that A does not query oReveal.1Stage on the tested stage (which is part of
our metric definition). We show by reduction that A can distinguish the session key if
it can break the BCDH assumption meaning that it can compute msPQ. We construct B
simulating the game for A. Adversary B receives 𝐴 = 𝑔𝑎1 , 𝐵 = 𝑔𝑏2 , 𝐶 = 𝑔𝑐2 as input. It sets
𝐻 (𝑅) := 𝐴 (with 𝐻 simulated as random oracle and 𝑅 the responder role the tested session)
and ID.mpk := 𝐵. For each other party 𝑋 ≠ 𝑅, B generates a random value 𝛼 and sets
𝐻 (𝑋) := 𝑔𝛼1 . When A starts the session between P and Q then B runs the actual protocol
except that it sets ℎ := 𝐶. In this case, we have msPQ = 𝑒(𝐴, 𝐵)𝑐 which is the solution of
the BCDH problem instance. Observe that B simulates perfectly the game, except when A
sends msPQ to the random oracle. Thus we have:

Adv4 ≤ Adv5 + 𝜖𝐵𝐶𝐷𝐻

Finally, if A never sends msPQ to the random oracle then the session key is indistin-
guishable from random. In this case, A wins the game with probability 1/2:

Adv5 =
1
2

Local Active Outsider. This case is the same as the passive adversary except that we need to
ensure that the adversary cannot replace ms with its own key material. Here, the adversary
has two possible ways to inject its own key material. First, A could interfere during the
registration phase between P and Ŝ. However, we assume that those two parties establish a
secure channel thus the security relies on the AKE assumption. Second, A could forge its
own value ℎ to compute the master secret but in this case, we rely on the EUF-CMA security
of the IB-signature scheme IBSig. Note that the active adversary case cannot interfere later
on because the other keys are not single-stage (thus having the same security as the local
case).

Medium/Global Passive Outsider. This case gathers both medium and global adversaries.
Indeed, a global adversary has additional access to the keys used during registration (ik) and
identity-based key used for instance initialisation. However, in the passive this yields to no
other consequence than the medium case.

SAID is (∞, 2)-PCS secure meaning that the adversary can compromised two full chains
of communication. We apply the same game hops as the local case, but the index of stages
are different. Indeed, our security definition ensures that the call to oReveal cannot happen
with stage 𝑦 = 𝑦★ − 1 or 𝑦 = 𝑦★. Thus from 𝑦 = 𝑦★, the adversary has the same advantage
of the local case.
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Local Passive Insider. In this case, A can reveal msPQ but not inject its own value during
the protocol. We show that such adversary can compromise at most the first chain which
corresponds to (∞, 1)-PCS security. This is due to the fact that a new chain is initialised
with ratchet keys which are out of reach’s adversary.
G2 This game aborts if the adversary queries the random oracle with input (•∥Δ★∥◦)

where • corresponds to ms and ◦ corresponds to 𝑟𝑘★. We apply the same argument as
the local passive outsider adversary in G3 . Thus we also use GDH reduction to show that

A. The rest of the proof correpsonds to the local passive outsider since at this point the
adversary has the same advantage in both cases.

Medium/Global Passive Insider. In this case, SAID is (∞, 2)-PCS secure. This comes
directly from the fact that now the adversary has access to the secret keys used during session
initialisation but cannot interfere in other way with the protocol. Our security definition
implies that the adversary cannot compromise a stage of index 𝑦 = 𝑦★ − 1 or 𝑦 = 𝑦★. We
apply then the same proof as the previous case (local passive insider).

3.3.4 Application to 5G-handover

We showcase the flexibility of our SCEKE framework by describing how it can capture a
host of secure-channel establishment protocols in 5G, including the famous AKA and a
series of procedures called handovers [3GP20, 3GP21]. If asynchronous messaging (like
Signal and SAID) allows for two communicating partners, these 5G protocol are in fact
run between various entities. However, by focusing on the end-users within the secure-
channel establishment routines, we can nonetheless fit the 5G secure-channel establishment
primitives onto a SCEKE protocol that enables a secure channel be created, and then
maintained through key-evolution.

We begin by first describing the 5G context and how handovers are actually run in this
environment; then we show how to model these 5G secure-channel establishment procedures
as a SCEKE scheme and analyze their PCS security.

3.3.4.1 The 5G handover protocols.

The 5G technology is vast with numerous applications, services, protocols etc... We chose to
focus on peculiar procedures to this use-case: the handover procedures. In a nutshell, those
procedures occur when some independent components (which will be called gNB) share
the management of a given client (called UE). With the consecutive technical specifications
along the years, several handover procedures have been deployed as illustrated in Figure 3.12.
While a complete description of all those procedures could be insightful, we rather focus
on two of them: the XN and N2 procedures. This choice is first motivated by the fact
that describing and analysing all the procedures may be not feasible in this work; a second
motivation comes from the practicality of these procedures, most of the handover are done
using either XN or N2. Finally, the choice of the 5G handover procedures for our metric
(instead of other popular asynchronous messaging protocols like Wire, Matrix or even TLS
1.3) may be surprising. The goal is to present the strengths of our model with protocols that
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are not analysed toward PCS. While Signal (and SAID) is well-known and well-analysed
protocol (allowing us to ascertain the correctness of our model), the handover procedures are
not as well popular (at least in the academic field). Thus we wanted to fill the gap between
this lack of analysis by the academic and the practical point of view of those procedures.

Figure 3.11 Handover procedures in 5G networks.

We present an overview of the 5G networks9 and outline of the AKE procedures that
occur therein. We refer to this composition of AKE procedures as the 5G-SCEKE.

When we present it, we focus just on elements relevant to our metric and analysis (i.e.,
we ignore a series of messages exchanged therein that have no impact here).

An Overview of the 5G Network. The customers in a mobile network are in possession
of a mobile phone or device containing a SIM. The device and SIM together are referred
to as UE. This UE can run different procedures (e.g., radio protocols, cryptographic ones)
with other parts of the mobile network. The SIM inside the UE contains identifiers and
cryptographic material shared only with a few essential entities/servers of the core of the
network managed by the operator (e.g., Vodafone, Orange).

Client RAN Operator

UE
gNB1

gNB2

Core
XN

N2 and Reg/AKA

N2 and Reg/AKA

Figure 3.12 On overview of the main 5G entities & Procedures

The core is an essential part of the operator’s network; we present this as a whole, as its
inner servers can be treated holistically for this work.

All access of the UEs’ to the service and to the core is done via a network of radio
“base-stations” which, in 5G, are referred to as gNB. At any point, any UE is served by one
gNB.

Entities in the 5G network are linked via one or more interfaces. All interfaces between
the gNBs themselves, as well as between the gNBs and the core are considered to be

9We assume no roaming, i.e., the mobile users are served directly and entirely by the network managed of
the operator they have a contract with.

105



Measuring the PCS Healing 3.3. Use-cases of our metric

secure channels (i.e., ensuring confidentiality, integrity and authentication); the security of
gNB-to-gNB and gNB-to-core interfaces does not make the direct subject of this work.

Securing the 5G Access-stratum Channels. The protocols securing the channel on inter-
face between the UEs and the RAN (i.e., between a given UE and its serving gNB) are
of interest herein. A series of AKE protocols, which we collectively call 5G-SCEKE, are
used to re-fresh the access-stratum (AS) keys which provide confidentiality (via encryption),
authentication and integrity (via MAC-ing) for the channel between any given UE and its
serving gNB. In fact, the protocols in the 5G-SCEKE refresh not just the AS keys, but a
series of short-term keys in a hierarchy of 5G keys. Of these refreshed keys – at any given
point– some are shared between a UE, one or two gNBs and the core, and others are shared
just between a UE and the core.

The 5G-SCEKE is formed of: Registration, via the AKA procedure, and handover
procedures – via XNp and N2p, both of which come with variations in the key-derivation
mechanisms. Each such procedure is executed between one UE, one or two gNBs and the
core.

An overview of which entities run which procedures (aside of the UE which runs them
all) is given in Figure 3.12.

The Registration & AKA Procedures. The Regp procedure is described mainly in [3GP20,
3GP21]. In this subsection, we do not focus on the whole description of the message flow
in the Regp procedure, but on aspects of key-establishment done within.

The Regp procedure is executed when a UE (re)gains signal. Then, this UE will be
served by a physically close-by gNB which we denote 𝑠-𝑔𝑁𝐵. The Regp procedure is run
between said UE and the core, and it is passively proxied by said 𝑠-𝑔𝑁𝐵.

The KAMF Key. The Regp procedure is split in three parts, with the second part being
the AKA procedure. During this, the core authenticates the UE and the two re-fresh a list of
short-term keys with a key hierarchy, some used just as key “seeds” for other keys (e.g., 𝑁𝐻)
or authentication purposes (e.g., 𝐾𝑆𝐸𝐴𝐹), whilst others (e.g., 𝐾𝐴𝑀𝐹) being used in actual
exchanges between the UE and the cire. The key of most interest herein, regenerated by the
UE and the core at the end of AKA and being the last key in the “AKA key-hierarchy” is
called KAMF.

The KgNB Key. At the end of the Regp procedure, out of 𝐾𝐴𝑀𝐹 , the core and the
UE generate another key – called the security key and denoted KgNB. The core sends
𝐾𝑔𝑁𝐵 to 𝑠-𝑔𝑁𝐵, and this radio node uses 𝐾𝑔𝑁𝐵 to derive the access-stratum keys (e.g.,
𝐾𝑈𝑃𝐼𝑁𝑇 , 𝐾𝑈𝑃𝐸𝑁𝐶) to communicate securely with the UE henceforth; so does the UE.
From here on, the communication between the UE and 𝑠-𝑔𝑁𝐵 is secured via the AS keys
derived from 𝐾𝑔𝑁𝐵. To denote the status at the end:

An equivalent message to this Regp run is given in Figure 3.13.

The Handover Procedures: XNp and N2p. The handover procedures are described
mainly in [3GP20, 3GP21].In this subsection, we do not focus on the whole description
of the message flow in the handover procedures, but on aspects of key-establishment done
within.
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Authentication Request

UE gNB0
Serving Core Subscribers Core

(AMF, SMF)(AMF, SMF)

Registration 
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UE1
....

KSEAF

KAMF

KgNB

NCC

NH

AS keys

gNB0

KgNB

AS keys

Core1
...

KSEAF

KAMF
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next NCC

next NH

Registration 
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Registration Accept ( incl. UE Security Capabilities, KgNB)
Security Mode

Derive:
 KgNB, 

AS Keys

Security Mode Complete
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Calculate Auth.

response
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RRCReconfigurationComplete

RRCSetup
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CK

IK

KAMF
regenerated
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regenerated

Figure 3.13 The 5G-SCEKE Short-term Keys’ Update and Distribution at the End of Regp
(. . . denote existence of other shared keys)

A handover procedure is executed every time the UE swaps from being served by one
gNB, called sgNB to being served by another gNB, called tgNB. This generally happens in
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order for the UE to get better signal/connection, as it physically moves away from one radio
node and closer to another.

Handover Request (incl. new-KgNB)
 

XN

UE1

KSEAF
KAMF

gNB0

KgNB

KUPINT

KUPENC

Core

KSEAF
KAMF
KgNB
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CoregNB1

Compute new KgNB

Horizontal key
derivation:


new-KgNB ←
KDF(KgNB, TRAN-ID

Vertical key
derivation:


new-KgNB ← KDF(NH,
TRAN-ID)

Based on
current KgNB

Based on
current NH

OR

Handover Conf.

RRCReconfigurationComplete

Handover Setup

Handover Request

gNB1


new-KgNB

 KUPINT

KUPENC

next-NH and next-NCC for
next KgNB

NCC
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derivation:
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TRAN-ID)

Vertical key
derivation:


NH ← KDF(KAMF,
NH)


new-KgNB ← KDF(NH,
TRAN-ID)


NCC ← NCC +1 

Compute new NH
and NCC

Figure 3.14 The 5G-SCEKE Short-term Keys’ Update and Distribution at the End of XNp
(Red cross denote lack/deletion of keys; . . . denote existence of other shared keys)

Two Types of Handovers. To communicate securely, new AS keys need to be established
between the UE and the target node tgNB. For this, as explained for the Regp procedure, a
new security-key 𝐾1

𝑔𝑁𝐵
needs to arrive on the target node tgNB. Two cases, and thus types

of handovers, are possible.

1. The core generates and sends a new security-key 𝐾1
𝑔𝑁𝐵

to the target node tgNB,
similarly to the the Regp procedure; in this case, the source node is a passive proxy.
This procedure is the N2p protocol.

2. The source node sgNB, which already has a current security-key 𝐾0
𝑔𝑁𝐵

shared with
the UE, is an active proxy in the procedure: it generates and sends to the target node
tgNB a new security-key 𝐾1

𝑔𝑁𝐵
. This procedure is the XNp protocol.

“Horizontal vs. Vertical” XNp Protocol & Backward Security. Due to the key-derivation
used to yield the AS keys out of the 𝐾𝑔𝑁𝐵 keys, in the XNp protocol, the source node can
simply use the new 𝐾1

𝑔𝑁𝐵
actually find compute the new AS keys to be used between the UE

and tgNB; this is a well-known fact, and we say that XNp does not have backward security.
This can be worsened if the derivation of new 𝐾𝑔𝑁𝐵 is based on the previous 𝐾𝑔𝑁𝐵, which
is called horizontal key derivation (XNhkd).

Indeed, consider a series of 𝑛 executions of XNhkd. Note that a new security key 𝐾𝑛
𝑔𝑁𝐵

for the target node depends on the 𝐾𝑛−1
𝑔𝑁𝐵

key of the source node and other recoverable/public
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data. So, a rogue 𝑔𝑁𝐵 who was source node 𝑛 handovers ago can retrieve iteratively all the
security keys 𝐾1

𝑔𝑁𝐵
, . . . , 𝐾𝑛

𝑔𝑁𝐵
and therefore decrypt the UE access-stratum traffic with all

the nodes that were target nodes in these 𝑛 handovers. So, XNhkd executed in series has a
systematic loss of backward security.

However, there is an alternative. At the end of each handover, the core sends to the
target node a fresh key called NH. This is derived by the core from 𝐾𝐴𝑀𝐹 , which –as we
explained– is refreshed (at least) at the end of each Regp execution. When a gNB is source
node in an XNp procedure, this gNB should not use it current 𝐾0

𝑔𝑁𝐵
to calculate a new 𝐾1

𝑔𝑁𝐵

but rather use said NH, received when/if the gNB was target in a previous execution of a
handover procedure. The condition for this execution is the NH in question was not unused
in this way before10. This type of key-derivation inside XNp, whereby the new 𝐾𝑔𝑁𝐵 is not
based on the previous 𝐾𝑔𝑁𝐵 but rather on a recent, core-issued NH is called vertical key
derivation (XNvkd).

The XNp’s key-derivations are also given in Figure 3.14.
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security 
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Figure 3.15 Overview of Backward Security w.r.t. 𝐾∗
𝑔𝑁𝐵

: Loss and Healing via 5G
Handovers

Clearly, in a sequence of XNp executions, as soon as a vertical key derivation takes
place, the chain of serial loss of backward security is broken. Please refer to Figure 3.15 for
a visual representation of this backward security lack and post-compromise healing’.

The N2p Protocol & Better Backward Security. The N2p protocol requires less trust in
the gNBs, since the source node is not actively calculating the security-key for the target
node. In N2p, the derivation of 𝐾∗

𝑔𝑁𝐵
is in fact a vertical key derivation based on a new

NH locally computed by the core and sent to tgNB; this preservation of backward security
of 𝐾∗

𝑔𝑁𝐵
by N2p is also represented in Figure 3.15.

What is more, the core can be configured to re-fresh the keys further up the key hierarchy,
all the way to recomputing 𝐾𝐴𝑀𝐹 , which we aforementioned as the bottom of the AKA-
refreshed key chain; this is referred to as “ N2p with 𝐾𝐴𝑀𝐹 rekeying”; we refer to this as

10The NH could have been used by the current sgNB, if this gNB received it at the end of N2p, or if the served
UE had temporarily been in IDLE state.
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N2r. When we write simply N2p, we generally assume implicitly it is without𝐾𝐴𝑀𝐹 rekeying.
We specifically refer to “ N2p without 𝐾𝐴𝑀𝐹 rekeying” as N2∅).

The N2p’s key-derivations are also given in Figure 3.16.
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Figure 3.16 The 5G-SCEKE Short-term Keys’ Update and Distribution at the End of N2p
(Red cross denote lack/deletion of keys; . . . denote existence of other shared keys)

The choice between the one type of handover or another, i.e., XNp vs N2p, is down to
the interfaces between sgNB and tgNB: if there is an XN interface between them, then XNp
is executed; otherwise, N2p will be executed, intermediated by the core.

Figure 3.17 shows an overview of which procedures in 5G-SCEKE refresh which keys
in the 5G hierarchy.

3.3.4.2 The 5G-SCEKE protocol.

We refer to the composition of an initial registration procedure (through AKA) and sub-
sequent key-evolutions (through handovers) as 5G-SCEKE, and proceed to model it as a
SCEKE protocol.

Our SCEKE framework only supports two-party protocols. Thus, we compress the set of
all gNB nodes and the core network into a single entity (which will represent the responder,
Bob11). The initiator of the protocol is Alice (the UE). The super-user is a key-escrow entity,
which basically associates initial key-material to sessions (abstracting the AKA procedure).

Figure 3.18 presents 5G-SCEKE from the viewpoint of our framework’s stages and as
SCEKE protocol. Following the initial registration phase, Alice (the initiator) can horizon-
tally evolve keys by using the XN procedure. When Bob wishes to respond, it runs the

11We can do this at no risk within our framework because in the PCS game the Bob entity must be honest for
the target session – even if it might have had its secrets revealed. This abstraction, however, is not without loss
of generality for notions in which parts of Bob might be malicious.
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Figure 3.17 Key Hierarchy and Refreshing in 5G-SCEKE

procedure N2 to evolve the stage vertically. Unlike the somewhat symmetric roles Alice
and Bob play in key-evolution for Signal or SAID, in the 5G-SCEKE protocol the roles are
decidedly asymmetric: only Alice evolves stage-keys horizontally, and only Bob evolves
them vertically.

5G-SCEKE instantiates the initial steps of SCEKE with:
• Setup: Our super-user chooses system parameters and generates Ŝ.sk, Ŝ.pk for secure-

channel establishment;
• Key generation: We assume that parties also create some artificial keys ik, ipk (non-

existent in the true 5G context, but needed here in order to abstract the complexity of
AKA);

• User registration: During user registration, each party P establishes a channel with
Ŝ and sends a registration request. The super-user generates one secret KPQ for each
Q in its database, but does not yet send them to P. It then updates its database with an
entry indexed P, with tuples (Q, 𝐾PQ) for each user Q already existing.

Instance Initialisation. Our session instances span the entire duration of 5G-SCEKE. When
Alice initiates a session with Bob, she requests the key KA,B from Ŝ over a newly-established
secure channel – this key acts as a master secret. The master secret is fed through a KDF to
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Figure 3.18 General model of 5G handover procedures.

obtain a root key (in practice, K)
𝐴𝑀𝐹

and, through an intermediate KDF derivation of a key
NH0,1, the first chain key ck1,1 (in practice K

𝑔𝑁𝐵
) and a new root key rk2 are computed. The

latter yields a message key mk1,1 (in practice called K
𝐴𝑆

in the 5G-SCEKE key-schedule)
and ck2,1. Messages sent from Alice to Bob will be encrypted and authenticated with the
message keys.

Upon receiving one of Alice’s messages, which carries her identifier as metadata, Bob
will initialise a session in the same way as Alice.

Sending and receiving messages. Messages are sent and received in stages, encrypted with
key material that evolves:

• Horizontal evolution: this occurs when the session’s initiator wants to send a new
message (the stage evolves from (𝑥, 𝑦) to (𝑥 +1, 𝑦)). As in Signal and SAID, the chain
key ck𝑥+1,𝑦 (already derived) will be fed into a KDF to obtain ck𝑥+2,𝑦 and mk𝑥+1,𝑦 .

• Vertical evolution: when the session’s responder sends a message (the stage evolves
from (𝑥, 𝑦) to (1, 𝑦 + 1)), a vertical key derivation occurs. A new NH0,2 is generated
from rk2 and both keys are fed into a KDF in order to derive ck1,𝑦+1.

Note that the SCEKE protocol we chose to exhibit based on 5G-SCEKE and using 𝐾𝐴𝑀𝐹
is not unique in the 5G context. However, we could apply our framework to multiple
variations of such protocols too: for instance using N2 for horizontal evolutions, and Reg
(or AKA) for vertical evolutions. In this case, we can discuss healing even in the case
corruptions/reveals keys above 𝐾𝐴𝑀𝐹 in the 5G key-hierarchy.

Our Improved-PCS 5G-SCEKE. We propose a simple, yet effective, modification of the
5G-SCEKE to enhance the PCS-security. Noting that in 5G-SCEKE the lack of (local) at
key-evolution allows an adversary to basically ratchet horizontally through the entire chain,
we propose to add freshness into this derivation process, thus limiting the attacker’s power..
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Figure 3.19 Generic key management for 5G-SCEKE. The values in grey are modifications
only for 5G-SCEKE+.

Concretely, we change XNp into what we call XN+. In XN+, sgNB does not simply
calculate the 𝑘𝑔𝑁𝐵 key for tgNB. Instead, the latter contributes to the 𝑘𝑔𝑁𝐵 with a locally
generated secret 𝑣. Then, tgNB sends the value 𝑣 to the core who sends it to the UE,
encrypted with 𝑘𝐴𝑀𝐹 . So, the UE can now compute the new 𝑘𝑔𝑁𝐵 just as tgNB can. Note
that the sending of 𝑣 can be done on existing XNp messages, so the protocol is minimally
modified. We refer to the 5G-SCEKE composed with XN+instead of XNp as 5G-SCEKE+.

3.3.4.3 PCS-security of 5G-SCEKE.

We divide the key material input into the key-schedule of 5G-SCEKE viewed as a SCEKE
protocol:

• Stage-specific keys: In this category, we have chain keys – corresponding to K,
𝑔𝑁𝐵

and message keys – corresponding to K
𝐴𝑆

.
• Cross-stage keys: The root key – corresponding to K

𝐴𝑀𝐹
, and NH key are both

computed at the beginning of each chain and stored for next vertical evolution.
• Cross-session keys: The long-term key is the pre-computed shared key K between

the two parties. Each registration procedure corresponds to new instances of all the
aforesaid keys, where K is used again.

These keys’ classification is recounted on Table 3.1.

Theorem 5 : Consider the 5G-SCEKE protocol modelled as a SCEKE scheme in our
model. The following results hold in the random oracle model (by replacing the KDFs with
random oracles):

• 5G-SCEKE is (∞, 1)-PCS secure against local outsiders (active or passive).
• 5G-SCEKE is (∞,∞)-PCS secure against insiders, medium and global outsiders.

We now explain the results given in Figure 3.6 for 5G-SCEKE. In the analysis below, we
consider all relevant attackers in our framework
Global and Medium Adversaries 5G-SCEKE’s PCS-security of a medium and global
adversary (outsider or insider and active or passive) is (∞,∞). For this attacker, the reveal
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of one root key K
𝐴𝑀𝐹

leads to having access to the rest of the communication, after the
reveal. In the key hierarchy, each message key from stage (x,y) can be computed from rk𝑦 ,
or a fortiori from the long-term key K.
Other Insider Adversaries The protocol in this case is (∞,∞)-PCS-secure. For this
attacker, no healing is possible since the attacker has access to keys “above” K

𝐴𝑀𝐹
in the

5G hierarchy, i.e., above rk.
The above statements on 5G-SCEKE are rather attacks, so no formal proof is needed.

Local Outsider In this case, the 5G-SCEKE protocol is (∞, 1)-PCS-secure. To this end,
see that the chain and message keys are derived symmetrically, and that rk is not revealed
from a call to oReveal.1Stage. So, A has no access to stage (1,y+1). Viewed differently,
(∞, 1)-PCS-security in this case can be explained via the fact the horizontal evolution is the
same as in Signal.

We elude the proof here as this is very similar to the proofs for 5G-SCEKE+, which
follow. Indeed, we continue with 5G-SCEKE+, for which we first show security informal,
and also accompany this by formal proofs.

PCS-security of 5G-SCEKE+. The key-material is the same as for 5G-SCEKE except that
a new key is added, namely the single-session key rchk = 𝑣.

Theorem 6 Consider the 5G-SCEKE+ protocol as presented above. The following results
hold in the random oracle model (by replacing the KDFs with random oracles)

• 5G-SCEKE+ is (1, 0)-PCS secure against local active outsiders and passive outsiders;
• For all other adversary types, 5G-SCEKE+ is (∞,∞)-PCS secure.

Again, we provide two elements for each type of attacker: a proof of security for the
stages for which the security does heal, and an attack that breaks the security of the remaining
stages. We first describe the attacks, informally.
Passive Outsider This case captures the gain from our modification. Indeed, A can have
access to a specific stage through any combination of keys, but it cannot attain anything
from a next stage since a fresh value rchk𝑥,𝑦 is used for the next stage. This entails to
(1, 0)-PCS-security, in this case.
Local Active Outsider In this case,A can recover the material of a stage, but cannot send
its own value rchk𝑥,𝑦 , since K

𝐴𝑀𝐹
(i.e.,rk) is needed first. Thus it equates to the previous

case, leading to (1, 0)-PCS-security.
Other Active Outsider Adversaries Now A has access to the key K

𝐴𝑀𝐹
leading to the

hijack of the communication. A can generate its own value rchk𝑥,𝑦 and sends it to the
intended partner. Thus A take full control of the communication over the compromise
party. This corresponds to (∞,∞)-PCS-security.
Insider Adversaries Here no healing is possible, the protocol is (∞,∞)-PCS-secure. The
adversary has access to the top key in the hierarchy considered in 5G-SCEKE+, meaning
that it can compute all the keys and uses its own key material.

Security proofs.
G0 : This game corresponds to the original security game (Figure 3.5 of Sec. 3.2.4).

The advantage of A against this game is Adv0.
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G1 : In this game, the challenger C guesses P, Q, the session index of the target session,

and the target stage 𝑠★ = (𝑥★, 𝑦★) for which A has queried oTest.

If A queries another parties, session or tested stage then C aborts the game and returns
a random bit. Therefore, we have the following:

Adv0 ≤ nP
2 · n𝜋 · nx−max · ny−max · Adv1.

The next game deals with the fact that the locally generated secrets rchk𝑥,𝑦 in XN+ do
not collide.

G2 : This game is the same as G1 except that the challenger aborts if two keys rchk

(i.e., two nonces rchk𝑥,𝑦 used in XN+), used inside the derivation of cks (i.e., 𝑘𝑔𝑁𝐵s), have
a collision. We have that the advantage in G2 is:

Adv1 ≤
(
n𝜋
2

)
· 2−|rchk | + Adv2.

G3 : This game is the same as G4 except the possibility of distinguishing a RO in place

where the KDF computing the keys rk s (i.e., 𝐾𝐴𝑀𝐹 is used) is used.

Adv2 ≤ 𝐴𝑑𝑣𝑅𝑂 (𝐾𝐷𝐹𝐾𝐴𝑀𝐹 ) + Adv3.

At this point, all the keys rk (i.e., the 𝑘𝑎𝑚 𝑓 s) are indistinguishable from random based
on the hypothesis of KDFs being replaced by ROs.

In fact, we apply the modifications ofG1 andG3 a number of times equal to the maximum

number of chains ny−max, and we call the result game G4 . We have that the advantage in G4

is:

Adv3 ≤ny−max ·
[(

n𝜋
2

)
· 2−|rchk | + 𝐴𝑑𝑣𝑅𝑂 (𝐾𝐷𝐹𝐾𝐴𝑀𝐹 ) + Adv2

]
+ Adv4

G5 : This game is the same as G4 except the challenger aborts if the keys 𝑐𝑘 (𝑥,𝑦/𝑦′ ) are

the same, for two distinct chains of stages 𝑦 and 𝑦/𝑦′ of the same session or of two different
honest sessions.

Note that, since at this stage the rchk𝑥,𝑦s are non-colliding, all the keys ck (i.e., the
𝑘𝑔𝑁𝐵s) as the above are unique until the randomness repeats itself (as the KDF producing
ck is considered a random oracle). So, we have:

Also, the chain keys ck0,𝑦★ are indistinguishable from random to A, which resides on
the fact that the KDF yielding ck𝑖s considered an RO (as well as from the uniqueness of rchk
values in G2 , and from the randomness of rk values in G3 ). So, we have:
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Adv4 ≤𝐴𝑑𝑣𝑅𝑂 (𝐾𝐷𝐹𝐾𝑔𝑁𝐵 ) + nx−max ·
(
nx−max · ny−max

2

)
· 2−|ck |

+ Adv5

Adversary-types’ Dependencies & Winning Conditions.
1. In the case where our adversary is local, reveal queries could get the adversary to know
chain-keys such ck or mk.

Next, the argument is based, in part, on the fact that in our framework any proven bound
strictly lower (𝜒,Υ), also implies the bound (𝜒, 0), i.e., A could reveal the chain-key on a
stage with 𝑦 = 𝑦★. Let us assume therefore that the reveal is made on a stage with 𝑦 = 𝑦★.

In this case, the local attacker gets ck (i.e., 𝑘𝑔𝑁𝐵) on a stage with 𝑦 = 𝑦★, but to compute
a new ck and mk needs the following:

• the next rchk (i.e., the rchk𝑥,𝑦) value – the gNB-driven randomness that we added to
XN+, which the attacker cannot introduce.

2. In the case where our adversary is global, reveal queries could get the adversary to
know keys such as rk.

In this case, the global passive attacker even get rk (i.e., 𝑘𝐴𝑀𝐹), but we fall back to the
case above: that is, to compute a next mk (i.e., 𝑘𝐴𝑆), the global passive attacker still needs
the following:

• The next rchk (i.e., the rchk𝑥,𝑦) value – the gNB-driven randomness that we added to
XN+, which the attacker cannot introduce.

We conclude this proof: for the case global passive and local active attacker, 5G-
SCEKE+ is (1,0)-PCS secure, with the final advantage of such adversaries being G5 ≤
2−|ck | + 2−|mk | , i.e., these adversaries can just guess the ck and/or mks, after the crucial
“reveal”s have been called, and the probability of such guessing is negligible.

3.4 Discussion and Conclusion

This chapter presents a framework for comparing the post-compromise security achieved
by secure-channel establishment protocols featuring key-evolution. Our taxonomy of adver-
saries includes known adversaries in the literature, but also imagines other type of attacks.
The goal of our security definition is not only to prove that key-evolution provides healing,
but also to quantify how fast protocols heal. We showcase our framework by applying it to
the Signal, our protocol SAMURAI, SAID, and a composition of AKA and 5G handover pro-
tocols. Finally, we also propose a small modification to the latter protocol, which radically
improves its healing speed.

Our results (see Figure 3.6) indicate that optimal security (i.e., (1,0)-PCS security) is
achieved by SAMURAI and SAID against local passive outsiders, as well as our improvement
of 5G handovers, namely 5G-SCEKE+, against all passive outsiders. An interesting takeaway
is the benefit, in 5G-SCEKE+, of using fresh, stage-specific, shared private randomness in
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the key-derivation process, the unpredictability of which allows us to gain stronger security
than SAID for medium and global passive adversaries. However, this security comes at the
expense of using shared randomness, which requires secondary secure channels.

We also indicate the benefits of the persistent authentication used in SAMURAI and SAID
to combat active session-hijacking attacks. Although the use of identifying information into
the key computation can be privacy-intrusive (especially if signatures are used), it is able to
provide eventual (and even speedy) healing against powerful attackers, otherwise capable of
rendering a secure channel unhealable.

Through their reliance on both long-term keys and fresh asymmetric ratchets, Signal and
SAID obtain better security against passive insiders than 5G-SCEKE+.

Finally, note that although active insider security is difficult to attain, it is a worthwhile
goal. A takeaway of our work is that it is difficult, but essential to design protocols in which
users are able to bypass the ability of superusers to create unobservable PitM attacks (for
instance, one could consider two-factor authentication of the communication partner).

Our results, while insightful and strong, come with some disadvantages. We only model
two-party protocols, and thus cannot analyze multi-user messaging like ART or MLS; yet
as we discuss in the introduction, our framework can be applied beyond the protocols we
consider, such as OTR and Wire. Moreover our approach when modelling 5G handover
protocols could be applied to ratcheted key-exchange or even TLS 1.3 session resumption.
We leave the quantification and comparison of such – and other – protocols as future work.
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Chapter 4

Deep-Attestation

In a world interconnected at an unprecedented scale, there exists an increasing need for flex-
ible and dynamic networks. In environments such as cloud and 5G networks, virtualization
is a cornerstone to easily scale up with user demand. Indeed, virtual machines or virtualized
network functions can be instantiated, scaled and migrated on top of any available hardware
infrastructure enabling, for instance, better performance or enforced security. However,
virtualization arises new challenges because of vertical stringent requirements. For instance
in an e-health service strict resources geolocation and resources access control are a must.
This is where the process of attestation comes in. We propose the first model of an attesta-
tion variant called Deep Attestation, along with a solution to find a better balance between
security and performances.
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4.1 Introduction

Network Function Virtualization (NFV) is a technology that promises to provide better
versatility and efficiency in large-scale networks. The core idea is to move from architectures
in which physical machines are set up to perform various roles in a network, to a design in
virtual configuration. As such, a machine could be configured and re-configured at distance,
and, by judicious use of virtual machines, it could perform a variety of roles within the
network infrastructure.

Virtualized platforms are set up in layers, including the following basic components:
physical resources, the virtualization layer and infrastructures, virtualized network functions
(VNFs), and the NFV management and orchestration module. At the bottom of the in-
frastructure are real, physical components, meant for computations, storage, and physical
network functions. The virtualization layer (also called hypervisor) manages the mapping
between those physical components and virtual equivalents. As such, the NFVs – hosted
by virtual machines running inside the NFV infrastructure– never have direct access to the
physical resources. Instead, the VNFs access the virtual resources. The NFV management
and orchestration module runs the combined infrastructure, including: the lifecycle of the in-
stantiated VNFs, resource allocation for VNFs, or overall management in view of particular,
given network services.

4.1.1 Deep Attestation (DA)

Virtualization enables efficient, versatile remote network configuration and administration;
however, the fact that multiple virtual processes share resources can introduce hazards
to security. One way to ensure that a component runs correctly is by using attestation.
Attestation is a process complementary to authentication: whereas the latter allows a platform
to prove that it is the entity it claims to be, the former ensures that the platform runs a
trustworthy code, i.e.,it has not been breached. As described in [ETS17], “Attestation is the
process through which a remote challenger can retrieve verifiable information regarding a
platform’s integrity state.”. An other definition, appearing in [CGL+11], gives the following
terminology: “ Attestation is the activity of making a claim to an appraiser about the
properties of a target by supplying evidence which supports that claim. An attester is a
party performing this activity. An appraiser’s decision-making process based on attested
information is appraisal”. A property can be for instance software integrity, geolocalisation,
access control, etc.

Attestation relies on a root of trust (RoT), usually instantiated through a trusted platform
module (TPM) – or an equivalent mechanism. The root of trust is responsible, amongst
other things, for protecting sensitive cryptographic materials (such as private keys) and for
running cryptographic operations in an isolated way. The virtualization layer (hypervisor)
has direct access to the RoT, but the virtual machines it manages do not; instead they will
have access to the RoT by means of virtual Roots of Trust (vRoTs). Virtual Roots of Trust
are a combination of resources, some provided by the physical RoT, and other managed by
the hypervisor, which directs and mediates access to the RoT.

In a nutshell, attestation is a process which allows an independent, remote verifier to
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check that a target platform still behaves in the desired way. This is done by first authenticating
the RoT, then by comparing a measurement of the current state of the component to a
presumably-correct state, as indicated in a Root of Trust for Storage (RTS). In addition, a
guarantee must be given of the correctness of the RTS, which is done by means of a Root of
Trust for Reporting (RTR). Functionalities of RTS and RTR can be provided by a TPM. A
TPM is an example of implementation that could provide RTR and RTS by leveraging the
specific tampering detection properties of its Platform Configuration Registers (PCR) and
issuing signed reports, or quotes, of their content.

We consider the attestation of two types of components: virtual machines (VMs), such as
VNFs, and the hypervisor managing them, whose underlying physical component includes
a RoT providing an RTR and an RTS. This architecture is depicted in Figure 4.1.

Figure 4.1 The setup for Deep Attestation.

To verify that the VMs and the hypervisor are running correctly, both these types of
components must undergo remote attestation. First, each component must attest in isolation;
then we must attest the layer-binding between VMs running on the same hypervisor. This
is known as deep attestation (DA). There are two typical ways of achieving deep attestation
(as described by ETSI standardization documents [ETS17]): single- and multi-channel
VM-Based Deep Attestation.

4.1.2 Single/Multi-channel Deep Attestation

In single-channel deep attestation the attestation is run only between the remote verifier and
the virtual machines. At each attestation, the VM (by querying its associated virtual TPM,
or vTPM) provides not only an attestation for itself, but also the hypervisor it runs on.

Specifically the response forwarded by the VM to the remote verifier includes the
(independent) attestation of the hypervisor, and the layer-binding attestation between the
VM and its hypervisor. This is depicted in Figure 4.2, on the left-hand-side. Note that the
quotes in this case are both obtained from the (slow) physical TPM. From the point of view
of security, this solution is optimal; however, it scales poorly. Given as few as 1000 VMs
running on top of the hypervisor, we would require that the hypervisor be attested 1000
times, once for each VM.
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Figure 4.2 Single vs multi-channel DA

By contrast, in multi-channel deep attestation, the VMs are attested separately and
independently from the hypervisor. In this scenario, the VMs attest to the remote verifier, thus
proving they were not tampered with. Separately, the hypervisor also attests to the remote
verifier. This can be seen on the right hand side of Figure 4.2. In this case, the efficiency
is optimal: for 1000 VMs, we have 1000 VM-attestations and 1 hypervisor attestation.
However, there is virtually no layer-binding between the VMs and their hypervisor: there is
no guarantee that the VMs are really managed by the hypervisor. An attacker could therefore
“convince” a party (such as the owner of the infrastructure) that a VM still exists on a given
physical machine when it has, in fact, been removed.

4.1.3 Our solution

We take the middle path between single- and multi-channel deep attestation to obtain layer-
binding between VMs and hypervisors with reasonable efficiency. Our solution is simple,
yet elegant, using standard cryptography to ensure that a hypervisor’s single attestation is
linkable to any number of attestations of VMs managed by it. We give three contributions:
A cryptographic scheme. Our scheme ensures secure and efficient linked DA. The hypervi-
sor and VMs each attest only once. However, we also embed a list of public keys (associated
with the VMs managed by the hypervisor) within the hypervisor attestation, which is estab-
lished by the root of trust. In order to authenticate the list of forwarded keys, we embed them
into the attestation nonce, forwarded by the attestation server. If the hypervisor’s attestation
verifies, then the attestation server can link that hypervisor with the (subsequently attesting)
VMs which use keys in the forwarded list. If the hypervisor’s attestation fails, then the public
keys cannot be trusted.
Provably secure authorized linked attestation. An important advantage of our approach
is that we have a fully-formalized provable-security guarantee. We use a composition-based
approach, constructing primitives that are increasingly stronger out of weaker ones. Our
goal is to ultimately obtain authorized linked attestation (ALA): a primitive which allows
components to individually attest (to an authorized entity), and to have their attestations
linked. This primitive solves the problem outlined in the introduction, since VMs sharing
the same hypervisor will attest in isolation and together with their hypervisor.
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ALA schemes will have three properties: authorization (only an authorized server
can query an attestation quote); indistinguishability (no Person-in-the-Middle adversary
can know even a bit of a quote exchanged during a legitimate protocol with probability
significantly better than 1

2 ); and linkability (an attestation server can detect if two components
are not linked)

We choose to formalize Authenticated Key Agreement (AKA) security as the last of
a sequence of primitives, each potentially of independent interest and providing gradually
stronger properties. This approach has two virtues: first, we are able to use weaker primitives
as black-box components in stronger primitives; and second, the individual proof steps are
shorter and smoother.

At the basis of our construction is a yea-or-nay basic attestation scheme, which is
“secure” by assumption. Its functionality is simple: the basic attestation scheme outputs
a faulty attestation whenever a component is compromised, and a correct one for honest
components. In other words, this basic attestation scheme is a compromise-oracle: when
queried it (indirectly) produces a proof of whether a component has been tampered with or
not.

Based on this assumption, we build a sequence of cryptographic mechanisms that adds
security against stronger adversaries. A first step is to build authenticated attestation: a
scheme which allows us to authenticate the component that provides the attestation, and
additionally ensures that this component’s attestations always verifies prior to corruption,
but fails to verify as soon as a compromise occurs. We can think of authorized attestation
as the minimum provided (and required) by multi-channel attestation. Then, we consider
linked attestation: a scheme that introduces the hypervisor-VM relationship described above,
and permits not only the verification of individual attestations, but also (publicly) linking
attestations.
Implementation. We used a regular laptop equipped with TPM 2.0 (as a root of trust). We
set up an architecture with one hypervisor and multiple VMs. The VMs used full virtual
TPM as a virtual root of trust. We made over 100 experiments. This showed that our
solution is more efficient that single channel approach and adds only insignificant load (a
hash function computation) compared to traditional multi-channel DA.

Our work is, to our best knowledge, the first that attempts to provide a sound crypto-
graphic treatment of deep attestation. In many ways, this is much harder than designing the
scheme that we present, because attestation is a generic term comprising an entire class of
algorithms that have different goals. As such, we are only scratching the surface here, and
believe that –aside from the real, and practical advantages of our presented construction–
our cryptographic treatment, primitives, and proofs, may be of independent interest to this
line of research.

4.1.4 Limitations

A first fundamental limitation is the fact that we assume, in our constructions, the existence
of a basic attestation primitive that works infallibly like an oracle, telling us if a component
is compromised or not. In reality, this primitive is based on the Platform Configuration
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Registers (PCRs) of a TPM. A PCR can store hash digests into a register of the length
of the hash function output. Typically a TPM will have multiple banks corresponding to
various hash functions (e.g., a sha1 bank and a sha256 bank) with 24 registers for each
bank. PCR are reset at each boot and are only updateable through an extension operation
𝑃𝐶𝑅1 ← 𝐻 (𝑃𝐶𝑅1 | 𝐻 (measurement)). We assume the attacker has no physical access to
the component and thus cannot tamper with TPM measurements by using hardware attacks.
In practice, this is somewhat limiting since we do not account for runtime corruption; thus,
the primitive is vulnerable to Time of Check Time of Use (TOCTOU) attacks. Several
proposed mechanisms were introduced to monitor runtime integrity, e.g., LKIM [LWPM07]
or DynIMA [DSW09]; moreover, in recent years several advancements were made towards
verifying runtime integrity for IoT devices [KFZ+20,HHWS18]. Yet, these solutions are not
as widely spread at the present day as TPM-based attestation at startup.

We treat the existence of basic attestation as an assumption because we do not see a way
of constructing it with cryptographic tools. The cryptography we put on top adds a lot of new
properties: authenticity, confidentiality, authorization, linkability, but not the simple fact of
distinguishing a compromised component from an honest one. Our result should therefore
be interpreted as a need for such a scheme to exist, as in fact required by ETSI [ETS17].

Another limitation of our scheme lies in our model of linked-attestation component.
We consider classes of components which can be linked. At registration of each piece of
hardware, a number of subcomponents of each type is indicated – and (unique) keys are
given to those components. As a result, we cannot account for having two hypervisors
that manage the same VM on a given infrastructure. A future work could be to consider
multi-hypervisor VM as introduced in [GKB+19].

4.1.5 Related Work

Many attacks have been recently reported on remote attestation mechanism [BWS19] or 5G
standards [HEK+19]. Many tools such as formal methods or cryptography can be used to
model and prove the security of such standards. However, this lack of formalization must
be now addressed otherwise we will have more and more attacks. Provable cryptography is
a nice solution to solve this problem since it allows to better understand the security model,
what is the adversary goal and its means, which oracle can he query. Some cryptographic
primitives have already be nicely formalized such as Direct Anonymous Attestation (DAA)
which enables remote authentication of a trusted computer (TPM for instance) while pre-
serving the privacy of the platform’s user in [BCC04] by Brickell et al. It is a group signature
without the feature that a signature can be opened, i.e.,the anonymity is not revocable. Such
primitive are well described using cryptography as a variant of signature scheme. However,
provable cryptography has also been used successfully to formalize security protocols as
authenticated key exchange [BR93b,CK02]. This is precisely our goal to model the different
security components independently and to compose them to prove the security of a new
security mechanism. Indeed, the attestation server must authenticate the whole platform,
i.e.,the hypervisor and the NFV running on top. This problem has been addressed by others
in the context of secure boot or for instance in [ABI+15], where the authors propose an
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attestation mechanism for swarms of device softwares in IoT and embedded environment.
Software attestation is different from remote attestation, as said in [ASSW13] since it cannot
rely on cryptographic secrets to authenticate the prover device. The first to have taken into
account deep attestation are Lauer and Kuntze in [LK16] but their solution misses a security
proof and a rigorous analysis.

4.1.6 Towards authorized linked attestation

Our core contribution provides layer-binding in deep attestation. Cryptographically, we
view this as a new primitive, which we call authorized linked attestation, built in steps from
increasingly-stronger primitives. Each of these intermediate steps plays a double role: on
the one hand, it formalizes security guarantees that are of independent interest for attestation
(if, for instance, layer-linking is not required); on the other hand, it provides an intuition of
the guarantees which specific cryptographic primitives can help achieve.

The first, and basic-most step in our architecture is basic attestation, described in
Section 4.2. This primitive is an abstraction of the algorithm by which a single party (like
a component of a virtualized platform) generates an attestation of its state, given a fresh,
honestly-generated nonce. Importantly, basic attestation does not employ cryptography to
achieve this feature, but rather, the attestation of registers at startup, using a RoT1.

Authenticated attestation (in Section 4.3 builds on basic attestation by associating parties
with identities. The attestation must now no longer indicate whether the party is compro-
mised: it must also authenticate the component. Here, thus, we enhanced basic attestation
with a cryptographic component, which is in fact sufficient to guarantee the basic function-
ality required by multi-channel attestation. One step further, the linked-attestation primitive
(see Section 4.4) built from authenticated attestation will allow two different components
to (a) attest their own states; (b) provide auxiliary material that will make two separate
attestations linkable. While this primitive has no immediate parallel in real-world attes-
tation, we use it as a handy way of dividing the security proof of our ultimate result into
two: linked-attestation will focus on proving the fact that two attestations can be securely
linked; whereas authorized linked attestation models attestation as a protocol, using fresh
randomness and a secure channel using an honest attestation server.

We also add a new party into the system: the attestation server that serves as a verifier.
We then compose the linked-attestation primitive with a unilaterally-authenticated authen-
ticated key-exchange protocol, which will authenticate the attestation server and permit
the attestation itself to remain confidential with respect to a Person-in-the-Middle (PitM)
adversary. All the details of authorized linked attestation is given in Section 4.5.

Finally, we assess the practicality of our solution through a proof-of-concept implemen-
tation in Section 4.6. The goal is to compare, in terms of performance, our solution with
existing attestation procedures.

1To ease notation, we assume that all the registers are attested, and that the property we are attesting is that
the entire component has not been compromised.
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4.2 Basic Attestation

During basic attestation a single honest party is generated. This party can be later compro-
mised. A quote-generation algorithm will output a quote if the party is still honest at that
time, or a special symbol if it is not. Finally a (public) verification algorithm will yield 1
(the component is honest) or 0 (otherwise).

Note that a party such as the one we describe could correspond in practice to a com-
bination of two parties: a virtual entity (like a VM or the hypervisor) and an underlying,
incorruptible, secure part (the TPM), which actually generates the quote. At this stage, we
importantly do not associate these entities with keys as authentication will only appear in
our next step (Section 4.3).

What we want to capture, formalized by the security of basic attestation, is the minimal
assumption that a compromised component will always yield an attestation that will fail the
verification. This is why, when basic attestation is run for a compromised component, it will
yield the special symbol ℵ. We also demand correctness: when a non-ℵ quote is generated,
the latter will automatically verify. Our basic attestation component thus becomes the
minimal non-cryptographic assumption that we need to make to prove our scheme secure.

Without going into details, basic attestation is defined as a tuple of algorithms: (aBSetup,
aBAttest, aBVerif), such that aBSetup(1𝜆) generates some public parameters pparam
from a security parameter 𝜆; aBAttest(pparam) outputs an attestation quote denoted quote,
which is set to ℵ if the component is compromised; and aBVerif(quote, pparam) which
outputs either 1 (the attestation is verified) or 0 (it is not). We considered a single party,
which, for the purposes of the security game, may be corrupted or honest. A basic attestation
scheme is secure if, once corrupted, the component is no longer able to attest itself (i.e., if
the component is corrupted, the only attestation quotes we can produce are ℵ).

We assume that this component exists, and behaves as in Figure 4.3.

4.2.1 Formalization

We consider an environment parametrized by a security parameter 𝜆, in which we have a
single party P. This party keeps track of a single attribute, namely a compromise bit 𝛾
originally set to 0. Once this bit is flipped to 1, it can never go back to 0. We denote by P.𝛾
the compromise bit 𝛾 of party P. We define a primitive BasicAtt as a tuple of algorithms
(aBSetup, aBAttest, aBVerif):

aBSetup(1𝜆) → pparam: on input the security 1𝜆 (in unary), this algorithm outputs
some public parameters pparam.

aBAttest(pparam) → quote: on input the public parameters pparam, if P.𝛾 = 0,
then this algorithm outputs an attestation quote quote ≠ ℵ for P, and if P.𝛾 = 1, then
it outputs ℵ.

aBVerif(pparam, (quote ∪ ℵ)) → 0 ∪ 1: on input public parameters pparam and
a value that is either a quote denoted quote or a special symbol ℵ, this algorithm
outputs a bit. By convention, an output of 0 means the attestation fails, while if the
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Target T Appraiser
Setup phase: aBSetup(1𝜆) → pparam

aBAttest(pparam) → quote
quote
−−−−−→

aBVerif(pparam, quote)
→ 0 if T compromised (T .𝛾 = 1)
→ 1 if T uncompromised (T .𝛾 = 0)

Figure 4.3 Basic attestation description with an honestly-generated target. Notice that
there is no authentication involved.

output is 1, the attestation succeeds. We require by construction that for all pparam:
aBVerif(·, ·,ℵ) = 0.

This primitive is also depicted in Figure 4.3.

We assume that, given pparam ← aBSetup(1𝜆), if P.𝛾 = 0 (the party is uncompro-
mised) and quote← aBAttest(pparam), then aBVerif(pparam, quote) = 1. Notably, we
assume perfect correctness.

4.2.2 Security

The only security we demand from this primitive is that, if a party is compromised, then
its attestation will always fail. This will happen by construction (since this is an assumed
primitive) and is embedded in the security model. The adversaryA will play a game against
a challenger C. Initially, the challenger sets the system up by running aBSetup to output
pparam which is given to A. The unique party is generated, such that its corrupt bit is set
to 1 (P.𝛾 = 0).

Since A now has pparam, it can now run the aBAttest and aBVerif algorithms. In
addition, it has access to the oBAttest oracle: oBAttest() → (quote∪ℵ). This oracle calls the
aBAttest() algorithm for the (corrupted) party P and returns the output to the adversaryA.
The challenger stores the result in a database DB. The adversary wins if, and only if, there
exists a quote in DB (possibly with quote = ℵ) such that aBVerif(pparam, quote) = 1. Note
that by construction our basic attestation primitive is secure, since once the compromise bit
is set, the output is ℵ, which always yields aBVerif(pparam,ℵ) = 0.

Basic attestation in reality. One may wonder at this point what our purpose might be in
constructing a security model for a primitive that is by definition correct and secure. We need
that security model in our reductions: we will use the attestation primitive to build stronger,
linked attestation, and then we will want to make the argument that if an attacker can break
the larger primitive, it will also break the smaller primitive. As the smaller primitive is
secure by design, this is not possible, and hence, the larger primitive is also secure.
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4.3 Authenticated Attestation

Basic attestation acts as a foolproof way of telling whether a device is compromised or
not. However, the security it provides is very weak. For one thing, it has no authentication
guarantees, so potentially one could use a quote that was honestly generated for an honest
component to attest a compromised one. Another problem that is more subtle concerns
the way components are compromised. Because the basic quotes described in the previous
section have no timestamp, nor specific freshness, we cannot take into account adaptive
tampering. In the security notion, the party generating the quote is either honest or compro-
mised from the beginning. Yet, ideally we would like a primitive that ensures that a party
can start out as honest (and all the quotes generated at that time verify as correct), and later
be compromised (and all the quotes generated after that moment will fail). We can do this
by deploying cryptographic solutions.

A relevant question is why we did not include these security aspects in the basic attes-
tation primitive considered above. To answer this, recall that we have constructed the basic
attestation tool to be secure by design. As such, it is an assumption, rather than a solu-
tion. If we also assume authentication, it would go against the principle of using minimal
assumptions.

Intuitively, the security we require for this primitive will be that a valid authenticated
quote for a party P and fresh auxiliary information (used as nonce) is hard to forge by an
adversary which knows all the the public information, can register and compromise users,
and query an attestation oracle that returns a valid quote or ℵ. In particular, in a secure
scheme,verification should fail if either the authentication or the attestation fails, as depicted
in Figure 4.4.

P1
(pk1, sk1)

aBVerif = ⊤ || P1

P2
(pk2, sk2)

aBVerif = ⊥ || P2

...

P𝑁
(pk𝑁 , sk𝑁 )

aBVerif = ⊥ || P𝑁

authQuote

authQuote∗

ℵ
A

Figure 4.4 Authenticated attestation primitive.

4.3.1 Correctness

The correctness of our construction depends on the detection of a compromised component.
There are three cases to consider:

Case 1: assume that the component is compromised. So the output attestation is ℵ. The
component can try to authenticate this quote, but the verification will fail.
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Case 2: the component (VM or hypervisor) is not compromised, and so will receive a valid
attestation quote, authenticated by the TPM. This authenticated quote will verify.

Case 3: the component is not compromised, and receives a valid authentication quote. At this
point, the adversary might try to forward the authenticated quote and pass it off as
someone else’s attestation, but this will occur with negligible probability as long as
the authentication primitive is EUF-CMA secure.

4.3.2 Formalization

We consider an environment parametrized by a security parameter 𝜆, which will contain
up to nP parties. Parties keep track of two attributes: the compromise bit 𝛾 used also for
basic attestation, and a set of public and secret keys (pk, sk): a public key pk (assumed to be
unique per party, and known to all other parties including the adversary) and a private key
sk known only to that party. We use P.pk/P.sk to indicate the public/secret key of party P.

We define the primitiveAuthAtt=(aAuthSetup, aAuthKGen, aAuthAttest, aAuthVerif)
as a tuple of algorithms: together with an auxiliary input space AUX as follows:

• aAuthSetup(1𝜆) → pparam: on input the security 1𝜆 (in unary), this algorithm
outputs some public parameters pparam. This value also includes the number nP ,
which is a function of 𝜆.

• aAuthKGen(P) → (P.pk,P.sk): on input a party identifier P, this stateful algorithm
checks whether P has already been registered; if not, it outputs a tuple of public/private
keys (pk, sk). These values are stored by the keys attribute of P.

• aAuthAttest(pparam,P.sk,AD) → authQuote ∪ ℵ: on input the public parameters
pparam, a private key P.sk of a party P, and a value AD ∈ AUX, this algorithm
outputs either an authenticated quote authQuote or a special failure symbol ℵ.

• aAuthVerif(pparam,P.pk,AD, (authQuote ∪ ℵ)) → 0 ∪ 1: on input public param-
eters pparam, a public key P.pk of a party P, an auxiliary value AD ∈ AUX, and a
value that is either a quote authQuote or a special symbol ℵ, this algorithm outputs a
bit. By convention, an output of 0 means the attestation fails, while if the output is 1,
the attestation succeeds.

We require that this primitive be correct in two ways: aAuthVerif(·, ·, ·,ℵ) = 0 for all
possible input values in the first three parameters, and: for all pparam← aAuthSetup(1𝜆),
(pk, sk) ← aAuthKGen(P), AD ∈ AUX, if authQuote← aAuthAttest(pparam,P.sk,AD)
and authQuote ≠ ℵ, aAuthVerif(pparam,P.pk,AD, authQuote) = 1.

4.3.3 Construction

We construct an authenticated attestation scheme out of basic authentication, a large set
of nonces N := {0, 1}ℓ (with ℓ chosen as a function of the security parameter 𝜆), and an
EUF-CMA-secure signature scheme Sig = (aSigKGen, aSigSign, aSigVerif). We thus
instantiate AUX := N , and our AuthAtt scheme is as follows:
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Target T Appraiser
Setup phase: aAuthSetup(1𝜆) → pparam

aAuthKGen→ (T .pk, T .sk)
aAuthAttest(pparam, T .sk,AD) → (quote, 𝜎)

authQuote=(quote,𝜎)
−−−−−−−−−−−−−−−−−→

aAuthVerif(pparam, T .pk,AD, (quote, 𝜎))
→ 0 if T compromised (authQuote = ℵ or 𝜎 invalid)
→ 1 if T uncompromised (authQuote ≠ ℵ and 𝜎 valid)

Figure 4.5 Authenticated attestation description built upon basic attestation (Figure 4.3)
where target T is a party generated honestly (which can be compromised later) and the
verifier is an appraiser measuring T.

• aAuthSetup(1𝜆) → pparam: this algorithm runs aBSetup(1𝜆) a number nP of
times, outputting pparam1, pparam2, . . . , pparamnP . Each time pparam𝑖 is created,
a party handle P𝑖 is also created (it will be the party associated with the instance
of BasicAtt run for those parameters). It sets pparam := (pparam1, pparam2, . . . ,

pparamnP , nP), and outputs this value.

• aAuthKGen(Pi) → (Pi.pk,Pi.sk): it keeps a counter (starting from 0), which indicates
how many times this algorithm has been run. If at the time this algorithm is queried
counter < nP , then aAuthKGen runs aSigKGen as a black box and outputs the
resulting (pk, sk) (public and private) keys. It sets Pi.pk := pk and Pi.sk := sk. Party
Pi is then initialized with these keys.

• aAuthAttest(pparam,P.sk, 𝑅) → authQuote ∪ ℵ: on input the public parameters
pparam, a private key P.sk of a party P (which has already been registered), and a value
𝑅

$← N , this algorithm first runs quote ← aBAttest(pparam), then the algorithm
signs 𝜎 ← aSigSign(P.sk, (quote, 𝑅)), that is, it signs a concatenation of the nonce
and the obtained quote. The output of this algorithm is authQuote := (quote, 𝜎). If
the required party or key does not exist, the value ℵ is output by default. If quote = ℵ,
then we instantiate authQuote = ℵ.

• aAuthVerif(pparam,P.pk, 𝑅, (authQuote∪ℵ)) → 0∪1: on input public parameters
pparam, a public key P.pk of a party P, an auxiliary value 𝑅 ∈ N , this algorithm
first checks if the last input is ℵ; if so, the algorithm outputs 0 by default. Else, the
algorithm parses authQuote = (quote, 𝜎) (with quote ≠ ℵ by construction), then runs
𝑏 ← aSigVerif(P.pk, quote, 𝜎) and 𝑑 ← aBVerif(pparam, quote). The algorithm
outputs 𝑏 ∧ 𝑑. Notably, 1 is output if, and only if, signature and basic attestation are
valid concomitantly.

We claim that this scheme, which is also depicted in Figure 4.5 has the correctness and
security properties required, given that ℓ is large, that the basic attestation scheme achieves
the notion of security in Section 4.2, and that the signature scheme is EUF-CMA-secure.
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pparam← aAuthSetup(1𝜆)
retrieve 𝑁 from pparam;
counter← 1
Lsign ← ∅
abort if 1← aBVerif(pparam, quote∗)
abort if 1← aSigVerif(P∗.pk, quote∗, 𝜎∗)
(P∗,AD∗, authQuote∗) ← AO (pparam)
A wins iff.:
aAuthVerif(pparam,P∗,AD∗, authQuote∗) = 1
AND (P∗,AD∗, authQuote∗) ∉ Lsign

Figure 4.6 The experiment AuthSec with oracles O = {oBAttest(), oAuthReg(.),
oAuthAttest(.), oCompromise(.)}. Recall that authQuote = (quote∗, 𝜎∗). We depict
with grey boxes the changes made in the sequence of games.

4.3.4 Security

Formally,A will play the AuthSec game against a challenger C, which begins the game by
running aAuthSetup and outputting pparam to A. The challenger also initializes nP to 1.
The adversary then has access to the following oracles:

• oAuthReg() → (Pi,Pi.pk) : if 𝑖 ≤ nP , it runs aAuthKGen(Pi) → (Pi.pk,Pi.sk). It
outputs Pi.pk to all parties and keeps Pi.sk private, stored in the keys attribute of party
Pi. A handle (in practice the index) of this party is also returned to A.

• oAuthAttest(Pi,AD) → authQuote∪ℵ : this oracle runs the aAuthAttest algorithm
on pparam, Pi.sk and input AD, and returns the output. On adversarially chosen input
Pi and AD, the oracle updates a list Lsign ← Lsign ∪ (Pi,AD, authQuote).

• oCompromise(Pi) → OK : this oracle allows an adversary to compromise party Pi,
thus changing Pi.𝛾 to 1.

• oAuth(Pi, 𝑀) → 𝜎𝑀 : this oracle can only be queried for a party whose compromise
bit is 1, and it outputs an EUF-CMA-secure signature keyed with Pi.sk on a message
𝑀 . We require that 𝑀 be outside the range of any basic attestation scheme. This last
oracle reflects the fact that compromised parties can access a signing function within
the TPM.

Finally the adversary outputs a tuple (P,AD, authQuote). It is said to win if and only if
the following condition holds: aAuthVerif(pparam,P,AD, authQuote) = 1 and there exist
no tuples (P,AD, authQuote) such that (authQuote ≠ ℵ) → oAuthAttest(pparam,P,AD) for
the current public parameters pparam (output by the challenger C).

Theorem 7 (Secure Authenticated Attestation) The AuthAtt scheme is secure assuming
that (1) BasicAtt scheme is secure (2) the size of N is large and (3) the Sig signature
scheme is EUF-CMA secure.
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4.3.5 Security Proof

Let A be a probabilistic polynomial-time algorithm. The goal of A is to provide a signed
quote with correct auxiliary value (a nonce) such that the quote and the signature are valid
for a fresh nonce. Note that A has access to oracles as depicted in Figure 4.6.

We propose a proof using a sequence of game hops as introduced in [Sho06]. The
initial game corresponds to the security game AuthSec. The successive games are slight
modification to its previous one to end up with a game corresponding to generic primitive
game (such as EUF-CMA). The goal of the proof is to show thatA has negligible probability
of winning AuthSec.
G0 : This is the original security game given in Figure 4.6.

G1 (transition based on indistinguishability): This game is defined as the previous one

except that the challenger aborts the game if a compromised component is able to generate
a valid attestation quote. Suppose that A has a non-negligible advantage 𝜖𝐵 of winning the
basic attestation game. This means that there exists a party P such that P.𝛾 = 1 (i.e., P
is compromised) but quote ∈ DB with aBVerif(pparam, quote) = 1 (note that quote = ℵ
potentially). By difference lemma we have:

| Pr[A wins 𝐺0] − Pr[A wins 𝐺1] | ≤ 𝜀𝐵.

G2 : This game is defined as the previous one except that the game aborts if A can

generate a valid signature. We show that:

| Pr[A wins 𝐺1] − Pr[A wins 𝐺2] | =
𝜀EUF-CMA

𝑁

where 𝜀EUF-CMA is the advantage of EUF-CMA security game. The proof is done by
reduction.

Assume that A can generate a valid authQuote∗, i.e., aAuthVerif(pparam,P∗,AD∗,
authQuote∗) = 1 with (P∗,AD∗, authQuote∗) ∉ Lsign. We then show that there exists
adversary B using A as a sub-routine with non-negligible advantage of winning the EUF-
CMA security game.

Adversary B simulates the game of A thus acting as the challenger in the AuthAtt
game. The behavior of B is defined as follows:

• receives 𝑝𝑘 from its own challenger of the EUF-CMA game.

• runs the aAuthSetup algorithm to get pparam (and also 𝑁).

• randomly selects 𝑖∗ $← {1, . . . , 𝑁}. Two cases need to be studied depending on the
𝑖𝑡ℎquery of A :

– 𝑖 ≠ 𝑖∗. WhenA calls oracle oAuthReg() then B runs aAuthKGen(Pi) to retrieve
(Pi.pk,Pi.sk). B sends back Pi.pk to A. When A calls oracle oAuthAttest()
then B runs algorithm aAuthAttest (which is possible since B has the corre-
sponding secret key). B sends back to A the output of the algorithm. Note that
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in this case, the simulation is the same as the original game since B uses the
same algorithm of the oracles.

– 𝑖 = 𝑖∗. In this case, B will inject its own material to use it in its EUF-CMA game.
WhenA calls oracle oAuthReg(P𝑖∗) then B simply returns 𝑝𝑘 . Note that in this
case, B does not have access to 𝑠𝑘 . Thus when A calls oracle oAuthAttest(),
B cannot sign the quote. Instead, B runs aBAttest(pparam𝑖∗) and sends to its
challenger quote| |AD. In response, its challenger will send a signed value of it
using 𝑠𝑘 . B then forward this to A. The view of A that is different from the
original game in this case is the output of the oAuthAttest() oracle. The latter runs
algorithm aAuthAttest which generate a quote quote← aBAttest(pparam𝑖)
and a signature 𝜎 ← aSigSign(Pi.sk, (quote,AD)). In the simulation, B has
access to algorithm aBAttest() but the signature scheme is different. Yet,
both signature schemes are EUF-CMA thus their outputs are indistinguishable
(meaning thatA cannot decide from which schemes the output comes from with
non-negligible probability) since the keys have the same probability distribution.
Hence, the simulation of the game by B and the real game are indistinguishable.

• When A returns its forgery on query 𝑖, B parses authQuote𝑖 as authQuote𝑖 :=
(𝑚∗ | |AD∗, 𝜎∗).

• Finally B returns (𝑚∗ | |AD∗, 𝜎∗) to its challenger and wins if A forges the 𝑖∗query
(meaning that 𝑖 = 𝑖∗).

By combining the results, we have:

Pr[A wins 𝐺0] ≤ 𝜀𝐵 +
𝜀EUF-CMA

𝑁

which is negligible.

4.4 Linked Attestation

Authenticated attestation allows the attestation of one (out of many) components, based
on that component’s unique secret key. If we define now parties as being either VMs or
hypervisors, the notion of authenticated attestation suffices to capture the basic guarantees
of multi-channel deep-attestation. However, in this paper our goal is to allow parties to link
their attestations (a hypervisor’s attestation should, e.g.„ be linkable to various VMs hosted
on that platform).

The linked attestation takes place in an environment where several parties are registered
in a linked way – this corresponds to a single platform. A first step is platform registration,
by which several parties are linked on the same underlying hardware. Each entity later
generates a linkable attestation – verifiable on its own, and linkable with other linkable
attestations.

Although our application scenario is that of linking VM and hypervisor attestations, we
make our framework more generic than that. Instead of just two types of components, we
consider linkable sets S1,S2, . . . ,S𝐿 , which resemble equivalence classes. These sets are
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aLSetup(1𝜆):
pparam′← aAuthSetup(1𝜆)
Return pparam← pparam′
// Registers a platform with set s1 of VMs and the hypervisor in s2

aLReg(s1, s2): For each 𝑖 ∈ {1, 2}:
For each 𝑗 ∈ s𝑖:

(Pj.pk,Pj.sk) ← aAuthKGen(Pj)
Group all Pj.pk into PK𝑖 and all Pj.sk into SK𝑖

Return{(PK1,SK1), (PK2,SK2)}
// Attesting VM P on platform (s1, s2) for nonce AD

aLAttest(pparam,PK,P.sk, (s1, s2),AD):
Get P.pk matching P.sk from PK
lkaux← P.pk // The linking information is P’s public key

AD∗← 𝐻 (AD| |lkaux) // Embed lkaux into attestation nonce

authQuote← aAuthAttest(pparam′,P.sk,AD∗)
linkedQuote← authQuote
Return (linkedQuote, lkaux)
aLVerif(pparam,P.pk, linkedQuote,AD, lkaux): // Verify attestation quote of party P

AD∗← 𝐻 (AD| |lkaux);
authQuote← linkedQuote
Return aAuthVerif(pparam′,P.pk, authQuote,AD∗)
// Attest hypervisor P on platform (s1, s2) with nonce AD

aLAttest(pparam,PK,P.sk, (s1, s2),AD):
Parse PK as PK[1],PK[2] // PK[1] is the set of all VM pks

Parse PK[1] as PK1,PK2...PK |S1 | // PK𝑖 contains the keys of all VMs on platform 𝑖

Set lkaux← PK𝑘 with 𝑘 the index of s1 in S1 // lkaux is now the list of all VM keys

AD∗← 𝐻 (AD| |lkaux) // Embed lkaux into a new attestation nonce

authQuote← aAuthAttest(pparam′,P.sk,AD∗)
linkedQuote← authQuote
Return (linkedQuote, lkaux)
aLLink(pparam,PK,⨿1,⨿2): // Link VM quotes from ⨿1 and hypervisor quote from ⨿2

Initialize AUXvm← ∅
For each (Pj.pk,AD, linkedQuote, lkaux) ∈ ⨿1:

Return 0 if aLVerif(pparam′,Pj.pk, linkedQuote,AD, lkaux) return 0
Return 0 if lkaux ≠ Pj.pk // Linking fails if quotes fail to verify or authenticate each VM

Add lkaux to AUXvm // Each lkaux here is a VM public key.

Parse ⨿2 as (Pj.pk,AD, linkedQuote, lkaux)
If aLVerif(pparam′,Pj.pk, linkedQuote, lkaux) return 0
AUXhym← lkaux // This lkaux is a list of VM public keys.

Return 0 if AUXvm is not a subset of AUXhym
Return 1

Figure 4.7 Our linked attestation scheme for platforms with 2 types of components: VMs
(stored inS1) and hypervisors (stored inS2). Each type of component attests via a different
aLAttest algorithm, the main difference between them being that the hypervisor embeds
a list of public keys in its nonce.
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defined such that any party in one set (say PS1) can produce an attestation that is linked to
attestations produced by parties in sets S2, . . . ,S𝐿 . We write P ⋄Q to say that two parties
are linked. The relation is reflexive (P ⋄ P), symmetric (if P ⋄Q, then Q ⋄ P), and transitive
(if P ⋄Q and Q ⋄ R, then P ⋄ R). An intuitive depiction of these sets appears in Figure 4.8.

S1

PS1

𝐴PS1

S2

QS2

𝐴QS2

: link
: attestation

Figure 4.8 The sets S1,S2 contain parties (e.g., VM and attestation server). In this
example, PS1 lies in S1 and QS2 lies in S2. There can exist links between the sets and
also between parties’ attestation. In this example, P and Q are linked (denoted P ⋄Q).

We formalize a linked-attestation schemeLinkedAtt as a tuple of algorithmsLinkedAtt =
(aLSetup, aLReg, aLAttest, aLVerif, aLLink), defined for some auxiliary set AUX.
We illustrate the syntax in Figure 4.9.

P1,1

P1,2 P1,3

𝑆1

Q1,1 Q1,2

𝑆2 P2,1 P2,2

𝑆1

Q2,1

𝑆2

Verif: (⊤,P1,2)

linkedQuote lkaux

Verif: (⊤,Q1,1)

linkedQuote lkaux

Verif: (⊤,P2,2)

linkedQuote lkaux

Link : ⊤ Link : ⊥

Platform 1 Platform 2

Figure 4.9 Linked attestation primitive. The dashed line indicates a platform under the
same registration. In this example, both platforms are composed of two subsets (namely
𝑆1 and 𝑆2). There are a total of three quote verifications (P1,2,Q1,1,P2,2). The link
verification outputs true when the devices are registered under the same platform and
false otherwise.

• aLSetup(1𝜆) → pparam: on input the security parameter 1𝜆 (in unary), this algorithm
outputs public parameters pparam. This security parameter includes the maximal
number of allowed disjoint linkable sets, which we denote as 𝐿.

• aLReg(s1, s2, . . . , s𝐿) → {(PK1,SK1), . . . (PK𝐿 ,SK𝐿)}: this algorithm keeps as state
a number 𝐿 of sets S𝑖 originally set to ∅, and a vector of sets of public keys PK (also
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initialized to ∅). On input a number of subsets s𝑖 (𝑖 = 1, 2, . . . , 𝐿), this algorithm first
checks that ∀𝑖, 𝑗 , s𝑖 ∩ S 𝑗 = ∅ (else the algorithm outputs ⊥). If the relation is true,
then the algorithm generates for each party Pj ∈ s𝑖 , (for all 𝑗 , 𝑖) a tuple of public and
private keys Pj .pk,Pj .sk, initializing Pj with those keys. We require the uniqueness
of all the generated public keys. The subsets s𝑖 are each added to greater sets S𝑖 . The
algorithm groups the keys of all parties Pj ∈ s𝑖 in a pair of private/public key subsets:
(PK𝑖 ,SK𝑖), updating the 𝑖-th component PK[𝑖] of PK as PK[𝑖] ∪ PK𝑖 . All parties
are given access to the public-key subsets (and more generally, to PK).

• aLAttest(pparam,PK,P.sk, (s1, . . . , s𝐿),AD) → (linkedQuote ∪ ℵ, lkaux): on in-
put public parameters pparam, the current set of public keys PK, the private key P.sk
of some party P, subsets s𝑖 ∈ S𝑖 , and an auxiliary value AD ∈ AUX, this algorithm
outputs either a linked quote linkedQuote or a special failure symbol ℵ, and a different
value lkaux (this last entry could be used to store linkage-related information).

• aLVerif(pparam,P.pk, (linkedQuote ∪ ℵ),AD) → 0 ∪ 1: On input the public pa-
rameters pparam, a public key P.pk, a linked quote (or a failure symbol ℵ), and an
auxiliary value AD, this algorithm outputs a verification bit. By convention, 0 means
failure and 1 means acceptance of the attestation.

• aLLink(pparam,PK,⨿1, . . . ,⨿𝐿) → 0∪1: on input the public parameters pparam,
the set of public keysPK, and subsets⨿𝑖 containing elements of the form (Pj .pk,AD, (linkedQuote
∪ℵ), lkaux), this algorithm outputs 1 if the quotes in all the indicated subsets can all
be linked (thus also indicating the parties are linked) or 0 otherwise.

By convention, we allow the use of ∅ to indicate that any of the input or output (sub)sets
to also be empty.

The security of linked attestation informally states that an adversary, which has Person-
in-the-Middle capabilities and can compromise devices at will, cannot make it appear that
two devices are linked when they are not, in fact, so.

A significant limitation on the adversary’s capabilities is that compromising a device
will not leak its private keys (which are assumed to be held by a TPM). However, the
adversary will gain a limited oracle access to those keys upon compromising the device.
The limitations to those queries follow rules of access to an actual TPM.

4.4.1 Construction

We provide a construction for platforms that have two types of components: virtual machines
(VMs) and their managing hypervisor. Thus, in our instantiation, 𝐿 = 2. We use an
authenticated attestation scheme (aAuthSetup, aAuthKGen, aAuthAttest, aAuthVerif)
as a black box. The basic construction is depicted in Figure 4.7. During setup, our linked-
attestation scheme first runs aAuthSetup and outputs pparam and 𝐿 = 2. Note that by
construction aAuthSetup must output a number nP , denoting the maximal number of
parties that can be set up. This counter will represent a global maximum to parties of all
types that will exist in our ecosystem. Following setup, one can register a subset of VMs
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together with a hypervisor. The algorithm runs the key-generation algorithm aAuthKGen of
the underlying authenticated attestation scheme for each party, independently (note that this
also ensures that the total number of parties remains at most nP). Finally, keys are grouped
by types of parties: keys of VMs are output in a set of public keys PK1 and the key of the
hypervisor is output as PK2.

The VMs and hypervisor generate linked attestations differently. The hypervisor first
fetches the public keys of all the components registered with it on the same platform. It
computes a new nonce as the hash of two concatenated values: the original auxiliary value
AD and the list of the public keys. The component then runs aAuthAttest on the public
parameters, this new nonce, and its private key, outputting the authenticated quote. By
contrast, when a VM attests, it computes a new nonce from the original auxiliary value AD
and (only) its own public key. The authenticated quote is provided as the VM’s linked quote.

A VM (or a set of VMs) are considered to be linked to a hypervisor if, and only if, the
following conditions hold simultaneously: (1) the attestations of all the purportedly-linked
parties verify individually (if we run aAuthVerif it returns 1 for each individual attestation);
(2) the public key that was successfully used to verify each of the VMs’ attestation is part of
the auxiliary value lkaux forwarded by the hypervisor.

4.4.2 Correctness

The LinkedAtt scheme is built upon the AuthAtt scheme. There are two types of com-
ponent to consider, VM and hypervisor. When a component is registered on a platform, its
public key is appended in a list (PK1 for VMs, and PK2 for the hypervisor). The public key
of a VM is appended to the quote in aLAttest and can be retrieved by the hypervisor. The
latter can link the attestation to a public key via algorithm aLLink. We consider two cases
to verify the correctness (1) a VM (not compromised) is not registered on the platform,
and (2) a component (VM or hypervisor) is compromised. For (1) the attestation will be
correct since the component is not compromised, but the linking process will abort since
the public key does not belong to PK1. For (2) if a VM (or the hypervisor) is compromised
then the attestation will fail since the authenticated attestation is supposed to be correct (the
aAuthAttest algorithm is executed to generate the quote).

Theorem 8 (Secure Linked Attestation) TheLinkedAtt scheme is secure assumingAuthAtt
scheme is secure and hash function 𝐻 is collision resistant.

4.4.3 Security

We define the security of Linked Attestation as a game LinkSec𝜆,F played by an adversary
A against its challenger C. The game is parametrized by a security parameter 𝜆 and a set
of functions 𝐹, which we call the permitted key-access functions. The challenger begins by
running aLSetup(1𝜆), returning pparam to the adversary, and then it instantiates two lists:
a list of parties LReg = ∅ and a list of linkable attestations Lsign = ∅. The adversary then
plays its game by using the following oracles adaptively:

• oLReg(𝑛1, . . . 𝑛𝐿) → (PK1, . . . PK𝐿): the linked user-registration oracle creates a
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linked platform consisting of 𝑛𝑖 components of the type indicated by S𝑖 . The chal-
lenger first instantiates a counter 𝑁𝑖 = 0 for all 𝑖; it also instantiates subsets s𝑖 as
a tuple of 𝑛𝑖 handles P𝑖, 𝑗 , with 𝑁𝑖 + 1 ≤ 𝑗 ≤ 𝑁𝑖 + 𝑛𝑖 and then runs the algorithm
aLReg(s1, s2, . . . , s𝐿), instantiating the parties with their keys and outputting the pub-
lic key-sets to the adversary. The subset consisting of the list of subsets is added to
LReg. We note that this way of registering parties ensures by construction that no
party finds itself in multiple sets, nor on multiple platforms.

• oLHAttest(P, (s1, . . . , s𝐿),AD) → (linkedQuote∪ℵ,AD∗): this oracle first verifies that
P.𝛾 = 1. If the condition is false (P is compromised), then this oracle outputs an error
symbol⊥ (compromised parties must use the oracle oLCAttest described below). If the
condition is true, then this algorithm runs aLAttest(pparam,PK,P.sk, (s1, . . . , s𝐿),
AD), and returns the output to the adversary. The tuple (P, (s1, . . . , s𝐿),AD, linkedQuote,
AD∗) is stored in Lsign.

• oCompromise(P) → OK: this oracle allows an adversary to compromise party P, thus
changing P.𝛾 to 1.

• oLCAttest(P, (s1, . . . , s𝐿),AD, 𝑓 ) → (ℵ,AD∗): this oracle first checks that P.𝛾 = 1
(else, ⊥ is returned as an output). If the condition holds, then this oracle first
checks that 𝑓 ∈ 𝐹 and if so, it runs 𝑓 on P.sk and input AD to output AD∗. Then
it runs oLHAttest(P, (s1, . . . , s𝐿),AD) to obtain linkedQuote (the second output is
discarded). Note that by the security of the linked attestation primitive, we will have
that linkedQuote = ℵ. The tuple (P, (s1, . . . , s𝐿),AD, linkedQuote,AD∗) is added to
Lsign and (linkedQuote,AD∗) is returned to A.

At the end of its interaction,A outputs a party P and a tuple of subsets (s̃1, . . . , s̃𝐿) with
an index 𝑖★ such that ∀𝑖 ≠ 𝑖★, s𝑖 := s̃𝑖 and s𝑖★ := s̃𝑖★ ∪ {P}. In addition the adversary outputs
for every party P ∈ s1∪· · ·∪s𝐿 (parties being indexed as P𝑖, 𝑗) a tuple (AD, linkedQuote,AD∗)
such that (·, ·,AD, linkedQuote,AD∗) ∈ Lsign.

We say the adversary wins if all the following conditions hold simultaneously:

• For each s𝑖 the parties inside this set are all registered i.e.,they were output by oLReg.
In addition P is registered;

• There exists at least one party Q ∈ s 𝑗 such that P and Q were issued from different
oLReg queries;

• By setting ⨿𝑖 := (P.pk,AD, (linkedQuote ∪ ℵ),AD∗) and, for 𝑘 ≠ 𝑖, for all P𝑘, 𝑗 ∈ s 𝑗 ,
⨿𝑘 := (Pk,j .pk,AD, (linkedQuote𝑘, 𝑗 ∪ ℵ),AD∗

𝑘, 𝑗
), it holds that aLLink(pparam,PK,

⨿1, . . . ,⨿𝐿) = 1.

In other words, the adversary wins if it is able to make attestations stored in Lsign for
parties registered on different platforms (P and Q) link. Note that there are two ways that an
attestation can end up inLsign: either it is issued for an honest component (and then it should
hold that linkedQuote ≠ ℵ), or it is issued for a compromised party, for an adversarially-
chosen evaluation of a permitted function 𝑓 on a secret key (in which case linkedQuote = ℵ).
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In other words, at this point a compromised component cannot just bind the output AD∗ from
the function evaluation oracle with a different quote. The adversary will gain this ability at
the next step (when the freshness AD will no longer be chosen by the adversary).

4.4.4 Security Proof

We will now prove our construction is secure with respect to the LinkSec𝜆,FSign experiment.
G0 : The original security game LinkSec𝜆,FSign .

G1 : We guess parties P,Q output by the adversary in the last part of its game. In other

words, the challenger must draw at random two values between 1 and nP , such that those
values correspond to those chosen by the adversaries. We lose a factor 1

n2
P

.
G2 : We now rule out that 𝐻 (·, lkaux) = (·, lkaux′) for any lkaux ≠ lkaux′. Trivially, if

the converse were true,we could break the collision resistance of 𝐻 with equal probability.
Note that now, since parties P and Q are registered on different platforms, since lkaux

keys are unique, and since we have ruled out collisions, any honestly-generated attestations
for P and Q will not link. The adversary’s only hope is to forge an attestation for either one
of those parties.
G3 : At this point we rule out the fact that P’s tuple (AD, linkedQuote,AD∗) was in fact

part of a tuple (P′, ·,AD, linkedQuote,AD∗) ∈ Lsign (with P ≠ P′). If that were so, we could
construct an adversary against the authenticated attestation scheme (since P purports to be
P′). In so doing an important oracle will be the signature oracle oAuth added artificially in
the authenticated attestation primitive; the latter will allow us to simulate oLCAttest queries.
We lose 𝜀Auth-attest.
G4 : We repeat the previous game hop for party Q, and lose 𝜀Auth-attest.

At this point, the adversary can no longer win the game.

4.5 Authorized Linked Attestation

So far, attestation has been viewed as a primitive, run by a single party (which can be of
various types) and outputting an attestation. However, one of the most important require-
ments of attestation is that the actual quote only be given to authorized parties – which we
call attestation servers [LK16].

We will define an authorized linked attestation protocol, which allows an attestation
server to act as a verification party in the attestation procedures. The same server will also
be the one to generate the auxiliary values required for the attestation (this provides freshness
to the protocol). The server will also be responsible for linking multiple attestations.

4.5.1 Intuition

We provide a full formalization of authorized linked attestation below. However, we also
believe it is useful to first give an intuitive understanding of what this primitive is and the
security it wants to achieve.
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In authorized linked attestation we consider a (single) attestation server S and platforms
consisting of several types of components (as shown for linked attestation). The server
will keep track of an evolving state, which is initially empty. However, as the server starts
to attest various components, at every execution of the authorized attestation protocol, the
server will output a verdict (indicating whether the component’s individual attestation has
failed or succeeded) and may – or may not – update its internal state. Intuitively, the state is
meant to contain the linking information provided by each of the attesting components. After
a number of attestations have been processed, the server might have enough information in
its state to decide whether some of the components are linked or not.

The security notion we require for authorized linked attestation is threefold: (1) we
require that parties only provide attestation guarantees to the actual attestation server; (2) we
require that the contents of the attestation be actually indistinguishable from random for all
unauthorized parties; (3) we require a similar kind of linking security as demanded in linked
attestation see Section 4.4. However, as opposed to linked attestation, the adversary in this
case can also play a Person-in-the-Middle role between honest components and the honest
server, or it may attempt to replay messages or impersonate one or both parties. Finally, the
adversary will be able to have oracle access to the secret key of any compromised component
(this oracle access is parametrized in terms of a function space 𝐹 of allowed functions).

4.5.2 Formalization

We will consider parties of multiple categories as for the linked-attestation primitive. We
also define a special server entity, denoted S, which stores the following attributes:

• (pk, sk): a tuple consisting of a public key pk (assumed to be unique and known to all
other parties including the adversary) and a private key sk known only to the server.
We use S.pk to indicate the public key of party S, and S.sk to indicate its private key.

• S.st: a value called state, which stores tuples of linked attestations which are suscep-
tible to be linkable to each other.

We will consider an environment in which parties interact with each other in sessions.
The session is run by two party instances, one of the attesting party and the other, of the
attestation server. For a party P we denote by 𝜋i

P the 𝑖-th instance of party P.
Just as in the case of linked attestation, parties store a set of keys (pk, sk), as well as a

compromise bit 𝛾.
Party instances use the same keys and have the same compromise bit as the party itself,

but in addition keep track of the following session-specific attributes:

• sid: a session identifier, which will be useful in understanding which two party
instances converse together.

• pidpk: the public key belonging to this instance’s intended communication partner.

• T: a transcript of messages exchanged throughout a protocol session, in plaintext.
Even if encryption is used at some point, parties append messages to their transcripts
only after decrypting.
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• 𝛼: this bit is originally set to 0, but can be changed to 1 if this party instance has
accepted its partner as a legitimate entity to run the authorized linked attestation with.

• lst: this local state variable stores instance- (and protocol-) specific values, such as
encryption keys, randomness, etc.

In addition server instances 𝜋j
S keep track of the following attribute, which is the output

of the immediate attestation process taking place:

• verdict: this attribute stores a bit, initially set to 0, which is flipped to 1 if the attestation
server’s instance has accepted the attestation received during that session.

We call two instances 𝜋i
P and 𝜋j

Q partnered if, and only if, the following conditions hold
simultaneously: exactly one of P and Q is in fact the attestation server S; 𝜋i

P.pidpk = Q.pk
and 𝜋i

Q.pidpk = P.pk; and 𝜋i
P.sid = 𝜋

j
Q.sid.

Authorized linking attestation is defined as the tuple of algorithms and protocols ALA =
(ASetup,AReg,AAttest, aALink) described as follows:

• ASetup(1𝜆) → (pparam, S.pk, S.sk, S) : on input the security parameter 1𝜆 (in unary),
this algorithm outputs public parameters pparam, as well as the server handle S (such
that S is equipped with newly generated keys pk, sk). The value pparam includes the
maximal number of allowed disjoint linkable sets of parties, which we denote as 𝐿.
The values pparam, S.pk, and S are public, S.sk remains private. The value S.pk is
added as the first value in the set PK.

• AReg(s1, s2, . . . , s𝐿) → {(PK1,SK1), . . . , (PK𝐿 ,SK𝐿)}: this algorithm keeps as state
a number 𝐿 of sets S𝑖 originally set to ∅, and a vector of sets of public keys PK (also
initialized to ∅). On input a number of subsets s𝑖 (𝑖 = 1, 2, . . . , 𝐿), this algorithm first
checks that ∀𝑖, 𝑗 , s𝑖 ∩ S 𝑗 = ∅ (else the algorithm outputs ⊥). If the relation is true,
then the algorithm generates for each party Pj ∈ s𝑖 , (for all 𝑗 , 𝑖) a tuple of public and
private keys Pj .pk,Pj .sk, initializing Pj with those keys. We require the uniqueness
of all the generated public keys. The subsets s𝑖 are each added to greater sets S𝑖 . The
algorithm groups the keys of all parties Pj ∈ s𝑖 in a pair of private/public key subsets:
(PK𝑖 ,SK𝑖), updating the 𝑖-th component PK[𝑖] of PK as PK[𝑖] ∪ PK𝑖 . All parties
are given access to the public-key subsets (and more generally, to PK).

• AAttest(pparam,PK, 𝜋i
P, 𝜋

j
Q) → (verdict, S.st): this protocol is an interaction be-

tween two party oracles, such that exactly one of P,Q is S. The protocol yields a tuple
of values verdict and S.st to the server (and no output for the other party). Both party
oracles are assumed to update their attributes accordingly as the protocol unfolds.

• aALink(pparam,PK, S.st, s1, . . . , s𝐿) : 0 ∪ 1 : given the public parameters and
public-key set, the server’s current state, and a number of subsets of (purportedly-
linked) parties, this algorithm outputs either 0 (the parties are not linked) or 1 (the
parties are linked).
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ASetup(1𝜆):
pparam← aLSetup(1𝜆)
Create S
(S.pk, S.sk) ← aSigKGen(1𝜆)
Return (pparam, S.pk, S.sk, S)

AReg(s1, s2, . . . , s𝐿):
{(PK1,SK1), . . . (PK𝐿 ,SK𝐿)} ← aLReg(s1, s2, . . . , s𝐿)
Return {(PK1,SK1), . . . (PK𝐿 ,SK𝐿)}

aALink(pparam,PK, S.S.st, s1, . . . , s𝐿):
Parse S.S.st as ⨿1,⨿2...⨿𝐿
Return aLLink(pparam,PK,⨿1,⨿2...⨿𝐿)

AAttest(pparam,PK, 𝜋i
P, 𝜋

j
Q):

Component Server
Establish TLS channel

(linkedQuote, lkaux) ← aLAttest(pparam,PK,P.sk, (s1, s2),AD) AD←−−−−−−−−−−−−−−−−−−−
AttestationRequest

AD
$←− AUX

(linkedQuote,lkaux)
−−−−−−−−−−−−−−−−−−−→
AttestationResponse

verdict = aLVerif(pparam,P.pk 𝑗 , linkedQuote,AD, lkaux)

Add (Pj .pk,AD, linkedQuote, lkaux) to ⨿𝑖 in S.st

Figure 4.10 Our authorized linked attestation scheme for 2 types of components.

We require two types of correctness properties. First, we require that running the protocol
between two honest parties yields a verdict of 1 (accept) on the side of the attestation server.
Secondly, we require that components that are linked at registration will be viewed as linked
by the aALink algorithm. More formally, we require that schemes ALA = (ASetup,AReg,
AAttest, aALink) be such that:

• For all (pparam, S.pk, S.sk, S) ← ASetup(1𝜆) and for all parties P ∈ S𝑖 for some
1 ≤ 𝑖 ≤ 𝐿, it holds that

(verdict, ·) = AAttest(pparam,PK, 𝜋 ·P, 𝜋 ·S)

(any legitimate party will successfully attest to the legitimate server);

• For all (pparam, ·, ·, S) ← ASetup(1𝜆), for all subsets s̃1, s̃2, . . . , s̃𝐿 such that there
exist sets s𝑖 for 𝑖 = 1, 2, . . . , 𝐿 such that s̃𝑖 ⊂ s𝑖 and AReg(s1, s2, . . . , s𝐿) was called
and did not result in ⊥, it holds that:

aALink(pparam,PK, S.st, s̃1, . . . , s̃𝐿) = 1

(parties that are registered together can be linked through the server’s state).

4.5.3 Construction

Our construction of the AuthAttprimitive can be seen in the Figure 4.10. We consider
the existence on an underlying LinkedAtt scheme that we use for the aLSetup, aLReg
and aLLink in a straightforward manner. However, the aLAttest algorithm is no longer a
primitive, but a protocol between two instances of two parties, P and Q. For simplicity of
exposition, we assume that the instance of Q is the server attesting the component identified
by P.

The protocol proceeds as follows. First, P and Q execute the TLS protocol, with P
playing the role of the client and Q playing the role of the server. The role of the TLS
protocol is two-fold: first, P authenticates the server, so that they can determine whether
this party is allowed to obtain attestation data. Second, it leads to the establishment of a
secure channel, such that the following messages can be passed on in a secure manner. Once
the traffic key(s) established, the protocol continues as follows. First, the server uniformly
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randomly samples a nonce AD, which is embedded in the first message of the protocol,
AttestationRequest. In response, the party P executes the aLAttest algorithm and the
output, consisting of a linkedQuote and the linkage information lkaux, is then sent to the
server. The server will subsequently update his state.

In order for two components to be linked by the server successfully, the following
conditions have to be met. First, the two components’ attestation must be valid (their
associated verdicts equals 1). Second, the two lkaux must be subsets of each other; essentially,
the key that the VM used as part of its attestation must be found in the lkaux provided by the
hypervisor.

We note that if the server has at some point accepted the attestation of a component
(thus updating its state to add the linking information), and if later a failed attestation occurs
with respect to that component, the server updates state as follows: it ignores the linking
information provided in the second attestation; and it removes prior linking information
provided by that component.

4.5.4 Security

There are three fundamental properties we want ALA schemes to have: an authenticity guar-
antee for the attestation server (authorization); a confidentiality guarantee for the contents
of the attestation (indistinguishability); and a linkability guarantee for honestly-behaving
components (linking-security). The first notion, authorization, captures the fact that be-
fore reaching an accepting state, a (non-server) party must be sure that it is speaking to
the legitimate server. The second notion, indistinguishability, essentially covers Person-in-
the-Middle confidentiality for the attestation protocol. The last property, linking-security,
refers to the fact that no PitM adversary with the ability to compromise components can
convince an attestation server that a component is linked to another if that is not the case in
reality. Although this last property might seem similar to the security notion for our linked
attestation primitive, there is one important difference between the two: in linked attestation
the adversary has access to essentially two ways to generate an attestation (depending on
whether the component is honest or compromised), whereas in authorized linked attestation
the adversary will have more leeway in combining attestation material across sessions. The
stronger adversary in this section will thus make for a stronger primitive in the end.

The three security games we define are parametrized by a function space 𝐹 and a security
parameter 𝜆. They start with the challenger running the setup algorithm and outputting
pparam as well as the handle S and its public key S.pk to the adversary. Note that this will
not give the adversary black-box access to S’s attributes: it simply allows the adversary to
later instantiate new attestation-protocol sessions for that server.

The adversary will then have access to some, or all of the following oracles:

• oALAReg(𝑛1, . . . 𝑛𝐿) → (PK1, . . . PK𝐿) : the authorized linked user-registration ora-
cle creates a linked platform consisting of 𝑛𝑖 components of the type indicated by S𝑖 .
The challenger first instantiates subsets s𝑖 as a tuple of 𝑛𝑖 handles P𝑖, 𝑗 , with 1 ≤ 𝑗 ≤ 𝑛𝑖
and then runs the algorithm AReg(s1, s2, . . . , s𝐿), instantiating the parties with their
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keys and outputting the public key-sets to the adversary. The subset consisting of the
list of subsets is added to LReg.

• oNewSession(P,Q) → 𝜋i
P : on input the identity of a target party P and a partnering

party Q, if both entities are correctly registered and exactly one of them is the server,
then this oracle instantiates an instance of P whose partner will be instantiated as
pidpk= Q.pk. Note that in order to observe an honest session between two parties, an
adversary would have to create two partnered instances, one of P and the other of Q.

• oSend(𝑀, 𝜋i
P) → 𝑀 ′ : this oracle simulates sending a message 𝑀 to an instance 𝜋i

P,
and outputs the response 𝑀 ′ of the party instance. If the input message takes a special
value 𝑀 = prompt and P is the initiator of the protocol (i.e., the first party to have
to send a message), this will trigger 𝜋i

P to output the first message in the protocol.
We note that some messages, when sent, might trigger errors, leading to an output
𝑀 ′ = ⊥. Other messages might trigger the attributes of the party (or instance) to be
modified.

• oRevealState(𝜋i
P) → lst : on input a valid party instance, this oracle returns the value

stored by the attribute lst of that instance.

• oUseKey(P, 𝑓 ,AD) → AD′ : on input a compromised party P (not the server), a
function 𝑓 ∈ 𝐹, and an auxiliary input value AD, this oracle evaluates 𝑓 on P.sk and
AD.

• oCompromise(P) → OK ∪ ⊥ : on input a registered party P ≠ S, this oracle turns
the party’s compromise bit to 1 and returns OK. If P = S or the party has not been
registered, the output is an error symbol ⊥.

We now proceed to describe each of the three security experiments we consider for our
authorized linked attestation primitive along with their corresponding theorem and proof.

4.5.4.1 The authorization game AuthSec𝜆,F

After the challenger runs the setup algorithm, the adversaryA gets access to all the oracles
described above. It ultimately stops with a stop message. We say A wins if, and only
if, there exists an instance 𝜋i

P such that P ≠ S, for which the following conditions hold
simultaneously:

• 𝜋i
P ends in an accepting state, i.e., 𝜋i

P.𝛼= 1;

• There exists no server instance 𝜋j
S such that 𝜋j

S is partnered with 𝜋i
P.

In other words, the adversary wins if it can make a registered party believe it has talked to
the server when this is not the case.

Theorem 9 Our construction is AuthSec𝜆,FSign secure if the TLS protocol provides server
authentication.

Pr[A wins AuthSec𝜆,F] ≤ 𝜀TLS-auth.
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Proof. Note that in order to win this game, the adversary must make a party accept a session
with the server, such that no matching server instance exists. This is against the server
authentication property we assume of the TLS protocol.

4.5.4.2 The linking game AuthLink𝜆,F

After the challenger runs the setup algorithm, the adversaryA gets access to all the oracles
above. It ends by outputting a tuple (P, s1, . . . , s𝐿) : such that for all 1 ≤ 𝑖 ≤ 𝐿, s𝑖 ⊂ S𝑖 and
there exists a unique 𝑖∗ such that P ∈ S𝑖∗ and s𝑖∗ = ∅. The challenger sets s̃𝑖 := s𝑖 for all 𝑖 ≠ 𝑖∗,
and s̃𝑖 := P. Then the challenger evaluates: 𝑏 ← aALink(pparam,PK, S.st, s̃1, . . . , s̃𝐿).
The adversary is said to win if, and only if the following conditions hold simultaneously:

• 𝑏 = 1;

• There exists a party Q and an index 𝑗∗ ≠ 𝑖∗ such that Q ∈ ˜s 𝑗∗ and P and Q were not
output by the same oALAReg query.

In other words, for this second game, the adversary has to run several sessions between
(potentially compromised) parties and the (honest) server, thus bringing the server’s state to
a point where linkage can be verified based on that state.

Theorem 10 Our construction isAuthLink𝜆,FSign secure if the underlying primitiveLinkedAtt
is LinkSec𝜆,FSign and TLS is at least (s)ACCE secure.

Proof. A key observation for this game is that the adversary cannot impersonate a server or
determine it to provide bad randomness. Instead, the adversary can compromise components
and run TLS sessions on their behalf with the server, or try to obtain input from honest
components instead. We distinguish between two types of adversary behaviours.

Say A has never queried oCompromise for some party P. If the adversary prompts P
to run a session, then A will not actually know anything about the messages (so it cannot
misbehave on the quote, the nonce, or anything else). If A runs the TLS session instead of
P, it will learn the channel key, but will not be able to prompt P for the quote (since P wants
to run TLS and not the attestation protocol, and since A cannot impersonate the server).

SayA queries oCompromise for some party P. Then the adversary can run TLS sessions
on behalf of that party and query oUseKey in an attempt to get information on the quotes.
However, in that case, the attestation of that component fails, except again if we break linked
authentication security.

This essentially means that the adversary has no way to maul honestly-generated input
to suit its purposes.

4.5.4.3 The indistinguishability game AuthInd𝜆,F

Once the challenger has finished the setup, it also draws a bit 𝑏 at random. The adversary
gets once more access to the oracles described above. It finally outputs a tuple (𝜋i

P, 𝑚0, 𝑚1),
consisting of a party instance and two messages, such that: |𝑚0 | = |𝑚1 | and 𝜋i

P.𝛼 = 1.
The challenger uses its knowledge of 𝜋i

P’s state on input 𝑚𝑏 (which is 𝑚0 or 𝑚1 depending
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on the challenger’s hidden bit) to simulate outputting a message 𝑀𝑏 which corresponds to
the next protocol message of 𝜋i

P as that party would have sent it. Clearly if the protocol
requires messages be sent in plaintext, 𝑀𝑏 = 𝑚𝑏. The instance 𝜋i

P, as well as any of its
partnering instances, are closed and may no longer be used in any oracle. The adversary
may subsequently continue to use oracles at will (except on the instances closed above)
and eventually outputs a guess 𝑑 ∈ {0, 1}. We say the adversary wins if, and only if, the
following conditions hold simultaneously:

• 𝑑 = 𝑏;

• No oRevealState query was made for either 𝜋i
P, nor for any instance 𝜋j

S of the server
such that 𝜋i

P and 𝜋j
S are partnered.

Theorem 11 Our construction is AuthInd𝜆,FSign secure if the TLS channel provides (mini-
mally) (s)ACCE security. Let 𝑞𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠 be the number of sessions.

Pr[A wins AuthInd𝜆,FSign] ≤
1

𝑞𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠
𝜀TLS-sACCE.

Proof. Like in the proof of authorization, the reduction here is immediate. The property
of sACCE (which is already provided by TLS 1.2, whereas TLS 1.3 gives even stronger
guarantees) implies that messages exchanged across the TLS channel are secure.

4.6 Implementation

We provide a proof-of-concept implementation of our authorized linked attestation scheme.
The implementation consists of three parts, a client for the hypervisor, a client for the Virtual
Machines, and an attestation server written in Python 3. We do not consider the underlying
NFV or cloud infrastructure, since our scheme abstracts those environments and can be
used in any kind deep-attestation scenario. Therefore, any computer equipped with a TPM
2.0 (which can also be emulated) and which has virtualization capacities suffices for the
purposes of our implementation. We provide our code as well as a detailed tutorial on how
to install and configure both the infrastructure [AFJ+].

The infrastructure. We summarize our testing architecture in Figure 4.11 (note that some
of our tests use more than 2 VMs – up to 55).

Our hypervisor is a laptop running Ubuntu 20.04.3 (kernel version 5.11.0-40) with an
Intel i7-10875H CPU, 32GB RAM and a STMicroelectronics TPM. We used KVM to turn
this laptop into a hypervisor. For high attestation performance, we used full virtual TPM
implementation, using QEMU [qem] with libtpms 0.7 [Ber] and swtpm 0.5 [SB].

All virtual machines are QEMU virtual machines (version 4.2.1) with 1 core and 512
RAM running Fedora 35 Cloud. The VM as well as the virtual TPM instances are managed
using Vagrant and Vagrant-Libvirt plugin.

The hypervisor, server, and VMs communicate through a private network created with
Vagrant. Thus, connection time is not considered in our tests.

To communicate with the TPM we used tpm2-tss, tpm2-abrmd and tpm2-tools from the
tpm2-software [TPM]. Note that the tpm2-tss project implements the TPM software stack
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Figure 4.11 Architecture for tests.

(TSS), which is an API specified by the Trusted Computing Group to interact with a TPM.
The tpm2-abrmd implements the access broker and resources to manage concurrent access
to the TPM and manage memory of the TPM by swapping in and out of the memory as
needed (hardware TPM have limited memory).

The attestation server is also a virtual machine, with the same characteristics as those
above. This allows us to test our implementation on a single machine. We establish a secure
connection between the client and the server by using Python’s SSL library.

Tests. We perform three types of experiments. The first is a comparison of hypervisor attes-
tation time and VM attestation time. Although both those processes have some (very small)
amount of noise, our values faithfully show the difference between attesting a component
through the physical TPM – hypervisor attestation – and attesting it by using a virtual TPM
– VM attestation.

We ran 100 attestations for the hypervisor and 100 attestations for a virtual machine.
The results have high variance so Table 4.1 presents the minimum, the maximum, mean,
and median value of those 100 trials. As expected, time for an attestation using a hardware
TPM is much higher than using a vTPM.

min median mean max
Hypervisor 3.22 5.30 5.68 11.55

VM 0.66 0.97 1.03 1.41

Table 4.1 Minimum, median, mean and maximum time in second for attestation of a
hypervisor and a virtual machine for 100 trials.

As our second and third experiments we wanted to see how the overall runtime of
our scheme evolves with the number of virtual machines that need to be attested, when
the attestation is sequential or parallelized for the VM attestations. In both cases, each
experiment first runs the attestation of the hypervisor, and then (sequentially or in parallel)
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Figure 4.12 Attestation time for 1, 2, 3 and 4 VMs. The upper curve is a single-channel
attestation estimate, the middle curve is median runtime of our authorized linked attesta-
tion for sequential VM attestation, while the bottom curve shows the median runtime for
our scheme with parallelization.

the attestation of a varying number of VM (up to a maximum of 55). The results are plotted
in Figure 4.12. We note that the runtime is not entirely linear. This is because in experiments
2 and 3 the initial attestation of the hypervisor (which only occurs once) takes larger time
than the subsequent VM run-times.

Comparison to single-channel attestation. We did not implement single-channel attes-
tation. However, since we have implemented hypervisor and VM attestations, we can
theoretically estimate the run-time of single-channel attestation for a varying number of
VMs – which we plot in Figure 4.12. Indeed, a single-channel attestation process for a
single VM includes a VM attestation and a hypervisor attestation. If we want to run it for 2
VMs, then we need to perform 2 hypervisor attestations and 2 VM attestations. This cannot
be easily parallelized either, because the same TPM has to run the attestations. This yields
a much higher run-time, as depicted in Figure 4.12.

Comparison to multi-channel attestation. Although our method follows basic multi-
channel attestation approaches, we do add an extra computation (a hash function computa-
tion) compared to traditional multi-channel attestation. In addition, we require a little extra
memory overhead for both the attestation server and for each platform, so that the additional
attestation keys are stored for each VM. There is also a slight transmission overhead, since
those keys are also sent upon attestation. However, the transmission overhead is negligible
since it only appears for the hypervisor attestation (which occurs only once).
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4.7 Conclusion

In this chapter, we described a means of guaranteeing layer-binding in deep-attestation
without running into the complexity of single-channel attestation. Our construction achieves
the best of both worlds, with a complexity similar to that of multi-channel attestation, but with
the strong linkage properties provided in single-channel attestation. Our implementation
results show that even for as few as 2 VMs, the time required for the (linked) attestation
of the platform is halved with respect to single-channel attestation. We can do even better
if the VM attestations are run in parallel. Our solution also enables easy linking, since
the attestation server will only have to compare public keys, once the authentication and
attestation of the components is successful.

In addition, we present a full, formal treatment of our new protocol, which we call
authorized linked attestation. Our construction of authorized linked attestation is modular,
building on primitives which have increasingly stronger properties. Our underlying assump-
tion is a primitive called basic attestation. We show that in order to be able to prove security,
we need that attestations be able to reflect (at least a statical) compromise of the component.
In addition, we rely on a collision-resistant hash function, an EUF-CMA-secure signature
scheme, and the the sACCE security of a TLS protocol (having AKE properties would be
even better).
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Conclusion

We first recall our contributions before presenting some perspectives that follow our works.

Contributions

We present several new cryptographic protocols proven in models we designed. Those pro-
tocols innovates in both asynchronous messaging applications and attestation for virtualized
infrastructures.

The first contributions are related to Post-Compromise Security, a property guaranteeing
to recover security after a compromise. Many protocols do not have this property and never
heal, while some have this property with optimal healing (meaning that there is no better
way to recover the security from a given compromise). Yet, there are in-between protocols
where the healing is possible but may be enhanced. Considering the PCS as a spectrum
rather than a binary notion leads to two main observations:

1. There are protocols where we can improve their PCS;

2. We should be able to measure the PCS.

Those two issues are the starting points of our first contributions.
We start from the description of the Signal protocol in order to point out avenues for

improvement. From this analysis, we designed two protocols MARSHAL and SAMURAI,
improving the PCS of Signal. Our approach is to stay as close as possible to the design of
Signal allowing easy comparison between the protocols. We strenghen this conceptual con-
tribution with an implementation showing that MARSHAL and SAMURAI remains practical
even if there is an overhead.

The next step is to formalize the improvement made toward Signal and to check that the
solutions we propose are indeed better, in terms of PCS, than the original protocol. Our goal
not only consider those cases but a wide class of protocols ranging from Signal, SAMURAI,
SAID (an other variant of Signal in the identity-based setting) and 5G procedures called
handover. Our generic framework enables the comparison between those different protocols
(and reinforce the improvement we have made with MARSHAL and SAMURAI toward the
PCS of Signal).

In the last part of this thesis, we apply the methods of provable security to a different
topic. The goal is to provide a provably secure scheme in the context of attestation schemes.
Employing a scheme whose design is sound and provides provable security, is a good first
step; however it is not enough to guarantee the security of the solution, once deployed in the
real world. Attestation provides an additional guarantee, in ensuring that the components a
protocol might be running on have not been modified. We therefore formalize and propose
a provably-secure scheme for Deep Attestation. Our model, the first of this kind, allows us
to show the security of a solution we designed in the computational model.
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Perspectives

We can extend the work of the three main chapters of this thesis. First, our protocol SAMURAI
could be developed into post-quantum paradigm or used for multi-party. Second, our model
to quantify the PCS could be broaden to other protocols featuring additional properties.
Finally, the work on deep attestation is also an interesting line of research.

Post-Quantum SAMURAI. Some works [BFG+22,BFG+20,HKKP21] appeared about key
exchanged in the post-quantum paradigm that could directly help for the X3DH algorithm
used by Signal. Industrials are also eager to propose Signal-like messaging protocol that
could resist to post-quantum adversaries. A possible line of research is the design of
SAMURAI in the post-quantum paradigm which could benefit optimal healing. The design
of post-quantum protocols is critical since attackers could store communications and then,
break the security with quantum computers.

Multi-Party SAMURAI. Signal is pairwise meaning that group communication does not
scale efficiently. A future work to consider is the design of SAMURAI for 𝑛 parties. This
could yield optimal healing in group messaging. The issue for multi-party protocols is the
key evolution. For two-party protocol, the sequence of messages is straightforward since
when the speaker change, a new chain is created (i.e., ping-pong style) so the key evolution
is simple. An idea to solve this issue for multi-party would be to consider a 𝑛-dimension
stage instead of a 2-dimension stage for a two-party (a stage is given by two coordinates for
Signal). The user could choose which path to continue the communication to avoid conflicts.

Refining our metric. The framework we propose to analyse PCS does not feature all the
protocols with the PCS property. We can add protocols like OTR [BGB04], Matrix [mat19]
and Wire [Gmb21]. Moreover, the case of TLS 1.3 is interesting for our model and could
lead to improvement toward PCS (particularly its session resumption feature).

Adding use cases is one step to consider but we can also refine the protocols we model.
For instance, we do not consider out-of-order messages for Signal. This feature does not
contradict the results from our metric but we simply omit it to facilitate the way we model
protocols (including SAMURAI).

A metric for multi-user protocols. Our framework does not consider addition and revo-
cation of members in a group. The work of [CHK21] analyses the effect of PCS on group
messaging. Our approach, through our taxonomy, could reinforce their results.

Automated verification of our metric. Our choice of design for quantifying the PCS is
the computational model. Yet, automated verification could also be possible (as long as
global parameters can be managed) and we consider this line of research for future works.
Also, the work of [KBB17] provides a methodology for automated verification of messaging
protocols. It is inspirational since their approach could be used for SAMURAI.

Extending the model for deep attestation. Our model (and scheme) does not immediately
account for other features of virtual infrastructures, such as privacy CAs, migrating VMs,
multiple hypervisors managing the same VM, or even replacing TPMs. These aspects are
left as future works.
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Appendix A

Résumé Long

Pouvoir communiquer avec n’importe qui est devenu nécessaire dans notre société actuelle.
Le besoin de sécurité à travers les outils permettant l’échange d’information est un besoin
exprimé par de nombreux citoyens 1, notamment depuis les révélations d’Edward Snowden.
Celui-ci a rendu publique une surveillance de masse opérée par des gouvernements et
visant une large part de la population. Depuis ces révélations, de nombreux travaux (de
recherches, mais aussi industriels) ont émergé pour assurer au mieux la sécurité des services
de communication ainsi que de la vie privée des utilisateurs. L’un de ces services, appelé
Signal, a connue un succès important lors de sa sortie notamment grâce à sa robustesse
mais aussi pour sa facilité d’utilisation (d’autres outils existaient mais sans réussir à susciter
l’intérêt des citoyens; par exemple PGP). La robustesse de Signal peut être exprimée à travers
ses propriétés de sécurité:

• Asynchronicité : les communications entre participants peuvent se faire alors qu’un
des deux participants ne soit en ligne. Ceci implique qu’Alice doit pouvoir envoyer
un message à Bob à tout moment et Bob sera capable de lire ce message quand il
reviendra en ligne;

• Authenticité : les participants sont sûrs de parler à la bonne personne. Autrement dit, si
Alice pense parler à Bob alors Bob est effectivement son partenaire de communication
(et vice-versa);

• Sécurité Parfaite en Amont (Perfect Forward Secrecy – PFS) : si un adversaire réussit à
compromettre à un moment donné la communication, alors tous les messages échangés
avant l’attaque de l’adveraire restent sécurisés.

• Sécurité Après Compromission (Post-Compromise Security – PCS) : cette propriété
est l’inverse de la PFS, autrement dit les messages échangés après l’attaque doivent
pouvoir être à nouveau sécurisés, au bout d’un certain temps.

Ces deux dernières propriétés peuvent être illustrées de la manière suivante:

1Un exemple de ce changement de mentalité peut être illustré par un évènement survenu en 2021 avec What-
sApp; cette entreprise a vu un nombre important de désinscriptions de ses utilisateurs suite à une modification
des conditions d’utilisation rendant un niveau de vie privée amoindri.
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PFS:
attaque

PCS:
attaque

L’utilisation de Signal est prévue pour des communications à long terme; si Alice et Bob
ont débuté une communication, elle doit pouvoir continuer sans avoir besoin de recalculer la
mise en place d’une session. La propriété PCS devient donc cruciale dans ce contexte : si un
attaquant réussit à compromettre un des participants (et donc à faire perdre la confidentialité
de la communication) alors le PCS assure qu’au bout d’un moment, la communication
“guérit” et annule tout dégât causé par l’attaque précédente. En pratique, il est préférable
d’avoir une guérison rapide afin d’avoir le moins de messages possibles découvert par
l’adversaire.

Les deux premiers axes de recherche présents dans cette thèse se focalisent sur cette
notion de PCS. Dans un premier temps, nous proposons deux variantes de Signal qui
améliorent la notion de PCS. Ensuite, nous proposons un modèle permettant d’évaluer ce
temps de guérison quel que soit le protocole envisagé (possédant la notion de PCS). Le but
est de pouvoir comparer des protocoles (qui a priori ne sont pas comparables) sous cette
propriété de PCS afin de répérer le meilleur protocole (i.e., celui avec la guérison la plus
courte).

Dans ces deux axes de recherche, nous supposons que l’application Signal, installée dans
un composant dédié (ordinateur, smartphone, tablette, etc) pour Alice et Bob, se comporte
de la manière attendue. Cependant, notre description haut-niveau (dans le sens où nous
avons abstraits des briques de base) ne prend pas en compte toute la chaîne de production
pour arriver jusqu’à l’application qu’utilisent Alice et Bob. Une description correcte (avec
des preuves de sécurité, calculatoires ou formelles) est indispensable 2 mais des failles
peuvent survenir à chaque point intermédiaire jusqu’à l’utilisation finale de l’application.
Par exemple :

• Le protocole doit être implémenté dans un langage de programmation. Il existe des
bibliothèques cryptographiques pour que les briques de base soient bien utilisées mais
certains choix de paramètres peuvent poser problèmes, le langage lui-même peut être
source de failles.

• La partie logiciel de l’application vit dans un système (l’OS du composant i.e., Win-
dows, Linux, etc) comportant lui aussi des failles.

2Une illustration intéressante de ce fait est une remarque de Michel Raynal concernant les algorithmes
(discutés de manière générale) : ce ne sont pas les algorithmes qui font voler un avion mais si les algorithmes
utilisés ne sont pas corrects alors l’avion ne volera pas (ou pas longtemps en tout cas).
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• Les composants physiques (la partie “hardware”) sont eux aussi sources de failles avec
notamment les attaques par canaux auxiliaires. Ces attaques prennent en compte les
fuites d’information par des phénomènes physiques (i.e., la consommation d’énergie,
la production d’ondes électro-magnétiques, les variations de température, etc).

• L’utilisation même du service par les utilisateurs. Par exemple, Alice pourrait laisser
son smartphone ouvert, laissant la possibilité à un attaquant d’utiliser toutes sortes de
moyens pour arriver à ses fins (simplement regarder, installer des applications, etc).

Il existe de nombreuses étapes, indépendantes des spécifications haut-niveau du proto-
cole, pouvant amener à des attaques. Cependant, il existe aussi des solutions permettant
d’avoir certaines assurances concernant la fiabilité des services voulus. L’une d’elles,
appelée attestation, permet la verification d’une propriété pour une composante (réseau,
machine virtuelle, IoT, etc). Les propriétés pouvant être évaluées sont nombreuses et dépen-
dent de l’infrastructure analysée; ces propriétés peuvent être la géolocalisation, le contrôle
d’accès à des ressources, l’intégrité de code.

Dans le dernier chapitre, nous nous concentrons sur une variante du processus d’attestation
appelée Deep Attestation. Le but est de proposer le premier modèle de sécurité (pour de
la sécurité prouvable) permettant d’évaluer la sécurité d’une solution que nous proposons
pour le Deep Attestation. Cette solution, accompagnée d’une preuve de concept permettant
d’évaluer sa faisabilité dans un contexte pratique, vise à améliorer l’équilibre entre la sécurité
et la performance des solutions existantes (et standardisées).
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A.1 Améliorer la PCS de Signal

La notion de PCS, introduite dans [CCG16], permet de garantir un niveau de sécurité après
une compromission de clés. Suivant les clés révélées, un attaquant peut avoir accès à une
partie de la communication jusqu’à un certain point où le protocole guérit. En ajoutant
de l’aléa, l’attaquant n’a plus les informations nécessaires pour continuer à accéder à la
communication et est éjecté du protocole. Cette propriété puissante, mais conditionnée par
les clés révélées, a été analysée pour la première fois (dans le contexte du protocole Signal)
dans [CGCD+17].

Le protocole Signal peut être rapidement décrit en 4 étapes:

• Un échange de clé intial : le protocole X3DH est utilisé avec l’aide d’un serveur;

• Un ratchet symétrique : dérivation d’une clé de message par une fonction de dérivation
de clé (KDF) par un même participant sans attendre la réponse du destinataire; c’est
cette étape qui assure la PFS.

• Un ratchet asymétrique : lorsque les rôles d’envoyeur/destinataire sont échangés, une
nouvelle valeur Diffie-Hellman est insérée dans la dérivation de clé; c’est cette étape
qui assure la PCS.

• Chiffrement authentifié : chaque message est chiffré avec une nouvelle clé (qu’on
appelle clé de message); il faut associer à chaque envoi de message, des données
auxiliaires via AEAD.

Nous nous intéressons à la transmission de messages, nous ne considérons donc pas
l’échange de clé initial. Certains travaux comme [BFG+22,BFG+20,HKKP21] étudient en
particulier cette étape de Signal. D’autres travaux se concentrent sur la structure de Signal
pour des groupes [CPZ20] et multi-plateformes [CDDF20,WBPE21].

A.1.1 Contributions

Les garanties de PCS pour Signal sont limitées par deux facteurs :

• le manque d’authentification persistante : les clés sont modifiées mais cette évolution
doit venir du bon participant.

• la fréquence d’utilisation du ratchet asymétrique : plus le ratchet asymétrique est
utilisé souvent et plus le protocole guérit rapidement.

Notre but est de développer un protocole (en réalité deux) qui améliore la PCS tout
en restant le plus proche possible de Signal. Nous restons proche de Signal en gardant la
même structure, ce qui nous permet d’avoir une implémentation plus directe et aussi une
comparaison claire de nos variantes. Nous proposons deux protocoles :

• MARSHAL [BFJ+22] (Messaging with Asynchronous Ratchets and Signatures for faster
HeALing)
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• et SAMURAI (Signal-like Asynchronous Messaging with Message-loss resilience, Ul-
timate healing and Robust against Active Impersonations)

Ces deux protocoles améliorent la PCS en garantissant une guérison plus rapide et
une authentification persistante. Ces deux variantes ont le même niveau de sécurité mais
SAMURAI gère mieux les valeurs stockées durant le protocole, ce qui rend ses performances
mémoire plus pratiques que MARSHAL.

Ces propriétés ajoutées ont un coût. La principale raison de ce surcoût résulte du
temps de calcul nécessaire pour calculer deux nouvelles opérations : une nouvelle valeur
Diffie-Hellman et une signature pour chaque donnée auxiliaire supplémentaire.

Afin de faciliter la compréhension de nos contributions, nous donnons un exemple de
conversation pour Signal. L’initiateur de la communication est Alice et le destinataire est
Bob. Chaque message survient durant un stage qui est noté (𝑥, 𝑦). La valeur 𝑦 change lorsque
l’envoyeur change (𝑦 = 1 correspond à Alice envoyant les messages; 𝑦 = 2 correspond à
Bob envoyant les messages et Alice les recevant). Chaque message est chiffré en utilisant
une clé de message mk𝑥,𝑦 pour un stage (𝑥, 𝑦).

Dans l’exemple ci-dessous, les notations [A] et [S] indiquent respectivement un ratchet
asymétrique et symétrique. La sécurité (✓) et insécurité (×) des messages est donnée, en
supposant qu’Alice s’est fait compromettre pour le message 2.

Envoyeur Key(s) AD Message MARSHAL/SAMURAI Signal

Alice mk1,1: (1,Rchpk1
A) Bonjour Bob ✓ ✓

[S] mk2,1 (2,Rchpk1
A) ça va ? × ×

[S] mk3,1-mk17,1 (3,Rchpk1
A)-(17,Rchpk1

A) (... 15 messages) ✓ ×

[S] mk18,1 (18,Rchpk1
A) Cinema ce soir ? ✓ ×

Bob : [A] mk1,2 (1,Rchpk2
B) Salut Alice ✓ ×

[S] mk2,2 (2,Rchpk2
B) Tout va bien,

merci
✓ ×

[S] mk3,2-mk12,2 (3,Rchpk2
B)-(12,Rchpk2

B) (... 10 messages) ✓ ×

Alice : [A] mk1,3 (1,Rchpk3
A) Parfait! ✓ ✓

A.1.2 Description de Signal

Avant de donner une description détaillée du protocole Signal, nous donnons une description
de son mode opératoire générique. En effet, Signal est basé sur l’algorithme double ratchet
proposé dans [MP16a].

Le double ratchet. Cet algorithme est divisé en deux sous-algorithmes, le symétrique
et le asymétrique. L’idée est identique dans les deux cas : faire évoluer une clé à l’aide
d’une fonction de dérivation de clé (KDF). Chaque sortie d’une KDF est considérée comme
indistinguable d’une valeur aléatoire (ayant une distribution uniforme sur un espace donné;
un exemple de KDF pourrait être une fonction pseudo-random PRF), et il doit être difficile
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d’inverser la dérivation (i.e., il n’existe pas d’algorithme en temps polynomiale qui puisse
retrouver l’entrée avec seulement la sortie).

Le ratchet symétrique est déterministe dans le sens où en connaissant la première entrée,
on est capable de retrouver toutes les autres sorties. Dans le cas de Signal, on appelle la
séquence de clés produite une chaîne; l’entrée et une des sorties se nomment une clé de
chaîne ck, l’autre sortie s’appelle la clé de message mk et c’est cette clé qui sert à chiffrer
les messages.

Le ratchet symétrique s’illustre de la manière suivante :

ck1 ck2 ck3

mk1 mk2

KDF KDF . . .

Le ratchet asymétrique fonctionne de la même manière sauf qu’à chaque appel de KDF,
une valeur fraîche sera introduite. Dans le cas de Signal, cette valeur est une valeur Diffie-
Hellman. Pour différencier les noms de clés utilisés, l’entrée et une des sorties de chaque
KDF s’appellent une clé racine (root key) rk et l’une des sorties est la clé ck (utilisée dans
le ratchet symétrique).

On peut représenter le ratchet asymétrique de la manière suivante :

rk1 rk2 rk3

ck1 ck2

KDF KDF

𝐷𝐻1 𝐷𝐻2

. . .

Le protocole Signal. Ce protocole peut se décomposer en quatre étapes, l’enregistrement,
la mise en place de la session, et l’envoi de messages (qui se décompose en deux parties,
symétrique et asymétrique). Dans la figure suivante, nous donnons le planning de clés ainsi
qu’un exemple de session entre Alice (l’initiatrice de la communication) et Bob (le receveur).
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𝐾𝐷𝐹

ms

X3DH

𝐷𝐻 (rchk0,1
A , prepkB) ck1,1 𝐾𝐷𝐹 ck2,1

mk1,1

𝐾𝐷𝐹 ck3,1

mk2,1

. . . chain 𝑦 = 1

𝐾𝐷𝐹𝐷𝐻 (rchk0,1
A ,Rchpk0,2

B )

rk1

ck1,2 𝐾𝐷𝐹 ck2,2

mk1,2

𝐾𝐷𝐹 ck3,2

mk2,2

. . . chain 𝑦 = 2

𝐾𝐷𝐹𝐷𝐻 (rchk0,2
B ,Rchpk0,3

A ) ck1,3

tmp

rk2

𝐾𝐷𝐹 ck2,3

mk1,3

𝐾𝐷𝐹 ck3,3

mk2,3

. . . chain 𝑦 = 3

Alice (ikA, ipkB, prepkB, ephpkB) Bob (ikB, ipkA, prekB, ephkB)

Session initialization: initiator Alice, responder Bob.

Generate: ekA, rchk1, $←− Z𝑞,
Compute: EpkA ← 𝑔ekA ; Rchpk1 ← 𝑔rchk1 ;
Compute: 𝑚𝑠← prepkikA

B | |ipkekA
B | |prepkekA

B | |ephpkB
ekA

Initial keys: rk1, ck1,1 ← KDF𝑟
(
prepkrchk1

B | |𝑚𝑠
)

ck2,1,mk1,1 ← HKDF(ck1,1)

First message: stage (1, 1), Alice is the sender, Bob, the receiver.

Set AD1,1← (𝑥 = 1) | |Rchpk1 | |EpkA | |ipkB | |ipkA
𝑐←AEmk1,1 (𝑀1,1 |AD=AD1,1 )
−−−−−−−−−−−−−−−−−−−−−−−→ Compute: 𝑚𝑠← ipkprekB

A | |EpkikB
A | |EpkprekB

A | |EpkephkB
A

Set: ck1,1 ← KDF𝑟 ((Rchpk1)prekB | |𝑚𝑠)
and: ck2,1,mk1,1 ← HKDF(ck1,1)
AE decrypt 𝑐 to 𝑀1,1.

ℓ-th message: stage (ℓ, 1), Alice is the sender, Bob, the receiver.

Stage keys: ckℓ+1,1,mkℓ,1 ← HKDF(ckℓ,1)
Set ADℓ,1← (𝑥 = ℓ) | |Rchpk1 | |ipkB | |ipkA

𝑐←AEmkℓ,1 (𝑀ℓ,1 |AD=ADℓ,1 )
−−−−−−−−−−−−−−−−−−−−−−−→ Set ckℓ+1,1,mkℓ,1 ← HKDF(ckℓ,1)

AE decrypt 𝑐 to 𝑀ℓ,1.

Switching speakers: Bob comes online and begins a new ratcheting chain.

rchk2 $←− Z𝑞
Set 𝑡𝑚𝑝, ck1,2 ← KDF𝑟

(
rk1,Rchpk1rchk2 )

and: ck2,2,mk1,2 ← HKDF(ck1,2)

Bob’s message, stage (1, 2): Bob is the sender, Alice is the receiver.

Set AD1,2← (𝑥 = 2) | |Rchpk2 | |ipkB | |ipkA

Set 𝑡𝑚𝑝, ck1,2 ← KDF𝑟
(
rk1,Rchpk2rchk1 ) 𝑐←AEmk1,2 (𝑀1,2 |AD=AD1,2 )

←−−−−−−−−−−−−−−−−−−−−−−−
and: ck2,2,mk1,2 ← HKDF(ck1,2)
AE decrypt 𝑐 to 𝑀ℓ,1.

Second speaker switch: Alice is back online.

rchk3 $←− Z𝑞
Set rk2, ck1,3 ← KDF𝑟

(
𝑡𝑚𝑝,Rchpk2rchk3 )

and: ck2,3,mk1,3 ← HKDF(ck1,3)
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A.1.3 MARSHAL

Le protocole que nous proposons, Messaging with Asynchronous Ratchets and Signatures
for faster HeALing (MARSHAL) se décompose comme Signal en quatre étapes : une phase
d’enregistrement (pour chaque partie auprès d’un serveur), d’une phase de mise en place
de la session et enfin la communication (composée de deux sous-parties). La nouveauté
de MARSHAL est l’utilisation de clés de ratchet sur deux niveaux : des clés de ratchet
propres à chaque utilisateur, et des clés de ratchet multi-utilisateurs. La figure suivante
donne la description d’un exemple de session entre Alice et Bob pour les premiers stages.
Les encadrés gris indiquent les modifications apportées par rapport à Signal; les données
transmises sont différentes mais ne sont pas encadrées pour plus de clarté.

Alice (ikA, ipkB, prepkB, ephpkB, T0 ) Bob (ikB, ipkA, prekB, ephkB, T0 )

Session initialization: initiator Alice, responder Bob.

ekA, rchk0,1, t1, rchk1,1 $←− Z𝑞;

T1 = 𝑔𝑡1 ; EpkA = 𝑔ekA ;
Rchpk0,1 = 𝑔rchk0,1 ; Rchpk1,1 = 𝑔rchk1,1

𝑚𝑠 = prepkikA
B | |ipkekA

B | |prepkekA
B | |ephpkB

ekA

ck1,1 = HKDF
(
prepkrchk0,1

B | |𝑚𝑠
)

(ck2,1,mk1,1) = HKDF(ck1,1 , 𝜎1,1 | | (ipkB)rchk1,1 )

First message: stage (1, 1), Alice is the sender, Bob, the receiver.

𝐴𝐷𝑦=1 = EpkA | |ipkA | |ipkB | |prepkB | |
ephpkB | |T0 | |Rchpk0,1 | |T1

𝐴𝐷1,1 = (1, 1) | |Rchpk1,1 | |𝜎1,1 𝑐1,1, SIGN𝑠𝑘𝐴 (𝑐1,1 ) ,

𝑐1,1 = AEAD.Encmk1,1 (𝑀1,1; 𝐴𝐷1 | |𝐴𝐷1,1)
𝑝𝑘𝐴,SIGNikA (𝑝𝑘𝐴)−−−−−−−−−−−−−−−−→ Verify signature on 𝑝𝑘𝐴 and 𝜎1,1

𝑚𝑠 = ipkprekB
A | |EpkikB

A | |EpkprekB
A | |EpkephkB

A
ck1,1 = HKDF((Rchpk0,1)prekB | |𝑚𝑠)
(ck2,1,mk1,1) = HKDF(ck1,1, 𝜎1,1 | | (Rchpk1,1) ikB)
𝑀1,1 = AEAD.Decmk1,1 (𝑐1,1).

ℓ-th message: stage (ℓ, 1), Alice is the sender, Bob, the receiver.

rchkℓ,1
$←− Z𝑞, set Rchpkℓ,1 = 𝑔rchkℓ,1

(ckℓ+1,1,mkℓ,1) = HKDF(ckℓ,1, 𝜎ℓ,1 | |ipkrchkℓ,1
B )

𝐴𝐷ℓ,1 = (ℓ, 1) | |{Rchpk𝑥,1}1≤𝑥≤ℓ | |𝜎ℓ,1 𝑐ℓ,1, SIGN𝑝𝑘𝐴 (𝑐ℓ,1 ) ,

𝑐ℓ,1 = AEAD.Encmkℓ,1 (𝑀ℓ,1; 𝐴𝐷1 | |𝐴𝐷ℓ,1)
𝑝𝑘𝐴,SIGNikA (𝑝𝑘𝐴)−−−−−−−−−−−−−−−−→ Verify leftover signatures

(ckℓ+1,1,mkℓ,1) = HKDF(ckℓ,1, 𝜎ℓ,1 | | (Rchpkℓ,1) ikB)
𝑀ℓ,1 = AEAD.Decmkℓ,1 (𝑐ℓ,1).

Switching speakers: Bob comes online and begins a new ratcheting chain.

t2, rchk1,2 $←− Z𝑞; T2 = 𝑔t2 , Rchpk1,2 = 𝑔rchk1,2

ck1,2 = HKDF( T1
ikB | |ipkA

t2 )

(ck2,2,mk1,2) = HKDF(ck1,2, 𝜎1,2 | | (ipkA)rchk1,2 )

Bob’s message, stage (1, 2): Bob is the sender, Alice is the receiver.

𝐴𝐷𝑦=2 = T2

𝑐1,2, SIGN𝑝𝑘𝐵 (𝑐1,2 ) , 𝐴𝐷1,2 = (1, 2) | |Rchpk1,2 | |𝜎1,2

Verify signature on 𝑝𝑘𝐵 and 𝜎1,2
𝑝𝑘𝐵 ,SIGNikB (𝑝𝑘𝐵 )←−−−−−−−−−−−−−−−− 𝑐1,2 = AEAD.Encmk1,2 (𝑀1,2; 𝐴𝐷2 | |𝐴𝐷1,2)

ck1,2 = HKDF((ipkB)t1 | | (T2)
ikA)

(ck2,2,mk1,2) = HKDF(ck1,2, 𝜎1,2 | | (Rchpk1,2) ikA)
𝑀1,2 = AEAD.Decmk1,2 (𝑐1,2)

Chaque message est envoyé chiffré de bout-en-bout, avec des données auxiliaires qui
servent à indiquer au receveur comment dériver les clés de messages calculées par l’envoyeur.
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Dans la figure suivante, nous donnons le planning de clés de MARSHAL avec les valeurs de
signature suivantes:

𝜎𝑥,𝑦 :=

SIGN𝑠𝑘𝐴

(
T
𝑦−1 | |Rchpk𝑥,𝑦

)
, pour 𝑦 impair

SIGN𝑠𝑘𝐵

(
T
𝑦−1 | |Rchpk𝑥,𝑦

)
, pour 𝑦 pair

De même que précédemment, les encadrés gris indiquent les modifications par rapport
à Signal.

X3DH

ms

𝐷𝐻 (rchk0,1, prepkB)

𝐻𝐾𝐷𝐹 ck1,1 𝐻𝐾𝐷𝐹 ck2,1

mk1,1

𝜎1,1 | |
𝐷𝐻 (ipkB, rchk1,1)

𝐻𝐾𝐷𝐹 ck3,1

mk2,1

𝜎2,1 | |
𝐷𝐻 (ipkB, rchk2,1)

. . . chain 𝑦 = 1

𝐷𝐻 (T1, ikA) | |
𝐷𝐻 (T2, ikB) 𝐻𝐾𝐷𝐹 ck1,2 𝐻𝐾𝐷𝐹 ck2,2

mk1,2

𝜎1,2 | |
𝐷𝐻 (ipkA, rchk1,2)

𝐻𝐾𝐷𝐹 ck3,2

mk2,2

𝜎2,2 | |
𝐷𝐻 (ipkA, rchk2,2)

. . . chain 𝑦 = 2

𝐷𝐻 (T2, ikB) | |
𝐷𝐻 (T3, ikA) 𝐻𝐾𝐷𝐹 ck1,3 𝐻𝐾𝐷𝐹 ck2,3

mk1,3

𝜎1,3 | |
𝐷𝐻 (ipkB, rchk1,3)

𝐻𝐾𝐷𝐹 ck3,3

mk2,3

𝜎2,3 | |
𝐷𝐻 (ipkB, rchk2,3)

. . . chain 𝑦 = 3

A.1.4 SAMURAI

Le deuxième protocole que nous proposons s’appelle SAMURAI pour Signal-like Asyn-
chronous Messaging with Message-loss resilience, Ultimate healing and Robust against Ac-
tive Impersonations. Ce protocole fonctionne comme MARSHAL, la différence majeure se
situe au niveau des performances en terme de mémoire.

En effet, lors de l’envoi de messages, les données auxiliaires sont de taille constante
(comparativement à une évolution linéaire pour MARSHAL). Le planning des clés n’est pas
le même comme indiqué sur la figure ci-dessous, en prenant la définition suivante :

𝐷𝐻𝑥,𝑦 :=

{
𝜎𝑥,𝑦 | |𝐷𝐻 (ipkB, rchk𝑥,𝑦), pour 𝑦 impair
𝜎𝑥,𝑦 | |𝐷𝐻 (ipkA, rchk𝑥,𝑦), pour 𝑦 pair

avec

𝜎𝑥,𝑦 :=


SIGN𝑠𝑘𝐴

(
T
𝑦−1 | |Rchpk𝑥,𝑦

)
, pour 𝑦 impair

SIGN𝑠𝑘𝐵

(
T
𝑦−1 | |Rchpk𝑥,𝑦

)
, pour 𝑦 pair

La valeur 𝜎 est une signature sur les éléments utilisés pour dériver la clé de message.
C’est ce qui assure l’authentification persistante des valeurs prenant part à l’évolution des
clés. Le but des ces signatures est de minimiser la possiblité pour un attaquant de détourner la
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communication en injectant ses propres valeurs. En effet, la propriété PCS permet d’ajouter
des valeurs aléatoires en cours de communication pour éjecter un attaquant passif mais un
attaquant actif pourrait profiter de cette évolution de clé pour mettre ses propres valeurs et
ainsi faire croire à un des partenaires de communication que la communication est toujours
sécurisée (alors que l’adversaire a pris la place d’un des participants).

X3DH

ms 𝐻𝐾𝐷𝐹 ck1,1

𝐷𝐻 (prepkB, rchk0,1)

𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻1,1

ck2,1

mk1,1

𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻2,1

ck3,1

mk2,1

. . . chain 𝑦 = 1

𝐷𝐻 (T0, ikA) | |
𝐷𝐻 (T1, ikB)

𝐻𝐾𝐷𝐹 ck1,2 𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻1,2

ck2,2

mk1,2

𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻2,2

ck3,2

mk2,2

. . . chain 𝑦 = 2

𝐷𝐻 (T1, ikB) | |
𝐷𝐻 (T2, ikA)

𝐻𝐾𝐷𝐹 ck1,3 𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻1,3

ck2,3

mk1,3

𝐻𝑀𝐴𝐶

𝐻𝐾𝐷𝐹

𝐷𝐻2,3

ck3,3

mk2,3

. . . chain 𝑦 = 3

A.1.5 Conclusion

Nous proposons deux variantes d’un protocole de messagerie connu et largement plébiscité :
Signal. Avec MARSHAL et SAMURAI, nous atteignons la meilleure sécurité possible en terme
de PCS pour un coût en performance relativement faible. Contrairement à d’autres approches
qui s’orientent vers des constructions génériques (notamment à base d’encapsulation de clé
KEM), nous restons proches de la structure initiale de Signal.

Nos deux protocoles ont été construits après avoir constaté que le niveau amoindri de
Signal pour le PCS était dû à deux facteurs :

• la fréquence de ratchet asymétrique, et

• l’absence d’authentification persistante.

La principale différence entre MARSHAL et SAMURAI se situe au niveau des perfor-
mances (le niveau de sécurité étant le même). Nous voulions conserver une option de
Signal appelée out-of-order messages (messages dans le désordre). Cette propriété permet
de pouvoir retrouver un message même si les précédents ont été perdus (ou arrivent après).
Pour MARSHAL, les données auxiliaires ont des tailles qui grossissent de manière linaire en
fonction du nombre de messages pour une chaîne donnée; alors que pour SAMURAI, la taille
est constante.
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A.2 Une métrique de guérison

De nombreux protocoles de messagerie ont vu le jour depuis ces dernières années. Chacun
dispose de propriétés de sécurité spécifiques mais certaines sont reconnues comme étant
nécessaires. Par exemple, la confidentialité des messages doit être assurée, mais aussi
l’authenticité ou bien l’intégrité. Parmi ces propriétés se trouve la Post-Compromise Security
(PCS) dont nous avons proposé une amélioration pour le protocole Signal lors du chapitre
précédent. Le protocole Signal n’est cependant pas le seul à proposer la PCS; il y a
aussi OTR [BGB04], Matrix [mat19], et Wire [Gmb21]. Une comparaison directe de ces
protocoles en termes de PCS est impossible car chacun d’eux évolue dans un système donné.
Par exemple, Signal possède un serveur semi-honnête (on lui fait seulement confiance dans
le fait de stocker, sans modification, les clés d’utilisateurs) alors que SAID, une autre variante
de Signal, basée sur l’identité, possède un centre de distribution de clés (KDC) qui connait
tous les secrets associés aux utilisateurs.

A.2.1 Contributions

Dans ce chapitre, nous proposons un modèle permettant de quantifier le temps de guérison
pour des protocoles possèdant la PCS. Pour définir formellement ce modèle, chaque pro-
tocole est modélisé en schéma SCEKE (Secure-Channel Establishment schemes with Key-
Evolution, i.e., Schémas avec Evolution de Clé pour un Etablissement de Canal Sécurisé).
Le but d’un adversaire contre ce genre de protocole est d’apprendre le plus de messages
possibles (qui sont chacun chiffrés avec une clé de message différente) après une attaque
donnée. Toutes les attaques ne sont pas équivalentes, certaines peuvent donner lieu à des
attaques actives, révéler plus ou moins de messages au cours de la communication. En
plus de définir un modèle générique, nous proposons aussi une taxonomie exhaustive sur
le type d’attaquant possible. Notre métrique mesure le nombre de messages “perdus” (i.e.,
accessibles à l’adversaire) jusqu’au point où les messages sont à nouveaux hors d’atteinte
de l’attaquant. Par exemple, la guérison optimale dans notre métrique vaut (1, 0) alors que
la pire vaut (∞,∞) i.e., le protocole ne guérit jamais. Ces cas sont évidents à traiter, mais
notre métrique devient intéressante pour les cas se trouvant entre ces deux extrêmes.

Afin de montrer l’expressivité de notre modèle, nous comparons 4 schémas a priori très
difficiles à comparer autrement :

• Signal, basé sur une infrastructure à clé publique;

• SAID, une variante de Signal basée sur l’identité;

• SAMURAI, notre variante de Signal décrite au chapitre précédent et spécifiquement
construite autour de la PCS;

• enfin, des procédures de relais (handover) pour le réseau 5G. Ces procédures n’ont
encore jamais été étudiées pour la PCS, c’est donc la première fois qu’une telle analyse
est faite. De plus, nous proposons une variante visant l’amélioration de la PCS.
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A.2.2 Notre métrique pour les SCEKE

Nous formalisons les protocoles SCEKE avant de pouvoir utiliser ce modèle sur des proto-
coles existants.

Nous considérons les protocoles avec deux types de participants :

• les utilisateurs P appartenant à un ensemble P;

• un super-utilisateur Ŝ, qui est une entité à part entière (e.g., le serveur dans Signal).

Une fois que les utilisateurs se sont enregistrés auprès du super-utilisateur, ils peuvent
commencer des sessions entre eux. Après un échange de clé standard, une session de
protocole se déroule entre deux instances de participants. La 𝑖-th instance de P est notée 𝜋i

P.
Du point de vue des utilisateurs, chaque session a trois phases :

• une initialisation : elle ne survient qu’une seule fois par instance (au début);

• une phase d’envoi de messages : elle intervient lorsqu’une instance envoie des mes-
sages;

• une phase de réception de messages : elle intervient lorsqu’une instance reçoit des
messages.

Les deux dernières phases sont cruciales dans notre modèle, ce sont elles qui rendent
compte de notre métrique car elles représentent la notion de stage. Un stage correspond à
l’ensemble des opérations et valeurs permettant l’établissement d’une clé de message.

Le modèle d’adversaire. L’adversaire que nous considérons est un algorithme probabiliste
calculant en temps polynomial. Il manipule les participants honnêtes via des oracles (algo-
rithmes retournant une valeur définie mais dont le fonctionnement n’est pas explicite). Il a
un contrôle total sur le réseau dans lequel évolue le protocole. Nous présentons les types
d’adversaire en fonction de ses capacités.

Un adversaire possède une certaine portée, cela signifie qu’il peut révéler des clés (mais
pas forcément toutes). Nous divisons la portée d’un adversaire en trois parties :

• locale : l’adversaire ne peut révéler que des clés qui ne sont utilisées qu’une seule fois
dans la session;

• moyenne : l’adversaire peut, en plus du cas précédent, révéler des clés apparaissant
plusieurs fois dans une même session (mais pas dans d’autres sessions);

• globale : l’adversaire peut révéler toutes les clés.

En plus de la portée, nous définissons la puissance de l’adversaire. Celle-ci est divisée
en deux parties :

• active : l’adversaire peut directement interférer avec le fonctionnement du protocole.
Il peut stoper, relancer, modifier des messages;
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• passive : une fois l’attaque effectuée, l’adversaire ne peut plus modifier le fonction-
nement du protocole.

Enfin, le dernier critère que nous considérons est celui d’accès. Ce critère permet
d’analyser les protocoles centralisés et les protocoles décentralisés tout en permettant leur
comparaison :

• intérieur : cet adversaire est le super-utilisateur Ŝ.

• extérieur : cet adversaire ne reçoit pas les données de Ŝ, et ne peut pas le corrompre
au cours de la session.

On peut résumer la classification d’adversaire selon la figure suivante :

A

PORTEE PUISSANCE ACCES

Moyenne

Globale

Locale

Active

Passive

Passive

Active

Active

Passive

Intérieur
Extérieur

Intérieur
Extérieur

Intérieur
Extérieur
Intérieur
Extérieur

Intérieur
Extérieur
Intérieur
Extérieur

A.2.3 Résultats

Nous donnons l’ensemble des résultats dans le tableau suivant :
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Extérieur Portée Signal SAMURAI SAID 5G-SCEKE 5G-SCEKE+

Passive
Globale (∞, 2) (1, 0) (∞, 2) (∞,∞) (1, 0)
Moyenne (∞, 2) (1, 0) (∞, 2) (∞,∞) (1, 0)
Locale (∞, 1) (1, 0) (1, 0) (∞, 1) (1, 0)

Active
Globale (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)
Moyenne (∞,∞) (1, 0) (∞,∞) (∞,∞) (∞,∞)
Locale (∞, 1) (1, 0) (1, 0) (∞, 1) (1, 0)

Intérieur Portée Signal SAMURAI SAID 5G-SCEKE 5G-SCEKE+

Passive
Globale (∞, 2) (1, 0) (∞, 2) (∞,∞) (∞,∞)
Moyenne (∞, 2) (1, 0) (∞, 2) (∞,∞) (∞,∞)
Locale (∞, 1) (1, 0) (∞, 1) (∞,∞) (∞,∞)

Active
Globale (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)
Moyenne (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)
Locale (∞,∞) (∞,∞) (∞,∞) (∞,∞) (∞,∞)

Nos résultats montrent que les protocoles SAMURAI, SAID et notre amélioration (5G-
SCEKE+) pour la procédure de relais 5G possède le meilleur taux de guérison contre des
adversaires locaux, passifs et extérieurs. Les bons résultats de SAMURAI et 5G-SCEKE+ ne
sont pas dûs aux même raisons. SAMURAI utilise plus fréquemment un ratchet asymétrique
(qui implique donc plus de calculs) et une authentification persistante (qui a pour con-
séquence directe d’enlever toute forme de déniabilité) alors que 5G-SCEKE+ insère des
valeurs aléatoires au cours d’une session grâce à la présence d’un deuxième canal sécurisé.
Enfin, il est important de noter que le cas d’adversaire actif intérieur est difficile à gérer
mais reste un but à rechercher. Nos résultats montrent clairement cette difficulté à gérer les
attaques du milieu.

Nos résultats, bien que pouvant éclaircir des problèmes encore obscurs, possèdent aussi
des désavantages. En effet, nous ne modélisons que des protocoles à deux participants,
excluant donc des protocoles multi-utilisateurs comme ART ou MLS. Cependant, il reste
encore d’autres protocoles pouvant être modélisés avec notre approche comme TLS 1.3, qui
est pour le moment laissé en travaux futurs.

A.3 Attestation en profondeur

Notre monde est de plus en plus interconnecté, avec un besoin de réseaux flexibles et
dynamiques toujours plus grandissants. Dans un environnement comme le cloud ou le
réseau 5G, la technologie de virtualisation permet une mise à l’echelle facile et spécifique à
la demande des utilisateurs. En effet, les machines virtuelles peuvent être facilement mises en
place, mises à l’échelle ou bien déplacées sur n’importe quel type d’infrastructure physique
permettant ainsi de meilleures performances et une plus grande sécurité. Cependant, de
nouveaux besoins ont vu le jour; par exemple dans le domaine de la santé numérique (e-
santé) où la géolocalisation est primordiale. Un outil permet de vérifier si ces infrastructures
ont un état de fonctionnement valide, c’est l’attestation.

Le processus d’attestation permet à une entité indépendante de la platerforme de vérifier
si cette plateforme a un comportement attendu, si son état n’a pas été modifié de manière

XIV



Résumé Long A.3. Attestation en profondeur

inattendue. Le but est de vérifier que certaines propriétés de sécurité sont vérifiées. Par
exemple, un serveur pourrait vérifier que le code source d’une machine virtuelle est bien
valide (i.e., aucun code malicieux n’a été inséré). Nous nous intéressons à ce cas, où des
machines virtuelles sont gérées par un hyperviseur qui lui-même interagit avec un composant
physique nommé “racine de confiance” (root of trust). On peut représenter cette structure
de la manière suivante :

VM1 VM2 VM3
Machines Virtuelles

vRoT2vRoT1 vRoT3
Hyperviseur

Root of Trust
Hardware

Il existe actuellement deux solutions pour l’attestation en profondeur :

• L’attestation via un seul canal : chaque VM est attestée en même temps que l’hyperviseur
qui la gère. Cette solution est sûre dans le sens où une VM est liée à son hyperviseur
mais la mise à l’échelle est très coûteuse, l’hyperviseur est attesté à chaque fois qu’une
VM l’est.

• L’attestation par canal multiple : cette solution atteste l’hyperviseur et les machines
virtuelles indépendamment. Cette fois la mise à l’échelle est efficace (une seule
attestation pour l’hyperviseur) mais la sécurité n’est plus garantie, les VM ne sont
plus liées à l’hyperviseur.

Nous représentons ces solutions avec le schéma ci-dessous.

RoT

vRoT

VM

Serveur de
vérification

Atteste H

Atteste VM

Efficace

RoT

vRoT

VM

Serveur de
vérification

Atteste VM
Atteste H

Securisé
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A.3.1 Contributions

Nous prenons le meilleur des deux solutions standardisées (unique/multiple canal) pour
l’attestation en profondeur pour obtenir un outil liant des machines virtuelles et des hyper-
viseurs avec une efficacité raisonnable (dans le sens où les performances se rapprochent
de celles des deux solutions). Notre solution est simple, mais élégante, et utilisant des
standards cryptographiques pour assurer qu’une attestation d’un hyperviseur est bien liée
aux machines virtuelles dont il a la charge. Les contributions sont sur 3 points:

1. Un schéma cryptographique : Notre schéma assure la sécurité et l’efficacité pour
l’attestation en profondeur. Pour cela, chaque hyperviseur et chaque machine virtuelle
ne s’atteste qu’une seule fois. Chaque VM possède une paire de clés dont la partie
publique fait partie de l’attestation même de l’hyperviseur qui la gère (qui lui-même
est attesté par la racine de confiance physique). Afin d’authentifier ces clés, elles sont
incluses dans un nonce, et transmises par le serveur de vérification. Si l’attestation de
l’hyperviseur réussit, alors le serveur de vérification peut lier cet hyperviseur avec des
VM qui s’attesteraient ultérieurement. Si l’attestation de l’hyperviseur échoue, alors
l’ensemble des clés publiques ne peuvent pas être de confiance. Notre solution peut
s’illustrer de la manière suivante:

H

VM3

VM2

VM1

Plateforme Serveur

Atteste H, VM’s

VM1↔ H

VM2↔ H

VM3↔ Hquote

quote

quote

quote

2. Prouver la sécurité d’une attestation liante en étant autorisé Un avantage clair de
notre approche est d’avoir complètement formalisé et prouvé les garanties de sécurité.
Nous utilisons une approche par série de jeux, permettant la construction de primitives
de plus en plus fortes basées sur des plus faibles. Notre but est d’obtenir une primitive
d’attestation liante et autorisante (ALA) : chaque composant s’atteste individuellement
à une entité autorisée à vérifier pour avoir leurs attestations liées. Nous réglons ainsi
le problème où des VM pourraient ne pas appartenir à un hyperviseur car chaque
attestation de VM est maintenant liée à un hyperviseur (et casser cette hypothèse
reviendrait à résoudre un problème reconnu difficile).

ALA a trois propriétés :

• l’autorisation : seulement un serveur dédié peut effectuer une attestation;
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• l’indistinguabilité : aucun attaquant au milieu ne pourrait deviner qu’un seul bit
d’information durant la communication entre des participants honnêtes;

• le liage : un serveur peut détecter si deux composants sont liés ou pas.

Nous formalisons une série de primitives dont la dernière est un échange de clé
authentifiée. Chaque primitive est d’interêt indépendant et possède une sécurité de
plus en plus forte. Cette approche a deux avantages : elle permet d’utiliser des
primitives plus faibles en boîte noire pour former des primitives plus fortes; et elle
permet aussi d’avoir des preuves plus directes et plus simples. Nous pouvons résumer
notre approche de la manière suivante:

Basic Attestation

Authenticated Attestation

Linked Attestation

Authorized Attestation

primitive

les composants sont
identifiés

VMs et hyperviseur sont liés

le serveur doit être
autorisé

Nous commençons notre construction par un schéma basique d’attestation retournant
simplement un résultat binaire (oui/non). Nous supposons donc une sécurité par défi-
nition. Sa fonctionnalité est simple : si le résultat de l’attestation retourne “non” alors
le composant est malicieux mais retournera “oui” si le composant est honnête. Basés
sur cette hypothèse, nous construisons une série de mécanismes cryptographiques
pour ajouter des propriétés de sécurité afin de resister à des adversaires ayant plus de
pouvoir. La première étape est de rajouter de l’authentification, ce qui assure qu’un
composant pourra toujours s’attester avant une corruption mais pas après. Ensuite
nous ajoutons la propriété de liage qui permet de lier certains composants entre eux
(les VM avec l’hyperviseur qui les gère).

3. Implémentation : Nous avons effectué une preuve de concept pour assurer que notre
solution a bien les performances attendues, et est capable d’être appliquée dans un
contexte pratique. L’architecture est composée d’un hyperviseur et de plusieurs VM
(jusqu’à 55). Cela montre que notre solution est plus performante que la solution à
canal unique et ajoute un petit surplus (un calcul de fonction de hashage) comparé à
la solution de canal multiple.

Ce travail est le premier à formaliser, en utilisant des outils cryptographiques, l’attestation
en profondeur. Ce traitement est plus difficile que la conception en soi de la solution car
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l’attestation est un processus générique présentant de nombreuses classes d’algorithmes qui
ont chacun des buts différents. Ainsi, nous ne faisons qu’effleurer le problème mais espérons
– à part pour le côté pratique de nos constructions – que le traitement cryptographique,
primitives, et preuves sont indépendamment intéressantes pour cet axe de recherche.

A.4 Conclusion

Nous présentons dans cette thèse plusieurs protocoles cryptographiques prouvés dans des
modèles qui font, eux aussi, partie de nos contributions. Ces protocoles innovent dans
le domaine des applications de messagerie asynchrone ainsi que pour les infrastructures
virtualisées.

Les premières contributions concernent la notion de Sécurité Après-Compromission
(PCS), une propriété garantissant de retrouver une sécurité après une attaque. Beaucoup
de protocoles n’ont pas cette propriété et ne guérissent jamais, alors que d’autres ont cette
propriété et guérissent de manière optimale (autrement dit, il n’y a pas de meilleure guérison
possible). Il existe aussi des protocoles ayant la PCS mais celle-ci peut être améliorée.
La PCS est donc une notion variant d’un extrême à un autre, pouvant prendre des valeurs
intermédiaires. Cette observation nous mène à considérer ces deux points:

1. Il existe des protocoles dont la PCS peut être améliorée;

2. Il doit être possible de mesurer la PCS.

Ces deux idées sont le point de départ de nos premières contributions.
Nous commençons par une description du protocole Signal afin de montrer quelles

modifications nous pouvons lui apporter dans le but d’améliorer sa PCS. Cette analyse
nous amène à la construction de deux protocoles, MARSHAL et SAMURAI, qui améliorent
la PCS de Signal. Nous choisissons d’être le plus proche de Signal afin de permettre
une comparaison plus simple de ces protocoles par rapport à Signal. Nous renforçons
cette contribution théorique par une implémentation de MARSHAL et SAMURAI permettant
d’évaluer leur capacité à être déployés dans un contexte pratique.

L’étape suivante est de formaliser les améliorations que nous avons établies et de vérifier
que nos solutions sont effectivement meilleures, en terme de PCS, que le protocole Signal.
Notre but n’est pas seulement de considérer ces protocoles mais d’étendre l’étude à d’autres
cas, comme SAID (une autre variante de Signal basée sur l’identité) ainsi que sur une suite
de procédures de la 5G nommée handover (i.e., procédure relais). Notre approche générique
permet de comparer des protocoles qui, a priori, sont incomparables.

Dans la dernière partie de ce manuscrit, nous appliquons les méthodes de la sécurité
prouvables dans un autre contexte que précédemment. Le but est de proposer un schéma
sûr dans le contexte de l’attestation. Employer des schémas dont la construction est prouvée
sûre est une première étape, il faut ensuite garantir qu’une fois déployés, ils garantissent
encore une sécurité. L’attestation permet d’avoir une autre garantie, celle d’assurer qu’un
composant, qui pourrait être utilisé par un protocole, n’a pas été altéré. Nous proposons
donc de formaliser et de construire un schéma sûr pour de l’attestation en profondeur. Notre
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modèle est le premier sur ce sujet, ce qui nous permet de prouver, dans le modèle calculatoire,
que notre solution est bien sécurisée.
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