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«Echangeriez-vous votre vie réelle, marquée par
des frustrations et des déceptions, des succès par-
tiels et des rêves inaccomplis, contre une vie
d’expériences désirables mais complètement ar-
tificielles, provoquées par des moyens chimiques
ou mécaniques ?»

Ruwen Ogien, L’influence de l’odeur des crois-
sants chauds sur la bonté humaine
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Chapter 1
Introduction

Contents
1.1 Driving Simulation in the automotive industry . . . . 1

1.1.1 What is Driving Simulation ? . . . . . . . . . . . . . . . 2
1.1.2 Driving simulators . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Practical role of Driving Simulation . . . . . . . . . . . 6

1.2 History of Driving Simulation . . . . . . . . . . . . . . . 8
1.2.1 Flight simulators . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Development of driving simulation . . . . . . . . . . . . 9
1.2.3 Modern simulators and industrial spread . . . . . . . . . 11

1.3 Open problems and contribution of the thesis . . . . . 12
1.3.1 Open problems . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Driving Simulation in the automotive indus-
try

This section will provide a global description of the framework of this thesis, the
driving simulation through its role in the automotive and research as well as its
history from first flight simulators to the most recent high performance driving
simulations and their realization within industrial integrated platforms. We addi-
tionally explicit the electromechanical composition of the simulators studied during
this thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1.1 What is Driving Simulation ?
Global framework

The advances in automotive technologies can be measured with different features
such as:

• driving confort
• safety (number of accidents, wounds, deaths,. . . )
• pollution (CO2 emissions, nitrogen oxides, airbornes )
• price-quality ratio

Thus, when a car manufacturer develops a new vehicle or a driving assistance sys-
tem (in the recent trends of developments), it has to guarantee the norms satisfac-
tions, the clients expectations as well as industrial and commercial requirements.
However, the number, the complexity and the hazardousness of the potential driv-
ing situations represent a serious obstacles for the validation of new prototypes.

The simulation consists in reproducing artificially different driving scenarios in
a parametrizable framework, using a restricted workspace (sometimes completely
virtual) all by guaranteeing a high guarantee of safety. From this definition, it
becomes obvious that the simulation at the level of a prototype or a particular
component becomes a valuable part of the design chain.

The driver was and it will remain the center of attention until the complete
automatization of the driving task, the internal system of perception of information
from environment (stimuli) and the decision-making process are the core of the
driving. A simulated experience consequently has to reproduce the driver’s
sensations.

We propose the following definition for the driving simulation:

Definition 1.1: Driving Simulation

The driving simulation is the collection of physical and numeric processes
allowing the reproduction of driver’s sensations in a safe and constrained en-
vironment.

The key concepts pertaining to the above are developed next.

Sensation restitution

Humans receive information of their environment through senses i.e a system of
specific cells and organs which convert stimuli towards electric signals that are pro-
cessed and interpreted by the nervous system. The different senses known to this
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day are: sight, hearing, smell, touch, taste, thermoception (sense of temperature),
nociception (sense of pain), proprioception (sense of body positioning), equilibri-
oception (sense of equilibrium and spatial orientation). The five first senses cited
above corresponds to a widespread idea of senses that had been given by Aristotle
during the IVth century BCE [Aristotle, BCE], the other ones are commonly ac-
cepted as senses in physiology and are important to consider. It is also clear that
some senses are more solicited while driving, particularly the sight. Indeed, the
driver focuses on and reacts to visual stimuli such as signs, pedestrian crossings
or other drivers behaviors, but auditive stimulation is also important in some sit-
uations such as klaxons or sirens. However, the driver also feels the accelerations
through the equilibrioception sensed by the vestibular system in the inner ear (see
Section 2.4.1) and this aspect gains in interest whenever comfort and passengers
conditions are considered in the automotive design. More precisely, longitudinal
accelerations are felt when pushing the acceleration pedal while lateral ones are
felt when turning thanks to the centrifugal force.

~aveh

~afelt

~vveh

~afelt =
v2veh
R

Figure 1.1: Acceleration Felt linearly (left) and during a turn (right)

Safe and restricted workspace

Driving always presents safety risks due to inadvertency, weather or limited reac-
tion to high speeds for example, consequently testing prototypes on a road or on
a highway may increase the risks and the financial costs. So it is interesting to
virtually simulate the vehicle or functionalities to study their viability and fiability.
A simulator drived by a human (also identified by the term "Driver In the Loop"
or "DIL") should stimulate senses cited previously. To this purpose, the sight can
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be stimulated thanks to a screen or a virtual reality helmet displaying the road,
the traffic and the differents events occuring during a scenario with a real time
update according to the driver’s actions. The sound restitution can be done with
a classic sound system (speakers or audio headset).

The restitution of accelerations is the third important aspect for such a simula-
tor and will represent the main topic of this thesis. Since the acceleration describes
variations in movement, the reproduction of an acceleration needs a workspace of
a specific length. If we consider a scenario of accelerating from 0 to 100km/h in
∆t = 10s with a constant acceleration aveh on a highway for example, the distance
to be traveled can be estimate by integration:

L = 1
2aveh∆t2 ≈ 140m (1.1)

This first analysis points to the fact that the considered scenario may imply large
distances of manoeuver, spaning tens, hundred or thousands of meters whenever
the simulator needs to be mechanically displaced. A solution used to economize
this distance is to exploit the gravitational field by tilting the driver and the
viewing system, thus a component of the gravitational field is perceived by the
driver as a linear acceleration while there is no displacement. This technique is
called Tilt Coordination in the literature and is illustrated on Figure.1.2 where
the projection of the gravitational force is shown to be sensed even if the driver
is in a static configuration. The simulators allowing acceleration restitution are
called "dynamic simulators" in opposition with the "static simulators".

xd

zd

xd

zd

~g

xf

zf

θ

g sin
(θ)

Figure 1.2: Illustration of the tilt coordination techniques
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1.1.2 Driving simulators
Static simulators

Driving simulators don’t have the same purpose and the same cost. Since the
visual rendering is a high priority and has to be available in any configuration,
the investment is often concentrated on this chapter and most simulators don’t
restitute the accelerations. Those simulators are said to be static and present a
better transportability potential and are less costly as long as the development is
mainly related to graphical processing algorithms. However, as it can be easily
imagined, driving simulations that intend to replicate the stimuli on the driver and
the related safety and manoeuvrability aspects need to include a dynamic aspect.

Dynamic simulator

Dynamic simulators are equipped with a system allowing the movement of the
driver as a whole. In this work, we focus on high performance driving simulators
whose composition is given on Figure.1.3 and includes:

• The screen where the virtual environment is displayed
• The cabin which is a real car ’s one (A Renault Twingo on ULTIMATE)
• The hexapod (also called Stewart platform or Cough-Stewart patform) tilts

the cabin and the screen to operate the tilt coordination technique
• The rails that move the platform laterally and longitudinally in order to

generate rapid movements

In this work, for a automatic control consideration, we will identify rails and
hexapod as actuators. The operation of a dynamic driving simulator is summarized
in Figure.1.4 and its functioning is resumed step by step as follows:

1. The driver in the cabin reacts to visual stimuli displayed on screen by pushing
the acceleration or braking pedal or by turning the steering wheel.

2. The generated signals are collected by means of actuators located on the
plateform/driver and processed by the driving simulation software. This
latter block computes the accelerations (lateral and longitudinal) that should
be felt by the driver thanks to a model of the vehicle dynamics.

3. The acceleration signals are used as reference to be followed by the real-time
control architecture of the platform (which will be explicited in Section 2.1)
actuating elements for the rail and hexapod movements with the aim to make
the driver feeling the expected sensations.
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Screen

Cabin

Rails

Hexapod

Figure 1.3: Main components of a dynamic driving simulator (in the present case,
the Renault’s ULTIMATE)

1.1.3 Practical role of Driving Simulation
The investments on driving simulators allows car manufacturers to support the
development and design of new functionalities on their vehicles safely and for a
less cost. In parallel, some research institutes have an interest in driving simulation
with the aim to study the drivers behaviors. We explicit here some roles of the
driving simulation.

Advanced Driving Assistance Systems (ADAS)

ADAS systems are electronic devices implemented in vehicles with the aim to
prevent the driver from having accidents. They can also allow the driver to focus
on what happens on the road by sensing hazardousness events (weather, pedestrian
crossing, overtaking, distance from other vehicles,. . . ). Those systems are more
and more implemented in new car models, here are some examples:

• Emergency brake assists
• Adaptative cruise control
• Pedestrian detection
• Automatic parking

Autonomous driving

One of the main issues for car manufacturers nowadays is the development of the
autonomous car. They aim to develop and sell a car where the user is free of
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Cabin
Driver

Software
Vehicle
Dynamic
Model

Platform
Control
Controllers
Actuators

Driver’s actions

accelerate, brake, turn

Acceleration

Movements

of rails and

hexapod

Acceleration

restitution

(and tilt)

Visual rendering

Figure 1.4: Summary of Driving simulation operating (left). Example of a dynamic
driving simulator: Renault’s ULTIMATE

focusing on driving tasks. Nowadays, there exists some partially autonomous car
i.e the driver needs to focus on the road ("eyes-on") and have hands on the steering
wheel ("hands-on"). An autonomous car can be seen as a vehicle full of ADAS
systems which have to be validates step by step by simulation and experimental
trials

Research

Simulators can be used to study the driver’s behavior in specific situations that
are difficult to reproduce on real road. For example [Sato et al., 2019] compare the
driver’s behavior after a transition automated/manual driving both on simulator
and on real road. Thus simulators may give a first idea of the behaviors of a driver
when they are subject to unusual events in an (semi-)autonomous car. Recording
such human reactions is invaluable given the impossibility of playing such scenar-
ios in real-life tests. In a physiological framework, simulators can provides models
of senses fusion in the decision making process. The research field around driving
simulation is active with dedicated international conferences such as Driving Sim-
ulation & VR Conference where simulation is used in many topics such as ADAS
development or perception and human factors understanding.

The structure of high performance driving simulators results from technological
advances in transport domain all over the XXth century. We show in the next
section that driving simulation inherits from flight simulation and virtual reality.
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1.2 History of Driving Simulation

1.2.1 Flight simulators
The history of aviation starts at the beginning of the XXth century with the first
flights of the Wright brothers. The quick evolution of this industry in America
and in Europe had implied the need to train pilots to get acclimated to the new
flight sensation, particularly during the World Wars. In 1910, in France a school
of pilots called École Antoinette build a simulator using barrels to simulate lateral
movements (see Figure.1.5) where pitch, roll and yaw are actuated manually. In
parallel, in the United States, the Breese aircraft Corporation developed an aircraft
known as "penguin" with reduced wingspan such that it cannot really take off as
explained in [Page, 2000] but allows to familiarize with the flight accelerations and
maneuvers.

Figure 1.5: Left: "Antoinette" flight simulator (1910). Right: Breese "Penguin"
simulator (1918).

In 1931, the entrepreneur Edwin Link (1904-1981) published a patent claiming
the invention of a new kind of flight simulator: the Trainer Link (Figure.1.2.1). The
simulator has electro-pneumatic actuators and an instrument panel. The trainer
Link had been used and enhanced for night navigation training and bombing in
preparation of the WWII. By these means it is claimed that during the war, the
US Army might had accelerated the training of half a million pilots [De Angelo,
2000]. It has been used until the 1960’s when industries began to focus on impacts
of aircrafts movements on pilots reactions.

During the 1960’s, the NASA developped their own 6 degrees of freedom sim-
ulator named AMES Motion generator and used to developed the first control
engineering algorithms [Schmidt and Conrad, 1970] (Figure 1.7). In parallel, in
1965, Stewart proposes a dynamic platform for helicopter simulation [Stewart,
1965]. This platform (which is known under his name) is a hexapod actuated by
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Figure 1.6: Left: Patent of the Trainer Link (1931). Right: Photo of a Trainer
Link

electrical pistons. Nowadays this architecture is widely used in flight and driving
simulation (Figure 1.7).

Figure 1.7: Left: NASA AMES motion generator. Right:Baltic Aviation Full
Flight simulator

1.2.2 Development of driving simulation
While flight simulators had evoluted in the purpose of training and learning due
to the high costs and high risk of flight, the development of driving simulators
had focused on the driver’s behaviors towards traffic events. Thus, industries and
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research centers had prioritized visual stimulation. Indeed, while flight needs a
specific focus on cruise instruments (altimeters, pressure and speed sensors,. . . ),
driving needs a specific attention on external events (pedestrian crossing, signs,
other driver behavior,. . . ). The development of driving simulators is consequently
joint with virtual reality one’s, in this context one can consider that the first driving
simulator is the Morton Heiling’s Sensorama whose patent has been granted in
1962 (Figure 1.8). The system projected a movie of a motorcycle travel in a city,
visual, auditive and olfactive stimuli were activated according to the script of a
scenario [Craig et al., 2009]. During the 1970’s, the Virginia Polytechnic Institute
and State University (VPI-SU) devised an interactive simulator (Figure 1.8) with
fundings of General Motors. The simulator provided a television-based display
and a dynamic platform moving laterally, in roll and in yaw [Repa and Wierwille,
1976].

Figure 1.8: Left: Patent of the Sensorama. Right: The VPI-SU simulator

From this decade, the analogic technologies used had been progressively re-
placed by computers, this evolution allowed in particular a better visual rendering
[Fisher et al., 2011]. Thus, in 1983, the US department of Highway Administration
through its Human Factors Laboratory began the exploitation of its own simulator
Hysim (Figure 1.9). In 1984, the swedish research institute on road safety VTI
exploited its dynamic driving simulator [Nordmark, 1984] (Figure 1.10).

In 1985, Daimler-Benz exploits a simulator (Figure 1.11)based on Stewart plat-
form at Berlin. The hexapod is mounted on a lateral rail [Drosdol and Panik, 1985],
becoming the most performing driving simulator in the automotive industry and
becoming the precursor of the new generation of modern simulators based on rails
and hexapods.
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Figure 1.9: Hysim
Figure 1.10: The VTI Simulator

Figure 1.11: Daimler-Benz Simulator

1.2.3 Modern simulators and industrial spread
Since the 1990’s, the automotive manufacturers and research institutes have in-
vested in driving simulation, most of them have built and operated their own high
performance simulators such as:

• NADS (National Advanced Driving Simulator,2001) of National Highway
Traffic Safety Administration of the United States build in the University of
Iowa.

• Ford VIRTTEX (VIRtual Test Track EXperiments, 2001)

• Nissan NIDS

• Renault ULTIMATE, 2004

• Toyota, 2007
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• Renault ROADS, 2022

Those simulators have benefited from the computational capacity increase of pro-
cessors and graphic cards for the visual rendering. This engineering field are in the
forefront of the developments for the driving simulators but the recent develop-
ments show that the interplay with the physiology and the control of the robotic
platforms is the key factor for game change in terms of rendering.

Finally, coming closer to the core of the present PhD work, those complex
robotic structures need control strategies to achieve their purpose of restituting
acceleration feelings, and these strategies have evoluted during the past decades
with control theory, computer science and mathematics progress (in terms of mod-
elling). The present thesis aims to contribute to this aspect.

In the following we focus on high performance driving simulators and particu-
larly on the control architecture allowing the driving of rails and hexapod in order
to restitute the acceleration sensations expected by the driver. We introduce first
the mathematical and control theoretic tools which permit us to address the issues
raised in this work.

1.3 Open problems and contribution of the the-
sis

1.3.1 Open problems
Nowadays, driving simulation is an active field of research with its own confer-
ences and industrial exhibitions addressing trends and open problems in driving
immersion by integrating modern features such as autonomous driving. The Fig-
ure 1.12 illustrates the different components of the driving simulation field and
how they are linked. The software plans displays the visual rendering using road
(curve,length, . . . ) and navigation (drivers actions, braking, steering wheel turn,
. . . ) data.

The visual stimulation is a major part of the simulation and can be compared to
a video game design, practically the development of the visual rendering seems to
follow this industry by developing immersion through head-mounted display such
as virtual-reality helmets [Parduzi et al., 2020, Zöller et al., 2019, Ivleva et al.,
2019, Hartfiel and Stark, 2019].

The software also computes the acceleration profiles that have to be rendered
by the platform by using a model of the vehicle dynamics. Then those acceleration
profiles are processed in the way to drive the simulator.

The present thesis mainly focuses on this last part and will be detailed and
developed from the Chapter 2, however one can notice the major interest of the
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community for this part in the past years [Fang et al., 2019, Ronellenfitsch et al.,
2019, Ellensohn et al., 2019, Kolff et al., 2020]. The platform driving is controlled
thanks to a feedback which represents the driver perception. The previous features
are designable and tunable from an engineering point of view. From this point, we
can distinguish two cases:

• Autonomous driving: the driver does not interact with the simulation

• Human driving: the driver interacts with the simulator and the simulation
in reaction to the visual rendering. In this case, the quality of the simulation
is directly linked to the model reliability.

In both cases, the mismatch between perception model and real sensation as
well as the visual desynchronization between the driver expectations and the actual
sensation may have undesirable consequences on the user comfort causing uneasi-
ness commonly named Motion Sickness which is still a research topic [Hogerbrug
et al., 2020, Reuten et al., 2020].

Thus, the field of driving simulation is wide and follows many vectors of devel-
opment such as the growth of graphical performance of computers or the better
comprehension of the driver behavior from a neuroscience point of view. The au-
tomotive industry has to face major issues with electrification and automatization
which demand a capacity of projection and experiments upstream of the produc-
tion, this horizon can be provided by the simulation. This thesis emerged in this
framework and was driven by Renault’s will to explore the fundamental limitations
of driving simulations and to develop the methodological tools that optimize the
real-time control of the high performance driving simulators.

Planning
(Software)

Controlled
Acceleration

(MCA)
Controlled
Platform

Human
Model

Rendering Human

Autonomous

Road

Navigation

Engineering Design

Display

Figure 1.12: Scheme of the driving simulation operating in terms of control
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Real-time Control

The real-time control of the simulation platform has to guarantee the restitution
of the movement sensation in a restrictive area, thus it has to take into account:

1. The platform and driver dynamics, which concerns its mass, its degrees of
freedom (translations and rotation in our case), the perception of the driver
and the control and data processing architecture (electronic or numerical
filters, communication protocol, . . . ) which may induces delays in the global
response.

2. The physical limitations of the simulator (rail dimensions, mechanical re-
sistance of the actuators, energy consumption). The strategies of limits
avoidance are generally known to be more conservative.

3. The computation time of control signal to be send to the simulator has to
be lower than the sampling time period of the real-time architecture.

In this thesis we aim to contribute to the enhancement of these 3 items by
using a model-based and optimization based approach.

The Chapter 2 is dedicated to the Motion Cueing Algorithm (MCA) which is
the module transforming the acceleration profiles into position and tilt references
to be followed by the platform. The material contributes to the open literature by
presenting a state of art of the different strategies developed in the last decades.

The Chapter 3 brings the first novelties proposed by the current research work,
two MPC-based approaches:

• the first takes into account the nonlinearities caused by the rotational move-
ments that are generally neglected. It resumes the results published in [Soyer
et al., 2021a] and proposes a control architecture in chain allowing the com-
pensation of the translational dynamics by the rotational one and conversely.

• the second proposes a constant delay compensation caused by simulator iner-
tia. The main contribution is the use of an alleviated MPC controller from a
computational point of view allowing the delay handling all by guaranteeing
the stability and feasibility of the procedure [Soyer et al., 2021b].

In the Chapter 4, we focus on the constrained tracking problem underlying the
dynamic behaviour of the simulator. From the theoretical point of view, our aim
is to prove that Interpolation-Based Control (IBC) procedure is a suitable design
framework. Is worth to be noted that IBC for tracking was an open problem at
the beginning of the current research project and its extension to this particularly
important practical control problem has been addressed in [Soyer et al., 2020].
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Based on these theoretical contributions, we adapt the technique to the driving
simulation along the results presented in [Soyer et al., 2020a].

The Chapter 5 addresses the problem of the computation time in a broader
scope. By assuming it depends on the complexity of the constrained set in the
optimal control framework, we propose to relax the property of positive invari-
ance to a periodic notion which has the fundamental advantage of relaxing the
constraints on the set description and consequently open the way for simpler con-
straints in the MPC design. However, the generalization from classical positive
invariance to the periodic notions is shown to be a particularly rich topic and we
established a formal classification by pointing to notions of weak and strong in-
variance as potential candidate formulations. Eventually, our aim is to provide a
formal framework allowing to manipulate these concepts and construct practically
invariant candidate set for the class of autonomous dynamics [Soyer et al., 2020b].
Then we extend these results to the controlled systems by presenting MPC-based
and IBC-based procedures [Soyer et al., 2020a] in order to use these new feature
in real-time driving simulator controllers [Soyer et al., 2020b].

1.3.2 Publications
Conference papers

• M. Soyer, S. Olaru and Z. Fang, "Interpolation Based Control for refer-
ence tracking under constraints", 2020 European Control Conference, Saint
Petersburg, Russia, 2020, pp. 855-860

• M. Soyer, S. Olaru, Z. Fang, "From constraint satisfactions to periodic
positive invariance for discrete-time systems", Conference on Decision and
Control, Dec 2020, Jeju Island, South Korea

• M. Soyer, S. Olaru, Z. Fang, D. Wautier and A. Kemeny, "Interpolation-
Based MCA for acceleration rendering", Driving Simulation & VR Confer-
ence, Sep 2020, Antibes, France

• M. Soyer, S. Olaru and Z. Fang, "A novel Motion Cueing Algorithm based
on real-time optimization and periodic invariant sets", Conference on Control
Technology and Applications, Aug 2020, Montréal, Canada.

• M. Soyer, S. Olaru, K. Ampountolas, S. Scialanga and Z. Fang, "Periodic
Set Invariance as a Tool for Constrained Reference Tracking", 2020 IFAC
WC, Berlin, Germany

• M.Soyer, S.Olaru, and Z.Fang. "Motion Cueing Control Design Based On
A Nonlinear Mpc Algorithm." IFAC-PapersOnLine 54.6 (2021): 341-346.



16 CHAPTER 1. INTRODUCTION

• M.Soyer, S. Olaru and Z.Fang. "MPC delay compensation based on max-
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Chapter 2
MCA: modeling and state of art
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2.1 Control Architecture

2.1.1 MCA in driving simulator control architecture
The control architecture of ULTIMATE-like dynamic driving simulator is depicted
on Figure 2.1, by underlying its three main components:
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1. The generation of the acceleration signal to be rendered to the driver
in the cabin is done by means of an independent software which builds on
the driving scenarios and the available information on the driver behavior
(experience, age, mass, sport style, leisure, etc). Ex: If the driver turns the
steering wheel on a roundabout, the value of the lateral acceleration signal
during the simulation has to increase and the amplitude and the profile will
consider the trajectory before the roundabout and the path to be followed at
the exit

2. MCA (Motion Cueing Algorithm): processes the resultant accelera-
tion signal towards admissible position and tilt reference for the electro-
mechanical dynamic platform. The present research work is is dedicated to
a great extent to this component.

3. Electro-mechanical controlled structure designed by a supplier of car
manufacturers. As the platform is made of rails and hexapod, its dynamics
are nonlinear (a full description can be found in [Elloumi, 2006]) and then
the low level control can be designed using a feedback linearization technique
[Dagdelen et al., 2009].

Consequently, MCA is an intermediary function driving indirectly the actuators
in order to follow an acceleration profile trajectory in a reduced workspace.

Vehicle
Dynamic
Model

MCA
Rails

+ Hexapod

Control

Rails
+ Hexapod

Position
sensors

Acceleration
sensors

Acceleration
to be
rendered

Position
reference

tilt refer-
ence

Rails
Control

Hexapod
Control

Acceleration

Position

Figure 2.1: Scheme of the control architecture of dynamic driving simulator, grey
filled elements are supplier’s component that cannot be designed from our level.

Remark. The MCA control design can follow an open loop architecture approach
or a closed loop approach, depending of industrial choices.
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Given the complex structure of the platform and the interplay in between the
different blocks, a series of assumptions and model reductions need to be considered
in order to concentrate on the essential phenomena to be mastered within the
admissible limitations.

Assumption 2.1

In the following, we consider, unless otherwise specified, that the internal
control of the MCA transforms an acceleration into position and tilt angle
profiles by taking into account physical electro-mechanical structure with a
perfect response with respect to a sensing in the range of tens of milliseconds.
In other words, the mechanical inertia is negligible and there are no delays
due to the communication protocol.

2.1.2 Workspace and actuators
The workspace is an area of less than 30 square meters where the platform moves
laterally and longitudinally thanks to electric rails that delimit the moving area
as depicted on Figure 2.2. For obvious security reasons, this area is not accessible
and the only access point is the platform at the docking position.

The actuators of the hexapods are electrical pistons operated simultaneously
so as to tilt the platform as illustrated on Figure 2.3.

The MCA block which we are focusing in aims to provide the best inputs signal
to those actuators in order to reproduce as accurately as possible the equilibrium
feeling for the driver in a virtual, dynamically moving scene.

2.1.3 Sensed acceleration/specific force
The human body senses acceleration excitations thanks to the vestibular system
which is detailed in section 2.4.1 within a biological perspective. However, we
can estimate the acceleration felt by the driver in the cabin thanks to classical
mechanical modelling tools.

Given the configuration of the driving simulator depicted on Figure.2.3 with
a tilt angle θ and a longitudinal rail acceleration alin, the acceleration felt by the
driver can be deduced from the mechanical fundamental principle of dynamics in
the non-inertial frame of the driver on his longitudinal x axis:

madriver = −malin cos(θ)−mg sin(θ) (2.1)
Then the specific acceleration felt by the driver is:

afelt = alin cos(θ) + g sin(θ) (2.2)
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y

x

Longitudinal rails

Platform

Lateral rails

Figure 2.2: Workspace view from above

Assumption 2.2

Unlike the aircraft simulators, the tilt angle is generally small enough such
that the output was generally linearized considering cos(θ) ≈ 1 and sin(θ) ≈
θ. In the present manuscript this will admit the working assumption, and
whenever it is of interest to exploit or to mitigate the nonlinear behaviour,
this will be specified.

Assumption 2.3

While the previous studies count on the fact that specific force in (2.2) is
filtered by the inner ear, we will consider this component explicitly in the
subsequent developments.

2.2 MCA: function and modeling
In this section, we focus on filter-based design for the philosophical and historical
perspective, then we address the model predictive control. In the end we introduce
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Figure 2.3: Scheme of side-view of dynamic driving simulator

derived techniques.
There exists several ways to model and design the MCA as per the technological

choices of manufacturers. The first MCA were based on filtering while the most
recent one are designed through optimal control framework or neural networks.

2.2.1 Filter-based design
The filter based MCA has been used in the development of flight simulation in
[Schmidt and Conrad, 1970]. The main philosophy of this strategy is illustrated
on Figure 2.4 and can be summarized as follows: the translation acceleration signal
is splitted in two components

• one enabled by a High Pass filter (HP) corresponding to the quick move-
ments. Ex: Turning the steering wheel.

• one enabled by a low pass filter (LP) corresponding to slow movement. Ex:
Keeping the steering wheel at a specific angle.

Quick movements are directly integrated into position reference for the dynamic
platform while slow movement are rendered by tilt coordination. In parallel,
the quick angular accelerations of the car are also directly restituted by tiliting.

The filters are designed in the way of avoiding the actuators limitations. Prac-
tically, the cut-off frequencies and gain of the filters are selected such that the
responses to a constant input satisfy the constraints. Table 2.2.1 inspired from
[Fang and Kemeny, 2012a] presents the transfer functions associated to each chan-
nel and the range of their parameters.
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Figure 2.4: Scheme of the filter-based MCA

These parameters have to be tuned according to the simulator architecture,
the driver characteristics and the scenario. The linear acceleration channel can be
modelled by the filter Hlin(s) 1

s2 , the final position according to a step input signal
of amplitude aref is:

lim
t→∞

p(t) = lim
s→0

sHlin(s) 1
s2

aref

s
= k1

ω2
n1

aref (2.3)

So, the platform tends to remain to its final position which can have a negative
impact on the overall behaviour when another increase of acceleration occurs in
the same direction at a later stage. A component can be added to the channel
such that the final value of the platform achieves a zero steady-state error which
is equivalent to the neutral position. This technique is known as washout and
will be also consider in other types of MCA. We propose here a generic definition:

Definition 2.1: Washout

The washout process is a component of the MCA which tends to get the
platform back to its neutral position after a sequence of piecewise constant
accelerations.

Thus, the channel Hlin,w
1
s2 has a neutral final position when excited by a unit step
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Channel Transfer function Parameters

Linear ac-
celeration

Hlin(s) = k1s2

(s2 + 2ξ1ωn1s + ω2
n1)

ωn1 ∈ [2.5, 4]rad/s
ξ1 ∈ [1, 1.4]

Linear ac-
celeration
(washout)

Hlin,w(s) = k1s3

(s2 + 2ξ1ωn1s + ω2
n1)(s + ωw)

ωn1 ∈ [2.5, 4]rad/s
ξ1 ∈ [1, 1.4]
ωw ∈ [0.1, 0.5]rad/s

Tilt Coor-
dination Htilt(s) = k2s

2

(s2 + 2ξ2ωn2s + ω2
n2)

ωn2 ∈ [0.65, 2.5]rad/s
ξ2 = 1

Rotation Hrot(s) = k3s

s + ωb
ωb = 0.2

Table 2.1: Transfer functions and values of cut-off frequencies and damping coef-
ficients [Fang and Kemeny, 2012a]

input:

lim
t→∞

p(t) = lim
s→0

sHlin,w(s) 1
s2

1
s

= 0 (2.4)

The main advantage of this filter-based strategy is its simple implementation and
design. In comparison with the other techniques, there is no computational bur-
den. However, this technique tends to be very conservative, which means that
the workspace is not used at the boundary at its operating regime at least com-
pared to its theoretical capabilities. Another main drawback of this strategy is the
perception of nonexpected feelings known as backlash effect([Fang and Kemeny,
2014, Nehaoua et al., 2006]).

Definition 2.2: Backlash Effect

The backlash effect is the nonexpected acceleration feeling induced by the
MCA misinterpretation of the acceleration decrease to 0 as a braking.
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Example: Filter design and backlash effect

We propose in Table 2.2 values for the parameters:

Hlin Htilt

ωn1 = 0.9, k1 = 1, ωw = 0.2, ξ1 = 1.4 k2 = 0.5, ωn2 = 1.5, ξ2 = 1

Table 2.2: Parameters chosen for the filter-based design

Consider the rendering of a constant acceleration of 3m/s2 and a brake until immobiliza-
tion, Figure.2.5 depicts the response of each MCA channel as well as the global response.
To fulfill the constraints, the reference signal has been reduced by 40% (λ = 0.6).
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Figure 2.5: MCA response to a windowed acceleration signal

The backlash effect can be seen while braking, the linear acceleration tends to accelerate
on the opposite side which make feel the driver nonexpected sensations.
We consider the scenario with the following features:

• We focus on the lateral movements.
• The first phase is an exaggerated slalom.
• The second phase is a great turn.

The scenario is a kind of worst case, the slalom phase tends to evaluate the rail response
while the turn tests the tilt response. The specific force is represented on Figure 2.6.
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Figure 2.6: Acceleration felt by the driver as a function of time. While the length
of the acceleration dynamical sequence is similar with the reference one, there is
a delay in the sensed acceleration which may induce a discomfort at the driver
side.
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Figure 2.7: Left: lateral rail position, Right: lateral rail velocity. The limitations
of the driving simulators are illustrated by the red line

0 2 4 6 8 10 12 14 16 18 20 22 24
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time (s)

T
ilt

(◦
)

0 2 4 6 8 10 12 14 16 18 20 22 24
−4

−3

−2

−1

0

1

2

3

Time (s)

T
ilt

ra
te

(◦
/s

)

Figure 2.8: Left: roll angle, Right: roll tilt rate. The limitations of the driving
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2.2.2 Model Predictive control design
As explained previously, once the inertia and the response dynamics of the plat-
form are considered to be fast with respect to the acceleration sensing the MCA
can be modeled as a chain of integrators under constraints (Figure 2.9). Here
the state space is discrete for the real time requirements of the optimal control
close loop implementation. Several choices can be done for the state space under

MCA

x+ = f(xk, uk)

Position

reference
of rails
and
hexapod

Acceleration

reference ∫

(px,yk )
k∈N

(
αφ,θk

)
k∈N

(ax,yk )
k∈N

(
aφ,θk

)
k∈N

Workspace

limitations
plim

Actuators

limitations
vlim, alim

Figure 2.9: Scheme of MCA function

computational capacities.

4 states: Simple and computational attractive double integrator

If we consider the lateral rail dynamics, in the continuous-time framework, the
position p(t) can be retrieved from the acceleration signals:

p̈(t) = a(t) (2.5)

Consequently, the continous state x(t) =
[
p(t) ṗ(t)

]T
verifies the linear differential

equation:

ẋ(t) =
[
0 1
0 0

]
︸ ︷︷ ︸

Ac

x(t) +
[
0
1

]
︸︷︷︸
Bc

a(t) (2.6)

The solution of the differential equation initiated in t0 is given by:

x(t) = eAc(t−t0)x(t0) +
∫ t

t0
eAc(t−τ)Bca(τ)dτ (2.7)

Since we aim to discretize the equation with a sampling time Ts, we consider the
classical assumption of constant input between two time instants kTs and (k+1)Ts
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(implemented using a zero order hold):

x((k + 1)Ts) = eAcTsx(kTs) +
∫ (k+1)Ts

kTs

eAc[(k+1)Ts−τ ]Ba(kTs)dτ

x(k + 1) = eAcTsx(k) +
∫ Ts

0
eAcξBdξa(k)

(2.8)

Thanks to Definition A.3, and by noticing that Ac is nilpotent of order 2 (A2
c = 02):

x(k + 1) =
[
1 Ts

0 1

]
x(k) +

[
T 2

s

2
Ts

]
a(k) (2.9)

By doing the same development for the tilt dynamics, we can obtain the final
discrete-time state space model by setting the x(k) =

[
p(k) v(k) θ(k) Ω(k)

]T

and u(k) =
[
a(k) γ(k)

]T
:

x(k + 1) =


1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1

 x(k) +


T 2

s

2 0
Ts 0
0 T 2

s

2
0 Ts

 u(k)

y(k) =
[
0 0 g 0

]
x(k) +

[
1 0

]
u(k)

(2.10)

where p(k), v(k) and a(k) are respectively the position, the speed and the acceler-
ation of the platform w.r.t the rail while θ(k), Ω(k) and γ(k) are respectively the
tilt angle, angular velocity and acceleration.

6 states: inclusion of the jerk, triple integrator

By using the same type of construction, a 6 dimensional model using the triple
integration of the jerk j(t) can be obtained:

...
p (t) = j(t) (2.11)

By setting the x(k) =
[
p(k) v(k) a(k) θ(k) Ω(k) γ(k)

]T
and u(k) =

[
jr(k) jθ(k)

]T
,

then we have:
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x(k + 1) =



1 Ts
T 2

s

2 0 0 0
0 1 Ts 0 0 0
0 0 1 0 0 0
0 0 0 1 Ts

T 2
s

2
0 0 0 0 1 Ts

0 0 0 0 0 1


x(k) +



T 3
s

6 0
T 2

s

2 0
Ts 0
0 T 3

s

6
0 T 1

s

2
0 Ts


u(k)

y(k) =
[
0 0 1 g 0 0

]
x(k)

(2.12)

where we use the same notation than the previous section and jr(k) and jθ(k) are
the rail and hexapod jerks.

This model is more complex and implies a heavier computational burden but
it allows to handle information about the jerk as independent input signal while
the output is a linear function of the state all by preserving the controllability
properties on all the components subject to constraints. In the following, we will
use the the classical literal formulation:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(2.13)

Assumption 2.4: Origin of the state space

The origin of the state space corresponds to the static position on the center
scene for the platform. In the control perspective, the origin becomes an
admissible point in the interior of the operational domain.

Constraints

• Workspace constraints: The platform is symmetric and we set the middle
of the platform as the origin and the rest position:

− pmax ≤ p(k) ≤ pmax ∀k ∈ N (2.14)

• actuators constraints: The energy consumption and the material resis-
tance of actuators implies a constraints on speed, acceleration and jerk.

−vmax ≤ v(k) ≤ vmax

−amax ≤ a(k) ≤ amax

−jmax ≤ j(k) ≤ jmax

(2.15)
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Where the bounds pmax, vmax, amax, jmax are strictly positive and the acceleration
and jerk can be adapted to avoid important jerk and enhance the safety.

In the following, we will use the set framework to handle the constraints, thus
the set of states constraints (respectively inputs constraints) will be denoted by X
(respectively U)

Assumption 2.5

In this work we will always refer to the constraints of the Renault’s ULTI-
MATE driving simulator and to the perception thresholds of the vestibular
system summarized in Table 2.3.

ULTIMATE
Rails Hexapod

pmax 2.6 m θmax 10◦

vmax 3 m/s ωmax 3◦/s

amax 3 m/s2 Ωmax 15◦/s2

jr,max 600 m/s3 jθ,max 1000◦/s3

Table 2.3: Physical limitations of the ULTIMATE driving simulator

Delays

There exists different sources of delays:

• Communication protocol: The control signals and measurements are broad-
cast in real-time through well known communication protocols (scheduling,
TCP/IP, LAN, . . . ). We consider here a constant transmission delay [Fang
et al., 2010].

• Mechanical inertia: Even if the simulator’s dynamics is idealized in this
thesis, there exists a phase delay due to the actuators motion. [Fang et al.,
2010] proposes models for the actuators on the form:

G(s) = K

(1 + T1s)e−τds (2.16)

However, we assume in this work the delays to be constant.

• Prediction: According to the reliability of the predicted trajectory, the posi-
tioning and tilt of the platform may not be optimal. The prediction issues
are discussed in Section 2.4.1. Obviously, the control performances will be
tributary to the quality of the predicted trajectory by the human.
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Then the delayed system can be modeled as:

x(k + 1) = Ax(k) + Bu(k − d)
y(k) = Cx(k) + Du(k − d)

(2.17)

where d ∈ N is the constant delay.
On this part we focus on the receding horizon optimal control as a generic

framework policies for the MCA. The principle of MPC is summarized below and
illustrated on Fig.2.10 and relies on the implementation of the first part of the
control sequence found as the result of the optimization:

minimize
(u(k),...,u(k+N−1))

J =
N∑

i=1
Jk+i(x(k), . . . , x(k + i), u(k), . . . , u(k + i− 1))

subject to x(k + 1) = f(x(k), u(k)),
(x(k + 1), . . . , x(k + N − 1)) ∈ X ,

(u(k), . . . , u(k + N − 1)) ∈ U ,

x(k + N) ∈ Xf

(2.18)

Where J is the cost function to be minimized, (Jk)k=1,...,N are the partial costs,
(X ,U) are respectively the sets of state and inputs constraints associated to (2.14)
and (2.15) and Xf is a positive invariant set. This main property is defined next.

Definition 2.3: Positive invariance

A set C ⊂ X is said to be Positively Invariant w.r.t the autonomous system
x(k + 1) = f(x(k)) if for any initial state initial state x(0) ∈ C the state
trajectory x(1) remains in C.

Performance Criteria

• Tracking error:
Jy(k) = ∥yref (k)− y(k)∥2

qy
(2.19)

where yref is the acceleration reference given by the software and the main
element toward the restitution of the movement in the simulator, y is the
estimated acceleration and qy ∈ R+ the weight coefficient associated to the
tracking.



2.2. MCA: FUNCTION AND MODELING 31

k
k + N − 1

Past inputs Optimized inputs

Predicted outputs

u(k + N − 1)

y(k + d + N)

y(k)

u(k)

Figure 2.10: MPC operating: the controller finds an optimal sequence of inputs
(in red) that implies the predicted output (in purple), only the first component of
the sequence is applied.

• Washout law:

Jx(k) = ∥x(k)∥2
Qx

(2.20)

where Qx ∈ Rn×n is symmetric positive semidefinite. This costs penalizes
the geometrical distance from the origin, in such a way that in the absence
of (acceleration) excitation the platform will spontaneously come back to its
initial position. However this washout effect has to be transparent for the
driver in the simulator. The movements are slow for the sensed motion but
the washout effect is particularly important for a better use of the workspace
on the long simulation scenarios..

• Control weight:

Ju(k) = ∥u(k)∥2
R (2.21)

where R ∈ Rm×m is symmetric positive semidefinite.

Given the performance criteria of the previous section and the constraints (2.14)
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and (2.15), the MPC formulation becomes:

minimize
(u(k),...,u(k+N−1))

N∑
i=1
∥yref (k + i)− y(k + i)∥2

Qy
+ ∥x(k + i)∥2

Qx

+ ∥u(k + i)∥2
R + ∥x(k + N)∥2

P

subject to
x(k + i + 1) = Ax(k + i) + Bu(k + i) ∀i ∈ {0, . . . , N − 1},

y(k + i) = Cx(k + i) + Du(k + i) ∀i ∈ {0, . . . , N},
x(k + i) ∈ X ∀i ∈ {1, . . . , N},
u(k + i) ∈ U ∀i ∈ {0, . . . , N − 1},

x(k + N) ∈ Xf

(2.22)

In the following we will consider implicitly that Xf is the maximal positively
admissible set (i.e the largest admissible positive invariant set) with respect to a
LQ controller (see Definition A.22)

Example: MPC-MCA

We consider the MPC controller (2.22) with the weights N = 200, Qy = 1000, Qx =
diag(100, 100, 1, 1) and R = diag(1000, 100). The constraints are the ones given in Table
2.3. The scenario is the same as the one given in Example 2.2.1. The Figure 2.11 shows
the specific force felt by the driver during the scenario and the Figure 2.12 depicts the
states of the simulator. One can notice that this strategy is obviously better than the
filter-based one in terms of performance because of the prediction and the constraint
handling. However we will address the drawback in terms of implementation later.
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Figure 2.11: Acceleration felt by the driver
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Figure 2.12: Left: Rails states (position, velocity and acceleration. Right:
Hexapod states (tilt angle, tilt speed and tilt acceleration). The limitations
are depicted by red lines.

2.3 Other types of MCA

2.3.1 Enhanced filter-based design: Adaptative filters
An alternative of filter-based MCA had been investigated in [Parrish et al., 1975],
the main idea was the adaptation in real time of the filters parameters by op-
timizing a cost function representing the performance of the motion restitution.
Consider the High-Pass filter of the linear acceleration channel (Figure.2.4) with-
out washout component:

1
s2 Hlin(s) = P (s)

Aveh(s) = k1s
2

(s2 + 2ξωn1s + ω2
n1)

(2.23)

where P (s) and Aveh(s) are respectively the Laplace transform of the position p(t)
and vehicle acceleration aveh(t). In the time domain, the associated differential
equation is:

p̈(t) = k1a
veh(t)− 2ξωn1ṗ(t)− ω2

np(t) (2.24)
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Now, we consider the gain k1 as an adaptative parameter denoted P1. We also
consider the modified rotational equation proposed in [Telban et al., 2000] using
gains P2 associated to tilt coordination and P3 for the tracking of vehicle tilt rate:

p̈(t) = P1a
veh(t)− 2ξωn1ṗ(t)− ω2

np(t)
θ̇(t) = P2a

veh(t) + P3ω
veh(t) (2.25)

Thanks to those relationships one can build a quadratic cost function involving
the design gains which can thus be optimized:

J(P ) = 1
2

[ Tracking errors︷ ︸︸ ︷
wa(aveh − p̈)2 + wt(ωveh − θ̇)2 +

Washout︷ ︸︸ ︷
wpp2 + wvṗ2 + wθ + wrθ̇

2

+ w1(P1 − P1,0)2 + w2(P2 − P2,0)2 + w3(P3 − P3,0)2︸ ︷︷ ︸
Parameters change penalty

] (2.26)

with P = [P1 P2 P3]T , P1,0, P2,0, P3,0 are nominal gains and wa, wt, wp, wv, wtheta,
wr, w1, w2, w3 are positive weights associated to each quadratic component of
the cost function (2.26) which represents the trade-off between tracking errors
(between vehicle movements and restitution) and parameters modifications, thus
the controller changes the parameters only if it is useful.

Remark. The cost function can be modified for the need of the designers, par-
ticularly the vestibular system dynamics (see section 2.4.1) can be added to the
dynamics (2.25) as in [Ariel and Sivan, 1984] where the semicircular canals are
considered.

The cost function (2.26) is optimized thanks to the gradient descent which
means the new parameters are chosen such that their variation is opposite and
colinear to the gradient of J :

Ṗi = −αi
∂J

∂Pi

(P ), i ∈ {1, 2, 3} (2.27)

where αi > 0 is the optimization step.
The main advantage of this technique is the addition of a degree of flexibility

on the parameter tuning during the driving simulation. However, it should be said
that the proof of stability guarantees for this time-varying dynamical system were
missing and thus, without surprise, it is not used anymore with the exception of
specific driving simulation applications. Moreover, aside the stability guarantees
the potential improvements are counterbalanced by a non-negligible computational
and implementation effort.
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2.3.2 MPC with braking law
One of the most important features in MCA design is the efficient use of the
workspace. As the simulator has a very strict range of movements, an acceleration
of the vehicle may lead to a displacement of the platform that rapidly reaches the
workspace limits. The mainstream solution is to reduce the acceleration signal
to be rendered as we have seen in the filter-based design case. Thus one can
expect, for example, a rendering of 60% of the acceleration profile instead of 100%
by guaranteeing that workspace limits will not be hit. However the simulator
movement becomes naturally and practically restricted to the neighborhood of the
neutral position, in this case the MCA is said to be conservative which means
the margin of displacement is high.

The other approach is the active constraints handling which can be provided
by closed loop procedures and particularly by optimization-based controllers such
as MPC. Theoretically, at each time step, the controller computes a control action
that guarantee the constraints satisfaction and consequently the platform move-
ments are strictly contained within the workspace limits. However, practically
when a constraint in position is activated (|p(k)| = pmax), the only feasible solu-
tion is to accelerate toward the opposite direction (break) which implies motion
sickness and can lead to severe conditions. This issue can be avoid thanks to the
parameter tuning by increasing the weight on washout component or the prediction
horizon. Indeed, a long prediction horizon implies a better simulator trajectory
and a better constraints handling but the compromise is a higher computation
time, potentially greater than the sampling time, more as we will show in section
2.4.1 the prediction is not always possible.

A compromise has been investigated in [Fang and Kemeny, 2012b] and [Fang
and Kemeny, 2016] whose main idea is to smooth the braking deceleration before
activating the limitations. At each step of the MPC-MCA, the following condition
is checked:

|p(t) + v(t)T + u(t)T 2

2 | ≤ pmax i.e |p(t + T )| ≤ pmax (2.28)

where we use the previous notations (p(t) is the position, v(t) the velocity and
u(t) stands for acceleration) and T > 0 is a time horizon. As long as the condition
(2.28) is valid, MPC operates normally but when the constraint is activated the
following condition is imposed:

p(t) + v(t)T + ub(t)
T 2

2 = pmax (2.29)

and the associated Laplace transform of the position becomes:

P (s) =

[
p0

pmax
s2 + 1

pmax
(v0 + 2ξωnp0) + ω2

n

]
s2 + 2ξωns + ω2

n

.
pmax

s
(2.30)
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where (p0, v0) correspond to the state of the platform when (2.29) holds, ωn =
√

2
T

and ξ =
√

2
2 which means the position of the platform operates as a second order

time invariant oscillator excited by a step input with an amplitude of pmax and p(t)
may exceed pmax due to the overshoot. To overtake this issue [Fang and Kemeny,
2012b] proposed a modified condition:

p(t) + cvv(t)T + cuub(t)
T 2

2 = pmax (2.31)

with parameters cv > 0 and cu > 0, thus the Laplace transform of the p(t) has the
same formulation as (2.30) but with

ωn = 1
T

√
2
cu

and ξ = cv√
2cu

(2.32)

Then the new parameters cv and cu can be chosen such that the system becomes
an overdamping one (ξ > 1). In the time domain, the position is given by:

p(t) = pmax1(t) + A1e
−β1ξωnt + A2e

−β1ξωnt (2.33)

with A1 = v0 + ξωn(2p0 − 2pmax − β1p0 + β1pmax)
ξωn(β2 − β1)

A2 = −v0 + ξωn(−2p0 + 2pmax + β1p0 − β1pmax)
ξωn(β2 − β1)

(2.34)

One can verify the steady states values of position and velocity:

lim
t→∞

p(t) = pmax and lim
t→∞

v(t) = 0 (2.35)

which means the platform practically brakes before the rail stops and without
changing direction. The resulting input can be computed as:

ub(t) = C1e
−β1ξωnt + C2e

−β2ξωnt (2.36)

with β1 = 1−
√

1− 1
ξ2 β2 = 1−

√
1 + 1

ξ2

C1 = ωn(v0 − 2β1ξ
2v0 − β1ξωnp0 + β1ξωnpmax)

ξ(β1 − β2)

C2 = ωn(v0 − 2β2ξ
2v0 − β2ξωnp0 + β2ξωnpmax)

ξ(β1 − β2)

(2.37)

A speed limitation can be taken into account by considering an alternative
asymptotic law:

uvlim(t) = 1
Tv

e− t
Tv (2.38)
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with Tv > 0. Thus the input signal provided to the simulator is:

u(t) =
{

max{ub(t), uvlim(t),−umax} if p(t) > 0
min{ub(t),−uvlim(t), umax} if p(t) < 0 (2.39)

2.3.3 Neural networks
More recently, the progress in artificial intelligence and machine learning fields has
inspired the actual development of MCA based on neural networks. We succinctly
present here two approaches:

1. [Rengifo et al., 2018] proposes to replace the optimization algorithm of the
MPC-MCA by a Recurrent Neural Network (RNN) in order to reduce the
computation time. Learning of the acceleration profiles can lead undoubtly
to good performances for scenarios that have been already simulated and
for which good state space occupation and performance can be ensured.
However, on a larger scale, the approach can behave poorly for scenarios
with poor information extraction from the available scenarios.

2. [Koyuncu et al., 2020] proposes to imitate an optimal control based MCA
with an infinite horizon by using a neural network trained by data collected
thanks to drivers in a static simulator. The resulting NN-MCA may be used
in real time online dynamic simulator, but the same fundamental limitations
as above can be expected and need to be faced with additional components.

In both cases the neural network emulates an optimal control structure or a
part of it which needs an upstream tuning of the parameters. Those alternatives
are promising for the performance enhancement and their low computation time
but the need for a model-based control design with certifiable performances is clear
even in these approaches.

2.4 Issues and open problems in MCA design
We have seen in this chapter several ways to structure a MCA, from filters to
optimization based architectures. The restitution of inertial sensations in a re-
stricted workspace naturally imposes to engineers to drop a complete restitution
and impose the use of a partial one by making relaxation choices in the design.
We summarize next the issues encountered in the design of MCA, we propose a
classification in two categories of open problems:

• Those referring to human perception or behavior and the ways to take them
into account in MCA design.
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• Those referring to the control itself i.e the tuning of the parameters, the
computation time and delay.

2.4.1 Human factors
Perception model

The perception of movements is provided by the contribution of vision and equilib-
rioception. Those two functionalities are both stimulated in the driving simulator.
The vision is stimulated by graphical elements displayed on the screen and the
response of the software with respect to the driver’s actions. The equilibrium
is stimulated through the vestibular system by the movement of the plateform,
consequently, we focus on this system in the following.

There exists a difference between the effective acceleration of the driver and
the acceleration effectively sensed. This gap is caused by the proper dynamic
of the vestibular system located in the inner ear, its anatomy being illustrated
on Figure.2.13 The organs responsible for informing the nervous system of the
presence of an acceleration are explicited below:

• The otolithic system is responsible for the detection of the linear move-
ments of the head. It is made of utricle which detects horizontal acceleration
and saccule which detects vertical ones.

• The semicircular canals detects the rotations around their own axis.

One of the main issues for aeronautic and aerospace industry during the second
part of the XXth century was the mathematical modelisation of the dynamics of
the vestibular system. The work of [Meiry, 1965] in 1965 was the first giving
models of both otoliths and semicircular canals in terms of transfer function using
identification and experimental results. The reviews [Asadi et al., 2016] and [Houck
et al., 2005] provides a history of the modelling of otoliths and semicircular canals
dynamics some of these results being reported in table 2.4.

From a mechanical point of view, the modelisation of otoliths is close to a a
mass-spring system, which is relevant with respect to the anatomy of the otolithic
system. Thus we can generalized the transfer function as:

Hoto(s) = f̂(s)
f(s) = koto

(1 + τas)
(1 + τls)(1 + τss) (2.40)

where τa is the afferent time constant (representing the phase delay of the neural
system), τl is the long time constant and τs is the short time constant.



2.4. ISSUES AND OPEN PROBLEMS IN MCA DESIGN 39

Semicircular
canals

(Rotational

sensors)

Otolithic
system
(Linear

sensors)

Figure 2.13: Anatomy of the vestibular system (inner ear). Credits: Patrick J.
Lynch, medical illustrator; C. Carl Jaffe, MD, cardiologist, Creative Commons Attribution 2.5
License 2006; https://creativecommons.org/licenses/by/2.5/deed.fr, the original illustration has
been modified with captions.

On the other hand the semicircular canals dynamics can be seen as a torsion
pendulum represented by the following transfer function:

Hscc(s) = ω̂(s)
ω(s) = kscc

τa

(1 + τas)
τls

2(1 + τds)
(1 + τls)(1 + τss) (2.41)

where τa is the time constant of the adaptation dynamics τd is the afferent time
constant (representing the phase delay of the the neural system), τl, τs are the long
time constant and short time constants.

Prediction of the trajectory

In the previous section we considered a completely known vehicle acceleration
profile but in practice such an information is not necessarily known in advance,
at least not for a large time-window in the future. The acceleration trajectory
to be tracked is available at the current moment in time and its extrapolation is
subject to important uncertainties due to poor predictability of human reactions
in relationship with the scene and the motion cueing algorithm. In control related
terms, this means that the future trajectory {aref (k + 1|k), aref (k + 2|k), aref (k +
3|k), ...} can be made available but it cannot be granted to be receded at the next
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Otoliths models
Authors Model Remark

[Meiry,
1965]

v̂(s)
a(s) = K

(1 + 10s)(1 + 0.66s)

v̂: subjective velocity
a: linear acceleration
K: Gain (not measured)
Contribution: Identification

[Young
and
Meiry,
1968]

f̂(s)
f(s) = K(1 + τas)

(τLs + 1)(τs + 1)

= 0.4(13.2s + 1)
(5.33s + 1)(0.66 + 1)

f̂ : sensed specific force
f :stimulus of specific force
Contribution:Correction of
[Meiry, 1965] to add
a neural contribution term

[Ormsby,
1974]

E{f̂(s)}
f(s) = 1.5 (s + 0.076)

(s + 0.19)(s + 1.5)
E{.} is the expectation of a ran-
dom variable using a Wiener-Hopf
method

[Houck
et al.,
2005]

f̂(s)
f(s) = 0.4 (10s + 1)

(5s + 1)(0.016s + 1)
Modification of the small time
constant

Semicircular models
Authors Model Remark

[Meiry,
1965]

ω̂

Ω = 7
(7s + 1)(0.1s + 1)

ω̂: subjective tilt velocity
Ω: angular acceleration
Parameter identification

[Fernandez
and
Gold-
berg,
1971]

Ω̂(s)
Ω(s) = 80

(1 + 80s)
(1 + 0.49s)

(1.57s)(1 + 0.003s)

Ω̂: sensed tilt acceleration
Ω:angular acceleration
Adding of a phase lead term

[Ormsby
and
Young,
1977]

ω̂

ω
= 540s2

(18s + 1)(30s + 1)

ω̂: sensed tilt velocity
ω: tilt velocity
Short time constant neglected

[Houck
et al.,
2005]

ω̂(s)
Ω(s) = 5.73× 80(1 + 0.06s)

(1 + 80s)(1.573s)(1 + 0.05s)

Table 2.4: Models of otoliths and semicircular canals



2.4. ISSUES AND OPEN PROBLEMS IN MCA DESIGN 41

time instant (i.e aref (k + j|k + i) may consistently differ from aref (k + j|k + i + 1)
for j > i + 1 > 0). The accurate tracking of a particular sequence can turn to a
poor performance in case of trajectory update from the MCA. We can enumerate
3 main cases:

1. No interaction with the driver: the driver in the simulator is subject to
a predefined scenario and the trajectory of the platform is planned offline.
It might be seen as not a challenging framework due to the absence of the
human in the loop, but it turns to be a particularly useful framework for
all the test which corresponds to an autonomous driving scenario. The mo-
tion sickness need to be avoided in order to facilitate the homologation of
the simulated driving scenarios in terms of autonomous driving and retrieve
useful information on scenarios that cannot be tested on the circuit.

2. The trajectory is globally known: The driver has precise instructions
during the whole session: the speed to be tracked, the braking phases, the
turns, etc... Consequently, the acceleration profile resulting from the driver’s
commands may differ from the one calculated offline.

3. "Free ride": The driver interacts with the simulator freely, so the reference
trajectory is unknown and is hardly predictable.

In the first two cases, the acceleration reference can be estimated thanks to the
trajectory prediction software and the MCA can be fine-tuned by adding preposi-
tioning of the plateform for example which correspond to an optimization of the
initial conditions.

In the third case, the trajectory is more difficult to predict because of its high
dependence to the driver’s personal behavior. To give an order of magnitude, we
consider a turn of radius R, the lateral acceleration felt by the driver is proportional
to the square of the longitudinal speed of the vehicle:

alat = v2
veh

R
(2.42)

If a driver comes into the turn with a speed of 50km/h (13.9 m/s), he will feel a lat-
eral acceleration 3 times higher than a more cautious driver who brakes to 30km/h
(8.3m/s) before arriving to the turn. In practice, approximations of the reference
trajectory are actually used in MPC, we present here two typical methods:

1. Constant reference: At sampling time k, the N next prediction reference
value are set to the value at time k.

yp(k + i) = yref (k) ∀i ∈ {1, . . . , N} (2.43)
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where yp(.) is the prediction sent to the MPC-MCA and N the prediction
horizon. This approximation is very easy to set up but the implicit assump-
tion about the driver’s behavior do not use any relevant information about
the reality. The Figure.2.14 shows how the prediction can be far from the
real dynamics of the vehicle.

2. Taylor’s expansion An easy way to add information to the prediction is
to take into account the value of the derivatives of the real reference at each
instant k:

yp(k + i) = yref (k) + i
dyref

dt
(k) + i2

2
d2yref

dt2 (k) + . . . ∀i ∈ {1, . . . , N} (2.44)

Practically only the first and second order approximations are used, the
Figure.2.4.1 depicts what can happen by using the first order approximation:
the predicted trajectory does not take into account the inflexions or the
saturation phenomenon.

t

y

k k + N

yp(k)

yref

Figure 2.14: Prediction using a constant
approximation

t

y

k k + N

yp(k)

yp(k + N)

yref

Figure 2.15: Prediction using a first or-
der approximation

Very recent works aims to overcome the issue of prediction by using more
information or by modelling the driver behavior:

• [Mohammadi et al., 2016] proposes a neural network which give a prediction
of the future trajectory by processing a finite number of past inputs

• [Lamprecht et al., 2021] modelled the human behavior as an optimal con-
troller that provide relevant future trajectories.
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2.4.2 Motion cueing issues
Parameter Tuning

As we have seen in the section.2.2.2, the cost function needs a tuning of the weights
such that there is a trade-off between tracking, washout and inputs amplitudes.
However, many other components may be added to this function such as

• The dynamics of the vestibular system whose state space model can be
derived from (2.40) for the otoliths and (2.41) for the saccules. Thus, (2.40)
represents the following differential equation considering f(t) = a + gθ(t) =
ulin(t) + gurot(t):

¨̂
f(t) + τl + τs

τlτs

˙̂
f(t) + 1

τlτs

f̂(t) = koto

τlτs

ulin(t) + kotoτa

τlτs

˙ulin(t)

+ kotog

τlτs

∫∫
urot(t) + kotoτag

τlτs

∫
urot(t)

(2.45)

which lead to a state space representation:

ẋoto(t) =


− τl+τs

τlτs
1 0 0

− 1
τlτs

0 1 0
0 0 0 1
0 0 0 0

 xoto(t) +


kotoτa

τlτs
0

koto

τlτs
0

0 kotoτag
τlτs

0 kotog
τlτs

 u(t)

f̂(t) =
[
1 0 0 0

]
xoto(t)

(2.46)

In the same way, the equation (2.41) represents:
...
ω̂ (t) + T2 ¨̂ω(t) + T1 ˙̂ω(t) + T0ω̂(t) = kscc

τs

u̇rot(t) + ksccτd

τs

ürot(t)

T0 = 1
τaτlτs

, T1 = τa + τl + τs

τaτlτs

, T2 = τaτl + τaτs + τlτs

τaτlτs

(2.47)

whose state space representation is:

ẋscc(t) =

−T2 1 0
−T1 0 1
−T0 0 0

 xscc(t) +

0 ksccτd

τs

0 kscc

τs

0 0

 u(t)

ω̂(t) =
[
1 0 0

]
xscc(t)

(2.48)

• The prepositionning i.e a tracking term driving the platform to a specific
position. The feature can be used when the acceleration profile to render is
well known.
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• The tracking of the vehicle angle: during acceleration and braking
phases the vehicle has an own tilt angle and rotational speed (independently
of the tilt coordination technique) that can be restituted. It is the role of
the channel rotational channel of the filter-based structure (Figure 2.4).By
means of a cost function, the tracking term can be given by:

Jθ,veh(k) = ∥θveh,ref (k)− θ(k)∥2
qθ,veh

+ ∥ωveh,ref (k)− ω(k)∥2
qω,veh

(2.49)

While better performance is expected from the use of the most information
as possible in the cost function, the increasing number of weights may imply a
complex relationship between all the components and the MCA becomes hard to
tune. Moreover, It may be important to give a high weight on the washout com-
ponent in order to avoid the rail stops which consequently increase the workspace
use margin.

Computation time

Even if the problem is nonexistant in the filter-based design framework, it is a main
barrier for the optimization based architecture. Indeed, the real-time structure
imposes the execution time to be in the sampling time range. Since the execution
speed of the optimization solver can be less than this limitation.

Delay compensation

As we have seen in Section 2.2.2, there exists different sources of delays. Their
different kinds make the compensation being difficult. This latter depends on the
reliability of the prediction as well as the MCA design.
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In this chapter we focus on enhancements on the design of MPC based MCA
starting from the structure presented in Section 2. In this respect, we propose two
alternatives handling nonlinearity and delay :

1. The first one takes into account the nonlinearities caused by the projections
on driver’s frame axis during the modeling steps of Section.2.2. In other
words, we avoid the linearization of the output all by handling the con-
straints. This approach may lead to an increase of the tilt amplitude. We
propose here two approaches, each prioritising one of the internal dynamics.

2. The second one attempts to compensate the inertial delays explicited in the
last chapter. The main idea is to find a lighter design (from a computational
point of view) than existing techniques.

45
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3.1 Inclusion of nonlinearities in MPC-MCA
The acceleration felt by the driver is a nonlinear combination of each type of
actuators contributions on a given direction (lateral or longitudinal). Most ap-
proaches use linearized models for the MCA design and focus on the tuning of
the cost function in order to account for the motion sickness as we have seen in
Section.2.2. A different way to enhance the performances, through the use of a
nonlinear constraints-handling approach will be considered next along two strate-
gies:

1. The rail action is privileged and the tilt compensates the difference between
the acceleration provided by rails and the expected specific force.

2. The tilt action is privileged and the rail compensate the tracking error.

The main idea from the design point of view is to separate the nonlinear model from
the linear subsystem and thus handle a manageable complexity in the constrained
optimization framework offered by the MPC strategy. Based on the mathematical
nonlinear model and relative to these approaches, we compare their performance
and computational load in view of real-time implementation.

Nonlinear MCA model

Given the configuration of the driving simulator depicted on Fig.2.3 with a tilt
angle θ and a longitudinal rail acceleration alin, we consider the following state-
space model with 3 states and 2 inputs:

x(k + 1) =


p(k) + Tsv(k) + T 2

s

2 ul(k)
v(k) + Tsul(k)
θ(k) + Tsur(k)

 = f(x(k), u(k))

y(k) = g sin(θ(k)) + ul(k) cos(θ(k)) = g(x(k), u(k))

(3.1)

where Ts is the sampling time, x(k) = [p(k), v(k), θ(k)]⊤ denotes the state vector
containing position, speed and tilt angle, u(k) = [ul(k), ur(k)]⊤ denotes the input
vector containing linear acceleration (alin in (2.1) and (2.2)) and tilt rate. In other
words, the rail dynamics is represented by a double integration of an acceleration
input while the rotational dynamics is a single integrator controlled in tilt velocity.

Remark. We recall here that the model is a choice among higher dimensional
ones, the generic strategies presented next being applicable for them (see Section
2.2.2).
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For the dynamics (3.1), the MPC problem can be expressed as follow:

minimize
(u(k),...,u(k+N−1))

N∑
i=1
∥yref (k + i)− y(k + i)∥2

Qy
+ ∥x(k + i)∥2

Qx

+ ∥u(k + i)∥2
R + ∥x(k + N)∥2

P

subject to
x(k + i + 1) = f(x(k + i), u(k + i)) ∀i ∈ {0, . . . , N − 1},

y(k + i) = g(x(k + i), u(k + i)) ∀i ∈ {0, . . . , N},
x(k + i) ∈ X ∀i ∈ {1, . . . , N},
u(k + i) ∈ U ∀i ∈ {0, . . . , N − 1},

x(k + N) ∈ Xf

(3.2)

This latter formulation has several drawbacks in view of real-time implementa-
tion, particularly it handles a 3 dimensional state space (or higher) and the non-
linear cost function is eventually nonconvex as function of the tilt angle range).
Moreover, there are two distinct dynamics in the state space:

• The linear dynamics of the rails

• The nonlinear dynamics of the tilt

while the receding cost function mixes on a common prediction horizon the effect
of two dynamics which prevents the decoupling.

Let us discuss two compensation mechanisms:

1. L-NL (Linear-NonLinear): Compensation of the linear component by the
nonlinear one (Figure 3.1).

Linear
MPCaref

Nonlinear
MPC θ(k), θ̇(k)

p(k), v(k)

ul(k)

Figure 3.1: L-NL principle

2. NL-L (NonLinear-Linear): Compensation of the Nonlinear component by
the linear one (Figure 3.2).
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Nonlinear
MPCaref

Linear
MPC p(k), v(k)

θ(k), θ̇(k)

θ(k)

Figure 3.2: NL-L principle

In the following we will denote the linear rail dynamics as:

xl(k + 1) =
[
1 Ts

0 1

]
︸ ︷︷ ︸

Al

xl(k) +
[

T 2
s

2
Ts

]
︸ ︷︷ ︸

Bl

ul(k) (3.3)

where xl(k) = [p(k) v(k)]T is the state of the platform relatively to the rail and
ul(k) is the acceleration input. Similarly, we denote the rotational dynamics as:

θ(k + 1) = θ(k) + Tsur(k) (3.4)

where ur(k) is the tilt velocity of the platform.

3.1.1 Linear-NonLinear (L-NL)
This formulation focuses on the rail movement, assumes the feasible current tilt
angle θ̂(k) as known and solves a linear MPC with the prediction horizon NL in
order to deliver a maximal contribution of the linear acceleration with respect to
the given reference:

minimize
(ul(k),...,ul(k+NL−1))

NL∑
i=1
∥yref (k + i)− (g sin(θ̂(k)) + ul(k + i))cos(θ̂(k))∥2

qy,L

+ ∥xl(k + i)∥2
Qx

+ ∥ul(k + i)∥2
RL

subject to
xl(k + 1) = Alxl(k) + Blul(k) ∀i ∈ {0, . . . , NL − 1},

xl(k + i) ∈ Xl ∀i ∈ {0, . . . , NL − 1},
ul(k + i) ∈ Ul ∀i ∈ {0, . . . , NL − 1},

xl(k + NL) ∈ Xf,l

(3.5)

Where Xf,l is a positively invariant set constructed from the system constraints
Xl and Ul and NL is the prediction horizon of this problem. It is important to
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mention that NL is chosen independently, for this sub-system and can be adjusted
to enlarge the domain of attraction and fulfill the computational constraints

The compensation is done by a nonlinear MPC with a prediction horizon NR ≤
NL using the optimal predicted control action (u∗

l (k), . . . , u∗
l (k +NL−1)) for (3.5):

minimize
(ur(k),...,

ur(k+NR−1))

NR∑
i=1
∥(yref (k + i)− ûl(k + i)cos(θ(k + i)))− g sin(θ(k + i)))∥2

qy,R

+ ∥ur(k + i)∥2
RR

subject to
θ(k + 1) = θ(k) + Tsur(k) ∀i ∈ {0, . . . , NR − 1},

θ(k + i) ∈ XR ∀i ∈ {0, . . . , NR − 1},
ur(k + i) ∈ UR ∀i ∈ {0, . . . , NR − 1}

(3.6)
The operating of L-NL is summarized on Figure.3.3, the "Sel" block corresponds

to the selection of the first input i.e the matrix [1 0 . . . 0].

Σ

NMPC−+

yref (k), . . . ,

yref (k + N)

MPC Sel cos(.)
(u∗l (k), . . . ,
u∗l (k + N))

u∗l (k)

θ(k)

x(k)

Figure 3.3: Block diagram of L-NL control structure

In the end, the resulting angle θ(k) is used in the next time instant k + 1 such
as: θ̂(k + 1) = θ(k). We now analyse the performance through an example.

Example: L-NL MPC

We consider the study case described in Section 2 using the horizons NL = 100 and
NR = 30. Thus, the rail dynamics predicts farther than the rotational one. We also
weight the two cost functions terms of (3.5) and (3.6) such that qy,L = 106, Qx =
diag(50000, 800), RL = 106, qy,R = 1000 and RR = 1. For the sake of analysis, this MCA
has been implemented thanks to YALMIP interface of MATLAB, the optimization (3.5) is
solved with quadprog MATLAB solver while (3.6) is solved with fmincon function. The
Figure.3.4 depicts the two components of the specific force and the comparison between
this latter with the acceleration reference. The evolution of the states through time are
represented on Figure.3.5 while the Figure.3.6 depicts the input signals evolution.
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Figure 3.4: Specific force felt by the driver with respect to L-NL scheme
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Figure 3.5: Position of rails (left), Speed of rail (center), tilt angle ( right)
in function of time
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Figure 3.6: Inputs as function of time: Linear acceleration (right) and tilt
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We can notice the compensation mechanism around 7s, while the specific force decreases
faster than the reference the tilt angle still increases in order to compensate the difference.
In this particular example, the performance are poor because of the weak horizon on
tilt, the turns are not well anticipated during the resolution of (3.6). The Figure.3.7
represents the computation time at each time instant which practically has to be less
than the sampling time (here 8ms), here it can be higher because of the use of YALMIP.
We depict it here as a term of comparison for the next approach.
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Figure 3.7: Computation time for L-NL

3.1.2 NonLinear-Linear (NL-L)
In this approach, the rotational component is privileged thanks to the projection
of gravitational field on the lateral axis. The nonlinear optimization problem is
similar to (3.6) except that there is no estimation of linear acceleration available:

minimize
(ur(k),...,ur(k+NR−1))

NR∑
i=1
∥(yref (k + i)− g sin(θ(k + i)))∥2

qy
+ ∥ur(k + i)∥2

R

subject to
θ(k + 1) = θ(k) + Tsur(k) ∀i ∈ {0, . . . , NR − 1},

θ(k + 1) ∈ XR ∀i ∈ {0, . . . , NR − 1},
ur(k) ∈ UR ∀i ∈ {0, . . . , NR − 1}

(3.7)

The notations are the same as L-NL formulation.
The compensation is then done with a linear MPC framework over a prediction

horizon NL ≤ NR using the available prediction on tilt angle (θ∗(k), . . . , θ∗(k +
NL − 1) solution of the optimization (3.7):
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minimize
(ul(k),...,ul(k+NL−1))

NL∑
i=1
∥yref (k + i)− (g sin(θ∗(k + i)) + ul(k + i))∥2

qy

+ ∥xl(k + i)∥2
Qx

+ ∥ul(k + i)∥2
R

subject to
xl(k + 1) = Axl(k) + Bul(k),

xl(k + i) ∈ Xl ∀i ∈ {0, . . . , NL − 1},
ul(k + i) ∈ Ul ∀i ∈ {0, . . . , NL − 1},

xl(k + NL) ∈ Xf,l

(3.8)

Σ

MPC cos(.)−+

yref (k), . . . ,

yref (k + N)

NMPC g sin(.)
(θ∗(k), . . . ,
θ∗(k + N))

sel
θ∗(k)

u∗l (k)
x(k)

Figure 3.8: Block diagram of NL-L operation mode

Example: NL-L MPC

We consider the study case described in Section 2 using the horizons NL = 30 and
NR = 30. Thus, the hexapod dynamics predicts at least on the same horizon as the rail.
We also weight the two cost functions terms of (3.7) and (3.5) such that qy,L = 106,
Qx = diag(1, 1), RL = 5.106, qy,R = 1000 and RR = 1. Using the same implementation
as previously. The Figure.3.9 depicts the two components of the specific force and the
comparison between this latter with the acceleration reference. The evolution of the states
through time are represented on Figure.3.10 while the Figure.3.11 depicts the input signals
evolution.
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Figure 3.9: Specific force felt by the driver with respect to NL-L scheme
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Figure 3.10: Position of rails (left), Speed of rail (center), tilt angle ( right)
in function of time
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Figure 3.11: Inputs in function of time: Linear acceleration (right) and tilt
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The Figure.3.7 represents the computation time at each time instant.
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Figure 3.12: Computation time for NL-L

Comparison L-NL/NL-L

The Fig. 3.13 shows the mean computation time of optimization problems as a
function of prediction horizons NL and NR. As expected, small horizons imply a
faster resolution of optimization but we observe that globally the NL-L approach
(left part of the first bisector) adds more computational burden than L-NL (right
part). Consequently, it is more interesting for a computational point of view to
implement a L-NL MCA, moreover by choosing this approach we can increase the
performance with the prediction horizons on the linear part, with clear advantages
for the feasible domain perspective.

3.1.3 Conclusion

In this subsection, we proposed an analysis of two design approaches for nonlinear
MPC-based Motion Cueing Algorithm in view of real-time implementation with
the goal of decoupling the linear from the nonlinear part.

The weight given to a part compared to the other (L-NL or NL-L) underlines
their asymmetric role in the control design. Even if the nonlinear contribution (and
thus the rotation) is higher for the tracking of acceleration, its computational cost
tends to increase faster as a consequence of a prediction horizon that has to be
larger or equal to the linear MPC dedicated to the rail system. Consequently
the proposed design tends to privilege the contribution of rails, the increase of
linear horizon stabilizes the response by a better management of rail displacement
completed by the tilt.
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Figure 3.13: Mean CPU time function of linear prediction horizon NL and rota-
tional prediction horizon NR

3.2 MPC with delay compensation

Aside the constraint handling and the computational limitations of MPC-MCA,
the inherent delays are particularly difficult to handle in the control design with
direct implications in the motion sickness phenomena. The goal of this section is to
propose a control design which prevents the driver from feeling unease, by dealing
with the time-delay from the design stage in the predictive control framework.

The classical approach for the delay compensation consists in translating the
problem into an extended state space representation using past control actions and
then design a MPC controller for the undelayed resulting model [Laraba et al.,
2017]. However, this approach is faces computational limitations particularly for
a real-time implementation due to the curse of dimensionality which emerges with
the extended state space and become more difficult to overcome when the delay
increases. Most publications deal with this issue by proposing set-invariance based
perspective [Laraba et al., 2016, Laraba et al., 2017] or investigate an approach
close to the Smith predictor philosophy [Santos et al., 2010].

In this work, we propose an MPC design based on the explicit use of the
maximal controllable set or its approximations (see Definition 3.2) for delayed
linear systems in the MPC.
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3.2.1 State space model and delay compensation
In the presence of time-delay the discrete-time linearized model given by the state-
space representation using 3 states and 2 inputs becomes:

x(k + 1) =

1 Ts 0
0 1 0
0 0 1

 x(k) +


T 2

s

2 0
Ts 0
0 Ts

 u(k − d)

y(k) =
[
0 0 g

]
x(k) +

[
1 0

]
u(k − d)

(3.9)

Assumption 3.1: Delays

In this section, we assume the both actuation channels are associated to the
same delay. This can always be enforced by considering d to be the upper
bound of delays on the respective actuation channels. In practice, even if they
present slightly differences, the delays are in the range (50-100 ms).

The Figure 3.14 depicts the operating principles for the control system (3.9).
The objective is to provide an accurate tracking of the acceleration signal.

Controller x(k + 1) = Ax(k) + Bu(k − d) Platform
aref u(k) x(k) y(k) = Cx(k) +Du(k − d)

Figure 3.14: Block diagram of the control structure operating

Taking into account also the time-delay particularity of the dynamical model,
this last remark imposes recursive feasibility requirements exclusively based on the
current state and the previous control inputs.

Compensation with extended state space

The classical approach for the constrained control design for time-delay systems
is the predictive control (MPC) using an extended state-space model. This state-
space prediction model includes the past control actions in the extended state
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vector
ξ(k) =

[
x(k) u(k − d) . . . u(k − 1)

]⊺
.

With this artefact, the extended dynamics become:
ξ(k + 1) = Aξξ(k) + Bξu(k)

y(k) = Cξξ(k)
(3.10)

where:

Aξ =


A B 0 . . . . . . 0
0 0 I . . . . . . 0
...

... . . . . . .
...

0 . . . . . . . . . I 0
0 . . . . . . . . . . . . 0

 , Bξ =


0
...
...
I



Cξ =
[
C D 0 . . . 0

]
(3.11)

Then classical MPC formulation of the tracking problem is:

minimize
(u(k),...,

u(k+N−1))

N∑
i=1
∥yref (k + i)− y(k + i)∥2qy

+ ∥ξ(k + i)∥2Qx
+ ∥u(k + i)∥2R

subject to ξ(k + i + 1) = Aξξ(k + i) + Bξu(k + i) ∀i ∈ {0, . . . , N − 1},
y(k + i) = Cξξ(k + i) ∀i ∈ {1, . . . , N},
ξ(k + i) ∈ X × Ud ∀i ∈ {1, . . . , N − 1},
ul(k + i) ∈ Ul ∀i ∈ {0, . . . , NL − 1},
ξ(k + N) ∈ Xf

(3.12)

where qy, Qx and R are weighting matrices, N is the prediction horizon, yref is
the reference signal and Xf is the terminal positively invariant set and needs to be
parameterized according to an admissible trajectory.

In the following, we propose a strategy based on the direct use of the Maximal
Controllable Set (MCS) or its approximation. This set is defined as the largest
set of initial states for which there exists an admissible sequence of control actions
that makes the state trajectory to remaining in the set itself. This set will be
denoted C. In practice, this set can be approximated by the N -step Controllable
Set CN in polyhedral form. It can be construct from a positively invariant set
through the procedure in [Nguyen et al., 2013].

3.2.2 Maximal Controllable Set based approach
The alleged control structure for time-delay linear systems applied to the driving
simulation application preserves the MPC-based structure and is explained in the
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following after the recall of the central definitions of controlled invariance and
maximal controllable set that will be used in this section and the other chapters.

Definition 3.1: Controlled positive invariance

A set C ⊂ X is said to be controlled positively invariant with respect
to x(k + 1) = f(x(k), u(k)) and the constraint (X ,U) if for any initial state
x0 ∈ C there exists a control action u(k) ∈ U that makes the trajectory
remaining in C.

Definition 3.2: Maximal Controllable Set

The maximal controllable set denotes the largest controlled positive in-
variant set w.r.t a given controlled dynamics x(k+1) = f(x(k), u(k)) and sets
of constraints (X ,U).

Alleviated MPC

Considering the maximal controllable set C, an alleviated formulation of the MPC
problem is:

minimize
(u(k),...,

u(k+N−1))

N∑
i=1
∥yref (k + i)− y(k + i)∥2

Qy
+ ∥x(k + i)∥2

Qx
+ ∥u(k + i)∥2

R

subject to x(k + i + 1) = Ax(k + i) + Bu(k + i) ∀i ∈ {0, . . . , N − 1},
y(k + i) = Cx(k + i) + Du(k + i) ∀i ∈ {0, . . . , N},
x(k + 1) ∈ C,
u(k + i) ∈ U ∀i ∈ {0, . . . , N − 1}

(3.13)
In other words, if we have a representation of the maximal controllable set, we
can replace the condition of the predicted states belonging to X and the terminal
condition by the condition on the one-step ahead state prediction to belong to the
maximal controllable set.
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Proposition 3.1

The MPC control based on 3.13 is recursively feasible independently of the
realization of the reference signal.

Proof

This property is inherited from the linear structure of the prediction model
for the delay-time system in the extended state space for which it is known
that any domain of attraction for a linear constrained system is a tracking
domain of attraction [Blanchini and Miani, 2000]. The constraint imposed
in 3.13 is ensuring that the trajectories remain at each moment in time in a
control invariant approximation of this domain.

From the convergence point of view, theoretical properties are not enforced.
Indeed, such an analysis would need a concept of best feasible reference with re-
spect to which the convergence properties should be evaluated [Olaru and Dumur,
2005].

However, these convergence notions are less relevant in the MCA tracking as
long as the tracking is not done with respect to fixed points and its high variability
is making the performance index less reliable with respect to the motion sickness
as this can be sensed by the internal ear and the otolithic subsystems.

Delay compensation and the corresponding MPC strategy

For the theoretical analysis of the control scheme, we consider the following generic
LTI time-delay system with single output:

x(k + 1) = Ax(k) + Bu(k − d)

y(k) = Cx(k) + Du(k − d)
(3.14)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ R1×n and D ∈ R1×m.
The principle of this method is summarized in Figure 3.15:

• knowing the past inputs construct the free-response up to x(k + d|k)

• minimize the difference between the reference and the predicted output over
the horizon k + d, . . . , k + N

• impose as hard constraint x(k + d + 1|k) ∈ C.

The receding horizon optimization related to the MPC formulation is given
below:
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Figure 3.15: Principle of the strategy: the past inputs impose the free response
up to k + d while the optimized inputs are chosen such that the predicted inputs
ensure the first predicted state (at stage k + d + 1) to belong to the controllable
set C.

minimize
(u(k),...,u(k+N−1))

d+N∑
i=d+1

∥yref (k + i)− y(k + i)∥2
qy

+ ∥x(k + i)∥2
Qx

+
N∑

i=1
∥u(k + i)∥2

R

subject to x(k + i + 1) = Ax(k + i) + Bu(k + i− d),
∀i ∈ {0, . . . , d + N − 1},

y(k + i) = Cx(k + i) + Du(k + i− d),
∀i ∈ {d + 1, . . . , d + N},

x(k + d + 1) ∈ C,
(u(k), . . . , u(k + N − 1)) ∈ U

(3.15)
where qy, Qx and R are weighting matrices.

The first component of the solution is effectively applied. Those constraints
guarantee the recursive feasibility of the controller while optimizing the cost func-
tion. The recursive feasibility of the controller can be guaranteed using the follow-
ing results.
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Lemma 3.1

Let C be an admissible controlled invariant set with respect to the delay-free
dynamics: ξ(k +1) = Aξ(k)+Bv(k), where (A, B) are the matrices of (3.14).
If the current state x(k) ∈ C and the past inputs of (3.14) {u(k−d), . . . , u(k−
1)} ∈ U such that {x(k + 1), . . . , x(k + d)} ∈ C, then there exists a control
action u(k) such that x(k + d + 1) = Ax(k + d) + Bu(k) ∈ C.

Proof

Let us start from the assumption that x(k) ∈ C. By exploiting the existence
of feasible control sequence such that {x(k + 1), . . . , x(k + d)} ∈ C one can
concentrate on the delay-free dynamics:

ξ(k + 1) = Aξ(k) + Bv(k)

which is equivalent, due to time-invariance, to

x(k + d + 1) = Ax(k + d) + Bu(k)

For any ξ(k) ∈ C there exists v(k) ∈ U such that ξ(k + 1) ∈ C. By choosing
u(k) = v(k) one has x(k + d + 1) ∈ C and the feasibility of the problem is
ensured.

Proposition 3.2

Given an initial state x(0) ∈ C such that x(0) =
[
p0 0 θ0

]⊺
with (p0, θ0) ∈

R2 and a past control sequence {u(−d), . . . , u(−1)} = {0, . . . , 0}, then the
algorithm is recursively feasible.

Proof

Since the control actions are inactive at the system initialization, the trajec-
tory is ensured to remain at the origin during d time steps. Moreover, since
the origin belongs to the maximal controllable set, the Lemma 3.1 above can
be applied to complete the proof.

With these elements, the practical use of the proposed approach in the driving
simulators control framework is straightforward. Whenever the simulation session
is initialized, the calibration is made to a position in the center of the environment
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with inactive controls for a time window covering the considered delay in the
dynamics. With such an initialization, the recursive feasibility is guaranteed for
the nominal system.

Example: MPC delay

We consider the study case described in Section 2. The weight parameters use for the
simulation are: qy = 10, Qx = diag(25, 1, 1), R = diag(10, 1) and the prediction horizon:
N = 100. The acceleration rendering is compared to the reference profile on Fig.3.16 by
means of its two components. We observe the acceleration globally follows the profile
with a lower amplitude by noticing that a part of acceleration is proportional to the tilt
angle. An important feature of the acceleration rendering is the restitution of the shape
of the reference profile, particularly during the slalom phase (there is no saturation due
to inputs constraints), then the driver feels the correct variations. Moreover the delay
has been compensated which can cancel the motion sickness. The Figure.3.17 depicts the
displacement of the lateral rail, its speed and the tilt angle profile as well as their physical
limitations that are actually satisfied along the simulation. The acceleration of the rail
(represented on Fig.3.18) is added to the tilt angle contribution. We can observe that the
rail contributes on the fast varying components of the slalom phase while the tilt impacts
more the slow turn phase (which can be explained by the constraints on tilt rate).
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Figure 3.16: Specific force sensed by the driver

Limitations of the rail are underlined on Fig.3.17 and on Fig.3.19 where the rail part
of the state space is represented (position and speed) with the trajectory within Maxi-
mal Controllable Set, which shows that the closed-loop dynamics are conservative in the
presence of time delay. Fig.3.20 depicts the computation time at each iteration.
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Figure 3.17: Position of rails (left), Speed of rail (center), tilt angle ( right)
in function of time
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Figure 3.18: Inputs in function of time: Linear acceleration (right) and tilt
rate (left)

The Figure.3.20 represents the computation time at each time instant.

Figure 3.19: Projection of the state space trajectory on the axis position-
velocity
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Figure 3.20: Computation time

3.2.3 Discussion and conclusion
Discussion

First, aside the practical advantages of the delay compensation, it should be said
that the proposed strategy is limited by the complexity of the approximation of
the maximal controllable set. Indeed, the complexity of the optimization problem
(3.15) depends on the complexity of C. The curse of dimensionality can be expected
as the dimension of the state-space increases and thus the whole complexity of the
procedure making the real-time performance unreachable. This remark triggers the
developments in the next sections in the quest for a replacement for this complex
ingredient (as well ass the terminal set) in the MPC design

In our application the inclusion of the (d + 1)th state within C may imply
that the controller forces punctually the trajectory to remain in C by applying the
maximal input value. This can be illustrated on a slightly different scenario of
Simulation with respect to the one presented in the previous section. Consider
a less conservative design with a lower weight on the position component of the
cost function: Qx = diag(

[
15 1 1

]
). We can check on the Figure.3.22 that the

trajectory uses a larger area and benefits from the whole workspace to improve the
acceleration rendering depicted on Figure.3.21. However, after 20s one can observe
an important profile increase in the rail acceleration to maintain the simulator
position within the bounds that impacts the overall response. If this behaviour is
short enough, it may be filtered by the inner ear and the impact on the driver is
mitigated. Obviously this depends on the sensibility characteristic of the driver
physiology. As a first conclusion there is a trade-off between the conservativeness
of the design (weights on states and inputs) and the implication of delayed states
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constraints.
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Figure 3.21: Specific force sensed by the driver

Conclusion

Time delays are inherent to the structure of driving simulators due to the mechan-
ical inertia and the communication protocol between the algorithms which render
the virtual scene and the physical move of the platform, all of them having a joint
action on the human senses. The motion sickness being directly related to the
time-delay, its inclusion in the control algorithm needs to be optimized in order
not to further deteriorate the human perception.

The classical optimal control approach based on extended state space (3.12)
is difficult to implement on real-time systems because of the complexity inher-
ited from the increased dimension of parameters. In this section we proposed an
alleged control strategy based on the knowledge of the maximal controllable set
(3.15) by enforcing the delayed states to remain within this safe set at a reduced
computational cost.

This strategy is recursively feasible and globally follows the expected acceler-
ation while satisfying states and inputs constraints. However its performance can
be limited on one side by the size (topology) of the controllable set and on the
other side by the policy of constraints activation among the control channels. This
latter drawback can be dealt with, by the choice of weights in the design of the
strategy. In the next sections we aim to move the constrained control design from
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Figure 3.22: Left: position of the platform. Right: State space trajectory

the MPC framework in order to explore new formulations able to preserve the
main feasibility domain all by providing low complexity alternatives for tracking.
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In the field of constrained control, merging control Lyapunov functions [Gram-
matico et al., 2013], sharing the control authority between several feedback laws
[Bacic et al., 2003, Grammatico et al., 2013] or interpolating among control actions
[Nguyen, 2014, Kheawhom and Bumroongsri, 2014] are based on the same concepts
and received the interest of the control community as a versatile (optimization-
based) design technique to avoid the classical Model Predictive Control formula-
tions all by preserving the essential features: recursive feasibility, stability, continu-
ity and manageable performance certificates for the unconstrained control regions.

67
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Originally, interpolation-based control (IBC) has been established [Nguyen et al.,
2013] to enhance Vertex Control method [Gutman and Cwikel, 1986] which was
capable to stabilize a constrained linear system exclusively based on the knowledge
of the feasible control actions on the boundary of a controlled invariant set. For
obvious reasons, this controlled invariant set was used to approximate the maximal
controlled invariant set.

The main novelty behind the IBC methodology [Nguyen et al., 2011a] is to
consider aside the controlled invariant set which ensures a large domain of attrac-
tion, one (or multiple) controlled invariant sets, associated to high feedback gains
(associated with high performance in the unconstrained case) in the control design.
The convex decomposition between a high gain unconstrained linear feedback law
in the neighborhood of the equilibrium and a low gain Vertex control law on the
boundary of the domain of attraction was shown to preserve the computationally-
attractive LP formulation for LTI systems and add the performance on top of the
large feasible domain. All these developments reached a maturity for the con-
strained regulation around the origin and have been applied in different domains
[Ballesteros-Tolosana et al., 2016, Tuchner and Haddad, 2017] with different groups
developing the associated design tools [Scialanga and Ampountolas, 2019]. Given
all these interesting properties, the IBC is a natural candidate for the MCA de-
sign. Interesting though, the trajectory tracking was not addressed in the previous
works and represents an important aspect to complete the technique with the ca-
pabilities of a generic constrained control routine. The goal of the present chapter
is to bridge this gap and contribute to the theoretical foundation of the IBC on
one side and to apply the resulting technique on the MCA design.

Before entering in the IBC tracking details, let us recall that constrained tra-
jectory tracking is a topic which received the interest over more than 30 years
[Bemporad, 1998, Garone et al., 2017], often in connection with Model Predictive
Control [Limon and Alamo, 2013, Falugi, 2015]. The underlying problem in the
constraint trajectory tracking is the description of the feasible range of trajectories
given a predefined stabilizing control able to handle the constraints and guarantee
the stabilization [Olaru and Dumur, 2005, Limon et al., 2005]. Once this objective
is achieved, the selection among the feasible trajectories of a suitable candidate is
usually made with respect to an optimization-based procedure and carries different
names as for example reference-governor[Bemporad, 1998], reference-management
or virtual trajectory selection[Santos, 2018, Limón et al., 2008]. Once the recursive
feasibility is ensured, the techniques vary with respect to the strategies employed
and depend on the anticipative information on the reference to be tracked. If
this reference takes the form of set-points that are piecewise constant, then the
convergence properties can be sought. If the reference trajectory is varying fast
or its description is not receding along the system functioning, then the tracking
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performance can be addressed on probability, in economic terms or can be seen as
measures of robustness.

Coming back to the core of the present chapter, IBC trajectory tracking prob-
lem will be formulated and solved starting from the classical ingredients of a IBC
regulation. The design principle is inherited from reference governor mechanisms
which design an admissible reference with respect to the static constraints and for
which the regulation capabilities of the IBC can be fully exploited. For the class of
linear time-invariant systems, the generation of an admissible virtual trajectory is
done in conjunction with a scaling mechanism for the controlled invariant sets in-
volved in the IBC design. Globally the tracking IBC solution is shown to preserve
the LP structure and thus presents attractive features for real-time implementa-
tion. The proposed technique is formally presented together with the feasibility
proof and a series of enhancements are presented along with numerical examples.

4.1 Interpolation Based Control

4.1.1 Framework
Given the constrained linear discrete-time system :

x(k + 1) = Ax(k) + Bu(k) (4.1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, A ∈ Rn×n, B ∈ Rn×m. X and U are sets of
constraints respectively on states and control vector both containing the origin in
their interior.

Assumption 4.1: Inner and outer sets

We assume that the system (4.1) is controllable. We also consider two con-
trollable sets Ωo ⊂ X and Ωv ⊂ X which are convex compact sets and satisfy:

Ωo ⊂ Ωv ⊂ X (4.2)

Ωo will be denoted inner set and Ωv the outer set. Finally, we assume that
each of them has its own associated constrained control law:

uo = Ko(x) if x ∈ Ωo and uv = Kv(x) if x ∈ Ωv/Ωo (4.3)

such that Ko(Ωo) ⊂ U and Kv(Ωv) ⊂ U .

Remark. The inner set is generally associated with a high gain control law while
the outer set is intended to approximate the maximal controllable set within X . So
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for every initial state x0 ∈ Ωv there exists a control sequence that leads the system’s
trajectory to the origin and consequently to Ωo in a finite number of steps.

4.1.2 Principle
Summary

At each time step k ∈ N, given the measurement of the current state, there exists a
convex combination of states xo(k) ∈ Ωo in the inner invariant set and respectively
xv(k) ∈ Ωv in the outer controlled invariant set such that :

x(k) = c(k)xv(k) + (1− c(k))xo(k) (4.4)

where c(k) ∈ [0, 1] is a convex factor. Thus, a control action can be devised, also
using a convex combination of the control laws (4.3):

u(k) = c(k)uv(k) + (1− c(k))uo(k) (4.5)

The convex factor c(k) is chosen to maximize the contribution of the local controller
Ko(.). Consequently c(k) and the components xo(k) and xv(k) can be computed
as the solution of the nonlinear optimization problem:

[
xv xo c∗

]T
= minimize

(xv ,xo,c)(k)
c

subject to xv ∈ Ωv, xo ∈ Ωo,

x(k) = cxv + (1− c)xo,

c ∈ [0, 1].

(4.6)

The procedure of IBC is explicited in Algorithm 1
The block diagram on Figure 4.1 summarizes the procedure where the grey

part corresponds to the IBC block that will be used later. An example of the
geometrical properties in R2 is given on Figure 4.2 where the shapes of the sets are
similar to what can be computed for a discrete-time polyhedral constrained double
integrator. The red set Ωo would be practically designed as a positively invariant
set included in the Maximal Controllable Set (MCS) which plays the role of Ωv in
blue. The figure also depicts the geometrical interpretation of the decomposition
(4.4) of the state x(k) ∈ Ωv/Ωo. There exists a priori a infinite number of couples
(xv(k), xo(k)) satisfying(4.4) but as we seak to minimize the convex factor c(k),
the optimal configuration xv(k) is on the frontier of Ωv and xo(k) on the frontier
of Ωo which enhance the performance of the constrained control as explained in
Theorem 4.1.
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Algorithm 1: Interpolation Based Control
Input : Ωo,Ωv,Ko,Kv,x0 ∈ Ωv, Nsimu,(A, B),X ,U
Output: (x(k))k=0,...,Nsimu

,(u(k))k=0,...,Nsimu−1
1 k = 1
2 while k < Nsimu do
3 Solve (4.6) −→ c∗, xv∗, xo∗

4 c(k)← c∗, xv(k)← xv∗, xo(k)← xo,∗

5 Compute uv(k) = Kv(xv(k)), uo(k) = Ko(xo(k))
6 Compute u(k) = c(k)uv(k) + (1− c(k))uo(k)
7 x(k + 1) = Ax(k) + Bu(k)
8 k ← k + 1
9 end

Convex De-
composition
xk = ckx

v
k +

(1 − ck)xo
k

Outer
Component
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k)
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Figure 4.1: Block diagram of IBC Principle

Theorem 4.1: Decomposition on the frontiers [Nguyen et al., 2011b]

The optimal solution (xv(k), xo(k), c(k)) of the optimization problem (4.6) is
such that xv(k) and xo(k) are respectively on the frontier of Ωv and Ωo.

Proof

Let x ∈ Ωv/Ωo and (xv, xo, c) ∈ Ωv×Ωo×]0, 1[ such that x = cxv +(1− c)xo.

• If xo is strictly included in Ωo, we consider x̃o as the intersection of Ωo
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Figure 4.2: Geometric interpretation of IBC in the state space

with the segment linking x and xo.

x̃o = Fr(Ωo) ∩ [xo, x]

As x̃o ∈ [xo, x], there exists c̃ such that x = c̃x̃v + (1− c̃)xo. Since Ωo

is convex, we have necessarily c̃ < c.

• If xv is strictly included in Ωv, we consider x̂v as the intersection of Ωv

with the segment linking x and xv.

x̃v = Fr(Ωv) ∩ [xv, x]

As x̂v ∈ [xv, x], there exists ĉ such that x = ĉxv + (1− ĉ)x̂o. Since Ωo

is convex, we have necessarily ĉ < c.

In both cases the convex factor is minimized when xo and xv are located on the
frontier of their sets. This property can be used in a more general framework with
multiple interpolation factors, corresponding to tuples of states on the frontier of
their respective controlled invariant sets.

With these elements, the construction of an optimization-based control pro-
cedure for constrained-control becomes apparent but aside the relative low com-
plexity of the sets involved, the stability and the computational advantages need
further analysis as shown next.
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4.1.3 Properties: Feasibility and stability

Recursive Feasibility

Theorem 4.2: Recursive feasibility of IBC

Given the system (4.1) and the controlled invariant sets Ωo and Ωv with
Ωo ⊂ Ωv, the following control law :

u(k) = c∗(k)uv(k) + (1− c∗(k))uo(k) (4.7)

where u(k)o is a control action in Ωo and uv(k) is a control law in Ωv and the
convex factor c∗(k) is the solution of the optimization problem (4.6) at time k
is admissible and the origin is a stable equilibrium for the closed-loop system
with a basin of attraction Ωv.

Proof

First, thanks to the constrained control laws in Ωo and Ωv, we have:

u(k) = c∗(k) uv(k)︸ ︷︷ ︸
∈U

+(1− c∗(k)) uo(k)︸ ︷︷ ︸
∈U

It results that the IBC control law u(k) is admissible (u(k) ∈ U). Second,
we prove that x(k + 1) remains within Ωv.

x(k + 1) = Ax(k) + Bu(k)
= A(c∗(k)xv(k) + (1− c∗(k))xo(k))

+B(c∗(k)uv(k) + (1− c∗(k))uo(k))
= c∗(k) (Axv(k) + Buv(k))︸ ︷︷ ︸

∈Ωv

+(1− c∗(k)) (Axo(k) + Buo(k))︸ ︷︷ ︸
∈Ωo⊂Ωv

Stability

Theorem 4.3

The IBC controller given by (4.7) is stable if Ωv and Ωo are controlled contrac-
tive with respect to their associated controller (i.e ∀x ∈ Ωv ∃uv ∈ U s.t uv =
Kv(x) and Ax + Buv ∈ λΩv, λ ∈ [0, 1[)
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Proof

The optimized interpolation factor c∗ is a Lyapunov function in Ωv/Ωo. Fur-
thermore, there is a local Lyapunov function in Ωo which is controlled in-
variant and thus the trajectories entering in this set asymtotically converge
to the origin. The formal proof can be found in [Nguyen et al., 2013]

The previous Theorem builds on the contractive assumptions on the controlled
invariant set Ωv which can be further relaxed to the existence of a finite index N
such that the N−step forward trajectories initiated on the boundary of Ωv reach
the interior of Ωv. We do not dwell here on these theoretical notions but underline
the fact that the assumptions needed for the implementation of a IBC are mild.

Once these principles and main stability properties are established, one can
move toward the practical implementation and real-time application by provid-
ing an effective construction of the control actions on the boundary of the outer
controlled invariant set.

In [Nguyen et al., 2013], the authors demonstrate the stability of the closed-loop
using Algorithm 1 in a specific case where the following assumptions hold

• the constraints X ,U are polyhedral

• the inner set Ωo is positively invariant with respect to a linear feedback.

• the outer controller is a Vertex controller whose operating is given below

Definition 4.1: Vertex Control [Gutman and Cwikel, 1986]

Given a controlled invariant set Ωv and the dynamical system (4.1), for any
state x ∈ Ωv a constrained control action driving x toward the origin can be
computed by the following optimization problem:

minimize
λ,u

λ

subject to Ax + Bu ∈ λΩv,

u ∈ U,

λ ∈ [0, 1]

(4.8)

In other words, the vertex controller seeks a control action that pull the
trajectory away from the frontiers of Ωv. The vertex control law guarantees
recursive feasibility and asymptotic stability (by using λ∗ solution of (4.8) as
a Lyapunov function).

Thus, the stability property is guaranteed and proved in Theorem 4.4.
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Theorem 4.4: Stability of IBC

Given the previous assumptions, the IBC procedure is asymptotically stable.

Proof

We first consider the Lyapunov candidate V such that:

V (x(k)) = c∗(k) ∀x(k) ∈ Ωv/Ωo

where c∗(k) is the solution of (4.6) at instant k. We also have:

x(k + 1) = c∗(k)(Axv(k) + Buv(k)) + (1− c∗(k))(Axo(k) + Buo(k))

by setting xv(k + 1) = Axv(k) + Buv(k), xo(k + 1) = Axo(k) + Buo(k) and
c(k + 1) = c∗(k) we obtain the admissible decomposition:

x(k + 1) = c(k + 1)xv(k + 1) + (1− c(k + 1))xo(k + 1)

Since [xv(k + 1) xo(k + 1) c(k + 1)]T is a feasible solution for the convex
decomposition, the solution [xv∗(k +1) xo∗(k +1) c∗(k +1)]T of (4.6) verifies
c∗(k + 1) ≤ c∗(k). Then V is decreasing but not strictly, however we can
compare this candidate to the Lyapunov function of the vertex controller
(4.8). By noticing that the vertex controller is a particular case of the
interpolation based controller by choosing the feasible convex factor c(k) =
1 ∀k. Since the vertex controller is asymptotically stable, it leads the system
to Ωo in finite time. Finally, as Ωo is a positive invariant set, the local
controller which is also a particular case of IBC (c(k) = 0∀k) stabilizes the
trajectory around the origin.

4.1.4 LP based implementation of IBC

We now address the implementation of IBC procedure in view of our application
by assuming that Ωv and Ωo are polyhedral sets defined by:

Ωv = {x ∈ Rn/ Fvx ≤ gv} and Ωo = {x ∈ Rn/ Fox ≤ go} (4.9)

In this case, the bilinear problem (4.6) becomes a LP problem (see Definition A.16)
thanks to the variable change:

rv = cxv (4.10)
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Thus, the convex decomposition is done by the following LP problem:[
rv∗ c∗

]T
= arg min

(rv ,c)(k)
c

subject to Fvrv ≤ cgv,

Fo(x(k)− rv) ≤ (1− c)go,

c ∈ [0, 1]

(4.11)

Finally, one has to distinguish three cases:

• c∗ ∈]0, 1[, then xv∗ = rv∗/c∗ and xo∗ = (x− rv∗)/(1− c∗)
• c∗ = 0, consequently, x(k) ∈ Ωo, xv∗ = 0 and xo∗ = x(k)
• c∗ = 1, so x(k) is on the outer boundary of Ωv, xo∗ = 0 and xv∗ = x(k)

Consequently the Algorithm 1 can be implemented for real-time applications by
leveraging the maturity of the LP solvers.

Example: IBC

Given the following discrete-time double integrator:

x(k + 1) =
[
1 0.008
0 1

]
x(k) +

[
0.000032

0.008

]
u(k) (4.12)

We chose as an inner set Ωo the maximal positively invariant associated to the LQ con-
troller:

uo(x) = −
[
21.70 7.27

]
x (4.13)

as explained in Definition A.22. The outer set Ωv is the N -step controllable set leading
to Ωo in Ns = 184 steps and associated to a Vertex controller (4.8). The two sets are
depicted on Figure 4.3.

Figure 4.3: Representation of Ωo and Ωv in the state-space

We aim to compare here IBC with classical MPC controller such as (2.18) with a large
prediction horizon N = 200 and using Ωo as a terminal set. The trajectories of the two
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controllers are depicted on Figure 4.4 while the control signals and the computation times
are represented on Figure 4.5.

0 100 200 300 400 500 600 700 800
0

1

2

3

x 1

IBC
MPC

0 100 200 300 400 500 600 700 800
−3

−2

−1

0

x 2

IBC
MPC

Figure 4.4: Left: State space trajectories. Right: trajectories in the time
domain
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Figure 4.5: Left: Control signals. Right: Execution time

One can notice the higher speed of convergence of the trajectory toward the origin in the
IBC case with a lower computationnal burden.

4.2 Interpolation Based Control for tracking

4.2.1 Framework/ Command governors
The increase of computational capacities allowed the use of MPC in order to handle
constraints. When this is used in a tracking problem, it aims to minimize a tracking
error over a time horizon using the prediction of future states based on system
model (2.18). The last constraint inherited from the classical regulation problems
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imposes the predicted state to reach the positively invariant subset Xf ⊂ Rn to
guarantee the recursive feasibility of the whole procedure. However, in the tracking
framework such a constraint is drastically reducing the performances and can even
jeopardize the feasibility in itself if it has to be considered jointly with a constrained
on the tracking error. In order to cope with these shortcoming, the terminal
constraints are generally parameterized and replaced with an invariant set adjusted
in accordance with the reference to be tracked.

If the reference has a known dynamics that can be exploited in the prediction
model, but the inclusion of reference dynamics makes the prediction and the opti-
mization more difficult in term of computational burden as long as those reference
signals are considered as part of the parameter vector. The reference signal can
also imply a response that do not satisfy the constraints, the reference and com-
mand governors modify the reference so that no infeasibility occurs. The scheme
on Fig. 4.6 summarizes constraint tracking operating, the plain part concerns the
case where the reference is feasible, the controller works normally whereas the
dashed part concerns the Reference Governor (RG) that modifies the reference.
One simple solution consists in reducing the reference, thus the controller aims to
reproduce a proportion of the reference signal given by the optimization problem:

maximize
λ

λ

subject to Feasibility of (2.22) for r = λyref as reference,

λ ∈ [0, 1]
(4.14)

A second approach consists in finding the closest admissible reference thanks
to the resolution of an optimization problem:

minimize
r

∥yref − r∥2
Qy

subject to Feasibility of (2.22) for r as reference
(4.15)

In the regulation case, Interpolation Based Control offers similar performance
as MPC with a least computational burden, consequently the idea of this work is
to develop a tracking procedure using IBC philosophy.

To introduce the IBC-based tracking procedure, we recall a theorem on homo-
geneity of controllable invariant sets that will be used further. The main results
are then presented first by principles and subsequently through the mathematical
formulations.

4.2.2 Preliminaries
Before stating the main constructive results towards a IBC strategy for tracking,
let us recall some basic properties of the controlled invariant sets.
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MPC Plant
r(k) u(k)

y(k)

x(k)

RG
yref

t

yref

k t

yref

ŷ
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Figure 4.6: Constrained tracking using MPC

Lemma 4.1: Homogeneity of Controlled Invariance

If a given set Ω is controlled invariant with respect to (4.1), U and X as input
and state constraints sets, then for all α ∈ [0, 1] αΩ is a controlled invariant
set with an admissible control action in αU .

Proof

Let Ω be a controlled invariant set and α ∈ [0, 1]. If α = 0, then αΩ = {0}
and the trivial choice u = 0 renders the set αΩ controlled invariant. For
α ∈]0, 1] and ξ0 ∈ αΩ, there exists x0 ∈ Ω such that x0 = ξ0/α. Due to the
controlled invariance of Ω, there exists u0 ∈ U such that :

x1 = Ax0 + Bu0 ∈ Ω
ξ1/α = A(ξ0/α + Bu0) ∈ Ω

ξ1 = Aξ0 + Bαu0 ∈ αΩ

By writing v0 = αu0 :

There exists v0 ∈ αU such that ξ1 = Aξ0 + Bv0 ∈ αΩ

4.2.3 Principle
The challenge in the IBC case which is based on local controlled invariant sets, is
their translation along the trajectory to be tracked which may lead to the loss of
control invariance in the presence of input and state constraints.

In the following procedure, the translation of the sets will be accompanied by
a re-scaling of those sets thus enforcing the feasibility properties.

The Interpolation Based Tracking (IBT) strategy will construct a control action
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u(k) to follow the reference as a trade-off between a control action ũ(k) that
generates a new virtual feasible reference trajectory for the system and a control
action v(k) that compensates the tracking error between the new reference and
the current state with an IBC regulation with

u(k) = ũ(k) + v(k).

The procedure is illustrated in the Fig4.7.

Stage 1: Reference Governor

• At step k, the reference governor finds ũ(k) and a scaling factor α(k)
such that the virtual state x̃(k + 1|k) minimizes the distance to the real
reference at the next step.

• The virtual state will satisfy the same dynamics as the nominal system
at least for the current state.

• The virtual state is constrained to a neighborhood of the current state
such that the error

ε(k) = x(k)− x̃(k) (4.16)
is located in the re-scaled set α(k)Ωv which is a controlled invariant
according to Lemma 4.1.

• This re-scaled controlled invariant centered on the virtual state has to
be included in the global controlled invariant set Ωv. This will be one of
the main ingredients to prove the satisfaction of the global constraints.

• The contribution of the reference governor is higher if the current state
x(k) and the virtual state x̃k|k are close i.e if the scaling factor α(k) is
small.

• This action, ũ(k), has to lead the virtual state in another feasible neigh-
borhood.

Stage 2: Convex decomposition
The IBC procedure is applied to the error dynamics:

ε(k) = x(k)− x̃(k)

in the re-scaled sets αΩo and αΩv. A regulation action v(k) is found based
on standard IBC.

Stage 3: Convex combination
The applied control action u(k) is the combination of the reference governor
control vector ũ(k) and the regulation action v(k).
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The block diagram on Figure 4.7 summarizes the procedure. One can notice
that the global structure aims to drive the IBC block given on Figure 4.1
(filled in grey) thanks to the outputs of the reference governors.

Reference
Governor

⊗ IBC ⊗ Σ

× ×xk

xk

xrefk+1 ũk

αk

x̃k εk vk uk

Ωo Ωv

-
+

+
+

Figure 4.7: Block diagram of IBC for tracking

The Figure 4.8 provides a geometrical interpretation of the reference governor
role based on the illustrative scheme of IBC of the Figure 4.2. At the instant
k, the reference governor builds the set x̃(k)⊕ α(k)Ωv including the current
state x(k) such that the one step ahead set x̃(k + 1) ⊕ α(k)Ωv using the
current scaling factor α(k) remain within the boundaries of Ωv.

In other words, the reference governor finds and builds an admissible neigh-
borhood for the current state where the IBC procedure can be done on the
tracking error (4.16).

4.2.4 Mathematical formulation of the approach

Step 1: Reference Governor

Assume the current state x(k) to be in the controlled invariant Ωv, the ref-
erence governor if implemented through the resolution of the following opti-
mization problem at each sampling time:
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x(k)+

xref (k + 1)
+

x̃(k)
+

x̃(k + 1)
+

Ωv X

x̃(k)⊕ α(k)Ωv

x̃(k + 1)⊕ α(k)Ωv

Figure 4.8: IBC for Tracking Geometric interpretation

[
ũ(k)
α(k)

]
= arg min

(ũ(k),α(k))
∥xref (k + 1)− x̃(k + 1|k)∥2

Q

subject to x̃(k + 1|k) = Ax̃(k|k) + Bũ(k),
x(k) ∈ {x̃(k|k)} ⊕ α(k)Ωv,

{x̃(k|k)} ⊕ α(k)Ωv ⊂ Ωv,

ũ(k) ∈ (1− α(k))U ,

{x̃(k + 1|k)} ⊕ α(k)Ωv ⊂ Ωv

(4.17)

The results of the optimization (4.17) lead to a solution ũ(k) which provides
practically a virtual trajectory x̃(k) that satisfies the dynamical constraints
of the internal model (1). Thus, Stage 2 is enabled based on the parameters
α(k) and x̃(k).

Step 2: Convex Decomposition

The regulation problem around the virtual reference is addressed through
an IBC applied to the error between the current state and the virtual state
(4.16). The optimization performs the convex decomposition of the error
between the re-scaled outer set α(k)Ωv and the re-scaled inner set α(k)Ωo.
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εv(k)
εo(k)
c(k)

 = arg min
(εv(k),εo(k),c(k))

c(k)

subject to εv(k) ∈ α(k)Ωv,

εo(k) ∈ α(k)Ωo,

ε(k) = c(k)εv(k) + (1− c(k))εo(k),
c(k) ∈ [0, 1]

(4.18)

The optimization (4.18) provides regulation errors in inner εo(k) ∈ α(k)Ωo

and outer sets εv(k) ∈ α(k)Ωv and the convex factor c(k) which defines which
regulation action is preponderant.

Step 3: Convex Composition

The control action at step k is computed with the following formula:

u(k) = ũ(k) + c(k)vv(εv(k)) + (1− c(k))vo(εo(k)︸ ︷︷ ︸
v(k)

) (4.19)

where vv(k) and vo(k) are control actions that leaves α(k)Ωv and α(k)Ωo

invariant (those actions exist due to the controlled invariance properties).
Thus u(k) is applied to the system (4.1) to compute x(k +1). Then, the IBT
will be implemented with the 3 stages procedure.

4.2.5 Properties

Preliminaries

First, let us recall a characterization of convex sets based on Minkowski sums that
will be used further:

Lemma 4.2: Convex sets and Minkowski sum

A set C is convex if and only if :

λC ⊕ (1− λ)C = C, ∀λ ∈ [0, 1] (4.20)
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Proof

∀λ ∈ [0, 1] λC ⊕ (1− λ)C = {λx + (1− λ)y | (x, y) ∈ C} = C

Lemma 4.3: Convex polyhedron and Minkowski sum

Let C a convex polyhedron , x ∈ Rn and α ∈ [0, 1].

{x} ⊕ αC ⊂ C ⇐⇒ x ∈ (1− α)C

Proof

{x ∈ Rn | {x} ⊕ αC ⊂ C} = C ⊖ αC

and according to the previous characterization :

C ⊖ αC = [(1− α)C ⊕ αC]⊖ αC

= (1− α)C ⊕ αC ⊖ αC

= (1− α)C

Recursive feasibility

Once the methodology proposed for the Interpolation-based Tracking is clarified
(in terms of the optimization to be solved in real-time and the construction of
the set-parametrizations as well as the control action), we can concentrate on the
analysis of the closed loop properties according to the classical desiderata for any
recursive optimization-based strategy.

Lemma 4.4

For all x0 ∈ Ωv there exists x̃0 ∈ Ωv such that (4.17) is feasible.

Proof

We observe that there exist at least two feasible choices x̃0 = 0 or x̃0 = x0.
If x̃0 = 0, then α = 1 and any ũ0 ∈ U is a feasible choice. If x̃0 = x0, then
any α ∈ [0, 1] and ũ0 = 0 is a feasible choice.
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This first result is particularly important as long as it offers a safe basic solution
whenever the reference trajectory to be tracked is evolving dynamically. In other
words, one can always choose the origin as a feasible virtual reference to be tracked.

Proposition 4.1

Given x(k), x̃(k) and xref (k), if (4.17) is feasible and

x(k + 1) ∈ {x̃(k + 1|k)} ⊕ α(k)Ωv, (4.21)

then (4.17) is feasible for the pair of parameters x(k + 1|k), x̃(k + 1|k) found
as optimal solutions for (4.17) at step k and any xref (k + 1).

Proof

Assume (4.17) is feasible at step k and

x(k + 1) ∈ {x̃(k + 1|k)} ⊕ α(k)Ωv

By considering the feasible choice: x̃(k + 1|k + 1) = x̃(k + 1|k), the feasible
choice α(k + 1) = α(k) ∈ [0, 1] can be considered.

{x̃(k + 1|k)} ⊕ α(k)Ωv ⊂ Ωv ⇒ {x̃(k + 1|k + 1)} ⊕ α(k + 1)Ωv ⊂ Ωv

According to Lemma 4.3:

{x̃(k + 1|k + 1)} ⊕ α(k + 1)Ωv ⊂ Ωv ⇒ x̃(k + 1|k + 1) ∈ (1− α(k + 1))Ωv

x̃(k + 1|k + 1) ∈ (1− α(k + 1))Ωv, so there exists ũ ∈ (1− α(k + 1))U such
that:

x̃k+2|k+1 = Ax̃(k + 1|k + 1) + Bũ ∈ (1− α(k + 1))Ωv

Let ũ(k) ∈ (1− α(k + 1))U such that

x̃k+2|k+1 = Ax̃(k + 1|k + 1) + Bũ ∈ (1− α(k + 1))Ωv

According to Lemma 4.3:

x̃k+2|k+1 ∈ (1− α(k + 1))Ωv ⇒ {x̃k+2|k+1} ⊕ α(k + 1)Ωv ⊂ Ωv

With this result, a step forward is made toward a recursive construction and re-
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utilisation of the previous feasible solution. What is particularly important here is
that the feasibility of the optimization problem at time step k+1 is independent of
the reference signal to be tracked. This last one is considered in the cost functions
but is not linked to a constraint that can be rendered unfeasible.

Proposition 4.2

If (4.17) is feasible, then (4.18) is feasible for the respective solutions α(k)
and ũ(k).

Proof

ε(k + 1) = x(k + 1)− x̃(k + 1|k + 1)
= A(x(k + 1)− x̃(k|k + 1)) + B(u(k)− ũ(k))
= Aε(k) + Bv(k)
= A(c(k)εv(k) + (1− c(k))εo(k)) + B(c(k)vv(k) + (1− c(k))vo(k))
= c(k)(Aεv(k) + Bvv(k)) + (1− c(k))(Aεo(k) + Bvo(k))

Aεv(k) + Bvv(k) ∈ α(k)Ωv according to the invariance of α(k)Ωv at step k
and Aεo(k) + Bvo(k) ∈ α(k)Ωo. We choose:

c(k + 1) = c(k),
εv(k + 1) = Aεv(k) + Bvv(k),
εo(k + 1) = Aεo(k) + Bvo(k).

Proposition 4.3

If (4.17) and (4.18) are feasible, then u(k) computed in (4.19) satisfies u(k) ∈
U and the condition x(k + 1) ∈ {x̃(k + 1|k)} ⊕ α(k)Ωv holds.

Proof

uv(k)(εv(k)) ∈ αU and uo(k)(εo(k)) ∈ αU according to Lemma 4.1. Then
their convex combination : c(k)uv(k)(εv(k)) + (1− c(k))uo(k)(εo(k)) ∈ αU .
Thus, u(k) is a combination of two elements of α(k)U and (1 − α(k))U, so
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u(k) ∈ U .

x(k + 1)− x̃(k + 1) = Ax(k) + Bu(k)− (Ax̃(k) + Bũ(k))
= A(x(k)− x̃(k))+

+ B(ũ(k) + c(k)vv(k) + (1− c(k))vo(k))−Bũ(k)
= A(x(k)− x̃(k)) + B(c(k)vv(k) + (1− c(k))vo(k))

Due to constraints (4.17) : (x(k)− x̃(k)) ∈ α(k)Ωv. Additionally the control
action c(k)vv(k) + (1 − c(k))vo(k) is constructed to leave the current error
invariant in α(k)Ωv. Consequently (x(k + 1)− x̃(k + 1)) ∈ α(k)Ωv.

These last two results allow to guarantee that the feasibility is not lost at the
stage 2 and respectively 3 of the IBT procedure and enables the statement of the
next results.

Proposition 4.4

The IBC for tracking procedure is recursively feasible.

Proof

Lemma 4.4 guarantees the initialization of optimization (4.17). Let (4.17) be
feasible at step k. Then (4.18) is feasible at step k according to Proposition
4.2 and it implies that the condition: x(k +1) ∈ {x̃(k +1|k)}⊕α(k)Ωv holds
thanks to Proposition 4.3. Consequently, (4.17) is feasible at step k + 1
thanks to Proposition 4.1.

Practical Implementation and discussion

The optimization (4.17) is a QP problem if Ωv and Ωo are polyhedrons and the com-
plexity of the optimization arguments is (m + 1) and (4.18) is a bilinear program-
ming problem of complexity (2m+1) that can be rewritten in terms of a LP prob-
lem following the transformation based on the change of variable rv(k) = c(k)εv(k)
as showed in Section 4.1.4.

The choice of the initial virtual state x̃0 is important for the behavior of the
system, if x̃0 = 0 then, the optimization problem (4.17) has more degrees of
freedom to choose a higher scaling factor α(k) and consequently to make the
regulation be preponderant at the beginning until the trajectory of the system
(1) reaches the virtual reference where α(k) is close to 0. If x̃0 = x0 then the
optimization (4.17) is always preponderant if there is no perturbation. It can
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be noted that there is no weighting on the control action ũ(k) as this would be
redundant with the constraint.

Few remarks can be done with respect to qualities of the generic tracking
method based on the IBT and the conservativeness of the proposed approach.
First of all, the assumptions on convexity and most importantly on the one-step
positive invariance of inner and outer sets seem difficult to drop without canceling
the structural properties of the optimization problems involved in the IBT. While
this is true for the convexity, it will be shown in the next chapter that the rigid
one-step invariance can be relaxed opening the way to a wide range of alternative
construction.

If we focus on the inner and outer sets that have been used in the constructions
of this chapter, one can remark that their topology doesn’t change and the opti-
mization problems are handling only translations and scalings. The flexibility and
the performances of the tracking policy can be enhanced if the sets are constructed
at each step by optimizing their shape. Such constructions are computationally
intensive although less conservative. They either involve set iterations or bring
the optimization towards the nonlinear programming framework which deserve
particular care from the global optimality and the computational load.

The constraints and the optimization complexity depend directly on the rep-
resentation of the outer set. In the present work, the outer set is polyhedral, as
linear constraints account to the number of half-spaces of the outer set. We stress
the fact that for real-time systems, identifying the subset of active constraints can
bring an important decrease of complexity for the optimization. If the reference
signal is know in advance, such a pre-positioning of the constraints can be sought.

4.2.6 Optimizing the virtual feasible reference
In this subsection, we propose an extended formulation for the reference governor
(4.17) by optimizing the virtual state x̃ at the same time with the control action ũ
and the scaling factor α. Consequently, the reference governor problem becomes:

minimize
( ˜x(k),ũ(k),α(k))

∥xref (k + 1)− x̃(k + 1|k)∥2
Q

subject to x̃(k + 1|k) = Ax̃(k|k) + Bũ(k),
x(k) ∈ {x̃(k|k)} ⊕ α(k)Ωv,

{x̃(k|k)} ⊕ α(k)Ωv ⊂ Ωv,

ũ(k) ∈ (1− α(k))U ,

{x̃(k + 1|k)} ⊕ α(k)Ωv ⊂ Ωv

(4.22)
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Theorem 4.5

The tracking procedure based on optimization (4.22) is recursively feasible.

Proof

The proof is the same as the one provided for the previous procedure.

By finding the virtual state as an optimization variable in the problem (4.17),
the procedure resets x̃(k) at each time step and thus the trajectory is less conser-
vative and the controller more aggressive in the sense that arbitrary changes in
the reference will be transmitted in the virtual reference.

Example: IBT

Consider the discrete-time linear system:

x(k + 1) =
[
1 0.08
0 1

]
x(k) +

[
0.0032
0.08

]
u(k) (4.23)

subject to:

 −2.6 ≤ x1 ≤ 2.6
−3 ≤ x2 ≤ 3
−5 ≤ u ≤ 5

We consider, as the inner set Ωo, the maximal admissible positively invariant set with
respect to the linear feedback law:

u(k) = −
[
16.6529 6.2331

]
x(k) ∀k ∈ N (4.24)

We consider as the outer set a N -Step controlled invariant set reaching to Ωo CN (Ωo)
associated to a Vertex control law (4.8)
The ideal reference is a trajectory that leaves the state constraints set. The initial state
of the virtual admissible reference is set to the origin. The initial state of the system is on
the frontier of the controlled invariant CN (Ωo) at a vertex state with a zero initial speed.
The IBT is implemented according to the procedure provided in the Section 4.2.3
Figures 4.9-4.10-4.11 present the simulations obtained for the numerical model. Figure
4.10 presents the controlled invariant CN (Ωo) and the relative positions of the reference
signal, virtual reference and the state trajectory. Figure 4.11 details the time dependence
for the IBT and the extended IBT strategies allowing to observe the controller first finds
a scaling factor α0 = 1. This can be understood by the fact that the control action is
equivalent to the one of a IBC regulation to the origin. Another natural conclusion is that
higher the scaling factor, more conservative the reference governor through the virtual
reference.
Whenever the regulation manages to lead the system close to the virtual reference, the
scaling factor decreases and the reference governor generates the full control input and
coincides with the system state. Reference governor control part is scaled by (1−α(k))U
and the IBC part is scaled by α(k)U .
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Figure 4.9: Scaling factor α for IBT (blue) and for extended IBT (red)

For the standard IBT, the virtual trajectory tends to move away from the frontier due to
the conservativeness induced on one hand, by the re-scaling of the outer set instead of its
reconstruction and, on the other hand by the dynamics imposed to the whole trajectory.
The dynamics of the extended IBT solution is less constrained by the reset of the virtual
state x̃ at each step. However, the structural properties of the scheme is exclusively based
on convex (LP/QP) optimization and thus the computational performances prove to be
very attractive.

Figure 4.10: Left : Trajectories for the IBT of the real reference xref (black,
dashed),the virtual reference x̃ (blue, dashed) and the system x (blue),
Right : Trajectories for the extended IBT of the real reference xref (black,
dashed),the virtual reference x̃ (red, dashed) and the system x (red)
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Figure 4.11: Left column : state and input trajectories for IBT, Right col-
umn: state and input trajectories for extended IBT

4.3 Interpolation Based Tracking for MCA
In this section we get back to the core application of the thesis and describe the
IBT strategy in this framework. The particularity of this application would be
the cost function which includes the washout component and the fact that the
future trajectory to be tracked is not necessarily known in advance as it is the case
for tracking MPC strategy. This last feature has advantages and disadvantages.
On the positive side, we obtain a MCA control algorithm which is reactive with
respect to the short term accelerations to be tracked thus avoiding delays and
consequently the motion sickness. On the disadvantage one can count an activation
of the position constraints at a relative late stage, which is inherent to the lack of
anticipation, which is proper to MPC.

The enhancement of MCAs in order to improve the performance of acceleration
rendering during the trajectory tracking in optimization-based MCA can benefit
from the interpolation-based tracking strategies. Classical optimization-based al-
gorithms generate delays due to computational complexity, particularly when an
anticipation is hard to provide for high frequencies reference signals. The IBT
handles low complexity optimization problems by guaranteeing recursive feasibil-
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ity and stability.
This IBT technique needs less parameters to tune and a significative part of op-

erations are done offline such as construction of the maximal controllable set which
is essential ingredient to guarantee recursive feasibility of optimization problems
and to exploit additional degrees of freedom as possible. The main conceptual
step forward is that MCA handles real-time information during the simulation to
perform the acceleration tracking by avoiding constraints manipulations on a long
prediction horizon.

In this section we only consider the rail dynamics and we recall its model (See
Section 2.2.2) below:

x(k + 1) =
1 Ts

0 1

 x(k) +
1

2T 2
s

Ts

 u(k) (4.25)

where Ts denotes the sampling time. At each sampling time k, x(k) =
[
p(k) v(k)

]⊺
denotes the vector of position p(k) and speed v(k) while u(k) = a(k) denotes the
acceleration of the system according to a direction. Consider an acceleration ref-
erence uref , then a classical formulation for model predictive controller for MCA
with respect to model (4.25) would be:

minimize
u(k),...,

u(k+Nh−1)

Nh∑
k=0
∥uref (k)− u(k)∥2

R + ∥x(k)∥2
Qx

+ ∥x(Nh)∥2
P

subject to x(k) ∈ X , ∀k ∈ {1, . . . , Nh},
u(k) ∈ U , ∀k ∈ {0, . . . , Nh − 1},
x(Nh) ∈ Xf

(4.26)

However, in the driving simulation the reference acceleration profile can be a
priori unknown and the performance of the MPC controller increases with the
prediction horizon Nh, consequently the controller is not practically adapted to
small prediction horizons. Moreover the trade-off between prediction length and
complexity of the optimization problems implies performing MPC controllers have
to handle many constraints and thus impact the optimization solving routine.

Example: IBT-MCA

In this section, we consider the lateral acceleration rendering during a slalom phase with
respect to two MCAs:

1. MPC-MCA (4.26) with a prediction horizon of 3.2 seconds.

2. IBT-MCA with a convex polyhedral outer set Ωv built as a N -step controllable set
reaching Xf .



4.3. INTERPOLATION BASED TRACKING FOR MCA 93

Figure 4.12 (resp Figure 4.13) depicts the state space trajectory of the system with respect
to the IBT-MCA (resp MPC-MCA), The largest controlled invariant set CN is represented
in blue and the outer set Ωv in red. The better exploitation of the state space of the IBT-
MCA can be noticed

Figure 4.12: State-space trajectory for IBT

Figure 4.13: State-space trajectory for MPC

The comparison of acceleration renderings is depicted on Figure 4.14, during the slalom.
The acceleration rendering of IBT appears to reproduce better the shape of the reference
particularly during the period of variation change (from 4.5 to 5s).
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In the field of constrained control, the Dual Mode paradigm allowed the emer-
gence of efficient control techniques based on finite-dimensional real-time opti-
mization for constrained dynamical systems. The Dual Mode paradigm consists
in making the states of a system evolve along a trajectory within a feasible or
controllable set until they reach a positively invariant terminal set associated to a
stabilizing linear local control law [Mayne et al., 2000].

95
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Thus, Model Predictive Control (MPC) applies this scheme on a receding hori-
zon in order to guarantee the recursive feasibility of the closed loop. It should be
noted that this paradigm is also implicitly embedded in alternative techniques such
as Interpolation-Based Control [Nguyen et al., 2011a, Nguyen et al., 2013, Nguyen,
2014] which do not need a prediction horizon and has comparable performance as
MPC with less computational load. Indeed, one of the interpolation terms is a
"local" control invariant set which practically plays the role of a terminal set in
dual-mode MPC.

Many works give methods to build positively invariant sets for discrete time lin-
ear systems [Gutman and Cwikel, 1986, Gilbert et al., 1995], their characterization
with Farkas lemma [Bitsoris, 1988, Dorea and Hennet, 1999], extension to uncer-
tain systems [Blanchini and Miani, 2008] and this field is actually in development
nowadays for nonlinear systems.

However, those sets on one hand may be difficult to compute and on the other
hand can be difficult to use in optimization problems due to their complexity.
More complex the positively invariant set is, the more constraints optimization
solver has to handle. Finally lesser volume of the positively invariant set within
the feasible set tends to make the controlled dynamics more conservative in terms
of domain of attraction for the closed loop.

A solution to those drawbacks was to consider simpler sets with a priori given
complexity (or polyhedral approximation of positively invariant set) [Athanasopou-
los et al., 2014, Hovd et al., 2014, Scibilia et al., 2011],as terminal sets. Another
approach relaxed the positive invariance properties and thus may allow a trajec-
tory to leave for some instants the terminal set before returning in it which define
one of the first notions of periodic invariance [Lee, 2004, Lee and Kouvaritakis,
2006]. The stability and dual-mode principle can still be used based on such con-
structions as long as the terminal set is in the interior of a controlled invariant
set.

This chapter deals with p-invariant sets and aims to introduce new concepts, to
formally describe their properties and point to the constructive procedures. Their
potential of computation load alleviation for optimization problem solving is one
of the motivation for the analysis of this concept.

Moreover, we consider two notions of p-invariance,

• weak invariance that offers new perspectives of validation of static constraints

• a strong invariance which is more restrictive but easier to use for control
design.

In order to introduce those properties of p-invariance we propose firstly adress
the weak satisfaction of constraints that is the case where a trajectory is allowed
to violate a constraint during a finite time sequence. This weak satisfaction of
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a constraint by a trajectory or a tube of trajectories leads to the notion of weak
p-invariance for a set. Once such a property is established, it guarantees that every
trajectories initiated in such a set returns in it in a finite time window.

A strong version of constraint satisfaction and invariance can be derived from
the weak ones. Thus, a trajectory or a tube of trajectories starting in the considered
set has to return in it before a finite time.

In a first part we will consider the notions of p-invariance for autonomous
systems by introducing tools for analysis of such configurations. Then we will
develop to what extent those concepts can be used to controllable systems and
underlined properties and applications.

5.1 p-invariance for autonomous systems

Let us focus on autonomous discrete-time systems whose model is recalled below:

x(k + 1) = f(x(k)) (5.1)

5.1.1 p-satisfaction of constraints

For a continuous convex function h : Rn → R, we define the sublevel set of h as
follows 1:

L(h) = {x ∈ Rn | h(x) ≤ 0} (5.2)

The main goal is to study the set-membership for a trajectory of (5.1) with
respect to the sublevel set. In this purpose we define the Validation Index Set.

Definition 5.1: Validation Index Set

A Validation Index Set (VIS) V(x0, f, h) ⊂ N is an ordered collection of indices
i ∈ N whose states x(i) belong to the sublevel set L(h).

1In this work we will refer indifferently to satisfaction of the constraint h(x) ≤ 0 and the
inclusion x ∈ L(h) through the satisfaction of L(h)



98 CHAPTER 5. P-INVARIANCE

Definition 5.2: Maximal Validation Index Set

The maximal Validation Index Set (mVIS) is the maximal ordered collection
of indices VIS (w.r.t set inclusion). It can be formally described as:

Vm(x0, f, h) =
{
t ∈ N | x(t) = f t(x0) ∈ L(h)

}
(5.3)

where f t is the power tth power of f i.e f t(x) = f(f(f(...)))︸ ︷︷ ︸
t times

(x).

where we recall that f(.) is single value
Assume the autonomous dynamic system (5.1), a constraint modeled by a

sublevel set L(h) (5.2), and let us focus on the case for which a trajectory violates
the constraint for a finite time interval before satisfying it again.

Definition 5.3: Weak p-satisfaction of constraint

Given finite p ∈ N∗, the trajectory of the system (5.1) initiated in x0 ∈ Rn is
weakly p-satisfying the constraint L(h) if it exists a function r : N → N[1,p]
such that x(k + r(k)) ∈ L(h) for any k ∈ N.

In other words, a trajectory weakly p-satisfies a constraint if we can assure it
reaches L(h) at least once during any time interval of length p. This notion is
illustrated on Fig. 5.1 for a generic trajectory.

We provide a necessary and sufficient condition of weakly p-satisfaction of a
trajectory with respect to a constraint.

Theorem 5.1

Given a finite p ∈ N∗, the trajectory of the system (5.1) initiated in x0 weakly
p-satisfies the constraint L(h) if and only if :

• the mVIS Vm(x0, f, h) is unbounded

• The difference between two consecutive elements is bounded and:

σ = max
j∈N

tj+1 − tj

s.t. (tj, tj+1) ∈ Vm(x0, f, h)
(5.4)

• σ ≤ p



5.1. P-INVARIANCE FOR AUTONOMOUS SYSTEMS 99

Proof

If the trajectory weakly p-satisfies L(h) then there exists a function r : N→
N[1,p] such that

x(k + r(k)) ∈ L(h) ∀k ∈ N

and the mVIS verifies:

S = {r(0), r(0) + r(r(0)),
r(0) + r2(0) + r(r(0) + r2(0)), . . . } ⊂ Vm(x0, f, h)

S being an nonempty and unbounded subset of Vm(x0, f, h), the optimiza-
tion problem is feasible (any element tj ∈ Vm(x0, f, h) has a successor
tj+1 ∈ Vm(x0, f, h) in this ordered set).
Consider any pair of successive points (tj, tj+1) ∈ Vm(x0, f, h)×Vm(x0, f, h)
with tj ≥ r(0) it exists a pair of successive points (si, si+1) ∈ S × S such
that si ≤ tj ≤ tj+1 ≤ si+1.

tj+1 − tj ≤ si+1 − si

≤ r(si)
≤ p

For any pair of successive points (tj, tj+1) ∈ Vm(x0, f, h)×Vm(x0, f, h) with
tj < r(0) we have tj+1 ≤ r(0) because Vm(x0, f, h) is the maximal VIS. It
follows that:

tj+1 − tj ≤ r(0)− tj ≤ r(0) ≤ p

For the sufficiency, one can note that Vm(x0, f, h) = (ti)i∈N being (ordered)
unbounded set then one can define the function :

r : N −→ N[1,p]

r(k) =
{

t0 − k if k < t0
tj+1 − k if tj ≤ k < tj+1

thus k + r(k) ∈ Vm(x0, f, h) and the trajectory (x(k))k∈N is weakly p-
satisfying the constraint according to Def. 5.3.

In other words, a trajectory weakly p-satisfies a constraints if and only if two
successive elements of the mVIS are separated by a distance bounded by p.

Notions of VIS and weak p-satisfaction can be extended to configuration with
vector constraint hm : Rn → Rm, where hm = [hm

1 , . . . , hm
m]⊺
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Figure 5.1: Left: the trajectory satisfies the constraint h(x) ≤ 0 with an index 3.
Right: No p-satisfaction of constraint

Definition 5.4: Weak vector-constraint satisfaction

A trajectory of the system (5.1) initiated at x0 ∈ Rn weakly p-satisfies the
vector constraint L(hm) if it exists a function r : N→ Nm

[1,p] such that

x(k + ri(k)) ∈ L(hm
i ),∀i ∈ {1, . . . , m}

for any k ∈ N where ri(.) is the i-th component of r.

Theorem 5.2

The trajectory of the system (A.25) weakly satisfies the m−dimensional vector-
constraint L(hm) if and only if

• All the VIS V(x0, f, hm
i ) with i ∈ N[1,m] are unbounded;

• The following optimization problem has a bounded solution:

max
i∈N[1,m]

max
j∈N
{tj+1 − tj}

s.t. tj ∈ Vm(x0, f, hm
i )

(5.5)

Proof

According to Theorem 5.1 applied here for each i ∈ N[1,m], the constraint
L(hm

i ) is weakly satisfied by the trajectory if and only if the optimization
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problem (5.4) has bounded solution.
As a consequence, the optimization (5.5) is feasible and has a bounded so-
lution given by the most conservative index of weak satisfaction.

Remark. The weak satisfaction of the multiple constraints doesn’t guarantee the
simultaneous satisfaction of constraints on a finite time interval. The Fig. 5.2
illustrates this feature using a dynamics provided in [La Salle, 1976]:

x(k + 1) =


ax2(k)

1 + x2
1(k)

bx1(k)
1 + x2

2(k)

 = f(x(k)) (5.6)

Figure 5.2: Non-simultaneous satisfaction of constraints together with the valida-
tion of a weak satisfaction of constraints with a index 2.

The same notions can be also extended to tube of trajectories.

Definition 5.5: Validation Index Set for tube of trajectories

The mVIS defined in Definition 5.1 with respect to a scalar constraint L(h)
and the system (5.1) can be extended for tube of trajectories initiated in
X ⊂ Rn with the following formulation :

Vm(X, f, h) = {t ∈ N | f t(X) ⊂ L(h)}. (5.7)
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In other words, for a given subset X of Rn, the mVIS Vm(X, f, h) is an ordered
subset of N which collects the indices of successive images of initial conditions in
X via f(.) such that the trajectories are simultaneously included in the sublevel
set Lh.

Proposition 5.1

The mVIS for tubes of trajectories is the intersection of mVIS for each indi-
vidual trajectories within the tube:

V(X, f, h) =
⋂

x∈X

V(x, f, h) (5.8)

Proof

V (X, f, h) = {t ∈ N | f t(X) ⊂ L(h)}
= {t ∈ N | ∀x,∈ Xf t(x) ∈ L(h)}
= ⋂

x∈X
{t ∈ N | f t(x) ∈ L(h)}

= ⋂
x∈X
V(x, f, h)

Definition 5.6: Weak p-satisfaction of constraint for tubes

Given p ∈ N∗, the trajectories of the system (5.1) initiated in X ⊂ Rn weakly
p-satisfy the vector constraint L(hm) if it exists a function r : N→ Nm

[1,p] such
that

x(k + ri(k)) ∈ L(hm
i ),∀i ∈ {1, . . . , m}

for all x0 ∈ X and for any k ∈ N where ri(.) is the i-th component of r.
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Theorem 5.3

The tube of trajectories of the system (5.1) initiated in X ⊂ Rn weakly p-
satisfies the m−dimensional vector-constraint L(hm) if and only if

• All the mVIS V(X, f, hm
i ) with i ∈ N[1,m] are unbounded;

• The following optimization problem has a bounded solution:

max
i∈N[1,m]

max
j∈N
{tj+1 − tj}

s.t. (tj, tj+1) ∈ Vm(X, f, hm
i )

(5.9)

Proof

Theorem 5.3 is verified if and only if every trajectory initialised in X weakly
p−satisfy the vector-constraint L(hm) and consequently if and only if every
trajectory verifies Theorem 5.2.

Up to this point, the set of initial conditions X ⊂ Rn was considered to be
independent of the constraints whose satisfaction is under study i.e. hm(x) ≤ 0.
In the case the set is defined as X = L(hm) one can talk about the self p-satisfaction
of constraints.

5.1.2 Weak p-invariance
In the previous section we defined notions of p-satisfaction of constraints for tra-
jectories and tubes of trajectories which give rise to the definition of p-invariance
properties for a set with respect to a dynamical system..

A set can be defined as an intersection of constraints and the weak p-satisfaction
of each such constraint can be analysed in the previous framework. If this analysis
is carried out with respect to initial states in the set itself we move from the
satisfaction of constraints by a tube of trajectories towards the weak notion of
p-invariance of a set.

First the notions are presented in a general nonlinear framework and subse-
quently, the properties are shown to lead to constructive indices in the LTI case
considering polyhedral sets.

We define the weak p-invariance with the same tools than previous notion of
constraints satisfaction:
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Definition 5.7: Weak invariance

Let p ∈ N. The set Ω ⊂ Rn is weakly p-invariant with respect to the system
(5.1) if for any x0 ∈ Ω, it exists a function r : N→ N[1,p] such that x(k+r(k)) ∈
Ω for any k ∈ N.

Proposition 5.2

A set Ω ⊂ Rn is weakly p-invariant with respect to the system (5.1) if and
only if the constraint h(x) ≤ 0 defined by the function:

hΩ : Rn −→ R

hΩ(x) =
{

1 if x /∈ Ω
−1 if x ∈ Ω

(5.10)

is weakly p-satisfied by the tube of trajectories initiated in Ω.

Theorem 5.4

A set Ω ⊂ Rn containing the origin in its interior is weakly p-invariant with
respect to the system (5.1) if and only if

• V(x0, f, hΩ) is unbounded for all x0 ∈ Ω

• The optimization problem:

σ = max
x0∈Ω

max
j∈N
{tj+1 − tj}

s.t. (tj, tj+1) ∈ Vm(x0, f, hΩ)
(5.11)

has a bounded solution.

• σ ≤ p

Proof

If the set Ω is weakly p-invariant, the unboundedness of Vm(x0, f, h) is veri-
fied for every x0 ∈ Ω following the same arguments in Theorem 5.1. Conse-
quently, the optimization problem is feasible and its solution is bounded by p
thanks to the weak p-invariance of Ω. Conversely, the satisfaction of the first
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conditions proves the feasibility of the optimization problem. By choosing p
the optimal solution, the conditions of weak invariance are fulfilled.

The following two corollaries are direct applications of the definition and the
theorem above.

Corollary 5.1

If a set Ω ⊂ Rn is weakly p-invariant with respect to the system (5.1) then it
will be weakly p-invariant for all p > p0.

Corollary 5.2

The weakly 1-invariance is equivalent to the classical notion of positive invari-
ance (Definition 2.3).

The set Ω was used until now using the associated function hΩ in (5.2) but its
practical description is often done based on joint satisfaction of set of constraints:

Ω =
N⋂

i=1
L(hi) (5.12)

The following proposition establishes a link between these two notions.

Proposition 5.3

If the set Ω defined as an intersection (5.12) is weakly p-invariant, then the
tube of trajectories initiated in this set weakly p-satisfies the respective con-
straints L(hi) ∀i.

The proof is a direct consequence of the fact that hi(x) ≤ 0 for all x ∈ Ω and thus
for all x satisfying hΩ(x) ≤ 0. What is important is to note that the converse is
not true as exemplified graphically by the Figure 5.3.

Corollary 5.3

Let the set Ω defined as a finite intersection (5.12). If it exists p ∈ N such
that Ω is weakly p-invariant, then the constraints L(hi) are weakly pi-satisfied
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with
p ≥ max

i=1...m
pi (5.13)

h1(x) ≤ 0

h2(x) ≤ 0

h3(x) ≤ 0

Ω

f(Ω)

f 2(Ω)

f 3(Ω)

h1(x) ≤ 0

h2(x) ≤ 0

h3(x) ≤ 0

Ω

f(Ω)

f 2(Ω)

f 3(Ω)

f 4(Ω) O
+

Ω

f(Ω)

f 2(Ω)

f 3(Ω)

Figure 5.3: Left: p = max
i

pi. Middle: p > max
i

pi. Right: no weak p-invariance
while every constraints are weakly p-satisfied

Theorem 5.5

Ω is weakly p-invariant w.r.t. (5.1) if, and only if:

Ω ⊂
p⋃

i=1
f−i(Ω). (5.14)

Proof

(IF) Condition (5.14) implies that, ∀k ∈ N, if x(k) ∈ Ω ⊂ ⋃p
i=1 f−i(Ω), then,

there exists 1 ≤ r(k) ≤ p such that x(k + r(k)) ∈ Ω. Since it is also true for
k = 0, then, for any x0 = x(0) ∈ Ω, there exists r(k) defined as r : N→ N[1,p]
such that x(k + r(k), x0) ∈ Ω, which proves the sufficiency.
(ONLY IF): By contradiction, consider x(0) = x0 ∈ Ω, but x0 /∈ ⋃p

i=1 f−i(Ω).
Then, x(i) /∈ Ω ∀i = 1, · · · , p, implying that Ω does not satisfy the conditions
stated in the definition of weak p-invariance. □

Weak invariance of polyhedral set with respect to LTI dynamics

As shown in the case of weak constraint satisfaction, whenever the dynamical
system and the set of constraints has additional structural properties, the compu-
tation of the indices of weak invariance can be enhanced. The ultimate objective
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of the present section is to present a commonly encountered case for which the
computation is finitely determined.

Next we will detail the case of linear time-invariant systems:

x(k + 1) = fA(x(k)) = Ax(k) (5.15)

with a Schur matrix A.

Theorem 5.6

Consider a compact set Ω ⊂ Rn containing the origin in its interior. The min-
imal index p such that Ω is weakly p−invariant with respect to the asymp-
totically stable system (5.15) is finitely determined.

Proof

Given the asymptotic stability of the origin and the fact this is an interior
point of Ω, there exist a finite time instant p̄ such that

N[p̄,∞) ⊂ Vm(x0, f, hΩ)

for all x0 ∈ V(Ω). Consequently the optimization (5.11) is finitely deter-
mined.

The next results shows that homogeneity can be exploited in the verification
of the weak invariance index.

Lemma 5.1

Consider a compact polyhedral set Ω ⊂ Rn containing the origin in its interior.
Let p be the minimal index such that Ω is weakly p−invariant with respect
to the asymptotically stable system (5.15). Then p is the solution of the
optimization problem:

p = max
x0∈Ω̄

max
j∈N
{tj+1 − tj}

s.t. (tj, tj+1) ∈ Vm(x0, fA, hΩ)
(5.16)

where Ω̄ is the boundary of Ω.
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Proof

The Lemma claims that the index of weak invariance can be computed by
optimizing over the constraint satisfaction indices of the trajectories initiated
on Ω̄. By contradiction, suppose that the maximum index corresponds ex-
clusively to an interior point x̃ such that x̃ ∈ Ω and fp

A(x̃) ∈ Ω but f i
A(x̃) /∈ Ω

for all i ∈ N[1,p−1].
Note however that there exist γ > 1 such that γx̃ ∈ Ω̄. By linearity of the
dynamics and convexity of the set Ω it follows γf i

A(x̃) /∈ Ω for all i ∈ N[1,p−1].
The constraint satisfaction index for the set Ω being p leads to

γf p
A(x̃) = fp

A(γx̃) ∈ Ω

which shows that the optimum value of the optimization is obtained by the
point γx̃ ∈ Ω̄ which leads to a contradiction.

Despite the lack of relationship between the index of p-satisfaction of con-
straints for the vertices and the weak p-invariance index, the Theorem 5.5 and 5.6
can be exploited in order to obtain a finite index based on an explicit condition.

Corollary 5.4

A set Ω is weakly p-invariant w.r.t. (5.15) if and only if:

Ω ⊂
p⋃

i=1
A−iΩ. (5.17)

Moreover, if Ω is compact, then p is finite.

The condition (5.17) becomes particularly interesting if the set Ω is convex
as long as the pre-image preserves this property and can lead to computationally
friendly weak p-invariance test as for example: Ω = ⋃p

i=1(A−iΩ ∩ Ω) for which
algorithmic procedures have been investigated in [Baotić, 2009].

5.1.3 Strong p-invariance
The weak constraint satisfaction and weak invariance offer two different perspec-
tives on the validation of static constraints along the trajectories of a dynamical
system. The present section aims to link the two notions through a strong version
which imposes additional restrictions on the allowed interval between violation of
constraints.
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Definition 5.8: Strong vector-constraint p-satisfaction

The tube of trajectories of the system (5.1) initialized in X ⊂ Rn is strongly
p-satisfying the vector constraints L(h) with h : Rn → Rm if x(k + p) ∈
L(hi) ∀i ∈ N[1,m], for any x0 ∈ X and for any k ∈ N such that x(k) ∈ X and
x(k + 1) /∈ X.

Theorem 5.7

The m−dimensional vector-constraint h(x) ≤ 0 is strongly p−satisfied by the
trajectory of the system (5.1) with initial condition x0 ∈ X ⊂ Rn if and only
if

• The sets V(x0, hi) with i ∈ N[1,m] are unbounded;

• For each i ∈ N[1,m] and for any successive elements tj ∈ V(x0, hi) we
have either tj + 1 ∈ V(x0, hi) or tj + p ∈ V(x0, hi).

Before establishing further results, we can notice that strong constrained sat-
isfaction imposes stronger limitations on the set of validation indices and thus is
expected to lead to larger values of p with respect to the weak counterpart. The
next result stresses that strong notion covers the weak counterpart.

Corollary 5.5

If the m−dimensional vector-constraint h(x) ≤ 0 is strongly p−satisfied by
the trajectory of the system (5.1) with initial condition x0 ∈ X ⊂ Rn, then
the same vector constraints are weakly p−satisfied.

Proof

By choosing r = p.

Definition 5.9: Strong invariance

Let p ∈ N. The set Ω ⊂ Rn is strongly p-invariant with respect to the system
(5.1) if x(k + p) ∈ Ω for each x0 ∈ Ω, and for all k ∈ N such that x(k) ∈ Ω
and x(k + 1) /∈ Ω.
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This definition implies that a strong p-invariant set is also strong invariant for any
multiples of p as index.

Corollary 5.6

If Ω is a strong p-invariant set, then it is also a strongly kp-invariant set for
all k ∈ N∗.

Theorem 5.8

A set Ω ⊂ Rn containing the origin in its interior is strongly p-invariant with
respect to the system (5.1) if and only if

Ω ⊂ f−p(Ω) ∪ f−1(Ω) (5.18)

or equivalently
f(Ω) \ Ω ⊂ f−p+1Ω (5.19)

Proof

The relationship (5.18) translates the p-invariance property in the set theo-
retic framework. For any initial condition x ∈ Ω two possibilities appear:

1. f(x) ∈ Ω then the strong p-invariance conditions are fulfilled.

2. f(x) /∈ Ω then the trajectory has to reach Ω in p− 1 steps.

Either f(x) ∈ Ω or alternatively f(x) /∈ Ω. For the first case, the strong
p-invariance conditions are satisfied while in the second case, the trajectory
needs to reach Ω in p − 1 steps. Equivalently fp−1(f(Ω) \ Ω) ⊂ Ω. In the
set theoretic framework, it becomes:

f(Ω) \ Ω ⊂ f−p+1(Ω) (5.20)

Remark. The strong p-invariance is close to the notion of (k, λ)-invariance de-
fined in [Athanasopoulos et al., 2013] and [Lazar et al., 2013] in a stability analysis
purpose.
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Figure 5.4: Left: Illustration of a trajectory initiated in x0 which strongly p-satisfy
the constraint h(x) ≤ 0 for p = 5), Right:Example of a trajectory initialized in x0
which weakly p-satisfy the constraint h(x) ≤ 0 but is not strongly satisfying the
same constrain with the same index.

5.2 p-Invariance for constrained reference track-
ing

5.2.1 p-invariance for controlled systems
This section presents an alternative approach to the traditional constrained track-
ing design methods which are based on a reference-governor type of mechanism
coupled with a MPC technique for constrained handling [Bemporad, 1998]. Essen-
tially, we aim to develop an attractive framework from the computational point of
view that:

• guarantees recursive feasibility for a pre-defined region in the state space;

• builds on simplified constraints in the on-line optimization.

The recursive feasibility of constrained tracking can be guaranteed by the char-
acterization of the maximal controllable sets [Blanchini and Miani, 2000]. Any
initial state within this set can generate feasible trajectories by exploiting the
controlled invariance and subsequently optimized with respect to a tracking cri-
terion ([Blanchini and Miani, 2000]). We note however, that the characterization
of the maximal controllable set is a notorious complex problem both in terms of
off-line effort and complexity of the representation, which subsequently affects the
on-line computational effort. As an alternative to the explicit use of the maxi-
mal controllable set, model predictive control (MPC) has been widely used with
its receding horizon formulation. Recursive feasibility in MPC is related to the
existence of an invariant terminal set. In the tracking case, this terminal set is
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parameterized by a virtual feasible trajectory [Olaru and Dumur, 2005, Limon and
Alamo, 2013, Falugi, 2015, Chisci and Zappa, 2003]. This parametrization leads to
high on-line computational effort and has been the subject of research in different
studies.

Reducing the complexity of the maximal controllable set or the terminal con-
straints in MPC by means of approximations can compromise the invariance prop-
erty and consequently the recursive feasibility. This property preserves the re-
cursive feasibility of optimization-based tracking control by maintaining a low
computational effort.

We recall here the linear discrete-time model :

x(k + 1) = Ax(k) + Bu(k),

subject to:
{

x(k) ∈ X , ∀ k,
u(k) ∈ U , ∀ k

(5.21)

Practically, the controlled invariant set is chosen to be as large as possible in
X to avoid conservativeness. The maximal controllable set can be approached
off-line with an iterative procedure which implies projections of polyhedrons that
can lead to a complex representation ([Nguyen et al., 2011a]). The objective in the
remaining of the section is to introduce optimization-based tracking formulations
building on a generalised invariance property developped in the previous subsection
with the goal to circumvent the off-line and on-line complexity of the maximal
controllable set.

Definition 5.10: Strong controlled p-invariance

A set B ⊂ X containing the origin is said to be strongly p-invariant with
respect to the constrained system (5.21) if there exists p ∈ N∗ such that for
all state x(k) ∈ B, there exists one of the following options:

• a control action u(k) such that x(k + 1) ∈ B

• a control sequence (u(k), ..., u(k + p− 1)) ∈ Up such that x(k + p) ∈ B
and (x(k + 1), ..., x(k + p− 1)) ∈ X .

The notion of p-invariance introduced here assumes the same periodicity index
for any point in the set which engenders a trajectory which leaves the set. We show
next that this characteristics can be relaxed to a certain extent and the tracking
control associated carry on with simple modifications.
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Definition 5.11: Weak controlled p-invariance

Given a compact convex set B ⊂ Rn and p ∈ N∗, B is said to be weakly p-
invariant with respect to the system (5.31) if for any state x(k) ∈ B there
exists r ≤ p and a control sequence (u(k), ..., u(k + r − 1)) ∈ U r such that
xk+r ∈ B and (x(k + 1), ..., x(k + r − 1)) ∈ X .

In other words, any state in B returns into B in at most p number of steps.
Remark. In the following, for the sake of brevity, the controlled p-invariance will
be denoted p-invariance and the disambiguate with respect to the autonomous case
is done by the dynamics under study.

5.2.2 Strong p-invariance
The concept of strong p-invariance can be relevant in the control design for systems
in the presence of constraints and relaxes the tracking objective whenever maximal
controllable set is replaced by a simpler approximation thanks to the following
theorem.

Theorem 5.9

Let the set Ω containing the origin be a controlled invariant set with respect to
(5.21) and CN(Ω) be the N-step controllable set to Ω for the same dynamics.
Given a set B such that Ω ⊆ B ⊂ CN . There exists an integer p ∈ N∗ such
that B is strongly p-invariant.

Proof

B ⊂ CN(Ω), so for any initial state x(k) ∈ B there exists a control sequence
(u(k), ..., u(k + N − 1)) ∈ UN such that x(k + N) ∈ Ω ⊂ B. By fixing
the index p to the maximal number of time steps N to reach Ω from B the
existence is proved.

In other words, a simpler inner approximation of the maximal controllable
set, while contains the attractive controlled invariant set, is necessarily strongly
p-invariant.

5.2.3 Practical Construction of Strong p-Invariance
Given B ⊂ X a bounded convex polyhedron containing the origin in its interior
with V = {v1, ..., vNv} its vertices and their cardinality Nv ∈ N. The strong
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p-invariance of the set B with respect to (5.31) can be computed by Algorithm
2 below, which considers all the vertices of the candidate set B and tests the
minimal contraction factor that can be obtained jointly along a time window of
length ps. The search for this contraction factor leads practically to a simple Linear
Programming (LP) problem.

Under the assumption that the candidate set is contained in a controllable set
B ⊂ CN(Ω), the procedures ends in finite time. If this assumption does not hold,
the condition λsB ⊃ X guarantees that the algorithm will terminate in a finite
number of steps. In this framework, it is important to observe that an explicit
description of a controllable set CN(Ω) is not necessary in the above construction.

Algorithm 2: Strong p-Invariance
Input : The pair (A, B), the sets X ,U and B
Output: The index p

1 ps = 0, λs = 1
2 while λs ≥ 1 do
3 ps = ps + 1
4 Solve:

minimize
λs, ui

λs

subject to Ak−1vi +
k−2∑
j=0

AjBui,k−2−j ∈ X , ∀k ∈ [2, ps], i ∈ [1, Nv],

Apsvi +
ps−1∑
j=0

AjBui,ps−1−j ∈ λsB, i ∈ [1, Nv],

(uvi
)i∈[1,Nv ] ∈ Ups

5 end

An alternative way to compute the index p exploits the equivalent formulation
of the Theorem 5.8 for the controlled systems:

Theorem 5.10

A set Ω ⊂ Rn containing the origin in its interior is strongly p-invariant with
respect to the system (5.1) if and only if

Ω ⊂ A−pΩ
p−1⊕
i=0

(A−iBU) ∪ A−1Ω⊕ (−BU) (5.22)
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The Algorithm 3 uses this set-based formulation to provide the strong index p.
While A is Schur, A−1 is an expansive operator and then applied in the recursive

Algorithm 3: Strong p-Invariance (Alternative)
Input : The pair (A, B), the sets U and B
Output: The index p

1 i=1
2 R1 = A−1B ⊕ (−BU)
3 Ri = R1
4 while B ̸⊂ R1

⋃
Ri do

5 Ri ← A−1Ri ⊕ (−BU)
6 i=i+1
7 end
8 p=i

scheme Ri+1 = A−1Ri ⊕ (−BU) the sets Ri tend to grow until the covering of the
initial set.

5.2.4 Strong p-Invariance Based Reference Tracking
Based on the construction of strong p-invariant sets, let us now consider that the
tracking control problem and exploit the existence of a p-invariant set B satisfying
B ⊂ C ⊂ X .

A prototype receding-horizon optimization for reference-tracking, which em-
ploys the p-invariance for a linear prediction model, will be denoted O(Nh, p, x(k))
and formulated as follows :

Jp(x(k)) = minimize
(u(k),...,u(k+M−1))

M∑
i=1
∥xref (k + i)− x(k + i)∥2

Q

subject to x(k + 1 + i) = Ax(k + i) + Bu(k + i) ∀i ∈ {1, . . . , M},
x(k + i) ∈ X ∀i ∈ [1, . . . , M ],
u(k + i) ∈ U ∀i ∈ [1, . . . , M ],
x(k + p) ∈ B

(5.23)

with M = max(Nh, p).

Proposition 5.4

O(Nh, p, x(k)) is feasible for all x(k) ∈ B.
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Proof

For any state x(k) ∈ B, there exists a control sequence (u(k), ..., u(k + p −
1)) ∈ Up such that (x(k + 1), ..., x(k + p− 1)) ∈ X and x(k + p) ∈ B. Thus,
in the case of a prediction horizon with Nh ≤ p, the problem is feasible.
If Nh > p, the argument is slightly more elaborated and needs to rely
on the invariance property of the controlled invariant superset C. Indeed
by construction B ⊂ C ⊂ X , which implies the existence of a sequence
(u(k), ..., u(k + Nh− 1)) ∈ UNh such that (x(k + 1), ..., x(k + Nh− 1)) ∈ C ⊂
X .

Despite the result stated in Proposition 5.4, one cannot guarantee the recursive
feasibility of the control strategy that implements the first part of the optimum
control argument. This is because the one-step invariance property on B is not
certified, and thus the feasibility of the optimization (5.23) on B does not imply
the feasibility at iteration k + 1, . . . as long as x(k + p + 1) ∈ B does not hold.

To overcome the absence of recursive feasibility, a simple procedure can be
constructed to enhance the p-invariance property. If O(Nh, p, x(k)) designates the
optimization (5.23), the main idea is to monitor the result of this optimization
and to switch to a safe return strategy within the set B whenever the closed-loop
trajectory leaves B.

In order to simplify the switching criterion, the cost functions Ji(x(k)) and
Jp(x(k)) will be compared for any x(k) ∈ B. As long as the first one is less
costly the procedure apply the first component of its control law. The following
proposition provides a criterion that separates the case where the system remains
in B from the case it leaves B.

Proposition 5.5

Given the optimized cost J1(x(k)) (resp Jp(x(k))) of optimizationO(Nh, 1, x(k))
(resp O(Nh, p, x(k))). If Jp(x(k)) < J1(x(k)) then x(k + 1) ̸∈ B.

Proof

If U∗
p is the optimal solution of O(Nh, p, x(k)), assume x(k + 1) ∈ B, then,

every constraints of O(Nh, 1, x(k)) are satisfied, U∗
p is a feasible solution of

O(Nh, 1, x(k)). Thus, the optimization of O(Nh, 1, x(k)) provides a better
solution, and J1(x(k)) ≤ Jp(x(k)).

Building on this preliminary result, the description of the procedure using
strong p-invariance for tracking with recursive feasibility properties is presented in
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Algorithm 4.
Algorithm 4: Strong p-Invariance based Reference Tracking

Input : x0 ∈ B ⊂ X , Nsimu, Nh, (A, B), X ,U , B
Output: (x(k))k=0,...,Nsimu

, (u(k))k=0,...,Nsimu−1
1 k = 1, i = 1
2 while k < NSimu do
3 if i = 1 then
4 Solve O(Nh, 1, x(k))→ (J∗

1 , (u1(k), ..., u1(k + Nh − 1))∗)
5 Solve O(Nh, p, x(k))→ (J∗

p , (u1(k), ..., u1(k + Nh − 1))∗)
6 if J∗

1 < J∗
p then

7 x(k + 1) = Ax(k) + Bu1(k)
8 else
9 x(k + 1) = Ax(k) + Bup(k)

10 i = p

11 end
12 else
13 Solve O(Nh, i, x(k))← (J∗

i , (ui(k), ..., ui(k + Nh − 1))∗)
14 if J1 < Ji then
15 x(k + 1) = Ax(k) + Bu1(k)
16 i = 1
17 else
18 x(k + 1) = Ax(k) + Bui(k)
19 i = i− 1
20 end
21 end
22 k = k + 1
23 end

Proposition 5.6

The control law resulting from the recursive implementation of the first input
of the optimal control sequence according to Algorithm 4 is recursively feasible
for any initial state x0 ∈ B.

Proof

Assume the procedure is feasible at step k. Then the current state becomes
x(k + 1) ∈ X and two cases have to be considered :
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• If x(k+1) ∈ B, then O(Nh, p, x(k+1)) is feasible thanks to Proposition
5.4.

• If x(k + 1) ̸∈ B, then x(k + 1) is part of a state sequence that began in
B. There exists an integer q ≤ p−1 such that the state x(k+1−q) ∈ B.
So there exists a control sequence (u(k + 1− q), ..., u(k + 1), ..., u(k −
q + p − 1)) ∈ Up such that x(k + 1 − q + p) ∈ B and (x(k + 2 −
q), ..., x(k − q + p)) ∈ X p−1. Ignoring the tail, we conclude on the
existence of a control sequence (u(k + 1), ..., u(k + 1− q + p)) ∈ Up−q

such that x(k + 2 − q + p) ∈ B. This concludes the proof as long as
O(Nh, p− q, x(k + 1)) is feasible.

5.2.5 Weak p-invariance for tracking

The next result formalize the relationship between strong and weak version of the
p-invariance.

Theorem 5.11

If B is strongly controlled p-invariant, then B is weakly controlled p-invariant.
Alternatively, if ps (resp pw) denotes the result of the computation of strong
p-invariance (resp weak p-invariance), then pw ≤ ps.

Proof

The proof is similar to the one for autonomous case by observing that in
the definition of weak controlled invariance q = p is a feasible choice for the
number of steps for the return sequence.

Construction of Weak p-invariance: Given a bounded polyhedron B ⊂ X with
its set of vertices V = {v1, ..., vNv} and cardinality Nv ∈ N, the weak p-invariance
index can be computed by algorithm 5.

An alternative manner to compute the weak index p is to check the inclusion
of B within the union of its preimages as formulated in the Theorem 5.8 for the
autonomous systems and adapted here:
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Algorithm 5: Weak p-invariance
Input : The pair (A, B), the sets X , U and B
Output: the index p

1 for vi ∈ V do
2 pi

w = 0; λw = 1
3 while λw ≥ 1 do
4 pi

w = pi
w + 1

5 Solve:

minimize
λw, (ui)i∈{1,pi

w−1}
λw

subject to Ak−1vi +
k−2∑
j=0

AjBuk−2−j ∈ X , ∀k ∈ {2, pi
w},

Api
wvi +

pi
w−1∑
j=0

AjBupi
w−1−j ∈ λwB, i ∈ {1, pi

w − 1}
6

7 end
8 end
9 pw = max(p1

w, ..., pNv
w )

Theorem 5.12

A set Ω ⊂ Rn containing the origin in its interior is weakly p-invariant with
respect to the system (5.1) if and only if

Ω ⊂
p⋃

i=1
A−iΩ⊕ (−BU) (5.24)

The Algorithm 6 uses this set-based formulation to provide the weak index p.

Proposition 5.7

Given a convex compact polyhedron B containing the origin, and {p1, ..., pNv}
the p-indices of vertices {v1, ..., vNv} computed based on algorithm 5 is thus
leading to a weak p-invariance index for the entire set. Then, for any state
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Algorithm 6: Weak p-Invariance (Alternative)
Input : The pair (A, B), the sets U and B
Output: The index p

1 i=1
2 R1 = A−1B ⊕ (−BU)
3 Ri = R1
4 while B ̸⊂ R1

⋃
R2

⋃ · · ·⋃ Ri do
5 Ri ← A−1Ri ⊕ (−BU)
6 i=i+1
7 end
8 p=i

x(k) ∈ B,one can use the same periodicity as its vertex component with
highest periodicity.

A tracking procedure using weak p-invariance and based on the optimization
(5.23) can be proposed as in algorithm 7. The principle behind the properties of
recursive feasibility of the tracking procedure is summarized next, the proof follows
the arguments in Section 5.2.2:

• If x(k) ∈ B, the cost functions for an optimization problem with 1-step
invariance constraints and p-step invariance constraints are compared.

• If the system leaves B, then every costs from 1-step to p-steps return to B are
compared. In other words, the validation of the weak p-invariance is tested
at each iteration in order to find the shortest return path into B.

5.2.6 Tracking IBC with p-invariance

IBT is the main topic of the Chapter 4, we consequently refer to the same formu-
lations and notations. The IBT design is built on two inner and outer convex com-
pact controlled-invariant sets containing the origin Ωo and Ωv, where Ωo ⊂ Ωv ⊂ X .
These inner and outer sets have to be re-scaled and translated in order to contain
the origin of the dynamical system governing the tracking error. The p-invariance
property is preserved by homogeneous transformations.

Given the outer set Ωv and assume its strong p-invariance, the virtual reference
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Algorithm 7: Weak p-Invariance Reference Tracking
Input : x0 ∈ B ⊂ X , Nsimu, Nh, (A, B), X , U , B
Output: (x(k))k=0,...,Nsimu

,(u(k))k=0,...,Nsimu−1 k = 1, i = 1
1 while k < Nsimu do
2 if i = 1 then
3 Solve O(Nh, 1, x(k))→ (J∗

1 , (u1(k), ..., u1(k + Nh − 1))∗)
4 Solve O(Nh, p, x(k))→ (J∗

p , (up(k), ..., up(k + Nh − 1))∗)
5 if J∗

1 < J∗
p then

6 x(k + 1) = Ax(k) + Bu1(k)
7 else
8 x(k + 1) = Ax(k) + Bup(k) i = p
9 end

10 else
11 Solve O(Nh, i, x(k))→ (J∗

i , (ui(k), ..., ui(k + Nh − 1))∗)
12 Solve O(Nh, i− 1, x(k))→ (J∗

i−1, (ui−1(k), ..., ui−1(k + Nh − 1))∗)
13

...
14 Solve O(Nh, 1, x(k))→ (J∗

1 , (u1(k), ..., u1(k + Nh − 1))∗)
15 q∗ = arg min

q∈{1,i}
(Jq)

16 x(k + 1) = Ax(k) + Buq∗(k)
17 i = i− 1
18 end
19 end

and the scaling factor are solutions of the optimization problem R(xref (k), x(k)):

minimize
(x̄(k), ū(k), α(k))

∥xref (k)− x̄(k)∥2

subject to x̄(k) = Ax̄(k) + Bū(k), ,

ū(k) ∈ (1− α(k))U ,

x(k) ∈ {x̄(k)} ⊕ α(k)Ωv ⊂ Ωv.

(5.25)

The main idea is to solve, for the current state x(k) in Ωv, the optimization
problem R(xref (k), x(k)) and once the admissible x̄(k) and ū(k) are computed to
regulate the tracking error by solving a IBC problem. This tracking error will be
defined as ϵ(k) = x̄(k)− x(k) ∈ α(k)Ωv and two cases have to be considered:

• if ϵ(k + 1) /∈ Ωv as a result of the IBC at step k then we hold x̄(k) and ū(k)
for maximum p steps in order to allow ϵ(k + i) ∈ Ωv for some 0 < i ≤ p.
Practically, at each iteration i, we check if ϵ(k + i) ∈ B and if this is the case
we release x̄(k + i) and ū(k + i)
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• if ϵ(k + 1) ∈ Ωv as a result of the IBC at step k we start from the beginning
the procedure with virtual reference design and IBC.

Practically, the optimization (5.25) generates a virtual trajectory which are
fixed points of the system (5.31). Whenever the reference to be tracked xref (k)
converges to a fixed point, it can be shown that x̄(k) converges to a feasible fixed
point x̄ ∈ X with respect to an admissible control ū ∈ U and the the tracking
error ϵ(k) asymptotically decreases to zero using the IBC. The formal proofs are
adapting the IBC properties for the case of p-invariance similar to the previous
chapter and are not presented for brevity.

5.2.7 Illustrative numerical examples
Example: p-invariance for tracking

Consider the linear double integrator :

x(k + 1) =
[
1 0.08
0 1

]
x(k) +

[
0.0032
0.08

]
u(k) (5.26)

subject to constraints:

− 2.6 ≤ x1(k) ≤ 2.6,−3 ≤ x2(k) ≤ 3,−5 ≤ u(k) ≤ 5. (5.27)

The two techniques presented in the section are considered for simulation and comparison:
strong and weak p-invariant reference tracking and p-IBC. Then two types of trajectories
are presented:

• A dynamically generated trajectory with the goal to test and illustrate the recursive
feasibility and the reactivity of both tracking algorithms;

• A sequence of switching of fixed points which aims to test (aside the recursive
feasibility) the convergence properties.

The inner polyhedral set Ωo considered is the maximal admissible set with respect to a
linear feedback law:

u(k) = −
[
16.65 6.23

]
x(k) (5.28)

A controlled invariant approximation of the maximal controllable set C(Ωo) is also com-
puted as a N -step controllable set,
The candidate p-invariant set is represented by a simple inner approximation of CN (Ωo),
represented in blue in Fig.5.5. The same set, denoted Ωv, is used as an outer set for the
p-invariant MPC and IBT strategies.

Time-Varying (Dynamic) Trajectory
In the first simulation scenario, the reference is generated using the dynamical model
(5.26) based on a excitation signal which violates drastically the imposed constraints. As
a result, the time-varying reference trajectory leaves the state constraints set as illustrated
by dashed trajectories in Fig.5.5.
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The initial state of the system is selected on the frontier of Ωv on a extreme state (corre-
sponding to zero speed if the state is interpreted in terms of position-speed coordinates).
For the comparative study, strong and weak p-invariant sets have been constructed and
the p index has been computed using Algorithms 2 and 5 to be p = 14. Using this low
complexity set (4 vertices) the reference tracking optimization has been solved accord-
ing to the Algorithms 4 and 7 and the results confirm the recursive feasibility of both
receding-horizon reference-tracking algorithms.
Even if globally the behaviour is similar, a slight difference can be observed when the
state leaves B (the signals are depicted with respect to the time in Figure 5.6).

Figure 5.5: Trajectories in the state space of reference (dashed), Strong p-
invariance procedure (blue) and Weak p-invariance procedure (red).
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Figure 5.6: Temporal trajectories of reference (dashed), Strong p-invariance
(blue) and Weak p-invariance (red). Right: Control action of Strong p-
invariance (blue) and Weak p-invariance (red).
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Static Reference Trajectory
In this case, the reference is a fixed-point out of the admissible set and this reference
commutes to a symmetric fixed point out of the admissible set at a regular time interval.
The invariant set Ωv is the strongly p-invariant set with index p = 8. Figures 5.7 and 5.9,
compare strong and weak p-invariant based reference tracking which provide a recursive
feasible control law and good performances.

Figure 5.7: Trajectories in the state space of reference (dashed), Strong p-
invariance (blue) & Weak p-invariance (red).
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Figure 5.8: Trajectories of reference (dashed) and states trajectory strong
p-invariance (blue) and weak p-invariance(red)
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Figure 5.9: Control actions: strong p-invariance (blue) and weak p-
invariance(red)

In order to complete the design with stability (convergence) guarantees for such piece-
wise constant references, an IBC for tracking is implemented using the periodic invariance
notion. The closed-loop performance is depicted in Fig.5.10, 5.12. It is important to
observe that although the virtual reference is a fixed point, it is updated at each iteration,
and thus leads to a sequence of feasible set-points for the IBC procedure.

Figure 5.10: Trajectories in the state space of reference (dashed), virtual x̄
(blue cross) and state trajectory (red)
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Figure 5.11: Time trajectories of reference (dashed), virtual trajectory x̄
(blue) and and state trajectory (red)
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Figure 5.12: Control action of p-invariant IBT
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5.3 MCA based on p-invariant sets

5.3.1 Model of the dynamics

In this section we focus on a real-time implementation of MCA strategies based
on strong p-invariance. We recall here the rail dynamic models according to the
two cases presented on Section 2.2.2:

1. The computationally attractive one with x(k) =
[

p(k) v(k)
]T

and u(k) =
a(k) :

x(k + 1) =
[
1 Ts

0 1

]
x(k) +

[
1
2T 2

s

Ts

]
u(k) (5.29)

2. The model using the jerk as an input with x(k) =
[

p(k) v(k) a(k)
]T

and
u(k) = j(k) :


x(k + 1) =

1 Ts
1
2T 2

s

0 1 Ts

0 0 1

 x(k) + B =


1
6T 3

s
1
2T 2

s

Ts

 u(k)

y(k) =
[
0 0 1

]
x(k)

(5.30)

That we formalize in the following:

{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) (5.31)

5.3.2 A MPC approach

In this subsection we aim to exploit the alleviated MPC framework presented
in Section3.2.2 but using Maximal controllable set approximations and strong p-
invariance. In order to exemplify the concept let us consider two sets C̃1

N and
C̃2

N for models (5.30) and (5.29) that are respectively p1-invariant and p2-invariant
with p1 = 15 and p2 = 19, these sets are depicted on Fig.5.13.

Considering controlled strongly p-invariant sets, several finite-time optimiza-
tion problems denoted by P i(p, x(k)) can be rewritten for the same model i but
with a different optimization cost and optimization structure (i ∈ {1, 2} referring
to p1 and p2):
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minimize
(u(k),...,u(k+p−1))

J i(k)(x(k + 1), . . . , x(k + p), u(k), . . . , u(k + p− 1))

subject to x(k + 1 + j) = Ax(k + j) + Bu(k + j), ∀j ∈ {1, p},
x(k + j) ∈ X , ∀j ∈ {1, p− 1},
u(k + j) ∈ U , ∀j ∈ {0, p− 1},
x(k + p) ∈ C̃N

(5.32)

These optimization problems will replace the classic MPC formulation in order
to decrease based on switching the complexity both off-line and on-line. Practi-
cally, complexity of X is low (a square for a 2D state space and a cube for a 3D
state space) and C̃N one’s is of the same order, this formulation is consequently
less complex than the alleviated predictive controller presented in (3.13).

Consideration of simpler p-invariant sets implies a loss of recursive feasibil-
ity from a classical MPC framework point of view, to compensate for this loss,
Algorithm 8 is described next:

• If the current state is in C̃N , then the optimization problem (5.32) is solved
for a horizon p.

• Else the state left C̃N , and the problem is solved with a decreasing horizon
until the state returns in C̃N .

Algorithm 8: Tracking with p-invariant MPC
1 Initialization (x0 ∈ B ⊂ X )
2 k = 1
3 j = 1 % index counting the steps of a periodic window
4 while k < NSimu do
5 if x(k) ∈ C̃N then
6 j=p
7 Solve P i(p, x(k))→ (u1(k), ..., u1(k + p− 1)))∗

8 else
9 j=j-1

10 Solve P i(j, x(k))→ (u1(k), ..., u1(k + j − 1)))∗

11 end
12 x(k + 1) = Ax(k) + Bu1(k)
13 k = k + 1
14 end
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Proposition 5.8

The iterative procedure in Algorithm 8 is recursively feasible if the initial
state is in C̃N .

Proof

Assume the procedure is feasible at step k.

• If x(k) ∈ C̃N which is controlled p-invariant then it exists
(u(k), ..., u(k + p− 1)) ∈ Up such that (x(k + 1), ..., x(k + p− 1)) ∈ X
and x(k + p) ∈ C̃N .

• If x(k) ̸∈ C̃N , there exists j ∈ {1, p− 1} such that xk−j ∈ C̃N . Conse-
quently, there exists a control sequence (u(k−j), ..., u(k−j +p−1)) ∈
Up such that (x(k − j + 1), ..., x(k), ..., x(k − j + p − 1)) ∈ X and
x(k − j + p) ∈ C̃N . As a consequence of these two properties there
always exists a control sequence that leads states toward C̃N . The
receding horizon optimization is in charge of selecting the horizon p at
each time step in order to enforce this property.

Figure 5.13: Left: 3D State space representation for model (5.30), CN and C̃N ,
Right : 2D State space representation for model (5.29), CN and C̃N
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Example:

The study case elaborated in this simulation considers the acceleration ref-
erence associated to a signal perceived during a slalom. Here, results from
simulations of MPC-MCA from (3.13) are compared with results from ap-
plication of Algorithm 8 to models (5.30) and (5.29). The p-invariant set
is obtained by contracting an inner approximation of the maximal control-
lable set with a periodic index p1.The chosen prediction horizon is similar
to invariance periods : Nh = p1.
Weightings in the criteria are qy = 100, Qx = diag(100, 1, 50) and R = 1 for
model (5.30), Qx = diag(100, 1) and R = 50 for model (5.29).
Acceleration is rendered with timely reaction and respecting the profile al-
though the constraints are activated. In particular the shape of the reference
profile is respected (5.14) and it is to highlight that the periodic invariant
MPC applied to model (5.29) reaches limitations in acceleration and is con-
sequently closer to the reference. However responses of periodic invariant
MCAs are affected by switching of the cost function which affects the accel-
eration. All three algorithms are conservative as they don’t use the whole
workspace in position (5.14) although the 2D system manages the workspace
in a better way, positioning the virtual car closer to the center of symmetry.
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Figure 5.14: Top : Positions in function of time, Middle : Speeds in function
of time, Bottom : Accelerations in function of time (reference signal dashed)
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On Figure 5.15, the jerk is presented as a control action for alleviated MPC
(3.13) and Algorithm 8 applied to model 5.30. We can observe a more
aggressive behavior of control action when state trajectory leaves C̃1

N as the
system tends to return within this latter set.
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Figure 5.15: Jerk in function of time for model (5.30)

From a computational point of view, Table 5.1 shows the theoretical decrease
of the number of constraints with respect to optimization problems to solve
during procedures.
Figure 5.17 represents computation time of optimization problem at each
iteration as a function of time and confirms the decrease of computational
burden. In this situation, comparison between models (5.30) and (5.29)
is not obvious because p2 is slightly higher than p1 on one hand and the
state trajectory remains in C̃N in the 2-dimensions case so the optimization
is always performed in the worst case as it is shown on Figure 14 and on
Figure 14.

Figure 5.16: Left: 3D State space trajectory for p-invariant algorithm for
model (5.30). Right: 2D State space trajectory for p-invariant algorithm for
model (5.29)
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Table 5.1: Complexity of Optimization problem

MPC Formulation Number of constraints
Model (5.30) Invariant MPC 489

Model (5.30) p-invariant MPC 170 (worst case)
Model (5.29) p-invariant MPC 152 (worst case)
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Figure 5.17: Execution time for the different strategies.



Chapter 6
Conclusion and perspectives

6.1 Main contributions emerging from the present
work

In the Chapter 1 we defined the driving simulation framework by explaining how to
stimulate inertial sensations by movement and rotation of a platform thanks to the
tilt coordination technique (Figure 1.2) applied to an electromechanical structure
made of rails and hexapod (Figure.1.3). We summarized the operating of those
kind of dynamic driving simulators (Figure 1.4) and provided some elements of
their history from early flight simulation to high performance driving simulation.
We noticed that techniques used in flight simulation had been adapted to driving
simulation particularly for the high frequency acceleration restitution.

The function that allow the conversion of a specific force to be rendered into
position and tilt orders is commonly called "Motion Cueing Algorithm" or "MCA"
(Figure 2.1) and is a topic of interest of many research works in the last decades.
A part of those techniques were reviewed in the Chapter 2. Historically, MCA
was conceived based on filters (Figure 2.4) and progressively enhanced with the
optimization philosophy first with adaptative filters, then with Model Predictive
Control (MPC). This latter technique is undoubtedly the most promising actually
but has to cope with main limitations such as the driver’s vestibular mechanics
awareness, the computation time, the delays compensation or the prediction issues.
The present thesis proposed theoretical notions and methodological solutions to
address those issues.

The Chapter 3 first exposed the structure of the subsystems in order to take
into account for the nonlinearities of gravitationnal field projections on the driver’s

133
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frame (Section 2.1.3). We proposed in-line predictive structure splitting the lin-
ear and rotational dynamics prioritising one and compensating the gap thanks to
the other (Figures 3.3-3.8). The two strategies were compared in terms of perfor-
mance and computation time and the results were discussed. Second, we proposed
a lighter MCA design for delay compensation (Figure 3.15). The goal was to use
information about maximal controllable set in the state space to adapt the state
constraints (including the terminal one) into the set-inclusion of the only next
predicted state with respect to the (approximation) of the maximal controllable
set.

In the Chapter 4 we adapt the Interpolation Based Control (IBC) computa-
tionally promising properties to the tracking framework with the objective to use
it in the MCA framework. This technique favours an optimal use of the state space
and doesn’t need a prediction horizon. We demonstrate its stability and recursive
feasibility properties and show that it can fulfil this objective. The computational
complexity is linked to the own complexity of the set.

The latter interpolation principle remains valid in a larger framework, con-
sequently the main idea of the Chapter 5 is to simplify the set considered in
optimization based control by exploiting the property of p-invariance. Thus we
can build lighter inner approximations of controllable sets first for autonomous
systems and then for controlled ones. Finally this novel technique was used for
MCA application.

6.2 Perspectives
The main issues of MCA design can be summarized in by three features:

• the rendering performance which is linked to the minimization of motion
sickness and conservativeness (the workspace shall be optimally used with
respect to a performance index which is inherent to each of the drivers)

• the tuning difficulty i.e the number of parameters (weigths, prediction
horizon) to set up. More parameters means more complexity and interde-
pendence among them.

• the computational burden as a consequence of the real-time requirements
and the interdependence in between the optimization-based modules.

From an engineer point of view, a desirable (if not ideal) MCA should combine
simultaneously the three properties but it seems there exists a structural compat-
ibility issue between them which is summarized in the Venn diagram 6.1: Practi-
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Figure 6.1: Venn diagram illustrating the structural issues to design an ideal MCA

cally we can recognize some situations validating two features but not the third
such as:

• The filter-based MCA allows for example a simplicity of design and a low
computation time but has poor performance.

• The MPC controller practically uses a solver for the constrained optimization
which iteratively seaks the global minimum of a quadratic cost function
within the set of constraints. This operation may be computationally heavy
when the number of states or the prediction horizon increases and with the
constraint activation. However, this type of controller is able to use the
whole workspace and is easy to tune when the number of weights is low.

• A solution to decrease the computation time without degrading the perfor-
mance is to use the braking law with an unconstrained MPC framework.
Practically the unconstrained MPC optimization problem is solved by can-
celling the gradient and when the platform is too close to the workspace
limitations, the braking law is applied. However, the enhancement implies
more parameters to tune.

• Also when the prediction horizon is low, the computational cost is better but
the performance is worse except if we set up a pre-positioning and in this
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case, it increases the number of parameters.

6.3 On a broader scope
The dynamic driving simulation is a complex domain involving very different fields
(automatic control, mechanics, physiology, psychology and computer science,. . . )
that interact with each other. For example, on one hand, the studies on the driver’s
behavior depends on the quality of the restitution of the sensations (the reactions
should be the identical as the ones on a real drive) and on the other hand those
behavioral studies are a vector of improvement for the restitution algorithms.

Also, the simulation platform control is tributary of the electro-mechanical
design of the platform which is not necessarily build for a priori known restitution
algorithms.

The subjective experience makes the precise sensations rendering too compli-
cated from an engineering point of view. Assumptions and simplifications are
essential knowing their impacts on the subject.

Consequently, the progress in the driving simulation fields will be pluri-disciplinary
as well as experimental with clear objective criteria in order to easily compare the
different strategies of MCA.



Appendix A
Mathematical tools

A.1 Mathematical tools for control
We recall in this section some fundamental tools from linear algebra and topology
in order to set up in a synthetic way the convex optimization framework to finally
introduce optimal control.

Assumption 1.1

In this section, n, m, p, l and s refer to positive integers.

A.1.1 Linear algebra and topology
The two next definitions introduce the notion of weighting of quadratic norms used
in optimal control.

Definition A.1: Positive (semi)definite matrix

A matrix Q ∈ Rn×n is said to be positive definite (respectively semidefi-
nite) and denoted by Q ≻ 0 (respectively Q ⪰ 0) if:

1. Q is symmetric, i.e QT = Q

2. for all non-zero vector x ∈ Rn, xT Qx > 0 (respectively xT Qx ≥ 0) .
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Definition A.2: Weighted quadratic norm

If Q ⪰ 0 and x ∈ Rn, then the Q-weighted quadratic norm of x denoted
∥x∥Q is given by:

∥x∥Q =
√

xT Qx (A.1)

If Q is a diagonal matrix (Q = diag(q1, . . . , qn), qi ≥ 0 ∀i), then the quadratic
norm is derived from:

∥x∥2
Q =

n∑
i=1

qix
2
i (A.2)

which means each component has its proper weight in the norm. In the following
we denote ∥.∥ the quadratic norm weighted by the identity matrix (equal weights
on vector’s components.

Throughout the resolution of a linear differential system of the first order used
to model the dynamics of linear system (see Definition.A.19) we can express the
solution as a function of an exponential of a matrix whose definition is given below:

Definition A.3: Exponential of a matrix

Given a square matrix A ∈ Rn×n, the exponential of the matrix A, denoted
by eA is the matrix given by:

eA =
∞∑

n=0

An

n! = In + A + A2

2 + . . . (A.3)

We recall below three fundamental definitions of topology used in convex anal-
ysis.

Definition A.4: Open ball

An open ball of center a ∈ Rn of radius r > 0 is the set:

B(a, r) = {x ∈ Rn | ∥x− a∥ < r} (A.4)
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Definition A.5: Open and closed sets

Let C ⊂ Rn. C is said to be open if and only if:

∀a ∈ C ∃r > 0 B(a, r) ⊂ C

C is said to be closed if and only if Rn \ C is open

Definition A.6: (Affine) Hyperplane

A subset of Rn of dimension n− 1 is called a hyperplane. An hyperplane H
is said to be affine if there exists a ∈ Rn and b ∈ R such that:

H =
{
x ∈ Rn | aT x = b

}
(A.5)

A.1.2 Convexity and Optimization
The three next definitions characterising convex sets and functions that are of
main interest for optimization.

Convexity

Definition A.7: Convex Set

A set C is convex said to be convex if:

∀(x, y) ∈ C2 ∀α ∈ [0, 1] αx + (1− α)y ∈ C (A.6)

In other words, a set is convex if for all couples of elements the segment linking
them is included in the set.

Definition A.8: Convex function

Let C ⊂ Rn a convex set. A function f : C 7→ R is said to be convex if:

∀(x, y) ∈ C2 ∀t ∈ [0, 1] f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) (A.7)

equivalently, a f is convex if and only if its epigraph E = {(x, ξ) ∈ C × R |
f(x) ≤ ξ} is a convex set.
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Definition A.9: Convex Hull

Given a set C ⊂ Rn, the Convex hull of C, denoted by Conv(C), is the
smallest convex subset of Rn containing C.
Consequently, any element of Conv(C) can be expressed as a finite convex
combination of element of C.

x ∈ Conv(C)⇐⇒ x =
p∑

i=1
λixi (A.8)

where p ∈ N∗, (λi)i=1,...,p ∈ [0, 1]p and (xi)i=1,...,p ∈ Cp such that
p∑

i=1
λi = 1.

In optimal control theory the physical constraints are mainly modeled through
half-spaces, when several constraints has to be hold at the same time, the resulting
set of contraints is said to be polyhedral or polytopic while bounded and can have
2 distincts formalization which are depicted in the following:

Definition A.10: Polyhedron - Half-space Representation

A half-space is a set that can be defined as

H =
{
x ∈ Rn | aT x ≤ b

}
(A.9)

with a ∈ Rn and b ∈ R.
A Polyhedron (or polyhedral set) P is the intersection of a finite number

m ∈ N∗ of half-spaces.

P = {x ∈ Rn | Fx ≤ g} (A.10)

where F ∈ Rm×n and g ∈ Rm.

Example:Unbounded Polyhedron

Figure.A.1 depicts the unbounded polyhedron defined by the intersection of
two halfspaces:

H1 : −x1 + x2 ≤ 4 and H2 : x2 ≤ 3 (A.11)
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x2

x1

y = x+ 4

y = 3

P

Figure A.1: Example of a unbounded Polyhedron

Definition A.11: Polytope

A polytope is a bounded polyhedron.

Definition A.12: Polytope - Vertex Representation

If P is a polytope, there exists a finite number of elements (v1, . . . , vNv) with
Nv ∈ N such that:

P =
{

x ∈ Rn | ∃(λi)i=1,...,Nv ∈ [0, 1]Nv x =
Nv∑
k=1

λ(k)v(k) and
Nv∑
k=1

λ(k) = 1
}

(A.12)
This representation is called Vertex Representation or V-Representation.

Example:Polytope H-Rep and V-Rep

Figure.A.2 depicts the polytope P defined by its H-representation with the
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intersection of two halfspaces:

H1 : −x1 + x2 ≤ 4
H2 : x2 ≤ 3
H3 : x1 ≤ 4
H4 : 1

2x1 + x2 ≤ −2

(A.13)

The polytope can also be define by its vertices given in the collection V :

V =
{[
−1
3

]
,

[
4
3

]
,

[
4
−4

]
,

[
−4
0

]
} (A.14)

corresponding to the location of hyperplanes intersections as showed on Fig-
ure.A.3.

x2

x1

y = x+ 4

y = 3

x = 4

y = −1

2
x− 2

P

Figure A.2: Example of a Polytope
defined by its H-Representation

x2

x1
(−4,0)

+

(−1,3)
+

(4,3)
+

(4,−4)
+

P

Figure A.3: Example of a Polytope
defined by its V-Representation

Operation on convex sets

Proposition 1.1: Cartesian product of polyhedral sets

Given two polyhedrons P1 and P2 and their H-Representation:

P1 = {x ∈ Rn | F1x ≤ g1} , F1 ∈ Rl×n, g1 ∈ Rl

P2 = {x ∈ Rm | F2x ≤ g2} , F2 ∈ Rs×m, g2 ∈ Rs (A.15)
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Then their cartesian product can be expressed as:

P1 × P2 =
{

x ∈ Rn+m |
[
F1 0
0 F2

]
x ≤

[
g1
g2

]}
(A.16)

The cartesian product of polyhedrons allows,in the control framework, is computa-
tionally useful when considering two distincts dynamics (such as rails and hexapod
actuations).

Definition 1.1: Minkowski sum

Let X ⊂ Rn and Y ⊂ Rn. The Minkowski sum of X and Y , denoted by ⊕, is
the set:

X ⊕ Y = {x + y | x ∈ X, y ∈ Y } (A.17)

The Minkowski sum operator allows the formalization of a displacement (or
translation) of a polytope.

Proposition 1.2: Translation of polytopes

If P ⊂ Rn is a convex polytope defined by its vertices (v1, . . . , vNv), then the
translation of P along the vector x ∈ Rn can be expressed as

t(P , x) = {x} ⊕ P
= Conv{v1 + x, . . . , vNv + x} (A.18)

Proposition 1.3: Scaling of a polytope

Let P ⊂ Rn a convex polytope defined by its H-Representation:

P = {x ∈ Rn | Fx ≤ g} (A.19)

and λ ∈ R. Then:
λP = {x ∈ Rn | Fx ≤ λg} (A.20)

If P ⊂ Rn is a convex polytope defined by its vertices (v1, . . . , vNv), then
λP is defined by (λv1, . . . , λvNv).
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Example:Translation and scaling

Considering the previous polytope P , the Figure.A.4 depicts its tanslation
according to the vector x = [−3 − 2]T and its reduction through a scaling
factor α = 0.2.

x2

x1

P

{x} ⊕ αP

x

Figure A.4: Translation and scaling of a polytope

Definition A.13: Pontryagin difference

Let X ⊂ Rn and Y ⊂ Rn. The Pontryagin difference of X and Y , denoted by
⊖, is the set:

X ⊖ Y = {x ∈ Rn | {x} ⊕ Y ⊂ X} (A.21)

Optimization

We introduce here the basics of convex optimization and the derived properties.
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Definition A.14: Convex Optimization problem

Let C ⊂ Rn. An optimization problem consists in minimizing a cost
function J : Rn 7→ R under constraints on the optimization variables. It is
denoted as follows:

minimize
x

J(x)

subject to x ∈ C
(A.22)

More, the optimization problem (A.22) is said to be convex if:

1. J is a convex function

2. C is a convex set

Remark. The optimization may consists in maximizing a function which is equiv-
alent to minimizing the opposite of the function.

Proposition 1.4: local and global minimum of a convex optimization

If (A.22) is a convex optimization problem, then any local minimum is a
global minimum.

Definition A.15: Feasibility

The optimization problem (A.22) is said to be feasible if the constraint set
is nonempty (C ̸= ∅)

Consequently, the convex optimization problem whose constraints set is nonempty
is feasible and has a unique solution.

The taxonomy of optimization problem is rich but some of them are well known
and their numerical resolution has been enhanced with mathematics, algorithmics
and computationnal progress making them available for real-time implementation.
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Definition A.16: Linear Programming (LP)

The optimization problem (A.22) is said to be linear if:

1. The cost function is linear, i.e J(x) = aT x, a ∈ Rn

2. The constraint set is a convex polytope (defines by its H-Representation)

Notation:
minimize

x
aT x

subject to Fx ≤ g
(A.23)

where F ∈ Rm×n and g ∈ Rm

Definition A.17: Quadratic Programming (QP)

The optimization problem (A.22) is said to be quadratic if:

1. The cost function is quadratic, i.e J(x) = xT Qx + aT x with Q ∈
Rn×n, Q ≻ 0, a ∈ Rn

2. The constraint set is a convex polytope (defines by its H-Representation)

Notation:
minimize

x
xT Qx + aT x

subject to Fx ≤ g
(A.24)

where F ∈ Rm×n and g ∈ Rm

A.1.3 Tools for Optimal Control

In this thesis we mainly use states representation of dynamical systems and partic-
ularly the discrete-time framework of those ones because of the real-time require-
ments.
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Definition A.18: State-space representation of discrete-time systems

Let f : Rn 7→ Rn and g : Rn 7→ Rm. A discrete-time state space representation
of a autonomous system is given by:

x(k + 1) = f(x(k)) (A.25)

The representation of a system with input is given by:

x(k + 1) = f(x(k), u(k))
y(k) = g(x(k), u(k)) (A.26)

The representation of an uncertain system is given by:

x(k + 1) = f(x(k), u(k), w(k))
y(k) = g(x(k), u(k), w(k)) (A.27)

where w(.) ∈ Rn is a disturbance.

Definition A.19: Linear Time Invariant (LTI) systems

Considering the previous notations, a system is said to be Linear Time
Invariant (LTI) if the functions f and g are linear.

A LTI autonomous system is represented by:

x(k + 1) = Ax(k), A ∈ Rn×n (A.28)

A LTI system with input is represented by:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k) (A.29)

Where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×m.
A LTI uncertain system is represented by:

x(k + 1) = Ax(k) + Bu(k) + w(k)
y(k) = Cx(k) + Du(k) + w(k) (A.30)

where w(.) ∈ Rn is a disturbance, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and
D ∈ Rl×m.
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Definition A.20: Controllability

A LTI system represented by (A.29) is said to be controllable if the matrix:

C =
[
B AB A2B . . . An−1B

]
(A.31)

is full rank.

Definition A.21: Observability

A LTI system represented by (A.29) is said to be observable if the matrix:

O =
[
C CA CA2 . . . CAn−1

]T
(A.32)

is full rank.

Definition A.22: LQ control

We consider a LTI controllable system represented by (A.29). LQ Control
consists in solving the following optimization problem:

minimize
(u0, u1, . . . )

∞∑
k=0

x(k)T Qx(k) + u(k)T Ru(k)

subject to x(k + 1) = Ax(k) + Bu(k)
(A.33)

where Q ∈ Rn×n and R ∈ Rm×m are symmetric.
On can demonstrate that the solution is given by the state feedback:

u(k) = −Kx(k) (A.34)

where the linear gain K is given by:

K = (R + BT PB)−1BT PA (A.35)

and P is the solution of the discrete Riccati equation:

P = Q + AT PA− (AT PB)(R + BT PB)−1(BT PA) (A.36)
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Example: LQ control and Maximal Positively Invariant Set

Consider the LTI system with the following state space representation:

x(k + 1) =
[
1 0.5
0 1

]
x(k) +

[
0.125
0.5

]
u(k) (A.37)

subject to the following constraints:

|x1(k)| ≤ 2
|x2(k)| ≤ 4
|u(k)| ≤ 5

(A.38)

Thanks to the LQ procedure given in Definition.A.22,we can compute the

linear feedback law K with Q =
[
500 0
0 100

]
and R = 50.

K =
[
1.5639 1.9018

]
(A.39)

Figure A.5: Example of Maximal Positively Invariant Set O∞ in red and its
image through the feedback A−BK (in blue)
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B.1 Introduction

B.1.1 Qu’est-ce que la simulation de conduite ?
Aujourd’hui, l’industrie automobile se développe de manière à améliorer:

• le confort de conduite
• la sécurité (prévention des accidents)
• la pollution (électrification, particules fines,...)
• le rapport qualité/prix des véhicules

Ainsi les constructeurs développent des nouveaux véhicules ou des systèmes d’
assistance à la conduite (ADAS) et doivent garantir la satisfaction à des normes
(de sécurité et d’écologie par exemple) et aux attentes des clients. Cependant,
le nombre, la complexité et la dangerosité des différentes situations de conduite
potentielles sont un sérieux obstacle à la validation des nouveaux prototypes. La
simulation permet la reproduction artificielle de scénarios de conduite dans un
environnement paramétrable, restreint et sécurisé. Le conducteur est et restera le
centre de l’attention jusqu’à l’automatisation complète de la conduite. Ainsi, la
perception des stimuli externes et le processus de prise de décision sont au coeur de
la conduite. Une experience de simulation doit, par conséquent, reproduire les
sensations du conducteur. Nous proposons la définition suivante pour la simulation
de conduite

Definition B.1: Simulation de conduite

La simulation de conduite est l’ensemble des processus physiques et numériques
permettant la reproduction des sensations du conducteur dans un environ-
nement contraint et sécurisé.

Les sens connus à ce jour sont: la vue, l’ouïe, l’odorat, le goût, le toucher,
la thermoception, la nociception, la proprioception et l’équilibrioception. Il est
clair que certains de es sens sont plus important pour la conduite, le principal était
la vue. Le conducteur ressent également les accélération via l’équilibrioception via
le système vestibulaire dans l’oreille interne.

La restitution des accélérations est le principal sujet de cette thèse. Puisque
l’accélération décrit des déplacements, un espace de travail d’une certaine taille
est nécessaire. Si on considère un scénario de passage de 0 à 100km/h en ∆t = 10s
avec une accélération constante aveh. La distance parcourue par le véhicule est
estimée par intégration:

L = 1
2aveh∆t2 ≈ 140m (B.1)
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~aveh

~afelt

~vveh

~afelt =
v2veh
R

Figure B.1: Accélération ressentie longitudinalement (gauche) and latéralement
dans un virage (droite)

Un tel scénario nécessite donc un espace de travail de très grande taille. Une
solution pour économiser des déplacement est d’exploiter le champ gravitation-
nel en inclinant le conducteur et l’environnement virtuel de manière à projeter
l’accélération gravitationnel sur le système vestibulaire du conducteur. Cette tech-
nique est appelée "Tilt Coordination" dans la littérature et illustrée en Figure
B.2

xd

zd

xd

zd

~g

xf

zf

θ

g sin
(θ)

Figure B.2: Illustration de la technique de "Tilt Coordination"
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B.1.2 Les simulateurs de conduite
Les simulateurs peuvent être statiques ou dynamique, dans cette thèse nous nous
intéressons spécifiquement aux simulateurs dynamiques équipés de système de
mise en mouvement. La composition de tels simulateurs est montrée Figure B.3 à
travers l’exemple du simulateur de Renault ULTIMATE.

Ce genre de simulateur est constitué:
• d’un écran panoramique où l’environnement virtuel est affiché
• une cabine de voiture équipée de sièges, de pédales, d’un tableau de bord,

etc...
• un hexapode (ou plateforme de Stewart) qui incline la cabine pour la tech-

nique de "Tilt Coordination"
• Des rails mettant en mouvement la plateforme latéralement et longitudinale-

ment pour générer des mouvements rapides.

Screen

Cabin

Rails

Hexapod

Figure B.3: Composition d’un simulateur dynamique (Renault ULTIMATE)

Le fonctionnement de ce type de simulateur est résumé en Figure B.4
1. Le conducteur dans la cabine réagit aux stimulis visuels affichés à l’écran en

appuyant sur la pédale d’accélération ou de frein et en tournant le volant.
2. Les signaux générés sont traités par le logiciel de simulation. Ce dernier

calcule ainsi les accélérations que devraient ressentir le conducteur.
3. Les signaux d’accélération sont des références à suivre pour l’architecture de

contrôle de la plateforme en temps réel. Les actionneurs (rails et hexapode)
se déplacent ainsi de manière à restituer au mieux les sensations attendues
par le conducteur.

Le sujet de la thèse est la structure de commande des simulateurs dynamiques
et en particulier la fonction traduisant les accélérations à ressentir en profil de dé-
placement de la plateforme de simulation appelée "Motion Cueing Algorithm"
(MCA).
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Cabin
Driver

Software
Vehicle
Dynamic
Model

Platform
Control
Controllers
Actuators

Driver’s actions

accelerate, brake, turn

Acceleration

Movements

of rails and

hexapod

Acceleration

restitution

(and tilt)

Visual rendering

Figure B.4: Gauche: Schéma de fonctionnement d’un simulateur dynamique.
Droite: Simulateur Renault ULTIMATE

B.2 Algorithme de restitution des accélérations:
MCA

B.2.1 L’architecture de commande et l’accélération ressen-
tie

Architecture de commande

L’architecture de commande du simulateur est résumée Figure B.5. Les signaux
d’accélération à restituer au conducteur calculés par le logiciel sont traités par le
MCA (Motion Cueing Algorithm) qui calcule un profil de position pour les rails
et d’inclinaison pour l’hexapode. Les actionneurs se déplacent ainsi de manière à
restituer au mieux les accélérations.

Accélération ressentie

L’accélération ressentie par le conducteur dans le simulateur est la contribution de
l’accélération d’entraînement des rails et de la projection du champ gravitationnel
sur le système vestibulaire du conducteur. On peut modéliser cette accélération
ressentie par l’équation (B.2) grâce au principe fondamental de la dynamique dans
le référentiel du conducteur (Figure B.6).

afelt = alin cos(θ) + g sin(θ) (B.2)
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Vehicle
Dynamic
Model

MCA
Rails

+ Hexapod

Control

Rails
+ Hexapod

Position
sensors

Acceleration
sensors

Acceleration
to be
rendered

Position
reference

tilt refer-
ence

Rails
Control

Hexapod
Control

Acceleration

Position

Figure B.5: Schéma bloc de la structure de contrôle d’un simulateur dynamique.
Les éléments grisés sont ceux des composants des fournisseurs qui ne peuvent pas
être modifié à notre niveau

−→g

x

z

θ

θ

Figure B.6: Schéma vue de côté d’un simulateur dynamique

B.2.2 Structure par filtres

Le type d’architecture la plus commune dans l’industrie et la plus simple à mettre
en oeuvre est la structure par filtre (Figure B.7). La philosophie de cette technique
est de séparer les mouvements rapides (hautes fréquences) des mouvements lents
(basses fréquences), les premiers sont directement restitués par les rails alors que les
secondes sont restitués par l’inclinaison de l’hexapode. Cette technique présente
de faibles performances mais cet inconvénient doit être mis en balance avec sa
simplicité d’implémentation qui ne nécessite pas de connaissance particulière dans
le domaine de l’automatique car c’est un design en boucle ouverte.
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accx,y Scaling
λ

HP Filter
Hlin(s)

1
s2

posx,y

LP Filter
Htilt(s)

1
g

Scaling
µ

HP Filter
Hrot(s)

1
s

+
+ posφ,θvelφ,θ

Linear
acceleration
channel

Tilt
coordination
channel

Rotational
channel

Figure B.7: Structure de MCA à base de filtrage

B.2.3 MCA par commande prédictive

Modélisation

L’utilisation de la commande optimal implique l’utilisation de représentation d’état.
Comme MCA est une fonction transformant les accélérations en positions sous
contraintes, il peut être modélisé par un double intégrateur (pour les rails et pour
l’hexapode). Ainsi, en choisissant le vecteur d’état: x(k) =

[
p(k) v(k) θ(k) Ω(k)

]T

et le vecteur d’entrée: u(k) =
[
a(k) γ(k)

]T
:

x(k + 1) =


1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1

 x(k) +


T 2

s

2 0
Ts 0
0 T 2

s

2
0 Ts

 u(k)

y(k) =
[
0 0 g 0

]
x(k) +

[
1 0

]
u(k)

(B.3)

où p(k), v(k) et a(k) sont respectivement la position, la vitesse et l’accélération de
la plateforme par rapport aux rails alors que θ(k), Ω(k) et γ(k) sont respective-
ment l’angle d’inclinaison, la vitesse et l’accélération angulaire. La sortie y(k) est
l’accélération ressentie.

Cette modélisation est un exemple parmi d’autre, dans la thèse nous utilisons
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la formalisation classique:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(B.4)

Le contrôleur MPC résout le problème d’optimisation suivant en boucle fermé:

minimize
(u(k),...,u(k+N−1))

N∑
i=1
∥yref (k + i)− y(k + i)∥2

Qy
+ ∥x(k + i)∥2

Qx

+ ∥u(k + i)∥2
R + ∥x(k + N)∥2

P

subject to
x(k + i + 1) = Ax(k + i) + Bu(k + i) ∀i ∈ {0, . . . , N − 1},

y(k + i) = Cx(k + i) + Du(k + i) ∀i ∈ {0, . . . , N},
x(k + i) ∈ X ∀i ∈ {1, . . . , N},
u(k + i) ∈ U ∀i ∈ {0, . . . , N − 1},

x(k + N) ∈ Xf

(B.5)

où Xf est un ensemble invariant positif. Le principe de la commande prédictive est
rappelé Figure B.8. L’avantage de cette technique est qu’elle est potentiellement

k
k + N − 1

Past inputs Optimized inputs

Predicted outputs

u(k + N − 1)

y(k + d + N)

y(k)

u(k)

Figure B.8: Fonctionnement de la commande prédictive: le contrôleur trouve la
séquence optimale d’entrées (en rouge) qui génère une trajectoire prédite de la
sortie (en violet), enfin seule la première composante de la séquence d’entrée est
appliquée au système.

performante en fonction de la qualité de la prédiction et de la longueur de l’horizon
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de prédiction. Cependant, l’implémentation temps réel peut-être compliquée à
réaliser pour des longs horizons. De même la prédiction est très compliquée à
obtenir. La prédiction et l’implémentation temps réel sont des problèmes ouverts
de ce domaine de recherche.

B.3 MPC améliorées pour MCA

B.3.1 MPC non linéaire
La première contribution de cette thèse est la prise en compte des non-linéarités
dues à la projection du champ gravitationnel (équation (B.6)).

x(k + 1) =


p(k) + Tsv(k) + T 2

s

2 ul(k)
v(k) + Tsul(k)
θ(k) + Tsur(k)

 = f(x(k), u(k))

y(k) = g sin(θ(k)) + ul(k) cos(θ(k)) = g(x(k), u(k))

(B.6)

Ainsi, le problème d’optimisation associé au contrôleur MPC devient non linéaire
et donc moins adapté à l’implémentation temps réel:

minimize
(u(k),...,u(k+N−1))

N∑
i=1
∥yref (k + i)− y(k + i)∥2

Qy
+ ∥x(k + i)∥2

Qx

+ ∥u(k + i)∥2
R + ∥x(k + N)∥2

P

subject to
x(k + i + 1) = f(x(k + i), u(k + i)) ∀i ∈ {0, . . . , N − 1},

y(k + i) = g(x(k + i), u(k + i)) ∀i ∈ {0, . . . , N},
x(k + i) ∈ X ∀i ∈ {1, . . . , N},
u(k + i) ∈ U ∀i ∈ {0, . . . , N − 1},

x(k + N) ∈ Xf

(B.7)

Nous proposons dans cette contribution de trouver une alternative compati-
ble avec le temps réel pour ce type de contrôleur prédictif en comparant deux
contrôleurs:

1. L-NL (Linear-NonLinear): Compensation de la réponse des rails par celle de
l’inclinaison (Figure B.9).

2. NL-L (NonLinear-Linear): Compensation de la réponse de l’hexapode par
celle des rails (Figure B.10).
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Nonlinear
MPC θ(k), θ̇(k)

p(k), v(k)

ul(k)

Figure B.9: principe de la stratégie L-NL

Nonlinear
MPCaref

Linear
MPC p(k), v(k)

θ(k), θ̇(k)

θ(k)

Figure B.10: principe de la stratégie NL-L

La comparaison des performances et du temps de calcul montre que le con-
trôleur L-NL est le plus adapté pour une implémentation temps-réel.

B.3.2 Compensation du retard
La deuxième contribution concerne la compensation des retards dus à l’inertie de
la plateforme, au protocole de communication ou aux erreurs de prediction. On
considère dans cette partie le modèle linéaire à retard suivant:

x(k + 1) =

1 Ts 0
0 1 0
0 0 1

 x(k) +


T 2

s

2 0
Ts 0
0 Ts

 u(k − d)

y(k) =
[
0 0 g

]
x(k) +

[
1 0

]
u(k − d)

(B.8)

Une manière d’aborder le contrôle de tels systèmes est de considérer un espace
d’état étendu comprenant l’historique des commandes passées. Ainsi la dynamique
étendue peut être formalisée par un modèle linéaire non retardé, par conséquent
un contrôleur MPC linéaire peut être considéré. Cependant, la grande dimension
de l’espace d’état et la difficulté de calculer un ensemble invariant terminal fait que
cette technique n’est pas adaptée pour le temps réel dans notre application. La
philosophie de cette contribution est d’utiliser une formalisation de MPC allégée
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utilisant l’ensemble maximal contrôlable (B.9). Cette stratégie est résumée Figure
B.11.

minimize
(u(k),...,u(k+N−1))

d+N∑
i=d+1

∥yref (k + i)− y(k + i)∥2
qy

+ ∥x(k + i)∥2
Qx

+
N∑

i=1
∥u(k + i)∥2

R

subject to x(k + i + 1) = Ax(k + i) + Bu(k + i− d),
∀i ∈ {0, . . . , d + N − 1},

y(k + i) = Cx(k + i) + Du(k + i− d),
∀i ∈ {d + 1, . . . , d + N},

x(k + d + 1) ∈ C,
(u(k), . . . , u(k + N − 1)) ∈ U

(B.9)
where qy, Qx and R are weighting matrices.

kk − 1k − d
k + d

k + N − 1 k + d + N
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x(k)

u(k)

x(k + d)

Figure B.11: Principe de la stratégie: Les commandes passées imposent une
réponse inertielle sur k + d étapes alors que les commandes optimisées sont choi-
sis tel que les entrées prédites assurent l’appartenance du premier état prédit (à
l’étape k + d + 1) à l’ensemble maximal contrôlable C.
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B.4 Commmande par interpolation pour MCA

B.4.1 Commande par interpolation: le cas de la régulation
(IBC)

On considère le système linéaire discret:

x(k + 1) = Ax(k) + Bu(k) (B.10)

avec x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, A ∈ Rn×n, B ∈ Rn×m. X et U sont des ensembles
de contraintes sur les états et sur les entrées contenant l’origine.

On considère deux ensembles contrôlables Ωo ⊂ X et Ωv ⊂ X convexes com-
pacts contenant l’origine tels que:

Ωo ⊂ Ωv ⊂ X (B.11)

Ωo est appelé ensemble interne et Ωv l’ensemble externe. Enfin, chacun est associé
à sa propre loi de commande contrainte:

uo = Ko(x) si x ∈ Ωo et uv = Kv(x) si x ∈ Ωv/Ωo (B.12)

tel que Ko(Ωo) ⊂ U et Kv(Ωv) ⊂ U .
Le principe de la commande par interpolation est le suivant:

1. l’état courant x(k) peut être décomposé de manière convexe:

x(k) = c(k)xv(k) + (1− c(k))xo(k) (B.13)

où xo(k) ∈ Ωo, xv(k) ∈ Ωv et c(k) est un facteur de convexité choisi pour
maximiser la contribution du contrôleur local de Ωo via la résolution du
problème d’optimisation suivant:[

xv xo c∗
]T

= minimize
(xv ,xo,c)(k)

c

subject to xv ∈ Ωv, xo ∈ Ωo,

x(k) = cxv + (1− c)xo,

c ∈ [0, 1].

(B.14)

Une interprétation géométrique de cette décomposition est donnée Figure
B.12

2. La commande appliquée au système est la combinaison convexe des deux
retours d’états comme explicité sur le schéma block Figure B.13

u(k) = c(k)uv(k) + (1− c(k))uo(k) (B.15)
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Figure B.12: Interprétation géométrique de la décomposition convexe de l’état
courant x(k)

Convex De-
composition
xk = ckx

v
k +

(1 − ck)xo
k

Outer
Component
uv
k = Kv(xv

k)

Inner
Component
uo
k = Ko(xo

k)

Convex
Composition
uk = cku

v
k +

(1 − ck)uo
k

Plant
xk

xv
k

xo
k

uv
k

uo
k

uk

Ωv

Ωo

IBC

Figure B.13: Principe de la commande par interpolation

Cette stratégie de commande est prouvée stable et récursivement faisable, de
plus son potentiel computationnel plus intéressant qu’une stratégie MPC à long
horizon en fait une bonne stratégie candidate pour notre application. Nous devons
cependant l’adapter dans un premier temps à la poursuite de trajectoires.

B.4.2 Poursuite de trajectoire dynamique par interpola-
tion (IBT)

Pour adapter la commande par interpolation à la poursuite de trajectoire, nous
proposons d’utiliser un guide de référence (Reference Governor) calculant une
référence admissible qui pourra être suivi grace à la commande par interpolation
comme résumé par le schéma block Figure B.14

Le guide de référence calcule une nouvelle référence faisable et une topolo-
gie contrôlable dans laquelle la philosophie de la commande par interpolation est
possible. Cette topologie est déterminée par translation et mise à l’échelle de la
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Reference
Governor

⊗ IBC ⊗ Σ

× ×xk

xk

xrefk+1 ũk

αk

x̃k εk vk uk

Ωo Ωv

-
+

+
+

Figure B.14: Schéma bloc de la poursuite de trajectoire basée sur la commande
par interpolation

topologie initiale via la résolution du problème d’optimisation (B.16).

[
ũ(k)
α(k)

]
= arg min

(ũ(k),α(k))
∥xref (k + 1)− x̃(k + 1|k)∥2

Q

subject to x̃(k + 1|k) = Ax̃(k|k) + Bũ(k),
x(k) ∈ {x̃(k|k)} ⊕ α(k)Ωv,

{x̃(k|k)} ⊕ α(k)Ωv ⊂ Ωv,

ũ(k) ∈ (1− α(k))U ,

{x̃(k + 1|k)} ⊕ α(k)Ωv ⊂ Ωv

(B.16)

Ainsi, la procédure de la commande par interpolation est applicable à l’erreur
de poursuite: ε(k) = x(k)− x̃(k) dans α(k)Ωv.

La commande appliquée au système est la contribution du guide de référence
et de la commande par interpolation.

u(k) = ũ(k) + c(k)vv(εv(k)) + (1− c(k))vo(εo(k)︸ ︷︷ ︸
v(k)

) (B.17)

où vv(k) et vo(k) sont les actions de commandes dans α(k)Ωv et α(k)Ωo.
Cette thèse démontre la faisabilité récursive de cette stratégie de poursuite,

ainsi que ses possibilités d’application dans la simulation de conduite comme
stratégie de MCA.
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B.5 p-Invariance
La dernière contribution de cette thèse concerne la relaxation des concept d’invariance
positives et contrôlées et le potentiel allègement computationnel pour des con-
trôleurs optimaux.

On autorise ainsi une trajectoire à quitter un ensemble pendant un temps fini.
On peut distinguer deux catégories de propriétés que l’on désignera par les termes
"faibles" et "fortes".

Les propriétés faibles autorise le retour de la trajectoire avant le délai limite p
alors que les propriétés fortes imposent le retour de la trajectoire au moment du
délai p.

B.5.1 Le cas des systèmes autonomes
Dans cette partie nous nous intéressons aux systèmes autonomes décrits par:

x(k + 1) = f(x(k)) (B.18)
La faible satisfaction des contraintes est définie ci-dessous:
Definition B.2: p-satisfaction faible d’une contrainte

Soit p ∈ N∗, la trajectoire du système (B.18) initialement en x0 ∈ Rn p-
satisfait faiblement la constrainte L(h) si il existe une fonction r : N→ N[1,p]
tel que x(k + r(k)) ∈ L(h) pour tout k ∈ N.

Cette définition est illustrée Figure B.15

+x0

+

+

+

+

+

+

+

+

h(x) ≤ 0

+x0

+

+

+

+

+

+

h(x) ≤ 0

Figure B.15: Gauche: la trajectoire satisfait la contrainte h(x) ≤ 0 avec un indice
de 3. Droite: Pas de 3-satisfaction de la constrainte

Dans cette thèse nous utilisons cet outil d’analyse pour étendre cette propriété
à des contraintes multiples et aux tubes de trajectoires. Nous pouvons ainsi définir
la p-invariance faible pour un ensemble fini.
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Definition B.3: Invariance faible

Soit p ∈ N. Un ensemble Ω ⊂ Rn est faiblement p-invariant pour le système
(B.18) si pour tout x0 ∈ Ω, il existe une fonction r : N → N[1,p] tel que
x(k + r(k)) ∈ Ω pour tout k ∈ N.

De la même façon, on définit les propriétés fortes de satisfaction et d’invariance
des contraintes:

Definition B.4: p-satisfaction forte de contraintes multiples

Le tube de trajectoires du système (B.18) initialisé en X ⊂ Rn p-satisfait
fortement le vecteur de contraintes L(h) avec h : Rn → Rm si x(k + p) ∈
L(hi) ∀i ∈ N[1,m], pour tout x0 ∈ X et pour tout k ∈ N tel que x(k) ∈ X et
x(k + 1) /∈ X.

Cette définition est illustrée Figure B.16

+x0

+

+
+

+
+

+
+

+
+ +

+

h(x) ≤ 0

+x0

+

+
+

+
+

+
+

+
+

+

+
h(x) ≤ 0

Figure B.16: Gauche: Illustration d’une trajectoire initiée en x0 qui p-satisfait
fortement la contrainte h(x) ≤ 0 pour p = 5). Droite: exemple d’une trajectoire
initiée en x0 qui p-satisfait faiblement la contrainte h(x) ≤ 0 mais ne satisfait pas
fortement la même contrainte avec le même indice.

B.5.2 Cas des systèmes contrôlés
On considère dans cette partie les systèmes contrôlés contraints décrit par une
dynamique linéaire:

x(k + 1) = Ax(k) + Bu(k),

tel que:
{

x(k) ∈ X , ∀ k,
u(k) ∈ U , ∀ k

(B.19)
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Les propriétés de p-invariance précédemment définies peuvent être étendues à
ce type de système avec par exemple la p-invariance forte:

Definition B.5: p-invariance forte contrôlée

Un ensemble B ⊂ X contenant l’origine est dit fortement p-invariant pour le
système constrained system (B.19) si il existe p ∈ N∗ tel que pour tout état
x(k) ∈ B, il existe une des options suivantes:

• une action de commande u(k) tel que x(k + 1) ∈ B

• une séquence de commande (u(k), ..., u(k+p−1)) ∈ Up tel que x(k+p) ∈
B et (x(k + 1), ..., x(k + p− 1)) ∈ X .

Nous proposons dans cette thèse des stratégie de commande basée cette pro-
priété dans le but d’utiliser la commande prédictive allégées manipulant des en-
sembles simples. Un prototype d’une telle technique est explicitée ci-dessous via
le problème d’optimisation paramétré O(Nh, p, x(k)):

Jp(x(k)) = minimize
(u(k),...,u(k+Nh−1))

Nh∑
i=1
∥xref (k + i)− x(k + i)∥2

Q

subject to u(k + i) ∈ U , x(k + i) ∈ X ∀i ∈ [1, . . . , M ], ,

x(k + p) ∈ B,

(B.20)

with M = max(Nh, p). Bien que la résolution de ce problème d’optimisation n’est
pas récursivement faisable, il est possible de l’utiliser dans l’Algorithme 4.

Dans cette thèse, nous prouvons que cet algorithme est récursivement faisable
et peut être utilisé comme base pour une stratégie de MCA.

B.6 Conclusion
Cette thèse propose des alternatives aux stratégies de contrôle de plateformes de
simulation de conduite existantes particulièrement celles basées sur l’optimisation
comme la commande prédictive. L’utilisation de telles lois de commande en temps
réel avec un faible temps d’échantillonnage rend leur implémentation difficile. Bien
qu’il soit possible d’éviter cette problématique, cela se fait au prix d’une baisse
des performances et d’une plus grande difficulté de paramétrage du contrôleur.

Les différentes contributions de cette thèse tentent de faire face à cette con-
trainte du temps réel tout en garantissant des performances de restitution sen-
sorielle et une simplicité de paramétrage.
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Titre: Amélioration de la restitution des stimuli sensoriels sur simulateur de conduite
Mots clés: Commande sous contraintes, simulation de conduite, retard, prediction, optimisation

Résumé: Les simulateurs dynamiques de conduite
à haute performance restituent les accélérations du
véhicule à l’aide d’un système de mise en mouve-
ment de plateforme. Le conducteur est immergé
dans un environnement de synthèse multi-sensoriel
(stimulations visuelles, haptiques, vestibulaires et
sonores). La performance d’un tel simulateur en
dehors de sa capacité mécanique (latence visuelle,
le retard de restitution de mouvement, etc...) et
de la cohérence temporelle des différents stimuli
sont des facteurs pouvant conditionner la qualité
de la perception.
La présente thèse a pour objectif de développer
un algorithme de restitution de mouvement qui
minimise le temps de calcul et corrige le retard
du simulateur tout en conservant la performance
de restitution de mouvement. Cet algorithme de
restitution fait l’objet d’un intérêt spécifique de la
communauté de la simulation de conduite via la

dénomination MCA (Motion Cueing Algorithm).
Cette thèse porte sur la commande optimale et
en particulier sur la récente utilisation de la com-
mande prédictive par modèle (ou Model Predic-
tive Control ou MPC) comme base de l’algorithme.
Les différentes pistes d’amélioration évoquées dans
cette thèse concernent l’utilisation des ensembles
invariants pour la poursuite de trajectoire en temps
réel.
Ainsi, un algorithme de compensation de retard in-
ertiel est proposé dans une version allégée du point
de vue du temps d’exécution. Un algorithme non
prédictif basée sur la commande par interpolation
adapté à la poursuite de trajectoire dynamique est
également proposé. Enfin, une base théorique per-
mettant la relaxation des concepts d’invariance est
conçue afin de minimiser la complexité des prob-
lèmes d’optimisation utilisés dans la commande
prédictive.

Title: Improvement of the sensory stimuli restitution on driving simulator
Keywords: Constrained control, driving simulation, delay, prediction, optimization

Abstract: High performance driving simulators
reproduce vehicle acceleration based on adequate
motion systems. The driver is immersed in a multi-
sensorial (visual, haptic, vestibular and sound stim-
ulation) environment of synthesis. The perfor-
mance of driving simulator outside of its mechani-
cal capacity (the visual latency, the delay of resti-
tution of movement, etc...) and of the temporal
coherence of the different stimuli are factors that
can condition the validity of the perception.
The present thesis aims at to develop a motion
restitution algorithm that minimizes the calcula-
tion time and corrects the simulator delay while
maintaining the performance of motion restitu-
tion. This restitution algorithm receives a spe-
cific interest from the driving simulation commu-

nity through the denomination MCA (Motion Cue-
ing Algorithm). This thesis work deals with opti-
mal control and particularly on the recent use of
Model Predictive Control (MPC) as a base of the
algorithm. The different ways for improving con-
cern the set invariance use in the control design
for the trajectory tracking.
Thus, a delay compensation algorithm is proposed
with a less computational burden. A non pre-
dictive algorithm is also designed based on the
interpolation-based control technique adapted to
the dynamic trajectory tracking. Finally, new set
theoretic notions relaxing set invariance notions are
proposed in order to minimize the complexity of
optimization problems in the MPC procedure.
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