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Abstract

In this thesis, a novel approach is developed for visco-plasticity and nonlinear dy-
namics problems. In particular, variational equations are elaborated following the
Helligner-Reissner principle, so that both stress and displacement fields appear as
unknown fields in the weak form. Three novel finite elements are developed. The
first finite element is formulated for the axisymmetric problem, in which the stress
field is approximated by low-order polynomials such as linear functions. This ap-
proach yields accurate solutions specifically in incompressible and stiff problems. In
addition, a membrane and plate bending finite element are newly designed by dis-
cretizing the stress field using the lowest order Raviart-Thomas vector space RT0.
This approach guarantees the continuity of the stress field over an entire discrete
domain, which is a significant advantage in the numerical method, especially for
the wave propagation problems. The developments are carried out for the visco-
plastic constitutive behavior of materials, where the corresponding evolution equa-
tions are obtained by appealing to the principle of maximum dissipation. To solve
the dynamic equilibrium equations, energy conserving and decaying schemes are
formulated correspondingly. The energy conserving scheme is unconditional stable,
since it can preserve the total energy of a given system under a free vibration, while
the decaying scheme can dissipate higher frequency vibration modes. The last part
of this thesis presents procedures for upscaling of the visco-plastic material behav-
ior. Specifically, the upscaling is performed by stochastic identification method via
Baysian updating using the Gauss-Markov-Kalman filter for assimilation of impor-
tant material properties in the elastic and inelastic regimes.

Keywords: Hybrid variational formulation, visco-plasticity, Raviart-Thomas vec-
tor space, energy conserving and decaying schemes, upscaling of visco-plastic mate-
rial via Bayesian update.





Résumé

Dans cette thèse, une nouvelle approche est développée pour les problèmes de vis-
coplasticité et de dynamique non linéaire. En particulier, les équations variation-
nelles sont élaborées selon le principe de Helligner-Reissner, de sorte que les champs
de contrainte et de déplacement apparaissent comme des champs inconnus sous la
forme faible. Trois nouveaux éléments finis sont développés. Le premier élément
fini est formulé pour le problème axisymétrique, dans lequel le champ de contraintes
est approximé par des polynômes d’ordre inférieur tels que des fonctions linéaires.
Cette approche donne des solutions précises spécifiquement dans les problèmes in-
compressibles et rigides. De plus, un élément fini de flexion de membrane et de
plaque est nouvellement conçu en discrétisant le champ de contraintes en utilisant
l’espace vectoriel de Raviart-Thomas d’ordre le plus bas RT0. Cette approche garan-
tit la continuité du champ de contraintes sur tout un domaine discret, ce qui est
un avantage significatif dans la méthode numérique, notamment pour les problèmes
de propagation des ondes. Les développements sont effectués pour le comportement
constitutif visco-plastique des matériaux, où les équations d’évolution correspon-
dantes sont obtenues en faisant appel au principe de dissipation maximale. Pour
résoudre les équations d’équilibre dynamique, des schémas de conservation et de
décroissance de l’énergie sont formulés en conséquence. Le schéma de conserva-
tion de l’énergie est inconditionnellement stable, car il peut préserver l’énergie to-
tale d’un système donné sous une vibration libre, tandis que le schéma décroissant
peut dissiper des modes de vibration à plus haute fréquence. La dernière partie
de cette thèse présente les procédures d’upscaling du comportement des matériaux
visco-plastiques. Plus précisément, la mise à l’échelle est effectuée par une méthode
d’identification stochastique via une mise à jour baysienne en utilisant le filtre de
Gauss-Markov-Kalman pour l’assimilation des propriétés importantes des matériaux
dans les régimes élastique et inélastique.

Mots-clés: Formulation variationnelle hybride, viscoplasticité, espace vectoriel de
Raviart-Thomas, schémas de conservation et de décroissance de l’énergie, mise à
l’échelle du matériau visco-plastique via la mise à jour bayésienne.





Zusammenfassung

In dieser Arbeit wird ein neuartiger Ansatz für Viskoplastizitäts- und nichtlin-
eare Dynamikprobleme entwickelt. Insbesondere werden Variationsgleichungen nach
dem Helligner-Reissner-Prinzip aufgestellt, so dass sowohl Spannungs- als auch Ver-
schiebungsfelder als unbekannte Felder in schwacher Form erscheinen. Drei neuar-
tige finite Elemente werden entwickelt. Das erste finite Element wird für das ax-
ialsymmetrische Problem formuliert, bei dem das Spannungsfeld durch Polynome
niedriger Ordnung wie lineare Funktionen angenähert wird. Dieser Ansatz liefert
genaue Lösungen speziell bei inkompressiblen und steifen Problemen. Darüber
hinaus wird ein finites Element mit Membran- und Plattenbiegung neu entwor-
fen, indem das Spannungsfeld unter Verwendung des Raviart-Thomas-Vektorraums
RT0 niedrigster Ordnung diskretisiert wird. Dieser Ansatz garantiert die Konti-
nuität des Spannungsfeldes über eine gesamte diskrete Domäne, was insbesondere
bei Wellenausbreitungsproblemen ein wesentlicher Vorteil der numerischen Methode
ist. Die Entwicklungen erfolgen für das viskos-plastische Materialverhalten, wobei
die entsprechenden Evolutionsgleichungen unter Berufung auf das Prinzip der maxi-
malen Dissipation erhalten werden. Um die dynamischen Gleichgewichtsgleichungen
zu lösen, werden entsprechende Energieerhaltungs- und -zerfallsschemata formuliert.
Das energieerhaltende Schema ist bedingungslos stabil, da es die Gesamtenergie
eines gegebenen Systems unter einer freien Schwingung erhalten kann, während
das abklingende Schema höherfrequente Schwingungsmoden zerstreuen kann. Im
letzten Teil dieser Arbeit werden Verfahren zum Upscaling des viskoplastischen Ma-
terialverhaltens vorgestellt. Konkret erfolgt die Hochskalierung durch stochastische
Identifikationsverfahren mittels des Baysian Update unter Verwendung des Gauss-
Markov-Kalman-Filters zur Assimilation wichtiger Materialeigenschaften im elastis-
chen und inelastischen Bereich.

Schlagworte: Hybride Variationsformulierung, Visko-Plastizität, Raviart-Thomas-
Vektorraum, Energieerhaltungs- und Zerfallsschemata, Hochskalierung von visko-
plastischem Material über Bayes-Update.
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1
Introduction

In this first chapter, the motivation of the current research is presented
along with the research objectives. Afterwards, the most notable re-
search works relevant to this thesis topic is briefly reviewed. Then, the
methodology section is followed by the outline of the thesis, which is at
the end of this chapter.
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1.1 Motivation
During the recent decades, the computational mechanics has been developed enor-
mously so that many tough mathematical, physic and mechanic problems can be
now simulated and solved numerically. Some conventional research topics such as
wave propagation [105], [120], [164], fluid-structure interaction (see [20], [156], [75],
[119], [182], [34], [33], [1], [43], [195], [206], [27]) have been still getting special in-
terests by many researchers with an aim to solve the problem more efficient and
with less computational cost. Additionally, there have been some newly-emerged re-
search branches such as isogeometric analysis [77, 152, 154], virtual element method
[198, 76, 2], topological optimization (see [21], [70], [3], [62], [196]), multi-physics (see
[106], [42], [63], [124], [162], [140], [192], [135], [40], [114], [190], [108], [158], [161],
[45]), localized failure, and crack propagation (see [29], [90], [174], [175], [173], [153],
[184]), phase-field method (see [137], [136], [129], [150], [46], [23]), nano-composite
simulation (see [13], [122], [122]), automatic code generation [113], and bio-cells
modeling [181]. The up-rising trend with the aim to apply the uncertainty quan-
tification and analysis into the engineering practices has also been evolving recently
(see [72], [199], [155], [134], [183], [52], [74], [96], [160], [47]). Beside that, several
works are dedicated on other challenging topics such as parallel/higher-performance
computing and digital twins. Several advanced research and industrial applications
are shown in Fig. 1.1, e.g. aircraft futuristic development of DLR 1, Orion parachute
of NASA 2, and wind turbine tower.

(a) (b) (c)

Figure 1.1 – Advanced numerical simulation and applications: (a) Research concept
on future aircraft development (courtesy of dlr.de), (b) NASA’s Orion parachute
validation (courtesy of nasa.gov), (c) Wind turbine tower at Sainte-Colombe, France.

Starkly, the research society is continuously looking for better and more efficient
solutions to both conventional and newly-rising problems in the field of compu-
tational mechanics. In the early days, the conventional finite element method is
dominant thanks to its feasibility and accuracy in many mechanics problems. How-
ever there still exists several problems, e.g. notably incompressible problems, in
which this method is not capable to yield precise results. And the former method
can not guarantee the continuity of stress field under dynamics analysis. To over-
come those difficulties, the mixed finite element approach, e.g. Helligner-Reissner

1Deutsch Luft und Raumfahrt
2National Aeronautics and Space Administration

2



and Hu-Washizu methods, has been applied widely. The mixed approach is proved
to be very effective for both compressible and incompressible mechanics problems.
Relevant researches using mixed variational formulation for small deformation are
applied in electrostatics and magnetostatics [139], laminated beams [189], incom-
pressible elasticity [191], and stabilized quadrilateral Reissner-Mindlin plate element
[66]. Likewise, other works for finite deformation using mixed formulation can be
listed as finite rotation using Biot’s stress [116], higher-order elements in morphoe-
lasticity [107], improved shell element [194], discontinuous Galerkin method [187],
structure of polyconvex stored energy functions [22], cable elements with a continu-
ous or discontinuous axial force field [41], quasi-incompressible finite elasticity [178],
and first order system of hyperbolic equations [24, 61, 25]. Examples for the above
method in finite deformation are shown in Fig. 1.2. In the same main stream, this
thesis concentrates in the development of two-field mixed finite element method for
visco-plasticity and elasto-dynamics problems. Additionally, one last chapter is de-
voted to parameter identification method for inelastic problem and multi-scale with
visco-plasticity problems. A more comprehensive literature review relevant to thesis
contents are given in the following Section 1.2.

(a) (b) (c)

Figure 1.2 – Mixed finite element method in finite deformation: (a) Displacement
magnitude’s contour in rolling-up beam using algorithm of [116], (b) Pressure in
twisted beam [24], (c) Displacement magnitude in upward-bending of Lily flower
[107]

1.2 Literature review
There are several typical material’s inelastic behaviors, e.g. plasticity, damage, and
visco-plasticity. The main difference lays on the underlying mathematical models
and also the yield functions. Many research works relevant to material’s inelastic re-
sponse are solved thoroughly via the conventional displacement-based finite element
method. Nevertheless these type of problem can be also formulated via mixed finite
element method with an aim to improve the accuracy of stress field. Namely, the
Helligner-Reissner approach can be a potential choice to derive the weak variational
form. An advantage of Helligner-Reissner variational approach is that both dis-
placement and stress fields can be considered as independent fields. This approach
guarantees the accurate computation for stress, see [8], [9], and [191]. Expanding
further into dynamics problem, one can use a cluster of stable time-stepping schemes
which are successfully developed for long-term computation. The unconditional sta-
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bility property of some straightforward time-stepping schemes, which can support
the computation for a large number of time steps, are proved with a sound theoreti-
cal basis in [14], [16], [84], [71], [53], and [125]. Other examples are the second-order
accurate scheme [7] and β1/β2-Bathe method with L-stable state for wave propaga-
tion problem [128]. Another research effort is given at formulating a so-called energy
decaying scheme with an aim to decay the contribution of higher-frequency modes in
a coarse finite element mesh where they are not full resolved, see [94, 5]. Specifically,
the variation of velocities and stress computation within a time interval is modified
so that it reduces the participation of high-frequency modes in controllable manner
via dissipation coefficients α and β. A relevant work, see [127], is given in developing
a time integration schemes with capability of prescribing the numerical dissipation.

Rather than using the Helligner-Reissner approach, a condensed two-field vari-
ational formulation can be derived directly from the regularized three-field varia-
tional formulation [81] by eliminating the independent rotation field, see relevant
works [82, 86, 99]. The new-formed two-field variational formulation is capable of
offering an improvement of stability properties. One of the critical point in this
variation formulation is that the non-symmetric part of stress tensor is assumed.
Consequently the stress is not restricted to be symmetric, it enables us to interpo-
late stress field by Whitney’s approximation [139, 26], which is successful deployed
for scalar field problems, or by the lowest order of Raviart-Thomas (RT0) vector
space, see [50, 54]. The latter approximation can improve the computation accu-
racy and maintain the continuity of stress traction over element’s edges, which is
an advantageous point for dynamics. Particularly, an enhanced finite element can
be developed from the traditional constant stress/strain element, where three more
nodes are added at mid-edges to place the degrees of freedom for stress field. Here,
the stress degrees of freedom are actually components of normal traction at a cor-
responding element edge with the use of RT0 discretization. In additional to the
Raviart-Thomas interpolation, there exist other choices of stress interpolation, such
as Brezzi-Douglas-Marini (BDM) [54, 28], though this type of interpolation is com-
plex to implement. To improve solution’s accuracy in dynamics problems, several
research works opt for the discontinuous Galerkin method [104] or by isogeometric
analysis [77] to improve solution’s accuracy in dynamics problems.

Due to the important role in engineering practice, the plate bending element has
been still receiving many attentions of research and development works. In general,
there exists thick and thin plate theories. The main difference between the two mod-
els concerns the treatment of shear strain and its work-conjugate shear forces. In
the case of the Kirchhoff plate model, the plate fiber is assumed to remain perpen-
dicular to mid-surface upon deformation, which eliminates shear strains, contrary to
the Reissner-Mindlin plate theory that accounts for shear force by considering fiber
to remain straight but not necessarily perpendicular to plate mid-surface. Several
early researches are pioneered by [165], [138], and [166]. Numerous research works
on Reissner-Mindlin plate aim to alleviating the locking phenomenon, such as by
using enhanced assumed strain [79], [17], [4], [87], [55], [141]. Other research works
employ mixed finite element, see [19], [17], [31], [204], [11], [12], [66], [194]. Addi-
tional approaches are the sub-element method [38], the reduced integration method
[78], the series solution [30] and the alternative alpha finite element method [149].
A more detailed review of many important developments on plate bending problem
can be found in [15] and [205]. Some more recent review and comparison works be-
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tween common plate and shell elements are reported in [109], [18], [121], and [144].
For nonlinear analysis of plate bending problem, some significant works are given
on fracture computation [48], plasticity [159, 193], visco-plasticity [51], a von Kár-
mán plate model [49], and mixed convection boundary-layer flow over a flat plate
in a porous medium [67]. Several works relevant to further refinement of inelastic
behavior in the bending plate problem can be found in [157], [44], [112], and [51].

The field of uncertainty quantification has been gaining many attentions from
the engineering society of computational and numerical methods, e.g. dynami-
cal systems in the frequency domain [168], low-frequency electromagnetic devices
[57], sampling-free linear Bayesian update for fracture phase-field modeling [199],
Bayesian inference of heterogeneous visco-plastic material parameters [102], stochas-
tic multiple crack patterns [59], polynomial chaos expansions for Maxwell’s source
problem [58], polynomial chaos in evaluating failure probability [103], polynomial
chaos for stochastic differential equations [201], adaptive Gaussian process for opti-
mization problem [110], inverse problem in piezoelectric material to identify damage
[172], structural fragility analysis underground motion [202], and random fluctua-
tions in material behavior of metals with visco-plastic and damage [115]. There
are several other researches adopting neural networks and machine learning into the
engineering practices, e.g solving phase-field modeling of fracture [64], predicting en-
ergy consumption [32], detecting damage in wind turbine tower [145, 146], tracking
high-dimensional non-Gaussian state models [72], modeling a digital twin for com-
posite materials [60], predicting load-bearing capacity of concrete-filled steel tubular
[123], computational homogenization [151], and calibration of nonlinear mechanical
models [130, 117]. A cluster of research works is relevant to parameter identifica-
tion, e.g. using conditional expectation [133], applying Gauss-Markov-Kalman filter
for the Bayesian estimation [132], developing sampling-free non-linear Bayesian up-
date [134], considering stored energy and dissipation in multi-scale analysis [176],
applying the reduced model to quasi-brittle failure of concrete [96], estimating effec-
tive parameters in anisotropic hydraulic phase-field fracture [155], estimating model
coefficients of a novel turbulent flow model over porous media [56], developing an
efficient computational method to sample the posterior random variables [73], sta-
bilizing reduced order models in computational fluid dynamics problems [183]. The
idea to bring parameter assimilation into the multi-scale problem is rather chal-
lenging. Some research works on multi-scale problems can be listed as probabilistic
analysis of localized failure [95], efficient code-coupling strategy [97], embedded dis-
continuity capable of interpreting full set of 3D failure modes for heterogeneous ma-
terials [98], programming and computational procedure [171], poro-viscoelastic sub-
stitute model [101], modelling of micromorphic continua [100], elastic/viscoelastic
compounds [179], micro-scale or nano-scale composites [35], curing processes [111],
large eddy simulation of turbulent flow [65], and Nitsche-type extended variational
formulation for incompressible two-phase flow [177].

1.3 Research objectives and methodology
The work in this thesis aim at providing the following contributions:

• The Helligner-Reissner approach is formulated for the conventional visco-
plasticity problem, in which the stress field is interpolated by the low-order
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polynomials.

• The regularized variational formulation is derived for plane membrane and
also plate bending problems. The lowest-order Raviart-Thomas vector space
RT0 is employed to approximate stress field in the former problem, and force
resultants (moments and shear forces) fields in the latter problem. With this
type of interpolation, it is advantageous to maintain the continuity of stress
traction or force resultant’s projection over each element’s edges, specifically
in dynamics and wave propagation problems.

• The energy conserving and decaying schemes are developed to guarantee the
stability of those numerical computation over a long period of time.

• The Bayesian updating and Gauss-Markov-Kalman filter methods are applied
to identify critical material’s properties in the inelastic problem and the multi-
scale problem with visco-plasticity.

1.4 Thesis outline
The thesis outline is as follows. The mixed variational formulation using low-order
Polynomial functions for stress approximation is presented in Chapter 2. This
chapter is devoted to the numerical implementation of visco-plasticity problem.
In addition, the energy conserving and decaying schemes are formulated to con-
trol the overall energy of a system and dissipate higher frequency modes. Several
selective simulations of the visco-plasticity problem in a thick-walled pipe under
dynamic loading scenarios are simulated. In Chapter 3, the mixed variational for-
mulation using lowest-order Raviart Thomas vector space for stress approximation
is presented for the plane membrane problem. The numerical implementation of
the linear elastodynamics problem including the chosen discrete approximation of
displacement and stress fields are given. In addition, the energy conserving time
integration scheme is developed to maintain the total energy of the system over
computational period. Several illustrative simulations of the elastodynamics prob-
lem under static and dynamic loading scenarios are presented. In Chapter 4, the
mixed variational formulation using lowest-order Raviart Thomas vector space for
stress resultants approximation is developed. The theoretical and variational for-
mulations of Mindlin-Reissner plate in linear elastodynamics using a regularized
functional is presented. The numerical implementation of linear elastodynamics
problem including the discretization of displacement (lateral deflection and rota-
tions) and force resultants fields is shown. The energy conserving/decaying time
integration scheme is reconfigured to maintain computational stability over a long
period of time for the vibration of the plate bending problem. Several selective simu-
lations of Mindlin-Reissner plate under dynamic loading scenarios are illustrated. In
Chapter 5, the method of parameter identification using the Bayesian updating and
the Gauss-Markov-Kalman filter methods are presented. A set of principle concepts
and methods are laid out. Several principle material’s properties in some highlight
inelastic and multi-scale problems are selected to be assimilated via the two proposed
methods. In detail, the multi-scale problem with the visco-plasticity is proceeded
with an aim to upscale material’s properties in the macro-scale via data from the
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micro-scale. The micro-scale is simulated via the Lattice model, while the macro-
scale is simulated via an enhanced triangular element developed in Chapter 3 with
additional capabilities of linear isotropic and kinematic hardening visco-plasticity.
The conclusions and perspectives are given in Chapter 6.
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2
Hellinger-Reissner formulation for

the visco-plasticity problem

In this chapter, the theoretical formulation of the visco-plasticity prob-
lem is presented by using Helligner-Reissner variational formulation.
Then the interpolation for stress and displacement fields are proceeded
by low-order polynomial functions. Afterwards, the energy conserving
and decaying are developed for the visco-plasticity problem. Several nu-
merical examples are simulated to validate the performance of proposed
algorithms.

Contents
2.1 Theoretical formulation . . . . . . . . . . . . . . . . . . . . 9
2.2 Numerical implementation . . . . . . . . . . . . . . . . . . 12

2.2.1 Finite element approximation . . . . . . . . . . . . . . . . 12
2.2.2 Discrete weak form . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Energy conserving scheme . . . . . . . . . . . . . . . . . . 14
2.2.4 Energy decaying scheme . . . . . . . . . . . . . . . . . . . 17

2.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Quasi-static loadings . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Dynamic loadings . . . . . . . . . . . . . . . . . . . . . . 23
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2.1 Theoretical formulation
The Hellinger-Reissner variational principle is employed for the visco-plasticity prob-
lem at small strains. Let Ω be a bounded domain in R3 with piece-wise smooth
boundary ∂Ω, satisfying

∂Ω = ∂Ωu ∪ ∂Ωt and ∂Ωu ∩ ∂Ωt = ∅, (2.1)

where ∂Ωu denotes the displacement boundary and ∂Ωt the stress boundary.

n
u

t

Figure 2.1 – Domain Ω and its boundary ∂Ω

The linear total strain ε(u) tensor in small strain theory is defined by the sym-
metric gradient of the displacement displacement u field as in Eq. (2.2)

ε(u) := symm∇u = 1
2
(
∇u+ (∇u)T

)
. (2.2)

The symbol ∇u denotes the gradient of a displacement field, e.g. ∇u = [ui,j]. The
above total strain tensor is assumed as a combination of an elastic strain εe tensor
and a visco-plastic strain εvp tensor, hence we have the relation εe = ε − εvp. The
problem of visco-plasticity at small strains is characterized by the strain energy
functional Π int(u) as follows

Π int(u) =
∫
Ω
ψe (ε− εvp) dV. (2.3)

where the elastic free energy density function ψe (ε− εvp) is a function of the elastic
strain tensor

ψe (ε− εvp) = 1
2 (ε− εvp) : C : (ε− εvp) , (2.4)

with C as the fourth-order elasticity tensor. From such elastic free energy function,
the formulation of stress σ tensor can be derived as

σ := ∂ψe(·)
∂ε

= C : (ε− εvp) .

The yield function φ(σ) governs the evolution of the visco-plastic strain εvp along
with time. The non-positive value of the yield function indicates the elastic regime
without the development of the visco-plastic strain (ε̇vp = 0). Any positive value of
the yield function implies the visco-plastic regime, with the corresponding change
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of the visco-plastic strain (ε̇vp 6= 0) according to

φ(σ) := sgnF |F |m; F = 3J2/σ
2
y − 1;

{
φ(σ) ≤ 0⇒ ε̇vp = 0,
φ(σ) > 0⇒ ε̇vp 6= 0, (2.5)

where σy is the yield stress and J2 is the stress invariant. The dot in ε̇vp denotes
the derivative of the visco-plastic strain with respect to time, or the rate of the
visco-plastic strain. In the following, the parameter value is set to be m = 1 in
Eq. (2.5), thus the classical visco-plasticity model (e.g. [92]) is recovered, where the
corresponding yield function accepts all admissible values in R as follows

φ ≡ F = 3J2/σ
2
y − 1; J2 = 1

2 dev(σ) : dev(σ), (2.6)

where the operator dev(σ) stands for the deviatoric part of stress tensor. The
external load potential Πext(u) and kinetic energy K(u̇) are written as follows

Πext(u) =
∫
Ω
f · u dV +

∫
∂Ω2
t̄ · u dA ; K(u̇) = 1

2

∫
Ω
ρu̇ · u̇ dV, (2.7)

with the body force f in Ω and the traction vector t̄ on ∂Ω2, ρ as the material
density, and the overhead dot in u̇ denotes the derivative with respect to time. The
dot between two given vectors denotes the dot product, e.g. a · b = aibi. The stress
tensor is considered as an additional independent variable by appealing to the Leg-
endre transformation for the free energy function in Eq. (2.4). The complementary
stored energy χ(σ) is a function of the stress field, in which C−1 is the inverse of
the fourth-order elasticity tensor

ψe (ε− εvp) = σ : (ε− εvp)− χ(σ); χ(σ) = 1
2σ : C−1 : σ. (2.8)

From Eq. (2.3) and Eq. (2.8), the Hellinger-Reissner functional ΠHR(σ,u) is now
written as functional of the stress and displacement fields

ΠHR(σ,u) =
∫
Ω

[σ : (ε− εvp)− χ(σ)] dV −Πext(u) +K(u̇). (2.9)

The least action principle can be used to obtain corresponding variational equations
of the functional ΠHR(σ,u) above, which can be written as equivalent d’Alembert
equations (e.g. [88]) in terms of the virtual displacement δu and the virtual stress
δσ as follows

Gu(u,σ; δu) =
∫
Ω
δε : σ dV +

∫
Ω
δu · ρü dV −

∫
Ω
δu · f dV −

∫
∂Ω2

δu · t̄ dA = 0;

Gσ(u,σ; δσ) =
∫
Ω

[δσ : (ε− εvp)− δσ : ∂σχ(σ)] dV = 0,
(2.10)

where the virtual strain δε tensor is defined as ∇sδu in the same manner of Eq. (2.2)
and the symbol ∂σχ(σ) denotes the derivative of the complementary stored energy
with respect to the stress field. The corresponding Euler-Lagrange equations can be
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obtained directly from the variations in Eq. (2.10) as

Gu(u,σ; δu) = −
∫
Ω
δu · (divσ + f − ρü) dV = 0⇒ divσ + f = ρü;

Gσ(u,σ; δσ) =
∫
Ω
δσ : (ε− εvp − ∂σχ(σ)) dV = 0⇒ ε− εvp = ∂σχ(σ).

(2.11)
The second law of thermodynamics by means of the Clausius-Duhem inequality is
applied to guarantee the thermodynamical admissibility of the constitutive relations

Dvp = σ : ε̇− ψ̇e = σ : ε̇vp ≥ 0, (2.12)

where Dvp denotes the visco-plastic dissipation. In principle, all the stress states
are admissible, but those outside the elastic domain are penalized by an additional
term P (·) directly proportional to the penalty factor 1/η (with η as the viscosity
coefficient depending on material property). The modified visco-plastic dissipation
Dvpη is now written as follows

−Dvpη (σ) = −σ : ε̇vp + 1
η
P (φ(σ)). (2.13)

The simplest choice of the penalty term is a quadratic functional P (·) placing higher
penalty on the stress states which are further outside the elastic domain

P (φ(σ)) =


1
2φ(σ)2; φ(σ) > 0.

0; φ(σ) ≤ 0.
⇒ d

dφ
P (φ(σ)) =< φ(σ) >, (2.14)

where < · > is the Macauley parenthesis, which is defined as

< φ >:= (φ(σ) + |φ(σ)|)/2 =
{
φ(σ); φ(σ) > 0.

0; φ(σ) ≤ 0.
(2.15)

The evolution of the visco-plasticity can be derived by means of the principle of
maximum visco-plastic dissipation. From all possible states σ∗ satisfying the yield
criterion φ (σ∗) ≥ 0, the one σ that maximizes the visco-plastic dissipation Dvpη is
the solution. This problem can also be written as constrained minimization problem

Dvpη (σ) = max
φ(σ∗)≥0

[
Dvpη (σ∗)

]
⇔ −Dvpη (σ) = min

φ(σ∗)≥0

[
−Dvpη (σ∗)

]
. (2.16)

The Kuhn-Tucker optimality conditions for the minimization problem defined in the
equation above lead to the evolution equation of the visco-plastic strain

0 =
∂
[
−Dvpη (σ)

]
∂σ

=
∂[−σ : ε̇vp + 1

η
P (φ(σ))]

∂σ
= −ε̇vp + 1

η
< φ >

∂φ

∂σ
. (2.17)

Hence, the rate of the visco-plastic strain is written as

ε̇vp = 1
η
< φ >

∂φ

∂σ
=: β(σ); ∂φ

∂σ
= 3
σ2
y

dev(σ). (2.18)
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2.2 Numerical implementation
In order to provide the solution for the system of differential equations in Eqs. (2.11)
and (2.18) above, the physical domain is discretized via the finite element approxi-
mation, while the nonlinear dynamic response is obtained by means of a proposed
time-stepping scheme. The main computational task of such a procedure is to cal-
culate the values of the nodal displacements and their time derivatives, along with
the stress interpolation parameters over a single time interval, which is discussed
further in this section.

2.2.1 Finite element approximation
The stress and displacement fields are interpolated independently. At time tn+1/2,
the displacement field un+1/2 and acceleration field ün+1/2 are interpolated from
nodal displacement dn+1/2 and nodal acceleration an+1/2 vectors via shape function
N matrix, respectively

un+1/2 = Ndn+1/2; ün+1/2 = Nan+1/2.

The corresponding strain approximation can be derived from the displacement field

εn+1/2 = Bdn+1/2; B = ∇sN .

Meanwhile, the stress field in each element is interpolated directly using a complete
linear polynomial S matrix, which is similar to the stress interpolation [163, 197] in
terms of stress interpolation parameters τn+1/2 matrix

σn+1/2 = Sτn+1/2.

2.2.2 Discrete weak form
The index n+1/2 for the obvious terms is only shown where it is needed. From
Eq. (2.10), the discretized weak forms for a typical element Ωe are written in the
matrix forms as follows

Ge
u = δdT

[∫
Ωe
BTSτ dV +

∫
Ωe
ρNTNa dV −

∫
Ωe
NTf dV −

∫
∂Ωe2

NT t̄ dA
]

= 0;

Ge
σ = δτ T

[∫
Ωe
ST (Bd− εvp − ∂σχ(σ)) dV

]
= 0.

(2.19)
The linearisation of the first equation Eq. (2.19a) in discretized weak form yields

Lin[Ge
u] =Ge

u(τ ,u) +∆Ge
u(∆τ , ∆u);

∆Ge
u(∆τ , ∆u) =δdT

[∫
Ωe
BTS dV ∆τ + η̃

∫
Ωe
ρNTN dV ∆d

]
.

(2.20)

12



By considering that the interpolation parameters of virtual fields can be picked
arbitrarily, we can obtain the discrete form of the equilibrium equations

r
e,(i+1)
u,n+1/2(τ ,u) = r

e,(i)
u,n+1/2(τ ,u) +∆r

e,(i)
u,n+1/2(∆τ , ∆u) = 0;

r
e,(i)
u,n+1/2(·) :=

∫
Ωe
BTSτ

e,(i)
n+1/2 dV +

∫
Ωe
ρNTNa

e,(i)
n+1/2 dV︸ ︷︷ ︸

f int
n+1/2

−
[∫

Ωe
NTf

e,(i)
n+1/2 dV +

∫
∂Ωe2

NT t̄
e,(i)
n+1/2 dA

]
︸ ︷︷ ︸

fext
n+1/2

;

∆r
e,(i)
u,n+1/2(·) := F e,T∆τ

e,(i)
n+1/2 + η̃M̃ e∆d

e,(i)
n+1/2;

F e :=
∫
Ωe
STB dV ;

M̃ e :=
∫
Ωe
ρNTN dV ; η̃ = ∂an+1/2/∂dn+1/2.

(2.21)

The linearization of Eq. (2.19b) in discretized weak form leads to

Lin[Ge
σ] = Ge

σ(τ ,u) +∆Ge
σ(∆τ , ∆u). (2.22)

It is noted that the set of motion equations above can be computed with any selected
value of α ∈ [0, 1]. However, the second-order accuracy is achieved only for the mid-
point scheme, by selecting α = 1/2

σn+α = (1− α)σn + ασn+1 ; α = 1/2;

ε̇vpn+α = β(σn+α)⇒ εvpn+1/2 = εvpn + ∆t

2 β(σn+1/2);

∂σχ (σ) = C−1 : σ.

(2.23)

By exploiting the auxiliary results above, the variation ∆Ge
σ(·) can be written ex-

plicitly as follows

∆Ge
σ(∆τ , ∆u) = δτ T

[∫
Ωe
STB dV ∆dn+1/2 −

∫
Ωe
STDvp

n+1/2S dV ∆τ n+1/2

]
;

Dvp
n+1/2 := ∆t

2 β
′(σn+1/2) +C−1;

β
′(σn+1/2) = ∂β(σn+1/2)/∂σn+1/2.

(2.24)
In the same manner, for any arbitrary virtual stress parameter values δτ T , an addi-
tional local equation valid independently inside each element Ωe is obtained, which
can be written as follows

h
e,(i+1)
n+1/2 (τ ,u) = h

e,(i)
n+1/2(τ ,u) +∆h

e,(i)
n+1/2(∆τ , ∆u) = 0;

h
e,(i)
n+1/2(·) :=

∫
Ωe
STB dV d(i)

n+1/2 −
∫
Ωe
ST

(
ε
vp,(i)
n+1/2 + ∂σχ(σ(i)

n+1/2)
)

dV ;

∆h
e,(i)
n+1/2(·) := F e∆d

e,(i)
n+1/2 −H

e,(i)
n+1/2∆τ

e,(i)
n+1/2;

He
n+1/2 :=

∫
Ωe
STDvp

n+1/2S dV.

(2.25)

13



Thus, one can establish the full system of governing equations with both nodal
displacements and element stress parameters are unknown variables

Anel
e=1

[
F e,T η̃M̃ e

−He
n+1/2 F e

] ∆τ e,(i)n+1/2

∆d
e,(i)
n+1/2

 = −Anel
e=1

re,(i)u,n+1/2(·)
h
e,(i)
n+1/2(·)

 . (2.26)

The system of equations above can be condensed, so that only nodal displacement
is the unknown field. The stress field would be computed correspondingly from
the displacement fields. From Eq. (2.26b), the stress state in each element can be
rewritten as

∆τ en+1/2 = He,−1
n+1/2h

e,(i)
n+1/2(·) +He,−1

n+1/2F
e∆den+1/2. (2.27)

Substituting the above equation into Eq. (2.21a) yields the condensed system of
equations, which depends only on the incremental displacements at time step tn+1/2.

r
e,(i)
u,n+1/2(·) + F e,T

[
He,−1

n+1/2h
e,(i)
n+1/2(·) +He,−1

n+1/2F
e∆d

e,(i)
n+1/2

]
+ η̃M̃ e∆d

e,(i)
n+1/2 = 0

⇔
[
r
e,(i)
u,n+1/2(·) + F e,THe,−1

n+1/2h
e,(i)
n+1/2(·)

]
+
[
F e,THe,−1

n+1/2F
e + η̃M̃ e

]
∆d

e,(i)
n+1/2 = 0.

(2.28)
Assembling each element contributions over the entire discrete domain yields the
governing equation of a system in matrix form

Anel
e=1

[(
F e,T
n+1/2H

e,−1
n+1/2F

e + η̃M̃ e
)
∆d

e,(i)
n+1/2

]
= −Anel

e=1

[
r
e,(i)
u,n+1/2 + F e,THe,−1

n+1/2h
e,(i)
n+1/2

]
⇔K

eff,(i)
n+1/2∆d

(i)
n+1/2 = −R(i)

n+1/2.

(2.29)
In each iteration, the step of displacement is computed via Eq. (2.29). Subsequently,
the step of stress is computed at the level of each element from equation Eq. (2.27).
The stress and displacement fields are correspondingly updated after each compu-
tational iteration of Newton-Raphson method

τ
(i+1)
n+1/2 = τ

(i)
n+1/2 +∆τ

(i)
n+1/2;

d
(i+1)
n+1/2 = d

(i)
n+1/2 +∆d

(i)
n+1/2.

(2.30)

2.2.3 Energy conserving scheme
An energy conserving (EC) scheme is developed to guarantee the stability of the com-
putation over long period for the visco-plasticity problem. To achieve the second-
order accurate O(∆t3) solution [7], the mid-point time integration scheme is em-
ployed. For enforcing the second-order accuracy in the visco-plasticity, we must
simultaneously integrate the visco-plastic deformation with both displacement and
stress, as opposed to the operator split algorithm ([92], [88]) that separates the inte-
gration of these two, and thus reduces the time-stepping scheme to first order (e.g.
[37]). Accordingly, the nodal velocity vn+1/2 and acceleration an+1/2 at the time
step tn+1/2 can be formulated in the form of nodal displacement and velocity

vn+1/2 = (dn+1 − dn)/∆t;
an+1/2 = (vn+1 − vn)/∆t. (2.31)
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The increment of displacement field within an interval of time step is computed by
using the mid-point approximation

dn+1 − dn = 1
2∆t(vn+1 + vn). (2.32)

This equation can be formed in an alternative expression showing the simple update
of the displacement vector

dn+1 = dn + u; u := 1
2∆t(vn+1 + vn). (2.33)

The stress state at tn+1/2 is selected in the following algorithmic form. This proposal,
which is left open at the moment, will be explained shortly

τ algn+1/2 := 1
2(τn+1 + τn). (2.34)

By choosing a test displacement vector δd = dn+1 − dn, a work done by both the
internal f int and external f ext can be elaborated from the weak form Eq. (2.21b) of
balance equation

(dn+1 − dn)T f intn+1/2 = (dn+1 − dn)T f extn+1/2.

The internal work includes two obvious components including kinetic and potential
energy

(dn+1 − dn)T f intn+1/2 = (dn+1 − dn)T
∫
Ω
BTSτn+1/2 dV+(dn+1 − dn)T

∫
Ω
ρNTNan+1/2 dV.

The work done by inertia force can be simplified thanks to results obtained in
Eq. (2.31b) and (2.32)

(dn+1 − dn)T M̃an+1/2 = 1
2 (vn+1 + vn)T M̃ (vn+1 − vn)

= 1
2v

T
n+1M̃vn+1 −

1
2v

T
nM̃vn

= Kn+1 −Kn,

(2.35)

where Kn+1 is the kinetic energy of a system at time tn+1. It is noted that the mass
matrix M̃ is symmetric, so this identity holds vTn+1M̃vn − vTnM̃vn+1 = 0. In the
following, the subscript ′n+ 1/2′ for matrix F andH is dropped for shorter expres-
sion. The work done by the potential force can be also expressed as a combination
of 2 groups

(dn+1 − dn)T F Tτn+1/2 = 1
2 (dn+1 − dn)T F T (τn+1 + τn)

=
[1
2d

T
n+1F

Tτn+1 −
1
2d

T
nF

Tτn

]
+
[1
2d

T
n+1F

Tτn −
1
2d

T
nF

Tτn+1

]
︸ ︷︷ ︸

L

.

(2.36)
Since the scalar L has a mix variables from both time step tn and tn+1, further
simplification of L should be elaborated. Via exploiting the equation Eq. (2.25b)
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with a test stress function δτ T = τn+1 − τn, the following identity is derived based
on the fact that the matrixH is always symmetric, even when the system goes into
the visco-plastic regime

(τn+1 − τn)T
[
Fdn+1/2 −Hτn+1/2

]
=0

⇒1
2d

T
n+1F

Tτn+1 −
1
2τ

T
n+1Hτn+1 −

1
2d

T
nF

Tτn + 1
2τ

T
nHτn = 1

2d
T
n+1F

Tτn −
1
2d

T
nF

Tτn+1︸ ︷︷ ︸
L

.

(2.37)
The matrixH can be decomposed in two matrices, the first oneHvp

n+1/2 is a function
of the visco-plastic strain rate ε̇vpn+1/2 and the other He is a function of the material
elastic modulus. It is clear that the matrixHvp

n+1/2 vanishes under the elastic regime,
where the visco-plastic strain does not evolve (ε̇vpn+1/2 = 0). With the last identity,
Eq. (2.36) can be rewritten

(dn+1 − dn)T F Tτn+1/2 = 1
2d

T
n+1F

Tτn+1 −
1
2d

T
nF

Tτn

+ 1
2d

T
n+1F

Tτn+1 −
1
2τn+1Hτn+1 −

1
2d

T
nF

Tτn + 1
2τnHτn

= dTn+1F
Tτn+1 −

1
2τ

T
n+1H

eτn+1︸ ︷︷ ︸
Pn+1

− (dTnF Tτn −
1
2τ

T
nH

eτn)︸ ︷︷ ︸
Pn

+ (1
2τ

T
nH

vp
n+1/2τn −

1
2τ

T
n+1H

vp
n+1/2τn+1︸ ︷︷ ︸

Dvp
n+1/2

)

= Pn+1 − Pn +Dvp
n+1/2,

(2.38)
where Pn+1 is the potential energy of the system at time tn+1 and Dvp

n+1/2 is the
visco-plastic dissipation within an interval of time step. From the above derivation,
one can express the balance of the internal energy and the external work in following
equation

(Kn+1 + Pn+1)︸ ︷︷ ︸
En+1

− (Kn + Pn)︸ ︷︷ ︸
En

+Dvp
n+1/2 = (dn+1 − dn)Tf extn+1/2︸ ︷︷ ︸

∆Wn+1/2

;

En+1 − En +Dvp
n+1/2 =∆Wn+1/2.

(2.39)

The symbols En and En+1 denote the total energy of the system at time step tn
and tn+1, respectively. We can conclude that the proposed algorithmic constitutive
equation in Eq. (2.34) would conserve the total energy En+1 = En + ∆Wn+1/2 for
any bounded external loading as long as the system undergoing the elastic regime
(Dvp

n+1/2 = 0). This property is viewed as "unconditionally stable" [205]. Otherwise,
once the system undergoes the visco-plastic regime, the total energy can not be
conserved anymore due to the existence of the visco-plastic dissipation (Dvp

n+1/2 >
0). However, this non-negative visco-plastic dissipation is always bounded via the
controllable penalty factor as shown in Section 2.1.
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2.2.4 Energy decaying scheme
An energy decaying (ED) scheme is an alternative approach to control poten-
tial instability problems of time-stepping algorithms, with an additional advantage
of a providing superior accuracy in stress computations by eliminating the high-
frequency noise especially for a set of stiff equations (e.g. see [94]). The latter
implies a large difference between max/min eigenvalues in tangent stiffness, which
can also occur in the present case when one part of the domain has turned visco-
plastic and the rest still remains elastic. In this case, we will enforce a so-called
modified constitutive algorithm with the ability of decaying contribution of higher
frequencies over each interval of time step. Such algorithmic updates for of displace-
ment and stress at time step tn+1/2 are represented by modifying the conservative
terms, as defined in Eqs. (2.32) and (2.34), with the corresponding dissipative terms:

dn+1 − dn :=∆t2 (vn+1 + vn) + α∆t(vn+1 − vn);

τ algn+1/2 :=1
2(τn+1 + τn) + β(τn+1 − τn).

(2.40)

where α and β are the dissipation coefficients, which are typically chosen as
α, β ∈ [0 0.1]. The corresponding dissipative correction terms α∆t(vn+1 − vn)
and β(τn+1 − τn) remain typically small, or practically vanish, for low frequency
modes with a small difference of successive values within a typical time step; the
latter establishes the consistency of the present modification in the spirit of the EC
scheme, for the case where high frequency modes are not triggered. Meanwhile, the
correction terms are less likely to vanish in high frequency modes, where the corre-
sponding successive values within a time step can be quite significant. Therefore,
the energy decaying scheme is only introducing a slight perturbation, which is not
likely to fully reduce the scheme performance to the first-order accuracy. With such
a choice of algorithmic update of displacement and stress updates, the velocity and
stress at time step tn+1 take a modified form

vn+1 = 1
(1/2 + α)∆t(dn+1 − dn)− 1/2− α

1/2 + α
vn;

τn+1 = 1
1/2 + β

τ algn+1/2 −
1/2− β
1/2 + β

τn.

(2.41)

One can apply the same implementation as presented in Section 2.2.3. The work
done by inertia force takes a new form

(dn+1 − dn)T M̃an+1/2 = 1
2v

T
n+1M̃vn+1 −

1
2v

T
nM̃vn + α(vn+1 − vn)TM̃ (vn+1 − vn)︸ ︷︷ ︸

DK,n+1/2

= Kn+1 −Kn +DK,n+1/2.
(2.42)

where DK,n+1/2 is the numerical dissipation of kinetic energy within an interval of
time step. In the following, the subscript ′n+ 1/2′ for matrix F and H is dropped
for shorter expression. The work done by potential force takes a combination form
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of 3 groups

(dn+1 − dn)T F Tτn+1/2 = 1
2 (dn+1 − dn)T F T (τn+1 + τn)

=
[1
2d

T
n+1F

Tτn+1 −
1
2d

T
nF

Tτn

]
+
[1
2d

T
n+1F

Tτn −
1
2d

T
nF

Tτn+1

]
︸ ︷︷ ︸

L

+ β(τn+1 − τn)TH(τn+1 − τn)︸ ︷︷ ︸
DP,n+1/2

.

(2.43)
where DP,n+1/2 is the numerical dissipation of potential energy within an interval of
time step. The similar identity to the one in Eq. (2.37) can be written as

(τn+1 − τn)T
[
Fdn+1/2 −Hτn+1/2

]
=0;

⇒1
2d

T
n+1F

Tτn+1 −
1
2τ

T
n+1Hτn+1 −

1
2d

T
nF

Tτn + 1
2τ

T
nHτn

+ β(τn+1 − τn)TH(τn+1 − τn) = 1
2d

T
n+1F

Tτn −
1
2d

T
nF

Tτn+1︸ ︷︷ ︸
L

.

(2.44)
With this identity on hand, the work done by potential force takes a new form

(dn+1 − dn)T F Tτn+1/2 = dTn+1F
Tτn+1 −

1
2τ

T
n+1H

eτn+1︸ ︷︷ ︸
Pn+1

− (dTnF Tτn −
1
2τ

T
nH

eτn)︸ ︷︷ ︸
Pn

+ (1
2τnH

vp
n+1/2τn −

1
2τn+1H

vp
n+1/2τn+1)︸ ︷︷ ︸

Dvp
n+1/2

+ β(τn+1 − τn)TH(τn+1 − τn)︸ ︷︷ ︸
DP,n+1/2

= Pn+1 − Pn +Dvp
n+1/2 +DP,n+1/2.

(2.45)
From the above derivation, the balance of the internal energy and external work can
be formed in following equation

(Kn+1 + Pn+1)︸ ︷︷ ︸
En+1

− (Kn + Pn)︸ ︷︷ ︸
En

+Dvp
n+1/2 + (DK +DP )︸ ︷︷ ︸

DKP,n+1/2

= (dn+1 − dn)Tf extn+1/2︸ ︷︷ ︸
∆Wn+1/2

;

En+1 − En +Dvp
n+1/2 +DKP,n+1/2 =∆Wn+1/2.

(2.46)
where DKP,n+1/2 is the numerical dissipation of total energy due to the dissipative
constitutive algorithm in Eq. 2.41. It is obvious that switching between energy
conserving/decaying schemes can be executed flexibly without changing the main
code of user-defined element, since the update of displacement and velocity updates
can be programmed in a separate subroutine for the time-stepping integration algo-
rithm. Additionally, the amount of numerical dissipation is fully controllable via an
appropriate selection of the dissipation coefficients α and β.
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2.3 Numerical examples
In order to illustrate the favorable properties of the newly proposed EC and ED
schemes for the visco-plastic problem, several numerical simulations are presented
and compared against a conventional visco-plasticity approach. All the compu-
tations are programmed as a user-defined element in computer code FEAP v8.4,
see [186]. The output data is then post-processed via Matlab scripts for plotting.
The computations are performed for both quasi-static and dynamic pressure loads
applied to a thick-walled pipe by using the proposed finite element formulation
based on Hellinger-Reissner variational pinciple, hybrid-stress interpolations and
time-stepping schemes developed for the visco-plasticity in the previous section.
The computed results are compared against either the exact (analytic) solution in
the elastic regime or the available results in the visco-plasticity regime [126], as well
as against the previous study results [83]. Additionally, the performance of the pro-
posed element is compared against the quadrilateral rectangle element embedded
the B-bar method (Q4/P1).

2.3.1 Quasi-static loadings
The elasticity and visco-plasticity problems of a pipe under a quasi-static internal
pressure is considered. In quasi-static analysis, the inertial term, proportional to the
mass matrix, is neglected in Eq. (2.26). The pipe is assumed very long compared
to the outer radius, so that it is subjected to a plane strain constraint with zero
deformation along the pipe axis. Thanks to the axisymmetry of this 3D problem,
the domain can be discretized by finite elements using the shape functions varying
only in the r direction. The inner and outer radii of the pipe are chosen as r1 = 1
and r2 = 2. The properties of the pipe material are listed as: elastic modulus
E = 30.106, Poisson’s ratio ν = 0.3, yield stress σy = 30.103 and 1/η = 10−8.
Regarding the boundary conditions, on the inner end, we apply pressure, while
the outer end of the pipe is free of stress. The domain is discretized into 8 such
elements, each with 3 nodes and 2 Gauss points as in Fig. 2.5(a) in r direction,
which provide the second order displacement accuracy. This interpolation is handled
with isoparametric elements using quadratic shape functions, see [88]. Thus, the
displacement u matrix and strain ε matrix are functions of nodal displacement d
matrix, see [205]

u =
3∑
i=1

Niui 7→ u = Nd;
[
εr εθ εz

]
=
[
∂u

∂r

u

r
0
]
7→ ε = Bd. (2.47)

The elasticity matrix in Eq. (2.23c) is rewritten for axisymmetric and plane strain
conditions

C = E

(1 + ν)(1− 2ν)

 1− ν ν ν
ν 1− ν ν
ν ν 1− ν

 . (2.48)

The interpolation of stress field is selected based on the equilibrium equations. The
latter, expressed in polar coordinates with zero body forces and plane strain con-
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straint, reduces to

∂σrr
∂r

+ 1
r

(σrr − σθθ) = 0; ∂σθθ
∂θ

= 0; ∂σzz
∂z

= 0. (2.49)

Since the quadratic shape functions for the displacement field in this element result
with the linear strain field, we choose similarly the corresponding stress approxima-
tions. In particular, the stress σrr should be a linear function to avoid the trivial
case that it is a constant and equal to σθθ. If the stress σzz and σθθ are constants
in order to satisfy the Eqs. (2.49b,c), they can not satisfy the condition for plane
strain (σrr + σθθ)ν = σzz. As the result, all of three stress components are selected
as linear functions. When the element gets smaller, Eq. (2.49) would be satisfied in
a "weak" sense. The chosen approximation for stress field can be interpolated from
6 stress parameters, which become part of unknowns in this problem:

σrrσθθ
σzz

 =

1 r 0 0 0 0
0 0 1 r 0 0
0 0 0 0 1 r




τ1
τ2
τ3
τ4
τ5
τ6


⇒ σ = Sτ . (2.50)

All the ingredients of chosen discrete approximations are readily replaced into the
theoretical formulation presented in Section 2.2. The analytical solution of stress
field for the pipe under internal pressure p, see [126], is given as follows

σr = −p
(r2/r1)2 − 1

(
r2

2
r2 − 1

)
; σθ = p

(r2/r1)2 − 1

(
r2

2
r2 + 1

)
; σz = 2νp

(r2/r1)2 − 1 .

(2.51)
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(a) A pipe under internal pressure p0
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(b) Normalized radial stress σr
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(c) Normalized circumferential stress σθ
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Figure 2.2 – Computed stress under elastic regime at p0 = 5.103

As shown in Fig. 2.2(a), the pipe under the elastic regime is analyzed by the
quasi-static analysis, in which the internal pressure p0 load varies from 0 to 5.103

within 100 time steps. A coarse mesh with 8 by 8 elements is required by using
enhanced quadrilateral element (Q4/P1) and the result is extracted at Gauss points
laying on the radial line AB, as shown in Fig. 2.4(a). Meanwhile, a mesh with only
8 elements is adequate by using proposed element, as shown in Fig. 2.5(a). The
solution from the proposed element matches exactly the analytic solution, while the
stress computed by Q4/P1 element shows a staggered trend, as shown in Figs. 2.2(b-
d). The total time of CPU (by a standard portable computer) to solve this problem is
0.38s by proposed element and 0.86s by Q4/P1 element. It is clear that the proposed
element has an advanced computational cost with respect to the mesh generation
and also the computational time. To alleviate the high incompressibility constraint
and enhance the accuracy of two-dimensional elements in this type of problem, one
can also employ other methods such as enhancing displacement gradient by the
F-bar method (see [142, 143]) and/or generate a finer mesh.
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Figure 2.3 – Computed stress under visco-plastic regime by constant p0 = 21.103

(a) Mesh and boundary condition (b) Separation line at rp = 1.4r1

Figure 2.4 – A quarter of a pipe by Q4/P1 element

As shown in Fig. 2.3, the pipe under the visco-plastic regime is analyzed by quasi-
static analysis, in which the internal pressure p0 load stay constant at the value of
21.103. After 15 seconds, the visco-plastic zone develops to the middle of the pipe.
This current result is simulated with time step ∆t = 10−4. The zone with ′F+1 > 1′
equivalent to ′φ > 0′, which has the non-zero visco-plastic deformation, corresponds
to the region with r1 ≤ r ≤ rp = 1.4r1, as shown in Fig. 2.3(a). Meanwhile the
elastic zone is located at rp ≤ r ≤ r2. The current solution matches with previous
numerical study by Hughes and Taylor, see [83], which is in agreement with the
exact solution given by Prager and Hodge with the ratio rp/r1 = 1.4, see page 271
of [126]. Compared to the elastic analysis, the similar trend of the radial stress can be
observed, as shown in Fig. 2.3(b). Meanwhile, the circumferential and longitudinal
stresses show clearly two different zones due to the existence of the visco-plasticity,
as shown in Fig. 2.3(c,d). The stress field is also compared to that from Q4/P1
element under perfectly plastic regime. The location rp of the separation line is
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the same as that from the proposed element, as shown in Fig. 2.4(b). It is also
noticed that the solution from Q4/P1 element shows a staggered trend, as shown in
Fig. 2.3(b-d). For the proposed element, the visco-plastic problem is solved within
3 iterations under a quadratic convergence rate (energy residual up-to 10−15). The
proposed element shows an advanced smooth and accurate stress field compared to
the Q4/P1 element in the pipe.

2.3.2 Dynamic loadings
The visco-plastic problem inside selected thick-walled pipes is simulated under dy-
namic loads. There are two models with different radius for the simulation. The
first one has r1 = 1 and r2 = 2 referred as "soft" model, while the other has r1 = 5
and r2 = 10 referred as "stiff" model. The difference between two concerns the corre-
sponding ratio between the smallest and largest eigenvalues of the tangent stiffness.
The same number of elements is used to perform the computations for both models.
The results presented subsequently for cases 1-3 belong to the "soft" model and for
cases 4-6 belong to the "stiff" model. The chosen time step in all simulations is
∆t = 10−5, which is able to capture high frequency response.

Regarding the energy conserving (EC) scheme, only one triangle pulse with a
peak of pressure p0 is introduced to both models as shown in Fig. 2.5(a), which
subsequently leads to a free vibration of the system. Several cases with different
pulse loading duration are examined, as listed in Table 2.1. Regarding the energy
decaying (ED) scheme, an additional pulse of short duration is later introduced
into the system. This pulse is applied on end-nodes of each element with opposite
direction, as shown in Fig. 2.5(b), in order to activate high frequency modes of the
system. The results are extracted at nodes 1, 9 and 17 as shown in Fig. 2.5(a) and
at elements 1, 4 and 8 as shown in Fig. 2.5(b). Several cases with different values
for dissipation factors (α, β) are shown in Table 2.2.

N1 N9 N17... ...

(a) One pulse: EC scheme

E1 E8... ...E4

(b) Two pulses: ED scheme

Figure 2.5 – Mesh and pressure pulses
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Simulation Model Case p0 ∆t1

Elastic regime
(EC scheme)

1 1,2,3 21e2 4e-4,6e-4,8e-4
2 4,5,6 21e2 4e-4,6e-4,8e-4

Visco-plastic regime
(EC scheme)

1 1,2,3 42e3 4e-4,6e-4,8e-4
2 4,5,6 42e4 4e-4,6e-4,8e-4

Table 2.1 – Load groups for EC scheme

Simulation Model Case p0 ∆t1 ∆t2 ∆t3 α = β

Elastic regime
(ED scheme)

1 1,2,3 21e2 8e-4 30e-4 31e-4 0.01,0.05,0.1
2 4,5,6 21e2 8e-4 30e-4 31e-4 0.01,0.05,0.1

Visco-plastic regime
(ED scheme)

1 1,2,3 42e3 8e-4 30e-4 31e-4 0.01,0.05,0.1
2 4,5,6 42e4 8e-4 30e-4 31e-4 0.01,0.05,0.1

Table 2.2 – Load groups for ED scheme
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Figure 2.6 – Energy conserving under elastic regime (EC scheme)

The results in Fig. 2.6 show that the total internal energy of the system is
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conserved exactly under a free vibration. The case 1-3 is from soft model and case
4-5 is from stiff model. After releasing the external load, the total energy of the
system, including kinetic and potential energies, remains constant and coincides
with the external energy introduced to system by the pulse. For example, the
total energy of the system is around 0.09 in case 1 and 0.02 in case 4, as shown in
Figs. 2.6(a,b). Longer duration of loading leads to higher total energy gained by
the system. It is noted that these cases are fully under the elastic regime without
any evolution of the visco-plasticity strain. The dynamic response of the system
including displacement, velocity and stress are recorded at node number 1, 9 and
17, which are, respectively, at the inner radius, in the middle and at the outer radius
of the mesh, as shown in Fig. 2.5(a).
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Figure 2.7 – Displacement under elastic regime (EC scheme)

As shown in Fig. 2.7, the amplitude of displacement at node 1 is higher than
those at other nodes, since the pulse is applied at this node. It is noted that the
displacement field in soft model is dominated by one frequency, whereas this is no
longer the case in stiff model.
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Figure 2.8 – Velocity under elastic regime (EC scheme)

A similar observation is made regarding the velocity and stress fields, as shown in
Figs. 2.8 and 2.9, where higher values of absolute displacements lead to higher stress.
During the elastic regime, the norm of deviatoric part of largest stress || dev(σ)||
always remains lower than the critical value

√
2
3σy ≈ 24.5 × 103 (see Eq. (2.6)),

which is equivalent to φ < 0.
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Figure 2.9 – Stress under elastic regime (EC scheme)
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(c) Case 1-3: Visco-plastic dissipation
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(d) Case 4-6: Visco-plastic dissipation

Figure 2.10 – Energy and dissipation under visco-plastic regime (EC scheme)

The same numerical examples are further examined under the visco-plastic
regime. Here, higher values of the pressure pulse have to be introduced in order
to activate the visco-plastic regime. In particular, the stiff model requires a higher
pulse amplitude compared to the soft model. During the visco-plastic regime, the
total energy of the system is not conserved due to the evolution of the visco-plastic
dissipation, as shown in Fig. 2.10. However, since the visco-plastic dissipation re-
mains rather small, the total energy of the system is approximately comparable to
the total external work after releasing the pulse. For example, the total external
work is around 38 in case 1 and 800 in case 4, as shown in Figs. 2.10(a,b). The visco-
plastic dissipation increases overall; however it stays constant sometimes when there
is no excursion in the visco-plastic regime. This trend can be explained clearly by
corresponding variations of the stress field, as in Fig. 2.11.

The stresses are extracted from the first Gauss point of elements 1, 4 and 8
(numbered starting from the inner radius), as shown in Fig. 2.5(b). During the
period when every element has the value || dev(σ)|| <

√
2
3σy (or equivalent to φ < 0),

the whole system is under the elastic regime and there is no evolution of the visco-
plastic strain, which keeps the corresponding visco-plastic dissipation constant. By
contrast, the visco-plastic dissipation evolves when the yielding criterion is satisfied,
precisely || dev(σ)|| >

√
2
3σy. This energy dissipation depends on a type of material

in which the viscosity coefficient η is taken into account.
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Figure 2.11 – Stress under visco-plastic regime (EC scheme)
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Figure 2.12 – Energy under elastic regime (ED scheme)

In Fig. 2.12, we show the total energy of the system in the elastic regime,
computed by ED scheme. The only dissipation sources are introduced by energy-
decaying scheme, where the higher frequency dissipation is controlled by dissi-
pation factors α, β that regulate potential and kinetic dissipation energies. In
both soft and stiff models, there are 3 cases with different dissipation factors
(α, β) ∈ {(0.01, 0.01), (0.05, 0.05), (0.1, 0.1)}. It is obvious that the dissipative en-
ergy increases proportionally with respect to the chosen values of dissipation factors
(α, β) as shown in Figs. 2.12(a,b). In case 3 of soft model, the total energy de-
creases slightly due to the dissipative energy over time as shown in 2.12(c). The
same pattern can be better recognized after the injection of high frequency modes
contribution produced by the second pulse. This high frequency pulse does not dis-
sipate neither kinetic nor potential energy of the soft model as much as it dissipates
in case 6 of the stiff model. The noise generated by the second pulse is dissipated
out quickly for both kinetic and potential energies, as shown in Fig. 2.12(d). When
dissipation factors (α, β) approach zeros, Figs. 2.12(a,b) will agree with Figs. 2.6(e,f)
in the period before introducing the second pulse at ∆t2 = 30.10−3.

In Fig. 2.13, the stresses are taken again in elements 1, 4 and 8 at the Gauss
points as in the previous simulation. As shown in Figs. 2.13(a,c,e), the second pulse
in soft model does not bring much noise to the stress, except for an obvious effect that
it increases the magnitude of stresses. However, the perturbation of high frequency
modes can be viewed from cases 4-6 in the stiff model. As shown in Fig. 2.13(f),
high frequency stresses are quickly filtered out of the system with α = β = 0.1,
which is faster than the other cases with smaller values of α and β, as shown in
Fig. 2.13(b,d).
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Figure 2.13 – Stress under elastic regime (ED scheme)
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Figure 2.14 – Energy under visco-plastic regime (ED scheme)

As shown in Fig. 2.14, the total energy of the system under the visco-plastic
regime are computed by ED scheme. There are in total 3 sources of dissipation,
namely visco-plastic dissipation, numerical dissipation of energy-decaying scheme for
kinetic and for potential energy. The direct correlation between the higher values of
α and β versus resulting numerical dissipation is obviously captured in Figs. 2.14(a)
and 2.14(b). The visco-plastic dissipation increases in time whenever the system
satisfies the yield criterion, as shown in Figs. 2.14(c) and 2.14(d). It is recognized
that numerical dissipation is much higher than for the visco-plasticity. From the
results in Fig. 2.12(a,b) and Fig. 2.14(a,b), the trend and relative dissipation of the
system due to ED scheme is comparable between elastic and visco-plastic regimes.

The stresses are taken again in elements 1, 4 and 8 at the first Gauss points, as
presented in Fig. 2.15. Similar to the previous simulation, the second pulse bring
only little noise to the stress in soft model, as shown in Figs. 2.15(a,c,e). The same
observation on the energy-decaying on high frequency mode’s contribution no longer
applies for the stiff model, as shown in Figs. 2.15(b,d,f).

32



0 2 4 6 8

Time (s) 10
-3

0

2

4

6

8

10
||
d

e
v
(

)|
|

10
4

|| ||
1.1

|| ||
4.1

|| ||
8.1

(a) Case 1

0 2 4 6 8

Time (s) 10
-3

0

2

4

6

8

||
d
e
v
(

)|
|

10
4

|| ||
1.1

|| ||
4.1

|| ||
8.1

(b) Case 4

0 2 4 6 8

Time (s) 10
-3

0

2

4

6

8

10

||
d
e
v
(

)|
|

10
4

|| ||
1.1

|| ||
4.1

|| ||
8.1

(c) Case 2

0 2 4 6 8

Time (s) 10
-3

0

2

4

6

8

||
d

e
v
(

)|
|

10
4

|| ||
1.1

|| ||
4.1

|| ||
8.1

(d) Case 5

0 2 4 6 8

Time (s) 10
-3

0

2

4

6

8

10

||
d
e
v
(

)|
|

10
4

|| ||
1.1

|| ||
4.1

|| ||
8.1

(e) Case 3

0 2 4 6 8

Time (s) 10
-3

0

2

4

6

8

||
d
e
v
(

)|
|

10
4

|| ||
1.1

|| ||
4.1

|| ||
8.1

(f) Case 6

Figure 2.15 – Stress under visco-plastic regime (ED scheme)

The stiff model is discretized via 16 elements as in Figs. 2.16(a,c) and via 32
elements as in Figs. 2.16(b,d), respectively. The energy-decaying scheme results
obtained with dissipation factors (α, β) ∈ {(0.01, 0.01), (0.1, 0.1)} are then evaluated
with the two above discrete models, where only the elastic regime is considered. In
Figs. 2.16(a,c), the higher values of α and β are chosen, the faster higher frequency
modes are filtered out for the stiff system with coarse mesh. In contrast, the lower
values of α and β are chosen, the slower higher frequency modes are filtered out
from the system with fine mesh, as in Figs. 2.16(b,d). Moreover, any finer mesh can
better resolve high frequencies, and thus produces smaller numerical dissipation and
less significant on amplitude decay due to higher-frequency modes. From the above
observations, the most proper choice for the numerical dissipation factors α and β
depends both on the type of the system (soft vs. stiff), and on the element size in
the mesh. This best choice would be left to the users depending upon the kind of
results that are the most acceptable for them. Practically, it is recommended that
higher values of dissipation factors (α, β) should be chosen for a system with coarser
mesh than those for a system with finer mesh.

The visco-plastic problem itself dissipates energy through the visco-plastic strain.
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The energy decaying scheme can be employed if the user expects that the external
forces can lead to a significant high frequency modes, in which the contribution
from these modes should be dissipated especially on a coarse mesh where they can
not be properly resolved. Meanwhile, the energy conserving scheme can be selected
within any case, regardless of elastic or visco-plastic regimes. It is recorded that the
dynamic problem coupled with the visco-plastic regime is solved within 3 iterations
under the quadratic convergence rate (energy residual up-to 10−15).
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Figure 2.16 – Energy under elastic regime (stiff model-ED scheme)
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3
Mixed variational formulation for

the elasto-dynamics membrane
problem

In this chapter, a regularized variational formulation of linear elasto-
dynamics is derived following the work of [81]. Then the displacement
is interpolated by low-order polynomial functions while the stress field
are interpolated by the lowest-order Raviart-Thomas vector space. Af-
terwards, the energy conserving scheme is applied for the dynamics
computation. Several numerical examples are presented to validate the
performance of proposed algorithms.
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3.1 Regularized variational formulation
In this section, we follow closely the work of Hughes and Brezzi [81], see also [85,
86, 99]. The problem is limited to linear elastodynamics with small strain theory.
Let Ω ⊂ R3 be an open set with piece-wise smooth boundary.

∂Ω = ∂Ωu ∪ ∂Ωt and ∂Ωu ∩ ∂Ωt = ∅, (3.1)

where ∂Ωu denotes the displacement boundary and ∂Ωt the stress boundary. Both
stress and displacement fields are considered as independent fields. The key point
here is that the stress is not assumed to be symmetric, but the symmetry of stress
tensor is enforced through corresponding moment equilibrium equation of the strong
form of the problem ∀x ∈ Ω

divσ + f = ρü; (1)
skewσ = 0; (2)
symmσ = C : symm∇u; (3)
u = ū|∂Ωu and σ · n = t̄|∂Ωt , (4)

(3.2)

where (1) to (4) are, respectively, the equilibrium equations, the symmetry condi-
tions for stress, the constitutive equations and the boundary condition. The second-
rank stress tensor is decomposed into symmetric and skew-symmetric parts

σ = symmσ + skewσ, (3.3)

where
symmσ = 1

2
(
σ + σT

)
; skewσ = 1

2
(
σ − σT

)
. (3.4)

The displacement gradient can be additionally decomposed into symmetric part
defining the infinitesimal strain tensor ε(u)

ε(u) := symm∇u = 1
2
(
∇u+∇uT

)
, (3.5)

and the skew-symmetric part defining the infinitesimal rotation

ω(u) := skew∇u = 1
2
(
∇u−∇uT

)
. (3.6)

The following identity between arbitrary symmetric and skew-symmetric tensors is
exploited for several forthcoming equations

symmA : skewB = 0; ∀A,B ∈ R2. (3.7)

For the isotropic material, the fourth-order elastic constitutive modulus tensor C is
conventionally defined as

C =λ1⊗ 1 + 2µIs;

Cijkl =λδijδkl + 2µ1
2(δikδjl + δilδjk); i, j, k ∈ [1, 2, 3],

(3.8)
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where
λ = νE

(1 + ν)(1− 2ν) ; µ = E

2(1 + ν) , (3.9)

with E and ν as Young’s modulus and Poisson’s ratio, respectively. For the weak
form of the boundary value problem, the mixed form of variational functional [81]
with three independent fields is given as follows

Π(u,ω,σ) =− 1
2

∫
Ω

symmσ : C−1 : symmσ dV +
∫
Ω
σ : (∇u− ω) dV −Πext(u),

(3.10)
where u ∈ U , ω ∈ W and σ ∈ S are trial displacement, rotation and stress
fields, respectively. The variational statement in Eq. (3.10) above requires that
the stress tensor σ and the infinitesimal rotation tensor ω belong to the space of
square integrable functions over the region Ω, L2(Ω) as follows

S = {σ|σ ∈ L2(Ω)} ;
W = {ω|ω ∈ L2(Ω); symmω = 0} ;

(3.11)

The space of trial displacements, however, must belong to the functions whose gener-
alized derivative belongs to L2(Ω), i.e. a subset of the Sobolev space H1(Ω) denoted
as H1

0 (Ω) which satisfies the boundary condition on ∂Ωu

U =
{
u|u ∈ H1

0 (Ω)
}
. (3.12)

The regularized functional (see [81]) is derived by adding an extra term to improve
the ellipticity of the standard functional

Π%(u,ω,σ) =− 1
2

∫
Ω

symmσ : C−1 : symmσ dV +
∫
Ω
σ : (∇u− ω) dV

− 1
2%
−1
∫
Ω
| skewσ|2 dV −Πext(u).

(3.13)

Such a regularization allows us to make any convenient choice of finite element
discrete approximation upon regularization. The external virtual work Gext(v) is
formulated in the spirit of d’Alembert principle with an additional term from inertia
force, which appears in the elasto-dynamics problem

Gext(v) = −
∫
Ω
ρü · v dV +

∫
Ω
f · v dV +

∫
∂Ωt
t̄ · v dA. (3.14)

The corresponding Euler-Lagrange equations are obtained by taking the variations
with respect to the displacement δu, stress δσ and rotation δω field

Gu(u,ω,σ; δu) :=
∫
∂Ωt

δu ·
(
σ · n− t̄

)
dA−

∫
Ω
δu · (divσ + f − ρü) dV = 0;

Gω(u,ω,σ; δω) :=
∫
Ω
δω : skewσ dV = 0;

Gσ(u,ω,σ; δσ) :=
∫
Ω

symm δσ :
(
C−1 : symmσ − symm∇u

)
dV

−
∫
Ω
δσ :

(
skew∇u− ω − %−1 skewσ

)
dV = 0.

(3.15)
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It is noted that the Gauss divergence theorem is employed to obtain the result in
Eq. (3.15a). Since the trial displacement δu, stress δσ and rotation δω are arbitrary,
all equations corresponding to the strong form in Eqs. (3.2) can be recovered, plus
an additional relationship from Eq. (3.15c) showing that

ω = skew∇u− %−1 skewσ. (3.16)

Here, we choose to eliminate the rotation field in mixed formulation above by using
the additional relationship from Eq. (3.15c). This result is plugged back into the
regularized functional in Eq. (3.13), and thus we recover a two-field variational
formulation with displacement and stress as independent fields by exploiting the
identity Eq. (3.7), which can be written as

Π%(u,σ) =− 1
2

∫
Ω

symmσ : C−1 : symmσ dV +
∫
Ω

symmσ : symm∇u dV

+ 1
2%
−1
∫
Ω
| skewσ|2 dV −Πext(u).

(3.17)
The corresponding variational equation of the functional Π%(u,σ) above with re-
spect to the trial displacement field v can be written as follows:

Gu(u,σ; δu) =
∫
Ω

symm∇δu : σ dV −
∫
Ω
δu · (f − ρü)dV −

∫
∂Ωt

δu · t̄ dA = 0.
(3.18)

Similarly, by using again the identity Eq. (3.7), the corresponding variational equa-
tion of the functional Π%(u,σ) above with respect to the trial stress field δσ can be
written as follows

Gσ(u,σ; δσ) =
∫
Ω

[
symm δσ :

(
symm∇u− C−1 : symmσ

)
+ skew δσ : 1

%
skewσ)

]
dV

=
∫
Ω
δσ :

[
symm∇u−

(
C−1 : symmσ − 1

%
skewσ

)]
dV

=
∫
Ω
δσ :

(
symm∇u− Ĉ−1 : σ

)
dV = 0.

(3.19)

with an optimal choice % = 2µ [81]. It is noted that the new elasticity tensor in the
above equation is formed by regrouping the symmetric and skew-symmetric part of
stress tensor into a single stress tensor σ, which can be written as follows

Ĉ−1 = C−1 : Is − C−1 : Ia, (3.20)

where the two fourth-order tensors Is and Ia are given as follows (for more details
see Appendix A)

Is = 1
2(δikδjl + δilδjk); Ia = 1

2(δikδjl − δilδjk). (3.21)
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3.2 Numerical implementation
In the following, we will simplify discussion to a 2D plane strain case. In defining the
discrete approximation, the variational formulation will first be restated in a matrix
notation. The details of mapping from tensor to matrix form are given in Appendix
A. The mapping operation L is introduced by taking advantages of the plane strain
condition. The second order tensor of stress and symmetric part of displacement
gradient are transformed into a 4 by 1 matrix

σ = [σij](i,j)∈[1,3] →L(σ) := σh =


σ11
σ22
σ12
σ21

 ;

symm∇u = [εij](i,j)∈[1,3] →L(symm∇u) := εh =


ε11
ε22
ε12
ε21

 .
(3.22)

Finally, the fourth order tensor of elasticity is transformed into a 4 by 4 matrix:

Ĉ−1 =
[
Ĉ−1
ijkl

]
(i,j,k,l)∈[1,3]

→ L(Ĉ−1) := Dh
4×4. (3.23)

3.2.1 Finite element approach
For the space discretization, the well-known constant strain/stress triangle element
(CST) is selected as the element to enhance its performance, in which the physical
meaning for the degree of freedom of stress field is additionally discussed. The
conventional discretization method is employed for the displacement field [80], while
the Raviart-Thomas vector space with the lowest order (RT 0) [50, 54] is introduced
to approximate the stress field. For time approximation, the appropriate time-
stepping integration is consequently formulated to preserve the total energy of a
system in dynamics. The resulting discrete problem is solved in a single level of
computation, with the global set of equilibrium equations at time step n+1/2.

Let us consider a domain Ω ⊂ R2, represented by the discrete triangularized
mesh as a set T of triangle Ωe such that Ω = ∪Ωe∈TΩe. The common parts between
two neighboring triangles are either an edge, two corner nodes, a midpoint node or
empty. In the parent coordinate system, the coordinate of vertex node 1, 2 and 3
are (0,0), (0,1) and (1,0), respectively. These nodes contain the degrees of freedom
for the displacement field. Meanwhile the mid-edge nodes 4, 5 and 6 are (1/2,1/2),
(0,1/2) and (1/2,0). These nodal degrees of freedom correspond to the stress field.
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Figure 3.1 – Mapping of isoparametric triangle Ω̂ to physical triangle Ωe

The shape functions to interpolate the displacement field at any point in the
given element Ωe is given as follows

N1 = 1− ξ − η; N2 = ξ; N3 = η.

At any time-step n+1/2, the displacement and strain fields are interpolated from
nodal displacement values d, by using linear shape functions N

uhn+1/2|Ωe = Ndhn+1/2|Ωe ;
εhn+1/2|Ωe = Bdhn+1/2|Ωe ; B = ∇sN .

(3.24)

To interpolate the stress field, the lowest order Raviart-Thomas basis function (RT 0)
is utilized, with the normal basis functions given as

Φ̂
1(ξ, η) =

√
2
[
ξ
η

]
; Φ̂

2(ξ, η) =
[
ξ − 1
η

]
; Φ̂

3(ξ, η) =
[

ξ
η − 1

]
. (3.25)

For any midpoint ĝj along edge j ∈ [1, 2, 3], we can show that the independence
property of normal basis function

Φ̂
i (
ĝj
)
· n̂i =

{
1; if j = i.
0; if j 6= i.

(3.26)

where n̂i is the normal vector along edge i ∈ [1, 2, 3], which is opposite node i as
shown in Fig. 3.1. The basis functions Φ̂i are mapped back to physical coordinate
space by the Piola transformation represented with an affine function F . Since
one common edge between two elements in physical space can be mapped into two
different edges (with different lengths) in the parent coordinate, the terms |ek| and
|êk| (length of considered edges in the physical and parent spaces, respectively)
are added into Eq. (3.27) to maintain Eq. (3.26) in the physical coordinate, see
[54]. The notation JT and |JT | are the Jacobian matrix and its determinant of the
corresponding affine function. Hence, the basis function at edge i in the physical
coordinate system is now written as follows

Φ̂
i
7−→ Φi(x) = F (Φ̂i)(x) := |ek|

|êk|
JT
|JT |

Φ̂
i(x̂);

Φi (gj) · ni =
{

1; if j = i.
0; if j 6= i.

(3.27)
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The independence property of basis function in parent space is maintained by the
Piola transformation to physical space as in Eq. (3.27b). The stress field is now
written as a combination of these independent basis functions. Let us consider two
faces in x and y direction of a infinitesimal element, on which the stress components
could be combined to define the stress vector at the corresponding face[

σh11
σh12

]
= σh1 |Ωe = τ 1

1Φ
1 + τ 2

1Φ
2 + τ 3

1Φ
3;[

σh21
σh22

]
= σh2 |Ωe = τ 1

2Φ
1 + τ 2

2Φ
2 + τ 3

2Φ
3.

(3.28)

Casting the above terms in the correct order in Eq. (3.22a), the stress interpolation
can thus be formulated in matrix form as follows

σhn+1/2|Ωe = Sτ hn+1/2|Ωe . (3.29)

By using the results in Eq. (3.28) and Eq. (3.27b), the traction due to the stress
tensor at the edge i can be expressed as follows

thi = σh · nhi =
[
σh1 · nhi
σh2 · nhi

]
≡
[
τ i1
τ i2

]
. (3.30)

Thus, the couple (τ i1, τ i2) in Eq. (3.28) actually represents the components of the
traction vector at the edge i. Since τ i1, τ i2 are also the degrees of freedom, chosen
same on a given edge which is shared by a couple of neighboring triangular elements,
this type of interpolation guarantees the continuity of a normal traction vector on
an edge between two neighboring elements.

3.2.2 Discrete weak form
With the chosen interpolation of displacement and stress fields, the discrete weak
forms in Eq. (3.18) and Eq. (3.19) for a typical element Ωe can be written in a
matrix notation as follows

Ge
u(u,σ; δu) =δdT

[∫
Ωe
ρNTNa dV +

∫
Ωe
BTSτ dV

−
∫
Ωe
NTf dV −

∫
∂Ωet

NT t̄ dA
]

= 0;

Ge
σ(u,σ; δσ) =δτ T

[∫
Ωe
STBd dV −

∫
Ωe
STDSτ dV

]
= 0.

(3.31)
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The index ′n+1/2′ is only shown where it is needed. By linearizing the first equation
Eq. (3.31a), we get

r
e,(i+1)
u,n+1/2(u, τ ) = r

e,(i)
u,n+1/2(u, τ ) +∆r

e,(i)
u,n+1/2(∆u, ∆τ ) = 0;

r
e,(i)
u,n+1/2(·) :=

∫
Ωe
ρNTNa

e,(i)
n+1/2 dV +

∫
Ωe
BTSτ

e,(i)
n+1/2 dV︸ ︷︷ ︸

f int

−
[∫

Ωe
NTf

e,(i)
n+1/2 dV +

∫
∂Ωet

NT t̄
e,(i)
n+1/2 dA

]
︸ ︷︷ ︸

fext

;

∆r
e,(i)
u,n+1/2(·) := η̃M̃ e∆d

e,(i)
n+1/2 + F e,T∆τ

e,(i)
n+1/2.

(3.32)

where the corresponding matrices are

F e :=
∫
Ωe
STB dV ; M̃ e :=

∫
Ωe
ρNTN dV ; η̃ = ∂an+1/2/∂dn+1/2. (3.33)

In a similar manner, from discrete approximation of the weak form for Eq. (3.31b),
we get

h
e,(i+1)
n+1/2 (u, τ ) = h

e,(i)
n+1/2(u, τ ) +∆h

e,(i)
n+1/2(∆u, ∆τ ) = 0;

h
e,(i)
n+1/2(·) :=

∫
Ωe
STB dV d(i)

n+1/2 −
∫
Ωe
STDS dV τ (i)

n+1/2;

∆h
e,(i)
n+1/2(·) := F e∆d

e,(i)
n+1/2 −H

e,(i)
n+1/2∆τ

e,(i)
n+1/2,

(3.34)

where the corresponding matrix is

He
n+1/2 :=

∫
Ωe
STDS dV. (3.35)

In the same manner in Chapter 2, the visco-plasticity is implemented with the
yield function using von Mises stress tensor norm J2. The set of linearized discrete
governing equations in a matrix notation is now established with unknown nodal
displacement and stress fields at each iteration:

Anele=1

[
η̃M̃ e F e,T

F e −He
n+1/2

] ∆de,(i)n+1/2

∆τ
e,(i)
n+1/2

 = −Anele=1

re,(i)u,n+1/2(·)
h
e,(i)
n+1/2(·)

 . (3.36)

Having obtained the solution at each iteration by using of Newton-Raphson iterative
method, the stress and displacement nodal values are updated

τ
(i+1)
n+1/2 = τ

(i)
n+1/2 +∆τ

(i)
n+1/2;

d
(i+1)
n+1/2 = d

(i)
n+1/2 +∆d

(i)
n+1/2.

(3.37)

3.2.3 Energy conserving scheme
In this section, an energy conserving (EC) scheme for the linear elastodynamics
problem, is developed to guarantee the stability of the computation over long period.
The mid-point time integration scheme is employed to maintain the second-order
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accurate O(∆t3) solution, see [7]. Accordingly, the nodal velocity and acceleration
at the time step tn+1/2 can be formulated in the form of nodal displacement and
velocity

vn+1/2 = (dn+1 − dn)/∆t;
an+1/2 = (vn+1 − vn)/∆t. (3.38)

The increment of displacement field within an interval of time step is computed by
using the mid-point approximation:

dn+1 − dn = 1
2∆t(vn+1 + vn). (3.39)

This equation can be formed in an alternative expression showing the simple update
of a position vector:

dn+1 = dn + u; u := 1
2∆t(vn+1 + vn). (3.40)

The stress state at tn+1/2 is selected in the following algorithmic form, which is left
open to be explained shortly:

τ algn+1/2 := 1
2(τ n+1 + τ n). (3.41)

By choosing a test displacement vector δdT = dn+1 − dn, a work done by both the
internal f int and external f ext can be elaborated from the weak form of balance
equation in Eq. (3.32b)

(dn+1 − dn)T f int = (dn+1 − dn)T f ext.

The internal work includes two components including kinetic and potential energies

(dn+1 − dn)T f int = (dn+1 − dn)T
∫
Ω
BTSτn+1/2 dV+(dn+1 − dn)T

∫
Ω
ρNTNan+1/2 dV.

The work done by inertia force can be simplified thanks to results obtained in
Eq. (3.38b) and Eq. (3.39)

(dn+1 − dn)T M̃an+1/2 = 1
2 (vn+1 + vn)T M̃ (vn+1 − vn)

= 1
2v

T
n+1M̃vn+1 −

1
2v

T
nM̃vn

= Kn+1 −Kn,

(3.42)

where Kn+1 is the kinetic energy of the system at time tn+1. It is noted that the
mass matrix M̃ is symmetric, so this identity holds: vTn+1M̃vn − vTnM̃vn+1 = 0.
The work done by the potential force can also be expressed as a combination of 2
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groups

(dn+1 − dn)T F Tτ n+1/2 = 1
2 (dn+1 − dn)T F T (τ n+1 + τ n)

=
[1
2d

T
n+1F

Tτ n+1 −
1
2d

T
nF

Tτ n

]
+
[1
2d

T
n+1F

Tτ n −
1
2d

T
nF

Tτ n+1

]
︸ ︷︷ ︸

L

.

(3.43)
Since the scalar L has variables from both time step tn and tn+1, further simplifica-
tion of L should be elaborated. Via exploiting the result in Eq. (3.34b) with a test
stress function chosen as δτ T = τ n+1 − τ n, the following identity is derived based
on the fact that the matrix H is always a symmetric matrix:

(τ n+1 − τ n)T
[
Fdn+1/2 −Hτ n+1/2

]
=0;

⇒1
2d

T
n+1F

Tτ n+1 −
1
2τ

T
n+1Hτ n+1 −

1
2d

T
nF

Tτ n + 1
2τ

T
nHτ n = 1

2d
T
n+1F

Tτ n −
1
2d

T
nF

Tτ n+1︸ ︷︷ ︸
L

.

(3.44)
With the last identity on hand, Eq. (3.43) can further be rewritten as

(dn+1 − dn)T F Tτ n+1/2 = 1
2d

T
n+1F

Tτ n+1 −
1
2d

T
nF

Tτ n

+ 1
2d

T
n+1F

Tτ n+1 −
1
2τ n+1Hτ n+1 −

1
2d

T
nF

Tτ n + 1
2τ nHτ n

= dTn+1F
Tτ n+1 −

1
2τ

T
n+1H

eτ n+1︸ ︷︷ ︸
Pn+1

− (dTnF Tτ n −
1
2τ

T
nH

eτ n)︸ ︷︷ ︸
Pn

= Pn+1 − Pn,
(3.45)

where Pn+1 is the potential energy of the system at time tn+1. From the above
derivation, one can express the balance of the internal energy and the external work
in following equation

(Kn+1 + Pn+1)︸ ︷︷ ︸
En+1

− (Kn + Pn)︸ ︷︷ ︸
En

= (dn+1 − dn)Tf extn+1/2︸ ︷︷ ︸
∆Wn+1/2

;

⇔En+1 − En =∆W.
(3.46)

We can conclude that the algorithmic constitutive equation Eq. (3.41) would con-
serve the total energy En+1 = En + ∆W for any bounded external loading. This
property is viewed as "unconditionally stable", see [83, 205].

3.3 Numerical examples
Several numerical simulations are presented in this section to illustrate the per-
formance of the enhanced triangular element and the corresponding time-stepping
integration scheme. All the computations are programmed as so-called user-defined
element and subroutines in FEAP v8.4 (see [186]). The output data is then post-
processed via Matlab scripts for plotting.
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3.3.1 Patch test
The patch test can reveal any spurious modes which may exist in the element. In this
test, model 1 (1 by 1 in size) is denoted by a domain with a homogeneous material
while model 2 (2 by 1 in size) is denoted by a domain with a non-homogeneous
material including 2 different properties as shown in Fig. 3.2 (see [10]).

(a) Model 1: Homogeneous material (b) Model 2: Non-homogeneous material

Figure 3.2 – The patch test

In model 1, the regular and irregular mesh corresponds to case 1 and case 2,
respectively. The same material is applied for either mesh where elastic modulus
E = 200 and ν = 0.499 for incompressible condition. The numerical displacement
at point A is (0.01,−9.95.10−3), matching with the ’exact’ solution. This solution
is obtained by using σ22 ≈ 0, the details of stress-strain relation are given in Ap-
pendix A

∆lx
lx

= ε11 = (1− ν2)
E

σ11 ⇒ ∆l︸︷︷︸
ux(A)

= 1− ν2

E
σ11︸︷︷︸
p

=0.01;

∆ly
ly

= ε22 = (−ν − ν2)
E

σ11 ⇒ ∆l︸︷︷︸
uy(A)

= −ν − ν
2

E
σ11︸︷︷︸
p

=− 9.95.10−3.

(3.47)

The displacement field in case 1 is shown in Fig. 3.2(a-d). In both cases, the vertical
component of traction τy vanishes at a midpoint of any given edge while the horizon-
tal counterpart’s magnitude τx on vertical edge dominates those on the horizontal
and inclined edges, see Fig. 3.2(e,f). The stress σ11 is constant as expected over the
entire domain for both cases.
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(a) Case 1: Displacement ux (b) Case 2: Displacement ux

(c) Case 1: Displacement uy (d) Case 2: Displacement uy

(e) Case 1: Traction τx (f) Case 2: Traction τx

Figure 3.3 – Model 1-Homogeneous material

In model 2, the material properties of 2 regions are chosen as follows: (E1 =
768, ν = 0.2) and (E2 = 1000, ν = 0.25). The numerical displacement at point A
computed by the eCST is (2.1875.10−3,−3.125.10−4), matching with a solution from
a higher order approximation by an isogeometric element, see [10]. The correspond-
ing displacement field is shown in Fig. 3.4(a,b). The vertical component of traction
τy vanishes at a midpoint of any given edge, while the horizontal counterpart’s mag-
nitude τx on vertical edge dominates those on the horizontal and inclined edges, see
Fig. 3.4(c). The stress σ11 is constant as expected over the entire domain for both
cases. Finally, we conclude that the proposed element passes the patch test.
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(a) Displacement ux (b) Displacement uy

(c) Traction τx

Figure 3.4 – Model 2-Non-homogeneous material

3.3.2 Higher order patch test
A simple beam 10 by 1 under a force couple load p = 1 applied at each end is
subjected to a pure bending state, which represents a higher order patch test as
shown in Fig. 3.5(a). The material properties are chosen as: elastic modulus E = 100
and ν = 0.

(a) Geometry and boundary (b) Deflection at point M(5,1)

Figure 3.5 – A simple beam under bending state

The deflection at point M(5,1) computed by the proposed element (eCST) is com-
pared against the counterpart obtained by the conventional constant stress/strain
triangle element (CST) and four-node quadrilateral element (Q4) under several mesh
configurations. The ’exact’ solution is computed by a very fine mesh of nine-node
quadrilateral element (Q9). As shown in Fig. 3.5(b), the rate of convergence and
accuracy of the eCST element is better than all the others. Detailed results are given
in two cases. A coarse mesh with 6 by 1 element in each direction is denoted in case
1, while a finer mesh with 12 by 6 element is denoted in case 2. The displacement
field in case 1 is shown in Fig. 3.6(a,c). The finer mesh in case 2 yield the better
contour of displacement field as in Fig. 3.6(b,d). The deformed shape is shown in
Fig. 3.6(e,f).
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(a) Case 1: Displacement ux (b) Case 2: Displacement ux

(c) Case 1: Displacement uy (d) Case 2: Displacement uy

(e) Case 1: Deformed shape (f) Case 2: Deformed shape

Figure 3.6 – Displacement field and deformed configuration

The illustration of traction field is depicted in a finer mesh. The horizontal and
vertical vertical components of traction (τx,τy) for case 2 are shown in Fig. 3.7(a,b),
respectively. The values are normalized with respect to the corresponding maximum.
The traction vector on midpoint of each edge is given in Fig. 3.7(c). It is expected
that there are 2 different zones including tension and compression as depicted in
Fig. 3.7(d). We conclude that the proposed element passes the higher order patch
test.

(a) Traction τx, max=5.72 (b) Traction τy, max=5.58

(c) Traction τ , max=7.02 (d) Hydrostatic pressure

Figure 3.7 – Traction field and hydrostatic pressure-Case 2

3.3.3 Cantilever beam
A shear-loaded cantilever beam 48 by 12 (unit thickness) is selected as another
standard test, as shown in Fig. 3.8(a). The chosen material properties are listed
as: elastic modulus E = 30.103 and ν = 0.25 for compressible condition. A total
vertical load p = 40 applied at the right end represents a shear test. The elasticity
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solution for the tip displacement is given in [188] as follows

u2 = Pl3

3E∗I + (4 + 5v∗)Pl
2E∗h = 0.334, (3.48)

where E∗ = E

1− ν2 and ν∗ = ν

1− ν for plane strain case.

(a) Geometry and boundary (b) Deflection at point T(48,12)

Figure 3.8 – A cantilever beam

The deflection at point T(48,12) computed by the proposed element (eCST) is
compared against the counterpart obtained by conventional constant stress/strain
triangle element (CST) and four-node quadrilateral element (Q4) under several mesh
configurations. As shown in Fig. 3.8(b), the rate of convergence and accuracy of the
eCST element is better than all the others.

(a) Case 1: Displacement ux (b) Case 2: Displacement ux

(c) Case 1: Displacement uy (d) Case 2: Displacement uy

(e) Case 1: Deformed shape (f) Case 2: Deformed shape

Figure 3.9 – Displacement field and deformed configuration

Detailed results are given in two cases. A coarse mesh with 4 by 1 element in each
direction is denoted in case 1, while a finer mesh with 12 by 6 element is denoted in
case 2. The displacement field in case 1 is shown in Fig. 3.9(a,c). The finer mesh in
case 2 yields the smooth contours of the displacement field, as in Fig. 3.9(b,d). The
deformed shape is shown in Fig. 3.9(e,f).
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(a) Traction τx, max=73.94 (b) Traction τy, max=25.63

(c) Traction τ , max=74.49 (d) Hydrostatic pressure

Figure 3.10 – Traction field and hydrostatic pressure-Case 2

The illustration of traction field is depicted with finer mesh. The horizontal
and vertical components of traction (τx,τy) for case 2 are shown in Fig. 3.10(a,b),
respectively. The values are normalized with respect to the corresponding maximum.
The traction vector on the midpoint of each edge is given in Fig. 3.10(c). It is
expected that there are two different zones including tension and compression as
depicted in Fig. 3.10(d).

3.3.4 Cook’s membrane
Cook’s membrane test proposed in [39] presents the shear dominated behavior and
also displays the effects of mesh distortion, as shown in Fig. 3.11. The material
properties are chosen as: elastic modulus E = 1, ν = 0.33 for quasi-incompressible
condition and ν = 0.499 for an incompressible condition. A total vertical load p = 1
applied at the right end.

Figure 3.11 – Cook’s membrane
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(a) ν = 0.33 (b) ν = 0.499

Figure 3.12 – Deflection at point 3(48,60)

The deflection at point 3(48,60) computed by the proposed element (eCST)
is compared against the counterpart obtained by the conventional constant
stress/strain triangle element (CST) and four-node quadrilateral element (Q4) with
several mesh configurations. The ’exact’ solution is computed by a very fine mesh of
the nine-node quadrilateral element (Q9). As shown in Fig. 3.12, the rate of conver-
gence and accuracy of the eCST element is better, especially for the incompressible
case with ν = 0.499.

(a) Case 1: Displacement ux (b) Case 2: Displacement ux

(c) Case 1: Displacement uy (d) Case 2: Displacement uy

(e) Case 1: Deformed shape (f) Case 2: Deformed shape

Figure 3.13 – Displacement field and deformed configuration
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(a) Traction τx, max=0.3154 (b) Traction τy, max=0.1183

(c) Traction τ , max=0.3164 (d) Hydrostatic pressure

Figure 3.14 – Traction field and hydrostatic pressure-Case 2

Detailed results are given in two cases with ν = 0.33 to represent the incom-
pressible condition. A coarse mesh with 2 by 2 elements in each direction is denoted
as case 1, while a finer mesh with 8 by 8 elements is denoted as case 2. The displace-
ment field in case 1 is shown in Fig. 3.13(a,c). The finer mesh in case 2 yields the
smooth contours of displacement field, as shown in Fig. 3.13(b,d). The deformed
shape is shown in Fig. 3.13(e,f). The illustration of traction field is depicted with
finer mesh. The horizontal and vertical components of traction (τx,τy) for case 2 are
shown in Fig. 3.14(a,b), respectively. The values are normalized with respect to the
corresponding maximum. The traction vector on the midpoint of each edge is given
in Fig. 3.14(c). It is expected that there are 2 different zones including tension and
compression as depicted in Fig. 3.14(d).

(a) Distribution of yield function φ(σ) (b) Hydrostatic pressure

Figure 3.15 – Cook’s membrane under visco-plastic regime

The Cook’s membrane problem with ν = 0.33 is considered under visco-plastic
regime. The only additional properties needed for the computation are listed as
follows: yield stress σf = 0.15 and visco-plastic parameter η = 1/10−8. The plasti-
fied zone corresponding to φ(σ) > 0 is denoted by cyan to red legend, as shown in
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Fig. 3.15(a). The tension and compression zones are also depicted by hydrostatic
pressure in Fig. 3.15(b).

3.3.5 Dynamic loadings
A simple cantilever beam with width 10 and height 1, as shown in Fig. 3.16(a),
is selected to simulate a vibration under a dynamic pulse. There are two models
with different load setting: axial and shear pressure. The same fine mesh (10 by 2
elements in each direction) is generated in both cases to allow a wave propagation
in the beam under introduced pulse. The properties of both model materials are
chosen as: elastic modulus E = 200, Poisson’s ratio ν = 0.33 and ρ = 0.785. The
time step chosen for the simulation is ∆t = 10−i, i ∈ [1, 2, 3, 4]. A triangle pulse with
a peak of pressure p0 = 1 is introduced to both models as shown in Fig. 3.16(b),
which leads subsequently to free vibrations of the system. These loading scenarios
are chosen as shown in Table 3.1. The energy conserving scheme (EC scheme) is
employed to compute the evolution of displacement and traction fields.

(a) Mesh and boundary (b) Pressure pulse

Figure 3.16 – Dynamic test

Model Case p0 ∆t1

1 1,2,3,4 1 (axial) 8.10−4, 8.10−3, 8.10−2, 8.10−1

2 1,2,3,4 1 (shear) 8.10−4, 8.10−3, 8.10−2, 8.10−1

Table 3.1 – Load groups for EC scheme
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(a) Case 1: Displacement at node 123 (b) Case 1: Traction at node 82

(c) Case 2: Displacement at node 123 (d) Case 2: Traction at node 82

(e) Case 3: Displacement at node 123 (f) Case 3: Traction at node 82

(g) Case 4: Displacement at node 123 (h) Case 4: Traction at node 82

Figure 3.17 – Model 1-Displacement and traction

Regarding model 1, the amplitude of displacement in both directions at node
123 is shown in Fig. 3.17(a,c,e,g). It is noted that the displacement in the horizontal
direction is larger than its counterpart in vertical direction, since the axial pulse is
introduced. As shown in Fig. 3.17(b,d,f,h), the similar trend can be observed for
the first several steps in the traction at node 82.
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(a) Case 1: ∆t = 1.10−1 (b) Case 2: ∆t = 1.10−2

(c) Case 3: ∆t = 1.10−3 (d) Case 4: ∆t = 1.10−4

Figure 3.18 – Model 1-Total energy

As shown in Fig. 3.18, the results show that the total internal energy of the
system is conserved exactly under free vibration in every case in model 1. It is
noted that longer duration of loading leads to higher total energy gained by the
system. These cases are fully under the elastic regime.

(a) Case 1: ∆t = 1.10−1 (b) Case 2: ∆t = 1.10−2

(c) Case 3: ∆t = 1.10−3 (d) Case 4: ∆t = 1.10−4

Figure 3.19 – Model 2-Total energy

As shown in Fig. 3.19, the results show that the total internal energy of the
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system is conserved exactly under the free vibration in every case for model 2. It is
noted that a longer duration of loading leads to higher total energy gained by the
system. These cases are fully under the elastic regime.

(a) Case 1: Displacement at node 123 (b) Case 1: Traction at node 82

(c) Case 2: Displacement at node 123 (d) Case 2: Traction at node 82

(e) Case 3: Displacement at node 123 (f) Case 3: Traction at node 82

(g) Case 4: Displacement at node 123 (h) Case 4: Traction at node 82

Figure 3.20 – Model 2-Displacement and traction

Regarding model 2, the amplitude of displacement in both direction at node 123
is shown in Fig. 3.20(a,c,e,g). Since the shear pulse is introduced, the displacement
in the vertical direction is larger than its counterpart in the horizontal direction.
The traction at node 82 is shown in Fig. 3.20(b,d,f,h).
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To implement the visco-plasticity, the same material is employed with additional
properties including yield stress σf = 0.5 and viscosity coefficient η = 1/10−8. The
results from case 3 in model 1 are computed for the visco-plastic simulation, as shown
in Fig. 3.21. The corresponding nodes and elements can be found in Fig. 3.16(a).

(a) Non-conserving total energy (b) Displacement at node 123

(c) Traction at node 82 (d) Value of J2 (first gauss point)

Figure 3.21 – Model 1-Case 3: Dynamics under visco-plastic regime

The total energy is not conserved anymore due to the visco-plastic dissipation as
shown in Fig. 3.21(a). At the same locations, the given displacement and traction
in Fig. 3.21(b,c) are not much different from those in Fig. 3.17(e,f). The von Mises
stress J2 at element 19 fluctuates more frequently than the counterpart at element
39 since it takes a time-lapse for the wave to travel through the half right end, as
shown Fig. 3.21(d).
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4
Mixed variational formulation for
the visco-plasticity plate bending

problem under dynamics

In this chapter, a regularized variational formulation is derived in the
same manner as presented in Chapter 3 for the visco-plasticity plate
bending problem. Then the displacement is interpolated by low-order
polynomial functions, while the stress-resultants (moment and shear
forces) are approximated by the lowest-order Raviart-Thomas vector
space. Afterwards, the energy and decaying conserving scheme are con-
figured for the dynamics computation. The performance of the proposed
element is validated via several numerical simulations.
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4.1 Regularized variational formulation
We first briefly review the conventional model of the Reissner-Mindlin plate theory.
Then the hybrid-stress variational formulation of a governing equation is given with
the moment and shear force fields introduced as additional independent variables
by appealing to the Hellinger-Reissner method, and its regularized format, which is
the most suitable for the Raviart-Thomas discrete approximation, see [147] for the
elastodynamics problem.

Let Ω in Fig. 4.1 be a bounded flat body in R3 representing a plate of thickness
t, in which the thickness t is small compared to the other two dimensions, see
Eq. (4.1a). The corresponding piece-wise smooth boundary ∂Ω, including imposed
deflection boundary ∂Ωu and imposed stress resultants boundary ∂Ωt, satisfying
Eq. (4.1b).

Figure 4.1 – Plate and sign convention

Ω =
{

(x, y, z) ∈ R3|z ∈
[
− t2 ,+

t

2

]
, (x, y) ∈ R2

}
;

∂Ω =∂Ωu ∪ ∂Ωt and ∂Ωu ∩ ∂Ωt = ∅.
(4.1)

The xy plane of chosen coordinate system is placed in the plate mid-surface (denoted
as A), and the surface loading p(x, y) is applied normal to the mid-surface, as shown
in Fig. 4.1. The Reissner-Mindlin plate theory assumes that a straight fiber normal
to the mid-surface before applying the loading remains straight but not necessarily
normal to the plate mid-surface. We choose the corresponding rotation components
of this fiber, denoted as φx and φy.

4.1.1 Conventional Reissner-Mindlin plate model
In this section, we reformulate the classical Reissner-Mindlin plate model, where the
governing equations are recast in tensor notation, which is needed to provide the
regularized version starting from 3D continuum mechanics model. The Reissner-
Mindlin plate kinematics considers that for any point C (see Fig. 4.1) placed outside
of the plate mid-surface, the displacement field components ux, uy and uz can be
expressed in terms of the lateral deflection w at the plate mid-surface and the fiber
rotation vector φ = (φx, φy), which can be written as follows

ux = −zφx(x, y); uy = −zφy(x, y); uz = w(x, y). (4.2)

The sign convention of the rotation vector θ = (θx, θy) about the x and y directions
is shown in Fig. 4.1, (see [87]) hence the relation between two rotation vectors
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components is given as follows

φx = −θy; φy = θx. (4.3)

The gradient of the displacement field can be written in a tensor notation, or rather
as corresponding 3D matrix representation in the Euclidean setting (e.g. [89]),
conjugate to stress tensor σ assumed to be non-symmetric. In agreement with
Eq. (4.2), we can write

∇u =

ux,x ux,y ux,z
uy,x uy,y uy,z
uz,x uz,y uz,z

 =

−zφx,x −zφx,y −φx−zφy,x −zφy,y −φy
w,x w,y 0

 =

 zθy,x zθy,y θy
−zθx,x −zθx,y −θx
w,x w,y 0


(4.4)

This allows to redefine the generalized strain measure for the Reissner-Mindlin plate
model in terms of the curvature tensor and the shear strain. The corresponding
matrix representation of the curvature tensor κ̂ of the plate Reissner-Mindlin model,
can be written as

κ̂ =
[
κxx κxy
κyx κyy

]
=
[

θy,x
1
2(−θx,x + θy,y)

1
2(−θx,x + θy,y) −θx,y

]
. (4.5)

The curvature tensor κ̂ and the shear strain γ̂ are work-conjugates to the bending
moment tensor M̂ and the shear force Q̂, respectively. The latter are internal forces
in the plate expressed in terms of stress resultants, which are defined by integrating
the normal and shear stresses through the thickness of the plate, leaving out the
component σzz. However, we will not enforce the symmetry of the bending moment
tensor, keeping the corresponding moment equilibrium equation in the strong form
(more details in next section), so that we can write:

M̂ =
[
Mxx Mxy

Myx Myy

]
=
∫ t/2
−t/2 σxxz dz

∫ t/2
−t/2 σxyz dz∫ t/2

−t/2 σyxz dz
∫ t/2
−t/2 σyyz dz

 . (4.6)

In numerical computations we further switch to the corresponding vector represen-
tation of the defined tensors κ̂ and M̂ . Firstly, the curvature tensor κ components
for the Reissner-Mindlin plate model can be written as

κ =
[
κxx, κyy, κxy, κyx

]T
=
[
θy,x, −θx,y, 1

2(−θx,x + θy,y), 1
2(−θx,x + θy,y)

]T
.

(4.7)
The work-conjugated bending moment tensor M̂ can also be rewritten in the vector
form as follows

M = [Mxx, Myy, Mxy‘, Myx]T

=
[∫ t/2

−t/2
σxxz dz,

∫ t/2

−t/2
σyyz dz,

∫ t/2

−t/2
σxyz dz,

∫ t/2

−t/2
σyxz dz

]T
.

(4.8)

The shear strain components for the Reissner-Mindlin plate are placed in the vector
γ written as

γ =
[
γxz, γyz

]T
=
[
w,x + θy, w,y − θx

]T
. (4.9)
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The work-conjugated shear force Q can also be written in the vector form as follows

Q = [Qxz, Qyz]T =
[∫ t/2

−t/2
σxz dz,

∫ t/2

−t/2
σyz dz

]T
. (4.10)

For the isotropic linear elastic constitutive behavior of a plate material, the con-
stitutive relation between moment tensor components and corresponding curvature
tensor components can be written as

Mxx

Myy

Mxy

Myx

 = D


1 ν 0 0
ν 1 0 0
0 0 (1− ν)/2 0
0 0 0 (1− ν)/2


︸ ︷︷ ︸

Cb


κxx

κyy

κxy

κyx

 7→M = Cbκ, (4.11)

where D = Et3

12(1− ν2) is the flexural rigidity of the plate with the Young’s modulus

E and the Poisson’s ratio ν, whereas the bending elastic matrix Cb is derived from
the fourth order tensor C and integrated over thickness t of the plate. The consti-
tutive equation for the shear force versus the shear strain relation can be written in
the vector notation as follows[

Qx

Qy

]
= kGt

[
1 0
0 1

]
︸ ︷︷ ︸

Cs

[
γxz

γyz

]
7→ Q = Csγ, (4.12)

where G = E

2(1 + v) is shear modulus and k is the correction factor. The usual

value k = 5/6 is used for the homogeneous plate and the parabolic distribution of
the transverse shear stress in the z-direction. We note in passing that the compliance
matrices for bending and shear constitutive relations are computed simply as the
inverse of corresponding constitutive matrices Db = Cb,−1 and Ds = Cs,−1.

We further assume a more general constitutive behavior of the plate material
in terms of the visco-plasticity model [89], where we regroup all stress resultants
components within the generalized stress resultant vector s, and also regroup the
corresponding strain components in the vector χ; both are simply defined as follows

χ = [κxx, κyy, κxy, κyx, γxz, γyz] ;
s = [Mxx, Myy, Mxy, Myx, Qxz, Qyz] .

(4.13)

For the case of visco-plasticity at small strains, the strain components can be de-
composed additively into elastic and visco-plastic strain measures for the plate with
χ = χe + χvp. This implies that both the curvature tensor and shear strain vec-
tors are assumed to be split additively into elastic strains (κe,γe) and visco-plastic
strains (κvp,γvp) parts. Hence, we can enforce the following relations κ = κe + κvp
and γ = γe + γvp.
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4.1.2 Stress resultant-based variational equations
The strong form of the governing equations for the plate model is rewritten in reg-
ularized form. We follow closely the work in [81] for the 3D continuum problem,
which is proposed to accommodate any most convenient discrete approximations.
From this starting point, we switch to the hybrid-stress version where only stress
and displacement fields are retained as independent fields. We then use the develop-
ment in previous section to recast such formulation in terms of stress resultants. In
particular, this allows to provide the moment vector and shear continuity across the
edge between the adjacent plate elements, which is of special interest for dynamics to
capture (smooth) wave propagation. The regularized formulation for plate problem
is recast for plate bending problem as follows

Π%(w,θ,M ,Q) =− 1
2

∫
A

(
symmM ·Db symmM +Q ·DsQ

)
dA

+
∫
A

(symmM · κ+Q · γ) dA+ 1
2%
−1
∫
A

12
t3
| skewM |2 dA

−Πext(u).
(4.14)

The variational equations corresponding to the functional in Eq. (4.14) above for
plate bending problem can be written as follows

Gu(w,θ,M ,Q; δw, δθ) =
∫
A
δκ ·M dA+

∫
A
δγ ·Q dA

−
[∫
∂Ωt

δwp dA−
∫
Ω
δwρẅ dV

]
︸ ︷︷ ︸

Gext(·)

= 0;

GM ,Q(w,θ,M ,Q; δM , δQ) =
∫
A

[
δM ·

(
κ− D̂

b
M
)

+ δQ · (γ −DsQ)
]

dA

=
∫
A
δs ·

[
χ−C−1s

]
dA = 0,

(4.15)
in which the inverse elasticity matrix C−1 = D̂b ⊕ Ds. We also note that the
external virtual work Gext(w; δw) is formulated in the spirit of d′Alembert principle
with an additional term from the inertia force for the dynamics problem. In the case
of visco-plastic constitutive behavior of the plate material, Eq. (4.15b) is rewritten
by exploiting the additive decomposition of strain fields into elastic and visco-plastic
components

GM ,Q(w,θ,M ,Q; δM , δQ) =
∫
A
{δM ·

[
κ−

(
κvp + D̂b

M
)]

+δQ · [γ − (γvp +DsQ)]} dA

=
∫
A
δs ·

[
χ−

(
χvp +C−1s

)]
dA = 0.

(4.16)

The corresponding form of updated elastic compliance matrix D̂b related to the
bending moment field in Eq. (4.15) is presented in Appendix B. The final point in
defining the nonlinear behavior with visco-plasticity concerns the selection of the
yield criterion, which triggers the evolution of the visco-plastic deformation. For
the present plate bending problem, we follow the choice made in [91] by selecting
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the yield function φ(s) as a quadratic form in stress resultant, which can be written
as follows

φ (s) = 1
2s ·As− 1; A = 1

m2
y

P ⊕ 1
q2
y

I2, (4.17)

where I2 is the 2 × 2 identity matrix. The chosen yield criterion is obtained by
recasting the classical von Mises yield criterion in the stress resultant form, which
explicitly defines the deviatoric matrix in the stress resultant form P , see [91] for
details. The corresponding ultimate bending moment my and ultimate shear force
qy, each defined as function of the yielding stress σy of a background continuum
problem are

my = σyt
2

4 ; qy = σyt√
3
. (4.18)

Note that for the chosen visco-plasticity model, the yield function φ(s) accepts
all values of stress in the space of real number R. This is the crucial choice for
development of the second-order time-integration scheme, where both global motion
equations and local visco-plastic strain evolution equations have to be integrated
simultaneously [148] (contrary to the operator split procedure of rate-independent
plasticity; e.g. [89]). The evolution of visco-plastic generalized strain χvp is obtained
by appealing to the penalized version of maximum plastic dissipation [89], resulting
with the standard format that involves the derivatives of the corresponding yield
function φ(s). The visco-plastic flow rule is triggered by positive values of the yield
function φ(s) > 0, whereas the elastic regime is characterized with non-positive
values of the yield function φ(s) ≤ 0, which can be written as follows

φ(s) ≤ 0⇒ χ̇vp = 0; φ(s) > 0⇒ χ̇vp 6= 0. (4.19)

Here, we provide more detailed developments of these ideas. First, we can appeal to
the second law of thermodynamics in terms of the Clausius-Duhem inequality [89],
in order to provide the corresponding visco-plastic dissipation Dvp in terms of plate
model stress resultants

Dvp = s · χ̇− ψ̇e = s · χ̇vp ≥ 0, (4.20)

where s denotes the stress resultants and χvp denotes generalized visco-plastic
strains for the Reissner-Mindlin plate model, which contains the visco-plastic cur-
vature and shear strains. For our choice of the visco-plasticity constitutive model,
all the stress resultant values are admissible, but those outside the elastic domain
are penalized by an additional penalty function P (φ). For simplicity, we choose this
penalty function as a quadratic form in φ(s), which will penalize more the stress
states far outside the elastic domain

P (φ(s)) =


1
2φ(s)2; φ(s) > 0.

0; φ(s) ≤ 0.
(4.21)
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The principle of maximum visco-plastic dissipation [89] can then be applied to obtain
the corresponding evolution equation for the visco-plastic strain

∂P (φ)
∂φ

=< φ >, (4.22)

where < · > is the Macauley parenthesis (e.g. [89]), which is defined as

< φ >:= (φ(s) + |φ(s)|)/2 =
{
φ(s); φ(s) > 0.

0; φ(s) ≤ 0.
(4.23)

The penalty function is co-jointed with the factor 1/η, in which the scalar η is
the viscosity coefficient characterized by the corresponding material. The modified
visco-plastic dissipation Dvpη is now written as follows

−Dvpη [s] = −s · χ̇vp + 1
η
P (φ(s)). (4.24)

The evolution of visco-plasticity can be derived by means of the principle of max-
imum visco-plastic dissipation. From all possible states s∗ satisfying the yield
criterion φ (s∗) > 0, the stress resultant state s that maximizes the visco-plastic
dissipation Dvpη is the solution. This problem can also be written as constrained
minimization problem

Dvpη (s) = max
φ(s∗)>0

[
Dvpη (s∗)

]
⇔ −Dvpη (s) = min

φ(s∗)>0

[
−Dvpη (s∗)

]
. (4.25)

The Kuhn-Tucker optimality conditions for the minimization problem defined in the
above equation lead to the evolution equation of the visco-plastic resultant strain

0 =
∂
[
−Dvpη (s)

]
∂s

:=
∂[−s · χ̇vp + 1

η
P (φ(s))]

∂s
= −χ̇vp + 1

η
< φ >

∂φ

∂s
. (4.26)

Hence, the rate of the visco-plastic resultant strain is written as in Eq. (4.27). The
visco-plastic parameter 1/η is latter denoted as γ for simplicity

χ̇vp = 1
η
< φ >

∂φ

∂s
=: β(s); ∂φ

∂s
= As. (4.27)

4.2 Numerical implementation
In this section, we present the discrete approximation for displacement (including
lateral deflection and rotations), moment and shear force fields. The proposed ele-
ment is developed based on the three-node triangle element. The linear discretization
is employed for both lateral deflection and rotation fields [80]. Moreover, the lowest
order Raviart-Thomas vector space (RT0) [54] is introduced to approximate moment
and shear force fields. Having defined the discrete approximation of all independent
fields, we can obtain the corresponding semi-discretized weak form. For dynamics
framework studied herein, we then carry on to present the time-integration scheme,
which is used to fully discretize the problem. Here, we propose a scheme that can
conserve the total energy (in a free vibration) and its extension that decays the en-
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ergy of higher frequency modes. The resulting discretization of the problem results
with a linear set of motion equations at time step tn+1/2 for elastic plate behavior,
and accompanying evolution equations for the visco-plastic plate behavior, to be
solved at each step of computations.

4.2.1 Discrete approximation for deflection and rotation
fields

The following development is based on the previous development of quadrilateral
plate elements applicable to the analysis of the thick Reissner-Mindlin plate, see [87].
This development is adapted to a triangle element with low-order shape functions
N employed for interpolation. More precisely, the deflection and the rotation fields
are constructed by generalizing the Timoshenko beam interpolations, see [87]. The
discrete approximation of the rotation field θ = (θx, θy) at a given point in a discrete
element Ωe is written in terms of nodal rotation θi = (θix, θiy)[

θx
θy

]
=

3∑
i=1

Ni(ξ, η)
[
θix
θiy

]
7→ θ = N θθd. (4.28)

The corresponding curvature components are set in a matrix form which is derived
by substituting Eq. (4.28) into Eq. (4.7) to obtain

κ =
3∑
i=1
Bi(ξ, η)di 7→ κ = Bκd, (4.29)

where

Bi(ξ, η) =


0 0 ∂Ni(ξ, η)/∂x
0 −∂Ni(ξ, η)/∂y 0
0 −1

2∂Ni(ξ, η)/∂x 1
2∂Ni(ξ, η)/∂y

0 −1
2∂Ni(ξ, η)/∂x 1

2∂Ni(ξ, η)/∂y

 ; di =

 wi

θix
θiy

. (4.30)

The discrete approximation of the lateral deflection w is written in terms of nodal
values wi as follows

w =
3∑
i=1

Ni(ξ, η)wi 7→ w = Nwwd. (4.31)

In the same manner, the corresponding acceleration of the lateral deflection field ẅ
is computed from nodal values of acceleration a as follows

ẅ =
3∑
i=1

Ni(ξ, η)ai 7→ ẅ = Nwa. (4.32)

The discrete approximation of the lateral deflection w and acceleration ẅ are em-
ployed to compute the virtual work of external forces.
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Figure 4.2 – Assumed shear strain γ

To alleviate the shear locking, a bi-linear distribution for the assumed shear
strain is proposed (e.g. [87]), which can be written as follows[

γxz
γyz

]
= 1

3
(
γ1 + γ2 + γ3

)
7→ γ = N γγd. (4.33)

where the nodal shear strains γi (see Fig. 4.2) are computed in the manner that
ensures the constant shear strain distribution along each element edge, and thus the
continuity between adjacent plate elements. By enforcing the equality between the
projection of the nodal shear strain along the edge of two neighbors, the correspond-
ing matrix of nodal shear strain is formed as a function of nodal unknown matrix d.
The form of nodal shear strain γ is written as a function of lateral deflection and
rotation fields as follows

γ = N γγd = N γΛd = Bγd. (4.34)

With the chosen interpolations in Eq. (4.29) and Eq. (4.33), the proposed element
inherits the enhanced performance with the ability to overcome the shear locking
phenomena from the previous developed quadrilateral element [87].

4.2.2 Discrete approximation for moment and shear force
fields

As shown in Fig. 4.3, the element corner nodes 1, 2 and 3 are assigned the degrees of
freedom for the deflection w and rotation θi = (θix, θiy) fields. Meanwhile the nodal
degree of freedom corresponding to bending momentmi = (mi

x,m
i
y) and shear force

qi fields are located at mid-edge nodes 4, 5 and 6.
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Figure 4.3 – Mapping of isoparametric triangle Ω̂ to physical triangle Ωe

For the corresponding parent element, the normal basis functions Φi(ξ, η) of the
lowest order Raviart-Thomas vector space (RT0) are defined as follows

Φ̂
1(ξ, η) =

√
2
[
ξ
η

]
; Φ̂

2(ξ, η) =
[
ξ − 1
η

]
; Φ̂

3(ξ, η) =
[

ξ
η − 1

]
. (4.35)

For any midpoint ĝj along edge j ∈ [1, 2, 3], the orthogonality property of normal
basis functions can be expressed as follows

Φ̂
i (
ĝj
)
· n̂i =

{
1; if j = i.
0; if j 6= i.

, (4.36)

where n̂i is the unit exterior normal at edge i ∈ [1, 2, 3], placed opposite node i as
shown in Fig. 4.3. The basis function Φ̂i(ξ, η) is mapped back to physical coordinate
space by the Piola transformation [89] represented with an affine function F . Since
one common edge between two elements in physical space can be mapped into two
different edges (with different lengths) in parent coordinate, the terms |ek| and |êk|
(defining length of considered edges in the physical and parent space respectively)
have to be added in order to maintain Eq. (4.36) in the physical coordinate, see
[54]. Hence, the basis function Φ̂i at edge i in the physical coordinate system is now
written as follows

Φ̂
i
7−→ Φi(x) = F (Φ̂i)(x) := |ek|

|êk|
JT
|JT |

Φ̂
i(x̂);

Φi (gj) · ni =
{

1; if j = i.
0; if j 6= i.

,

(4.37)

where the notation JT and |JT | are the Jacobian matrix and its determinant of the
corresponding affine function. The independence property of basis function in parent
space is maintained by the Piola transformation to physical space as indicated in
Eq. (4.37b).

The moment field discrete approximation can now be written as a function of
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the independent basis functions[
Mh

xx

Mh
xy

]
= Mh

x|Ωe = m1
xΦ

1 +m2
xΦ

2 +m3
xΦ

3;[
Mh

yx

Mh
yy

]
= Mh

y |Ωe = m1
yΦ

1 +m2
yΦ

2 +m3
yΦ

3,

(4.38)

or expressed in corresponding more compact form by rearranging terms in the right
order to write

Mh
n+1/2|Ωe = Smh

n+1/2|Ωe . (4.39)

The matrix S denotes the interpolation matrix that contains the basis functions for
moment field. From the results in Eq. (4.37b) and Eq. (4.38), the projection of the
moment tensor upon a unit normal vector ni at an edge i is written as

mi,h =
[
Mh

x · nhi
Mh

y · nhi

]
≡
[
mi
x

mi
y

]
. (4.40)

Such a projection in Eq. (4.40) above is further referred to as the moment vector
mi,h(mi

x,m
i
y), since it is equivalent to the traction or stress vector obtained by

projecting the stress tensor (through Cauchy principle) upon the unit vector of
exterior normal ni. The moment vectormi,h(mi

x,m
i
y) is called the projection vector

of moment tensor at the edge i, and constitutes the nodal degrees of freedom of
bending moment interpolations. These nodal degrees of freedom (mi

x,m
i
y) are the

same on a given edge i, which is shared by two neighboring triangular plate elements.
Thus, the chosen discrete approximation of the bending moment guarantees the
continuity of moment components orthogonal and parallel to element edge separating
two adjacent plate elements. In other words, we obtain the continuity of the moment
vector when crossing the plate element boundaries, which is of great interest for
dynamics to ensure a smooth wave propagation.

The discrete approximation of the shear force field can be written in the same
manner to ensure the continuity as follows[

Qh
xz

Qh
yz

]
= Qh|Ωe = q1Φ1 + q2Φ2 + q3Φ3. (4.41)

The corresponding compact matrix form can be written as follows

Qh
n+1/2|Ωe = Xqhn+1/2|Ωe . (4.42)

The matrix X denotes the interpolation matrix that contains the basis functions
for shear force field. From the results in Eq. (4.37b) and Eq. (4.41), the projection
of shear force field on a normal vector ni at an edge i is written as

qi,h = Qh · nhi . (4.43)

This nodal degree of freedom qi is the same on a given edge i, which is shared by a
couple of neighboring triangular elements. From Eq. (4.40) and Eq. (4.43), it follows
that the lowest order Raviart-Thomas interpolation (RT0) guarantees the continuity
of projection mh of moment and qh shear force fields over edges of each element.
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4.2.3 Discrete weak form
The governing equations of the weak form are set up at time step tn+1/2, which
is consistent with the choice of second-order energy conserving time integration
scheme. To alleviate notation, the index n+ 1/2 indicating mid-step is only shown
when it is needed. With the chosen interpolation of lateral deflection, rotations,
moment and shear force fields, the discrete weak forms in Eq. (4.15) for a typical
element Ωe can be written in a matrix notation as follows

Gu(·; δw, δθ) =δdT
[∫
Ωe
ρNTNa dV +

∫
Ωe
BT
γXq dA+

∫
Ωe
BT
κSm dA

−
∫
∂Ωet

NTp dA
]

= 0;

GM,Q(·; δM, δQ) =δmT
[∫
Ωe

STBκddA−
(∫

Ωe
STκvpdA+

∫
Ωe

ST D̂bSmdA
)]

+δqT
[∫
Ωe

XTBγddA−
(∫

Ωe
XTγvpdA+

∫
Ωe

XTDsXqdA
)]

= 0
(4.44)

Since the variations δdT , δmT and δqT are arbitrary, the term inside each bracket
in the above equation should be zero. The linearization of the equation Eq. (4.44a)
yields

r
e,(i+1)
d,n+1/2(d,m, q) = r

e,(i)
d,n+1/2(d,m, q) +∆r

e,(i)
d,n+1/2(∆d, ∆m, q) = 0;

r
e,(i)
d,n+1/2(·) :=

[
M̃ ea

e,(i)
n+1/2 + F e,Tm

e,(i)
n+1/2 +Ge,Tq

e,(i)
n+1/2

]
︸ ︷︷ ︸

f int

−f ext;

∆r
e,(i)
d,n+1/2(·) := η̃M̃ e∆d

e,(i)
n+1/2 + F e,T∆m

e,(i)
n+1/2 +Ge,T∆q

e,(i)
n+1/2,

(4.45)

where the corresponding matrices are

M̃ e :=
∫
Ωe
ρNTN dV ; η̃ := ∂an+1/2/∂dn+1/2;

Ge :=
∫
Ωe
XTBγ dA; F e :=

∫
Ωe
STBκ dA; f ext =

∫
∂Ωet

NTp
e,(i)
n+1/2 dA,

(4.46)

with the plate load p representing a general lateral distributed load. The mid-point
scheme is used to discrete the visco-plastic compliance as follows

Dvp
n+1/2 =∂χn+1/2

∂sn+1/2
= C−1 + ∆t

2
∂β(sn+1/2)
∂sn+1/2

=:
Dvp,b

n+1/2 Dvp,bs
n+1/2

Dvp,sb
n+1/2 Dvp,s

n+1/2

 , (4.47)

in which the matrix Dvp
n+1/2 is symmetric. The linearization of the discrete weak

form in Eq. (4.44b) leads to

h
e,(i+1)
n+1/2 (d,m, q) = h

e,(i)
n+1/2(d,m, q) +∆h

e,(i)
n+1/2(∆d, ∆m, ∆q) = 0;

h
e,(i)
n+1/2(·) := F ed

(i)
n+1/2 −H

em
(i)
n+1/2 − Y

e,Tq
(i)
n+1/2;

∆h
e,(i)
n+1/2(·) := F e∆d

e,(i)
n+1/2 −H

e,(i)
n+1/2∆m

e,(i)
n+1/2 − Y

e,T,(i)
n+1/2∆q

e,(i)
n+1/2,

(4.48)
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and

k
e,(i+1)
n+1/2 (d,m, q) = k

e,(i)
n+1/2(d,m, q) +∆k

e,(i)
n+1/2(∆d, ∆m, ∆q) = 0;

k
e,(i)
n+1/2(·) := Ged

(i)
n+1/2 − Y

em
(i)
n+1/2 −Z

eq
(i)
n+1/2;

∆k
e,(i)
n+1/2(·) := Ge∆d

e,(i)
n+1/2 − Y

e,(i)
n+1/2∆m

e,(i)
n+1/2 −Z

e,(i)
n+1/2∆q

e,(i)
n+1/2,

(4.49)

where

He
n+1/2 :=

∫
Ωe
STDvp,bS dA, Y e

n+1/2 :=
∫
Ωe
XTDvp,sbS dA,

Ze
n+1/2 :=

∫
Ωe
XTDvp,sX dA.

(4.50)

The set of governing equations to be solved at time step n + 1/2 is written for all
unknown parameters as follows

Anel
e=1


η̃M̃ e F e,T Ge,T

F e −He
n+1/2 −Y

e,T
n+1/2

Ge −Y e
n+1/2 −Ze

n+1/2


∆d

e
n+1/2

∆me
n+1/2

∆qen+1/2

 = Anel
e=1

r
e
d,n+1/2
hen+1/2
ken+1/2

 . (4.51)

The nodal degrees of freedom and visco-plastic strain resultants are updated at each
iteration leading to current iterative values

d
(i+1)
n+1/2 =d(i)

n+1/2 +∆d
(i)
n+1/2;

m
(i+1)
n+1/2 =m(i)

n+1/2 +∆m
(i)
n+1/2;

q
(i+1)
n+1/2 =q(i)

n+1/2 +∆q
(i)
n+1/2;

χ
(i),vp
n+1/2 =χvpn + ∆t

2 β
(i)
n+1/2.

(4.52)

4.2.4 Energy conserving scheme
If we seek to ensure the robust performance of a time-integration scheme enforc-
ing the computations stability, one very interesting choice is an energy conserving
scheme [93]. The energy conserving (EC) time stepping scheme proposed herein is
able to guarantee the stability of the computation over long period of time for the
linear elastodynamics. At the time step tn+1/2, the nodal velocity vn+1/2 and the
acceleration an+1/2 can be computed from the nodal deflection and velocity at two
subsequent steps

vn+1/2 = (dn+1 − dn)/∆t;
an+1/2 = (vn+1 − vn)/∆t. (4.53)

Here the increment of deflection field within a time step is computed by using the
mid-point approximation

dn+1 − dn = 1
2∆t(vn+1 + vn). (4.54)
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This equation can be recast in an alternative format showing the simple update of
deflection vector

dn+1 = dn + u; u := 1
2∆t(vn+1 + vn). (4.55)

Next, the lateral deflection, rotations, moment and shear force states at time step
tn+1/2 are selected in optimal form with respect to proposed algorithm in order to
enforce energy conservation

dalgn+1/2 := 1
2(dn+1 + dn); malg

n+1/2 := 1
2(mn+1 +mn); qalgn+1/2 := 1

2(qn+1 + qn).
(4.56)

By choosing a test deflection vector δd = dn+1 − dn ≡ u, the work done by both
internal forces f int and external forces f ext can be obtained from the weak form of
balance equation in Eq. (4.45b)

(dn+1 − dn)T f int = (dn+1 − dn)T f ext.

The internal work includes two components including kinetic and potential energies

(dn+1 − dn)T f int = (dn+1 − dn)T
[
M̃an+1/2 +GTqn+1/2 + F Tmn+1/2

]
.

Furthermore, the work done by inertia force can be simplified thanks to results in
Eq. (4.53b) and Eq. (4.54) to reduce this contribution to increment in the kinetic
energy

(dn+1 − dn)T M̃an+1/2 = 1
2 (vn+1 + vn)T M̃ (vn+1 − vn)

= 1
2v

T
n+1M̃vn+1 −

1
2v

T
nM̃vn

= Kn+1 −Kn,

(4.57)

where Kn+1 is the kinetic energy at time step tn+1. We note that the mass matrix
M̃ is symmetric, the following identity holds vTn+1M̃vn−vTnM̃vn+1 = 0. Moreover,
the work done by the moment field can be decomposed into 2 parts

(dn+1 − dn)T F Tmn+1/2 = 1
2 (dn+1 − dn)T F T (mn+1 +mn)

=
[1
2d

T
n+1F

Tmn+1 −
1
2d

T
nF

Tmn

]
+
[1
2d

T
n+1F

Tmn −
1
2d

T
nF

Tmn+1

]
︸ ︷︷ ︸

L1

.

(4.58)
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Similarly, the work done by the shear force field can be decomposed into 2 parts,
increment in the potential energy Pq and extra term denoted by L2

(dn+1 − dn)T GTqn+1/2 = 1
2 (dn+1 − dn)T GT (qn+1 + qn)

=
[1
2d

T
n+1G

Tqn+1 −
1
2d

T
nG

Tqn

]
+
[1
2d

T
n+1G

Tqn −
1
2d

T
nG

Tqn+1

]
︸ ︷︷ ︸

L2

.

(4.59)

The L1 and L2 scalars are further simplified to separate the terms from time step tn
and tn+1. By appealing to the equation Eq. (4.48b) when using the test functions
for moments δm = mn+1 −mn, the following identity can be derived, given that
the matrix H is symmetric

(mn+1 −mn)T
[
Fdn+1/2 −Hmn+1/2

]
= 0;

⇒1
2d

T
n+1F

Tmn+1 −
1
2m

T
n+1Hmn+1 −

1
2d

T
nF

Tmn + 1
2m

T
nHmn =

1
2d

T
n+1F

Tmn −
1
2d

T
nF

Tmn+1︸ ︷︷ ︸
L1

.

(4.60)

The similar identity related to scalar L2 can be derived by using Eq. (4.49b), given
that the matrix Z is symmetric

(qn+1 − qn)T
[
Gdn+1/2 −Zqn+1/2

]
= 0;

⇒1
2d

T
n+1G

Tqn+1 −
1
2q

T
n+1Zqn+1 −

1
2d

T
nG

Tqn + 1
2q

T
nZqn =

1
2d

T
n+1G

Tqn −
1
2d

T
nG

Tqn+1︸ ︷︷ ︸
L2

.

(4.61)

By exploiting the identity in Eq. (4.60), Eq. (4.58) can be rewritten as an increment
in the moment field contribution to the potential energy

(dn+1 − dn)T F Tmn+1/2 = 1
2d

T
n+1F

Tmn+1 −
1
2d

T
nF

Tmn

+ 1
2d

T
n+1F

Tmn+1 −
1
2m

T
n+1Hmn+1 −

1
2d

T
nF

Tmn + 1
2m

T
nHmn

= dTn+1F
Tmn+1 −

1
2m

T
n+1Hmn+1︸ ︷︷ ︸

Pm,n+1

− (dTnF Tmn −
1
2m

T
nHmn)︸ ︷︷ ︸

Pm,n

= Pm,n+1 − Pm,n,
(4.62)

where Pm,n+1 is the potential energy of the system related to the moment field
at time step tn+1. Similarly by using Eq. (4.61), Eq. (4.59) can be rewritten as
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increment in the shear force contribution to the potential energy

(dn+1 − dn)T GTqn+1/2 = 1
2d

T
n+1G

Tqn+1 −
1
2d

T
nG

Tqn

+ 1
2d

T
n+1G

Tqn+1 −
1
2q

T
n+1Zqn+1 −

1
2d

T
nG

Tqn + 1
2q

T
nZqn

= dTn+1G
Tqn+1 −

1
2q

T
n+1Zqn+1︸ ︷︷ ︸

Pq,n+1

− (dTnGTqn −
1
2q

T
nZqn)︸ ︷︷ ︸

Pq,n

= Pq,n+1 − Pq,n,
(4.63)

where Pq,n+1 is the potential energy of the system related to the shear force field
at time step tn+1. From the above derivation, one can express the balance of the
internal energy and the external work as indicated next

(Kn+1 + Pm,n+1 + Pq,n+1)︸ ︷︷ ︸
En+1

− (Kn + Pm,n + Pq,n)︸ ︷︷ ︸
En

= (dn+1 − dn)T f ext︸ ︷︷ ︸
∆Wn+1/2

;

En+1 − En =∆Wn+1/2.

(4.64)

The symbols En and En+1 denote the total energy of the system at time step tn
and tn+1, respectively. We can conclude that the algorithmic constitutive equations,
which are proposed in Eq. (4.56), would conserve the total energy En+1 = En for
any zero contribution of external loading. This property can also be viewed as the
proof of "unconditionally stable" scheme, see [205]. In the case of visco-plasticity,
we can decompose the following matrices into elastic and visco-plastic components

H = Hel +Hvp; Z = Ze +Zvp. (4.65)

The equation Eq. (4.60) is now updated as follows

(mn+1 −mn)T
[
Fdn+1/2 −Hmn+1/2 − Y Tqn+1/2

]
= 0;

⇒1
2d

T
n+1F
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1
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T
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1
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T
nF

Tmn + 1
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T
nH

elmn

+
[1
2m

T
nH

vpmn −
1
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T
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vpmn+1 − (mn+1 −mn)TY Tqn+1/2

]
︸ ︷︷ ︸

Dvp,1
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= 1
2d

T
n+1F

Tmn −
1
2d

T
nF

Tmn+1︸ ︷︷ ︸
L1

.

(4.66)
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The equation Eq. (4.61) is now updated as follows

(qn+1 − qn)T
[
Gdn+1/2 − Ymn+1/2 −Zqn+1/2

]
= 0;

⇒1
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T
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1
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T
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= 1
2d

T
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1
2d

T
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Tqn+1︸ ︷︷ ︸
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.

(4.67)

The correspondingly updated form of the balance of the internal energy and external
work, see Eq. (4.64), for the visco-plastic regime coupled with the energy conserving
scheme is written as

En+1 − En +Dvp,n+1/2 = ∆Wn+1/2; Dvp,n+1/2 = Dvp,1
n+1/2 +Dvp,2

n+1/2. (4.68)

4.2.5 Energy decaying scheme
The energy decaying (ED) scheme presented here-in is also an approach to control
potential instability problems of time-stepping algorithms, but with an additional
advantage of providing superior accuracy of stress computations. The latter is es-
tablished by eliminating the high-frequency modes contribution that can not be
resolved on a coarse mesh, especially for a set of stiff equations (e.g. see [94]). The
latter implies a large difference between max/min eigenvalues in tangent stiffness,
which would require a very fine mesh. In order to handle this case, we will enforce
a modified algorithm constitutive equation with the ability of decaying contribution
of higher frequencies over each time step. Such algorithmic updates for of all degrees
of freedom at time step tn+1/2 are represented by modifying conservative terms, as
defined in Eqs. (4.54) and (4.56), with the corresponding dissipative terms

dn+1 − dn :=∆t2 (vn+1 + vn) + α∆t(vn+1 − vn). (4.69)

where α is the dissipation coefficient, which is typically chosen as α ∈ [0, 0.1]. The
corresponding dissipative correction term α∆t(vn+1− vn) remains typically vanish-
ingly small for low frequency modes with a small difference of successive velocity
values within a typical time step; the latter establishes the consistency of the present
modification in the spirit of the EC scheme, for the case where high frequency modes
are not triggered. Meanwhile, the correction terms are less likely to vanish for high
frequency modes, where the differences in successive values within a time step can
be quite significant. Therefore, the energy decaying scheme is only introducing
correction for higher order modes, which is not likely to reduce the scheme perfor-
mance from the second-order accuracy. With such a choice of algorithmic update,
the velocity at time step tn+1 takes a modified form

vn+1 = 1
(1/2 + α)∆t(dn+1 − dn)− 1/2− α

1/2 + α
vn. (4.70)
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One can follow the same procedure as presented in Section 4.2.4 to cast the work
done by the inertia force as an increment in kinetic energy and dissipation terms

(dn+1 − dn)T M̃an+1/2 = 1
2v

T
n+1M̃vn+1 −

1
2v

T
nM̃vn + α(vn+1 − vn)TM̃ (vn+1 − vn)︸ ︷︷ ︸

DK,n+1/2

= Kn+1 −Kn +DK,n+1/2,
(4.71)

where DK,n+1/2 is considered as the numerical dissipation of kinetic energy within
an interval of time step due to the introduction of dissipative correction term
α∆t(vn+1 − vn) in Eq. (4.69). Note that dissipation is always a positive scalar
since the mass is a positive-definite matrix. The work done by potential force is the
same as derived in the energy conserving scheme. From the above derivation, the
balance of the internal energy and external work can be formed in following equation

(Kn+1 + Pn+1)︸ ︷︷ ︸
En+1

− (Kn + Pn)︸ ︷︷ ︸
En

+DK,n+1/2 = (dn+1 − dn)Tf extn+1/2︸ ︷︷ ︸
∆Wn+1/2

;

En+1 − En +DK,n+1/2 =∆Wn+1/2,

(4.72)

It is obvious that switching between energy conserving/decaying schemes can be
executed flexibly without changing the main code of user-defined element since the
update of displacement and velocity updates can be programmed in a separate
subroutine for time-stepping integration algorithm. Additionally, the amount of
numerical dissipation is fully controllable via an appropriate selection of dissipation
coefficient α.

The algorithmic updates can be applied to moment and shear force projections
in the same manner

malg
n+1/2 :=1

2(mn+1 +mn) + β(mn+1 −mn);

qalgn+1/2 :=1
2(qn+1 + qn) + β(qn+1 − qn),

(4.73)

where β is also the dissipation coefficient. The projections of moment and shear
forces at time step tn+1 take a modified form

mn+1 = 1
1/2 + β

malg
n+1/2 −

1/2− β
1/2 + β

mn;

qn+1 = 1
1/2 + β

qalgn+1/2 −
1/2− β
1/2 + β

qn.

(4.74)

The work done by potential force related to the moment field can be written as
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follows

(dn+1 − dn)T F Tmn+1/2 = 1
2 (dn+1 − dn)T F T (mn+1 +mn)

+ β(dn+1 − dn)TF T (mn+1 −mn)

=
[1
2d

T
n+1F

Tmn+1 −
1
2d

T
nF

Tmn

]
+ β(mn+1 −mn)TH(mn+1 −mn)

+
[1
2d

T
n+1F

Tmn −
1
2d

T
nF

Tmn+1

]
︸ ︷︷ ︸

L1

.

(4.75)

The similar approach to the derivation of L1 in Eq. (4.60) can be employed. Corre-
spondingly, the work done by the potential force related to the moment field takes
a new form as follows

(dn+1 − dn)T F Tmn+1/2 = (dTn+1F
Tmn+1 −

1
2m

T
n+1Hmn+1)︸ ︷︷ ︸

Pn+1

− (dTnF Tmn −
1
2m

T
nHmn)︸ ︷︷ ︸

Pn

+ β(mn+1 −mn)TH(mn+1 −mn)︸ ︷︷ ︸
DPm,n+1/2

= Pn+1 − Pn +DPm,n+1/2.

(4.76)

where DPm,n+1/2 is the numerical dissipation of the potential energy related to the
moment field within an interval of time step. In the same manner as Eq. (4.75), the
work done by the potential force related to the shear forces field can be written as
follows

(dn+1 − dn)T GTqn+1/2 = 1
2 (dn+1 − dn)T GT (qn+1 + qn)

+ β(dn+1 − dn)TGT (qn+1 − qn)

=
[1
2d

T
n+1G

Tqn+1 −
1
2d

T
nG

Tqn

]
+ β(qn+1 − qn)TZ(qn+1 − qn)

+
[1
2d

T
n+1G

Tqn −
1
2d

T
nG

Tqn+1

]
︸ ︷︷ ︸

L2

.

(4.77)

The similar approach to the derivation of L2 in Eq. (4.60) can be employed. Corre-
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spondingly, the work done by the potential force takes a new form as follows

(dn+1 − dn)T GTqn+1/2 = (dTn+1G
Tqn+1 −

1
2q

T
n+1Zqn+1)︸ ︷︷ ︸

Pn+1

− (dTnGTqn −
1
2q

T
nZqn)︸ ︷︷ ︸

Pn

+ β(qn+1 − qn)TZ(qn+1 − qn)︸ ︷︷ ︸
DPq,n+1/2

= Pn+1 − Pn +DPq,n+1/2,
(4.78)

where DPq,n+1/2 is the numerical dissipation of the potential energy related to shear
forces field within an interval of time step. From the above derivation, the balance
of the internal energy and the external work can be formed in following equation

(Kn+1 + Pn+1)︸ ︷︷ ︸
En+1

− (Kn + Pn)︸ ︷︷ ︸
En

+ (DK,n+1/2 +DPm,n+1/2 +DPq,n+1/2)︸ ︷︷ ︸
Dn+1/2

= (dn+1 − dn)Tf extn+1/2︸ ︷︷ ︸
∆Wn+1/2

;

En+1 − En +Dn+1/2 = ∆Wn+1/2.

(4.79)

where Dn+1/2 is the numerical dissipation of the total energy due to the dissipative
constitutive algorithm in Eq. (4.74). The correspondingly updated form of the
balance of the internal energy and the external work, see Eq. (4.79), for the visco-
plastic regime coupled with energy decaying scheme is written as follows

En+1 − En +Dn+1/2 +Dvp,n+1/2 = ∆Wn+1/2, (4.80)

in which the visco-plastic dissipation energy Dvp,n+1/2 is the same as the one in
Eq. (4.68).

4.3 Numerical simulations of plates under dy-
namic loads

The proposed energy conserving and decaying time stepping schemes are employed
to compute the lateral deflection, rotations, moment and shear force responses in
several illustrative examples of plate structures vibrations. The examples are simu-
lated with a time step ∆t = 10−2, for the total number of time steps n = 800. Two
triangle pulses TP 1 and TP 2 are introduced to the system to let each model vibrate
freely, see Fig. 4.6(a). The first pulse TP 1 acts within a time interval 0 ≤ t ≤ t1,
in which t1 = 80 ×∆t, peaking in half of the interval. The second pulse TP 2 acts
within a time interval t2 ≤ t ≤ t3, in which t2 = 250 × ∆t and t3 = 260 × ∆t,
peaking in the middle of this interval. We choose the second pulse TP 2 in order to
introduce high-frequency modes contribution to the total energy of the system.

Three different plate structures are selected to present the numerical performance
including a cantilever, square and circular plate, which are denoted as model 1, 2
and 3, respectively. Regarding the elastic regime coupled with energy conserving
scheme, each model will run with a higher value of yield stress σy and zero value
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of visco-plastic parameter γ so that the total energy of the system is always con-
served. Meanwhile, the visco-plasticity energy decaying scheme is conducted via five
numerical simulations, with remaining parameters including α, β and σy, γ = 1/η
are given in Table 4.1. For simplicity, we select the same values for both α, β to
show a smoothening effect of higher value of dissipation parameters. All cases from
1 to 5 indicate the using of current simple algorithms. Meanwhile case 6, which is
used for comparison in Fig. 4.12(a), indicates the elastic plate element proposed by
[11] along with the Newmark time integration scheme.

Case 1 2 3 4 5
α, β 0,0 0.01,0.01 0.02,0.02 0.03,0.03 0.08,0.08
σy, γ 2.103, 10−8 2.103, 10−8 2.103, 10−8 2.103, 10−8 2.103, 10−8

Scheme EC ED ED ED ED

Table 4.1 – Parameters for EC and ED schemes in elastic or visco-plastic regimes

4.3.1 Cantilever rectangular plate
In model 1, a free vibration of a 10 × 1 rectangular cantilever plate with thickness
t = 0.1 is selected and investigated via the time history of degrees of freedom along
with stress resultants at the free end, the total energy and relevant dissipations.
The vibration of cantilever plate is illustrated via the corresponding plate response,
time history of degrees of freedom along with stress resultants at the free tip, energy
and dissipation over the entire domain. The plate is fixed at the left end. The
regular mesh is constructed by 512 triangular plate elements, by splitting each of
32 × 8 square sub-domains into 2 triangle elements. The material properties are
selected as follows: elastic modulus E = 30 × 106, Poisson’s ratio ν = 0.25 and
mass density ρ = 0.785. The first pulse TP 1 has the peak magnitude p1 = p,
while the second pulse TP 2 has the peak magnitude 10 times bigger p2 = 10 × p.
The first pulse TP 1 is created by a vertical distributed force p = 0.5 applied on
the right end. The second pulse TP 2 is applied by using distributed forces at six
different locations along the plate in order to incite high-frequency modes. Those
locations along the x axis are

[
27/32 28/32 29/32 30/32 31/32 1

]
with the

corresponding direction as
[

+1 −1 +1 −1 +1 −1
]
. The couple (+1,−1)

represents a positive and negative direction, respectively.
Firstly, the accuracy of the proposed plate element is compared with respect

to robust non-locking Reissner-Mindlin plate elements (e.g. see [11]), as shown in
Fig. 4.4. Only the first pulse TP 1 is introduced to the system, which leads to the free
vibration after releasing the pulse. With respect to the time integration scheme, the
proposed plate element is accompanied by the energy conserving scheme, meanwhile
the plate element of [11] is accompanied by the Newmark scheme with standard
parameters. The different regular mesh settings using for the comparison in Fig. 4.4
include mesh 1 (128 elements), mesh 2 (512 elements) and mesh 3 (2048 elements).
It is recognized that the proposed element delivers a high accuracy (for both lateral
deflection w at the free end and total reaction moment M̄yy at the boundary) even
with the coarse mesh, whereas the plate element of [11] does not fully converge even
for the finest mesh with vibration magnitude increasing in a number of elements.
As shown in Fig. 4.5, the moment Myy along the plate is presented at time step
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n = 150 and n = 250. At each time step, the moment Myy is highly agreed from
the two different meshes.

(a) Deflection w (b) Reaction moment M̄yy

Figure 4.4 – Model 1-Plate response under only pulse TP 1 (proposed element vs
[11])
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(a) Time step n = 150
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(b) Time step n = 250

Figure 4.5 – Model 1-Moment Myy along plate under only pulse TP 1

To test the energy conserving scheme, we select a high value of yield stress σy
and a zero value of visco-plastic parameter γ so that the cantilever plate always
remains in the elastic regime. The total energy of the plate is conserved during the
free vibration phase by using the energy conserving scheme, see Fig. 4.6(b). We note
that the total energy gets high value at the beginning due to the external load, and
then it stays constant after the end of the first pulse TP 1 until the introduction of
TP 2. The total energy still conserves after the second pulse TP 2. Correspondingly,
the cantilever plate response at time step n = 250 is presented in Fig. 4.6(c,d). The
lateral deflection w and rotation θy are dominated by plate bending along the y-axis.
The maximum absolute values of the lateral displacement w and the rotation θy are
recorded at 0.14 and 0.02, respectively.
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(a) Load pulse
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Figure 4.6 – Model 1-Plate response under EC and elastic regime

Next, we introduce the visco-plasticity for testing energy decaying scheme via five
numerical simulations. The remaining parameters including α, β, σy and γ = 1/η are
given in Table 4.1. The results are extracted at point A(10, 0.5) for displacement
degrees of freedom and B(10, 0.4375) moment, shear degrees of freedom. In the
first several steps, the amplitude response from case 1 is comparable with that
from case 6 (see [11]) under the Newmark scheme. Soon after the introducing
of higher frequency modes via the second pulse TP 2, we can see the insignificant
differences between cases as shown in Fig. 4.7(a). The higher value of dissipation
parameters (α, β) get, the corresponding response get smoother. The ED acts as a
high frequency filter which is capable of smoothening the response curve. The clear
illustration of smoothening effect can be seen in in Fig. 4.7(b) by comparing case
1 with (α, β) = (0, 0) and case 5 with a much higher value of (α, β) = (0.08, 0.08).
It is expected that the computed response gets smoother with the higher value of
dissipation parameters. This choice can be adjusted by the users for particular
problems or even in each particular simulation.
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(a) Deflection w
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(e) Moment d.o.f my
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Figure 4.7 – Model 1-Time history of plate degrees of freedom

Within time period t ≤ t2, all cases yield the similar stress resultant responses
from an element located at the middle right edge, see Fig. 4.8. The second pulse TP 2
generates more noises to the stress resultant response, triggered by participation of
higher frequency modes. It is clear that the smoothening effect of the ED scheme can
be observed in these cases. The bending momentsMxx andMyy get smooth evolution
rather fast with a higher value of dissipation parameters (α, β) = (0.08, 0.08), see
Fig. 4.8(a,b). It is noted from Fig. 4.8(c,d) that the bending moments Mxy and
Myx are comparable although the approximation by RT0 can not guarantee the
symmetric of stress tensor. The shear force evolution also gets smooth rather faster
for higher values of dissipation parameters, see Fig. 4.8(e,f).
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Figure 4.8 – Model 1-Time history of stress resultants

With the time step n ≤ 250, the total energy, algorithmic and visco-plastic
dissipations due to the ED scheme and visco-plasticity are presented in Fig. 4.9.
After introducing the first load pulse TP 1, the system oscillates freely, the total
energy reduces negligibly due to the existence of both numerical and visco-plastic
dissipation, see Fig. 4.9(a). With the zero dissipation parameters (α, β), there is no
algorithmic dissipation in case 1, which is equivalent to the EC. Meanwhile, it is clear
that the higher value of dissipation parameters (α, β) are chosen, the higher value
of algorithmic dissipation gain, see Fig. 4.9(b). The algorithmic dissipation due to
the ED scheme rises linearly in those five simulations. Regarding the visco-plastic
dissipation Dvp, the dissipation develops moderately after t1/2, see Fig. 4.9(c). It
develops slowly at some periods, which can be due to the state of stress resultants
yielding a low value of φ(s). Within time step n ≤ 250, the dissipation is dominated
by algorithmic dissipation. The total dissipation including both algorithmic and
visco-plasticity is shown in Fig. 4.9(d). At n = 250, the maximum dissipation
approaches a value of 8× 10−3 in case 5 and a value of 1× 10−3 in case 1.
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Figure 4.9 – Model 1-Total energy and dissipation due to TP 1 (n ≤ 250)
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Figure 4.10 – Model 1-Total energy and dissipation due to TP 1, TP 2 (n ≤ 800)

To illustrate the whole computational period n ≤ 800, full history of both energy
and dissipation are presented in Fig. 4.10. The second pulse TP 2 injects more higher
frequencies energy to the system and then dissipates gradually along with time,
see Fig. 4.10(a). Again, with the zero dissipation parameters (α, β), there is no
algorithmic dissipation in case 1. It is clear depicted in Fig. 4.10(b) that much more
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higher frequencies energy are dissipated during t ≥ t3 compared to the first period
t ≤ t2 in Fig. 4.9(b). The same correlation between the dissipation parameters
(α, β) and algorithmic dissipation can be observed as in Fig. 4.9. The visco-plastic
dissipation still increases after t3, see Fig. 4.10(c). The total dissipation is given in
Fig. 4.10(d). At the end of computational period n = 800, the maximum dissipation
approaches 0.085 in case 5 and the one of case 1 gains a value of 0.04.

4.3.2 Square plate
In model 2, the free vibration of a 1 × 1 square plate with thickness t = 0.1
is chosen and illustrated via the time history of degrees of freedom along with
stress resultants at the center, the total energy and relevant dissipation. The
plate is clamped along the outer boundary. The regular mesh is constructed by
512 triangular plate elements, by splitting each of 16 × 16 square sub-domains
into 2 triangle elements. The material properties are selected with elastic mod-
ulus E = 10.92 × 106, Poisson’s ratio ν = 0.3 and mass density ρ = 0.785. The
first triangular pulse TP 1 is assigned by only a point load P = 100, which is ap-
plied at the center. Meanwhile, the second pulse TP 2 is applied in terms of point
loads at five locations in order to trigger high-frequency modes. These locations are[

(1/4, 1/4) (3/4, 1/4) (3/4, 1/4) (1/4, 3/4) (1/2, 1/2)
]
with the corresponding

direction as
[
−1 +1 −1 +1 +1

]
. The couple (+1,−1) represents a positive

and negative direction, respectively. In both pulses, the peak magnitude is the same
p1 = p2.

To test the energy conserving scheme, we select a high value of yield stress σy and
zero value of visco-plastic parameter γ so that the square plate always remains in
the elastic regime. The total energy of the plate is conserved under free vibration by
using energy conserving scheme, see Fig. 4.11(a). We note that the higher frequency
modes are introduced into the system after the second pulse TP 2. Both kinetic and
potential energies lost the smoothness after time step t2 due to the second pulse
TP 2. Correspondingly, the square plate response at time step n = 250 is presented.
The lateral deflection w, rotation θx and rotation θy are shown in Figs. 4.11(b-d),
respectively. The maximum absolute value of lateral deflection is 5 × 10−4 located
at the center.
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Figure 4.11 – Model 2-Plate response under EC and elastic regime

Subsequently, we introduce the visco-plasticity and energy decaying scheme via
five numerical simulations. The remaining parameters including α, β and σy, γ =
1/η are given in Table 4.1. After the introduction of higher frequency modes via the
second pulse TP 2, we can see the differences between case 6 (see [11]) by using the
Newmark scheme and others as shown in Fig. 4.12(a) though all magnitudes remain
nearly the same. Meanwhile the response by case 6 seems to be lagging compared
to the current algorithm. The response is recorded at the plate center. The higher
value of dissipation parameters (α, β) get, the corresponding response get smoother.
The ED takes a role as a high frequency filter which is capable of smoothening
the response curve. The clear illustration of smoothening effect can be seen at
moment degree of freedom mx, shown in Fig. 4.12(b), by comparing case 1 and case
5. It is expected that the curve gets smoother with the higher value of dissipation
parameters. The remaining degrees of freedom are shown at Figs. 4.12(c,d). We
note that the magnitude of my and q d.o.f get higher by t ≥ t3 while it is not the
case for mx d.o.f.
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Figure 4.12 – Model 2-Time history of plate degrees of freedom

Within time period t ≤ t2, all cases yield the similar stress resultant responses
at the plate center, see Fig. 4.13. The second pulse TP 2 generates more noises
to the stress resultant responses compared to the first pulse TP 1. The noises are
corresponding to higher frequency modes. The bending moments Mxx and Myy get
smoothening fast with a high value of dissipation parameters (α, β) = (0.08, 0.08),
see Fig. 4.13(a,b). It is noted from Fig. 4.13(c,d) that the bending moments Mxy

and Myx are not exactly the same due to the approximation by RT0. The shear
forces also decay fast with higher dissipation parameters, see Fig. 4.13(e,f). All data
is recorded at the plate center.
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Figure 4.13 – Model 2-Time history of stress resultants

With the time step n ≤ 250, the total energy, algorithmic and visco-plastic
dissipations due to the ED scheme and visco-plasticity are presented in Fig. 4.14.
After introducing the first pulse TP 1, the system oscillates freely, the total energy
reduces negligibly due to numerical dissipation, see Fig. 4.14(a). With the zero
dissipation parameters (α, β), there is no numerical dissipation in case 1, which is
equivalent to the EC. Meanwhile, it is clear that the higher value of dissipation
parameters (α, β) are chosen, the higher value of numerical dissipation gain, see
Fig. 4.14(b). The algorithmic dissipation due to the ED scheme rises linearly in those
five simulations. Regarding visco-plastic dissipation Dvp, the dissipation develops
substantially after t1/2, see Fig. 4.14(c). It develops slowly at some periods, which
can be due to less number of yielding elements. Within time step n ≤ 250, the total
dissipation is dominated by algorithmic dissipation as shown in Fig. 4.14(d). At
n = 250, the maximum dissipation approaches a value of 1.7 × 10−3 in case 5 and
the one of case 1 gains a value of 0.25× 10−3.
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Figure 4.14 – Model 2-Total energy and dissipation due to TP 1 (n ≤ 250)
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Figure 4.15 – Model 2-Total energy and dissipation due to TP 1, TP 2 (n ≤ 800)

To illustrate the whole computational period n ≤ 800, all energy and dissipations
are presented in Fig. 4.15. As expected, the second pulse TP 2 generates more
higher frequencies energy to the system, see Fig. 4.15(a). Again, with the zero
dissipation parameters (α, β), there is no numerical dissipation in case 1, which is
equivalent to the EC. It is clearly depicted in Fig. 4.15(b) that much more higher
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frequencies energy are dissipated with time t ≥ t3 compared to the first period
t ≤ t2 in Fig. 4.14(b). The same correlation between the dissipation parameters
(α, β) and algorithmic dissipation during n ≥ 250 can be observed similarly to that
at the beginning period with n ≤ 250. The visco-plastic dissipation also increases
after t3 due to the higher stress values in the plate, see Fig. 4.15(c). During the
computational period, the total dissipation is dominated by algorithmic dissipation
as shown in Fig. 4.14(d). At the end of computational period n = 800, the maximum
dissipation approaches 0.1 in case 5 and the one of case 1 gains a value of 0.046.

4.3.3 Circular plate
In model 3, the free vibration of a circular plate with radius r = 5 and thickness t = 1
is selected to compute the time history of the total energy and relevant dissipations,
along with stress resultants computations. The plate is simply supported around
the circumferential boundary, and loaded in the center. The symmetry condition
is applied to analyze only a quarter of the plate by imposing constraints upon the
tangential rotations along radial boundaries, see [87]. The mesh is divided into 3
sub-regions, with each one counting 128 triangular plate elements. The material
properties are selected with elastic modulus E = 10.92×106, Poisson’s ratio ν = 0.3
and mass density ρ = 0.785. The first pulse TP 1 is assigned by only a point load P =
200 is applied at the center. The second pulse TP 2 is assigned at mesh intersection
point I(2r/5, 2r/5) with the same amplitude but in the reversed direction. In both
pulses, the peak magnitude is the same p1 = p2.

To test the energy conserving scheme, we select a high value of yield stress σy
and zero value of visco-plastic parameter γ so that the circular plate is always under
the elastic regime. The total energy of the plate is conserved under free vibration by
using energy conserving scheme, see Fig. 4.16(a). We note that the total energy get
high value at the beginning of each pulse and then it stays constant after the end
of each pulse. It is clear that the higher frequency modes are introduced into the
system after the second pulse TP 2. Both kinetic and potential energies time histories
get more noisy after time step t2 corresponding to application of the second pulse
TP 2. The cantilever plate responses at time step n = 250 is presented. The lateral
deflection w, rotation θx and rotation θy are shown in Figs. 4.16(b-d), respectively.
The maximum absolute value of lateral deflection is 7× 10−4 located at the center.
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Figure 4.16 – Model 3-Plate response under EC and elastic regime

We now introduce the visco-plasticity and energy decaying scheme via five nu-
merical simulations. The remaining parameters including α, β and σy, γ = 1/η are
given in Table 4.1. In the first several steps, the deflection response from case 1
highly agrees with that from case 6 (see [11]) by using the Newmark scheme. Soon
after the introducing of higher frequency modes via the second pulse TP 2, all deflec-
tion cases are still comparable as shown in Fig. 4.17(a). The response is extracted
from the point at the plate center. The higher are the values of dissipation parame-
ters (α, β), the smoother is the corresponding computed response. The ED plays a
role of a high frequency filter which is capable of smoothening the response curve.
The clear illustration of smoothening effect can be seen in Fig. 4.17(b) by comparing
case 1 and case 8 with a much higher value of (α, β). It can be seen as expected
that the curve gets smoother with the higher value of dissipation parameters.
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Figure 4.17 – Model 3-Time history of plate degrees of freedom

Within t ≤ t2, all cases yield the similar stress resultant responses at the plate
center, see Fig. 4.18(a-d). The second pulse TP 2 again creates a lot of high frequency
noises to the stress resultant responses compared to those in the plate deflection. The
bending moments Mxx and Myy get smoothened fast with dissipation parameters
(α, β) = (0.08, 0.08), see Fig. 4.18(a,b). The bending moments Mxy and Myx have
the same decaying trend but large differences in magnitudes, see Fig. 4.18(c,d). The
shear forces are plotted in Fig. 4.18(e,f). They decay fast within the computational
period. All data is recorded at the point at the plate center.
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Figure 4.18 – Model 3-Time history of stress resultants

With the time step n ≤ 250, the total energy, algorithmic and visco-plastic
dissipations due to the ED scheme and visco-plasticity are presented in Fig. 4.19.
After introducing the first load pulse, the system vibrates freely, the total energy
nearly remains the same due to small values of both numerical and visco-plastic
dissipation, see Fig. 4.19(a). With the zero dissipation parameters (α, β), there is
no numerical dissipation in case 1, which is equivalent to the EC. Meanwhile, it is
clear that the higher value of dissipation parameters (α, β) are chosen, the higher
value of numerical dissipation gain, see Fig. 4.19(b). Regarding the visco-plastic
dissipation, the dissipation starts during the pulse introduction and then later get
stable around a constant, see Fig. 4.19(c), which reflects the fact that all elements
in the system are under the elastic regime. During this period of time, the total
dissipation is dominated by algorithmic dissipation as shown in Fig. 4.19(d). At
n = 250, the maximum dissipation approaches a value of 1.2 × 10−3 in case 5 and
the one of case 1 gains a value of 0.2× 10−3.
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Figure 4.19 – Model 3-Total energy and dissipation due to TP 1 (n ≤ 250)
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Figure 4.20 – Model 3-Total energy and dissipation due to TP 1, TP 2 (n ≤ 800)

To illustrate the whole computational period n ≤ 800, all energy and dissipations
are presented in Fig. 4.20. The second pulse TP 2 injects more higher frequencies
energy to the system and then dissipates gradually along with time, see Fig. 4.20(a).
Again, with the zero dissipation parameters (α, β), there is no numerical dissipation
in case 1. It is clearly depicted in Fig. 4.20(b) that much higher frequencies energy

93



are dissipated during t ≥ t3 compared to the first period t ≤ t2 in Fig. 4.19(b).
The same correlation between the dissipation parameters (α, β) and algorithmic
dissipation can be observed as in the previous computational period t ≤ t2. The
visco-plastic dissipation also increases greatly after remaining constant with time
t ≥ t3 due to the higher stress values in the plate, see Fig. 4.20(c). The total
dissipation is dominated by algorithmic dissipation as shown in Fig. 4.20(d). At the
end of computation period n = 800, the maximum dissipation approaches 0.035 in
case 5 and the one of case 1 gains a value of 0.02.

We also notice that there is a correlation between dissipation parameters and
the evolution of visco-plastic dissipation. In contrast to algorithmic dissipation,
the visco-plastic dissipation gets lower with higher value of (α, β). The dissipa-
tion coefficients (α, β) have independent smoothening effects on computed response
for both displacements and stress-resultants. The higher value of this coefficient,
the more significant is the effect of smoothening in computed structural response.
The selection of different values between (α, β) are still left open. In these simula-
tions, the total dissipation is dominated by algorithmic dissipation, see Fig. 4.10(d),
Fig. 4.15(d) and Fig. 4.20(d). This phenomenon can be explained due to the fact
that the higher frequency modes are dominant after introducing the second pulse
TP 2, hence the numerical dissipation is dominant part of the total dissipation.
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Figure 4.21 – Model 3-Visco-plastic dissipation with higher γ
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Figure 4.22 – Model 3-Visco-plastic and algorithmic dissipation with different σy

The selected value of visco-plastic parameter γ is typically small (see [83]) hence
the visco-plastic dissipation is comparable low to its counterpart. Here, we also ex-
amine the same simulation with higher value of visco-plastic parameter γ at 1×10−4
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and 1 as shown in Fig. 4.21(a) and Fig. 4.21(b), respectively. The visco-plastic dis-
sipation gains much higher value, but still remains low compared to algorithmic
dissipation. However, we can increase the part of visco-plastic dissipation by choos-
ing lower value of yield stress σy (which means plate crosses into visco-plastic regime
early) and fixing visco-plastic parameter γ = 1 × 10−8 as shown in Fig. 4.22(a,b).
For such lower value of yield stress σy, there are more plate elements satisfying yield
condition and thus the visco-plastic dissipation increases; see Fig. 4.22(a). The in-
crease of visco-plastic dissipation is not significant compared to those in Fig. 4.21
due to the fact that the visco-plastic dissipation depends much on the rate of visco-
plasticity β(s) as shown in Eq. (4.47), and this rate of visco-plasticity β(s) increases
much with higher value of visco-plastic parameter γ via relation in Eq. (4.27). It
is also noted that the algorithmic dissipation remains practically the same with the
change of yield stress σy.
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Figure 4.23 – Model 3-Dissipation with higher γ and lower α, β

We further examine the simulation with higher value of visco-plastic parameter
γ and lower value of dissipation coefficients (α, β) while keeping other parameters
the same as the beginning of this section. As shown in Fig. 4.23(a), when the
visco-plastic parameter γ takes a value of 1× 10−4, the algorithmic dissipation with
the input α = β = 1 × 10−8 is lower than the visco-plastic counterpart. While in
Fig. 4.23(b), when the visco-plastic parameter γ takes a value of 1, the algorithmic
dissipation with the input α = β = 1× 10−4 is lower than visco-plastic counterpart.
With the lower values of dissipation coefficients (α, β), the time history response
gets smoothening slower as observed in the previous Figs. (4.17,4.18). From those
observations, the visco-plastic dissipation can dominate with a proper selection of
visco-plastic parameters γ and dissipation parameters (α, β).
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(a) Model 1 (b) Model 3

Figure 4.24 – Continuity of d.o.f. mx and my over entire domain (EC and elastic
regime)

Final results are seeking to illustrate the smoothness of computed moment field.
With the same simulation for cantilever and circular plates, we present the plots
of degree of freedom of moment over entire plates as shown in Fig. 4.24(a) and
Fig. 4.24(b) under the EC scheme and the elastic regime at time step n = 250,
respectively. The max magnitude of vectorm(mx,my) is recorded at 13.6 and 128.1
in case of cantilever and circular plates, respectively. For cantilever plate simulation
results in Fig. 4.24(a), it is observed that there is a main vectorial stream along
the horizontal direction which dominates the rest. In circular plate simulations in
Fig. 4.24(b), it is observed that there are two main vectorial streams including cen-
tripetal and tangential directions. The current approximation of stress-resultant
fields by the lowest Raviart-Thomas vector space allows the continuity of those de-
gree of freedom over each element’s edges. Thus, we consider that the stress-resultant
waves can be smoothly propagated throughout the entire domain of interest, which
is in contrast with the conventional finite element method where the stress-resultant
fields are discontinuous from element to element.
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5
Parameter identification for

inelastic and multi-scale problems

In this chapter, the parameter identification for inelastic and multi-
scale problems are presented. Firstly, the theoretical background of un-
certainty quantification is reviewed. In details, several key definitions
including random variables, random fields, Karhunen–Loève expansion
(KLE), Bayesian theorem, and Gauss-Markov-Kalman filter are briefly
summarized. An example to show a capability of the parameter iden-
tification using the Bayesian updating method is conducted in a one
dimensional bar problem to assimilate fracture energy Gf . Finally, the
parameter identification using the Gauss-Markov-Kalman filter is em-
ployed for a multi-scale problem to identify bulk and shear moduli and
other material properties in a macro-scale with the data from a micro-
scale as quantities of interest (QoI). Equivalently, the problem can be
viewed as upscaling homogenization.
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5.1 Theoretical background
The uncertainty quantification has been widely utilized in the field of computa-
tional mechanics. Many research works use this method to quantify the source
of uncertainty in the numerical models. There are several sources of uncertainties
in a numerical simulation, such as material and geometry uncertainties. In general,
there are two common definitions, namely aleatory and epistemic uncertainties. The
aleatory uncertainty is the inherent variation in a quantity while the epistemic uncer-
tainty is due to the lack of knowledge of an analyst. There are two popular problems
in uncertainty quantification. The first one is the so-called forward problem, which
is used to propagate the uncertainty through the model of interest and investigate
the outputs, so that some of key features or critical effects of inputs onto the model
can be discovered. Meanwhile, the backward or inverse problem is employed to ap-
proximate the parameter of interest via the observed outputs of a given numerical
model. In the following multi-scale problem, the data from the micro-scale can be
used to assimilate data in the macro-scale, such process is named as an upscaling
process. In contrast, the inversed one is named as a downscaling process.

5.1.1 Principle concepts and methods
The sample space Θ comprises all possible elementary outcomes θ of a random
experiment. By tossing a fair coin two times, we can have the sample space for this
experiment is Θ = [HH,HT, TH, TT ], in which the notation H stands for the coin
head and the notation T stands for the coin tail.

A random variable (RV) is a variable taking different value whenever it is ob-
served, e.g. a length of a ruler. In the rest of this chapter, we deal with a real-valued
random variable which is a mapping X : Θ → R, e.g. the material elastic modulus,
hardening and softening moduli. An observed value of a random variable is called
realization x = X(θ). Some of random variables can be described by a probability
density function. For a continuous random variable, the probability density function
fx is a derivative of the cumulative distribution function FX

FX(b)− FX(a) =
∫ b

a
fX(x) dx. (5.1)

A mean or expected value of a discrete random variable can be computed by using
the sum of all possible values divided by the number of values, while the mean value
of a continuous random variable is defined as

µx = E[x] =
∫ ∞
−∞

xfX(x) dx. (5.2)

The variance of a random variable is defined as

V[X] := E
[
(X − E[X])2

]
= E[X2]− E[X]2. (5.3)

Correspondingly, the standard deviation is defined as a root square of the variance,
e.g σ =

√
V[X].

There are some common distributions, e.g Uniform, Normal or Gaussian, Log-
Normal and Beta distributions. One of the most widely used distributions is the
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Normal or Gaussian distribution which is denoted as X ∼ N (µ, σ). This distribu-
tion is fully defined by the expected value µ and the standard deviation σ. The
probability density function is given as

fX(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 . (5.4)

A Log-Normal random variable X ∼ LN (µ, σ) is defined as X = eZ with Z ∼
N (µ, σ). The corresponding probability density function is given as

fX(x) = 1
xσ
√

2π
e−(ln(x)−µ)2/(2σ2). (5.5)

Several plots for those common distribution are shown in Fig. 5.1. The Normal
distributions with different values of mean value µ and standard deviation σ is
shown Fig. 5.1(a), while the Log-Normal distribution is shown in Fig. 5.1(b).

(a) Normal distribution N (µ, σ) (b) Log-Normal distribution LN (µ, σ)

Figure 5.1 – Normal and Log-Normal distributions

A random field (RF) is a collection of random variables and it explicitly de-
pends on space and takes different value whenever it is observed. For example, two-
dimensional sources of water or oil underground can be viewed as random fields. It
can be stated that a random field is a mapping α : (Rn, Θ)→ R with n ≥ 2. Similar
as the random variable, the mean value function is the most basic characteristic of
a random field

µα(x) = E[α(x, ω)] =
∫
Ω
α(x, ω)P(dω). (5.6)

In a practical approach, the corresponding oscillating part α(x, ω)− µα(x) is com-
monly represented via a linear combination of deterministic functions and coeffi-
cients, in which the latter can be random variables. There are several methods
to separate the representation as above, such as the Karhunen–Loève expansion
(KLE) and the Proper Orthogonal Decomposition (POD). In the following, only the
Karhunen–Loève expansion (KLE) is discussed since it is one of the most common
methods in the field of uncertainty quantification. Let us consider a random field
in a two-dimensional domain Ω. It is clear that there is an infinite number of ran-
dom variables at each point x ∈ Ω. The target is to reduce the number of these
random variables by smoothening a given random field. In other words, it can be
represented as a finite series of products of spatial functions multiplied by scalar
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random variables, in which the error with respect to the original random field can
be neglected. Given a Gaussian stochastic field, the Karhunen-Loève Expansion,
see [180] and [36], is defined as

Θ(x, ω) = µΘ(x) +
∞∑
i=1

σiψi(x)θi(ω). (5.7)

It can be seen clearly that Eq. (5.7) is composed of the first term as a mean value
function µΘ(x), which depends only on space, and the second term as an oscillating
part. The spatial functions ψi(x) are square integrable and orthogonal. θi(ω) is the
independent standard Gaussian N (0, 1) random variable, and the σi are multipliers.
The spatial functions ψi(x) can be discretized in the spatial domain in a form as

ψi(x) ≈ ψh,i(x) =
n∑
j=1

Ψj(x)vji = ΨV . (5.8)

in which Ψ is a matrix of spatial basis functions as shape functions in the finite
element method. The optimal spatial functions are the solution of the generalized
eigenvalue problem

GCGvi = λiGvi = σ2
iGvi, (5.9)

in which λi and v are the generalized eigenvalues and eigen functions. TheG(Ψi, Ψj)
is the Gramian matrix of the basis functions, which can be assembled in the same
manner as the mass matrix ∀x ∈ Ω as

G(Ψ) =
∫
Ω
Ψi(x)Ψj(x) dΩ. (5.10)

Meanwhile, the covariance matrix C is computed via Matérn function between each
couple of points, e.g. Ci,j = Cνc(dij/lc). The Matérn function is defined as

Cνc (dij/lc) = σ2 21−νc

Γ (νc)

(√
2νc

d

`c

)νc
Kνc

(√
2νc

d

`c

)
, (5.11)

where νc is a non-negative parameter, σ is also an input parameter, dij is the distance
between the two input points (i, j), and lc is the correlation length. The Gaussian
Θ(x) field can be approximated

Θ(x, ω) ≈ µΘ +
L∑
i=1

σiψi(x)θi(ω) = µΘ + Ψ (x)V Sθ(ω), (5.12)

where L ≤ n is the truncated number of the eigen functions. The condition to get
L is defined as

ρL =
∑L
i=1 λi∑n
j=1 λj

, (5.13)

in which n is the total possible eigenvalues in a given system. The relative cumulative
factor ρL can be predefined, normally ρL ≥ 0.9.
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Algorithm 1 Template to generate realization of Gaussian distribution variables
1: Step 1: Initialize SimParamSet
2: SimObj = SimParamSet()
3: Step 2: Define prior distribution
4: SimObj.add(SimParameter(’var1’, NormalDistribution(mu-var1,sigma-var1)))
5: SimObj.add(SimParameter(’var2’, NormalDistribution(mu-var2,sigma-var2)))
6: Step 3: Generate sample by Monte-Carlo method
7: [var1; var2] = SimObj.sample(nsample, ’mode’, ’mc’);
8: Step 4: Loop through each input file and write new values of samples

To generate the realization of a random variable, one can use several avail-
able methods, such as the Monte-Carlo method, the Metropolis algorithm, the
Metropolis-Hastings algorithm, and the Gibbs sampling algorithm. Some of those
methods are available in the open-source SGLIB library coded in MATLAB, see
[203]. An example to generate realization using the Monte-Carlo method for two
random variables, namely var1 and var2, is given in Alg. 1 by using the SGLIB
library. The SimParamSet is a general-purpose object which is capable of exe-
cuting several tasks by its programmed methods. After initialization of the object
SimParamSet in Step 1, one can define several prior distribution by a method so-
called add. Next, the type of distribution with corresponding default parameters are
defined as the method inputs. The realization then can be generated in Step 3 via a
method so-called sample. The realizations of random variable x ∼ N (103, 10) using
SimParamSet is shown in Fig. 5.2 with different number of samples. The larger
the number of samples, the closer the histogram gets to the Gaussian distribution.
In the final step, it depends on the working procedure of an analyst to set up all the
necessary files in which the new values of realization are written.

(a) ns = 102 (b) Histogram with ns = 102

(c) ns = 103 (d) Histogram with ns = 103

Figure 5.2 – Generate realization of random variable x ∼ N (103, 10) via
SimParamSet object
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5.1.2 Bayesian updating procedure
The non-intrusive and intrusive methods are common approaches for the uncertainty
quantification analysis. The former is proceeded by treating the available finite
element model, such as in-house codes or commercial computational programs, as
black boxes. The main work is to generate the realization of input parameters and
then apply these parameters into the legacy code to run and extract the interest
output data. The output data is then jointed with the experiment data to access the
property of QoI, e.g. input parameters. Thanks to the feasibility and simplicity, this
method is widely accepted in many research works. By contrast, the latter method
heavily reformulates the weak form or variational formulation of the problem and
introduce the uncertainty into the system explicitly. Hence, this approach is more
complicated and sometimes it is impossible with a number of uncertainty parameters
due to the high complexity.

Only non-intrusive methods are investigated to identify material properties in
this chapter. Specifically, the Bayesian updating method is adopted for the pa-
rameter identification. The inverse problem of identifying or calibrating the ma-
terial properties in a given numerical model is addressed in the framework of the
Bayesian estimation, which lead to a computation of the conditional expectation.
The Bayesian theorem is considered as the consistent way to update a probabilistic
description when new data in the form of observation y is available. In such case, it
is possible to state the conditional density π(Q|Y )(θ | y) of θ given y, see [185] and
[133]

π(Q|Y )(θ | y) = π(Q,Y )(θ,y)
πY (y) = π(Y |Q)(y | θ)

πY (y) πQ(θ), (5.14)

in which
πY (y) =

∫
Q
π(Q,Y )(θ,y) dθ =

∫
Q
π(Y |Q)(y | θ)πQ(θ) dθ, (5.15)

where πY (y) is the probability density function of the random variable y (the evi-
dence) and πQ(θ) is the prior probability density function θ, and π(Y |Q)(y | θ) is the
likelihood of y = Y (θ, ε) given θ. The prior probability density function πQ(θ) de-
scribes a belief of an analyst about the possible population characteristics of random
variable θ. The likelihood π(Y |Q)(y | θ) describes our belief that the observations
y if we know θ is true. And the posterior π(Q|Y )(θ | y) describes our belief on the
possible population characteristics of random variable θ after observing y.

The flowchart of the Bayesian updating method is shown in Fig. 5.3. Firstly, the
realization of each interest input variable is generated via its corresponding prior
distribution. The prior probability density function can be selected from several
available distributions so that it is mathematically feasible to generate the realization
of a given random variable. Secondly, the target physic or mechanic problem can be
cast in a general form of mathematical representationM(x), which can be built via
commercial computational programs or in-house codes. It can be also truncated and
approximately represented via surrogate model, such as general Polynomial chaos
(gPC) with a fast computational capability. In the following works, the model
M(x) is solved by finite element method, which is programmed as a FORTRAN
user-defined element in the FEAP computational program. Then the quantity of
interest (QoI) depends on the nature of the problem and the selection of an analyst.
However, it is normally selected based on the criterion that it can be measured

102



explicitly with the aid of experimental tools. The common examples of QoI are
displacement, velocity, acceleration, strain, reaction force, stored energy, and even
dissipation. Finally, with the data from the experiment, all essential ingredients are
completed in the preparation for the Bayesian updating.

Figure 5.3 – Flow of Bayesian updating method

In the following, the Bayesian updating method is conducted to update the
fracture energy Gf under the softening regime in a one-dimensional coupled elasto-
plasticity. A cantilever bar is fixed on the left and an imposed displacement ū = 0.01
is applied within 500 time steps on the right. The reaction force and elastic energy at
the last time step are selected as the quantities of interest. The assumed true values
of the material properties are given in Table 5.1, e.g. cross-section area A, Young
elastic modulus E, yield stress σy, linear hardening modulus Kh, ultimate stress
σu, linear softening modulus Ks and fracture energy Gf in the case of exponential
softening regime.

Property A E σy Kh σu Ks Gf

Value 1 30× 106 30× 103 15× 106 60× 103 7.5× 106 4× 102

Table 5.1 – One-dimensional inelastic bar material properties

It is assumed that the prior distribution given to the fracture energy Gf is
following the Normal distribution N (µGf , σGf ), in which the standard deviation
σGf = 52.5 is set to be 15% of a mean value µGf = 3.5 × 102. The realization of
Gf is generated by Monte-Carlo method with ns = 103 samples. With each value of
the fracture energy Gf , the problem is executed once.
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(a) Reaction vs displacement
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(b) Prior and posterior pdf of Gf

Figure 5.4 – Bayesian updating Gf using reaction Rx

(a) Elastic energy Eel
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(b) Prior and posterior pdf of Gf

Figure 5.5 – Bayesian updating Gf using elastic energy Eel

Property Prior µGf Prior σGf Posterior µGf Posterior σGf True Gf

QoI: Rx 3.5× 102 52.5 398.8 6.98 400

QoI: Eel 3.5× 102 52.5 398.9 6.29 400

Table 5.2 – Prior, posterior and true values of fracture energy Gf

The responses from reaction and elastic energy are given in Fig. 5.4(a) and
Fig. 5.5(a). As shown in Fig. 5.4(b) and Fig. 5.5(b), it can be seen that those
updated standard deviations are much smaller than the prior counterpart. This
means that after using the Bayesian updating method the updated value of the
fracture energy is getting more accurate and reliable than the prior mean value
of µGf . The collection of prior and posterior values of the fracture energy Gf is
summarized in Table 5.2.

5.1.3 Gauss-Markov-Kalman filter
A mechanics problem itself can be viewed as a mappingM, which can be a linear
or nonlinear mapping depending on the nature of the given problem, from the input
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data x to the output data y via relation y =M(x). To obtain more insights into
the given problem, the input data x can be formulated as random variables or also as
random fields. After going through the mappingM, it is clear that the output data
y is no more deterministic but rather a stochastic or random one. The uncertainty
in the input x can propagate thorough out the mapping M. More precisely the
uncertainty propagation refers to mean value, variance, probability distribution and
other quantities. Not only the forward propagation problem but also backward
or parameter identification are of research interest. In practices, there are several
methods to formulate the surrogate model of the mapping M. One of the most
popular is so-called Polynomial Chaos Expansion (PCE), which is discussed briefly
and employed for the process of updating in this chapter. More detailed discussion
on PCE and generalized Polynomial Chaos can be found in [200], [201] and [167].
The Polynomial Chaos Expansion (PCE) for a random variable y, which has finite
mean value and variance (E[y],V[y]) < ∞, and corresponding probability density
function fy is defined as follows

y =
∞∑
i=0

qiΦi(ξ), (5.16)

in which the involving polynomial must be orthogonal with respect to the probability
density function fx

Eξ [ΦiΦj] =
∫
R
Φi(α)Φj(α)fξ(α) dα = δij, (5.17)

and the polynomials are normalized via∫
R
Φ2
i (α)fξ(α) dα = 1. (5.18)

If the random variable y is represented via a Gaussian distribution basis function or
germ ξ(ω) ∼ N (0, 1) then the corresponding polynomials are the Hermite functions
since it is orthogonal with respect to the Gaussian distribution. Several compu-
tations can be executed via numerical integration instead of direct sampling. The
coefficients of the PCE of the model can be obtained using output from the numerical
model y (ξj) =M (ξj) as follows

qi ≈
∑nint
j=1 y (ξj)Φi (ξj)wj

E [Φi(·)2] , (5.19)

in which (ξj, wj) are numerical integration points j and corresponding weights. The
extension to the PCE of multi-variable y =M(x1, x2, ..., xn) is in the same manner
with more germs and integration points. The essential mapping from germs ξ to
input parameter is omitted sometimes if it is an identity map, nevertheless, the map
is an injective function in general.

The second ingredient for the Gauss-Markov-Kalman filter is Kalman filter,
which is presented in the following. Let us consider again the mathematical or
numerical model, such as finite element model, with y =M(x) with x ∈ X . The
task is now to calibrate or identify input parameter xa from a forecast xf , repre-
senting initial knowledge, and an observation ŷ for the random variable z = y + ε.
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The filtered or assimilated random variable xa after the observation ŷ is given as

xa = xf + (EX (xf | ŷ)− EX (xf | z)) = xf + xi, (5.20)

in which the term so-called innovation xi is actually an orthogonal error. It is
observed that xa is unbiased and linear in xf , while EX (xf | ŷ) is linear and optimal.
The problem turns into finding the solution of the minimization equation, see [132],
as

‖xf − (K(z) + a)‖2
X = min

L,b
‖xf − (L(z) + b)‖2

X , (5.21)

in which a = xf −K(z̄). The Kalman gain K satisfies the above minimization
problem, hence the final form of the Kalman filter is given as

xa = xf +K(ŷ − z(ω)) = xf +K (ŷ − (M (xf (ω)) + ε(ω))) , (5.22)

in which the Kalman gain is computed asK = Cxf zC
−1
z and Cxf z is the covariance

of xf and z, while Cz is the auto-covariance of z.
With the brief discussion on the Polynomial Chaos Expansion (PCE) and the

Kalman filter, the Gauss-Markov-Kalman filter is presented briefly, see [36, 170, 169]
for more detailed discussion and [131, 118] for relevant approaches. The key idea of
this filter is using the PCE method to approximate all relevant random variables and
observation, and then the Kalman filter can be applied with these PCE coefficients
in order to update the PCE coefficients of the targeted random variables. Hence,
this method is proceeded without any sampling work. The input parameter, the
error and the measurement are written in the PCE format

q =
l∑

i=0
cqiΦ

q
i (ξ); ε =

n∑
i=0
ceiΦ

e
i (η); y =

m∑
i=0
cyiΦ

υ
i (ξ). (5.23)

The input parameter q is introduced to generalize the problem with an additional
map from q and x via x = f(q), which can be essential for the latter updating
non-negative material parameters. The input parameter q and measurement y are
estimated via the same basis functions ξ, while the error is estimated via the different
one η. Hence, it is required to fuse them all together so all considered variables are
approximated by the same set of basis functions (ξ,η). This transformation is given
as follows

q =
h∑
i=0
ĉqi Φ̂i(ξ,η) = Q̂Φ̂; ε =

h∑
i=0
ĉei Φ̂i(ξ,η) = ÊΦ̂; y =

h∑
i=0
ĉyi Φ̂i(ξ,η) = Υ̂ Φ̂.

(5.24)
With the current PCE form of all random variables, the Kalman filter can be applied
directly as

Q̂
′
Φ̂ = Q̂Φ̂+K(ẐΦ̂− (Υ̂ Φ̂+ ÊΦ̂)). (5.25)

By removing the common basis functions Φ̂, the new filtered or assimilated PCE
coefficients of input variables are written as

Q̂
′ = Q̂+K(Ẑ − (Υ̂ + Ê)), (5.26)
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in which the Kalman gain is computed via following equation

K = CQY (CY +CE)−1 , (5.27)

and corresponding covariance matrices are obtained directly from the PCE coeffi-
cients.

5.2 Parameter identification in multi-scale prob-
lem using Gauss-Markov-Kalman filter

In this section, the parameter identification is configured for a multi-scale problem,
e.g a micro-scale is simulated via the Lattice model while a macro-scale is simulated
via a mixed triangular element with Raviart-Thomas interpolation. The geometry
selected for the multi-scale problem is 2 × 10 in length and height as shown in
Fig. 5.6(a). The corresponding mesh in the micro-scale and the macro-scale are
shown in Fig. 5.6(b,c).

(a) (b) (c)

Figure 5.6 – Multi-scale setting: (a) Geometry, (b) Micro-scale: Lattice model, (c)
Macro-scale: Enhanced triangular model

There are 738 elements in the micro-scale and only 8 elements in the macro-
scale. As shown in Fig. 5.7, the micro and macro-scales are denoted correspond-
ingly as domain Ωm and ΩM . One-way connection from Ωm and ΩM is the QoI,
which is computed from the micro-scale. In general, both bulk and shear moduli
(Km(x, y, ω), Gm(x, y, ω)) can be considered as random fields in the micro-scale Ωm.
In the case of vanishing Poisson ration, the shear modulus is a function of the Young
modulus, hence only the Young modulus Em(x, y, ω) is considered as a random field.
This random field is then truncated via the Karhunen–Loève method to remove the
high-order modes with its correspondingly low eigenvalues. Then one can use any
sampling method to generate a set of Nm realizations for Em(x, y, ω). The number
of simulations is exactly the number of realizations Nm. All of the QoI data, which
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can be stored energy Ê and dissipation D̂, at each time step are saved for further
updating procedure in the macro-scale ΩM .

Figure 5.7 – Flow of data and update for upscaling in elastic regime

Once the data QoI computed in the micro-scale is successfully processed, the
updating procedure by the Gauss-Markov-Kalman filter in the macro-scale ΩM can
be started. This process can be viewed as a homogenization work, in which both bulk
and shear moduli (KM(ω), GM(ω)) are parameters to be identified in the macro-scale
ΩM . It is noted that those parameters are implemented as random variables, which
are constant over the entire domain ΩM . The surrogate model using the polynomial
chaos expansion (PCE) is applied for QoI in the macro-scale ΩM , which is necessary
for the updating process by the Gauss-Markov-Kalman filter. The QoI from both
scales are delivered into the procedure of the Gauss-Markov-Kalman filter with an
aim to update the bulk and shear moduli of current macro-scale (KM , GM). All key
tasks for this multi-scale problem are drawn in Fig. 5.7. In order to update other
parameters in the macro-scale, the same procedure can be applied.

5.2.1 Setting the random fields on the micro-scale Ωm

The algorithm in Alg. 2 shows step by step to truncate a random field via the KLE
method. It is applied to truncate the Young modulus Em(x, y, ω). The mean value
of this random field is selected by a value of µEm = 1 × 104. To guaranteed the
positive value of this modulus, the transformation is set up as follows

Em(x, y, ω) = eΘE(x,ω); ΘE(x, ω) = µΘE(x) +
∞∑
i=1

σiψi(x)θE,i(ω). (5.28)

The full series of Young modulus Em(x, y, ω) is truncated via the KLE method.
With the given micro-scale mesh Fig. 5.6(b), there exists a Delaunay triangular
mesh, in which all nodes in the Lattice mode mesh stand on. This hidden mesh
with corresponding bilinear shape function Ψ(x) is key component to compute the
Gramian matrix at each hidden triangular element and then assemble over the entire
domain to gain the full Gramian matrix G as in step 2. In step 3, the Matérn
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function is used to compute the correlation between a couple of two given points
with respect to correlation length lc. Specifically, to compute the Matérn covariance,
the values of the non-negative parameter µc and correlation length lc are selected,
respectively, as 1 and 0.4×min(l, h) in which (l, h) are length and height of geometry.
Following steps 4 and 5, all computed eigenvalues are shown in Fig. 5.9(a), and
the corresponding relative cumulative sum of eigenvalues in Fig. 5.9(b). The first
L = 35 eigenvalues contribute to more than 90% (ρL = 0.9) of the total sum of
all eigenvalues. These eigenvalues are selected for coming steps in the algorithm of
the Karhunen–Loève Expansion. The truncated form of exponential parameters in
random fields are now written as

ΘE(x, ω) = µΘE(x) +
L∑
i=1

σiψi(x)θE,i(ω)/ρL. (5.29)

The relative cumulative ration ρL is added in Eq. 5.29 to counter the removed 10%
contribution. The first nine eigen functions are shown in Fig. 5.8. Each eigen
function covers a full domain of the given geometry. In the first three responses,
they look similar to low-order bi-harmonic functions.

Figure 5.8 – First nine eigen functions
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(a) Eigenvalues (b) Relative cumulative sum

Figure 5.9 – Eigenvalues and desired relative contribution ρL = 0.9

Algorithm 2 Truncating a random field via KLE method
1: Step 1: Import Lattice model mesh with all nodes and set up bilinear shape

function Ψi(x)
2: Step 2: Assemble Gramian matrix G over the entire virtual triangular mesh of

given Lattice model
3: Step 3: Compute Covariance matrix C via Matérn function
4: Step 4: Solve generalized eigen value problem GCGvi = λiGvi
5: Step 5: Truncate expansion with a given limit ρL
6: Step 6: Generate L basis random Gaussian function θi and complete truncated

random field

With the selected number L = 35 of eigenvalues, the corresponding basis random
variables θ are generated. Only Nm

θ = 100 realizations are initiated for each ba-
sis random variables of the Young modulus using Gaussian distribution N (0, σθE).
From the computed eigen functions, the random fields including bulk and shear
moduli are generated after truncation, see Eq. 5.12. One realization of the Young
modulus Em(x, y, ω) is in Fig. 5.10. It is noted that the realization of Young modu-
lus is computed with the low variance var(Θ). The realizations of truncated Young
modulus is inserted into corresponding Nm input files for simulation. The geometry,
mesh, and boundary conditions remain the same throughout all input files.

Figure 5.10 – One realization of random field Young modulus Em(x, y, ω)
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5.2.2 Upscaling in the elastic regime
The updating processes are divided into two main phases. The first phase is to iden-
tify bulk and shear moduli (KM(ω), GM(ω)) in the elastic regime, while the second
one is to assimilate yield stress σy(ω), linear hardening modulus Hh(ω), kinematic
hardening modulus Hk(ω), and visco-plasticity parameter η(ω) and under the in-
elastic regime. In the macro-scale ΩM , both bulk and shear moduli are considered
as random variables (KM(ω), GM(ω)), which means that they are constant over the
entire domain in each simulation for each realization. Firstly, the surrogate model
of QoI (stored energy) is prepared as a function of simultaneously both bulk and
shear moduli (KM(ω), GM(ω)). To ensure the positive value of both moduli, they
are configured as exponential functions of input parameters (qK(ω), qG(ω)), which
the latter can be modeled as the Gaussian distribution. With this approach, the dis-
tributions of (KM(ω), GM(ω)), in fact, are of Lognormal distribution. The mapping
is written as follows

KM(ω) = eΘK(ω); ΘK(ω) = µΘK + σΘKq(ω);
GM(ω) = eΘG(ω); ΘG(ω) = µΘG + σΘGq(ω).

(5.30)

Firstly, the surrogate model of QoI, which is the stored energy Ê at each time step,
is formed via the PCE approach as shown in Alg. 3. The data of QoI is stored in
the form of y =

[
Ê1 Ê2 . . . Ên

]
, with n as the number of time steps in each

simulation.

Algorithm 3 Generating surrogate model of QoI via PCE
1: Step 1: Define prior distribution of (qK , qG) as Gaussian distributions, e.g. K =

eqK and G = eqG
2: Step 2: Specify orthogonal basis polynomials, e.g. multi-variable Hermite func-

tions Φqα (ξ)
3: Step 3: Compute squared norms and generate integration points with weights

(ξ,w)
4: Step 4: Compute measurable response QoI by FEM solver at integration points
5: Step 5: Obtain PCE coefficients Υ of QoI y

After getting the PCE model of QoI, the Gauss-Markov-Kalman filter can be
proceeded with step by step shown in Alg. 4. The explicit form of relevant matrices
are illustrated in Appendix. C.

Algorithm 4 Updating PCE coefficients of input parameters q(qK , qG)
1: Step 1: Define error model ε (η) in PCE form
2: Step 2: Fuse different germs into a unified form Φ̂(ξ,η)
3: Step 3: Update forms of random variables Ê, Q̂ and Υ̂ compatible with corre-

sponding new germs Φ̂(ξ,η)
4: Step 4: Compute Kalman gain K via Eq. (5.27)
5: Step 5: Update or assimilate PCE coefficients Q̂′ of input parameter (q̂K , q̂G)

after filtering via K

The numerical experiments are set up to identify the bulk and shear moduli in
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the macro-scale. Firstly, the shear test is proceeded to identify both moduli. This
test would yield a good assimilation value of the shear modulus, since it brings a
lot of information of the shear modulus. Afterwards both bulk and shear moduli
are considered as random variables in the second experiment where the posterior
values of both bulk and shear moduli from previous test are input as prior values
for the current expansion test. In the shear test, the load is applied via the imposed
displacement within 20 time steps at the top of the domain. Then, the expansion
test is conducted via applying imposed displacement perpendicular to both right
and top edges. The max imposed displacement in both cases is ū = 0.1.

(a) Experiment 1: Shear test (b) Experiment 2: Expansion test

Figure 5.11 – Experiment setup in elastic regime to identify (KM , GM)

Basically, there are two updating approaches. The first type is to use simul-
taneously all stored energies and update only once, this method can be called as
the simultaneous update. Meanwhile, the second type is named as the sequential
update. In detail, only stored energy at the first time step from the micro-scale
model is inserted into the Gauss-Markov-Kalman filter as QoI. In the next update,
the newly assimilated or the posterior PCE coefficients of the input parameter Q̂′
are introduced as the prior values to the next update with corresponding stored
energy at the second time step. This procedure is repeated until all stored energies
are used. Both approaches are illustrated in Fig. 5.12. In the following, the second
approach is employed.
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Figure 5.12 – Simultaneous and sequential update approaches

Upscaling one realization of Em(ω) on the micro-scale Ωm

In the following, only one realization of the Young modulus with a value of 1× 104,
is introduced to the micro-scale Ωm over the entire domain. The stored energy
responses from both shear and expansion tests are shown in Fig. 5.13.

(a) Shear test (b) Expansion test

Figure 5.13 – One ensemble of Em: Stored energy responses

The prior values of bulk and shear moduli in the macro-scale are given in Ta-
ble 5.3. After updating, the assimilated of shear modulus get more confident with a
low value of variance, see Fig. 5.14(b). However, it is not the case for bulk modulus,
see Fig. 5.14(a). This phenomenon can be explained since the shear test brings less
information on the bulk modulus KM .

113



(a) Bulk modulus KM (b) Shear modulus GM

Figure 5.14 – Prior and posterior pdf in shear test

Property Prior µ Prior σ Posterior µ̂ Posterior σ̂

Bulk modulus KM 1.66× 104 182 1.65× 104 180

Shear modulus GM 7.69× 103 124 4.54× 103 1.34

Table 5.3 – Bulk and shear moduli (KM , GM) in shear test

Hence, the expansion test is added in order to further refine the update of both
moduli. It is noted that the prior values of both moduli are set by the corresponding
posterior values from the shear test. At the end, the variance of bulk modulus KM

shrinks significantly, while the variance of shear modulus GM still remains relatively
small, see Fig. 5.15.

(a) Bulk modulus KM (b) Shear modulus GM

Figure 5.15 – Prior and posterior pdf in expansion test

The posterior values after updating via the Gauss-Markov-Kalman filter are pre-
sented in Table 5.4. The corresponding mean values of Young modulus EM and
Poisson ratio νM are 1.25× 104 and 0.37, respectively.

114



Property Prior µ Prior σ Posterior µ̂ Posterior σ̂

Bulk modulus KM 1.65× 104 180 1.63× 104 1

Shear modulus GM 4.54× 103 1.34 4.54× 103 1.33

Table 5.4 – Bulk and shear moduli (KM , GM) in expansion test

The convergences of mean values of bulk and shear moduli (µ̂KM , µ̂GM ) are shown
in Fig. 5.16 and Fig. 5.17. In the shear test, the updated mean value of shear modulus
µ̂GM converges more quickly, see Fig. 5.16(b), than that of bulk modulus µ̂KM in the
expansion test, see Fig. 5.17(b). The standard deviations (σ̂GM , σ̂KM ) also shrink
significantly within 20 time steps in both cases.

(a) pdf (b) Mean and standard deviation

Figure 5.16 – Updated shear modulus GM in shear test

(a) pdf (b) Mean and standard deviation

Figure 5.17 – Updated bulk modulus KM in expansion test

The prior data in Table. 5.3 and posterior data in Table. 5.4 are assembled in
Table. 5.5 to present the successful update of both moduli via the Gauss-Markov-
Kalman filter method after using both tests.
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Property Prior µ Prior σ Posterior µ̂ Posterior σ̂

Bulk modulus KM 1.66× 104 182 1.63× 104 1

Shear modulus GM 7.69× 103 124 4.54× 103 1.33

Table 5.5 – Updated bulk and shear moduli (KM , GM) after both tests

Upscaling an ensemble of Em(x, y, ω) on the micro-scale Ωm

To propagate more uncertainty in the micro-scale Ωm, the Young modulus Em is
generated as a random field. In micro-scale Ωm, there are Nm numerical simulations
in total. In each simulation, the stored energy Ê is saved into the data base. At
the beginning, the shear test is conducted. The upscaling procedure using the
Gauss-Markov-Kalman filter is applied for each set of data from each simulation
in mirco-scale. After completing all updates in the shear test, those posterior data
are employed as prior data in the expansion test. The same procedure is repeated
to update both moduli in the expansion test. The workflow is shown in Fig. 5.18.
After repeating the procedure within Nm times, the final posterior pdf of both bulk
and shear moduli are computed via averaging all assimilated pdf as follows

f̄KM = 1
Nm

Nm∑
i=1

fi,KM ; f̄GM = 1
Nm

Nm∑
i=1

fi,GM . (5.31)

From these average pdf, the corresponding mean and variance (ˆ̄µ, ˆ̄σ2) are computed.
For the discrete pdf, the formulation of mean and variance are given as

ˆ̄µ =
Nm∑
i=1

f̄ixi; ˆ̄σ2 =
Nm∑
i=1

f̄i(xi − ˆ̄µ)2. (5.32)

It is noted that the average pdf f̄ is normalized so that ∑Nm

i=1 f̄i = 1.

116



Figure 5.18 – Flow of data in both tests

Since the shear test gives little information on the bulk modulus KM , the pdf
remains nearly the same in every update. Meanwhile the variance of shear modulus
GM shrinks in each update. The posterior from each update in the previous shear
test is used as corresponding prior pdf for the expansion test. The average pdf of
all updates is given in Table 5.6, in which both mean and variance are computed
from the average pdf. To zoom in the average pdf of both moduli, their values are
scaled up 5 times in Fig. 5.19. Compared to the updates of (KM , GM) from using
one realization of Em, the new variances are considered bigger but the mean values
remain nearly comparable.

(a) Bulk modulus KM (b) Shear modulus GM

Figure 5.19 – Posterior and average pdf after both tests
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Property from average pdf Mean ˆ̄µ Variance ˆ̄σ

Bulk modulus KM 1.75× 104 140

Shear modulus GM 5.33× 103 179

Table 5.6 – Bulk and shear moduli (KM , GM) after both tests

5.2.3 Upscaling in the inelastic regime
To begin with, the inelastic models used in both scales are briefly described. Ad-
ditionally, random fields on the micro-scale and targeted random variables on the
macro-scale are selected. Only important equations are listed in the following sec-
tion.

Inelastic model in the micro-scale Ωm

On the micro-scale, the Lattice model is simulated via the Timoshenko beam capable
of linear isotropic hardening plasticity and nonlinear kinematic hardening visco-
plasticity, see [69, 68]. It is noted that the additive decomposition of the total strain
is applied only to axial and shear strains (ε, γ), not for the curvature κ. The strain
energies due to moment, axial and shear forces are given as

ψm (κ) =1
2κIA

eκ;

ψa (ε, εvp, ξa) =1
2 (ε− εvp)EAe (ε− εvp) + 1

2ξ
aHa

hA
eξa;

ψs (γ, γvp, ξs) =1
2 (γ − γvp) kcGAe (γ − γvp) + 1

2ξ
sHs

hA
eξs,

(5.33)

in which (ξa, ξs) are internal hardening variables of axial and shear forces, and
(Ha

h , H
s
h) are hardening moduli for axial and shear forces. It is assumed that there

are independent plasticity mechanisms activated by axial and shear forces. The
independent yield functions (φa, φs) for axial and shear forces (N,Q) are

φa (N,χa, qa) = |N − χaAe| − (Ny − qaAe) ≤ 0;
φs (Q,χs, qs) = |Q− χsAe| − (Qy − qsAe) ≤ 0,

(5.34)

in which (χa, χs) are back-stress variables. The yield axial and shear forces (Ny, Qy)
are computed from the Lattice yield stress σy. For linear hardening, the stress-like
isotropic hardening variables (qa, qs) are given as

qa = −Ha
hξ

a; qs = −Hs
hξ
s. (5.35)

The Fredrick-Armstrong [6] nonlinear kinematic hardening law is employed as

χ̇a = Ha
k ε̇
νp −Ha

nkξ̇
aχa; χ̇s = Hs

k γ̇
vp −Hs

nkξ̇
sχs. (5.36)

The total dissipation can be written in the general form

0 < D = σ : ε̇− ψ̇. (5.37)

In the following, all linear hardening moduli are assumed to be one unified
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value of Hh to reduce the total number of input variables. Similarly, the values
of (Ha

nk, H
s
nk) take one unified value Hk. The list of material properties considered

as random fields are given in Table 5.7, e.g. yield stress in tension, yield stress in
compression, yield stress in shear, linear hardening modulus, nonlinear kinematic
hardening, and viscosity coefficient. The procedure to generate the random field
(RV) is similar in Section 5.2.1.

Property Random field
Yield stress in tension σmy,t(x, ω)
Yield stress in compression σmy,cy(x, ω)
Yield stress in shear σmy,s(x, ω)
Linear hardening modulus Hm

h (x, ω)
Nonlinear hardening modulus Hm

k (x, ω)
Viscosity coefficient ηm(x, ω)

Table 5.7 – Micro-scale material properties as random fields

An example of this Lattice model undergoing a simple shear test ū = 0.1 with
one realization of (σmy,t, σmy,c, σmy,s, Hm

h , H
m
k , η

m) is shown in Fig. 5.20. The material
properties of (σmy,t, σmy,c, σmy,s, Hm

h , H
m
k , η

m) are given in Table. 5.8. It can be seen
that the stored energy and dissipation keep increasing in magnitude under loading
scenarios. However, they remain nearly the same in unloading scenarios.

Property σmy,t σmy,c σmy,s Hm
h Hm

k ηm

Value 1 1 1 1000 100 1000

Table 5.8 – Micro-scale: One realization values of (σmy,t, σmy,c, σmy,s, Hm
h , H

m
k , η

m)

(a) Imposed displacement ū = 0.1 (b) Hysteresis loop

Figure 5.20 – One realization of (σmy,t, σmy,c, σmy,s, Hm
h , H

m
k , η

m): Micro-scale responses
in inelastic regime by imposed displacement

Inelastic model in the macro-scale ΩM

In the following, the macro-scale is simulated with the constitutive model of visco-
plasticity with capable of linear isotropic hardening and nonlinear kinematic harden-
ing. The differences compared to the model used in Chapter 3 is presented shortly.
In the same manner by using additive decomposition, the strain energy is written
as

ψ (u,σ, εvp, ξvp, ζvp) =ψe (εe) + Ξvp
1 (ξvp) + Ξvp

2 (ζvp) , (5.38)
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where the relevant internal variables are listed as ξvp and ζvp. We also consider addi-
tional hardening effects as a general case by including the corresponding potentials
Ξvp

1 and Ξvp
2 . For those potential energies, we select a quadratic form as follows

Ξvp
1 (ξvp) =1

2ξ
vpKvpξvp; qvp = −∂Ξ

vp

∂ξvp
;

Ξvp
2 (ζvp) =1

3H
vpζvp : ζvp; αvp = −∂Ξ

vp

∂ζvp
,

(5.39)

in which the terms Kvp and Hvp are the linear hardening and kinematic hardening
moduli. Correspondingly, the terms qvp and αvp are the stress-like variable and
back-stress tensor in the visco-plastic model. The yield criterion is now written as

φvp(σ, qvp,αvp) := ‖ dev (σ) +αvp‖ − (σy − qvp) ≤ 0. (5.40)

The total dissipation can be written in the following form

0 < D = σ : ε̇vp + qvpξ̇vp +αvp : ζ̇vp. (5.41)

Following the penalty method as in Chapter 3, the evolution equations of this visco-
plastic model are written as follows

0 =
∂Dvp

η (σ, ·)
∂σ

= −ε̇vp + 1
ηvp

< φvp >
∂φ

∂σ
⇒ε̇vp = 1

ηvp
< φvp > n̂ = fε;

0 =
∂Dvp

η (σ, ·)
∂αvp

= −ζ̇vp + 1
ηvp

< φvp >
∂φ

∂αvp
⇒ζ̇vp = 1

ηvp
< φvp > n̂ = fζ ;

0 =
∂Dvp

η (σ, ·)
∂qvp

= −ξ̇vp + 1
ηvp

< φvp >
∂φ

∂qvp
⇒ξ̇vp = 1

ηvp
< φvp >= fξ,

(5.42)

in which the notation n̂ is the unit normal tensor n̂ = dev (σ) +αvp
‖ dev (σ) +αvp‖ . The

numerical implementation of this model is straightforward as the one in Chapter 3.
The list of material properties considered as random fields is given in Table 5.9,

e.g. yield stress, linear hardening modulus, nonlinear kinematic hardening modulus,
and visco-plastic parameter. These material properties are chosen to be updated
via the Gauss-Markov-Kalman filter method. The workflow in the elastic regime is
adapted here.

Property Random variables
Yield stress σMy (ω)
Linear hardening modulus HM

h (ω)
Nonlinear kinematic hardening modulus HM

k (ω)
Visco-plastic parameter γM(ω)

Table 5.9 – Macro-scale material properties as random variables
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Upscaling one realization of (σmy,t(ω), σmy,c(ω), σmy,s(ω), Hm
h (ω), Hm

k (ω), ηm(ω))
on the micro-scale Ωm

The boundary condition and loads are illustrated in Fig. 5.21(a). The bottom edge
is fixed, while an imposed displacement ū is applied on the top edge. The first cycle
for an imposed displacement u1 takes place within 0 ≤ t ≤ t4, see Fig. 5.21(b). The
second and third ones are defined via t4 ≤ t ≤ t8 and t8 ≤ t ≤ t12, respectively. The
time step in each cycle is proportional to its loading magnitude so that the rate of
loading is maintained, e.g. ∆t3 = 1.4∆t1 and ∆t2 = 1.2∆t1. In both cases, the time
step in the first cycle is selected with a value of ∆t1 = 0.1. The load magnitudes
are given as ū1 = 0.04, ū2 = 0.08 and ū3 = 0.12, respectively. The response in the
micro-scale is shown in Fig. 5.21(c). The max stored energies and dissipations in
three cycles are selected as QoI for the identification process, see Table. 5.10.

(a) Boundary condition (b) Constant rate of loading

(c) Response in the micro-scale

Figure 5.21 – Experiment setup with imposed displacement ū in inleastic regime to
identify (σMy , HM

h , H
M
k , γ

M)

(a) Stored energy (b) Dissipation

Figure 5.22 – Micro-scale Ωm responses
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Response Cycle 1 Cycle 2 Cycle 3
Max Ê 2× 10−4 5× 10−4 1.4× 10−3

Dissipation 1× 10−4 5× 10−4 1.5× 10−3

Table 5.10 – Max stored energy and dissipation in each cycle from the micro-scale

At first, only one realization of (σmy,t, σmy,c, σmy,s, Hm
h , H

m
k , η

m) is applied over the
entire domain of micro-scale Ωm. The corresponding values of those material prop-
erties are given in Table 5.8. Meanwhile, the Young modulus and Poisson ratio
remain the same as in the elastic regime.

(a) Yield stress σMy (b) Modulus HM
h

(c) Modulus HM
k (d) Visco-plastic parameter γM

Figure 5.23 – Prior and posterior pdf using both stored energy and dissipation as
QoI

The prior values of all targeted material variables in the macro-scale are given in
Table 5.11. After updating, it is observed that the visco-plastic parameter γ = 1/η
is successfully updated with a smaller variance. The pdf of other parameters remains
nearly the same, which means that the current experimental test does not contain
much information about these parameters.
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Property Prior µ Prior σ Posterior µ̂ Posterior σ̂

Yield stress σMy 1 3.2× 10−3 0.8 6× 10−4

Modulus HM
h 4× 104 282.8 6.6× 104 227.3

Modulus HM
k 600 34.6 548.9 31.9

Visco-plastic parameter γM 1× 10−5 1.4× 10−7 2.7× 10−5 5.4× 10−8

Table 5.11 – Prior and posterior values of (σMy , HM
h , H

M
k , γ

M) using both stored
energy and dissipation as QoI

Upscaling an ensemble of (σmy,t(x, y, ω), σmy,c(x, y, ω), σmy,s(x, y, ω), Hm
h (x, y, ω),

Hm
k (x, y, ω), ηm(x, y, ω)) on the micro-scale Ωm

On the micro-scale, the parameters (σmy,t, σmy,c, σmy,s, Hm
h , H

m
k , η

m) are generated as low-
variance random fields in the micro-scale Ωm. The mean values of these random
variables are given in Table 5.8. The procedure takes place as shown in Fig. 5.18,
where the stored energy and dissipation are used as QoI. The result yields agreement
with updated values using one realization of (σmy,t, σmy,c, σmy,s, Hm

h , H
m
k , η

m).

(a) Yield stress σMy (b) Modulus HM
h

(c) Modulus HM
k (d) Visco-plastic parameter γM

Figure 5.24 – Prior and posterior pdf using an ensemble of random fields
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6
Conclusions and Perspectives

In this chapter, the concluding remarks and perspectives are presented.
To begin with, several highlights from the previous chapters are sum-
marized. Then the possible future works and perspectives are drawn
and discussed.
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6.1 Conclusions
Chapter 2 illustrates a detailed picture on the new approach to solve the visco-
plasticity problem, in which the Hellinger-Reissner variational principle and the
hybrid-stress finite element approximation are utilized to deliver a high accuracy
of the stress field. Both displacement and stress fields are formulated as indepen-
dent variables, which increases the problem size with respect to the conventional
displacement-based finite element approach. However, the approach is capable of
providing high stress accuracy even with coarse mesh settings. Other remarks of
the provided approach lay at the desirable smoothness of the stress field, which is
of special interest for capturing the wave propagation phenomena. The energy con-
serving and decaying schemes are developed with a feature to control the numerical
computation in the dynamics problem. The proposed algorithm presents satisfying
performances for a cluster of numerical simulations. It is clear that the computation
is unconditionally stable by using the energy conserving scheme under the elastic
phase. Meanwhile, the energy decaying scheme can dissipate high frequencies modes
which can not be resolved properly on a coarse finite element mesh. The dissipation
parameters α and β in decaying scheme can be selected with respect to a mesh
size. Practically, the higher values of α and β dissipate faster inappropriate high-
frequency modes in a coarse-mesh domain. On the other hand, these parameters
can be chosen relatively lower for a fine-mesh domain which has fewer unresolved
high frequencies and thus naturally reduce the numerical dissipation.

Chapter 3 presents the mixed variational formulation suitable for construct-
ing hybrid-stress discrete approximation with independent displacement and stress
fields. Particularly, the reduced variational formulation is derived by eliminating the
rotation field from the regularized functional [81] for drilling rotations. Hence, the
new variational format is able to include both stress and displacement as indepen-
dent fields. The lowest Raviart-Thomas vector space is introduced to discretize the
stress field with an aim to maintain the continuity of traction vector across element
boundaries. Meanwhile the displacement field is interpolated via linear shape func-
tions. The proposed triangular finite element for two-dimensional planar plate has
better performance than some classic low-order finite elements for either elastic or
visco-plastic behaviors. In the dynamics framework, the energy-conserving scheme
is applied to control the overall stability of numerical computation over a long pe-
riod of time. The proposed formulation and algorithm are examined under many
numerical simulations and found with the satisfying performance in both statics and
dynamics problems.

Chapter 4 performs an attempt to adapt the weak variational formulation in
Chapter 3 into the plate bending problem. The same approach is applied to de-
rive the reduced variational formulation. In this effort, all displacement (including
lateral deflection and rotations), moments and shear forces fields are considered as
independent variables at the expense of increasing the problem size with respect
to conventional displacement-based finite element approach. Nevertheless, it also
provides the possibility to maintain the desirable projection continuity of moments
and shear forces fields over element’s edges, which is of special interest for capturing
the wave propagation phenomena. The energy conserving and decaying schemes are
also reformulated to adapt with the stated plate bending problem. The same pos-
itive observation on those time integration schemes is gained via several numerical
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simulations. The proposed formulation has a potential on other elasto-plastic and
dynamic problems.

Chapter 5 depicts the feasibility study on the application of parameter iden-
tification methods, including the Bayesian update and the Gauss-Markov-Kalman
filter, into inelastic problems. In particular, the Bayesian update method is imple-
mented to identify the fracture energy Gf in the simple one dimensional problem.
Then, the Gauss-Markov-Kalman filter is applied in the multi-scale problem. The
Lattice model is used to simulate the micro-scale with a random field such as Young
modulus Em(x, y, ω), while the mixed triangular membrane element is employed for
the macro-scale. The finite elements using in both scales are embedded with the
visco-plasticity. The main idea here is to assimilate the material’s properties in the
macro-scale ΩM by using the stored energy and dissipation as quantity of inter-
ests from the micro-scale Ωm. This procedure can be also viewed as an upscaling
homogenization procedure.

6.2 Perspectives
A new shell finite element can be formed by adding membrane and plate bending
finite elements together, which are developed in Chapter 3 and 4 respectively. A
thorough investigation on the performance and accuracy of that shell finite element
can be an worth-trying topic. In addition, the application of Raviart-Thomas vector
space for stress discretization can be applied on quadrilateral, tetrahedral and brick
finite elements for nonlinear and inelastic problems, specially for wave propagation
problems. The weak form can be derived using the regularized mixed variational
functional as presented in this thesis. Beside that, the application of parameter
identification process is still open for many other problems in the field of computa-
tional mechanics. The Gauss-Markov-Kalman filter can be implemented along with
neural networks to compare the efficiency between the two methods.
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A
Mapping constitutive equation

into matrix notation

For non-symmetric stress tensor, the constitutive equation is

symmσ = C : ε⇔ 1
2(σij + σji) = Cijklεkl (A.1)

where

ε = symm∇u ⇔εij = 1
2(ui,j + uj,i); i, j ∈ [1 : 3]

C = λ1⊗ 1 + 2µIs ⇔Cijkl = λδijδkl + 2µ1
2(δikδjl + δilδjk); i, j, k ∈ [1:3]

(A.2)

Regarding fourth-order tensor 1⊗ 1 = δijδkl

1⊗ 1 =



 1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

ij=11

 0 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

ij=12

 0 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

ij=13 0 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

ij=21

 1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

ij=22

 0 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

ij=23 0 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

ij=31

 0 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

ij=32

 1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

ij=33



(A.3)
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Regarding fourth-order tensor Is = 1
2 (δikδjl + δilδjk)

Is =



 1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

ij=11

 0 1
2 0

1
2 0 0
0 0 0


︸ ︷︷ ︸

ij=12

 0 0 1
2

0 0 0
1
2 0 0


︸ ︷︷ ︸

ij=13 0 1
2 0

1
2 0 0
0 0 0


︸ ︷︷ ︸

ij=21

 0 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

ij=22

 0 0 0
0 0 1

2
0 1

2 0


︸ ︷︷ ︸

ij=23 0 0 1
2

0 0 0
1
2 0 0


︸ ︷︷ ︸

ij=31

 0 0 0
0 0 1

2
0 1

2 0


︸ ︷︷ ︸

ij=32

 0 0 0
0 0 0
0 0 1


︸ ︷︷ ︸

ij=33



(A.4)

Hence, fourth-order elasticity tensor C = λ1⊗ 1 + 2µIs

C =



 λ+ 2µ 0 0
0 λ 0
0 0 λ


︸ ︷︷ ︸

ij=11

 0 µ 0
µ 0 0
0 0 0


︸ ︷︷ ︸

ij=12

 0 0 µ
0 0 0
µ 0 0


︸ ︷︷ ︸

ij=13 0 µ 0
µ 0 0
0 0 0


︸ ︷︷ ︸

ij=21

 λ 0 0
0 λ+ 2µ 0
0 0 λ


︸ ︷︷ ︸

ij=22

 0 0 0
0 0 µ
0 µ 0


︸ ︷︷ ︸

ij=23 0 0 µ
0 0 0
µ 0 0


︸ ︷︷ ︸

ij=31

 0 0 0
0 0 µ
0 µ 0


︸ ︷︷ ︸

ij=32

 λ 0 0
0 λ 0
0 0 λ+ 2µ


︸ ︷︷ ︸

ij=33



(A.5)

After executing an operation of double contraction, the constitutive equation
symmσ = C : ε is now written as follows. σ11

1
2(σ12 + σ21) 1

2(σ13 + σ31)
1
2(σ21 + σ12) σ22

1
2(σ23 + σ32)

1
2(σ31 + σ13) 1

2(σ32 + σ23) σ33



=


(λ+ 2µ)ε11 + λε22 + λε33 µε12 + µε21︸ ︷︷ ︸

2µε12

µε13 + µε31

µε21 + µε12 λε11 + (λ+ 2µ)ε22 + λε33 µε23 + µε32
µε31 + µε13 µε32 + µε23 λε11 + λε22 + (λ+ 2µ)ε33


(A.6)
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Applying the plane strain condition ε13, ε23, ε33 = 0, the mapping L from tensor to
matrix notation yields

σ11
σ22
1
2(σ12 + σ21)
1
2(σ21 + σ12)


︸ ︷︷ ︸

L(symmσ)

=


2µ+ λ λ 0 0
λ 2µ+ λ 0 0
0 0 2µ 0
0 0 0 2µ


︸ ︷︷ ︸

C=L(C)


ε11
ε22
ε12
ε21


︸ ︷︷ ︸
L(ε)

(A.7)

The above equation leads to the form of inverse of elasticity matrix C−1.
ε11
ε22
ε12
ε21

 = 1
E


1− ν2 −ν − ν2 0 0
−ν − ν2 1− ν2 0 0

0 0 1 + ν 0
0 0 0 1 + ν


︸ ︷︷ ︸

C−1=L(C−1)


σ11
σ22

1
2(σ12 + σ21)
1
2(σ21 + σ12)

 (A.8)

Applying the same mapping L for the second-order tensor 1
%

skewσ with % = 2µ =
E

1 + ν

1
%

skewσ = 1 + ν

E


0
0

1
2(σ12 − σ21)
1
2(σ21 − σ12)



= 1
E


1− ν2 −ν − ν2 0 0
−ν − ν2 1− ν2 0 0

0 0 1 + ν 0
0 0 0 1 + ν




0
0

1
2(σ12 − σ21)
1
2(σ21 − σ12)


︸ ︷︷ ︸

L(skewσ)

(A.9)

Hence, the second-order tensor D in Eq. (3.19) can be written as follows

L(C−1symmσ − 1
%
skewσ) = C−1


σ11
σ22
σ21
σ12

 = C−1


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

D


σ11
σ22
σ12
σ21


︸ ︷︷ ︸
L(σ)

= Dσ

(A.10)
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B
Explicit form of matrix D̂b

relevant to moment field

The explicit form of matrix Db symm M in Eq. (4.15) can be written as follows

Db symm M = 12(1− ν2)
Et3



−1
ν2 − 1

ν

ν2 − 1 0 0
ν

ν2 − 1
−1

ν2 − 1 0 0

0 0 1
1− ν 0

0 0 0 1
1− ν





Mxx

Myy

1
2(Mxy +Myx)
1
2(Myx +Mxy)


(B.1)

With the selection % = 2µ hence 1
%

= 1 + ν

E
, the explicit form of matrix 1

%

12
t3

skew M

in Eq. (4.15) can be written as follows

1
%

12
t3

skew M = 12(1− ν2)
Et3



−1
ν2 − 1

ν

ν2 − 1 0 0
ν

ν2 − 1
−1

ν2 − 1 0 0

0 0 1
1− ν 0

0 0 0 1
1− ν





0
0

1
2(Mxy −Myx)
1
2(Myx −Mxy)


(B.2)
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Finally, the explicit form of considered term D̂b can be revealed in the following
equation

Db symm M− 1
%

12
t3

skew M = 12
t3



1
E

−ν
E

0 0
−ν
E

1
E

0 0

0 0 0 1 + ν

E

0 0 1 + ν

E
0


︸ ︷︷ ︸

D̂b


Mxx

Myy

Mxy

Myx

 := D̂bM

(B.3)
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C
Implementation of matrices in
Gauss-Markov-Kalman filter

The random variables (qK(ω), qG(ω)) are written as

q (ξ1, ξ2) =
[
qK
qG

]
=
[

logK
logG

]
=

∑
α∈J (2)

l

cqαΦ
q
α (ξ1, ξ2) ; cqα ∈ R2×|Jl|, (C.1)

for an expansion up to degree l in two random variables (ξ1, ξ2) ∈ N(0,1). Take an
expansion in J3, i.e. l = 3 with α = (α1, α2), then

J3 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)}, (C.2)

and the corresponding matrix Φqα ∈ R10×1 containing basis functions or germs is
written as

Φqα =
[

1 ξ1 ξ2 ξ2
1 − 1 ξ1ξ2 ξ2

2 − 1 ξ3
1 − 3ξ1 (ξ2

1 − 1)ξ2 ξ1(ξ2
2 − 1) ξ3

2 − 3ξ2
]T
.

(C.3)
The full coefficient matrix is cqα ∈ R2×10. However, at the beginning the random
variables (qK(ω), qG(ω)) are of Gaussian distributions as

qK = cq(0,0),1 + cq(1,0),1ξ1; qG = cq(0,0),2 + cq(0,1),2ξ2, (C.4)

or precisely, the first prior only the coefficients cqα are non-zero at these indices

α = (α1, α2) = (0, 0), (1, 0), and (0, 1). (C.5)

After the updating process, the coefficients cqα which are zero at the beginning may
be updated to nonzero values. The number of QoI (n) corresponds to the number
of time steps, at which the stored energy is computed. The synthetic errors ε(ω) of
numerical measurement of QoI are written in PCE format as white noise

ε (η) =
∑

β∈J (n)
1

cεβΦ
ε
β (η) ; cεβ ∈ Rn×(n+1), (C.6)
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for an expansion up to degree 1 in n random variables η ∈ N(0,1). Take an
expansion in J1, i.e. with β = (β1, β2, ..., βn), then

J1 = {(0, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1)}, (C.7)

and the corresponding matrix Φεβ ∈ R(n+1)×1 containing basis functions or germs is
written as

Φεβ =
[

1 η1 η2 . . . ηn
]T
. (C.8)

The corresponding explicit matrix ε(η) is written in PCE form as follows

ε =


ε1
ε2
...
εn

 =


0 σε1 0 · · · 0
0 0 σε2 · · · 0
... . . . ...
0 0 0 · · · σεn





1
η1
η2
...
ηn

 . (C.9)

The full coefficient matrix is cεβ ∈ Rn×(n+1). The stored energy y ∈ Rn×1 (QoI) is
written in PCE format, with the same germs as of input parameters, as follows

y (ξ1, ξ2) =
∑

α∈J (2)
l

cyαΦ
q
α (ξ1, ξ2) ; cyα ∈ Rn×|Jl|, (C.10)

or in explicit matrix form, with l = 3, as

y =


y1
y2
...
yn

 =


υ1,1 υ1,2 · · · υ1,10
υ2,1 υ2,2 · · · υ2,10
... ... . . . ...

υn,1 υn,2 · · · υn,10



Φq(0,0)
Φq(1,0)
...

Φq(0,3)

 , (C.11)

in which υ ≡ cyα, e.g. υi,1 = cy(0,0),i, υi,2 = cy(1,0),i and similarly υi,10 = cy(0,3),i. Before
applying the PCE method, all random variables should be written in a same set of
basis functions, which is established via fusing Φqα(ξ) and Φεβ (η). The new form of
combined basis Φ̂(ξ,η) ∈ R(n+10)×1 containing all PCE polynomials is written as

Φ̂ = Φqα ∪Φεβ =
[

1 ξ1 ξ2 . . . ξ3
2 − 3ξ2 η1 η2 . . . ηn

]T
. (C.12)

The corresponding coefficient matrices Ê, Q̂ and Υ̂ with the same germs are written
as

Q̂ =
[

0 σqK 0 0 . . . 0 0 . . . 0
0 0 σqG 0 . . . 0 0 . . . 0

]
; Q̂ ∈ R2×(n+10); (C.13)

Ê =


0 0 . . . 0 0 σε1 0 · · · 0
0 0 . . . 0 0 0 σε2 · · · 0
... ... . . . ... ... ... ... . . . ...
0 0 . . . 0 0 0 0 · · · σεn

 ; Ê ∈ Rn×(n+10); (C.14)
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Υ̂ =


υ1,1 υ1,2 · · · υ1,10 0 0 . . . 0
υ2,1 υ2,2 · · · υ2,10 0 0 . . . 0
... ... . . . ... ... ... . . . ...

υn,1 υn,2 · · · υn,10 0 0 . . . 0

 ; Υ̂ ∈ Rn×(n+10). (C.15)

Consequently, the Kalman gain is obtained via Eq. (5.26). Then, the new filtered
or assimilated PCE coefficients of input variables can be achieved via Eq. (5.27).
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