
HAL Id: tel-03984879
https://theses.hal.science/tel-03984879

Submitted on 13 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Learning and Information Geometry for
Time-Series Classification

Daniel Brooks

To cite this version:
Daniel Brooks. Deep Learning and Information Geometry for Time-Series Classification. Machine
Learning [cs.LG]. Sorbonne Université, 2020. English. �NNT : 2020SORUS276�. �tel-03984879�

https://theses.hal.science/tel-03984879
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ
Spécialité Informatique

École Doctorale Informatique, Télécommunications et Électronique (Paris)

Deep Learning and Information Geometry
for Time-Series Classification

Apprentissage Profond et Géométrie de L’Information
pour la Classification de Signaux Temporels

Présentée par
Daniel BROOKS

Dirigée par
Matthieu CORD et Olivier SCHWANDER

Pour obtenir le grade de
DOCTEUR de SORBONNE UNIVERSITÉ

Présentée et soutenue publiquement le 6 avril 2020

Devant le jury composé de :

Mme. Florence Tupin Rapportrice
Professeure, Télécom Paris – LTCI – Institut Polytechnique de Paris

M. Marco Congedo Rapporteur
Chargé de Recherche (HDR) – GIPSA-lab, CNRS, Université Grenoble Alpes, Grenoble-INP

M. Yannick Berthoumieu Examinateur
Professeur, Bordeaux INP

M. Frédéric Barbaresco Examinateur
KTD PCC "Sensing" Segment Leader, Senior Radar expert – THALES

M. Hichem Sahbi Examinateur
Chargé de recherche CNRS (HDR), Sorbonne Université – LIP6

M. Olivier Schwander Co-directeur de thèse
Maître de Conférence, Sorbonne Université – LIP6

M. Matthieu Cord Directeur de thèse
Professeur, Sorbonne Université – LIP6 & Senior Scientist, Valeo.ai

Daniel Brooks: Deep Learning and Information Geometry for Time Series Classification,
© 2020

A B S T R A C T

Machine Learning, and in particular Deep Learning, is a powerful tool to model
and study the intrinsic statistical foundations of data, allowing the extraction of
meaningful, human-interpretable information from otherwise unpalatable arrays
of floating points. While it provides a generic solution to many problems, some
particular data types exhibit strong underlying physical structure: images have
spatial locality, audio has temporal sequentiality, radar has time-frequency struc-
ture. Both intuitively and formally, there can be much to gain in leveraging this
structure by adapting the subsequent learning models. As convolutional archi-
tectures for images, signal properties can be encoded and harnessed within the
network. Conceptually, this would allow for a more intrinsic handling of the data,
potentially leading to more efficient learning models. Thus, we will aim to use
known structures in the signals as model priors. Specifically, we build dedicated
deep temporal architectures for time series classification, and explore the use of
complex values in neural networks to further refine the analysis of structured
data.

Going even further, one may wish to directly study the signal’s underlying
statistical process. As such, Gaussian families constitute a popular candidate.
Formally, the covariance of the data fully characterizes such a distribution; devel-
oping Machine Learning algorithms on covariance matrices will thus be a central
theme throughout this thesis. Statistical distributions inherently diverge from the
Euclidean framework; as such, it is necessary to study them on the appropriate,
curved Riemannian manifold, as opposed to a flat, Euclidean space. Specifically,
we contribute to existing deep architectures by adding normalizations in the
form of data-aware mappings, and a Riemannian Batch Normalization algorithm.
We showcase empirical validation through a variety of different tasks, including
emotion and action recognition from video and Motion Capture data, with a
sharpened focus on micro-Doppler radar data for Non-Cooperative Target Recog-
nition drone recognition. Finally, we develop a library for the Deep Learning
framework PyTorch, to spur reproducibility and ease of use.

i

R É S U M É

L’apprentissage automatique, et en particulier l’apprentissage profond, unit un ar-
senal d’outillages puissants pour modeler et étudier les distributions statistiques
sous-jacentes aux données, permettant ainsi l’extraction d’informations séman-
tiquement valides et interprétables depuis des séquences tabulaires de nombres
par ailleurs indigestes à l’oeil humain. Bien que l’apprentissage fournisse une
solution générique à la plupart des problèmes, certains types de données présen-
tent une riche structure issue de phénomènes physiques: les images ont la localité
spatiale, les sons la séquentialité temporelle, le radar la structure temps-fréquence.
Il est à la fois intuitif et démontrable qu’il serait bénéfique d’exploiter avec astu-
cieuse ces formations fondatrices au sein même des modèles d’apprentissage. A
l’instar des architectures convolutives pour les images, les propriétés du signal
peuvent être encodées et utilisées dans un réseau de neurones adapté, avec pour
but l’apprentissage de modèles plus efficaces, plus performants. Spécifiquement,
nous oeuvrerons à intégrer dans la conception nos modèles profonds pour la
classification de séries temporelles des sur leurs structures sous-jacentes, à savoir
le temps, la fréquence, et leur nature proprement complexe.

En allant plus loin dans une veine similaire, l’on peut s’atteler à la tâche
d’étudier non pas le signal en tant que tel, mais bel et bien la distribution statis-
tique dont il est issu. Dans ce scenario, les familles Gaussiennes constituent un
candidat de choix. Formellement, la covariance des vecteurs de données carac-
térisent entièrement une telle distribution, pour peu qu’on la considère, à peu
de frais, centrée; le développement d’algorithmes d’apprentissage, notamment
profonds, sur des matrices de covariance, sera ainsi un thème central de cette
thèse. L’espace des distributions diverge de manière fondamentale des espaces
Euclidiens plats; il s’agit en fait de variétés Riemanniennes courbes, desquelles
il conviendra de respecter la géométrie mathématique intrinsèque. Spécifique-
ment, nous contribuons à des architectures existantes par la création de nouvelles
couches inspirées de la géométrie de l’information, notamment une couche de
projection sensible aux données, et une couche inspirée de l’algorithme classique
de la Batch Normalization. La validation empirique de nos nouveaux modèles
se fera dans trois domaines différents: la reconnaissance d’émotions par vidéo,
d’action par squelettes, avec une attention toute particulière à la classification
de drones par signal radar micro-Doppler. Enfin, nous proposerons une librairie
PyTorch aidant à la reproduction des résultats et la facilité de ré-implémentation
des algorithmes proposés.

iii

R E M E R C I E M E N T S

Cette thèse, non contente de ne s’être écrite toute seule ou un jour, est le fruit de
riches et nombreuses interactions, tant professionnelles que simplement humaines,
du court au long terme et par tous les moyens, avec une floppée de personnes
qu’il est bon de citer.

Je tiens tout d’abord à remercier mes directeurs: Olivier et Matthieu à Jussieu,
pour les longues discussions scientifiques et stylistiques; Frédéric et Jean-Yves à
Limours, pour leur expertises respectives; à tous, pour leurs encouragements et
bienveillance vis-à-vis d’un thésard parfois tête-en-l’air.

Je remercie également mes collègues en tous genres, colorant le quotidien d’un
arc-en-ciel collectif.

Je n’oublie non plus Christelle et Gilles à l’ONERA, sans qui cette thèse n’a pas
commencé.

J’adresse ma reconnaissance au groupe de travail OTAN SET245, qui a bien
voulu transmettre une base de données radar riche en contenu, largement ex-
ploitée lors de ces travaux.

Enfin, je remercie mes proches, sans qui rien de tout cela n’aurait de sens.
Mes parents, dont le soutien sans faille m’a toujours porté de l’avant, mes amis,
collègues et Yann, certains voisins qui se reconnaîtront, Miel, la cuisine basque, les
danseurs et danseuses. Tout particulièrement, je remercie de plein coeur Céline
pour m’avoir supporté et accompagné avec patience et tendresse.

v

C O N T E N T S

abstract i
résumé iii
remerciements v
contents vii
list of figures ix
list of tables xiii
acronyms xv
1 introduction 1

1 .1 Context . 1

1 .2 Motivations . 3

1 .3 Contributions and outline . 10

1 .4 Related publications . 13

2 theoretical background 15

2 .1 Introduction . 17

2 .2 Radar Signal and Simulation . 18

2 .3 Euclidean Machine Learning . 23

2 .4 Information Geometry . 38

2 .5 Riemannian Machine Learning . 46

2 .6 Conclusion . 52

3 second-order pipeline for temporal classification 55

3 .1 Introduction . 57

3 .2 Learning on structured time series representations 59

3 .3 Full pipeline for temporal classification 71

3 .4 Experimental validation . 75

3 .5 Conclusion . 91

4 advances in spd neural networks 95

4 .1 Introduction . 97

4 .2 Data-Aware Mapping Network . 100

4 .3 Batch-Normalized SPDNet . 104

4 .4 Riemannian manifold-constrained optimization 108

4 .5 Convolution for covariance time series 116

4 .6 Experimental validation . 119

4 .7 Conclusion . 130

5 conclusion and perspectives 133

bibliography 137

vii

viii contents

a alorithmic details and properties of the proposed learn -
ing models 157

a .1 Model sizes and speeds . 157

a .2 Sample code . 159

a .3 Use cases . 159

a .4 Organization of the provided PyTorch library 161

a .5 Implementation details . 162

b detailed description of the nato radar database 165

b .1 Global overview . 165

b .2 Description of the data . 166

b .3 Contents of the disk . 166

b .4 Possible setting for learning . 167

L I S T O F F I G U R E S

Chapter 1: introduction 1

Figure 1.1 Example of a drone’s micro-Doppler signal. 3

Figure 1.2 The race to ever bigger Deep Neural Networks. 4

Figure 1.3 Spectrogram versus Capon sepctrogram 6

Figure 1.4 Raw signal and its Fourier and covariance representations 7

Figure 1.5 Example of image deformation through scale, rotation, trans-
lation and illumination. 9

Chapter 2: theoretical background 17

Figure 2.1 The basic form of a standard signal emitted by a radar . . 18

Figure 2.2 Illutration of the Radar Cross-Section (RCS) 19

Figure 2.3 Depiction of the three drones used in simulations 20

Figure 2.4 Illustration of the simulated signal 21

Figure 2.5 Illustration of the Fourier spectrum of a radar signal 22

Figure 2.6 Mean-Squared Error (MSE) versus Logistic Loss (LL). 24

Figure 2.7 Activation functions . 26

Figure 2.8 Illustration of the kernel trick 28

Figure 2.9 Representation power of Deep Neural Networks (DNNs)
through hierarchical learning. 30

Figure 2.10 Illustration of the convolution as a linear transformation . 32

Figure 2.11 LeNet, the historical first Convolutional Neural Network
(CNN) . 32

Figure 2.13 Illustration of a convolutional block 32

Figure 2.12 AlexNet, the 2012 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) winner 33

Figure 2.14 V GG neural network, second place in the 2014 ILSVRC chal-
lenge . 34

Figure 2.15 The convolutionalization trick 35

Figure 2.16 Recurrent Neural Network (RNN) with one hidden layer . 36

Figure 2.17 Illustration of the fundamental representation equivalence
between a 2D time-frequency image and a series of 1D
spectrums. 37

Figure 2.18 Illustration of a Long Short-Term Memory network 38

Figure 2.19 The sphere: a simple manifold 39

Figure 2.20 Kullback-Leibler divergence between two univariate Gaus-
sians . 42

ix

x List of Figures

Figure 2.21 Manifold mappings . 45

Figure 2.22 Illustration of one iteration of the Karcher flow (Karcher
1977) . 49

Chapter 3: second -order pipeline for temporal

classification 57

Figure 3.1 Illustration of the Bilinear Mapping (BiMap) layer 60

Figure 3.2 Illustration of a generic Symmetric Positive Definite (SPD)
neural network . 61

Figure 3.3 Downsampling of a spectro-temporal signal 63

Figure 3.4 The proposed architecture for radar signal classification . . 64

Figure 3.5 Illustration of how strided filters of size k and stride s work
on an input of size n . 65

Figure 3.6 The proposed complex-valued architecture for radar signal
classification . 68

Figure 3.7 Illustration of the proposed Fourier-like convolutional layer 72

Figure 3.8 Illustration of the global pipeline proposed for the classifi-
cation of time-frequency signals 73

Figure 3.9 Illustration of the Second-Order Fully Temporal Network
(SOFTNet) . 74

Figure 3.10 Structured time series representations 76

Figure 3.11 Evolution of the scattering points and normals for the Vario,
Phantom2 and S1000+ drones 77

Figure 3.12 Spectrograms of noisy and uncluttered signals 81

Figure 3.13 Classification accuracies for three learning models 83

Figure 3.14 Performance of the learning models for increasingly good
conditions . 84

Figure 3.15 Growth of classification confidence over time in a very chal-
lenging environment (SNR = 10dB and PRF = 2kHZ) . . 85

Figure 3.16 Growth of classification confidence of a Fully Temporal
Convolutional Network (FTCN) in audio recognition . . . 86

Chapter 4: advances in spd neural networks 97

Figure 4.1 Log Eigenvalues (LogEig) as a special case of logarithmic
mapping . 101

Figure 4.2 Illustration of the Data-Aware Mapping Network (DAMNet)
architecture . 103

Figure 4.3 Illustration of manifold-constrained gradient update 110

Figure 4.4 The convolutional BiMap . 118

Figure 4.5 Validation accuracy and loss curves of SPD neural network
(SPDNet) and Batch-Normalized SPDNet (SPDNetBN) on
the North Atlantic Treaty Organization (NATO) dataset . . 122

List of Figures xi

Figure 4.6 Confusion matrix on the NATO dataset 123

Figure 4.7 Performance of all models in function of the amount of
synthetic radar data . 124

Figure 4.8 Separability of two classes of the radar dataset. Separation
between classes is higher with a reference matrix near the
barycenter. 126

Figure 4.9 Validation accuracy for the closest barycenter algorithm.
Iteration 0 corresponds to the arithmetic mean, iteration 1

to the LEM barycenter. 127

Figure 4.10 Distribution of class instance number and sequence length
for the Hochschule der Medien 05 (HDM05) dataset 129

Appendix A: alorithmic details and properties of

the proposed learning models 157

Appendix B: detailed description of the nato radar

database 165

L I S T O F TA B L E S

Chapter 2: theoretical background 17

Chapter 3: second -order pipeline for temporal

classification 57

Table 3.1 The parameters are found or estimated from drone specifi-
cations . 79

Table 3.2 Simulation parameters and their default values 80

Table 3.3 Performance comparison of real and complex deep struc-
tures on radar data on various amount of noisy data 89

Table 3.4 Performance comparison of real and complex deep struc-
tures on radar data on various amount of less noisy data . 89

Table 3.5 Performance comparison of first- and second-order models
on radar data . 90

Chapter 4: advances in spd neural networks 97

Table 4.1 Performance of SPDNet, FTCN and Minimum Riemannian
Distance to Riemannian Mean (MRDRM) on the NATO dataset121

Table 4.2 Performance of SPDNet, DAMNet and SPDNetBN on the
NATO dataset . 121

Table 4.3 Performance of SPDNet, DAMNet and SPDNetBN on the
Acted Faces Expressions in the Wild (AFEW) dataset 128

Table 4.4 Accuracy comparison of SPDNets and DAMNets on the
HDM05 dataset. 129

Appendix A: alorithmic details and properties of

the proposed learning models 157

Appendix B: detailed description of the nato radar

database 165

Table B.1 Duration of recorded data in the database 168

xiii

A C R O N Y M S

AI Artificial Intelligence

BN Batch Normalization

CV Computer Vision

DL Deep Learning

DNN Deep Neural Network

GAN Generative Adversarial Network

GPU Graphics Processing Unit

MSE Mean-Squared Error

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SHADE SHAnnon DEcay

SIFT Scale-Invariant Feature Transform

VQA Visual Question Answering

SAR Synthetic Aperture Radar

DSP Digital Signal Processing

BoW Bag of Words

MLE Maximum Likelihood

RCS Radar Cross-Section

PRI Pulse Repetition Intervall

PRF Pulse Repetition Frequency

RPM Rounds per Minute

UAV Unmanned Aircraft Vehicle

SNR Signal-to-Noise Ratio

NCTR Non-Cooperative Target Recognition

ML Machine Learning

SVM Support Vector Machine

MLP Multi Layer Perceptron

NN Neural Network

CNN Convolutional Neural Network

ILSVRC ImageNet Large Scale Visual Recognition Challenge

xv

xvi acronyms

MIL Multiple Instance Learning

ASR Automatic Speech Recognition

EAR Environmental Audio Recognition

BCI Brain-Computer Interface

EEG electroencephalography

MRI Magnetic Resonance Imagery

FCN Fully Convolutional Network

FTCN Fully Temporal Convolutional Network

RCNN Region Convolutional Neural Network

GAP Global Average Pooling

GMP Global Max Pooling

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

LL Logistic Loss

SL Supervised Learning

UL Unsupervised Learning

LN Layer Normalization

MM Matrix Multiplication

DARPA Defense Advanced Research Projects Agency

FFT Fast Fourier Transform

SCM Sample Covariance Matrix

OT Optimal Transport

EF Exponential Families

µ-D micro-Doppler

MoCap Motion Capture

US Unsupervised Learning

NLP Natural Language Processing

BPTT Backpropagation Through Time

k-NN k-nearest neighbours

MDM Minimum Distance to Mean

MNIST Modified National Institute of Standards and Technology

EF Exponential Family

KL Kullback-Leibler

acronyms xvii

FIM Fisher Information Matrix

SPD Symmetric Positive Definite

HPD Hermitian Positive Definite

HPDNet HPD neural network

SPDNet SPD neural network

IG Information Geometry

LEM Log-Euclidean Metric

DAMNet Data-Aware Mapping Network

BarNorm Barycentric Normalization

ParNorm Parametric Normalization

SOFTNet Second-Order Fully Temporal Network

BiMap Bilinear Mapping

ReEig Rectified Eigenvalues

LogEig Log Eigenvalues

AIRM Affine Invariant Riemannian Metric

TSLR Tangent Space Linear Regression

CovPool Covariance Pooling

MRDRM Minimum Riemannian Distance to Riemannian Mean

SVD Singular Value Decomposition

CGS Classical Gram-Schmidt

RMT Random Matrix Theory

DFT Discrete Fourier Transform

dB decibel

FourierNet Fourier Neural Network

CovPool covariance pooling

GPU Graphical Processing Unit

CRNet CR Neural Network

SpectroSPD Spectral SPD Neural Network

PT Parallel Transport

BatchNorm Batch Normalization

SPDNetBN Batch-Normalized SPDNet

NATO North Atlantic Treaty Organization

AFEW Acted Faces Expressions in the Wild

HDM05 Hochschule der Medien 05

C
h

a
p

t
e

r

1
I N T R O D U C T I O N

1.1

Context

Artificial Intelligence, and in particular Machine Learning, has witnessed a soaring
worldwide interest, leading to possibilities which yet eluded the realms of the
possible: from better-than human face recognition (Hern 2015) to self-driving
cars (“As Self-Driving Cars Stall, Players Revive an Old Approach” 2019), from
disease prediction (M. Chen et al. 2017) to virtual doctors (Your virtual doctor
will see you now 2019), from helicopter pilot assistance (Abbeel et al. 2007) to
mastering the game of Go (AlphaGo Zero 2019), progress has been phenomenal
and its usage sprawling to an ever more diverse field of applications. Historically,
many of the leading innovations in the field were and are primarily designed for
Computer Vision, i.e. the field of image analysis. Since the first applications by
US Naval Research (Rosenblatt 1958), to document zip code recognition (LeCun
et al. 1989; Lecun et al. 1998), then to modern Computer Vision, whether as image
classification (Durand et al. 2017), visual reasoning (Ben-younes et al. 2017), style
transfer (Johnson 2019) or image generation (NVIDIA/pix2pixHD 2019), Machine
Learning is a historic foundation of modern computing.

More specifically, most of the frenzy in this paradigm shift revolves around
Deep Learning, which is a subclass of Machine Learning mostly involving Deep
Neural Networks. In short, Deep Neural Networks build a latent representation
of data through the learning of a hierarchy of layers; as such, Deep Learning
can be seen as a generalization of certain classes of standard Machine Learning
algorithms, by jointly learning feature representation space and separation within
a single architecture. A major subgroup of Machine Learning is the field of Super-
vised Learning, where a dataset of pairs of inputs and outputs is given to allow
the learning of a decision function through the optimizing of a loss function.
While Deep Learning has successfully been used in the context of supervised
classification, there exists a plethora of different possible tasks. These may in-
clude Visual Question Answering, where the inputs are couples of images and

1

2 introduction

text, image captioning, where the output given an image is text, object or instance
segmentation, where the output is bounding boxes or a list of pixels given an
input image. While each one involves task-specific engineered model and loss
functions, the general principle remains the same: to learn a decision function on
a dataset of inputs and outputs, based on the outputs of a loss function.

Despite the popularity of Computer Vision, the instrinsic genericity of Deep
Learning makes it a suitable match for scores of other applicative fields such
as health, neuroscience, automated systems and robotics, social network studies,
Brain-Computer Interfaces, audio, radar, lidar... Of these, some closely follow pure
Computer Vision, such as hyperspectral (Tao et al. 2015; Liang and Q. Li 2016)
or Synthetic Aperture Radar imaging (Tupin et al. 1998; Tupin et al. 2018; Atto
et al. 2013). However, some types of data exhibit a rich structure within their
inherent construction, as for example the case of micro-Doppler radar data. Here,
the stream of physical processes involved in the signal formation shape it in a
visually recognizable fashion (Figure 1.1). Leveraging the resulting structures
within the associated learning models thus seems a promising idea.

The usage of micro-Doppler radar data is gaining momentum in diverse branches
of the industry, such as in autonomous vehicles (Inman, M. 2020) or fine-grained
gesture recognition in smartphones (Lien et al. 2016; S. Wang et al. 2016). Radar
roots its historical foundations in the theoretical works of Maxwell (1865), H.
Hertz (1889) and N. Tesla (Page 1962), then grounds its preliminary applica-
tions with the notable patents of G. Marconi and C. Hülsmeyer (Fahie 1899;
Blanchard 2019). Although radar has been key in its proven ability to detect
potentially hostile airborne crafts, the recent emergence of less conventional,
smaller and erratic-behaving Unmanned Aircraft Vehicles confronts the classi-
fication task of radars to an unprecedented challenge. Unrecognized drone sight-
ings over airports (“Gatwick ’drone sighting’ diverts flights” 2019) or nuclear
plants (Bouchaud 2014) bring a new kind of threat to civilian security, while mil-
itary operations both harness (“Top Iranian general killed by US in Iraq” 2020)
and heed the imminent danger of stealthy strikes (Press 2018; “Syrian army foils
drone attack on military base in northwest” 2019), to the point of redefining strate-
gical paradigms and international law altogether (Boyle 2013; Shah 2014). In this
modern perspective, new approaches with a focus on versatility, efficiency and
scalability should provide key elements to tackle these issues.

This thesis focuses on Deep Learning in the Supervised Learning setting, also
termed deep supervised learning. It brings particular attention to developing
models adapted to the underlying structure of the data. Furthermore, experimen-
tal approaches thus far, while spanning a variety of different applicative fields,
mainly focus on micro-Doppler radar data. We motivate the work thereupon
below.

1.2 motivations 3

Figure 1.1.: Example of a drone’s micro-Doppler signal. This time-frequency rep-
resentation exhibits rich structure; much information about the target
is inferable from Digital Signal Processing tools.

1.2

Motivations

The core research in industry is shifting towards Artificial Intelligence, for better
or worse. Indeed, alongside insightful and game-changing applications of Deep
Learning, some vulnerabilities, or even failures leading to real-world fiascos, have
tainted the otherwise gleaming aura of the field. One can think of, for instance,
Microsoft’s chatbot Tay which became a genocidal racist after some hours on
Twitter (Vincent 2016), Amazon’s recruiting tool’s strong bias to recommend Cau-
casian males (“Amazon scraps secret AI recruiting tool that showed bias against
women” 2018), or Florida’s crime recidivism software unreasonably over-biased
against minority communities (Julia Angwin 2016). Even in simple Computer Vi-

4 introduction

sion tasks, models with outstanding performance are not necessarily as robust as
we may believe: as shown in (Goodfellow et al. 2015)’s seminal work, slightly per-
turbing the image with no visual impact on humans can quickly cause a seasoned
model to completely fail at recognizing the initial object. At the root of this ma-
jor issue, one can argue that data representation plays a key role: indeed, while
humans naturally infer concepts, causality and relationships from given data,
all the models “see” are matrices of floating numbers; the mathematical space
spawned by these data points is thus a true corner stone in building robust and
trustable models (Tackling bias in artificial intelligence (and in humans) | McKinsey
2019). While the fact that Deep Learning’s unchallenged performance is matched
but by our lack of understanding of that performance has been a long-standing
meme in the community (see Figure 1.2), these seemingly instrinsic problems
further accent the need for a better understanding of how models interact with
data.

Figure 1.2.: The race to ever bigger Deep Neural Networks. Image source: Deep
Learning in Practice (2019).

The shift from Deep Neural Networks to Convolutional Neural Networks in
Computer Vision is a paramount example of architectures adapting to their input
data: while standard Deep Neural Networks feature fully-connected, or dense
layers (i.e. full Matrix Multiplication), Convolutional Neural Networks replace
the latter with convolution banks, which can be seen as sparse, locally connected
Matrix Multiplications. Contrary to a full Matrix Multiplication, a convolution
harnesses the spatially local structure of images, producing much better results

1.2 motivations 5

with many less parameters, with an additional level of robustness to perturbation
in the data: indeed, convolutions are formally equivariant to translation.

Aiming for more instrinsic representations of data and designing adapted mod-
els with a notion of robustness will be a common leitmotiv throughout this thesis.
Simply put, this issue can be explored both through data pre-processing and
model design. Again, micro-Doppler data will constitute a illustrative example of
mult-faceted structured data. We give a brief overview of these two complemen-
tary approaches.

1.2.1 Pre-processing data for better representativity

The idea of processing raw data to a more intrinsic representation is by no means
recent, as indicated in the early literature of Computer Vision. Indeed, its first and
foremost champion probably is the Scale-Invariant Feature Transform (Lowe 2004),
an image representation algorithm integrating into a single vector information
about color, gradients, angles, such that it be robust to scale, rotation, translation
and illumination. Even earlier, the idea of deformable kernels, or steerable filters
was developed in the same objective of robustness of the representation to known
transformations (Perona 1995). These ideas secured a rich progeny all the way to
modern Computer Vision, as we will see below.

Again, this idea is by no means limited to Computer Vision. In the analysis of
structured time series, such as audio, or radar data, the Fourier transform (Shan-
non C. E. 2013) - from here on out, we will rather refer to the fast implementation
ubiquitously used, the Fast Fourier Transform - is the most used representation,
rather than the raw time data. In the Digital Signal Processing literature, there
exists an abundance of alternative representations, most of them with a strong the-
oretical link to the Fourier transform. The Capon spectrum introduced by Capon
(1969) mimicks the behaviour of the Fourier transform while adding constraints
to improve on the time-frequency resolution, inherently limited by Heisenberg’s
incertainty principle (Heisenberg and Broglie 1958). In the same principle, the
Wigner-Ville spectrum, instance of the so-called Cohen class of time-frequency
operators (L. Cohen 1989), allows for a more fine-grained resolution as illustrated
in Figure 1.3. Other approaches build hierarchical frequencies at different time
scales, circumventing the resolution problem altogether; the founding innovation
in that regards is the notion of wavelets (Mallat 2008), which are now ubiquitous
in signal compression.

A tightly-linked notion (Flandrin 1998), that of covariance, is also a powerful
representation of the data, albeit less used. Figure 1.4 captures different possible

6 introduction

Figure 1.3.: Spectrogram versus Capon sepctrogram. The Capon spectrum is a
variant of the Wigner-Ville spectrum, making use of parametric con-
straints on the spectrum to enhance its time-frequency resolution.

representations of the data, all of which are rooted in the Digital Signal Processing
literature and share mathematical properties.

We now dwell a bit longer on the covariance representation of structured time
series data, as it will be a central theme throughout this thesis. Conceptually,
the Sample Covariance Matrix captures temporal fluctuations in a compact and
meaningful way. In other words, the Sample Covariance Matrix is a powerful
discriminative feature representation for structured time series, and deserves the
exploration of adapted Machine Learning models. This holds even more for
signals with strong physical structure; again, one can think of radar data, Brain-
Computer Interface, Magnetic Resonance Imagery or audio. Figure 1.4 gives the
intuition of building different learning models upon different representations of
the data.

1.2 motivations 7

Raw signal Split signal (a) Signal covariance (b)

Spectral signal (c) Spectral covariance (d)

Figure 1.4.: Raw signal and its Fourier and covariance representations The raw
signal is split through a sliding window, from which either covariance
or Fourier transform can be computed.

1.2.2 Designing architectures for powerful representation learn-
ing

It is broadly accepted than one main factor for what is now known as the “Artifi-
cial Intelligence winters” is the lack of data and computing power to successfully
train competitive models. The year 2012 is now seen as a defining landmark to the
renewal and explosion of interest in Artificial Intelligence with the seminal work
implementing a Convolutional Neural Network dubbed AlexNet (Krizhevsky et
al. 2012) for image classification on the ImageNet dataset within the ImageNet
Large Scale Visual Recognition Challenge, outperforming for the first time, and
by a large margin, traditional methods. The following years led to a trend, simplis-
tically illustrated in Figure 1.2, which constituted the mainstream approach for
several years, with the emergence of deeper and more complex architectures (no-
tably the V GG model Simonyan and Zisserman (2015)), to the point in 2015 when
models beat human performance on the ImageNet Large Scale Visual Recogni-
tion Challenge challenge (Tsang 2019). However, the models now boasted orders
of magnitude more parameters than the number of examples: 60M for AlexNet,
133M for V GG, when the large-scale ImageNet dataset contained “only” 1.2M

images. Alongside the practical challenges of training such large models, this

8 introduction

disproportion arose the concern that perhaps models were mostly overfitting on
the datasets.

This concern led to a further paradigm shift: from Deep Learning pioneers
blaming models to simply learn dataset biases (Colloquium d’Informatique de Sor-
bonne Université 2018) and encouraging the push towards reasoning, rather than
purely learning models (Yoshua Bengio | From System 1 Deep Learning to System 2
Deep Learning | NeurIPS 2019), to the setup of the “xAI” (for “explainable Artifi-
cial Intelligence”) Defense Advanced Research Projects Agency (Gunning 2017),
focus shifted towards smaller, more efficient models. Following this trend, another
2015 famed architecture, the ResNet101 (He et al. 2016), exhibited a mere 1.7M

parameters, while outperforming all previously cited models. Many followed,
such as the AllConvolutionalNet (Springenberg et al. 2015), or the HybridNet

architecture (Robert et al. 2018), which lead us to the following paragraph.

1.2.3 Enforcing constraints for intrinsic data modelling

The quest to models intrinsically adapted to their input data has thus become an
ongoing pursuit in the Deep Learning community. Indeed, since the a Deep Neu-
ral Network learns its own feature representation through the hierarchy of layers,
clever engineering of these layers hopefully leads to more intrinsic representations
of the data.

This engineering often draws inspiration from the older data processing tech-
niques mentioned above, transferring them in Deep Neural Networks in a dif-
ferentiable fashion. This is for instance embodied in part-based image segmenta-
tion (Mordan et al. 2017) or steerable Convolutional Neural Networks (T. S. Cohen
and Welling 2016). This idea of models being invariant or robust to a given class
of transformations, is key to learning better representations, as illustrated in Fig-
ure 1.5: a learning model should be expected to recognize that both images feature
the exact same content, although deformed through given transformations.

In a similar vein, other works design layers to stabilize models through nor-
malization, which can be seen as explicitly enforcing invariance to scale and
translation within the network layers. The seminal effort in this direction is found
in the introduction of Batch Normalization in Deep Neural Networks (Ioffe and
Szegedy 2015). Further works have improved upon the idea, such as in Layer Nor-
malization (J. Xu et al. 2019) . Others have studied the generalizability of such
normalizations across different domains (X. Wang et al. 2019) . The recurring
motivation behind inner normalizations is to reduce the network’s dependence
the representation space covariate shift at each layer.

1.2 motivations 9

Figure 1.5.: Example of image deformation through scale, rotation, translation
and illumination. Ideally, a learning model should be insensitive to
the deformation to infer in both cases the same image class: cat.

Taking further inspiration in the historic roots of Machine Learning, recent
works have investigated incorporating information (as in Shannon information)
to regularize the Deep Neural Network in a meaningful data-driven fashion. For
instance, a process named SHAnnon DEcay (Blot et al. 2018) improves upon Neu-
ral Network weight decay (Krogh and J. A. Hertz 1992) by leveraging Shannon
information. In a similar vein, integrating entropy in generative Neural Networks
seems to improve on generalization capacity (Vu et al. 2019). Furthermore, by
pushing the frontier of image generation in 2017, Wassertein Generative Adver-
sarial Networks (Arjovsky et al. 2017; Gulrajani et al. 2017) kindled a surge in
integrating geometric constraints in Neural Networks - in this case, Optimal
Transport.

Digging even deeper within the elder literature, modern works have made use
of Information Geometry. Whether it be in graph analysis (Bronstein et al. 2017),
domain adapation (Yair et al. 2019), Neural Network optimization (Marceau-
Caron and Ollivier 2016), Brain-Computer Interface (Barachant et al. 2012), Mag-
netic Resonance Imagery (Pennec et al. 2006), and even Computer Vision (Acharya
et al. 2018; Mollahosseini et al. 2016; Tuzel et al. 2006). The field of Information
Geometry, initiated with the works of Rao (1992), Fréchet (1943) and Amari (2016),
“is an interdisciplinary field that applies the techniques of differential geometry to study
probability theory and statistics. It studies statistical manifolds, which are Riemannian
manifolds whose points correspond to probability distributions.” (Information geometry
2019). The core idea of using Information Geometry in Machine Learning is to
model the individual data points as the underlying statistical distribution they are
sampled from, instead than simply considering a Euclidean structure to the data.
Fundamentally, these distributions form a differential manifold, which then con-
stitutes the subject study of the subsequent Machine Learning algorithm. A key
example lies within Exponential Familys, more specifically the family of Gaussian
distributions. Indeed, many natural phenomena can be reasonably modelled as

10 introduction

the realization of a Gaussian law, characterized by the first- and second-order
moments, i.e. the mean and covariance: whenever some form of structure is in-
volved, whether temporal, spatial or more abstract relational principles, moments
can naturally found within the sample data.

To this day, learning models based on Information Geometry do not yet enjoy
the popularity of Deep Learning methods. However, some particular instances
seem to be known by a relatively larger audience in the general field of Machine
Learning. The Fisher kernel method for instance (Sánchez et al. 2013) has know
success in general Machine Learning, including Bag of Words methods for image
retrieval (Jegou et al. 2012). Another method named natural gradient, introduced
by Amari (1998), aims at modifying the gradient of an optimization problem by
fitting it to the manifold spanned by the problem’s parameters. It is nowadays
not uncommon to see it used to regularize the learning in Deep Neural Networks
(the term “neuromanifold” is then used), and has since then enjoyed an upsurge
in interest (Pascanu and Bengio 2014; Marceau-Caron and Ollivier 2016; Marceau-
Caron and Ollivier 2017). While both methods rely on Information Geometry, they
considerably differ in terms of purpose and realization. Given this information,
it becomes important to distinguish two broad learning settings making use of
Information Geometry. In the first one, its theoretical background is summoned
to refine “traditional” methods; it is the case for the Fisher kernel and the natural
gradient. In the second scenario, objects with a particular geometry, i.e. belonging
to a Riemannian manifold, formally require the tools of Information Geometry for
Machine Learning methods to be built upon them. Henceforth, because this thesis
will attempt to study structured time series data with an underlying physical
geometry, we will focus on the second class of settings.

Machine Learning models within the Information Geometry framework un-
derstandably lag behind the complexity and diversity found within the standard
Euclidean framework. As argued above, filling this gap is a pressing matter, es-
pecially for fields where much is to gain when exploiting the strong underlying
structures. Most of this thesis will thus deal with developing such models; specifi-
cally, the focus is set on the manifold of Gaussian distributions, with applications
to a variety of fields. Next section details the particular proposed contributions.

1.3

Contributions and outline

For the reasons above, the works presented throughout this thesis bring particular
care to developing Deep Learning models adapted to the underlying form of the

1.3 contributions and outline 11

data, incorporating these structural priors within. We both explore standard deep
architectures, and less explored Deep Neural Networks on covariance matrices,
rooted in Information Geometry. Specifically, we take inspiration from Computer
Vision’s intuitions and translate them to a different field of application - mainly,
micro-Doppler radar. Furthermore, we expand upon existing architectures on
covariance matrices to seek general improvement in a variety of tasks - in addi-
tion to radar, emotion classification from video, action recognition from Motion
Capture data.

ã Chapter 2: theoretical background

The presented works require cross-overs from a variety of fields. Thus, we
first go over the core aspects of radar data formation, Machine Learning,
and Information Geometry, with a focus on the concepts which will then be
further utilized.

ã Chapter 3: second -order pipeline for temporal classification

This chapter introduces various learning models on structured time series
data. We show how knowledge of its physical morphology can help design
adapted deep models; specifically, we present:

1. A Fully Temporal Convolutional Network (FTCN), a Deep Learning
model operating on real-valued spectrograms of temporal data;

2. An Information Geometry-based Deep Neural Network operating on
covariance matrix representations of the time series;

3. A complex-valued version of either model above, allowing to generalize
the learning to complex-valued time series.

Finally, we show how these models can be combined into a single pipeline
for structured time series classification, called Second-Order Fully Tempo-
ral Network (SOFTNet). We report empirical properties of all introduced
models through experimentations on micro-Doppler radar data.

ã Chapter 4: advances in spd neural networks

Here, we set our focus entirely on deep models for covariance data, or SPD
neural networks: at a high level, we improve upon the existing art by intro-
ducing geometry- and data-aware normalizations within the network.

We first propose the Data-Aware Mapping Network (DAMNet) architecture,
which generalizes the mathematical framework leveraged by the original
SPD neural network. In both theory and practice, a DAMNet allows to refine
both the inference and training by using the input data’s underlying geo-
metric information, by refining the Euclidean mapping stage at network’s
final layer.

12 introduction

Then, we develop the Riemannian equivalent, for SPD neural networks, to
the well-known Batch Normalization (BatchNorm) algorithm in Deep Neural
Networks, leading to an architecture we dub Batch-Normalized SPDNet
(SPDNetBN). Using the intuitions from the DAMNet architecture which it
further generalizes, and additonal concepts of Information Geometry, we
again show improvement over the previous methods. Finally, we propose
an incipient 1D convolutional layer for SPD matrices.

Throughout this chapter, various applicative fields are set forth; though
radar data remains the main focus, we set up experiments on video and Mo-
tion Capture data, respectively for emotion and action recognition. Finally,
we present an implementation of all proposed algorithms as library within
the renouned PyTorch Deep Learning framework.

1.4 related publications 13

1.4

Related publications

This thesis is based on the material published in the following papers:

e D. Brooks, O. Schwander, F. Barbaresco, J. Schneider, and M. Cord. “Tem-
poral Deep Learning for Drone Micro-Doppler Classification”. In: 2018 19th
International Radar Symposium (IRS). June 2018, pp. 1–10;

e D. Brooks, O. Schwander, F. Barbaresco, J. Schneider, and M. Cord. “Explor-
ing Complex Time-series Representations for Riemannian Machine Learn-
ing of Radar Data”. In: ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). May 2019, pp. 3672–3676;

e D. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and M. Cord. “Complex-
valued neural networks for fully-temporal micro-Doppler classification”. In:
2019 20th International Radar Symposium (IRS). ISSN: 2155-5753, 2155-5745.
June 2019, pp. 1–10;

e D. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and M. Cord. “Second-
Order Networks in PyTorch”. en. In: Geometric Science of Information. Ed. by
F. Nielsen and F. Barbaresco. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2019, pp. 751–758;

e D. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and M. Cord. “A
Hermitian Positive Definite neural network for micro-Doppler complex co-
variance processing”. In: International Radar Conference. Toulon, France, Sept.
2019;

e D. Brooks, F. Barbaresco, Y. Ziani, J.-Y. Schneider, and C. Adnet. “IA &
réseaux de neurones profonds pour la reconnaissance Radar de drones sur
critères Micro-Doppler et Cinématique”. fr. In: Rennes, FRANCE: Computer
& Electronics Security Applications Rendez-vous (C&ESAR), Nov. 2019,
p. 16;

e D. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and M. Cord. “Rie-
mannian batch normalization for SPD neural networks”. In: Advances in
Neural Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates,
Inc., 2019, pp. 15463–15474.

C
h

a
p

t
e

r

2
T H E O R E T I C A L B A C K G R O U N D

Chapter abstract

This chapter details the various fields of interest for the work at hand. The
primary applicative domain, radar signal formation and processing, will be
covered at first. Conceptually speaking, radar signals posses a rich underly-
ing physical structure; as such, many mathematical representations, whether
equivalent or not, aptly capture the signal’s many properties. The key point
is, while these different representation spaces feature a common ground, their
structure may differ to a point where a thorough statistical analysis would
require an altogther different learning framework. Specifically, we will focus
on three main ways of representing a raw radar signal: the raw received
radar wave, the Fourier transform of the wave (or more generally, any time-
frequency representation), and the covariance of the wave. As such, concepts
of Euclidean Machine Learning (ML), along with the fundamental algorithms
used on the data, will follow the radar description. Then, we propose an intro-
duction to Information Geometry (IG), which constitutes the rigorous, Rieman-
nian framework for the analysis of the covariance representation, and finally
give an overview of existing Riemannian ML methods.

15

16 theoretical background

Contents
2 .1 Introduction . 17

2 .2 Radar Signal and Simulation . 18

2 .2 .1 Radar Core Concepts . 18

2 .2 .2 Representation of radar Signals . 21

2 .3 Euclidean Machine Learning . 23

2 .3 .1 Supervised Learning . 23

2 .3 .2 Deep Learning . 29

2 .4 Information Geometry . 38

2 .4 .1 Riemannian manifold . 39

2 .4 .2 Fisher information . 40

2 .4 .3 Explicit computation of the Riemannian metric on Gaussian distributions 43

2 .4 .4 Tangent space . 44

2 .5 Riemannian Machine Learning . 46

2 .5 .1 Nearest neighbours in Riemannian space 46

2 .5 .2 Karcher algorithm for nearest Riemannian barycenter 47

2 .5 .3 Tangent space linear regression . 49

2 .5 .4 Natural gradient . 50

2 .6 Conclusion . 52

2.1 introduction 17

2.1

Introduction

The classification of structured time series using methods of both Euclidean and
Riemannian Machine Learning (ML) involves a rather involved comprehension of
several different fields.

We begin this chapter with a description of micro-Doppler (µ-D) radar data,
which both acts as a glowing instanciation of structured time series, and as the
main applicative focus in our works. In a nutshell, a radar signal is formed by the
reflection of an emitted wave on a target. The emitted signal is itself designed in a
specific manner to assuage inherent inner physical constraints, and to optimize the
reflected signal’s resolution and ambiguity. A key feature in the received signal
lies within the Doppler effect (Doppler 1842), from which speed and frequency in-
formation is deductible. By briefly explaining the core physical formation process
of the signal, we hope to convince the reader that much is to gain by leveraging
its underlying physical structure in learning models; by revealing the rich variety
of representations arising from such structure, we wish to inspire the reader into
believing this variety can also be incorporated within.

We then turn to the fundamentals of ML and its overall contextualization; in
particular we distinguish between Supervised Learning (SL) and Unsupervised
Learning (UL) (is the task given labelled examples to learn upon or not), and
parametric and non-parametric learning (whether a parameterized distribution
models the task or not). We rapidly tunnel our focus to Deep Learning (DL) as
it will be the main algorithmic class we ambition to build upon, and specifically
target our attention to the convolutional architectures initially developed in the
context of Computer Vision (CV), and in particular Fully Convolutional Networks
(FCNs), which heavily inspire the works presneted in Chapter 3.

We then switch to an overview of the field of Information Geometry (IG). The
overall goal of this section is the introduction of mathematical framework allowing
the manipulation of statistical distributions. In the process of doing so, we also
wish to convey the fundamental differences between Euclidean, vectorial objects,
and the more delicate members of Riemannian manifolds. In essence, we showcase
useful tools for the following section, dedicated to...

Riemannian ML. In this final section, we aim at providing insight into algorith-
mic methods adapted from common-knowledge ML to the Riemannian realm of
IG, through the demonstration of several simple learning algorithms. The objective
is to pave the way to both following chapters (Chapter 3 and Chapter 4) by set-

18 theoretical background

ting a reasonably comprehensive contextualization of the proposed contributions
within.

2.2

Radar Signal and Simulation

2.2.1 Radar Core Concepts

A standard radar consists in both an emitter and a receiver. The former emits a
signal at a given wavelength, or more generally a given waveform (typically a
linearly evolving frequency as depicted in Figure 2.1), while the latter is left to
interpret all incoming signals. Let us consider a simple model where the emission
frequency fe is kept constant. The base waveform is itself emitted repeatedly, at
every time intervall called Pulse Repetition Intervall (PRI), the inverse of which is
called Pulse Repetition Frequency (PRF). The latter can be seen as the sampling
frequency. This dual system induces many problems to be dealt with such as
ambiguities in distance and velocity or compromises in time versus distance
resolution.

0 2 4 6 8 10

Time (t)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

A
m

p
lit

u
d

e
(d

B
)

Figure 2.1.: The basic form of a standard signal emitted by a radar. The fre-
quency typically grows linearly in time. Imposing a known frequency
evolution helps solve ambiguities in the received signal.

2.2 radar signal and simulation 19

Different compromises to solve different problems lead to a wide variety of
radars which exist for different purposes: active radars combine emitter and
receiver while passive radars only receive estranged signals, surveillance radars
span a wide area of space by being poorly resolved while tracking radars sweep
only a small portion of space to gain resolution on targets, antennaes are either
fixed for a longer integration time or rotating for a better coverage, and the list
goes on. The type of target also contributes to the choice of radar parameters;
for instance, targets with smaller Radar Cross-Section (RCS) (see Figure 2.2) will
require a more powerful radar, leading to further compromises. The curious
reader may dig in detailed explanations in excellent references such as V. C. Chen
et al. (2006).

Figure 2.2.: Illutration of the RCS. Expressed in m2, it represents the spatial dis-
tribution of reflectance across an object: as such, it is intrinsic to the
object, and corresponds to a certain extent to its global shape size from
the radar’s point of view. This particular figure shows the RCS along
a single rotation axis. Much research has been devoted to minimizing
it to manufacture stealth jets.

While our work does not focus on a specific set of radars, it does give special
attention to Unmanned Aircraft Vehicles (UAVs). These particular objects exhibit

20 theoretical background

shared characteristics, such as being blade-propelled or fix-winged (contrary to
birds, for instance), small (contrary to wind turbines) and relatively symmetric
RCS (contrary to airborne missiles), and potentially rapidly varying radial velocity
VR (contrary to commercial airplanes). Figure 2.3 shows three different drones
studied in initial works: The Vario helicopter and DJI’s Phantom2 and S1000+.
Many UAVs such as those featured in the figure share specific characteristics:

• Blade rotation speed Ω = RPM
60

expressed in rad.s−1 (Rounds per Minutes
(RPMs) being rotations per minute);

• RCS;

• Number Nb and length Lb of blades;

• Radial velocity Vr, the amplitude of the UAV’s body’s velocity vector projected
on the axis linking it to the radar.

Figure 2.3.: Depiction of the three drones used in simulations. From left to right:
The Vario helicopter, DJI’s Phantom2, a quadrocopter, and S1000+, an
octocopter. Scale is not respected.

As we can see, radar detection and classification is a task highly dependent on
the parameters involved; to make a first analogy with CV, the finesse required to
obtain “good” signals can compare to finetuning an ancient camera to particularly
harsh photographic conditions. The catch is that no camera will ever be capture a
drone hidden in a forest several kilometers away, while a properly calibrated radar
will. Here we give a non-exhaustive list of intrinsic problems which are bound
to limit our ability to aptly classify objects, which will hence become matter of
attention in future study of radar models:

• Signal-to-Noise Ratio (SNR): classification can only be possible when the
signal is actually detected; a scalar quantity which determines a detection
threshold is the Signal-to-Noise Ratio, expressed in decibels, which repre-
sents how high in amplitude the signal is w.r.t. the background noise;

2.2 radar signal and simulation 21

Figure 2.4.: Illustration of the simulated signal. Here, a PRF of 8kHz on a signal
of 250ms yields a time series of 2000 complex points, jointly drawn as
modulus and real part.

• PRF: the sampling frequency should by all means be high enough to avoid fre-
quency amibiguities; indeed, according to the well-known Shannon condition
(or Nyquist condition), the spectrum of a signal sampled at a lower rate than
the maximum frequency of the signal is bound to fold on itself, thereby some-
what corrupting the spectrum; for instance, in classifying blade-propelled
UAV, the PRF should ideally be proportionally higher than the fastest point
on the UAV (typically the blade tip);

• fe: the emission frequency range determines how finely we resolve variations
in frequency between signals along with the spectral bandwidth; also con-
sidering a blade-propelled UAV, fe should also be both proportionally higher
than the fastest blade tip, but not so high as to induce spectral foldings.

2.2.2 Representation of radar Signals

As discussed in the previous section, a radar signal is the result of an emitted
wave reflected off a target, sampled at a given frequency, which yields a numerical
time series of complex points (amplitude and phase), as illustrated in Figure 2.4.
This will serve as our base representation.

A good representation is the first step to any statistical inference, be it classifi-
cation or feature analysis. In our case, the signal has an intrinsic time-frequency
nature, an intermediary step being a pure frequency representation, i.e. a Fourier
transform. A mere spectrum already allows for human interpretation and feature

22 theoretical background

Figure 2.5.: Illustration of the Fourier spectrum of a radar signal. From a simple
analysis of the featured spectrum, we can deduce three important
characteristics of the UAV: rotation speed Ω, number Nb and length Lb
of blades.

extraction such as blade rotation speed or RCS, as shown in Figure 2.5. In the
figure:

• To the right: Zoom-in of the original signal;

• Top left: Complete Fourier transform (PRF = 8kHz, SNR = 50dB), where
we define B as the signal’s bandwidth (the plateau in the spectrum);

• Bottom left: Zoom-in of the spectrum, where we define ν the observed period
of its assumed periodicity.

Then we have ν = NbΩ and B = 4LbΩfe
c

, which gives access to the three unkowns
up to a hypothesis on the number of blades, clean analysis pending. Note that
for the sake of clear figures, the signal representation parameters such as as the
PRF and the SNR were set to wishfully accomodating values. It is also important
to point out that a gain in SNR of 10 log(nfft) ≈ 15dB is achieved in performing
the Fourier transform. The given SNR values take that gain into account. However,
the extraction will likely not be robust to real-world variations, thus nor will any
subsequent classification algorithm.

2.3 euclidean machine learning 23

2.3

Euclidean Machine Learning

This section gives an overview of the baseline concepts of ML developed in our
classification algorithms. From a general point of view, the core of most learning
algorithms is finding a representation space where the data are linearly separable,
and then finding an optimal separation hyperplane in that space. In a more formal
setting, ML aims at designing and building a function f on the inputs x, such that
f outputs the decisions y involved in the task at hand. Although we have until
now described f as a function, it can take the more general form of any algorithm
yielding decisions from inputs. For instance, the form taken by f is usually split
in non-parametric functions, and parametric functions. In our works we focus on
the latter, where f is parameterized by a set of parameters Θ (we then note f|Θ,
or f(·,Θ), which are to be learnt through optimization of the loss function l. As
briefly described in the introduction, ML can cover a variety of tasks, which are
by no means limited to the usual framework of SL, which we notwithstanding
focus on throughout this work. For excellent references on the matter of Machine
Learning, we mention the following books, considered near biblical by many:
Bishop (1995), Bishop (2006), Haykin and Haykin (2009), and LeCun et al. (2015),
amongst of course many others.

2.3.1 Supervised Learning

The SL framework allows to learn f based on a dataset D of pairs {xi, yi}i∈[1,N] of
inputs and corresponding decisions by minimzing a loss function l, designed to
be high when the prediction f(x) differs from the true decision y and vice-versa.

The most common example would be supervised image classification, where
the inputs x are images and the decisions y are the image labels. For instance, f
could be a linear discriminator f : x 7−→ wtx, and l could be the Mean-Squared
Error (MSE):

l(f(x), y) = ||f(x)− y||2, (2.1)

or the Logistic Loss (LL):

24 theoretical background

l(f(x), y) = −y log(f(x))− (1− y) log(1− f(x)), (2.2)

which both encourage in their own way f(x) to be close to y, as illustrated
in Figure 2.6. The two loss functions shown share the same goal, but differ in
behaviour and properties; as such, MSE in rather used in regression tasks while
LL is dominant in classification.

0.0 0.2 0.4 0.6 0.8 1.0

Prediction x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

L
os

s
(y

=
1)

MSE vs LL (true target y=1)

MSE

LL

Figure 2.6.: MSE versus LL. Inputs to the functions are supposed normalized to
(0, 1); the plot shows the cost of labelling input x with true class y = 1.

We further describe the major classes of “traditional” ML algorithms. We first
give the example of a class of non-parametric functions.

2.3.1.1 Nearest neighbours algorithms

Although parametric methods are usually favoured in SL, non-parametric func-
tions have the conceptual edge of being straightforwardly adaptable in Unsupervised
Learning (US), where clustering is a preferred task to classification. The nearest
neighbours algorithms is an commonplace instance of the class of non-parametric
learning algorithms.

k-nearest neighbours (k-NN) algorithm The main instanciation of nearest neigh-
bours is the k-NN algorithm. Its mechanism is trivial to state: given a dataset of
labelled inputs D = {xi, yi}i∈[1,N], we seek to classify a new example x. To do so,

2.3 euclidean machine learning 25

we collect the k data points {xi}i≤k (with a different ordering of points) which
are the closest to x (given a metric d, usually the Euclidean metric). The label
assigned to x is then the voted through the majority label in {yi}i≤k.

Minimum Distance to Mean (MDM) algorithm A popular alternative to k-NN

is the MDM algorithm. This time, given the datasetD, we first compute the barycen-
ters {µc}c≤C (again, given the metric d) of each class in the dataset, with C the total
number of classes. Then, the new data point x is assigned to the closest barycenter.
It is interesting to note that this algorithm is highly moldable depending on the
choice of the metric d - more on that later.

k-means algorithm The k-means algorithm, first formulated in Steinhaus (1956)
and popularized in MacQueen (1967), is a popular choice for unsupervised clus-
tering, where only the number of classes C is known. Simply put, it is an iterative
version of the MDM in an unsupervised setting: given a random barycenter initial-
ization for each class c ≤ C, points are assigned to their closest barycenter, as in
the MDM, which yields C clusters. Then, barycenters are updated from the new
clusters; this process in then iterated until convergence.

We now shift to parametric learning in its the simplest form, i.e. supervised
linear classification, which performs the separation of data in the original input
space.

2.3.1.2 Logistic Regression as a Baseline Classification Algorithm

Logistic regression is considered one of the most efficient (generalized) linear
classification algorithms along with the Support Vector Machine (SVM) , and has
known a tremendous success since its creation by Cox (1958) in many a field. It
builds on logarithmically-scaled probability ratios between events: in a binary
classification scenario, this model formalizes as ln(Pω(y=1|x)

Pω(y=0|x)
) = ωTx, with ω being

the separating hyperplane, x ∈ Rn the random variable to be classified and
y ∈ (0, 1) the binary class. Put simply, if x belongs to class 0, ωTx is negative, and
positive otherwise, which naturally corresponds to modelling the distrinution
y|x as a Bernouilli random variable of parameter η. Furthermore, considering
Pω(y = 1|x) = 1− Pω(y = 0|x), we have Pω(y = 1|x) = σ(ωTx) = η with:

σ(z) =
1

1 + e−z
(2.3)

being the logistic, or sigmoid function, illustrated in Figure 2.7. Two useful
properties of σ are σ(−z) = 1− σ(z) and σ′(z) = σ(z)σ(−z).

26 theoretical background

−6 −4 −2 0 2 4 6
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Activation functions

Sigmoid

TanH

ReLU

Figure 2.7.: Activation functions Along with the sigmoid used in logistic regres-
sion, two other popular choices of so-called “activations” are depicted:
the hyperbolic tangent and the ReLU.

We will now detail how the hyperplane ω is computed. Though this com-
putation is standard is the ML field, it will help us understand more advanced
concepts in future sections. Given a dataset D of N pairs D = {xi, yi}i∈[1,N], we
wish to maximize the distribution log-likelihood of our Bernouilli distribution
over D:

max
ω∈Rn

lD(ω) =
1

N
ln(

N∏

i=1

ηyii (1− ηi)1−yi)

=
1

N

N∑

i=1

yiln(ηi) + (1− yi)ln(1− ηi)

=
1

N

N∑

i=1

yiω
Txi + ln(σ(−ωTxi))

(2.4)

To maximize lD, we minimize its opposite using Newton’s method, which ex-
tends and refines gradient descent by multiplying to the left of the gradient the
inverse of the Hessian:

2.3 euclidean machine learning 27

∇
(
− lD

)
(ω) =

1

N

N∑

i=1

−yixi +
xiσ

′(−ωTxi)
σ(−ωTxi)

=
1

N

N∑

i=1

xi(ηi − yi)

=
1

N
XT (η − Y)

(2.5)

∆

(
− lD

)
(ω) =

1

N

N∑

i=1

ηi(1− ηi)xixTi

=
1

N
XTDηX,

(2.6)

where X ∈ RN,n is data design matrix such that X(i, j) = xi(j), similarly for η
and Y , and Dη = diag(ηi(1− ηi)).

The update rule for computing the optimal hyperplane ω is thus as follows:

ω(t+1) = ω(t) − α(t)∆lD(ω(t))−1∇lD(ω(t)). (2.7)

In practice, we do not explicitly compute the inverse Hessian but rather solve
for Z the linear system ∆lDZ = ∇lD. It is also important incorporate bias in the
otherwise purely linear model. This can be done with no additional variable by
using the bias trick: ωx + b = ω+x+, with ω+ = (ω · · · b) and x+ = (x · · · 1). This
trick is implicitly used throughout all algorithms.

2.3.1.3 The Perceptron as a link between Logistic Regression and Neural
Networks

Also in 1958, F. Rosenblatt independently published a novel classification algo-
rithm named the Multi Layer Perceptron (MLP) (Rosenblatt 1958), which aspires to
mimick the way neurons and synapses process information within the brain. From
another perspective, it aims to build a seperating hyperplane in a learnt feature
space, as allustrated in Figure 2.8. We show in this section how a single layer per-
ceptron with entropic loss is mathematically equivalent to logistic regression, thus
providing a link between "black box"-ness of Deep Neural Networks (DNNs) and
well-known and studied classical learning algorithms. Given the same scenario
as above, nodes (which represent neurons) are connected together with weights
(synapses) which in turn fire in response to an activation function σ (axon gated

28 theoretical background

channel). The goal is to adjust the weights such that a given input x, when passed
through the network, outputs an estimation ỹ which matches the ground-truth
y. Again, in the special case of binary classification, y ∈ (0, 1), but we can now
generalize to multi-class classification. There are different approaches to gener-
alizing binary classification, such as one-versus-all or one-versus-one strategies,
but the most used in DNNs and thus is in our work is the one-hot encoding, in
which each label y is a C-dimensional vector with y(c) = 1 and 0 everywhere else,
where C is the number of classes and c the particular class of y. The weights wij
can be summarized in matrix W , hence the building block of MLPs:

K(x, y) = (x, y,
√
x2 + y2)

Figure 2.8.: Illustration of the kernel trick. Input data usually has no particular
reason to be linearly separable in its raw form. A good representation
space aims to that goal through the mapping K, from where we can
then separate and classify the data.

X(k+1) = f (k)(X(k)) := σ(X(k)W (k)) (2.8)

In the equation above, we again use the bias trick, and X is the design matrix
as defined in Equation 2.5. In a multi-class problem, the final sigmoid function is
replaced by its generalized softmax formulation:

σ(z)j =
ezj∑
k≤K e

zk
(2.9)

2.3 euclidean machine learning 29

A vanilla MLP is merely a stacking of L such layers such that ỹ = f (L) ◦ · · · ◦ f (0)(x),
upon which a loss is computed w.r.t. the ground truth y. The L2 loss is a widespread
choice, but we will see how the cross-entropy loss, also popular, is more naturally
suited to the classification problem:

lD(Y, Ỹ) = − 1

N

N∑

i=1

yiln(ỹi) + (1− yi)ln(1− ỹi)

=− 1

N

N∑

i=1

yiln(f{xi}) + (1− yi)ln(1− f{xi})
(2.10)

At this point, we observe that the loss for a single layer perceptron matches
exactly that of the logistic regression defined in Equation 2.4, with W acting as the
separating hyperplane ω and η as f(x), which yields the same weight update. This
formal equivalence of these two algorithms not only allows for a interpretation
of DNNs as stacked generalized linear models, it also inspires to attempt second
order derivation of the loss as is done in logistic regression. However, the first
step is standard gradient computation on stacked MLPs, which we describe in the
next section.

2.3.2 Deep Learning

Using the notations dfined above: in DL, f is designed in a general fashion as
a hierarchy of L sub-functions {f (k)}l∈[0,L), commonly known as layers. Then,
f = f (L−1) ◦ · · · ◦ f (0). Individual layers are made of elementary modules, such as
linear layers, non-linear activations and so on, the idea being to allow the DNN to
learn the representation space rather than fixing it through expert human decision.
Indeed, while traditional ML models seek to learn a suitable decision function, the
concept behind the stacking of layers is to learn both the feature representation
space and the decision function, in a seamless end-to-end fashion (see Figure 2.9).

2.3.2.1 First-order Backpropagation

Gradients in DNNs are derived using the chain rule, leading to the gradient back-
propagation algorithm, popularized by Cun (1988). Let us first introduce the use-
ful intermediate variable P (k) = X(k)W (k) at each layer (k), such thatX(k+1) = σ(P)

and Ỹ = σ(P (L)). We first compute ∂lD
∂P (L) :

30 theoretical background

Figure 2.9.: Representation power of DNNs through hierarchical learning. Image
source: Lawrence et al. (1997).

∂lD
∂P (L)

= − 1

N

∂lD

∂Ỹ

∂Ỹ

∂P (L)

= − 1

N

(N∑

i=1

yi
1

ỹi
+ (1− yi)

−1

1− ỹi

)
σ′(P (L))

= − 1

N

N∑

i=1

yi

(
1

σ(p
(L)
i)

+ (1− yi)
−1

1− σ(p
(L)
i)

)
σ(p

(L)
i)σ(−p(L)

i)

= − 1

N

N∑

i=1

yi
σ(p

(L)
i)σ(−p(L)

i)

σ(p
(L)
i)

+ (yi − 1)
σ(p

(L)
i)σ(−p(L)

i)

σ(−p(L)
i)

= − 1

N

N∑

i=1

yi(1− ỹi) + (yi − 1)ỹi

=
1

N
(Y − Ỹ)

(2.11)

Knowing that P (k) = σ(P (k−1))W (k) for any layer (k), we can then recursively
derive ∂P (k)

∂P (k−1) using the chain rule:

∂P (k)

∂P (k−1)
=

(
∂P (k+1)

∂P (k)
W (k)T

)
�σ′(P (k)) , where � is the element-wise Hadamard product

(2.12)

We now have immediate recursive access to the derivatives of lD w.r.t. the
weights or data at every level to the network:

2.3 euclidean machine learning 31

∂P (k)

∂W (k−1)
= X(k−1)

((∂P (k+1)

∂P (k)
W (k)T

)
� σ′(P (k))

)

∂P (k)

∂X(k−1)
=

((∂P (k+1)

∂P (k)
W (k)T

)
� σ′(P (k))

)
W (k−1)

(2.13)

The weights at every layer are then adjsuted accordingly. It is interesting to
note there are "good" and "bad" ways to use the chain rule: this one initiates
the recursion at the last layer; doing so from the first layer is possible but leads
to computationally expensive high-rank tensor products. Backpropagation is the
core of deep learning algorithms: more sophiticated architectures than MLPs re-
quire but per-layer gradients to implement. Such sophistication is shown in the
next section.

2.3.2.2 Convolutional Neural Networks for Computer Vision

Further algorithmic refinements, formalizations and design branchings led the
concept of perceptron to extend to that of fully-connected DNNs. It was in 1989

that LeCun et al. (1989) first proposed to replace dense layers with shared and
locally connected layers (see Figure 2.10) to exploit locality in images as it was in
Markov random fields (Cross and Jain 1983; S. Z. Li 1994), hereby creating the
first convolutional network, or Convolutional Neural Network (CNN), popular-
ized five to ten years later as LeNet (Lecun et al. 1998), described in Figure 2.11,
which beat all results over the six previous years (Bottou et al. 1994) of dense (or
fully-connected) networks on the historical Modified National Institute of Stan-
dards and Technology (MNIST) handwritten digits database (Lecun et al. 1998).
However, it was only in 2012 that Krizhevsky et al. (2012) popularized on a world-
wide scale the usage of CNNs by winning by a large margin the tough ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) competition (Russakovsky et
al. 2015) with their ALexNet CNN depicted in Figure 2.12. Since then, CNNs have
known an explosive amount of development, mostly in the field of CV, and until
more recently, in other fields dealing with temporal series, such as sleep analy-
sis (Aboalayon et al. 2016), human Brain-Computer Interface (BCI) (Lawhern et al.
2018), Automatic Speech Recognition (ASR) and Environmental Audio Recogni-
tion (EAR) (Takahashi et al. 2018; Piczak 2015) and, to a more limited extent, µ-D

radar classification (Trommel et al. 2016).

The core component of a 2D CNN is the convolutional block, which inputs and
outputs 3-D image volumes as shown in Figure 2.13. As in the figure, x ∈ Rn×n×m

is passed through the m′ filter banks f i of filters f ij to output y ∈ Rn′×n′×m′ , such
that:

32 theoretical background

Figure 2.10.: Illustration of the convolution as a linear transformation. The
weights in a CNN are shared and locally connected throughout the
layers, contrary to the fully-connected DNN.

Figure 2.11.: LeNet, the historical first CNN.

∀i ≤ m′, yi =
m∑

j=1

f ij ∗ xj (2.14)

Figure 2.13.: Illustration of a convolutional block. A set of m′ filters are applied
to the input block. Each n×n×m block can be seen as an n×n image
with m artificial channels. For the sake of notational simplicity, we
consider a square image, which may not be the case.

Anecdotally, Equation 2.14 can be rewritten as a fully-connected DNNs’ core
element defined in Equation 2.8 using a vectorized form of the image blocks

2.3 euclidean machine learning 33

Figure 2.12.: AlexNet, the 2012 ILSVRC winner.

and a convolution matrix F representing the group of filterbanks f , which takes
a Toeplitz form: ỹi =

∑m
j=1 Fijx̃

j , with F the Toeplitz matrix of convolutional
coefficients.

2.3.2.3 Fully-Convolutional Networks

We now study a modification of CNNs which, although seemingly trivial, allows
for semantic segmentation, i.e. pixel-level, or, in the case of radar classification,
timestep-level classification: the FCN. A standard CNN such as VGG (Simonyan
and Zisserman 2015) (see Figure 2.14) typically ends with one to three fully-
connected layers, a legacy from MLPs: indeed, it seems natural to keep final rep-
resentations as vectors rather than 3-D image blocks. One disadvantage is that all
spatial relationships, which to this point were maintained in the previous convo-
lutional layers, are now lost. It is in 2016 that J. Long and E. Shelhamer introduced
the concept of FCNs (Long et al. 2015), where dense layers of size n are replaced
with convolutional layers of size 1 and depth n. This artificial transformation is re-
ferred to in the paper as the “convolutionalization trick”, illustrated in Figure 2.15.
As explained in the caption, final image blocks are feature maps, whose pixels
contain semantic information (labels). Upsampling the feature maps (typically
7× 7 in the original paper), yields pixel-level segmentation. FCNs became an ele-
gant state-of-the-art after the region-based family of CNNs: in 2013, Girshick et al.
(2014) introduced the Region Convolutional Neural Network (RCNN) algorithm,
which consists of region proposals sub-images within the image which are then
passed through a pre-trained classification network; strong final activations are
matched as semantically relevant. RCNN, followed by fast-RCNN (Girshick 2015)
and faster-RCNN (Ren et al. 2015) in 2015, although a huge step forward in de-
tection, lacked the unified framework and precision naturally allowed by FCNs,
which we will in turn use for fine-grained signal classification.

34 theoretical background

Figure 2.14.: V GG neural network, second place in the 2014 ILSVRC challenge.

The convolutionalization trick consists in replacing the fully-connected layers
by 1 × 1 convolution filters, which actually sums up to a fully-connected layer,
shared across the features. Indeed, continuing Equation 2.14, we have:

(f ∗ x)n,m =
∑

k,l

fk,lxn−k,m−l

= fxn,m

⇒ ∀i ≤ m′, yi =
m∑

j=1

f ij ∗ xj =
m∑

j=1

f ijxj

(2.15)

2.3 euclidean machine learning 35

Figure 2.15.: The convolutionalization trick. The trick consists in replacing dense
layers by convolutions of size 1, which maintains end-to-end spatial
structure. The final convolutional layer can be seen as feature maps,
or downsampled versions of the input image containing semantic
information, i.e. spatial labels.

Building a FCN upon a backbone CNN is a conceptually trivial step to accom-
plish: a mere replacement of dense final layers, followed by a Global Average
Pooling (GAP) or Global Max Pooling (GMP) layer, which sums up information
from the feature maps to 1D features, necessary for classification (note that the
segmentation information is taken right before the GAP).

2.3.2.4 Batch Normalization

CNNs and other convolutional architectures owe their success to careful design of,
amongst many others parameters, the number of layers, the choice of activation
functions, the filter sizes... However, novel layers aiming to regularize, lessen
overfitting, or normalize outputs also proved to be major contributors to the
phenomenal performances brought by these architectures. Batch Normalization
(BatchNorm) is probably a most famed example of the latter, as first demonstrated
by Ioffe and Szegedy (2015) and its (to this date) 16 078 citations.

The problem tackled by BatchNorm is the intensity imbalance between different
firing neurons. While the learning of a network might favour a certain group of
neurons, some with as much underlying relevance may be left aside by the vicis-
situdes of stochastic training. The formulation undertaken by the original authors
is that of “covariate shift”: the difficulty for marginally out-of-distribution, yet
relevant examples to influence the weight updates within the network. BatchNorm

aims to a fairer learning procedure, by imposing a normalization step after each
block in the network. Concretely, given a batch of training examples, it subtracts
the batch mean, then divides by the batch standard deviation. It then multiplies
the result by a learnable scaling parameter, and adds a learnable parameter bias.

36 theoretical background

The consequence is, that whichever sub-distribution the current batch samples,
the neurons fire to a standardized output.

The BatchNorm algorithm is now a default component in many state-of-the-art
architectures. Its conception also resonates with our guiding principle of adapting
learning models to underlying data distributions; as such, the concept will be
summoned in further chapters, in a different context.

2.3.2.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) admit their foundations in the works of Ben-
gio et al. (1994) and Hochreiter and Schmidhuber (1997) originally stem from
standard perceptrons, but loop the inner states to learn on sequences of data
rather than on individual, unordered points as illustrated in Figure 2.16. Let us
recall the buiding block equation for MLPs Equation 2.8. The analog equation for
RNNs is quite similar for it only adds the hidden state time dependency; using
the notations in Figure 2.16, we have Equation 2.16:

sl+1 = xl+1Ul + slWl

ol+1 = σ(sl+1Vl)
(2.16)

Figure 2.16.: RNN with one hidden layer. The series of data points xi is passed
in sequence to the network to become hidden states si which are
function not only of xi but also of all the sj, j < i, hence of the
previous data points themselves.

RNNs do not naturally handle out time-frequency images as they are vector-
based. Nonetheless, by considering the spectrogam no longer as an image but
rather as a series of 1D spectrums, which in essence it is, we face no more concern.
Figure 2.17 shows the two different yet equivalent representations for a same
signal. In the recurrent framework, the finesse coefficient k is equal to its maximal
value τ as we are dealing with individual spectrums. We can nonetheless relax k

by adding a stride in the sequential spectrums, which amounts to subsampling
the original time-frequency representation.

2.3 euclidean machine learning 37

Figure 2.17.: Illustration of the fundamental representation equivalence be-
tween a 2D time-frequency image and a series of 1D spectrums..

We have described here a standard, or vanilla, RNN, the one major drawback of
which being what is called the problem of vanishing gradient, which we shortly
describe here. RNNs accept in theory arbitrarily long sequences, and, as any neural
network, are optimized using gradient backpropagation (specifically, the temporal
unfolding of the network leads to an algorithm more complicated, yet identical in
essence called Backpropagation Through Time (BPTT)). In a standard network, the
gradient loses an order of magnitude in its computation at each layer, and by the
time it reaches the first one it has decreased exponentially so, or vanished. RNNs
suffer from the same drawback, not only in depth but also in time. To put it in
a nutshell, a vanilla RNN has trouble learning long-term temporal relationships,
as Bengio et al. (1994) shed light on, later supported by, notably, Pascanu et al.
(2013). More sophisticated forms of recurrent networks have since been intro-
duced, the most established at the time being Long Short-Term Memory (LSTM)
networks (Hochreiter and Schmidhuber 1997) (see Figure 2.18 for a comparison
of LSTMs with vanilla RNNs) and Gated Recurrent Unit (GRU) networks (Cho et al.
2014; B. Xu et al. 2015), along with blends with CNNs (Y. Xu et al. 2017). These
architectures are widely spread in Natural Language Processing (NLP) and time
series analysis and prediction (Sutskever et al. 2011). Further developments led to
the now praised attention mechanisms in neural nets (Luong et al. 2015; Vaswani
et al. 2017). One interesting theoretical justification of LSTM’s architecture is given
in Tallec and Ollivier (n.d.), where the authors build upon vanilla RNNs by adding
invariance to slight time warpings, and end up with an architecture similar to the
LSTM.

38 theoretical background

Figure 2.18.: Illustration of a Long Short-Term Memory network. LSTMs include
a memory stream, which allows for unobtrused temporal data flow,
along with a forget gate which leaves aside unnecessary information.
Image credits to Colah’s excellent blog article on RNNs: Understand-
ing LSTM Networks – colah’s blog (2017).

Until now, evoqued models handle vector-like data in a Euclidean fashion.
As hinted in the introduction, much of our work focuses on models built on
covariance representation of the data, i.e. on data lying within a Riemannian
manifold. Although presented methods of DL are built to achieve high levels
of representative abstraction, the acknowledgement of working on a possibly
irregular grid opens up the possibility of combining the powerhouse mechanisms
of DNNs and the inherent mathematical precision of the underlying data manifold.
The curious reader may for example consult the works of Bronstein et al. (2017)
on deep graph representation. The following section is dedicated to introducing
the relevant fied of Information Geometry (IG), with the goal set in mind to fuse
the concepts of Euclidean ML together with mathematical tools on Riemannian
manifolds.

2.4

Information Geometry

Many signals reasonably lie within Euclidean spaces, where inner products and
metrics are naturally defined and simple operations such as finding a barycenter
of points are straightforwardly tractable and defined globally across the space.
However, some entities intrinsically lie within a curved "sub-space", called mani-
fold, defined by geometric, statistical or physical constraints. A simple example
is illustrated in Figure 2.19. This section deals with the notion of locally defined

2.4 information geometry 39

metrics on curved Riemannian manifolds, which generalize the concept of a flat
Euclidean space. For instance, µ-D radar signals are successive series of pulses
which can be represented as many realisations of a centered Gaussian process,
the instantiation of which verifies certain constraints. The differential geometric
study of statistical manifolds is the field of IG, for which we will introduce the
important concepts in the following paragraphs.

Figure 2.19.: The sphere: a simple manifold. In this figure, the cube is the Eu-
clidean space R3. The data however intrinsically lie on the colored
sphere, which is a manifold, i.e. can be locally approximated to its
tangent plane.

2.4.1 Riemannian manifold

Formally, a n-manifoldM is locally homeomorphic to a n-dimensional Euclidean
space, i.e. ∀{x,R} ∈ (M,R∗+),∃r ∈ R∗+ and φ ∈ I0(M,Rn) | φ(Bx,R

M) = Bx,r
Rn , where

I0(M,Rn) contains all homeomorphisms, or continuous bijections, fromM to Rn

and Bx,r
Rn is the topological ball of Rn centred in x and of radius r. The manifold

is also said to be Riemannian when it is equipped with a positive definite matrix
F (ξ) defined ∀ξ ∈ M, which is to be at least twice differentiable in ξ, such that
the local squared distance ds2 between two infinitesimallly close points ξ0 and
ξ = ξ0 + dξ can be written as:

ds2 = dξTF (ξ0)dξ, (2.17)

40 theoretical background

where we note an element on the manifold ξ = {ξ1, . . . , ξn} in a coordinate
system for one homeomorphic local Euclidean space at point x inM. We recall
as a sidenote that the previous definitions also generalize in infinite dimension
(the homeomorphic spaces are then pre-Hilbertian) and in addition for complex
values (then they are Hilbert spaces). We will detail the results for real-valued
n-manifolds.

2.4.2 Fisher information

The manifold we will put to use, is the space of multivariate centered Gaussian
laws, which we will from now on note S+

∗ , or S+
∗ (n) in a specific finite dimension

n. The elements of the manifold are then entirely characterized by the n × n

covariance matrix Σn. The parameter ξ := Σn of one such distribution constitutes
a coordinate system for the local Euclidean space. The fundamental definition of
the covariance Σ of a random vector X of dimension n is:

Σ := Cov(X,X) = E((X − E(X))T (X − E(X))). (2.18)

Above, E(X) denotes the expectation of X . In practice, given a sequence of
Independent and Identically Distributed samples {xi}i∈[1,N] of X , the Sample Co-
variance Matrix (SCM) writes:

Σ =
1

N − 1

N∑

i=1

((xi − x)T (xi − x)). (2.19)

Above, x ∈ Rn denotes the sample expectation of the time series, i.e. the mean
x =

∑N
i=1 xi. As stated before, the SCM Σ ∈ Rn×n synthesizes the data’s character-

istic features in a compact and meaningful way.

Though we will later on focus on Gaussian distributions, the following compu-
tations hold for any member of an Exponential Family (EF). First of all, it is im-
portant to introduce the Kullback-Leibler (KL) divergence, which is a widespread
tool to express how one distribution pξ1 "diverges" from another pξ2 :

DKL(pξ1 || pξ2) =

∫
pξ1 ln(

pξ1
pξ2

). (2.20)

The term "distance" would not be appropriate because D is not symmetric, nor
does it verify the triangle inequality. It is however positive and equals zero i.f.f.

2.4 information geometry 41

pξ1 = pξ2 , i.e. ξ1 = ξ2 for the same distribution family. From now on we will use
the following simplified notations: pξ ≡ p and pξ0 ≡ p0, again with ξ = ξ0 + dξ,
and we will use interchangeably a distribution and its parameter.

The KL divergence is derived from the even more fundamental concept of
Shannon entropy (Shannon C. E. 2013):

H(pξ) = −
∫
pξ ln(pξ) (2.21)

Put simply, DKL(p1 || p2) = H(p1)−H(p1, p2), which respectively represent the
entropy of p1 and the cross-entropy of p1 and p2. We will now see how equipping
M with the KL divergence effectively provides it with a Riemannian structure.
We define the function f0:

f0(ξ) = DKL(p || p0). (2.22)

As we are dealing with exponential families, f0 is indefinitely differentiable and
by definition:

f0(ξ0) = 0. (2.23)

We also have:

∇f0 = ∂ξ

∫
p0(x) ln(

p0(x)

p(x)
)dx

= 0−
∫
p0(x)∂ξ ln(p(x))dx

=

∫
p(x)

p0(x)
∂ξp(x)dx

⇒ ∇f0(ξ0) =

∫
1 ∗
(
∂ξp(x)

)
(p0)dx

= ∂ξ

∫
p(x)dx

= ∂ξ(1)

= 0

(2.24)

42 theoretical background

µ

−6 −4 −2
0

2
4

6

σ

0.6

0.8

1.0

1.2

1.4

20

40

60

80

DKL((µ0, σ0) || (µ1, σ1)) , with µ0 = 0 and σ0 = 1

Figure 2.20.: Kullback-Leibler divergence between two univariate Gaussians.
We fix a first distribution at (µ0, σ0) and plot the KL divergence from
the second to the first. We see it annuls i.f.f. (µ0, σ0) = (µ1, σ1).

By noting lx(ξ) = ln(p(x)) the log-likelihood of p, we have ∇f0 = −Eξ0(∂ξlx(ξ)),
which in p0 yields the intuitive equality Eξ0(∂ξlx(ξ0)) = 0, which means the log-
likelihood expectedly reaches a maximum at the optimal parameter ξ0. Figure 2.20

plots the KL divergence between two one-dimensional Gaussian distributions, one
being fixed, and exposes the to above cancellations. We now proceed to a second-
order Taylor expansion in p0, omitting the term in o(||dξ||2). The last two equalities
will annull orders 0 and 1, leaving only the second-order term:

f0(p) = f0(p0) + dξT∇f0(p0) +
1

2
dξT∇2f0(p0)dξ

= 0 + 0 +
1

2
dξT∇2f0(p0)dξ

=
1

2
dξT
(
−∇Eξ0(∂ξlx(ξ0))

)
dξ

=
1

2
dξT
(
− Eξ0(∂ξ∂ξlx(ξ0))

)
dξ

⇔ DKL(p || p0) =
1

2
dξTF (ξ0)dξ.

(2.25)

2.4 information geometry 43

F is the Hessian matrix of f0, and specifically F (ξ0) = −Eξ0(∂ξ∂ξlx(ξ0)) is the
Fisher Information Matrix (FIM) F (p0) of p0. In other words, the Hessian of the
entropy is the Fisher matrix of the distribution. To be exact, the formal and equiv-
alent definition at index level of the FIM for a distribution p is:

Fij(p) = Eξ(∂ilx(ξ)∂jlx(ξ))

=

∫
p∂i ln(p)∂j ln(p)

=

∫ (
∂ip

)(
∂j ln(p)

)
, using ∂ξi ln(p) =

∂ip

p

=

∫
p∂j ln(p)−

∫
p∂i∂j ln(p) , using integration by parts

⇔ Eξ(∂ilx(ξ)∂jlx(ξ)) = −Eξ(∂i∂jlx(ξ)) , using Eξ(∂ilx(ξ)) = 0 (Equation 2.24),
(2.26)

where ∂i abbreviates the operator ∂ξi . The above equations show the compliance
of the KL divergence with a Riemannian structure as defined in Equation 2.17. The
equations presented above show that, given a definition of entropy and divergence
between distributions, we can build a notion of local metric on the distribution
manifold. These remain valid for any EF; the following subsection studies the
induced metric on the family of Gaussian distributions.

2.4.3 Explicit computation of the Riemannian metric on Gaus-
sian distributions

To summarize, we have showed that the manifold of centred Gaussian laws admits
a Riemannian metric which is the FIM. Typically, in E = Rn, we define < · | · > :

E2 −→ R as < x | y > =
∑n

i=1 xiyi. The induced metric is then || · || : E −→ R+ as
||x|| =

√
< x | x > . Considering manifoldM, the metric is local to each point ξ

and its tangent hyperplane Tξ, where < ξ1 | ξ2 >ξ = (ξ2− ξ1)TF (ξ)(ξ2− ξ1), where
F (ξ) is the FIM of ξ. In particular, for ξ1 = ξ, < ξ2 | ξ >ξ = ∇2

|ξDKL(· | ξ).

We now explicitly compute the FIM for Gaussian distributions by finding the
Hessian of its entropy, which is known and easily derivable from the distribution’s
expression.

∇2ln
(
(2πe)ndet(Σ)

)
= ∇Σ−1. (2.27)

This in turn amounts to the natural local inner product of two symmetric
matrices S1 and S2 on the tangent plane to any on covariance matrix P ∈ S+

∗ :

44 theoretical background

< S1 | S2 >P= Tr(S1P
−1S2P

−1), (2.28)

From there, integration along the shortest pathleads to the geodesic distance
between two Symmetric Positive Definite (SPD) matrices P1 and P2, located any-
where on the manifold, also called Affine Invariant Riemannian Metric (AIRM),
defined using the Frobenius norm || · ||F :

δR(P1, P2) =
1

2
|| log(P

− 1
2

1 P2P
− 1

2
1)||F . (2.29)

The alert reader may note that while the above metric is the correct one from
the information geometric viewpoint, it is notoriously computation-heavy, mostly
because of the involvement of eignevalue decomposition of symmetric matrices.
Other metrics or divergences, either closely approximate it or provide an alter-
nate theoretical apporach, while contributing the highly desirable property of
lightweight computational complexity, especially in the modern context of ma-
chine learning. Notable examples may include the usage of the Fisher-Bures met-
ric (Sun et al. 2019), the Bregman divergence (Boissonnat et al. 2010; Siahkamari
et al. 2019; Banerjee et al. 2005), and optimal transport (Arjovsky et al. 2017).

Nonetheless, the AIRM remains a founding cornerstone for the exact study of
covariance matrices on their correct manifold. Contrary to the local metric, related
to the asymmetric KL divergence, it is a valid, globally-defined metric, usable as
is within potential contenders for learning algorithms. This connection between
entropy and differential metrics was first made in 1945 by Rao (1992) and in
1943 by Fréchet (1943), and further axiomatized in 1965 by Cencov (2000) and
the 1976 confidential reportby S.T. Jensen cited in the works of Atkinson and
Mitchell (1981). The keen reader may refer to Atkinson and Mitchell (1981) for the
detailed derivations relative to the AIRM, and Burbea (1984) and Skovgaard (1984)
for further details and proofs. We now move on to studying the link between the
Riemannian metric and the manifold’s tangent bundle.

2.4.4 Tangent space

The concept of tangent space allows for local Euclidean bearings, but to utilize
it to its full extent we must define how to project points from the manifold to
the tangent space and vice-versa, as is visualized in Figure 2.21. A Riemannian
manifold defines a tangent space at each point; the set of all tangent spaces is
referred to as the tangent bundle.

2.4 information geometry 45

Figure 2.21.: Manifold mappings. This figure illustrates the mappings between
the manifoldM and the tangent space TG in G. The bijection from
M to TG is called logarithmic mapping, and its reverse exponential
mapping.

Moreover, at each point G, there exists a mapping operator to project from
the manifold to the tangent space at this point, and its inverse. These are the
exponential mapping and the logarithmic mapping, which are known in closed
form on the manifold of SPD matrices S+

∗ :

∀S ∈ TG,ExpG(S) = G
1
2 exp(G−

1
2SG−

1
2)G

1
2 ∈M

∀P ∈M,LogG(P) = G
1
2 log(G−

1
2PG−

1
2)G

1
2 ∈ TG.

(2.30)

In Equation 2.30, exp and log are the matrix exponential and logarithm func-
tions, that is:

∀A ∈ S+
∗ such that A = Udiag(λi)U

T , U being an orthonormal diagonalising basis of A,

exp(A) = Udiag(exp(λi))U
T

log(A) = Udiag(log(λi))U
T

(2.31)

Notice non-linear operations intervene in the mappings’ definitions: inverse
matrix, square root; in fact, for symmetric matrices, these all reduce in complexity
to eigen-decomposition, followed by the operation being applied on the vector
of eigenvalues. Furthermore for SPD matrices, the Singular Value Decomposi-
tion (SVD), more stable and faster can replace the eigen-decomposition, as its
eigenvalues are by definition strictly positive.

These two mappings are fundamental to the geometric understanding of the
manifold, as they provide a bridge from a curved Riemannian setting to a stright

46 theoretical background

Euclidean one. For instance, taking the reference point as the identity matrix, the
mappings equate to the standard matrix log and exp functions, which tells us the
set of symmetric matrices is spanned by the log of SPD matrices. As a sidenote,
which will eventually be developed upon in further chapters, this correspondance
at the identity matrix defines a particular metric, the Log-Euclidean Metric (LEM).

The algorithmic consequence of these mappings, is they open the possibility
of implementing learning methods in a Euclidean setting on the tangent space
of some given reference point, which is a key feature of tremendous importance,
illustrated throughout the various methods exposed in the following section on
Riemannian ML.

2.5

Riemannian Machine Learning

In this section we describe the generalization of standard ML algorithms from
Euclidean spaces to Riemannian manifolds. In fact, we limit ourselves to S+

∗ , the
manifold of SPD matrices, in order to be able to fully derive the actual algorithms
used later on. Moreover, we make an important distinction between the presented
methods: on the one hand, some act directly upon manifold objects; on the other
hand, some summon IG as a refinement to an otherwise Euclidean method. In
this thesis, we rather use the first category, as the objects we consider are co-
variance matrices. We therefore describe three such methods: two non-parametric
neighbour-based, and Tangent Space Linear Regression (TSLR). Finally, to illustrate
the second category, we describe the better-known natural gradient.

2.5.1 Nearest neighbours in Riemannian space

Being now equipped with a Riemannian metric and manifold mappings, we will
now build the very simple machine learning algorithm seen previously, the k-NN

algorithm, only this time adapted to manifold-valued data, specifically here SPD

matrices. Given the dataset D of pairs {Pi, yi}i∈[1,N], we now classify new points
according to the AIRM defined in Equation 2.29. We showcase the process in its
basic form in Algorithm 2.1.

2.5 riemannian machine learning 47

Algorithm 2.1 Riemannian k-NN algorithm on SPD matrices.

Require: Dataset D := {Pi, yi}i∈[1,N], new data point to classify P
1: L← [0, 0]N // List to store distances to and labels of neighbours
2: for i ∈ [1, N] do
3: Li ← [δR(Pi, P) , yi]
4: end for
5: sort↓(L[:, ·]) // sort↓ sorts a list in descending order
6: y ← mode(L[·, 1 : K]) // mode returns the most frequent element of a list
7: return y // Label of P

2.5.2 Karcher algorithm for nearest Riemannian barycenter

Similar to above, we can also define the nearest barycenter algorithm in the Rie-
mannian setting. Given a dataset D of N covariance matrices Pi spread in C

classes, the latter takes place in two steps:

• Compute the barycenter for each class;

• Classify new points to the closest barycenter.

The first subtlety here is, while it may be possible to use the arithmetic mean
1
N

∑
i∈[1,N] Pi, we will rather use the more geometrically appropriate Riemannian

barycenter G, also known as the Fréchet mean (Yang et al. 2010a) or geometric av-
erage, which we also note Bar({Pi}i∈[1,N]) or Bar(D). The Riemannian barycenter
has shown strong theoretical and practical interest in Riemannian data analy-
sis (Pennec et al. 2006), which justifies its usage in this context. By definition, G
is the point on the manifold that minimizes inertia in terms of the Riemannian
metric defined in Equation 2.29:

G = Bar({Pi}i∈[1,N]) := arg min
G∈S+

∗

N∑

i=1

δ2
R(G,Pi). (2.32)

When the metric δ is Euclidean (i.e. based on a standard, globally-defined
inner product), the minimization is tractable and leads to the arithmetic mean.
However when it is Riemannian (i.e. based on a locally-defined inner product), it
isn’t (except in certain configurations, for instance in the centred Gaussian case,
when the dimension is 1 or 2). The definition above is trivially extensible to a
weighted Riemannian barycenter, noted Barw({Pi}i∈[1,N]) or Barw(D), where the
weights w := {wi}i∈[1,N] respect the convexity constraint:

48 theoretical background

G = Barw({Pi}i∈[1,N]) := arg min
G∈S+

∗

N∑

i=1

wi δ
2
R(G,Pi) , with

{
wi ≥ 0
∑

i∈[1,N] wi = 1

(2.33)

When N = 2, i.e. when w = {w, 1 − w}, a closed-form solution exists, which
exactly corresponds to the geodesic between two points P1 and P2, parameterized
by w ∈ [0, 1] (Bonnabel and Sepulchre 2010):

Bar(w,1−w)(P1, P2) = P
1
2

2

(
P
− 1

2
2 P1P

− 1
2

2

)w
P

1
2

2 , with w ≥ 0. (2.34)

Unfortunately, when N > 2, the solution to the minimization problem is not
known in closed-form, whether weighted or not: thus G is usually computed
using the so-called Karcher flow algorithm (Karcher 1977; Yang et al. 2010b),
which we chiefly describe in Algorithm 2.2 and illustrate in Figure 2.22. In short,
the Karcher flow is an iterative process in which data points projected using the
logarithmic mapping (Equation 2.30) are averaged in tangent space and mapped
back to the manifold using the exponential mappings (Equation 2.30), with a
guaranteed convergence on a manifold with constant negative curvature, which is
the case for S+

∗ (Karcher 1977). The initialization of G is arbitrary, but a reasonable
choice is the arithmetic mean. Another point of interest is that selecting K = 1

(that is, only one iteration of the flow) and α = 1 (unit step size) in the Karcher
algorithm (Algorithm 2.2), corresponds exactly to the barycenter from the LEM

viewpoint (Pennec et al. 2006).

Algorithm 2.2 Karcher flow Karcher 1977 to compute the Riemannian mean of
N SPD matrices.
Require: data points {Pi}i∈[1,N], iterations K, step α

1: G←∑
i∈[1,N] Pi

2: for k ≤ K do
3: G← 1

N

∑
i∈[1,N] LogG(Pi)

4: G← ExpG(αG)
5: end for
6: return G

Once the geometric mean is known for all classes, we simply pick the one
with the smallest geometric distance for a new point to classify. It is interesting
to note (and easy to derive) that the geometric mean in S1 = R+

∗ does corre-
spond to the definition learnt in highschool: Gc =

√
x1 · · ·xNc . The nearest Rie-

mannian barycenter, also named Minimum Riemannian Distance to Riemannian
Mean (MRDRM) in works such as in Barachant et al. (2012), achieves state-of-
the-art results in certain fields of highly structured time series data, notably in

2.5 riemannian machine learning 49

Figure 2.22.: Illustration of one iteration of the Karcher flow (Karcher 1977).
Data points Pi are logarithmically mapped to the Si on the tangent
space at G(t). The Si are then arithmetically averaged, the result of
which is exponentially mapped back to the manifold, yielding G(t+1).

BCI applications. Also, pioneering works such as Yger and Sugiyama (2015) for
electroencephalography (EEG) modelisation, or Yang et al. (2010b) for radar classi-
fication, make use of a MRDRM scheme to reach high performance with relatively
lightweight machinery. Nearest baryencter schemes still remains a simple algo-
rithm from the ML viewpoint, which strongly encourages the usage of IG in ML

applications, allowing models better fit to the inout data and its inherent physical
conditioning.

2.5.3 Tangent space linear regression

The generalization of nearest neighbours to manifolds was straightforward once
the appropriate tools were identified and known, i.e. the metric, and, perhaps
less trivial, the Riemannian barycenter. Nonetheless, their non-parametric nature
helped bridge the gap quite effortlessly. On the other hand, parametric learning
methods are by design often specifically built for Euclidean spaces: in the found-
ing case of linear regressions, the algorithms’ parameters involve projecting to
seperating hyperplanes, a tricky notion in manifolds. The key idea to convey
here is that one can circumvent this mathematical obstacle by instead project-
ing the manifold data to the tangent bundle, through the logarithmic mapping
defined in Equation 2.30, and setup the linear regression in this now Euclidean
space: this procedure is called TSLR, and is successfully used in the analysis of
highly-structured data, such as in BCI (Barachant et al. 2012; Barachant et al. 2013).
The choice of projection anchor is thus of prime relevance. One could default
to the identity matrix by lack of better choice. However, chosing a point better

50 theoretical background

suited to the data could perhaps enjoy better final performances: for instance, the
Riemannian barycenter of the studied data points seems a promising candidate.

In the case of covariance matrices {Pi}i∈[1,N], we now know how to build the
Riemannian barycenter G using the Karcher flow (Algorithm 2.2). The manifold
points Pi are then mapped to vectors si as such:

si ← vec

(
G

1
2 log(G−

1
2PiG

− 1
2)G

1
2

)
. (2.35)

Then, any linear method, such as SVM or logistic regression can be applied to
the transformed problem. The projection can even be reformulated as a kernel
transform, as shown in (Barachant et al. 2013), which paves the way for further
generalizations.

2.5.4 Natural gradient

We have seen how the standard, Euclidean gradient works: to rephrase it synthet-
ically, we simply choose, in the parameter space, an optimal direction vector ν∗

on an ε-ball around current parameter θ such that it minimizes the loss function l:

ν∗ = arg min
d(θ,ν)=ε

l(θ + ν). (2.36)

The optimization yields the negative gradient (−∇θl) of the loss w.r.t. the pa-
rameter, thus the descent reads:

θ ← θ − α ∇θl. (2.37)

Above, α is the learning rate.

In gradient descent, the result is dependent on the topological shape of the ε-
ball around θ. In this Euclidean version, which constitutes the industry standard,
this ball is isotropic as it is defined by the Euclidean metric. However, we have
also learned from the section on IG that the Euclidean metric is an ill-advised
candidate for studying distributions: rather, the natural, Riemannian metric δR
inherent to the distribution’s underlying manifold should be used. In this context
of optimization on an ε-ball, the infinitesimal version of the metric suffices, i.e.
by construction the KL divergence, or equivalently the second-order term of the
Taylor expansion, which involves the FIM G(θ) of l(θ) (recall Equation 2.25). The
feasible surface of the problem now follows the curvature of the distribution’s
manifold:

2.5 riemannian machine learning 51

ν∗ = arg min
DKL(θ|ν)=ε

l(θ + ν). (2.38)

We now solve Equation 2.38, by first writing its Lagrangian form, using the
equivalence between the KL divergence and the Taylor expansion and also devel-
oping the loss function to the first order:

ν∗ = arg min
DKL(θ|ν)−ε=0

l(θ + ν)

⇔ ν∗ ∼ arg min
ν

l(θ) + (∇θl)
Tν + λ

(
νTG(θ)ν − ε

)
(Lagrangian)

⇔ 0 = ∇νl +∇θl + λG(θ)ν (setting the gradient w.r.t. ν to zero)

⇔ − λG(θ)ν = 0 +∇θl (l only depends on θ)

⇔ ν = −1

λ
G−1(θ) ∇θl (we assume invertibility)

(2.39)

We can now finally write the natural gradient update:

θ ← θ − αG−1(θ)∇l(θ). (2.40)

The resolution above reveals the gradient update is distorted by the inverse
Fisher matrix, i.e. the Cramer-Rao bound of the distribution family parameterized
by θ. The FIM being the Hessian of a convex function, the operation can be seen as
an orthonormal basis change: to complete the link with IG concepts, this amounts
to rigidly transforming the canonical Euclidean space to the tangent plane of the
manifold at θ. Again, this manifold represents the feasible distributions accord-
ing to l(θ) - in the case of a neural network distribution, it is referred to as the
neuromanifold, first introduced by Amari (1998), and perhaps made popular in
CV by (Pascanu and Bengio 2014).

Notice the resemblance of the natural gradient with second-order optimiza-
tion, notably Newton’s method, where the FIM is replaced by the Hessian of the
loss (Boyd and Vandenberghe 2004). It is interesting to note the two methods are
mathematically equivalent for the logistic regression, one single-layered percep-
tron, presented previously, although in general they are not. They do however
share the prohibitively computational cost of high-order methods: while the stan-
dard Stochastic Gradient Descent (SGD) requires O(n) operations (n being here
the dimension of θ, in other words the number of scalar parameters), the former
typically require O(n3). While computational improvements along with attempts
to democratize the Riemannian gradient, it remains to this day a niche method,
seldom used in DL applications.

52 theoretical background

Yet again, the full potential of such Riemannian methods based on IG seems yet
rather unexploited by the general community. These methods show great theoret-
ical and practical advantages, and strongly hint to the possibility of successfully
applying them to structured data, a hint we will make sure to follow in the next
chapter.

2.6

Conclusion

In this chapter, we gave an overview of radar data formation and structure, Eu-
clidean Machine Learning, Information Geometry, and finally Riemannian Ma-
chine Learning. With the presented tools at hand, we are now able to imagine an
inceptive framework to perform, say, micro-Doppler radar classification.

Given a signal, which we may sensibly represent as a real-valued spectrogam,
we can build a vector form out of it, and train, for instance, a Multi Layer Percep-
tron on the dataset. Recall that a single-layered perceptron is equivalent to logistic
regression, which can serve as a baseline algorithm. Of course, doing so destroys
the structure of the data from the start, which defies the guiding principle behind
our works. It is however a valid approach used in the literature, which we will
compare against.

Following the same example, a finer method would consist in interpreting the
spectrogam as a time series of spectra. In this scenario, an individual spectrum
takes a vector form, and a sequence of such can be modelled by any form of
Recurrent Neural Network. Alternatively, one may consider joint temporal and
frequential locality, i.e. interpret the spectrogam as an image, to be modelled
through a Convolutional Neural Network. In both cases the structure of the signal
is taken into account within the learning models.

While using convolutional architectures on micro-Doppler data constitutes a
conceptual improvement over the naive purely vectorial approach, treating the
time and frequency dimensions in a symetric fashion proves an infringement to
their inherent physical difference. To this end, designing rectangular (as in, non
square) filter banks allows to better control each dimension’s behaviour within
the network; using separable convolutions would push the concept further by
handling time and frequency independently. Moreover, as it sometimes happens
in Computer Vision, inputs may have different shapes; this is even more common
in radar signals, where the acquisition pipeline, as well as the tracking of non-
cooperative targets, potentially leads to a high disparity in signal durations. Here,
a standard Convolutional Neural Network might strugle to handle this variability,

2.6 conclusion 53

to the point of malevolently discarding it in the final fully-connected layers. This
issue justifies the use of Fully Convolutional Networks, which we also described
in the chapter. To repeat the main interest of the Fully Convolutional Network, the
temporal structure of the input data is preserved throughout the whole network,
allowing a fine-grained classification - in fact, we will see later on it is possible to
exactly control the temporal resolution of the network.

The above developments give a first example of adapting popular notions
in Machine Learning to the structure of data. In the case of radar data, this
kind of approach had not yet been thoroughly explored: while Convolutional
Neural Networks and Recurrent Neural Networks had indeed been used, filter
bank design and temporal resolution analysis was non existent; we will argue
these notions are key to implementing more efficient models, which perform
better while remaining relatively lightweight. Specifically, we will demonstrate
the development of a Fully Temporal Convolutional Network (FTCN) adapted to
the structure of the data, based on the key elements described throughouth this
chapter. Moreover, this architecture will be expanded in to the complex domain,
pushing further the potential power and flexibility of these new deep architectures,
named CR Neural Network (CRNet) and Fourier Neural Network (FourierNet).

Going further on, we will also harness the strengths of Information Geometry
to directly study the underlying distribution of the data; specifically, centered
Gaussian distributions, characterized by their Sample Covariance Matrix. To this
end, we will make use of Riemannian Machine Learning models presented above,
along with a covariance-based Riemannian neural model, and go even further by
proposing to unite in both Euclidean and Riemannian models in a single classi-
fication pipeline, thus leveraging the data’s structure from multiple angles. This
pipe-like model, which we call Second-Order Fully Temporal Network (SOFTNet),
is expected to gather the best from both Euclidean and Riemannian worlds, i.e.
yield competitive performance on large datasets while remaining robust to the
lack of data, a key issue throughout our studies, as previously stated.

The final chapter of the thesis will focus on the deep covariance-based models,
making use of the IG knowledge to propose novel layers and improve upon ex-
isting architectures. Concretely, we will first generalize to the AIRM mathematical
framework presented in this chapter of a key layer to the main existing deep
SPD architecture, yielding a Data-Aware Mapping Network (DAMNet) architec-
ture. We then further generalize the DAMNet to a Riemannian BatchNorm algo-
rithm respecting the manifold’s geometry, amounting to the Batch-Normalized
SPDNet (SPDNetBN) architecture, which thus posses another level of regulariza-
tion compared to the original models. All improvements are based on knowledge
of the distribution’s underlying manifold, such as notions of manifold mappings
or Parallel Transport (PT), allowing for models intrinsically better fit to the data.

54 theoretical background

A proposal of convolutional SPD architecture will also be described, in resonance
with the convolutional nets described in this chapter.

The detailed presentation of the proposed Fully Temporal Convolutional Net-
work and complex-valued counterparts, the base Riemannian model and the full
SOFTNet pipeline is the subject of Chapter 3. Then, Chapter 4 proposes the theo-
retical and practical improvements on the covariance-based neural model.

C
h

a
p

t
e

r 3
S E C O N D - O R D E R P I P E L I N E F O R T E M P O R A L
C L A S S I F I C AT I O N

Chapter abstract
This chapter is purposed to disentangle the possible dilemma arising from
the multiplicity of valid representations and associated learning models intro-
duced in the previous chapter in the context of temporal signals. The chapter’s
overall contribution is to show how we can make use of all representations
in a single pipeline incorporating both Euclidean and Riemannian learning
frameworks. To achieve this end, we first describe a deep Riemannian learning
model, specifically a neural network operating directly on Symmetric Posi-
tive Definite (SPD) matrices. We then show how to combine the Euclidean
models operating on first-order components (raw signal, time-frequency repre-
sentation), and the Riemannian model operating on second-order components
(covariance matrix), which we refer to as Second-Order Fully Temporal Net-
work (SOFTNet). We also demonstrate experimentally the compound benefits
of this pipeline model, compared to its elementary components.

55

56 second -order pipeline for temporal classification

Contents
3 .1 Introduction . 57
3 .2 Learning on structured time series representations 59

3 .2 .1 SPD neural networks . 59

3 .2 .2 Fully Temporal Convolutional Network 62

3 .2 .3 Complex Fully Temporal Convolutional Network 66

3 .2 .4 HPD neural network . 68

3 .3 Full pipeline for temporal classification . 71
3 .3 .1 The Fourier convolution layer . 71

3 .3 .2 Pipeline bifurcations . 72

3 .3 .3 Covariance pooling . 74

3 .4 Experimental validation . 75
3 .4 .1 Drone micro-Doppler radar data simulator 77

3 .4 .2 Experiments and results . 80

3 .5 Conclusion . 91

3.1 introduction 57

3.1

Introduction

The first part of this chapter makes use of the structured time series representa-
tions, along with the possible learning models introduced in the previous chapter.
Succintly, a temporal signal such as micro-Doppler (µ-D) data can take a variety
of forms, each one highlighting a different set of properties within the signal.
Established references in the signal analysis community, such as Flandrin (1998)
and Hlawatsch and Auger (2013). The second part shows the collaboration of
these representations and associated models in a single pipeline for temporal
classification, along with experimental comparisons on µ-D radar signals.

The raw signal, as a time series of phase and amplitude, doesn’t reveal much
information to the naked eye. It does however house a rather rich family of seman-
tic features, potentially revealing information of key relevance about the signal.
Building a hierarchy of layers to construct an even more compact and meaning-
ful feature representation certainly would benefit to the subsequent classification
task. Learning models adapted to this kind of representation include Recurrent
Neural Networks (RNNs) and 1D or 2D Convolutional Neural Networks (CNNs).

The spectral representation obtained through the Fourier transform, on the
other hand, yields a synthetic view of frequency information throughout the
signal. Global trends in the signal’s overall behaviour are easily spotted, which
makes the spectral representation a more favourable candidate for representing
the signal. Because it posseses the same structure as the raw signal, similar models
can be used on the spectral representation.

However, a fully spectral feature space, by construction, drops all temporal
information. More than the overall frequency information, it is perhaps in the
fluctuation of such information that resides the most discriminative features, even
more so in a context of challenging data with a wide and interlaced spectrum of
behavioural activity, such as in Non-Cooperative Target Recognition (NCTR) on
drone µ-D radar data. As such, a windowed Fourier transform seems to constitute
the resolving compromise , by providing an effective time-frequency representa-
tion of the signal: there, local trends in frequency are seen evolving through time.
See for instance Stoica and Moses (2005) and Moruzzis and Colin (1998) for a
background review of learning models on µ-D data.

The two dimensions embodied by time and frequency add a layer of structure
in the data: while Recurrent Neural Network (RNN) are still an option, Computer
Vision (CV) literature strongly hints towards the usage of 2D CNNs. However,
the locality found in the time-frequency “image” is not symmetric as the spatial

58 second -order pipeline for temporal classification

locality in actual images: time and frequency don’t spawn the same space. While
omitting this fact is entirely an option, taking it into account during architecture
design could perhaps lead to more efficient models. Previously cited literature
generally does not take this step; while CNNs and to a lesser RNNs exist for µ-D

classification, the architectures are more often than not taken directly off the shelf.

As already stated in previous sections, a companion notion to the Fourier trans-
form is that of covariance; like the Fast Fourier Transform (FFT), it allows for a
compact representation of trends within the signal. By examining the underlying
Gaussian process, the Sample Covariance Matrix (SCM) resulting from the signal
thus constitutes a highly-structured, promising representation to make use of in
learning models. As was also mentioned before, its inherent Riemannian struc-
ture calls for carefully constrained design on the manifold of centered Gaussian
distributions, i.e. the manifold of Symmetric Positive Definite (SPD) matrices S+

∗ .
While some models have been presented in the previous chapter, we will rather
rely on a Deep Neural Network (DNN)-like formulation of the problem, and base
our works on a so-called SPD neural network (SPDNet), introduced by Huang and
Van Gool (2017). To the best of our knowledge, such an SPD architecture has not
yet been adapted to time-frequency data, as we will here do.

Before concluding the chapter’s introduction, we would like to remind, that
while the proposed models theoretically fit any structured time series data, the
experimental validations are centered around µ-D radar data classification. As
asserted in the introduction and Chapter 2, radar data is plagued by the cost
of its acquisition, its inherently sensitive nature, along with the variety of differ-
ent physical configurations. It thus and ends up a rather rare commodity. This
particular characteristic, shared with many real-life applications (medical data
being a prominent example), beg for solutions, not all found within the powerful
machinery of DNNs. As previously intuited, Riemannian models fitting to the
underlying data manifold hopefully allows for more efficient learning. Moreover,
the simulation of data is a parallel track to attempt at filling the missing gaps
needed to leverage the full expressiveness of deep models. In this context, we also
propose a drone µ-D radar data simulator.

To summarize our proposed contributions:

• A Fully Temporal Convolutional Network (FTCN) designed to respect the
temporal structure of the data;

• Two closely resembling complex declinations of the FTCN, notably:

Ý A CR Neural Network (CRNet), with a design inspired from signal
analysis principles;

3.2 learning on structured time series representations 59

Ý A Fourier convolution layer, allowing the training from raw complex
temporal data, yielding a Fourier Neural Network (FourierNet) archi-
tecture;

• A full pipeline for structured time series classification, combining multiple
representations and models;

• A µ-D drone radar simulator to allow for extensive experimental studies;

• Validation, comparison and interpretation of the various models, on both
simulated and real data.

The chapter begins in Section 3.2 by a description of the proposed models on the
different representations, from the SPDNet on covariance matrices to the CNN archi-
tectures adapted to the time series data. Then, Section 3.3 introduces the proposed
classification pipeline, the Second-Order Fully Temporal Network (SOFTNet)
model. We end the chapter in Section 3.4 with the experimental validations, along
with the description of our drone simulator.

3.2

Learning on structured time series representations

As we have seen, time series data can be seen from various viewpoints, all rooted
in sound theoretical background, and different learning models may operate in-
dependently on the different representations. Since the experimental model vali-
dations rely on µ-D radar data, we will also generalize the framework to complex-
valued data. We begin with the SPDNet on covariance matrices. We then introduce
a FTCN deep architecture on real-valued time-frequency representations, i.e. spec-
trograms. Finally, we generalize the latter to the complex domain, and by doing
so exhibit a formal link between CNN architectures operating on the time series
on the one hand, and on a time-frequency representation on the other hand.

3.2.1 SPD neural networks

The SPDNet architecture mimics that of classical neural networks with a first stage
devoted to compute a pertinent representation of the input data points and a
second stage which allows to perform the final classification. The particular struc-
ture of S+

∗ , the manifold of SPD matrices, is taken into account by layers crafted

60 second -order pipeline for temporal classification

Figure 3.1.: Illustration of the BiMap layer
The input manifold is transformed to a lower-dimensional, more discriminative
one.

to respect and exploit this geometry. Layers introduced in Huang and Van Gool
(2017) are recalled in the following paragraphs.

Bilinear Mapping layer In analogy to the classical linear layer, the Bilinear
Mapping (BiMap) layer transforms a SPD matrix P (of size n) at layer (k − 1) to
a SPD matrix X (of size n′) at layer (k), which we wish to be more compact and
discriminative in terms of the final loss function, via a basis matrix W of Gl(n, n′)
(the group of left-invertible matrices of size n × n′) as illustrated in 3.1. Note
that n′ ≤ n is required to guarantee W ’s full-rank, thus the positive definiteness
of the output matrix. However, Gl(n, n′) being a group of matrices unbounded
in norm, optimizing on it constitutes a threat of gradient divergence. Thus, as
in Huang and Van Gool (2017), the transformation matrices are constrained to the
compact manifold of semi-orthogonal matrices, also known as Stiefel manifold,
noted O(n, n′). Finally, the forward pass of the BiMap layer is expressed as follows:

X(k) = W (k)TP (k−1)W (k) with W (k) semi-orthogonal (3.1)

Rectified Eigenvalues layer Inspired from the Rectified Linear Unit (ReLU) –
perhaps the most popular activation in DNNs (B. Xu et al. 2015) – Huang and
Van Gool (2017) introduce the Rectified Eigenvalues (ReEig) layer, which lifts small
(as in close to zero) eigenvalues to a given threshold ε. The function being applied
solely to the matrix’ eigenvalues, we first need to eigen-decompose the matrix P
as P = UΣUT , where the ortogonal matrix U groups P ’s eigenvectors in columns
and Σ is the diagonal matrix of n eigenvalues. Then, the forward ReEig layer is
expressed as follows:

X(k) = U (k) max(Σ(k), εIn)U (k)T , with P (k) = U (k)Σ(k)U (k)T (3.2)

3.2 learning on structured time series representations 61

While the ReEig acts a layer activation, another viewpoint would deem it a
regularization of the covariance’s positive definiteness. This different perspective
opens the door to considering other options for the activation, possibly inspired
from the covariance estimation, or more generally the Random Matrix Theory
(RMT) community. While not the subject here, interesting ideas improving the
notion of matrix regularization can be found in Ledoit and Wolf (2004), Ledoit
and Wolf (2012), Y. Chen et al. (2011), Tiomoko et al. (2019a), Tiomoko et al.
(2019b), Cao and Bouman (2009), Cao et al. (2011), and Mezzadri (2006).

Log Eigenvalues layer The first stage of a SPD neural network consists in a
stack of manifold-to-manifold BiMap+ReEig layers. Once we reach a satisfying
feature manifold, we aim to perform classification on the corresponding matrix
P . To do so, Huang and Van Gool (2017) propose to map P to a Euclidean space,
where it is possible to resort to classical Machine Learning (ML). They do so by
harnessing the work of Arsigny et al. (2006), in which the authors endow the
SPD manifold with a Lie group structure, for which the associated Riemannian
distance computed from infinitesimal integration across the associated Lie algebra,
the Log-Euclidean Metric (LEM), first introduced in Pennec et al. (2006) and Harris
(2004), reduces to the Euclidean distance between the matrix logarithms. This
particularity reveals a natural mapping from the manifold of SPD matrices to the
space of symmetric matrices via the matrix logarithm log, which is chosen as the
mapping; additionally, the resulting matrix is vectorized to an n ∗ n-dimensional
vector, an operation we note vec:

X(k) = vec(U (k) log(Σ(k))U (k)T) , with P (k) = U (k)Σ(k)U (k)T (3.3)

We illustrate such an SPDNet architecture in Figure 3.2.

Transformations
Projection

Figure 3.2.: Illustration of a generic SPD neural network
Successive bilinear layers followed by activations build a feature SPD manifold,
which is then transformed to a Euclidean space to allow for classification.

These three layers sum up the inference phase of the original SPDNet. The
specifics of the backpropagation will be discussed in the following chapter. The
ardent reader may refer to Ionescu et al. (2015) and Edelman et al. (1998) for

62 second -order pipeline for temporal classification

the detailed mechanisms of an SPDNet; otherwise, the key concepts are reminded
when needed, in Chapter 4.

3.2.2 Fully Temporal Convolutional Network

Here we present the DNN for structured temporal signals. We first justify the
choice of developing a fully convolutional model, then detail the proposed ar-
chitecture and comment on its properties, notably the preservation of temporal
structure and temporal resolution.

3.2.2.1 All you need is convolutions

Interpreting a time-frequency representation as an image to be analyzed via a
CNN constitutes a first attempt at deep modelling. One first subtlety to handle is
that choosing the same representation for input signals of potentially different
lengths will lead to frequency dilution, exposed in Figure 3.3. The more natural
solution is to use the same projection instead of the same representation, e.g. a
spectrogam of fixed window size and overlap. This of course allows input data of
different dimensions, not easily handled by standard CNNs. A natural bypass is
to consider the problem as Multiple Instance Learning (MIL). In this framework,
one input data point is seen as a collection of multiple atomic instances of the
same class. Concretely, we divide spectrogams in segments of equal length, which
we denote as τ . The choice of τ is rather arbitrary, and is interpreted as the
minimal duration one must observe the signal to accurately determine its class; its
influence on results will thus be an interesting analysis. As an analogy to speech
or music recognition’s phonemes (Lee et al. 2009; Bartz et al. 2017; Dieleman and
Schrauwen 2014; Parascandolo et al. 2016; Cakir et al. 2017; Hershey et al. 2017),
we may call these atomic portions of signal “noisemes”. We thereby consider
that observing a noiseme-length signal portion is sufficient to classify the whole
signal, but that observing multiple portions is expected to boost the classification
confidence.

3.2 learning on structured time series representations 63

Figure 3.3.: Downsampling of a spectro-temporal signal. Here we choose the
same input representation, e.g. a 512 × 1024 time-frequency spectro-
gram.

From left to right in Figure 3.3:

• the spectrogram of the original signal;

• that of the same signal downsampled four times;

• that of the signal downsampled sixteen times.

We observe how projecting to the same frequency domain signals of different
intrinsic time length yields dilutions in frequency, which in turn unavoidably
leads to bad classification.

Although convolutions do preserve temporal structure, the final layers of a typ-
ical CNN being fully-connected, that structure is lost, precisely when we reach the
most representative feature spaces in the network. The conservation of the tem-
poral structure requires the usage of a FTCN, described in the previous chapter.

3.2.2.2 Deep architecture for temporal classification

The desirable consequence of being fully convolutional is that, having transformed
the time series to a deep feature representation through the network’s layers, these
learnt features can also be modelled and analysed as a final temporal representa-
tion of the signal; for instance, it now becomes possible to study their covariance
matrix, which will constitute a cornerstone for our future classification pipeline.

The resulting architecture, which as mentioned above focuses on µ-D radar data,
is illustrated in Figure 3.4. Such a network, which we may name FTCN, naturally
allows input signals of varying length, and outputs temporal feature maps when
fed with longer signals.

64 second -order pipeline for temporal classification

88

6

9
168

C

C

Global Average Pooling

6

9

6

9

5*1
1*1

1*1 1*1

64 64

Figure 3.4.: The proposed architecture for radar signal classification. The boxes
represent the successive filter banks. Horizontal is time, vertical is
frequency. Contrary to CV, where the feature maps are spatial, our
feature maps extend solely in time; the frequency domain is flattened
through the convolutions.

The choice of hyperparameters for the network directly influences the inherent
temporal precision achieved by the FTCN, in particular the filter and pooling sizes
and associated strides. Figure 3.5 gives a reminder of how strided filters work,
along with a quick intuition to the concept of receptive field. Since the FTCN is
built upon the CNN classifier, the temporal feature map length lo equals 1 when
given an input of length li = τ . We note S(li) := lo the global sizing function of the
network, composed of L layer-wise such functions Sl as defined in Figure 3.5. The
values taken by S for multiples of τ define the temporal finesse of the network,
obtained by successive receptive field overlaps. For instance, no receptive overlap,
achieved through non-overlapping strided filters, gives ∀k ∈ N∗, S(kτ) = k. In
the case of the proposed architecture, (Figure 3.4), we have:

∀k ∈ N∗, S(kτ) = SL ◦ · · · ◦ S1(kτ) = b5
2
kτ − 5

2
c+ 1 := b(k − 1)fτc+ 1 (3.4)

3.2 learning on structured time series representations 65

Figure 3.5.: Illustration of how strided filters of size k and stride s work on an
input of size n. Image source: Deshpande (2017).

We introduced in the above equation the finesse coefficient f which quantifies
the super-resolution reached within a noiseme. By construction, f ∈ [1, τ], and
its explicit formula is simply f = (

∏L
l=1 sl)

−1 (sl being the stride at layer (k)). For
instance with τ = 20 and f = 5

2
, we can classify the signal every 8 timesteps

instead of 20, i.e. perform a segmentation of controled precision. The takeaway
message here is that reducing the amount of pooling and strided filters leads to
better temporal resolution. A trade-off thus arises, as strided filters are usually
seen as a way for the network to better generalize.

In Figure 3.5:

• To the left:

– Above: Standard convolution with k = 3 and n = 7 with no stride. The
output is of size n′ = n− k + 1.

– Below: Strided convolution with k = 3, s = 2 and n = 7. The output is of
size n′ = n−k

s
+ 1.

• To the right: the same concept applies for pooling: in this example we have
k = 2 = s.

In addition to stride, padding is often used to constrain the output to the same
size as the input. In general, the sizing function from layer (k) to layer (k + 1)

then reads Sl(n) := nl+1 =
⌊
nl−kl+2pl

sl

⌋
+ 1. The notion of receptive field arises from

how many pixels in the previous image the next one “sees”. In general, CNNs are
designed so that the final receptive field more or less covers the input area.

We conclude this first model description by insisting that, while the usage of
CNNs is not unheard of in the time-frequency classification literature, a fully-

66 second -order pipeline for temporal classification

convolutional architecture, designed to fit the structure of data as detailed above,
is novel. The next paragraphs generalize the described model family to the com-
plex domain.

3.2.3 Complex Fully Temporal Convolutional Network

We begin this generalization with a reminder of complex calculus. In the context
of DNNs, the backpropagation involves defining gradients of complex-valued
functions, which are non-holomorphic, i.e. which requires itself a generalization
from the usual framework.

3.2.3.1 Non-holomorphic complex calculus

It is at first tempting to handle complex numbers in CNNs by simply considering
a 2-channeled input containing the real and imaginary parts. One should however
take care of respecting the inherent structure of complex numbers; both channels
are neither independent nor interchangeable. In this section we describe how
complex numbers can indeed be handled in a 2-channel fashion given certain
constraints and interactions.

First, we establish the formal equivalence between complex numbers and 2D
real vectors as developed by Wirtinger (1927) and rediscovered by Brandwood
(1983), and later on by Bos (1994). This rather old framework is named Wirtinger
calculus, or CR calculus (Kreutz-Delgado 2009). The context of these original de-
velopments was the generalization of the complex gradient to non-holomorphic
complex functions, to which the proper conceptualisation of complex differentia-
bility is usually limited to. As such, the following equations also establish the
complex gradient operators for non-holomorphic functions, which in turn may
be used in the backpropagation phase of subsequent neural networks.

The key idea equates the Taylor expansions of a function f : z ∈ C 7→ y ∈ R
with its counterpart, which by abuse of notation is also noted f : (u, v)T ∈ R2 7→ y ∈ R;
both functions map to the same scalar y. The Taylor expansion for both forms is
written:

f(z) ≈ f(z0) +∇zfz0(z − z0) (3.5)

f(u, v) ≈ f(u0, v0) +
[
∇uf ∇vf

]
(u0,v0)

[
u0

v0

]
(3.6)

We now introduce the 2× 2 real-to-complex matrix T :

3.2 learning on structured time series representations 67

T :=

[
1 j

1 −j

]
such that:

THT = 2I = TTH

T

[
u

v

]
=

[
u+ jv

u− jv

]
=

[
x

x∗

]
:= x

(3.7)

In the equation above, ·∗ and ·H denote the complex conjugate and transconju-
gate. We can now rewrite the first-order moments of the vector function f as a
function on complex values:

[
∇uf ∇vf

]
(u0,v0)

[
u0

v0

]
=

(
1

2

[
∇uf ∇vf

]
(u0,v0)

TH
)(

T

[
u0

v0

])

:=

(
∇xfx0

)(
x− x0

) (3.8)

In the equation above, we defined the complex gradient:

∇xfx0
=
[
∇xfx0 ∇x∗fx0

]

=
[

1
2
(∇uf − j∇vf)(u0,v0)

1
2
(∇uf + j∇vf)(u0,v0)

] (3.9)

The complex gradient is composed of the complex differential operator ∇x and
the complex conjugate differential operator∇x∗ , which can then be inserted in the
backpropagation framework such as HIPS/autograd (2020) for any neural network
using the formal representation of complex numbers as 2D vectors. In the simple
case of a convex optimization problem (Boyd and Vandenberghe 2004), we see
that equating the complex vector gradient to zero is equivalent to setting either
component to zero. By chosing for instance the second component, and using the
equivalent 2D vector form, we arrive to a simpler optimization problem:

1

2
(∇uf + j∇vf)(u0,v0) = 0 (complex domain)

⇔
[
(∇uf)u0 (∇vf)v0

]
= 0 (real domain)

(3.10)

Similarly for gradient descent, we chose (∇uf + j∇vf) as the gradient to prop-
agate backwards, as done in Brandwood (1983) and Böddeker et al. (2017). Thus,
in practice, by using the CR calculus framework, it suffices to represent complex
numbers as 2-channeled inputs, design the inference layers with correct interac-
tions between the real and complex channels, and simply compute the gradient as
a 2-channeled vector to use as is during backpropagation. We refer to Trabelsi et al.
(2018) for a description of the usual CNN layers translated to the complex domain,
which we in turn implement in our proposed model. The latter builds upon the
real-valued architecture introduced in Figure 3.4; while the CR framework allows

68 second -order pipeline for temporal classification

for a purely complex network, we rather implement a semi-complex network, i.e.
the final layers stay in the real domain. The reasons for this are mainly empirical,
and detailed in the dedicated Section 3.4. The transition from real to complex
values done through the decibel (dB) function, as suggested from signal analysis
standards:

∀z ∈ C, dB(z) = 10 log10(|z|2) ∈ R (3.11)

The choice of the dB function, though guided by common practice, also em-
pirically proves useful in experiments as shown later on. See Figure 3.6 for a
description of the semi-complex model.

88

6

9
168

C

C

Global Average Pooling

6

9

6

9

5*1
1*1

1*1 1*1

64 64

Figure 3.6.: The proposed complex-valued architecture for radar signal classifi-
cation. All layers are complex, except for the final ones. The decibel
function transitions between the two domains.

This complex architecture adapts closer yet to the µ-D data structure: by preserv-
ing phase information further on than the spectrogam, it allows a more powerful
and flexible deep model for classification. While we credit Trabelsi et al. (2018)
for founding elements of deep complex networks, the architectural exploration
which is detailed further on, along with the improvement of the complex Batch
Normalization (BatchNorm) layer, in the context of truly appropriate data types
(i.e., inherently complex-valued), remains a novel orientation of the matter.

3.2.4 HPD neural network

In a similar trend to the complex-valued FTCN, and following generalizations of
the Minimum Riemannian Distance to Riemannian Mean (MRDRM) scheme to the

3.2 learning on structured time series representations 69

complex domain (Barbaresco 2013), we develop a HPD neural network (HPDNet),
designed through the same principles of Wirtinger calculus. In this section, we
present how we adapt the SPDNet layers to complex values, making use of the
previously used formal two-channel representation. We note H+

∗ the manifold of
Hermitian Positive Definite (HPD) matrices.

3.2.4.1 Formal HPD representation in a real-valued computational framework

Because calculus of non-holomorphic functions is to this day not widespread in
computational frameworks (for instance as of end 2018, complex tensors are not
integrated in the deep learning framework PyTorch Paszke et al. 2017), it remains
interesting to provide a custom integration, especially given the simplicity of the
resulting implementation. From the results derived above, we can thus represent
an HPD matrix H = H<+jH= as a two-channel SPD matrix (H<, H=). In any neural
architecture, the gradient of the loss function l involving (H<, H=) is computed
as ∇H<l + j∇H=l, which corresponds exactly to ∇H l. For this reason, it is natural
to choose ∇H l over ∇H∗l, as foreseen above. The backpropagation through the
network can therefore be done with no additional pain, using any out-of-the-box
backpropagation algorithm in a real-valued computational framework. Similar
to before, the inference still needs to respect the internal structure of complex
numbers. Below we show how to adapt the BiMap layer to H+

∗ .

3.2.4.2 Complex bilinear mapping

Here we show how to generalise the BiMap layer described previously to complex
values, using the Wirtinger formalism. First we write the complex expresison of
the bilinear mapping, then structure it to fit the CR framework:

P = WXWH

= (W< + jW=)(X< + jX=)(WH
< + jWH

=)

=

(
W<X<W

H
< −W=X=WH

< −W<X=WH
= −W=X<WH

=

)

+ j

(
W<X<W

H
= −W=X=WH

= +W<X=W
H
< +W=X<W

H
<

)

:=

[
W<X<W

H
< −W=X=WH

< −W<X=WH
= −W=X<WH

=
W<X<W

H
= −W=X=WH

= +W<X=W
H
< +W=X<W

H
<

]

(3.12)

Note that the parameter matrix is now unitary (that is, complex orthogonal),
and the transpose becomes a transconjugate.

70 second -order pipeline for temporal classification

3.2.4.3 Complex structured non-linearities

We study here the case of the non-linear structured complex functions involved in
the HPDNet, the complex ReEig and complex Log Eigenvalues (LogEig). As stated
previously, both take the form a non-linear function f acting on the an HPD matrix
P ’s eigenvalues. We assume an eigen-decomposition of P = UΣUH . Note that
although U is unitary, Σ is real because P is Hermitian. This is a very strong
result, which greatly simplifies the generalisation of aforementioned functions
to the complex setting: in fact, there is nothing in f to actually generalise, since
the input eigenvalues are already real. However, one must take care to correctly
handle the eigen-decomposition itself, separating the real and imaginary parts in
order to respect the CR formalism:

X = f(P)

= Uf(Σ)UH

= (U< + jU=)f(Σ)(U< − jU=)T

=

(
U<f(Σ)UT

< − U=f(Σ)UT
=

)

+ j

(
U<f(Σ)UT

= + U=f(Σ)UT
<

)

:=
[
U<f(Σ)UT

< − U=f(Σ)UT
=U<f(Σ)UT

= + U=f(Σ)UT
<
]

(3.13)

Using the equations above, we are now able to perform inference through the
complex BiMap, ReEig and LogEig layers. Posterior to the LogEig, a fully-connected
layer (or several) handles the hyperplanar separation for classification. At any
point in the network, it is possible to go back to R using the C2R transfer function
below:

∀H ∈ H+
∗ ,

1

2
(H< +H=) = S ∈ S+

∗ . (3.14)

This is necessary because, again, we cannot yet perform the classification in the
complex manifold. Furthermore, it is not obvious that the best performing model
would maximize the use of complex numbers; it remains of interest to study
the influence of the C2R’s positioning in the network’s hierarchy to optimize its
performance andd robustness.

3.3 full pipeline for temporal classification 71

3.3

Full pipeline for temporal classification

To sum up, we have presented various models adapted to different representa-
tions of the time series data, specifically the real-valued spectrogam, the complex
spectrogram and the covariance matrix. The cunning reader may have noticed we
have not presented a model for the raw time series data, notwithstanding the fact
we had hinted in previous sections it was possible either with 1D CNNs or RNNs.
Before moving on to the full pipeline, we first present a simple trick which allows
to partly elude this matter, and naturally integrate the 1D raw time series within
the models shown above.

3.3.1 The Fourier convolution layer

First we recall the Discrete Fourier Transform (DFT) of a discrete complex signal
z of total duration N :

∀k ≤ N, DFTz(k) =
∑

l≤N

z(l)e−2iπk l
N (3.15)

Thus, a windowed Fourier transform of length n can be replaced by a con-
volution of the signal by the n Fourier atoms, which are the n base vectors of
n-th-roots of the unit, (e−2iπk ·

n)k≤n. Attempting to learn filter banks on 1D inputs
has been used in the context of audio recognition (Lee et al. 2009; Dieleman and
Schrauwen 2014); however, while they observed the learned filters did seem to
converge to frequency-selective filters, the Fourier atoms were not used. Thus,
instead of fixing the DFT, we propose to prepend to the FTCN presented in Fig-
ure 3.6 a 1D complex convolutional layer initialized with the Fourier atoms, and
allow the weights to be learnable, i.e. we allow Fourier atoms to vary to best
accomodate the optimization crtiterion. By doing so, we allow additional flexi-
bility in the learning process, all the while utilizing the expert knowledge of a
proper time-frequency representation. We illustrate this novel convolutional layer
in Figure 3.7.

72 second -order pipeline for temporal classification

Fourier Convolution

Figure 3.7.: Illustration of the proposed Fourier-like convolutional layer. The
Fourier atoms are represented as sine waves of increasing frequency.

3.3.2 Pipeline bifurcations

We now introduce the proposed pipeline, displayed in Figure 3.8, and show how
branching through the its blocks leads to different models on the signal represen-
tations. Four global models, noted from (1) to (4) in the figure, can be extracted
from the pipeline, which we detail throughout the section.

As a first note, never bifurcating to covariance analysis, i.e. remaining on the
first row in Figure 3.8 exactly amounts to the FTCN taking as input the raw
signal, sequentially building a spectral and hierarchical feature representations.
If the DFT is allowed to be fine-tuned, we call such an architecture a filter-bank
learning network, or FourierNet; if not, we simply refer to it as a CRNet. While
the FourierNet thus consitutes a generalization of the CRNet, both correspond to
model (4) in Figure 3.8; the distinction is made to allow to see potential benefits
from learning upon the Fourier atoms.

3.3 full pipeline for temporal classification 73

Covariance

SPD layers

Classifier

Conv
FFT

Conv layers

Covariance Covariance

Classifier Classifier

Classifier
Raw complex

signal

(1) (2) (3)

(4)

SPD layers SPD layers

Figure 3.8.: Illustration of the global pipeline proposed for the classification of
time-frequency signals. Possible bifurcations to covariance analysis
stem either from the raw data, the spectral representation or the learnt
temporal features. The first convolutional layer can be either learnt
fom the data and the Fourier atoms or used as a Fourier transform.

Using a SPDNet to classify the covariance of the signal amounts to branching
out downwards in the pipeline. This can be done either at the raw signal rep-
resentation, or at the Fourier representation, whether it be a proper DFT or the
Fourier convolution. In other words, it is possible to learn on the covariance of
the raw temporal data, or on that of the spectral, Fourier trnasform of the latter.
The two resulting SPDNet models correspond to (1) and (2) respectively.

The classification in the FTCN uses Global Average Pooling (GAP) to pool the
feature maps’ temporal evolution to a single dimension. However, as mentioned
before it is possible to branch out in the pipeline at any stage, precisely thanks
to the fully-temporal property of the network. It is precisely the property of
conservation of temporal structure verified by the FTCN which allows to extract
temporal feature maps, and thus, gives the possibility to study the covariance of
these maps. Doing so hints towards a powerful representation learning model,
making use both of a potentially complex-valued Euclidean FTCN operating on
first-order moments of the data, and a Riemannian SPDNet operating on second-
order moments of the data. We thus call this particular model the Second-Order
Fully Temporal Network (SOFTNet), and illustrate it in Figure 3.9.

74 second -order pipeline for temporal classification

Fourier Convolution
Cov

Projection

SPDnet

FCN

Figure 3.9.: Illustration of the SOFTNet. This model makes use of all cited rep-
resentations for structured time series data: time, frequency and co-
variance.

3.3.3 Covariance pooling

A key module linking the first- and second-order models is the covariance pool-
ing (CovPool): given an n-dimensional signal sampled during N timesteps s =

(si)i∈[1,N], where si ∈ Rn, its covariance matrix X ∈ S+
∗ (n) is estimated as:

X =
∑

i∈[1,N]

s̄is̄
T
i (3.16)

In the equation above, often referred to as Maximum Likelihood (MLE), s̄i is the
centered version of si, i.e. s̄i = si − 1

N

∑
i∈[1,N] si.

In our context, the raw signal is univariate as it is, by construction, a scalar
complex time series. We overcome this problem by considering the raw signal
as a series of possibly overlapping windowed elementary sub-signals, introduc-
ing effective multi-variability through the length τ of the window. Thus, one si
in Equation 3.16 becomes [x(l) · · ·x(l + τ)]T . In essence, the windowing is similar
to performing a windowed filtering, and can also be represented as a convolution,
for which the weights are no longer the Fourier atoms but adequately placed
zeros and ones. Figure 3.10 further on illustrates the signal splitting.

Another problem may arise from the MLE estimation: theoretically, for X to be
regular, i.e. positive definite, it is required to have n ≥ N , i.e. to observe more sam-
ples than their dimension. This can be problematic in estimating the covariance
of the learnt features, i.e. when the si in Equation 3.16 are the FTCN’s final fea-

3.4 experimental validation 75

ture maps fi. In this scenario, the temporal sampling has been reduced through
the FTCN’s convolutions and possible poolings, while feature size could have
been set to arbitrarily large dimensions. The intent reader may refer to DeepKSPD
(2018), Acharya et al. (2018), and Yu and Salzmann (2017) for details on how to
best extrapolate covariance from CNN features: in summary, it is possible to use
robust estimators such as described in Ledoit and Wolf (2004) and Ledoit and
Wolf (2012), to split the feature maps in smaller groups, or even to introduce
an transitional convolutional layer to learn a dimension reduction suited for the
covariance pooling. In the experimental validation section below, several combi-
nations of the above were tried; without going into much detail, we give examples
of theoretically better conditioned covariance estimators used, but not cited, in
the experiments:

Σregul = (1− λ)Σ̂ + λ
Tr(Σ̂)

n
Id

Σadjust = U

(
1

α
Λ̂ + (

1− 2α

2α
)2

)
UT +

1− α
2α

1

(3.17)

In the two equations above Σ̂ is the SCM of dimension n, and Λ̂ its eigenval-
ues; Σregul tempers the covariance eigenvalues with a constant value λ = 1e−6

(typical value); Σadjust fits eigenvalues to a parametric oracle constraint imposing
regularity, with a typical value α = 0.75 and 1 a n × n matrix of ones. See the
established Scikit-learn package (Pedregosa et al. 2011), and more precisely the
documentation for covariance estimation (2.6. Covariance estimation — scikit-learn
0.22.1 documentation 2020).

3.4

Experimental validation

As stated above, we perform experiments on µ-D radar data, specifically on the
task of drone recognition. We will compare the different models performing on
the different kind of input representations (raw signal, spectrum, covariance), and
the full pipeline making use of all the latter. Before diving head-on in tables
and numbers, one must take special care to ensure fair comparisons between the
models; indeed, how does comparing the performances, for example, of a FTCN
on spectrograms against a SPDNet on covariance matrices? This concern is solved
by considering the input data processing - signal splitting, Fourier transform or
convolution, covariance pooling - as particular instances of filtering; conceptually,
it suffices to chose the same elementary duration τ for all processings to make all

76 second -order pipeline for temporal classification

comparisons fair. This is illustrated in Figure 3.10: as can be seen, the formal analy-
sis of the full signal through different representations is made possible by chosing
a temporal integration framework coherent throughout all representations. This
concept refines Figure 1.4 shown in the introduction, where the Fourier transform
and covariance pooling were performed on the signal’s global time scale.

• • •

• • •

Split signal

Fourier
transform

Raw signal

s0 sN

f0 sN

s1 sN−1

f1 fN−1

s2 sN−2

f2 fN−2

s3 sN−3

f3 fN−3

Signal covariance

Spectral covariance

Spectrogram

Figure 3.10.: Structured time series representations. The input raw signal is split
in sub-signals of elementary duration τ . From there, either Fourier
transform or covariance pooling then operate at the same time scale,
resulting in output spectrograms and covariance matrices represent-
ing the same object, and fit to be compared against in further pro-
cessings: FTCN, SPDNet, and eventually SOFTNet.

This founding issue being now addressed, we now describe in detail the bulk
of the data used in the experiments. Specifically, we propose a data generator,
which simulates the behaviour and physical properties of various drones, and
then emulates a radar wave forming upon the latter targets. We now describe our
proposed drone data simulator.

3.4 experimental validation 77

3.4.1 Drone micro-Doppler radar data simulator

Radars are a sensitive field for companies and states as they are usually involved
in defense and security. For our problem, this amounts to a lack of real data and
reproducibility. Moreover, the proliferation of Unmanned Aircraft Vehicle (UAV)
models begs for generic modelling. Building an accurate and powerful simulator
is thus key the task at hand, especially for deep learning models, which tradition-
nally require massive amounts of data, or rather close-to-exhaustive variety in the
dataset. Here, we introduce a simple yet expressive drone simulator.

3.4.1.1 A physical drone model

Firstly, the UAV is modelled by a discrete set of Np scattering points disseminated
along its physical structure. Scaterring points model the reflectance of the tar-
get, as a discrete set instead of a continuous ensemble. Figure 3.11 shows the
distribution of the scattering points, their reflection direction and Radar Cross-
Section (RCS) along with their temporal evolution. Note the model is 2D as we
consider the UAV to remain roughly in the same plane w.r.t. the radar. This as-
sumption is fairly reasonable in many situations, greatly simplifies the simulation,
and slight changes in inclination can be rather accurately modelled by variations
in the RCS.

Figure 3.11.: Evolution of the scattering points and normals for the Vario, Phan-
tom2 and S1000+ drones. The total simulation time is 250ms, of
which we only illustrate the first 3ms (corresponding to 7 frames) for
the sake of visual simplicity. The body is modelled as an isotropic
reflector whereas blades are scattered with directional punctual re-
flectors in the direction of the normals, the length of which are pro-
portional to the points’ reflectance. Notice the multicopters’ helices
alternatively turn clockwise and counter-clockwise. The 2D scale
is in meters; dimensions and distances are accurately scaled w.r.t.
reality. Time goes from red to green.

78 second -order pipeline for temporal classification

The Np scattering points moving in time yield a set of Np series of 2D coordi-
nates, which are then fed to wave equations described below. Equation 3.20 shows
the final result of raw µ-D radar signal of the body and the helices, respectively S0

and S.

The azimuth ~Az ∈ R2 of the target w.r.t. the radar varies in function of time and
the cuurent Rounds per Minute (RPM):

~Azk(t) = −2π
RPMk(t)

60
t+ ~Azk(0) (3.18)

The total angular vector ~α ∈ R2 modulating the final signal depends on the
azimuth of the target and the orientation ~n ∈ R2 (we drop the time dependency
for clarity):

αk = ~Azk − ~nk
π

180
(3.19)

Finally, the received signal S0 from the drone’s body is modelled as a trigono-
metric function of a spatial dot product of the azimuth and the positional vector
Xk of the target’s body scattering points and its RCS, and similarly for the contri-
bution S of the drone’s blades’ scattering points:

S0 =

NP0∑

k=1

√
RCSk exp

(
4iπ

fe
c

(~Xk · ~Azk)
)

S =

NP∑

k=1

√
RCSk max(cos(~Xk · ~αk), 0)sinc(2

fe
c
Lksin(~Xk · ~αk))exp

(
4iπ

fe
c

(~Xk · αk)
)

(3.20)

Finally, the signal is immersed in a noisy and cluttered environment. The noise
is unavoidable white thermic noise from the sensing mechanism, the clutter sums
up the influence the outside environment on the signal of interest; Billingsley’s
model was used to model ground clutter (Billingsley 2002). The following section
extends the simulator to account for unpredictible behavior, thereby introducing
intra-class variety.

3.4.1.2 Dataset generation

The simulator described above gives a deterministic output given one configura-
tion. Real data are however subject to multiple variations even within one single
measurement, whether it be responses to an unkown controller, alterations of
the environment or the data acquisition itself, all in all to NCTR. These variations

3.4 experimental validation 79

will define the intra-class disparity and thus the inter-class separability. Table 3.1
introduces the varying parameters as well as ranges of variations for each drone.

Drone parameters Vario Phantom S1000+
Maximal flight curvature κmax(10−4m−1) [0; 2.55] [0; 18.5] [0; 48.5]
Velocity V (m.s−1) [−10; 10] [−10; 10] [−10; 10]
Blade RPM (tr.min−1) [1445; 1655] [3000; 7000] [1500; 6500]
Body’s scattering point RCS (m2) 0.1 0.1 0.1

Blade’s scattering point RCS (10−3m2)

{ 258
230

0.796

} { 3.18
1.79
0.199

} { 11.4
8.66
0.796

}

Table 3.1.: The parameters are found or estimated from drone specifications.
Their exact values and variations still need to be heuristically estimated
in order to allow for more expressive sampling.

Maximal flight curvature is computed as being proportional to mass over carry-
ing surface, i.e. κmax = aκ

m
π∗L2

b
with aκ = 5e−8. A directional scattering point’s RCS

is computed as being proportional to the dimensions d of the surface it represents,
i.e. RCS = d2

π
. Note we have listed velocity and not radial velocity. We consider

the case where a drone alternates between straight line to circular trajectories, we
thus have Vr = ±V sin(κ(t)), where κ(t) is the curvature evolving through time.

Figure 3.12 shows intra and inter-class variations for the three drones Vario,
Phantom2 and S1000+ for a given set of representation parameters. The reader
may refer to Table 3.2 for an exhaustive list of default values. Intra-class variety
is achieved by sampling pairs of drone parameter values in the acceptable ranges
set in Table 3.1 and linearly interpolating the resulting values in time. Therefore
the parameters are defined in time as in Equation 3.21:

V (t) = V1 + (V2 − V1)
t

T
with V1, V2 ∼ U(Vmin, Vmax)

Ω(t) = Ω1 + (Ω2 − Ω1)
t

T
with Ω1,Ω2 ∼ U(Ωmin,Ωmax)

κ(t) = κ0 ∼ U(0, κmax)

Vr(t) = sV (t)� sin(κ(t)) , � being the element-wise Hadamard product and s a random spin.
(3.21)

80 second -order pipeline for temporal classification

fe (GHz) Pulse Repetition Frequency (PRF) (kHz) T (ms) Nfft ws pov
3 2.5967 250 64 20 0.5

Table 3.2.: Simulation parameters and their default values. ws is the Fourier
window size and pov the overlap percentage. The table is split in two,
to the left are radar parameters, to the right representation parameters.

Important parameters of the representation in Figure 3.12 are:

• Signal-to-Noise Ratio (SNR): 40 dB

• PRF: 8 kHz

• Simulation time T : 250 ms

• Nfft: 64 points

• Fourier window size ws = 20 points

• Window overlap percentage pov = 50%

Again, we take into account the gain in he Fourier transform. Visible temporal
variations are as accurate as possible, although exaggerated, w.r.t. reality. They ex-
hibit discriminative behaviours which we hope to capture in learning algorithms.
The reader may observe that the S1000+, under strong variations, bypasses the
allowed bandwidth set by the PRF, which leads to the well known frequency fold-
ing phenomenon (Shannon C. E. 2013), or Doppler ambiguity, which in turn can
hurt the representation’s credibility as a robust one. Unfortunately, though we
can set the parameter arbitrarily high in simulations (again, which we do here
for the sake of visual clarity), real-world radar costs constrain the PRF to possibly
sub-optimal thresholds.

We are now ready to present results upon a simulated database of µ-D radar
signals.

3.4.2 Experiments and results

Experimental setup All datasets contain N = 1000 examples for each of the
C = 3 drone classes presented in Figure 2.3, of which we reserve 25% for valida-
tion and another 25% for testing. All models are run in a 5-fold cross-validation.
Each example simulates a recording of length 250ms, i.e. 1000 sample points for a
standard PRF of 4kHz. This amounts to a total of ≈ 4 minutes of data per class, i.e.
2 minutes of training data. We choose the noiseme length τ ≈ 10ms, which corre-

3.4 experimental validation 81

Figure 3.12.: Spectrograms of noisy and uncluttered signals. These are sampled
from the three drones mentioned in Figure 2.3, from left to right: the
Vario, the Phantom2 and the S1000+. Each group is organized as fol-
lows: four varying spectrogams of the same class are displayed; the
top-left one always corresponds to a version constant in time. Below
we plot an arbitrary time cut of one of the varying spectrograms.

82 second -order pipeline for temporal classification

sponds to 20 timesteps at 4Hz. The choice is guided by the largest approximate
period in all signals, i.e. in the case of drones, approximately one blade rotation.
Conceptually, this means the elementary decision resolution spans about one
blade rotation.

3.4.2.1 Validation and comparison of the deep first-order models

We begin with the simplest proposed FTCN, i.e. operating on real-valued spec-
trograms obtained through a valid Fourier transform, and ratify its usage against
two benchmarks: a logistic regression (i.e. a single-layered Multi Layer Percep-
tron (MLP)), and a Long Short-Term Memory (LSTM) architecture, which we will
simply refer to as the RNN.

Throughout the experiments we train the three classifiers (MLP, RNN and FTCN)
with the same strategy to remain consistent: Stochastic Gradient Descent (SGD)
with initial learning rate α = 0.5 for the MLP, RMSProp (Ruder 2016) with α =

2e − 3 and decay β = 1e − 6 for the RNN, and accelerated SGD with α = 4e − 3

and momentum µ = 0.9 for the FTCN. All optimizations are initialized by Glorot
uniform sampling and run for K = 100 epochs without early stopping nor cross-
validation (except manual hyper-parameter finetuning). All learning rates are
divided by 2 every 25 epochs. These initial models were implemented on both
the Keras (Chollet 2015) library with Tensorflow (Abadi et al. 2016) backend and
PyTorch (Paszke et al. 2017) deep learning framework, and trained on a single
Nvidia GTX 1070M Graphical Processing Unit (GPU). Training time for any of the
above lasts less than an hour.

General performance and robustness First we train the classifiers multiple
times on a standard configuration to evaluate overall performance and robust-
ness to initialization to evaluate the simulator’s expressivity, seen in figure 3.13.
Running the training 20 times for each classifier (we actually test three FTCN ar-
chitectures with different finesse coefficients defined in Equation 3.4, i.e. different
temporal resolutions), we observe consistent test accuracy results, the most con-
sistent being the FTCN, which exhibits the smallest spread. In terms of accuracy,
the MLP falls way behind the RNN and FTCNs, which are close though the FTCNs
seem to generally perform better.

The FTCNs show better performance than the RNN and MLP, along with less
variance over cross-validations.

3.4 experimental validation 83

Figure 3.13.: Classification accuracies for three learning models. Here we chose
a setup of cluttered, noisy signals with SNR = 30dB on the left
and SNR = 10dB to the right (PRF = 4kHz), which is more than
reasonable from a practicioner’s point of view.

Impact of radar configuration parameters Here we train all models in different
configurations; specifically we vary SNR and PRF from extremely challenging to
wishfully accomodating. Results are found in figure 3.14. The most challenging
configuration being at SNR = 0dB and PRF = 4kHz, we nevertheless achieve
≈ 58% with the FTCN, versus total confusion (≈ 33%)) with the MLP. Note this is
an unrealistically challenging configuration, as an SNR of 0dB means an original
signal to noise ratio before Fourier transform of ≈ −15dB. Performances seem to
plateau when reaching high PRF, which is sufficient from a practicioner’s point of
view. This could potentially be explained by the high dilution of the signal when
the sampling frequency PRF is much higher than the signal’s bandwidth.

Again, the FTCN seems to be more robust to bad quality signals.

84 second -order pipeline for temporal classification

Figure 3.14.: Performance of the learning models for increasingly good condi-
tions. The graphs show intuitive behavior w.r.t. the configurations,
i.e. a general increase.

Super-resolved classification We now come back on the notion of temporal
reosolution, or finesse, of the proposed FTCN architecture. We showed that less
pooling in the newtork increased its temporal resolution, with a potential risk in
loosing ability to generalize. In the following experiment, we plot, in Figure 3.15,
the accuracy of the three FTCNs used above, in function of the duration of the
input signal. In Figure 3.15, the input spectrograms span 40 timesteps. Using
τ = 20 and three different networks with finesse f ∈ {1

4
, 1

2
, 1}, the input is thus

seen as a series of 4 noisemes and the corresponding output feature maps’ lengths
are respectively 6, 11 and 21 according to equation 3.4. Confidence is plotted on
the 21 timesteps of the most resolved FTCN, the other two being subsampled
accordingly. To ensure a fair comparison, the three networks are identical in all
except for the convolution strides: each thus has its own resolution, and will
require different accumulation of data before updating its confidence. The figure
shows that the gradual income of data best profits the most resolved architecture,
i.e. here the one with no strides at all, i.e. with fully overlapping receptive fields.

3.4 experimental validation 85

From this experiment, we prove that controling the network’s temporal resolution
constitutes a thought-through architecture design choice adapted to the type of
input data, which resonates with the overall philosophy of the thesis.

Figure 3.15.: Growth of classification confidence over time in a very challenging
environment (SNR = 10dB and PRF = 2kHZ). The result of inter-
est here is how a lower finesse coefficient, i.e. higher temporal res-
olution, provides finer and faster confidence during measurements
with no additional cost in global accuracy.

We also present in Figure 3.16 a similar result in a different field of application,
here Environmental Audio Recognition (EAR), specifically on the UrbanSound8K
dataset (Salamon et al. 2014), a commonly used dataset in this field. Again, we use
a pre-trained FTCN architecture, similar in essence to the one presented above in
the case of radar classification, and input signals of longer duration to observe a
general increase in performance.

The key idea to retain here is that chosing a finer temporal resolution, perhaps to
the detriment of spectral resolution, seems to favor better performances whether
it be for the µ-D radar or EAR applications.

86 second -order pipeline for temporal classification

Figure 3.16.: Growth of classification confidence of a FTCN in audio recogni-
tion. The graph plots the confidence in function of the duration of
input data. Each line groups signals of same total length; the thick-
ness of the line represents the proportion of such signals within the
dataset.

3.4.2.2 Exploring the use of complex-value data and models

Having now validated the performance, and described the advantages of the
FTCN architecture, we now study how the usage of complex values within the
network impacts on performance. The first step is to introduce the new design
choices arising from the complex framework, with the end goal being the com-
parison with a real-valued conterpart.

Number of parameters Intrinsicly, a complex network will have twice as many
parameters as its real counterpart; in practice, it is not obvious how this increase
would affect performance. For instance, neural networks tend to better generalize
in the case of a large dataset when allowed more parameters, but may also suffer
from overfitting when a sufficient amount of diversified data is not met. A rea-
sonable way to experiment on this interrogation is to allow half as many channels
in the CRNet’s convolutional blocks and focusing experiments on small amounts
of data. Results show that keeping the same number of channels as in the real
network still performs better, which is a conclusive statement as, while the prac-
tical number of parameters has doubled, the network did not suffer even when

3.4 experimental validation 87

presented with few data. As a sanity check, doubling the number of channels in
the complex network performs the worst of all cases.

The CRNet architecture may keep the same number of parameters as its real-
valued FTCN counterpart, even though it doubles in parameters and quadruples
in operations.

Signal scaling and complex representation Raw radar data, along with their
Fourier transforms, often exhibit major variations in scale, due to different inter-
vening physical phenomena operating in a variety of scales. This translates to the
practical habit of converting spectrograms to a logarithmic scale, most often dBs,
whether it be for visualisation or further analysis. A real-valued network benefits
from this rescaling from the start as the inputs are the decibel-spectrograms. In
the CRNet however, the log-scale is ambiguously defined for complex values,
which allows potentially harmful variations in scale to propagate within. Proper
weight initialization and BatchNorm explicitly combat this issue, but formally fail
to recover a log-scale as they remain linear transformations. To this end, we pro-
pose a partially complex network for which the output complex representation is
log-scaled after the passage to absolute value, and heuristically study the impact
on performance of the complex-to-real (C2R(x) = 10 log(|x|2|)) function’s position
in the layer hierarchy. The empirical conclusion is conceptually satisfying as it
places the C2R right after the final temporal representation layer, ie right before
the convolutionalized fully-connected layers, as represented in Figure 3.6. This
result leads to a rather natural interpretation:

While the complex spectral representation of the signal in a real-valued FTCN
ends with the FFT, complex feature mapping in a CRNet explores a hierarchy of
further filter banks in addition to the Fourier-like filtering.

Fourier convolution parameters The first layer of the real-valued FTCN on
spectrograms is conceptually preceded by a windowed Fourier transform, which
remains a fixed pre-processing. While the previsou paragraph dealt with the scal-
ing of the complex spectrogram within the CRNet, the FourierNet however di-
rectly handles the raw complex data, and as such, its first layer is a 1D convolution.
While conventional initialization schemes such as Xavier initialization (Glorot and
Bengio 2010) can be applied, we may benefit from exploiting the spectral prop-
erties of the radar signal: indeed, experiments show a consistent improvement
when using the proposed Fourier-like convolutional layer. Similarly, the window
overlap percentage or hop length of the Fourier transform corresponds to the
convolution stride. In the context of learning the 1D filter banks, a low stride (set
to 1 in the experiments, ie maximum overlap) proved paramount to the network’s
performance, regardless of initialization. On the other hand, real-valued counter-

88 second -order pipeline for temporal classification

parts seemed much more robust to this hyperparameter. One interpretation of
this phenomenon is that the passage from raw complex data to real-valued spec-
trograms averages through coherent integration any potential added information
from a higher overlap, while keeping both amplitude and phase sensitizes further
processing to this added information.

Using the Fourier convolution in a FourierNet may require careful hyper-parameter
finetuning for it to outperform the fixed FFT in its CRNet counterpart. For in-
stance, a strong overlap (i.e. low stride) seems necessary to a successful training.

Quality and amount of data Throughout conducted experiments, a general
trend seemed to emerge: complex networks overpowered real networks when
presented with a large yet complicated dataset. Specifically, we observed improve-
ment for SNRs on the raw data close to zero or in the negatives, positive SNRs
leading to insignificant improvements. Furthermore, when the amount of train-
ing data was kept relatively small (in our scenario, less than 5 minutes), CRNets
performed poorly to worse than their real-valued FTCN.

In short, a CRNet seems to yield significant improvements mostly when the data
are generally challenging and their amount is vast.

Numerical results We now give numerical comparisons between FTCN, CRNet
and FourierNet architectures, the latter two designed based on the previous em-
pirical evaluations. The simulation configurations are first set to an extremely
noisy case, where the raw data is 5dB below noise (SNR = −5dB). We also ini-
tially quintuple the size of the simulated dataset, yielding 20 minutes of total
continuous recording per class instead of 4, our usual standard (i.e. again, 10 min-
utes of training data). For reference, a coherent integration of 20 timesteps brings
the spectrum 8dB above noise. A PRF of 4kHz is used; at this frequency and with
the considered drones, Doppler ambiguity, i.e. spectral folding, is omnipresent. As
stated above, we voluntarily chose a large amount of data in a very challenging
configuration. We also give performance results for the models when trained on
a fraction of the data to quantify the robustness of the models to lack of data:
20% of this larger dataset corresponds to the original size, 5% to ≈ 1 minute per
class (30 seconds of training data). The rest of the experimental setup remains the
same. Results on the three models are presented in table 3.3.

3.4 experimental validation 89

Table 3.3.: Performance comparison of real and complex deep structures on
radar data on various amount of noisy data. Models are compared
on a decreasing amount of training data, from the full 10 minutes to
30 seconds.

Train size 100% 20% 5%

FTCN 67.2± 0.27 65.1± 0.39 63.5± 0.46
CRNet 68.8± 0.17 65.1± 0.50 59.3± 1.51
FourierNet 70.8± 0.22 67.8± 0.40 62.1± 0.90

The first observation is the improvement of the two complex networks over
the real counterpart when given all 10 minutes of training data (the 50% training
split of the total 20 minutes), the FourierNet being superior to the CRNet. Given
20% of available training data (2 minutes), the FourierNet still outperforms all
models, but the CRNet starts decreasing towards the FTCN’s performance. Given
only 5% of training data (30 seconds), all complex models perform worse than
the FTCN. Finally, we repeat the experiments on a cleaner dataset, by changing
the SNR from −5dB to 5dB (we limit ourselves to the FTCN and FourierNet).
Results shown in table 3.4 naturally exhibit better performances overall, but the
FourierNet struggles to outperform the FTCN, which supports the argument of
complex networks working noticeably better in challenging configurations only.

In summary, the complex models seem to improve upon a real-valued couterpart,
in situations where data is plentiful and inherently challenging. They thus seem
a poor choice in scarce data scenarios, or when a real-valued model already comes
close to solving the task. The cost is twice as many parameters and four times as
many computations, leading to slower training and inference.

Table 3.4.: Performance comparison of real and complex deep structures on
radar data on various amount of less noisy data. Models are com-
pared on a decreasing amount of training data, from the full 10 minutes
to 30 seconds.

Train size 100% 20% 5%

FTCN 98.6± 0.34 94.3± 0.57 91.6± 0.98
FourierNet 99.0± 0.07 94.4± 0.14 88.7± 1.12

3.4.2.3 Comparison with second-order models and validation of the full
pipeline

We now add to the experiment pool the SPDNet operating on covariance matrices,
which will then allow us to proceed to evaluating the proposed pipeline. The

90 second -order pipeline for temporal classification

Table 3.5.: Performance comparison of first- and second-order models on radar
data. The SOFTNet model combines both orders in a single pipeline;
its performance expectedly matches or tops that of the individual, unit
models.

Train size 100% 20% 5%

SPDNet 92.6± 0.54 91.5± 0.74 88.4± 3.06
HPDNet 94.4± 0.76 91.8± 0.80 87.1± 1.11
FTCN 98.9± 0.44 93.4± 1.21 84.3± 2.51
FourierNet 99.4± 0.17 96.2± 1.12 87.4± 1.94
SpectroSPD 95.1± 0.49 91.9± 0.82 84.6± 3.49
SOFTNet 99.5± 0.16 97.2± 0.90 93.9± 0.74

same windowing is used for covariance and spectral representations to keep
comparisons fair, as per illustrated in Figure 3.10. We bifurcate the introduced
pipeline at various stages in various configurations, which amounts to different
learning models which we relate to in Figure 3.8, specifically the following:

1. SPDNet: a SPDNet on the raw complex data’s covariance immediately made
real, estimated over 99 windows of 20 samples;

2. HPDNet: a HPDNet on the raw complex data’s covariance, estimated over 99

windows of 20 samples;

3. Spectral SPD Neural Network (SpectroSPD): a SPDNet on spectrum time se-
ries;

4. FTCN: a FTCN on spectrograms (mathematically equivalent to spectrum time
series);

5. FourierNet: a FTCN on raw complex data as described above, where Fourier
filter banks are fine-tuned;

6. SOFTNet: a Second-Order Fully Temporal Network, where a SPDNet is ap-
pended to the the final feature representation of the FTCN.

Furthermore, we repeat the experiments with decreasing amount of training
data in the hope that injecting geometric information in the learning through
second-order modelling would compensate for lack in data volume. Results are
displayed in Table 3.5.

The first remark is that the SPDNet yields the worst accuracy when all training
data is available. Intuitively, it makes sense that it score lower than SpectroSPD
and SOFTNet as the covariance is then sampled from a more adapted or dis-
criminative model, i.e. respectively a spectrogram and FTCN learnt features. The
HPDNet performs better mostly when much data is available, losing its potential
when data is scarce while being more greedy on computation time. As for the

3.5 conclusion 91

FTCN and FourierNet, these are deep learning models with a total of about 14000

parameters or more, whereas the SPDNet is the Riemannian equivalent a rather
shallow network, with only about 700 parameters.

However, as training data decreases, we see the SPD methods become better than
the traditional deep models: they seem to exhibit much higher robustness to lack
of data, which validates the usefulness of exploiting the geometric information of
the data.

The final observation concerns the SOFTNet (Figure 3.9), which performs best
across all configurations. In a sense, this model benefits both from deep temporal
feature learning, and from covariance geometry modeling. In practice, affordable
overhead is observed when using this larger model: one epoch lasts ∼ 7s, com-
pared to ∼ 1.5s for the FTCN trained on a Nvidia GTX 1070M GPU and ∼ 3.5s

for the SPDNet trained on a i7-6700HQ CPU.

To conclude on the classification pipeline:

Riemannian SPD-based models don’t compete against Euclidean deep models
when data is plentiful. However, the exhibit strong robustness to the lack of
data, outperforming the latter in scarcity scenarios. The full SOFTNet pipeline
exhibits complimentary behaviours, yielding competitive performance throughout
all situations.

Details execution times, code snippets illustrating the models mentioned through-
out this chapter, along with indications for implementation can be found in Ap-
pendix A.

3.5

Conclusion

In the order of things, we first introduced an expressive simulator for blade-
propelled engines such as drones, or Unmanned Aircraft Vehicles (UAVs). The
simulator sports sufficiently variational characteristics, and allows for the gener-
ation of realistic µ-D radar signals. The synthetic datasets thereby obtained were
thus suited for the Machine Learning (ML) task of classification on several dis-
tinct models: Multi Layer Perceptrons (MLPs), Recurrent Neural Networks (RNNs),
and Convolutional Neural Networks (CNNs). In a first set of experimentations,
we assessed these models performed well even in harsh simulation conditions,
from a radar operation viewpoint. We furthermore justified the assumption that
the recurrent and convolutional models, because they inherently learn temporal
fluctuations, are particularly appropriate to the task of radar classification.

92 second -order pipeline for temporal classification

In particular, we proposed a relatively lightweight Fully Temporal Convolu-
tional Network (FTCN), which, being free of fully-connected layers, is able to
handle signals of varying length over time. The FTCN showcases two interesting
properties: its output feature maps preserve the temporal structure of the signal,
and are themselves a time series, and, it is possible to control exactly the tem-
poral resolution of this output feature time series. The properties of the FTCN,
along with its experimental success on both synthetic and real datasets, make it a
satisfying candidate for the main streamline of this thesis, the search for efficient
models, adapted to the underlying structure of the data.

We also developed a partially complex-valued counterpart to the FTCN, in
order to take into account the inherent complex structure of µ-D data, which again
follows the line of research throughout this thesis. We furthermore introduced
a Fourier-like convolutional layer, which harvests the advantages of both the
Fourier transform and of learning filter banks on the raw data, an intuition proved
to be consistently true in practice. We performed extensive experimentation on
synthetic data to isolate the cases where performance benefitted from complex
values. The main conclusions obtained were, that above a certain amount of
observed data (a couple of minutes for our datasets), in challenging configurations
(under 5dB of SNR in our scenarios), complex-valued networks significantly
outperformed their real counterparts. These results initiate a hopeful stance on
introducing complex values in deep learning-based classification methods on µ-D

radar data.

Finally, we introduced a neural pipeline consisting of a first-order FTCN, onto
which a second-order SPD neural network (SPDNet) can be appended at any stage
of the first-order model. We find that the deeper down the first-order model, the
better the performance of the global second-order model. The best-performing,
and also deepest model issued was baptized Second-Order Fully Temporal Net-
work (SOFTNet), and consists in a succession of meaningful representations of
the data: raw complex form, Fourier transform, deep features and covariance. Fur-
thermore, models exploiting covariance structure seem to be more robust to lack
of data than the first-order models, even outperforming them in critically sparse
scenarios (with only a few seconds of training data per class). Finally, the end-to-
end second-order model outperforms all other models in any of the experimented
configurations, which points to the definite possibility of getting the best from the
two worlds: a set of discriminative features learnt by convolutional layers, and a
Riemannian processing on the resulting temporal covariance matrices.

Opening perspectives envisioned throughout this chapter are numerous. The
drone radar simulator on the one hand, could surely benefit from further devel-
opments such as its refinement to real-life physical and maneuvering subtleties,
and its extension to other kinds of UAVs, as it is for now limited to rotary-blade

3.5 conclusion 93

drones (the most common type, however). As for the ML perspective, the presented
temporal architectures pave the way to more difficult and varied tasks than classi-
fication, for instance detection, labelling and segmentation, other key tasks in the
field of radar operations. On the other hand, concerning the SOFTNet pipeline,
many undiscussed technicalities on how to connect the first- and second-order
networks give rise to interesting challenges; the briefly mentioned covariance
estimation operator, in itself, constitutes a field of research by itself. Other ideas
one might come up with include the smoothing of the connection: penalizing the
gradients passing by the connection (either with L2 loss or an additional Stiefel
constraint), using a smooth transition kernel after the first-order representation
space, or after the covariance estimation, adding layers in between... On the ar-
chitectural side, one may look back at Figure 3.8 and wonder whether a fusion of
each of the four feature representations could be imagined; again, the semantic
feature fusion promises major research material.

C
h

a
p

t
e

r 4
A D VA N C E S I N S P D N E U R A L N E T W O R K S

Chapter abstract
This chapter addresses the budding area of geometric deep architectures for
covariance processing. Specifically, it is devoted to the invention of novel lay-
ers for the SPD neural network (SPDNet) presented earlier on. The driving
challenge throughout the chapter will be the conformation of these layers to the
particular manifold geometry of Symmetric Positive Definite (SPD) matrices.
In this spirit, we first introduce a natural improvement of these architectures,
based on the precepts of Information Geometry (IG). This improvement consists
in a data-aware normalization of the final layer, the Euclidean mapping, which
is of paramount importance to the SPDNet. We propose two distinct normaliza-
tion schemes, one based on the data’s barycenter, called Barycentric Normal-
ization (BarNorm), the other on a learned parameter, called Parametric Nor-
malization (ParNorm). We name Data-Aware Mapping Network (DAMNet)
an architecture equipped with either of the normalization layers. Then, we in-
troduce a Riemannian Batch Normalization (BatchNorm) algorithm, set within
a novel Batch-Normalized SPDNet (SPDNetBN) architecture. Finally, we
develop a convolutional layer for the SPD matrices. These novel layers make
use of geometric operations on the manifold, notably the Riemannian barycen-
ter, parallel transport and non-linear structured matrix transformations. We
derive a new manifold-constrained gradient descent algorithm working in the
space of SPD matrices, allowing to learn the BatchNorm, or BatchNorm layer. We
validate our proposed approach with extensive experiments in three different
contexts on diverse data types: drone recognition data from radar observa-
tions, and on emotion and action recognition datasets from video and Motion
Capture (MoCap) data. Experiments show that the SPDNetBN systematically
gives better classification performance compared with leading methods and a
remarkable robustness to lack of data.

95

96 advances in spd neural networks

Contents
4 .1 Introduction . 97

4 .2 Data-Aware Mapping Network . 100

4 .2 .1 Log-Euclidean Metric . 100

4 .2 .2 Barycentric Normalization . 102

4 .2 .3 Parametric Normalization . 102

4 .2 .4 DAMNet architecture . 103

4 .3 Batch-Normalized SPDNet . 104

4 .3 .1 Centering SPD matrices using Parallel Transport 104

4 .3 .2 Statistical distribution on SPD matrices 107

4 .3 .3 Riemannian BatchNorm algorithm . 108

4 .4 Riemannian manifold-constrained optimization 108

4 .4 .1 Learning with SPD constraint . 109

4 .4 .2 Structured matrix backpropagation . 110

4 .5 Convolution for covariance time series . 116

4 .5 .1 Single-channel convolution . 116

4 .5 .2 Weighted average convolution . 116

4 .5 .3 Riemannian convolution using the weighted Fréchet mean 117

4 .5 .4 Multi-channel convolution . 118

4 .6 Experimental validation . 119

4 .6 .1 Drones recognition . 119

4 .6 .2 Emotion recognition . 127

4 .6 .3 Action recognition . 128

4 .7 Conclusion . 130

4.1 introduction 97

4.1

Introduction

Covariance matrices are ubiquitous in any statistical related field but their di-
rect usage as a representation of the data for machine learning is less common.
However, it has proved its usefulness in a variety of applications: object detec-
tion in images (Tuzel et al. 2006), analysis of Magnetic Resonance Imagery (MRI)
data (Pennec et al. 2006), classification of electroencephalography (EEG) time se-
ries for Brain-Computer Interfaces (BCIs) (Barachant et al. 2013). It is particularly
interesting in the case of structured temporal data since a global covariance ma-
trix is a straightforward way to capture and represent the temporal fluctuations
of data points of different lengths. As previously stated, the main difficulty re-
sides in their inherently curved nature, which calls for the usage of tools from
non-Euclidean geometry. A full overview of the Riemannian nature of Symmetric
Positive Definite (SPD) matrices, along with a plethora of theoretical justifications
and properties on the matter, is given in the book of Bhatia (2015). For this rea-
son most of classification methods (which implicitly make the hypothesis of a
Euclidean input space) cannot be used successfully on SPD matrices. Further-
more, this mathematical difficulty comes with a much higher cost: computation
often involves eigenvalues decompositions or expensive iterative algorithms. Lack
of straightforward parallelizability and super-quadratic algorithmic complexity
often hinders the direct usage of covariate data in learning models.

Interestingly, relatively lightweight machine learning techniques can nonethe-
less produce state-of-the-art results as soon as the particular Riemannian geom-
etry is taken into account. This is the case for BCI: Barachant et al. (2013) and
Barachant et al. (2012) respectively use a nearest Riemannian barycenter scheme
(described in Section 2.5.2) and a tangent-space Support Vector Machine (SVM)
(described in Section 2.5.3) to successfully classify covariances matrices computed
on multivariate EEG signals; in the same field, Yger and Sugiyama (2015) propose
kernel methods for metric learning on the SPD manifold . Another example is in
MRI, where Pennec et al. (2006) and Arsigny et al. (2006) develop a Riemannian k-
nearest neighbours (k-NN) as described in Section 2.5.1. Motion recognition from
Motion Capture (MoCap) skeletal data also benefits from Riemannian geometry,
as exposed in Cavazza et al. (2017), Huang et al. (2018), and Huang et al. (2016).

As mentioned before, a SPD neural network (SPDNet) architecture specifically
adapted for these matrices has been proposed in the context of neural networks (Huang
and Van Gool 2017). While the overall aspect is similar to a classical (Euclidean)
network (transformations, activations and a final stage of classification), each layer

98 advances in spd neural networks

processes a point on the SPD manifold; the final Riemanian layer transforms the
feature manifold to a Euclidean space for further classification. Following this
seminal work, more architectures have followed, proposing alternatives to the ba-
sic building blocks: in Dong et al. (2017) and Gao et al. (2017), a more lightweight
transformation layer is proposed; in T. Zhang et al. (2018) and Chakraborty et al.
(2018), the authors propose alternate convolutional layers, respectively based on
multi-channel SPD representations and Riemannian means; a recurrent model is
further proposed in Chakraborty et al. (2018); in Mao et al. (2019) and P. Li et al.
(2018), an approximate matrix square-root layer replaces the final Euclidean pro-
jection to lighten computational complexity. Transversally, works on accelerating
the optimization of SPD layers are emerging, in answer to the frustratingly slow
pace the optimization usually takes place at (H. Zhang et al. 2016; Liu et al. 2017;
Alimisis et al. 2020). In Acharya et al. (2018) and Yu and Salzmann (2017), a SPDNet

is appended to a Euclidean Convolutional Neural Network (CNN) to improve on
performance. In this case, a so-called covariance pooling (CovPool) layer is devoted
to compute a Sample Covariance Matrix (SCM) of the final feature maps.

All in all, most of the developments focus on improving or modifying existing
blocks in an effort to converge to their most relevant form, both theoretically and
practically; throughout this chapter, we will propose new building blocks, with
a shared goal of normalizing the inner mechanics of the SPDNet architecture. As
an additional, independent SPD building block, this novel layer is agnostic to the
particular way the other layers are computed, and as such can fit into any of
the above architectures; we do however focus on the original one (Huang and
Van Gool 2017).

In our first proposition, we introduce a new architecture, called a Data-Aware
Mapping Network (DAMNet), which focuses on the final layer of the SPDNet, the
Euclidean mapping: we argue that a better projection can be done by making
the layer dependent on the data. The original projection layer relies on the Log-
Euclidean Metric (LEM) framework (Arsigny et al. 2006), which endows the mani-
fold of SPD matrices with a Lie group structure. This framework is much simpler
than the full Riemanian setting and allows efficient computations while keeping
good theoretical properties (Pennec et al. 2006). While useful, this framework is
only a particular case: we thus introduce an improved projection layer working
in the broader Riemaniann setting. This new projection maps the points to the
tangent space of some reference matrix and comes in two variants: a barycen-
tric projection, called Barycentric Normalization (BarNorm), which uses the Rie-
mannian barycenter as the reference matrix; and a parametric projection, called
Parametric Normalization (ParNorm), which uses a parameter SPD matrix, learnt
during training.

4.1 introduction 99

Our second main contribution is inspired by the well-known and well-used
Batch Normalization (BatchNorm) layer, introduced in the context of (Euclidean)
CNNs for Computer Vision (CV) tasks in Ioffe and Szegedy (2015). This layer
makes use of batch centering and biasing, operations which in our case need to
be defined on the SPD manifold. Although the overall structure of the original
BatchNorm is preserved, its generalization to SPD matrices requires geometric tools
on the manifold, both for the forward and backward pass. The overall architecture,
which we call Batch-Normalized SPDNet (SPDNetBN), is expected to perform
better than either the SPDNet or DAMNet.

In this study, we further assess the particular interest of batch-normalized
SPDNets in the context of learning on scarce data with lightweight models: in-
deed, many fields are faced with costly, private or evasive data, which strongly
motivates the exploration of architectures naturally resilient to such challenging
situations. Medical imagery data is well-known to face these issues (Pennec et al.
2006), as is the field of drone radar classification (Brigant et al. 2016). Indeed,
radar signal acquisition is prohibitively expensive, the acquired data is usually
of confidential nature, and drone classification in particular is plagued with an
ever-changing pool of targets, which we can never reasonably hope to encapsu-
late in comprehensive datasets. Furthermore, hardware integration limitations,
such as for real-time embedded systems-on-chip in the context of radar systems,
further motivate the development of lightweight models based on a powerful
representation of the data.

To summarize our proposed contributions:

• A neural architecture called Data-Aware Mapping Network (DAMNet) with
two new layers (which are mutually exclusive):

Ý A barycentric normalization layer using a Riemannian barycenter,
called BarNorm;

Ý A parametric normalization layer using a SPD-constrained parameter,
called ParNorm;

• A neural architecture called Batch-Normalized SPDNet (SPDNetBN) with one
new layer:

Ý A Riemannian BatchNorm layer for SPD neural networks, respecting the
manifold’s geometry;

• A generalized gradient descent allowing to learn the DAMNet and SPDNetBN
models;

• A convolutional layer for SPD matrices;

100 advances in spd neural networks

• Extensive experimentations on three datasets from three different fields.

The chapter is organized as follows: we begin Section 4.2 by describing the
DAMNet architecture with the BarNorm or ParNorm layers, along with a brief
mathematical reminder of its driving motivation. We then move on in Section 4.3
to describe our proposed Riemannian BatchNorm algorithm; again, essential con-
cepts to the layer are debriefed. Section 4.4 ends the technical contributions with
by devising the projected gradient descent algorithm for learning the aforemen-
tioned layers. Finally, we validate experimentally and assess the properties of our
proposed architectures in Section 4.6.

4.2

Data-Aware Mapping Network

The DAMNet architecture improves upon the original SPDNet. The core incentive
behind this improvement lies in the formal generalization of the background
mathematical framework the Euclidean mapping layer us based upon. Specifically,
the Log Eigenvalues (LogEig) layer described in Section 3.2.1 is explicitly defined
within the realms of the LEM framework; we propose to elevate the notion to the
more general Riemannian framework. We begin by briefly describing this LEM

framework.

4.2.1 Log-Euclidean Metric

We recall the notations S+
∗ the space of SPD matrices and S+ the space of symmet-

ric matrices. Let us define the logarithmic product of two SPD matrices:

∀P1, P2 ∈ S+
∗ , P1 � P2 = exp(log(P1) + log(P2)) (4.1)

We now endow S+
∗ with the group structure defined by the logarithmic product.

We claim that (S+
∗ �, Id) is an abelian Lie group, the neutral element Id being the

identity matrix and the inversion the standard matrix inversion (·)−1. This is
easy to see, as the logarithmic product commutes (yielding a group structure)
and involves smooth differentiable operations in matrix space (yielding a Lie
group structure). Furthermore, it reduces to the standard matrix product when
the matrices commute:

4.2 Data -Aware Mapping Network 101

Figure 4.1.: LogEig as a special case of logarithmic mapping. While the LogEig
is defined within the LEM framework, its generalization to the AIRM
framework allows for a more flexible, powerful data-aware mapping.
The main idea to retain is the passage from the manifold to a certain
Euclidean space.

∀P1, P2 ∈ S+
∗ | P1P2 = P2P1, P1 � P2 = P1P2 (4.2)

The Lie group exponential associated to the Lie group is by definition the expo-
nential mapping Exp of the associated manifold S+

∗ at the neutral element; recall
from its definition in Equation 2.30, that ExpId = exp, the standard exponential
mapping. Its inverse is thus the standard logarithm, and thus the associated Lie
algebra s corresponds to S+, as log : S+

∗ −→ S+ constitutes a diffeomorphism.
The LEM noted δLog is then defined as the Euclidean metric on the Lie algebra:

δLog(P1, P2) = || log(P1)− log(P2)|| (4.3)

From the elements described above, we now see that the LogEig layer (Equa-
tion 3.3) corresponds to a special case of the logarithmic mapping on S+

∗ (Equa-
tion 2.30), specifically with the reference G point being the identity matrix. We
illustrate this important notion in the context of a SPDNet in Figure 4.1. In fact,
the LEM itself is a special case of the Affine Invariant Riemannian Metric (AIRM)
in the sub-group of commuting SPD matrices. Our initial main idea thus consists
in generalizing the concept by considering data- and geometry-aware mappings
based on the more general AIRM framework, i.e. in practice mapping the points
at the LogEig layer other than at the identity matrix. The question then becomes,
how to chose this reference point.

102 advances in spd neural networks

4.2.2 Barycentric Normalization

Our first idea is to map data points at their barycenter’s tangent space. It is impor-
tant here to distinguish the Riemannian (or geometric) barycenter G defined on
the manifold from the standard arithmetic mean 1

N

∑
i≤N Pi. Note that the arith-

metic mean might in the general case not even belong to the manifold, although
it actually does in S+

∗ . Recall Section 2.5.2 for the computation of G using the
Karcher flow algorithm.

As the batch barycenter changes with each batch, the tangent space will be
different at each iteration. Posterior to the mapping, classification is performed by
learning a separating hyperplane, i.e. a standard dense layer. However, this process
may deal poorly with an ever-evolving projection space to learn on: indeed, each
step in the optimization would yield a different vector space. Therefore, we instead
center, or parallel transport, each point P (k)

i at the final SPD layer (k) in the batch
around their geometric barycenter G{P (k)

i }i≤N
, as done in Yger (2013) and Barachant

et al. (2013), which amounts to omitting the final congruence in the logarithmic
map in Equation 2.30. More details on centering with parallel transport are given
in the next section. At each iteration, we compute the barycenter G{P (k)

i }i≤N
of the

current batch of transformed data points {Pi}i≤N . All in all, this BarNorm layer
becomes:

G := G{P (k)
i }i≤N

(barycenter of the mini-batch)

X(k) = log(G−
1
2P (k)G−

1
2)

(4.4)

4.2.3 Parametric Normalization

In the same vein as previously, we aim to generalize the Euclidean projection
from the LEM framework to the AIRM framework, for which a reference point G is
required. G can be the barycenter, which takes data into account by optimizing a
minimal dispersion criterion within the batch. Since this criterion has no reason to
be related to the training objective, we introduce a second data-driven mapping
layer, this time explicitly optimizing the SPD reference point G for the global
training loss.

Contrary to the BarNorm layer described previously, G is now an additional pa-
rameter of the network to be learnt alongside the others. The learning mechanics
linked to such an operation are covered further on in this chapter. The difference
with the standard LogEig then reduces to a congruence by G−

1
2 before applying

the log. However, G needs to belong to S+
∗ , which we will need to enforce in

4.2 Data -Aware Mapping Network 103

Figure 4.2.: Illustration of the DAMNet architecture. When the reference point
of the Euclidean mapping is the identity matrix, it reduces to the
SPDNet architecture.

the gradient update, as done in Yger and Sugiyama (2015). Note that a similar
constraint applies to the Bilinear Mapping (BiMap) weights (Equation 3.1) of the
SPDNet, only the latter is orthogonal rather than symmetric. Finally, the parametric
projection for the learnable logarithm of the transformed data points P (k) at the
last SPD layer reads:

X(k) = log(G−
1
2P (k)G−

1
2), G ∈ S+

∗ (4.5)

4.2.4 DAMNet architecture

To sum up, the difference between a SPDNet and a DAMNet is the Euclidean
mapping, which in the case of the former is fixed to the matrix logarithm, contrary
to the latter which depends on a data-aware reference point M , defined either
as an additional parameter or a barycenter; as such; SPDNet is a special case of
DAMNet, as illustrated in Equation 4.6 and in Figure 4.2:

X(k) = log(M− 1
2P (k)M− 1

2) , with

M =

Id → LogEig with no regularization

Gbatch → BarNorm (barycenter)

G ∈ S+
∗ → ParNorm (gradient descent)

(4.6)

104 advances in spd neural networks

In the DAMNet architecture, the two normalization schemes BarNorm and
ParNorm are mutually exclusive. However, they are not incompatibe, and can in
principle be chained. Moreover, while our theoretical justification for their exis-
tence focused on the LogEig layer, it still holds at any echelon of the network. The
centering of a batch within the network, followed by a parametric displacement
of this batch, may remind the acute reader of the famed Batch Normalization
algorithm. We thus extend in the next section the ideas underlying the DAMNet,
to develop a Batch-Normalized SPDNet (SPDNetBN) architecture.

4.3

Batch-Normalized SPDNet

This section is dedicated to the Riemanian BatchNorm and its associated architec-
ture, the SPDNetBN, a core contribution in our works. As stated above, it gen-
eralizes our DAMNet architecture, which itself generalizes the original SPDNet.
The Riemannian BatchNorm shares the goal of its Euclidean counterpart, that is
essentially the normalization of data conditioning through the network by the
reduction of internal covariate shift (Ioffe and Szegedy 2015). Recall Section 2.3.2
for a brief overview of the standard, Euclidean BatchNorm algorithm. We begin the
section by clarifying a matter of importance, sheepishly skimmed over in the previ-
ous section. While we initially introduced the normalization schemes as different
logarithmic mappings, in reality they are defined from Parallel Transport (PT).
Similarly, the centering and addition of bias within the proposed Riemannian
BatchNorm will involve PT. We thus clarify this ambiguity in the context of the
Riemannian BatchNorm.

4.3.1 Centering SPD matrices using Parallel Transport

The Euclidean BatchNorm involves centering and biasing the batch B, which is done
via subtraction and addition. However on a curved manifold, there is no such
group structure in general, so these seemingly basic operations are ill-defined. To
shift SPD matrices around their mean G or towards a bias parameter G ∈ S+

∗ , we
propose to rather use parallel transport on the manifold (Amari 2016).

4.3 Batch -Normalized SPDNet 105

4.3.1.1 Parallel Transport and SPD transport

In short, the operator ΓP1→P2(S) of a vector S ∈ TP1 in the tangent plane at P1,
between P1, P2 ∈ S+

∗ defines the path from P1 to P2 such that S remains parallel to
itself in the tangent planes along the path. The geodesic γP1→P2 is itself a special
case of the PT, when S is chosen to be the direction vector γ′P1→P2

(0) from P1 to
P2. The expression for PT is known on S+

∗ :

∀S ∈ TP1 , ΓP1→P2(S) = (P2P
−1
1)

1
2 S (P−1

1 P2)
1
2 ∈ TP2 (4.7)

The equation above defines PT for tangent vectors, while we wish to transport
points on the manifold. To do so, we simply project the data points to the tangent
space at the initial point P1 using the logarithmic mapping at P1, parallel transport
the resulting vector from Equation 4.7 towards P2 which we then map back to
the manifold using exponential mapping at P2. We show in Theorem 4.1 that the
resulting operation, which we call SPD transport, turns out to be exactly the same
as the formula above, which is not an obvious result in itself. Note that by abuse
of notation, we also use ΓP1→P2 to denote the SPD transport. We first show two
useful lemmas for the proof:

Lemma 4.1. ∀P1, P2 ∈ S+
∗ , A := (P2P

−1
1)

1
2 = P

1
2

1 (P
− 1

2
1 P2P

− 1
2

1)
1
2P
− 1

2
1 =: B

Proof. A and B trivially are similar matrices, as in they share the same eigenvalues.
These values are by construction all strictly positive, therefore they are the unique
square roots of the respective squares, and it thus suffices to prove A2 = B2. We
have:

B2 =

(
P

1
2

1 (P
− 1

2
1 P2P

− 1
2

1)
1
2P
− 1

2
1

) (
P

1
2

1 (P
− 1

2
1 P2P

− 1
2

1)
1
2P
− 1

2
1

)

= P
1
2

1 (P
− 1

2
1 P2P

− 1
2

1)P
− 1

2
1

= P2P
−1
1

= A2

⇒ B = A

�

Lemma 4.2. ∀P1, P2 ∈ S+
∗ , X := P

− 1
2

2 BP
1
2

1 is unitary, i.e. XXT = XTX (using the
same notations as in Lemma 4.1).

106 advances in spd neural networks

Proof.

XXT =

(
P
− 1

2
2

(
︸ ︷︷ ︸

B

P
1
2

1 (P
− 1

2
1 P2P

− 1
2

1)
1
2

Id︷ ︸︸ ︷
P
− 1

2
1

)
P

1
2

1

)(Id︷ ︸︸ ︷
P

1
2

1

(
P
− 1

2
1 (P

1
2

1 P2P
− 1

2
1)

1
2

T

P
1
2

1︸ ︷︷ ︸
BT

)
P
− 1

2
2

)

= (P
− 1

2
2

Id︷ ︸︸ ︷
P

1
2

1)︸ ︷︷ ︸
∈S+∗

(P
− 1

2
1 P2

Id︷ ︸︸ ︷
P
− 1

2
1)

2
2 (P

1
2

1 P
− 1

2
2)

= P
− 1

2
2 P2P

− 1
2

2

= Id

�

As a consequence ofX being unitary, we have that exp(XMXT) = X exp(M)XT

for any matrix M (by definition of the matrix exponential exp(M) =
∑

N
Mk

k!
). We

now show the main result, establishing the SPD transport ΓP1→P2(S) of S ∈ S+
∗

from P1 to P2.

Theorem 4.1. SPD transport of SPD matrix S from P1 to P2 on S+
∗ .

∀P1, P1, S ∈ S+
∗ , ΓP1→P2(S) = (P2P

−1
1)

1
2 S (P−1

1 P2)
1
2 ∈ S+

∗ (4.8)

Proof.

ΓP1→P2(S) = ExpP2

(
ΓP1→P2

(
LogP1

(S)
))

(by definition)

= P
1
2

2 exp

(
P
− 1

2
2

(
=A=B︷ ︸︸ ︷

(P2P
−1
1)

1
2 P

1
2

1︸ ︷︷ ︸
X

log(P
− 1

2
1 SP

− 1
2

1)P
1
2

1

=AT =BT︷ ︸︸ ︷
(P−1

1 P2)
1
2

)
P
− 1

2
2︸ ︷︷ ︸

XT

)
P

1
2

2 (Lemma 4.1)

= P
1
2

2 X exp

(
log(P

− 1
2

1 SP
− 1

2
1)

)
XTP

1
2

2 (Lemma 4.2)

=

Id︷ ︸︸ ︷
P

1
2

2 P
− 1

2
2 B

Id︷ ︸︸ ︷
P

1
2

1 P
− 1

2
1 S

Id︷ ︸︸ ︷
P
− 1

2
1 P

1
2

1 BT

Id︷ ︸︸ ︷
P
− 1

2
2 P

1
2

2 (Lemma 4.2)

= (P2P
−1
1)

1
2 S (P−1

1 P2)
1
2 (Lemma 4.1)

�

4.3 Batch -Normalized SPDNet 107

4.3.1.2 SPD centering and biasing

The definition of the SPD transport Γ clarifies the BarNorm and ParNorm opera-
tors, and allows the formal definition of

• The batch centering of matrices {Pi}i≤N with Riemannian barycenter G as the
PT from G to the identity Id;

• The biasing of the batch towards a parametric SPD matrix G as the PT from Id
to G.

Note that the transport is transitive (Yair et al. 2019), so both operations can be
concatenated in a single transport. We can now fully define the batch centering
and biasing:

Centering from G := Bar(B): ∀i ≤ N, P̄i = ΓG→Id(Pi) = G−
1
2 Pi G

− 1
2 (4.9a)

Biasing towards parameter G: ∀i ≤ N, P̃i = ΓId→G(P̄i) = G
1
2 P̄i G

1
2 (4.9b)

At this point, the next step in the original BatchNorm algorithm would be the
standardization. We instead choose, amongst the possible definitions of normal
distributions on S+

∗ , one which naturally involves no notion of standard deviation.

4.3.2 Statistical distribution on SPD matrices

In traditional Neural Networks (NNs), BatchNorm is defined as the centering and
standardization of the data within one batch, followed by the multiplication and
addition by parameterized variance and bias, to emulate the data sampling from a
learnt Gaussian distribution. In order to generalize to batches of SPD matrices, we
must first define the notion of Gausian density on S+

∗ . Although this definition has
not yet been settled for good, several approaches have been proposed. In Jaquier
and Calinon (2017), the authors proceed by introducing mean and variance as
second- and fourth-order tensors. On the other hand, Said et al. (2017) derive a
scalar variance. In another line of work synthesized in Barbaresco (2019), which
we adopt in this work, the Gaussian density is derived from the definition of
maximum entropy on exponential families using Information Geometry (IG) on
the cone of SPD matrices. In this setting, the natural parameter of the resulting

108 advances in spd neural networks

exponential family is simply the Riemannian mean; in other words, this means
the notion of variance, which appears in the Eucidean setting, takes no part in
this definition of a Gaussian density on S+

∗ . Specifically, such a density p on SPD

matrices P of dimension n writes:

p(P) ∝ det(α G−1)e−tr(α G−1P) , with α =
n+ 1

2
(4.10)

In the equation above, G is the Riemannian mean of the distribution. Again,
there is no notion of variance: the main consequence is that a Riemannian BatchNorm

on SPD matrices will only involve centering and biasing of the batch.

4.3.3 Riemannian BatchNorm algorithm

While the normalization is done on the current batch during training time, the
statistics used in inference are computed as running estimations. For instance,
the running mean over the training set, noted GS , is iteratively updated at each
batch. In a Euclidean setting, this would amount to a weighted average between
the batch mean and the current running mean, the weight being a momentum
typically set to 0.9. The same concept holds for SPD matrices, but the running
mean should be a Riemannian mean weighted by η, i.e. Bar(η,1−η)(GS ,GB), which
amounts to transporting the running mean towards the current batch mean by
an amount (1 − η) along the geodesic. We can now write our full Riemannian
BatchNorm in Algorithm 4.1.

In practice, Riemannian BatchNorm is appended after each BiMap layer in the net-
work. Though we have now introduced the full inference phase of the algorithm,
its backpropagation remains to be solved. The next section dives in the gory de-
tails of Riemannian manifold-constrained optimization, addressing the gradient
derivations both for the DAMNet architecture and the Riemanian BatchNorm, as
they share common ground.

4.4

Riemannian manifold-constrained optimization

The specificities of a the proposed DAMNet architecture and BatchNorm algorithm
are the non-linear manipulation of manifold values in both inputs and param-
eters and the use of a Riemannian barycenter. Here we present the two results

4.4 riemannian manifold -constrained optimization 109

Algorithm 4.1 Riemannian batch normalization on S+
∗ , training and testing phase

TRAINING PHASE
Require: batch of N SPD matrices {Pi}i≤N , running mean GS , bias G, momen-

tum η
1: GB ← Bar({Pi}i≤N) // compute batch mean
2: GS ← Barη(GS ,GB) // update running mean
3: for i ≤ N do
4: P̄i ← ΓGB→Id(Pi) // center batch
5: P̃i ← ΓId→G(P̄i) // bias batch
6: end for
7: return normalized batch {P̃i}i≤N

INFERENCE PHASE
Require: batch of N SPD matrices {Pi}i≤N , final running mean GS , learnt bias

G
1: for i ≤ N do
2: P̄i ← ΓGS→Id(Pi) // center batch using set statistics
3: P̃i ← ΓId→G(P̄i) // bias batch using learnt parameter
4: end for
5: return normalized batch {P̃i}i≤N

necessary to correctly fit the learning of the Riemannian BatchNorm in a standard
backpropagation framework.

4.4.1 Learning with SPD constraint

The bias parameter matrix G of the Riemannian BatchNorm is by construction
constrained to the SPD manifold. However, noting L the network’s loss function,
the usual Euclidean gradient ∂L

∂G
, which we note ∂Geucl, has no particular reason to

respect this constraint. To enforce it, ∂Geucl is projected to the tangent space of the
manifold at G using the manifold’s tangential projection operator ΠTG, resulting
in the tangential gradient ∂Griem. The update is then obtained by computing the
geodesic on the SPD manifold emanating from G in the direction ∂Griem, using the
exponential mapping ExpG defined in Equation 2.30, or any retraction operation
on the manifold, i.e. any operation mapping from the manifold to the tangent
bundle. Both ΠTG and ExpG are known in S+

∗ (Yger 2013):

∀P, ΠTG(P) = G
P + P T

2
G ∈ TG ⊂ S+ (4.11)

110 advances in spd neural networks

Figure 4.3.: Illustration of manifold-constrained gradient update. The Euclidean
gradient is projected to the tangent space, then mapped to the mani-
fold through retraction, which can be the exponential mapping.

We illustrate this two-step process in Figure 4.3, explained in detail in Edel-
man et al. (1998), which allows to learn the parameter in a manifold-constrained
fashion. However, this is still not enough for the optimization of the layer, as the
BatchNorm involves not simply G and G, but G

1
2 and G−

1
2 , which are structured

matrix functions of G, i.e. which act non-linearly on the matrices’ eigenvalues
without affecting its associated eigenspace. The next subsection deals with the
backpropagation through such functions.

4.4.2 Structured matrix backpropagation

Classically, the functions involved in the chain rule are vector functions in Rn,
whereas we deal here with structured (symmetric) matrix functions in the S+

∗ ,
specifically the square root (·) 1

2 for the parametric bias and the inverse square
root (·)− 1

2 for the barycenter (in Equation 4.9 and Equation 4.6).

4.4.2.1 General principles

We recall, a neural network of depth L can be seen as a hierarchical function
f = l ◦ f (L) ◦ . . . ◦ f (1) of input data X(0) := X and associated label Y composed

4.4 riemannian manifold -constrained optimization 111

of L elementary blocks and a loss function l penalizing the distance of the output
X(L) to Y . We also note L(k) := l ◦ f (L) ◦ . . . ◦ f (k) the intermediate loss function of
layer (k− 1). A generalization of the chain rule to S∗+, linking ∂L(k)

∂P
to ∂L(k+1)

∂X
given

the forward pass P 7−→ X , is thus required for the backpropagation through the
Riemannian BatchNorm and the ParNorm layers to be correct. Note that a similar
requirement applies to the ReEig and LogEig layers, respectively with a threshold
and log function. We generically note f a monotonous non-linear function; both
(·) 1

2 and (·)− 1
2 check out this hypothesis. To be clear, the formula for the gradients

through the ReEig and LogEig layers stems for a shared, more general formula,
which we then put to use in our application, i.e. the square root and inverse
square root functions. This general formula for the gradient of f , applied on
a SPD matrix’ eigenvalues (σi)i≤n grouped in Σ’s diagonal, was independently
developed by Ionescu et al. (2015) and Brodskiı̆ et al. (1965).

Theorem 4.2. Given the forward pass f : P 7−→ X , the backward pass ∂L(k+1)

∂X
7−→ ∂L(k)

∂P

is constructed as follows:

∂L(k)

∂P
(P, Y) = F∗(k)

(
∂L(k+1)

∂X
(X, Y)

)
(4.12)

In the equation, F∗(k) is the adjoint operator to the directional derivative (Df (k))P (dP) of
f (k) at point P in direction dP . Conceptually, F(k) is the operator mapping dP to dX .

Proof. The proof, as overviewed in Ionescu et al. (2015) and Yger and Sugiyama
(2015), stems for equating variation to the loss function given a perturbation
dP in P at layer (k), and the resulting perturbation dX of X at the following
layer (k + 1).We simplify the notations by dropping the layer indices (k) and
(k + 1) such that L := L(k+1) and using L(k) = L ◦ f . We retrospectively introduce
F : dP 7−→ dX . The proof thus initiates with equating the loss variation at the
two successive layers:

L ◦ f(P + dP)− L ◦ f(P) = L(X + dX)− L(X)

112 advances in spd neural networks

A first-order Taylor expansion then procedes; we will further omit the remainders
as the method is first-order only:

⇔ 〈∂L ◦ f
∂P

, dP 〉+O(||dP ||2) = 〈 ∂L
∂X

, dX〉+O(||dX||2) (Taylor expansion)

⇔ 〈∂L ◦ f
∂P

, dP 〉 = 〈 ∂L
∂X

,F(dP)〉 (by definition)

⇔ 〈∂L ◦ f
∂P

, dP 〉 = 〈F∗(∂L
∂X

), dP 〉 (adjoint operation)

⇔ ∂L ◦ f
∂P

= F∗(∂L
∂X

) (inner product valid ∀ dP)

�

In the Euclidean case of Equation 4.12, F∗(k) would typically reduce to the
standard linear form of the chain rule. We now show a practical usage of this
generalized chain rule, through the demonstration of a central example: the non-
linear eigenvalue modification, generically noted:

g ◦ Eig : P 7−→ (U,Σ, UT) 7−→ Ug(Σ)UT =: X (4.13)

Equation 4.13 maps P to its eigenspace U and eigenvalues Σ, then to the non-
linear (monotonous) modification of the eigenvalues. By construction, U ∈ O
(where we reuse the notation O for orthogonal matrices), and Σ is diagonal.
We decompose the derivation of ∂L◦g◦Eig

∂P
through ∂L◦◦Eig

∂P
and ∂L◦g

∂(U,Σ)
We begin

with Lemma 4.3.

Lemma 4.3. The tangent plane TUO of U ∈ O is U × S† (where S† is the space of
skew-symmetric matrices). In other words, dU = UΩ with ΩT = −Ω.

Proof.

UTU = Id ⇒ UTZ + ZTU = 0 (noting Z := dU)

⇒ Ω ∈ S† (noting Ω := UTZ)

⇒ dU = UΩ

�

4.4 riemannian manifold -constrained optimization 113

In practice, making use of Theorem 4.2 amounts for the Eig function to finding
dΣ and dU in function of dP , given the differential F form of dP , which we do
in Lemma 4.4:

Lemma 4.4. The function Eig : P 7−→ (U,Σ, UT) | P = UΣUT admits the following
differential form:

dΣ = (UTdP U)diag (using the operation (·)diag which zeroes all off-diagonal elements)

dU = U(KT � (UTdP U)) (with Kij =

{
1

σi−σj
(i 6= j)

0 (i = j)
)

(4.14)

Proof.

P = UΣUT ⇒ dP = dUΣUT + UdΣUT + UΣdUT

⇒ UTdP U = (UTdU)Σ + dΣ + Σ(UTdU)T

In the above equation, we know from the proof of Lemma 4.3 that UTdU is
skew-symmetric; thus, its diagonal is zero, and therefore its multiplication with
diagonal matrix Σ yields a zero-diagonal matrix. Furthermore, dΣ is also diagonal
by construction, so in the end we have dΣ = 0 + (UTdP U)diag + 0. Continuing the
equalities, we have:

⇒ X = (UTdU)Σ + Adiag − Σ(UTdU) (with A := UT dP U)

⇒ Ã = (UTdU)Σ− Σ(UTdU) (with Ã := A−Adiag)

⇒
{

(UTdU)ijσj − (UTdU)ijσi = Ãij (i 6= j)

(UTdU)ij = 0 (i = j)

⇒
{

(UTdU)ij = 1
σj−σi Ãij (i 6= j)

(UTdU)ij = 0 (i = j)

⇒ UTdU = KT � Ã
⇒ dU = U(KT � (UTdP U)) (because KT �Adiag = 0)

�

Finally, we show the backward pass of the Eig function in Theorem 4.3; all we
need now given Lemma 4.4 is to compute the adjoint operator:

114 advances in spd neural networks

Theorem 4.3. The function Eig : P 7−→ (U,Σ, UT) | P = UΣUT admits the following
backward pass:

∂L ◦ Eig

∂P
= U

(
(KT � (UT ∂L

∂U
)) + (

∂L
∂Σ

)diag

)
UT (with Kij =

1

σj − σi
(i 6= j)

0 (i = j)
)

(4.15)

Proof. To compute the adjoint aoperator, only a few linear algebra tricks are in-
volved, which we bunch in one single line:

〈∂L
∂U

, dU〉+ 〈∂L
∂Σ

, dΣ〉 = 〈∂L
∂U

, U(KT � (UTdP U))〉+ 〈∂L
∂Σ

, (UTdP U)diag〉

= 〈U(KT � (UT ∂L
∂U

))UT , dP 〉+ 〈U(
∂L
∂Σ

)diagU
T , dP 〉

= 〈U(KT � (UT ∂L
∂U

))UT + U(
∂L
∂Σ

)diagU
T , dP 〉

⇒ ∂L ◦ Eig

∂P
= U

(
(KT � (UT ∂L

∂U
)) + (

∂L
∂Σ

)diag

)
UT

�

We now derive in Theorem 4.4 the backward pass for the eigenvalue modifica-
tion g : (U,Σ) 7−→ X :

Theorem 4.4. The function Eig : P 7−→ (U,Σ, UT) | P = UΣUT admits the following
backward pass:

Proof.

X = Ug(Σ)UT ⇒dX = dUg(Σ)UT + Ug′(Σ)dΣUT + Ug(Σ)dUT

⇒dX =

Msym:=M+MT

2︷ ︸︸ ︷
(dUg(Σ)UT)sym +Ug′(Σ)dΣUT

4.4 riemannian manifold -constrained optimization 115

Given this newfound differential form, we now compute its adjoint; similarly to
before, we use the inner product adjoint property:

〈 ∂L
∂X

, dX〉 = 〈 ∂L
∂X

, (dUg(Σ)UT)sym + Ug′(Σ)dΣUT 〉

= 〈g′(Σ)UT ∂L
∂X

U, dΣ〉+ 〈2(
∂L
∂X

)symUg(Σ)〉

⇒
{
∂L◦g
∂Σ

= 2(∂L
∂X

))symUg(Σ)
∂L◦g
∂U

= g′(Σ)UT (∂L
∂X

))U

�

The investigative reader may refer to other established references of matrix com-
putation and calculus for a deeper understanding of the matter, such as Michal
(1947), Bers (1948), Dwyer and Macphail (1948), Papadopoulo and Lourakis (2000),
Petersen et al. (2006), Giles (2008), and Magnus and Neudecker (2019)

4.4.2.2 Takeaway backpropagation formulas

We now summarize the findings above in one simple formula, obtained by chain-
ing the backward passes of Eig and g (we omit the calculations). In short: given
the function P 7−→ X := g(P) and the succeeding gradient ∂L(k+1)

∂X
, the output

gradient ∂L(k)

∂P
is:

∂L(k)

∂P
= U

(
L� (UT (

∂L(k+1)

∂X
)U)

)
UT (4.16)

The equation above, also decribed in Nielsen and Bhatia (2013), is called the
Daleckĭi-Kreĭn formula and dates back to 1956, (but was translated from Russian 9

years later), predating the other formulation by 60 years. It involves the eigenspace
U of the input matrix P , and the Loewner matrix L, or finite difference matrix
defined by:

Lij =

{
g(σi)−g(σj)

σi−σj if σi 6= σj

g′(σi) otherwise
(4.17)

In the case at hand,
(

(·)− 1
2

)′
= −1

2
(·)− 3

2 and
(

(·) 1
2

)′
= 1

2
(·)− 1

2 . We credit Engin

et al. (2018) for first showing the equivalence between the two cited formulations,
of which we expose the most concise.

116 advances in spd neural networks

In summary, the Riemannian barycenter (approximation via the Karcher flow
for a batch of matrices, or exact formulation for two matrices), the parallel trans-
port and its extension on the SPD manifold, the SPD-constrained gradient descent
and the derivation of a non-linear SPD-valued structured function’s gradient allow
for training and inference of the proposed Riemannian BatchNorm algorithm.

4.5

Convolution for covariance time series

Here we introduce a novel temporal convolution layer for time series of SPD

matrices, inspired from the usual Euclidean 1D convolution layer, and using the
BiMap layer defined above. This layer produced no satisfactory results, so does not
appear in the experimental validations.

4.5.1 Single-channel convolution

Input P is a time series of SPD matrices of dimension ni and of duration Ti, i.e.
an input of shape (Ti, ni, ni). The convolution parameter K is a kernel of length
k of BiMap operators of shape (ni, no), i.e. a block of shape (k, ni, no). The output
X of the layer, of duration To and overal shape (To, no, no), is computed as a valid
temporal convolution using the bilinear mapping as base operation:

X := P ∗K

∀t ≤ To, Xt =
1

k

∑

l≤k

KT
l Pt+k−1−l Kl

(4.18)

Stride and padding can also be used to influence the duration To of the output
signal.

4.5.2 Weighted average convolution

A key difference between the Euclidean 1D convolution and the one defined
above is the BiMap operator preserves the matrix norm (up to normalization by
the dimension), which gives the same importance to all the SPD “pixels” in the
time series; essentially, the convolution is valid, but weightless. Therefore, we

4.5 convolution for covariance time series 117

introduce weights w of shape (k,) to the convolution, constrained to represent
a valid distribution, i.e. ∀l ≤ k, wl ≥ 0 and

∑
l≤k wl = 1. The convolution then

becomes:

X := P ∗ wK
∀t ≤ To, Xt =

∑

l≤k

wl K
T
l Pt+k−1−l Kl

(4.19)

4.5.3 Riemannian convolution using the weighted Fréchet mean

The convolution as defined above takes the form of an arithmetic mean; one could
instead imagine using a Riemannian mean, better-suited to the SPD data:

X := P ∗ wK
∀t ≤ To, Xt = Barwl≤k (KT

l Pt+k−1−l Kl)
(4.20)

In the equation above, one must take care not to confuse the weighted Fréchet
mean of the operands with the unweighted Fréchet mean of the weighted operands.

Figure 4.4 illustrates the somewhat convoluted process of performing the SPD

BiMap convolution.

118 advances in spd neural networks

Raw signal

S0

· · ·

P0

S1

· · ·

P1

S2

· · ·

P2

S3

· · ·

P3

S4

· · ·

P4

w0.K0 w1.K1 w2.K2 BiMap filter bank
(k = 3)

X0 X1 X2

X := P ∗Kw

Output covariance time series X (To = ((5−3)+0)
1 + 1)=3

Figure 4.4.: The convolutional BiMap. The input raw signal is split in Ti sub-
signals corresponding to a first level of temporal resolution. Each
sub-signal is then split in sub-sub-signals of elementary duration τ
(from Section 3.2.2). From there, a covariance matrix is sampled for
each timestep t ≤ Ti, yielding a time series of covariances, which is
convolved with the temporal BiMap filter bank. The output duration
To follows the standard rule of convolutions, here with no stride and
padding.

4.5.4 Multi-channel convolution

More realistically, we wish to instigate the network’s potential expressiveness
by further building multi-channeled SPD representations. We do so in the usual
fashion; input P is now of shape (Ti, Ci, ni, ni), kernel K of shape (Co, Ci, k, ni, no),
weights w are still of shape (k,), and output X of shape (To, Co, no, no), and is
computed as follows:

∀co ≤ Co, Xco =
∑

ci≤Ci

Pci ∗ wKco,ci (4.21)

4.6 experimental validation 119

In all definitions above, the convolution uses the BiMap layer (and therefore
induces dimension reduction), which is novel.

4.6

Experimental validation

Here we evaluate the gain in performance of the SPDNetBN against the baseline
SPDNet on different tasks: micro-Doppler (µ-D) radar data classification, emotion
recognition from video, and action recognition from MoCap data. We call the
depth L of an SPDNet the number of BiMap layers in the network, and denote the
dimensions as {n0, · · · , nL}. The vectorized input to the final classification layer
is thus of length n2

L. To be precise, the symmetry of the matrix allows to gather
a vector of length n(n+1)

2
, but our experiments seemed to slightly favor using the

whole matrix. All networks are trained for 200 epochs using Stochastic Gradient
Descent (SGD) with momentum set to 0.9 with a batch size of 30 and learning
rate 5e−3, 1e−2 or 5e−2. We provide the data in a pre-processed form alongside
the PyTorch (Paszke et al. 2017) code for reproducibility purposes, and also show
snippets to demonstrate its ease of use. We recall that the SPDNetBN appends
a Riemannian BatchNorm after each BiMap layer of the associated SPDNet. Finally,
we also report performances of shallow learning method on SPD data, namely the
Minimum Riemannian Distance to Riemannian Mean (MRDRM) scheme presented
in Section 2.5.2, in order to bring elements of comparison between shallow and
deep learning on SPD data.

4.6.1 Drones recognition

Our first experimental target focuses on drone µ-D radar classification. First we val-
idate the usage of our proposed method over a baseline SPDNet, and also compare
to the previously exposed deep learning methods. Then, we study the models’ ro-
bustness to lack of data, a challenge which, as stated previously, plagues the task
of radar classification and also a lot of different tasks. Experiments are conducted
on a confidential dataset of real recordings issued from the North Atlantic Treaty
Organization (NATO). To spur reproducibility, we also experiment on synthetic,
publicly available data.

Radar data description As previously described, the radar signal is the result
of an emitted wave reflected on a target; as such, one data point is a time series of

120 advances in spd neural networks

N values, which can be considered as multiple realizations of a locally stationary
centered Gaussian process, as done in Charon and Barbaresco (2009). The signal
is split in windows of length n = 20, the series of which a single covariance
matrix of size 20 × 20 is sampled from, which represents one radar data point.
We refer to Figure 3.10 for a visual clarification of the splitting operation. The
NATO data features 10 classes of drones, whereas the synthetic data is generated
by a realistic simulator of 3 different classes of drones following the protocol
previously described. We chose here to mimick the real dataset’s configuration,
i.e. we consider a couple of minutes of continuous recordings per class, which
correspond to 500 data points per class, so 1500 in total.

Comparison of Riemannian and Euclidean models We test the SPD-based
models in a {20, 16, 8}, 2-layer configuration for the synthetic data, and in a
{20, 16, 14, 12, 10, 8}, 5-layer configuration for the NATO data, over a 5-fold cross-
validation, split in a train-test of 75% − 25%. We also wish to compare the Rie-
mannian models to the common Euclidean ones, which consitute our state-of-
the-art in µ-D classification. We compare two Fully Temporal Convolutional Net-
works (FTCNs): the first one is the same as in Section 3.2.2; for the second one, the
number of parameters is set to approximately the same number as for the SPD neu-
ral nets, which amounts to an unusually small Deep Neural Network (DNN). This
second “deep” architecture is chosen to ensure fairness from the viewpoint of pa-
rameter intesity. All in all, the SPD neural models and the small FTCN on the one
hand, and the full-size FTCN on the other hand respectively have approximately
500 and 10000 parameters.

Table 4.1 reports the average accuracies and variances on the NATO data of the
SPDNet against the Euclidean models, and the MRDRM scheme. A first obvious
result, is that the MRDRM performs relatively poorly, albeit showcasing great sta-
bility. Secondly, the Euclidean method outperforms both Riemannian methods by
a large margin. However, the Euclidean method crumbles when given ten times
less data to learn upon, while the Riemanian method remains quite stable, to
the point of reversing the tendency. This robustness to lack of data, already ob-
served in the previous chapter, will recur in the following experiments, providing
a strong argument in favour of the Riemannian methods.

4.6 experimental validation 121

Table 4.1.: Performance of SPDNet, FTCN and MRDRM on the NATO dataset. Ac-
curacy is compared on a 5-fold cross-validation; experiments are re-
peated with only 10% of training data.

Model SPDNet MRDRM FTCN
Parameters ∼ 500 - ∼ 500 ∼ 10000
Acc. (all data) 72.6%± 0.61 69.7%± 1.12 73.4%± 3.66 88.788.788.7%± 0.83
Acc. (10% data) 69.169.169.1%± 0.97 67.1%± 2.17 61.1%± 3.50 65.6%± 2.74

Table 4.2 reports the average accuracies and variances of the proposed DAMNet
and SPDNetBN architectures, compared with the original SPDNet. We observe
from these results a strong gain in performance on the SPDNetBN and DAMNets
over the SPDNet and over the small FTCN, which validates the usage of the Rieman-
nian BatchNorm along with the exploitation of the geometric structure underlying
the data. All in all, we reach better performance with much fewer parameters,
which again is a key feature for radar classification, and much others.

Table 4.2.: Performance of SPDNet, DAMNet and SPDNetBN on the NATO
dataset. Accuracy is compared on a 5-fold cross-validation; experi-
ments are repeated with only 10% of training data.

Model SPDNet DAMNet SPDNetBN
Normalization - BarNorm ParNorm BatchNorm
Accuracy 72.6%± 0.61 79.9%± 1.19 80.3%± 0.55 82.382.382.3%± 0.80
Acc. (10% data) 69.1%± 0.97 73.8%± 0.25 70.2%± 1.74 77.777.777.7%± 0.95

The raw SPDNet, though not competing with the FTCN when all data is available,
remains more robust to the lack data. The SPDNetBN on the other hand, exhibits
a strong gain in performance to the point of competing with the deep model.
Note that we iterate only once for the barycenter estimation in the BarNorm or
BatchNorm (K = 1 in the Karcher flow). This is most likely due to the fact, that
within the normalization of a batch, a noisy estimate is probably preferable as the
estimation itself is restricted to a small sample size. This hypothesis was validated
in experiments we do not include in the text: in the end, using the single iteration
yielded better results than more iterations, and no iteration (i.e., the arithmetic
mean).

Finally, in the interest of convergence analysis, we also report learning curves
for the model’s accuracy with and without Riemannian BatchNorm in Figure 4.5.

122 advances in spd neural networks

0.6

0.65

0.7

0.75

0.8

0.85

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.

SDPNet with RBN

SPDNet without RBN

Validation
accuracy

Time (hours)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

-20 0 20 40 60 80 100 120 140 160 180 20

Figure 4.5.: Validation accuracy and loss curves of SPDNet and SPDNetBN on
the NATO dataset. The x-axis measures hours instead of epochs for
the accuracy, epochs for the loss.

In Figure 4.5, the SPDNetBN exhibits a steeper learning curve. For the same
number of epochs, it does take more time overall, but reaches better accuracy
much faster, allowing to reduce the number of epochs. A similar results is found
for the BarNorm regularization, while the ParNorm yields an overall less stable
curve, which is a reasonable behaviour condsidering the additional SPD parameter
to be learnt, without the benefit of normalizing around the barycenter first.

For the sake of expression, we also show in Figure 4.6 a confusion matrix of the
SPDNetBN model for the NATO dataset. Notice the strong imbalance throughout
the classes precisions, due to the same imbalance found within the class samples.
A thorough description of the NATO dataset is geiven in Appendix B.

4.6 experimental validation 123

Figure 4.6.: Confusion matrix on the NATO dataset. Class imbalance within the
dataset yields rather strongly imbalanced results.

Robustness to lack of data As stated previously, it is of great interest to con-
sider the robustness of learning algorithms when faced with a critically low
amount of data. The last line in both Table 4.1 and Table 4.2 shows that when given
only 10% of available training data, the SPD-based models remain highly robust
to the lack of data while the FTCNs plummet. Further, we study robustness on
synthetic data, artificially varying the amount of training data while comparing
performance over the same test set. As the simulator is unbounded on potential
training data, we also increase the initial training set up to double its original size.
Results are reported in Figure 4.7.

124 advances in spd neural networks

100020003000
Number of training examples

70

80

90

A
cc

u
ra

cy
(%

)

Reference amount of data (1500)

SPDNet

SPDNetBN

FCN

Figure 4.7.: Performance of all models in function of the amount of synthetic
radar data. The SPDNetBN model outperforms the other ones and
continues to work even with a little fraction of the train data.

We can conclude from these that the SPDNetBN both exhibits higher robustness
to lack of data and performs much better than the Euclidean deep methods with
much fewer parameters. When the available training data allowed skyrockets, we
do observe that the FTCN comes back to par with the SPDNetBN to the point
of outperforming it by a small margin in the extremal scenario; in the meantime,
the SPDNet lags behind by a large margin to the SPDNetBN, which thus seems
to benefit strongly from the normalization. In any case, the manifold framework
seems well suited in a scarce data learning context, especially considering the
introduced normalization layers, which again pinpoints the interest of taking into
account the geometric structure of the data, all the while without introducing
specific prior knowledge during training.

SPD Data separability To study how the reference projection point influences
the separability of datapoints, we choose two arbitrary classes c1 and c2 in the
radar dataset; we map all points from the test set belonging to c1 and c2 to the
final SPD representation layer of a pre-trained SPDNet; we compute the barycenter
G of all mapped points, and the discretized geodesic (Pennec et al. 2006), parame-
terized by t ∈ [0, 1] linking the identity matrix Id to G; we also further extrapolate
the geodesic for better visualisation; we compute the Euclidean projections of the
mapped SPD points at all reference points along the geodesic; t = 0 corresponds
to LogEig, and t = 1 to the BarNorm; for one given projection reference point, we
evaluate class separability as the Euclidean distance between the Euclidean class
means of the projected points; separability is evaluated at each reference point
along the geodesic; our hope is to observe high separability at the barycenter (i.e.
at t = 1).

4.6 experimental validation 125

1. We choose two arbitrary classes c1 and c2;

2. We map all points from the test set belonging to c1 and c2 to the final SPD
representation layer of a pre-trained SPDNet;

3. We compute the barycenter G of all mapped points, and the discretized
geodesic, parameterized by t ∈ [0, 1] linking the identity matrix Id to G; we
also further extrapolate the geodesic for better visualisation;

4. We compute the Euclidean projections of the mapped SPD points at all refer-
ence points along the geodesic; t = 0 corresponds to LogEig, and t = 1 to the
BarNorm;

5. For one given projection reference point, we evaluate class separability as the
Euclidean distance between the Euclidean class means of the projected points;

6. Separability is evaluated at each reference point along the geodesic; our hope
is to observe high separability at G (i.e. at t = 1).

The red curve in Figure 4.8 measures the distance between the two classes: we
see it increasing along the geodesic. Note it is not obvious (though it is intuitive)
that the barycenter criterion should provide this result, as class separability on
the manifold does not necessarily translate to the tangent space; in the case of S∗+
however, negative curvature actually ensures this. This increase experimentally
validates the interest of the batch centering BarNorm scheme.

For a more extensive visual study, we also shoot geodesics in random directions
around the identity (t = 0, green curves), and around the barycenter G (t = 1,
blue curves), and also plot the corresponding class separability at each reference
point along each random geodesic. We observe that the neighborhood of G seems
to constitute local maximum in class separability. This observation validates the
practical relevance of information geometric theoretical elements involved in our
normalization schemes in the development of manifold-valued neural networks.

126 advances in spd neural networks

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

Parameter of the geodesics

6.770

6.775

6.780

6.785

6.790

6.795

6.800

6.805

D
is

ta
n

ce
b

et
w

ee
n

p
ro

je
ct

ed
cl

as
s

m
ea

n
s

Separability in function of reference projection point

Geodesic between identity and barycenter

Geodesics in random directions from the barycenter

Geodesics in random directions from identity

Barycenter

Identity

Figure 4.8.: Separability of two classes of the radar dataset. Separation between
classes is higher with a reference matrix near the barycenter.

Interest of the Riemannian barycenter Within the BarNorm scheme and the
Riemannian BatchNorm, the Fréchet mean is computed using the Karcher flow
(Algorithm 2.2). Actually, we run one single step of the Karcher flow, which when
the learning rate is set to 1 amounts to the barycenter from the LEM viewpoint
(Section 4.2.1). Conceptually, step 0 of the flow, i.e. the initialization, amounts to
the Euclidean barycenter, or arithmetic average. One could question the efficiency
of using the Karcher flow, which involves eigenvalue decompositions, in terms of
the network’s final performance.

The first rebuttal, is that within the SPD networks, the decomposition is already
performed, and the results are stored for the backpropagation step. The second
counter-argument lies within the following experiment. We execute the Minimum
Distance to Mean (MDM) classification scheme, successively using the three possi-
ble barycenters (arithmetic mean, LEM, Fréchet with several steps) on the synthetic
radar data. Since the three candidates instantiate as iterations through the Karcher
flow, we plot in Figure 4.9 a single curve of validation accuracy.

4.6 experimental validation 127

Figure 4.9.: Validation accuracy for the closest barycenter algorithm. Iteration 0
corresponds to the arithmetic mean, iteration 1 to the LEM barycenter.

Figure 4.9 shows performance increasing with the fidelity to the manifold’s
geometry, justifying the interest of the Fréchet mean. However, the computational
overhead induced from multiple iterations may not be worth the gain in accuracy
depending on the application. Furthermore, we found that adding iterations of
the Karcher flow in the batch centering scheme actually deteriorates performance.
This could be explained by the fact that one single batch may not adequately
represent the underlying data distribution, thus a theoretically less accurate batch
barycenter may reduce the variance in the reference point computation and ease
training.

We now move on to validating the DAMNet and SPDNetBN on a broader set
of tasks.

4.6.2 Emotion recognition

In this section we experiment on the Acted Faces Expressions in the Wild (AFEW)
dataset (Dhall et al. 2011), which consists of videos depicting 7 classes of emotions;
we follow the setup and protocol in Huang and Van Gool (2017). The dataset
consists of 2118 SPD matrices of size 400 × 400 split in 1747+371 training and
validation sets, each matrix in the dataset summarizing the pixel cross-correlations
of a video clip scaled down to frames of size 20× 20. Since Huang and Van Gool
(2017) perform no cross-validation and use a fixed seed for initialization, we also
initialize with the same exact weights, as we observed a rather high variance
in accuracy for different random initializations. We train 1-, 2-, 3- and 4-layer
networks; results are summarized in Table 4.3. In comparison, the MRDRM yields
a 20.5% accuracy.

128 advances in spd neural networks

Table 4.3.: Performance of SPDNet, DAMNet and SPDNetBN on the AFEW
dataset. As in previous works, accuracy is measured on a held-out
test set.

Model architecture SPDNet DAMNet SPDNetBN
Normalization - BarNorm ParNorm BatchNorm
{400, 50} 29.9% 32.1% 32.6% 34.934.934.9%
{400, 100, 50} 31.2% 33.2% 31.8% 35.235.235.2%
{400, 200, 100, 50} 34.5% 36.1% 35.0% 36.236.236.2%
{400, 300, 200, 100, 50} 33.7% 34.3% 36.3% 37.137.137.1%

We first clarify we do not necessarily seek state-of-the-art in the general sense
for the following tasks, but rather in the specific case of the family of SPD-based
methods. Our own implementation’s performances closely match that those cited
in Huang and Van Gool (2017), ensuring a fair comparison. We observe a small yet
consistent improvement using barycentric centering of the data. It also seems the
improvement is higher the fewer the layers. This could be attributed to the fact the
network learnt a more discriminative SPD representation in deeper layers, which
then benefits less from centering. We also observe a consistent improvement using
the Riemanian BatchNorm, with systematically better scores, although the BarNorm
rivals it closely in certain scenarios in the higher end of deepness spectrum. Again,
we blame the additional parameters to be learnt, in the ParNorm or BatchNorm

This dataset being our largest-scale experiment, we also report the increase in
computation time using the Riemannian BatchNorm, specifically for the deepest net:
one full training lasted on average 81s for SPDNet, and 88s (+8.6%) for SPDNetBN.
Computational complexity inherent to SPD-based methods is counterbalanced by
having much fewer parameters to learn than an usual deep net.

4.6.3 Action recognition

In this section we experiment on the Hochschule der Medien 05 (HDM05) (Müller
et al. 2007) dataset, which consists in MoCap data depicting various actions per-
formed by 5 human actors. The actions are divided in 14 main action classes,
which are subdivided in 130 classes. We perform the experiments in the 130-class
setting. One data point is a sequence of m body states evolving through time, one
body state being a frame of 3-D coordinates of the njoints = 31 joints constituting
the body. For each body state, we consider the n = 3njoints = 93-dimensional
feature vector concatenating all coordinates; the whole sequence is then described
by its centered n×n joint covariance, ie the summed centered covariances of each
frame feature vector. The resulting matrix can in theory be SPD i.f.f. n ≤ m. The
database contains 2337 sequences. Some of the 130 classes being vastly under-

4.6 experimental validation 129

represented, we select those with at least 5 sequences yielding SPD descriptors
(as done in Harandi et al. (2014)), which trims the dataset down to 2086 points
scattered throughout 117 classes. Figure 4.10 plots the distribution of sequence
lengths across the retained classes (minimum, mean and maximum) along with
the instances per class. Note that by construction the minimal sequence length
possible is 93 and the smallest number of instances is 5.

Figure 4.10.: Distribution of class instance number and sequence length for
the HDM05 dataset. Visibly, there are less instances per class than
there are classes, and some sequences are too short to yield positive
definite covariance.

As in Huang and Van Gool (2017), we train a {93, 30} SPDNet on half the data
and test on the other half with 10-fold cross-validation; results are shown in Ta-
ble 4.4. Note that all tested models exhibit noticeable variance depending on the
weights initialization and the initial random split of the dataset; the results dis-
played were obtained by setting a fixed seed of 0 for both. In comparison, the
MRDRM yields a 27.3%± 1.06 accuracy.

Table 4.4.: Accuracy comparison of SPDNets and DAMNets on the HDM05 dataset.
Model SPDNet DAMNet SPDNetBN
Norm. - BarNorm ParNorm BatchNorm
Acc. 61.6%± 1.35 64.2%± 1.10 63.5%± 0.98 65.265.265.2%± 1.15

Again, we validate a better performance using the proposed normalization
schemes, the Riemanian BatchNorm outperforming the other models.

130 advances in spd neural networks

4.7

Conclusion

This chapter focused on the introduction of novel layers in the context of deep
architectures for SPD matrices. Making use of the geometry of the underlying
manifold, we presented two main levels of contributions.

We first proposed a Data-Aware Mapping Network (DAMNet), a new architec-
ture with two mutually exclusive layers which improve on the performances of
an equivalent SPDNet. Both rely on the generalization of the mathematical back-
ground upon which the final Euclidean projection layer is based on, from the
Log-Euclidean Metric (LEM) framework to the Affine Invariant Riemannian Met-
ric (AIRM) framework. The first one, the Barycentric Normalization (BarNorm),
uses the Riemaniann barycenter to improve the logarithmic mapping, making it
computationally tractable by only computing the barycenter on a batch of reduced
dimension: incoming SPD matrices are centered to their barycenter, ensuring a
better conditioned distribution in the arrival Eucidean space. The second one,
the Parametric Normalization (ParNorm), makes the projection dependent on the
classification loss. More precisely, a parametric SPD matrix acts as the reference
projection point, and thus guides the mapping according to the loss.

The second proposition is a Batch Normalization (BatchNorm) algorithm for SPD

NNs, mimicking the original BatchNorm in Euclidean nets. The resulting architec-
ture is dubbed SPDNetBN. The algorithm makes use of the SPD Riemannian man-
ifold’s geometric structure, namely the Riemannian barycenter, parallel transport,
and manifold-constrained backpropagation through non-linear structured func-
tions on SPD matrices. It is interesting to note the proposed Riemanian BatchNorm

is an architectural generalization of the DAMNet; indeed, it conceptually acts as
the succession of a BarNorm, then a ParNorm, appended after each layer instead
of simply the final one. However, experiments show the parametric normalization
scheme sometimes hurts the learning, possibly due to the additional degree of
freedom and the inherent complexity of learning on the SPD manifold. A final
proposition, for which no satisfactory experimental results were obtained, consists
in a 1D convolutional layer based on the BiMap, the idea being to allow a more
fine-grained temporal splitting of the signal, and a more expressive SPD neural
network.

Results were led on µ-D radar data, and also on video data for emotion recog-
nition, and MoCap data for action recognition. They show that both new archi-
tectures improve upon the performances of the baseline SPDNet, on multiple
datasets. Although the SPDNetBN usually performs best, the BarNorm presents a

4.7 conclusion 131

more reliable, smooth training curve. Also, neither the BarNorm or the ParNorm
seems to systematically prevail over the other, justifying the interest of both for
the DAMNet in different application cases. A comparison to a well-used, better
known Riemannian learning method, the MRDRM scheme, systematically show-
cases much better performances for the neural-based methods.

An additional result, obtained exclusively on µ-D radar data, is the better ro-
bustness to lack of data obtained with our two architectures, compared to the
baseline SPDNet and to the Fully Temporal Convolutional Network (FTCN) pro-
posed in the previous chapter. The overall performances and robustness of our
proposed SPDNetBN makes it a suitable candidate in learning scenarios where
data is structured, scarce, and where model size is a relevant issue, which is of
frequent occurrence in the radar scenery, by and large in other fields as well.

Also on radar data, the practical interest of the Riemannian barycenter was
shown, with two different visualisations. A first one simply illustrates the gain
in performance in a simple MDM scheme: we see this gain increasing from the
Euclidean mean, through the LEM mean, to the AIRM mean, or Fréchet mean.
The second visualisation, richer in content, shows the performance of a frozen
DAMNet architecture, given different Euclidean mapping reference points. The
best plotted result is the Riemanian barycenter, with the identity matrix perform-
ing better than random.

All in all, the potential inspirations from this chapter are quite mind-boggling.
Indeed, each and every of the developments of neural networks led from 1953

to today in 2020 constitute a source of inspiration for the development of SPD

neural models, and in general neural nets on any Riemannian manifold. A main
chunk of work in this chapter was inspired by the BatchNorm algorithm, while the
same could be done with past novelties as diverse as recurrent networks, entropy
regularization, more sophisticated learning schemes... Innovation in Riemannian
neural models will also most logically stem from the field of Information Ge-
ometry itself, for instance to allow the classification to be done directly on the
manifold through “separating hyper-geodesics” instead of requiring the projec-
tion to a Euclidean plane. Other tools in statistics, linear algebra and general
mathematics can also be involved in the refinement or speedup of such models:
for instance, the logarithmic mapping could be approximated or replaced (under
certain conditions) by a matrix square root, which is approximable through an
iterative algorithm requiring inly linear operations, making it easily parallelizable.
In the end, we believe the research in Riemannian neural models, not only shows
great potential in yet untested fields, but also shows evident fields of exploration
for future works.

C
h

a
p

t
e

r 5
C O N C L U S I O N A N D P E R S P E C T I V E S

We first provide a final conclusion to this thesis, before discussing opening per-
spectives for future ideas.

Final conclusion

In this thesis, we worked on developing neural models inherently adapted to the
data, in the context of structured time series classification, with a more thorough
spotlight on micro-Doppler (µ-D) radar data.

The primary goal of this thesis was finding learning models, with the internal
structure naturally suited to the input data. As a part of this goal, the understand-
ing of the input data itself is of prime importance, and in particular the various
representations used to extract meaningful sense out of it. Two main classes of rep-
resentations were considered in addition to the raw time series: a time-frequency
spectrogram, i.e. some form of Fourier transform, and a covariance matrix.

The first form of representation, along with raw time series, was mainly the
concern of Chapter 3. Since the spectrogram can be seen as both a time series of
spectral vectors, or an image of time and frequency dimensions, a first benchmark
was established between the use of Recurrent Neural Networks (RNNs) on the one
hand, and Convolutional Neural Networks (CNNs) on the other hand, or more pre-
cisely a Fully Temporal Convolutional Network (FTCN). While the convolutional
architecture prevailed, it was interetsing to notice a strong upper hand of both
models w.r.t. a standard logistic regression, justifying the incorporation of signal
knowledge within the learning models. Other features of interest of the FTCN are,
it preserves the temporal structure of the input data, and the resolution of the out-
put feature time series is also fully controlable. Furthermore, a complex-valued
version of the FTCN was devised; we also introduced a novel Fourier convolution
layer, allowing for a flexible refining of the Fourier filter-bank; the two complex ar-
chitectures proposed were thus the CR Neural Network (CRNet) and the Fourier
Neural Network (FourierNet), one operating on the complex spectrogram, the
other on the raw complex time series. Subsequent experiments on µ-D radar data

133

134 conclusion and perspectives

further showed the practical interest of using the complex architectures – mainly
in the context of plentiful, and challenging data.

The second form of representation, the covariance, was mainly the concern
of Chapter 4. The covariance matrix posseses a particular geometry, that of being
Symmetric Positive Definite (SPD). As such, it does not belong to a flat, Euclidean
space but rather to a curved, Riemannian manifold; learning models must thus
be suited to this underlying manifold. We mainly focused on the Riemannian
version of Deep Neural Networks (DNNs), a founding instance of which we base
ourselves on, the SPD neural network (SPDNet). In this context, we developed two
series of contributions. A first one, the Data-Aware Mapping Network (DAMNet)
architecture, dwelled upon the final Euclidean projection layer, generalizing it
with two distinct layers, the Barycentric Normalization (BarNorm) making use of
the Riemannian barycenter, and the Parametric Normalization (ParNorm) making
use of a parametric, learnable SPD matrix. Then, these normalization layers were
pushed to their natural evolution in the Batch-Normalized SPDNet (SPDNetBN),
in which we introduced a Riemannian equivalent to the well-established Batch
Normalization (BatchNorm) layer. Experimentations were conducted on radar data,
but also on video data for emotion recognition, and Motion Capture (MoCap) data
for action recognition. They showed rather systematic improvements from the
SPDNet, through the DAMNet, to the SPDNetBN, although it seems the DAMNet
with BarNorm regularization eased the learning in some cases.

Given these different learning models associated to different input representa-
tions, it may be tough to chose between one or the other in a given scenario. The
second purpose of Chapter 3 was also to provide a congregating solution, by mak-
ing use of all representations and models in a single pipeline, called Second-Order
Fully Temporal Network (SOFTNet). This final new model consists in plugging
a SPD neural net to a FTCN, which is made possible by the FTCN feature maps
being of temporal nature. This amounts to building a first-order representation
of the data through a DNN, and then appending a second-order neural model to
study the covariance of the feature time series, which makes for a conceptually
strong model, making use of a variety of representations and adapted learning
models of the data. This pipeline makes for a fine transition to perspectives on
future works.

Opening perspectives

As parting words, let us now jot down a few thoughts brought to light in the
midst of this thesis.

conclusion and perspectives 135

As hinted above, the SOFTNet pipeline provides a good starting point: from
what one may gather for its figurative aspect, its modularity potentially allows a
combinatorial expanse of re-configured models suited to the task at hand: to our
mind, the interaction of first, second and even higher statistical orders of the data
within adapted Euclidean or Riemannian models shows the strongest promises
for future research potential. This is already the case for second-order models,
which simply plug a SPD neural net after a CNN to improve the performance of
the CNN in its classification task. The independent blocks of Euclidean and Rie-
mannian models may advance seperately in their journey towards more efficient
and powerful learning abilities, but their union may prove the ultimate provider
of cutting-edge performance.

These independent evolutions are also a cornerstone subject of interest, specif-
ically in our case developments in SPD architectures, not only on the technical
advances, but also in domain applications. The use of Parallel Transport (PT)
for domain adaptation is starting to be explored, with potential applications as
diverse as there are domains to adapt; for instance, the self-driving car prob-
lem of having to perform equally well in very different landscapes or weather
conditions. The usage of local covariance descriptors for image segmentation is
also a incipient possibility, paving the way to possible innovations such as pixel-
covariance-RNN, or more simply an application of a convolutional SPDNet.

We end this thesis by reenacting our original guiding principle, and perhaps
the most obvious perspective of our works: whenever any kind of local structure
defines the data to be studied, a covariance structure may be extracted. Then, SPD-
based methods may be applied, in possible collaboration with a deep Euclidean
model. For it is together, not isolated one from the other, that their individual
qualities may be expressed in emergence towards a dominant performance.

B I B L I O G R A P H Y

[1] A. Hern. “Computers are now better than humans at recognising images”.
en-GB. In: The Guardian (May 2015) (cit. on p. 1).

[2] “As Self-Driving Cars Stall, Players Revive an Old Approach”. en. In: Wired
() (cit. on p. 1).

[3] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang. “Disease Prediction
by Machine Learning Over Big Data From Healthcare Communities”. In:
IEEE Access 5 (2017), pp. 8869–8879 (cit. on p. 1).

[4] Your virtual doctor will see you now: AI app as accurate as doctors in 80% of
primary care diseases. en (cit. on p. 1).

[5] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. “An Application of Rein-
forcement Learning to Aerobatic Helicopter Flight”. In: Advances in Neural
Information Processing Systems 19. Ed. by B. Schölkopf, J. C. Platt, and T.
Hoffman. MIT Press, 2007, pp. 1–8 (cit. on p. 1).

[6] AlphaGo Zero: Starting from scratch. ALL (cit. on p. 1).

[7] F. Rosenblatt. “The perceptron: A probabilistic model for information stor-
age and organization in the brain.” In: Psychological review 65.6 (1958),
p. 386 (cit. on pp. 1, 27).

[8] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. “Backpropagation Applied to Handwritten Zip Code
Recognition”. In: Neural Computation 1.4 (Dec. 1989), pp. 541–551 (cit. on
pp. 1, 31).

[9] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11 (Nov.
1998), pp. 2278–2324 (cit. on pp. 1, 31).

[10] T. Durand, T. Mordan, N. Thome, and M. Cord. “WILDCAT: Weakly Su-
pervised Learning of Deep ConvNets for Image Classification, Pointwise
Localization and Segmentation”. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2017). Honolulu, HI, United States: IEEE,
July 2017 (cit. on p. 1).

[11] H. Ben-younes, R. Cadene, M. Cord, and N. Thome. “MUTAN: Multi-
modal Tucker Fusion for Visual Question Answering”. en. In: 2017 IEEE
International Conference on Computer Vision (ICCV). Venice: IEEE, Oct. 2017,
pp. 2631–2639 (cit. on p. 1).

137

138 bibliography

[12] J. Johnson. jcjohnson/neural-style. original-date: 2015-09-01T04:55:14Z. Dec.
2019 (cit. on p. 1).

[13] NVIDIA/pix2pixHD. original-date: 2017-12-01T19:19:14Z. Dec. 2019 (cit. on
p. 1).

[14] C. Tao, H. Pan, Y. Li, and Z. Zou. “Unsupervised Spectral–Spatial Feature
Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery
Classification”. In: IEEE Geoscience and Remote Sensing Letters 12.12 (Dec.
2015), pp. 2438–2442 (cit. on p. 2).

[15] H. Liang and Q. Li. “Hyperspectral Imagery Classification Using Sparse
Representations of Convolutional Neural Network Features”. en. In: Re-
mote Sensing 8.2 (Feb. 2016), p. 99 (cit. on p. 2).

[16] F. Tupin, H. Maitre, J.-F. Mangin, J.-M. Nicolas, and E. Pechersky. “De-
tection of linear features in SAR images: application to road network ex-
traction”. In: IEEE Transactions on Geoscience and Remote Sensing 36.2 (Mar.
1998), pp. 434–453 (cit. on p. 2).

[17] F. Tupin, G. Liu, and Y. Gousseau. “A contrario comparison of local descrip-
tors for change detection in Very High spatial Resolution (VHR) satellite
images of urban areas”. en. In: IEEE Transactions on Geoscience and Remote
Sensing (2018) (cit. on p. 2).

[18] A. M. Atto, E. Trouve, Y. Berthoumieu, and G. Mercier. “Multidate Di-
vergence Matrices for the Analysis of SAR Image Time Series”. In: IEEE
Transactions on Geoscience and Remote Sensing 51.4 (Apr. 2013), pp. 1922–
1938 (cit. on p. 2).

[19] Inman, M. 6 things I learned from riding in a Google Self-Driving Car. en (cit.
on p. 2).

[20] J. Lien, N. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H.
Raja, and I. Poupyrev. “Soli: Ubiquitous Gesture Sensing with Millimeter
Wave Radar”. In: ACM Trans. Graph. 35.4 (July 2016), 142:1–142:19 (cit. on
p. 2).

[21] S. Wang, J. Song, J. Lien, I. Poupyrev, and O. Hilliges. “Interacting with
Soli: Exploring Fine-Grained Dynamic Gesture Recognition in the Radio-
Frequency Spectrum”. en. In: ACM Press, 2016, pp. 851–860 (cit. on p. 2).

[22] J. C. Maxwell. “VIII. A dynamical theory of the electromagnetic field”.
In: Philosophical Transactions of the Royal Society of London 155 (Jan. 1865),
pp. 459–512 (cit. on p. 2).

[23] H. Hertz. “Die Kräfte electrischer Schwingungen, behandelt nach der
Maxwell’schen Theorie”. en. In: Annalen der Physik 272.1 (1889), pp. 1–
22 (cit. on p. 2).

bibliography 139

[24] R. M. Page. “The Early History of Radar”. In: Proceedings of the IRE 50.5
(May 1962), pp. 1232–1236 (cit. on p. 2).

[25] J. J. Fahie. A history of wireless telegraphy, 1838-1899:including some bare-wire
proposals for subaqueous telegraphs /. Edinburgh : 1899 (cit. on p. 2).

[26] Y. Blanchard. “Une histoire du radar en lien avec les mutations du système
technique”. In: Revue de l Electricité et de l Electronique 2019 (2019), pp. 35–46

(cit. on p. 2).

[27] “Gatwick ’drone sighting’ diverts flights”. en-GB. In: BBC News (Apr. 2019)
(cit. on p. 2).

[28] M. Bouchaud. Drones Have Been Spotted Flying Over French Nuclear Power
Plants. en. Oct. 2014 (cit. on p. 2).

[29] “Top Iranian general killed by US in Iraq”. en-GB. In: BBC News (Jan. 2020)
(cit. on p. 2).

[30] A. Press. “Russia implies US involvement in drone strikes on Syria military
bases”. en-GB. In: The Guardian (Jan. 2018) (cit. on p. 2).

[31] “Syrian army foils drone attack on military base in northwest”. en. In:
Reuters (Sept. 2019) (cit. on p. 2).

[32] M. J. Boyle. “The costs and consequences of drone warfare”. In: Interna-
tional Affairs (Royal Institute of International Affairs 1944-) 89.1 (2013), pp. 1–
29 (cit. on p. 2).

[33] S. A. Shah. International Law and Drone Strikes in Pakistan: The Legal and
Socio-political Aspects. en. Google-Books-ID: 1hlWBQAAQBAJ. Routledge,
Nov. 2014 (cit. on p. 2).

[34] J. Vincent. Twitter taught Microsoft’s friendly AI chatbot to be a racist asshole in
less than a day. en. Mar. 2016 (cit. on p. 3).

[35] “Amazon scraps secret AI recruiting tool that showed bias against women”.
en. In: Reuters (Oct. 2018) (cit. on p. 3).

[36] J. L. Julia Angwin. Machine Bias. en. text/html. May 2016 (cit. on p. 3).

[37] I. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and Harnessing Ad-
versarial Examples”. In: International Conference on Learning Representations.
2015 (cit. on p. 4).

[38] Tackling bias in artificial intelligence (and in humans) | McKinsey. en (cit. on
p. 4).

[39] Deep Learning in Practice (cit. on p. 4).

[40] D. G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.
en. In: International Journal of Computer Vision 60.2 (Nov. 2004), pp. 91–110

(cit. on p. 5).

140 bibliography

[41] P. Perona. “Deformable Kernels for Early Vision”. In: IEEE Trans. Pattern
Anal. Mach. Intell. 17.5 (May 1995), pp. 488–499 (cit. on p. 5).

[42] Shannon C. E. “A Mathematical Theory of Communication”. In: Bell System
Technical Journal 27.3 (July 2013), pp. 379–423 (cit. on pp. 5, 41, 80).

[43] J. Capon. “High-resolution frequency-wavenumber spectrum analysis”. In:
Proceedings of the IEEE 57.8 (Aug. 1969), pp. 1408–1418 (cit. on p. 5).

[44] W. Heisenberg and L. d. Broglie. “Les Principes Physiques de la Théorie
des Quanta”. In: Les Etudes Philosophiques 13.1 (1958), pp. 75–75 (cit. on
p. 5).

[45] L. Cohen. “Time-frequency distributions-a review”. In: Proceedings of the
IEEE 77.7 (July 1989), pp. 941–981 (cit. on p. 5).

[46] S. Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way.
3rd. USA: Academic Press, Inc., 2008 (cit. on p. 5).

[47] P. Flandrin. Time-Frequency/Time-Scale Analysis, Volume 10. 1st. Orlando, FL,
USA: Academic Press, Inc., 1998 (cit. on pp. 5, 57).

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information
processing systems. 2012, pp. 1097–1105 (cit. on pp. 7, 31).

[49] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: International Conference on Learning
Representations. 2015 (cit. on pp. 7, 33).

[50] S.-H. Tsang. Review: Batch Normalization (Inception-v2 / BN-Inception) —The
2nd to Surpass Human-Level. . . en. Mar. 2019 (cit. on p. 7).

[51] Colloquium d’Informatique de Sorbonne Université. 2018 (cit. on p. 8).

[52] Yoshua Bengio | From System 1 Deep Learning to System 2 Deep Learning |
NeurIPS (cit. on p. 8).

[53] D. Gunning. “Explainable Artificial Intelligence (XAI)”. en. In: (2017), p. 36

(cit. on p. 8).

[54] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image
Recognition”. en. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Las Vegas, NV, USA: IEEE, June 2016, pp. 770–778 (cit.
on pp. 8, 160).

[55] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. “Striving
for Simplicity: The All Convolutional Net”. In: ICLR (workshop track). 2015

(cit. on p. 8).

bibliography 141

[56] T. Robert, N. Thome, and M. Cord. “HybridNet: Classification and Recon-
struction Cooperation for Semi-Supervised Learning”. In: 2018, pp. 153–
169 (cit. on p. 8).

[57] T. Mordan, N. Thome, G. Henaff, and M. Cord. “Deformable Part-based
Fully Convolutional Network for Object Detection”. en. In: Procedings of
the British Machine Vision Conference 2017. London, UK: British Machine
Vision Association, 2017, p. 88 (cit. on p. 8).

[58] T. S. Cohen and M. Welling. “Steerable CNNs”. In: (Nov. 2016) (cit. on
p. 8).

[59] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift”. en. In: International
Conference on Machine Learning. June 2015, pp. 448–456 (cit. on pp. 8, 35, 99,
104).

[60] J. Xu, X. Sun, Z. Zhang, G. Zhao, and J. Lin. “Understanding and Improving
Layer Normalization”. In: Advances in Neural Information Processing Systems
32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 4383–4393 (cit. on
p. 8).

[61] X. Wang, Y. Jin, M. Long, J. Wang, and M. I. Jordan. “Transferable Normal-
ization: Towards Improving Transferability of Deep Neural Networks”. In:
Advances in Neural Information Processing Systems 32. Ed. by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran
Associates, Inc., 2019, pp. 1951–1961 (cit. on p. 8).

[62] M. Blot, T. Robert, N. Thome, and M. Cord. “Shade: Information-Based
Regularization for Deep Learning”. In: 2018 25th IEEE International Con-
ference on Image Processing (ICIP). ISSN: 2381-8549. Oct. 2018, pp. 813–817

(cit. on p. 9).

[63] A. Krogh and J. A. Hertz. “A Simple Weight Decay Can Improve Gener-
alization”. In: Advances in Neural Information Processing Systems 4. Ed. by
J. E. Moody, S. J. Hanson, and R. P. Lippmann. Morgan-Kaufmann, 1992,
pp. 950–957 (cit. on p. 9).

[64] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Perez. “ADVENT: Adversarial
Entropy Minimization for Domain Adaptation in Semantic Segmentation”.
In: 2019, pp. 2517–2526 (cit. on p. 9).

[65] M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein Generative Adver-
sarial Networks”. en. In: International Conference on Machine Learning. July
2017, pp. 214–223 (cit. on pp. 9, 44).

142 bibliography

[66] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville.
“Improved Training of Wasserstein GANs”. In: Advances in Neural Informa-
tion Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H.
Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates,
Inc., 2017, pp. 5767–5777 (cit. on p. 9).

[67] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. “Ge-
ometric Deep Learning: Going beyond Euclidean data”. In: IEEE Signal
Processing Magazine 34.4 (July 2017), pp. 18–42 (cit. on pp. 9, 38).

[68] O. Yair, M. Ben-Chen, and R. Talmon. “Parallel Transport on the Cone
Manifold of SPD Matrices for Domain Adaptation”. In: IEEE Transactions
on Signal Processing 67.7 (Apr. 2019), pp. 1797–1811 (cit. on pp. 9, 107).

[69] G. Marceau-Caron and Y. Ollivier. “Practical Riemannian neural networks”.
In: arXiv preprint arXiv:1602.08007 (2016) (cit. on pp. 9, 10).

[70] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten. “Multiclass Brain–Computer
Interface Classification by Riemannian Geometry”. In: IEEE Transactions
on Biomedical Engineering 59.4 (Apr. 2012), pp. 920–928 (cit. on pp. 9, 48, 49,
97).

[71] X. Pennec, P. Fillard, and N. Ayache. “A Riemannian Framework for Tensor
Computing”. en. In: International Journal of Computer Vision 66.1 (Jan. 2006),
pp. 41–66 (cit. on pp. 9, 47, 48, 61, 97–99, 124).

[72] D. Acharya, Z. Huang, D. P. Paudel, and L. V. Gool. “Covariance Pooling
for Facial Expression Recognition”. In: 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW). June 2018, pp. 480–
4807 (cit. on pp. 9, 75, 98).

[73] A. Mollahosseini, D. Chan, and M. H. Mahoor. “Going deeper in facial
expression recognition using deep neural networks”. In: 2016 IEEE Winter
Conference on Applications of Computer Vision (WACV). Mar. 2016, pp. 1–10

(cit. on p. 9).

[74] O. Tuzel, F. Porikli, and P. Meer. “Region Covariance: A Fast Descriptor
for Detection and Classification”. en. In: Computer Vision – ECCV 2006.
Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, May 2006,
pp. 589–600 (cit. on pp. 9, 97).

[75] C. R. Rao. “Information and the Accuracy Attainable in the Estimation of
Statistical Parameters”. en. In: Breakthroughs in Statistics. Springer Series in
Statistics. Springer, New York, NY, 1992, pp. 235–247 (cit. on pp. 9, 44).

bibliography 143

[76] M. Fréchet. “Sur l’extension de certaines evaluations statistiques au cas
de petits echantillons”. In: Revue de l’Institut International de Statistique /
Review of the International Statistical Institute 11.3/4 (1943), pp. 182–205 (cit.
on pp. 9, 44).

[77] S.-i. Amari. Information Geometry and Its Applications. en. Applied Mathe-
matical Sciences. Springer Japan, 2016 (cit. on pp. 9, 104).

[78] Information geometry. en. Page Version ID: 898040366. May 2019 (cit. on
p. 9).

[79] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. “Image Classification
with the Fisher Vector: Theory and Practice”. en. In: International Journal of
Computer Vision 105.3 (Dec. 2013), pp. 222–245 (cit. on p. 10).

[80] H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid.
“Aggregating Local Image Descriptors into Compact Codes”. en. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 34.9 (Sept. 2012),
pp. 1704–1716 (cit. on p. 10).

[81] S.-i. Amari. “Natural Gradient Works Efficiently in Learning”. In: Neural
Computation 10.2 (Feb. 1998), pp. 251–276 (cit. on pp. 10, 51).

[82] R. Pascanu and Y. Bengio. “Revisiting natural gradient for deep networks”.
In: In International Conference on Learning Representations. 2014 (cit. on pp. 10,
51).

[83] G. Marceau-Caron and Y. Ollivier. “Natural Langevin Dynamics for Neural
Networks”. In: Geometric Science of Information. Ed. by F. Nielsen and F.
Barbaresco. Vol. 10589. Cham: Springer International Publishing, 2017,
pp. 451–459 (cit. on p. 10).

[84] D. Brooks, O. Schwander, F. Barbaresco, J. Schneider, and M. Cord. “Tem-
poral Deep Learning for Drone Micro-Doppler Classification”. In: 2018
19th International Radar Symposium (IRS). June 2018, pp. 1–10 (cit. on p. 13).

[85] D. Brooks, O. Schwander, F. Barbaresco, J. Schneider, and M. Cord. “Ex-
ploring Complex Time-series Representations for Riemannian Machine
Learning of Radar Data”. In: ICASSP 2019 - 2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). May 2019, pp. 3672–
3676 (cit. on p. 13).

[86] D. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and M. Cord.
“Complex-valued neural networks for fully-temporal micro-Doppler classi-
fication”. In: 2019 20th International Radar Symposium (IRS). ISSN: 2155-5753,
2155-5745. June 2019, pp. 1–10 (cit. on p. 13).

144 bibliography

[87] D. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and M. Cord.
“Second-Order Networks in PyTorch”. en. In: Geometric Science of Infor-
mation. Ed. by F. Nielsen and F. Barbaresco. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2019, pp. 751–758 (cit.
on p. 13).

[88] D. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and M. Cord. “A
Hermitian Positive Definite neural network for micro-Doppler complex
covariance processing”. In: International Radar Conference. Toulon, France,
Sept. 2019 (cit. on p. 13).

[89] D. Brooks, F. Barbaresco, Y. Ziani, J.-Y. Schneider, and C. Adnet. “IA &
réseaux de neurones profonds pour la reconnaissance Radar de drones sur
critères Micro-Doppler et Cinématique”. fr. In: Rennes, FRANCE: Com-
puter & Electronics Security Applications Rendez-vous (C&ESAR), Nov.
2019, p. 16 (cit. on p. 13).

[90] D. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and M. Cord. “Rie-
mannian batch normalization for SPD neural networks”. In: Advances in
Neural Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates,
Inc., 2019, pp. 15463–15474 (cit. on p. 13).

[91] C. Doppler. Ueber das farbige Licht der Doppelsterne und einiger anderer Ge-
stirne des Himmels. de. Google-Books-ID: zl5RAAAAcAAJ. Calve, 1842 (cit.
on p. 17).

[92] V. C. Chen, F. Li, S.-S. Ho, and H. Wechsler. “Micro-Doppler effect in
radar: phenomenon, model, and simulation study”. In: IEEE Transactions
on Aerospace and electronic systems 42.1 (2006), pp. 2–21 (cit. on p. 19).

[93] C. Bishop. Neural Networks for Pattern Recognition. USA: Oxford University
Press, Inc., 1995 (cit. on p. 23).

[94] C. Bishop. Pattern Recognition and Machine Learning. en. Information Sci-
ence and Statistics. New York: Springer-Verlag, 2006 (cit. on p. 23).

[95] S. S. Haykin and S. S. Haykin. Neural networks and learning machines. en.
3rd ed. OCLC: ocn237325326. New York: Prentice Hall, 2009 (cit. on p. 23).

[96] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. en. In: Nature
521.7553 (May 2015), pp. 436–444 (cit. on p. 23).

[97] H. Steinhaus. “Sur la division des corp materiels en parties”. In: Bull. Acad.
Polon. Sci 1.804 (1956), p. 801 (cit. on p. 25).

[98] J. MacQueen. “Some methods for classification and analysis of multivariate
observations”. EN. In: The Regents of the University of California, 1967

(cit. on p. 25).

bibliography 145

[99] D. R. Cox. “The regression analysis of binary sequences”. In: Journal of the
Royal Statistical Society. Series B (Methodological) (1958), pp. 215–242 (cit. on
p. 25).

[100] S. Lawrence, C. Giles, Ah Chung Tsoi, and A. Back. “Face recognition:
a convolutional neural-network approach”. en. In: IEEE Transactions on
Neural Networks 8.1 (Jan. 1997), pp. 98–113 (cit. on p. 30).

[101] Y. L. Cun. “A Theoretical Framework for Back-Propagation”. In: (1988)
(cit. on p. 29).

[102] G. R. Cross and A. K. Jain. “Markov Random Field Texture Models”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-5.1 (Jan.
1983), pp. 25–39 (cit. on p. 31).

[103] S. Z. Li. “Markov random field models in computer vision”. en. In: Com-
puter Vision — ECCV ’94. Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, May 1994, pp. 361–370 (cit. on p. 31).

[104] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y.
LeCun, U. A. Muller, E. Sackinger, P. Simard, and V. Vapnik. “Comparison
of classifier methods: a case study in handwritten digit recognition”. In:
Proceedings of the 12th IAPR International Conference on Pattern Recognition,
Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5). Vol. 2. Oct.
1994, 77–82 vol.2 (cit. on p. 31).

[105] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. “Ima-
geNet Large Scale Visual Recognition Challenge”. In: International Journal
of Computer Vision 115.3 (Dec. 2015), pp. 211–252 (cit. on p. 31).

[106] K. A. I. Aboalayon, M. Faezipour, W. S. Almuhammadi, and S. Moslehpour.
“Sleep Stage Classification Using EEG Signal Analysis: A Comprehensive
Survey and New Investigation”. en. In: Entropy 18.9 (Sept. 2016), p. 272

(cit. on p. 31).

[107] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and
B. J. Lance. “EEGNet: a compact convolutional neural network for EEG-
based brain–computer interfaces”. en. In: Journal of Neural Engineering 15.5
(July 2018), p. 056013 (cit. on p. 31).

[108] N. Takahashi, M. Gygli, and L. V. Gool. “AENet: Learning Deep Audio
Features for Video Analysis”. In: IEEE Transactions on Multimedia 20.3 (Mar.
2018), pp. 513–524 (cit. on p. 31).

[109] K. J. Piczak. “Environmental sound classification with convolutional neural
networks”. In: Machine Learning for Signal Processing (MLSP), 2015 IEEE 25th
International Workshop on. IEEE, 2015, pp. 1–6 (cit. on p. 31).

146 bibliography

[110] R. P. Trommel, R. I. A. Harmanny, L. Cifola, and J. N. Driessen. “Multi-
target human gait classification using deep convolutional neural networks
on micro-doppler spectrograms”. In: 2016 European Radar Conference (Eu-
RAD). Oct. 2016, pp. 81–84 (cit. on p. 31).

[111] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for
semantic segmentation”. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). ISSN: 1063-6919. June 2015, pp. 3431–3440 (cit.
on p. 33).

[112] R. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich Feature Hierarchies
for Accurate Object Detection and Semantic Segmentation”. In: 2014 IEEE
Conference on Computer Vision and Pattern Recognition. June 2014, pp. 580–
587 (cit. on p. 33).

[113] R. Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on Com-
puter Vision (ICCV). Dec. 2015, pp. 1440–1448 (cit. on p. 33).

[114] S. Ren, K. He, R. Girshick, and J. Sun. “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks”. In: Advances in Neural
Information Processing Systems 28. Ed. by C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett. Curran Associates, Inc., 2015, pp. 91–99

(cit. on p. 33).

[115] Y. Bengio, P. Simard, and P. Frasconi. “Learning long-term dependencies
with gradient descent is difficult”. In: IEEE Transactions on Neural Networks
5.2 (Mar. 1994), pp. 157–166 (cit. on pp. 36, 37).

[116] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. In: Neural
Comput. 9.8 (Nov. 1997), pp. 1735–1780 (cit. on pp. 36, 37).

[117] R. Pascanu, T. Mikolov, and Y. Bengio. “On the difficulty of training recur-
rent neural networks”. In: Proceedings of the 30th International Conference on
International Conference on Machine Learning - Volume 28. ICML’13. Atlanta,
GA, USA: JMLR.org, June 2013, pp. III–1310–III–1318 (cit. on p. 37).

[118] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, and Y. Bengio. “Learning Phrase Representations using RNN
Encoder–Decoder for Statistical Machine Translation”. In: Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational Linguistics, Oct.
2014, pp. 1724–1734 (cit. on p. 37).

[119] B. Xu, N. Wang, T. Chen, and M. Li. “Empirical Evaluation of Rectified
Activations in Convolutional Network”. In: arXiv:1505.00853 [cs, stat] (May
2015). arXiv: 1505.00853 (cit. on pp. 37, 60).

bibliography 147

[120] Y. Xu, Q. Kong, Q. Huang, W. Wang, and M. D. Plumbley. “Convolutional
gated recurrent neural network incorporating spatial features for audio
tagging”. In: 2017 International Joint Conference on Neural Networks, IJCNN
2017, Anchorage, AK, USA, May 14-19, 2017. IEEE, 2017, pp. 3461–3466 (cit.
on p. 37).

[121] I. Sutskever, J. Martens, and G. Hinton. “Generating text with recurrent
neural networks”. In: Proceedings of the 28th International Conference on In-
ternational Conference on Machine Learning. ICML’11. Bellevue, Washington,
USA: Omnipress, June 2011, pp. 1017–1024 (cit. on p. 37).

[122] T. Luong, H. Pham, and C. D. Manning. “Effective Approaches to Attention-
based Neural Machine Translation”. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing. Lisbon, Portugal: As-
sociation for Computational Linguistics, Sept. 2015, pp. 1412–1421 (cit. on
p. 37).

[123] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. “Attention is All you Need”. In: Advances in
Neural Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran
Associates, Inc., 2017, pp. 5998–6008 (cit. on p. 37).

[124] C. Tallec and Y. Ollivier. “Can recurrent neural networks warp time?” In:
() (cit. on p. 37).

[125] Understanding LSTM Networks – colah’s blog (cit. on p. 38).

[126] K. Sun, P. Koniusz, and Z. Wang. “Fisher-Bures Adversary Graph Con-
volutional Networks”. In: arXiv:1903.04154 [cs, stat] (Mar. 2019). arXiv:
1903.04154 (cit. on p. 44).

[127] J.-D. Boissonnat, F. Nielsen, and R. Nock. “Bregman Voronoi diagrams”.
In: Discrete and Computational Geometry (2010), p. 200 (cit. on p. 44).

[128] A. Siahkamari, V. Saligrama, D. Castanon, and B. Kulis. “Learning Breg-
man Divergences”. In: arXiv:1905.11545 [cs, stat] (May 2019). arXiv: 1905.11545

(cit. on p. 44).

[129] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. “Clustering with Breg-
man Divergences”. In: Journal of Machine Learning Research 6.Oct (2005),
pp. 1705–1749 (cit. on p. 44).

[130] N. N. Cencov. Statistical Decision Rules and Optimal Inference. en. Google-
Books-ID: 63CPCwAAQBAJ. American Mathematical Soc., Apr. 2000 (cit.
on p. 44).

148 bibliography

[131] C. Atkinson and A. F. S. Mitchell. “Rao’s Distance Measure”. In: Sankhyā:
The Indian Journal of Statistics, Series A (1961-2002) 43.3 (1981), pp. 345–365

(cit. on p. 44).

[132] J. Burbea. Informative Geometry of Probability Spaces: en. Tech. rep. Fort
Belvoir, VA: Defense Technical Information Center, Dec. 1984 (cit. on p. 44).

[133] L. T. Skovgaard. “A Riemannian Geometry of the Multivariate Normal
Model”. In: Scandinavian Journal of Statistics 11.4 (1984), pp. 211–223 (cit. on
p. 44).

[134] L. Yang, M. Arnaudon, and F. Barbaresco. “Riemannian median, geometry
of covariance matrices and radar target detection”. In: Nov. 2010, pp. 415–
418 (cit. on p. 47).

[135] S. Bonnabel and R. Sepulchre. “Riemannian Metric and Geometric Mean
for Positive Semidefinite Matrices of Fixed Rank”. en. In: SIAM Journal
on Matrix Analysis and Applications 31.3 (Jan. 2010), pp. 1055–1070 (cit. on
p. 48).

[136] H. Karcher. “Riemannian center of mass and mollifier smoothing”. en. In:
Communications on Pure and Applied Mathematics 30.5 (Sept. 1977), pp. 509–
541 (cit. on pp. 48, 49).

[137] L. Yang, M. Arnaudon, and F. Barbaresco. “Riemannian median, geometry
of covariance matrices and radar target detection”. In: The 7th European
Radar Conference. Sept. 2010, pp. 415–418 (cit. on pp. 48, 49).

[138] F. Yger and M. Sugiyama. “Supervised LogEuclidean Metric Learning for
Symmetric Positive Definite Matrices”. In: arXiv:1502.03505 [cs] (Feb. 2015).
arXiv: 1502.03505 (cit. on pp. 49, 97, 103, 111).

[139] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten. “Classification of co-
variance matrices using a Riemannian-based kernel for BCI applications”.
In: Neurocomputing 112 (July 2013), pp. 172–178 (cit. on pp. 49, 50, 97, 102).

[140] S. Boyd and L. Vandenberghe. Convex Optimization. en. Google-Books-ID:
IUZdAAAAQBAJ. Cambridge University Press, Mar. 2004 (cit. on pp. 51,
67).

[141] F. Hlawatsch and F. Auger. Time-Frequency Analysis. en. Google-Books-ID:
tOeeJyP95IQC. John Wiley & Sons, Mar. 2013 (cit. on p. 57).

[142] P. Stoica and R. L. Moses. Spectral analysis of signals. Upper Saddle River,
N.J: Pearson/Prentice Hall, 2005 (cit. on p. 57).

[143] M. Moruzzis and N. Colin. “Automatic recognition of air targets for fu-
ture shorad radars”. In: RTO SCI Symposium on" Non cooperative Air Target
Identification Using Radar", Mannheim, Germany. 1998 (cit. on p. 57).

bibliography 149

[144] Z. Huang and L. Van Gool. “A Riemannian Network for SPD Matrix Learn-
ing”. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence. AAAI’17. event-place: San Francisco, California, USA. AAAI Press,
2017, pp. 2036–2042 (cit. on pp. 58, 60, 61, 97, 98, 127–129).

[145] O. Ledoit and M. Wolf. “A well-conditioned estimator for large-dimensional
covariance matrices”. en. In: Journal of Multivariate Analysis 88.2 (Feb. 2004),
pp. 365–411 (cit. on pp. 61, 75).

[146] O. Ledoit and M. Wolf. “Nonlinear shrinkage estimation of large-dimensional
covariance matrices”. In: The Annals of Statistics 40.2 (Apr. 2012). arXiv:
1207.5322, pp. 1024–1060 (cit. on pp. 61, 75).

[147] Y. Chen, A. Wiesel, and A. O. Hero III. “Robust Shrinkage Estimation of
High-dimensional Covariance Matrices”. In: IEEE Transactions on Signal
Processing 59.9 (Sept. 2011). arXiv: 1009.5331, pp. 4097–4107 (cit. on p. 61).

[148] M. Tiomoko, R. Couillet, F. Bouchard, and G. Ginolhac. “Random Matrix
Improved Covariance Estimation for a Large Class of Metrics”. In: Proceed-
ings of the 36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA. 2019, pp. 6254–6263 (cit. on p. 61).

[149] M. Tiomoko, R. Couillet, E. Moisan, and S. Zozor. “Improved Estimation of
the Distance between Covariance Matrices”. In: IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP 2019, Brighton, United
Kingdom, May 12-17, 2019. 2019, pp. 7445–7449 (cit. on p. 61).

[150] G. Cao and C. Bouman. “Covariance Estimation for High Dimensional
Data Vectors Using the Sparse Matrix Transform”. In: Advances in Neu-
ral Information Processing Systems 21. Ed. by D. Koller, D. Schuurmans, Y.
Bengio, and L. Bottou. Curran Associates, Inc., 2009, pp. 225–232 (cit. on
p. 61).

[151] G. Cao, L. R. Bachega, and C. A. Bouman. “The Sparse Matrix Transform
for Covariance Estimation and Analysis of High Dimensional Signals”. In:
IEEE Transactions on Image Processing 20.3 (Mar. 2011), pp. 625–640 (cit. on
p. 61).

[152] F. Mezzadri. “How to generate random matrices from the classical compact
groups”. In: arXiv:math-ph/0609050 (Sept. 2006). arXiv: math-ph/0609050

(cit. on p. 61).

[153] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. “Log-Euclidean metrics for
fast and simple calculus on diffusion tensors”. en. In: Magnetic Resonance
in Medicine 56.2 (Aug. 2006), pp. 411–421 (cit. on pp. 61, 97, 98).

[154] W. F. Harris. “The average eye”. en. In: Ophthalmic and Physiological Optics
24.6 (2004), pp. 580–585 (cit. on p. 61).

150 bibliography

[155] C. Ionescu, O. Vantzos, and C. Sminchisescu. “Matrix Backpropagation for
Deep Networks with Structured Layers”. en. In: 2015 IEEE International
Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, Dec. 2015,
pp. 2965–2973 (cit. on pp. 61, 111).

[156] A. Edelman, T. Arias, and S. Smith. “The Geometry of Algorithms with
Orthogonality Constraints”. In: SIAM Journal on Matrix Analysis and Appli-
cations 20.2 (Jan. 1998), pp. 303–353 (cit. on pp. 61, 110).

[157] H. Lee, P. Pham, Y. Largman, and A. Y. Ng. “Unsupervised feature learn-
ing for audio classification using convolutional deep belief networks”. In:
Advances in neural information processing systems. 2009, pp. 1096–1104 (cit.
on pp. 62, 71).

[158] C. Bartz, T. Herold, H. Yang, and C. Meinel. “Language Identification
Using Deep Convolutional Recurrent Neural Networks”. en. In: Neural
Information Processing. Ed. by D. Liu, S. Xie, Y. Li, D. Zhao, and E.-S. M.
El-Alfy. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2017, pp. 880–889 (cit. on p. 62).

[159] S. Dieleman and B. Schrauwen. “End-to-end learning for music audio”.
In: Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International
Conference on. IEEE, 2014, pp. 6964–6968 (cit. on pp. 62, 71).

[160] G. Parascandolo, H. Huttunen, and T. Virtanen. “Recurrent neural net-
works for polyphonic sound event detection in real life recordings”. In:
2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). ISSN: 2379-190X. Mar. 2016, pp. 6440–6444 (cit. on p. 62).

[161] E. Cakir, G. Parascandolo, T. Heittola, H. Huttunen, T. Virtanen, E. Cakir,
G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen. “Convolutional
Recurrent Neural Networks for Polyphonic Sound Event Detection”. In:
IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP)
25.6 (June 2017), pp. 1291–1303 (cit. on p. 62).

[162] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, C. Moore,
M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. Weiss, and
K. Wilson. “CNN Architectures for Large-Scale Audio Classification”. In:
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2017 (cit. on p. 62).

[163] A. Deshpande. A Beginner’s Guide To Understanding Convolutional Neural
Networks Part 2 (cit. on p. 65).

[164] W. Wirtinger. “Zur formalen Theorie der Funktionen von mehr komplexen
Veränderlichen”. de. In: Mathematische Annalen 97.1 (Dec. 1927), pp. 357–
375 (cit. on p. 66).

bibliography 151

[165] D. H. Brandwood. “A complex gradient operator and its application in
adaptive array theory”. In: IEE Proceedings H - Microwaves, Optics and An-
tennas 130.1 (Feb. 1983), pp. 11–16 (cit. on pp. 66, 67).

[166] A. v. d. Bos. “Complex gradient and Hessian”. In: IEE Proceedings - Vision,
Image and Signal Processing 141.6 (Dec. 1994), pp. 380–383 (cit. on p. 66).

[167] K. Kreutz-Delgado. “The Complex Gradient Operator and the CR-Calculus”.
In: arXiv:0906.4835 [math] (June 2009). arXiv: 0906.4835 (cit. on p. 66).

[168] HIPS/autograd. original-date: 2014-11-24T15:50:23Z. Jan. 2020 (cit. on p. 67).

[169] C. Böddeker, P. Hanebrink, L. Drude, J. Heymann, and R. Haeb-Umbach.
“On the Computation of Complex-valued Gradients with Application to
Statistically Optimum Beamforming”. In: CoRR abs/1701.00392 (2017) (cit.
on p. 67).

[170] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. F. San-
tos, S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal. “Deep Complex
Networks”. In: 6th International Conference on Learning Representations, ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceed-
ings. 2018 (cit. on pp. 67, 68).

[171] F. Barbaresco. “Information Geometry of Covariance Matrix: Cartan-Siegel
Homogeneous Bounded Domains, Mostow/Berger Fibration and Fréchet
Median”. en. In: Matrix Information Geometry. Springer, Berlin, Heidelberg,
2013, pp. 199–255 (cit. on p. 69).

[172] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer. “Automatic differentiation in Py-
Torch”. In: (Oct. 2017) (cit. on pp. 69, 82, 119, 162).

[173] DeepKSPD: Learning Kernel-matrix-based SPD Representation for Fine-grained
Image Recognition. en-us (cit. on p. 75).

[174] K. Yu and M. Salzmann. “Second-order Convolutional Neural Networks”.
In: arXiv:1703.06817 [cs] (Mar. 2017). arXiv: 1703.06817 (cit. on pp. 75, 98).

[175] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn:
Machine Learning in Python”. In: Journal of Machine Learning Research 12

(2011), pp. 2825–2830 (cit. on p. 75).

[176] 2.6. Covariance estimation — scikit-learn 0.22.1 documentation (cit. on p. 75).

[177] J. B. Billingsley. Low-angle Radar Land Clutter: Measurements and Empirical
Models. en. IET, 2002 (cit. on p. 78).

[178] S. Ruder. “An overview of gradient descent optimization algorithms”. In:
arXiv:1609.04747 [cs] (Sept. 2016). arXiv: 1609.04747 (cit. on p. 82).

152 bibliography

[179] F. Chollet et al. Keras. 2015 (cit. on p. 82).

[180] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y.
Yu, and X. Zheng. “TensorFlow: A System for Large-scale Machine Learn-
ing”. In: Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation. OSDI’16. Berkeley, CA, USA: USENIX Associa-
tion, 2016, pp. 265–283 (cit. on p. 82).

[181] J. Salamon, C. Jacoby, and J. P. Bello. “A Dataset and Taxonomy for Ur-
ban Sound Research”. In: 22nd ACM International Conference on Multimedia
(ACM-MM’14). Orlando, FL, USA, Nov. 2014, pp. 1041–1044 (cit. on p. 85).

[182] X. Glorot and Y. Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. en. In: Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics. Mar. 2010, pp. 249–
256 (cit. on p. 87).

[183] R. Bhatia. Positive Definite Matrices. Princeton, NJ, USA: Princeton Univer-
sity Press, 2015 (cit. on p. 97).

[184] J. Cavazza, P. Morerio, and V. Murino. “When Kernel Methods Meet Fea-
ture Learning: Log-Covariance Network for Action Recognition From
Skeletal Data”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). July 2017, pp. 1251–1258 (cit. on p. 97).

[185] Z. Huang, J. Wu, and L. V. Gool. “Building Deep Networks on Grassmann
Manifolds”. en. In: Thirty-Second AAAI Conference on Artificial Intelligence.
Apr. 2018 (cit. on p. 97).

[186] Z. Huang, C. Wan, T. Probst, and L. Van Gool. “Deep Learning on Lie
Groups for Skeleton-based Action Recognition”. In: arXiv:1612.05877 [cs]
(Dec. 2016). arXiv: 1612.05877 (cit. on p. 97).

[187] Z. Dong, S. Jia, C. Zhang, M. Pei, and Y. Wu. “Deep manifold learning of
symmetric positive definite matrices with application to face recognition”.
In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.
AAAI’17. San Francisco, California, USA: AAAI Press, Feb. 2017, pp. 4009–
4015 (cit. on p. 98).

[188] Z. Gao, Y. Wu, X. Bu, and Y. Jia. “Learning a Robust Representation via a
Deep Network on Symmetric Positive Definite Manifolds”. In: arXiv:1711.06540
[cs] (Nov. 2017). arXiv: 1711.06540 (cit. on p. 98).

[189] T. Zhang, W. Zheng, Z. Cui, and C. Li. “Deep Manifold-to-Manifold Trans-
forming Network”. In: 2018 25th IEEE International Conference on Image
Processing (ICIP). Oct. 2018, pp. 4098–4102 (cit. on p. 98).

bibliography 153

[190] R. Chakraborty, J. Bouza, J. Manton, and B. C. Vemuri. “ManifoldNet: A
Deep Network Framework for Manifold-valued Data”. In: arXiv:1809.06211
[cs] (Sept. 2018). arXiv: 1809.06211 (cit. on p. 98).

[191] Y. Mao, R. Wang, S. Shan, and X. Chen. “COSONet: Compact Second-Order
Network for Video Face Recognition”. en. In: Computer Vision – ACCV 2018.
Ed. by C. V. Jawahar, H. Li, G. Mori, and K. Schindler. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2019, pp. 51–
67 (cit. on p. 98).

[192] P. Li, J. Xie, Q. Wang, and Z. Gao. “Towards Faster Training of Global
Covariance Pooling Networks by Iterative Matrix Square Root Normal-
ization”. en. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Salt Lake City, UT: IEEE, June 2018, pp. 947–955 (cit. on p. 98).

[193] H. Zhang, S. J. Reddi, and S. Sra. “Riemannian SVRG: Fast Stochastic Op-
timization on Riemannian Manifolds”. In: Advances in Neural Information
Processing Systems 29. Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I.
Guyon, and R. Garnett. Curran Associates, Inc., 2016, pp. 4592–4600 (cit.
on p. 98).

[194] Y. Liu, F. Shang, J. Cheng, H. Cheng, and L. Jiao. “Accelerated First-order
Methods for Geodesically Convex Optimization on Riemannian Mani-
folds”. In: Advances in Neural Information Processing Systems 30. Ed. by I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Curran Associates, Inc., 2017, pp. 4868–4877 (cit. on p. 98).

[195] F. Alimisis, A. Orvieto, G. Bécigneul, and A. Lucchi. “Practical Accelerated
Optimization on Riemannian Manifolds”. In: arXiv:2002.04144 [math] (Feb.
2020). arXiv: 2002.04144 (cit. on p. 98).

[196] A. L. Brigant, F. Barbaresco, and M. Arnaudon. “Geometric barycenters
of time/Doppler spectra for the recognition of non-stationary targets”. In:
2016 17th International Radar Symposium (IRS). May 2016, pp. 1–6 (cit. on
p. 99).

[197] F. Yger. “A review of kernels on covariance matrices for BCI applications”.
In: 2013 IEEE International Workshop on Machine Learning for Signal Process-
ing (MLSP). Sept. 2013, pp. 1–6 (cit. on pp. 102, 109).

[198] N. Jaquier and S. Calinon. “Gaussian mixture regression on symmetric pos-
itive definite matrices manifolds: Application to wrist motion estimation
with sEMG”. en. In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Vancouver, BC: IEEE, Sept. 2017, pp. 59–64 (cit.
on p. 107).

154 bibliography

[199] S. Said, L. Bombrun, Y. Berthoumieu, and J. H. Manton. “Riemannian Gaus-
sian Distributions on the Space of Symmetric Positive Definite Matrices”.
In: IEEE Transactions on Information Theory 63.4 (Apr. 2017), pp. 2153–2170

(cit. on p. 107).

[200] F. Barbaresco. “Jean-Louis Koszul and the Elementary Structures of In-
formation Geometry”. en. In: Geometric Structures of Information. Ed. by F.
Nielsen. Signals and Communication Technology. Cham: Springer Interna-
tional Publishing, 2019, pp. 333–392 (cit. on p. 107).

[201] M. Brodskiı̆, J. Daleckiı̆, O. Èı̆dus, I. Iohvidov, M. Kreı̆n, O. Ladyženskaja,
V. Lidskiı̆, J. Ljubič, V. Macaev, A. Povzner, L. Sahnovič, J. Šmuljan, I.
Suharevskiı̆, and N. Uralceva. Thirteen Papers on Functional Analysis and
Partial Differential Equations. en-US. Vol. 47. American Mathematical Soci-
ety Translations: Series 2. American Mathematical Society, Dec. 1965 (cit.
on p. 111).

[202] A. D. Michal. “Matrix and tensor calculus with applications to mechanics,
elasticity, and aeronautics”. In: New York (1947) (cit. on p. 115).

[203] L. Bers. “Review: A. D. Michal, Matrix and tensor calculus with appli-
cations to mechanics, elasticity and aeronautics”. EN. In: Bulletin of the
American Mathematical Society 54 (Nov. 1948), pp. 1092–1093 (cit. on p. 115).

[204] P. S. Dwyer and M. S. Macphail. “Symbolic Matrix Derivatives”. EN. In:
The Annals of Mathematical Statistics 19.4 (Dec. 1948), pp. 517–534 (cit. on
p. 115).

[205] T. Papadopoulo and M. I. A. Lourakis. “Estimating the Jacobian of the
Singular Value Decomposition: Theory and Applications”. en. In: Computer
Vision - ECCV 2000. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2000, pp. 554–570 (cit. on p. 115).

[206] K. B. Petersen, M. S. Pedersen, J. Larsen, K. Strimmer, L. Christiansen, K.
Hansen, L. He, L. Thibaut, M. Barão, S. Hattinger, V. Sima, and W. The.
The matrix cookbook. Tech. rep. 2006 (cit. on p. 115).

[207] M. B. Giles. “Collected Matrix Derivative Results for Forward and Reverse
Mode Algorithmic Differentiation”. en. In: Advances in Automatic Differen-
tiation. Ed. by C. H. Bischof, H. M. Bücker, P. Hovland, U. Naumann, and
J. Utke. Lecture Notes in Computational Science and Engineering. Berlin,
Heidelberg: Springer, 2008, pp. 35–44 (cit. on p. 115).

[208] J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applica-
tions in Statistics and Econometrics. en. Google-Books-ID: 8sOKDwAAQBAJ.
John Wiley & Sons, Mar. 2019 (cit. on p. 115).

bibliography 155

[209] F. Nielsen and R. Bhatia, eds. Matrix Information Geometry. en. Berlin Hei-
delberg: Springer-Verlag, 2013 (cit. on p. 115).

[210] M. Engin, L. Wang, L. Zhou, and X. Liu. “DeepKSPD: Learning Kernel-
Matrix-Based SPD Representation For Fine-Grained Image Recognition”.
en. In: Computer Vision – ECCV 2018. Ed. by V. Ferrari, M. Hebert, C. Smin-
chisescu, and Y. Weiss. Vol. 11206. Cham: Springer International Publish-
ing, 2018, pp. 629–645 (cit. on p. 115).

[211] N. Charon and F. Barbaresco. A new approach for target detection in radar
images based on geometric properties of covariance matrices’ spaces. fr. 2009 (cit.
on p. 120).

[212] A. Dhall, R. Goecke, S. Lucey, and T. Gedeon. “Static facial expression
analysis in tough conditions: Data, evaluation protocol and benchmark”.
In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV
Workshops). Nov. 2011, pp. 2106–2112 (cit. on p. 127).

[213] M. Müller, T. Röder, M. Clausen, B. Eberhardt, B. Krüger, and A. Weber.
Documentation Mocap Database HDM05. Tech. rep. CG-2007-2. Universität
Bonn, June 2007 (cit. on p. 128).

[214] M. T. Harandi, M. Salzmann, and R. Hartley. “From Manifold to Mani-
fold: Geometry-Aware Dimensionality Reduction for SPD Matrices”. In:
arXiv:1407.1120 [cs] (July 2014). arXiv: 1407.1120 (cit. on p. 129).

[215] A. Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”.
en. In: (), p. 60 (cit. on p. 160).

A
p

p
e

n
d

i
x

A
A L O R I T H M I C D E TA I L S A N D P R O P E RT I E S O F
T H E P R O P O S E D L E A R N I N G M O D E L S

Contents
a .1 Model sizes and speeds . 157

a .1 .1 Model size . 157

a .1 .2 Model speed . 158

a .2 Sample code . 159

a .3 Use cases . 159

a .4 Organization of the provided PyTorch library 161

a .5 Implementation details . 162

Here we benchmark both model’s properties and illustrate with some sample
code. Benchmark are done on two different datasets: a synthetic one of the three
drone classes mentioned above (see Figure 2.3), and one of real recordings, the
North Atlantic Treaty Organization (NATO) dataset introduced in Section 4.6, the
description of which is given in Appendix B (in the experiments, we use only
about 3% of the dataset). To recall in short, the synthetic data gathers 1000 ex-
amples per class of 250 ms signals sampled at 4kHz, so of initial size (1000,),
rendered to a (99, 20) time-frequency spectrogam after Fourier convolution.

A.1
Model sizes and speeds

A.1.1 Model size

The number of parameters per model are as follows:

157

158 alorithmic details and properties of the proposed learning models

1. Fully Temporal Convolutional Network (FTCN): 13 547 parameters;

2. SPD neural network (SPDNet): 640 parameters.

As such, the Symmetric Positive Definite (SPD)-based model is much more lightweight
than the Euclidean model.

A.1.2 Model speed

Speed is evaluated on the two mentioned datasets, synthetic and real, and is given
in seconds per epoch. For reference, we give approximate convergent training
times on a shared basis of 200 epochs, on the following hardware setup:

1. GPU: GeForce GTX 960M (4GB VRAM)

2. CPU: 16 RAM

3. Processor: Intel Core i7-6700HQ CPU @ 2.60GHz x 8

The FTCN model involves heavyweight yet parallelizable operations, while
the SPDNet relies on non-parallelizable operations. For these reasons, the FTCN
is trained on GPU and the SPDNet on CPU. Model training speeds (includes all
computations) are as follows:

1. FTCN: 1.3s/ep so ∼ 4 min for synthetic; 3.2s/ep so ∼ 10 min for real (GPU);

2. SPDNet: 3.1s/ep so ∼ 10 min for synthetic; 5.2s/ep so ∼ 17 min for real (CPU);

3. Second-Order Fully Temporal Network (SOFTNet): 6.7s/ep so ∼ 22 min for
real (GPU+CPU);

4. SOFTNet with pre-trained and freezed FTCN: 4.8s/ep so ∼ 16 min for real,
but: the model converges must faster, in about 20ep, so you reach best perfor-
mance in < 2 min.

Model inference speeds on a 20% validation split of the synthetic dataset, i.e. on
600 data samples, are as follows:

1. FTCN: 210 ms, i.e. 0.140% of sample duration for synthetic; 380 ms, i.e. 0.253%

of sample duration for real;

2. SPDNet: 370 ms, i.e. 0.247% of sample duration for synthetic; 670 ms, i.e. 0.447%

of sample duration for real.

A.2 sample code 159

A.2
Sample code

The library we propose seamlessly integrates manifold-constrained optimization
of structured functions on S+

∗ : the code for setting up the learning of a model in
PyTorch is only modified in the usage of the MixOptimizer class, which mixes a
conventional optimizer with the Riemannian ones:

import torch . nn as nn
from mixoptimizer import MixOptimizer
. . .
model = . . . # d e f i n e t h e model
. . .
l =nn . CrossEntropyLoss ()
d e f i n e t h e l o s s f u n c t i o n and mixed o p t i m i z e r
opt=MixOptimizer (model . parameters () , l r = l r , momentum= 0 . 9 , weight_decay=5e−4)
. . .
l . backward ()
in t h e t r a i n i n g loop , compute g r a d i e n t s and up da t e w e i g h t s a s u s u a l l y done
opt . s tep ()

A.3
Use cases

Here we show how to use the library in practice. Following the PyTorch logic,
elementary functions are defined in torchspdnet.functional and high-level modules
in torchspdnet.nn.

A.3.0.1 Basic SPDNet model

Here we give the most basic use case scenario: given input covariance data of
size 20 × 20, we build an SPDNet which reduces its size to 15 then 10 through
two Bilinear Mappings (BiMaps) and a Rectified Eigenvalues (ReEig) activation,
followed by the Log Eigenvalues (LogEig) and vectorization. Finally, a standard
fully-connected layer allows for classification over the 3 classes

160 alorithmic details and properties of the proposed learning models

import torch . nn as nn
import torchspdnet . nn as nn_spd

model=nn . Sequent ia l (
nn_spd . BiMap (1 , 1 , 2 0 , 1 5) ,
nn_spd . ReEig () ,
nn_spd . BiMap (1 , 1 , 1 5 , 1 0) ,
nn_spd . LogEig () ,
nn_spd . Vector ize () ,
nn . Linear (1 0 * * 2 , 3)

)

Note that our implementation of the BiMap module supports an arbitrary num-
ber of channels, represented by the additional parameters all set to 1 in this
example.

A.3.0.2 First-order and second-order combined

In a more complex example, an SPDNet acts upon the features maps of a convolu-
tional network. For an image recognition task, these features may come from a
pre-trained deep network but nothing keeps from training the whole network in
an end-to-end fashion or to fine-tune the parameters. Here we describe the com-
bination of a pre-trained ResNet-18 (He et al. 2016) on the CIFAR10 (Krizhevsky
n.d.) challenge and of SPDNet layers. We recall we call such a model a SOFTNet.

import torch . nn as nn
import torchspdnet . nn as nn_spd
from r e s n e t import ResNet18

c l a s s SOCNN(nn . Module) :
def _ _ i n i t _ _ (s e l f) :

super (__c lass__ , s e l f) . _ _ i n i t _ _ ()

f i r s t −o r d e r model
s e l f . model_fo=ResNet18 ()
s t a t e _ d i c t =th . load (’ pre t ra ined/ResNet18 . pth ’) [’ s t a t e _ d i c t ’]
s e l f . model_fo . l o a d _ s t a t e _ d i c t (s t a t e _ d i c t)

c o n v o l u t i o n a l c o n n e c t i o n
s e l f . connect ion=nn . Conv2d (5 1 2 , 2 5 6 , k e r n e l _ s i z e = (1 , 1))

second−o r d e r model
s e l f . model_so=nn . Sequent ia l (

A.4 organization of the provided pytorch library 161

nn_spd . BiMap (1 , 1 , 2 5 6 , 1 2 8) ,
nn_spd . ReEig () ,
nn_spd . BiMap (1 , 1 , 1 2 8 , 6 4) ,

) . to (s e l f . device_so)

s e l f . dense=nn . Sequent ia l (
nn . Linear (6 4 * * 2 , 1 0 2 4) ,
nn . Linear (1 0 2 4 , 1 0)

)

def forward (s e l f , x) :
x_fo= s e l f . model_fo (x)
x_co= s e l f . connect ion (x_fo)
x_sym=nn_spd . CovPool () (x_co . view (x_co . shape [0] , x_co . shape [1] , −1))
x_so= s e l f . model_so (x_sym)
x_vec=nn_spd . LogEig () (x_so) . view (x_so . shape [0] , x_so . shape [−1] * *2)
y= s e l f . dense (x_vec)
return y

A.4
Organization of the provided PyTorch library

The library is organized following the PyTorch module and functional logic:

1. spd/ : building blocks for the SPDNetBN architecture and training:

functional.py: core machinery for inference and backpropagation in a SPDNetBN;

nn.py: modules used to build a SPDNetBN architecture;

2. cplx/ : building blocks for the complex data handling (only useful for radar
data);

functional.py: core machinery for inference and backpropagation in a com-
plex neural net;

nn.py: modules used to build a complex net architecture;

3. experiments/ :

radar.py: code for lauching experiments on the synthetic radar dataset (re-
sults on the NATO dataset are not reproducible beacause of data confidentiality
issues);

162 alorithmic details and properties of the proposed learning models

hdm05.py: code for lauching experiments on the Hochschule der Medien
05 (HDM05) dataset;

afew.py: code for lauching experiments on the Acted Faces Expressions in
the Wild (AFEW) dataset;

radar_mrdrm.py: code for lauching minimum Riemannian distance to Rie-
mannian mean (Minimum Riemannian Distance to Riemannian Mean (MRDRM))
experiment on the synthetic radar dataset (results on the real dataset are not
reproducible beacause of data confidentiality issues);

hdm05_mrdrm.py: code for lauching MRDRM experiment on the HDM05

dataset;

afew_mrdrm.py: code for lauching MRDRM experiment on the AFEW dataset;

data/ : the folder to copy the data to; the others are made available for down-
load 1. Radar, HDM05 and AFEW datasets respectively weigh 47Mb, 139Mb and
1.3Gb.

To launch the code in the experiments/ directory, execute for instance python
radar.py. The code was developed in Python3 and tested under PyTorch (Paszke
et al. 2017) v0.4.1 on CUDA version 8.0.61 and run on a laptop i7-6700HQ CPU.

A.5
Implementation details

Finally, we list some details of interest to reproduce the results:

1. Training did not benefit from GPU acceleration, seemingly bottlenecked at
eigenvalue operations: computation time desribed in the paper is not de-
creased using an Nvidia GTX 1070M;

2. Symmetric matrix vectorization: following the Euclidean mapping, it is possi-
ble to vectorize only the upper triangular part of the matrix (and normalize
the outer-diagonal coefficients by

√
2 to conserve the norm). We conducted all

experiments in both settings and observed no significant impact, except for the
parametric centering, which seemed to suffer from a smaller representation
dimension. The reported results use full matrix vectorization;

1The synthetic radar, HDM05 and AFEW datasets may be found at https://www.dropbox.com/
s/dfnlx2bnyh3kjwy/data.zip?dl=0

https://www.dropbox.com/s/dfnlx2bnyh3kjwy/data.zip?dl=0
https://www.dropbox.com/s/dfnlx2bnyh3kjwy/data.zip?dl=0

A.5 implementation details 163

3. Matrix orthonormalization: for reasons we are unsure of, performance benefit-
ted from a home-made implementation of the Classical Gram-Schmidt (CGS)
process compared to the built-in QR decomposition, especially in the AFEW ex-
periments; again, the exception was the parametric centering which followed
the opposite rule; however for fairness of evaluation, we reported the results
for the same configuration, i.e. our own CGS;

4. Floating-point precision: as in previous works using structured matrix dif-
ferentiation, working in double precision was paramount for smooth conver-
gence in all cases; in practice, we observe the precision is most important in
the computation of the Loewner matrix, i.e. in the backprop of structured
matrix functions, and specifically while inverting differences in eigenvalues;

5. Since we deal with SPD matrices, eigen-decomposition (EIG) is equivalent to
Singular Value Decomposition (SVD): the latter being more stable and cheaper
to compute, it is possible to use an SVD algorithm, as we and previous works
on SPD matrices do. That being said, the matrix exponentiation during the
computation of the Riemannian barycenter needs switching to an EIG algo-
rithm as negative eigenvalues can exist in the symmetric matrices.

A
p

p
e

n
d

i
x

B
D E TA I L E D D E S C R I P T I O N O F T H E N AT O
R A D A R D ATA B A S E

This appendix details the North Atlantic Treaty Organization (NATO) database
used in experiments, as we have found it to be of major interest both experimen-
tally and of practical interest.

B.1
Global overview

The NATO database consists of recordings of 8 different aiborne subjects, including
one class encompassing birds and 7 different drones:

• DJI Phantom 3 (carbon fiber & nylon blades) [quadcopter];

• 3DR X8 (carbon fiber blades) [quadcopter];

• 3DR Iris (carbon fiber & nylon blades) [quadcopter];

• Firefly [hybrid]

• Anaconda [fixed wing]

• Opterra [fixed wing]

• Skywalker [fixed wing]

The Phantom and the Iris come in two versions: carbon fiber or nylon blades,
which can consitute child classes. The drones are categorized in three types:
quadcopter, fixed wing and hybrid, which can consitute parent classes. The radar
signals are accessible in their raw form of time series of complex points of ampli-
tude and phase. The subjects were furthermore recorded in 6 frequency bands

165

166 detailed description of the nato radar database

(L,S,C,X,Ku and Ka) and with both vertical and horizontal polarization (except
for the L band).

B.2
Description of the data

We call one data point the continuous recording of one subject for an arbitrary
amount of time. Signals vary in lenth from 7s to 672s. The Pulse Repetition Fre-
quency (PRF) is set to 25kHz, meaning a signal of 1 min totals 1.5e6 complex num-
bers. One data point is furthermore segmented into N non-overlapping chunks
of size M = 1024 upon which Fast Fourier Transform (FFT) is performed, thus
outputting a spectrogram of size M × N . Again, for a signal lasting 1 min, the
corresponding spectrogram would be of size 1024× 1465.

B.3
Contents of the disk

The disk is divided in 5 CDs, in which folders separate the recordings of different
subjects. We compactly describe one such folder with the length in seconds of the
different signals within it; we omit the multiplicity of bi-polarization and multiple
frequency bands, such the description ’Phantom3 (nylon): 465 + 84’ means that the
folder contains two different data points of respective time length 465s and 84s of
the Pantom 3 with nylon blades, repeated across all polarizations and frequency
bands. Matlab code is also provided to read and plot the data.

• CD1

• Phantom3 (nylon): 465 + 84

• Skywalker: 12

• X8 (1): 23

• X8 (2): 45

• CD2

B.4 possible setting for learning 167

• Anaconda: 629 + 7

• Firefly: 562 + 178

• Iris (nylon): 22 + 170 + 669 + 98

• CD3

• Iris (carbon): 9 + 672 + 136

• Opterra: 487 + 43

• Phantom3 (carbon): 123 + 442 +72

• CDs 4 & 5

• birds...

B.4
Possible setting for learning

The database is complete, varied, and as such can inspire many possible settings
for learning (usage of both polarizations, usage of hierarchy in classes...). We
propose here one simple setting, using single polarization in the S band. We also
do not consider hierarchy and retain only the 7 drones, which we do not split in
subclasses of blade fabric. Furthermore, from a machine learning point-of-view,
it is reasonable to trim potentially overkill information: for instance, M = 1024

FFT points may be more resolution than we need; we propose instead to use a
pov = 50%-overlapping Nfft = 256-point FFT. Also, we wish to consider a minimal
elementary signal duration for which learning performance is not affected much.
In previous works, it was found a sane choice to operate on a duration of the
order of one complete blade rotation. We do not know these values for the drones
at hand; however, given that a DJI Phantom 2 rotates at about 4800tr/min, we
propose to set the minimal duration around 10ms, which discretizes to 250 sample
points, which we round up to 256. We thus propose to apply the same setting
here, which converts a T = 1 min signal to a spectrogram of length 11720, or
equivalently a set of N = 360 spectrograms of length n = 32 and frequency
resolution 256. In the following Table B.1, we sum up the proposed setting by
grouping the total recording time for each class along with the corresponding

168 detailed description of the nato radar database

Table B.1.: Duration of recorded data in the database. The duration is split
through the classes, and gives a reference amount of number of data
points as individual spectrograms.

Phantom3 X8 Iris Firefly Anaconda Opterra Skywalker
Total duration (s) 1186 68 1776 740 636 530 12

Number of spectrograms 7239 415 10840 4516 3882 3235 73

number of 256× 32 spectrograms. Note that number is obtained with the formula
N = T∗PRF

pov∗Nfft∗n
.

	Abstract
	Résumé
	Remerciements
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Context
	1.2 Motivations
	1.2.1 Pre-processing data for better representativity
	1.2.2 Designing architectures for powerful representation learning
	1.2.3 Enforcing constraints for intrinsic data modelling

	1.3 Contributions and outline
	1.4 Related publications

	2 Theoretical background
	2.1 Introduction
	2.2 Radar Signal and Simulation
	2.2.1 Radar Core Concepts
	2.2.2 Representation of radar Signals

	2.3 Euclidean Machine Learning
	2.3.1 Supervised Learning
	2.3.2 Deep Learning

	2.4 Information Geometry
	2.4.1 Riemannian manifold
	2.4.2 Fisher information
	2.4.3 Explicit computation of the Riemannian metric on Gaussian distributions
	2.4.4 Tangent space

	2.5 Riemannian Machine Learning
	2.5.1 Nearest neighbours in Riemannian space
	2.5.2 Karcher algorithm for nearest Riemannian barycenter
	2.5.3 Tangent space linear regression
	2.5.4 Natural gradient

	2.6 Conclusion

	3 Second-order pipeline for temporal classification
	3.1 Introduction
	3.2 Learning on structured time series representations
	3.2.1 SPD neural networks
	3.2.2 Fully Temporal Convolutional Network
	3.2.3 Complex Fully Temporal Convolutional Network
	3.2.4 HPD neural network

	3.3 Full pipeline for temporal classification
	3.3.1 The Fourier convolution layer
	3.3.2 Pipeline bifurcations
	3.3.3 Covariance pooling

	3.4 Experimental validation
	3.4.1 Drone micro-Doppler radar data simulator
	3.4.2 Experiments and results

	3.5 Conclusion

	4 Advances in SPD neural networks
	4.1 Introduction
	4.2 Data-Aware Mapping Network
	4.2.1 Log-Euclidean Metric
	4.2.2 Barycentric Normalization
	4.2.3 Parametric Normalization
	4.2.4 DAMNet architecture

	4.3 Batch-Normalized SPDNet
	4.3.1 Centering SPD matrices using Parallel Transport
	4.3.2 Statistical distribution on SPD matrices
	4.3.3 Riemannian BatchNorm algorithm

	4.4 Riemannian manifold-constrained optimization
	4.4.1 Learning with SPD constraint
	4.4.2 Structured matrix backpropagation

	4.5 Convolution for covariance time series
	4.5.1 Single-channel convolution
	4.5.2 Weighted average convolution
	4.5.3 Riemannian convolution using the weighted Fréchet mean
	4.5.4 Multi-channel convolution

	4.6 Experimental validation
	4.6.1 Drones recognition
	4.6.2 Emotion recognition
	4.6.3 Action recognition

	4.7 Conclusion

	5 Conclusion and perspectives
	Bibliography
	A Alorithmic details and properties of the proposed learning models
	A.1 Model sizes and speeds
	A.1.1 Model size
	A.1.2 Model speed

	A.2 Sample code
	A.3 Use cases
	A.4 Organization of the provided PyTorch library
	A.5 Implementation details

	B Detailed description of the NATO radar database
	B.1 Global overview
	B.2 Description of the data
	B.3 Contents of the disk
	B.4 Possible setting for learning

