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Titre : Réseaux de neurones convolutifs profonds pour problèmes inverses en restauration d'images et de vidéos Mots clés : Vidéo, Apprentissage profond, Apprentissage automatique, Restauration Résumé : La restauration d'images et de vidéos regroupe de nombreuses tâches-comme le débruitage, la déconvolution et la super-résolution, pour ne citer que quelques exemples-qui permettent des applications de grand intérêt dans divers domaines de la recherche et de l'industrie (par exemple, les industries de la santé, l'armée, la création, les jeux et la recherche en astrophysique). Tous les problèmes de restauration sont modélisés dans le cadre mathématique des problèmes inverses, dans lequel les modèles directs spécient les dégradations reliant les données corrompues observées aux données originales. Ces problèmes sont classiquement résolus sur la base de régularisations choisies à la main pour atténuer leur caractère mal posé et d'algorithmes itératifs qui minimisent les sommes de termes d'attache aux données et de régulariation. L'apprentissage profond et les réseaux neuronaux convolutifs (CNNs) ont récemment augmenté de manière signicative les performances de restauration d'images et de vidéos. Ces réseaux peuvent notamment apprendre l' a priori sur l'image ou la vidéo à reconstruire à partir de données, i.e., de paires de données dégradées et originales. Le modèle direct est utilisé an de générer ces paires dans ce cadre d'apprentissage profond. Même si la régularisation apprise permet généralement d'obtenir de meilleures performances qu'une régularisation manuelle et que les CNNs sont plus rapides que les algorithmes itératifs (donc plus adaptés aux applications pratiques), les CNNs sont utilisés comme des boîtes noires et manquent d'interprétabilité. De plus, ils manquent également de exibilité dans l'utilisation de la connaissance du modèle direct, contrairement à la résolution classique de problèmes inverses. Dans certaines situations où le modèle direct est simple et bien caractérisé, les méthodes classiques peuvent encore être plus performantes que les méthodes basées sur l'apprentissage profond. Certaines approches plus récentes sont hybrides, combinant les avantages des deux méthodes de manière complémentaire. Certaines d'elles permettent de concevoir, par exemple, un CNN unique et interprétable qui peut gérer de manière exible les connaissances à priori des dégradations.

Ce travail étudie les architectures de réseaux de neurones pour résoudre les problèmes de restauration d'images et de vidéos. Premièrement, nous expliquons les principes des méthodes de restauration d'images et de vidéos classiques, puis basées sur l'apprentissage profond, puis hybrides. Ensuite, nous nous concentrons sur le problème inverse de la super-résolution vidéo : nous passons en revue sa résolution traditionnelle et sa résolution dans l'état de l'art basée sur l'apprentissage profond. Comme première contribution, nous proposons un réseau de superrésolution vidéo hybride qui combine les avantages de la résolution classique avec la puissance de représentation des CNNs. Comme deuxième contribution, nous proposons un réseau de superrésolution vidéo récurrent adapté à la super résolution de longues vidéos dans lesquelles certaines parties de la scène bougent à peine (ce type de vidéo peut être rencontré dans des applications telles que la vidéosurveillance) et introduisons une nouvelle base de données de test de telles vidéos. En eet, nous montrons que les réseaux de superrésolution vidéo récurrents existants présentent des instabilités sur ces vidéos. Enn, nous nous concentrons sur la déconvolution de séries temporelles d'images en radio-interférométrie, an de permettre une meilleure détection des sources astronomiques transitoires. Ces sources, qui apparaissent et disparaissent au l du temps, sont très intéressantes pour les astrophysiciens car elles sont associées à des phénomènes physiques de haute énergie. Comme troisième contribution, nous proposons deux architectures de réseaux de neurones qui peuvent faire de la modélisation spatiale et temporelle pour résoudre ce problème de déconvolution.
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Title: Deep convolutional networks for inverse problems in image and video restoration Keywords: Video, Deep learning, Machine learning, Restoration Abstract: Image and video restoration regroups numerous tasks-such as denoising, deconvolution, and super-resolution, to give a few examples-that enable applications that are of high interest in diverse research and industrial areas (e.g., health, military, creative, gaming industries, and research in astrophysics). All restoration problems are modeled in the mathematical framework of inverse problems, in which forward models specify degradations connecting the observed corrupted data to the original data. These problems are classically solved using hand-crafted regularizations to mitigate their ill-posedness and iterative algorithms that minimize sums of datadelity and regularization terms. Deep learning (DL) and Convolutional Neural Networks (CNNs) have recently signicantly increased image and video restoration performance. These networks can learn the regularization from data, i.e., pairs of degraded and original data. The forward model is used in order to generate these pairs in this DL framework. Even though the learned regularization generally enables better performance than a hand-crafted one and CNNs are faster than iterative algorithms (thus more suitable for practical applications), CNNs are used as black boxes and lack interpretability. Moreover, they also lack exibility in using knowledge of the forward model, contrary to classical inverse problem-solving. In some situations where the forward model is simple and well characterized, classical methods can still perform better than DL-based ones. Some more recent approaches are hybrid, blending the advantages of both methods in a complementary way. Some of them enable to design, for instance, a single and interpretable CNN that can exibly manage knowledge about degradations.

This work investigates neural network architectures to solve image and video restoration problems. First, we explain the principles of classical, DL-based, and hybrid image and video restoration methods. Second, we focus on the Video-Super-Resolution (VSR) inverse problem: we review its traditional solving and state-of-the-art solving based on DL. As our rst contribution, we propose a hybrid VSR network that mixes the advantages of classical solving with the representation power of CNNs. As our second contribution, we propose a recurrent VSR network adapted for super-resolving long videos in which some parts of the scene barely move (this kind of video can be encountered in applications such as video surveillance) and introduce a new test dataset of such videos. We demonstrate that existing recurrent VSR networks present instabilities on such videos. Finally, we focus on the deconvolution of image time series in radio interferometry, to enable better detection of transient astronomical sources. They are sources that appear and disappear over time and are highly interesting for astrophysicists because they are associated with high-energy physical phenomena. As our third contribution, we propose two neural network architectures that can do spatial and temporal modeling to solve this deconvolution problem. denotes the regularization parameter. The noise is white, additive and Gaussian with standard deviation =1. The blur kernel described in Fig. 1.1 has been used. 1.4 Deconvolution based on Tikhonov and TV regularizations. The noise is white, additive and Gaussian with standard deviation =5 . denotes the regularization parameter. The blur kernel described in Fig. 1.1 has been used. The TV regularization is based on the Split Bregman algorithm [START_REF] Getreuer | Total Variation Deconvolution using Split Bregman[END_REF][START_REF] Goldstein | The Split Bregman Method for L1-Regularized Problems[END_REF]. 1.5 Illustration of patches from the natural image manifold (red) and restored patches obtained with the MSE train loss (blue). The MSE-based solution appears overly smooth due to the pixel-wise average of possible solutions in the pixel space. This illustration is adapted from [START_REF] Ledig | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[END_REF]. .......... 1.6 Illustration of pixel shuing and unshuing. Figure taken from [START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF]. ... [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF]. 2.2 Overview of FRVSR. FNet is based on an encoder/decoder style architecture, increasing the receptive eld of the convolutions. Its architecture is illustrated in Appendix. A.4. SRNet is based on an architecture with successive residual blocks [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] followed by transposed convolutions for upsampling. 2.12 A frame with complex motion super-resolved with a classical method (left) and the neural network FRVSR [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF] C. Each convolutional layer uses 3 ⇥ 3 kernel with stride 1 and outputs f feature maps (f =1 2 8in our study), except the last one which outputs s 2 =1 6feature maps, where s is the scaling factor. The network outputs the brightness channel Y of YCbCr color space. Cb and Cr channels are upsampled independently with bicubic interpolation. Input LR frames {y i } t 1it+1 are in RGB colorspace. Besides, y t is converted from RGB to Y and replicated s 2 =1 6times in the channel dimension, which gives x ? t for the residual connection. Pixel shuing rearranges elements in a tensor of shape (C ⇥ s 2 ,H,W) to a tensor of shape (C, H ⇥ s, W ⇥ s). . 2. [START_REF] Cao | Vdtr: Video deblurring with transformer[END_REF] Evolution of PSNR on the brightness channel per frame averaged over the rst three sequences of the Quasi-Static Video Set. We substract the curve of the RFS3 baseline and the graph shows these dierences. ........ 2.20 A frame near the end of the rst sequence of Quasi-Static Video Set (the 376th frame) reconstructed from state-of-the art recurrent networks, and RLSP-SL. The brightness channel is visualized. The networks generate high frequency artifacts on the branch, which is a quasi-static object. ...... 2. [START_REF] Rafael E Carrillo | Sparsity averaging reweighted analysis (SARA): a novel algorithm for radio-interferometric imaging[END_REF] The 376th frame of the rst sequence of Quasi-Static Video Set, reconstructed from methods that are stable by design (non recurrent or under HL). MRVSR presents the best quality. ..................... 2.22 Evolution of PSNR on the brightness channel per frame on Sequence 1-XL.

Diagram representation of the VSR forward model. Figure inspired from

We substract the curve of the RFS3 baseline and the graph shows these dierences. ................................... 2.23 Spatio-temporal receptive elds of MRVSR (vizualization of juxtaposed images in the input sequence Y =(y ⌧ ,...,y ⌧ ) optimized to maximize the L1 norm of the center pixel in the output image x 0 ). The horizontal axis accounts for the time index t of y t . The gure is stretched in vertical direction. 2.24 Temporal proles from the brightness channel of the rst sequence of Quasi-Static Video Set. We take the 256th horizontal row of all images and stack them vertically. ................................. 2.25 SVD spectrum of MRVSR, based on the code from [START_REF] Sedghi | The Singular Values of Convolutional Layers[END_REF]. Each label in the legend indicates the n-th layer in one of the sub-networks ⇠, L or .W e see that SRN-C successfully works in constraining the spectral norm of only recurrent layers of L to 1. ...........................
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LIST OF FIGURES 3.1 Principle of radio interferometry by aperture synthesis. Images have been generated thanks to APSYNSIM [START_REF] Marti-Vidal | APSYNSIM: An Interactive Tool To Learn Interferometry[END_REF]. We simulated a VLA array conguration and 4 gaussian sources, with a total observation duration of 4h. .... 3.2 2D Net. Each convolutional layer outputs f feature maps. f =3 2in our study. The kernel size of each convolutional layer is set to 3 ⇥ 3. The vector entering the SFT layer indicates ht . ...................... 3.3 1D Net. {z t } t2I has dimensions C ⇥ T ⇥ H ⇥ W . Each convolutional layer outputs f feature maps, except the last one which outputs images with 1 channel each. Each 1D convolutional layer has the kernel size 5. ...... 3. [START_REF] Hemant K Aggarwal | Modl: Model-based deep learning architecture for inverse problems[END_REF] The PSF test cube that has been picked up for evaluation. Text on each image reports: time step, elevation in degrees, azimuth in degrees. Each PSF is normalized to 1 (black). The grey color scale was reversed for clarity. 3.17 Reconstructions of temporal proles of source 3 and source 5 from the test cubes (that were also reported in Fig. 3 
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Given an observed image (resp. video) presenting physical degradations-e.g., blurs and/or noise-, the image (video) restoration consists in reconstructing its underlying, original, and clean image (video). This task is important in many industrial applications that involve image (video) acquisitions. Indeed, these acquisitions involve sensors that always introduce additional physical corruptions when acquiring data. This way, image (video) restoration applications exist in, e.g.:

• Medical industry: computed tomography (CT) and Magnetic Resonance Imaging (MRI) reconstructions restore latent images from subsampled Fourier measurements.

• Astrophysics: for instance, a radio interferometer deployed to observe stars in the sky corrupts the sky image with its Point Spread Function (PSF) and noise. Denoising and inverting the eect of this PSF, i.e., deconvolution, is particularly interesting to astrophysicists.

• Military industry: in modern warfare, the soldier is enhanced with optronic sensors feeding him with real-time video uxes that he should observe and analyze continuously. His capabilities will be directly related to the quality of these images, which should be enhanced to optimize the system's range or to minimize the cognitive eort associated with watching these videos over a long period.

• Creative industry: recently, the resolution of various displays has dramatically increased, from high denition television HDTV (1920 ⇥ 1080), which currently dominates the market, to ultra high denition television UHDTV (4K or even 8k). In this context, there is a great need for Video Super-Resolution, which consists in converting Low Resolution (LR), low-quality videos into high-resolution, noise-free videos that can be pleasantly viewed on these High Resolution (HR) devices.

• Gaming industry: VSR allows to display HR details based on LR images that consume less data.

Mathematically speaking, image (video) restoration problems belong to the class of inverse problems. The starting point of an image (video) restoration problem is the forward image (video) formation model, which explicitly models physical degradations and connects observed data to the unknown and underlying data one wants to estimate. Classical restoration methods directly derive a minimization problem from this forward model. The function to be minimized is a sum of two terms. The rst term is a data delity term that ensures the delity of the solution (i.e., restored data) to the forward model. The second term, a regularization term, is needed to make the solution robust to noise and unique. The coecient associated with this term, called the regularization hyperparameter, controls the trade-o between the two terms. The minimization is mostly performed using an iterative algorithm coming from convex optimization theory, such as gradient descent. While being mathematically grounded, classical methods present some drawbacks. First, iterative algorithms are generally slow and not suitable for real-time applications. Second, one has 19/159 to carefully design the regularizer and the regularization hyperparameter, which requires advanced knowledge about the inverse problem in question and can be time-consuming. More recent restoration methods based on Deep Learning (DL) can overcome these drawbacks. A DL-based reconstruction technique involves a Convolutional Neural Network (CNN) that can learn the function that associates the degraded image (video) to the corresponding Ground Truth (GT) image (video). This learning relies on degraded and GT image (video) pairs that can be simulated based on the forward model. Implementing this CNN can benet from ecient GPU-based architectures, increasing their suitability for real-time applications. Moreover, the CNN learns the regularization from data, suppressing the need for carefully hand-crafting a regularizer and a regularization parameter. However, DL-based methods also present some drawbacks. As an example, contrary to a classical method, a CNN that only takes the degraded data as input lacks exibility in dealing with heterogenous degradations. In other words, it cannot perform well when degradations' parameters vary. Moreover, a CNN is used as a black box and thus lacks interpretability. Given these advantages and disadvantages of classical and DL-based restoration methods, more recent, hybrid approaches combine and can benet from both paradigms in a complementary way. For example, some of them allow designing a restoration CNN that can manage multiple degradations.

As part of the rst part of this thesis which presents the context of recent trends in image and video restoration, the rst chapter of this thesis presents a general overview of how dierent restoration methods exploit forward models of inverse problems to complete image (video) restoration tasks. We also expose how one can evaluate their performance.

Once the context of image and video restoration has been presented, the second part of this thesis tackles our contributions regarding some video restoration tasks. More specifically, the second chapter of this thesis focuses on the VSR problem. First, we present how classical and State-Of-The-Art (SOTA) DL-based methods solve this problem. Then, as our rst contribution, we propose a new VSR neural network based on deep unrolling. This technique derives CNN architectures inspired by iterative algorithms used in classical restoration methods. Thus, it is a hybrid approach. We measure and discuss the performance of our newly introduced network in some experimental settings. Then, as our second contribution, we show for the rst time that SOTA recurrent VSR networks diverge on long sequences with low motion (i.e., videos in which some parts of the scene barely move). We propose a solution to this instability issue in the form of a recurrent VSR network that is more adapted to tackle long sequences with low motion. We propose a new test dataset of low-motion sequences to show its superior performance compared to existing SOTA recurrent VSR networks.

In the third chapter, as our third contribution, we design Neural Networks (NNs) to reconstruct time series of radio interferometry images to help detect transient astronomical sources. These sources appear and disappear over time and are particularly interesting for astrophysicists as they are associated with high-energy physical phenomena such as pulsars, rotating radio transients (RRATs), solar-system magnetized objects, and "fast radio bursts" (FRB). We formulate this search as a deconvolution inverse problem of image time series. Indeed, the radio interferometry images obtained via aperture synthesis imaging are corrupted by the PSF of the radio interferometer and additive noise, and the morphology of 20/159 INTRODUCTION this PSF varies in time because the sky rotates over the instrument during the observation. We propose two new NNs to manage multiple degradations and do both spatial and temporal modelings to solve this inverse problem. We show their superior performance on our simulated data over CLEAN, the most used classical algorithm in the radio interferometry community.

We conclude this manuscript with a summary of the results and a discussion about some perspectives. In image/video restoration, we are given an observed image/video. This observation has been corrupted by physical degradations. The goal is to recover an image/video that is the nearest to its underlying original image/video, free of these degradations. An image/video restoration problem belongs to the class of inverse problems. The physical degradations are specied by the forward model of the inverse problem. The forward model of an image 25/159 C 1 restoration problem has the following form [START_REF] Pustelnik | Wavelet-based Image Deconvolution and Reconstruction[END_REF]:
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y = D (Ax) (1.1)
where:

• y 2R N is the observed data, corresponding to an image of size N = N 1 ⇥ N 2 arranged in a lexicographic order;

• x 2R M is the underlying data, corresponding to an image of size M = M 1 ⇥ M 2 arranged in a lexicographic order;

• A 2R N ⇥M is the matrix dening the linear degradation operator;

• D : R N 7 ! R N denes other degradations such as nonlinear ones or the eect of the noise. This operator is parameterized by .

In case of a video restoration problem, we need to account for the additional time dimension. The forward model has the following form [START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF].

y j = D j (A j F u t→j x t ) t J  j  t + J (1.2) 
where:

• 2J +1is the total length of the observed video;

• the indeces j and t indicate time steps;

• y j represents the observed video frame at time step j;

• x t represents a reference video frame at time step t;

• F u t→j denotes the warping operator with regard to optical ow u t!j . It models motion between two clean frames at time steps j and t.

The goal is to nd a function F that inverts the forward model, using or not the knowledge about degradations. In image restoration, this function veries the following equation:

x = F (y, A, ) (1.3) 
In case of a video restoration problem:

xt = F (y t J ,...,y t+J ,A t J ,...,A t+J , t J ,..., t+J )

Video restoration diers from image restoration because the fusion of several degraded frames produces a clean, underlying image. Moreover, it is important that reconstructed 26/159 S frames with successive time steps xt J ,...,x t ,...,x t+J are temporally consistent between them. This temporal coherence ensures a minimization of ickering artifacts when observing the restored video.

In this thesis, we suppose the degradation operators and the noise levels (A and in the image restoration case; {A j } t Jjt+J and { j } t Jjt+J in the video reconstruction case) are known. Therefore, we do not need to estimate them. In other words, we deal with non-blind scenarios, unless otherwise specied.

Classical methods

Principles

For many image restoration problems, the forward model in Eq. (1.1) reduces to the linear additive noise model:

y = Ax + n (1.5)
where n is a vector of noise. In most cases, it can be modeled as a zero-mean Gaussian noise with variance 2 .

The form of the matrix A is specic to the inverse problem. In the case of the image denoising problem, A is reduced to the identity matrix. In the case of image deblurring, A is a square matrix that models the blur. This blur can stem from motion between the scene and the camera, the defocus of an optical imaging system, lens imperfections, and atmospheric turbulences. If the blur is spatially invariant, the product Ax is equivalent to a convolution of x with the Point Spread Function (PSF) of the sensor. In the case of image super-resolution, A models a blurring followed by a low-resolution acquisition and can be composed into a square matrix modeling the blur and a "at" matrix modeling the down-sampling eect.

If A is invertible, a naive solution consists in applying the inverse of the linear degradation to the observation [START_REF] Pustelnik | Wavelet-based Image Deconvolution and Reconstruction[END_REF]:

x = A 1 (Ax + n)=x + A 1 n (1.6)
If the linear degradation is a convolution, A is a block-circulant matrix and may be diagonalized by the 2D Discrete Fourier Transform (DFT) matrix, which drastically reduces the computational cost of the inversion when the dimensions of A are powers of 2 thanks to the fast Fourier transform algorithm. However, if the matrix A is ill-conditioned (whether it is block-circulant or not), the inverse ltered noise A 1 n may become very large so that its eect becomes important. Thus, the inverse ltering amplies the noise leading to an irregular image. In practice, the inverse ltering is not robust even when the noise is light, but it works perfectly when no noise degrades the image. Fig. 1.2 illustrates these statements.
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C 1

If A is not invertible, one can compute its pseudo inverse, which allows to compute a solution to the following least squares problem:

x =argmin x ||y Ax|| 2 2 (1.7)
and there are two possible scenarios:

• if A has a rank r = N<M , we have an under-determined problem. This is for example the case for an image-super resolution problem. In this case, the solution is not unique and belongs to an ane space in the direction of ker(A). The solution with minimum norm is most often selected: x = A T (AA T ) 1 y and A T (AA T ) is called pseudo inverse of A.

• if A has a rank r = M<N, we have an over-determined problem. There is no exact solution if y/ 2 Im(A). The least squares problem, however, has a unique solution given by x =(A T A) 1 A T y. The pseudo-inverse of A is therefore (A T A) 1 A T .

Figure 1.1: A blur kernel.

In both cases, the pseudo inverse lter often leads to irregular solutions, similar to the inverse lter. Therefore, whatever the dimensions and the rank of A are, there is a need for 1) stabilizing the solution, i.e., making it robust to noise, and 2) guaranteeing its uniqueness. This need motivates the following alternative problem formulation:

x =argmin Classical (also called variational) restoration methods solve this problem. r : R M 7 ! R + denotes the regularization term, and >0 is the regularization parameter that adjusts the trade-o between the data delity and the degree of regularity. r reects our prior knowledge about the solution space, enforcing some constraints on the solution. Our prior knowledge should guide the tuning of r, which should describe as best possible natural image statistics. Therefore, r is also called prior or prior term. One of the most popular and simple regularizations is the Tikhonov regularization [START_REF] Sureau | Deep learning for a space-variant deconvolution in galaxy surveys[END_REF], where r = ||Lx|| 2 2 . L can be the identity matrix I or a highpass operator such as derivative or Laplacian. This regularization involves a closed form solution the inverse problem: x =( A T A + L T L) 1 A T y which makes use of the Tikhonov linear lter (A T A + L T L) 1 A T . When L = I, highenergy solutions are penalized. The Wiener deconvolution [START_REF] Wiener | Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications[END_REF] indeed corresponds to a particular case of the Tikhonov ltering. The regularization parameter is a hyperparameter of the Tikhonov ltering. Figs. 1.3, 1.4b and 1.4c show that this ltering produces stable solutions even in the presence of noise. However, as illustrated by Figs. 1.3a and 1.4b, the ltering generates colored noise (i.e., the noise with a non-at power spectrum). As shown by Figs. 1.3b and 1.4c, this noise can be reduced by increasing the regularization parameter , but this also attenuates the high frequencies, i.e., overly smooths edges.

The mixed performance of the Tikhonov regularization mostly stems from the fact that this regularization does not correctly describe natural image statistics. Indeed, this regularization imposes equivalent Gaussian assumption for both noise and image gradients [START_REF] Wiener | Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications[END_REF][START_REF] Xu | Deep convolutional neural network for image deconvolution[END_REF], which is mostly not respected. Therefore, studies in the literature design more sophisticated r to better capture natural image statistics and solve the problem thanks to iterative algorithm-based convex optimization. The Total Variation (TV) regularization [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] is one of the most popular and successful regularizations. It penalizes the total amount of change in the image as measured by the norm of the magnitude of the gradient, i.e., r(x)=||rx|| 1 where r is the gradient operator. Consequently, it encourages solutions to contain uniform regions. Moreover, it tends to preserve edges in the reconstruction, as it does not severely penalize steep local gradients. Figs. 1.4e and 1.4f show deconvolutions based on the TV regularization. They make use of the Split Bregman algorithm [START_REF] Getreuer | Total Variation Deconvolution using Split Bregman[END_REF][START_REF] Goldstein | The Split Bregman Method for L1-Regularized Problems[END_REF]. Fig 1.4f shows that a larger value for makes the regularization heavier and leads to an image with atter regions. One can expect that TV regularization suers when trying to reconstruct textured regions.

Below summarizes regularizations and iterative algorithms that are used in some studies in the literature:

• Authors of [START_REF] Afonso | Fast Image Recovery Using Variable Splitting and Constrained Optimization[END_REF] use a non-smooth regularizer, which allows both wavelet-based or total-variation regularizations. They resort to the half-quadratic splitting algorithm for their optimization.

• The study [START_REF] Chambolle | A rst-order primal-dual algorithm for convex problems with applications to imaging[END_REF] solves some image restoration problems based on the total variation regularization and a rst-order primal-dual algorithm.

• The work [START_REF] Ng | Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods[END_REF] uses the total variation regularization and the alternating direction method of multipliers (ADMM) algorithm [START_REF] Boyd | [END_REF].

• Authors of [START_REF] Yang | Image super-resolution as sparse representation of raw image patches[END_REF] proposed to learn a regularizer as a sparse dictionary and use the back-projection algorithm [START_REF] Irani | Motion Analysis for Image Enhancement: Resolution, Occlusion, and Transparency[END_REF].

As classical methods directly derive a minimization problem from the forward model and explicitly model the regularization term, they are also called model-based methods.

The examples shown by Figs 1.3 and 1.4 illustrate the importance of having a good image prior. This task is not easy, requiring expert knowledge about the inverse problem. Moreover, the choice of the image prior depends on the types of images encountered in the inverse problem. In other words, certain types of regularization work eciently for some particular kinds of images but are not always suitable for more general images. For instance, maximum entropy regularizations that produce sharp reconstructions of point objects are adopted to reconstruct star elds in astronomical images [START_REF] Bovik | Handbook of image and video processing[END_REF]. Moreover, the previous examples also illustrate the need for carefully hand-tuning the regularization hyperparameter in classical image restoration tasks. This tuning also requires expert knowledge and timeconsuming experimental trials.

Bayesian interpretation

There is a Bayesian interpretation of the problem in Eq. (1.8). One can see x and y as realizations of random vectors X and Y . x can be estimated based on the Maximum A Posteriori (MAP) strategy: the estimate of x should maximize the posterior probability distribution µ X|Y =y . Based on Bayes theorem:
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where µ Y |X=x (y) is the likelihood function, µ X (x) is the prior distribution and µ Y (y) is the marginal distribution, assumed to be nonzero. By applying the logarithm function:

Eq. (1.9) () x 2 arg min x log µ Y |X=x (y) log µ X (x) (1.10)
The rst term is related to data delity, and the second indicates the prior term. when n is a zero-mean Gaussian noise with variance 2 , we have:

µ Y |X=x (y)= 1 (2⇡ 2 ) N 2 exp ||Ax y|| 2 2 2 2 (1.11)
Therefore,

log µ Y |X=x (y) / 1 2 2 ||Ax y|| 2 2
(1.12) By letting log µ X (x)= 1 2 2 r(x)= 0 r(x), Eqs. (1.8) and (1.10) becomes equivalent, and we obtain an alternative problem formulation:

x =argmin x 1 2 2 ||y Ax|| 2 2 + 0 r(x) (1.13)

Deep learning methods

Deep learning (DL) and convolutional neural networks (CNNs) have recently enabled signicant progress in image and video restoration performance. In contrast to classical methods, the idea of DL-based image and video reconstruction lies in the following: the inversion of the degradation, the prior and the regularization hyperparameter are learned from a dataset of natural images. Therefore, there is no more hand-crafted regularization. This approach presents the following advantages. First, the learned prior better captures statistics of natural images than the hand-crafted one. Second, one does not need to try to search for a good hand-crafted prior and an appropriate regularization hyperparameter. Instead, the DL-based approach requires eort into dataset collection and neural network training.
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Supervised learning

In DL-based image/video restoration, Convolutional Neural Networks (CNNs) take a degraded image/video as input and output an estimate of its underlying original data. It is a standard regression problem where network features and channels contribute to the nal output.

CNN

A CNN is a feedforward neural network composed of d 2D convolutional layers and interspaced nonlinear activation functions. Most of the time, these functions are the Rectier Linear Unit (ReLU) function. A convolutional layer applies lters to the input image or feature maps. Each ltering produces an output feature map. Each lter is a convolution mask with weights w 1 ,...,w K , where K = k 2 • nb_channels_in with k being the kernel size and nb_channels_in is the number of input feature maps. Each ltering is accompanied by an addition of the bias term w 0 . The size of the lter slides over the two spatial dimensions is called stride size.

A convolution operation is local, i.e., extracts interactions between the central pixel and its neighboring pixels across input channels. Successive convolutional layers allow to extract interaction between pixels farther and farther in spatial locations. They are contained in the receptive eld of CNN. If all convolutional layers have the stride of size 1, the size of the receptive eld can be computed based on the following formula:

receptivefield = d • (k 1) + 1 (1.14)
After a convolutional layer, the activation layer applies a nonlinear function at each pixel of the feature maps. This nonlinearity is essential to provide the CNN with the capability of approximating a function that is not necessarily regular. Indeed, an image to be reconstructed is a non-regular function, as it can contain edges and structures. The ReLU activation layer applies the following function: f : x 7 ! max(0,x). By using this activation function, the CNN approximates a function with a piecewise ane function. Authors of [START_REF] Zhou | Universality of deep convolutional neural networks[END_REF] showed that a CNN with this activation function can approximate any continuous function to an arbitrary accuracy when the depth of this network is large enough. This is indeed a variant of the universal approximation theorem for neural networks. The ReLU activation has replaced other activation functions such as tanh or sigmoid that had been traditionally used. The ReLU activation demonstrates better performance for the following reasons. First, contrary to tanh or sigmoid, as the ReLU activation is not saturating, it does less trigger the vanishing gradient problem when the number of layers grows. Thus, the rst layer can more eciently receive the errors coming from the last layers to tune all weights between layers. Second, the ReLU activation function can accelerate the training speed of deep neural networks compared to traditional activation functions because the derivative of ReLU is 1 for positive input. Since this is constant, deep neural networks do not need additional time to compute error terms during training.

All weights of a CNN constitute its parameters, which are optimized at training time. Searches for high-performing CNN architectures (structures and ordering of layers) for various computer vision tasks have been an active eld of research in recent years.

Training data

In most settings, parameters of a restoration network are learned in a supervised manner from training data, constituted of pairs of degraded image/video and GT original image/video. Preparing a set of enough large clean, non-corrupted images/videos is not difcult in some scenarios. We can then prepare the training set by simulating their corresponding degraded versions based on the forward model of the inverse problem. Therefore, neural networks indirectly capture the forward model based on pairs of degraded and GT images/videos: these networks are data-based. The most popular public training sets for image restorations are:

• DIV2K [5];

• Flickr2K [START_REF] Timofte | NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and Results[END_REF].

In video restoration, popular training datasets are:

• Vimeo-90K [START_REF] Xue | Video enhancement with task-oriented ow[END_REF];

• REDS [START_REF] Nah | NTIRE 2019 Challenge on Video Deblurring and Super-Resolution: Dataset and Study[END_REF];

• the one that is used in [START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF][START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Naoto | Stable Long-Term Recurrent Video Super-Resolution[END_REF];

• MM522 [START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF].

Loss functions

To summarize, a neural network is a function N ✓ which realizes the following mapping: x 7 ! N ✓ (y), where ✓ denotes the set of parameters of the network. In the case of supervised learning, these parameters are optimized at training time in such a way that the loss function L(x, x) is minimized. This function quanties the distance between x and x. This metric can be:

• the Mean-Squared-Error (MSE) [START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF][START_REF] Naoto | Deep Unrolled Network for Video Super-Resolution[END_REF][START_REF] Naoto | Stable Long-Term Recurrent Video Super-Resolution[END_REF], where L(x, x)= 1 M ||x x|| 2 2 . This loss is the average over all pixels of the L2 distance and is generally the default choice. A variant of the L2 loss, called Huber loss, has been used in studies such as [START_REF] Jo | Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation[END_REF]. The Peak Signal-to-Noise Ratio (PSNR), which is expressed in dB, is a popular metric that is related to the MSE by the following relation: PSNR(x, x)=10log 10 max i (x i ) MSE(x,x) .
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• L1 loss: L(x, x)=||x x|| 1 . This loss function has been used in [START_REF] Lim | Enhanced Deep Residual Networks for Single Image Super-Resolution[END_REF]. This loss can be a better proxy regarding perceptual quality than the L2 loss (see below for a more detailed explanation).

• Charbonnier loss: this has been used in [START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF][START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF][START_REF] Lai | Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution[END_REF]. This is a dierentiable variant of L1 loss: L(x, x)= p (x x) 2 + ✏ 2 . ✏ is set to a small value, typically 10 3 .

• Structural Similarity Index Measure (SSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]: it is a better measure of perceived visual quality than PSNR since it is based on how the human eye extracts structural information from an image. Studies such as [START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF][START_REF] Corbineau | Learned Image Deblurring by Unfolding a Proximal Interior Point Algorithm[END_REF] use it as the loss function to train an image restoration network. However, the authors of [START_REF] Zhao | Loss Functions for Image Restoration With Neural Networks[END_REF] showed that this loss could cause brightness changes or shifts of colors due to its lack of sensitivity to uniform bias. Moreover, they also showed that this loss could provoke noisy artifacts around edges or splotchy artifacts on at regions, depending on a hyperparameter. Finally, the authors of [START_REF] Ledig | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[END_REF][START_REF] Blau | The Perception-Distortion Tradeo[END_REF] showed that it still fails to capture and accurately assess image quality with respect to the human visual system, as PSNR.

• Perceptual loss: studies such as [START_REF] Ledig | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[END_REF][START_REF] Blau | The Perception-Distortion Tradeo[END_REF] stated that L2-based loss favors overly smooth reconstructions with poor perceptual quality. This tendency is because minimizing L2 encourages nding pixel-wise averages of plausible solutions. Fig. 1.5 illustrates this phenomenon. Therefore, the L2 loss does not encourage perceptually optimized restorations. Additionally, authors of [START_REF] Zhao | Loss Functions for Image Restoration With Neural Networks[END_REF] show that networks trained with L2 loss generate splotchy artifacts of at regions. Given this observation, the authors of [START_REF] Ledig | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[END_REF] propose to use the sum of adversarial loss and content loss. The former is the generative loss: the lower this loss is, the more similar to the natural image the reconstructed image is. This loss involves an auxiliary discriminator network in the Generative Adversarial Network (GAN) framework [START_REF] Goodfellow | Generative Adversarial Nets[END_REF]. The latter is the L2 distance between the feature representations of the reconstructed image and the GT image. These representations are based on the ReLU activation layers of the pre-trained 19-layer VGG network [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF]. Authors of [START_REF] Zhang | The Unreasonable Eectiveness of Deep Features as a Perceptual Metric[END_REF] proposed another metric based on deep feature maps, called LPIPS.

However, encouraging perceptually optimized reconstructions during training comes with some drawbacks. On the one hand, the GAN framework increases memory usage, as the discriminator network is jointly trained with the reconstructing network.

On the other hand, regarding VGG and LPIPS losses, computing the distance between feature representations involves inferences of the pre-trained network, increasing the training time.

The standard L2 loss theoretically maximizes the L2-based metrics such as PSNR. However, loss functions other than L2 loss can sometimes enable better performance even in metrics such as PSNR. As an example, the authors of [START_REF] Lim | Enhanced Deep Residual Networks for Single Image Super-Resolution[END_REF] decided to use L1 loss because it empirically enabled better convergence, thus better-performing networks. Authors of [START_REF] Zhao | Loss Functions for Image Restoration With Neural Networks[END_REF] observe similar results and provide an explanation of this. They showed that this is due to the smoothness and the local convexity properties of the two loss functions: with L2 loss, the optimization gets stuck more easily in a local minimum, while with L1 loss, it is easier to reach a better minimum. 

Weight optimization

The neural network's parameter set ✓ = {w j } is optimized to minimize the loss. This optimization is based on the gradient descent algorithm. At each iteration step i, the weight w j is updated based on the following rule:

w i j = w i 1 j ⌘ @L @w j (1.15)
The updates should be terminated when all of these weights have converged. @L @w j is called the gradient. ⌘ is called the learning rate. It is decreased with increased iteration steps to help convergence. At each iteration step, @L @w j is estimated based on 1) a random set of examples (y, x) called mini-batch 2) the chain rule that allows backpropagation. The number of examples in the mini-batch is called batch size and noted B. A larger batch size allows smoother convergence by enabling a more accurate gradient estimate. However, a smaller batch size means faster convergence because the parameters are updated after each backpropagation.

One needs to keep in mind that there is no theoretical guarantee that the loss function minimized is convex. This means that the optimization can be stacked in a local minimum.

To avoid this, one can augment the update with a momentum term. This term keeps the update process moving in the same direction by taking into account past gradients. This augmentation helps escape from local minima pits. One of the most popular momentum optimizations is the Adam optimization [START_REF] Diederik | Adam: A Method for Stochastic Optimization[END_REF]. It keeps track of an exponentially decaying average of past gradients and squared gradients.

Hyperparameter tuning

To make a restoration model converge, one needs to tune the training hyperparameters properly. Among them are the batch size B and the learning rate ⌘.

Similarly to the convolution operator, a convolutional image restoration network can manage input images of any size. Therefore, to save memory, the training uses small, cropped images with a particular crop size. However, a smaller crop size means more present border eects of convolutions. Moreover, this size should be larger than the receptive eld of the network to leverage the network's full capacity. These considerations introduce a new training hyperparameter, the crop size. In the same way as batch size, a larger crop size enables smoother convergence.

Batch size is also limited by memory. Memory usage at training time is thus determined by the crop size and the batch size. A trade-o between them is therefore needed.

The learning rate should be as high as possible at the beginning in order to speed up the training. However, if it is too high, it can make the convergence harder or can cause instability. Generally, the learning rate should be low when the batch size is large. Therefore, these hyperparameters have to be jointly tuned.
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The choice of the loss function impacts the magnitude of the gradient. This choice, therefore, inuences the subsequent hyperparameter tuning.

In the case of a recurrent video restoration network [START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF][START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Naoto | Stable Long-Term Recurrent Video Super-Resolution[END_REF][START_REF] Naoto | Deep Unrolled Network for Video Super-Resolution[END_REF], the training involves BackPropagation Through Time (BPTT). This technique consists of unrolling through T past time steps the recurrent network and backpropagating over this unrolled network. This technique is highly demanding in terms of memory usage, which proportionally increases with T . Therefore, T should be jointly tuned with other hyperparameters impacting memory usage.

To conclude this part, one should tune these hyperparameters based on repeated experiments and trials. Tab. A.1 in the Appendix summarizes the training settings of SOTA VSR networks.

Training strategies

A good weight initialization can accelerate training and/or avoid local minimums. The Xavier initialization is the most used initialization scheme in image and video restoration [START_REF] Glorot | Understanding the diculty of training deep feedforward neural networks[END_REF].

Increasing training data variability helps restoration networks increase their generalization capability and avoid overtting, i.e., tting overly complex functions to the training data (even though overtting is generally not a problem in restoration tasks). Data augmentation enables increasing this variability. This technique applies a random composition of ipping and transposition to each training image/video crop. In video restoration, this variability can also be increased based on temporal augmentation [START_REF] Jo | Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation[END_REF]: this technique randomly samples video frames at dierent time steps to improve motion variability.

An image or video restoration problem is a standard regression problem, where network features and channels all contribute to the nal output. Therefore, dropout [START_REF] Georey | Improving neural networks by preventing co-adaptation of feature detectors[END_REF], which induces a signicant information loss within the network, is rarely used at training time.

Connection with MAP inference

Authors of [START_REF] Chen | Trainable nonlinear reaction diusion: A exible framework for fast and eective image restoration[END_REF] proposed a trainable nonlinear reaction diusion (TNRD) model for image restoration. This model learns a modied elds of experts [START_REF] Roth | Fields of experts[END_REF] image prior by unrolling a xed number of gradient descent steps. Authors of [START_REF] Zhang | Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising[END_REF] showed that an image restoration CNN is a generalization of one-step TNRD, and most of their parameters represent the image prior. Moreover, they empirically demonstrated that a single CNN could handle multiple scales super-resolution, image deblocking and image denoising.

Other learning strategies

Supervised learning requires having a collection of clean images/videos. In some applications, having such a collection is not straightforward. Other restoration methods do not 39/159 C 1 present this requirement.

Unsupervised learning

Authors of [START_REF] Shocher | Zero-Shot" Super-Resolution Using Deep Internal Learning[END_REF] proposed to train a small CNN for each image to be super-resolved. The input LR image is further blurred and downsampled several times in a hierarchical manner, accompanied by data augmentation. These re-degradations generate several training pairs that are used in order to t the CNN. The trained CNN is then deployed to super-resolve the input LR image. Deep Image Prior (DIP) [START_REF] Ulyanov | Deep Image Prior[END_REF] is another unsupervised image restoration technique that ts a CNN to a degraded image. It is more detailed in Sec. 1.3.3.

The drawback of these unsupervised methods is that they require tting a CNN for each input image. This requirement makes them slow and less attractive for practical applications.

Self-supervised learning

In their VSR problem, the authors of [START_REF] Long Nguyen | Self-Supervised Multi-Image Super-Resolution for Push-Frame Satellite Images[END_REF][START_REF] Bai | Self-Supervised Deep Blind Video Super-Resolution[END_REF] proposed two dierent self-supervised learning methods, which only necessitate a training dataset of LR video. Their common idea is to re-degrade the estimated HR frame based on the image formation model and compare it to the input LR frame to compute the loss. However, when applied naively, this approach results in trivial solutions. The work in [START_REF] Long Nguyen | Self-Supervised Multi-Image Super-Resolution for Push-Frame Satellite Images[END_REF] circumvents this problem by not including the reference frame in the input of the input encoding CNN. The study in [START_REF] Bai | Self-Supervised Deep Blind Video Super-Resolution[END_REF] avoids the problem by re-degrading the input LR frames and giving them to the super-resolution network. The output is compared to the input LR frame to compute an additional auxiliary loss.

Common architectural blocks in DL

Global residual/skip connection Authors of [START_REF] Kim | Accurate Image Super-Resolution Using Very Deep Convolutional Networks[END_REF] and [START_REF] Zhang | Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising[END_REF] respectively used this technique for their image super-resolution and denoising problem. This technique consists in learning to reconstruct the residual image r = x y, instead of x. This residual learning makes sense because the degraded and original images are highly correlated and share the same information to a large extent. As an illustration, in the Single Image Super-Resolution (SISR) problem, an HR image can be decomposed into low-frequency information (corresponding to LR image) and highfrequency information (residual image or image details). Input and output images share the same low-frequency information. In problems such as denoising or SISR, if the network learns to reconstruct x instead of r, this model learns to both carry the input to the end layer and reconstruct residuals. By handing the input to the end, the network only needs to learn to reconstruct the residuals, enabling much faster training with even better accuracy.
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Residual blocks

A residual block [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] is a set of a rst convolution layer, followed by a ReLU activation layer that is in turn followed by another convolution layer. A residual connection links the input of this block with the output of the block. Such a design ensures a uent gradient ow and can preserve the texture information over a deep network. The study [START_REF] Mehdi | EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis[END_REF] empirically found that residual blocks enable faster convergence than stacked convolution layers.

Pixel shuling and unshuling layers

Pixel shuing and unshuing operations [START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF] are also respectively called space-to-depth and depth-to-space [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Shi | Real-Time Single Image and Video Super-Resolution Using an Ecient Sub-Pixel Convolutional Neural Network[END_REF] transformations. The shuing reduces the channel dimension C of a tensor t with factor r 2 and extends both spatial dimensions H and W with factor r. The unshuing is the inverse of this operation. These operations are summarized below:

t LR 2 R H⇥W ⇥Z ⇥r ! t HR 2 R rH⇥rW ⇥Z/r 2 (1.16) t HR 2 R H⇥W ⇥Z /r ! t LR 2 R H/r⇥W/r⇥r 2 Z
(1.17) Fig. 1.6 illustrates these operations. They are helpful in inverse problems such as SISR or VSR. Indeed, in these problems the linear degradation involves a downsampling operation which makes observed image y have reduced spatial resolutions compared to the corresponding underlying image x. We say in this case that y lives in the low-resolution (LR) space and x lives in the high-resolution (HR) space. Pixel shuing and unshuing allow the tensor to switch between these spaces.

An interesting feature of these operations is that it keeps local integrity. All pixels along the channel dimension in the LR space are rearranged in their corresponding local HR interpolation area, and vice versa.

In studies such as [START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF][START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Shi | Real-Time Single Image and Video Super-Resolution Using an Ecient Sub-Pixel Convolutional Neural Network[END_REF][START_REF] Naoto | Stable Long-Term Recurrent Video Super-Resolution[END_REF], to gain computational eciency, most of the convolution operations are done in the LR space and pixel shuing is executed at the last stage to output an HR image. In [START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF][START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF], to feedback recurrent information from the HR space, the pixel unshuing operation is used.

Transposed convolution layer

Apart from pixel unshuing, zero-lling [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF] and interpolation, another operation can upsample the spatial dimensions of feature maps. Transposed convolution is such an operation. A transposed convolution layer broadcasts input feature maps via the kernel regrouping learnable parameters. This layer is used in studies like [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF] to map feature maps in LR-space to HR-space. Transposed convolution is also called fractionally strided convolution, because the stride over the output is equivalent to the fractional stride over the input. For instance, a stride of 2 over the output is 1/2 stride over the input. 

41/159

Batch normalization

Batch normalization consists in:

• centering and scaling the input using the empirical mean and variance of the minibatch containing the input;

• ane-transforming the centered and re-scaled input using learnable parameters;

at training time. At test time, the input undergoes the same operation but the centering and scaling operations use the empirical mean and variance over the whole train set.

This technique has been extensively used and showed that it could signicantly increase performance in high-level computer vision tasks such as classication and object detection. However, the authors of [START_REF] Lim | Enhanced Deep Residual Networks for Single Image Super-Resolution[END_REF] suggested not using this technique when dealing with image restoration problems. They stated that this is because batch normalization eliminates range exibility from networks by normalizing the features. They experimentally veried that not using batch normalization layers signicantly increases the performance. Moreover, not using batch normalization layers enables to reduce GPU memory usage signicantly . Their baseline model without batch normalization saved around 40 % of memory usage during training, compared to SRResNet [START_REF] Ledig | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[END_REF]. Therefore, under limited computational resources, they could use a larger model with better performance than models with batch normalization layers. For all of these reasons, we do not use batch normalization in our work.

Multi-scale architectures

Multi-scale architectures divide the input image features into several scales, process them independently and nally aggregate them in a coarse-to-ne manner. Features go from a scale to a lower one by a downsampling operation and to a higher one by an upsampling operation. Multi-scales analysis was also used in past studies before the DL era. In DL, these 42/159 S architectures have been used for numerous tasks such as image segmentation (U-Net [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF]), image restoration [START_REF] Zhang | Deep Unfolding Network for Image Super-Resolution[END_REF], deformable convolution-based feature alignment [START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF], temporal and spatial attention [START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF] and optical ow estimation [START_REF] Sun | PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume[END_REF].

Multi-scale architectures allow to capture long-term spatial interactions in a coarse manner at lower scale. At higher scale, these interactions are ner. At lower scale, they are coarse. As an example, these architectures can be useful to model large-motion [START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF][START_REF] Sun | PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume[END_REF].

Blending classical and DL-based methods

Model-based approaches use the forward model to design mathematical tools that are directly related to the problem itself, and use the knowledge of the model to guide the solution. The main implications are:

• some guarantees (quality, convergence) and full explainability/interpretability of the results;

• a need to add regularization/prior terms;

• any deviation between the model and reality may result in a sub-optimal or completely unusable algorithm when applied to real data (e.g., dierent blur shape);

• iterative algorithms may require many iterations to converge, making these approaches unusable in some practical cases due to the computational cost.

In the case of purely data-based methods, the forward model is used to generate data, i.e., synthesize degraded image/video starting from the corresponding GT one. Still, the restoration process does not use a priori information from the model itself, only its inputs/outputs. The consequences are:

• a lack of directly given physical information about the degradations;

• no need to be able to inverse the forward model, which can be as complex as needed;

• there is no need for hand-crafted regularization terms, as the regularization is learned based on the data itself;

• the computational cost may be very high for some networks. But ecient architectures (GPU) can be used.

From the MAP point of view (Eq. (1.13)), classical methods produce a solution that can be formulated as [START_REF] Zhang | Learning a Single Convolutional Super-Resolution Network for Multiple Degradations[END_REF]:

x = F (y, A, ; ✓) (1.18)
where ✓ denotes additional parameters of the MAP inference. 0 can be indeed absorbed into . However, in DL-based inverse problem solving, most neural networks instead realize the mapping x = F (y, ✓) [START_REF] Xu | Deep convolutional neural network for image deconvolution[END_REF][START_REF] Kim | Accurate Image Super-Resolution Using Very Deep Convolutional Networks[END_REF][START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF][START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF]. In these cases, ✓, which denotes the parameters of a neural network, can be seen as the parameters of the MAP inference. These networks are, indeed, blind. Knowledge about degradations (A and ) is only indirectly captured based on training data. This aspect can disadvantage DL-based approaches in a multiple degradation scenario, i.e., when degradations or parameters of degradations change (are not homogeneous) over training and test sets, such blind models can perform poorly.

Recent studies have tried to breach the gap between the two paradigms, to benet from both of them in a complementary way. In particular, this allows a restoration model to benet from both the prior learning capability of neural networks and the exibility of classical methods in non-blindly handling multiple degradations. Compared to a blind one, this nonblind model can explicitly incorporate the knowledge about the degradation and adapt to it, enabling better performance. From a realistic application-oriented point of view, having a blind model that only performs well in a unique and predened degradation scenario is not viable. First, it is rare to encounter such an ideal scenario. Second, it is unrealistic to prepare several pre-trained models, each specialized for a unique degradation, to deal with multiple degradation scenarios. Third, having a model that can exibly manage multiple degradations is interesting for practical applications. The user can give information about degradations as input parameters.

The following species some strategies to design such a model.

Giving physical knowledge at the network's input

One can give knowledge about A and directly to the network's input [START_REF] Zhang | Learning a Single Convolutional Super-Resolution Network for Multiple Degradations[END_REF][START_REF] Gu | Blind Super-Resolution With Iterative Kernel Correction[END_REF] or indirectly by transforming the input degraded image based on physical priors [START_REF] Sureau | Deep learning for a space-variant deconvolution in galaxy surveys[END_REF][START_REF] Xu | Deep convolutional neural network for image deconvolution[END_REF]. In the former, the network directly uses knowledge about degradations to operate transformations on feature maps, similarly to the attention mechanism [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF][START_REF] Hu | Squeeze-and-Excitation Networks[END_REF][START_REF] Zhang | Image super-resolution using very deep residual channel attention networks[END_REF]. In the latter, the input degraded image is rst ltered based on a hand-crafted prior. The network learns the mapping between this prior and clean image.

The techniques Multiple Degradations (MD) [START_REF] Zhang | Learning a Single Convolutional Super-Resolution Network for Multiple Degradations[END_REF] and Spatial Feature Transform for Multiple Degradations (SFTMD) [START_REF] Gu | Blind Super-Resolution With Iterative Kernel Correction[END_REF] belong to the rst family. The methods used in [START_REF] Sureau | Deep learning for a space-variant deconvolution in galaxy surveys[END_REF][START_REF] Xu | Deep convolutional neural network for image deconvolution[END_REF] based on the Tikhonov lter belong to the second family. The following explains these techniques.

MD

Authors of [START_REF] Zhang | Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising[END_REF] pointed out that CNN mainly models the prior information and empirically demonstrated that a single model could handle multiple scale super-resolution, image deblocking, and image denoising. In other words, they indicated that the parameters of the MAP inference mainly model the prior, and therefore, CNN can deal with multiple degradations via a single model. Given this, in the context of a single image super-resolution problem with varying noise levels and blur kernels, the authors of [START_REF] Zhang | Learning a Single Convolutional Super-Resolution Network for Multiple Degradations[END_REF] proposed to encode knowledge about degradations in degradation maps and give them to their model's input along with the degraded image. When super-resolving an image, the blur kernel used in the degradations is vectorized and projected on a Principal Components Analysis (PCA) basis. The PCA projection matrix is learned on 10000 randomly generated anisotropic Gaussian kernels. The PCA projected vector is concatenated with the noise level, and the whole vector is stretched to give degradation maps. These maps are concatenated with the degraded image and given to a feedforward super-resolving network. Degradation maps contain warping information, thus enable the network to have spatial transformation capability. Indeed, these maps can be seen as the output of a spatial transformer as in [START_REF] Jaderberg | Spatial Transformer Networks[END_REF]. By anchoring the model with degradation maps, the non-blind model generalizes easily to unseen degradations and can control the trade-o between the data delity and regularization terms.

SFTMD

Authors of [START_REF] Gu | Blind Super-Resolution With Iterative Kernel Correction[END_REF] proposed another way to give information about degradations and handle multiple degradations based on the Spatial Feature Transform (SFT) layer, inspired by [START_REF] Wang | Recovering Realistic Texture in Image Super-Resolution by Deep Spatial Feature Transform[END_REF].

The SFT layer provides an ane transformation for its input feature maps F in conditioned on the knowledge about A and , i.e., the degradation maps F (A, ) , which is computed similarly to MD [START_REF] Zhang | Learning a Single Convolutional Super-Resolution Network for Multiple Degradations[END_REF]. The ane transformation involves scaling and shifting operations:

SFT(F in ,F (A, ) )= F in + (1.19)
where and are estimated by convolutional layers and denotes the Hadamard product.

Transforming the network's input with regularized inversion

The work [START_REF] Sureau | Deep learning for a space-variant deconvolution in galaxy surveys[END_REF] proposed Tikhonet, with maps Tikhonov ltered input image to the corresponding estimated clean image. The study [START_REF] Xu | Deep convolutional neural network for image deconvolution[END_REF] proposed a network in which its rst layer's weights are initialized with the separable Tikhonov lter. These weights are tuned based on training data, and this strategy gives better restoration than random initialization in their study. Similarly, the work [START_REF] Schuler | A Machine Learning Approach for Non-blind Image Deconvolution[END_REF] proposed to apply a regularized inverse lter and remove the resulting artifacts with a multi-layer perceptron. Authors of [START_REF] Hwan | Deep convolutional neural network for inverse problems in imaging[END_REF] rst operate a ltered back projection and then use a U-Net [START_REF] Ronneberger | U-Net: Convolutional Networks for Biomedical Image Segmentation[END_REF] in their low-view CT reconstruction problem. These approaches involve single-step ltering followed by feedforward network propagation. Therefore, they are fast. However, their rst step inversions involve handcrafted priors that mostly do not correctly describe natural image statistics and lead to an irregular solution corrupted by colored noise. Moreover, they control the weight of the regularization based on a hyperparameter that has to be manually tuned.
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Iterative algorithms combined with deep-learning networks

Some recent approaches attempted to blend model-based and data-based methods to benet from both. This blending allows designing a exible technique that can manage multiple degradations while learning prior from data. The following details these methods.

Using iterative algorithms from convex optimization and replacing the proximity operator related to the prior by one or several DNNs

One can use an iterative algorithm from convex optimization and replace the proximity operator related to the prior with one or several DNNs. The following frameworks ease this:

• plug-and-play [START_REF] Singanallur V Venkatakrishnan | Plugand-play priors for model based reconstruction[END_REF][START_REF] Danielyan | Image deblurring by augmented lagrangian with bm3d frame prior[END_REF][START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF]: this approach rst reformulates and solves the MAP problem using an iterative algorithm based on variable splitting. In the context of this splitting, each iteration involves alternated data and prior subproblems. The plug-and-play framework replaces the prior subproblem with any o-the-shelf Gaussian denoiser. Unlike traditional image restoration methods that employ hand-crafted image priors, it can implicitly dene the plug-and-play prior by the denoiser. As expected, this denoiser can be a CNN. The study [START_REF] Zhang | Learning Deep CNN Denoiser Prior for Image Restoration[END_REF] plugs several denoising networks trained each for a dierent noise level to adapt for variation of the penalty parameter in its half quadratic splitting. In contrast, authors of [START_REF] Meinhardt | Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems[END_REF] plug the same unique CNN denoiser at each step. The work [START_REF] Ryu | Plug-and-Play Methods Provably Converge with Properly Trained Denoisers[END_REF] proves the convergence of plug-and-play methods under certain conditions;

• REgularization by Denoising (RED) [START_REF] Romano | The Little Engine That Could: Regularization by Denoising (RED)[END_REF][START_REF] Reehorst | Regularization by Denoising: Clarications and New Interpretations[END_REF]: this approach consists in dening the explicit regularizer r(x) as follows:

r(x)= 1 2 x T (x f (x))
where f is an image denoiser. Under mild conditions on f , the gradient of the regularization term can be easily computed, equaling the denoising residual x f (x). Any inverse problem can be managed while calling the denoising engine iteratively. This approach uses CNNs as denoisers in a mathematically dened framework of an iterative algorithm. Therefore, it presents high interpretability. However, it still suers from the drawbacks of an iterative algorithm. First, it involves hand-designed hyperparameters to control the convergence and stability of the iterative algorithms. Second, as it requires numerous iteration steps to restore an image, it is slow.

Deep unrolling

Deep unrolling consists of unfolding the iterative loop of a classical iterative algorithm that solves the MAP problem (Eq. (1.13)) with a given number of iterations, replacing some operators in each unfolded step by CNNs and representing all operations as layers of a neural network. This network can then be trained and optimized as any other network, learning 46/159 S from data while keeping the knowledge of the inverse problem in its internal structure. Based on this technique, several works unfolded the following algorithms:

• (proximal) gradient descent [START_REF] Chen | Trainable nonlinear reaction diusion: A exible framework for fast and eective image restoration[END_REF][START_REF] Diamond | Unrolled optimization with deep priors[END_REF][START_REF] Mardani | Neural Proximal Gradient Descent for Compressive Imaging[END_REF][START_REF] Naoto | Deep Unrolled Network for Video Super-Resolution[END_REF];

• alternating directions method of multipliers [START_REF] Yan | Deep ADMM-Net for Compressive Sensing MRI[END_REF];

• primal-dual methods [2];

• half-quadratic splitting [START_REF] Zhang | Deep Unfolding Network for Image Super-Resolution[END_REF];

• alternating minimization [START_REF] Hemant K Aggarwal | Modl: Model-based deep learning architecture for inverse problems[END_REF].

For dierent unrolled optimization methods, CNNs in each unfolded step play dierent roles. As an illustration, in proximal gradient settings, the learned CNN in each unrolled step is interpreted as a learned proximal operator. In contrast, in unfolded gradient descent network, the learned CNN in each step is interpreted as the gradient of the regularizer. These roles being clear and explicitly integrated in a classical algorithm, deep unfolded networks present higher interpretability than black box-like CNNs that take degraded data as input and output the corresponding restored ones.

Deep unfolding optimizes the parameters end-to-end by minimizing the loss function over a large training set. Therefore, on the one hand, the number of unrolled iteration steps is limited by the memory. On the other hand, compared to the approach that uses an iterative algorithm and replaces the proximity operator related to the prior by frozen DNN denoisers, the number of unrolled iteration can be fewer while still enabling better performance. Moreover, fewer iterations mean increased restoration speed. Finally, unrolling architectures usually need a smaller number of parameters than purely data-driven approaches, as they can leverage the knowledge about the model. Moreover, the CNNs in unrolled steps can share weights, enabling to further reduce number of parameters [START_REF] Zhang | Deep Unfolding Network for Image Super-Resolution[END_REF].

Deep image prior (DIP)

Authors of [START_REF] Ulyanov | Deep Image Prior[END_REF] states that for a surjective g(✓)=x, Eq. (1.8) is equivalent to:

✓ =argmin ✓ ||y Ag(✓)|| 2 2 + R(g(✓)) (1.20)
One can dene g(✓) as f ✓ (z), where f is a CNN with parameters ✓ and z is a xed input. This enables to replace the regularizer R with the implicit prior captured by the neural network, leading to the following formulation:

✓ =argmin ✓ ||y Af ✓ (z)|| 2 2 (1.21)
✓ is optimized according to the problem based on gradient descent, starting from random initialization. z is lled with random noise and xed. We highlight this is an unsupervised 47/159 C 1 approach, therefore not requiring pre-training based on pairs of degraded and original images. Instead, this approach ts a network for an image to restore.

Authors of [START_REF] Mataev | DeepRED: Deep Image Prior Powered by RED[END_REF] builds on DIP but adds an explicit prior, which enriches the overall regularization eect, leading to better-recovered images. This regularization is based on RED [START_REF] Romano | The Little Engine That Could: Regularization by Denoising (RED)[END_REF].

An obvious drawback of these approaches is that they are slow. They t a CNN on a single image to be restored. It is clear that the role of CNN here is to dene the image space of possible solutions. Therefore, these approaches present high interpretability.

Performance evaluation

Once designed and/or trained, image and video restoration methods need to be evaluated. This allows to compare dierent methods and choose the best one to deploy it on practical applications. These evaluations should be based on quantitative and qualitative considerations. Moreover, they should use a validation/test set to simulate a realistic applicationoriented scenario.

Numerical evaluations PSNR

The Peak Signal-to-Noise Ratio (PSNR) is the most common metric used in order to evaluate the delity of the reconstruction regarding the GT numerically. This metric is computed as follows:

PSNR(x, x)=10log 10 max i (x i ) MSE(x, x) (1.22) 
One can see that minimizing MSE also maximizes PSNR.

SSIM

The SSIM index [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] is a better measure of perceived visual quality than PSNR since it is based on how the human eye extracts structural information from an image. This index is computed on several windows of an image. The metric between two windows x and y of same size is:

SSIM(x, y)= (2µ x µ y + c 1 )(2 xy + c 2 ) (µ 2 x + µ 2 y + c 1 )( 2 x + 2 y + c 2 ) (1.23)
where:
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• µ x is the average of x;

• µ y is the average of y;

• x is the standard deviation of x;

• y is the standard deviation of y;

• xy is the covariance of x and y; 2 are two values that stabilize the division with small denominator. ∆ is the dynamic range of pixel values. We typically set k 1 =0.01 and k 2 =0.03.

• c 1 =( k 1 ∆) 2 and c 2 =( k 2 ∆)

Perceptual metrics

MSE-based metrics like PSNR favor overly smooth solutions with poor perceptual quality. This phenomenon is because minimizing MSE encourages nding pixel-wise averages of plausible solutions [START_REF] Ledig | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[END_REF][START_REF] Blau | The Perception-Distortion Tradeo[END_REF]. Therefore, these metrics are not good proxies for the perceptual quality of the restored image. Metrics that better capture this perceptual quality are thus needed. Given this observation, the authors of [START_REF] Ledig | Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[END_REF] proposed the VGG loss, which is the Euclidean distance between the feature representations of a reconstructed image and the GT image. These representations are based on the ReLU activation layers of the pre-trained 19-layer VGG network [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF]. VGG stands for Visual Geometry Group. Authors of [START_REF] Zhang | The Unreasonable Eectiveness of Deep Features as a Perceptual Metric[END_REF] proposed another metric based on deep feature maps, called LPIPS.

Qualitative evaluations

We saw that numerical metrics such as PSNR or SSIM are not the best proxies of quality of the reconstruction. Even if one uses a perceptual metric-that are not always easy to compute and interprete-, qualitative evaluation based on human eyes should be always done. One must pay attention whether areas of images with important amount of information (structures, edges, textures, high frequency details, ...) are well reconstructed.

Consideration of the temporal dimension

In video restoration, one should also evaluate perceptual quality regarding temporal consistency. A temporally consistent restored video shows less unpleasant ickering artifacts. This quality can be assessed in two ways. The rst method is based on visual inspection and involves plotting temporal proles. A temporal prole is produced by taking the same horizontal row of pixels from several successive frames in the restored video and stacking them vertically into a new image. Flickering artifacts in the video appear as jitter and jagged lines in the temporal prole. A sharper and less noisy temporal prole means less ickering artifacts, i.e., better temporal consistency [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF]. The second method regroups numerical metrics, including:
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• vector norm dierences of warped frames [START_REF] Chen | Coherent Online Video Style Transfer[END_REF];

• tOF and tLP [START_REF] Chu | Learning temporal coherence via self-supervision for GANbased video generation[END_REF]. tOF measures the pixel-wise dierence of motions estimated from sequences, i.e., is the L1 norm between the optical ow between x t and x t 1 and the one between xt and xt 1 . The authors who introduced these metrics proposed to use the Farneback algorithm [START_REF] Farnebäck | Two-Frame Motion Estimation Based on Polynomial Expansion[END_REF] for optical ow computation. tLP measures perceptual changes over time using deep feature maps, i.e., is the L1 norm between the LPIPS between x t and x t 1 and the one between xt and xt 1 .

Speed and memory size

The amount of time required to restore an image or a video is an important point to consider from a realistic application-oriented point of view. Measuring such quantity for a restoration method is thus relevant. DL-based methods can benet from ecient GPUbased parallel architectures and are generally faster than classical iteration-based methods. However, DL-based methods require storing networks' weights and intermediate feature maps in memory, thus requiring more memory than classical methods.

The runtime of a method can be directly measured and expressed in unities such as ms for a xed input image size. Moreover, it can also be quantied based on FLOating-Ooint operations (FLOPs), i.e., the total number of oating point operations required for a single forward pass. The higher the FLOPs, the slower the model. This measure can also be expressed in MAC (Multiply-accumulate operations).

Interpretability/explainability

A CNN that takes an input degraded image or video and outputs the restored one works as a black box model. Indeed, the underlying regression is implicitly learned via end-to-end training, and it is hard to discover what is actually learned inside the networks by examining the network parameters, which are usually of high dimensionality, and what are the roles of individual parameters [START_REF] Vishal Monga | Algorithm Unrolling: Interpretable, Ecient Deep Learning for Signal and Image Processing[END_REF]. In other words, this CNN is dicult to interpret. This is problematic concerning its industrial deployment. To certify a specic restoration model in an industrial context, this model needs a certain explainability of results and some guarantees about considerations such as quality or convergence. To meet these requirements, the model needs to be interpretable. As an example, in their deep unrolling framework, the authors of [START_REF] Corbineau | Learned Image Deblurring by Unfolding a Proximal Interior Point Algorithm[END_REF][START_REF] Bertocchi | Deep unfolding of a proximal interior point method for image restoration[END_REF] derived a theoretical upper bound on the restoration error when the input is perturbed. • Set5 [START_REF] Bevilacqua | Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding[END_REF];

• BSD68 [START_REF] Martin | A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[END_REF]; and the most popular test video benchmarks are:

• Vimeo-90K-T [START_REF] Xue | Video enhancement with task-oriented ow[END_REF];

• REDS4 [START_REF] Nah | NTIRE 2019 Challenge on Video Deblurring and Super-Resolution: Dataset and Study[END_REF];

• Vid4 [START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF];

• UDM10 [START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF].

Conclusion

There exist two paradigms of inverse problem-solving in image and video restoration. The rst one regroups model-based (also called "classical") methods that directly derive from the forward model of the inverse problem as a minimization problem. This problem is ill-posed, therefore model-based methods rely on hand-crafted priors that require expert knowledge about the inverse problem and time-consuming regularization hyperparameter tuning. Moreover, they use iterative optimization algorithms that are time-consuming and not suitable for some practical applications. The second paradigm regroups data-based, i.e., DL-based methods that learn to inverse the forward model by being trained on pairs of degraded and original image/video. These methods learn data-based prior that better captures natural image/video statistics than a handcrafted one. They additionally suppress the need for carefully tuning the regularization hyperparameter. Moreover, once trained, they only require a forward propagation to restore an image video and can benet from ecient GPU-based computing architectures. From this point of view, they are more adapted for practical applications than model-based methods. However, contrary to model-based methods, they present low explainability due to their black box nature. Moreover, unlike classical approaches, DL-based methods that take only the degraded image/video as input lack the exibility to deal with multiple degradations. Given the advantages and disadvantages of both paradigms, recent hybrid approaches combine and benet from them in a complementary way. These approaches regroup the following methods:

• the ones that non-blindly give the knowledge about the forward model to the input of the CNNs;

• the ones that use classical iterative algorithms and replace the prior-related denoiser in each iteration step with a denoising NN. The performance of an image/video restoration method should involve both qualitative and quantitative evaluations. They must be based on an appropriately chosen test dataset. Regarding quantitative evaluation, one should be aware that dierent numerical metrics measure dierent things.

In Video restoration, a dynamic scene with continuous intensity distribution X(x, y) is seen to be warped at the camera lens because of the relative motion between the scene and the camera. The image is blurred both by atmospheric turbulence and the camera lens. These blurring are respectively modeled by continuous PSFs H atm and H cam . After these blurrings, the image is discretized at the CCD resulting in a noisy digitized frame. These degradations are summarized by Fig. 

V SR Y [m, n]=[H cam (x, y) ⇤ F (H atm (x, y) ⇤ X(x, y))] # +V [m, n] (2.1)
where ⇤ is the two-dimensional convolution operator, F is the warping operator, # is the discretizing, i.e., downsampling operator, V [m, n] is the system noise, and Y [m, n] is the resulting discrete, noisy and blurred image.

Eq. (2.1) is equivalent to the following model in the pixel domain:

y j = D j H j F u t→j H atm t x t + n j t J  j  t + J (2.2)
where:

• y j 2 R N is the data observed at time step j, corresponding to a low-resolution (LR) video frame of size N = N 1 ⇥ N 2 arranged in a lexicographic order. 2J +1is the total length of the observed video;

• x t 2 R s 2 N
is the underlying data, corresponding to a high-resolution (HR) reference video frame at time step t, arranged in a lexicographic order;

• H atm t 2 R s 2 N ⇥s 2 N
is the matrix dening the atmospheric blur;

• F u t→j 2 R s 2 N ⇥s 2 N
denotes the warping operator with regard to the optical ow u t!j . This vector eld models the motion between the two time steps j and t (detailed later in Sec. 2.2.3);

• H j 2 R s 2 N ⇥s 2 N is the matrix dening camera lens blur;

• D j 2 R N ⇥s 2 N is the matrix dening the downsampling. This operation samples every s-th pixel in each spatial dimension. s is an integer called scale factor;

• n j 2 R N accounts for the presence of the noise, which is mostly assumed to be additive, zero-mean and white Gaussian. Realizations of this noise are assumed to be independent and identically distributed.

In conventional imaging systems (such as video cameras), camera lens blur has a more signicant eect than atmospheric blur (which is not true if the scene is very far, let's say more than 10km away from the camera, in applications such as atmospheric turbulence mitigation or astronomical image deconvolution). Therefore, the atmospheric blur is omitted in this chapter, leading to the following formulation:

y j = D j H j F u t→j x t + n j t J  j  t + J (2.3)
In most situations, the downsampling and camera blurring operations remain constant over time, assuming that the images are obtained from the same camera. Moreover, we further assume that the camera PSF is space-invariant [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF][START_REF] Farsiu | Video-to-video dynamic superresolution for grayscale and color sequences[END_REF]. These assumptions give the following model:
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with D s denoting the downsampling with scale factor s.

Classical VSR

Supposing H is known, the inverse problem dened by the model in Eq. (2.4) is classically solved by the following alternated optimizations [START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF]:

xt =argmin xt ||D s Hx t y t || 2 2 + t+J X j=t J,j6 =t ||D s HF u t→j x t y j || 2 2 + ⇢(x t ) (2.5) ût!j =argmin u t→j ||D s HF u t→j x t y j || 2 2 + '(u t!j ) t J  j  t + J (2.6)
where ⇢(x t ) and '(u t!j ) are hand-crafted priors on the estimated frame and optical ow. For example, [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF] used the Bilateral TV prior for ⇢(x t ). [START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF] used sparsity on derivative lter responses to model ⇢(x t ) and '(u t!j ). N denes the number of frames used in order to produce the estimate xt .

In general situations, the whole process of the optimizations is slow, involving alternated iterative algorithms [START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF]. However, under some assumptions, the VSR can be accelerated [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF][START_REF] Farsiu | Video-to-video dynamic superresolution for grayscale and color sequences[END_REF]. Suppose there are no mobile objects. In some situations-e.g., when motions only come from vibrations of a gazing camera or a panning motion of a faraway scene-, motions are purely translational. In these conditions, H and F u t→j are block-circulant and commute. Moreover, it is easy and fast to correctly estimate translational motion by maximizing the correlation between the warped degraded frame at time step t and the degraded frame at time step j. We note F t!j such warping, and this operation is dened by only two parameters (translations in horizontal and vertical directions). We thus only need to solve the remaining problem: to potentially make the estimator more robust to outliers, i.e., data points with dierent distributional characteristics than the assumed model. The concept of breakdown can illustrate this [START_REF] Calaore | Outliers robustness in multivariate orthogonal regression[END_REF]. The breakdown point is the smallest proportion of outliers that may force the value of the estimate outside some range. As an illustration, the simple mean estimator's breakdown point is zero, which means that one outlier is enough to make the estimate fall outside any predicted bound. In contrast, the median estimator may achieve a breakdown equal to 0.5, which is the highest value for breakdown points. Therefore, the median estimation may not be impacted by data sets in which outliers constitute less than 50% of the data. Thus, the median estimator is more robust than the mean estimator.

xt =argmin xt ||D s Hx t y t || p p + t+J X j=t J,j6 =t ||D s F t!j Hx t y j || p p + ⇢(x t ) (2.7) Let Hx t = z t .
By computing the partial derivative with respect to z t , from Eq. (2.8) we obtain the following equalities:

0= ( D T s (Dẑ t y t )+ P t+J j=t J,j6 =t F T t!j D T s (D s F t!j ẑt y j ), if p =2 D T s sign(Dẑ t y t )+ P t+J j=t J,j6 =t F T t!j D T s sign(D s F t!j ẑt y j ), if p =1 (2.9) 
We derive from these equalities that [START_REF] Elad | A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[END_REF]:

• when p =2 , ẑt is the pixel-wise average of measurements after image registration, i.e., copying from the LR grid to the HR grid after proper shifting and zero-lling;

• when p =1, ẑt is the pixel-wise median of measurements after image registration.

The deconvolution to estimate xt from ẑ can be either done by classical or DL-based methods. If one uses a classical method, in the under-determined case (i.e., when 2N +1 < s), some pixel locations will have no estimate. For these cases, it is essential to have a regularization term. Authors of [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF] proposed a robust regularizer called bilateral TV, which is computationally light and preserves edges. This prior consists in setting:

⇢(x t )= P X l= P P X m=0 | {z } l+m 0 ↵ |m|+|l| ||x t S l x S m y x t || 1 (2.10)
Operators S l x and S m y shift x t by l and m pixels in horizontal and vertical directions respectively. They enable presenting several scales of derivatives. The scalar weight ↵ 2 [0, 1] is applied to give spatially decaying weights to the linear combination of the regularization terms. The bilateral TV regularization is indeed a generalization of the TV regularization. Authors of [START_REF] Long Nguyen | Self-Supervised Multi-Image Super-Resolution for Push-Frame Satellite Images[END_REF] proposed to do this deconvolution based on a residual CNN.
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Deep VSR

VSR has recently beneted from DL methods [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF][START_REF] Jo | Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation[END_REF][START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF][START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF][START_REF] Isobe | Video super-resolution with recurrent structure-detail network[END_REF][START_REF] Isobe | Video Super-Resolution With Temporal Group Attention[END_REF]. We will see that these methods can be classied into three paradigms. However, all of them typically consist of the common four components: feature extraction, alignment, fusion, and reconstruction. The challenge mainly lies in the design of the alignment and fusion modules, especially when a video contains occlusion, large motion, and severe blurring. Generally, the fusion occurs after alignment [START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF][START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF][START_REF] Isobe | Video Super-Resolution With Temporal Group Attention[END_REF] and both tasks are separately done, but some VSR networks operate both tasks simultaneously [START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF][START_REF] Jo | Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation[END_REF].

In this section, we will rst explain the three deep VSR paradigms. We will see that one is more attractive for practical applications than the others. We will therefore explain it in more detail. Then, we will present alignment techniques used in SOTA VSR networks. Finally, we will present fusion techniques elaborated in the deep VSR community.

Classication of deep VSR methods

There are broadly three classes of deep VSR methods. The rst one groups sliding-window based models. These models [START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF][START_REF] Jo | Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation[END_REF][START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF][START_REF] Isobe | Video Super-Resolution With Temporal Group Attention[END_REF][START_REF] Liu | End-To-End Trainable Video Super-Resolution Based on a New Mechanism for Implicit Motion Estimation and Compensation[END_REF] take a batch of multiple LR frames as input to fuse them and reconstruct an HR frame. In most cases, this batch contains 5 to 7 LR frames. Therefore, the temporal receptive eld-in other words, the number of LR frames used in order to super-resolve a frame-is limited to 7.

In contrast, methods introduced in [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF][START_REF] Isobe | Video super-resolution with recurrent structure-detail network[END_REF], that build upon recurrent models, enable a larger temporal receptive eld. In these networks, to super-resolve a frame at time step t, the hidden states and/or output computed in the previous time step t 1 are taken as input, in addition to a batch of 1 to 3 LR frames. This recursion allows propagating information through a large number of frames. As their input batch contains fewer LR frames and their network structures are mostly simpler, recurrent methods are faster than slidingwindow based methods. Moreover, an inference of a recurrent model presents less redundant computations than the one of a sliding-window based model because each frame is processed only once. Finally, sliding-window based methods generate independent output HR frames, which reduces the temporal consistency of the produced HR frames, resulting in ickering artifacts. This is not the case for recurrent VSR, in which information about the previously super-resolved frame is part of the input at each time step. However, we demonstrate for the rst time that contrary to sliding-based ones, recurrent VSR networks present an instability problem on a certain type of video. This point will be investigated in Sec. 2.5.

The third class of deep VSR networks regroups bidirectional methods [START_REF] Kelvin | BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond[END_REF][START_REF] Kelvin | BasicVSR++: Improving Video Super-Resolution With Enhanced Propagation and Alignment[END_REF][START_REF] Yi | Omniscient Video Super-Resolution[END_REF]. These models take a batch of an arbitrary number of LR frames and super-resolve all of them after forward and backward propagations of recurrent information. This bidirectional scheme maximizes information-gathering within the batch but presents problems that limit its practical applicability. First, it can only allow for oine processing of this batch. This is contrary to the aforementioned unidirectional recurrent networks that can process the 60/159

V SR incoming LR frames online. Therefore, incoming LR frames should be buered before being processed, and the temporal receptive eld is limited to the length of the buer, similarly to sliding-window based methods. Between consecutive buers, temporal discontinuity produces ickering artifacts. Second, the need for both forward and backward propagations doubles the computation time.

Recurrent video super-resolution

This section presents SOTA recurrent VSR methods, as they seem to regroup the most attractive networks from an application-oriented point of view.

FRVSR

Authors of [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF] were pioneers of deep recurrent VSR. They introduced Frame-Recurrent Video Super-Resolution (FRVSR), in which the previous output frame is warped based on a dense optical ow estimation and fed back as an additional input to a super-resolution network at the next time step. Hence, FRVSR operates frame-recurrence. Fig. 2.2 is an overview of FRVSR. Another network estimates the optical ow, and the two networks are jointly trained end-to-end. The loss function is the sum of the supervised super-resolution loss and the unsupervised warping loss. The former is the MSE between the restored frame and the corresponding GT frame at time step t. The latter is expressed as follows: 

||F ût-1→t,LR y t 1 y t || 2 2 (2.11) y t-1 y t xt-1 xt ût-1→t,LR ût-1→t

RSDN

Recurrent Structure-Detail Network (RSDN) [START_REF] Isobe | Video super-resolution with recurrent structure-detail network[END_REF] is so far the recurrent VSR network that reportedly performs the best for relatively short sequences, according to its performance on the Vid4 dataset, composed of 4 videos between 34 to 49 frames [START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF]. Its architecture presents a recurrent hidden state coupled with a hidden-state adaptation module and structure-detail decomposition. The input LR frames and the hidden state are decomposed into structure and detail components and fed to two interleaved branches to reconstruct the corresponding components of HR frames.

Image/feature alignment techniques

Whether the VSR network is sliding-window based, recurrent or bidirectional, frame or feature alignment of the images in the input LR batch with respect to the reference frame to be super-resolved, is an important step. This section details some of the SOTA alignment techniques.
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Optical ow-based alignment

Optical ow is a vector eld quantifying the apparent motion of individual pixels on the image plane. It is a good approximation of the true physical motion projected onto the image plane. Fig. 2.4 illustrates this vector eld. Estimating the optical ow eld between two frames is indeed an inverse problem, and this estimation allows to align the two frames afterward by explicit warping, i.e., motion compensation. Classically, optical ow elds are estimated based on Bayesian inference, iterative algorithms and an explicit regularization [START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF][START_REF] Zach | A duality based approach for realtime TV-L 1 optical ow[END_REF][START_REF] Mitzel | Video super resolution using duality based tv-l 1 optical ow[END_REF][START_REF] Wedel | An Improved Algorithm for TV-L 1 Optical Flow[END_REF]. These regularizations are mostly derived from TV regularization.

The most recent and successful optical ow estimations are done by neural networks [START_REF] Sun | PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume[END_REF][START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Ranjan | Optical Flow Estimation Using a Spatial Pyramid Network[END_REF][START_REF] Ilg | FlowNet 2.0: Evolution of Optical Flow Estimation With Deep Networks[END_REF]. Some video restoration systems thus include auxiliary DL-based optical ow estimation modules that can be either pretrained [START_REF] Pan | Deep Blind Video Super-Resolution[END_REF][START_REF] Tao | Detail-Revealing Deep Video Super-Resolution[END_REF] or trained end-to-end along with the main video restoration branch [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF]. Since we generally do not have access to GT ow in most scenarios, unsupervised warping loss is used as a loss function [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Tao | Detail-Revealing Deep Video Super-Resolution[END_REF][START_REF] Yu | Back to basics: Unsupervised learning of optical ow via brightness constancy and motion smoothness[END_REF][START_REF] Liu | Video Frame Synthesis Using Deep Voxel Flow[END_REF]. This loss is expressed as follows:

L flow = t+J X j=t J,j6 =t L flow j→t = t+J X j=t J,j6 =t ||F ûj→t,LR y j y t || p p + '(û j!t ) (2.12)
where ûj!t,LR is the estimated optical ow projected in the LR space, F ûj→t,LR is the warping operator based on ûj!t,LR and '(û j!t ) is a regularizer. This explicit regularization term is mostly not used when a CNN estimates the optical ow eld. In this case, the regularization is only implicit, based on data.

Once the ow elds are estimated, the motion compensation can occur either at image [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Caballero | Real-Time Video Super-Resolution With Spatio-Temporal Networks and Motion Compensation[END_REF] or feature [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Long Nguyen | Self-Supervised Multi-Image Super-Resolution for Push-Frame Satellite Images[END_REF] spaces. However, optical ow estimation for explicit motion compensation encounters some issues. First, accurate ow is dicult to estimate if occlusion and large motion occur. Second, the authors of [START_REF] Xue | Video enhancement with task-oriented ow[END_REF] showed that exact optical ow computation is intractable and could be suboptimal for a specic task. Incorrect optical ow estimation may corrupt original frames by provoking apparent artifacts, and decrease the performance of the restoration, even if the errors are minor. Third, the motion estimation module requires additional memory space. As an example, the FlowNet in FRVSR [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF] accounts for around 40% of the total parameters of the VSR system.

Deformable convolution-based alignment

Deformable convolutions have been rstly introduced in [START_REF] Dai | Deformable Convolutional Networks[END_REF]. A deformable convolution layer is a convolution layer with additionally learned spatial osets. These osets allow the deformable convolution to retrieve information away from the regular local neighborhood. The concept of deformable convolution is illustrated in Fig. 2.5. The technique has been used in various computer vision tasks, including object detection [START_REF] Bertasius | Object detection in video with spatiotemporal sampling networks[END_REF], action recognition [START_REF] Zhao | Trajectory convolution for action recognition[END_REF], and semantic segmentation [START_REF] Dai | Deformable Convolutional Networks[END_REF]. For VSR, the work [START_REF] Tian | TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution[END_REF] rstly used it to align the input frames at the feature level without explicit motion estimation or image warping. This alignment works as follows. Let F a t+i denotes the features aligned with respect to the reference features F t at each pixel position p 0 . Moreover, let w k and p k denote the weight 64/159 and the pre-specied osets for the k-th location. For example, in the case of a 3 ⇥ 3 kernel,
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K =9and p k 2{ (1, 1), (1, 0),, (1, 1) 
}. The deformable convolution-based alignment is expressed as:

F a t+i (p 0 )= K X k=1 w k • F t+i (p 0 + p k +∆p k ) • ∆m k (2.13)
where the oset ∆p k and the modulation scalar ∆m k are learnable and predicted from concatenated features of a neighboring frame and the reference one:

∆P t+i = f ([F t+i ,F t ]) (2.14) 
where ∆P={∆p}, f is a CNN module, and [•, •] denotes the concatenation operation. The same logic applies to the modulation scalar ∆m k .

Inspired by the work [START_REF] Tian | TDAN: Temporally-Deformable Alignment Network for Video Super-Resolution[END_REF], the authors of [START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF] used deformable convolutions in a pyramidal-i.e., multi-scale-manner for feature alignments: they rst align features in lower scales with coarse estimations and then propagate the osets and aligned features to higher scales, similarly to previous studies on optical ow estimation [START_REF] Ranjan | Optical Flow Estimation Using a Spatial Pyramid Network[END_REF][START_REF] Sun | PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume[END_REF]. This pyramidal scheme enables to model large motion. In addition, the authors added the mechanism of cascading renement, inspired again by previous works such as [START_REF] Ilg | FlowNet 2.0: Evolution of Optical Flow Estimation With Deep Networks[END_REF][START_REF] Hui | A lightweight optical ow CNN-Revisiting data delity and regularization[END_REF][START_REF] Hui | LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation[END_REF]].

Authors of [START_REF] Kelvin | Understanding Deformable Alignment in Video Super-Resolution[END_REF] showed that deformable convolution could be decomposed into a combination of spatial warping and convolution. This decomposition raises the common point of deformable and ow-based alignments in formulation but with a key dierence in oset diversity. They showed that the increased diversity in deformable alignment yields betteraligned features, signicantly improving video super-resolution performance. They further proposed an oset-delity loss that guides oset learning with optical ow. This loss prevents the overow of osets and alleviates the instability problem of deformable alignment.
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C 2 VSR networks that operate deformable convolutions for feature alignment have yielded better results than the ones relying on optical-ow based explicit motion compensation. However, deformable convolutions highly consume memories and add a signicant amount of parameters. For information, the authors of [START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF] used 8 NVIDIA Titan XP GPUs in parallel to train their Video Restoration framework with Enhanced Deformable convolutions (EDVR). Fig. 2.8 shows EDVR is highly memory-demanding. In their Progressive Fusion Video Super-Resolution (PFNL) network, the authors in [START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF] proposed to do an implicit alignment based on their newly proposed Non-Local Residual Block (NLRB). This block captures long-range spatio-temporal correlations among pixels of the images in the input sliding-window. Fig. 2.6 illustrates the concept of non-local interaction modeling. Non-local operation tries to obtain the response at position x i by computing the weighted average of correlations with all possible positions x j . Mathematically, this operation is described as follows:

Non-local block

y i = 1 C(x) X j f (x i ,x j )g(x j ) (2.15)
where x represents the input data, y denotes the output having the same size as x. i is 66/159

V SR the index of an output position, and j is the index of all possible positions. The function f calculates a scalar representing the correlation between two inputs, while g gives a representation of the input. C(x) is used for normalization. The authors considered the Gaussian function f (x i ,x j )=e x T i x j , where x T i x j represents the dot-product similarity, and C(x)= P j f (x i ,x j ) is used for normalization. Fig. 2.7 shows the structure of an NLRB. As one can see on it, the output of the block is z i = W z y i + xi, where W z is implemented by 1 ⇥ 1 convolution. The temporal dimension of the input is rst transformed into the channel dimension. Indeed, the temporal correlations are captured through the channel correlations. Moreover, the feature map is secondly shued. These two steps allow to lower the required memory. Without them, a memory error probably occurs on most machines.

Dynamic upsampling lters

The work in [START_REF] Jo | Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation[END_REF] proposed Dynamic Upsampling Filters (DUF) for implicit motion compensation. First, these lters are constructed based on the input sliding-window, capturing motion information. Then, the HR frame is directly constructed by locally applying these lters to the center input frame. However, as DUF needs to estimate dynamic lters in each 67/159 C 2 location, the algorithm suers from heavy computation, as illustrated in Fig. 2.8. Moreover, DUF generates a strong border eects. 1 

Recurrent Latent Space Propagation

In RLSP and RSDN, the recurrent convolutional layers simultaneously allow implicit alignment and feature fusion.

Feature fusion

Once the images or the features are explicitly or implicitly aligned, they must be fused to complete the super-resolution task. This section presents fusion techniques used in some SOTA networks, if the fusion occurs after alignment.

Direct fusion

The direct fusion strategy fuses multiple frames into one part from the beginning [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF]. They are concatenated in the channel dimension and given to a CNN. This strategy is the most simple and popular fusion method.

Progressive fusion

Authors of [START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF] introduced this fusion method. It consists in cascading several progressive fusion residual blocks. This block alternates individual feature extraction from each frame and mixed temporal information extraction. This way, both intra-frame spatial correlations and inter-frame temporal correlations are extracted progressively.

Temporal and spatial attention

The study from [START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF] used a temporal and spatial attention mechanism for fusion. This mechanism assigns pixel-level aggregation weights to each frame. The temporal attention computes frame similarity in an embedding space. Similar to the reference frame a neighboring one is, its attention coecient is higher. Subsequently, spatial attention masks are then computed from the fused features. A pyramid design is employed to increase the attention receptive eld. After that, the masks modulate the fused features through element-wise multiplication and addition, similar to [START_REF] Wang | Recovering Realistic Texture in Image Super-Resolution by Deep Spatial Feature Transform[END_REF]. 1 This border eect is visible on images available on https://github.com/yhjo09/VSR-DUF.
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Temporal group attention

The work in [START_REF] Isobe | Video Super-Resolution With Temporal Group Attention[END_REF] divided into several groups the input LR frames in the sliding-window. In the rst place, each group undergoes an intra-group fusion. After that, the inter-group fusion module involves a temporal attention mechanism that computes a spatial mask for each group. 

Comparison between classical and DL-based video restoration

This section compares DL-based and classical video restoration methods for restoration tasks that are not restricted to VSR. One should note that some restoration tasks are indeed special cases of VSR. For instance, in the case s =1, Eq. (2.4) is a video deconvolution problem. If s =1and H = I we have a video denoising problem. In contrast, for some problems such as atmospheric turbulence mitigation, the linear degradation is more complicated than D s H.

In some cases of video restoration where the motions of the scene and objects are simple and well characterized, classical methods are adapted and provide excellent results. Fig. 2.9 and Fig. 2.10 illustrate these performances in static scenes, where DL-based approaches 69/159 C 2 do not perform as well. In the presence of moving objects, the classical methods can be applied on a local patch containing each object, where the motion model becomes simple and provides good performance, as shown in Fig. 2.11. When the motion is complex or dicult to estimate, neural networks can learn to compensate for this motion and take this information into account in the super-resolution process in a robust way. Fig. 2.12 shows that in this scene with complex motion, the deeplearning approach performs similarly as on the static scene, which is better than classical methods that are not well suited to this complex/dynamic setting. In atmospheric turbulence, where the forward model (generating turbulence) is complex and highly ill-posed, it is challenging to design a classical algorithm to solve the problem. This algorithm would involve both luminance and dense motion eld estimation with too many unknowns. Deep learning-based methods can provide reasonably good solutions, as highlighted in Fig. 2.13, needing only to simulate the forward model in the data generation process.

Deep Unrolled Network for VSR

So far, we have separately presented data-based and model-based VSR methods. In this section, we explore the technique that consists of blending these two paradigms to benet from both of them in a complementary way. Indeed, we detail the designing of a new VSR network based on the technique of deep unrolling.

Previous works on unrolled optimization algorithms focus on single image restoration, such as image denoising, deblurring and SISR. To the best of our knowledge, unrolled optimization algorithm has never been explored to tackle VSR. On the other hand, most studies on VSR currently search for the best performing purely learning-based network under single degradation, without incorporating the image formation model in the network nor dealing with multiple degradations. In this context, we introduce a framework coined Unrolled Video Super-Resolution (UVSR) that resembles FRVSR [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF] but is based on unrolled optimization. In other words, we rst model an image sequence formation model, and UVSR then involves an unrolled network-more precisely unrolled gradient descent network-that is designed to solve the modeled problem. We empirically assess the UVSR Figure 2.12: A frame with complex motion super-resolved with a classical method (left) and the neural network FRVSR [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF] (right). performance through implementation, training on the MM522 dataset [START_REF] Wang | Multi-Memory Convolutional Neural Network for Video Super-Resolution[END_REF][START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF] and testing on the Vid-4 dataset [START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF]. PSNR and SSIM are used for performance evaluation. Two experimental congurations are set up: one that involves a single degradation and another that involves multiple degradations. Both of them are noise-free. In the rst one, UVSR is compared to the resembling FRVSR and three SOTA networks. Qualitative evaluation is also done in this single degradation conguration. In the second one, UVSR is compared to Frame-Recurrent Video Super-Resolution for Multiple Degradations (FRVSR-MD), an improved version of FRVSR that we design so that the network can deal with multiple degradations.

Problem formulation

We rely on the forward video formation model of Eq. (2.4). We further assume that H is a Gaussian blur with standard deviation . For the adjoint operator of D s H, we use the operator H T BU s where U s upsamples the input by the factor s by inserting zeros and B replaces these zeros by bilinear interpolation. H is a Gaussian blur, so H = H T . The adjoint operator of F u t→j is F T u t→j = F u j→t . Supposing H is known, we saw in Sec. 2.1 that the inverse problem is classically solved by alternately solving the minimization problems from Eqs. (2.5) and (2.6), relying on handcrafted priors on the estimated frame and optical ow.

73/159 C 2 z 0 = P(x 0 t , xt-1,LR ) x 1 t = D(z 0 , H, D s , ût→t-1 , ût-1→t ,α 1 ,β 1 ) z K-1 = P(x K-1 t , xt-1,LR ) x K t = D(z K-1 , H, D s , ût→t-1 , ût-1→t ,α K ,β K ) xt-1 y t y t-1 ût→t-1 = BU s (FNet(y t-1 ,y t )) ût-1→t = BU s (FNet(y t ,y t-1 )) xt-1,LR = S s (F ût-1→t xt-1 ) x0 t = H T BU s y t x0 t x =x K t Figure 2
.14: Illustration of UVSR. P and D respectively denote the prior and data steps.

UVSR Framework Algorithm

If we want to recover the t-th HR frame by only using the t-th and (t 1)-th LR frames (taking example from FRVSR [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF]), Eqs. (2.5) and (2.6) become:

xt =argmin xt ||D s Hx t y t || 2 2 + ||D s HF u t→t-1 x t y t 1 || 2 2 + ⇢(x t ) (2.16) ût!t 1 =argmin u t→t-1 ||D s HF u t→t-1 x t y t 1 || 2 2 + '(u t!t 1 ) (2.17) 
The following outlines the idea of the framework we introduce: instead of alternately solving these problems, we propose rst to compute ût!t 1 and ût 1!t based on an optical ow estimation CNN called FNet, similarly to [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF]. Then, to compute xt , we propose to unroll the gradient descent algorithm that solves Eq. (2.16) and replace the gradient of the prior by a CNN, similarly to [START_REF] Diamond | Unrolled optimization with deep priors[END_REF]. We thus propose Algorithm 1, summarized in Fig. 2.14. In the algorithm, K denotes the number of unrolled iteration blocks, and ↵ k and k are trainable stepsize parameters of unrolled networks that are specic to each iteration block. We initialize them for the k-th iteration block with the following scheme:

(↵ k , k )=( 1 2 k , 1 2 
k ). S s and Ss are respectively space-to-depth and depth-to-space [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Shi | Real-Time Single Image and Video Super-Resolution Using an Ecient Sub-Pixel Convolutional Neural Network[END_REF] transformations. They enable decreased computational cost by allowing convolution operations to be done in the LR image space. The notation (•, •) denotes the concatenation operation.

The detailed workow of Algorithm 1 is the following: the initial approximation of the super-resolved frame is obtained by backprojection (line 1 of Algorithm 1). In addition, 74/159 two inferences of FNet gives ût!t 1,LR and ût 1!t,LR , the LR optical ow maps between the two consecutive LR frames y t 1 and y t . These maps are then upsampled via bilinear interpolation which gives HR ow maps ût!t 1 and ût 1!t . The HR estimated of the previous frame x t 1 is then warped according to ût 1!t which produces xt 1 . The latter is then space-to-depth transformed which gives xt 1,LR .

The next part of the algorithm constitutes the unrolling part. Each iteration step k outputs an estimation of the super-resolved current frame xk+1 t . This rst involves the prior step (lines 9 to 11) in which the CNN N ✓ k (.) operates fusion and encodes statistical image prior simultaneously. The network takes as input the HR image estimated in the previous iteration step that is space-to-depth transformed xk t,LR and xt 1,LR . Indeed, the prior image is drawn from a distribution with parameters ✓ conditioned by xt 1 , which enforces temporal coherence. We also remark that our model is actually recurrent. After this prior step comes the data step (line 12). Solving Eq. (2.16) with the gradient descent unrolling algorithm involves two data consistency terms: one that is related to the current frame at t (↵ k H T BU s (D s H xk t y t )) and another term that is related to the previous frame at t 1

( k F ût-1→t H T BU s (D s HF ût→t-1 xk t y t 1 )).
As in the data step z k is reused, the network involves a "partial" residual connection, which facilitates the gradient ow. This skip connection is "partial" in the sense that the term xt 1 in the input that is concatenated is not involved in this connection. Space-todepth and depth-to-space transformations are simple pixel rearrangement operations, so 75/159 C 2 this connection can be kept.

Architecture of the CNN

Considering Algorithm 1, for each of the iteration steps k 2 0,...,K 1, with K being the number of total unrolled steps, the networks N ✓ k (., .) has the same architecture. This architecture is similar to the one of VDSR [START_REF] Kim | Accurate Image Super-Resolution Using Very Deep Convolutional Networks[END_REF], i.e., is a feedforward CNN architecture with d layers, interspaced ReLU activations and the global skip connection. However, as written on Algorithm 1, here the input and output are in LR image space and there is the aforementioned partial skip connection. The choice of the two hyperparameters d and K, and the number of lters in each convolutional layer f signicantly impact the inference speed and the number of parameters of UVSR. Our proposed method is similar to the FRVSR [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF] that we consider as a baseline. For fair comparison and to demonstrate the benet brought from the unrolled architecture, we choose d, K and f so that the number of parameters of UVSR becomes a bit comparable to the number of parameters of FRVSR. As we are dealing with a recurrent network, we also make sure these hyperparameters do not provoke any memory error regarding the backpropagation through time at training time. We choose d =7, K =3and f =128. Tab. 2.1 shows numbers of parameters of FRVSR and UVSR.

Architecture of FNet

We use the same architecture of FNet as in [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF]. This contributes to a fair comparison between FRVSR and UVSR. 

Loss functions

We use the following loss function:

L = L sr + L flow t-1→t + L flow t→t-1 = ||x t x t || 2 2 + ||F ût-1→t,LR y t 1 y t || 2 2 + ||F ût→t-1,LR y t y t 1 || 2 2 (2.18)
The rst term is related to the super-resolution task. The second and third terms account for the optical ow estimation from FNet. All losses are backpropagated through both FNet and the unrolled network as well as through time, and UVSR is end-to-end trained, as in [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF].

Experiments

This section describes how we assess the UVSR performance via experiment.
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Datasets

We use the MM522 dataset [START_REF] Wang | Multi-Memory Convolutional Neural Network for Video Super-Resolution[END_REF][START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF] for training and the Vid-4 dataset [START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF] for testing. In the training phase, clips of 10 frames are randomly cropped with crop size 256 ⇥ 256 from the dataset. To generate LR frames, each HR video frame in the datasets is rstly blurred by a Gaussian kernel of standard deviation , then downsampled by sampling every 4-th pixel in each dimension (the sampling factor is s =4 ), which generates LR video frames. No noise is added after. The variance of the Gaussian noise n t in Eq. (2.1) is therefore zero. We set up two experimental congurations. In the rst conguration, is xed to 1.6 for both train and test sets, which enables to adopt similar experimental conditions as in [START_REF] Jo | Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation[END_REF][START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF][START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF]. We deal with a single degradation in this case. In the second conguration, for each sequence = train is uniformly sampled between 0.375 and 2.825 in the training phase. The value = test =1.6 is chosen for the test set. This allows us to assess a single UVSR under multiple degradations. Data augmentation by random ipping is operated during training.

Evaluation

We use a similar evaluation protocol as in [START_REF] Kappeler | Video Super-Resolution With Convolutional Neural Networks[END_REF][START_REF] Jo | Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation[END_REF][START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF] over the test set. PSNR and SSIM are computed over video pixels on the brightness channel of the ITU-R BT.601 YCbCr standard, excluding the rst and last two frames and border pixels (8 pixels). We also compute the number of parameters and measure testing time cost as being the time needed to generate one 1920 ⇥ 1080 frame when the upscaling factor is 4. We perform experiments with an Intel I7-8700K CPU and one NVIDIA GTX 1080Ti GPU.

We compare our UVSR in the rst single degradation conguration to FRVSR and the SOTA networks (DUF [START_REF] Jo | Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation[END_REF], PFNL [START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF], and RLSP [START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF]). In this experiment we do not consider EDVR [START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF] because of its too large size. For DUF and PFNL, we use values reported in [START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF] as performances of these networks were measured in the same setting. We implemented FRVSR and RLSP to measure their performances as the congurations in [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF][START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF] dier from ours.

For the second, multiple degradations conguration, we compare UVSR with an FRVSR variant that we improve in order to account for the multiple degradations conguration. We coin it Frame-Recurrent Video Super-Resolution for Multiple Degradations (FRVSR-MD). This model is derived from FRVSR, but the stretched feature maps that encode knowledge about are also concatenated at the input of SRNet, similarly to [START_REF] Zhang | Learning a Single Convolutional Super-Resolution Network for Multiple Degradations[END_REF]. PCA is used to reduce the dimensionality of blur kernels to 10.

We also qualitatively evaluate UVSR based on generated predictions and temporal proles. 

Results

Tab. 2.1 summarizes comparisons between UVSR and other networks under single degradation. We observe that in terms of PSNR, on average UVSR does not signicantly improve over FRVSR and performs worse than the SOTA networks. However, for the foliage sequence, UVSR performs the best. Regarding SSIM, on average UVSR performs better than DUF and FRVSR and worse than RLSP and PFNL. Here also, UVSR performs the best for the foliage sequence. We note that the PSNR and SSIM values of FRVSR that we implemented are higher than those reported in [START_REF] Yi | Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations[END_REF] that adopted a similar experimental conguration. Thus we make a fair comparison.

Then, UVSR presents faster inference than FRVSR and the SOTA networks except RLSP. Regarding model complexity, UVSR presents fewer parameters than FRVSR and DUF, a similar number of parameters as RLSP but more parameters than PFNL. Tab. 2.2 compares UVSR and FRVSR-MD under multiple degradations. One can see that UVSR has fewer parameters than and is faster than FRVSR-MD. Concerning PSNR, UVSR does not improve over FRVSR-MD. But UVSR outperforms FRVSR-MD concerning SSIM.

From the above observations, the situation UVSR is the most adapted seems to be in the presence of multiple degradations with constraints on model size and inference latency. Moreover, UVSR rather presents more satisfactory performance with respect to SSIM than PSNR. We recall that SSIM is a better measure of perceived visual quality than PSNR [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]. The following observation is in the same vein. Indeed, Fig. 2.15 visually compares UVSR and FRVSR under single degradation. One can see that for the frame from the calendar sequence, UVSR more sharply estimates the clips and the road. Fig. 2.16 shows temporal proles for this calendar sequence. We observe that UVSR produces sharper results than FRVSR. This indicates that UVSR enables better temporal coherence. We think this is due to the fusion and the presence of a motion-related data consistency term at each unrolled iteration step.
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V SR Increasing the number of unrolled steps and/or the number of convolutional lters in each prior step should improve UVSR's performance. However, these increases are limited by the memory available at training time and the authorized inference speed.

Stable Long-term Recurrent video super resolution

As stated in Sec. 2.2.1, recurrent models, like FRVSR, UVSR and RLSP, have gained popularity in deep VSR due to their increased computational eciency, temporal receptive eld and temporal consistency compared to sliding-window based models. However, in this section, we show that when inferring on long video sequences presenting low motion (i.e., in which some parts of the scene barely move), recurrent models diverge through recurrent processing, generating high frequency artifacts. To the best of our knowledge, no study about VSR pointed out this instability problem, which can be critical for some real-world applications. Video surveillance is a typical example where such artifacts would occur, as both the camera and the scene stay static for a long time.

In the following, we expose the instabilities of existing recurrent VSR networks on long sequences with low motion. We demonstrate it on a new long sequence dataset Quasi-Static Video Set, that we have created. Finally, we introduce a new framework of recurrent VSR networks that is both stable and competitive, based on Lipschitz stability theory. We propose a new recurrent VSR network, coined Middle Recurrent Video Super-Resolution (MRVSR), based on this framework. We empirically show its competitive performance on long sequences with low motion.

Cause of the divergence

Because of computational and memory constraints, as well as vanishing and exploding gradients, recurrent VSR models are usually trained on sequences of 7 to 12 images. They are then deployed to super-resolve a sequence of any length. Some applications, such as video-surveillance, would require to super-resolve sequences of arbitrary length. However, 80/159 V SR recurrent models are not trained on these long sequences. Hence, there is no guarantee that they optimally perform on long sequences. In this section (Sec. 2.5), we show that recurrent VSR networks generate high frequency artifacts when inferring on long video sequences presenting low motion. These are sequences that contain parts of the scene that barely move, for instance because the camera is quasi-static. The super-resolution process creates high-frequency information which is accumulated in the long-term recurrence, creating artifacts and causing divergence. Fig. 2.17 illustrates this phenomenon. To the best of our knowledge, our work is the rst study about VSR that raises this instability issue. This unexpected behavior can be critical for some real-world applications, like video surveillance in which both the camera and the scene stay static for a long time.

The structure of the rest of this section is the following. First, we review studies related to VSR and instabilities of recurrent networks. Then, based on Lipschitz stability theory, we propose a new framework of recurrent VSR network that is both stable and competitive on long sequences with low motion. After this, we introduce a new recurrent VSR network MRVSR as an implementation of this framework. Finally, we empirically analyze instabilities of existing recurrent VSR models on long sequences with low motion and show the stability and superior performance of the proposed network. A new long sequence dataset has been created for our experiments. We make it publicly available.

Instabilities of recurrent neural networks

Recurrent Neural Networks (RNNs) are dicult to train [START_REF] Pascanu | On the diculty of training recurrent neural networks[END_REF]. First of all, they involve backpropagation through time (BPTT), i.e., their unrolling through time, that is costly in terms of memory. Secondly, these architectures risk vanishing and exploding gradients issues. Related to this, RNNs are prone to divergence when inferring on long sequences. Authors of [START_REF] Miller | Stable Recurrent Models[END_REF] showed, in the context of multi-layer and LSTM networks, that an RNN is stable if its Lipschitz constant is smaller than 1. To enforce this constraint, they proposed to clip singular values of the matrix associated with the recurrence map to 1. Several works circumvent vanishing and exploding gradients problems by setting all the singular values to 1 [START_REF] Arjovsky | Unitary evolution recurrent neural networks[END_REF][START_REF] Wisdom | Full-Capacity Unitary Recurrent Neural Networks[END_REF][START_REF] Mhammedi | Ecient orthogonal parametrisation of recurrent neural networks using householder reections[END_REF][START_REF] Vorontsov | On orthogonality and learning recurrent networks with long term dependencies[END_REF][START_REF] Jose | Kronecker recurrent units[END_REF][START_REF] Zhang | Stabilizing gradients for deep neural networks via ecient svd parameterization[END_REF]. Some studies are related to enforcing the Lipschitz constraint in the context of convolutional neural networks. Authors of [START_REF] Sedghi | The Singular Values of Convolutional Layers[END_REF] proposed to clip singular values of the block matrix of doubly block-circulant matrices associated with the convolutional layer. The work [START_REF] Miyato | Spectral Normalization for Generative Adversarial Networks[END_REF] explored spectral normalization, that relies on the power iteration to estimate maximal singular value of the reshaped kernel tensor of the convolutional layer. Authors of [START_REF] Virmaux | Lipschitz regularity of deep neural networks: analysis and ecient estimation[END_REF][START_REF] Gouk | Regularisation of neural networks by enforcing lipschitz continuity[END_REF] suggested not using this reshaping and instead proposed to directly use the kernel tensor in the power iteration. Finally, the work [START_REF] Sanyal | Stable Rank Normalization for Improved Generalization in Neural Networks and GANs[END_REF] proposed Spectral Rank Normalization (SRN), an algorithm that seeks to enforce either the Lipschitz constraint or its softer version.

In the context of recurrent video denoising, authors of [START_REF] Tanay | Diagnosing and Preventing Instabilities in Recurrent Video Processing[END_REF] pointed out instabilities. They rst brought out unforeseeable, colorful and black mask-like artifacts in long-term video denoising. Then, inspired by studies on adversarial examples [START_REF] Goodfellow | Explaining and Harnessing Adversarial Examples[END_REF], they proposed a diagnosis tool to check stability of a trained recurrent video processing network. Finally, they improved upon the SRN algorithm to propose Spectral Rank Normalization for Convolutional layer (SRN-C). While SRN reshapes the kernel tensor of the convolutional layer, SRN-C avoids this reshaping, similarly to [START_REF] Virmaux | Lipschitz regularity of deep neural networks: analysis and ecient estimation[END_REF][START_REF] Gouk | Regularisation of neural networks by enforcing lipschitz continuity[END_REF]. They applied this method on convolutional layers of their recurrent video denoising network and demonstrated its eectiveness.

To conclude this section, the following points summarize the limits of existing works regarding long-term recurrent VSR and our contributions:

• existing recurrent VSR networks have been only evaluated on relatively short generic sequences. Their performances have not been measured on long sequences. We demonstrate these networks perform poorly on such sequences when the motion amplitude is low, due to their recurrent structure. We create a novel dataset of long and low motion sequences, because existing datasets only contain sequences that either are too short or present fast scene motion;

• the relationship between instabilities and scene motion in video has not been investigated. We show that when inferring on long sequences presenting low motion, existing recurrent VSR models diverge;

• the Lipschitz constraint has not been applied on existing recurrent VSR networks. Indeed, in order to have a stable recurrent VSR network, we could rst take one of these networks and directly apply a Lipschitz constraint to all convolutional layers 82/159

V SR in the recurrent loop. We show that this strategy fails when super-resolving long sequences with low motion;

• we design a recurrent VSR framework that is stable on long sequences with low motion, while not being globally Lipschitz constrained. We demonstrate the superior performance of a network based on this framework.

Method Stability of recurrent video processing models

A recurrent video processing model is determined by a recurrence map L : R n ⇥ R d ! R n and an output map : R n ! R c . The recurrent information h t 2 R n and the output image xt 2 R c are updated at each time step t as follows:

( h t = L (h t 1 ,y t ) xt = (h t ) (2.19)
where y t 2 [0, 1] d is an input image provided at time t.

The recurrent model is Lipschitz stable if L is contractive in h, i.e., if L is L-Lipschitz in h with L<1 (the superscript in L highlights this Lipschitz continuity). L is the Lipschitz constant of L . This stability ensures that the full recurrent system is globally stable when running the network an arbitrary number of times, avoiding any divergence. Assume that L is composed of K convolutional layers interspaced with ReLU nonlinearities. Each convolutional layer can be encoded by a weight matrix, obtained from the layer's kernel tensor as a block matrix of doubly block-circulant matrices. Because Lipschitz constant of the ReLU activation is 1, L is upper-bounded by the product of the spectral norms of the weight matrices of the convolutional layers: Proposition 1 For a recurrent model L constituted of K convolutional layers with weight matrices W 1 ,...,W K 2 R n⇥n interspaced with ReLU nonlinearities, the Lipschitz constant L of L veries:

L  K Y k=1 ||W k || sp (2.20)
where ||.|| sp is the spectral norm.

Given this inequality, the Lipschitz stability can be ensured under the hard Lipschitz constraint:

Constraint 1 Hard Lipschitz constraint (HL) 8k 2 [[ 1 ,K]] , we impose ||W k || sp  1.
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C 2 However, the upper bound in Eq. (2.20) mostly overestimates L. As an illustration, if L is constituted of 2 convolutional layers with weight matrices W 1 and W 2 , the only case where L = ||W 1 || sp •||W 2 || sp is when the rst right singular vector of W 1 and the rst left singular vector of W 2 are aligned. Hence, the constraint is overly restrictive. One can thus decide to relax it, leading to the soft Lipschitz constraint: Stable rank is an approximation of the rank operator that is stable under small perturbations of the matrix. This soft constraint does not theoretically guarantee the Lipschitz stability, so it is important to empirically verify the non divergence.

Constraint 2 So Lipschitz constraint (SL) 8k 2 [[ 1 ,K]] ,
To enforce these constraints in the context of convolutional neural networks, Stable Rank Normalization for Convolutional layers (SRN-C) can be applied to a convolutional layer during the training stage. This sets the spectral norm of the matrix of this layer to a desired value ↵ and minimizes the stable rank of the matrix during training, controlled by . ↵ and are among hyperparameters of the algorithm. When =1, it is equivalent to performing spectral normalization on the matrix. After training, a normalization step is required just before test time, so the algorithm does not introduce any overhead in runtime and model size at inference time. Appendix B.2 details the SRN-C algorithm.

Unconstrained Stable Recurrent VSR framework

In approaches such as RLSP, FRVSR and RSDN, every convolutional layer of super-resolving networks is recurrent within feedback loops. This seeks to increase the depth and width of the recurrent connection by giving the hidden state and the previous output to the input of super-resolving networks. Therefore, these layers both incorporate past information and contribute to the deconvolution task. Adopting the notations from Eq. (2.19), in these networks is reduced to the identity mapping (followed by pixel shuing or transposed convolutions). In order to have a stable recurrent VSR network, a naive approach would be to directly apply SRN-C to one of these VSR networks. However, this approach presents some diculties.

First, we applied SRN-C to RLSP with (↵, )=( 2 .0, 0.1) and empirically veried that SL was not capable of removing the artifacts on long sequences (Fig. 2.20d). Second, we did the same experiment with (↵, )=( 1 .0, 1.0) to enforce HL and this resulted in a stable network but with poor VSR performance (detailed in Sec. 2.5.5). This is because the resulting architecture has been constrained to be globally 1-Lipschitz, and a successful super-resolving function-that operates both upsampling and deconvolution-cannot be 1-Lipschitz; since some frequencies need to be boosted as the Wiener lter does in the optimal linear case. This is not the case for a denoising function, that can be 1-Lipschitz while correctly performing.
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V SR Considering these points, we dene a new framework of recurrent VSR network that is stable and performs competitively on long sequences: Denition 1 An Unconstrained Stable Recurrent VSR network is dened by an input network ⇠ :[ 0 , 1] d⇥(2T +1) ! R d , a contractive recurrent network L : R n ⇥ R d ! R n and an output network : R n ! R c . The features z t , the hidden state h t and the output image xt are updated at each time step t as follows: 8 > > < > > :

z t = ⇠(Y t ) h t = L (h t 1 ,z t ) xt = (h t ) (2.21)
where

Y t = {y t } t T tt+T 2 [0, 1] d⇥(2T +1
) is an input batch of LR images provided to the network at t and 2T +1denotes the size of the batch.

Let L be constituted of K convolutional layers with weight matrices W 1 ,...,W K 2 R n⇥n interspaced with ReLU activations. L is contractive in h based on the hard Lipschitz constraint:

8k 2 [[ 1 ,K]] , ||W k || sp  1.
Stable: all the layers in the inner recurrent loop of such a network are contractive, which guarantees its stability over time.

Unconstrained: such a network is not globally constrained in terms of Lipschitz continuity, due to its non contractive input and output networks which can keep their full expressiveness.

Most of the deconvolution task is done by ⇠ and . L incorporates past information. When ⇠ and are simultaneously identity mappings, the unconstrained property is lost, as the network becomes globally 1-Lipschitz. This is the case encountered when imposing HL on all convolutional layers of networks such as RLSP, FRVSR and RSDN.

Middle Recurrent Video Super-Resolution

As an implementation of the proposed framework, we design a new network coined Middle Recurrent Video Super-Resolution (MRVSR). Its architecture is illustrated in Fig. 2.18. The rst part of the network, ⇠, has a feed-forward architecture with n ⇠ convolutional layers and interspaced ReLU activations. The second part L is composed of n +1convolutional layers under HL and interspaced ReLU activations. The third part has a feed-forward architecture with n convolutional layers interlaced with ReLU activations and followed by a pixel shuing layer. This part takes as input the current hidden state h t and the hidden state from the previous time step. This mecanism, called feature-shifting, is helpful to promote temporal consistency between two successively output frames.

Incorporating past information via the recurrent connection is a simpler task than deconvolution. This can be illustrated revisiting the traditional, non DL based Shift-and-Add agorithm [START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF]. In this method, historical information is captured via averaging or median aggregating past frames after projection on a HR grid and motion compensation. Averaging or median aggregating are rather simple mathematical operations. Therefore, n can be smaller than n ⇠ + n . In practice, one can x n ⇠ + n + n to satisfy some constraint on computational cost, set a small value for n and then select n ⇠ and n . In our setting, we have found that under the condition n ⇠ + n + n =7(that enables both fast computations and good performance), the value n =1lead to the best performance among other values of n on our validation set (described in Sec. 2.5.4).

Experiments Networks

For comparison, we implement the following state-of-the-art recurrent VSR networks in Pytorch [START_REF] Paszke | Automatic dierentiation in pytorch[END_REF]: FRVSR 10-128 [START_REF] Mehdi | Frame-Recurrent Video Super-Resolution[END_REF], RSDN 9-128 [START_REF] Isobe | Video super-resolution with recurrent structure-detail network[END_REF] and RLSP 7-128 [START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF]. The numbers after each network respectively indicate the number of repeated building blocks and the number of lters in each convolutional layer. These hyperparameters enable reasonably fast training and testing and satisfactory performance on short sequences. In the following, we omit these numbers for simplicity. For RSDN, our implementation is based on the ocial codes released by its authors. 2 Additionally, we implement modied RLSP where all its layers have been normalized by SRN-C with hyperparameter sets (↵, )=( 2 .0, 0.1) and (↵, )=( 1 .0, 1.0) to enforce the soft and hard Lipschitz constraints respectively. We call these networks RLSP-SL and RLSP-HL.

We compare these networks against the proposed MRVSR. We select (n ⇠ ,n ,n ) so that n ⇠ + n + n =7for the reason stated in Sec. 2.5.3. This number equals the number of convolutional layers in RLSP (excluding the layer that processes the hidden state), which yields fair comparison. Among MRVSR with dierent sets (n ⇠ ,n ,n ), the network with (n ⇠ ,n ,n )=(3, 1, 3) was the best performing model on our validation set. Therefore, in Sec. 2.5.5 we only report performances recorded by MRVSR with this hyperparameter set. We use SRN-C with (↵, )=(1.0, 1.0) to impose the HL.

In order to measure the benet from constrained recurrence map, we also implement MRVSR without its recurrence and feature-shifting, which coincides with RLSP without its recurrence. This can be seen as an extension of SISR that takes 3 consecutive LR frames as an input at each time step. Its architecture is feed-forward with 7 convolutional layers with interlaced ReLU activations. We call this network RFS3 for Residual Fusion Shue network with 3 input frames. This network will serve as baseline against recurrent models. In addition, we also implement RFS with an input batch of 7 LR frames, that we call RFS7. This serves as a representative sliding-window based model to compare against MRVSR, because most of sliding-window based VSR models take a batch of 5 to 7 LR frames. 

Datasets

We prepare the training dataset in a similar way as in [START_REF] Fuoli | Ecient Video Super-Resolution through Recurrent Latent Space Propagation[END_REF]. From the 37 high resolution Vimeo videos that were used in this study, after downsampling them by a factor of 2 we extract 40,000 random cropped sequences of size I ⇥ 256 ⇥ 256 ⇥ 3, where I 12. The delimiting keyframes are excluded from the sequence. At training time, we sample random sub-sequences of these crops with length 12. By excluding the rst and the last frames, we obtain GT sequences with length 10. The rst and last frames of the sampled sequences are used to produce y 1 at the beginning and y 10 at the end. Data augmentation (random ip/transposition) is also employed.

We also prepare a validation set of 4 sequences. They come from videos with no constraints on motions of objects and count between 30 and 50 frames each.

We introduce a new test set of long sequences in which the camera is quasi-static and foreground objects move. This dataset will be complementary to the existing datasets (Vid4 [START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF], REDS [START_REF] Nah | NTIRE 2019 Challenge on Video Deblurring and Super-Resolution: Dataset and Study[END_REF] and Vimeo-90K [START_REF] Xue | Video enhancement with task-oriented ow[END_REF]) which contain only videos that either are short, or present fast scene motion. To generate this new dataset, we download videos from vimeo.com and youtube.com and extract 4 sequences with quasi-static scene and moving objects inside. The rst two of them are respectively Full HD and HD Ready and the two others are 4K. The HD and 4K sequences are downsampled respectively by a factor of 2 and 4. These 4 sequences respectively have the following lengths in number of frames: 379, 379, 379 and 172. They constitute the test dataset we call Quasi-Static Video Set. We limited the lengths of the sequences to 379 to ensure dataset homogeneity, but the video containing the rst sequence contains a much larger number of frames. Therefore, we have also prepared a longer version of the rst sequence called Sequence 1-XL. This sequence contains 8782 frames. All of these sequences are available on https://github.com/bjmch/MRVSR.

The train and validation sets contain standard, relatively short sequences with no constraints on motion, whereas the test set contains long sequences with low motion. It aims at testing the capability of networks trained on short sequences to work on real-life long sequences that may have low-motion periods. We remind the reader that training recurrent networks on such long sequences is not realistic for reasons explained in Sec. 2.5.1, so the generalization gap between short and long sequences cannot be addressed with training data.

We additionally compare the reconstruction performances on the standard Vid4 dataset.

From each of the training, validation and test sequences in HR space, the corresponding LR sequence is generated by applying gaussian blur with and sampling every s =4pixel in both spatial dimensions. We set =1 .5, except when testing RSDN. In the case of this network, we use the pre-trained weights available on its ocial github repository. We thus adapted the codes of the corresponding degradations that are available on this repository to generate the LR sequence and the value of =1.6 was used.
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Training procedure and evaluation

All of the networks we prepare are trained from scratch after the Xavier initialization [START_REF] Glorot | Understanding the diculty of training deep feedforward neural networks[END_REF], except RSDN. The loss function is pixel-wise mean-squared-error between pixels in the brightness channel Y of YCbCr color space of GT frames and the network's output. The networks are trained with Adam optimizer [START_REF] Diederik | Adam: A Method for Stochastic Optimization[END_REF] and a batch size of 4. The learning rate starts at 10 4 and is divided by 10 after the 200th and 400th epochs. RFS3, RFS7 and MRVSR are trained for 600 epochs. Other models except RSDN are trained between 400 and 600 epochs until convergence, based on train and validation losses.

We numerically evaluate the networks based on frame PSNR and SSIM. Qualitative evaluation that checks the presence of artifacts is of equal importance. We also assess the temporal consistency by examining temporal proles from output sequences.

Moreover, the diagnosis tool from [START_REF] Tanay | Diagnosing and Preventing Instabilities in Recurrent Video Processing[END_REF] can be used in order to visualize Spatio-Temporal Receptive Field (STRF) of a recurrent network. This tool, that is inspired by studies on adversarial examples [START_REF] Goodfellow | Explaining and Harnessing Adversarial Examples[END_REF], works as follows: given a trained recurrent video processing network, it looks for an input sequence Y =( y ⌧ ,...,y ⌧ ) that is optimized to maximize the response at the center pixel in the output sequence X =( x ⌧ +1 ,...,x ⌧ 1 ). To do so, the L1 norm of the center pixel |p| in x 0 is maximized. This optimization only aects pixels in Y that have an eect on p. Therefore, the optimized sequence Y can be interpreted as a visualization of the STRF for the pixel p. ⌧ is typically set to 40, values of pixels in Y are randomly initialized between 0 and 1 and images in Y have dimensions 64 ⇥ 64 ⇥ 3. In our experiment, the optimization is solved using gradient descent and Adam optimizer for 1500 iterations. The learning rate starts at 1 and is divided by 10 after 750 and 1250 iterations.

Results

Performance of existing recurrent networks Fig. 2.19 shows the evolution of the PSNR per frame for some of the networks, averaged over the rst three sequences of Quasi-Static Video Set. The curve of RFS3 is taken as a baseline and subtracted to the other ones, and the resulting curves are displayed. We see that until a relatively small number of processed frames, existing recurrent networks (RLSP, RSDN and FRVSR) perform optimally and remain better than the baseline model. But at a certain point their performance drop and they become worse than the baseline model, indicating that the recursion integrates harmful information at each new frame. This can be seen as divergence.

Tab. 2.3 summarizes the performances of the networks on the Quasi-Static Video Set. It summarizes the performances of the methods at the beginning of the sequences, through the entire sequences, and at the end of the sequences. The table conforms with the curves shown on Fig. 2.19. Based on reported performances, at the beginning of the sequences RLSP and RSDN perform better than the baseline RFS3. However, at the end of the sequences these networks and FRVSR have diverged and perform worse than RFS3. The dierences in performance on the last 50 reconstructed frames between RFS3 and respec-89/159 Behavior analysis: These existing recurrent networks are trained to optimize their performance on a very low number of frames (at most 10). In this setting, it is benecial to the network to produce rapidly a huge amount of details in the output sequence. These high frequency details grow in strength with time, but they are not fed back into the network more than 10 times, so the optimization process is not trained to manage their increase after this period. When inferring on long sequences, these details keep accumulating long after the short-term network's training regime, which produces visible artifacts that diverge over time. In the presence of strong motion, even with short-term training, the network learns to forget the past information (this forgetting capability of recurrent VSR networks is empirically demonstrated in Appendix B.1), which is inconsistent with the new one. The newly created high frequency content is forgotten at the same time, preventing divergence on scenes with enough motion. In the rst sequence of the Quasi-Static Video Set, the bird moves regularly, which is why artifacts do not have time to appear on the bird itself, as can be seen on Fig. 2.20.

Constraining existing recurrent networks

SL: RLSP-SL faces the same issues as existing recurrent networks. After being better than the baseline RFS3 at the beginning of the sequences, it diverges (Fig. 2 V SR frequency artifacts (Fig. 2.20d) and its performance at the end of the sequences is poor, as shown in Tab. 2.3 ( 2.09dB in mean PSNR and 0.0284 in mean SSIM compared to RFS3 on the last 50 reconstructions). This proves that SL is not enough to prevent the divergence.

.19). It generates high

HL: RLSP-HL also obtains an overall poor performance ( 1.13dB in average PSNR and 0.0278 in average SSIM compared to RFS3 based on all reconstructed frames, according to Tab. 2.3). Its reconstruction performance is stable on a long sequence (Figs. 2.19 and 2.22), but the reconstructed image is blurred (Fig. 2.21c). This is because RLSP-HL is globally constrained to be 1-Lipschitz. Thus, as stated in Sec. 2.5.3, it is poorly suited to the deconvolution task. At the beginning of the quasi static sequences (Fig. 2.19 and Tab. 2.3) MRVSR cannot match RLSP and RSDN, but performs better than the baseline RFS3 and FRVSR. This performance is compatible with the results on Vid4 (Tab. 2.4), where MRVSR is 0.56dB behind the unconstrained similar network RLSP. This is due to the Lipschitz constraint on MRVSR, built to ensure its long-term stability at the price of a lower short-term performance.

Performance of the proposed network

Model

When considering long-term performance on sequences with low motion, MRVSR gives the best results. Figs. 2.19, 2.22 and 2.21f show that MRVSR does not diverge and does not generate any artifact. According to Tab. 2.3, MRVSR achieves the best mean performance on the test set, based on all reconstructed frames as well as focusing on the last 50 reconstructed frames. Because MRVSR and RFS3 take the same number of input frames-namely three-the dierences of +0.58 dB in average PSNR and +0.0121 in average SSIM computed on all reconstructed frames represent the benet brought by the contractive recurrence map of MRVSR. Moreover, considering that RFS7 takes an input batch of 7 frames, the fact that MRVSR outperforms RFS7 (+0.39dB in average PSNR and +0.0086 in average SSIM) shows that the temporal receptive eld enabled by its contractive recurrence accounts for more than 7 frames. This is conrmed in Fig. 2.23, where the temporal receptive eld of MRVSR spans around 28 frames, which is much larger than the usual length (i.e., 7) of temporal receptive eld of sliding-window based models. Moreover, temporal proles produced by MRVSR are less noisy and sharper than the ones produced by RFS3 and RFS7. This shows the contractive recurrence map of MRVSR additionally enables increased temporal consistency. Visually speaking, sequences generated by MRVSR present less ickering artifacts than sequences produced by RFS7 and RFS3. As one could expect, MRVSR has practically the same computational complexity compared to RLSP (similar runtime and slight overhead in number of parameters, according to Tab. 2.4). As we stated in Sec. 2.2.2, RLSP is known to be the fastest VSR network so far. Therefore, MRVSR presents state-of-the-art runtime and compact model size. [START_REF] Sedghi | The Singular Values of Convolutional Layers[END_REF]. Each label in the legend indicates the n-th layer in one of the sub-networks ⇠, L or . We see that SRN-C successfully works in constraining the spectral norm of only recurrent layers of L to 1.
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C 2 have spectral norms that are higher than 1 and can fully contribute to the deconvolution task.

Finally, in Appendix. B.3 we propose a simple way to diagnose whether a trained recurrent VSR model is stable on sequences with low motion or not. We also present additional experimental results.

Discussion

Given an existing pre-trained recurrent model, one way to operate it in a stable manner would be the following: chunking the long sequence into shorter, either overlapping or not overlapping sequences and using the model for each chunk. The recurrent features are reset to zero between each chunk. In our study, we do not consider this method for the following reasons. If the chunks do not overlap, this approach results in a severe visual ickering artifact between each pair of chunks, due to the reinitialization of recurrent features that makes the model go through a new burn-in period. If the chunks overlap, on the one hand, this still gives visual ickering artifacts due to discontinuities of recurrent features. On the other hand, the method becomes computationally redundant and inecient, suppressing one of the main advantages of using a recurrent model. Computation time is doubled at overlapped regions and memory consumption is doubled.

Conclusion

In the rst part of this chapter, we explored VSR methods. The rst paradigm regroups model-based methods that rely on hand-crafted regularization and iterative algorithms. They are generally slow but under some assumptions on motion they can be made fast. The second paradigm regroups DL-based methods. They can learn complex spatio-temporal statistics of natural videos based on supervised training. Their success is at the mercy of eective feature/image implicit or explicit alignment and feature fusion. We compared these paradigms based on examples of more general video restoration tasks. When the motion is simple and known, it is easy to come up with a forward video formation model that correctly describes the encountered situation and in this case model-based methods perform very well. In other, more general cases, data-based methods are better suited as they can manage complex motion to some extent.

Then, we introduced UVSR, a VSR framework that blends classical and DL-based approaches, based on deep unrolling of gradient descent algorithm. UVSR, in contrast to purely DL-based VSR methods, can incorporate prior knowledge about image degradation model and enables a better interpretability of the role of CNNs based on its correspondence to classical iterative algorithms. We compared UVSR with FRVSR, three SOTA networks and FRVSR-MD under single/multiple degradation congurations, considering PSNR and SSIM over the test set, number of parameters, inference speed, visual evaluation and temporal coherence. Empirical evaluation conrms that the situation UVSR is the most adapted is when there are multiple degradations with constraints on inference speed and number of parameters.
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V SR Finally, we have pointed out the divergence problem of recurrent VSR when facing long sequences with low motion. Existing recurrent VSR networks generate high-frequency artifacts on such sequences. To solve this issue, we dened a new framework of recurrent VSR model, based on Lipschitz stability theory. This method is more adapted for long sequences with low motion compared to existing recurrent VSR networks. As an implementation of this framework, we proposed a new recurrent VSR network coined MRVSR. We experimentally veried its stability and state-of-the-art performance on long sequences with low motion. As part of our experiments, we introduced a new test dataset of such sequences, namely Quasi-Static Video Set. In this chapter, we explain how we can apply the techniques described in Chap. 1 to solve the following inverse problem in astrophysics: reconstruction of astronomical sources that evolve with time, in the context of radio interferometry. In particular, we deal with transient sources. These sources appear and disappear over time and are associated with high-energy physical phenomena. While the VSR problem investigated in Chap. 2 models the PSF induced by the camera lens, the radio interferometry inverse problem involves the PSF of the observing instrument, i.e., the radio interferometer. In VSR, we supposed the camera 99/159 C 3 lens PSF was constant over time. Due to the Earth's rotation, in radio interferometry, an observer on the ground will experience the rotation of the apparent sky over the instrument. Consequently, an interferometer tracking a source during the observation will have a time-dependent PSF due to line of sight projection.
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Introduction

Next-generation radio facilities like LOFAR [START_REF] Michael P Van Haarlem | LOFAR: The low-frequency array[END_REF], MeerKAT/SKA [START_REF] Booth | An overview of the MeerKAT project[END_REF], ASKAP/SKA [START_REF] Dewdney | The Square Kilometre Array[END_REF] and SKA-LOW [START_REF] Amm Scaife | Big telescope, big data: towards exascale with the Square Kilometre Array[END_REF] allow for high spectral, high rate, improved angular resolutions, and high instantaneous sensitivity. This is a notable improvement for studying transient radio sources via aperture synthesis using radio interferometers. These sources appear and disappear over time and can be randomly distributed in the sky. They are associated with high-energy physical phenomena (e.g., pulsars, rotating radio transients (RRATs), solarsystem magnetized objects, and Lorimer-type bursts [START_REF] Lorimer | A Bright Millisecond Radio Burst of Extragalactic Origin[END_REF]) and, more generally, "fast radio bursts" (FRB). Searching for such sources in large datasets produced by these instruments is a new challenge that requires competitive and ecient signal reconstruction algorithms.

Radio interferometers enable imaging via aperture synthesis based on processing the correlations between each pair of antenna signals. In the rst approximation, a radio interferometer samples noisy Fourier components of the sky (associated with its spatial frequencies, i.e., the visibilities [START_REF] Thomas L Wilson | Tools of radio astronomy[END_REF]) inside the main eld of view of the instrument. Under the small eld approximation assumption, the sky can be approximated by computing the inverse Fourier Transform of those Fourier samples. The number of baselines is limited, so the Fourier map is incomplete. Therefore, one needs to solve an "inpainting" [START_REF] Garsden | LOFAR sparse image reconstruction[END_REF] inverse problem, i.e., estimate lacking information in the Fourier plane. Another option is to switch from the inpainting problem in the visibility space to its equivalent deconvolution problem in the image space. Deconvolution of radio images from a "static" sky in the context of radio interferometry has been subject to studies for several decades. Notably, the authors of [START_REF] Högbom | Aperture synthesis with a non-regular distribution of interferometer baselines[END_REF] designed the original CLEAN algorithm, which is still the most widespread basis for newer deconvolution algorithms in the community. Several variants of this algorithm have been subsequently proposed [START_REF] Schwab | Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry[END_REF][START_REF] Bg | An ecient implementation of the algorithm'CLEAN[END_REF]. Improvements taking into account source morphology [START_REF] Abrantes | Proxy calibration to instrumental data set: Implications for paleoceanographic reconstructions[END_REF], spectral dependencies [START_REF] Rau | A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry[END_REF] and sparse representations [START_REF] Garsden | LOFAR sparse image reconstruction[END_REF][START_REF] Nammour | ShapeNet: Shape Constraint for Galaxy Image Deconvolution[END_REF][START_REF] Julien | Sparse representations and convex optimization as tools for LOFAR radio interferometric imaging[END_REF][START_REF] Dabbech | Moresane: Model reconstruction by synthesis-analysis estimatorsa sparse deconvolution algorithm for radio interferometric imaging[END_REF][START_REF] Carin | On the relationship between compressive sensing and random sensor arrays[END_REF][START_REF] Rafael E Carrillo | Sparsity averaging reweighted analysis (SARA): a novel algorithm for radio-interferometric imaging[END_REF][START_REF] Wiaux | Compressed sensing imaging techniques for radio interferometry[END_REF] have also been investigated in recent years.

When the sky contains transient sources, classical detection methods rely on frameby-frame image analysis (e.g., with the LOFAR Transient Pipeline [START_REF] Swinbank | The LOFAR Transients Pipeline[END_REF]). However, frameby-frame transient detection is subject to two observing biases: i) a detection issue when the frames are derived from too short time integration data displaying a high noise level and, conversely, ii) a "dilution" problem when time integration is too long to resolve the transient in time, resulting in a time smearing of the transient. Therefore, to account for these biases and sources that possess coherent structure in time, one has to design methods that directly account for the time-coherent structure (i.e., the source light curve) hidden in the signal. This also occurs in large radio surveys with interferometers. Mapping the visible radio sky requires an optimal use of the observing time and pointing location to reach a target angular resolution and sensitivity. While surveys mainly address the distribution of static sources (astrometry and ux density) transient radio sources might also occur during 100/159 D R T R the short exposure (e.g., ⇠15 min pointing of MeerKAT) and be missed due to observing biases (detection and dilution). Therefore, nding a robust deconvolution method is key to optimize both telescope time and transient detectability.

Deconvolution in radio interferometry

Two approaches have been classically used in radio interferometry deconvolution: the Variational Maximum Entropy method [START_REF] Roy | Restoring with maximum likelihood and maximum entropy[END_REF][START_REF] Narayan | Maximum entropy image restoration in astronomy[END_REF][START_REF] Stephen | Two-dimensional maximum entropy reconstruction of radio brightness[END_REF] and the iterative CLEAN algorithm [START_REF] Högbom | Aperture synthesis with a non-regular distribution of interferometer baselines[END_REF]. Both methods generally perform well when dealing solely with point sources, but CLEAN is the most widespread technique in the radio astronomy community. This algorithm supposes a nite number of point sources. It restores them based on Matching Pursuit [START_REF] Bergeaud | Matching pursuit of images[END_REF] using a single basis vector and the impulse response (PSF) of the telescope that made the observation. Authors of [START_REF] Bg | An ecient implementation of the algorithm'CLEAN[END_REF] proposed a variant of CLEAN by optimizing the algorithm with Fast Fourier Transform (FFT) and structuring the algorithm computations between "major" and "minor" cycles. Minor cycles are carried out in (gridded) image space, whereas major cycles befall in the ungridded visibility space. Going back and forth between these two spaces led to improvements in both delity and accuracy. This strategy was further developed in [START_REF] Schwab | Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry[END_REF]. Authors of [START_REF] Abrantes | Proxy calibration to instrumental data set: Implications for paleoceanographic reconstructions[END_REF] and [START_REF] Rau | A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry[END_REF] brought in further improvements by respectively taking into account the morphological and spectral behavior of the sources. More recently, several teams have addressed the deconvolution problem within the compressed sensing framework [START_REF] Garsden | LOFAR sparse image reconstruction[END_REF][START_REF] Julien | Sparse representations and convex optimization as tools for LOFAR radio interferometric imaging[END_REF][START_REF] Dabbech | Moresane: Model reconstruction by synthesis-analysis estimatorsa sparse deconvolution algorithm for radio interferometric imaging[END_REF][START_REF] Carin | On the relationship between compressive sensing and random sensor arrays[END_REF][START_REF] Rafael E Carrillo | Sparsity averaging reweighted analysis (SARA): a novel algorithm for radio-interferometric imaging[END_REF][START_REF] Wiaux | Compressed sensing imaging techniques for radio interferometry[END_REF] then DL [START_REF] Terris | Image reconstruction algorithms in radio interferometry: from handcrafted to learned denoisers[END_REF] ( [START_REF] Schmidt | Deep Learning-based Imaging in Radio Interferometry[END_REF] also used DL but solved the equivalent inpainting problem in the Fourier space). However, few methods take into account temporal structures of time-evolving sources in the context of image time series deconvolution.

Interferometry imaging problem

Single image deconvolution problem

This study deals with imaging by aperture synthesis from interferometric data. The limited number of antennas and observing baselines, time, and frequencies restrict the amount of accessible samples of the sky visibility function. In addition, these visibilities are subject to a noise that can be modeled as an additive Gaussian noise in the rst approximation. In a limited eld of view and ignoring direction-independent or direction-dependent eects and calibration issues, this ill-posed inverse problem can be expressed in the Fourier space (i.e., the measurement space) as follows:

V y = M (V + ✏) (3.1)
where V y is the collection of observed visibilities, V is the true visibility function, ✏ is approximated as an additive white gaussian noise, and M is a sampling mask representing the limited access of an interferometer to the measurement (depending on the antennas' conguration and observational parameters).
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C 3 * • ℱ(.) Noise ) ℱ => (.) Noise * ⇔ " ! ℎ Figure 3
.1: Principle of radio interferometry by aperture synthesis. Images have been generated thanks to APSYNSIM [START_REF] Marti-Vidal | APSYNSIM: An Interactive Tool To Learn Interferometry[END_REF]. We simulated a VLA array conguration and 4 gaussian sources, with a total observation duration of 4h.

Eq. (3.1) can be rewritten as a deconvolution problem formulated in the image or direct space. This problem links the observed degraded sky image to the corresponding true sky image:

y = h ⇤ x + ⌘ (3.2)
with F 1 (V y )=y, F 1 (M )=h, F 1 (V )=x and F 1 (M ) ⇤F 1 (✏)=⌘. ⇤ denotes the convolution operation; y is the observed image, called dirty image; h is the PSF, also called dirty beam, which represents the sampling operation in Fourier space by the interferometer; and x is the GT image. We note ✏ the noise level of ✏. Thus, the corresponding variance for ⌘ can be obtained from 3.1 illustrates the inverse problem expressed in both Fourier and direct domains.

= ||M || 2 • ✏ = ||F(h)|| 2 • ✏ . Fig.

Extension to transient imaging

To enable robust imaging of transient sources, instead of solving frame by frame-which can be subject to observation bias-we extend the problem in (3.2) to a deconvolution problem accounting for the temporal dependency of the dierent terms (i.e., sky, noise, and instrument sampling):

y t = h t ⇤ x t + ⌘ t ,t 2 I = {t 0 ,...,t T 1 } (3.3) with F 1 (V y,t )=y t , F 1 (M t )=h t , F 1 (V t )=x t and F 1 (M t ) ⇤F 1 (✏ t )=⌘ t . The noise level of ⌘ t is t = ||M t || 2 • ✏ = ||F(h t )|| 2 • ✏ . By stacking {y t } t2I , {x t } t2I and 102/159 D R T R
{h t } t2I in the temporal dimension, we respectively obtain a dirty cube, a GT cube and a PSF cube. These cubes are 3-dimensional data structures denoted Y , X and H respectively. I is the set of T time steps ordered following the observation intervals. In the single image problem (3.2), h depends on the total time and frequency integration of observation, while the sky x is supposed to be static. As the sky naturally rotates over the instrument during the observation (because of the Earth's rotation), the morphology of h depends on the interferometer location on Earth, declination of the source, and observing dates. In the dynamic imaging problem extension (3.3), the h t operator has a time dependency, i.e., the instrumental response varies for consecutive single observing time intervals. As a result, both the sky and the interferometer responses vary over time. The associated mask M t samples the Fourier transform of the sky at dierent time dates, enabling the possibility of capturing the temporal evolution of the observed sky.

We assumed that the datacube X only contains point-like sources for simplication. Indeed, we assume each source has an angular scale much smaller than the angular resolution brought by the PSF. In addition, we assume that the cube contains mixtures of sources with constant and varying ux densities over time. Their locations in the sky will be random but constant during the observation.

Because a radio interferometric dataset provides exact information on the baseline length and orientation for all samples, the morphology and time dependency of h t are known for all t. Finally, we control the noise level ✏ to mimic the various quality of observations. Thus, following the terminology dened in Sec. 1.3, we are in a multiple degradation scenario.

In this study, for the sake of simplication, we focus on the monochromatic case where the observing frequency is xed. We therefore do not deal with the dependency in frequency of the imaging problem.

Method

CLEAN

CLEAN supposes the sky is constituted of a nite set of point sources. This is indeed the image prior. The algorithm restores these points and their intensities based on Matching Pursuit [START_REF] Bergeaud | Matching pursuit of images[END_REF]. The set of these points is convolved with a smooth kernel called CLEAN/restoring beam constructed from the PSF. Generally the CLEAN beam corresponds to a 2D Gaussian function adjusted to the PSF. The form of the solution is then:

x = G ⇤ a + r (3.4)
where G is the CLEAN beam, a is the reconstructed sky with points restored by CLEAN, also called CLEAN components, and r is the residual. The original CLEAN algorithm is described in Algorithm 2.
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Algorithm 2: CLEAN algorithm [START_REF] Högbom | Aperture synthesis with a non-regular distribution of interferometer baselines[END_REF]. h p,q is the image of the PSF h centered on the position (p, q). p,q is a sky with the point source of amplitude 1 at the position (p, q). Input: y, h Parameter: Gain g 2]0, 1], N , N max Output: The solution x and the sky model a Initialization: r 0 y, a 0 0, k 0, = noise level estimated from y, G = 2D Gaussian function adjusted to h. (p, q) arg max(r k ) 4:

r k+1 r k h p,q • f m • g 5: a k+1 a k + p,q • f m • g 6: k k +1 7: end while 8: return x = G ⇤ a k + r k ,a = a k

Proposed DL-based methods

In the context of the time series image deconvolution problem (3.3), one can independently apply a single image deconvolution method, such as CLEAN, in a frame-by-frame approach. However, this method does not capture the temporal structure of the sky. A method capable of dealing with the temporal evolution of both telescope and the sky is required. Given recent successes of neural networks in various restoration tasks, we propose to solve the problem (3.3) based on DL. In our setting, a network realizes the following mapping: X = N (Y, H, ✏ ; ✓). Its input contains a degraded cube and information about the degradation (H, ✏ ) in a non-blind manner. ✓ denotes parameters of the network that are learned from training data {Y i ,X i ,H i , ✏,i }. We propose two implementations of the network N , coined 2D-1D Net and Deation Net, respectively.

Multiple degradations

We adopt the following scheme to incorporate knowledge about the image formation model and handle multiple degradations. Each h t in H is originally of size l ⇥ l (with l =2 5 6in our study; see Sec. 3.5) but is rstly center-cropped with crop size r⇥r (r =96in our study) and projected onto a b-dimensional linear space by a PCA projection matrix P 2 R b⇥r 2 . P is learned from all PSFs that constitute the training PSF cubes, and with a value of b =50we can explain 90 % of the total variance. We note hb t this projected PSF. hb t is then concatenated with We rst propose a new network coined 2D-1D Net to solve the transient imaging problem of Eq. (3.3). The following details the idea behind this model. We decouple the network N into two modules that sequentially process the input data. with 2D convolutional layers that successively and independently encode each image in the degraded cube into feature maps. Each of these encodings considers the PSF and the noise level used in the degradation. This transformation performs a deconvolution of the degraded image. This module is referred to as 2D Net. After these independent deconvolutions, the produced feature maps are stacked in an extra temporal dimension and given to the second module. This module captures temporal structures within the stacked maps and estimates the GT cube. The temporal prole1 of a source is continuous in time, which justies this architectural choice. Because point sources do not spatially move in our study, the temporal structure is extracted based on 1D convolutional layers along the time dimension. We call this module 1D Net. By unifying the two modules, we build the entire network 2D-1D Net.

t = ||M t || 2 • ✏ = ||F(h t )||
Algorithm 3 summarizes the 2D-1D Net. In the rst place, each pair (y t , ht ) is given to 2D Net to produce an intermediate feature map z t (lines 2 to 8). Fig. 3.2 describes the structure of this subnetwork. This network is composed of an encoder that extracts input features and SFT Net that can manage multiple degradations. In this step, 2D Net deconvolves y t by using ht . The SFT layer uses this vector to modulate feature maps. This layer has been introduced in [START_REF] Wang | Recovering Realistic Texture in Image Super-Resolution by Deep Spatial Feature Transform[END_REF] and used in [START_REF] Gu | Blind Super-Resolution With Iterative Kernel Correction[END_REF] for the rst time to handle multiple degradations in inverse problems. This layer applies an ane transformation to the feature maps F in conditioned on the degradation maps F (h) t , which is obtained by stretching ht into size (b +1)⇥ H ⇥ W , where all the elements of the i-th map equal the i-th element of ht . The ane transformation involves scaling and shifting operations:

SFT(F in ,F (h) t )= F in + (3.5)
where and are estimated by additional convolutional layers and is the Hadamard product.

Next, {z t } t2I are stacked in the temporal dimension. This gives Z, a tensor of dimensions C ⇥ T ⇥ H ⇥ W (line 10). The output is passed to 1D Net, composed of three 1D convolutional layers working along the temporal dimension, interlaced with ReLU activations (line 11). The kernel size of each 1D convolutional layer is set to 5. With three such layers, the temporal receptive eld is 5+4+4 = 13, which is enough considering the temporal extension of the experimental transient events in this work (see Sec. 3.5.1). Fig. 3.3 details the 1D Net architecture.

Deation Net

One can observe that, on the one hand, averaging the input images over the temporal dimension produces an average input sky with a reduced noise level. This average sky keeps constant sources. On the other hand, averaging the PSFs over the temporal dimension produces an average PSF that is better conditioned than each individual PSF. These observations will be illustrated with gures in Secs. 3.5.1 and 3.6.1. Considering these points, one can expect that deconvolving the average input sky based on the average PSF is easier and better reconstructs constant sources than deconvolving each individual sky based on the corresponding PSF. Therefore, to use these averaged representations, we design another new network coined Deation Net and summarized in Algorithm 4. This network is based on the same subnetworks as 2D-1D Net but involves a dierent computation ow. Specically, it decouples the reconstruction of constant and transient sources. In the rst place, both input images {y t } t2I and PSFs {h t } t2I are averaged over the temporal dimension (lines 1 and 2). The reduced noise level of the average input image can be analytically computed (line 4). Then, the average image is deconvolved in the feature space based on the average PSF to give the average sky features (line 7). Next, this average sky is reconvolved by the corresponding PSF (line 14) and subtracted to the individual degraded sky in the feature space at each time step. Each resulting image only contains transient sources. This sky is then deconvolved based on the individual PSF to reconstruct transient sources (line 15). This individual deconvolved image and the average deconvolved sky are nally summed in the feature level via skip connections (line 16). This processing is done for each time step, and all outputs are then sent to the nal 1D Net (lines 19 and 20).

Remarks on the incorporation of knowledge about the degradations

In our work, we do not rely on any iterative proximal algorithm with the prior replaced by one or more DNNs, nor on deep unrolling. Indeed, the former requires a signicant number of iterations to deconvolve each frame, resulting in an overall slow reconstruction of an entire cube. The latter needs unrolled steps for each deconvolved frame, therefore, presents a memory issue during the backpropagation step when dealing with the entire cube. To mitigate this problem, the crop size of the input image has to be small, which can limit the corresponding size of the sky and the PSF. Moreover, the gradient step in an unfolding approach requires convolving at each step the input signal by the PSF and its hb Ph 4:
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Experiment

Datasets

We generate disjoint training, validation, and test sets of GT and PSF cubes at various noise levels. The corresponding dirty cubes are generated based on Eq. (3.3).

PSF cubes

We simulate the interferometric response of MeerKAT in the L-band, using its current 64 antennas distribution. The observing frequency is xed to 1420 MHz. The location of 108/159 This distribution is skewed toward 30 elevation in the case of the telescope at hand, MeerKAT. This is expected because the PSF simulation accounts for the visibility of sources in the southern sky, as seen from MeerKAT. For any given observation duration (e.g., 8h max) and integration (e.g., 15 min/image), we computed the telescope source tracking and its aperture projection, both required to derive the eective (u,v) coverage and therefore the PSF. An astrophysical source is associated to a unique pair of coordinates (declination and right ascension ↵) on the celestial sphere (see Appendix A.5 for denitions). Depending on the source declination ( , in the equatorial frame), hour angle (associated with Right Ascension ↵ and time of observation), and observation duration, not all (↵, ) directions are accessible. Therefore, a uniform random distribution of directions, drawn from the "accessible" direction window in the sky, will appear skewed around the local elevation of the South Celestial Pole, located around [START_REF] Bg | An ecient implementation of the algorithm'CLEAN[END_REF] The PCA projection matrix P that encodes knowledge about the PSF is learned from all PSFs of the train PSF set, i.e., from the 435 ⇥ 32 = 13920 PSFs. The value of PCA components b =5 0explains 90 % of the total variance. Fig. 3.6 shows the 10 main PCA eigenvectors which composed the PSF of the whole set.

GT cubes

We suppose the sources to be unresolved points sources in the sky image. The size of the pixel on the sky is xed to 1.5 00 . We assume that within a sky image of size 30 0 ⇥ 30 0 (i.e., 1200 ⇥ 1200 pixels), at most 30 constant and 2 transient point sources can be placed. This distribution of sources can be considered compatible with shallow imaging like MeerKAT. Following this distribution, we generate 39000 training sky cubes with dimensions 32 ⇥ 256 ⇥ 256. These data are divided into three equal parts, containing zero, one, or two transient sources per eld. Each validation and test set contains 66 cubes following the same distribution of sources, with half of them containing a transient source and the other 110/159 half containing two. The source peak ux density, i.e., the value of the pixel of a constant source in the GT, is randomly sampled between 1 and 100. Regarding a transient source, its amplitude is a discrete function A(t i ) sampled from the continuous functions A(t). For each source, this prole is randomly chosen between the following models: gate, Gaussian and skew-normal. Their parameters are randomly chosen, and the transient source's maximum amplitude is randomly chosen between [START_REF] Gouk | Regularisation of neural networks by enforcing lipschitz continuity[END_REF][START_REF] Pustelnik | Wavelet-based Image Deconvolution and Reconstruction[END_REF]. Examples of temporal proles are shown in Sec. 3.6, Fig. 3.7.

Training procedure

From each GT cube in the training, validation, and test sets, the corresponding dirty cube is generated based on Eq. (3.3). Mini-batch gradient descent with a batch size of 4 is used for training. For each example in the batch, a train PSF cube is randomly picked, and the noise level ✏ is randomly sampled from [0, 6]. Data augmentation with random ipping/transposition was performed. The learning rate is set to 10 4 , and we train our models for 100 epochs each. The loss function is the pixel-wise mean-squared error (MSE) between GT and estimated cubes. Authors of [START_REF] Vafaei | DEEPSOURCE: point source detection using deep learning[END_REF] claimed that if GT images are skies with point sources, then the MSE loss function would be suboptimal and instead proposed to smooth the point sources. However, our study obtained satisfactory empirical results with this pixel-wise MSE between GT and estimated cubes.

Evaluation metrics

Given a constant or transient source at a certain location in a GT cube X, we can rst dene a subcube obtained by locally cropping the cube around the source with a path size p ⇥ p (p =3in our study, dening the region D s ). We can also extract a subcube at the same location for the estimated cube. We can then compute the root MSE (RMSE) between the two subcubes. This error quanties the delity of the restored temporal prole. The GT 111/159 C 3 subcube norm can normalize this value. We note NRMSE s this error, for the source s.

To measure the input signal quality, for each source s in the dirty cube {y t } t2I with location (i s ,j s ) we evaluate its signal-to-noise ratio SNR s . We adopt the following denition:

SNR s = X i,j2Ds y ⌧ [i, j] b (3.6)
where ⌧ refers to the temporal localization of the transient. It corresponds to the time step when the amplitude of the transient source is maximum in the GT cube. For a constant source, we set ⌧ =1 5 . D s is the local patch of size 3 ⇥ 3 centered on the true source location (i s ,j s ). b denotes the background noise estimated on y ⌧ after excluding D s . In radio images, Peak SNR is the ratio of peak ux density (usually a single pixel) of the source and the local noise root mean square. Here, to absorb pixel gridding bias, the source ux is accounted over the region D s . This will ensure that all the recovered ux density of the source is properly accounted for, in presence of noise. This error could lead to detrimental and unfair representations of light curve reconstruction with dierent methods.

Moreover, to measure the performance of background denoising, i.e., restoration of the empty region of the sky, we exclude all D s subcubes for a GT cube. We operate the same procedure on the corresponding estimated cube and compute the RMSE between the two. We note this metric RMSE noise .

We compare the proposed algorithms for the cube restoration against frame-by-frame CLEAN deconvolution of the dirty cubes. To avoid biasing the nal result during the CLEAN nal restoring beam step, we considered only the detected CLEAN components associated with the detected sources. PSF cube and noise level are provided to CLEAN in a non-blind manner. They intervene in dening a threshold from which the algorithm iteration stops. Furthermore, to prevent bias on the use of CLEAN due to a high noise environment of the dirty cube, we stopped CLEAN based on a maximum number of iterations and, as for other reconstruction methods, also considered only counting the ux density around the source location in D s .

Results

Fixed test PSF cube and varying noise

We pick a PSF test cube and evaluate the methods on the test sky cubes with the following noise levels: ✏ 2{ 0, 1, 2, 3, 4, 5, 6}. The injected noise levels were selected to range from low noise level cases, where the constant and transient sources are readily detectable in the dirty cubes, to high noise level cases where no sources can be seen (such a high noise level is displayed on the rst line of Fig. 3.8). Fig. 3.4 shows the PSF test cube that has been picked. We see that the PSF rotates with time. As a matter of comparison and robustness, Fig. 3.9 compares reconstructions of temporal proles for constant sources. As expected, DL-based methods systematically present reconstructions with higher delity. Moreover, they produce light curves with more stable amplitude variations than the CLEAN-based method. Indeed, we must ensure that the trained network correctly reconstructs the light curves of constant sources without making them look like ickering transient sources. Moreover, Deation Net presents less varying reconstructed constant sources than 2D-1D Net. Indeed, Deation Net is understood to provide a better reconstruction of constant sources for the following reasons. Firstly, the noise level is reduced in the average input sky, and the average PSF is better conditioned than the individual PSF frame. Deconvolution of an average sky by the average PSF is thus easier for constant sources. Figs. 3.10 and 3.11 illustrate this by respectively displaying the average input sky for various noise levels and the average PSF. Secondly, the skip connections of Deation Net (line 16 of Algorithm 4) allow reconstructions at dierent time steps to be distributed near the average deconvolved sky. Fig. 3.12 compares the average variance of reconstructed constant sources over the test cubes at dierent values of ✏ . The gure conrms that DL-based methods reconstruct constant sources with better delity than CLEAN and that Deation Net produces the lowest variances concerning constant sources. On average, constant sources reconstructed by 2D-1D Net present a variance ⇠3.0 times smaller than CLEAN. Deation Net's variance is ⇠8.6 times smaller than CLEAN.

After aggregating results of all inferences with all of the noise levels ✏ 2{0, 1, 2, 3, 4, 5, 6}, Fig. 3.13 shows NRMSE s averaged over sources belonging to the same SNR interval delimited by deciles in SNR s . We observe that DL-based methods generally perform better than CLEAN, except when the SNR s is very high (SNR s 197). This case indeed corresponds to when ✏ =0for which CLEAN is optimal. In other cases, DL-based methods, on average, perform better than CLEAN. By comparing positions of error bars indicating standard deviations, we observe that in many cases (SNR s between 40.5 and 128.6), DL-based methods present inhomogeneous performances over dierent sources, but their worst performances 115/159 Because of the log scale, the standard deviation is higher when RMSE noise is small. This is the case for the DL-based methods. Fig. 3.8 illustrates the high performance of DL-based methods in background denoising. We observe that they eectively restore the empty sky around the sources. This is less the case for the frame-by-frame CLEAN method: the latter captures noise and generates residual noisy pixel distributions around the true source. Fig. 3.14 compares RMSE noise , 117/159 C 3 averaged over the test cubes at dierent values of ✏ . We observe that for all values of ✏ , DL-based methods better suppress background noise than CLEAN. Within the DL-based methods, Deation Net better restores the background sky. This is because the noise level is reduced and the PSF is better conditioned in averaged input sky. On average, CLEAN presents RMSE noise values that are ⇠1.8 times bigger than the 2D-1D Net ones and ⇠2 times bigger than the Deation Net ones. Figure 3.15: Mean NRMSE s for sources in the test set for 10 equally spaced bins of PSF pointing elevations. The envelope for each method delimits the rst and the last 10 percentiles.

Varying test PSF cube and xed noise

In this section, we set ✏ =3and aggregate results over all of the PSF test cubes. Fig. 3.15 shows average NRMSE s for sources in the test set for 10 equally spaced bins of PSF elevations. The apparent envelope for each method delimits the rst and the last 10 percentiles. We see that for all bins, our DL-based methods, on average, outperform CLEAN in large margins. This is especially true for Deation Net, which presents the last 10 percentile near the rst 10 percentile of CLEAN in most cases (elevations>41 degrees). Among DL-based methods, here again, in most cases, Deation Net performs better on average than 2D-1D Net (elevations between 27 and 82 degrees). This conrms the Deation Net architecture eciently tackles the inverse problem. On average, CLEAN presents NRMSE that are ⇠2.6 times bigger than 2D-1D Net and ⇠3.2 times bigger than Deation Net. Furthermore, in most cases (elevations > 34 degrees), the envelope of Deation Net is smaller than the ones of 2D-1D Net and CLEAN. Therefore, Deation Net brings less error dispersion in source light curve reconstruction than other methods. This can be explained by its skip connections that set reconstructions at dierent time steps near the average de- convolved sky. Our methods perform worse at elevations between 20 and 27 degrees and better at elevations between 82 and 89 degrees. Between these bounds, their performance seems to increase with increased elevation. This is coherent: the closer to 90 degrees the elevation, the better conditioned the PSF is, therefore the easier it is to deconvolve. Conversely, lower elevation means that the PSF is worse conditioned and undergoes a strong projection eect, making the deconvolution task harder.

Second, after aggregating the results of all inferences with all the test PSF cubes over the test sky cubes, Fig. 3.16 shows NRMSE s averaged over sources belonging to the same SNR interval delimited by deciles in SNR s . We observe that DL-based methods perform better on average than CLEAN for all intervals of SNR s . We can state the following by observing vertical bars indicating standard deviations around mean values: in most cases, DL-based methods present inhomogeneous performance, but their worst performances are statistically still better than the best performances of CLEAN. Within the DL-based methods, Deation Net performs slightly better than 2D-1D Net when SNR s is higher than 44 and outperforms 2D-1D Net when SNR s is below 44. This conrms again that the Deation Net architecture is appropriate regarding the inverse problem. On average, 2D-1D Net presents NRMSE s that is 3.10 times smaller than CLEAN. Deation Net shows NRMSE s values that are 3.50 times smaller than that of CLEAN.

Importance of temporal modeling

In this part, we evaluate the benet brought by the 1D Net in 2D-1D Net. This measures to which extent capturing the temporal structure of a signal increases the signal reconstruction performance. To do so, we compare the performances of CLEAN, 2D-1D Net, 119/159 Because of the log scale, the standard deviation is higher when RMSE noise is small. This is the case for the DL-based methods.

properly. Fig. Even if 2D Net performs similarly to CLEAN based on NRMSE s , the former performs better regarding background denoising. This is shown in Fig. 3.21, which compares RMSE noise , averaged over the test cubes at dierent values of ✏ and the PSF illustrated in Fig. 3.4. For all values of ✏ , 2D Net better suppresses background noise than CLEAN by large margins. This shows that even if 2D Net does not extract temporal features, its convolutional layers enable high-performing denoising. 2D-1D Net performs even better than 2D Net regarding this background denoising task. This shows that the temporal modeling capability of 1D Net also contributes to increasing the background denoising performance. On average, 2D Net presents RMSE noise that are ⇠ 1.5 times smaller than that of CLEAN. 2D-1D Net presents RMSE noise that are ⇠ 1.2 times smaller than 2D Net. Fig. 3.18 illustrates these observations. Especially at the end of the transient event, frame-by-frame CLEAN captures noise and generates residual noisy pixels around the true source. 2D Net generates less noisy pixels (it only generates a noisy pixel at time step t =1 0 ). 2D-1D Net does not generate any obvious noisy pixel.

Discussion and limitations

• Support size of the frame: in our inverse problem, we approximate the aperture synthesis method as linear degradation embodied by a multiplication of the true data with a mask in the Fourier domain. Moreover, we carried out our study in the gridded space where all quantities are discrete set with constant frame support size. The mask, therefore, has the same support size as the sky. All frame support sizes between the sky, the mask, and the PSF cubes are tied together. Therefore, if one wants to change the support size, new training of the networks is required. This is contrary to some other DL-based image/video restoration problems where the linear degradation is dened by a convolution rather than by a mask. In this case, a trained neural network can deconvolve an image of any size. Regarding our networks, as only the 2D Net module operates deconvolution, we should only retrain this module, and 1D Net can be frozen. From a dataset of ungridded visibilities, it is up to the scientist to decide which support size ts the scientic objective of the data. It should be trained on support size that corresponds to the nal products used (e.g., image catalog of a survey, transient detection pipeline, etc.).

• Total duration of transient events: the total observation period and the number of temporal frames (which dened a slice PSF of the PSF cube) determine the upper 123/159 C 3 limits on the entire duration and the shortest timescale of transient events we deal with. As an illustration, for a xed number of PSF frames over the total observation period, an increase in the latter will increase the integration time of each PSF frame. Thus, if the total observation period is more extended, with a xed number of PSFs, each PSF will appear smoother and presents fewer secondary lobes. Therefore, each time the total observation period changes, our networks should be theoretically retrained with new PSF cubes. We can suppose that the proles of transient events in the train sky cube are diverse enough to be representative of real transients that can be encountered. In this case, we can keep the same train sky set. Conversely, suppose the length of the observation increases for a xed PSF time integration. In that case, the third dimension of the cube increases but each PSF will share the same characteristics as before. In that case, we should only retrain 1D Net, and 2D Net can be frozen as its role is to deconvolve PSFs similar to before.

• Computational complexity: once trained, our networks present faster reconstruction than frame-by-frame CLEAN. This is because contrary to CLEAN, they are not iterative algorithms and can benet from ecient GPU-based architectures. This aspect makes them attractive to the radio astronomy community. On our Intel I9-10940X CPU and NVIDIA TITAN RTX GPU, 2D-1D Net reconstructs the sky cube of 32 frames in ⇠ 65 ms. This speed is ⇠ 75 ms for Deation Net. Both of them contain 0.1 M parameters.

• Theoretical guarantee: one of the drawbacks of our DL-based methods is that they lack mathematical frameworks allowing us to derive theoretical error bound or uncertainty beyond empirical statistics on the results.

• Extension to the polychromatic case: it is possible to extend our proposed methods to the polychromatic case, where the inverse problem also has a frequency dependency. In this case, the dirty, GT and PSF cubes are 4-dimensional data structures, adding the frequency dimension. A simple way to realize this extension is to i) stack several skies at dierent frequencies in the channel dimension at the input of the 2D Net module and ii) stack several PSFs at dierent frequencies in the channel dimension at the input of the SFT layer. The computation of the average sky and PSF, and the subtraction step in the Deation Net should be done for each frequency.

Conclusion

In this chapter, we dealt with transient source reconstruction in the context of radio interferometric imaging. We formulated this problem as a deconvolution of image time series. Learning methods adapted to deconvolution, temporal structures of transient sources, and specicities of instrumental response are key elements to eciently analyzing the images obtained via radio interferometers in the SKA era. For instance, the raw sensitivity of MeerKAT enables deep imaging (i.e., a typical ⇠ 10 µJy in 15 min) as well as high cadence imaging capabilities in a large eld of view. Being able to deconvolve the data in high noise regimes eciently will maximize the chance to discover new transients and overcome the limitations imposed by current deconvolution methods. Missing transients in the image plane can be due to the lack of sensitivity (i.e., detection problem) or the lack of sucient temporal sampling (i.e., dilution problem) that averages out short-scale transients. The robust 2D and 1D image reconstruction brought by the trained networks introduced in this chapter has signicantly improved the 3D estimation of the sky. Replacing classical frame-by-frame deconvolution methods with the DL-based reconstruction methods can lead to better use of telescope time. This will drastically reduce the required exposure time while enabling a faster temporal sky sampling. Our vizualisations of transient source reconstructions are available at the following GitHub repository: https://github.com/bjmch/DL-RadioTransient. 

Conclusion

This thesis exposed how we can empower a DL-based image/video restoration model by giving it a priori knowledge adopted to the inverse problem, similarly to classical restoration methods. To begin with, a purely data-based restoration CNN learns to map the input degraded image (video) to its restored version based on training pairs of degraded and original images (videos). These pairs are generated based on the forward model on the inverse problem. This operating mode is dierent from the one of classical restoration methods.

A classical method derives from the forward model a minimization problem regularized in a hand-crafted manner. This problem is mostly solved based on an iterative algorithm. DL-based methods present advantages and disadvantages compared to classical ones. First, the regularization they learn based on data better captures natural images (videos) statistics than the hand-crafted ones. They do not require expert knowledge and time, which are necessary when hand-crafting the regularizer and setting the regularization parameter. Second, DL-based methods are faster than the classical ones, as they do not rely on iterative algorithms and can benet from ecient GPU architectures. However, their black box nature prevents them from being interpretable, which diers from classical methods that are explainable by construction. Furthermore, they lack exibility in dealing with heterogenous degradations and cannot be suitable for some applications. More recent methods breach the gap between the two paradigms.
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Regarding our contributions, we rstly focused on the problem of VSR. We presented how existing classical and DL-based approaches have solved this inverse problem and compared them in various situations. As our rst contribution, we proposed UVSR, a new VSR neural network based on deep unrolling, a technique consisting of designing CNN architectures based on classical iterative algorithms. We measured and compared its performance to existing networks in some experimental settings and concluded that our newly introduced network is suitable when there are multiple degradations with constraints on inference speed and the number of parameters. As our second contribution, we pointed out for the rst time the instability problem of recurrent VSR when facing long sequences with low motion. Existing recurrent VSR networks generate high-frequency artifacts on such sequences. As part of the proposed solution, we dened a new framework for recurrent VSR models based on Lipschitz stability theory. As an implementation of this framework, we proposed a new recurrent VSR network coined MRVSR that is more suited for long sequences with low motion than existing recurrent VSR models. We experimentally showed its stability and SOTA performance on long sequences with low motion. As part of our experiments, we introduced a new test dataset of such sequences: Quasi-Static Video Set.

As our third contribution, we designed the rst NNs that deconvolve the time series of radio interferometry images to help reconstruct transient astronomical sources. They are sources that appear and disappear over time and are interesting for astrophysicists because they can be related to high-energy physical phenomena such as pulsars, rotating radio transients (RRATs), solar-system magnetized objects, and "fast radio bursts" (FRB). We proposed two new NNs that can manage the multiple PSFs of the instrument and operate spatial and temporal modelings. We showed their superior performance on our simulated data over CLEAN, the most used classical algorithm in the radio interferometry community.

Perspectives

VSR

In VSR, maximizing the temporal receptive eld, i.e., the number of input LR frames used to super-resolve an HR frame, can signicantly increase the performance. However, we saw that this number is limited by the memory we can allocate at training time for sliding-based VSR methods. This number is increased for recurrent methods, but they, in turn, present the divergence issue on long sequences with low motion. Imposing the Lipschitz constraint solves this problem but reduces the temporal receptive eld. We need a method to stock an arbitrary number of LR frames in memory without presenting any divergence issue.

In the restrictive case where all motions are translational, the rst part of the shift-andadd algorithm, i.e., the accumulation that estimates the blurred version of the HR frame, can fulll this role. If the L2 distance is used for the data delity term, the pixelwise average of measurements after image registration can be computed recursively, enabling online processing of the input LR frame. [START_REF] Long Nguyen | Self-Supervised Multi-Image Super-Resolution for Push-Frame Satellite Images[END_REF] proposed to use a CNN for the subsequent deblurring stage. However, this approach's temporal receptive eld is still limited by the memory allocated at training time. In case the number of accumulated data goes above the one used 130/159 C at training time, the blur corrected in the subsequent stage diers from the ones observed during training time. There is still a domain adaptation problem.

To conclude, a new paradigm, dierent from RNN and sliding-window methods, should be proposed to stock useful information from an arbitrary number of LR frames in memory without presenting any divergence issue.

Unrolled VSR

Starting from the forward model of the VSR models that involves the warping operator based on the optical ow between two frames, we have derived an unrolled network. Instead of relying on optical ow, we can use alignment based on deformable convolution in its data step. As this alignment is more diverse than the optical ow-based one in terms of oset, this approach should give better results. However, the alignment occurs in the HR space. Therefore, we can encounter a memory issue with the deformable convolution at training time. Parallel computing could be necessary in this case.

Radio interferometry

Our proposed networks take as input dirty images and output restored sky models. They, therefore, exclusively work in the image domain. Another approach worth trying is designing CNNs that work in the Fourier domain, taking sampled amplitudes and phase distributions as inputs and applying inpainting on them. Restored skies can then be computed by inverse Fourier transform. Studies like [START_REF] Han | k -Space Deep Learning for Accelerated MRI[END_REF] operated DL-based reconstructions in the Fourier domain in their MRI reconstruction problem. Regarding single radio image deconvolution, [START_REF] Schmidt | Deep Learning-based Imaging in Radio Interferometry[END_REF] recently proposed to do the inpainting in the Fourier domain. This idea should be extended to the inpainting of the input time series of Fourier plans.

General image and video restoration problems

Recently, transformers have been pushing the limit of image and video restoration performance [START_REF] Liang | SwinIR: Image Restoration Using Swin Transformer[END_REF][START_REF] Cao | Vdtr: Video deblurring with transformer[END_REF][START_REF] Liang | Recurrent Video Restoration Transformer with Guided Deformable Attention[END_REF][START_REF] Liang | Vrt: A video restoration transformer[END_REF][START_REF] Wang | Uformer: A General U-Shaped Transformer for Image Restoration[END_REF][START_REF] Waqas | Restormer: Ecient Transformer for High-Resolution Image Restoration[END_REF]. However, these transformer-based models are again used in an ideal single degradation scenario and given only degraded data at their input. They lack exibility in dealing with multiple degradations. Enabling this exibility by non-blindly giving the knowledge about degradation to the input would be an important future work. In this case, one should design how the knowledge about degradation can enable spatial transformation within these transformer-based models. Moreover, combining a transformer-based architecture with frameworks such as deep unfolding, plug-andplay, RED or DIP would be an interesting approach. As transformer-based architectures are highly memory-demanding, they would benet from parallel computing. Moreover, progress in GPU, parallel, and high-performance computing would undoubtedly help the image and video restoration community. O VSR videos of the Vid4 [START_REF] Liu | A Bayesian approach to adaptive video super resolution[END_REF] dataset and concatenate them in the time dimension. We concatenate in the following order-calendar, city, foliage, work-and repeated this motif several times to form a long sequence. The latter thus contains brutal scene change with total inconsistency between successive scenes. A motif has a length of around.170 frames. We run our RLSP two times again on this sequence. Fig. B.2a compares an older run and the newer one that has started a motif after, in terms of PSNR on the brightness channel. Fig. B.2b visualizes the substraction of the PSNR of the older one by the PSNR of the newer one. We see that after around 50 frames, the newer run catches up with the older one. This means that about 50 frames after the beginning of the newer run, the older model uses no more information older than the beginning of the newer run.

B.2 About SRN-C

Algorithm. 5 details the SRN-C algorithm [START_REF] Tanay | Diagnosing and Preventing Instabilities in Recurrent Video Processing[END_REF]. It involves an image size hyperparameter n [START_REF] Tanay | Diagnosing and Preventing Instabilities in Recurrent Video Processing[END_REF]. This quantity should theoretically be equal or bigger than the image size used during inference to guarantee stability. This is because the matrix of a convolution applied to an image is dierent and bigger than the matrix of a convolution applied to a bigger image. In practice, n should be in the order of the image size at inference time. Note that n is not constrained by the image size at training time. In our experiments, we set n =128.
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taking into account that SRN [START_REF] Sanyal | Stable Rank Normalization for Improved Generalization in Neural Networks and GANs[END_REF] that fails to set spectral norms of convolutional layers to ↵ in the work [START_REF] Tanay | Diagnosing and Preventing Instabilities in Recurrent Video Processing[END_REF] can be seen as doing SRN-C with n =1. 

B.4 Other remarks

We stated that SRN-C with =1 , was equivalent to setting the spectral norm of the matrix of the convolutional layer to a desired value ↵. We noticed after our work that the same algorithm as this case of SRN-C was also proposed in [START_REF] Ryu | Plug-and-Play Methods Provably Converge with Properly Trained Denoisers[END_REF], coined real spectral normalization. Some deep unrolling approaches factorized the network into data and denoising prior steps [START_REF] Zhang | Deep Unfolding Network for Image Super-Resolution[END_REF]. As we stated in Sec. 2.5.3, a denoising function can be 1-Lipschitz while correctly performing. Besides, we demonstrated that a recurrent VSR network is stable on long sequences with low motion when the Lipschitz constant of its recurrent mapping is below 1. A subsequent idea, therefore, was to combine the ideas from Secs 2.4 and 2.5 to design an unrolled VSR network with a recurrent and 1-Lipschitz prior module.

However, this approach resulted in a poor-performing network. The following results illustrate this point. First, on the Set5 test set with zoom factor s =4and standard deviation of the gaussian blur equaling 1.5, an USRNet model free of any constraint and an US-RNet model with Hard Lipchitz constraint (HL) on its prior module respectively recorded the mean PSNR of 29.16 and 28.91 dB. The gap between these values was 0.25dB, which showed the performance drop provoked by the HL. This gap was smaller than the one between MRVSR and RLSP on Vid4, reported in Tab. 2.4 (the gap of 0.56dB). This observation on the SISR problem was rather promising because the HL did not provoke a substantial performance drop.

Next, we implemented a variant of USRNet adapted to the VSR problem. The latter had the same U-Net-based prior model as USRNet, but this model was made recurrent with an RLSP-like mechanism (recurrent hidden state and output). We prepared this model and another version with HL on its U-Net prior. We note that the Lipschitz constants of the downsampling and upsampling operations used in the U-Net are equal to 1. We also note that the HL introduces additional parameters to be trained during training. We unrolled both models for 4 iterations and tuned lter numbers for the U-Net prior to achieving the limit of possible memory consumption during the training with a batch size of 4 and the NVIDIA GeForce RTX 3090 GPU (24GB). These lter numbers of the U-Net were 16, 32, 64, and 64 on the downsampling branch (the ones of the upsampling branch are symmetric).

As a result, the constraint-free version of this VSR model recorded a mean PSNR on the brightness channel of Vid4 of 27.29dB. This performance is below RLSP. Besides, the one 143/159 with HL recorded a PSNR of 26.69dB, which is below the performance of MRVSR. The gap between these values is 0.6dB, slightly higher than between RLSP and MRVSR. This gap shows that the performance drop from the 1-Lipschitz recurrent U-Net prior in the VSR variant of USRNet was signicant. Moreover, the VSR variant of USRNet was slower than MRVSR and RLSP.

  blur kernel. .................................. 1.2 Deconvolution based on inverse ltering at dierent noise levels . The noise is white and Gaussian. The blur kernel described in Fig. 1.1 has been used. Left: degraded image. Right: deconvolved image. Even if the noise is imperceptible, the inverse ltering amplies the noise. ........... 1.3 Deconvolution based on Tikhonov ltering, with L = I.

  Figure adapted from [110]. ........................... 2.3 RLSP. Figure taken from [42] .......................... 2.4 Illustration of optical ow. Figure taken from [77]. .............. 2.5 Illustration of the sampling locations in 3 ⇥ 3 standard and deformable convolutions, taken from [33]. (a) regular sampling grid (green points) of standard convolution. (b) deformed sampling locations (dark blue points) with augmented osets (light blue arrows) in deformable convolution. (c)(d) are special cases of (b), showing that the deformable convolution generalizes various transformations for scale, (anisotropic) aspect ratio and rotation. . 2.6 Dierences of non-local operation and explicit motion compensation. Nonlocal operation tries to obtain the response at position x i by computing the weighted average of relationships of all possible positions x j [133]. Figure taken from [150]. ................................ 2.7 Structure of an NLRB. We show the feature maps as their shapes like THWC, which are reshaped if noted. The N represents matrix multiplication and L represents element-wise addition. Figure taken from [150]. ....... 2.8 Speed and performance comparison, based on UDM10 dataset. [150]. Figure adapted from [24]. ................................ 2.9 Classical static scene denoising (temporal and xed pattern noise). ..... 2.10 Static scene video super-resolution. ...................... 2.11 Classical VSR with a mobile object. Left: input degraded frame. Right: the corresponding super-resolved frame. ..................... 13/159

3 . 5
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 121591113 Figure 1.2: Deconvolution based on inverse ltering at dierent noise levels . The noise is white and Gaussian. The blur kernel described in Fig. 1.1 has been used. Left: degraded image. Right: deconvolved image. Even if the noise is imperceptible, the inverse ltering amplies the noise. 29/159
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 14 Figure 1.4: Deconvolution based on Tikhonov and TV regularizations. The noise is white, additive and Gaussian with standard deviation =5. denotes the regularization parameter. The blur kernel described in Fig. 1.1 has been used. The TV regularization is based on the Split Bregman algorithm [44, 47]. 31/159
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 15 Figure 1.5: Illustration of patches from the natural image manifold (red) and restored patches obtained with the MSE train loss (blue). The MSE-based solution appears overly smooth due to the pixel-wise average of possible solutions in the pixel space. This illustration is adapted from [72].
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 16 Figure 1.6: Illustration of pixel shuing and unshuing. Figure taken from [42].
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 46159 Test datasetsEvaluations of a restoration model should use validation/test sets that simulate a realistic application-oriented scenario. To facilitate comparisons, open-source and public datasets are shared among the research community. The most popular public test sets for image restoration are: 50/Set14[START_REF] Zeyde | On Single Image Scale-Up Using Sparse-Representations[END_REF];

  2.1 and the following forward model [40]: Down-sampling effect Noisy, blurred, downsampled image

Figure 2 . 1 :

 21 Figure 2.1: Diagram representation of the VSR forward model. Figure inspired from [40]. 56/159
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 22159223 Figure 2.2: Overview of FRVSR. FNet is based on an encoder/decoder style architecture, increasing the receptive eld of the convolutions. Its architecture is illustrated in Appendix. A.4. SRNet is based on an architecture with successive residual blocks [54] followed by transposed convolutions for upsampling. Figure adapted from [110].

Figure 2 . 4 :

 24 Figure 2.4: Illustration of optical ow. Figure taken from [77].

Figure 2 . 5 :

 25 Figure 2.5: Illustration of the sampling locations in 3 ⇥ 3 standard and deformable convolutions, taken from [33]. (a) regular sampling grid (green points) of standard convolution. (b) deformed sampling locations (dark blue points) with augmented osets (light blue arrows) in deformable convolution. (c)(d) are special cases of (b), showing that the deformable convolution generalizes various transformations for scale, (anisotropic) aspect ratio and rotation.

Figure 2 . 6 :

 26 Figure 2.6: Dierences of non-local operation and explicit motion compensation. Non-local operation tries to obtain the response at position x i by computing the weighted average of relationships of all possible positions x j [133]. Figure taken from [150].

Figure 2 . 7 :

 27 Figure 2.7: Structure of an NLRB. We show the feature maps as their shapes like THWC, which are reshaped if noted. The N represents matrix multiplication and L represents element-wise addition. Figure taken from [150].

Figure 2 . 8 :

 28 Figure 2.8: Speed and performance comparison, based on UDM10 dataset. [150]. Figure adapted from [24].

Figure 2 . 9 :Figure 2 . 10 :

 29210 Figure 2.9: Classical static scene denoising (temporal and xed pattern noise).

Figure 2 .

 2 Figure 2.11: Classical VSR with a mobile object. Left: input degraded frame. Right: the corresponding super-resolved frame.

Figure 2 . 13 :

 213 Figure 2.13: Deep atmospheric turbulence mitigation.

  Fig. A.1 in the Appendix. A.4 details this architecture.
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 215216 Figure 2.15: Visual comparison on the calendar sequence from Vid4.

Figure 2 .

 2 Figure 2.17: A comparison between a state-of-the-art recurrent VSR network (RLSP) and our proposed network. The former generates high frequency artifacts on long sequences with low motion. The proposed network does not.

  we set ||W k || sp = ↵>1 and minimize srank(W k ) based on training data, where srank is the Stable rank.

2

  https://github.com/junpan19/RSDN 87/159 C 2
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 2219 Figure 2.19: Evolution of PSNR on the brightness channel per frame averaged over the rst three sequences of the Quasi-Static Video Set. We substract the curve of the RFS3 baseline and the graph shows these dierences.

Figure 2 .

 2 Figure 2.20: A frame near the end of the rst sequence of Quasi-Static Video Set (the 376th frame) reconstructed from state-of-the art recurrent networks, and RLSP-SL. The brightness channel is visualized. The networks generate high frequency artifacts on the branch, which is a quasi-static object.

Figure 2 . 21 :

 221 Figure 2.21: The 376th frame of the rst sequence of Quasi-Static Video Set, reconstructed from methods that are stable by design (non recurrent or under HL). MRVSR presents the best quality.

Figure 2 . 22 :

 222 Figure 2.22: Evolution of PSNR on the brightness channel per frame on Sequence 1-XL.W e substract the curve of the RFS3 baseline and the graph shows these dierences.

Fig. 2 . 159 C 2 3 Figure 2 . 23 :

 215923223 Figure 2.23: Spatio-temporal receptive elds of MRVSR (vizualization of juxtaposed images in the input sequence Y =( y ⌧ ,...,y ⌧ ) optimized to maximize the L1 norm of the center pixel in the output image x 0 ). The horizontal axis accounts for the time index t of y t . The gure is stretched in vertical direction.

Figure 2 . 24 :

 224 Figure 2.24: Temporal proles from the brightness channel of the rst sequence of Quasi-Static Video Set. We take the 256th horizontal row of all images and stack them vertically.

Fig. 2 .Figure 2 . 25 :

 2225 Fig.2.[START_REF] Kelvin | Understanding Deformable Alignment in Video Super-Resolution[END_REF] shows the SVD spectrum of our MRVSR model. We see that SRN-C successfully works in constraining the spectral norm of only recurrent layers of L to 1. Other layers
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 1 while max(r k ) >N or k<N max do

Figure 3 . 3 :

 33 Figure 3.3: 1D Net. {z t } t2I has dimensions C ⇥ T ⇥ H ⇥ W . Each convolutional layer outputs f feature maps, except the last one which outputs images with 1 channel each. Each 1D convolutional layer has the kernel size 5.

Figure 3 . 4 :

 34 Figure 3.4: The PSF test cube that has been picked up for evaluation. Text on each image reports: time step, elevation in degrees, azimuth in degrees. Each PSF is normalized to 1 (black). The grey color scale was reversed for clarity.

Fig. 3 .

 3 Fig.3.5 depicts the eective distribution of elevation in the training PSFs set. This distribution is skewed toward 30 elevation in the case of the telescope at hand, MeerKAT. This is expected because the PSF simulation accounts for the visibility of sources in the southern sky, as seen from MeerKAT. For any given observation duration (e.g., 8h max) and integration (e.g., 15 min/image), we computed the telescope source tracking and its aperture projection, both required to derive the eective (u,v) coverage and therefore the PSF. An astrophysical source is associated to a unique pair of coordinates (declination and right ascension ↵) on the celestial sphere (see Appendix A.5 for denitions). Depending on the source declination ( , in the equatorial frame), hour angle (associated with Right Ascension ↵ and time of observation), and observation duration, not all (↵, ) directions are accessible. Therefore, a uniform random distribution of directions, drawn from the "accessible" direction window in the sky, will appear skewed around the local elevation of the South Celestial Pole, located around 30 for MeerKAT. Circumpolar sources close to the
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 35 Fig.3.5 depicts the eective distribution of elevation in the training PSFs set. This distribution is skewed toward 30 elevation in the case of the telescope at hand, MeerKAT. This is expected because the PSF simulation accounts for the visibility of sources in the southern sky, as seen from MeerKAT. For any given observation duration (e.g., 8h max) and integration (e.g., 15 min/image), we computed the telescope source tracking and its aperture projection, both required to derive the eective (u,v) coverage and therefore the PSF. An astrophysical source is associated to a unique pair of coordinates (declination and right ascension ↵) on the celestial sphere (see Appendix A.5 for denitions). Depending on the source declination ( , in the equatorial frame), hour angle (associated with Right Ascension ↵ and time of observation), and observation duration, not all (↵, ) directions are accessible. Therefore, a uniform random distribution of directions, drawn from the "accessible" direction window in the sky, will appear skewed around the local elevation of the South Celestial Pole, located around 30 for MeerKAT. Circumpolar sources close to the
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 36 Figure 3.6: PCA eigenvectors for the rst 10 largest eigenvalues computed over the whole PSF set.

Fig. 3 .

 3 Fig. 3.7 compares the reconstruction of temporal proles related to several transient sources in the test cubes. The gure compares methods at dierent noise levels ✏ . We ob-

Figure 3 . 7 :Figure 3 . 8 :Figure 3 . 9 :

 373839 Figure 3.7: Reconstructions of temporal proles related to some transient sources in the test cubes. The horizontal and vertical axes indicate the time step and amplitude for each subgure. The gure compares methods at dierent noise levels ✏ . The names of the sources are, from left to right: source 1, source 2, source 3, source 4, and source 5.

Figure 3 .

 3 Figure 3.10: A constant source in the input degraded sky between time steps 0 and 6, and the average of the input skies over all the time steps. First row: noise level ✏ =2. Second row: ✏ =3. The noise level is reduced in the averaged sky.
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 33 Figure 3.11: Average PSF over the PSF cube of Fig. 3.4.

Figure 3 . 12 :Figure 3 . 13 :

 312313 Figure 3.12: The average variance of reconstructed light curves of constant sources over the test cubes at dierent values of the noise level ✏ . The variances are computed on cubes normalized between 0 and 1. Vertical bars show standard deviation.

Figure 3 . 14 :

 314 Figure 3.14: log(RMSE noise ) averaged over the test cubes at dierent values of ✏ . Vertical bars show standard deviation.Because of the log scale, the standard deviation is higher when RMSE noise is small. This is the case for the DL-based methods.

Figure 3 . 16 :

 316 Figure 3.16: Mean NRMSE s for sources in the test set for each decile of SNR s . Vertical bars represent standard deviations.

Figure 3 . 17 :Figure 3 . 18 :

 317318 Figure3.17: Reconstructions of temporal proles of source 3 and source 5 from the test cubes (that were also reported in Fig.3.7). The gure compares methods at dierent noise levels ✏ .
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 3191593320 Figure 3.19: Mean NRMSE s for sources in the test sky cubes for each decile quantile of SNR s . Vertical bars represent standard deviations.

Figure 3 . 21 :

 321 Figure 3.21: log(RMSE noise ) averaged over the test cubes at dierent values of ✏ . Vertical bars show standard deviation.Because of the log scale, the standard deviation is higher when RMSE noise is small. This is the case for the DL-based methods.

  We proposed two neural networks to address this task, namely 2D-1D Net and Deation Net. Thanks to the SFT layer, they can handle multiple PSFs that vary depending on the observed sky positions. They involve the same sub-modules: 2D Net and 1D Net. The former deconvolves individual frames, and the latter enables temporal sky modeling. 2D-1D Net is based on a simple feedforward inference, whereas Deation Net involves dierent computational ows. The latter restores the average sky and uses it to isolate transient sources in individual frames. Experiments based on simulated data and metrics measuring temporal 124/159 D R T R prole reconstruction and background denoising demonstrated superior performances of these DL-based methods over CLEAN in the presence of noise. Deation Net performs the best, excelling in reconstructing constant sources and background denoising. The ablation study conrms the temporal modeling enabled by 1D Net signicantly increases the sky cube reconstruction performance.

Figure A. 1 :

 1 Figure A.1: Architecture of FNet. The input LR frames y t and y t 1 are concatenated in the channel dimension and given to the encoder/decoder style architecture. 2x indicates the corresponding block is duplicated. All convolutions use 3 ⇥ 3 kernels with stride 1. Figure adapted from [110].
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 15 Fig. A.1 illustrates the architecture of FNet.

Fig. A. 2

 2 Fig. A.2 illustrates the unique pair of coordinates (declination , right ascension ↵) that is associated with an astrophysical source.

Figure B. 1 :

 1 Figure B.1: Mean PSNR of our RLSP runs on the brightness channel of the RED4 test dataset [134, 97]. Numbers in the legend indicate at which time step the inference has started.

Figure B. 2 :

 2 Figure B.2: Comparison of an older run and the newer one of our RLSP on a long sequence formed by repeating a concatenation of the four Vid4 sequences. The newer run has started a concatenation after the older one.

Fig. B. 4

 4 Fig. B.4 additionally illustrate the fact that MRVSR-SL still diverges on long sequences with low motion. This conrms again that SL is not enough to prevent the instabilities.

Figure B. 3 :

 3 Figure B.3: Evolutions of the L2 norm of outputs when running dierent networks on a static sequence of a noise image of size 512 ⇥ 512.
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Table 1 .

 1 DeepRED) the methods that rely on a classical algorithm and an implicit prior captured by a CNN.Tab. 1.1 summarizes the advantages and disadvantages of dierent approaches. These key dierences should guide the choice of a method when facing realistic image/video restoration applications. Regarding interpretability, compared to the methods that connect DL with the perfectly interpretable framework of iterative algorithms, the ones that give the knowledge about the forward model to the input of the CNNs are less interpretable. In MD or SFTMD, even if a CNN can exibly manage multiple degradations, this model is still used as a black box. Regarding a method that rst transforms the input with regularized inversion, in the subsequent stage the denoising CNN is still used as a black box.

	51/159

• (deep unrolling) the methods that unfold for a xed number of iterations a classical iterative algorithms and replace some operators with CNNs. The unfolded iterations together form a whole CNN that is trained based on data. 1: Advantages and disadvantages of inverse problem-solving methods.

  This is the blurred version of x t . The problem in Eq. (2.7) can be solved in two steps, following the shift-and-add algorithm[START_REF] Farsiu | Fast and robust multiframe super resolution[END_REF]:||D s z t y t ||2 2 has been replaced by ||D s z t y t || p p

1. we rst estimate ẑt from the degraded frames; 2. we then deconvolve ẑt to output the estimate xt . The nding of z t solves the following problem: 58/159 V SR ẑt =argmin zt ||D s z t y t || p p + t+J X j=t J,j6 =t ||D s F t!j z t y j || p p (2.8)

  T BU s y t 2 ût!t 1,LR FNet(y t 1 ,y t )

				V SR
	Algorithm 1: UVSR
	Input: y 3 ût 1!t,LR	FNet(y t ,y t 1 )
	4 ût!t 1		BU s ût!t 1,LR
	5 ût 1!t		BU s ût 1!t,LR
	6 xt 1	F ût-1→t xt 1
	7 xt 1,LR		S s (x t 1 )
	8 for k	0 to K 1 do
		Prior step:
	9	xk t,LR	S s (x k t )
	10 11	z k LR z k		N ✓ k (x k t,LR , xt 1,LR ) Ss (z k LR )
		Data step:
	13 end	
	14 xt	xK

t ,y t 1 , xt 1 ,H,s 1 Initialization: x0 t = H 12 xk+1 t xk t + z k ↵ k H T BU s (D s H xk t y t ) k F ût-1→t H T BU s (D s HF ût→t-1 xk t y t 1 ) t Output: xt , ût 1!t,LR , ût!t 1,LR

Table 2 .

 2 1: Number of parameters, testing time and PSNR(dB)/SSIM of dierent models on Vid4 test set with =1.6. Values related to networks with '*' are taken from the referred publication. We implemented networks without '*'. Bold indicates the best performance.

	Sequences	FRVSR	UVSR	*DUF [150] *PFNL [150] RLSP [42]
	Calendar	23.90/0.8092 24.03/0.8102 23.85/0.8052 24.37/0.8246 24.08/0.8160
	City	27.79/0.8220 27.59/0.8209 27.97/0.8253 28.09/0.8385 28.10/0.8278
	Foliage	26.53/0.7806 26.58/0.7819 26.22/0.7646 26.51/0.7768 26.43/0.7766
	Walk	29.98/0.9029 30.03/0.9035 30.47/0.9118 30.65/0.9135 30.36/0.9101
	Average	27.05/0.8287 27.06/0.8291 27.13/0.8267 27.40/0.8384 27.24/0.8326
	# param. (M)	5.055	4.624	5.829	3.003	4.225
	Testing time (ms) 214	170	2754	741	80

Table 2 . 2 :

 22 Number of parameters, testing time and PSNR(dB)/SSIM of FRVSR-MD and UVSR on Vid4 test set with train 2 [0.375, 2.825] and test =1.6. Bold indicates the best performance.

	Sequences	FRVSR-MD UVSR
	Calendar	23.52/0.7870 23.62/0.7947
	City	27.64/0.8093 27.60/0.8099
	Foliage	26.17/0.7596 26.05/0.7614
	Walk	29.68/0.8971 29.74/0.8982
	Average	26.75/0.8132 26.75/0.8161
	# param. (M)	5.066	4.624
	Testing time (ms) 216	170

  =1 2 8in our study), except the last one which outputs s 2 =1 6feature maps, where s is the scaling factor. The network outputs the brightness channel Y of YCbCr color space. Cb and Cr channels are upsampled independently with bicubic interpolation. Input LR frames {y i } t 1it+1 are in RGB colorspace. Besides, y t is converted from RGB to Y and replicated s 2 =1 6times in the channel dimension, which gives x ? t for the residual connection. Pixel shuing rearranges elements in a tensor of shape (C ⇥ s 2 ,H,W) to a tensor of shape (C, H ⇥ s, W ⇥ s).

	C 2						
	h t-1							xt
		ξ			φ L			ψ	×s
	y t-1							y * t
	y t						
	y t+1	1	n ξ	1		n φ		1	n ψ
								h t
		Conv	SRN-C	ReLU	×s	Pixel shuffling
		Concatenation along channel dimension	Element-wise addition
		Number of channels:	3	f		1	s 2
					85/159		

Figure 2.18: MRVSR architecture. SRN-C denotes convolutional layer under HL enforced by SRN-C. Each convolutional layer uses 3 ⇥ 3 kernel with stride 1 and outputs f feature maps (f

Table 2 .

 2 3: Mean PSNR / SSIM on the brightness channel of Quasi-Static Video Set. The metrics are measured excluding the rst 3 and last 3 GT frames. 'First 50' means the metrics are computed at the beginning of the sequences, i.e., on the rst 50 reconstructed frames. 'All' means the metrics are computed through the entire sequences, i.e., on all reconstructed frames. 'Last 50' means the metrics are computed at the end of the sequences, i.e., on the last 50 reconstructed frames. Red: the best result. Blue: the second best result. tively RLSP, FRVSR and RSDN are 1.50, 4.39 and 4.09 in PSNR and 0.0029, 0.0790 and 0.0362 in SSIM. They represent in average 3.33dB in PSNR and 0.0394 in SSIM. This performance drop is due to the generation and accumulation of high frequency artifacts. These artifacts appear on objects that barely move. Example artifacts are shown on Figs. 2.20a to 2.20c which show a frame near the end of the rst sequence of Quasi-Static Video Set (the 376th frame) reconstructed by each network.

	90/159

Table 2 .

 2 4: Mean PSNR on the brightness channel of Vid4, model size and runtime. PSNR values for FRVSR, RLSP and RSDN are taken from their papers. Runtime is measured on an LR size of 180⇥320, an Intel I9-10940X CPU and one NVIDIA TITAN RTX GPU.

		RFS3 FRVSR RSDN RLSP MRVSR
	PSNR	26.43 26.69	27.92 27.46	26.90
	# Param. (M) 0.77	5.05	6.18	1.08	1.21
	Runtime (ms)	9	55	56	11	12

  2 • ✏ . We denote this vector ht . 2D Net. Each convolutional layer outputs f feature maps. f =32in our study. The kernel size of each convolutional layer is set to 3 ⇥ 3. The vector entering the SFT layer indicates ht .

	D R T R
	2D-1D Net		
	ht		
	y t		z t
	Encoder		SFT Net
	2D Conv	SFT	ReLU
	Number of channels:	1	f
	Figure 3.2: {z t } t∈I		{x t } t∈I
	1D Conv	ReLU
	Number of channels:	1	f
	104/159		

  The rst module is a network Algorithm 3: 2D-1D Net. C r denotes the operation that center-crops a 2D structure with crop size r.Input:(Y, H, ✏ )=({y t } t2I , {h t } t2I , ✏ ) ||M t || 2 • ✏ = ||F(h t )|| 2 • ✏

	C 3	
	Output:	X
	1: S		an empty list
	2: for all t 2 [|0,T 1|] do
	3:	hb t		PC r h t
	4:		
	5:	ht		Concat( hb t , t )
	6:	f t		Encoder(y t )
	7:	z t		SFT Net(f t , ht )
	8:	S.append(z t )
	9: end for
	10: Z		StackAlongTimeAxis(S)
	11: X		1D Net(Z)
	12: return	X
				105/159

t =

  Algorithm 4: Deation Net. C r denotes the operation that center-crops a 2D structure with crop size r.Input: (Y, H, ✏ )=({y t } t2I , {h t } t2I , ✏ )

	C 3		
	Output: 1: y 2: h	X 1 T 1 T	P T 1 t=0 y t P T 1 t=0 C r h t
	3:		
			107/159

  ||M t || 2 • ✏ = ||F(h t )|| 2 • ✏

			2
	5: h	Concat(h b , )
	6: f	Encoder(y)
	7: z	SFT Net(f , h)
	8: S	an empty list
	9: for all t 2 [|0,T 1|] do
	10:	hb t	PC r h t
	11:		
	12:	ht	Concat( hb t , t )
	13:	f t	Encoder(y t )
	14:	∆ t	f t h t ⇤ z
	15:	d t	SFT Net(∆ t , ht )
	16:	z t	d t + z
	17:	S.append(z t )
	18: end for	
	19: Z	StackAlongTimeAxis(S)
	20: X	1D Net(Z)
	21: return	X
	adjoint, which dilutes the signal too much because the PSF is strongly ill-conditioned in this
	radio interferometry problem. Therefore, unfolding approaches result in poor performance.

t =

  ods remains good. The plots of Fig.3.7 related to source 1 illustrate this. Moreover, even in the presence of noise, DL-based methods provide a better restoration and preservation of the start and end dates of the transient signal. This is granted by the temporal modeling capability of these methods. Conversely, in the case of CLEAN, the restored start and end dates of the transient is distorted because of the noise in single frames. The plots related to source 5 at noise level ✏ =3and ✏ =4illustrate these statements regarding the end of the transient signal. Among DL-based methods, Deation Net seems better for restoring transient signals at a high noise regime. The plots of source 3 depict this. This suggests that the architectural choice of Deation Net decoupling constant and transient source reconstructions is appropriate with respect to the inverse problem. Even at the highest noise level ✏ =6 , Deation Net can restore the end of the transient signal. Fig.3.8 visualizes source 3 reconstructed from dierent methods, at noise level ✏ =4. We see that DL-based methods more eciently reconstruct the transient source than CLEAN. Moreover, Deation Net performs the best in reconstructing the end of the transient source. These results are particularly important whenever one telescope wants to react quickly upon detecting a potential transient. A transient could be detected on a nearly real-time imaging pipeline that integrates our trained network as soon as its light curve rises. Alerts could therefore be created and distributed earlier and with more condence concerning false detections.

	D R T R
	114/159

  and the end of a transient event by enabling temporal modeling. Fig.3.19 aggregates inference results on the test cubes with the xed PSF cube illustrated in Fig.3.4 and the noise levels ✏ 2{0, 1, 2, 3, 4, 5, 6}. Fig.3.20 aggregates inference results on the test cubes with the xed noise level ✏ =3and the 45 PSF test cubes used in Sec. 3.6.2. Both gures compare NRMSE s averaged over sources of the same interval delimited by deciles in SNR s . On average, we observe that 2D Net performs slightly better than CLEAN in terms of NRMSE s . 2D-1D Net signicantly outperforms both methods and presents on average ⇠ 2.3 times smaller NRMSE s than 2D-1D Net and CLEAN. This exemplies the benet brought by the temporal modeling capability of 1D Net.

3.18 

visualizes the source 5 reconstructed from dierent methods, at noise level ✏ =3 . We see that 2D-1D Net reconstructs the transient prole more eciently down to the disappearance. 2D Net fails to reconstruct it, similarly to CLEAN. These gures illustrate that, despite the noise, 1D Net allows correctly reconstructing the beginning 122/159 D R T R
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Table A .

 A 

	Model Machine(s) LR size Batch size	Initial lr BPTT length loss
	RLSP	NVIDIA Ti-	64	4	10 4	10	MSE
		tan XP (12				
		GB)					
	RSDN 8	Nvidia	64	16	10 4	7	Charbonnier
		Tesla V100				
		GPUs (16				
		GB or 32				
		GB)					
	FRVSR NVIDIA	64	4	10 4	10	L2
		P100					
	EDVR 8 NVIDIA	64	32	10 4	-	Charbonnier
		Titan Xp 12				
		GB					
	PFNL	NVIDIA	32	16	10 3	-	Charbonnier
		GeForce				
		GTX					
		1080Ti 11				
		GB					
	DUF	NVidia	32	16	10 4	-	Huber
		GeForce				
		GTX 1080				
		Ti 11 GB				
					131/159	

1: Training settings of SOTA VSR networks. "lr" means learning rate. All of them used Adam optimization. A.4 Architecture of FNet ' # % & #$%→#,()

' #$%

This means the evolution through time of the amplitude of a source and has nothing to do with the "temporal prole" used in the previous chapter regarding the VSR problem.

A.1 Code, data and other materials related to MRVSR Please nd our code and instructions in the following GitHub repository: https:// github.com/bjmch/MRVSR. The repository also contains links to download the proposed dataset, network weights and videos reconstructed from dierent networks.

A.2 Vizualisations of transient source reconstructions

Please nd our vizualisations of transient source reconstructions in the following GitHub repository: https://github.com/bjmch/DL-RadioTransient. 

A.3 Training settings of SOTA VSR networks

B.1 Forgetting capability of recurrent VSR networks

As stated in Sec. 2.5.5, in the presence of strong motion, even with short-term training, a recurrent VSR network learns to forget the past information, which is inconsistent with the new one. The newly created high-frequency content is forgotten at the same time, preventing divergence on scenes with enough motion. Apart from the example of the frequentlymoving bird in the rst sequence of the Quasi-Static Video Set in Sec. 2.5.5, the following experimentally illustrate this forgetting capability.

REDS4 is a public test dataset of 4 sequences of 100 frames used in [START_REF] Wang | EDVR: Video Restoration With Enhanced Deformable Convolutional Networks[END_REF][START_REF] Pan | Deep Blind Video Super-Resolution[END_REF]. These sequences present fast scene motion with a rather largely moving camera and a frame rate that is not so high (120fps) [START_REF] Nah | NTIRE 2019 Challenge on Video Deblurring and Super-Resolution: Dataset and Study[END_REF]. We take our RLSP implementation detailed in Sec. 2.5.4 and run it several times on REDS4. Each run starts at dierent osets, i.e., time step. Fig. B.1 numerically compares these runs. We observe that delayed runs catch up with the performance of the baseline one (the one from the rst frame) rather rapidly (after around 5 to 15 frames). This means that about 5 to 15 frames after each of these osets, the recurrent model that started the inference from the beginning uses no more information older than this oset. This information has been forgotten.

As part of another experiment, we center-crop with a crop size of 256 all of the four Algorithm 5: SRN-C-↵- [START_REF] Tanay | Diagnosing and Preventing Instabilities in Recurrent Video Processing[END_REF] Input: Number of iterations N , learning rate ⌘, number of channels m, image size n, initial K 2 R k⇥k⇥m⇥m , initial u 2 R n⇥n⇥m . Parameters: Spectral norm ↵, stable rank . begin for i =1,...,N do

Training step: