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Titre : Réseaux de neurones convolutifs profonds pour problèmes inverses en restauration d’images et
de vidéos
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Résumé : La restauration d’images et de
vidéos regroupe de nombreuses tâches—comme le
débruitage, la déconvolution et la super-résolution,
pour ne citer que quelques exemples—qui permet-
tent des applications de grand intérêt dans divers
domaines de la recherche et de l’industrie (par ex-
emple, les industries de la santé, l’armée, la créa-
tion, les jeux et la recherche en astrophysique).
Tous les problèmes de restauration sont modélisés
dans le cadre mathématique des problèmes in-
verses, dans lequel les modèles directs spéci�ent
les dégradations reliant les données corrompues
observées aux données originales. Ces problèmes
sont classiquement résolus sur la base de régu-
larisations choisies à la main pour atténuer leur
caractère mal posé et d’algorithmes itératifs qui
minimisent les sommes de termes d’attache aux
données et de régulariation. L’apprentissage pro-
fond et les réseaux neuronaux convolutifs (CNNs)
ont récemment augmenté de manière signi�ca-
tive les performances de restauration d’images et
de vidéos. Ces réseaux peuvent notamment ap-
prendre l’ a priori sur l’image ou la vidéo à re-
construire à partir de données, i.e., de paires de
données dégradées et originales. Le modèle di-
rect est utilisé a�n de générer ces paires dans ce
cadre d’apprentissage profond. Même si la régu-
larisation apprise permet généralement d’obtenir
de meilleures performances qu’une régularisation
manuelle et que les CNNs sont plus rapides que les
algorithmes itératifs (donc plus adaptés aux appli-
cations pratiques), les CNNs sont utilisés comme
des boîtes noires et manquent d’interprétabilité.
De plus, ils manquent également de �exibilité
dans l’utilisation de la connaissance du modèle
direct, contrairement à la résolution classique de
problèmes inverses. Dans certaines situations
où le modèle direct est simple et bien carac-
térisé, les méthodes classiques peuvent encore être
plus performantes que les méthodes basées sur
l’apprentissage profond. Certaines approches plus
récentes sont hybrides, combinant les avantages

des deux méthodes de manière complémentaire.
Certaines d’elles permettent de concevoir, par ex-
emple, un CNN unique et interprétable qui peut
gérer de manière �exible les connaissances à pri-
ori des dégradations.

Ce travail étudie les architectures de réseaux
de neurones pour résoudre les problèmes de
restauration d’images et de vidéos. Première-
ment, nous expliquons les principes des méthodes
de restauration d’images et de vidéos classiques,
puis basées sur l’apprentissage profond, puis hy-
brides. Ensuite, nous nous concentrons sur le
problème inverse de la super-résolution vidéo :
nous passons en revue sa résolution tradition-
nelle et sa résolution dans l’état de l’art basée sur
l’apprentissage profond. Comme première con-
tribution, nous proposons un réseau de super-
résolution vidéo hybride qui combine les avan-
tages de la résolution classique avec la puissance
de représentation des CNNs. Comme deuxième
contribution, nous proposons un réseau de super-
résolution vidéo récurrent adapté à la super réso-
lution de longues vidéos dans lesquelles certaines
parties de la scène bougent à peine (ce type de
vidéo peut être rencontré dans des applications
telles que la vidéosurveillance) et introduisons une
nouvelle base de données de test de telles vidéos.
En e�et, nous montrons que les réseaux de super-
résolution vidéo récurrents existants présentent
des instabilités sur ces vidéos. En�n, nous nous
concentrons sur la déconvolution de séries tem-
porelles d’images en radio-interférométrie, a�n de
permettre une meilleure détection des sources as-
tronomiques transitoires. Ces sources, qui ap-
paraissent et disparaissent au �l du temps, sont
très intéressantes pour les astrophysiciens car elles
sont associées à des phénomènes physiques de
haute énergie. Comme troisième contribution,
nous proposons deux architectures de réseaux de
neurones qui peuvent faire de la modélisation spa-
tiale et temporelle pour résoudre ce problème de
déconvolution.
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Abstract: Image and video restoration re-
groups numerous tasks—such as denoising, de-
convolution, and super-resolution, to give a few
examples—that enable applications that are of high
interest in diverse research and industrial areas
(e.g., health, military, creative, gaming industries,
and research in astrophysics). All restoration prob-
lems are modeled in the mathematical framework
of inverse problems, in which forward models
specify degradations connecting the observed cor-
rupted data to the original data. These problems
are classically solved using hand-crafted regular-
izations to mitigate their ill-posedness and iter-
ative algorithms that minimize sums of data �-
delity and regularization terms. Deep learning
(DL) and Convolutional Neural Networks (CNNs)
have recently signi�cantly increased image and
video restoration performance. These networks
can learn the regularization from data, i.e., pairs
of degraded and original data. The forward model
is used in order to generate these pairs in this DL
framework. Even though the learned regulariza-
tion generally enables better performance than a
hand-crafted one and CNNs are faster than itera-
tive algorithms (thusmore suitable for practical ap-
plications), CNNs are used as black boxes and lack
interpretability. Moreover, they also lack �exibil-
ity in using knowledge of the forward model, con-
trary to classical inverse problem-solving. In some
situations where the forward model is simple and
well characterized, classical methods can still per-
form better than DL-based ones. Somemore recent
approaches are hybrid, blending the advantages of

both methods in a complementary way. Some of
them enable to design, for instance, a single and in-
terpretable CNN that can �exibly manage knowl-
edge about degradations.

This work investigates neural network archi-
tectures to solve image and video restoration prob-
lems. First, we explain the principles of classi-
cal, DL-based, and hybrid image and video restora-
tion methods. Second, we focus on the Video-
Super-Resolution (VSR) inverse problem: we re-
view its traditional solving and state-of-the-art
solving based on DL. As our �rst contribution, we
propose a hybrid VSR network that mixes the ad-
vantages of classical solving with the representa-
tion power of CNNs. As our second contribution,
we propose a recurrent VSR network adapted for
super-resolving long videos in which some parts
of the scene barely move (this kind of video can be
encountered in applications such as video surveil-
lance) and introduce a new test dataset of such
videos. We demonstrate that existing recurrent
VSR networks present instabilities on such videos.
Finally, we focus on the deconvolution of image
time series in radio interferometry, to enable better
detection of transient astronomical sources. They
are sources that appear and disappear over time
and are highly interesting for astrophysicists be-
cause they are associated with high-energy physi-
cal phenomena. As our third contribution, we pro-
pose two neural network architectures that can do
spatial and temporal modeling to solve this decon-
volution problem.
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BPTT BackPropagation Through Time.

CNN Convolutional Neural Network.

DL Deep Learning.

DUF Dynamic Upsampling Filters.

EDVR Video Restoration framework with Enhanced Deformable convolutions.

FRVSR Frame-Recurrent Video Super-Resolution.

FRVSR-MD Frame-Recurrent Video Super-Resolution for Multiple Degradations.

GT Ground Truth.

HL Hard Lipschitz constraint.

HR High Resolution.

LR Low Resolution.

MD Multiple Degradations.

MRVSR Middle Recurrent Video Super-Resolution.

MSE Mean-Squared-Error.

NLRB Non-Local Residual Block.

NN Neural Network.

PFNL Progressive Fusion Video Super-Resolution.

PSF Point Spread Function.

PSNR Peak Signal-to-Noise Ratio.

RED REgularization by Denoising.

RLSP Recurrent Latent Space Propagation.

RSDN Recurrent Structure-Detail Network.

SFT Spatial Feature Transform.

SFTMD Spatial Feature Transform for Multiple Degradations.

SISR Single Image Super-Resolution.
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SL Soft Lipschitz constraint.

SOTA State-Of-The-Art.

SRN Spectral Rank Normalization.

SRN-C Spectral Rank Normalization for Convolutional layer.

SSIM Structural Similarity Index Measure.

UVSR Unrolled Video Super-Resolution.

VSR Video Super-Resolution.
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Given an observed image (resp. video) presenting physical degradations—e.g., blurs and/or
noise—, the image (video) restoration consists in reconstructing its underlying, original,
and clean image (video). This task is important in many industrial applications that involve
image (video) acquisitions. Indeed, these acquisitions involve sensors that always introduce
additional physical corruptions when acquiring data. This way, image (video) restoration
applications exist in, e.g.:

• Medical industry: computed tomography (CT) andMagnetic Resonance Imaging (MRI)
reconstructions restore latent images from subsampled Fourier measurements.

• Astrophysics: for instance, a radio interferometer deployed to observe stars in the
sky corrupts the sky image with its Point Spread Function (PSF) and noise. Denoising
and inverting the e�ect of this PSF, i.e., deconvolution, is particularly interesting to
astrophysicists.

• Military industry: in modern warfare, the soldier is enhanced with optronic sensors
feeding him with real-time video �uxes that he should observe and analyze contin-
uously. His capabilities will be directly related to the quality of these images, which
should be enhanced to optimize the system’s range or to minimize the cognitive e�ort
associated with watching these videos over a long period.

• Creative industry: recently, the resolution of various displays has dramatically in-
creased, from high de�nition television HDTV (1920⇥ 1080), which currently dom-
inates the market, to ultra high de�nition television UHDTV (4K or even 8k). In this
context, there is a great need for Video Super-Resolution, which consists in convert-
ing Low Resolution (LR), low-quality videos into high-resolution, noise-free videos
that can be pleasantly viewed on these High Resolution (HR) devices.

• Gaming industry: VSR allows to display HR details based on LR images that consume
less data.

Mathematically speaking, image (video) restoration problems belong to the class of in-
verse problems. The starting point of an image (video) restoration problem is the forward
image (video) formation model, which explicitly models physical degradations and con-
nects observed data to the unknown and underlying data one wants to estimate. Classical
restoration methods directly derive a minimization problem from this forward model. The
function to be minimized is a sum of two terms. The �rst term is a data �delity term that
ensures the �delity of the solution (i.e., restored data) to the forward model. The second
term, a regularization term, is needed to make the solution robust to noise and unique. The
coe�cient associated with this term, called the regularization hyperparameter, controls the
trade-o� between the two terms. The minimization is mostly performed using an iterative
algorithm coming from convex optimization theory, such as gradient descent. While be-
ing mathematically grounded, classical methods present some drawbacks. First, iterative
algorithms are generally slow and not suitable for real-time applications. Second, one has
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to carefully design the regularizer and the regularization hyperparameter, which requires
advanced knowledge about the inverse problem in question and can be time-consuming.
More recent restoration methods based on Deep Learning (DL) can overcome these draw-
backs. A DL-based reconstruction technique involves a Convolutional Neural Network
(CNN) that can learn the function that associates the degraded image (video) to the corre-
sponding Ground Truth (GT) image (video). This learning relies on degraded and GT image
(video) pairs that can be simulated based on the forwardmodel. Implementing this CNN can
bene�t from e�cient GPU-based architectures, increasing their suitability for real-time ap-
plications. Moreover, the CNN learns the regularization from data, suppressing the need for
carefully hand-crafting a regularizer and a regularization parameter. However, DL-based
methods also present some drawbacks. As an example, contrary to a classical method, a
CNN that only takes the degraded data as input lacks �exibility in dealing with heteroge-
nous degradations. In other words, it cannot perform well when degradations’ parameters
vary. Moreover, a CNN is used as a black box and thus lacks interpretability. Given these
advantages and disadvantages of classical and DL-based restoration methods, more recent,
hybrid approaches combine and can bene�t from both paradigms in a complementary way.
For example, some of them allow designing a restoration CNN that can manage multiple
degradations.

As part of the �rst part of this thesis which presents the context of recent trends in
image and video restoration, the �rst chapter of this thesis presents a general overview of
how di�erent restoration methods exploit forward models of inverse problems to complete
image (video) restoration tasks. We also expose how one can evaluate their performance.

Once the context of image and video restoration has been presented, the second part of
this thesis tackles our contributions regarding some video restoration tasks. More specif-
ically, the second chapter of this thesis focuses on the VSR problem. First, we present
how classical and State-Of-The-Art (SOTA) DL-based methods solve this problem. Then, as
our �rst contribution, we propose a new VSR neural network based on deep unrolling.
This technique derives CNN architectures inspired by iterative algorithms used in classi-
cal restoration methods. Thus, it is a hybrid approach. We measure and discuss the per-
formance of our newly introduced network in some experimental settings. Then, as our
second contribution, we show for the �rst time that SOTA recurrent VSR networks di-
verge on long sequences with low motion (i.e., videos in which some parts of the scene
barely move). We propose a solution to this instability issue in the form of a recurrent VSR
network that is more adapted to tackle long sequences with low motion. We propose a
new test dataset of low-motion sequences to show its superior performance compared to
existing SOTA recurrent VSR networks.

In the third chapter, as our third contribution, we design Neural Networks (NNs) to
reconstruct time series of radio interferometry images to help detect transient astronomi-
cal sources. These sources appear and disappear over time and are particularly interesting
for astrophysicists as they are associated with high-energy physical phenomena such as
pulsars, rotating radio transients (RRATs), solar-system magnetized objects, and “fast radio
bursts” (FRB). We formulate this search as a deconvolution inverse problem of image time
series. Indeed, the radio interferometry images obtained via aperture synthesis imaging are
corrupted by the PSF of the radio interferometer and additive noise, and the morphology of

20/159



INTRODUCTION

this PSF varies in time because the sky rotates over the instrument during the observation.
We propose two new NNs to manage multiple degradations and do both spatial and tem-
poral modelings to solve this inverse problem. We show their superior performance on our
simulated data over CLEAN, the most used classical algorithm in the radio interferometry
community.

We conclude this manuscript with a summary of the results and a discussion about some
perspectives.
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Context
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In image/video restoration, we are given an observed image/video. This observation has
been corrupted by physical degradations. The goal is to recover an image/video that is the
nearest to its underlying original image/video, free of these degradations. An image/video
restoration problem belongs to the class of inverse problems. The physical degradations
are speci�ed by the forward model of the inverse problem. The forward model of an image
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restoration problem has the following form [100]:

y = D�(Ax) (1.1)

where:

• y 2 RN is the observed data, corresponding to an image of size N = N1 ⇥ N2

arranged in a lexicographic order;

• x 2 RM is the underlying data, corresponding to an image of size M = M1 ⇥M2

arranged in a lexicographic order;

• A 2 RN⇥M is the matrix de�ning the linear degradation operator;

• D� : RN 7! RN de�nes other degradations such as nonlinear ones or the e�ect of
the noise. This operator is parameterized by �.

In case of a video restoration problem, we need to account for the additional time di-
mension. The forward model has the following form [77].

yj = D�j(AjFut→j
xt) t� J  j  t+ J (1.2)

where:

• 2J + 1 is the total length of the observed video;

• the indeces j and t indicate time steps;

• yj represents the observed video frame at time step j;

• xt represents a reference video frame at time step t;

• Fut→j
denotes the warping operator with regard to optical �ow ut!j . It models mo-

tion between two clean frames at time steps j and t.

The goal is to �nd a function F that inverts the forward model, using or not the knowl-
edge about degradations. In image restoration, this function veri�es the following equation:

x̂ = F (y, A, �) (1.3)

In case of a video restoration problem:

x̂t = F (yt�J , ..., yt+J , At�J , ..., At+J , �t�J , ..., �t+J) (1.4)

Video restoration di�ers from image restoration because the fusion of several degraded
frames produces a clean, underlying image. Moreover, it is important that reconstructed
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frames with successive time steps x̂t�J , ..., x̂t, ..., x̂t+J are temporally consistent between
them. This temporal coherence ensures a minimization of �ickering artifacts when observ-
ing the restored video.

In this thesis, we suppose the degradation operators and the noise levels (A and � in
the image restoration case; {Aj}t�Jjt+J and {�j}t�Jjt+J in the video reconstruction
case) are known. Therefore, we do not need to estimate them. In other words, we deal with
non-blind scenarios, unless otherwise speci�ed.

1.1 Classical methods

1.1.1 Principles

For many image restoration problems, the forward model in Eq. (1.1) reduces to the linear
additive noise model:

y = Ax+ n (1.5)

where n is a vector of noise. In most cases, it can be modeled as a zero-mean Gaussian noise
with variance �2.

The form of the matrix A is speci�c to the inverse problem. In the case of the image
denoising problem, A is reduced to the identity matrix. In the case of image deblurring,
A is a square matrix that models the blur. This blur can stem from motion between the
scene and the camera, the defocus of an optical imaging system, lens imperfections, and
atmospheric turbulences. If the blur is spatially invariant, the product Ax is equivalent
to a convolution of x with the Point Spread Function (PSF) of the sensor. In the case of
image super-resolution, A models a blurring followed by a low-resolution acquisition and
can be composed into a square matrix modeling the blur and a "�at" matrix modeling the
down-sampling e�ect.

If A is invertible, a naive solution consists in applying the inverse of the linear degra-
dation to the observation [100]:

x̂ = A�1(Ax+ n) = x+ A�1n (1.6)

If the linear degradation is a convolution, A is a block-circulant matrix and may be diago-
nalized by the 2D Discrete Fourier Transform (DFT) matrix, which drastically reduces the
computational cost of the inversion when the dimensions of A are powers of 2 thanks to the
fast Fourier transform algorithm. However, if the matrix A is ill-conditioned (whether it is
block-circulant or not), the inverse �ltered noise A�1n may become very large so that its
e�ect becomes important. Thus, the inverse �ltering ampli�es the noise leading to an irreg-
ular image. In practice, the inverse �ltering is not robust even when the noise is light, but
it works perfectly when no noise degrades the image. Fig. 1.2 illustrates these statements.
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If A is not invertible, one can compute its pseudo inverse, which allows to compute a
solution to the following least squares problem:

x̂ = argmin
x

||y � Ax||22 (1.7)

and there are two possible scenarios:

• if A has a rank r = N < M , we have an under-determined problem. This is for
example the case for an image-super resolution problem. In this case, the solution is
not unique and belongs to an a�ne space in the direction of ker(A). The solution
with minimum norm is most often selected: x̂ = AT (AAT )�1y and AT (AAT ) is
called pseudo inverse of A.

• if A has a rank r = M < N , we have an over-determined problem. There is no exact
solution if y /2 Im(A). The least squares problem, however, has a unique solution
given by x̂ = (ATA)�1ATy. The pseudo-inverse of A is therefore (ATA)�1AT .

Figure 1.1: A blur kernel.

In both cases, the pseudo inverse �lter often leads to irregular solutions, similar to the
inverse �lter. Therefore, whatever the dimensions and the rank of A are, there is a need for
1) stabilizing the solution, i.e., making it robust to noise, and 2) guaranteeing its uniqueness.
This need motivates the following alternative problem formulation:

x̂ = argmin
x

||y � Ax||22 + �r(x) (1.8)
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(a) σ = 0.

(b) σ = 2.5 · 10�3.

(c) σ = 1.

Figure 1.2: Deconvolution based on inverse �ltering at di�erent noise levels �. The noise

is white and Gaussian. The blur kernel described in Fig. 1.1 has been used. Left: degraded

image. Right: deconvolved image. Even if the noise is imperceptible, the inverse �ltering

ampli�es the noise.
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(a) λ = 0, 025 (b) λ = 0, 1

Figure 1.3: Deconvolution based on Tikhonov �ltering, with L = I . � denotes the reg-

ularization parameter. The noise is white, additive and Gaussian with standard deviation

� = 1. The blur kernel described in Fig. 1.1 has been used.

Classical (also called variational) restoration methods solve this problem. r : RM 7! R
+

denotes the regularization term, and � > 0 is the regularization parameter that adjusts
the trade-o� between the data �delity and the degree of regularity. r re�ects our prior
knowledge about the solution space, enforcing some constraints on the solution. Our prior
knowledge should guide the tuning of r, which should describe as best possible natural
image statistics. Therefore, r is also called prior or prior term. One of the most popular and
simple regularizations is the Tikhonov regularization [121], where r = ||Lx||22. L can be
the identity matrix I or a highpass operator such as derivative or Laplacian. This regular-
ization involves a closed form solution the inverse problem: x̂ = (ATA + �LTL)�1ATy
which makes use of the Tikhonov linear �lter (ATA + �LTL)�1AT . When L = I , high-
energy solutions are penalized. The Wiener deconvolution [142] indeed corresponds to a
particular case of the Tikhonov �ltering. The regularization parameter � is a hyperparame-
ter of the Tikhonov �ltering. Figs. 1.3, 1.4b and 1.4c show that this �ltering produces stable
solutions even in the presence of noise. However, as illustrated by Figs. 1.3a and 1.4b, the
�ltering generates colored noise (i.e., the noise with a non-�at power spectrum). As shown
by Figs. 1.3b and 1.4c, this noise can be reduced by increasing the regularization parameter
�, but this also attenuates the high frequencies, i.e., overly smooths edges.

The mixed performance of the Tikhonov regularization mostly stems from the fact that
this regularization does not correctly describe natural image statistics. Indeed, this regular-
ization imposes equivalent Gaussian assumption for both noise and image gradients [142,
145], which is mostly not respected. Therefore, studies in the literature design more sophis-
ticated r to better capture natural image statistics and solve the problem thanks to iterative
algorithm-based convex optimization. The Total Variation (TV) regularization [107] is one
of the most popular and successful regularizations. It penalizes the total amount of change
in the image as measured by the norm of the magnitude of the gradient, i.e., r(x) = ||rx||1
wherer is the gradient operator. Consequently, it encourages solutions to contain uniform
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(a) Degraded (b) Tikhonov (L = I and λ = 0.025)

(c) Tikhonov (L = I and λ = 0.1) (d) Tikhonov (L = I and λ = 0.2)

(e) TV (λ = 0.2) (f) TV (λ = 4/3)

Figure 1.4: Deconvolution based on Tikhonov and TV regularizations. The noise is white,

additive and Gaussian with standard deviation � = 5. � denotes the regularization param-

eter. The blur kernel described in Fig. 1.1 has been used. The TV regularization is based on

the Split Bregman algorithm [44, 47].
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regions. Moreover, it tends to preserve edges in the reconstruction, as it does not severely
penalize steep local gradients. Figs. 1.4e and 1.4f show deconvolutions based on the TV
regularization. They make use of the Split Bregman algorithm [44, 47]. Fig 1.4f shows that
a larger value for � makes the regularization heavier and leads to an image with �atter
regions. One can expect that TV regularization su�ers when trying to reconstruct textured
regions.

Below summarizes regularizations and iterative algorithms that are used in some studies
in the literature:

• Authors of [3] use a non-smooth regularizer, which allows both wavelet-based or
total-variation regularizations. They resort to the half-quadratic splitting algorithm
for their optimization.

• The study [22] solves some image restoration problems based on the total variation
regularization and a �rst-order primal-dual algorithm.

• The work [95] uses the total variation regularization and the alternating direction
method of multipliers (ADMM) algorithm [16].

• Authors of [147] proposed to learn a regularizer as a sparse dictionary and use the
back-projection algorithm [61].

As classical methods directly derive a minimization problem from the forward model and
explicitly model the regularization term, they are also called model-based methods.

The examples shown by Figs 1.3 and 1.4 illustrate the importance of having a good im-
age prior. This task is not easy, requiring expert knowledge about the inverse problem.
Moreover, the choice of the image prior depends on the types of images encountered in the
inverse problem. In other words, certain types of regularization work e�ciently for some
particular kinds of images but are not always suitable formore general images. For instance,
maximum entropy regularizations that produce sharp reconstructions of point objects are
adopted to reconstruct star �elds in astronomical images [15]. Moreover, the previous ex-
amples also illustrate the need for carefully hand-tuning the regularization hyperparameter
in classical image restoration tasks. This tuning also requires expert knowledge and time-
consuming experimental trials.

1.1.2 Bayesian interpretation

There is a Bayesian interpretation of the problem in Eq. (1.8). One can see x and y as
realizations of random vectors X and Y . x can be estimated based on the Maximum A
Posteriori (MAP) strategy: the estimate of x should maximize the posterior probability
distribution µX|Y=y. Based on Bayes theorem:
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x̂ 2 argmax
x

µX|Y=y(x) () x̂ 2 argmax
x

µy|X=x(y)µX(x)

µY (y)

() x̂ 2 argmax
x

µy|X=x(y)µX(x)
(1.9)

where µY |X=x(y) is the likelihood function, µX(x) is the prior distribution and µY (y) is the
marginal distribution, assumed to be nonzero. By applying the logarithm function:

Eq. (1.9) () x̂ 2 argmin
x
� log µY |X=x(y)� log µX(x) (1.10)

The �rst term is related to data �delity, and the second indicates the prior term. when n is
a zero-mean Gaussian noise with variance �2, we have:

µY |X=x(y) =
1

(2⇡�2)
N
2

exp�
||Ax� y||22

2�2
(1.11)

Therefore,

� log µY |X=x(y) /
1

2�2
||Ax� y||22 (1.12)

By letting � log µX(x) =
1

2�2�r(x) = �0r(x), Eqs. (1.8) and (1.10) becomes equivalent, and
we obtain an alternative problem formulation:

x̂ = argmin
x

1

2�2
||y � Ax||22 + �0r(x) (1.13)

1.2 Deep learning methods

Deep learning (DL) and convolutional neural networks (CNNs) have recently enabled sig-
ni�cant progress in image and video restoration performance. In contrast to classical meth-
ods, the idea of DL-based image and video reconstruction lies in the following: the inver-
sion of the degradation, the prior and the regularization hyperparameter are learned from
a dataset of natural images. Therefore, there is no more hand-crafted regularization. This
approach presents the following advantages. First, the learned prior better captures statis-
tics of natural images than the hand-crafted one. Second, one does not need to try to search
for a good hand-crafted prior and an appropriate regularization hyperparameter. Instead,
the DL-based approach requires e�ort into dataset collection and neural network training.
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1.2.1 Supervised learning

In DL-based image/video restoration, Convolutional Neural Networks (CNNs) take a de-
graded image/video as input and output an estimate of its underlying original data. It is a
standard regression problem where network features and channels contribute to the �nal
output.

CNN

A CNN is a feedforward neural network composed of d 2D convolutional layers and inter-
spaced nonlinear activation functions. Most of the time, these functions are the Recti�er
Linear Unit (ReLU) function. A convolutional layer applies �lters to the input image or
feature maps. Each �ltering produces an output feature map. Each �lter is a convolution
mask with weights w1, ..., wK , whereK = k2 ·nb_channels_inwith k being the kernel size
and nb_channels_in is the number of input feature maps. Each �ltering is accompanied by
an addition of the bias term w0. The size of the �lter slides over the two spatial dimensions
is called stride size.

A convolution operation is local, i.e., extracts interactions between the central pixel and
its neighboring pixels across input channels. Successive convolutional layers allow to ex-
tract interaction between pixels farther and farther in spatial locations. They are contained
in the receptive �eld of CNN. If all convolutional layers have the stride of size 1, the size of
the receptive �eld can be computed based on the following formula:

receptivefield = d · (k � 1) + 1 (1.14)

After a convolutional layer, the activation layer applies a nonlinear function at each
pixel of the feature maps. This nonlinearity is essential to provide the CNN with the capa-
bility of approximating a function that is not necessarily regular. Indeed, an image to be
reconstructed is a non-regular function, as it can contain edges and structures. The ReLU
activation layer applies the following function: f : x 7! max(0, x). By using this activa-
tion function, the CNN approximates a function with a piecewise a�ne function. Authors
of [164] showed that a CNN with this activation function can approximate any continuous
function to an arbitrary accuracy when the depth of this network is large enough. This is
indeed a variant of the universal approximation theorem for neural networks. The ReLU
activation has replaced other activation functions such as tanh or sigmoid that had been
traditionally used. The ReLU activation demonstrates better performance for the following
reasons. First, contrary to tanh or sigmoid, as the ReLU activation is not saturating, it does
less trigger the vanishing gradient problem when the number of layers grows. Thus, the
�rst layer can more e�ciently receive the errors coming from the last layers to tune all
weights between layers. Second, the ReLU activation function can accelerate the training
speed of deep neural networks compared to traditional activation functions because the
derivative of ReLU is 1 for positive input. Since this is constant, deep neural networks do
not need additional time to compute error terms during training.
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All weights of a CNN constitute its parameters, which are optimized at training time.
Searches for high-performing CNN architectures (structures and ordering of layers) for
various computer vision tasks have been an active �eld of research in recent years.

Training data

In most settings, parameters of a restoration network are learned in a supervised man-
ner from training data, constituted of pairs of degraded image/video and GT original im-
age/video. Preparing a set of enough large clean, non-corrupted images/videos is not dif-
�cult in some scenarios. We can then prepare the training set by simulating their corre-
sponding degraded versions based on the forward model of the inverse problem. Therefore,
neural networks indirectly capture the forward model based on pairs of degraded and GT
images/videos: these networks are data-based. The most popular public training sets for
image restorations are:

• DIV2K [5];

• Flickr2K [127].

In video restoration, popular training datasets are:

• Vimeo-90K [146];

• REDS [91];

• the one that is used in [42, 110, 28];

• MM522 [150].

Loss functions

To summarize, a neural network is a function N✓ which realizes the following mapping:
x̂ 7! N✓(y), where ✓ denotes the set of parameters of the network. In the case of supervised
learning, these parameters are optimized at training time in such away that the loss function
L(x, x̂) is minimized. This function quanti�es the distance between x̂ and x. This metric
can be:

• the Mean-Squared-Error (MSE) [42, 93, 28], where L(x, x̂) = 1
M
||x̂ � x||22. This loss

is the average over all pixels of the L2 distance and is generally the default choice. A
variant of the L2 loss, called Huber loss, has been used in studies such as [66]. The
Peak Signal-to-Noise Ratio (PSNR), which is expressed in dB, is a popular metric that
is related to the MSE by the following relation: PSNR(x, x̂) = 10 log10

maxi(xi)
MSE(x,x̂)

.
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• L1 loss: L(x, x̂) = ||x̂ � x||1. This loss function has been used in [76]. This loss can
be a better proxy regarding perceptual quality than the L2 loss (see below for a more
detailed explanation).

• Charbonnier loss: this has been used in [134, 150, 71]. This is a di�erentiable variant
of L1 loss: L(x, x̂) =

p
(x̂� x)2 + ✏2. ✏ is set to a small value, typically 10�3.

• Structural Similarity Index Measure (SSIM) [138]: it is a better measure of perceived
visual quality than PSNR since it is based on how the human eye extracts structural
information from an image. Studies such as [11, 31] use it as the loss function to
train an image restoration network. However, the authors of [162] showed that this
loss could cause brightness changes or shifts of colors due to its lack of sensitivity to
uniform bias. Moreover, they also showed that this loss could provoke noisy artifacts
around edges or splotchy artifacts on �at regions, depending on a hyperparameter.
Finally, the authors of [72, 13] showed that it still fails to capture and accurately assess
image quality with respect to the human visual system, as PSNR.

• Perceptual loss: studies such as [72, 13] stated that L2-based loss favors overly smooth
reconstructions with poor perceptual quality. This tendency is because minimizing
L2 encourages �nding pixel-wise averages of plausible solutions. Fig. 1.5 illustrates
this phenomenon. Therefore, the L2 loss does not encourage perceptually optimized
restorations. Additionally, authors of [162] show that networks trained with L2 loss
generate splotchy artifacts of �at regions. Given this observation, the authors of [72]
propose to use the sum of adversarial loss and content loss. The former is the genera-
tive loss: the lower this loss is, themore similar to the natural image the reconstructed
image is. This loss involves an auxiliary discriminator network in the Generative Ad-
versarial Network (GAN) framework [49]. The latter is the L2 distance between the
feature representations of the reconstructed image and the GT image. These repre-
sentations are based on the ReLU activation layers of the pre-trained 19-layer VGG
network [119]. Authors of [160] proposed another metric based on deep feature
maps, called LPIPS.

However, encouraging perceptually optimized reconstructions during training comes
with some drawbacks. On the one hand, the GAN framework increases memory us-
age, as the discriminator network is jointly trained with the reconstructing network.
On the other hand, regarding VGG and LPIPS losses, computing the distance between
feature representations involves inferences of the pre-trained network, increasing the
training time.

The standard L2 loss theoretically maximizes the L2-based metrics such as PSNR. However,
loss functions other than L2 loss can sometimes enable better performance even in metrics
such as PSNR. As an example, the authors of [76] decided to use L1 loss because it em-
pirically enabled better convergence, thus better-performing networks. Authors of [162]
observe similar results and provide an explanation of this. They showed that this is due to
the smoothness and the local convexity properties of the two loss functions: with L2 loss,
the optimization gets stuck more easily in a local minimum, while with L1 loss, it is easier
to reach a better minimum.
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Figure 1.5: Illustration of patches from the natural image manifold (red) and restored

patches obtained with the MSE train loss (blue). The MSE-based solution appears overly

smooth due to the pixel-wise average of possible solutions in the pixel space. This illustra-

tion is adapted from [72].

37/159



C������ 1

Weight optimization

The neural network’s parameter set ✓ = {wj} is optimized to minimize the loss. This
optimization is based on the gradient descent algorithm. At each iteration step i, the weight
wj is updated based on the following rule:

wi
j = wi�1

j � ⌘
@L

@wj

(1.15)

The updates should be terminated when all of these weights have converged. @L
@wj

is called

the gradient. ⌘ is called the learning rate. It is decreased with increased iteration steps
to help convergence. At each iteration step, @L

@wj
is estimated based on 1) a random set

of examples (y, x) called mini-batch 2) the chain rule that allows backpropagation. The
number of examples in the mini-batch is called batch size and noted B. A larger batch size
allows smoother convergence by enabling a more accurate gradient estimate. However, a
smaller batch size means faster convergence because the parameters are updated after each
backpropagation.

One needs to keep in mind that there is no theoretical guarantee that the loss function
minimized is convex. This means that the optimization can be stacked in a local minimum.
To avoid this, one can augment the update with a momentum term. This term keeps the
update process moving in the same direction by taking into account past gradients. This
augmentation helps escape from local minima pits. One of the most popular momentum
optimizations is the Adam optimization [70]. It keeps track of an exponentially decaying
average of past gradients and squared gradients.

Hyperparameter tuning

To make a restoration model converge, one needs to tune the training hyperparameters
properly. Among them are the batch size B and the learning rate ⌘.

Similarly to the convolution operator, a convolutional image restoration network can
manage input images of any size. Therefore, to save memory, the training uses small,
cropped images with a particular crop size. However, a smaller crop size means more
present border e�ects of convolutions. Moreover, this size should be larger than the re-
ceptive �eld of the network to leverage the network’s full capacity. These considerations
introduce a new training hyperparameter, the crop size. In the same way as batch size, a
larger crop size enables smoother convergence.

Batch size is also limited by memory. Memory usage at training time is thus determined
by the crop size and the batch size. A trade-o� between them is therefore needed.

The learning rate should be as high as possible at the beginning in order to speed up
the training. However, if it is too high, it can make the convergence harder or can cause in-
stability. Generally, the learning rate should be low when the batch size is large. Therefore,
these hyperparameters have to be jointly tuned.
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The choice of the loss function impacts the magnitude of the gradient. This choice,
therefore, in�uences the subsequent hyperparameter tuning.

In the case of a recurrent video restoration network [42, 110, 28, 93], the training in-
volves BackPropagation ThroughTime (BPTT). This technique consists of unrolling through
T past time steps the recurrent network and backpropagating over this unrolled network.
This technique is highly demanding in terms of memory usage, which proportionally in-
creases with T . Therefore, T should be jointly tunedwith other hyperparameters impacting
memory usage.

To conclude this part, one should tune these hyperparameters based on repeated exper-
iments and trials. Tab. A.1 in the Appendix summarizes the training settings of SOTA VSR
networks.

Training strategies

A good weight initialization can accelerate training and/or avoid local minimums. The
Xavier initialization is the most used initialization scheme in image and video restoration
[46].

Increasing training data variability helps restoration networks increase their general-
ization capability and avoid over�tting, i.e., �tting overly complex functions to the training
data (even though over�tting is generally not a problem in restoration tasks). Data augmen-
tation enables increasing this variability. This technique applies a random composition of
�ipping and transposition to each training image/video crop. In video restoration, this vari-
ability can also be increased based on temporal augmentation[66]: this technique randomly
samples video frames at di�erent time steps to improve motion variability.

An image or video restoration problem is a standard regression problem, where network
features and channels all contribute to the �nal output. Therefore, dropout [55], which
induces a signi�cant information loss within the network, is rarely used at training time.

Connection with MAP inference

Authors of [27] proposed a trainable nonlinear reaction di�usion (TNRD) model for image
restoration. This model learns a modi�ed �elds of experts [106] image prior by unrolling a
�xed number of gradient descent steps. Authors of [158] showed that an image restoration
CNN is a generalization of one-step TNRD, and most of their parameters represent the
image prior. Moreover, they empirically demonstrated that a single CNN could handle
multiple scales super-resolution, image deblocking and image denoising.

1.2.2 Other learning strategies

Supervised learning requires having a collection of clean images/videos. In some applica-
tions, having such a collection is not straightforward. Other restoration methods do not
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present this requirement.

Unsupervised learning

Authors of [118] proposed to train a small CNN for each image to be super-resolved. The
input LR image is further blurred and downsampled several times in a hierarchical manner,
accompanied by data augmentation. These re-degradations generate several training pairs
that are used in order to �t the CNN. The trained CNN is then deployed to super-resolve the
input LR image. Deep Image Prior (DIP) [128] is another unsupervised image restoration
technique that �ts a CNN to a degraded image. It is more detailed in Sec. 1.3.3.

The drawback of these unsupervised methods is that they require �tting a CNN for each
input image. This requirement makes them slow and less attractive for practical applica-
tions.

Self-supervised learning

In their VSR problem, the authors of [96, 8] proposed two di�erent self-supervised learning
methods, which only necessitate a training dataset of LR video. Their common idea is to
re-degrade the estimated HR frame based on the image formation model and compare it
to the input LR frame to compute the loss. However, when applied naively, this approach
results in trivial solutions. The work in [96] circumvents this problem by not including the
reference frame in the input of the input encoding CNN. The study in [8] avoids the problem
by re-degrading the input LR frames and giving them to the super-resolution network. The
output is compared to the input LR frame to compute an additional auxiliary loss.

1.2.3 Common architectural blocks in DL

Global residual/skip connection

Authors of [69] and [158] respectively used this technique for their image super-resolution
and denoising problem. This technique consists in learning to reconstruct the residual
image r = x � y, instead of x. This residual learning makes sense because the degraded
and original images are highly correlated and share the same information to a large extent.
As an illustration, in the Single Image Super-Resolution (SISR) problem, an HR image can
be decomposed into low-frequency information (corresponding to LR image) and high-
frequency information (residual image or image details). Input and output images share
the same low-frequency information. In problems such as denoising or SISR, if the network
learns to reconstruct x instead of r, this model learns to both carry the input to the end layer
and reconstruct residuals. By handing the input to the end, the network only needs to learn
to reconstruct the residuals, enabling much faster training with even better accuracy.

40/159



S������ ������� �������� �� ����� ��� ����� �����������

Residual blocks

A residual block [54] is a set of a �rst convolution layer, followed by a ReLU activation layer
that is in turn followed by another convolution layer. A residual connection links the input
of this block with the output of the block. Such a design ensures a �uent gradient �ow
and can preserve the texture information over a deep network. The study [109] empirically
found that residual blocks enable faster convergence than stacked convolution layers.

Pixel shu�ling and unshu�ling layers

Pixel shu�ing and unshu�ing operations [42] are also respectively called space-to-depth
and depth-to-space [110, 117] transformations. The shu�ing reduces the channel dimen-
sion C of a tensor t with factor r2 and extends both spatial dimensions H and W with
factor r. The unshu�ing is the inverse of this operation. These operations are summarized
below:

tLR 2 R
H⇥W⇥Z ⇥r

�! tHR 2 R
rH⇥rW⇥Z/r2 (1.16)

tHR 2 R
H⇥W⇥Z /r

�! tLR 2 R
H/r⇥W/r⇥r2Z (1.17)

Fig. 1.6 illustrates these operations. They are helpful in inverse problems such as SISR or
VSR. Indeed, in these problems the linear degradation involves a downsampling operation
which makes observed image y have reduced spatial resolutions compared to the corre-
sponding underlying image x. We say in this case that y lives in the low-resolution (LR)
space and x lives in the high-resolution (HR) space. Pixel shu�ing and unshu�ing allow
the tensor to switch between these spaces.

An interesting feature of these operations is that it keeps local integrity. All pixels
along the channel dimension in the LR space are rearranged in their corresponding local
HR interpolation area, and vice versa.

In studies such as [42, 110, 117, 28], to gain computational e�ciency, most of the convo-
lution operations are done in the LR space and pixel shu�ing is executed at the last stage
to output an HR image. In [42, 110], to feedback recurrent information from the HR space,
the pixel unshu�ing operation is used.

Transposed convolution layer

Apart from pixel unshu�ing, zero-�lling [40] and interpolation, another operation can up-
sample the spatial dimensions of feature maps. Transposed convolution is such an opera-
tion. A transposed convolution layer broadcasts input feature maps via the kernel regroup-
ing learnable parameters. This layer is used in studies like [110] to map feature maps in
LR-space to HR-space. Transposed convolution is also called fractionally strided convolu-
tion, because the stride over the output is equivalent to the fractional stride over the input.
For instance, a stride of 2 over the output is 1/2 stride over the input.
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Figure 1.6: Illustration of pixel shu�ing and unshu�ing. Figure taken from [42].

Batch normalization

Batch normalization consists in:

• centering and scaling the input using the empirical mean and variance of the mini-
batch containing the input;

• a�ne-transforming the centered and re-scaled input using learnable parameters;

at training time. At test time, the input undergoes the same operation but the centering
and scaling operations use the empirical mean and variance over the whole train set.

This technique has been extensively used and showed that it could signi�cantly increase
performance in high-level computer vision tasks such as classi�cation and object detection.
However, the authors of [76] suggested not using this technique when dealing with image
restoration problems. They stated that this is because batch normalization eliminates range
�exibility from networks by normalizing the features. They experimentally veri�ed that
not using batch normalization layers signi�cantly increases the performance. Moreover,
not using batch normalization layers enables to reduce GPU memory usage signi�cantly
. Their baseline model without batch normalization saved around 40 % of memory usage
during training, compared to SRResNet [72]. Therefore, under limited computational re-
sources, they could use a larger model with better performance than models with batch
normalization layers. For all of these reasons, we do not use batch normalization in our
work.

Multi-scale architectures

Multi-scale architectures divide the input image features into several scales, process them
independently and �nally aggregate them in a coarse-to-�ne manner. Features go from a
scale to a lower one by a downsampling operation and to a higher one by an upsampling
operation. Multi-scales analysis was also used in past studies before the DL era. In DL, these
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architectures have been used for numerous tasks such as image segmentation (U-Net [105]),
image restoration [156], deformable convolution-based feature alignment [134], temporal
and spatial attention [134] and optical �ow estimation [120].

Multi-scale architectures allow to capture long-term spatial interactions in a coarse
manner at lower scale. At higher scale, these interactions are �ner. At lower scale, they
are coarse. As an example, these architectures can be useful to model large-motion [134,
120].

1.3 Blending classical and DL-based methods

Model-based approaches use the forward model to design mathematical tools that are di-
rectly related to the problem itself, and use the knowledge of themodel to guide the solution.
The main implications are:

• some guarantees (quality, convergence) and full explainability/interpretability of the
results;

• a need to add regularization/prior terms;

• any deviation between the model and reality may result in a sub-optimal or com-
pletely unusable algorithm when applied to real data (e.g., di�erent blur shape);

• iterative algorithmsmay requiremany iterations to converge, making these approaches
unusable in some practical cases due to the computational cost.

In the case of purely data-based methods, the forward model is used to generate data,
i.e., synthesize degraded image/video starting from the corresponding GT one. Still, the
restoration process does not use a priori information from the model itself, only its in-
puts/outputs. The consequences are:

• a lack of directly given physical information about the degradations;

• no need to be able to inverse the forward model, which can be as complex as needed;

• there is no need for hand-crafted regularization terms, as the regularization is learned
based on the data itself;

• the computational cost may be very high for some networks. But e�cient architec-
tures (GPU) can be used.

From the MAP point of view (Eq. (1.13)), classical methods produce a solution that can be
formulated as [157]:

x̂ = F (y, A, �; ✓) (1.18)
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where ✓ denotes additional parameters of theMAP inference. �0 can be indeed absorbed into
�. However, in DL-based inverse problem solving, most neural networks instead realize the
mapping x̂ = F (y, ✓) [145, 69, 42, 110, 134]. In these cases, ✓, which denotes the parameters
of a neural network, can be seen as the parameters of the MAP inference. These networks
are, indeed, blind. Knowledge about degradations (A and �) is only indirectly captured
based on training data. This aspect can disadvantage DL-based approaches in a multiple
degradation scenario, i.e., when degradations or parameters of degradations change (are
not homogeneous) over training and test sets, such blind models can perform poorly.

Recent studies have tried to breach the gap between the two paradigms, to bene�t from
both of them in a complementary way. In particular, this allows a restoration model to ben-
e�t from both the prior learning capability of neural networks and the �exibility of classical
methods in non-blindly handling multiple degradations. Compared to a blind one, this non-
blind model can explicitly incorporate the knowledge about the degradation and adapt to
it, enabling better performance. From a realistic application-oriented point of view, having
a blind model that only performs well in a unique and prede�ned degradation scenario is
not viable. First, it is rare to encounter such an ideal scenario. Second, it is unrealistic to
prepare several pre-trained models, each specialized for a unique degradation, to deal with
multiple degradation scenarios. Third, having a model that can �exibly manage multiple
degradations is interesting for practical applications. The user can give information about
degradations as input parameters.

The following speci�es some strategies to design such a model.

1.3.1 Giving physical knowledge at the network’s input

One can give knowledge about A and � directly to the network’s input [157, 51] or indi-
rectly by transforming the input degraded image based on physical priors [121, 145]. In
the former, the network directly uses knowledge about degradations to operate transfor-
mations on feature maps, similarly to the attention mechanism [119, 57, 161]. In the latter,
the input degraded image is �rst �ltered based on a hand-crafted prior. The network learns
the mapping between this prior and clean image.

The techniques Multiple Degradations (MD) [157] and Spatial Feature Transform for
Multiple Degradations (SFTMD) [51] belong to the �rst family. The methods used in [121,
145] based on the Tikhonov �lter belong to the second family. The following explains these
techniques.

MD

Authors of [158] pointed out that CNN mainly models the prior information and empiri-
cally demonstrated that a single model could handle multiple scale super-resolution, image
deblocking, and image denoising. In other words, they indicated that the parameters of the
MAP inference mainly model the prior, and therefore, CNN can deal with multiple degra-
dations via a single model. Given this, in the context of a single image super-resolution
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problem with varying noise levels and blur kernels, the authors of [157] proposed to en-
code knowledge about degradations in degradation maps and give them to their model’s
input along with the degraded image. When super-resolving an image, the blur kernel
used in the degradations is vectorized and projected on a Principal Components Analysis
(PCA) basis. The PCAprojectionmatrix is learned on 10000 randomly generated anisotropic
Gaussian kernels. The PCA projected vector is concatenated with the noise level, and the
whole vector is stretched to give degradation maps. These maps are concatenated with the
degraded image and given to a feedforward super-resolving network. Degradation maps
contain warping information, thus enable the network to have spatial transformation ca-
pability. Indeed, these maps can be seen as the output of a spatial transformer as in [64]. By
anchoring the model with degradation maps, the non-blind model generalizes easily to un-
seen degradations and can control the trade-o� between the data �delity and regularization
terms.

SFTMD

Authors of [51] proposed another way to give information about degradations and handle
multiple degradations based on the Spatial Feature Transform (SFT) layer, inspired by [135].
The SFT layer provides an a�ne transformation for its input feature maps Fin conditioned
on the knowledge about A and �, i.e., the degradation maps F (A,�), which is computed
similarly to MD [157]. The a�ne transformation involves scaling and shifting operations:

SFT(Fin, F
(A,�)) = � � Fin + � (1.19)

where � and � are estimated by convolutional layers and� denotes the Hadamard product.

Transforming the network’s input with regularized inversion

The work [121] proposed Tikhonet, with maps Tikhonov �ltered input image to the cor-
responding estimated clean image. The study [145] proposed a network in which its �rst
layer’s weights are initialized with the separable Tikhonov �lter. These weights are tuned
based on training data, and this strategy gives better restoration than random initialization
in their study. Similarly, the work [114] proposed to apply a regularized inverse �lter and
remove the resulting artifacts with a multi-layer perceptron. Authors of [65] �rst operate
a �ltered back projection and then use a U-Net [105] in their low-view CT reconstruction
problem. These approaches involve single-step �ltering followed by feedforward network
propagation. Therefore, they are fast. However, their �rst step inversions involve hand-
crafted priors that mostly do not correctly describe natural image statistics and lead to an
irregular solution corrupted by colored noise. Moreover, they control the weight of the
regularization based on a hyperparameter that has to be manually tuned.
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1.3.2 Iterative algorithms combined with deep-learning networks

Some recent approaches attempted to blendmodel-based and data-basedmethods to bene�t
from both. This blending allows designing a �exible technique that can manage multiple
degradations while learning prior from data. The following details these methods.

Using iterative algorithms from convex optimization and replacing the proximity

operator related to the prior by one or several DNNs

One can use an iterative algorithm from convex optimization and replace the proximity
operator related to the prior with one or several DNNs. The following frameworks ease
this:

• plug-and-play [130, 34, 165]: this approach �rst reformulates and solves the MAP
problem using an iterative algorithm based on variable splitting. In the context of
this splitting, each iteration involves alternated data and prior subproblems. The
plug-and-play framework replaces the prior subproblemwith any o�-the-shelf Gaus-
sian denoiser. Unlike traditional image restorationmethods that employ hand-crafted
image priors, it can implicitly de�ne the plug-and-play prior by the denoiser. As ex-
pected, this denoiser can be a CNN. The study [159] plugs several denoising networks
trained each for a di�erent noise level to adapt for variation of the penalty parame-
ter in its half quadratic splitting. In contrast, authors of [85] plug the same unique
CNN denoiser at each step. The work [108] proves the convergence of plug-and-play
methods under certain conditions;

• REgularization by Denoising (RED) [104, 103]: this approach consists in de�ning the
explicit regularizer r(x) as follows: r(x) = 1

2
xT (x � f(x)) where f is an image

denoiser. Under mild conditions on f , the gradient of the regularization term can be
easily computed, equaling the denoising residual x� f(x). Any inverse problem can
be managed while calling the denoising engine iteratively.

This approach uses CNNs as denoisers in a mathematically de�ned framework of an
iterative algorithm. Therefore, it presents high interpretability. However, it still su�ers from
the drawbacks of an iterative algorithm. First, it involves hand-designed hyperparameters
to control the convergence and stability of the iterative algorithms. Second, as it requires
numerous iteration steps to restore an image, it is slow.

Deep unrolling

Deep unrolling consists of unfolding the iterative loop of a classical iterative algorithm that
solves the MAP problem (Eq. (1.13)) with a given number of iterations, replacing some op-
erators in each unfolded step by CNNs and representing all operations as layers of a neural
network. This network can then be trained and optimized as any other network, learning
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from data while keeping the knowledge of the inverse problem in its internal structure.
Based on this technique, several works unfolded the following algorithms:

• (proximal) gradient descent [27, 36, 81, 93];

• alternating directions method of multipliers [148];

• primal-dual methods [2];

• half-quadratic splitting [156];

• alternating minimization [4].

For di�erent unrolled optimization methods, CNNs in each unfolded step play di�erent
roles. As an illustration, in proximal gradient settings, the learned CNN in each unrolled
step is interpreted as a learned proximal operator. In contrast, in unfolded gradient descent
network, the learned CNN in each step is interpreted as the gradient of the regularizer.
These roles being clear and explicitly integrated in a classical algorithm, deep unfolded
networks present higher interpretability than black box-like CNNs that take degraded data
as input and output the corresponding restored ones.

Deep unfolding optimizes the parameters end-to-end by minimizing the loss function
over a large training set. Therefore, on the one hand, the number of unrolled iteration
steps is limited by the memory. On the other hand, compared to the approach that uses
an iterative algorithm and replaces the proximity operator related to the prior by frozen
DNN denoisers, the number of unrolled iteration can be fewer while still enabling better
performance. Moreover, fewer iterations mean increased restoration speed. Finally, un-
rolling architectures usually need a smaller number of parameters than purely data-driven
approaches, as they can leverage the knowledge about the model. Moreover, the CNNs in
unrolled steps can share weights, enabling to further reduce number of parameters [156].

1.3.3 Deep image prior (DIP)

Authors of [128] states that for a surjective g(✓) = x, Eq. (1.8) is equivalent to:

✓̂ = argmin
✓

||y � Ag(✓)||22 +R(g(✓)) (1.20)

One can de�ne g(✓) as f✓(z), where f is a CNN with parameters ✓ and z is a �xed
input. This enables to replace the regularizer R with the implicit prior captured by the
neural network, leading to the following formulation:

✓̂ = argmin
✓

||y � Af✓(z)||
2
2 (1.21)

✓ is optimized according to the problem based on gradient descent, starting from random
initialization. z is �lled with random noise and �xed. We highlight this is an unsupervised
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approach, therefore not requiring pre-training based on pairs of degraded and original im-
ages. Instead, this approach �ts a network for an image to restore.

Authors of [84] builds on DIP but adds an explicit prior, which enriches the overall
regularization e�ect, leading to better-recovered images. This regularization is based on
RED [104].

An obvious drawback of these approaches is that they are slow. They �t a CNN on a
single image to be restored. It is clear that the role of CNN here is to de�ne the image space
of possible solutions. Therefore, these approaches present high interpretability.

1.4 Performance evaluation

Once designed and/or trained, image and video restoration methods need to be evaluated.
This allows to compare di�erent methods and choose the best one to deploy it on practical
applications. These evaluations should be based on quantitative and qualitative consider-
ations. Moreover, they should use a validation/test set to simulate a realistic application-
oriented scenario.

1.4.1 Numerical evaluations

PSNR

The Peak Signal-to-Noise Ratio (PSNR) is themost commonmetric used in order to evaluate
the �delity of the reconstruction regarding the GT numerically. This metric is computed as
follows:

PSNR(x, x̂) = 10 log10
maxi(xi)

MSE(x, x̂)
(1.22)

One can see that minimizing MSE also maximizes PSNR.

SSIM

The SSIM index[138] is a better measure of perceived visual quality than PSNR since it is
based on how the human eye extracts structural information from an image. This index is
computed on several windows of an image. The metric between two windows x and y of
same size is:

SSIM(x, y) =
(2µxµy + c1)(2�xy + c2)

(µ2
x + µ2

y + c1)(�2
x + �2

y + c2)
(1.23)

where:
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• µx is the average of x;

• µy is the average of y;

• �x is the standard deviation of x;

• �y is the standard deviation of y;

• �xy is the covariance of x and y;

• c1 = (k1∆)2 and c2 = (k2∆)2 are two values that stabilize the division with small
denominator. ∆ is the dynamic range of pixel values. We typically set k1 = 0.01 and
k2 = 0.03.

Perceptual metrics

MSE-based metrics like PSNR favor overly smooth solutions with poor perceptual quality.
This phenomenon is because minimizing MSE encourages �nding pixel-wise averages of
plausible solutions [72, 13]. Therefore, these metrics are not good proxies for the perceptual
quality of the restored image. Metrics that better capture this perceptual quality are thus
needed. Given this observation, the authors of [72] proposed the VGG loss, which is the
Euclidean distance between the feature representations of a reconstructed image and the
GT image. These representations are based on the ReLU activation layers of the pre-trained
19-layer VGG network [119]. VGG stands for Visual Geometry Group. Authors of [160]
proposed another metric based on deep feature maps, called LPIPS.

1.4.2 Qualitative evaluations

We saw that numerical metrics such as PSNR or SSIM are not the best proxies of quality of
the reconstruction. Even if one uses a perceptual metric—that are not always easy to com-
pute and interprete—, qualitative evaluation based on human eyes should be always done.
One must pay attention whether areas of images with important amount of information
(structures, edges, textures, high frequency details, ...) are well reconstructed.

1.4.3 Consideration of the temporal dimension

In video restoration, one should also evaluate perceptual quality regarding temporal con-
sistency. A temporally consistent restored video shows less unpleasant �ickering artifacts.
This quality can be assessed in two ways. The �rst method is based on visual inspection
and involves plotting temporal pro�les. A temporal pro�le is produced by taking the same
horizontal row of pixels from several successive frames in the restored video and stack-
ing them vertically into a new image. Flickering artifacts in the video appear as jitter and
jagged lines in the temporal pro�le. A sharper and less noisy temporal pro�le means less
�ickering artifacts, i.e., better temporal consistency [110]. The second method regroups
numerical metrics, including:
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• vector norm di�erences of warped frames [26];

• tOF and tLP [29]. tOF measures the pixel-wise di�erence of motions estimated from
sequences, i.e., is the L1 norm between the optical �ow between xt and xt�1 and the
one between x̂t and x̂t�1. The authors who introduced these metrics proposed to use
the Farneback algorithm [38] for optical �ow computation. tLP measures perceptual
changes over time using deep feature maps, i.e., is the L1 norm between the LPIPS
between xt and xt�1 and the one between x̂t and x̂t�1.

1.4.4 Speed and memory size

The amount of time required to restore an image or a video is an important point to con-
sider from a realistic application-oriented point of view. Measuring such quantity for a
restoration method is thus relevant. DL-based methods can bene�t from e�cient GPU-
based parallel architectures and are generally faster than classical iteration-based methods.
However, DL-based methods require storing networks’ weights and intermediate feature
maps in memory, thus requiring more memory than classical methods.

The runtime of a method can be directly measured and expressed in unities such as
ms for a �xed input image size. Moreover, it can also be quanti�ed based on FLOating-
Ooint operations (FLOPs), i.e., the total number of �oating point operations required for a
single forward pass. The higher the FLOPs, the slower the model. This measure can also
be expressed in MAC (Multiply–accumulate operations).

1.4.5 Interpretability/explainability

A CNN that takes an input degraded image or video and outputs the restored one works as
a black box model. Indeed, the underlying regression is implicitly learned via end-to-end
training, and it is hard to discover what is actually learned inside the networks by exam-
ining the network parameters, which are usually of high dimensionality, and what are the
roles of individual parameters [90]. In other words, this CNN is di�cult to interpret. This
is problematic concerning its industrial deployment. To certify a speci�c restoration model
in an industrial context, this model needs a certain explainability of results and some guar-
antees about considerations such as quality or convergence. To meet these requirements,
the model needs to be interpretable. As an example, in their deep unrolling framework,
the authors of [31, 11] derived a theoretical upper bound on the restoration error when the
input is perturbed.

1.4.6 Test datasets

Evaluations of a restoration model should use validation/test sets that simulate a realistic
application-oriented scenario. To facilitate comparisons, open-source and public datasets
are shared among the research community. The most popular public test sets for image
restoration are:
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• Set14 [154];

• Set5 [12];

• BSD68 [83];

and the most popular test video benchmarks are:

• Vimeo-90K-T [146];

• REDS4 [91];

• Vid4 [77];

• UDM10 [150].

1.5 Conclusion

There exist two paradigms of inverse problem-solving in image and video restoration. The
�rst one regroups model-based (also called "classical") methods that directly derive from
the forward model of the inverse problem as a minimization problem. This problem is
ill-posed, therefore model-based methods rely on hand-crafted priors that require expert
knowledge about the inverse problem and time-consuming regularization hyperparameter
tuning. Moreover, they use iterative optimization algorithms that are time-consuming and
not suitable for some practical applications. The second paradigm regroups data-based, i.e.,
DL-based methods that learn to inverse the forward model by being trained on pairs of
degraded and original image/video. These methods learn data-based prior that better cap-
tures natural image/video statistics than a handcrafted one. They additionally suppress the
need for carefully tuning the regularization hyperparameter. Moreover, once trained, they
only require a forward propagation to restore an image video and can bene�t from e�-
cient GPU-based computing architectures. From this point of view, they are more adapted
for practical applications than model-based methods. However, contrary to model-based
methods, they present low explainability due to their black box nature. Moreover, unlike
classical approaches, DL-based methods that take only the degraded image/video as input
lack the �exibility to deal with multiple degradations. Given the advantages and disadvan-
tages of both paradigms, recent hybrid approaches combine and bene�t from them in a
complementary way. These approaches regroup the following methods:

• the ones that non-blindly give the knowledge about the forward model to the input
of the CNNs;

• the ones that use classical iterative algorithms and replace the prior-related denoiser
in each iteration step with a denoising NN.

• (deep unrolling) the methods that unfold for a �xed number of iterations a classical
iterative algorithms and replace some operators with CNNs. The unfolded iterations
together form a whole CNN that is trained based on data.
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• (DIP & DeepRED) the methods that rely on a classical algorithm and an implicit prior
captured by a CNN.

Tab. 1.1 summarizes the advantages and disadvantages of di�erent approaches. These key
di�erences should guide the choice of a method when facing realistic image/video restora-
tion applications. Regarding interpretability, compared to the methods that connect DL
with the perfectly interpretable framework of iterative algorithms, the ones that give the
knowledge about the forward model to the input of the CNNs are less interpretable. In
MD or SFTMD, even if a CNN can �exibly manage multiple degradations, this model is still
used as a black box. Regarding a method that �rst transforms the input with regularized
inversion, in the subsequent stage the denoising CNN is still used as a black box.

Method Classical DL DL +

degra-

dation

knowledge

Classical

+ CNN

denoiser

Deep un-

folding

DIP

Inference speed Slow Fast Fast Slow Fast Slow

Supervised pre-

training

No Yes Yes Yes Yes No

Flexibility Yes No Yes Yes Yes Yes

Interpretability ++ 0 + ++ ++ ++

Learned prior No Yes Yes Yes Yes Yes

Regularization

parameter tun-

ing

Yes No No Yes No No

Table 1.1: Advantages and disadvantages of inverse problem-solving methods.

The performance of an image/video restoration method should involve both qualitative
and quantitative evaluations. They must be based on an appropriately chosen test dataset.
Regarding quantitative evaluation, one should be aware that di�erent numerical metrics
measure di�erent things.
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In Video restoration, a dynamic scene with continuous intensity distribution X(x, y)
is seen to be warped at the camera lens because of the relative motion between the scene
and the camera. The image is blurred both by atmospheric turbulence and the camera lens.
These blurring are respectively modeled by continuous PSFs Hatm and Hcam. After these
blurrings, the image is discretized at the CCD resulting in a noisy digitized frame. These
degradations are summarized by Fig. 2.1 and the following forward model [40]:
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Figure 2.1: Diagram representation of the VSR forward model. Figure inspired from [40].
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Y [m,n] = [Hcam(x, y) ⇤ F (Hatm(x, y) ⇤X(x, y))] # +V [m,n] (2.1)

where ⇤ is the two-dimensional convolution operator, F is the warping operator, # is the
discretizing, i.e., downsampling operator, V [m,n] is the system noise, and Y [m,n] is the
resulting discrete, noisy and blurred image.

Eq. (2.1) is equivalent to the following model in the pixel domain:

yj = DjHjFut→j
Hatm

t xt + nj t� J  j  t+ J (2.2)

where:

• yj 2 R
N is the data observed at time step j, corresponding to a low-resolution (LR)

video frame of size N = N1 ⇥ N2 arranged in a lexicographic order. 2J + 1 is the
total length of the observed video;

• xt 2 R
s2N is the underlying data, corresponding to a high-resolution (HR) reference

video frame at time step t, arranged in a lexicographic order;

• Hatm
t 2 R

s2N⇥s2N is the matrix de�ning the atmospheric blur;

• Fut→j
2 R

s2N⇥s2N denotes the warping operator with regard to the optical �ow ut!j .
This vector �eld models the motion between the two time steps j and t (detailed later
in Sec. 2.2.3);

• Hj 2 R
s2N⇥s2N is the matrix de�ning camera lens blur;

• Dj 2 R
N⇥s2N is the matrix de�ning the downsampling. This operation samples

every s-th pixel in each spatial dimension. s is an integer called scale factor;

• nj 2 R
N accounts for the presence of the noise, which is mostly assumed to be

additive, zero-mean and white Gaussian. Realizations of this noise are assumed to be
independent and identically distributed.

In conventional imaging systems (such as video cameras), camera lens blur has a more
signi�cant e�ect than atmospheric blur (which is not true if the scene is very far, let’s say
more than 10km away from the camera, in applications such as atmospheric turbulencemit-
igation or astronomical image deconvolution). Therefore, the atmospheric blur is omitted
in this chapter, leading to the following formulation:

yj = DjHjFut→j
xt + nj t� J  j  t+ J (2.3)

In most situations, the downsampling and camera blurring operations remain constant over
time, assuming that the images are obtained from the same camera. Moreover, we further
assume that the camera PSF is space-invariant [40, 39]. These assumptions give the follow-
ing model:
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yj = DsHFut→j
xt + nj t� J  j  t+ J (2.4)

with Ds denoting the downsampling with scale factor s.

2.1 Classical VSR

Supposing H is known, the inverse problem de�ned by the model in Eq. (2.4) is classically
solved by the following alternated optimizations [77]:

x̂t = argmin
xt

||DsHxt � yt||
2
2 +

t+JX

j=t�J,j 6=t

||DsHFut→j
xt � yj||

2
2 + ⇢(xt) (2.5)

ût!j = argmin
ut→j

||DsHFut→j
xt � yj||

2
2 + '(ut!j) t� J  j  t+ J (2.6)

where ⇢(xt) and '(ut!j) are hand-crafted priors on the estimated frame and optical �ow.
For example, [40] used the Bilateral TV prior for ⇢(xt). [77] used sparsity on derivative
�lter responses to model ⇢(xt) and '(ut!j). N de�nes the number of frames used in order
to produce the estimate x̂t.

In general situations, the whole process of the optimizations is slow, involving alter-
nated iterative algorithms [77]. However, under some assumptions, the VSR can be accel-
erated [40, 39]. Suppose there are no mobile objects. In some situations—e.g., whenmotions
only come from vibrations of a gazing camera or a panning motion of a faraway scene—,
motions are purely translational. In these conditions, H and Fut→j

are block-circulant and
commute. Moreover, it is easy and fast to correctly estimate translational motion by maxi-
mizing the correlation between the warped degraded frame at time step t and the degraded
frame at time step j. We note Ft!j such warping, and this operation is de�ned by only two
parameters (translations in horizontal and vertical directions). We thus only need to solve
the remaining problem:

x̂t = argmin
xt

||DsHxt � yt||
p
p +

t+JX

j=t�J,j 6=t

||DsFt!jHxt � yj||
p
p + ⇢(xt) (2.7)

Let Hxt = zt. This is the blurred version of xt. The problem in Eq. (2.7) can be solved in
two steps, following the shift-and-add algorithm [40]:

1. we �rst estimate ẑt from the degraded frames;

2. we then deconvolve ẑt to output the estimate x̂t.

The �nding of zt solves the following problem:
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ẑt = argmin
zt

||Dszt � yt||
p
p +

t+JX

j=t�J,j 6=t

||DsFt!jzt � yj||
p
p (2.8)

||Dszt � yt||
2
2 has been replaced by ||Dszt � yt||

p
p to potentially make the estimator more

robust to outliers, i.e., data points with di�erent distributional characteristics than the as-
sumed model. The concept of breakdown can illustrate this [18]. The breakdown point is
the smallest proportion of outliers that may force the value of the estimate outside some
range. As an illustration, the simple mean estimator’s breakdown point is zero, which
means that one outlier is enough to make the estimate fall outside any predicted bound. In
contrast, the median estimator may achieve a breakdown equal to 0.5, which is the highest
value for breakdown points. Therefore, the median estimation may not be impacted by data
sets in which outliers constitute less than 50% of the data. Thus, the median estimator is
more robust than the mean estimator.

By computing the partial derivative with respect to zt, from Eq. (2.8) we obtain the
following equalities:

0 =

(
DT

s (Dẑt � yt) +
Pt+J

j=t�J,j 6=t F
T
t!jD

T
s (DsFt!j ẑt � yj), if p = 2

DT
s sign(Dẑt � yt) +

Pt+J
j=t�J,j 6=t F

T
t!jD

T
s sign(DsFt!j ẑt � yj), if p = 1

(2.9)

We derive from these equalities that [37]:

• when p = 2, ẑt is the pixel-wise average of measurements after image registration,
i.e., copying from the LR grid to the HR grid after proper shifting and zero-�lling;

• when p = 1, ẑt is the pixel-wise median of measurements after image registration.

The deconvolution to estimate x̂t from ẑ can be either done by classical or DL-based
methods. If one uses a classical method, in the under-determined case (i.e., when 2N +1 <
s), some pixel locations will have no estimate. For these cases, it is essential to have a
regularization term. Authors of [40] proposed a robust regularizer called bilateral TV, which
is computationally light and preserves edges. This prior consists in setting:

⇢(xt) =
PX

l=�P

PX

m=0| {z }
l+m�0

↵|m|+|l|||xt � Sl
xS

m
y xt||1 (2.10)

Operators Sl
x and S

m
y shift xt by l andm pixels in horizontal and vertical directions respec-

tively. They enable presenting several scales of derivatives. The scalar weight ↵ 2 [0, 1] is
applied to give spatially decaying weights to the linear combination of the regularization
terms. The bilateral TV regularization is indeed a generalization of the TV regularization.
Authors of [96] proposed to do this deconvolution based on a residual CNN.
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2.2 Deep VSR

VSR has recently bene�ted from DL methods [110, 134, 66, 150, 42, 62, 63]. We will see that
these methods can be classi�ed into three paradigms. However, all of them typically consist
of the common four components: feature extraction, alignment, fusion, and reconstruction.
The challenge mainly lies in the design of the alignment and fusion modules, especially
when a video contains occlusion, large motion, and severe blurring. Generally, the fusion
occurs after alignment [134, 110, 150, 63] and both tasks are separately done, but some VSR
networks operate both tasks simultaneously [42, 66].

In this section, we will �rst explain the three deep VSR paradigms. We will see that one
is more attractive for practical applications than the others. We will therefore explain it
in more detail. Then, we will present alignment techniques used in SOTA VSR networks.
Finally, we will present fusion techniques elaborated in the deep VSR community.

2.2.1 Classi�cation of deep VSR methods

There are broadly three classes of deep VSRmethods. The �rst one groups sliding-window

based models. These models [134, 66, 150, 63, 78] take a batch of multiple LR frames as
input to fuse them and reconstruct an HR frame. In most cases, this batch contains 5 to 7 LR
frames. Therefore, the temporal receptive �eld—in other words, the number of LR frames
used in order to super-resolve a frame—is limited to 7.

In contrast, methods introduced in [110, 42, 62], that build upon recurrentmodels, en-
able a larger temporal receptive �eld. In these networks, to super-resolve a frame at time
step t, the hidden states and/or output computed in the previous time step t� 1 are taken
as input, in addition to a batch of 1 to 3 LR frames. This recursion allows propagating infor-
mation through a large number of frames. As their input batch contains fewer LR frames
and their network structures are mostly simpler, recurrent methods are faster than sliding-
window based methods. Moreover, an inference of a recurrent model presents less redun-
dant computations than the one of a sliding-window based model because each frame is
processed only once. Finally, sliding-window based methods generate independent output
HR frames, which reduces the temporal consistency of the produced HR frames, resulting
in �ickering artifacts. This is not the case for recurrent VSR, in which information about
the previously super-resolved frame is part of the input at each time step. However, we
demonstrate for the �rst time that contrary to sliding-based ones, recurrent VSR networks
present an instability problem on a certain type of video. This point will be investigated in
Sec. 2.5.

The third class of deep VSR networks regroups bidirectional methods [24, 23, 149].
These models take a batch of an arbitrary number of LR frames and super-resolve all of
them after forward and backward propagations of recurrent information. This bidirectional
schememaximizes information-gathering within the batch but presents problems that limit
its practical applicability. First, it can only allow for o�ine processing of this batch. This
is contrary to the aforementioned unidirectional recurrent networks that can process the

60/159



V���� S�����R���������

incoming LR frames online. Therefore, incoming LR frames should be bu�ered before being
processed, and the temporal receptive �eld is limited to the length of the bu�er, similarly
to sliding-window based methods. Between consecutive bu�ers, temporal discontinuity
produces �ickering artifacts. Second, the need for both forward and backward propagations
doubles the computation time.

2.2.2 Recurrent video super-resolution

This section presents SOTA recurrent VSR methods, as they seem to regroup the most
attractive networks from an application-oriented point of view.

FRVSR

Authors of [110] were pioneers of deep recurrent VSR. They introduced Frame-Recurrent
Video Super-Resolution (FRVSR), in which the previous output frame is warped based on
a dense optical �ow estimation and fed back as an additional input to a super-resolution
network at the next time step. Hence, FRVSR operates frame-recurrence. Fig. 2.2 is an
overview of FRVSR. Another network estimates the optical �ow, and the two networks are
jointly trained end-to-end. The loss function is the sum of the supervised super-resolution
loss and the unsupervised warping loss. The former is the MSE between the restored frame
and the corresponding GT frame at time step t. The latter is expressed as follows:

||Fût−1→t,LR
yt�1 � yt||

2
2 (2.11)

yt−1 yt

x̂t−1 x̂t

ût−1→t,LR

ût−1→t

Figure 2.2: Overview of FRVSR. FNet is based on an encoder/decoder style architecture,

increasing the receptive �eld of the convolutions. Its architecture is illustrated in Ap-

pendix. A.4. SRNet is based on an architecture with successive residual blocks [54] followed

by transposed convolutions for upsampling. Figure adapted from [110].
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RLSP

A more recent recurrent VSR architecture called Recurrent Latent Space Propagation (RLSP)

(RLSP) was introduced in [42]. In this approach, the previous output frame and the pre-
viously estimated locality-based hidden state are used as extra input at the next time step.
Fig. 2.3 presents the architecture of RLSP. Compared to frame-recurrence, RLSP can be in-
terpreted as maximizing the depth and width of the recurrent connection. In contrast to
FRVSR, RLSP is based on implicit motion compensation. The overall architecture is com-
putationally e�cient, which enables RLSP to be the fastest VSR network at this time.

y
∗

t

x̂t x̂t+1x̂t−1

yt−1 yt yt+1

Figure 2.3: RLSP. Figure taken from [42]

RSDN

Recurrent Structure-Detail Network (RSDN) [62] is so far the recurrent VSR network that
reportedly performs the best for relatively short sequences, according to its performance
on the Vid4 dataset, composed of 4 videos between 34 to 49 frames [77]. Its architec-
ture presents a recurrent hidden state coupled with a hidden-state adaptation module and
structure-detail decomposition. The input LR frames and the hidden state are decomposed
into structure and detail components and fed to two interleaved branches to reconstruct
the corresponding components of HR frames.

2.2.3 Image/feature alignment techniques

Whether the VSR network is sliding-window based, recurrent or bidirectional, frame or
feature alignment of the images in the input LR batch with respect to the reference frame
to be super-resolved, is an important step. This section details some of the SOTA alignment
techniques.
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Figure 2.4: Illustration of optical �ow. Figure taken from [77].
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Optical �ow-based alignment

Optical �ow is a vector �eld quantifying the apparent motion of individual pixels on the
image plane. It is a good approximation of the true physical motion projected onto the im-
age plane. Fig. 2.4 illustrates this vector �eld. Estimating the optical �ow �eld between two
frames is indeed an inverse problem, and this estimation allows to align the two frames
afterward by explicit warping, i.e., motion compensation. Classically, optical �ow �elds
are estimated based on Bayesian inference, iterative algorithms and an explicit regulariza-
tion [77, 152, 88, 139]. These regularizations are mostly derived from TV regularization.
The most recent and successful optical �ow estimations are done by neural networks [120,
110, 101, 60]. Some video restoration systems thus include auxiliary DL-based optical �ow
estimation modules that can be either pretrained [97, 124] or trained end-to-end along with
the main video restoration branch [110]. Since we generally do not have access to GT �ow
in most scenarios, unsupervised warping loss is used as a loss function [110, 124, 151, 79].
This loss is expressed as follows:

Lflow =
t+JX

j=t�J,j 6=t

Lflowj→t
=

t+JX

j=t�J,j 6=t

||Fûj→t,LR
yj � yt||

p
p + '(ûj!t) (2.12)

where ûj!t,LR is the estimated optical �ow projected in the LR space, Fûj→t,LR
is the warp-

ing operator based on ûj!t,LR and'(ûj!t) is a regularizer. This explicit regularization term
is mostly not used when a CNN estimates the optical �ow �eld. In this case, the regular-
ization is only implicit, based on data.

Once the �ow �elds are estimated, the motion compensation can occur either at im-
age [110, 17] or feature [110, 96] spaces. However, optical �ow estimation for explicit mo-
tion compensation encounters some issues. First, accurate �ow is di�cult to estimate if
occlusion and large motion occur. Second, the authors of [146] showed that exact opti-
cal �ow computation is intractable and could be suboptimal for a speci�c task. Incorrect
optical �ow estimation may corrupt original frames by provoking apparent artifacts, and
decrease the performance of the restoration, even if the errors are minor. Third, the mo-
tion estimation module requires additional memory space. As an example, the FlowNet in
FRVSR [110] accounts for around 40% of the total parameters of the VSR system.

Deformable convolution-based alignment

Deformable convolutions have been �rstly introduced in [33]. A deformable convolution
layer is a convolution layer with additionally learned spatial o�sets. These o�sets allow the
deformable convolution to retrieve information away from the regular local neighborhood.
The concept of deformable convolution is illustrated in Fig. 2.5. The technique has been
used in various computer vision tasks, including object detection [10], action recognition
[163], and semantic segmentation [33]. For VSR, the work [126] �rstly used it to align
the input frames at the feature level without explicit motion estimation or image warping.
This alignment works as follows. Let F a

t+i denotes the features aligned with respect to the
reference features Ft at each pixel position p0. Moreover, let wk and pk denote the weight
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(a) (b) (c) (d)

Figure 2.5: Illustration of the sampling locations in 3 ⇥ 3 standard and deformable convo-

lutions, taken from [33]. (a) regular sampling grid (green points) of standard convolution.

(b) deformed sampling locations (dark blue points) with augmented o�sets (light blue ar-

rows) in deformable convolution. (c)(d) are special cases of (b), showing that the deformable

convolution generalizes various transformations for scale, (anisotropic) aspect ratio and ro-

tation.

and the pre-speci�ed o�sets for the k-th location. For example, in the case of a 3⇥3 kernel,
K = 9 and pk 2 {(1, 1), (1, 0), , (1, 1)}. The deformable convolution-based alignment is
expressed as:

F a
t+i(p0) =

KX

k=1

wk · Ft+i(p0 + pk +∆pk) ·∆mk (2.13)

where the o�set ∆pk and the modulation scalar ∆mk are learnable and predicted from
concatenated features of a neighboring frame and the reference one:

∆Pt+i = f( [Ft+i, Ft] ) (2.14)

where∆P={∆p}, f is a CNN module, and [·, ·] denotes the concatenation operation. The
same logic applies to the modulation scalar ∆mk.

Inspired by the work [126], the authors of [134] used deformable convolutions in a
pyramidal—i.e., multi-scale—manner for feature alignments: they �rst align features in
lower scales with coarse estimations and then propagate the o�sets and aligned features
to higher scales, similarly to previous studies on optical �ow estimation [101, 120]. This
pyramidal scheme enables to model large motion. In addition, the authors added the mech-
anism of cascading re�nement, inspired again by previous works such as [60, 58, 59].

Authors of [25] showed that deformable convolution could be decomposed into a com-
bination of spatial warping and convolution. This decomposition raises the common point
of deformable and �ow-based alignments in formulation but with a key di�erence in o�set
diversity. They showed that the increased diversity in deformable alignment yields better-
aligned features, signi�cantly improving video super-resolution performance. They further
proposed an o�set-�delity loss that guides o�set learning with optical �ow. This loss pre-
vents the over�ow of o�sets and alleviates the instability problem of deformable alignment.
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VSR networks that operate deformable convolutions for feature alignment have yielded
better results than the ones relying on optical-�ow based explicit motion compensation.
However, deformable convolutions highly consumememories and add a signi�cant amount
of parameters. For information, the authors of [134] used 8 NVIDIA Titan XP GPUs in par-
allel to train their Video Restoration framework with Enhanced Deformable convolutions
(EDVR). Fig. 2.8 shows EDVR is highly memory-demanding.

Non-local block

Figure 2.6: Di�erences of non-local operation and explicit motion compensation. Non-local

operation tries to obtain the response at position xi by computing the weighted average of

relationships of all possible positions xj [133]. Figure taken from [150].

In their Progressive Fusion Video Super-Resolution (PFNL) network, the authors in
[150] proposed to do an implicit alignment based on their newly proposed Non-Local Resid-
ual Block (NLRB). This block captures long-range spatio-temporal correlations among pix-
els of the images in the input sliding-window. Fig. 2.6 illustrates the concept of non-local
interaction modeling. Non-local operation tries to obtain the response at position xi by
computing the weighted average of correlations with all possible positions xj . Mathemati-
cally, this operation is described as follows:

yi =
1

C(x)

X

j

f(xi, xj)g(xj) (2.15)

where x represents the input data, y denotes the output having the same size as x. i is
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the index of an output position, and j is the index of all possible positions. The func-
tion f calculates a scalar representing the correlation between two inputs, while g gives a
representation of the input. C(x) is used for normalization. The authors considered the
Gaussian function f(xi, xj) = ex

T
i xj , where xT

i xj represents the dot-product similarity,
and C(x) =

P
j f(xi, xj) is used for normalization.

Figure 2.7: Structure of an NLRB. We show the feature maps as their shapes like THWC ,

which are reshaped if noted. The
N

represents matrix multiplication and
L

represents

element-wise addition. Figure taken from [150].

Fig. 2.7 shows the structure of an NLRB. As one can see on it, the output of the block is
zi = Wzyi + xi, where Wz is implemented by 1⇥ 1 convolution. The temporal dimension
of the input is �rst transformed into the channel dimension. Indeed, the temporal correla-
tions are captured through the channel correlations. Moreover, the feature map is secondly
shu�ed. These two steps allow to lower the required memory. Without them, a memory
error probably occurs on most machines.

Dynamic upsampling �lters

The work in [66] proposed Dynamic Upsampling Filters (DUF) for implicit motion com-
pensation. First, these �lters are constructed based on the input sliding-window, capturing
motion information. Then, the HR frame is directly constructed by locally applying these
�lters to the center input frame. However, as DUF needs to estimate dynamic �lters in each
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location, the algorithm su�ers from heavy computation, as illustrated in Fig. 2.8. Moreover,
DUF generates a strong border e�ects.1

Recurrent Latent Space Propagation

In RLSP and RSDN, the recurrent convolutional layers simultaneously allow implicit align-
ment and feature fusion.

2.2.4 Feature fusion

Once the images or the features are explicitly or implicitly aligned, they must be fused to
complete the super-resolution task. This section presents fusion techniques used in some
SOTA networks, if the fusion occurs after alignment.

Direct fusion

The direct fusion strategy fuses multiple frames into one part from the beginning [110, 42].
They are concatenated in the channel dimension and given to a CNN. This strategy is the
most simple and popular fusion method.

Progressive fusion

Authors of [150] introduced this fusion method. It consists in cascading several progressive
fusion residual blocks. This block alternates individual feature extraction from each frame
and mixed temporal information extraction. This way, both intra-frame spatial correlations
and inter-frame temporal correlations are extracted progressively.

Temporal and spatial attention

The study from [134] used a temporal and spatial attention mechanism for fusion. This
mechanism assigns pixel-level aggregation weights to each frame. The temporal attention
computes frame similarity in an embedding space. Similar to the reference frame a neigh-
boring one is, its attention coe�cient is higher. Subsequently, spatial attention masks are
then computed from the fused features. A pyramid design is employed to increase the atten-
tion receptive �eld. After that, themasksmodulate the fused features through element-wise
multiplication and addition, similar to [135].

1This border e�ect is visible on images available on https://github.com/yhjo09/VSR-DUF.
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Temporal group attention

The work in [63] divided into several groups the input LR frames in the sliding-window.
In the �rst place, each group undergoes an intra-group fusion. After that, the inter-group
fusion module involves a temporal attention mechanism that computes a spatial mask for
each group.

Figure 2.8: Speed and performance comparison, based on UDM10 dataset. [150]. Figure

adapted from [24].

2.3 Comparison between classical and DL-based video

restoration

This section compares DL-based and classical video restoration methods for restoration
tasks that are not restricted to VSR. One should note that some restoration tasks are indeed
special cases of VSR. For instance, in the case s = 1, Eq. (2.4) is a video deconvolution prob-
lem. If s = 1 andH = I we have a video denoising problem. In contrast, for some problems
such as atmospheric turbulence mitigation, the linear degradation is more complicated than
DsH .

In some cases of video restoration where the motions of the scene and objects are simple
and well characterized, classical methods are adapted and provide excellent results. Fig. 2.9
and Fig. 2.10 illustrate these performances in static scenes, where DL-based approaches
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do not perform as well. In the presence of moving objects, the classical methods can be
applied on a local patch containing each object, where the motion model becomes simple
and provides good performance, as shown in Fig. 2.11.

(a) Noisy (b) Denoised

Figure 2.9: Classical static scene denoising (temporal and �xed pattern noise).

(a) Input degraded frame (b) DL (EDVR [134])

(c) Classical (shift-and-add with iterative de-

convolution)

Figure 2.10: Static scene video super-resolution.

When the motion is complex or di�cult to estimate, neural networks can learn to com-
pensate for this motion and take this information into account in the super-resolution pro-
cess in a robust way. Fig. 2.12 shows that in this scene with complex motion, the deep-
learning approach performs similarly as on the static scene, which is better than classical
methods that are not well suited to this complex/dynamic setting.
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Figure 2.11: Classical VSR with a mobile object. Left: input degraded frame. Right: the

corresponding super-resolved frame.

In atmospheric turbulence, where the forwardmodel (generating turbulence) is complex
and highly ill-posed, it is challenging to design a classical algorithm to solve the problem.
This algorithm would involve both luminance and dense motion �eld estimation with too
many unknowns. Deep learning-based methods can provide reasonably good solutions, as
highlighted in Fig. 2.13, needing only to simulate the forward model in the data generation
process.

2.4 Deep Unrolled Network for VSR

So far, we have separately presented data-based and model-based VSR methods. In this
section, we explore the technique that consists of blending these two paradigms to bene�t
from both of them in a complementary way. Indeed, we detail the designing of a new VSR
network based on the technique of deep unrolling.

Previous works on unrolled optimization algorithms focus on single image restoration,
such as image denoising, deblurring and SISR. To the best of our knowledge, unrolled opti-
mization algorithm has never been explored to tackle VSR. On the other hand, most stud-
ies on VSR currently search for the best performing purely learning-based network un-
der single degradation, without incorporating the image formation model in the network
nor dealing with multiple degradations. In this context, we introduce a framework coined
Unrolled Video Super-Resolution (UVSR) that resembles FRVSR [110] but is based on un-
rolled optimization. In other words, we �rst model an image sequence formation model,
and UVSR then involves an unrolled network—more precisely unrolled gradient descent
network—that is designed to solve the modeled problem. We empirically assess the UVSR
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Figure 2.12: A frame with complex motion super-resolved with a classical method (left) and

the neural network FRVSR [110] (right).
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Figure 2.13: Deep atmospheric turbulence mitigation.

performance through implementation, training on the MM522 dataset [136, 150] and test-
ing on the Vid-4 dataset [77]. PSNR and SSIM are used for performance evaluation. Two
experimental con�gurations are set up: one that involves a single degradation and another
that involves multiple degradations. Both of them are noise-free. In the �rst one, UVSR
is compared to the resembling FRVSR and three SOTA networks. Qualitative evaluation
is also done in this single degradation con�guration. In the second one, UVSR is com-
pared to Frame-Recurrent Video Super-Resolution for Multiple Degradations (FRVSR-MD),
an improved version of FRVSR that we design so that the network can deal with multiple
degradations.

2.4.1 Problem formulation

We rely on the forward video formation model of Eq. (2.4). We further assume that H is
a Gaussian blur with standard deviation �. For the adjoint operator of DsH , we use the
operator HTBUs where Us upsamples the input by the factor s by inserting zeros and B
replaces these zeros by bilinear interpolation. H is a Gaussian blur, soH = HT . The adjoint
operator of Fut→j

is F T
ut→j

= Fuj→t
.

SupposingH is known, we saw in Sec. 2.1 that the inverse problem is classically solved
by alternately solving the minimization problems from Eqs. (2.5) and (2.6), relying on hand-
crafted priors on the estimated frame and optical �ow.
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Figure 2.14: Illustration of UVSR. P and D respectively denote the prior and data steps.

2.4.2 UVSR Framework

Algorithm

If we want to recover the t-th HR frame by only using the t-th and (t � 1)-th LR frames
(taking example from FRVSR [110]), Eqs. (2.5) and (2.6) become:

x̂t = argmin
xt

||DsHxt � yt||
2
2 + ||DsHFut→t−1

xt � yt�1||
2
2 + ⇢(xt) (2.16)

ût!t�1 = argmin
ut→t−1

||DsHFut→t−1
xt � yt�1||

2
2 + '(ut!t�1) (2.17)

The following outlines the idea of the framework we introduce: instead of alternately
solving these problems, we propose �rst to compute ût!t�1 and ût�1!t based on an optical
�ow estimation CNN called FNet, similarly to [110]. Then, to compute x̂t, we propose to
unroll the gradient descent algorithm that solves Eq. (2.16) and replace the gradient of the
prior by a CNN, similarly to [36]. We thus propose Algorithm 1, summarized in Fig. 2.14. In
the algorithm,K denotes the number of unrolled iteration blocks, and ↵k and �k are train-
able stepsize parameters of unrolled networks that are speci�c to each iteration block. We
initialize them for the k-th iteration block with the following scheme: (↵k, �k) = ( 1

2k
, 1
2k
).

Ss and S̃s are respectively space-to-depth and depth-to-space [110, 117] transformations.
They enable decreased computational cost by allowing convolution operations to be done
in the LR image space. The notation (·, ·) denotes the concatenation operation.

The detailed work�ow of Algorithm 1 is the following: the initial approximation of the
super-resolved frame is obtained by backprojection (line 1 of Algorithm 1). In addition,
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Algorithm 1: UVSR

Input: yt, yt�1, x̂t�1, H, s

1 Initialization: x̂0
t = HTBUsyt

2 ût!t�1,LR  FNet(yt�1, yt)

3 ût�1!t,LR  FNet(yt, yt�1)

4 ût!t�1  BUsût!t�1,LR

5 ût�1!t  BUsût�1!t,LR

6 x̃t�1  Fût−1→t
x̂t�1

7 x̃t�1,LR  Ss(x̃t�1)

8 for k  0 to K � 1 do
Prior step:

9 x̂k
t,LR  Ss(x̂

k
t )

10 zkLR  N✓k(x̂
k
t,LR, x̃t�1,LR)

11 zk  S̃s(z
k
LR)

Data step:

12 x̂k+1
t  

x̂k
t +zk�↵kH

TBUs(DsHx̂k
t �yt)��kFût−1→t

HTBUs(DsHFût→t−1
x̂k
t �yt�1)

13 end

14 x̂t  x̂K
t

Output: x̂t, ût�1!t,LR, ût!t�1,LR

two inferences of FNet gives ût!t�1,LR and ût�1!t,LR, the LR optical �ow maps between
the two consecutive LR frames yt�1 and yt. These maps are then upsampled via bilinear
interpolation which gives HR �ow maps ût!t�1 and ût�1!t. The HR estimated of the pre-
vious frame xt�1 is then warped according to ût�1!t which produces x̃t�1. The latter is
then space-to-depth transformed which gives x̃t�1,LR.

The next part of the algorithm constitutes the unrolling part. Each iteration step k
outputs an estimation of the super-resolved current frame x̂k+1

t . This �rst involves the
prior step (lines 9 to 11) in which the CNN N✓k(.) operates fusion and encodes statistical
image prior simultaneously. The network takes as input the HR image estimated in the
previous iteration step that is space-to-depth transformed x̂k

t,LR and x̃t�1,LR. Indeed, the
prior image is drawn from a distribution with parameters ✓ conditioned by x̂t�1, which
enforces temporal coherence. We also remark that our model is actually recurrent. After
this prior step comes the data step (line 12). Solving Eq. (2.16) with the gradient descent
unrolling algorithm involves two data consistency terms: one that is related to the current
frame at t (↵kH

TBUs(DsHx̂k
t � yt)) and another term that is related to the previous frame

at t� 1 (�kFût−1→t
HTBUs(DsHFût→t−1

x̂k
t � yt�1)).

As in the data step zk is reused, the network involves a "partial" residual connection,
which facilitates the gradient �ow. This skip connection is "partial" in the sense that the
term x̂t�1 in the input that is concatenated is not involved in this connection. Space-to-
depth and depth-to-space transformations are simple pixel rearrangement operations, so
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this connection can be kept.

Architecture of the CNN

Considering Algorithm 1, for each of the iteration steps k 2 0, ..., K � 1, with K being
the number of total unrolled steps, the networks N✓k(., .) has the same architecture. This
architecture is similar to the one of VDSR [69], i.e., is a feedforward CNN architecture with
d layers, interspaced ReLU activations and the global skip connection. However, as written
on Algorithm 1, here the input and output are in LR image space and there is the afore-
mentioned partial skip connection. The choice of the two hyperparameters d and K , and
the number of �lters in each convolutional layer f signi�cantly impact the inference speed
and the number of parameters of UVSR. Our proposed method is similar to the FRVSR [110]
that we consider as a baseline. For fair comparison and to demonstrate the bene�t brought
from the unrolled architecture, we choose d,K and f so that the number of parameters of
UVSR becomes a bit comparable to the number of parameters of FRVSR. As we are dealing
with a recurrent network, we also make sure these hyperparameters do not provoke any
memory error regarding the backpropagation through time at training time. We choose
d = 7, K = 3 and f = 128. Tab. 2.1 shows numbers of parameters of FRVSR and UVSR.

Architecture of FNet

We use the same architecture of FNet as in [110]. This contributes to a fair comparison
between FRVSR and UVSR. Fig. A.1 in the Appendix. A.4 details this architecture.

Loss functions

We use the following loss function:

L = Lsr + Lflowt−1→t
+ Lflowt→t−1

= ||x̂t � xt||
2
2 + ||Fût−1→t,LR

yt�1 � yt||
2
2 + ||Fût→t−1,LR

yt � yt�1||
2
2

(2.18)

The �rst term is related to the super-resolution task. The second and third terms account
for the optical �ow estimation from FNet. All losses are backpropagated through both FNet
and the unrolled network as well as through time, and UVSR is end-to-end trained, as
in [110].

2.4.3 Experiments

This section describes how we assess the UVSR performance via experiment.
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Datasets

We use the MM522 dataset [136, 150] for training and the Vid-4 dataset [77] for testing. In
the training phase, clips of 10 frames are randomly cropped with crop size 256⇥ 256 from
the dataset. To generate LR frames, each HR video frame in the datasets is �rstly blurred by
a Gaussian kernel of standard deviation �, then downsampled by sampling every 4-th pixel
in each dimension (the sampling factor is s = 4), which generates LR video frames. No
noise is added after. The variance of the Gaussian noise nt in Eq. (2.1) is therefore zero. We
set up two experimental con�gurations. In the �rst con�guration, � is �xed to 1.6 for both
train and test sets, which enables to adopt similar experimental conditions as in [66, 150,
110]. We deal with a single degradation in this case. In the second con�guration, for each
sequence � = �train is uniformly sampled between 0.375 and 2.825 in the training phase.
The value � = �test = 1.6 is chosen for the test set. This allows us to assess a single UVSR
under multiple degradations. Data augmentation by random �ipping is operated during
training.

Evaluation

We use a similar evaluation protocol as in [68, 66, 150] over the test set. PSNR and SSIM are
computed over video pixels on the brightness channel of the ITU-R BT.601 YCbCr standard,
excluding the �rst and last two frames and border pixels (8 pixels). We also compute the
number of parameters and measure testing time cost as being the time needed to generate
one 1920 ⇥ 1080 frame when the upscaling factor is 4. We perform experiments with an
Intel I7-8700K CPU and one NVIDIA GTX 1080Ti GPU.

We compare our UVSR in the �rst single degradation con�guration to FRVSR and the
SOTA networks (DUF [66], PFNL [150], and RLSP [42]). In this experiment we do not con-
sider EDVR [134] because of its too large size. For DUF and PFNL, we use values reported
in [150] as performances of these networks were measured in the same setting. We imple-
mented FRVSR and RLSP to measure their performances as the con�gurations in [110, 42]
di�er from ours.

For the second, multiple degradations con�guration, we compare UVSR with an FRVSR
variant that we improve in order to account for themultiple degradations con�guration. We
coin it Frame-Recurrent Video Super-Resolution for Multiple Degradations (FRVSR-MD).
This model is derived from FRVSR, but the stretched feature maps that encode knowledge
about � are also concatenated at the input of SRNet, similarly to [157]. PCA is used to
reduce the dimensionality of blur kernels to 10.

We also qualitatively evaluate UVSR based on generated predictions and temporal pro-
�les.
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Table 2.1: Number of parameters, testing time and PSNR(dB)/SSIM of di�erent models on

Vid4 test set with � = 1.6. Values related to networks with ’*’ are taken from the referred

publication. We implemented networks without ’*’. Bold indicates the best performance.

Sequences FRVSR UVSR *DUF [150] *PFNL [150] RLSP [42]

Calendar 23.90/0.8092 24.03/0.8102 23.85/0.8052 24.37/0.8246 24.08/0.8160

City 27.79/0.8220 27.59/0.8209 27.97/0.8253 28.09/0.8385 28.10/0.8278

Foliage 26.53/0.7806 26.58/0.7819 26.22/0.7646 26.51/0.7768 26.43/0.7766

Walk 29.98/0.9029 30.03/0.9035 30.47/0.9118 30.65/0.9135 30.36/0.9101

Average 27.05/0.8287 27.06/0.8291 27.13/0.8267 27.40/0.8384 27.24/0.8326

# param. (M) 5.055 4.624 5.829 3.003 4.225

Testing time (ms) 214 170 2754 741 80

2.4.4 Results

Tab. 2.1 summarizes comparisons between UVSR and other networks under single degra-
dation. We observe that in terms of PSNR, on average UVSR does not signi�cantly improve
over FRVSR and performs worse than the SOTA networks. However, for the foliage se-
quence, UVSR performs the best. Regarding SSIM, on average UVSR performs better than
DUF and FRVSR and worse than RLSP and PFNL. Here also, UVSR performs the best for
the foliage sequence. We note that the PSNR and SSIM values of FRVSR that we imple-
mented are higher than those reported in [150] that adopted a similar experimental con�g-
uration. Thus we make a fair comparison.

Then, UVSR presents faster inference than FRVSR and the SOTA networks except RLSP.
Regarding model complexity, UVSR presents fewer parameters than FRVSR and DUF, a
similar number of parameters as RLSP but more parameters than PFNL.

Tab. 2.2 compares UVSR and FRVSR-MD under multiple degradations. One can see that
UVSR has fewer parameters than and is faster than FRVSR-MD. Concerning PSNR, UVSR
does not improve over FRVSR-MD. But UVSR outperforms FRVSR-MD concerning SSIM.

From the above observations, the situation UVSR is the most adapted seems to be in the
presence of multiple degradations with constraints on model size and inference latency.
Moreover, UVSR rather presents more satisfactory performance with respect to SSIM than
PSNR. We recall that SSIM is a better measure of perceived visual quality than PSNR [138].
The following observation is in the same vein. Indeed, Fig. 2.15 visually compares UVSR
and FRVSR under single degradation. One can see that for the frame from the calendar

sequence, UVSR more sharply estimates the clips and the road.

Fig. 2.16 shows temporal pro�les for this calendar sequence. We observe that UVSR
produces sharper results than FRVSR. This indicates that UVSR enables better temporal
coherence. We think this is due to the fusion and the presence of a motion-related data
consistency term at each unrolled iteration step.
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Table 2.2: Number of parameters, testing time and PSNR(dB)/SSIM of FRVSR-MD and UVSR

on Vid4 test set with �train 2 [0.375, 2.825] and �test = 1.6. Bold indicates the best perfor-

mance.

Sequences FRVSR-MD UVSR

Calendar 23.52/0.7870 23.62/0.7947

City 27.64/0.8093 27.60/0.8099

Foliage 26.17/0.7596 26.05/0.7614

Walk 29.68/0.8971 29.74/0.8982

Average 26.75/0.8132 26.75/0.8161

# param. (M) 5.066 4.624

Testing time (ms) 216 170

(a) GT (b) FRVSR

(c) UVSR

Figure 2.15: Visual comparison on the calendar sequence from Vid4.
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(a)

(b)

(c)

Figure 2.16: Temporal pro�les on the Calendar sequence. (a-c) are respectively GT, FRVSR

and UVSR.

Increasing the number of unrolled steps and/or the number of convolutional �lters in
each prior step should improve UVSR’s performance. However, these increases are limited
by the memory available at training time and the authorized inference speed.

2.5 Stable Long-term Recurrent video super resolution

As stated in Sec. 2.2.1, recurrent models, like FRVSR, UVSR and RLSP, have gained popu-
larity in deep VSR due to their increased computational e�ciency, temporal receptive �eld
and temporal consistency compared to sliding-window based models. However, in this sec-
tion, we show that when inferring on long video sequences presenting low motion (i.e., in
which some parts of the scene barely move), recurrent models diverge through recurrent
processing, generating high frequency artifacts. To the best of our knowledge, no study
about VSR pointed out this instability problem, which can be critical for some real-world
applications. Video surveillance is a typical example where such artifacts would occur, as
both the camera and the scene stay static for a long time.

In the following, we expose the instabilities of existing recurrent VSR networks on long
sequences with low motion. We demonstrate it on a new long sequence dataset Quasi-
Static Video Set, that we have created. Finally, we introduce a new framework of recurrent
VSR networks that is both stable and competitive, based on Lipschitz stability theory. We
propose a new recurrent VSR network, coined Middle Recurrent Video Super-Resolution
(MRVSR), based on this framework. We empirically show its competitive performance on
long sequences with low motion.

2.5.1 Cause of the divergence

Because of computational and memory constraints, as well as vanishing and exploding
gradients, recurrent VSR models are usually trained on sequences of 7 to 12 images. They
are then deployed to super-resolve a sequence of any length. Some applications, such as
video-surveillance, would require to super-resolve sequences of arbitrary length. However,
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(a) GT (b) Bicubic

(c) RLSP (d) MRVSR (Ours)

Figure 2.17: A comparison between a state-of-the-art recurrent VSR network (RLSP) and

our proposed network. The former generates high frequency artifacts on long sequences

with low motion. The proposed network does not.

recurrent models are not trained on these long sequences. Hence, there is no guarantee that
they optimally perform on long sequences. In this section (Sec. 2.5), we show that recurrent
VSR networks generate high frequency artifacts when inferring on long video sequences
presenting low motion. These are sequences that contain parts of the scene that barely
move, for instance because the camera is quasi-static. The super-resolution process creates
high-frequency information which is accumulated in the long-term recurrence, creating
artifacts and causing divergence. Fig. 2.17 illustrates this phenomenon. To the best of our
knowledge, our work is the �rst study about VSR that raises this instability issue. This
unexpected behavior can be critical for some real-world applications, like video surveillance
in which both the camera and the scene stay static for a long time.

The structure of the rest of this section is the following. First, we review studies related
to VSR and instabilities of recurrent networks. Then, based on Lipschitz stability theory,
we propose a new framework of recurrent VSR network that is both stable and competitive
on long sequences with low motion. After this, we introduce a new recurrent VSR network
MRVSR as an implementation of this framework. Finally, we empirically analyze instabil-
ities of existing recurrent VSR models on long sequences with low motion and show the
stability and superior performance of the proposed network. A new long sequence dataset
has been created for our experiments. We make it publicly available.
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2.5.2 Instabilities of recurrent neural networks

Recurrent Neural Networks (RNNs) are di�cult to train [98]. First of all, they involve back-
propagation through time (BPTT), i.e., their unrolling through time, that is costly in terms
of memory. Secondly, these architectures risk vanishing and exploding gradients issues.
Related to this, RNNs are prone to divergence when inferring on long sequences. Authors
of [87] showed, in the context of multi-layer and LSTM networks, that an RNN is stable if
its Lipschitz constant is smaller than 1. To enforce this constraint, they proposed to clip
singular values of the matrix associated with the recurrence map to 1. Several works cir-
cumvent vanishing and exploding gradients problems by setting all the singular values to
1 [6, 144, 86, 132, 67, 155].

Some studies are related to enforcing the Lipschitz constraint in the context of convolu-
tional neural networks. Authors of [116] proposed to clip singular values of the blockmatrix
of doubly block-circulant matrices associated with the convolutional layer. The work [89]
explored spectral normalization, that relies on the power iteration to estimate maximal sin-
gular value of the reshaped kernel tensor of the convolutional layer. Authors of [131, 50]
suggested not using this reshaping and instead proposed to directly use the kernel tensor in
the power iteration. Finally, the work [111] proposed Spectral Rank Normalization (SRN),
an algorithm that seeks to enforce either the Lipschitz constraint or its softer version.

In the context of recurrent video denoising, authors of [123] pointed out instabilities.
They �rst brought out unforeseeable, colorful and black mask-like artifacts in long-term
video denoising. Then, inspired by studies on adversarial examples [48], they proposed a
diagnosis tool to check stability of a trained recurrent video processing network. Finally,
they improved upon the SRN algorithm to propose Spectral Rank Normalization for Con-

volutional layer (SRN-C). While SRN reshapes the kernel tensor of the convolutional layer,
SRN-C avoids this reshaping, similarly to [131, 50]. They applied this method on convolu-
tional layers of their recurrent video denoising network and demonstrated its e�ectiveness.

To conclude this section, the following points summarize the limits of existing works
regarding long-term recurrent VSR and our contributions:

• existing recurrent VSR networks have been only evaluated on relatively short generic
sequences. Their performances have not been measured on long sequences. We
demonstrate these networks perform poorly on such sequences when the motion am-
plitude is low, due to their recurrent structure. We create a novel dataset of long and
low motion sequences, because existing datasets only contain sequences that either
are too short or present fast scene motion;

• the relationship between instabilities and scene motion in video has not been inves-
tigated. We show that when inferring on long sequences presenting low motion,
existing recurrent VSR models diverge;

• the Lipschitz constraint has not been applied on existing recurrent VSR networks.
Indeed, in order to have a stable recurrent VSR network, we could �rst take one of
these networks and directly apply a Lipschitz constraint to all convolutional layers
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in the recurrent loop. We show that this strategy fails when super-resolving long
sequences with low motion;

• we design a recurrent VSR framework that is stable on long sequences with low mo-
tion, while not being globally Lipschitz constrained. We demonstrate the superior
performance of a network based on this framework.

2.5.3 Method

Stability of recurrent video processing models

A recurrent video processing model is determined by a recurrence map �L : Rn⇥R
d ! R

n

and an output map  : Rn ! R
c. The recurrent information ht 2 R

n and the output image
x̂t 2 R

c are updated at each time step t as follows:

(
ht = �L(ht�1, yt)

x̂t =  (ht)
(2.19)

where yt 2 [0, 1]d is an input image provided at time t.

The recurrent model is Lipschitz stable if �L is contractive in h, i.e., if �L is L-Lipschitz
in h with L < 1 (the superscript in �L highlights this Lipschitz continuity). L is the Lips-
chitz constant of �L. This stability ensures that the full recurrent system is globally stable
when running the network an arbitrary number of times, avoiding any divergence. Assume
that �L is composed ofK convolutional layers interspaced with ReLU nonlinearities. Each
convolutional layer can be encoded by a weight matrix, obtained from the layer’s kernel
tensor as a block matrix of doubly block-circulant matrices. Because Lipschitz constant of
the ReLU activation is 1, L is upper-bounded by the product of the spectral norms of the
weight matrices of the convolutional layers:

Proposition 1 For a recurrent model �L constituted of K convolutional layers with weight

matrices W1, ...,WK 2 R
n⇥n interspaced with ReLU nonlinearities, the Lipschitz constant L

of �L veri�es:

L 
KY

k=1

||Wk||sp (2.20)

where ||.||sp is the spectral norm.

Given this inequality, the Lipschitz stability can be ensured under the hard Lipschitz
constraint:

Constraint 1 Hard Lipschitz constraint (HL)

8k 2 [[1, K]], we impose ||Wk||sp  1.
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However, the upper bound in Eq. (2.20) mostly overestimates L. As an illustration, if
�L is constituted of 2 convolutional layers with weight matricesW1 andW2, the only case
where L = ||W1||sp · ||W2||sp is when the �rst right singular vector of W1 and the �rst left
singular vector ofW2 are aligned. Hence, the constraint is overly restrictive. One can thus
decide to relax it, leading to the soft Lipschitz constraint:

Constraint 2 So� Lipschitz constraint (SL)

8k 2 [[1, K]], we set ||Wk||sp = ↵ > 1 and minimize srank(Wk) based on training data, where

srank is the Stable rank.

Stable rank is an approximation of the rank operator that is stable under small pertur-
bations of the matrix. This soft constraint does not theoretically guarantee the Lipschitz
stability, so it is important to empirically verify the non divergence.

To enforce these constraints in the context of convolutional neural networks, Stable
Rank Normalization for Convolutional layers (SRN-C) can be applied to a convolutional layer
during the training stage. This sets the spectral norm of the matrix of this layer to a desired
value ↵ and minimizes the stable rank of the matrix during training, controlled by �. ↵ and
� are among hyperparameters of the algorithm. When � = 1, it is equivalent to performing
spectral normalization on the matrix. After training, a normalization step is required just
before test time, so the algorithm does not introduce any overhead in runtime and model
size at inference time. Appendix B.2 details the SRN-C algorithm.

Unconstrained Stable Recurrent VSR framework

In approaches such as RLSP, FRVSR and RSDN, every convolutional layer of super-resolving
networks is recurrent within feedback loops. This seeks to increase the depth and width of
the recurrent connection by giving the hidden state and the previous output to the input
of super-resolving networks. Therefore, these layers both incorporate past information
and contribute to the deconvolution task. Adopting the notations from Eq. (2.19), in these
networks  is reduced to the identity mapping (followed by pixel shu�ing or transposed
convolutions). In order to have a stable recurrent VSR network, a naive approach would be
to directly apply SRN-C to one of these VSR networks. However, this approach presents
some di�culties.

First, we applied SRN-C to RLSP with (↵, �) = (2.0, 0.1) and empirically veri�ed that
SL was not capable of removing the artifacts on long sequences (Fig. 2.20d). Second, we
did the same experiment with (↵, �) = (1.0, 1.0) to enforce HL and this resulted in a
stable network but with poor VSR performance (detailed in Sec. 2.5.5). This is because
the resulting architecture has been constrained to be globally 1-Lipschitz, and a successful
super-resolving function—that operates both upsampling and deconvolution—cannot be
1-Lipschitz; since some frequencies need to be boosted as the Wiener �lter does in the
optimal linear case. This is not the case for a denoising function, that can be 1-Lipschitz
while correctly performing.
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Considering these points, we de�ne a new framework of recurrent VSR network that is
stable and performs competitively on long sequences:

De�nition 1 An Unconstrained Stable Recurrent VSR network is de�ned by an input

network ⇠ : [0, 1]d⇥(2T+1) ! R
d, a contractive recurrent network �L : Rn ⇥ R

d ! R
n and

an output network  : Rn ! R
c. The features zt, the hidden state ht and the output image x̂t

are updated at each time step t as follows:

8
>><
>>:

zt = ⇠(Yt)

ht = �L(ht�1, zt)

x̂t =  (ht)

(2.21)

where Yt = {yt}t�Ttt+T 2 [0, 1]d⇥(2T+1) is an input batch of LR images provided to the

network at t and 2T + 1 denotes the size of the batch.

Let �L be constituted ofK convolutional layers with weight matricesW1, ...,WK 2 R
n⇥n

interspaced with ReLU activations. �L is contractive in h based on the hard Lipschitz con-

straint: 8k 2 [[1, K]], ||Wk||sp  1.

Stable: all the layers in the inner recurrent loop of such a network are contractive,
which guarantees its stability over time.

Unconstrained: such a network is not globally constrained in terms of Lipschitz con-
tinuity, due to its non contractive input and output networks which can keep their full
expressiveness.

Most of the deconvolution task is done by ⇠ and  . �L incorporates past information.
When ⇠ and  are simultaneously identity mappings, the unconstrained property is lost, as
the network becomes globally 1-Lipschitz. This is the case encountered when imposing HL
on all convolutional layers of networks such as RLSP, FRVSR and RSDN.

Middle Recurrent Video Super-Resolution

As an implementation of the proposed framework, we design a new network coinedMiddle

Recurrent Video Super-Resolution (MRVSR). Its architecture is illustrated in Fig. 2.18.
The �rst part of the network, ⇠, has a feed-forward architecturewithn⇠ convolutional layers
and interspaced ReLU activations. The second part �L is composed of n�+1 convolutional
layers under HL and interspaced ReLU activations. The third part  has a feed-forward
architecture with n convolutional layers interlaced with ReLU activations and followed
by a pixel shu�ing layer. This part takes as input the current hidden state ht and the
hidden state from the previous time step. This mecanism, called feature-shifting, is helpful
to promote temporal consistency between two successively output frames.

Incorporating past information via the recurrent connection is a simpler task than de-
convolution. This can be illustrated revisiting the traditional, non DL based Shift-and-Add
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ht−1

yt−1

yt

yt+1

ht

x̂t

×s

Conv SRN-C ReLU Pixel shuffling

1 nξ 1 nφ

Concatenation along channel dimension

y∗t

Element-wise addition

1 nψ

×s

Number of channels: 3 f 1 s2

ξ φL ψ

Figure 2.18: MRVSR architecture. SRN-C denotes convolutional layer under HL enforced

by SRN-C. Each convolutional layer uses 3 ⇥ 3 kernel with stride 1 and outputs f feature

maps (f = 128 in our study), except the last one which outputs s2 = 16 feature maps,

where s is the scaling factor. The network outputs the brightness channel Y of YCbCr color

space. Cb and Cr channels are upsampled independently with bicubic interpolation. Input

LR frames {yi}t�1it+1 are in RGB colorspace. Besides, yt is converted from RGB to Y

and replicated s2 = 16 times in the channel dimension, which gives x?t for the residual

connection. Pixel shu�ing rearranges elements in a tensor of shape (C ⇥ s2, H,W ) to a

tensor of shape (C,H ⇥ s,W ⇥ s).
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agorithm [40]. In this method, historical information is captured via averaging or median
aggregating past frames after projection on a HR grid and motion compensation. Averag-
ing or median aggregating are rather simple mathematical operations. Therefore, n� can
be smaller than n⇠ +n . In practice, one can �x n⇠ +n�+n to satisfy some constraint on
computational cost, set a small value for n� and then select n⇠ and n . In our setting, we
have found that under the condition n⇠+n�+n = 7 (that enables both fast computations
and good performance), the value n� = 1 lead to the best performance among other values
of n� on our validation set (described in Sec. 2.5.4).

2.5.4 Experiments

Networks

For comparison, we implement the following state-of-the-art recurrent VSR networks in
Pytorch [99]: FRVSR 10-128 [110], RSDN 9-128 [62] and RLSP 7-128 [42]. The numbers
after each network respectively indicate the number of repeated building blocks and the
number of �lters in each convolutional layer. These hyperparameters enable reasonably fast
training and testing and satisfactory performance on short sequences. In the following, we
omit these numbers for simplicity. For RSDN, our implementation is based on the o�cial
codes released by its authors.2 Additionally, we implement modi�ed RLSP where all its
layers have been normalized by SRN-C with hyperparameter sets (↵, �) = (2.0, 0.1) and
(↵, �) = (1.0, 1.0) to enforce the soft and hard Lipschitz constraints respectively. We call
these networks RLSP-SL and RLSP-HL.

We compare these networks against the proposedMRVSR.We select (n⇠, n�, n ) so that
n⇠ + n� + n = 7 for the reason stated in Sec. 2.5.3. This number equals the number of
convolutional layers in RLSP (excluding the layer that processes the hidden state), which
yields fair comparison. Among MRVSR with di�erent sets (n⇠, n�, n ), the network with
(n⇠, n�, n ) = (3, 1, 3) was the best performing model on our validation set. Therefore, in
Sec. 2.5.5 we only report performances recorded by MRVSR with this hyperparameter set.
We use SRN-C with (↵, �) = (1.0, 1.0) to impose the HL.

In order to measure the bene�t from constrained recurrence map, we also implement
MRVSR without its recurrence and feature-shifting, which coincides with RLSP without its
recurrence. This can be seen as an extension of SISR that takes 3 consecutive LR frames
as an input at each time step. Its architecture is feed-forward with 7 convolutional layers
with interlaced ReLU activations. We call this network RFS3 for Residual Fusion Shu�e
network with 3 input frames. This network will serve as baseline against recurrent models.
In addition, we also implement RFS with an input batch of 7 LR frames, that we call RFS7.
This serves as a representative sliding-window based model to compare against MRVSR,
because most of sliding-window based VSR models take a batch of 5 to 7 LR frames.

2https://github.com/junpan19/RSDN
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Datasets

We prepare the training dataset in a similar way as in [42]. From the 37 high resolution
Vimeo videos that were used in this study, after downsampling them by a factor of 2 we
extract 40,000 random cropped sequences of size I ⇥ 256 ⇥ 256 ⇥ 3, where I � 12. The
delimiting keyframes are excluded from the sequence. At training time, we sample random
sub-sequences of these crops with length 12. By excluding the �rst and the last frames, we
obtain GT sequences with length 10. The �rst and last frames of the sampled sequences
are used to produce y�1 at the beginning and y10 at the end. Data augmentation (random
�ip/transposition) is also employed.

We also prepare a validation set of 4 sequences. They come from videos with no con-
straints on motions of objects and count between 30 and 50 frames each.

We introduce a new test set of long sequences in which the camera is quasi-static and
foreground objects move. This dataset will be complementary to the existing datasets
(Vid4 [77], REDS [91] and Vimeo-90K [146]) which contain only videos that either are
short, or present fast scene motion. To generate this new dataset, we download videos
from vimeo.com and youtube.com and extract 4 sequences with quasi-static scene
and moving objects inside. The �rst two of them are respectively Full HD and HD Ready
and the two others are 4K. The HD and 4K sequences are downsampled respectively by
a factor of 2 and 4. These 4 sequences respectively have the following lengths in num-
ber of frames: 379, 379, 379 and 172. They constitute the test dataset we call Quasi-
Static Video Set. We limited the lengths of the sequences to 379 to ensure dataset ho-
mogeneity, but the video containing the �rst sequence contains a much larger number of
frames. Therefore, we have also prepared a longer version of the �rst sequence called Se-

quence 1-XL. This sequence contains 8782 frames. All of these sequences are available on
https://github.com/bjmch/MRVSR.

The train and validation sets contain standard, relatively short sequences with no con-
straints on motion, whereas the test set contains long sequences with low motion. It aims
at testing the capability of networks trained on short sequences to work on real-life long
sequences that may have low-motion periods. We remind the reader that training recurrent
networks on such long sequences is not realistic for reasons explained in Sec. 2.5.1, so the
generalization gap between short and long sequences cannot be addressed with training
data.

We additionally compare the reconstruction performances on the standard Vid4 dataset.

From each of the training, validation and test sequences in HR space, the corresponding
LR sequence is generated by applying gaussian blur with � and sampling every s = 4 pixel
in both spatial dimensions. We set � = 1.5, except when testing RSDN. In the case of this
network, we use the pre-trained weights available on its o�cial github repository. We thus
adapted the codes of the corresponding degradations that are available on this repository
to generate the LR sequence and the value of � = 1.6 was used.

88/159

https://github.com/bjmch/MRVSR


V���� S�����R���������

Training procedure and evaluation

All of the networks we prepare are trained from scratch after the Xavier initialization [46],
except RSDN. The loss function is pixel-wise mean-squared-error between pixels in the
brightness channel Y of YCbCr color space of GT frames and the network’s output. The
networks are trainedwithAdamoptimizer [70] and a batch size of 4. The learning rate starts
at 10�4 and is divided by 10 after the 200th and 400th epochs. RFS3, RFS7 and MRVSR are
trained for 600 epochs. Other models except RSDN are trained between 400 and 600 epochs
until convergence, based on train and validation losses.

We numerically evaluate the networks based on frame PSNR and SSIM. Qualitative eval-
uation that checks the presence of artifacts is of equal importance. We also assess the tem-
poral consistency by examining temporal pro�les from output sequences.

Moreover, the diagnosis tool from [123] can be used in order to visualize Spatio-Temporal
Receptive Field (STRF) of a recurrent network. This tool, that is inspired by studies on ad-
versarial examples [48], works as follows: given a trained recurrent video processing net-
work, it looks for an input sequence Y = (y�⌧ , ..., y⌧ ) that is optimized to maximize the
response at the center pixel in the output sequence X = (x�⌧+1, ..., x⌧�1). To do so, the
L1 norm of the center pixel |p| in x0 is maximized. This optimization only a�ects pixels in
Y that have an e�ect on p. Therefore, the optimized sequence Y can be interpreted as a
visualization of the STRF for the pixel p. ⌧ is typically set to 40, values of pixels in Y are
randomly initialized between 0 and 1 and images in Y have dimensions 64⇥ 64⇥ 3. In our
experiment, the optimization is solved using gradient descent and Adam optimizer for 1500
iterations. The learning rate starts at 1 and is divided by 10 after 750 and 1250 iterations.

2.5.5 Results

Performance of existing recurrent networks

Fig. 2.19 shows the evolution of the PSNR per frame for some of the networks, averaged over
the �rst three sequences of Quasi-Static Video Set. The curve of RFS3 is taken as a baseline
and subtracted to the other ones, and the resulting curves are displayed. We see that until
a relatively small number of processed frames, existing recurrent networks (RLSP, RSDN
and FRVSR) perform optimally and remain better than the baseline model. But at a certain
point their performance drop and they become worse than the baseline model, indicating
that the recursion integrates harmful information at each new frame. This can be seen as
divergence.

Tab. 2.3 summarizes the performances of the networks on the Quasi-Static Video Set. It
summarizes the performances of the methods at the beginning of the sequences, through
the entire sequences, and at the end of the sequences. The table conforms with the curves
shown on Fig. 2.19. Based on reported performances, at the beginning of the sequences
RLSP and RSDN perform better than the baseline RFS3. However, at the end of the se-
quences these networks and FRVSR have diverged and perform worse than RFS3. The
di�erences in performance on the last 50 reconstructed frames between RFS3 and respec-
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Figure 2.19: Evolution of PSNR on the brightness channel per frame averaged over the �rst

three sequences of the Quasi-Static Video Set. We substract the curve of the RFS3 baseline

and the graph shows these di�erences.

(a) RLSP (b) RSDN

(c) FRVSR (d) RLSP-SL

Figure 2.20: A frame near the end of the �rst sequence of Quasi-Static Video Set (the 376th

frame) reconstructed from state-of-the art recurrent networks, and RLSP-SL. The brightness

channel is visualized. The networks generate high frequency artifacts on the branch, which

is a quasi-static object.
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Model First 50 All Last 50

Bicubic 30.08 / 0.8362 30.05 / 0.8356 30.11 / 0.8387

RFS3 32.20 / 0.8911 32.04 / 0.8886 32.07 / 0.8911

RFS7 32.38 / 0.8945 32.23 / 0.8921 32.26 / 0.8943

FRVSR 32.15 / 0.8947 29.16 / 0.8442 27.68 / 0.8121

RSDN 33.46 / 0.9181 29.82 / 0.8788 27.98 / 0.8549

RLSP 33.08 / 0.9099 31.67 / 0.8964 30.57 / 0.8882

RLSP-SL 32.45 / 0.8991 30.62 / 0.8708 29.98 / 0.8627

RLSP-HL 30.98 / 0.8618 30.91 / 0.8608 30.95 / 0.8630

MRVSR 32.80 / 0.9030 32.62 / 0.9007 32.62 / 0.9026

Table 2.3: Mean PSNR / SSIM on the brightness channel of Quasi-Static Video Set. The

metrics are measured excluding the �rst 3 and last 3 GT frames. ‘First 50’ means the metrics

are computed at the beginning of the sequences, i.e., on the �rst 50 reconstructed frames.

‘All’ means the metrics are computed through the entire sequences, i.e., on all reconstructed

frames. ‘Last 50’ means the metrics are computed at the end of the sequences, i.e., on the

last 50 reconstructed frames. Red: the best result. Blue: the second best result.

tively RLSP, FRVSR and RSDN are�1.50,�4.39 and�4.09 in PSNR and�0.0029,�0.0790
and �0.0362 in SSIM. They represent in average �3.33dB in PSNR and �0.0394 in SSIM.
This performance drop is due to the generation and accumulation of high frequency arti-
facts. These artifacts appear on objects that barely move. Example artifacts are shown on
Figs. 2.20a to 2.20c which show a frame near the end of the �rst sequence of Quasi-Static
Video Set (the 376th frame) reconstructed by each network.

Behavior analysis: These existing recurrent networks are trained to optimize their
performance on a very low number of frames (at most 10). In this setting, it is bene�cial to
the network to produce rapidly a huge amount of details in the output sequence. These high
frequency details grow in strength with time, but they are not fed back into the network
more than 10 times, so the optimization process is not trained to manage their increase
after this period. When inferring on long sequences, these details keep accumulating long
after the short-term network’s training regime, which produces visible artifacts that diverge
over time. In the presence of strong motion, even with short-term training, the network
learns to forget the past information (this forgetting capability of recurrent VSR networks
is empirically demonstrated in Appendix B.1), which is inconsistent with the new one. The
newly created high frequency content is forgotten at the same time, preventing divergence
on scenes with enough motion. In the �rst sequence of the Quasi-Static Video Set, the bird
moves regularly, which is why artifacts do not have time to appear on the bird itself, as can
be seen on Fig. 2.20.

Constraining existing recurrent networks

SL: RLSP-SL faces the same issues as existing recurrent networks. After being better than
the baseline RFS3 at the beginning of the sequences, it diverges (Fig. 2.19). It generates high
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(a) GT (b) Bicubic

(c) RLSP-HL (d) RFS3

(e) RFS7 (f) MRVSR

Figure 2.21: The 376th frame of the �rst sequence of Quasi-Static Video Set, reconstructed

from methods that are stable by design (non recurrent or under HL). MRVSR presents the

best quality.

Figure 2.22: Evolution of PSNR on the brightness channel per frame on Sequence 1-XL. We

substract the curve of the RFS3 baseline and the graph shows these di�erences.
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frequency artifacts (Fig. 2.20d) and its performance at the end of the sequences is poor, as
shown in Tab. 2.3 (�2.09dB in mean PSNR and �0.0284 in mean SSIM compared to RFS3
on the last 50 reconstructions). This proves that SL is not enough to prevent the divergence.

HL: RLSP-HL also obtains an overall poor performance (�1.13dB in average PSNR and
�0.0278 in average SSIM compared to RFS3 based on all reconstructed frames, according
to Tab. 2.3). Its reconstruction performance is stable on a long sequence (Figs. 2.19 and
2.22), but the reconstructed image is blurred (Fig. 2.21c). This is because RLSP-HL is glob-
ally constrained to be 1-Lipschitz. Thus, as stated in Sec. 2.5.3, it is poorly suited to the
deconvolution task.

Performance of the proposed network

Model RFS3 FRVSR RSDN RLSP MRVSR

PSNR 26.43 26.69 27.92 27.46 26.90

# Param. (M) 0.77 5.05 6.18 1.08 1.21

Runtime (ms) 9 55 56 11 12

Table 2.4: Mean PSNR on the brightness channel of Vid4, model size and runtime. PSNR

values for FRVSR, RLSP and RSDN are taken from their papers. Runtime is measured on an

LR size of 180⇥320, an Intel I9-10940X CPU and one NVIDIA TITAN RTX GPU.

At the beginning of the quasi static sequences (Fig. 2.19 and Tab. 2.3) MRVSR cannot
match RLSP and RSDN, but performs better than the baseline RFS3 and FRVSR. This per-
formance is compatible with the results on Vid4 (Tab. 2.4), where MRVSR is 0.56dB behind
the unconstrained similar network RLSP. This is due to the Lipschitz constraint on MRVSR,
built to ensure its long-term stability at the price of a lower short-term performance.

When considering long-term performance on sequences with lowmotion, MRVSR gives
the best results. Figs. 2.19, 2.22 and 2.21f show that MRVSR does not diverge and does not
generate any artifact. According to Tab. 2.3, MRVSR achieves the best mean performance
on the test set, based on all reconstructed frames as well as focusing on the last 50 recon-
structed frames. Because MRVSR and RFS3 take the same number of input frames—namely
three—the di�erences of+0.58 dB in average PSNR and +0.0121 in average SSIM computed
on all reconstructed frames represent the bene�t brought by the contractive recurrencemap
of MRVSR. Moreover, considering that RFS7 takes an input batch of 7 frames, the fact that
MRVSR outperforms RFS7 (+0.39dB in average PSNR and+0.0086 in average SSIM) shows
that the temporal receptive �eld enabled by its contractive recurrence accounts for more
than 7 frames. This is con�rmed in Fig. 2.23, where the temporal receptive �eld of MRVSR
spans around 28 frames, which is much larger than the usual length (i.e., 7) of temporal
receptive �eld of sliding-window based models. Moreover, temporal pro�les produced by
MRVSR are less noisy and sharper than the ones produced by RFS3 and RFS7. This shows
the contractive recurrence map of MRVSR additionally enables increased temporal consis-
tency. Visually speaking, sequences generated by MRVSR present less �ickering artifacts
than sequences produced by RFS7 and RFS3. Fig. 2.24 displays examples of temporal pro�les
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for the �rst sequence of Quasi-Static Video Set. Finally, MRVSR presents the best long-term
reconstruction in terms of visual quality. Some examples can be observed in Fig. 2.21.

-40-39-38-37-36-35-34-33-32-31-30-29-28-27-26-25-24-23-22-21-20-19-18-17-16-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

Figure 2.23: Spatio-temporal receptive �elds of MRVSR (vizualization of juxtaposed images

in the input sequence Y = (y�⌧ , ..., y⌧ ) optimized to maximize the L1 norm of the center

pixel in the output image x0). The horizontal axis accounts for the time index t of yt. The

�gure is stretched in vertical direction.

(a) GT (b) RFS3

(c) RFS7 (d) MRVSR

Figure 2.24: Temporal pro�les from the brightness channel of the �rst sequence of Quasi-

Static Video Set. We take the 256th horizontal row of all images and stack them vertically.

As one could expect, MRVSR has practically the same computational complexity com-
pared to RLSP (similar runtime and slight overhead in number of parameters, according to
Tab. 2.4). As we stated in Sec. 2.2.2, RLSP is known to be the fastest VSR network so far.
Therefore, MRVSR presents state-of-the-art runtime and compact model size.

Fig. 2.25 shows the SVD spectrum of ourMRVSRmodel. We see that SRN-C successfully
works in constraining the spectral norm of only recurrent layers of �L to 1. Other layers
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Figure 2.25: SVD spectrum of MRVSR, based on the code from [116]. Each label in the

legend indicates the n-th layer in one of the sub-networks ⇠, �L or  . We see that SRN-C

successfully works in constraining the spectral norm of only recurrent layers of  L to 1.
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have spectral norms that are higher than 1 and can fully contribute to the deconvolution
task.

Finally, in Appendix. B.3 we propose a simple way to diagnose whether a trained recur-
rent VSR model is stable on sequences with low motion or not. We also present additional
experimental results.

2.5.6 Discussion

Given an existing pre-trained recurrent model, one way to operate it in a stable manner
would be the following: chunking the long sequence into shorter, either overlapping or not
overlapping sequences and using themodel for each chunk. The recurrent features are reset
to zero between each chunk. In our study, we do not consider this method for the following
reasons. If the chunks do not overlap, this approach results in a severe visual �ickering
artifact between each pair of chunks, due to the reinitialization of recurrent features that
makes the model go through a new burn-in period. If the chunks overlap, on the one hand,
this still gives visual �ickering artifacts due to discontinuities of recurrent features. On the
other hand, the method becomes computationally redundant and ine�cient, suppressing
one of the main advantages of using a recurrent model. Computation time is doubled at
overlapped regions and memory consumption is doubled.

2.6 Conclusion

In the �rst part of this chapter, we explored VSR methods. The �rst paradigm regroups
model-based methods that rely on hand-crafted regularization and iterative algorithms.
They are generally slow but under some assumptions on motion they can be made fast. The
second paradigm regroups DL-based methods. They can learn complex spatio-temporal
statistics of natural videos based on supervised training. Their success is at the mercy
of e�ective feature/image implicit or explicit alignment and feature fusion. We compared
these paradigms based on examples of more general video restoration tasks. When the
motion is simple and known, it is easy to come up with a forward video formation model
that correctly describes the encountered situation and in this case model-based methods
perform very well. In other, more general cases, data-based methods are better suited as
they can manage complex motion to some extent.

Then, we introduced UVSR, a VSR framework that blends classical and DL-based ap-
proaches, based on deep unrolling of gradient descent algorithm. UVSR, in contrast to
purely DL-based VSR methods, can incorporate prior knowledge about image degradation
model and enables a better interpretability of the role of CNNs based on its correspondence
to classical iterative algorithms. We compared UVSR with FRVSR, three SOTA networks
and FRVSR-MD under single/multiple degradation con�gurations, considering PSNR and
SSIM over the test set, number of parameters, inference speed, visual evaluation and tem-
poral coherence. Empirical evaluation con�rms that the situation UVSR is the most adapted
is when there are multiple degradations with constraints on inference speed and number
of parameters.
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Finally, we have pointed out the divergence problem of recurrent VSR when facing long
sequences with low motion. Existing recurrent VSR networks generate high-frequency ar-
tifacts on such sequences. To solve this issue, we de�ned a new framework of recurrent VSR
model, based on Lipschitz stability theory. This method is more adapted for long sequences
with low motion compared to existing recurrent VSR networks. As an implementation of
this framework, we proposed a new recurrent VSR network coined MRVSR. We experi-
mentally veri�ed its stability and state-of-the-art performance on long sequences with low
motion. As part of our experiments, we introduced a new test dataset of such sequences,
namely Quasi-Static Video Set.
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In this chapter, we explain howwe can apply the techniques described in Chap. 1 to solve
the following inverse problem in astrophysics: reconstruction of astronomical sources that
evolvewith time, in the context of radio interferometry. In particular, we deal with transient
sources. These sources appear and disappear over time and are associated with high-energy
physical phenomena. While the VSR problem investigated in Chap. 2 models the PSF in-
duced by the camera lens, the radio interferometry inverse problem involves the PSF of
the observing instrument, i.e., the radio interferometer. In VSR, we supposed the camera
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lens PSF was constant over time. Due to the Earth’s rotation, in radio interferometry, an
observer on the ground will experience the rotation of the apparent sky over the instru-
ment. Consequently, an interferometer tracking a source during the observation will have
a time-dependent PSF due to line of sight projection.

3.1 Introduction

Next-generation radio facilities like LOFAR [52], MeerKAT/SKA [14], ASKAP/SKA [35]
and SKA-LOW [112] allow for high spectral, high rate, improved angular resolutions, and
high instantaneous sensitivity. This is a notable improvement for studying transient ra-
dio sources via aperture synthesis using radio interferometers. These sources appear and
disappear over time and can be randomly distributed in the sky. They are associated with
high-energy physical phenomena (e.g., pulsars, rotating radio transients (RRATs), solar-
system magnetized objects, and Lorimer-type bursts [80]) and, more generally, “fast radio
bursts” (FRB). Searching for such sources in large datasets produced by these instruments
is a new challenge that requires competitive and e�cient signal reconstruction algorithms.

Radio interferometers enable imaging via aperture synthesis based on processing the
correlations between each pair of antenna signals. In the �rst approximation, a radio in-
terferometer samples noisy Fourier components of the sky (associated with its spatial fre-
quencies, i.e., the visibilities [143]) inside the main �eld of view of the instrument. Under
the small �eld approximation assumption, the sky can be approximated by computing the
inverse Fourier Transform of those Fourier samples. The number of baselines is limited, so
the Fourier map is incomplete. Therefore, one needs to solve an “inpainting” [43] inverse
problem, i.e., estimate lacking information in the Fourier plane. Another option is to switch
from the inpainting problem in the visibility space to its equivalent deconvolution problem
in the image space. Deconvolution of radio images from a “static” sky in the context of
radio interferometry has been subject to studies for several decades. Notably, the authors
of [56] designed the original CLEAN algorithm, which is still the most widespread basis for
newer deconvolution algorithms in the community. Several variants of this algorithm have
been subsequently proposed [115, 30]. Improvements taking into account source morphol-
ogy [1], spectral dependencies [102] and sparse representations [43, 92, 45, 32, 20, 21, 141]
have also been investigated in recent years.

When the sky contains transient sources, classical detection methods rely on frame-
by-frame image analysis (e.g., with the LOFAR Transient Pipeline [122]). However, frame-
by-frame transient detection is subject to two observing biases: i) a detection issue when
the frames are derived from too short time integration data displaying a high noise level
and, conversely, ii) a “dilution” problem when time integration is too long to resolve the
transient in time, resulting in a time smearing of the transient. Therefore, to account for
these biases and sources that possess coherent structure in time, one has to design methods
that directly account for the time-coherent structure (i.e., the source light curve) hidden in
the signal. This also occurs in large radio surveys with interferometers. Mapping the visible
radio sky requires an optimal use of the observing time and pointing location to reach a
target angular resolution and sensitivity. While surveys mainly address the distribution of
static sources (astrometry and �ux density) transient radio sources might also occur during
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the short exposure (e.g., ⇠15 min pointing of MeerKAT) and be missed due to observing
biases (detection and dilution). Therefore, �nding a robust deconvolution method is key to
optimize both telescope time and transient detectability.

3.2 Deconvolution in radio interferometry

Two approaches have been classically used in radio interferometry deconvolution: the Vari-
ational Maximum Entropy method [41, 94, 140] and the iterative CLEAN algorithm [56].
Both methods generally perform well when dealing solely with point sources, but CLEAN
is the most widespread technique in the radio astronomy community. This algorithm sup-
poses a �nite number of point sources. It restores them based on Matching Pursuit [9]
using a single basis vector and the impulse response (PSF) of the telescope that made the
observation. Authors of [30] proposed a variant of CLEAN by optimizing the algorithm
with Fast Fourier Transform (FFT) and structuring the algorithm computations between
“major” and “minor” cycles. Minor cycles are carried out in (gridded) image space, whereas
major cycles befall in the ungridded visibility space. Going back and forth between these
two spaces led to improvements in both �delity and accuracy. This strategy was further
developed in [115]. Authors of [1] and [102] brought in further improvements by respec-
tively taking into account the morphological and spectral behavior of the sources. More
recently, several teams have addressed the deconvolution problem within the compressed
sensing framework [43, 45, 32, 20, 21, 141] then DL [125] ([113] also used DL but solved
the equivalent inpainting problem in the Fourier space). However, few methods take into
account temporal structures of time-evolving sources in the context of image time series
deconvolution.

3.3 Interferometry imaging problem

3.3.1 Single image deconvolution problem

This study deals with imaging by aperture synthesis from interferometric data. The limited
number of antennas and observing baselines, time, and frequencies restrict the amount of
accessible samples of the sky visibility function. In addition, these visibilities are subject
to a noise that can be modeled as an additive Gaussian noise in the �rst approximation. In
a limited �eld of view and ignoring direction-independent or direction-dependent e�ects
and calibration issues, this ill-posed inverse problem can be expressed in the Fourier space
(i.e., the measurement space) as follows:

Vy = M(V + ✏) (3.1)

where Vy is the collection of observed visibilities, V is the true visibility function, ✏ is ap-
proximated as an additive white gaussian noise, and M is a sampling mask representing
the limited access of an interferometer to the measurement (depending on the antennas’
con�guration and observational parameters).
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Figure 3.1: Principle of radio interferometry by aperture synthesis. Images have been gen-

erated thanks to APSYNSIM[82]. We simulated a VLA array con�guration and 4 gaussian

sources, with a total observation duration of 4h.

Eq. (3.1) can be rewritten as a deconvolution problem formulated in the image or direct
space. This problem links the observed degraded sky image to the corresponding true sky
image:

y = h ⇤ x+ ⌘ (3.2)

with F�1(Vy) = y, F�1(M) = h, F�1(V ) = x and F�1(M) ⇤ F�1(✏) = ⌘. ⇤ denotes the
convolution operation; y is the observed image, called dirty image; h is the PSF, also called
dirty beam, which represents the sampling operation in Fourier space by the interferometer;
and x is the GT image. We note �✏ the noise level of ✏. Thus, the corresponding variance
for ⌘ can be obtained from � = ||M ||2 · �✏ = ||F(h)||2 · �✏. Fig. 3.1 illustrates the inverse
problem expressed in both Fourier and direct domains.

3.3.2 Extension to transient imaging

To enable robust imaging of transient sources, instead of solving frame by frame— which
can be subject to observation bias—we extend the problem in (3.2) to a deconvolution prob-
lem accounting for the temporal dependency of the di�erent terms (i.e., sky, noise, and
instrument sampling):

yt = ht ⇤ xt + ⌘t, t 2 I = {t0, . . . , tT�1} (3.3)

with F�1(Vy,t) = yt, F�1(Mt) = ht, F�1(Vt) = xt and F�1(Mt) ⇤ F
�1(✏t) = ⌘t. The

noise level of ⌘t is �t = ||Mt||2 · �✏ = ||F(ht)||2 · �✏. By stacking {yt}t2I , {xt}t2I and
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{ht}t2I in the temporal dimension, we respectively obtain a dirty cube, a GT cube and a
PSF cube. These cubes are 3-dimensional data structures denoted Y ,X andH respectively.
I is the set of T time steps ordered following the observation intervals. In the single im-
age problem (3.2), h depends on the total time and frequency integration of observation,
while the sky x is supposed to be static. As the sky naturally rotates over the instrument
during the observation (because of the Earth’s rotation), the morphology of h depends on
the interferometer location on Earth, declination of the source, and observing dates. In the
dynamic imaging problem extension (3.3), the ht operator has a time dependency, i.e., the
instrumental response varies for consecutive single observing time intervals. As a result,
both the sky and the interferometer responses vary over time. The associated mask Mt

samples the Fourier transform of the sky at di�erent time dates, enabling the possibility of
capturing the temporal evolution of the observed sky.

We assumed that the datacubeX only contains point-like sources for simpli�cation. In-
deed, we assume each source has an angular scale much smaller than the angular resolution
brought by the PSF. In addition, we assume that the cube contains mixtures of sources with
constant and varying �ux densities over time. Their locations in the sky will be random
but constant during the observation.

Because a radio interferometric dataset provides exact information on the baseline length
and orientation for all samples, the morphology and time dependency of ht are known for
all t. Finally, we control the noise level �✏ to mimic the various quality of observations.
Thus, following the terminology de�ned in Sec. 1.3, we are in a multiple degradation sce-
nario.

In this study, for the sake of simpli�cation, we focus on the monochromatic case where
the observing frequency is �xed. We therefore do not deal with the dependency in fre-
quency of the imaging problem.

3.4 Method

3.4.1 CLEAN

CLEAN supposes the sky is constituted of a �nite set of point sources. This is indeed the im-
age prior. The algorithm restores these points and their intensities based on Matching Pur-
suit [9]. The set of these points is convolved with a smooth kernel called CLEAN/restoring
beam constructed from the PSF. Generally the CLEAN beam corresponds to a 2D Gaussian
function adjusted to the PSF. The form of the solution is then:

x̂ = G ⇤ a+ r (3.4)

where G is the CLEAN beam, a is the reconstructed sky with points restored by CLEAN,
also called CLEAN components, and r is the residual. The original CLEAN algorithm is
described in Algorithm 2.
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Algorithm 2: CLEAN algorithm [56]. hp,q is the image of the PSF h centered on

the position (p, q). �p,q is a sky with the point source of amplitude 1 at the position

(p, q).

Input: y, h

Parameter: Gain g 2]0, 1], N�, Nmax

Output: The solution x̂ and the sky model a

Initialization: r0  y, a0  0, k  0, � = noise level estimated from y, G = 2D

Gaussian function adjusted to h.

1: whilemax(rk) > N�� or k < Nmax do

2: fm  max(rk)

3: (p, q) argmax(rk)

4: rk+1  rk � hp,q · fm · g

5: ak+1  ak + �p,q · fm · g

6: k  k + 1

7: end while

8: return x̂ = G ⇤ ak + rk, a = ak

3.4.2 Proposed DL-based methods

In the context of the time series image deconvolution problem (3.3), one can independently
apply a single image deconvolutionmethod, such as CLEAN, in a frame-by-frame approach.
However, this method does not capture the temporal structure of the sky. Amethod capable
of dealing with the temporal evolution of both telescope and the sky is required. Given
recent successes of neural networks in various restoration tasks, we propose to solve the
problem (3.3) based on DL. In our setting, a network realizes the following mapping: X̂ =
N(Y,H, �✏; ✓). Its input contains a degraded cube and information about the degradation
(H, �✏) in a non-blind manner. ✓ denotes parameters of the network that are learned from
training data {Yi, Xi, Hi, �✏,i}. We propose two implementations of the networkN , coined
2D-1D Net and De�ation Net, respectively.

Multiple degradations

We adopt the following scheme to incorporate knowledge about the image formationmodel
and handle multiple degradations. Each ht in H is originally of size l ⇥ l (with l = 256 in
our study; see Sec. 3.5) but is �rstly center-cropped with crop size r⇥r (r = 96 in our study)
and projected onto a b-dimensional linear space by a PCA projection matrix P 2 R

b⇥r2 . P
is learned from all PSFs that constitute the training PSF cubes, and with a value of b = 50we
can explain 90 % of the total variance. We note~hb

t this projected PSF.~h
b
t is then concatenated

with �t = ||Mt||2 · �✏ = ||F(ht)||2 · �✏. We denote this vector ~ht .
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2D-1D Net

~ht

2D Conv SFT ReLU

Number of channels: 1 f

yt zt

Encoder SFT Net

Figure 3.2: 2D Net. Each convolutional layer outputs f feature maps. f = 32 in our study.

The kernel size of each convolutional layer is set to 3⇥3. The vector entering the SFT layer

indicates ~ht.

{zt}t∈I

1D Conv ReLU

Number of channels: 1 f

{xt}t∈I

Figure 3.3: 1D Net. {zt}t2I has dimensions C ⇥ T ⇥ H ⇥ W . Each convolutional layer

outputs f feature maps, except the last one which outputs images with 1 channel each.

Each 1D convolutional layer has the kernel size 5.

We �rst propose a new network coined 2D-1D Net to solve the transient imaging prob-
lem of Eq. (3.3). The following details the idea behind this model. We decouple the network
N into two modules that sequentially process the input data. The �rst module is a network
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Algorithm 3: 2D-1D Net. Cr denotes the operation that center-crops a 2D struc-

ture with crop size r.

Input: (Y,H, �✏) = ({yt}t2I , {ht}t2I , �✏)

Output: X̂

1: S  an empty list

2: for all t 2 [|0, T � 1|] do

3: ~hb
t  PCrht

4: �t = ||Mt||2 · �✏ = ||F(ht)||2 · �✏
5: ~ht  Concat(~hb

t , �t)

6: ft  Encoder(yt)

7: zt  SFT Net(ft,~ht)

8: S.append(zt)

9: end for

10: Z  StackAlongTimeAxis(S)

11: X̂  1D Net(Z)

12: return X̂

with 2D convolutional layers that successively and independently encode each image in
the degraded cube into feature maps. Each of these encodings considers the PSF and the
noise level used in the degradation. This transformation performs a deconvolution of the
degraded image. This module is referred to as 2D Net. After these independent deconvolu-
tions, the produced feature maps are stacked in an extra temporal dimension and given to
the second module. This module captures temporal structures within the stacked maps and
estimates the GT cube. The temporal pro�le1 of a source is continuous in time, which justi-
�es this architectural choice. Because point sources do not spatially move in our study, the
temporal structure is extracted based on 1D convolutional layers along the time dimension.
We call this module 1D Net. By unifying the two modules, we build the entire network
2D-1D Net.

Algorithm 3 summarizes the 2D-1D Net. In the �rst place, each pair (yt,~ht) is given
to 2D Net to produce an intermediate feature map zt (lines 2 to 8). Fig. 3.2 describes the
structure of this subnetwork. This network is composed of an encoder that extracts input
features and SFT Net that can manage multiple degradations. In this step, 2D Net decon-
volves yt by using ~ht. The SFT layer uses this vector to modulate feature maps. This layer
has been introduced in [135] and used in [51] for the �rst time to handle multiple degrada-
tions in inverse problems. This layer applies an a�ne transformation to the feature maps

Fin conditioned on the degradation maps F (h)
t , which is obtained by stretching ~ht into size

(b+ 1)⇥H ⇥W , where all the elements of the i-th map equal the i-th element of ~ht. The
a�ne transformation involves scaling and shifting operations:

SFT(Fin, F
(h)
t ) = � � Fin + � (3.5)

1This means the evolution through time of the amplitude of a source and has nothing to do with the

"temporal pro�le" used in the previous chapter regarding the VSR problem.
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where � and � are estimated by additional convolutional layers and � is the Hadamard
product.

Next, {zt}t2I are stacked in the temporal dimension. This gives Z, a tensor of dimen-
sions C ⇥ T ⇥ H ⇥W (line 10). The output is passed to 1D Net, composed of three 1D
convolutional layers working along the temporal dimension, interlaced with ReLU activa-
tions (line 11). The kernel size of each 1D convolutional layer is set to 5. With three such
layers, the temporal receptive �eld is 5+4+4 = 13, which is enough considering the tem-
poral extension of the experimental transient events in this work (see Sec. 3.5.1). Fig. 3.3
details the 1D Net architecture.

De�ation Net

One can observe that, on the one hand, averaging the input images over the temporal di-
mension produces an average input sky with a reduced noise level. This average sky keeps
constant sources. On the other hand, averaging the PSFs over the temporal dimension
produces an average PSF that is better conditioned than each individual PSF. These obser-
vations will be illustrated with �gures in Secs. 3.5.1 and 3.6.1. Considering these points,
one can expect that deconvolving the average input sky based on the average PSF is eas-
ier and better reconstructs constant sources than deconvolving each individual sky based
on the corresponding PSF. Therefore, to use these averaged representations, we design an-
other new network coined De�ation Net and summarized in Algorithm 4. This network is
based on the same subnetworks as 2D-1D Net but involves a di�erent computation �ow.
Speci�cally, it decouples the reconstruction of constant and transient sources. In the �rst
place, both input images {yt}t2I and PSFs {ht}t2I are averaged over the temporal dimen-
sion (lines 1 and 2). The reduced noise level of the average input image can be analytically
computed (line 4). Then, the average image is deconvolved in the feature space based on
the average PSF to give the average sky features (line 7). Next, this average sky is recon-
volved by the corresponding PSF (line 14) and subtracted to the individual degraded sky in
the feature space at each time step. Each resulting image only contains transient sources.
This sky is then deconvolved based on the individual PSF to reconstruct transient sources
(line 15). This individual deconvolved image and the average deconvolved sky are �nally
summed in the feature level via skip connections (line 16). This processing is done for each
time step, and all outputs are then sent to the �nal 1D Net (lines 19 and 20).

Remarks on the incorporation of knowledge about the degradations

In our work, we do not rely on any iterative proximal algorithm with the prior replaced
by one or more DNNs, nor on deep unrolling. Indeed, the former requires a signi�cant
number of iterations to deconvolve each frame, resulting in an overall slow reconstruction
of an entire cube. The latter needs unrolled steps for each deconvolved frame, therefore,
presents a memory issue during the backpropagation step when dealing with the entire
cube. To mitigate this problem, the crop size of the input image has to be small, which
can limit the corresponding size of the sky and the PSF. Moreover, the gradient step in
an unfolding approach requires convolving at each step the input signal by the PSF and its
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Algorithm 4: De�ation Net. Cr denotes the operation that center-crops a 2D

structure with crop size r.

Input: (Y,H, �✏) = ({yt}t2I , {ht}t2I , �✏)

Output: X̂

1: y  1
T

PT�1
t=0 yt

2: h 1
T

PT�1
t=0 Crht

3: ~h
b
 Ph

4: �  1
T
(
PT�1

t=0 ||Mt||
2
2�

2
✏ )

1/2 = 1
T
(
PT�1

t=0 ||F(ht)||
2
2�

2
✏ )

1/2

5: ~h Concat(hb, �)

6: f  Encoder(y)

7: z  SFT Net(f,~h)

8: S  an empty list

9: for all t 2 [|0, T � 1|] do

10: ~hb
t  PCrht

11: �t = ||Mt||2 · �✏ = ||F(ht)||2 · �✏
12: ~ht  Concat(~hb

t , �t)

13: ft  Encoder(yt)

14: ∆t  ft � ht ⇤ z

15: dt  SFT Net(∆t,~ht)

16: zt  dt + z

17: S.append(zt)

18: end for

19: Z  StackAlongTimeAxis(S)

20: X̂  1D Net(Z)

21: return X̂

adjoint, which dilutes the signal too much because the PSF is strongly ill-conditioned in this
radio interferometry problem. Therefore, unfolding approaches result in poor performance.

3.5 Experiment

3.5.1 Datasets

We generate disjoint training, validation, and test sets of GT and PSF cubes at various noise
levels. The corresponding dirty cubes are generated based on Eq. (3.3).

PSF cubes

We simulate the interferometric response of MeerKAT in the L-band, using its current 64
antennas distribution. The observing frequency is �xed to 1420 MHz. The location of
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Figure 3.4: The PSF test cube that has been picked up for evaluation. Text on each image

reports: time step, elevation in degrees, azimuth in degrees. Each PSF is normalized to 1

(black). The grey color scale was reversed for clarity.

MeerKAT on Earth is: Long = 21.33�, Lat = �30.83�, h = 1195m. The minimum point-
ing elevation is set to 20 degrees. Based on these parameters, we randomly pick PSF cubes
by sampling the local visible sky for a given observing time and observing rate. Each cube
accounts for the typical 8-hour tracking observation of a randomly selected source in the
J2000 reference frame that is visible in the local sky during the 8 hours. This period is di-
vided into successive intervals of 15-minute scans. They produce a 15-minute integrated
PSF associated with the (u,v) coverage computed towards the source’s current location.
Each PSF is projected into a spatial grid of 256 ⇥ 256 pixels. Hence, the cube has the di-
mensions 32 ⇥ 256 ⇥ 256. Adopting the notations from Sec. 3.3.2, we have T = 32 and
ti+1�ti = 15minutes. We generated 435 training, 50 validation, and 50 test PSF cubes sam-
ples. For all of them, the source elevations at the beginning of the observation are above
20 degrees as seen from MeerKAT. Fig. 3.4 depicts the 32 (15 min) frames of a PSF cube. As
the source appears to be rotating above the interferometer during the 8-hour observation,
the projected baselines vary, leading to a continuous rotation and warping of the PSF.

Fig. 3.5 depicts the e�ective distribution of elevation in the training PSFs set. This
distribution is skewed toward 30� elevation in the case of the telescope at hand, MeerKAT.
This is expected because the PSF simulation accounts for the visibility of sources in the
southern sky, as seen from MeerKAT. For any given observation duration (e.g., 8h max)
and integration (e.g., 15 min/image), we computed the telescope source tracking and its
aperture projection, both required to derive the e�ective (u,v) coverage and therefore the
PSF. An astrophysical source is associated to a unique pair of coordinates (declination � and
right ascension ↵) on the celestial sphere (see Appendix A.5 for de�nitions). Depending
on the source declination (�, in the equatorial frame), hour angle (associated with Right
Ascension ↵ and time of observation), and observation duration, not all (↵,�) directions
are accessible. Therefore, a uniform random distribution of directions, drawn from the
“accessible” direction window in the sky, will appear skewed around the local elevation of
the South Celestial Pole, located around 30� for MeerKAT. Circumpolar sources close to the
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Figure 3.5: Histogram of distribution of elevations in the training PSF set. The distribution

is skewed toward the South Celestial Pole where circumpolar sources can be observed from

MeerKAT.

South Celestial Pole are always accessible.

The PCA projection matrix P that encodes knowledge about the PSF is learned from
all PSFs of the train PSF set, i.e., from the 435 ⇥ 32 = 13920 PSFs. The value of PCA
components b = 50 explains 90 % of the total variance. Fig. 3.6 shows the 10 main PCA
eigenvectors which composed the PSF of the whole set.

GT cubes

We suppose the sources to be unresolved points sources in the sky image. The size of the
pixel on the sky is �xed to 1.500. We assume that within a sky image of size 300 ⇥ 300 (i.e.,
1200⇥ 1200 pixels), at most 30 constant and 2 transient point sources can be placed. This
distribution of sources can be considered compatible with shallow imaging like MeerKAT.
Following this distribution, we generate 39000 training sky cubes with dimensions 32 ⇥
256 ⇥ 256. These data are divided into three equal parts, containing zero, one, or two
transient sources per �eld. Each validation and test set contains 66 cubes following the
same distribution of sources, with half of them containing a transient source and the other
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Figure 3.6: PCA eigenvectors for the �rst 10 largest eigenvalues computed over the whole

PSF set.

half containing two. The source peak �ux density, i.e., the value of the pixel of a constant
source in the GT, is randomly sampled between 1 and 100. Regarding a transient source, its
amplitude is a discrete functionA(ti) sampled from the continuous functionsA(t). For each
source, this pro�le is randomly chosen between the following models: gate, Gaussian and
skew-normal. Their parameters are randomly chosen, and the transient source’s maximum
amplitude is randomly chosen between [50, 100]. Examples of temporal pro�les are shown
in Sec. 3.6, Fig. 3.7.

3.5.2 Training procedure

From each GT cube in the training, validation, and test sets, the corresponding dirty cube is
generated based on Eq. (3.3). Mini-batch gradient descent with a batch size of 4 is used
for training. For each example in the batch, a train PSF cube is randomly picked, and
the noise level �✏ is randomly sampled from [0, 6]. Data augmentation with random �ip-
ping/transposition was performed. The learning rate is set to 10�4, and we train our models
for 100 epochs each. The loss function is the pixel-wise mean-squared error (MSE) between
GT and estimated cubes. Authors of [129] claimed that if GT images are skies with point
sources, then the MSE loss function would be suboptimal and instead proposed to smooth
the point sources. However, our study obtained satisfactory empirical results with this
pixel-wise MSE between GT and estimated cubes.

3.5.3 Evaluation metrics

Given a constant or transient source at a certain location in a GT cubeX , we can �rst de�ne
a subcube obtained by locally cropping the cube around the source with a path size p ⇥ p
(p = 3 in our study, de�ning the region Ds). We can also extract a subcube at the same
location for the estimated cube. We can then compute the root MSE (RMSE) between the
two subcubes. This error quanti�es the �delity of the restored temporal pro�le. The GT
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subcube norm can normalize this value. We note NRMSEs this error, for the source s.

To measure the input signal quality, for each source s in the dirty cube {yt}t2I with lo-
cation (is, js)we evaluate its signal-to-noise ratio SNRs. We adopt the following de�nition:

SNRs =
X

i,j2Ds

y⌧ [i, j]

�b
(3.6)

where ⌧ refers to the temporal localization of the transient. It corresponds to the time step
when the amplitude of the transient source is maximum in the GT cube. For a constant
source, we set ⌧ = 15. Ds is the local patch of size 3 ⇥ 3 centered on the true source
location (is, js). �b denotes the background noise estimated on y⌧ after excluding Ds. In
radio images, Peak SNR is the ratio of peak �ux density (usually a single pixel) of the source
and the local noise root mean square. Here, to absorb pixel gridding bias, the source �ux
is accounted over the region Ds. This will ensure that all the recovered �ux density of the
source is properly accounted for, in presence of noise. This error could lead to detrimental
and unfair representations of light curve reconstruction with di�erent methods.

Moreover, to measure the performance of background denoising, i.e., restoration of the
empty region of the sky, we exclude all Ds subcubes for a GT cube. We operate the same
procedure on the corresponding estimated cube and compute the RMSE between the two.
We note this metric RMSEnoise.

We compare the proposed algorithms for the cube restoration against frame-by-frame
CLEAN deconvolution of the dirty cubes. To avoid biasing the �nal result during the CLEAN
�nal restoring beam step, we considered only the detected CLEAN components associated
with the detected sources. PSF cube and noise level are provided to CLEAN in a non-blind
manner. They intervene in de�ning a threshold from which the algorithm iteration stops.
Furthermore, to prevent bias on the use of CLEAN due to a high noise environment of the
dirty cube, we stopped CLEAN based on a maximum number of iterations and, as for other
reconstruction methods, also considered only counting the �ux density around the source
location in Ds.

3.6 Results

3.6.1 Fixed test PSF cube and varying noise

We pick a PSF test cube and evaluate the methods on the test sky cubes with the following
noise levels: �✏ 2 {0, 1, 2, 3, 4, 5, 6}. The injected noise levels were selected to range from
low noise level cases, where the constant and transient sources are readily detectable in
the dirty cubes, to high noise level cases where no sources can be seen (such a high noise
level is displayed on the �rst line of Fig. 3.8). Fig. 3.4 shows the PSF test cube that has been
picked. We see that the PSF rotates with time.

Fig. 3.7 compares the reconstruction of temporal pro�les related to several transient
sources in the test cubes. The �gure compares methods at di�erent noise levels �✏. We ob-
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Figure 3.7: Reconstructions of temporal pro�les related to some transient sources in the

test cubes. The horizontal and vertical axes indicate the time step and amplitude for each

sub�gure. The �gure compares methods at di�erent noise levels �✏. The names of the

sources are, from left to right: source 1, source 2, source 3, source 4, and source 5.

Input

t=13 t=14 t=15 t=16 t=17 t=18 t=19 t=20 t=21 t=22

GT

CLEAN

2D-1D

Deflation

Figure 3.8: Visualization of source 3 in Fig. 3.7 reconstructed from di�erent methods, at

noise level �✏ = 4.

serve that DL-based methods produce better reconstructions than CLEAN.With increasing
noise level �✏, the performance of CLEAN rapidly degrades, whereas that of DL-basedmeth-
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Figure 3.9: Reconstructions of temporal pro�les of constant sources. The horizontal and

vertical axes indicate the time step and amplitude for each sub�gure.

t=0 t=1 t=2 t=3 t=4 t=5 t=6 Mean

Figure 3.10: A constant source in the input degraded sky between time steps 0 and 6, and

the average of the input skies over all the time steps. First row: noise level �✏ = 2. Second

row: �✏ = 3. The noise level is reduced in the averaged sky.
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ods remains good. The plots of Fig. 3.7 related to source 1 illustrate this. Moreover, even in
the presence of noise, DL-based methods provide a better restoration and preservation of
the start and end dates of the transient signal. This is granted by the temporal modeling
capability of these methods. Conversely, in the case of CLEAN, the restored start and end
dates of the transient is distorted because of the noise in single frames. The plots related
to source 5 at noise level �✏ = 3 and �✏ = 4 illustrate these statements regarding the end
of the transient signal. Among DL-based methods, De�ation Net seems better for restoring
transient signals at a high noise regime. The plots of source 3 depict this. This suggests
that the architectural choice of De�ation Net decoupling constant and transient source re-
constructions is appropriate with respect to the inverse problem. Even at the highest noise
level �✏ = 6, De�ation Net can restore the end of the transient signal. Fig. 3.8 visualizes
source 3 reconstructed from di�erent methods, at noise level �✏ = 4. We see that DL-based
methods more e�ciently reconstruct the transient source than CLEAN. Moreover, De�a-
tion Net performs the best in reconstructing the end of the transient source. These results
are particularly important whenever one telescope wants to react quickly upon detecting
a potential transient. A transient could be detected on a nearly real-time imaging pipeline
that integrates our trained network as soon as its light curve rises. Alerts could therefore
be created and distributed earlier and with more con�dence concerning false detections.

As a matter of comparison and robustness, Fig. 3.9 compares reconstructions of tem-
poral pro�les for constant sources. As expected, DL-based methods systematically present
reconstructions with higher �delity. Moreover, they produce light curves with more sta-
ble amplitude variations than the CLEAN-based method. Indeed, we must ensure that the
trained network correctly reconstructs the light curves of constant sources without making
them look like �ickering transient sources. Moreover, De�ation Net presents less varying
reconstructed constant sources than 2D-1DNet. Indeed, De�ation Net is understood to pro-
vide a better reconstruction of constant sources for the following reasons. Firstly, the noise
level is reduced in the average input sky, and the average PSF is better conditioned than the
individual PSF frame. Deconvolution of an average sky by the average PSF is thus easier for
constant sources. Figs. 3.10 and 3.11 illustrate this by respectively displaying the average
input sky for various noise levels and the average PSF. Secondly, the skip connections of
De�ation Net (line 16 of Algorithm 4) allow reconstructions at di�erent time steps to be
distributed near the average deconvolved sky. Fig. 3.12 compares the average variance of
reconstructed constant sources over the test cubes at di�erent values of �✏. The �gure con-
�rms that DL-based methods reconstruct constant sources with better �delity than CLEAN
and that De�ation Net produces the lowest variances concerning constant sources. On av-
erage, constant sources reconstructed by 2D-1D Net present a variance ⇠3.0 times smaller
than CLEAN. De�ation Net’s variance is ⇠8.6 times smaller than CLEAN.

After aggregating results of all inferenceswith all of the noise levels�✏ 2 {0, 1, 2, 3, 4, 5, 6},
Fig. 3.13 showsNRMSEs averaged over sources belonging to the same SNR interval delim-
ited by deciles in SNRs. We observe that DL-based methods generally perform better than
CLEAN, except when the SNRs is very high (SNRs197). This case indeed corresponds to
when �✏ = 0 for which CLEAN is optimal. In other cases, DL-based methods, on average,
perform better than CLEAN. By comparing positions of error bars indicating standard de-
viations, we observe that in many cases (SNRs between 40.5 and 128.6), DL-based methods
present inhomogeneous performances over di�erent sources, but their worst performances
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Figure 3.11: Average PSF over the PSF cube of Fig. 3.4.

Figure 3.12: The average variance of reconstructed light curves of constant sources over

the test cubes at di�erent values of the noise level �✏. The variances are computed on cubes

normalized between 0 and 1. Vertical bars show standard deviation.

are statistically still better than the best performances of CLEAN. At a high noise regime
(SNRs below 40.5), DL-based methods perform better than the CLEAN-based method on
average. Within the DL-based methods, De�ation Net performs better than 2D-1D Net
on average in most noisy cases (SNR between 0 and 86). On average, CLEAN presents
NRMSEs that are⇠2.4 times higher than 2D-1D Net and⇠2.7 times higher than De�ation
Net.
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Figure 3.13: MeanNRMSEs for sources in the test set for each decile of SNRs. Vertical bars

represent standard deviations.

Figure 3.14: log(RMSEnoise) averaged over the test cubes at di�erent values of �✏. Vertical

bars show standard deviation. Because of the log scale, the standard deviation is higher

when RMSEnoise is small. This is the case for the DL-based methods.

Fig. 3.8 illustrates the high performance of DL-based methods in background denoising.
We observe that they e�ectively restore the empty sky around the sources. This is less
the case for the frame-by-frame CLEAN method: the latter captures noise and generates
residual noisy pixel distributions around the true source. Fig. 3.14 compares RMSEnoise,
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averaged over the test cubes at di�erent values of �✏. We observe that for all values of �✏,
DL-based methods better suppress background noise than CLEAN. Within the DL-based
methods, De�ation Net better restores the background sky. This is because the noise level
is reduced and the PSF is better conditioned in averaged input sky. On average, CLEAN
presents RMSEnoise values that are ⇠1.8 times bigger than the 2D-1D Net ones and ⇠2
times bigger than the De�ation Net ones.

Figure 3.15: Mean NRMSEs for sources in the test set for 10 equally spaced bins of PSF

pointing elevations. The envelope for each method delimits the �rst and the last 10 per-

centiles.

3.6.2 Varying test PSF cube and �xed noise

In this section, we set �✏ = 3 and aggregate results over all of the PSF test cubes.

Fig. 3.15 shows average NRMSEs for sources in the test set for 10 equally spaced bins
of PSF elevations. The apparent envelope for each method delimits the �rst and the last
10 percentiles. We see that for all bins, our DL-based methods, on average, outperform
CLEAN in large margins. This is especially true for De�ation Net, which presents the last
10 percentile near the �rst 10 percentile of CLEAN in most cases (elevations>41 degrees).
Among DL-based methods, here again, in most cases, De�ation Net performs better on
average than 2D-1D Net (elevations between 27 and 82 degrees). This con�rms the De�a-
tion Net architecture e�ciently tackles the inverse problem. On average, CLEAN presents
NRMSE that are ⇠2.6 times bigger than 2D-1D Net and ⇠3.2 times bigger than De�ation
Net. Furthermore, in most cases (elevations > 34 degrees), the envelope of De�ation Net is
smaller than the ones of 2D-1D Net and CLEAN. Therefore, De�ation Net brings less error
dispersion in source light curve reconstruction than other methods. This can be explained
by its skip connections that set reconstructions at di�erent time steps near the average de-
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Figure 3.16: MeanNRMSEs for sources in the test set for each decile of SNRs. Vertical bars

represent standard deviations.

convolved sky. Our methods perform worse at elevations between 20 and 27 degrees and
better at elevations between 82 and 89 degrees. Between these bounds, their performance
seems to increase with increased elevation. This is coherent: the closer to 90 degrees the
elevation, the better conditioned the PSF is, therefore the easier it is to deconvolve. Con-
versely, lower elevation means that the PSF is worse conditioned and undergoes a strong
projection e�ect, making the deconvolution task harder.

Second, after aggregating the results of all inferences with all the test PSF cubes over
the test sky cubes, Fig. 3.16 shows NRMSEs averaged over sources belonging to the same
SNR interval delimited by deciles in SNRs. We observe that DL-based methods perform
better on average than CLEAN for all intervals of SNRs. We can state the following by
observing vertical bars indicating standard deviations around mean values: in most cases,
DL-based methods present inhomogeneous performance, but their worst performances are
statistically still better than the best performances of CLEAN. Within the DL-based meth-
ods, De�ation Net performs slightly better than 2D-1D Net when SNRs is higher than 44
and outperforms 2D-1D Net when SNRs is below 44. This con�rms again that the De�a-
tion Net architecture is appropriate regarding the inverse problem. On average, 2D-1D Net
presents NRMSEs that is 3.10 times smaller than CLEAN. De�ation Net shows NRMSEs

values that are 3.50 times smaller than that of CLEAN.

3.6.3 Importance of temporal modeling

In this part, we evaluate the bene�t brought by the 1D Net in 2D-1D Net. This measures
to which extent capturing the temporal structure of a signal increases the signal recon-
struction performance. To do so, we compare the performances of CLEAN, 2D-1D Net,
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Figure 3.17: Reconstructions of temporal pro�les of source 3 and source 5 from the test cubes

(that were also reported in Fig. 3.7). The �gure compares methods at di�erent noise levels

�✏.
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Figure 3.18: Visualization of the source 5 in Fig. 3.17 reconstructed from di�erent methods,

at noise level �✏ = 2.

Figure 3.19: Mean NRMSEs for sources in the test sky cubes for each decile quantile of

SNRs. Vertical bars represent standard deviations.

and 2D Net. The latter is a variant of 2D-1D Net from which we exclude the 1D Net part,
and we make the last 2D convolutional layer of 2D Net output a 1-channel image at each
time step. This mode reduces our method to a classic imager that forms a single image on
time-integrated data. Fig. 3.17 compares the reconstructions of temporal pro�les of some
transient sources in the test cubes with the �xed PSF used in Sec. 3.6.1 and illustrated in
Fig. 3.4. As expected, we observe that with increasing noise levels, 2D Net rapidly loses the
capability to reconstruct the ends of the light curve, which lodge at the noise level. This
drawback is shared with CLEAN. On the contrary, 2D-1D Net succeeds in restoring them
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Figure 3.20: Mean NRMSEs for sources in the test sky cubes for each decile quantile of

SNRs. Vertical bars represent standard deviations.

Figure 3.21: log(RMSEnoise) averaged over the test cubes at di�erent values of �✏. Vertical

bars show standard deviation. Because of the log scale, the standard deviation is higher

when RMSEnoise is small. This is the case for the DL-based methods.

properly. Fig. 3.18 visualizes the source 5 reconstructed from di�erent methods, at noise
level �✏ = 3. We see that 2D-1D Net reconstructs the transient pro�le more e�ciently
down to the disappearance. 2D Net fails to reconstruct it, similarly to CLEAN. These �g-
ures illustrate that, despite the noise, 1D Net allows correctly reconstructing the beginning
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and the end of a transient event by enabling temporal modeling.

Fig. 3.19 aggregates inference results on the test cubeswith the �xed PSF cube illustrated
in Fig. 3.4 and the noise levels �✏ 2 {0, 1, 2, 3, 4, 5, 6}. Fig. 3.20 aggregates inference results
on the test cubes with the �xed noise level �✏ = 3 and the 45 PSF test cubes used in Sec. 3.6.2.
Both �gures compare NRMSEs averaged over sources of the same interval delimited by
deciles in SNRs. On average, we observe that 2D Net performs slightly better than CLEAN
in terms of NRMSEs. 2D-1D Net signi�cantly outperforms both methods and presents on
average ⇠ 2.3 times smaller NRMSEs than 2D-1D Net and CLEAN. This exempli�es the
bene�t brought by the temporal modeling capability of 1D Net.

Even if 2D Net performs similarly to CLEAN based on NRMSEs, the former performs
better regarding background denoising. This is shown in Fig. 3.21, which comparesRMSEnoise,
averaged over the test cubes at di�erent values of �✏ and the PSF illustrated in Fig. 3.4. For
all values of �✏, 2D Net better suppresses background noise than CLEAN by large margins.
This shows that even if 2D Net does not extract temporal features, its convolutional layers
enable high-performing denoising. 2D-1D Net performs even better than 2D Net regard-
ing this background denoising task. This shows that the temporal modeling capability of
1D Net also contributes to increasing the background denoising performance. On average,
2D Net presents RMSEnoise that are ⇠ 1.5 times smaller than that of CLEAN. 2D-1D Net
presents RMSEnoise that are ⇠ 1.2 times smaller than 2D Net. Fig. 3.18 illustrates these
observations. Especially at the end of the transient event, frame-by-frame CLEAN cap-
tures noise and generates residual noisy pixels around the true source. 2D Net generates
less noisy pixels (it only generates a noisy pixel at time step t = 10). 2D-1D Net does not
generate any obvious noisy pixel.

3.7 Discussion and limitations

• Support size of the frame: in our inverse problem, we approximate the aperture
synthesis method as linear degradation embodied by a multiplication of the true data
with a mask in the Fourier domain. Moreover, we carried out our study in the gridded
spacewhere all quantities are discrete set with constant frame support size. Themask,
therefore, has the same support size as the sky. All frame support sizes between
the sky, the mask, and the PSF cubes are tied together. Therefore, if one wants to
change the support size, new training of the networks is required. This is contrary to
some other DL-based image/video restoration problems where the linear degradation
is de�ned by a convolution rather than by a mask. In this case, a trained neural
network can deconvolve an image of any size. Regarding our networks, as only the
2D Net module operates deconvolution, we should only retrain this module, and 1D
Net can be frozen. From a dataset of ungridded visibilities, it is up to the scientist to
decide which support size �ts the scienti�c objective of the data. It should be trained
on support size that corresponds to the �nal products used (e.g., image catalog of a
survey, transient detection pipeline, etc.).

• Total duration of transient events: the total observation period and the number
of temporal frames (which de�ned a slice PSF of the PSF cube) determine the upper
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limits on the entire duration and the shortest timescale of transient events we deal
with. As an illustration, for a �xed number of PSF frames over the total observation
period, an increase in the latter will increase the integration time of each PSF frame.
Thus, if the total observation period is more extended, with a �xed number of PSFs,
each PSF will appear smoother and presents fewer secondary lobes. Therefore, each
time the total observation period changes, our networks should be theoretically re-
trained with new PSF cubes. We can suppose that the pro�les of transient events
in the train sky cube are diverse enough to be representative of real transients that
can be encountered. In this case, we can keep the same train sky set. Conversely,
suppose the length of the observation increases for a �xed PSF time integration. In
that case, the third dimension of the cube increases but each PSF will share the same
characteristics as before. In that case, we should only retrain 1D Net, and 2D Net can
be frozen as its role is to deconvolve PSFs similar to before.

• Computational complexity: once trained, our networks present faster reconstruc-
tion than frame-by-frame CLEAN. This is because contrary to CLEAN, they are not
iterative algorithms and can bene�t from e�cient GPU-based architectures. This
aspect makes them attractive to the radio astronomy community. On our Intel I9-
10940X CPU and NVIDIA TITAN RTX GPU, 2D-1D Net reconstructs the sky cube of
32 frames in⇠ 65ms. This speed is⇠ 75ms for De�ation Net. Both of them contain
0.1 M parameters.

• Theoretical guarantee: one of the drawbacks of our DL-based methods is that they
lack mathematical frameworks allowing us to derive theoretical error bound or un-
certainty beyond empirical statistics on the results.

• Extension to the polychromatic case: it is possible to extend our proposed meth-
ods to the polychromatic case, where the inverse problem also has a frequency de-
pendency. In this case, the dirty, GT and PSF cubes are 4-dimensional data structures,
adding the frequency dimension. A simple way to realize this extension is to i) stack
several skies at di�erent frequencies in the channel dimension at the input of the 2D
Net module and ii) stack several PSFs at di�erent frequencies in the channel dimen-
sion at the input of the SFT layer. The computation of the average sky and PSF, and
the subtraction step in the De�ation Net should be done for each frequency.

3.8 Conclusion

In this chapter, we dealt with transient source reconstruction in the context of radio inter-
ferometric imaging. We formulated this problem as a deconvolution of image time series.
We proposed two neural networks to address this task, namely 2D-1D Net and De�ation
Net. Thanks to the SFT layer, they can handle multiple PSFs that vary depending on the ob-
served sky positions. They involve the same sub-modules: 2D Net and 1D Net. The former
deconvolves individual frames, and the latter enables temporal sky modeling. 2D-1D Net is
based on a simple feedforward inference, whereas De�ation Net involves di�erent compu-
tational �ows. The latter restores the average sky and uses it to isolate transient sources in
individual frames. Experiments based on simulated data and metrics measuring temporal
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pro�le reconstruction and background denoising demonstrated superior performances of
these DL-based methods over CLEAN in the presence of noise. De�ation Net performs the
best, excelling in reconstructing constant sources and background denoising. The ablation
study con�rms the temporal modeling enabled by 1D Net signi�cantly increases the sky
cube reconstruction performance.

Learning methods adapted to deconvolution, temporal structures of transient sources,
and speci�cities of instrumental response are key elements to e�ciently analyzing the
images obtained via radio interferometers in the SKA era. For instance, the raw sensi-
tivity of MeerKAT enables deep imaging (i.e., a typical � ⇠ 10 µJy in 15 min) as well
as high cadence imaging capabilities in a large �eld of view. Being able to deconvolve
the data in high noise regimes e�ciently will maximize the chance to discover new tran-
sients and overcome the limitations imposed by current deconvolution methods. Missing
transients in the image plane can be due to the lack of sensitivity (i.e., detection prob-
lem) or the lack of su�cient temporal sampling (i.e., dilution problem) that averages out
short-scale transients. The robust 2D and 1D image reconstruction brought by the trained
networks introduced in this chapter has signi�cantly improved the 3D estimation of the
sky. Replacing classical frame-by-frame deconvolution methods with the DL-based recon-
struction methods can lead to better use of telescope time. This will drastically reduce
the required exposure time while enabling a faster temporal sky sampling. Our vizualisa-
tions of transient source reconstructions are available at the following GitHub repository:
https://github.com/bjmch/DL-RadioTransient.
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4.1 Conclusion

This thesis exposed how we can empower a DL-based image/video restoration model by
giving it a priori knowledge adopted to the inverse problem, similarly to classical restora-
tion methods. To begin with, a purely data-based restoration CNN learns to map the input
degraded image (video) to its restored version based on training pairs of degraded and orig-
inal images (videos). These pairs are generated based on the forward model on the inverse
problem. This operating mode is di�erent from the one of classical restoration methods.
A classical method derives from the forward model a minimization problem regularized
in a hand-crafted manner. This problem is mostly solved based on an iterative algorithm.
DL-based methods present advantages and disadvantages compared to classical ones. First,
the regularization they learn based on data better captures natural images (videos) statis-
tics than the hand-crafted ones. They do not require expert knowledge and time, which
are necessary when hand-crafting the regularizer and setting the regularization parame-
ter. Second, DL-based methods are faster than the classical ones, as they do not rely on
iterative algorithms and can bene�t from e�cient GPU architectures. However, their black
box nature prevents them from being interpretable, which di�ers from classical methods
that are explainable by construction. Furthermore, they lack �exibility in dealing with het-
erogenous degradations and cannot be suitable for some applications. More recent methods
breach the gap between the two paradigms.
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Regarding our contributions, we �rstly focused on the problem of VSR. We presented
how existing classical and DL-based approaches have solved this inverse problem and com-
pared them in various situations. As our �rst contribution, we proposed UVSR, a new VSR
neural network based on deep unrolling, a technique consisting of designing CNN architec-
tures based on classical iterative algorithms. We measured and compared its performance
to existing networks in some experimental settings and concluded that our newly intro-
duced network is suitable when there are multiple degradations with constraints on infer-
ence speed and the number of parameters. As our second contribution, we pointed out for
the �rst time the instability problem of recurrent VSR when facing long sequences with
low motion. Existing recurrent VSR networks generate high-frequency artifacts on such
sequences. As part of the proposed solution, we de�ned a new framework for recurrent
VSR models based on Lipschitz stability theory. As an implementation of this framework,
we proposed a new recurrent VSR network coined MRVSR that is more suited for long se-
quences with low motion than existing recurrent VSR models. We experimentally showed
its stability and SOTA performance on long sequences with low motion. As part of our
experiments, we introduced a new test dataset of such sequences: Quasi-Static Video Set.

As our third contribution, we designed the �rst NNs that deconvolve the time series of
radio interferometry images to help reconstruct transient astronomical sources. They are
sources that appear and disappear over time and are interesting for astrophysicists because
they can be related to high-energy physical phenomena such as pulsars, rotating radio tran-
sients (RRATs), solar-systemmagnetized objects, and “fast radio bursts” (FRB).We proposed
two new NNs that can manage the multiple PSFs of the instrument and operate spatial and
temporal modelings. We showed their superior performance on our simulated data over
CLEAN, the most used classical algorithm in the radio interferometry community.

4.2 Perspectives

4.2.1 VSR

In VSR, maximizing the temporal receptive �eld, i.e., the number of input LR frames used to
super-resolve an HR frame, can signi�cantly increase the performance. However, we saw
that this number is limited by the memory we can allocate at training time for sliding-based
VSR methods. This number is increased for recurrent methods, but they, in turn, present
the divergence issue on long sequences with lowmotion. Imposing the Lipschitz constraint
solves this problem but reduces the temporal receptive �eld. We need a method to stock an
arbitrary number of LR frames in memory without presenting any divergence issue.

In the restrictive case where all motions are translational, the �rst part of the shift-and-
add algorithm, i.e., the accumulation that estimates the blurred version of the HR frame, can
ful�ll this role. If the L2 distance is used for the data �delity term, the pixelwise average
of measurements after image registration can be computed recursively, enabling online
processing of the input LR frame. [96] proposed to use a CNN for the subsequent deblurring
stage. However, this approach’s temporal receptive �eld is still limited by the memory
allocated at training time. In case the number of accumulated data goes above the one used
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at training time, the blur corrected in the subsequent stage di�ers from the ones observed
during training time. There is still a domain adaptation problem.

To conclude, a new paradigm, di�erent from RNN and sliding-windowmethods, should
be proposed to stock useful information from an arbitrary number of LR frames in memory
without presenting any divergence issue.

4.2.2 Unrolled VSR

Starting from the forward model of the VSR models that involves the warping operator
based on the optical �ow between two frames, we have derived an unrolled network. In-
stead of relying on optical �ow, we can use alignment based on deformable convolution in
its data step. As this alignment is more diverse than the optical �ow-based one in terms of
o�set, this approach should give better results. However, the alignment occurs in the HR
space. Therefore, we can encounter a memory issue with the deformable convolution at
training time. Parallel computing could be necessary in this case.

4.2.3 Radio interferometry

Our proposed networks take as input dirty images and output restored sky models. They,
therefore, exclusively work in the image domain. Another approach worth trying is de-
signing CNNs that work in the Fourier domain, taking sampled amplitudes and phase dis-
tributions as inputs and applying inpainting on them. Restored skies can then be computed
by inverse Fourier transform. Studies like [53] operated DL-based reconstructions in the
Fourier domain in their MRI reconstruction problem. Regarding single radio image decon-
volution, [113] recently proposed to do the inpainting in the Fourier domain. This idea
should be extended to the inpainting of the input time series of Fourier plans.

4.2.4 General image and video restoration problems

Recently, transformers have been pushing the limit of image and video restoration per-
formance [74, 19, 73, 75, 137, 153]. However, these transformer-based models are again
used in an ideal single degradation scenario and given only degraded data at their in-
put. They lack �exibility in dealing with multiple degradations. Enabling this �exibility
by non-blindly giving the knowledge about degradation to the input would be an impor-
tant future work. In this case, one should design how the knowledge about degradation can
enable spatial transformation within these transformer-based models. Moreover, combin-
ing a transformer-based architecture with frameworks such as deep unfolding, plug-and-
play, RED or DIP would be an interesting approach. As transformer-based architectures
are highly memory-demanding, they would bene�t from parallel computing. Moreover,
progress in GPU, parallel, and high-performance computing would undoubtedly help the
image and video restoration community.
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A.1 Code, data and other materials related to MRVSR

Please �nd our code and instructions in the following GitHub repository: https://
github.com/bjmch/MRVSR. The repository also contains links to download the pro-
posed dataset, network weights and videos reconstructed from di�erent networks.

A.2 Vizualisations of transient source reconstructions

Please �nd our vizualisations of transient source reconstructions in the following GitHub
repository: https://github.com/bjmch/DL-RadioTransient.

A.3 Training settings of SOTA VSR networks

Tab. A.1 summarizes training settings of SOTA VSR networks. All of them rely on Adam
momentum optimization.
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Model Machine(s) LR size Batch size Initial lr BPTT length loss

RLSP NVIDIATi-

tan XP (12

GB)

64 4 10�4 10 MSE

RSDN 8 Nvidia

Tesla V100

GPUs (16

GB or 32

GB)

64 16 10�4 7 Charbonnier

FRVSR NVIDIA

P100

64 4 10�4 10 L2

EDVR 8 NVIDIA

Titan Xp 12

GB

64 32 10�4 - Charbonnier

PFNL NVIDIA

GeForce

GTX

1080Ti 11

GB

32 16 10�3 - Charbonnier

DUF NVidia

GeForce

GTX 1080

Ti 11 GB

32 16 10�4 - Huber

Table A.1: Training settings of SOTA VSR networks. "lr" means learning rate. All of them

used Adam optimization.

A.4 Architecture of FNet

'#
%&#$%→#,()

'#$%

Figure A.1: Architecture of FNet. The input LR frames yt and yt�1 are concatenated in the

channel dimension and given to the encoder/decoder style architecture. 2x indicates the

corresponding block is duplicated. All convolutions use 3⇥ 3 kernels with stride 1. Figure

adapted from [110].

Fig. A.1 illustrates the architecture of FNet.
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A.5 Coordinates of an astrophysical source

FigureA.2: An astrophysical source is associated to a unique pair of coordinates (declination

� and right ascension ↵) on the celestial sphere. Figure adapted from [7].

Fig. A.2 illustrates the unique pair of coordinates (declination �, right ascension ↵) that
is associated with an astrophysical source.
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B.1 Forgetting capability of recurrent VSR networks

As stated in Sec. 2.5.5, in the presence of strong motion, even with short-term training, a
recurrent VSR network learns to forget the past information, which is inconsistent with the
new one. The newly created high-frequency content is forgotten at the same time, prevent-
ing divergence on scenes with enough motion. Apart from the example of the frequently-
moving bird in the �rst sequence of the Quasi-Static Video Set in Sec. 2.5.5, the following
experimentally illustrate this forgetting capability.

REDS4 is a public test dataset of 4 sequences of 100 frames used in [134, 97]. These
sequences present fast scene motion with a rather largely moving camera and a frame rate
that is not so high (120fps) [91]. We take our RLSP implementation detailed in Sec. 2.5.4 and
run it several times on REDS4. Each run starts at di�erent o�sets, i.e., time step. Fig. B.1
numerically compares these runs. We observe that delayed runs catch up with the perfor-
mance of the baseline one (the one from the �rst frame) rather rapidly (after around 5 to
15 frames). This means that about 5 to 15 frames after each of these o�sets, the recurrent
model that started the inference from the beginning uses no more information older than
this o�set. This information has been forgotten.

As part of another experiment, we center-crop with a crop size of 256 all of the four
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Figure B.1: Mean PSNR of our RLSP runs on the brightness channel of the RED4 test

dataset [134, 97]. Numbers in the legend indicate at which time step the inference has

started.

(a) Mean PSNR.

(b) Subtraction of the PSNR of the older run by the PSNR of the newer one.

Figure B.2: Comparison of an older run and the newer one of our RLSP on a long sequence

formed by repeating a concatenation of the four Vid4 sequences. The newer run has started

a concatenation after the older one.
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videos of the Vid4 [77] dataset and concatenate them in the time dimension. We concatenate
in the following order—calendar, city, foliage,work—and repeated this motif several times to
form a long sequence. The latter thus contains brutal scene change with total inconsistency
between successive scenes. A motif has a length of around.170 frames. We run our RLSP
two times again on this sequence. Fig. B.2a compares an older run and the newer one that
has started a motif after, in terms of PSNR on the brightness channel. Fig. B.2b visualizes
the substraction of the PSNR of the older one by the PSNR of the newer one. We see that
after around 50 frames, the newer run catches up with the older one. This means that about
50 frames after the beginning of the newer run, the older model uses no more information
older than the beginning of the newer run.

B.2 About SRN-C

Algorithm. 5 details the SRN-C algorithm [123]. It involves an image size hyperparameter
n [123]. This quantity should theoretically be equal or bigger than the image size used
during inference to guarantee stability. This is because the matrix of a convolution applied
to an image is di�erent and bigger than the matrix of a convolution applied to a bigger
image. In practice, n should be in the order of the image size at inference time. Note that n
is not constrained by the image size at training time. In our experiments, we set n = 128.
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Algorithm 5: SRN-C–↵–� [123]

Input: Number of iterations N , learning rate ⌘,
number of channels m, image size n,
initial K 2 R

k⇥k⇥m⇥m, initial u 2 R
n⇥n⇥m.

Parameters: Spectral norm ↵, stable rank �.
begin

for i = 1, . . . , N do

1 fK = K

Power iteration:

2 v = fK⇤
u/kfK⇤

uk2

3 u = fK ⇤ v/kfK ⇤ vk2
Spectral normalization:

4 fK = fK/(u(fK ⇤ v) + ")
Stable rank (� < 1):

5 S1 = rfK
(u(fK ⇤ v))

6 S2 = fK � S1

7 � =
p
�m� 1/n2/kS2kF

8 if � < 1 then
fK = S1 + �S2

9 end

10

Training step:

11 K = K � ⌘rKL(↵fK)

12 end

13 end

B.3 A new diagnostic tool to evaluate the stability of a

recurrent VSRmodel on sequences with lowmotion

We propose a simple yet e�ective way to diagnose the divergence of recurrent VSR models
on long sequences with low motion diversity. This consists in running the analyzed VSR
network on a static noise sequence. We run some of our networks on a sequence of 1000
same noise images with size 512 ⇥ 512. Figure B.3 shows evolutions of the output’s L2
norm with increasing time step for di�erent networks. MRVSR-SL is a model based on the
same architecture as MRVSR but under SL with hyperparameters of SRN-C being (↵, �) =
(2.0, 0.1). We see that recurrent networks without constraint or with the soft Lipschitz
constraint give diverging outputs, but MRVSR does not. This result is in accordance with
the stability introduced by the contractive recurrence map. Moreover, this con�rms again
that SL is not enough to prevent divergence of recurrent VSR model on static sequences.
Finally, this con�rms what we stated in section B.2 about the image size hyperparameter
n of SRN-C: even if we trained MRVSR HL with n = 128, this model is stable on a static
sequence of size 512⇥512. We think that in this case, the value of n = 128 is large enough,
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taking into account that SRN [111] that fails to set spectral norms of convolutional layers
to ↵ in the work [123] can be seen as doing SRN-C with n = 1.

Fig. B.4 additionally illustrate the fact that MRVSR-SL still diverges on long sequences
with low motion. This con�rms again that SL is not enough to prevent the instabilities.

Figure B.3: Evolutions of the L2 norm of outputs when running di�erent networks on a

static sequence of a noise image of size 512⇥ 512.

B.4 Other remarks

We stated that SRN-C with � = 1, was equivalent to setting the spectral norm of the
matrix of the convolutional layer to a desired value ↵. We noticed after our work that
the same algorithm as this case of SRN-C was also proposed in [108], coined real spectral

normalization.
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Figure B.4: MRVSR SL
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VSR with deep unrolling and recurrent 1-Lipschitz data module

Some deep unrolling approaches factorized the network into data and denoising prior steps [156].
As we stated in Sec. 2.5.3, a denoising function can be 1-Lipschitz while correctly perform-
ing. Besides, we demonstrated that a recurrent VSR network is stable on long sequences
with low motion when the Lipschitz constant of its recurrent mapping is below 1. A subse-
quent idea, therefore, was to combine the ideas from Secs 2.4 and 2.5 to design an unrolled
VSR network with a recurrent and 1-Lipschitz prior module.

However, this approach resulted in a poor-performing network. The following results
illustrate this point. First, on the Set5 test set with zoom factor s = 4 and standard devia-
tion of the gaussian blur equaling 1.5, an USRNet model free of any constraint and an US-
RNet model with Hard Lipchitz constraint (HL) on its prior module respectively recorded
the mean PSNR of 29.16 and 28.91 dB. The gap between these values was 0.25dB, which
showed the performance drop provoked by the HL. This gap was smaller than the one be-
tween MRVSR and RLSP on Vid4, reported in Tab. 2.4 (the gap of 0.56dB). This observation
on the SISR problem was rather promising because the HL did not provoke a substantial
performance drop.

Next, we implemented a variant of USRNet adapted to the VSR problem. The latter had
the same U-Net-based prior model as USRNet, but this model was made recurrent with an
RLSP-like mechanism (recurrent hidden state and output). We prepared this model and
another version with HL on its U-Net prior. We note that the Lipschitz constants of the
downsampling and upsampling operations used in the U-Net are equal to 1. We also note
that the HL introduces additional parameters to be trained during training. We unrolled
both models for 4 iterations and tuned �lter numbers for the U-Net prior to achieving the
limit of possible memory consumption during the training with a batch size of 4 and the
NVIDIA GeForce RTX 3090 GPU (24GB). These �lter numbers of the U-Net were 16, 32, 64,
and 64 on the downsampling branch (the ones of the upsampling branch are symmetric).

As a result, the constraint-free version of this VSR model recorded a mean PSNR on the
brightness channel of Vid4 of 27.29dB. This performance is below RLSP. Besides, the one
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with HL recorded a PSNR of 26.69dB, which is below the performance of MRVSR. The gap
between these values is 0.6dB, slightly higher than between RLSP and MRVSR. This gap
shows that the performance drop from the 1-Lipschitz recurrent U-Net prior in the VSR
variant of USRNet was signi�cant. Moreover, the VSR variant of USRNet was slower than
MRVSR and RLSP.
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