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Introduction

High-resolution infrared spectroscopy of giant planets (both planets of the solar system and exoplanets) has provided valuable information about their atmospheres' properties and the chemical elements' content. At present, vibrational-rotational spectra are the most complete and reliable source of information about the nature of intramolecular interactions, states, and fundamental properties of molecules and, as a result, the source of the most accurate information needed to solve numerous problems of astrophysics and atmospheric optics. The demands of planetary scientists and astrophysicists on the spectroscopic community have intensified over the past 35 years and have risen especially sharply since the Cassini-Huygens [1] mission, which contributed to the modeling of the atmospheres of Titan and Saturn. Then it was about the exact calculation of the spectra of various hydrocarbons. Other space missions (current and future) also require close collaboration between astrophysicists and spectroscopists. This shows how important it is to have reliable molecular data, what is more, in a wide spectral range. This is because the parameters of spectral lines determined from the experiment contain information about such vital characteristics of molecule as the intramolecular force field, electric and magnetic moments, structural constants, intramolecular force field, etc. The intramolecular potential field determines all the above properties and characteristics of molecules (intramolecular potential function). Knowledge of both quantitative and qualitative characteristics of the potential function is decisive for understanding the processes occurring in molecules. The parameters of the intramolecular force field are the fundamental characteristics determining the Hamiltonian of the molecule under study. In this scientific context, the contribution of theory to molecular physics will take on its full significance.

Satisfying the needs of planetary scientists and/or astrophysicists by providing them with accurate calculations of the molecular spectra is still an urgent task, which inevitably includes the characterization of highly excited molecular states. Modifying existing methods for studying the fine vibrational-rotational spectra of polyatomic molecules and extracting spectroscopic information from them is a real challenge for fundamental sciences, such as theoretical spectroscopy, to better understand various atmospheric processes. In particular, to study the atmospheres of cold stars, exoplanets, circumstellar shells, interstellar matter, and other space media, knowledge of the positions of spectral lines (with an accuracy  10 3 cm 1 ), intensities (with an accuracy of 2-3%), broadening coefficients, and shifts is required.

It is also worth mentioning the importance of studying not only "mother" molecules but also their isotopologues. The content of isotopologues is a valuable indicator of nucleosynthesis processes in stars and is important for studying chemical processes in interstellar and circumstellar matter. Another crucial chemical issue is the study of deuterated isotopologues. Since a surprisingly high abundance of various multideuterated molecules has been registered in dense molecular clouds (see, for example, [2][3][4][5]).

Among the great variety of molecules, a special place in vibrational-rotational spectroscopy is occupied by molecules of the spherical top type. In this work, we study the physicochemical properties of this class of molecules, mainly GeH 4 and SiH 4 molecules.

Germane in natural isotopic composition (there are five stable isotopologues -70 Ge (20.27 at.%), 72 Ge (27.31 at.%), 73 Ge (7.82 at.%), 74 Ge (36.78 at.%), 76 Ge (7.82 at.%)) have complex structures IR spectra. The complex structure of the spectra arises from the presence of a very strong Coriolis interaction between the pairs of its fundamental vibrations ⌫ 2 /⌫ 4 and ⌫ 1 /⌫ 3 .

Knowledge of the spectroscopic characteristics of various GeH 4 isotopologues is vital in many fields of science and technology, especially in astrophysics and planetology, etc. The presence of GeH 4 in the atmosphere of giant planets have been known since 1978; in particular, this molecule was discovered in the atmosphere of Jupiter [6]. In 2011, the NASA "Juno" space probe was launched to the gas giant with the JIRAM spectrometer (Jovian InfraRed Auroral Mapper ), covering an extensive spectral range of 1993-5014 µm. Since 2016 Juno has orbited Jupiter, recording data with a precision never before achieved by [7]. Other studies also confirm the presence of a german molecule in the atmospheres of Saturn and Jupiter (see, for example, [8][9][10][11][12][13][14]). For this reason, precise modeling of the infrared spectra of the GeH 4 molecule is currently needed, in particular, to provide a search for other tropospheric species. One of the critical problems of chemical physics is the exact determination of the surfaces of the intramolecular multidimensional potential and dipole moment. This problem can be solved by semi-empirical methods or based on ab initio calculations. In both cases, it is essential to know high-precision spectroscopic information about the "mother" molecules and all possible isotopologues. Also, knowledge of the spectroscopic data of GeH 4 molecule is essential in the production of highpurity single-crystal germanium, which can be used both as a source of double beta decay of its nuclei and as a detector of such processes [15,16], in physical chemistry (german can be considered the prototype of many organic molecules). In this regard, it can be said that high-precision spectroscopic data on the characteristics of spectral lines (line positions, line strengths, self-broadening and line shift coefficients) of various isotopologues of the german molecule is essential and timely. Therefore this molecule has been widely studied for many years (see, for example, ).

The spectroscopy and thermochemistry of the SiH 4 molecule, and its isotopologues, are also of interest from several points of view. In particular, the silane molecule and its isotopologues are very important in IR astronomy. Thanks to spectroscopic methods, the silane molecule has been detected in the atmospheres of Jupiter, Saturn, and Titan [11,12,14,[40][41][42][43]. The planetary nebula surrounding the IR star IRC+10216 contains the isotopologue 28 SiH 4 [44,45]. Also, the silane molecule is a precursor for the chemical vapor deposition of silicon layers [46]. Silane gas control is significant in producing high purity silicon [47,48]. In this regard, we can say that accurate data on the spectral characteristics of the silane molecule can help study stellar objects. Thereby, numerous laboratory spectroscopic studies of the "mother" silane molecule and its various isotopologues have been carried out for many years (see, for example, ). All of the above factors and molecular spectroscopy's difficulties perfectly describe the chosen topic's relevance. Therefore, this thesis aims to study the molecular spectra of the spherical top type based on the irreducible tensor operators theory. There are several tasks to solve in order to achieve the given goal: 1. To record high-resolution spectra of GeH 4 and SiD 4 molecules in several ranges of frequency under various experimental conditions. 2. To construct effective operators for XY 4 molecules, taking into account various types of resonant interactions that consider the molecule's symmetry. Chapter 1

Fundamentals of vibrational-rotational molecular spectroscopy

The first chapter of this paper is devoted to a brief definition of the fundamental principles of vibrational-rotational molecular spectroscopy [84][85][86]. In particular, such concepts as the Hamiltonian of a polyatomic molecule in normal coordinates, effective Hamiltonian, operator perturbation theory, spectral line profiles, and effective dipole moment are introduced. These fundamentals are necessary for understanding Chapters 3 and 4 of this thesis.

Vibrational-rotational Hamiltonian of the molecule

To comprehensively describe a molecule as a quantum object -namely, to determine its energy levels, transition frequencies, wave functions, etc. -it is necessary to solve the Schrödinger equation. The solution to this equation directly depends on the given form of the Hamiltonian of the molecule. Therefore, in this chapter, we will consider the problem of constructing a molecular Hamiltonian.

From a physical point of view, a molecule is a system of atomic nuclei and electrons.

Hence, it is necessary to solve the Schrödinger equation with the Hamiltonian, which depends on the coordinates and spins of all the particles forming the molecule to describe the energy levels of a molecule. It is also required to account for all the interactions between these same particles. Thus constructing such a Hamiltonian and solving the Schrödinger equation is not a trivial scientific task; indeed, the precise solution of the Schrödinger equation for complex molecular systems (polyatomic molecules) is impossible. Therefore, we need to use various approximations to construct Hamiltonians of molecules for the theoretical description of the molecular spectra.

In molecular spectroscopy, for the most part, non-relativistic Hamiltonians are used without taking into account spin additives, as for instance, the following Hamiltonian:

H = ~2 2m e X i i ~2 2 X n 1 m n n + X i,j i>j e 2 r ij + X n,n 0 n>n 0 z n z n 0 r nn 0 X i,n ez n r in , (1.1.1) 
where m n and m e are nuclei and electron masses, z n and e are nucleus charges and electron charge, r is the distance between the particles, is the Laplacian in Cartesian coordinates. The first two terms are the kinetic energy operators of electrons and nuclei, respectively. The last three terms are the operators of the molecule's potential energy: interelectronic and internuclear repulsion and electric attraction of electrons to nuclei.

A more convenient way to describe the molecular states uses state functions that depend on the molecule's orientation (rotational coordinates) in a spatially fixed coordinate system and on the relative location of the nuclei of the molecule (vibrational coordinates). In other words, coordinate systems associated with the molecule are used. Consequently, the problem arises of the transition from the "classical" quantum Hamiltonian (1.1.1), written in a Cartesian spatially fixed coordinate system, to the quantum-mechanical Hamiltonian in the coordinate system associated with the molecule. Let us briefly consider the transition procedure from the operator (1.1.1) to the operator depending on translational, rotational, and vibrational coordinates.

The essence of the transition to the Hamiltonian in the new coordinates is as follows.

The Hamiltonian of a molecule depends on a system of generalized x n coordinates and their derivatives @/@x n , and it can be transformed to a system of new generalized q m coordinates using the following expressions:

x n = f n (q m ), @/@x n = (q m , @/@q l ).

(1.1.2)

As is known, if the Jacobian of the transformation (1.1.2) is not zero, then the relations (1. 1.2) for derivatives can be found, and only in a single way. It is also worth noting that we can get infinitely many final expressions for the Hamiltonian when transformed into the new coordinates since the transformation formulas can be set in an infinite number of ways. However, all the obtained Hamiltonians must have corresponding sets of eigenvalues and sets of eigenfunctions transforming into each other in all new coordinate systems. The choice of a coordinate transformation of a specific type depends on how convenient the new Hamiltonian will be in contrast to the original one from mathematical and physical points of view.

One of the most successful methods of coordinate transformation, which allows separating translational, vibrational, and rotational movements in a molecule, is the transformation

x n↵ = R ↵ + X  ↵ rn , (1.1.3) 
x i↵ = R ↵ + X  ↵ ri , (1.1.4) 
where x n↵ and x i↵ are (resp.) the components of vectors describing the positions of the nucleus and the electron (resp.) in a spatially fixed coordinate system, R ↵ are components of the vector of the molecule's center of mass and  ↵ is the direction cosine matrix of angles between the axes of the old and new systems. It is necessary to determine the molecular coordinate system so that its origin is in the molecule's center of mass:

X n m n rn + X i m e ri = 0.
(1.1.5)

Here ri are the components of the coordinates of the i-th electron in the molecular system.

The coordinates r of n-th nucleus in the molecular system are expressed as

rn = r(0) n + X ⇣ m 1/2 n l n ⇣ Q ⇣ , (1.1.6) 
where r(0) n and l n ⇣ are arbitrary constants, Q ⇣ are vibrational coordinates. Further, we need to select constants r(0) n and l n ⇣ in such a way that the following four conditions will be fulfilled 1. rn and r(0) n coincide when the nuclei are in equilibrium positions.

2. The axes of the molecular coordinate system and the main axes of inertia of the molecule coincide when the nuclei are in equilibrium positions.

3. Vibrations are normal [86,87], that is, in the P

⇣,µ ↵ ⇣µ ⇣ ih @ @Q ⇣ ⌘ ⇥ ⇣ ih @ @Qµ ⌘ + P
⇣,µ ⇣µ Q ⇣ Q µ operator describing the system of harmonic oscillators, the condition ↵ ⇣µ = ⇣µ = 0 is fulfilled for ⇣ 6 = µ.

4. Eckart conditions are fulfilled [86,88]. Given the independence of the vibrational coordinates Q ⇣ , these conditions look like this:

X n, , ✏ ↵ m 1/2 n r(0) n l n ⇣ = 0, (1.1.7) X n,↵ l n↵⇣ l n↵µ = µ , (1.1.8) ✓ @ 2 V @Q ⇣ @Q µ ◆ Q=0 = 0, ⇣ 6 = µ, (1.1.9) 
X n m n r(0) n↵ r(0) n = 0, ↵ 6 = , (1.1.10)

✓ @V @Q ⇣ ◆ Q=0 = 0.
(1. 1.11) where V is the potential function of the molecule and ✏ ↵ is a completely antisymmetric tensor. In addition, it is necessary to take into account the conditions for the center of mass:

X n m n r(0) n + X i m e ri = 0, (1.1.12) 
X n m 1/2 n l n ⇣ = 0.

(1. 1.13) The given 3n conditions (1.1.10)- (1.1.13) are sufficient to determine 3n parameters r(0) n ; and 3n(3n 6) relations (1.1.7)-(1.1.10) and (1.1.12) to determine 3n(3n 6) constants of oscillation forms l n ⇣ .

However, the scheme for introducing new coordinates described by relations (1.1.3)-(1.1.13) has a significant drawback. To determine the coordinates of electrons and nuclei, it is necessary to know at each moment not only the nuclear configuration, but also the location of all electrons relative to the nuclei, since the beginning of the new coordinate system is placed at the center of mass of the entire molecule. This makes the task more difficult. More natural is such a definition of coordinates, when rn and rn are counted from the center of mass of not the entire molecule, but only systems of nuclei. In this case, the position of the coordinate axes depends not only on the nuclear configuration and, therefore, they can always be easily determined. Then the coordinate transformation expressions [89] have the following form

x n↵ = R ↵ + X  ↵ r (0) n + X ⇣ l n ⇣ p m n Q ⇣ m e M X i r i ! , (1.1.14) 
x i↵ = R ↵ + X  ↵ r i m e M X j r j ! , (1.1.15) 
where M = P n m n + P i m e is the total molecular mass, r n and r i are the nuclei and electrons positions in the system, the origin of which is fixed at the center of mass of the nuclei.

According to expressions (1.1.14) and (1.1.15), it is possible to determine the law of momentum operators transformation that are included in the Hamiltonian of the molecule.

Such transformations can be obtained by using the Lagrangian [89]:

L = m e 2 X i↵ ẋ2 i↵ + 1 2 X n↵ m n ẋ2 n↵ V.
(1.1.16)

As a result of complex transformations and some simplifications, as well as normalization of wave functions in new coordinates, the Hamiltonian will have the following form

H = X ↵ P 2 ↵ 2M + 1 2m e X i↵ P 2 i↵ + 1 2M n X ↵ X i P i↵ ! 2 + 1 2 
X ⇣ P 2 ⇣ + 1 2 X ↵, (J ↵ G ↵ L ↵ )μ ↵ (J G L ) ~2 8 X ↵ μ↵↵ + V.
(1.1.17)

Expression (1.1.17) is the Hamiltonian of a polyatomic nonlinear molecule in molecular coordinates, sometimes called Eckart-Watson Hamiltonian. The first term is responsible for the translational motion of the molecule; the second is the kinetic energy of electrons; the third is the mass isotopic energy shift effect; the fourth and fifth are the vibrational motion of the nuclear core and its rotation in space. The penultimate term is the Watson addition to the vibrational potential function [90], where μ↵↵ are matrix elements of inverse moments of inertia [90]. Values J ↵ , G ↵ = P ,µ = ⇠ ↵ µ Q P µ , L ↵ = P , ✏ ↵ P i r i P i are the components of the total, vibrational and electronic angular momenta, respectively, and ⇠ ↵ ,µ are the Coriolis constants. The Hamiltonian (1.1.17) is valid only for nonlinear molecules.

It should also be said that the Born-Oppenheimer approximation plays an important role in the physics of molecules. The essence of the Born-Oppenheimer approximation is the solution of the Schrödinger equation, considering the separation of the electron and nuclei motions. This is based on the fact that the nucleus mass is thousands of times the electron's mass, while the speed of the electrons is very high (about 1% of the speed of light) compared with the speed of the nucleus. For this reason, we can assume that electrons move in the field of nuclei at rest.In the quantum mechanics language, this is equivalent to the assumption that the total wave function of a molecule can be expressed as a product of the electronic and nuclear functions, and the total energy can be expressed as the sum of the electronic energy and the vibrational-rotational energy of the nuclei. The first part of this problem can be solved using the Hamiltonian, which is responsible for the electron energy and consists of the sum of the kinetic energy of the electrons and the potential energy (see (1.1.17)) in the stationary Schrödinger equation:

H el el n ( r NK ) = E n ( r NK ) el n ( r NK ) = V n ( r NK ) el n ( r NK ), (1.1.18) 
Thus, the equation (1. 1.18) shows that the eigenvalues and eigenfunctions of the electron Hamil-tonian depend on the distances between the nuclei of the molecule r NK as parameters. Fixing the values of N for all possible r NK , allows us to calculate V n ( r NK ), which is called the intramolecular potential function. The solution of such a problem seems to be possible only if the ab initio methods are used. Consequently, the accuracy of the ab initio methods is still insufficient for a correct solution of the problem, so one has to resort to semi-empirical methods for determining the intramolecular potential function. One such method is the solution of the Schrrödinger equation with the effective Hamiltonian of an isolated electronic state [86]:

H n = V n ( r NK ) + h el n | H 1 | el n i + h el n | H 2 | el n i + ..., (1.1.19) 
where the first two terms correspond to the Born-Oppenheimer approximation, the third term is responsible for the isotopic shift that appears due to the difference between the center of mass of the molecule and the center of mass of the system of nuclei (as well as for the corrections associated with the electronic angular momentum), and the subsequent terms are responsible for the so-called nonadiabatic corrections, expressions for which can be found in [84]). In the paper [84] notes that taking into account the second and subsequent contributions in the Hamiltonian H n leads to small additions of the order of 4 (where is the Born-Oppenheimer order of smallness) to parameters of the vibrational-rotational Hamiltonian, which is defined as follows:

H = 1 2 
X ⇣ P 2 ⇣ + 1 2 X ↵, (J ↵ G ↵ )µ ↵ (J G ) + V, (1.1.20) 
where now µ ↵ are the elements of the inverse moment matrix averaged over electronic variables.

In this case, the intermolecular potential function of the molecule is the same for all isotopic modifications. This makes it possible to use experimental data on the vibrational-rotational spectra of all possible isotopologues under consideration.

Effective Hamiltonian of a system of interacting vibrational states

From the previous sub-chapters, we know that for a comprehensive description of the internal structure of molecules, it is necessary to solve the Schrödinger equation, which allows us to determine its eigenvalues and eigenfunctions. The exact solution of the Schrödinger equation is possible only for the simplest quantum systems, for example, for the hydrogen atom.

In studying more complex systems, such as polyatomic molecules, it is necessary to resort to approximate methods for calculating eigenvalues and eigenfunctions. One of the widely used approximation methods in quantum chemistry and physics is the operator perturbation theory [87].

Let us consider the classical perturbation theory when the assumed Hamiltonian operator of the molecular system can be divided into two parts

H = H 0 + 1 X n=1 H n ( ) n , (1.2.1) 
where H 0 is the Hamiltonian of an idealized problem, i.e., the solutions of the equation with which are known, and H n ( ) n is a small addition to this operator, which is usually called the perturbation operator. In this case, the perturbation is written as a sum of individual terms with different "orders of smallness" [84]. The operator H n is small compared to the operator H 0 , while the "orders of smallness" of ( ) n will be determined by the ratio of the electron mass m e to the average molecular mass M : ( ) n =(m e /M ) 1/4 . To solve the Schrödinger equation using this approach, the operator H 0 must be a function of the same variables as the operator H n ( ) n . However, the operators H n ( ) n depend not only on the variables of the zero approximation operator but also on other variables. In particular, considering the rotationalvibrational problem, the operator H 0 depends on purely oscillatory coordinates, while the perturbation depends on both vibrational and angular coordinates. Consequently, the use of traditional perturbation theory becomes impossible for solving real problems of molecular theory.

In most cases, the method of efficient operators is used to solve this problem (see, for example, [91][92][93]). Its essence is as follows: suppose there is some Hamiltonian Ĥ, the solution of the Schrödinger equation with which it seems difficult or even impossible. The solution to this problem is to construct some other Hermitian operator H with the following properties.

Firstly, the solution of the Schrödinger equation with this new operator H can be defined explicitly. Secondly, the set B of all solutions of the Schrödinger equation with the operator H identically coincides with some subset B of the set A of solutions of the Schrödinger equation with the operator Ĥ. Thus, a Hamiltonian H satisfying the two conditions listed above is called an effective Hamiltonian on a subset of B. One of the ways to construct an effective rotational operator, which is based on the use of projection operators [84,85], was proposed in [86]. The results presented in [86] allow us to construct an effective operator in a symmetrized form, as well as to express the parameters of the symmetrized Hamiltonian in the form of analytical functions of the parameters of the initial vibrational-rotational Hamiltonian.

As is known from the general rotational-vibrational theory [84], the Hamiltonian of an arbitrary polyatomic molecule can be reduced to a set of so-called effective Hamiltonians or, more generally, to a set of effective operator matrices of the form

H = X x,y2L |xihy|H xy ⌘ X x,y2L |xihy|hx|H|yi, (1.2.2) 
where |xi and |yi are the eigenfunctions of the operator H 0 (the Hamiltonian of the system of noninteracting harmonic oscillators); L is the space of all randomly interacting and/or degenerate vibrational states. Moreover, for the operator H on the right side of Eq. (1.2.2) the following relation holds:

H ) H = G † HG. (1.2.3)
where G is an arbitrary unitary operator. It is important to note that the unitary transformation does not change the eigenvalue spectrum of the operator. This condition is satisfied if the operator G has the following form

G = exp i 1 X n=1 g n ( ) n ! , (1.2.4) 
where g n are small Hermitian operators of order ( ) n .

Along with this, it is known that the elements of the diagonal matrix H will be the eigenvalues of the initial Hamiltonian of the operator H, and the eigenfunctions | i of the operator H will be expressed by the relation

| (x, y)i = X ↵,i G ,↵,i |↵, ii, (1.2.5) 
where G ,↵,i are the elements of the unitary matrix G that diagonalize the original matrix H.

According to papers [94][95][96][97], the rotation operators H xy in the effective Hamiltonian (1.2.2) must have the form (1.2.9)

H xy = * x X k=0 1 k! " i 1 X n=0 g n , H 0 + H n # (k) y + . ( 1 
h↵|ig n |xi = (E x E ↵ ) 1 * ↵ X r=0 1 r! " i 1 X l=0 g l , X k=1 H k # (r) + X p=2 1 p! " i 1 X m=0 g m , H 0 # (p) x + . ( 1 
Note that the easiest way to resolve this ambiguity is to set h↵|g n | i = 0 and hx|g n |yi = 0 for all values n and all functions |xi, |yi, |↵i and | i. In this case, the effective operator, taking into account resonant interactions, can be written as [86,98,99]:

Hxy = H (0) xy + H (1) xy + H (2) xy + H (3) xy + ...+, H (n) xy , (1.2.10)

where the operators

H (n)
xy are

H (0) xy = E x xy , (1.2.11) 
H (1) xy = hx|H 1 |yi ⌘ H xy , (1.2.12)

H (2) xy = 1 2 X ↵ / 2⌦ ⇥ (E x E ↵ ) 1 + (E y E ↵ ) 1 ⇤ H x↵ H ↵y , (1.2.13) 
H (3) xy = 1 2 X ↵, / 2⌦ ⇥ (E x E ↵ ) 1 (E x E ) 1 + (E y E ↵ ) 1 + (E y E ) 1 ⇤ H x↵ H ↵ H y 1 2 X x,↵ / 2⌦ ⇥ (E y E ↵ ) 1 (E x E ↵ ) 1 ⇤ H x↵ H ↵x H xy + 1 2 X x,↵ / 2⌦ ⇥ (E x E ↵ ) 1 (E x E ↵ ) 1 ⇤ H xx H x↵ H ↵y , (1.2.14)
where ⌦ is the space of resonating states.

Line strengths and effective dipole moment

Another essential problem addressed by high-resolution vibrational-rotational spectroscopy is that of experimental and theoretical determinations of the line intensities and their profiles, as well as the subsequent determination of the parameters of the effective dipole moment.

These data are crucial in many applications in chemical kinetics, molecular structure, and astrophysics. Therefore, in this section, we briefly consider the main points of modeling the intensities of spectral lines of molecules (in particular, for molecules of the XH 4 type) and introduce basic concepts such as line intensity (or line strength), effective dipole moment, and theoretical profiles for describing an isolated spectral line.

In the absence of external fields, the intensity of the vibrational-rotational transition from the |Ai state to the |Bi state upon absorption or emission of an electric dipole moment is determined by the expression

S ⌫ = 8⇡ 3 ⌫ 4⇡✏ 0 3hc  1 exp ✓ hc⌫ k B T ◆ N g A Q(T ) exp ✓ E A k B T ◆ R B A , (1.3.1) 
where g A is the nuclear spin statistical weight, which can be calculated from considerations of group theory; Q(T ) is the partition function, which is determined by the following expression [START_REF] Fox | On the rotational partition function for tetrahedral molecules / K. Fox[END_REF]:

Q(T ) = Q v ⇥ Q r = X r exp ✓ hcE v kT ◆ ⇥ ✓ 27 4 ◆ ⇡ 1/2 ✓ kT hcB gr ◆ 3/2 exp ✓ hcB gr 4kT ◆ , (1.3.2) 
where B gr is the rotational parameter of the ground vibrational state. It is important to note that this formula is valid for the XH 4 -type molecules (T d symmetry). The value R B A = |hA|µ 0 Z |Bi| 2 in Eq. (1.3.1) is the matrix element of the operator

µ 0 Z = G + P Z G. (1.3.3)
on the functions |Ai and |Bi of the lower and upper rotational-vibrational states. It is most convenient to consider the Z-component of the molecular dipole moment [START_REF] Griffits | Introduction to quantum mechanics[END_REF][START_REF] Laane | Frontiers and advances in molecular spectroscopy[END_REF] and, depending on the instantaneous distances between the nuclei, the value of P Z can be written as

P Z = X ↵ k z↵ µ e ↵ + X 0 µ 0 ↵ q 0 + X 0 ,⌫ 0 µ 0 ⌫ ↵ q 0 q ⌫ + ... ! . (1.3.4)
Here k z↵ are the elements of the direction cosine matrix [START_REF] Varshalovitch | Quantum theory of angular momentum[END_REF], µ e ↵ are the equilibrium (constant) dipole moment components of the molecule in the molecularly immobile coordinate system, q are dimensionless normal vibrational coordinates [84,91], µ 0 ↵ , µ 0 ⌫ ↵ , ... are the parameters describing the dependence of the components of the dipole moment µ ↵ on the coordinates of normal vibrations. In Eq. (1.3.4), the first terms µ e ↵ are responsible for purely rotational transitions; the second terms (proportional to the first order of the vibrational coordinates) are responsible for the appearance of fundamental transition bands upon absorption (in a more general case, bands corresponding to change of only one vibrational quantum number per unit), etc.

The operator G presented in Eq. (1.3.3) is a unitary operator known from the theory of effective operators [84,91,92,[START_REF] Jorgensen | A projector formulation for the van Vleck transformation. I. Degenerate case / F. Jorgensen[END_REF], which was considered in Subchapter 1.2. Since G-operators are vibrational-rotational, the operator µ 0 Z , in contrast to P Z , will be a complex function of vibrational Q , P µ and rotational z↵ , J operators. In general

PZ = X i r i R i ( z↵ , J )V i (Q , P µ ), (1.3.5) 
where r i are expansion parameters. If we take into account the results of the mentioned works, then we can show that for an arbitrary polyatomic molecule, Ex. (1.3.3) can be transformed to the following form

µ 0 Z = X ⌫ |0i v µ Z hv|, (1.3.6) 
where the values of v µ Z depend only on the operators k z↵ and J ↵ and are independent of the vibrational operators; |0i and hv| are vibrational functions of the lower and upper vibrational states. In this case, the v µ Z operators have the following form:

v µ Z = X j v µ j v A j . (1.3.7)
The quantities v µ j are called the parameters of the effective dipole moment of a certain vibrational band hv| |0i and v A j are symmetric rotation operators.

1.4 Isolated line profile for determining the effective dipole moment parameters

The effective dipole moment parameters can be determined by measuring the experimental line strengths of the vibrational-rotational spectra. To do this, it is necessary to approximate the line with some theoretical profile. An isolated spectral line profile is defined as a value normalized per unit area and can be explained by the following physical factors:

1. The Heisenberg time-energy uncertainty principle, or, equivalently, the spontaneous emission, is responsible for the natural lifetime broadening or intrinsic line width. In the absence of external influences, spontaneous emission determines the state's lifetime. Therefore, the smallest possible, the so-called line width, is determined by the probability of a spontaneous transition. A Lorentzian profile describes the overall line shape component, which is narrow enough to be safely neglected in favor of the subsequent two contributions.

2. The thermal translational motion of a molecule with the velocity v a leads the incident radiation frequencies ⌫ 0 to a frequency shift ⌫ = ±(v a /c)⌫ 0 in the molecular reference system. This phenomenon is known as the Doppler effect, leading to a broadening spectral line caused by the distribution of molecular velocities. The corresponding Doppler profile is expressed in terms of the Doppler half-width D by the Gaussian function:

F D (⌫ ⌫ 0 ) = r ln 2 ⇡ 1 D exp ln (2) 
✓ ⌫ ⌫ 0 D ◆ 2 !
.

(1.4.1)

3. Individual collisions of molecules lead to energy exchange between emitters and disturbing elements. These exchanges shorten the lifetime of the optical transition's initial and final states and lead to pressure broadening. These collisions also cause pressure-dependent shifts of the spectral line centers. Assuming that the pressure-broadened FWHM and the shift , also caused by pressure, are independent of molecular velocities (average ther-mal velocity approximation), we obtain a homogeneous Lorentz function for the coupled profile:

F L (⌫ ⌫ 0 ) = ln 2 ⇡ (⌫ ⌫ 0 ) 2 + 2 . (1.4.2)
At low pressures, the Doppler effect dominates, and collision effects become more critical as it increases. As a first approximation to obtain the resulting line shape, the convolution of a non-uniform Doppler profile with a uniform Lorentz profile is usually used. It defines the socalled Voigt profile, which contains Doppler and Lorentz forms and includes three parameters D , , . The parameter D does not depend on the composition of the gas mixture and has a known temperature dependence

D = r 2 ln(2)kT mc 2 ⌫ 0 , (1.4.3) 
where T is the temperature, m is the molecule's mass.

It is now generally accepted that the Voigt profile does not give a completely accurate idea of the spectral line shape, and its use can lead, for example, to a systematic underestimation of the experimental line strengths [START_REF] Lisak | Low-uncertainty H 2 O line intensities for the 930-nm region / D. Lisak[END_REF][START_REF] Kochanov | On systematic errors in spectral line parameters retrieved with the Voigt line profile / V.P. Kochanov[END_REF][START_REF] Ngo | Intensities and shapes of H 2 O lines in the near-infrared by tunable diode laser spectroscopy[END_REF]. There are many proposed models for describing the line profile. Table 1.4.1 lists key line profile models developed and ordered by the parameter numbers needed to characterize a single spectral transition. More details about the disadvantages and advantages of other profiles are described in [START_REF] Tennyson | Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC technical report)[END_REF].

Currently, the recommended [START_REF] Tennyson | Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC technical report)[END_REF] for use (including for submitting results to the HITRAN database) is the so-called Hartmann-Tran profile [START_REF] Campargue | Efficient computation of some speed-dependent isolated line profiles[END_REF][START_REF] Hartmann | Velocity effects on the shape of pure H 2 O isolated lines: complementary tests of the partially correlated speed-dependent Keilson-Storer model[END_REF]. This profile takes into account not only the Lorentz and Doppler spectral line broadenings but also the influence of the change in the velocity of molecules during collisions. The Hartmann-Tran profile is based on the binary collision model and has the following form [START_REF] Tennyson | Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC technical report)[END_REF]:

F HTP (⌫) = 1 ⇡ Re 8 < : A(⌫) 1 [⌫ vc ⌘(C 0 3C 2 /2)]A(⌫) + ⇣ ⌘C 2 v 2 a0 ⌘ B(⌫) 9 = ; , (1.4.4) 
Table 1.4.1. Summary of the main profiles to describe an isolated spectral line.

where

A(⌫) = p ⇡c ⌫ 0 v a0 [!(iZ ) !(iZ + )],
(1.4.5)

B(⌫) = v 2 a0 C2  1 + p ⇡ 2 p Y (1 Z 2 )!(iZ ) p ⇡ 2 p Y (1 Z 2 + )!(iZ + ) , (1.4.6) 
!(z) = i ⇡ +1 Z 1 e t 2 z t dt = e z 2 erfc( iz), (1.4.7) 
where erfc is the Gaussian error function [START_REF] Ng | A table of integrals of the error functions[END_REF][START_REF] Andrews | Special functions of mathematics for engineers[END_REF], v a0 is the most probable velocity expressed in terms of the Doppler half-width. In the above expressions

Z ± = p X + Y ± p Y , (1.4.8) 
X = i(⌫ 0 ⌫) + C0 C2 , Y = ✓ ⌫ 0 ⌫ a0 2c C2 ◆ 2 ,
(1.4.9)

C0 = (1 ⌘) ✓ C 0 3C 2 2 ◆ + ⌫ vc , (1.4.10) 
and

C2 = (1 ⌘)C 2 , (1.4.11) 
where

C n = n + i n (n = 0, 2).
(1.4.12)

The function (1.4.4) generalizes many precursor models for describing line profiles, for example, Voigt contour [START_REF] Humlicek | Optimized computation of the Voigt and complex probability functions[END_REF][START_REF] Armstrong | Spectrum line profiles: the Voigt function / B.H. Armstrong[END_REF][START_REF] Lether | The numerical computation of the Voigt function by a corrected midpoint quadrature rule[END_REF], Rautian [START_REF] Rautian | The effect of collisions on the doppler broadening of spectral lines / S.G. Rautian, I.I. Sobelman[END_REF], Voigt velocity dependent [START_REF] Berman | Speed-dependent collisional width and shift parameters in spectral profiles / P.R. Berman[END_REF][START_REF] Pickett | Effects of velocity averaging on the shapes of absorption lines / H.M. Pickett[END_REF] et al.

Since the Hartmann-Tran profile is a velocity-dependent model, it also considers the collisional narrowing for isolated spectral lines, the so-called Dicke effect. A total of seven parameters are needed to describe the shape of a line by the Hartmann-Tran. Parameters 0 , 2 , 0 and 2 , which are responsible for describing the dependence of the profile shape on the relaxation rate, and the parameter ⌘, which is responsible for the correlation between the rate and change in rotational state due to collisions, as well as D and ⌫ vc described above.

We also note the effect of velocity changes caused by collisions on the shape of the spectral line (Dicke narrowing). In this case, the impact force becomes important, i.e., their effectiveness when changing speed. Hard collision models assume that the velocities of the molecules before and after each collision are completely decorrelated, i.e., each collision is so strong that the molecule completely loses "memory" of its previous velocity, and its new velocity simply follows the Maxwell distribution. The corresponding linear profile is called the Rautian profile or, equivalently, the Nelkin-Ghatak profile. The hypothesis of soft collisions, in which many collisions are needed to significantly change the speed of molecules, leads to the Galatry profile [START_REF] Campargue | Efficient computation of some speed-dependent isolated line profiles[END_REF][START_REF] Hartmann | Velocity effects on the shape of pure H 2 O isolated lines: complementary tests of the partially correlated speed-dependent Keilson-Storer model[END_REF]. Both hard and soft collision models introduce one additional parameter, ⌫ vc , to quantify the change in frequency versus velocity due to collisions. Table 1.4.1 lists the collision mechanisms for each profile.

Chapter 2

Application of the irreducible tensorial operator formalism to the study of the XY 4 -type molecule spectra

Significant difficulties arise, both of a computational nature and related to understanding the physical picture of their behavior, when describing the spherical top molecules (molecules of the XY 4 -type). To overcome these difficulties, the ideas of symmetry theory, in particular the irreducible tensor operator apparatus, turned out to be the most efficient. In this chapter, we consider the most straightforward applications of the formalism of irreducible tensor operators to molecular spectroscopy problems. The most outstanding contribution to the development of the mathematical apparatus of irreducible tensor operators for molecular spectroscopy problems was made by Hecht [START_REF] Hecht | The vibration-rotation energy of tetrahedral XY 4 molecules / K.T. Hecht[END_REF][START_REF] Hecht | The vibration-rotation energy of tetrahedral XY 4 molecules II / K.T. Hecht[END_REF][START_REF] Hecht | The ground vibronic state of tetrahydrides / K.T. Hecht[END_REF], Michelot [START_REF] Michelot | Double degenerate vibrational levels of spherical top molecules / F. Michelot[END_REF][START_REF] Michelot | Hamiltonien effective des molécules semi-rigides non linéaires dans un état électronique non dégénéré[END_REF][START_REF] Michelot | Nuclear hyperfine interaction in spherical tops in their ground electronic andvibranic states[END_REF][START_REF] Michelot | Computation of matrix elements for vibration-rotation operators of spherical top molecules / F. Michelot[END_REF], Moret-Bailly [START_REF] Moret-Bailly | Introduction au calcul de l'énergie de vibration-rotation des molécules à symétrie sphérique[END_REF][START_REF] Moret-Bailly | Calculation of the frequencies of the lines in a threefold degenerate fundamental band of a spherical top molecule / J. Moret-Bailly[END_REF], Hougen [START_REF] Hougen | Classification of rotational energy levels for symmetric top molecules[END_REF][START_REF] Hougen | Methane symmetry operations[END_REF],

Hilico [START_REF] Hilico | Coefficients de couplage relatifs à la structure fine de rotation-vibration des molécules tétraédriques[END_REF][START_REF] Hilico | Expression tensorielle de l'hamiltonien de vibration-rotation des molécules à symétrie tétraédrique[END_REF], Champion [START_REF] Champion | Développement complet de l'hamiltonien de vibration-rotation adapté à l'étude des interactions dans les molecules toupies sphériques[END_REF][START_REF] Champion | Composantes cubiques normales des tenseurs sphériques[END_REF] 2

.1 Basic properties of spherical top molecules

The silane and germane molecules considered in this thesis belong to the molecular group of the XY 4 -type. Molecules of this type have spherical symmetry, which is isomorphic to the T d point group. This symmetry group includes twelve elements of the T group (all rotations that align the tetrahedron with itself, four third-order axes C 3 passing through the vertex of the tetrahedron, and three second-order axes C 2 connecting the midpoints of non-intersecting edges), six planes of symmetry passing through two vertices of the tetrahedron and the middle of the opposite edge, and six fourth-order mirror-rotation axes S 4 . The equilibrium configuration of the molecule is shown in Fig. 2.1.1. As is known, nonlinear molecules have 3n -6 vibrational degrees of freedom (n is the number of atoms), and each of them has its fundamental frequency. However, the high symmetry of XY 4 molecules leads to the fact that nine vibrational degrees of freedom correspond to four normal vibrations: a nondegenerate ⌫ 1 vibration (A 1 ), a doubly degenerate ⌫ 2 (E), and two triple degenerate ⌫ 3 (F 2 ) and ⌫ 4 (F 2 ). A common feature for most tetrahedral molecules (there are exceptions, such as CF 4 and SiF 4 molecules) is the close arrangement of bending vibrations (0100, E)/(0001, F 2 ), and stretching vibrations (1000, A 1 )/(0010, F 2 ), in other words, we can say that their frequencies satisfy the approximate relation

⌫ 1 ' ⌫ 3 ' 2⌫ 2 ' 2⌫ 4 . (2.1.1)
Due to relation (2.1.1), the vibrational levels of tetrahedral molecules can be grouped into polyads of interacting levels, which are characterized by an integer quantum number

P = k 1 v 1 + k 2 v 2 + k 3 v 3 + k 4 v 4 , (2.1.2)
or a more particular case for GeH 4 and SiH 4 molecules: Symmetric top molecules have one main axis of symmetry, and therefore the quantum number K of the angular momentum J about this axis is digestible for designating quantum states and transitions. In the case of asymmetric top molecules, the pair (K a , K c ) is used as a pseudo-quantum number that allows one to identify the line series in the spectrum. However, in the case of spherical tops, this way of "marking" the lines is indigestible and the only solution is to use symmetry marks. There are five irreducible representations in the tetrahedron symmetry group: 

P = 2(v 1 + v 3 ) + v 2 + v 4 , ( 2 
A 1 , A 2 , E, F
T d E 8C 3 3C 2 6 d 6S 4 A 1 1 1 1 1 1 A 2 1 1 1 -1 -1 E 2 -1 2 0 0 F 1 3 0 -1 -1 1 F 2 3 0 -1 1 -1
Another feature of spherical top molecules is illustrated in the energy diagram (see Fig.

2.1.2)

. The valence states (1000, A 1 )/(0010, F 2 ) included in the P 1 polyad seem to be incredibly close to each other and, at the same time, relatively isolated from neighboring states. This structure is especially traced in the spectra of SiH 4 and GeH 4 molecules. This characterizes the so-called local mode pattern [START_REF] Lukka | Molecular rotations and local modes[END_REF]. The main idea is that a local anharmonic potential coupling function can adequately describe X-H stretching states, e.g., a Morse function, even if all potential couplings are usually neglected. Under appropriate physical assumptions and without degeneracy, the rotational levels of the ⌫ 1 /⌫ 3 Dyad turn out to be identical to those found in symmetrical tops.

Tetrahedral splittings of vibrational-rotational states for molecules of T d symmetry

Since tetrahedral molecules currently do not have a generally accepted classification of vibrational-rotational states, as a consequence, there are no generally accepted selection rules for vibrational-rotational spectra. The main approaches to the classification of T d symmetry states of molecules are the approach of Jahn [START_REF] Jahn | A new Coriolis perturbation in the methane spectrum I. Vibrational-rotational Hamiltonian and wave functions[END_REF], Hougen [START_REF] Hougen | Methane symmetry operations[END_REF], Moret-Bailly [START_REF] Moret-Bailly | Sur les symétries des fonctions propres et les règles de selection dans les molécules "toupies symétrique"; application aux molécules "toupies sphériques[END_REF], and Berger In this case, the inversion action on the Euler angles and on the molecular coordinate system itself will be considered such that the functions |Jkmi are transformed by exact representations J) , to which the (2J+1) function |JKMi corresponds, splits into rotational sublevels E (J,n ) to which the functions |J, n i correspond.

D (Jg)
For molecules of symmetry T d , such a splitting is called tetrahedral. The tetrahedral splitting does not entirely remove the degeneracy from the E (J) rotational levels. Each rotational sublevel E (J,n ) has a degree of degeneracy equal to the dimension [ ] of the representation .

The symmetry of the vibrational state of a molecule in which the normal vibration Q of symmetry is excited ⌫ times is defined as the ⌫ th symmetrized power of [ ] ⌫ of an irreducible representation . In the case of the presence of several excited vibrational states, the symmetry of such a composite state is defined as a direct product of the symmetry types of the excited vibrations. Thus, the symmetry of the vibrational state (⌫ 1 , ⌫ 2 , ..., ⌫ n ), in which each normal vibration Q

( i ) i
excitedly ⌫ i times, is determined by the formula

(⌫ 1 , ⌫ 2 , ..., ⌫ n ) = [ 1 ] ⌫ 1 ⇥ [ 2 ] ⌫ 2 ⇥ ... ⇥ [ n ] ⌫n . (2.2.2)
The representation is generally reducible and can be divided into reducible parts. In accordance with this partition, the vibrational state (⌫ 1 , ⌫ 2 , ..., ⌫ n ) can be divided into a number of substates (vibration sublevels). In particular, molecules of tetrahedral symmetry, such as XY 4 , have four normal vibrations (which were described in Subchapter 2.1). If the molecule is

in an excited vibrational state (⌫ 1 = 1, ⌫ 2 = 2, ⌫ 3 = 3, ⌫ 4 = 1)
, then according to Eq. (2.2.2) in this state, the molecule has vibrational sublevels of the following types of symmetry

A 1 ⇥ [E] 2 ⇥ [F 2 ] 3 ⇥ F 2 = 5A 1 + 4A 2 + 6E + 10F 1 + 11F 2 . (2.2.3)
Thus, the vibrational state (1231) of an XY 4 -type molecule with T d symmetry breaks down into 36 substates.

The direct product of the symmetry types E (J,n ) of the rotational sublevels and the

A 1 F 1 2F 2 A 2 1F 2 E A 1 F 1 E F 2 F 1 E F 2 F 1 E F 2 A 2 J = 6 Figure 2.2.1.
A tetrahedral splitting diagram of a vibrational-rotational energy level with a rotational quantum number J = 6 in the ground vibrational state (⌫ 1 , ⌫ 2 , ⌫ 3 , ⌫ 4 ) = (0000) A 1 and in the vibrational state of symmetry

E (⌫ 1 , ⌫ 2 , ⌫ 3 , ⌫ 4 ) = (0100) E .
symmetry type ⌫ of the vibrational state determines the symmetries of the vibrationalrotational wave functions (energy levels). Fig. 2.2.1 shows an example of the symmetry of some vibrational-rotational energy levels of the XY 4 molecule.

The vibrational-rotational wave functions of the triple degenerate vibrational state are transformed by the product of the representations

D (1u) ⇥ D (Jg) = D (J 1)u + D (Ju) + D (J+1)u . (2.2.4)
From expansion (2.2.4) it follows that each rotational energy level with a given quantum number J in a vibrational state of F 2 symmetry splits into three R components: R = J 1, J, J + 1. The possible tetrahedral splittings scheme of vibrational-rotational states of molecules of tetrahedral symmetry is shown in Fig. 2.2.2 (for J = 3 and ⌫ 3 = 2). It should be said that this scheme reflects only the possibility of such splittings. However, whether they occur in molecules or not depends on specific values of physical quantities, for example, on the masses of nuclei, equilibrium internuclear distances, and the intramolecular force field parameters. All the listed quantities are included as parameters in the Hamiltonian (1.1.17), which can be rewritten in a simplified form

This kind of splitting is called the

H = H cor + H harm + V anh , (2.2.5) 
where V anh and H harm are the potential energy operators responsible for the anharmonic and harmonic parts, respectively; H cor is the operator responsible for the Coriolis interaction, which for molecules of the XY 4 -type has the form

H cor = 2B e (⇠ 33 Q 3 P 3 + ⇠ 44 Q 4 P 4 ), (2.2.6) 
The numerical solution of the Schrödinger equation with Hamiltonian (2.2.5) depends on the choice of specific values of the Hamiltonian parameters, in particular, the Coriolis constants ⇠ 33 and ⇠ 44 . The harmonic part of the Hamiltonian is written as follows

H harm = 1 2 X P 2 + (2⇡c) 2 2 X ! 2 Q 2 , (2.2.7) 
and the anharmonic part of the intramolecular potential function

V anh = X µ⌫ K µ⌫ Q Q µ Q ⌫ + X µ⌫⇢ K µ⌫⇢ Q Q µ Q ⌫ Q ⇢ + .... (2.2.8)
Based on the above, the terms responsible for the anharmonic part, V anh , and for the Coriolis interaction, H cor , affect the splitting of energy levels. If H cor ⌧ V anh , then there is a significant Coriolis splitting of levels into R-components, which in turn undergo a smaller tetrahedral splitting due to V anh and H harm . If V anh ⌧ H cor , then, first of all, there is a significant splitting of the vibrational state, which can then experience a further minor splitting (both tetrahedral and Coriolis).

A 1 E F 2 E, 2F 1 , 2F 2 J = 3, ⌫ 3 = 2 l 3 = 0 l 3 = 2 R = 4 R = 3 R = 2 A 1 , F 1 , F 2 A 1 , E, F 1 , F 2 A 2 , F 1 , F 2 E, F 2 Figure 2.2.2. A tetrahedral splitting scheme for J = 3, ⌫ 3 = 2.
The following parameters are sufficient for a correct description of tetrahedral splittings: 

G 22 , G
H G 33 /G 34 1 = B⇣ 2 X µ⌫ ✏ µ⌫ (Q µ P ⌫ + Q ⌫ P µ ) + d x (Q 2 x + Q 2 y + Q 2 z ) + V 3 , (2.2 
.9)

H G 22 2 = d 2222 (Q 2 2 1 + Q 2 2 2 ) + V 3 , (2.2.10) 
H G 34 3 = B 2 ⇣ 2 34 + 2B⇣ 3 ⇣ 4 + V 3 , (2.2.11)
where B is the equilibrium rotational parameter, ✏ µ⌫ is the fully antisymmetric tensor, d x is the form parameter, = 3 or 4, and V 3 is the cubic part of the intramolecular potential function V anh .

2. Operators describing T 33 , T 34 , T 44 , T 23 , T 24 -types of splittings

H T 33 /T 44 4 = d x h Q 4 x + Q 4 y + Q 4 z 3(Q 2 x Q 2 y + Q 2 x Q 2 z + Q 2 y Q 2 z ) i + V 3 , (2.2.12) 40 H T 34 /T 23 5 = d 3344 [3(Q 2 4x Q 2 3x + Q 2 4y Q 2 3y + Q 2 4z Q 2 3z ) (Q 2 3x + Q 2 3y + Q 2 3z )(Q 2 4x + Q 2 4y + Q 2 4z ) 4(Q 3x Q 3y Q 4x Q 4y + Q 3x Q 3z Q 4x Q 4z + Q 3y Q 3z Q 4y Q 4z )] + V 3 , (2.2.13) H T 34 /T 24 6 = d 22 t ⇥ Q 21 Q 22 (Q 2 x + Q 2 y ) + (Q 2 x + Q 2 y 2Q 2 z ) ⇤ + V 3 . (2.2.14)
3. Operator describing S 34 -type of splitting 

H S 34 6 = d 3344x [(Q 3x Q 4x + Q 3y Q 4y + Q 3z Q 4z ) 2 1 3 (Q 2 3x + Q 2 3y + Q 2 3z )(Q 2 4x + Q 2 4y + Q 2 4z )] + V 3 . (2.2.15)
Representation D (Jg) Representation D (Ju) J E C 3 C 2 S 4 d 0 1 1 1 1 1 A 1 A 2 1 3 0 -1 1 -1 F 1 F 2 2 5 -1 1 -1 1 E F 2 E F 1 3 7 1 -1 -1 -1 A 2 F 1 F 2 A 1 F 1 F 2 4 9 0 1 1 1 A 1 E F 1 F 2 A 2 E F 1 F 2 5 11 -1 -1 1 -1 E 2F 1 F 2 E F 1 2F 2 6 13 1 1 -1 1 A 1 A 2 E F 1 2F 2 A 1 E 2F 1 2F 2 . . . . . . . . . 2A A 2E 3F 3F A 2A 2E 3F 3F

Tensor formalism for molecular spectroscopy problems

To understand this chapter, it is necessary to introduce the basic concepts and expressions of tensor formalism. Let A (K 1 ) and B (K 2 ) are tensor operators (vibrational or rotational ones).

The tensor product of these operators, which forms an irreducible tensor of rank K, is expressed in terms of the Clebsch-Gordan series:

T (K) m (K 1 , K 2 ) = X m 1 ,m 2 hK 1 m 1 K 2 m 2 |KmiA (K 1 ) m 1 B (K 2 ) m 2 . (2.3.1)
In this expression, the quantities hK 1 m 1 K 2 m 2 |Kmi are called the Clebsch-Gordan coefficients.

There are other ways of writing these coefficients (see, for example, [START_REF] Edmonds | Angular Momentum in Quantum Mechanics / A[END_REF]). Among them, 3 -Wigner symbols (more symmetrical) which greatly simplify analytical and numerical calculations. Then equation (2.3.1) can be rewritten as

T (K) m (K 1 , K 2 ) = (2K + 1) 1/2 X m 1 ,m 2 ( 1) K 1 +K 2 m 0 @ K 1 K 2 K m 1 m 2 m 1 A A (K 1 ) m 1 B (K 2 ) m 2 , (2.3.2) 
where the tensor operator components denoted by the index m is called the standard components of spherical tensors. Since the Clebsch-Gordan coefficients are defined only in a unitary transformation, the orientation of the irreducible representations can be established by physical considerations. For example, in order to obtain expressions for the energy levels of triple degenerate vibrational states of the fourth order, Moret-Bailly, Gauthier, and Montagutelli [START_REF] Moret-Bailly | Clebsch-Gordan coefficients adapted to cubic symmetry[END_REF] introduced the so-called cubic components of spherical tensors related to the standard components

T (K) p = X m (K) G m p T (K) m . (2.3.3)
The quantities (K) G m p are the matrix elements of the unitary transformation. Cubic components are denoted by the triple of numbers p = n, , , where = A 1 , A 2 , E, F 1 and F 2 and denotes an irreducible representation of the cubic group; denotes various components of multidimensional representations E, F 1 and F 2 ; n distinguishes between irreducible representations with the same and values. All possible values of n and can be derived from the correlation table of the group chains SO(3) O (or O(3) T d ). 1Applying the G-transform to (2.3.2), the Clebsch-Gordan series can be rewritten as

T (K) p (K 1 , K 2 ) = ( 1) K (2K + 1) 1/2 X p 1 ,p 2 F 0 @ K 1 K 2 K p 1 p 2 p 1 A A (K 1 ) p 1 B (K 2 ) p 2 . (2.3.4)
In the papers [START_REF] Hilico | Coefficients de couplage relatifs à la structure fine de rotation-vibration des molécules tétraédriques[END_REF][START_REF] Champion | Composantes cubiques normales des tenseurs sphériques[END_REF][START_REF] Moret-Bailly | Clebsch-Gordan coefficients adapted to cubic symmetry[END_REF] one can find numerical calculations of the coefficients G and F .

Given a consistent choice of the irreducible representations orientation of group chains SO(3),

we can identify the cubic components of spherical tensors with the components of cubic tensors by setting

T K,n ⌘ T (K)
n . 2 In this case, tetrahedral tensors can be formed according to the expression 

T ( ) = ( ) 1/2 X 1 , 2 F 0 @ 1 2 1 2 1 A A K 1 ,n 1 1 1 B K 2 ,n 2 2 2 , ( 2 
(A (K 1 ,n 1 1 ) ⇥ B (K 2 ,n 2 2 ) ) 3 = [ 3 ] 1/2 X K 3 ,n 3 ( 1) K 3 (2K 3 + 1) 1/2 K 0 @ K 1 K 2 K 3 n 1 1 n 2 2 n 3 3 1 A (A (K 1 ) ⇥ B (K 2 ) ) (K 3 ,n 3 3 ) , (2.3.6)
where the coefficient of proportionality K is called the isoscalar factor of the group chains SO(3) O. Relation (2.3.6) expresses the tetrahedral tensor product as a combination of spherical tensor products. The inverse expression can be obtained using the orthogonality properties of K symbols.

One of the main theorems of the irreducible tensor formalism is the Wigner-Eckart theorem. According to this theorem, any matrix element of an operator of any physical quantity can be divided into two factors: the Clebsch-Gordan coefficient and the so-called reduced matrix element, which depends on the specific type of basis and operators [START_REF] Rotenberg | The 3-j and 6-j Symbols[END_REF][START_REF] Zare | Angular momentum[END_REF] h

Jm|T (K) n | 0 J 0 m 0 i = ( 1) J m 0 @ K J 0 J n m 0 m 1 A h J||T (K) || 0 J 0 i. (2.3.7)
An alternative form of expression (2.3.7) directly for the group T d is The Wigner-Eckart theorem provides the maximum simplification of the procedure for calculating matrix elements, which is allowed by the symmetry of the problem, and reduces this procedure to calculating the standard sums of products of the Clebsch-Gordan coefficients.

h |T (K) ⌧ | 0 0 ⌧ 0 i = F 0 @ C 0 ⌧ 0 1 A h ||T (C) || 0 0 i. ( 2 

The symmetrised form of the effective Hamiltonian

Although it is possible to use the Watson Hamiltonian3 to study the spherical top molecular spectra, this approach is not entirely convenient. This inconvenience is due to two reasons.

Firstly, the absence in the spectra of rotational line series associated with quantum numbers K a and K c , as in the case of symmetric and asymmetric tops. This leads to the need to use new labels to denote quantum states. Secondly, the presence of complex polyad systems, including many interacting degenerate vibrational levels and sublevels in the molecular spectra of silane and germane. Therefore, there is a need to write the Hamiltonian (1.2.2) in tensorial notation.

In the absence of external fields, the Hamiltonian of the molecule remains invariant under any operations from the molecular symmetry group (i.e., the Hamiltonian is transformed 

H = X vl ,v 0 l 0 0 X n ⇥ (|vl i ⌦ hv 0 l 0 0 |) n ⌦ H n vl ,v 0 l 0 0 ⇤ A 1 , (2.4.1) 
where |vl i are symmetrized vibrational functions that are equivalent to the oscillatory functions |xi in Eq. (1.2.2), and is the symmetry of these functions; H n vl ,v 0 l 0 0 are rotational symmetry operators of symmetry. When vl = v 0 l 0 0 , the H n vl ,v 0 l 0 0 operators correspond to the diagonal blocks of the matrix of the effective Hamiltonian, when vl 6 = v 0 l 0 0 , the operators correspond to resonant blocks.

As can be seen from Eqs. (1.2.10)-(1.2.14), the operators H n vl ,v 0 l 0 0 are series expansions in terms of the angular momentum components J ↵ . However, it is known (see, for example, [START_REF] Varshalovitch | Quantum theory of angular momentum[END_REF][START_REF] Champion | Développement complet de l'hamiltonien de vibration-rotation adapté à l'étude des interactions dans les molecules toupies sphériques[END_REF]) that any expressions J ↵ ... J can also be written as linear expansions in symmetric operators R

⌦(K) m or R ⌦(K,n ) (irreducible rotational operators of SO(3) or O(3)) H = X vl ,v 0 l 0 0 X n X ⌦,K ⇥ (|vl i ⌦ hv 0 l 0 0 |) n ⌦ R ⌦(K,n ) ⇤ A 1 Y ⌦(K,n ) vl ,v 0 l 0 0 . (2.4.2)
The values Y

⌦(K,n )
vl ,v 0 l 0 0 are the spectroscopic parameters. In particular, when

⌦ = 2, = A 1 , vl = v 0 l 0 0 : Y 2(K,nA 1 ) vl ,v 0 l 0 0 are rotational constants; ⌦ = 4, = A 1 , vl = v 0 l 0 0 : Y 4(K,nA 1 )
vl ,v 0 l 0 0 are centrifugal distortion constants of the fourth degree, etc. If one makes the tensorial multiplication in Eq.

(2.4.2) are defined as

H = X vl ,v 0 l 0 0 |vl i ⌦ hv 0 l 0 0 | 2 4 X ⌦Kn s 0 @ s l l 1 A R ⌦(K,n ) s Y ⌦(K,n ) vl ,v 0 l 0 0
R ⌦(K,n ) s = X m (K) G m n s R ⌦(K) m , (2.4.5) 
where the operators R

⌦(K) m
are symmetrized with respect to the rotational operator of the symmetry group SO(3), which can be constructed in accordance with the recursion relation

[145] R ⌦+1(K+1) m = X l= 1,0,1 C K+1 m K m l,1,l R ⌦(K) m l R 1(1) l . (2.4.6)
The values C K+1 m K m l,1,l are the Clebsch-Gordan coefficients [START_REF] Varshalovitch | Quantum theory of angular momentum[END_REF]. The irreducible rotational operators R

⌦(K) m

for K < ⌦ (and the same parity) take the form

R ⌦(K) m = R ⌦=K(K) m (R 2(0) ) (⌦ K)/2 , (2.4.7)
where R 2(0) = (J 2 x + J 2 y + J 2 z ). In this case, operators of first order and rank R

1(1)
m (m = 0, ±1) are defined as

R 1(1) 1 = 1 p 2 (J x iJ y ) ⌘ J + , R 1(1) 1 = 1 p 2 (J x + iJ y ) ⌘ J , R 1(1) 0 = J z ⌘ J 0 . (2.4.7)
The values (K) G m n s in Eq. (2.4.5) are the so-called reduction matrix elements, which can be found in the literature (see, for example, [START_REF] Champion | Composantes cubiques normales des tenseurs sphériques[END_REF][START_REF] Moret-Bailly | Clebsch-Gordan coefficients adapted to cubic symmetry[END_REF][START_REF] Rey | Orientation of O(3) and SU(2)⌦C i representation in cubic point groups (O h , T d ) for application to molecular spectroscopy[END_REF]).

Taking into account that both vibrational (Q , p ) and rotational (J ↵ ) operators in the equation (1.1.17) are classified according to irreducible representations of the symmetry group of the molecule, the Hamiltonian H can also be rewritten in the following symmetrized form

H = H 0 + X ⌦,K,l,C ⇥ V ⌦(K,lC) + R ⌦(K,lC) ⇤ A 1 , (2.4.9) 
where ⌦ = 0, 1 or 2; V ⌦(K,lC) are operators depending on vibrational variables. For molecules of different types, the explicit form of the V ⌦(K,lC) operators can be obtained by comparing the equations (2.4.9) and (1.1.17).

Vibrational-rotational functions in a symmetrized form

As mentioned earlier, the symmetry group T d has five irreducible representations A 1 ,

A 2 , E (E 1 or E 2 ) , F 1 (F 1x , F 1y or F 1z ) and F 2 (F 2x , F 2y or F 2z ).
Thereby, any of the vibrational-rotational wave functions must be completely symmetric (A 1 ), antisymmetric (A 2 ), or be transformed under symmetry operations in one of the two (E 1 or E 2 ) or three (F 1x , F 1y or F 1z ) lines of irreducible representations E, F 1 , F 2 . In the general case, any vibrational-rotational function can be constructed in the following form:

|v v ; Jn J r ; m si = (|v v i ⌦ |Jn J r i) s = p [ ] X v r 0 @ v r s v r 1 A |v v v i|Jn J r r i, (2.5.1) 
where v v , Jn J r and m s uniquely determine any symmetrized vibrational-rotational function, and the indices v , r and also indicate the symmetry of the vibrational, rotational, and vibrational-rotational functions, respectively. The |v v v i and |Jn J r r i functions in Eq.

(2.5.1) are purely vibrational and rotational wave functions functions (in our case, symmetrized with respect to the group T d ). The value [ ] denotes the dimension of the irreducible representation.

Pure rotational functions |Jn J r r i, being in our case functions symmetrized in the T d group, can be constructed in accordance with a general equation analogous to Eq. (2.5.1):

|Jn J r r i = X k (J) G k n J r r |Jki, (2.5.2) 
where the |Jki functions are the usual rotational functions (see, for example, [91]). vl ,v 0 l 0 0 of the effective Hamiltonian (2.4.2). To do this, the operator H of the form (2.4.1) should be substituted into Eqs.

Spectroscopic parameters for XY

(1.2.10)-(1.2.14) and, after carrying out all the necessary simplifications, the results obtained should be compared with Eq. (2.4.2). There is no need to give all intermediate calculations for the parameters (more detailed calculations can be found in [START_REF] Ulenikov | On the determination of spectroscopic constants as functions of intramolecular parameters / O.N. Ulenikov[END_REF]). However, we write down the results of calculations of the spectroscopic parameters Y ⌦(K,n ) vl ,v 0 l 0 0 (⌦ 6 2) for molecules of the XY 4 type (to describe a Dyad/Pentad of interacting vibrational states).

The main contribution to the development of relationships between spectroscopic and intramolecular parameters was made by the authors of the papers [START_REF] Hecht | The vibration-rotation energy of tetrahedral XY 4 molecules / K.T. Hecht[END_REF][START_REF] Ulenikov | On the determination of spectroscopic constants as functions of intramolecular parameters / O.N. Ulenikov[END_REF][START_REF] Herranz | The rotational structure of the fundamental infrared bands of methane-type molecules[END_REF][START_REF] Herranz | The rotational structure of the ⌫(e) fundamental infrared band of tetrahedral XY 4 molecules / J. Herranz[END_REF][START_REF] Zhilinskii | Method of Irreducible Tensorial Operators in the Theory of Molecular Spectra / B.I. Zhilinskii[END_REF]. For brevity, we do not present here all the formulas for the parameters Y ⌦(K,n ) , corresponding to the formulas from Hecht's papers [START_REF] Hecht | The vibration-rotation energy of tetrahedral XY 4 molecules / K.T. Hecht[END_REF]. The general relations for calculating spectroscopic parameters have the following form

Y ⌦(K,n ) vl ,v 0 l 0 0 = (0) Y ⌦(K,n ) vl ,v 0 l 0 0 + (1) Y ⌦(K,n ) vl ,v 0 l 0 0 + (2) Y ⌦(K,n ) vl ,v 0 l 0 0 + ... + (n) Y ⌦(K,n ) vl ,v 0 l 0 0 , (2.6.1) (0) Y ⌦(K,n ) vl ,v 0 l 0 0 = vl ,v 0 l 0 0 ⌦0 K0 n ,A 1 E v , (2.6.2) (1) Y ⌦(K,n ) vl ,v 0 l 0 0 = hv ||V ⌦ ||v 0 0 i, (2.6.3) (2) Y ⌦(K,n ) vl ,v 0 l 0 0 = 1 2 X v 1 1 / 2L (E v E v 1 1 ) 1 + (E v 0 0 E v 1 1 ) 1 ⇥ X ⌦ 1 , 1 ,⌦ 2 , 2 [ ] 1/2 [ 1 ] 1/2 [ 2 ] 1/2 ( 1) K ( 1) + 0 + (2K + 1) 1/2 ⇥ 0 @ 0 2 1 1 1 A K (KK 1 K 2 ) (n 1 2 ) ((K 1 , K 2 )⌦ 1 ⌦ 2 ⌦, K)hv ||V ⌦ 1 1 ||v 1 1 i ⇥hv 1 1 ||V ⌦ 2 2 ||v 0 0 i, (2.6.4) 
where V ⌦ are operators depending on vibrational variables. Calculations according to Eqs.

(2.6.1)-(2.6.4) make it possible to obtain

Y 2(0,A 1 ) 1000,A 1 ,1000,A 1 Y 2(0,A 1 ) 0000,A 1 ,0000,A 1 = p 3X 1 , (2.6.5 
)

1 p 2 Y 2(0,A 1 ) 0100,E,0100,E Y 2(0,A 1 ) 0000,A 1 ,0000,A 1 = p 3X 1 = p 3 ! 2 B 2 e + p 3B 2 e ! 2  cos 2 ! 2 3 ! 2 2 (! 2 3 + 3! 2 2 ) + sin 2 (! 4 ! 2 ) 2 2! 4 (! 2 + ! 4 ) k 122 ! 3/2 1 (2B 3/2 e ), (2.6.6 
)

1 p 3 Y 2(0,A 1 ) 0010,F 2 ,0010,F 2 Y 2(0,A 1 ) 0000,A 1 ,0000,A 1 = p 3X 3 , (2.6.7) 3 2B 2 e sin 2 (! 4 ! 2 ) 2 ! 2 ! 4 (! 2 + ! 4 ) , (2.6.11) 
Y 2(2,F 2 ) 0001,F 2 ,0001,F 2 = 9 2 sin 2 B 2 e ! 4 + 3 2 sin 2 B 2 e (! 2 ! 4 ) 2 ! 2 ! 4 (! 2 + ! 4 ) + 27 2 cos 2 sin 2 B 2 e ! 2 3 + 3! 2 4 ! 4 (! 2 3 ! 2 4 ) +2 p 3 ✓ B e ! 3 ◆ 3/2 cos k 344 6 p 3 ✓ B e ! 4 ◆ 3/2 sin k 444 , (2.6.12) Y 2(2,E) 0100,E,0100,E = 2 p 3 B 2 e ! 2 2 p 3B 2 e cos 2 ! 2 3 + 3! 2 2 ! 2 (! 2 3 ! 2 2 ) + p 3B 2 e sin 2 (! 2 ! 4 ) 2 ! 2 ! 4 (! 2 + ! 4 ) 6 p 2 ✓ B e ! 2 ◆ 3/2 k 222 . (2.6.13)
It is important that, up to resonance terms (proportional to the value of (! 2 ! 4 ) 1 ), the parameters Y ⌦(K,n ) in Eqs. (2.6.10)-(2.6.12) are related to the corresponding parameters X 4 , Z 4s , Z 4t by the same formulas as Eqs. (2.6.7)-(2.6.9). Expressions for resonance parameters that depend linearly on cubic anharmonic constants k ⌫µ can be found in [START_REF] Cheglokov | On the determination of spectroscopic constants as functions of intramolecular parameters[END_REF].

The symmetrised form of effective dipole moment

Eq. (1.3.5) can also be written in a more convenient symmetrized form. Before that, some preliminary remarks should be made. Consider the rotational part R i ( z↵ , J ) of the operator (1.3.5). As is known [START_REF] Varshalovitch | Quantum theory of angular momentum[END_REF][START_REF] Fano | Irreducible Tensorial Sets / U. Fano[END_REF], some specific combinations, denoted as R

⌦(K) m
, of rotational operators J ↵ , . . . J form irreducible tensor operators of the rotational group SO(3). Any

of the operators R ⌦(K) m
is easy to define if we explicitly choose the tensor operators of the first rank R

1(1)
m (the expressions for the rotational tensor operators first rank were presented in Subchapter 2.4). Then, if we introduce reduced matrix elements hJ 0 ||R ⌦(K) ||Ji [START_REF] Fano | Irreducible Tensorial Sets / U. Fano[END_REF], defining them as

hJ 0 k 0 |R ⌦( K) m |Jki = (2J 0 + 1) 1/2 C J 0 k 0 Jk Km hJ 0 ||R ⌦( K) ||Ji, (2.7.1) 
it can be easily shown that

hJ 0 ||R ⌦( K) ||Ji = J 0 J 2 K ✓ J(J + 1) p 3 
◆ (⌦ K)/2 K!(2J + K + 1)! (2J K)!(2 K 1)!!) ! 1/2 , (2.7.2) 
where

C J 0 k 0
Jk Km are Clebsch-Gordan coefficients of the rotational group:

(2 K 1)!! = (2 K 1)(2 K 3)...3 ⇥ 1.
Given the above, the part of the reduced dipole moment operator Pz , which depends on the rotational operator, can also be represented in the tensor form

R ⌦K( K) µ = (R ⌦(K) ⌦ (1) ) K µ , (2.7.3) 
where the rank K of the complete operator is equal to K or K ± 1. In this case, operators of first order and rank (1) are defined as

(1) 0 = z = cos ✓, (1) 
⌥1 = ±( x ± i y )/ p 2 = ⌥ sin ✓(⌥i ) p 2.
(2.7.4)

At direction cosine operators z↵ ⌘ ↵ :

x = cos sin ✓,

y = sin sin ✓, z = cos ✓. (2.7.5)
To pass to the molecular symmetry group, one can construct irreducible tensor operators of this group based on the operators (2.7.3). In this case, the dipole moment operator (1.3.5) takes the form5 : which denotes the representation line, will be omitted.

(µ 0 ) = X ⌦K Kn r v r ⌦K( K,n r ) v (R ⌦K( K,n r ) ⌦ V v ) . ( 2 
We introduce the operator

1 = X ⌫l [|⌫l i ⌦ h⌫l |] A 1 , (2.7.7) 
where A 1 is the identity representation of the point symmetry group. Then it is easy to show that the dipole moment operator (2.7.6) can be represented as ⌫ 1 l 1 1 ,⌫ 2 l 2 2 are the effective dipole moment parameters for the band (⌫ 1 l 1 1 ) (⌫ 2 l 2 2 ) and R ⌦K( K,n r ) are symmetrized rotational operators.

(µ 0 z ) = X ⌫ 1 l 1 1 ⌫ 2 l 2 2 ⇣ [|⌫ 1 l 1 1 i ⌦ h⌫ 2 l 2 2 |] ( ⌦ r ) ⌦ R ⌦K( K,n r ) ⌘ Y ⌦K( K,n r ) ⌫ 1 l 1 1 ,⌫ 2 l 2 2 . ( 2 
To calculate the matrix elements R B A in Eq. (1.3.1), it is necessary to define the 

G

G G C 3v A 2 D 4d B 1 D 6h A 1u C 3h A 00 D 3h A 00 1 T d A 2 C 6h A u D 4h A 1u D v P D 2d B 1 D 5h A 00 1 D h P u D 3d A 1u
vibrational-rotational functions |Ai and |Bi. For molecules XY 4 (T d ), it is also logical to take symmetrized functions based on the tensorial formalism. Such vibrational-rotational functions can be written in the following form:

|Ai C s = |⌫l ; Jn r ; Csi = [|⌫l i ⌦ |Jn r i] C s , (2.7.9) 
where |Jn r i is the rotational symmetry function of r and C is the symmetry of the vibrationalrotational state function. Eqs. (2.7.8) and (2.7.9) will be used in the analysis of molecular spectra to calculate matrix elements

S ⌫ 2 l 2 2 ;J 2 n 2 r 2 ;C 2 S 2 ⌫ 1 l 1 1 ;J 1 n 1 r 1 ;C 1 s 1 = h⌫ 1 l 1 1 ; J 1 n 1 r 1 ; C 1 s 1 |(µ 0 z ) |⌫ 2 l 2 2 ; J 2 n 2 r 2 ; C 2 s 2 i, (2.7.10) 
which are necessary to determine the values of R B A in Eq. (1.3.1). It should also be noted that in Eq. (2.7.10) one can write

S ⌫ 2 l 2 2 ;J 2 n 2 r 2 ;C 2 s 2 ⌫ 1 l 1 1 ;J 1 n 1 r 1 ;C 1 s 1 = 0 @ C 1 C 2 s 1 s 2 1 A h⌫ 1 l 1 1 ; J 1 n 1 r 1 ; C 1 |(µ 0 z ) |⌫ 2 l 2 2 ; J 2 n 2 r 2 ; C 2 i. (2.7.11)
In this case, it can be shown that for various point groups from 

0 @ C 1 C 2 s 1 s 2 1 A = [C 1 ] 1/2 [C 1 ],[C 2 ] s 1 , s 2 (2.7.12) or 0 @ C 1 C 2 s 1 s 2 1 A = [C 1 ] 1/2 [C 1 ],[C 2 ] .
(2.7.13) Condition (2.7.12) is satisfied for non-zero values

C 1 C 2 s 1 s 2 .
This means that when condition (2.7.12) is satisfied, the nonzero values of S in (2.7.11) do not depend on the indices s 1 and s 1 and can be omitted. Using the irreducible tensor sets theory and taking into account relations (2.7.8) and (2.7.9), we can show that expression (2.7.10) is transformed to the form

S ⌫ 2 l 2 2 ;J 2 n 2 r 2 ;C 2 ⌫ 1 l 1 1 ;J 1 n 1 r 2 ;C 1 = X n 2 X S r 1 S r 2 1 2 r v X K K⌦ [C 1 ] [C 1 ],[C 2 ] 0 @ r v r v 1 A 0 @ C 1 r 1 1 s 1 s r 1 1 1 A ⇥ 0 @ C 2 r 2 2 s 2 s r 2 2 1 A 0 @ v 1 2 v 1 2 1 A 0 @ r r 1 r 2 r s r 1 s r 2 1 A C J 1 m 1 J 2 m 2 Km 3 ⇥ X m 1 m 2 m 3 (J 1 ) G m ⇤ 1 n 1 r 1 s r 1 ( K) G m 3 r r (J 2 ) G m 2 n 2 r 2 s r 2 2 4 (2J 1 + 1) 1/2 0 @ r r 1 r 2 r s r 1 s r 2 1 A 3 5 1 ⇥(J 1 ||R ⌦K( (K)) ||J 2 )Y ⌦K( K,n r ) ⌫ 1 l 1 1 ,⌫ 2 l 2 2 , (2.7.14) 
Here

v = ( ⌦ r ) and Y ⌦K( K,n r ) ⌫ 1 l 1 1 ,⌫ 2 l 2 2 are experimentally determined parameters of vibrational transitions ⌫ 1 l 1 1 ⌫ 2 l 2 2
which can be used to easily express the parameters in Eq. (1.3.5).

Consider the reduced matrix element in the general formula (2.7.14). If we take into account the Eq. (2.7.3), then it can be represented as

(J 1 ||R ⌦K( K) ||J 2 ) = ( 1) J 1 +J 2 + K (2 K + 1) X j 0 @ K 1 K J 2 J 1 j 1 A (J 1 ||R ⌦(K) ||j)(j|| (1) ||J 2 ).
(2.7.15)

Expressions for parameters can be found in [START_REF] Saveliev | Calculation of vibration-rotation line intensities of polyatomic molecules based on the formalism of irreducible tensorial sets[END_REF]. Relations (2.7. 

Experimental details of IR spectra of the GeH 4 molecule

The spectra of the 72 with the 72 Ge isotope by the centrifugal method at the production association "Electrochemical Plant" (Zelenogorsk, Russia). The enriched sample was repurified by the rectification method.

The spectra were recorded with a resolution of 0.003 cm 1 in the range 700-4400 cm 1 . The Norton-Beer apodization function (weak) was used in the experiment. A multi-pass White cell with a base length of 0.75 m was used for all measurements, which was permanently connected to a gas sample vacuum system, a turbomolecular pump, and capacitive pressure gauges in the range of 0.01-100 Torr. The optical section of the spectrometer was evacuated with a mechanical pump to 0.02 Torr, and this pressure remained constant during the entire experiment. As a result, seven spectra were recorded. The final spectra (see further in the text) were obtained by averaging 1000-1250 scans and calibrated against the most intense and well-resolved spectral lines of the CO 2 molecule (more than 50 lines) and H 2 O (more than 80 lines), the parameters of which were taken from the HITRAN database [START_REF] Gordon | The HITRAN 2016 molecular spectroscopic database / I[END_REF]. After calibration, the standard deviation between the measured and tabulated peak positions of the selected lines was estimated to be less than 1.8•10 4 cm 1 for I-V spectra and 3•10 4 cm 1 for spectra VI-VII. The details of the experiment performed are presented in Table 3.1.1.

The I 0 -VIII 0 spectra of monogermane GeH 4 were recorded in the spectral range 600-4800 cm 1 using a Bruker IFS125HR Fourier transform infrared spectrometer (Zürich prototype ZP2001 [START_REF] Albert | Handbook of high-resolution spectroscopy 2[END_REF]) at the IR laboratory of the Technical University of Braunschweig (Braunschweig, Germany). The GeH 4 gas sample was purchased from Linde AG with a claimed purity of 99.999%. Three cycles of freeze-pump-thaw confirmed the indicated purity of the gas sample.

Since germane is flammable, potentially pyrophoric/self-igniting, and highly toxic gas [START_REF] Urban | Bretherick's handbook of reactive chemical hazards[END_REF], precautions must be taken. Therefore, before being fed into the optical cuvette, a limited amount of gas was pre-filled in a 1000 ml cup flask in a fume hood. The closed system for filling the optical measuring cells was purged with nitrogen immediately after recording the spectra [START_REF] Ulenikov | Line strengths analysis of germane in the 1100-1350 cm 1 region: the ⌫ 1 ⌫ 4 , ⌫ 3 ⌫ 4 , ⌫ 3 ⌫ 2 and ⌫ 1 ⌫ 2 "hot[END_REF]. The spectrometer is equipped with a Globar radiation source and a potassium bromide (KBr) beam splitter with an optical resolution of 0.003 cm 1 and self-apodization (Boxcar). The I 0 spectrum was recorded using a stainless steel White cell with a base length of 1 m at an optical path length of (24.0524 ± 0.012) m, II 0 -VII 0 spectra -when using a single-beam stainless steel cell with an optical path length of 230.5 ± mm in combination with an MCT313 semiconductor detector; The VIII 0 spectrum was recorded with an aluminum optical cell at an optical path length of (13.28 ± 0.2) mm in combination with an MCT316 semiconductor detector. Final spectra (see further in the text) were obtained by averaging from 300 to 1400 scans (details in where P is the pressure in the GeH 4 sample, T is the temperature, L is the optical path length.

The value of A line is calculated as

A line = 1 log(e) Z log ✓ I(⌫ 0 ) I(⌫) ◆ d⌫. (3.1.2)
The Doppler broadening for 74 GeH 4 (the most common monogermane isotopologue) at 1750 cm 1 (band center) and room temperature is 0.0024 cm 1 , and the instrumental linewidth is 0.0020 cm 1 at an optical resolution of 0.003 cm 72 GeH 4 (orange) and 73 GeH 4 (black) enriched up to 99.9% (upper trace) in the region of 4020-4260 cm 1 (for the experimental conditions, see Table 1). The bottom traces present corresponding simulated spectra.

As mentioned in the previous chapter, the GeH 4 is a spherical top molecule whose symmetry is isomorphic to the point group T d . As a consequence, transitions are "allowed" only between vibrational states (⌫ ) and (⌫ 0 0 ) for which the relation [START_REF] Saveliev | Calculation of vibration-rotation line intensities of polyatomic molecules based on the formalism of irreducible tensorial sets[END_REF][START_REF] Loéte | Développement complet du moment dipolaire des molécules tétraédriques. Application aux bandes triplement dégénérées et à la diade ⌫ 2 и ⌫ 4 / M. Loéte[END_REF]]

⌦ 0 2 F 2 . (3.2.1)
Therefore, the ⌫ 1 + ⌫ 3 (F 2 ) band is "allowed" by symmetry, and the 2⌫ 1 (A 1 ) band is "forbidden" and appears in the spectrum only due to the strong Coriolis interaction with ⌫ 1 + ⌫ 3 (F 2 ). e Reproduced, for comparison, from [START_REF] Halonen | Stretching vibrational states in germane / Halonen L[END_REF].

Investigation of the fine structure of the spectra of 72 GeH 4 and 73 GeH 4 molecules in the region of the 2⌫ 1 (A 1 ) and ⌫ 1 + ⌫ 3 (F 2 ) was made using the SPHETOM (SPHerical TOp Molecules) software package [START_REF] Ulenikov | High resolution study of strongly interacting 2⌫ 1 (A 1 )/⌫ 1 + ⌫ 3 (F 2 ) bands of M GeH 4 (M = 76[END_REF]. For assignment of transitions, we used information about the vibrational-rotational structure of the 2⌫ 1 (A 1 ) and ⌫ 1 + ⌫ 3 (F 2 ) bands of isotopologues 74 GeH 4 and 76 GeH 4 from [START_REF] Ulenikov | High resolution study of strongly interacting 2⌫ 1 (A 1 )/⌫ 1 + ⌫ 3 (F 2 ) bands of M GeH 4 (M = 76[END_REF]. In this case, following the results and statements of the isotopic substitution theory, [START_REF] Bykov | On isotope effects in polyatomic molecules: Some comments on the method / A[END_REF], and knowledge of "homonymous" line positions of 74 GeH 4 and 76 GeH 4 , allowed us to predict without doubt and with high accuracy the corresponding line positions for the 72 GeH 4 and 73 GeH 4 isotopologues (J max = 7). The transitions assignment with higher quantum number values J was carried out simultaneously with fitting spectroscopic parameters of effective Hamiltonian (2.4.2). As a result, 2025 and 1774 transitions were determined with the maximum quantum number J max = 21 for the ⌫ 1 + ⌫ 3 (F 2 )/ 2⌫ 1 (A 1 ) bands for 72 GeH 4 and 73 GeH 4 isotopologues, respectively. The obtained data are a significant extension of the previously known information [35] about the spectroscopic properties of the 72 GeH 4 and 73 GeH 4 isotopologues (detailed statistical information see in Table 3.2.1). The list of assigned transitions was published in [START_REF] Ulenikov | First high-resolution analysis of the 2⌫ 1 (A 1 ) and ⌫ 1 +⌫ 3 (F 2 ) interacting states of 72 GeH 4 and 73 GeH[END_REF] (Supplementary Material A). It is necessary to mark that, because of the local mode behavior of the ⌫ 1 + ⌫ 3 (F 2 )/ 2⌫ 1 (A 1 ) bands, it is difficult to distinguish between lines of the ⌫ 1 + ⌫ 3 (F 2 ) and 2⌫ 1 (A 1 ) bands. For this reason, to distinguish between transitions of the same symmetry in a particular cluster, the numbers n = 1, 2, 3, ..., similar to the notation of the Dijon program XTDS [START_REF] Wenger | Highly-spherical top data system (HTDS) software for spectrum simulation of octahedral XY 6 molecules / C[END_REF], were used. In this case, an increase in the wave number corresponds to an increase in the number n.

Ro-vibrational analysis and parameters of the effective Hamiltonian

All 3799 experimental transitions discussed in the previous subchapter were used as input in the fitting procedure to determine the parameters of the effective Hamiltonian given by Eq.

(2.4.2). The values of the spectroscopic parameters of the 74 GeH 4 isotopologue were taken as initial values for both 73 GeH 4 and 72 GeH 4 . This approach is convenient since the mass of the M Ge nucleus remains virtually unchanged upon isotopic substitution. The parameter values obtained from the fitting procedure are presented in columns 4 and 5 of Table 3.2.2, along with their (1 ) statistical confidence intervals (values are given in parentheses). The parameters, that are presented without confidence intervals, were fixed by the values of the corresponding parameters of 74 GeH 4 / 76 GeH 4 isotopologues or estimated by interpolation/extrapolation of the corresponding values of other isotopologues and did not participate in the general fit. For the reader's convenience, in Table 3.2.2 we use the notation of parameters corresponding to the XTDS/Dijon software, [START_REF] Wenger | Highly-spherical top data system (HTDS) software for spectrum simulation of octahedral XY 6 molecules / C[END_REF]. For this reason1 , Table 3 11) R( 10) R( 9) R( 8) R( 7) R( 6) R( 5) R( 4 72 GeH 4 and 73 GeH 4 in the region of the P-branch ( Fig. 2 a) and (the R -branch ( Fig. 2 c); for the experimental conditions, see Table 1 . The traces 2b and 2d present corresponding simulated spectra. 3. Small portions (traces 3a and 3c) of the high-resolution experimental spectra I and III of 72 GeH 4 and 73 GeH 4 in the region of the P (4) and R (4) clusters of the 2 ν 1 ( A 1 )/ ν 1 + ν 3 (F 2 ) bands. For the experimental conditions, see Table 1 . The traces 3b and 3d present corresponding simulated spectra. 

m i = n i / N × 100% ( i = 1, 2 , 3) 
; n 1 , n 2 , and n 3 are the numbers of transitions for which the differences δ = E exp -E calc ( δ = ν expν calc ) satisfy the conditions δ ≤ 2 × 10 -4 cm -1 , 2 × 10 -4 cm -1 < δ ≤ 4 × 10 -4 cm -1 , and δ > 4 × 10 -4 cm -1 .

d Obtained from the fit in the present work. e Reproduced, for comparison, from Ref. [79] .

Description of the spectra and assignment of transitions

The upper part of Fig. 1 presents the survey spectra I (orange) and III (black) of 72 GeH 4 and 73 GeH 4 in the region of 4020-4260 cm -1 . One can see clearly pronounced all three branches of the 2 ν1 (A 1 ) /ν1 + ν3 (F 2 ) local mode bands and minor shifts of the lines belonging to the 73 , are determined as, [73] ),

R (K,n ) σ = m (K) G m n σ R (K) m , (3) 
where the rotational operators R (K) m are symmetrized in the SO(3) symmetry group and can be constructed in accordance with the recurrence relation, [66,73] :

R +1 (K+1) m = l= -1 , 0 , 1 C K+1 m K m -l, 1 l R (K) m -l R 1(1) l , (4) 
where C K+1 m K m -l, 1 l are known Clebsh-Gordan coefficients, Ref. Plots of dependence of some spectroscopic parameters of M GeH4 (in cm 1 ) on the mass M of the M Ge nucleus (experimental data are taken from this study and from [START_REF] Ulenikov | High resolution study of strongly interacting 2⌫ 1 (A 1 )/⌫ 1 + ⌫ 3 (F 2 ) bands of M GeH 4 (M = 76[END_REF]). 

(0020, F 2 ) 1(1, F 1 )
1 . 9 9 4 1 . 9 9 3 1 . 9 9 1 8 9 4 ( 1 9 ) 1 . 9 9 0 ( 4 2 ) (0020, F 2 ) (0020, F in particular, the experimental spectrum contains more lines than the corresponding simulated one. This is explained by the presence of numerous "hot" transitions from the lower vibrational states (0001, F 2 ) and (0100, E) to the vibrational states of the octad. Fig. 3.3.4 (b) shows a small fragment of the high-resolution experimental spectrum (VI).

At the first stage of the analysis, the transitions belonging to six "cold" bands were assigned:

⌫ 2 (E), ⌫ 4 (F 2 ), ⌫ 1 (A 1 )/⌫ 3 (F 2 ), ⌫ 2 +⌫ 4 (F 2 ) and ⌫ 2 +⌫ 4 (F 1 )
. For these six bands, there are determined 6761 transitions with the maximum value of the quantum number J max = 30 (detailed statistical information see in Table 3.3.1). This is considerably larger than in earlier studies, in particular, in the [START_REF] Boudon | Line positions and intensities for the ⌫ 3 band of 5 isotopologues of germane for planetary applications[END_REF][START_REF] Richard | Line positions and intensities for the ⌫ 2 /⌫ 4 bands of 5 isotopologues of germane near 11[END_REF], where the ⌫ 3 (F 2 ) band and only 897 transitions were found with the maximum value J max = 25 for 72 GeH 4 isotopologue. The correctness of our assignments was confirmed by the use of numerous combination differences. The resulting assignments are given in the Supplementary Materials I, II and III to the published work [START_REF] Ulenikov | First high-resolution comprehensive analysis of 72 GeH 4 spectra in the Dyad and Pentad regions[END_REF]. 

Band

Band center, cm At the second stage of the analysis, the transitions belonging to nine "hot" bands of the Dyad-Pentad were assigned: 2⌫

4 (A 1 ) ⌫ 4 , 2⌫ 4 (E) ⌫ 4 , 2⌫ 4 (F 2 ) ⌫ 4 , ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 2 , ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 2 , ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 4 , ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 , 2⌫ 2 (A 1 ) ⌫ 2 and 2⌫ 2 (E) ⌫ 2 .
For these nine bands, 2351 transitions were determined with a maximum quantum number J max = 30. A complete list of assigned transitions is also presented in the Supplementary Materials to the published work [START_REF] Ulenikov | First high-resolution comprehensive analysis of 72 GeH 4 spectra in the Dyad and Pentad regions[END_REF] (see also statistical information in Table 3 parentheses). The parameters given without parentheses were taken equal to the corresponding values of the 73 GeH 4 isotopologue parameters from [START_REF] Ulenikov | High-resolution FTIR spectroscopic study of 73 GeH 4 up to 2300 cm[END_REF]. The correctness of the obtained data is confirmed by the fact that 53 parameters reproduce 9112 initial experimental line positions with an accuracy of d rms = 2.44 ⇥ 10 4 cm 1 . The published work [START_REF] Ulenikov | First high-resolution comprehensive analysis of 72 GeH 4 spectra in the Dyad and Pentad regions[END_REF] presents the values of the differences = (⌫ exp ⌫ calc ) ⇥ 10 4 cm 1 between the experimental line positions and ones calculated with the parameters from Table 3 It is interesting to compare the shifts in the line positions and the change in various spectroscopic parameters upon passing from one german isotopologue to another. In accordance with the results and conclusions of the isotopic substitution theory [START_REF] Bykov | On isotope effects in polyatomic molecules: Some comments on the method / A[END_REF], the lower the

value M 0 M M 0
(where M and M 0 are atomic masses before and after isotope substitution, respectively), the more linearly these characteristics (line shifts and parameters) depend on the change in the masses of the substituted atoms. For the germane molecule, the value of M 0 M M 0 varies within 1 80 ÷ 1 20 . Consequently, the mentioned rule should be applied sufficiently high accuracy for a given molecule. To illustrate the validity of this rule, Fig. 

Yν 2 /ν 4 ν 4 1(1, F 1 ) 1(1, F 1 ) Yν 1 /ν 3 ν 3 ν 2 M M M M M M M M M cm -1 cm -1 cm -1 cm -1 cm -1 cm -1 cm -1 cm -1 cm -1 cm -1 M Yν 3 /ν 3 Bν 4 ν 1 Figure 3.3.6.
Plots of the dependence of some larger spectroscopic parameters (in cm 1 ) on the mass M of the isotopic species of germane (experimental data are taken from [START_REF] Ulenikov | High-resolution FTIR spectroscopic study of 73 GeH 4 up to 2300 cm[END_REF] and references cited there in). ).

(⌫, ) ). The assignment of the transitions of the 70 GeH 4 isotopologue spectrum was carried out simultaneously with fitting the parameters of both the excited vibrational states (0001, F 2 )/(0100, E) and the ground vibrational state (0000, A 1 ). In this case, the almost linear dependence of the shift of line positions of the different isotopologues with the change of mass of the Ge nuclei was taken into account. As a result of the analysis, 487 transitions with quantum number J max = 25 for the band ⌫ 4 and 92 transitions with quantum number J max = 14 for ⌫ 2 band were determined. The complete list of found transitions is presented in Supplementary Materials to the article [START_REF] Ulenikov | High resolution analysis of GeH 4 in the dyad region: Ro-vibration energy structure of 70 GeH 4 and line strengths of M GeH 4[END_REF]. The resulting transitions were used in the procedure for fitting the effective Hamiltonian parameters (2.4.2) both for the ground (0000, A 1 ) and excited (0001, F 2 )/(0100, E) vibrational states. The initial values of the parameters have been estimated from extrapolation of the values of corresponding parameters of the four other isotopologues from [START_REF] Ulenikov | First high-resolution comprehensive analysis of 72 GeH 4 spectra in the Dyad and Pentad regions[END_REF][START_REF] Ulenikov | High resolution study of M GeH 4 (M = 76, 74) in the dyad region[END_REF][START_REF] Ulenikov | High-resolution FTIR spectroscopic study of 73 GeH 4 up to 2300 cm[END_REF]. The analysis was carried out using both the specially developed SPHETOM (SPHerical TOp Molecules) [START_REF] Ulenikov | High resolution study of M GeH 4 (M = 76, 74) in the dyad region[END_REF] code and the Dijon XTDS [START_REF] Wenger | Highly-spherical top data system (HTDS) software for spectrum simulation of octahedral XY 6 molecules / C[END_REF] software package. Table 3.4.1

( ⌫ 0 , 0 ) ⌦(K, n ) Value (⌫, ) ( ⌫ 0 , 0 ) ⌦(K, n ) Value (0000, A ) (0000, A ) 2(0, 
(⌫, ) ( ⌫ 0 , 0 ) ⌦(K, n ) Value (⌫, ) ( ⌫ 0 , 0 ) ⌦(K, n ) Value (0101, F 2 ) 3(1, F 1 )10 4 -0.18456 (0002, F 2 ) (0002, F 2 ) 0(0, A 1 ) -1.244005(11) (0101, F 2 ) 3(3, F 1 )10 4 -0.14931 (0002, F 2 ) 1(1, F 1 ) -0.0327713(97) (0101, F 1 ) (0002, A 1 ) 1(1, F 1 ) 0.0654326 (0002, F 2 ) 2(0, A 1 )
presents the values of the spectroscopic parameters of the 70 GeH 4 molecule, obtained from the approximation of experimental data, as well as the values of their statistical confidence intervals (1 ), given in parentheses. The parameters in Table 3.4.1 are given in the usual XTDS notations for ease of information perception. Parameter values, which are presented without parentheses, were constrained to the estimated values of the corresponding parameters (see above). The good quality of the fitting procedure is confirmed by the data presented in Supple-mentary Materials I to the published work [START_REF] Ulenikov | High resolution analysis of GeH 4 in the dyad region: Ro-vibration energy structure of 70 GeH 4 and line strengths of M GeH 4[END_REF], where differences between experimental line positions and line positions calculated with the parameters from Table 3.4.1. As a result, the value of d rms = 2.08 ⇥ 10 4 cm 1 (for 579 initial experimental lines and 10 fitted parameters), which is comparable to the experimental uncertainty. Fig. 3.4.1 shows the dependences of the values of some basic spectroscopic parameters of (0001, F 2 ) and (0100, E) vibrational states, as well as some resonant interaction parameters, on the mass M of Ge nuclei. On all ten graphs, there is an almost linear dependence between the parameters on the value of M . This fact corresponds to the statements of the isotope substitution theory, which can be considered as a good confirmation of the correctness of the obtained results. 

(calc) S N ν (M) = const • µ 2 (15)
and

(calc) S N ν ( ˜ M ) = const • µ 2 ˜ M = const µ + ( ˜ M -M) 2 = const • µ 2 1 + 2( ˜ M -M) µ = (calc) S N ν (M) 1 + 2( ˜ M -M) µ , (16) 
showed, other species are practically absent in the studied sample):

P (sampl) = 76 M=70 , ... P M (part) , (19) 
it can be easily obtained

P (sampl) = P ˜ M (part) 76 M=70 , ... (prob) S N ν (M) (prob) S N ν ( ˜ M ) 1 + 2( ˜ M -M) µ , (20) 
or

P ˜ M (part) = P (sampl) 76 M=70 , ... (prob) S N ν (M) (prob) S N ν ( ˜ M ) 1 + 2( ˜ M -M) µ -1 . (21) 
One can see that the relation ( 23) contains two unknown val- Dependence of some spectroscopic parameter values (in cm 1 ) on the mass M of the isotopic species of germane (experimental data are taken from this study and from [START_REF] Ulenikov | First high-resolution comprehensive analysis of 72 GeH 4 spectra in the Dyad and Pentad regions[END_REF][START_REF] Ulenikov | High resolution study of M GeH 4 (M = 76, 74) in the dyad region[END_REF][START_REF] Ulenikov | High-resolution FTIR spectroscopic study of 73 GeH 4 up to 2300 cm[END_REF]. ).

(⌫, ) Reproduced from [START_REF] Ulenikov | High resolution study of M GeH 4 (M = 76, 74) in the dyad region[END_REF].

( ⌫ 0 , 0 ) ⌦(K, n ) 70 GeH 4 

Line strength analysis of the ⌫ 2 /⌫ 4 Dyad of the GeH 4 molecule

The experimental spectrum considered in Subchapter 3.1 (in Fig. 3.4.2) was also used for the line strengths analysis of all five germane isotopologues. The preliminary analysis shows that the abundances of isotopologues in the studied spectrum slightly differ from their natural abundances. This conclusion was made based on the well-known fact from the isotoposubstitution theory [START_REF] Bykov | On isotope effects in polyatomic molecules: Some comments on the method / A[END_REF] that for molecules with a small value of the ratio M 0 M M 0 ⌧ 1, any spectroscopic parameter changes almost linearly depending on the change in the mass of the substituted nuclei. In this case, the assumption about the natural content of isotopologues in the studied sample leads to a non-linear dependence. For this reason, as a first step in studying the line strengths, we performed an abundance analysis of various germane isotopologues in the sample.

Estimation of abundances of the M

GeH 4 (M = 70, 72, 73, 74,

76) isotopologues in the sample

To provide the isotopologues abundances estimation in a sample, we use the following relation [START_REF] Ulenikov | On the method of precise abundance determination of isotopologues in a gas mixture[END_REF]:

P (part) = (prob) S N ⌫ (calc) S N ⌫ P (sample) . (3.5.1)
In Eq. (3.5.1), P (sample) and P (part) denote the total pressure of the sample (gas mixture) and the partial pressure of an individual isotopologue, respectively. The value (prob) S N ⌫ is the line strength, which can be obtained from the experimental spectrum of the sample under study by fit of its shape with the individual line shape function (see below) under the assumption 100 % abundance of the considered isotopologues in the sample. The value (calc) S N ⌫ is also the line strength, which is calculated by Eq. (1.3.1).

An analysis of the right side of Eq. (1.3.1) for lines of the same branch for different GeH 4 isotopologues shows, with the exception of R B A , that they differ from each other by no more than 0.1% even in the worst case comparison of 70 GeH 4 and 76 GeH 4 isotopologues. In turn, the quantity R B A depends on the second-order effective dipole moment of the corresponding isotopologue. Let's take into account the above replacement of M nuclei by

M 0 ( M 0 M M 0 ⌧ 1)
nuclei. We can see that for two isotopologues with masses of Ge nuclei equal to M and M , the following relations hold:

(calc) S N ⌫ (M ) = const • µ 2 (3.5.2)
and

(calc) S N ⌫ ( M ) = const • µ 2 M = const h µ + ( M M ) i = const • µ 2  1 + 2( M M ) µ = (calc) S N ⌫ (M )  1 + 2( M M ) µ , (3.5.3) 
where µ is the effective dipole moment for the ⌫ 4 band of one of the M GeH 4 isotopologues (for example, 70 If we now substitute Eqs. (3.5.4) and (3.5.5) into Eq. (3.5.3), then it is easy to show that the following relations hold for different pairs of isotopologues:

P (part) M • (prob) S N ⌫ (M ) (calc) S N ⌫ (M ) = P (part) M • (prob) S N ⌫ ( M ) (calc) S N ⌫ ( M ) (3.5.4) 
or

P (part) M = P (part) M • (prob) S N ⌫ ( M ) (calc) S N ⌫ ( M )  1 + 2( M M ) µ . (3.5.5)
Taking into account that the total pressure of the sample is the sum of the partial pressures of all five isotopologues (as the analysis showed, there are practically no other compound impurities in the sample under study):

P (sample) = 76 X M =70,... P (part) M , (3.5.6) 
it can be easily shown that

P (sample) = P (part) M ( 76 X M =70,... (prob) S N ⌫ ( M ) (calc) S N ⌫ ( M )  1 + 2( M M ) µ ) (3.5.7) or P (sample) M = P (sample) ( 76 X M =70,... (prob) S N ⌫ ( M ) (calc) S N ⌫ ( M )  1 + 2( M M ) µ ) 1 . (3.5.8)
As can be seen, Eq. (3.5.8) contains two unknown quantities P (sample) M and µ . Substituting Equation Eq. (3.5.8) into (3.5.6), we obtain the following expression

1 = 76 X M =70,... ( 76 X M =70,... (prob) S N ⌫ ( M ) (calc) S N ⌫ ( M )  1 + 2( M M ) µ ) 1 . (3.5.9)
The only unknown value µ in Eq. (3.5.9) can be obtained from solving Eq. (3.5.7) since the ratios

(prob) S N ⌫ ( M ) (calc) S N ⌫ ( M )
are quantities known from analysis of experimental data. The mean values of these ratios are presented in column 3 of Table 3.5.1 along with their standard deviations d rms .

Both the mean values of these ratios and their root-mean-square deviations d rms were obtained from N pairs of "homonymous" isolated strength lines of the considered pairs of isotopologues (the number of such N pairs is given in column 4 of Table 3.5.1). The data from Table 3.5.1 was then used to calculate µ = 0.0039 ± 0.0009, which leads to the following abundances of individual isotopologues (in this case, the Eq. (3.5.9) used to estimate partial pressures): were obtained by fitting the shape of the measured lines from the spectrum (see also statistical information in Table 3.5.2). To fit the line shapes, we used the Hartmann-Tran profile [START_REF] Campargue | Efficient computation of some speed-dependent isolated line profiles[END_REF][START_REF] Hartmann | Velocity effects on the shape of pure H 2 O isolated lines: complementary tests of the partially correlated speed-dependent Keilson-Storer model[END_REF] and box-car apodization function [START_REF] Albert | Handbook of high-resolution spectroscopy 2[END_REF][START_REF] Davis | Fourier transform spectrometry[END_REF], which are well suited for describing isolated spectral lines [START_REF] Tennyson | Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC technical report)[END_REF]. The Hartmann-Tran profile function (1.4.4) is based on the binary collision model (see Subchapter 1.4 for details).

S N ⌫ (M ) (calc) S N ⌫ ( M ) . M M (prob) S N ⌫ (M ) (calc) S N ⌫ ( M ) N 70 
To illustrate the quality of the analysis, Fig. 

(P • L) (in cm 1 • atm 1 ) on the wave number ⌫ ⌧ (⌫) = S N ⌫ 0 • F HTP (⌫ ⌫ 0 ) • N • L, (3.5.10)
where L is the optical path length, F HTP is the Hartmann-Tran profile function, and

S ⌫ 0 = (S N ⌫ 0 )
• N is individual line strength, which is given by Eq. (1.3.1).

The line strengths obtained from the analysis of experimental data are presented in Ap- Isotop. Band Band center, cm b Here m i = n i /N t ⇥ 100% (i = 1, 2, 3); n 1 , n 2 and n 3 are the numbers of transitions for which the differences

1 J max N a t m b 1 m b 2 m b 1 d rms , %
| int i | satisfy the conditions | int i |  3.0 %, 3.0 % < | int i |  5.0 %, | int i | > 5.0 %. c
From the present study.

d From [START_REF] Ulenikov | First high-resolution comprehensive analysis of 72 GeH 4 spectra in the Dyad and Pentad regions[END_REF].

e From [START_REF] Ulenikov | High-resolution FTIR spectroscopic study of 73 GeH 4 up to 2300 cm[END_REF].

f From [START_REF] Ulenikov | High resolution study of M GeH 4 (M = 76, 74) in the dyad region[END_REF].

pendix II to the published work [START_REF] Ulenikov | High resolution analysis of GeH 4 in the dyad region: Ro-vibration energy structure of 70 GeH 4 and line strengths of M GeH 4[END_REF] along with their experimental errors, which are indicated in parentheses. Then these data were used as initial information to determine the effective dipole moment parameters (2.7.8) of the ⌫ 4 band for all five germane isotopologues. At the first stage, the 70 

1 n X i 100 ⇥ S N exp ⌫ i S N calc ⌫ i S N exp ⌫ i ! 2 9 = ; 1/2 ⌘ ( 1 n X i 2 i ) 1/2 , (3.5.11)
where n is the number of isolated line strengths used in the fitting procedure. The quality of the fitting is illustrated by the difference int i between the experimental and calculated line strength values using the parameters from column 3 of Table 3.5.3. The int i values for all measured line strengths are also presented in Appendix II to the published paper [START_REF] Ulenikov | High resolution analysis of GeH 4 in the dyad region: Ro-vibration energy structure of 70 GeH 4 and line strengths of M GeH 4[END_REF]. As an illustration, a small part of the obtained results is presented in Table 3.5.4.

At the second stage of the analysis, the 72 GeH 4 isotopologue was considered. As a result of the analysis, 270 experimental line strengths were measured (255 lines of the ⌫ 4 band and 15 lines of the ⌫ 2 band; J max = 18), which were used as initial information when fitting the effective dipole moment parameters. As a result, 4 parameters were determined, which are presented in the 4 column of Table 3.5.3 (d rms = 3.12 %). An analogous analysis was carried out for the 74 GeH 4 isotopologue (see Table 3.5.2 for statistical information). For the less abundant 73 

3.5.2).

The quality of the obtained results is also confirmed by Fig. -3 ). Finally, the line list of about 10 0,0 0 0 transitions (region 600-1190 cm -1 , minimum line strengths = 1 . 00 × E-26 cm -1 /(molec • cm -2 ), J max = 40) was generated, and the results are presented in the HITRAN format in Supplementary material III.

Conclusion

Fo r the first time we present a quantitative ro-vibrational anal- J n J n A preliminary calculation of the vibrational-rotational energy structure of doubly excited and combinational bands was performed, based on the parameters of the ground state and ⌫ 2 /⌫ 4 bands from [START_REF] Ulenikov | First high-resolution analysis of the 2⌫ 1 (A 1 ) and ⌫ 1 +⌫ 3 (F 2 ) interacting states of 72 GeH 4 and 73 GeH[END_REF]. As a result of the analysis, 3007 transitions were assined with J max = 22 for 74 GeH 4 , 2406 transitions with J max = 23 for 72 GeH 4 and 2316 transitions with J max = 21 for 70 GeH 4 (see detailed statistical information in Table 3.6.1). A complete list of assined transitions is presented in Appendix 1 to the published article [START_REF] Ulenikov | Comprehensive study of the pentad bending triad region of germane: Positions, strengths, widths and shifts of lines in the 2⌫ 2 , ⌫ 2 + ⌫ 4 and 2⌫ 4 bands of 70 GeH 4 , 72 GeH 4[END_REF]. 

J 0 n 0 0 ⌫ exp , cm 1 Int exp , cm 2 • atm 1 Int calc , cm 2 • atm 1 , % Int calc , cm 1 /(mol. • atm 1 ) M 6 1 E 5 
J 0 n 0 0 ⌫ exp , cm 1 Int exp , cm 2 • atm 1 Int calc , cm 2 • atm 1 , % Int calc , cm 1 /(mol. • atm 1 ) M 7 1 F 1 6 

Joint ro-vibrational analysis of the Pentad bending triad of five germane isotopologues

The information about 6873 obtained transitions (see Subchapter 3.6.1) was supplemented with the already known data on the triad of deformation bands in the pentad range, as well as for the "hot" bands of 72 GeH 4 , 73 GeH 4 , 74 GeH 4 and 76 GeH 4 from [START_REF] Ulenikov | First high-resolution comprehensive analysis of 72 GeH 4 spectra in the Dyad and Pentad regions[END_REF][START_REF] Ulenikov | High-resolution FTIR spectroscopic study of 73 GeH 4 up to 2300 cm[END_REF][START_REF] Ulenikov | First high resolution ro-vibrational study of the[END_REF] (see the statistical information in Table 3.6.1 for details). Then these data were used in the weighted fitting of the effective Hamiltonian parameters (2.4.2).

The following strategy was used to determine the Hamiltonian parameters. The values of all 16422 transitions (including "hot" transitions) obtained in this work (see Subchapter 3.6.1)

and taken from [START_REF] Ulenikov | First high-resolution comprehensive analysis of 72 GeH 4 spectra in the Dyad and Pentad regions[END_REF][START_REF] Ulenikov | High-resolution FTIR spectroscopic study of 73 GeH 4 up to 2300 cm[END_REF][START_REF] Ulenikov | First high resolution ro-vibrational study of the[END_REF] were used as initial experimental data in the fitting procedure.

High-order centrifugal distortion, tetrahedral splitting, and resonant interaction parameters, which were obtained from the large amount of experimental data in [START_REF] Ulenikov | First high-resolution comprehensive analysis of 72 GeH 4 spectra in the Dyad and Pentad regions[END_REF][START_REF] Ulenikov | High-resolution FTIR spectroscopic study of 73 GeH 4 up to 2300 cm[END_REF][START_REF] Ulenikov | First high resolution ro-vibrational study of the[END_REF] for 72 GeH 4 ,

73 GeH 4 and 76 GeH 4 , were constrained by the values of the corresponding parameters from [START_REF] Ulenikov | First high-resolution comprehensive analysis of 72 GeH 4 spectra in the Dyad and Pentad regions[END_REF][START_REF] Ulenikov | High-resolution FTIR spectroscopic study of 73 GeH 4 up to 2300 cm[END_REF][START_REF] Ulenikov | First high resolution ro-vibrational study of the[END_REF] for all five isotopologues and did not change during fitting. Such parameters are presented in Table 3.6.2 without confidence intervals. All other parameters were fitted according to the usual method using the SPHETOM software developed in Tomsk Polytechnic University.

For ease of perception of information, the data are given in the more familiar notation of the Dijon XTDS [START_REF] Wenger | Highly-spherical top data system (HTDS) software for spectrum simulation of octahedral XY 6 molecules / C[END_REF] software package. The values of all obtained parameters in the SPHETOM format were converted to the values of the corresponding parameters in the Dijon XTDS format (for the relationship between the SPHETOM and Dijon XTDS parameters, see, for example, [START_REF] Koshelev | High resolution study of strongly interacting ⌫ 1 (A 1 )/⌫ 3 (F 2 ) bands of M GeH 4 (M = 76[END_REF]). The final values of the parameters for the triad of bending bands 2⌫

2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 )
, and 2⌫ 4 (A 1 , E, F 2 ) are presented in Table 3.6.2 along with their statistical confidence intervals 1 , which are shown in parentheses. The parameters of the ground state and the dyad required for the calculation are presented in Table 3.4.1. From a comparison of the "homonymous" parameters for different isotopologues, one can conclude that the obtained results are physically suitable. In particular, for any fitted parameter, the condition is satisfied, namely, the parameter value as a function of the mass of Ge nuclei depends almost linearly on this mass value (one of the main conclusions of the isotope substitution theory for the XY 4type molecules). The correctness of the result is confirmed by the excellent reproduction of the initial experimental line positions of both "cold" and "hot" transitions over a set of 129 fitted parameters from Table 3.6.2. The total number of all found transitions is 16422 (both "cold" and "hot"). For the "cold" bands of 70 

Band

Band center, cm 

1 J max N a t N b l m c 1 m c 2 m c 1 Ref.

Band

Band center, cm for the vibrational states of the A 1 , A 2 , E, F 1 and F 2 symmetries, respectively [START_REF] Herzberg | Molecular spectra and molecular structure[END_REF]. The value of the partition function Q(T ) for the 74 Ge 4 isotopologue calculated using the formula from [START_REF] Fox | On the rotational partition function for tetrahedral molecules / K. Fox[END_REF] is Q(296, 75) = 1724.46. To calculate the partition function, the value of the ground state rotational parameter B gr = 2.695864734 cm 1 was taken from [START_REF] Ulenikov | High resolution analysis of GeH 4 in the dyad region: Ro-vibration energy structure of 70 GeH 4 and line strengths of M GeH 4[END_REF]. Analogously, partition functions were obtained for the four other germane species (see in Table 3 to 3.46%, 3.49%, 3.34% and 3.36%, respectively. Calculating values of the line strengths and the i difference between the experimental and calculated line strengths are also presented in Appendix 2 to the published work [START_REF] Ulenikov | Comprehensive study of the pentad bending triad region of germane: Positions, strengths, widths and shifts of lines in the 2⌫ 2 , ⌫ 2 + ⌫ 4 and 2⌫ 4 bands of 70 GeH 4 , 72 GeH 4[END_REF]. As confirmation of the correct results, see also Fig.

1 J max N a t N b l m c 1 m c 2 m c 1 Ref. 2⌫ 2 (E) ⌫ 2 (E) 17 
(0002, F 2 ) 2(2, F 2 )10
3.6.9, which shows the residuals for the line strengths as a function of the quantum number J, and the simulated spectra in Figs. 3.6.2-3.6.6. 

P p L / cm -1 atm -1 Wavenumber, v / cm -1 Wavenumber, v / cm -1 Wavenumber, v / cm -1 Wavenumber, v / cm
= self ⇥ P, (3.6.1)
where self is the self-broadening coefficient and

⌫ 0 = self ⇥ P, (3.6.2) 
where self is the line shift coefficient. The obtained values of the coefficients self (for 993 lines) and self (for 676 lines) are given in Supplementary Materials 2 to the published paper [START_REF] Ulenikov | Comprehensive study of the pentad bending triad region of germane: Positions, strengths, widths and shifts of lines in the 2⌫ 2 , ⌫ 2 + ⌫ 4 and 2⌫ 4 bands of 70 GeH 4 , 72 GeH 4[END_REF]. To illustrate the quality of the performed analysis, the upper part of Fig. 

f γ self = 0.07771(64) v 0 / cm -1 γ / cm -1 P p L / cm -1 atm -1 Wavenumber, v / cm -1 Wavenumber, v / cm -1 Wavenumber, v / cm -1 Wavenumber, v / cm

Band

Band center, cm N tr is the number of transitions. b Here m i = n i /N ⇥ 100% (i = 1, 2, 3); n 1 , n 2 and n 3 are the numbers of transitions for which the differences = ⌫ exp ⌫ calc satisfy the conditions  2 ⇥ 10 4 cm 1 , 2 ⇥10 4 cm 1 <  4 ⇥ 10 4 cm 1 and > 4 ⇥ 10 4 cm 1 . c These bands are considered as "dark" (see details in text).

to determine the parameters of the effective Hamiltonian (2.4.2). The obtained spectroscopic parameters from the fitting procedure are presented in Table 3.7.3, along with their 1 statistical confidence intervals. The parameter values, which are presented without confidence intervals, were taken equal to corresponding parameter values of the 76 GeH 4 isotopologue and were taken from [START_REF] Ulenikov | First high-resolution analysis of the 3⌫ 4 , ⌫ 2 + 2⌫ 4 and 2⌫ 2 + ⌫ 4 bands of 76 GeH[END_REF].

As a result of the analysis, 35 spectroscopic parameters were determined (see Table 3 the five F 2 symmetry bands). The relative values of these five main parameters of the effective dipole moment were estimated from specially measured 10 lines in the experimental spectrum, and were estimated to be in proportions of 6.0/0.9/(-1.1)/3.0/1.3 for the 3⌫

4 (1F 2 , 2F 2 )/⌫ 2 + 2⌫ 4 (F 2 )/2⌫ 2 + ⌫ 4 (1F 2 , 2F 2 ) bands.
To confirm the result's correctness, see Fig. vl ,v 0 l 0 0 of the (0300)/(0201)/(0102)/(0003) vibrational states of the 72 GeH 4 molecule (in cm 1 ).

(⌫, ) ( ⌫ 0 , 0 ) ⌦(K, n ) Y ⌦(K,n ) vl ,v 0 l 0 0 (⌫, ) ( ⌫ 0 , 0 ) ⌦(K, n ) Y ⌦(K,n ) vl ,v 0 l 0 0
(0300, E) (0300, E) 0(0,A 1 )10 2 -6,249 (0201,1F 2 ) (0003,1F 2 ) 1(1,F 1 )10 3 -9,143 (0300, A 1 ) (0300, A 1 ) 0(0,A 1 )10 1 -3,1675 (0201,1F 2 ) (0003,2F 2 ) 0(0,A 1 )10 2 -9,2794(63) (0300, A 2 ) (0300, A 2 ) 0(0,A 1 )10 (64) (0003, A 1 ) (0003, A 1 ) 0(0,A 1 )10 2 -5,1854(43) (0102, F 1 ) (0003, F 1 ) 0(0,A 1 )10 1 1,52185(47) (0003, A 1 ) (0003, F 1 ) 1(1,F 1 )10 3 -9,4548(42) (0003, F 1 ) 1(1,F 1 )10 3 1,817 (0003, F 1 ) (0003, F 1 ) 0(0,A 1 )10 The results presented in this chapter are published in [START_REF] Ulenikov | First high resolution study of the pentad bending bands of deuterated silane: Energy structure of the[END_REF][START_REF] Ulenikov | High-resolution study of the tetradecad stretching vibrational bands of M SiD 4[END_REF][START_REF] Kuznetsov | High-Resolution Spectra of the ⌫ 2 + ⌫ 4 (F 1 , F 2 ) and 2⌫ 2 (F 2 ) Bands of Deuterated Silane 28 SiD 4 / A[END_REF] and have been reported at "The 27 th Colloquium on High-Resolution Molecular Spectroscopy" (2019).

(0102, F 2 ) 1(1,F 1 )10 3 -9,569 (0201,2F 2 ) 1(1,F 1 )10 3 -1,4003 (0102, F 2 ) 2(2,F 2 )10 5 4,798 (0201,1F 2 ) (0102, F 1 ) 1(1,F 1 )10 3 -5,7282 (0102, A 1 ) (0102, A 1 ) 0(0,A 1 )10 2 -5,3854 (0201,1F 2 ) (0102, F 2 ) 0(0,A 1 )10 2 2,2661(17) (0102, A 1 ) (0102, F 1 ) 1(1,F 1 )10 2 1,0346 (0102, F 2 ) 1(1,F 1 )10 3 -2,5781 (0102, A 2 ) (0102, A 2 ) 0(0,A 1 )10 2 -4,6393 (0201, F 1 ) (0102,1E) 1(1,F 1 )10 3 2,444 (0102, A 2 ) (0102,2E) 2(2,E )10 5 -5,693 (0201, F 1 ) (0102, F 1 ) 0(0,A 1 )10 1 -1,17198(29) (0102, A 2 ) (0102, F 2 ) 1(1,F 1 )10 3 -2,4403(29) (0201, F 1 ) (0102, F 2 ) 1(1,F 1 )10
) (0102, F 2 ) 1(1,F 1 )10 2 -1,41120(47) (0102, F 2 ) (0003,2F 2 ) 2(0,A 1 )10 4 -1,174 (0102, F 2 ) 2(2,E) 10 5 -6,705 (0003,1F 2 ) (0003,1F 2 ) 0(0,A 1 )10 1 -2,367679 (0102, F 2 ) (0102, F 2 ) 0(0,A 1 )10 2 -3,9715(22) (0003,1F 2 ) 1(1,F 1 )10 3 6,8382(26) (0102, F 2 ) 2(0,A 1 )10 5 -1,597 (0003,1F 2 ) 2(0,A 1 )10 5 -2,704 (0102,1E) (0003,1F 2 ) 2(2,F 2 )10 5 4,619 (0003,1F 2 ) 2(2,E)10 4 -1,0838 (0102,1E) (0003,2F 2 ) 1(1,F 1 )10 3 -8,104 (0003,1F 2 ) 2(2,F 2 )10 5 5,433 (0102, A 1 ) (0003, F 1 ) 1(1,F 1 )10 3 -6,853 (0003,1F 2 ) (0003, A 1 ) 2(2,F 2 )10 4 -1,8230(13) (0102, A 1 ) (0003,2F 2 ) 2(2,F 2 )10 4 2,6442 (0003,1F 2 ) (0003, F 1 ) 1(1,F 1 )10 3 9,5073(39) (0102, A 2 ) (0003,1F 2 ) 1(1,F 1 )10 2 1,4413 (0003, F 1 ) 2(2,E)10 4 -1,9745 (0102, A 2 ) (0003, F 1 ) 2(2,F 2 )10 5 -5,936 (0003,1F 2 ) (0003,2F 2 ) 0(0,A 1 )10 2 -8,8536(15) (0102,2E) (0003,1F 2 ) 1(1,F 1 )10 3 8,499 (0003,2F 2 ) 2(0,A 1 )10 4 -2,2784 (0102,2E) (0003,2F 2 ) 1(1,F 1 )10 3 -2,315 (0003,2F 2 ) 2(2,E)10 4 -3,7255 (0102, F 1 ) (0003, A 1 ) 1(1,F 1 )10 3 -9,6148

Experimental details of IR spectra of the SiD 4 molecule

The spectra I and II of monosilane SiD 4 were recorded in the spectral ranges 1060-2050 cm 1 using a Bruker IFS125HR infrared Fourier spectrometer (prototype Zürich ZP2001 [START_REF] Albert | Handbook of high-resolution spectroscopy 2[END_REF]) and V and VI at 2500-3700 cm 1 using a Bruker IFS120HR infrared Fourier spectrometer at the IR laboratory of the Technical University of Braunschweig (Braunschweig, Germany). A stainless-steel multi-path White cell with a base length of 1 m and a maximum pathlength of up to 48 m was coupled to the spectrometer from which the 4 m and 24 m options have been used (see Table 4.1.1). The SiD 4 gas sample was purchased from Linde AG with a chemical purity of better than 99.999%. Monosilane is quite toxic and auto-ignites at room temperature, thus, enhanced precaution is absolutely needed for sample handling.

A cadmium telluride-mercury semiconductor detector with an IR filter (MCT313) and a potassium bromide (KBr) beam splitter were used to record spectra I and II; for spectra III and IV -an indium antimonide detector (InSb) and a calcium fluoride beam splitter (CaF 2 ). In addition, both spectrometers were equipped with a Globar IR source (also see Table 4.1.1 for spectrum registration details). The nominal optical resolution for I and II spectra ranged from 0.0016 to 0.0021 cm 1 , resulting in an instrumental linewidth from 0.00109 to 0.00143 cm 1 in combined with self-apodization (Boxcar coefficient is 0.68). In the case of recording spectra III and IV, the nominal instrumental resolution is 0.003 cm 1 with an instrumental linewidth of 0.0024 cm 1 in combination with weak Norton-Beer apodization (apodization coefficient is 0.81).

The Doppler broadening for 28 SiD 4 in the spectra I and II at a temperature of 297.15

K is in the range from 0.0013 to 0.0033 cm 1 . The line broadening at the pressures used to analyze the position of the lines ranged from 0.000002 to 0.0008 cm 1 , which only slightly affects the total line width, and fell in the range from 0.0017 to 0.0037 cm 1 . The Doppler broadening for SiD 4 in spectra III and IV at a temperature of 297 K and 3140 cm 1 (center of the ⌫ 3 band) prevails over the total linewidth and is 0.0069 cm 1 . The total linewidths can be approximated as the root sum square of the Doppler convolution, pressure, and instrumental linewidth and agree with the experimental results. The temperature was monitored with a PT100 resistance thermometer (Ahlborn Almemo 2590). Pressure monitoring was carried out with a Pfeiffer CMR thermocompensating capacitive sensor based on ceramic technology in the pressure range up to 10 hPa (in a cascade with additional sensors for 100 and 1000 hPa).

These sensors are independent of the type of gas and are resistant to aggressive gaseous media.

For optimization of data recording and line calibration with H 2 O and CO 2 lines, we used the HITRAN data base [START_REF] Gordon | The HITRAN 2016 molecular spectroscopic database / I[END_REF]. 

(A 1 ), 2⌫ 2 (E), ⌫ 2 + ⌫ 4 (F 1 ), 2⌫ 4 (A 1
) and 2⌫ 4 (E) bands). Due to the presence of strong resonant interactions, even the structure of the "allowed" bands ⌫ 2 + ⌫ 4 (F 2 ) and 2⌫ 4 (F 2 ) looks far from the regular J-cluster structure, which is typical for this type of bands.

The assignment of transitions was made with the use of the Dijon XTDS software package.

In this case, necessary for analysis, parameters of the ground vibrational state and the (0100, E) and (0001, F 2 ) vibrational states have been taken from [82] (for the convenience of the reader, they are reproduced in Experimental conditions see in Table 4.1.1. The bottom trace presents the simulated spectrum for illustration (see text for details). (0000, A 1 ) (0000, A 1 ) 2(0, A 1 ) 1 . 4 3 5 0 2 3 5 0 7 1 . 4 3 5 0 3 6 0 5 1 1 . 4 3 5 0 4 8 7 0 5 (0000, A 1 ) 4(0, A 1 ) 10 

⌫ 2 + ⌫ 4 (F 1 ) ⌫ 2 (E) 1 3 9 
⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 (F 2 ) 2 2 1 5 ⌫ 2 + ⌫ 4 (F 1 ) 1 
⌫ 2 + ⌫ 4 (F 2 ) ⌫ 2 (E) 1 8 1 4 ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 4 (F 2 ) 1 8 8 
⌫ 2 + ⌫ 4 (F 2 ) 1 3 6 1 .
⌫ 2 + ⌫ 4 (F 1 ) ⌫ 2 (E) 1 2 4 
⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 (F 2 ) 1 9 7
Band Energy a , cm 1 J max N b tr N c l m d 1 m d 2 m d 3 ⌫ 2 + ⌫ 4 (F 1 ) 1 3 6 2 .
⌫ 2 + ⌫ 4 (F 2 ) ⌫ 2 (E) 1 5 1 0 ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 4 (F 2 ) 1 6 5 
⌫ 2 + ⌫ 4 (F 2 )
1 3 6 0 . 2 8 5 1 2 0 5 7 6 9 3 1 . 9 1 6 . 7 5 1 . 4 f For "hot" bands. 

⌫ 4 (A 1 ) ⌫ 4 (F 2 ) 1 3 
-⌫ 2 + ⌫ 4 (F 2 ), ⌫ 2 + ⌫ 4 (F 1 ), 2⌫ 4 (F 2 ), 2⌫ 4 (E), 2⌫ 4 (A 1 ), 2⌫ 2 (A 1
) and 2⌫ 2 (E) 28 SiD 4 molecules.

Then the obtained transition were used in a weighted fit procedure with an effective Hamiltonian (in this case, the Dijon XTDS software package was also used for analysis). As a result, 2 )

Transmittance (a.u.)

Wavenumber, ν/cm -1 d rms = 3.12 ⇥ 10 4 cm 1 , which is close to the experimental uncertainties. This result confirms the excellent quality of the performed analysis. For greater clarity, the Supplementary Material to the published work [START_REF] Ulenikov | First high resolution study of the pentad bending bands of deuterated silane: Energy structure of the[END_REF] presents the values (in units 10 4 cm 1 ) of the difference between the experimental and calculated values. One can see a good agreement between the calculated and experimental data. As an additional illustration of the correctness of the obtained results, 2 )

R(18,3F

2 )

R(13,2F

2 ) R(13,3F

1 )

R(13,1A 1 ) R(13,2F 1 ) R(13,1E) R(20,3F 2 ) R(20,3F 1 ) R(25,6F 1 ) R(20,1A
2 ) R(25,6F

2 )

R(18,3F 1 ) R(18,3E) R(18,4F 2 ) R(20,2A 1 ) R(20,4F 1 ) R(20,3E) Transmittance (a.u.) Wavenumber, ν/cm -1 R( 20,4F
2 ) The Doppler line profile was used in the construction of the synthetic spectrum.

Some "hot" vibrational bands of the Dyad/Pentad were also analyzed. In this case, recorded spectrum in the region of 600-760 cm 1 , which was discussed in [82], was used. A total of 5545 "hot" transitions were analyzed and published in Supplementary Materials II to [START_REF] Ulenikov | First high resolution study of the pentad bending bands of deuterated silane: Energy structure of the[END_REF] (also see statistical information in Table 4. 

X A µ ! 2 ↵ ⌫ = ↵ ⌫ µ ! 02 ⌫ . (4.1.1)
The coefficients ↵ ⌫ /↵ ⌫ µ are solutions of the system of Eq. (4.1.1) and the following relationship:

X ⇣ ↵ ⇣ ↵ ⇣ µ = A µ . (4.1.2)
2. The coefficients A µ are determined from the following relations

A µ = µ X N (m 0 N m N ) m 0 N l N l N µ , (4.1.3) 
where m N and m 0 N are the nuclei masses before and after isotopic substitution, l N /l N µ are the vibrational mode constants (see, for example, [START_REF] Moret-Bailly | Sur les symétries des fonctions propres et les règles de selection dans les molécules "toupies symétrique"; application aux molécules "toupies sphériques[END_REF] for the XY 4 molecules).

3. The third relation can be written as

l 0 N = X µ K e ✓ m n m 0 n ◆ 1/2 l N µ (↵ 1 ) µ , (4.1.4) 
where (↵ 1 ) µ is the matrix element of the inverse of the matrix ↵ µ . Eqs. 2), then it is easy to show that the relations

A ⇡ ✓ ! 0 ! ◆ ⇡ 1 2 (4.1.5)
are valid for all four harmonic frequencies (nine diagonal coefficients A ).

There are two additional important consequences that follow from the general theory of isotopic substitution and should be valid for the substitution SiH 4 ! SiD 4 :

k 0 ...µ ⇡ (A ...A µ ) 1/4 k ...µ , (4.1.6) 
where k ...µ and k 0 ...µ are the anharmonic parameters of the intramolecular potential functions of the "mother" molecule (in our case, SiH 4 ) and isotopically substituted modifications (in our case, SiD 4 ); the corresponding potential functions have the form

hcV = 1 2 X ! q 2 + X µ⌫ k µ⌫ q q µ q ⌫ + X µ⌫⇣ k µ⌫⇣ q q µ q ⌫ q ⇣ , (4.1.7) 
and analogously

hcV 0 = 1 2 X ! 0 q 0 2 + X µ⌫ k 0 µ⌫ q 0 q 0 µ q 0 ⌫ + X µ⌫⇣ k 0 µ⌫⇣ q 0 q 0 µ q 0 ⌫ q 0 ⇣ , (4.1.8) 
where q , q 0 are the dimensionless normal coordinates of the "mother" and isotopically substituted modifications, respectively. As a consequence, if we take into account the well-known formulas from [START_REF] Hecht | The vibration-rotation energy of tetrahedral XY 4 molecules / K.T. Hecht[END_REF] for various vibrational spectroscopic parameters, it can be shown that the following relations hold:

✓ x 0 22 x 22 ◆ ⇡ ✓ x 0 24 x 24 ◆ ⇡ ✓ x 0 44 x 44 ◆ ⇡ ✓ G 0 22 G 22 ◆ ⇡ ✓ G 0 44 G 44 ◆ ⇡ ✓ T 0 24 T 24 ◆ ⇡ ✓ T 0 44 T 44 ◆ ⇡ 1 2 . ( 4.1.9) 
Let us now take into account the known experimental values of the band centers of the Dyad and Pentad of the 28 SiH 4 [83,[START_REF] Ulenikov | High resolution study of M SiD 4 (M = 28, 29, 30) in the dyad region: analysis of line positions, intensities and half[END_REF] molecule, and the general results of [START_REF] Hecht | The vibration-rotation energy of tetrahedral XY 4 molecules / K.T. Hecht[END_REF]. It is easy to estimate the experimental values of all seven parameters presented in Eq. (4.1.9) for 28 SiH 4 .

The result of the assessment is presented in Table 4.1.5, where the third column contains the values of the corresponding parameters of the 28 SiH 4 molecule, obtained using isotopic relations (4.1.9). In turn, the use of the parameters from column 3 and the experimentally obtained band centers ⌫ 2 = 689.87321 cm 1 and ⌫ 4 = 674.53135 cm 1 (see [82] and references to it) makes it possible to predict the values of vibrational energies in the range of the Pentad of the 28 SiD 4 molecule.

The result of such a prediction is presented in Table 4. 1.6, where the third column shows the values of the corresponding vibrational energies obtained from the analysis of experimental data. One can see a good correlation between both sets of values in columns 2 and 3. This can be considered a strong argument for the usability of the discussed approach for correctly predicting both the SiD 4 and SiH 4 vibrational energies in the shorter wavelength region. 

⇥ 10 4 cm 1 .
To confirm the correctness of the obtained results, Supplementary Material I to the published work [START_REF] Ulenikov | High-resolution study of the tetradecad stretching vibrational bands of M SiD 4[END_REF] presents the differences (in 10 4 cm 1 ) between the experimental and calculated values, where a good agreement is seen. Also, by way of correctness illustration, By analogy with the 28 SiD 4 isotopologue, 171 and 99 "hot" transitions were found for As can be seen from the overview spectra in Fig. The local mode model [181][START_REF] Child | Overtone frequencies and intensities in the local mode picture[END_REF][START_REF] Mills | On the relationship of normal modes to local modes in molecular vibrations / I.M. Mills[END_REF] Considering that the values of these parameters are very small compared to the values of fundamental band centers (harmonic frequencies), [84,91], we can assume that the relations from [START_REF] Mills | On the relationship of normal modes to local modes in molecular vibrations / I.M. Mills[END_REF] are valid for the x 11 , x 13 , x 33 , G 33 , T 33 , F 1133 parameters of SiH 4 molecule.

For harmonic frequencies ! 1 and ! 3 we will use the following relations:

! 1 = ! (4.2.1)
and b From [START_REF] Permogorov | The local mode model in silane and germane / D. Permogorov, A. Campargue[END_REF].

! 3 = ! + . ( 4 
c This work.

d From [53].

e From [82].

At the second stage of this study, we estimated the values of the centers of the

⌫ 1 +⌫ 3 (F 2 ), 2⌫ 3 (F 2 ), 2⌫ 3 (E), 2⌫ 1 (A 1
) and 2⌫ 3 (A 1 ) bands based on results isotope substitution theory.

To realize this, the following analysis was carried out:

1. The center value of the ⌫ 1 + ⌫ 3 (F 2 ) band is 3138.4074 cm 1 and was obtained from the analysis of experimental data.

2. Following the isotopic substitution theory, it is easy to show that the relations xij ' J max = 27 (see Table 4.2.2 for details). Unfortunately, we were not able to assign transitions to the 2⌫ 1 (A 1 ) and 2⌫ 3 (A 1 ) bands, probably because of their weakness. A complete list of the found transitions along with the transmission coefficients of the lines is published in the article [START_REF] Ulenikov | High-resolution study of the tetradecad stretching vibrational bands of M SiD 4[END_REF]. A complete list of the found transitions along with the transmission coefficients of the lines is published in the article [START_REF] Ulenikov | High-resolution study of the tetradecad stretching vibrational bands of M SiD 4[END_REF] (in Supplementary Materials), and a small fragment is given in Table 4.2.3 for illustration. All the information obtained from the analysis of the experimental data was used in a weighted approximation of the effective Hamiltonian parameters. The parameters obtained from the approximation procedure are shown in Table 4.2.4

x ij /2(i, j = 1, 3), G33 ' G 33 /2,
along with the values of their 1 statistical confidence intervals, which are presented in parentheses. Parameter values that are presented without parentheses were constrained to estimated values (see above). The excellent quality of the approximation can be seen in column 5 of the Supplementary Material to the published work [START_REF] Kuznetsov | Rotational-vibrational high-resolution spectrum of 72 GeH 4 molecule in the 3⌫ 4 , ⌫ 2 + 3⌫ 4 and 2⌫ 2 + ⌫[END_REF], which shows the differences between the experimental and calculated line positions with the parameters from Table 4.2.4. 

Band

Center, cm (abundance of 3.09 %) are much weaker compared to transitions belonging to the main isotopologue 28 SiD 4 . For this reason, we were able to assign transitions that belong only to the strongest ⌫ 1 + ⌫ 3 band for these two isotopologues. A total of 199 transitions were assighned with the maximum quantum number J max = 29 and 169 transitions with J max = 26 for ⌫ 1 + ⌫ 3 band for 29 SiD 4 and 30 SiD 4 , respectively (see Table 4.2.2 for details). A complete list of found transitions along with line transmittances is also published in the article [START_REF] Ulenikov | High-resolution study of the tetradecad stretching vibrational bands of M SiD 4[END_REF] (in Supplementary Materials). The parameters of both isotopologues were fitted together with the assignment of transitions, and the initial values of all spectroscopic parameters were taken equal to the values of the corresponding parameters of the main isotopologue 28 (0000, A 1 ) a (0000, A 1 ) 2(0, A 1 ) 1 . 4 3 5 0 2 3 5 0 7 1 . 4 3 5 0 3 6 0 5 1 1 . 4 3 5 0 4 8 7 0 5 (0000, A 1 ) 4(0, A 1 ) 10 

1 J max N a t N b p m c 1 m c 2 m c 1 28 SiD 4 ⌫ 1 + ⌫ 3 (F 2 )

Conclusion

Within the framework of this thesis, new knowledge about the high-resolution infrared spectra of the GeH 4 and SiD 4 molecules has been obtained. The main results can be formulated as follows:

1. A model for analyzing the vibrational-rotational structure of the spectra of XY 4 molecules is developed, taking into account various types of resonant interactions in molecules of the spherical top type. molecules, in particular, the refinement of the effective dipole moment parameters for vibrations of different symmetry, the study of the possible dependence of the half-width not only on pressure, but also on other variables (such as rotational quantum numbers).

(E), ⌫ 4 (F 2 ), ⌫ 1 (A 1 ), ⌫ 3 (F 2 ), ⌫ 1 + ⌫ 3 (F 1 ), ⌫ 1 + ⌫ 3 (F 2 ), 2⌫ 2 (A 1 ), 2⌫ 2 (E), 2⌫ 4 (A 1 ), 2⌫

More accurate calculation of the intramolecular potential function of germane and silane molecules.

Title: Theoretical study of spectra of spherical top type molecules based on the formalism of irreducible tensorial sets. Abstract: The first part of the thesis is devoted to studying the vibrational-rotational structure of the spectra of the molecule M GeH 4 (M = 70, 72, 73, 74, 76). As a result, a wide spectral range of the Dyad, Pentad, Tetradecad, and Octad was studied for the first time. More than 20000 transitions have been analyzed, corresponding to about 8500 vibrational-rotational energies for these 28 vibrational states. The spectroscopic parameters of the Hamiltonian are determined for 28 states. For the first time, the spectral line shapes have been studied for all germane isotopologues. Based on the line-shape approximation of the experimental lines by the Hartmann-Tran profile, the line strengths of more than 2700 lines of 5 vibrational bands were determined. The self self-broadening coefficients and self line shifts are obtained for 2 fundamental bands. The second part of the thesis is devoted to the study of the vibrational-rotational structure of the spectra of the molecule M SiD 4 (M = 28, 29, 30). A special analysis of the estimation of the band centers for silane was carried out. Preliminary estimates of the spectroscopic parameters in the short-wavelength regions, which are more difficult to analyze, make it possible to correctly predict vibrational energies for SiH 4 and SiD 4 molecules. The ranges of the Dyad and Pentad, including 10 vibrational bands, were studied. More than 14000 transitions have been analyzed, corresponding to about 5000 vibrational-rotational energies for 10 vibrational states. As a result, sets of spectroscopic parameters for 10 states, were determined, and reproduce experimental data with an accuracy close to the experimental uncertainty. Key words: spherical top type molecules, ITO formalism, GeH 4 , SiD 4 , spectroscopic parameters, line shape analysis. Titre: Etude théorique de spectres de molécules toupies sphériques à l'aide du formalisme d'ensembles tensoriels irréductibles. Résumé: La première partie de la thèse est consacrée à l'étude de la structure vibro-rotationnelles des spectres de la molécule M GeH 4 (M = 70, 72, 73, 74, 76). En conséquence, une large gamme spectrale de Dyad, Pentad, Tetradecad et Octad a été étudiée pour la première fois. Plus de 20000 transitions ont été analysées, correspondant à environ 8500 énergies vibrorotationnelles pour 28 états vibrationnels. Les paramètres spectroscopiques sont déterminés pour ces 28 états vibrationnels. Pour la première fois, les formes de lignes spectral ont été étudiées pour les isotopologues pertinents de germanes. Sur la base de l'approximation de la forme des lignes expérimentales par le profil Hartmann-Tran, les intensités de plus de 2700 raies de 5 bandes vibrationnelles ont été déterminées. Les coefficients d'auto-élargissement self et les line shifts self sont obtenus pour 2 bandes fondamentales. La deuxième partie de la thèse est consacrée à l'étude de la structure vibro-rotationnelle des spectres de la molécule de silane M SiD 4 (M = 28, 29, 30). Une analyse spéciale de l'estimation des centres de bande pour le silane a été effectuée. Des estimations préliminaires des paramètres spectroscopiques dans l'étude des spectres d'absorption dans les régions de courtes longueurs d'onde, plus difficiles à analyser, permettent de prédire correctement les énergies vibrationnelles des molécules SiH 4 et SiD 4 . Les gammes de la Dyad et de la Pentad, comprenant 10 bandes vibratoires, ont été étudiées. Plus de 14000 transitions ont été analysées, correspondant à environ 5000 énergies pour 10 états vibrationnels. Des ensembles de paramètres spectroscopiques pour 10 états ont été déterminés et reproduisent les données expérimentales avec une précision proche de l'incertitude expérimentale. Mots clés: molécules toupies sphériques, formalisme OTI, GeH 4 , SiD 4 , paramètres spectroscopiques, forme de raies. Личный вклад автора при получении результатов настоящей работы:

-Cовместно с научными руководителями, профессором О.В. Громовой и профессором К. Леруа была проведена постановка целей и задач.

-Работа связанная с модифицированием алгоритма анализа колебате-льно-вращательной структуры спектров молекул XY 4 была проведена совместно с профессором О.Н.

Улениковым и профессором Е.С. Бехтеревой.

-Анализ спектров и получение информации о параметрах спектральных линий, а также обсуждение результатов, проводилась совместно с О.В. Громовой, В. Будоном, О.Н. Улениковым, К. Леруа и Н.И. Николаевой (Распоповой).

-Экспериментальная часть исследований была выполнена в Техническом университете Брауншвайга (Брауншвайг, Германия) и в Институте химии высокочистых веществ (Нижний Новгород, Россия).

-Автором самостоятельно сформулированы защищаемые научные положения, сделаны выводы и даны рекомендации по результатам исследования.

Работа выполнялась при финансовой поддержке:

- -Заключения, где сформулированы основные выводы по диссертационной работе и предложено дальнейшее развитие исследований.

-33 таблиц, 45 рисунков, списка использованной литературы из 154 наименований и 1 приложения.

Апробация работы

Результаты данного исследования были представлены на следующих российских и международных научных семинарах, коллоквиумах и конференциях: Суть перехода к гамильтониану в новых координатах заключается в следующем.

1. Международный семинар
H = ~2 2m e X i i ~2 2 X n 1 m n n + X i,j i>j e 2 r ij + X n,n 0 n>n 0 z n z n 0 r nn 0 X i,n ez n r in , ( 1 
Гамильтониан молекулы зависит от системы обобщенных координат x n и их производных @/@x n , и его можно преобразовать к системе новых обобщённых координат q m , используя следующие выражения:

x n = f n (q m ), @/@x n = (q m , @/@q l ).

( 

x n↵ = R ↵ + X  ↵ rn , (1.1.3) x i↵ = R ↵ + X  ↵ ri , ( 1 
rn = r(0) n + X ⇣ m 1/2 n l n ⇣ Q ⇣ , (1.1.6) где r(0) n и l n ⇣ -произвольные константы, Q ⇣ -колебательные координаты. Далее необхо- димо выбрать константы r(0)
n и l n ⇣ таким образом, чтобы выполнялись следующие четыре условия:

1. rn и r(0) n совпадают, когда ядра находятся в положениях равновесия.

2. Оси молекулярной системы координат и главные оси инерции молекулы совпадают, когда ядра находятся в положениях равновесия.

3. Колебания являются нормальными [52,53], т.е. в операторе, описывающем систему

гармонических осцилляторов P ⇣,µ ↵ ⇣µ ⇣ ih @ @Q ⇣ ⌘ ⇥ ⇣ ih @ @Qµ ⌘ + P ⇣,µ ⇣µ Q ⇣ Q µ выполня- ется условие ↵ ⇣µ = ⇣µ = 0 при ⇣ 6 = µ.
4. Выполняются условия Эккарта [52]. Учитывая независимость колебательных координат Q, эти условия выглядят следующим образом: 

X n, , ✏ ↵ m 1/2 n r(0) n l n ⇣ = 0, (1.1.7) X n,↵ l n↵⇣ l n↵µ = µ , (1.1.8) ✓ @ 2 V @Q ⇣ @Q µ ◆ Q=0 = 0, ⇣ 6 = µ, (1.1.9) X n m n r(0) n↵ r(0) n = 0, ↵ 6 = , (1.1.10) ✓ @V @Q ⇣ ◆ Q=0 = 0, ( 1 
x n↵ = R ↵ + X  ↵ r (0) n + X ⇣ l n ⇣ p m n Q ⇣ m e M X i r i ! , ( 1 
.1.14) 

x i↵ = R ↵ + X  ↵ r i m e M X j r j ! , ( 1 
L = m e 2 X i,↵ ẋ2 i↵ + 1 2 X n,↵ m n ẋ2 n↵ + V. (1.1.16)
В результате сложных преобразований и ряда упрощений, а также нормировки волновых функций в новых координатах, гамильтониан будет иметь следующий вид [52,54]: 

H = X ↵ P 2 ↵ 2M + 1 2m e X i,↵ P 2 i↵ + 1 2M n X ↵ X i P i↵ ! 2 + 1 2 X ⇣ P 2 ⇣ + 1 2 X ↵, (J ↵ G ↵ L ↵ )μ ↵ (J G L ) ~2 8 X ↵ μ↵↵ + V. ( 1 
матричные элементы обратных моментов инерции. Величины J ↵ , G ↵ = P ,µ = ⇠ ↵ µ Q P µ , L ↵ = P , ✏ ↵ P i r i P i -компоненты полного, колебательного и электронного угловых моментов, соответственно, а ⇠ ↵ ,µ -кориолисовы постоянные. Гамильтониан (1.1.17
H el el n ( r NK ) = E n ( r NK ) el n ( r NK ) = V n ( r NK ) el n ( r NK ), ( 1 
H n = V n ( r NK ) + h el n | H 1 | el n i + h el n | H 2 | el n i + ..., ( 
H = 1 2 
X ⇣ P 2 ⇣ + 1 2 X ↵, (J ↵ G ↵ )µ ↵ (J G ) + V, ( 1 
H = H 0 + 1 X n=1 H n ( ) n , (1.2 
H xy = * x X k=0 1 k! " i 1 X n=0 g n , H 0 + H n # (k) y + . ( 1 
h↵|ig n |xi = (E x E ↵ ) 1 * ↵ X r=0 1 r! " i 1 X l=0 g l , X k=1 H k # (r) + X p=2 1 p! " i 1 X m=0 g m , H 0 # (p) x + , ( 1 
H (2) xy = 1 2 X ↵ / 2⌦ ⇥ (E x E ↵ ) 1 + (E y E ↵ ) 1 ⇤ H x↵ H ↵y , (1.2.13) H (3) xy = 1 2 X ↵, / 2⌦ ⇥ (E x E ↵ ) 1 (E x E ) 1 + (E y E ↵ ) 1 + (E y E ) 1 ⇤ H x↵ H ↵ H y 1 2 X x,↵ / 2⌦ ⇥ (E y E ↵ ) 1 (E x E ↵ ) 1 ⇤ H x↵ H ↵x H xy + 1 2 X x,↵ / 2⌦ ⇥ (E x E ↵ ) 1 (E x E ↵ )
S ⌫ = 8⇡ 3 ⌫ 4⇡✏ 0 3hc  1 exp ✓ hc⌫ k B T ◆ N g A Q(T ) exp ✓ E A k B T ◆ R B A , (1.3 

.1)

где g A -статистический вес ядерного спина, который может быть рассчитан исходя из соображений теории групп; Q(T ) -статистическая сумма, которая определяется следующим выражением [63]: 

Q(T ) = Q v ⇥ Q r = X r exp ✓ hcE v kT ◆ ⇥ ✓ 27 4 ◆ ⇡ 1/2 ✓ kT hcB gr ◆ 3/2 exp ✓ hcB gr 4kT ◆ , ( 1 
P Z = X ↵ k z↵ µ e ↵ + X 0 µ 0 ↵ q 0 + X 0 ,⌫ 0 µ 0 ⌫ ↵ q 0 q ⌫ + ... ! . (1.3.4)
Здесь k z↵ -элементы матрицы направляющих косинусов, µ e ↵ -компоненты равновесного (постоянного) дипольного момента молекулы в молекулярно-неподвижной системе координат, q -безразмерные нормальные колебательные координаты [50,55] Так как G-операторы являются колебательно-вращательными, то оператор µ 0 Z , в отличие от P Z , будет сложной функцией колебательных Q , P µ и вращательных z↵ , J операторов.

В общем случае

PZ = X i r i R i ( z↵ , J )V i (Q , P µ ), (1.3.5)
где r i -параметры разложения в ряд. Если принять во внимание результаты упомянутых работ, то можно показать, что для произвольной многоатомной молекулы, выражение

(1.3.4) можно преобразовать к следующему виду µ 0 Z = X ⌫ |0i v µ Z hv|, (1.3.6)
где значения v µ Z зависят только от операторов k z↵ и J ↵ и не зависят от колебательных операторов; |0i и hv| являются колебательными функциями нижних и верхних колебательных состояний. В этом случае операторы v µ Z имеют следующий вид: Профильная функция Артмана-Тран основана на модели бинарных столкновений и име-ет следующий вид [70]:

v µ Z = X j v µ j v A j . ( 1 
F D (⌫ ⌫ 0 ) = r ln 2 ⇡ 1 D exp ln(2) ✓ ⌫ ⌫ 0 D ◆ 2 ! . ( 1 
F L (⌫ ⌫ 0 ) = ln 2 ⇡ (⌫ ⌫ 0 ) 2 + 2 . ( 1 
F HTP (⌫) = 1 ⇡ Re 8 < : A(⌫) 1 [⌫ vc ⌘(C 0 3C 2 /2)]A(⌫) + ⇣ ⌘C 2 v 2 a0 ⌘ B(⌫) 9 = ; , (1.3.11) где A(⌫) = p ⇡c ⌫ 0 v a0 [!(iZ ) !(iZ + )],
(1.3.12)

B(⌫) = v 2 a0 C2  1 + p ⇡ 2 p Y (1 Z 2 )!(iZ ) p ⇡ 2 p Y (1 Z 2 + )!(iZ + ) , (1.3.13) !(z) = i ⇡ +1 Z 1 e t 2 z t dt = e z 2 erfc( iz), (1.3.14) 
гле erfc -функция ошибки Гаусса [73,74], v a0 -наиболее вероятная скорость, выраженная через доплеровскую полуширину. В приведенных выше выражениях [81][82][83], Мишло [84][85][86][87], Море-Бейи [88,89], Хоугена [90,91], Хилико [92,93], Шампьен [94,95] и др. 

Z ± = p X + Y ± p Y , (1.3.15) X = i(⌫ 0 ⌫) + C0 C2 , Y = ✓ ⌫ 0 ⌫ a0 2c C2 ◆ 2 , (1.3.16) C0 = (1 ⌘) ✓ C 0 3C 2 2 ◆ + ⌫ vc , (1.3.17) и C2 = (1 ⌘)C 2 , (1.3.18) где C n = n + i n (n = 0, 2
ние ⌫ 1 (A 1 ), дважды вырожденное ⌫ 2 (E) и два трижды вырожденных ⌫ 3 (F 2 ) и ⌫ 4 (F 2 ).
Общей чертой для большинства тетраэдрических молекул (однако существуют исключения, например, молекулы CF 4 и SiF 4 ) является близкое расположение деформационных колебаний (0100, E)/(0001, F 2 ) и валентных (1000,A 1 )/(0010, F 2 ), другими словами можно сказать, что их частоты удовлетворяют приближенному соотношению

⌫ 1 ' ⌫ 3 ' 2⌫ 2 ' 2⌫ 4 .
(2.1.1)

Благодаря соотношению (2.1.1), колебательные уровни молекул тетраэдрической симметрии могут быть сгруппированы в полиады взаимодействующих состояний, которые характеризуются целым квантовым числом P :

P = k 1 v 1 + k 2 v 2 + k 3 v 3 + k 4 v 4 , (2.1.2)
или же более частный случай для молекул GeH 4 и SiH 4 : T 

P = 2(v 1 + v 3 ) + v 2 + v 4 , (2.1.3) где v 1 , v 2 , v 3 и v 4 -
d E 8C 3 3C 2 6 d 6S 4 A 1 1 1 1 1 1 A 2 1 1 1 -1 -1 E 2 -1 2 0 0 F 1 3 0 -1 -1 1 F 2 3 0 - 1 

Таблица характеров точечной группы

T d в (2J + 1)-мерном представлении D (J) группы O(3) Разложение D (Jg) Разложение D (Ju) J E C 3 C 2 S 4 d 0 1 1 1 1 1 A 1 A 2 1 3 0 -1 1 -1 F 1 F 2 2 5 -1 1 -1 1 E F 2 E F 1 3 7 1 -1 -1 -1 A 2 F 1 F 2 A 1 F 1 F 2 4 9 0 1 1 1 A 1 E F 1 F 2 A 2 E F 1 F 2 5 11 -1 -1 1 -1 E 2F 1 F 2 E F 1 2F 2 6 13 1 1 -1 1 A 1 A 2 E F 1 2F 2 A 1 E 2F 1 2F 2 . . . . . . . . . 2A A 2E 3F 3F A 2A 2E 3F 3F Симметрия колебательного состояния (⌫ 1 , ⌫ 2 , ..., ⌫ n ), в котором каждое нормальное колебание Q ( i ) i возбужденно ⌫ i раз, определяется по формуле (⌫ 1 , ⌫ 2 , ..., ⌫ n ) = [ 1 ] ⌫ 1 ⇥ [ 2 ] ⌫ 2 ⇥ ... ⇥ [ n ] ⌫n . (2.2.2)
Представление в общем случае приводимо и может быть разбито на приводимые части. В соотвествии с этим разбиением колебательное состояние (⌫ 1 , ⌫ 2 , ..., ⌫ n ) может быть разбито на ряд подсостояний (колебательных подуровней). В частности молекулы тетраэдрической симметрии типа XY 4 имеют четыре нормальных колебания (описанные в Разделе 2.1). Если молекула находится в возбужденном колебательном состоянии

(⌫ 1 = 1, ⌫ 2 = 2, ⌫ 3 = 3, ⌫ 4 = 1), то согласно выражению (2.2.
2) в этом состоянии у молекулы имеются колебательные подуровни следующих типов симметрии:

A 1 ⇥ [E] 2 ⇥ [F 2 ] 3 ⇥ F 2 = 5A 1 + 4A 2 + 6E + 10F 1 + 11F 2 . (2.2.3) 
Таким образом, колебательное состояние (1231) молекулы типа XY 4 симметрии T d распадается на 36 подсостояний.

Прямое произведение типов симметрии вращательных подуровней E (J,n ) на тип симметрии ⌫ колебательного состояния определяет симметрии колебательно-вращательных волновых функций (уровней энергии). На Рисунке 2.2.1 приведен пример симметрии некоторых колебательно-вращательных уровней энергии молекулы XY 4 .

Колебательно-вращательные волновые функции трижды вырожденного колебательного состояния преобразуются по произведению представлений

D (1u) ⇥ D (Jg) = D (J 1)u + D (Ju) + D (J+1)u . (2.2.4)
Из разложения (2.2.4) следует, что каждый вращательный уровень энергии с заданным квантовым числом J в колебательном состоянии симметрии F 2 распадается на три компоненты R: R = J 1, J, J + 1. Такого рода расщепление называется кориолисовым расщеплением уровней. Помимо кориолисового расщепления колебательно-вращательные уровни также испытывает и тетраэдрические расщепления. Каждое из неприводимых представ-

A 1 F 1 2F 2 A 2 1F 2 E A 1 F 1 E F 2 F 1 E F 2 F 1 E F 2 A 2 J = 6
Рисунок 2.2.1. Схема тетраэдрического расщепления колебательно-вращательного уровня энергии со значением вращательного квантового числа 

J = 6 в основном коле- бательном состоянии (⌫ 1 , ⌫ 2 , ⌫ 3 , ⌫ 4 ) = (0000) A 1 и в колебательном состоянии симметрии E (⌫ 1 , ⌫ 2 , ⌫ 3 , ⌫ 4 ) = (0100) E . лений D (J 1)u , D ( 
H = H cor + H harm + V anh , (2.2.5) 
где V anh и H harm -операторы потенциальной энергии, отвечающие за ангармоническую и гармоническую части, соответственно; H cor -оператор отвечающий за кориолисово взаимодействие, который для молекул типа XY 4 имеет вид

H cor = 2B e (⇠ 33 Q 3 P 3 + ⇠ 44 Q 4 P 4 ). (2.2.6) 
Численное решение уравнения Шредингера с гамильтонианом (2.2.5) будет зависеть от выбора конкретных значений параметров гамильтониана, в частности кориолисовых постоянных ⇠ 33 и ⇠ 44 . Гармоническая часть гамильтониана запишется следующим образом

H harm = 1 2 X P 2 + (2⇡c) 2 2 X ! 2 Q 2 , (2.2.7) 
и ангармоническая часть внутримолекулярной потенциальной функции 

V anh = X µ⌫ K µ⌫ Q Q µ Q ⌫ + X µ⌫⇢ K µ⌫⇢ Q Q µ Q ⌫ Q ⇢ + .... (2.2.8) 
H G 33 /G 34 1 = B⇣ 2 X µ⌫ ✏ µ⌫ (Q µ P ⌫ + Q ⌫ P µ ) + d x (Q 2 x + Q 2 y + Q 2 z ) + V 3 , (2.2.9) 
A 1 E F 2 E, 2F 1 , 2F 2 J = 3, ⌫ 3 = 2 l 3 = 0 l 3 = 2 R = 4 R = 3 R = 2 A 1 , F 1 , F 2 A 1 , E, F 1 , F 2 A 2 , F 1 , F 2 E, F 2 Рисунок 2.2.2. Схема тетраэдрического расщепления (для J = 3, ⌫ 3 = 2)
.

H G 22 2 = d 2222 + (Q 2 2 1 + Q 2 2 2 ) + V 3 , (2.2.10) 
H G 34 3 = B 2 ⇣ 2 34 + 2B⇣ 3 ⇣ 4 + V 3 , (2.2.11) 
где B -равновесный вращательный параметр, d x -параметр, соответствующий форме записи, = 3 или 4, V 3 -кубическая часть внутримолекулярной функции, V anh . а ✏ µ⌫полностью антисимметричный тензор.

2. Операторы, описывающие расщепления T 33 , T 34 , T 44 , T 23 , T 24 -типов

H T 33 /T 44 4 = d x h Q 4 x + Q 4 y + Q 4 z 3(Q 2 x Q 2 y + Q 2 x Q 2 z + Q 2 y Q 2 z ) i + V 3 , (2.2.12) 
H T 34 /T 23 5 = d 3344 [3(Q 2 4x Q 2 3x + Q 2 4y Q 2 3y + Q 2 4z Q 2 3z ) (Q 2 4x + Q 2 4y + Q 2 4z )(Q 2 3x + Q 2 3y + Q 2 3z ) 4(Q 3x Q 3z Q 4x Q 4z + Q 3y Q 3z Q 4y Q 4z + Q 3x Q 3y Q 4x Q 4y )] + V 3 , (2.2.13) 
H T 34 /T 24 6 = d 22 t ⇥ Q 21 Q 22 (Q 2 x + Q 2 y ) + (Q 2 x + Q 2 y 2Q 2 z ) ⇤ + V 3 . (2.2.14) 
3. Оператор, описывающий расщепления S 34 -типа

H S 34 6 = d 3344x [(Q 3x Q 4x + Q 3y Q 4y + Q 3z Q 4z ) 2 1 3 (Q 2 3x + Q 2 3y + Q 2 3z )(Q 2 4x + Q 2 4y + Q 2 4z )] + V 3 .
(2.2.15)

Тензорный формализм для задач молекулярной спектроскопии

Для понимания данной главы необходимо ввести основные понятия и выражения тензорного формализма. Пусть A (K 1 ) и B (K 2 ) -тензорные операторы (колебательные или вращательные). Тензерное произведение этих операторов, образующее неприводимый тензор ранга K, выражается через ряды Клебша-Гордана:

T (K) m (K 1 , K 2 ) = X m 1 ,m 2 hK 1 m 1 K 2 m 2 |KmiA (K 1 ) m 1 B (K 2 ) m 2 . (2.3.1) 
В данном выражении величины hK 1 m 1 K 2 m 2 |Kmi называются коэффициентами Клебша-Гордана. Существуют и другие способы записи этих коэффициентов (см., например, [START_REF] Griffits | Introduction to quantum mechanics[END_REF]). Среди них, 3 -символы Вигнера (являющиеся более симметричными) которые значительно упрощают аналитические и численные расчеты. Тогда уравнение (2.3.1) можно переписать как 

T (K) m (K 1 , K 2 ) = (2K + 1) 1/2 X m 1 ,m 2 ( 1) K 1 +K 2 m 0 @ K 1 K 2 K m 1 m 2 m 1 A A (K 1 ) m 1 B (K 2 ) m 2 , (2.3.2 
T (K) p = X m (K) G m p T (K) m .
(2.3.3)

Величины (K) G m p являются матричными элементами унитарного преобразования. Куби- ческие компонеты обозначаются тройкой чисел p = n, , , где = A 1 , A 2 , E, F 1 и F 2 и
обозначает неприводимое представление кубической группы; -различные компоненты многомерных представлений E, F 1 и F 2 ; n различает компоненты с одинаковыми значениями и . Все возможные значения n и можно вывести из корреляционной таблицы

цепочки групп SO(3) O (или O(3) T d ). 1 Применяя G-преобразование к (2.3.2), ряды Клебша-Гордана можно переписать как T (K) p (K 1 , K 2 ) = ( 1) K (2K + 1) 1/2 X p 1 ,p 2 F 0 @ K 1 K 2 K p 1 p 2 p 1 A A (K 1 ) p 1 B (K 2 ) p 2 . (2.3.4) 
В работах [92,94,[START_REF] Laane | Frontiers and advances in molecular spectroscopy[END_REF] можно найти численные расчеты коэффициентов G и F . При условии последовательного выбора ориентации неприводимых представлений цепочки групп SO(3) можно отождествить кубические компоненты сферических тензоров с компонентами кубических тензоров, положив T K,n ⌘ T (K) n . 2 В этом случае тетраэдрические тензоры могут быть образованы согласно выражению Группы O и T d изоморфны.

T ( ) = ( ) 1/2 X 1 , 2 F 0 @ 1 2 1 2 1 A A K 1 ,n 1 1 1 B K 2 ,n 2 2 2 , (2.3.5) 
где коэффициенты F являются коэффициентами Клебша-Гордана, относящимися к груп- пе O (или T d ), а [ ] -размерность неприводимого представления ([ ] = 1, 1, 2, 3, 3 для = A 1 , A 2 , E, F 1 и F 2 ,
2 Поскольку в данной работе исследуются молекулы тетраэдрической симметрии, то далее будет использоваться название тетраэдрических тензоров вместо кубических. 

(A (K 1 ,n 1 1 ) ⇥ B (K 2 ,n 2 2 ) ) 3 = [ 3 ] 1/2 X K 3 ,n 3 ( 1) K 3 (2K 3 + 1) 1/2 K 0 @ K 1 K 2 K 3 n 1 1 n 2 2 n 3 3 1 A (A (K 1 ) ⇥ B (K 2 ) ) (K 3 ,n 3 3 ) , (2.3 
h Jm|T (K) n | 0 J 0 m 0 i = ( 1) J m 0 @ K J 0 J n m 0 m 1 A h J||T (K) || 0 J 0 i. (2.3.7) Альтернативная форма записи выражения (2.3.7) непосредственно для группы T d h |T (K) ⌧ | 0 0 ⌧ 0 i = F 0 @ C 0 ⌧ 0 1 A h ||T (C) || 0 0 i. (2.3.8) Символ h|| ||i называется редуцированным матричным элементом в группе O(3) (2.3.7) и в группе T d (2.3.8). Для вычисления редуцированного матричного элемента h ||T (C) || 0 0 i достаточно вычислить простейший матричный элемент h |T (K) ⌧ | 0 0 ⌧ 0 i. Тогда,
H = X vl ,v 0 l 0 0 X n ⇥ (|vl i ⌦ hv 0 l 0 0 |) n ⌦ H n vl ,v 0 l 0 0 ⇤ A 1 , (2.4.1) 
где |vl i -симметризованные колебательные функции, которые эквивалентны колебательным функциям |xi в уравнении (1.2.2), а -симметрия этих функций; H n vl ,v 0 l 0 0вращательные операторы симметрии . Когда vl = v 0 l 0 0 , то операторы H n vl ,v 0 l 0 0 соответствуют диагональным блокам матрицы эффективного гамильтониана, когда vl 6 = v 0 l 0 0 , то операторы соответствуют резонансным блокам.

Как видно из уравнений (1.2.10)-(1.2.14), операторы H n vl ,v 0 l 0 0 являются разложениями в ряд по составляющим углового момента J ↵ . Однако, известно (см., например, [95]), что любые выражения J ↵ ... J также могут быть записаны в виде линейных разложений

по симметричным операторам R ⌦(K) m или R ⌦(K,n ) (неприводимые вращательные операто- ры группы SO(3) или O(3)) H = X vl ,v 0 l 0 0 X n X ⌦,K ⇥ (|vl i ⌦ hv 0 l 0 0 |) n ⌦ R ⌦(K,n ) ⇤ A 1 Y ⌦(K,n ) vl ,v 0 l 0 0 . (2.4.2) Значения Y ⌦(K,n ) vl ,v 0 l 0 0 -спектроскопические параметры. В частности, когда ⌦ = 2, = A 1 , vl = v 0 l 0 0 : Y 2(K,nA 1 ) vl ,v 0 l 0 0 -вращательные постоянные; ⌦ = 4, = A 1 , vl = v 0 l 0 0 : Y 4(K,nA 1 )
vl ,v 0 l 0 0 -постоянные центробежного искажения четвертой степени и т. д. Если произвести тензорное умножение в уравнении (2.4.2) 

H = X vl ,v 0 l 0 0 |vl i ⌦ hv 0 l 0 0 | 2 4 X ⌦Kn s 0 @ s l l 1 A R ⌦(K,n ) s Y ⌦(K,n ) vl ,v 0 l 0 0 3 5 (2.4.3) 
(H P 0 + H P 1 + H P 2 + H P 3 ) -оператор октады (см. Рисунок 2.1.2), и т.д. Симметризованные вращательные операторы R ⌦(K,n ) s определяются как R ⌦(K,n ) s = X m (K) G m n s R ⌦(K) m , (2.4.5 
)

где операторы R ⌦(K) m
симметризованы относительно вращательного оператора группы симметрии SO(3), который может быть построен в соответствии с рекуррентным соотноше-

нием [107] R ⌦+1(K+1) m = X l= 1,0,1 C K+1 m K m l,1,l R ⌦(K) m l R 1 (1) l . (2.4.6) 
Значения C K+1 m K m l,1,l -это коэффициенты Клебша-Гордана. Неприводимые вращательные операторы R ⌦(K) m при K < ⌦ (и одинаковой четности) принимают вид R ⌦(K) m = R ⌦=K(K) m (R 2(0) ) (⌦ K)/2 , (2.4.7) где R 2(0) = (J 2 x + J 2 y + J 2 z ). В этом случае операторы первого порядка и ранга R 1(1) m (m = 0, ±1) определяются как R 1(1) 1 = 1 p 2 (J x iJ y ) ⌘ J + , R 1 (1) 1 
= 1 p 2 (J x + iJ y ) ⌘ J , R 1(1) 0 = J z ⌘ J 0 . (2.4.8) 
Величины (K) G m n s в формуле (2.4.5) представляют собой так называемые матричные элементы редукции, которые можно найти в литературе (см., например, [94,[START_REF] Laane | Frontiers and advances in molecular spectroscopy[END_REF][START_REF] Campargue | Efficient computation of some speed-dependent isolated line profiles[END_REF]).

Принимая во внимание, что как колебательные (Q , p ), так и вращательные (J ↵ ) операторы в уравнении (1.1.17) классифицируются по неприводимым представлениям группы симметрии молекулы, гамильтониан H можно также переписать в следующем симметризованном виде

H = H 0 + X ⌦,K,l,C ⇥ V ⌦(K,lC) + R ⌦(K,lC) ⇤ A 1 , (2.4.9) 
где ⌦ = 0, 1 или 2; V ⌦(K,lC) операторы, зависящие от колебательных переменных. Для молекул разных типов явный вид операторов V ⌦(K,lC) можно получить из сравнения уравнений (2.4.9) и (1.1.17).

Колебательно-вращательные функции в симметризованной форме

Как было сказано ранее, группа симметрии

T d имеет пять неприводимых представ- лений A 1 , A 2 , E, F 1 и F 2 .
По этой причине любая из колебательно-вращательных волновых функций должна быть полностью симметричной (A 1 ), антисимметричной (A 2 ), либо преобразовываться при операциях симметрии по одной из двух (E 1 или E 2 ) или трех

(F 1x , F 1y или F 1z ) строк неприводимых представлений E, F 1 , F 2 .
В общем случае любую колебательно-вращательную функцию можно построить в следующем виде: 

|⌫ v ; Jn J r ; m si = (|⌫ v i ⌦ |Jn J r i) s = p [ ] X v r 0 @ v r s v r 1 A |v v v i|Jn J r r i, (2.5.1 
|v v ; Jn J r ; m si = (|v v i ⌦ |Jn J r i) s = p [ ] X v r 0 @ v r s v r 1 A |v v v i|Jn J r r i, (2.5.1) 
где функции |Jki -обычные вращательные функции (см., например, [55]).

2.6

Спектроскопические параметры для молекул типа Главный вклад в разработку соотношений между спектроскопическими и внутримолекулярными параметрами был сделан авторами работ [81,[START_REF] Ngo | Intensities and shapes of H 2 O lines in the near-infrared by tunable diode laser spectroscopy[END_REF][START_REF] Hartmann | Velocity effects on the shape of pure H 2 O isolated lines: complementary tests of the partially correlated speed-dependent Keilson-Storer model[END_REF][START_REF] Ng | A table of integrals of the error functions[END_REF][START_REF] Andrews | Special functions of mathematics for engineers[END_REF]. Для краткости здесь не приводятся все формулы для параметров Y ⌦(K,n ) , соответствующие формулам из работ Хекта [81]. Общении соотношения для расчетов спектроскопических параметров имеют следующий вид

XY 4 (T d ) После анализа колебательно-вращательного гамильтониана H, общие выражения (1.2.10)-(1.2 
Y ⌦(K,n ) vl ,v 0 l 0 0 = (0) Y ⌦(K,n ) vl ,v 0 l 0 0 + (1) Y ⌦(K,n ) vl ,v 0 l 0 0 + (2) Y ⌦(K,n ) vl ,v 0 l 0 0 + ... + (n) Y ⌦(K,n ) vl ,v 0 l 0 0 , (2.6.1) 
(0) Y ⌦(K,n ) vl ,v 0 l 0 0 = vl ,v 0 l 0 0 ⌦0 K0 n ,A 1 E v , (2.6.2) 53 (1) Y 
⌦(K,n ) vl ,v 0 l 0 0 = hv ||V ⌦ ||v 0 0 i, (2.6.3) 
(2) Y ⌦(K,n ) vl ,v 0 l 0 0 = 1 2 X v 1 1 / 2L (E v E v 1 1 ) 1 + (E v 0 0 E v 1 1 ) 1 ⇥ X ⌦ 1 , 1 ,⌦ 2 , 2 [ ] 1/2 [ 1 ] 1/2 [ 2 ] 1/2 ( 1) K ( 1) + 0 + (2K + 1) 1/2 ⇥ 0 @ 0 2 1 1 1 A K (KK 1 K 2 ) (n 1 2 ) ((K 1 , K 2 )⌦ 1 ⌦ 2 ⌦, K)hv ||V ⌦ 1 1 ||v 1 1 i ⇥hv 1 1 ||V ⌦ 2 2 ||v 0 0 i, (2.6.4) 
где V ⌦ -операторы, зависящие от колебательных переменных. Расчеты по формулам

(2.6.1)-(2.6.4) позволяют получить Y 2(0,A 1 ) 1000,A 1 ,1000,A 1 Y 2(0,A 1 ) 0000,A 1 ,0000,A 1 = p 3X 1 , (2.6.5) 
1 p 2 Y 2(0,A 1 ) 0100,E,0100,E Y 2(0,A 1 ) 0000,A 1 ,0000,A 1 = p 3X 1 = p 3 ! 2 B 2 e + p 3B 2 e ! 2  cos 2 ! 2 3 ! 2 2 (! 2 3 + 3! 2 2 ) + sin 2 (! 4 ! 2 ) 2 2! 4 (! 2 + ! 4 ) k 122 ! 3/2 1 (2B 3/2 e ), (2.6.6 
)

1 p 3 Y 2(0,A 1 ) 0010,F 2 ,0010,F 2 Y 2(0,A 1 ) 0000,A 1 ,0000,A 1 = p 3X 3 , (2.6.7) 
Y 2(2,E) 0010,F 2 ,0010,F 2 Y 2(2,F 2 ) 0010,F 2 ,0010,F 2 = 5Z 3s , (2.6.8) 
3Y 2(2,E) 0010,F 2 ,0010,F 2 2Y 2(2,F 2 ) 0010,F 2 ,0010,F 2 = 60Z 3t , (2.6.9) 
1 p 3 Y 2(0,A 1 ) 0001,F 2 ,0001,F 2 Y 2(0,A 1 ) 0000,A 1 ,0000,A 1 = p 3 ! 4 B 2 e sin 4B 2 e p 3! 4 3! 2 4 + ! 2 3 ! 2 4 ! 2 3 9 4 cos 2 sin 2 + B 2 e (! 4 ! 2 ) 2 sin 2 p 3! 2 ! 4 (! 2 + ! 4 ) + r 2 3 ✓ 2B e ! 1 ◆ 3/2 k 144 , (2.6.10) 
Y 2(2,E) 0001,F 2 ,0001,F 2 = 3 sin 2 B 2 e ! 4 2 p 2 ✓ B e ! 2 ◆ 3/2 k 244 9 sin 2 cos 2 B e ! 4 ! 2 3 + 3! 2 4 ! 2 4 ! 2 3 2B 2 e sin 2 (! 4 ! 2 ) 2 ! 2 ! 4 (! 2 + ! 4 ) , (2.6.11) 
Y 2(2,F 2 ) 0001,F 2 ,0001,F 2 = 9 2 sin 2 B 2 e ! 4 + 3 2 sin 2 B 2 e (! 2 ! 4 ) 2 ! 2 ! 4 (! 2 + ! 4 ) + 27 2 cos 2 sin 2 B 2 e ! 2 3 + 3! 2 4 ! 4 (! 2 3 ! 2 4 ) +2 p 3 ✓ B e ! 3 ◆ 3/2 cos k 344 6 p 3 ✓ B e ! 4 ◆ 3/2 sin k 444 , (2.6.12) 
Y 2(2,E) 0100,E,0100,E = 2 p 3 B 2 e ! 2 2 p 3B 2 e cos 2 ! 2 3 + 3! 2 2 ! 2 (! 2 3 ! 2 2 ) + p 3B 2 e sin 2 (! 2 ! 4 ) 2 ! 2 ! 4 (! 2 + ! 4 ) 6 p 2 ✓ B e ! 2 ◆ 3/2 k 222 . (2.6.13) 
Важно, что с точностью до резонансных членов, пропорциональных значению (выражения для тензорных вращательных операторов первого ранга были представлены в Разделе 2.4). Тогда, если ввести редуцированные матричные элементы

(! 2 ! 4 ) 1 , параметры Y ⌦(K,n ) в
hJ 0 ||R ⌦(K) ||Ji [105], определив их как hJ 0 k 0 |R ⌦( K) m |Jki = (2J 0 + 1) 1/2 C J 0 k 0 Jk Km hJ 0 ||R ⌦( K) ||Ji, (2.7.1) 
можно легко показать, что

hJ 0 ||R ⌦( K) ||Ji = J 0 J 2 K ✓ J(J + 1) p 3 
◆ (⌦ K)/2 K!(2J + K + 1)! (2J K)!(2 K 1)!!) ! 1/2 , (2.7.2) 
где C J 0 k 0 Jk Km -коэффициенты Клебша-Гордана вращательной группы: (2 K 1)!! = (2 K 1)(2 K 3)...3 ⇥ 1.

С учетом вышесказанного, часть редуцированного оператора дипольного момента

Pz , зависящая от вращательного оператора, также может быть представлена в тензорной форме

R ⌦K( K) µ = (R ⌦(K) ⌦ (1) ) K µ , (2.7.3) 
где ранг K полного оператора равен K или K ± 1.
Чтобы перейти к молекулярной группе симметрии, можно построить неприводимые тензорные операторы этой группы на основе операторов (2.7.3). В этом случае оператор дипольного момента (1.3.6) принимает вид 5 : 

(µ 0 ) = X ⌦K Kn r v r ⌦K( K,n r) v (R ⌦K( K,n r) ⌦ V v ) . ( 2 
G G G C 3v A 2 D 4d B 1 D 6h A 1u C 3h A 00 D 3h A 00 1 T d A 2 C 6h A u D 4h A 1u D v P D 2d B 1 D 5h A 00 1 D h P u D 3d A 1u
точечных групп, представленных в Таблице 2.7.1, является одномерным представлением. Поэтому в уравнении (2.7.4) индекс , обозначающий линию представления, будет опущен.

Введем оператор

1 = X ⌫l [|⌫l i ⌦ h⌫l |] A 1 , (2.7.5) 
где A 1 -тождественное представление точечной группы симметрии. Тогда нетрудно показать, что оператор дипольного момента (2.7.4) можно представить в виде

(µ 0 z ) = X ⌫ 1 l 1 1 ⌫ 2 l 2 2 ⇣ [|⌫ 1 l 1 1 i ⌦ h⌫ 2 l 2 2 |] ( ⌦ r) ⌦ R ⌦K( K,n r) ⌘ Y ⌦K( K,n r) ⌫ 1 l 1 1 ,⌫ 2 l 2 2 . (2.7.6) 
В данном уравнении |⌫ 1 l 1 1 i и h⌫ 2 l 2 2 | -симметризованные колебательные функции, где ⌫ 1 и l 1 -колебательные квантовые числа; -симметрия функции. Значения Y ⌦K( K,n r) ⌫ 1 l 1 1 ,⌫ 2 l 2 2 - параметры эффективного дипольного момента для полосы (⌫ 1 l 1 1 ) (⌫ 2 l 2 2 ) и R ⌦K( K,n r)
являются симметризованными вращательными операторами.

Для вычисления матричных элементов R B A в уравнении (1.3.2) необходимо определить колебательно-вращательные функций |Ai и |Bi. Для молекул XY 4 (T d ) также вполне логично брать функции, симметризованные на основе тензорного формализма.

5

Учтем, что (µ 0 ) должен быть эрмитовым.
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Такие колебательно-вращательные функции можно записать в следующем виде:

|Ai C s = |⌫l ; Jn r ; Csi = [|⌫l i ⌦ |Jn r i] C s , (2.7.7) 
где |Jn r i -вращательные функции симметрии r и C -симметрия функции колебательновращательного состояния. Уравнения (2.7.6) и (2.7.7) будут использоваться при анализе молекулярных спектров для расчета матричных элементов

S ⌫ 2 l 2 2 ;J 2 n 2 r 2 ;C 2 S 2 ⌫ 1 l 1 1 ;J 1 n 1 r 1 ;C 1 s 1 = h⌫ 1 l 1 1 ; J 1 n 1 r 1 ; C 1 s 1 |(µ 0 z ) |⌫ 2 l 2 2 ; J 2 n 2 r 2 ; C 2 s 2 i, (2.7.8 
)

которые необходимы для определения значений R B A в уравнении (1.3.2). Следует также отметить, что уравнение (2.7.8) можно записать в следующем виде S ⌫ 2 l 2 2 ;J 2 n 2 r 2 ;C 2 s 2 ⌫ 1 l 1 1 ;J 1 n 1 r 1 ;C 1 s 1 = 0 @ C 1 C 2 s 1 s 2 1 A h⌫ 1 l 1 1 ; J 1 n 1 r 1 ; C 1 |(µ 0 z ) |⌫ 2 l 2 2 ; J 2 n 2 r 2 ; C 2 i. (2.7.9) 
В этом случае можно показать, что для различных точечных групп из Таблицы 2.7.1 и для 3 -символов, входящих в уравнение (2.7.9), выполняется условие

0 @ C 1 C 2 s 1 s 2 1 A = [C 1 ] 1/2 [C 1 ],[C 2 ] s 1 , s 2 , (2.7.10) 
или, по крайней мере,

0 @ C 1 C 2 s 1 s 2 1 A = [C 1 ] 1/2 [C 1 ],[C 2 ] . (2.7.11) 
Условие (2.7.10) выполняется для ненулевых значений

C 1 C 2 s 1 s 2 .
Это означает, что при выполнении условия (2.7.10), ненулевые знчаения S в (2.7.9) не зависят от индексов s 1 и s 1 и могут быть опущены. Используя теорию неприводимых тензорных множеств и учитывая соотношения (2.7.6) и (2.7.7), можно показать, что выражение (2.7.8) преобразуется к виду

S ⌫ 2 l 2 2 ;J 2 n 2 r 2 ;C 2 ⌫ 1 l 1 1 ;J 1 n 1 r 2 ;C 1 = X n 2 X S r 1 S r 2 1 2 r v X K K⌦ [C 1 ] [C 1 ],[C 2 ] 0 @ r v r v 1 A 0 @ C 1 r 1 1 s 1 s r 1 1 1 A ⇥ 0 @ C 2 r 2 2 s 2 s r 2 2 1 A 0 @ v 1 2 v 1 2 1 A 0 @ r r 1 r 2 r s r 1 s r 2 1 A C J 1 m 1 J 2 m 2 Km 3 ⇥ X m 1 m 2 m 3 (J 1 ) G m ⇤ 1 n 1 r 1 s r 1 ( K) G m 3 r r (J 2 ) G m 2 n 2 r 2 s r 2 2 4 (2J 1 + 1) 1/2 0 @ r r 1 r 2 r s r 1 s r 2 1 A 3 5 1 ⇥(J 1 ||R ⌦K( (K)) ||J 2 )Y ⌦K( K,n r) ⌫ 1 l 1 1 ,⌫ 2 l 2 2 .
(2.7.12)

Здесь v = ( ⌦ r ) и Y ⌦K( K,n r) ⌫ 1 l 1 1 ,⌫ 2 l 2 2 -экспериментально определяемые параметры колеба- тельных переходов ⌫ 1 l 1 1 ⌫ 2 l 2 2 с помощью которых можно легко выразить параметры в уравнении (1.3.6).
Рассмотрим приведенный матричный элемент в общей формуле (2.7.12). Если принять во внимание уравнение (2.7.3), то его можно представить в виде

(J 1 ||R ⌦K( K) ||J 2 ) = ( 1) J 1 +J 2 + K (2 K + 1) X j 0 @ K 1 K J 2 J 1 j 1 A (J 1 ||R ⌦(K) ||j)(j|| (1) ||J 2 ).
(2.7.13)

Выражения для параметров можно найти в работе [START_REF] Humlicek | Optimized computation of the Voigt and complex probability functions[END_REF]. Соотношения (2.7.12) и (2.7.13) вместе позволяют рассчитать матричные элементы оператора дипольного момента практически любой многоатомной молекулы с учетом всех внутримолекулярных эффектов и взаимодействий (включая случайные резонансы) и учесть различные спектроскопические параметры Y ⌦K( K,n r) 

⌫ 1 l 1 1 ,⌫ 2 l 2 2 .
A line = 1 log(e) Z log ✓ I(⌫ 0 ) I(⌫) ◆ d⌫. (3.1.2)
Доплеровское уширение для 74 GeH 4 (наиболее распространенный изотополог моногермана) при 1750 см 1 (центр полосы) и комнатной температуре составляет 0,0024 см 1 , а инструментальная ширина линии 0,0020 см 1 при оптическом разрешении 0,003 см 1 в сочетании с аподизацией Boxcar. Полные ширины линий для спектров I 0 -VII 0 составляют 0,00045 ( (оранжевый спектр) и 73 GeH 4 (черный спектр) в диапазоне 4020-4260 см 1 с ярко выра- 

женной структурой P -, Q-, R-ветвей двух полос -2⌫ 1 (A 1 ) и ⌫ 1 +⌫ 3 (F 2 ).
⌦ 0 2 F 2 . (3.2.1) 
Поэтому полоса ⌫ 1 +⌫ 3 (F 2 ) является разрешенной по симметрии, а полоса 2⌫ 1 (A 1 ) -за- прещенной и проявляется в спектре только из-за сильного кориолисова взаимодействия с ⌫ 1 + ⌫ 3 (F 2 ).
Исследование тонкой структуры спектров молекул 72 GeH 4 и 73 GeH 4 в районе полос 

2⌫ 1 (A 1 ) и ⌫ 1 +⌫ 3 (F 2 ) выполнено на основе использования программного пакета SPHETOM (SPHerical TOp Molecules) [125]. Таблица 3.2.1. Статистическая информация для полос 2⌫ 1 (A 1 )/⌫ 1 +⌫ 3 (F 2 ) молекул 72 GeH 4 и 73 GeH 4 . Полоса Центр полосы, см 1 J max N a t N b p m c 1 m c 2 m c 3 Эта работа d Из [129] e 72 GeH 4 ⌫ 1 + ⌫ 3 (F 2 )
d rms = 2, 7 ⇥ 10 4 см 1 a N t -количество переходов. b N p -число варьируемых параметров. c m i = n i /N ⇥ 100% (i = 1, 2, 3); n 1 , n 2 и n 3 -количество переходов, для которых разности = E exp E calc (⌫ exp ⌫ calc ) удовлетворяют условию  2 ⇥ 10 4 см 1 , 2 ⇥10 4 см 1 <  4 ⇥ 10 4 см 1 и > 4 ⇥ 10 4 см 1 .
d Значения полученные из процедуры варьирования в настоящей работе.

e Воспроизведено для сравнения из работы [START_REF] Hougen | Methane symmetry operations[END_REF].

(A 1 ), задача по идентификации линий полосы 2⌫ 1 (A 1 ) была затруднена. По этой причине для различения переходов одной и той же симметрии в конкретном кластере использовались номера n = 1, 2, 3, ..., аналогичные обозначениям Дижонской программы XTDS [START_REF] Hilico | Coefficients de couplage relatifs à la structure fine de rotation-vibration des molécules tétraédriques[END_REF]. При этом возрастание волнового числа соответствует возрастанию числа n. ). На первом этапе анализа были проинтерпретированы переходы, принадлежащие шести холодным полосам:

⌫ 2 (E), ⌫ 4 (F 2 ), ⌫ 1 (A 1 )/⌫ 3 (F 2 ), ⌫ 2 +⌫ 4 (F 2 ) и ⌫ 2 +⌫ 4 (F 1 )
. Для этих шести полос определенно 6761 переходов с максимальным значением квантового числа J max = 30 (подробная статистическая информация в Таблице 3.3.1). Это значительно больше, чем в более ранних исследованиях, в частности в работах [START_REF] Champion | Composantes cubiques normales des tenseurs sphériques[END_REF][START_REF] Sadovskiì | Counting levels within vibrational polyads: Generating function approach / D.A. Sadovskiì[END_REF], где исследовалась полоса ⌫ 3 (F 2 ) молекулы 72 GeH 4 и было найдено лишь 897 переходов c максимальным значением J max = 25. Корректность найденных переходов в настоящей работе подтверждается наличием многочисленных комбинационных разностей. Полный список проинтерпретированных переходов представлен в виде Дополнительных материалов к опубликованной работе [START_REF] Lether | The numerical computation of the Voigt function by a corrected midpoint quadrature rule[END_REF].

На втором этапе анализа проинтерпретированы переходы, принадлежащие девяти Таблица 3.3.1. Статистическая информация для диады и пентады молекулы 72 GeH 4 .

Полоса

Центр полосы, см горячим полосам диады-пентады: (0100, E), (0001, F 2 ), (1000, A 1 ), (0010, F 2 ), (0101, F 1 ) и (0101, F 2 ). В то же время наличие переходов, принадлежащих горячим полосам, позволило получить значения колебательновращательных энергии для остальных пяти колебательных состояний пентады: (0200, A 1 ), (0200, E), (0002 , A 1 ), (0002, E) и (0002, F 2 ). Таким образом, было получено 3817 значений колебательно-вращательных энергий для одиннадцати возбужденных колебательных состояний диады и пентады.

2⌫ 4 (A 1 ) ⌫ 4 , 2⌫ 4 (E) ⌫ 4 , 2⌫ 4 (F 2 ) ⌫ 4 , ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 2 , ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 2 , ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 4 , ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 , 2⌫ 2 (A 1 ) ⌫ 2 и 2⌫ 2 (E) ⌫ 2 . Для

Параметры эффективного гамильтониана

Все 3817 колебательно-вращательных энергий (9112 экспериментальных переходов), обсуждавшихся в предыдущем разделе, использовались в качестве исходной информации в процедуре варьирования для определения спектроскопических параметров эффектив-Рисунок 3.3.4. Небольшие фрагменты экспериментальных спектров высокого разрешения изотопологов 72 GeH 4 (Рисунок (b); обогащение до 99,9 %), 73 GeH 4 (Рисунок (c); обогащение до 99,9 %), 74 GeH ).

(⌫, ) ).

( ⌫ 0 , 0 ) ⌦(K, n ) Значение (⌫, ) ( ⌫ 0 , 0 ) ⌦(K, n ) Значение (0000, A ) (0000, A ) 2(0, 
(⌫, ) 

( ⌫ 0 , 0 ) ⌦(K, n ) Значение (⌫, ) ( ⌫ 0 , 0 ) ⌦(K, n ) Значение (0101, F 2 ) 3(1, F 1 )10 4 -0,18456 (0002, 

76) в образце

Для оценки содержаний изотопологов в образце воспользуемся следующим соотношением [START_REF] Lukka | Molecular rotations and local modes[END_REF]: : 

P (part) = (prob) S N ⌫ (calc) S N ⌫ P (sample) , (3.5 
(calc) S N ⌫ (M ) = const • µ 2 (3.5.2) и (calc) S N ⌫ ( M ) = const • µ 2 M = const h µ + ( M M ) i = const • µ 2  1 + 2( M M ) µ = (calc) S N ⌫ (M )  1 + 2( M M ) µ , (3.5.3 
P (part) M • (prob) S N ⌫ (M ) (calc) S N ⌫ (M ) = P (part) M • (prob) S N ⌫ ( M ) (calc) S N ⌫ ( M ) (3.5.4) или P (part) M = P (part) M • (prob) S N ⌫ ( M ) (calc) S N ⌫ ( M )  1 + 2( M M ) µ . ( 3 
1 n X i 100 ⇥ S N exp ⌫ i S N calc ⌫ i S N exp ⌫ i ! 2 9 = ; 1/2 ⌘ ( 1 n X i 2 i ) 1/2 , ( 3 
m i = n i /N t ⇥ 100% (i = 1, 2, 3); n 1 , n 2 и n 3 -количество переходов, для которых разности | int i | удовлетворяют условию | int i |  3,0 %, 3,0 % < | int i |  5,0 % и | int i | > 5,0 %. c
Значения полученные из процедуры варьирования в настоящей работе.

d Воспроизведено для сравнения из работы [START_REF] Lether | The numerical computation of the Voigt function by a corrected midpoint quadrature rule[END_REF].

e Воспроизведено для сравнения из работы [START_REF] Hilico | Expression tensorielle de l'hamiltonien de vibration-rotation des molécules à symétrie tétraédrique[END_REF]. На основе параметров основного состояния и параметров полос ⌫ 2 /⌫ 4 из работы [START_REF] Rautian | The effect of collisions on the doppler broadening of spectral lines / S.G. Rautian, I.I. Sobelman[END_REF] был выполнен первичный расчет колебательно-вращательной энергетической структуры дважды возбужденных и комбинационной полос. В результате анализа проинтерпретировано 3007 переходов со значением J max = 22 для 74 GeH 4 , 2406 переходов со значением J max [START_REF] Berman | Speed-dependent collisional width and shift parameters in spectral profiles / P.R. Berman[END_REF]. В качестве подтверждения правильности результатов см. также Рисунок 3.6.9, где представлены невязки для интенсивностей линий в зависимости от квантового числа J, и смоделированные спектры на Рисунках 3.6.2-3.6.6.

(0200, E) (0002, F 2 ) 1(1, F 1 ) 0 
Рисунок 3.6.9.

Значения невязок для интенсивностей в зависимости от квантового числа J для пяти изотопологов молекулы германа.

Таблица 3.6.3. Относительные значения этих пяти основных параметров эффективного дипольного момента были оценены по специально измеренным 10 линиям в экспериментальном спектре, и как было оценено, соотносятся в пропорциях 6.0/0.9/(-1.1)/3.0 (F 2 ), ⌫ 2 + ⌫ 4 (F 1 ), 2⌫ 4 (F 2 ), 2⌫ 4 (E), 2⌫ 4 (A 1 ), 2⌫ 2 (A 1 ) и 2⌫ 2 (E) для изотополога 28 ).

Спектроскопические параметры P (⌦K ) (v l l )(vu u) эффективного дипольного момента полос ⌫ 2 +⌫ 4 , 2⌫ 2 и 2⌫ 4 изотопологов M GeH 4 (в Д) a . (v l , l )/(v u , u ) b sb (⌦, K, ) M = 70 M = 72 M = 73 M = 74 M = 76 (0000, A 1 )/(0200, E) E (1, 1, F 1 ) ⇥ 10 
/1.3 для полос 3⌫ 4 (1F 2 , 2F 2 ), ⌫ 2 + 2⌫ 4 (F 2 ) и 2⌫ 2 + ⌫ 4 (1F
(⌫, ) ( ⌫ 0 , 0 ) ⌦(K, n ) (0000, A 1 ) (0000, A 1 ) 2(0, A 1 ) 1 , 4 3 5 0 2 3 5 0 7 1 , 4 3 5 0 3 6 0 5 1 1 , 4 3 5 0 4 8 7 0 5 (0000, A 1 ) 4(0, A 1 ) 10 5 -0,912211 -0,912211 -0,912211 (0000, A 1 ) 4(4, A 1 ) 10 6 -0,4243309 -0,4243309 -0,4243309 (0000, A 1 ) 6(0, A 1 ) 10 9 0,157994 0,157994 0,157994 (0000, A 1 ) 6(4, A 1 ) 10 11 -0,69505 -0,69505 -0,69505 (0000, A 1 ) 6(6, A 1 ) 10 X ! q 2 + X µ⌫ k µ⌫ q q µ q ⌫ + X µ⌫⇣ k µ⌫⇣ q q µ q ⌫ q ⇣ , (4.1.7) и аналогично hcV 0 = 1 2 X ! 0 q 0 2 + X µ⌫ k 0 µ⌫ q 0 q 0 µ q 0 ⌫ + X µ⌫⇣ k 0 µ⌫⇣ q 0 q 0 µ q 0 ⌫ q 0 ⇣ , (4.1.8) где q , q 0 -безразмерные нормальные координаты материнской и изотопозамещенной модификации, соответственно. Как следствие (если принять во внимание известные формулы из работы [81] для различных колебательных спектроскопических параметров), можно показать, что выполняются следующие соотношения: Учитывая наличие известных экспериментальных значений центров полос диады и пентады молекулы 28 SiH 4 [START_REF] Cheglokov | On the determination of spectroscopic constants as functions of intramolecular parameters[END_REF][START_REF] Ulenikov | On the determination of spectroscopic constants as functions of intramolecular parameters / O.N. Ulenikov[END_REF] и общие результаты работы [81], то нетрудно оценить экспериментальные значения всех семи параметров, представленных в уравнении (4.1.9) Получены на основе экспериментальных центров полос диады и пентады молекулы 28 SiH 4 [START_REF] Cheglokov | On the determination of spectroscopic constants as functions of intramolecular parameters[END_REF][START_REF] Ulenikov | On the determination of spectroscopic constants as functions of intramolecular parameters / O.N. Ulenikov[END_REF].

для
b Оценены на основе уравнения (4.1.9) и значений параметров из настоящей Таблицы (колонка 2).

В третьем столбце приведены значения соответствующих параметров молекулы 28 Таблица 4.2.5. Предсказанные и экспериментальные колебательные энергии пентады 28 SiD 4 (в см 1

).

Состояние Энергия (пред.) Энергия (эксп.) (0200, A 1 ) 1 3 7 7 , 5 6 0 1 3 7 7 , 7 3 6 7 (0200, E) Список найденных переходов опубликован в Дополнительных материалах I к статье [START_REF] Hecht | The vibration-rotation energy of tetrahedral XY 4 molecules / K.T. Hecht[END_REF]. 

Все

Полоса

Центр, см (0000, A 1 ) (0000, A 1 ) 2(0, A 1 ) 1 , 4 3 5 0 2 3 5 0 7 1 , 4 3 5 0 3 6 0 5 1 1 , 4 3 5 0 4 8 7 0 5 (0000, A 1 ) 4(0, A 1 ) 10 5 -0,912211 -0,912211 -0,912211 (0000, A 1 ) 4(4, A 1 ) 10 6 -0,4243309 -0,4243309 -0,4243309 (0000, A 1 ) 6(0, A 1 ) 10 9 0,157994 0,157994 0,157994 (0000, A 1 ) 6(4, A 1 ) 10 11 -0,69505 -0,69505 -0,69505 (0000, A 1 ) 6(6, A 1 ) 10 11 -0,156444 -0,156444 -0,156444 (1000, A 1 ) (1000, A 1 ) 0(0, A 1 ) 1 5 6 3 , 2 1 5 6 3 , 2 1 5 6 3 , 2 (1000, A 1 ) 2(0, A 1 ) 10 2 -0,63 -0,63 -0,63 (1000, A 1 ) 4(0, A 1 ) 10 -0,879(62) -0,879 -0,879 (0020, F 2 ) 2(0, A 1 ) 10 3 -0,4080(50) -0,4080 -0,4080 (0020, F 2 ) 2(2, E) 10 3 0,3234(45) 0,3234 0,3234 0020, A 1 ) (0020, A 1 ) 0(0, A 1 ) -25,88 -25,88 -25,88 0020, E) (0020, E) 0(0, A 1 ) 1 , 1 1 0 9 5 1 ( 4 9 ) 1 , 1 1 0 9 5 1 1 , 1 1 0 9 5 1 (0020, E) 2(0, A 1 ) 10 3 -0,4149(58) -0,4149 -0,4149 (0020, E) 2(2, E) 10 3 -0,3995(50) -0,3995 -0,3995 0020, E) (0020, F 2 ) 1(1, F 1 ) 0 , 0 1 9 8 4 ( 4 4 ) 0 , 0 1 9 8 4 0 , 0 1 9 8 4 (0020, F 2 ) 2(2, F 2 ) 10 4 0,677(31) 0,677 0,677 (0020, F 2 ) 3(1, F 1 ) 10 5 -0,1542(35) -0,1542 -0,1542 0020, F 2 ) (0020, F 2 ) 0(0, A 1 ) -16,9605 0(13) -16,96050 -16,960 50 (0020, F 2 ) 1(1, F 1 ) 10 2 0,769(58) 0,769 0,769 (0020, F 2 ) 2(0, A 1 ) 10 
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3 .

 3 To investigate the vibrational-rotational spectra of the M GeH 4 molecule (M = 70, 72, 73, 74, 76) in the Dyad, Pentad, Tetradecad and Octad ranges. 4. To investigate the spectral line shapes (strengths, shifts and broadening coefficients) of the M GeH 4 molecule (M = 70, 72, 73, 74, 76) in the Dyad and Pentad ranges. 5. To calculate the initial values of the main spectroscopic parameters: the band centers and main contributions to the resonant interactions parameters based on the isotopic substitution theory for the SiD 4 molecule. 6. To investigate the vibrational-rotational structure of the spectra of the M SiD 4 molecule (M = 28, 29, 30) in the Dyad and Pentad ranges.

Figure 2 . 1 . 1 .

 211 Figure 2.1.1. Equilibrium configuration of XY 4 type molecules.

Figure 2 . 1 . 2 .

 212 Figure 2.1.2. Polyad scheme of the germane molecule up to the polyad number P 8 .

[ 138 ]

 138 . A specific difficulty causes this ambiguity, the classification of rotational wave functions |Jkmi according to the types of irreducible representations D (J↵) of the full orthogonal group O(3). The function |Jkmi has the following form |Jkmi = ( 1) (|m k|+m k)/2 N Jkm ✓ Jkm ( )e ik e im↵ , (2.2.1) where ↵, , are the Euler angles, N Jkm is the normalization factor, and ✓ Jkm is a function expressed in terms of the Jacobi polynomial. The eigenfunctions |Jkmi of the rigid spherical top operator form a basis of irreducible representations D (J) of the pure rotation group SO(3). When classifying vibrational-rotational wave functions, it becomes necessary to classify |Jkmi concerning irreducible representations to the group O(3) since it is this group, not the group SO(3), that contains the point group of the molecule as a subgroup. At this point, a problem arises related to determining the effect of the inversion operation on Euler angles, on which the |Jkmi functions depend. Let us assume that the functions |Jkmi do not change under the action of the inversion operation; that is, they are transformed by irreducible representations D (Jg) of the group O(3).

  Coriolis level splitting. In addition to the Coriolis splitting, vibrational-rotational levels also experience tetrahedral splittings. Each of the irreducible representations D (J 1)u , D (Ju) and D (J+1)u of the group O(3) considered on elements of the group T d becomes reducible. Therefore, each of the vibrational-rotational states transforming according to the representations D (J 1)u , D (Ju) and D (J+1)u , splits into several substates that are transformed by irreducible representations of the group T d according to the reduction of odd representations O(3) to irreducible representations of the group T d .

  .3.5) where F are the Clebsch-Gordan coefficients related to the group O (or T d ), and [ ] is the dimension of the irreducible representation ([ ] = 1, 1, 2, 3, 3 for = A 1 , A 2 , E, F 1 , F 2 ,respectively). Relationships between tetrahedral and spherical bond schemes can be expressed through expressions (2.3.2) and (2.3.5), taking into account the well-known orthogonality properties of the Clebsch-Gordan coefficients[START_REF] Rotenberg | The 3-j and 6-j Symbols[END_REF] 

.7. 8 )

 8 In this equation, |⌫ 1 l 1 1 i and h⌫ 2 l 2 2 | are symmetrized vibrational functions, where ⌫ and l are vibrational quantum numbers; is the symmetry of the function. The values Y ⌦K( K,n r )

GeH 4 and 73

 73 GeH 4 molecules in the Dyad/Pentad range were recorded on a Bruker IFS125HR Fourier spectrometer (Nizhny Novgorod, Russia). The experimental setup was equipped with a Globar source, a potassium bromide (KBr) beam splitter. To record spectra I and II, mercury-cadmium telluride (MCT) was used as a detector; for spectra III-VII, indium antimonide (InSb), both detectors were cooled with liquid nitrogen. The sample preparation procedure was as follows. Germane samples (with a declared purity of 99.9%) with a natural content of isotopes were synthesized at the Institute of Chemistry of Highly Pure Substances of the Russian Academy of Sciences in Nizhny Novgorod by the reaction between GeCl 4 and NaBH 4 , followed by purification by rectification. Then the sample was enriched

Fig. 3 .

 3 2.3 presents small fragments of the high-resolution spectra of the P (4) and R(4) clusters, which shows that, despite a slight change from the72 GeH 4 molecule to the 73 GeH 4 molecule, qualitative differences can be traced in their spectra. In particular, these figures show that the transitions (5, 2F 1 )-(4, 1F 2 ) and (5, 1A 2 )-(4, 1 A 1 ) for the73 GeH 4 isotopologue look like a single line, while the same transitions for the 72 GeH 4 isotopologue already look like two separate lines.

Figure 3 . 2 . 1 .

 321 Figure 3.2.1. Survey spectra of72 GeH 4 (orange) and73 GeH 4 (black) enriched up to 99.9% (upper trace) in the region of 4020-4260 cm 1 (for the experimental conditions, see Table1). The bottom traces present corresponding simulated spectra.

Fig. 2 .

 2 Fig. 2. Experimental spectra of72 GeH 4 and 73 GeH 4 in the region of the P-branch ( Fig.2 a) and (the R -branch ( Fig.2 c); for the experimental conditions, see Table1. The traces 2b and 2d present corresponding simulated spectra.

Figure 3 . 2 . 2 .

 322 Figure 3.2.2. Experimental spectra of 72 GeH 4 and 73 GeH 4 in the region of the P -branch (a) and the R-branch (c); for the experimental conditions, see Table 1. The traces (b) and (d) present corresponding simulated spectra.

  Figure 3.2.2. Experimental spectra of 72 GeH 4 and 73 GeH 4 in the region of the P -branch (a) and the R-branch (c); for the experimental conditions, see Table 1. The traces (b) and (d) present corresponding simulated spectra.

Fig.

  Fig. 3. Small portions (traces 3a and 3c) of the high-resolution experimental spectra I and III of 72 GeH 4 and 73 GeH 4 in the region of the P (4) and R (4) clusters of the

Figure 3 . 2 . 3 .

 323 Figure 3.2.3. Small portions (a) and (c) of the high-resolution experimental spectra of 72 GeH 4 and 73 GeH 4 in the region of the P (4) and R(4) clusters of the 2⌫ 1 (A 1 )/⌫ 1 + ⌫ 3 (F 2 ) bands. For the experimental conditions, see Table 1. The traces (b) and (d) present corresponding simulated spectra.

4 JFig. 5 .

 45 Fig. 5. Observed -calculated line positions and fit statistics for bands studied in the present paper: Fig. 5 a and b correspond to the ν1 + ν3 (F 2 ) / 2 ν1 (A 1 ) bands of 72 GeH 4 and 73 GeH 4 , respectively.

Figure 3 . 2 . 4 .

 324 Figure 3.2.4. Observed -calculated line positions and fit statistics for studied bands: (a) and (b) correspond to the 2⌫ 1 (A 1 )/⌫ 1 + ⌫ 3 (F 2 ) bands of 72 GeH 4 and 73 GeH 4 , respectively.

Fig. 4 .

 4 Fig. 4. Plots of dependence of the values (in cm -1 ) of some spectroscopic parameters of M GeH 4 on the mass M of the M Ge nucleus (experimental data are taken from this

[ 60 ]

 60 Figure 3.2.5. Plots of dependence of some spectroscopic parameters of M

3 .

 3 Pentads (1925-2275 cm 1 / Fig. 3.3.3), where are ⌫ 1 (A 1 )/⌫ 3 (F 2 ) stretching bands. Arrows above the spectra indicate the band centers. Although the centers of the 2⌫ 4 and 2⌫ 2 bands are also indicated in Fig. 3.3.2, their vibrational-rotational transitions are not visible in the experimental spectrum. The corresponding vibrational-rotational energies of the vibrational states were determined only from "hot" transitions (see below). It is also important to note the following: the obtained synthetic spectra in the lower part of Fig. 3.3.3 have a visual difference from the corresponding experimental spectra in the upper part of the figure;

3

 3 

  .3.4 (b) and (d) shows one of the experimentally registered clusters for different germane isotopologues in the region of the R-branch. As one more confirmation of this rule: Fig. 3.3.6 shows plots of the dependence of the values of some more extensive spectroscopic parameters of germane isotopologues on the mass M .

  rms =2.24 x10 -4 cm -1 d rms =2.30 x10 -4 cm -1 d rms =2.93 x10 -4 cm -1 Obs.-Calc. line position / 10

Figure 3 . 3 . 5 .

 335 Figure 3.3.5. Observed -calculated line positions and fit statistics for studied bands: (a)-(d) correspond to the bands of the Dyad, to the "hot" bands of the Dyad-Pentad, to a set of the bending bands of the Pentad, and to the two stretching bands of the Pentad, respectively.

  Fig. 3.4.2, where all three branches of the strong ⌫ 4 band are clearly pronounced (left side of Fig. 3.4.2) and a much weaker ⌫ 2 band (right side of Fig. 3.4.2). The experimental setup are presented in Subchapter 3.1 (in Table 3.1.2 for I 0 spectrum). Weak transitions and the absence of a clear structure in the ⌫ 2 band are because it is "forbidden" by symmetry and appears in the spectrum only due to the strong Coriolis interaction with the ⌫ 4 band. Figs. 3.4.3 and 3.4.4 show two small fragments of the high-resolution spectrum in the regions of the P -and R-branches. It can be seen that the line clusters shift to the region of lower wavenumbers upon passing from the isotopologue 76 GeH 4 to 70 GeH 4 .

8Fig. 4 .

 4 Fig. 4.Plots of the dependence of some spectroscopic parameter values (in cm -1 ) on the mass M of the isotopic species of germane (experimental data are taken from Section 4 and from Refs.[55][56][57] ).

Figure 3 .

 3 Figure 3.4.1.Dependence of some spectroscopic parameter values (in cm 1 ) on the mass

Fig. 2 .

 2 Fig. 2. Small part of the high resolution experimental spectrum of germane in the region of the R -branch of the ν4 band (top trace). Traces (c)-(g) show the corresponding simulated spectra of separate germane isotopologues; (b) is the global simulated spectrum as a sum of simulated (c)-(g) spectra.

Figure 3 . 4 . 3 .

 343 Figure 3.4.3. A small part of the high-resolution experimental spectrum of germane in the region of the R-branch of the ⌫ 4 band (top trace). Traces (c)-(g) show the corresponding simulated spectra of separate germane isotopologues; (b) is the global simulated spectrum as a sum of simulated (c)-(g) spectra.

4 OFig. 1 .

 41 Fig. 1. Experimental survey spectrum of germane in the region of the first dyad (top trace). Experimental conditions: absorption path length is 13.28 mm; room temperature 294.5 K; number of scans is 620; sample pressure is 150 Pa. Traces (c)-(g) show the simulated spectra of separate germane isotopologues; (b) is the global simulated spectrum as a sum of simulated (c)-(g) spectra.

Figure 3 . 4 . 2 .

 342 Figure 3.4.2. Experimental survey spectrum of germane in the region of the first Dyad (top trace). Experimental conditions see in Table 3.1.1; (b) is the global simulated spectrum as a sum of simulated (c)-(g) spectra.

6 OFig. 3 .

 63 Fig. 3. Small part of the high resolution experimental spectrum of germane in the region of the P-branch of the ν 4 band (top trace). Traces (c)-(g) show the corresponding simulated spectra of separate germane isotopologues; (b) is the global simulated spectrum as a sum of simulated (c)-(g) spectra.
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 344 Figure 3.4.4. A small part of the high-resolution experimental spectrum of germane in the region of the P -branch of the ⌫ 4 band (top trace). Traces (c)-(g) show the corresponding simulated spectra of separate germane isotopologues; (b) is the global simulated spectrum as a sum of simulated (c)-(g) spectra.

  GeH 4 ); ( M M ) is the difference between the effective dipole moments µ M and µ M of isotopologues M GeH 4 and M GeH 4 .

( 20 .

 20 52 ± 0.31)%, (27.28 ± 0.36)%, (8.36 ± 0.72)%, (35.56 ± 0.41)%, and (8.36 ± 0.76)% (or partial pressures (30.78 ± 0.46), (40.92 ± 0.54), (12.54 ± 1.08), (53.34 ± 0.61) and (12.54 ± 1.14) in Pa) for 70 GeH 4 , 72 GeH 4 , 73 GeH 4 , 74 GeH 4 and 76 GeH 4 , respectively. It was this content of isotopologues in the sample under study that was then used in the analysis of the line intensities. Just these isotopologue abundances in the studied sample were used then in the line strength analysis.

  3.5.1 shows examples of approximation of the vibrational-rotational experimental lines (for comparison, the same lines of five different isotopologues are shown) as a dependence of the value of ⌧ /

  GeH 4 isotopologue was analyzed, and 243 line intensities were determined, making obtaining 4 parameters possible. The parameter values are given in Table 3.5.3 along with their statistical confidence intervals 1 that reproduce 243 line strenths (235 lines of the ⌫ 4 band and 8 lines of the ⌫ 2 band; J max = 18) with d rms = 3.46 %. The value of d rms was determined by the formula 8 < :

  GeH 4 and 76 GeH 4 isotopologues, the initial values of the effective dipole moment parameters were estimated by interpolation/extrapolation of the corresponding parameters of the 70 GeH 4 , 72 GeH 4 and 74 GeH 4 isotopologues (see Fig. 3.5.2) and only one main parameter for 73 GeH 4 and 76 GeH 4 isotopologues fitted. Three other parameters were constrained to interpolated/extrapolated values (they are presented in Table 3.5.3 without confidence intervals). The obtained results for the 73 GeH 4 , 75 GeH 4 and 76 GeH 4 isotopologues are shown in Table 3.5.2. The obtained parameters make it possible to reproduce the original experimental data with d rms = 3.21 %, 3.38 % and 3.45 %, respectively (see also the statistical information in Table

Fig. 5 .Fig. 6 .

 56 Fig. 5. Experimental line shape of the P (6, F 2 ) transition of the ν 4 band for five different isotopologues of germane (for experimental conditions, see Section 2 ). The fit of the experimental line shapes was made with the Hartmann-Tran profile of individual lines. The solid and dashed lines correspond to the experimental and calculated value of τ ( ˜ ν) . The bottom part of the figures shows the (exp.-calc.) residuals.

Figure 3 . 5 . 1 .

 351 Figure 3.5.1. Experimental line shape of the P (6, F 2 ) transition of the ⌫ 4 band for five different isotopologues of germane (for experimental conditions, see Table 3.1.2). The solid and dashed lines correspond to the experimental and calculated ⌧ (⌫) value. The bottom part of the figures shows the (exp.-calc.) residuals.

5 . 6 .

 56 3.5.3, which shows the residuals for the line strengths depending on the quantum number J (see also the simulated spectra (b)-(g) in Figs.3.4.2-3.4.4). Approximately 100,000 found transitions (600-1190 cm 1 region, minimum line strength value 1.00 ⇥ E-26 cm 1 /(mol • cm 2 ), J max = 40) are presented in Supplementary Material III to[START_REF] Ulenikov | High resolution analysis of GeH 4 in the dyad region: Ro-vibration energy structure of 70 GeH 4 and line strengths of M GeH 4[END_REF] in HITRAN format. ig. Experimental line shape of the P (6, F 2 ) transition of the ν 4 band for five different isotopologues of germane (for experimental conditions, se he experimental line shapes was made with the Hartmann-Tran profile of individual lines. The solid and dashed lines correspond to the experiment f τ ( ˜ ν) . The bottom part of the figures shows the (exp.-calc.) residuals. ig. Plots of the dependence of values (in D) of the obtained effective dipole moment parameters on the mass M of the isotopic species of ood linearity of all four plots. Dark triangles, stars, squares, and circles correspond to the values of parameters obtained from the fit. Open cir xtrapolated/interpolated values.
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 3527 Figure 3.5.2. Dependence of values (in D) of the obtained effective dipole moment parameters on the mass M of the isotopic species of germane. One can see good linearity of all four plots. Dark triangles, stars, squares, and circles correspond to the values of parameters obtained from the fit. Open circles correspond to the extrapolated/interpolated values.
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 353 Figure 3.5.3. Observed minus calculated line strengths (in per cent) including fit statistics for the ⌫ 2 /⌫ 4 bands of the five stable isotopologues of germane.

. 54 a

 54 u) of the effective dipole moment of the Dyad of the M GeH 4 isotopologues (in D) a Values in parentheses are statistical confidence intervals 1 . Parameters presented without confidence intervals were constrained to theoretically estimated values (see text for details).
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 362 Figure 3.6.2. Experimental survey spectrum of germane in the region of the first Dyad (a). Experimental conditions see in Table 3.1.2. Traces (c)-(g) show the simulated spectra of separate germane isotopologues; trace (b) is the global simulated spectrum as a sum of the simulated (c)-(g) spectra. Lines belonging to the ⌫ 2 + ⌫ 4 , 2⌫ 2 and 2⌫ 4 bands are marked by the black, orange and red colors.

Figure 3 . 6 . 3 . 74 M = 72 M = 70 Figure 3 . 6 . 4 .

 363747270364 Figure 3.6.3. Small part of the high-resolution experimental spectrum of germane in the region of the ⌫ 2 + ⌫ 4 band (upper trace). The lower trace shows the corresponding simulated spectrum. The cluster P (9, ) ( = A 2 , F 2 , F 1 and A 1 ) of the ⌫ 2 + ⌫ 4 (F 2 ) sub-band of all five M GeH 4 isotopologues is marked.
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 365 Figure 3.6.5. Small part of the high-resolution experimental spectrum of germane in the region of the 2⌫ 4 band (upper trace). The lower traces (c)-(g) show the corresponding simulated spectra for the individual isotopologues. The cluster P (12, ) ( = E, F 1 and A 1 ) of the 2⌫ 4 (F 2 ) sub-band of all five M GeH 4 isotopologues is marked. Trace (b) is the global simulated spectrum as the sum of the simulated (c)-(g) spectra.

GeH 4 ,

 4 72 GeH 4 ,74 GeH 4 isotopologues, which were analyzed for the first time, Fig. 3.6.7 shows (experiment calculation) line positions and the fit statistics. The parameters of 70 GeH 4 and 73 GeH 4 isotopologue, which marked with stars (?), were obtained by interpolation/extrapolation of the values of the corresponding parameters of the other three isotopologues and were not fitted.

1 2v 2 / 4 JFigure 3 . 6 . 7 .

 124367 Figure 3.6.7. Observed calculated line positions and fit statistics for "cold" bands studied in the present paper of the 70 GeH 4 , 72 GeH 4 and 74 GeH 4 species.

Figure 3 . 6 . 6 .

 366 Figure 3.6.6. Small part of the high-resolution experimental spectrum of germane in the region of the 2⌫ 2 band (upper trace). The (c)-(g) traces show the corresponding simulated spectra for the individual isotopologues. The Q(9, ) ( = F 2 , F 1 and A 1 ) and Q(10, ) ( = A 2 , F 2 and E) clusters of the 2⌫ 2 (E) sub-band of all five M GeH 4 isotopologues is marked. Trace (b) is the global simulated spectrum as the sum of simulated (c)-(g) spectra.

1 )

 1 (Contin.) Spectroscopic parameters Y ⌦(K,n ) vl ,v 0 l 0 0 of the set of interacting vibrational states (0002)/(0101)/(0200) of GeH 4 (in cm

1 ) 3

 13 -13.057692(23) -13.048400(27) -13.043753(11) -13.039565(19) -13.029825(13) Line strength analysis of the bending triad 2⌫ 2 , ⌫ 2 + ⌫ 4 and 2⌫ 4 bands of germane molecule In Subchapter 1.3, Eq. (1.3.1) was introduced to calculate the vibrational-rotational line strengths without external fields. It is worth noting here that the statistical weight of the nuclear spin (on which the intensity depends) of the GeH 4 molecule is g A = 5, 5, 2, 3, and 3

Figure 3

 3 Figure 3.6.8. Experimental line shape of the R(7, A 2 ) transition of the ⌫ 2 + ⌫ 4 band for five different isotopologues of germane (for experimental conditions, see Table 3.1.2). The solid and dashed lines correspond to the experimental and calculated ⌧ (⌫) value. The bottom

b

  sb is symmetry of vibrational sublevels. c Parameters were constrained to theoretically estimated values (see text for details).

  3.6.10 shows the dependence of half-width on pressure for the same band transition ⌫ 2 + ⌫ 4 (F 2 ) as in Fig. 3.6.8. The lower part of Fig. 3.6.10 shows the correctness of determining the self-broadening coefficients and line shifts.

Figure 3

 3 Figure 3.6.10. Upper part: Examples of FTIR line spectra recorded at different pressures for the R(7, A 2 ) transition of the ⌫ 2 + ⌫ 4 band for five different isotopologues of germane (for experimental conditions, seeTable 3.1.2). Bottom part: measured self-broadening and maximum line-shift coefficients at room temperature vs pressure.

  .

  7.3), which reproduce 1726 experimental lines of ten vibrational states of the 72 GeH 4 molecule with d rms = 7.5 10 4 cm 1 . The bottom part of Fig. 3.7.3 shows the theoretically calculated spectrum derived from the parameters in Table 3.7.3. The relative strengths were estimated using five effective dipole moment parameters (one main effective dipole moment parameter for each of
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 372 Figure 3.7.2. Residuals for transition frequencies as a function of the quantum number J for the 3⌫ 4 , ⌫ 2 +2⌫ 4 and 2⌫ 2 +⌫ 4 bands.

  3.7.2, whichshows the residuals for the transition frequencies as a function of the quantum number J.

Figure 3 .

 3 Figure 3.7.3. A small part of the experimental spectrum of the 72 GeH 4 molecule of the 3⌫ 4 band (upper part of the figure). The bottom

a

  The values of the energies of the rotational terms of the ground vibrational state obtained in[START_REF] Ulenikov | First high-resolution comprehensive analysis of 72 GeH 4 spectra in the Dyad and Pentad regions[END_REF]. b Energy values of excited vibrational-rotational states. c The differences between experimental ⌫ exp and calculated ⌫ calc values of line positions.

Chapter 4 Investigation

 4 of the vibrational-rotational structure of the SiD 4 This chapter is devoted to the study of the fine vibrational-rotational spectral structure of three deuterated silane isotopologues, M SiD 4 (M = 28, 29, 30), in the Dyad and Pentad regions.

4. 1 . 1 4 . 1 . 2

 11412 First high resolution study of the Pentad bending bands of deuterated silane Description of the spectra and assignment of transitions To give the reader an impression about relative strengths of the stretching and bending bands in the Pentad range, Fig. 4.1.1 shows the survey spectra I (black) and II (orange). On that figure one can see clearly pronounced the ⌫ 2 + ⌫ 4 band (or ⌫ 2 + ⌫ 4 (F 2 ) and ⌫ 2 + ⌫ 4 (F 1 ) subbands) centered around 1365 cm 1 . The 2⌫ 4 band with the center near 1345 cm 1 and 2⌫ 2 band near 1379 cm 1 are much weaker and are entirely overlapped by the strong lines of the ⌫ 2 + ⌫ 4 band. As an illustration of the quality of the recorded high-resolution spectra, Figs. 4.1.2-4.1.4 show small areas: near the central part of the I spectrum (see Fig. 4.1.2) and in the P -and R-branches of spectrum II (see Figs. 4.1.3 and 4.1.4).The SiD 4 molecule is also a spherical top-type molecule with a symmetry group isomorphic to the point group T d . As a consequence, transitions in absorption are "allowed" only between vibrational states (⌫ ) and (⌫ 0 0 ) for which Eq. (3.2.1) is satisfied. Transitions are "allowed" by symmetry only from the ground vibrational state (symmetry A 1 ) to vibrational states of the F 2 -type (in our case, these are ⌫ 2 + ⌫ 4 (F 2 ) and 2⌫ 4 (F 2 ) subbands). Transitions belonging to vibrational bands of any other symmetry can appear in absorption spectra only due to resonant interactions with vibrational bands of F 2 -type symmetry (in our case, these are all other 2⌫ 2
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 411 Figure

0 ⌫ 4 (A 1 ) ⌫ 4 ( 3 2⌫ 4 (F 2 ) ⌫ 2 2⌫ 4 (F 2 ) ⌫ 4 (⇥10 4 cm 1 d f rms 4 . 76 ⇥10 4 cm 1 30 4 2⌫ 2 (

 04143422424476142 SiD

2 2⌫ 4 (F 2 ) ⌫ 4 (⇥10 4 cm 1 d f rms 6 . 33 ⇥10 4 cm 1 a 1 , 2 ⇥10 4 cm 1 <  4 ⇥

 242463311214 Value of the upper vibrational energy. b N tr is the number of assigned transitions. c N l is the number of obtained upper-state energies. d Here m i = n i /N ⇥ 100% (i = 1, 2, 3); n 1 , n 2 and n 3 are the numbers of transitions for which the differences = ⌫ exp⌫ calc satisfy the conditions  2 ⇥ 10 4 cm 10 4 cm 1 and > 4 ⇥ 10 4 cm 1 . e For "cold" bands.
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 412 Figure

4. 1 . 3 4 molecule

 134 Analysis of the (⌫ 4 = 2), (⌫ 2 = ⌫ 4 = 2), (⌫ 2 = 2) vibrational states and determination of the spectroscopic parameters of the28 SiDAs discussed in Subchapter 4.2.1, 6490 transitions with the maximum quantum numberJ max =33, 32, 33, 33, 25, 23, and 31 were analysed for the first time for seven vibrational bands

Figure 4 . 1 . 3 .

 413 Figure

  parameters) were obtained and are presented in column 4 of Table4.1.4 along with their (1 ) statistical confidence intervals. Practical use of the data from Table4.1.4 also requires knowledge of parameters of both the ground vibrational state and of the (⌫ 2 = 1)/(⌫ 4 = 1), which are presented in Table4.1.2. A set of 69 parameters obtained as a result of weighted fit procedure reproduces 6490 initial values of experimental vibrational-rotational energies with

Figure 4 . 1 . 4 .

 414 Figure 4.1.4. Small portion of the high-resolution spectrum II of 28 SiD 4 in the "blue" part of the studied region. Lines of the 2⌫ 2 (E) (black color) and ⌫ 2 + ⌫ 4 (F 1 ) (red color) bands are marked by open circles and squares. The lower trace presents the simulated spectrum for illustration (see text for details).

Fig. 4 .

 4 Fig. 4.1.5 shows the residuals of the line positions approximation depending on the quantum number J. Figs. 4.1.1-4.1.4 show the simulated spectra in the studied region (lower parts of the figures), which show good agreement with the experimental ones (upper parts of the figures). In this case, we calculated the relative line strengths, and only two main effective dipole moment parameters of two "allowed" ⌫ 2 + ⌫ 4 (F 2 ) and 2⌫ 4 (F 2 ) bands, were used with the ratio of 1:4.

  1.3). When compared with the theoretically calculated "hot" line positions, these 5545 experimental values give d rms = 2.33 ⇥ 10 4 cm 1 . Also, Fig.4.1.5 shows the residuals for the discussed line positions as a function of the quantum number J.4.1.4 H ! D isotopic substitution in the Pentad region of silaneTaking into account the availability of accurate information about the vibrational structure of the28 SiH 4 molecule in the[83] Pentad range, it is interesting to compare the results obtained in this analysis with the results of theoretical estimates based on the isotopic substitution theory. In the case of a good correlation of such estimates with the results obtained from the analysis of experimental data, it is advisable to recommend appropriate preliminary estimates of the spectroscopic parameters in the study of absorption spectra in the short-wavelength regions more challenging to analyze.Estimation of various spectroscopic parameters and band center shifts during the isotopic substitution of nuclei is possible based on the use of the[START_REF] Bykov | On the displacements of centers of vibration-rotation bands under isotope substitution in polyatomic molecules[END_REF] relations, which are valid for arbitrary isotopic substitution in any polyatomic molecule:1. A set of equations that allows one to determine the wave numbers of all harmonics ! 0 ⌫ , an isotopically substituted molecule, from the harmonic wave numbers ! ⌫ , the "mother" molecule (below in Eqs. (4.1.1)-(4.1.4), and ↵ can take the values x, y or z; , µ and ⌫ enumerate vibrational modes (for molecules of T d -symmetry (XY 4 -type) , µ and ⌫ can take the values 1; 2 1 , 2 2 ; 3 x , 3 y , 3 z , or 4 x , 4 y , 4 z )):

  (4.1.2) and (4.1.3) make it possible to calculate the vibrational mode constants of the substituted isotopologue depending on the characteristics of the "mother" molecule. The K e value is a matrix that ensures the rotation of the coordinate axes of molecular equilibrium from the "mother" to the isotopically substituted molecule. Taking into account the vibrational mode constants l N for the "mother" molecule used in Eq. (4.1.3), and if we assume that m D ⇡ 2m H , then it is easy to show that A. The elements of all nine diagonal values A are very close to 1 2 ; B. All non-diagonal A µ ( 6 = µ) elements (with the exception of A 3↵4↵ (↵ = x, y, z)) are equal to zero; C. Point B is valid for three coefficients A 3↵4↵ : A 3↵4↵ ⇡ 0.060. If we use the result obtained in Eq. (4.1.

Fig. 4 .

 4 Fig. 4.1.5 shows the residual of the approximation for the line position as a function of the quantum number J.

4 . 2 . 1 ,

 421 the center of ⌫ 1 + ⌫ 3 band can be easily determined. The task of determining/estimating the centers of other stretching bands of the Tetradecad is not simple, but it is important for correctly describing the resonant interaction in a molecule. In this subchapter, we briefly discuss how this problem can be solved based on the known experimental data on the centers of the stretching bands of the Pentad/Tetradecad of the28 SiH 4 molecule and the centers of the ⌫ 1 (A 1 ), ⌫ 3 (F 2 ) and ⌫ 1 + ⌫ 3 (F 2 ) bands of28 SiD 4 molecule.

.2. 2 )

 2 To determine the three parameters !, x, and (instead of two, as in the "rigorous" local mode model), one can use three experimental band centers of the 28 SiH 4 molecule. To make the estimation more stable, we used not three but seven band centers of28 SiH 4 molecule from[START_REF] Permogorov | The local mode model in silane and germane / D. Permogorov, A. Campargue[END_REF][START_REF] Ulenikov | High resolution study of strongly interacting ⌫ 3 (F 2 )/⌫ 1 (A 1 ) bands of M SiD 4[END_REF] (they are reproduced in column 2 of Table4.2.1) as the initial data in the fit of the three above mentioned parameters. As a result of the fitting procedure, the following parameter values were obtained: ! = 2255.50 cm 1 , = 3.47 cm 1 and x = -8.62 cm 1 . The reproduction result of the seven initial band centers is shown in column 3 of Table4.2.1.

4. 2 . 2

 22 Fig. 4.2.1 (a) shows an overview of the experimental spectra III (black) and IV (orange), where one can see clearly three pronounced branches of the strong ⌫ 1 + ⌫ 3 band of the SiD 4 molecule. Weak transitions belonging to the 2⌫ 3 band can be observed in the range 3220-3250 cm 1 in the stronger spectrum IV. Three small fragments of the high-resolution spectrum in the R-and P -branches of the ⌫ 1 + ⌫ 3 band and the R-branches of the 2⌫ 3 band are shown in Figs. 4.2.2-4.2.4.Due to the huge abundance of the 28 SiD 4 isotopologue in the sample (about 92.23 %), its lines are much stronger than the corresponding lines of the other two isotopologues. For this reason, the spectrum of this molecule was analyzed first. Since, at this stage, the center of only the ⌫ 1 +⌫ 3 band can be obtained without doubt from the experimental data, theoretical estimations (see above section and column 4 of Table4.2.1) of all five centers of stretching vibrational bands of the Tetradecad were used in the fit procedure as the initial approximation. As a result of the analysis, 1264 transitions belonging to the ⌫ 1 +⌫ 3 band were analyzed up to the maximum value of the quantum number J max = 36. Moreover, the correct prediction of the band centers (as will be seen from further discussion) made it possible to identify 139 transitions belonging to the 2⌫ 3 (F 2 ) band with the quantum number J max = 21 and 70 transitions for 2⌫ 3 (E) with
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 422 Figure 4.2.2. Small part of the high resolution experimental spectrum I (upper trace) in the region of the R-branch of the ⌫ 1 + ⌫ 3 band. Traces (b)-(e) are the simulated spectra. The Qbranch of all three isotopologues can be seen in the left sides of the figure (see text for details). Weak transitions which are seen in the experimental spectrum, but are not seen in the simulation spectrum, belong to the hot dyad-icosad bands of M SiD 4 (see also strong spectrum II in Fig 4.2.1).
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 423 Figure 4.2.3. Fragment of the high resolution experimental spectrum I (upper trace) in the region of the P -branch of the ⌫ 1 + ⌫ 3 band. Traces (b)-(e) are the simulated spectra (for the experimental conditions see Table 4.1.1).

bN 1 Figure 4 . 1 . 5 .

 1415 Figure 4.1.5. Observed -calculated line positions and fit statistics for the "cold" and "hot" bands of 28 SiD 4 , 29 SiD 4 and 30 SiD 4 , respectively.

SiD 4 .

 4 The results of parameter approximation are presented in columns 5 and 6 of Table4.2.4, where values in parentheses are 1 statistical confidence intervals. The values of d rms = 3.5 ⇥ 10 4 cm 1 (for 199 transitions and 5 fitted parameters) and 3.3 ⇥ 10 4 cm 1 (for 169 transitions and 5 fitted parameters) for 29 SiD 4 and 30 SiD 4 , respectively. Fig. 4.2.5 shows the transition residuals as a function of the quantum number J.
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 425 Figure 4.2.5. Observed minus calculated line positions including fit statistics for the studied bands of M SiD 4 (M = 28, 29, 30).

2 .

 2 For the first time, high-resolution IR spectra of the 72 GeH 4 molecule were recorded in the Dyad and Pentad regions and vibrational-rotational transitions belonging to the vibrational bands ⌫ 2

  4 (E) and 2⌫ 4 (F 2 ) and the spectroscopic parameters of the effective Hamiltonian are determined. 3. For the first time, the line positions of the ⌫ 2 /⌫ 4 fundamental bands were analyzed, and the vibrational-rotational energies of the upper vibrational states of the 70 GeH 4 molecule were determined. The resulting transitions made it possible to determine a set of spectroscopic parameters that describe the vibrational-rotational structure of the ⌫ 2 /⌫ 4 bands with an accuracy close to the experimental uncertainty.

4 . 4 (1F 2 ,2⌫ 4 ⌫ 2 ,

 44242 The integral line strengths of the ⌫ 2 /⌫ 4 fundamental bands of the M GeH 4 molecule (M = 70, 72, 73, 74, 76) by approximating the shape of the measured lines by the Hartmann-Tran profile function. The obtained data made it possible to determine the parameters of the effective dipole moment of the ⌫ 2 /⌫ 4 bands. 5. High-resolution IR spectra of the 73 GeH 4 molecule in the region of the ⌫ 1 +⌫ 3 (F 2 ) and 2⌫ 1 (A 1 ) were recorded. The vibrational-rotational transitions belonging to these bands were analyzed, and the spectroscopic parameters of the effective Hamiltonian were determined. 6. High-resolution IR spectra of the M GeH 4 molecule (M = 70, 72, 73, 74, 76) in the region of 1400-2000 cm 1 were recorded and analyzed for the first time, where two stretching 2⌫ 2 , 2⌫ 4 and the combination ⌫ 2 + ⌫ 2 bands are located. An inverse spectroscopic problem was solved and the parameters of high-order centrifugal distortion, tetrahedral splitting, and resonant interaction for all five isotopologues are determined. 7. The integral line strengths of the ⌫ 2 + ⌫ 4 (F 1 ) and ⌫ 2 + ⌫ 4 (F 2 ) molecules M GeH 4 (M = 70, 72, 73, 74, 76), which were determined from the approximation of the line shape by the Hartmann-Tran profile function. The weighted approximation procedure made it possible to determine the parameters of the effective dipole moment. 8. The line shapes of the ⌫ 2 + ⌫ 4 (F 2 ) and ⌫ 2 + ⌫ 4 (F 1 ) bands of all five germane isotopologues are analyzed for the first time using multispectral approximation by the Hartmann-Tran profile function. The self self-broadening coefficients and self line shifts are obtained. 9. The high-resolution vibrational-rotational spectrum of the 72 GeH 4 molecule in the Octad region has been studied for the first time and ten interacting vibrational-rotational 3⌫ F 1 , 2F 2 ), ⌫ 2 + ⌫ 4 (1E, F 1 , F 2 , 2E) and 2⌫ 2 + ⌫ 4 (1 F 2 , F 1 , 2F 2 ) bands were analyzed. The found transitions made it possible to determine the spectroscopic parameters, namely, the parameters of centrifugal distortion, resonant interactions, and tetrahedral splittings. 10. Based on the isotope substitution theory, the initial values of the main spectroscopic parameters are calculated: the band centers and the main contributions to the parameters of resonant interactions for the SiD 4 molecule. Preliminary estimates of the spectroscopic parameters in the study of absorption spectra in the more difficult to analyze shortwavelength regions of wavelengths make it possible to correctly predict the vibrational energies for the SiH 4 and SiD 4 molecules. 11. High-resolution IR spectra of the M SiD 4 molecule (M = 28, 29, 30) were recorded in the region 3020-3260 cm 1 , where the stretching bands ⌫ 1 + ⌫ 3 (F 2 ) and 2⌫ 3 (F 2 , E) of Tetradecade are located. A special analysis was made of estimating the centers of ⌫ 1 + ⌫ 3 (F 2 ) and 2⌫ 3 (F 2 , E) and 2⌫ 1 (E, A 1 ) bands and the transitions belonging to the listed bands are anylyzed for the first time. As a result of the fitting procedure, the centrifugal distortion, resonant interaction, and tetrahedral splitting parameters were determined. 12. The vibrational-rotational spectrum of the M SiD 4 (M = 28, 29, 30) molecule in the Pentad range, where the bands 2⌫ 4 , ⌫ 2 + ⌫ 4 , 2⌫ 2 , 2⌫ 4 ⌫ 2 are localized , ⌫ 2 + ⌫ 4 ⌫ 2 , 2⌫ 2 ⌫ 2 and ⌫ 2 + ⌫ 4 ⌫ 4 , has been recorded and theoretically analyzed for the first time. As a result of the spectral analyzis, transitions belonging to the "cold" and "hot" bands were found. The obtained transitions made it possible to determine the vibrational-rotational energies of the upper states and the spectroscopic parameters of the effective Hamiltonian. Further development of this research is logically connected with the following directions: 1. Extension the acquired knowledge about the fundamental characteristics of the GeH 4 and SiD 4 molecules to the study of other spherical top molecules (in particular, XY 4 ).2. Continuation of the study of vibrational-rotational spectra of GeH 4 and SiD 4 molecules in the overlying spectral regions, particularly in the regions of Icosad, Triacontad, etc. 3. Continuation of the determination of the absorption characteristics of the GeH 4 and SiD 4
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.1. 1 )

 1 где m n и m e -массы ядер и электронов, z n и e -заряды ядер и электрона, r -расстояние между частицами, -оператор Лапласа в декартовых координатах. Первые два слагаемых -это операторы кинетической энергии электронов и ядер, соответственно. Три последних -операторы потенциальной энергии молекулы: межэлектронное и межъядерное отталкивание и электрическое притяжения электронов к ядрам. Более удобным и практичным способом описания состояний молекулы является такой, при котором используются функции состояний зависящие от ориентации молекулы (вращательные переменные) в пространственно-фиксированной системе координат и от относительного расположения ядер молекулы (колебательные переменные). Иначе говоря, используются координатные системы связанные с молекулой. В связи с этим возникает задача перехода от классического квантового гамильтониана (1.1.1), записанного в декартовой пространственно-фиксированной системе координат, к квантово-механическому гамильтониану в связанной с молекулой системе координат. Кратко рассмотрим процедуру перехода от оператора (1.1.1) к оператору, зависящему от трансляционных, вращательных и колебательных координат.
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 45 где x n↵ и x i↵ -компоненты векторов, описывающих положения n-го ядра и i-го электрона в в пространственно-фиксированной системе координат, R ↵ -компоненты вектора центра масс молекулы и  ↵ -матрица направляющих косинусов углов между осями старой и новой систем. Необходимо определить молекулярную систему координат таким образом, чтобы ее начало находилось в центре масс молекулы: Здесь ri -компоненты координат i-го электрона в молекулярной системе. Координаты n-ого ядра r в молекулярной системе выражаются как
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 1113 где V -потенциальная функция молекулы и ✏ ↵ -полностью антисимметричный тензор. Добавим к соотношениям (1.1.7)-(1.1.11) условие (1.1.5), которое можно пред-Приведенные 3n условий (1.1.10)-(1.1.13) достаточно для определения 3n параметров r(0) n , а 3n(3n 6) соотношений (1.1.7)-(1.1.10) и (1.1.12) для определения 3n(3n 6) констант форм колебаний l n ⇣ . Таким образом, преобразование координат (1.1.3) и (1.1.4) задается в явном виде. Однако, описанная соотношениями (1.1.3)-(1.1.13) схема введения новых координат обладает существенным недостатком: чтобы определить координаты электронов и ядер, необходимо знать в каждый момент времени не только ядерную конфигурацию, но и расположение всех электронов относительно ядер, поскольку начало новой координатной системы помещено в центр масс всей молекулы. Это приводит к усложнению задачи. Более естественным является такое определение координат, когда rn и rn отсчитываются от центра масс не всей молекулы, а только систем ядер. В этом случае положение координатных осей зависит не только от конфигурации ядер и, следовательно, они могут быть всегда легко определены. Тогда выражения преобразования координат [54] имеют следующий вид

  .1.15) где M = P n m n + P i m e -полная масса моолекулы, r n и r i -положения ядер и электронов в системе, начало которых фиксировано в центре масс ядер. Используя выражения (1.1.14) и (1.1.15) можно определить закон преобразования операторов импульса, которые входят в гамильтониан молекулы. Такие преобразования могут быть получены посредством использования полинома Лагранжа [54]:

  ) справедлив лишь для нелинейных молекул. Также следует сказать, что важную роль в физике молекул занимает приближение Борна-Оппенгеймера. Суть этого приближения заключается в решении уравнения Шредингера с учетом разделения движения электронов и ядер. Это основано на том факте, что масса ядра в тысячи раз больше массы электрона, при этом скорость движения электронов очень высока (примерно 1% от скорости света) по сравнению со скоростью ядра. По этой причине можно считать, что электроны движутся в поле покоящихся ядер. На языке квантовой механики это эквивалентно допущению, что полная волновая функция молекулы может быть выражена в виде произведения электронной и ядерной функций, а полная энергия -в виде суммы электронной энергии и колебательно-вращательной энергии ядер. Первая часть этой задачи может быть решена с использованием гамильтониана, который отвечает за электронную энергию и состоит из суммы кинетической энергии электронов и потенциальной энергии (см. (1.1.17)) в стационарном уравнении Шрёдингера:

, µ 0 ↵ , µ 0 ⌫↵

 00 , ...параметры, описывающие зависимость компонент дипольного момента µ ↵ от координат нормальных колебаний. Первые члены µ e ↵ в уравнение (1.3.4) отвечают за чисто вращательные переходы, вторые члены (пропорциональные первому порядку колебательных координат) отвечают за появление фундаментальных полос переходов при поглощении, и т.д. Оператор G, представленный в уравнении (1.3.3), -унитарный оператор, известный из теории эффективных операторов [50, 55, 57, 66], который был рассмотрен в Разделе 1.2.
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 712 Величины v µ j называются параметрами эффективного дипольного момента определенной колебательной полосы hv| |0i и v A j -симметричные вращательные операторы. Определение параметров эффективного дипольного момента возможно посредством измерения экспериментальных интенсивностей линий колебательно-вращательных спектров. Для этого спектральная линия должна быть аппроксимирована некоторым теоретическим контуром. Контур (или профиль) изолированной спектральной линии определяется как нормированная на единицу площади величина и может быть объяснен следующими физическими факторами: Принцип неопределенности Гейзенберга или спонтанное излучение, отвечающие за естественное уширение линии. Наименьшая возможная ширина линии определяется вероятностью спонтанного перехода. В данном случае компонент общей формы линии описывается лоренцевским профилем, который, однако, достаточно узок, чтобы им можно было безопасно пренебречь в пользу следующих двух вкладов. Тепловое поступательное движение молекулы со скоростью v a приводит падающие излучение частоты ⌫ 0 к частотному смещению ⌫ = ±(v a /c)⌫ 0 в молекулярной системе отсчета. Это явление хорошо известно как эффект Доплера, который приводит к уширению спектральных линий, вызванного распределением скоростей молекул. Соответствующий доплеровский профиль выражается через доплеровскую полуширину D функцией Гаусса:
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 9 При низких давлениях преобладает эффект Доплера, а по мере его увеличения, все большее значение приобретают эффекты столкновений. В качестве первого приближения для получения результирующей формы линии обычно используется свертка неоднородного Доплеровского профиля с однородным Лоренцевским профилем. Она определяет так называемый профиль Фойгта, который содержит формы Доплера и Лоренца и включает в себя три параметра D , , . Параметр D не зависит от состава газовой смеси и имеет известную зависимость от температуры D = r 2 ln(2)kT mc 2 ⌫ 0 , (1.3.10) где T -температура, m -масса молекулы. В настоящее время общепризнано, что профиль Фойгта не дает вполне точного представления о форме спектральной линии и его использование может привести, например, к систематической недооценке экспериментальных интенсивностей линий [67-69]. Существует много предложенных моделей для описания профиля линии. В Таблице 1.3.1 перечислены некоторые из разработанных ключевых моделей профиля линии и упорядочены по количеству параметров, необходимых для характеристики одного спектрального перехода. Более подробно о недостатках и преимуществах других контуров описано в работе [70]. На сегодняшний день рекомендуемым [70] к использованию (в том числе, для представления результатов в базы HITRAN ) является так называемый контур Артмана-Тран [71, 72]. В этом контуре учтены не только лоренцевское и доплеровское уширения спектральных линий, но также и влияние изменения скорости молекул при столкновениях.

2

 2 Также отметим влияние изменений скорости, вызванных столкновениями, на форму спектральной линии (сужение Дике). В этом случае становится важной сила соударений, т.е. их эффективность при изменении скорости. Модели жестких столкновений предполагают, что скорости молекул до и после каждого столкновения полностью декоррелированы, то есть каждое столкновение настолько сильное, что молекула полностью теряет память о своей предыдущей скорости, а ее новая скорость просто следует распределению Максвелла. Соответствующий линейный профиль называется профилем Раутиан или, что то же самое, профилем Нелкина-Гатака. Гипотеза мягких столкновений, при которых необходимо много столкновений, чтобы существенно изменить скорость молекул, приводит к профилю Галатри [71, 72]. Обе модели жестких и мягких столкновений вводят один дополнительный параметр ⌫ vc , для количественной оценки изменения частоты от скорости из-за столкновений. В таблице 1.3.1 указаны механизмы столкновений для каждого контура. Глава Основы неприводимых тензорных операторов для исследования спектров молекул типа XY 4 При описании молекул типа сферического волчка (молекул типа XY 4 ) возникают значительные трудности как вычислительного характера, так и связанные с пониманием физической картины их поведения. Для преодоления этих трудностей наиболее эффективными оказались идеи теории симметрии, в частности аппарат неприводимых тензорных операторов. В данной главе рассматриваются простейшие приложения формализма неприводимых тензорных операторов к задачам молекулярной спектроскопии. Наибольший вклад в разработку математического аппарата неприводимых тензорных операторов для задач молекулярной спектроскопии был внесен работами Хекта

2. 1

 1 Общие спектроскопические свойства и структура молекул типа XY 4 Рассматриваемые в данной диссертационной работе молекулы силана и германа относятся к группе молекул типа XY 4 . Молекулы такого типа обладают сферической симметрией, которая изоморфна точечной группе T d . Данная группа симметрии включает в себя двенадцать элементов группы T (все повороты, совмещающие тетраэдр сам с собой, четыре оси третьего порядка C 3 , проходящие через вершину тетраэдра, и три оси второго порядка C 2 , соединяющие середины непересекающихся ребер) шесть плоскостей симметрии , проходящих через две вершины тетраэдра и середину противоположного ребра, и шесть зеркально-поворотных осей четвертого порядка S 4 . Равновесная конфигурация молекулы изображена на Рисунке 2.1.1. Рисунок 2.1.1. Равновесная конфигурация молекул типа XY 4 . Как известно, нелинейные молекулы имеют 3n -6 колебательных степеней свободы (n -число атомов) и каждой из которых соответствует своя фундаментальная частота. Однако, высокая симметрия у молекул типа XY 4 приводит к тому, что девяти колебательным степеням свободы соответствует четыре нормальных колебания: невырожденное колеба-

  Ju) и D (J+1)u группы O(3), рассмотренное на элементах группы T d , становится приводимым. Следовательно, каждое из колебательно-вращательных состояний, преобразующихся по представлениям D (J 1)u , D (Ju) и D (J+1)u , распадается на ряд подсостояний, преобразующихся по неприводимым представлениям группы T d согласно редукции нечетных представлений O(3) на неприводимые представления группы T d . Схема возможных тетраэдрических расщеплений колебательно-вращательных состояний молекул тетраэдрической симметрии приведена на Рисунке 2.2.2 (для J = 3 и ⌫ 3 = 2). Стоит сказать, что данная схема отражает лишь принципиальную возможность возникновения таких расщеплений, происходят ли они на самом деле в молекулах или нет, зависит от конкретных значений физических величин, например от масс ядер, равновесных межъядерных расстояний, параметров внутримолекулярного силового поля. Все перечисленные величины входят как параметры в выражении для гамильтониана (1.1.17), который можно переписать в упрощенной форме

)

  где компоненты тензорных операторов, обозначенные индексом m, будем называть стандартными компонентами сферических тензоров. Поскольку коэффициенты Клебша-Гордана определяются только в рамках унитарного преобразования, ориентация неприводимых представлений может быть установлена физическими соображениями. Например, чтобы получить выражения для энергетических уровней трижды вырожденных колебательных состояний четвертого порядка, Морет-Байи, Готье и Монтагутелли [102] ввели так называемые кубические компоненты сферических тензоров, связанные со стандартными компонентами

)

  где v v , Jn J r и m s однозначно определяют любую симметризованную колебательновращательную функцию, а индексы v , r и также указывают на симметрию колебательной, вращательной и колебательно-вращательной функций, соответственно. Функции |v r v i и |Jn J r r i в уравнение (2.5.1) -чисто колебательные и вращательные волновые функции (в нашем случае симметризованные по группе T d ). Значение [ ] обозначает размерность неприводимого представления. Чисто вращательные функции |Jn J r r i, будучи в нашем случае функции, симметризованные в T d группе, могуь быть построены в соответствии с общим уравнением, ана-логичным уравнению (2.4.5):
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 14 могут быть использованы для определения спектроскопических параметров Y ⌦(K,n ) vl ,v 0 l 0 0 эффективного гамильтониана (2.4.2). Для этого оператор H вида (2.4.1) следует подставить в уравнения (1.2.10)-(1.2.14) и после проведения всех необходимых упрощений сравнить полученные результаты с уравнением (2.4.2). Нет необходимости приводить все промежуточные вычисления для параметров (более подробные расчеты можно найти в работе [107]), а запишем результаты расчетов спектроскопических параметров Y ⌦(K,n ) vl ,v 0 l 0 0 (⌦ 6 2) для молекул типа XY 4 (для описания диады/пентады взаимодействующих колебательных состояний).
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 31472 Настоящая глава диссертации посвящена исследованию тонкой колебательно-вращательной структуры спектров пяти изотопологов молекулы германа в районе диады, пентады, тетрадекады и октады. Результаты, представленные в данной главе, опубликованы в работах [114-119]. Экспериментальные условия регистрации спектров молекулы GeH GeH 4 и 73 GeH 4 в даипазоне диады/пентады происходила на фурье-спектрометре Bruker IFS125HR (Нижний Новгород, Россия). Экспериментальная установка была оснащена источником Globar, светоделителем из бромида калия (KBr). Для регистрации спектров I-III (см. Таблицу 3.1.1) в качестве детектора использовался антимонид индия (InSb), для IV-VIII -теллурид ртути-кадмия (MCT). Оба детектора охлождались житким азотом. Методика пробоподготовки состояла в следующем. Образцы германа (с заявленной чистотой 99,9%) с естественным содержанием изотопов были синтезированы в Институте химии особо чистых веществ РАН в Нижнем Новгороде реакцией между GeCl 4 и NaBH 4 с последующей очисткой методом ректификации.

0,003 см 1 4 см 1 3 C для спектра VIII 0 .

 14130 в диапазоне 700-4400 см 1 . В эксперименте применялась функция аподизации Нортона-Бира (слабая). Для всех измерений использовалась многоходовая ячейка Уайта с длиной основания 0,75 м, которая была постоянно подключена к вакуумной системе газовой пробы, турбомолекулярному насосу и емкостным манометрам в диапазоне 0,01-100 Торр. Оптический отсек спектрометра откачивался механическим насосом до 0,02 Торр и это давление оставалось постоянным во время всего эксперимента. В результате было зарегистрировано восемь спектров. Окончательные спектры (см. далее в тексте) были получены путем усреднения 1000-1250 сканирований и прокалиброваны по наиболее интенсивным и хорошо разрешенным спектральным линиям молекулы CO 2 (более 50 линий) и H 2 O (более 80 линий), параметры которых взяты из базы данных HITRAN [120]. После калибровки стандартное отклонение между измеренными и табличными положениями пиков выбранных линий было оценено как менее 3•10 4 см 1 для спектров I-III и 1,8•10 для спектров IV-VIII. Детали проведенных экспериментов представлены в Таблице 3.1.1. Спектры I 0 -VIII 0 (см. Таблицу 3.1.2) моногермана GeH 4 регистрировались в спектральном диапазоне 600-4800 см 1 с помощью инфракрасного фурье-спектрометра Bruker IFS125HR (прототип Zürich ZP2001 [121]) в ИК-лаборатории Технического университета Брауншвейга (Брауншвейг, Германия). Образец газа GeH 4 был приобретен у Linde AG с заявленной чистотой 99,999%. Три цикла замораживание-накачка-оттаивание подтвердили указанную чистоту образца газа. Поскольку герман является легковоспламеняющимся, потенциально пирофорным/самовоспламеняющимся и высокотоксичным газом [122], необходимо соблюдать меры предосторожности. Поэтому перед подачей в оптическую кювету ограниченное количество газа было предварительно заполнено в чашеобразной колбе на 1000 мл в вытяжном шкафу. Замкнутая система наполнения оптических измерительных ячеек продувалась азотом сразу после регистрации спектров [123]. Спектрометр оснащен источником излучения Globar и светоделителем из бромида калия (KBr) с оптическим разрешением 0,003 см 1 и самоаподизацией (Boxcar). Спектр I 0 регистрировался с использованием ячейки Уайта из нержавеющей стали с длиной основания 1 м при длине оптического пути (24,0524 ± 0,012) м, спектры II 0 -VII 0 -при использование однолучевой ячейки из нержавеющей стали при длине оптического пути 230,5 ± мм в сочетании с полупроводниковым детектором MCT313; спектр VIII 0 регистрировался с оптической ячейкой из алюминия при длине оптического пути (13,28 ± 0,2) мм в сочетании с полупроводниковым детектором MCT316. Окончательные спектры (см. далее в тексте) были получены путем усреднения от 300 до 1400 сканирований (подробнее см. в Таблице 3.1.2). Для анализа интенсивностей спектральных линий необходим точный мониторинг давления в образце, поэтому был задействован каскад из трех термокомпенсирующих емкостных датчиков Pfeiffer (CMR 361, CMR 362 и CMR 363), устойчивых к агрессивным газовым средам и не зависящих от типа газа, с диапазонами 0,1-1100 гПа и 0,01-110 гПа для спектров I 0 -VII 0 и 0,1-1100 гПа, 0,01-110 гПа, 0,001-11 гПа для спектра VIII 0 . Тензометрический датчики откалиброваны на заводе и производитель заявляет точность измеренного значения 0,2%. Общая оценка ошибки давления в образце во время всех измерений составила в диапазоне ±0,5%. Температуру контролировали с помощью термометра сопротивления PT100 (Ahlborn Almemo 2590, заявленная точность измеренного значения 0,03%), и она находилась в диапазоне (23,4-23,8) ± 0,7 C для спектров I 0 -VII 0 и 21,5 ± 0,Согласно закону Бера-Ламберта, интенсивность линии S может быть рассчитана как площадь под контуром одиночной линии поглощения A line умноженная на постоянные величины для зарегистрированных спектров S = k B T P L A line , (3.1.1) где P -давления в образце GeH 4 , T -температура, L -оптическая длина пути. Значение A line рассчитывается как

  Для иллюстрации кластерной структуры ветвей на Рисунках 3.2.4 (a) и 3.2.4 (c) приведены более узкие диапазоны P (2)-P (12) и R(1)-R(12). На Рисунке 3.2.5 представлены небольшие фрагменты спектров высокого разрешения кластеров P (4) и R(4), где видно, что, несмотря на незначительное изменение при переходе от молекулы 72 GeH 4 к молекуле 73 GeH 4 , в их спектрах прослеживаются качественные различия. В частности, из этих рисунков видно, что переходы (5, 2F 1 )-(4, 1F 2 ) и (5, 1A 2 )-(4, 1A 1 ) для изотополога 73 GeH 4 выглядят как одна линия, а те же самые переходы для 72 GeH 4 изотополога уже выглядят как две отдельные линии. Как упоминалось в предыдущей главе, молекула GeH 4 представляет собой молекулу типа сферического волчка, симметрия которой изоморфна точечной группе T d . Как следствие, переходы разрешены только между колебательными состояниями (⌫ ) и (⌫ 0 0 )для которых выполняется соотношение[START_REF] Humlicek | Optimized computation of the Voigt and complex probability functions[END_REF][START_REF] Michelot | Nuclear hyperfine interaction in spherical tops in their ground electronic andvibranic states[END_REF] 

ac

  Значения полученные из процедуры варьирования в настоящей работе. b Взято для сравнения из работы[START_REF] Moret-Bailly | Introduction au calcul de l'énergie de vibration-rotation des molécules à symétrie sphérique[END_REF].Взято из работы[START_REF] Champion | Développement complet de l'hamiltonien de vibration-rotation adapté à l'étude des interactions dans les molecules toupies sphériques[END_REF].

Рисунок 3 . 3 . 1 .

 331 Обзорный спектр IV молекулы72 GeH 4 в области 750-950 см1 (условия эксперимента см. в Таблице 3.1.1). Нижняя часть рисунка представляет смоделированный спектр.

  этих девяти полос определенно 2351 переходов с максимальным значением квантового числа J max = 30. Полный список проинтерпретированных переходов также представлен в виде Дополнительных материалов к опубликованной работе[START_REF] Lether | The numerical computation of the Voigt function by a corrected midpoint quadrature rule[END_REF]. Следует отметить, что около 85% переходов приходится на диапазон диады. Оставшиеся 15% переходов очень слабые, на уровне шума. Что касается полос в области пентады, то около 65% найденных переходов принадлежат холодным полосам, а остальные линии относятся к горячим или очень слабым.Вышеупомянутые шесть холодных полос дали возможность получить колебательновращательные энергии только для шести колебательных состояний диады и пентады:
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 333 Обзорные спектры VI и VII молекулы 72 GeH 4 в области 1925-2275 см 1 (условия эксперимента см. в Таблице 3.1.1). Нижняя часть рисунка представляет смоделированный спектр.
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 335000020 Значения невязок для переходов в зависимости от квантового числа J: (a)-(d) соответствуют полосам диады, горячим полосам диады/пентады, валентным и деформационным полосам пентады, соответственно. Также, на Рисунках 3.3.1-3.3.4 приведены синтетические спектры, рассчитанные с параметрами, полученными в настоящей работе, и соответствующие экспериментальные спектры. Относительные интенсивности были рассчитаны для смоделированных спектров на Рисунках 3.3.1 и 3.3.2, а для расчета интенсивностей линий спектров на Рисунках 3.3.3 и 3.3.4 использовались параметры эффективного дипольного момента из работы [133]. Интересно сравнить как сдвиги положения линий, так и изменение различных спектроскопических параметров при переходе от одного изотополога германа к другому. В соответствии с результатами и выводами теории изотопозамещения [127], чем меньше значение M где M и M 0 -массы атома до и после изотопозамещения, соответственно), тем более линейно указанные характеристики (сдвиги линий и параметры) зависят от изменения масс замещенных атомов. Для молекулы германа значение M Как следствие, для данной молекулы указанное правило следует применять с достаточно высокой точностью. Чтобы проиллюстрировать справедливость этого правила, на Рисунке 3.3.4 (b) и (d) представлен один из экспериментально зарегистрированных кластеров для разных изотопологов германа в области R-ветви. Еще одно подтверждение справедливости данного правила: на Рисунке 3.3.6 приведены графики зависимости значений некоторых более крупных спектроскопических параметров изотопологов германа от массы M .
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 3434101 Колебательно-вращательная энергетическая структура молекулы70 GeH 4 в диапазоне диадыОбзорный спектр молекулы70 GeH 4 в области 740-960 см 1 продемонстрирован на Рисунке 3.4.2, где отчетливо видны все три ветви сильной полосы ⌫ 4 (левая часть Рисунка 3.4.2) и значительно слабая полоса ⌫ 2 (правая часть Рисунка 3.4.2). Детали эксперимента представлены в Разделе 3.1 (см. Таблицу 3.1.2, спектр I 0 ). Слабые переходы и отсутствие четкой структуры у полосы ⌫ 2 обусловлены тем фактом, что она является запрещенной по симметрии и проявляется в спектре лишь из-за сильного кориолисова взаимодействия с полосой ⌫ 4 . На Рисунках 3.4.3 и 3.4.4 приведены два небольших фрагмента спектра высокого разрешения в областях P -и R-ветвей. Видно что кластеры линий смещаются в область меньших значений волновых чисел при переходе от изотополога 70 GeH 4 к 76 GeH 4 . Анализ положения линий спектра изотополога 70 GeH 4 проводился одновременно с варьированием параметров как возбужденных колебательных состояний (0001, F 2 ) и (0100, E), так и основного колебательного состояния (0000, A 1 ). При этом учитывалась практически линейная зависимость смещения положения линий разных изотопологов в зависимости от изменения массы ядер Ge. В результате анализа были определены 487 переходов со значением квантового числа J max = 25 для полосы ⌫ 4 и 92 перехода со значением квантового числа J max = 14 для полосы ⌫ 2 . Полный список найденных переходов представлен в Дополнительных материалах к статье [116]. Полученные переходы были задействованы в процедуре варьирования параметров эффективного гамильтониана (2.4.2) как для основного (0000, A 1 ), так и для возбужденных (0001, F 2 ) и (0100, E) колебательных состояний. Оценка начальных значений параметров осуществлялась путем экстраполяции значений соответствующих параметров четырех других изотопологов взятых из работ [115, 126, 131]. Анализ проводился как с помощью специально разработанного кода SPHETOM (SPHerical TOp Molecules) [125], так и с помощью программного пакета Dijon XTDS [130]. В Таблице 3.4.1 представлены значения спектроскопических параметров молекулы 70 GeH 4 , полученные из аппроксимации экспериментальных данных, а также значения их статистических доверительных интервалов (1 ). Для удобства восприятия информации, параметры в Таблице 3.4.1 приведены в привычных обозначениях программы XTDS/Dijon. Значения параметров, которые представлены без скобок, были ограничены оценочными значениями соответствующих параметров (см. выше). Хорошее качество процедуры варьирования подтверждается приведенными данными в Дополнительном материале I к опубликованной работе [116], где показаны различия между экспериментальными положениями линий и рассчитанными с параметрами из Таблицы 3.4.1. В результате значение d rms составило 2, 08 ⇥ 10 4 см 1 (для 579 исходных экспериментальных линий и 10 варьируемых параметров), что сравнимо с экспериментальной неопределенностью. На Рисунке 3.4.1 представлены зависимости значений некоторых основных спектроскопических параметров колебательных состояний (0001, F 2 ) и (0100, E), а также некоторых параметров резонансного взаимодействия, от величины массы M ядер Ge. На всех десяти графиках наблюдается практически линейная зависимость между параметрами от значения M . Данный факт соответствует положениям теории изотопозамещения, что можно рассматривать как хорошее подтверждение правильности полученных результатов. Графики зависимости значений некоторых спектроскопических параметров (в см 1) молекулы M GeH 4 от массы M ядра M Ge (на основе экспериментальных данных из настоящей работы и из[START_REF] Lether | The numerical computation of the Voigt function by a corrected midpoint quadrature rule[END_REF][START_REF] Moret-Bailly | Introduction au calcul de l'énergie de vibration-rotation des molécules à symétrie sphérique[END_REF][START_REF] Hilico | Expression tensorielle de l'hamiltonien de vibration-rotation des molécules à symétrie tétraédrique[END_REF]). колебательных состояний (0100)/(0001) молекулы германа (в см Взято из работы[START_REF] Moret-Bailly | Introduction au calcul de l'énergie de vibration-rotation des molécules à symétrie sphérique[END_REF].
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 544001 Анализ интенсивности линий в диапазоне диады ⌫ 2 /⌫ Рассмотренный экспериментальный спектр в Разделе 3.4 (Рисунок 3.4.2) был использован также для анализа интенсивностей линий всех пяти изотопологов германа. Как показал предварительный анализ, содержание изотопологов в исследованном спектре незначительно отличаются от его естественного содержания. Этот вывод был сделан на основании известного факта из теории изотопозамещения [127], что для молекул с малым значением отношения M любой спектроскопический параметр изменяется практически линейно в зависимости от изменения массы замещенных ядер. В данном случае предположение о естественном содержании изотопологов в используемом образце приводит к нелинейной зависимости. По этой причине в качестве первого шага исследования интенсивностей линий был проведен анализ содержания различных изотопологов германа в образце.
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 51 Оценка содержаний изотопологов M GeH 4 (M = 70, 72, 73, 74,

. 1 ) 0 M M 0 ⌧ 1 )

 1001 где P (sample) и P(part) обозначают полное давление образца (газовой смеси) и парциальное давление отдельного изотополога, соответственно. Величина (prob) S N ⌫ представляет собой интенсивность линии, которая может быть получена из экспериментального спектра исследуемого образца путем аппроксимации формы линии специальной функцией (см. ниже) в предположении 100% содержания рассматриваемых изотопологов в образце. Значение (calc) S N ⌫ также представляет собой интенсивность линии, которая рассчитывается по формуле (1.3.2). Анализ правой части уравнения (1.3.2) для линий одной ветви для разных изотопо-логов GeH 4 показывает, за исключением R B A , что они отличаются друг от друга не более чем на 0,1%, даже в худшем случае сравнения изотопологов 70 GeH 4 и 76 GeH 4 . В свою очередь, величина R B A зависит от эффективного дипольного момента второго порядка соответствующего изотополога. Если принять во внимание указанную выше замену ядер M ядрами M 0 ( M , то можно увидеть, что для двух изотопологов с массами ядер Ge, равными M и M справедливы следующие соотношения:

)

  где µ -эффективный дипольный момент для полосы ⌫ 4 одного из изотопологов M GeH 4 (например, 70 GeH 4 ); ( M M ) -разница между значениями эффективных дипольных моментов µ M и µ M изотопологов M GeH 4 и M GeH 4 . Если теперь подставить уравнения (3.5.4) и (3.5.5) в уравнение (3.5.3), то нетрудно показать, что для различных пар изотопологов справедливы следующие соотношения:
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 5351 Принимая во внимание, что общее давление образца представляет собой сумму парциальных давлений всех пяти изотопологов (как показал анализ примеси других соединений в (S N ⌫ 0 ) • N -интенсивность отдельной линии, которая определяется формулой (1.3.1). Экспериментальная форма линии перехода P (6, F 2 ) полосы ⌫ 4 для пяти различных изотопологов германа (условия эксперимента смотри в Разделе 3.1). Варьирование экспериментальных форм линий осуществлялась контуром Артмана-Тран. Сплошная и штриховая линии соответствуют экспериментальному и расчетному значению ⌧ (⌫). В нижней части риснука показана разница между экспериментальным и расчетным контурами (Эксп. Расч.). Значения интенсивности линий, полученные в результате анализа экспериментальных данных, представлены в Приложении II к опубликованной работе [116] вместе с их экспериментальными ошибками, которые указаны в скобках. Затем эти данные использовались в качестве исходной информации для определения параметров эффективного дипольного момента (2.7.6) полосы ⌫ 4 для всех пяти изотопологов германа. На первом этапе был проведен анализ изотополога 70 GeH 4 и определены 243 интенсивности линий, которые позволили получить 4 параметра. Значения параметров приведены в Таблице 3.5.3 вместе с их статистическими доверительными интервалами (1 ), которые воспроизводят 243 интенсивности линий (235 линий полосы ⌫ 4 и 8 линии полосы ⌫ 2 ; J max = 18) с d rms = 3,46 %. Значение d rms определялось по формуле 8 <
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 54352354 Воспроизведено для сравнения из работы[START_REF] Moret-Bailly | Introduction au calcul de l'énergie de vibration-rotation des molécules à symétrie sphérique[END_REF].Значения в скобках представляют собой статистические доверительные интервалы(1 ).Параметры, представленные без доверительных интервалов, были ограничены теоретически оцененными значениями (подробности см. в тексте). Графики зависимости значений полученных параметров эффективного дипольного момента (в Д) от массы M изотопной разновидности германа. Видна хорошая линейная зависимость всех четырех графиков. Темные треугольники, звезды, квадраты и кружки соответствуют значениям параметров, полученных в результате процедуры варьирования. Незакрашенные кружки соответствуют экстраполированным/интерполированным значениям. Список экспериментальных интенсивностей линий полосы ⌫ 4 молекулы M GeH 4 (M = 70, 72, 73, 74, 76

GeH 4 приведена в Таблице 3 . 5 . 2 .

 352 Полученные параметры позволяют воспроизводить исходные экспериментальные данные с d rms = 3,21 %, 3,38 % и 3,45 %, соответственно (см. также статистическую информацию в Таблице 3.5.2). Качество полученных результатов также подтверждается Рисунком 3.5.3, где представлены невязки для интенсивностей линий в зависимости от квантового числа J (см. также смоделированные спектры (b)-(g) на Рисунках 3.4.2-3.4.4). Около 100000 найденных переходов (область 600-1190 см 1 , минимальное значение интенсивности линии 1,00 ⇥ E-26 см 1 /(мол • см 2 ), J max = 40) представлены в Дополнительном материале III к работе [116] в формате HITRAN. Рис. 3.5.3. Значения невязок для интенсивностей в зависимости от квантового числа J для пяти стабильных изотопологов германа.

Рисунок 3 . 6 . 1 .

 361 Экспериментальный обзорный спектр III 0 молекулы германа в области первой диады полосы ⌫ 2 + ⌫ 4 . Условие эксперимента приведены в Разделе 3.1 (Таблица 3.1.2). На нижней части рисунка представлен соответствующий смоделированный спектр. 0 молекулы германа в области первой диады (а). Условия эксперимента приведены в Таблице 3.1.2. На рисунках (b)-(g) приведены соответствующие синтетические спектры отдельных изотопологов германа; (b) -глобальный смоделированный спектр как сумма смоделированных (c)-(g) спектров. Линии, принадлежащие полосам ⌫ 2 + ⌫ 4 , 2⌫ 4 , а также 2⌫ 4 , отмечены черным, оранжевым и красным цветом, соответственно.

= 23 для 72

 72 GeH 4 и 2316 переходов со значением J max = 21 для 70 GeH 4 (подробная статистическая информация в Таблице 3.6.1). Полный список найденных переходов представлен в Приложении 1 к опубликованной статье [117].

Рисунок 3 . 6 . 3 .. 103 Рисунок 3 . 6 . 4 .

 363103364 Небольшая часть экспериментального спектра высокого разрешения III 0 молекулы германа в области полосы ⌫ 2 + ⌫ 4 (верхняя часть рисунка). На нижней части рисунка показан соответствующий смоделированный спектр. Кластер P (9, ) ( = A 2 , F 2 , F 1 , A 1 ), принадлежащий подполосе ⌫ 2 + ⌫ 4 (F 2 ) всех пяти изотопологов M GeH 4 Небольшая часть экспериментального спектра высокого разрешения III 0 молекулы германа в области полосы ⌫ 2 + ⌫ 4 (верхняя часть рисунка). На нижней части рисунка показан соответствующий смоделированный спектр. Кластер R(8, ) ( = E, F 1 , A 1 ), принадлежащий подполосе ⌫ 2 + ⌫ 4 (F 2 ) для всех пяти изотопологов M GeH 4 .

0

 0 молекулы германа в области полосы 2⌫ 2 (верхняя часть рисунка). На (b)-(g) приведены соответствующие смоделированные спектры. Кластеры Q(9,) ( = F 2 , F 1 , A 1 ) и Q(10, ) ( = A 2 , F 2 , E), принадлежащие подполосе 2⌫ 2 (E) для всех пяти изотопологов MGeH 4 . Рисунок (b) представляет собой глобальный смоделированный спектр как сумму смоделированных спектров (c)-(g). Таблица 3.6.2.Спектроскопические параметры взаимодействующих состояний (0002)/(0101)/(0200) молекулы германа (в см 1

  метров (cм. Таблицу 3.7.3), которые воспроизводят 1726 экспериментальных линий десяти колебательных состояний молекулы 72 GeH 4 с погрешностью d rms = 7,5 • 10 4 см 1 . В нижней части Рисунка 3.7.2 показан теоретически рассчитанный спектр, который был получен на основе параметров из Таблицы 3.7.3. Для оценки относительных интенсивностей были использованы пять параметров эффективного дипольного момента (по одному основному параметру эффективного дипольного момента для каждой из пяти полос симметрии F 2 ).

Рисунок 4 . 2 . 2 .

 422 Небольшая часть спектра II высокого разрешения молекулы 28 SiD 4 вблизи центральной части исследуемого диапазона (верхняя часть рисунка). Условия эксперимента см. в Таблице 4.2.1. Линии, принадлежащие подполосам ⌫ 2 + ⌫ 4 (F 2 ) и ⌫ 2 + ⌫ 4 (F 1 ) (красный цвет), отмечены темными и светлыми квадратами; линии, принадлежащиеа подполосам 2⌫ 4 (F 2 ) и 2⌫ 4 (E) (черный цвет), отмечены темными и светлыми треугольниками; и линии подполосы 2⌫ 4 (A 1 ) отмечены незаштрихованными звездами. На нижней части рисунка представлен соответствующий смоделированный спектр.

SiD 4 .

 4 Подробную статистическую информацию см. в Таблице 4.2.3. Полный список найденных переходов представлен в Дополнительных материалах I к опубликованной статье[START_REF] Hecht | The vibration-rotation energy of tetrahedral XY 4 molecules / K.T. Hecht[END_REF].
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 224 Анализ колебательно-вращательной структуры колебательных состояний (⌫ 4 = 2), (⌫ 2 = ⌫ 4 = 2), (⌫ 2 = 2) и определение спектроскопических параметров молекулы 28 SiD Как обсуждалось в Разделе 4.2.1, впервые проинтерпретированны 6490 переходов с максимальным значением квантового числа J max = 33, 32, 33, 33, 25, 23 и 31 для семи

Рисунок 4 . 2 . 3 .

 423 Небольшая часть спектра высокого разрешения II молекулы28 SiD 4 в красной части исследуемого диапазона. Линии, принадлежащие подполосам ⌫ 2 + ⌫ 4 (F 2 ) и ⌫ 2 + ⌫ 4 (F 1 ) (красный цвет), отмечены темными и светлыми квадратами; линии подполос 2⌫ 4 (F 2 ) и 2⌫ 4 (E) (черный цвет) отмечены темными и светлыми треугольниками. На нижней части рисунка представлен соответствующий смоделированный спектр.колебательных полос -⌫ 2 + ⌫ 4 (F 2 ), ⌫ 2 + ⌫ 4 (F 1 ), 2⌫ 4 (F 2 ), 2⌫ 4 (E), 2⌫ 4 (A 1 ), 2⌫ 2 (A 1 ) и 2⌫ 2 (E) молекулы 28SiD 4 . Затем полученные значения переходов использовались в процедуре взвешенной аппроксимации с эффективным гамильтонианом (в этом случае для анализа также использовался программный пакет Dijon XTDS). В результате аппроксимации были получены 69 эмпирических эффективных параметров (23 параметра диагональных блоков и 46 параметров резонансного взаимодействия), значения которых представлены в столбце 4 Таблицы 4.2.3 вместе с их доверительными статистическими интервалами (1 ). Для расчета колебательно-вращательной структуры полос в диапазоне пентады (⌫ 2 + ⌫ 4 , 2⌫ 4 , 2⌫ 2 ) также требуются параметры как основного колебательного состояния, так и (⌫ 2 = 1)/ (⌫ 4 = 1) (параметры приведены в Таблице 4.2.1). Набор из 69 параметров, полученных в результате взвешенной аппроксимации, воспроизводит 6490 начальных значений

Таблица 4 . 2 . 1 .

 421 Спектроскопические параметры Y ⌦(K,n )vl ,v 0 l 0 0 основного колебательного состояния и колебательных состояний (0100)/(0001) молекулы SiD 4 (в см 1
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 112324024222424524441424246331 Энергии верхних колебательных уровней. b N tr -количество переходов. c N l -количество энергий верхних уровней.d m i = n i /N ⇥ 100% (i = 1, 2, 3); n 1 , n 2 и n 3 -количество переходов, для которых разности = ⌫ exp ⌫ calc удовлетворяют условиям  2 ⇥ 10
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 2315 Изотопозамещение H ! D молекулы силанаУчитывая наличие точной информации о колебательной структуре молекулы28 SiH 4 в диапазоне пентады [145], интересно сравнить результаты, полученные в настоящем анализе, с результатами теоретических оценок на основе теории изотопозамещения. В случае хорошей корреляции таких оценок с результатами, полученными из анализа экспериментальных данных, целесообразно рекомендовать соответствующие предварительные оценки спектроскопических параметров при исследовании спектров поглощения в более сложных для анализа коротковолновых областях длин волн. Оценка различных спектроскопических параметров и смещений центров полос при изотопическом замещении ядер возможна на основе использования соотношений [146], которые справедливы для произвольного изотопозамещения в любой многоатомной молекуле: Набор уравнений, позволяющий определить волновые числа всех гармоник ! 0 ⌫ , изотопически замещенной молекулы, от гармонических волновых чисел ! ⌫ , материнской молекулы (ниже в уравнениях (4.1.1)-(4.1.4), и ↵ могут принимать значения использовать полученный результат в уравнении (4.1.2), то нетрудно показать, что соотношения справедливы для всех четырех частот гармоник (девять диагональных коэффициентов A ). Имеются два дополнительных важных следствия, которые вытекают из общей теории изотопозамещения и должны быть справедливы для замещения SiH 4 ! SiD 4 : k 0 ...µ ⇡ (A ...A µ ) 1/4 k ...µ , (4.1.6) где k ...µ и k 0 ...µ -ангармонические параметры внутримолекулярных потенциальных функций материнской молекулы (в нашем случае SiH 4 ) и изотопозамещенных модификаций (в нашем случае SiD 4 ); соответствующие потенциальные функции имеют вид hcV = 1 2

  SiH 4 , полученные с помощью изотопических соотношений (4.1.9). В свою очередь, использование параметров из столбца 3 и экспериментально полученных центров полос ⌫ 2 = 689,87321 см 1 и ⌫ 4 = 674,53135 см 1 (см. работу [144] и ссылки к ней) позволяет предсказать значения колебательных энергий в диапазоне пентады молекулы 28 SiD 4 . Результат такого предсказания представлен в Таблице 4.2.5, где в третьем столбце приведены значения соответствующих колебательных энергий, полученных в настоящей работе из анализа экспериментальных данных. Видна хорошая корреляция между обоими наборами значений в столбцах 2 и 3. Это можно рассматривать как веский аргумент в пользу применимости обсуждаемого подхода для корректного предсказания колебательных энергии для молекул SiH 4 и SiD 4 в более коротковолновой области.

4. 2 . 4 и 30 SiD 4

 244 Анализ колебательно-вращательной структуры колебательных состояний (⌫ 4 = 2), (⌫ 2 = ⌫ 4 = 2), (⌫ 2 = 2) и определение спектроскопических параметров молекул 29 SiD 4 Описание спектров и идентификация переходов более слабых линий, принадлежащих молекулам 29 SiD 4 и 30 SiD 4 , производились аналогично обсуждавшемуся выше анализу молекулы 28 SiD 4 . В данном случае из-за наличия значительно слабых переходов в спектрах молекул 29 SiD 4 и 30 SiD 4 было найдено и проанализировано всего 403 перехода с максимальным значением квантового числа J max = 33 для 29 Si и 136 переходов с J max = 23, принадлежащие шести полосам (см. также статистическую информацию в Таблице 4.2.2).
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 44432432 Знание всех колебательных параметров позволяет оценить значения центров всех колебательных валентных полос молекулы28 SiD 4 . В частности, для полос, рассматриваемых в настоящем исследовании, соответствующие результаты приведены в столбце Таблицы 4.3.1. Идентификация переходов и определение спектроскопических параметров молекулы 28 SiD Рисунке 4.3.1 (a) представлены обзорные экспериментальные спектры III (черный) и IV (оранжевый), где можно видеть четко выраженную структуру трех ветвей сильной полосы ⌫ 1 + ⌫ 3 молекулы SiD 4 . Слабые переходы, принадлежащие полосе 2⌫ 3 , можно наблюдать в диапазоне 3220-3250 см 1 в более сильном спектре IV. Три небольших фрагмента спектра высокого разрешения в области R-и P -ветвей полосы ⌫ 1 + ⌫ 3 и в области R-ветви полосы 2⌫ 3 показаны на Рисунках 4.3.2-4.3.4.Из-за большого содержания изотополога28 SiD 4 в образце (около 92,23 %) его линии значительно сильнее, чем соответствующие линии двух других изотопологов. По этой причине спектр данной молекулы был проанализирован в первую очередь. Поскольку на данном этапе только центр полосы ⌫ 1 +⌫ 3 может быть легко получен из экспериментальных данных, в процедуре варьирования в качестве начального приближения использовались теоретические оценки (см. раздел выше и столбец 4 Таблицы 4.3.1) всех пяти центров валентных полос тетрадекады. В результате анализа было проинтерпритированно 1264 перехода, принадлежащих полосе ⌫ 1 + ⌫ 3 , со значением квантового числа J max = 36. Более того, корректное предсказание значений центров полос (как будет видно из дальнейшего обсуждения) позволило идентифицировать 139 переходов, принадлежащих полосе 2⌫ , со значеним квантового числа J max = 21 и 70 переходов для 2⌫ 3 (E) c J max = 27 (подробности см. в Таблице 4.3.2). К сожалению, идентификация переходов, относящихся к полосам 2⌫ 1 (A 1 ) и 2⌫ 3 (A 1 ), оказалось невозможной, вероятно по той причине, что они очень слабы для обнаружения. Полный список найденных переходов вместе с коэффициентами пропускания линий опубликован в статье [118] (в Дополнительных материалах) и для иллюстрации в Таблице 4.3.3 приведен небольшой фрагмент. Вся информация, полученная при анализе экспериментальных данных, использовалась при взвешенной аппроксимации параметров эффективного гамильтониана. Параметры, полученные в результате аппроксимации, приведены в Таблице 4.3.4 вместе со значениями их статистических доверительных интервалов (1 ), представленных в скобках. Значения параметров, которые представлены без скобок, были ограничены оценочными значениями (см. выше). Хорошее качество аппроксимации можно увидеть в столбце 5 Дополнительного материала к опубликованной работе [118], где показаны различия между экспериментальными и рассчитанными положениями линий с параметрами из Таблицы 4.3.4.

Таблица 4 . 3 . 2 .

 432 Статистическая информация для полос ⌫ 1 + ⌫ 3 /2⌫ 3 молекулы M SiD 4 (M =28, 29, 30).

  F 2 ) 5(3, F 2 ) 10 9 F 2 ) (0010, F 2 ) 0(0, A 1 ) 1 A 1 ) (2000, A 1 ) 0(0, A 1 ) A 1 ) (0020, A 1 ) 0(0, A 1 ) F 2 ) (1010, F 2 ) 0(0, A 1 ) F 2 ) 4(0, A 1 ) 10

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  In this case, only the operators h↵|ig n |xi and hx|ig n |↵i can be obtained. All other values of hi|ig n |ji are ambiguous. This, in turn, leads to ambiguity in the effective operator of Eqs. (1.2.2) and (1.2.6). As shown in[97], this ambiguity reduces to the unitary equivalence of

	where P is the unitary rotation operator		
		X	
	P =	x,y	|xihy|P xy ,
	P † =	X x,y	|xihy|P † xy .
	any two effective operators H eff 1 and H eff 2 , which are derived from the formulas (1.2.2)-(1.2.7):
	H eff 1 = P † H eff 2 P.	(1.2.8)

.2.7) Here E x and E ↵ are the eigenvalues of the Hamiltonian H 0 corresponding to the eigenfunctions |xi and |↵i. Expression (1.2.7) can be considered as an equation for determining the values of hi|ig n |ji.

  .1.3) where v 1 , v 2 , v 3 and v 4 are the vibrational quantum numbers for the four normal modes of an XY 4 molecule; k 1 , k 2 , k 3 and k 4 are integers chosen to split the vibrational levels into polyads

according to their wavenumbers. For example, the polyads of a germane molecule looks like this: P 0 is the ground state, P 1 is a Dyad that includes two levels (⌫ 2 and ⌫ 4 ), P 2 is a Pentad including five levels (⌫ 1 , ⌫ 3 , 2⌫ 2 , 2⌫ 4 , ⌫ 2 + ⌫ 4 ), etc. Fig.

2

.1.2 schematically shows the polyads for the GeH 4 molecule up to the polyad number P 8 . In paper

[START_REF] Sadovskiì | Counting levels within vibrational polyads: Generating function approach / D.A. Sadovskiì[END_REF]

, formulas were derived for calculating the number of vibrational sublevels.

Table 2 .

 2 1 and F 2 . All irreducible representations are usually written in the form of a character table, the rows of which consist of the sums of the diagonal elements of the matrices of irreducible representations, and the columns are numbered by the elements of the group (see

1.1).

Table 2 .

 2 

1.1. Characters of irreducible representations of the T d point group.

Table 2 .

 2 2.1. Following this expansion, the space of functions |Jkmi forming a basis of irreducible representations D (Jg) of the group O(3) is split into a sum of operations invariant under the group T d subspaces of functions |J, n i. The eigenfunctions |J, n i, which are transformed by the given n-th irreducible representation , correspond to the same energy level. Therefore, the (2J+1)-fold degenerate rotational energy level E (

of the group O(3). This "trick" can be carried out due to the ambiguity of Eckart's conditions (1.1.7)-

(1.1.11)

. In turn, Jahn assumed

[START_REF] Jahn | A new Coriolis perturbation in the methane spectrum I. Vibrational-rotational Hamiltonian and wave functions[END_REF] 

that the functions |Jkmi for even values of the quantum number J are transformed according to even representations D

(Jg) 

, and for odd values J by odd representations D (Ju) of the complete orthogonal group O(3). This difference in classification leads to different selection rules. If we establish the symmetry properties of the functions |Jkmi, we can construct a basis |J, n i reduced concerning the point symmetry G of the molecule, which is then used to construct vibrational-rotational wave functions. In particular, the decomposition of irreducible representations of the group O(3) into irreducible representations of the group T d is given in

Table 2 .

 2 2.1. Character table of Wigner matrices and decomposition of irreducible representations of the group O(3)

	into irreducible

d .

  by the A 1 representation). The eigenfunctions of the Hamiltonian can also be transformed according to irreducible representations of the symmetry group. Moreover, all vibrational (Q , P ↵ ) and rotational (J ↵ ) operators can be classified according to irreducible representations of the molecular symmetry group and/or O(3)4 . From this point of view, both the vibrational functions |xi, |yi, |↵i and the operators H xy in equations (1.2.1)-(1.2.14) can be written in tensorial notation. As a result, all of them can be considered as irreducible tensor sets of the molecular symmetry group. Then, the effective operator (1.2.2) can be rewritten in the following form

Table 2 .

 2 7.1. symmetry of the dipole moment of the z-component for various point symmetry groups G.

Table 2

 2 

.7.1 and for 3 -symbols in Eq. (2.7.11), the condition

  14) and(2.7.15) together make it possible to calculate the matrix elements of the dipole moment operator of almost any polyatomic molecule, taking into account all intramolecular effects and interactions (including random resonances) and to take into account various spectroscopic parameters Y ⌦K( K,n r )⌫ 1 l 1 1 ,⌫ 2 l 2 2 .

	Chapter 3
	Investigation of the vibrational-rotational
	structure of the GeH 4

This chapter is devoted to the study of the fine vibrational-rotational spectral structure of five germane isotopologues, M GeH 4 (M = 70, 72, 73, 74, 76), in the Dyad, Pentad, Tetradecad and Octad regions. The results presented in this chapter are published in [152-156] and reported at "New Developments in High Resolution Molecular Spectroscopy and outreach to modern applications" (2022), "Photonics Day" (2021), "The 26 th Colloquium on High-Resolution Molecular Spectroscopy" (2019), and "XIX International Conference of Students and Young Scientists "Prospects of Fundamental Sciences Development" (2019).

Table 3 .

 3 1.1. Experimental setup of the infrared spectra of 72 GeH 4 and 73 GeH 4 in the range 700-4400 cm 1 .

	Spectrum Isotop. Measur. No. of Aperture Temp. Pressure Opt. path-
			time / h scans	/ mm	/ C	/ Torr length / m
	I	72 Ge	36.9	1100	1.7	26.4	0.04	0.2
	II	72 Ge	33.5	1000	1.7	25.8	4.0	0.2
	III	72 Ge	35.2	1050	1.5	26.2	0.02	0.75
	IV	72 Ge	35.2	1050	1.15	24.5	0.4	3.75
	V	72 Ge	41.9	1250	1.15	24.2	4.0	3.75
	VI	73 Ge	33.5	1000	1.0	24.9	0.4	3.75
	VII	73 Ge	33.5	1000	1.0	25.3	3.0	3.75

Table 3 .

 3 1.2. Experimental setup of the infrared spectra of M GeH 4 (M = 70, 72, 73, 74, 76) in the range 600-4800 cm 1 .

	Spectrum	Region	No. of Opt. path-	Temp.	Pressure Resolution
								/ cm 1	scans length / m	/ C	/ Torr	/ cm 1
	I	0						600 -4800	1400	24	23.6±0.1	250	0.0030
	II	0				1400 -2700	400	0.23	23.8±0.3	2000	0.0030
	III	0		1400 -2700	300	0.23	23.7±0.3	4000	0.0030
	IV 0			1400 -2700	520	0.23	23.5±0.3	6000	0.0030
	V 0				1400 -2700	600	0.23	23.5±0.7	9000	0.0030
	VI	0			1400 -2700	680	0.23	23.4±0.7	12000	0.0030
	VII	0		1400 -2700	600	0.23	23.5±0.7	15000	0.0030
	VIII	0	740 -960	620	0.013	21.3±0.3	150	0.0015

Table 3

 3 

	.1.2).
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 3 2.1. Statistical information for the 2⌫ 1 (A 1 )/⌫ 1 + ⌫ 3 (F 2 ) bands of 72 GeH 4 and 73 GeH 4 molecules. Here m i = n i /N ⇥ 100% (i = 1, 2, 3); n 1 , n 2 and n 3 are the numbers of transitions for which the differences = E exp E calc (⌫ exp ⌫ calc ) satisfy the conditions  2 ⇥ 10 4 cm 1 , 2 ⇥10 4 cm 1 <  4 ⇥ 10 4 cm 1 and > 4 ⇥ 10 4 cm 1 . Obtained from the fit in the present work.

	Band	Band center, cm 1 This work d From [165] e	J max N a t	N b p	m c 1	m c 2	m c 3
			72 GeH 4			
	⌫ 1 + ⌫ 3 (F 2 ) 4154.46177	4154.468				
				21	2025 13 56.4 27.2	16.4
	2⌫ 1 (A 1 )	4154.15275	4154.154				
			d rms = 2.9 ⇥ 10 4 cm 1 73 GeH 4		
	⌫ 1 + ⌫ 3 (F 2 ) 4154.14255	4154.142				
				21	1774 13 62.4 25.1	12.5
	2⌫ 1 (A 1 )	4153.84762	4153.847				
			d rms = 2.7 ⇥ 10 4 cm 1		

a N t is the number of transitions. b N p is the number of fitted parameters. c d

Table 2

 2 1 (A 1 )/⌫ 1 + ⌫ 3 (F 2 ) bands. For the experimental conditions, see Table1. The traces (b) and (d) present corresponding simulated spectra.1. 13 obtained parameters from fitting procedure reproduce 2025 initial experimental line positions of the 2⌫ 1 (A 1 )/⌫ 1 + ⌫ 3 (F 2 ) bands72 GeH 4 isotopologue with accuracy d rms = 2.9 ⇥ 10 4 cm 1 ; analogously, 13 obtained parameters from fitting procedure reproduce 1774 initial experimental lines positions of the bands 2⌫ 1 (A 1 )/⌫ 1 + ⌫ 3 (F 2 )73 GeH 4 isotopologue with accuracy d rms = 2.7 ⇥ 10 4 cm 1 close to the experimental uncertainty;Statistical information for the 2 ν1 / ν1 + ν3 local mode bands of72 GeH 4 and 73 GeH 4 .

	the corresponding values for the found transitions are given in Supplementary Materials
	A of the published work [153].							
	2. As can be seen from comparison of the values of "homonymous" parameters in Table 3.2.2
	(see also Fig. 3.2.5), values of all fitted "homonymous" parameters are changed almost
	linearly vs the change of mass of the M Ge nucleus; this is in a total correspondence with 6 O.N. Ulenikov, O.V. Gromova and E.S. Bekhtereva et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 236 (2019) 106593
	the results and statements of the isotopic substitution theory. Band Center/cm -1 J max N t a N p b m 1 c m 2 c m 3 c
		pw d	Ref. [79] e						
	1	2	3	4	5	6	7	8	9
	72 GeH 4 3. Figs. 3.2.1 (b), 3.2.2 (b) and (d), 3.2.3 (b) and (d) show simulated (synthetic) spectra 4154.46177 4154.468 ν1 + ν3 (F 2 ) 21 2025 13 56.4 27.2 16.4
	2 ν1 ( A 1 )	4154.15275	4154.154						
	d rms that were obtained with the parameters from Table 3.2.2 (the relative line strengths were 2 . 9 × 10 -4 cm -1 73 GeH 4 4154.14255 4154.142 ν1 + ν3 (F 2 ) 21 1774 13 62.4 25.1 12.5
	2 ν1 ( A 1 ) calculated with only one main parameter of the dipole moment, and the Doppler profile 4153.84762 4153.847 d rms 2 . 7 × 10 -4 cm -1
	a N t is the number of transitions.							
	was used to construct the line shape); one can see a more than good correspondence
	between the experimental and simulated spectra.			
	4. Fig. 3.2.4 shows the residual for the line position depending on the quantum number J.

b N p is the number of fitted parameters. c Here

Table 3

 3 

	).																									
	.2.2. Spectroscopic parameters Y 0 0 of the tetradecad of the stretching bands of the germane molecule (in cm 1 ⌦(K,n ) vl ,v 0 l	73 GeH 4 a 74 GeH 4 b 76 GeH 4 b 72 GeH 4 a (⌫, ) ( ⌫ 0 , 0 ) ⌦(K, n )	-17.165 -17.15 -17.12 -17.18 (2000, A 1 ) (2000, A 1 ) 0(0, A 1 )	0 .0 0994156(34) 0.00999042(64) 0.01008(87) 0.00986 495(29) (2000, A 1 ) 2(0, A 1 )	0.1793 0.1793 0.1793(58) 0.1793 (2000, A 1 ) 4(0, A 1 )10 5	-0.4370 -0.4370 -0.4370(89) -0.4370 (2000, A 1 ) 4(4, A 1 )10 6	0 . 0 1 8 6 2 6 3 7 2 ( 1 8 ) 0 . 0 1 8 5 4 0 4 ( 1 8 ) 0 . 0 1 8 4 7 ( 1 8 ) 0 . 0 1 8 6 6 4 6 0 2 ( 7 6 ) (2000, A 1 ) (1010, F 2 ) 2(2, F 2 )	0.86193(47) 0.835 0.835(74) 0.873 (1010, F 2 ) 3(3, F 2 )10 5	0.2389 0.2389 0.2389(19) 0.2389 (1010, F 2 ) 4(4, F 2 )10 5	29.647641(15) 29.627518(26) 29.586665(25) 29.67 (2000, A 1 ) (0020, A 1 ) 0(0, A 1 )	0.334 0.334 0.334(25) 0.338 (0020, A 1 ) 2(0, A 1 )10 2	-34.179018(10) -34.159643(13) -34.118998(18) -34.2 (1010, F 2 ) (1010, F 2 ) 0(0, A 1 )	-0.3900425(43) -0.3921452(29) -0.396(18) -0.388 (1010, F 2 ) 1(1, F 1 )	0.022185 227(64) 0.0222506 0(23) 0.02237(35) 0.02225 9913(68) (1010, F 2 ) 2(0, A 1 )	-0 . 0 4 3 5 7 9 8 1 6 ( 9 8 ) -0 . 0 4 3 6 9 0 3 8 ( 3 1 ) -0 . 0 4 3 8 9 ( 4 1 ) -0 . 0 4 3 6 1 2 8 7 ( 1 0 ) (1010, F 2 ) 2(2, E)	-0.01977 -0.01973 -0.01973(32) -0.0199680(18) (1010, F 2 ) 2(2, F 2 )	0.1675280(80) 0.1675 0.1675(39) 0.1672230(71) (1010, F 2 ) 3(1, F 1 )10 3	0.2136394(46) 0.2158 0.2158(31) 0.2130077(60) (1010, F 2 ) 3(3, F 1 )10 3	0.1210 0.1210 0.1210(22) 0.1210 (1010, F 2 ) 4(0, A 1 )10 5	0.521 0.521 0.521(13) 0.521 (1010, F 2 ) 4(2, E)10 6	-0.2258(26) 0.0 0.0 -0,3262(25) (1010, F 2 ) 4(2, F 2 )10 7	0.40734(20) 0.428 0.428(18) 0.39405(17) (1010, F 2 ) 4(4, E)10 6	-0.01609 -0.01609 -0.01609(11) -0.01609 (1010, F 2 ) 2 ) (0020, A 1 ) 2(2, F	-3.29 -3.29 -3.290(31) -3.29 (1010, F 1 ) 1(1, F 2 ) (0020, E)	0.688 0.688 0.688(31) 0.688 2 )10 2 2(2, F (0020, E)	(1010, F 2 ) (0020, F

Table 3 .

 3 / Fig. 3.3.2), where are 2⌫ 4 (A 1 , F 2 , E), ⌫ 2 +⌫ 4 (F 2 , F 1 ) and 2⌫ 2 (A 1 , E) bending bands.

	).																																	
	2 ) vibrational states germane molecules (in cm 1	74 GeH 4 c 76 GeH 4 c	2 . 6 9 5 8 6 4 7 3 4 2 . 6 9 5 8 7 0 3 0 5	-0.3341682 -0.3341682	-0.1547079 -0.1547079	0.114368 0.114368	-0.51075 -0.51075	-0.15638 -0.15638	2 1 1 0 . 7 0 0 4 5 6 0 2 1 1 0 . 6 9 1 7 6 9	-1.799331 -1.799331	0.19367 0.19367	-0.420 -0.420	-0.8091897 -0.8076987	-0.14853 -0.14853	-0.10836 -0.10836	-0.15996 -0.15996	0.2873 0.2873	2 1 1 1 . 1 4 2 0 5 0 7 2 1 1 0 . 7 3 2 3 0 8 8	-0 . 5 6 2 3 6 8 5 9 -0 . 5 6 8 6 6 6 9	-0 . 0 1 4 6 9 5 0 2 0 -0 . 0 1 4 6 8 6 0 1	0.2254772 0.2234550	-0.447832 -0.447832	-0.76349 -0.76349	-0.64671 -0.64671	0.0 0.0	0.9537 0.9537	-0.6775 -0.6775	0.10694 0.10694	0.1407 0.1407	-0.20740 -0.20740	-0.558 -0.558	-0.0 -0.0	0.370 0.370	
	Spectroscopic parameters Y ⌦(K,n ) vl ,v 0 l 1 ), (1000, A 1 ) and (0010, F 0 0 of (0000, A	72 GeH 4 a 73 GeH 4 b (⌫, ) ( ⌫ 0 , 0 ) ⌦(K, n	2 . 6 9 5 8 5 9 4 4 0 2 . 6 9 5 8 6 2 9 8 (0000, A 1 ) (0000, A 1 ) 2(0, A 1 )	-0.3341682 -0.3341682 (0000, A 1 ) 4(0, A 1 )10 4	-0.1547079 -0.1547079 (0000, A 1 ) 4(4, A 1 )10 5	0,114368 0.114368 (0000, A 1 ) 6(4, A 1 )10 8	-0.51075 -0.51075 (0000, A 1 ) 6(0, A 1 )10 10	-0.15638 -0.15638 (0000, A 1 ) 6(4, A 1 )10 10	2 1 1 0 . 7 0 8 8 0 2 0 2 1 1 0 , 7 0 4 2 6 9 8 (1000, A 1 ) (1000, A 1 ) 0(6, A 1 )	-1.7988113 -1.7988113 (1000, A 1 ) 2(4, A 1 )10 2	0.17727 0,17727 (1000, A 1 ) 4(0, A 1 )10 6	-0.4386 -0.4386 (1000, A 1 ) 4(4, A 1 )10 8	-0.8100331 -0.8095009 (1000, A 1 ) (0010, F 2 ) 2(2, F 2 )10 2	-0.175232 -0.170815 (0010, F 2 ) 3(3, F 2 )10 5	-0.111586 -0.111586 (0010, F 2 ) 4(2, F 2 )10 6	-0.158576 -0.158576 (0010, F 2 ) 4(4 F 2 )10 6	0.2873 0.2873 (0010, F 2 ) 5(5, F 2 )10 9	2 1 1 1 . 5 7 3 9 4 0 0 2 1 1 1 . 3 5 4 5 8 4 5 (0010, F 2 ) 0(0, A 1 )	-0 . 5 5 5 6 8 2 2 6 -0 . 5 5 9 0 7 2 2 7 (0010, F 2 ) (0010, F 2 ) 1(1, F 1 )	-0 . 0 1 4 7 0 5 0 6 5 7 -0 . 0 1 4 7 0 0 4 5 2 (0010, F 2 ) 2(0, A 1 )	0.2263509 0.2275549 (0010, F 2 ) 2(2, E)10 2	-0.4472682 -0.4470184 (0010, F 2 ) 2(2, F 2 )10 2	-0.75253 -0.745775 (0010, F 2 ) 3(1, F 1 )10 5	-0.65737 -0.65737 (0010, F 2 ) 3(3, F 1 )10 8	0.3970 0.3970 (0010, F 2 ) 4(0, A 1 )10 8	0.91672 0.93688 (0010, F 2 ) 4(2, E)10 7	-0.6775 -0.6775 (0010, F 2 ) 4(2, F 2 )10 7	0.10694 0.10694 (0010, F 2 ) 4(4, A 1 )10 7	0.1407 0.1407 (0010, F 2 ) 4(4, E)10 7	-0.20740 -0.20740 2 )10 6 (0010, F 2 ) 4(4, F	-0.558 -0.558 1 )10 9 (0010, F 2 ) 5(1, F	-0.18787 -0.18787 1 )10 9 (0010, F 2 ) 5(3, F	0.34126 0.34126 1 )10 9 (0010, 1F 2 ) 5(5, F	(0010, 3F 2 ) 5(5, F
	2.3.																																	

Table 3 .

 3 3.1. Statistical information for the 72 GeH 4 molecule in Dyad and Pentad regions.

  1 J max N a Here m i = n i /N ⇥ 100% (i = 1, 2, 3); n 1 , n 2 and n 3 are the numbers of transitions for which the differences = ⌫ exp ⌫ calc satisfy the conditions  2 ⇥ 10 4 cm 1 , 2 ⇥10 4 cm 1 <  4 ⇥ 10 4 cm 1 and > 4 ⇥ 10 4 cm 1 , respectively. c Values obtained from the fitting procedure in this work.

									v 4	v 2 v 2
			1.0						
			0.8						
	Transmittance	⌫ 4 (F 2 ) c ⌫ 2 (E) c 0.0 0.2 0.4 0.6					821.11678 929.90524	27 26	t 1569 752 78.4 14.1 7.5 N en m b 1 m b 2 m b 1 1212 380 79.5 14.1 6.4 Experimental spectrum I
		⌫ 3 (F 2 ) c 760				780	2111.57394 800 820	30 840	2429 905 76.4 16.5 7.1 860 880 900 920	940
	Transmittance (a.u.)	⌫ 3 (F 2 ) d ⌫ 1 (A 1 ) c ⌫ 2 +⌫ 4 (F 2 ) c ⌫ 2 +⌫ 4 (F 2 ) ⌫ 2 ⌫ 2 +⌫ 4 (F 2 ) ⌫ 4 ⌫ 2 +⌫ 4 (F 1 ) c	c c	2111.57411 2110.70880 1749.17866 1753.28969	25 28 16 19 17 16	897 1004 237 80.6 15.1 4.3 364 385 73.6 20.6 5,8 400 70.5 19.8 9.7 146 67.8 19.9 12.3 183 337 78.7 16.4 4.9 Simulated spectrum
		⌫ 2 +⌫ 4 (F 1 ) ⌫ 2 760	c 780	800	820	19 840	406 860	880	69.7 19.0 11.3 900 920	940
		⌫ 2 +⌫ 4 (F 1 ) ⌫ 4	c		17 Wavenumber, v / cm 82 -1 ṽ4 68.3 28.0 3.7
	2⌫ 4 (A 1 ) ⌫ 4 2⌫ 4 (E) ⌫ 4 c c Figure 3.3.1. Survey spectrum of 72 GeH 4 (upper trace) in the region of 750-950 cm 1 (for the 1629.05403 20 299 146 60.6 21.7 17.7 1643.71586 20 215 129 60.5 23.7 15.8 experimental conditions, see Table 3.1.1). The bottom trace presents simulated spectrum.
		2⌫ 4 (F 2 ) ⌫ 4	c		1640.81867	20	692 453 63.2 21.5 15.3
		2⌫ 2 (A 1 ) ⌫ 2	c		1857.25740	14	5	5	80.0 0.0 20.0
		2⌫ 2 (E) ⌫ 2	c		1860.65216	17	106	88 71.7 21.7 6.6
		a	N t is the number of assigned transitions.
		d Reproduced, for comparison, from [169].

b 

The distance between analogous lines of the 76 GeH 4 and 73 GeH 4 isotopologues is exactly three time larger than the distance between corresponding lines of the 73 GeH 4 and 72 GeH 4 isotopologues. The trace (a) is the simulated spectrum of 72 GeH 4 .

  Small parts of the high resolution experimental spectra of72 GeH 4 (enriched up to 99.9%),73 GeH 4 (enriched up to 99.9 %), and74 GeH 4 / 76 GeH 4 (enriched up to 88.1% of76 GeH 4 ; abundance of 74 GeH 4 is 11.5%) in the region of the R(11) cluster of the ⌫ 3 band.

		1.0									
	Transmittance	0.0 0.2 0.4 0.6 0.8	Simulated spectrum,	72 GeH 4					
		2171.0	2171.1	2171.2	2171.3	2171.4	2171.5	2171.6	2171.7	2171.8	2171.9	2172.0
		1.0									
	Transmittance	0.0 0.2 0.4 0.6 0.8	Experimental spectrum,	72 GeH 4						R(11)
		2171.0	2171.1	2171.2	2171.3	2171.4	2171.5	2171.6	2171.7	2171.8	2171.9	2172.0
		1.0									
	Transmittance	0.0 0.2 0.4 0.6 0.8	Experimental spectrum,	73 GeH 4			R(11)	
		2171.0	2171.1	2171.2	2171.3	2171.4	2171.5	2171.6	2171.7	2171.8	2171.9	2172.0
		1.0									
	Transmittance	0.2 0.4 0.6 0.8	R(11)								Experimental spectrum,	76 GeH 4 +	74 GeH 4
		0.0									
		2171.0	2171.1	2171.2	2171.3	2171.4	2171.5	2171.6	2171.7	2171.8	2171.9	2172.0
									Wavenumber v / cm -1 ~	
	Figure 3.3.4. the line strengths of the spectra in Figs. 3.3.3 and 3.3.4.		
									.3.2. As another illustration of the correctness of
	the obtained results, Fig. 3.3.5 shows the differences between the calculated and experimental
	line positions depending on the quantum number J. Furthermore, Figs. 3.3.1-3.3.3 show the
	synthetic spectra calculated with the parameters obtained in this work and the corresponding
	experimental spectra. The relative strengths were calculated for the simulated spectra in Figs.
	3.3.1 and 3.3.2, and the effective dipole moment parameters from [169] were used to calculate
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	4 molecule in the Dyad and Pentad regions (in cm 1
	GeH
	vl ,v 0 l 0 0 of 72 ⌦(K,n )
	Spectroscopic parameters Y
	3.2.
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	4 molecule in the Dyad and Pentad regions (in cm 1
	GeH
	vl ,v 0 l 0 0 of 72 ⌦(K,n )
	(Contin.) Spectroscopic parameters Y
	3.2.
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	Spectroscopic parameters Y
	4.1.

⌦(K,n )

vl ,v 0 l 0 0 of interacting (0100)/(0001) vibrational states of germane molecule (in cm 1

Table 3 .

 3 5.1. Mean values of the ratios

	(prob)

Table 3 .

 3 5.2. Statistical information from the line strenth analysis of the ⌫ 2 and ⌫ 4 bands of the M GeH 4 molecule (M = 70, 72, 73, 74, 76).

Table 3 .

 3 

5.3. Spectroscopic parameters P ⌦K(1,n r ) (vgrA 1 ,vu,

Table 3 .

 3 

5.4. List of experimental line strengths in the ⌫ 4 band M GeH 4 (M = 70, 72, 73, 74, 76) a .

Table 3 .

 3 

5.4. (Contin.) List of experimental line strengths in the ⌫ 4 band M GeH 4 (M = 70, 72, 73, 74, 76) a .

  2 F Comprehensive study of the Pentad bending triad region 2⌫ 2 , ⌫ 2 + ⌫ 4 and 2⌫ 4 of germane molecule 3.6.1 Assignment of transitions of the 70 GeH 4 , 72 GeH 4 and 74 GeH 4 species As the first step of the present analysis, we performed an assignment of transitions of the 70 GeH 4 , 72 GeH 4 and 74 GeH 4 species in the studied spectra. For the reader's convenience, two spectra are shown in Figs. 3.6.2 and 3.6.1, were recorded under different experimental conditions. To illustrate the high resolution of the recorded spectra, small fragments of spectra III

													97										
		1.0	72	74	74	73	73	70	70	72	70 2ν 4 (A 1 , F 2 , E) 72 70 70	76	74 ν 2 +ν 4 (F 2 , F 1 ) 74 74	73	73 2ν 2 (A 1 , E) 76 73 76		72
		0.8																						
		0.6																						
		0.4																						
		2.189E -19 1400 0.6 0.8 1.0 0.0 0.2	2.142E -19 1450 1.518E -19 H 2 O 3.718E -19 1500 2.199E -19	3.695E -19	2.331E -19 1550	2.244E -19	2.265E -19 1600	1.540E -19	2.304E -19 1650	1.579E -19	3.388E -19 1700 2.011E -19	1.433E -19 1750 2.019E -19	2.175E -19 1800 1.378E -19	2.010E -19 1850 2.071E -19	2.105E -19	2.122E -	1950 1.438E -19 a
		0.4																						
		0.0 0.2																							b
		1.0 1400	1450	1500		1550		1600		1650		1700	1750	1800	1850			1950
		0.6 0.8	-2.9	-3.1	2.9	0.9	-0.7	-5.2	-0.1	-0.6	-3.1	2.2	-1.6	1.1	-0.9	-4.2	2.5	-3.9	3.5	-1.6	-2.2	-1.4	2.3	-0.8	0.8
		0.4																						
		0.5613E + 01 1400 1.0 0.4 0.6 0.8 1.0 0.0 0.2 Simulated spectrum I 0.5505E + 01 0.3672E + 01 0.9184E + 01 0.5520E + 01 0.9690E + 01 1450 1500	0.5816E + 01 1550	0.5629E + 01	0.5818E + 01 1600	0.3754E + 01	0.5834E + 01 1650	0.3891E + 01	0.8517E + 01 1700 0.5221E + 01	0.3482E + 01 1750 0.5226E + 01	0.5230E + 01 1800 0.3488E + 01	0.5121E + 01 1850 0.5234E + 01	0.5125E + 01	0.5329E +	1950 0.3554E + 01 c
	Transmittance Transmittance	2 833.5861 0.5455E + 01 1600 0.0 0.2 0.4 0.6 0.8 1400 0.0 0.2 1.0 0.0 0.2 0.4 0.6 0.8 1600 0.0 0.2 0.4 0.6 0.8 1400 1.0 1400 0.0 0.2 0.4 0.6 0.8 Transmittance 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Transmittance 74	6 1 F 2 833.5968 0.5339E + 01 1450 6 1 E 833.6310 0.3782E + 01 1450 1450	6 1 A 2 833.7030 0.9265E + 01 1650 6 1 F 2 833.8071 0.5479E + 01 1500 1650 1500 1500	6 1 A 1 833.8712 0.9208E + 01	6 1 F 1 833.9475 0.5809E + 01 1700 6 1 F 2 834.0243 0.5593E + 01 1550 1700 1550 1550	6 2 F 2 834.0357 0.5644E + 01 1600 1600 Wavenumber, ν / cm 6 1 E 834.0587 0.3838E + 01 6 1 F 2 834.4756 0.5741E + 01 6 1 E 834.5101 0.3935E + 01 7 1 A 2 834.9773 0.8444E + 01 7 2 F 1 835.0299 0.5011E + 01 1750 1650 1700 1750 1650 1700 -1 7 1 E 835.1497 0.3570E + 01 1800 1750 7 2 F 2 835.2302 0.5031E + 01 1800 1750 Figure 7 2 F 1 835.2402 0.5421E + 01 7 1 E 835.3602 0.3434E + 01 7 1 F 2 835.3891 0.5009E + 01 7 2 F 2 835.4408 0.5162E + 01 7 1 F 1 835.4467 0.5245E + 01 F 835.4573 0.5288E + 7 1 E 835.5775 1850 1900 Experimental spectrum IIa 1800 1850 1950 d e 0.3584E + 01 1850 1900 1800 1850 1950 Simulated spectrum IIa 1600 1650 1700 1750 1800 1850 1950 g f
		1400	1450	1500		1550		1600		1650		1700	1750	1800	1850			1950
				7 2 F 1	7 1 E	7 1 A 1	7 2 F 1	7 1 A 2	7 1 F 2	7 2 F 1	7 1 F 1	7 1 E	7 2 F 1	7 1 E	8 1 A 1	8 1 F 2	8 1 E	8 1 F 1	8 1 F 2	8 1 E	8 2 F 1	8 1 F 1	8 2 F 2	F	8 1 E

a Temperature is 294.5 K. 96 3.6 0 (for the most strong ⌫ 2 + ⌫ 4 band) and II 0 (for the weaker 2⌫ 2 and 2⌫ 4 bands) are shown in Figs. 3.6.3-3.6.6, where clusters belonging to different isotopologues are marked. ν 2 +ν 4 (F 2 , F 1 ) 3.6.1. Experimental survey spectrum of germane in the region of the first Dyad ⌫ 2 + ⌫ 4 band (upper trace). Experimental conditions see in Table 3.1.2. The lower trace shows the corresponding simulated spectrum.
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 3 6.1. Statistical information for the 2⌫2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) and 2⌫ 4 (A 1 , E, F 2 ) bands of M GeH 4 (M =70, 72, 73, 74, 76).

Table 3 .

 3 6.1. (Contin.) Statistical information for the 2⌫ 2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) and 2⌫ 4 (A 1 , E, F 2 ) bands of M GeH 4 (M = 70, 72, 73, 74, 76).

	76 GeH 4

⌫ 2 + ⌫ 4 (F 2 ) ⌫ 2 (E)

15

236 51.4 31.3 17.3 [173] ⌫ 2 + ⌫ 4 (F 2 ) 1748.3962 19 793 401 59.9 26.5 13.6 [173] ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 (F 2 ) 15 45 59.2 22.5 18.3 [173] ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 2 (E) ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 (F 2 ) 17 69 65.2 26.1 8.7 [167] ⌫ 2 + ⌫ 4 (F 1 ) 1753.0849 16 294 337 70.1 25.2 4.7 [167]

Table 3 .

 3 6.1. (Contin.) Statistical information for the 2⌫ 2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) and 2⌫ 4 (A 1 , E, F 2 ) bands of M GeH 4 (M = 70, 72, 73, 74, 76).

	Band	Band center, cm 1 J max N a t	N b l	m c 1	m c 2	m c 1	Ref.
	2⌫ 2 (E)	1860.6552	14	114 94 52.7 28.1 19.2 [173]
	2⌫ 2 (A 1 ) ⌫ 2 (E)	1857.2607	14	8	7 62.5 37.5 0.0 [173]
	2⌫ 2 (E) ⌫ 2 (E)		19	12		41.7 41.7 16.6 [173]
	Total N d tr			873				[173]
	Total N e tr			2119				[173]
	Total N l			1535				[173]
	d d rms d e rms	2.55 ⇥ 10 4 cm 1 3.00 ⇥ 10 4 cm 1					
		72 GeH 4				
	2⌫ 4 (A 1 ) ⌫ 4 (F 2 )		20	299		67.1 22.4 10.5 [153]
	2⌫ 4 (A 1 )	1629.0544	20	131 153 47.4 31.3 21.3 TW f
	2⌫ 4 (F 2 ) ⌫ 4 (F 2 )		20	692		58.2 24.5 17.3 [153]
	2⌫ 4 (F 2 )	1640.8186	22	578 507 55.4 26.8 17.8 TW f
	2⌫ 4 (E) ⌫ 4 (F 2 )		20	215		59.9 21.3 18.8 [153]
	2⌫ 4 (E)	1643.7157	21	138 144 43.1 31.9 25.0 TW f
	⌫ 2 + ⌫ 4 (F 2 ) ⌫ 2 (E)		19	400		65.3 23.5 11.2 [153]
	⌫ 2 + ⌫ 4 (F 2 ) ⌫ 4 (F 2 )		17	146		65.8 22.6 11.6 [153]
	⌫ 2 + ⌫ 4 (F 2 )	1749.1787	16	364 385 73.6 20.6 5.8 [153]
	⌫ 2 + ⌫ 4 (F 2 )	1749.1788	23	703 515 58.9 23.5 17.6 TW f
	⌫ 2 + ⌫ 4 (F 1 ) ⌫ 2 (E)		19	406		64.9 22.8 12.3 [153]
	⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 (F 2 )		17	82		63.4 23.2 13.4 [153]
	⌫ 2 + ⌫ 4 (F 1 )	1753.2897	16	183 337 78.7 16.4 4.9 [153]
	⌫ 2 + ⌫ 4 (F 1 )	1753.2898	23	396 412 52.3 27.3 20.4 TW f
	2⌫ 2 (A 1 ) ⌫ 2 (E)		14	5		40.0 60.0 0.0 [153]
	2⌫ 2 (A 1 )	1857.2576	17	67	45 37.4 37.4 25.2 TW f

Table 3 .

 3 6.1. (Contin.) Statistical information for the 2⌫ 2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) and 2⌫ 4 (A 1 , E, F 2 ) bands of M GeH 4 (M = 70, 72, 73, 74, 76).

  Here m i = n i /N ⇥ 100% (i = 1, 2, 3); n 1 , n 2 and n 3 are the number of transitions for which the differences = ⌫ exp ⌫ calc satisfy the condition  2 ⇥ 10 4 cm 1 , 2 ⇥10 4 cm 1 <  4 ⇥ 10 4 cm 1 and > 4 ⇥ 10 4 cm 1 .

				106	46.2 32.7 21.1 [153]
	2⌫ 2 (E)	1860.6516	20	393 254 41.7 28.5 29.8 TW f
			70 GeH 4		
	2⌫ 4 (A 1 )	1629.8994	16	35	22 57.2 25.7 17.1 TW f
	2⌫ 4 (F 2 )	1641.6643	18	409 291 50.4 29.6 20.0 TW f
	2⌫ 4 (E)	1644.5675	16	115 74 55.7 33.1 11.2 TW f
	⌫ 2 + ⌫ 4 (F 2 )	1749.6024	21	839 418 53.8 23.9 22.3 TW f
	⌫ 2 + ⌫ 4 (F 1 )	1753.7155	21	794 329 67.4 21.7 10.9 TW f
	2⌫ 2 (A 1 )	1857.2505	13	4	3 25.0 50.0 25.0 TW f
	2⌫ 2 (E)	1860.6437	20	120 91 37.5 28.4 65.9 TW f
	Total N d tr			2316	TW f
	Total N l			1228	TW f
	d d rms	3.24 ⇥ 10 4 cm 1			TW f

a

N t is number of assigned transitions. b N l is number of the upper level energies. c d For "cold" bands.

e For "hot" bands.

f This work.
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 3 

	)																																					
	⌦(K,n ) 0 0 of the set of interacting vibrational states (0002)/(0101)/(0200) of GeH vl ,v 0 l 4 (in cm 1	70 GeH 4 72 GeH 4 73 GeH 4 74 GeH 4 76 GeH 4	-2.68369 -2.68369 -2.68369 -2.68369 -2.68369	-0.4716 -0.4716 -0.4716 -0.4716 -0.4716	-0.256300(53) -0.256050(67) -0.255925(48) -0.255800(69) -0.255550(52)	0.8409419(71) 0.8409873(84) 0.8410100(69) 0.8408000(88) 0.8410781(62)	0.3393 0.3393 0.3393 0.3393 0.3393	0.26045 0.26045 0.26045 0.26045 0.26045	-0.118 -0.118 -0.118 -0.118 -0.118	0.0265785(?) 0.02665183(81) 0.0267024(?) 0.0267437(42) 0.0268263(52)	-0.21017 -0.21017 -0.21017 -0.21017 -0.21017	-0.4234 -0.4234 -0.4234 -0.4234 -0.4234	0.0314582(32) 0.0316810(10) 0.0317159(24) 0.0319180(12) 0.0319736(22)	-0.4543 -0.4543 -0.4543 -0.4543 -0.4543	-5.46835(?) -5 . 4 6 1 4 3 ( 1 6 ) -5 . 4 5 7 9 7 ( ?) -5.45618(19) -5.45261(14)	0.49891(?) 0 . 5 1 5 2 3 ( 5 0 ) 0 . 5 2 3 3 9 ( ?) 0 . 5 2 9 5 9 ( 6 3 ) 0 . 5 4 1 9 8 ( 7 0 )	0.196859(35) 0.183966(51) 0.17752(11) 0.170639(39) 0.15817(14)	0.45655(?) 0 . 4 6 2 7 8 ( 4 1 ) 0 . 4 6 5 9 0 ( ?) 0 . 4 6 9 0 2 ( 3 5 ) 0 . 4 7 5 2 5 ( 3 8 )	0.2300846(47) 0.2305662(91) 0.2308070(49) 0.2310334(96) 0.2314435(44)	-0.3016 -0.3016 -0.3016 -0.3016 -0.3016	2.2698322(64) 2.2677959(68) 2.2667778(58) 2.2652072(64) 2.2635159(64)	-0.0510521 -0.0510521 -0.0510521 -0.0510521 -0.0510521	-0.509 -0.509 -0.509 -0.509 -0.509	-0.7694 -0.7694 -0.7694 -0.7694 -0.7694	-0.05658910(33) -0.05647082(57) -0,0564319(20) -0.05636944(60) -0.0562747(25)	0.7774 0.7774 0.7774 0.7774 0.7774	0.79071 0.79071 0.79071 0.79071 0.79071	-0.58181 -0.58181 -0.58181 -0.58181 -0.58181	-2.0151218(63) -2.0143817(66) -2.0140117(82) -2.0147598(52) -2.013554(10)	-0.0549982(?) -0.0548642(13) -0.0547972(?) -0.0547456(67) -0.0546425(89)	-0.378988(?) -0.378744(61) -0.378622(?) -0.378500(56) -0.378256(75)	0.3357 0.3357 0.3357 0.3357 0.3357	-0.8515 -0.8515 -0.8515 -0.8515 -0.8515	-0.18456 -0.18456 -0.18456 -0.18456 -0.18456	-0.14931 -0.14931 -0.14931 -0.14931 -0.14931	0.0647354(46) 0.06520650(75) 0.0654537(49) 0.0656188(55) 0.0659491(38)	0.2899 0.2899 0.2899 0.2899 0.2899	-0.14314(40) -0.12377(36) -0.11409(37) -0.10482(46) -0.08504(53)
	6.2. Spectroscopic parameters Y	(⌫, ) ( ⌫ 0 , 0 ) ⌦(K, n )	(0200, A 1 ) (0200, A 1 ) 0(0, A 1 )	(0200, A 1 ) 2(0, A 1 )10 3	(0200, A 1 ) (0200, E) 2(2, E)10 3	(0200, E) (0200, E) 0(0, A 1 )	(0200, E) 2(2, E)10 3	(0200, E) 3(3, A 2 )10 5	(0200, A 1 ) (0101, F 2 ) 2(2, F 2 )10 3	(0200, E) (0101, F 1 ) 1(1, F 1 )	(0101, F 1 ) 2(2, F 2 )10 3	(0101, F 1 ) 3(3, F 2 )10 5	(0200, E) (0101, F 2 ) 1(1, F 1 )	(0101, F 2 ) 3(1, F 1 )10 5	(0200, A 1 ) (0002, A 1 ) 0(0, A 1 )	(0002, A 1 ) 2(0, A 1 )10 3	(0200, E) (0002, E) 0(0, A 1 )	(0002, E) 2(2, E)10 3	(0200, E) (0002, F 2 ) 1(1, F 1 )	(0002, F 2 ) 3(1, F 1 )10 5	(0101, F 1 ) (0101, F 1 ) 0(0, A 1 )	(0101, F 1 ) 1(1, F 1 )	(0101, F 1 ) 2(0, A 1 )10 5	(0101, F 1 ) 2(2, F 2 )10 3	(0101, F 1 ) (0101, F 2 ) 1(1, F 1 )	(0101, F 2 ) 2(2, E)10 4	(0101, F 2 ) 2(2, F 2 )10 3	(0101, F 2 ) 3(1, F 1 )10 5	(0101, F 2 ) (0101, F 2 ) 0(0, A 1 )	(0101, F 2 ) 1(1, F 1 )	(0101, F 2 ) 2(0, A 1 )10 3	(0101, F 2 ) 2(2, E)10 3	(0101, F 2 ) 2(2, F 2 )10 3	(0101, F 2 ) 3(1, F 1 )10 4	(0101, F 2 ) 3(3, F 1 )10 4	(0101, F 1 ) (0002, A 1 ) 1(1, F 1 )	(0101, F 1 ) (0002, E) 1(1, F 1 )10 3	(0101, F 1 ) (0002, F 2 ) 1(1, F 1 )10 2
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.2.

  .6.3).The line strength analysis was performed with the spectrum III 0 for ⌫ 2 + ⌫ 4 (F 1 ) and ⌫ 2 of the line strengths (in cm 2 • atm 1 ) and the i differences between the experimental and calculated strengths with the parameters from Table 3.6.3 lines (in %). For the reader's convenience, a small part of Appendix 2 is shown in Table 3.6.4. Fig. 3.6.9 shows the residuals for the line strengths as a function of the quantum number, which illustrates the excellent quality of the result (see also the simulated spectra in Figs. 3.6.2-3.6.6). As a final step, a weighted approximation of the effective dipole moment parameters for four other isotopologues was carried out. In this case, most of the parameters of the isotopologues 70 GeH 4 , 72 GeH 4 , 73 GeH 4 and 76 GeH 4 was constrained by the values of the corresponding 74 GeH 4 isotopologue parameters and did not fit. The P )(0002,F 2 ) value parameters of the isotopologues 73 GeH 4 and 76 GeH 4 are estimated by interpolation/extrapolation P value parameters for three other isotopologues. These two values also did not change with fitting. The resulting parameter values are shown in columns 4, 5, 6, and 8 of Table 3.6.3. One can see a good correlation between the parameter values of different isotopologues. Parameters 2, 2, 1 and 1, obtained as a result of the fitting procedure, reproduce the 382, 511, 116 and 132 experimental line strengths for 70 GeH 4 , 72 GeH 4 , 73 GeH 4 and 76 GeH 4 with d rms equal

	(00A 1 )
	(0000,A 1 (00A 1 )
	(0000,A 1 )(0002,F 2 )
	At the second stage of the analysis, for a weighted approximation of the effective dipole
	moment parameters (2.6.6), 556 experimental line strengths of the 74 GeH 4 isotopologue were
	used, and seven of the effective dipole moment parameters were obtained (fitted parameters are
	presented in column 7 of Table 3.6.3 along with their statistical confidence intervals, which are

+ ⌫ 4 (F 2 ) bands (see Fig.

3

.6.1) and with the spectrum II 0 for the weaker bands 2⌫ 2 and 2⌫ 4 (see Fig. 3.6.2). The spectrum II 0 was also used to analyze the transitions corresponding to high values of the quantum number J of the ⌫ 2 + ⌫ 4 band. In these two experimental spectra, 1697 unblended nonsaturated and not too weak vibrational-rotational lines have been chosen: 382, 511, 116, 556, and 132 for the 70 GeH 4 , 72 GeH 4 , 73 GeH 4 , 74 GeH 4 and 76 GeH 4 isotopologues, respectively (the full list is presented in Appendix 2 to the published work [155]). The integrated strengths of the selected transitions were determined from the line shape approximation by the Hartmann-Tran profile function (1.4.4). To illustrate the quality of the analysis, Fig. 3.6.8 shows examples of the lineshape approximations from which the strength values have been determined. For comparison, the results of the line shape approximation for the R(7, A 2 ) transition of all five isotopologues are shown. It was taken into account that the sample under study contained impurities -0.001% CO 2 , 0.17% N 2 O, and 0.49% H 2 O. given in parentheses). These seven parameters, obtained as a result of weighted approximation, reproduce the 556 original experimental line strengths of the 74 GeH 4 isotopologue with d rms = 3,42 % (for more details, see the statistical information at the bottom of Table 3.6.3). The d rms value was determined by Eq. (3.5.11). Appendix 2 to the published work [155] gives the experimental values
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	4 molecule (M = 70, 72,
	GeH
	4 bands of the M
	2 + ⌫

6.4

. Fragment of experimental strengths, half-widths and line shifts for the ⌫

Table 3 .

 3 Line shape analysis of the 2⌫ 2 /⌫ 2 + ⌫ 4 /2⌫ 4 pentad bending triad of germane Line half-widths (or full-width at half-height) were analyzed using spectra recorded at various pressures from 20 hPa to 150 hPa (see Table3.1.2 for details). The lines of the ⌫ 2 + ⌫ 4 (F 2 ) and ⌫ 2 + ⌫ 4 (F 1 ) bands of all five isotopologues were analyzed using a multispectral approximation by the Hartmann-Tran profile function (1.4.4) (see Fig. 3.6.10, where shows the same lines as in Fig. 3.6.8) according to the formula

	4 molecule (M
	GeH
	4 bands of the M
	2 + ⌫

6.4

. (Contin.) Fragment of experimental strengths, half-widths and line shifts for the ⌫

Table 3 .

 3 1.2). Bottom part: measured self-broadening and maximum line-shift coefficients at room temperature vs pressure. Fig. 3.7.1 shows the experimental high-resolution spectrum of the 72 GeH 4 molecule in the Octad range with a fairly well-defined band structure 3⌫ 4 , ⌫ 2 + 2⌫ 4 and 2⌫ 2 + ⌫ 4 . To illustrate the high resolution, Fig. 3.7.3 shows the spectrum on a larger scale. The dark triangles mark the transitions related to the 3⌫ 4 (1F 2 ) band, the open triangles to 3⌫ 4 (F 1 ), and the open circles to 3⌫ 4 (2F 2 ). At the initial stage, the line position analysis was carried out using the Dijon XTDS software package for the first time. The ground state, Dyad, and Pentad parameters were used as initial approximations (see previous Subchapters 3.2-3.6). Overview spectrum of the 72 GeH 4 molecule in the range 2350-2730 cm1 (arrows indicate the centers of the 3⌫ 4 , ⌫ 2 +2⌫ 4 and 2⌫ 2 +⌫ 4 bands). a result, 688 lines were identified for the 3⌫ 4 bands (1F 2 , F 1 , 2F 2 ), 447 lines for ⌫ 2 + 2⌫ 4 (1E, F 1 , F 2 , 2E) and 591 lines for 2⌫ 2 + ⌫ 4 (1F 2 , A 1 , 2F 2 ) with a maximum quantum number J max = 17 (see detailed statistical information in Table 3.7.1). In the present study, the transitions related to the 3⌫ 4 (A 1 ) and ⌫ 2 + 2⌫ 4 (A 1 , A 2 ) bands, could not be identified. As

	3.7 High-resolution vibrational-rotational spectrum in the
	Octad region

a consequence, these bands are considered as "dark". However, despite the detected transition absences, these bands affect the overall vibrational-rotational structure of the bands under consideration due to resonant interactions. Some of the found transitions are presented in Table 3.7.2. All 1726 assigned transitions were used as input in the inverse spectroscopic problem

Table 3 .

 3 7.1. Statistical information for the 3⌫ 4 , ⌫ 2 +2⌫ 4 and 2⌫ 2 +⌫ 4 bands of the 72 GeH 4 molecule.

  1 J max N tr a d rms , см 1 m 1

					b	m 2	b	m 3	b
	3⌫ 4 (1F 2 ) 3⌫ 4 (A 1 ) c	2440.5569 2458.57	17	475	61.5 11.0 3.9
	3⌫ 4 (F 1 )	2 4 6 1 . 8 3 6 0	1 7	9 6	4 8 . 1 8 . 0	2 . 1
	3⌫ 4 (2F 2 )	2464.7400	17	117	52.7 10.7 3.6
				688	7.4•10 4	
	⌫ 2 + 2⌫ 4 (1E) 2557.7538	17	119	52.4 19.2 7.3
	⌫ 2 + 2⌫ 4 (F 1 ) ⌫ 2 + 2⌫ 4 (A 1 ) c 2570.54 2569.2424	14	100	63.8 18.4 11.3
	⌫ 2 + 2⌫ 4 (F 2 )	2573.0315	17	173	64.7 22.3 9.8
	⌫ 2 + 2⌫ 4 (2E) 2575.0113 ⌫ 2 + 2⌫ 4 (A 2 ) c 2578,11	14	55	51.0 17.2 7.2
				447	7.2•10 4	
	2⌫ 2 + ⌫ 4 (1F 2 ) 2676.0054	17	297	69.1 29.0 4.9
	2⌫ 2 + ⌫ 4 (F 1 )	2682.1692	16	160	67.0 21.7 6.5
	2⌫ 2 + ⌫ 4 (2F 2 ) 2684.9711	15	134	57.9 28.6 5.5
				591	7.9•10 4	

a

Table 3 .

 3 7.2.A small fragment of the found transitions in the spectrum of the 72 GeH 4 molecule in the region of the Octad.

	Band	2⌫ 2 + ⌫ 4 (1F 2 )	2⌫ 2 + ⌫ 4 (1F 2 )	2⌫ 2 + ⌫ 4 (1F 2 )	2⌫ 2 + ⌫ 4 (1F 2 )	2⌫ 2 + ⌫ 4 (F 1 )	2⌫ 2 + ⌫ 4 (F 1 )	2⌫ 2 + ⌫ 4 (F 1 )	2⌫ 2 + ⌫ 4 (F 1 )	2⌫ 2 ) + ⌫ 4 (2F 2	2⌫ 2 ) + ⌫ 4 (2F 2	2⌫ 2 ) + ⌫ 4 (2F 2	2⌫ 2 ) + ⌫ 4 (2F 2	2⌫ 2 ) + ⌫ 4 (2F 2	3⌫ 4 ) (F 2	3⌫ 4 ) (F 2	3⌫ 4 ) (F 2	3⌫ 4 ) (F 2	3⌫ 4 ) (F 2	3⌫ 4 ) (F 2	3⌫ 4 ) (F 2	3⌫ 4 ) (F 2	3⌫ 4 (F 2
	•10 4,c cm 1	2.0	2.5	-9.5	-9.8	3.3	3.8	1.8	1.9	-8.1	-8.8	-3.8	-3.2	-3.1	5.1	5.1	8.8	9.0	7.5	8.0	0.4	1.1	-5.8
	Transmission, % E b , cm 1	88.2 2707.0302	78.0	86.0 2786.5559	62.0	88.1 2852.3353	88.5	88.8 2899.1188	87.3	86.7 2774.0854	85.4	88.0 2895.5112	88.4	87.5	53.6 2603.3527	48.6	89.5 2675.5398	41.0	88.2 2676.0397	88.0	88.3 2702.2731	47.0	88.6 2608.7400
	E gr,a , cm 1	53.9056	32.3456	150.8649	113.1628	150.8489	242.3859	193.9310	296.1957	113.1628	150.8649	242.3736	296.1638	193.9026	150.8702	150.8508	193.9043	242.3605	296.1638	193.9026	242.3736	296.1638	193.9406
	J n J 0 0 n 0 ⌫ exp , cm 1	3 F 1 23 4 F 2 1 2653.1245	3 F 1 23 3 F 2 1 2674.6845	6 A 1 15 7 A 2 1 2635.6900	6 A 1 15 6 A 2 1 2673.3922	8 F 2 53 7 F 1 1 2701.4863	8 F 2 53 9 F 1 3 2609.9494	9 F 1 59 8 F 2 1 2705.1877	9 F 1 59 10 F 2 3 2602.9231	6 A 1 14 6 A 2 1 2660.9226	6 A 1 14 7 A 2 1 2623.2205	9 A 2 20 9 A 1 1 2653.1376	9 A 2 20 10 A 1 1 2599.3475	9 A 2 20 8 A 1 1 2701.6086	7 F 2 2 8 F 1 4 2452.4824	7 F 2 1 8 F 1 4 2452.5019	8 F 1 1 9 F 2 9 2481.6355	9 F 1 2 9 F 2 9 2433.1793	10 A 1 1 9 A 2 4 2379.8759	8 A 1 1 9 A 2 4 2482.1371	9 A 1 1 9 A 2 6 2459.8995	10 A 1 1 9 A 2 6 2406.1093	8 F 1 2 7 F 2 11 2414.7993
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 3 7.3. Spectroscopic parameters Y

⌦(K,n )

Table 4 .

 4 1.1. Experimental setup of the infrared spectra of SiD 4 molecule in 1060-3640 cm 1 region.

	Spectrum	Region,	Resolution., No. of Aperture, Temp., Opt. path Beam-
		cm 1	cm 1	scans.	mm	C	length, m Splitter
	I	1060-2050	0.0021	500	1.15	24± 0.5	4	KBr
	II III IV	1060-2050 2580-3640 2580-3640	0.0021 0.003 0.003	450 350 350	1.3 1.0 1.15	24 ± 0.5 24 ± 1.0 24 ± 1.0	24 4 24	KBr CaF 2 CaF 2

Table 4 .

 4 1.2). As a result of the analysis of the spectra I and II, 2332, 1265, 1253, 485, 302, 29, and 824 transitions were determined for the first time with the quantum number J max = 33, 32, 33, 33, 25, 23 and 31 for ⌫ 2 + ⌫ 4 (F 2 ), ⌫ 2 + ⌫ 4 (F 1 ), 2⌫ 4 (F 2 ),

2⌫ 4 (E), 2⌫ 4 (A 1 ), 2⌫ 2 (A 1 ) and 2⌫ 2 (E) for the isotopologue

28 

SiD 4 (see Table

4

.1.3 for detailed statistical information). A complete list of found transitions is presented in Supplementary Materials I to the published article

[START_REF] Ulenikov | First high resolution study of the pentad bending bands of deuterated silane: Energy structure of the[END_REF]

.
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 4 1.2. Spectroscopic parameters Y ⌦(K,n )vl ,v 0 l 0 0 of the ground and (0100)/(0001) interacting vibrational states of SiD 4 (in cm 1 ).

	(⌫, )	( ⌫ 0	, 0 )	⌦(K, n )	28 SiD 4	29 SiD 4	30 SiD 4

Table 4 .

 4 1.3. Statistical information for the 2⌫ 2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) and 2⌫ 4 (A 1 , E, F 2 ) of M SiD 4 (M = 28, 29, 30) molecule

			5	-0.912211	-0.912211	-0.912211
		(0000, A 1 ) 4(4, A 1 ) 10 6	-0.4243309	-0.4243309	-0.4243309
		(0000, A 1 ) 6(0, A 1 ) 10 9	0.157994	0.157994	0.157994
		(0000, A 1 ) 6(4, A 1 ) 10 11 -0.69505	-0.69505	-0.69505
		(0000, A 1 ) 6(6, A 1 ) 10 11 -0.156444	-0.156444	-0.156444
	(0100, E)	(0100, E)	0(0, A 1 )	6 8 9 . 8 7 3 2 1 0 8	6 8 9 . 8 8 6 7 8 9 7 6 8 9 . 8 9 9 5 0 0 6
		(0100, E)	2(0, A 1 ) 10 3	0.499917	0.471102	0.444109
		(0100, E)	2(2, E) 10 2	-0.2996611	-0.3021143	-0.3043944
		(0100, E)	3(3, A 2 ) 10 5	0.63271	0.63271	0.63271
		(0100, E)	4(2, E) 10 7	-0.68717	-0.68717	-0.68717
		(0100, E)	4(4, A 1 ) 10 7	-0.164	-0.164	-0.164
		(0100, E)	5(3, A 2 ) 10 9	0.232	0.232	0.232
		(0100, E)	6(2, E) 10 11 -0.124	-0.124	-0.124
	(0001, F 2 ) (0001, F 2 ) 1(1, F 1 )	-2 . 6 6 4 4 2 7 5 4	-2 . 6 5 6 2 4 9 6 9	-2 . 6 4 8 5 7 9 6 6
		(0001, F 2 ) 2(2, F 2 ) 10 2	-0.7643753	-0.7659702	-0.7674349
		(0001, F 2 ) 3(1, F 1 ) 10 4	-0.3100749	-0.3107712	-0.3111442
		(0001, F 2 ) 3(3, F 2 ) 10 5	0.225209	0.228183	0.232701
		(0001, F 2 ) 4(4, F 1 ) 10 7	-0.13656	-0.13656	-0.13656
		(0001, F 2 ) 4(4, F 2 ) 10 7	-0.25553	-0.25553	-0.25553
		(0001, F 2 ) 5(1, F 1 ) 10 9	-0.36804	-0.36804	-0.36804
		(0001, F 2 ) 5(3, F 2 ) 10 9	0.10222	0.10222	0.10222
		(0001, F 2 ) 5(5, F 2 ) 10 9	-0.099	-0.099	-0.099
	(0001, F 2 ) (0001, F 2 ) 0(0, A 1 )	6 7 4 . 5 3 1 3 5 0 4	6 7 2 . 9 3 3 8 4 1 5	6 7 1 . 4 3 2 2 7 4
		(0001, F 2 ) 1(1, F 1 )	2 . 6 5 7 0 0 3 1 8	2 . 6 8 0 5 7 5 9 8	2 . 7 0 2 6 4 2
		(0001, F 2 ) 2(0, A 1 ) 10 3	0.14	0.14	0.14
		(0001, F 2 ) 2(2, E) 10 2	-0.1042923	-0.1045317	-0.1046633
		(0001, F 2 ) 2(2, F 2 ) 10 2	-0.4742084	-0.4718821	-0.4696996
		(0001, F 2 ) 3(1, F 1 ) 10 4	0.1442411	0.1454303	0.1469171
		(0001, F 2 ) 3(3, F 1 ) 10 4	-0.1399878	-0.1397671	-0.1393144
		(0001, F 2 ) 4(0, A 1 ) 10 6	-0.130833	-0.130833	-0.130833
		(0001, F 2 ) 4(2, E) 10 7	-0.46797	-0.46797	-0.46797
		(0001, F 2 ) 4(2, F 2 ) 10 8	0.4582	0.4582	0.4582
		(0001, F 2 ) 4(4, A 1 ) 10 8	0.47072	0.47072	0.47072
		(0001, F 2 ) 4(4, E) 10 7	0.46858	0.46858	0.46858
		(0001, F 2 ) 4(4, F 2 ) 10 7	0.36026	0.36026	0.36026
		(0001, F 2 ) 5(3, F 1 ) 10 9	-0.50578	-0.50578	-0.50578
		(0001, F 2 ) 5(5, F 1 ) 10 10	0.1767	0.1767	0.1767
		(0001, F 2 ) 6(0, A 1 ) 10 11	0.482	0.482	0.482

Table 4 .

 4 1.3. (Contin.) Statistical information for the 2⌫ 2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) and 2⌫ 4 (A 1 , E, F 2 ) of M SiD 4 (M = 28, 29, 30) molecule

	Band	Energy a , cm 1	J max N b tr	N c l	m d 1	m d 2	m d 3
		29 SiD 4					
	2⌫ 2 (E) ⌫ 2 (E)		1 4	5			
	2⌫ 2 (E)	1 3 8 0 . 2 8 0 6	2 2	5 6 5 9 3 7 . 7 2 7 . 9 3 4 . 4

Table 4 .

 4 1.3. (Contin.) Statistical information for the 2⌫ 2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) and 2⌫ 4 (A 1 , E, F 2 ) of M SiD 4 (M = 28, 29, 30) molecule

Table 4 .

 4 1.5. Some vibrational spectroscopic parameters of28 SiH 4 and 28 SiD 4 (in cm 1 ). Obtained on the basis of the experimental band centers of the Dyad and Pentad of28 SiD 4[83,[START_REF] Ulenikov | High resolution study of M SiD 4 (M = 28, 29, 30) in the dyad region: analysis of line positions, intensities and half[END_REF]. Estimated on the basis of Eq. (4.1.9) and parameters from column 2 of this table.

	Parameter	SiH a 4	SiD b 4
	x 22	0.448	0.224
	x 24	0.129	0.065
	x 44	2.955	1.477
	G 22	2.634	1.317
	T 24	0.321	0.161
	G 44	2.307	1.153
	T 44	0.181	0.091
	a		

b 

Table 4 .

 4 1.6. Predicted and experimental vibrational energies of the Pentad of28 SiD 4 (in cm 1 ).The assignment of transitions of the weaker lines belonging to the 29 SiD 4 and 30 SiD 4 isotopologues were carried out similarly to the above-discussed analysis of the 28 SiD 4 . In this case, due to the presence of significantly weak transitions in the spectra of29 SiD 4 and 30 SiD 4 molecules, only 403 transitions were assigned with the maximum value quantum number J max = 33 and 136 transitions with J max = 23 belonging to six bands (see also the statistical information in Table4.1.3), respectevly. The list of found transitions is published in Supplementary Materials I to the article[START_REF] Ulenikov | High-resolution study of the tetradecad stretching vibrational bands of M SiD 4[END_REF]. the values of corresponding parameters of the 28 SiD 4 species and were not varied in the fit procedure. As for the 30 SiD 4 isotopologue, significantly fewer transitions were found, which leads to a smaller number of fitted Hamiltonian parameters. In this case, a part of the parameters which have been fitted for the29 SiD 4 isotopologue (see column 5 of Table4.1.2), has been fixed and was not varied for the30 SiD 4 one. Here the constrained values were estimated from extrapolation of the values of corresponding parameters of the 28 SiD 4 and 29 SiD 4 species. It is necessary to note that parameters of the ground vibrational state and of the (0100) and (0001) vibrational states of 29 SiD 4 and 30 SiD 4 were used in the analysis (the same as for the 28 SiD 4 molecule). The d rms values for 29 SiD 4 and 30 SiD 4 equal to 4.72 ⇥ 10 4 cm 1 and 5.28

	State	Energy (pred.)	Energy (calc.)
	(0200, A 1 )	1 3 7 7 . 5 6 0	1 3 7 7 . 7 3 6 7
	(0200, E)	1 3 8 0 . 1 9 4	1 3 8 0 . 2 6 0 7
	(0101, F 1 )	1 3 6 5 . 7 5 8	1 3 6 5 . 8 5 0 5
	(0101, F 2 )	1 3 6 3 . 1 8 2	1 3 6 3 . 4 1 6 0
	(0002, A 1 )	1 3 4 1 . 4 9 7	1 3 4 0 . 4 7 8 0
	(0002, E)	1 3 4 9 . 5 0 7	1 3 4 9 . 3 3 8 5
	(0002, F 2 )	1 3 4 7 . 6 8 7	1 3 4 7 . 1 6 8 9
	4.1.5 High-resolution analysis of the Pentad bending bands of 29	SiD 4
	and 30	SiD 4 isotopologues

All 403 transitions used in fitting the effective Hamiltonian parameters made it possible to determine a set of spectroscopic parameters presented in Table

4

.

1.4 

(values in parentheses are 1 statistical confidence intervals for the obtained parameters). Values of parameters of the

29 

SiD 4 isotopologue which are presented in column 5 without confidence intervals, have been constrained to

29

  SiD 4 and 30 SiD 4 species, respectively (see Table4.1.3 for statistical information). The found transitions are also published in Supplementary Materials I to[START_REF] Ulenikov | First high resolution study of the pentad bending bands of deuterated silane: Energy structure of the[END_REF] and are reproduced by the parameters from Table4.1.2 with d rms = 4.76 ⇥ 10 4 cm 1 and 6.33 ⇥ 10 4 cm 1 .

	4.2 High-resolution study of the Tetradecad stretching vi-
	brational bands of SiD 4
	4.2.1 Estimation of the centers of the Tetradecad stretching vibra-
	tional bands of 28	SiD 4

  provides high efficiency in studying tetrahedral XY 4 type molecules, for which the condition m H /m Si ⌧ 1 is fulfilled[185? ]. It is important that for molecules that satisfy the conditions of the local mode model, simple relations between the spectroscopic parameters ! 1 , ! 3 , x 11 , x 13 , x 33 , G 33 , T 33 , F 1133 and F 1333 (see, for example,[START_REF] Mills | On the relationship of normal modes to local modes in molecular vibrations / I.M. Mills[END_REF]) are take place to be. As a consequence, 1. the vibrational structure of such molecule types can be described by two parameters only, ! and x;2. the local mode model shows slight differences between the centers of the ⌫ 1 + ⌫ 3 and 2⌫ 1

bands.

From this point of view, the SiH 4 molecule should be considered as a molecule in the local mode approximation, but not a "rigorous" local mode, since the difference between the centers of the ⌫ 1 and ⌫ 3 bands is about 3 cm 1

[START_REF] Permogorov | The local mode model in silane and germane / D. Permogorov, A. Campargue[END_REF] 

(the value 2⌫ 1 ⌫ 3 /⌫ 1 + ⌫ 3 is 0.2 %). It can be assumed with a high degree of certainty that the values of all parameters x 11 , x 13 , x 33 , G 33 , T 33 , F 1133 and F 1333 differ from their real values with the same order of accuracy (i.e., about 0.2-0.3 %).

Table 4 .

 4 2.1. Centers of the stretching bands of pentad and tetradecad of SiD 4 (in cm 1 ).

	Band	28 SiH 4	28 SiH c 4	28 SiD c 4	28 SiD c 4	29 SiD c 4	30 SiD c 4
		Exp.	Calc.	Calc.	Exp.	Exp.	Exp.
	⌫ 1 (A 1 )	2186.8723 a 2186.50 1563.56	1563.2 d		
	⌫ 3 (F 2 )	2189.1895 a 2189.96 1598.88 1598.4782 e		
	2⌫ 1 (A 1 )	4308.87 b	4309.06 3114.59 3113.8920 c 3113.5816 3113.2486
	⌫ 1 + ⌫ 3 (F 2 ) 4305.95 b	4309.16 3138.18 3138.4074 c 3135.7574 3133.2630
	2⌫ 3 (A 1 )	4374.56 b	4374.87 3175.78 3174.9744 c 3170.7560 3166.8732
	2⌫ 3 (F 2 )	4378.40 b	4378.24 3187.56 3187.1425 c 3182.9114 3178.9849
	2⌫ 3 (E)	4380.28 b	4379.93 3197.74 3198.0673 c 3193.5385 3189.3228

a From

[START_REF] Ulenikov | High resolution study of strongly interacting ⌫ 3 (F 2 )/⌫ 1 (A 1 ) bands of M SiD 4[END_REF]

.

  T33 ' T 33 /2, F1333 ' F 1333 /2 and F1133 ' F 1133 are valid Survey spectra I (black) and II (orange) of 28 SiD 4 (trace 1a) in the region of 3020-3250 cm 1 (see Table 4.1.1 for the experimental details). Lower traces: corresponding simulated spectra of 30 SiD 4 , 29 SiD 4 , 28 SiD 4 and global simulation in this region (see text for details).
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for symmetric substitutions of nuclei in XY 4 molecules (T d symmetry) (in this case, the parameters with and without the tilde belong to the 28 SiH 4 and 28 SiD 4 molecules, respectively). Taking Eq. (4.2.2) and the value x = -8.62 cm 1 obtained above, one can easily determine the values of the following parameters for the

28 

SiD 4 molecule: x11 = Fig.

1

. Survey spectra I (black) and II (orange) of

28 

SiD 4 (trace 1a) in the region of 3020-3250 cm -1 (see Section 2 and Table

1

for the experimental details). Lower traces: corresponding simulated spectra of

30 

SiD 4 ,

29 

SiD 4 ,

28 

SiD 4 and global simulation in this region (see text for details). Figure 4.2.1.

Table 4

 4 All 1473 spectral lines and 31 fitted parameters describe the initial experimental data with an accuracy of d rms = 3.5 ⇥ 10 4 cm 1 , which is comparable to with experimental uncertainties. Column 4 of Table4.2.1 presents the band center values obtained from the weighted approximation procedure. Comparing these data with the results of the above theoretical estimation (see Subchapter 4.3.1) shows excellent agreement between both parameter sets. This can be seen as a good confirmation of the correctness of the assumptions and conclusions made in Subchapter 4.3.1. On the other hand, this gives the certainty to assume that the results of Subchapter 4.3.1 can be successfully used to predict the center values of the higher stretching bands of SiD 4 molecule.

.1.1).

Table 4 .

 4 2.2. Statistical information for the ⌫ 1 + ⌫ 3 /2⌫ 3 band of molecule M SiD 4 (M = 28, 29, 30).

Table 4 .

 4 1.4. Spectroscopic parameters Y ⌦(K,n ) vl ,v 0 l 0 0 of the set of interacting vibrational states (0200)/(0101)/(0020) (in cm 1 ).

	(⌫, )	( ⌫ 0	, 0 )	⌦(K, n )	28 SiD 4	29 SiD 4	30 SiD 4
	(0200, A 1 ) (0200, A 1 ) 0(0, A 1 )	-2 . 1 7 6 3 6 ( 2 7 )	-2 . 1 7 2 7 3 6 ( 9 7 ) -2 . 1 6 9 1 2
	(0200, A 1 ) (0200, E)	2(2, E) 10 5	6.252(27)	6.252	6.252
	(0200, E)	(0200, E)	0(0, A 1 )10 11 4.97057(63)	4.95032(20)	4.92859(43)
	(0200, E)	(0200, E)	2(0, A 1 )10 5	-7.817(56)	-7.817	-7.817
	(0200, E)	(0200, E)	2(2, E) 10 4	-2.3303(93)	-2.3303	-2.3303
	(0200, A 1 ) (0101, F 1 ) 1(1, F 1 )10 2	-6.243(11)	-6.2762(29)	-6.309651
	(0200, A 1 ) (0101, F 1 ) 3(1, F 1 )10 6	-1.4266(57)	-1.4266	-1.4266
	(0200, E)	(0101, F 1 ) 1(1, F 1 )10 2	5.308(13)	5.308	5.308
	(0200, E)	(0101, F 1 ) 2(2, F 2 )10 5	-3.128(34)	-3.128	-3.128
	(0200, E)	(0101, F 1 ) 3(1, F 1 )10 7	2.929(28)	2.929	2.929
	(0200, E)	(0101, F 2 ) 1(1, F 1 )10 3	3.999(12)	3.8787(13)	3.7583
	(0200, E)	(0101, F 2 ) 2(2, F 2 )10 4	2.8632(67)	2.8632	2.8632
	(0200, E)	(0101, F 2 ) 3(1, F 1 )10 6	-1.1401(15)	-1.1401	-1.1401
	(0200, A 1 ) (0002, A 1 ) 0(0, A 1 )	-2 . 4 8 2 9 ( 2 0 )	-2 . 3 5 7 6 0 ( 5 8 )	-2 . 2 3 2 0 6 ( 1 4 )
	(0200, A 1 ) (0002, F 2 ) 2(2, F 2 )10 4	2.6189(97)	2.6189	2.6189
	(0200, E)	(0002, A 1 ) 2(2, E) 10 4	-1.7648(45)	-1.7648	-1.7648
	(0200, E)	(0002, E)	0(0, A 1 )10 1	7.183(13)	6.41065(25)	5.66300(43)
	(0200, E)	(0002, E)	2(0, A 1 )10 5	-8.950(16)	-8.95	-8.95
	(0200, E)	(0002, F 2 ) 1(1, F 1 )10 2	9.517(15)	9.59288(52)	9.66872
	(0200, E)	(0002, F 2 ) 2(2, F 2 )10 4	2.3440(67)	2.344	2.344
	(0200, E)	(0002, F 2 ) 3(1, F 1 )10 6	1.1446(29)	1.1446	1.1446
	(0101, F 1 ) (0101, F 1 ) 0(0, A 1 )	1 . 4 5 5 4 9 6 1 ( 8 0 )	1 . 4 4 9 2 5 2 ( 2 5 )	1 . 4 4 4 6 6 8 ( 3 8 )
	(0101, F 1 ) (0101, F 1 ) 1(1, F 1 )10 2	-1.37041(19)	-1.37041	-1.37041
	(0101, F 1 ) (0101, F 1 ) 2(0, A 1 )10 4	-1.5094(34)	-1.5094	-1.5094
	(0101, F 1 ) (0101, F 1 ) 2(2, F 2 )10 4	2.7998(50)	2.7998	2.7998
	(0101, F 1 ) (0101, F 1 ) 3(1, F 1 )10 7	-5.441(24)	-5.441	-5.441
	(0101, F 1 ) (0101, F 2 ) 1(1, F 1 )10 2	-4.5104(46)	-4.49420(23)	-4.47856(40)
	(0101, F 1 ) (0101, F 2 ) 2(2, E) 10 5	9.076(16)	9.076	9.076
	(0101, F 1 ) (0101, F 2 ) 2(2, F 2 )10 4	-1.7258(74)	-1.7258	-1.7258
	(0101, F 1 ) (0101, F 2 ) 3(1, F 1 )10 7	-4.532(21)	-4.532	-4.532
	(0101, F 1 ) (0101, F 2 ) 3(3, A 2 ) 10 7 -2.386(15)	-2.386	-2.386
	(0101, F 2 ) (0101, F 2 ) 0(0, A 1 )	-1 . 3 0 0 9 0 ( 1 1 )	-1 . 3 0 4 3 3 3 ( 1 1 ) -1 . 3 0 7 0 4 1 ( 2 9 )
	(0101, F 2 ) (0101, F 2 ) 1(1, F 1 )10 2	-9.516(16)	-9.47472(43)	-9.43303
	(0101, F 2 ) (0101, F 2 ) 2(0, A 1 )10 4	1.8134(55)	1.8134	1.8134
	(0101, F 2 ) (0101, F 2 ) 2(2, E) 10 5	-5.174(88)	-5.174	-5.174
	(0101, F 1 ) (0002, A 1 ) 1(1, F 1 )10 2	9.381(15)	9.4911(40)	9.55100(61)
	(0101, F 1 ) (0002, A 1 ) 3(1, F 1 )10 6	1.8257(72)	1.8257	1.8257
	(0101, F 1 ) (0002, E)	1(1, F 1 )10 2	4.704(12)	4.704	4.704
	(0101, F 1 ) (0002, E)	2(2, F 2 )10 4	-3.1061(40)	-3.1061	-3.1061
	(0101, F 1 ) (0002, F 2 ) 1(1, F 1 )10 2	-3.2093(65)	-3.15125(36)	-3.12515(59)
	(0101, F 1 ) (0002, F 2 ) 2(2, E) 10 5	-5.697(56)	-5.697	-5.697
	(0101, F 1 ) (0002, F 2 ) 2(2, F 2 )10 4	2.0814(62)	2.0814	2.0814
	(0101, F 1 ) (0002, F 2 ) 3(1, F 1 )10 7	-1.237(22)	-1.237	-1.237
	(0101, F 1 ) (0002, F 2 ) 3(3, A 2 )10 7	4.763(12)	4.763	4.763
	(0101, F 2 ) (0002, A 1 ) 2(2, F 2 )10 4	1.6811(30)	1.6811	1.6811
	(0101, F 2 ) (0002, E)	1(1, F 1 )10 2	2.736(12)	2.68676(51)	2.64670(53)
	(0101, F 2 ) (0002, E)	2(2, F 2 )10 4	-2.649(10)	-2.649	-2.649
	(0101, F 2 ) (0002, E)	3(1, F 1 ) 10 7	5.827(28)	5.827	5.827
	(0101, F 2 ) (0002, F 2 ) 0(0, A 1 )	-2 . 2 2 8 9 9 ( 3 7 )	-2 . 2 1 1 0 5 0 ( 1 2 ) -2 . 1 9 4 7 5 1 ( 2 3 )
	(0101, F 2 ) (0002, F 2 ) 1(1, F 1 )10 2	1.2454(34)	1.2454	1.2454

3 (E) sub-bands are marked by open and dark circles (for the experimental conditions see Table

4

.1.1). Asterisks mark water lines.

Table 4 .

 4 The transitions belonging to the isotopologues29 SiD 4 (abundance of 4.68 %) and30 SiD 4

	3 stretching bands of tetradecad of M SiD 4 (M = 28, 29, 30).	⇥ 10 4 , cm 1 Spectrum M Band	-1.3 IV ⌫ 2 29 1 + ⌫ 3 , F	-3.0 IV ⌫ 2 29 1 + ⌫ 3 , F	-1.2 IV ⌫ 2 29 1 + ⌫ 3 , F	-2.0 IV ⌫ 2 29 1 + ⌫ 3 , F	-0.1 IV ⌫ 2 29 1 + ⌫ 3 , F	-4.4 IV ⌫ 2 28 1 + ⌫ 3 , F	2.4 III ⌫ 2 28 1 + ⌫ 3 , F	-0.7 III ⌫ 2 28 1 + ⌫ 3 , F	0.9 III ⌫ 2 28 1 + ⌫ 3 , F	-0.1 III ⌫ 2 28 1 + ⌫ 3 , F	-1.4 IV ⌫ 2 29 1 + ⌫ 3 , F	1.3 IV ⌫ 2 29 1 + ⌫ 3 , F	-0.1 IV ⌫ 2 28 1 + ⌫ 3 , F	0.0 IV ⌫ 2 28 1 + ⌫ 3 , F	-0.2 IV ⌫ 2 28 1 + ⌫ 3 , F	1.4 IV 28 2⌫ 3 , E	1.6 IV 28 2⌫ 3 , E	4.3 IV ⌫ 2 28 1 + ⌫ 3 , F	-0.6 IV ⌫ + ⌫ , F	0.3 IV 28 2⌫ 3 , E	0.1 IV 28 2⌫ 3 , E	-0.1 IV 2⌫ 3 , E
	2.3. (Contin.) Fragment of the transition list for the ⌫ 1 + ⌫ 3 /2⌫	J n J 0 n 0 0 ⌫ exp , cm 1 Transmit., %	26 2 A 1 25 2 A 2 3196.58001 96.1	26 8 F 1 25 5 F 2 3196.58997 95.6	26 6 F 2 25 6 F 1 3196.60266 96.0	26 5 F 2 25 5 F 1 3196.66515 96.2	26 3 E 25 3 E 3196.67629 97.2	22 12 F 2 21 5 F 1 3196.92180 97.8	25 5 F 1 24 5 F 2 3197.00275 90.8	25 4 F 2 24 5 F 1 3197.03082 90.8	25 4 F 1 24 4 F 2 3197.08128 92.1	25 2 E 24 3 E 3197.13070 93.8	26 1 F 2 25 2 F 1 3197.32823 90.0	26 1 E 25 1 E 3197.32823 90.0	23 8 F 1 22 1 F 2 3197.50529 68.6	23 5 E 22 1 E 3197.50529 68.6	23 3 A 1 22 1 A 2 3197.50529 68.6	21 11 F 1 21 1 F 2 3197.75169 98.2	21 11 F 2 21 1 F 1 3197.75169 98.2	22 10 E 21 3 E 3197.80524 90.2	A A 3197.80524 90.2	20 4 A 2 20 1 A 1 3197.84698 95.7	20 10 F 2 20 1 F 1 3197.84698 95.7	20 7 E 20 1 E 3197.84698 95.7

Table 4 .

 4 2.4. Spectroscopic parameters Y ⌦(K,n ) vl ,v 0 l 0 0 of the stretching bands of tetradecad of SiD 4 molecule SiD 4 (in cm 1 ).

	(⌫, )	( ⌫ 0	, 0 )	⌦(K, n )	28 SiD 4	29 SiD 4	30 SiD 4

Table 4 .

 4 2.4. (Contin.) Spectroscopic parameters Y ⌦(K,n ) vl ,v 0 l 0 0 of the stretching bands of tetradecad of SiD 4 molecule SiD 4 (in cm 1 ).

			5	-0.912211	-0.912211	-0.912211
		(0000, A 1 ) 4(4, A 1 ) 10 6	-0.4243309	-0.4243309	-0.4243309
		(0000, A 1 ) 6(0, A 1 ) 10 9	0.157994	0.157994	0.157994
		(0000, A 1 ) 6(4, A 1 ) 10 11 -0.69505	-0.69505	-0.69505
	(0000, A 1 ) 6(6, A 1 ) 10 11 -0.156444 (1000, A 1 ) a (1000, A 1 ) 0(0, A 1 ) 1 5 6 3 . 2	-0.156444 1 5 6 3 . 2	-0.156444 1 5 6 3 . 2
		(1000, A 1 ) 2(0, A 1 ) 10 2	-0.63	-0.63	-0.63
		(1000, A 1 ) 4(0, A 1 ) 10 6	0.051	0.051	0.051
	(1000, A 1 ) 4(4, A 1 ) 10 7 (1000, A 1 ) a (0010, F 2 ) 2(2, F 2 ) 10 2	-0.031 0.382080	-0.031 0.378724	-0.031 0.375760
		(0010, F 2 ) 3(3, F 2 ) 10 5	0.08965	0.08965	0.08965
		(0010, F 2 ) 4(2, F 2 ) 10 7	0.22267	0.22267	0.22267
		(0010, F 2 ) 4(4, F 2 ) 10 6	0.021357	0.021357	0.021357
	(0010, F 2 ) 5(3, F 2 ) 10 9 (0010, F 2 ) a (0010, F 2 ) 0(0, A 1 )	0.043 1 5 9 8 . 4 7 8 1 9 0 7	0.043 1 5 9 6 . 2 1 3 7 7 1 8	0.043 1 5 9 4 . 1 0 5 9 0 9 0
		(0010, F 2 ) 1(1, F 1 )	0 . 4 1 0 8 0 5 8 5	0 . 3 8 7 9 5 0 7 5	0 . 3 6 6 5 8 3 6 1
		(0010, F 2 ) 2(0, A 1 )	-0 . 0 0 5 5 4 4 3 8 4	-0 . 0 0 5 5 1 8 1 5 2 5 -0 . 0 0 5 4 9 3 7 9 3
		(0010, F 2 ) 2(2, E ) 10 2	0.1615357	0.15712106	0.15296615
		(0010, F 2 ) 2(2, F 2 ) 10 2	-0.1799984	-0.1802560	-0.1805351
		(0010, F 2 ) 3(1, F 1 ) 10 5	0.245756	0.232568	0.220953
		(0010, F 2 ) 3(3, F 1 ) 10 5	-0.135588	-0.136522	-0.136863
		(0010, F 2 ) 4(2, E) 10 6	0.025161	0.025161	0.025161
		(0010, F 2 ) 4(2, F 2 ) 10 7	-0.08627	-0.08627	-0.08627
		(0010, F 2 ) 4(4, A 1 ) 10 7	0.055998	0.055998	0.055998
		(0010, F 2 ) 4(4, E) 10 7	0.12159	0.12159	0.12159
		(0010, F 2 ) 4(4, F 2 ) 10 6	-0.023221	-0.023221	-0.023221
		(0010, F 2 ) 5(1, F 1 ) 10 9	0.00889	0.00889	0.00889
		(0010, F 2 ) 5(3, F 1 ) 10 10 -0.3867	-0.3867	-0.3867
		(0010, F 2 ) 6(0, A 1 ) 10 11	0.1272	0.1272	0.1272
	(2000, A 1 )	(2000, A 1 ) 0(0, A 1 )	-8 . 6 1	-8 . 6 1	-8 . 6 1
	(2000, A 1 )	(0020, A 1 ) 0(0, A 1 )	1 4 . 9 3	1 4 . 9 3	1 4 . 9 3
	(1010, F 2 )	(1010, F 2 ) 0(0, A 1 )	-1 6 . 1 2 4 1 9 2 ( 2 4 ) -1 6 . 2 1 4 6 8 ( 3 7 )	-1 6 . 2 1 4 6 8 ( 3 7 )
		(1010, F 2 ) 1(1, F 1 )	-0 . 0 0 5 1 6 ( 6 1 )	-0 . 0 0 5 2 4 6 5 ( 5 7 ) -0 . 0 0 5 4 6 4 3 ( 6 1 )
		(1010, F 2 ) 2(0, A 1 ) 10 3	0.3502(32)	0.355032(53)	0.362700(53)
		(1010, F 2 ) 2(2, E) 10 3	-0.2698(36)	-0.281137(52)	-0.295169(57)
		(1010, F 2 ) 2(2, F 2 ) 10 3	0.1621(28)	0.1621	0.1621
		(1010, F 2 ) 3(1, F 1 ) 10 5	-0.1959(32)	-0.1959	-0.1959
		(1010, F 2 ) 3(3, F 1 ) 10 6	-0.9025(98)	-0.9025	-0.9025
		(1010, F 2 ) 4(0, A 1 ) 10 7	0.3579(29)	0.3579	0.3579
		(1010, F 2 ) 4(2, E) 10 8	0.980(17)	0.980	0.980
		(1010, F 2 ) 4(2, F 2 ) 10 7	-0.5189(62)	-0.5189	-0.5189
		(1010, F 2 ) 4(2, E) 10 7	-0.1064(11)	-0.1064	-0.1064
		(1010, F 2 ) 4(4, F 2 ) 10 7	-0.23281(71)	-0.23281	-0.23281
		(1010, F 2 ) 6(0, A 1 ) 10 11	0.9566(73)	0.9566	0.9566
	(1010, F 2 )	(0020, A 1 ) 2(2, F 2 ) 10 3	-0.3369(36)	-0.3369	-0.3369
	(1010, F 2 )	(0020, E)	1(1, F 1 ) 10 2	0.444(67)	0.444	0.444
		(0020, E)	2(2, F 2 ) 10 3	0.2394(16)	0.2394	0.2394
		(0020, E)	3(1, F 1 ) 10 5	-0.4315(53)	-0.4315	-0.4315

a Reproduce from

[START_REF] Ulenikov | ), соответственно. идентификации переходов использовалась информация о колебательно-вращательной структуре полос 2⌫ 1 (A 1 ) и ⌫[END_REF]

.
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	Федеральное государственное автономное образовательное учреждение высшего ления им точных расчетов структуры молекулярных спектров по-прежнему остается ак-лекул). Особое внимание уделяется исследованию спектроскопических свойств молекулы ны колебательно-вращательные переходы, принадлежащие данным полосам и опре-Основные методы исследования
	образования туальной задачей, которая неизбежно включает определение характеристик высоковоз-германа для задач астрофизики и планетологии. Присутствие GeH 4 в атмосфере планет-Все вышеперечисленные факторы и трудности спектроскопии молекул силана и гер-деленны спектроскопические параметры эффективного гамильтониана.
	Национальный исследовательский Томский политехнический университет Университет Бургундии Франш-Конте На правах рукописи Кузнецов Алексей Валерьевич ИССЛЕДОВАНИЕ СПЕКТРОВ МОЛЕКУЛ ТИПА СФЕРИЧЕСКОГО ВОЛЧКА НА ОСНОВЕ ТЕОРИИ НЕПРИВОДИМЫХ ТЕНЗОРНЫХ ОПЕРАТОРОВ 1.3.6 -Оптика Диссертация на соискание учёной степени кандидата физико-математических наук Научные руководители доктор физико-математических наук, профессор Громова Ольга Васильевна доктор физических наук, профессор Леруа Клод доктор физических наук, профессор Вансан Будон 3 Исследование колебательно-вращательной структуры спектров молеку-лы германа 3.1 4 Исследование колебательно-вращательной структуры спектров молеку-лы силана поле, и др. В первую очередь, все вышеперечисленные свойства и характеристики молекул определяются внутримолекулярным потенциальным полем (внутримолекулярная потен-циальная функция). Знание как количественных, так и качественных характеристик по-тенциальной функции является определяющим для понимания протекающих в молекулах процессов. Параметры внутримолекулярного силового поля являются фундаментальными ат.%)) имеет сложные по структуре ИК-спектры. Сложная структура спектров возникает из-за наличия очень сильного кориолисова взаимодействия между парами его фундамен-тальных колебаний ⌫ 2 /⌫ 4 и ⌫ 1 /⌫ 3 . Знание спектроскопических характеристик различных изотопологов GeH 4 важно во многих областях науки и техники, например, для производ-этим можно сказать, что точные данные о спектральных характеристиках молекулы си-лана могут быть полезны для исследования звездных объектов. Другой важный момент -молекула силана является прекурсором для химического осаждения слоев кремния из Научные положения, выносимые на защиту: 1. Спектроскопические параметры взаимодействующих состояний молекулы GeH 4 , с учетом резонансных взаимодействий и тетраэдрических расщеплений, позволяют 4. Впервые измерены интегральные интенсивности линий фундаментальных полос ⌫ 2 /⌫ 4 молекулы M GeH 4 (M = 70, 72, 73, 74, 76) путем аппроксимации формы измеряемых чений колебательных энергий, параметров гамильтониана (в том числе главные вклады линий контуром Артмана-Тран. Полученные данные позволили определить пара-искажений, резонансных взаимодействий и тетраэдрических расщеплений. 10. Зарегистрированы ИК-спектры высокого разрешения молекулы M SiD 4 (M = 28, 29, 30) в области 3020-3260 см 1 , где расположена тетрадекада валентных полос ⌫ 1 + ⌫ 3 линий молекул силана и германа является существенным дополнением к банкам спек-троскопической информации HITRAN, GEISA и VAMDC. Данные о спектральных харак-теристиках необходимы для верификации и коррекции ab initio расчётов структуры и параметров спектров молекул SiD 4 и GeH 4 . В частности, отсутствие количественных зна-4.1 4.2.4 Анализ колебательно-вращательной структуры колебательных состо-яний (⌫ 4 = 2), (⌫ 2 = ⌫ 4 = 2), (⌫ 2 = 2) и определение спектроскопиче-Публикации по теме диссертации Благодарности Список литературы ческих элементов. На настоящий момент колебательно-вращательные спектры являются наиболее полным и надежным источником информации о характере внутримолекулярных взаимодействий, состояниях и фундаментальных свойствах молекул и, как следствие, ис-раметры спектральных линий, определяемые из эксперимента, содержат информацию о таких важнейших характеристиках молекул, как внутримолекулярное силовое поле, элек-трический и магнитный моменты, структурные постоянные, внутримолекулярное силовое Полученная высокоточ-ная информация об переходах, интенсивностях, коэффициентах самоуширения и сдвигов 7. ли определить спектроскопические параметры, а именно параметры центробежных ния, а также непротиворечивостью полученных результатов и выводов. ских параметров молекул 29 Заключение Введение Инфракрасная спектроскопия высокого разрешения как планет солнечной системы, так и экзопланет дает ценную информацию о свойствах их атмосфер и содержании хими-бужденных молекулярных состояний. Модифицирование существующих методов иссле-дования тонкой колебательно-вращательной структуры спектров многоатомных молекул и извлечение из них спектроскопической информации является необходимостью и пред-ставляет собой реальную проблему для фундаментальных наук, таких как теоретическая спектроскопия, для лучшего понимания различных атмосферных процессов. В частности, для изучения атмосфер холодных звезд, экзопланет, околозвездных оболочек, межзвезд-ных веществ и других сред требуется знание о положениях спектральных линий (с точно-гигантов известно с 1978 года, в частности данная молекула была обнаружена в атмосфере Юпитера [8]. В 2011 году космический зонд NASA Juno был запущен к газовому гиганту со спектрометром JIRAM (Jovian InfraRed Auroral Mapper ), охватывающим большой спек-тральный диапазон. С 2016 года Juno находится на орбите Юпитера, записывая данные причине в настоящее время необходимо точное моделирование инфракрасных спектров радекады, пентады и октады) и SiD 4 (в диапазоне диады, тетрадекады и пентады) при различных экспериментальных условиях. ставимой с погрешностями эксперимента. 1. Строгостью методов и моделей, которые использовались при проведении исследова-пяти изотопологов. ют присутствие молекулы германа в атмосфере Сатурна (см., например, [10-16]). По этой 1. Регистрация спектров высокого разрешения молекул GeH 4 (в диапазоне диады, тет-предсказывать колебательные энергии для молекул SiH 4 и SiD 4 с точностью сопо-порядков, тетраэдрических расщеплений и резонансных взаимодействий для всех Степень достоверности результатов подтверждается с точностью, никогда ранее не достигавшейся [9]. Другие исследования также подтвержда-Методы квантовой механики, теории групп, неприводимого тензорного формализма, мана прекрасно описывают актуальность выбранной темы. Поэтому целью работы яв-ляется: исследование спектров молекул типа сферического волчка на основе теории непри-водимых тензорных операторов. Для достижения поставленной цели были решены следу-ющие задачи: возможен с помощью мультиспектральной аппроксимации контуром Артмана-Тран. 3. Теоретические оценки спектроскопических параметров при исследовании спектров поглощения для анализа коротковолновых областях длин волн позволяют корректно 6. Впервые зарегистрированы и проанализированы ИК-спектры высокого разрешения колебательно-вращательной спектроскопии и Фурье-спектроскопи. Выполнение расчетов как холодным, так и горячим полосам. Полученные переходы позволили опреде-молекулы M GeH 4 (M = 70, 72, 73, 74, 76) в районе 1400-2000 см 1 , где расположены осуществлялось на основе программ, написанных на языке FORTFAN и MAPLE, а также лить колебательно-вращательные энергии верхних состояний и спектроскопические колебательные полосы 2⌫ 2 , 2⌫ 4 и ⌫ 2 + ⌫ 2 . Решена обратная спектроскопическая за-дача, которая позволила определить параметры центробежных искажений высоких параметры эффективного гамильтониана. в программе Dijon XTDS.
	характеристиками, определяющими гамильтониан исследуемой молекулы. Именно в этом в параметры резонансных взаимодействий) делает невозможным более точных расчетов
	научном контексте вклад теории в молекулярную физику приобретет особое значение. внутримолекулярной потенциальной функции молекул германа и силана.
	Томск Дижон 2023 Удовлетворение потребностей планетологов и/или астрофизиков путем предостав-
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4.3.2 Идентификация переходов и определение спектроскопических параметров молекулы 28 SiD 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.3 Идентификация переходов и определение спектроскопических параметров молекул 29 SiD 4 и 30 SiD 4 . . . . . . . . . . . . . . . . . . . . . . точником наиболее точной информации, необходимой для решения многочисленных проблем астрофизики и атмосферной оптики. Требования планетологов и астрофизиков к спектроскопическому сообществу усилились за последние 35 лет и особенно резко возросли после миссии Кассини/Гюйгенса [1], которая поспособствовала моделированию атмосферы Титана и Сатурна. Тогда речь шла о точном расчете спектров различных углеводородов. Другие космические миссии (текущие и будущие) также требуют тесного сотрудничества астрофизиков со спектроскопистами. Это показывает, насколько необходимо иметь надежные молекулярные данные в широком спектральном диапазоне. Это связано с тем, что па-стью  10 3 см 1 ), интенсивностях (с точностью 2-3%), а также, коэффициенты уширения и сдвиги. Стоит также сказать о важности изучения не только материнских молекул, но и их изотопологов. Содержание изотопологов является ценным индикатором процессов нуклеосинтеза в звездах и важным для исследования химических процессов в межзвездном и околозвездном веществе. Еще одним важным химическим вопросом является исследования именно детерированных изотопологов, так как было зафиксировано удивительно высокое содержание в плотных молекулярных облаках многократнодейтерированных различных молекул (см., например, [2-5]). Среди всего огромного многообразия молекул, особое место в колебательно-вращательной спектроскопии занимают молекулы типа сферического волчка. Одними из наиболее практически значимых и интересных, с точки зрения астрофизических приложений, молекул данной симметрии являются герман GeH 4 и силан SiH 4 . Герман в естественном изотопном составе (существуют пять стабильных изотопологовства монокристаллического германия высокой чистоты, который можно использовать одновременно как источник двойного бета-распада его ядер и как детектор таких процессов [6, 7], в физической химии (герман можно считать прототипом многих органических мо-молекулы GeH 4 , в частности, для того, чтобы обеспечить поиск других тропосферных видов. Одной из важных проблем химической физики является точное определение поверхностей внутримолекулярного многомерного потенциала и дипольного момента. Эта задача может быть решена полуэмпирическими методами или на основе ab initio расчетов. В обоих случаях очень важно знание высокоточной спектроскопической информации не только об материнских молекулах, но и обо всех возможных изотопологах. В связи с этим можно сказать, важна и своевременна высокоточная спектроскопическая информация о характеристиках спектральных линий (положения линий, интенсивности, сдвиги и полуширины) различных изотопологов молекулы германа и поэтому в течение многих лет эта молекула широко изучалась [17-26]).

Спектроскопия и термохимия молекулы силана SiH 4 (существуют три стабильных изотополога -28 Si (92,23 ат.%),

29 

Si (4,68 ат.%),

30 

Si (3,09 ат.%)) тоже вызвают интерес по ряду причин. В частности, молекула силана и ее изотопологи имеют важное значение в ИК-астрономии. Благодаря спектроскопическим методам, молекула силана была обнаружена в атмосферах Юпитера, Сатурна и Титана

[13, 14, 16,[27][28][29][30]

. Планетарная туманность, окружающая ИК-звезду IRC+10216, содержит изотополог

28 

SiH 4

[31, 32]

. В связи с паровой фазы

[33]

. Контроль газа силана очень важен при производстве кремния высокой чистоты

[34, 35]

. Вследствие этого в течение многих лет проводились многочисленные лабораторные спектроскопические исследования как материнской молекулы силана, так и его различных изотопологов (см., например,

[36][37][38][39][40][41][42][43][44][45][46][47][48][49]

). 2. Модифицирование и усовершенствование алгоритма анализа колебательно-вращательной структуры спектров молекул XY 4 с учетом различного типа резонансных взаимодействий, учитывающих симметрию молекулы.

3. Исследование колебательно-вращательной структуры спектров молекулы M GeH 4 (M = 70, 72, 73, 74, 76) в диапазонах диады, тетрадекады, пентады и октады. 4. Исследование форм спектральных линий (интенсивности, сдвиги и коэффициенты ударного уширения) молекулы M GeH 4 (M = 70, 72, 73, 74, 76) в диапазонах диады и пентады. 5. Расчет начальных значений основных спектроскопических параметров: центров полос и главных вкладов в параметры резонансных взаимодействий на основании теории изотопозамещения для молекулы SiD 4 . 6. Исследование колебательно-вращательной структуры спектров молекулы M SiD 4 (M = 28, 29, 30) в диапазонах диады, тетрадекады и пентады. воспроизводить положения спектральных линий в диапазоне диады/тетрадекады/пентады/октады с точностью d rms ⇠ 3 • 10 4 см 1 . Параметры эффективного дипольного момента позволяют воспроизводить интенисновсти спектральных линий в диапазоне диады/тетрадекады с точностью d rms ⇠ 3 %.

2.

Научная новизна работы:

1. Усовершенствована модель гамильтониана для анализа колебательно-вращательной структуры спектров молекул XY 4 с учетом различного типа резонансных взаимодействий, учитывающих симметрию молекулы.

2. Впервые зарегистрированы ИК-спектры высокого разрешения молекулы

72 

GeH 4 в областях диады и пентады и проинтерпритированны колебательно-вращательные переходы, принадлежащие колебательным полосам ⌫ 2 (E), ⌫ 4 (F 2 ), ⌫ 1 (A 1 ), ⌫ 3 (F 2 ),

⌫ 1 + ⌫ 3 (F 1 ), ⌫ 1 + ⌫ 3 (F 2 ), 2⌫ 2 (A 1 ), 2⌫

2 (E), 2⌫ 4 (A 1 ), 2⌫ 4 (E) и 2⌫ 4 (F 2 ) и определены спектроскопические параметры эффективного гамильтониана.

3. Впервые проведен анализ положений линий фундаментальных полос ⌫ 2 /⌫ 4 и определены колебательно-вращательные энергии верхних колебательных состояний молекулы 70 GeH 4 . Полученные переходы позволили определить набор спектроскопических параметров, которые описывают колебательно-вращательную структуру полос ⌫ 2 /⌫ 4 с точностью близкой к экспериментальным погрешностям. метры эффективного дипольного момента полос ⌫ 2 /⌫ 4 . 5. Впервые зарегистрированы ИК-спектры высокого разрешения молекулы 73 GeH 4 в области деформационных полос ⌫ 1 + ⌫ 3 (F 2 ) и 2⌫ 1 (A 1 ). Были проинтерпритирован-(F 2 ) молекулы M GeH 4 (M = 70, 72, 73, 74, 76), которые определялись из аппроксимации формы линии контуром Артмана-Тран. Процедура взвешенной аппроксимации позволила определить параметры эффективного дипольного момента. 8. Впервые проведен анализ формы линий полос ⌫ 2 + ⌫ 4 (F 2 ) и ⌫ 2 + ⌫ 4 (F 1 ) всех пяти изотопологов молекулы германа с помощью мультиспектральной аппроксимации контуром Артмана-Тран. Получены значения коэффициентов самоуширения self и сдвига линий self . 9. Впервые выполнено исследование колебательно-вращательного спектра высокого разрешения молекулы 72 GeH 4 в районе октады. Проведен анализ положений линий в диапазоне десяти взаимодействующих колебательно-вращательных полос 3⌫ 4 (1F 2 ,

F 1 , 2F 2 ), ⌫ 2 +⌫ 4 (1E, F 1 , F 2 , 2E) и 2⌫ 2 +⌫ 4 (1F 2 , F 1 , 2F 2 ). Найденные переходы позволи-(F 2 ) и 2⌫ 3 (F 2 , E).

Впервые проинтерпритированны переходы принадлежащие перечисленным полосам. В результате процедуры варьирования параметров эффективного гамильтониана были определены параметры центробежных искажений, резонансных взаимодействий и тетраэдрических расщеплений. 11. Впервые зарегистрирован и теоретически исследован колебательно-вращательный спектр молекулы M 2. Согласованностью экспериментальных данных с результатами теоретических исследований. Спектроскопические данные, полученные в настоящем исследовании, позволяют восстанавливать спектры с точностями порядка эксперимента, а также предсказывать переходы, которые невозможно наблюдать в эксперименте. Научная ценность Информация о спектроскопических параметрах молекул M GeH 4 (M = 70, 72, 73, 74, 76) и M SiD 4 (M = 28, 29, 30), полученная на основе анализа колебательно-вращательных спектров, позволяет предсказывать положения линий в ранее не исследованных спектральных диапазонах этих молекул, а также распространить результаты работы на исследование молекул типа сферического волчка (в частности XY 4 ).

  New Developments in High Resolution Molecular Spectroscopy and outreach to modern applications (Ле Зуш, Франция, 2022). 2. Международный коллоквиум The 27 th Colloquium on High-Resolution Molecular Spectroscopy (Кельн, Германия, 2021).

	является непростой научной задачей. А именно, известно что, решение уравнения Шре-
	дингера для сложных молекулярных объектов (многоатомных молекул) является невоз-
	можным. Поэтому для теоретического описания молекулярных спектров необходимо ис-
	пользовать различного рода приближения в построении гамильтонианов молекул.
	В молекулярной спектроскопии, как правило, используются нерелятивистские га-Глава 1 мильтонианы без учета спиновых добавок, т.е. гамильтонианы следующего вида:
	Основы колебательно-вращательной
	молекулярной спектроскопии
	Для всестороннего описания молекулы как квантового объекта, а именно опреде-
	ление уровней энергий, частот переходов, волновых функций и т.д., необходимо решить
	уравнение Шредингера. Решение данного уравнения непосредственным образом зависит
	от того, в каком виде выбирается гамильтониан молекулы. Поэтому в данной главе будет
	рассмотрена задача построения молекулярного гамильтониана.
	С физической точки зрения, молекула -это совокупность атомных ядер и элек-
	тронов. Отсюда следует, чтобы описать ее уровни энергии, необходимо решить уравнение

3. Научный семинар Photonics Day 2021 (Безансон, Франция, 2021). 4. Международная конференция студентов, аспирантов и молодых ученых Перспективы развития фундаментальных наук (XVIII) (Томск, Россия, 2021). 5. Международный коллоквиум The 26 th Colloquium on High-Resolution Molecular Spectroscopy (Дижон, Франция, 2019). Первая глава настоящей работы посвящена краткому определению фундаментальных принципов колебательно-вращательной молекулярной спектроскопии [50-52]. В частности, вводятся такие понятия, как гамильтониан многоатомной молекулы в нормальных координатах, эффективный гамильтониан, операторная теория возмущения, контур спектральной линии и эффективный дипольный момент. Данные сведения необходимы для понимания и изложения оригинальной части диссертационной работы. 1.1 Колебательно-вращательный гамильтониан Шредингера с гамильтонианом, который зависит от координат и спинов всех частиц, образующих молекулу. Также необходимо учитывать все виды взаимодействия между этими частицами. Построение такого гамильтониана и решение с ним уравнения Шредингера

  NK как от параметров. Фиксирование значений N для всех возможных r NK , позволяет рассчитать V n ( r NK ), которая носит название внутримолекулярной потенциальной функ-

	ции. Решение такой задачи представляется возможным только если использовать ab initio
	методы. Однако, их точность хуже экспериментальных (в видимом и ИК-диапазонах) на
	пять-шесть порядков. Таким образом, точностей ab initio методов пока что недостаточ-
	но для корректного решения задачи, поэтому приходится прибегать к полуэмпирическим
	методам определения внутримолекулярной потенциальной функции. Один из таких ме-
	тодов, решение уравнения Шредингера с эффективным гамильтонианом изолированного
	электронного состояния [52]:

.1.18) Таким образом, уравнение (1.1.18) показывает, что собственные значения и собственные функции электронного гамильтониана зависят от расстояний между ядрами молекулы r

  на функциях |Ai и |Bi нижнего и верхнего колебательно-вращательных состояний. Удобнее всего рассматривать Z-составляющую дипольного момента молекулы[64, 65] и, в зависимости от мгновенных расстояний между ядрами, значение P Z может быть записано в виде

	.3.2)
	где B gr -вращательный парметр основного колебательного состояния. Важно отметить,
	что данная формула справедлива для молекул типа XH 4 (T d симметрии). Значение R B A =
	|hA|µ 0

Z |Bi| 2 в формуле (1.3.1) -матричный элемент оператора

µ 0 Z = G + P Z G (1.3.3)

  , 2 , 0 и 2 , отвечающие за описание зависимости формы контура от скорости релаксации и параметр ⌘, отвечающий за корреляцию между скоростью и изменением вращательного состояния вследствие столкновений, а также D и ⌫ vc , описанные выше.

	).	(1.3.19)
	Функция (1.3.11) обобщает многие модели-предвестники для описания профилей
	линий, например, контур Фойгта [75-77], Раутиана [78] и др. Будучи одной из моделей,
	зависящих от скорости, профиль Артмана-Тран учитывает столкновительное сужение
	для изолированных спектральных линий, так называемый эффект Дикке. Для описания
	формы линии контуром Артмана-Тран всего необходимо семь параметров. Параметры

0

  связи, например, функцией Морзе, даже если всеми потенциальными связями обычно пренебрегают. При соответствующих физических допущениях и без учета вырождения, вращательные уровни диады ⌫ 1 /⌫ 3 оказываются идентичными тем, которые встречаются в симметричных волчках. Данный способ классификации был предложен Хоугеном[91]. В свою очередь, Ян предполагал[98], что функции |Jkmi при четных значениях квантового числа J преобразуются по четным представлениям D(Jg) , а при нечетных значениях J -по нечетным представлениям D (Ju) полной ортогональной группы O(3).

	2.2 Гамильтониан тетраэдрических расщеплений В виду того, что молекулы тетраэдрической симметрии в настоящее время не име-ют общепринятой классификации колебательно-вращательных состояний, как следствие отсутствуют общепринятые правила отбора для колебательно-вращательных спектров. никает необходимость классификации |Jkmi относительно неприводимых представлений относительно группы O(3), так как именно эта, а не группа SO(3) содержит точечную группу молекулы в качестве подгруппы. В данном месте возникает проблема, связанная с определением действия операции инверсии на углы Эйлера, от которых зависят функции |Jkmi. Предположим, что под действием операции инверсии функции |Jkmi не меняют-Данное различие в классификации приводит к различным правилам отбора. Если установить свойства симметрии функций |Jkmi, можно построить редуциро-ванный относительно точечной симметрии G молекулы базис |J, n i, который затем ис-пользовать для построения колебательно-вращательных волновых функций. В частности, для разложения неприводимых представлений группы O(3) на неприводимые представ-Таблица характеров матриц Вигнера и разложение группы D (J) ления группы T Таблица 2.2.1. на неприводимые представления T

1 -1

Другая особенность молекул типа сферического волчка проиллюстрирована на энергетической диаграмме (см. Рисунок 2.1.2). Валентные состояния, (1000, A 1 )/(0010, F 2 ), входящие в полиаду P 1 , кажутся особенно близкими друг к другу и одновременно довольно изолированными от соседних состояний. Рисунок 2.1.2. Полиадная схема молекулы германа до полиадного числа P 8 . Особенно такая структура прослеживается в спектрах молекул SiH 4 и GeH 4 . Это характеризует так называемую картину локальных мод [97]. Основная идея состоит в том, что валентные состояния X-H могут быть адекватно описаны локальной ангармонической потенциальной функцией Основными подходами к классификации состояний молекул T d симметрии являются подход Яна [98], Хоугена [91], Море-Бейи [99] и Берже [100] Эта неоднозначность вызвана определенными затруднением, а именно классификацией вращательных волновых функций |Jkmi по типам неприводимых представлений D (J↵) полной ортогональной группы O(3). Функции |Jkmi имеет следующий вид |Jkmi = ( 1) (|m k|+m k)/2 N Jkm ✓ Jkm ( )e ik e im↵ , (2.2.1) где ↵, , -углы Эйлера, N Jkm -нормировочный множитель и ✓ Jkm -функция, выражающаяся через полином Якоби. Собственные функции |Jkmi оператора жесткого сферического волчка образуют базис неприводимых представлений D (J) группы чистых поворотов SO(3). При классификации колебательно-вращательных волновых функций возся, то есть преобразуются по неприводимым представлениям D (Jg) группы O(3). При этом действие инверсии на углы Эйлера и на саму молекулярную систему координат будем считать таким, чтобы функции |Jkmi преобразовывались по четным представлениям D (Jg) группы O(3). Этот трюк можно провести благодаря неоднозначности условий Эккарта (1.1.7) -(1.1.11). d задается Таблицей 2.2.1. В соответствии с этим разложением пространство функций |Jkmi, образующих базис неприводимых представлений D (Jg) группы O(3), разбивается на сумму инвариантных относительно операций группы T d подпространства функций |J, n i. Собственные функции |J, n i, преобразующиеся по данному n-ому неприводимому представлению , соответствуют одному и тому же уровню энергии. Следовательно, вращательный уровень энергии E (J) , вырожденный (2J+1)-кратно, и которому соответствует функция |JKMi, будует расщепляться на вращательные подуровни E (J,n ) с соответствующими функциями |J, n i. Такое расщепление называется тетраэдрическим. Тетраэдрическое расщепление не полностью устраняет вырождение с вращательных уровней E (J) . Степень вырождения каждого вращательного подуровня E (J,n ) равна размерности [ ] представления . d .

  G 22 , G 33 , G 34 , G 44 , S 34 , T 33 , T 34 , T 44 , T 23 и T 24 . Операторы, включающие данный тип расщеплений, имеют следующий вид: 1. Операторы, описывающие расщепления G 22 , G 33 , G 34 -типов

	Для корректного описания тетраэдрических расщеплений достаточно следующих
	параметров:

Исходя из вышесказанного, члены, отвечающие за ангармоническую часть V anh и за кориолисово взаимодействие H cor , оказывают влияние на расщепление энергетических уровней. Значительное по величине кориолисово расщепление уровней на R-компоненты происходит в случае если H cor ⌧ V anh , причем R-компоненты подвергаются меньшему по величине тетраэдрическому расщеплению, обусловленному V anh и H harm . В случае же когда V anh ⌧ H cor , наблюдается значительное по величине расщепление колебательного состояния, которое затем может испытывать дальнейшее небольшое расщепление (как тетраэдрическое, так и кориолисово).

  P 0 + H P 1 + H P 2 + H P 3 + ... + H P i , (2.4.4) где H P 0 -эффективный гамильтониан основного колебательного состояния молекулы или так называемая монада взаимодействующих состояний (см. Рисунок 2.1.2). (H P 0 + H P 1 ) -оператор диады (см. Рисунок 2.1.2), где отдельные слагаемые в H P 1 можно разбить на две группы: в первую входят операторы, описывающие поправки к аналогичным пара-постоянным); во вторую группу входят дополнительные (отсутствующие в H P 0 ) операторы (центры полос диады, параметры резонансных взаимодействий и тетраэдрических расщеплений). (H P 0 + H P 1 + H P 2 ) -оператор пентады (см. Рисунок 2.1.2), где для оператора H P 2 следует повторить все сказанное выше относительно оператора H P 1 .

	Так как в настоящей работе будут рассматриваются полиады взаимодействующих
	состояний, то оператор эффективного гамильтониана запишется как сумма эффективных
	операторов
	H = H

и сравнить с уравнением (1.2.2), то можно заметить, что выражения в квадратных скобках уравнения (2.4.3) являются операторами H vl ,v 0 l 0 0 ⌘ H xy из (1.2.10)-(1.2.14). метрам основного колебательного состояния (в частности, поправки к вращательным и 4 Группа O(3), ее неприводимые представления и их приложения к задачам колебательно-вращательной спектроскопии более подробно рассматриваются в работах Фано и Рача [105], Гриффита [106], Варшаловича и др.

центробежным

  уравнениях (2.6.10)-(2.6.12) связаны с соответствующими параметрами X 4 , Z 4s , Z 4t теми же формулами, что и уравнения (2.6.7)-(2.6.9). ( z↵ , J ) оператора (1.3.6). Как известно[START_REF] Lisak | Low-uncertainty H 2 O line intensities for the 930-nm region / D. Lisak[END_REF], некоторые определенные комбинации, обозначаемые как R

				⌦(K) m	, вращательных операторов J ↵ , . . . J , образуют
	неприводимые тензорные операторы вращательной группы SO(3). Любой из операто-
	ров R	⌦(K) m	легко определить, если выбрать в явном виде тензорные операторы первого
	ранга R	1(1) m
				Выражения для
	резонансных параметров, линейно зависящих от кубических ангармонических констант
	k ⌫µ можно найти в работе [107].
	2.7 Дипольный момент молекулы в тензорном представ-

лении Уравнение (1.3.6) можно также записать в более удобной симметризованной форме. Перед этим следует сделать некоторые предварительные замечания. Рассмотрим враща-тельную часть R i

  Таблица 2.7.1. Симметрия дипольного момента z-компоненты для различных точечных групп симметрии G.

.7.4) Здесь , r и v -неприводимые представления молекулярной группы симметрии, а r ⌦K( K,n r) v являются параметрами разложения. Значения для наиболее часто используемых точечных групп приведены в Таблице 2.7.1. Также следует отметить, что для всех

  Таблица 3.1.1. Экспериментальные детали регистрации ИК-спектров в диапазоне 700-4400 см 1 молекул 72 GeH 4 и 73 GeH 4 .

	Спектр Изотоп. Время Число Апертура, Темп., Давление, Опт. длина
			изм., ч скан.	мм	C	Т орр	пути,м
	I	72 Ge	35,2	1050	1,15	24,5	0,4	3,75
	II	73 Ge	33,5	1000	1,0	24,9	0,4	3,75
	III	73 Ge	33,5	1000	1,0	25,3	3,0	3,75
	IV	72 Ge	36,9	1100	1,7	26,4	0,04	0,2
	V	72 Ge	33,5	1000	1,7	25,8	4,0	0,2
	VI	72 Ge	35,2	1050	1,15	26,2	0,02	0,75
	VII	72 Ge	41,9	1250	1,15	24,2	4,0	3,75
	VIII	72 Ge	41,9	1250	1,15	24,2	4,0	3,75
	Затем образцы обогащали изотопом				
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Ge центробежным методом на производственном объединении Электрохимический завод (г. Зеленогорск, Россия). Обогащенные образцы повторно очищали методом ректификации. Спектры регистрировались с разрешением

  Исследование колебательно-вращательной энергетической структуры взаимодействующих полос 2⌫ 1 (A 1 ) и ⌫ 1 + ⌫ 3 (F 2 ) молекул 72 GeH 4 и 73 GeH 4 3.2.1 Описание спектров и идентификация переходов На Рисунке 3.2.1 представлены обзорные спектры изотопологов германа 72 GeH 4

	3.2							
	Таблица 3.1.2. Экспериментальные детали регистрации ИК-спектров в диапазоне 600-4800
	см 1	молекулы M	GeH 4 (M = 70, 72, 73, 74, 76).
	Спектр Диапазон, Число Опт. длина Температура, Давление, Разреш.,
									см 1	скан.	пути, м	C	м б а р	с м 1
		I	0						740-960	620	0,013	21,3±0,3	150	0,0015
		II	0				600-4800	1400	24	23,6±0,1	250	0,0030
	III	0		1400-2700	400	0,23	23,8±0,3	2000	0,0030
	IV 0			1400-2700	300	0,23	23,7±0,3	4000	0,0030
		V 0				1400-2700	520	0,23	23,5±0,3	6000	0,0030
	VI	0			1400-2700	600	0,23	23,5±0,7	9000	0,0030
	VII	0		1400-2700	680	0,23	23,4±0,7	12000	0,0030
	VIII	0	1400-2700	600	0,23	23,5±0,7	15000	0,0030

,0272) в см 1 (соотвественно порядку спектров I 0 -VII 0 Таблицы 3.1.2). Цифры в скобках представляют собой общую ширину линий, которая аппроксимируется квадратным корнем из доплеровской свертки, давления и инструментальной ширины линии, что соответствует результатам эксперимента. Можно видеть, что начиная со второго значения давления, равного 2000 Па, ширина давления доминирует над общей шириной линии, увеличиваясь с ростом давления. Калибровка положений спектральных линий проводилась по линиям молекул H 2 O и N 2 O.

  эффективного гамильтониана, заданного уравнением (2.4.2). Значения спектроскопических параметров изотополога74 GeH 4 были взяты за исходные как для73 GeH 4 , так и для72 GeH 4 . Такой подход достаточно удобен, поскольку масса ядра M Ge GeH 4 / 76 GeH 4 или оценены путем интерполяции/экстраполяции соответствующих значений других изотопологов и не участвовали в общей процедуре варьирования. Для удобства чтения, в Таблице 3.2.2 используются обозначения параметров в формате программы XTDS/Dijon [130]. По этой причине в Таблице 3.2.3 представлены спектроскопические параметры колебательных состояний (0000, A 1 ) и (0010, F 2 )/(1000, A 1 ) 1 . Правильность полученных результатов подтверждается следующими фактами: 1. 13 параметров, полученных в результате процедуры варьирования, воспроизводят 2025 начальных экспериментальных положений линий полос 2⌫ 1 (A 1 )/⌫ 1 + ⌫ 3 (F 2 ) изотополога 72 GeH 4 с точностью d rms = 2, 9 ⇥ 10 4 см 1 ; аналогично, 13 параметров, полученных в результате варьирования, воспроизводят 1774 начальных экспериментальных положений линий полос 2⌫ 1 (A 1 )/⌫ 1 +⌫ 3 (F 2 ) изотополога 73 GeH 4 с точностью Чтобы дать возможность оценить качество результатов, на Рисунке 3.2.2 показаны невязки для положений линий в зависимости от квантового числа J.
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	3.2.2 (относительные интенсивности линий были рассчитаны только с одним основ-
	ным параметром дипольного момента, а для построения формы линии использовался
	3.2.2 Колебательно-вращательный анализ и параметры эффек-тивного гамильтониана практически не изменяется при изотопозамещении. Значения параметров, полученные в результате варьирования, представлены в столбцах 4 и 5 Таблицы 3.2.2 вместе с их (1 ) доверительными статистическими интервалами (значения приведены в скобках). Пара-метры, которые представлены без доверительных интервалов, фиксировались значениями соответствующих параметров изотопологов 74 d rms = 2, 7⇥10 4 см 1 близкой к экспериментальной неопределенности; соответствую-щие значения для найденных переходов приведены в Дополнительных материалах A опубликованной работы [114]. 2. Как видно из сравнения значений соответствующих параметров четырех изотополо-гов германа в Таблице 3.2.3 (см. также Рисунок 3.2.3), значения всех варьируемых параметров изменяются практически линейно в зависимости от изменения массы яд-ра M Ge, что соответствует результатами и утверждениям теории изотопозамещения. 3. На Рисунках 3.2.1 (b), 3.2.4 (b) и (d), 3.2.5 (b) и (d) представлены смоделирован-ные (синтетические) спектры, которые были получены с параметрами из Таблицы профиль Доплера); видно более чем удовлетворительное соответствие между экспе-риментальным и смоделированным спектрами. Спектроскопические параметры Y 4. Таблица 3.2.2. vl ,v 0 l ⌦(K,n ) 0 0 тетрадекады валентных полос молекулы германина (в см 1

Все 3799 экспериментальных переходов, обсуждавшихся в предыдущем разделе, использовались в качестве исходной информации в процедуре варьирования для определе-ния параметров Рисунок 3.2.3. Графики зависимости значений некоторых спектроскопических параметров (в см 1

) молекулы M GeH 4 от массы M ядра M Ge (на основе экспериментальных данных из настоящей работы и из

[START_REF] Moret-Bailly | Introduction au calcul de l'énergie de vibration-rotation des molécules à symétrie sphérique[END_REF]

).

  Рисунок 3.3.2), где локализованы деформационые колебания 2⌫ 4 (A 1 , F 2 , E), ⌫ 2 +⌫ 4 (F 2 , F 1 ) и 2⌫ 2 (A 1 , E); 3. пентады (1925-2275 см 1 / Рисунок 3.3.3), где локализованы валентные колабания ⌫ 1 (A 1 )/⌫ 3 (F 2 ).

	3.3 Комплексный анализ спектра молекулы 72	GeH 4 в
	диапазонах диады и пентады	
	3.3.1 Описание спектров и идентификация переходов	
	На Рисунках 3.3.1-3.3.3 представлены обзорные спектры молекулы 72 GeH 4 , зареги-
	стрированные в диапазонах	
	1. диады (750-950 см 1 / Рисунок 3.3.1), где локализованы две фундаментальные по-
	лосы ⌫ 2 (E) и ⌫ 4 (F 2 );	
	2. пентады (1600-1900 см 1 / Центры перечисленных полос указаны стрелками над спектрами. Несмотря на то, что цен-
	тры полос 2⌫ 4 и 2⌫ 2 также указаны на Рисунке 3.3.2, их колебательно-вращательные пере-
	ходы не видны в экспериментальном спектре. Соответствующие колебательно-вращательные
	энергии колебательных состояний определялись только по горячим переходам (см. ни-
	же). Также важно отметить следующее: полученные синтетические спектры в нижней
	части Рисунка 3.3.3 имеют визуальное отличие от соответствующих экспериментальных
	спектров в верхней части рисунка, в частности, экспериментальный спектр содержит боль-
	ше линий, чем соответствующий смоделированный. Это объясняется наличием многочис-
	ленных горячих переходов из нижних колебательных состояний (0001, F 2 ) и (0100, E)
	в колебательные состояния октады. На Рисунке 3.3.4 (b) показан небольшой фрагмент
	экспериментального спектра высокого разрешения (VI).	

  1 J max N a = n i /N ⇥ 100% (i = 1, 2, 3); n 1 , n 2 и n 3 -количество переходов, для которых разности Значения полученные из процедуры варьирования в настоящей работе. Обзорный спектр V молекулы72 GeH 4 в области 1600-1900 см 1 (условия эксперимента см. в Таблице 3.1.1). Нижняя часть рисунка представляет смоделированный спектр.

									t	N b en	m c 1	m c 2	m c 1
	⌫ 4 (F 2 ) d						821,11678	27	1569 752 78,4 14,1 7,5
	⌫ 2 (E) d						929,90524	26	1212 380 79,5 14,1 6,4
	⌫ 3 (F 2 ) d						2111,57394	30	2429 905 76,4 16,5 7,1
	⌫ 3 (F 2 ) e						2111,57411	25	897
	⌫ 1 (A 1 ) d						2110,70880	28	1004 237 80,6 15,1 4,3
	⌫ 2 +⌫ 4 (F 2 ) d					1749,17866	16	364 385 73,6 20,6 5,8
	⌫ 2 +⌫ 4 (F 2 ) ⌫ 2	d		19	400	70,5 19,8 9,7
	⌫ 2 +⌫ 4 (F 2 ) ⌫ 4	d		17	146	67,8 19,9 12,3
	⌫ 2 +⌫ 4 (F 1 ) d					1753,28969	16	183 337 78,7 16,4 4,9
	⌫ 2 +⌫ 4 (F 1 ) ⌫ 2	d		19	406	69,7 19,0 11,3
	⌫ 2 +⌫ 4 (F 1 ) ⌫ 4	d		17	82	68,3 28,0 3,7
	2⌫ 4 (A 1 ) ⌫ 4	d		1629,05403	20	299 146 60,6 21,7 17,7
	2⌫ 4 (E) ⌫ 4	d		1643,71586	20	215 129 60,5 23,7 15,8
	2⌫ 4 (F 2 ) ⌫ 4	d		1640,81867	20	692 453 63,2 21,5 15,3
	2⌫ 2 (A 1 ) ⌫ 2	d		1857,25740	14	5	5	80,0 0,0 20,0
	2⌫ 2 (E) ⌫ 2	d		1860,65216	17	106	88 71,7 21,7 6,6
		= ⌫ exp	⌫ calc	удовлетворяют условию  2 ⇥ 10 4	см 1	, 2 ⇥10 4	см 1	<  4 ⇥ 10 4	см 1
	и > 4 ⇥ 10 4		см 1	.
	e	Воспроизведено для сравнения из работы [133].

a N t -количество переходов. b N en -количество варьируемых энергий.

c m i d Рисунок 3.3.2.

  4 / 76 GeH 4 (Рисунок (d);74 GeH 4 обогащение до 88,1 %;76 GeH 4 обогащение до 11,5 %) в области кластера R(11) полосы ⌫ 3 . Расстояние между соответствующими линиями изотопологов73 GeH 4 и 76 GeH 4 ровно в три раза больше, чем расстояние между аналогичными линиями изотопологов72 GeH 4 и 73 GeH 4 . На Рисунке a представлен смоделированный спектр изотополога 72 GeH 4 . GeH 4 из [131]. Корректность полученных данных подтверждается тем, что 53 параметра воспроизводят 9112 исходных экспериментальных положений линий с точностью d rms = 2, 44 ⇥ 10 4 см 1 . В опубликованной работе [115] представлены значения разностей = (⌫ exp ⌫ calc )⇥10 4 см 1 между экспериментальными положениями линий и рассчитанными с параметрами из Таблицы 3.3.2. В качестве еще одной иллюстра-

	ного гамильтониана (2.4.2). Результаты варьирования представлены в столбце 4 Таблицы
	3.3.2 вместе с их доверительными статистическими интервалами (1 ) (значения в скоб-
	ках). Параметры приведенные без скобок брались равными соответствующим значениям
	параметров изотополога 73 ции правильности полученных результатов на Рисунке 3.3.5 приведены величины разно-
	стей между рассчитанными и экспериментальными положениями линий в зависимости от
	квантового числа J.

  Таблица 3.5.2. Статистическая информация анализа интенсивности линий полос ⌫ 2 и ⌫ 4 молекулы M GeH 4 (M = 70, 72, 73, 74, 76).

								.5.11)
	где n -количество индивидуальных интенсивностей линий, используемых в процедуре
	варьирования. Качество варьирования иллюстрируется разницей int i	между эксперимен-
	тальными и рассчитанными с параметрами из столбца 3 Таблицы 3.5.3 значениями ин-
	тенсивностей линий. Значения int i	для всех измеренных интенсивностей линий также
	представлены в Приложении II к опубликованной работе [116]. В качестве иллюстрации
	небольшая часть полученных результатов представлена в Таблице 3.5.4.
	Изотополог Полоса Центр, см 1 J max N a t	m b 1	m b 2	m b 1	d rms , %
	70 GeH 4	⌫ 4	c	821,54434	18	235 58,8 23,5 17,7	3,46
	70 GeH 4	⌫ 2	c	929,90130	16	8
	72 GeH 4	⌫ 4	d	821,11678	18	255 68,5 20,0 11,5	3,12
	72 GeH 4	⌫ 2	d	929,90524	15	15
	73 GeH 4	⌫ 4		e	820,91109	15	152 60,5 36,2 3,30	3,21
	74 GeH 4	⌫ 4	f	820,71185	19	253 61,8 24,1 14,1	3,38
	74 GeH 4	⌫ 2	f	929,90931	14	9
	76 GeH 4	⌫ 4	f	820,32700	15	152 56,6 27,6 15,8	3,45

a N t -количество экспериментальных значений интенсивностей линий.

b

  ).На втором этапе анализа рассматривался изотополог72 GeH 4 . В результате анализа было измерено 270 экспериментальных интенсивностей линий (255 линий полосы ⌫ 4 и 15 линий полосы ⌫ 2 ; J max = 18), которые использовались в качестве исходной информации при варьировании параметров эффективного дипольного момента. В результате были определены 4 параметра, которые представлены в 4 столбце Таблицы 3.5.3 (d rms = 3,12 %). Аналогичный анализ был проведен для изотополога 74 GeH 4 (см. статистическую информацию в Таблице 3.5.2). Для менее распространенных изотопологов 73 GeH 4 и 76 GeH 4 начальные значения параметров эффективного дипольного момента были оценены путем интерполяции/экстраполяции значений соответствующих параметров изотопологов 70 GeH 4 , 72 GeH 4 и 74 GeH 4 (см. Рисунок 3.5.2) и только один основной параметр для изотопологов 73 GeH 4 и 76 GeH 4 варьировался. Три других параметра были ограничены интерполированными/экстраполированными значениями (они представлены в Таблице 3.5.3 без доверительных интервалов). Часть полученных результатов для изотопологов 73 GeH 4 , 75 GeH 4 и 76
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	4 молекулы M GeH 4 (M = 70, 72, 73, 74, 76) a	, % Int calc , см 1 /(мол. • атм 1 ) M 3,2 1,526E -19 74 , % Int calc -2,9 , см 1 /(мол. • атм 1 2,189E -19 ) M 72	4,3 2,322E -19 73 -3,1 2,142E -19 74	2,8 1,525E -19 73 2,9 1,518E -19 74	-3,4 2,144E -19 74 0,9 3,718E -19 73	-0,1 2,219E -19 74 -0,7 2,199E -19 73	-3,3 2,195E -19 72 -5,2 3,695E -19 70	1,4 1,533E -19 72 -0,1 2,331E -19 70	-1,5 2,192E -19 73 -0,6 2,244E -19 72	-1,5 2,195E -19 73 -3,1 2,265E -19 70	-1,7 2,233E -19 72 2,2 1,540E -19 72	-3,8 2,192E -19 72 -1,6 2,304E -19 70	-2,7 2,291E -19 70 1,1 1,579E -19 70	2,0 1,602E -19 70 -0,9 3,388E -19 76	-3,6 2,274E -19 70 -4,2 2,011E -19 74	-0,9 2,339E -19 70 2,5 1,433E -19 74	0,1 3,579E -19 76 -3,9 2,019E -19 74	-4,8 2,102E -19 74 3,5 2,175E -19 73	0,6 3,605E -19 76 -1,6 1,378E -19 73	-2,7 2,144E -19 74 -2,2 2,010E -19 76	1,4 2,184E -19 76 -1,4 2,071E -19 73	-4,6 3,516E -19 73 2,3 2,105E -19 76	2,0 1,466E -19 76 -0,8 2,122E -	-1,9 2,168E -19 73 0,8 1,438E -19 72	-1,3 2,223E -
	Таблица 3.12. (Продолж.) Список экспериментальных интенсивностей линий полосы ⌫	J n J 0 n 0 0 ⌫ exp , см 1 Int exp , см 2 • атм 1 Int calc , см 2 • атм 1 6 1 E 5 1 E 831,0428 0,3802E + 01 0,3680E + 01 ⌫ exp , см 1 Int exp , см 2 • атм 1 Int calc , см 2 • атм 1 833,5861 0,5455E + 01 0,5613E + 01 J n J 0 n 0 0 7 1 F 1 6 2 F 2	6 1 F 2 5 2 F 1 831,2037 0,5787E + 01 0,5537E + 01 833,5968 0,5339E + 01 0,5505E + 01 7 2 F 1 6 1 F 2	6 1 E 5 1 E 831,2514 0,3800E + 01 0,3693E + 01 833,6310 0,3782E + 01 0,3672E + 01 7 1 E 6 1 E	6 1 F 1 5 1 F 2 831,2984 0,5344E + 01 0,5526E + 01 833,7030 0,9265E + 01 0,9184E + 01 7 1 A 1 6 1 A 2	6 2 F 2 5 1 F 1 831,4059 0,5529E + 01 0,5535E + 01 833,8071 0,5479E + 01 0,5520E + 01 7 2 F 1 6 1 F 2	6 1 F 2 5 2 F 1 831,4189 0,5470E + 01 0,5651E + 01 833,8712 0,9208E + 01 0,9690E + 01 7 1 A 2 6 1 A 1	6 1 E 5 1 E 831,4667 0,3821E + 01 0,3769E + 01 833,9475 0,5809E + 01 0,5816E + 01 7 1 F 2 6 1 F 1	6 1 F 1 5 1 F 2 831,5073 0,5462E + 01 0,5545E + 01 834,0243 0,5593E + 01 0,5629E + 01 7 2 F 1 6 1 F 2	6 2 F 2 5 1 F 1 831,6150 0,5470E + 01 0,5554E + 01 834,0357 0,5644E + 01 0,5818E + 01 7 1 F 1 6 2 F 2	6 1 F 1 5 1 F 2 831,7231 0,5564E + 01 0,5659E + 01 834,0587 0,3838E + 01 0,3754E + 01 7 1 E 6 1 E	6 2 F 2 5 1 F 1 831,8311 0,5463E + 01 0,5668E + 01 834,4756 0,5741E + 01 0,5834E + 01 7 2 F 1 6 1 F 2	6 1 F 2 5 2 F 1 831,8660 0,5708E + 01 0,5864E + 01 834,5101 0,3935E + 01 0,3891E + 01 7 1 E 6 1 E	6 1 E 5 1 E 831,9140 0,3992E + 01 0,3911E + 01 834,9773 0,8444E + 01 0,8517E + 01 8 1 A 1 7 1 A 2	6 1 F 1 5 1 F 2 832,1714 0,5668E + 01 0,5872E + 01 835,0299 0,5011E + 01 0,5221E + 01 8 1 F 2 7 2 F 1	6 2 F 2 5 1 F 1 832,2798 0,5828E + 01 0,5881E + 01 835,1497 0,3570E + 01 0,3482E + 01 8 1 E 7 1 E	7 1 A 2 6 1 A 1 832,5926 0,8919E + 01 0,8909E + 01 835,2302 0,5031E + 01 0,5226E + 01 8 1 F 1 7 2 F 2	7 1 F 2 6 1 F 1 833,0726 0,5237E + 01 0,5486E + 01 835,2402 0,5421E + 01 0,5230E + 01 8 1 F 2 7 2 F 1	7 1 A 1 6 1 A 2 833,0870 0,8983E + 01 0,8930E + 01 835,3602 0,3434E + 01 0,3488E + 01 8 1 E 7 1 E	7 1 F 1 6 2 F 2 833,1602 0,5343E + 01 0,5489E + 01 835,3891 0,5009E + 01 0,5121E + 01 8 2 F 1 7 1 F 2	7 2 F 1 6 1 F 2 833,1906 0,5442E + 01 0,5367E + 01 835,4408 0,5162E + 01 0,5234E + 01 8 1 F 1 7 2 F 2	7 1 A 2 6 1 A1 833,2061 0,8762E + 01 0,9165E + 01 835,4467 0,5245E + 01 0,5125E + 01 8 2 F 2 7 1 F 1	7 1 E 6 1 E 833,2246 0,3653E + 01 0,3580E + 01 835,4573 0,5288E + 0,5329E + F F	7 1 F 1 6 2 F 2 833,3697 0,5402E + 01 0,5504E + 01 835,5775 0,3584E + 01 0,3554E + 01 8 1 E 7 1 E	F F 833,4982 0,5539E + 0,5610E + a Температура 294,5 К.

  Всестороннее исследование триады деформационных колебаний 2⌫ 2 , ⌫ 2 + ⌫ 4 и 2⌫ 4 в области пентады GeH 4 , 72 GeH 4 и 74 GeH 4 . Для удобства чтения данной работы приведены два спектра на Рисунках 3.6.2 и 3.6.1, зарегистрированные при различных экспериментальных

	молекулы германа
	3.6.1 Описание спектров и идентификация переходов для 70	GeH 4 ,
	72	GeH 4 и 74	GeH 4
	В качестве первого шага настоящего анализа проводилась интерпретация спектров
	изотпологов 70	

100 3.6 условиях. Для иллюстрации высокого разрешения зарегистрированных спектров приведены небольшие фрагменты спектров III 0 (для более сильной полосы ⌫ 2 + ⌫ 4 ) и II 0 (для более слабых полос 2⌫ 2 и 2⌫ 4 ), где отмечены кластеры, принадлежащие разным изотопологам (см. Рисунки 3.6.3-3.6.6).

  Информация о 6873 переходах, полученная в настоящей работе и обсуждавшаяся в Разделе 3.6.1, была дополнена к уже известным данным о триаде деформационных полос в диапазоне пентады, а также для горячих полос изотпологов72 GeH 4 , 73 GeH 4 , 74 GeH 4 и 76 GeH 4 из работ [115, 131, 137] (подробности см. в статистической информации в Таблица 3.6.1. Статистическая информация для полос 2⌫ 2(A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) и 2⌫ 4 (A 1 , E, F 2 ) молекулы M GeH 4 (M =70, 72, 73, 74, 76). Таблица 3.13. (Продолж.) Статистическая информация для полос 2⌫ 2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) и 2⌫ 4 (A 1 , E, F 2 ) молекулы M GeH 4 (M = 70, 72, 73, 74, 76). Таблица 3.13. (Продолж.) Статистическая информация для полос 2⌫ 2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) и 2⌫ 4 (A 1 , E, F 2 ) молекулы M GeH 4 (M = 70, 72, 73, 74, 76). Таблица 3.13.(Продолж.) Статистическая информация для полос 2⌫ 2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) и 2⌫ 4 (A 1 , E, F 2 ) молекулы M GeH 4 (M = 70, 72, 73, 74, 76). Значения невязок для переходов в зависимости от квантового числа J для холодных полос изотопологов 70 GeH 4 , 72 GeH 4 , 74 GeH 4 . Dijon XTDS см., например, [132]). Окончательные значения параметров для триады деформационных полос 2⌫ 2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) и 2⌫ 4 (A 1 , E, F 2 ) представлены в Таблице

	Полоса Полоса Полоса 2⌫ 4 (F 2 ) 2⌫ 2 (E)		Центр полосы, см 1 J max N a t Центр полосы, см 1 J max N a t Центр полосы, см 1 J max N a t 1640,0175 17 280 161 66,1 25,7 8,2 ЭР f N b l m c 1 m c 2 m c 1 N b l m c 1 m c 2 m c 1 Ref. N b l m c 1 m c 2 m c 1 Ref. Ref. 1860,6552 14 114 94 52,7 28,1 19,2 [137]
	2⌫ 4 (E) 2⌫ 2 (A 1 ) ⌫ 2 (E) Полоса ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 2 (E) 2⌫ 2 (E) ⌫ 2 (E) 2⌫ 2 (E) ⌫ 2 (E)	1642,9085 1857,2607 Центр полосы, см 1 J max N a 17 82 14 8 t 76 GeH 4 12 50 19 12 17 106	48 75,6 14,6 9,8 ЭР f 7 62,5 37,5 0,0 [137] N b l m c 1 m c 2 m c 1 Ref. [137] 41,7 41,7 16,6 [137] 46,2 32,7 21,1 [115]
	3.6.2 Спектросокопические параметры триады деформационных полос в диапазоне пентады для изотопологов M GeH 4 (M = 2⌫ 4 (A 1 ) ⌫ 4 (F 2 ) 1627,4950 11 76 ⌫ 2 + ⌫ 4 (F 2 ) 1748,7773 15 159 156 71,3 21,5 7,2 [137] 2⌫ 2 (E) 1860,6516 20 393 254 41,7 28,5 29,8 ЭР f 29 78,9 11,9 9,2 [137] 2⌫ 4 (F 2 ) ⌫ 4 (F 2 ) 15 206 ⌫ 2 + ⌫ 4 (F 2 ) 1748,7768 22 1171 455 60,9 23,7 15,4 [137] Всего N d tr 873 [137] 70,4 21,4 8,2 [137] 2⌫ 4 (F 2 ) 1639,2570 15 ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 2 (E) 11 49 [137] Всего N e tr 2119 [137] 70 GeH 4 100 189 54,6 24,8 20,6 [137] 2⌫ 4 (E) ⌫ 4 (F 2 ) 15 52 ⌫ 2 + ⌫ 4 (F 1 ) 1752,8865 13 150 129 58,8 28,1 13,1 [137] Всего N l 1535 [137] 78,8 13,5 7,7 [137] 2⌫ 4 (E) 1642,1422 13 28 43 35,7 28,6 35,7 [137] ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 4 (F 2 ) 16 119 56,2 28,1 15,7 [137] ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 2 (E) 15 236 ⌫ 2 + ⌫ 4 (F 1 ) 1752,8864 22 1018 546 75,5 16,8 7,7 ЭР f 2⌫ 2 (A 1 ) 1857,2650 16 77 42 42,9 28,6 28,5 ЭР f 2⌫ 2 (E) 1860,6595 21 362 200 43,7 28,5 27,8 ЭР f d d rms 2⌫ 4 (A 1 ) 1629,8994 16 35 22 57,2 25,7 17,1 ЭР f 2, 55 ⇥ 10 4 см 1 d e rms 2⌫ 4 (F 2 ) 1641,6643 18 409 291 50,4 29,6 20,0 ЭР f 3, 00 ⇥ 10 4 см 1 2⌫ 4 (E) 1644,5675 16 115 74 55,7 33,1 11,2 ЭР f 51,4 31,3 17,3 [137] ⌫ 2 + ⌫ 4 (F 2 ) 1748,3962 19 72 GeH 4 ⌫ 2 + ⌫ 4 (F 2 ) 1749,6024 21 839 418 53,8 23,9 22,3 ЭР f 793 401 59,9 26,5 13,6 [137] ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 (F 2 ) 15 45 Всего N d tr 3007 ЭР f ⌫ 2 + ⌫ 4 (F 1 ) 1753,7155 21 794 329 67,4 21,7 10,9 ЭР f 59,2 22,5 18,3 [137] ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 2 (E) 15 179 Всего N e tr 99 [137] 2⌫ 4 (A 1 ) ⌫ 4 (F 2 ) 20 299 67,1 22,4 10,5 [115] 2⌫ 2 (A 1 ) 1857,2505 13 4 3 25,0 50,0 25,0 ЭР f 59,6 30,1 10,3 [137] ⌫ 2 + ⌫ 4 (F 1 ) 1752,5031 18 Всего N l 1459 [137] 2⌫ 4 (A 1 ) 1629,0544 20 131 153 47,4 31,3 21,3 ЭР f 2⌫ 2 (E) 1860,6437 20 120 91 37,5 28,4 65,9 ЭР f 699 289 71,5 19,9 8,6 [137] 2⌫ 2 (A 1 ) 1857,2721 18 131 64 73,1 15,9 11,0 [137] 2⌫ 2 (E) ⌫ 2 (E) 17 81 55,6 32,1 12,3 [137] 2⌫ 2 (E) 1860,6673 19 d d rms 2⌫ 4 (F 2 ) ⌫ 4 (F 2 ) 20 692 58,2 24,5 17,3 [115] 3, 08 ⇥ 10 4 см 1 d e rms 2⌫ 4 (F 2 ) 1640,8186 22 578 507 55,4 26,8 17,8 ЭР f Всего N d tr 2316 ЭР f 2, 9 ⇥ 10 4 см 1 2⌫ 4 (E) ⌫ 4 (F 2 ) 20 215 59,9 21,3 18,8 [115] Всего N l 1228 ЭР f 503 257 80,8 12,7 6,5 [137] 73 GeH 4 2⌫ 4 (E) 1643,7157 21 138 144 43,1 31,9 25,0 ЭР f d d rms 3, 24 ⇥ 10 4 см 1 ЭР f
	70, 72, 73, 74, 76) Всего N d tr ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 2 (E) Всего N e tr 2⌫ 4 (A 1 ) ⌫ 4 (F 2 ) 1628,6480 ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 4 (F 2 ) Всего N l 2⌫ 4 (F 2 ) ⌫ 4 F 2 ) 1640,4120 ⌫ 2 + ⌫ 4 (F 2 ) 1749,1787 d d rms 2, 64 ⇥ 10 4 см 1 d e rms 2, 91 ⇥ 10 4 см 1 2⌫ 4 (E) ⌫ 4 (F 2 ) 1643,3059 ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 2 (E) ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 4 (F 2 ) ⌫ 2 + ⌫ 4 (F 2 ) 1749,1788 ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 2 (E) = ⌫ exp ⌫ calc удовлетворяют условию  2 ⇥ 10 4 19 19 17 22 16 19 19 16 23 19 ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 (F 2 ) 17 и > 4 ⇥ 10 4 см 1 .	2254 400 994 268 128 66,3 18,8 14,9 [131] 65,3 23,5 11,2 [115] [137] 146 65,8 22,6 11,6 [115] [137] 1272 665 445 70,0 19,7 10,3 [131] 364 385 73,6 20,6 5,8 [115] [137] 171 105 72,8 15,2 12,0 [131] 399 63,8 25,8 10,4 [131] 133 57,3 29,8 12,9 [131] 703 515 58,9 23,5 17,6 ЭР f 406 см 1 , 2 ⇥10 4 см 1 см 1 <  4 ⇥ 10 4 64,9 22,8 12,3 [115] 82 63,4 23,2 13,4 [115]
	Таблице 3.6.1). Затем эти данные использовались в процедуре варьирования параметров эффективного вращательного гамильтониана (2.4.2). ⌫ 2 + ⌫ 4 (F 2 ) 1748,9748 18 465 419 74,2 16,2 9,6 [131] ⌫ 2 + ⌫ 4 (F 1 ) 1753,2897 16 183 337 78,7 16,4 4,9 [115] 74 GeH 4 ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 2 (E) 19 394 67,0 22,4 10,6 [131] ⌫ 2 + ⌫ 4 (F 1 ) 1753,2898 23 396 412 52,3 27,3 20,4 ЭР f 3.6.2 вместе с их статистическими доверительными интервалами (1 ), которые показа-
	2⌫ 4 (A 1 ) ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 (F 2 ) 2⌫ 2 (A 1 ) ⌫ 2 (E) ⌫ 2 + ⌫ 4 (F 1 ) 2⌫ 2 (A 1 )	1628,2541 1753,0849 1857,2576	11 17 14 16 17	17 69 5 294 337 70,1 25,2 4,7 [131] 65,2 26,1 8,7 [131] 40,0 60,0 0,0 [115] 7 53,0 47,0 0,0 ЭР f 67 45 37,4 37,4 25,2 ЭР f

a N t -количество переходов. b N l -количество энергий верхних уровней. c m i = n i /N ⇥ 100% (i = 1, 2, 3); n 1 , n 2 и n 3 -количество переходов, для которых разности d Для холодных полос. e Для горячих полос. f Эта работа.

108 Рисунок 3.6.7. Для определения параметров гамильтониана использовалась следующая стратегия. Значения всех 16422 переходов (включая горячие переходы), полученные в настоящей работе (см. Раздел 3.6.1) и взятые из работ [115, 131, 137] использовались в качестве исходных экспериментальных данных в процедуре варьирования. Параметры центробежного искажения высоких порядков, тетраэдрического расщепления и резонансного взаимодействия, которые были получены в [115, 131, 137] для изотпологов 72 GeH 4 , 73 GeH 4 и 76 GeH 4 , были ограничены значениями соответствующих параметров из [115, 131, 137] для всех пяти изотопологов и не менялись во время варьирования. Такие параметры представлены в Таблице 3.6.2 без доверительных интервалов. Все остальные параметры варьировались по обычной методике с помощью компьютерной программы SPHETOM Томского политехнического университета. Для удобства восприятия информации данные приведены в более знакомых обозначениях программного пакета Dijon XTDS [130]. Значения всех полученных параметров в формате SPHETOM были преобразованы к значениям соответствующих параметров в формате Dijon XTDS (о связи между параметрами SPHETOM и ны в скобках. Необходимые для расчета параметры основного состояния и диады представлены в Таблице 3.4.1. Из сравнения параметров одной и той же метки для разных изотопологов можно сделать вывод о физической пригодности полученных результатов.

В частности, для любого варьируемого параметра выполняется условие, а именно, зна-

  Анализ интенсивностей линий триады деформационных колебаний 2⌫ 2 , ⌫ 2 + ⌫ 4 и 2⌫ 4 молекулы M GeH 4 (M = 70, 72, 73, спина (от которого зависит величина интенсивности) молекулы GeH 4 : g A = 5, 5, 2, 3 и 3 для колебательных состояний симметрий A 1 , A 2 , E, F 1 и F 2 , соответственно [138]. В настоящей работе значение статистической суммы Q(T ) для изотополога 74 Ge 4 , рассчитанное по формуле из работы [63], составило Q(296, 75) = 1724,46. Для расчета статистической суммы значение вращательного параметра основного состояни B gr = 2,695864734 см 1 было взято из [116]. Аналогично были получены статистические суммы для четырех других изотопологов германа (значения представлены в Таблице 3.6.3). GeH 4 , 72 GeH 4 , 73 GeH 4 , 74 GeH 4 и 76 GeH 4 , соответственно (полный спи-Эти семь параметров, полученные в результате взвешенной аппроксимации, воспроизводят 556 исходных экспериментальных значений интенсивностей линий изотополога 74 GeH 4 , использованных в анализе, с d rms = 3,42 % (более подробно см. статистическую информацию в нижней части Таблицы 3.6.3. Величина d rms определялась по формуле (3.5.11). В Приложении 2 к опубликованной работе [117] приведены экспериментальные значения интенсиновстей линий (в см 2 • атм 1 ) и значения разниц между экспериментальными и рассчитанными с параметрами из Таблицы 3.6.3 интенсивностями линий (в %). Для удобства читателя небольшая часть Приложения 2 приведена в Таблице 3.6.4. На Рисунке 3.6.9 представлены невязки для интенсивностей линий как функция квантового числа, что иллюстрирует хорошее качество результата (см. также смоделированные спектры на Рисунках 3.6.2-3.6.6). В качестве последнего шага была проведена взвешенная аппроксимация параметров эффективного дипольного момента для четырех других изотопологов. При этом большая часть параметров изотопологов 70 GeH 4 , 72 GeH 4 , 73 GeH 4 и 76 GeH 4 ограничивалась значениями соответствующих параметров изотополога 74 GeH 4 и не варьировалась. Зна-) изотопологов 73 GeH 4 и 76 GeH 4 оценены путем интерполяции/экстраполяции значений параметров P Таблицы 3.6.3. Видна хорошая корреляция между соответствующими параметрами различных изотопологов. Параметры 2, 2, 1 и 1, полученные в результате процедуры варьирования, воспроизводят экспериментальные интенсивности 382, 511, 116 и 132 линий для 70 GeH 4 , 72 GeH 4 , 73 GeH 4 и 76 GeH 4 c d rms равными 3,46 %, 3,49 %, 3,34 % и 3,36 %, соответственно. Результаты расчета интенсивностей линий, а также разницы между экспериментальными и рассчитанными интенсивностями линий представлены также в Приложении 2 к опубликованной работе

	,2300846(47) 0,2305662(91) 0,2308070(49) 0,2310334(96) 0,2314435(44) (0002, A 1 )10 5 (0002, F 2 ) 3(1, F -0,3016 -0,3016 -0,3016 -0,3016 -0,3016 1 ) (0002, A 1 ) 0(0, A 1 ) -13,029825(13) (0002, A 1 ) 2(0, A 1 )10 4 0,1675 В Разделе 1.3 была введена формула (1.3.2) для расчета интенсивности колебательно-(0101, F 1 ) (0101, F 1 ) 0(0, A 1 ) 2,2698322(64) 2,2677959(68) 2,2667778(58) 2,2652072(64) 2,2635159(64) (0101, F 1 ) 1(1, F 1 ) -0,0510521 -0,0510521 -0,0510521 -0,0510521 -0,0510521 (0101, F 1 ) 2(0, A 1 )10 5 -0,509 -0,509 -0,509 -0,509 -0,509 (0101, F 1 ) 2(2, F 2 )10 3 -0,7694 -0,7694 -0,7694 -0,7694 -0,7694 (0101, F 1 ) (0101, F 2 ) 1(1, F 1 ) -0,05658910(33) -0,05647082(57) -0,0564319(20) -0,05636944(60) -0,0562747(25) (0101, F 2 ) 2(2, E)10 4 0,7774 0,7774 0,7774 0,7774 0,7774 (0101, F 2 ) 2(2, F 2 )10 3 0,79071 0,79071 0,79071 0,79071 0,79071 (0101, F 2 ) 3(1, F 1 )10 5 -0,58181 -0,58181 -0,58181 -0,58181 -0,58181 (0101, F 2 ) (0101, F 2 ) 0(0, A 1 ) -2,0151218(63) -2,0143817(66) -2,0140117(82) -2,0147598(52) -2,013554(10) (0101, F 2 ) 1(1, F 1 ) -0,0549982(?) -0,0548642(13) -0,0547972(?) -0,0547456(67) -0,0546425(89) (0101, F 2 ) 2(0, A 1 )10 3 -0,378988(?) -0,378744(61) -0,378622(?) -0,378500(56) -0,378256(75) (0101, F 2 ) 2(2, E)10 3 0,3357 0,3357 0,3357 0,3357 0,3357 (0101, F 2 ) 2(2, F 2 )10 3 -0,8515 -0,8515 -0,8515 -0,8515 -0,8515 (0101, F 2 ) 3(1, F 1 )10 4 -0,18456 -0,18456 -0,18456 -0,18456 -0,18456 (0101, F 2 ) 3(3, F 1 )10 4 -0,14931 -0,14931 -0,14931 -0,14931 -0,14931 (0101, F 1 ) (0002, A 1 ) 1(1, F 1 ) 0,0647354(46) 0,06520650(75) 0,0654537(49) 0,0656188(55) 0,0659491(38) (0101, F 1 ) (0002, E) 1(1, F 1 )10 3 0,2899 0,2899 0,2899 0,2899 0,2899 (0101, F 1 ) (0002, F 2 ) 1(1, F 1 )10 2 -0,14314(40) -0,12377(36) -0,11409(37) -0,10482(46) -0,08504(53) (⌫, ) ( ⌫ 0 , 0 ) ⌦(K, n ) 76 GeH 4 (0002, F ) 2(2, E)10 3 , ( ) (0002, F 2 ) 2(2, F 2 )10 0,1592 (0002, F 2 ) 3(1, F 2 )10 5 -0,2948 (0002, F 2 ) 3(3, A 2 )10 5 0,3359 (0002, F 2 ) 3(3, F 1 )10 5 -0,9951 (0002, F 2 ) 3(3, F 2 )10 6 0,692 (0101, F 2 ) (0002, A 1 ) 2(2, F 2 )10 3 0,3879 (0002, A 1 ) 3(3, F 2 )10 5 -0,2470(12) (0101, F 2 ) (0002, E) 3(1, F 1 )10 4 -0,14208(16) (0101, F 2 ) (0002, F 2 ) 0(0, A 1 ) -4,299716(86) (0002, F 2 ) 1(1, F 1 ) 0,0258758(55) (0002, F 2 ) 2(0, A 1 )10 3 0,63352 (0002, F 2 ) 2(2, E)10 4 -0,2856 (0002, F 2 ) 3(1, F 1 )10 5 -0,13014(85) (0002, F 2 ) 3(3, F 2 )10 4 0,14725 (0002, A 1 ) (0002, E) 2(2, E)10 3 0,22230(16) (0002, A 1 ) (0002, F 2 ) 2(2, F 2 )10 3 -0,30745(28) (0002, F 2 ) 3(3, F 2 )10 4 0,10809(30) (0002, E) (0002, E) 0(0, A 1 ) 1,488355(16) (0002, E) 2(2, E)10 3 -0,52025(15) (0002, E) 3(3, A 2 )10 4 0,10591 (0002, E) (0002, F 2 ) 1(1, F 1 ) 0,0301450(13) (0002, F 2 ) 2(2, F 2 )10 3 -0,60036(15) (0002, F 2 ) 3(1, F 1 )10 6 -0,353 (0002, F 2 ) 3(3, F 1 )10 5 -0,196 (0002, F 2 ) 3(3, F 2 )10 5 -0,5111 (0002, F 2 ) (0002, F 2 ) 0(0, A 1 ) -1,227372(10) (0002, F 2 ) 1(1, F 1 ) -0,0330432(94) (0002, F 2 ) 2(0, A 1 )10 4 -0,1478 (0002, F 2 ) 2(2, E)10 3 0,119 (0002, F 2 ) 2(2, F 2 )10 3 0,58023(49) (0002, F 2 ) 3(1, F 1 )10 6 -0,3567 (0002, F 2 ) 3(3, F 1 )10 5 -0,5775 3.6.3 74, 76) (в см 1 ). Таблица 3.14. вращательной линии в отсутствие внешних полей. Стоит здесь отметить, что статистиче-интенсивностей выбранных переходов определялись из аппроксимации формы линии кон-туром Артмана-Тран (1.3.11). Чтобы проиллюстрировать качество анализа, на Рисунке 3.6.8 показаны примеры аппроксимации формы линии R(7, A 2 ) (для сравнения приведены переходы всех пяти изотопологов), по которой были определены интенсивности. При этом учитывалось, что исследуемый образец содержал примеси -0,001 % СО 2 , 0,17 % N 2 O и 0,49 % H 2 O. На втором этапе анализа для взвешенной аппроксимации параметров эффективного (Продолж.) Спектроскопические параметры взаимодействующих состояний (0002)/(0101)/(0200) молекулы германа 70 GeH 4 72 GeH 4 73 GeH 4 74 GeH 4 0.15012(?) , ( ) , ( ?) , ( ) 0,1592 0,1592 0,1592 0,1592 -0,2948 -0,2948 -0,2948 -0,2948 0,3359 0,3359 0,3359 0,3359 -0,9951 -0,9951 -0,9951 -0,9951 0,692 0,692 0,692 0,692 0,3879 0,3879 0,3879 0,3879 -0,16538(?) -0,19259(49) -0,20619(?) -0,21979(70) -0,14660(?) -0,14509(19) -0,14434(?) -0,14359(11) -4,3042400(81) -4,3029156(92) -4,301978(66) -4,3013164(97) 0,0255963(18) 0,02563302(82) 0,0257512(43) 0,0257927(78) 0,63352 0,63352 0,63352 0,63352 -0,2856 -0,2856 -0,2856 -0,2856 -0,14470(?) -0,13987(71) -0,13742(?) -0,13499(56) 0,14725 0,14725 0,14725 0,14725 -13,057692(23) -13,048400(27) -13,043753(11) -13,039565(19) 0,1675 0,1675 0,1675 0,1675 0,209738(?) 0,212909(23) 0,216019(?) 0,21811(60) -0,295192(?) -0,299278 (38) -0,301321(?) -0,303364(65) 0,09870 (?) 0,100399(11) 0,101248(?) 0,103529(77) 1,479011(?) 1,4823090(12) 1,4839581(?) 1,484975(98) -0,522400(?) -0,521680 (49) -0,521325(?) -0,520967(83) 0,10591 0,10591 0,10591 0,10591 0,03036044(?) 0,03030544(45) 0,03025272(?) 0,03021681(75) -0,596369(?) -0,598808(63) -0,600027(?) -0,600138(67) -0,353 -0,353 -0,353 -0,353 -0,196 -0,196 -0,196 -0,196 -0,5111 -0,5111 -0,5111 -0,5111 -1,2525012(86) -1,2437923(28) -1,2394022(75) -1,235805(11) -0,0331738(?) -0,0331210(41) -0,0331085(?) -0,0330867(68) -0,1478 -0,1478 -0,1478 -0,1478 0,119 0,119 0,119 0,119 0,59665(53) 0,59118(68) 0,58844(58) 0,58570(76) -0,3567 -0,3567 -0,3567 -0,3567 -0,5775 -0,5775 -0,5775 -0,5775 чения параметров P (00A 1 ) (0000,A 1 )(0002,F 2 (00A 1 ) (0000,A 1 )(0002,F 2 ) для трех других изотопологов. Эти два значения также не менялись при варьировании. Полученные значения параметров ский вес ядерного Для сок представлен в Приложении 2 к опубликованной работе [117]). Значения интегральных показаны в столбцах 4, 5, 6 и 8

анализа интенсивности линий полос ⌫ 2 + ⌫ 4 (F 1 ) и ⌫ 2 + ⌫ 4 (F 2 ) использовался спектр III 0 (см. Рисунок 3.6.1). Анализ интенсивности линий более слабых полос 2⌫ 2 и 2⌫ 4 был выполнен со спектром II 0 (см. Рисунок 3.6.2). Спектр II 0 также использовался для анализа переходов, соответствующих высоким значениям квантового числа J, полосы ⌫ 2 + ⌫ 4 . В этих двух экспериментальных спектрах было выбрано 1697 несмешанных ненасыщенных и не слишком слабых колебательно-вращательных линий: 382, 511, 116, 556 и 132 для изотопологов 70 дипольного момента (2.6.6) были использованы 556 экспериментальных интенсивностей линий изотополога 74 GeH 4 и были получены семь параметров эффективного дипольного момента (параметры, полученные из процеудуры аппроксимации представлены в столбце 7 Таблицы 3.6.3 вместе с их статистическими доверительными интервалами, которые приведены в скобках).

  Анализ форм линиий триады деформационных полос 2⌫ 2 /⌫ 2 + ⌫ 4 /2⌫ 4 в районе пентады Для анализа полуширин линий (или полная ширина на уровне половины высоты) использовались спектры, зарегистрированные при различных давлениях от 20 гПа до 150 гПа (подробности см. в Таблице 3.1.2). Линии полос ⌫ 2 + ⌫ 4 (F 2 ) и ⌫ 2 + ⌫ 4 (F 1 ) всех пяти изотопологов проанализировали с помощью мультиспектральной аппроксимации контуром Артмана-Тран (см. Рисунок 3.6.10, где показаны те же линии, что и на Рисунке Колебательно-вращательный спектр высокого разрешения молекулы 72 GeH 4 в районе октады На Рисунке 3.7.1 представлен экспериментальный спектр высокого разрешения молекулы 72 GeH 4 в диапазоне октады c достаточно четко выраженной структурой полос 3⌫ 4 , ⌫ 2 + 2⌫ 4 и 2⌫ 2 + ⌫ 4 . Для иллюстрации высокого разрешения на Рисунке 3.7.2 представлен спектр в увеличенном масштабе. Темными треугольниками отмечены переходы, относящиеся к полосе 3⌫ 4 (1F 2 ), светлыми треугольниками -к 3⌫ 4 (F 1 ) и светлыми кружкамик 3⌫ 4 (2F 2 ). Разделы 3.2-3.6). В результате было идентифицировано 688 линий для полос 3⌫ 4 (1F 2 , F 1 , 2F 2 ), 447 линий для ⌫ 2 + 2⌫ 4 (1E, F 1 , F 2 , 2E) и 591 линия для 2⌫ 2 + ⌫ 4 (1F 2 , A 1 , 2F 2 )

	4 -0,5200 -0,5200 -0,5200 -0,5200(32) -0,5200 3.6.4 3.6.8) в соответствии с формулой (0000, A 1 )/(0101, F 1 ) F 1 (1, 1, F 1 ) ⇥ 10 4 -0,6932 -0,6932 -0,6932 -0,6932(38) -0,6932 (0000, A 1 )/(0101, F 2 ) F 2 (0, 0, A 1 ) ⇥ 10 1 0,175352(55) 0,175202(48) 0,175114(51) 0,175010(24) 0,174847(84) (0000, A 1 )/(0101, F 2 ) F 2 (1, 1, F 1 ) ⇥ 10 3 0,21711 0,21711 0,21711 0,21711(38) 0,21711 (0000, A 1 )/(0002, E) E (1, 1, F 1 ) ⇥ 10 4 -0,5219 -0,5219 -0,5219 -0,5219(25) -0,5219 (0000, A 1 )/(0002, F 2 ) F 2 (0, 0, A 1 ) ⇥ 10 2 -0,36410(23) -0,36290 c -0,36161(64) -0,35950 c 0,9064 0,9064 0,9064(56) 0,9064 где self -коэффициент самоуширения и 511/17 116/15 556/19 132/14 3,49% 3,34% 3,42% 3,36% 1724,26 1724,37 1724,46 1724,64 -2,0 6,62(05) -8,06(29) ⌫ 2 + ⌫ 4 (F 2 ) 76 = self ⇥ P, -1,3 7,39(04) -4,55(29) ⌫ 2 + ⌫ 4 (F 2 ) 72 -1,0 7,22(01) -5,99(15) ⌫ 2 + ⌫ 4 (F 2 ) 74 GeH 4 . Полоса Центр, см 1 J max N tr a 3⌫ 4 (1F 2 ) 2440,5569 17 475 3⌫ 4 (A 1 ) c 2458,57 3⌫ 4 (F 1 ) 2 4 6 1 , 8 3 6 0 1 7 9 6 3⌫ 4 (2F 2 ) 2464,7400 17 117 688 ⌫ 2 + 2⌫ 4 (1E) 2557,7538 17 119 ⌫ 2 + 2⌫ 4 (F 1 ) 2569,2424 14 100 ⌫ 2 + 2⌫ 4 (A 1 ) c 2570,54 ⌫ 2 + 2⌫ 4 (F 2 ) 2573,0315 17 173 ⌫ 2 + 2⌫ 4 (2E) 2575,0113 14 55 ⌫ 2 + 2⌫ 4 (A 2 ) c 2578,11 447 2⌫ 2 + ⌫ 4 (1F 2 ) 2676,0054 17 297 2⌫ 2 + ⌫ 4 (F 1 ) 2682,1692 16 160 2⌫ 2 + ⌫ 4 (2F 2 ) 2684,9711 15 134 591 . Параметры, представленные без доверительных интервалов, были ограничены -0,36664(25) (0000, A 1 )/(0002, F 2 ) F 2 (1, 1, F 1 ) ⇥ 10 4 0,9064 N tr /J max 382/14 d rms 3,46% Z(296.75) 1724,08 a В скобках указаны статистические доверительные интервалы 1 GeH 4 . 2 1838,8620 0,9477E-02 10 A 2 1 1838,9493 0,1539E-01 10 F 2 2 1839,2378 0,9619E-02 разности = ⌫ exp ⌫ calc удовлетворяют условию  2 ⇥ 10 4 -0,3 7,66(03) -2,82(32) ⌫ 2 + ⌫ 4 (F 2 ) 70 -2,3 6,77(03) -9,85(77) ⌫ 2 + ⌫ 4 (F 2 ) 74 4,4 6,89(05) -4,12(36) ⌫ 2 + ⌫ 4 (F 2 ) 72 d rms , см 1 m 1 -5,3 7,93(30) ⌫ 2 + ⌫ 4 (F 2 ) 70 61,5 11,0 3,9 1,7 6,34(16) -6,24(24) ⌫ 2 + ⌫ 4 (F 2 ) 74 2,4 6,54(11) -2,65(16) ⌫ 2 + ⌫ 4 (F 2 ) 76 -0,6 6,94(04) -5,90(19) ⌫ 2 + ⌫ 4 (F 2 ) 74 -1,4 7,01(04) -5,17(11) ⌫ + ⌫ (F ) b m 2 b m 3 b 4 8 , 1 8 , 0 2 , 1 52,7 10,7 3,6 7,4•10 4 52,4 19,2 7,3 63,8 18,4 11,3 64,7 22,3 9,8 51,0 17,2 7,2 7,2•10 4 69,1 29,0 4,9 67,0 21,7 6,5 57,9 28,6 5,5 7,9•10 4 для которых 10 A 2 1 1839,3627 0,1560E-01 10 E 1 1839,4373 0,6454E-02 10 E 1 1839,8349 0,6931E-02 10 E 1 1840,2541 0,6309E-02 16 A 1 2 1841,2260 0,1812E-02 10 F 2 1 1842,3102 0,1088E-01 10 F 1 1 1842,6406 0,1057E-01 F 1842,7016 0,1052E-01 см 1 , 2 ⇥10 4 см 1 <  4 ⇥ 10 4 см 1 и > 4 ⇥ 10 4 см 1 . реходов, эти полосы оказывают влияние на общую колебательно-вращательную структуру (3.6.1) рассматриваемых полос из-за наличия резонансных взаимодействий. Часть найденных пе-реходов представлена в Таблицы 3.7.2. Все 1726 переходов были использованы в качестве исходной информации в обратной значениями соответствующих параметров изотополога 74 1 10 9 A 1 31 9 F 1 10 9 A 1 21 9 E 21 9 E 21 9 E 2 1 2 спектроскопической задаче для определения параметров эффективного гамильтониана 14 15 A 32 9 F F 31 9 F (2.4.2). Значения спектроскопических параметров, полученные в результате процедуры

b Симметрия колебательных подуровней. c Параметры были ограничены теоретически оцененными значениями (подробности см. в тексте).

⌫ 0 = self ⇥ P,

(3.6

.2) где self -коэффициент сдвига линии. Полученные значения коэффициентов self (для 993 линий) и self (для 676 линий) приведены в Дополнительных материалах 2 к опубликованной работе [117]. Для иллюстрации качества выполненного анализа в верхней части Рисунка 3.6.10 представлена зависимость полуширины от давления для того же перехода полосы ⌫ 2 + ⌫ 4 (F 2 ), что и на Рисунке 3.6.8. Нижняя часть Рисунка 3.6.10 показывает корректность определения коэффициентов самоуширения и сдвигов линий. 3.7 Рисунок 3.7.1. Обзорный экспериментальный спектр VIII молекулы 72 GeH 4 в области 2350-2750 см 1 (условия эксперимента смотри в Разделе 3.1 в Таблице 3.1.1). На начальном этапе был впервые проведен анализ положения линий, который осуществлялся с помощью программного пакета Dijon XTDS. В качестве начального приближения использовались параметры основного состояния, диады и пентады (см.предыдущие с максимальным квантовым числом J max = 17. Подробная статистическая информация представлена в Таблице 3.7.1. В настоящем исследовании переходы, относящиеся к полосам 3⌫ 4 (A 1 ) и ⌫ 2 + 2⌫ 4 (A 1 , A 2 ), идентифицировать не удалось. Как следствие, эти полосы рассматриваются в качестве темных. Однако несмотря на отсутствие обнаруженных пе-a N tr -количество найденных переходов. b m i = n i /N ⇥ 100% (i = 1, 2, 3); n 1 , n 2 и n 3 -количество переходов, c Данные полосы рассматриваются в качестве темных. варьирования, представлены в Таблице 3.7.3 вместе с их доверительными статистическими интервалами (1 ). Значения параметров, которые представлены без доверительных интервалов, брались равными значениям соответствующих параметров изотополога 76 GeH 4 и взяты из работы [139]. В результате анализа определены 35 спектроскопических пара-Рисунок 3.7.2. Небольшой фрагмент экспериментального спектра высокого разрешения молекулы 72 GeH 4 в диапазоне полосы 3⌫ 4 . На нижнем графике показаны соответствующие смоделированные спектральные линии данной полосы.

  2 , 2F 2 ). В качестве подтверждения правильности резуль-Моносилан довольно токсичен и самовоспламеняется при комнатной температуре, поэтому, по сравнению с метаном, при работе с образцами абсолютно необходимы повышенные меры предосторожности. Для регистрации спектров I и II использовался теллурид кадмия-ртутный полупроводниковый детектор с ИК-фильтром (MCT313) и светоделитель из бромида калия KBr, для спектров III и IV -детектор на основе антимонида индия (InSb) и светоделитель из фторида кальция (CaF 2 ). Кроме того, оба спектрометра были оснащены источником ИК-излучения Globar. Подробные детали регистрации спектров см. в Таблице 4.1.1. Номинальное оптическое разрешение для спектров I и II составляло от от 0,0016 до 0,0021 см 1 , что приводило к инструментальной ширине линии от 0,00109 до 0,00143 см 1 в сочетанииТаблица 4.1.1. Экспериментальные детали регистрации ИК-спектров в диапазоне 1060-3640 см 1 молекулы SiD 4 . Описание спектров и идентификация переходов Чтобы дать читателю представление об относительных интенсивностях валентных и деформационных полос в диапазоне пентады, на Рисунке 4.2.1 представлены обзорные спектры I (черный) и II (оранжевый). На этом рисунке отчетливо видна полоса ⌫ 2 + ⌫ 4 (подполосы ⌫ 2 + ⌫ 4 (F 2 ) и ⌫ 2 + ⌫ 4 (F 1 )) с центром около 1365 см 1 . Полосы 2⌫ 4 с центром около 1345 см 1 и 2⌫ 2 с центром около 1379 см 1 значительно слабее и полностью перекрываются сильными линиями полосы ⌫ 2 + ⌫ 4 . Для иллюстрации качества высокого разрешения зарегистрированных спектров на Рисунках 4.2.2-4.2.4 приведены небольшие фрагменты: вблизи центральной части спектра I (см. Рисунок 4.2.2) и в P -и R-крыльях спектра II (см. Рисунки 4.2.3 и 4.2.4). Молекула SiD 4 также представляет собой молекулу типа сферического волчка с группой симметрии, изоморфной точечной группе T d . Как следствие, переходы в поглощении разрешены только между колебательными состояниями (⌫ ) и (⌫ 0 0 ) для кото-любой другой симметрии, могут проявляться в спектрах поглощения только за счет резонансных взаимодействий с колебательными полосами симметрии F 2 -типа (в данном случае это 2⌫ 2 (A 1 ), 2⌫ 2 (E), ⌫ 2 + ⌫ 4 (F 1 ), 2⌫ 4 (A 1 ) и 2⌫ 4 (E)). Из-за наличия сильных резонансных взаимодействий даже структура разрешенных полос ⌫ 2 + ⌫ 4 (F 2 ) и 2⌫ 4 (F 2 ) выглядит далеко от обычной J-кластерной структуры, которая характера для данного типа полос. Идентификация переходов осуществлялась в программе Dijon XTDS. При этом необходимые для анализа параметры основного колебательного состояния, (0100, E) и (0001, F 2 ) взяты из работы [144] (для удобства читателя они воспроизведены в Таблице 4.2.2). В результате анализа спектров I и II было впервые определено 2332, 1265, 1253, 485, 302, 29 и 824 переходов со значением квантового числа J max = 33, 32, 33, 33, 25, 23 и 31 для ⌫ 2 + ⌫ 4

	J n J 0 0 n 0 ⌫ exp , см 1 E gr,a , см 1 га (Брауншвейг, Германия). Регистрация спектров осуществлялась с использованием мно-3 F 1 3 F 1 6 A 1 6 A 1 8 F 2 8 F 2 9 F 1 9 F 1 6 A 1 6 A 1 9 A 2 9 A 2 9 A 2 7 F 2 7 F 2 8 F 1 9 F 1 10 A 1 8 A 1 9 A 1 10 A 1 8 F 1 8 F 1 Таблица 3.7.2. 23 4 F 2 1 2653.1245 53.9056 23 3 F 2 1 2674.6845 32.3456 15 7 A 2 1 2635,6900 150,8649 15 6 A 2 1 2673,3922 113,1628 53 7 F 1 1 2701,4863 150,8489 53 9 F 1 3 2609,9494 242,3859 59 8 F 2 1 2705,1877 193,9310 59 10 F 2 3 2602,9231 296,1957 14 6 A 2 1 2660,9226 113,1628 14 7 A 2 1 2623,2205 150,8649 20 9 A 1 1 2653,1376 242,3736 20 10 A 1 1 2599,3475 296,1638 20 8 A 1 1 2701,6086 193,9026 2 8 F 1 4 2452,4824 150,8702 1 8 F 1 4 2452,5019 150,8508 1 9 F 2 9 2481,6355 193,9043 2 9 F 2 9 2433,1793 242,3605 1 9 A 2 4 2379,8759 296,1638 1 9 A 2 4 2482,1371 193,9026 1 9 A 2 6 2459,8995 242,3736 1 9 A 2 6 2406,1093 296,1638 2 7 F 2 11 2414,7993 193,9406 Zürich ZP2001 [121]); V и VI в диапазоне 2500-3700 см 1 с помощью инфракрасного фурье-спектрометра Bruker IFS120HR в ИК-лаборатории Технического университета Брауншвей-от вида газа и устойчивы к агрессивным газообразным средам. Калибровка положений спектральных линий проводилась по линиям молекул H 2 O и CO 2 . 1 7 F 2 11 2414,8357 193,9043 декады и пентады. Результаты, представленные в данной главе, опубликованы в работах [140-143]. 4.1 Экспериментальные условия регистрации спектров молекулы SiD 4 Спектры I и II моносилана SiD 4 регистрировались в спектральном диапазоне 1060-гПа (в каскаде с дополнительными датчиками на 100 и 1000 гПа). Эти датчики не зависят 2050 см 1 с помощью инфракрасного фурье-спектрометра Bruker IFS125HR (прототип Общие ширины линий аппроксимированы квадратным корнем из доплеровской свертки, давления и инструментальной ширины линии и согласуются с экспериментальными ре-зультатами. Температуру контролировали с помощью термометра сопротивления PT100 (Ahlborn Almemo 2590). Мониторинг давления осуществлялся термокомпенсирующим ем-костным датчиком Pfeiffer CMR по керамической технологии в диапазоне давлений до 10 Небольшой фрагмент найденных переходов в спектре молекулы 72 GeH 4 в районе октады. , см 1 см 1 Полоса 2.0 2⌫ 2 + ⌫ 4 (1F 2 ) 2.5 2⌫ 2 + ⌫ 4 (1F 2 ) -9,5 2⌫ 2 + ⌫ 4 (1F 2 ) -9,8 2⌫ 2 + ⌫ 4 (1F 2 ) 3,3 2⌫ 2 + ⌫ 4 (F 1 ) 3,8 2⌫ 2 + ⌫ 4 (F 1 ) 1,8 2⌫ 2 + ⌫ 4 (F 1 ) 1,9 2⌫ 2 + ⌫ 4 (F 1 ) -8,1 2⌫ 2 + ⌫ 4 (2F 2 ) -8,8 2⌫ 2 + ⌫ 4 (2F 2 ) -3,8 2⌫ 2 + ⌫ 4 (2F 2 ) -3,2 2⌫ 2 + ⌫ 4 (2F 2 ) -3,1 2⌫ 2 + ⌫ 4 ) Спектр Диапазон, Разреш., Число Апертура, Темп., Опт. длина Свето-(2F 2 5,1 3⌫ 4 (F 2 ) 5,1 3⌫ 4 (F 2 ) 8,8 3⌫ 4 (F 2 ) 9,0 3⌫ 4 (F 2 ) 7,5 3⌫ 4 (F 2 ) 8,0 3⌫ 4 (F 2 ) 0,4 3⌫ 4 (F 2 ) 1,1 3⌫ 4 (F 2 ) -5,8 3⌫ 4 (F 2 ) -5,4 3⌫ 4 ) см 1 см 1 скан. мм C пути,м дел. (F 2 Глава 4 I 1060-2050 0,0021 500 1,15 4 KBr 24 ± 0,5 II 1060-2050 0,0021 450 1,3 24 KBr 24 ± 0,5 III 2580-3640 0,003 350 1,0 4 CaF 2 24 ± 1,0 IV 2580-3640 0,003 350 1,15 24 CaF 2 24 ± 1,0 Исследование •10 4,c 2707.0302 2786,5559 2852,3353 2899,1188 2774,0854 2895,5112 2603,3527 2675,5398 2676,0397 2702,2731 4.2 Исследование колебательно-вращательной энергети-колебательно-вращательной структуры ческой 2608,7400 спектров молекулы силана тельной структуры спектров трех изотопологов молекулы силана в районе диады, тетра-структуры деформационных колебательных полос молекулы SiD 4 в районе пентады Пропускание, % E b 88.2 78.0 86,0 62,0 88,1 88,5 88,8 87,3 86,7 85,4 88,0 88,4 87,5 53,6 48,6 89,5 41,0 88,2 88,0 88,3 47,0 88,6 48,5 Настоящая глава диссертации посвящена исследованию тонкой колебательно-враща-4.2.1

a Значения энергий вращательных термов основного колебательного состояния, полученных в работе

[START_REF] Hecht | The vibration-rotation energy of tetrahedral XY 4 molecules / K.T. Hecht[END_REF]

. b Значения энергий возбужденных колебательно-вращательных состояний. c Разности между экспериментальными ⌫ exp и расчетными ⌫ calc значениями положений линий. гоходовой ячейки Уайта из нержавеющей стали с длиной основания 1 м и максимальной длиной оптического пути 48 м, из которого использовались варианты 4 и 24 м (подробнее в Таблице 4.1.1). Образец газа SiD 4 был приобретен у компании Linde AG с заявленной чистотой 99,999%. с самоаподизацией (коэффициент Boxcar равен 0,68). В случае регистрации спектров III и IV номинальное инструментальное разрешение -0,003 см 1 с инструментальной шириной линии 0,0024 см 1 в сочетании со слабой аподизацией Нортона-Бира (коэффициент аподизации 0,81). Доплеровское уширение для 28 SiD 4 в спектрах I и II при температуре 297,15 K находится в диапазоне от 0,0013 до 0,0033 см 1 . Уширение линий при давлениях, используемых для анализа положения линий, составляло от 0,000002 до 0,0008 см 1 , что лишь незначительно влияет на полную ширину линий, и попадало в диапазон от 0,0017 до 0,0037 см 1 . Доплеровское уширение для SiD 4 в спектрах III и IV при температуре 297 K и 3140 см 1 (центр полосы ⌫ 3 ) преобладает над полной шириной линий и составляет 0,0069 см 1 . рых выполняется условие (3.2.1). Переходы разрешены по симметрии только из основного колебательного состояния (симметрия A 1 ) в колебательные состояния F 2 -типа (в данном случае это подполосы ⌫ 2 + ⌫ 4 (F 2 ) и 2⌫ 4 (F 2 )). Переходы, принадлежащие колебательным

Рисунок 4.2.1. Обзорные спектры SiD 4 в области пентады. На верхнем графике представлены экспериментальные спектры I (черный) и II (оранжевый). Условия эксперимента см. в Разделе 4.1 в Таблице 4.2.1. На нижней части рисунка представлен соответствующий смоделированный спектр.

полосам

  Для построения контура линий использовался Доплеровский профиль. Таблица 4.2.2. Статистическая информация для полос 2⌫ 2(A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) и 2⌫ 4 (A 1 , E, F 2 ) молекулы M SiD 4 (M = 28, 29, 30). Энергия a , см 1 J max N b Таблица 4.3. (Продолж.) Статистическая информация для полос 2⌫ 2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) и 2⌫ 4 (A 1 , E, F 2 ) молекулы M SiD 4 (M = 28, 29, 30). Энергия a , см 1 J max N b Таблица 4.3. (Продолж.) Статистическая информация для полос 2⌫ 2 (A 1 , E), ⌫ 2 + ⌫ 4 (F 1 , F 2 ) и 2⌫ 4 (A 1 , E, F 2 ) молекулы MSiD 4 (M = 28, 29, 30).

	3 (0001, F 2 ) 2(2, E) 10 2 (0001, F 2 ) 2(2, F 2 ) 10 2 (0001, F 2 ) 3(1, F 1 ) 10 4 (0001, F 2 ) 3(3, F 1 ) 10 4 (0001, F 2 ) 4(0, A 1 ) 10 6 (0001, F 2 ) 4(2, E) 10 7 (0001, F 2 ) 4(2, F 2 ) 10 8 (0001, F 2 ) 4(4, A 1 ) 10 8 (0001, F 2 ) 4(4, E) 10 7 (0001, F 2 ) 4(4, F 2 ) 10 7 (0001, F 2 ) 5(3, F 1 ) 10 9 (0001, F 2 ) 5(5, F 1 ) 10 10 (0001, F 2 ) 6(0, A 1 ) 10 11 2⌫ 2 (A 1 ) ⌫ 2 (E) 2⌫ 2 (A 1 ) ⌫ 4 (F 2 ) 2⌫ 2 (A 1 ) 1 3 7 7 , 7 3 6 7 28 SiD 4 0,14 -0,1042923 -0,4742084 0,1442411 -0,1399878 -0,130833 -0,46797 0,4582 0,47072 0,46858 0,36026 -0,50578 0,1767 0,482 2 3 2 2 2 3 2⌫ 2 (E) ⌫ 2 (E) 2 3 2⌫ 2 (E) ⌫ 4 (F 2 ) 2 4 2⌫ 2 (E) 1 3 8 0 , 2 6 0 7 3 1 ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 2 (E) 2 5 ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 (F 2 ) 2 8 ⌫ 2 + ⌫ 4 (F 1 ) 1 3 6 5 , 8 6 0 5 3 2 ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 2 (E) 2 8 ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 4 (F 2 ) 2 7 ⌫ 2 + ⌫ 4 (F 2 ) 1 3 6 3 , 4 1 6 0 3 3 2⌫ 4 (A 1 ) ⌫ 2 (E) 2 2 2⌫ 4 (A 1 ) ⌫ 4 (F 2 ) 2 6 2⌫ 4 (A 1 ) 1 3 4 0 , 4 7 8 0 2 5 2⌫ 4 (E) ⌫ 2 (E) 2 4 2⌫ 4 (E) ⌫ 4 (F 2 ) 3 0 2⌫ 4 (E) 1 3 4 9 , 3 3 8 5 3 3 2⌫ 4 (F 2 ) ⌫ 2 (E) 2 1 2⌫ 4 (F 2 ) ⌫ 4 (F 2 ) 3 0 2⌫ 4 (F 2 ) 1 3 4 7 , 1 6 8 9 3 3 Всего N e tr Полоса 29 SiD 4 2⌫ 2 (E) ⌫ 2 (E) 1 4 2⌫ 2 (E) 1 3 8 0 , 2 8 0 6 2 2 ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 2 (E) 1 3 ⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 (F 2 ) 2 2 ⌫ 2 + ⌫ 4 (F 1 ) 1 3 6 4 , 2 6 9 4 2 0 ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 2 (E) 1 8 ⌫ 2 + ⌫ 4 (F 2 ) ⌫ 4 (F 2 ) 1 8 ⌫ 2 + ⌫ 4 (F 2 ) 1 3 6 1 , 7 9 6 2 2 5 ⌫ 4 (A 1 ) ⌫ 4 (F 2 ) 1 3 3 7 , 3 8 0 5 1 3 2⌫ 4 (E) ⌫ 4 (F 2 ) 2 0 2⌫ 4 (E) 1 3 4 6 , 1 5 5 1 1 9 2⌫ 4 (F 2 ) ⌫ 2 (E) 1 6 2⌫ 4 (F 2 ) ⌫ 4 (F 2 ) 2 2 2⌫ 4 (F 2 ) 1 3 4 4 , 0 3 5 2 3 3 Всего N e tr Всего N f tr Всего N l d e rms 4,72 ⇥10 4 см 1 d f rms 4,76 ⇥10 4 см 1 30 SiD 4 в пропорциях 1:4. Полоса Всего N f tr 2⌫ 2 (E) ⌫ 2 (E) 1 3	0,14 -0,1045317 -0,4718821 0,1454303 -0,1397671 -0,130833 -0,46797 0,4582 0,47072 0,46858 0,36026 -0,50578 0,1767 0,482 tr N c l 1 8 6 2 9 3 4 5 6 , 6 2 4 , 1 1 9 , 3 0,14 -0,1046633 -0,4696996 0,1469171 -0,1393144 -0,130833 -0,46797 0,4582 0,47072 0,46858 0,36026 -0,50578 0,1767 0,482 m d 1 m d 2 m d 3 3 3 8 1 7 1 8 2 4 4 7 7 7 0 , 3 1 9 , 2 1 0 , 5 5 8 6 5 1 8 1 2 6 5 8 8 8 6 5 , 4 2 2 , 6 1 2 , 0 7 0 8 7 3 8 2 3 3 2 9 9 8 6 9 , 7 2 0 , 6 9 , 7 4 9 4 2 8 3 0 2 1 6 3 6 7 , 9 2 3 , 4 8 , 7 1 3 8 5 3 4 4 8 5 3 9 4 6 9 , 2 2 1 , 4 9 , 4 8 5 1 2 2 8 1 2 5 3 8 4 7 7 0 , 6 2 0 , 2 9 , 2 6490 tr N c l m d 1 m d 2 m d 3 5 5 6 5 9 3 7 , 7 2 7 , 9 3 4 , 4 9 1 5 8 2 1 0 5 4 1 , 5 2 9 , 3 2 9 , 2 1 4 8 2 1 4 2 1 8 3 9 , 0 2 2 , 0 3 9 , 0 4 4 7 5 , 0 0 , 0 2 5 , 0 2 2 2 2 4 1 6 , 7 2 5 , 0 5 8 , 3 1 9 3 4 7 1 3 2 3 9 , 7 2 5 , 6 3 4 , 7 403 171 542 5545 2
	Всего N l 2⌫ 2 (E)	1 3 8 0 , 3 0 5 1	2 2	3801 1 5 1 7 5 2 , 9 3 5 , 3 1 1 , 8
	d e rms d f rms ⌫	2,33 ⇥10 4 см 1 3,12 ⇥10 4 см 1		

Также были проанализированы некоторые горячие колебательные полосы диады/пентады. При этом использовался зарегистрированный ранее спектр в области 600-760 см 1 , который обсуждался в работе

[START_REF] Griffith | The Irreducible Tensor Method for Molecular Symmetry Groups[END_REF]

. Всего проинтерпритированно 5545 горячих переходов, которые опубликованны в Дополнительных материалах II к работе

[START_REF] Hecht | The vibration-rotation energy of tetrahedral XY 4 molecules / K.T. Hecht[END_REF] 

(также 2 + ⌫ 4 (F 1 ) ⌫ 2 (E)

1 2 4

⌫ 2 + ⌫ 4 (F 1 ) ⌫ 4 (F 2 ) 1 9 7

  . статистическую информацию в Таблице 4.2.2). При сравнении с теоретически рассчитанными положениями горячих линий эти 5545 экспериментальных значений дают d rms = 2,33 ⇥ 10 4 см 1 . На Рисунке 4.2.5 показаны невязки для обсуждаемых положений линий в зависимости от квантового числа J.vl ,v 0 l 0 0 колебательных состояний (0200)/(0101)/(0020) молекулы SiD 4 (в см 1).A 1 ) (0002, F 2 ) 2(2, F 2 )10 4 F 2 ) (0002, A 1 ) 2(2, F 2 )10 4 F 2 ) (0002, F 2 ) 1(1, F 1 )10 2 Таблица 4.4. (Продолж.) Спектроскопические параметры Y ⌦(K,n )vl ,v 0 l 0 0 колебательных состояний (0200)/(0101)/(0020) молекулы SiD 4 (в см 1). F 2 ) (0002, F 2 ) 0(0, A 1 ) -1,58264(11) -1,554299(21) -1,526487(44) (0002, F 2 ) (0002, F 2 ) 1(1, F 1 )10 2 F 2 ) (0002, F 2 ) 2(0, A 1 )10 5 F 2 ) (0002, F 2 ) 2(2, F 2 )10 4 F 2 ) (0002, F 2 ) 3(3, F 1 )10 7

	Таблица 4.2.3.	Спектроскопические параметры Y	⌦(K,n )
	(⌫, ) (⌫, )	( ⌫ 0 ( ⌫ 0 , 0 , 0 )	)	⌦(K, n ) ⌦(K, n )	28 28 SiD 4 SiD 4	29 29 SiD 4 SiD 4	30 30 SiD 4 SiD 4
	(0200, A 1 ) (0200, A 1 ) 0(0, A 1 ) (0101, F 2 ) (0002, F 2 ) 2(0, A 1 )10 5	-2 , 1 7 6 3 6 ( 2 7 ) 5,147(22)		-2 , 1 7 2 7 3 6 ( 9 7 ) -2 , 1 6 9 1 2 5,147 5,147
	(0200, A 1 ) (0200, E) (0101, F 2 ) (0002, F 2 ) 2(2, E) 10 5 2(2, E) 10 5	6,252(27) 5,784(14)		6,252 5,784	6,252 5,784
	(0200, E) (0101, F 2 ) (0002, F 2 ) 3(1, F 1 )10 7 (0200, E) 0(0, A 1 )10 11	4,97057(63) 6,052(16)		4,95032(20) 6,052	4,92859(43) 6,052
	(0200, E) (0002, A 1 ) (0002, A 1 ) 0(0, A 1 ) (0200, E) 2(0, A 1 )10 5	-7,817(56) -8,41924(27) -8,345677(94) -8,274585(48) -7,817 -7,817
	(0200, E) (0002, A 1 ) (0002, A 1 ) 2(0, A 1 )10 4 (0200, E) 2(2, E) 10 4	-2,3303(93) 2,0058(35)		-2,3303 2,0058	-2,3303 2,0058
	(0200, A 1 ) (0101, F 1 ) 1(1, F 1 )10 2 (0002, A 1 ) (0002, E) 2(2, E) 10 5	-6,243(11) 5,199(24)		-6,2762(29) 5,199	-6,309651 5,199
	(0200, A 1 ) (0101, F 1 ) 3(1, F 1 )10 6 (0002, A 1 ) (0002, F 2 ) 2(2, F 2 )10 5	-1,4266(57) 8,473(35)		-1,4266 8,473	-1,4266 8,473
	(0200, E) (0002, E)	(0101, F 1 ) 1(1, F 1 )10 2 (0002, E) 0(0, A 1 )10 1	5,308(13) 2,92129(63)		5,308 3,02023(31)	5,308 3,08393(58)
	(0200, E) (0002, E)	(0101, F 1 ) 2(2, F 2 )10 5 (0002, E) 2(0, A 1 )10 4	-3,128(34) -4,1346(86)	-3,128 -4,1346	-3,128 -4,1346
	(0200, E) (0002, E)	(0101, F 1 ) 3(1, F 1 )10 7 (0002, F 2 ) 1(1, F 1 )10 2	2,929(28) 1,29912(44)		2,929 1,29912	2,929 1,29912
	(0200, E) (0002, E)	(0101, F 2 ) 1(1, F 1 )10 3 (0002, F 2 ) 2(2, F 2 )10 4	3,999(12) 2,8004(85)		3,8787(13) 2,8004	3,7583 2,8004
	(0200, E) (0002, E)	(0101, F 2 ) 2(2, F 2 )10 4 (0002, F 2 ) 3(1, F 1 )10 7	2,8632(67) 7,586(15)		2,8632 7,586	2,8632 7,586
	(0200, E) (0002, E)	(0101, F 2 ) 3(1, F 1 )10 6 (0002, F 2 ) 3(3, F 1 )10 7	-1,1401(15) 3,754(13)		-1,1401 3,754	-1,1401 3,754
	(0200, A 1 ) (0002, A 1 ) 0(0, A 1 ) (0200, 2,6189(97) -2 , 4 8 2 9 ( 2 0 ) (0002, 4,804(16)		-2 , 3 5 7 6 0 ( 5 8 ) 2,6189 4,804	-2 , 2 3 2 0 6 ( 1 4 ) 2,6189 4,804
	(0200, E) (0002, 4,124(35) (0002, A 1 ) 2(2, E) 10 4 -1,7648(45)		-1,7648 4,124	-1,7648 4,124
	(0200, E) (0002, F 2 ) (0002, F 2 ) 2(2, E) 10 4 (0002, E) 0(0, A 1 )10 1	7,183(13) -1,1163(48)	6,41065(25) -1,1163	5,66300(43) -1,1163
	(0200, E) (0002, 1,1858(91) (0002, E) 2(0, A 1 )10 5 -8,950(16)		-8,95 1,1858	-8,95 1,1858
	(0200, E) (0002, 2,141(20) (0002, F 2 ) 1(1, F 1 )10 2 9,517(15)		9,59288(52) 2,141	9,66872 2,141
	(0200, E)	(0002, F 2 ) 2(2, F 2 )10 4	2,3440(67)		2,344	2,344
	(0200, E)	(0002, F 2 ) 3(1, F 1 )10 6	1,1446(29)		1,1446	1,1446
	(0101, F 1 ) (0101, F 1 ) 0(0, A 1 )	1 , 4 5 5 4 9 6 1 ( 8 0 )		1 , 4 4 9 2 5 2 ( 2 5 )	1 , 4 4 4 6 6 8 ( 3 8 )
	(0101, F 1 ) (0101, F 1 ) 1(1, F 1 )10 2	-1,37041(19)		-1,37041	-1,37041
	(0101, F 1 ) (0101, F 1 ) 2(0, A 1 )10 4	-1,5094(34)		-1,5094	-1,5094
	(0101, F 1 ) (0101, F 1 ) 2(2, F 2 )10 4	2,7998(50)		2,7998	2,7998
	(0101, F 1 ) (0101, F 1 ) 3(1, F 1 )10 7	-5,441(24)		-5,441	-5,441
	(0101, F 1 ) (0101, F 2 ) 1(1, F 1 )10 2	-4,5104(46)		-4,49420(23)	-4,47856(40)
	(0101, F 1 ) (0101, F 2 ) 2(2, E) 10 5	9,076(16)		9,076	9,076
	(0101, F 1 ) (0101, F 2 ) 2(2, F 2 )10 4	-1,7258(74)		-1,7258	-1,7258
	(0101, F 1 ) (0101, F 2 ) 3(1, F 1 )10 7	-4,532(21)		-4,532	-4,532
	(0101, F 1 ) (0101, F 2 ) 3(3, A 2 ) 10 7	-2,386(15)		-2,386	-2,386
	(0101, F 2 ) (0101, F 2 ) 0(0, A 1 )	-1 , 3 0 0 9 0 ( 1 1 )		-1 , 3 0 4 3 3 3 ( 1 1 ) -1 , 3 0 7 0 4 1 ( 2 9 )
	(0101, F 2 ) (0101, F 2 ) 1(1, F 1 )10 2	-9,516(16)		-9,47472(43)	-9,43303
	(0101, F 2 ) (0101, F 2 ) 2(0, A 1 )10 4	1,8134(55)		1,8134	1,8134
	(0101, F 2 ) (0101, F 2 ) 2(2, E) 10 5	-5,174(88)		-5,174	-5,174
	(0101, F 1 ) (0002, A 1 ) 1(1, F 1 )10 2	9,381(15)		9,4911(40)	9,55100(61)
	(0101, F 1 ) (0002, A 1 ) 3(1, F 1 )10 6 (0101, F 1 ) (0002, E) 1(1, F 1 )10 2	1,8257(72) 4,704(12)		4 1,8257 см 1 4,704	, 2 ⇥10 4 1,8257 см 1 4,704
	<  4 ⇥ 10 4 (0101, F 1 ) (0002, E) см 1 и > 4 ⇥ 10 4 2(2, F 2 )10 4 см 1 (0101, F 1 ) (0002, F 2 ) 1(1, F 1 )10 2	-3,1061(40) . -3,2093(65)		-3,1061 -3,15125(36)	-3,1061 -3,12515(59)
	(0101, F 1 ) (0002, F 2 ) 2(2, E) 10 5	-5,697(56)		-5,697	-5,697
	(0101, F 1 ) (0002, F 2 ) 2(2, F 2 )10 4	2,0814(62)		2,0814	2,0814
	(0101, F 1 ) (0002, F 2 ) 3(1, F 1 )10 7	-1,237(22)		-1,237	-1,237
	(0101, F 1 ) (0002, F 2 ) 3(3, A 2 )10 7	4,763(12)		4,763	4,763
	(0101, 1,6811(30)		1,6811	1,6811
	(0101, F 2 ) (0002, E)	1(1, F 1 )10 2	2,736(12)		2,68676(51)	2,64670(53)
	(0101, F 2 ) (0002, E)	2(2, F 2 )10 4	-2,649(10)		-2,649	-2,649
	(0101, F 2 ) (0002, E)	3(1, F 1 ) 10 7	5,827(28)		5,827	5,827
	(0101, F 2 ) (0002, F 2 ) 0(0, A 1 )	-2 , 2 2 8 9 9 ( 3 7 )		-2 , 2 1 1 0 5 0 ( 1 2 ) -2 , 1 9 4 7 5 1 ( 2 3 )
	(0101, 1,2454(34)		1,2454	1,2454

e Для холодных полос. f Для горячих полос.

см

  28 SiH 4 . Результат проведенной оценки представлен в Таблице 4.2.4. Таблица 4.2.4. Некоторые спектроскопические параметры молекулы 28 SiH 4 и 28 SiD 4 (в см 1).

	Параметр	SiH a 4	SiD b 4
	x 22	0,448	0,224
	x 24	0,129	0,065
	x 44	2,955	1,477
	G 22	2,634	1,317
	T 24	0,321	0,161
	G 44	2,307	1,153
	T 44	0,181	0,091
	a		

  403 перехода, использованных при варьировании параметров эффективных гамильтониана, позволили определить набор спектроскопических параметров, которые представлены в Таблице 4.2.3 (значения в скобках -статистические доверительные интервалы (1 ) для полученных параметров). Значения параметров29 SiD 4 изотополога, которые представлены без доверительных интервалов, были ограничены значениями соответствующих параметров28 SiD 4 изотополога и не участвовали в процедуре варьирования. Для30 SiD 4 изотополога было найдено значительно меньше переходов, что приводит к меньшему числу варьируемых параметров гамильтониана. В данном случае, часть варьируемых параметров для изотополога29 SiD 4 были фиксированы и не варьировались для30 SiD 4 изотополога. Фиксированные значения оценивались путем экстраполяции значений соответствующих параметров 28 SiD 4 и 29 SiD 4 изотопологов. Необходимо отметить, что параметры основного колебательного состояния и колебательных состояний (0100) и (0001) также использовались при анализе 29 SiD 4 и 30 SiD 4 изотопологов (см. Таблицу 4.2.1). Значения d rms для 29 SiD 4 и 30 SiD 4 составили 4,72 ⇥ 10 4 см 1 и 5,28 ⇥ 10 4 см 1 . Для подтверждения корректности полученных результатов в Дополнительном материале I к опубликованной работе [119] представлены разницы ⇥ 10 4 см 1 между экспериментальными и расчетными значениями, где видно хорошее соответствие. Также в качестве иллюстрации качества анализа, на Рисунке 4.2.5 представлены невязки аппроксимации для положения линий как функции квантового числа J. По аналогии с молекулой 28 SiD 4 , было найдено 171 и 99 горячих переходов для 29 SiD 4 и 30 SiD 4 изотопологов, соответственно (см. статистическую информацию в Таблице 4.2.2). Найденные переходы также опубликованы в Дополнительных материалах I к работе [119] и воспроизводятся параметрами из Таблицы 4.2.1 с d rms = 4,76 ⇥ 10 4 см 1 и 6,33 ⇥ 10 4 см 1 . Как видно из обзорных спектров на Рисунке 4.3.1, можно легко определить центр полосы ⌫ 1 + ⌫ 3 . Задача определения/оценки центров других валентных полос тетрадекада непроста, но важна для корректного описания резонансного взаимодействия в молекуле.В этом разделе кратко обсудим, как можно решить эту проблему на основе известных экспериментальных данных о центрах валентных полос пентады и тетрадекадаы молекулы28 SiH 4 и центров полос ⌫ 1 (A 1 ), ⌫ 3 (F 2 ) и ⌫ 1 + ⌫ 3 (F 2 ) молекулы 28 SiD 4 .Модель локальных мод[START_REF] Herranz | The rotational structure of the fundamental infrared bands of methane-type molecules[END_REF][START_REF] Herranz | The rotational structure of the ⌫(e) fundamental infrared band of tetrahedral XY 4 molecules / J. Herranz[END_REF][START_REF] Zhilinskii | Method of Irreducible Tensorial Operators in the Theory of Molecular Spectra / B.I. Zhilinskii[END_REF] обеспечивает высокую эффективность при изучении тетраэдрических молекул типа XY 4 , для которых выполняется условие m H /m Si ⌧ 1 [151, 152]. Важно, что для молекул, удовлетворяющих условиям модели локальных мод, выполняются простые соотношения между спектроскопическими параметрами ! 1 , ! 3 , x 11 , x 13 , x 33 , G 33 , T 33 , F 1133 и F 1333 (см., например, [150]). Как следствие, 1. колебательная структура такого типа молекул может быть описана только двумя параметрами ! и x; 2. модель локальных мод показывает небольшие различия между центрами полос ⌫ 1 +⌫ 3 и 2⌫ 1 . С этой точки зрения молекулу SiH 4 следует рассматривать как молекулу в приближении локальных мод, но не являющуюся строго локальной модой, так как разница между центрами полос ⌫ 1 и ⌫ 3 составляет около 3 см 1 [153] (значение 2⌫ 1 ⌫ 3 /⌫ 1 + ⌫ 3 -0,2 %). С высокой степенью достоверности можно предположить, что значения всех параметров x 11 , x 13 , x 33 , G 33 , T 33 , F 1133 и F 1333 отличаются от их реальных значений с тем же порядком точности (т.е. около 0,2-0,3 %). Учитывая, что значения этих параметров очень малы по сравнению со значениями центров основных полос [50, 55], можно считать, что соотношения из [150] справедливы для параметров x 11 , x 13 , x 33 , G 33 , T 33 , F 1133 и F 1333 молекулы SiH 4 . Для гармонических частот ! 1 и ! 3 будем использовать следующие соотношения: Для определения трех параметров !, x и (вместо двух, как в строгой модели локальных мод) можно использовать три экспериментальных центра полосы молекулы 28 SiH 4 . Чтобы сделать оценку более стабильной, были использованы не три, а семь центров полос молекулы 28 SiH 4 из работ [153, 154] (см. в столбце 2 Таблицы 4.3.1) в качестве исходных данных в соответствии с тремя вышеупомянутыми параметрами. В результате процедуры варьирования были получены следующие значения параметров: ! = 2255,50 см 1 , = 3,47 см 1 и x = -8,62 см 1 . Результат воспроизведения семи исходных центров полос показан в столбце 3 Таблицы 4.3.1. Значение центра полосы ⌫ 1 + ⌫ 3 (F 2 ) составило 3138,4074 см 1 и было получено из анализа экспериментальных данных. 2. Следуя теории изотопозамещения, нетрудно показать, что соотношения xij ' x ij /2(i, j = 1, 3), G33 ' G 33 /2, T33 ' T 33 /2, F1333 ' F 1333 /2, F1133 ' F 1133 (4.2.3) справедливы для симметричных замещений ядер в молекулах XY 4 (симметрия T d ) (в данном случае параметры с волной и без принадлежат молекулам 28 SiH 4 и 28 SiD 4 ). Взяв уравнение (4.2.2) и полученное выше значение x = -8,62 см 1 можно легко определить значения следующих параметров для молекулы 28 SiD 4 : x11 = -4,31 см 1 , x13 = -17,24 см 1 , x33 = -7,76 см 1 , G33 = 2,59 см 1 , T33 = 0,86 см 1 , F1333 = -68,96 см 1 и F1133 = -17,24 см 1 . 3. Используя информацию из пункта 2 и значения центров полос ⌫1 = 1598,4782 см 1 (из работы [144]) и ⌫1 + ⌫3 (получено в настоящей работе) и основные соотношения теории изотопозамещения, указанные выше, можно оценить следующие численные значения гармонических частот молекулы 28 SiD 4 : !1 = 1598,84 см 1 и !3 = 1632,96 см 1 . Таблица 4.3.1. Центры валентных полос пентады и тетрадекады молекулы SiD 4 (в см 1 ). ⌫ 3 (F 2 ) 2189,1895 a 2189,96 1598,88 1598,4782 e 2⌫ 1 (A 1 ) 4308,87 b 4309,06 3114,59 3113,8920 c 3113,5816 3113,2486 ⌫ 1 + ⌫ 3 (F 2 ) 4305,95 b 4309,16 3138,18 3138,4074 c 3135,7574 3133,2630 2⌫ 3 (A 1 ) 4374,56 b 4374,87 3175,78 3174,9744 c 3170,7560 3166,8732 2⌫ 3 (F 2 ) 4378,40 b 4378,24 3187,56 3187,1425 c 3182,9114 3178,9849 2⌫ 3 (E) 4380,28 b 4379,93 3197,74 3198,0673 c 3193,5385 3189,3228

	Полоса		28 SiH 4	28 SiH c 4	28 SiD c 4	28 SiD c 4	29 SiD c 4	30 SiD c 4
			Эксп.	Кальк. Кальк.	Эксп.	Эксп.	Эксп.
	⌫ 1 (A 1 )		2186,8723 a 2186,50 1563,56	1563,2 d	
	4.3 Исследование тетрадекады валентных полос моле-! 1 = ! (4.2.1)
	кулы M	SiD 4 (M = 28, 29, 30)	
	и						
	4.3.1 Оценка центров полос тетрадекады валентных полос моле-
	кулы 28	SiD 4		! 3 = ! + .			(4.2.2)

На втором этапе настоящего исследования была проведена оценка значений центров

полос ⌫ 1 + ⌫ 3 (F 2 ), 2⌫ 3 (F 2 ), 2⌫ 3 (E), 2⌫ 1 (A 1 ) и 2⌫ 3 (A 1 )

на основе результатов теории изотопозамещения. Чтобы понять это, был проведен следующий анализ: 1. a Взято из работы [154]. b Взято из работы [153]. c Настоящая работа. d Взято из работы [40]. e Взято из работы [144].

  1 J max N a rms = 3,5 ⇥ 10 4 см 1 29 SiD 4 ⌫ 1 + ⌫ 3 (F 2 ) 3138,40737 29 199 5 45,2 32,2 22,6 d rms = 3,5 ⇥ 10 4 см 1 30 SiD 4 ⌫ 1 + ⌫ 3 (F 2 ) 3133,26302 26 169 5 55,6 24,9 19,5d rms = 3,3 ⇥ 10 4 см 1 = n i /N t ⇥ 100% (i = 1, 2, 3); n 1 , n 2 и n 3 -количество переходов, для которых разности = ⌫ exp ⌫ calc удовлетворяют условию  2 ⇥ 10 4 Таблица 4.3.4. Спектроскопические параметры Y ⌦(K,n )vl ,v 0 l 0 0 тетрадекады деформационных полос молекулы SiD 4 (в см 1).

	(⌫, )	( ⌫ 0	, 0	)	⌦(K, n )		28 SiD 4 28 SiD 4	t	N b p 29	m c 1 SiD 4	m c 2	m c 1 30 SiD 4
		⌫ 1 + ⌫ 3 (F 2 ) 3138,40737	36	1264 35 53,0 28,8 20,2
		2⌫ 3 (F 2 )		3187,14251	21	139		47,5 26,8 25,9
		2⌫ 3 (E)				3198,06733	27	70		31,4 31,4 37,2
		d см 1	,
		2 ⇥10 4	см 1	<  4 ⇥ 10 4	см 1	и > 4 ⇥ 10 4	см 1	.

a N t -количество переходов. b N p -количество варьируемых параметров. c m i

  A 1 ) (0010, F 2 ) 2(2, F 2 ) 10 2

	6	0,051	0,051	0,051
	(1000, A 1 ) 4(4, A 1 ) 10 7	-0,031	-0,031	-0,031
	(1000, 0,382080	0,378724	0,375760
	(0010, F 2 ) 3(3, F 2 ) 10 5	0,08965	0,08965	0,08965
	(0010, F 2 ) 4(2, F 2 ) 10 7	0,22267	0,22267	0,22267
	(0010, F 2 ) 4(4, F 2 ) 10 6	0,021357	0,021357	0,021357
	(0010,			

  F 2 ) (0020, A 1 ) 2(2, F 2 ) 10 3 Таблица 4.10. (Продолж.) Спектроскопические параметры Y ⌦(K,n ) vl ,v 0 l 0 0 тетрадекады деформационных полос молекулы SiD 4 (в см 1 ) F 2 ) (0020, F 2 ) 0(0,A 1 ) -17,24 -17,19401(43) -17,14018(47) (0020, F 2 ) 1(1, F 1 ) 10 2
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	(⌫, )	(⌫ 0	, 0	)	⌦(K, n )	28	SiD 4	29	SiD 4	30	SiD 4
	1010,										
					7	0,3579(29)	0,3579		0,3579
		(1010, F 2 ) 4(2, E) 10 8	0,980(17)	0,980		0,980
		(1010, F 2 ) 4(2, F 2 ) 10 7	-0,5189(62)	-0,5189		-0,5189
		(1010, F 2 ) 4(2, E) 10 7	-0,1064(11)	-0,1064		-0,1064
		(1010, F 2 ) 4(4, F 2 ) 10 7	-0,23281(71)	-0,23281		-0,23281
		(1010, F 2 ) 6(0, A 1 ) 10 11	0,9566(73)	0,9566		0,9566
	(1010, -0,3369(36)	-0,3369		-0,3369
	(1010, F 2 ) (0020, E)	1(1, F 1 ) 10 2	0,444(67)	0,444		0,444
		(0020, E)	2(2, F 2 ) 10 3	0,2394(16)	0,2394		0,2394
		(0020, E)	3(1, F 1 ) 10 5	-0,4315(53)	-0,4315		-0,4315

  Впервые зарегистрированы ИК-спектры молекулы72 GeH 4 в областях диады/пентады, проинтерптирированны колебательно-вращательные переходы, принадлежащие колебательным полосам ⌫ 2 (E), ⌫ 4 (F 2 ), ⌫ 1 (A 1 ), ⌫ 3 (F 2 ), ⌫ 1 +⌫ 3 (F 1 ),⌫ 1 +⌫ 3 (F 2 ), 2⌫ 2 (A 1 ), 2⌫ 2 (E), 2⌫ 4 (A 1 ), 2⌫ 4 (E) и 2⌫ 4 (F 2 ) и определены спектроскопических параметров эффективного гамильтониана.3. Впервые проведен анализ положения линий фундаментальных полос ⌫ 2 /⌫ 4 и определены колебательно-вращательные энергии верхних колебательных состояний молекулы 70 GeH 4 . Полученные переходы позволили определить набор спектроскопических параметров, которые описывают колебательно-вращательную структуру полос ⌫ 2 /⌫ 4 с точностью близкой к экспериментальной неопределенности.4. Впервые измерены интегральные интенсивности линий пяти изотопологов германа деформационных полос ⌫ 2 /⌫ 4 путем аппроксимации формы измеряемых линий контуром Артмана-Тран. Полученные данные позволили определить параметры эффективного дипольного момента для двух деформационных полос. Были проинтерпретированны колебательно-вращательные переходы, принадлежащие данным полосам и определенны спектроскопические параметры эффективного гамильтониана. 6. Впервые зарегистрированы и проанализированы колебательно-вращательные спектры молекулы M GeH 4 (M = 70, 72, 73, 74, 76) в районе 1400-2000 см 1 , где расположены валентные колебания 2⌫ 2 , 2⌫ 4 и комбинационное ⌫ 2 + ⌫ 2 . Решена обратная спектроскопическая задача, которая позволила определить параметры центробежного искажения, тетраэдрического расщепления и резонансного взаимодействия для всех пяти изотопологов. 7. Впервые измерены интегральные интенсивности линий полос ⌫ 2 + ⌫ 4 (F 1 ) и ⌫ 2 + ⌫ 4 (F 2 ) всех пяти изотопологов германа, которые определялись путем описания профиля линии теоретическим контуром Артмана-Тран. Процедура взвешенной аппроксимации позволила определить параметры эффективного дипольного момента. 8. Впервые проведен анализ формы линий полос ⌫ 2 + ⌫ 4 (F 2 ) и ⌫ 2 + ⌫ 4 (F 1 ) всех пяти изотопологов германа с помощью мультиспектральной аппроксимации контуром Артмана-Тран. Получены значения коэффициентов самоуширения self и сдвигов линий self . 9. Впервые выполнено исследование тонкой структуры колебательно-вращательного спектра молекулы 72 GeH 4 в районе октады. Проведен анализ положения линий в диапазоне десяти взаимодействующих колебательно-вращательных полос 3⌫ 4 (1F 2 ,F 1 , 2F 2 ), ⌫ 2 +⌫ 4 (1E, F 1 , F 2 , 2E) и 2⌫ 2 +⌫ 4 (1F 2 , F 1 , 2F 2 ).Найденные переходы позволили определить параметры центробежного искажения, резонансных взаимодействий и тетраэдрических расщеплений. 10. Зарегистрированы ИК-спектры высокого разрешения молекулы M SiD 4 (M = 28, 29, 30) в области 3020-3260 см 1 , где расположена тетрадекада валентных полос ⌫ 1 + ⌫ 3 (F 2 ) и 2⌫ 3 (F 2 , E). Впервые проинтерпритированны переходы принадлежащие пере-

	Заключение			
	В рамках настоящей диссертационной работы получено новое знание об инфракрас-
	ных спектрах высокого разрешения молекул германа и силана. Основные результаты мож-
	но сформулировать следующим образом:			
	1. Усовершенствована модель анализа колебательно-вращательной структуры спектров
	молекул типа сферического волчка с учетом различного типа резонансных взаимо-
	действий.			
	2.			
	4	0,348(39)	0,348	0,348
	(0020, F 2 ) 2(2, E) 10 3	-0,2316(48)	-0,2316	-0,2316
	(0020, F 2 ) 2(2, F 2 ) 10 4	0,537(30)	0,537	0,537

5.

Впервые зарегистрированы ИК-спектры молекулы

73 

GeH 4 в области деформаци-

онных полос ⌫ 1 + ⌫ 3 (F 2 ) и 2⌫ 1 (A 1 ).

численным полосам. В результате процедуры варьирования параметров эффективного гамильтониана были определены параметры центробежных искажений, резонансных взаимодействий и тетраэдрических расщеплений.

11. Впервые зарегистрирован и теоретически исследован колебательно-вращательный

The groups O and T d are isomorphic.

Since tetrahedral molecules are studied in this thesis, the tetrahedral tensor name is used instead of cubic ones.

The simplest form of the vibrational-rotational Hamiltonian for polyatomic molecules was obtained byWatson in 1986 (see[90]).

The O(3) group, its irreducible representations, and their applications to vibrational-rotational spectroscopy problems are discussed in more detail in the papers of Fano and Racah[START_REF] Fano | Irreducible Tensorial Sets / U. Fano[END_REF], Griffith[START_REF] Griffith | The Irreducible Tensor Method for Molecular Symmetry Groups[END_REF], Varshalovich et al.[START_REF] Varshalovitch | Quantum theory of angular momentum[END_REF].

We take into account that (µ 0 ) must be Hermitian.

Spectrum analysis in the XTDS Dijon software package is possible only "polyad by polyad".

)10 9 -0.66037

, ⌫ 2 + ⌫ 4 and 2⌫ 4 bands of the five stable isotopologues of germane.

Простейшая форма колебательно-вращательного гамильтониана для многоатомных молекул была получена Уотсоном в 1986 году (см. работу[START_REF] Tennyson | Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC technical report)[END_REF]).

Анализ спектров в программном пакете XTDS Dijon возможен только в режиме полиада за полиадой.

)10 9 -0,66037

(F 2 ) для пяти различных изотопологов германа (см. условия эксперимента в Разделе 3.1 в Таблице 3.1.2). Нижняя часть: измеренные коэффициенты самоуширения и максимального смещения линии при комнатной температуре в зависимости от давления.

холодных полос (a, b, c) и горячих полос (d, e, f) изотопологов28 SiD 4 , 29 SiD 4 и 30 SiD 4 , соответственно.
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-4.31 cm 1 , x13 = -17.24 cm 1 , x33 = -7.76 cm 1 , G33 = 2.59 cm 1 , T33 = 0.86 cm 1 , F1333 = -68.96 cm 1 and F1133 = -17.24 cm 1 .

3. Using the information from point 2 and the values of the band centers ⌫1 = 1598.4782 cm 1 (from [82]), and ⌫1 + ⌫3 (obtained in this work) and the main relations of the isotopic substitution theory indicated above, we can estimate the following numerical values of the harmonic frequencies of the 28 исследуемом образце практически отсутствуют):

можно легко показать, что 

.

(3.5.9)

Единственное неизвестное значение µ в уравнении (3.5.9) может быть получено из решения уравнения (3.5.7), поскольку отношения 

-6.06( 49)

-5,32( 16)

-6,08( 18)

-5,14( 17)

-7,91(60)

-6,05(45) vl ,v 0 l 0 0 колебательных состояний (0300)/(0201)/(0102)/(0003) молекулы 72 GeH 4 (в см 1 ).

(0300, E) (0300, E) 0(0,A 1 )10 

(0003, A 1 ) (0003, A 1 ) 0(0,A 1 )10 2 -5,1854(43) (0102, F 1 ) (0003, F 1 ) 0(0,A 1 )10 1 1,52185(47) (0003, A 1 ) (0003, F 1 ) 1(1,F 1 )10 -9,4548(42) (0003, F 1 ) 1(1,F 1 )10 3 1,817 (0003, F 1 ) (0003, F 1 ) 0(0,A 1 )10 2 3,0626(24) (0102, F 1 ) (0003,2F 2 ) 1(1,F 1 )10 2 1,8650 (0003, F 1 ) 1(1,F 2 )10 -1,09980(45) (0003,2F 2 ) 2(2,E)10 5 6,32 (0003, F 1 ) 2(0,A 1 )10 5 -5,435 (0102, F 2 ) (0003,1F 2 ) 0(0,A 1 )10 1 -1,91414(50

x, y или z; , µ и ⌫ перечисляют колебательные моды: для молекул T d -симметрии (XY 4 -типа) , µ и ⌫ могут принимать значения 1; 2 1 , 2 2 ; 3 x , 3 y , 3 z , или 4 x , 4 y , 4 z ):

Коэффициенты ↵ ⌫ /↵ ⌫ µ являются решениями системы уравнений (4.1.1) и следующего соотношения:

2. Коэффициенты A µ определяются из следующих соотношений

где m N и m 0 N -массы ядер до и после изотопического замещения, l N /l N µ -константы форм колебаний (см., например, [99] для молекул XY 4 (T d )).

Третье соотношение можно записать как

где (↵