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Abstract 
We study the spin relaxation time of donor-bound electrons immersed in the middle of 

a CdTe quantum well (QW). By inserting the donors in a QW we increase the localization 

of the electron wave-function. In addition, the optical selection rules for circularly 

polarized light are purified, allowing a higher degree of optical orientation of the 

electron spins than in 3D crystals. 

The photo-induced Faraday rotation technique is used to measure the spin relaxation 

time of donor-bound electrons for different doping concentrations at low temperature 

in the insulating regime. In order to evaluate the spin relaxation mechanisms in our 

system, we calculate the exchange energy of a pair of donor-bound electrons immersed 

in the middle of an infinite QW, for any inter-donor distance and for different 

thicknesses. Then, we explain the experimental behavior as an interplay of two 

mechanisms: hyperfine and anisotropic exchange interactions, and we determine the 

CdTe spin-orbit constant: 𝛼𝑠𝑜 = 0.079.  

We also develop an extended pump-probe experiment allowing to measure spin 

relaxation times at the microsecond scale. We briefly discuss the first experimental 

results for the spin relaxation time of donor-bound electrons as a function of the 

longitudinal magnetic field and the doping concentration.   

Finally, we investigate the temperature evolution of the spin relaxation in the range 10-

80 K. The experimental behavior is explained by invoking spin exchange between 

electron spins localized on donors and the spin of electrons promoted to conduction 

states. While the spin of localized electrons undergoes the effect of hyperfine and 

anisotropic exchange interactions, the D’yakonov-Perel’ mechanism governs the spin 

relaxation of the conduction electrons.  
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Résumé 
Nous étudions le temps de relaxation de spin d'électrons liés à des donneurs immergés 

au milieu d'un puits quantique (PQ) de CdTe. En insérant les donneurs dans un PQ, nous 

augmentons la localisation de la fonction d'onde électronique. De plus, les règles de 

sélection optique en lumière circulairement polarisée sont purifiées, ce qui permet 

d’obtenir un degré d’orientation optique plus élevé que dans les cristaux 3D.  

La rotation Faraday photo-induite est utilisée pour mesurer le temps de relaxation de 

spin d'électrons liés aux donneurs pour différentes concentrations de dopaje, à basse 

température et dans le régime isolant. Afin d'évaluer les mécanismes de relaxation de 

spin dans notre système, on calcule l'énergie d'échange d'une paire d'électrons liés à des 

donneurs immergés au milieu d'un PQ infini, pour toute distance inter-donneur et 

différentes épaisseurs de PQ. Ensuite, on explique le comportement expérimental à 

l’aide de deux mécanismes: l’interaction d’échange anisotrope et l’interaction hyperfine, 

et on détermine la constante spin-orbite de CdTe: 𝛼𝑠𝑜= 0.079.  

Nous développons également une expérience pompe-sonde étendue, permettant de 

mesurer des temps de relaxation de spin à l’échelle de la microseconde. On discute 

brièvement des premiers résultats expérimentaux sur le temps de relaxation de spin 

d'électrons liés aux donneurs en présence d’un champ magnétique longitudinal et pour 

différents dopages.  

Enfin, nous étudions l'évolution de la relaxation de spin dans la plage de température de 

10 à 80 K. On explique le comportement expérimental en invoquant l'échange de spin 

entre les spins d'électrons localisés sur des donneurs et le spin d'électrons promus dans 

des états de conduction. Alors que le spin des électrons localisés subit l’effet des 

interactions d’échange anisotrope et hyperfine, le mécanisme de D’yakonov-Perel’ régit 

la relaxation de spin des électrons de conduction.  
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Introduction 
The original idea of a quantum computer was introduced by Feynman in 1959 [1]. A 

quantum computer would have a calculation capacity far superior to all current 

computers, thanks to the storage and to the manipulation of quantum bits (“qubits”). A 

qubit (or quantum bit) is the quantum mechanical analogue of a classical bit. In classical 

computing the information is encoded in bits, where each bit can have the value zero or 

one. In quantum computing the information would be encoded in a qubit: a two level 

quantum mechanical system. Numerous efforts, both theoretical and experimental, have 

been made to physically identify qubit candidates. Solid-state qubits are a subset of 

qubits which present the advantage of scalability due to the use of nanofabrication 

technologies, but which also present challenges to obtain a suitable protection against 

interactions with their environment. Nowadays, the two main qubit technologies 

concern superconductor and semiconductor materials.  

In superconducting circuits obtained with nanotechnologies similar to those of the 

microelectronics, qubits based on phase, charge of flux states have reached a spectacular 

degree of quantum control [2,3]. One of the main requirements for qubits is to show long 

coherence times, and then in solid-state physics these qubits have to be protected 

against environmental interactions. In this sense, the spin of the low-energy electronic 

states in semiconductors is, in principle, an observable well protected from the 

environment, and constitutes a good prototype of a qubit. Moreover, to suppress the 

relaxation mechanism of itinerant electrons (D’yakonov-Perel’ process [4]), the electron 

spin should be localized at a nanometer scale. The confinement can be obtained by 

nanofabrication as in quantum dots [5–8], or in a more natural way using the attractive 

potential of individual impurities [9–13].   

Indeed, quantum dots are an ideal system for single spin qubits. Spin control in single 

quantum dots has been recently demonstrated using ultrafast optical pulses by J. 
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Berezovsky et al.  [14] and D. Press et al. [15]. Nevertheless, they present many technical 

challenges, as the requirement of low-signal-detection techniques to perform 

measurements, or their random spatial location. In addition, ensembles of quantum dots 

have demonstrated large inhomogeneous effects due to the distribution of quantum dot 

sizes that results from the growth process.  Electrons trapped by individual donors in 

semiconductors, on the contrary, have quasi-atomic electron wave functions, leading to 

much better homogeneity than electrons confined within self-assembled quantum dots. 
 

In this framework, a large number of experimental studies have been centered on 

impurities in semiconductors. Phosphorus donors in silicon have recently showed long 

spin lifetimes [16,17], but because of an indirect band gap, these impurities cannot be 

optically addressed. In contrast, the direct-band-gap semiconductors exhibit efficient 

optical transitions. One of the most studied direct-band-gap semiconductors is GaAs. In 

1977, C. Weisbuch reported experimental studies on spin relaxation of electrons 

localized on donors or acceptors [18]. He showed up spin relaxation times up to 30 ns in 

lightly doped n-type crystals of GaAs. Subsequent measurements made by J. M. Kikkawa 

and D. D. Awschalom [19] reported times around 130 ns at 𝑛𝑑 =  2 × 1016 cm−3. All 

these results motivated intensive research on the influence of doping on spin relaxation 

times. In bulk GaAs, a complete study of the doping concentration influence on the 

relaxation time of localized electrons was performed by R. I. Dzhioev et al. [20], and 

recently revisited by J. G. Lonnemann et al. [21] and V. V. Behlyk et al. [22].   

   

The influence of the doping concentration on the spin relaxation time has been studied, 

at low temperature, in other zinc-blende bulk materials such as InSb [23], InAs [24], and 

ZnSe [25], and also in wurzite materials as ZnO [26] and GaN [27,28], for different doping 

values in the insulating regime and beyond the metal-insulator transition. Recently, a 

study in the insulating regime was performed in bulk CdTe by D. Sprinzl et al. [29].  
 

From the theoretical point of view, in the insulating regime and at low temperature, in 

bulk GaAs it has been shown that the spin relaxation time is strongly related to the 

distance between two electrons localized on donors. Different mechanisms contribute 

to the spin relaxation: at very low concentration of donors, the coupling of an isolated 

electron spin with the surrounding nuclear spins is the dominant interaction; and at 

donor concentration near the metallic transition, the exchange interaction is the main 

mechanism of the spin-spin interaction between neighboring donors [20,30,31]. In the 

metallic regime, the spin relaxation is dominated by the D’yakonov-Perel’ mechanism 

[4] or the Elliot-Yafet mechanism [32]. 

In this thesis we are interested in studying the influence of doping concentration, 

temperature and longitudinal magnetic field on the spin relaxation time of electrons 

bound to donors immersed in the middle of a CdTe quantum well (QW). We have chosen 

CdTe for this research because it has the same crystal structure and nearly the same 

energy band gap as GaAs, but rather different material parameters (e.g. effective masses, 

dielectric constant, and spin-orbit interaction). In addition, it has been experimentally 
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demonstrated that, when donors are immersed in a QW, the spin relaxation time of 

electrons localized on donors is enhanced by two orders of magnitude with respect to 

the one of free electrons in QWs [33]. Moreover, by inserting the donors in a QW, the 

optical selection rules for circularly polarized light are purified, allowing a higher degree 

of optical orientation of the electron spins than in 3D crystals. 

The manuscript is organized as follows: 

- In the first chapter, we introduce the basic concepts used in this work; then are 

presented the electronic properties of a doped CdTe QW, its band structure, and the 

useful optical selection rules. We also describe the spin initialization mechanism, and 

introduce the optical Bloch equations describing the spin dynamics under a transversal 

or a longitudinal magnetic field. 

- In the second chapter, we describe the two experimental set-ups employed in this 

work. One uses a pump-probe Faraday technique, and the other a Kerr rotation 

technique, with a homodyne and a heterodyne detection, respectively. 

- In the third chapter, we calculate the exchange energy of a pair of donor-bound 

electrons placed in the middle of an infinite QW, for any inter-donor distance and for 

different QW thicknesses. We calculate first the asymptotic form of the exchange energy, 

adapting to a QW the method developed in Refs. [34,35]. Inspired by the interpolation 

procedure proposed by I. V. Ponomarev et al. [36], we calculate the exchange energy of 

a “helium atom” inside an infinite QW. Finally, we obtained the values of the exchange 

energy valid for any interdonor distance and for any QW thickness. We discuss also the 

behavior of the exchange energy in different III-V and II-VI materials. 

- In the fourth chapter, we present measurements of the transversal spin relaxation time 

(T2) in our samples, for different doping concentrations spanning from the insulating 

regime to beyond the metal-insulator transition. By using the calculations developed in 

chapter 3, we explain the experimental behavior as an interplay of different 

mechanisms: hyperfine interaction and anisotropic exchange interaction. From the fit of 

the experimental results, we determine the spin-orbit constant of CdTe.   

- In chapter 5, the temperature evolution of the spin relaxation time is exposed, in the 

range of temperature 10-80 K and for different doping concentrations. We identify the 

spin relaxation mechanisms undergone by the conduction electrons, and show that the 

interaction between the spins on localized electrons and conduction electrons explains 

the experimental data. 

- In chapter 6, we present the new development of an extended pump-probe experiment, 

in order to measure spin relaxation times at the microsecond scale. We briefly discuss 

the first experimental results, at low temperature, for the longitudinal spin relaxation 

time (T1) of donor-bound electrons immersed in a CdTe QW with different doping 

concentrations, as a function of a longitudinal magnetic field. 
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1.1 Introduction 

In this chapter, we first give an introduction to the electronic structure of direct-gap 

zinc-blende materials, bulk and quantum wells. We then present the principles of the 

optical orientation of a donor-bound electron spin, and the characterization of the loss 

of spin orientation. 
 

1.2 Electronic structure of zinc-blende semiconductors 

1.2.1 Bulk materials: �⃗⃗� .�⃗⃗�  method 

In a bulk semiconductor material, the crystal lattice is seen by an electron as a periodic 

potential. This periodicity is at the origin of the band structure of the electronic 

spectrum. The energy band structure is obtained solving the Schrödinger equation [1]: 

            𝐻Ψ𝑛,�⃗� (𝑟 ) = (
𝑝 2

2𝑚0
+ 𝑉𝑐(𝑟 ))Ψ𝑛,�⃗� (𝑟 ) = 𝐸𝑛,�⃗� Ψ𝑛,�⃗� (𝑟 ) ,                      (1.1) 

where 𝑚0 is the electron mass, n is the index that indicates the band, �⃗�   is the quasi wave-

vector that represents the quantum translational number, 𝑝 = −𝑖ℏ∇⃗⃗ , 𝑉𝑐 is the periodic 
potential due to the crystal lattice, and Ψ𝑛,�⃗� 

(𝑟 ) is the electron wavefunction that is 

written, according to the Bloch theorem, as: 

                                        Ψ𝑛,�⃗� 
(𝑟 ) = exp(𝑖𝑘.⃗⃗⃗  𝑟 ) 𝑢𝑛,�⃗� (𝑟 ) ,                                  (1.2) 

with 𝑢𝑛,�⃗� (𝑟 ) a periodic function on the crystal, that contains the information about the 

crystal structure. The function 𝑢𝑛,�⃗� (𝑟 ) satisfies the equation 

 
       (𝐻0 + 𝐻′) 𝑢𝑛,�⃗� 

(𝑟 ) = 𝐸𝑛,�⃗�  𝑢𝑛,�⃗� 
(𝑟 ) ,                                      (1.3) 

where 𝐻0 = 
𝑝 2

2𝑚0
+ 𝑉𝑐(𝑟 ) and  𝐻′ =

ℏ𝑘.⃗⃗  ⃗𝑝 

𝑚0
+

ℏ2�⃗� 2

2𝑚0
. When �⃗� = 0, 𝐻′ = 0 and Ψ𝑛,0⃗⃗ (𝑟 ) =

𝑢𝑛,0⃗⃗ (𝑟 ). The functions 𝑢𝑛,0⃗⃗ (𝑟 )  are determined using  the group theory. Since 𝐻0 does not 

take the spin into account, the functions are doubly degenerated.  
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Figure 1.1 Band structure of a zinc-blende semiconductor around �⃗� = 0. 

To obtain the band structure when �⃗� ≠ 0, it is needed to find the eigen-functions and 

eigen-values of equation (1.3) with the complete Hamiltonian 𝐻0 + 𝐻′. In direct-band- 

gap zinc-blende semiconductors, the description of the optical properties requires the 

electronic states around �⃗� = 0. The �⃗� . 𝑝  method consists in treating the 𝐻′ term as a 
perturbation, taking as a basis for the eigen-functions 𝑢𝑛,�⃗�   the set of functions 𝑢𝑛,0⃗⃗ : 

              𝑢𝑛,�⃗� = ∑ 𝑐𝑚(�⃗� )𝑢𝑚,0𝑚  .                         (1.4) 

Thus, considering eigen-functions approximated to first order in �⃗� , and eigen-energies 

to second order, one obtains 

                                𝐸𝑛,�⃗� = 𝐸𝑛,0⃗⃗ +
ℏ2�⃗� 2

2𝑚0
+

ℏ2

𝑚0
2 ∑

|⟨𝑢𝑛,0⃗⃗ |𝑘.⃗⃗⃗  𝑝 |𝑢𝑖,0⃗⃗ ⟩|
2

𝐸𝑛,0⃗⃗ −𝐸𝑖,0⃗⃗ 
,𝑖≠𝑛                                 (1.5) 

                                  𝑢𝑛,�⃗� = 𝑢𝑛,0⃗⃗ +
ℏ

𝑚0
∑

⟨𝑢𝑛,0⃗⃗ |𝑘.⃗⃗⃗  𝑝 |𝑢𝑖,0⃗⃗ ⟩

𝐸𝑛,0⃗⃗ −𝐸𝑖,0⃗⃗ 
𝑖≠𝑛 𝑢𝑖,0⃗⃗  .                                         (1.6) 

To simplify the writing, we introduce the electron effective mass 𝑚𝑛
∗  such that: 

                                                 𝐸𝑛,�⃗� = 𝐸𝑛,0 +
ℏ2�⃗� 2

2𝑚𝑛
∗  ,                                                           (1.7) 

where 𝑚𝑛
∗  is the effective mass of the edge of band n. The different effective masses lead 

to different curvatures in the energy band diagram. 
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Band Energies 

(at �⃗⃗� = 𝟎) 

Notation 

 |𝐽, 𝐽𝑧⟩ 

Eigen-functions  

(at �⃗⃗� = 𝟎) 

 

Γ6 

 

+𝐸𝑔 

|
1

2
,
1

2
⟩ 

|
1

2
, −

1

2
⟩ 

𝑢1,0 = |𝑆, ↑⟩ 

𝑢2,0 = |𝑆, ↓⟩ 

 

 

Γ8
ℎℎ 

 

 

0 

 

|
3

2
,
3

2
⟩ 

|
3

2
, −

3

2
⟩ 

𝑢5,0 =
1

√2
|𝑋 + 𝑖𝑌, ↑⟩ 

𝑢6,0 =
1

√2
|𝑋 − 𝑖𝑌, ↓⟩ 

 

 

Γ8
𝑙ℎ 

 

 

0 

 

|
3

2
,
1

2
⟩ 

|
3

2
, −

1

2
⟩ 

𝑢3,0 =
1

√6
|𝑋 + 𝑖𝑌, ↓⟩ −√2/3|𝑍,↑⟩ 

𝑢4,0 =
1

√6
|𝑋 − 𝑖𝑌, ↑⟩ +√2/3|𝑍,↓⟩ 

 

Γ7 

 

−∆𝑆𝑂 

|
1

2
,
1

2
⟩ 

|
1

2
, −

1

2
⟩ 

𝑢7,0 =
1

√3
[|𝑋 + 𝑖𝑌, ↓⟩ +|𝑍,↑⟩] 

𝑢8,0 =
1

√3
[|𝑋 − 𝑖𝑌, ↓⟩ −|𝑍,↑⟩] 

Table 1.1 Bloch functions at �⃗� = 0 for the valence bands 𝛤7  and  

𝛤8, and  the conduction  band 𝛤6 of a zinc-blende semiconductor. 

Taking into account the spin-orbit interaction, a new term has to be introduced in the 

Hamiltonian 𝐻 of eq. (1.1):  

                          𝐻𝑠𝑜 =
1

2𝑚0
2𝑐2

(𝑆 × ∇⃗⃗ 𝑉). 𝑝  ,                                                   (1.8) 

with 𝑆 =
ℏ

2
𝜎  the electronic spin operator (𝜎𝑥, 𝜎𝑦, 𝜎𝑧: Pauli matrices). Then H does not 

commute with 𝑆 , but it commutes with the total angular momentum: 

              𝐽 = �⃗� + 𝑆 .                                         (1.9) 

The spin-orbit coupling let invariant the conduction states for which the orbital moment 

is zero, while for the valence band states, the degeneracy is lifted: the states with 𝐽 = 1/2  

(Γ7 band ) are shifted to lower energies as compared to the (𝐽 =
3

2
) ones (Γ8 band ). A 

representation of the band structure is given in Fig. 1.1, and the eigenfunctions are given 

in Table 1.1. The energy splitting between the Γ6 and Γ8 bands, at �⃗� = 0, is the band gap 

𝐸𝑔 of the semiconductor; the one between the Γ8 and Γ7 is the spin-orbit energy ∆𝑆𝑂 . The 

spin-orbit coupling also gives different effective masses of the states in the heavy-hole 

band (Γ8, 𝐽𝑧 = ±3/2) and in the light-hole band (Γ8, 𝐽𝑧 = ±1/2). 
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1.2.2 Energy states in a quantum well: Envelope function 

method 

To calculate the electronic states in a quantum well (QW), it is common to use the 

method of the envelope function. In this method, an electronic wavefunction in a QW 

(with the confinement along the z axis) is written as 

Ψ𝑛,�⃗� ∥ 
(𝑟 ) =  𝛷(𝑧) exp(𝑖�⃗� ∥. 𝑟 ∥) 𝑢𝑛,�⃗� ∥ 

(𝑟 ), 

where Φ(𝑧) is an envelope function that satisfies the eigenvalue equation: 

(−
ℏ2

2𝑚𝑛

𝑑2

𝑑𝑧2
+ 𝑉𝑄𝑊)𝜙(𝑧) = 𝜀𝜙(𝑧),                                      (1.10) 

with 𝑉𝑄𝑊 the confinement potential of the QW, due to the different band gaps of the 

materials, and 𝑢𝑛,�⃗� ∥
(𝑟 ) the Bloch function; the factor exp (𝑖�⃗� ∥. 𝑟 ∥) reveals the free motion 

in the plane x-y parallel to the QW. In Eq. (1.10), the effective mass 𝑚𝑛
∗  is different inside 

the QW (0 < 𝑧 < 𝐿) and outside (in the barriers), with L the width of the QW. The 

confinement energy 𝜀 is an additional contribution to the eigen-energy associated to 
Ψ𝑛,�⃗� ∥ 

(𝑟 ). 

For degenerate bands, such as the Γ8 band of Fig. 1.1, the calculations are more 

complicated and are not presented here. In the limit of the infinite confinement 

potential, with 𝑉𝑄𝑊(0 < 𝑧 < 𝐿) = 0, we find 

                                             𝜙(𝑧) = √
2

𝐿
 sin (𝑛𝑧𝜋

𝑧

𝐿
)                                                 (1.11) 

and 

𝜀 =
ℏ2𝜋2

2𝑚𝑛
∗𝐿2

𝑛𝑧
2,                                                       (1.12) 

with 𝑛𝑧 = 1, 2, 3… . ;  𝑚𝑛
∗  is the effective mass in the QW. From this simple model of 

confinement, we keep two pieces of information, also valid in general: (i)  when 𝑛𝑧 is odd 

(even), 𝜙(𝑧) is symmetric (antisymmetric) with respect to the 𝑧 = 𝐿/2 plane; (ii) 𝜀 is 

inversely proportional to the effective mass. Point (ii) has an immediate consequence: 

there is a lifting, by the energy Δ𝑙ℎ, of the degeneracy of the energies of heavy and light-

holes bands, since  the effective mass  of the heavy-hole band  is greater than the effective 

mass of the light-hole band. The band structure of a zinc-blende QW is shown in Fig.1.2. 
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Figure 1.2 Band structure of a zinc-blende QW. The heavy-hole band 𝛤8
ℎℎ (𝐽𝑧 = ±3/2) and 

the light-hole one 𝛤8
𝑙ℎ (𝐽𝑧 = ±1/2 ) are split (by energy ∆𝑙ℎ). The gap (of energy 𝐸𝑔) is 

between the 𝛤6 and 𝛤8
ℎℎ band edges.  

  

1.3 Optical selection rules 

We consider in this section the effect of a laser beam propagating along the confinement 

axis z of a QW. According to the Fermi golden rule, the probability per unit time that an 

electron makes a transition from the state |Ψ𝑖⟩ to the state |Ψ𝑓⟩ in presence of an optical 

field  with vector potential 𝐴 = 𝐴0𝜀̂𝑒
𝑖(𝑘𝑧−𝜔𝑡) + 𝐴0

∗𝜀̂∗𝑒−𝑖(𝑘𝑧−𝜔𝑡) (𝐴0 = 𝑖𝐸0/2𝜔), is 

�̃�𝑖𝑓 =
2𝜋

ℏ
|⟨Ψ𝑓|�̂�1|Ψ𝑖⟩|

2
𝛿[𝜀𝑓 − 𝜀𝑖 − ℏ𝜔],                         (1.13) 

where �̂�1 is the Hamiltonian representing the coupling of the electron with the optical 

field:  

�̂�1 =
𝑒

𝑚𝑒
𝑝 . 𝐴 (𝑟 ) +

𝑒2𝐴2(𝑟 )

2𝑚𝑒
,                                            (1.14) 

and 𝜀𝑖 and 𝜀𝑓 are the eigenenergies of the states |Ψ𝑖⟩ and |Ψ𝑓⟩, respectively. The 

quadratic term in the expression (1.14) is generally considered small compared to the 

linear one; this term plays a role only for very high intensities of the order of 

1015 𝑊/cm2 which may be observed for very intense and tightly focused pulsed 

femtosecond lasers [3]. Here, only the linear term in 𝐴  is considered in Eq. (1.14). In 

addition, under typical experimental conditions, the optical wavelength  𝜆 = 2𝜋/𝑘 is 

much larger than the QW width, so the spatial dependence of 𝐴  can be neglected: 𝜆 → ∞, 

𝑘 → 0 so 𝑒𝑖𝑘𝑧 ≈ 1. This is known as the electric dipole approximation: 

  �̂�1 ≈ �̂�𝑑𝑖𝑝 =
𝑒𝐸(𝑡)

𝑚0𝜔
𝜀̂. 𝑝 ,                                               (1.15) 
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with 𝐸(𝑡) = 𝐸0𝑠𝑖𝑛(𝜔𝑡). In the case that the states |Ψ𝑖⟩ and |Ψ𝑓⟩ are partially or 

completely occupied, it is needed to take into account the impossibility of allowing 

transitions from either an empty level or towards a filled one. Thus, the probability per 

unit time that an electron makes  a |Ψ𝑖⟩ → |Ψ𝑓⟩ transition is equal to 

𝑃𝑖𝑓 = �̃�𝑖𝑓𝑓(𝜀𝑖)[1 − 𝑓(𝜀𝑓)],                                                   (1.16) 

where 𝑓(𝜀𝑣) is the mean occupancy of a state |Ψ𝑣⟩, 𝑓(𝜀𝑣) = {1 + exp [𝛽(𝜀𝑣 − 𝜇)]}−1 with 

𝛽 = (𝑘𝐵𝑇)−1, T the temperature and 𝜇 the chemical potential of the electrons. 

Summing over all states, one obtains the net energy loss per unit time of the 

electromagnetic wave when it enters into the material, which is also the power absorbed 

from the field by the sample:  

𝑃(𝜔) =
2𝜋

ℏ

𝑞2𝐸0
2

𝑚0
2𝜔2 ℏ𝜔∑ 𝛿[𝜀𝑓 − 𝜀𝑖 − ℏ𝜔]|⟨Ψ𝑓|𝜀̂. 𝑝 |Ψ𝑖⟩|

2
 [𝑓(𝜀𝑖) − 𝑓(𝜀𝑓)].𝑖,𝑓           (1.17) 

A specific transition  |Ψ𝑖⟩ → |Ψ𝑓⟩ is dominant when the optical frequency is 𝜔 = (𝜀𝑖 −

𝜀𝑓)/ℏ. In our case we tune the optical frequency near the energy gap: 𝜔 ≈ 𝐸𝑔/ℏ. The 

matrix element ⟨Ψ𝑓|𝜀̂. 𝑝 |Ψ𝑖⟩ governs the optical selection rules of the material. This term 

is calculated using the wavefunctions for an electron in a QW described in section 1.2.2, 

taking the expression 

                                               ⟨Ψ𝑓|𝜀̂. 𝑝 |Ψ𝑖⟩ = ⟨𝑢𝑓|𝜀̂. 𝑝 |𝑢𝑖⟩⟨Φ𝑓|Φ𝑖⟩                                       (1.18) 

for interband transitions. In this work, we are interested in the optical transitions 

between the Γ8
ℎℎ(𝐽𝑧 = ±3/2)  and Γ6 (𝐽𝑧 = ±1/2) bands of a QW (see Fig. 1.2). 

The integral ⟨Φ𝑓|Φ𝑖⟩ = ∫ Φ𝑓
∗(𝑟 ) Φ𝑖(𝑟 )𝑑

3𝑟
Ω

  in Eq. (1.18) dictates the allowed subband 

indices for a transition, while the matrix element ⟨𝑢𝑓|𝜀̂. 𝑝 |𝑢𝑖⟩ governs the optical 

selection rules for the polarization of the light. For a type-I symmetrical QW, the 

envelope functions have a defined parity with respect to the center plane of the QW  (cf. 

1.2.2); thus the integral ∫ Φ𝑓
∗(𝑟 ) Φ𝑖(𝑟 )𝑑

3𝑟
Ω

 is non-zero only if the initial and final 

envelope functions have the same parity. Thus only the transitions 𝑆𝑣 ↔ 𝑆𝑐 , 𝑃𝑣 ↔ 𝑃𝑐   are 

allowed, as shown in Fig. 1.3.  

 

 

 

 

 

Figure 1.3 Inter-band optical transitions allowed in a quantum well. 
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The factor ⟨𝑢𝑖|𝜀̂. 𝑝 |𝑢𝑓⟩ being evaluated for circularly polarized light, 𝜎 + or 𝜎 −, one 

obtains that this kind of polarization induces transitions with ∆𝐽𝑧 = +1 or ∆𝐽𝑧 = −1; 

these transitions are shown in Fig. 1.4. Because of the light-hole/heavy-hole splitting, 

only transitions between the Γ8
ℎℎ and Γ6 band edges are possible. In comparison with 

bulk materials (where the heavy-hole and light-hole bands are degenerated), the level 

scheme of the valence band in a QW purifies the optical selection rules: the light-hole 

states do not come into play. 

 

 

 

 

 

 

 

Figure 1.4 Optical selection rules for a circularly polarized beam propagating along the 

confinement axis of a QW, and whose energy is resonant at the energy gap. Only ∆𝐽𝑧 = +1 

or ∆𝐽𝑧 = −1 transitions are possible between the 𝛤8
ℎℎ and 𝛤6 bands, operated by 𝜎 + or 𝜎 − 

optical polarizations, respectively. 

 

1.4 Excitons, donors and donor-bound excitons 
 

1.4.1 Excitons 

When an electron is promoted to the conduction band, the missing electron in the 

ensemble of full valence states is considered as a particle called hole. The system that 

results due to the Coulomb interaction between the conduction electron and the hole is 

called exciton (X). This hydrogen-like bound system is characterized by a Bohr radius 

and a binding energy that are obtained by replacing in the hydrogen atom formulas the 

electron mass 𝑚0 and the vacuum permittivity 𝜖0, by the reduced mass 𝜇∗of the electron-

hole pair and by the product 𝜖0𝜖𝑟,  with 𝜖𝑟 the dielectric constant of the material: 

                                 𝜇∗ =
𝑚𝑒

∗𝑚ℎ
∗

𝑚𝑒
∗+𝑚ℎ

∗                                                (1.19) 

                                 𝐸𝑋
∗3𝐷 =

𝜇

2𝜖𝑟
2 𝐸ℎ                                                          (1.20) 

                              𝑎𝑋
∗3𝐷 =

𝜖𝑟

𝜇
𝑎0,                                                    (1.21) 

with 𝜇 = 𝜇∗/𝑚0,  𝑎0 =
4𝜋𝜖0ℏ2

𝑚𝑒𝑒2 ≈ 0.52918 Å, 𝐸ℎ =
𝑒2

4𝜋𝜖0𝑎0
≈ 27.211 eV  the Bohr radius and 

Hartree energy of the atomic units, and 𝑚𝑒
∗  (𝑚ℎ

∗ ) the effective electron (hole) mass.  
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For bulk CdTe, equations (1.20) and (1.21) give 𝑎𝑋
∗3𝐷 = 5.66 nm and 𝐸𝑋

∗3𝐷 = 12.4 meV 

considering the values 𝑚𝑒
∗ = 0.11 𝑚0[3], 𝑚ℎℎ

∗ = 0.72 𝑚0 [4] and 𝜖𝑟 = 10.2 [5].  

In QWs, the confinement affects the binding energy of the exciton. The calculation of the 

confined exciton energy is generally accomplished by applying the variational principle 

[6]. 

1.4.2 Donors 
 

An atom with one electron more than it is necessary to form the covalent bonds with 

neighboring atoms being introduced into a lattice, it is called a donor impurity. For II-VI 

semiconductors like CdTe, an atom of tellurium with six valence band electrons is 

replaced by an atom with seven valence band electrons, like iodine, to introduce a donor 

impurity.  

 

The binding energy 𝐸𝐵
∗3𝐷 and Bohr radius 𝑎𝐵

∗3𝐷 of a donor-bound electron in a bulk 

material can be calculated by replacing the electron mass 𝑚0 and the vacuum 

permittivity 𝜖0 by the electron effective mass 𝑚𝑒
∗  and the product of 𝜖0𝜖𝑟, respectively, 

in the hydrogen atom formulas: 

𝐸𝐵
∗3𝐷 =

𝑚𝑒
∗

𝑚0𝜖𝑟
2

𝐸ℎ

2
,                                                            (1.22) 

 

       𝑎𝐵
∗3𝐷 =

𝑚0

𝑚𝑒
∗ 𝑎0𝜖𝑟.                                                           (1.23) 

 

For CdTe we obtain: 𝐸𝐵
∗3𝐷 = 14.4 meV and 𝑎𝐵

∗3𝐷 = 4.91  nm. 

The binding energy of an electron bound to a donor in a CdTe QW has been calculated in 

Ref. [7]. The procedure is presented here below.  

The Hamiltonian describing a donor-bound electron inside a QW of thickness L writes 

                                       𝐻(𝑧) = −
ℏ2

2𝑚𝑒
∗ Δ −

𝑒2

4𝜋𝜀0𝜀𝑟

1

𝑟
+ 𝑉(𝑧) ,                                     (1.24) 

where 𝑉(𝑧) is the QW confinement potential defined by 𝑉(𝑧) = 0 for |𝑧| ≤ 𝐿/2 and 

𝑉(𝑧) = 𝑉0 for |𝑧| > 𝐿/2 , Δ is the Laplacian operator and 𝑟 the distance of the electron to 

the origin of the coordinates (where the impurity is located). The electron binding 
energy 𝐸𝐵(𝐿) and the Bohr radius 𝑎𝐵(𝐿) are determined by means of the variational 

method. The trial wave-function is taken in the following form: 

                                  Ψ(𝑟 ) = 𝜒(𝑧)𝑒
−

√𝜌2+𝛼2𝑧2

𝑎𝐵   ,                                            (1.25) 

where 𝜒(𝑧) is an envelope function, and 𝑎𝐵 and 𝛼 are the variational parameters. 

The equation associated to the envelope wavefunction in the QW:  

                                                  𝐻𝑧𝜒(𝑧) = 𝐸0𝜒(𝑧),                                                        (1.26) 
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is solved with  𝐻𝑧 = −
ℏ2

2𝑚

𝑑2

𝑑𝑧2
+ 𝑉(𝑧) and 𝐸0 the QW lowest energy confinement. Then 

the mean energy ⟨Ψ|𝐻|Ψ⟩ is minimized to obtain the binding energy defined by 𝐸𝐵 =

𝐸0 − ⟨Ψ|𝐻|Ψ⟩ and the effective Bohr radius 𝑎𝐵, for a given QW of thickness L.  

Figure 1.5 (a) shows the L-dependence of the parameters 𝛼 and 𝑎𝐵, for a barrier height  

𝑉0 = 125 meV. For a CdMgTe/CdTe/CdMgTe QW, this corresponds to a conduction band 

offset of 70 % and a barrier Mg concentration of 11 %. At large QW width,  the 3D limit 

is reached, with 𝛼 = 1 and 𝑎𝐵 = 𝑎𝐵
∗3𝐷 = 4.91 nm. When L decreases both parameters 

decrease, then increase when L crosses a value close to the 3D Bohr radius. It is well 

known that for a finite barrier, when the QW width decreases, the wavefunction starts 

to get more confined, before spreading in the barrier for L smaller than the 3D Bohr 

radius. The α and 𝑎𝐵 behaviors are the signature of this effect, as can be seen for L < 5 

nm in Fig. 1.5(a).  

Using the equation (1.25) for the wavefunction, the coefficient 〈𝑘𝑧
2〉 = ⟨Ψ| (−𝑖

𝑑

𝑑𝑧
)
2
|Ψ⟩  is 

also calculated (which will be useful in chapter 4). Figure 1.5(b) shows this coefficient 
〈𝑘𝑧

2〉 and the binding energy 𝐸𝐵 versus the QW width L. Starting from the bulk binding 

energy, for large L values, one observes a maximum binding energy EB ≈ 2EB
∗3D for 𝐿 ≈

 aB
∗3D.  

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.5 (a) Bohr radius 𝑎𝐵 (left axis) and parameter α (right axis) of an electron bound 

to a donor in the middle of a CdTe QW of thickness L (barrier height: 𝑉0 = 125 𝑚𝑒𝑉). (b) 

Binding energy 𝐸𝐵 (left axis) and 〈𝑘𝑧
2〉 (right axis) for different thicknesses L of this QW. 
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1.4.3 Donor-bound excitons 

A neutral donor impurity can serve as an attractive potential for carriers in a 

semiconductor lattice through the van der Waals interaction. Excitons can be attracted 

to these impurities and form a complex known as a donor-bound exciton (𝐷0𝑋). 𝐷0𝑋 is 

composed of a positive nucleus, two electrons (one photo-created and the other 

associated to the donor) in the lowest energy state of zero spin, and a hole (see Fig. 1.6). 

As a consequence, the spin of a D0X complex is the spin of the photo-created hole.  

The binding energy of a D0X complex is defined as the energy required to remove the 

exciton from the impurity. 

 

                                                                     

 

  

Figure 1.6 Schematic diagram of a donor-bound exciton. 

 

1.5 Spin initialization of a donor-bound electron 

The spin polarization of donors (difference of populations of resident electrons with 

spins up and down) can be built via the optical orientation of D0X complexes. Figure 1.7 

gives a diagram of the different optical transitions and relaxation times involved in the 

formation and evolution of a D0X complex in a QW. In this method of polarization of 

donors, a 𝜎+(𝜎−) circularly-polarized pump pulse photo-creates D0X complexes with 

+3/2 (−3/2) holes, from spin up (down) electrons bound to donors. The corresponding 

localized D0X complexes are denoted 𝐷0𝑋+3/2 (𝐷
0𝑋−3/2) in the diagram. Immediately 

after the pump pulse, the sample contains more donor-bound electrons with spin down 

(up) than with up (down) electrons, and also 𝐷0𝑋+3/2 (𝐷0𝑋−3/2) complexes. 

 

If the condition 𝑇ℎ ≪ 𝑇𝑅 is satisfied, with 𝑇ℎ the spin relaxation time of holes and 𝑇𝑅 the 

recombination time of D0X complexes, then the populations of 𝐷0𝑋+3/2 and 𝐷0𝑋−3/2 

balance before recombination. After the 𝐷0𝑋 recombination, the number of resident 

electrons with spin down (up) has then been increased, to the detriment of the spin up 

(down) ones. In brief, 𝜎+(𝜎−) pulses create a spin-down (spin up) polarization of donors. 

The 𝐷0 spin polarization relaxes with the 𝑇1 characteristic time. 

 

In a CdTe QW of width L = 8 nm, with a residual concentration of donors, the 

recombination time 𝑇𝑅  has been measured to be 𝑇𝑅 = 175 ps [8]. Measuring the decay 

rate 1/𝜏 of the difference between the 𝐷0𝑋 spin populations,  the relaxation time of the 

hole spin has been extracted  (1/𝜏 = 1/𝑇ℎ + 1/𝑇𝑅): 𝑇ℎ= 83 ps.  
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Figure 1.7 Diagram of the different optical transitions and relaxation times involved in the 

formation and evolution of a D0X complex in absence of a magnetic field. State 𝐷±1/2
0 is 

coupled to the 𝐷0𝑋±3/2 state by a 𝜎 ± optical transition. 𝑇𝑅: recombination time; 𝑇1 and 

𝑇ℎ: spin relaxation times of the 𝐷0 and 𝐷0𝑋 states, respectively. 

 

1.6 Spin dynamics 

In this section, we present the equations that we will use (cf. chapter 4) to describe the  

evolution of the 𝐷0 electron spin polarization under the application of a transverse or 

longitudinal magnetic field, with respect to the growth direction of the QW. 

1.6.1 Transverse magnetic field 

 

 

 

 

 

Figure 1.8 (a) Definition of axes relative to sample growth direction and magnetic field 

direction (Voigt configuration: �⃗� ⊥ �⃗� , �⃗� ∥ �̂�). (b) Precession of the spin polarization in the 

z-y plane.  

A transverse magnetic field �⃗�  induces a precession of the 𝐷0 spin polarization in the z-y 

plane (see Fig. 1.8). The equation that describes the evolution of the spin polarization in 

a QW with a magnetic field applied in the Voigt configuration is 

                 
𝑑𝑆 ⊥

𝑑𝑡
= Ω⃗⃗ 𝑒 × 𝑆 ⊥ −

𝑆 ⊥

𝑇2
∗ +

𝐽(𝑡)

𝑇𝑅
�̂�,                                     (1.27) 

where 𝑆 ⊥ is the component of the spin polarization in the z-y plane, Ω⃗⃗ 𝑒 = Ω𝑒e⃗ 𝑥 is the 

Larmor precession frequency of the ensemble of electrons, and 𝑇2
∗ is (classically 

interpreted) the characteristic time that the ensemble of electrons takes to lose their 
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phase; 𝑇2
∗ is dominated by the inhomogeneity of the electron Landé 𝑔𝑒

⊥ factors in the 

sample (which lead to different precession frequencies). 𝑇2
∗ is usually called spin 

dephasing time. The source term 𝐽/𝑇𝑅 of eq. (1.27) involves the 𝐷0𝑋 complexes 

recombining with rate 1/𝑇𝑅 and producing donor-bound electrons aligned with the �̂� 

axis;  𝐽(𝑡) = 𝐽0𝑒
−𝑡/𝜏 with 1/𝜏 the 𝐷0𝑋 spin relaxation rate. 

 

The solution of eq. (1.27)  (up to a proportionality constant), for times larger than the 

recombination time 𝑇𝑅 , writes: 

                                 𝑆𝑧(𝑡) = 𝑒
−

𝑡

𝑇2
∗
cos(Ω𝑒𝑡).                                                    (1.28)  

For a single electron bound to donor in a transverse magnetic field of magnitude B, we 

have: 

                            𝑠0(𝑡) = 𝑒
−

𝑡

𝑇2 cos (
𝑔𝑒

⊥𝜇𝐵𝐵

ℏ
𝑡),                                        (1.29) 

where 𝑔𝑒
⊥ is the electron Landé factor, 𝜇𝐵 is the Bohr magneton, and 𝑇2 the spin 

decoherence time. Thus, for an ensemble of electron spins: 

                                                𝑆(𝑡) = ∫𝑑𝑔𝑒
⊥ 𝒟(𝑔𝑒

⊥) 𝑠0(𝑡),                                    (1.30) 

where 𝒟(𝑔𝑒
⊥) is the distribution of the electron Landé factors. Assuming a Lorentzian 

distribution with mean value �̅�𝑒
⊥ and half-width at half-maximum Δ𝑔𝑒

⊥: 

                  𝒟(𝑔𝑒) =
1

Δ𝑔𝑒
⊥𝜋

1

1+(
𝑔𝑒
⊥−�̅�𝑒

⊥ 

Δ𝑔𝑒
)
2 ,                                               (1.31) 

we get, substituting (1.31) in (1.30):  

                             𝑆(𝑡) = 𝑒
−

𝑡

𝑇2𝑒− 
Δ𝑔𝑒

⊥𝜇𝐵𝐵

ℏ
𝑡 cos (

�̅�𝑒
⊥ 𝜇𝐵𝐵

ℏ
𝑡).                                      (1.32)                      

Comparing (1.32) with (1.28), we obtain a relation between 𝑇2
∗ and 𝑇2, and a relation 

between the Larmor precession frequency and the mean value �̅�𝑒
⊥ of the electron Landé 

factors: 

 
1

𝑇2
∗ =

1

𝑇2
+

Δ𝑔𝑒
⊥𝜇𝐵𝐵

ℏ
,                                                       (1.33) 

                   Ω𝑒 =
�̅�𝑒

⊥𝜇𝐵𝐵

ℏ
.                                                            (1.34) 

Under the described conditions, Eq. (1.33) shows that 1/𝑇2
∗ depends linearly on the 

magnetic field. In chapter 4, we will measure the spin dephasing time 𝑇2
∗ at different 

magnetic fields; using eq. (1.33), we will find by extrapolation to zero magnetic field, the 

spin relaxation time of a single electron 𝑇2. 

 

 

 



27 
 

1.6.2 Longitudinal magnetic field 

                                                          

                       

 

 

 

Figure 1.9 (a) Definition of axes relative to sample growth direction and magnetic field 

direction (Faraday geometry). (b) Qualitative interpretation of the Bloch equation (1.35). 

Relaxation of 𝑆𝑧(𝑡) towards the value 𝑆�̅� is controlled by 𝑇1. 

The Bloch equation that describes the dynamics of the spin polarization component 

along the magnetic field is 

𝑑𝑆𝑧

𝑑𝑡
=

𝑆�̅� − 𝑆𝑧

𝑇1
,                                                           (1.35) 

where 𝑆�̅� is the equilibrium spin polarization, and 𝑇1 is the characteristic time that the 

system takes to reach it. The solution of eq. (1.35) is  

𝑆𝑧(𝑡) = (𝐶 − 𝑆�̅�) exp (−
𝑡

𝑇1
) + 𝑆�̅� ,                                        (1.36) 

with 𝐶 a constant of integration, 𝐶 = 𝑆𝑧(0).     

The relaxation time 𝑇1 is associated to an energy transfer from the spin system (Zeeman 

energy) to the lattice. Spin-lattice interaction includes all the processes in which energy 

is exchanged between the spin system and its surroundings. A transfer of energy of the 

spin system to the lattice is associated with transitions from the upper to the lower spin 

state, and causes the population number of the two spin states (and therefore the 

polarization in the z axis) to change.  

Under the formalism of the density matrix for a two-level system, T1 describes the 

relaxation of a non-equilibrium spin population (diagonal elements of the spin density 

matrix) towards equilibrium, while 1/𝑇2 is the decay rate of the off-diagonal elements of 

the spin-density matrix. In the appendix A it is shown, using this formalism, that the 

longitudinal spin relaxation time 𝑇1 is equal to the transversal spin relaxation time 𝑇2 

( 𝑇1= 𝑇2) for a vanishing magnetic field. The spin relaxation time, denoted 𝜏𝑠 from now 

on, will be measured in our samples using an extrapolation to zero magnetic field, see 

chapters 4 and 5. 
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2.1   Introduction 

One of the oldest methods to measure the spin relaxation time in semiconductors is 

based on the Hanle effect [1]. The Hanle effect is the decreasing of the degree of circular 

polarization of the photoluminescence (DCP), when a transverse magnetic field �⃗�  is 

applied (Voigt configuration). The DCP is defined as 𝑃 = (𝐼𝜎+ − 𝐼𝜎−)/(𝐼𝜎+ + 𝐼𝜎−) , where  

𝐼𝜎+(𝐼𝜎−) is the intensity of the 𝜎 + (𝜎 −) circularly polarized component of the emitted 

light.                            

The Hanle effect, first observed by Wood and Ellet in 1924 [3], occurs due to the 

precession of the optically oriented electronic spins around the magnetic field �⃗� . The 

plot of the degree of polarization P, as a function of the magnetic field (Hanle curve), 

follows a Lorentzian curve: 

𝑃(𝐵) =
𝑃(0)

1 + (𝛺𝑒𝜏∗)2
,                                                         (2.1) 

where 𝑃(0) is the degree of polarization in absence of magnetic field, Ω𝑒 = 𝑔𝑒
⊥𝜇𝐵𝐵/ℏ, 

the Larmor precession frequency, and 𝜏∗ is a time composed of the spin relaxation time 

𝜏𝑠 and the recombination time 𝜏𝑅:   1/𝜏∗ =  1/𝜏𝑠 + 1/𝜏𝑅 . To determine 𝜏𝑠 by this method, 

it is necessary to know the Landé factor 𝑔𝑒
⊥ and the recombination time.  

A recently developed technique to measure spin relaxation time of donor-bound 

electrons in semiconductors, is spin noise spectroscopy (SNS) [4,5]. SNS is a technique 

that extracts the spin information of an ensemble of electrons in a non-perturbative way, 

mapping the stochastic spin polarization in the ensemble via the Faraday effect. Its 

experimental realization is straightforward, in its principles: a linearly polarized beam, 

below the band-gap energy, is transmitted through the investigated sample, which is 

mounted in a cryostat. A small external magnetic field �⃗�  perpendicular to the beam 

propagation is used to increase the sensitivity of the method, and makes the stochastic 

spin polarization to precess. After transmission through the sample, the rotated beam  is 

spectrally analyzed via fast Fourier transform (FFT). 

Figure 2.1 shows a typical noise spectrum for an external magnetic field of 30 mT in 

Voigt geometry, at low temperature. The maximum of the spin noise signal is centered 

at the Larmor precession frequency Ω𝑒 of the stochastic electron spin polarization. The 

full width at half maximum Δ𝑓 of the Lorentzian shape gives the spin relaxation time by 

the relation 𝜏𝑠 = (𝜋Δ𝑓)
−1.  
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Figure 2.1 (taken from [4]). A typical spin 

noise spectrum. The noise power is plotted 

against the frequency. The studied system 

is bulk GaAs, at low temperature; B = 30 

mT.  

 

In the 80’s, the invention of the ultra-fast lasers allowed significant progresses in the 

study of relaxation phenomena of photo-excited systems. Many experimental methods 

based on the use of ultra-short light pulses allowed to reach the needed temporal 

resolution for the study of the spin dynamics in doped semiconductors. Some of these 

techniques are: time-resolved photoluminescence (TRPL) and photo-induced 

Faraday/Kerr rotation (PFR /PKR) techniques. 

In the TRPL technique, the spin polarization is detected by measuring the DCP as a 

function of magnetic field [6]. This technique is one of the most sensitive techniques for 

the study of the spin dynamics; nevertheless, it only allows an access to the excited states 

of the studied system: the information obtained is then restricted over a time interval of 

the order of the lifetime of the observed radiative species. Recently, the TRPL technique 

has been adapted to measure longer spin relaxation times [7], by including pump and 

probe pulses for the excitation and collection of light. This adaptation will be described 

in chapter 6.  

The standard PFR and PKR techniques were developed respectively by Awschalom’s 

group in Saint Barbara, and by Harley’s group in Southampton [8,9]. In these techniques, 

an electron spin polarization is created by a circularly polarized pulse (pump pulse), and 

detected on a linearly polarized pulse (probe pulse), delayed in time, via the Faraday or 

Kerr effect, respectively. The delay between the arrival of the pump and probe pulses on 

the sample varies mechanically; therefore the maximum temporal window is given by 

the largest difference in optical path between the pump and probe beams: ∼ 1m gives a 

temporal range of the order of several ns. Recently, V. V. Behlyk et al. [10] developed an 

extended PFR technique, able to measure spin relaxation times in the microsecond 

regime, by electronic variation of the pump-probe delay. This technique will be 

described in Chapter 6. 

In this work, we have chosen to use the standard PFR and PKR techniques, since they 

are well adapted to measure the spin relaxation time in doped semiconductors.  

In this chapter, we describe first the principles of the standard PFR and PKR techniques 

that allow to study the dynamics of an electron spin polarization in the range 10 ps -2 

ns. Then we introduce the physical principles of the equipment used for the detection of 

the photo-induced Faraday/Kerr angle; finally, we present the experimental set-ups. 
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2.2 Magneto-optic and photo-induced Faraday effect 

2.2.1 Magneto-optic Faraday effect 

The Faraday effect is a magneto-optic phenomenon in which the linear polarization of a 

beam is rotated upon propagation in a dielectric medium under a magnetic field applied 

parallel to the beam [11,12]. The observed rotation of the plane of polarization is due to 

a circular birefringence of the medium, and is proportional to the intensity of the 

component of the magnetic field in the direction of the beam of light.  

A simple way to understand the Faraday effect is now described. Let us consider a beam 

linearly polarized along the 𝑥 axis and propagating in z direction through a material with 

refractive indices 𝑛+, 𝑛− for left and right polarized light respectively. A linearly 

polarized beam can be decomposed into the sum of left and right circular polarized 

components, so the beam propagating in the sample can be written as [12]: 

 �⃗� =
1

2
𝐸0(𝑒 𝑥 + 𝑖𝑒 𝑦)𝑒

𝑖(
2𝜋𝑛+

𝜆0
 𝑧−𝜔𝑡)

+
1

2
𝐸0(𝑒 𝑥 − 𝑖𝑒 𝑦)𝑒

𝑖(
2𝜋𝑛−

𝜆0
𝑧−𝜔𝑡)

,                (2.2) 

with  𝜆0 the wavelength in the vacuum. Equation (2.2) can be also written as [12]:            

                      �⃗� = 𝐸0𝑒
𝑖(

2𝜋�̅�

𝜆0 
𝑧−𝜔𝑡)

[𝑒 𝑥 cos(𝜃𝐹) + 𝑒 𝑦 sin(𝜃𝐹)] ,                                       (2.3) 

which reflects the fact that the polarization of the beam is rotated by an angle 𝜃𝐹: 

𝜃𝐹 = 𝜋 (
𝑛−−𝑛+

 𝜆0 
) 𝐿 ,                          (2.4) 

with L the length of the dielectric medium and �̅� =
𝑛−+𝑛+

2
.  
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2.2.2 Photo-induced Faraday effect 

a.  General description of the experiment 

In a PFR experiment, a circular birefringence in the medium is created by a circularly 

polarized beam (pump beam) that excites the sample. Thus, when a linearly polarized 

beam traverses the medium after a time ∆𝑡, its plane of polarization rotates due to the 

Faraday effect. Figure 2.2 shows a scheme of the PFR experiment. The photo-induced 

rotation angle 𝜃𝐹  contains the information about the electron spin polarization inscribed 

by the pump beam. Measuring this angle as a function of the delay between the arrivals 

of the pump and probe pulses, allows to access to the spin dynamics of the system.  

 

 

  

 

 

 

 

Figure 2.2 Scheme of a PFR experiment 

In practice, the photo-induced Faraday angle 𝜃𝐹  is measured by means of an optical 

bridge. After interaction with the sample, the probe beam is sent to a polarizing beam 

splitter which divides the light into two orthogonal polarized components x and y (see 

Fig. 2.3) that correspond to the projections of the incident polarization (with intensity 

I0) on the axes of the beam splitter. These two components, with intensities I1 and I2 

respectively, are detected by two photodiodes from which the output signal is the 

difference I1- I2: 

𝑆(𝑡) = 𝐼1 − 𝐼2 = 𝐼0 (𝑠𝑖𝑛2 (𝜃𝐹 +
𝜋

4
) − 𝑐𝑜𝑠2 (𝜃𝐹 +

𝜋

4
)) = 𝐼0sin (2𝜃𝐹) ≈ 2𝐼0𝜃𝐹      (2.5) 

 

 

Figure 2.3 Detection of the photo-induced Faraday angle: 

�⃗� 𝑠 (�⃗� 𝑡𝑜𝑡) denotes the electric field of  the probe beam before 

(after) interaction with the sample.  
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b.  Description of the measured signal 

We describe now the signal measured during the PFR experiment, and show it contains 

the information about the electron spin polarization. 

As described in chapter 1, 𝜎+(𝜎−) circularly polarized pump pulses photo-create D0X 

complexes with +3/2 (−3/2) holes, from spin up (down) electrons bound to donors. 

Just after interaction of a pump pulse with a donor, the state of the system can be 

described by the density matrix 𝜌 in the basis of states {|𝑒 +⟩, |𝑒 −⟩, |𝐷0 +⟩, |𝐷0 −⟩}, 

where |𝑒 +⟩, |𝑒 −⟩ denote the fundamental states of the system (resident electron with 

spin up or spin down) and |𝐷0 +⟩, |𝐷0 −⟩ denote the excited states (exciton bound to 

donor 𝐷0𝑋 with the hole spin up or down). Figure 2.4 presents the used scheme of the 

levels. The temporal evolution of the density matrix under the influence of the probe, is 

denoted  𝜎(𝑡) in the following. 

 

 

 

 

 

 

Figure 2.4 After interaction with a pump pulse, the system is modeled as a 4-level system. 

State |𝑒 +⟩ (|𝑒 −⟩ ) is coupled to the |𝐷0 +⟩ (|𝐷0 −⟩) state through a 𝜎 + (𝜎− ) optical 

transition. 𝑇𝑅: recombination time; 𝑇1(𝑇ℎ): spin relaxation time of the donor-bound 

electron (exciton). 

 Interaction of the system with the probe beam  

The electric field �⃗� 𝑠 of  the probe beam (linearly polarized) before interaction with the 

system can be expressed as 

�⃗� 𝑠 = √2𝐸0𝑛(𝑡)𝑒−𝑖𝜔𝑡𝑒 𝑥 + 𝑐. 𝑐.

      = (𝐸0𝑒 + + 𝐸0𝑒 −)𝑛(𝑡)𝑒−𝑖𝜔𝑡 + 𝑐. 𝑐. ,
                                   (2.6)  

where 𝑒 +,− =
𝑒 𝑥±𝑖𝑒 𝑦

√2
,  𝑛(𝑡) is the temporal envelope of the pulse near 𝑡 = 0 [𝑛(0) = 1], 

and 𝐸0 is the amplitude of the electric field. The Hamiltonian that describes the 

interaction of the probe beam with the system is given by  

                                                �̂�𝐼 = −𝐸+�̂�+ − 𝐸−�̂�− + 𝑐. 𝑐.,                           (2.7) 

with �̂�+ and �̂�− the dipolar operators �̂�+ = 𝑑|𝐷0 +⟩⟨𝑒 +| and �̂�− = 𝑑|𝐷0 −⟩⟨𝑒 −|. 

 Introducing the Rabi pulsation Ω𝑠 =
𝑑𝐸0

ℏ
, �̂�𝐼 can be written as 



35 
 

               �̂�𝐼 = −ℏΩ𝑠𝑛(𝑡)𝑒−𝑖𝜔𝑡|𝐷0 +⟩⟨𝑒 +| − ℏΩ𝑠𝑛(𝑡)𝑒−𝑖𝜔𝑡|𝐷0 −⟩⟨𝑒 −| + 𝑐. 𝑐.               (2.8) 

The temporal evolution of the system under the interaction with the probe beam is given 

by the Liouville equation: 

                                                𝑖ℏ
𝑑𝜎

𝑑𝑡
= [𝐻0 + 𝐻𝐼 , 𝜎(𝑡) ],                                  (2.9) 

where 𝜎(𝑡) satisfies 𝜎(𝑡 = 0) = 𝜌. The damping processes are neglected during the ps-

duration of the probe pulse. We calculate now the evolution of the diagonal terms of the 

density matrix 𝜎. First we calculate for example 𝜎𝐷0+,𝐷0+: 

�̇�𝐷0+,𝐷0+ = ⟨𝐷0 + |𝐻𝐼𝜎(𝑡) − 𝜎(𝑡)𝐻𝐼|𝐷
0 +⟩

                  = 𝑖Ω𝑠𝑛(𝑡)𝑒−𝑖𝜔𝑡𝜎𝑒+,𝐷0+ − 𝑖Ω𝑠𝑛(𝑡)𝑒−𝑖𝜔𝑡𝜎𝐷0+,𝑒+,
            (2.10) 

where  𝜎𝑒+,𝐷0+ and 𝜎𝐷0+,𝑒+ denote the matrix elements: 

    𝜎𝑒+,𝐷0+(𝑡) = ⟨𝑒 + |𝜎(𝑡)|𝐷0 +⟩ 

𝜎𝐷0+,𝑒+(𝑡) = ⟨𝐷0 + |𝜎(𝑡)|𝑒 +⟩.                                         (2.11) 

The solution of this equation, keeping only the first order in 𝐸0 is 

        𝜎𝐷0+,𝐷0+(𝑡) = 𝜌𝐷0+,𝐷0+ + (𝑖Ω𝑠𝜌𝑒+,𝐷0+𝑒−𝑖𝜔𝑡 ∫ 𝑛(𝑡′)𝑑𝑡′𝑡

−∞
+ 𝑐. 𝑐. ),                        (2.12) 

with 𝜌𝐷0+,𝐷0+ = ⟨𝐷0 + |𝜌| 𝐷0 +⟩ and 𝜌𝑒+,𝐷0+ = ⟨𝑒 + |𝜌| 𝐷0 +⟩. The second term 

appearing in equation (2.12) represents a correction of the undisturbed population 

𝜌𝐷0+,𝐷0+ . This term, proportional to  Ω𝑠 and to the coherence 𝜌𝑒+,𝐷0+, can be neglected, 

since the non-diagonal terms of the density matrix 𝜌 have rapidly decreased after the 

pump pulse has crossed the sample. 

A similar result is obtained for the other diagonal term of the density matrix 𝜎, 

confirming that the probe beam weakly modifies the populations of the states of the 

system.  

Now we calculate the evolution of the inter-band terms of the density matrix 𝜎: 

𝑖ℏ�̇�𝐷0+,𝑒+(𝑡) = ℏ𝜔0𝜎𝐷0+,𝑒+(𝑡) − ℏΩ𝑠𝑛(𝑡)𝑒−𝑖𝜔𝑡𝜎𝑒+,𝑒+ + ℏΩ𝑠𝑛(𝑡)𝑒−𝑖𝜔𝑡𝜎𝐷0+,𝐷0+.    (2.13) 

The integration of this equation, keeping only the first term in Ω𝑠, yields 

𝜎𝐷0+,𝑒+(𝑡) = 𝜌𝐷0+,𝑒+𝑒−𝑖𝜔𝑡 + 𝑖Ω𝑠[𝜌𝑒+ − 𝜌𝐷0+]𝑒−𝑖𝜔𝑡 ∫ 𝑛(𝑡′)𝑑𝑡′𝑡

−∞
.                           (2.14) 

Similarly:         𝜎𝐷0−,𝑒−(𝑡) = 𝜌𝐷0−,𝑒−𝑒−𝑖𝜔𝑡 + 𝑖Ω𝑠[𝜌𝑒− − 𝜌𝐷0−]𝑒−𝑖𝜔𝑡 ∫ 𝑛(𝑡′)𝑑𝑡′.
𝑡

−∞
       (2.15) 

The first terms in both expressions can be neglected. It then appears that the coherences 

𝜎𝐷0±,𝑒±(𝑡) are proportional to the probe field  and to the population changes created by 

the 𝜎 ± components of the pump pulse. 
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 Measured signal  

The total transmitted field after the sample is the sum of the incident probe field �⃗� 𝑠 and 

the field �⃗� 𝑅 radiated by the doped sample [13]: 

�⃗� 𝑡𝑜𝑡 = �⃗� 𝑠 + �⃗� 𝑅 . 

The signal S measured during the experiment is 

𝑆 ∝ |𝐸𝑡𝑜𝑡
+ |2 − |𝐸𝑡𝑜𝑡

− |2 = |𝐸𝑠
+ + 𝐸𝑅

+|2 − |𝐸𝑠
+ + 𝐸𝑅

+|2,                         (2.16) 

where 𝐸𝑡𝑜𝑡
±  are the components of the total transmitted field with the 𝑒 ± polarization. 

Neglecting the quadratic terms in the �⃗� 𝑅 field, the measured signal can be written as 

𝑆 ∝ 𝐸0(𝑅𝑒[𝐸𝑅
+] − 𝑅𝑒[𝐸𝑅

−]).                                                    (2.17) 

The field �⃗� 𝑅 is expressed as the sum of the dipolar scatterings of the donor-bound 

electrons, each defined in terms of the classical dipoles 𝐷±(𝑡) = 〈�̂�±(𝑡)〉 = 𝑇𝑟[𝜎(𝑡)�̂�±]. 

Using the expressions (2.14) and (2.15) of the pertinent 𝜎(𝑡) elements, one obtains 

   𝐸𝑅
+ = 𝐴[𝜌𝑒− − 𝜌𝐷0−] + 𝑐. 𝑐.                                                 (2.18) 

  𝐸𝑅
− = 𝐴[𝜌𝑒+ − 𝜌𝐷0+] + 𝑐. 𝑐.,                                                 (2.19) 

with A a coefficient of proportionality. Thus, the signal experimentally detected can be 

finally written in a simple form: 

𝑆 ∝  ∆𝜌𝑒 − ∆𝜌𝐷0 ,                             (2.20) 

with ∆𝜌𝑒 = 𝜌𝑒+ − 𝜌𝑒− and ∆𝜌𝐷0 = 𝜌𝐷0+ − 𝜌𝐷0−. The detected signal is proportional to 

the difference of the spin populations of resident electrons and donor-bound excitons. 

This signal varies with the pump-probe delay; hence the damping processes of Fig. 2.4 

are exhibited. 

2.3 Modulation equipment 

To experimentally detect the Faraday rotation angle (usually of the order of 1 

millidegree), it is needed to optimize the signal-to-noise ratio. For this purpose, it is 

common to use a modulation technique. This consists in transposing the signal of 

interest to high frequencies; which eliminates different sources of noise existing at low 

frequencies. In practice, a synchronous detection is employed to filter the measured 

signal over a sufficiently narrow spectral band around the modulation frequency [14]. 

Precisely, we used technique consists in a double modulation technique wherein the 

pump and probe beams are modulated at a different frequencies 𝑓𝑝𝑢𝑚𝑝 and 𝑓𝑝𝑟𝑜𝑏𝑒. The 

modulation in polarization of the pump beam is done with an electro-optic modulator 

working at a frequency of 𝑓𝑝𝑢𝑚𝑝 = 500 kHz. The intensity modulation of the probe beam 

is realized by an acousto-optic modulator working at a frequency of 𝑓𝑝𝑟𝑜𝑏𝑒 = 3 kHz. The 
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demodulations are made by a double-stage lock-in (Zurich Instrument).  We present 

below the operating principles of each modulator and the demodulation process. 

2.3.1 Electro-optic modulator 

When a beam, propagating in the z direction, enters into an electro-optics modulator, it 

is polarized at 45° of the principal axes of a birefringent material with optical indices 𝑛1, 

𝑛2. By applying a voltage between two metal plates (distant of 𝑒) with an amplified 

supply, an electric field 𝐸𝑠 perpendicular to the direction of propagation of the light is 

applied to the material,  modifying its optical indices as [15]: 

𝑛1(𝐸) = 𝑛1 −
𝑟1𝑛1

3𝐸𝑠

2
 ,  𝑛2(𝐸) = 𝑛2 −

𝑟2𝑛2
3𝐸𝑠

2
 ,          (2.21) 

where 𝑟1 and 𝑟2 are Pockels coefficients of the birefringent material. Thus, after 

traversing the birefringent material of thickness d, the difference of phase between the 

two propagation modes along the axis is 

∆𝜑(𝐸𝑠) = [𝑛1(𝐸𝑠) − 𝑛2(𝐸𝑠)]𝑘0𝑑 = ∆𝜑0 −
𝑘0𝑑

2
(𝑟1𝑛1

3 − 𝑟2𝑛2
3)𝐸𝑠,            (2.22) 

where 𝑘0 =
2𝜋

𝜆0
 and ∆𝜑0 = (𝑛1 − 𝑛2)𝑘0𝑑 is the difference of phase in the absence of 

electric field. The change in the refractive indices is typically very small; however, if the 

wave propagates a greater distance than the wavelength, this effect becomes significant. 

The expression (2.22) can be written in terms of the voltage U applied to generate the 

electric field 𝐸𝑠 = 𝑈/𝑒:  

                                                               ∆𝜑(𝐸𝑠) = ∆𝜑0 − 𝜋
𝑈

𝑈𝜋
,                                        (2.23) 

where 𝑈𝜋 =
𝜆0

𝑟1𝑛1
3−𝑟2𝑛2

3

𝑒

𝑑
 is the half-wave voltage needed to shift ∆𝜑 by 𝜋 radians; this 

corresponds to an additional optical path of 𝜆0/2 between the two modes of 

propagation. If the material is neutral at 𝑈 = 0, a voltage equal to 𝑈 = ±𝑈𝜋/2 allows to 

polarize the beam circularly. In our experiment a voltage of 600 mV (before 

amplification) is needed to obtain a circularly polarized pump beam at 𝜆0 =770 nm. The 

voltage supply allows to alternate the polarization of the pump beam between right (𝜎+) 

and left (𝜎−) circular polarizations. During this work, the frequency modulation for the 

pump beam has been chosen 𝑓𝑝𝑢𝑚𝑝 = 500 kHz, knowing that the higher the 𝜎+/𝜎− 

modulation frequency of the pump beam, the better the final signal-to-noise ratio. 

2.3.2 Photo-elastic modulator 

The principle of the operation of a photo-elastic modulator (PEM) is based on the photo-

elastic effect, in which a mechanically stressed material exhibits a birefringence 

proportional to the resulting strain. When a linearly polarized beam at 45° enters into a 

PEM, the birefringence of the material retards one of its components (the horizontal or 

vertical one) more than the other. The PEM acts then as a dynamical wave plate.  In our 

experimental set-up, the PEM is adjusted so that, at the working wavelength, one 
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component is alternately retarded and advanced by  𝜋/2 radians relative to the other, so 

that the exiting beam is alternately right-hand and left-hand circularly polarized. 

2.3.3 Acousto-optic modulator 

The probe beam is sent to an acousto-optic modulator. An acousto-optic modulator uses 

the acousto-optic effect to change the direction of a beam and shift its frequency by 

means of an acoustic wave [16]. The principle of operation is the following. A 

piezoelectric transducer is attached to an optical crystal, and an oscillating electrical 

signal makes the transducer vibrate, which creates an acoustic wave traveling at the 

speed of sound in the material. This acoustic wave creates a periodical disturbance in 

the crystal so that it forms a medium with a stratified refractive index. So, when the beam 

interacts with the acoustic wave it is then diffracted in several orders. In our 

experimental set-up, the frequency of the acoustic wave is of the order of 100 MHz, and 

the angle of the first-order diffraction of the order of 1°. 

The two functions for which an acousto-optic modulator will be used here, are for 

intensity modulation and for frequency shifting (heterodyne detection, see 2.5.2). The 

amount of laser light diffracted to the first-order output beam depends on the amplitude 

of the acoustic wave; by switching on and off the power level of the acoustic wave source, 

the intensity of the output beam is chopped.  In this way, the probe beam in our 

experimental set-up is modulated at the frequency 𝑓𝑝𝑟𝑜𝑏𝑒 = 3 kHz. Besides, the intensity 

of the 1st-order output beam is maximized using the Bragg incidence for the probe beam 

on the acousto-optic modulator. 

The optical frequency of the first-order output beam is shifted by an amount equal to the 

frequency of the acoustic wave, Ω. If 𝜔 is the frequency of the incident beam, the 

frequency of the first-order beam is up-shifted to 𝜔 + Ω (in the case that the acoustic 

wave planes have a component of motion toward the incident light beam; the output 

frequency is downshifted to 𝜔 −  Ω when the acoustic wave planes have a component of 

motion away from the incident light beam). This property will be use in the heterodyne 

set-up. 

 2.3.4 Synchronous detection: demodulation process  

The operating principle and interest of a synchronous detection is explained below. The 

voltage provided by the optical bridge contains three contributions [17]: the signal 

𝑆0 that contains the information about the Faraday rotation angle (modulated at two 

frequencies 𝑓1 = 𝑓𝑝𝑢𝑚𝑝 and 𝑓2 = 𝑓𝑝𝑟𝑜𝑏𝑒); the signal 𝐴 coming from the scattering of the 

pump beam on the sample (modulated at the frequency 𝑓𝑝𝑢𝑚𝑝); and a random noise 𝑁(𝑡) 

coming from multiple sources, such as parasite light or electrical noise: 

 

                     𝑉(𝑡) = 𝑆0cos(2𝜋𝑓1𝑡)cos(2𝜋𝑓2𝑡) + 𝐴cos(2𝜋𝑓1𝑡) + 𝑁(𝑡).                 (2.24) 
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In the double demodulation process, the signal of interest is recovered in two stages. At 

the first stage, the output voltage is multiplied by a reference harmonic signal 

𝑅1cos (2𝜋𝑓1𝑡) at the fast frequency 𝑓𝑟𝑒𝑓 1 = 𝑓1 = 500 kHz: 

𝑉(𝑡)𝑅1 cos(2𝜋𝑓1𝑡) = 

𝑆0𝑅1cos(2𝜋𝑓2𝑡)cos
2(2𝜋𝑓1𝑡) + 𝐴𝑅1cos

2(2𝜋𝑓1𝑡) + 𝐵(𝑡)𝑅1cos (2𝜋𝑓1𝑡).        (2.25) 

 

This product is averaged during a time 𝜏Ι, which is very short with respect to the period 

1/𝑓𝑝𝑟𝑜𝑏𝑒 (to not filter the signal at frequency 𝑓𝑝𝑟𝑜𝑏𝑒) but greater than the period 1/𝑓𝑝𝑢𝑚𝑝 

(1/𝑓1 ≪ 𝜏Ι ≪ 1/𝑓2) to reject the noise near the pump frequency which gives 𝑆1(𝑡): 

  

𝑆1(𝑡) =
𝑆0𝑅1

2
cos(2𝜋𝑓2𝑡) +

𝐴𝑅1

2
.                                           (2.26) 

At the second stage of demodulation, the signal 𝑆1(𝑡) coming from the first stage is 

multiplied by a reference harmonic signal at  frequency 𝑓𝑟𝑒𝑓 2 = 3 kHz:  

𝑆1(𝑡)𝑅2 cos(2𝜋𝑓2𝑡) =
𝑆0𝑅1𝑅2

2
cos2(2𝜋𝑓2𝑡) +

𝐴𝑅1𝑅2

2
cos(2𝜋𝑓2𝑡),                     (2.27) 

and the product is averaged during a time 𝜏2 longer than the period 1/𝑓𝑝𝑟𝑜𝑏𝑒 (𝜏2 ≫

1/𝑓𝑝𝑟𝑜𝑏𝑒) to reject the noise near the probe frequency, to finally obtain: 

                                                                 𝑆2(𝑡) =
𝑆0𝑅1𝑅2

4
.                                                           (2.28) 

Here the signal 𝑆2 coming from the second stage provides, within a constant factor, the 

voltage 𝑆0 of interest which carries the measurement of the photo-induced Faraday 

angle. 

 

2.4 Photo-induced Faraday rotation technique using a homodyne 

detection 

The experimental set-up of our PFR experiment is shown in Figure 2.5. The light source 

is a Ti: Sapphire laser (Coherent Mira) optically pumped with a continuous laser Verdi 

(532 nm, 15 W), synchronized to produce a pulse of 2 ps each 13.1 ns. The spectral width 

is 0.8 meV and the laser is tunable between 690-980 nm. 

The principal beam is first spatially filtered with a system designed to correct the 

divergence of the laser; the beam is focused with a 2-mm focal lens on a pinhole of 50 

micrometers of diameter and then collimated by a 40-mm focal lens. This system keeps 

the diameter of the beam almost constant throughout the optical path, downstream. 

Then, a beam splitter (70/30) divides the beam into pump and probe. The pump beam 

is sent to a delay line that contains a corner reflector positioned parallel to the 

displacement axis. In order to enlarge the time delay, the reflected parallel beam is sent 

for a second time to the delay line. At the end of the path, the pump beam has undergone 
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two round trips; thus for each mm that the reflector moves, a time delay of 13.33 ps is 

incremented. 

As explained in Chapter 1, spin orientation in QWs requires circularly polarized light as 

excitation. The pump beam is then sent to an electro-optic modulator to be circularly 

polarized. As presented in section 2.3.1, the polarization of the pump beam is alternated 

between 𝜎+ and 𝜎−  at the frequency fpump= 500 kHz, avoiding in this way nuclear spin 

polarization. Indeed, when the sample is excited with a fixed circular polarization, the 

electron spins are oriented permanently in the same direction, which orientates nuclear 

spins due to the hyperfine interaction (see Chapter 4). Thus alternating the spin 

orientation of the electrons each 2 𝜇𝑠  allows  to neglect nuclear field effects on the 

electronic spin relaxation dynamics [18,19]. Meanwhile, the probe beam is sent to an  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Scheme of the PFR experiment, with homodyne detection 

 

acousto-optic modulator working at a frequency 𝑓𝑝𝑟𝑜𝑏𝑒 = 3 kHz, used as an on/off 

switch. After crossing the acousto-optic modulator, the beam crosses a linear polarizer. 

 

A 100-mm focal lens is used to focus the pump and probe beams on the sample placed 

in a cryostat. Both beams must arrive parallel to the optical axis in order to ensure that 

their focal points overlap. The waist diameter 𝑑0 of each beam at the focal plane can be 

estimated using the relation 𝑑0 =
2𝜆𝑓

𝜋𝑑
, where 𝑓 is the focal length of the lens, 𝑑 the 

diameter of the beam at the entrance of the cryostat, and 𝜆 the wavelength (around 770 

nm for our studies). We estimate 𝑑0 = 30 μm for the pump and 15 μm for the probe 

beams.  

After transmission through the sample, the probe beam is collimated with a 100-mm 

focal lens, and the pump beam is blocked. The probe beam is then sent to a polarizing 

beam splitter placed at the entrance of an optical bridge (see section 2.2.2.a). The output 
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of the bridge is then demodulated by a synchronous detection (see section 2.3.4). A 

LabVIEW program controls the delay line, and performs the signal acquisition. So the 

spin dynamics of the sample can be studied as a function of the delay between the pump 

and probe pulses.  

The studied samples are immersed inside of a cryostat that contains liquid helium 

pumped to a pressure of approximately 5 mbar. At this pressure, the liquid helium is 

superfluid, guaranteeing a temperature of 2 K of the immersed sample, and a clear 

transparency of the liquid (with no bubbles). With superconducting coils, we can apply 

a magnetic field between 0 and 2 T in Voigt configuration, or between 0 and 4 T in 

Faraday configuration. 

2.5 Photo-induced Kerr rotation technique using a heterodyne 

detection 

2.5.1 Experimental set-up 

The pump-probe experiment using a heterodyne detection is based on the same 

principle as the homodyne experiment: polarized pump and probe pulses are focused 

on the sample delayed in time, except that here, the polarization of the probe beam is 

analyzed by reflection (Kerr effect) and its intensity is amplified due to the interference 

with a third beam called reference beam [20]. 

The experimental set-up of this second pump-probe experiment is shown in Fig. 2.6. The 

light source is a Titanium: Sapphire laser Spectra Physics (Tsunami) optically pumped 

with a 532 nm continuous laser of 8.5 W. The laser operates in the same spectral range 

as the Mira, and produces pulses with a similar duration of 2 ps. The principal beam is 

separated in three beams: pump, probe and reference beams. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Scheme of the PKR experiment, with heterodyne detection. 
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The probe beam is focused on an acousto-optic modulator that selects the first order of 

diffraction and shifts up its frequency 𝜔 to  𝜔 + Ω𝑎, with Ω𝑎 the frequency of the acoustic 

wave inside the modulator. Afterwards it is collimated with a pair of lenses, in order to 

reduce the divergence along the optical path, and linearly polarized in a perpendicular 

or parallel direction to the optical table. Then, it traverses a non-polarizing cube (C1) 

(that overlaps it with the pump beam) before arriving to a second cube (C2) that reflects 

it towards a microscope objective placed at the entrance of the cryostat.  

The diameter of the focused pump beam is approximately 3 μm onto the sample, so this 

experimental arrangement allows to excite a low density of electrons bound to donors 

in comparison with the homodyne detection experiment. The spot given by the probe 

beam has a diameter of 1 μm on the sample surface. 

In order to introduce a delay time between the pump and probe pulses, the pump beam 

is sent to a delay line of 250 mm, that contains a corner reflector positioned parallel to 

the displacement axis. In this experiment the pump beam only makes one round trip 

along of the delay line, so the maximum delay between the pump and probe pulses is 2 

ns. Afterwards, the pump beam is sent to a photo-elastic modulator, working at a fixed 

frequency of 𝑓𝑝𝑢𝑚𝑝= 50 kHz, to be circularly polarized (alternately between 𝜎+ and 𝜎− to 

avoid nuclear spin polarization) and  arrives to the first cube (C1), in which it is 

superposed with the probe beam to follow the same path until the microscope objective, 

and ultimately until the sample surface. 

The third beam, called reference beam, is also focused on an acousto-optic modulator, 

from which we recover the first diffracted order with an optical frequency 𝜔 shifted to 

𝜔 + Ω𝑏(with Ω𝑏 the frequency of the acoustic wave in the second acousto-optic 

modulator). For the heterodyne detection (at frequency Ω𝑏 − Ω𝑎 = 2 MH𝑧), the optical 

path of the reference beam must be identical to that of the probe after the cube C2  and 

until the APD photodiode. We use a delay line of approximately 25 mm to adjust in 

coincidence the probe and reference pulses at their arrival on the APD photodiode. After 

this delay line, the reference beam traverses a Glan Laser polarizer and a half-wave plate. 

Probe and reference beams are superposed at the cube C2 and both are focalized with a 

200-mm focal lens at the same point on the avalanche photodiode. 

The signal measured by the APD, that contains the information about the spin 

polarization created by the pump beam, is sent to a synchronous detection that first 

demodulates the signal at the high frequency, the heterodyne frequency Ω𝑏 − Ω𝑎 =

2 MHz and then at the low frequency (50 kHz) of the photo-elastic modulator. 

In this heterodyne experiment, the studied sample is placed in a cryostat with a 

circulation of liquid helium (Oxford High Res II). These types of cryostats allow to obtain 

temperatures between 4 K-400 K [21]; however, in practice the lowest temperature that 

can be reached is 5 K. A temperature regulator connected to the cryostat allows to vary 

the temperature of the sample holder between 5 K and 200 K.  This allows us to study 

the evolution in temperature of the electron spin relaxation (Chapter 5).  
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The magnetic field is here applied using a pair of permanent magnets placed in the plane 

of the sample holder, which allows to obtain a magnetic field of 0.56 T in Voigt 

configuration. 

2.5.2 Heterodyne detection 

When the probe beam interacts with the sample, a change of its plane of polarization due 

to the Kerr effect occurs. In order to amplify and detect a signal proportional to the spin 

polarization contained in the angle of rotation of polarization of the probe beam, this 

beam is superposed with the reference beam. The avalanche photodiode detects the 

interference of both beams. 

 In a heterodyne detection, two signals with close frequencies are mixed, giving as a 

result a signal posessing a component whose intensity is the product of both amplitudes, 

and whose frequency is equal to the difference of both frequencies [20]. 

In our pump-probe experiment, the optical frequencies of first orders of diffraction of 

the probe and reference beams are shifted by a frequency 𝑓1 = 112 MHz and 𝑓2 =

110 MHz respectively. The intensity of the signal that reaches the detector can be 

written as 

𝑆(𝑡) = 𝐼𝑝𝑟𝑜𝑏𝑒 + 𝐼𝑟𝑒𝑓 + 2 〈�⃗� 𝑑𝑜𝑛𝑜𝑟𝑠. �⃗� 𝑟𝑒𝑓〉 cos(2𝜋(𝑓1 − 𝑓2)𝑡),   (2.29) 

where �⃗� 𝑑𝑜𝑛𝑜𝑟𝑠 is alternated at the frequency 𝑓𝐼𝐼 = 50 kHz (�⃗� 𝑑𝑜𝑛𝑜𝑟𝑠 is �⃗� 𝑅 of section 2.2). 

Fig. 2.7 describes the origin of S(t) with this form. 

The signal 𝑆(𝑡), at the first stage, is demodulated at the fast frequency that is  𝑓𝐼 = 𝑓1 −

𝑓2 = 2 MHz, thanks to a reference signal electronically generated. This first 

demodulation is operated over a period time 𝜏𝐼 such that 1/𝑓𝐼 < 𝜏𝐼 < 1/𝑓𝐼𝐼 , which 

eliminates all the terms in equation (2.29), keeping only the last one. At the second stage, 

the resulting signal is demodulated at the frequency of  the photo-elastic modulator, 

𝑓𝐼𝐼 = 50 kHz. 

 

 

 

 

 

 

Figure 2.7 In absence of the pump pulses, the polarization of the pump and reference 

beams are tuned to be orthogonal. In presence of pump pulses, the spin polarized donor-

bound electrons modifies the polarization of the exiting probe beam: 

〈�⃗� 𝑑𝑜𝑛𝑜𝑟𝑠. �⃗� 𝑟𝑒𝑓〉∝ 𝑐𝑜𝑠(2𝜋𝑓𝐼𝐼𝑡) 
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3.1 Introduction 
The exchange interaction between localized electrons is one of the oldest topics in 

quantum mechanics. In the last decade, the strong interest in controlling and 

manipulating localized spins in solid-state systems, has renewed this topic. Two main 

challenges are related with the exchange energy between spin qubits: (i) the 

enhancement of the relaxation and coherence times, and (ii) the mechanism of the 

entanglement in a pair of qubits. We are concerned here by the first point; hence it is of 

prime importance to evaluate the exchange energy of neighboring donors in the studied 

samples, and its variation with the donor concentration.  

In this chapter, we calculate the exchange energy between two electrons bound to 

neutral donors inside an infinite quantum well. As we will see, the electron exchange 

appears as a result of the overlap of the wave functions of two localized states. Since this 

overlap increases exponentially with decreasing distance between a pair of donors, it 

becomes more important for larger concentrations of donors, especially near the metal-

insulator transition. 

The calculation of the exchange energy in the limit of large distances was first explored 

in the 1920’s [1]. A more appropriate method to calculate it in the limit of large distances 

between donors was later developed by Gor’kov and Pitaevskii [2], and Herring and 

Flicker [3]. In this method, they calculated the exchange energy between two donor-

bound electrons reducing its expression to an integral over a hyperplane in a six-

dimensional space, and finally getting an analytical formula for bulk systems. 

Later, Ponomarev et al. [4] proposed a procedure to obtain an expression valid for any 

interdonor distance. This procedure is based on an interpolation between the exchange 

energy at zero distance (i.e. the one of the helium atom) and the known asymptotic 

behavior. The same authors also calculated the asymptotic and interpolated exchange 

energies for artificial two-dimensional systems of electrons confined to the same plane 

as the impurities [4], and 2D electrons bound to Coulomb centers which are located 

outside the plane [5]. 

In this chapter, after a recall of the 3D calculations, we calculate the electron exchange 

energy of a pair of donor-bound electrons placed in the middle of an infinite QW, for 

large interdonor distances and for different QW thicknesses. We did this adapting to a 

QW the method developed by Refs. [2,3]. Then, inspired by the interpolation procedure 

proposed by Ponomarev et al. [4], we calculate the exchange energy of a “helium atom” 

inside an infinite quantum well, and finally obtain by interpolation the exchange energy 

valid for any inter-donor distance and for any QW thickness.  

 

 

 

 

 



47 
 

3.2 Calculation of the exchange energy (3D case) 

This section summarizes the theoretical results of Refs. [2,3]. Let’s consider two 

electrons, 1 and 2, localized at low temperature on two donors 𝐴 and 𝐵. Both donors are 

located at fixed positions 𝑥𝐴 = −𝑎 and 𝑥𝐵 = +𝑎. The Hamiltonian describing the system 

of both donor-bound electrons is 

 

                              �̂�  =  − 
Δ1

2
 − 

Δ2

2
 − 

1

𝑟1𝐴
 −  

1

𝑟2𝐵
 −  

1

𝑟1𝐵
 −  

1

𝑟2𝐴
 +  

1

𝑟12
 + 

1

2𝑎
  ,             (3.1) 

 
where ∆𝑗  is the Laplacian operator acting on electron 𝑗 (𝑗 = 1 or 2), 𝑟𝑗𝐴 and 𝑟𝑗𝐵 are the 

distances of electron 𝑗 to donors 𝐴 and 𝐵, respectively, and 𝑟12 = |𝑟 2 − 𝑟 1| is the distance 

between the electrons. All the distances are expressed in units of effective (bulk) Bohr 

radius 𝑎𝐵
 ∗3𝐷 , and the energies in units of effective hartree 𝐸ℎ

 ∗3𝐷 , defined by 

 

                      𝑎𝐵
 ∗3𝐷 = 𝑎0𝜀𝑟(𝑚0/𝑚𝑒

∗),  𝐸ℎ
 ∗3𝐷 = 𝐸ℎ(𝑚𝑒

∗/𝑚0𝜀𝑟
2),                    (3.2) 

  

with 𝑎0 = 4𝜋𝜀0ℏ
2/𝑚𝑒2 ≈ 0.52918 Å the Bohr radius of the atomic units and 𝐸ℎ = 𝑒2/

4𝜋𝜀0𝑎0 ≈ 27.211 eV  the Hartree energy of the atomic units, with 𝑚0 the electron mass, 

𝑚𝑒
∗  the effective electron mass, and 𝜀𝑟 the dielectric constant. 

      

Because �̂� does not depend on the spin, its eigenstates are made of products of an orbital 
stationary state 𝛹(𝑟 1, 𝑟 2), that satisfies the orbital Schrödinger equation: 

                                                    

       �̂�𝛹 = 𝐸𝛹,                                                        (3.3) 

               

with one of the two-electron four spin states: 

  

State S 𝐒𝐳 

1

√2
(|↑↓⟩ − |↓↑⟩) 0 0 

|↑↑⟩             1 1 

1

√2
(|↑↓⟩ + |↓↑⟩) 1 0 

|↓↓⟩ 1 -1 

 

where 𝑆 = 𝑆 1 + 𝑆 2 is the total spin of the pair of electrons, and ↑ (↓) represents the spin 

+1/2 (-1/2) of an electron. The spin state with 𝑆 = 0 (singlet state) changes sign when 

the electrons are interchanged, while the states with 𝑆 = 1 (triplet states) don’t.  

 

The Pauli exclusion principle requires that the total wavefunction changes sign under 

the interchange of both electrons. Therefore the symmetrical solutions 𝛹𝑆 [𝛹𝑆(𝑟 2, 𝑟 1) =
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𝛹𝑆(𝑟 1, 𝑟 2)] for the orbital part describe singlet states (S = 0), and the antisymmetric 

solutions [𝛹𝐴(𝑟 2, 𝑟 1) = −𝛹𝐴(𝑟 1, 𝑟 2)], triplet states (𝑆 = 1).  

 

As it is known [6], the ground state of a two-electron system is a singlet state, and the 

first-excited state a triplet. Let’s denote 𝛹𝑆 and 𝐸𝑆 the wave-function and energy of the 

ground state, and 𝛹𝐴 and 𝐸𝐴 the ones of the first-excited state.  

 

The energy difference between the first-excited and the ground levels, 𝐸𝐴 − 𝐸𝑆 = 2𝐽, is 

called exchange energy, or exchange splitting, of the two-electron system. We use here, 

and in all the following, a positively-defined exchange energy, 2𝐽 > 0: the Hamiltonian 

�̂� of Eq. (3.1) then corresponds to the spin Hamiltonian �̂�𝑠𝑝𝑖𝑛 = +2𝐽 𝑆 1. 𝑆 2.  

 

The  first calculation of the exchange energy 2𝐽, in the limit of large distances 𝑅 = 2𝑎 

between donors, was done  in the 1920’s by Heitler and London [1]. In this method, they 

calculated the electron exchange energy between a pair of hydrogen atoms, taking as 

starting wave functions symmetrized and antisymetrized combinations of the electron 

wave-functions in an isolated atom 𝜙𝐴(𝑟 ), 𝜙𝐵(𝑟 ): 

 

   𝛹𝑆,𝐴(𝑟 1, 𝑟 2) =
1

√2
(𝜙𝐴(𝑟 1)𝜙𝐵(𝑟 2) ± 𝜙𝐴(𝑟 2)𝜙𝐵(𝑟 1)).                      (3.4) 

 

However, as Gor’kov and Pitaevskii [2] remarked later, it is necessary for a correct 

calculation to take into account correlations between both electrons. Their calculations 

have been revisited by Herring and Flicker [3]. 

 

Let’s consider the functions defined by 𝛹1 = 𝛹𝑆 + 𝛹𝐴 and 𝛹2(𝑟 1, 𝑟 2) = 𝛹1(𝑟 2, 𝑟 1). The 

function 𝛹1 is large only when the electron 1 is near the proton 𝐴 and electron 2 near 

proton B. We define the hyperplane Σ in the six-dimensional coordinate space {𝑟 1, 𝑟 2}, 

with the x direction along the inter-nuclear line A-B, as 

 

                                                                        𝑥1 = 𝑥2;                                                                       (3.5) 

 

then the function 𝛹1 is  located almost entirely on the “left side” (x1 < x2) of Σ, while the 

function 𝛹2 is located on the “right side” (x1 > x2), see Fig. 3.1. 
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𝛹2 

d𝛴  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Schematic representation of the hyperplane 𝛴, 𝑥1 = 𝑥2, in the six-dimensional 

coordinate space defined by the coordinates {𝑟 1, 𝑟 2}. Because of its definition, the function 

𝛹1 is located almost entirely on the “left side” of 𝛴, while the function 𝛹2 is located on the 

“right side”. 

 

Calculating, over the “left side” of the hyperplane Σ, the integral ∬ (𝛹𝐴�̂� 𝛹𝑆 −
Ω

𝛹𝑆�̂� 𝛹𝐴) 𝑑3𝑟1 𝑑
3𝑟2   and considering that 𝛹𝐴 and 𝛹𝑆 are eigenfunctions of the 

Hamiltonian �̂�, one obtains 

 

∬ (𝛹𝐴�̂� 𝛹𝑆 − 𝛹𝑆�̂� 𝛹𝐴) 𝑑
3𝑟1 𝑑

3𝑟2 
Ω

= (𝐸𝑆 − 𝐸𝐴)∬ 𝛹𝐴𝛹𝑆𝑑
3𝑟1 𝑑

3𝑟2
Ω

 

                                                                                        =
(𝐸𝑆−𝐸𝐴)

4
∬ (𝛹1

2 − 𝛹2
2)𝑑3𝑟1 𝑑

3𝑟2Ω
 

                                                                                        = 𝐸𝑆 − 𝐸𝐴 = −2 𝐽.                                         (3.6) 

 

The contribution of 𝛹2
2 is neglected, because the integration is over the “left side” of Σ . 

Turning the volume integral to a surface one, the exchange energy is expressed as  

 

 2𝐽 =  ∫ 𝛹2𝛴
∇⃗⃗ 𝛹1. 𝑑𝛴  ,                                                   (3.7) 

 

with 𝑑𝛴  the surface element pointing towards the 𝑥2 > 𝑥1 region. At this stage, the 

function 𝛹1 can be approximated in Eq. (3.7) by the expression 

 

                                                𝛹1(𝑟 1, 𝑟 2) = 𝜙𝐴(𝑟 1)𝜙𝐵(𝑟 2)𝜒(𝑟 1, 𝑟 2) ,                                              (3.8) 

 

where 𝜙𝐴(𝑟 ) = 𝜙1(𝑟 − �⃗� 𝐴) is the one-electron ground-state wavefunction on donor 𝐴, 

located at �⃗� 𝐴; 𝜙𝐵(𝑟 ) = 𝜙1(𝑟 − �⃗� 𝐵) is the one for donor 𝐵, located at �⃗� 𝐵; and 𝜒(𝑟 1, 𝑟 2) is a 

slowly-varying correlation function manifesting that, because of the Pauli principle, the 

two electrons are avoiding each other: 𝜒(𝑟 1, 𝑟 2) = 0 for 𝑟 1 = 𝑟 2.  

 

In order to determine the function 𝜒(𝑟 1, 𝑟 2) in the 3D case, 𝛹1(𝑟 1, 𝑟 2) is inserted in eq. 

(3.3) with 𝜉1 the eigenvalue: 

𝑥1 

-𝑎 

−𝑎 

+𝑎 

+𝑎 

𝑥2 

𝑥1= 𝑥2 

Ψ1 

𝛹2 
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                                                                         �̂�𝛹1 = 𝜉1𝛹1.                                                     (3.9) 

Since 𝜒 is a slowly varying function, only the first derivatives of 𝜒 in equation (3.9) can 

be kept and also, limiting to points near the x-axis, one can consider the approximation: 

                                                  
𝜕𝜙𝐴

𝜕𝑥1
≅ −𝜙𝐴(𝑟 1)  ,  

𝜕𝜙𝐵

𝜕𝑥2
≅ 𝜙𝐵(𝑟 2).                                              (3.10) 

One reaches in this way an equation on the 𝜒 function: 

                                              
𝜕𝜒

𝜕𝑥1
−

𝜕𝜒

𝜕𝑥2
+ (

1

𝑅
+

1

𝑟12
−

1

𝑟1𝐵
−

1

𝑟2𝐴
) 𝜒 = 0,                              (3.11) 

where 𝑅 = 2𝑎. 𝜉1 has disappeared  because of the approximation 𝜉1 ≈ 2𝜀1, with 𝜀1 the 

energy of the ground state for a one-electron Hamiltonian. 

The solution of Eq. (3.11) is [2] 

𝜒3𝐷(𝑟 1, 𝑟 2)

=
2𝑎(2𝑎 + 𝑥1 + 𝑥2)

(𝑎 − 𝑥1)(𝑎 + 𝑥2)
  exp (−

𝑎 + 𝑥1

2𝑎
) {

√(𝑥1 − 𝑥2)
2 + 𝜌12

 2 + 𝑥2 − 𝑥1

√(2𝑎 + 𝑥1 + 𝑥2)2 + 𝜌12
 2 + 2𝑎 + 𝑥1 + 𝑥2

}

1/2

 

(3.12a) 

for 𝑥1 + 𝑥2 < 0, and 

𝜒3𝐷(𝑟 1, 𝑟 2)   

=      
2𝑎(2𝑎 − 𝑥1 − 𝑥2)

(𝑎 − 𝑥1)(𝑎 + 𝑥2)
  exp (−

𝑎 − 𝑥2

2𝑎
) {

√(𝑥1 − 𝑥2)2 + 𝜌12
 2 + 𝑥2 − 𝑥1

√(2𝑎 − 𝑥1 − 𝑥2)2 + 𝜌12
 2 + 2𝑎 − 𝑥1 − 𝑥2

}

1/2

 

                                         

(3.12b) 

for 𝑥1 + 𝑥2 > 0, with   𝜌12 = √(𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2.                      

Finally, substituting this expression of 𝜒3𝐷 in the integral (3.7) for the exchange energy 

2𝐽, we get this expression in 3D [3]: 

   

2𝐽(𝑅 ≫ 1) = 4√𝜋 𝑅
5

2 𝑒−2𝑅 ∫ 𝑑𝑞
1

0
𝑒−𝑞𝑞

3

2(2 − 𝑞)
1

2.             (3.13) 

 

That can be expressed as 

2𝐽3𝐷(𝑅 ≫ 1)  =  1.6366 𝑅5/2 e−2𝑅 ;                        (3.14) 

 

let us recall that 2𝐽3𝐷 is in units of effective hartree, and 𝑅 = 2𝑎 in units of effective Bohr 

radius, see Eq. (3.2). 
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3.3 Calculation in an infinite quantum well (R>>1) 
 

The case of two donors placed in the mid-plane 𝑧 = 0 of an infinite QW, of thickness 𝐿, 

introduces an extrinsic confinement of the 3𝐷 one-electron wavefunctions.  In order to 

calculate the exchange energy given by the expression (3.7) in a QW, we employed the 
one-electron ground-state wave-function 𝜙1(𝑟 ) studied in Appendix B, with atomic 

number 𝑍 = 1: 

  𝜙1(𝜌, 𝑧) =  𝐴1 exp(− 𝛼1𝑟) cos (𝜋
𝑧

𝐿
),                                 (3.15) 

 

where 𝑟 = √𝜌2 + 𝑧2 and the factor cos(𝜋𝑧/𝐿) is a single sinusoid arch that ensures that 

the wave-function 𝜙1(𝜌, 𝑧) vanishes at the boundaries of the QW. In these expressions, 

the z axis is normal to the QW, the donor is at the origin of coordinates, and   

𝜌 = √𝑥2 + 𝑦2. 

 

The first step is to calculate the slowly varying correlation function 𝜒(𝑟 1, 𝑟 2).  Following 

the steps of the method developed to reach 2𝐽(𝑅 ≫ 1) in 3𝐷 [2,3], it turns out that the 

function 𝜒(𝑟 1, 𝑟 2) obeys the equation: 

 

𝛼1 (
𝜕𝜒

𝜕𝑥1
−

𝜕𝜒

𝜕𝑥2
) + (

1

2𝑎
+

1

𝑟12
−

1

𝑎 − 𝑥1
−

1

𝑎 + 𝑥2
) 𝜒 =  0 ,       (3.16) 

 

in which we have only kept the first derivatives of 𝜒, and considered that both electrons 

are near the 𝑥 axis, with 𝑥1 > −𝑎 and 𝑥2 < 𝑎, so the approximations  
𝜕𝜙𝐴

𝜕𝑥1
≈ −𝛼1𝜙𝐴(𝑟 1), 

𝜕𝜙𝐵

𝜕𝑥2
≈ +𝛼1𝜙𝐵(𝑟 2) can be done. 

 

As it can be seen, the function 𝜒𝛼1  satisfies the equation (3.11) met in 3D. Considering 

the limit conditions 𝜒 → 1 when 𝑥1 → −𝑎 or 𝑥2 → 𝑎, this means that 𝜒𝛼1  coincides with 

the 3𝐷 correlation function 𝜒3𝐷 , see equations (3.12). We then deduce that the 

correlation function 𝜒 is given by 

 

                                                 𝜒(𝑟 1, 𝑟 2)   =  𝜒3𝐷(𝑟 1, 𝑟 2)
1/𝛼1 .                                        (3.17) 

 

Noticeably, this expression of 𝜒(𝑟 1, 𝑟 2) goes to the right 3𝐷 limit [2] when 𝛼1 → 1 (for 

𝐿 → ∞), and also to the right 2𝐷 limit [4,5] when 𝛼1 → 2 (for 𝐿 → 0). 

    

  We are now able to express the exchange energy 2𝐽(𝑅 ≫ 1) in its integral form (3.7) 

Retaining only derivatives of 𝜙1 with respect to 𝑥1 and 𝑥2, and neglecting the terms 

containing the derivatives of 𝜒, we obtain 

 

2𝐽 =  8𝛼1 ∫ 𝑑𝑥1

𝑎

0

∫ 𝑑𝑦1𝑑𝑦2

+∞

−∞

∫ 𝑑𝑧1𝑑𝑧2
|𝑧1,2|<𝐿/2

𝛹1(𝑟 2, 𝑟 1)|𝑥2=𝑥1
𝛹1(𝑟 1, 𝑟 2)|𝑥2=𝑥1

,       (3.18)  

 

 which it is turned with some algebra to 
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2𝐽(𝑅 ≫ 1)  = 

4 𝛼1 (
8

e
)

1
 𝛼1

𝐴1
 4 𝑅

3−
1

2𝛼1 e−2𝛼1𝑅 ∫ 𝑑𝑋
1

0

∫ 𝑑𝑍1𝑑𝑍2
|𝑍1,2|<

𝐿

2√𝑅

∫ 𝑑𝑌1𝑑𝑌2

+∞

−∞

 × ⋯ 

cos2 (
𝜋√𝑅𝑍1

𝐿
) cos2 (

𝜋√𝑅𝑍2

𝐿
) exp {−

2𝛼1(𝑃1
2 + 𝑃2

2)

1 − 𝑋2
+

𝑋

𝛼1
} [

𝑃12

(1 + 𝑋)2(1 − 𝑋)
]

1
 𝛼1

,       

(3.19) 

 

using 𝑅 = 2𝑎, the change of variables 𝑥1 = 𝑎𝑋, 𝑦1,2 = 𝑌1,2√𝑅, 𝑧1,2 = 𝑍1,2√𝑅, and the 

notations 𝑃𝑗 = √𝑌𝑗
2 + 𝑍𝑗

2 (𝑗 = 1 or 2) and 𝑃12 = √(𝑌1 − 𝑌2)2 + (𝑍1 − 𝑍2)2. 

     The expression (3.19) of the exchange energy 2𝐽(𝑅 ≫ 1) can be calculated 

numerically, for given values of the thickness 𝐿 of the QW (for a given 𝐿, 𝛼1 and 𝐴1 are 

known, see Appendix B). In order to decrease the numerical integration time, we turned 

the 5-dimensional integral (3.19) to a 4-dimensional one, using the change of variables 

 

𝑆1 =
𝑌1 + 𝑌2

2
 ,     𝑆2 =

𝑍1 + 𝑍2

2
 ,     𝐷1 = 𝑌1 − 𝑌2 ,     𝐷2 = 𝑍1 − 𝑍2 ;        (3.20) 

 

the integration over variable 𝑆1 can be performed, and we finally used the following 

expression (3.21) for our numerical calculations: 

 

2𝐽(𝑅 ≫ 1)   =   4√𝜋𝛼1 (
8

e
)

1
𝛼1

𝐴1
 4 𝑅

3−
1

2𝛼1  e−2𝛼1𝑅 ∫ 𝑑𝑋
1

0

√1 − 𝑋2 [
e𝑋

(1 + 𝑋)2(1 − 𝑋)
]

1
𝛼1

× … 

    ∫ 𝑑𝐷1

+∞

0

∫ 𝑑𝐷2

𝐿

√𝑅

0

(𝐷1
2 + 𝐷2

2)
1

2𝛼1  exp [−
𝛼1(𝐷1

2 + 𝐷2
2)

1 − 𝑋2
] × … 

{ cos2 (
𝜋√𝑅𝐷2

𝐿
)∫ 𝑑𝑆2

𝐿

2√𝑅
 – 

𝐷2
2

0

exp [−
4𝛼1𝑆2

2

1 − 𝑋2
]  + 

                                  2 cos (
𝜋√𝑅𝐷2

𝐿
)∫ 𝑑𝑆2

𝐿

2√𝑅
 – 

𝐷2
2

0

cos (
2𝜋√𝑅𝑆2

𝐿
)exp [−

4𝛼1𝑆2
2

1 − 𝑋2
]  + 

                  ∫ 𝑑𝑆2

𝐿

2√𝑅
 – 

𝐷2
2

0

cos2 (
2𝜋√𝑅𝑆2

𝐿
)exp [−

4𝛼1𝑆2
2

1 − 𝑋2
] } .       (3.21) 

 

When 𝐿 → ∞ or 𝐿 → 0, Eq. (3.21) goes to the formulas known in 3𝐷 or 2𝐷, respectively 

(see Refs [3-5]): 

 

                                                      2𝐽3𝐷(𝑅 ≫ 1)  =  1.6366 𝑅5/2 e−2𝑅 ;                                  (3.22) 

 

                   2𝐽2𝐷(𝑅 ≫ 1)  =  30.413 𝑅7/4 e−4𝑅 .                                   (3.23) 
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Figure 3.2 shows the exchange energy 2𝐽(𝑅 ≫ 1) as a function of the distance 𝑅 = 2𝑎 

between the pair of donors, for several values of the QW thickness 𝐿. The 2𝐽 values for 

𝑅~1, and below, have a priori no physical significance, because we fixed  𝑅 ≫ 1 from 

start. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Exchange energy 2𝐽(𝑅 ≫ 1) for several values of the QW thickness 𝐿, as a 

function of the distance 𝑅 between two donor-bound electrons, centred inside the QW. The 

curves noted 2𝐷 and 3𝐷 correspond to the 𝐿 → 0 and 𝐿 → ∞ limits, respectively. Inset: 

semi-logarithmic representation of the same data, for a larger range of 𝑅. 
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3.4  Determination of 2J(R) for any inter-donor distance 
 

3.4.1  General procedure to obtain an interpolated                 

formula of 𝟐𝑱(𝑹) for the 3D and 2D cases 
 

In Ref. [4] a procedure has been proposed to build the exchange energy 2𝐽(𝑅) for any 

value of the distance 𝑅 between the donors, in the 3D and 2D cases. The principal idea 

of this method consists in matching the second derivative of the electron exchange 

energy between two regions or R,  𝑅 → 0 and 𝑅 >> 1. 

 

This procedure requires:  

(i)         an  asymptotic form for the exchange energy: 2𝐽(𝑅 ≫ 1) = 𝐶𝑅𝛽e−𝜔𝑅 ; 

(ii) the value of the exchange energy at 𝑅 = 0, this means the singlet-triplet 

energy difference 2𝐽0 of the 3𝐷 and 2𝐷 helium atom;  

(iii) the assumption that at small distance between donors, ln[2𝐽(𝑅 ≪ 1)] can be 

expanded as ln(2𝐽0) − 𝛾𝑅 − �̃�𝑅2 ⋯, with 𝛾 and �̃� both positive. 

 

If we calculate now the second derivative of 2J in both regions, we get 

 

𝑑2ln[2𝐽(𝑅)]

𝑑𝑅2
= {

−
𝛽

𝑅2
    (𝑅 ≫ 1)

−2�̃�     (𝑅 ≪ 1).

 

 

The simplest formula that satisfies both conditions is the Lorentzian function 

  

        
𝑑2ln[2𝐽(𝑅)]

𝑑𝑅2  =  − 
2�̃�𝛽

𝛽+2�̃�𝑅2  ,             (3.24) 

 

supposed to be valid for any value of R. 
A first integration of Eq. (3.24) gives the expression of the first derivative of ln[2𝐽(𝑅)]: 

 

                                                  
𝑑 ln(2𝐽)

𝑑𝑅
(𝑅) = −𝛾 − (𝛽𝐴)arctan(𝐴𝑅),                                     (3.25) 

where 𝐴 = √
2�̃�

𝛽
. This expression must be valid at large 𝑅; so matching this expression 

with the first derivative of the asymptotic form of the exchange energy, we obtain  a 

relationship between 𝛾 and �̃�: 

               𝐴 = √2�̃�/𝛽  =  
2(𝜔−𝛾)

𝜋 𝛽
  .                                    (3.26) 

 

Finally, a second integration yields the interpolated formula for 2𝐽(𝑅) given by this 

procedure: 

 

ln[2𝐽(𝑅)]  =  ln(2𝐽0) − 𝛾𝑅 − 𝛽𝐴𝑅 arctan(𝐴𝑅) + 
𝛽

2
 ln(1 + 𝐴2𝑅2) .       (3.27) 
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This expression contains one single parameter, 𝐴 (or 𝛾), which remains to be 

determined. In Ref. [4], the authors have chosen the parameter 𝐴 by fitting at best 

numerical values of 2𝐽 obtained for 𝑅 of the order of unity or several units. They 

proposed in this way interpolated formulas for 2𝐽(𝑅) in the 3𝐷 and 2𝐷 cases, using a 2𝐽0 

value in 3𝐷 known at their time and, at 2𝐷, a value of 2𝐽0 calculated by their own. The 

final interpolated formulas in 2D and 3D that they found are: 

 

 2𝐽3𝐷 = 0.770(1 + 0.23𝑅2)5/4exp [−0.1𝑅 − 1.210 𝑅 arctan(0.484 𝑅)]    (3.28 a)   

           2𝐽2𝐷 = 3.567(1 + 1.81 𝑅2)7/8exp [−0.3𝑅 − 2.355 𝑅 arctan(1.346 𝑅)]   (3.28 b) 

 

3.4.2 Interpolated 𝟐𝑱(𝑹) in an infinite quantum well 

 

In order to build an interpolated formula for the exchange energy between two donors 

located in the middle of an infinite QW, with the procedure described above, two points 

must be treated: 

(i) the calculation of 2𝐽0 in a “helium atom” centred in an infinite QW; 

(ii) the creation of the interpolated 2𝐽(𝑅) starting with an asymptotic 2𝐽(𝑅 ≫ 1) 

which does not possess the form  2𝐽(𝑅 ≫ 1) = 𝐶𝑅𝛽e−𝜔𝑅. 

     

     For each point we proceeded as follows: 

     For the calculations that we made to obtain 2𝐽0 in the middle of an infinite QW, first 

we noticed that, in 3𝐷 and in 2𝐷, calculating the ground energy 𝐸𝑆 of the helium atom 

using the variational method, and the first-excited energy 𝐸𝐴 perturbatively, gives a very 

good approximation of the exchange energy 2𝐽0, which is found to be shifted from the 

exact numerical values by only about 1 % (see Appendix C). So we proceeded in the same 

way to calculate the exchange energy of a “helium atom” located in the midplane of an 

infinite QW; the calculations of 𝐸𝑆 and 𝐸𝐴 are presented in Appendix C. Figure 3.3 shows 

2𝐽0 as a function of the thickness 𝐿 of the QW; as it is observed, 2𝐽0 decreases 

monotonously with 𝐿, from the 2𝐷 value to the 3𝐷 one. 

 

 

 

 

 

 

 

 

 

 

 

     

 

Figure 3.3 Exchange energy 2𝐽0 of a “helium atom” (full disks) centred in an infinite QW, 

as a function of the QW thickness 𝐿. The blue point at 𝐿 = 0 corresponds to our calculated 

2𝐽0 in 2𝐷; the red dashed horizontal line indicates the value of  our calculated 2𝐽0 in 3𝐷 

(continuous curve: guide for the eyes). 
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Let us talk now about the construction of the interpolated 2𝐽(𝑅) in an infinite QW. The 

calculated asymptotic values of the exchange energy 2𝐽(𝑅 ≫ 1), see Fig. 3.2, do not 

possess exactly the form met in the 3𝐷 and 2𝐷 cases. Nevertheless, we realized that the 

fit of 2𝐽(𝑅 ≫ 1) with  the form 𝐶𝑅𝛽e−𝜔𝑅  is rather satisfactory for values of 𝑅 ranging 

from 𝑅 = 0.1 to 30 [see Fig. 3.4(a), red dashed line] (𝑅 = 30 corresponds to the distance 

between two donors for residual concentrations in typical semiconductors).  Then the 

form  2𝐽(𝑅 ≫ 1) = 𝐶𝑅𝛽e−𝜔𝑅 can approximate very well the values found at large R. To 

obtain the parameters 𝐶, 𝛽 and 𝜔,  we adjusted  ln[2𝐽(𝑅 ≫ 1)] with ln𝐶 + 𝛽ln𝑅 − 𝜔𝑅. 

Figure 3.4(b) shows these parameters for different thicknesses of the QW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 (a) Fitting of the values 2J(R>>1) for L = 1.5 (black points) with the expression 

𝐶𝑅𝛽𝑒−𝜔𝑅 (red dashed line). (b) Fitting parameters 𝐶 (full disks), 𝛽 (open diamonds) and 

𝜔 (full diamonds) of the exchange energy 2𝐽(𝑅 ≫ 1) fitted with the expression 𝐶𝑅𝛽𝑒−𝜔𝑅 , 

as a function of the QW thickness 𝐿. The values of 𝐶 read on the left axis, the ones of 𝛽 and 

𝜔 on the right axis (continuous curves: guides for the eyes). 
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Finally, we performed a fit of the values of 2𝐽(𝑅 ≫ 1) between 𝑅 = 20 and 30 with Eq. 

(3.27), using the known values of 2𝐽0 and 𝛽, with 𝐴 the only fitting parameter [𝛾 is linked 

to 𝐴, once 𝛽 and 𝜔 are fixed, see Eq. (3.26)]. We created in this way an interpolated 

formula for 2𝐽(𝑅) inside an infinite QW, for any distance 𝑅 of interest between the pair 

of donors. An example of interpolated exchange energy 2𝐽(𝑅) is given in Figure 3.5, for 

𝐿 = 1.5; its coincidence with the asymptotic form 2𝐽(𝑅 ≫ 1) occurs for 𝑅 ≥ 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5. Interpolated 2𝐽(𝑅) (continuous curve) and large-R 2𝐽(𝑅 ≫ 1) (dotted curve) 

exchange energies for the QW thickness 𝐿 = 1.5, as a function of the distance 𝑅 between 

two donor-bound electrons, centred inside the QW. Inset: semi-logarithmic representation 

of the same data, for a larger range of 𝑅. 

 

     As special case, the interpolated formulas in 3𝐷 and 2𝐷 can be calculated following 

the  procedure described above. We found 

 

2𝐽3𝐷(𝑅)  =  0.729 (1 + 0.258𝑅2)
5
4  × ⋯                        

                                                      exp[−0.0005𝑅 − 1.270𝑅 arctan(0.508𝑅)] ;              (3.29𝑎). 

  

2𝐽2𝐷(𝑅)  =  3.604 (1 + 1.548𝑅2)
7
8  × ⋯                        

                                                      exp[−0.579𝑅 − 2.178𝑅 arctan(1.244𝑅)] .                   (3.29𝑏) 

 

These expressions are slightly different from the equations (3.28) coming from Ref. [4] 

(see Appendix D). 

 

Figure 3.6 shows the values of the obtained parameters 𝐴 and 𝛾, as a function of the QW 

thickness 𝐿; monotonous evolutions of 𝐴 and 𝛾 can be observed between the 2𝐷 (𝐿 → 0) 

and 3𝐷 (𝐿 → ∞) cases. For 𝐿 ≥ 6, the 𝐴 and 𝛾 values are very close to the values at 3D.  
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Figure 3.6. Parameters 𝐴 (full disks) and 𝛾 (open squares) entering in the expression of 

the interpolated 2𝐽(𝑅) exchange energy, see Eq. (3.27), as a function of the QW thickness 𝐿 

(continuous curves: guides for the eyes). The blue points at 𝐿 = 0 correspond to the 2D 

case; the red dashed horizontal lines indicate the values in 3D. 

 
In Fig. 3.7, we plotted the interpolated exchange energy 2𝐽(𝑅) for several values of 𝐿, as 

a function of the distance 𝑅 between two donor-bound electrons, centred inside the QW. 

Because we consider an infinite QW with a wavefunction completely confined in the QW, 

the  calculations do not describe correctly the reality of the system for 𝐿 < 1. Indeed, the 

electron wave-function of thin QWs, for which 𝐿’ = 𝐿𝑎𝐵
 ∗3𝐷 is smaller than 𝑎𝐵

 ∗3𝐷
, is in fact 

larger than the QW thickness, and then overflows the barrier material which does not 

represent an infinite barrier for electrons. Figure 3.7(b) shows with more detail 2𝐽(𝑅) 

for 𝐿 ≥ 1 and 3D. For 𝐿 ≤ 1 (see Fig. 3.7 (a)), the exchange energy at very small 𝑅 < 1 

shows a maximum for 2𝐷 and a minimum for 3𝐷 with intermediate values for QWs of 

different 𝐿; however, for 𝑅 > 2 the situation is inverted and the 3𝐷 value is larger than 

the value obtained in a QW or in 2𝐷 (see inset of Fig. 3.7 (a)). 
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Figure 3.7. (a) Interpolated exchange energy 2𝐽(𝑅) for the 𝐿 values shown in Fig. 3.2, as a 

function of the distance 𝑅 between two donor-bound electrons, centred inside the QW. The 
curves noted 2𝐷 and 3𝐷 correspond to the interpolated 2𝐽(𝑅) laws in 2𝐷 and in 3𝐷, 

respectively, see eqs.(3.29). Inset: semi-logarithmic representation of the same data, for a 
larger range of 𝑅. (b) Interpolated exchange energy 2𝐽(𝑅) for 𝐿 = 1, 1.5, 2, 3, 4  and 3𝐷. 
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3.5  Discussion 

 
In Figs. 3.8(a) and 3.8(b), we have plot in common units of energy and length the 

exchange energy 2𝐽′(𝑟) = 2𝐽(𝑅 = 𝑟/𝑎𝐵
 ∗3𝐷) × 𝐸ℎ

 ∗3𝐷 between two donor-bound electrons 

as a function of the distance between donors  𝑟 = 𝑅𝑎𝐵
 ∗3𝐷, fixing the width of the infinite 

QW at 𝐿′ = 10 nm, for some usually studied semiconductor materials. The parameters 

for these compounds are indicated in Table 3.1 

 

a: Ref. [7]; b: Ref. [8]; c: Ref. [9]; d: Ref. [10]; e: Ref. [11], f: Ref. [12]; g: Ref. [13]; h: Ref. 

[14], i: Ref. [15]; j: Ref. [16]; k: Ref. [17]. 

 

Table 3.1. Values of the different parameters determining the electron exchange energy 

and the spin relaxation time near the insulator-metal transition, in usually studied 

semiconductor materials.  

 

 

 

 

 

 

 

 

 

 

Material Effective 

mass 

𝒎𝒆
∗/𝒎𝟎 

Dielectric 

constant 

𝝐𝒓 

Bohr 

radius 

 𝒂𝑩
∗𝟑𝑫 (𝐧𝐦)  

Effective 

hartree 

𝑬𝒉
∗𝟑𝑫 (𝐦𝐞𝐕)  

Energy 

band gap                  

 𝑬𝒈 (𝐞𝐕) 

Spin-orbit 

splitting 

∆𝑺𝑶 (𝐞𝐕)  

ZnO 0.24a 7.77b 1.71 108 3.44c 0.0035c 

ZnSe 0.145b 8.8d 3.21 51.0 2.820e 0.403e 

GaN 0.13f 9.7f 3.95 37.6 3.28f 0.02f 

CdSe 0.11b 10.16d 4.89 29.0 1.74g 0.462h 

CdTe 0.09i 10.31j 6.1 23 1.606e 0.949e 

GaAs 0.067k 12.35d 9.75 12.0 1.519e 0.341e 
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Figure 3.8 Electron exchange energy in common unit of energy, as a function of inter-

donor distance for several semiconductor materials, at a fixed value of QW thickness 𝐿’ =

10 nm; (a) in linear scales and for small inter-donor distances; (b) in semi-logarithmic 

scales and for a larger domain of inter-donor distances. 

 

As we can see in Fig. 3.8(a) for small distance between donors  (high doping 

concentrations), the 2𝐽′(0) value is larger for materials with a higher effective Hartree 

energy. Indeed, a value close to 100 meV for ZnO is obtained, which is almost five times 

larger than the 2𝐽′(0) value for GaAs. Figure 3.8(b) shows that, for large inter-donor 

distances (small doping concentrations), ZnO exhibits also the smallest value of 

exchange energy, meanwhile GaAs has the largest exchange energy among the materials 

used for comparison in this figure. We also remark that, for GaAs, the exchange energy 

of two electrons localized on donors decreases slightly when the inter-donor distance 

increases, meanwhile for ZnO the decrease is much faster. In general, the exchange 

energy is exponentially sensitive to the distance between donors, and this sensitivity 

depends also strongly on the effective Hartree energy which fixes the extension of the 

electron wavefunction for a given semiconductor material.  

 

3.6 Conclusion 
 

This chapter described the way to reach a general expression for the exchange energy of 

two electrons bound to donors placed in the middle of an infinite QW, valid for any inter-

donor distance and for any QW thickness. In the next chapter 4, this tool will allow to 

calculate the spin relaxation time in QWs made of widely used II-VI and III-V direct-

band-gap materials; in particular, it will be useful to interpret our experimental results 

on the spin relaxation time of donors inside a CdTe QW, at low temperature.  
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4.1 Previous studies in bulk materials   

Driven by the spin-based application perspective, the study of impurity spin relaxation 

has seen renewed interest in the last two decades. The influence of the doping 

concentration on the spin relaxation time of donor-bound electrons has been studied at 

low temperature in different bulk materials, either with a zinc-blende structure such as 

GaAs [1-4], InSb [5], InAs [6] and ZnSe [7], or wurzite structure as: GaN [8,9] and ZnO 

[10], for different doping values in the insulating regime and beyond the metal-insulator 

transition (MIT).  

In the insulating regime, at low temperature, the most comprehensive study in a zinc- 

blende semiconductor was carried out by Dzhioev et al., in bulk GaAs [1] (see Fig. 4.1 

(a)). In this study, the spin relaxation time at low temperature shows a non-monotonous 

behavior exhibiting a maximum value of the order of 200 ns at 𝑛𝑑  ~ 3 × 1015  cm-3. This 

behavior was explained as an interplay of different relaxation mechanisms: at low 

doping density the hyperfine nuclear interaction is the most important mechanism, 

while at high doping concentration, the anisotropic exchange interaction mechanism 

dominates.  This study has been recently revisited by V. V. Belykh et al. [2,3] and J. G. 

Lonnemann et al. [4].  

In the metallic regime at low temperature, the experimental studies carried out in GaAs 

[1], InSb [5] and InAs [6] reveal that for very high doping concentrations above the MIT, 

the D’yakonov-Perel’ (DP) or the Elliot-Yafet (EY) mechanisms dominate, depending on 

the characteristics of the material (energy band gap and spin-orbit constant). 

We have chosen CdTe for this research because it has the same crystal structure (zinc-

blende) and nearly the same energy band gap as GaAs, but rather different material 

parameters (e.g. effective masses, dielectric constants, nuclear spin characteristics and 

spin-orbit interaction). Up to now, in bulk CdTe, a recent study in the insulating regime 

was performed by D. Sprinzl et al. [11] (see Fig. 4.1 (b)). They reported also a non-

monotonous behavior, exhibiting a maximum value of the spin relaxation time of 2.5 ns 

at 𝑛𝑑 = 4.9 × 1016  cm-3 and a minimum value of  40 ps below 𝑛𝑑 = 1 × 1015  cm-3.   

In this chapter, we measure the electron spin dephasing time 𝑇2
∗ at T = 2 K as a function 

of the magnetic field, applied in Voigt geometry, by using the PFR technique described 

in Chapter 2. The electrons localized on iodine donors are placed in the middle of a 8nm 

CdTe QW. The donor concentration is in the range of 1 × 109 cm-2 to 3.6 × 1011 donors 

cm-2. 
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Figure 4.1 Study of the influence of doping concentration on the spin relaxation time of 
donor-bound electrons in bulk (a) GaAs and (b) CdTe. The graphics were taken from Refs. 
[1] and [11], respectively. The longest relaxation times are those found in GaAs. Different 
techniques have been used to obtain the experimental values: Hanle effect (Fig. (a)) and 
femtosecond PFR technique (Fig. (b)). 
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4.2 Experimental results 

4.2.1 Samples description and characterization  

The samples studied in this work consist of a 8-nm thick CdTe QW confined between 

CdMgTe barriers. They have been grown by G. Karczweski at the Sciences Academy of 

Warsaw by molecular beam epitaxy on a (100)-oriented GaAs substrate. The samples 

are doped with iodine donors placed in the central plane of the QW, with different 

nominal concentrations listed in table 4.1. 

The originality of this system resides in the fact that the donors are placed in the middle 

of the QW, to increase the localization of the electron wave-function in comparison with 

bulk systems [12]. Figure 4.2 shows a scheme of the studied samples. 

 

 

 

 

 

 

                                                       Table 4.1 

 

 

 

 

 

 

Figure 4.2 Schematic representation of the structure of the studied samples. 

For the characterization of the samples, the experimental arrangement shown in Fig. 2.6 

of Chapter 2 has been adapted to perform photoluminescence (PL) measurements: In 

the axis of detection, a movable mirror has been placed to send the photoluminescence 

emitted by the sample to a double monochromator Acton SP2750 and a Pylon camera. 

We used a He-Ne laser of 633 nm as excitation light, well above the energy band gap of 

the sample. 

Figure 4.3 shows the PL spectra of the six studied samples obtained at the temperature 

𝑇 = 10 K. 

 

Sample Name Doping concentration 
(donors/cm-2) 

A 052807C 1 ×  109 
B 030104A 3.2 ×  1010 
C 022504A 9.7 ×  1010 
D    022404AB 1.6 × 1011 
E 022604A 2.9 ×  1011 
F    022404BB 3.6 ×  1011 
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Figure 4.3 PL spectra of the six studied samples, obtained at T = 2 K for sample D and 

T = 10 K for samples A, B, C, E and F.  

In a PL spectrum, it is possible to identify the luminescence of excitons, and of excitons 

bound to neutral impurities (donors and acceptors). For the intentionally undoped 

sample A, the free-exciton emission at 1.625 eV (denoted as X) dominates the PL 

spectrum, at it is shown in Fig. 4.3 (a). A residual concentration of donors in this sample 

is revealed by a second peak at 1.621 eV, associated with the donor-bound exciton 

transition (D0X). The energy difference between the free-exciton peak and the D0X one, 

gives the exciton binding energy ≈ 4 meV in the D0X complex. The shoulder at lower 

energy is associated to the formation of excitons bound to neutral acceptors (A0X); 

indeed, the introduction of donor impurities in the QW creates compensation sites, 

inducing the presence of acceptor sites which in our case are probably cadmium 

vacancies. 

As we can see in Fig. 4.3, in the intentionally doped samples, the D0X luminescence is 

more intense than the X one. For the intermediate doping concentrations, samples B and 

C (see Figs. 4.3 (b) and (c)), a shoulder associated with the exciton transition at 1.615 eV 

is still visible in the high-energy part of the D0X broad band. At higher donor 

concentration, only a broad peak associated with the D0X transition is visible (see Figs. 

4.3 (d), (e), (f)).  

When comparing Figs. 4.3 (a) and 4.3 (c), we underline that the energy of the X transition 

is slightly different; this is because of the Mg content in the barrier: for sample A, the Mg 

content is 18 %, while it is 11% for sample C (and also for the other samples). 

The full width at half maximum of the D0X PL band increases with the increasing donor 

concentration, from 2.6 meV for sample A to 6.2 meV for sample E. The exciton PL band 
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also broadens, weakens and finally vanishes when the donor concentration increases. 

We remark that the PL spectrum of sample D was taken at lower temperature (T = 2K) 

and at different intensity of excitation, which explains the different full width at half 

maximum of the D0X PL band. 

In order to perform transmission measurements, the GaAs substrate in the samples has 

been removed by chemical attack. 

4.2.2 Photo-induced Faraday rotation signal at different 

magnetic fields 

Figure 4.4 shows the PFR signal obtained at low temperature, T = 2 K, in presence of a 

transverse magnetic field of 0.5 T (Voigt geometry) for the six studied samples. The 

common pump and probe energy is always tuned to the D0X transition in order to create 

mainly donor-bound exciton complexes, and to probe the D0X optical transition, since 

the band-width of the used mode-locked Ti:Sapphire laser is less than 1 meV. The focus 

spot area is (90 𝜇m)2 and the energy fluence of the pump pulses is 0.09 𝜇J cm-2.  For all 

the samples, an oscillatory signal with an envelope time larger than the lifetime of the 

D0X complex TR (~ 200 ps Ref. [10]) is observed. This long-lasting signal is the signature 

of the spin polarization of electrons bound to neutral donors D0. The mechanism 

involved in the creation of this electron polarization has been introduced in chapter 1. 
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Figure 4.4 PFR signals as a function of the pump-probe delay for samples A-F. The PFR 

signals were obtained at T = 2 K, B = 0.5 T, using the following optical energies: (A) 1.622 

eV, (B) 1.613 eV, (C) 1.611 eV, (D) 1.615 eV, (E) 1.617 eV, and (F) 1.612 eV.   

As we have seen in chapter 1, the electronic spin dynamics of D0 is described by the 

equation [13]: 

       
𝑑𝑆 ⊥
𝑑𝑡

= Ω⃗⃗ 𝑒 ∧ 𝑆 ⊥ −
𝑆 ⊥
𝑇2

∗ +
𝐽(𝑡)

𝑇𝑅
𝑒 𝑧 ,                                            (4.1) 
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where 𝑆 ⊥ is the transverse component (to the magnetic field) of the electronic spin, Ω⃗⃗ 𝑒 

is the Larmor precession vector of the electrons, 𝑇2
∗ the spin dephasing  time of the 

ensemble of electronic spins, and 𝐽(𝑡) = 𝐽0𝑒
−𝑡/𝜏 is one third of the average kinetic 

momentum of the ensemble of D0X complexes; 𝜏 is the decay time of the difference 

between the 𝐷0𝑋+3/2 and 𝐷0𝑋−3/2 populations. For times much larger than 𝜏,  the 

solution of Eq. (4.1) is 

𝑆𝑧(𝑡) = 𝐴3𝑒
−

𝑡
𝑇2

∗
cos(Ω𝑒𝑡),                                                   (4.2) 

and for times of the order of 𝜏, the next expression fits the PFR signal:  

𝑃𝐹𝑅(𝑡) = 𝐴1𝑒
−𝑡/𝜏 + 𝐴2𝑒

−𝑡/𝑇𝑥cos (Ω𝑥𝑡) + 𝐴3𝑒
−𝑡/𝑇2

∗
cos(Ω𝑒𝑡),                      (4.3) 

with Ω𝑖 the Larmor frequency associated to the carriers:                                                             

                                                                  Ω𝑖 =
𝑔𝑖

⊥𝜇𝐵

ℏ
𝐵,                                                                (4.4) 

where 𝜇𝐵 is the Bohr magneton, ℏ the reduced Planck constant, and 𝑔𝑖
⊥ the transverse 

Landé factor of carrier i ( i = e, h, x; electron, hole and exciton, respectively). For holes 

the Landé factor 𝑔ℎ
⊥ is almost zero in a 8-nm CdTe QW [12], so the field induces a spin 

precession of the resident electrons bound to the donors, but not of the D0X complex 

since the D0X complex contributes to the spin dynamics by its hole. 

The first non-oscillatory term of eq. (4.3) represents the contribution of the D0X complex 

to the PFR signal. It is clearly seen in Fig. 4.4, especially in samples with high 

concentrations of donors (see Fig. 4.4, curves C-F). When the sample contains a low 

concentration of donors it is possible to observe another additional oscillatory 

component of the PFR signal (second term of eq. 4.3), having a frequency Ω𝑥 similar to 

the electron one  and with a very short damping time 𝑇𝑥 (see Fig. 4.4, curve A).  This 

additional component corresponds to the oriented exciton spins. 

Figures 4.5(a)-4.10(a) show the PFR signal at different magnetic fields obtained for each 

sample. For low magnetic fields, the oscillatory behavior of the PFR signal is also 

observed at negative delays. This means that the damping time of the oscillations is 

comparable to the repetition period 13.2 ns of the laser, and this damping time decreases 

for increasing magnetic fields. 

We have fitted expression (4.3) to all the PFR curves. Figs. 4.5(b)-4.10(b) show the 

dependence of the Larmor frequency Ω𝑒 on the applied magnetic field. A linear fit of the 

data gives the corresponding value of 𝑔𝑒
⊥ for each concentration. Figures 4.5(c)-4.10(c) 

show the other fitting parameter, 1/𝑇2
∗, as a function of the magnetic field, which is 

proportional to the magnetic field due to the inhomogeneities of the 𝑔𝑒
⊥ values, as it is 

shown below. As we have seen in chapter 1, assuming a Lorentzian distribution of 𝑔𝑒
⊥ 

factors, the experimentally determined 𝑇2
∗ is related to the zero-field decoherence time 

𝑇2(0) as follows: 

1

𝑇2
∗ =

1

𝑇2(0)
+ ∆𝑔

𝑒
⊥ 𝜇𝐵

ℏ
𝐵.                                                 (4.5) 
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Figure 4.5 (a) PFR signals for sample A as a function of the pump-probe delay, obtained at 

T = 2 K for several values of the transverse magnetic field. The PFR curves are vertically 

shifted for clarity. (b) Experimental data of the D0 Larmor frequency. A linear fit to Eq.(4.4) 

leads to the value 𝑔𝑒
⊥ = 1.391 ± 0.001 . (c) Inverse of the spin decoherence time 𝑇2

∗. A 

linear fit according to Eq. (4.5) leads to 𝑇2(0) = 4.5 ± 0.1 ns  and ∆𝑔𝑒
⊥ = 0.008. 

 

 

 

 

𝑔𝑒
⊥ = 1.391 ± 0.001   

𝑇2(0) = 4.5 ± 0.1 𝑛𝑠 

∆𝑔𝑒
⊥ = 0.008. 
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Figure 4.6 (a) PFR signals for sample B as a function of the pump-probe delay, obtained at 

T = 2 K for several values of the transverse magnetic field. The PFR curves are vertically 

shifted for clarity. (b) Experimental data of the D0 Larmor frequency. A linear fit to Eq.(4.4) 

leads to the value 𝑔𝑒
⊥ = 1.435 + 0.005 . (c) Inverse of the spin decoherence time 𝑇2

∗. A linear 

fit according to Eq. (4.5) leads to 𝑇2(0) = 5.5 ± 0.1 ns  and ∆𝑔𝑒
⊥ = 0.007 

 

 

 

 

𝑔𝑒
⊥ = 1.435 ± 0.005   

𝑇2(0) = 5.5 ± 0.1 ns 

∆𝑔𝑒
⊥ = 0.007 
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Figure 4.7 (a) PFR signal for sample C as function of the pump-probe delay, obtained at                 

T = 2 K for several values of the transverse magnetic field. The PFR curves are vertically 

shifted for clarity. (b) Experimental data of the D0 Larmor frequency. A linear fit to Eq. (4.4) 

leads to the value 𝑔𝑒
⊥ = 1.436 ± 0.006  . (c) Inverse of the spin decoherence time 𝑇2

∗. A 

linear fit according to eq. (4.5) leads to 𝑇2(0) = 13.3 ± 0.2 ns  and ∆𝑔𝑒
⊥ = 0.009 

 

 

 

 

 

 

𝑔𝑒
⊥ = 1.436 ± 0.006   

𝑇2(0) = 13.3 ± 0.2 ns 

∆𝑔𝑒
⊥ = 0.009 
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Figure 4.8 (a) PFR signal for sample D as function of the pump-probe delay, obtained at                   

T = 2 K for several values of the transverse magnetic field. The PFR curves are vertically 

shifted for clarity. (b) Experimental data of the D0 Larmor frequency. A linear fit to Eq. (4.4) 

leads to the value 𝑔𝑒
⊥ = 1.452 ± 0.005. (c) Inverse of the spin decoherence time 𝑇2

∗. A linear 

fit according to eq. (4.5) leads to 𝑇2(0) = 12.5 ± 0.8 ns  and ∆𝑔𝑒
⊥ = 0.008. 

 

 

 

 

 

𝑔𝑒
⊥ = 1.452 ± 0.005 

𝑇2(0) = 12.5 ± 0.8 ns 

∆𝑔𝑒
⊥ = 0.008 
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Figure 4.9 (a) PFR signal for sample E as function of the pump-probe delay, obtained at                     

T = 2 K for several values of the transverse magnetic field. The PFR curves are vertically 

shifted for clarity. (b) Experimental data of the D0 Larmor frequency. A linear fit to Eq. (4.4) 

leads to the value 𝑔𝑒
⊥ = 1.396 ± 0.002. (c) Inverse of the spin decoherence time 𝑇2

∗. A linear 

fit according to eq. (4.5) leads to 𝑇2(0) = 4.1 ± 0.1 ns  and ∆𝑔𝑒
⊥ = 0.018. 

 

 

 

𝑔𝑒
⊥ = 1.396 ± 0.002 

𝑇2(0) = 4.1 ± 0.1 ns 

∆𝑔𝑒
⊥ = 0.018 
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Figure 4.10 (a) PFR signal for sample F as function of the pump-probe delay, obtained at 

T = 2 K for several values of the transverse magnetic field. The PFR curves are vertically 

shifted for clarity. (b) Experimental data of the D0 Larmor frequency. A linear fit to Eq. (4.4) 

leads to the value 𝑔𝑒
⊥ = 1.447 ± 0.005. (c) Inverse of the spin decoherence time 𝑇2

∗. A linear 

fit according to eq. (4.5) leads to 𝑇2(0) = 14.5 ± 0.5 ns  and ∆𝑔𝑒
⊥ = 0.010. 

 

 

 

 

 

𝑔𝑒
⊥ = 1.447 ± 0.005 

𝑇2(0) = 14.5 ± 0.5 ns 

∆𝑔𝑒
⊥ = 0.010 
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The linear fit of the expression (4.5) to the spin dephasing rates 1/𝑇2
∗, shown in Fig. 4.5 

(c)-4.10 (c), are listed in Table 4.2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2 Linear fit for 1/𝑇2
∗  according to Eq. (4.5) for each sample. (In the 

second column, the unit of B is the tesla.) 𝑇2(0) is also denoted 𝜏𝑠 in the following. 

 

Figure 4.11 shows an example of the fit of the equation (4.3) to the PFR signals at B = 0.5 

T for each of the samples. The extracted time 𝑇2
∗ is reported in each case. 

 

 

 

 

 

 

 

 

 

 

 

Sample 1/𝑻𝟐
∗  (1/ns) 𝑻𝟐(𝟎) (ns) ∆𝑔𝑒

⊥ 

A 
1

𝑇2
∗ = 0.220 + 0.735𝐵     4.5 ± 0.1   0.008 

B 
1

𝑇2
∗ = 0.181 + 0591𝐵 5.5 ± 0.1   0.007 

C 
1

𝑇2
∗ = 0.075 + 0.760𝐵 13.3 ± 0.2   0.009 

D 
1

𝑇2
∗ = 0.080 + 0.678𝐵 12.5 ± 0.8   0.008 

E 
1

𝑇2
∗ = 0.243 + 1.6𝐵      4.1 ± 0.1   0.018 

F 
1

𝑇2
∗ = 0.069 + 0.857𝐵 14.5 ± 0.5   0.010 
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𝑇2
∗ = 1.7 𝑛𝑠  

𝑇2
∗ = 2.1 𝑛𝑠  

𝑇2
∗ = 2.2 𝑛𝑠 

  

𝑇2
∗ = 0.95 𝑛𝑠  𝑇2

∗ = 2.0 𝑛𝑠  

𝑇2
∗ = 2.5 𝑛𝑠  

 

 

 

    

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

Figure 4.11 PFR signals (blue points) obtained at B = 0.5 T and T = 2 K, for samples A to F.  

The red solid lines are fits of the expression (4.3) to the experimental data.  
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The characteristic time 𝜏 of the D0X complex, extracted from the fits is equal to 60 ps. 

and does not change very much as a function of magnetic field or doping concentration. 

This time contains two contributions: the recombination rate of D0X and the hole spin 

flip rate in D0X state. The lifetime of D0X has been measured in a previous publication for 

a sample containing approximately 1011 cm-2 [14]. We have no information about the 

evolution of the D0X lifetime with the doping concentration, and then we cannot draw a 

conclusion about the spin flip rate dependence on the doping concentration of the D0X 

complex.  

The spin dephasing time 𝑇𝑥, and precession frequency Ω𝑥 of the oriented exiton spins 

extracted from the fit of sample A in Fig. 4.11 (a), are equal to 40 ps and 63 rad.ns-1, 

respectively. Ω𝑋 is close to Ω𝑒 at the same magnetic field (see Fig. 4.5 (a)). 

The metal-insulator transition in 3D materials has been calculated to appear for donor 

distances around 3 times the Bohr radius [15]; with this criterion, samples A-E are in the 

insulator regime, and sample F is in the metallic regime. We underline that the PFR 

signals are longer lasting for sample F than for sample E (see Figs. 4.9(a) and 4.10(a)), 

and as a consequence, we find a 𝜏𝑠 = 𝑇2(0) much longer for sample F than for sample E. 

This peculiarity was also observed in bulk GaAs [1].  

Figure 4.12(a) shows the spin relaxation time measured in samples A-F (full disks) and 

in one sample with the same characteristics and studied by using the same technique,  

Ref. [13], with a donor concentration of 1.2 × 1011 cm-2 (full diamond). The spin 

relaxation time versus concentration shows a non-monotonous behavior similar to the 

one found in bulk GaAs [1] and more recently in bulk CdTe [11]. The most remarkable 

feature of the dependence is a pronounced maximum of the relaxation time (~ 20 ns) at 

a donor concentration of about 1.2 × 1011 cm-2. In bulk CdTe, there is a maximum (2.5 

ns) that appears at the concentration of 5 × 1016 cm−3 [11], which corresponds 

approximately at a surface concentration of 1.4 × 1011 cm−2. We also notice that for low 

doping concentrations in bulk CdTe, 1.5 × 1013 cm−3  (~ 1 × 109 cm−2), Ref.  [11] 

reported 𝜏𝑠 = 40 ps, which is 100 times smaller than the spin relaxation time we 

measured in a 8-nm QW (4.5 ns). We underline that after the metal-insulator transition 

(see sample F, Fig. 4.12 (a)), another maximum of the spin relaxation time appears as in 

the studies performed in GaAs [1]. 

      Figure 4.12(b) shows the dependence of the 𝑔𝑒
⊥ values on the doping concentration. 

We observe a correlation between the dependence of 𝑔𝑒
⊥ and 𝜏𝑠 on doping concentration. 

This has been already noticed in bulk CdTe [11], but the reason in not clear yet, and more 

studies are needed to elucidate this behavior. 
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Figure 4.12 (a)Measured spin relaxation times in samples A-F (full disks); the full diamond 

represents a measurement of Ref. [13]. The black solid line represents the spin relaxation 

time as a function of the doping concentration according to Eq. (4.17). The relaxation 

mechanisms  for electrons bound to donors in the insulating regime and the correlation 

time are also represented: hyperfine interaction, 𝑇∆
𝑒 + 𝜏𝑠𝑛 , Eq. (4.9) and Eq. (4.11), (blue-

dashed line), anisotropic exchange interaction, Eq. (4.13) (red-dotted line) and correlation 

time, Eq. (4.10)  (solid-yellow line). (b) Transverse electron Landé factor 𝑔𝑒
⊥ as a function 

of the doping concentration (full disks). 
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4.3 Spin relaxation mechanisms for donor-bound electrons 

in a semiconductor QW in the insulating regime at low 

temperature 

In this section, we adapt the theory developed for bulk GaAs in Ref. [1] to a QW, in order 

to explain the spin relaxation time of donor-bound electrons placed in the middle of a 

QW at low temperature in the insulating regime. The dominant mechanisms for doping 

concentrations above the metal-insulator transition (sample F) will be not discussed in 

this chapter. 

4.3.1 Hyperfine interaction 

In the insulating regime at low doping concentrations, the localized electron spins relax 

via their interaction with the spins of the nuclei. A localized electron is coupled to many 

nuclear spins by the hyperfine interaction. The Hamiltonian of this interaction is given 

by the expression [14] 

                                        �̂�ℎ𝑓 =
𝑣0

2
∑ 𝐴𝑗|Ψ(�⃗� 𝑗)|

2

𝑗 �̂�𝑒 . 𝐼
𝑗 ,                                                 (4.6) 

where 𝑣0 is the volume of a unit cell, �̂�𝑒 and Ψ(�⃗� 𝑗) are the spin and envelope wave 

function of the electron at the j-th nucleus, and 𝐴𝑗  is written as 

𝐴𝑗 = (
16𝜋𝜇𝐵𝜇𝑗

3𝐼𝑗
) |𝑢𝑐(�⃗� 𝑗)|

2
,                                      (4.7) 

with 𝜇𝐵 the Bohr magneton,  𝐼𝑗 , 𝜇𝑗  and �⃗� 𝑗  the spin, magnetic moment and position of the 

j-th nucleus; and 𝑢𝑐(�⃗� 𝑗), the Bloch function of the electron at the j-th nucleus. The sum 

in Eq. (4.6) goes over all the nuclei of the lattice. 

The effective nuclear hyperfine magnetic field �⃗� 𝑁 acting on a localized electron spin is 

given by the expression 

�⃗� 𝑁 =
𝑣0

𝜇𝐵𝑔𝑒
〈∑ 𝐴𝑗|Ψ(�⃗� 𝑗)|

2

𝑗 𝐼𝑗 〉𝑁 ,                              (4.8) 

where 〈… 〉𝑁 denotes a quantum mechanical average over the ensemble of nuclear wave 
functions, and 𝑔𝑒 is the electron Landé factor. For the time scale (of the order of 
nanoseconds) in which we are interested, we can suppose that the precession frequency 
of an electron in the hyperfine field of all nucleus is much greater than the precession 
frequency of a nucleus in the hyperfine field of the electron; thus each electron spin 
moves in a frozen fluctuation of the nuclear hyperfine magnetic field.  

The temporal evolution of the spin polarization of an ensemble of localized electrons 
under this effective hyperfine nuclear magnetic field was described by Merkulov et al. 
[16]. The average spin polarization firstly drops down to 10 % of its initial value within 
a characteristic time 2𝑇∆

𝑒and afterwards, it reaches a constant value of 1/3 of its initial 

value, keeping it during a time of the order of a microsecond [14]. 𝑇∆
𝑒  is given by the 

expression [14] 
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𝑇∆
𝑒  = ℏ√

3𝑁𝐿

2𝑛 ∑ 𝐼𝑖(𝐼𝑖+1)(𝐴𝑖)
2𝑃𝑖𝑖

,                                                (4.9)                                                     

where 𝐴𝑖 are the hyperfine constants, 𝐼𝑖 the nuclear spin quantum numbers, Pi the 

abundance of the nuclear species, 𝑛 is the number of nuclei inside a unit cell, and NL the 

number of nuclei within the wave-function envelope of an electron. The sum runs over 

all nuclei of the crystal basis and for each nucleus over its non-vanishing nuclear spin. 

For CdTe, a unit cell contains one Cd and one Te atom. The stable isotopes of cadmium 

and tellurium with nonzero nuclear spin are Cd111, Cd113, Te123 and Te125; they all have 

a nuclear spin I = 1/2. Both Cd isotopes have almost the same hyperfine constant, ACd =

31 μeV, and they have together a natural abundance of PCd = 25 %. The hyperfine 

constant of  Te123 and Te125 is ATe = − 45 μeV [17], and they have an abundance of 

PTe = 8 %. To calculate NL = 2VL/Ω with Ω the volume of a unit cell and VL the effective 

volume defined as [∫|Ψ(𝑟 )|4 𝑑3𝑟]−1 [16], we take Ψ(𝑟 ) as a modified hydrogenic 

envelope wave-function for the electron in a finite QW of thickness L (see section 1.4.2 

of chapter 1). We took an effective mass 𝑚𝑒
∗ = 0.11m0 [18] and a dielectric constant of 

𝜀𝑟 = 10.2 [19]. Then, a variational calculation allows us to obtain for L = 8 nm,  𝑇∆
𝑒 =

5.6 ns, with a barrier Mg concentration Mgx  = 11 %. (Note that for sample A, Mgx  = 18 

% , leading to a higher QW confinement and 𝑇∆
𝑒 = 5.3 ns.) We underline that the 

experimental value 𝜏𝑠 = 𝑇2(0) obtained in sample A is very close to this estimation: it is 

confirmed that the spin relaxation time for sample A is mostly limited by the hyperfine 

interaction. 

4.3.2 Correlation time and hyperfine interaction 

As the distance between the donors decreases with the increase of the doping 

concentration (samples B and C in Fig. 4.12 (a)), the electron wave functions begin to 

overlap and the electronic spin jumps between two donor sites. The exchange energy 2J 

(chapter 3) allows to estimate the degree of localization of an electron on a donor site 

and to introduce the concept of correlation time. The correlation time 𝜏𝑐 is defined as 

the residence time of the electron spin on a fixed donor site:  

𝜏𝑐 ≈
ℏ

𝜉𝐽(𝑟𝑐)
,          (4.10) 

with 𝑟𝑐 the average characteristic distance between interacting donors: rc = b(n2D)−1/2 

or  rc = b(n3D)−1/3 in 2D and 3D respectively, and b and ξ numerical factors of the order 

of unity. 𝑏 is expected to be between 0.54 and 0.8, and a value of  ξ = 0.8  has been taken 

in bulk GaAs performing the fit of experimental data [1]1.  

                                                           
1In the limit of low doping concentrations, only nearest neighbors contribute to the 
exchange interaction: the distribution function of the distance to the nearest neighbor 
has a maximum at rc = 0.54(n3D)−1/3. At higher doping concentrations, second nearest 
neighbors also contribute to the interaction, rc = 0. 8(n3D)−1/3. Therefore, one expects 
b between 0.54 and 0.8. 
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Both concepts, exchange energy and correlation time, are represented in Fig. 4.13(a): an 

electron spin S precesses around a nuclear magnetic field  𝐵𝑁,𝐴 at the donor site  A, 

during an average time 𝜏𝑐 before a jump to the donor site B. 

Due to the overlapping of the electron wave-functions, the electron spin ceases to be 

bound to a single donor and interacts with a greater number of nuclei; as a result, the 

effect of nuclear-spin fluctuations becomes smaller. At each tunnel jump, the spin of the 

electron changes of nuclear environment, Fig 4.13 (b), and starts a precession around a 
new magnetic field 𝐵𝑁,𝐵. The spin relaxation time 𝜏𝑠𝑛 in this regime is given by [20] 

  
1

𝜏𝑠𝑛
=

2

3

𝜏𝑐

(𝑇∆
𝑒)2

 .                                                       (4.11)      

In our case, we consider the exchange energy 2𝐽(𝑟) of a pair of donors inside an infinite 

CdTe QW of thickness L’ calculated in chapter 3 (Eq. 3.27) [21]:  

                                 2𝐽(𝑟) = 2𝐽0𝐸h
∗3D[1 + (𝐴𝑅)2]

𝛽

2 exp[−𝛾R − 𝛽𝐴R arctg (𝐴𝑅)],        

with R = r/aB
∗3D , r the distance between donors, 𝑎𝐵

∗3𝐷 = 4.91 nm the bulk Bohr 

radius, 𝐸ℎ
∗3𝐷 = 29 meV the Hartree energy, and 2𝐽0 = 1.34 the splitting energy in 𝐸ℎ

∗3𝐷 

units between the ground state and the first excited state of a “helium atom” in a CdTe 

QW of thickness L’ = 8 nm (see appendix C). The parameters A = 0.71, β = 1.8 and 𝛾 =

0.23 are extracted from an interpolation method between 2𝐽0 and the exchange energy 

2𝐽(𝑟 ≫ 1) at large distances between the donors in an infinite QW (see chapter 3). 

 

 

 

 

 

 

      

 

 

 

 

 

 

Figure 4.13. Schematic representation of the concepts of correlation time and exchange 

energy for an electron spin. 
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 4.3.3. Anisotropic exchange interaction  

When the spin-orbit interaction in semiconductors is taken into account, it results in an 

anisotropic contribution into the exchange Hamiltonian of a pair of localized electrons. 

The anisotropic exchange interaction exists in semiconductor structures that are not 

symmetric with respect to spatial inversion, for instance in zinc-blende semiconductors.  

This mechanism can be understood in the following way. When one of the two electron 
spins (𝑆1 and 𝑆2) localized at centers A and B (Fig. 4.14 (a)) tunnels to the adjacent 

localization center, it experiences an influence of the spin-orbit field resulted from the 

under-barrier motion of the electron. This field causes a rotation of the electron spin 

through a small angle 𝜃; at the same time, the tunneling of the second electron to the 

first-electron position, is accompanied by the rotation of its spin through the same angle, 

but in the opposite direction (Fig. 4.14 (b)). The exchange interaction couples the spins 

𝑆 ′1, 𝑆 ′2 rather than the genuine spins 𝑆 1, 𝑆 2 at the centers A and B. This leads to the 

following expression for the exchange Hamiltonian in a semiconductor heterostructure 

[22]:  

   �̂�𝑒𝑥𝑐 = 2𝐽𝑆 1′. 𝑆 2′  

             = 2𝐽[𝑆 1. 𝑆 2 cos 𝜃 + (𝑑 . 𝑆 1)(𝑑 . 𝑆 2)(1 − cos 𝜃) + 𝑑 .( 𝑆 1 × 𝑆 2)sin 𝜃],           (4.12) 

where 𝑑  is a unit vector depending on the crystallographic structure. 

The first term in eq. (4.12) is the usual scalar interaction, the second term corresponds 

to the pseudo-dipole interaction, and the third one is the Dzyaloshinskii-Moriya (DM) 

interaction. The magnitude of 𝜃 characterizes the strength of the anisotropic part;  for 

small 𝜃, the anisotropic part is dominated by the DM term. 

The first isotropic term of expression (4.12) preserves the total spin of the two electrons; 

for this reason, it does not cause spin relaxation. The spin relaxation time for localized 

electrons near the insulator-metal transition, in the insulating phase, is fixed by the 

anisotropic part of the exchange Hamiltonian. The expression for the spin relaxation 

time in a QW of thickness 𝐿′ is then given by [1] 

1

𝜏𝑠𝑎
=

2

3

 θ2

𝜏𝑐
.                                                          (4.13) 

In general, for a QW, 𝜃 can be written for both zinc-blende and wurzite structures as 

𝜃 =
2𝛾𝑒𝑏

𝐸ℎ
∗𝑎𝐵

∗2
〈𝑘𝑧

2〉 𝑟,                                                    (4.14) 

with 𝑏 a parameter equal to 1 or 4 for zinc-blende or wurtzite crystals, respectively, 〈𝑘𝑧
2〉 

the average value of the squared z-component of the electron wave vector, and  𝛾𝑒 the 

splitting coefficient related to the Dresselhaus term of the spin-orbit Hamiltonian 

[23,24]. In the zinc-blende structure, this coefficient 𝛾𝑒
𝑍𝐵  is proportional to the spin-orbit 

constant 𝛼𝑠𝑜: 
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𝛾𝑒
𝑍𝐵 =

𝛼𝑠𝑜ℏ
3

𝑚𝑒
∗√2𝑚𝑒

∗𝐸𝑔

.                                                    (4.15) 

The substitution of Eq. (4.15) in Eq. (4.14) leads to the expression proposed in Ref. [25] 

for 𝜃𝑍𝐵: 

𝜃𝑍𝐵 =
2𝛼𝑠𝑜ℏ

√2𝑚𝑒
∗𝐸𝑔

〈𝑘𝑧
2〉𝑟.                                               (4.16) 

For a wurzite crystal, the expression for 𝛾𝑒
𝑊and values for specific materials can be 

found in Refs. [23,26]. 

 

 

 

      

 

 

 

 

 

 

Figure 4.14 Schematic representation  of the anisotropic exchange interaction mechanism 

acting on spins 𝑆1 and 𝑆2. The black dashed arrows in (b) represent the directions that 𝑆′1 

and 𝑆′2 spins would have after jumps due only to the isotropic exchange. 
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4.4 Fitting of the experimental results and determination of 

the spin-orbit constant in CdTe 

     The solid line in Fig. 4.12(a) represents a fit of the experimental data to the theoretical 

relaxation time of donor-bound electrons at low temperature, in the insulating regime, 

taking into account the hyperfine and anisotropic exchange interactions: 

    𝜏𝑠 = (
1

𝜏𝑠𝑛+𝑇∆
𝑒 +

1

𝜏𝑠𝑎
)
−1

,                                                  (4.17) 

with 𝑇∆
𝑒 , 𝜏𝑠𝑛 and 𝜏𝑠𝑎 given by the expressions (4.9), (4.11) and (4.13). The model (4.17) 

agrees with the experimental data using reasonable values of the parameters: 𝑇∆
𝑒 =

5.3 ns, b = 0.8, 𝜉 = 0.1,  and 𝜃 = (0.022 ± 0.003)
𝑟

𝑎𝐵
∗3𝐷. 

      From the pre-factor found in the expression of 𝜃, it is possible to deduce, using Eq. 

(4.16), a range of values for the spin-orbit constant 𝛼𝑠𝑜 in CdTe. We obtain finally 𝛼𝑆𝑂 =

0.079 ± 0.011, taking 𝐸𝑔= 1.606 eV and 〈𝑘𝑧
2〉 = 6.1 × 10−2nm−2 calculated using a 

hydrogenic wave-function inside a finite QW of thickness L’ = 8 nm  [see section (1.4.2) 

of chapter 1]. This value for 𝛼𝑠𝑜 is close to the one which can be extracted from the 

theoretical values reported in the literature for the spin splitting of the Γ6 conduction 

band in CdTe: 𝛾𝑐 = 11.75  eV Å3 [27] and 𝛾𝑐 = 8.5  eV Å3[26]; Using the relation [27] 

                                                            𝛼𝑠𝑜 =
2𝛾𝑐

ℏ3 √2𝑚𝑒
∗3𝐸𝑔,                                                       (4.18) 

one obtains 𝛼𝑠𝑜 = 0.073 and 𝛼𝑆𝑂 = 0.053, respectively. 

4.5 Discussion of the results 

4.5.1 Quantum well vs bulk  

      Now, we use our experimental value of the spin-orbit constant, 𝛼𝑠𝑜 = 0.079,  to plot 

in Fig. 4.15  the predicted spin relaxation time in bulk CdTe [solid line in Fig. 4.15], and 

make a comparison with the available experimental values. We have used Eq. (4.17) and 

the corresponding expressions for 𝜃 and J in 3D [15,26], taking b = 0.7 and 𝜉 = 0.8, 

values that are in the range proposed by Ref. [1]. The hyperfine dephasing time 𝑇Δ
𝑒 in 

bulk is calculated following Eq. (4.9) using a hydrogenic wave-function Ψ(𝑟 ) =
1

√𝜋𝑎𝐵
3/2 𝑒−𝑟/𝑎𝐵

∗3𝐷
 for the effective volume 𝑉𝐿 = [∫|Ψ(𝑟 )|4 𝑑𝑟 ]−1, which gives 𝑉𝐿 = 8𝜋𝑎𝐵

∗3𝐷 

(solid line in Fig. 4.15).  

Using the volume of a sphere of radius equal to the effective bulk Bohr radius 𝑉𝐿 =

4𝜋𝑎𝐵
∗3𝐷/3 (dashed line in Fig. 4.15), the predicted spin relaxation times is diminished, 

except near the MIT. Due to the quadratic dependence on 𝑇∆
𝑒 of 𝜏𝑠𝑛, the difference of 

approximately 80 % between the square of the two calculated values for 𝑇∆
𝑒 in GaAs and 

CdTe, produces a considerable difference for the maximum spin relaxation time 

predicted by the theory, for both bulk materials. 
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      We note that the theoretical spin relaxation times in bulk CdTe are longer than the 

relaxation times measured in a 8-nm CdTe QW (Fig. 4.12 (a)). In general, in the low-
doping regime (large R), 𝑇∆

𝑒 in a QW is slightly smaller than in bulk, since the localization 

of the electron wave-function is increased. Also, the electron exchange energy, 2J, is 

smaller (see Fig. 3.7(a) of chapter 3), therefore a shorter spin relaxation time in this 

regime is expected for a QW. At high doping concentrations (short R), a similar analysis 

leads us to conclude that the expected relaxation time is also shorter in a QW ( 𝐽3𝐷 and 
𝜃3𝐷 are smaller than  𝐽𝑄𝑊, 𝜃𝑄𝑊, therefore 1/𝜏𝑠𝑎,3𝐷 < 1/𝜏𝑠𝑎,𝑄𝑊). Thus, the theoretical 

predicted spin relaxation time in bulk is always longer than in a QW. Nevertheless, as we 

have seen in chapter 1, QWs purify the optical selection rules and allow then a full spin 

orientation by using resonant excitation of the heavy-holes. 

      We underline that, in bulk, the reported experimental values shown in Fig. 4.15 are 

very small compared to the ones predicted by the theory. In particular, for very small 

doping concentrations (< 1015 cm-3) the estimated spin relaxation time due the hyperfine 

interaction is of the order of 10 ns, and the measured one is more than two orders of 

magnitude smaller. A similar situation is observed for the maximum relaxation time, 

which is the result of a combination of the hyperfine interaction and anisotropic 

exchange interaction: the theoretical value is of the order of 100 ns and the experimental 

reported value is equal to 2 ns. Moreover, the maximum of the experimental curve 

occurs at a higher doping concentration than the calculated one. The presence of 

compensation sites in the sample, which reduces the nominal doping concentration 

could be at the origin of this last disagreement. Regarding the magnitude of the 

disagreements, they are likely related to the conditions of the concrete experimental 

measurements. Sprinzl et al. [11] obtained the spin relaxation time by using pump-probe 

experiments similar to our experiments, but they used femtosecond pulses tuned to the 

band gap of CdTe. Instead, in our experiments, we use picosecond pulses tuned to the 

D0X transition. A femtosecond pulse tuned to the bandgap is able to create a population 

of delocalized electrons in the conduction band which can remains even after 

recombination of holes with localized electrons, and also can produce a heat-up of 

localized electrons. In our experiments, we have performed a resonant excitation of the 

D0X transition to minimize all these effects, because they introduce additional spin 

relaxation mechanisms [31]. 
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Figure 4.15 Theoretical spin relaxation time (solid line) as a function of the doping 

concentration for CdTe bulk. The dotted line represents the spin relaxation time when a 

volume of a sphere of radius 𝑎𝐵
∗3𝐷 is considered as effective volume 𝑉𝐿 in the calculation of 

𝑇𝛥
𝑒 (see section 4.3.1). We have also reported experimental results concerning spin 

relaxation times at low temperature for bulk CdTe. 
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4.5.2 Comparison with other zinc-blende bulk 

semiconductor materials 

      Now, let us compare bulk CdTe spin relaxation times with those theoretically 

estimated and experimentally observed in bulk GaAs (Fig. 4.16 (a)) and ZnSe (Fig. 4.16 

(b)) materials. As we have done for bulk CdTe, we have use Eq. (4.17) to calculate the 
spin relaxation time. The parameters involved in the calculation of 𝑇∆

𝑒 for each material 

are reported in Table 4.3. The value for the spin-orbit constant of ZnSe has been 

calculated using 𝛾𝑐 = 1.62 eV. Å3[27] and Eq. (4.18).  

In Fig. 4.16 (a) we see that, for residual doping concentrations, when the 

hyperfine interaction is the dominant mechanism, the spin relaxation time predicted for 
bulk GaAs is of the same order than bulk CdTe: 𝑇∆

𝑒 is equal to  8.6 ns and 9.7 ns, 

respectively.   

In the intermediate regime, the maximum value predicted for bulk GaAs is longer 

than the one predicted for bulk CdTe, and appear at lower doping concentration. This is 

explained as follows. First, at low doping concentrations (large R), the exchange energy 

is smaller in CdTe than in GaAs (see Fig. 3.8(b) of chapter 3 ), therefore 𝜏𝑠𝑛, which is 

directly proportional to J, is smaller in CdTe. Second, for high doping concentrations 

(short R) (see Fig. 3.8(a) of chapter 3), J and 𝜃 are greater for CdTe than for GaAs (due 

to the greater value of the spin-orbit constant and smaller Bohr radius in CdTe) therefore 

𝜏𝑠𝑎, which is inversely proportional to them, is smaller. The metal-insulator transition 

appears for GaAs at a lower doping concentration than for CdTe, since the Bohr radius 

in CdTe is smaller than in GaAs.     

      The experimental results for GaAs are slightly shorter than those predicted by the 

theory but the agreement is rather good. In bulk materials, a circularly polarized 

excitation creates heavy and light excitons, and then additional spin relaxation 

mechanisms can appear during the exciton lifetime, affecting also the spin relaxation of 

the localized electrons. A better agreement with the experimental results is achieved 

imposing the volume of a sphere of radius equal to the effective bulk Bohr radius, 𝑉𝐿 =

4𝜋𝑎𝐵
∗3/3, for the calculation of 𝑇Δ

𝑒 (dashed lines in Figs. 4.16 (a) and (b)), as is done in 

Refs. [13,7]. 

Figure 4.16 (b) shows that the predicted maximum relaxation time for ZnSe is of the 

order of 1𝜇𝑠. Recent studies have shown spin relaxation times around 30 ns at lower 

doping concentrations [7], but there are no other studies in the isolated regime. From a 

theoretical point of view, ZnSe appears as one possible candidate for obtaining long spin 

relaxation times. 

 

 

 

 

 



89 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Theoretical spin relaxation times (solid lines) as a function of the doping 

concentration for bulk (a) GaAs and (b) ZnSe. The dotted lines represent the spin relaxation 

times when a volume of a sphere of radius 𝑎𝐵
∗3𝐷 is considered as effective volume 𝑉𝐿 in the 

calculation of 𝑇𝛥
𝑒 (see sec. 4.3.1). We have also reported different experimental results 

concerning spin relaxation times at low temperature for each material. 
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Effective 
Mass 

 
Dielectric 
constant 

Isotopes 
with 

Non-zero 
nuclear 

spin 

 
Nuclear 

spin 
Abundance 

 
 

Hyperfine 
constants 

 

 
Spin- orbit 
constant 

 
 

 
𝐓∆

𝒆 [29] 
(ns) 

 

GaAs 0.067a 12.35b 

Ga69 
Ga71 
As75 

IGa = 3/2 
IAs = 3/2 

 
   PGa = 100 % 
   PAs = 100 % 

 

 ∑ (Ai)
2

I
 

= 1.2 10−3meV2 c 
0.067d 8.6 

CdTe 0.11e 10.2f 

 
 Cd111, 
Cd113 
Te123 
Te125 

 
ICd = 1/2 
ITe = 1/2 

 
 

  PCd = 25 % 
PTe =  8 % 

 

 
 

Acd = 31 μeV 
 ATe = 45 μeV 

 

0.079 
 

9.7 
 

 
ZnSe 

 
0.145g 8.8b Zn67 

Se77 
IZn =5/2 
ISe =1/2 

 
    PZn = 4.11 % 
     PSe = 7.58 % 

 

 
  AZn = 3.7   μeV 
   ASe = 33.6 μeV 

 

0.021 13.1 

 

aRef. [32], bRef. [33], cRef. [16], dRef. [34], eRef. [18], fRef. [19], gRef. [35]. 

 

TABLE 4.3 Parameters required for the calculation of the spin dephasing time 𝑇𝛥
𝑒 due to 

the hyperfine interaction in GaAs, CdTe, and ZnSe. 

4.5.3 Comparison with wurzite semiconductor materials  

Spin relaxation properties of GaN and ZnO are less known than those of GaAs. These 

materials with a wurzite crystal structure seem very interesting because they show very 

long spin relaxation and decoherence times. Indeed, Beschoten et al. have measured at 

5 K and around 220 mT, a spin coherence time of 7 ns for a doping concentration of 3.5 

x 1016 cm-3 in GaN [8]. In a n-doped ZnO epilayer with concentrations close to the metallic 

zone, S. Ghosh et al. found a spin coherence time of 2 ns at T = 30 K [10].  

For wurzite semiconductor materials, the spin relaxation mechanisms described above 

must be adapted [36]. When the anisotropic exchange interaction is the dominant 

mechanism, equations (4.13) and (4.14) with 𝑏 = 4 give the spin relaxation time in a 

wurzite QW. In the following, we make a comparison between the spin relaxation time 

for a GaAs QW and a ZnO-QW with a doping concentration near the metal-insulator 

transition, using the calculated J for a QW (chapter 3). 

In ZnO, 𝛾𝑒
𝑊has been calculated to be 0.33 eV.Å3 (see Refs [23,26]), two orders of 

magnitude smaller than for GaAs. By using the parameters given in Table 3.1 (see 

chapter 3), and for a doping concentration in the insulating regime near the Mott 

transition (r = 5nm), we are then able to estimate a relaxation time 𝜏𝑠𝑎
𝑍𝑛𝑂 ≈ 16 ns for a 

QW with a thickness equal to 10 nm.  This value is larger than the one obtained for a  

GaAs QW of the same thickness, 𝜏𝑠𝑎
𝐺𝑎𝐴𝑠 ≈ 150 ps, and also larger than the relaxation times 

measured by Ghosh et al.[10] on ZnO epilayers close to the Mott transition (0.5 – 2 ns, 

for 𝑛𝑎𝐵
∗3𝐷 = 0.01 − 0.1). Nevertheless, the cited experimental values may also depend 
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on spin relaxation processes not discussed here, and induced by the optical excitation 

conditions [31]. 

4.6 Conclusions  

Considering the two dominant spin relaxation mechanisms for electron bound to 

donors, in the insulating regime and at low temperature, we have adapted the bulk 

theoretical description to a QW. We have then obtained the doping density dependence 

of the spin relaxation time in the whole insulating regime. Moreover, we estimated from 

our measured experimental data the value for the dimensionless spin-orbit constant in 

CdTe: 𝛼𝑠𝑜 = 0.079 ± 0.011. We calculated the electronic spin relaxation time in bulk 

CdTe, to compare it with available experimental results [11], which are at least one order 

of magnitude smaller than the spin relaxation time found in our QW system, and two 

orders of magnitude smaller than those predicted by the theory for a bulk system. We 

showed that the theoretical spin relaxation times in bulk CdTe are larger than in QWs, 

when the same mechanisms are considered. We then discussed the possible sources of 

additional spin relaxation mechanisms that can be present during experimental 

measurements.  

We also discussed and compared theoretical and experimental results in a very well-

studied semiconductor, GaAs, to another less studied bulk semiconductor, ZnSe. From 

the theoretical calculations developed here, this II-VI material appears to be a good 

candidate for observation of long electron spin relaxation times, of the order of 𝜇s.  

Finally, when doing the comparison with a wurzite QW made of ZnO, due to the low 

values of the electron exchange energy and the spin-orbit interaction in ZnO, we deduced 

that the spin relaxation time in ZnO near the metal-insulator transition should be larger 

than the one found in GaAs, and then ZnO could be a suitable material for quantum 

information, provided the entanglement mechanism between spin qubits be different 

from the electron exchange interaction. 
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5.1 Previous studies 

In the previous chapter, we devoted our attention to the study of the spin relaxation time 

in the insulating regime at low temperature, where electrons are localized on donors. 

The opposite situation occurs in the metallic regime for very high doping concentrations, 

where all the electrons are delocalized at any temperature. In this regime, the spin 

relaxation time is dominated by the D’yakonov-Perel’ (DP) or Elliot-Yafet (EY) 

mechanism, depending on the characteristics of the material [1,2]. 

Near the MIT, the description of the spin relaxation is less established even at low 

temperature, because of the co-existence of localized electrons in a band of impurities 

and itinerant electrons leading to filamentary electron transport [3,4]. Recently, several 

calculations have attempted to describe at low temperature the spin relaxation beyond 

the MIT [5,6], based on the model of Matsubara and Toyozawa [7]. The description of 

the spin relaxation at low temperature implies a fundamental understanding of the 

spatial dynamics of the electrons [3]. T. Wellens and R. A. Jalabert have described lately 

the hopping dynamics of electrons in a disordered network of impurity sites [8], but 

more theoretical work is needed in this direction.  

In this chapter, we are interested in studying the influence of the temperature on the 

electron spin relaxation time of donor-bound electrons immersed in the middle of a QW. 

In the insulating regime, when temperature increases, electrons bound to donors 

delocalize, then two populations of electrons exist: localized and itinerant electrons. A 

recent theoretical model that takes into account the existence and interaction between 

these two spin populations [9,10] has succeeded to explain the evolution in temperature 

of the spin relaxation time of donor-bound electrons in bulk GaAs and ZnO [11,12]. Such 

an approach has also been extended to QWs [13]. We will use this theoretical framework 

to explain the evolution in temperature of the spin relaxation time for samples B, C, E 

and F (see section 4.2.1) at a fixed magnetic field.  

5.2 Experimental results 

To study the spin dynamics of the resident electrons in our samples we use the PKR 

technique described in chapter 2. The maximum temporal window in this experimental 

set-up is 1.15 ns, which is well adapted to our systems. In order to study the electron 

spin dynamics, a fixed magnetic field of 𝐵0 = 0.56 T is applied in Voigt configuration. This 

value of the magnetic field has been determined by measuring the Larmor precession 

frequency in a sample with known Landé factor (see eq. (4.4), chapter 4). 

The samples studied during this chapter are samples B, C, E and F of chapter 4 (see table 
4.1 for their concentrations). Supported by the behavior of 𝑇2(0) with the concentration 

and by the Mott criterion [14], we have concluded in chapter 4  that samples B, C and E 

are in the insulating regime, and sample F is slightly above the Mott transition. To 

characterize the evolution in temperature of the 𝐷0𝑋 transition energy, we first study 

the evolution in temperature of the PL for each of these samples. 
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5.2.1 Temperature evolution of the photoluminescence 

Figure 5.1(a) shows the PL spectra recorded for sample C at different temperatures. At 

low temperatures, the PL is dominated by a band centered at 1.611 eV and associated to 

the recombination of the donor-bound exciton (D0X). A second peak at higher energy, 

1.616 eV, is also observed and is identified as the free exciton (X) contribution. As the 

temperature is increased, both features are shifted to lower energies and the widths of 

both bands increase. Figure 5.1(b) summarizes the evolution of the energy peaks 

appearing in the PL of sample C, as a function of the temperature. It is essentially fixed 

by the evolution of the CdTe QW energy bandgap. We observe that the D0X band merges 

with the X one above 60 K. We partly explain this phenomenon by the thermal activation 

of the D0X population. We write the variation of the D0X population with the temperature 

according to the equation:   

𝑛𝐷0𝑋(𝑇) =
𝑛𝐷0𝑋(0)

1 + exp (−
𝐸𝑙

𝑘𝐵𝑇
)
,                                            (5.1)   

where 𝑛𝐷0𝑋(𝑇) represents the D0X population at temperature T, 𝑛𝐷0𝑋(0) represents the 

D0X population at T = 0 K, and 𝐸𝑙  is the binding energy of X on D0 in the D0X complex. The 

binding energy  𝐸𝑙  is given by the difference between the D0X and X lines observed in the 

PL. Taking the average value of this energy difference, we find 𝐸𝑙 = 3.7 meV; so at T = 60 
K we have 𝑛𝐷0𝑋(60 𝐾) = 0.7𝑛𝐷0𝑋 (0), meaning that 30 % of the bound excitons have 

joined the population of free excitons. Figure 5.1(c) shows the PL spectra for sample F, 

which has a doping concentration slightly above the Mott transition, according to the 

Mott criterion [14] and the studies reported in Chapter 4. We underline that these PL 

spectra are broad; contrary to the sample C, we cannot distinguish separate emissions 

from donor-bound and free excitons.  

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

    Ref. [30] 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 5.1 (a) PL spectra of sample C, for temperatures ranging from 5 K to 120 K. (b) 

Variations with temperature of the peak energies in the PL spectra, for sample C; X: exciton 

line; D0X: donor-bound exciton line; Egap: gap energy. (c) PL spectra of sample F, for 

temperatures ranging from 10 K to 80 K. 
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5.2.2 Temperature evolution of the Kerr rotation signal at a 

fixed magnetic field 

The photo-induced Kerr rotation signal obtained on sample C at the temperature T = 50 

K, under a magnetic field 𝐵0 = 0.56 T, is shown in Figs. 5.2 (a) and (b) when the pump-

probe energy is respectively at the D0X and X transitions. In both cases, an oscillatory 

and long-lasting signal is observed. As we have already mentioned, this oscillatory 

signal, with an envelope time larger than the lifetime of the D0X complex (TR ~ 200 ps 

[15]), is the signature of the spin polarization of electrons bound to donors D0 [16]. We 

underline that a longer long-lasting signal is observed when the excitation is done in 

resonance with the D0X transition. When the excitation is done at higher energies, the 

spin relaxation time is shorten due to the photo-creation of other species (Ref. [17]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Photo-induced Kerr rotation signals for sample C, in a magnetic field of 𝐵0 = 

0.56 T, at T = 50 K. Pump and probe energies are tuned to the wavelength (a) 𝜆 = 772.4 nm, 

D0X transition; (b) 𝜆 = 769.6 nm, X transition. Blue full disks: experimental data; red 

continuous lines: fits with Eq. (5.2). 
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We have studied the temperature evolution of the spin dynamics in samples B, C, E and 

F.  Tuning pump and probe energies at the D0X transition, we create mainly donor-bound 

excitons, since the band-width of the used mode-locked Ti:sapphire laser is less than 1 

meV. Figures 5.3(a)-(d) represent the photo-induced Kerr rotation signal obtained in 

samples B-F respectively, in the 10 – 80 K range. The focus spot area is (3𝜇m)2 and the 

energy of the pump pulses is 0.9 𝜇J cm−2.  

Two components are visible in each curve. To extract the times and relative amplitudes 

of the short- and long-living components, we have fitted each curve with the equation: 

𝑃𝐾𝑅(𝑡) = 𝐴2𝑒
−𝑡

𝑇𝑥
⁄ cos(Ω𝑥𝑡) + 𝐴3𝑒

−𝑡
𝑇2

∗⁄
cos(Ω𝑒𝑡),                            (5.2)    

where 𝐴2 and 𝐴3 are constants describing the amplitudes of the fast (𝑇𝑥) and slow (𝑇2
∗)  

components with Larmor frequencies Ω𝑥 and Ω𝑒 , respectively. As we have seen in 

chapter 4, eq. 4.3, the fast component is associated with the exciton contribution, and 

the second one with the D0 contribution. The component related with the exciton 

contribution becomes more evident at high temperature. 

In all the samples, the spin dephasing time 𝑇2
∗ of electrons bound to donors becomes 

shorter as the temperature is increased. Sample C shows slower decays at all 

temperatures. In particular, at low temperatures 10-30 K, it exhibits almost no decay in 

the 1-ns measurement window, making the determination of the spin dephasing time 

less accurate.  

Figure 5.4 shows the fit of expression (5.2) to the experimental data obtained for sample 

E at different temperatures with 𝐵0 = 0.56 T. The Larmor precession frequency of the 

donor-bound electrons is Ω𝑒 = 68.5 rad ns−1; the values of 𝑇2
∗ at different temperatures 

are indicated in the figure. As can be seen 𝑇2
∗ decreases as the temperature is increased  
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Figure 5.3. Photo-induced Kerr rotation signals in a magnetic field 𝐵0 = 0.56 T, at different 

temperatures, in (a) sample B; (b) sample C; (c) sample E; (d) sample F. Pump and probe 

energies are tuned to the D0X transitions. 
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Figure 5.4 Fit of expression (5.2) to the PKR signals at different temperatures for sample 

E, at 𝐵0 = 0.56 T. (a) T = 10 K, the measured 𝑇2
∗ is 980 ps; (b) T = 20 K, 𝑇2

∗ = 890 ps ; (c) T = 30 

K, 𝑇2
∗ = 800 ps; (d) T = 40 K, 𝑇2

∗ = 740 ps;  (e) T = 60 K, 𝑇2
∗ = 520 ps; (f) T = 80 K, 𝑇2

∗ = 400 ps. At 

all the temperatures, the measured Larmor frequency is Ωe = 68.5 rad ns−1. 
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5.3 Spin relaxation mechanisms: theoretical considerations 

5.3.1 Spin relaxation mechanisms for conduction electrons 

In chapter 4, we have revisited the spin relaxation mechanisms for localized electrons 

(see section 4.3). We describe here the two principal mechanisms responsible for the 

spin relaxation of conduction electrons:  Elliot-Yafet and D’yakonov-Perel’ mechanisms. 

a. D’yakonov-Perel’ mechanism 

An efficient mechanism due to spin-orbit coupling in systems lacking inversion 

symmetry was found by M. I. D’yakonov and V. I. Perel’ in 1971 [18]. This mechanism 

can be interpreted in terms of an effective magnetic field of spin-orbit interaction, which 

acts upon the electron spin. The electron spin precesses in this effective magnetic field 

for a time 𝜏𝑝 until a collision occurs. The value and direction of the spin-orbit field are 

determined by the electron �⃗�  vector and its direction with respect to the crystal axes. 

Thus, frequent collisions with impurities or phonons, which change the electron wave 

vector, make the spin-orbit field fluctuates, resulting in a dynamical suppression of spin 

relaxation.  

 

 

 

 

 

 

 

Figure 5.5 Schematic representation of the DP mechanism. The spin of a conduction 

electron (red arrow) precesses around a constant spin-orbit field �⃗� (�⃗� ) between each 

collision. 

 

The DP theory has been recently generalized to describe the spin relaxation time for an 

electron gas in a QW at any temperature [19]. The spin relaxation time 𝜏𝑠
𝐷𝑃 is written as 

a function of the temperature via the Fermi distribution function and the temperature 

dependence of the transport mobility: 

1

𝜏𝑠
𝐷𝑃 =

4

ℏ2

𝛽𝐸𝐹𝜏𝑡𝑟

1−𝑒− 𝛽𝐸𝐹
[𝛾𝑐

2〈𝑘𝑧
2〉2

 𝜁

𝛽
−

𝛾𝑐
2〈𝑘𝑧

2〉

2
(
 𝜁

𝛽
)
2

 
𝐽𝜈+2(𝛽𝜇0)

𝐽𝜈+1(𝛽𝜇0)
+ (1 +

𝜏3

𝜏1
) 𝛾𝑐

2  (
 𝜁

𝛽
)
3 𝐽𝜈+2(𝛽𝜇0)

𝐽𝜈+1(𝛽𝜇0)
 ],           

(5.3) 

where  𝜇0 = 𝑘𝐵𝑇 ln (𝑒
 
𝐸𝐹
𝑘𝐵𝑇 − 1) is the chemical potential, 𝐸𝐹 =

ℏ2𝜋

𝑚𝑒
∗ 𝑛𝑐  is the Fermi energy 

with  𝑚𝑒
∗  the effective electron mass, and 𝑛𝑐  the concentration of conduction electrons 

in 2D, 𝛾𝑐 is the Dresselhaus coefficient, which can be determined from the spin-orbit 
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constant 𝛼𝑠𝑜 obtained in Chapter 4 (see eq. 4.18), 〈𝑘𝑧
2〉  is the average value of the 

squared z component of the electron wave vector (see chapter 1), 𝜁 = 2𝑚𝑒
∗  /ℏ2, 𝛽 =

1/𝑘𝐵𝑇, 𝜏3/𝜏1 is a constant describing the angular scattering characteristics of the 

scattering mechanism, and 𝜏𝑡𝑟 is the transport collision time (also denoted 𝜏𝑝) given by: 

 𝜏𝑡𝑟 = 𝜏𝑝 =
Ξ𝐽ν+1(𝛽𝜇0)

𝛽ν+1𝐸𝐹
,                                                     (5.4)         

with 𝐽𝑛(𝑧) = ∫
𝑥𝑛

4𝑐𝑜𝑠ℎ2(
𝑥−𝑧

2
)

∞

0
𝑑𝑥 and Ξ a coefficient that varies slightly with the 

temperature, independent of energy, and related with the power law dependence of 𝜏1 

on the energy. The index ν takes the values 0, 1 or 2 depending on the scattering type 

[19]. Each type of scattering encloses different scattering mechanisms: type I is 

associated to acoustic phonons, optical phonons, screened ionized impurities, neutral 

impurities, alloy scattering and interface roughness; type II, with acoustic and optical 

phonons; and type III, with weakly screened ionized impurities (Ref. [19]). 

b. Elliot-Yafet mechanism  

In 1954, Elliot and Yafet showed that conduction electron spins can relax via ordinary 

momentum scattering [2] (such as phonons or impurities). Figure 5.6 shows a scheme 

of the EY mechanism. The spin information is lost at each collision undergone by the 

electron. 

 

 

 

 

 

 

Figure 5.6 Schematic representation of the EY mechanism.  

Fishman and Lampel [20] deduced the expression for the spin relaxation rate 1/𝜏𝑠
𝐸𝑌(𝐸�⃗� ) 

in bulk materials, by assuming that the potential due to the spin-orbit interaction varies 

slowly on the scale of a unit cell: 

1

𝜏𝑠
𝐸𝑌(𝐸�⃗� )

 ~ (
∆𝑠𝑜

𝐸𝑔 + ∆𝑠𝑜
)

2

(
𝐸�⃗� 

𝐸𝑔
)

2
1

𝜏𝑝(𝐸�⃗� )
 ,                              (5.5) 

with ∆𝑠𝑜 the spin-orbit splitting energy, and 𝐸�⃗�  the electron kinetic energy which is equal 

to 𝑘𝐵𝑇  for non-degenerate densities and to 𝐸𝐹 for the degenerate ones [21].  

The expression for 𝜏𝑠
𝐸𝑌 has been adapted to a QW’s  [22]:  

1

𝜏𝑠
𝐸𝑌(𝐸�⃗� )

~𝐴 (
∆𝑠𝑜

𝐸𝑔 + ∆𝑠𝑜
)

2

(1 −
𝑚𝑒

∗

𝑚0
)
2 𝐸1𝑒𝐸�⃗� 

𝐸𝑔
2

1

𝜏𝑝(𝐸�⃗� )
,                   (5.6)   
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with 𝐸1𝑒 the first quantum confinement energy of the electron in the QW. From this 

expression, we can see that the EY mechanism becomes important for small-band-gap 

semiconductors with large spin-orbit splittings. The pre-factor A is of the order of unity, 

without being known more precisely. 

The most important difference between the EY and DP mechanisms is their opposite 

dependence on 𝜏𝑝. In the EY process, the electron spin changes orientation at each 

collision, the more collisions there are, the greater is the loss of spin memory. In the DP 

mechanism, the spin phases are randomized between collisions, since the electron spin 

precesse with different frequencies depending on their momenta. 

     5.3.2 Temperature evolution of the spin relaxation time in 

QWs 

The temperature dependence of the spin relaxation time for an electron localized on 

donor has been explained in bulk and QWs invoking spin exchange between two spin 

species: spin localized on donors, and spin carried by itinerant electrons [9, 10, 13]. 

At low temperatures, the donors are nearly all occupied and the electron spins are 

localized. As the temperature is increased, the number of conduction electrons increases 

due to the thermal ionization of the electron bound to donors. The electronic spins 

localized on the donors interact with the spin of conduction electrons by isotropic 

exchange interaction. This interaction conserves the total spin; assuming that the cross 

relaxation is fast enough, the total spin is equilibrated between localized and conduction 

electrons by taking into account their thermal equilibrium concentrations. Taking into 

account the existence of these two spin systems, the spin relaxation rate of donor-bound 

electrons at zero magnetic field is found in the form [13]: 

             
1

𝜏𝑠
=

𝑛𝑙

𝑛𝑖𝑚𝑝

1

𝜏𝑙
+

𝑛𝑐

𝑛𝑖𝑚𝑝

1

𝜏𝑠
𝑐 ,                                                   (5.7) 

where 𝑛𝑙(𝑇) [𝑛𝑐(𝑇)] is the localized [conduction] equilibrium concentration, 𝑛𝑖𝑚𝑝 =

𝑛𝑙 + 𝑛𝑐  is the total impurity concentration, and 𝜏𝑙 (𝜏𝑠
𝑐) is the localized (conduction) spin 

relaxation time. 𝑛𝑙(𝑇) can be determined exactly in 2D, at any temperature [24]: 

                                                            
𝑛𝑙(𝑇)

𝑛𝑖𝑚𝑝
=

√1+𝑄(𝑇,𝑛𝑖𝑚𝑝 ) − 1 

√1+𝑄(𝑇,𝑛𝑖𝑚𝑝) + 1
,                                              (5.8) 

with 𝑄(𝑇, 𝑛𝑖𝑚𝑝 ) =
8𝑛𝑖𝑚𝑝

𝑁𝑐
𝑒

−
𝐸𝐵
𝑘𝐵𝑇, 𝑁𝑐 = 𝑚𝑒

∗𝑘𝐵𝑇/ℏ2𝜋 , and 𝐸𝐵 the binding energy of an electron 

bound to a donor. 𝑛𝑐(𝑇)/𝑛𝑖𝑚𝑝 can be found using the constraint: 

                                                               
𝑛𝑙(𝑇)

𝑛𝑖𝑚𝑝
+

𝑛𝑐(𝑇)

𝑛𝑖𝑚𝑝
= 1 .                                              (5.9) 

For vanishing temperatures, when 𝑛𝑖𝑚𝑝 is on the range of the insulating regime, 

𝑛𝑙(𝑇) goes to 𝑛𝑖𝑚𝑝 and 𝑛𝑐(𝑇) goes to zero. However, as we will explain later 𝑛𝑐(0) ≠ 0 

when 𝑛𝑖𝑚𝑝 is above the MIT. The spin relaxation mechanisms for localized and 

conduction electrons that govern the times 𝜏𝑙 and 𝜏𝑠
𝑐  appearing in Eq. (5.7) are in 

principle the same as at low temperature. For localized electrons, 𝜏𝑙 is determined by Eq. 
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(4.17) of chapter 4, while for conduction electrons, the DP mechanism governs the spin 

relaxation time, Eq. (5.3). 

5.4 Analysis of the results 

We have experimentally determined in our four samples, for the temperature range 10 

– 80 K, the long-lasting spin dephasing time 𝑇2
∗ [see Eq. (5.2)] at a fixed magnetic field of 

𝐵0 =  0.56 T. The experimentally measured dephasing time is affected by 

inhomogeneities caused by the local variations of the electron 𝑔𝑒
⊥ factors.  As we have 

seen in chapter 4, 𝑇2
∗  is related with the spin relaxation time 𝜏𝑠 = 𝑇2(0) of a single 

electron by the expression (see eq. (4.5) of chapter 4): 

1

𝑇2
∗ =

1

𝜏𝑠
+

∆𝑔𝑒
⊥𝜇𝐵𝐵0

ℏ
.                                                  (5.10) 

The width ∆𝑔𝑒
⊥ of the 𝑔𝑒

⊥ distribution for each sample has been determined in chapter 4. 

We have fitted the measured 𝑇2
∗−1 for samples B to F with Eq. (5.10) using 𝜏𝑠

−1 given by 

the model proposed by Harmon et al. [13] [Eq. (5.7)]: 

1

𝑇2
∗ =

𝑛𝑙

𝑛𝑖𝑚𝑝
(
1

𝜏𝑙
+

∆𝑔𝑒
⊥𝜇𝐵𝐵0

ℏ
) +

𝑛𝑐

𝑛𝑖𝑚𝑝
(

1

𝜏𝑠
𝑐 +

∆𝑔𝑒
⊥𝜇𝐵𝐵0

ℏ
) ,                       (5.11) 

In the remainder we note 
1

𝜏𝑙
+

∆𝑔𝑒
⊥𝜇𝐵𝐵0

ℏ
=

1

𝜏𝑙
∗ the spin dephasing rate of the ensemble of 

localized electrons.  We have neglected the inhomogenities of 𝑔𝑒
⊥ factors for conduction 

electrons, because in a previous work on a 8-nm CdTe QW containing a 2D electron gas 

[25], the spin relaxation time of conduction electrons showed to be negligibly sensitive 

to these inhomogenities. 

5.4.1 Insulating regime 

For samples B, C and E in the insulating regime, the spin dephasing rate 𝑇2
∗−1 is shown 

in Figs. 5.7 (a)-(c). We have considered that the conduction electrons relax according to 

the DP mechanism (𝜏𝑠
𝑐 = 𝜏𝑠

𝐷𝑃), Eq. (5.3). It will be shown a posteriori that the 

contribution of the EY mechanism is negligible. In order to identify which type of 

scattering is dominant, we have fitted the experimental data scanning the values ν = 0, 1 

and 2 in Eq. (5.3). In this regime, the Fermi energy varies with the temperature-

dependent concentration 𝑛𝑐(𝑇), determined by Eqs. (5.8) and (5.9). For each sample, the 

parameters to be determined are: the binding energy 𝐸𝐵, the spin dephasing time 𝜏𝑙
∗, and 

the coefficient Ξ (assumed to be a constant independent on T).  

In Fig. 5.7, the blue solid line shows the spin dephasing rate 𝑇2
∗−1 as a function of the 

temperature, according to Eqs. (5.8) and (5.11), and using the type-I scattering (𝑣 = 0)  

in 𝜏𝑠
𝐷𝑃, Eq. (5.3). Since it is impossible to fit the experimental data assuming type-II (𝑣 =

1) or type-III (𝑣 = 2) scatterings, we can firmly identify the type-I scattering as the 

effective one in the studied samples. Table 5.1, on page 113,  gives the fitting parameters 

𝐸𝐵, 𝜏𝑙
∗ and Ξ for all studied samples.  
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At low temperatures, it has been shown that the mechanism that governs the spin 

relaxation in sample B (with a low-doping concentration) is the hyperfine interaction 

(see chapter 4). In chapter 1, the binding energy for an isolated donor has been 

calculated to be 𝐸𝐵 = 24.7 meV in sample A. Taking this theoretical value as a starting 
point, we have fitted the experimental data for sample B, with only 𝜏𝑙

∗ and Ξ as free 

parameters [see dashed line in Fig. 5.7(a)]. We have obtained 𝜏𝑙
∗ = 1.47 ± 0.05 ns and  

Ξ = 146 fs. As shown in Fig. 5.7(a), a lower binding energy is needed to agree better with 

the experimental results; the solid line represents the spin dephasing time considering 

a lower binding energy,  𝐸𝐵 = 19  meV. The value extracted for the spin dephasing time 

of the localized electrons, 𝜏𝑙
∗ = 1.40 ns, compares well with 1.97 ns calculated (from the 

the linear dependence of 𝑇2
∗(𝐵) −1 found in chapter 4, see table 4.2) in the same magnetic 

field 𝐵0 = 0.56 T, at 2 K [black diamond in Fig. 5.7(a)].  

In Eq. (5.8), the concentrations 𝑛𝑙(𝑇) [and 𝑛𝑐(𝑇)] of localized and [conduction electrons] 

have a strong dependence on the binding energy. The smaller the binding energy, the 

lower the temperature at which a donor is ionized. In QWs, there is no theory that 

predicts a value for the binding energy at any doping concentration. Nonetheless, in bulk 

systems, it has been generally shown, theoretically and experimentally, that the binding 

energy of a donor-bound electron decreases when the doping concentration increases 

[26-29] 
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Figure 5.7 Measurements of the spin dephasing rates at different temperatures (red full 

disks) in (a) sample B; (b) sample C; (c) sample E. The blue continuous lines are theoretical 

fits according to Eqs. (5.3), (5.8) and (5.11), for the type-I scattering (𝜈 = 0). The fitting 

parameters are given in Table 5.1. The dashed line in Fig. (a) is a theoretical fit forcing 𝐸𝐵 

= 24.7 meV. The black full diamonds are data points calculated using the dependence of  

𝑇2
∗ −1on the magnetic field for each sample (see chapter 4, Table 4.1). 
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As can be seen in Fig. 5.8 (a), right axis, the density of conduction electrons in sample B 

starts to increase at a temperature around 25 K, and at T = 100 K, almost one half of the 

donors has been ionized. In Fig. 5.8 (a), the conduction spin relaxation time is also 

plotted as a function of the temperature, with  𝐸𝐵 = 19 meV and Ξ = 97 fs, known from 

the theoretical fit of Fig. 5.7(a). As the density of conduction electrons increases with the 

temperature, the spin relaxation time decreases.  

Sample C contains an intermediate doping concentration, and the mechanism that 

governs the spin relaxation time of the localized electrons is an interplay between the 

hyperfine and the anisotropic exchange interaction (see Fig. 4.12, chapter 4). Since there 

is no theory that predicts a value of the binding energy for this doping concentration, we 

took it as a free parameter to fit the data of Fig. 5.7(b). The values extracted from the 

theoretical fit are: 𝐸𝐵 = 20  meV, 𝜏𝑙
∗ = 2.65 ns,  and Ξ = 36 fs. The value of the localized 

spin dephasing time 𝜏𝑙
∗ is of the same order as the one calculated from the data of chapter 

4, at 2 K, in the magnetic field 𝐵0  = 0.56 𝑇 [black diamond in Fig. 5.7 (b)]. The difference 

between the values may come from slightly different experimental conditions, in 

particular, the density of excitation. 

Finally, sample E contains a doping concentration that is close to the metal-insulator 

transition while keeping in the insulating regime. The principal spin relaxation 

mechanism for localized electrons in this region is the anisotropic exchange interaction 

(Fig. 4.12, chapter 4). The values extracted from the theoretical fit in Fig. 5.7(c) are: 𝐸𝐵 =

8 meV, 𝜏𝑙
∗ = 0.95 ± 0.05 ns, Ξ = 47 fs. The value for the localized spin dephasing time 

agrees well with the calculated value of 0.9 ns found, at 2 K, in the magnetic field 𝐵0  =

0.56 T, following the study of chapter 4.  

For this sample E, due to the small binding energy 𝐸𝐵 = 8 meV, the localized electrons 

start to ionize at low temperature, see Fig. 5.8(c). At high temperature, T ~ 100 K, the 

conduction spin relaxation time is of the order of 100 ps. This value compares well to 

the one observed in 2D electron gas of n-doped CdTe QW with a similar concentration 

at low temperature [25]. 

We suspect that, due to the kind of the studied system (donors inside a QW) and the 

range of temperatures 10-80 K, scatterings with neutral impurities and with screened 

ionized impurities (at the highest temperature) are the more probable scattering 

mechanisms. But we cannot exclude other mechanisms, as for example the one related 

to the interface roughness. Because we worked at relatively low temperature, we 

exclude however the scattering due to acoustic phonons. 

We underline that Fig. 5.8, right axis, shows the calculated density of conduction 

electrons as a function of the temperature, which is equal to the density of ionized 

impurities. Then for samples B, C and E at the middle of the explored temperature 

domain, the density of ionized impurities becomes only 10 % or 20 % of the total amount 

of donors in the sample. At 80 K, the density of ionized impurities becomes larger and, 

in particular for sample E, can reach a value of 35 % of the total amount of donors in the 

sample. This shows that, in the explored domain of temperatures, the donors are mostly 

in their neutral state. Moreover, the ionized donors are likely to be screened by 

conduction electrons which are confined inside the QW. 
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Figure 5.8 Concentrations of conduction electrons (dashed lines, right axis), and spin 

relaxation times of the conduction electrons (continuous lines, left axis) versus 

temperature, in (a) sample B; (b) sample C; (c) sample E. 
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5.4.2 Metallic regime, near the MIT  

Under the Mott criterion [14], and following the measurements carried out in chapter 4, 

sample F is assumed to contain a doping concentration slightly beyond the MIT; 

conductance measurements could have confirmed this point, but our samples are not 

patterned for transport experiments. We found that the experimental data on this 

sample could not be fitted by considering only a population of conduction electrons and 

a dephasing time related to DP or/and EY mechanisms. For doping concentrations 

slightly above the MIT, it has been shown that there is a coexistence between localized 

electrons forming an impurity band, and itinerant electrons, leading to a filamentary 

electronic transport [4]. 

In order to explain the spin dephasing time observed in sample F, we have considered 
that at very low temperature a fraction f of the doping concentration 𝑛𝑖𝑚𝑝 is in the 

conduction band: 𝑛𝑐(0) = 𝑓𝑛𝑖𝑚𝑝. Thus, at any temperature the density of localized 

electrons is given by a refined version of Eq. (5.8):  

𝑛𝑙(𝑇) = 𝑛𝑙(0)
√1 + 𝑄(𝑇, 𝑛𝑙(0) )  −  1

√1 + 𝑄(𝑇, 𝑛𝑙(0) )  +  1
,                                       (5.12) 

with 𝑛𝑙(0) = 𝑛𝑖𝑚𝑝(1 − 𝑓) the initial concentration of localized donors. The density of 

conduction electrons at any temperature is evaluated from the conservation rule 𝑛𝑐(𝑇) =

𝑛𝑖𝑚𝑝 − 𝑛𝑙(𝑇). Figure 5.9(a) shows the theoretical fit of the measured spin dephasing time 

according to Eqs. (5.11) and (5.12), using Eq. (5.3) for the spin relaxation time of the 

conduction electrons. We have taken as free parameters the binding energy EB of the 

donor-bound electron, the transport coefficient Ξ, the spin dephasing time τl
∗ of the 

localized electrons,  and the fraction 𝑓 = 𝑛𝑐(0)/𝑛𝑖𝑚𝑝 of conduction electrons at vanishing 

temperatures. 

Scanning the values ν = 0, 1 and 2 in Eq. (5.3), we identify that the type of scattering 

undergone by the conduction electrons in sample F is also the type-I of scattering           

(ν = 0). The fitting parameters are found to be: 𝑓 = 0.1, 𝐸𝐵 = 6 meV, τ𝑙
∗ = 1.63 ns and Ξ = 

47 fs. The black diamond in Fig. 5.9(a) represents the spin dephasing time calculated 

from the 𝑇2
∗−1

 formula obtained in chapter 4, at 2 K, in the magnetic field 𝐵0 = 0.56 T; 

this value agrees well with our experimental data. 

In Fig. 5.9(b), the conduction spin relaxation time (left axis) is plotted as a function of 

the temperature, with  𝐸𝐵 = 6 meV and Ξ = 47 fs; the density of conduction electrons is 

also plotted (right axis). As the temperature increases, due to the small binding energy, 

the density of conduction electrons increases at a faster rate in comparison with the 

samples in the insulating regime.  
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Figure 5.9 (a) Measurements of the spin dephasing rates at different temperatures (red 

full disks) in sample F. The blue continuous line is a theoretical fit according to Eqs. (5.3), 

(5.11) and (5.12), for the type-I scattering (𝜈 = 0). The fitting parameters are given in 

Table 5.1. The black full diamond is a data point extracted from chapter 4. (b) 

Concentration of conduction electrons (dashed line, right axis), and spin relaxation time of 

the conduction electrons (continuous line, left axis) versus temperature, in sample F. 

 

 

 

Sample F, 𝐵0 = 0.56 T  
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For conduction electrons in materials with a large spin-orbit constant or narrow energy 

band gap, the EY mechanism of spin relaxation becomes dominant [13]. The spin-orbit 

constant of CdTe is three times larger than the one of GaAs, material for which it has 

been shown that EY mechanism is not effective as compared to the DP one [13]. Using 

𝜏𝑡𝑟 = Ξ (table 5.1) obtained here and expression (15) of Ref. [22], the DP relaxation rate 

is found more than 10 times larger than the EY one, in the range of temperatures studied 

and for all the samples, see Fig. 5.10. This justifies, a posteriori, our use of the DP 

mechanism to describe the spin relaxation of conduction electrons in our samples. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Spin relaxation rate according to the DP mechanism, Eq. (5.3) (black-solid 

line), and to the EY mechanism, Eq. (5.6) (red-dashed line), for each of the samples in the 

insulating regime: (a) sample B, (b) sample C, (c) sample E, and in the metallic regime: (d) 

sample F.  
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Table 5.1 

TABLE 5.1: Extracted parameters from the fits of the experimental data for the spin 

relaxation time as function of the temperature, see Figs. 5.7 and 5.9 (a). For sample F, the 

values are obtained considering a concentration of conduction electrons 𝑛𝑐(0) = 0.1 𝑛𝑖𝑚𝑝 

at zero temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

 Sample 

Doping 

concentration 𝒏𝒊𝒎𝒑 

(cm-2) 

 

Spin dephasing time 
𝝉𝒍
∗ (ns) 

Binding 

energy  

𝑬𝑩 (meV) 

 Transport 

coefficient 

𝚵 (fs) 

 

B 

 

3.2 × 1010 

 

1.40 ± 0.05 

 

19 ± 1 

 

                 97 

 

C 

 

9.7 × 1010 

 

2.65 ± 0.05 

 

        20 ± 1 

  

                 36 

 

E 

 

2.9 × 1011 

 

0.95 ± 0.05 

 

8 ± 1 

       

                 47 

 

F 

 

3.6 × 1011 

           

           1.63 ± 0.05 

    

          6 ± 1 

 

                 47 
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5.5 Conclusion 

In summary, in this chapter we have shown a quantitative agreement between theory 

and experiment for the temperature dependence of the spin relaxation time of electrons 

bound to donors immersed in the center of a 8-nm CdTe QW, in the 10-80K temperature 

range, by considering that two types of spin systems coexist and interact by spin 

exchange: the electrons localized on donors, and the free electrons promoted to the 

conduction band. 

We evidenced that the spin relaxation time for the localized electrons is imposed by the 

same mechanisms known at low temperature (hyperfine and anisotropic exchange 

interactions), while the spin relaxation time of the conduction electrons is governed by 

the DP mechanism. For the samples in the insulating regime, we have identified that the 

scatterings undergone by the conduction electrons are of type I [19]. Under the same 

framework, we have succeeded in explaining the observed behavior versus temperature 

of the spin relaxation time for the sample with a doping concentration slightly above the 

Mott transition, by considering that an initial concentration of delocalized electrons 

exists at low temperature. The scatterings of the conduction electrons in this sample is 

also of type I. 
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6.1 Introduction 

This chapter is devoted to the study of the longitudinal spin relaxation time in samples 

A, C, D and E of chapter 4. Up to this work, the only studies carried out in bulk zinc-blende 

semiconductors are those reported by Refs. [1-6] in GaAs, CdTe and InP for different 

doping concentrations in the insulating regime and at low temperature. In bulk wurzite 

materials, a recent study has been performed by Ref. [7] in high-purity bulk ZnO.   

In general, two principal challenges have been addressed in Refs. [1-7]:                                                       

(a) the development of an experimental technique that allows to measure long spin 

relaxation times                                                                                                                                                                        (b) 

(b) the understanding of the principal mechanisms that dominate the longitudinal spin 

relaxation in presence of a longitudinal magnetic field. 

Both points have been successfully overcame for high-purity direct-band-gap 

semiconductors by Linpeng et al. in Ref. [2]. In their work they measured, by means of a 

TRPL technique, the longitudinal spin relaxation time of donor-bound electrons as a 

function of the magnetic field in GaAs, InP and CdTe. The principle of the experimental 

technique is presented in Fig. 6.1 (a): A resonant pump pulse excites repetitively the π 

transition to pump electrons from the |↑⟩ state to the |↓⟩ one. After this, the system freely 

evolves during a variable time 𝜏𝑤𝑎𝑖𝑡 in which the electron population returns to thermal 

equilibrium and the |↑⟩ state is repopulated. Then, a pulse resonant at the π transition 

probes the |↑⟩ state and the PL from the σ transition is detected. The experiment is 

repeated with different time delays 𝜏𝑤𝑎𝑖𝑡. An example of the PL recorded for InP is 

presented in Fig. 6.1 (b).  

The experimental results obtained by Ref. [2] are presented in Fig. 6.1 (c). For the 3 

samples, the authors observed at high magnetic fields a B-x dependence of 𝑇1(3 < x < 4). 

For GaAs at low magnetic fields, T1 approaches a B2 dependence. At low magnetic field, 

the behavior was explained as a result of the interaction of the donor-bound electron 

with the nuclear environment (hyperfine interaction) in a presence of a magnetic field, 

while at high magnetic fields, the spin-orbit interaction [2]. For higher doping 

concentrations, no formal theory has been developed by Refs. [3-6]. 

Refs. [3,5] have principally focused their work on point (a), by modifying the techniques 

described in chapter 2. In Ref. [3], by the inclusion of additional pump and probe pulses, 

an extended version of the TRPL technique was developed. This technique, that allows 

to measure times of the order of microsecond, uses 4 pulses (see Fig. 6.2): two pump 

pulses ( 𝜎+ and 𝜎− polarized) that create the spin polarization in the sample and  two  

probe pulses that detect the PL coming from each pump pulse. The available delay 

between each pair of pulses is up to 20 microseconds. The PL is collected with a double- 

grating spectrometer and measured with a two-channel photon counter: 𝜎+ and 𝜎− are 

separately recorded. 

As already remarked, one of the main limitations imposed by the usual PFR technique, 

described in chapter 2, is the restricted time range that can be explored due to the finite 

length of mechanical delay lines. To overcome this restriction, in Ref. [5] they developed 

an extended PFR technique. The physical principle of this technique is the same as the 
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usual one, the novelty is that the pump-probe delay is controlled electronically. Figure 

6.3 shows the experimental set-up developed by Ref. [5]: an electro-optic and an 

acousto-optic modulator are used to produce trains of pulses for the pump beam and 

single pulses for the probe beam; the delay between them is controlled electronically.  

With this technique, they measured the longitudinal spin relaxation time for donor-

bound electrons in GaAs at different doping concentrations in the insulating regime. A 

scheme of this experimental technique is presented in Fig. 6.3 

In this chapter, we have focused our efforts on point (a), developing an extended PFR 

technique according to the set-up proposed by Ref. [5]. With this technique, we 

measured the longitudinal spin relaxation time T1 for donor-bound electrons immersed 

in the middle of a CdTe QW for different doping concentrations, in the microsecond 

regime with a 0.03 𝜇𝑠 time resolution. 

(a)                                              (b)                                                          (c) 

 

 

 

 

 

 

 

Figure 6.1 Figure taken from [2]: (a) energy level diagram for the donor system, (b) PL 

recorded for bulk InP. The amplitude of the signal is proportional to the |↑⟩ population.  (c) 
Longitudinal spin relaxation time T1 for electrons bound to donors, in high-purity bulk GaAs, 

InP and CdTe, versus Zeeman energy 𝑔𝜇𝐵𝐵. 

 

 

 

 

 

 

Figure 6.2 Figure taken from [3]:  principle of a TRPL technique with pump-probe pulses. 
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Figure 6.3 Figure taken from [5]: scheme of the extended PFR experiment. The delay 

between the pump train and the probe pulse is generated electronically. 

 

6.2 Development of an extended PFR technique 

In this section, we describe the extended PFR technique developed to measure spin 

relaxation times in the microsecond regime. A scheme of the experimental set-up is 

presented in Fig. 6.4.  

The light source is a Ti: sapphire laser (Coherent Mira) optically pumped with a 

continuous laser Verdi (532 nm, 15 W), emitting  2-ps pulses with a repetition rate of 76 
MHz (repetition period 𝑇𝑅 = 13.1 𝑛𝑠). The divergence of the laser is corrected by 

focusing the principal beam with a 2-mm focal lens on a pinhole of 50 micrometers of 

diameter and then collimated by a 40-mm focal lens. 

 

The laser output is split into pump and probe beams using a beam splitter (70/30). In 

the pump path, an electro-optic modulator (EOM) selects trains of 𝑁 pulses separated 

by 𝑇𝑅 , with arbitrary long delay between the trains. The time width of each train  

𝑤𝑝𝑢𝑚𝑝 = 𝑁𝑇𝑅 can be chosen. The acousto-optic modulator (AOM) is used in the probe 

path for the same purpose. The time delay between a train produced by the EOM and 

one produced by the AOM is controlled electronically, allowing a large change of the 

delay between the pump trains and the probe ones.   

 

In this experimental set-up, the EOM is controlled in such a way to produce linearly-

polarized pump trains. The polarization direction is fixed  by a polarizer set at the exit 

of the EOM; this direction is at 45° to the neutral axes of a photo-elastic modulator 

(PEM). The PEM is used to modulate the polarization of the pump beam between 𝜎+ and 

𝜎− at a frequency of 50 kHz,  to avoid nuclear spin polarization in the samples (see 

section 2.3.2).  

 

In order to perform synchronous detection (see section 2.3.4), the intensity of the probe 

beam is modulated with an optical chopper, at 𝑓𝑝𝑟𝑜𝑏𝑒 = 500 Hz. The signal given by the 

optical bridge is then modulated at two frequencies 𝑓𝑝𝑢𝑚𝑝 = 50 kHz and 𝑓𝑝𝑟𝑜𝑏𝑒 =

500 Hz. 
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The limitation in time range of this technique is imposed by the modulation frequency 

of the PEM. Since its period of modulation is 20 microseconds, the maximum temporal 

window is then 3 microseconds (in order to average at least on 3 trains of the pump-

beam over half a period of the PEM). 

The minimum temporal window is 30 ns (being limited by the time width of the trains). 

Figure 6.5 shows the optical trains obtained when the EOM and the AOM are driven by 

100 ns electronic gates: around N = 8 picosecond pulses are present in the trains; the 

delay between the probe and pump trains can be swept at will (within the 3𝜇𝑠 window 

). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 6.4 Scheme of the extended PFR technique. The time width of the trains, and the 

delay between the pump and probe trains are controlled electronically. The width for the 

trains shown in the figure is 50 ns (3 pulses). A magnetic field 𝐵 is applied in Faraday 

geometry (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                                   

Figure 6.5 Pump and probe 100-ns optical trains delayed by 100 ns. Each train contains 

around 8 pulses separated by the repetition period of the laser, 13.1 ns. (The time width of 

each pulse is limited by the bandwidth of the used photodiode) 
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6.3 Experimental results. 

In figure 6.6, we present the longitudinal electron spin relaxation measured for the 

samples A, C, D and E. As usual, the laser wavelength was set to the 𝐷0X transition of 

each sample indicated by its PL spectrum performed at T = 10 K (see chapter 4, Fig. 4.2).  

Here we used a power of excitation of 3 mW for the pump beam and 60 microwatts for 

the probe beam. The widths of the trains, and the needed temporal window chosen for 

each sample, are indicated in the corresponding figure captions. One of the principal 

difficulties faced during the measuring process on the samples is the very low level of 

signal; especially for the heavily doped sample E, the signal was hardly detectable. In 

order to keep a detectable level of signal, the widths of the gates have been increased 

only when a longer temporal window was needed.  

Figures 6.6 shows that the application of a longitudinal magnetic field slows down the 

spin dynamics in the studied samples. The signal in Fig. 6.6 can be described by a double 

exponential decay with a fast and a slow component. The fast component observed 

corresponds to the overlapping at t = 0 of the pump and probe trains. In Refs. [5,6] they 

identified a fast component, no related with this overlapping, due to the use of single 

probe pulses. For our samples, trains of probe pulses are needed to increase the level of 

the signal. 

As it has been observed in bulk GaAs, CdTe and InP [2], residual doped samples show 

longer spin relaxation times: for sample A at a magnetic field of B = 0.08 T (Fig. 6.6 (a)) 

the measured time of 𝑇1~ 10𝜇𝑠 , reaches the maximum relaxation time than can be 

measured with our experimental set-up.  

For the sample with an intermediate doping concentration, sample C, we observe a 

continuous increase of the spin relaxation time with the applied magnetic field. For 

samples D and E, there is first an increase and after a decrease of the relaxation time in 

the same range of magnetic fields. Figure 6.7 gathers the measured spin relaxation times, 

for the different samples, as function of the Zeeman splitting energy. As the 

concentration is increased, the maximum measured  𝑇1 decreases. 

Table 6.1 gathers the values of the magnetic field 𝐵𝑚𝑎𝑥  at which the measured 

longitudinal spin relaxation time is maximum, for samples A, C, D and E. 
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Figure 6.6 Longitudinal spin signal versus time of the donor-bound electrons, in samples 

A, C, D, E in different applied magnetic fields.  The width of the trains for the pump and 

probe beams (𝑤𝑝𝑢𝑚𝑝,𝑝𝑟𝑜𝑏𝑒) and the time windows are: (a) 𝑤𝑝𝑢𝑚𝑝= 100 ns, 𝑤𝑝𝑟𝑜𝑏𝑒= 50 ns, 

𝑤𝑖𝑛𝑑𝑜𝑤 = 1 𝜇𝑠 ; (b) 𝑤𝑝𝑢𝑚𝑝=  𝑤𝑝𝑟𝑜𝑏𝑒= 150 ns, 𝑤𝑖𝑛𝑑𝑜𝑤 = 3𝜇𝑠; (c) 𝑤𝑝𝑢𝑚𝑝= 𝑤𝑝𝑟𝑜𝑏𝑒= 100 ns, 

𝑤𝑖𝑛𝑑𝑜𝑤 = 3𝜇𝑠 ; (d) 𝑤𝑝𝑢𝑚𝑝=  𝑤𝑝𝑟𝑜𝑏𝑒= 60 ns,  𝑤𝑖𝑛𝑑𝑜𝑤 = 1𝜇𝑠. 
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Figure 6.7  Longitudinal spin relaxation time 𝑇1 as a function of the Zeeman splitting 

energy, for samples A, C, D and E. 

 

 
Sample 

Doping 
concentration 
(donors/cm2) 

 
Electron Landé 

factor 𝑔𝑒
⊥ 

 
Bmax (T) 

 
T1,max (μs) 

 
A 

 
1 ×  109 

 
1.39 

 
0.08 

 
~9 

 
C 

 
9.7 ×  1010 

 
1.44 

 
4.0 

 
5.0 

 
D 

 
1.6 × 1011 

 
1.45 

 
0.64 

 
3.0 

 
E 

 
2.9 ×  1011 

 
1.40 

 
0.8 

 
0.7 

 

Table 6.1 Magnetic field and maximum longitudinal spin relaxation time measured for 

samples A, C, D and E. 
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6.4 Discussion of the results 

In this section, we compare the results obtained for samples A, C, D and E with the 

available experimental data reported in bulk GaAs. 

6.4.1 Comparison with bulk semiconductor results 

In the insulating regime, at low temperature, the longest spin relaxation times have been 

measured in high-purity bulk semiconductors by Linpeng et al. [2]: 3 × 1013 cm−2 for 

GaAs, 2.3 × 1014 cm−3 for InP and  1 × 1014  cm−3 for CdTe (see Fig. 6.1 (c)). 

Similarly we observe that sample A, with a residual doping concentration, exhibits the 

longest spin relaxation time 𝑇1~ 9 𝜇𝑠 at the energy 𝑔𝑒𝜇𝐵𝐵 = 0.006 meV. This value is 

larger than 𝑇1 = 3 𝜇𝑠 reported in Ref. [6] for bulk GaAs with a residual doping 

concentration of 𝑛𝑑 = 5.5 × 1014𝑐𝑚−3, at the same Zeeman splitting energy (see Fig. 6.8 

(a), B = 0.2 T). For bulk CdTe, there is no reported value in Ref. [2], at the same Zeeman 

energy. 

For intermediate doping concentrations in bulk GaAs, the available experimental data 

are from Refs. [3,4,6]. The samples studied by Refs. [3,4] consisted in a 1𝜇𝑚-thick GaAs 

layer in an AlGaAs heterostructure, containing a doping concentration of 𝑛𝑑 = 1 ×

1015 cm−3 and 𝑛𝑑 = 3 × 1015 cm−3. The results are shown in Fig. 6.8. The sample 

studied by Ref. [6] consisted in a 20𝜇𝑚 thick  GaAs layer, with a doping concentration of  

𝑛𝑑 = 1 × 1015 cm−3.  The results are presented in Fig. 6.9 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Figures taken from [3,4]: T1 relaxation time of electrons bound to donors in bulk 

GaAs, with a doping concentration of 𝑛𝑑 = 1 × 1015 (left) and 𝑛𝑑 = 3 × 1015𝑐𝑚−3 (right), 

versus magnetic field [on the right, Fig. (b) is the relaxation rate]. 
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As can be seen in Fig. 6.8, the sample with a concentration of 𝑛𝑑 = 1 × 1015cm−3 (left 

column),  shows a longitudinal spin relaxation time of 𝑇1 = 17 𝜇𝑠 at 𝐵 = 6 T and T = 1.5 

K.  In Ref. [6], for the same concentration of donors (see Fig. 6.9 (b)) the spin relaxation 

time shows a maximum  relaxation time 𝑇1,𝑚𝑎𝑥 = 1 𝜇𝑠 at 𝐵𝑚𝑎𝑥  = 1 T, and after a decrease 

to hundreds of nanoseconds at B  =  6 T. Therefore, the spin relaxation times measured 

by V. V. Behlyk et al. [6] are shorter than the ones reported by Colton et al. [4].  The origin 

of this discrepancy is probably the different experimental conditions used in each case: 

in Ref. [4] the energy of excitation is fixed above the band gap, as has been already 

discussed in chapter 4, this produces faster-relaxing free carriers that shortens the spin 

relaxation time due to the interaction with localized electrons, while in Ref. [6] the 

excitation is done at the 𝐷0𝑋 transition energy. 

For the sample with a concentration of 𝑛𝑑 = 3 × 1015cm−3 (right column of Fig. 6.8 ), 
the maximum relaxation time measured is 𝑇1,𝑚𝑎𝑥 = 1.4 𝜇𝑠 at 𝐵𝑚𝑎𝑥 = 5 T . 

 

 

 

 

 

 

 

 

Figure 6.9 Figures taken from [6]:  T1 spin relaxation time of electrons bound to donors in 

bulk GaAs with different doping concentrations (indicated on the figures), at different 

magnetic fields. 

 

The measured times reported by Refs. [2-6] are listed in Table 6.2. We remark that 

samples C and D, with an intermediate doping concentration, show a longer longitudinal 

spin relaxation time than samples studied in Ref. [4] and Ref. [6] (see tables 6.1 and 6.2) 

For samples with a doping concentration next to the MIT (see Fig. 6.10), the available 

experimental data belongs to Ref. [5]. In this reference, the authors measured at low 

temperature, the longitudinal spin relaxation time T1 in the range 0 -6T, for bulk GaAs. 

At low magnetic field they found a T1 of the order of 260 ns, which increases up to 

𝑇1,𝑚𝑎𝑥 = 450 ns at 𝐵𝑚𝑎𝑥 = 6 T.  Sample E with a doping concentration next to the MIT 

exhibits a longer 𝑇1,𝑚𝑎𝑥 (700 ns) than the one reported by Ref. [6]. 
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Reference 𝑛𝑑   
(donors/cm3) 

Bmax (T) T1,max (μs) 

 
Linpeng et al. [2] 

 
3 × 1013 

 
4 

 
1400 

 
V. V. Belykh et al. [6] 

 
5.5 × 1014 

 
1 

 
~10 

 
Colton et al., [3] 

 
1 × 1015 

 
3 

 
19 

 
Colton et al., [4] 

 
3 × 1015 

 
6 

 
1.4 

 
V. V. Belykh et al. [6] 

 
1 × 1015 

 
1 

 
1 

 
V. V. Belykh et al. [5] 

 
1.4 × 1016 

 
6 

 
0.45 

 

Table 6.2 Maximum longitudinal spin relaxation time reported for different doping 

concentrations in bulk GaAs in the insulating regime. 

 

 

 

 

 

 

 

 

 

Figure 6.10 Figure taken from [5]:  T1 spin relaxation time of electrons bound to donors in 

bulk GaAs with a doping concentration close to the MIT 𝑛𝑑 = 1.4 × 1016𝑐𝑚−3, at different 

magnetic fields. 
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6.4.2 Magnetic field dependence of 𝑻𝟏. 

Up to know, there is no unified model that explains the magnetic field dependence of 𝑇1 

at a given doping concentration and for any magnetic field, either in bulk or QWs. 

In high-purity bulk semiconductors, the increase of the spin relaxation time at moderate 

magnetic fields has been explained by the suppression of the hyperfine interaction [2,9], 

while at high magnetic fields, the decrease of the spin relaxation time observed by 

Linpeng et al. [2] (see Fig. 6.1 (c))  is induced by the spin-orbit interaction and phonons 

following a 𝐵−𝑥 law. 

The role of the hyperfine interaction has particularly been discussed by Yao et al. [10], 

for the long time range. In this range, the spin relaxation time is induced by an 

inhomogeneous hyperfine coupling of the electron spin with the fluctuating nuclear 

spins. The fluctuation of the nuclear spin is induced by two different processes: 

 the second-order hyperfine interaction which couples two nuclei via the same 

electron.                                                                                                                                                                                                       

 the nuclear dipole interaction. 

The first process is dominant at low magnetic field and it can be screened by a 

longitudinal magnetic field. The second process is less sensitive to B and could fix a 

maximum value of the spin relaxation time depending on the material and its intrinsic 

parameters. 

In a semiconductor QW the magnetic field dependence of T1 has been treated 

theoretically by Refs. [11,12] considering hopping diffusion. This model is based on the 

idea that the ensemble of localized electrons is grouped in small clusters, inside of which 

an electron is coupled with the rest of the donor-bound electrons by isotropic exchange. 

but it also may visit other clusters by hopping diffusion. In this references the spin 

relaxation time is calculated considering the hyperfine interaction and spin-orbit 

interaction (no dipole-dipole interaction is considered). We discard this model, since it 

is related to a hopping time which is still to be defined and determined in our system. 

6.5 Conclusion 

In this chapter we have measured the longitudinal spin relaxation measurements for 

donor-bound electrons in a CdTe semiconductor, by means of an extended PFR rotation 

technique. Our experiment brought the first results of this kind in a CdTe QW. For any 

doping concentration, we have observed an increase of the spin relaxation time when a 

magnetic field is applied. Particularly, the longest longitudinal relaxation time is for a 

residual doping concentration as it has been observed in previous references for other 

compounds. More theoretical studies are needed in order to understand the 

mechanisms that govern the longitudinal spin relaxation at any doping concentration. 
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Conclusions and perspectives 
This thesis has been devoted to study the spin relaxation time of donor-bound electrons 

immersed in a CdTe quantum well of thickness 𝐿 =  8 nm, by means of a photo-induced 

Faraday and Kerr rotation techniques. We have experimentally studied three of the main 

variables that influences the spin relaxation time: doping concentration, temperature 

and longitudinal magnetic field. 

One of the first principal results obtained in this work, is the theoretical determination 

of the exchange energy of two electrons-bound to donors placed in the middle of an 

infinite QW. The exchange energy determines the residence time of an electron-bound 

to a donor, which is fundamental to define the spin relaxation mechanisms in a doped 

semiconductor, in this sense its knowledge is of prime importance. The obtained 

expression is written in units of effective Hartree, and the distance between the donors 

is in units of effective Bohr radius, it can be then applied for any direct-band gap 

semiconductor QW of thickness L. In comparison with bulk systems, we have found that 
in the low doping regime, the electron exchange energy in a QW, 𝐽𝑄𝑊, is smaller than in 

bulk: 𝐽𝑄𝑊 < 𝐽3𝐷 ,  while for high doping concentrations the situation is reversed:  𝐽𝑄𝑊 >

𝐽3𝐷 .  Because we consider an infinite QW with a wave-function completely confined in 

the QW, our calculations do not describe systems for L < 𝑎𝐵
∗3𝐷 . Indeed, the electron wave-

function of thin QWs overflows the barrier material which does not represent an infinite 

barrier for electrons. 

By using a photo-induced Faraday rotation technique, we have measured the spin 

relaxation time of donor-bound electrons for different doping concentrations at low 

temperature in the insulating regime. A non-monotonous behavior is observed and it is 

successfully explained by the interplay of two mechanisms, as in GaAs: hyperfine 

interaction and anisotropic exchange interaction, being the hyperfine interaction the 

dominant mechanism at low doping and the anisotropic exchange interaction at high 

doping concentration. From the fit of the experimental data we determined the CdTe 
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spin-orbit constant: 𝛼𝑠𝑜 = 0.079, which is in good agreement with previous theoretical 

calculations. 

According with the spin relaxation mechanisms identified here, we have predicted that 

the spin relaxation time in bulk is always longer than in a QW, nevertheless the reported 

experimental values by Sprinzl et. al. [1] in bulk CdTe, are very small compared with 

those predicted by the theory and also with our experimental values. We concluded that 

the experimental conditions used by Ref. [1]: femtosecond pulses tuned at the band gap 

energy and a concentration of photo-excited carriers comparable with the nominal one, 

are at the origin of the observed shortening of spin relaxation time. 

The results of the experimental study of the spin relaxation time in the range 10-80K, by 

means of photo-induced Kerr rotation technique, were successfully explained by 

invoking spin exchange between electron spins localized on donors and the spin of 

electrons promoted to conduction states. For the whole range of the studied doping 

concentrations, we demonstrated that, while the spin of localized electrons undergoes 

the effect of both hyperfine and anisotropic exchange interactions, the D’yakonov-Perel’ 

mechanism governs the spin relaxation of the conduction electrons. Moreover, we have 

identified that the scatterings undergone by the conduction electrons are of type I [2]. 

We also demonstrated that the contribution of the Elliot Yafet mechanism to the spin 

relaxation time can be neglected. In particular, for the sample with a doping 

concentration slightly beyond the Mott transition, we found that the experimental data 

on this sample could not be fitted by considering only a population of conduction 

electrons and a dephasing time related to DP or/and EY mechanisms. In order to explain 

the spin dephasing time we considered that at very low temperature a fraction f of the 

doping concentration 𝑛𝑖𝑚𝑝 it is already in the conduction band. A successful agreement 

between theory and experimental data was found. 

Finally, we developed a new experimental set-up able to explore relaxation times in the 

microsecond regime. With this technique we have measured by first time the 

longitudinal spin relaxation time T1 of donor-bound electrons immersed in the middle 

of a CdTe QW, for different doping concentrations as a function of a longitudinal 

magnetic field.  From the observed experimental behavior, residual doped QW’s appears 

as suitable candidates to obtain long spin relaxation times. The theory developed so far, 

shows that in high-purity-zinc-blende semiconductors the suppression of the hyperfine 

interaction is at the origin of the observed increased of T1 at low magnetic fields, while 

at high magnetic fields the spin orbit interaction and phonons explain  a decrease of the 

spin relaxation time with a 𝐵−𝑥 dependence. More studies must be carried out in order 

to explain the non-monotonous behavior of the longitudinal spin relaxation time for 

higher doping concentrations. 

In summary, this work presents a fundamental study of the three main variables that 

influence the spin relaxation time in a semiconductor CdTe QW: doping concentration, 

temperature and longitudinal spin relaxation time. From this study we conclude that 

residual doped CdTe QWs are suitable candidates for obtaining long longitudinal spin 

relaxation times. In addition, we propose a zinc-blende II-VI material:  bulk ZnSe and a 
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wurtzite material: bulk ZnO as promising candidates for obtaining long spin relaxation 

times at low temperatures.  
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Appendix A 

Proof of 𝑻𝟏 = 𝑻𝟐 for a vanishing magnetic field 

In this appendix, we argue that in absence of magnetic field, the longitudinal spin 

relaxation  time 𝑇1 is equal to the transversal relaxation time 𝑇2. 

Let’s consider a two-level system of spin ½ under a vanishing magnetic field �⃗� 𝑥 → 0. The 

density matrix elements can be expressed in the 𝑥-basis as 

𝜌↑↑
𝑥 (𝑡) =

1

2
+ 𝑎𝑒−𝑡/𝑇1                                                        (A.1) 

              𝜌↓↓
𝑥 (𝑡) =

1

2
− 𝑎𝑒−𝑡/𝑇1                                                        (A.2) 

  𝜌↑↓
𝑥 (𝑡) = 𝜌↑↓

𝑥 (0)𝑒−𝑡/𝑇2                                                      (A.3) 

with |𝑎| <
1

2
. A factor 𝑒𝑖𝜔𝑡  with 𝜔 = 𝑔𝜇𝐵𝐵/ℏ should appear in equation (A.3), but since 

𝐵 → 0 then 𝑒𝑖𝜔𝑡 → 1: the dynamics of the coherence 𝜌↑↓
𝑥 (𝑡) is dominated by the decay 

with the characteristic time 𝑇2. Both populations relax towards the value ½, with the 

characteristic time 𝑇1.  

If we write now these elements in the 𝑧-basis, using the change of basis: 

                                                      |↑ 𝑥⟩ =
1

√2
(|↑ 𝑧⟩ + |↓ 𝑧⟩)                                                          (A.4) 

              |↓ 𝑥⟩ =
1

√2
(|↑ 𝑧⟩ − |↓ 𝑧⟩),                                (A.5) 

we get 

 𝜌↑↑
𝑧 (𝑡) =

1

2
+ ℛ𝑒{𝜌↑↓

𝑥 (0)}𝑒−𝑡/𝑇2                              (A.6) 
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𝜌↓↓
𝑧 (𝑡) =

1

2
− ℛ𝑒{𝜌↑↓

𝑥 (0)}𝑒−𝑡/𝑇2                                                (A.7) 

𝜌↑↓
𝑧 (𝑡) = 𝑎𝑒−𝑡/𝑇1 + 𝑖 𝐼𝑚 {𝜌↑↓

𝑥 (0)∗}𝑒−𝑡/𝑇2 .         (A.8) 

In the limit �⃗� 𝑥 → 0, the bases (|↑ 𝑥⟩, |↓ 𝑥⟩) and (|↑ 𝑧⟩, |↓ 𝑧⟩) play the same role, since there 

is no designated quantization axis. Then, the comparison of Eqs. (A.1) and (A.2) with Eqs. 

(A.6) and (A.7) shows that 𝑇2 = 𝑇1 for a vanishing magnetic field.  
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Appendix B 

𝟏𝒔 and 𝟐𝒔  hydrogenic states centred in an infinite 

quantum well  

 

1. Method 

   A positive electric charge 𝑍𝑒 (𝑒: elementary charge) is at the origin of Cartesian 

coordinates 𝑥𝑦𝑧. The Hamiltonian 𝐻 of an electron (charge − 𝑒) in the Coulomb potential 

of 𝑍𝑒 is 

𝐻 =  −
Δ

2
 −

𝑍

𝑟
  ,                                                            (B. 1) 

where ∆ is the Laplacian operator and 𝑟 is the distance of the electron to the origin. The 

distances are expressed in units of effective (bulk) Bohr radius 𝑎𝐵
 ∗3𝐷 , and energies in 

units of effective hartree 𝐸ℎ
 ∗3𝐷 (for definitions of 𝑎𝐵

 ∗3𝐷 and 𝐸ℎ
 ∗3𝐷, see eq. (3.2) of chapter 

3). 

   The 1𝑠 and 2𝑠 states in bulk (𝑟 = √𝑥2 + 𝑦2 + 𝑧2) or in 2𝐷 (𝜌 = √𝑥2 + 𝑦2) are known 

[1]. They are presented in the following Table B.1. 
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  Wavefunction 𝜙 Energy E 

 

 

3D 

1s 
1

√𝜋
 𝑍3/2 exp(− 𝑍𝑟) − 𝑍2/2 

 
2s 

1

2√2𝜋
 𝑍3/2 exp(− 𝑍𝑟/2) [1 − 𝑍𝑟/2] − 𝑍2/8 

 

 

2D 

1s 
4

√2𝜋
 𝑍 exp(− 2𝑍𝜌) − 2𝑍2 

 
2s 

4

3√6𝜋
 𝑍 exp(− 2𝑍𝜌/3) [1 − 4𝑍𝜌/3] 

− 2𝑍2/9 

  

Table B.1 Wavefunctions and energies for the 1s and 2s hydrogenic states in 3D and 2D. 

We seek the 1𝑠 and 2𝑠 states when the charge 𝑍𝑒 is placed in the middle of a QW of 

thickness 𝐿, simply modeled by two infinite barriers located at 𝑧 = ± 𝐿/2; the 

confinement potential is supposed to be zero inside the QW (|𝑧| < 𝐿/2). The 1𝑠 and 2𝑠 

wavefunctions centred within this QW are taken in the following forms: 

𝜙1(𝜌, 𝑧) =  𝐴1 exp(− 𝛼1𝑟) cos (𝜋
𝑧

𝐿
) ,                                  (B. 2a) 

𝜙2(𝜌, 𝑧) =  𝐴2 exp(− 𝛼2𝑟) [1 − 𝛼3𝑟] cos (𝜋
𝑧

𝐿
) ,                        (B. 2b) 

where 𝑟 = √𝜌2 + 𝑧2. The postulated cos(𝜋𝑧/𝐿) envelope function is a single sinusoid 

arch, and ensures that the wavefunctions 𝜙𝑗(𝜌, 𝑧), 𝑗 = 1 or 2, vanish at the boundaries 

of the QW. The dependences on 𝑟 of both 𝜙𝑗  respect the ones which are met in the 2𝐷 

(𝐿 → 0) and 3𝐷 (𝐿 → ∞) limits. In the following of this Appendix, the prefactors 𝐴𝑗  are 

fixed by normalization; 𝜙1(𝜌, 𝑧) and its energy 𝐸1 are first determined by means of the 

variational method; afterwards, using the 2𝑠-1𝑠 orthogonality and the variational 

method, 𝜙2(𝜌, 𝑧) and its energy 𝐸2 are obtained. 

2. 𝟏𝒔 state 

The normalization condition of the 𝜙1(𝜌, 𝑧) wavefunction: ∫ 2𝜋𝜌 𝑑𝜌 𝑑𝑧𝜙1(𝜌, 𝑧)2
|𝑧|<

𝐿

2

=

1, gives: 

                                                               𝐴1
 2  =  

𝛼1
 3

𝜋 𝑁(𝛼1𝐿)
  ,                                                        (B. 3a) 

with     𝑁(𝑋) =  1 −
𝜋2

𝑋2+𝜋2
 +  

𝜋4/2

[𝑋2+𝜋2]2
 −  

 𝜋2

4
(

𝑋 + 4

𝑋2+𝜋2
 −  

2𝜋2

[𝑋2+𝜋2]2
) 𝑒−𝑋.         (B. 3b) 
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Here, and in all the following calculations, we exploited the even parity of the integrand 

with respect to z. The integration over 𝜌 is first performed with the change of variable 

𝑟 = √𝜌2 + 𝑧2, z = cte (ρdρ = rdr), 𝑟 varying from 𝑟 = 𝑧 (> 0) to 𝑟 = +∞; the 

integration over z is then performed, from 𝑧 = 0 to 𝑧 = 𝐿/2. 

The forms of the normalization factors of the 3𝐷 and 2𝐷 1𝑠-wavefunctions can be 

retrieved from expressions (B.3):  𝐴1 → 𝛼1
3/2

/√𝜋  for  𝐿 → ∞,  and  𝐴1√𝐿/2 → 𝛼1√2/𝜋  

for  𝐿 → 0. 

   The parameter 𝛼1 is obtained by minimization of the mean energy �̃�1 = ⟨𝜙1|𝐻|𝜙1⟩, 

which is the sum of a kinetic term (possessing, after calculation, a remarkably simple 

form): 

   ⟨𝜙1|−
∆
2 |𝜙1⟩  =  

𝛼1
2

2
 + 

𝜋2

2𝐿2
  ,                                              (B. 4) 

and a potential term due to the Coulomb interaction: 

⟨𝜙1|−
𝑍
𝑟 |𝜙1⟩  =  − 𝑍 𝛼1  

𝐶(𝛼1𝐿)

𝑁(𝛼1𝐿)
  ,                                     (B. 5a) 

with     𝐶(𝑋) =  1 − 
 1

2
 

𝜋2

𝑋2+𝜋2
(1 + 𝑒−𝑋) .                               (B. 5b) 

   Defining 𝑔(𝑋) = 𝑋𝐶(𝑋)/𝑁(𝑋), which is a smooth function close to the identity [𝑔(𝑋) ≈

𝑋], the minimum of �̃�1 is found to be reached when 𝛼1 is solution of the equation 

𝛼1𝐿

𝑔′(𝛼1𝐿)
  =  𝑍 𝐿 .                                                       (B. 6) 

After a numerical determination of the derivative 𝑔′(𝑋) of the function 𝑔(𝑋), the left-

hand side of the above equation can be calculated for a value of the parameter 𝛼1𝐿. One 

then obtains the thickness 𝐿 for which the starting parameter 𝛼1𝐿 corresponds to the 

minimum of �̃�1; finally, the associated 𝛼1 value is calculated through 𝛼1 = (𝛼1𝐿)/𝐿, and 

the energy 𝐸1 of 𝜙1 by substitution of this 𝛼1 in the expression for �̃�1. The procedure can 

be repeated for any starting parameter 𝛼1𝐿, and then allows to get 𝛼1 and 𝐸1, and also 

𝐴1, as a function of the thickness 𝐿 of the QW, as shown in Fig. B1 for 𝑍 = 1 and 𝑍 = 2. 

One can remark that parameter 𝛼1(𝑍 = 1) for thickness 𝐿 coincides with 𝛼1(𝑍)/𝑍 for 𝑍𝐿. 

The prefactor 𝐴1 goes to √𝑍3/𝜋 (3𝐷 limit) for 𝐿 ≫ 1, and behaves as 4𝑍/√𝜋𝐿 for very 

small 𝐿 [see Figs B1(a) and (b)]. The parameter 𝛼1 goes to 𝑍 (3𝐷 limit) for 𝐿 ≫ 1, and to 

2𝑍 (2𝐷 limit) for vanishing 𝐿 [see Figs B1(c) and (d)]. For decreasing values of 𝐿, the 

extension of the 𝜙1 wavefunction first inflates slightly in the 𝑥𝑦 plane (𝛼1 becoming a 

little smaller than 𝑍), and secondly globally shrinks for smaller values of 𝐿. The energy 

𝐸1, when considered by reference to the confinement energy 𝐸𝑐𝑜𝑛𝑓. = 𝜋2/2𝐿2, increases 

monotonically with 𝐿 from −2𝑍2 (2𝐷 value) to −𝑍2/2 (3𝐷 value) [see Figs B1(e) and 

(f)]. 
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Figure B1. Parameters 𝐴1 and 𝛼1 of the 𝜙1 wavefunction, and its energy 𝐸1, as a function 

of the thickness 𝐿 of the QW (thick continuous curves); the red thin dashed lines correspond 

to the 3𝐷 case. (a), (b): 𝐴1 vs 𝐿 for 𝑍 = 1, 𝑍 = 2. (c), (d): 𝛼1 vs 𝐿 for 𝑍 = 1, 𝑍 = 2. (e), (f): 

𝐸1 − 𝐸𝑐𝑜𝑛𝑓. vs 𝐿 for 𝑍 = 1, 𝑍 = 2, where 𝐸𝑐𝑜𝑛𝑓. = 𝜋2/2𝐿2. 

 

 



138 
 

3. 𝟐𝒔 state 

   The orthogonality condition between the 𝜙1(𝜌, 𝑧) and 𝜙2(𝜌, 𝑧) wavefunctions:  

∫ 2𝜋 𝜌𝑑𝜌𝑑𝑧Φ1Φ2|𝑧|<𝐿/2
= 0, implies the following relationship between 𝛼1, 𝛼2 and 𝛼3: 

𝛼3  =  𝛽 
𝑁(𝛽𝐿)

𝑁(𝛽𝐿) + 𝑀(𝛽𝐿)
 ,                                            (B. 7a) 

with   𝛽 =
𝛼1+𝛼2

2
   and 

𝑀(𝑋) =  
1

2
−

3𝜋2/2

𝑋2+𝜋2 +
9𝜋4/4

[𝑋2+𝜋2]2
−

𝜋6

[𝑋2+𝜋2]3
 −  

 𝜋2

4
(
1

2
+

3𝑋+6−𝜋2/2

𝑋2+𝜋2 − 𝜋2 2𝑋+9

[𝑋2+𝜋2]2
+

4𝜋4

[𝑋2+𝜋2]3
) 𝑒−𝑋. 

(B. 7b) 

The relationships between 𝛼1, 𝛼2 and 𝛼3 in 3𝐷 and in 2𝐷 can be retrieved as limiting 

cases of the above expressions: 𝛼3 → (𝛼1 + 𝛼2)/3 when 𝐿 → ∞ and α3 → (𝛼1 + 𝛼2)/2 

when 𝐿 → 0. 

   The normalization condition of the 𝜙2(𝜌, 𝑧) wavefunction gives 

𝐴2
 2  =  

𝛼2
 3

𝜋
 { 𝑁(𝛼2𝐿) [1 − 2 

𝛼3

𝛼2
+

3

2

𝛼3
 2

𝛼2
 2]  + 𝑀(𝛼2𝐿) [−2 

𝛼3

𝛼2
+

3

2

𝛼3
 2

𝛼2
 2]  +  

1

8
𝑄(𝛼2𝐿)

𝛼3
 2

𝛼2
 2 }

−1

,       

(B. 8a) 

   with   𝑄(𝑋)  =  3 + 3𝑋4 𝑋4−6𝜋2𝑋2+𝜋4

[𝑋2+𝜋2]4
   

                       −
 𝜋2

2
(

𝑋3

𝑋2+𝜋2 + 3𝑋2 3𝑋2+𝜋2

[𝑋2+𝜋2]2
+ 6𝑋

6𝑋4+3𝜋2𝑋2+𝜋4

[𝑋2+𝜋2]3
+ 6

10𝑋6+5𝜋2𝑋4+4𝜋4𝑋2+𝜋6

[𝑋2+𝜋2]4
) 𝑒−𝑋. 

(B. 8b) 

   The energy 𝐸2 is obtained as the minimum of the mean energy �̃�2 = ⟨𝜙2|𝐻|𝜙2⟩, which 

only depends on 𝛼2 (𝛼1 is known, 𝛼3 is a function of 𝛼1 and 𝛼2). �̃�2 is the sum of a kinetic 

term: 

⟨𝜙2|−
∆
2 |𝜙2⟩  =  

1

4
(
𝜋𝐴2

 2

𝛼2
 3 ){ 

𝜋2

𝐿2
[𝑄1(𝛼2𝐿) −

𝛼3

𝛼2
𝑄2(𝛼2𝐿) +

𝛼3
 2

4𝛼2
 2 𝑄3(𝛼2𝐿)] + 2𝛼2

 2𝐶(𝛼2𝐿)

+ 𝛼3
 2 [ 𝑁(𝛼2𝐿) + 2𝑀(𝛼2𝐿) ] + 2𝛼2𝛼3[𝐶(𝛼2𝐿) − 2𝑁(𝛼2𝐿)]} ,            (B. 9a) 

with                                       𝑄1(𝑋)  =  1 − (1 +
𝑋

2
) 𝑒−𝑋                                                         (B. 9b) 

                                                𝑄2(𝑋)  =  3 − (3 + 2𝑋 +
1

2
𝑋2) 𝑒−𝑋                                         (B. 9c) 

                                                𝑄3(𝑋)  =  12 − (12 + 9𝑋 + 3𝑋2 +
1

2
𝑋3) 𝑒−𝑋 ,                      (B. 9d) 

and a potential term due to the Coulomb interaction: 
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⟨𝜙2|−
𝑍

𝑟
|𝜙2⟩  =  − 𝑍 

𝜋𝐴2
 2

𝛼2
 2  { 𝐶(𝛼2𝐿)  +  𝑁(𝛼2𝐿) [−2

𝛼3

𝛼2
+

𝛼3
 2

𝛼2
 2]  +  𝑀(𝛼2𝐿)

𝛼3
 2

𝛼2
 2 } .          (B. 10) 

 

Finding the parameter 𝛼2 [and consequently 𝛼3, with Eq. (B.7a)] which minimizes �̃�2 (at 

given 𝐿) requires a long numerical procedure, which is in contrast with the much easier 

work needed for the minimization of �̃�1. Figure B2 shows �̃�2 vs 𝛼2 for 𝐿 = 1.5 and Z = 2; 

the minimum parameters indicated in the figure give one point in Figs. B3 (b), (d) and 

(f). Figure B3 shows 𝐴2, 𝛼2, 𝛼3 and 𝐸2 concerning the 𝜙2 wavefunction, for different 

values of the thickness 𝐿, with 𝑍 = 1 and 𝑍 = 2: 𝐴2 and 𝛼2 behave with 𝐿 just as 𝐴1 and 

𝛼1 do; 𝛼3 monotonically decreases with 𝐿; however, 𝐸2, considered by reference to the 

confinement energy 𝐸𝑐𝑜𝑛𝑓. = 𝜋2/2𝐿2, goes with 𝐿 from −2𝑍2/9 (2𝐷 value) to −𝑍2/8 (3𝐷 

value) but non-monotonically [see Figs B3(e) and (f)]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B2. Mean energy �̃�2 (eqs. B.9 and B.10) as a function of the parameter 𝛼2, for 𝐿 =

1.5 and 𝑍 = 2. The 𝛼2 step on the horizontal axis is 10−5. The energy 𝐸2 and the parameter 

𝛼2 concerning the wave-function 𝜙2 are found as the minimum parameters of the curve.  
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Figure B3. Parameters 𝐴2, 𝛼2 and 𝛼3 of the 𝜙2 wavefunction, and its energy 𝐸2, as a 

function of the thickness 𝐿 of the QW (circular dots; continuous curves: guides for the eyes); 

the red thin dashed lines correspond to the 3𝐷 case. (a), (b): 𝐴2 vs 𝐿 for 𝑍 = 1, 𝑍 = 2. (c), 

(d): 𝛼2 and 𝛼3 vs 𝐿 for 𝑍 = 1, 𝑍 = 2. (e), (f): 𝐸2 − 𝐸𝑐𝑜𝑛𝑓. vs 𝐿 for 𝑍 = 1, 𝑍 = 2 (𝐸𝑐𝑜𝑛𝑓. =

𝜋2/2𝐿2). 
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Appendix C 
Exchange energy of a “helium atom” centred in an 

infinite quantum well 

 
1. Exact results in 𝟑𝑫 
 

   The non-relativistic energies of the (singlet) (1𝑠)2 ground state and of the first-excited 

triplet 1𝑠2𝑠 state of the helium atom in 3𝐷 are known with an excellent precision: in Ref. 

[2] they are calculated with twenty significant digits. We only write here the first of 

them: 

 

   𝐸𝑆
𝑒𝑥𝑎𝑐𝑡 = −2.9037 ,     𝐸𝐴

𝑒𝑥𝑎𝑐𝑡 = −2.1752 ,                            (C. 1a) 

 

in units of effective hartree (see eq. (3.2), chapter 3). The subscript 𝑆, or 𝐴, recalls that 

the orbital part of the state is symmetric, or antisymmetric, under permutation of both 

electrons of the atom. The exchange energy 2𝐽0 = 𝐸𝐴 − 𝐸𝑆 is then exactly, in 3𝐷: 

 

2𝐽0
𝑒𝑥𝑎𝑐𝑡 = 0.7285 .                                               (C. 1b) 

 

2. Exact results in 𝟐𝑫 
 

   In 2𝐷, the non-relativistic energies of the (1𝑠)2 ground state and the first-excited 

triplet 1𝑠2𝑠 state of the helium atom are also known with a very good accuracy: in Ref.[3] 

they are calculated with thirteen significant digits. We write here the first of them: 

 

𝐸𝑆
𝑒𝑥𝑎𝑐𝑡 = −11.900 ,     𝐸𝐴

𝑒𝑥𝑎𝑐𝑡 = −8.296 ,                               (C. 2a) 

 

in units of effective hartree. The exchange energy is then exactly, in 2𝐷: 
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2𝐽0
𝑒𝑥𝑎𝑐𝑡 = 3.604 .                                                      (C. 2b) 

 

3. Calculation of 𝟐𝑱𝟎 in an infinite quantum well 
 

   The Hamiltonian describing both electrons in a helium atom writes 

 

�̂�  =  −
∆1

2
 −

∆2

2
 −

𝑍

𝑟1
 −

𝑍

𝑟2
 +

1

𝑟12
  ,                                       (C. 3) 

 

where ∆𝑗  is the Laplacian operator acting on electron 𝑗 (𝑗 = 1 or 2) and 𝑟𝑗  is the distance 

of electron 𝑗 to the origin of the coordinates, where the 𝑍 = 2 nucleus is located; 𝑟12 =

|𝑟 2 − 𝑟 1| is the distance between the electrons. 

 

a.  Ground energy  
 

The ground energy 𝐸𝑆 of the “helium atom” centred in a QW with infinite barriers is 

determined here by the variational method. The ground-state wavefunction 𝛹𝑆(𝑟 1, 𝑟 2) of 

the pair of electrons 1 and 2 is taken as the product of two one-electron 1𝑠-

wavefunctions: 𝛹𝑆(𝑟 1, 𝑟 2) = 𝜙1(𝑟 1)𝜙1(𝑟 2); the mean energy �̃�𝑆 = 〈𝛹𝑆|�̂�|𝛹𝑆〉 is studied as 

a function of the parameter 𝛼1, which now can vary (see section 1 of Appendix B for the 

definitions of 𝜙1 and 𝛼1), and its minimum is taken for the value of 𝐸𝑆. �̃�𝑆 is the sum of a 

kinetic term: 

 

⟨𝛹𝑆|−
∆1

2 −
∆2

2 |𝛹𝑆⟩  =  𝛼1
2  +  

𝜋2

𝐿2
  ,                                    (C. 4a) 

 

a potential term due to the Coulomb interaction of the electrons with the 𝑍 = 2 nucleus: 

 

⟨𝛹𝑆|−
2
𝑟1

−
2
𝑟2

|𝛹𝑆⟩  =  − 4 𝛼1  
𝐶(𝛼1𝐿)

𝑁(𝛼1𝐿)
                             (C. 4b) 

 
[𝑁(𝑋) and 𝐶(𝑋): see Appendix B], and a Coulomb electron-electron term: 

 

⟨𝛹𝑆|
1
𝑟12

|𝛹𝑆⟩  =  32𝜋 ∫ ∫
𝜌𝑞𝑑𝜌𝑞𝑑𝑧𝑞

𝜌𝑞
 2 + 𝑧𝑞

 2

∞

0

∞

0

[∫ 𝑑𝑧

𝐿
2

0

cos(𝑧𝑞𝑧)∫ 𝑑𝜌 𝜌 𝐽0(𝜌𝑞𝜌) 𝜙1(𝜌, 𝑧)2
∞

0

]

2

, 

(C. 4c) 

 

expressed using the fact that 1/𝑟 is the inverse Fourier transform of 4𝜋/𝑞2 [𝐽0(𝑥) is the 

Bessel function of first kind and of zeroth order]. This integral is calculated numerically. 

Figure C1 shows an example of calculation of 𝐸𝑆, for a QW of thickness L = 1.5. The mean 

energy �̃�𝑆 = 〈𝛹𝑆|�̂�|𝛹𝑆〉 is plotted as a function of the parameter 𝛼1. For this particular 

value of L, the ground energy is found to be 𝐸𝑆 = 𝑚𝑖𝑛 �̃�𝑆 ≈ −0.198, corresponding to the 

value 𝛼1
𝑚𝑖𝑛 ≈ 1.701. As expected, 𝛼1

𝑚𝑖𝑛 is slightly smaller than the 𝛼1 ≈ 2.0 parameter of 
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the 𝜙1 wavefunction for a single electron (see Fig. B1(d)), as a result of the screening of 

the +2e nucleus charge by the other electron. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C1: �̃�𝑠 vs 𝛼1 as a function of the parameter 𝛼1 for 𝐿 = 1.5 (dots: calculated points). 

The energy 𝐸𝑠 and the parameter 𝛼1 are found as the minimum of the curve. This procedure 

has been done for each 𝐸𝑠 value plotted in Fig. C2. 
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b. First-excited state 

 

   The first-excited energy 𝐸𝐴 of the “helium atom” centred in a QW with infinite barriers 

is determined perturbatively here: the electron-electron interaction 1/𝑟12 is treated as a 

small correction to the state 𝛹𝐴(𝑟 1, 𝑟 2) = [𝜙1(𝑟 1)𝜙2(𝑟 2) − 𝜙2(𝑟 1)𝜙1(𝑟 2)]/√2 of energy 

𝐸1 + 𝐸2 (𝜙1, 𝜙2, 𝐸1 and 𝐸2 are given in Appendix B). The energy 𝐸𝐴 is of the form 𝐸𝐴 =

𝐸1 + 𝐸2 + ∆𝐸, the corrective term being ∆𝐸 = 〈𝛹𝐴|1/𝑟12|𝛹𝐴〉; ∆𝐸 is the sum of a direct 

term: 

 

∫∫𝑑3𝑟1 𝑑3𝑟2  
𝜙1(𝑟 1)

2𝜙2(𝑟 2)
2

𝑟12
  

=   32𝜋 ∫ ∫
𝜌𝑞𝑑𝜌𝑞𝑑𝑧𝑞

𝜌𝑞
2 + 𝑧𝑞

2

∞

0

∞

0

[∫ 𝑑𝑧 cos(𝑧𝑞𝑧)

𝐿
2

0

∫ 𝑑𝜌 𝜌 
∞

0

𝐽0(𝜌𝑞𝜌) 𝜙1(𝑟 )
2] × … 

                                                                                         … [∫ 𝑑𝑧 cos(𝑧𝑞𝑧)

𝐿
2

0

∫ 𝑑𝜌 𝜌 
∞

0

𝐽0(𝜌𝑞𝜌) 𝜙2(𝑟 )
2] , 

(C. 5a) 

and an exchange term: 

 

∫∫𝑑3𝑟1 𝑑3𝑟2  
𝜙1(𝑟 1)𝜙2(𝑟 2)𝜙2(𝑟 1)𝜙1(𝑟 2)

𝑟12

= 32𝜋 ∫ ∫
𝜌𝑞𝑑𝜌𝑞𝑑𝑧𝑞

𝜌𝑞
2 + 𝑧𝑞

2

∞

0

∞

0

[∫ 𝑑𝑧 cos(𝑧𝑞𝑧)

𝐿
2

0

∫ 𝑑𝜌 𝜌 𝐽0(𝜌𝑞𝜌)
∞

0

𝜙1(𝑟 ) 𝜙2(𝑟 )]

2

. 

(C. 5b) 

 

 In 3𝐷 and in 2𝐷, calculating 𝐸𝑆 by the variational method and 𝐸𝐴 perturbatively gives 

satisfactory values (for our purpose) of the exchange energy 2𝐽0 = 𝐸𝐴 − 𝐸𝑆: we so obtain 

2𝐽0 = − 2.124 + 2.848 = 0.724 in 3𝐷, and − 7.948 + 11.635 = 3.687 in 2𝐷, which are 

0.6 % smaller, and 2 % larger, than the exact values, respectively. We are then confident 

that our calculated exchange energies 2𝐽0 of a “helium atom” centred in infinite QWs of 

different thicknesses, possess an uncertainty of the 1-% order. 

Figure C2 shows our calculated values of the ground energy 𝐸𝑆 and first-excited energy 

𝐸𝐴, as a function of the thickness 𝐿 of the QW; the exact values in 2𝐷 (𝐿 → 0) and in 3𝐷 

(𝐿 → ∞) are also indicated. 𝐸𝑆 and 𝐸𝐴 monotonically increase with the thickness 𝐿, and 

their difference, which is 2𝐽0, monotonically decreases (see Fig. 3.3 of chapter 3). 
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Figure C2. Ground energy 𝐸𝑆 (full disks) and first-excited energy 𝐸𝐴 (full squares) of a 

“helium atom”, as a function of the thickness 𝐿 of the infinite QW; the continuous curves are 

guides for the eyes. The empty circle and empty square, at 𝐿 = 0, are the exact values in 

2𝐷. The exact values in 3𝐷 are indicated by two horizontal red segments, on the right of 

the graph. 
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Appendix D 

New interpolated formulas for the 3D and 2D 

exchange energies 

  
Section 3.4 of chapter 3 described the procedure of Ref. [4] to build an interpolated 

expression of the exchange energy 2𝐽(𝑅) in 3𝐷 and 2𝐷. In Eq. (3.27), in which 𝐴 is the 

only remaining free parameter, it is possible, alternatively, to impose that, for 𝑅 ≫ 1, the 

interpolated 2𝐽(𝑅) be in coincidence with the standard asymptotic form 2𝐽(𝑅≫1) = 

𝐶𝑅𝛽𝑒−𝜔𝑅. We then obtain the following expression for 𝐴: 

 

𝐴 = (𝐶/2𝐽0 )
1/𝛽/e .                                                           (D. 1) 

 

So we can propose new interpolated formulas for the exchange energy 2𝐽(𝑅) in 3𝐷 and 

2𝐷, using values of 2𝐽0 which are, nowadays, known with very good accuracy (see 

Appendix C, eqs. (C.1 b), (C.2 b)): 

 

2𝐽3𝐷(𝑅)  =  0.729 (1 + 0.259𝑅2)
5
4  × ⋯                   

                                                   exp[−0.003𝑅 − 1.271𝑅 arctan(0.509𝑅)];              (D. 2a) 

 

2𝐽2𝐷(𝑅)  =  3.604 (1 + 1.549𝑅2)
7
8  × ⋯                  

                                                            exp[−0.579𝑅 − 2.178𝑅 arctan(1.245𝑅)].                (D. 2b) 

 

These expressions give 2𝐽(𝑅) values close to the corresponding ones of Ref. [4] for 𝑅 of 

the order of unity, and are more satisfactory, by construction, for large values of 𝑅.  
 

Figure D1 shows the exchange energies 2J3D (R) given by Ref. [4] (dashed line) and by 

Eq. (D.2a) (continuous line); for R of the order of unity, the curves only differ by several 

percent, this difference approaching 10 % for R ≥ 4 (not shown). Figure D2 illustrates  
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the 2D case: 2J2D (R) given by Ref. [4] is larger than the one by Eq. (D.2b), the difference 

being 10 % for R = 1 and approaching 14 % when R ≥ 2 (not shown). The Eqs. (D.2) are 

in agreement with the asymptotic forms (3.22) and (3.23) of chapter 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D1. Dashed line: exchange energy 2𝐽3𝐷(R) according to Ref. [4]; continuous line: 

2𝐽3𝐷(R) according to Eq. (D.2a). Empty disks: numerical values cited in Ref. [4]; black 

square: exact value of the exchange energy 2𝐽3𝐷(0) of the helium atom. 
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Figure D2. Dashed line: exchange energy 2𝐽2𝐷(R) according to Ref. [4]; continuous line: 

2𝐽2𝐷 (R) according to Eq. (D.2b). Empty disks: numerical values calculated in Ref. [4]; black 

square: exact value of the exchange energy 2𝐽2𝐷(0) of the 2D helium atom. 
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