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Abstract

Preserving coral reef functioning is a critical challenge of the 21st century. As fishes
represent a high proportion of consumer biomass on coral reefs, they govern a large
part of the storage and flux of nutrients and energy – functions. In light of ongo-
ing global anthropogenic threats to fish communities, it is urgent to increase our
understanding on functions mediated by fishes. However, the data and tools to ap-
propriately quantify them are sparse, and assessments of ecosystem functioning in
coral reefs are largely based on proxies such as biomass. Therefore, in this thesis,
I aim to develop methods to better quantify fish-mediated functions to ultimately
disentangle the drivers and vulnerabilities of multiple functions.

First, focusing on the individual level I developed a novel framework relying on
bioenergetics and mass balance theory to estimate how fishes partition carbon, ni-
trogen, and phosphorus into main fish functions/processes such as growth, excretion,
respiration, excretion and egestion. The main novelty is that the approach takes
into account the potential of nitrogen and phosphorus limitation alongside the more
traditionally used carbon limitation, which is particularly useful for fishes feeding
on low-nutrient diets. Additionally, the model framework is accompanied by an R
package called ‘fishflux’ to increase the applicability.

Second, I scaled up the quantification of functions to the community level for reefs
worldwide. To do so, I first predicted trophic guilds and all parameters needed to ap-
ply the bioenergetic model to global reef fish species using a combination of empirical
data and phylogenetic regression models. Then, I quantified five key functions—



nitrogen and phosphorus cycling, biomass production, herbivory, and piscivory—
mediated by reef fish communities across the world’s tropical oceans. This quan-
tification demonstrates that functions exhibit critical trade-offs driven by diverging
community structures, such that no reef can holistically maximize functioning. Fur-
ther, functions are locally dominated by few species, but worldwide, the identity of
dominant species varies greatly. These findings highlight the need for a nuanced
approach to coral reef conservation that considers variable processes beyond the ef-
fect of standing stock biomass. Third, while the important role of fish excretion has
been increasingly studied in recent years, fish egestion has received little attention
even though it may play an important trophic role through coprophagy. Therefore,
I estimated the quality and quantity of fish feces, and compared the nutrient flow
in excretion and egestion for 51 coral reef fish species in Mo’orea, French Polynesia.
This analysis sheds light on a remarkably low assimilation of carbon, nitrogen, and
phosphorus in coral reef fishes. As a result, feces can have relatively high nutritional
value, hinting on a relevant role of coprophagy. Further, modeled rates of egestion
and excretion demonstrate the unrecognized importance of fish feces as a vector of
nutrients in coral reef communities.

Lastly, organismal metabolic rates are the basis of energy and nutrient fluxes
through ecosystems. However, the metabolic demand of fishes in the wild is poorly
documented. I therefore introduce a novel approach to estimating field metabolic rates
by combining laboratory-based respirometry and field-based stereo-video systems,
and demonstrate the approach with a case study of seven reef fish species. As a non-
destructive, widely applicable technique, this approach can improve our ability to
estimate elemental fluxes mediated by fishes. In conclusion, this thesis contributes to
a better understanding of fish-driven functions on coral reefs and will help quantifying
the functional impacts of human stressors to improve conservation of coral reefs.



Résumé

La conservation du fonctionnement des récifs coralliens est un défi pour le 21ème
siècle. Comme les poissons représentent une proportion élevée de la biomasse des
consommateurs dans les récifs coralliens, ils régissent une grande partie du stockage
et des flux de nutriments et d’énergie, c’est-à-dire les fonctions. Dans le contexte
de l’impact grandissant de l’homme, il est urgent de mieux comprendre les fonctions
assurées par les poissons. Cependant, nous manquons de données et de méthodes
pour les quantifier de manière précises, et les évaluations du fonctionnement des
récifs coralliens sont souvent basées sur des proxies, tels que la biomasse. Lors de
cette thèse, j’ai développé des méthodes pour mieux quantifier les fonctions assurées
par les poissons afin de identifier les déterminants et les vulnérabilités de ces multiples
fonctions.

Tout d’abord, j’ai développé un nouveau modèle individuel basé sur la bioénergé-
tique et la théorie du bilan de matière pour estimer les flux de carbone, de l’azote et
de phosphore dans la croissance, l’excrétion, et la respiration de chaque individu. La
principale nouveauté de cette approche est l’intégration de la limitation en azote et
en phosphore en plus de la limitation en carbone plus traditionnellement utilisée. De
plus, j’ai développé le package R “fishflux” afin de faciliter l’utilisation du modèle.

Deuxièmement, j’ai quantifié des fonctions à l’échelle des communautés pour les
récifs du monde entier. Dans ce but, j’ai d’abord prédit les guildes trophiques ainsi
que tous les paramètres nécessaires pour appliquer mon modèle bioénergétique aux
espèces de poissons récifaux à l’échelle mondiale. Ensuite, j’ai quantifié cinq fonc-



tions - l’excrétion d’azote et de phosphore, la production de biomasse, l’herbivorie
et la piscivorie - assurées par les communautés de poissons récifaux. J’ai ainsi mis
en évidence des compromis critiques entre les fonctions induites par des structures
communautaires divergentes, de sorte qu’aucun récif ne peut maximiser son fonction-
nement de manière complète. En outre, les fonctions sont localement dominées par
peu d’espèces clés, mais à l’échelle mondiale, l’identité des espèces clés varie forte-
ment. Ces résultats soulignent la nécessité d’une approche nuancée de la conservation
des récifs coralliens, basée sur plusieurs fonctions clés et pas seulement sur l’effet de
la biomasse.

Troisièmement, contrairement à l’excrétion de nutriments dissous, l’égestion de
matière organique par les poissons est peu étudiée. Pour combler ce manque, j’ai
quantifié la qualité et la quantité des fèces de poissons et comparé les flux de nutri-
ments via l’excrétion et l’égestion pour 51 espèces de poissons récifaux à Mo’orea, en
Polynésie française. Cette analyse met en avant une assimilation faible des éléments
nutritifs par ces espèces. Par conséquent, les fèces peuvent avoir une valeur nutritive
élevée, ce qui laisse supposer un rôle trophique non négligeable de la coprophagie. De
plus, la comparaison des taux d’excrétion et d’égestion démontre l’importance mécon-
nue des fèces de poissons comme vecteur de nutriments au sein des récifs coralliens.

Finalement, les taux métaboliques des organismes impactent les flux d’éléments
dans les écosystèmes. Cependant, le taux métabolique des poissons dans la nature
est encore peu documenté. J’ai donc proposé une nouvelle approche pour estimer les
taux métaboliques sur le terrain en intégrant la respirométrie et les systèmes stéréo-
vidéo in situ. J’ai démontré le potentiel de cette approche pour sept espèces de
poissons. Etant une technique non-destructive, cette approche améliore donc notre
capacité à estimer les fonctions assurées par les poissons. En conclusion, cette thèse
contribue à une meilleure compréhension des fonctions assurées par les poissons dans
les récifs coralliens et permettra de quantifier les impacts des activités anthropiques
sur le fonctionnement des récifs coralliens afin d’améliorer la conservation de ces
écosystèmes.
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Chapter 1

General introduction

The fluxes of elements through biological communities fuel all life on Earth. Over

the last century, scientists increasingly recognized that human impact is drastically

interfering with this functioning of ecosystems around the world (Steffen et al. 2011).

Consequently, preserving these fluxes (i.e., functions) has become a major contem-

porary conservation goal (Bridgewater et al. 2014). However, for many functions,

we lack the tools or knowledge to appropriately monitor them. While many studies

have successfully quantified functions of plant communities, few studies have quan-

tified functions mediated by animal communities (Duffy et al. 2017). This thesis

contributes to filling this gap in the context of a unique ecosystem, coral reefs.

Coral reefs are known as the rainforests of the ocean because of their high diversity

and productivity. Simultaneously, they represent a key example of an ecosystem that

is heavily affected by climate change and other human pressures, which adds urgency

to increase our understanding of how these systems work. Since coral reef fishes

represent the highest biomass of animal consumers in this system, it is crucial to

increase our knowledge concerning fish-mediated functions on coral reefs (Bellwood

et al. 2019). However, while the topic of function has rightfully gained much interest

in coral reef studies over the past decades, methodological challenges have thus far
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limited the precise quantification of functions (Brandl et al. 2019a). In this thesis, I

seek to advance our understanding by developing and applying a series of tools that

allow the quantification of fish-mediated functions at the organismal and community

level.

In this first chapter, I will introduce the core concepts that formed the basis and

motivation of my thesis. First, I start with an introduction on ecosystem functioning

and the essential role of consumers (1.1). I then introduce coral reefs, the focal

ecosystem of this thesis, underlining the urgency of studying their functioning in

light of anthropogenic stressors (1.2), followed by briefly discussing the functioning of

coral reefs (1.3). Furthermore, I introduce the functions related to coral reef fishes,

and discuss what has been done and what is lacking in terms of their quantification

(1.4). Finally, I conclude this chapter by detailing the key objectives of my thesis

(1.5).

1.1 Ecosystem functioning and the role of con-

sumers

This thesis situates itself in the branch of marine science that deals with functional

ecology. Ecology is “the entire science of the relations of the organism to the sur-

rounding exterior world, to which we can count in the broader sense all the conditions

of existence. These are partly organic, partly of inorganic nature” (Haeckel 1866).

Since then, many definitions have followed, but all of them put the relationships be-

tween organisms and their environments at the center of the discipline (Friederichs

(1958)). If ecology describes interactions, functional ecology is a relatively younger

branch that describes these relationships among organisms and between organisms

and their environment as a flow of material and energy (Calow 1987; Keddy 1992).

Within the field of functional ecology, the terms function and functioning have
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become prominent concepts in ecology, yet, are often used with different meanings

depending on the author (Jax 2005). For the purpose of clarity and situating the

thesis within the functional ecology literature, I will briefly explain the different ways

in which these concepts are used and specify the definitions that will be used in

this thesis. First, ‘function’ may refer to the flux of energy or material within an

ecosystem. Therefore, ‘functioning’ of a complex system of interactions can be defined

as the sum of processes or functions that sustain the system (Jax 2005). Alternatively,

the term function is often used to describe a role or purpose for organisms in the

ecosystem. In the context of ecological traits, for example, organisms are classified

into functional groups based on their role or morphological characteristics that may

relate to functions (Wilson 1999; Violle et al. 2007). Finally, the word function

has also been used to denote a role or service of an entire system to human beings,

effectively talking about an ecosystem service (Millennium Ecosystem Assessment

2005). In this thesis, I apply the first and most commonly accepted use of the word

function to define a flux of matter mediated by an organism or an entire community

(e.g., flux of nitrogen or biomass production). I further use the term ecosystem

functioning as a broad concept to describe the ‘performance’ of the ecosystem with

reference to multiple functions.

Consumers play an essential role in ecosystem functioning. They influence com-

munity structure through consumption (top-down) and primary production through

nutrient cycling (bottom-up) (Duffy 2002). Primary consumers (e.g., herbivores) are

major determinants of standing plant biomass, community composition, physical veg-

etation structure, primary production, and decomposition rates (Lubchenco & Gaines

1981; Duffy 2002). Similarly, secondary consumers (i.e., animals feeding on other an-

imals) control the populations of their prey, and can indirectly influence ecosystems

through cascade effects that propagate through the food web (Sih et al. 1998). In-

deed, several authors find that strong top-down effects are common and may have

critical indirect effects on ecological structure and function (Duffy 2002). Direct and

indirect effects of consumers can thus be assessed by investigating the topology of
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food webs (i.e., who eats whom) as well as the interaction strengths (i.e., how much

does a consumer group feed on a prey group) (Duffy 2002).

Beyond their top-down effects, consumers play an important role in biogeochemi-

cal cycles through processes of nutrient supply (i.e., excretion and egestion) (Sterner

& Elser 2002; Allgeier et al. 2017). This role becomes even more influential in

oligotrophic systems, where excretion and egestion supply limiting nutrients to the

system and fuel primary production. Most research on consumer-mediated nutri-

ent dynamics has focused on terrestrial ecosystems, rivers, and lakes (Allgeier et al.

2017). In the marine realm, a well-known example can be found in the open ocean,

where zooplankton is involved in the recycling of limiting nutrients (Nugraha et al.

2010). Importantly, nutrient regeneration by zooplankton can account for up to 23%

of the total requirement of phytoplankton primary production (Hernández-León et al.

2008). Moreover, migrating animals such as schooling fishes and whales are respon-

sible for a huge translocation of nutrients (Meyer et al. 1983; Roman & McCarthy

2010). More recently, the focus of consumer-mediated nutrient dynamics research

has found its way to coastal ecosystems, such as oligotrophic coral reefs, the focal

ecosystem of this thesis (Allgeier et al. 2017).

Functions are challenging to measure directly, and especially the functions per-

formed by communities of large and/or mobile organisms. Therefore, major efforts

have been made to link easily measurable ecological traits and functions (Lavorel &

Garnier 2002). Some evidence on the relationship between traits and functions is

documented in the literature. For example, the primary production can be predicted

by the traits of plant communities (Lavorel & Garnier 2002; Violle et al. 2007).

Further, there is a growing consensus that trait diversity and composition, rather

than species diversity, determine ecosystem functioning of plant communities (Díaz

& Cabido 2001). Therefore, functional richness (i.e., number of species with a unique

set of traits) is often used as proxy for ecosystem functioning (Flynn et al. 2011).

Particularly in highly diverse systems, the use of functional groups is an attractive

approach to decompose complexity and to quantify functional metrics such as func-
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tional richness and functional redundancy (Halpern et al. 2008; e.g., Belmaker et al.

2013; Brandl et al. 2016). Considering functional richness as a proxy for ecosystem

functioning rests on the broad assumption that traits describe the ecological niche of

species and that functionally diverse communities have a higher functioning due to

niche complementarity as resources are used more effectively (Loreau et al. 2001).

This link has been demonstrated for plant communities (Díaz & Cabido 2001; Loreau

et al. 2001). However, evidence for consumer communities is restricted to few ex-

periments on terrestrial communities (Duffy et al. 2017), while direct investigation

is lacking for many other animal groups, even for well studied taxa such as coral reef

fishes (Brandl et al. 2019a). The scarcity of studies quantifying functions of con-

sumer communities compared to plant communities thus impedes the general use of

trait diversity as a proxy for functioning. It is therefore necessary to develop ways to

effectively quantify animal-mediated functions, which this thesis contributes to.

1.2 Coral reefs in the Anthropocene

Contemporary ecosystems and their functioning are threatened by the harmful domi-

nance of humans. However, the pervasive influence of humans on ecosystems is not a

recent phenomenon. Human populations have shaped animal and plant communities

across the globe since the late Pleistocene (Western 2001). Throughout history, we

see that both increased human populations and technological developments have trig-

gered an ecological crisis (Holdren & Ehrlich 1974). Over the last century, scientists

increasingly recognized that the human footprint on the global environment is reach-

ing massive proportions, rivaling with some of the great forces of nature in its impact

on the functioning of the Earth system (Steffen et al. 2011). In 2000, Crutzen and

Stoermer coined the term ‘Anthropocene’ to define the era in which humans have al-

tered the global biogeochemistry of the planet while challenging the survival of many

of its inhabitants (Crutzen & Stoermer 2000). Today, 25% of all species on earth are

at risk of extinction (Webb & Mindel 2015). Many studies reported that our modern
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society has initiated a mass extinction episode, unprecedented in human history and

threatening the functioning of the planet’s ecosystems (Ceballos et al. 2015).

The ongoing biodiversity crisis and dramatic defaunation of our planet has

prompted several international conservation initiatives (Johnson et al. 2017). In

1992, the convention on biological diversity was created to halt biodiversity loss

and signed by 196 nations (CBD; www.cbd.int). Loss of species and degradation of

ecosystems are likely to further accelerate in the coming years. Our understanding of

this crisis is now clear, and world leaders have pledged to avert it. Nonetheless, global

goals to reduce the rate of biodiversity loss have mostly not been achieved. In 2002,

leaders across the globe pledged through the CBD “to achieve by 2010 a significant

reduction of the current rate of biodiversity loss.” Alongside biological diversity, the

goal of conserving functioning has increasingly found its place in environmental law

texts and policy under the form of the concept of biological integrity (Bridgewater et

al. 2014). Unlike diversity, which refers to a number of entities - these can include

genes, species, or landscapes - integrity refers to a system’s wholeness, including

presence of all appropriate elements and occurrence of all processes regulating the

flow of energy and materials at appropriate rates (Angermeier & Karr 1994). As

such, the “Aichi Biodiversity targets” (successor of the CBD 2010 targets) also

include a more complex plan to safeguard ecosystem services. However, the concept

of biological integrity as a conservation goal is vague, open to interpretation, and

unachievable because the ‘untouched’ natural world arguably does not even exist

anymore. So far, none of the major international biodiversity targets were reached,

the continuing decline of global biodiversity is undeniable, and our ability to monitor

certain targets is weak (Johnson et al. 2017). We urgently need to improve our

capacity of monitoring ecosystem functioning.

This thesis intends to contribute to our understanding of the functioning of the

coral reef ecosystems in particular. Coral reefs represent a prime example of an

ecosystem that is severely impacted by anthropogenic threats including warming,

acidification, nutrient enrichment, habitat destruction, intensive fishing pressure, and
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sedimentation (Gardner et al. 2003; Wolanski et al. 2009; Edwards et al. 2013;

D’Angelo & Wiedenmann 2014; Hughes et al. 2017). At the same time, millions of

people depend on them, as they provide multiple ecosystem services to human pop-

ulations such as shoreline protection (Moberg & Folke 1999; Harris et al. 2018), and

10% of the world’s fisheries (Knowlton et al. 2010). Thus, coral reefs are simultane-

ously very vulnerable to increasing human stressors and very important for human

wellbeing. Below, I discuss some of the major threats of coral reefs in more detail.

Global climate change is one of the most imminent threats to coral reef ecosys-

tems (Hughes et al. 2017; Bruno et al. 2019). Corals are particularly sensitive to

warming and acidification and are being struck by increasingly frequent mass bleach-

ing episodes (Hughes et al. 2017). In fact, a recent estimation suggests that 60% of

global coral reefs may be lost by 2030 (Wilkinson 2008), setting the stage for the loss

of critical habitat for associated reef fishes and other biota. Following events of mass

coral mortality, some reefs show signs of recovery, but maintain an altered functional

structure with less functional diversity (McWilliam et al. 2020). Reefs that do not

recover, may remain in degraded states dominated by algae, that may be difficult to

reverse (Folke et al. 2004; Graham et al. 2015).

As corals are the engineers that produce the typical three-dimensional structure of

the habitat, dying corals followed by biological and physical erosion transform com-

plex reefs into rubble fields with low structural complexity (Hughes et al. 2017) (figure

1.1). Degradation and homogenization of the reefs and the associated loss of structural

complexity have serious consequences for overall reef diversity, ecosystem functions

and services (Alvarez-Filip et al. 2009). Decreasing complexity alters abundance,

biomass, diversity and trophic structure of fishes (Friedlander et al. 2003; Graham

& McClanahan 2013; Darling & D’agata 2017). Moreover, reductions in structural

complexity and habitat diversity can result in local extinctions (Graham et al. 2006;

Newman et al. 2015), and declining fisheries productivity (Rogers et al. 2014). Both

obligate and facultative coral feeders are affected by the loss of live corals in a direct

way and appear the most susceptible to acute coral loss (Pratchett et al. 2008). Fur-
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ther, decreasing topographic complexity particularly affects small fishes (Graham et

al. 2011). Thus, both the loss of live coral and the decline of structural complexity

may trigger local extinctions and compromise ecosystem functioning (Pratchett et al.

2011).

Figure 1.1: Coral reef in a healthy (left), bleaching (middle), and dead
(right) state. American Samoa. credit: THE OCEAN AGENCY
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Another major threat to coral reef communities is the over-exploitation of fisheries

(Pauly et al. 2002; Newton et al. 2007). Many coastal fisheries throughout the world

are unsustainable or already overexploited (Pauly et al. 2002), and coral reef fisheries

have collapsed in many tropical island countries (Newton et al. 2007). Moreover, de-

structive fishing practices have greatly increased the impact of human populations on

the reef habitat (Mcmanus et al. 1997). Importantly, habitat degradation and fishing

affect different sides of the fish community. Fisheries typically target larger fishes

often occupying a high trophic level (Pauly et al. 1998), while habitat degradation

and coral loss have more effect on small or corallivorous fishes (Wilson et al. 2009;

Graham et al. 2011). Nevertheless, intensive fishing and habitat degradation often

co-occur, leading to strong overall declines in the biomass and abundance of fishes,

especially in heavily populated regions of the world (Wilson et al. 2009; Graham et

al. 2011).

While coral reef fishes are vulnerable to extinction due to both climate change

and fishing (Cheung et al. 2005; Graham et al. 2011), extinctions are more likely to

occur locally than globally (Hughes et al. 2014). The species that have gone locally

extinct or drastically declined tend to be highly dependent on live corals (Wilson et

al. 2006) or heavily targeted by local fisheries (Bellwood et al. 2003). The relevance

of these losses to ecosystem functioning will ultimately depend on their contributions

to functions (Pratchett et al. 2011). Drastic declines in abundance and biomass of

a local key species may have profound impact on ecosystem functioning representing

ecological extinctions, where a species is unable to maintain key functions because

the species has become too rare (Bellwood et al. 2019). While maintaining diversity

may provide an ecological insurance, it is important to investigate the role of species

identity because the most abundant species within a community or functional group

often contribute the most to ecosystem functioning (Gaston & Fuller 2008; Topor et

al. 2019).

The drastic declines of both corals and fishes, and shifting communities in coral

reefs have evoked serious concerns about their persistence, functioning, and ability to
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provide valuable services (Bellwood et al. 2019; Williams et al. 2019). The ongoing

coral reef crisis has forced scientists to rethink coral reef conservation and even to use

the concept of ‘novel ecosystem,’ which has been coined to define agro-ecosystems

with no analog in the natural world (Bellwood et al. 2019; Graham et al. 2020).

Marine protected areas have shown to effectively increase the biomass of fishes such

as targeted herbivores. Protecting herbivores with the goal of boosting the resilience

of the entire system has been put forward as a key local solution to save corals.

However, it is becoming increasingly clear, local protection does not provide clear

benefits for the reef benthos after major bleaching events, and reserve effects cannot

protect all the species that participate to local biodiversity (Graham et al. 2020).

While marine reserves have important roles for the conservation of coral reefs in the

face of climate change, they do not provide equal benefits for all species and functional

groups and thus can also produce communities that are far from ‘natural’ coral reefs.

With the increasing frequency and severity of heating events, the effect of climate

change seems too strong for marine protected areas alone to save the day (Côté &

Darling 2010; Graham et al. 2020).

There is an urgent need to better understand the processes that underlie the func-

tioning of coral reefs to identify functional changes we may expect in the Antropocene,

and to reform conservation efforts to address both specific local issues and larger-scale

threats (Bellwood et al. 2019). It is now clear that we cannot conserve nor restore

the integrity of coral reefs as they were before humans touched them (Bellwood et al.

2019). Moving forward, scientists are stressing the need to embrace transition and

guide coral reefs through the Anthropocene in a way where the loss of function is

mitigated (Bellwood et al. 2004; Graham et al. 2014; Bellwood et al. 2019; Williams

et al. 2019). To appropriately advise policy makers on how to achieve this goal,

scientists need to increase the understanding of coral reef functioning - we need to be

able to quantify functions before we can think about managing them (Bellwood et al.

2019; Brandl 2019).
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1.3 Functioning of coral reefs

This thesis will contribute to our understanding of coral reef functioning. The mys-

tery of coral reef functioning and the quest to understand and describe them dates

centuries back. In 1832, for example, Charles Darwin sailed across the Pacific Ocean

and explored coral reef ecosystems. He observed that coral reefs were able to flour-

ish in nutrient-poor waters and under constant pressure of powerful waves (Darwin

1839): “The ocean throwing its waters over the broad reef appears an invincible, all-

powerful enemy; yet we see it resisted, and even conquered, by means which at first

seem most weak and inefficient.” He compared stumbling upon coral reef ecosystems

in the middle of an ocean with encountering a swarming oasis in the middle of a

desert. This phenomenon later became known as Darwin’s paradox. Without fully

understanding the mechanisms, Darwin recognized the uniqueness of coral reefs in

terms of biodiversity and productivity in remarkably nutrient-poor waters.

Centuries later, Darwin’s paradox continues to puzzle scientists, and both pelagic

subsidies and efficient internal cycling have been put forward as potential drivers.

Coral reefs depend on pelagic subsidies for their productivity through for example

input of seabird guano (McCauley et al. 2012), upwelling (Gove et al. 2016), and

fish larvae subsidies (Brandl et al. 2019b). In some windward reefs, pelagic subsidies

can even account for almost half of fish productivity (Morais & Bellwood 2019a). On

the other hand, the productivity of coral reefs is also driven by internal cycling of

nutrients governed by animals such as sponges (De Goeij et al. 2013), invertebrates

(Williams & Carpenter R. C. 1988), or fishes (Burkepile et al. 2013). Coral reef

fishes alone contribute to a large proportion of the animal biomass, and therefore

have an important impact on functioning of coral reefs (Newman et al. 2006). For

example, aggregations of resting nocturnal fish in coral reefs can create concentrated

nutrient hotspots and increase coral growth up to 70% (Meyer et al. 1983; Shantz et

al. 2015). Another example at small spatial scales is the interaction between corals

and small planktivorous damselfishes - corals that shelter damselfishes can grow 50%
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faster than those without fishes. Finally, on a larger scale, fish-mediated nutrient

excretion stabilizes stoichiometry on coral reefs (Allgeier et al. 2014), matching ideal

growth conditions of corals (Atkinson et al. 1995; Ferrier-Pages et al. 2000). Thus,

fishes play an important role in providing nutrients and enhancing the productivity

of corals.

In line with its multiple general uses (see 1.1), the term ‘function’ has produced

considerable confusion and debates in the context of coral reefs (Bellwood et al. 2019).

The definition of ecosystem function - flow of energy or material within an ecosystem -

implies that the terms ‘ecosystem function,’ ‘ecosystem process,’ and ‘ecosystem flux’

can be used interchangeably. Functions should thus ideally be expressed as a rate of

energy, nutrients or mass. On the other hand, the term ‘function’ is often used to

describe a purpose or a role (Bellwood et al. 2019). For example, the defined role or

purpose of a fish may be to eat certain algae in a specific habitat. This second use of

the term ‘function’ is thus related to its ecological niche. However, the two definitions

are closely related since the complementarity of ecological niches can imply higher

community-level rates of functioning.

Brandl et al. (2019) proposes a framework with a focus on eight reciprocal process-

based ecosystem functions: calcium carbonate production and bioerosion, primary

production and herbivory, secondary production and predation, and nutrient uptake

and nutrient release. Quantifying these ecosystem functions is a key step to increase

our understanding of how reefs work and disentangle the role of diversity and indi-

vidual species in ensuring functions (Brandl et al. 2019a). My thesis is in line with

this proposed process-based approach.

1.4 Fish-mediated functions on coral reefs

Coral reef fishes play an essential role in coral reef functioning which is why I will

focus on fish-mediated functions. Indeed, coral reef fishes contribute to a high propor-
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tion of consumer biomass and therefore represent essential vectors of fluxes of carbon,

nitrogen and phosphorus through storage and recycling (McIntyre et al. 2008; All-

geier et al. 2014; Barneche et al. 2014). Broad ecosystem functions mediated by coral

reef fishes include nutrient cycling, biomass production, herbivory (primary consump-

tion), and piscivory (secondary consumption) (Brandl et al. 2019a). Individual-level

processes contribute to ecosystem functions through multiple pathways (figure 1.2).

First, depending on their diet, fishes can contribute to essential functions such as

predation and herbivory, and thus perform top-down control on primary producers or

animal prey. Secondly, growing fish contribute to secondary production, and thus may

serve as food for other animals including humans. Biomass production has received

most attention since the production of edible biomass is correlated to food provision,

an important ecosystem service with clear benefits to humans. Third, a proportion of

the food that fishes consume is released back into the environment under the form of

excretion or egestion. The released nitrogen and phosphorus then contribute to the

system-wide nutrient cycles.

Figure 1.2: Diagram showing the links between individual processes,
ecosystem functions and ecosystem services.
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While the high diversity of coral reef fishes has inspired many studies with a

focus on ecosystem functioning, only a handful of studies have attempted to quantify

functions as continuous fluxes (Brandl et al. 2019a). Rather, ecosystem functioning

is often defined with the use of proxies such as trait diversity or total biomass (Mora

& Sale 2011; e.g., Mouillot et al. 2014). In fact, most studies on coral reef fishes

that mention functioning rely on proxies (Brandl et al. 2019a). Further, studies

that do quantify functions are mostly focused on biomass production (e.g., Morais &

Bellwood 2019b) or fish excretion (e.g., Francis & Côté 2018). I will briefly discuss

the use of proxies for functioning in previous studies. Then, I will describe what has

been done and what is lacking in terms of quantifying process-based functions, which

lays the foundation of how my work will fill important knowledge gaps.

1.4.1 Proxies of functioning

Studies using trait-based metrics have shed light on the mismatch between species

richness, functional richness, and the functional vulnerability of coral reef fish com-

munities. Species richness does not necessarily correlate with functional richness

(Stuart-Smith et al. 2013; Parravicini et al. 2014). As a result, even coral reefs

with a high diversity of reef fishes can be vulnerable since some functional groups

are represented by a limited number of species (Halpern et al. 2008; Mouillot et al.

2014). Further, human stressors including fishing and climate change critically im-

pact functional diversity. Functional diversity declines disproportionally with human

density, revealing the potential loss of functional groups in reefs that are close to

humans (D’agata et al. 2014; Cinner et al. 2020). Furthermore, when coral reefs

shift to an algal-dominated state after bleaching events, the functional structure of

reef fishes shifts substantially (Graham et al. 2015). While coarse-scale trait-based

approaches have provided interesting insights, it is crucial to empirically verify the

link between traits and function (Bellwood et al. 2019). Otherwise, concepts such

as functional redundancy and vulnerability, as commonly measured by trait-based
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approaches, have little significance in terms of insurance or vulnerability of ecosys-

tem functioning. A direct investigation of processes performed by coral reef fishes,

however, is lacking, which impedes our understanding of trait-function relationships

(Brandl et al. 2019a).

Another largely used proxy for ecosystem functioning is standing stock biomass

(Mora & Sale 2011; Micheli et al. 2014; MacNeil et al. 2015). Specifically, several

studies have used biomass as a proxy for secondary production to show a positive

relationship with diversity measures (Mora & Sale 2011; Micheli et al. 2014). Fur-

ther, biomass of functional groups has been used as a proxy for key functions such

as herbivory or predation (MacNeil et al. 2015). The positive correlation between

biomass and function is intuitive - more fishes yield higher function. However, this

relationship is likely to be non-linear following metabolic theory (Brown et al. 2004).

Further, biomass may not be sufficient to represent function, because community

structure may have a large impact. For example, small species tend to grow faster

(Morais & Bellwood 2018). Therefore, biomass production will depend both on stand-

ing stock biomass and the size structure of the community. Thus, while it is evident

that biomass is an important driver of function, the exact relationship should be

investigated alongside other aspects of the fish community.

Finally, much work has been done to approximate herbivory and biorerosion, as

these are important functions for sustaining coral survival and recovery after distur-

bance (Hughes et al. 2003; Hughes et al. 2007; Burkepile & Hay 2008; Graham et

al. 2015). A popular approach to approximate herbivory is the use of algal bioes-

says where herbivory is quantified as the percent mass of algae removed (Topor et al.

2019). Another proxy is bite rate multiplied by a fish’s biomass (e.g., Lefcheck et al.

2019). For key herbivore and bioeroder species, detailed individual-level information

has been collected yielding rates of volume removed per area (e.g., Fox & Bellwood

2007). These studies have brought insights on algal removal and a positive effect of

herbivore diversity on algal removal (Rasher et al. 2013; Topor et al. 2019). However,

the direct link between these measures and the mass of algae removed by individual
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species as well as entire communities (i.e., process based function) remains largely

unexplored.

1.4.2 Process-based functions

Only a handful of studies have quantified processes to define reef ecosystem functions,

and to my knowledge there are currently no studies that have attempted to quantify

an array of key functions mediated by coral reefs simultaneously. Recent advances

integrating empirical data, extrapolation, and community surveys have allowed the

quantification of nutrient cycling rates and biomass production on the community

level. A major goal of contemporary coral reef conservation is to maintain functioning

under human stressors (Bellwood et al. 2004). Studies quantifying functions at

the community level allow the direct investigation of the effect of human impact on

function (Allgeier et al. 2016; eg Morais & Bellwood 2019b; Morais et al. 2020b).

Most work related to process-based functions has focused on somatic growth (i.e.,

biomass production) and nutrient cycling (i.e., excretion).

Somatic growth is a central element in fisheries stock assessments. Yet, few stud-

ies have attempted to quantify fish growth at the community level, and the growth

of tropical fishes has been relatively understudied (Pauly 1980). Nevertheless, re-

cent work has compiled data to design a standardized framework to predict growth

rate parameters of reef fishes on a global scale (Morais & Bellwood 2018). Fish

growth rates decrease with body size and increase with temperature, consistent with

metabolic theory (Brown et al. 2004; Morais & Bellwood 2018). This conceptual

framework helps to investigate community growth patterns, allowing timely insights

into biomass production on coral reefs under undergoing stressors (Morais & Bellwood

2018). For example, linking biomass production with human exploitation gradients

has revealed that while size-selective fishing depletes fish biomass, it triggers increased

production per unit biomass, yielding a ‘buffering productivity’ in biomass-depleted

fish assemblages under high exploitation (Morais & Bellwood 2019b). Further, coral
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loss may lead to slower paced reefs (i.e., with a lower biomass turnover rate) due to

a community shift with less small fast-growing fish families such as Chaetodontidae,

Pomacentridae, Blenniidae, and Gobiidae (Morais et al. 2020b). Finally, comparing

productivity of tiny cryptobenthic fishes and larger coral reef fishes has underlined the

critical role of cryptobenthics in fueling reef trophodynamics (Brandl et al. 2019b).

Nutrient-cycling mediated by fishes has a critical impact on coral and algal growth

(Burkepile et al. 2013; Shantz et al. 2015). This increasingly recognized importance

of fishes for fueling primary production has yielded several efforts to quantify nu-

trient cycling rates of reef fish communities by combining empirical measurements

with bioenergetic modeling or extrapolation of regression models. Excretion rates of

nitrogen and phosphorus of individual fishes can be empirically measured by putting

a fish in a certain volume of filtered seawater for a fixed amount of time. Multiple

studies have used this technique to quantify nutrient cycling rates for several coral

reef fish species (Allgeier et al. 2014; Allgeier et al. 2015; Francis & Côté 2018).

By modeling these rates with biomass and taxonomy, studies have been able to esti-

mate nutrient cycling rates on the community level (Allgeier et al. 2015; Allgeier et

al. 2016, 2017; Francis & Côté 2018). Bioenergetic models provide another way of

estimating individual-level cycling rates of all fishes in a community and have been

applied in the context of coral reefs (Allgeier et al. 2014).

These studies have highlighted how nutrient cycling relates to habitat type, species

richness, and community structure (Allgeier et al. 2014), fish movement patterns

through diurnal migration (Francis & Côté 2018), and intensive fishing (Allgeier et

al. 2016). Thus, fish biomass, behavior, community structure, and human impact

can all affect nutrient cycling on coral reefs.

Aside from biomass production and nutrient cycling through excretion, there are

currently no studies that effectively quantified nutrient cycling rates through egestion,

nor consumption rates at the community level for coral reef fishes. It is commonly

assumed that excretion is the dominant vector of nutrient release by aquatic animals

(Atkinson et al. 2014), but in fact, egestion has been shown to be an important
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overlooked pathway in freshwater settings (Halvorson & Atkinson 2019). In coral

reefs, efforts have been made to quantify excretion of nutrients (e.g., Allgeier et al.

2014; Francis & Côté 2018), but egestion is largely overlooked. Nevertheless, there are

indications that fish feces can be nutrient rich and act as a food source for other fishes.

Coprophagy is in fact a common phenomenon among coral reef fishes (Robertson

1982), and some carnivores and planktivores with a nutrient-rich diet have more

nutrients in their feces compared to food sources of nominally fishes that feed on

algae or detritus (Bailey & Robertson 1982). Thus, fish feces may have an important

role in the foodweb, but we currently lack understanding of the quality and flux of

coral reef fish egestion.

Mass balance models provide a promising avenue for quantifying multiple functions

simultaneously because they can be used to estimate how consumers partition carbon,

nitrogen, and phosphorus into nutrient excretion, egestion, and growth (Sterner &

Elser 2002). Consumption rates can be approximated by modeling the metabolic

requirements of individuals (i.e., bioenergetic models, Kitchell et al. 1974; Hanson et

al. 1997; Kooijman 2010). Modeled consumption rates and the absorption efficiency

(i.e., the proportion of elements absorbed in the gastrointestinal tract) then allow

for the estimation of egestion rates. Absorbed elements are partitioned into growth,

excretion, and respiration. Together, this framework thus allows the quantification of

multiple fish-mediated functions.

However, several methodological and empirical knowledge gaps limit the applica-

tion of bioenergetic models to coral reef fish communities. First, existing bioenergetic

models use energy (carbon) as the main currency and rely on the assumption that

fishes are limited by energy (Kitchell et al. 1974; Hanson et al. 1997). However,

there is mounting evidence that fishes can be limited by nutrients, rather than energy

because their diets contain lower nutrient levels than their needs (Hood et al. 2005;

Benstead et al. 2014; El-Sabaawi et al. 2016; Moody et al. 2019). This means that

these fishes will have a higher consumption rate to compensate for the low levels of

nutrients. Particularly in coral reefs that are located in nutrient-poor locations this
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mechanism may be important. Moreover, fishes in low trophic levels that feed on low-

quality resources often account for a significant proportion of coral reef fish biomass

(Graham et al. 2017). Applying the traditional bioenergetic models to fish species

that are limited by nitrogen or phosphorus normally results in biologically implausible

predictions of functions. Further, it is common to use high constants values (~0.8) for

absorption efficiencies of carbon, nitrogen, and phosphorus, while in reality they can

vary substantially (Czamanski et al. (2011)). For coral reef fishes, data on absorp-

tion efficiency is scarce, hampering the use of bioenergetic models to quantify egestion

rates. Furthermore, physical activity is a major component of the metabolic rate of

free-living fishes in their natural habitats (Norin & Clark 2016). The activity scope

(i.e., the ratio between field metabolic rate and standard metabolic rate (Chung et

al. 2019)) is an essential parameter in bioenergetic models to estimate the metabolic

requirements of fishes in their natural environment. However, quantification is rare

because field metabolic rates are challenging to measure in the aquatic environment

and have only been estimated for a small number of fishes (e.g., Lucas et al. 2011;

Murchie et al. 2011; Cruz-Font et al. 2016; Chung et al. 2019), and none of them

are coral reef fishes.

Beyond methodological aspects, quantifying fish-mediated functions at the com-

munity level requires key species-specific information for a wide range of fishes (e.g.,

diet, growth rate, metabolic rate) that may be unreliable or lacking for coral reef

fishes. For example, diet of fishes impacts internal processes such as growth, as-

similation, and consumption rate (e.g., Morais & Bellwood 2018). In most cases,

trophic categories are based on experts, that often disagree among them with par-

ticular ambivalence on the resolution at which to define herbivores and invertivores

(e.g., Mouillot et al. 2014; Stuart-Smith et al. 2018). The classification of species into

trophic groups has advantages for our understanding of ecological patterns (Mason &

Bello 2013; Mouillot et al. 2013; Villéger et al. 2017). However, the lack of agreement

and the limited transparency of trait-based datasets can inhibit the emergence of gen-

eral patterns. For coral reef fishes, we are still at the brink of knowing what they eat,
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let alone what the elemental content of their diet is. We need additional data and

reproducible approaches to predict species-level information for a high diversity of

fishes, and ultimately estimate fish-mediated functions on the community level. My

thesis aims to fill these outlined knowledge gaps to allow a better quantification of

process-based fish-mediated functions.

1.5 PhD objectives

The main goal of my thesis is to quantify ecosystem functions mediated by fishes

on coral reefs. I aimed to increase our understanding of functions through three

main parts: (1) developing a theoretical framework to predict individual processes,

(2) scaling up ecosystem functions to the community level for global reefs, and (3)

empirically investigating essential and understudied elements that affect individual

processes.

First, in part one, I developed a novel bioenergetic model that accounts for nu-

trient limitation of fishes alongside energy limitation. As many coral reef fishes are

herbivorous and likely to be limited by nitrogen or phosphorus rather than energy,

the existing methods were not appropriate to use for the diversity of fishes living on

coral reefs. Therefore, I developed a novel framework that includes the possibility of

nutrient limitation alongside energy limitation (chapter 2). I also made the model

accessible to use by developing an R package called ‘fishflux.’

Second, I estimate important ecosystem functions on the community level for

reefs across the globe by using the framework shown in chapter 2. Applying the

bioenergetic model to any species requires specific information. An important ele-

ment affecting bioenergetic models is diet. Therefore, I predicted trophic guilds for a

global species list in a reproducible way that includes uncertainty (chapter 3). Fur-

ther, the application of the modeling framework (chapter 2) requires a number of

additional parameters. Chapter 4 is a methodological chapter that describes how I
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estimated these parameters for a global species list using a combination of empirical

data and extrapolation methods. Then, using these parameter estimates, I applied

bioenergetic models to 9118 reef fish communities across 585 sites worldwide to quan-

tify five community-level reef fish functions (nitrogen excretion, phosphorus excretion,

biomass production, herbivory, and piscivory). This application further aids to (1)

investigate trade-offs among functions, (2) extract the community- and species-level

effects on these functions, and (3) gauge the vulnerability of reef fish functioning in

the Anthropocene.

Third, I focused on elements that can heavily affect ecosystem functions, yet are

not well known. While a lot of research on nutrient cycling mediated by fishes is

focused on the inorganic form of nitrogen and phosphorus (i.e., excretion), the role

of fish egestion is less known. In chapter 6, I investigate the importance of egestion

by quantifying the quality and quantity of fish egestion. Finally, the activity rate of

fishes in the wild affects the metabolic needs of fishes, but has not been quantified

for coral reef fishes. In chapter 7, I propose a new approach to estimate the field

metabolic rate.





Part I: Quantifying functions on

the individual level

Individuals are the building blocks of communities. Ecosystem functions mediated by

fish communities are defined by the sum of individual contributions. Therefore, the

first part of my thesis focuses on the elemental fluxes in fishes on the individual level.

At the beginning, I sought to use existing bioenergetic models to predict the rate

of elemental cycling by fishes. However, existing models counter-intuitively predict

negative excretion rates for fishes that feed on low-nutrient diets such as algae or

detritus. Bioenergetic models typically assume fishes are limited by energy (carbon),

but we know that some fishes can be limited by nitrogen or phosphorus instead.

Thus, existing models were not appropriate for the wide range of fishes found on

coral reefs. In chapter 2, I thus present a new model that integrates estimates of

energy requirements with the explicit consideration of carbon, nitrogen, or phosphorus

limitation. With empirically measured parameters, the model predicts elemental

fluxes through consumption, growth, excretion, respiration, and egestion. Alongside

the theoretical model, I developed an R package called ‘fishflux’ which makes the

model user-friendly (See appendix A). This model became the basis for a large part

of my thesis.
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2.1 Abstract

Energy flow and nutrient cycling dictate the functional role of organisms in ecosys-

tems. Fishes are key vectors of carbon (C), nitrogen (N), and phosphorus (P) in

aquatic systems, and the quantification of elemental fluxes is often achieved by cou-

pling bioenergetics and stoichiometry. While nutrient limitation has been accounted

for in several stoichiometric models, there is no current implementation that permits

its incorporation into a bioenergetics approach to predict consumption rates. This

may lead to biased estimates of elemental fluxes. Here, we introduce a theoretical

framework that combines stoichiometry and bioenergetics with explicit consideration

of elemental limitations. We examine varying elemental limitations across different

trophic groups and life stages through a case study of three trophically-distinct reef

fishes. Further, we empirically validate our model using an independent database of

measured excretion rates. Our model adequately predicts elemental fluxes in the ex-

amined species and reveals species- and size-specific limitations of C, N, and P. In line

with theoretical predictions, we demonstrate that the herbivore Zebrasoma scopas is

limited by N and P, and all three fish species are limited by P in early life stages.

Further, we show that failing to account for nutrient limitation can result in a greater

than two-fold underestimation of ingestion rates, which leads to severely biased ex-

cretion rates. Our model improved predictions of ingestion, excretion, and egestion

rates across all life stages, especially for fishes with diets low in N and/or P. Due to its

broad applicability, its reliance on many parameters that are well defined and widely

accessible, and its straightforward implementation via the accompanying R-package

fishflux, our model provides a user-friendly path toward a better understanding of

ecosystem-wide nutrient cycling in the aquatic biome.
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2.2 Introduction

Internal biological processes of consumer species, such as growth, respiration, and

excretion are important drivers of ecosystem-scale biogeochemical cycles (Barton et

al. 2013). To survive, individuals need to gather resources from the environment and,

in doing so, transfer energy and nutrients within and across ecosystems (Mackenzie

et al. 1993; Brown et al. 2004). Therefore, the quantification of energy and nutrient

fluxes in ecosystems is affected by our ability to understand how energy and materials

are utilized and transformed at the individual level (Kitchell et al. 1974; Sterner &

Elser 2002; Allgeier et al. 2013).

In many aquatic ecosystems, fishes account for most of the heterotrophic biomass

(Odum & Odum 1955; Vanni 2002) and contribute substantially to the storage and

flux of carbon (C), nitrogen (N), and phosphorus P (Vanni 2002; McIntyre et al.

2008; Burkepile et al. 2013; Allgeier et al. 2014; Barneche et al. 2014). Storage is

primarily dictated by food that is assimilated and allocated to growth, which ulti-

mately underpins critical ecosystem services (e.g., finfish fisheries). Fluxes are derived

from assimilated (respired carbon and excreted nutrients) and non-assimilated food

(egested organic waste) (Schreck & Moyle 1990), and they can have important effects

on ecosystem processes, such as primary production (McIntyre et al. 2008; Allgeier

et al. 2013; Capps & Flecker 2013). Disentangling how fishes partition ingested el-

ements into biomass and waste products is therefore key to linking individual-level

physiology to ecosystem-level processes, which are of inherent human interest (Hessen

et al. 2004; Anderson et al. 2005; Hou et al. 2008; Barneche & Allen 2018).

Ecological stoichiometry provides a theoretical framework to understand how con-

sumers partition C, N, and P (Sterner & Elser 2002). On the basis of the conservation

of mass, the material ingested by consumers equals the sum of biomass accumulation

and waste products such as respired carbon, excreted nutrients, and egested organic

material. Furthermore, stoichiometric theory predicts that the ratio of recycled el-

ements depends on the elemental composition of the consumer body, diet, and the



28
Chapter 2. Nutrient limitation, bioenergetics, and stoichiometry: a new model to

predict elemental fluxes mediated by fishes

gross growth efficiency of the limiting element (Sterner 1990; Frost et al. 2006).

Thus, given known consumption rates, stoichiometric mass balance models allow for

the prediction of fish excretion rates (Kraft 1992; Schindler & Eby 1997). Consump-

tion rates can be approximated using empirical relationships with body mass and

temperature (e.g., Elliott & Persson 1978; El-Sabaawi et al. 2016), but these es-

timates are highly species-specific, require extensive lab experiments, and may not

reflect fish consumption rates in the wild.

Alternatively, consumption rates can be estimated using bioenergetic models. In

fact, there is a rich history of bioenergetic modelling approaches to estimate energy

allocation in fishes under the assumption that they are limited by energy (C) (e.g., the

“Wisconsin model,” Kitchell et al. (1974); Hanson et al. (1997) and the “Dynamic

Energy Budget model,” Kooijman (2010)). Combined with elemental stoichiometry,

bioenergetic models therefore provide a conceptual basis to predict how fishes parti-

tion energy and nutrients into growth, metabolism, and waste (Schreck & Moyle 1990;

Kraft 1992; Schindler & Eby 1997; Deslauriers et al. 2017). This approach has been

widely used to estimate consumption rates, given known growth rates in wild fish

populations [especially via the Fish Bioenergetics software; Deslauriers et al. (2017)].

Nutrient cycling predictions are then made by combining modeled ingestion rates

based on energetic needs, assimilation efficiencies, and nutrient stoichiometry of both

a fish’s body and diet (Kraft 1992; Schindler & Eby 1997; Anderson et al. 2005).

Although useful and successfully implemented (Deslauriers et al. 2017), this ap-

proach is limited in its application to fishes that are limited by C. This can be the

case, especially for trophic groups that feed on nutrient-rich prey (e.g., Schindler &

Eby 1997); yet, many fish species in low trophic levels may be limited by N or P

because their diets contain lower nutrient levels than their body tissues (Schindler &

Eby 1997; McIntyre et al. 2008). Thus, applying the traditional approach of com-

bining stoichiometry and bioenergetics (Kraft 1992) to fish species that are limited

by N or P normally results in biologically implausible predictions of excretion rates.

Indeed, there is mounting evidence that fishes can be limited by nutrients, rather
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than energy (Hood et al. 2005; Benstead et al. 2014; El-Sabaawi et al. 2016; Moody

et al. 2019). While, negative predicted excretion rates can provide evidence for nu-

trient limitation (e.g., Hood et al. 2005), they do not aid our understanding and

prediction of realistic elemental fluxes in communities where nutrient-limited species

are prevalent. Thus, although many stoichiometric models take into account nutrient

limitation (e.g., Sterner 1990; El-Sabaawi et al. 2016; Guariento et al. 2018; Moody

et al. 2018, 2019), there is presently no solution for integrating nutrient limitation

into bioenergetic models that quantify consumption rates. As fishes in low trophic

levels often account for a significant proportion of biomass (e.g., Graham et al. 2017)

and represent important vectors of nutrients, a new approach is needed to accurately

predict elemental fluxes in the absence of known consumption rates.

Here, we present a theoretical framework (and a companion R package for its

implementation: fishflux) to predict elemental fluxes in fishes that combines bioen-

ergetics and ecological stoichiometry while directly accounting for N and P limitation,

alongside C limitation. The proposed model framework predicts ingestion rates based

on the needs of a fish at a certain size for all three elements and a known growth rate.

We test our framework via a case study of three trophically-distinct coral reef fish

species: the herbivore Zebrasoma scopas (family Acanthuridae), the omnivore Bal-

istapus undulatus (family Balistidae), and the carnivore Epinephelus merra (family

Serranidae). We also validate our model against independent empirical excretion es-

timates for our three fish species. Furthermore, we test whether fishes in different

trophic levels and life stages are limited by different elements and hypothesize that

fishes at low trophic levels are limited by N or P rather than C. Finally, we posit that,

by building on existing approaches, our framework considerately improves the pre-

diction of key processes such as ingestion and excretion in the case of strong nutrient

limitation, as compared to models that only consider C-limitation.
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2.3 Materials and Methods

2.3.1 Theoretical framework

Carbon, nitrogen, and phosphorus (CNP, expressed in grams) are the three chemical

elements considered in our model. The approach applies a mass-balance framework

based on ecological stoichiometry and the metabolic theory of ecology (Sterner &

Elser 2002; Brown et al. 2004). Further, the approach relies on the growth trajectory

of natural fish populations. The proposed model has four main steps (figure 2.1):

(1) The minimal required ingestion or minimal supply rate of CNP is defined as the

sum of CNP needed for a given growth increment and minimal inorganic flux (i.e.,

the minimal requirements of CNP needed for metabolism and the maintenance of the

body stoichiometry). In this step, we also consider assimilation efficiency, which is

defined as the capacity of an organism to assimilate C, N or P (input parameters of the

model). (2) Ingestion is estimated based on the limiting element that is defined by the

imbalance between the CNP composition of the minimal supply rate and that of the

diet. (3) The egestion rate is then quantified according to the ingestion rate and the

assimilation efficiencies of each element. (4) The residual CNP are allocated toward

the total inorganic flux of CNP (i.e., the waste inorganic CNP that is produced from

physiological transformation). For the sake of comparison with existing literature,

we note that the inorganic flux of C is generally called total metabolic rate, whereas

the inorganic fluxes of N and P are called excretion rates. Materials that are not

assimilated are egested as organic waste. An overview of all main variables predicted

by the model and input parameters that need to be specified by the user is given in

table 2.1, while other parameters mentioned in the text are fixed in the model. In

the following sections, we detail each component of the model.



2.3. Materials and Methods 31

Figure 2.1: Conceptual diagram, explaining different model compo-
nents. Required ingestion of C, N and P is calculated through the sum
of elements needed for growth and minimal inorganic flux, taking into
account the element-specific assimilation efficiencies, ak (1). Based on
the limiting element (due to the imbalance of food and the required
CNP), the ingestion rate can be estimated (2). The ingested material
is partitioned into egestion (3) and assimilation (body mass growth and
flux (4)). The symbol of each component is indicated in between brack-
ets. The input parameters needed to calculate the different variables
are italicised. See table 2.1 for a description of each parameter.
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Table 2.1: Overview of model parameters and variables, including
input parameters, to be specified by the user of the model, which are
indicated with ×. Main output variables, predicted by the model are
indicated with ?. VBGC = von Bertalanffy growth curve.

Symbol Description Unit
k Index for element C, N or P _
Sk ? Element-specific minimal supply rate g d−1

Gk ? Element-specific growth g d−1

F0k ? Element-specific minimal inorganic flux g d−1

ak × Element-specific assimilation efficiency _
lt × Total length of individual at time t cm
t Age yr
l∞ × Asymptotic adult length (VBGC) cm
κ × Growth rate parameter (VBGC) yr−1

t0 × Age at settlement (VBGC) yr
lwa × Parameter length-weight relationship g cm−1

lwb × Parameter length-weight relationship _
Qk × Element-specific body content percentage of dry mass %
mw Wet body mass g
F0Cr Resting metabolic rate g d−1

F0Cz Mass-specific turnover rate of C g Cg−1d−1

F0Cs Rate of C spent in body mass growth g d−1

f0 × Metabolic normalisation constant independent of body mass g Cg−αd−1

α × Mass-scaling exponent _
mw∞ Asymptotic wet mass of an adult individual g
φ Cost of growth g C g−1

θ × Activity scope _
v × Environmental temperature řC
h × trophic level _
r × Aspect ratio of caudal fin _
F0Nz × Mass-specific turnover rate of N g Ng−1d−1

F0Pz × Mass-specific turnover rate of P g Pg−1d−1

mdw Ratio of dry mass and wet mass of fish _
md Dry body mass g
Dk × Element-specific diet content percentage of dry mass %
Ik ? Element-specific ingestion rate g d−1

Wk ? Element-specific egestion rate g d−1

Frk ? Element-specific residual inorganic flux g d−1

Fk ? Element-specific total inorganic flux g d−1
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Minimal suppy rate

The first step of the model is an estimate of the minimal supply rate of elements

(C, N and P) required per day for a given growth increment in an individual of a

given size. The required CNP is the sum of the elements needed for body mass

growth and overhead metabolic and maintenance costs (i.e., minimal inorganic flux).

The minimal supply rate Sk (g d-1) of the element k = {C, N, P} can therefore be

estimated as

Sk = (Gk + F0k)
ak

, (2.1)

where Gk, F0k and ak are element-specific growth rate (g d-1), minimal inorganic flux

(g d-1), and assimilation efficiency (%), respectively.

Growth

The aim of our model is to predict elemental fluxes of fishes in their natural

environment. Therefore, we use growth rates that can be calculated from otolith

analysis. In our model, we thus assume that there is enough food available to fulfill the

observed growth pattern. We further use the von Bertalanffy growth curve (VBGC) to

describe the growth trajectory (Bertalanffy 1957). Empirically, the VBGC is favorable

because its parameters are statistically simple to obtain, easy to interpret, and are

available for a large number of species (Morais & Bellwood 2018). Body length, lt
(cm in total length, i.e., T.L.), at age t (yr) is

lt = l∞
(
1− e−κ(t−t0)

)
, (2.2)

where t0 is age at settlement, l∞ is the asymptotic adult length (i.e., length when

growth rate is 0), and κ is a growth rate parameter (yr-1) (Bertalanffy 1957). With

this equation, we can quantify the age of a fish of a certain size. Then, by adding

one day to that age, we can also approximate the amount a fish will grow in one day.

Using length-weight relationships and wet-to-dry mass conversion constants from the

literature and FishBase (Froese & Pauly 2018), we can finally calculate total growth
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rate (i.e., G) expressed in dry mass (g d−1). Using element-specific body content

percentages, Qk, we calculate element-specific growth as:

Gk = Qk

100G. (2.3)

Minimal inorganic flux

Traditionally, the field metabolic rate, F0C, has been studied more intensively than

minimal excretion rates for N and P, F0N, and F0P. As a consequence, we currently

have a better understanding of how assimilated carbon is partitioned into body mass

growth (GC) and metabolic overhead costs (F0C). For instance, we know that F0C

predictably scales with individual wet body mass, mw (g) (Hou et al. 2008):

F0C = θF0Cr =

θ(F0Czmw + F0Cs) =

θ(f0m
α−1
w∞mw + φG),

(2.4)

where F0Cr is the resting metabolic rate (g C d-1), F0Cz is the mass-specific turnover

rate (g C g-1 d-1), F0Cs is the rate of carbon spent in body mass growth, and f0 is a

metabolic normalization constant that is independent of body mass (g C g-α d-1) and

varies among fish taxa, environmental temperature, and trophic level (Barneche &

Allen 2018). α is a dimensionless mass-scaling exponent (generally between 0.5 and

1), mw∞ is the asymptotic mass of an individual, and φ is the energy expended to

produce one unit of body mass (g C g-1; hereafter the “cost of growth”). In equation

2.4, F0C is defined as the sum of the resting metabolic rate, F0Cr, and the active rate

that sustains locomotion, feeding, and other activities. We assume that F0C = θF0Cr

in the expression above, where θ is a dimensionless parameter referred to as ‘activity

scope,’ which is constrained to be greater than 1 and less than the ratio between

maximum metabolic rate and resting metabolic rate (Hou et al. 2008; Barneche &

Allen 2018).



2.3. Materials and Methods 35

The cost of growth, φ, varies substantially among fishes, and it may increase with

environmental temperature, v, trophic level, h, and aspect ratio of caudal fin, r (a

proxy for activity level) (Froese & Pauly 2018). Following Barneche & Allen (2018),

the cost of growth can be calculated as

lnφ = β0 + βvv + βhlnh+ βrln(r + 1), (2.5)

where β0 is a constant, βv, βh, and βr are respectively the model slopes for v, h, and r.

We note that h and r are two ecological variables that can be retrieved from FishBase

(Froese & Pauly 2018). For the purposes of our bioenergetic model, we use average,

across-species estimates for β0, βv, βh, and βr published in Barneche & Allen (2018).

Aside from inorganic fluxes of C, N and P will also be released at a minimal rate,

even when they are limiting (Sterner & Elser 2002; Anderson et al. 2005). The min-

imal inorganic flux of N and P can be experimentally measured as minimal excretion

rates during starvation (Mayor et al. 2011). We can thus explicitly incorporate N

and P turnover rates to estimate minimal inorganic flux of N and P (Anderson et al.

2005).

F0N = F0Nz
QN

100md, and (2.6)

F0P = F0Pz
QP

100md, (2.7)

where F0Nz and F0Pz are nutrient-specific dry mass-specific turnover rates for N (g

N g -1 d-1) and P (g P g-1 d-1), respectively, and md is the dry mass of the fish (g).

Equations 2.6 and 2.7 assume that F0Nz and F0Pz remain constant during ontogeny.

Ingestion

In our model, the quantification of ingestion rate is a two-step process. First, we

define the minimal required ingestion of CNP by summing element-specific minimal

supply rates Sk. Second, we approximate the actual ingestion rates by using ecological
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stoichiometric theory (Sterner & Elser 2002). With known elemental stoichiometry

of the diet (DC, DN, DP) we can determine the limiting element as follows:

limiting element =



C, if SC
SN

> DC
DN

and SC
SP
> DC

DP

N, if SN
SP

> DN
DP

and SC
SN

< DC
DN

P, otherwise


(2.8)

The actual ingestion rate is then approximated according to the limiting element,

following Liebig’s minimum law. To do so, we assume fishes have enough food avail-

able to meet their minimal needs (Sk). For example, if P is limiting, element-specific

ingestion rates, Ik, (g d-1) are

IP = SP, (2.9)

IN = IP
DN

DP
, (2.10)

IC = IP
DC

DP
, (2.11)

where Dk represents element-specific body content percentage of dietary items. Once

ingestion rate is estimated, the partitioning of the ingested matter into various path-

ways (i.e., egestion, excretion and respiration) can be defined.

Egestion or organic waste production

The rate of organic waste production or egestion rate, Wk (g d-1) can be computed

using the ingestion rate of each element and element-specific assimilation efficiencies

(Schreck & Moyle 1990):

Wk = (1− ak)Ik. (2.12)
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Total inorganic flux

The rate of total inorganic waste production or flux (i.e., total respiration and excre-

tion) equals the ingestion rate minus body mass growth rate and egestion rate for each

element (Schreck & Moyle 1990; Sterner & Elser 2002). If an element is limiting, the

individual is likely to consume other elements in excess in order to meet the target for

that limiting element. In such cases, it is often assumed that the exceeding “residual”

element will be subject to post-absorptive release via inorganic waste production (i.e.,

residual flux Frk) to maintain body homeostasis (Anderson et al. 2005). When N or

P are limiting, for example, a certain residual amount of C, FrC remains unutilised.

However, if C is limiting instead of N or P, excretion rates FN and FP will increase

by an overhead residual flux Frk. In the example of C limitation, the residual flux

FrC would equal zero. We can thus quantify the total inorganic flux as follows:

Fk = F0k + Frk, (2.13)

where

Frk = Ik −Gk − F0k −Wk. (2.14)

2.3.2 Application

We validate our modelling approach using data from three reef fish species: the her-

bivore Zebrasoma scopas (family Acanthuridae), the omnivore Balistapus undulatus

(family Balistidae), and the carnivore Epinephelus merra (family Serranidae). All

parameters were quantified using empirical data augmented with information from

the literature when needed (see supplementary methods 2.7). An overview of all

parameter estimates is provided in (2.8).

We ran the model using R (R Core Team 2019) and Stan (Stan Development
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Team 2018). For an easy application of the presented framework, we developed

the R package fishflux, which provides a set of user-friendly functions to simulate

the model, extract the output variables, and visualize the results (see 2.7). Pa-

rameter means and standard deviations are provided, and a Monte Carlo method

is applied to randomly draw each parameter assuming normal distributions in each

iteration. To account for co-variances among parameters, we used the Stan func-

tion multi_normal_rng(), which samples each parameter under consideration of the

co-variance matrix. We included co-variances for body stoichiometry (Qk), diet sto-

ichiometry (Dk), length-weight parameters (ε and b), and metabolic parameters (α

and f0). These parameters were sampled from their log-transformed multinormal

distribution then back-transformed to natural scale. All other parameters were sam-

pled from truncated normal distributions, where the lower and upper bounds are the

possible ranges of each respective parameter. For our case study, we used 5,000 iter-

ations. If the standard deviation of a given parameter is unknown (e.g., r, reported

on FishBase), the function automatically fills in the standard deviation with a very

low value of 10-9 in order to keep the respective parameter approximately constant

at each iteration of the simulation.

To compare the predictions of ingestion and excretion rates of our model frame-

work with the case where only C-limitation is considered, we simulated ingestion and

excretion rates, based only on the minimal supply rate of C, thus where Ic equals Sc.

Excretion rates or total inorganic flux rates of N and P are then defined as follows:

FN = SC
DN

DC
−GN −WN, (2.15)

FP = SC
DP

DC
−GP −WP. (2.16)

We compared the predicted excretion rates for N and P with our own independent

database of experimental excretion rates. We collected individual fish using barrier

nets, dip nets, cast nets, traps, clove oil, and hook and line across different reef

habitats around Moorea, French Polynesia during austral winter of 2016 and 2017
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(n = 128). We aimed to collect individuals across the size spectrum present in each

species. We immediately transported individuals back to shore in an aerated cooler for

excretion experiments (see 2.7). Excretion rates were measured within a maximum

of 3 hours after capture. The capture and handling of fishes for this project were

approved in a protocol from the University of California Santa Barbara’s Institutional

Animal Care and Use Committee (IACUC #915 2016-2019).

Finally, to illustrate the effect of diet stoichiometry, we simulated the model with

varying % of N and P. For this simulation, we used the parameters of Z. scopas and

ran the simulation for an individual of 10cm. We kept DC constant at 20%. The

values of DN and DP varied around the elemental ratio of Sk. We used color palettes

from the R package fishualize (Schiettekatte et al. 2019).

2.4 Results

The application of the developed modeling framework reveals distinct elemental lim-

itations across the three species at different lengths (figure 2.2). Z. scopas is limited

by either N or P over its full size range, with P being the limiting element early in

its ontogeny and N becoming the limiting element after reaching approximately 7 cm

TL. Although B. undulatus and E. merra are also limited by P at an early life stage,

they are predominantly limited by C upon maturation.
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Figure 2.2: Proportion of the simulation iterations that determine C,
N and P as the limiting element for Zebrasoma scopas, Balistapus un-
dulatus, and Epinephelus merra.
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Our approach demonstrates that defining the limiting element can be critical to

predict a species’ ingestion rate, which affects all downstream calculations in the

model (e.g., excretion rates of N and P) compared to models only considering C

limitation (figure 2.3). Specifically, assuming C limitation in Z. scopas results in

a severe underestimation of ingestion and excretion rates (figure 2.3, A, B and C).

In the omnivore B. undulatus and the carnivore E. merra, the limiting element has

less influence on ingestion rates. Still, without incorporation of P limitation, model

predictions may result in negative excretion rates of P for growing individuals of B.

undulatus and E. merra. In the case of E. merra, C-only models predict negative

P excretion rates for more than half of the simulations under a total length of 10

cm (figure 2.3, I). Thus, our framework reveals that nutrient limitations and their

consequences for ingestion rate estimations are highly specific to the three study

species and their ontogenetic stage.
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Figure 2.3: Predicted daily ingestion of carbon and excretion rates for
the full model, considering nutrient limitation and for a model, only
taking into account C-limitation. Horizontal lines show the median
values and 95%, 80%, and 50% confidence intervals are illustrated re-
spectively in vertical lines. A. C ingestion rates of Z. scopas, B. N
excretion rates of Z. scopas, C. P excretion rates of Z. scopas, D. C
ingestion rates of B. undulatus, E. N excretion rates of B. undulatus,
F. P excretion rates of B. undulatus, G. C ingestion rates of E. merra,
H. N excretion rates of E. merra, I. P excretion rates of E. merra.
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Our model predicts ingestion rates for Z. scopas, B. undulatus and E. merra at

15 cm TL to be 28.2 (11.7 – 68.4), 12.9 (3.7 – 56.7), 14.1 (5.5 – 40.1), respectively

(in mg dry weight per g wet weight of fish per day, median and 95% confidence

interval (C.I.)) (see 2.8). Comparing our predicted excretion rates with empirical

data on excretion rates shows that our model adequately predicts excretion rates

with almost all experimental data falling inside the predicted 95% confidence interval

(figure 2.4). For N excretion, 100%, 97% and 94% of the experimental excretion rates

are captured by our predictions for Z. scopas, B. undulatus and E. merra, respectively.

For P excretion, we adequately predict 93%, 94%, and 90% of the experimental

excretion rates for the three species, respectively. Predictions for E. merra are slightly

overestimated compared to experimental excretion rates. Groupers feed infrequently,

and their stomachs were often found empty, which may have impacted the measured

excretion rates.
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Figure 2.4: Predicted excretion rates for each species of both N and
P. The 50%, 80% and 95% confidence intervals are presented around
the median. Points show the experimental excretion rates, obtained
from an independent database. A. N excretion rates of Z. scopas, B. P
excretion rates of Z. scopas, C. N excretion rates of B. undulatus, D. P
excretion rates of B. undulatus, E. N excretion rates of E. merra, F. P
excretion rates of E. merra.
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Predictions are substantially affected by variability in the stoichiometry of dietary

sources. To illustrate how the diet stoichiometry affects limitations by different ele-

ments and ingestion and excretion rates, we simulated different scenarios by varying

the diet percentages of N and P around the stoichiometry of the minimal supply

rate of an individual of Z. scopas of 10 cm (figure 2.5). When diet stoichiometry

differs from this ideal stoichiometry of the minimal supply rate, either C, N or P is

the limiting element, which in turn affects all downstream biological processes. For

example, when the percent of P in the diet is low, P is the limiting element (figure

2.5, A).This leads to an increased ingestion rate (figure 2.5, B), a minimal excretion

rate of P (figure 2.5, C), and a high excretion rate of N (figure 2.5, D).
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Figure 2.5: Model simulations with varying levels of DN and DP. DC is
kept constant. Diet stoichiometry affects the limitation and the rates
of multiple processes, such as the ingestion rate and excretion rates. A.
The limiting element is indicated for varying levels of diet stoichiometry
(DN and DP). Lines indicate where one limiting element switches to
another. This is equivalent to the threshold elemental ratio, B. IC or
Ingestion rates of C (g/day), C. FN or Total inorganic flux of N (g/day),
D. FP or Total inorganic flux of P (g/day).
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2.5 Discussion

Combining stoichiometry and bioenergetic modeling provides a framework to predict

elemental fluxes in consumers and their contribution to key biogeochemical cycles.

Here, we introduce a model that incorporates the nutrient requirements of fishes

alongside their energetic needs to provide accurate predictions of their ingestion, res-

piration, excretion, and egestion rates. With our framework, we confirm the existence

of nutrient limitation in fishes, specific to the trophic group and life stage, and its

effect on multiple processes. We demonstrate the accuracy and applicability of the

model to predict ingestion and excretion rates for three tropical reef fish species, while

also reflecting the natural variability of these variables. Our framework provides an

accurate tool to predict CNP fluxes in fishes across diverse trophic groups and gauge

the role of fish consumers in ecosystems worldwide.

There is a growing consensus that many fishes are limited by nutrients (Hood et

al. 2005; Benstead et al. 2014; El-Sabaawi et al. 2016; Moody et al. 2019). Yet,

fish growth and maintenance are often assumed to be limited by energy (C) when

applying coupled bioenergetic and stoichiometric models (Kraft 1992; Schindler &

Eby 1997; Allgeier et al. 2013; Burkepile et al. 2013). Our case study confirms

that ingestion rates can indeed be determined by N or P limitation rather than

C limitation, especially in species with nutrient-poor diets. This finding is expected

given the elemental imbalance between the consumer’s body and dietary CNP content;

however, failing to account for nutrient limitation substantially skews predictions of

ingestion rates. For example, assuming only energy limitation for a herbivorous adult

Z. scopas would result in a greater than two-fold underestimation of its ingestion rate

and consequently drastic underestimations of excretion and egestion rates. Given the

high densities of species with nutrient-poor diets across a variety of ecosystems (e.g.,

herbivorous and detritivorous species; Williams & Hatcher (1983); Takeuchi et al.

(2010); Hood et al. (2005)), such underestimates may result in strong misconceptions

about ecosystem-scale nutrient and energy fluxes. Our model framework provides
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means for the direct incorporation of varying elemental limitation across species.

The developed model predicts ingestion through the integration of metabolic the-

ory and elemental limitation, thus circumventing the difficult task of measuring inges-

tion rates in natural populations. Therefore, the first step of our framework focuses

on quantifying the minimal supply rate for each element (Sk) and determining the

limiting element. This includes both maintenance rates and element-specific growth

rates based on the growth trajectory of natural populations. Then, by comparing

the stoichiometry of these minimal supply rates with diet stoichiometry, we can de-

termine the limiting element. This approach is inspired by threshold elemental ratio

(TER) theory, which predicts the ratio at which growth limitation switches from one

element to another (Urabe & Watanabe 1992; Sterner & Elser 2002). In fishes, it

is widely accepted to integrate metabolic rate into the calculation of TERs (Frost et

al. 2006). We built on this work to account not only for maintenance requirements

of C, but also of N and P. Similar to the energy (C) that is needed to sustain the

metabolic rate of fishes in the wild, minimal N and P is needed for cell turnover and

maintenance of body composition. The specific turnover rate of P (F0Pz) is lower than

the turnover rate of N (F0Nz) because bone cells, which contain the majority of P,

degrade slowly compared to other cell types (Manolagas 2000; Sterner & Elser 2002).

Thus, including minimal requirements for all three elements lowers the TER of C and

nutrients of fishes and increases the probability of detecting nutrient limitation.

The inclusion of nutrient limitation ensures that predicted excretion rates (FP,

FN) are always higher than zero. This is crucial since N and P will always be released

at a minimal rate, even when they are limiting (Sterner & Elser 2002; Anderson et

al. 2005; Mayor et al. 2011). Our approach reveals that all three study species

are limited by P in their early life. By explicitly including minimal supply rates in

our model, we move beyond simply detecting evidence for nutrient limitation (i.e.,

negative excretion rates; Hood et al, 2005) towards quantifying its effect on vital

processes across species and ontogeny. Bone growth, for example, requires substantial

amounts of P and is most rapid during early life-stages (Vanni 2002), and evidence
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from freshwater ecosystems shows that P can limit fish growth (Hood et al. 2005;

Benstead et al. 2014). The ontogenetic variation in elemental limitation presented

herein confirms the importance of considering P-limitation for growth when predicting

elemental fluxes in fishes.

Beyond the incorporation of nutrient limitation, our model framework provides

a way to estimate uncertainty of predictions. Empirically-measured excretion rates

can considerably vary for similarly sized individuals of the same species (Whiles et

al. 2011; Allgeier et al. 2015; Francis & Côté 2018). Yet, existing models that

combine stoichiometry and bioenergetics do not account for this natural variability

(e.g., Deslauriers et al. 2017), which hampers our ability to gauge the uncertainty

of resulting estimates. With the use of MCMC iterations, the R package fishflux

incorporates the distribution of parameters with their means and standard deviations,

resulting in realistic credibility intervals of ingestion and excretion rates, although

variability in model output does not necessarily reflect natural variability. The utility

of this approach is clear when comparing our predictions to reported ingestion rates.

For example, Z. scopas reportedly ingests 49 mg of dry mass per gram of wet fish

weight (Polunin et al. 1995), a value centered within the predicted range of our

model (11.7 – 68.4 at 15 cm TL). Similarly, the ingestion rate of juvenile coral trout,

Plectropomus leopardus, a predatory species in the same family as E. merra (family

Serranidae), ranges between 9 to 14 mg of dry mass per gram of wet weight (Sun

et al. 2014), which lies within the 95% prediction for E. merra from our model (5.5

– 40.1). Tracing the sensitivity of predictions to uncertainty in specific parameters

enables the determination of the main sources of variability that may shift estimates

among studies or species.

As all models, our approach relies on several simplifying assumptions. First, our

model assumes that fishes maintain homeostasis (Sterner 1990). Since fishes can have

flexible body stoichiometry depending on dietary nutrient content (Benstead et al.

2014; Dalton et al. 2017), this assumption may impose biases when simulating ef-

fects of varying diet stoichiometry on elemental fluxes. Yet, empirically measured
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relationships between nutrient content of body and diet can easily be incorporated

into our model simulations, thus ameliorating the effects of this simplification. Sec-

ond, similar to most stoichiometric mass balance models, our framework is based on

Liebig’s minimal rule, which states that growth is strictly limited by the element in

shortest supply relative to demand. However, there is emerging evidence that con-

sumers may simultaneously be limited by more than one element (Sperfeld et al.

2012). For example, P plays an essential role in fish energy uptake (Xie et al. 2011),

and the incorporation of interactive co-limitation into stoichiometric models may fur-

ther improve predictions of elemental fluxes. Finally, we assume that fishes follow a

growth trajectory defined by the VBGC curve, and that there is enough food avail-

able in the natural environment to meet the growth requirements for each element.

The VBGC is fitted on size-at-age data that are mostly acquired via annual otolith

readings. In our model, we use this fitted growth function to estimate daily growth

rates for each element through integration with length-weight relationships and body

stoichiometry. This does not capture, for instance, seasonal variation of food avail-

ability. Other stoichiometric models mostly use gross growth efficiencies (GGEs, i.e.,

growth/ingestion of the limiting element) (Frost et al. 2006; McManamay et al. 2011;

e.g., El-Sabaawi et al. 2016; Guariento et al. 2018; Moody et al. 2019). However,

consumer GGEs vary widely, and specific values are poorly understood (McManamay

et al. 2011). Furthermore, even if element-specific GGEs are quantified, they may

not reflect growth observed in natural populations. Therefore, we suggest that the

use of otolith-based growth quantification provides a reasonable alternative to model

elemental fluxes of natural fish populations.

Beyond model assumptions, the accuracy of our model naturally relies on the

accuracy of each parameter estimate. Yet, parameters are often difficult to obtain.

We sought to balance the accuracy of predictions and ease of application. Parame-

ters involving growth, length-weight relationships, metabolism, and stoichiometry are

increasingly accessible for many species due to predictive modeling and open-access

databases (Barneche et al. 2014; e.g., Froese et al. 2014; Killen et al. 2016; Vanni et
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al. 2017; Froese & Pauly 2018; Morais & Bellwood 2018). Yet, there are a number

of parameters that are still sparsely quantified and may limit the applicability of our

framework. In particular, data on diet stoichiometry and assimilation efficiencies are

rare. In our case study, we used assimilation efficiency constants for C, N and P,

that are predominantly based on predatory fishes. In reality, assimilation efficien-

cies can vary substantially, and, in particular, assimilation efficiency of phosphorus

is likely correlated with diet quality (Czamanski et al. 2011). Further, N- and P-

specific turnover rates are newly introduced parameters and therefore poorly known.

As these parameters depend on the cell turnover rates of N- and P-rich tissues (e.g.,

bone cells for P), we suggest that these parameters may be applicable across species.

Nevertheless, further research is needed to gain more insight. While variation in

these parameters can impact the model output via the limiting element and ingestion

rate, ongoing compilations of databases of poorly known parameters will improve the

application of the proposed modeling framework.

In addition, we quantified the activity scope (i.e., field metabolic rate) as the

average of maximum metabolic rates (MMR) and standard metabolic rates (SMR)

divided by the SMR, assuming that a fish reaches values close to MMR when under-

taking activities in the wild (Murchie et al. 2011). In reality, activity scope may vary

depending on life history traits and behavior (Killen et al. 2017), and field metabolic

rates can be elevated with the presence of predators, which in turn can affect nutrient

cycling (Dalton et al. 2018; Guariento et al. 2018). Refining established techniques,

such as bio-telemetry (Norin & Clark 2016) or otolith chemistry (Chung et al. 2019)

may improve estimates of field metabolic rates. Similarly, specific dynamic action

(SDA), which is the metabolic rate needed to assimilate food (Hou et al. 2008) de-

pends on the quality and quantity of food (McCue 2006) and may thus influence

ingestion rates, but it is poorly known across most species. Finally, reproduction is

not yet incorporated into the model because data on both gonad stoichiometry and

reproductive growth is rare. This may underestimate energy and nutrient investment

of fishes, thus skewing model predictions. Nonetheless, as new data on reproductive
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growth, activity scope, or SDA become available, these elements can be incorporated

in the future.

Despite these limitations, our framework provides new avenues for addressing

pressing questions in ecology. Data on the daily actions of fishes are difficult to ob-

tain due to the challenges of conducting research in aquatic environments. Novel

techniques such as fish gut content DNA metabarcoding (Casey et al. 2019) or

compound-specific stable isotope analyses (Hopkins & Ferguson 2012) permit im-

proved insights into species-specific ingestion of prey resources. However, no current

empirical technique can estimate rates of food ingestion via these linkages across a

broad range of species. Combining our model with emerging techniques to quantify

species-specific resource use can help us to address long standing questions. How

much prey do top predators consume daily? How do rates of algal consumption differ

among herbivorous species? How much production by lower trophic levels is needed

to fuel the growth of predatory fisheries species? By providing a tool to answer these

questions, our model empowers fundamental and applied researchers to tackle some

of the most important questions in fish ecology.

Beyond single species and their pairwise interactions, our model provides means

to examine community- and ecosystem-scale dynamics. Specifically, based on simple

census data of fish communities, our model can help decompose system-wide fluxes (cf.

Burkepile et al. 2013; Allgeier et al. 2014; Francis & Côté 2018). This is particularly

important for open ecosystems in which the dominant sources of energy and nutrients

are unclear or variable. For example, on coral reefs, debates persist on the importance

of external (i.e., pelagic) subsidies versus internal nutrient cycling (e.g., Brandl et al.

2019b; Morais & Bellwood 2019b). Our model can help estimate how much pelagic

or benthic prey is consumed by reef fishes and how these resources are propagated

through food webs, which enables researchers to quantify reef functioning (Brandl et

al. 2019a). Thus, merging what is eaten (i.e., food web assembly) with how much

is eaten (i.e., realistic consumption rates as provided by our model) can significantly

augment our understanding of ecosystem functioning, especially in systems where
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fishes are the dominant consumers.

Finally, given the heavy exploitation of fish communities for global human con-

sumption, our model offers a tool for understanding and predicting the effect of

human-driven changes on ecosystem functioning. Yearly, more than 100 million tons

of fishes are caught in marine systems worldwide (Cashion et al. 2018). Our model

provides a tool to estimate the impact of this disturbance on system-wide biogeo-

chemichal fluxes. In addition, increasing temperatures resulting from climate change

can affect primary production in the world’s oceans, thus imposing a bottom-up ef-

fect on fish communities (Lotze et al. 2019), which are likewise affected by rising

temperatures (Pinsky et al. 2019). Given human-driven alterations in both primary

production through climate change and fish community structure through extensive

fishing, it is urgent to understand how these changes may impact biogeochemical

fluxes. Our model and its implementation provide a path toward rising to this chal-

lenge.

2.6 Data accessibility

All data and code to reproduce figures are available online at https://zenodo.org/

record/3894509#.XuysMZZS-V4. The R package fishflux, containing the model

can be installed through GitHub: https://github.com/nschiett/fishflux.

2.7 Supplementary methods

Here, we provide more information on the quantification of the experimental excretion

rates used for model validation in the main text and the parameters needed to run

the model.

https://zenodo.org/record/3894509#.XuysMZZS-V4
https://zenodo.org/record/3894509#.XuysMZZS-V4
https://github.com/nschiett/fishflux
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2.7.1 Fish excretion

We measured excretion estimates in situ following the methodologies of Schaus et al.

(1997), as modified by Whiles et al. (2011). We placed individual fish in an incubation

chamber (0.47 – 75 L Ziploc bag) containing a known volume (0.08 to 19.5 L) of pre-

filtered seawater (0.7µm pore size Gelman GFF) for 30 minutes (Whiles et al. 2011;

Allgeier et al. 2015). We incubated a set of controls (typically n = 6) for the same

time period at each sampling event. All incubated fishes and controls were kept at a

constant temperature during the excretion trial (25 – 27.5°C). We extracted seawater

samples from each bag (filtered with 0.45µm pore size Whatman nylon membrane

filters) and immediately placed them on ice. We analysed samples for ammonium

and phosphorous.

Seawater samples extracted from each incubation container (filtered with 0.45µm

pore size Whatman nylon membrane filters) and placed immediately on ice. Within 12

hours, samples were analysed for ammonium using the methodologies of Taylor et al.

(2007), or frozen for transport to University of California Santa Barbara (UCSB) for

soluble reactive phosphorus analyses using the ascorbic acid method and colorimetric

analyses (Eaton et al. 1995). Excretion rates were converted to g d-1 by multiplying

hourly estimates by 24.

2.7.2 Turnover rates of N and P

Following equations 6 and 7, we measured FN and FP as minimal excretion rates

for N and P. Fish (n = 27) were collected by divers in Moorea in 2018 and placed

in a holding tank (1,000 L) with flow-through seawater for 72 hours with no food.

Following the starvation period, individuals were placed in incubation containers and

nutrient samples were taken using the same methodology as for excretion rates. Water

samples were frozen immediately after filtration and analysed in Moorea at CRIOBE

using standard methods following Aminot & Kérouel (2007). Here we assume turnover
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to be equal to the measured excretion rates of starved fish. As expected, F0Pz < F0Nz

because bone cells, which contain most P, generally degrade slowly compared to other

cell types ()FP ≈ 0.0003 g P d-1, 10% per year; Manolagas (2000); Sterner & Elser

(2002)). There were no significant differences in minimal excretion rates among the

three species, so average across-species values were used.

2.7.3 Metabolism

We used flow-through respirometry to measure standard metabolic rate (SMR) and

maximum metabolic rate (MMR), which is defined as the maximum rate of oxygen

consumption that a fish can achieve at a given temperature (Norin & Clark 2016)

for a wide range of body sizes (see 3.2). Here SMR is considered a synonym of FCr.

The parameters α, f0 and θ were obtained by fitting a Bayesian regression model

of SMR and MMR (g C d-1) as a function of body mass (g) using the R package

brms (see 3.3, Burkner PC 2017). Estimates for the cost of growth, φ, were obtained

using the model of Barneche & Allen (2018) (equation 5, main text), and values for

trophic level and aspect ratio were extracted from FishBase using fishflux functions

trophic_level() and aspect_ratio(), respectively.

Fish capture

Fish were caught by divers using nets and clove oil in the lagoon at 1–8 m depth near

Opunohu Bay in Moorea, French Polynesia during fall 2018. After capture, fish were

transported to the lab and were starved for 24 to 48 h at 27–28°C in large tanks.

Respirometry

Oxygen consumption was measured using intermittent-flow respirometry combined

with pyroscience optic fibre, following the methods described by Svendsen et al.
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(2016). Intermittent-flow respirometry combines short measurement periods in a

recirculating, but closed, respirometer with clean water flush periods (Svendsen et al.

2016). One complete measurement cycle consists of three timing periods: the flush

period where the chamber is open followed by two closed periods, wait and measure.

The wait period is required before measuring oxygen consumption to allow all the

water in the chamber to mix and the oxygen content to decline linearly (Svendsen et

al. 2016). The respirometer volume should be chosen depending on the fish’s volume

and behaviour while still being small enough to result in a readable decline in oxygen

concentration. A respirometer:organism volume ratio between 20 and 50 appears to

be comfortable for most organisms but is small enough to result in a 10% drop in

oxygen concentration (Svendsen et al. 2016). Three different volumes of chambers

(0.36 L, 0.97270 L and 4.4 L) were used to have a chamber volume-to-fish volume

ratio of 61:1–9:1 for Epinephelus merra, 358:1–10:1 for Zebrasoma scopa, and 241:1–

10:1 for Balistapus undulatus. When the ratio was too high or too low, the closing

time (respirometry cycle) of the chamber was adapted to obtain accurate MO2 mea-

surements. Respirometry cycles were processed during a 20 h period (12 p.m. to 8

a.m. the following day) while leaving the fish undisturbed in the chamber. For each

measurement and each chamber size, a blank chamber was used simultaneously, and

a post blank measurement was processed for each chamber at the end of the run to

account for microbial respiration. Temperature was kept constant to 28.20 ± 0.35°C,

and a light cycle of 12 h was used (6 a.m. to 6 p.m.). SMR was calculated using

MO2 measurement during the entire period. Noisy measurements were removed by

checking the R2 of the drop in oxygen. Then, SMR was defined, using the average

of the lowest 10% of the MO2 values, after removal of the outliers, following rec-

ommendations by Chabot et al. (2016). At the start of a respirometry run, all fish

where chased for 1 min and immediately placed in the chamber to estimate maximum

metabolic rates (MMR) by recording the first 30 s of the first respirometry cycle. This

seems to be the most efficient way to get the MMR for a wide range of species (Norin

& Clark 2016).
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Metabolic parameters

To obtain parameters f0 and α, we fit linear regression models for each species with

the log-transformed SMR (g/day) as the response variable and the log-transformed

biomass (g) as the explanatory variable. Models were fit in a Bayesian frame-

work using the R package RStan (Stan Development Team 2018). The body mass-

independent metabolic normalisation constant (g C g-α d-1), f0 (see eqn 4 in the main

text), was obtained by exponentiating the intercept of this log-log regression. The

slope of the regression equals α, the a dimensionless mass-scaling exponent in eqn

4. We used weakly informative priors. We assumed the activity scope, θ to equal

(SMR + MMR)/2SMR. A second linear model was applied, similar to the above

mentioned model, but with the log-transformed MMR as the response variable. The

slope of each species of this regression did not differ from the slope of the SMR re-

gressions, as their respective 95% credible intervals overlapped substantially. Thus,

our data suggests that the intra-specific ratio of mass scaling exponents (SMR and

MMR) is 1 on average. Therefore, for each species, we averaged values of θ across all

individuals to calculate an overall θ.

2.7.4 Growth

We used otoliths to fit growth curves for each species. Individuals were collected in

Moorea, French Polynesia with the use of spearguns, and otoliths were extracted,

processed and read for annual growth increments (see 4.1, 4.2). fishflux provides

the function oto_growth() to estimate VBGC parameters from otolith readings,

using a Bayesian hierarchical regression model (see 4.3). If original otolith readings

are unavailable, VBGC parameters l∞, k and t0 can be retrieved from FishBase

for many species. The fishflux function growth_params() returns estimates that

are available on FishBase. We note that parameter estimates from otolith analysis

are considered better than other methods, and parameters can vary with location

due to temperature differences, thus introducing potential biases (Barneche & Allen
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2018; Morais & Bellwood 2018). We suggest using the standardised estimates and

standard deviations following the fish growth model of Morais & Bellwood (2018)

when location-specific otolith data is unavailable.

We convert mass from total length using the length-weight equation m = εlb,

where ε (g cm-b) is constant, and b is a dimensionless exponent. Their respective

standard deviations were retrieved from FishBase and estimated using a Bayesian

model (Froese et al. 2014). fishflux provides the function find_lw() to obtain

means and standard deviations of these parameters. Wet-to-dry mass conversion

constants were measured from the same specimens that were used for the nutrient

content analysis (see 5. Elemental stoichiometry).

Sample collection

A total of 288 specimens belonging to 20 species were collected in March 2016 and

November 2018 in Moorea, French Polynesia using spear guns. Total (TL) and stan-

dard length (SL) were measured to the nearest millimetre. For each individual, pairs

of sagittae were extracted, cleaned with distilled water, dried and transported to

Perpignan, France.

Otolith processing and back-calculation

For each species, one or both of the otoliths was cut transversely, using a diamond disc

saw (Presi Mecatome T210) to obtain a section of 500 µm. Sections were then fixed

on a glass slide with thermoplastic glue, sanded with abrasive discs of decreasing grain

size (2 400 and 1 200 grains per 2 cm) to get closer to the nucleus and polished using

a 0.25µm diameter diamond suspension. All sections were photographed under Leica

DM750 light microscope with a Leica ICC50 HD microscope camera and LAS software

(Leica Microsystems). For each species, a reading transect was chosen and distances

across annual growth increments were measured using ImageJ (version 1.51j8). This
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procedure was repeated twice by two readers in order to limit observer bias on age

estimates. The measurements realised by the different readers were averaged for each

section. To estimate the fish lengths for previous ages, the back-calculation procedure,

proposed by Vigliola & Meekan (2009) was used.

Growth parameters

The von Bertalanffy growth curve (VBGC) was selected to describe the fish growth

[eqn 2 in the main text; Bertalanffy (1957)]. The VBGC was fitted on length-at-

age data with a hierarchical non-linear regression in a Bayesian framework using

stan (Carpenter et al. 2017) and (RCore Team 2018). In the model, l∞ varies

among individuals, unlike t0. It has been shown that VBGC parameters l∞ and κ

are correlated in a consistent way, where the slope of the log-transformed regression

theoretically has an average of -2.31 (Morais & Bellwood 2018). This correlation is

explicitly included in the regression model where κ = exp(sl ∗ log(l∞) + gp), where sl

is the slope and gp is the intercept, which is the growth performance index (Morais

& Bellwood 2018). Informative priors for sl and gp were specified, using published

information (Morais & Bellwood 2018) and a weakly-informative prior was set for l∞:

sl ∼ normal(−2.3, 0.22),

gp ∼ normal(3, 2),

l∞ ∼ normal(15, 5).

(2.17)

Estimates for l∞ can vary substantially among populations or even individuals (Morais

& Bellwood 2018). We standardised κ to the maximum measured total length in

Moorea (unpublished data), to avoid individuals reaching the asymptotic length pre-

maturely and growth equalling zero in the application of the bioenergetic model for

the case study.
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2.7.5 Elemental stoichiometry of fish and diet

Sixteen individuals were collected in 2016 in Moorea, their gut contents were re-

moved, and the whole body was freeze-dried and ground to powder with a Precellys

homogeniser. Qk (%) were then measured in the lab using standard methods. Ground

samples were analysed for %C and %N content using a CHN Carlo-Erba elemental

analyzer (NA1500) for %P using dry oxidation-acid hydrolysis extraction followed by

a colorimetric analysis (Allen et al. 1974). Elemental content was calculated based

on dry mass. Means and standard deviations for C, N and P were obtained through

a hierarchical multivariate model with fixed effects per family, genus and species. C,

N and P content of diet items were analysed using the same methods as described

above.

Values forDk (%) were approximated from published estimates. Zebrasoma scopas

is known to feed on red algae (Choat et al. 2002). We adopted QN [0.68 %; Lin &

Fong (2008)] and QC [20.9%; Pillans et al. (2004)] from Acanthophora spicifera, and

QP [0.33%; Suzumura et al. (2002)] from another red algae species, Galaxaura sp. Dk

values for B. undulatus and E. merra were estimated based on a collection of potential

diet items of similar families (Allgeier et al. 2015). B. undulatus feeds on a wide range

of plant and animal matter, but the majority of their prey items are in the phylum

Arthropoda, followed by Chordata and Mollusca (Casey et al. 2019). Therefore, we

averaged Dk values of molluscs, crustaceans and small fishes (n = 15). Finally, E.

merra feeds primarily on crabs (Randall & Brock 1960). Thus, we averaged Dk values

measured from small crabs (n = 5). Stoichiometry of diet items were analysed using

similar methods as described above.

2.7.6 Assimilation efficiencies

Element-specific assimilation efficiencies, ak, are needed to estimate the available

proportion of matter after ingestion. These parameters were treated as fixed, with
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values of 0.8, 0.8 and 0.7 for C, N and P respectively (Deslauriers et al. 2017).

2.7.7 R package fishflux

fishflux makes the application of our theoretical framework user-friendly with the

use of the main function cnp_model_mcmc(). We devised our model to rely on pa-

rameters that are widely available, while accounting for uncertainties. Several pa-

rameters for fishflux are publicly accessible, and the package provides user-friendly

functions to retrieve them. For example, growth parameters for the VBGC are avail-

able on FishBase or can be extrapolated with basic traits such as temperature and

body size (Morais & Bellwood 2018). Moreover, length-weight parameters have been

predicted for all species on FishBase (Froese et al. 2014), and metabolic parameters

F0 and α can be extracted from flow-through respirometry experiments. To calculate

the energetic cost of growth, we use traits that are likewise available on FishBase

(i.e., aspect ratio and trophic level, Barneche & Allen 2018). Equipped with these

parameters, the most critical input data is body size, which is frequently collected at

the individual level in underwater visual censuses or fisheries catch data (Samoilys &

Carlos 2000). As such, our model offers a unique opportunity to infer biogeochem-

ical dynamics from standardized and widely used survey techniques in fish ecology.

Furthermore, fishflux provides functions to extract specific results (extract()),

plot output (cnp_plot()), extract the limiting element (limitation()), and inves-

tigate the sensitivity of the predictions due to the uncertainty of input parameters

(sensitivity()). For details, see the help pages and vignettes of fishflux, the

website (https://nschiett.github.io/fishflux/index.html), and the reference

manual (Appendix A).

https://nschiett.github.io/fishflux/index.html
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2.8 Supplementary tables

Table 2.3: Overview of all input parameter values for each species and
sources.

Z. scopas B. undulatus E. merra Source

QC 31.85 (4.00) 32.36 (3.83) 35.33 (3.24) This study
QN 10.00 (1.00) 9.09 (0.71) 9.64 (0.89) This study
QP 5.83 (1.10) 5.41 (1.24) 4.39 (0.82) This study
DC 22.60 (4.00) 21.60 (7.00) 20.00 (3.60) Pillans et al. (2004), Allgeier et al. (2015)
DN 0.77 (1.0e-02) 4.50 (1.7e+00) 4.20 (9.0e-01) Suzumura et al. (2002), Allgeier et al. (2015)
DP 0.35 (1e-02) 0.60 (3e-01) 0.60 (4e-01) Lin et al. (2008), Allgeier et al. (2015)
aC 0.80 (_) 0.80 (_) 0.80 (_) Fish Bioenergetics 4.0
aN 0.80 (_) 0.80 (_) 0.80 (_) Fish Bioenergetics 4.0
aP 0.70 (_) 0.70 (_) 0.70 (_) Fish Bioenergetics 4.0
l∞ 19 (_) 26 (_) 22 (_) This study
κ 0.69 (6e-02) 0.15 (8e-03) 0.45 (1e-03) This study
t0 -2.1e-02 (_) -3.1e-01 (_) -6.0e-02 (_) This study

lwa 2.5e-02 (2.7e-03) 3.5e-02 (1.2e-02) 1.1e-02 (2.7e-03) Froese et al. (2013)
lwb 2.98 (2.6e-02) 3.00 (7.7e-02) 3.06 (5.6e-02) Froese et al. (2013)
mdw 0.250483293190712 (_) 0.282414512324743 (_) 0.293540629343531 (_) This study
F0Nz 3.7e-03 (4.6e-03) 3.7e-03 (4.6e-03) 3.7e-03 (4.6e-03) This study
F0Pz 3.7e-04 (5.1e-04) 3.7e-04 (5.1e-04) 3.7e-04 (5.1e-04) This study
f0 4.0e-03 (4.6e-04) 2.0e-03 (6.0e-04) 1.8e-03 (3.2e-04) This study
α 0.69 (3.0e-02) 0.81 (6.0e-02) 0.80 (4.2e-02) This study
θ 1.83 (_) 3.15 (_) 2.80 (_) This study
r 2.00 (_) 1.95 (_) 1.50 (_) Fishbase
h 2.00 (_) 3.37 (_) 4.10 (_) Fishbase
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Table 2.4: Predicted ingestion rates in dry mass per mass wet weight
of the fish. 95% CI are reported for biomass and ingestion rates in
between brackets.

Species TL (cm) Biomass (g) Ingestion rate (g−1d−1)

Z. scopas 2.00 0.2 (0.2-0.2) 259.4 (129.3-523)

Z. scopas 3.00 0.6 (0.5-0.8) 167.8 (83.3-349.2)

Z. scopas 4.00 1.5 (1.2-2) 122.2 (63.1-246.8)

Z. scopas 5.00 3 (2.2-4) 95.4 (49.2-196.5)

Z. scopas 6.00 5.1 (3.8-6.8) 78.8 (40.5-155)

Z. scopas 7.00 8 (5.9-10.9) 66.7 (34.2-129.8)

Z. scopas 8.00 12 (8.8-16.4) 56.8 (29-110.9)

Z. scopas 9.00 17.1 (12.5-23.5) 50.1 (24.7-97.6)

Z. scopas 10.00 23.2 (17-32.4) 45.1 (22.1-86.6)

Z. scopas 11.00 30.9 (22.3-42.4) 40.8 (19.3-79.1)

Z. scopas 12.00 40.4 (29.5-56.1) 37.1 (17.2-76.1)

Z. scopas 13.00 50.9 (36.9-71.1) 33.5 (14.8-71.8)

Z. scopas 14.00 63.4 (44.6-89.7) 30.9 (13.2-70.6)

Z. scopas 15.00 78.2 (55.9-108.6) 28.2 (11.7-68.4)

Z. scopas 16.00 95.1 (67.6-135.5) 26.4 (11-65.1)

Z. scopas 17.00 113.6 (80.1-159.2) 24.7 (9.3-63.4)

Z. scopas 18.00 134.2 (93.8-191.6) 24.1 (8.4-65.3)

Z. scopas 19.00 156.9 (111.8-226.7) 22.3 (7.3-64)

Z. scopas 20.00 183.8 (129.2-258.9) 21.1 (6.8-57.6)

Z. scopas 21.00 211.2 (148.2-298.3) 21 (6-60.1)

Z. scopas 22.00 245.9 (170.8-347.6) 19.8 (5.3-58.8)

Z. scopas 23.00 278.3 (197.1-403.4) 18.1 (4.9-58.7)

Z. scopas 24.00 317.9 (221.6-457.2) 18.5 (4.3-57.3)

Z. scopas 25.00 356.9 (252.2-518.9) 17.8 (4.2-56.5)

B. undulatus 2.00 0.3 (0.1-0.6) 74.9 (30.3-196.5)

B. undulatus 3.00 0.9 (0.4-2.1) 48.3 (19.2-135.5)



64
Chapter 2. Nutrient limitation, bioenergetics, and stoichiometry: a new model to

predict elemental fluxes mediated by fishes

B. undulatus 4.00 2.1 (0.9-5.1) 36.4 (14.2-104.6)

B. undulatus 5.00 4.2 (1.8-10.3) 28.9 (10.4-84.5)

B. undulatus 6.00 7.1 (2.8-17.8) 24.3 (8.4-77.1)

B. undulatus 7.00 11.5 (4.5-29.1) 21.3 (7.5-64.3)

B. undulatus 8.00 17.2 (6.5-45.1) 19 (6.8-65.9)

B. undulatus 9.00 24.9 (9.5-63.6) 17.6 (5.8-61.7)

B. undulatus 10.00 34.3 (12.1-91) 15.5 (5.2-58.1)

B. undulatus 11.00 44.2 (16.7-120.5) 15.5 (4.8-63.1)

B. undulatus 12.00 58.3 (22-157.8) 14.9 (4.8-56.1)

B. undulatus 13.00 72.2 (26.3-202.3) 14 (4.2-60.6)

B. undulatus 14.00 91.7 (33.5-254.7) 13.6 (4.1-61.4)

B. undulatus 15.00 112.4 (41.4-319.3) 12.9 (3.7-56.7)

B. undulatus 16.00 138.7 (47.9-409.7) 12.7 (3.4-59.2)

B. undulatus 17.00 165.4 (56.4-476.2) 12.6 (3.6-60.9)

B. undulatus 18.00 194.1 (66.8-557.5) 12.1 (3.3-58.1)

B. undulatus 19.00 230.6 (79.5-669.9) 12.3 (3.2-59.1)

B. undulatus 20.00 270.3 (91.3-860.1) 11.7 (3.1-59)

B. undulatus 21.00 309.3 (105.3-949.9) 11.8 (2.9-59.7)

B. undulatus 22.00 360.6 (126.6-1042.7) 11.4 (3-59.3)

B. undulatus 23.00 400.2 (137.2-1231) 11.7 (2.8-62.1)

B. undulatus 24.00 477.9 (162.7-1456.8) 11.3 (2.8-57.8)

B. undulatus 25.00 518.2 (174.4-1685.3) 11.3 (2.8-62.3)

E. merra 2.00 0.1 (0.1-0.2) 43.5 (11.2-294.9)

E. merra 3.00 0.3 (0.2-0.5) 30.8 (9.9-188.2)

E. merra 4.00 0.7 (0.4-1.4) 25.8 (8.2-139.2)

E. merra 5.00 1.5 (0.8-2.9) 22.5 (8-109.7)

E. merra 6.00 2.5 (1.3-4.9) 19.7 (7.4-92.9)

E. merra 7.00 4.1 (2.1-7.9) 18.5 (7-76.3)

E. merra 8.00 6.1 (3.1-12.3) 16.9 (6.9-58.7)

E. merra 9.00 8.7 (4.3-17.6) 16.9 (6.4-55.7)
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E. merra 10.00 12.1 (5.9-24.3) 15.6 (6.1-48.5)

E. merra 11.00 16.3 (7.9-33.7) 15.4 (6-46.7)

E. merra 12.00 21.6 (10.2-44) 14.6 (5.7-42.7)

E. merra 13.00 27.3 (13.4-57) 14.5 (5.7-42.6)

E. merra 14.00 33.9 (16.4-70.8) 14 (5.7-42.6)

E. merra 15.00 42.4 (19.9-89) 14.1 (5.5-40.1)

E. merra 16.00 51.4 (23.5-111.8) 13.7 (5.2-37.9)

E. merra 17.00 61.7 (29.1-129.5) 13.4 (5.3-38.2)

E. merra 18.00 74 (33.7-161.5) 13.4 (5.2-38.6)

E. merra 19.00 86.5 (40.4-190.8) 13.3 (5.5-37.7)

E. merra 20.00 100.2 (47-231.1) 13.3 (5.1-37.6)

E. merra 21.00 119.2 (53.3-257.1) 12.8 (4.7-35.8)

E. merra 22.00 137.9 (60.2-304.8) 12.8 (4.6-37.5)

E. merra 23.00 156 (72.1-359.6) 13 (4.7-35.8)

E. merra 24.00 179.6 (80.5-396.9) 12.8 (4.6-35.9)

E. merra 25.00 200.9 (89.5-454) 13.1 (4.8-35.8)





Part II: From individual to

community

The next step in understanding ecosystem functions mediated by fishes is to scale up

individual processes to the community level. I aimed to quantify five key ecosystem

functions - biomass production, nitrogen excretion, phosphorus excretion, herbivory

and piscivory - by applying the theoretical framework described in chapter 2 to all

individuals in global coral reef fish communities. Applying the model to a wide range

of fishes required preparatory steps described in methodological chapters 3 and 4.

Functions related to consumption, and nitrogen and phosphorus cycling are highly

dependent on the diet of fishes, which is often unknown for coral reef fishes. Moreover,

experts tend to disagree on the assignment of trophic guilds. Therefore, the first step

towards applying bioenergetic models to a variety of fishes was to find a reproducible

and quantitative method to assign trophic guilds to global coral reef fishes. Chapter

3 presents a classification of trophic guilds through network analysis based on data

from community-wide gut content analyses of tropical coral reef fishes worldwide.

Specifically, I developed a method to extrapolate trophic guilds to a global species

list based on phylogeny and body size.

Further, the model framework presented in chapter 2 requires a large number of

parameters, that depend on species characteristics and sometimes temperature. To

assemble a database of parameters for global reef fish species, I integrated literature
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data, novel data collections, and Bayesian models, described in chapter 4. One of the

impactful parameters is the growth rate coefficient. I developed an R package called

fishgrowbot to fit growth models and extract growth parameters from otolith data

(appendix B).

Finally, I applied bioenergetic models to a global reef fish community database

(chapter 5) to (1) quantify community-level reef fish functions and their trade-offs,

(2) extract the community- and species-level effects on these functions, and (3) gauge

the vulnerability of reef fish functioning in the Anthropocene.
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3.1 Abstract

Understanding species’ roles in food webs requires an accurate assessment of their

trophic niche. However, it is challenging to delineate potential trophic interactions

across an ecosystem, and a paucity of empirical information often leads to inconsis-

tent definitions of trophic guilds based on expert opinion, especially when applied

to hyperdiverse ecosystems. Using coral reef fishes as a model group, we show that

experts disagree on the assignment of broad trophic guilds for more than 20% of

species, which hampers comparability across studies. Here, we propose a quantita-

tive, unbiased, and reproducible approach to define trophic guilds and apply recent

advances in machine learning to predict probabilities of pairwise trophic interactions

with high accuracy. We synthesize data from community-wide gut content analy-

ses of tropical coral reef fishes worldwide, resulting in diet information from 13,961

individuals belonging to 615 reef fish. We then use network analysis to identify 8

trophic guilds and Bayesian phylogenetic modeling to show that trophic guilds can

be predicted based on phylogeny and maximum body size. Finally, we use machine

learning to test whether pairwise trophic interactions can be predicted with accuracy.

Our models achieved a misclassification error of less than 5%, indicating that our

approach results in a quantitative and reproducible trophic categorization scheme, as

well as high-resolution probabilities of trophic interactions. By applying our frame-

work to the most diverse vertebrate consumer group, we show that it can be applied

to other organismal groups to advance reproducibility in trait-based ecology. Our

work thus provides a viable approach to account for the complexity of predator–prey

interactions in highly diverse ecosystems.
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3.2 Introduction

A fundamental goal in ecology is to understand the mechanisms behind the main-

tenance of biodiversity and ecosystem functioning (Reiss et al. 2009; Tilman et al.

2014). Understanding the ecological niches of species and their role in ecosystems is

central to this endeavor (Whittaker et al. 1973; Finke & Snyder 2008). In fact, the

degree of niche overlap among species can be a major determinant of relationships

among species richness (Levine & HilleRisLambers 2009), ecosystem productivity

(Loreau et al. 2001; Poisot et al. 2013; Terborgh 2015), and vulnerability (Mouillot

et al. 2013) since limited functional redundancy can make ecosystems more prone to

lose entire energetic pathways (Rosenfeld 2002; Wohl et al. 2004; Brandl & Bellwood

2014). With growing threats to flora and fauna worldwide, the need to quantify the

impact of biodiversity loss has amplified the use of functional groups, which group

species (and life history stages) that share common ecological characteristics and are

often defined by coarse, categorical descriptors of species traits (McGill et al. 2006;

Kraft et al. 2008; Belmaker et al. 2013).

Natural systems are inherently complex, with almost innumerable, non-random

linkages across an intricate network of ecological interactions (De Deyn et al. 2008).

Accounting for such complexity is critical to define energetic pathways and, ulti-

mately, ecosystem functioning (Jordano 2016). However, our understanding of even

basic predator–prey interactions is limited for many ecosystems, and expert opinion

does not adequately fill this knowledge gap (Gravel et al. 2013). To overcome this

limitation, scientists have developed methods to infer the probability of ecological

interactions based on species’ evolutionary history and ecological traits (Dalla Riva

& Stouffer 2016; Sander et al. 2017; Laigle et al. 2018; Pichler et al. 2020). However,

predicting trophic interactions across the entire spectrum of potential predator–prey

interactions often remains unresolved in hyperdiverse ecosystems. In these cases, cat-

egorical traits are frequently used as proxy of both ecosystem functioning and trophic

structure (Flynn et al. 2011).
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Delineating the ecological niche with discrete categories has several operational

advantages. First, grouping species into categories helps decompose highly complex

ecosystems into comprehensible units, while traditional taxonomic analyses may be

difficult to interpret. Second, ecological predictions tied to species are restricted to

the geographic range of the species, whereas predictions of functional groups can be

globally comparable. Third, the use of functional groups enables the quantification

of functional metrics (e.g., functional richness and functional redundancy) from a

standard community data matrix without complex manipulative experiments (Bel-

maker et al. 2013; Schmera et al. 2015; Brandl 2019). The promise of “user-friendly”

metrics for functional ecology has encouraged the employment of trait-based data in

community ecology; even with a paucity of empirical information, it is often assumed

that experts can achieve accurate descriptions of the ecological niche of species (Aubin

et al. 2013; Schmera et al. 2015; Nash et al. 2017).

Coral reefs, one of the most diverse ecosystems on Earth, have inspired a plethora

of studies that assess ecosystem functioning. However, only few studies have at-

tempted to categorize fluxes on a continuous gradient across an entire food web (Gi-

larranz et al. 2016), and most studies use expert opinion to define simple functional

groups. Indeed, recent efforts have compiled trait-based datasets for 2 major com-

ponents of this ecosystem: corals and fishes (Stuart-Smith et al. 2013; Madin et al.

2016). For some traits, such as maximum body size in fishes, the compilation process

is simple and accurate because unidimensional, quantitative data (e.g., maximum

total length) are compiled in publicly accessible databases; however, when it comes

to species’ diet or behavior, obtaining consensual data is much more difficult. For

example, dietary data are multidimensional (i.e., various prey items can be recorded

across individuals), influenced by ontogenetic and spatio-temporal variables (i.e., life

history, time, and location can incur dietary shifts), and prone to methodological dif-

ferences and thus observer bias. Therefore, while some exceptions exist (Bascompte et

al. 2005; Gilarranz et al. 2016), our capacity to define coral reef trophic interactions

still largely depends on discrete trophic categories defined by expert opinion (Brandl
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et al. 2019a).

Although experts sometimes agree on relevant traits to define trophic categories,

there is often an implicit disagreement. Across the coral reef literature, the number

and resolution of reef fish trophic guilds substantially differs. Studies commonly de-

fine 3 (McClanahan 1995) to 8 (Ferreira et al. 2004) trophic guilds, with particular

ambivalence on the resolution at which to define herbivores and invertivores (Micheli

et al. 2014; Mouillot et al. 2014; Parravicini et al. 2014; Stuart-Smith et al. 2018).

Among all trait classification schemes for reef fishes, only a few are openly accessible

(e.g., Stuart-Smith et al. (2018), Bejarano et al. (2019)). Consequently, different

research groups tend to employ proprietary classifications, with little possibility to

cross-check and compare assigned traits. The classification of species into functional

groups has advantages for our understanding of ecological patterns (Mason & Bello

2013; Mouillot et al. 2013). However, the lack of agreement and the limited trans-

parency of trait-based datasets can conjure skepticism and inhibit the emergence of

general patterns.

Here, we quantify expert agreement in the definition of coral reef fish trophic guilds

and propose a novel, quantitative framework to delineate trophic guilds. Moreover,

we test whether machine learning allows us to go beyond the definition of discrete cat-

egories, accurately predicting individual trophic interactions in hyperdiverse ecosys-

tems. We compiled all quantitative, community-wide dietary analyses from several

locations across the Indo-Pacific and the Caribbean. Then, we used network analy-

sis to quantitatively define modules that correspond to trophic guilds and machine

learning to infer pairwise trophic interactions. We then examined phylogenetic niche

conservatism between species to predict trophic guilds and probabilities of pairwise

trophic interactions for the global pool of coral reef fishes. Our framework is fully

reproducible and can be extended and updated as new data become available.
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3.3 Materials and methods

3.3.1 Assessment of expert agreement

We systematically searched Google Scholar, including papers since 2000, using the

following keywords: “coral reefs” AND “reef fish” AND (“fish community” OR “fish

assemblage”) AND “diet” AND (“functional group” OR “functional trait” OR “func-

tional entity” OR “trophic guild” OR “trophic group”). The search yielded 856

papers, which were individually assessed. We only kept studies performed at the

community level that targeted all trophic levels. Most studies were excluded because

they only included specific families or groups, or the data were not provided with the

publication. When the data were not provided with the publications, we contacted

authors with trophic classifications used widely used across the literature. We often

found redundant results, with groups publishing several papers using the same clas-

sification scheme. In those cases, only the most recent reference was retained. Of the

856 papers, 163 papers were inaccessible (i.e., non-English language and/or data in-

accessibility despite contacting the first author). Thus, 182 studies met the criteria of

our initial assessment, which ultimately yielded 33 papers with independent trophic

classifications (see 3.6 table S1).

The classifications were not uniform in terms of the number and nature of trophic

guilds. In order to compare trophic guilds across publications, we first standardized

the schemes by converting the original trophic categories into 5 broad trophic guilds:

“herbivores and detritivores,” “invertivores,” “omnivores,” “planktivores,” and “pis-

civores.” All classification schemes could be attributed to these categories with the

exception of 8 papers that did not include either “omnivores” or “piscivores” as a

category. In these cases, the comparison was only made across the 4 comparable

guilds.

In order to assess expert agreement, we compared each possible pair of classifica-

tions that shared at least 50 species, generated a confusion matrix (also known as an
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error matrix; (Stehman 1997)), and measured agreement as the proportion of species

with matching trophic guild assignments. We then calculated the average agreement

between classification pairs for each trophic guild. Simplifying categories into 5 com-

parable, broad trophic guilds therefore reduced the number of trophic categories and

naturally inflated agreement among authors; thus, our estimates of author agreement

are conservative.

3.3.2 Data collection on fish gut contents

To provide a quantitative definition of trophic guilds for reef fishes, we collected

gut content data across the literature at the individual or species level for Elasmo-

branchii (i.e., cartilaginous fishes) and Actinopterygii (i.e., ray-finned fishes). We

obtained dietary information from 5 published works: Hiatt and Strasburg (1960)

for the Marshall Islands (Hiatt & Strasburg 1960), Randall (1967) for Puerto Rico

and the Virgin Islands (Randall & Brock 1960), Hobson (1974) for Hawaii (Hobson

1974), Harmelin-Vivien (1979) for Madagascar (Harmelin-Vivien 1979), and Sano and

colleagues (1984) for Okinawa (Sano et al. 1984). In addition, we provide hitherto

unpublished data on the gut contents of 3,015 individuals of 111 species collected in

New Caledonia from 1984 to 2000.

All dietary information was based on visual gut content analysis that reported

prey ingestion as a volumetric percentage or frequency. The data were standardized

and analyzed as proportions. To our knowledge, the compiled dataset represents the

first detailed synthesis of community-wide visual gut content analyses to infer the

structure of coral reef food webs across ocean basins. A total of 13,961 non-empty

fish guts belonging to 615 species were analyzed, and more than 1,200 different prey

items were described across the original datasets.

First, fish species and family names were taxonomically verified and corrected with

the R package rfishbase (Boettiger et al. 2012). Only species with at least 10 non-
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empty guts were kept for further analysis. The taxonomic classification of each prey

item was then obtained, and all non-informative and redundant items were discarded

(e.g., unidentified fragments; “crustacea fragments” when co-occurring with an item

already identified to a lower taxonomic level such as “shrimp”). Prey identification

was highly heterogeneous across the 6 datasets, differing in taxonomic level and the

use of common or scientific names (e.g., crabs versus Brachyura). In order to make

the 6 datasets comparable, prey items were grouped into 38 ecologically informative

prey groups (see 3.6 table S2). Items were generally assigned to groups corresponding

to their phylum or class. Due to the high diversity and detailed descriptions of crus-

taceans, they were assigned to the level of order or superorder. Most groups follow

official taxonomic classifications except for “detritus,” “inorganic,” and “zooplank-

ton.” In the West Indies dataset (Randall & Brock 1960), items labelled as “Algae &

Detritus” were assigned to both of the categories “detritus” and “benthic autotroph,”

and the percentage was equally divided in 2. The category “zooplankton” includes

all eggs and larvae regardless of taxonomy.

3.3.3 Definition of trophic guilds with network analysis

Of the 615 species with dietary information, 516 were present in only 1 location, 66

were collected in 2 locations, 25 in 3 locations, 7 in 4 locations, and only 1 across 5

locations. We tested whether there was a strong dietary difference in species present

in more than 1 location by creating a quantitative bipartite network (Barrat et al.

2004) where fish species at each location were linked to the 38 prey groups. This

network was weighted so that edge weights represent the proportional contribution

of each prey group to the diet of a species at a given location.

In order to identify network modules that correspond to reef fish trophic guilds and

their ingested prey, we used the maximization of the weighted network modularity

based on weighted bipartite networks (Beckett 2016). Due to the high occurrence of

accidental predation in reef fishes, we used weighted networks to define modules so
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that rare or accidental prey would not drive the definition of trophic guilds.

Since the modularity maximization algorithm has an initial random step, it may

converge to different (although similar) suboptimal solutions each time the analysis is

performed, which is common across several optimization algorithms, such as simulated

annealing (Serafini 1994). To guarantee reproducibility and reduce the risk of basing

our analysis on an outlier, we performed the modularity maximization 500 times and

retained the medoid solution, which was identified as the solution with the highest

similarity to the other 499 modules. Similarity between classifications was assessed

as the variation of information, which is an accepted metric to compare multiple

clustering results (Meilă 2007). Overall, 68% of the species found in more than 1

location belonged to the same module. Therefore, we considered the regional effect

to be minor and performed the analysis on the global network, ignoring regional

variability and increasing the number of individuals per species.

3.3.4 Phylogenetic conservatism of trophic guilds

We extracted the phylogenetic position of the 615 species used for the definition of

trophic guilds through the Fish Tree of Life (Rabosky et al. 2018). A total of 603

out of 615 species were available in the Fish Tree of Life, but only 535 species had

verified phylogenetic information. For the taxa available in the Fish Tree of Life with-

out verified phylogenetic information, we retrieved the pseudo-posterior distribution

of 100 synthetic stochastically resolved phylogenies where missing taxa were placed

according to taxonomy using the function fishtree_complete_phylogeny() in the

R package fishtree (Chang et al. 2019).

We quantified the phylogenetic conservatism of trophic guilds by calculating the

phylogenetic statistic δ, which uses a Bayesian approach for discrete variables (Yu

et al. 2017). The δ statistic can be arbitrarily large with a high level of variation,

depending on the number of species and trait levels. To evaluate the significance of
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the δ statistic, we applied a bootstrapping approach where we quantified δ 100 times

after randomly shuffling the trait values.

We then fitted a multinomial phylogenetic regression to predict fish trophic guild

according to phylogeny and body size with the R package brms (Burkner PC 2017).

We used a multinomial logit link function. As such, the probability of a particular

trophic guild (k) for species (phy) is computed as follows:

Pr(k|muphy,1,muphy,2, ...,muphy,8) = muphy,k∑8
i=1 exp(muphy,i)

,

with muphy,k defined as

muphy,1 = 0,muphy,k|2:8 = β0k + β1klog(sizemax) + γ0phy,k,

where β0k is the category-specific fixed-effect intercept, β1k is the slope for the natural

transformed maximum body size for each category k, and γ0phy,k is the random effect

coefficient that account for intercept variation based on relatedness as described by the

phylogeny for each species phy diet category k. We used uninformative priors and ran

the model for 3 chains, each with 6,000 iterations and a warm-up of 1,000 iterations.

We visualized the fitted probabilities for each trophic guild with a phylogenetic tree,

including the 535 species with verified phylogenetic positions using the R package

ggtree (Yu et al. 2017). Next, we used our model to predict the most likely trophic

guild for the global pool of reef fish species. For the extrapolation, we selected all

species within reef fish families with more than 1 representative species (but we also

included Zanclus cornutus, which is the only species in the family Zanclidae), which

resulted in 50 families. Further, we only selected species with a maximum length

greater than 3 cm, which was the maximum size of the smallest fish in our compiled

database. This selection process resulted in a list of 4,554 reef fish species.

Currently, no streamlined method exists to predict traits for new species from a

phylogenetic regression model. We circumvented this issue by extracting draws of the
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phylogenetic effect (γ0phyxk) for each species included in the model. We subsequently

predicted the phylogenetic effects for missing species with the help of the function

phyEstimate from the R package picante (Kembel et al. 2010). This function

uses phylogenetic ancestral state estimation to infer trait values for new species on

a phylogenetic tree by re-rooting the tree to the parent edge to predict the node

(Garland & Ives 2000). We repeated this inference across 2,000 draws. Per draw,

we randomly sampled 1 of the 100 trees. Then, we predicted the probability of each

species to be assigned to each diet category by combining the predicted phylogenetic

effects with the global intercept and slopes for maximum body size for each draw.

Finally, we summarized all diet category probabilities per species by taking the mean

and standard deviation across all 2,000 draws.

We quantified the total standard deviation (i.e., the square root of the quadratic

sum of the standard deviations in each category) and the negentropy value, a measure

of certainty calculated by subtracting 1 from the entropy value (i.e., uncertainty).

Thus, the negentropy value lies between 0 and 1, and the higher the value, the higher

the certainty for trophic guild assignment (i.e., if a given species has a high probability

of assignment to a dietary category, the negentropy value will be high).

Finally, we conducted a cross validation to validate our extrapolation of trophic

guilds to the global pool of fish species. Specifically, we repeated the extrapolation

approach (as described above) 535 times, each time leaving out 1 species and pre-

dicting the trophic guild of that species. We then compared this prediction to the

original assigned trophic guild and calculated the accuracy of each of the 8 trophic

guild predictions.
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3.3.5 Prediction of trophic interactions with machine learn-

ing

To complement the assignment of discrete trophic guilds, we also modeled pairwise

trophic interactions. In accordance with previous studies that infer trophic interac-

tions by matching species traits or phylogenetic position (Gravel et al. 2013; Guénard

et al. 2013; Morales-Castilla et al. 2015; Laigle et al. 2018), we predicted the proba-

bility of pairwise trophic interactions between the 535 reef fish species and the 38 prey

categories in our dataset. Building on Laigle and colleagues (Laigle et al. 2018), we

developed a new machine learning approach to extract the reef fish phylogenetic tree

from the Fish Tree of Life (Rabosky et al. 2018) and obtain phylogenetic eigenvector

maps for each species, which were used as explanatory variables in our models (Gué-

nard et al. 2013). We then predicted the probability of trophic interactions between

fish species and prey categories based on phylogenetic position and maximum body

size. Specifically, using the R package h2o (LeDell et al. 2020), we employed an en-

semble modeling approach based on 3 models calibrated with 10-fold cross validation:

extreme gradient boosting (Chen & Guestrin 2016), boosted regression trees (Elith et

al. 2008), and random forest (Breiman 2001). A cross-validated general linear model

was used as a super-learner to create an optimal weighted average (i.e., an ensemble)

of the predictions from the 3 models. The 3 models were implemented using 2,000

regression trees and default settings to reduce overfitting. Model performance was

assessed using the area under the receiver operating characteristic curve (AUC) and

true skills statistics (TSS) (Allouche et al. 2006).

In addition to applying this analysis to our dataset, we also tested whether this

technique could reliably predict pairwise trophic interactions for new species and

locations. To this aim, we calibrated the models with only 5 locations, excluding

the dataset from New Caledonia. We then used the New Caledonia dataset to assess

model performance. As detailed above, after cross validation, we used our model

to predict probabilities of pairwise trophic interactions between the 4,554 reef fish
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species and the 38 prey categories.

3.4 Results

3.4.1 Assessment of expert agreement

We evaluated expert agreement among 33 distinct and independent trophic guild clas-

sifications by comparing the classification schemes in pairs. Considering the broadness

of the expert-assigned categories, we found low agreement. The median agreement

between pairs, expressed as the proportion of species with matching trophic group

assignments, was 78% (figure 3.1). For approximately 50% of the pairwise compar-

isons, at least a quarter of the species were attributed to different trophic groups.

In the most severe disagreement, the proportion of mismatched assignments reached

38%. In addition, expert agreement differed depending on the trophic group. Expert

disagreement on the classification of “herbivores and detritivores” was low, with an

average expert agreement of 95% and pairs of expert disagreement only reaching 20%

(figure 3.1 B). In contrast, “omnivores” showed the highest mismatch, with experts

agreeing on an average of only 70% of the species and peaks of disagreement between

expert pairs reaching 47% (figure 3.1 B).
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Figure 3.1: Expert agreement on trophic guild assignment. (A) The
distribution of the agreement (i.e., proportion of species assigned to
the same trophic category) across the 32 comparisons between pairs of
experts. The red dotted line represents the median. (B) Agreement
between pairs of experts by trophic category. H, herbivores and detri-
tivores; I, invertivores; O, omnivores; P, piscivores; PK, planktivores.

Expert agreement was variable and often homogeneously distributed around the

mean for all the trophic categories. Therefore, the high agreement between a few

combinations of experts did not necessarily exclude peaks of disagreement (figure

3.1B). The analysis of individual confusion matrices between pairs of experts revealed

high heterogeneity (figure 3.2). For example, Morais and Bellwood were generally in

agreement with Mouillot and colleagues (Mouillot et al. 2014) (across 89% of the 515

species in common), while Mouillot and colleagues (Mouillot et al. 2014) agreed with

Stuart-Smith and colleagues (Stuart-Smith et al. 2013) across only 68% of the 2,211

species in common.
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Figure 3.2: Confusion matrices of the agreement between pairs of ex-
perts that share at least 200 species in common and define all 5 trophic
categories. Colors represent proportions of species in each trophic guild
as classified by experts. H, herbivores and detritivores; I, invertivores;
O, omnivores; P, piscivores; PK, planktivores.
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Surprisingly, there was also a high heterogeneity in groups with high disagreement

(i.e., multiple alternative assignments for species not assigned to the same trophic

group). Species classified as “invertivores” according to 1 expert were considered

“omnivores,” “piscivores,” or “planktivores” according to other classification schemes

(figure 3.2). Similarly, species considered “omnivores” by 1 expert were alternatively

considered “invertivores,” “herbivores and detritivores,” or “planktivores” by another

expert.

3.4.2 Definition of trophic guilds with network analysis

We defined trophic guilds by identifying modules (i.e., combinations of predators and

prey) that maximize the weighted modularity of the global network (Beckett 2016).

Our analysis robustly identified 8 distinct modules that correspond to different trophic

guilds (figure 3.3). We identified these trophic guilds as

1. “Sessile invertivores”: species predominantly feeding on Asteroidea, Bryozoa,

Cirripedia, Holothuroidea, Porifera, and Tunicata;

2. “Herbivores, microvores, and detritivores (HMD)”: species primarily feeding on

autotrophs, detritus, inorganic material, foraminifera, and phytoplankton;

3. “Corallivores”: species predominantly feeding on Anthozoa and Medusozoa;

4. “Piscivores”: species primarily feeding on Actinopterygii and Cephalopoda;

5. “Microinvertivores”: species primarily feeding on Arachnida, Pycnogonida,

small Crustacea (Peracarida), and worms (Annelida, Hemichordata, Nematoda,

Nemertea, and Sipuncula);

6. “Macroinvertivores”: species primarily feeding on Mollusca (Bivalvia, Gas-

tropoda, Polyplacophora, and Scaphopoda), Echinoidea, and Ophiuroidea;

7. “Crustacivores”: species primarily feeding on large Crustacea (Decapoda and

Stomatopoda);

8. “Planktivores”: species mainly feeding on zooplankton, cyanobacteria and

Harpacticoida.
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Figure 3.3: Bipartite network including 615 fish species (grouped into
8 trophic guilds) and their prey items (grouped into 38 categories; see
table S1). The relative proportion of each prey category consumed by
each trophic guild corresponds with the width of each interaction bar.
The pie charts show the relative proportion of fish families within each
trophic guild.
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3.4.3 Phylogenetic conservatism of trophic guilds

To evaluate the significance of the phylogenetic statistic value (δ = 9.37), we applied

a bootstrapping approach and quantified δ after randomly shuffling the trait values

100 times. The median δ of these null models was 0.000199 (95% confidence interval

[0.000196, 0.000204]), indicating a strong phylogenetic signal associated with the 8

trophic guilds.

Phylogeny and maximum body size were sufficient to correctly predict the trophic

guild of 97% of the species in our dataset. For most families, there was strong phylo-

genetic conservatism, which resulted in the high confidence of these predictions (figure

3.4). Within some families, however, closely related species displayed distinct dietary

preferences, as showcased by high negentropy values for families such as Balistidae,

Diodontidae, and Labridae.
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Figure 3.4: Phylogenetic tree of 535 reef fish species with fitted trophic
guild assignments based on empirical dietary data. Trophic guild pre-
dictions were made with a Bayesian multinomial phylogenetic regres-
sion. The probability of trophic guild assignments for each species is
visualized with color scales (depicted above the phylogenetic tree), with
darker colors indicating a higher probability of assignment. In the outer
black ring, each distinct segment represents a fish family (with silhou-
ettes included for the most speciose families). Uncertainty of overar-
ching trophic guild assignment for each fish family is visualized with
negentropy values (i.e., reverse entropy); thus, darker shades indicate
a higher degree of certainty of trophic guild assignment.
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Given its high predictive performance, we used our Bayesian phylogenetic model

to extrapolate the probability of all reef fish species belonging to the 8 trophic guilds

and assigned the trophic guild with the highest probability (see 3.6 table S3). Using

leave-one-out cross validation, the final accuracy of this approach was 65%, which

is comparable with other phylogenetically extrapolated traits applications, such as

those involving microbial traits (Goberna & Verdú 2016).

By inspecting the confusion matrix of the leave-one-out cross validation, we ob-

tained more detailed information on the accuracy of the trophic guild predictions

(figure 3.5). Most categories were well predicted with our extrapolation approach.

In particular, the “sessile invertivores,” “HMD,” and “piscivores” trophic guilds were

predicted with high accuracy (77%, 75%, and 73% correct predictions, respectively).

The confusion matrix also provided information on incorrectly assigned categories.

For example, when “piscivores” were incorrectly assigned, they were mostly classi-

fied as “crustacivores.” However, the network plot revealed that the fishes classified

as “piscivores” also fed on crustaceans (mostly decapods), so this “incorrect assign-

ment” was grounded in ecological reality and reflected uncertainty within the model.

Additionally, the “microinvertivores” trophic guild had the highest proportion of in-

accurate predictions (52 % correct predictions). Here, species were often misclassified

as “crustacivores” or “planktivores.”

3.4.4 Prediction of trophic interactions with machine learn-

ing

Using machine learning, our model achieved high predictive performance in quanti-

fying probabilities of pairwise trophic interactions (AUC = 0.99; TSS = 0.94). After

calibration with 535 fish species and 3,479 trophic interactions, our model accurately

identified 3,410 of these interactions, demonstrating an exceptionally low rate of false

negative interactions. In addition, the model accurately predicted absent trophic in-

teractions, with a false positive interaction rate of only 3.6%. When the model was
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calibrated with only 5 locations, excluding the data from New Caledonia, the model

still performed well (AUC = 0.82; TSS = 0.52). The model correctly detected 82%

of the trophic interactions in the New Caledonia dataset, with a false positive inter-

action rate of 27%. Based on the high predictive performance of the model, we used

the full model with all 6 locations to predict the probability of pairwise trophic inter-

actions on a continuous spectrum between the 4,554 reef fish species with available

phylogenetic information and our 38 prey categories (see 3.6 table S4).

3.5 Discussion

Functional ecology requires standardized and reproducible classification schemes to

characterize species’ niches (Schneider et al. 2019; Weiss & Ray 2019; Gallagher

et al. 2020). Rather than relying on expert opinion for the assignment of trophic

groups, which often results in variable assignments, we demonstrate that the catego-

rization of discrete trophic guilds and pairwise trophic interactions can be achieved

with a quantitative, reproducible framework grounded in empirical data across bio-

geographic regions. We employed network analysis to partition 535 tropical coral

reef fish species into 8 trophic guilds based on a synthesis of globally distributed,

community-wide fish dietary analyses, and then we applied a Bayesian phylogenetic

model that predicts trophic guilds based on phylogeny and body size, attaining a 5%

misclassification error. Moreover, using a machine learning approach, we demonstrate

that a continuous spectrum of trophic interactions can also be accurately predicted

based on phylogeny and body size. Our framework represents the first implementa-

tion of a quantifiable classification scheme for coral reef fishes, which form some of

the most diverse vertebrate communities worldwide.

Unlike traditional trophic guilds based on expert opinion (Newman et al. 2006;

Halpern et al. 2008; Graham et al. 2011; Mouillot et al. 2014; Parravicini et al.

2014; Brandl et al. 2016; Yeager et al. 2017; Morais & Bellwood 2018; Stuart-Smith
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et al. 2018), our trophic approaches are reproducible, provide uncertainty estimates,

and can be updated and improved in the future with additional dietary information.

In an effort to encourage new, accessible benchmarks to categorize fish trophic guilds,

our classification of discrete trophic guilds and probabilities of pairwise trophic in-

teractions are publicly available with this publication. Given the growing number of

trait-based studies that assign trophic guilds to understand and monitor ecosystem

functioning in our changing world, it is imperative that we establish comparable and

reproducible trophic classification frameworks.

Our findings highlight the discordance of expert opinion in the assignment of

trophic guilds and the necessity to develop quantifiable and reproducible classifica-

tion schemes that are accessible to the wider scientific community (c.f. (Cano-Barbacil

et al. 2020)). Despite broad similarities between the trophic guilds reported in the

literature and the groups identified by our analysis, our classification scheme reveals

a higher level of partitioning among invertebrate-feeding fishes as compared to previ-

ously proposed trophic guilds. In the past, invertebrate-feeding fishes were generally

considered “sessile invertivores,” “mobile invertivores,” or “omnivores” (e.g., Par-

ravicini et al. (2014); Micheli et al. (2014); Yeager et al. (2017)), but we identify

5 distinct invertebrate-feeding groups: “corallivores,” “sessile invertivores,” “microin-

vertivores,” “macroinvertivores,” and “crustacivores.” Given the extreme numerical

dominance of invertebrates in coral reef environments (Glynn & Enochs 2011), the

collapse of all invertebrate-feeders into 2 or 3 trophic groups was possibly an arte-

fact of expert oversight, and the expansion of invertebrate-feeding trophic guilds to 5

groups stands to improve ecological resolution of fishes feeding on invertebrate prey.

In contrast to the high resolution achieved within invertebrate-feeding groups, our

classification achieved limited resolution among the nominally herbivorous species,

“HMD.” Across the literature, past classification schemes often separate macroalgal

feeders, turf algae croppers, and detritivores (e.g., Mouillot et al. (2014); Parravicini

et al. (2014); Bejarano et al. (2019); Siqueira et al. (2019)). The lack of precision in

our framework is rooted in the difficulty in distinguishing algae, microbes, and detritus
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within the alimentary tract of fishes, resulting in the pooling of these ingested items

during the visual assessment of fish gut contents. Consequently, species classified

as “HMD” may have fundamentally different foraging strategies, dietary preferences,

and evolutionary histories (Clements et al. 2016), which can greatly impact their

functional role on coral reefs (e.g., Brandl et al. (2016)). Thus, while our identified

trophic guilds promise increased resolution for fishes that consume animal prey, our

identified groupings may not adequately capture consumer–producer dynamics on

coral reefs. Emerging techniques, such as gut content metabarcoding, may provide

the additional resolution needed to further discriminate prey items in this group

(Casey et al. 2019; Brandl et al. 2020a). Alternatively, coupling diet categorization

with other traits, such as feeding behavior, may help to pinpoint the variety of feeding

modes that exist within the “HMD” trophic guild.

While our delineation of trophic guilds is applicable to functional studies that

employ discrete categories, the continuous output of trophic interaction probabilities

holds promise for a variety of other approaches, such as trophic network analyses.

On coral reefs, previous studies have employed network analysis to examine human

impacts on coral reef food webs [30,33]. However, these studies only incorporate local

fish gut content data, which limits their spatial application. Larger-scale network

analyses exist (e.g., Albouy et al. (2019)), but they are predominantly based on co-

occurrence patterns and solely consider piscivores, thus neglecting a large portion of

marine food webs, which are typically dominated by invertebrate-feeders. Therefore,

our demonstrated ability to predict trophic interactions based on phylogeny and body

size opens new avenues for marine food web research. Moreover, the high performance

of the reduced model to predict pairwise trophic interactions in New Caledonia con-

firms the potential of our approach to predict probabilities of local trophic interactions

for entire food webs.

Our findings add to recent evidence that evolutionary history (i.e., phylogenetic

relatedness) is essential to evaluate the ecological traits of fishes (c.f. (Westoby 2006;

Floeter et al. 2018; Siqueira et al. 2020)). Recently, taxonomy and body size have
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been revealed as important predictors of fish diet composition and size structure

(Soler et al. 2016b; Soler et al. 2016a), and in the highest resolution analyses of

coral reef fish diet, taxonomic family was a better predictor of fish diet than broad

trophic guilds (Casey et al. 2019). Given the exceedingly low rate of misclassification

error in our predictions, we posit that phylogeny is a critical variable that should

be consistently considered in the assignment of trophic guilds for reef fishes. Across

a plethora of organismal groups (e.g., birds (Lovette & Hochachka 2006), reptiles

(Knouft et al. 2006), fishes (Peres-Neto 2004; Gajdzik et al. 2019), insects (Weiblen

et al. 2006), parasites (Mouillot et al. 2006), and plants (Silvertown et al. 2006)),

phylogenetic niche conservatism has been alternately supported and dismissed. In

our case, when examining fish trophic guilds using 38 prey categories, phylogenetic

conservatism is readily apparent at a relatively coarse dietary resolution and may

allow us to extrapolate trophic assignments to closely related consumer species and

potentially extend this framework to fishes inhabiting other habitats. However, with

increasing dietary resolution beyond what is detailed in the present study, phyloge-

netic signals may weaken (Mazel et al. 2018) since even closely related species may

exhibit dietary specialization (Casey et al. 2019; Leray et al. 2019). In the future,

with the availability of higher resolution of dietary information, phylogenetic niche

conservatism can be easily examined within our framework.

With ongoing environmental and ecological change, a firm grasp on shifts in

ecosystem functioning will depend on the reliable assignment of organismal traits

(McGill et al. 2006) and the comparability of trait-based approaches across space,

time, and independent studies (Weiss & Ray 2019). Especially in complex, hyperdi-

verse environments such as coral reefs, it is imperative to standardize how we measure

and report these traits to prevent idiosyncratic results based on subjective trait as-

signments (Bellwood et al. 2019; Brandl et al. 2019a). Trophic guilds are among the

most commonly applied trait to assess ecosystem functioning because they directly

relate to energy and nutrient fluxes across trophic levels. Thus, our standardized

framework represents a major step forward for coral reef functional ecology, while
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heeding the call for openly accessible, reproducible trait databases (Madin et al.

2016; Gallagher et al. 2020; Jeliazkov et al. 2020). As trait-based ecology continues

to be used to examine disturbances and implement management strategies, our co-

hesive and accessible framework can provide key insights into the trajectory of coral

reef communities.

Further, our results can serve as the foundation for an online platform that per-

mits researchers to collate, update, and utilize trait-based data on coral reef fishes.

Similar to current initiatives across the entire tree of life (Gallagher et al. 2020), the

creation of an online, user-maintained dietary database will facilitate collaboration

and traceability in trait-based reef fish research. One challenge will lie in merging

visual fish gut content analysis databases with molecular data, such as gut content

DNA metabarcoding (e.g., Casey et al. (2019)), and biochemical data, such as stable

isotope analysis (e.g., Eurich et al. (2018)), and short-chain fatty acid profiles (e.g.,

Choat et al. (2002)), which indicate nutritional assimilation rather than the simple

ingestion of prey items (Clements et al. 2016). Despite this challenge, accessibility

to a large breadth of reef fish dietary information would improve our framework.

Our proposed trophic guilds and probabilities of trophic interactions are model pre-

dictions, so they are only as reliable as the underlying dietary data. In addition,

these predictions may suffer from extrapolation biases; for example, if limited di-

etary information exists across species within a taxonomic group, extrapolations to

closely related species are more likely to be assigned erroneous trophic guilds. Conse-

quently, an ongoing, extensive compilation of dietary traits across coral reef fishes will

continuously improve our predicted trophic guild assignments and pairwise trophic

interactions.

Finally, our proposed framework is not limited to coral reef fishes; indeed, trophic

guild assignments can be quantifiable, reproducible, and transparent, with the in-

clusion of uncertainty metrics, across many organismal groups. However, the stan-

dardization of trophic guilds is sorely lacking across the ecological literature (Cano-

Barbacil et al. 2020), especially based on quantitative data (e.g., González-Salazar
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et al. (2014)). We posit that a similar approach can be readily applied across a

multitude of organisms and environments. In fact, given the paucity of dietary infor-

mation available for coral reef fishes in comparison to other organisms, particularly

birds and mammals, building rigorous, global trophic classification schemes for many

other organisms should be readily achievable within our framework. With a quantita-

tive, transparent trophic classification scheme that can be augmented over time and is

applicable across ecological systems, our framework represents a significant advance-

ment for trait-based ecology and a viable approach to monitor ecosystem dynamics

into the future (Gallagher et al. 2020).
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3.6 Supplementary materials

Figure 3.5: Confusion matrix showcasing the accuracy of the 8 trophic
guild predictions from the leave-one-out cross validation based on the
extrapolation of the Bayesian phylogenetic model. Trophic guilds in-
clude (1) sessile invertivores, (2) herbivores, microvores, and detriti-
vores, (3) corallivores, (4) piscivores, (5) microinvertivores, (6) macroin-
vertivores, (7) crustacivores, and (8) planktivores.
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Tables available on-line:

S1 Table. Prey categories used to define the trophic guilds of coral reef fishes.

https://doi.org/10.1371/journal.pbio.3000702.s002 (CSV)

S2 Table. Summary of the 33 papers used to evaluate expert agreement on reef

fish trophic guilds. The column named “Fishes” refers to the number of fish species

included in that study. https://doi.org/10.1371/journal.pbio.3000702.s003

(CSV)

S3 Table. Global extrapolation to infer the probability of each of the 4554 reef

fish species to belong to the 8 trophic guilds. The mean and the standard deviation

(e.g., p1-8_m, and p1-8_sd) of the posterior probabilities are reported alongside

with the mean and standard deviation of the negentropy. https://doi.org/10.

1371/journal.pbio.3000702.s004 (CSV)

S4 Table. Probability of trophic interaction between the 4554 reef fish species and

the 38 prey categories according to the extrapolation performed by the machine learn-

ing approach. https://doi.org/10.1371/journal.pbio.3000702.s005 (CSV)

https://doi.org/10.1371/journal.pbio.3000702.s002
https://doi.org/10.1371/journal.pbio.3000702.s003
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4.1 Introduction

One of the main goals of my thesis was to estimate multiple community-level fish-

mediated functions on coral reefs across the globe. To understand the dynamics of

community-level functions, we first need to be able to quantitatively estimate them

by summing up individual-level processes of each fish in the community. In chapter 2,

I presented a novel framework to estimate element-specific elemental fluxes mediated

by fishes. Applying this framework to many coral reef fish species across the globe

necessitates a number of parameters (see table 2.1). In this methodological chapter,

I describe how all required biological parameters were quantified for 1110 coral reef

fish species through a combination of existing data, empirical measures, and Bayesian

models.

4.2 Species list

I assembled a global species list based on an openly accessible database of reef fish

abundances and sizes collected during belt transects by divers (Barneche et al. 2019).

This database includes sites on the outer reef slope in the Central Indo-Pacific, Cen-

tral Pacific, Eastern Pacific, Western Indian, Eastern Atlantic, Western Atlantic.

Specifically, I selected the species belonging to families for which we had body sto-

ichiometric data, and that were at least 7cm to minimize the bias related to the

identification of small individuals. Further, I discarded rare species (i.e., for which

less than 20 individuals were ever recorded across all transects). The dataset then

included 1110 species that belong to 25 families: Acanthuridae, Balistidae, Bothidae,

Chaetodontidae, Cirrhitidae, Fistulariidae, Haemulidae, Holocentridae, Kyphosidae,

Labridae, Lethrinidae, Lutjanidae, Monacanthidae, Mugilidae, Mullidae, Ostraciidae,

Pempheridae, Pomacanthidae, Pomacentridae, Sciaenidae, Scorpaenidae, Serranidae,

Siganidae, Tetraodontidae, Zanclidae.
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4.3 Growth parameters

The developed bioenergetic model fishflux uses the Von Bertalanffy growth function

to calculate daily growth. This growth function relies on three parameters: l∞, κ,

and t0. For κ, I used a standardized coefficient that describes the potential growth

trajectory of an individual if l∞ were to be equal to its maximum length (i.e., kmax,

Morais & Bellwood 2018). For simplicity, I kept t0 constant at 0 for all species.

4.3.1 Data compilation

I first compiled maximum lengths for all species using Fishbase (Froese & Pauly 2018)

and used these lengths for the l∞. Then, I extracted the available data for kmax from

Morais & Bellwood (2018), which are essentially κ values from Fishbase, standardized

to the maximum length (Morais & Bellwood 2018). I filtered out the species of our

species list and only included the kmax estimates coming from otolith studies. In

total, this selection process resulted in 439 observations of kmax for varying species

and temperatures.

Further, I used an openly accessible otolith dataset, including measurements of

fishes from five French Polynesian islands, and to which I contributed through data

collection and analysis (Morat et al. 2020). This dataset includes total length mea-

surements to the nearest millimeter and fish weights to the nearest 0.1 grams. Further,

it includes distances between annual growth increments, measured by two indepen-

dent researchers to prevent biases induced by a single observer. These data can be

used to estimate growth rate parameters using a two-step approach: back-calculation

to achieve individual-level size-at-age data and hierarchical regression to fit the Von

Bertalanffy growth curve (see appendix B).

Specifically, I used the Modified Fry back-calculation model (MF) (Vigliola et al.

2000) to estimate fish lengths at previous ages. I adapted the traditional model to
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also estimate the uncertainty around the obtained length estimates and allow for the

inclusion of missing values using a Bayesian approach (see appendix B for details).

Then, I fitted the Von Bertalanffy growth model to all species at each location for

which there were at least 3 individuals, using Bayesian hierarchical regression mod-

els. Both steps of this procedure were carried out using the developed R package

‘fishgrowbot’ (appendix A. The package also automatically estimates the parameter

kmax.

After combining the two data sources, I obtained 496 estimates of kmax for 181

species across varying temperatures.

4.3.2 Data analysis and extrapolation

Aside from phylogeny, kmax is mostly determined by body size and temperature

(Morais & Bellwood 2018). I therefore aimed to predict kmax based on body size,

temperature, and phylogeny by using a phylogenetic regression model.

I extracted the phylogenetic position of all species included through the Fish Tree

of Life (Rabosky et al. 2018). I retrieved 100 synthetic stochastically resolved phylo-

genies where missing taxa were placed according to the highest level of taxonomy using

the function fishtree_complete_phylogeny() in the R package fishtree (Chang et

al. 2019). For each tree, I calculated the correlation matrix and then averaged each

element across the 100 matrices to get one correlation matrix that could be used in

the regression model.

I then fitted a Bayesian phylogenetic regression to predict the growth rate pa-

rameter of fishes depending on body size, temperature, and phylogeny with the R

package brms (Burkner PC 2017):

lnkmax ∼ normal(mu, sigma)
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mu = (β0 + γ0phy) + β1lnsizemax+ β2sst,

where lnkmax represents the natural log-transformed kmax value, mu is the predicted

average, and sigma is the standard deviation, β0 is the fixed-effect intercept, γ0phy

is a random-effect coefficient for species phy that accounts for the residual intercept

variation, based on the relatedness as described by the phylogeny, β1 is the slope for

the natural transformed maximum body size, β2 is the slope for the average ambient

sea surface temperature. I used uninformative priors and ran the model for 2000

iterations with a warm-up of 1000 iteration for 4 chains.

The model fit confirmed a negative relationship of lnkmax with maximum body

size, and a positive relationship with sea surface temperature (figure 4.1). I verified

model convergence and fit by checking the posterior predictive plot, inspecting pa-

rameter trace plots, and checking the R statistic. The Bayesian R2 of the model was

0.738 (95%CI: 0.702-0.769).

The phylogenetic heritability (equivalent to Pagel’λ) was estimated as the propor-

tion of total variance, conditioned on the effects attributable to the phylogeny (i.e.,

λ = sd(γ0phy)2

sd(γ0phy)2+ε2 ). This calculation resulted in a phylogenetic signal of 0.74 (95% CI:

0.70 - 0.77).
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Figure 4.1: Conditional effect plots of dependent variables sea surface
temperature and maximum body size. The line represents the mean
estimates, and the shaded areas indicate the 95% credible interval.

I extrapolated kmax for all species across the full temperature range in which

species occur in the uvc database (Barneche & Allen 2018). I rounded temperature

to the °C, which results in 4712 unique temperature and species combinations. Sim-

ilarly to the approach described in chapter 3, I extracted draws of the phylogenetic

effect (γ0phy) for each species included in the model. I subsequently predicted these

phylogenetic effects for missing species with the help of the function phyEstimate in

the picante package for R (Kembel et al. 2010). This function uses phylogenetic

ancestral state estimation to infer trait values for new species on a phylogenetic tree

by rerooting the tree to the parent edge for the node to be predicted (Kembel et

al. 2012). I repeated this for all 100 trees and 1000 draws. Per draw, I averaged

the extrapolated values per species across the 100 trees. Then, by combining the
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predicted phylogenetic effects with the global intercept and slopes for body size and

temperatures for each draw, I predicted kmax for each species. Finally, I summarized

all kmax predictions per sst per species by taking the mean and standard deviation

across the 1000 draws.

4.4 Body stoichiometry

4.4.1 Data collection

1633 individuals of 108 species and 25 families were collected between 2015 and 2017

in Mo’orea (Parravicini, unpub.), the Caribbean (Allgeier et al. 2020), and Palmyra

(Bukepile unpub.). Their gut contents were removed and the whole body was freeze-

dried and ground to powder with a Precellys homogenizer. Whole body elemental

proportions (Qk) were then measured in the lab using standard methods. Specifically,

ground samples were analyzed for %C and %N content using a CHN Carlo-Erba ele-

mental analyzer (NA1500), and for %P using dry oxidation-acid hydrolysis extraction

followed by a colorimetric analysis (Allen et al. 1974). Elemental content was calcu-

lated based on dry mass.

4.4.2 Data analysis and extrapolation

The CNP% content of organisms is known to be highly conserved within families

(Allgeier et al. 2020). I therefore use phylogeny to extrapolate these values. I fitted

C, N and P contents (%) through a hierarchical phylogenetic multivariate normal

model with phylogenetic effects and random effects per species.
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Y1

Y2

Y3

 ∼MVNormal(


mu1

mu2

mu3

 , S),

mun×k = β0 k + γ0phy×k + γ0sp×k,

where Y1, Y2 and Y3 are the % content of C, N, and P respectively, mun×k rep-

resents the average % content of element k (C, N, and P) per species, β0 k is the

fixed-effect intercept for each element k, γ0phy×k is the random-effect coefficient, based

on the relatedness as described by the phylogeny for each species phy and element

k, γ0sp×k is the random-effect coefficient that accounts for the residual species-level

intercept variation per element k, and S is a covariance matrix, with three rows and

columns, representing the covariance among C, N, and P.

I used uninformative priors and ran the model for 2000 iterations with a warm-

up of 1000 iteration for 4 chains. The Bayesian R2 of the model was 0.39 (95%CI:

0.36-0.42), 0.50 (95%CI: 0.48-0.53), and 0.43 (95%CI: 0.40-0.46) for C, N and P

respectively. The phylogenetic heritability was 0.41 (95%CI: 0.28-0.55), 0.58 (95%CI:

0.4-0.66), and 0.57 (95%CI: 0.46-0.69) for C, N, and P respectively.
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Figure 4.2: Fitted carbon (C), nitrogen (N), and phosphorus (P) con-
centrations, mapped on the phylogenetic tree.

As before, I used 1000 fitted draws for each species, and 100 phylogenetic trees

to extrapolate to all species with unknown body stoichiometry. Specifically, I used

the ‘phylopars’ function from the ‘Rphylopars package’ (Bruggeman et al. 2009).

This function uses ancestral state reconstruction and Brownian motion, and takes

the correlation between C, N and P into account.
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4.5 Diet

4.5.1 Data collection

Together with colleagues, I collected 571 adult individuals of 51 species between 2018

and 2019 in Mo’orea, Tetiaroa, and Mangareva, three French Polynesian islands. I

then extracted the stomach content and stored it in a 2ml tube. After freezing the

samples, I freeze-dried all samples for at least 24 hours, and ground them to powder.

Then, samples were sent to the lab for CNP content analysis using similar methods

as for the fish body stoichiometry described above.

4.5.2 Data analysis and extrapolation

Using trophic guilds defined by Parravicini et al. (2020) (chapter 3), I fitted a multi-

variate Bayesian regression model to summarize CNP% content data per trophic guild

with random effects at the species level. This model had a median Bayesian R2 of

0.62, 0.62, and 0.48 for C, N and P respectively. Next, I extracted 1000 draws of the

predicted CNP% per trophic guild. The model from chapter 3 provides the probability

of global reef fish species to be assigned to each of the eight defined trophic guilds (i.e.,

sessile invertivores; herbivores, microvores, and detrivores; corallivores; piscivores; mi-

croinvertivores; macroinvertivores; crustacivores; planktivores). By combining these

probabilities with the predicted diet contents per trophic guild, I finally estimated the

diet CNP% for each species in our database. I then took the average and standard

deviation across all 1000 draws. While there is bias in using diet CNP% estimates

based on a dataset in one region, the variability between food categories (e.g., animal

material and primary producers) is higher than regional differences within trophic

categorizations. Further, as the trophic guild classification includes probabilities of

belonging to each group, variation is included when the trophic categorization is not

well known. For example, if a species has a 50% probability to be a herbivore and
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a 50% probability to be a sessile invertivore this uncertainty will be reflected in the

estimation of the diet CNP%.

4.6 Metabolic parameters

4.6.1 Data collection and lab experiments

To quantify standard metabolic rate (SMR) and maximum metabolic rate (MMR),

intermittent-closed respirometry experiments were carried out (Steffensen 1989; Clark

et al. 2013). In the period between 2018 and 2019, 1393 individuals of 61 species

and 18 families with a minimum of 3 replicates per species were collected using hand

nets and clove oil by scuba divers (Parravicini, Brandl, and Mercière, unpub.). After

an acclimatization and fasting period of 48 h in aquaria, the fishes were individually

transferred to a water-filled tub at 28°C (ambient sea water temperature) and man-

ually chased by the experimenter until exhausted (Clark et al. 2012; S. Butail et al.

2013). Then, they were placed in respirometry chambers submersed in an ambient

and temperature-controlled tank, where they were left for ~23 h. The intermittent

respirometry cycles started immediately after a fish was placed in its respirometry

chamber. The cycles consisted of a measurement (sealed) period followed by a flush

period during which the respirometry chambers were flushed with fully aerated wa-

ter from the ambient tank. Because fish were exhausted right before entering the

respirometry chambers, it was possible to measure the approximate MMR. Depend-

ing on fish size, 8 respirometry chambers ranging in volume (including tubes and

pumps) from 0.4 to 4.4 L were run in parallel, and measurement and flush periods

lasted between 3 to 15 min and 3 to 5 min, respectively. SMR was calculated as

the average of the 10 % lowest values measured during the entire period, after the

removal of outliers (Chabot et al. 2016). MMR was calculated from the slope of the

first measurement period.
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4.6.2 Data analysis and extrapolation

To retrieve the parameters f0 (Metabolic normalisation constant independent of body

mass; g Cg−αd−1), α (mass-scaling exponent), and θ (factorial activity scope), I fitted

a normal Bayesian mixed effect model predicting the log10-transformed metabolic

rate with the log10-transformed biomass including random effects of family, species,

and mr type (SMR or MMR) on both the species and family intercept effect using

brms (Burkner PC 2017). I ran the model for 4000 iterations, with a warm-up of

2000 iterations, and four chains. Further, I used an informative prior for the slope

(α ∼ normal(0.8, 0.5). The model had a Bayesian R2 of 0.973 (95%CI: 0.972-0.974).

I then predicted the family-level α by summing the slope of the model with the effects

of the family on the slope of the SMR (figure 4.3). I did this for all iterations and then

took the mean and standard deviation. In a similar way, I extracted the family-level

intercept for SMR and MMR (figure 4.4), and then quantified mean and standard

deviation of f0 after the back-transformation of all iterations of the intercept (i.e.,

the intercept for SMR). Finally, I estimated θ as followed, based on the assumption

that fishes rest 12h a day and they on average spend the remaining 12 hours at a

metabolic rate that is the average of their SMR and MMR:

θ = 3SMR + MMR
4SMR ,

where all iterations of the back-transformed family-level intercepts were used for SMR

and MMR. I then summarized these predictions by taking the mean and standard

deviation. I used the family-level estimates for these parameters for all species in our

database. For families that were not represented in our respirometry dataset, I used

the average across all families. The parameter f0 was adjusted for each temperature

in the varying locations of the uvc database, following Barneche et al. (2014):

f0adjusted = f0(Tref )eEr( 1
κTref

− 1
κT

),
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where κ is the Boltsmann’s constant (8.62 ∗ 10−5eV K−1), Er is the activation energy

(0.59 eV, extracted from Barneche et al. (2014)), f0(Tref ) is the value of the metabolic

normalization at a fixed reference temperature (301.15 K = 28 + 273.15K), T is the

temperature of interest (K).

Figure 4.3: Distribution of family-level predictions of parameter alpha.
Points indicate the average, lines show the 50% and 95% credible in-
terval. The SMR intercept represents the parameter f0
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Figure 4.4: Distribution of family-level predictions of parameter the
intercept for SMR and MMR. Points indicate the average, lines show
the 50% and 95% credible interval.

4.7 Additional parameters

I retrieved the parameters lwa, lwb, h, and r from fishbase (Froese & Pauly 2018).

For the mass-specific turnover rates for N and P(F0Nz; F0Pz), I used the estimates

provided in Schiettekatte et al. (2020) (Schiettekatte et al. (2020); chapter 2).
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5.1 Abstract

Preserving the functioning of coral reefs is a critical challenge of the 21st century.

However, a lack of quantitative assessments of multiple functions across large spatial

scales has hindered local and regional conservation efforts. We integrate empirically-

parametrized bioenergetic models and global community surveys to quantify five key

functions mediated by coral reef fishes. We show that functions exhibit critical trade-

offs driven by diverging community structures, such that no reef can holistically max-

imize functioning. Further, functions are locally dominated by few species, but world-

wide, the identity of dominant species greatly varies; 70% of the 1,110 species in our

dataset are functionally dominant. Our results underline the need for a nuanced ap-

proach to coral reef conservation that considers variable processes beyond the effect

of standing stock biomass.
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5.2 Main text

The flow of elements through biological communities fuels all life on Earth (Barton

et al. 2013). Preserving these fluxes, often termed ecosystem functions, is critical

for the integrity of ecosystems (Barton et al. 2013). For millennia, resources have

been managed with an economic mindset to maximize desirable functions such as the

production of biomass (Weisser et al. 2017). Sustaining multiple functions requires

both high species richness and a variety of species assemblages across a landscape

(Zavaleta et al. 2010). However, there can be trade-offs between functions, and

efforts to maximize one function can negatively impact another (Zavaleta et al. 2010).

A deeper understanding of such trade-offs is required to make informed management

decisions, but simultaneously quantifying multiple ecosystem functions is challenging.

Therefore, trade-offs between functions, their drivers, and their vulnerability remain

poorly understood in many ecosystems (Brandl et al. 2019a).

Coral reefs are among the most diverse and productive ecosystems on Earth and

provide essential ecosystem services (Teh et al. 2013). Yet, their integrity is threat-

ened by a plethora of anthropogenic stressors (Hughes et al. 2017). Severe declines in

habitat quality and fish biomass have brought coral reef functioning to the forefront

of scientific discourse (Bellwood et al. 2019; Brandl et al. 2019a). However, our ca-

pacity to evaluate reef functioning typically relies on static proxies of functions, such

as live coral cover, standing stock biomass of reef fishes, or the diversity of qualita-

tive traits (e.g., Cinner et al. 2020). Conversely, we know comparatively little about

actual functions - fluxes of elements and energy - and their drivers (but see Allgeier

et al. (2016)), which constitutes a severe limitation to efficient management (Brandl

et al. 2019a).

Here, we integrate biogeochemistry and community ecology to advance our under-

standing of the elemental fluxes that underpin reef fish functioning. Using empirically-

collected species-specific data on basic organismal processes and Bayesian phyloge-

netic models, we parameterize individual-level bioenergetic models to estimate five
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key ecosystem functions: nitrogen (N) excretion, phosphorus (P) excretion, biomass

production, herbivory, and piscivory. We apply these bioenergetic models to 9,118

reef fish communities across 585 sites worldwide to: (1) quantify community-level

reef fish functions and their trade-offs, (2) extract the community- and species-level

effects on these functions, and (3) gauge the vulnerability of reef fish functioning in

the Anthropocene.

The five key ecosystem functions performed by fishes across the world’s coral reefs

exhibit high variability (figure 5.1). Biomass is the most commonly employed indi-

cator of coral reef functioning (Brandl et al. 2019a; Cinner et al. 2020), and we

observed a predictably strong relationship between fish biomass and all five functions

(figure 5.5a-e, figure 5.6). However, our analyses demonstrate striking variability after

accounting for biomass: in communities with similar biomass, functions may differ

by two orders of magnitude or more (figure 5.5a-f). Thus, using biomass as a proxy

for functioning masks fundamental differences in critical community-level functions.

Further, we demonstrate strong trade-offs among the five functions, independent of

biomass (figure 5.1, figure 5.5g). For example, high herbivory rates and nitrogen

excretion negatively correlate with rates of phosphorus excretion. Consequently, for

a given value of biomass, no reef can yield above average values across all five func-

tions. While many coral reefs may stand out as hotspots for one function, none can

holistically maximize functioning (figure 5.1).
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Figure 5.1: Spatial variation in five key, biomass-corrected ecosystem
functions. Dots indicate locations of field surveys, with dot sizes rep-
resenting the ranked values of biomass-corrected function, and color
scales showing categorical assignments (black = lower 25%, grey = 25-
75%, color = >75%). Black circular outlines highlight the five locations
with the highest values of each biomass-corrected function.
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Community structure and species-specific traits clearly impact rates of function-

ing. First, using community-level ecological predictors known to affect elemental

fluxes (body size, trophic level, species richness, biomass, temperature, and age struc-

ture (Schiettekatte et al. 2020); figure 5.2), we show that correlations between func-

tions are mediated by contrasting aspects of community structure (figure 5.2; figure

5.6). For example, phosphorus excretion and piscivory are higher in communities

that include large-bodied fishes or occupy high trophic levels (figure 5.2; Allgeier et

al. (2014)). In contrast, biomass production is highest in communities dominated by

small and immature fishes at low trophic levels, creating a trade-off between biomass

production and phosphorus excretion. Metabolic theory predicts that small-bodied

individuals have higher mass-specific metabolic rates, leading to elevated consump-

tion rates and disproportionate contributions to functions that rely on rapid energetic

turnover (Barneche & Allen 2018; Brandl et al. 2019b; Morais et al. 2020a). Con-

versely, fishes in early life stages or with a nutrient-poor diet are often limited by

phosphorus (Schiettekatte et al. 2020), resulting in low contributions to phospho-

rus excretion. Thus, due to variations in organismal physiology and life-history traits

(Schiettekatte et al. 2020), fish community structure significantly impacts ecosystem-

wide functioning (Schramski et al. 2015).
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Figure 5.2: Effects of ecological community variables on five functions.
Fixed effect values from Bayesian linear regressions that examine ef-
fects of species richness, trophic level, size, and immaturity of fishes.
To represent both the median and the spread of trophic level, size,
and immaturity across individuals inside a community, we included
lower and upper 95% quantile values of these three traits as community
variables. All data were log-transformed and standardized to compare
across functions and variables. Dots represent the average effect size
estimate, and horizontal lines indicate the 95% credible interval.
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Secondly, alongside community structure, functions may also be influenced by

specific high-performing taxa (figure 5.3a; figure 5.7; figure 5.8), which may dispro-

portionately impact rates of functioning at the community level due to high biomass

or abundance (Topor et al. 2019). At the local scale, we show that functions consis-

tently hinge on a few dominant species (figure 5.3b). Specifically, on average, more

than 50% of a given function is upheld by only 12% of the species present within a

local community. However, the identity of these species varies dramatically among

reefs (figure 5.3c). While few high-performing taxa dominate functioning in each lo-

cation, there are no species that are dominant across their entire range. In addition,

70% of all species contributed disproportionally to a specific function in at least one

community. Despite high species richness on coral reefs, researchers often report the

existence of functionally-dominant “key species” (e.g., Bellwood et al. 2006). Our

results reveal that while functional dominance is indeed prevalent, the identity of

local, dominant species varies strongly across locations (Lefcheck et al. 2019).
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Figure 5.3: Family and species-level contributions to five ecosystem
functions on coral reefs. a) The median family-level contributions to
each function relative to their contribution to standing stock biomass.
The twelve included families are ordered by their median contribution
to biomass. b) The distribution of the degree of dominance of commu-
nities for each function. Degrees of dominance range between zero (all
species contribute equally) and one (a single species is the sole contrib-
utor to a given function). c) Species-specific frequencies of dominance
in each function across all communities, ranging from zero (species are
never dominant) to one (dominant wherever present). A species is cat-
egorized as dominant in a community if its contribution to a function
is higher than a scenario in which all species are equal (i.e., one divided
by the number of species that contribute to the function). Shaded areas
show the distribution of the values. Dots represent the median value,
and lines indicate the interquartile range.
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The critical importance of both reef fish community structure and species-specific

contributions shines new light on the vulnerability of coral reef functioning in our

changing world. Anthropogenic stressors have caused severe changes in reef fish

biomass and community structure (Hughes et al. 2017), and our findings suggest

that these changes will have strong effects on ecosystem functioning. For example,

intensive fishing and associated reductions in biomass of large fishes truncates the

size, age, and trophic structure of fish communities (Graham et al. 2017). When

accounting for the effect of biomass, these effects can enhance nitrogen excretion and

production (e.g., Morais et al. 2020a) but negatively impact phosphorus excretion,

herbivory, and piscivory (figure 5.2). On the other hand, declines in coral cover re-

lated to climate change are often associated with a shift toward herbivores, which

may deter algal domination (Graham et al. 2006). However, herbivores have a minor

contribution to phosphorus excretion (Allgeier et al. 2014; Schiettekatte et al. 2020),

so a shift to herbivore dominance and the subsequent decline of community-level

phosphorus excretion may change the balance of nutrient cycling on reefs, potentially

favoring algal growth (Burkepile et al. 2013). Thus, considering multiple functions

paints a more nuanced picture of how human-induced shifts in reef fish community

structure may impact coral reef ecosystems.

Similarly, the species-specific vulnerability of functionally-dominant species heav-

ily affects the vulnerability of functions. By combining species-level vulnerability

scores to fishing and climate change induced coral loss (Graham et al. 2011) and the

contributions of each species to each function, we illustrate that the loss of individuals

most vulnerable to fishing will have greatest impacts on piscivory, followed by phos-

phorus excretion (figure 5.4). Conversely, the loss of individuals due to climate change

and consequent coral mortality may disproportionally reduce phosphorus excretion,

nitrogen excretion, and biomass production. Combined, fishing and the loss of live

coral impact species important for phosphorus excretion. Surprisingly, although fish-

ing pressure can negatively impact large herbivores such as parrotfishes (Bellwood &

Choat 2011), herbivory is the least vulnerable function. This may be due to the high
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variability in ecosystem roles within the comparatively large pool of herbivorous fish

species. Small herbivores are abundant and not particularly vulnerable to fishing, but

larger herbivores are frequently targeted and prone to functional extinction in areas

with high fishing pressure (Bellwood et al. 2012). While herbivores of all body sizes

and functional groups are combined in our assessment, their realized contributions to

herbivory are strongly complementary and, thus, potentially more vulnerable.

Figure 5.4: Vulnerability of five critical functions to fishing, climate
change-induced coral loss, and both stressors combined. Vulnerability
is presented as the proportion of communities (filled bars) in which func-
tional vulnerability is higher than vulnerability based on fish biomass
(i.e., not accounting for species contributions to each function).
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Conserving biomass, diversity, and ecosystem functions are important objectives

of most conservation initiatives (Cinner et al. 2020). While safeguarding fish biomass

enhances functioning, the trade-offs between key functions reveal a critical challenge

for coral reef conservation, where actions to enhance one function may negatively

impact another. For example, the establishment of marine protected areas, which

are one of the primary conservation tactics for coral reefs (Graham et al. 2020),

may protect herbivorous species and thus provide benefits for herbivory. However,

marine protected areas do not protect reefs from the pervasive effects of climate

change (Graham et al. 2020), and community shifts towards herbivore domination

may result in the decline of phosphorus excretion. Thus, measuring conservation

success with biomass or solely one function (e.g., herbivory) can mask the collapse of

other essential functions. It is necessary to gauge the state of reef ecosystems based

on multiple, complementary, process-based functions (Brandl et al. 2019a), as well

as making informed decisions on local needs and stressors. While there is a general

consensus on the role of diversity in enhancing functioning (Zavaleta et al. 2010), we

highlight the importance of community structure and the identity of dominant species

at the local scale. Maintaining the diversity of fishes is critical, yet, at local scales,

species richness has a minor impact on individual functions. Importantly, dissimilarity

between local communities may be critical to maintain functioning across seascapes

since no species consistently provides high contributions for all functions or across its

range (Zavaleta et al. 2010).

Overall, we demonstrate that the variability in processes that govern the elemen-

tal cycling presents an unrecognized challenge for protecting ecosystem functioning.

Management strategies that call for the enhancement of coral reef functioning via an

economic mindset (i.e., where higher functioning is better) are not feasible. Instead,

conserving coral reef ecosystem functioning will require a more nuanced approach

that considers processes that vary beyond the effect of standing stock biomass and

are subject to variable, local trade-offs, drivers, and anthropogenic threats.
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5.3 Materials and methods

5.3.1 Underwater visual census database

We used a published global database of reef fish abundance and sizes collected along

belt transects (Barneche et al. 2019). This database encompasses 9118 transects

across 585 sites (98 localities) in the Central Indo-Pacific, Central Pacific, Eastern

Pacific, Western Indian, Eastern Atlantic, Western Atlantic. The database only in-

cludes sites at the outer reef slope and with a hard reef bottom. Transects were

carried out at a constant depth, parallel to the reef crest. We selected the species

inside families for which we have body stoichiometric data, that were at least 7cm

to minimize the bias related to the identification of small individuals, and finally we

discarded rare species, for which less than 20 individuals were ever recorded across all

transects. The dataset then included 1110 species that belong to 25 families (Acan-

thuridae, Balistidae, Bothidae, Chaetodontidae, Cirrhitidae, Fistulariidae, Haemuli-

dae, Holocentridae, Kyphosidae, Labridae, Lethrinidae, Lutjanidae, Monacanthidae,

Mugilidae, Mullidae, Ostraciidae, Pempheridae, Pomacanthidae, Pomacentridae, Sci-

aenidae, Scorpaenidae, Serranidae, Siganidae, Tetraodontidae, Zanclidae).

5.3.2 Bioenergetic modeling

Here, we focused on 5 key processes mediated by fish: N excretion rate (gN/day/m2),

P excretion rate (gP/day/m2), production of body mass through growth

(gC/day/m2), herbivory, i.e., ingestion rate of macrophytes (gC/day/m2), and

piscivory, i.e., ingestion rate of fishes (gC/day/m2). These 5 processes were esti-

mated in each transect using individual-based bioenergetic models that predicts

elemental fluxes, including ingestion rate, excretion rates of N and P, and growth

rate. The bioenergetic model framework integrates elements of metabolic theory,

stoichiometry, and flexible elemental limitation (Schiettekatte et al. 2020). We
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quantified the input parameters, including elements of metabolism, growth, and diet

and body stoichiometry, for all 1110 species through the integration of empirical

data, data synthesis, and Bayesian phylogenetic models (see chapter 4). We ran

the model for each combination of species identity, body size, and sea surface

temperature (n = 30668) to get the contribution of each individual to each process in

each transect and the cumulated estimates for the fish community per surface area.

Each process is thus expressed in dry mass per day per square meter. We note that

N excretion, P excretion, and biomass production include contributions of all fishes,

whereas herbivory and piscivory are carried out by a subset of the community, with

respect to their trophic guild (Parravicini et al. 2020). To reduce the occurrence of

misclassification of herbivores and piscivores, we categorized a species as a herbivore

or piscivore if it had both the highest probability to be classified in that trophic group

and this probability was more than 0.5, based on the probability scores of trophic

guilds for a global fish species database that defines trophic guilds based on empirical

data using a quantitative, unbiased, and fully reproducible framework (Parravicini

et al. 2020). Further, as a comparison, we quantified herbivory and piscivory rates

using two alternative trophic guild classifications based on expert opinion (Mouillot

et al. 2014; Parravicini et al. 2020) (figure 5.9). Both the herbivory and piscivory

rates are congruent with the expert opinion trophic guild classifications.

5.3.3 Relationship between functions and biomass

The standing stock biomass of communities is inevitably related to all functions be-

cause of the additive nature of the quantification and general metabolic theory. Fur-

thermore, because of the known relationship between temperature and parameters

related to growth and respiration, all functions are also positively correlated with

temperature. To model the effect of biomass and sea surface temperature (sst), we

performed a Bayesian regression of each log-transformed function for community-level
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(i.e., transect-level) observations (yj):

yj ∼ N(µj, σj),

µj = β0 + β1xlog(biomass),j + β2xsst,j

We then assessed the covariation between functions, independent of biomass and

sst. To do so, we first extracted the median residuals for each function per transect.

In some transects, there were no piscivores or herbivores observed. In those cases, we

did not include these transects in the analysis. We then quantified the correlations

that exist among the different functions using these median residuals. Finally, for the

purpose of visualizing the residual variation of functions per locality on a world map,

we ran a supplemental model, similar to the model described above but including

random effects both per site and locality. We then extracted and plotted the location

effects, which can be interpreted as the average variation per locality.

5.3.4 Effect of community structure on ecosystem functions

To investigate the effect of the community structure while still accounting for the ef-

fects of standing biomass and sea surface temperature, we quantified a set of variables

that characterize the community. These variables describe the size, age, and trophic

distribution of the community, as these may all affect functions (Schiettekatte et al.

2020). Specifically, we calculated the 2.5%, 50% and 97.5% quantiles of the total

length, immaturity, and trophic level of all individuals per transect. The total length

is based on the visual estimation by divers. The immaturity is quantified using the

following formula:

immaturityi = κ(l∞ − li),
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where κ is the species-specific growth rate parameter and l∞ is the species-specific

asymptotic adult length, and li is the total length of individual i. Essentially, this is

the derivative of the Von Bertalanffy growth model for a certain length, and the higher

this value is, the younger the individual. Finally, the trophic level was extracted from

fishbase (Froese & Pauly 2018). Additionally, we quantified the transect-level species

richness. For each log-transformed function we then fitted a Bayesian mixed-effect

model with all 12 above-mentioned variables, after verifying that there are no strong

correlations between variables (the highest correlation coefficient was 0.5, and 50% of

the variable pair correlations varied between -0.1 and 0.2).

yj ∼ N(µj, σj),

µj = β0 + β1xlog(biomass),j + β2xsst,j + β3xrichness,j + β4xsizem,j+

β5xsize2.5%,j + β6xsize97.5%,j + β7xtrophm,j + β8xtroph2.5%,j+

β9xtroph97.5%,j + β10ximmm,j + β11ximm2.5%,j + β12ximm97.5%,j

To compare effects across functions and assess the relative importance of each

variable, we standardized all variables prior to model fitting. We fitted all 5 models

by using 4 cores, that each had 2000 iterations with a warm-up of 1000 iterations,

and used weakly-informative priors (Burkner PC 2017).

5.3.5 Species dominance and contributions to functions

We quantified the relative contribution of each species to each function for each

transects as followed:

contributionf,i,j = Ff,i,j∑
Ff,j

,

where i is a certain species, j is a transect, F is the value of function f.

Then, we quantified the degree of species dominance per function for each tran-

sect. We did this by first ranking species according to their contribution to function,
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followed by quantifying the cumulative contributions of species to functions. Then,

we used the area under the species accumulation curve as a measure for the degree of

dominance. Specifically, the degree of dominance (DD) was calculated as followed:

DD = A− Amin
Amax − Amin

,

where A is the area under the curve, Amin is the theoretical area under the curve

where each species has an equal contribution to a certain function, Amax is the the-

oretical area under the curve where one species performs the entire function. They

are quantified as:

Amin = R2 − 1
2R ,

Amax = R− 1,

A =
R∑
i=2

Ci + Ci−1

2 ,

where Ci is the contribution of a certain species and R is the number of species

contributing to a certain function. The degree of dominance thus ranges between

0 and 1, where 0 means that each species contributes equally and 1 means that a

single species performs the entire function. In the case of N excretion, P excretion,

and production, R equals the species richness, while for herbivory and piscivory R

represents the number of herbivores and piscivores, respectively.

Finally, to know how often species are contributing more than average for a certain

function, we quantified the frequency of dominance, i.e., the number of times a species

is dominant divided by the total number of transects in which that species is observed.

A species is considered dominant for a certain function in a given transect if their

contribution is higher than 1/R, i.e., they contribute more than the situation in which

each species contributes equally to a certain function.
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5.3.6 Vulnerability to fishing and climate change

For each species, we quantified two measures of vulnerability: vulnerability to climate

change and vulnerability to fishing pressure (Graham et al. 2011). For species’

vulnerability to climate change, we solely focus on their vulnerability to the loss

of live corals. Vulnerability to climate change induced coral loss is related to diet

specialization, habitat specialization for live coral and body size (Graham et al. 2011).

Graham et al. (2011) developed a score for climate change vulnerability for 134

species. We used these scores to fit a Bayesian mixed effect predictive model that

relates the vulnerability with the log-transformed maximum size of fish (extracted

from Fishbase Froese & Pauly (2018)), the dependence on coral for food (3 categories:

not dependent, facultative corallivore, and obligate corallivore), and dependence on

coral for habitat (2 categories: dependent vs. not dependent) (Cole et al. 2008; Coker

et al. 2014). We also included a random effect for family. To verify the fit of the

model we inspected the posterior predictive plot, which indicated a good fit. Further,

the model had a Bayesian R2 of 0.97. We thus used this model to extrapolate the

vulnerability measure to all 1110 species in our dataset. For species’ vulnerability

to fishing, we extracted the index from Cheung et al. (2005). Next, we calculated

vulnerability scores per function on the community level by averaging the species-level

scores weighted by the contributions to function of those species. We also calculated

community-level vulnerability scores based on biomass contributions as a comparison.

Finally, we calculated the proportions of communities that had a higher vulnerability

score of functions, compared to the vulnerability score based on biomass alone. In

other words, we quantified the proportions of communities that have an increased

functional vulnerability.
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5.5 Supplementary figures

Figure 5.5: a-e) Relationship between biomass and the five functions.
Lines and shaded areas show the average and 95% credible interval of
the predicted functions respectively, for a constant sea surface temper-
ature of 26 degrees (the average across all sites). Vertical lines show the
range of the estimated functions across fish communities per biomass
class of 100g/m2. f) Fold variation of each function per biomass class
of 100g/m2 across fish communities. g) Correlation matrix of the resid-
uals of the five functions after regression with biomass and sea surface
temperature. Standard deviations of correlation coefficients did not
exceed 0.01.
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Figure 5.6: Posterior predictive checks of the five models relating func-
tions with biomass and sea surface temperature only (a) N excretion,
b) P excretion, c) Production, d) Herbivory, e) Piscivory), and the five
models relating functions with community variables (f) N excretion, g)
P excretion, h) Production, i) Herbivory, j) Piscivory)
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Figure 5.7: Average relative contribution of fish families to all five func-
tions per biogeographical ocean basin. CIP = Central-Indo-Pacific, CP
= Central Pacific, EA = Eastern Atlantic, WA = Western Atlantic, WI
= Western Indian
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Figure 5.8: Average relative contribution of the top ten most contribut-
ing species to all five functions per biogeographical ocean basin. CIP
= Central-Indo-Pacific, CP = Central Pacific, EA = Eastern Atlantic,
WA = Western Atlantic, WI = Western Indian
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Figure 5.9: Comparison herbivory and piscivory rates when using al-
ternative diet classifications from Mouillot et al. (2014) and Siqueira
et al. 2020



Part III: Missing links

Part I and II of my thesis focused on quantifying functions on the individual and

community levels. However, there are still many gaps hampering quantification of

fish-mediated functions. The third part of my thesis focuses on two elements that

have been understudied but heavily impact functioning: fish egestion (chapter 6) and

the medabolic rate of fishes in their natural environment (chapter 7).

First, although the importance of fish excretion for coral reefs has increasingly

received attention over the past decades, the role of fish egestion is still poorly un-

derstood. In chapter 6, I investigate the role of fish egestion by estimating elemental

contents of fish feces and quantifying element-specific absorption efficiencies across a

wide range of species.

Second, the metabolic rates of fishes have a large influence on the flux of energy

and elements. The most commonly studied element of metabolic rate is the standard

metabolic rate; i.e., the energy consumption of a fish in rest. However, in the wild,

fishes need more energy to perform a suite of activities, and little is known about the

field metabolic rate of fishes in their natural environment. In chapter 7, I propose a

novel approach to estimate the field metabolic rates of coral reef fishes.





Chapter 6

The role of fish feces in coral reef

nutrient-cycling

This chapter is in preparation for Oikos.
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ravicini
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6.1 Abstract

Consumers play an important role in biogeochemical cycles through the consumption

and release of essential elements such as carbon (C), nitrogen (N), and phosphorus

(P). Indeed, a large proportion of consumed elements are rapidly released back into

the environment in inorganic (i.e., excretion) or organic form (i.e., egestion). On

coral reefs, fishes represent a large part of the consumer biomass and thus play a

key role in the recycling of nutrients. In recent years, excretion rates have been

studied intensively, but less is known about the rate and quality of coral reef fish

egestion. Nonetheless, fish feces can be an important food source for other animals

or fuel the microbial community. In this study, we aim to fill this knowledge gap

by quantifying the elemental contents of fish feces, estimating absorption efficiencies,

and comparing egestion and excretion rates for 51 coral reef fish species. We show

that elemental concentrations decrease remarkably little from food to feces, due to

predominantly low absorption efficiencies, resulting in large amounts of energy and

nutrients being egested. Moreover, we highlight that the quality of fish feces varies

across trophic guilds but remains highly variable even within trophic guilds. Finally,

we demonstrate that the N and P release is higher in fish egestion compared to

excretion for most species. Overall, our study affirms the need for incorporating

animal egestion alongside excretion in assessments of ecosystem functioning and food

web structures.
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6.2 Introduction

Aquatic consumers play an essential role in biogeochemical cycles through consump-

tion, assimilation, and release of major elements such as carbon (C), nitrogen (N), and

phosphorus (P) (Sterner & Elser 2002). A large proportion of consumed elements is

not assimilated and released back into the environment in either inorganic or organic

form (Kraft 1992; Sterner & Elser 2002). Inorganic nutrient release (i.e., excretion)

strongly impacts primary producers, particularly in systems limited by nitrogen or

phosphorus (Turner 2002; Doughty et al. 2016). In particular, dense aggregations

of consumers can create hotspots of N and P and boost primary productivity (e.g.,

McIntyre et al. 2008; Shantz et al. 2015). On the other hand, organic release (i.e.,

egestion) can either serve as a food source for other consumers which in turn release

inorganic nutrients (Robertson 1982; Le Mézo & Galbraith 2021) or, if not consumed

directly, provide a substrate for decomposing heterotrophic bacterial communities

(Turner 2002; Halvorson et al. 2017a; Parr et al. 2019).

Egestion represents a dominant and dynamic animal-mediated elemental flux

(Halvorson & Atkinson 2019). While there is a general assumption that egestion

is less important for elemental cycling because of its low bioavailability and nutrient-

poor organic form (Atkinson et al. 2014; Halvorson & Atkinson 2019), N and P in the

form of egestion actually exceed N and P excretion fluxes in many aquatic consumers

(Liess 2014; Halvorson & Atkinson 2019). The quality of egesta determines whether

it may serve as a direct food source for other animals, which may ingest feces with

a nutritional quality that exceeds their diet (Bailey & Robertson 1982). In fact, co-

prophagy (i.e., the consumption of feces) is a common phenomenon across a variety

of ecosystems, and may play an important trophic role by immediately re-integrating

valuable elements into the food web (Frankenberg & Smith 1967; Robertson 1982;

Sazima et al. 2003; Le Mézo & Galbraith 2021).

The rate and quality of egestion depend on the food, the nutritional needs of the

consumer, and element-specific absorption efficiencies (i.e., the proportion of the in-
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gested material that is absorbed in the intestinal tract) of the consumer. Naturally,

the quality of egestion (i.e., concentrations of C, N, and P) directly correlates with

the quality of the diet (Sterner & George 2000), while also indirectly affecting the

rate of consumption and thus egestion (Schiettekatte et al. 2020). Consumers with

low diet quality such as herbivores (i.e., animals feeding on primary producers) or

detritivores (i.e., animals feeding on detritus), for instance, compensate for the poor

nutritional quality by increasing their consumption rates to reach their daily nutri-

tional needs (Cruz-Rivera & Hay 2000). Since N and P are often the limiting element

for the growth of aquatic herbivores and detritivores, compensatory feeding helps

these consumers to reach their daily requirements (Schindler & Eby 1997; McIntyre

et al. 2008; Evans-White & Halvorson 2017). Furthermore, compensatory feeding is

promoted by the positive correlation between diet quality and absorption efficiency -

consumers with low N or P diets also tend to have low absorption efficiencies of these

elements (Pandian & Marian 1985; Halvorson et al. 2017b; Jochum et al. 2017). On

the other hand, the digestive tract may act as a nutrient balancing organ by increas-

ing the absorption efficiency of a limiting element, yet this phenomenon appears to

be rare (Clissold et al. 2010).

On coral reefs, fishes represent a large part of the consumer biomass and play

an essential role in the recycling of nutrients. While in recent years, excretion rates

have been studied intensively (Allgeier et al. (2014); Allgeier et al. (2016); Francis

& Côté (2018)), less is known about the rate and quality of coral reef fish egestion.

Fish feces likely represent an important food source for coral reef fishes (Bailey &

Robertson 1982; Robertson 1982) and invertebrates living in crevices where fishes

rest at night (Pinnegar & Polunin 2006), little quantitative data exists on the rates

of defecation, the uptake of feces, and the nutritional properties of feces. While

bioenergetic models can be used to estimate rates of egestion, a lack of information

on absorption efficiencies may introduce bias. To date, bioenergetic models applied in

coral reef communities use constants for element-specific absorption efficiencies (e.g.,

Allgeier et al. 2014; Schiettekatte et al. 2020), which hampers the use of bioenergetic
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models to quantify egestion rates.

Here, we aim to quantify the rate and nutritional quality of egestion for a wide

range of reef fishes. Specifically, we estimate and compare the C, N, and P concen-

trations of the food and feces for 51 common coral reef fish species from 15 families

in Mo’orea, French Polynesia. With these data we then estimate the element-specific

absorption efficiencies and link them to each species’ diet. Combining our data with

historical observational data on defecation rates and consumption (Robertson 1982),

we further establish potential coprophagic links through pairwise comparisons. Fi-

nally, we use our data to parametrize bioenergetic models, and compare the N and P

flux in excretion and egestion at both species and community level.

6.3 Methods

6.3.1 Data collection and processing

We collected fishes in Mo’orea, French Polynesia across 62 sites distributed across

lagoon and outer reef (figure 6.6). We targeted 51 common species from 15 fish fam-

ilies: Cirrhitidae, Zanclidae, Balistidae, Holocentridae, Chaetodontidae, Acanthuri-

dae, Labridae, Aulostomidae, Mullidae, Serranidae, Pomacentridae, Pomacanthidae,

Lethrinidae, Tetraodontidae, and Monacanthidae (see supplemental table 6.1). In to-

tal, we collected 620 individuals using spear fishing between 10am and 2pm between

2017 and 2019. Fishes were pithed immediately upon capture and transported to

the laboratory in a cooler filled with ice. In the laboratory, fishes were measured,

weighed, and dissected to expose the full alimentary tract. Samples of ingested ma-

terial were then taken from the stomach and hindgut. For fishes that do not have a

stomach (e.g., Labridae), a sample from the esophagus or foregut was taken instead.

When the foregut or hindgut were empty, no sample was collected. The number of

replicates per species is shown in table 6.1.
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Samples were frozen for at least 24 hours, and then freeze-dried for transport

for at least 24h. After lyophilization, samples were ground to a fine powder using

a homogenizer. Homogenized samples were then sent to the University of Michigan

Biological Station and CNP% concentrations were measured in the lab using standard

methods (in g*g-1). Ground samples were analyzed for %C and %N content using

a CHN Carlo-Erba elemental analyzer (NA1500), and for %P using dry oxidation-

acid hydrolysis extraction followed by a calorimetric analysis (Allen et al. 1974).

Elemental content was calculated on a dry weight basis.

Ash contents of food and feces samples were determined by combustion at 450
◦C in a muffle furnace for at least 6h. The ash content was calculated by dividing

the weight of the sample after combustion by the dry weight of the sample before

combustion. Since the material was too limited for both nutrient and ash content

analysis, we determined the ash content for a subset of samples to calibrate our data.

Ash contents for missing species were estimated using information from the literature

or based on an average estimate for each trophic guild (see supplemental table 6.2).

We divided the study species into six trophic guilds, mostly based on Parravicini et

al. (2020) (6.1): detritivores (and heterotrophic microvores): species primarily feeding

on detritus or microorganisms); herbivores: species primarily feeding on autotrophs;

mixed invertivores: combined group of species (microinvertivores, macroinvertivores,

and sessile invertivores) feeding on Asteroidea, Bryozoa, Cirripedia, Porifera, An-

nelida, Arachnida, Hemichordata, Nematoda, Peracarida, Nemertea, Mollusca and

Echinodermata, and Tunicata; corallivores: species primarily feeding on Anthozoa

and Hydrozoa; planktivores: species mainly feeding on zooplankton and Harpacti-

coida; and carnivores: species primarily feeding on Actinopterygii, Cephalopoda,

Decapoda, and Stomatopoda.

While detritivores and herbivores are combined in Parravicini et al. (2020), we

categorized Acanthurus pyroferus, A. olivaceus, Ctenochaetus striatus, and Chlorurus

spilurus into a separate group of detritivores, according to direct inspection of the
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gut in this study, in accordance to previous literature, and due to the considerable

nutritional difference between algae and detritus/microbes (Choat et al. 2002; Eagle

& Jones 2004).

Finally, in order to delineate potential coprophagous behavior, we extracted the

data provided by Robertson (1982), which describes the uptake of feces by fishes in

a coral reef fish assemblage. For each species, we extracted the number of defecation

events as well as the number of feces observed being eaten by another fish species.

Further, we compiled a table indicating whether or not a species was classified as a

coprophage. We combined this information with our species-level estimates of food

and feces nutrient content, resulting in a selection of 14 species. We then predicted

the probability of feces being eaten with the nutrient content of feces. Furthermore,

we predicted the probability of being a coprophage based on the nutrient composition

of the diet.

6.3.2 Data analysis

We predicted the average food and feces content for C, N, and P by fitting a Bayesian

regression model for each species with rstan (Carpenter et al. 2017). We fitted the

data to a student-t distribution to decrease influence of outliers:

xi,k ∼ student(nui,k,mui,k, sigmai,k),

where i is either food or feces, k is the element, xfood,k and xfeces,k are measures of

the elemental content of the stomach and the end of the gut respectively, nu is the

degrees of freedom, mu is the average elemental content, and sigma is the standard

deviation of the distribution.

We used weakly-informative priors:

mui,c ∼ normal(30, 30),
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mui,n ∼ normal(5, 5),

mui,p ∼ normal(1, 1),

sigmai,c ∼ cauchy(0, 5),

sigmai,n ∼ cauchy(0, 1),

sigmai,p ∼ cauchy(0, 0.5),

nui,k ∼ gamma(2, 0.1)

Models were run on 4 chains, for 2000 iterations with 1000 iterations of warm-

up for each chain. This resulted in 4000 estimates for each parameter. Using these

estimates, we also calculated C:N, C:P, and N:P ratios of food and feces. Finally, we

estimated the absorption efficiency. Because food and feces samples were taken at

the same time, we could not assume that the food items in the stomach are the same

as the digested material in the feces. Therefore, we considered them as independent

samples, and we used the iterations of the modeled averages of food and feces contents.

We calculated the absorption efficiency for each iteration using the following formula

(Montgomery 1980):

ak = 1− ( ashfood
ashfeces

mufeces,k
mufood,k

)

For each parameter described above, we then calculated the mean, standard deviation,

95%, and 50% credible intervals.

To assess the relationship between the probability of being a coprophage and the

N and P content, we fitted Bayesian binomial models:

ycop,k ∼ Bernoulli(etak)

logit(eta) = b0 + b1Dk,

where k is the nutrient (N or P), eta is the expected value, b0 is the intercept, b1 is

the slope, and ycop is the probability of being a coprophage. We fitted similar models
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to relate the probability of feces being eaten with the nutrient content of feces.

Then, we tested the hypothesis if the elemental content of the food can predict

the absorption efficiency. We did this by fitting the following Bayesian model using

the R package brms with uninformative priors (Burkner PC 2017):

ak ∼ beta(mukphi, (1−muk)phi),

logit(muk) = b0k + bkDk

where k is the element (C, N, or P), b0 is the intercept, b is the slope, mu is the

expected value, and phi is the dispersion parameter. mu represents a probability and

must therefore be between 0 and 1. We, therefore, used a logit link function to map

the linear predictor onto mu.

6.3.3 Bioenergetic models

Finally, we ran bioenergetic models for each species at their median measured body

size to predict the N and P fluxes in excretion and egestion using fishflux (see chapter

2; Schiettekatte et al. (2020)). These models were parametrized with the elementary

concentrations of food and absorption efficiencies estimated in the present study. For

all other parameters, we used values quantified in chapter 4. We then calculated the

ratios between egestion and excretion for N and P, and for the N:P ratio.

Finally, we estimated the P fluxes on the community level for the outer slope of

Mo’orea. We used visual census data from 2009 to 2016 for 13 sites, recorded as a part

of the CRIOBE long-term monitoring program. During each census, a single diver

swam along a transect of 25 m and counted all fishes within a width of 2 m. All fishes

were identified to the species level and their length was estimated to the nearest 1 cm.
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Each transect covered an area of 50 m2, except 2 sites (Tiahura and Haapiti), which

covered an area of 100 m2 each. For each individual in the community, we fitted the

described bioenergetic model and predicted the P flux in consumption, excretion, and

egestion. Then by summing up these values, we estimated the total fluxes per trophic

guild per square meter. Furthermore, we estimated the amount of P from egestion

that is consumed by coprophagous fishes by multiplying the predicted probability of

feces being consumed by half of the daily egestion rates. This calculation rests on the

assumption that fishes release half of their daily egestion while resting close to the reef

either by day or night. Since the metabolism and digestion of fishes is higher when

they are active, such estimates of coprophagy are conservative. Finally, we averaged

values across all sites and years and standardized the excretion and egestion rate of

each trophic group by the total amount of P consumed by all fishes.
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6.4 Results

6.4.1 Elemental stoichiometry of food and feces

The estimates of species-level elemental composition of the food of fishes varied among

species to varying degrees for carbon (C), nitrogen (N) and phosphorus (P) (figure 6.1,

figure 6.7, table 6.3). The C content of food varied 4.5-fold from 10.0% for Acanthurus

pyroferus to 45.5 % for Myripristis berndti, and the C content of fish feces varied 2.7-

fold from 15.5 % for Acanthurus pyroferus to 41.5% for Chromis xanthura. The N

content of food varied 12.9-fold from 0.9% for Acanthurus pyroferus to 11.5 % for

Aulostomus chinensis, and the N content of fish feces varied 8.2-fold from 1.1 % for

Acanthurus olivaceus to 9.0% for Forcipiger flavissimus. The P content of food varied

27-fold from 0.1% for Ctenochaetus striatus to 2.7 % for Cephalopholis urodeta, and

the P content of fish feces varied 10-fold from 0.2 % for Ctenochaetus striatus to

2.0% for Chromis xanthura. When comparing food and feces compositions, we found

a remarkably low difference between them for many species (figure 6.1). For C and

P, the percentages in feces were rarely lower than 50% of the food. For N, only 14

species had an N percentage in the feces that was less than half of the food. We

found a higher C, N, and P content in feces than in food for 10, 19, and 22 species

respectively.
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Figure 6.1: The estimated average carbon (A), nitrogen (B), and phos-
phorus (C) contents of food and feces. Lines indicate the ratio of the
elemental content of the feces and the food. DE = detritivores, HE =
herbivores, MI = mixed invertivores, CO = corallivores, PL = plank-
tivores, CA = carnivores.
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Comparing the percentage of N and P of food and feces among all species, we

found that many species have a lower N% or P% value compared to the feces of other

fishes (figure 6.2A,B; figure 6.8). In particular, detritivorous and herbivorous fishes

had a much lower nutrient concentration in their food compared to the feces of other

trophic groups. For N, corallivorous and planktivorous fishes showed a high N content

in their feces compared to the food of lower trophic groups. For P, planktivores and

carnivores had the most P-rich feces. Specifically, for 677 (27%) of all 2550 potential

pairwise comparisons among species, the food N% was lower than the feces N%, and

for 915 (36%) pairwise comparisons, the food P% was lower than the feces P% (with no

overlap of 75% credible intervals of food and feces N% and P% of comparing species).

Further, by coupling our compositional data with observational data found in the

literature (Robertson 1982), we reveal that the probability of being a coprophage can

be predicted by the N% or P% found in the food, such that the lower the nutrient

content in the food, the higher the chance of being coprophagous (figure 6.2C,D; the

slopes of the binomial regressions are -5.86 (-15.49 - -1.18 95%CI) and -8.63 (-17.90

- -2.51 95%CI) for N and P respectively). Based on these relationships we predict

that 23 out of our 51 study species could exhibit coprophagy to supplement their diets

(based on a probability higher than 75%). Furthermore, the probability of feces being

eaten by coprophagous fishes can be predicted by the N% or P% content in the feces

(figure 6.2E,F; the slopes of the beta regressions are 1.54 (1.29 - 1.78 95%CI) and

2.61 (2.07 - 3.17 95%CI) for N and P respectively. We predict that 31 of our study

species have feces that are a desirable source for other fish species (with a higher than

75% probability).
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Figure 6.2: Pairwise comparisons of food and feces per trophic guild for
N (A) and P (B); fitted probabilities of being coprophagous based on
the percentages of N and P in food (C,D); fitted probabilities of feces
being eaten based on percentages of N and P in the feces (E,F)
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6.4.2 Absorption efficiencies

We estimated element-specific absorption efficiencies for all species by combining our

compositional data with ash content data to account for total absorption (table 6.4).

Across trophic guilds, carnivorous fishes had the highest absorption efficiencies fol-

lowed by corallivores. In contrast, detritivorous acanthurids and planktivorous po-

macentrids had low, or sometimes even negative absorption efficiencies (figure 6.3A).

After excluding species with negative absorption efficiencies, we tested the relation-

ship between food elementary content and absorption efficiencies (figure 6.3B), to

show that the N-specific absorption efficiency increases with N concentration in food

(average slope: 0.35; 95% CI: 0.09-0.62). This food effect is lower for C (average

slope: 0.14 ; 95% CI: -0.12-0.40), and not present for P (average slope: 0.03; 95% CI:

-0.24-0.30). Based on the back-transformed intercepts, we estimate that the absorp-

tion efficiency of N is generally the highest (average: 0.59; 95%CI: 0.52-0.65), followed

by C (average: 0.54; 95%CI: 0.47-0.60), and P (average: 0.43; 95%CI: 0.36-0.49).
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Figure 6.3: Absorption efficiencies across trophic guilds (A) and fit-
ted absorption efficiencies with standardized elemental contents of the
stomach content (B). Lines show the average fitted values, and the
shaded areas indicate the 95% credible interval. DE = detritivores,
HE = herbivores, MI = mixed invertivores, CO = corallivores, PL =
planktivores, CA = carnivores.
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6.4.3 Egestion rates

Using the estimated food elemental contents and absorption efficiencies (set to 0.1

for species with negative predicted values), we applied bioenergetic models for all 51

species at their median size, and estimated the daily N and P flux in excretion and

egestion. We then calculated the log release ratios (egestion/excretion) for N, P, and

the N:P ratio. A positive release ratio thus indicates that N, P, or the N:P ratio is

higher in egestion compared to excretion. The log release ratio was almost exclu-

sively higher than zero for P, with the exception of Chaetodon citrinellus, Epibulus

insidiator, and Epinephelus merra, indicating that there is more P flux through eges-

tion than through excretion. For N, there was more N flux in egestion compared to

excretion for 29 species, with mostly carnivorous and corallivorous species excreting

more N than they egest (figure 6.4). Consequently, the N:P ratio of excretion tends

to be higher than the N:P ratio of egestion for most species (40 species).
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Figure 6.4: Box plots of release ratios (i.e., natural log-transformation
of egestion divided by excretion) for N and P (A), and the N:P ratio (B)
per trophic guild. DE = detritivores, HE = herbivores, MI = mixed
invertivores, CO = corallivores, PL = planktivores, CA = carnivores.
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Finally, for our case study on P fluxes at the community level for outer reefs in

Mo’orea, French Polynesia (figure 6.5), we found that 82.4% of the total consumed

P is released in egestion compared to 8.7% that is released in excretion. This can be

explained by the high abundance of detritivores and herbivores present on the reefs

of Mo’orea, which egest 71.1% of the total consumed P, although their feces have a

low concentration of P.

Figure 6.5: P fluxes in egestion and excretion across trophic groups
in Mo’orea, French Polynesia. Egestion flows either to the benthos
or to coprophages. The amount of feces being eaten by coprophages
was determined by multiplying egestion rates of individual fishes in
the community by the predicted probability of feces being eaten (see
methods). All P fluxes are standardized by dividing by the total amount
of P consumed by the fish community on a daily basis.
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6.5 Discussion

Understanding how consumers contribute to fluxes of energy and nutrients in ecosys-

tems is an important challenge in ecology. The absorption efficiency of major elements

defines how much food is released into a particulate form (i.e., feces). We show that,

across a wide range of coral reef fishes, elemental concentrations decrease remarkably

little from food to feces, due to predominantly low absorption efficiencies, resulting

in considerable amounts of energy and nutrients being egested. While it is commonly

assumed that excretion is the primary vector of animal-mediated nutrient flux, our

results suggest that most coral reef fishes egest more N and P than they excrete, shed-

ding light on the important role of egestion for nutrient cycling on coral reefs. Further,

the quality and quantity of fish egesta varies greatly depending on the trophic guild.

As a consequence, the community structure of reef fishes highly influences organic nu-

trient flow at a given location. Overall, our study affirms the need for incorporating

animal egestion alongside excretion in assessments of ecosystem functioning and food

web structures (Atkinson et al. 2017; Halvorson et al. 2017a; Halvorson & Atkinson

2019).

We provide estimates of carbon, nitrogen, and phosphorus concentrations of fish

feces for 51 coral reef fish species. Only two previous studies have analyzed the

composition of coral reef fish across a small number of species. For example, in

Palau, Bailey & Robertson (1982) found an average N concentration of 1.52% for

Zebrasoma scopas, which is slightly lower than but within the credible range of our

average (2.21 %). Z. scopas feed primarily on red algae, which can vary 4-fold in

N concentration, which may explain this variation (Montgomery 1980). Similarly,

Crossman et al. (2005) reported relatively low N concentrations in the feces of A.

lineatus (1.44%) and A. olivaceus (0.34%) on reefs in the Northern Great Barrier Reef,

compared to our present study (2.97% and 2.98%, respectively). The values reported

in both studies are based on proteins or amino acids only (Bailey & Robertson 1982;

Crossman et al. 2005), and we converted these protein concentrations to total N using
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the standard conversion factor of 1:6.25 (N:protein). However, algae can have high

and variable concentrations of non-protein nitrogen substances, so the conversion we

made from protein estimates by Bailey & Robertson (1982) and Montgomery (1980)

are likely to underestimate the total N concentration (Lourenco et al. 2002). We

thus provide the first estimates for total C, N, and P concentrations of food and feces

across 51 study species, and it appears that our values align roughly with the limited

data available from previous studies.

We found remarkably low and variable reductions in elemental concentration be-

tween food and feces and low absorption efficiencies across species. As expected, N

absorption efficiencies are higher than C and P, since N-rich protein is more digestible

than other C-rich compounds such as carbohydrates and lipids (Montgomery 1980;

Pandian & Marian 1985; Crossman et al. 2005). Further, N absorption efficiency

increases with the N concentration of the food. This positive relationship exists in

other animals (e.g., Jochum et al. 2017), and has been suggested for total absorption

efficiencies in fishes (Pandian & Marian 1985). This means that fishes with a high-N

diet assimilate N more efficiently than those with an N-poor diet, and consequently,

the maintenance of fish homeostasis must be occurring through release of already

assimilated nutrients (i.e., excretion). A similar, but weaker, pattern is visible for

C absorption efficiencies, while P absorption efficiencies were weakly predicted by P

content in diet, and were generally low and highly variable across species (Czamanski

et al. 2011).

Across trophic guilds, carnivorous fishes have the highest absorption efficiencies,

which is likely because animal material is easier to digest than plant material (Ko-

zlovsky 1968; Pandian & Marian 1985). For corallivores, which had the second highest

absorption efficiency, the high efficiency could be driven by their N-rich diet and their

long intestines (Berumen et al. 2011). In addition, the highly specialized feeding

niche of many coral-feeding chaetodontids (Berumen & Pratchett 2008) may have

helped to boost nutrient absorption efficiencies, since the digestive organs and gut

microbiomes of specialized feeders are well adapted to a specific range of prey items.
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In contrast to corallivores, planktivorous fishes exhibited fairly low absorption effi-

ciencies despite having N-rich diets. Their feeding behaviour, which capitalizes on

abundant zooplankton at incoming tides and their high intake rate may satisfy their

daily needs even with low absorption efficiencies (Hamner et al. 1988). As expected,

detritivorous and herbivorous fishes had generally low absorption efficiencies, but

within herbivores, absorption efficiencies were remarkably variable. This is in line

with previous reported absorption efficiencies for herbivorous coral reef fishes that

range between 17.4% and 97.2% for protein and between 5.3% and 80.2% for lipids

and carbohydrates (Crossman et al. 2005). Herbivorous fishes have specialized diges-

tive strategies linked with differences in diet, even though they are often designated as

a single trophic category (Crossman et al. 2005). For example, Acanthuridae, which

are predominantly classified as herbivorous fishes, exhibit fine-scale dietary, morpho-

logical, and behavioral specialization (Brandl et al. 2015). Our results suggest that

these differences are reflected in their digestive dynamics as well. For instance, Z.

scopas and A. pyroferus, which are both considered to be croppers of small algae but

exhibit different morphologies and behaviors, were fundamentally different in terms

of their absorption efficiencies. Z. scopas appears to feed almost exclusively on fine fil-

amentous red algae, so, an interesting hypothesis to test would be whether herbivores

with specialized diets have a higher absorption efficiency. Additionally, especially for

herbivores, the fish gut microbiome may play a large role in digestion and resulting

absorption efficiencies (Miyake et al. 2015). Overall, our results emphasize the high

variability of absorption efficiencies among but also within trophic groups. This vari-

ation is important to consider when inferring species’ roles in system-wide energy and

nutrient fluxes (Brandl et al. 2019a).

Notably, we found several negative absorption efficiencies, mostly for N and P.

For some detritivorous acanthurids (e.g., Ctenochaetus striatus), the negative absorp-

tion efficiencies can be explained by their gizzard-like stomach in which they retain

inorganic material to grind down dietary food particles (Horn 1989; Crossman et al.

2005). The presence of inorganic material probably caused an underestimation of
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food quality, and thus yielding negative assimilation efficiencies. For these species, it

may be better to sample putative food sources from the environment or ingested food

from the mouth or esophagus, rather than the stomach. For other taxa, explanations

are less straightforward. The higher P in the feces of some planktivores compared to

their stomach contents could be caused by a high density of bacteria with low C:N:P

stoichiometry, a high proportion of indigestible invertebrate exoskeleton (chitin) in

their planktonic prey, or selective absorption of C- and N-containing compounds

(Geesey et al. 1984). Another possibility would be that planktivores occasionally

supplement their diet with P-rich food items such as fish feces, but this peculiarity

remains unresolved (Pinnegar & Polunin 2006). Finally, although we sampled to the

best of our abilities, some negative absorption efficiencies may result from low sam-

ple sizes. N and P in the food are much more variable than carbon, and the more

variability in food elemental stoichiometry, the higher the potential bias when sample

sizes are low. Most species for which we found negative absorption efficiencies had a

sample size lower than 10. On the other hand, the three species for which we have

the highest sample size (n>20) also yielded the most robust species-level estimates.

Overall, species consistently feeding on a single taxonomic group (e.g., piscivorous

groupers) have a less variable food stoichiometry and may thus need less replicates

(e.g., Cephalopholis argus), while especially species that ingest a conglomerate of taxa

(e.g., some herbivorous fishes, planktivores, and omnivores) may require a substantial

number of replicates to obtain reliable estimate of assimilation efficiencies.

The low absorption efficiencies of fishes with nutrient-poor diets necessitate com-

pensatory feeding to obtain sufficient N and P for growth and homeostasis. For exam-

ple, herbivores feed on nutrient-poor algae, thus displaying a large mismatch between

the food elemental concentrations and the ideal elemental composition needed for

maintenance and growth (Schiettekatte et al. 2020). While it may seem intuitive

that these fishes increase the absorption efficiency of limiting elements to ameliorate

the existing nutrient imbalance (Sterner & George 2000), the opposite appears to be

the case, as low absorption efficiencies are common in these species. Except for a
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single study on herbivorous terrestrial invertebrates, which compensated for a lim-

iting element by altering absorption efficiency (Clissold et al. 2010), compensatory

feeding on nutrient-rich resources appears to be the most common approach to make

up for low-nutrient diets across many taxa. Indeed, this feeding strategy has been

demonstrated for freshwater invertebrates (Evans-White & Halvorson 2017), insects

(Jochum et al. 2017), snail grazers (Liess 2014), and marine amphipods (Cruz-Rivera

& Hay 2000).

Our results highlight the role of fish egestion for system-wide nutrient cycling. A

logical consequence of the low absorption efficiencies we discovered is that nutrients

may be released more abundantly through egestion instead of excretion, especially

for P, resulting in feces with low N:P ratios. Similar findings have been reported

for marine invertebrates (Halvorson & Atkinson 2019) and terrestrial vertebrates, in

which urine contains little P but a high concentration of N, while feces contain most

of the P (Sitters et al. 2017). Consumption of such P-rich feces is common among

coral reef fishes, and some prey like plankton may pass through three fish stomachs

before reaching the bottom (Robertson 1982). Similarly, feces that are not consumed

in the water column and reach the bottom are likely consumed by invertebrates in

reef crevices (Pinnegar & Polunin 2006), thus fueling a different compartment of the

coral reef food web. In contrast, nutrient poor feces from herbivores or detritivores are

rarely consumed directly, but are decomposed by microbial communities. Depending

on the N:P ratio, these feces may exhibit an uptake of dissolved N or P, suggesting

that decomposing feces may serve as a nutrient sink (Halvorson et al. 2017a). Further,

fish feces may be important vectors of bacteria to coral surfaces and even transform

coral microbiomes (Ezzat et al. 2019). Our study calls for further research on the

diverse fates of fish feces in coral reef ecosystems, to better understand the various

pathways in which fish feces affect nutrient cycling and ecosystem functioning.

Our results have several implications for models aiming to estimate fluxes through

the food web and nutrient cycling. First, a central goal in ecology is to characterize

trophic interactions and some studies have attempted to recreate complex food webs
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for coral reef fishes (e.g., Bascompte et al. 2005; Casey et al. 2019). To understand

the interaction strength of food web links, we need to estimate the amount of elements

and energy flowing through these interaction which necessitates a quantification of

consumption rates. To date, food web models do not take variation of absorption

efficiencies into account, which may introduce substantial bias. Further, coprophagic

links have not been included in food web models, even though they may represent an

important food source. For example, Naso vlamingii consumes up to 200 planktivore

feces (12% of its own body weight) per hour during periods of high feeding activity

(Robertson 1982), suggesting that coprophageous links are a substantial part of energy

and nutrient transfer. Finally, bioenergetic models represent a useful tool to estimate

multiple individual-level pathways of elements and absorption efficiencies represent

important parameters (Schiettekatte et al. 2020). Due to a general lack of data

it is common practice to use constants from the literature (e.g., 0.8 for N and C

absorption efficiency, and 0.7 for P absorption efficiency), rather than values measured

in the field for the particular population being modeled (Kraft 1992; Schindler & Eby

1997; Allgeier et al. 2015; Schiettekatte et al. 2020). Our results illustrate that

these values are not an adequate approximation for coral reef fishes, which exhibit

remarkable variability in their absorption efficiency, potentially introducing significant

bias in the outcomes. Collecting and curating physiological data as presented in the

present study across species and locations will greatly enhance the parameterization

of ecosystem models and thus increase our understanding of complex systems.

Finally, data on feces quality and quantity can be used to investigate additional

pathways in which human impact may disrupt coral reef ecosystem functioning. Fish-

ing selectively targets fishes with high trophic levels and large sizes (Graham et al.

2017). The local depletion of large predators or planktivores not only affects prey

populations and decreases excretion (Allgeier et al. 2016), but also potentially re-

moves an important food source for coprophagous fishes. Likewise, communities that

have shifted towards dominance by detritivores and herbivores, which is observed on

reefs around as Mo’orea, have a high incidence of nutrient-poor egestion. Further,
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coral loss and reduced structural complexity cause declines of planktivores, large car-

nivores, and corallivores (Graham & McClanahan 2013; Brandl et al. 2016; Darling

& D’agata 2017), and thus can lead to a decreased nutritional quality of feces in

fish communities. As such, system wide elemental fluxes stand to be significantly

different on reefs with shifting fish assemblages, with thus far unknown consequences

for ecosystem services that reefs can provide to humanity. Overall, our results high-

light the important role of fish feces as a nutrient vector. More research quantifying

the quality and fate of these feces is necessary to understand how changes in com-

munity structure affect ecosystem functioning through trophic interactions, nutrient

translocation, and microbial activity.
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6.6 Supplementary materials

Figure 6.6: Map of sampling stations in Mo’orea.
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Figure 6.7: Species-level estimates of the C, N, and P content of the
food (circles) and the feces (triangles). The thin lines indicate the 95%
CI, and the thicker lines show the 50% CI. The color scale indicates the
ratio between feces and food elemental content. The color scale is only
shown if there is no overlap of the 50% CI’s of both.
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Figure 6.8: Species-level pairwise comparisons between the proportion
of N and P of food and feces. Vertical lines indicate the species for which
the feces have a predicted probability of being eaten that is higher than
50%. Horizontal lines indicate the species that have a higher than 50%
probability of being coprophagous.
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Table 6.1: Overview of study species’ length and weight range, trophic
category, family, and number of replicates

Species Family Diet Range TL
(cm)

Range weight
(g)

Replicates

Acanthurus
achilles

Acanthuridae herbivore 12.2-22.2 36-241.5 9

Acanthurus
guttatus

Acanthuridae herbivore 16.3-19.8 114.7-206.9 9

Acanthurus
lineatus

Acanthuridae herbivore 22.2-25.1 161.2-216.1 6

Acanthurus
nigricans

Acanthuridae herbivore 8.2-27 11.1-176 17

Acanthurus
olivaceus

Acanthuridae detritivore 23-29 174.7-299.3 5

Acanthurus
pyroferus

Acanthuridae detritivore 13-40.1 36.3-137.3 9

Acanthurus
triostegus

Acanthuridae herbivore 14-16.6 61.4-121.2 14

Ctenochaetus
striatus

Acanthuridae detritivore 12-23.2 45.2-201.5 13

Naso lituratus Acanthuridae herbivore 18.1-35.6 106.3-292 15

Zebrasoma
scopas

Acanthuridae herbivore 2.9-18.5 0.6-142.3 51

Aulostomus
chinensis

Aulostomidae carnivore 36.5-62.3 76.5-389 10

Balistapus
undulatus

Balistidae mixed
invertivore

12.5-26.7 46-385.5 15

Melichthys
niger

Balistidae herbivore 12.5-26.4 48-368.1 14



6.6. Supplementary materials 169

Species Family Diet Range TL
(cm)

Range weight
(g)

Replicates

Melichthys
vidua

Balistidae herbivore 17.6-23.5 158.9-330.8 16

Odonus niger Balistidae mixed
invertivore

15.8-27.7 61.8-187 15

Rhinecanthus
aculeatus

Balistidae mixed
invertivore

14.5-22.2 66.9-201.5 10

Sufflamen
bursa

Balistidae mixed
invertivore

11.8-18.2 36.6-117 12

Chaetodon
auriga

Chaetodontidae corallivore 14.5-21.4 62.5-134.6 10

Chaetodon
citrinellus

Chaetodontidae corallivore 10.1-11.3 18.3-299.5 8

Chaetodon
ephippium

Chaetodontidae corallivore 15.7-19.1 81.9-116.2 7

Chaetodon
lunulatus

Chaetodontidae corallivore 9.1-13.5 20.1-57.7 10

Chaetodon
ornatissimus

Chaetodontidae corallivore 7-15 0.1-103.9 31

Chaetodon
reticulatus

Chaetodontidae corallivore 8.6-13 17.7-69.6 32

Chaetodon
vagabundus

Chaetodontidae corallivore 12.5-15.1 59.2-95.3 13

Forcipiger
flavissimus

Chaetodontidae mixed
invertivore

14.2-40.9 33.1-55.1 7

Heniochus
chrysostomus

Chaetodontidae corallivore 11-14.2 35.8-97 10

Paracirrhites
hemistictus

Cirrhitidae carnivore 16.2-22.1 92.9-175.9 16
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Species Family Diet Range TL
(cm)

Range weight
(g)

Replicates

Myripristis
berndti

Holocentridae carnivore 12-22.4 50.6-230.1 10

Neoniphon
sammara

Holocentridae carnivore 14.1-22.2 35.2-132.2 16

Sargocentron
tiere

Holocentridae carnivore 19-31.2 76.5-328.2 8

Calotomus
carolinus

Labridae herbivore 26.1-38.6 284.1-558 5

Cheilinus
chlorourus

Labridae carnivore 16.5-20.7 70.3-169.3 6

Chlorurus
spilurus

Labridae detritivore 17.5-47.5 100.4-418.2 11

Epibulus
insidiator

Labridae carnivore 17-27.5 88.7-281.4 14

Halichoeres
hortulanus

Labridae mixed
invertivore

15.2-26.1 49.9-249.8 11

Scarus
schlegeli

Labridae herbivore 27.1-30.1 490-490 4

Gnathodentex
aureolineatus

Lethrinidae mixed
invertivore

21.4-31.1 121.3-196.8 9

Cantherhines
sandwichiensis

Monacanthidae mixed
invertivore

15-17.2 65.1-102 5

Parupeneus
multifasciatus

Mullidae carnivore 13.9-29.8 33.6-370 10

Centropyge
flavissima

Pomacanthidae mixed
invertivore

5.5-10.1 7.3-26.8 7
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Species Family Diet Range TL
(cm)

Range weight
(g)

Replicates

Abudefduf
septemfascia-
tus

Pomacentridae planktivore 16.4-19.4 97.7-162.3 7

Abudefduf
sexfasciatus

Pomacentridae planktivore 12.9-17.4 40.8-117.6 10

Chromis
xanthura

Pomacentridae planktivore 11.1-15.8 24.2-47 20

Dascyllus
flavicaudus

Pomacentridae planktivore 7.5-11 10.1-33.9 13

Dascyllus
trimaculatus

Pomacentridae planktivore 12-13.5 43.6-60.3 8

Stegastes
nigricans

Pomacentridae herbivore 12-14.1 49.1-69.3 9

Cephalopholis
argus

Serranidae carnivore 21-31.5 126.3-470.2 11

Cephalopholis
urodeta

Serranidae carnivore 15.9-18.9 67.6-130.1 7

Epinephelus
merra

Serranidae carnivore 16.5-23 80.9-166.3 10

Arothron
meleagris

Tetraodontidae corallivore 13.6-26.9 80.9-571 9

Zanclus
cornutus

Zanclidae mixed
invertivore

13.1-18.1 65.2-135.8 16
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Table 6.2: Overview of species-specific estimated ratio’s between ash of
food and feces from this study and literature.

species diet ash_ratio source_ash

Paracirrhites hemistictus 6_carn 0.7284672 This study, species-level estimate

Zanclus cornutus 3_imix 0.8052683 This study, diet-level estimate

Melichthys niger 2_herb 0.5065069 This study, species-level estimate

Melichthys vidua 2_herb 0.6653408 This study, species-level estimate

Sargocentron tiere 6_carn 0.5585211 This study, species-level estimate

Chaetodon vagabundus 4_cor 0.7223433 This study, species-level estimate

Naso lituratus 2_herb 0.7325541 This study, diet-level estimate

Chlorurus spilurus 1_detr 0.9738648 This study, species-level estimate

Balistapus undulatus 3_imix 0.7007812 This study, species-level estimate

Aulostomus chinensis 6_carn 0.6571061 This study, species-level estimate

Epibulus insidiator 6_carn 0.6072596 This study, species-level estimate

Parupeneus multifasciatus 6_carn 0.6771488 This study, species-level estimate

Cephalopholis urodeta 6_carn 0.6414562 This study, species-level estimate

Halichoeres hortulanus 3_imix 0.5936238 This study, species-level estimate

Acanthurus triostegus 2_herb 0.7325541 This study, diet-level estimate

Cheilinus chlorourus 6_carn 0.4678381 This study, species-level estimate

Sufflamen bursa 3_imix 0.7395958 This study, species-level estimate
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species diet ash_ratio source_ash

Stegastes nigricans 2_herb 0.5849620 This study, species-level estimate

Abudefduf sexfasciatus 5_plank 0.7000000 Bailey & Robertson (1982)

Chaetodon reticulatus 4_cor 0.3379186 This study, species-level estimate

Odonus niger 3_imix 0.8052683 This study, diet-level estimate

Neoniphon sammara 6_carn 0.5020749 This study, species-level estimate

Ctenochaetus striatus 1_detr 0.9425958 This study, species-level estimate

Chaetodon ornatissimus 4_cor 0.2988577 This study, species-level estimate

Cephalopholis argus 6_carn 0.6036160 This study, species-level estimate

Zebrasoma scopas 2_herb 0.8278710 This study, species-level estimate

Acanthurus nigricans 2_herb 0.7190284 This study, species-level estimate

Epinephelus merra 6_carn 0.4927403 This study, species-level estimate

Myripristis berndti 6_carn 0.6972230 This study, species-level estimate

Chaetodon auriga 4_cor 0.4626197 This study, species-level estimate

Centropyge flavissima 3_imix 0.8052683 This study, diet-level estimate

Dascyllus flavicaudus 5_plank 0.7000000 Bailey & Robertson (1982)

Gnathodentex aureolineatus 3_imix 0.6664872 This study, species-level estimate

Acanthurus achilles 2_herb 0.7325541 This study, diet-level estimate

Heniochus chrysostomus 4_cor 0.3728032 This study, diet-level estimate

Chaetodon lunulatus 4_cor 0.2907317 This study, species-level estimate



174 Chapter 6. The role of fish feces in coral reef nutrient-cycling

species diet ash_ratio source_ash

Arothron meleagris 4_cor 0.3728032 This study, diet-level estimate

Forcipiger flavissimus 3_imix 0.8052683 This study, diet-level estimate

Acanthurus pyroferus 2_herb 0.7325541 This study, diet-level estimate

Rhinecanthus aculeatus 3_imix 0.8052683 This study, diet-level estimate

Chaetodon citrinellus 4_cor 0.3728032 This study, diet-level estimate

Dascyllus trimaculatus 5_plank 0.7000000 Bailey & Robertson (1982)

Acanthurus guttatus 2_herb 0.7325541 This study, diet-level estimate

Chromis xanthura 5_plank 0.7000000 Bailey & Robertson (1982)

Acanthurus olivaceus 1_detr 0.9513447 This study, diet-level estimate

Chaetodon ephippium 4_cor 0.3728032 This study, diet-level estimate

Cantherhines sandwichiensis 3_imix 0.7041257 This study, species-level estimate

Abudefduf septemfasciatus 5_plank 0.7000000 Bailey & Robertson (1982)

Calotomus carolinus 2_herb 0.7325541 This study, diet-level estimate

Scarus schlegeli 2_herb 0.6200000 Crossman et al. (2005)

Acanthurus lineatus 2_herb 0.8600000 Crossman et al. (2005)
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Table 6.3: Overview average elemental composition of food and feces
per species. C = carbon, N = nitrogen, P = phosphorus. Values
between brackets represent the 95% credible interval.

Species Diet C (%) Diet N (%) Diet P (%) Feces C (%) Feces N (%) Feces P (%)

Naso lituratus 34.6 (30.5-38.6) 3.1 (2.2-4.1) 0.3 (0.2-0.4) 28.9 (27.2-30.7) 2.3 (1.6-3.1) 0.3 (0.2-0.5)

Acanthurus
triostegus

32.8 (30.5-35.2) 3.5 (3-4.1) 0.3 (0.2-0.4) 33 (30-36.2) 5.3 (4.2-6.3) 0.4 (0.3-0.5)

Ctenochaetus
striatus

16.6 (13.7-20.6) 1.3 (0.3-2.7) 0.1 (0-0.1) 18.1 (16.1-20.1) 1.4 (0.8-2.2) 0.2 (0.1-0.2)

Zebrasoma
scopas

35.7 (34.8-36.6) 5 (4.4-5.5) 0.4 (0.4-0.5) 22.5 (21.9-23.2) 2.2 (2.1-2.4) 0.3 (0.3-0.3)

Acanthurus
nigricans

33.2 (31.2-35.5) 4.2 (2.7-5.9) 0.4 (0.3-0.5) 23.6 (21.8-25.5) 2.3 (2-2.6) 0.3 (0.3-0.4)

Acanthurus
achilles

32.9 (27.8-38.4) 3.4 (2.4-4.5) 0.7 (0.2-1.3) 24.4 (22.3-26.7) 4.4 (2.9-5.9) 0.4 (0.3-0.6)

Acanthurus
pyroferus

10 (9.1-11.1) 0.9 (0.2-2.2) 0.2 (0.2-0.3) 15.5 (14.3-16.8) 5.1 (2.8-7.4) 0.4 (0.1-1.1)

Acanthurus
guttatus

23.2 (19.5-27.2) 3.9 (2.6-5.4) 0.3 (0.1-0.6) 23 (20.3-25.5) 5.8 (4.4-7.1) 0.5 (0.3-0.6)

Acanthurus
olivaceus

14.9 (12.9-16.9) 1 (0.2-2) 0.3 (0.1-0.5) 17.7 (15.3-20.1) 1.1 (0.4-2) 0.4 (0.3-0.5)

Acanthurus
lineatus

28.5 (25.8-31.1) 3.2 (2.2-4.3) 0.6 (0.3-0.9) 27.8 (24.6-31) 3 (1.9-4.2) 0.8 (0.5-1.2)

Aulostomus
chinensis

39.2 (36.4-41.8) 11.5 (9.5-13.2) 1.6 (0.8-2.4) 32.4 (20.8-43.9) 7.8 (4.8-10.4) 1.4 (0.5-2.3)

Melichthys
niger

22.6 (18.7-26.6) 2.6 (1.6-3.7) 0.4 (0.3-0.6) 18 (16.9-19.4) 1.5 (0.9-2.1) 0.2 (0.1-0.3)

Melichthys
vidua

28 (24.2-31.7) 4 (2.2-6.1) 0.6 (0.3-0.8) 21.5 (20.4-22.7) 1.6 (1.3-2) 0.4 (0.3-0.6)



176 Chapter 6. The role of fish feces in coral reef nutrient-cycling

Species Diet C (%) Diet N (%) Diet P (%) Feces C (%) Feces N (%) Feces P (%)

Balistapus
undulatus

24.5 (18.9-30.4) 2.1 (0.8-3.6) 0.5 (0.3-0.6) 20.3 (17.3-23.2) 1.8 (1.1-2.6) 0.3 (0.2-0.4)

Sufflamen
bursa

21.6 (19.1-24.2) 2.3 (1.2-3.9) 0.6 (0.4-0.9) 24.8 (20.4-29.5) 3 (2.1-4.1) 0.6 (0.4-0.7)

Odonus niger 37.9 (34-42) 7.2 (5.8-8.6) 1.1 (0.8-1.4) 30.6 (25-36.4) 5.5 (4.1-6.8) 1.1 (0.7-1.4)

Rhinecanthus
aculeatus

19.2 (14.5-24.2) 1.5 (0.7-2.4) 0.5 (0.3-0.7) 16.4 (15.2-17.7) 7.8 (5-10.3) 0.5 (0.3-0.6)

Chaetodon
vagabundus

42.7 (40.8-44.5) 7.4 (7-8) 0.8 (0.7-1) 34.9 (31.2-38.7) 5.5 (4.7-6.3) 0.9 (0.6-1.2)

Chaetodon
reticulatus

40 (38.4-41.6) 7.5 (7.1-8.1) 1 (0.7-1.5) 29.3 (28.2-30.3) 3.7 (3.5-4) 0.9 (0.7-1.1)

Chaetodon
ornatissimus

37.3 (35.3-39.3) 7 (6.2-7.8) 0.9 (0.8-1.1) 25.2 (23.9-26.5) 2.9 (2.6-3.2) 0.8 (0.6-0.9)

Chaetodon
auriga

43.2 (38.3-48.5) 6 (3.6-8.8) 0.7 (0.5-0.8) 36.9 (29.5-44.2) 6.8 (3.5-10.7) 0.7 (0.6-0.9)

Heniochus
chrysostomus

38.9 (36.1-41.4) 7.2 (6.5-7.9) 1.1 (0.9-1.2) 29.5 (24.6-34.7) 5.7 (3.6-7.8) 1 (0.7-1.4)

Chaetodon
lunulatus

37 (29.3-45.2) 4.8 (3.1-6.4) 0.7 (0.4-1) 31.1 (26.4-37.4) 7.8 (5.3-10.2) 0.8 (0.4-1.4)

Forcipiger
flavissimus

36 (27-42.1) 7.4 (3.7-11) 1 (0.3-1.8) 22.5 (18.9-30) 9 (6.9-11) 0.7 (0.6-0.9)

Chaetodon
citrinellus

35.7 (25.9-44.7) 5.4 (3.9-7) 1.2 (0.5-1.8) 33 (28.1-37.9) 7.3 (4.3-10.2) 0.7 (0.5-1)

Chaetodon
ephippium

39.1 (36.5-41.8) 7.6 (6.5-8.6) 0.9 (0.5-1.4) 26.1 (20.9-31.5) 3.1 (2-4.3) 1.3 (0.6-2)

Paracirrhites
hemistictus

39 (34.4-43.3) 10.4 (7.4-14) 1.8 (0.9-2.5) 32.5 (23.4-41.4) 6 (2.9-9.5) 1.9 (0.4-3.4)
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Species Diet C (%) Diet N (%) Diet P (%) Feces C (%) Feces N (%) Feces P (%)

Sargocentron
tiere

33.6 (21.2-45.7) 5.8 (2.5-9.2) 1.2 (0.5-2) 21.8 (17.1-26.7) 2.1 (1.5-2.8) 1.2 (0.4-2.2)

Neoniphon
sammara

38.6 (29.2-47.1) 7.8 (5.1-9.7) 1.8 (0.7-2.8) 21.3 (18.5-24.6) 1.9 (1.3-2.6) 1 (0.7-1.2)

Myripristis
berndti

45.5 (43.6-47.3) 9 (8.4-9.5) 1.3 (0.8-1.9) 26.1 (21.5-31.1) 2.7 (2.2-3.4) 1.8 (1.1-2.3)

Chlorurus
spilurus

20.6 (16.8-25.2) 2.2 (0.5-6.2) 0.3 (0.1-0.4) 20.5 (18.8-22.5) 1.5 (1.1-2) 0.2 (0.2-0.3)

Epibulus
insidiator

31.4 (25.5-37.5) 5.4 (4.1-6.7) 1.3 (0.9-1.8) 32.9 (29.2-36.6) 5.5 (4.2-6.8) 0.8 (0.5-1.1)

Halichoeres
hortulanus

19.4 (15.7-23.2) 3.7 (2.1-5.1) 0.2 (0.2-0.3) 20.3 (18.2-22.5) 1.8 (1.3-2.4) 0.3 (0.2-0.3)

Cheilinus
chlorourus

20.7 (17.1-24.6) 2.8 (1.3-4.3) 0.5 (0.1-0.9) 24.4 (19.5-29.3) 3 (1.5-4.4) 0.6 (0.1-1.3)

Calotomus
carolinus

33.8 (24.5-43.3) 6.3 (3.7-8.9) 0.8 (0.5-1.2) 27.7 (21-35.2) 3.1 (1.6-4.9) 0.8 (0.3-1.3)

Scarus
schlegeli

25.5 (12.3-40.4) 5 (1.7-8.6) 1.1 (0.6-1.5) 22.1 (15.5-28.9) 2.2 (0.7-3.9) 0.8 (0.3-1.3)

Gnathodentex
aureolineatus

31 (12.2-49.5) 4.8 (1.8-7.8) 0.7 (0.3-1.1) 20.6 (14.9-26.7) 5.8 (3.5-8) 0.5 (0.3-1)

Cantherhines
sandwichiensis

20.9 (17.8-24.1) 3 (1.8-4.4) 0.4 (0.3-0.5) 18.1 (16.1-20) 1.3 (0.5-2) 0.5 (0.2-0.8)

Parupeneus
multifasciatus

31.3 (28-34.7) 7.6 (4.7-10.4) 1.4 (0.9-2) 31.3 (25.4-37.5) 4.9 (2.7-7.2) 1 (0.5-1.5)

Centropyge
flavissima

34.8 (29.7-39.6) 7 (3.9-10) 0.7 (0.5-0.9) 28.4 (24.4-32.1) 5.7 (3-8.3) 0.5 (0.2-0.8)

Stegastes
nigricans

23.8 (18.7-29.1) 2.2 (1.2-3.2) 0.3 (0.1-0.4) 21.8 (19-24.6) 4.2 (2.5-6) 0.4 (0.2-0.5)
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Species Diet C (%) Diet N (%) Diet P (%) Feces C (%) Feces N (%) Feces P (%)

Abudefduf
sexfasciatus

31.1 (21.3-40.5) 5.2 (3.1-7.3) 0.7 (0.2-1.3) 35 (27.7-42.5) 7.4 (5-9.7) 0.9 (0.5-1.3)

Dascyllus
flavicaudus

43.3 (40.3-46.2) 9.6 (6.8-12.5) 0.9 (0.8-1.1) 39 (30.7-46.9) 8.6 (4.6-12.2) 0.8 (0.4-1.4)

Dascyllus
trimaculatus

41.3 (37.5-45.4) 8.5 (7-9.8) 0.9 (0.4-1.5) 35.7 (30.2-41) 5.2 (4-6.5) 1.2 (0.7-1.8)

Chromis
xanthura

43.5 (41.6-45.4) 9 (8.4-9.5) 1.4 (1.2-1.5) 41.5 (38.9-44.2) 7 (6.1-7.9) 2 (1.3-2.9)

Abudefduf
septemfascia-
tus

40.3 (30.1-50.4) 6 (4.4-7.5) 0.8 (0.5-1.2) 21.9 (18.9-24.9) 2.6 (1.5-3.6) 0.8 (0.5-1.1)

Cephalopholis
urodeta

41.6 (35.5-47.5) 9.6 (6.5-12.4) 2.7 (1.1-3.8) 20.1 (14.8-25.7) 2.4 (1.5-3.2) 1.5 (0.2-3.1)

Cephalopholis
argus

39.7 (28.6-49.5) 10.2 (5.1-13.9) 2 (1-2.8) 19.4 (15.3-23.5) 3.9 (2.1-5.6) 2 (0.7-3.3)

Epinephelus
merra

35 (25.4-43.6) 6.4 (3.2-10.4) 1.3 (0.6-2) 19.5 (17-22.2) 1.7 (0.7-3.2) 0.7 (0.4-1.1)

Arothron
meleagris

25.8 (17.2-34.5) 3.8 (1.8-6.5) 0.5 (0.3-0.7) 17.7 (15.2-20.4) 4.3 (2.2-6.5) 0.4 (0.2-0.5)

Zanclus
cornutus

25.1 (21.4-28.8) 3.4 (1.9-5.8) 0.2 (0.2-0.3) 29.8 (26.1-33.5) 4 (2.9-5.2) 0.5 (0.4-0.6)
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Table 6.4: Overview average absorption efficiency per species. AE =
absorption efficiency, C = carbon, N = nitrogen, P = phosphorus.
Values between brackets represent the 95% credible interval.

Species Family Diet AE C AE N AE P

Naso lituratus Acanthuridae herbivore 0.38 (0.3-0.46) 0.44 (0.15-0.64) 0.17
(-0.37-0.53)

Acanthurus
triostegus

Acanthuridae herbivore 0.26 (0.17-0.35) -0.1
(-0.39-0.16)

0.04
(-0.41-0.37)

Ctenochaetus
striatus

Acanthuridae detritivore -0.04
(-0.28-0.2)

-0.55
(-3.6-0.56)

-1.57
(-3.45–0.45)

Zebrasoma
scopas

Acanthuridae herbivore 0.48 (0.46-0.5) 0.63 (0.58-0.68) 0.43 (0.33-0.51)

Acanthurus
nigricans

Acanthuridae herbivore 0.49 (0.44-0.54) 0.59 (0.39-0.72) 0.44 (0.19-0.61)

Acanthurus
achilles

Acanthuridae herbivore 0.45 (0.35-0.55) 0.03
(-0.49-0.42)

0.18
(-0.31-0.79)

Acanthurus
pyroferus

Acanthuridae detritivore -0.14 (-0.29-0) -7.18
(-18.7–0.39)

-0.37
(-2.65-0.68)

Acanthurus
guttatus

Acanthuridae herbivore 0.27 (0.11-0.41) -0.11
(-0.68-0.29)

-0.26
(-1.86-0.47)

Acanthurus
olivaceus

Acanthuridae detritivore -0.13
(-0.36-0.07)

-2.06 (-4.9-0.7) -0.92
(-3.26-0.34)

Acanthurus
lineatus

Acanthuridae herbivore 0.16 (0.03-0.28) 0.17
(-0.29-0.53)

-0.25
(-1.26-0.35)

Aulostomus
chinensis

Aulostomidae carnivore 0.46 (0.25-0.65) 0.55 (0.37-0.73) 0.36
(-0.34-0.79)

Melichthys
niger

Balistidae herbivore 0.59 (0.51-0.66) 0.7 (0.49-0.84) 0.76 (0.6-0.86)
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Melichthys
vidua

Balistidae herbivore 0.49 (0.4-0.55) 0.71 (0.48-0.83) 0.49 (0.11-0.73)

Balistapus
undulatus

Balistidae mixed
invertivore

0.41 (0.23-0.56) 0.24 (-0.58-0.7) 0.5 (0.19-0.71)

Sufflamen
bursa

Balistidae mixed
invertivore

0.15
(-0.05-0.32)

-0.05
(-0.95-0.47)

0.29
(-0.23-0.59)

Odonus niger Balistidae mixed
invertivore

0.35 (0.2-0.48) 0.39 (0.17-0.56) 0.23
(-0.15-0.51)

Rhinecanthus
aculeatus

Balistidae mixed
invertivore

0.3 (0.08-0.46) -3.55
(-8.05–1.2)

0.27
(-0.25-0.59)

Chaetodon
vagabundus

Chaetodontidae corallivore 0.41 (0.34-0.47) 0.47 (0.39-0.55) 0.2 (-0.1-0.48)

Chaetodon
reticulatus

Chaetodontidae corallivore 0.75 (0.74-0.77) 0.83 (0.82-0.85) 0.7 (0.59-0.79)

Chaetodon
ornatissimus

Chaetodontidae corallivore 0.8 (0.78-0.81) 0.88 (0.86-0.89) 0.75 (0.68-0.81)

Chaetodon
auriga

Chaetodontidae corallivore 0.6 (0.51-0.69) 0.45
(-0.03-0.75)

0.48 (0.29-0.63)

Heniochus
chrysostomus

Chaetodontidae corallivore 0.72 (0.66-0.77) 0.7 (0.59-0.81) 0.63 (0.5-0.76)

Chaetodon
lunulatus

Chaetodontidae corallivore 0.75 (0.68-0.81) 0.51 (0.22-0.7) 0.62 (0.21-0.84)

Forcipiger
flavissimus

Chaetodontidae mixed
invertivore

0.49 (0.22-0.6) -0.12
(-1.01-0.4)

0.01
(-1.08-0.68)

Chaetodon
citrinellus

Chaetodontidae corallivore 0.65 (0.52-0.74) 0.48 (0.2-0.72) 0.69 (0.44-0.87)

Chaetodon
ephippium

Chaetodontidae corallivore 0.75 (0.7-0.8) 0.85 (0.78-0.91) 0.45
(-0.11-0.78)
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Paracirrhites
hemistictus

Cirrhitidae carnivore 0.39 (0.2-0.57) 0.57 (0.26-0.8) 0.17
(-0.78-0.83)

Sargocentron
tiere

Holocentridae carnivore 0.62 (0.4-0.76) 0.76 (0.5-0.88) 0.3 (-0.68-0.85)

Neoniphon
sammara

Holocentridae carnivore 0.72 (0.62-0.78) 0.88 (0.79-0.92) 0.7 (0.32-0.85)

Myripristis
berndti

Holocentridae carnivore 0.6 (0.52-0.67) 0.79 (0.74-0.83) 0.01
(-0.55-0.47)

Chlorurus
spilurus

Labridae detritivore 0.02
(-0.21-0.22)

-0.09
(-1.93-0.77)

0.09
(-0.59-0.51)

Epibulus
insidiator

Labridae carnivore 0.36 (0.2-0.49) 0.37 (0.12-0.55) 0.64 (0.44-0.78)

Halichoeres
hortulanus

Labridae mixed
invertivore

0.37 (0.21-0.5) 0.69 (0.45-0.82) 0.37
(-0.05-0.65)

Cheilinus
chlorourus

Labridae carnivore 0.44 (0.27-0.58) 0.45
(-0.13-0.77)

-0.18 (-1.7-0.9)

Calotomus
carolinus

Labridae herbivore 0.39 (0.11-0.58) 0.61 (0.29-0.83) 0.23
(-0.47-0.73)

Scarus
schlegeli

Labridae herbivore 0.41 (-0.15-0.7) 0.66 (0.07-0.92) 0.53 (0.09-0.86)

Gnathodentex
aureolineatus

Lethrinidae mixed
invertivore

0.47
(-0.15-0.75)

-0.14
(-1.21-0.59)

0.25 (-0.6-0.79)

Cantherhines
sandwichiensis

Monacanthidae mixed
invertivore

0.39 (0.27-0.49) 0.68 (0.41-0.88) 0.12 (-0.49-0.6)

Parupeneus
multifasciatus

Mullidae carnivore 0.32 (0.16-0.46) 0.54 (0.2-0.77) 0.5 (0.14-0.78)

Centropyge
flavissima

Pomacanthidae mixed
invertivore

0.34 (0.19-0.46) 0.29
(-0.32-0.68)

0.42 (0.02-0.76)



182 Chapter 6. The role of fish feces in coral reef nutrient-cycling

Species Family Diet AE C AE N AE P

Stegastes
nigricans

Pomacentridae herbivore 0.46 (0.3-0.58) -0.24
(-1.3-0.39)

0.19
(-0.55-0.61)

Abudefduf
sexfasciatus

Pomacentridae planktivore 0.19
(-0.19-0.45)

-0.06
(-0.75-0.39)

-0.27
(-2.02-0.58)

Dascyllus
flavicaudus

Pomacentridae planktivore 0.37 (0.23-0.51) 0.36
(-0.02-0.68)

0.35 (-0.1-0.72)

Dascyllus
trimaculatus

Pomacentridae planktivore 0.39 (0.28-0.5) 0.56 (0.43-0.68) -0.11
(-1.44-0.55)

Chromis
xanthura

Pomacentridae planktivore 0.33 (0.28-0.38) 0.46 (0.37-0.53) -0.05
(-0.53-0.35)

Abudefduf
septemfascia-
tus

Pomacentridae planktivore 0.61 (0.48-0.71) 0.69 (0.52-0.83) 0.26 (-0.29-0.6)

Cephalopholis
urodeta

Serranidae carnivore 0.69 (0.58-0.78) 0.84 (0.74-0.9) 0.58 (-0.1-0.96)

Cephalopholis
argus

Serranidae carnivore 0.7 (0.57-0.79) 0.75 (0.52-0.89) 0.33
(-0.45-0.79)

Epinephelus
merra

Serranidae carnivore 0.72 (0.61-0.79) 0.84 (0.67-0.95) 0.69 (0.35-0.87)

Arothron
meleagris

Tetraodontidae corallivore 0.74 (0.61-0.82) 0.51 (0.02-0.82) 0.7 (0.46-0.84)

Zanclus
cornutus

Zanclidae mixed
invertivore

0.04
(-0.16-0.21)

-0.02
(-0.78-0.47)

-0.75
(-1.42–0.26)
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7.1 Abstract

Organismal metabolic rates are the basis of energy and nutrient fluxes through ecosys-

tems. In the marine realm, fishes are the most prominent consumer species. However,

their metabolic demand in the wild (field metabolic rate, FMR) is poorly documented,

because it is very challenging to measure directly. Here, we introduce a novel ap-

proach to estimating the component of FMR associated with voluntary activity in

nature (i.e., the field active metabolic rate, AMRfield). We do this by combining

laboratory-based respirometry and field-based stereo-video systems to estimate the

activity of individuals. We exemplify our approach by focusing on seven coral reef fish

species, for which we quantified standard and maximum metabolic rates (SMR and

MMR, respectively) in the laboratory, and body sizes and swimming speeds in the

field. Based on the relationships between metabolic rate, body size, and swimming

speeds, we show that the activity scope (i.e., the ratio between AMRfield and SMR)

varies from 1.2 to 3.2 across species and body sizes. Furthermore, we demonstrate

that the scaling exponent for AMRfield varies across species and can substantially ex-

ceed the widely assumed value of 0.75 for standard metabolic rates. Finally, by scaling

organismal AMRfield estimates to the assemblage level, we show the potential effect

of this variability on community metabolic demand. As a non-destructive, widely ap-

plicable technique, our approach can improve our ability to estimate elemental fluxes

mediated by a critically important group of aquatic animals.
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7.2 Introduction

Anthropogenic stressors, such as climate change, over-harvesting, and pollution, are

affecting biological communities at an unprecedented rate (Halpern et al. 2008; Venter

et al. 2016). Scientists and policy-makers are becoming increasingly concerned that

these community impacts will irreversibly alter key ecosystem functions, preventing

these natural systems from maintaining indispensable services to humans (Cardinale

et al. 2012). In this context, tools to quantify and monitor ecosystem processes are

valuable (Tilman et al. 2014). However, while there is a long-standing tradition in

measuring ecological processes in mesocosms and controlled in situ experiments, the

assessment of rates of ecological processes in natural conditions is still in its infancy

(Reich et al. 2012), especially for marine ecosystems (Brandl et al. 2019a).

In coastal marine ecosystems, fishes represent one of the most thoroughly studied,

ecologically important, and economically valuable group of consumers (Bozec et al.

2004; Tamayo et al. 2018). Despite the complexity of measuring the contribution

of mobile species to ecosystem fluxes (Wilson et al. 2010), several attempts have

been made to quantify contributions of fishes to nutrient and carbon cycling (Villéger

et al. 2017; Brandl et al. 2019a). These functions are usually quantified at the

individual level, that can then be scaled up to community levels through an additive

framework (Allgeier et al. 2014; Barneche et al. 2014; Brandl et al. 2019b; Morais &

Bellwood 2019b). While there are inherent limitations to this approach, individual-

based modeling currently represents our best means to quantify ecological processes

across communities of mobile, aquatic organisms. Nevertheless, the accuracy of these

approaches inevitably depends on our capacity to precisely estimate physiological

requirements and expenditures of individuals in their natural environment.

The metabolic rate of living organisms is an essential determinant of their phys-

iological requirements and therefore represents a crucial parameter to estimate the

flow of energy and nutrients in any ecosystem (Brown et al. 2004; Allen et al. 2005).

Theory predicts that individual metabolic rate increases sub-linearly with body mass
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according to a power function with a scaling exponent of approximately 0.75 (West

et al. 1997; Gillooly et al. 2001; Brown et al. 2004). This value has been widely

accepted and appears to hold roughly true for standard metabolic rates of marine

fishes (Barneche et al. 2014). Therefore, this metabolic scaling exponent has been

used to estimate community-level metabolic rates as well (Cheung et al. 2013; e.g.,

Deutsch et al. 2015; Holt & Jørgensen 2015). However, the verification of this scaling

exponent is based on laboratory experiments, and whether the metabolic scaling of

fishes in the wild follows this general rule remains to be explored.

Metabolic rates of fishes are generally evaluated through two metrics: i) standard

metabolic rate (SMR) (FRY 1957; Vinberg 1960), which corresponds to the metabolic

rate of an inactive and fasting individual (Clark et al. 2013); and ii) maximum

metabolic rate (MMR), which corresponds to the aerobic metabolic rate of an animal

that is exercising at full capacity (Norin & Clark 2016). Knowledge of these two

metrics allows for the calculation of a fish’s aerobic scope, which is the difference

between MMR and SMR and represents the capacity to elevate metabolic rate above

maintenance to support energetically demanding tasks such as physical activity and

digestion (Clark et al. 2013). Within species, aerobic scope tends to increase with

body mass regardless of being expressed in absolute (MMR minus SMR) or factorial

(MMR divided by SMR) values (Halsey et al. 2018), as the scaling exponent of MMR

is often observed to be higher than that of SMR (Glazier 2005; Killen et al. 2007).

Both SMR and MMR can be estimated relatively accurately in the laboratory through

measurements of oxygen uptake rates (Clark et al. 2013; Chabot et al. 2016; Norin

& Clark 2016; Svendsen et al. 2016). However, animals in the wild rarely reside at

SMR or exercise maximally. Thus, calculations of energy expenditures in wild fishes

are hamstrung by our inability to accurately estimate metabolic rates in fishes that

pursue their normal, daily activities in their natural environment.

The field metabolic rate (FMR) represents the average metabolic rate of an in-

dividual in the wild (Nagy 2005; Chung et al. 2019) and lies somewhere between

SMR and MMR (Nagy 2005). On average, free-living fishes in their natural habi-
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tats will only exploit a given proportion of their aerobic scope and, in non-sedentary

fishes, physical activity will be a major component of FMR (Chung et al. 2019).

Thus, the factorial scope for activity (FSA), which corresponds to the ratio between

the component of FMR related to physical activity (the field active metabolic rate,

AMRfield) and the SMR, is a better reflection of energy expenditure in the wild

(Chung et al. 2019), bearing in mind that internal homeostatic processes such as

digestion and reproduction also incur an energetic cost as part of the full FMR.

In terrestrial vertebrates, where the doubly-labeled water technique has allowed for

widespread quantification of FMR (Webster & Weathers 1989), the metabolic scaling

exponent of FMR tends to be higher than that of SMR (~0.8; Nagy (2005)). While

the metabolic scaling exponent of MMR in fishes ranges approximate or exceed 0.8

as well, the scaling of FMR or AMRfield remains poorly documented (Norin & Clark

2016). Understanding how metabolic rate scales with body mass in the wild is fun-

damentally important for fisheries (e.g., stock assessments) and predictions of the

effects of climate change, as the metabolic scaling exponent is an integral part of

growth models used to forecast the size of fishes at both current and future temper-

atures (Von Bertalanffy 1957; Cheung et al. 2013; Deutsch et al. 2015; Marshall &

White 2019).

Since FMR is challenging to measure for water-breathing animals in the aquatic

environment (Treberg et al. 2016), it has only been estimated for a small number of

fishes (e.g., Lucas et al. 2011; Murchie et al. 2011; Cruz-Font et al. 2016; Chung et

al. 2019). These estimates are largely derived from biotelemetry approaches that rely

on accelerometry tags and heart rate measurements calibrated with rates of oxygen

uptake in the laboratory (Gräns et al. 2009; Treberg et al. 2016). A major limitation

of biotelemetry is that their application is limited to large individuals as it requires

surgical attachment or implantation of tags (Gräns et al. 2009). More recently, FMR

has been estimated from the isotopic composition of carbon in fish otoliths (Chung et

al. 2019). However, this approach relies on destructive sampling and the generality

of the undoubtedly promising results are yet to be applied across a broad range of
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species. Thus, non-invasive methods to estimate FMR on many co-occurring fish

species in the field are needed to better understand the contributions of fishes to

ecosystem functioning.

Here, we propose a new approach to estimate a major component of the FMR, the

AMRfield. Specifically, we estimated SMR and MMR of seven reef fish species using

traditional respirometry techniques in the laboratory, and then quantified in situ

swimming speeds of the same species using underwater stereo-video systems. This

permitted us to derive AMRfield and the factorial scope for activity (FSA) on the

basis of the theoretical relationship between metabolic rate and swimming speed, and

to assess the mass-scaling exponents of AMRfield for each species. By combining our

results with underwater visual census data of fish size and abundance on reefs around

Mo’orea, French Polynesia, we also quantified assemblage-level SMR and AMRfield.

In doing so, we demonstrate the viability and applicability of our approach to tackle

questions across fields of organismal, community, and ecosystem ecology in the marine

biome.
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7.3 Methods

7.3.1 Summary

Our approach is based on the relationship between swimming speed and metabolic

rate (Torres & Childress 1983; Binning et al. 2013; Norin & Clark 2016). Specifi-

cally, we rely on the notion that the standard metabolic rate (SMR) represents the

metabolic rate of an individual when its swimming speed is zero (U0), while the maxi-

mum metabolic rate (MMR) represents the oxygen uptake rate of individuals at their

maximum – or critical – swimming speed (Ucrit)(figure 7.1). Further, we assume that

metabolic rates vary predictably with swimming speed following a traditional power

function (Brett 1964; Korsmeyer et al. 2002). Therefore, on the basis of knowledge

of SMR and MMR along with the U0 and Ucrit of individuals, the active field active

metabolic rate (AMRfield) of a species can be estimated if the average swimming

speed (U) of individuals for a specific body size is known. We estimated SMR and

MMR using respirometry in the laboratory, obtained Ucrit through empirical data

available in the literature, and estimated U using stereo-camera video recordings in

the field. We then used these estimates of AMRfield to quantify the factorial scope

for activity (FSA), and the metabolic scaling exponent for AMRfield. Finally, to

evaluate the impact of assessing assemblage-level metabolic rates on the basis of a re-

alistic proxy of field metabolic rate, AMRfield (instead of using the more commonly

measured SMR as an estimate of minimum energetic requirements), we scaled up

our estimates at assemblage level according to visual census data of fish sizes and

abundances on a coral reef in Mo’orea, French Polynesia.
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Figure 7.1: Definition of terms used to describe aspects of fish
metabolism and their inter-relationships. SMR is standard metabolic
rate calculated as the oxygen uptake rate (ṀO2 at swimming speed
0 (U0). AMRfield is field active metabolic rate measured as ṀO2 at
spontaneous swimming speed (U). FMR is field metabolic rate includ-
ing AMRfield and the energy needed for digestion and reproduction.
MMR is maximum metabolic rate, which can be measured as the ṀO2
at maximum (critical) swimming speed (Ucrit).
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7.3.2 Model species

We focused on seven common reef fish species with varying body sizes and shapes,

trophic strategies, and behavioral patterns: Cephalopholis argus (family Serranidae),

a large, fusiform, sedentary piscivore; Chaetodon ornatissimus (family Chaetodon-

tidae), a small-bodied, laterally compressed, obligate coral feeder; Chromis iomelas

(family Pomacentridae), a small, schooling planktivore; Ctenochaetus striatus (family

Acanthuridae), a medium-sized, grazing detritivore; Naso lituratus (family Acanthuri-

dae), a large-bodied, grazing herbivore feeding on macroalgae; Odonus niger (fam-

ily Ballistidae), a large-bodied schooling planktivore; and Zebrasoma scopas (family

Acanthuridae), a compressed, small-bodied, grazing herbivore feeding on filamentous

algae. All data were collected in Mo’orea, French Polynesia, between March 2018

and February 2019. For respirometry experiments, individuals were collected in the

lagoon (depth range 1-6m) next to Opunohu Bay (17.4928°S, 149.8555°W) with hand

nets and clove oil.

7.3.3 Standard and maximum metabolic rate

To quantify SMR and MMR, we conducted intermittent-closed respirometry experi-

ments (Steffensen 1989; Clark et al. 2013) at 28+-0.5 °C on a total of 68 individuals

across the seven study species with the sample size per species ranging between four

and 23 individuals. After an acclimation and fasting period of 48 h in aquaria, the fish

were individually transferred to a water-filled tub at 28°C and sequentially chased by

the experimenter until visibly exhausted to elicit MMR (Clark et al. 2012; S. Butail et

al. 2013). Once the chasing was concluded, each individual was immediately placed

in a respirometry chamber submersed in an ambient and temperature-controlled tank,

where they were left for approximately 24 h to reach SMR. The intermittent respirom-

etry cycles consisted of a measurement (closed) period followed by an open period

during which the respirometry chambers were flushed with fully aerated water from

the ambient tank. Based on previous work (Norin & Clark 2016), we considered the
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oxygen uptake rate (ṀO2 ) during the first closed cycle (directly after transferring

the fish) to be reflective of the individual’s MMR. Depending on fish size, respirome-

try chambers ranged in volume (including tubes and pumps) from 0.38 to 4.4 L, and

measurement and flush periods lasted between 2 to 9 min and 3 to 5 min, respectively.

SMR was calculated as the average of the 10 % lowest ṀO2 values measured during

the entire respirometry trial, after the removal of outliers, while MMR was calculated

from the slope of the first measurement period (Chabot et al. 2016).

7.3.4 Swimming speed

We used two underwater stereo-video systems that were placed on the seafloor to

record fish movements. Each video system consisted of two small action cameras

(GoPro Hero5 Black), mounted 90 cm from each other at an angle of approximately

6°. This method allows three-dimensional (3D) measurements (Hughes & Kelly 1996;

S. Butail & Paley 2012). To analyze the recorded videos, we used VidSync, an

open-source Mac application providing accurate 3D measurements (Neuswanger et

al. 2016), which allow for the synchronization, calibration, and analysis of videos.

We recorded calibration videos to correct for the nonlinear optical distortion of the

images due to camera lenses and underwater housings, and to define the 3D coordinate

system (x, y, z) used throughout the analyses. Errors in length measurements through

video analysis increase with distance from the cameras (Neuswanger et al. 2016).

Thus, for each underwater stereo-video system, we fitted a linear regression model

describing the error in measurements as a function of their distance from the nearest

camera, which we used to adjust all measurements of distances and fish lengths (figure

7.6). We recorded twenty stationary stereo-videos between November 19th 2018 and

December 12th 2018. Videos were recorded at 12 to 14 m depth on the reef slope at

the Tiahura long-term monitoring site in Mo’orea (17° 29’ 00.6" S, 149° 54’ 20.9" W)

and at five different time-periods: 5:00–7:00, 8:00–10:00, 11:00–13:00, 14:00–16:00,

and 17:00–18:00. Each recording lasted for ~1-1.5 h. We then took measurements
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during three 10 min sequences with intervals of 10 min that excluded the first 2 min

to account for the presence of divers. We took measurements for all fishes visible in

both cameras for 3 to 5 s during the three 10 min sequences. For each individual, fork

length was measured three times from the videos as the straight-line distance between

the fish’s head and its tail fork, and three to five consecutive swimming speeds were

measured as the distance the fish moved over 3 to 5 s. Final fish lengths and swimming

speeds were then calculated as the mean of the repeated measurements. In total, we

recorded lengths and speeds for 634 individuals, with sample sizes per species ranging

between 64 and 264 individuals.

7.3.5 Maximum swimming speed

We extracted maximum swimming speeds (Ucrit) from previous work (Fulton 2007).

Ucrit is defined as the swimming speed at which a fish becomes exhausted and stops

swimming when it is exposed to regular incremental changes in speed in an exper-

imental flume (Brett 1964). In these experimental conditions, ṀO2 measured at

Ucrit corresponds to MMR (Norin & Clark 2016). In the original work of Fulton

(2007), Ucrit of 192 individuals of five families and their corresponding lengths were

measured, and these measurements were then used in the present study to relate

maximum swimming speed with body size and aspect ratio of the tail, as a proxy

for variations in swimming ability. The aspect ratio of the tail of all species were

retrieved from Fishbase (Froese et al. 2014).

7.3.6 Data analysis

We quantified AMRfield and factorial scope for activity (FSA) by combining multiple

regression models, that describe the relationships between SMR and MMR with body

mass, swimming speed (U), and maximum swimming speed (Ucrit; from Fulton 2007)

with body size. First, we used the respirometry data to fit a relationship between
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either SMR or MMR and body mass using a Bayesian hierarchical model, while

accounting for the co-variation between MMR and SMR. We define the log10 of SMR

and MMR to be normally distributed with a mean (µ) and a standard deviation (σ)

as follows:

log10(MRi) ∼ Normal(µi, σ),

µi = (a+ aj,k) + (b+ bj,k)log10(weighti),

where i is the individual, j is the species, k is the type of metabolic rate (SMR or

MMR), a is the global intercept of the regression; aj,k is the effect on the intercept for

each species and type of metabolic rate, b is the global slope of log10(weight), bj,k is the

effect on the slope for each species and type of metabolic rate. We obtained the mean

intercept and slope per species by summing global- and species-level parameters. We

used an informative normal prior for the global slope exponent (i.e., metabolic scaling

exponent) with average 0.75 and 0.1 as the standard deviation (West et al. 1997).

For all other parameters, we used weakly informative priors (Burkner PC 2017).

Second, using the data retrieved from the video analyses, we fitted a hierarchical

Bayesian regression model for estimating fish swimming speed as a function of body

length. We defined the log10 transformation of swimming speed to be student-t dis-

tributed with degrees of freedom (ν), mean (µ), and a standard deviation (σ).The

student’s t-distribution was applied to build a robust regression, as our data includes

outliers (Motulsky & Brown 2006).

log10(speedi) ∼ Student(ν, µi, σ),

µi = (a+ aj) + (b+ bj)log10(lengthi),

where i is the individual, j is the species, a is the global intercept of the regression,
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aj is the effect on the intercept for each species, b is the global slope , bj is the effect

on the slope of for each species. For each species, regression exponents were estimated

by summing two effects of the model: the global parameter and the species-specific

effect on the global parameter.

Thirdly, we fitted a similar model to predict maximum swimming speed in function

of body length and aspect ratio using data extracted from Fulton (2007), including

random effects of the interaction between family and body shape on the intercept and

slope of body size.:

log10(maxspeedi) ∼ Student(ν, µi, σ),

µi = (a+ aj) + (b+ bj)log10(lengthi) + AR,

where i ,j is the interaction of family and body shape, a is the global intercept of

the regression, aj is the effect on the intercept for each family and body shape, b is

the global slope , bj is the effect on the slope for each family and body shape, and

AR is the aspect ratio of the tail. Here, we also applied the Student’s t-distribution

and used general uninformative priors. We then used this model to estimate the

maximum swimming speed of the species included in our study. Aspect ratio’s were

extracted from Fishbase (Froese et al. 2014).

7.3.7 Factorial aerobic scope, field active metabolic rate, and

factorial scope for activity calculations

We predicted the factorial aerobic scope (FAS), field active metabolic rate (AMRfield),

and factorial scope for activity (FSA) for the full size range of all model species (per

cm). To estimate the fish’s FAS at each possible length, we first predicted their

SMR and MMR by calculating their weight using published length-weight relationship

accessed through FishBase (Froese et al. 2014), and making predictions based on
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our model parameters. For each iteration of the prediction, FAS was calculated as

FAS = MMR
SMR

(Fry 1947; Killen et al. 2016). Finally, we summarized the FAS for each

species at all sizes by taking means, standard deviations, and 95% credible intervals.

FSA is obtained by dividing the fish’s AMRfield (ṀO2 at average speed U) by

their SMR. To describe the relationship between ṀO2 and swimming speed (U),

Brett (1964) (Brett 1964) used a traditional power function: ṀO2 = a10bU . Here,

we applied the log10-transformed form (Korsmeyer et al. 2002). Consequently, the

following equation was used in this study to determine individual AMRfield:

log(AMRfield) = log(SMR) + log(MMR)− log(SMR)
Ucrit

U,

where we consider the slope b = log(MMR)−log(SMR)
Ucrit

. Here, U is predicted through

our model relating length and swimming speed, Ucrit is predicted for each length and

species using our model for family-level maximum swimming speeds, and SMR and

MMR is predicted as stated above. To include an estimate of uncertainty, we included

1000 iterations of estimates of the swimming speed U . For Ucrit, SMR and MMR we

used the median of the predicted values in this step.

Once we determined AMRfield, we calculated FSA with the following equation:

FSA = 12AMRfield + 12SMR

24SMR
.

We repeated this for each iteration and then summarized FSA per species per size.

We assumed that fish rested for 12 h (i.e., sleeping) (Marshall 1972). As such, for all

studied species we assumed that they are active during the day and inactive during

the night.



7.4. Results 197

7.3.8 Assemblage-level estimates

In 2016, reef fish communities were monitored across 13 sites on the outer reef around

Mo’orea using underwater visual censuses. During each census, a single diver swam

along a transect of 25 m and counted all fishes within a width of 2 m. All fishes

were identified to the species level and their length was estimated to the nearest 1

cm. Each transect covered an area of 50 m2, except Tiahura and Haapiti, which

covered an area of 100 m2 each. At each site, three transects were performed, except

for Tiahura and Haapiti where four and two transects were performed respectively.

We extracted data for our model species from this database, which resulted in 802

individuals across the seven species. Then, we quantified the SMR and AMRfield for

each individual using the above-mentioned methodology. Finally, we calculated the

total SMR and AMRfield of the fish assemblage composed of the seven species at

each site by summing across individual estimates.

7.4 Results

7.4.1 Standard and maximum metabolic rates

The regression model predicting metabolic rates (log10 of SMR and MMR) as a

function of log10 of body mass with varying slopes and intercepts per species had

a Bayesian R2 of 0.96 (table 7.1; figure 7.2). The average metabolic scaling exponent

across species was 0.73 for SMR and 0.78 for MMR (table 7.1). The median species-

specific scaling exponents varied between 0.71 and 0.76 for SMR, and between 0.77

and 0.78 for MMR.
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Table 7.1: Overview of species-specific slope coefficients (scaling expo-
nents) of the regression of log10-transformed SMR and MMR on func-
tion of log10-transformed body mass. The intercept for each species is
expressed as the back-transformed value for an individual of 1g. Values
in between brackets represent the 95% CI.

species SMR slope SMR (mass =
1g)

MMR slope MMR (mass
= 1g)

Cephalopholis
argus

0.7 (0.6;0.79) 0.003
(0.0018;0.0044)

0.78 (0.7;0.88) 0.0119
(0.0071;0.0168)

Chaetodon
ornatissimus

0.71 (0.62;0.78) 0.0037
(0.0028;0.0046)

0.78 (0.7;0.86) 0.0089
(0.0068;0.0112)

Chromis iomelas 0.73 (0.6;0.89) 0.0028
(0.0023;0.0035)

0.78 (0.67;0.89) 0.0083
(0.0066;0.0105)

Ctenochaetus
striatus

0.76 (0.69;0.84) 0.0041
(0.0031;0.0055)

0.78 (0.71;0.84) 0.0099
(0.0075;0.0128)

Naso lituratus 0.74 (0.6;0.91) 0.0039
(0.0028;0.0053)

0.79 (0.67;0.94) 0.0142
(0.0089;0.0191)

Odonus niger 0.72 (0.63;0.83) 0.0025
(0.0015;0.0037)

0.78 (0.7;0.88) 0.0123
(0.0079;0.017)

Zebrasoma
scopas

0.71 (0.65;0.77) 0.0037
(0.0029;0.0045)

0.77 (0.72;0.83) 0.0078
(0.0062;0.0097)
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Figure 7.2: Linear regressions between log10-transformed metabolic rate
(gO2d

−1) and weight (g) for the study species, predicted by model 1.
Symbols represent empirical measurements. Solid and dashed lines rep-
resent predicted mean standard metabolic rate (SMR) and maximum
metabolic rate (MMR) values, respectively. Transparent areas are the
95% credible intervals of the fitted values of the regression.
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7.4.2 Swimming speed

The regression model predicting species-specific swimming speed as a function of

body size had a median Bayesian R2 of 0.57 and its residual variance (σ) was 0.37.

The average species-specific slope values varied between 0.18 and 0.97 (figure 7.3,

table 7.2). At the individual scale, the 95% credible interval of swimming speed

predictions varied between 28.5 and 32.4 cm s-1 across all species and size classes. For

maximum swimming speed, our model showed an increase with body size and aspect

ratio (table 7.3), with a median Bayesian R2 of 0.46. We then used this model to

estimate maximum swimming speeds (figure 7.3).

Figure 7.3: Linear regressions between log10-transformed speed (cms−1)
and length (cm) for the seven studied fish species. Symbols represent
the raw data of individuals measured through stereo-video analysis.
Solid lines and shaded areas represent the predicted mean values, and
associated 95% credible interval of swimming speeds. The dashed lines
represent the predicted maximum swimming speeds.
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7.4.3 Field metabolic rate, factorial aerobic scope and facto-

rial scope for activity estimations

We estimated AMRfield, FAS, and FSA across the size range of our study species as

observed in the monitoring dataset from Mo’orea in 2016. Across all species and size

classes, average AMRfield estimates ranged between 0.001 and 1.013 g O2 d-1 at the

individual level (table 7.4). FAS and FSA estimates range between 2.4 and 7.0, and

between 1.2 and 3.2, respectively, across species and sizes. The scaling exponent of

AMRfield was higher than the SMR exponent for all species, except for C. striatus

(figure 7.4a), hence, FSA increased with size for all those species (figure 7.4b). The

scaling exponent of AMRfield was considerably higher than the MMR exponents for

N. lituratus and O. niger.
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Figure 7.4: a) Fitted scaling exponents for standard metabolic rate
(SMR), maximum metabolic rate (MMR), and field metabolic rate
(AMRfield) based on slopes of the log10-log10 relationships between the
metabolic rates (gO2d

−1) and body mass (g). Lines represent the 95%
credible interval and dots indicate the average values. b) Predicted av-
erage factorial scope for activity (FSA) for the seven reef fish species
across their body size range.
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7.4.4 Assemblage-level predictions

Scaling up SMR and AMRfield to the assemblage level revealed major variation in

the two estimates of metabolism, with average SMR (± SD) for this assemblage of

seven fish species across sites (ranging between 0.026 ± 0.009 and 0.325 ± 0.021 g O2

m-2 d-1; figure 7.5) tending to be about half total AMRfield (ranging betwen 0.036

± 0.014 g O2 m-2 d-1 and 0.465 ± 0.07 g O2 m-2 d-1). Spatial variation in total

SMR and AMRfield reflected patterns in the relative abundance of the seven study

species across sites (figure 7.5, figure 7.4). Afareaitu, Maatea, Motu Ahi, Taotaha,

and Tetaiuo, sites where C. argus and O. niger dominated the reef fish assemblage,

had a total AMRfield about twice as high as the total SMR. On the contrary, sites

dominated by C. striatus (50 to 95% of the total reef fish abundance) had total

AMRfield 1.27 to 1.41 times higher than total SMR (i.e., Nuarei, Pihaena, Temae,

and Tiahura).
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Figure 7.5: Field (AMRfield) and standard metabolic rates (SMR) of an
assemblage of six reef fish species at 13 sites around Mo’orea, French
Polynesia. Dashed lines represent 1.5 times the SMR as a reference.
Coloured bars display the relative abundances of the reef fish species
at each site.
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7.5 Discussion

Field metabolic rate (FMR) is an essential organismal property that mediates ele-

mental fluxes across the food web, thus influencing system-wide movements of energy

and nutrients. By coupling laboratory data on metabolic rates with field observations

of body size and swimming activity through stereo-video analysis, we estimated the

activity component of FMR (the field active metabolic rate, AMRfield). Further,

we demonstrate that the factorial scope for activity (FSA) of reef fish species varies

substantially across species, and that the metabolic scaling exponent of AMRfield can

substantially exceed the canonical value of 0.75, which also affects community-level

estimates of metabolic rate. Therefore, our results highlight the potential pitfalls of

estimating the community-level metabolic rate of heterogeneous reef fish assemblages

based on scaled-up estimates of SMR instead of AMRfield. We suggest that the

coupling of physiological traits with stereo-video analyses provides an opportunity to

estimate field metabolic rates of fishes in marine environments that allow for visual

assessments.

The FSA can be an important parameter to predict the energy consumption of

fishes in the wild (e.g., Schiettekatte et al. (2020)). Our estimates of FSA were

comparable to previous estimates for a small fresh-water fish, in which the FSA was

obtained through a combination of bioenergetic modeling and behavioral observations

[~1.9; Trudel & Boisclair (1996)]. In contrast, several other fish species may have a

much higher AMRfield as locomotion has been reported to increase metabolic rate up

to five-fold, and up to nine-fold in tuna (Thunnus albacares)(Brill & Bushnell 1991;

Chabot et al. 2016). However, it is still challenging to quantify where AMRfield lies

for most species.

The varying estimates of FSA may relate to the swimming speed and the aerobic

capacity of the studied species (Clark et al. 2013). In our case study, the two fishes

with the highest FSA were O. niger and C. argus, which appear to exploit about 45%

and 60% of their aerobic scope in their natural environment, respectively. Therefore,
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C. argus has a high FSA mostly due to its high aerobic scope, while O. niger has the

highest FSA in our case study both because of a high aerobic capacity and because

it uses a larger proportion of it for swimming. On the other hand, fishes with a lower

FSA (i.e., C. iomelas, C. ornatissimus, C. striatus, and Z. scopas) were quite active,

relative to their maximum swimming capacities, and exploited more than 50% of their

aerobic scope. However, because their aerobic scope is low, so is their FSA.

These results corroborate the notion that AMRfield in fishes is strongly influenced

by ecological traits, such as size, trophic level and habitat use (Brown et al. 2004;

Nash et al. 2015; Killen et al. 2016). Larger fishes tend to have a higher aerobic

capacity than smaller species (Brown et al. 2004), and larger sizes in fishes permit the

establishment of larger home ranges (Nash et al. 2015). Furthermore, predators often

have a higher metabolic capacity, compared to herbivores, and pelagic fishes often

have higher metabolic potential than benthic fishes, as they have high locomotory

demands because of their mobility in a 3D environment (Nash et al. 2015; Killen et

al. 2016). Pairwise comparisons among our study species (e.g., the herbivorous Z.

scopas vs. the carnivorous C. argus or the benthopelagic C. striatus vs. the epipelagic

O. niger) strongly support an ecological basis for metabolic differentiation.

Beyond interspecific differences, our results suggest that AMRfield scales differ-

ently with body mass compared to standard metabolic rates (SMR) or maximum

metabolic rates (MMR). The SMRs of our study species varied predictably with

body mass, in accordance with the metabolic theory of ecology (Brown et al. 2004),

with the average slope value approximating the allometric scaling exponent of 0.75

predicted by West et al. (West et al. 1997). In contrast, except for C. striatus, all

species had a scaling exponent for AMRfield, that considerably exceeded 0.75. Conse-

quently, the FSA was positively correlated with body size for most species, suggesting

that large individuals of a species consume more oxygen in their natural environment

than previously assumed. For some species, such as C. argus, the scaling exponent

of AMRfield is similar to that of SMR, while for other species such as N. lituratus

and O. niger, the scaling exponent of AMRfield is much higher. Importantly, there
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is a higher interspecific variability of the scaling exponent of AMRfield compared to

SMR and MMR. This underlines the importance of both species identity and body

size when estimating FMR.

Scaling up, community-level standard metabolic rates should vary predictively

with both community composition and intraspecific size structure (Allen et al. 2005);

Barneche et al. 2014). However, failing to account for the increased variation in

scaling exponents of field metabolic rates may lead to severe underestimates of the

contribution of large mobile fishes to the total respiration of fish communities. In-

deed, comparing our assemblage-level estimates based on SMR with assemblage-level

estimates based on AMRfield reveals the potential pitfalls of using SMR to study

community-level metabolic rates (e.g., Cheung et al. (2013); Deutsch et al. (2015);

Holt & Jørgensen (2015)). The ratio between community-level AMRfield and SMR is

extremely variable, thus suggesting that universal corrections to convert laboratory-

estimated SMR into AMRfield are likely unreliable. For example, communities with

a similar biomass and size structure may be considered as having a similar metabolic

rate when using SMR as a proxy. However, if a community includes species that

have a much higher metabolic scaling exponent, the role of large individuals, and

thus the community-level metabolic rate may be underestimated severely. Thus, it is

important to consider a higher variation in metabolic scaling of FMR than previously

assumed if we want to estimate energy flow in fish communities.

While our approach offers a novel way to estimate the activity rate and metabolism

of fishes, it comes with some limitations. First, we used family-level maximum swim-

ming speeds to reconstruct the relationship between metabolic rate and swimming

speed (Fulton 2007). Although we accounted for variation in body shapes, this may

introduce some bias into the calculations, as species within a family and body shape

can differ substantially. Further, our method relies on the assumption that metabolic

rate varies predictively with swimming speed following a traditional power function

(Brett 1964; Korsmeyer et al. 2002). Ideally, this relationship should be verified

empirically by measuring swimming speed and respiration rate simultaneously in
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the laboratory. Furthermore, we quantified FSA assuming that fishes’ spontaneous

swimming activity follows strict circadian cycles, with all activity occurring diurnally.

However, activity patterns of reef fishes are often flexible (Zhdanova & Reebs 2006).

While, in principle, all our studied families are diurnally active, some species, (e.g.,

Serranidae) can be nocturnally active (Mourier et al. 2016). Thus, our assumption

can cause potential underestimates of FSA in C. argus and other species with more

flexible circadian activity patterns. Currently, stereo-video recordings are unable to

quantify fish swimming speeds at night, as measurements are inaccurate and imprecise

in darkness and poor visibility (Neuswanger et al. 2016). However, infrared lighting

in stereo-video recordings could provide a solution to observe nocturnal behavior and

movement in fishes (Bassett & Montgomery 2011).

Finally, while AMRfield than SMR or routine metabolic rate (the average

laboratory-estimated metabolic rate of fish kept in respirometry chambers, which

includes spontaneous activity; Norin & Speers-Roesch (2020), it still doesn not

include all energy expenditure of fishes in the wild, such as reproduction and

digestion. Digestion (often expressed as specific dynamic action; SDA) can be a large

component of the energy budget of fishes (e.g., ~17% of SMR; Holt & Jørgensen

(2015)). SDA can be measured in the laboratory, where a fish is given a meal and

the oxygen consumption is measured for the duration of the digestion of this meal.

SDA relates predictively to both meal size and body mass of a fish (Secor 2009),

but using this relationship to calculate SDA of species in natural communities is not

feasible. It is nearly impossible to track frequency of meals and meal sizes of fishes

in the wild, even though some bioenergetic modeling allows for an approximation of

consumption rates (e.g., Schiettekatte et al. (2020)). Further, these experiments are

largely based on predatory fishes, and do not necessarily represent natural feeding

behavior as many fishes do not consume and digest a meal before eating the next

meal. Notably, herbivores and detritivores, but also planktivores, feed constantly,

and their energy expenditure related to digestion is understudied. Therefore, we

stress the need for more research on the energy consumption of digestion across a
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wide range of fishes to achieve improved FMR approximations for fish communities

in the wild.

Despite these limitations, our proposed method increases our awareness of the

variation in AMRfield among reef fishes, which is necessary to understand ecosystem-

level estimates of elemental fluxes. So far, the quantification of AMRfield is limited

to laboratory techniques that are reliant on destructive sampling [analysis of trace

elements in otoliths; Chung et al. (2019)], or restricted to species that are big enough

to be tagged with biotelemetry equipment (Brodie et al. 2016; Treberg et al. 2016).

When combined with respirometry trials, stereo-video offers a nondestructive alter-

native to these techniques that can be applied to all species that can be reliably

observed using in situ cameras. While the post-hoc treatment of the stereo-video

outputs demands significant time and effort, the development of open source software

to automate data collection from video will greatly strengthen our ability and non-

destructive approach to quantifying reef fish AMRfield (Guénard et al. 2008; Bassett

& Montgomery 2011).
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7.7 Supplementary materials

Figure 7.6: Linear regressions between the error (cm) in measurements
collected by video analysis and the distance (cm) from the nearest cam-
era for both underwater stereo-video systems. Each color represents an
underwater stereo-camera system used in this study. Shaded areas show
the linear regression standard errors.
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Figure 7.7: Fish abundance (m−2) of the studied sites. Each colour
represents the abundance of a specific studied reef fish species.
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Table 7.2: Overview of species-specific slope and intercept coefficients
for the regression of natural log-transformed swimming speed on natural
log-transformed body length (in cm). The 95% credible interval is
displayed in the parentheses.

species slope intercept

Cephalopholis argus 0.24 (-0.24;0.65) 1.09 (0.57;1.79)

Chaetodon ornatissimus 0.91 (0.15;1.83) 0.43 (-0.54;1.23)

Chaetodon pelewensis 1.17 (0.59;1.87) 0.13 (-0.46;0.65)

Chlorurus spilurus 0.98 (0.66;1.32) 0.32 (-0.13;0.74)

Chromis iomelas 0.54 (0.33;0.76) 0.77 (0.64;0.88)

Ctenochaetus striatus 0.35 (-0.1;0.75) 0.99 (0.54;1.51)

Naso lituratus 0.79 (0.28;1.76) 0.44 (-0.74;1.17)

Odonus niger 0.84 (0.27;1.33) 0.55 (-0.04;1.27)

Zebrasoma scopas 0.85 (0.61;1.12) 0.43 (0.14;0.71)
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Table 7.3: Overview of regression parameters of log10-transformed
maximum swimming speed as function of log10-transformed body
length (in cm), aspect ratio.

term estimate std.error conf.low conf.high

(Intercept) 1.130 0.162 0.793 1.432

log10Length_cm 0.386 0.149 0.090 0.688

aspect_ratio 0.093 0.022 0.050 0.135
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Table 7.4: Overview of average species- and size-specific estimates of
standard metabolic rate (SMR, in g O2d

−1), maximum metabolic rate
(MMR, in gO2d

−1), field active metabolic rate (AMRfield, in gO2d
−1),

factorial aerobic scope (FAS), and factorial scope for activity (FSA).
Length is expressed in cm.

Family Species length SMR MMR FMR FAS FSA

Acanthuridae Ctenochaetus
striatus

10 0.044 0.112 0.065 2.518 1.237

Acanthuridae Ctenochaetus
striatus

11 0.055 0.140 0.081 2.523 1.233

Acanthuridae Ctenochaetus
striatus

12 0.067 0.171 0.098 2.532 1.229

Acanthuridae Ctenochaetus
striatus

13 0.081 0.206 0.117 2.542 1.225

Acanthuridae Ctenochaetus
striatus

14 0.096 0.244 0.138 2.552 1.223

Acanthuridae Ctenochaetus
striatus

15 0.112 0.287 0.161 2.560 1.219

Acanthuridae Ctenochaetus
striatus

16 0.130 0.333 0.186 2.565 1.217

Acanthuridae Ctenochaetus
striatus

17 0.149 0.384 0.213 2.575 1.215

Acanthuridae Ctenochaetus
striatus

18 0.169 0.438 0.242 2.583 1.213

Acanthuridae Ctenochaetus
striatus

19 0.192 0.497 0.272 2.589 1.211

Acanthuridae Ctenochaetus
striatus

20 0.215 0.560 0.306 2.593 1.210
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Family Species length SMR MMR FMR FAS FSA

Acanthuridae Ctenochaetus
striatus

21 0.241 0.627 0.340 2.599 1.208

Acanthuridae Ctenochaetus
striatus

22 0.267 0.698 0.378 2.604 1.206

Acanthuridae Ctenochaetus
striatus

23 0.296 0.773 0.417 2.609 1.204

Acanthuridae Ctenochaetus
striatus

24 0.327 0.854 0.459 2.613 1.203

Acanthuridae Naso lituratus 17 0.131 0.596 0.215 4.532 1.316

Acanthuridae Naso lituratus 18 0.149 0.681 0.246 4.567 1.324

Acanthuridae Naso lituratus 19 0.168 0.773 0.279 4.589 1.333

Acanthuridae Naso lituratus 20 0.188 0.871 0.316 4.626 1.342

Acanthuridae Naso lituratus 21 0.209 0.976 0.356 4.660 1.352

Acanthuridae Naso lituratus 22 0.231 1.088 0.398 4.693 1.360

Acanthuridae Naso lituratus 23 0.255 1.208 0.442 4.727 1.368

Acanthuridae Naso lituratus 24 0.280 1.333 0.490 4.762 1.376

Acanthuridae Naso lituratus 25 0.306 1.465 0.540 4.791 1.383

Acanthuridae Naso lituratus 26 0.333 1.607 0.593 4.814 1.390

Acanthuridae Naso lituratus 27 0.362 1.753 0.649 4.841 1.397

Acanthuridae Naso lituratus 28 0.392 1.909 0.708 4.866 1.403

Acanthuridae Naso lituratus 29 0.424 2.071 0.770 4.897 1.409
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Family Species length SMR MMR FMR FAS FSA

Acanthuridae Naso lituratus 30 0.456 2.241 0.836 4.924 1.416

Acanthuridae Zebrasoma
scopas

8 0.022 0.054 0.029 2.483 1.176

Acanthuridae Zebrasoma
scopas

9 0.028 0.070 0.038 2.535 1.189

Acanthuridae Zebrasoma
scopas

10 0.035 0.090 0.049 2.580 1.201

Acanthuridae Zebrasoma
scopas

11 0.043 0.112 0.061 2.627 1.213

Acanthuridae Zebrasoma
scopas

12 0.051 0.137 0.074 2.667 1.225

Acanthuridae Zebrasoma
scopas

13 0.061 0.164 0.089 2.707 1.236

Acanthuridae Zebrasoma
scopas

14 0.071 0.195 0.106 2.744 1.246

Acanthuridae Zebrasoma
scopas

15 0.082 0.228 0.125 2.780 1.257

Acanthuridae Zebrasoma
scopas

16 0.094 0.265 0.145 2.812 1.267

Acanthuridae Zebrasoma
scopas

17 0.107 0.305 0.167 2.843 1.278

Acanthuridae Zebrasoma
scopas

18 0.121 0.348 0.191 2.872 1.287

Balistidae Odonus niger 10 0.028 0.170 0.072 5.987 1.780

Balistidae Odonus niger 11 0.035 0.212 0.094 6.091 1.852

Balistidae Odonus niger 12 0.042 0.259 0.119 6.188 1.926
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Family Species length SMR MMR FMR FAS FSA

Balistidae Odonus niger 13 0.050 0.311 0.149 6.267 2.002

Balistidae Odonus niger 14 0.058 0.369 0.184 6.346 2.079

Balistidae Odonus niger 15 0.067 0.433 0.224 6.424 2.161

Balistidae Odonus niger 16 0.077 0.502 0.269 6.498 2.242

Balistidae Odonus niger 17 0.088 0.577 0.321 6.554 2.326

Balistidae Odonus niger 18 0.099 0.658 0.380 6.619 2.410

Balistidae Odonus niger 19 0.112 0.745 0.445 6.686 2.493

Balistidae Odonus niger 20 0.124 0.838 0.518 6.748 2.581

Balistidae Odonus niger 21 0.138 0.937 0.598 6.814 2.669

Balistidae Odonus niger 22 0.152 1.043 0.687 6.863 2.756

Balistidae Odonus niger 23 0.167 1.155 0.787 6.916 2.849

Balistidae Odonus niger 24 0.183 1.275 0.898 6.963 2.948

Balistidae Odonus niger 25 0.200 1.401 1.018 7.018 3.047

Balistidae Odonus niger 26 0.217 1.534 1.150 7.078 3.148

ChaetodontidaeChaetodon
ornatissimus

9 0.027 0.081 0.040 2.982 1.228

ChaetodontidaeChaetodon
ornatissimus

10 0.034 0.104 0.051 3.055 1.250

ChaetodontidaeChaetodon
ornatissimus

11 0.042 0.131 0.065 3.123 1.273
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Family Species length SMR MMR FMR FAS FSA

ChaetodontidaeChaetodon
ornatissimus

12 0.050 0.160 0.080 3.181 1.293

ChaetodontidaeChaetodon
ornatissimus

13 0.060 0.193 0.097 3.238 1.313

ChaetodontidaeChaetodon
ornatissimus

14 0.070 0.230 0.116 3.292 1.333

ChaetodontidaeChaetodon
ornatissimus

15 0.081 0.270 0.138 3.343 1.353

ChaetodontidaeChaetodon
ornatissimus

16 0.093 0.314 0.162 3.394 1.372

ChaetodontidaeChaetodon
ornatissimus

17 0.106 0.363 0.189 3.435 1.393

ChaetodontidaeChaetodon
ornatissimus

18 0.119 0.415 0.218 3.479 1.412

ChaetodontidaeChaetodon
ornatissimus

19 0.134 0.471 0.250 3.524 1.432

Pomacentridae Chromis
iomelas

2 0.001 0.002 0.001 2.724 1.148

Pomacentridae Chromis
iomelas

3 0.002 0.006 0.003 2.864 1.186

Pomacentridae Chromis
iomelas

4 0.004 0.011 0.005 2.963 1.217

Pomacentridae Chromis
iomelas

5 0.006 0.019 0.009 3.053 1.248

Pomacentridae Chromis
iomelas

6 0.009 0.029 0.014 3.120 1.277
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Family Species length SMR MMR FMR FAS FSA

Pomacentridae Chromis
iomelas

7 0.013 0.042 0.021 3.180 1.304

Pomacentridae Chromis
iomelas

8 0.018 0.057 0.029 3.247 1.331

Serranidae Cephalopholis
argus

12 0.027 0.139 0.068 5.165 1.761

Serranidae Cephalopholis
argus

13 0.032 0.168 0.082 5.278 1.780

Serranidae Cephalopholis
argus

14 0.037 0.201 0.097 5.386 1.796

Serranidae Cephalopholis
argus

15 0.043 0.237 0.114 5.474 1.813

Serranidae Cephalopholis
argus

16 0.050 0.276 0.132 5.560 1.828

Serranidae Cephalopholis
argus

17 0.056 0.319 0.152 5.649 1.843

Serranidae Cephalopholis
argus

18 0.064 0.366 0.173 5.750 1.857

Serranidae Cephalopholis
argus

19 0.072 0.417 0.197 5.833 1.870

Serranidae Cephalopholis
argus

20 0.080 0.471 0.221 5.912 1.883

Serranidae Cephalopholis
argus

21 0.089 0.530 0.248 5.992 1.894

Serranidae Cephalopholis
argus

22 0.098 0.593 0.275 6.070 1.904
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Family Species length SMR MMR FMR FAS FSA

Serranidae Cephalopholis
argus

23 0.108 0.659 0.305 6.135 1.913

Serranidae Cephalopholis
argus

24 0.118 0.729 0.336 6.206 1.920

Serranidae Cephalopholis
argus

25 0.129 0.804 0.369 6.276 1.929

Serranidae Cephalopholis
argus

26 0.140 0.883 0.404 6.340 1.939

Serranidae Cephalopholis
argus

27 0.152 0.967 0.441 6.398 1.948

Serranidae Cephalopholis
argus

28 0.165 1.054 0.479 6.462 1.956

Serranidae Cephalopholis
argus

29 0.177 1.147 0.519 6.517 1.964

Serranidae Cephalopholis
argus

30 0.191 1.244 0.562 6.578 1.974

Serranidae Cephalopholis
argus

31 0.204 1.345 0.605 6.631 1.979

Serranidae Cephalopholis
argus

32 0.219 1.450 0.651 6.684 1.987

Serranidae Cephalopholis
argus

33 0.234 1.561 0.699 6.733 1.995

Serranidae Cephalopholis
argus

34 0.249 1.677 0.749 6.778 2.003

Serranidae Cephalopholis
argus

35 0.265 1.796 0.800 6.826 2.010
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Family Species length SMR MMR FMR FAS FSA

Serranidae Cephalopholis
argus

36 0.281 1.922 0.854 6.870 2.018

Serranidae Cephalopholis
argus

37 0.298 2.052 0.910 6.917 2.025





Chapter 8

General discussion and future

directions

8.1 Main advances

Through their functioning, coral reefs provide a plethora of ecosystem services that

support the livelihood of more than 500 million people worldwide. However, this sys-

tem is threatened by climate change and human pressures at an unprecedented level

and concerns are emerging about the capacity of reefs to deliver services in the near

future. In light of the ongoing human-induced degradation of coral reef ecosystems

and the important role of coral reef fishes, it is crucial to increase our knowledge

concerning fish-mediated functions on coral reefs (i.e., their contribution to fluxes

of carbon, nitrogen, and phosphorus through consumption, growth, excretion, and

egestion) (Bellwood et al. 2019). Indeed these fluxes are tightly related to the overall

productivity of the ecosystem and its capacity to provide food of high nutritional

value for people. However, methodological challenges have thus far impeded the pre-

cise quantification of functions, and most studies in the past relied on proxies (such

as standing stock biomass) to infer functioning (Brandl et al. 2019a). In this thesis,
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I sought to advance our understanding of fish-mediated functions through a variety

of new methods and their use to quantify elemental fluxes at the organismal and

community level.

My thesis work produced several methodological advances that can help estimate

ecosystem functions mediated by fishes. First, on the basis of existing ecological

theory, I developed and validated a novel model that can estimate fluxes of carbon,

nitrogen, and phosphorus through consumption, growth, respiration, excretion, and

egestion (chapter 2). To ensure applicability, I also developed the R package ‘fish-

flux’ (appendix A). Second, I introduced an approach to infer biological traits (e.g.,

trophic guilds, growth rates, body stoichiometry) to a global species list in a Bayesian

framework using phylogeny and ancestral state reconstruction (chapter 3, 4). Third,

I developed a back-calculation model as well as a Bayesian hierarchical regression

model to retrieve growth parameters from otolith measurements, accompanied by

the R package ‘fishgrowbot’ (chapter 4, appendix B). Finally, in chapter 7, I intro-

duced a new framework that integrates stereo-video recording in the field and ex situ

metabolic rate estimates to approximate field metabolic rates.

Beyond methodological advances, my quantification of multiple functions (which

is to my knowledge one of the first efforts to estimate a spectrum of fish-mediated

functions) has underlined the undeniable role of the biological characteristics that

come with the species identity of an individual for governing community-level func-

tioning. Intuitively, biomass alone is an important predictor of any function, but

beyond biomass, there is important variability that is explained by community com-

position as well as their size and age structure. For example, a fish community

consisting of abundant young fast growing damselfishes will inevitably have a high

biomass production, while a community dominated by large groupers will excrete a

lot of phosphorus. Furthermore, the activity rate of coral reef fishes can vary up to

about 3-fold across species (chapter 7). Highly active fishes can contribute dispropor-

tionally to energy and nutrient fluxes, but this has never been included in functional

studies due to the methodological challenge of estimating activity rates of fishes in
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their natural environment. Finally, species identity has a large effect on absorption

efficiencies and thus consumption and egestion rates (chapter 6). Indeed, even within

the same fish family and trophic guild (e.g., Acanthuridae), there is much variation

in absorption efficiency which may be related to fine-scale niche partitioning (Brandl

& Bellwood 2014), but the precise mechanisms driving this variation are yet to be

understood. In the context of the uneven effects of anthropogenic stressors such as

climate change or overexploitation on reef fish community structures (e.g., Pauly et

al. 1998; Wilson et al. 2009; Graham et al. 2011), the findings presented in this

thesis could help to foster a better understanding of how these impacts will shape

reef-wide functioning.

In addition, the work presented in this thesis highlights the existing trade-offs

among fish-mediated functions resulting from organismal processes and community

structure. On the individual level, there are obvious physiological trade-offs (chap-

ter 2). For example, in an early life stage, fishes are likely to be phosphorus-limited,

which entails that they will excrete little phosphorus, while contributing substantially

to biomass production. Such individual-level physiological trade-offs, combined with

variation among species within communities, result in critical trade-offs among mul-

tiple functions at the community-level (chapter 5). Additionally, while not analyzed

explicitly, egestion rates also correlate positively or negatively with other functions.

For example, herbivory rates are positively correlated with egestion rates, and there

can be a trade-off between egestion rate and piscivory or excretion rates. Importantly,

there is also a trade-off between egestion quality and quantity. This is important since

a community of fishes collectively releasing a high amount of low-nutrient organic

matter has an entirely different effect on the environment compared to a community

releasing fewer but high-quality egestion.

Finally, the existing trade-offs among functions introduce a new paradigm in coral

reef conservation: no particular community can possibly maximize all functions. Cur-

rently, maximizing “ecosystem functioning” is seen as the overarching conservation

goal to ensure the health of coral reef ecosystems (Hughes et al. 2017). However,
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efforts to maximize one function may actually simultaneously cause a decline of an-

other function and since most species play a dominant role for one or more functions

at a given location, it is impossible to produce a curated list of key species to conserve

to ensure functioning. While my thesis work has produced methods and results that

permit us to scrutinize coral reef functioning in greater detail, it is clear that more

research is needed to aid in the comprehension and protection of coral reef ecosystems

in times of unparalleled environmental change.

8.2 Future directions

The work presented in this thesis generated a range of questions and potential research

directions related to fish-mediated functions on coral reefs.

In recent decades, trait-based ecology has gained much traction in coral reef fish

research (Villéger et al. 2017; Brandl et al. 2019a; Hadj-Hammou et al. 2021; Quim-

bayo et al. 2021). Traits are sometimes used to infer functioning assuming there is

a certain relationship between traits and functions. However direct quantifications

of the trait-function relationship are scarce and trait-based approaches have been re-

cently questioned in their capacity to describe ecosystem functioning (Bellwood et al.

2019) The model presented in chapter 2 provides a way to mechanistically link func-

tions with commonly-used traits including life history traits (e.g., age, growth rate),

morphological traits (e.g., size), dietary traits (e.g., diet, trophic level), and physio-

logical traits (e.g., metabolic rate) (Hadj-Hammou et al. 2021). Similarly, although

the distribution of coarse traits (size, age, and trophic level) at the community level

may help predict several functions (chapter 5), physiological and behavioral traits

such as the absorption efficiency (chapter 6) and activity rate (chapter 7) stand to

be extremely important, but are difficult to quantify for a large number of species.

Creating and collating information on species’ traits through both empirical data col-

lection and organismal modeling efforts (cf. chapter 2) will greatly advance the power
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of trait-based approaches in the future.

Beyond broad trait categories, an important step towards understanding the func-

tioning of coral reef fish communities across trophic levels is to couple fluxes of el-

ements with detailed food web structures. Most food-web analyses in the marine

environment are based on either presence-absence of trophic interactions or on in-

teraction strengths derived from biomass. However, according to the mechanisms

that structure the food web (e.g., top-down or bottom-up processes) biomass does

not equal consumption. Chapter 3 provides a global matrix of potential predator-

prey interactions based on machine learning inference. Using the methods and data

provided in this thesis, there is a potential to analyze the food web structure based

on actual fluxes of energy and elements (i.e., modeled consumption rates). How-

ever, this is made difficult by the apparent prevalence of fine-scale niche partitioning

within trophic categories (e.g., Brandl & Bellwood 2014; Leray et al. 2019; Brandl

et al. 2020b). Novel techniques such as gut metabarcoding can provide unprece-

dented detail on the many trophic linkages that exist in coral reef food webs (Leray

& Knowlton 2015; Casey et al. 2019), although some aspects of trophic interac-

tions (e.g., coprophagy) will remain challenging to detect if not for detailed in situ

observations.

In this context, another promising avenue for future research is the effect of behav-

ior and activity on fish-mediated functions and nutrient translocation. Active fishes

have a higher metabolic rate and consequently, consume, excrete, and egest more

elements. This thesis provided a first quantification of the activity rate of seven reef

fishes (chapter 7), but these estimates need to be improved and expanded to other

species. For example, linking stereo-video observation with biotelemetry and internal

physiological data loggers may increase accuracy of active metabolic rate estimates

(Metcalfe et al. 2016), while other promising techniques based on otolith isotopes may

help elucidate lifetime metabolic demands (Chung et al. 2019). Further, space use of

fishes will determine the areas that are most influenced by nutrient release. For ex-

ample, a planktivorous fish spending most of its time in the water column will excrete
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nutrients that may be used by phytoplankton for primary production, while egesting

organic material that is likely to serve as food for other fishes (Robertson 1982). On

the other hand, cryptic fishes that spend most of their time hiding in the reef ma-

trix will have a larger effect on benthic primary production and cryptic detritivores.

Yet, horizontal and vertical migration can represent important vectors of nutrients

between different habitats. Continuous improvements of biotelemetry, stereo-video

observation techniques, and isotope profiles may help elucidate behaviourally medi-

ated transfer of elements across the coral reef seascape (Matley et al. 2016; Meese &

Lowe 2020).

Perhaps the most widely overlooked aspect of nutrient recycling by fish is the fate

of fish feces. In contrast to the excretion of inorganic nutrients, fish egestion contains

complex organic molecules and although a part of these nutrients will leach into the

water column (Stewart et al. 2006), a large proportion of the nutrients found in feces

will not directly be available to primary production. However, this does not mean

that those nutrients are not recycled in an efficient way. Egested organic material

can be consumed by other animals including coprophagous fishes (Robertson 1982),

invertebrates inhabiting crevices (Rothans & Miller 1991; Pinnegar & Polunin 2006),

and corals (Mills & Sebens 2004). However, we have little knowledge on the precise

importance of fecal matter for different animals. More studies using techniques such

as behavioral observations (cf. Robertson 1982), fecal traps (cf. Pinnegar & Polunin

2006), and markers (cf. Rothans & Miller 1991) may collectively help clarify how

fish feces are integrated in food webs. Given the large proportion of nutrients being

released through feces (chapter 6), further studies investigating the fate of fish feces

will be crucial to better understand nutrient cycles on coral reefs.

Furthermore, a closer examination of the intra-specific variability of functions

provided by fishes is needed. Beyond known effects of body size, age, and tempera-

ture, I did not incorporate intra-specific variability in this thesis. It would be useful

to investigate pathways in which environmental, geographical or anthropogenic vari-

ables or individual-level behavior impact intra-specific variability of functions (Des
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Roches et al. 2018). For example, the algae on which herbivorous fishes feed can vary

greatly in their nutrient content depending on the local conditions. Varying elemental

content of the diet can affect nutrient limitation, the consumption rate and conse-

quently excretion and egestion. Such dietary variation is difficult to capture, but a

compilation of dietary data from empirical data (cf. Parravicini et al. (2020)) could

greatly facilitate our understanding of the effect of intraspecific variation across space

and time. Similar efforts for other taxa (cf. the Coral Trait Database, Madin et al.

(2016)) highlight the feasibility and utility of this approach. Finally, while I included

temperature related variation for growth rate and metabolic rate using relationships

that are well studied, there may be other ways in which temperature affects func-

tioning. For example, evidence from other animals shows that absorption efficiency

can increase with temperature (Lang et al. 2017), but this has not been broadly

established. Given that various physiological parameters and biochemical reactions

are highly reactive to temperature, it appears necessary to increase our knowledge of

organismal responses to temperature in reef fishes beyond typically studied param-

eters like whole-organism metabolism or growth (Barneche et al. 2014; Barneche &

Allen 2018; Morais & Bellwood 2018).

Finally, the majority of my thesis work has focused on large, conspicuous fishes

by virtue of their easy detectability in visual censuses. However, the cryptobenthic

fish community represents a widely overlooked side of coral reef fish diversity (Brandl

et al. 2018). Despite their small size, they are an extremely diverse and abundant

group of fishes, and a critical component of coral reef food webs (Brandl et al. 2018).

Indeed, due to their high abundance, rapid growth and high mortality rate, cryp-

tobenthic fishes produce more than half of consumed reef fish biomass (Brandl et

al. 2019b). Despite their trophic importance, we know very little about their body

nutrient stoichiometry, which impedes a more precise understanding of their role in

fueling elements to higher trophic levels. Therefore, an investigation of elemental

stoichiometry of this diverse group of fishes would be relevant.
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8.3 Concluding remarks

Understanding the processes that underpin ecosystem functioning is paramount to

preserving healthy ecosystems for future generations (Bellwood et al. 2019). While

this thesis has contributed to our ability to quantify and understand drivers of fish-

mediated functions on coral reefs, it also highlights the vast pool of knowledge that

is yet to be gained on the topic. Anthropogenic impacts on coral reefs, however, are

intensifying rapidly, and despite a large number of excellent research results geared

towards augmenting our understanding of reef functioning, our comprehension of

process-based functioning of coral reefs or what a “functional” coral reef really means

is still in its infancy (Brandl et al. 2019a). In order to keep pace with the human-

induced transformation of coral reef ecosystems, we need to accelerate our research

efforts through collaborations between specialists via open and reproducible research.

In other words, it is necessary to integrate across the fields of macro-ecology, organ-

ismal physiology, ecosystem biogeochemistry, and community ecology to advance our

knowledge on functions, understand the varying pathways in which humans impact

them, and learn how we can improve guidance to conservation management in the

future. In my thesis, I have contributed to this cause, by developing and applying a

series of tools that can help eliminate perceived boundaries between the aforemen-

tioned fields to create a more holistic understanding of the role of fishes for coral reef

functioning.
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Introduction to fishflux
Vignette

Nina M. D. Schiettekatte

Introduction

The fishflux package provides a tool to model fluxes of C (carbon), N (nitrogen) and P (phosphorus) in
fishes. It combines basic principles from elemental stoichiometry and metabolic theory. The package offers a
user-friendly interface to apply the model. fishflux is ideal for fish ecologists wishing to predict ingestion,
egestion and excretion to study fluxes of nutrients and energy.

Main assets:

• Provides function to model fluxes of Carbon, Nitrogen and Phosphorus for fishes
• Allows for the estimation of uncertainty, dpending on the uncertainy of the input parameters
• Provides some functions to help find parameters as inputs for the model
• Provides functions to extract and illustrate results

Installing and loading fishflux

fishflux uses Markov Chain Monte Carlo simulations provided by stan. Therefore, the first step is to
install rstan. It’s important to closely follow all the steps described on the page depending on your operating
system.

GitHub

The best way to install the latest development version of fishflux is to install it from GitHub.

install.packages("devtools")
devtools::install_github("nschiett/fishflux", dependencies = TRUE)
# if errors are returned, try adding `args = "--preclean"` to `install_github`
library(fishflux)

CRAN

fishflux will be available on CRAN in the future:

install.packages("fishflux")
library(fishflux)

1
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Downloaded package file

Another option is to download the source file available on GitHub here.

install.packages(path_to_fishflux_file, repos = NULL, type = "source")
library(fishflux)

How to use fishflux?

fishflux is designed to follow three simple steps:

• Find the right input parameters
• Run the model simulation with those input parameters
• Plot the model results and check sensitivity

Input parameters

Before running the model, the parameters have to be specified. Below, there is a table showing all parameters
needed to run the model simulation. fishflux provides several functions to find some of these parameters,
but note that others have to be provided by the user at this stage. Ideally, all parameters should also have
a standard deviation, so that their uncertainty can be reflected in the model predictions

Table 1: . Overview of inputs, including input parameters, to be specified by the user of the model. k
indicates c, n or p. VBGC = von Bertalanffy growth curve.

Symbol Description Unit
ak Element-specific assimilation efficiency _
lt Total length of individual cm
linf Asymptotic adult length (VBGC) cm
κ Growth rate parameter (VBGC) yr−1

t0 Age at settlement (VBGC) yr
lwa Parameter length-weight relationship g cm−1

lwb Parameter length-weight relationship _
Qk Element-specific body content percentage %
f0 Metabolic normalisation constant independent of body mass g Cg−αd−1

alpha Mass-scaling exponent _
theta Activity scope _
v Environmental temperature °C
h trophic level _
r Aspect ratio of caudal fin _
F0nz Mass-specific turnover rate of N g Ng−1d−1

F0pz Mass-specific turnover rate of P g Pg−1d−1

mdw Ratio of dry mass and wet mass of fish _
Dk Elemental stoichiometry of diet %

A good place to start is checking if you are using the correct scientific name of your species of interest. The
function name_errors will tell you if the species name is correct. This function can be useful, especially
when working with larger databases.

# example
fishflux::name_errors("Zebrazoma scopas")
#> Inaccurate species names found:
#> [1] "Zebrazoma scopas"

2
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Once the species names are verified and/or corrected we can continue with specifying some parameters.

The find_lw function searches FishBase to find length-weight relationship parameters lw_a and lw_b ex-
tracted from Froese and Pauly (2018).

# example
fishflux::find_lw("Zebrasoma scopas", mirror = "se")
#> species lwa_m lwa_sd lwb_m lwb_sd
#> 1 Zebrasoma scopas 0.02455 0.00269898 2.98 0.0255102

The model uses parameters von Bertalanffy’s growth model (VBGM) to estimate growth rates. A quick way
to get available information from FishBase is the function growth_params(). This can be a good indication,
but users should interpret these estimates with a critical eye, as they come from disparate sources of varying
accuracy. Alternatively, it is advised to use growth curves derived from otolith readings. In the absence of
otolith data, one might consider extracting standardised estimations from Morais and Bellwood (2018).

# example
# The option otolith=TRUE filters out sources that used otoliths for
# the estimation of growth parameters
fishflux::growth_params("Sargocentron microstoma", otolith = FALSE)
#> # A tibble: 1 x 7
#> species Locality k Linf t0 method comments
#> <chr> <chr> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 Sargocentron mic~ Tiahura reef, Moor~ 1 18.6 NA length-frequ~ <NA>

Further, there are a couple more basic functions to get an indication of parameters that are available on
FishBase such as trophic_level() and aspect_ratio().

Note that it is always better to get the approximations through analysis, measurements and otolith
analysis over parameters extracted from functions, such as growth_params(), trophic_level() and
aspect_ratio().

To get an overview of all parameters available, fishflux provides a wrapper function model_parameters().

# example
zebsco <- fishflux::model_parameters("Zebrasoma scopas",

family = "Acanthuridae",
temp = 27, mirror = "se")

## Here we set the temperature at 27 degrees as an example,
# this the average sea temperature in Moorea, French Polynesia

print(zebsco)
#> species t0 Linf k asp troph lwa_m lwa_sd lwb_m
#> 1 Zebrasoma scopas -0.49 13.3 0.425 2.02091 2 0.02455 0.00269898 2.98
#> lwb_sd mdw_m f0_m f0_sd alpha_m alpha_sd
#> 1 0.0255102 0.2504833 0.001517989 3.216843e-10 0.77 0.05286288

All other parameters have to be provided by the user. For more information on how to acquire these
parameters, take a look at (“this paper” add reference to methods paper).

Run model

Once all the parameters are collected, we can run the model through cnp_model_mcmc(). Note that this
model can be run with or without specifying the standard deviation (sd) of each parameter. If the sd of

3
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a certain parameter is not provided, it will be automatically set to a very low value (1-10). As mentioned
before, it is advisable to include uncertainty of parameters. fishflux is designed to use the MCMC sampler
in order to include uncertainty of predictions.

## load the example parameters for Zebrasoma scopas, a list
param_zebsco <- fishflux::param_zebsco
## Run the model, specifying the target length(s) and the parameter list
model <- fishflux::cnp_model_mcmc(TL = 5:20, param = param_zebsco)

The object model now contains all the samples generated from the MCMC simulation and a summary of all
parameters generated. To extract certain variables of interest, use the extract() function. Predictions for
fluxes of C, N and P are all in g / day.

fishflux::extract(model, c("Fn","Fp"))
#> TL Fn_mean Fn_median Fn_sd Fn_2.5% Fn_97.5%
#> 1 5 0.000865498 0.0007901645 0.0004266623 0.0002155917 0.001812691
#> 2 6 0.001333738 0.0012539452 0.0006303633 0.0002819543 0.002754214
#> 3 7 0.001846134 0.0017292042 0.0008899991 0.0005445658 0.003836937
#> 4 8 0.002592355 0.0023477024 0.0012557299 0.0007512989 0.005477138
#> 5 9 0.003318977 0.0030607178 0.0016491348 0.0008493116 0.007170141
#> 6 10 0.004390001 0.0039235793 0.0023092157 0.0011736460 0.009644176
#> 7 11 0.005525681 0.0048234215 0.0030990467 0.0013346544 0.013321759
#> 8 12 0.007539917 0.0068580477 0.0044704207 0.0016651136 0.018222282
#> 9 13 0.009177191 0.0080703628 0.0057522474 0.0019206302 0.021619458
#> 10 14 0.010919997 0.0092782040 0.0068858709 0.0022665845 0.029379394
#> 11 15 0.012869289 0.0107010859 0.0085420755 0.0025458709 0.033360973
#> 12 16 0.016458252 0.0136074163 0.0113036946 0.0027319628 0.044906302
#> 13 17 0.019156353 0.0160746543 0.0122038615 0.0034154029 0.046101275
#> 14 18 0.022876566 0.0207892023 0.0135752658 0.0044786612 0.055299709
#> 15 19 0.028012971 0.0240443056 0.0177663918 0.0067133258 0.069334819
#> 16 20 0.032448202 0.0273945060 0.0214161093 0.0076412018 0.082989382
#> Fn_25% Fn_75% Fp_mean Fp_median Fp_sd Fp_2.5%
#> 1 0.0005552009 0.001129592 8.789311e-05 4.449121e-05 0.0001125600 3.301037e-06
#> 2 0.0008998135 0.001651145 1.781781e-04 9.500016e-05 0.0002153971 6.616564e-06
#> 3 0.0011834241 0.002362822 2.953122e-04 1.590450e-04 0.0003277987 1.428904e-05
#> 4 0.0017473826 0.003253593 4.905793e-04 3.124831e-04 0.0004804584 1.284658e-05
#> 5 0.0021216986 0.004193126 6.958065e-04 4.460830e-04 0.0006794054 4.212010e-05
#> 6 0.0026807324 0.005577780 1.042410e-03 7.088466e-04 0.0009378030 4.655138e-05
#> 7 0.0031859019 0.007146965 1.455610e-03 1.087246e-03 0.0012641161 4.332575e-05
#> 8 0.0040216783 0.009915377 2.261623e-03 1.891576e-03 0.0018507826 1.316528e-04
#> 9 0.0046404443 0.012617999 2.862007e-03 2.301698e-03 0.0022754505 1.916098e-04
#> 10 0.0059196673 0.014718882 3.561121e-03 2.883088e-03 0.0027417200 3.021666e-04
#> 11 0.0061902776 0.017605843 4.442872e-03 3.526811e-03 0.0034037676 3.467576e-04
#> 12 0.0082769066 0.022441522 5.985127e-03 4.818493e-03 0.0045754589 6.070533e-04
#> 13 0.0098750296 0.025785902 7.220791e-03 6.085179e-03 0.0049733430 9.664505e-04
#> 14 0.0116742157 0.030460129 8.881020e-03 8.183923e-03 0.0054208041 1.684638e-03
#> 15 0.0144049560 0.035799454 1.111528e-02 9.524836e-03 0.0070308549 2.645643e-03
#> 16 0.0164672672 0.042456662 1.291410e-02 1.092339e-02 0.0085531675 2.976388e-03
#> Fp_97.5% Fp_25% Fp_75%
#> 1 0.0004283892 2.146972e-05 0.0001000052
#> 2 0.0008438546 4.583481e-05 0.0002345847
#> 3 0.0011996053 8.623281e-05 0.0004017513
#> 4 0.0017129359 1.259164e-04 0.0007464626
#> 5 0.0024683824 2.227476e-04 0.0010240593
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#> 6 0.0032489061 3.218557e-04 0.0015496854
#> 7 0.0048796473 4.362123e-04 0.0021512517
#> 8 0.0067100194 7.924988e-04 0.0032731685
#> 9 0.0078996349 1.001101e-03 0.0041666177
#> 10 0.0104437672 1.527580e-03 0.0050958191
#> 11 0.0124709307 1.740371e-03 0.0064001442
#> 12 0.0169826192 2.595457e-03 0.0084189787
#> 13 0.0185083172 3.418455e-03 0.0099387615
#> 14 0.0220496764 4.338024e-03 0.0121141962
#> 15 0.0274448029 5.830521e-03 0.0142951671
#> 16 0.0342496443 6.548229e-03 0.0167089993

Plot results

To visualize main outputs of the model, fishflux contains a plotting function. The function limitation()
returns the proportion of iterations of the model simulation that had limitation of C, N and P respectively.
The function plot_cnp() plots the predicted output of the model.

## limitation
fishflux::limitation(model)
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#> tl nutrient prop_lim
#> 1 5 c 0.000
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#> 2 6 c 0.000
#> 3 7 c 0.000
#> 4 8 c 0.000
#> 5 9 c 0.000
#> 6 10 c 0.000
#> 7 11 c 0.002
#> 8 12 c 0.000
#> 9 13 c 0.000
#> 10 14 c 0.006
#> 11 15 c 0.018
#> 12 16 c 0.036
#> 13 17 c 0.068
#> 14 18 c 0.090
#> 15 19 c 0.134
#> 16 20 c 0.130
#> 17 5 n 0.358
#> 18 6 n 0.464
#> 19 7 n 0.496
#> 20 8 n 0.576
#> 21 9 n 0.614
#> 22 10 n 0.664
#> 23 11 n 0.710
#> 24 12 n 0.754
#> 25 13 n 0.792
#> 26 14 n 0.816
#> 27 15 n 0.836
#> 28 16 n 0.834
#> 29 17 n 0.876
#> 30 18 n 0.870
#> 31 19 n 0.846
#> 32 20 n 0.850
#> 33 5 p 0.642
#> 34 6 p 0.536
#> 35 7 p 0.504
#> 36 8 p 0.424
#> 37 9 p 0.386
#> 38 10 p 0.336
#> 39 11 p 0.288
#> 40 12 p 0.246
#> 41 13 p 0.208
#> 42 14 p 0.178
#> 43 15 p 0.146
#> 44 16 p 0.130
#> 45 17 p 0.056
#> 46 18 p 0.040
#> 47 19 p 0.020
#> 48 20 p 0.020
## Plot one variable:
fishflux::plot_cnp(model, y = "Fp",

x = "tl", probs = c(0.5, 0.8, 0.95))
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## Plot multiple variables:
fishflux::plot_cnp(model, y = c("Fp", "Gp", "Ip", "Wp"),

x = "tl", probs = 0.5)

7
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Sensitivity

The function sensitivity() looks at how the distribution of the input variables affects the uncertainty of
the model predictions. Basically, the model is run for each input parameter, while keeping all the others
fixed. The output of the function gives a matrix of the width of the 95% CI for all model predictions
(columns), depending on the input variables (rows). The input parameters and output variables of interest
can be specified by arguments “par” and “out” respectively.

fishflux::sensitivity(TL = 10,
param = list(k_sd = 0.2, Dn_sd = 0.2, Dc_sd = 0.1),
par = c("k_sd","Dn_sd","Dc_sd"),
out = c("Ic", "In", "Ip", "Gc"))
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#> Ic_CI In_CI Ip_CI Gc_CI
#> k_sd 0.03169895 3.803873e-03 1.267958e-03 1.217240e-02
#> Dn_sd 0.25328393 4.886941e-03 1.013136e-02 7.222673e-11
#> Dc_sd 0.01129948 2.492667e-10 8.304807e-11 6.961907e-11

More information

For more information on the theoretical framework of the model, see (Schiettekatte et al. 2020)(https:
//doi.org/10.1111/1365-2435.13618) . Every function of fishflux has a help page with more documentation.
In the case of errors, bugs or discomfort, you are invited to raise an issue on GitHub. fishflux is always in
development and we are happy to take your comments or suggestions into consideration.
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Index 18

fishflux-package The ’fishflux’ package.

Description

The ‘r fishflux‘ package provides a tool to model fluxes of C (carbon), N (nitrogen) and P (phos-
phorus) in fish. It combines basic priciples from elemental stoichiometry and metabolic theory. The
package offers a userfriendly interface to make nutrient dynamic modelling available for anyone. ‘r
fishflux‘ is mostly targeted towards fish ecologists, wishing to predict nutrient ingestion, egestion
and excretion to study fluxes of nutrients and energy. Main assets:

• Provides functions to model fluxes of Carbon, Nitrogen and Phosphorus for fish with or with-
out the MCMC sampler provided by stan.

• Provides some tools to find the right parameters as inputs into the model

• Provides a plotting function to illustrate results

References

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.19.3.
https://mc-stan.org
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aspect_ratio 3

aspect_ratio A function to find aspect ratio

Description

A function to find aspect ratio of a species on either species or genus level using rfishbase. It returns
a data frame containing the aspect ratio and the level at which the aspect ratio was found (species
or genus).

Usage

aspect_ratio(sp)

Arguments

sp A character value containing the species name

Value

dataframe with species, aspect ratio and taxonomy level.

Examples

## Not run:
library(fishflux)
library(plyr)
aspect_ratio("Lutjanus griseus")
ldply(lapply(c("Chlorurus spilurus","Zebrasoma scopas"), aspect_ratio))

## End(Not run)

check_name_fishbase Returns error if name is incorrect

Description

This is a wrapper function to which will return an error (via name_errors) if the provided species
name is wrong.

Usage

check_name_fishbase(sp)

Arguments

sp A character value containing the species name
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4 cnp_mcmc

Value

returns an error if the species name is wrong.

Examples

## Not run:
library(fishflux)
check_name_fishbase("Lutjanus griseus")

## End(Not run)

cnp_mcmc cnp_mcmc

Description

cnp_mcmc

Usage

cnp_mcmc(TL, param, iter, params_st, cor, ...)

Arguments

TL Total length(s) in cm

param List of all parameter means (add "_m") and standard deviations (add "_sd") De-
fault parameters are set with very low sd’s. parameters:

• Qc_m, Qc_sd: percentage C of dry mass fish
• Qn_m, Qn_sd: percentage N of dry mass fish
• Qp_m, Qp_sd: percentage P of dry mass fish
• Dc_m, Dc_sd: percentage C of dry mass food
• Dn_m, Dn_sd: percentage N of dry mass food
• Dp_m, Dp_sd: percentage P of dry mass food
• ac_m, ac_sd: C-specific assimilation efficiency
• an_m, an_sd: N-specific assimilation efficiency
• ap_m, ap_sd: P-specific assimilation efficiency
• linf_m, linf_sd: Von Bertalanffy Growth parameter, theoretical maximum

size in TL (cm)
• k_m, k_sd: Von Bertalanffy Growth parameter, growth rate (yr^-1)
• t0_m, tO_sd: Von Bertalanffy Growth parameter (yr)
• lwa_m, lwa_sd: Parameter length-weight relationship (g cm^-1)
• lwb_m, lwb_sd: Parameter length-weight relationship
• mdw_m, wprop_sd: Ratio between dry weight and wet weight of fish
• F0nz_m, F0nz_sd: N-specific turnover rate
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cnp_model_mcmc 5

• F0pz_m, F0pz_sd: P-specific turnover rate
• f0_m, f0_sd: Metabolic normalisation constant independent of body mass

(g C g^-alpha d^-1)
• alpha_m, alpha_sd: Metabolic rate mass-scaling exponent
• theta_m, theta_sd: Activity scope
• r_m, r_sd: Aspect ratio of caudal fin
• h_m, h_sd: Trophic level
• v_m, v_sd: Environmental temperature (degrees celcius)

iter A positive integer specifying the number of iterations. The default is 2000.

params_st Standard parameters.

cor A list of correlations between certain parameters: ro_Qc_Qn, ro_Qc_Qp, ro_Qn_Qp,
ro_Dc_Dn, ro_Dc_Dp, ro_Dn_Dp, ro_lwa_lwb, ro_alpha_f0

... Additional arguments rstan::sampling, see ?rstan:sampling

cnp_model_mcmc A function to predict N and P excretion, CNP egestion, CNP ingestion
rate, using MCMC and stan

Description

This function combines MTE and stoichiometric theory in order to predict nescessary ingestion and
excretion processes. A probability distribution is obtained by including uncertainty of parameters
and using MCMC sampling with stan.

Usage

cnp_model_mcmc(
TL,
param,
iter = 1000,
cor = list(ro_Qc_Qn = 0.5, ro_Qc_Qp = -0.3, ro_Qn_Qp = -0.2, ro_Dc_Dn = 0.2, ro_Dc_Dp

= -0.1, ro_Dn_Dp = -0.1, ro_lwa_lwb = 0.9, ro_alpha_f0 = 0.9),
...

)

Arguments

TL Total length(s) in cm

param List of all parameter means (add "_m") and standard deviations (add "_sd") De-
fault parameters are set with very low sd’s. parameters:

• Qc_m, Qc_sd: percentage C of dry mass fish
• Qn_m, Qn_sd: percentage N of dry mass fish
• Qp_m, Qp_sd: percentage P of dry mass fish
• Dc_m, Dc_sd: percentage C of dry mass food
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6 cnp_model_mcmc

• Dn_m, Dn_sd: percentage N of dry mass food

• Dp_m, Dp_sd: percentage P of dry mass food

• ac_m, ac_sd: C-specific assimilation efficiency

• an_m, an_sd: N-specific assimilation efficiency

• ap_m, ap_sd: P-specific assimilation efficiency

• linf_m, linf_sd: Von Bertalanffy Growth parameter, theoretical maximum
size in TL (cm)

• k_m, k_sd: Von Bertalanffy Growth parameter, growth rate (yr^-1)

• t0_m, tO_sd: Von Bertalanffy Growth parameter (yr)

• lwa_m, lwa_sd: Parameter length-weight relationship (g cm^-1)

• lwb_m, lwb_sd: Parameter length-weight relationship

• mdw_m, wprop_sd: Ratio between dry weight and wet weight of fish

• F0nz_m, F0nz_sd: N-specific turnover rate

• F0pz_m, F0pz_sd: P-specific turnover rate

• f0_m, f0_sd: Metabolic normalisation constant independent of body mass
(g C g^-alpha d^-1)

• alpha_m, alpha_sd: Metabolic rate mass-scaling exponent

• theta_m, theta_sd: Activity scope

• r_m, r_sd: Aspect ratio of caudal fin

• h_m, h_sd: Trophic level

• v_m, v_sd: Environmental temperature (degrees celcius)

iter A positive integer specifying the number of iterations. The default is 2000.

cor A list of correlations between certain parameters: ro_Qc_Qn, ro_Qc_Qp, ro_Qn_Qp,
ro_Dc_Dn, ro_Dc_Dp, ro_Dn_Dp, ro_lwa_lwb, ro_alpha_f0

... Additional arguments rstan::sampling, see ?rstan:sampling

Value

Returns a list with two objects: A stanfit object and a data.frame with a summary of all model
components. See extract to extract a summary of predicted variables and limitation to get
information on the limiting element.

Examples

library(fishflux)
model <- cnp_model_mcmc(TL = 10, param = list(
Qc_m = 40, Qn_m = 10, Qp_m = 4, theta_m = 3))
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extract 7

extract A function to extract specific model output parameters from result

Description

A function to extract specific model output parameters from result

Usage

extract(mod, par)

Arguments

mod Output from cnp_mod_mcmc()
par Character vector specifying which output parameter that should be returned.

Value

Main model output parameters:

• F0c: C-specific minimal inorganic flux (g/day)
• F0n: N-specific minimal inorganic flux (g/day)
• F0p: P-specific minimal inorganic flux (g/day)
• Gc: Carbon-specific growth rate (g/day)
• Gn: Nitrogen-specific growth rate (g/day)
• Gp: Phosphorus-specific growth rate (g/day)
• Sc: C-specific minimal supply rate (g/day)
• Sn: N-specific minimal supply rate (g/day)
• Sp: P-specific minimal supply rate (g/day)
• Ic: Ingestion rate of C (g/day)
• In: Ingestion rate of N (g/day)
• Ip: Ingestion rate of P (g/day)
• Wc: Egestion rate of C (g/day)
• Wn: Egestion rate of N (g/day)
• Wp: Egestion rate of P (g/day)
• Fc: Total inorganic flux of C (respiration) (g/day)
• Fn: Total inorganic flux of N (excretion) (g/day)
• Fp: Total inorganic flux of P (excretion) (g/day)

Returns a data.frame with a summary of the selected output parameters

Examples

model <- cnp_model_mcmc(TL = 5:10, param = list(Qc_m = 40, Qn_m = 10, Qp_m = 4))
extract(model, c("Fn","Fp"))
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8 growth_params

find_lw A function to find length-weight relationship parameters a and b

Description

A function to find estimates length-weight relationship parameters available on fishbase. It returns
a list of means and standard deviations of a and b obtained from: *Froese, R., J. Thorson and R.B.
Reyes Jr., 2013. A Bayesian approach for estimating length-weight relationships in fishes. J. Appl.
Ichthyol. (2013):1-7.* Please cite Froese et al. (2013), when using these values. The default mirror
for fishbase is set to "de", please change this if needed for your location

Usage

find_lw(sp, mirror = "us")

Arguments

sp A charachter value containing the species name

mirror Mirror for fishbase (eg. "de", "org", "us", etc.) Default is "us".

Value

A dataframe with means and standard deviations of length-weight parameters

Examples

library(fishflux)
library(plyr)
# find length-weight relationship parameters for one species
find_lw("Lutjanus griseus")

# find length-weight relationship parameters for multiple species and return in dataframe
ldply(lapply(c("Chlorurus spilurus","Zebrasoma scopas"), find_lw))

growth_params A function to find growth parameters on fishbase

Description

A function to find growth parameters of a species using rfishbase. It returns a data frame containing
K, t0 and Linf, the source. This function is useful to see what is available on fishbase. Nevertheless,
we strongly recommend to check the source and only use otolith based studies.

Usage

growth_params(sp, otolith = TRUE)
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limitation 9

Arguments

sp A charachter value containing the species name
otolith A logical value. If TRUE, only results from otolith analysis are returned. If

false, all growth studies will be returned.

Value

dataframe with available growth rate parameters from fishbase.

Examples

## Not run:
library(fishflux)
growth_params("Lutjanus griseus")

## End(Not run)

limitation A function to evaluate element limitation of the model

Description

This function allows you extract the proportions of the iterations for which c, n and p are the limiting
element in the model.

Usage

limitation(mod, plot = TRUE)

Arguments

mod Model output from cnp_model_mcmc().
plot Argument to specify if results should be shown in a plot.

Value

Returns a data frame with:

tl Total length, in cm
nutrient c, n or p
prop_lim the proportion of iterations for which there is limitation by the element

Examples

library(fishflux)
mod <- cnp_model_mcmc(TL = 5, param = list(Qc_m = 40, Qn_m = 10, Qp_m = 4,

Dc_sd = 0.1, Dn_sd = 0.05, Dp_sd = 0.05))
limitation(mod)
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metabolic_parameters Data with metabolic parameters on family level

Description

Data frame containing means and sd for b0 and a for several fish families, extracted from Barneche
& Allen (2018) These paramaters can be used in calculations of metabolic rate in case respirometry
data is not available.

Usage

data(metabolic_parameters)

Format

An object of class data.frame with 20 rows and 5 columns.

Examples

data(metabolic_parameters)

metabolic_rate A function to calculate metabolic rates

Description

All model parameters below were estimated by Barneche & Allen 2018 Ecology Letters doi: 10.1111/ele.12947.
These parameters are for the best model (Model 2 in the paper online supplementary material) of
fish resting metabolic rates reported in the paper, which also includes trophic level as a covariate.

Usage

metabolic_rate(temp, troph, asp, B0, m_max, m, a, growth_g_day, f)

Arguments

temp Temperature in degrees Celsius

troph Trophic level (from 1 to 5)

asp The caudal fin aspect ratio , a proxy for activity level

B0 Constant for resting metabolic rate. If NA, function will calculate an average.

m_max Maximum biomass fish (in g)

m Wet weight fish (in g)

a Resting metabolic rate mass-scaling exponent

growth_g_day Daily growth in grams of wet weight

f Activity scope (from 1 to 4)
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Details

All model parameters below were estimated by Barneche & Allen 2018 Ecology Letters doi: 10.1111/ele.12947.
These parameters are for the best model (Model 2 in the paper online supplementary material) of
fish resting metabolic rates reported in the paper, which also includes trophic level as a covariate.

Value

A dataframe with metabolic rates.

Examples

library(fishflux)
fishflux::metabolic_rate(temp = 27, m_max = 600, m = 300, asp = 3,
troph = 2, f = 2, growth_g_day = 0.05, B0 = 0.2, a = 0.6 )

metabolism A function to estimate f0 and alpha

Description

All model parameters below were estimated by Barneche & Allen 2018 Ecology Letters doi: 10.1111/ele.12947.
These parameters are for the best model (Model 2 in the paper online supplementary material) of
fish resting metabolic rates reported in the paper, which also includes trophic level as a covariate.

Usage

metabolism(family, temp, troph_m, troph_sd = 1e-10)

Arguments

family family fish

temp Temperature in degrees Celsius

troph_m Trophic level mean (from 1 to 5)

troph_sd Trophic level sd (optional)

Details

All model parameters below were estimated by Barneche & Allen 2018 Ecology Letters doi: 10.1111/ele.12947.
These parameters are for the best model (Model 2 in the paper online supplementary material) of
fish resting metabolic rates reported in the paper, which also includes trophic level as a covariate.

Value

dataframe with predicted metabolic parameters.
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12 model_parameters

Examples

library(fishflux)
metabolism(family = "Pomacentridae", temp = 27, troph_m = 2)

model_parameters A function to find a set of parameters

Description

A function to find a set of parameters

Usage

model_parameters(sp, family, otolith = TRUE, temp, ...)

Arguments

sp Species name

family family

otolith TRUE or FALSE, if TRUE, function will only search fishbase for growth pa-
rameters that are based upon otolith analysis

temp temperature

... Additional arguments to find_lw.

Value

Returns a dataframe with all parameters that can be estimated

Examples

## Not run:
library(fishflux)
model_parameters(sp = "Scarus psittacus", family = "Scaridae", temp = 27)
## End(Not run)
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name_errors A function to find errors in fish species names

Description

This function allows you to check if there are errors in your fish species list and returns inaccurate
scientific names

Usage

name_errors(sp)

Arguments

sp A vector containing all your scientific species names.

Value

A vector with the incorrect species names.

Examples

## Not run:
library(fishflux)
name_errors(c("Chlorurus spilurus", "Zebrasoma scopas"))
name_errors(c("Chlorurus spilurus", "Zebrasoma copas"))
## End(Not run)

param_zebsco List of all parameters needed to run cnp_model for *Zebrasoma sco-
pas*

Description

List of all parameters needed to run cnp_model for *Zebrasoma scopas*

Usage

data(param_zebsco)

Format

An object of class list of length 37.

Examples

data(param_zebsco)
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plot_cnp A function to plot results model

Description

This function allows you to plot an overview of the model results in function of the total length of
fish

Usage

plot_cnp(mod, y, x = "tl", probs = c(0.8, 0.95))

Arguments

mod Model output from cnp_model_mcmc()

y Output variable(s) to be plotted. Can be a character or a character vector.

x Variable to be put on x-axis, "biomass" or "tl"

probs Width of the confidence

Value

a ggplot object

Examples

library(fishflux)
mod <- cnp_model_mcmc(TL = 5:15, param = list(

Qc_m = 40, Qn_m = 10, Qp_m = 4, Dn_sd = 0.05))
plot_cnp(mod = mod, y = c("Fp", "Gp", "Wp", "Ip"),

x = "tl", probs = c(0.5, 0.8))
plot_cnp(mod = mod, y = "Fp", x = "tl",

probs = c(0.5, 0.8, 0.95))

sensitivity A function to check the sensitivity of cnp_model predictions based on
the variation of input parameters

Description

This function runs the cnp_model fixing all parameters SD’s but one to test for sensitivity
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Usage

sensitivity(
TL,
param,
iter = 1000,
par,
out = c("Ic", "In", "Ip", "Gc", "Gn", "Gp", "Fc", "Fn", "Fp", "Wc", "Wn", "Wp"),
...

)

Arguments

TL total length of a fish in cm

param list of all parameter means ("_m") and standard deviations ("_sd") Default pa-
rameters are set with very low sd’s. See cnp_model_mcmc for a list of all re-
quested parameters

iter A positive integer specifying the number of iterations. The default is 1000

par Charachter vector specifying which input parameter sd’s should be used for sen-
sitivity.

out Charachter vector specifying which output parameter sd’s should be returned.

... Other arguments that can be used from cnp_model_mcmc

Value

Returns a dataframe with sd’s of model predictions. Row names indicate the variable, who’s sd was
used for the model run. Plots a heatplot with width of the 95

Examples

library(fishflux)
sensitivity(TL = 10, param = list(k_sd = 0.2, Dn_sd = 0.2, Dc_sd = 0.1),

par = c("k_sd","Dn_sd","Dc_sd"), out = c("Ic", "In", "Ip", "Gc"))

trophic_level A function to find trophic level

Description

A function to find trophic level of a species on either species or genus level using rfishbase. It
returns a data frame containing the trophic level and the level at which the trophic level was found
(species or genus).

Usage

trophic_level(sp)

255



16 weight_prop

Arguments

sp A character value containing the species name

Value

Returns a dataframe with species, trophic level, and taxonomy level.

Examples

## Not run:
library(fishflux)
library(plyr)
trophic_level("Lutjanus griseus")
ldply(lapply(c("Chlorurus spilurus","Zebrasoma scopas"), trophic_level))
## End(Not run)

weight_prop Data frame with dry weight/ wet weight proportions for multiple reef
fish families.

Description

Data frame with dry weight/ wet weight proportions for multiple reef fish families.

Usage

data(weight_prop)

Format

An object of class data.frame with 15 rows and 4 columns.

Examples

data(weight_prop)
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wprop A function to find the ratio of dry weight and wet weight of fish in local
database

Description

This function searches the ratio of dry weight and wet weight of fish on the family level. If the
family is not available, an average is returned.

Usage

wprop(family)

Arguments

family family

Value

Returns a dataframe with the weight ratio (mdw) and it’s sd (mdw_sd).

Examples

library(fishflux)
wprop(family="Scaridae")
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Documentation fishgrowbot

This appendix includes a short note on the R package fishgrowbot. For more docu-

mentation see: https://nschiett.github.io/fishgrowbot/index.html

Figure B.1: Logo fishgrowbot
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Summary

Somatic growth of fishes is a fundamental trait that determines essential ecosystem services such as food
provision and nutrient cycling. Growth rate information can be derived through age estimation based on the
analysis of sagittal otoliths. While fitting growth models on size-at-age data is the most frequently employed
approach to deriving growth parameters, this method requires a high number of individuals. An alternative
approach based on back-calculation can provide approximations to individual-level growth trajectories. We
present fishgrowbot, an R package that provides functions to perform the back-calculation in a Bayesian
framework. Further, the package provides a Bayesian framework to fit the von Bertalanffy growth model to
the back-calculated lengths in a hierarchical structure. Finally, fishgrowbot provides functions to visualize
the results. These models have been verified and applied to estimate growth parameters of 45 coral reef
species (Morat et al. 2020). fishgrowbot will greatly help researchers to estimate growth parameters, even
when a limited amount of otoliths are available.
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Description

Somatic growth of fishes is a critical trait to estimate biological processes that range from individuals to
communities (Brandl et al. 2019). In the context of fisheries, parameters describing fish growth can be used
directly to estimate an important ecosystem service, i.e. food production. Further, somatic growth rate is
an important part of an individual’s energy budget and thus underlies bioenergetic models that estimate
fluxes of energy and elements mediated by fishes (Schiettekatte et al. 2020). Many ecosystems are under
major anthropogenic pressure, and fish populations are in decline across the globe (Jackson et al. 2001). As
billions of people depend on fishes for food security and fishes can play an important role in nutrient cycling,
it is critical to increase our ability to estimate growth parameters.

Fish growth can be estimated by relating fish length with the age. The most common method for aging
fish is the analysis of growth rings found on otoliths (i.e. calcified structures of the inner ear that grow
with the deposition of successive calcium carbonate layers, which respond to circadian or seasonal rhythms)
(Campana 2001). Then, fish growth parameters can be estimated by fitting growth curves on the size-at-age
data (Katsanevakis 2006). While there are many types of growth models, the Von Bertalanffy growth curve
is by far the most commonly used for fishes. Fitting growth curves calls for a large sample size of individuals
with varying sizes. Alternatively, we can estimate individual growth trajectories by measuring the distances
between growth rings, and transforming these to fish lengths, a process called back-calculation (Vigliola and
Meekan 2009; Vigliola, Harmelin-Vivien, and Meekan 2000). This approach facilitates fitting growth curves
with less individuals and is thus less destructive. However, back-calculated lengths are rough estimates
that include a level of uncertainty, that is not accounted for in currently described methods and existing
tools (Vigliola and Meekan 2009). Moreover, the nature of back-calculated lengths demands a hierarchical
modeling approach to account for autocorrelation within individuals growth trajectories. Developing such a
model can be challenging and discouraging for the average R user, and there are currently no tools to aid
fitting a Von Bertalanffy growth model to back-calculated lengths.

Here, we present the R package fishgrowbot to facilitate the application of back-calculation and fitting
of von Bertalanffy growth curves on back-calculated size-at-age data. Even though there are R packages
for back-calculation and fitting growth models, fishgowbot brings a number of new features to the table.
First, back-calculation in a Bayesian framework allows for a measure of uncertainty (Stan Development
Team 2018), which to date has never been incorporated. Second, to the best of our knowledge, there are
no existing R packages that aid fitting growth models, specifically for back-calculated lengths. Due to the
individual-level autocorrelation in the data, it is necessary to incorporate a hierarchical structure. Further,
aside from the hierarchical structure, the Bayesian framework allows for the incorporation of prior biological
knowledge on maximum lengths and growth rate parameters. Third, the back-calculation approach can
handle missing data on the otolith radius at hatching (Carpenter et al. 2017), a handy feature as for some
individuals this parameter is impossible to measure. The approach is validated through application on a
dataset of 45 coral reef fish species (Morat et al. 2020). Finally, as a case study, the package provide the
raw dataset of measured otoliths from 710 individuals belonging to 45 coral reef fish species from French
Polynesia, that can be used to run examples or to easily include in ecological studies.

Specifically, we used the Modified Fry back-calcuation method that depends on the relationship between the
length at capture and the measurements of the radius of the otolith (Vigliola et al. 2000), and adapted it
into a Bayesian framework:

Lcpt = L0p − bRc
0p + bRc

cpt

,

where L0p and R0p are the fish size and radius of the otolith at hatching.

If for some individuals, the R0p value is missing, they can still be included in the back-calculation model. To
do so, missing R0p values as parameters in the model that are estimated in the posterior (Carpenter et al.
2017). Then, for each iteration of the Bayesian model, the lengths at all ages are calculated are calculated
as followed:

ai = L0p − bRc
0pi

2
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Li = a + exp(log(L0p − a) + (log(Lcpt − a) − log(L0p − a))(log(Ri) − log(R0p))
(log(Rcpt) − log(R0p)) )

where Li and Ri are the fish length and otolith radius at age i, L0p and R0p are the fish size and radius
of otolith at hatching. The output of the back-calculation function bcalc() returns the averages, standard
deviations and credible intervals for each Li.

As a next step, fishgrowbot also provides a Bayesian model to fit growth models to back-calculated size-
at-age data. We use the Von Bertalanffy growth curve, the most frequently used model to describe fish
growth:

Lt = Linf(1 − e−K(t−t0))

, where Lt is the average length at age i, Linf is the asymptotic average length, K is the growth rate
coefficient, and t0 is the age when the average length was zero.

Use

To introduce the functionalities of fishgrowbot, we look at an example for Epinephelus merra. The function
bcalc() returns both a dataframe with the back-calculated lengths and their uncertainty and the model
object for more details on the fit of the bc stan model.

The input data should contain:
+ id: Unique fish id per individual.
+ radi: Measurements of otolith growth rings (in mm).
+ agei: Age estimation of fish.
+ lencap: Length at capture (in mm).
+ radcap: Radius of otolith at capture (in mm).
+ l0p: Length of fish at hatching (in mm).

# get data
em <- filter(coral_reef_fishes_data, species == "Epinephelus merra",

location == "Moorea")
# back-calculation
bc <- bcalc(data = em)

head(bc$lengths)

## id age l_m l_sd l_lb l_ub
## 1 CH_SO_MO_03_16_001 0 1.6500 3.570679e-14 1.6500 1.6500
## 2 CH_SO_MO_03_16_001 1 192.8638 9.667175e+00 171.8699 209.7544
## 3 CH_SO_MO_03_16_001 2 242.5329 5.234313e+00 230.9617 251.4320
## 4 CH_SO_MO_03_16_001 3 260.9157 3.058368e+00 254.1158 266.0663
## 5 CH_SO_MO_03_16_001 4 273.6994 1.385600e+00 270.6071 276.0180
## 6 CH_SO_MO_03_16_002 0 1.6500 3.581811e-14 1.6500 1.6500

library(ggplot2)
library(fishgrowbot)
ggplot(aes(x = agecap, y = lencap), data = em) +

geom_point()

3
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gmplot(growthmodel) +
geom_point(aes(x = agecap, y = lencap/10, color = id), data = em)
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The function bcplot helps visualize the back calculation. Setting error to TRUE adds the 95% credible
intervals of the length estimates.

bcplot(bc$lengths, error = TRUE, facet = TRUE)

5
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Then, we can fit the hierarchical von Bertalanffy growth model that allows for the estimation of multiple
parameters. Importantly, length measures should be given in cm. Priors for Linf (i.e. asymptotic length)
and l0 (length at hatching) s hould be specified by the user.

# fit growth model
growthmodel <- growthreg(length = bc$lengths$l_m / 10, age = bc$lengths$age,

id = bc$lengths$id, lmax = 32, linf_m = 28,
linf_sd = 5, l0_m = 0.15, l0_sd = 0.015, iter = 4000,
open_progress = FALSE, plot = FALSE)

# summary growth parameters
growthmodel$summary

## mean se_mean sd 2.5% 25% 50%
## k 1.21759396 0.0032353328 0.18116826 0.90147864 1.09074960 1.20705146
## linf 22.62232772 0.0234612229 1.15696683 20.51601047 21.84600773 22.55817660
## l0 0.33207979 0.0057334577 0.62044794 -0.89492024 -0.07489291 0.33498481
## t0 -0.01332498 0.0002244964 0.02397879 -0.06449012 -0.02803510 -0.01216818
## kmax 0.61612395 0.0007725673 0.06177841 0.50281216 0.57444993 0.61267084
## 75% 97.5%
## k 1.327397754 1.60922888
## linf 23.318151649 25.12215501
## l0 0.734124677 1.57094987
## t0 0.002693189 0.03072865
## kmax 0.654570031 0.74532319

Now we can visualize the fit with the function gmplot().
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gmplot(growthmodel, id = TRUE, facet = FALSE)
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More plotting options are exemplified in the package documentation and introduction vignette.
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Appendix C

Documentation fishualize

This appendix includes the reference manual of fishualize.

For more documentation see: https://nschiett.github.io/fishualize/index.

html

Figure C.1: Logo fishualize
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fishualize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
fish_palettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
scale_color_fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Index 9

add_fishape fish silhouette in ggplot2

Description

Adds a fish silhouette to your plot

Usage

add_fishape(
family = "Pomacanthidae",
option = "Centropyge_loricula",
xmin = -Inf,
xmax = Inf,
ymin = -Inf,
ymax = Inf,
scaled = FALSE,
xlim = NULL,
ylim = NULL,
fill = "#000000",
alpha = 1

)

Arguments

family character string indicating the fish family.

option character string indicating the fish species. If NA, the first available option
within a family will be selected

xmin x location giving minimum horizontal location of silhouette

xmax x location giving maximum horizontal location of silhouette

ymin y location giving minimum vertical location of silhouette

ymax y location giving maximum vertical location of silhouette

scaled logical parameter. If TRUE, location parameters (xmin, xmax, ymin, ymax)
should range between 0 and 1. If FALSE, location parameters should be pro-
vided according to the values on the plot axes.

xlim, ylim vectors of length = 2, contains the data limits and must be provided if scaled is
TRUE.

fill color of fish shape

alpha transparency of fish shape (value between 0 and 1)
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Examples

library(ggplot2)

ggplot() + add_fishape(fill = fish(n = 5)[4])

ggplot(diamonds)+
geom_bar(aes(cut, fill = cut)) +
scale_fill_fish_d(option = "Naso_lituratus") +
add_fishape(family = "Acanthuridae",

option = "Naso_unicornis",
xmin = 1, xmax = 3, ymin = 15000, ymax = 20000,
fill = fish(option = "Naso_lituratus", n = 5)[3],
alpha = 0.8) +

theme_bw()

## example with relative coordinates
ggplot(diamonds)+

geom_bar(aes(cut, fill = cut)) +
scale_fill_fish_d(option = "Naso_lituratus") +
add_fishape(family = "Acanthuridae",

option = "Naso_unicornis",
xmin = 0, xmax = 0.3, ymin = 0.8, ymax = 1,
scaled = TRUE,
xlim = c(0.5, 5.5), ylim = c(0, 21000) ,
fill = fish(option = "Naso_lituratus", n = 5)[3],
alpha = 1) +

theme_bw()

fish fish Colour Map.

Description

This function creates a vector of n equally spaced colors along the ’fish colour map’ of your selec-
tion

Usage

fish(
n,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "Centropyge_loricula"

)

fish_pal(
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alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "Centropyge_loricula"

)

Arguments

n The number of colors (≥ 1) to be in the palette.

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.

begin The (corrected) hue in [0,1] at which the fish colormap begins.

end The (corrected) hue in [0,1] at which the fish colormap ends.

direction Sets the order of colors in the scale. If 1, the default, colors are ordered from
darkest to lightest. If -1, the order of colors is reversed.

option A character string indicating the fish species to use.

Value

fish returns a character vector, cv, of color hex codes. This can be used either to create a user-
defined color palette for subsequent graphics by palette(cv), a col = specification in graphics
functions or in par.

Semi-transparent colors (0 < alpha < 1) are supported only on some devices: see rgb.

Examples

library(ggplot2)
library(fishualize)

dat <- data.frame(x = rnorm(1e4), y = rnorm(1e4))
ggplot(dat, aes(x = x, y = y)) +

stat_density_2d(geom = "raster",
aes(fill = after_stat(density)), contour = FALSE) +
scale_fill_gradientn(colors = fish(128, option = 'Ostracion_cubicus'))

pal <- fish(256, option = "Thalassoma_hardwicke", direction = -1)
image(volcano, col = pal)

fishapes Available fish silhouettes

Description

This function returns a dataframe containing the all the available fish silhouettes accessible through
the ’fishualize’ package.
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Usage

fishapes()

Value

fishapes returns a dataframe containing the all the available fish silhouettes available to use.

Examples

fishapes()

fishcolors Original fish color database

Description

A dataset containing some colour palettes inspired by fish species

Usage

fishcolors

Format

A data frame containing all the colours used in the palette:

• option: It is intended to be a general option for choosing the specific colour palette.

• hex: hex color code

fishualize Visualization of fish color palette

Description

This function creates an image of the specified fish color palette.

Usage

fishualize(option = "Centropyge_loricula", n = 5, ...)

Arguments

option A character string indicating the fish species to use.

n The number of colors (≥ 1) to be in the palette.

... Other arguments as can be specified in the function fish. See ?fishualize::fish
for details.
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Value

fishualize returns a visualisation of the specified color palette.

Examples

fishualize::fishualize()
fishualize::fishualize(option = "Zanclus_cornutus", n = 8)

fish_palettes Available Palettes.

Description

This function returns a vector containing the names of all the available palettes in the ’fishualize’
package.

Usage

fish_palettes()

Value

fish_palettes returns a character vector with the names of the fish palettes available to use.

Examples

fish_palettes()

scale_color_fish fish colour scales

Description

Uses the fish color scale.
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Usage

scale_color_fish(
option = "Centropyge_loricula",
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
discrete = FALSE

)

scale_colour_fish(
option = "Centropyge_loricula",
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
discrete = FALSE

)

scale_colour_fish_d(
option = "Centropyge_loricula",
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1

)

scale_color_fish_d(
option = "Centropyge_loricula",
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1

)

scale_fill_fish_d(
option = "Centropyge_loricula",
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1

)
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scale_fill_fish(
option = "Centropyge_loricula",
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
discrete = FALSE

)

Arguments

option A character string indicating the fish species to use.

... parameters to discrete_scale or scale_fill_gradientn

alpha pass through parameter to fish

begin The (corrected) hue in [0,1] at which the fish colormap begins.

end The (corrected) hue in [0,1] at which the fish colormap ends.

direction Sets the order of colors in the scale. If 1, the default, colors are as output by
fish_pal. If -1, the order of colors is reversed.

discrete generate a discrete palette? (default: FALSE - generate continuous palette)

Details

For discrete == FALSE (the default) all other arguments are as to scale_fill_gradientn or scale_color_gradientn.
Otherwise the function will return a discrete_scale with the plot-computed number of colors.

Examples

library(ggplot2)
library(fishualize)

ggplot(diamonds, aes(factor(cut), fill=factor(cut))) +
geom_bar() +
scale_fill_fish(discrete = TRUE, option = "Centropyge_loricula")

ggplot(mtcars, aes(factor(gear), fill=factor(carb))) +
geom_bar() +
scale_fill_fish(discrete = TRUE, option = "Trimma_lantana")

ggplot(mtcars, aes(x = mpg, y = disp, colour = drat)) +
geom_point(size = 4) +
scale_colour_fish(option = "Ostracion_cubicus", direction = -1)
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ABSTRACT 

Through their functioning, coral reefs provide a plethora of ecosystem services that support the 

livelihood of millions of people worldwide. However, this system is threatened by climate change 

and human pressures at an unprecedented level and concerns are emerging about the capacity of 

reefs to still deliver services in the near future. In light of this ongoing human-induced degradation 

of coral reef ecosystems and the important role of coral reef fishes, it is crucial to increase our 

knowledge concerning fish-mediated functions on coral reefs (i.e. their contribution to fluxes of 

carbon, nitrogen, and phosphorus through consumption, growth, excretion, and egestion). 

However, methodological challenges have thus far impeded the precise quantification of functions, 

and most studies in the past relied on proxies (such as standing stock biomass) to infer functioning. 

In this thesis, I sought to advance our understanding of fish-mediated functions through a variety 

of new methods and their use to quantify elemental fluxes at the organismal and community level. 

MOTS-CLÉS 

Recyclage des nutriments, écologie, poissons des récifs coralliens, écologie fonctionnelle,  

modèles bioénergétiques, fonctions écosystémiques 

KEYWORDS 

Nutrient cycling, ecology, coral reef fishes, functional ecology, bioenergetic models,  

ecosystem functions 

RÉSUMÉ 

Les récifs coralliens fournissent une multitude de services écosystémiques, assurant la subsistance 

de millions de personnes dans le monde. Cependant, le changement climatique et les activités 

anthropiques font peser des menaces sans précédent sur ces écosystèmes, remettant en question 

la capacité des récifs coralliens à fournir ces services dans un futur proche. Dans ce contexte de 

dégradation continue des écosystèmes coralliens due à l'homme et en connaissant l’importance du 

rôle des poissons récifaux dans le fonctionnement des récifs coralliens, il est crucial d'accroître nos 

connaissances sur les fonctions assurées par les poissons dans les récifs coralliens (c'est-à-dire 

leur contribution aux flux de carbone, d'azote et de phosphore par la consommation, la croissance, 

l'excrétion et l'égestion). Cependant, les défis méthodologiques ont jusqu'à présent empêché la 

quantification précise des fonctions et la plupart des études dans le passé se sont appuyées sur 

des proxys (tels que la biomasse des stocks sur pied) pour en déduire des informations sur le 

fonctionnement des récifs. Dans cette thèse, j'ai cherché à faire progresser notre compréhension 

des fonctions assurées par les poissons à travers un ensemble de nouvelles méthodes et leur 

utilisation pour quantifier les flux d'éléments au niveau de l'organisme et de la communauté. 
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