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A B S T R A C T

A growing number of embedded applications, confronted with diver-
sified, shifting, and uncontrolled environments, require an increased
degree of adaptability and analysis capabilities to fulfill their task. Pre-
programmed actions are no longer able to deal with these new sets of
tasks and are therefore being replaced by a promising paradigm: deep
learning.

However, deep neural networks are susceptible to data distribution
shifts occurring between training and use. This apparent flaw prevents
the widespread deployment of deep networks in embedded products.
Furthermore, it is impossible to gather and add enough data to the
training set to cover all possible shifts due to their tremendous diver-
sity.

The origin of this vulnerability lies partly in the shortcut-learning
behaviour of deep networks: they learn only the most efficient pat-
terns, no matter how spurious, and completely disregard the others.
Confronted with a new distribution in which the predictive patterns
are partially different, a network that learned a limited subset of fea-
tures would be less likely to be able to make a proper decision.

In collaboration with Thales Land and Air Systems, this work there-
fore aims to develop solutions to mitigate the domain shifts perfor-
mance drop in deep networks. This work has two main contributions.

Firstly, we propose a new deep generative architecture that mitigates
the shortcut-learning behavior in an under-explored setting. Previous
state-of-the-art works relied explicitly on shortcut-contrary samples
and increased their importance in the training procedure. In this work,
we demonstrated on several different synthetic benchmarks that such
particular samples were not needed for shortcut avoidance and further
confirmed the effectiveness of our approach on a realistic benchmark.

Secondly, the work presented here focuses on more general and
realistic domain shift situations in which only a single domain is avail-
able during training. Test-time adaptation to the encountered data
has emerged as a promising set of strategies to efficiently increase
performance when facing new domains at use time. They, however,
rely on a model trained with the standard procedure, which, as pre-
viously stated, will ignore some predictive patterns. We propose a
training-time approach complementary to test-time adaptation. Our
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method seeks to learn both the patterns learned through standard
training and the normally "hidden" ones, enabling a more thorough
test-time adaptation. Based on extensive experiments, we show that
our approach improves the quality of predictions on domains unseen
at training-time.

Keywords: deep learning, domain generalization, out-of-distribution
generalization, test-time adaptation, shortcut-learning, bias avoidance,
covariance shifts.
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R É S U M É

De plus en plus d’applications embarquées, confrontées à des envi-
ronnements diversifiés, changeants et non-controllés, nécessitent un
très haut degré d’adaptabilité et de fortes capacités d’analyse pour
mener leur tâche à bien. La pré-programmation d’actions n’est plus
suffisante pour effectuer ces nouveaux types de tâches, et est donc en
train d’être remplacée par un paradigme prometteur : l’apprentissage
profond.

Cependant, les réseaux de neurones sont vulnérables à des change-
ments de distribution (ou domaine) de données entre l’apprentissage
et l’utilisation. Ce défaut apparent empêche un déploiement fréquent
dans des produits embarqués. De plus, il est impossible de récolter et
d’ajouter au jeu de données d’entraînement suffisamment de données
pour prévenir tous les changements de distribution possibles, à cause
de leur importante diversité.

L’origine de cette vulnérabilité se trouve en partie dans le comporte-
ment d’apprentissage de raccourcis des réseaux de neurones profonds:
seulement les motifs prédictifs les plus efficaces, aussi fallacieux soient-
ils, sont appris, les autres sont fortement ignorés. Confronté à une
nouvelle distribution, dans laquelle les motifs prédictifs sont partielle-
ment différents, un réseau qui aura appris un ensemble limité de
caractéristiques sera statistiquement moins capable de prendre une
décision correcte.

En collaboration avec Thales Land and Air Systems, l’objectif de ce
travail est donc de développer des solutions pour atténuer la chute
de performance des réseaux de neurones lors d’un changement de
domaine. Ce travail comprend deux contributions principales.

Premièrement, nous proposons une nouvelle architecture généra-
tive de réseaux de neurones qui permet de limiter l’ampleur de
l’apprentissage de raccourcis dans un contexte sous-exploré. Les précé-
dents travaux de l’état de l’art reposaient explicitement sur des élé-
ments particuliers, dont les raccourcis ne sont pas alignés avec la
majorité des autres données, et augmentaient leur importance dans
la procédure d’apprentissage. Dans cette contribution, nous avons
montré que ces éléments n’étaient pas nécessaires pour éviter les rac-
courcis, grâce à des jeux de données synthétiques construits dans cet
objectif, et avons de plus validé l’efficacité de notre approche sur un
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jeu de données réaliste.

Dans un deuxième temps, le travail présenté ici se concentre sur
des situations de changement de domaines plus générales, dans
lesquelles un unique domaine est disponible pendant l’apprentissage.
L’adaptation au moment du test aux données a emergé comme un
ensemble de stratégies prometteur pour efficacement améliorer les
performances quand de nouveaux domaines sont rencontrés lors de
l’utilisation. Cependant, ces méthodes s’appuient sur des modèles en-
traînés avec la procédure standard, qui ne permet pas l’apprentissage
de la totalité des motifs prédictifs, comme nous l’avons vu. Nous
proposons donc une modification de la procédure d’entraînement
complémentaire avec l’adaptation au moment du test. Notre méthode
permet l’apprentissage des motifs naturellement appris ainsi que des
motifs habituellement ignorés, et par conséquent, permet une adap-
tation plus approfondie. Sur la base de plusieurs expériences, nous
montrons que notre approche améliore la qualité des prédictions sur
des domaines jamais rencontrés au moment de l’apprentissage.

Mots-clés: apprentissage profond, généralisation de domaine, adap-
tation au moment du test, apprentissage des raccourcis, apprentissage
débiaisé.
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1
I N T R O D U C T I O N

1.1 context

Thales Land and Air Systems (LAS) develops several embedded com-
puter vision applications for civilian or defense-related purposes.
These applications require a high level of adaptability and analysis
capabilities, as they are designed for tasks currently performed by
human operators, and for which expert training specific to each task is
furthermore required. Thales LAS’s main interest in automating these
tasks is to speed up their implementation. These image analysis tasks
cannot easily be automated with traditional approaches because they
require a high level of understanding of an uncontrolled and very
diversified environment to be completed. An explicit programming
based on visual cues thus cannot reach a satisfying performance on
all encountered situations.

Machine learning approaches, and particularly deep learning ones,
have emerged as a very promising paradigm to deal with these kinds
of tasks. Instead of explicitly programming the decision process of the
application, which requires careful planning of numerous possible sce-
narios, it is learned based on a large amount of annotated data, with
limited human intervention in the loop. Deep neural networks have
thus reached human-level performance in several computer vision
tasks that are of interest to Thales LAS, such as image classification,
objects detection or semantic segmentation [44, 46, 68], and are now
among the preferred strategy for computer vision tasks.

However, deep neural networks suffer from a dramatic shortcoming
when the images encountered at use-time differ from the images used
for training: they are susceptible to data distribution, or domain, shifts
between training and use [7, 23, 51]. Examples of such different (and
yet dealing with the same semantic concepts) data domains are given
in figure 1.1. This flaw leads to a use-time performance drop which
can be large even if, to the human eye, training and use images are
close. When possible, more data can be gathered from diverse sources
and added to the training set to create a larger data distribution, but
as the diversity of possible shifts is tremendous, this will not enable
robust predictions for all possible situations. This flaw seriously limits
the widespread deployment of deep networks in embedded products.
It is usually dealt with by first detecting a domain shift and then
returning control to the human operator.
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2 introduction

Figure 1.1: Samples of the Office-Home domain adaptation and generaliza-
tion benchmark. Different data domains are shown in the vertical
axis, and different classes in the horizontal ones.

Our overall goal is to enable the continued operation of the embed-
ded application by the deep learning model, even when confronted
with a distribution shift, by maintaining the performance drop below
a threshold that would force human intervention.

1.2 specific problems and objectives

The origin of the domain shifts vulnerability lies in several factors.
First, a moderate intrinsic bias towards textures rather than shapes,
linked to the use of cropping in data augmentation and to the convo-
lutional architectures themselves, harms robustness when the domain
shift encountered is essentially a texture shift [48, 49, 101]. Then, de-
pending on the magnitude of the distribution shift, the predictive
patterns on the use-time distribution might simply be different from
those learned on the training distribution. In our works, we focus on
a third factor called shortcut-learning: deep networks rely exclusively
on the simplest and most predictive patterns for the task at hand, no
matter how spurious they are, without taking into consideration the
less effective yet still predictive patterns. A classic given example is
the binary camel or cow classification problem: in most of the training
images, cows will be on a grassy background while camel will be on a
desert background. A neural network will thus learn that green grass
is a pattern predictive of the cow class and that sandy desert is predic-
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tive of the camel class, and these patterns will be stronger predictors of
the class than the true, causal, animal patterns. This behavior hinders
the out-of-domain generalization ability: the limited subset of learned
patterns may be partially missing (or showing the use-time images
but decorrelated from the labels or correlated with a different label
than in the training set) from the target domain, especially if they
are spurious, and a neural network relying exclusively on them will
be unable to make a proper prediction. Enlarging the set of learned
predictive patterns appears to be a promising lead to mitigate, at least
in part, the domain shift performance drop.

Quantifying the diversity of learned patterns is a difficult task, as
simple metrics are often unable to measure the true amount of se-
mantically different patterns that are effectively useful for the task at
hand. Likewise, explainability methods do not allow a precise enough
diagnosis and require a high amount of human intervention. Further-
more, the performance gain linked to the use of a diversity-seeking
approach in a real-life domain shift situation cannot be used as is,
as most of the time, a domain shift cannot be reduced to a simple
missing patterns issue. Our first goal is thus to measure precisely a
training procedure’s effectiveness in finding the "hidden" patterns and
propose an approach able to reach a satisfying performance if the
existing baselines fail to.

Our second and final goal is to deal with more general domain
shifts. Learning the "hidden" patterns alone will most likely not re-
sult in a significant improvement because of the many possible label
decorrelation or anti-correlation between training and test patterns.
Test-time adaptation, however, enables an adaptive modulation of pat-
terns specific to a particular test domain and has proved effective in
this context [121, 123]. However, test-time adaptation methods rely on
a model trained with the standard training procedure which misses a
lot of possible prediction cues. Combining both approaches should en-
able a more thorough adaptation and reach greater improvements. We
further focus on the single-source setting, in which only a single data
domain is available during training. This setting is more realistic and
practical than its multi-source counterpart: the systematic availability
of several different and identified data domains is quite a generous
assumption, especially in defense or healthcare-related fields where
the sharing of data between organizations is heavily legally regulated.
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1.3 contributions

1.3.1 Learning "hidden" patterns

• Our first contribution to the study of the shortcut-learning be-
havior is the public release of a set of synthetic datasets [27].
They rely on the popular MNIST [69] and CIFAR-10 [65] datasets.
They were specifically crafted with two main goals in mind: first,
so that the accuracy of a model on the test set reflects how well
the less effective predictive patterns are learned, and second, to
prevent a reliance on unrealistic and impractical hypotheses that
are often used in the field. As a result, even though they rely
on the simple and already mastered MNIST and CIFAR-10, no
existing shortcut avoidance baselines perform better than the
standard training procedure on these datasets. We constructed
these datasets by adding a classification shortcut (or bias) to
the original images in the shape of visual cues absolutely corre-
lated with the labels. The shortcuts were chosen to be of different
types for each dataset: spatially mingled with the causal patterns,
spatially located in a narrow area, color-based or location-based.
Unlike all previous synthetic voluntarily biased datasets, the
correlation between shortcuts and labels is absolute (i.e. there are
no samples exhibiting the shortcut of another class). We do so to
investigate whether or not it is possible to learn patterns seman-
tically different from the shortcuts without relying explicitly on
a few shortcut-contrary samples, as almost all existing works do.
We argue that assuming the systematic existence of such sam-
ples and increasing their importance in the training procedure
limits both the applicability of a method and its performance.
First there will be no shortcut-contrary samples for certain un-
usual tasks or when using synthetic data. Then, increasing the
importance of samples behaving differently from the majority
may lead to increase the importance of labeling errors, with a
counter-productive effect on the resulting accuracy. Finally, in
most of the situations, the underlying causal patterns are also
showing alongside the shortcut on the images, they are simply
less predictive. Learning them using the whole training set will
provide better generalization capabilities than only using a small
subset. Samples of the proposed datasets are available in figure
1.2.

• As no baselines yield satisfying results, our next contribution
is a method able to succeed in finding the "hidden" patterns on
all of our benchmarks. Our approach relies on a simple idea: if
one can somehow "remove" the classification shortcuts from an
image, training on these images will enable the learning of the
previously "hidden" patterns as all the more efficient patterns
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Figure 1.2: Samples of our proposed benchmarks. Even rows: training set,
following odd rows: corresponding test set.

are now gone. We propose to implement this idea using a disen-
tangling auto-encoder that separates the information contained
in an image between what is naturally used by a classifier and
what is not. Our architecture makes use of a supplementary
adversarial entropy maximization loss on the ground that high
entropy images are less likely to contain strong prediction clues
for a network. We finally further confirm the effectiveness of our
approach on a realistic benchmark: the Biased Action Recogni-
tion dataset (BAR) [86] and show that it reaches state-of-the-art
performance.

1.3.2 General test-time domain shifts

Our disentangling auto-encoder suffers from several drawbacks. First,
it is only designed to learn both the shortcuts and the underlying
patterns. Indeed, ignoring the shortcuts would require to know in
advance that they are spurious and can be safely ignored without
losing causal information, or, said differently, that the training dataset
is biased and this is an often unrealistic hypothesis. Then, it is also
not equipped to deal with possible decorrelation (or anti-correlation)
between training and test patterns or more general domain shifts of
the covariate shifts family. Secondly, it is computationally heavy (as it
requires two classifiers, an encoder, and a decoder, all simultaneously
trained), which prevents a really widespread use in an industrial con-
text. To deal with general domain shifts in a more efficient fashion, our
main contribution is a novel modification of the training procedure,
in the shape of a slight architecture change, compatible with a wide
range of networks, and an additional training loss. It is furthermore
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meant to be used conjointly with a lightweight test-time adaptation
method. Compared to existing works, our approach is thus simpler,
more stable during training, and rely on very few hypotheses. We
again aim to find predictive patterns that are semantically different
from the normally learned ones and propose to do so with a gen-
eralization minimization constraint, or shortcut avoidance loss. The
simplicity, or inductive, bias [35, 57] of deep networks promotes the
learning of the simplest and most generalizable patterns (on the train-
ing distribution). As a result, by looking for patterns that are both
predictive and generalize poorly, we are able to learn precisely those
normally ignored. We do so by adding a secondary prediction branch
to the original architecture and by training it with an additional short-
cut avoidance loss that promotes the learning of samples’ specific
patterns, e.g. patterns that lower the loss on a specific batch of data
but with a limited effect on the others. The primary branch is trained
normally and thus tasked with learning the original patterns, while
the secondary one is tasked to seek the less effective ones. Single-
source experiments on the classic domain generalization benchmarks
PACS [72], and Office-Home [113] confirmed the effectiveness of our
approach against several state-of-the-art single-source baselines.

1.4 publications

Based on the work done during this thesis, two papers have been
published in international conferences and workshops, and one is
currently under review.

• [27] Thomas Duboudin, Emmanuel Dellandréa, Corentin Ab-
grall, Gilles Hénaff, and Liming Chen. "Encouraging Intra-Class
Diversity Through a Reverse Contrastive Loss for Single-Source
Domain Generalization". Published in the 2021 Adversarial Ro-
bustness in the Real World (AROW) workshop of the IEEE/CVF
International Conference on Computer Vision (ICCV).

This early work proposed the aforementioned MNIST-based
dataset with color-based shortcuts and a novel method to learn
the digit’s shapes despite the highly predictive colorization. Our
method relied on a reversed contrastive loss that pushed for
large intra-class clusters and small boundaries between classes
in the latent space of the network. Unfortunately, this approach
did not transfer to the CIFAR-10-based datasets and was, as a
result, discontinued. Nonetheless, this laid the foundations and
ideas for future works.

• [28] Thomas Duboudin, Emmanuel Dellandréa, Corentin Ab-
grall, Gilles Hénaff, and Liming Chen."Look Beyond Bias with
Entropic Adversarial Data Augmentation". Published in the 2022
International Conference on Pattern Recognition (ICPR).
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This work introduced the three synthetic benchmarks and the
auto-encoder-based architecture able to succeed on them and on
the BAR benchmark.

• [29] Thomas Duboudin, Emmanuel Dellandréa, Corentin Abgrall,
Gilles Hénaff, and Liming Chen. "Learning Less Generalizable
Patterns for Better Test-Time Adaptation". Published in the 2023
International Conference on Computer Vision Theory and Applications
(VISAPP).

This work introduced the final contribution of the thesis, a novel
domain generalization method that complements test-time adap-
tation, and its results on the PACS and Office-Home datasets
that improve over the state-of-the-art.

1.5 content

This thesis is organized as follows:

In Chapter 2, we review the state-of-the-art on the domain gener-
alization problem and its derivatives: shortcut-learning mitigation,
biases avoidance, and test-time adaptation.

In Chapter 3, we present our work on shortcut avoidance, compris-
ing of a detailed description of the synthetic benchmarks and of the
details of our auto-encoder architecture. We show its performance
against several state-of-the-art baselines, for different deep architec-
tures, on both our benchmarks and the BAR benchmark.

In Chapter 4, we detail our final contribution and its benefits to a
test-time adaptation method in the context of general domain shift sit-
uations. We extensively confirm its effectiveness against a diversified
panel of state-of-the-art baselines in the single-source setting.

In Chapter 5, we summarize our work and contributions and lay
out some broad directions and unanswered questions for future im-
provements in domain generalization.





2
S TAT E - O F - T H E - A RT

In this chapter, we review existing state-of-the-art works in the re-
search field of out-of-distribution generalization and in its corollaries.
In section 2.1, we first review theoretical and experimental studies
exploring the origin of the domain shifts vulnerability. In section 2.2,
we review existing debiasing methods, as biases sensitivity is an inter-
esting and informative sub-case of general domain shifts situations.
In section 2.3, we review training-time methods designed to deal
with general domain shifts and their limitations. Finally, in section
2.4, we review algorithms belonging to the new test-time adaptation
paradigm. We conclude this chapter in section 2.5.

2.1 on the origins of domain shifts vulnerability

Seemingly contrary to humans, deep networks are highly susceptible
to shifts between training and test domains. Explaining this vulnera-
bility is still an ongoing work, but several quirks have already been
identified in both the family of deep models and the training pro-
cedure. First, a proper definition of the domain shifts is required to
explain why networks fail to maintain their accuracy when encounter-
ing one. A domain shift is a change of data probability distribution
between a model’s training and its use. For a computer vision task, in
the usual supervised-learning setting, it means that the joint distribu-
tion over images x and labels y differ between training and test:

ptrain(x, y) ̸= ptest(x, y) (2.1)

This broad definition allows for every possible shift, including some
which we do not expect or even want a model to be robust to (most
notably if the sets of training and test labels are disjointed). It thus
must be narrowed down to specific cases to be useful. In our works,
we focus on the covariate shift [95]. It is a particular kind of shift for
which it is reasonable to expect more performance robustness from a
network. It is defined as follows:

ptrain(x) ̸= ptest(x), ptrain(y|x) = ptest(y|x) (2.2)

9



10 state-of-the-art

In a covariate shift, the theoretical functional relationship between
images and labels stays the same during training and at test-time. For
instance, it happens in face recognition tasks when the ethnicity of
faces encountered at use-time differs from the ones of training faces or
in histopathology-related tasks when different colorization protocols
are used during training and use. Note that depending on the magni-
tude of the covariate shift, it will not be possible, even theoretically,
to recover all the accuracy lost on the target domain. For instance,
consider a binary classification problem with only two kinds of shapes
in the training data: crosses (class 0) and circles (class 1). At test-time,
the shapes encountered are crosses (0) and squares (1). As the model
did not encounter any squares during training, its decision for squares
will be uncertain, towards either 0 (crosses) or 1 (circles), depending
on its intrinsic biases and the learned patterns.

The main challenge of covariate shift thus lies in learning patterns
predictive of the correct labels on the test domain while having no in-
formation about it at training-time (in a domain generalization setting,
contrary to a domain adaptation setting, no information about the tar-
get domain is available at training-time). Real-life covariate shifts are
not as extreme as the example above: some predictive patterns in the
training set are always potentially useful on the test set, provided that
they are indeed effectively learned at training-time. For our own work,
we assume that the encountered distribution gap is narrow enough to
be entirely bridged by a theoretical algorithm or, said differently, that
the training set contains enough information to yield a model robust
on the new test distribution. However, numerous experiments show
that deep neural networks favor particular predictive patterns over
some others and can even completely ignore some of them.

2.1.1 The texture bias of deep neural networks

Trained deep networks favor texture-based patterns over shape-based
patterns. Geirhos et al. [39] indeed showed that a ResNet [46] trained
on ImageNet [25] performs poorly and relies most of the time on
textures rather than shapes. They demonstrated it by evaluating their
network on an ImageNet test set in which textures and shapes are
decorrelated trough the use of a style transfer method [37, 55]. An
example of an image with such conflicting texture and shape cues is
shown in figure 2.1, alongside its corresponding network prediction.
As textures are more likely to be spurious than shapes and can change
wildly between domains [84], an over-reliance on textures harms
the out-of-distribution generalization capabilities of the networks.
Many usual domain shifts are indeed essentially texture shifts: for
instance, a model trained on synthetic data and then deployed in
the wild, a test-time change in lighting and weather conditions, or a
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Figure 2.1: Samples of the conflicting cues images and their corresponding
network prediction. (a) Texture image without shape content.
(b) Original ImageNet image. The predictions for both images
are correct. (c) A hybrid image, exhibiting a cat shape and an
elephant texture, obtained using a style transfer algorithm. The
network still predicts the elephant class, even though it is in a
less confident fashion than originally, which indicates a particular
reliance on textures.

change of sensor between training and use data. The origin of this
bias lies in several factors. First, deep convolutional networks, which
are very commonly used in computer vision tasks, seem to possess an
intrinsic bias towards colors and textures as Scimeca et al. [101], and
Hermann and Lampinen [49] showed on synthetic datasets: facing
equally predictive cues of different kinds (color, texture, shape), deep
convolutional neural networks prefer colors and textures over shapes.
Secondly, the use of large image crops as data augmentation also
has an adverse effect on the learning of shapes: Hermann et al. [48]
showed that simply removing crops from the set of data augmentations
noticeably improved the performance on the ImageNet test set with
conflicting cues from [39]. These findings have given rise to numerous
domain generalization works relying on style transfer to alleviate the
texture bias, which we will review in section 2.3.

2.1.2 The shortcut-learning phenomenon

Alongside this preference for textures, deep networks suffer from an
additional drawback: confronted with a large set of roughly equally
predictive patterns in the training set, deep networks will only learn
a small subset of them. This behavior is related to the textures bias,
as the only patterns learned are often the texture-based ones, but is
ultimately distinct as it manifests itself even when all available patterns
are shape-based [38, 101]. An illustration of this flaw, originating from
the work of Pezeshki et al. [93], is available in figure 2.2. Learning only
a narrow set of predictive patterns increases the risk of falling short
of cues at test-time if a learned pattern becomes missing and is thus
detrimental to the out-of-distribution robustness. This behavior has
been experimentally studied on synthetic benchmarks, in [49, 101],
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Figure 2.2: Illustration of the shortcut-learning behavior on a vertically lin-
early separable double crescent classification task. On the left:
the prediction boundary learned by a network trained with the
standard procedure. Note that, despite being correctly predictive
of the labels in ∼ 70% of the samples, the y-axis is almost entirely
ignored by the network. On the right: the desired behavior. The
y-axis is taken into account.

but theoretical explanations remain sparse and scarce. Pezeshki et al.
[93] point out the responsibility of the stochastic gradient descent in
this phenomenon. Because of a coupled training dynamic, an increase
in the strength of a particular feature has a detrimental effect on the
learning of other coupled features. This phenomenon is also related to
the simplicity bias of deep networks, which promotes the learning of
the "simplest" solutions (in the sense of low-rank solutions) [57] and
is thought to explain why deep networks generalize well if the test
images are coming from the same distribution as the training images.
Harshay et al. [104] explored the pitfalls of the simplicity bias and
blamed it for the shortcut-learning behavior. It can also be responsible
for the lack of reliable confidence estimates and can even hurt in-
domain generalization as the simplest patterns might be learned even
though more predictive but complex ones exist.

2.1.3 The numerous biases of training datasets

All these phenomena are common occurrences because of the fairly
frequent presence of shortcuts or biases in the training datasets [32,
109]. Biases are shortcuts that are moreover spurious, and as such
are more likely to be missing at test-time because they are entirely
determined by biases in the data gathering procedure. These biases
and shortcuts arise because of data gathering biases, such as relying
on too few or particular sources of data (as in [23]), or because of non-
stationary environments that make certain patterns become spurious
over temporal or geographical changes (as in [7]). Note that not all
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shortcuts are spurious. For instance, in a car brand classification task
from car pictures, the brand logo located on the front or the back of a
car will be a non-spurious, i.e. causal, shortcut if a large proportion
of training images exhibit it. Despite this shortcut being causal, we
nonetheless wish to learn other semantically different cues.

2.2 debiasing as robustness to specific domain shifts

2.2.1 Methods

Several works are dedicated to preventing the learning of dataset
biases by deep neural networks. Some of them do so to ensure a better
out-of-distribution robustness [62, 70, 86] and others to ensure the
fairness of deep learning algorithms regarding sensitive data attributes,
such as religion, skin color, or gender [60]. Such debiasing methods
are essentially determined by the amount of information assumed to
be available about the biases. There are roughly three situations:

• A first line of works requires the bias to be given as an auxiliary
label. For instance, Kim et al. [60], are able to make a network
invariant to a known bias using a gradient reversal layer, in
a similar fashion to early domain adaptation works [36, 111],
that forces the features embedding to unlearn the biases. An
additional classifier layer is added to the original architecture,
plugged after the features extractor, and tasked with predicting
the bias from an image. Simultaneously, the features extractor is
trained to maximize the bias prediction layer loss. This approach
suffers from an important practicality drawback: requiring the
biases to be given as auxiliary labels is tedious from a human an-
notation perspective and restricts the application of the method
to biases that can be spotted with the human eye.

• A newer line of works rely upon a slightly weaker hypothesis.
It is only required to know in advance that a given dataset is
strongly biased. What is learned naturally by a network is then
assumed to be only biases and, as such, can be safely ignored
without losing causal information. Most of the methods [1, 22, 62,
70, 76, 86] focus on finding counter-examples, or bias-contrary
samples, i.e. samples that do not share the majority bias of their
class, often via a loss-based criterion. Once such samples are
found, their importance during the training is increased via an
over-sampling scheme as in Just-Train-Twice (JTT) [76] or via
a loss re-weighting scheme as in Learning-from-Failure (LfF)
[86]. As a result, the biases that would be otherwise learned
become less efficient than the causal predictive patterns and are
thus ignored to the benefit of the latters. Closest to our first
contribution is the work of Kim et al. [62] that allows the creation
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of a debiased dataset from a biased one by generating hybrid
images in which biases and labels are decorrelated. A model is
then simply trained on this decorrelated dataset and does not
learn the biases as they are no longer predictive. Iterating over
this idea, in [70] (LDD), Lee et al. propose to train on "virtual"
hybrids by disentangling bias and causal patterns at features
level and creating combinations unseen in the training set before
training on them.

We argue that it is desirable to design methods that do not
rely on such few portions of samples. In real-life situations,
it could lead to overestimating the importance of outliers that
should be ignored, such as annotation errors (Northcutt et al. [89]
estimated that the average annotation errors percentage in usual
computer vision datasets was 3.3%). It may also be optimistic
to find counter-examples of the biases in some situations, e.g.
with synthetic datasets where there is often a low diversity of
situations. Furthermore, most of the time, the causal patterns
are still present in the biased images: they are simply "hidden"
behind the more effective biases. Finding the causal patterns in
the biased samples should therefore be possible and probably
leads to better generalization than bias-contrary-based debiasing
methods due to the reliance on a vastly larger amount of data.
Besides, knowing in advance that a dataset is biased is often
an unrealistic hypothesis (spurious biases can be noticeable
background or context, as in [7], but also inconspicuous hospital-
specific clues, as in [23]).

• A final line of works, fairly succinct, makes no hypotheses and
proposes to learn both the patterns that would be learned natu-
rally and the less effective "hidden" ones (no matter if spurious
or not, as it is not something that can always be easily inferred
from looking at the data). Our first algorithmic contribution falls
into this category. The only other work, to our knowledge, is the
spectral decoupling regularization from Pezeshki et al. [93] that
encourages the learning of new features rather than the refining
of already existing features by penalizing the raw prediction’s
confidence.

2.2.2 Benchmarks

Several datasets are publicly available to benchmark debiasing meth-
ods. For a precise measure of the effect of a debiasing method, many
synthetic datasets were created, in which the bias is completely con-
trolled. Often, such datasets are based on the classical MNIST [69] and
CIFAR-10 datasets [65]. Arjovsky et al. [3] first proposed an MNIST-
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Figure 2.3: Samples of the colorized MNIST-based dataset proposed in [1].
Some samples are colorized differently from the majority of sam-
ples of the same class, and are, as such, called counter-examples,
bias-contrary or shortcut-contrary samples.

based two-classes dataset with label noise and two different source
domains with different strengths of color-label correlation, while in the
target domain, colors and labels are almost completely decorrelated.
Pezeshki et al. [93] propose a slightly more complex version of this
benchmark by removing a source domain from the training set, thus
working with a single training domain. Faruk et al. [1] produce a more
complex benchmark by using the original ten MNIST classes and by
coloring each class with its corresponding color in most, but not all,
of the cases (the training set is illustrated in figure 2.3). Two different
target sets are available: a systematic shift set, in which the same
colors as in training are used but strongly correlated with different
labels, and a non-systematic shift in which the colors used for the
target set colorization are entirely different from the training colors.
Dagaev et al. [22] rely instead on the more complex CIFAR-10 dataset
and bias the images by adding a small colored patch, in which the
color is again spuriously correlated with the labels, or by adding a low
magnitude random mask the size of the image different for every class.

Regarding the real-life datasets, the most used ones are the BAR
(Biased-Action-Recognition) dataset [86] and the celebrity faces dataset
CelebA [79]. The BAR dataset consists in 1941 training images and 654

test images falling into six action categories. A sample of the images is
available in figure 2.4. Training data exhibits a heavy background bias
related to the action: ’climbing’ is often illustrated with grey, rocky,
background, ’throwing’ with a recognizable baseball field background,
etc. Test data, however, does not, as it exhibits a higher diversity of
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Figure 2.4: Illustration of the BAR dataset. The bias-contrary samples (minor-
ity in training and validation data, and majority in the test data)
are circled with red.

backgrounds and environments and as such, the standard training
procedure yields a poorly performing model on the test data. The
CelebA dataset is a multi-task dataset comprising of 162k images
with a set of binary attributes associated with each image. To study
debiasing, it is often used in a binary blond or not hair-color prediction
task as the hair color is spuriously correlated with the gender (the
blond men group represents only 0.85% of the training data: 1387 out
of 162k examples).

2.3 domain generalization

2.3.1 Robustness through multi-source training

Most of the domain generalization methods assume to have access to
data coming from several identified domains during training. They
aim to learn more robust features by seeking features that are shared
among all source domains, on the ground that patterns shared among
several domains are more likely to be found in a new, unseen, domain.
This domain invariance can be achieved through a great diversity of
practical approaches:

• Many recent works use adversarial strategies: in the work of
Tzeng et al. [111], the features extracted by a features extractor
are fed to a discriminator tasked to find the original domain
of the image. The discriminator is trained to minimize the do-
main classification error, while the feature extractor is trained
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to maximize it, hence making the features indistinguishable be-
tween domains. This family of works was initially developed
in the context of domain adaptation but can be adapted in the
multi-source domain generalization setting by employing all the
domains at disposal during training, e.g., [14], and [74].

• Uniquely, the work of Krueger et al. [66] is enforcing invariance
at loss level by minimizing the variance of the loss over all
training domains alongside the usual average of the loss per
batch, following the idea that a similar loss value among all
domains is indicative of similar patterns learned.

• Some works rely on meta-learning, of a similar kind than MAML
[34], and simulate a train-test domain shift during training using
the different source domains. An additional meta-objective forces
the gradient update to minimize both the training and the virtual
test loss. Li et al. [73] introduced the main algorithm, and Balaji
et al. [5] refined it with technical improvements in the meta-
optimization steps.

• Self-supervised strategies have also emerged to solve the prob-
lem of multi-source domain generalization. Carlucci et al. [13]
used a self-supervised strategy based on solving jigsaw puzzles:
the images are divided into tiles that are shuffled before being
given to the classifier. The classifier has two goals: classify the
samples and find the shuffling permutation. By having a supple-
mentary objective not related in any way to the classification, the
network will learn other patterns than those strictly sufficient to
the classification task and possibly generalize better to a new dis-
tribution. Recent self-supervised strategy [15, 18, 19] that yield
a better pretraining than the usual supervised ImageNet one
were found to perform poorly in domain shifts situations [61, 87].
More recently, however, a fully self-supervised approach has for
the first time reached results equivalent or better, in some cases,
than the usual ImageNet pretraining in domain shift situations
[127].

• Batch-normalization [58] has also sparked interest in the context
of domain generalization. Seo et al. [103] proposed a relatively
lightweight architecture modification: a batch-normalization
layer is used for each training domain independently (more
specifically, the affine parameters are domain specific) to avoid
internal covariate shifts if several source domains are used at
the same time. The statistics used for normalization are a mix of
global and domain-specific statistics. Segu et al. [102] proposed
to keep only the domain-specific normalization statistics and
use the same affine parameters for all domains. Both approaches
require a merging strategy at test-time: the prediction for a test-
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time sample is a weighted average of the outputs obtained with
all the different statistics or affine parameters.

• Arjovsky et al. in [3] proposed Invariant Risk Minimization (IRM):
a more principled approach to learn invariant features. After
an analysis of the causes of out-of-distribution generalization
failures, they propose to learn a data representation so that the
optimal classifier on top of this representation matches for all
source domains. Through a relaxation, this objective boils down
to minimizing both the original loss and an additional gradient
norm regularization. Their work spawned many subsequent
derivatives, such as in [2], in which an information bottleneck
constraint is added to the existing Invariant Risk Minimization
framework.

• A final noticeable family of works relies upon gradient "surgery"
to learn invariant features, on the basis that disagreements be-
tween gradient’s directions of different source domains are in-
dicative of the learning of domain-specific features and hamper
out-of-distribution generalization. Mansilla et al. [81], and Paras-
candolo et al. [90] concurrently proposed a gradient dropout
strategy that keeps only the coefficients whose signs match over
all (or a simple majority) source domains (a strategy known
as AND-masking). Shahtalebi et al. [105] analyzed the remain-
ing failure situations. Their work concluded that dead zones
(weights sub-space for which gradients systematically disagree
and where weights, as a result, are never updated) and high sen-
sitivity to noisy gradients (because of the strict threshold zeroing
strategy) have a strong responsibility in these failure situations.
Thus, they proposed a relaxed strategy, dubbed smooth-AND-
masking, that more gradually promotes agreement.

Important methodological points in domain generalization works
are often overlooked, which resulted in the 2019 DomainBed [42] catas-
trophe. The most important methodological matters are the model
and the hyper-parameters selection. In a standard setting, the test
model is the one that performs best on a left-aside validation set. This
superior performance will be reflected in the test set, as both datasets
come from the same data distribution (and as deep neural networks
are not very prone to over-fitting [8]). Likewise, hyper-parameters
are searched using the validation set and transfer well to the test
set. In a domain shift situation, one could use the target domain to
select the final model or the hyper-parameters (the ’oracle’ selection
strategy), but this is not realistic: in a real-life scenario, samples of the
target domain are not available (if they are, the situation is a simpler
domain adaptation matter). As a result, a validation set coming from
the training domain is used most of the time (when an indication
of the methodology used is provided, which is far from systematic).
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This validation set strategy is sub-optimal, as the best test accuracy
is not necessarily reached for the best validation accuracy. Very few
works have proposed alternative selection criteria. Ye et al. proposed
in [122] to select a model with both high validation accuracy and low
class-wise variation between features of different source domains.

Following these observations, in 2019, Gulrajani and Lopez-Paz
[42] analyzed a lot of domain generalization algorithms and bench-
marks "in search of lost domain generalization". They detailed ways
to carefully and realistically evaluate multi-source domain general-
ization methods using larger models, stronger data augmentations,
correct models, and hyper-parameters selection (without any use of
the target domain), and doing all on more datasets. All their contri-
butions resulted in the DomainBed benchmark (https://github.com/
facebookresearch/DomainBed). They concluded that no methods were
significantly above the basic expected risk minimization procedure
(ERM), where data from all domains is merged into one single dataset
with the network trained on it. Their findings are corroborated by
Cha et al. [16] who look into the latent spaces from differently trained
networks, one with DANN [36] and another with the basic ERM.
They have shown that ERM naturally tends to yield domain-invariant
features. Methods published after the release of the DomainBed bench-
mark e.g. [2, 105] still failed to produce noticeable performance gain
when model selection (and to a lesser extent hyper-parameters selec-
tion) is done without the use of the target domain or another domain
not used during training.

Several studies were further conducted to provide explanations for
such failures. Hendrycks et al. [47] crafted several datasets exhibiting
different kinds of distribution shifts and used them to benchmark
many existing algorithms. Their results pointed out the high specificity
of domain generalization methods. They are, often implicitly, tailored
for a particular kind of distribution shift. In most cases, existing
methods succeed in the case of texture shifts and fail on non-texture
shifts, such as geographical shifts. Their findings are corroborated by
Borlino et al. [11]: combined with a style-transfer data augmentation
strategy (see below), which enforces a strong invariance to textures,
many existing methods fail to provide an additional performance gain,
which indicates a mitigation of the same texture bias.

2.3.2 Single-source domain generalization

Because the availability of several different source domains is an
unrealistic hypothesis in some situations (such as in healthcare or
defense-related tasks), methods were developed to deal with a domain
shift issue with only one single domain available during training. Note

https://github.com/facebookresearch/DomainBed
https://github.com/facebookresearch/DomainBed
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that not all methods presented below were evaluated in the single-
source setting: they fall into this category as the source of the expected
performance gain does not come from having several different do-
mains available at training-time. When they are benchmarked in the
multi-source setting, the different source domains are simply pulled
together into a single dataset.

Many single-source methods rely on a domain shift invariance hy-
pothesis: a prior hypothesis on what kinds of features are more likely
to be spurious or missing at test-time. Ultimately, it is an assumption
about the kind of domain shifts the network should be robust to.
The most commonly used invariance hypothesis is the texture shift
hypothesis: as a lot of real-life domain shifts are primarily textures
shifts, making a network invariant to textures would render it robust
to many real-life domain shifts. This objective can be achieved using
style transfer, a set of deep learning methods able to transfer the style
of an image, i.e. its textures, to another image without altering its
other content [37, 55]. It can be done in a simple fashion by using
style transfer as data augmentation: a model is simply trained on im-
ages whose styles are altered and diversified through a style transfer
strategy. Geirhos et al. [39] relied on an additional paintings dataset
and transferred the painting styles to the training images. Lin et al.
[75] studied the necessity of the paintings dataset: paintings dataset
against style permutations between training images. Provided that
the training dataset is sufficiently large, the latter solution was as
effective. Jackson et al. [59] instead relied on a third possibility: style
embeddings are sampled randomly from a suitable distribution, thus
avoiding the inconvenience of an additional dataset and creating a
possibly more diverse set of styles than the training one. Samples of
stylized images from [59] are given in figure 2.5. Finally, Wang et al.
[117] went further and learned the transformation styles to produce
challenging images for the network being trained. Style transfer can
also be used implicitly inside the main model architecture: Zhang et al.
[128] proposed a simple exact distribution matching layer, intertwined
between the original ResNet [46] residual blocks, that enabled texture
permutations between training samples. In a similar fashion, Nam et
al. [85] proposed to use, at features level, for a given image, a style ran-
domly interpolated between its own and that of a random secondary
image. They further enforced style invariance through an adversarial
learning scheme. Such methods are limited to situations where it is in-
deed a shift of the hypothesized nature that is encountered. However,
not all real-life domain shifts encountered in computer vision tasks
are texture shifts.

Other works wish to learn a larger set of predictive patterns to make
the network more robust should one or several training-time predic-
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Figure 2.5: Illustration of images augmented through a style transfer method,
from [59]. The original image is in the top left corner, and its
semantic content remains unaltered for all the different styles.

tive patterns be missing at test-time. Volpi et al. [114], Qiao et al. [94],
and Zhang et al. [129] propose to incrementally add, to the training
dataset, adversarial images crafted to maximize the classification error
of the network. These images no longer contain the original obvious
predictive patterns and training a network on them then forces the
learning of new patterns. These strategies are inspired by adversarial
training methods [54, 67] that were originally designed to improve
adversarial robustness in deep networks. This paradigm relies upon
the following optimization procedure:

min
θ

sup
p:D(p,p0)<ρ

E(x,y)∼p[L(θ, x, y)] (2.3)

With θ being the network’s weights vector, L the training loss func-
tion, p0 the labeled training data distribution (and (x, y) the training
image and label pairs), D a distance (or divergence) measure over the
distributions space and ρ the boundary for the space of considered dis-
tributions. For D, the Kullback-Leibler divergence (or its symmetrical
counterpart, the Jensen-Shannon divergence) is sometimes used, but
most of the works relying on this formalism use the Wasserstein dis-
tance. There are two main challenges with this family of approaches:
firstly, only p0 is known, the effective training distribution p has
to be generated, and secondly, for such high-dimensional data, the
Wasserstein distance cannot be easily computed nor enables a clear
understanding of what kinds of domain shifts fall into the range of
a specific ρ value. To generate the samples from the distribution pθ

defined by supp:D(p,p0)<ρ E(x,y)∼p[L(θ, x, y)], most approaches rely on
an adversarial paradigm: a loss gradient ascent algorithm is run on the
original images to generate images that maximize the loss from the
model θ. Generated images are then added to the training set, and new
images are generated to be challenging for a model trained on both
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the original images and the previously generated ones. An additional
constraint is used to remain in the valid distance ball, defined by ρ.
Most of the time, as the distance condition cannot be enforced directly,
a Lagrangian relaxation is used: a distance (different kinds are used)
between a generated sample and its starting image is penalized with a
strength depending on the ρ parameter. These kinds of approaches are
often unstable due to the alternating adversarial learning framework
and impractical due to the ever-growing training set and the difficult
setting of the maximum distribution distance hyper-parameter ρ [114].

Wang et al. [117] used a similar approach in an online fashion,
without the ever-growing dataset and combined it with the afore-
mentioned style augmentations approaches. With the same goal of
learning normally ignored patterns but with a completely different
approach, Huang et al. [56] and Shi et al. [106] used a dropout-based
[108] strategy to prevent the network from relying only on the most
predictive patterns by muting the most useful channels or mitigating
the texture bias. The main challenge of dropout-based approaches is
the redundancy issue: standard dropout does not prevent the learning
of the same patterns several times in different filters or neurons. This
issue must be overcome to effectively learn patterns that are seman-
tically different rather than just duplicates of the normally learned
ones.

2.3.3 Benchmarks

Many benchmarks in the domain generalization research field orig-
inate from the domain adaptation field. Office-Home, for instance,
was first introduced in [113] in a domain adaptation setting. Like-
wise, VLCS [33] was created by merging different domain adaptation
benchmarks. PACS [72] was, however, directly introduced as a domain
generalization benchmark. Samples of the PACS datasets are available
in figure 2.6. These benchmarks are relatively small-scale, as there are
between 10k and 15k samples for the four data domains and between
5 and 65 classes. To study domain generalization in a more realistic
situation, with more classes and images than before, the DomainNet
[92] benchmark (originally created for domain adaptation as well) com-
prises of more than half a million images divided into 345 categories.
So far, all mentioned benchmarks are dedicated to a classification task.
To study domain generalization in the object detection or regression
setting, WILDS [64] proposed several datasets with data gathered from
real-life sources exhibiting commonly encountered domain shifts and
corresponding to directly useful tasks: wilderness or crops monitoring
cameras in different geographical locations, histopathology images
from different hospitals, satellite images of developing countries over
seasonal, weather and development changes, etc. Likewise, a subset
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Figure 2.6: Samples from the PACS dataset, from [116]. The four domains
are represented: sketch, cartoon, art paintings, and photos, and
illustrated with the horse and dog classes.

of Terra Incognita [7] is labeled for animals detection in wilderness
cameras from different locations. For semantic segmentation, only a
few datasets are publicly available. The most known and used ones
are SYNTHIA [99], and Cityscapes [21]. These datasets consist in
synthetic (for SYNTHIA) and real-life (for Cityscapes) urban scenes
dedicated to an autonomous driving task. They are usually used to
study synthetic-to-real shifts.

2.4 test-time adaptation

Test-time adaption has emerged as a promising paradigm to deal
with domain shifts. A network is trained normally (using stochastic
gradient descent or a derivative and data augmentation), and then
adapted to the data distribution encountered at use-time with a quick
unsupervised procedure, as the labels are unavailable. By waiting for
test-time to gather information about the target domain, in the shape
of an unlabeled batch of samples from the same data distribution or
even a single sample, this paradigm alleviates the main drawbacks of
training-time domain generalization methods: the lack of information
about the target domain, and the necessity to simultaneously adapt to
all possible shifts.

The simplest test-time adaptation strategy consists of replacing
the training-time statistics in the batch normalization layers with the
running test batch statistics. This is now used in almost all methods
[9, 53, 83, 100, 123]. This strategy was originally designed to deal
with test-time images corruptions (e.g. blur, additive noise, etc.) but
proved to be efficient dealing with more general domain shifts [121,
123]. A correct test statistics approximation can be reached only if all
samples encountered at test-time come from the same data distribution.
This is a realistic scenario for applications like autonomous driving,
in which the data distribution is not expected to change over the
course of a few consecutive images, but less so for networks made
available online as an API where samples from a completely different
distribution can be sent at the same time. In a situation where samples
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of a test batch cannot be assumed to come from the same distribution,
workarounds requiring only a single sample were developed by mixing
test-time and training-time statistics [53, 100, 121, 123], or by using
data augmentations [53]. Some solutions, such as the work of Yang et al.
[121] or Wang et al. [115] further rely on test-time conditional entropy
minimization, which forces highly confident predictions and prevent
inconsistent features from being taken into account. To enforce this
objective, only the affine parameters of the batch-normalization layers
are updated to preserve the original features in case of encounters
with several different domains, and to take fewer amount of time.
Finally, Zhang et al. [126] quickly adapt the whole network to make
consistent predictions between different augmentations of the same
test sample. For all methods requiring a backward pass, a single
gradient descent step followed by a final forward pass on the adapted
model is often enough to reach a noticeable improvement. If the
samples encountered at test-time can be assumed to come from the
same distribution (the online adaptation scenario), the adapted model
can be used and adapted again for the subsequent batches of data.
If the batches of data come from different distributions (the offline
adaptation scenario), the model’s parameters are reset between batches
to their final training values. All these strategies rely on a model
trained with the standard training procedure and, as such, suffer from
the shortcut-learning drawback. This limitation probably hampers
these strategies’ adaptation capabilities and can only be corrected
during training.

2.5 conclusion

Domain generalization and biased datasets issues are mitigated through
a wide range of methods. However, they mostly remain an open prob-
lem, as the existing approaches’ generalizability is often low, and
they often rely on unrealistic hypotheses. We therefore advocate for
more studies of simple and controlled situations due to the many
challenges of domain generalization and the lack of significant perfor-
mance gains displayed by several algorithms when the experiments
are conducted rigorously. Furthermore, as we want our work to be
usable in the widest range of situations, we are not focusing on invari-
ance hypotheses, but rather on general diversity-seeking approaches.
Based on these conclusions, mitigating the shortcut-learning behavior
appears to be a promising strategy to diversify the learned patterns
without making any assumption about the encountered domain shift.
We thus first studied it in a in a strictly controlled yet challenging
setting and proposed a mitigation solution, in chapter 3. Taking into
account the limitations of our first approach and those of the existing
works, we proposed a novel strategy to deal with the domain shift in
more realistic situations, in chapter 4.
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O V E R C O M I N G S H O RT C U T- L E A R N I N G

In this chapter, we focus specifically on the mitigation of the shortcut-
learning behavior. We first present, in section 3.1, an unlikely encounter
with the shortcut-learning behavior, which is not related to a test-time
domain shift, and that pushed us to research this topic. In section
3.2, we then introduce three synthetic datasets crafted to precisely
measure the ability of a deep learning approach to learn patterns
beyond the shortcuts. Finally, we propose two approaches to deal with
the shortcut-learning flaw on our datasets. The first one, a simple
additional training loss detailed in section 3.3, introduced ideas that
would be reused in the next chapter but failed to generalize to all of our
benchmarks. The second one, a more complex generative architecture
detailed in section 3.4, yields state-of-the-art results on our benchmarks
and on the realistic, heavily biased BAR dataset. We conclude this
chapter in section 3.5.

3.1 first appearance of the shortcut-learning behavior

Vehicles detection from aerial images is a task of interest for Thales
LAS France. However, due to the limited availability of such data and
their high annotation cost, it is difficult to implement a successful deep
learning approach to solve this task. One of our early work was dedi-
cated to the addition of objects in aerial images, as a data augmentation
mean. Its goal was to counterbalance the lack of instances of certain
vehicle classes and avoid potentially spurious correlations between
objects and backgrounds, such as boats being on blue or green waters,
planes on grey landing areas, etc. Our experiments focused on the only
publicly available large-scale aerial images dataset: the DOTA dataset
[119], a collection of satellite images in the visible spectrum annotated
for objects detection. Samples of this dataset are available in figure
3.1. The iSAID dataset [118] is its semantic segmentation counterpart:
the exact same images are used, only labeled for a different task.
The different vehicle classes (boat, car, truck, plane, helicopter) are
very heavily imbalanced: while there are only a thousand helicopters,
the truck and cars categories comprise of around hundred of thou-
sands samples. This imbalance, combined with the aforementioned
spurious background biases, makes the DOTA (and iSAID) dataset a
challenging benchmark, even though there is no test-time domain shift.

Our approach worked as follows: objects are precisely cropped out
from their original image, using their iSAID semantic segmentation

25
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Figure 3.1: Samples from the DOTA dataset, for a subset of available classes,
with their oriented bounding boxes.

label, and pasted into another image in a randomly chosen area where
no object is already present. Samples of pasted vehicles are shown
in figure 3.2. This data augmentation strategy, jointly used with the
YOLOv3 [96, 97] deep architecture, did not enable better detection
of the rare classes, despite the trials of many different parameters
(the number of pasted objects per image, the relative proportion of
the different classes pasted, etc). Sometimes, it could even perform
worse than a simple training without our custom data augmentation
strategy. This behavior has already been observed several times in
object pasting strategies and finds its roots in the shortcut-learning
phenomenon. The pasted objects exhibit boundary artifacts, due to
the random non-matching area, that are picked out by the network
as an effective clue to find the localization of an object. Instead of
effectively learning the causal patterns, the network relies instead on
visual artifacts because they are simpler and still very efficient.

All the previous works prevent the learning of such unwanted pat-
terns using distractors, or decoys. Dwibedi et al. [31] and Dvornik et
al. [30] first tried to mitigate this phenomenon by blending the bound-
aries, with reasonable success. The exact same scenes are generated
with various blending algorithms (gaussian, Poisson, etc.) to prevent
the learning of the blending cues rather than the causal patterns. De-
spite these precautions, [31] and [110] find it further necessary to add
decoys, that are either objects pasted into the images but outside the
scope of the task [31] (not meant to be detected and classified by the
network, and as such not added to the list of object annotations) or
background areas cut into the shape of an existing object and pasted
onto an image [110]. Both strategies aim to add boundary artifacts in
a situation where they are not predictive of sought-after object.
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Figure 3.2: Close-up of vehicles randomly pasted into images.

Figure 3.3: Background cut out in the shape of a plane, and pasted in an
image as a decoy, to desensitize the networks to visual pasting
artifacts.
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This shortcut-learning situation is a very specific one that can be
mitigated using explicit programming. In our case, the addition of
such distractors (an example can be seen in figure 3.3) enabled us to
recover the original detection performance (without any pasting data
augmentation) but not to reach significantly better results. Dvornik et
al. [30] pointed out the responsibility of the random placement in the
lack of improvements and proposed context-consistent compositing of
objects and images, at the cost of an increased vulnerability to spurious
backgrounds. Furthermore, hard-mining appears to be mandatory for
such data augmentation strategies to perform better than standard
training: Liu et al. [77] and Mounsaveng et al. [82] proposed to learn the
position, the orientation and a possible distortion of the pasted objects
to maximize the detection errors. In [82], the method transforms the
pasted objects using an auto-encoder, and in [77], a generator network
is tasked with generating the additional objects from scratch, both with
the same loss maximization objective. Hard-mining has proved to be
an important paradigm for many training data generation approaches:
for instance, Besnier et al. [10] found it necessary to be able to use
images generated with a conditional BigGAN [12] to train a network.
The use of images transformed to be specifically hard to analyze by a
network plays an important part in our subsequent works.

3.2 synthetic benchmarks

Following the systematic reliance on shortcut-contrary samples, we
proposed a set of benchmarks that are simple to craft and to experi-
ment with and yet challenging for debiasing, domain generalization,
or shortcuts avoidance algorithms. The three benchmarks are based
on the MNIST and CIFAR-10 datasets and are publicly available on
github 1. They can be seen in figure 1.2.

3.2.1 Colored-MNIST

In the training set of this biased dataset, every digit is colorized with a
class-dependant color. All the chosen training colors are fairly different.
There are furthermore no bias-contrary, or shortcut-contrary samples
(images colorized differently from the majority of the other images
in their class), as in [1] or label noise (images colorized with their
correct class color, but with an assigned final label different from the
original one), as in [93]. The validation dataset is colorized with the
same colors as the training set. To precisely confront a deep network
with a situation where useful training patterns are missing at test-time,
the test-set color has to produce an activation that is roughly the same
for all color-specific filters in the network. This way, the network is
unable to use color-related information to predict the class of a digit

1 https://github.com/liris-tduboudin/Look-Beyond-Bias

https://github.com/liris-tduboudin/Look-Beyond-Bias
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and has to make use of other class correlated patterns, e.g. the shapes.
Because we can’t directly abide by this constraint, we propose to use
the average of the training colors as the test color. This will suit our
needs provided that no specific training color is closer to the average
than any other one and that all training colors are sufficiently different
from each other. For instance, if the training color of class C is closer
to the average color than the other colors, the network will wrongfully
believe that the test samples are all of class C. Likewise, if two training
colors are close to each others, the network won’t be able to easily
differentiate samples of the two classes using only the color and will
be driven to learn at least partially other class related patterns, e.g.
the shape. The colors (a triplet of value in range [0, 1]) are therefore
chosen to be on a sphere centered in the average (6 of them) and on
the vertices of a cube centered in the average (the 4 left). This way,
no particular color is closer to the average than at least three others.
All colors are not on the sphere to avoid colors that are too similar
to one another. Other works have introduced color-biased MNIST
datasets [1, 3, 93]. Ours differs from theirs, most notably by the lack
of counter-examples, but also by having a single domain for training
and by having an unbiased dataset for testing rather than a dataset
differently biased e.g. with different class-color combinations. One
particularity of the colorized MNIST dataset is the fact that the shape
and color information are spatially mingled, which prevents a simple
training with cropping or cutout [24] data augmentation to find the
shape information.

3.2.2 Colored-Patch CIFAR-10

Inspired by the work of [22], we also designed a more complex bench-
mark dataset based on CIFAR-10. For each of the training image, a 5x5

pixels colored patch is added in the top left corner. The patch color is
the image’s class color, again with no counter-examples. In the test set,
all the images have the same patch color, which is the average of the
training colors, like previously. For this dataset, the bias is spatially
located in a tiny part of the images instead of being global as with the
MNIST dataset. The colors used are the same as those used for the
MNIST-based dataset.

3.2.3 Located-Patch CIFAR-10

Finally, to experiment on a biased dataset for which the bias is not
texture-based, we create a CIFAR-10-based benchmark where it is
the position of a 5x5 pixels patch that is absolutely correlated with
the label e.g. top left corner patch for planes, bottom right corner for
horses. The color of the added patch is red, for all classes as it is the
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least frequent color in the CIFAR-10 dataset. For the test dataset, the
average patch is added to all the images, no matter their class.

3.3 first attempt in discovering the "hidden" patterns

Our first shortcut-learning mitigation approach relied on a hypoth-
esis: we posit that, when training for a classification task, naturally
learned patterns are learned because they tend to maximize inter-class
specificity while minimizing intra-class variability. These learned pat-
terns are the most effective when in discriminating between different
classes. As a result, we believe that to find the "hidden" less efficient
predictive patterns, we need to look for class-discriminant patterns
with a higher intra-class variability than those learned naturally. That
is, patterns enabling the network to better discriminate samples of
the same class. Because we do not have access to additional auxiliary
labels to discriminate elements within a class, we propose to expand
the class-wise internal representations of a deep network.

3.3.1 The reverse contrastive approach

Figure 3.4: An illustration of our reverse contrastive approach on three sam-
ples in the features space. Point n°1 in the latent space is suffi-
ciently far from its closest negative neighbor (full line) for it to be
pushed away from its closest positive neighbor (dotted line). So is
point n°3. Point n°2, however, is too close to a negative point to be
pushed. The arrows show the moving direction of each feature.

Our method thus starts from the observation that patterns that are
learned with a standard training procedure (e.g., stochastic gradient
descent with a cross-entropy loss for a classification task) are learned
because they exhibit the maximum inter-class specificity and a fairly
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low intra-class diversity. To make the network learn semantically dif-
ferent ways to do the task, we propose to look for class-discriminant
patterns with a higher intra-class variability than those learned natu-
rally. A higher intra-class variability means that we are able to discrim-
inate elements inside a single class, something that is difficult with the
standard training procedure (see figure 3.5, a). To find such patterns,
we spread the intermediate features (the output of the convolutional
features extractor F, before the last fully connected classifier layers)
of elements of the same class to a certain extent. The limit in the
class-wise repulsion is determined by elements of the other classes:
the intra-class features are repelled from each other until we reach
elements of the other classes, with a margin. This approach is akin
to a partially reversed contrastive loss where positive and negative
pairs are switched, but a margin must be maintained between samples
of different classes. We train the network with two objectives: the
conventional classification objective for both the features extractor and
the classifier and the following loss for the features extractor only:

minF{−d( fa, fp)}
s.t. d( fa, fp) < m × d( fa, fn)

(3.1)

fa is the anchor feature map, fp a feature map belonging to a point
of the same class as fa i.e. the positive sample, fn a feature map be-
longing to a point of a different class than fa, i.e. the negative sample,
and m is the margin, a scalar to chose between 0 and 1 if we want the
inter-class distance to be larger than the intra-class distance. To ease
the hyper-parameter search, we use a multiplicative margin instead
of an additive margin, contrary to the standard triplet loss [50]. The
distance d used is the L1 distance. Feature maps are rescaled in the
range [0, 1] before distance calculation by using the maximum and
minimum activation values computed batch-wise. This is done to
avoid divergence, as there are otherwise no lower bounds for this loss.
Usually, features are normalized with their L2-norm, putting them on
the unit sphere, but we found better results with the min/max strategy.
Practically, we use the following reverse contrastive loss (RCL):

LRC = { −d( fa, fp) if d( fa, fp) < m × d( fa, fn)

0 otherwise
(3.2)

The triplet of features used is not chosen randomly in the batch: we
follow an easy-positive hard-negative sampling strategy. The anchors
are sampled randomly, the positive is the closest element of the same
class, the negative is also the closest element in a different class. It
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is useless to push away elements of the same class that are already
far from each other in the latent space: patterns extracted for these
samples are already different. We compare the closest intra-class dis-
tance with the closest inter-class distance to avoid creating a mixed
latent space and define precise boundaries in the latent space. The
positive points used in the loss are detached from the computation
graph so that only the anchor is moved in the latent space: the distance
check with negative neighbors is only relevant for the anchor. This loss
cannot work on its own without the classification loss: at initialization,
all features are clustered in the same area of the latent space, and since
the inter-class distances are small, we cannot expand the size of the
intra-class clusters. The cross-entropy loss will push away the features
of elements of different classes, allowing the second objective to loosen
the intra-class clusters. A visualization of the proposed method can
be found in figure 3.4 and the detailed algorithm in pseudo-code in
algorithm 1. We found even better results when pushing away features
of the same class without any kind of limitation, that is, minimizing
−d( fa, fp), or having a margin set to infinity. While counter-intuitive,
this might be explained by the influence of the classification loss,
which prevents a complete scattering of intra-class features and forces
the differentiation of inter-class features.

Algorithm 1: Reverse Contrastive Loss

1 method specific hyperparameters:
2 - weight for the RCL α

3 - margin for the RCL m
4 while training is not over do
5 sample batch of data {(xi, yi), i = 0...N}
6 calculate cross-entropy loss on batch LCE
7 calculate intermediate features { fi, i = 0...N}
8 normalize features
9 for each sample fi in batch do
10 find closest positive fp,i in the batch
11 find closest negative fn,i in the batch
12 detach fp,i from the computation graph
13 if d( fi, fp,i) < m × d( fi, fn,i) then
14 LRC,i = −d( fi, fp,i)

15 else
16 LRC,i = 0
17 end
18 end
19 LRC = 1

N ∑i=0...N LRC,i
20 update model with LCE + α ×LRC

21 end
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3.3.2 Baselines for comparison

A first algorithm to find several useful patterns for classification can
simply make use of dropout [108]. By zeroing activations inside the
network, we naively force it to look for new patterns. A limitation
of dropout is that nothing prevents the network from learning the
same patterns through several filters. To avoid this redundancy phe-
nomenon, we further implement two straightforward variants using
two different regularizations: orthogonality of filters, used in [6] (more
precisely, we apply the double soft orthogonality regularization) and
constraint over the covariance matrix of the filters activations, used in
[20]. Both regularizations are applied on the same layer as dropout,
but before dropout is applied for the calculation. An orthogonality
constraint for filters is supposed to prevent a filter from being close to
another. The penalization of the covariance matrix of the activations is
based on the idea that filters that generally activate together, or don’t
activate together, are probably semantically related, even though their
weights might be different. These approaches constitute what we call
the naive strategies.

We also implement more elaborated methods inspired by domain
generalization works. First, we compare our approach with one in-
spired by the jigsaw puzzle multi-task strategy used in [13]. Our
approach is also compared to a reconstruction multi-task strategy (in-
spired from [40]), where the features obtained by the features extractor
are used for a classification task, with a classification head, and for an
image reconstruction task, with a decoder. The feature extractor must
extract sufficiently complete patterns to reconstruct the input, which
is more than what is extracted with a single classification objective.
The two strategies tailored precisely for the problem at hand are Rep-
resentation Self Challenging [56], and Spectral Decoupling [93]. The
selected methods were chosen because they improve out-of-domain
generalization by finding new patterns. We did not compare ourselves
with more general methods, such as the ones using style transfer, for
instance, because our goal is to measure the ability of an algorithm to
find less correlated patterns.

3.3.3 Experimental setup

Our experiments are conducted on our Colored-MNIST benchmark
using a small neural network. The architecture we use was introduced
in [13] to study MNIST to SVHN [88] transfer. It is composed of two
convolutional layers and three fully connected layers. Max pooling
operations are inserted between each convolutional. The non-linearity
used is ReLU for all the layers. The convolutional layers define the fea-
ture extractor (128 channels), and the fully connected layers define the
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classifier. For all experiments, we use stochastic gradient descent, with
a batch size of 128, with Nesterov momentum at 0.9, a fixed learning
rate of 1e-3, and an L2 weight decay at 1e-5. Models are trained for
10 epochs. There is no data augmentation. The jigsaw puzzle strategy
uses an additional fully connected layer to the network, as in [13],
alongside another fully connected layer used for the classification. The
images are divided into 2x2 squared tiles, which are then shuffled,
yielding 24 possible permutations. Each batch is used for both labels:
class with the original batch sent through the network, and permuta-
tion with the shuffled batch. The decoder in the reconstruction method
is composed of 4 transposed convolution layers, with a hyperbolic tan-
gent as the last activation function. When dropout is used, the dropout
rate is chosen at random between 0 and 1 for each iteration: a fixed
dropout rate helps the network introduce redundancy in a simple fash-
ion: it only has to create more redundancies than there are dropped
channels. Likewise, only full channel dropout is used because of the
correlation between spatially close activations in the same channel,
which enable the network to recover the color all the time. For RSC,
we reuse these dropout hyper-parameters, and the batch percentage
(the proportion of samples per patch for which RSC is used) is fixed at
100% as we want the network to look beyond the color for every image.

Most strategies use two objectives during training: the classification
cross-entropy and another objective (jigsaw puzzle, reverse contrastive
loss, or reconstruction loss) or regularization (orthogonality, spectral
decoupling). The weight for the classification loss is always set to 1.
The weightings for the supplementary losses (or regularizations) were
selected in the list (0.001, 0.01, 0.1, 1, 5, 10) with the following principle:
the value selected is the largest value that does not lead to a collapse of
the validation accuracy. The idea is that the regularization weighting
should have a positive slope for out-of-distribution accuracy, i.e. the
larger the weight, the better the out-of-distribution accuracy up until a
certain point. It is grounded in the fact that most additional objectives
tend to counter the natural behavior of the network. The weight is
1.0 for the orthogonality constraint, 0.01 for the covariance constraint,
10.0 for the Jigsaw Puzzle, 1.0 for the reconstruction, 5.0 for Spectral
Decoupling, and 1.0 for our reverse contrastive constraint.

During training, we select the model with the highest validation
accuracy and evaluate this model on the testing data. It has been noted
that domain generalization is a setting where the initialization of the
network is more important than usual, and that results may vary in a
greater fashion than with a training and testing dataset coming from
the same distribution [66]. Therefore, we average the results over 10

runs and report the standard deviation alongside the average.
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3.3.4 Results and analysis

Method Validation Accuracy Test Accuracy

Standard Training Procedure 99.8 (± 0.006) 26.0 (± 4.7)

Dropout 99.8 (± 0.01) 31.9 (± 3.1)

Dropout & Orthogonality [6] 99.8 (± 0.008) 42.7 (± 2.6)

Dropout & Covariance [20] 99.8 (± 0.002) 42.6 (± 2.0)

Jigsaw Puzzle [13] 99.8 (± 0.01) 43.0 (± 3.0)

(with early stopping @95) 98.5 (± 0.3) 59.9 (± 4.5)

Reconstruction 99.8 (± 0.007) 28.5 (± 4.8)

Spectral Decoupling [93] 99.8 (± 0.004) 47.7 (± 2.9)

(with early stopping @95) 99.4 (± 0.09) 49.8 (± 1.5)

RSC [56] 99.2 (± 0.2) 43.5 (± 5.0)

RCL-SDG (ours)

m = 0.2 99.8 (± 0.007) 12.5 (± 2.6)

m = 0.4 99.8 (± 0.007) 19.9 (± 5.5)

m = 0.6 99.8 (± 0.009) 36.8 (± 5.6)

m = 0.8 99.7 (± 0.03) 55.7 (± 4.7)

m = 0.9 99.4 (± 0.08) 68.2 (± 4.0)

(with early stopping @95) 95.84 (± 0.6) 74.7 (± 8.5)

m = ∞ 96.0 (± 0.3) 89.9 (± 0.9)

Standard Training Procedure 97.8 (± 0.12) 97.8 (± 0.12)

on the original MNIST

Table 3.1: Results of the methods on the Colored-MNIST dataset. Accuracies
reported are averages over 10 runs, with the standard deviation
between parenthesis. The last line indicates the accuracy reached
by our backbone network on the original MNIST dataset without
domain shift, it thus gives the highest reachable accuracy in the
test domain for the methods.

Table 3.1 synthesizes the overall results. As can be seen, our reverse
contrastive method yields a significant improvement over the previous
works and the naive strategies on our dataset. Dropout compares
favorably to normal training but yields far better results when used to-
gether with a regularization to prevent redundancy. This redundancy
issue might explain why RSC [56] yields results only marginally above
dropout and regularization. During training, we monitored the test
accuracy over the epochs and noticed that jigsaw puzzle and spectral
decoupling succeed to some extent but suffer from an over-fitting
issue: the best test accuracy does not happen for the model with the
best validation accuracy. Early stopping is useful in this situation. We
employ a simple yet realistic early stopping strategy that does not
use the test set: training is stopped as soon as the validation accuracy
reaches a satisfying threshold, fixed here at 95% (and noted @95). This
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only enables us to recover a closer accuracy than the best test accuracy
but not go higher. Most methods specifically designed to prevent
the network from focusing only on a subset of useful features are not
effective enough to consider the problem solved on our simple dataset.

Besides the accuracy table, we also illustrate the impact of our re-
verse contrastive loss in figure 3.5 by looking at the latent spaces of
models trained differently, through the T-SNE dimensionality reduc-
tion method [80] applied on the features. With a margin of 0.9, the
class clusters are still separated, but we can see their expansions (d)
compared to the standard training situation (a). Without limitation, the
clusters are mixed together and can only be discriminated against one
another only roughly (e). This explains why the performance in the
training domain is lower: the classifier cannot perfectly separate the
classes, however, the performance in the testing domain is higher. This
illustrates an underlying trade-off in our method: the more the intra-
class clusters are expanded, the more the network will find "hidden"
useful patterns, but the more it will also learn useless patterns that are
not inter-class discriminant. By comparing with the latent space of the
same model trained on the original MNIST (c), we see an inefficiency
of the method in finding useful patterns. The cluster sizes needed to
obtain an accuracy of around 90% are larger than the size of the clus-
ters on the original MNIST, indicating that noise and instance-specific
patterns have been learned by the network. Further experiments on
the Colored-CIFAR-10 and the Located-CIFAR-10 indeed showed that
on more complex datasets, the RCL without limitation does not yield
good results due to the image specificities being more prevalent than
in MNIST. These limitations are developed in the next section.

Moreover, our approach tends to qualify the common principle in
the deep learning research community that a good latent space, one
able to generalize well, is supposed to have tight intra-class clusters
with large margins between clusters. While this is true when there
is no domain shift, it might not always hold true when so. This can
be seen in figure 3.5 where a testing latent space corresponding to a
large-margin tight-clusters training latent space is completely misun-
derstood by the network (b). On the opposite, the blurred boundaries
training latent space (e) stays similar in the testing domain (f).

3.3.5 Reverse contrastive approach summary

We first showed that existing methods only slightly mitigate the perfor-
mance drop when predictive patterns are missing at test-time, even in
a simple situation like our Colored-MNIST dataset. Therefore, we pro-
posed a counter-intuitive strategy: instead of aiming for a tight-cluster
large-margin latent space, it is beneficial to try to expand the class-wise
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Visualisation of different latent spaces through a 2-dimensional
T-SNE [80]. The two axis are the dimensions obtained by the
T-SNE. (a) shows the validation (colored digits) latent space, for
a model trained normally. (b) shows the test (grey digits) latent
space for the same model. (c) shows the validation latent space
for a model trained normally, on the original MNIST. (d) shows
the validation latent space for a model trained with the RCL and
a margin of 0.9. (e) shows the validation latent space for a model
trained with the RCL without limitation. (f) shows the test latent
space for the same model. The color of a dot is its ground truth
class (not the same as the colors used for the digits) and its shape
represents whether or not the network successfully predicted the
correct class: circle if so, cross if not. Best viewed in color.
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clusters, as the cluster size is linked to the diversity of patterns learned.
Experiments have shown that our approach performs significantly
better than state-of-the-art approaches on our Colored-MNIST bench-
mark. Note that the goal was not to compete directly against other
single-source domain generalization methods on realistic benchmarks
but to provide a building block for a future general algorithm.

3.4 looking beyond biases with entropic adversarial

data augmentation

Despite promising results on our Colored-MNIST benchmark, the
proposed reverse contrastive constraint yields results that are only on
par with those obtained using the standard training procedure on both
the CIFAR-10-based benchmarks and more realistic ones such as PACS
(with the reverse contrastive loss adapted to a ResNet18 architecture).
There are two main explanations to these failures :

• Firstly, the diversity of patterns in the training images of more
complex benchmarks has a detrimental effect on the effectiveness
of this reversed contrastive approach. The reverse contrastive loss
pushes towards the learning of class-irrelevant patterns (patterns
that are not specifically correlated with a particular class or set
of classes) as it seeks to find the most different intermediate acti-
vations possible between samples of the same class. In diverse
datasets, the network will easily be able to learn non-semantic
patterns (such as the presence of the sky, or trees, or specific back-
grounds, and colors, etc.). These patterns exhibit high intra-class
variations and therefore enable the enlargement of features-level
intra-class clusters. In the Colored-MNIST benchmark, however,
the amount of non-predictive cues is not important enough for
the network to be able to spread the intra-class clusters without
also learning class-relevant patterns. There seem to be no simple
workarounds or fixes to this flaw of the reversed contrastive loss.

• Secondly, even though a wide array of semantically different pat-
terns is learned in the internal representation of a deep network
and can be extracted at features-level, the last classification layers
will rely on the simplest and most predictive features-level pat-
terns as they are not involved in the reverse contrastive loss (and
suffer as such from the shortcut-learning phenomenon). Instead
of having an entire network learning only the most predictive
image-level patterns, we have a few fully-connected classification
layers that learn only the most predictive feature-level patterns
that correspond to the most predictive image-level patterns. Ob-
servation through the application of a T-SNE of the latent space
of a model trained on the Colored-CIFAR-10 benchmark (avail-
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Figure 3.6: Visualisation of the validation latent space of a model trained
on our Colored CIFAR-10 benchmark and with our reverse con-
trastive loss, through a 2-dimensional T-SNE. Despite an appear-
ance similar to that of the Colored-MNIST latent spaces, the test
accuracy is close to the original one (∼ 15%).

able in figure 3.6) showed the enlarged intra-class clusters, which
indicates the learning of different features than with the stan-
dard training procedure. These newly learned patterns, however,
do not result in an increased accuracy at test-time, indicating
that they are either non-predictive or eventually discarded by
the final layers.

To deal with the shortcut-learning issue in a more general setting, we
propose to instead rely on a generative approach, following a simple
at first glance idea. From an image containing a prediction shortcut,
we aim to create an image from which the shortcut is "removed"
but for which everything else is kept intact. Better yet, we wish to
create an image that no longer contains the clues currently used by
a deep network to make a prediction, no matter if easy shortcuts or
causal complex patterns, but still remains otherwise consistent with
the original image. A classifier trained on these transformed images
should learn the previously missed patterns since the most obvious
and already learned ones are now missing. Since we do not assume
that the shortcuts are spurious (in a real-life situation, what is naturally
learned by a network will be a complex mix of causal and spurious
features), we train a classifier on both the original and transformed
images to learn both the shortcuts, or the naturally learned causal
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patterns, and the less effective "hidden" ones. We call our approach
Looking-Beyond-Bias, abbreviated as LBB.

3.4.1 Disentangling auto-encoder with entropic data augmentations

We implement this idea using a deep encoder-decoder architecture.
We transform biased images into images that maximize the entropy
of a classifier trained on both original and transformed images. With
a precise control over the amount of information destroyed, via a
disentanglement process, we are able to generate images where only
the shortcuts are noticeably altered and replaced by patterns that are
irrelevant to the prediction task.

Our method uses four distinctly trained neural networks: two clas-
sifiers (a first classifier C0, with its convolutional features extractor F0,
and a final classifier C f , with the same architecture), one encoder E,
and one decoder D. The decoder D takes as input the output of the
encoder E(x), and the output of the features extractor F0(x). These
two feature maps are simply resized and concatenated in the channel
dimension before being sent to the decoder. We chose this fusion
strategy against AdaIN-based [55] methods, such as [62], because it
is simpler and makes it easier for the decoder to learn spatial infor-
mation. The decoder simultaneously outputs two images (the output
image has six channels, the first three being the reconstructed image
DR, and the remaining three the entropic images image DH).

The first classifier C0 is trained to minimize the cross-entropy on the
original images without alteration to a standard training procedure.
The encoder, through a latent space reconstruction loss, is made in-
variant to the shortcuts learned by the first classifier C0. The decoder
DR is conditioned to output the encoder’s input content with the fea-
tures extractor’s F0 input shortcut. This architecture aims to produce
a disentangled representation of an image between the features used
by the first classifier C0 and the remaining information E(x) needed
to reconstruct the original images. The remaining three channels of
the decoder (DH) are used to generate the entropic images via an
adversarial training scheme. Samples of such hybrid and entropic
images can be found in figure 3.8. The final classifier is simply trained
to classify both the original and the entropic images coming from DH

to learn both the shortcuts and the "hidden" patterns. All the networks
are simultaneously trained with their corresponding losses, although
the first classifier can be trained offline beforehand and frozen during
the training of the other networks. A full schema of the proposed
method is available in figure 3.7.
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Figure 3.7: Overview of our LBB architecture. Full lines denote the algorithm
pipeline for the original images, dashed lines the pipeline for the
reconstructed images and the dotted lines for the entropic images.
CE denotes a cross-entropy loss, H the conditional entropy of
the final classifier, and L1 an L1 distance loss. The two encoders
displayed refer to the unique one used, but were displayed twice
for readability.

LR(DR, E) = αEx∼px [||DR(E(x), F0(x))− x||1]
+ βE(x1,x2)∼px2 [||E(DR(E(x1), F0(x2)))− E(x1)||1]
+ γE(x1,x2)∼px2 [−∑

i
δi(C0(x2))×

logδi(C0(DR(E(x1), F0(x2))))] (3.3)

To properly condition the encoder and the decoder DR to yield a
disentangled representation, several training objectives are required:
a reconstruction loss in the image space between the original im-
age and the reconstructed one (Eq.3.3, line 1), an encoder latent
space reconstruction loss (Eq.3.3, line 2), and a classifier prediction
consistency loss (Eq.3.3, line 3). The classifier consistency loss is a
cross-entropy between the prediction on an original image x2, C0(x2),
and the prediction on a hybrid image created from E(x1) and F0(x2):
C0(DR(E(x1), F0(x2))), with δi being the i-th softmax coefficient: δi(y) =
eyi / ∑j eyj . The last two losses require the simultaneous sampling of
two images (x2 can be obtained by applying a permutation on the
current batch along the sample dimension). These losses enable the
encoder to learn all necessary patterns for the reconstruction task
with the exception of the shortcuts already provided by the features
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extractor F0, and prevent the decoder from inferring the shortcuts
from the encoder representation, as the shortcut of its hybrid output
DR(E(x1), F0(x2)) must be the one of x2. The first and the final classi-
fiers are not optimized with regard to these constraints.

LH(DH) = εEx∼px [−∑
i

qlogδi(C f (DH(E(x), F0(x))))]

+ µEx∼px [||DH(E(x), F0(x))− E f0∼p f0
[DH(E(x), f0)||1]

+ νEx∼px [||E(DH(E(x), F0(x)))− E(x)||1] (3.4)

The entropic output of the decoder DH is trained to maximize the
entropy of the final classifier, which is trained on both the original
images and the entropic ones. The rationale behind this adversarial
loss is that high-entropy images do not contain patterns that can be
preferentially linked to a class and hence are more likely to be devoid
of the original shortcuts. Maximizing the entropy of the first classifier
only leads to changes in the bias and not to the complete removal we
are aiming for. Alongside the entropy maximization (Eq. 3.4, line 1,
with q the uniform probability density: q = 1/Nc where Nc is the num-
ber of classes), the entropic images are subject to several constraints to
avoid the destruction of all information. The first constraint lies in the
decoder itself: up until the last layer, the weights are shared for both
the entropic images generation and the reconstruction task. We also
use the encoder latent space reconstruction loss (Eq.3.4, line 3) on the
ground that the entropic images should precisely not modify what is
extracted by the encoder (everything but the shortcut). Finally, we use
an encoder-conditioned expected image reconstruction loss (Eq.3.4,
line 2). This loss aims to drive the entropic images towards images
that should already be confusing for the classifier while keeping the
information not used in classification intact. It is implemented by min-
imizing the L1 loss between the entropic image DH(E(x1), F0(x1)) and
an hybrid image generated from the encoding of x1: DR(E(x1), F0(x2)).
Because the semantic image x2 is randomly sampled every iteration,
minimizing this loss will eventually yield the average-biased image
E f0∼p f0

[DR(E(x1), f0)].

Early experiments with a simple auto-encoder trained to maximize
the entropy of a classifier and to minimize the distance to the original
image showed that the balancing of the entropy maximization loss
and the identity loss (L1 loss in the image space) was difficult. The
adversarial auto-encoder was unstable and very often collapsed to
either being the identity function or destroying all the semantic content
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(details are given in the ablation study in table 3.5). To avoid these
collapsing situations, a more complex architecture was needed.

3.4.2 Baselines for comparison

We compare ourselves with several state-of-the-art strategies from ei-
ther the debiasing or the domain generalization community. A change
of biases between training and testing is a domain shift, and even
though domain generalization methods were not developed with such
shifts in mind, it is interesting to see how they perform. We also
compare ourselves with simple baselines as a reality check: first, with
the standard training procedure (stochastic gradient descent with mo-
mentum, with the cross-entropy loss), then with dropout [108]. As
in the reverse contrastive approach experiments, to avoid patterns
redundancy issues, we experiment with the orthogonality constraint
on the weights [6], and with the constraint over the norm of the
covariance matrix of the intermediary activations [20]. Finally, we com-
pare ourselves with some of the single-source domain generalization
methods (Jigsaw [13], Spectral Decoupling [93], and RSC [56]) and
debiasing methods (LfF [86], JTT [76] and LDD [70]) reviewed in the
state-of-the-art works section.

3.4.3 Experimental setup

Our architecture exists in two different flavors: large-scale and small-
scale. The large-scale version uses a ResNet18 [46] (adapted to the
CIFAR10 and MNIST datasets as in [124]) as classifier, and a UNet
[98] as encoder and decoder. The features extractor F0 is the classifier
without its last layer. The UNet is divided into a multi-output encoder
and a multi-input decoder to account for the skip-connections. Each
encoder’s output is taken as input by the corresponding decoder’s
input. The semantic information from the features extractor F0 is con-
catenated to the deepest encoder output before being given to the
deepest decoder input. For both architectures, the optimizer used
is Adam [63] with the same learning rates for all the networks. We
evaluate our approach on our synthetic benchmarks and on the more
realistic Biased-Action-Recognition (BAR) dataset. BAR images are
divided into six activity classes and exhibit a strong (but not abso-
lute) background bias in the training data: climbing often takes place
on grey rocky background, throwing on a green baseball field, etc.
The test set, however, is mostly made of images taken from unusual
circumstances. As already stated, this dataset is a common bench-
mark for debiasing methods that make use of the training minority
samples. No data augmentation is used for the experiments as we
want to assess the effectiveness of our method without adding any
predefined invariances to the training procedure. Hyper-parameters
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settings and model selection are done without using the test set to
mimic a situation where the test-time data distribution is unknown.
For our architecture, we use the entropy loss curve to set the sensitive
ε hyper-parameters: this loss should, in fact, increase continuously
during training. A diminishing entropy means that the final classifier
cannot keep up with the decoder’s entropic images and that there is a
destruction of information. The goal is to aim for the slowest increas-
ing entropy curve possible. For the model selection with our method,
we use the model at the final epoch, on the ground that training on the
entropic images is much slower than training on the normal images.
Training is considered complete when the entropy curve no longer
increases. Finally, because the effect of the random initialization of
the networks (Kaiming initialization [45], for the auto-encoder and
the classification layers of the two pretrained ResNets) is greater than
usual in a domain shift situation [66], results are averaged over 3 runs.

More experimental details for the large-scale experiments are given
below. Because the existing baselines were never tried on our bench-
marks, a hyper-parameters search was necessarily conducted before-
hand.

Synthetic Datasets: the MNIST images are colorized and resized to
32x32 pixels, resulting in 3x32x32 pixel images, as the CIFAR10-based
benchmarks images. For all synthetic experiments, the images are
normalized with a mean and a standard deviation of [0.5,0.5,0.5]. The
validation set and the test set are both made with the images from the
original MNIST or CIFAR10 test sets but are biased differently. There
is no pretraining of the classifiers for these datasets.

BAR: the BAR images are resized to 128x128 pixels, for computational
convenience, and normalized with the following means and standard
deviations: [0.485, 0.456, 0.406], and [0.229, 0.224, 0.225]. The valida-
tion set is made of 300 images that are removed from the original
training set, keeping ∼ 1700 images for training. For all experiments
on BAR, whether for our approach or existing methods, the ResNet18

is pretrained on ImageNet. Samples of the original BAR dataset can be
found in figure 3.9 alongside their hybrid and entropic counterparts.

Standard Training Procedure: for all datasets, we used a learning rate
of 10−3 with the stochastic gradient descent (SGD) with a momentum
of 0.9 and trained for 100 epochs, with a batch size of 128 for all
datasets (all the experiments are trained with this batch size). The test-
time model is selected by best accuracy on the validation set. In the
case where the best accuracy is reached several times during training
(a common phenomenon since it is easy to reach 100% accuracy on
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the biased datasets), the model retained is the first to reach it.

Jigsaw: images are divided into a 2x2 grid, whose patches are then
shuffled. The weight for the permutation classification loss is fixed
at 1.0 for BAR, and 1.0 for the synthetic datasets. Early stopping was
applied as soon as the validation accuracy reached 99%. Subsequently,
the model selected was the last one. Other training hyper-parameters
are the same as for the standard training procedure, and this will also
be the case for the next experiments unless specified otherwise.

Dropout: dropout was applied at the end of the features extractor
part of the classifiers. It is before the last fully-connected layer for the
ResNet18, and after the two convolutional layers for the LeNet. The
zeroing probability is chosen randomly at each iteration.

Dropout & Covariance Constraint: the penalty is calculated with the
L2 norm of the covariance matrix of the features extractor activations
computed over the current batch. The diagonal of the covariance ma-
trix is fixed at 0 beforehand. The weight for the covariance penalty
was fixed to 10−4 for all experiments.

Dropout & Orthogonality Constraint: the orthogonality constraint is
calculated for all the layers, and the final constraint used is the average
penalty over all layers. A particular layer’s penalty is the L2 norm
of the dot product between a layer’s weights and its transpose. The
weight of the penalty is fixed to 1.0 for all experiments. Overall, the
effects of these additional constraints compared to a simple dropout
are negligible. Nonetheless, due to the apparent simplistic nature of
our synthetic datasets, we deemed it necessary to try naive approaches
first to ensure that a more complex one was indeed needed to reach
satisfying results.

RSC: we used channel-wise dropout with a batch percentage of 100%,
and the amount of channels dropped is randomly chosen at every
step. Channels are sorted with respect to their usefulness for the clas-
sification on each sample in the batch, and a varying number of the
most effective ones are dropped.

Spectral Decoupling: the weight for the L2 on the raw logits of the
network (before the softmax) is fixed at 0.01 for BAR, and at 1.0 for the
synthetic benchmarks. Early stopping is applied when the validation
accuracy reaches 99%.

LfF: the architecture was trained with Adam and a learning rate of
10−4, for 100 epochs, with an amplification factor q = 0.7, for all the
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experiments.

LDD: the architecture was trained with Adam and a learning rate of
10−4, for 100 epochs. The amplification factor is the same as for LfF.
The hyper-parameters specific to LDD (λdis, λswapb , λswap) were kept to
the default value: [1.0,1.0,1.0], used in the original paper for datasets
similar to ours. The bias-conflicting augmentation is scheduled to be
applied after the first epoch for BAR and after the default value (10k
iterations) for the synthetic datasets. Without counter-examples, this
parameter has no impact on the results.

JTT: one of the core principles in JTT is to train the first network only
for a limited amount of epochs to avoid overfitting on the train set and
keep a few numbers of misclassified train samples. For our synthetic
experiments, the perfect classifier was reached before the end of the
first epoch. To properly adapt the method, we stopped the training
after a 99% accuracy on the current batch was reached for the tenth
time since the beginning. On BAR, the first network was trained for 1
epoch before switching to training on the over-sampled dataset.

Ours (LBB): The architecture was trained for 100 epochs, with Adam
and a learning rate of 10−4. The hyper-parameters used were: α = 1.0,
β = γ = 0.1, ε = 10−3, µ = 1.0, ν = 0.1, for both the experiments on
the synthetic datasets and BAR.

The small-scale version uses a LeNet as classifier (as used in [13] for
the MNIST-based experiments). The encoder (respectively the decoder)
is a custom network with 4 convolutional (respectively transposed
convolutional) layers. The architecture details are available in Table 3.2.
The decoder has 256 input channels while the encoder only has 128

output channels because the LeNet features extractor (layers belonging
to the features extractor are marked in bold) output also has 128

channels. There are no skip-connections, and the encoder and decoder
are single-output and single-input. The hyper-parameters used in our
approach for the small-scale experiments are exactly the same as in the
large-scale experiments for our approach and the debiasing methods.
Some domain generalization algorithms, however, required different
hyper-parameters: they were only trained for 20 epochs, the weight
for the logits norm minimization in Spectral Decoupling was fixed at
5.0, the weight for the permutation classification loss in Jigsaw was
fixed at 10.0 and the covariance norm minimization weight used was
10−3.
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Table 3.2: Small-scale networks architecture.
Syntax follows PyTorch format

LeNet Encoder Decoder

Conv2d(3,64,5) Conv2d(3,32,3) ConvTranspose2d(256,64,4,2)

ReLU ReLU ReLU

MaxPool2d(2,2) Conv2d(32,64,3) ConvTranspose2d(64,64,3)

Conv2d(64,128,5) ReLU ReLU

ReLU Conv2d(64,64,3) ConvTranspose2d(64,32,3)

MaxPool2d(2,2) ReLU ReLU

Linear(3200,
1024)

Conv2d(64,128,3,2) ConvTranspose2d(32,6,3)

ReLU ReLU

Linear(1024,1024)

ReLU

Linear(1024, 10)

3.4.4 Results and analysis

Our main results are available in Table 3.3 for the large-scale ver-
sion. The numbers displayed are the average accuracy ± the standard
deviation. Our method yields a significant accuracy improvement
over the previous works on our synthetic benchmarks on the test sets
while retaining a very high accuracy on the validation sets. A high
accuracy reached in both validation and test indicates that both the
shortcuts and the "hidden" patterns are learned: if the shortcuts are
completely ignored, we expect the accuracy to be similar for the biased
and unbiased datasets. The drop in validation for Colored-CIFAR-10

is most likely due to non-optimal hyper-parameters: we used the
same hyper-parameters for all three synthetic datasets. Final accuracy
seems to be moderately sensitive to loss weights, except for the en-
tropy maximization weight. Other strategies perform only marginally
better than the standard training procedure. It is not surprising for
debiasing methods that require explicit shortcut-contrary samples.
Furthermore, our architecture enables the final classifier to find all the
possible patterns "hidden" behind the shortcuts: the accuracy of our
method on the test datasets is roughly equal to the accuracy we get
when training the same network normally on the original MNIST or
CIFAR-10 datasets (without biases). On the BAR dataset, our method
performs on par with the state-of-the-art debiasing methods without
explicitly relying on the unusual samples. Discrepancies between orig-
inal LfF results and ours are mostly due to the resizing of the images
for computational convenience (128x128 in our experiments, 224x224

in the original ones). Samples of our entropic images can be found in
figure 3.8 and are effectively devoid of the original shortcuts.

Small-scale results are available in Table 3.4. The small-scale archi-
tecture was not evaluated on the BAR benchmark. On the synthetic
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Figure 3.8: Samples of generated images. First & second rows: original im-
ages. Third row: hybrid images with first row content and second
row shortcuts. Fourth row: hybrid images with second row con-
tent and first row shortcuts. Last row: entropic images of the first
row.

benchmarks, our method is still effective, but the difference between
the results on the original datasets and ours is shortened compared
to the large-scale version. The debiasing methods perform as badly
as in the large-scale version, which was to be expected again. Interest-
ingly, the small-scale version of the domain generalization methods
performs better than their large-scale counterparts, especially on the
Colored-MNIST dataset. While for the large-scale setting, all of these
performed similarly on all three benchmarks, there are clear differ-
ences in the small-scale setting: most of the strategies now perform
better on the Colored-MNIST benchmark. Dropout-based methods
and Jigsaw yield an important increase in accuracy on Colored-MNIST,
but not on the CIFAR-10-based benchmarks. Notably, Spectral Decou-
pling produces an increase in accuracy in all three benchmarks, even
if not the best on Colored-MNIST. These results are in contradiction
with the common observation that higher-capacity networks are more
robust to domain shifts, on average, than smaller ones [42, 71]. It is
most likely because of the very specific nature of our benchmarks
domain shifts.
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Table 3.3: Main results of our Look-Beyond-Bias approach.

Large-Scale Experiments (Resnet18 as classifier)

Dataset → Colored-MNIST Colored-Patch CIFAR10 Located-Patch CIFAR10 BAR

Method ↓ Val. Acc. Test Acc. Val. Acc. Test Acc. Val. Acc. Test Acc. Val. Acc. Test Acc.

Standard Training Procedure 100 ± 0.0 18.8 ± 7.4 100 ± 0.0 10.3 ± 0.5 100 ± 0.0 10.0 ± 0.0 97.5 ± 0.6 49.1 ± 1.9

Dropout 100 ± 0.0 14.6 ± 6.2 100 ± 0.0 11.0 ± 1.8 100 ± 0.0 10.1 ± 0.1 98.9 ± 0.3 49.4 ± 1.0

Dropout & Orthogonality [6] 100 ± 0.0 10.2 ± 0.1 100 ± 0.0 10.0 ± 0.0 100 ± 0.0 10.0 ± 0.0 98.8 ± 0.6 48.0 ± 1.4

Dropout & Covariance [20] 93.3 ± 3.8 27.2 ± 5.4 86.4 ± 10.5 21.6 ± 2.4 67.9 ± 9.5 26.3 ± 2.2 90.6 ± 3.1 28.0 ± 3.2

Jigsaw Puzzle [13] 99.8 ± 0.3 21.5 ± 4.9 99.9 ± 0.0 17.8 ± 0.9 100 ± 0.0 12.1 ± 0.5 97.5 ± 0.3 49.8 ± 1.8

Spectral Decoupling [93] 99.9 ± 0.0 24.5 ± 2.9 100 ± 0.0 10.4 ± 0.35 100 ± 0.0 10.2 ± 0.1 96.1 ± 0.6 44.5 ± 1.8

RSC [56] 100 ± 0.0 12.5 ± 1.9 96.7 ± 5.7 10.0 ± 0.1 100 ± 0.0 10.0 ± 0.0 96.8 ± 0.9 50.2 ± 1.4

LfF [86] 100 ± 0.0 9.8 ± 1.9 100 ± 0.0 10.2 ± 0.3 100 ± 0.0 10.6 ± 0.7 97.4 ± 0.3 54.3 ± 2.3

JTT [76] 100 ± 0.0 12.5 ± 4.3 100 ± 0.0 10.4 ± 0.4 100 ± 0.0 10.0 ± 0.02 97.3 ± 0.8 50.2 ± 2.9

LDD [70] 100 ± 0.0 14.8 ± 5.3 100 ± 0.0 10.0 ± 0.2 100 ± 0.0 10.2 ± 0.3 98.3 ± 0.8 53.61 ± 2.7

Ours 99.8 ± 0.2 97.3 ± 0.84 93.8 ± 1.3 78.9 ± 0.34 98.0 ± 0.6 75.6 ± 3.8 97.1 ± 0.8 54.4 ± 1.1

Standard Training Procedure 99.4 ± 0.04 99.4 ± 0.04 77.4 ± 0.08 77.4 ± 0.08 77.4 ± 0.08 77.4 ± 0.08 - -

on the original datasets
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Table 3.4: Small-scale results of our Look-Beyond-Bias approach (LeNet as classifier)

Dataset → Colored-MNIST Colored-Patch CIFAR10 Located-Patch CIFAR10

Method ↓ Val. Acc. Test Acc. Val. Acc. Test Acc. Val. Acc. Test Acc.

Standard Training Procedure 100 ± 0.0 27.2 ± 3.3 100 ± 0.0 13.2 ± 3.7 100 ± 0.0 15.5 ± 0.5

Dropout 100 ± 0.0 43.0 ± 5.0 100 ± 0.0 15.8 ± 3.5 100 ± 0.0 15.2 ± 0.8

Dropout & Orthogonality [6] 100 ± 0.0 36.5 ± 1.7 100 ± 0.0 15.6 ± 1.5 100 ± 0.0 24.0 ± 0.5

Dropout & Covariance [20] 100 ± 0.0 34.9 ± 3.9 100 ± 0.0 14.8 ± 2.0 100 ± 0.0 20.9 ± 1.8

Jigsaw Puzzle [13] 98.3 ± 0.2 65.9 ± 4.8 97.7 ± 0.3 22.0 ± 1.0 99.7 ± 0.1 21.3 ± 0.4

Spectral Decoupling [93] 99.6 ± 0.1 49.1 ± 2.5 95.4 ± 0.2 30.5 ± 1.0 96.9 ± 1.8 29.1 ± 1.2

RSC [56] 99.7 ± 0.0 45.0 ± 0.6 95.8 ± 2.0 14.5 ± 2.0 100 ± 0.0 11.4 ± 0.1

LfF [86] 100 ± 0.0 23.9 ± 5 100 ± 0.0 14.8 ± 1.8 100 ± 0.0 15.3 ± 2.1

JTT [76] 100 ± 0.0 29.2 ± 6.7 100 ± 0.0 15.4 ± 2.8 100 ± 0.0 16.1 ± 0.4

LDD [70] 100 ± 0.0 12.2 ± 2.7 100 ± 0.0 14.2 ± 4.1 100 ± 0.0 10.0 ± 0.0

Ours (LBB) 99.9 ± 0.0 98.4 ± 1.5 94.3 ± 0.2 69.2 ± 2.0 97.9 ± 0.5 67.3 ± 0.3

Standard Training Procedure 99.2 ± 0.04 99.2 ± 0.04 72.8 ± 0.4 72.8 ± 0.4 72.8 ± 0.4 72.8 ± 0.4

on the original datasets
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Figure 3.9: Samples of original BAR images (first 2 rows) and their generated hybrid (middle 2 rows) and entropic (last 2 rows) versions. The entropic
images are almost devoid of bright colors, showing that a classifier rely heavily on them instead on the causal patterns. The blue color is not
removed as it is not strongly correlated with a particular class: diving, pole vaulting and fishing images exhibit large amount of blue.



52 overcoming shortcut-learning

3.4.5 Ablation study

We also conduct an ablation study of the small-scale version of our
architecture on the synthetic benchmark datasets. Our study was con-
ducted to shed light on two questions: 1 - is the disentangling part of
the architecture needed i.e. can’t an entropy maximization and a L1

loss between the transformed image and the original one be sufficient
to yield unbiased images ? 2 - is the entropy maximization constraint
needed i.e. can’t the disentangling part with the encoder-conditioned
expected image L1 reconstruction loss be enough ? Results of the
ablation study are available in Table 3.5. The reported numbers are
the average accuracy on the test set of each dataset.

1 - for the first ablation experiment, the reconstruction output of the de-
coder DR is no longer trained with any objectives. The entropic output
DH and the encoder E are trained with both the entropy maximization
and the image reconstruction loss between the entropic image and
the original one. To account for potentially different optimal hyper-
parameters in this situation, we conduct a study with varying entropy
maximization loss weight ε, with the weight for the identity loss α

fixed at 1.0. Samples of generated entropic images for this ablation are
available in figure 3.11. The visualization of the samples confirms the
quantitative results: too much information starts to be destroyed for
ε = 10−2, and too little for ε = 10−4. This explains the drops in test-
time accuracy at both ends of the weight range for Located-CIFAR-10,
and Colored-MNIST.

2 - for the second ablation experiment, the only modification of the
architecture lies in the weights used for the different losses: all the
introduced losses are used for the reconstruction output DR, but for
the entropic output DH only the encoder-conditioned image recon-
struction loss remains. All other losses are removed. It is implemented
by fixing all the used weights (α, β, γ, µ) to 1 and all the others to
0.0 in the original architecture. Samples of generated images for this
study are available in figure 3.10. The encoder-conditioned image
reconstruction loss is not sufficient to ensure the complete removal
of the shortcut, as can be seen with the samples of the Located-Patch
CIFAR10 dataset.

Our study shows that, while either simplified architecture can yield
satisfying results on a certain dataset, for a strategy to work well on
all benchmarks, it has to use all the proposed constraints. Without
the disentangling part (Eq. 3.3), the accuracy suffers on all datasets
but especially on the Colored-MNIST dataset, no matter the ε used.
We hypothesize that this is due to the spatially widespread bias in
the dataset. Without the entropy maximization loss, the architecture
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is not able to learn anything on the CIFAR10-based benchmarks. For
the Located-Patch CIFAR10, this is due to the positional nature of the
bias: without the entropy maximization constraint, the patch is simply
replaced by a brown patch (similar to what can be seen in figure
3.8 with the hybrid images). A classification model trained on these
samples will simply make use of a differently colored patch to make
its decisions. There are no constraints to push the encoder-decoder to
realistically inpaint the missing patch (such as a co-occurrence discrim-
inator loss [91]) as the entropy maximization is effective enough. For
the Colored-Patch CIFAR-10, imperfections in the disentanglement
process prevent the decoder from completely removing the original
color of the patch.

Table 3.5: Ablation study

Dataset → Colored-
MNIST

Colored-
Patch

CIFAR10

Located-
Patch

CIFAR10

1 - no
disentanglement

ε = 10−4 67.1 63.5 12.1

ε = 10−3 63.6 69.3 53.5

ε = 10−2 31.2 62.7 60.3

ε = 10−1 49.1 35.7 22.4

ε = 1.0 25.6 14.4 16.0

2 - no entropy
maximization

97.7 16.0 17.3

Full Method 98.4 69.2 67.3

Figure 3.10: Samples of generated encoder-conditioned expected images for
the second ablation study.
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Figure 3.11: Samples of generated entropic images for the first ablation study. The first row corresponds to an entropy maximization objective weight of
ε = 10−4. This weight is increased by a factor 10 between each row. For every dataset, the first 3 columns are the original images, and the
remaining 3 the corresponding entropic images.
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3.4.6 On the effect of labeling errors

Furthermore, we want to study the behavior of existing debiasing
methods when they are applied to a dataset containing annotation
errors, or label noise, as their impact might be a potential drawback.
To do so, we create another synthetic dataset based on MNIST. The
training images are colorized as in our original Colored-MNIST dataset
(every image of a particular class are colored the same), but the image
label is replaced by a random one (chosen uniformly among all labels)
with a certain probability p. We used p = 0.01, which gives 1% of
randomly labeled samples. This is the order of magnitude of label
noise that is encountered in usual datasets [89]. The test set is from the
same data distribution, with the same label noise: there is no domain
shift in this situation. We conducted this experiment with a ResNet18

as classifier for the debiasing methods and with the large-scale version
of our architecture. Results of debiasing methods and of our approach
on this dataset are available in Table 3.6.

Table 3.6: Debiasing and label noise

Method Colored-MNIST w. label noise

LDD [70] 99.1

JTT [76] 99.3

LfF [86] 63.9

Standard Training 99.2

Ours (LBB) 99.0

The only method that does not succeed in dealing with the label
noise is LfF [86]: training collapses after a few iterations (see figure
3.12), and does not recover. The best test accuracy is reached at the very
beginning of the training before the minority samples are noticeably
over-weighted, and even then, it is far below the other work’s accuracy.
All the other methods yield perfect results. Training debiasing methods
on a dataset with wrongly labeled samples might thus have an adverse
effect on the resulting accuracy, depending on the precise strategy
used.

3.4.7 On the effect of shortcut-contrary samples

To compare our method with the debiasing strategies in a situation
where they should be able to perform well, we design a version of
our benchmarks with counter-examples. For 1% of the samples, the
shortcut (the red patch location in the image and the patch or the digit
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Figure 3.12: Test accuracy over training iterations for LfF, on our Colored-
MNIST with label noise.

color) is chosen randomly (with equal probability for each shortcut)
and not based on the image label. The test set is the same as the
original one, with an average shortcut applied to each image. The
small-scale results of these experiments are available in Table 3.7. The
hyper-parameters used are the same as the ones used for the previous
small-scale experiments, except for the starting bias-conflicting aug-
mentation iteration in LDD [70]. In a situation with counter-examples,
scheduling is important. We start the bias-conflicting augmentation
after the first training epoch for all datasets.

The difference in behavior between Colored-MNIST and the other
benchmarks has widened compared to the situation without counter-
examples: standard training reaches satisfying accuracy on Colored-
MNIST while having no positive impact on the others. Likewise,
domain generalization methods only yield good results on the Colored-
MNIST. As expected, the behavior of debiasing methods changes
completely. They all perform almost perfectly on the MNIST-based
benchmark and produce a noticeable accuracy increase on the other
benchmarks. LDD’s performances are, on average, on par with our
method, except in the Located-CIFAR-10 dataset, where it reaches
better test accuracy at the cost of a large drop in validation accuracy.
Our small-scale experiments show the necessity of trying the various
methods on diverse benchmarks, as the strength of the correlation
between the shortcuts and the labels is not the only factor of success
for a method.
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Table 3.7: Small-scale results on datasets with shortcut-contrary samples

Dataset → Colored-MNIST Colored-Patch CIFAR10 Located-Patch CIFAR10

Method ↓ Val. Acc. Test Acc. Val. Acc. Test Acc. Val. Acc. Test Acc.

Standard Training Procedure 99.4 ± 0.1 65.9 ± 4.6 99.1 ± 0.0 18.1 ± 3.8 99.2 ± 0.0 27.1 ± 2.1

Dropout 99.4 ± 0.0 67.3 ± 6.1 99.2 ± 0.0 17.3 ± 4.9 99.3 ± 0.0 22.9 ± 2.9

Dropout & Orthogonality [6] 99.4 ± 0.0 68.0 ± 2.0 99.0 ± 0.1 26.8 ± 2.0 99.1 ± 0.1 27.5 ± 0.2

Dropout & Covariance [20] 99.4 ± 0.0 59.6 ± 5.0 99.14 ± 0.0 22.9 ± 1.6 99.2 ± 0.0 17.0 ± 5.4

Jigsaw Puzzle [13] 98.0 ± 0.2 72.9 ± 0.9 95.8 ± 0.5 23.6 ± 0.6 98.5 ± 0.1 20.8 ± 1.8

Spectral Decoupling [93] 98.8 ± 0.2 49.6 ± 1.3 95.3 ± 0.2 30.4 ± 1.1 96.9 ± 1.1 29.0 ± 2.4

RSC [56] 98.6 ± 0.0 72.8 ± 5.5 96.3 ± 0.4 17.7 ± 2.3 99.2 ± 0.0 14.9 ± 0.8

LfF [86] 98.7 ± 0.4 94.8 ± 0.8 89.8 ± 0.8 37.73 ± 0.2 87.3 ± 3.1 40.4 ± 1.3

JTT [76] 99.8 ± 0.0 94.1 ± 0.1 98.6 ± 0.0 30.5 ± 0.7 98.7 ± 0.0 40.7 ± 0.5

LDD [70] 99.5 ± 0.1 98.2 ± 0.2 86.1 ± 1.0 67.6 ± 0.6 86.5 ± 1.2 69.4 ± 0.7

Ours (LBB) 99.8 ± 0.1 97.6 ± 0.1 88.0 ± 0.2 68.9 ± 0.2 95.9 ± 0.3 64.7 ± 0.3

Standard Training Procedure 99.2 ± 0.0 99.2 ± 0.0 72.7 ± 0.4 72.7 ± 0.4 72.7 ± 0.4 72.7 ± 0.4

on the original datasets
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3.4.8 Disentangling auto-encoder summary

As no existing work yields satisfying results on our benchmarks, we
proposed a generative architecture able to "hide" the most apparent
prediction clues in an image. It relies on entropic adversarial data
transformation and on the disentanglement of an image representation
between the shortcuts, or what is currently relied on by a network to
make a prediction, and the remaining information, inside which it is
still possible to find useful patterns. We showed that it performed as
well as possible, considering the classifier architectures used, on our
three benchmarks. Further experiments on the BAR dataset yielded
results competitive with state-of-the-art methods. This is an indication
that the explicit search for counter-examples might not be necessarily
needed: the information usually overlooked by neural networks is
contained even in samples that exhibit the shortcuts.

3.5 conclusion

3.5.1 Summary

In this chapter, we first proposed a new set of challenging benchmarks
to precisely study the ability of deep learning methods to mitigate
the shortcut-learning phenomenon. Following the observation that
no existing debiasing or domain generalization methods were able
to properly learn the "hidden" patterns, we made a first attempt at
solving the issue on our benchmarks. The resulting reverse contrastive
approach succeeded only in discovering the shapes on the Colored-
MNIST benchmark but failed on the CIFAR-10-based benchmarks.
A second attempt, based on a generative auto-encoder, enabled the
recovery of all the "hidden" patterns in all three synthetic benchmarks
and confirmed its effectiveness on the realistic biased dataset BAR.
The proposed architecture relied on transforming images so that they
are less likely to contain class-predictive patterns and, as such, are
no longer confidently categorized by a currently trained classifier
network. It is implemented by maximizing the conditional Shannon
entropy of the generated images’ outputs through the classifier, along-
side a precise disentanglement mechanism to control the amount of
information destroyed.

3.5.2 Contributions

Our main contributions in this chapter are the synthetic benchmarks,
which are publicly released, and the second proposed method that
sets a new state-of-the-art performance on the synthetic benchmarks
and the BAR dataset. Our contributions shifted from the conventional
debiasing paradigm. First, in debiasing works, the encountered dataset
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is usually assumed to be biased, without any given procedure to assess
this hypothesis. This way, the naturally learned patterns can be safely
ignored without losing causal information. We are, to the best of our
knowledge, the first to advocate for the learning of both the naturally
learned patterns and the usually overlooked ones. Secondly, a vast
majority of existing works rely on scarce shortcut-contrary samples.
Our contributions, both benchmarks and methods, are designed to
study and discover the "hidden" cues without the need for these
particular samples.

3.5.3 Limits and extensions

The presented LBB method requires important computational capabil-
ities, as it consists of the simultaneous training of between three and
four deep neural networks. This can prevent its use in an industrial
context. Furthermore, it is designed to learn the naturally "hidden"
patterns in a classification setting. The conditional entropy loss is
designed only for classification-like network outputs, and needs to
be adapted for an object detection or a regression task, for instance.
In some cases, e.g. in a semantic segmentation situation, which is a
pixel-level classification task, the adaptation is straightforward, but
this is not necessarily always the case. Finally, it is designed to discover
and learn normally ignored patterns, but not suited to deal with more
general covariate shifts. For instance, if conflicting cues are found in
the test images or if test-time patterns are completely different for a
particular class (in which case, only a test-time by-default class attri-
bution reasoning can enable recognition). Based on these limitations,
we now look for an algorithm able to deal with more general domain
shifts. It should still rely on mitigating the shortcut-learning behavior
to be efficient in a wide range of domain shifts. It should, furthermore,
have the following properties: usable in the single-source domain gen-
eralization setting, lightweightness calculation-wise, and task-agnostic.
To reach our objective, we propose to rely on test-time adaptation
(and test-time batch-normalization, more specifically) as a starting
point, because it is in line with our constraints and suitable for general
domain shifts. The base representation used for test-time adaptation
is further enriched by a lightweight diversity-seeking approach. This
contribution is detailed in chapter 4.





4
S I N G L E - S O U R C E D O M A I N G E N E R A L I Z AT I O N

As we have seen in the state-of-the-art review chapter, many exist-
ing algorithms designed to deal with general domain shifts are often
unable to provide a significant performance gain compared to the
standard training procedure when the real use-time conditions are
properly reproduced. Furthermore, many of them require several
training domains or specialize in particular domain shifts if they do
not. Likewise, even if our proposed generative architecture is able
to find the "hidden" features with a single training data distribution,
it is not designed to deal with general domain shifts. However, the
recent test-time adaptation paradigm has emerged as a possible so-
lution to effectively increase performance, contrary to usual domain
generalization training-time methods that only offer a frozen model
at test-time. In this chapter, we do not propose a new test-time adap-
tation algorithm, instead we propose a training-time modification of
the standard training procedure that enables a better adaptation by
existing test-time adaptation methods. The chapter is organized as
follows: section 4.1 details the idea behind our proposed approach
and its specificities. The experimental details are described in section
4.2 and the results in section 4.3. Finally, we conclude this chapter in
section 4.5.

4.1 learning less generalizable patterns (l2gp)

Test-time adaptation methods suffer from a drawback that possibly
limits their adaptation capability, and that should optimally be cor-
rected at training-time (due to the availability of many labeled images).
Indeed, since adapted models are obtained using a standard training
procedure, they suffer from the shortcut-learning phenomenon: only
the most predictive subset of predictive patterns is learned, while the
less predictive patterns are disregarded entirely [7, 38, 48, 49, 93, 104,
107]. Test-time adaptation methods are more akin to a features selec-
tion, or modulation, process rather than akin to the learning of new
predictive features at test-time [126]. The combination of a training-
time patterns diversity-seeking approach with a test-time adaptation
method may thus lead to improved results by giving the adaptation
method a larger set of semantically different features to choose from.

While the previously proposed LBB method could enable a more
thorough learning, its heavy computational need prevents its widespread
use in an industrial context and led us to search for a simpler solu-

61
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tion to learn a more diverse set of features. We thus propose a new
lightweight method, called L2GP, which encourages a network to learn
more semantically different predictive patterns than the standard train-
ing procedure. To find such different patterns, we again propose to
look for predictive patterns that are less predictive than the naturally
learned ones. By definition, these patterns enable correct predictions
on a subset of the training data but not on all the others and are, thus,
less generalizable on the training distribution. These less generalizable
patterns match the ones normally ignored because of the simplicity
bias of deep networks that promotes the learning of a representation
with a high generalization capability on the training distribution [35,
57]. Our approach mainly consists of an additional shortcut avoidance
loss that slightly encourages memorization (or over-fitting) rather than
generalization by learning batch-specific patterns i.e. patterns that
lower the loss on the running batch but with a limited effect on the
other batches of data.

Our approach requires two classification layers plugged after the
same features extractor: one will be tasked with learning the patterns
that are normally learned (as they are not necessarily spurious and,
therefore, should not be systematically ignored), and the other the
normally "hidden" ones. This lightweight modification of the stan-
dard architecture, illustrated in figure 3.7, is compatible with many
networks and tasks. The primary branch, consisting in the features
extractor and the primary classifier, is trained to minimize the usual
cross-entropy loss (algo.2, lines 11). The secondary one is trained to
minimize the cross-entropy loss (algo.2, line 12) alongside a novel
shortcut avoidance loss. The complete procedure is available in algo-
rithm 2.

If we are able to update a model in a direction that lowers the
loss value on a certain batch of data, but does not produce a similar
decrease on another batch of the same distribution, it means that
the patterns learned are both predictive as they lower the loss and
generalize poorly, i.e. they are less predictive. These are precisely the
patterns we are looking for. Our shortcut avoidance loss follows this
idea. We first compute a new set of weights for the secondary branch
by applying a single cross-entropy gradient ascent step to the branch
weights (algo.2, lines 13-16). The gradient is computed on the original
running batch, already used for the cross-entropy losses. We, then,
compare the predictions of the secondary branch with the current
weights and the computed altered weights (algo.2, lines 17-18). This
difference in predictions constitutes our shortcut avoidance loss.

Our approach requires the sampling of two batches of data simulta-
neously because the shortcut avoidance loss is computed on a batch
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Algorithm 2: Learning Less Generalizable Patterns (L2GP)

1 Method specific hyperparameters:
2 - weight for the shortcut avoidance loss α

3 - step size used for the gradient perturbation lr+
4 Networks:
5 - features extractor f , and its weights W (ResNet18 without its

last linear layer)
6 - first classifier c1 (single linear layer)
7 - second classifier c2 (single linear layer)
8 while training is not over do
9 sample 2 batches of data

{(xi, yi), i = 0...N − 1}, {(x̃i, ỹi), i = 0...N − 1}
10 calculate the cross-entropy loss L on the first batch for

both branches on the original weights W:
11 L( f , c1) =

1
N ∑i L[c1( f (W, xi)), yi]

12 L( f , c2) =
1
N ∑i L[c2( f (W, xi)), yi]

13 calculate the gradient of the cross-entropy loss L w.r.t W
on the first batch:

14 ∇WL = ∇W
1
N ∑i L[c2( f (W, xi)), yi]

15 add the perturbation to the running weight W, and track
this addition in the computational graph:

16 W+ = W + lr+∇WL
17 calculate the shortcut avoidance loss on the second batch:
18 Lsa( f , c2) =

1
N ∑i ||c2( f (W, x̃i))− c2( f (W+, x̃i))||1

19 update all networks to minimize
Ltotal( f , c1, c2) =

1
2 (L( f , c1) + L( f , c2)) + αLsa( f , c2)

20 end
21 At test-time: use c1 ◦ f (discard c2) combined with test-time

batch normalization
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of data different from the one used to compute the applied gradient.
As the features learned in the applied gradient generalize from one
batch of data to the other, the altered weights’ predictions are a lot less
accurate than the running weights’ predictions (cross-entropy gradient
ascent). As a result, these predictions differ greatly. By training the
secondary branch to minimize the gap between both predictions, we
are pushing the weights toward an area in which the applied gradient
does not change the network’s secondary output. This would mean
that the patterns extracted for the second batch are different from
the ones learned in the applied gradient. By adding the cross-entropy
loss to the training procedure, we are driving the network to learn
weights that are both predictive for the running classification batch
but that have a low effect on the predictions of another batch and are,
hence, less predictive. Note that the running network’s weights are
optimized with regard to both sides of the shortcut avoidance loss. The
addition of the gradient must thus be tracked in the computational
graph. This is akin to the MAML [34] meta-learning framework in
which the starting point of a few optimization steps is itself optimized.

During the evaluation, only the first classifier is used, and the sec-
ondary one can be discarded. Indeed, the first classifier uses every
available feature at its disposal, including those learned by the sec-
ondary branch, while the secondary branch only favors less simple
features. Furthermore, we use test-time batch normalization (abbrevi-
ated as TTBN). This method has been chosen because of its simplicity
and its wide range of applicability. We do not use the usual exponen-
tial average training mean and standard deviation (computed during
training) in the batch normalization layers. Instead, we first calculate
the statistics on the running test batch and use them to update an
exponential average of the test statistics, as in [9, 53, 83, 100, 123],
before using this estimate to normalize the features. A correct target
statistics approximation can be reached only if all samples encoun-
tered at test-time come from the same data distribution. This is a
realistic scenario for applications like autonomous driving, in which
the data distribution is not expected to change over the course of a
few consecutive images. Several methods [53, 123] provide ways to
circumvent this issue if needed.

4.2 experiments

4.2.1 Baselines for comparison

We compare our approach with the standard training procedure
(expected risk minimization, ERM), with several methods designed
for single-source domain generalization [85, 106, 114, 117, 128, 129],
with Spectral Decoupling, a method designed to reduce the shortcut-
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Figure 4.1: Schema of our bi-headed architecture. The naming convention is
the same as the one used in algorithm 2.

learning phenomenon in deep networks [93], and with RSC, a multi-
source domain generalization algorithm that does not explicitly re-
quire several training domains [56]. These baselines were selected
because they yield state-of-the-art results, are representative of the
main ideas in the single-source domain generalization research com-
munity, and because they have a publicly available implementation.
This was a necessity as the original works’ results were given without
any test-time adaptation, and trained models were not provided. Our
experiments are conducted on the PACS (7 classes, 4 domains, around
10k images in total), and the Office-Home (65 classes, 4 domains,
around 15k images in total) benchmarks. PACS has been already
sometimes used in the single-source setting, but Office-Home very
rarely so in general and not in the considered baselines.

4.2.2 Experimental setup

For all the methods and benchmarks, we use the data augmentation
described in [56] (random resized crops, color jitter, random horizontal
flips, random grayscale). To avoid a target domain information leak,
the models selected for the test are those with the best validation
accuracy. For a particular domain used for training, 90% of the dataset
is used for training and the remaining 10% for validation. The test set
is obtained using another domain dataset entirely. This gives twelve
training-test pairs. Experiments were conducted with a ResNet18 [46]
trained for 100 epochs, with the stochastic gradient descent, a learning
rate of 1e − 3, a batch size of 64, a weight decay of 1e − 5, and a Nes-
terov momentum of 0.9. After 80 epochs, the learning rate is divided
by 10. We chose to use the same common hyper-parameters for all
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baselines to precisely measure the effect of the training procedure
modifications rather than the influence of a perhaps better than usual
hyper-parameter. This change of hyper-parameters and differences in
the model selection process (depending on the baselines, it can be best
validation accuracy, last model accuracy, or best target accuracy) is
responsible for some inconsistencies between the results reported in
the original works and ours. In the case of SagNet [85], the differences
(61.9% average accuracy on PACS in the original work, 57.9 in our
own) are likely due to the model selection process. The exponential
average momentum used in the batch normalization layers at test-time
is set to 0.1. The gradient ascent learning rate is set to 1.0 and the
α weight for the shortcut avoidance loss to 1.0 as well, for all the
experiments, that is, for all the training-test pairs on both the PACS
and the Office-Home datasets. These hyper-parameters were first set
arbitrarily to plausible values and then confirmed to be effective on the
PACS benchmark by looking at target performance. They were finally
reused as is on the Office-Home benchmark. This hyper-parameters
selection strategy may seem sub-optimal but is, in fact, more and
more used in domain generalization problems [41, 120]: a method
requiring a new and careful hyper-parameters setting for each new
dataset encountered is impractical, even more so when the target data
distribution is unknown and cannot thus be used to help the setting.

Comparison baselines specifics hyper-parameters are detailed be-
low. For the experiments on the PACS datasets, on which most of
the baselines were tested, we use the same hyper-parameters as in
the original works. As no baselines were applied in the single-source
setting on the Office-Home datasets, we used the hyper-parameters
of the multi-source setting if available. If the methods did not have
quantitative hyper-parameters, such as EFDM [128] with the choice of
mixing-layers depths, we used the ones proposed for the PACS exper-
iments for the ones on Office-Home. Likewise, if no rigorous hyper-
parameters setting strategy was detailed in the original work, we used
the PACS hyper-parameters. Finally, for the Spectral Decoupling work
that was never evaluated on neither PACS nor Office-Home, we con-
ducted a simple hyper-parameters search using a single training-test
domains pair, and transferred them as is to the other pairs with the
same training domain.

RSC: we used the same hyper-parameters for all experiments. The per-
centage of channels (or spatial cross-channel locations) to be dropped
is initialized at 30% and is increased every 10 epochs linearly to reach
90% for the last ten. Spatial cross-channel locations dropout and chan-
nel all-locations dropout are applied in a mutually exclusive way with
the same probability. All samples in a batch are subject to dropout.
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InfoDrop: we used the same hyper-parameters for all experiments.
Half the layers are subjected to the info-dropout. The dropout rate is
set to 1.5, the temperature to 0.1, the bandwidth to 1.0, and the radius
to 3.

ADA: for all experiments, the number of adversarial gradient ascent
steps is set to 25, and the learning rate for the adversarial gradient
ascent steps is set to 50. The γ and η factors are respectively set to
10.0 and 50.0. Adversarial images are added to the training set every
10 epoch.

ME-ADA: The same hyper-parameters as the ones above are used.

EFDM: For all experiments, the EFDMix layers are inserted after the
first three residual blocks in the ResNet architecture.

SagNet: The randomization stage and the adversarial weight of Sag-
Nets are fixed to 3 and 0.1 for all experiments, as in the original work.
A gradient clipping to 0.1 is applied to the adversarial loss.

L.t.D: α1 and α2 weights for the additional losses were set to 1.0, β to
0.1, for all experiments.

Spectral Decoupling: The weight of the spectral decoupling constraint
(an L2-norm on the network’s non-softmaxed output) is set to 0.001 for
experiments on Office-Home Experiments, and to 0.01 for experiments
on PACS.

4.3 results and analysis

The main results of this chapter are available in Table 4.1. They were
obtained as follows: for all the twelve distinct pairs of training and
test domains, we calculate the average and the standard deviation of
the validation and test accuracies over 3 runs (because the effect of the
network’s initialization on the test accuracy is greater than usual in a
test-time domain shift situation). The reported numbers are then the
average over all distinct pairs of the pairwise average accuracies ± the
average over all distinct pairs of the pairwise standard deviation (as
we are interested in the randomness of the initialization rather than
the variation of accuracies between training-test pairs). Used alongside
test-time batch-normalization, our method reaches a performance sim-
ilar to that of EFDM [128] on the PACS datasets but exceeds it on the
Office-Home datasets. When test-time batch-normalization is not used,
our method remains state-of-the-art on the Office-Home dataset but
falls behind the style-transfer-based methods on the PACS dataset by
a noticeable margin. Besides, our approach also benefits the accuracy
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without TTBN with TTBN

Method Avg. Val. Acc. Avg. Test Acc. Avg. Val. Acc. Avg. Test Acc.

PACS dataset

ERM 96.8 ± 0.4 52.0 ± 1.9 97.4 ± 0.3 66.1 ± 1.1

RSC [56] 97.7 ± 0.4 54.3 ± 1.8 97.2 ± 0.2 58.7 ± 1.6

InfoDrop [106] 96.6 ± 0.3 53.4 ± 2.0 95.9 ± 0.3 65.5 ± 1.0

ADA [114] 96.9 ± 0.8 55.9 ± 2.9 96.6 ± 1.1 66.5 ± 1.2

ME-ADA [129] 96.7 ± 1.3 54.7 ± 3.1 96.5 ± 0.9 66.7 ± 2.0

EFDM [128] 96.9 ± 0.5 59.6 ± 2.3 97.5 ± 0.5 71.3 ± 1.0

SagNet [85] 97.2 ± 0.7 57.9 ± 2.9 97.8 ± 0.7 62.4 ± 1.8

L.t.D [117] 97.9 ± 1.0 59.9 ± 2.7 97.6 ± 0.7 66.3 ± 1.5

Spectral Decoupling [93] 95.9 ± 0.4 52.9 ± 2.6 96.2 ± 0.7 66.7 ± 1.1

L2GP (ours) 98.6 ± 0.2 56.1 ± 2.7 96.4 ± 0.3 71.3 ± 0.6

Office-Home dataset

ERM 82.0 ± 0.8 52.0 ± 0.8 81.6 ± 1.1 52.6 ± 0.6

RSC [56] 80.9 ± 0.4 49.2 ± 0.7 80.2 ± 0.5 48.9 ± 0.7

InfoDrop [106] 76.4 ± 0.8 45.9 ± 0.5 77.1 ± 0.7 46.4 ± 0.6

ADA [114] 81.2 ± 2.6 50.4 ± 0.9 80.3 ± 2.0 50.0 ± 0.7

ME-ADA [129] 78.9 ± 1.4 49.8 ± 0.6 81.4 ± 1.2 50.0 ± 0.7

EFDM [128] 82.9 ± 0.5 52.8 ± 0.6 83.3 ± 1.0 53.3 ± 0.5

SagNet [85] 81.5 ± 1.5 51.9 ± 0.7 81.1 ± 1.1 51.8 ± 0.9

L.t.D [117] 81.0 ± 1.2 50.9 ± 0.7 81.7 ± 2.7 51.2 ± 0.8

Spectral Decoupling [93] 83.8 ± 0.7 52.5 ± 0.5 82.5 ± 0.6 53.2 ± 0.3

L2GP (ours) 84.0 ± 0.6 53.4 ± 0.6 83.8 ± 0.5 54.5 ± 0.3

Table 4.1: Performances of our approach and comparison with the state-of-
the-art.



4.3 results and analysis 69

on the validation sets.

We observe a completely different behavior between experiments
on PACS and Office-Home. While all the existing methods improve
upon the standard training procedure (ERM) on PACS, only EFDM,
spectral decoupling [93], and our method yield better results on Office-
Home. Likewise, while always positive, the effect of the test-time
batch-normalization is much more noticeable on PACS than on Office-
Home. Furthermore, it is interesting to notice that the performance
gain due to the test-time batch-normalization is highly dependant on
the training-time method used. Indeed, the gain is the highest when
our approach or ERM is used and only reaches a result closely similar
to ERM or below in most of the other cases. We hypothesize that the
domain shifts of the PACS datasets are mostly textures shifts, while
they are not for the Office-Home datasets. This would explain why
test-time batch-normalization yields a large improvement on the PACS
benchmark: the simple use of test-time statistics, that encode textures
[9], is enough to significantly bridge the domain gap. It would also
explain why the methods reaching the highest results [85, 117, 128]
in the usual setting (without test-time batch-normalization) are all
style-transfer-based methods. As our approach is not related to style
transfer in any way, we are able to reach a higher accuracy on Office-
Home than other existing works. Regarding the effect of different
training-time methods, we hypothesize that the magnitude of the gain
is related to whether the method is really learning a more diverse set
of patterns or rather only weighting differently patterns that would
also be learned naturally. This would explain why several methods
that improve upon ERM without test-time batch normalization only
perform precisely as well once it is used. Style-transfer-based methods,
for instance, essentially grant a higher importance to shape-based
patterns rather than texture-based patterns but not necessarily learn
new patterns.
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Figure 4.2: Mean absolute difference for ERM and our approach.
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without TTBN with TTBN

Ablation Avg. Val. Acc. Avg. Test Acc. Avg. Val. Acc. Avg. Test Acc.

PACS dataset

Double branch only (A) 96.8 ± 0.6 53.4 ± 2.6 96.4 ± 0.3 67.4 ± 0.8

Detached loss term (B) 97.5 ± 0.1 52.6 ± 2.3 97.3 ± 0.3 68.2 ± 1.3

Secondary prediction branch (C) 98.0 ± 0.1 53.4 ± 2.8 96.9 ± 0.2 70.1 ± 0.4

Single branch (D) 92.8 ± 1.1 46.4 ± 4.9 93.0 ± 0.9 51.2 ± 5.1

Office-Home dataset

Double branch only (A) 82.7 ± 0.4 52.8 ± 0.5 82.6 ± 0.3 53.5 ± 0.4

Detached loss term (B) 83.5 ± 0.7 52.7 ± 0.6 82.3 ± 0.6 54.0 ± 0.6

Secondary prediction branch (C) 81.3 ± 0.4 53.9 ± 0.7 83.8 ± 0.6 54.8 ± 0.5

Single branch (D) 82.6 ± 0.7 53.7 ± 0.4 82.0 ± 0.5 54.3 ± 0.5

Table 4.2: Ablation study
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Avg. test Acc. on PACS - Avg. test Acc. on Office-Home

lr+ ↓ / α → 10−3 10−2 0.1 1.0 10.0 100.0

10−3
66.9 - 53.7 66.8 - 53.1 67.7 - 53.2 67.0 - 53.5 67.4 - 53.2 68.5 - 53.7

10−2
67.8 - 53.2 67.8 - 53.1 67.6 - 53.3 67.7 - 52.4 68.6 - 53.9 70.6 - 53.2

0.1 67.8 - 53.0 67.5 - 53.2 67.4 - 53.3 69.5 - 53.8 71.3 - 54.7 69.2 - 51.9

1.0 67.1 - 53.3 68.0 - 53.4 69.0 - 53.8 71.3 - 54.4 70.3 - 52.6 20.1 - 49.9

10.0 67.8 - 52.9 67.2 - 53.4 67.4 - 53.3 66.0 - 53.9 54.4 - 51.9 15.0 - 5.2

100.0 66.2 - 53.2 67.9 - 53.4 67.4 - 53.4 67.8 - 53.3 60.5 - 53.2 14.5 - 2.0

Table 4.3: Broad hyper-parameters sensitivity analysis.
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4.4 ablation study

We also conducted an extensive ablation study to understand and
demonstrate the necessity of our choices. As a sanity check, we first
study the α = 0 situation: a single features extractor on which two
classification layers are plugged in, trained only with the cross-entropy
on the same batch at each iteration for both branches (line A in the
table 4.2). The differences in initialization of the classifiers may have an
implicit ensembling effect, as in MIMO [43], which could lead to a bet-
ter out-of-distribution generalization without the need for the shortcut
avoidance loss. We also study the effect of detaching from the com-
putational graph the c2( f (W, x̃i)) term (not optimizing the features
extractor with respect to this part of the loss) in the shortcut avoid-
ance loss (line B), as this could lead to a substantial improvement in
memory consumption, and as the simultaneous optimization on both
terms in not needed per se to decrease the generalization ability of the
network. Then, to show that the performance gain is effectively linked
to a mitigation of the shortcut learning phenomenon, we conduct
two experiments. Firstly, we study the impact of using the secondary
prediction branch at test-time rather than the primary one (line C).
Secondly, we study the effect of applying our shortcut avoidance loss
on an architecture without the added secondary branch (line D). To
further show the effect of our loss, we track during training a measure
of the diversity of the learned patterns for both our approach and ERM.
Inspired by [4], we use the mean absolute difference (MAD) between
normalized convolutional filters f (or neurons for fully connected
layers) of a certain layer, computed over all layers L of size NL and
training domains D, for an epoch t, following the equation 4.1. The
results are available in figure 4.2 and show a systematic increase in the
diversity of the learned patterns for our approach compared to ERM,
for both benchmarks. Finally, as the tuning of hyper-parameters in the
domain generalization setting is a critical issue, we conduct a broad
hyper-parameters sensitivity analysis, available in table 4.3. It shows a
relatively low sensitivity and a large match between hyper-parameters
fit for all training-test pairs of PACS and Office-Home.

MAD(t) = ∑
D

∑
L

1
NL

2 ∑
i,j

|| ft,D,L,i − ft,D,L,j||1 (4.1)

The results of the ablation study outline several things: using two
prediction branches without the additional loss yield a small increase
of performance on both benchmarks, but it remains far below our
approach, whose gain is therefore not coming from an implicit ensem-
bling mechanism. Detaching the first half of the shortcut avoidance
loss from the computational graph shows a decreased performance as
well. This detachment most likely only results in a slower learning as
the constraint’s gradient pushes in the reverse direction of the classi-
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fication loss gradient. This behavior is prevented when the features
extractor is optimized with regard to both terms of the regulariza-
tion: pushing in the reverse direction of the classification gradient
will only slide the difference in the parameter space but not shorten
the gap. Using the secondary prediction branch at test-time results in
performances fairly similar to the first branch, only lower in validation.
This was to be expected as the secondary branch is precisely trained
so that it generalizes less on the training domain. Finally, the use of
our shortcut avoidance loss applied on the original model (no added
prediction branch) results in a dramatic drop in accuracy on the PACS
dataset but not on the Office-Home dataset. This difference is most
likely due to the higher diversity in Office-Home, that prevents the
original patterns from being ignored.

Our proposed approach does not succeed on the previously pro-
posed benchmarks based on CIFAR-10 or MNIST. The reason behind
this failure lies in the specificities of these benchmarks: as the cor-
relation between shortcuts (patches location or color, digit colors) is
absolute, only a very low number of iterations (less than 100 with SGD
as the optimizer, around 10 if Adam [63] is used) is needed to reach a
loss value of zero. Once this step is reached, the weights of the network
are no longer updated in a significant fashion as the gradient’s norm
is close to zero, and it points in a random direction. The time frame for
our approach to learn the less generalizable patterns is thus narrow: if
the gradient’s norm is close to zero, the perturbed weights W+ are very
close to the original weights W. The differences between both weights
predictions Lsa is thus almost non-existent and non-informative of
the learned patterns and therefore have a low impact on the overall
training. A possible future research direction would be to look for
unified strategies able to deal with both real-life datasets and highly
specific benchmarks instead of relying on combining several strategies.

4.5 conclusion

4.5.1 Summary

In this chapter, we investigated the behavior of different single-source
methods when they are used in conjunction with test-time batch-
normalization, on both the PACS and Office-Home benchmarks. We
showed that test-time batch-normalization always has a positive, yet
highly variable, influence on the generalization ability, and that most
of the time, the addition of a training-time method is superfluous. We
hypothesized that this lack of additional performance was linked to
the selection behavior of some algorithms, which still learn the same
subset of patterns as the standard training, but weigh them differently.
We thus proposed a novel approach, namely L2GP. This method
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comprises of two classifiers added to a features extractor and trains
the networks asymmetrically, using a data-dependant regularization,
e.g., shortcut avoidance loss, that slightly encourages memorization
rather than generalization. By looking for predictive patterns that
generalize less, it is able to learn normally "hidden" patterns. We
showed that it yields state-of-the-art results on both the PACS and
the Office-Home benchmarks and benefits the most to test-time batch-
normalization. This approach makes use of a lightweight architecture
modification in the shape of an additional final prediction layer and is
not explicitly classification-specific.

4.5.2 Contributions

To the best of our knowledge, we are the first to investigate the
conjoint use of training-time procedure and of test-time adaptation
methods. Our work gave rise to an algorithm that reaches state-of-
the-art performance in the challenging single-source setting on two
different benchmarks. Furthermore, it is both lightweight calculation-
wise and not specific to a classification task. Our approach’s low count
of specific hyper-parameters (weight for the shortcut avoidance loss
and gradient ascent step size) and their relatively broad range of
effectiveness make L2GP an interesting candidate for out-of-domain
experiments on real-life datasets.

4.5.3 Limits and extensions

To confirm its effectiveness, further experiments on the proposed L2GP
approach ought to be conducted on other benchmarks (such as the
large-scale DomainNet benchmark), different network architectures
(such as a ResNet-101 or a Vision Transformer), and in conjunction
with more test-time adaptation methods. If the obtained results are still
satisfying, a straightforward extension to object detection or semantic
segmentation tasks can then be considered and experimented on.





5
C O N C L U S I O N

This chapter concludes our work, and is organized as follows: sum-
mary of our work in section 5.1, contributions of our work in section
5.2, and future research directions and prospects in section 5.3.

5.1 summary

In this thesis, we addressed the issue of robustness to unforeseen
data domain shifts. We researched a way to build a deep network
model exhibiting a minimal performance drop at test-time when data
coming from a distribution different than the one used for training
is encountered. In our works, we focused on the mitigation of the
shortcut-learning behavior of deep networks, one of the main respon-
sible for the collapse of performance, first in controlled environments,
and then to deal with general domain shifts in more realistic environ-
ments.

In Chapter 2, we review the state-of-the-art works designed to deal
with different kinds of domain shifts. To deal with spurious biases
that are missing at test-time, most of the existing works explicitly rely
on minority samples different from their biased counterparts. More
general domain shifts are partially successfully dealt with through a
large diversity of training-time modifications of the standard proce-
dure. A novel test-time adaptation paradigm is also starting to give
encouraging results for robustness to general domain shifts.

In Chapter 3, we studied the shortcut-learning behavior in a con-
trolled setting. We first describe three novel synthetic datasets that
enable a precise evaluation of shortcut-learning mitigation successes or
failures in a challenging setting: with an absolute correlation between
shortcuts and labels, and thus no helpful minority samples. We then
describe our first attempt at solving this issue on our datasets, using a
reversed contrastive approach, and finally describe a successful gen-
erative approach. Our final approach relies on an auto-encoder able
to "remove" from an image the cues currently used by a classification
model to make its predictions. By training on both the original im-
ages and the transformed ones, the normally ignored patterns can be
learned. To obtain a stable removal of predictive cues in different situ-
ations, two main components are required: first, transformed images
are generated to maximize the conditional entropy of the final predic-
tion model, and second, they are generated using only the information
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currently ignored by the prediction model. This second component
requires a specific disentanglement process and allows the avoidance
of any involuntary leaking of already learned information into the
transformed image.

The final method proposed in Chapter 3 does not generalize directly
to all possible domain shifts. Furthermore, it is task-specific and re-
quires heavy computing capabilities. These drawbacks limit its use
in an industrial setting. To overcome these flaws, in Chapter 4, we
proposed a new training procedure, only slightly different from the
conventional ones, that prevents an over-reliance on a limited subset
of patterns and instead promotes the learning of many semantically
different ones. Its use alongside test-time batch-normalization, the sim-
plest test-time adaptation method, reached state-of-the-art results on
both PACS and Office-Home in the single-source setting. Our method
comprises of an additional training loss that encourages the learning
of batch specific patterns (i.e. patterns that are predictive on the current
batch of data, but not on another one).

5.2 contributions

Our contributions in the field of domain generalization are the follow-
ing. First, a simple set of synthetic benchmarks designed to measure
the ability of a method to mitigate the shortcut-learning flaw in a diffi-
cult situation. Then, a generative auto-encoder approach able to find
and learn normally "hidden" patterns even without shortcut-contrary
samples. Finally, we proposed a lightweight and non classification-
specific method to increase the diversity of patterns learned by a deep
network, enabling its better adaptation to the encountered distribution
at test-time.

Specifically, in Chapter 3, we introduced the synthetic benchmarks.
Their most notable feature is the lack of shortcut-contrary samples,
resulting in challenging benchmarks for which no existing methods
were able to reach satisfying results despite the fact that they are based
on the simple datasets MNIST and CIFAR-10.

The generative architecture, proposed in Chapter 3, is able to re-
cover the entirety of available predictive patterns on our benchmarks.
This can be inferred as our model trained on biased and transformed
images reaches the same performance on the unbiased test-set as the
same network architecture reaches on the original MNIST or CIFAR-
10 datasets. Our approach additionally yielded results competitive
with the state-of-the-art on the more realistic BAR benchmark, again
without relying explicitly on the shortcut-contrary samples.
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Finally, our last approach enabled to reach state-of-the-art results on
both the PACS and Office-Home benchmarks in the under-explored
and more realistic single-source setting. While not yet evaluated on
a different task, our approach is task-agnostic (no components of the
method explicitly require a particular classification loss or architecture,
contrary to the entropy maximization component in the previously
proposed generative architecture) and relatively lightweight. Further-
more, a low count of hyper-parameters with a low sensitivity makes it
a promising candidate for real-world experiments.

5.3 future prospects

In this section, we outline some future research directions for the
presented work.

PRETRAINING Discovery of hidden patterns can also be consid-
ered in the pretraining phase of the standard training procedure.
Approaches interacting with the pretraining phase have very recently
yielded interesting results for out-of-domain generalization. For in-
stance, Cha et al. [17] tried to avoid excessive destruction of the infor-
mation learned by an Imagenet-pretrained network during fine-tuning
on a specific dataset. Nayman et al. [87] relied on both the predictive-
ness of the Imagenet-pretraining and the diversity of self-supervised
pretrainings. Xu et al. [120] proposed a method able to increase style
diversity that could be used during the training on ImageNet or dur-
ing the fine-tuning on the smaller-scale dataset. They showed that both
strategies yielded roughly the same results, and that an additional
benefit comes from using the method in the two steps. Applying a
diversity-seeking approach during the training of a model on Ima-
geNet can produce weights that result in better out-of-distribution
generalization (when used as pretraining for a downstream task) than
weights obtained through the use of a particular method during the
downstream training, due to the the higher diversity encountered in
ImageNet data. Note that this strategy, while interesting to the global
domain generalization research community, is not suitable for Thales’s
needs. Indeed, the applications developed are highly specific and do
not benefit from the usual ImageNet-pretraining as they are designed
for images differing greatly from the ImageNet ones. It is thus likely
that extracting more diverse features from ImageNet will not have a
noticeable impact on these applications.

NETWORK CAPACITY It has been noted that increasing network ca-
pacity has a positive effect on out-of-distribution generalization, both
in the sense that the gap between in-domain validation and out-of-
domain test performance is narrowed and that test performance is over
its smaller-scale network’s counterpart. Moreover, the performance
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gain brought by the use of a particular method (either a modification
of the training procedure, or a test-time adaptation) diminishes the
larger the training model becomes [42, 71]. This positive effect on
the out-of-distribution performance is not well theoretically under-
stood, as the simplicity bias, responsible for the shortcut-learning
phenomenon [104], is stronger in larger networks [35, 57] and should
therefore lead to a stronger bias towards the shortcuts. Increasing the
capacity of the network is not necessarily a solution, as embedded
applications often require a very low computational footprint, but a
possible transfer of the mechanisms behind these increased capacities
to smaller-scale architecture without the additional calculation cost
should be investigated.

NETWORK ARCHITECTURE The recent Transformer architecture
[112] has been successfully applied to vision tasks [26, 78], in the shape
of a pretrained architecture available for fine-tuning. The effectiveness
of this family of architectures in the domain generalization setting has
recently started to be investigated, yielding encouraging results so far
[52, 125]. Transformers exhibit different intrinsic biases than convo-
lutional architectures (most notably, they seem less biased towards
textures) and, as such, should be less sensitive to certain domain shifts.

SIMPLICITY BIAS The simplicity, or inductive, bias of deep net-
works is responsible for their remarkable in-distribution generaliza-
tion abilities. This intrinsic bias is, however, also responsible for the
shortcut-learning flaw of deep networks and, as a result, partially
responsible for their low ability to generalize outside of their training
distribution. This observation starts to point towards a possible trade-
off between in-domain and out-of-domain distribution performance,
depending on the strength of the simplicity bias. Future research
works should investigate this possible trade-off and explicit the rela-
tionship between shortcut-learning and simplicity bias to later propose
a global paradigm that enables both in-domain and out-of-domain
generalization.
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