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Résumé 7
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Frontiers in Physics (proposed paper to be submitted)

Paper.4 (co-author): Frictional Fluid Dynamics and Plug Formation
in Multiphase Millifluidic Flow
G.Dumazer, B.Sandnes, M.Ayaz, K.J Måløy and E.Flekkøy
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Résumé

Dans notre première étude, nous étudions expérimentalement, numériquement
et analytiquement l’influence de la gravité et des effets de taille finie sur les
dépendances et mesures de pression-saturation pendant des drainages lents,
où le fluide le moins dense envahit le système depuis le haut. Les hydro-
logues, modélisateurs de réservoirs et les pédologues utilisent beaucoup cette
relation pour la fermeture des équations de Darcy généralisées utilisées dans la
modélisation continue de tels écoulements.

Nous réalisons des expériences en utilisant des milieux poreux quasi- bidimen-
sionnels, constitués dune monocouche de billes de verre polydisperses disposées
en sandwich entre deux plaques de confinement. Les frontières sont scellées avec
une couche de gel de silicone avec un côté ouvert la phase d’invasion (air). La
différence de pression relative entre la phase non mouillante et la phase mouil-
lante est mesurée l’aide de capteurs piézoélectriques, tandis que la saturation
des deux phases est extraite par seuillage de cartes en niveaux de gris partir
d’images prises intervalles de temps réguliers. Le fluide visqueux est extrait à
débit constant et lent, rendant les effets visqueux négligeables pour le proces-
sus d’invasion. En parallèle aux expériences, nous effectuons des simulations
numériques en utilisant un algorithme de percolation d’invasion. Dans de tels
modèles, l’invasion est représentée par un processus de croissance d’amas sur
un réseau aléatoire, dépendant uniquement de la pression hydrostatique globale
dans chaque phase et des propriétés capillaires locales, i.e. des seuils de pres-
sion capillaire dans les constrictions des pores le long de l’interface. On modifie
systématiquement l’effet de gravité en inclinant le système par rapport à la con-
figuration horizontale, ce qui stabilise le processus d’invasion par gravité. La
structure de déplacement qui émerge est composée d’amas de fluide mouillant
qui restent piégés après que l’interface d’invasion soit passée dans le système et
sont donc construits par le mouvement de l’interface. En exploitant la nature
fractale de la structure de déplacement, nous sommes en mesure d’obtenir une
relation entre la saturation finale, et les nombres sans dimension caractérisant
la compétition entre les forces visqueuses, capillaires et gravitationnelles, en
utilisant la théorie de la percolation.
Dans le cas 2D (bidimensionnel), cette relation a été vérifiée par les simulations
et les expériences. Dans le cas 3D (tridimensionnel), nous avons comparé notre
relation avec des expériences réalisées par Nouri et al.[30] Ici, la saturation et la
pression ont été mesurées à l’aide d’une colonne suspendue pour quatre types
de sols diffrents, démontrant la compatibilité avec nos relations obtenues. De
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plus, la saturation, la pression et le nombre de Bond sont fonctionnellement
reliés, ce qui permet le regroupement des courbes de pression-saturation en une
seule courbe mâıtresse.

Dans notre deuxième étude, nous étudions la connectivité du réseau d’écoulement
secondaire qui émerge lors de drainages lents. Ce réseau consiste en éléments de
films de fluide mouillant piégés, reliés par des ponts capillaires. Une compréhension
accrue de ces chemins et des mécanismes par lesquels ils se dconnectent est
importante pour comprendre et finalement contrôler le piégeage dans des mi-
lieux poreux.Nous effectuons nouveau des expériences dans un milieu poreux
synthétique bidimensionnel. Par acquisition optique lors du processus d’invasion,
nous sommes en mesure d’identifier les ponts capillaires et cartographier leur
connectivité aux amas piégés de fluide mouillant. L’augmentation de la com-
posante gravitationnelle agissant sur le système induit des forces de stabilisation
dont l’effet est de modifier la fraction des pores et l’ordre dans lequel l’espace
poral est exploré par le fluide d’invasion. Pour répondre à la question de la crois-
sance de ces réseaux et de sa possible dépendance directionnelle à la gravité,
on a utilisé une caractérisation par bôıtes dinclusion, qui forment le plus petit
rectangle entourant un amas. En étudiant la distribution de leurs dimensions le
long de la direction moyenne d’écoulement et le long de la direction perpendic-
ulaire, nous avons conclu à labsence d’anisotropie des éléments de ces réseaux.
Nous avons utilisé le cadre de la théorie des réseaux pour transformer l’ensemble
des ponts capillaires reliés en graphe. Chaque lien correspond un pont capil-
laire reliant deux grains, et est caractérisé par sa longueur, i.e. la longueur du
pont capillaire ou par la distance au centre de masse de l’amas de fluide mouil-
lant piégé. Nous avons caractrisé le réseau en calculant les mesures typiques
associées aux graphes, telles que le coefficient de regroupement et l’efficacité.
Durant le processus d’invasion, il a parfois été observè que des ponts liquides se
fragmentent, ce qui est aussi appelé rupture. Il a été mis en évidence que cette
rupture se produit statistiquement plus fréquemment pour les ponts capillaires
les plus longs, et la majeure partie des évènements de rupture a lieu près de
la position moyenne de l’interface. De plus, la largeur du front entre les deux
fluides et la zone d’activité de ruptures se comportent de manière couplée dans
l’espace.

De nombreux systèmes réagissent à une condition externe variant de manière
lente, non pas par une réaction continue et lente, mais sous forme d’une série
d’événements discrets regroupés en ensembles couvrant une large gamme de
tailles. De telles avalanches sont observes pour de nombreux systèmes diffrents,
entre autres pour le drainage en régime capillaire. Ici, la différence de pres-
sion entre les deux fluides est seule responsable du déplacement, et de tels
systèmes présentent une évolution de pression caractrisée par des avalanches,
également désignés dans la littérature comme des sauts de Haines. Le signal de
pression est caractèrisé par des montées lentes suivies de soudaines chutes de
pression. L’influence de la gravité dans de tels systèmes a été montrée comme
conduisant à des corrélations à longue portée le long de l’interface, réduisant
ainsi l’écartement entre les deux phases, et ainsi, limitant l’extension spatiale



CONTENTS 9

du front d’invasion. De plus, la variation de la gravité effective modifie la pro-
portion et la manière dont l’espace poral est envahi, comme c’est la capacité
de l’interface à faciliter l’exploration des pores pour le fluide d’invasion qui en-
trâıne les avalanches. Ceci est important pour la dynamique, puisque le nombre
de pores accessibles est diminué avec une augmentation de la gravité effective.
Au cours des expériences, la pression dans la phase liquide est mesurée en
même temps qu’un suivi optique numérique est effectué. Nous montrons en
corrélant les deux quantités mesurées que l’évolution intermittente du signal de
pression peut être lié à l’invasion de pores multiples sous forme d’avalanches.
En outre, nous étudions l’influence de la gravité sur les statistiques d’invasion
et d’avalanches de pression, et nous mettons en évidence une relation linéaire
entre la taille des sauts de pression et le nombre de pores envahis durant une
avalanche, et nous sommes en mesure d’extraire le temps de relaxation moyen
de la variation de pression associée à une avalanche.

Enfin, l’étude découlements multiphasiques dans un confinement cylindrique
est un sujet important avec un large éventail d’intrêts de recherche, d’un point
de vue géophysique, biologique ou d’ingniérie: du transport des cellules san-
guines travers les artères et les veines, à celui de pétrole et de gaz par conduites
(pipelines). Même le cas simple de découlement biphasique air et eau à travers
des tubes et capillaires présente un comportement d’écoulement complexe, avec
des transitions communément observées entre écoulement stratifié, bulleux, pis-
ton et annulaire, en fonction des vitesses d’écoulements des phases respec-
tives. Les écoulements triphasiques grain-liquide-gaz génèrent également des
écoulements complexes, pour les études où l’échelle de longueur caractéristique
du système est de l’ordre de la longueur capillaire, ce qui signifie qu’il existe
un ménisque d’interface biphasique entre les bords (plaques de confinement).
De tels systèmes génrent des motifs causés par l’interaction entre forces capil-
laires, visqueuses et forces de friction solide, ces dernières existant par le biais
d’interactions grain-grain, établissant un réseau de forces qui se connecte à la
géométrie de confinement. Pour un confinement quasi-2D, il a été démontr que
lorsque de tels systèmes sont amens hors équilibre par une source d’écoulement
externe, ils génèrent une varité de motifs.
Dans cette étude, nous étudions plus avant une géométrie de confinement sim-
plifiée: on s’intéresse un tube étroit avec un ménisque capillaire bien défini.
Nous regardons les structures qui résultent du déplacement d’une suspension
dense constituée d’un granulaire de billes de verre immergé dans l’eau. Au
fur et à mesure que le ménisque air/eau passe à travers le tube, soit il évacue
les grains de toute la section transversale du tube, soit il laisse derrière lui
une structure de matériau granulaire caractérisée par des bouchons granulaires
suivis de lacunes.
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Summary

In our first this study we experimentally, numerically and analytically study the
influence of gravity and finite-size effects on pressure-saturation measurements
during slow drainage where the lighter fluid invades the system from the top.
This relationship is much used by hydrologist and soil-scientists to give clo-
sure to the Darcy equations used in continuum modeling. We experimentally
perform tabletop experiments utilizing a quasi two-dimensional (2D) porous
medium, made up by a monolayer of poly-disperse glass beads sandwiched be-
tween two confining plates. The boundaries are sealed off with a layer of silicon
glue with one side open to the invading phase (air). The relative pressure dif-
ference between the non-wetting and wetting phase is measured with pressure
sensors while the saturation of the two phases is extracted by thresholding the
grayscale map from images taken at fixed time lapse. The saturating fluid is
withdrawn with a constant slow flow rate, making viscous effects negligible for
the invasion process. Coupled with the experiments we perform numerical sim-
ulations using an invasion percolation algorithm. In such models the invasion is
represented by a cluster growth process on a random lattice, dependent solely
on the global homogeneous pressure in each phase and on the local capillary
pressure thresholds in the pore throats along the interface. The effect of gravity
is systematically varied by tilting the system relative to the horizontal configu-
ration, causing the invasion to be gravity stabilized. The displacement structure
that emerges is composed of clusters of defending fluid that stay trapped after
the invasion interface has moved through the system and are hence built by the
motion of the interface. By exploiting the fractal nature of the displacement
structure we are able to obtain a relationship between the final saturation, and
the dimensionless capillary and Bond numbers Ca and Bo,characterizing the
competition between the viscous, capillary and gravitational forces, using per-
colation theory. For the 2D case this relation was verified by simulation and
experiments. For the 3D case we compared our relation with measurement con-
ducted by Nouri et al[30] Here saturation and pressure were measured using a
hanging column apparatus for four different soil types, showing compatibility
with our obtained relationship. Moreover the saturation, pressure and Bond
number are functionally related allowing for pressure-saturation curves to col-
lapse onto a single master curve.

In our second study we investigate the connectivity of the secondary flow net-
work that emerges during slow drainage. The network consists of clusters of
trapped defending fluid in connection to capillary bridges. An increased un-
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derstanding of these pathways and mechanism by which they are disconnected
is important for the understanding and ultimately controlling entrapment in
porous media. We conduct experiments in a two-dimensional synthetic porous
medium. By optical monitoring of the invasion process we are able to identify
capillary bridges and map their connectivity to trapped clusters. Increasing the
gravitational component acting on the system sets up stabilizing forces which in
effect changes how much and the sequence by which the pore-space is explored
by the invading fluid. To answer the question of possible directional growth of
these networks with respect to gravity we utilized a bonding box which is the
smallest rectangle that encloses the subnetwork. By studying the distribution
of its extension in the lx direction transverse to the flow direction and lz parallel
to the flow direction, we conclude that the effect of gravity on the structure of
the network is not present. Next we utilized the framework of network theory
to transform the set of connected capillary bridges and clusters into a graph ob-
ject. Each edge corresponds to a capillary bridge or the link to its neighboring
island of defending fluid. We characterize the network by calculating measures
typically associated to networks such as the clustering coefficient and efficiency.
During the invasion process liquid bridges were observed to sometimes rupture,
also referred to as snap-off. The snap-off was measured to statistically occur
more regularly for the longest capillary bridges, and most of the rupturing
events took place close to the mean interface position. Furthermore the front
width and rupture activity area behave in a coupled manner in space.

Many systems respond to a slowly changing external condition not in a smooth
way but in terms of a series of discrete events or bursts spanning a broad range
of sizes. Such avalanches are observed for many different systems,including
drainage in the capillary regime.

Here the fluid pressure difference between is solely responsible for the dis-
placement, such systems have displayed pressure evolution in terms of avalanches,
also referred to in the literature as Haines jumps. The pressure signal is char-
acterized by slow buildups followed by sudden drops in pressure. Influence of
gravity in such systems have shown to exhibit long range correlations along
the interface, reducing the spread between the two phases, in effect spatially
limiting the front of the invading phase. Moreover, varying the effective gravity
changes how much and how the pore-space is displaced, while it is the ability
of the interface to readjust after a newly invaded area has been displaced which
drives the avalanches. This is of importance for the dynamics as the number
of pores to redistribute is decreased with an increase in the effective gravity.
During experiments the pressure in the phase is measured together with opti-
cal monitoring. We show by correlating the two measured quantities that the
intermittent evolution of the pressure signal can be related to the invasion of
multiple pores in a burst like fashion. Furthermore we investigate the influence
of gravity on its statistics, and we found a linear relationship between the size
of the bursts and invasion of multiple pores, and we are able to extract the
average relaxation time of the pressure decay preceding a burst.

The study of multiphase flows in a cylindrical confinement is an important
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topic with a broad range of interest from geophysical, biological and engineer-
ing perspective, from transport of blood cells through arteries and veins to flow
of oil and gas by pipelines. Even the simple case of two-phase air and water flow
through tubes and capillaries displays complex flow behavior, with commonly
observed transitions between stratified, bubbly, slug, and annular flow depend-
ing on the flow rates of the respective phases. Three-phase grain-liquid-gas
flows have shown to generate complex flows. For studies where the character-
istic length scale of the system is at the capillary length, meaning there exist
an active meniscus between the confining plates. Such systems have shown to
generate patterns caused by the interplay between capillary, viscous and the
solid frictional forces, the latter existing through grain- grain interactions set-
ting up a force network witch branches onto the confining geometry. For a quasi
2D confinement it has been showed that when such system are driven with an
external flow rate out of equilibrium they generate a variety of patterns. In
this study we a further investigate a simplified confining geometry: Namely a
narrow tube with a well defined capillary meniscus. We look at the structures
that arise from the displacement of a dense suspension consisting of a granular
bed of glass beads immersed in water. As the meniscus travels through the tube
it either evacuates the grains from the whole cross-section of the tube or it seen
to leave behind a structure of granular material characterized by its granular
plugs followed by gaps
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Chapter 1

Introduction

Porous materials widely exist around us and play a role in many aspects of our
life. Natural substances such as rocks and soil can often be considered to be
porous materials. It is thanks to their porosity that soil allows for precipitation
to migrate from the surface to ground water aquifers. Similarly in rocks such
as calcite the connected pores set up pathways for mineral water to percolate
through stone, allowing for changes of the chemical composition over long time
scales. Furthermore, as porous materials have low density of mass and high
structural rigidity they are among other found to take shape as skeletal struc-
tures. An example is the bones in our body.

The work presented in this thesis is concerned with improving our understand-
ing of the underlying mechanisms by which fluids are transported in porous
media and how dense suspensions are transported through a confining geom-
etry [34, 10]. Fluid flow in porous media is a research topic which has been
extensively studied for the past decades. An improved understanding of such
processes promises economical benefits such as enhanced oil recovery, and great
environmental rewards, among other in terms of CO2 sequestration in sub-sea
reservoirs and mapping and controlling of migrating ground water contaminants
[31].

From a fundamental perspective flow in porous media is of interest as it displays
complex behavior. Such systems responds to a slowly changing external condi-
tion not in a smooth way but in the terms of a series of discrete events or bursts
spanning a broad range of sizes. Such avalanches are observed for many differ-
ent systems ranging from earthquakes occurring when slowly moving tectonics
plates shear into each other [33], to the tearing of paper [37]. Another example
is the motion of a fluid front when it invades a porous medium [8, 35, 28, 15].
Moreover the displacement dynamics is seen to generate fractal structures for
certain flow conditions [19, 32, 42, 21].

We will in this study, experimentally investigate two-phase flow in porous me-
dia. We will look at the case where the porous medium is allowed to be deformed
and for the case where it remains a rigid body. We will utilize two different
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16 CHAPTER 1. INTRODUCTION

confining geometries in our study, namely a cylindrical confinement and a quasi
two dimensional porous structure, allowing for reduced system complexity and
ease in optical monitoring.
We will study mechanisms governing fluid-displacement during drainage. We
show that by combining a detailed description of the pore-scale with parameters
acting on the system scale, we are able to find a pressure-saturation relation
which allows for upscaling of the system. Furthermore we will increase our un-
derstanding of mechanisms by which drainage occurs such as Haines jumps and
snap-off. We will look at the case of deformable porous media in a cylindrical
confinement within the capillary length, and study how grain-grain interactions
and interactions with the confining geometry give rise to the emergence of pre-
viously unexplored patterns [10].



Chapter 2

Basic concepts

2.1 Porous media

We begin by defining a porous medium as a rigid material which contains voids.
The size of these voids may vary by several orders of magnitude, from the
milimetric or centimetric one met in some reservoir rocks, to those of micron
size or even smaller in clay soils. The solid skeletal structure is often referred
to as the porous matrix and the voids are called pores. The porous material is
characterized by its porosity φ = Vp/Vtot which is a ratio between the volume of
the pore space Vp and the total volume Vtot. Furthermore when studying flow
through porous media, we demand the set of pores to be interconnected such
that there exists pathways for the flow to percolate from one side of the porous
body to the other. If this constraint is met we say that the system is permeable.
The ease with which fluid flows through a porous media is characterized by the
permeability κ. The permeability is dependent on the porosity but also the
geometry of the pores in the medium. It is also directly related to the pressure
drop needed to maintain a constant discharge rate over the porous media.

2.2 Leaving Navier-Stokes equation behind

The basic governing equations for the fluid flow of a Newtonian fluid is given by
the Navier-Stokes equation. This set of non-linear partial differential equations
has no general solution, and only a limited number of exact solutions. For
incompressible fluid flow, the continuity equation and Navier-stokes equation is
reduced to the form.

∇ · v = 0 (2.1)

∂v

∂t
+ v · ∇v = −1

ρ
∇p+ ν∇2v + g (2.2)

Here v is the local velocity field, ρ the density, ν the kinemtic viscosity and
g the gravitational constant. In addition, for a porous medium there will be a
set of complex boundary conditions to consider. Direct modeling can be made
by solving simplified version of Navier-Stokes equation, or solving the discrete

17
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Lattice Boltzmann equation [6, 23, 29, 12], among many other methods.

An empirical relationship describing the flow in a porous media was formu-
lated by the French engineer Henri Darcy in 1856 [9]. It has later on been
derived from the Navier Stokes equations via averaging [40]. It is analogous to
Fourier’s law in the field of heat conduction or Fick’s law in the field of diffusion
theory. Here q is the volume flux per unit of cross sectional area of the sample,
κ is the permeability, µ is the dynamic viscosity, p the pressure and ρ is the
density of the wetting fluid.

q = −κ
µ
∇ (p− ρgz) (2.3)

This equation is an important tool for porous media physics and engineering,
presenting numerous applications for modeling, among other reservoir rock, and
is seen to govern flow in porous media on a macroscale, valid only for stationary
slow viscous flow.

2.3 Pore-scale description

In addition to these macroscopic quantities, the porous network is further spec-
ified in terms of its local or pore-scale properties, such as the pore-throat size
distribution (Fig. 2.1) and the pore-size distribution. This can be defined in
multiple ways depending on how the system is probed. For pressure measure-
ments you can define a pore constriction size to be the size of a sudden pressure
drop, related via Young-Laplace law (Eq. 2.4) with a threshold pressure being
overcome. Similarly for optical monitoring a pore can be defined in multiple
geometrical ways, among others by finding the dual of the Delaunay triangu-
lation over the pore-space [27]. Even though the basic physics at a pore-scale
is well understood, the collective behavior of the flow in a disorderd system is
highly non-trivial [39].

When two immiscible fluids are present in a porous media, there will exist
a surface tension between the two fluids. This surface property is caused by
the interactions between the fluid molecules trying to minimize the interface
area between the two fluids. Hence to increase the interface area work must be
performed. Furthermore in equilibrium the curvature of the interface leads to
a difference in pressure between the two fluids in contact. The pressure on the
concave side exceeds the pressure on the convex side by ∆p , which is expressed
by the Young-Laplace equation.

∆p = pnw − pw = γ
( 1

R1
+

1

R2

)
, (2.4)

Here γ is the surface tension between the fluids and R1 and R2 are the
principal radii of curvatures. We define wetting, which is the ability of a liquid
to maintain contact with a solid surface. The degree of wetting is determined
by a force balance between adhesive and cohesive forces. Macroscopically this
is usually defined by the contact angle (see Fig.2.2). If a fluid has a contact
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Figure 2.1: Gives the pore-size distribution for the porous matrix used through-
out this thesis.

θ θ

Figure 2.2: The wetting property of the fluid-air-water contact line can be
altered, among other by coating the solid surface with silanized fluid. The
image to the right shows the droplet before the surface is silanized, having a
contact angle of θ = 55◦, the image to the left shows the wetting angle after
treating the surface with θ = 113◦.

angle θ < 90 it is wetting fluid, on the contrary if it has a contact angle θ > 90,
it is said to be non-wetting.

Throughout our experiments the interface affinity will be to minimize its
surface area. This will oppose the driving force leading to invade the initially
saturating fluid in the porous medium. From a pore-scale perspective, for every
pore-throat there is an associated capillary threshold pressure ptcap which needs
to be overcome for the subsequent pore to be invaded, under the influence
of gravity there will also exist a hydrostatic term caused by relative height
differences along the front. Hence the capillary pressure will depend on its
position in the gravitational field.

2.4 Two-phase flow

Displacement of one fluid by another in a porous media, comes in two flavors.
Imbibition, here the wetting phase displaces a non-wetting phase saturating the
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Figure 2.3: The competition between capillary and viscous forces changes within
the phase diagram, resulting in three main domains with its distinct pattern for-
mation. Namely capillary fingering viscous fingering and stable displacement.

porous network, such as water displacing air. The opposite order of displace-
ment is called Drainage. Lenormand et al [18] performed pioneering experi-
mental work on immiscible displacement on a simplified quasi two-dimensional
porous network. They used horizontal models in the absence of gravitational
forces. This setup allowed for a simplified porous network, which could more
easily be studied and compared. Pairing their experimental work with simula-
tions led to the construction of a phase diagram, where the displacement struc-
tures that emerge could be mapped into three different flow regimes namely
viscous regime [21], stable displacement [13] and the capillary regime [18], de-
pending on the interplay between the capillary and viscous forces.

A fluid flow is in the viscous regime, as the name suggests, when the viscous
forces dominate the structural propagation [20], as a consequence long reaching
fingers are formed, this type of structures have successfully been modeled by
diffusion limited aggregation (DLA) [32]. These finger-like structures are found
to be fractal with a fractal dimension D = 1.62 [21]. Stable displacement occurs
when the viscosity ratio between the fluid pair is the significant parameter, the
pattern presents a flat front with small irregularities spanning at most a couple
of pores [17, 13] this regime has been modeled by the anti-DLA scheme [32]. In
this study we will focus on the capillary regime. Here the pressure difference
across the interface is the driving force for the displacement, for sufficiently low
flow rates, the non-wetting phase generates patterns that are similar to that
presented by invasion percolation [41] being a dynamic percolation process. In
such models the invasion is represented by a cluster growth process on a random
lattice, dependent purely by the local capillary pressures. [5]. Moreover such
displacement patterns are shown to also be fractal [22] with a fractal dimension
of Dc = 1.83 for 2D and Dc = 2.5 for 3D, experimentally [14, 7].
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10mm

Figure 2.4: The first two images show the displacement caused by a burst, here
the lighter colored fluid(air) is seen to invade the wetting fluid which is darker
colored. The last image shows the growth obtained by performing an image
subtraction between the two gray-scale images.

2.5 Drainage and the capillary regime

Immiscible drainage in a porous medium consists of the displacement of a wet-
ting phase by a non-wetting phase. In the absence of a gravitational gradient
and for sufficiently low driving rates, the system dynamics is determined solely
by the pressure difference across the interface, defined by the Young-Laplace
law.

Drainage of immiscible fluids is found to occur in three different ways.
1) Displacement in terms of Haines Jumps [16] (Fig.2.7) is considered to be
the basic mechanism for drainage, occurring as multiple connected pores are
invaded as a consequence of a pressure threshold being overcome, the corre-
sponding pressure signal is characterized by slow build up followed by sudden
pressure drops, the displacement is seen to occur in a pore filling fashion. The
characteristics of slow displacement process is that viscous pressure gradients
have time to relax between front movements. Capillary effects govern the dis-
placement. This type of dynamics gives the fingerprint for the temporal evolu-
tion of the pressure during drainage.

2) Displacement by capillary bridges. In this case seemingly entrapped fluid
migrates back to the bulk by means of a network of capillary bridges. We define
a capillary bridge to be a film of liquid held by the surface tension between two
glass beads, separated by a distance l (Fig2.5). The capillary bridges are seen
to be unstable with respect to length l by which they are formed. The collection
of these capillary bridges forms a network which acts as transport highways for
the fluid. This type of flow mechanism has yet to be explored in a systematic
way.

3) Lastly we have displacement caused by the snapping off of capillary bridges,
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Figure 2.5: Shows the schematics of a capillary-bridge

Figure 2.6: The two images show how a capillary bridge is observed to rupture

these are films of wetting fluid trapped in the porous network, having the ability
to transport fluid. Most the films that eventually snap-off have a short life-span
according to paper 3). (2019). An increased understanding of snap-off as a pro-
cess is pivotal for determining whether a phase is truly entrapped. On longer
time scale evaporation and film flow along the confining plate can become con-
siderable factors. As the time scale of the study has been significantly shorter,
such effects have not been taken into consideration.

2.6 Use of invasion percolation to model slow drainage

Modeling of one fluid by another in the capillary regime, have displayed close
connection to percolation theory, first studied by De Gennes [4] in the 50s.
A dynamical model was proposed by Wilkinson and Wilhelmsen [41] named
invasion percolation (IP) for a boundary condition of constant flow rate. Here
the advancement of the interface is strictly a ranking problem, where the fluid
takes the path of least resistance. As the fluid considered is incompressible,
regions surrounded by nonwetting fluid is removed from possible invasion paths.
These regions of wetting fluid are referred to as trapped clusters, and have
shown a power-law behavior in their cluster size distribution N(s) ∼ s−τ , with
an exponent τ = 2.1 ± 0.1 which is close to what is observed from percolation
theory [3].

The effect of gravity on the system can be stabilizing or destabilizing de-
pending on the density contrast between the two fluids [24, 1]. In the capillary
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Figure 2.7: As the pressure overcomes a capillary threshold pressure, multiple
pores are observed to be invaded in a burst like fashion.

regime where the density of the invading phase is smaller than the defending
phase, gravity tends to stabilize the invading front. It has further been shown
by both simulation and experiments [2] that the front width w scales with the
strength of the gravitational field as w ∼ Bo−ν/(1+ν). Here Bo is the ratio
between the gravitational force and the capillary force for a typical pore, given
by Bo = ∆ρga2/γ, ∆ρ is the density difference, γ is the surface tension between
the two fluids, g is the gravitational acceleration acting on the system, and a
is the typical pore-size. The mechanism behind this stabilization lies in the
fact that the pressure needed to overcome the threshold pressure is no longer
only dependent solely on the disorder in the capillary pore-throats but also has
an hydrostatic pressure difference term. This term suppresses any height vari-
ations along the front. Modified Invasion percolation scheme has successfully
been used to model such a system configuration [2]. Here the pore-throats are
weighted according to their position in the gravitational field. This in turn
makes pore-throats with high positions along z statistically easier to invade
than pore throats with lower position.

2.7 Avalanche behavior

Certain systems respond intermittently to the continuous flow of energy fed
into the system [15]. The textbook example is the stick-slip displacement of
a wooden block which is attached to a spring. The spring is pulled with a
constant force along a surface with a given friction coefficient. Characteristic
for its motion is the presence of stable periods where energy is built up in the
system followed by events where energy is dissipated and the wooden block is
displaced [11]. Drainage in the capillary regime where fluid phase is withdrawn
with a constant flow rate is an analogous process. Here capillaries along the
invasion front store up energy in their meniscii up to a threshold in pressure,
at which an abrupt event causes the interface to propagate, and the meniscii
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which stores up energy, to back-contract. A common feature of these systems is
that the statistics of various measures associated to them lack a characteristic
scale.

In general the global response function of the system can be analyzed by
studying the time series v(t). (In our study this corresponds to the pressure p(t)
and optical imaging I(t) in Paper 2). However identifying an avalanche from a
time series can be a difficult task, as the time signal often also is subdued to a
background noise, which needs to be thresholded away. Statistical properties of
avalanches are usually considered by studying the PDF’s of various quantities
such as the avalanche duration, size, and the waiting-time between successive
events.

Because of their lack of a characteristic scale of the system, the distribution
of these quantities is power law distributed as.

P (x) = xεf(x/xo) (2.5)

Here ε is the exponent characterizing the statistics quantity, and f(x/xo) is
scaling function with x0 a characteristic size, correlation length or time.
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Methodology

3.1 Experimental setup for two-phase flow

In this section we will present the experimental setup which was used through-
out our studies of two-phase flow in porous media.
We have made use of an artificial quasi-two dimensional porous medium. The
medium is constructed by pouring poly-disperse glass beads, with bead-size
range of 1.0mm < d < 1.2mm onto the sticky side of an adhesive contact
paper, the monolayer of beads is then clamped between two Plexiglas plates,
which are sealed off with a rectangular layer of silicon glue. Hence the voids in
between the beads form the porous network. The Plexiglas plate has milled in-
let and outlet channels, allowing for injection and withdrawal of the respective
fluid phases. From below a pressure cushion forces the porous structure to stay
confined. The dimensions of the rectangular system are: Length L = 14.5cm
and width W = 10cm and thickness of d = 1mm. The porous medium is ini-
tially saturated with a wetting fluid which is composed of 80% glycerol and 20%
water by weight, having a kinematic viscosity of ν = 4.25 ·10−5m2/s, density of
ρw = 1.205g/cm3 with surface tension γ = 0.064N/m. The invading fluid used
is air and is withdrawn into the system by a syringe pump at a constant flow
rate of 0.004mL/min. The system is resting on a lightbox which can be tilted
at an angle over the horizontal plane, allowing for tuning of the gravitational
component along the system plane g sin θ.

During experiments the relative pressure difference between the non-wetting
and wetting phase is measured by two Honeywell 26PCAFG6G flow-through
pressure sensors connected to the model outlet, making measurements every
∆t ≈ 0.2s. The dynamical evolution of the displacement structure is captured
by images at fixed time lapse ≈ 10s with a NIKON D7100 SLR camera, which
is mounted perpendicular to the model. An Aladdin syringe pump is used to
provide constant flow rates, the fluid was withdrawn from the system with a
discharge rate of Q = 6.6 · 10−11m3/s.

25
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Figure 3.1: Shows a schematics of the experimental setup.

3.2 Experimental setup for three-phase flow in porous
media

To build a system which allows for the direct inspection of the displacement
dynamics, a simple experimental setup was constructed as shown in Fig.3.2. A
camera and a light source was placed on each side of an horizontal glass tube
1.0m in length with a diameter of 2mm. The tube was filled with a granular
suspension which slowly settles out of suspension, here grain size diameter was
found to lie in the range d ∈ [50, 300]µm .
One of the tube openings was connected with plastic tubing to a 30mL plastic
syringe, which was mounted onto the pumping system Aladdin-1000, able to
supply the system with constant pumping rates. The opposite opening of the
glass tube was kept open to the ambient pressure. A three-way junction was
connected to the plastic tubing, this extra outlet allowed for the coupling of
a pressure sensor, such that pressure measurements in the liquid phase could
be made. The measurements were controlled and collected with the help of
a computer running a code. The dynamics of the interface was recorded by
capturing a sequences of images with a NIKON D7000 SLR camera mounted
onto a tripod with a 20mm focal objective.

3.3 Image processing

In this thesis image processing has been extensively used to extract wanted
quantities from images captured while conducting experiments. In paper 1)
and 2), the signal I(t), which is a time series of the growth of the displacement
structure, was obtained by subtracting sequential gray-scale images and then
binarizing at a threshold giving us a measurable quantity for the change in
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Figure 3.2: Schematics of the experimental setup. The cylinder is filled with a
settling suspension which is connected to a syringe, the opposite side is open
to the air phase, during experiments the fluid is slowly withdrawn,allowing for
the air to displace the frictional fluid.

area. An example of image subtraction is shown in the image sequence below
Fig 2.4. Here the first two images display a zoom at the boundary between the
two phases. Between the first and second image, air is seen to invade. Captured
as the image difference is shown in the last thumbnail.

In paper 3) a routine was constructed to identify and track all the capillary
bridges, as displayed in Fig.3.3. Our routine for identifying capillary bridges is
based on firstly pinpointing all the pore-throats in the system. This is achieved
by a Delaunay triangulation over the porous network, having the centroid of
the glass beads act as the vertices. Hence acquiring the set of corresponding
triangulated edges is equivalent to finding all the pore-throat sizes in the system.
We define the position of the pore-throat as the midpoint of its edge. Fig.3.3.

For every time-step, the midpoint of the pores-throats is assessed, by eval-
uating its gray-scale value found to lie between [0,255], here the pixel value
0 corresponds to black and 255 to white. The two phases are clearly distin-
guishable as the wetting phase is dyed with negrosin. We apply a mask over
all the trapped clusters such that, the pore-throats are found to be in one of
three possible scenarios: 1) The entry pressure to the adjacent pore has been
overcome in which case the pore-throat is invaded. 2)The pore-throat can be
situated in one of the trapped islands or the bulk. 3) Lastly the pore-throat can
be a capillary bridge, in which case the pore on both sides have been invaded
by alternative invasion paths.
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Figure 3.3: Image outcrop, the bead centers are represented by red dots, green
dots represents the center of the capillary bridges. Dashed blue grid represents
the Delaunay triangulation, by which the capillary bridges are identified.
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Conclusion and Perspectives

We have experimentally and numerically studied influence of gravity during two-
phase flow in an artificial quasi 2D porous media. We have obtained pressure-
saturation curves and found a relation coupling the saturation to the Bond
number using percolation theory. Moreover we have been able to express a
relation which allows for upscaling of the system by combining data from the
pore-scale with the system scale.

For the cylindrical confinement we have looked at the case of a deformable
porous media, here the interface between the air and liquid phase acts as bull-
dozer deforming the porous bed. Further we have observed how the interplay
between frictional and viscous forces gives rise to pattern formation. We are
able to relate the cyclic evolution of plugs being shed by the moving interface
to a stress consideration made on a static plug.

We have studied the mechanisms by which drainage displaces a saturating
fluid and looked at how the burst-dynamics is affected by gravity, by analyzing
its clustering in time and space. The residual saturation is observed to display
connective pathways by which the wetting phase can migrate, we have evaluated
these fluid pathways in the framework of graph networks.

We have detected snap-off events, where the films between constricting
beads rupture, we have shown how this process primarily occurs within the
width of the advancing front, and how the occurrence of snap-off events gives
rise to waiting-time distributions which are power-law distributed.

The different paths of exploration are numerous, below is a list of possible
perspective for a continued study:

• Further investigate the snap-off phenomena, potentially find a relationship
between the avalanches and the formation of capillary bridges. .

• Investigate how a chain of capillary bridges can conduct fluid, and how
the transport property is affected by the chain length. Study the snap-off
as an attack on the secondary network.

• Simulate drainage in the capillary regime by means of invasion percola-
tion, allowing for the formation of paths of capillary bridges.

29
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• Perform experiments where the capillary threshold distribution is a con-
trolled parameter.



Summary of papers

Paper.1: Gravitational and finite-size effects on pressure-saturation
curves during drainage
M.Ayaz, R.Toussaint, K.J Måløy and G.Schäfer
Submitted to Water Resources Research

In this study we experimentally, numerically and analytically study the in-
fluence of gravity and finite-size effects on pressure-saturation measurements
during slow drainage where the lighter fluid invades the system from the top.
This relationship is much used by hydrologist and soil-scientists to give closure
to the Darcy equations used in continuum modeling. The effect of gravity on
these curves is systematically varied by tilting the system relative to a horizontal
configuration.

Using a quasi two-dimensional porous media allows for direct spatial mon-
itoring of the saturation. Exploiting the fractal nature of the displacement
structure we obtain a relationship between the final saturation and the bond
number SFnw = Bo0.097 for the 2D case using percolation theory, which we found
to be in agreement with numerical and experimental results. Compatibility for
similar arguments in the 3D case was checked with an experimental study con-
ducted by Nouri et al. [30]. Moreover the saturation, pressure and Bond number
is functionally related, allowing for pressure-saturation curves to collapse onto
a single master curve. Lastly the size distribution of trapped defending fluid is
also shown to contain information on the flux while the invasion process took
place.

We propose a simple invasion percolation model as a tool for producing
pressure saturation curves, depending on the fluid-pair characteristics, system
size and on the pore-scale characteristics, given by the pore-size distribution.

Contribution: Conducted the experimental work,simulations and wrote the first
version of the manuscript.

Paper.2: Avalanche dynamics and pressure variations during drainage
in gravity stabilized flow
M.Ayaz, R.Toussaint, K.J Måløy and G.Schäfer
Preprint to be submitted to Frontiers Of Physics

In this paper we study avalanche dynamics experimentally under the influ-
ence of gravity. The experiments are conducted in a Hele-Shaw confinement
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where pressure in the wetting phase is measured coupled with optical monitor-
ing of the system. Here we investigate the statistical measures related to the
clustering of drainage events in space and time. We show by correlating the
two measured quantities that the intermittent evolution of the pressure signal
can be related to the invasion of multiple pores in a burst like fashion. Further-
more we investigate the influence of gravity on its statistics. We find a linear
relationship between the size of the pressure burst and the optical invasion of
multiple pores. Lastly the shape of the bursts was predicted, and measured to
be well fitted to an exponentially decaying function.

Contribution: Conducted the experimental work and wrote the first version of
the manuscript.

Paper.3: Snap-off displacement during slow drainage in a gradient
M.Ayaz, R.Toussaint, K.J Måløy and G.Schäfer
Preprint to be submitted to Physical Review E

Recent studies of drainage have showed how trapped wetting fluid can mi-
grate back to the bulk of a fluid, through a network of entrapped films found to
exist between constricting areas in the porous body [36], forming a secondary
transport network.

In this paper we present an experimental investigation on a quasi two-
dimensional porous media. We examine the phenomena of snap-off of capillary
bridges, defined as films of wetting fluid, trapped in the porous structure. In our
study we localize these rupturing events in time and space by optical monitor-
ing. By varying the effective gravity, we are able to identify a scaling relation,
where the width of the interface bordering the two phases is related to the area
where snap-off activity is most dense, using percolation theory. Next we look
at the gravitational dependence on the spatial extension of these transport net-
works and how the waiting time between successive events are distributed in
time. The network of capillary bridges is further analyzed and characterized
using network theory. We define our edges to represent transport paths for the
fluid and the nodes as the set branching points. These findings indicate that
our current conceptual models of drainage are incomplete with implications for
future experimental and modeling studies as well as engineering applications.

Contribution: Conducted the experimental work and wrote the first version of
the manuscript.

Paper.4: Three-phase flow in cylindrical confinement
G.Dumazer, B.Sandnes, M.Ayaz, K.J Måløy and E.Flekkøy
Published in Physical Review Letters

The study of multiphase flows in a cylindrical confinement is an important
topic with a broad range of interest from geophysical, biological and engineer-
ing perspective. From transport of blood cells through arteries and veins to
flow of oil and gas by pipelines. Even the simple case of two-phase air and
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water flow through tubes and capillaries displays complex flow behavior, with
commonly observed transitions between stratified, bubbly, slug, and annular
flow depending on the flow rates of the respective phases.

Three-phase grain-liquid-gas flows have shown to generate complex flows,
in studies where the characteristic length scale of the system is at the capillary
length, meaning there exists an active meniscus between the confining plates.
Such systems have shown to generate patterns caused by the interplay between
capillary, viscous and the frictional forces, the latter existing through grain-
grain interactions setting up a force network witch branches onto the confining
geometry. For a quasi 2D confinement Sandnes et al [34] showed that when such
system is driven with an external flow rate out of equilibrium they generate a
variety of patterns.

In this study we further investigate a simplified confining geometry, namely
a narrow tube with a well defined capillary meniscii. We look at the structures
that arise from the displacement of a dense suspension consisting of a granular
bed of glass beads immersed in water. As the meniscus travels through the tube
it either evacuates the grains from the whole cross-section of the tube or it seen
to leave behind a structure of granular material characterized by its granular
plugs followed by gaps.

Contribution:Took part in building the experimental setup and conducted ex-
periments

Paper.5: Self-Structuring of Granular material under Capillary Bull-
dozing
G.Dumazer, B.Sandnes, M.Ayaz, K.J Måløy and E.Flekkøy
Published in Powder and grains (conference paper)

In this paper we make experimental observations of the structuring of a granular
suspension under the progress of a gas/liquid meniscus in a narrow tube. The
dense granular suspension is displaced and compactified as a growing accumula-
tion front. The frictional interaction with the confining walls increases until the
pore capillary entry pressure is reached. The gas then penetrates the clogged
granular packing and a further accumulation front is formed at the far side of
the plug. This cyclic process continues until the gas/liquid interface reaches the
tubes outlet, leaving a trail of plugs in the tube. Such 1D pattern formation
belongs to a larger family of patterning dynamics observed in 2D Hele-Shaw
geometry. The cylindrical geometry considered here provides an ideal case for
a theoretical modeling for forced granular matter oscillating between a long
frictional phase and a sudden viscous fluidization.

Contribution:Took part in building the experimental setup and conducted ex-
periments
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Appendix

We conduct preliminary experiments for our further study. Here we sandwich
a monolayer of poly-dispersed glass beads ∼ 1mm in size between two glass
plates. The sides are sealed off with a sponge, coated with vacuum grease, pre-
venting the fluid from leaking. The sponge allows for the sides of the cell to be
clamped together. We further mount three equally spaced acoustic sensors onto
the confining plate. The sensors are of the piezoelectric type, which are mostly
sensitive in the range (200-900 kHz) are amplified with a Signal Preamplifier.
The data recorded on the shock accelerometers which are mostly sensitive in
the range (1Hz-26kHz) are amplified with a Bruel and Kjaer Nexus Charge
Amplifier Type 2692-A.

The porous medium is saturated with water as the wetting phase, dyed with ne-
grosin for an increased contrast. The model is kept vertical, forcing the system
to be gravity stabilized [24, 1]. From the bottom of the cell, fluid is withdrawn
at a constant flow rate of 9ml/min, evacuating the model in 30s. The choice
of rapid drainage was set by the limitations of the high speed camera, acquisi-
tion of the acoustic signal at high sampling rates. Furthermore rapid invasion
generates stronger signal onto the acoustic sensors.

The interface motion during drainage is a complex process. Although the
interface motion can appear smooth and continuous, closer inspection of the
pore-scale reveals an highly intermittent and non-local dynamics. This irreg-
ular signal was first observed by Haines et al. [16]. As the system is drained
potential surface energy is stored at the interface up to a given threshold in
pressure. For a quasi 2D confinement we expect the energy released to gener-
ate elastic waves at its confining plates. Prior research work by Moebius et al.
[25, 26] studied different signatures of acoustic emission associated with fluid
front displacement by imbibition and drainage.

Waiting time matrix - Pinning of the interface

We expect events where the interface is depinned to be associated with a large
energy release. In order to measure the pinning-depinning transition of the
interface directly we utilized a waiting time matrix (WTM). This is a robust
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Figure 4.1: The top graph shows the acoustic signal retrieved from one of the
sensors situated mounted onto the confining plate. The bottom signal shows
the change in area obtained from image subtraction.

procedure which has previously been used to study intermittency in the front
propagation for both interfacial crack-propagation [38] and to describe the front
evolution of an imbibition front [8]. By extracting the interface h(x, t) from the
images and superposing them ontop of each other we are able to construct a spa-
tial map see Fig. 4.3. Here we impose a one-to-one relation between the height
h and the length x of the system, not taking into considerations any overhangs
that might exist. By superposing all the heights, we can construct a 2D map of
the interface motion WTM =

∑
i h(x, ti). Where each element represents how

long in time the interface has stayed pinned for a given (x, y) position. Further-
more we can calculate a map of the local velocities, V (x, y) = a/w(x, y)δt here
each matrix element is equal to its normal speed parallel to the flow direction
over a unit element a.

Results

In Fig.4.1 the obtained acoustic signal is displayed. Here we observe multiple
acoustic events occurring at many different scales during the experiment. We
notice further that the signal strength is stronger in the second half of the
signal. This can be associated with inertial effects and the system coming out
of a build up phase [27].

We optically monitor the invasion with an high-speed camera at 500fps, we
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Figure 4.2: correlation between the optically obtained image and the acoustic
signal captured with the piezoelectric type sensors.

expect the framrate to provide sufficiently high temporal resolution to detect
pore-scale events emanating from the depinning of the interface. To assess the
quality of our response signal, we cross-correlate the acoustic measurements
with the signal obtained from the image sequence captured during the experi-
ments: see Fig.4.2. Here the growth of the displacement structure is extracted,
by performing image subtraction between sequential images and thereafter bina-
rizing. The area where the wetting phase is replaced by non-wetting is assigned
positive integers and the opposite order of displacement negative integers. The
signal I(t) was retrieved, by summing over all the pixels corresponding to the
newly invaded area. We calculate the cross-correlation function CC∆t between
the summed area signal and the acoustic signal, showing a peak close to the
zero-shift, even if the signal over noise ratio is high. The phase shift in the peak
is related to the two signals being not being entirely synchronized. Where the
maximum of the acoustic signal happens 0.03s after optical signal, as seen from
the position of the peak in Fig 5.2.

C(∆t) =
〈(p(t)− µp)(I(t+ ∆t)− µI)

σpσI

〉
t

(4.1)

where p(t) is the acoustic sensor signal, and µp and µI are the averages of the
p(t) and I(t) signals, and σp and σI their root mean square. By stacking the
interface of the advancing front we are able to construct a waiting time map
Fig. 4.3, We notice regions where the interface is pinned for a longer time, and
regions where the interface propagates around as trapped regions. From the
local velocity map, Fig. 5.4, we see regions where the interface has progressed
in quick manner.

Conclusion

From the preliminary experiments we concluded that we have regions where the
interface is accelerated, which should carry an energy release with it. We were
able to obtain a cross correlation between the images and the acoustic sensor,
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Figure 4.3: Waiting time matrix for an experiment performed at a withdrawal
rate of 9ml/min, each element of the map gives the time in seconds, of how long
interface has stayed pinned in any given point.The units for the colorbar is [s]

but the signal over noise ratio was not optimal. Thus to achieve better contact
we decided to use pressure sensors, sensing directly in the fluid phase.
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Figure 4.4: By finding the reciprocal of the waiting time matrix we are able
to find a map of the local velocities, directed parallel with the flow direction.
Units for the colorbar is [m/s]
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Key Points:12

• During slow drainage with a lighter fluid invading from the top, the residual sat-13

uration can be obtained as a scaling law of the Bond number or the system size.14

• The capillary-pressure relationship can be obtained analytically during such drainage15

from the system size, based on the fractal properties of the invasion front shape16

and the contribution of the capillary pressure jump and the hydrostatic pressure17

term inside the system.18

• The final saturation after drainage allows to obtain information on the flux while19

it took place.20
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Abstract21

We experimentally and numerically study the influence of gravity and finite-size effects22

on the pressure-saturation relationship in a given porous medium during slow drainage.23

The effect of gravity is systematically varied by tilting the system relative to the hor-24

izontal configuration. The use of a quasi two-dimensional porous media allows for direct25

spatial monitoring of the saturation. Exploiting the fractal nature of the displacement26

structure we obtain a relationship between the final saturation and the bond number SFnw =27

Bo0.097 using percolation theory. Moreover the saturation, pressure and bond number28

is functionally related, allowing for pressure-saturation curves to collapse onto a single29

master curve, parameterized by the Representative Elementary Volume size and by the30

Bond and Capillary Numbers. This allows to upscale the pressure-saturation curves mea-31

sured in a laboratory to large representative elementary volumes used in reservoir sim-32

ulations. The large-scale behavior of these curves follow a simple relationship, depend-33

ing on Bond and Capillary number, and on the flow direction. The size distribution of34

trapped defending fluid is also shown to contain information on past fluid flow, and can35

be used as a marker of past flow speed and direction.36

1 Introduction37

Displacement of one immiscible fluid by another in a porous media is an impor-38

tant research topic both from a fundamental and an applied perspective. An increased39

understanding of the basic mechanism that govern the pore-scale description is of inter-40

est for multiple disciplines of science such as soil-science, hydrology, physics and biology41

and has shown industrial importance through applications such as enhanced oil recov-42

ery, CO2 sequestration and by mapping and controlling of migrating ground water con-43

taminants (Nsir et al., 2012). Furthermore it has revealed variety of pattern-forming pro-44

cesses emerging from the pore-scale up to the system scale (Måløy et al., 1985; Lenor-45

mand et al., 1983; Méheust et al., 2002; Løvoll et al., 2004; Toussaint et al., 2005), typ-46

ically governed by the interplay between viscous, capillary and gravitational forces. The47

structures has shown to exhibit complex behavior, characterized by its rich intermittent48

dynamics (Clotet et al., 2016; Moura, Måløy, & Toussaint, 2017; Moura, Måløy, Flekkøy,49

& Toussaint, 2017; Måløy et al., 1992; Furuberg et al., 1988; Planet et al., 2009).50

We study two phase flow in a quasi 2D porous confinement and look at the sim-51

ple case of drainage at pore-scale, where a non-wetting phase displaces a wetting one.52

Such experiments have shown to generate displacement structures that depend on the53

density and viscosity contrast between the fluids, surface tension and the flow rates at54

which the system is driven (Løvoll et al., 2004; Toussaint et al., 2005; Lenormand et al.,55

1983). Furthermore such structures are assembled by trapped regions of wetting phase,56

completely surrounded by the invading phase. The trapped islands are characterized by57

their power law distribution in size with an exponential cut-off directly related to the58

gravitational forces (Blunt & King, 1990) and the system’s finite size.59

The forces at play dominate at different length scales and their interplay gives rise60

to separate scaling regimes allowing for upscaling of the system which consists of relat-61

ing the pore-scale description to properties defined at the Darcy scale or even at the macro-62

scopic scale (Toussaint et al., 2011; Wilkinson, 1986). In the limit of very slow flow rates,63

the emerging structure is seen to depend entirely on capillary and gravitational fores (Lenormand64

et al., 1983; Méheust et al., 2002; Birovljev et al., 1991), and the obtained structure is65

seen to be well modeled by invasion percolation (Chandler et al., 1982; Wilkinson, 1984).66

When a low viscous fluid displaces a high viscous one, the unstable displacement pat-67

tern that emerges is called viscous fingering. The analogy between DLA and viscous fin-68

gering was first proposed by Paterson (1984) and is based on the equivalence between69

the probability field of diffusing particles and the pressure field in the viscous fluid. On70

the other hand when a highly viscous fluid is injected into a low viscous fluid, a stable71

displacement will be observed. This situation is analog to the anti-DLA as proposed by72

(Paterson, 1984).73
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Numerical modeling of two-phase displacement in water-saturated porous media74

using continuum models have been performed by many researchers (Zhang & Smith, 2001;75

Aggelopoulos & Tsakiroglou, 2009; Kokkinaki et al., 2013; Sleep et al., 2015; Schneider76

et al., 2015; Nayagum et al., 2004). However, the detailed local description of the inva-77

sion front in a porous medium cannot be simulated with these models because they do78

not explicitly consider the capillary and viscous pressure fluctuations at the pore-scale.79

To overcome this shortcoming, microscopic approaches such as Stokes’ solution for flow80

in single pores with a specified geometry or lattice Boltzmann methods (LBM) have been81

investigated to reproduce experiments (Aursjø et al., 2010; Fiorentino et al., 2017; Mis-82

ztal et al., 2015) . Similarly Pore-scale network models have been developed to study a83

wide range of displacement processes, including drainage and imbibition (Aker et al., 1998;84

Nordhaug et al., 2003; Joekar Niasar et al., 2009; Tør̊a et al., 2012; Sheng & Thompson,85

2013; Kallel et al., 2017; Nsir et al., 2018, 2012; Singh & K. Mohanty, 2003; Yang et al.,86

2019). Ewing and Berkowitz(Ewing & Berkowitz, 1998) developed a generalized growth87

model based on invasion percolation to simulate immiscible displacement in saturated88

porous media. Both capillary, viscous and gravity forces were incorporated in their 3D89

algorithm, where viscous forces were expressed stochastically rather than explicitly. (Glass90

et al., 2001) developed a macro-modified invasion percolation (MMIP) model, includ-91

ing also the effects of all 3 forces within the invading phase in a macro-heterogeneous porous92

medium.93

In macroscale modeling of two-phase flow, the porous medium and the flow are de-94

scribed by continuous mathematical fields using an empirical functional relationship, cou-95

pling the saturation of the wetting fluid Sw to the capillary pressure pnw−pw = p(Sw)96

that is the main assumption at hand, where pnw and pw is the pressure in the non wet-97

ting fluid, and pw the pressure in the wetting one. In practice this relation can be found98

by conducting experiments on a given porous medium and fluid pair on representative99

volumes. It is usually parameterized using mathematical models such as Van-Genuchten100

or Brooks-Corey model (van Genuchten, 1980; Brooks & Corey, 1964). In the case of pri-101

mary drainage, the Brooks-Corey model introduces several model parameters such as pore102

size index, entry pressure needed by the invading fluid to displace water, and the resid-103

ual saturation of the wetting phase. The latter one is an important model parameter be-104

cause the description of two-phase flow at the macroscopic scale requires also the use of105

a second constitutive relationship: relative permeabilities as function of saturation of the106

wetting phase.107

In this paper we study the capillary pressure - saturation (PS) relationship dur-108

ing drainage in a system of finite size, taking into account gravitational effects. We ex-109

amine how this finite size and gravitational forces influence this PS relationship, and how110

it can be upscaled. First, we propose a simple numerical scheme which produces pressure-111

saturation curves. In this numerical scheme we take into consideration that we have a112

gravitational field acting on the system, a distribution of capillary pressure thresholds113

linked to the pore-scale geometry and the fact that the system has a finite size. Next,114

we study the relative pressure of the wetting fluid measured at the outlet of a transpar-115

ent quasi-twodimensional experimental setup with respect to the imposed constant at-116

mospheric pressure of the non-wetting air phase as a function of the saturation, ∆P =117

Pa − pw = f(Sw). From the pressure-saturation relation obtained during the detailed118

gravity stabilized primary drainage studies, we can then directly derive one of the sig-119

nificant caracteristics of water retention curves which is the residual saturation of the120

wetting phase Sw = 1−Snw. We further deduce a functional relationship, which cou-121

ples the final saturation with the pore-scale description under the influence of gravity122

using percolation theory. This allows to upscale the pressure saturation relationship for123

a given porous medium, with the help of laboratory drainage tests. We also show how124

the residual saturation depends on the Bond number and the conditions of drainge flow,125

in terms of flow angle and flux.126
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2 Theory127

When the viscous forces are negligible for the invasion process (capillary regime)128

the obtained displacement pattern can be understood by the relative importance of grav-129

ity to capillary forces, which is conventionally defined by the Bond number Bo , corre-130

sponding to the ratio of buoyancy forces to capillary forces at a pore scale,131

Bo =
∆pgrav
∆pcap

=
∆ρ g a sinα

γ/a
, (1)

where ∆ρ is the density contrast between the two fluids, g is the gravitational acceler-132

ation, α is the angle between the average flow direction and the horizontal plane, a is133

the typical pore size , and γ is the surface tension between the two fluids. ag sinα is the134

hydrostatic pressure drop on a length scale a, parallel to the flow direction. The typ-135

ical ratio between viscous and capillary forces over a pore is defined by the capillary num-136

ber137

Ca =
∆pvisc
∆pcap

=
µva2

γκ
, (2)

where µ is the viscosity of the most viscous fluid, v is the Darcy velocity, and κ is the138

permeability of the porous medium. We consider situations where the non-wetting in-139

vading fluid has negligible viscosity in front of the defending one. The presence of dis-140

order in the porous medium gives a distribution of capillary thresholds with a well de-141

fined spread. In order to capture the relative relevance of these fluctuations we utilize142

the fluctuation number F as suggested by Meheust et al.(Méheust et al., 2002; Auradou143

et al., 1999)144

F = C(Bo− Ca) , (3)

where the dimensionaless prefactor is C = γ/(aWt), with γ/a the characteristic aver-145

age capillary pressure threshold, and Wt the standard deviation of the random capillary146

thresholds in the porous medium. For most media, the average value and the standard147

deviation of the capillary pressure thresholds are of the same order of magnitude(Toussaint148

et al., 2005), and C is of order 1. Throughout our study we will consider Ca � Bo,149

hence we will utilize the reduced expression F ∼ [γ/(aWt)]Bo ∼ Bo. We define the150

invasion front as the set of pores bordering the non-wetting phase to the bulk of the de-151

fending fluid. From percolation theory the front width σ for a gravity stabilized drainage152

front is found to scale with the Fluctuation number F as (Wilkinson, 1984, 1986; Birovl-153

jev et al., 1991)154

σ/a ∝ F−ν/(1+ν) ∝ Bo−ν/(1+ν) . (4)

Here ν is a critical exponent of the correlation length from percolation theory, ν = 4/3155

in 2D(Stauffer & Aharony, 2014) . Since the Fluctuation number depends on the width156

of the capillary threshold distribution, an increase in its width results in an increase of157

the front width.158

3 Experimental setup159

The experiments are performed in a quasi two-dimensional porous medium (cf Fig. 1),160

which is made up by randomly distributing a monolayer of glass beads between the sticky161

sides of two sheets of adhesive contact paper in a transparent Hele-Shaw cell with thick162

walls. The boundaries are sealed off with a rectangular layer of silicon glue. Hence the163

porous media can be considered as a rectangular box of length L = 14.5 cm, width W =164

10 cm, and thickness b = 1 mm. Appended to the system is a filter, positioned between165

the fixed glass beads and the outlet. The filter consists of a sponge with a typical pore-166

size much smaller than the pores in the main porous matrix. The resulting difference167

in entrance pressure makes it necessary to invade all clusters connected to the outlet-168

filter, before invading the outlet-filter.169
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Figure 1. Schematics of the experimental setup. The porous media is sandwiched between

two sheets of adhesive contact paper, and kept rigid by clamping it between a water-filled pres-

sure cushion pressed against a rigid transparent plate and a Plexiglass plate. A pulley connected

to a light-box is used to provide the desired inclinationα.

To prevent the potential displacement of beads, the porous matrix is kept rigid,170

by a thick Plexiglas plate from above with milled inlet and outlet channels allowing for171

the injection and extraction of fluid phases. From below a mylar film is kept under pres-172

sure by a 3.5 m water column, acting as a pressurized cushion forcing the glass beads173

above to stay in place. The rigid model is mounted onto an illuminating light-box that174

can be tilted by an angle α over the horizontal, allowing for tuning of the gravitational175

component g sinα.176

The invading non-wetting phase used in all the experiments is air. The wetting phase177

used is a 90-10% by weight glycerol-water solution, dyed with a 0.1% of Negrosine for178

visual contrast. The wetting fluid has a density of ρw = 1205kgm−3 and kinematic vis-179

cosity of ν = 4.25 10−5m2/s. The surface tension between the two fluids is γ = 6.4 ·180

10−2Nm−1.181

During the experiments the relative pressure difference between the non-wetting182

and wetting phase is measured by two Honeywell R© 26PCAFG6G flow-Through pres-183

sure sensors, connected to the outlet of the model. The saturation of the two phases is184

extracted by thresholding the grayscale map from images taken at fixed time lapse with185

a NIKON R© D7100 SLR camera mounted perpendicular to model, similarly to (Moura,186

Måløy, & Toussaint, 2017). A syringe pump is used to provide constant flow rates, with187

a discharge rate of Q = 6.67·10−11m3/s, corresponding to a capillary number of Ca =188

1.2 ·10−4. The experiments are terminated once the pores boarding the filter have all189

been invaded.190
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4 The network model191

Invasion Percolation algorithms (Wilkinson & Willemsen, 1983; Chandler et al.,192

1982; Moura et al., 2015) have been extensively used to model drainage in the capillary193

regime between immiscible fluids when the viscous pressure drop and compressibility of194

the wetting fluid are negligible for the displacement of the fluid-fluid interface, contrar-195

ily to cases where viscous forces (Løvoll et al., 2011) or compressibility (Jankov et al.,196

2010) play an important role. In such models the invasion is represented by a cluster growth197

process on a random lattice, dependent solely on the global homogeneous pressure in each198

phase and on the local capillary pressure thresholds in the pore throats along the inter-199

face. Such arrangements have been shown to generate displacement structures that are200

quantitatively similar to what is observed during drainage (Blunt et al., 1992; Lenormand201

& Zarcone, 1985). In this study we will utilize a bond invasion percolation model. The202

porous medium is modeled as a completely connected network, where all the pore-sites203

are interconnected to their neighboring pores through pore-throats. The pore-throats204

are oriented at 45 degrees from the main flow direction on a rectangular lattice with pe-205

riodic boundary conditions perpendicular to the flow direction.206

Disorder is introduced in the model by letting pore-throats sizes be drawn from a207

distribution corresponding to the experimental one . First, a random variable is picked208

from an uniform distribution in [0,1]. Next, a mapping is made transforming the flat209

distribution to the experimental one, obtained utilizing an imaging based algorithm. The210

size distribution of the pore-throats channel radii is characterized on the experimental211

porous matrix, utilizing a Delaunay triangulation over all the constricting beads, as sug-212

gested by (Bryant & Blunt, 1992) and detailed by (Moura, Måløy, & Toussaint, 2017).213

For each pore-throat, the channel radius R fixes the corresponding capillary threshold214

pressure needed to be overcome in order to invade the adjacent pore-site, from Young215

Laplace law, ∆P tc = γ/2R.216

The algorithm of Invasion Percolation (IP) in a Gradient to describe drainage in217

a gravitational field follows the principles introduced by (Sapoval et al., 1985; Birovljev218

et al., 1991). Gravity is accounted for by linearly weighting the capillary throat thresh-219

olds with the hydrostatic pressure difference between the two fluids, taking into account220

that the pressure in the wetting phase at elevation z above the outlet is Pw = Poutlet−221

ρwgz.222

Initially the network is fully saturated with a wetting fluid. For each iteration the223

interface of the non trapped part of the defending structure moves where the capillary224

pressure threshold adjusted by the hydrostatic pressure drop is lowest (see Eq. (8)). This225

movement involves both the invasion of the pore throat and of the connecting pore. The226

parts of the interface that enclose (trap) entirely a connected part of the defending fluid227

will be locked due to the incompressibility assumption of the defending fluid: no further228

invasion is allowed into these trapped clusters. The invasion is stopped once all the sites229

bordering the outlet of the model have been fully invaded, effectively blocking any fur-230

ther displacement of the wetting phase. The aspect ratio of the IP lattice was equal to231

the experimental system for all the simulations performed. The size of the lattice was232

232×330 sites.233

5 Results234

Figure 2 shows a selected set of snapshots captured for different bond numbers, dis-235

playing the growth of the displacement structure from the start of the invasion up to the236

end of the experiments, when all the pores bordering the outlet channel have been in-237

vaded and the final saturation SFnw is reached. For comparison snapshots from the sim-238

ulations are presented in Fig. 3. We observe that an increase of the gravitational com-239

ponent leads to a denser displacement structure, i.e. a lower SFnw. The invasion front which240

refers to the set of pores bordering the bulk of the wetting phase shows a reduced spread241
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σ along the flow direction, i.e. when the Bond number increases, the system tends to be-242

come more stabilized and the fronts is hence closer to a horizontal flat structure. The243

hydrostatic pressure gradient suppresses the maximum height difference between points244

along the front.245

5.1 Measuring pressure-saturation curves246

The saturation of the non-wetting phase Snw is extracted by image analysis from247

the sequence of captured images. The saturation increases linearly in accordance with248

the constant flow rate imposed on the system. The pressure drop across the model is at249

any time such that it maintains the constraint by the flow rate. The pressure ∆P is the250

difference between the atmospheric pressure Pa and the pressure in the wetting phase251

at the outlet252

∆P = Pa − Poutlet (5)

Combining the extracted saturation with the pressure measurements, a series of253

pressure–saturation curves are obtained, as shown in Fig. 4. The first datapoint on this254

curves is related to the varying hydrostatic pressure ∆Ph accross the system, which scales255

as the gravitational term g sinα for different inclinations. The respective initial values256

of the pressure offsets are followed by a pressure buildup without any pore invasion. As257

the initially flat interface begins to fill the local geometry of the pore-throats, the cap-258

illary pressure ∆Pc starts to build up. Pore throats have widths that are spatially un-259

correlated and thereby each pore-throat exhibits an associated capillary threshold pres-260

sure P tc which is the minimum pressure needed for the interface to penetrate its respec-261

tive pore-throat. For a given porous structure, fluid pair and wettabilities there will be262

a distribution of capillary pressure thresholds associated to the system.The condition for263

invasion is that the local pressure difference between two phases along the front satis-264

fies ∆Pc > P tc . In the presence of gravity, height differences along the invasion front265

give rise to a hydrostatic term. When accounted for, this gives the following invasion cri-266

terion:267

∆Pc = Pa − (Poutlet −∆ρgz) = ∆P + ∆ρgz > P tc , (6)

where z = z′ sinα the elevation of the pore throat considered above the cell bottom,268

with z′ the linear upwards coordinate along the cell. z′ varies between 0 at the outlet,269

at the bottom of the cell, and L at the inlet at the top of the cell. This can also be ex-270

pressed as271

∆P > P tc −∆ρ(g sinα)z′ . (7)

Therefore, the front will move at the place with the lowest modified capillary pressure272

threshold273

P tc −∆ρ(g sinα)z′ (8)

When this criterion is met the smallest capillary-threshold is invaded followed by a rapid274

decrease in pressure during the instable Haines jump where pores are invaded until the275

interface stabilizes on smaller pore-throats. As the porous boundary is horizontal, the276

initial pressure buildup associated with the invasion of the first pores is independent of277

gravitational effects, i.e. it is invariant with respect to the Bond number. Once the av-278

erage capillary threshold pressure is reached, it is observed to fluctuate around an av-279

erage slowiy increasing with the invading fluid saturation. These fluctuations consist in280

many build ups followed by sudden relaxations (occurring at many time scales), allow-281

ing for the invasion of multiple pores during one burst (Måløy et al., 1992; Furuberg et282

al., 1996; Haines, 1930). The hydrostatic pressure gradient tends to suppress any height283

differences between two points along the front. Two distinct features of the pressure-saturation284

curve is observed. The pressure difference is seen to fluctuate, the aforementioned capillary-285

threshold pressure displays disorder at the invasion front. We further see that the pres-286

sure difference ∆P increases because the hydrostatic pressure difference ∆ρgsinαz de-287

creases linearly as the invading phase approaches the outlet.288
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θ = 0◦,Bo = 0

θ = 15◦,Bo = 0.047

θ = 30◦,Bo = 0.092

θ = 60◦,Bo = 0.159

Z'

XO
W

L

Figure 2. Snapshots from four different experiments. The air invades the saturated porous

media from top to bottom, the time evolution for each Bond number goes from right to left. The

first two columns show the displacement structure after respectively 8 and 16 % of air has satu-

rated the medium taking 2.7 and 5.4 hours , the two last ones show the break-through and final

configurations. The duration of the experiments with increasing inclination is: 18.9h, 25.7h, 26.1h

and 26.6h.
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θ = 0◦,Bo = 0

θ = 15◦,Bo = 0.047

θ = 30◦,Bo = 0.092

θ = 60◦,Bo = 0.159

Z'

XO
W

L

Figure 3. Snapshots from network simulations with Bond numbers comparable to those in

set by the inclinations in the experiments. The first two columns show the displacement struc-

ture after respectively 8 and 16 % of air has saturated the medium, the two last ones show the

breakthrough and final configurations.
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Figure 4. Pressure-saturation curves obtained for five different inclinations of the experimen-

tal model. Here Snw is the saturation of non-wetting phase, and ∆P corresponds to the pressure

difference between the outlet and the amtmospheric pressure.

Once the invading phase reaches breakthrough, the invasion structure is in contact289

with the filter prolongating the cell, presenting much smaller pore-throats, so that this290

filter is not invaded, while pores with higher capillary thresholds are invaded in the cell.291

leads to an increase of the capillary pressure as the invasion goes on. Once the pores bor-292

dering the filter have all been invaded the system is said to has reached its final satu-293

ration SFnw. We observe that there is a consistency between the numerical and the ex-294

perimental final saturation values as the inclination increases.295

5.2 Master curve: Relating the pressure drop and saturation for differ-296

ent Bond numbers297

For the case Bo>0, i.e. when the lightest fluid penerates from the top and grav-298

ity stabilizes the system, and the system is in mechanical equilibrium, the total pressure299

difference across the porous model is expressed as ∆P = ∆Pc−∆Ph. Here ∆Pc is the300

capillary pressure accross the interface, given by the Laplace pressure Eq.(9), and ∆Ph301

is the hydrostatic pressure difference across the wetting phase. For slow drainage where302

Ca� 1, this pressure difference is essentially hydrostatic, and can be expressed as ∆Ph =303

∆ρgl sinα. Here, ∆ρ is the density contrast between the fluids, the term g sinα is the304

component of gravity parallel to the cell and l = ∆z′ is the distance between the point305

considered along the two fluids boundary and the outlet, projected along the steepest306

descent direction. Since gravity stabilizes the front, one can consider a characteristic dis-307
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Figure 5. The pressure saturation curves obtained numerically, for a system size with the

same aspect ratio L×W as the experimental system.

tance l as the mean in-plane distance between the outlet and the invasion front. Thereby308

the measured pressure across the cell can be expressed as:309

∆P = 2γ/R−∆ρgl sinα. (9)

Furthermore a functional dependency of the saturation with respect to l can be ex-310

pressed, by considering the saturation-balance of the total non-wetting phase Stotnw in the311

entire cell of size Atot = L ×W , and approximating the system as transiting from an312

initial saturation S0
nw to a characteristic residual final saturation SFnw after the passage313

of the drainage front, i.e. above it - cf Fig. 6. Fluctuations along the invasion front are314

assumed to average out. We denote AF = (L − l) × W the area of the region where315

the invasion front has passed. By volume conservation we get an expression for the to-316

tal saturation317

StotnwAtot = SFnwA
F + Sonw(Atot −AF ) . (10)

i.e.318

StotnwLW = SFnw(L− l)W + SonwlW . (11)

Dividing this equation by SFnwLW leads to319

l

L
=

Stot
nw

SF
nw
− 1

S0
nw

SF
nw
− 1

. (12)

Since the system is initially fully saturated, S0
nw = 0. This gives an expression for the320

distance to the outlet as: l = L(1− Stotnw/SFnw)9. Inserting this in Eq. (9) leads to the321
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following saturation pressure relation:322

∆P =
2γ

R
− γL

a2
Bo
(

1− Stotnw
SFnw

)
. (13)

This equation has been expressed with the Bond number from Eq. (1). In Fig.7 the rescaled323

pressure is plotted as a function of the relative-saturation obtained from the experiments324

in Fig. . Similar results obtained from the numerical modeling are displayed in Fig.8. We325

here show the envelope of the pressure-saturation curves , i.e. the maximum of the pres-326

sure difference reached up to a certain saturation, without displaying the fluctuations327

related to the Haines jumps. The term 2γ/R, was experimentally obtained by measur-328

ing the relative pressure difference of the pressure build up associated with the invasion329

of the first pore , i.e. it was approximated as the entrance pressure. More precisely,330

the term 2γ/R to consider corresponds to the capillary pressure for the characteristic331

position of the invasion front, separating the initial saturation zone and the final satu-332

ration one. The position of this front can be evaluated from its average position, in which333

case experimentally one can extract l, and measure 2γ/R from the experimental mea-334

sure of ∆P and a measure of l for a given time, using Eq. (9). Theoretically, the char-335

acteristic position of the front can be defined as the position where the occupancy prob-336

ability corresponding to the capillary pressure drop is equal to the percolation thresh-337

old for the type of network defined by the porous matrix. As demonstrated in (Moura338

et al., 2015)this corresponds to339

2γ/R = f−1(pc) (14)

with pc the percolation threshold in terms of occupancy probability, f(P ) =
∫ P
0
g(P ′)dP ′340

is the cumulative distribution of the normalized capillary threshold distribution (prob-341

ability density function) g(P ), and f−1 is the reciprocal function of f . In other words,342

the constant term in Eq. (13) conrrespond to the capillary pressure threshold correspond-343

ing to the percolation threshold in the pore network. We see that by inserting pore-scale344

description of the system, and taking into account the gravity effect accross the cell, we345

are able to collapse the Pressure-saturation curves onto a single Master curve: this equa-346

tion captures properly the entrance pressure, the rise of the pressure drop with the drainage,347

and the final pressure buildup when the invader is limited by the semi-permeable mem-348

brane. This is the case both for the experiments and for the simulations, in all probed349

effective gravities (i.e. cell angles over the horizontal). This reduced pressure has two350

terms: one is related to the disorder in the system, the second term is related to the hydro-351

static height difference, which decreases as the drainage takes place and the average in-352

terface moves down, closer to the outlet.353

5.3 Final saturation as function of the Bond number354

Previous research has allowed to explicit a functional dependency between final air355

saturation and the spatial extension of the system size in the absence of gravity, i.e. for356

the flat case, in the capillary regime (Moura et al., 2015). (Løvoll et al., 2011) extended357

the analysis to take dynamical effects into account, allowing a broad range of capillary358

numbers to be permitted, in a viscosity-destabilizing situation, i.e. when the least vis-359

cous fluid invades the system, without stabilizing effects of gravity. In this section we360

propose a scaling relation between the residual saturation (at the end of the drainage)361

and the Bond number for a gravity stabilized situation, i.e. when the lighter fluid is ini-362

tially on top of the denser one.363

The invaded region in the capillary regime is shown to display a fractal structure364

(Lenormand et al., 1983; Wilkinson, 1984), with a well established fractal dimension (Mandelbrot,365

1982) of Dc = 1.83 for a two dimensional (2D) system (Lenormand & Zarcone, 1985).366

Exploiting together this fractal property of the invaded area and the scaling properties367

of the invasion front, a functional relationship between the final saturation SFnw and the368

Bond number or system size can be obtained. The final saturation of the system SFnw369

is attained once all the pores closest to the outlet have been invaded. We first note that370
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the largest connected clusters of defending fluid, that stay trapped after the invasion in-371

terface moved through the system, are built by the motion of this interface. Before they372

are disconnected of the large cluster connected to the outlet, the boundary of these clus-373

ters is part of the mobile interface. Their maximum size is reached when they become374

disconnected, after what their size does not evolve significantly. Hence, the maximum375

linear size of the trapped clusters corresponds to the typical size of the interface in the376

average flow direction. This cutoff length scale lc corresponds thus to the root mean square377

width of the mobile front, i.e. lc ' σ, wich follows the scaling law from Eq. (4) , set by378

invasion percolation in a gradient, as established by (Birovljev et al., 1991):379

lc ∼ σ ∼ aBo−ν/(1+ν) . (15)

Up to this size, the system is fractal with a fractal dimension corresponding to cap-380

illary fingering and Invasion Percolation, Dc. Above this size, the mobile front looks like381

a stright horizontal line. The shape of the trapped clusters above this size is thus not382

set any more by the selection of smallest thresholds, but by the geometry of the straight383

line leaving trapped clusters everwhere behind it: it presents the trivial fractal dimen-384

sion of the space left behind the front, i.e. D = 2 in 2D. If the system size is smaller385

than this characteristic size aBo−ν/(1+ν), the system is fractal up to the system’s short-386

est size, W or L. To summarize, the system is fractal with dimension Dc up to a cut-387

off size388

lc = Min(aBo−ν/(1+ν),W,L) (16)

The functional relationship between the final saturation and lc is found by consid-389

ering a partitioning of the model of dimensions L×W into square boxes of length lc .390

For every such box the displacement structure occupies on average (lc/a)DcporesAbove391

this size, the fractal dimension is the trivial fractal dimension D = 2, and the number392

of boxes of size l2c with trapped clusters required to cover the system is simply LW/l2c .393

Moreover, a pores area is a2, the system’s area is LW , and the final saturation is the frac-394

tion of the total area occupied by the nonwetting fluid. Hence,395

SFnw =

(
LW
l2c

)(
lc
a

)Dc

a2

LW
=
( lc
a

)Dc−2
. (17)

Using Eq. (16) hence leads to396

SFnw ∝ Bo[−ν/(ν+1)](Dc−2) , (18)

where ν = 4/3 is a critical percolation exponent, having the value 4/3 in 2D (Stauffer397

& Aharony, 2014). This is the case when gravity sets up the cutoff scale, i.e. when aBo−ν/(1+ν) <398

Min(W,L). By contrast, when the system size or gravity is negligible, we predict399

SFnw ∝Min(W,L)(Dc−2) , (19)

This last relation is satisfied by experiments and simulations in horizontal cells where400

Bo� 1 for slow drainage where Ca� 1, as demonstrated by (Moura et al., 2015).401

This relation, Eq. (20), holds for Bo >Ca, where the invading fluid from the top402

has the lower density. In this case, corresponding to the experiments and simulations done403

here, we obtain a functional dependency between the final saturation and the Bondnum-404

ber. In order to check this predicted dependency, the final saturation SFnw was measured405

experimentally (circles) and numerically (stars) for a range of Bond numbers, and shown406

in Fig. 9. From our theoretical prediction we expect407

SFnw ∝ Bo0.097, (20)
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This corresponds to the dashed line in this figure. The agreement between both simu-408

lations and experiments and this theoretically predicted scaling seems satisfactory. The409

spread of the final saturation is seen to narrow in as the Bond number increases, which410

is associated with the finite size effects being suppressed, and the increasingdominance411

of the width σ as the limiting factor.412

6 Discussion413

6.1 Extensions in three and one dimensions414

This type of argumentation can be extended to three dimensions (3D). Instead of415

considering partitioning of square boxes, we now consider cubes which on average oc-416

cupy (lc/a)Dc pores. This leaves us with the general relation417

SFnw ∝ Bo[−ν/(ν+1)](Dc−D), (21)

where D is 2 or 3 depending on the case considered, 2D or 3D. Here the critical expo-418

nent ν = 0.88 in 3D from percolation theory (Adler et al., 1990), and the fractal di-419

mension obtained from invasion percolation is found to be Dc = 2.5 (Wilkinson & Willem-420

sen, 1983). Comparative experimental measurements have also been made (Yan et al.,421

2012; Nsir et al., 2012; Chen et al., 1992) ((Toussaint et al., 2012) for a review), find-422

ing compatible Dc values. Hence, we expect in 3D,423

SFnw ∝ Bo0.23. (22)

Data in 3D with detailed capillary pressure relationships and systematically changing424

Bond number is more scarce than in 2D, as it is easier to change the orientation of the425

2D cell than it is to perform 3D experiments where the gravitational field is changed and426

the wetting properties are kept fixed. To check the consistency between the predicted427

3D relation from Eq. (22) and the experiments, the proposed prediction was compared428

with measurements conducted by (Nouri et al., 2014). Here saturation and pressure was429

measured using an hanging column apparatus for four different soil types. Namely per-430

sian gulf sand (PGS), sandy loam (SL), silty clay (SiC) and silty loam (SiL). For every431

soil type drainage experiments were performed for four different wetting phases Fig. 10.432

We determined the final volumetric content of each wetting fluid as function of the soil433

texture by digitizing the presented data and extracting the resulting final air saturation.434

We note that the displacement of petroleum by air was extremely low and resulted in435

very small saturation variations even by applying very high capillary pressure values. The436

reason for this abnormal behavior is not yet known; we therefore used only the well doc-437

umented experimental data obtained for kerosene, diesel, water and gasoline. The Bond438

number was calculated for each fluid pair and soil type, using the given surface tension439

for each of the four wetting fluids and the density contrast between the wetting fluid and440

air, the mean grain size diameter (d50) as the typical pore size, and setting α = π/2.441

The experimental data from (Nouri et al., 2014) were then analyzed for each soil type442

separately as shown in Figure 10. This is justified by the large degree of non-uniformity443

of the different grain-size distributions. The only uniform porous medium is that of the444

Persian Gulf Sand whose linear trend gives a slope which is the closest to the theoret-445

ical one (0.23).446

As the process relies on disorder in thresholds a large dispersion from experiment447

to experiment is expected. Further the capillary number is assumed to be negligible in448

the derived relation. In these experiments, this approximation is not necessarily per-449

fectly valid. In addition, the wetting angle is probably different between fluid pairs. Fur-450

thermore the finite size of the sample will influence the final saturation (Moura et al.,451

2015).452
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Eventually, the general Eq. (21) also holds in one dimension (1D), which is an aca-453

demically trivial case. Indeed, in this case, all pores are along a single line, and are in-454

vaded one after the other from the top. Hence, the final saturation is 1. In such case,455

D = 1, and since all cells are occupied behind the front (composed of one pore), the456

fractal dimension of the invaded cluster is also Dc = 1. In this case, ν = 1 (Stauffer457

& Jayaprakash, 1978) and Eq. (21) predicts SFnw = 1 independently of Bo, which is in458

agreement with the fact that all cells along the linear network are eventually occupied459

with the invader, i.e. that indeed SFnw = 1.460

6.2 Average capillary pressure461

Here, we have considered the capillary pressure as determined experimentally, be-462

tween the outlet at the wetting fluid and the inlet pressure in the nonwetting one. By463

contrast, in theoretical or numerical studies, the pressure saturation relationships is of-464

ten defined as the difference between the average pressure in one fluid at the REV scale,465

and the average pressure in the other fluid at the same scale (Reeves & Celia, 1996; Has-466

sanizadeh et al., 2002; Hassanizadeh & Gray, 1990, 1993a, 1993b). This quantity can also467

be approximated for the current simulations and experiments, in order to use in simu-468

lations the quantities determined experimentally. Since the variation of the pressure un-469

der the approximately horizontal interface is hydrostatic, from Eq. (8) and Eq. (14) the470

pressure difference at distance z′ from the bottom is thus471

P (z′) = Poutlet−∆ρg(sinα)z′ = Pa−∆P −∆ρg(sinα)z′ = Pa−f−1(pc)+∆ρg(sinα)(l−z′)
(23)

with ∆P = Pa − Poutlet, and l the front average position.472

Hence, averaging over the region of the defending fluid connected to the outlet, one473

can define the average wetting fluid pressure in this zone as P̄ , and the difference between474

the nonwetting fluid and fluid pressure ∆P̄ = Pa − P̄ , obtaining:475

P̄ =
1

l

∫ l

0

P (z′)dz′ = Pa−f−1(pc)+∆ρg(sinα)
l

2
= Pa−f−1(pc)+

a2LBo

2γ

(
1− Snw

SFnw

)
(24)

and476

∆P̄ = f−1(pc) +
a2LBo

2γ

(Snw
SFnw

− 1
)

(25)

Eventually, another way to perform the space average of the pressure in both phases477

is to consider the whole space, including the trapped fluid region behind the front, and478

not only the connected fluid considered above. This alternative definition of average wet-479

ting fluid pressure can then be defined as P̄ ′ = 1
L

∫ L
0

∆P (z′)dz′. In order to evaluate480

this average, one can approximate the wetting fluid pressure in the trapped clusters above481

the front, in the zone where l < z′ < L, as the percolating pressure threshold, P (z′) =482

Pa − f−1(pc). Thus,483

P̄ ′ =
l

L
P̄ + (1− l

L
)(Pa − f−1(pc)) = Pa − f−1(pc) + ∆ρg(sinα)

l2

2L
(26)

and484

∆P̄ ′ = Pa − P̄ ′ = f−1(pc)−∆ρg(sinα)
l2

2L
= f−1(pc) +

a2LBo

2γ

(Snw
SFnw

− 1
)2

(27)

6.3 Dynamic effects485

Dynamic effects also affect the average pressure gradient, and the shape of the in-486

terface during drainage. In a situation similar to the one studied so far, i.e. with a low487
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viscous fluid invading the cell, so that viscosity destabilizes the front, and the lightest488

fluid entering on top of the densest fluid, so that gravity stabilizes the front, (Méheust489

et al., 2002) showed that the front root mean square width still follows the same scal-490

ing law, with a generalized Bond number Bo∗ = Bo − Ca. All the other arguments491

developed above are expected to hold. Since the results only depend on the average pres-492

sure gradient and the presence of the disorder, one thus expects that493

SFnw ∝ (Bo− Ca)[−ν/(ν+1)](Dc−D) , (28)

when Bo > Ca, i.e. when the situation is intrinsically stable. This is expected to hold494

both in 2D and 3D, replacing D by 2 or 3, and Dc and ν by their proper values for each495

dimension.496

In three dimensions, the Bond number is defined as Bo = ∆pgrav/∆pcap where497

∆pgrav is evaluated in the average flow direction, i.e. with v the average flow velocity,498

∆pgrav = ρ(g · v)/v, so that Bo = ρ(g · v)a/(vγ).499

Conversely, when Ca > Bo, the situation becomes instable, and the front splits500

in fingers that grow in a ballistic way. In such case, a scaling law can also be obtained501

between the residual saturation and the system size, as shown in (Løvoll et al., 2011).502

This study also proposed a relationship betwen pressure and saturation related to this503

instable situation.504

Eventually, the scaling law in Eq. (28) allows to propose a track for future appli-505

cations: since the residual saturation depends on the capillary number at which a drainage506

takes place, it can be used as a marker of the flux that took place during this drainage:507

measuring the residual saturation and knowing the Bond number (characterizing the fluid508

densities, surface tension and pore sizes), this equation allows to estimate Ca during the509

drainage. In situations where a drainage took place, this can give a precious estimator510

to evaluate the conditions at which the flow took place. We propose this as a perspec-511

tive of future research.512

Some limits of this estimation will naturally affect this estimator. Notably, in a few513

hours, film flow can lower further the residual saturation (as e.g. shown in (Moura et al.,514

2019)), and for longer times, transport of humidity by the gas phase (evaporation) (Or515

et al., 2013) will also affect it.516

6.4 General pressure-saturation law expected for drainage517

Combining Eqs. (13,28,19), one obtains a general approximate law for primary drainage,518

arising from the hydrostatic effects in the system, the fractal properties of the trapped519

clusters and of the invasion front, that can be represented by three linear branches: as520

displayed in Fig.11521

When ∆P < P tc − γL
a2 (Bo− Ca), there is no pore invaded and522

Stotnw ' 0 (29)

where P tc = f−1(pc) is the capillary pressure corresponding to capillary pressure thresh-523

old whose occupancy probability is equal to the percolation threshold for the porous me-524

dia network the entrance pressure525

When P tc − γL
a2 (Bo− Ca) < ∆P < P tc ,526

∆P = P tc +
γL

a2
(Bo− Ca)

( Stotnw
[Min(W,L, (Bo− Ca)−ν/(ν+1))](Dc−D)

− 1
)
, (30)

When ∆P > P tc , enventually,527

Snw = SFnw ' [Min(W,L,Bo−ν/(ν+1))](Dc−D) , (31)

–16–
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where ν and Dc are the critical percolation exponent and the capillary fingering dimen-528

sion for the spatial dimension D (3D or 2D).529

This behavior corresponds to the observed one in the experiments and simulations,530

in Figs. 4,5, and to the behavior studied in (Moura et al., 2015) in the case of Bo = 0, Ca =531

0.532

In addition, for a system with straight boundaries and exit filters, there is also a533

curvature at the beginning of the curve and at the end, related to the deformation of the534

invasion front from an initial straight shape to a shape characteristic of percolation in-535

vasion in a gradient close to the inlet, and conversely, from such shape to a straight shape536

against the semipermeable exit filters. Consequently, the entrance pressure, 2γ
Rmin

with537

R the minimum curvature of the interface in the largest pore throat size, is always smaller538

that P tc . Such effects of curvature are nonetheless related to the initial and final imposed539

shape of the interface in tests, and should be absent in an open REV in an open system,with540

no imposed shape of the front at the entrance and exit of an REV.541

7 Conclusions542

Pressure-saturation relationships are essentialin soil science, hydrology and for other543

communities who model multi-phase flow in reservoirs and porous media using Darcy544

equations. To quantify pressure-saturation curves in the laboratory with the porous plate545

(or diaphragm) method, researchers generally use soil samples with a height of only sev-546

eral tens of centimetres. The obtained relationships are thus potentially strongly affected547

by the boundary effects introduced by the semi-permeable membrane, depending on the548

pore sizes (and on the Bond number associated to it. In our work, we highlight the in-549

fluence of gravity on the form of pressure-saturation curves during primary drainage. The550

overall pressure difference between the two fluids is therefore influenced by the hydro-551

static pressure difference across the wetting fluid phase. For a system unaffected by bound-552

ary effects is then specified by a characteristic capillary pressure that can be obtained553

from percolation threshold pc for the occupancy probability and the cumulative distri-554

bution of capillary pressure thresholds f as f−1(pc), a straight line with a slope given555

by γL/a2Bo and a final saturation, SFnw. We further show in this study that invasion556

percolation scheme generates pressure-saturation curves consistent with experimental mea-557

surements on a representative volume element (REV), for varying Bond numbers. By558

using a pore-scale description of the system under the influence of gravity, we are able559

to collapse the pressure-saturation curves onto a single mastercurve. Furthermore a func-560

tional dependency between the final saturation, the strength of the gravitational com-561

ponent (Bond number) the correlation length ν from percolation and the fractal dimen-562

sion of capillary fingering is obtained for 2D and 3D. For the 2D case we find a good fit563

with our experimental and numerical results. For the 3D relation we compared with ex-564

periments conducted by Nouri et al, which showed compatibility with the predicted re-565

lationship. Furthermore, knowing the final air saturation obtained from water retention566

curves, using the theoretical relation of Eq. (21), it is possible to predict the final non-567

wetting saturation when other wetting fluids than water are displaced by air during pri-568

mary gravity stabilized drainage. With these elements together, one predicts an approx-569

imate capillary pressure - saturation relation as function of dimension, Capillary and Bond570

number, and of the system dimension. Such prediction is done between the air pressure571

and wetting fluid pressure measured at the bottom. The theoretically corresponding dif-572

ference between the average pressures in both phases is also derived. Knowing the pore-573

size distribution and the characteristics of the fluid pair and the wetting properties of574

the system, our results gives a guideline for simulations and upscaling of the saturation575

from small to large scales.576
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Toussaint, R., Måløy, K., Méheust, Y., Løvoll, G., Jankov, M., Schäfer, G., &797
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Yang, Z., Méheust, Y., Neuweiler, I., Hu, R., Niemi, A., & Chen, Y.-F. (2019).816

Modeling immiscible two-phase flow in rough fractures from capillary to817

viscous fingering. Water Resources Research, 55 (3), 2033-2056. doi:818

10.1029/2018WR024045819

Zhang, Z., & Smith, J. E. (2001). The velocity of dnapl fingering in water-820

saturated porous media: laboratory experiments and a mobileimmobilezone821

model. Journal of Contaminant Hydrology , 49 (3), 335 - 353. Retrieved from822

http://www.sciencedirect.com/science/article/pii/S0169772201000973823

doi: https://doi.org/10.1016/S0169-7722(01)00097-3824

–22–



manuscript submitted to Water Resources Research

Z'

SFNW

S0NW

W

L

l

Figure 6. Schematics of of a fully saturated porous medium, which has been drained until the

average front position is in a distance l from the outlet.
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Université de Strasbourg, CNRS, LHyGeS UMR 7517, 67084 Strasbourg, France.

We experimentally study slow drainage in a quasi two-dimensional Hele-shaw cell. The setup
construction allows for tuning of the gravitational component. During experiments the pressure
in the fluid phase is measured coupled with optical monitoring. We show by correlating the two
measured quantities that the intermittent evolution of the pressure signal can be related to the
invasion of multiple pores in a burst like fashion. Furthermore we investigate the influence of gravity
on its statistics, the distribution of waiting times p(wt) and avalanche size p(s) is calculated from
the optical signal for five different inclinations and we find a linear relationship between the size of
the burst in the pressure signal and the volume invaded during invasion of multiple pores. Further
we are able to extract the average shape of the pressure variation around a burst and compare it to
theoretical considerations.

PACS numbers: 47.56.+r, 47.61.Jd, 05.40.-a

I. INTRODUCTION

Studies of fluid invasion, displacement of one fluid by
another one in a porous medium, has revealed a variety of
pattern-forming procesess [1–3] governed by the interplay
between viscous, capillary and gravitational forces. Pore-
scale studies have revealed a variety of phenomena and
mechanisms by which such systems evolve, and has shown
to exhibit complex behavior characterized by their rich
intermittent dynamics and their ability to exhibit long
ranging correlations. [4, 5]. Many systems respond to a
slowly changing external condition not in a smooth way
but in the terms of a series of discrete events or bursts
spanning a broad range of sizes [6]. Such avalanches are
observed for many different systems ranging from earth-
quakes [7] occuring when slowly moving tectonics plate
slide along each other, to the tearing of paper [8]. Other
examples is the motion of a front between two immiscible
fluids as it invades a porous medium [4, 9, 10].

Studies of drainage in the capillary regime, where
the fluid pressure difference between two fluids is
solely responsible for the displacement dynamics, have
displayed pressure evolution in terms of avalanches, also
referred to in the literature as Haines jumps[11–13].
Here the pressure signal is characterized by slow build

∗ auayaz@fys.uio.no

ups followed by drops in pressure. On a pore level this
slow build up corresponds to a slow deformation of the
interface between the two into the porous body. Once
the pressure difference between the two fluids along the
interface reaches critical capillary threshold value, the
interface becomes unstable, resulting in the invasion
of multiple pores, and as a result the invaded fluid is
redistributed along the interface. It is noteworthy that
even if the displacement dynamics is a highly non-local
mechanism, it is well modeled by invasion percolation
(IP), being a stochastic growth model [14].

The influence of gravity in such systems has shown
to lead to long range correlations along the interface
[3, 15], reducing the spread between the two phases, in
effect spatially limiting the front of the invading phase.
Moreover varying the effective gravity changes how much
and how the pore-space is explored by the fluid front.
This can be of importance for the burst dynamics as the
number of pores in which the interface is redistributed
is decreased with an increase in the effective gravity.

Målœy et al reported on experiments [13] with com-
plementary simulations where the bursty dynamics of
the displacement front was measured and successfully
modeled by a modified invasion percolation algorithm.
Here the notion of a capacative interface volume was
introduced, K = dV/dpcap, where V is the fluid typi-
cally displaced in a typical pore for a change in pressure
difference between the two fluids dpcap. Furthermore
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∆P = −∑
i Vi/(nfK). The total change in capillary

pressure ∆P is proportional to the sum over all the pore
volumes Vi invaded during a burst. Here nf is the length
of the interface perimeter, measured in number of pores.

We show in this study that the pressure signal obtained
during slow drainage, with its characteristic periods of
pressure build up followed by a sudden decompression,
can be optically related to the rapid invasion of multiple
pores in an avalanche behavior. We further investigate
how tuning of the gravitational component affects the
bursty behavior. Lastly we validate the use of linear re-
lationship between the total change in capillary pressure
and the displaced volume, and we are able to experi-
mentally determine a characteristic relaxation time for
a typical burst, and compare with theoretical considera-
tions.

II. EXPERIMENTAL METHOD

A. The setup

The porous network is constructed by pouring
poly-disperse glass beads 1.0mm < d < 1.2mmi n
size onto the sticky side of an adhesive contact paper,
the monolayer of beads is then clamped between two
Plexiglas plates, which is sealed off with a rectangular
layer of silicon glue. The Plexiglas plate has milled
inlet and outlet channels, allowing for injection and
withdrawal of the respective fluid phases. From below
a pressure cushion forces the porous structure to stay
confined. The dimensions of the rectangular system is:
Length L = 14.5cm, width W = 10cm and thickness
of d = 1mm. The porous medium is initially saturated
with a wetting fluid which is composed of 80% glycerol
and 20% water by weight, having a dynamic viscosity of
ν = 4.25 · 10−5m2/s, density of ρw = 1.205g/cm3 with
surface tension γ = 0.064N/m. The invading fluid used
is air and is withdrawn into the system through the
outlet channel by a syringe pump at a constant flow rate
of 0.004ml/min. The system is resting on a lightbox
which can be tilted by an angle α over the horizontal,
allowing for tuning of the gravitational component along
the average flow direction g sinα. Furthermore the 2D
porosity of the system was measured to be φ = 0.66
by performing an image analysis, projecting the beads
shape on a plane, and computing the fraction of the area
uncovered by this projection.

During the experiments the relative pressure differ-
ence between the non-wetting and wetting phase is
measured by a Honeywell 26PCAFG6G flow-through
pressure sensor connected to the model outlet, making
measurements every ∆t ≈ 0.2s.

The dynamical evolution of the displacement structure
is captured by images at fixed time lapse ≈ 10s with
a NIKON D7100 SLR camera, which is mounted per-
pendicularly to the model. An Aladdin AL-1600 syringe

FIG. 1. Schematics of the experimental setup. Two plexi-
glass plates are sandwiched between a monolayer of polydis-
perse glass-beads.

pump is used to provide constant flow rates, the fluid is
withdrawn from the system with a discharge rate of Q =
6.6 · 10−11m3/s.

III. RESULTS

A. Extracting the signals

From the image sequence captured during the exper-
iments, growth of displacement structure is extracted,
by performing image subtraction between sequential
images and thereafter thresholding (see Fig. 2). The
signal I(t) was retrieved, by summing over all pixels
corresponding to the newly invaded area and dividing by
the area corresponding to the average pore-size. A sub-
set of this signal is shown as the topmost graph in Fig. 3.

The pressure drop across the model is at any time
such that it maintains the constraint set by the flow
rate. Measured as the difference between the atmo-
spheric pressure patm and the pressure in the wetting
phase at the outlet p(t) = poutlet − patm. As we are
interested in studying the pressure drops related to the
invasion of multiple pores, the linear hydrostatic drift
pdrift(t) is subtracted from the pressure signal, giving
us pc(t) = p(t) − pdrift(t). In order to extract the cor-
responding rate of change in the pressure-measurements
the derivative ṗc is introduced. A one-to-one relation
is made by pairing the optical signal with the nearest
pressure measurement in time, giving an uncertainty in
synchronization of up to 0.2s. We further observe that
the derivative corresponds well with the optical signal.
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FIG. 2. The first two image shows the displacement caused by
a burst, here the lighter colored fluid(air) is seen to invade the
wetting fluid which is darker colored. The last image shows
the growth obtained by performing an image subtraction be-
tween the two gray-scale images.

B. Correlation

To measure the significant relationship between the
optical and pressure measurements, the correlation be-
tween the signal was calculated using the normalized
cross-correlation function CC(∆t) as defined below

CC(∆t) =
〈 (ṗc(t)− µṗc)(I(t+ ∆t)− µI)

σṗcσI

〉
t

(1)

where µI and µṗc are the averages, σI and σṗc the stan-
dard deviations of the respective signals.The result is
shown onFig. 4.

We first notice the maximum correlation to exist in
the absence of any phase shift between the signals ṗc(t)
and I(t). It has a negative sign as ṗc(t) is negative
during pressure drops, we find this zero-shift to be
CC(0) = −0.89 . We notice further that on Fig. 4 this
peak is followed by a positive correlation which peaks
close to 30 seconds, as the signal I(t) is strictly positive
this means that we have optical activity present in the
system while the pressure again starts to build up in the
wetting phase, this activity can be related to snap-off of
capillary bridges [16] or the possible gradual drainage
of pores through secondary drainage by filmflow. The
newly displaced pores take some time to reconfigure
their meniscii, which can also lead to activity.
The build up phase shows a gradual increase in corre-
lation with an average time of ∼ 100s, this increase in
correlation is related to the linear increase in pressure
up to threshold where the meniscii is deformed into the
porous structure. Next the average relaxation time after
a sudden burst is estimated to be around 200s, after
which the signals once again become uncorrelated, this
sets a time-scale for the secondary activity in terms of
snap-off and film-flow [16]
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FIG. 3. The topmost graph shows the amplitude of the in-
vaded area extracted from the images. the following two
graphs show the measured signal p(t) = poutlet − patm and
pc(t) = p(t) − pdrift(t) where the hydrostatic drift has been
subtracted from the signal. The bottom shows the derivative
ṗc(t) .

C. Statistics under the influence of gravity

Complex systems are characterized by their power-
law distributions over a broad range of scales in time
and space. The distribution of waiting times p(wt) and
avalanche size p(s) is calculated from the derivative ṗc(t)
for four different inclinations. We define the size of an
avalanche S as the integrated domain existing below a
defined clip level c, see Fig. 5, for an avalanche of du-
ration ∆t = t1 − t0 the size of the resulting avalanche

S =| pc(t1)− pc(t0) |=|
∫ t1
t0
ṗc(t)dt | gives us the pressure

drop over the integration domain.
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FIG. 5. a zoom of the signal ṗc(t), the avalanche size S is de-
termined as the integrated domian below a clip level, the wait-
ing time wt is defined as time between successive avalanches.

Futher we define the waiting time as the period be-
tween successive pore-invasion events. The avalanche size
p(s) is found to be well fitted to a power-law with an ex-
ponential cut-off

p(s) ∝ s−αes/s∗ (2)

with α ' 1.6 and s∗ ' 40Pa. For the waiting time
distribution p(wt) we expect similar to the avalanche size
distribution it to follow a power law with an exponential
cutoff. We found a scaling relation on the form p(wt) ∼
w−α
t e(wt/w

∗
t ) here the power law exponent was found to

be α = 1.65.
The presence of gravity sets up hydrostatic pressure

differences which suppress the maximum height differ-
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FIG. 6. Avalanche size distribution for different inclinations.
The datapoints are fitted with the function p(s) ∝ s−αe−s/s∗ ,
where α = 1.6 and s∗ = 40Pa.
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FIG. 7. Waiting time distribution for varying inclinations,
obtained from the pressure signal pc(t).

ence between two points along the front [15], acting as a
stabilizing force on the system. This leads to a reduction
of the interface perimeter between the fluid pair. Simi-
larly the presence of disorder acts as a destabilizing force
[3] acting on a smaller length and time scale. From p(s)
and p(wt) we observe the large waiting time where the in-
terface is pinned, and subsequent avalanches to occur for
the larger inclination. This can be understood as: When
the hydrostatic pressure differences along the front pores
increases the advantageous pores with positions closer to
the inlet get harder to invade, resulting in larger waiting
times. This longer build up is not seen to result in larger
avalanches.
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D. Relationship between the capillary pressure and
the total displaced area

As the constant withdrawal rate is much slower than
the local flux during a burst, the displaced wetting
phase must be reconfigured at the interface between the
fluids, causing the interface to quickly readjust to larger
radii of curvature. Hence the ability of the interface to
facilitate for the displaced volume, is what drives the
Haines jumps.
Furuberg et al. [17]. introduced the notion of a volume
capacitance, K = dV/dpcap, as the rate of change in
the average volume of wetting fluid received in a front
pore with the capillary pressure. It was assumed to
be constant for a given system. We evaluate their
assumption by measuring the relationship between the
capillary pressure drop and the displaced area. The
former is found by integrating the signal ṗc(t) over a
threshold. Similarly the displaced area is found by inte-
grating connected regions in its respective time series.
A linear relation between the two quantities is found as
displayed in Fig. 8. We notice the larger inclinations to
have tendency for a smaller spread compared to larger
inclinations.

The characteristic time scale Γ of a burst was pro-
posed roughly approximated as follows: The meniscus
positioned at the typically the largest possible distance
L from the region where the burst occurs will relax most
slowly, we estimate this distance to be the system width.
As the flow of fluid is driven by the pressure gradient of
the order pcap/L, the velocity close to the meniscus is
then given by Darcy’s law:

u =
κ0
µφ

pcap
L

(3)

where µ is the dynamic viscosity of the wetting phase,
φ the porosity and κ0 the permeability defined by the
Carman-Kozeny relation [18]:

κ0 =
a2

180

φ3

(1− φ)2
(4)

We require further that Eq.3 be equal to the backcon-
tracting meniscus velocity given by the capillary pressure
volume relation ∆V = K∆Pcap, for an approximated lin-
ear length traveled of ∆x = ∆V/a2, where a is the aver-
age pore-throat size. Setting the velocities equal to each
other gives.

dpcap
dt

=
−a2κ0pcap
µKLφ

(5)

This gives us a separable differential equation,
which has an exponential solution on the form,

pcap(t) = Ce−a
2κ0t/µLKφ, where C is an integration con-

stant. The expression gives us a characteristic relaxation
time Γ = (µLKφ)/κ0a

2. The value of K for an typical
pore was measured from the pressure-measurements and
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FIG. 8. We find there to be a linear relationship between the
size of the pressure drops Sp and its corresponding displaced
volume SI .

found to be K = 3.33 · 10−12m5/N , we notice that this
value is independent of gravity and the system size. As
the interface fluctuates close to its pore-throat during
invasion, a is approximated by the mean pore-throat
size. Inserting for the parameters in the expression for
Γ gives us a relaxation time of ≈ 3s.

The burst shape was experimentally obtained by
investigating independent bursts where the pumping
rate have been subtracted from the pressure signal as
displayed in Fig. 9, for the horizontal case where gravity
does not influence the system. The bursts are well
fitted to an exponential relaxation with a characteristic
relaxation time, measured to be Γ ≈ 8s.

IV. CONCLUSION

We study experimentally burst dynamics during
drainage in a gravity stabilized setting, in a quasi two-
dimensional confinement, where the viscous forces are
negligible for the displacement. We are able to corre-
late pressure and optical signal, and obtained an average
build-up and relaxation time for the bursts. Furthermore
a linear relationship between the total pressure drop and
the volume being displaced during a burst is obtained.
Lastly we find the individual bursts to be well fitted to
an exponentially decaying function, in agreement with
theoretical considerations.
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Snap-off displacement during slow drainage

Monem Ayaz∗

Institut de Physique du Globe de Strasbourg, University of Strasbourg, France.
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We investigate the connectivity of the secondary flow networks that emerge during slow drainage
of a two-dimensional synthetic porous medium. Our experimental setup allows to vary the effective
gravity imposed on the system. Optical monitoring of the invasion process allows us to identify
capillary bridges and map their connectivity. Furthermore a novel algorithm was designed to detect
their rupture. Occurrences of snap-off are dynamically measured in the reference frame of the
displacement front and its statistical distribution measured. Moreover the connectivity problem is
translated to a graph object.

PACS numbers: 47.56.+r, 47.61.Jd, 05.40.-a

I. INTRODUCTION

The study of displacement of one fluid by another in a
porous confinement is a well studied problem, both from
a fundamental and an applied perspective. An increased
understanding of these processes are of interest in hydrol-
ogy and soil-sciences [1]. From an applied perspective
an increased understanding can be of importance for the
control of migration of pollutants through ground water
aquifers and CO2 sequestration in reservoir rock.

The pioneering work of Lenormand et al. [2], made
use of a single layered transparent etched porous net-
work to conduct displacement experiments with immis-
cible fluid phases. Here the gravitational and viscous
forces were well controlled parameters. This quasi two di-
mensional(2D) confinement has been well explored in the
wake of their work [3–5]. Fluid displacement in porous
network has been observed to occur by two main mecha-
nisms: Either as pore-filling displacement where the ad-
vancement occurs when the threshold pressure for the
pore-throat and its adjacent pore is met, or as secondary
displacement that does not modify the structure of the
bulk pores being invaded. Among this, displacement by
snap-off occurs along sets of film and bridges of wetting
fluid, when pore-filling type motion is not possible due
to topological reasons. [2]

Much emphasis has been on the characterization and
understanding of the displacement structure [6] that arise

∗ auayaz@fys.uio.no

from varying flow conditions and its dependence on the
fluid pair, geometrical properties of the confining porous
body and the flow rate with which the system is driven
[7]. The structures obtained have been categorized in a
phase diagram[8] consisting of three flow regimes namely;
Viscous fingering [3, 5], stable displacement and capillary
fingering [9]

The many islands of wetting fluid left behind by the
displacement front are characteristic of the displacement
structure that arise from slow drainage. This effect is
especially prominent for 2D, and of less importance for
3D systems. A recent study by Moura et al. revealed
how a series of connected capillary bridges formed by
thin films can conduct wetting fluid from a seemingly
entrapped fluid back to the bulk on the system scale
[10]. An increased understanding of these pathways and
the mechanism by which they rupture is important for
understanding and ultimately controlling entrapment in
porous media.

The use of graph theory to study complex networks
have received a lot of attention. It allows to study the
connection topology in various topics ranging from the
internet[11] to fracture networks [12–14]. Properties and
behaviors of complex systems has uncovered surprising
resemblance among the topology of various systems.
For instance, a particular set of networks are said to
be scale-free, meaning that the probability that a node
of a network has k connections follows a scale-free
distribution P (k) ∼ k−γ with the exponent γ. The
characteristic feature of such graphs is the presence of
nodes with very large number of connections compared
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to the average.
We will in this paper study the distribution of snap-off
events in time and space, and utilize network theory
to calculate measures in order to characterize the net-
work emerging from secondary migration of wetting fluid.

II. EXPERIMENTAL SETUP

The porous network is constructed by pouring spher-
ical glass beads, 1mm in size onto the sticky side of
an adhesive contact paper, the monolayer of beads is
then clamped between two Plexiglas plates, with milled
inlet and outlet channels, allowing for injection and
withdrawal of the respective fluid phases. The distance L
between the two channels is 14.5 cm, while the width W
of the model is 11.5 cm. From below a pressure cushion
pressurized by 3 meter water column forces the beads to
stay confined. The porous medium is initially saturated
with a wetting fluid which is composed of 80% glycerol
and 20% water by weight, having a kinematic viscosity
of ν = 4.25 ·10−5m2/s, density of ρw = 1.205g/cm3 with
surface tension γ = 6.4 · 10−2Nm−1. The saturating
fluid is withdrawn from the outlet channel by a syringe
pump providing constant flow rates. The system is
resting on a lightbox which can be tilted allowing for the
tuning of the gravitational component g sin θ. Fig.1

At the outlet boundary, there exists a sponge per-
mitting the continuation of pores to be invaded once the
system has reached break-through. Final saturation of
the non-wetting phase is achieved once all the pores bor-
dering the sponge has been invaded. Optical monitoring
of the invasion process is made with a NIKON D7100
SLR camera and a 20mm focal objective, capturing
images with the time resolution ∆t = 10s. The images
have a spatial resolution of 30 pix per pore.

A. Identifying capillary bridges and their ruptures

We define a capillary bridge to be a trapped film of
fluid stuck between two glass beads, which is not avail-
able for invasion by regular pore-filling mechanism where
the threshold pressure associated to the pore throat size
can be overcome. Instead, the observed mechanism of
removal of this bridge is thrgough an unstable rupturing
event, also referred to as snap-off [2].

Our routine for identifying capillary bridges is based
on firstly pinpointing all the pore-throats in the sys-
tem. This is achieved by Delaunay triangulating over
the porous network, with the centroids of the glass beads
as vertices. Hence, acquiring the set of corresponding
triangulated edges is equivalent to finding all the pore-
throat sizes in the system. We define the position of the
pore-throat as the midpoint of the respective edge Fig.2.

FIG. 1. Schematics of the experimental setup. Two plexi-
glass plates are sandwiched between a monolayer of polydis-
perse glass-beads.

For every time-step, the midpoint of the pore-throats
is assessed, by evaluating its gray-scale value. The two
phases are clearly distinguishable as the wetting phase
is dyed with nigrosin. By applying a mask over all the
trapped clusters of wetting fluid. The pore-throats are
found to be in one of three possible scenarios: 1) The
entry pressure to the adjacent pore has been overcome in
which case the pore-throat is invaded 2)The pore-throat
can be situated in one of the trapped clusters or the bulk.
3) Lastly the pore-throat can be a capillary bridge, in
which case the pore on both sides have been invaded by
alternative invasion paths. Fig.2 shows the implementa-
tion of our technique, the green dot marks the midpoint
of the capillary bridges and the striped blue line the edge
along the pore-throat with which it lies.

III. RESULTS

Drainage experiments were performed at low with-
drawal rate of 0.02 ml/min under the influence of gravity
in the capillary regime. Here the lighter non wetting
fluid (air) invades the saturated cell from the top. This
leads to a gravity stabilized configuration [4, 15]. As the
invading front propagates through the system it sheds be-
hind residual wetting fluid, in terms of clusters spanning
multiple pores and capillary bridges. During the exper-
iments pore-invasion caused by the possible continuous
flow along the edges of the system or the confining plate
was not detected on the time scale of the experiment.
This was checked by conducting an experiment where
the system was left to run for a much longer times. No
pore-invasion caused by the above mentioned effects were
observed.
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FIG. 2. Image crop, the bead centers are represented by red
dots, green dots represents the center of the capillary bridges.
Dashed blue grid represents the Delaunay triangulation, by
which the capillary bridges are identified.

A. Snap-off

Once the capillary bridges have been identified, snap-
off events can easily be detected, this is achieved by
dynamically checking for sudden changes in grayscale
value above some threshold on the pixels related to pore-
throats which are identified to be capillary bridges. This
analysis is performed for varying inclinations ranging
from [0, 60

◦
] as shown in Fig 3. Here we plot the normal-

ized probability distribution of snap-of events occurring
in the reference frame of the mean front position z − z̄,
where z is the upwards coordinate along the cell start-
ing from the cell bottom and z̄ defines the average front
position.

The front is defined as the set of pores bordering the
largest cluster (i.e the bulk) of the wetting phase at any
time. The algorithm was implemented once the front
was well defined and terminated once it reached break-
through to avoid any finite-size effects. We notice that
most of the activity occurs close to the mean front po-
sition (z − z̄) = 0. Secondly we notice that an increas-
ing inclination, leads to a flatter front[15], restricting the
area where events typically occur. The front width and
activity area behave in a coupled manner in space. In
the inset figure We rescale the obtained distributions
with the front width, which is predicted by IP to be
σ ∼ Bo−ν/1+ν . [1, 4, 15] Here ν is a critical exponent of
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FIG. 3. Snap-off distribution position. In the mean interface
position z − z̄. The inset shows the rescaled probability dis-
tribution function(pdf) with the predicted front width σ from
percolation theory.

the correlation length, having the value 4/3 for two di-
mensions. Bo is the Bond number defined to be the typ-
ical ratio of gravitational and capillary forces over pore
∆ρga2/γ. where ∆ρ is the density contrast between the
two fluids, a is the typical pore size, γ is the surface ten-
sion between the two fluids and g sin θ is the gravitational
term parallel to the average flow direction. In effect giv-
ing the strength of the gravitational field on the porous
body.

B. Gravitational dependence

Increasing the gravitational component, sets up sta-
bilizing hydrostatic pressure differences along the front.
Hence tuning this parameter in effect changes how much
and the sequence by which the pore-space is explored by
the invading fluid [15]. In Fig.4 the effect of gravity on
the length of capillary bridges once the experiment has
been terminated is probed. We see that the number of
pores invaded are inconsequential for the shape of the
distribution, which is well fitted by Gaussian of the form

p(l) ∝ e(l−µ)2/2σ2

, where µ = 0.29mm and σ = 0.05mm.
The inset figure shows the distribution of capillary
bridges that end up snapping off with fit parameters for
a Gaussian; µ = 0.36mm and σ = 0.08mm. This shift
between the two bell curves indicates that the larger
capillary bridges on average are more unstable, and
hence rupture.

We define objects composed of capillary-pathways
and trapped cluster which are connected by fluid paths,
these structures are seen to branch out in space, the
question of directional growth with respect to gravity
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FIG. 4. Distribution p(l) of the capillary bridges of length l in
the system once the system has reached break-through, fitted
together with a Gaussian. also displayed is the distribution
p(s), which are the bridges that end up rupturing, we see that
only small portion of bridges snap-off. The inset figure shows
the distribution p(s)

is studied. Such objects can be characterized by their
extension in the lx direction transverse to the flow direc-
tion and lz parallel to the flow direction. To study this
we utilize a bounding box which is the smallest rectangle
that encloses the subgraph as displayed in Fig.5. The
distribution for the two respective spatial direction are
displayed in Fig. 6 which lie ontop of each other. We
observe that there is no noticeable asymmetry in the
elongations of the subset of the graph. For capillary
network consisting of more than one capillary bridge
we observe the distribution to be power law distributed
P (lx,z) ∼ X−α, with α = 2.1. For extensions smaller
than 1mm we observe the distribution to display a dip,
which corresponds to the projection of single segments
in all direction with no marked preferential direction.

C. Waiting-time distribution

The waiting time distribution between snap-off events
is calculated to probe the system for temporal correla-
tions. We observe in Fig.7 the function to have a power-
law like behavior T−αw over the short time region with an
exponent of α = 1.7 . If the generation of snap-off events
are uncorrelated the waiting times between consecutive
events are expected to obey a exponential distribution.
Such a power-law distribution indicate the presence of
temporal memory. [16]

FIG. 5. The blue rectangle shows the use of a bounding box
to enclose one of the disconnected subset of the graph.The
tran

D. Network Characterization

Networks are an excellent framework to study complex
systems. Hence we transform the set of connected capil-
lary bridges and trapped islands into a graph object. We
connect pathways of liquid bridges to trapped islands
by a node positioned at its center of mass. Each edge
corresponds to the length of a capillary bridge or the
distance to its neighboring island of defending fluid.
These objects gives us the topology of trapped fluid,
as shown in Fig.11. Different colors here represent
disconnected subsets of the graph. We observe there to
be some vertices with a high node degree k, defined as
the number of edges incident to a given vertex. These
nodes are observed to be the centers of the trapped
islands. We also measure the average node degree
〈k〉 in the system together with the maximum node
degree kmax ,as displayed in Tab.10. We observe these
two quantities to not systematically change with an
increasing inclination imposed on the system. The size
of the clusters defined in terms of the number of nodes
are displayed in Fig. 8.

In order to characterize our transformed system we
measure typical measures related to networks. The
clustering coefficient Cν is a measure of the local
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FIG. 6. The spatial extent of the disconnected subsets of
the graph was measured both in the direction along the flow
direction lz and transverse to the flow lx, their distribution
are found to be lying on-top of each other.
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FIG. 7. Waiting-time distribution for successive snap-off
events. The solid line has the slope of α = 1.7

connectivity for a given node i, with node degree kı and
ti number of links between neighbors of node i, see Fig. 9.

〈C〉 =
1

N

∑

ν∈G
Cν =

1

N

N∑

i

2ti
ki(ki − 1)

(1)

Here N is the number of nodes in the graph G. The
resulting clustering coefficient is displayed in Table.10.
By construction the clustering coefficent is Ci = 0 if
none of the neighbors of node i are connected, and
Ci = 1 if all of the neighbors are connected. We can find
the global clustering coefficient 〈C〉 by averaging over
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FIG. 8. The cumulative node-size distribution for the discon-
nected graph subsets.

i

FIG. 9. Here the node i (black node) is connected to its
three neighboring nodes, giving it a degree value of ki = 3,
further, among the neighboring nodes there is one connection
indicated by the red edge, giving ti = 1

the local coefficients. The obtained values are found
to rather low, reflecting the fact that fluid pathways
created during drainage dont have many alternative
paths, making the network prone to network attacks in
terms of snap-offs.

Efficiency, E is a measure of the range connectiv-
ity of a network. [17] defined the efficency of the path
between two vertices as the inverse of their distance
measured from the graph topology, such that if there is
no path connecting i and j, then d(i, j) = ∞. In effect
making this measure well suited for graphs which are
not fully connected. Given all possible paths between
nodes i and j the shortest path, dij , is found based on
the smallest number of edges traversed. The efficiency
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θ Nodes clustering (Ci) kmax 〈k〉 Efficiency (E)

15 4011 0.0023 17 1.68 0.0013
30 4240 0.0021 18 1.69 0.0013
45 4246 0.0023 16 1.65 0.0011
60 4630 0.0031 17 1.68 0.0010

FIG. 10. The table shows the calculated measures for the
graphs obtained for different inclinations. kmax is the node
with the highest degree in the graph, similarly 〈k〉 gives the
mean degree in the system.

FIG. 11. The graph shows the translated problem of fluid
connectivity once the system is fully drained the. The dif-
ferent colors represent disconnected subsets.The network is
obtained for an inclination of 60◦

can then be defined as [17]

E =
1

N(N − 1)

∑

i,j

1

di,j
(2)

We observe the total number of nodes in the system
to increase as the effective gravity increases. This
can be understood as; Gravity stabilization forces the
front-width to become more spatially limited, which
in return reduces the size of the trapped clusters. As
more of the pore-space is displaced the trapped clusters
shrink in size replacing the area of defending fluid with

FIG. 12. The graph shows the translated problem of fluid
connectivity once the system is fully drained the. The dif-
ferent colors represent disconnected subsets.The network is
obtained for an inclination of 45◦

area where capillary bridges can be formed. What is
less expected is the maximum node degree and the
average degree remains more or less constant. One
would perhaps expect more trapped area to correspond
to more connectivity in term of pathways formed by
capillary bridges.

IV. CONCLUDING REMARKS

In this study we have examined the pore-scale mecha-
nism of snap-off. We calculated the snap-off distribution
in the reference frame of the mean front position z̄. We
find it to scale with the front width σ = Bo−0.57 ,depen-
dency given by percolation theory. We find the mean life
time of capillary bridges that snap-off to be very small
compared to the time scale of the experiments. We have
further looked at the branching of capillary bridges in
the graph framework. This has been used characterize
the system by calculating associated measures.
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FIG. 13. The graph shows the translated problem of fluid
connectivity once the system is fully drained the. The dif-
ferent colors represent disconnected subsets.The network is
obtained for an inclination of 30◦
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Guillaume Dumazer,1 Bjørnar Sandnes,2,* Monem Ayaz,1 Knut Jørgen Måløy,1 and Eirik Grude Flekkøy1
1Department of Physics, University of Oslo, P.O. Box 1048 Blindern Oslo, Norway

2College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom
(Received 10 March 2016; published 7 July 2016)

We study experimentally the flow and patterning of a granular suspension displaced by air inside a
narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube
due to friction with the confining walls. The gas percolates through the static plug once the gas pressure
exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is
reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail
of plugs in its wake. Further, we show that the system undergoes a fluidization transition—and complete
evacuation of the granular suspension—when the liquid withdrawal rate increases beyond a critical value.
An analytical model of the stability condition for the granular accumulation predicts the flow regime.

DOI: 10.1103/PhysRevLett.117.028002

Complex multiphase flows in channels and tubes occur
in a range of geophysical, biological, and engineered
processes. Examples include transport of blood cells
suspended in plasma through the cardiovascular network
[1,2], conveying of powders and granular materials in civil
and chemical engineering [3,4], and transport of oil, gas,
and sand through sub-sea pipelines [5]. Even the simple
case of two-phase air and water flow through tubes and
capillaries displays complex flow behavior, with commonly
observed transitions between stratified, bubbly, slug, and
annular flow depending on the flow rates of the respective
phases [6–8]. Hydraulic and pneumatic conveying of
particulates and granular materials similarly show a range
of flow regimes ranging from bed load, to slug flow, and
dilute flow depending on granular loading and fluid flow
rate [3,9–13].
The flow of dense granular suspensions has proved

challenging to characterize due in part to the frictional
contact interactions between grains, and between grains and
the confining boundaries. Examples of complex flow behav-
ior associated with frictional fluid dynamics include shear
thinning, shear thickening, shear banding, plug growth, and
normal stresses [14–18]. Several factors need to be taken into
account in order to describe the rheology of dense granular
suspensions corresponding to vanishing values for viscous
and inertial numbers [16,19]. The extended contact time
between particles introduces Coulomb friction as a domi-
nating dissipation mechanism [15,17]. Gravity has been
shown to play an important part in inducing granular contact
dynamics below close packing densities, leading to system
spanning contact networks and yield stresses [14].
Discontinuous shear thickening (DST), where increased

shear rate causes a sudden jump in the stress producing
solidlike behavior is a striking example of complex fric-
tional fluid dynamics. Recent studies have pointed to both
frictional contact dynamics as well as dilation and confine-
ment as the dominating mechanisms for DST [17,18,20].

Dilation is the expansion of the granular packing due to
shear, which, when confined by system boundaries, causes
additional normal stress and friction.
The role of the confining geometry is therefore of

fundamental importance in governing the frictional fluid
flow behavior at the point where system-spanning contact
networks emerge. These grain-grain contact networks
mediate imposed stresses through force chains within the
packing [20,21], amplifying the stresses on the boundaries,
leading to nonlinear frictional responses [22,23]. The flow
dynamics of granular particles approaching the jamming
transition can be described by nonlocal rheological effects
in part due to the confinement [24,25]. In experimental
systems, the boundaries are often the confining plates of a
rheometer or a flow cell, or the solid walls of a tube. Note,
however, that in the case of multiphase flows, the meniscus
between immiscible fluids constitutes another type of
system boundary. Here the capillary forces acting at the
fluid-fluid-grain contact lines impose confining stresses on
the granular phase [26].
It is therefore perhaps not surprising to find that

multiphase granular or frictional flow in confined geom-
etries are a rich source of spectacular flow instabilities and
pattern formation processes. For the case of granular
suspension flow in 2D Hele-Shaw geometries these include
viscous fingers in granular suspensions [27,28], labyrinths
and frictional fingers [26,29,30], stick-slip gas bubbles
[30–32], and gas driven fracturing in saturated granular
packings [28,30,33–38]. The complexity of flow behavior
stems from the variety of forces at play (pressure, viscous,
capillary, frictional, and gravitational) in addition to effects
associated with the confining geometry and inherent
system disorder.
Here we focus on a simple model system of confined,

multiphase frictional flow: a 1.0 m long glass tube filled
with a mixture of glass beads and water, where the tube
diameter (D ¼ 2.0 mm) is close to the capillary length of
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the liquid. The granular material settles out of suspension,
and the gas invasion dynamic is governed in part by the
Coulomb friction associated with granular accumulation
fronts ahead of the meniscus [23,29]. We show that
capillary and frictional forces combine to produce a
characteristic flow pattern whereby plugs of grains are
shed by the moving interface, and that the system under-
goes a transition from frictional to viscous flow as the flow
rate increases.
Figure 1(a) illustrates the experiment: A syringe pump

withdraws water at a controlled flow rate I0 from one end of
the horizontal tube, driving invasion of air at atmospheric
pressure from the opposite open end. The glass beads form
a uniform sedimented layer along the tube with well-
defined granular filling fraction φ ¼ ϕ0=ϕc, where ϕ0 is the
volume fraction of grains in the grain-water mixture, and ϕc
corresponds to random close packing in the sedimented
layer. φ thus corresponds to the fraction of the tube cross-
sectional area taken up by the layer of grains [Fig. 1(b)].
The experiment is imaged against a LED screen, and
variations in illumination intensity are corrected by sub-
tracting a reference image. Figure 1(c) shows a close-up of
a granular accumulation front, and Fig. 1(d) shows an
example of the trail of granular plugs left behind the
invading meniscus after the tube is fully drained. Images
are thresholded to isolate the granular fraction, and the
filling fraction is measured by a normalized variable sðx; tÞ
such that s ¼ 1 and 0 for a fully packed and empty tube,
respectively, and sðx; t ¼ 0Þ ¼ s0 corresponds to the initial
filling height.
The spatial structure obtained is analyzed with the power

spectral density of sðxÞ; see Fig. 1(e). The power spectrum
maximum gives a scale λ0 ≃ 11.5 mm, and corresponds to

the averaged spatial period hLplug þ Lgapi of one plug and
one gap. The average plug size measured after smoothing
the function sðxÞ gives hLplugi ≈ 5.9 mm which is consis-
tent with the maximum λ0 ≈ 2hLplugi corresponding to an
initial filling fraction φ ≈ 0.5.
At a slow withdrawal rate, the viscous pressure drop

along the tube is small, such that the pressure imposed by
the pump is mainly balanced by the capillary pressure at the
gas-liquid-grain interface. As the invading meniscus meets
the granular bed, capillary forces act to sweep the grains
along, and an accumulation front develops ahead of the
interface as seen in Fig. 1(c). Inside the front, stress is
transferred through grain-grain contacts, and a portion of
the horizontally imposed stress is redirected towards the
confining boundaries of the tube. We adopt a Janssen stress
distribution model where the redirected stress σr is propor-
tional to the applied horizontal stress σh, σr ¼ Kσh, where
K is the Janssen coefficient [22,23,29]. The gas pressure P
required to move the accumulation front increases expo-
nentially with the front length L:

P ≈ σ0ðφ; μ; KÞ expð4μKL=DÞ; ð1Þ

where μ is the static friction coefficient and the prefactor σ0
is a function of filling fraction and the frictional properties
of the granular material [23,29,39].
Figure 2(a) shows close-up images at different stages of

formation of a single plug, with Fig. 2(b) representing a
spatiotemporal diagram of the filling fraction parameter
sðx; tÞ, where time develops from top to bottom. The
unperturbed initial sedimented state corresponds to inter-
mediate values of s (gray, upper left). The bright area
illustrates the motion of the accumulation front, and the
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FIG. 1. (a) Schematic of the experimental setup. A syringe pump withdraws water at constant rate I0 from a horizontal glass tube
initially filled with a mixture of water and sedimented grains. Liquid pressure is measured at the tube outlet. (b) Schematic of the tube’s
intial cross section, and (c) close-up of accumulation front shortly after start of withdrawal. (d) Granular plugs obtained after drainage at
low withdrawal rate (top), same picture after thresholding showing granular matter in white (middle), and normalized filling fraction
parameter sðxÞ estimating the density of granular matter from the thresholded picture (bottom). (e) Spatial power spectral density
obtained for the signal sðxÞ as a function of the inverse spatial frequency λ.(I0 ¼ 0.1 mL · min−1, φ ≈ 0.5, d ¼ ½150–200� μm).
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plug formation corresponds to the appearance of a vertical,
static column flanked by dark zones corresponding to
empty tube sections. The system cycles through repeated
plug forming events where the moving interface sheds a
series of plugs separated by gaps as illustrated in the full
spatiotemporal diagram in Fig. 2(c). The interface travels
from right to left, and the diagonal outlines the progression
of the interface whose speed is given by the slopeΔX=Δt ∝
½4=ðπD2Þ�ΔV=Δt determined by the pumping rate
I0 ¼ ΔV=Δt, ΔV being the volume withdrawn from the
tube during the time interval Δt. The plugs form in an
intermittent, stick-slip fashion as evident from the sawtooth
pressure curve [Fig. 2(c)], indicating that the dynamics is
dominated by frictional interactions.
Figure 2(d) shows the pressure evolution during the

formation of the plug depicted in Fig. 2(a), with a
corresponding trajectory of pressure versus plug length
illustrated in Fig. 2(e). The period t1 to t4 corresponds to the
slow accumulation or compaction phase where the pressure
increases according to Eq. (1). As the accumulation front
grows to a critical length Lc, the gas pressure reaches the
capillary pore throat pressure, Ppore ∝ γ=d, and the menis-
cus begins to invade the pore space between the grains. γ is
the liquid-air interfacial tension, and we assume that typical
pore sizes are proportional to average bead diameter d. Air
percolates relatively quickly through the packing (t4 to t5),
giving rise to a Darcy flow of the displaced water. The flow
acts to destabilize the packing, and the plug splits, leaving
behind the percolated section as a static plug (t5).
The meniscus now moves quickly, driven by release of

elastic energy stored in the system due to the underpressure
in the liquid, and the fluidized granular front grows linearly

with decreasing pressure (t5 to t6). The decreasing slope
ΔP=ΔL is given by the system’s compressiblity,
βV0 ¼ −ΔV=ΔP, where V0 is the total system volume.
Together with the granular material mass balance as
sedimented grains accumulate onto the granular front,
ϕcΔL ¼ ϕ0ðΔLþ ΔXÞ, this gives

ΔP
ΔL

¼ −
πD2

4βV0

ϕc − ϕ0

ϕ0

: ð2Þ

The motion comes to a halt when the pressure is fully
relaxed, and a new cycle of pressure increase and slow
accumulation ensues.
Figure 3 illustrates the flow dynamics over 5 orders of

magnitude of the withdrawal rate I0. So far we have
considered the slow withdrawal regime where the dynamics
is governed by frictional forces (I0 ≤ 0.1 mL · min−1).
A transitional regime with larger granular fronts and
fewer plugs occurs as the withdrawing rate increases
(0.3 ≤ I0 ≤ 1 mL · min−1). The larger pumping rate
increases the viscous forces on the granular material.
The granular suspension forms a larger fluidized accumu-
lation front, and the shedding of plugs becomes irregular
and infrequent.
Increasing the pumping rate beyond I0 ≥ 3 mL · min−1

results in a suspended granular phase along the entire length
of the tube, and a full evacuation of the granular mixture with
no plug formation. The viscous forces dominate the transport
regime and no frictional grain-grain contacts have time to
form in the fluidized material. Propagating fluctuations of
the suspension density explain shades of light levels in the
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FIG. 2. Plug formation for I0 ¼ 0.3 mL · min−1, φ ¼ 0.5, and d ¼ ½200–300� μm. (a) Images and (b) spatiotemporal diagram sðx; tÞ
of the formation of a single plug: slow compaction (t1–t4); rapid air percolation with plug splitting (t4–t5); viscous slip (t5–t6); and the
next slow compaction (t > t6). (c) A full sðx; tÞ diagram over several plug formation cycles with corresponding measured liquid
pressure. The pressure increases gradually during the slow compaction phase, then drops rapidly during the slip phase. (d) and
(e) Pressure as a function of time and plug length, respectively, for a single plug formation corresponding to (a) and (b). Conceptual
trajectory according to Eqs. (1) and (2) (dotted line) plotted together with measured pressure and front length (red line, data markers).

PRL 117, 028002 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
8 JULY 2016

028002-3



fluidized granular material that can be observed in the
sðx; tÞ diagrams for I0 ≥ 3 mL · min−1.
A stability condition for a granular front of plug length

Lplug can be derived considering a balance between the
competing frictional and viscous forces, where the tran-
sition from frictional to viscous dynamics upon increased
I0 occurs once the viscous drag exceeds the frictional
resistance that must be overcome to move the plug.
The fluid pressure due to Darcy flow is

δPvisc ¼
η

k
4I0
πD2

Lplug; ð3Þ

where η is the liquid viscosity and the permeability k can be
related to average grain size using the Kozeny-Carman
equation, k ¼ ðd2=180Þð1 − ϕcÞ3=ϕ2

c.
The gravitationally induced frictional stress associated

with an accumulation front of length Lplug is given by
Eq. (1). The prefactor σ0 can be expressed as

σ0 ¼ DϕcΔρg
�
ð1þ cos2θφ2Þ μ

tan θ
þ 1

4K

�
; ð4Þ

where we have used the expression derived in Ref. [23]
adapted for cylindrical confinement [39]. The frictional
stress is an increasing function of the filling fraction φ and
granular friction μ, θ being the angle of repose, and Δρ the
density contrast between grains and liquid.
Plug formation is prevented when fluid forces exceed

frictional stress in the plugs. We define a dimensionless
number as the ratio between viscous and frictional forces:
N ¼ δPvisc=δPfric such that N ¼ 1 marks the transition
between plug formation and a fluidized packing.
Rearranging Eqs. (1), (3), and (4), we get the following
transition flow rate:

I0;N¼1 ¼
kπD2

4ηLplug
σ0 expð4μKL=DÞ; ð5Þ

where the permeability k ∝ d2.
The explorationof pumping rates I0∈½0.01–30�mL·min−1

and bead sizes d ∈ ½50 − 300� μm, shows a frictional
regime at low pumping rates and large bead sizes, and a

viscous regime at large pumping rates and small bead sizes
as shown in the phase diagram in Fig. 4. The transition flow
rate I0;N¼1 (5) is plotted together with the experimental
results (blue dashed line). The model matches the data well
considering the simplistic assumptions. The model assumes
maximum friction in jammed plugs, which can be consid-
ered as an upper limit, and explains the higher transitional
flow rates predicted than observed experimentally.
In conclusion, we have demonstrated that three-phase

gas-liquid-grain flow in narrow tubes produce complex
flow patterns due to the interaction between capillary,
frictional, and viscous forces. The formation of granular
plugs at low flow rate is governed by frictional stress
associated with grain-grain and grain-tube contacts. The
plug formation cycles through three stages: slow compac-
tion, pore invasion, and viscous slip. Increasing the flow
rate results in viscous forces fluidizing the packing, and a
transition to suspension flow is observed. Reducing the

 0.01  0.1  1  10  100

I0 (mL·min-1)
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FIG. 3. Spatiotemporal sðx; tÞ diagrams obtained for different withdrawal rates I0 ∈ ½0.01; 30� mL · min−1. (Grain size d ¼
½75; 100� μm and φ¼0.50�0.05 for all experiments). The diagrams feature reduced units x=Ltube and t=τ with τ¼LtubeπD2=ð4I0Þ,
and display a tenth of the tube’s length, Ltube=10, i.e., a total recording time τ=10, so that enough details are captured. At
I0 ¼ 0.01 mL · min−1 the recording time was limited to 0.065τ. The dashed lines demarcate the boundaries between frictional,
transitional, and viscous flow regimes.
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FIG. 4. Phase diagram of I0 plotted against d2 featuring the
different granular transport regimes observed: Viscous suspen-
sion flow (solid squares), frictional plug formation (solid circles),
and a transitional regime (open circles). Glass beads were sieved
to the following size ranges: [53–75], [75–100], [100–150],
[150–200], and ½200–300� μm, with pumping rates ranging from
0.01–30 mL · min−1. Encircled markers correspond to observa-
tions in Fig. 3. The blue dashed line represents the theoretical
transition flow rate I0;N¼1 [Eq. (5)] where we have used Lplug ¼
5.9 mm [Fig. 1(e)], μ ¼ 0.47 [29], K ¼ 0.6 [23], θ ¼ 25°,
ϕc ¼ 0.6, Δρ ¼ 1.463 × 103 kgm−3.
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grain size leads to lower permeability and increased
fluid pressure on the grains, thus lowering the flow rates
required to bring on the transition from frictional to viscous
dynamics.
Our results provide new insight into how frictional

interactions and competing forces lead to the emergence
of complex flow patterning in multiphase flows. The
experiment represents a quasi 1D representation of a larger
family of flow patterning dynamics occurring in 2D Hele-
Shaw flows [26–38], where a similar fluidization transition
is observed [30], and where stick-slip bubbles [30,31] are
analogues to the plug formation observed in the 1D tube
system.
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Abstract. An experimental observation of the structuring of a granular suspension under the progress of a
gas/liquid meniscus in a narrow tube is reported here. The granular material is moved and compactifies as a
growing accumulation front. The frictional interaction with the confining walls increases until the pore capillary
entry pressure is reached. The gas then penetrates the clogged granular packing and a further accumulation front
is formed at the far side of the plug. This cyclic process continues until the gas/liquid interface reaches the tube’s
outlet, leaving a trail of plugs in the tube. Such 1D pattern formation belongs to a larger family of patterning
dynamics observed in 2D Hele-Shaw geometry. The cylindrical geometry considered here provides an ideal
case for a theoretical modelling for forced granular matter oscillating between a long frictional phase and a
sudden viscous fluidization.

1 Introduction

Transport of oil, water and sand in sub-sea pipelines [1],
of blood cells suspended in plasma [2, 3] give two extreme
examples of the broad range of situations featuring the
multiphase transport of granular material in confined
geometries. Pneumatic transport offers a well established
field for the transport of granular particles immersed in
a single phase [4]. Such a two phase system shows a
broad range of flow regimes depending on the filling
fraction and flow rate. Plug flow, fluidized flow, bubbly
flow, turbulent fluidization, cluster flow, annular flow
and suspended flow gives the variety of flow regimes in
vertical pneumatic conveying [5]. Such observed flow
regimes involve the competing effects of viscosity and
friction [6–8], respectively destabilizing and stabilizing
the granular phase.
The case of dense granular suspension has recently
been actively studied as it features complex rheological
behaviour such as shear thinning, shear thickening, yield
stress and shear banding [9–12]. The frictional interaction
and contact time between granular particle and the viscous
interaction with the carrying fluid are the two factors
determining the behaviour of dense suspensions. The
geometrical confinement is then another key factor as it
produces extra frictional forces on the granular flow. The
frictional interaction with boundaries induces contacts
network spanning over a large part of the system.
In multiphase flows, the existence of one or several
meniscii introduce capillary forces as a third factor. Con-
sequently such flows provide a rich source of instabilities

�e-mail: guillaume.dumazer@fys.uio.no

and pattern formation processes [13–15].
To simplify the geometrical complexity, we observed
the progress of a gas/liquid meniscus along a tube filled
with sedimented granular mixture of liquid and glass
beads [16]. The confinement chosen is approaching a
one-dimensional geometry. We are reporting here the
response of a confined granular material under capillary
bulldozing.

2 Materials and Methods

A long horizontal tube of size L = 1.0 m with constant
diameter D = 2 mm is filled with a sedimented mix-
ture of liquid and glass beads, with reduced filling frac-
tion ϕ = φ0/φc, defined as the ratio between the volume
fraction φ0 of grains in the grain-water mixture, and the
random close packing φc. Glass beads are sieved to con-
trol the polydispersity. The tube is pumped at constant
withdrawing rate I0 and the pressure at the tube’s outlet is
recorded, see Fig. 1 (a). The tube’s diameter is chosen
to not exceed the capillary length of the liquid used, en-
suring that the meniscus fills the tube’s aperture, without
spreading along the tube, see Fig. 1 (b). The inner sur-
face of the tube were treated with a silanization solution
to achieve an hydrophobic coating ensuring a contact an-
gle ≥ 90o between the meniscus and the confining walls.
The experiment is imaged against an LED screen. At the
early stages of the withdrawing, the meniscus progresses
along the tube, perturbs the sedimented granular material,
see Fig. 1 (b), and forms a growing accumulation front,
see Fig. 1 (c). At slow withdrawing rates the capillary
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Figure 1. (a) Schematic view of the experimental setup. The
sedimented glass beads and liquid mixture is withdrawn by a sy-
ringe pump at constant withdrawing rate I0, withdrawing pres-
sure is recorded at the tube’s outlet. (b) (left) initial cross-section
schematics, and (right) zoom over the meniscus just after the
withdrawing starts. (c) accumulation front after start of with-
drawal. (d) series of pictures showing the accumulation front
progress, and the trail of plugs left behind, time develops down-
wards.

bulldozing leads to the intermittent splitting of the grow-
ing accumulation front, and a series of granular plugs are
left in the tube, see Fig. 1 (d).

3 Plus Formation

The formation of a single plug is imaged after correcting
the variations of illumination by subtracting a blank image
of the screen, see Fig. 2 (a). Images are then thresholded
to clearly distinguish the glass beads from the background.
The number of glass beads’ pixels are counted as a func-
tion of tube’s axis x. Repeating this operation for every
image recorded during the experiment we get a dimension-
less signal s(x, t) with 0 value for no glass beads, 1 value
for a fully filled tube’s cross-section, s0 value for unper-
turbed sedimented glass beads. By mapping s(x, t) with a
colorscale on a spatio-temporal diagram with time devel-
oping downwards, and tube’s axis horizontally, we get a
useful visualization of a single plug formation, see Fig. 2
(b). The formation of a single plug can be decomposed
into 4 steps: (i) driven by the syringe pump the menis-
cus progresses against the sedimented grains which slowly
compactifies into a growing accumulation front (t1, t2).
The frictional interaction between the granular material
and the confining wall increases. The Janssen’s descrip-
tion of stress in confined granular material [14, 17, 18]
suggests here an exponential increase of the pressure with
the accumulation front length P ≈ σ0(ϕ, μ,D) exp (L/λ).
In this description a slice of compacted granular material
is considered. The radial stress σrr normal to the cylindri-
cal confining walls is assumed to be proportional to the

longitudinal stress σxx, σrr = Kσxx with the Janssen’s
coefficient K. The frictional length λ = D/(4μK) is de-
rived from the force balance over the slice of granular
material. (ii) the pressure imposed by the syringe pump
reaches the pore pressure of the compacted granular ma-
terial, Ppore = 4γ/dpore with the surface tension γ, allow-
ing the meniscus to bend into interstitial pores of diameter
dpore. Air quickly percolates through the compacted glass
beads and the liquid is pushed away towards the tube’s
outlet (t3, t4). The rapid liquid flow can be considered as
a Darcy flow. The viscous forces acting on the compacted
grains counteract the frictional interactions, which even-
tually leads to destabilize the still-immersed packing, and
to split the drained glass beads which forms a plug (t4).
(iii) the elastic energy stored in the system during the slow
compaction phase is released and the accumulation front
rapidly grows (t4, t5) before settling down as the next slow
compaction phase starts (t5, t6). This cycling process is
repeated until the meniscus reaches the tube’s outlet. The
intermittent nature of the plugs formation can be seen from
the spatio-temporal diagram obtained over a larger fraction
of the tube, see Fig. 3 left for the smallest withdrawing
rates.

4 Flow Regimes

The formation of plugs corresponds to an instability result-
ing from the competition between frictional and viscous
forces. At low withdrawing rates the granular material set-
tles easily and frictional forces can be established among
granular particles as well as with the confining walls. In-
creasing the withdrawing rate corresponds to increasing
the viscous forces in the system. Viscous drag on parti-
cles prevent frictional interactions to be established and
the granular packing gets fluidized more easily. We ob-
served the various behaviours of the confined glass beads
for larger values of withdrawing rates I0 ∈ [0.01, 30]
mL.min−1, and reported in Fig. 3 the corresponding
spatio-temporal diagrams obtained. As the withdrawing
rate is lower than ≈ 0.3 mL.min−1 the frictional forces are
large enough to form the pattern of granular plugs sep-
arated by gaps. Larger withdrawing rate, I0 ∈ [0.3, 3]
mL.min−1 weakens frictional interactions. The accumula-
tion front is getting larger as stronger fluidizations occur,
and fewer plugs are formed. Another flow regime is ob-
tained for large flow rate I0 ≤ 3 mL.min−1. The viscous
forces dominates and prevent any frictional interactions
between grains. Glass beads get suspended and no plugs
are left in the tube. These three distinct regimes are de-
noted respectively the frictional, transitional and viscous
flow regimes.

5 Phase Diagram

The size of the glass beads influences the balance between
friction and visosity. Small glass beads get easily sus-
pended whereas large glass beads are more stable under
viscous flow. The viscous drag of a flow through a porous
media is indeed proportional to its permeability. A bed
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Figure 2. Focus over one plug formation obtained for I0 = 0.01 mL.min−1, filling fraction ϕ = 0.5, beads size d = [75 − 100]
μm illustrated by (a) images and (b) spatio-temporal diagram. (c) pressure measured at the tube’s outlet in mmH2O during the plug
formation.
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Figure 3. (left column) spatio-temoral diagrams obtained with withdrawing rate increase in the range [0.01 − 30] mL.min−1. The
reduced units correspond here to a fraction of the total withdrawing time τ required to empty the tube of size L at withdrawing rate I0.
The same filling fraction ϕ = 0.5 and beads size d = [75, 100] μm is used for all observations. Note that at the lowest withdrawing
rate I0 = 0.01 mL.min−1, the total withdrawing time τ exeeds the recording time so a smaller fraction of the total spatiotemporal
diagram is shown. (right column) corresponding images of the final states obtained. Frictional, transitional and viscous flow regimes
are distinguished by the dashed lines according to the qualitative differences in the observations.

of granular particles has a permeability increasing as the
particles size decreases, as suggested by the the theoret-
ical Carman-Kozeny relationship. So glass beads were
sieved into 5 size ranges [53−75], [75−100], [100−150],
[150 − 200], and [200 − 300] μm. A systematic explo-
ration of the three flow regimes described above has been
conducted for every size ranges. Figure 4 gives a phase di-
agram summarizing the observations with squared beads
size horizontally, and imposed flow rate vertically. Obser-

vations corresponding to frictional, transitional, or viscous
flow regime are pointed respectively with disks, open cir-
cles, and solid squares.

6 Conclusion

We observed the self structuring of a confined granular
material and liquid mixture under capillary stress. A
gas/liquid meniscus driven along a narrow tube by a
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Figure 4. Phase diagram featuring the various flow regimes
obtained when varying the withdrawing rate I0 ∈ [0.01, 30]
mL.min−1, and the bead sizes d ∈ [53 − 75], [75 − 100],
[100−150], [150−200], and [200−300] μm obtained after siev-
ing. Disks, circles and squares represent respectively frictional,
transitional and viscous flow regime. Spatio-temporal diagrams
observed in fig 3 are indicated. Dashed lines are used for flow
regime demarcations.

syringe pump bulldozes sedimented glass beads and
forms regular granular plugs spaced with empty gaps, or
suspends and evacuates the granular material from the
tube. Three flow regimes are put in evidence as deter-
mined by the imposed flow rate as well as the granular
particles sizes. The simplified quasi one-dimensional
setup presented here provides a useful tool to interprete
the complex behaviour of confined granular material in
2D Hele-Shaw cells under capillary stress [13–15].
The complexity of the patterns observed in confined fric-
tional fluid derives from a mixture of capillary, frictional
and viscous interactions. Our setup is constraining the
frictional fluid by reducing one degree of freedom in
comparison to regular Hele-Shaw cells. A subsequent
structuring is still occurring as the confinement preserves
the internal fluid self-structuring.
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