Dr Sara Hamouda

Dr Anas Shatnawi

Dr Rim Saddem

Dr Nassima Benammar

Business Process Modeling Notation XML Extensible Markup Language FOL First Order Logic TLA Temporal Logic of Actions LTL Linear Temporal Logic CTL Computation Tree Logic FBPMN Formal Business Process Modelling Notation Chapter

Keywords: BPM, BPMN, Collaboration, Communication, Time, Formal Semantics, Verification, Framework, TLA +, Alloy viii BPM, BPMN, Collaboration, Communication, Temps, Sémantique Formelle, Vérification, Outil, TLA +, Alloy BPM Business Process Management BPMN

Process models are essential aids for learning, analysis, improvement and communication of a business process. BPMN is the leading standard in the context of business processes and workflow modelling languages. It provides a notation that is readily understandable by business users, ranging from the business analysts, who sketch the initial drafts of the processes, to the technical developers responsible for actually implementing them, and finally to the staff deploying and monitoring such processes. BPMN supports modelling using different types of diagrams, including the collaborative diagram. This diagram provides an efficient way to describe how several business entities, each with its internal process, can interact with one another to reach objectives.

Even if it is a widely accepted notation, the BPMN execution semantics is defined using natural language. This leaves room for interpretation and hampers the formal analysis of the process models. A great effort has been devoted to proposing formal semantics for BPMN and (fewer) providing dedicated verification tools. Still, some advanced features of BPMN, namely subprocesses, communication or time-related constructs, are often set aside. This becomes an issue as BPMN gains interest outside of its original scope, e.g., for the Internet of Things (IoT), where communication and time play an essential role. The modelling of a process in BPMN and fully guaranteeing its behaviour may be complicated in the presence of such concepts. Thus, providing formal semantics taking into account the usual control flow-elements and subprocesses, inter-process communication, and time-related constructs is required. Further, the complexity of the provided process verification tools, their lack of a fully automatic support of the entire verification chain, the fact that they are not integrated into a process environment, and the impossibility for the average process modeller to express business properties, prevent their adoption.

This thesis faces these problems by providing a first-order Logic formal semantics for the BPMN collaboration diagrams that support the subprocesses, communication, and time constructs. It is parametric with reference to seven point-to-point communication models that exist when considering local and global message ordering. To perform verification, we have implemented this semantics in a tool suite called fbpmn. It allows performing the automatic verification of correctness properties of BPMN collaboration models and animating counterexamples if the properties are not satisfied. Our framework is built upon two different formal specification languages for the semantics implementation. A first implementation uses TLA + language, whose companion, the TLC checker model, supports explicit model checking. TLA + 's expressiveness comes from being based on ZF (set theory), first-order logic, and configurable modules. A second implementation relies on the Alloy language, whose companion, the Alloy Analyser, provides support for bounded model checking. Alloy's expressiveness comes from being based on relational logic, first-order logic enhanced with the transitive closure operation, which renders the definition of structural properties extremely simple. Altogether, the fbpmn tool-suite, the TLC tool, and the Alloy Analyzer may check BPMN models for workflow specific properties. The fbpmn tool-suite is open source and freely available online.

Thesis Context

Business process management (BPM) focuses on the modelling and management of business processes by using suitable techniques that allow organisations to be more efficient and flexible in achieving their goals. Business process models are the key instruments of BPM. They explicitly represent the BPs in terms of their activities and the execution constraints between them. A Business Process (BP) may be automated in whole or in part by a software system. According to the temporal and logical dependencies set in an underlying process model, an automated business process (also known as workflow) passes information from one participant to another for action. The system works with automated business processes called Process-Aware Information System. Process-Aware Information Systems (PAISs) [1] are information systems that link Information Technology to Business Processes. Dumas et al. in [2] define a PAIS as "a software system that manages and executes operational processes involving people, applications, and/or information sources on the basis of process models". The term process model, by definition, refers to a business process representation using some graphical notation. In fact, in a PAIS (cf. Figure 1.1), process modelling is the initial step of the business process lifecycle, called design. In this step, high-level business requirements are designed as a process or a workflow. The models can be designed at different levels of abstraction, typically through business process modelling notations and their supporting tools. A range of graphical notations have been proposed for business process modelling, such as Business Process Model and Notation (BPMN) [3], Event-driven Process Chain (EPC) [4], Yet Another Workflow Language (YAWL) [5], Unified Modelling Language (UML) [6], etc. The second phase concerns the implementation of these business process models. In this step, the process models are automated into executable processes by refining the models into operational process specifications and joining the different process activities to concrete applications and organisational entities. This can achieve by using PAIS systems such as Workflow Management System (WfMS) or Business Process Management Systems (BPMSs). The third step is the execution of these process models. Here, the process model can be deployed to a process engine to be executed. The final step is the process diagnosis. Here, the operational processes are analysed to identify possible problems and find aspects that can be improved. The feedback of this phase may be used to redesign the processes, and the cycle continues [7,8].

A BPMS is a system that supports the design, analysis, execution, and monitoring of business processes based on explicit process models [8]. BPMSs originate from WfMS (i.e., an older type of PAIS), which are focused on modelling and execution steps and did not very well support the other phases of the BPM's lifecycle (cf. Chapter 2.2). In contrast, BPMS fully support the entire BPM lifecycle. Furthermore, BPMSs are the automated implementation of the business process models. Thus, the incorrectness of the process models may directly impact the core of the business operations. For that, the ability to detect errors in the early design phase and analyse process models is likely to become a desirable feature for tools supporting process modelling. Wherefore, without tools offering modelling and automatic [START_REF] La | Managing variability in process-aware information systems[END_REF]) verification of process models, a modeller expert can not guarantee the efficiency and reliability of the process models.

To tackle this problem, the development of business process systems requires a shift to formal methods to increase the designed solution's reliability and avoid unexpected effects after their implementation. The use of formal methods allows the designers to verify their process design's correctness and detect potential errors. If it is the case, the processes can be improved before implementation. One of the techniques used to check the correctness of such systems is Model Checking (MC) [10]. Formally describing a business process requires tackling several challenges. Among them, the business process models need to be viewed from several distinct perspectives: control flow, interaction, data, resource, and time. The formal model must take into account these perspectives. Thus, this thesis proposes a formal framework for supporting the control flow, the interaction, and the time perspectives of business processes models in BPMs based on BPMN as a graphical modelling language. The context of this thesis supports the two fundamental phases of the BPM's lifecycle, which are the process Design and Analysis.

The rest of the chapter introduces the motivations behind the research presented in this thesis, the research questions it aims to answer, the research contributions of the thesis, and finally, the thesis structure.

Motivation and Problem Statement

BPMN became the most prominent notation for representing business processes, thanks to its wide usage in academic and industrial contexts [START_REF] Basit Mubeen | UBBA: Unity Based BPMN Animator[END_REF]. It is an ISO standard notation with good tooling support (cf. Chapter 2.3). It allows business process designers to model both intra-organisational processes (single processes) and inter-organisational collaborations where communication coordinates processes in different organisations. This modelling can be achieved through the use of process and collaboration diagrams. A business process diagram in BPMN defines as a sequence of activities, events, and gateways (also called flow element), connected by sequence flows (also called control flow), that denotes their ordering relations. The BPMN standard defines a theoretical concept, called a token, traversed the process structure from its start element to its end element, used as an aid for defining the process behaviour when it is performed. The behaviour of a process element can be defined by describing how it interacts with the tokens. Depending on the semantics of that traversed flow element, the number of tokens in a process can vary, as they are continuously generated and consumed. As an example, a start event generates a token, while an end event consumes one. A collaboration diagram in BPMN, defines the interaction amongst processes, using message flow element constructs (message activities and message events) connected by message flows. In collaboration, the behaviour of a process element triggers message flow to produce messages and its internal behaviour.

The fact that BPMN models are implementable and integrate constructs for transmitting messages between processes makes their analysis and ensures their correctness before using them in a real context a challenge. However, the BPMN standard is related to using the semi-formal definition to define its execution semantics. This semantics is described in a semi-formal language and meta-model, and it is dispersed through the specification. This leaves room for interpretation and hampers the formal analyses that would be desirable to find defaults at design time rather than when running the processes and collab-orations over business process engines. The current state-of-the-art has already proposed a formalisation of the BPMN execution semantics. Indeed, attention has been raised to provide formal semantics for collaboration diagrams to capture the features of message exchanges and data (cf. Chapter 3). Despite all these efforts, these proposals leave apart essential features to consider when dealing with collaboration diagrams which are the communication models between the nodes of the system and its configuration in different communication modes. Meanwhile, BPMN is gaining interest as a modelling language in new areas, such as the Internet of Things (IoT) [START_REF] Casati | Towards Business Processes Orchestrating the Physical Enterprise with Wireless Sensor Networks[END_REF][START_REF] Meyer | The Things of the Internet of Things in BPMN[END_REF] where the communication and time perspectives present its fundamental.

The time perspective is a critical dimension to consider as it is closely related to customer satisfaction and cost reduction [14]. Time plays a role in negotiating frequent delays in outsourcing, ensuring the completion of activities on time and the availability of the final product on time. The business process field is influenced by a wide range of temporal constraints, which rise from constitutional, regulatory, and managerial rules. Thus, BPMN defines a set of time-related elements (timer flow element). Each of these timer elements defines time information according to its kind of TimerEventDefinitions [3]. However, this time aspect is poorly addressed in the current standard initiatives. No explicit formal semantics for BPMN time-related features is given in the standard. Further, to associate time information to such elements. BPMN relies on the ISO-8601 standard time definitions. The ISO-8601 standard is too reach and its description of time information is quite complex. In general, it defines three kinds of TimerEventDefinitions (timeDate, timeDuration, and timeCycle) with a different format of configurations. This makes it more difficult to perform a formal analysis of process models. Indeed, the absence of a precise semantic for BPMN timer elements reduces the models' comprehension. For that, most of the previous attempts of formalising the BPMN time constructs execution semantics is based on the introduction of additional modelling features to specify the temporal aspects (cf. Chapter 3) and leave apart the features related to time-related events in the broader sense. In addition, the BPMN model defines different temporal constructs. This may result in a model with complex scenarios in which it is impossible to simultaneously satisfy all temporal perspectives of the process model. To analyse such cases and detect inconsistencies, formal semantics of the temporal concepts used for specifying the time perspective of a BPMN process model is required. Further, a lot of effort has been undertaken to identify the most common time constraints in the business perspective, which have been called Process Time Patterns [15]. The time patterns provide a universal and comprehensive set of notions for describing the temporal aspects of business processes and eliciting fundamental requirements. In the literature, works focus on describing the time patterns semantics specification using natural language and independently of any specific process modelling language (cf. Chapter 3). However, less attention has been paid to assessing the suitability of BPMN to express these time patterns graphically, and no formal semantics for these patterns specified in BPMN was provided.

For that, this research work aims to answer the following questions that are strictly related. Roughly speaking, regarding all the previous requirements, a formal framework considering precise semantics for the communication and time, enabling an exhaustive and automatic verification of the BPMN models is crucial before performing business processes.

Research Contribution

In light of the shortcomings mentioned above, the core objective of this thesis is to provide a systematic methodological approach to improve the modelling of the BPMN process and collaboration diagrams. We intend to introduce a formal framework that allows novice and experienced BPMN designers to understand their models and properties better. The approach contributes a generic formalisation that supports the control flow elements, communication, and time perspectives of BPMN models. Furthermore, it provides a foundation technique for modelling and verifying the consistency of the execution semantics of the BP models, taking into account distinctive characteristics introduced by different communication modes and modelling with different time-aware process constructs. The main research contributions can be summarised as follows:

• A precise formal semantics for a subset of BPMN elements, including control flow elements, subprocess, message exchanges, communication modes for modelling process and collaboration diagrams, is provided. This semantics is compliant with the operational execution semantics described in the standard [3]. The formal semantics is defined on BPMN elements in terms of First-Order Logic (FOL), rather than encoding into other formalisms. The FOL semantics provides a universal and comprehensive set of notions for describing business processes' execution behaviour and eliciting fundamental requirements. Further, to foster the use of the BPMN collaboration models in a wide range of application scenarios (e.g., IoT systems), a modular structure for incorporating seven generic communication models relating to message-passing behaviours between and within processes and their formal semantics definition is provided. Moreover, the modular structure includes ad-hoc communication models (a specific model built by assembling micro communication models that offer different sending and receiving messages constraints). The formal definition of these models will foster the integration of the communication models into BP systems, significantly widen the application scope of BPM.

• A precise formal semantics for BPMN time-related constructs is provided. This semantics is based on an in-depth analysis of the time definition types (date-times, durations, and cycles) regarding the ISO-8601 formats [16] as specified in the BPMN standard [3]. The formal semantics allows avoiding ambiguities regarding the use of temporal concepts and helping to detect or predicate possible inconsistencies or critical situations that may occur during run time (e.g., excessive delays). Moreover, a well-founded set of time patterns representing temporal concepts in BPMN is collected from the literature. These time patterns provide a universal and comprehensive set of notions for describing the temporal aspects of BPMN business processes and eliciting fundamental requirements. In particular, we discuss how the provided semantics support each time pattern's related BPMN process model.

• A generic framework that supports the formal semantics, including the communication models, is provided. This framework performs the verification of correctness properties for business process and collaboration models automatically. The implementation of the semantics is given in TLA + [17] and Alloy [START_REF] Cunha | Bounded Model Checking of Temporal Formulas with Alloy[END_REF] as a set of theories. This corresponds to a pure syntactic transcription of the FOL into the corresponding TLA + \ Alloy fragments. Moreover, it supports the verification of a novel variant of BP properties introduced for the BPMN collaboration diagrams. Moreover, intending to give more flexibility and freedom for the designer, the framework supports an arbitrary topology of business process models. It does not impose any syntactical restriction on the usage of the modelling notation, such as well-structureless (e.g., the forbidden use of mixed gateways format). Farther, the framework considers advanced aspects: (i) including the support of the ad-hoc communication models, (ii) using the animation to illustrate situations where a BPMN schema is found to violate a given property, and (iii) supporting two different notions of time: an abstracted version encoded in TLA + and an explicit one encoded in Alloy.

Altogether, the results presented in this thesis aim at (1) provide a formalisation of a subset of BPMN execution semantics that supports control flow, time, and interaction and that is parametric with reference to the properties of the communication between participants, (2) support this formalisation with tools that automatically perform the verification of correctness properties for the BPMN process and collaboration models.

Thesis Structure

This doctoral thesis is divided into four parts and seven chapters. Bibliography and appendices complete these parts.

Part I -State of the Art.

• Chapter 2 -Background presents the necessary background information by introducing the process modelling languages as well as the formal descriptions and notations used throughout the thesis. In practice, BPMN, FOL, TLA + and Alloy languages are presented.

• Chapter 3 -Literature Review positions our work by reviewing the existing literature on the formalisation of BPMN business process models addressing the support and the verification of business processes dealing with the communication and the temporal aspects.

Part II -BPMN 2.0 Semantics Formalisation. This part is made up of two chapters that gathers our semantics.

• Chapter 4 -BPMN and Communication provides a formal semantics for the BPMN collaboration diagram. First, it defines seven possible communication models relating to message-passing behaviours between and within processes and provides their formalisation using FOL. Second, it presents the FOL semantics of each BPMN element, taking into account these communication models. Finally, it shows how you can interchange them when studying a given BPMN schema.

• Chapter 5 -BPMN and Time provides the formalisation of BPMN time construct in the presence of an explicit version of time considering the ISO specification for date and time, time intervals, and recurring intervals. Then, it presents its support for eight-time patterns in BPMN.

Part III -From Formal Semantics to Tool Support. This part focuses on the implementation of the proposed formalisations.

• Chapter 6 -fbpmn: Formal BPMN Framework presents a framework for verifying a large class of BPMN schemas against many classical properties. It shows the implementation of the formalisations into two formal languages TLA + and Alloy, the verification process, and the evaluation of the tool under a set of experiments.

Part IV -Conclusion and Future Work. This part concludes the work.

• Chapter 7 -Conclusion and Future Work concludes this thesis by summarising the presented contributions and discussing potential future extensions.

1.5 List of Publications

"

The only way of discovering the limits of the possible is to venture a little way past them into the impossible. "

Clarke's Second Law

Introduction

255

This chapter aims to provide an overall understanding of the background notations relevant to the dissertation content. Firstly, it presents the concepts and technologies relevant to business process management using a business process life-cycle. Secondly, it introduces the standard modelling notation BPMN 2.0, and it gives two BPMN collaboration diagrams scenarios to be exploited through the rest of the thesis. Then, it presents the existing verification methods. Finally, it provides an overview of the First-Order 260 Logic specification, the TLA + and Alloy formal languages. These later are increasingly adopted and have been successfully applied to complex systems (e.g., the works in [START_REF] Newcombe | Why Amazon Chose TLA +[END_REF] and [START_REF] Bagheri | Detection of Design Flaws in the Android Permission Protocol Through Bounded Verification[END_REF]).

Business Process Management (BPM)

Business Process Management (BPM) is a discipline for improving and optimising business processes, centred on the processes integration and management to achieve business goals. BPM was founded to develop approaches to the operationalisation of business processes based on software technologies. BPM is described by Dumas et al. as "A body of methods, techniques and tools to identify, discover, analyse, redesign, execute, and monitor business processes to optimise their performance. [1]". In other terms, M.Weske define the BPM by "A Business process management includes concepts, methods, and techniques to support the design, administration, configuration, enactment, and analysis of business processes. [21]"

BPM is about improving and managing a set of events, activities, and decisions that ultimately add value to an organisation and its clients. These successions of events, activities, and decisions are called processes [1]. The key instrument of BPM is the Business Process (BP) notion. M.Weske defines BP as "A business process consists of a set of activities that are performed in coordination in an organisational and technical environment. These activities jointly realise a business goal. Each business process is enacted by a single organisation, but it may interact with business processes performed by other organisations. [21]" With the same insight, M.Dumas.et al., define a business process as "a collection of inter-related events, activities, and decision points that involve a number of actors and objects, which collectively lead to an outcome that is of value to at least one customer. [1]". In general, BP is a particular type of process, defined as a set of tasks that need to be executed in a specific order to realise one or more business goals.

The business processes describing an internal behaviour limited to one organisation are called, intraorganisational processes. Whilst those interacting with business processes, organisations, for example, providing information to them based on their requests, are called inter-organisational processes.

A set of phases characterises BPM, noted by a BPM lifecycle, that occurs cyclically to adapt and improve the model. According to M.Weske [8], the lifecycle of BPM is composed of four main phases, as shown in Figure 2.1.

• Design and Analysis. Firstly, the business process is identified, and a model representing the process is manually designed and/or automatically elicited. The obtained process model is then validated by assessing its formal correctness, simulating all the possible executions, estimating costs, execution time and resources allocation. All these analyses are carried out based uniquely on the model without actually executing the process. In addition, the model is manually inspected to verify that all the relevant aspects characterising the process are captured in the model.

• Configuration. Once the process model is defined and validated, it is implemented. This can be done in different ways. The process model can be refined to become executable by a BPMS (a software component responsible for coordinating the execution of the process according to the model). Alternatively, ad-hoc software that behaves according to the process model can be developed. Finally, the process model can derive a set of policies or guidelines that human operators should follow. It is worth noting that, depending on how the process is implemented, the execution of the process can be completely, partially or not be carried out automatically and autonomously. Generally speaking, whenever human operators are involved in executing activities, the process is 300 not completely automated.

• Enactment. Once the process is implemented, it can be executed. While the process is running, it is monitored to identify when actual executions take place (i.e., an instance of the process is created) and terminate when activities composing the process are started and concluded, and if exceptions occur during the execution of the process or a specific activity. This information is 305 usually collected and stored in log files. If the process is (partially) automated, the BPMS (or the ad-hoc software) makes sure that activities are executed at the right time.

• Evaluation. Once the process is enacted, the real efficiency and effectiveness of the process are assessed. For instance, the average time spent running each activity can be determined, as well as the idle time. Possible bottlenecks in the execution and allocation of activities can be identified.

Additionally, it can be determined to which extent the process model reflects the actual execution of the process. Such information can then be used as an input for the Design and Analysis phase, thus completing the cycle. • Process identification. In this phase, the modeller describes the overall process organisation as a process architecture.

• Process discovery. In this phase, the modeller use discovery techniques (e.g., observation, document analysis, automated process discovery, etc.), modelling notations (e.g., BPMN, DMN, etc.), and tools that include (syntax, style checking, model repository management, and dictionary) for discovering, decorticating, and capturing the process architecture as a business model. This phase comes up with an as-is process model that describes the process (i.e., how it currently is and who are involved in the process on a regular basis).

• Process analysis. In this phase, the modeller uses the as-is process model and the associated documentation for identifying, quantifying weaknesses (i.e., issues) and the impact on the performance of the process by using them.

• Process redesign. In this phase, the modeller modifies the as-is process model according to the resulting insights and weaknesses that are identified in the analysis phase and comes up with a to-be process model. This phase is about making a trade-off between different performance dimensions, for which we find: time, cost, quality, and flexibility. The art of the redesign phase is to improve the model with one of these dimensions without affecting the other dimensions.

• Process implementation. In this phase the to-be process model is putting into execution. To establish this step, two actions are required: (i) Providing an information systems infrastructure for running the process. (ii) Educating and training people to perform the to-be process model or putting in place a system for continuously managing the business process's performance.

• Process monitoring. This phase concerns the process performance and conformance observation to insight any unexpected impact of the changes made in the process. In case of the non-achieved objectives stated in the redesign phase, the modeller can proceed with another cycle of process discovery, analysis, redesign, and implementation.

As the main focus of this thesis is on business process design and analysis, the following sections define a set of notions used in these phases.

Business Process Modelling Language (BPMN)

A range of graphical process modelling languages have been proposed to represent business process models such as BPMN [3], Petri nets (PN) [START_REF] Lyle | Petri net theory and the modeling of systems[END_REF], Event-driven Process Chains (EPCs) [4], YAWL [5], UML activity diagrams [6], etc. Without limiting the generality of our work, we select and use BPMN as input notation.

BPMN is the leading standard in the context of business processes and workflow modelling languages. The primary goal of BPMN is to provide a notation that is readily understandable by business users.

BPMN was released in 2004 by the Business Process Management Initiative (BPMI) [3] as a graphical notation (partially inspired by UML Activity Diagrams) to represent the graphical layout of business processes. BPMN is highly adopted by business analysts and has acquired a clear relevance among the notations used to model business processes in academia and industry. The ever-increasing number of adoptions from companies and the growing interest in this notation caused the adoption of BPMN as an OMG standard in 2006. In 2013, BPMN 2.0 was named as an ISO/IEC standard for modelling business processes. BPMN has different versions from (1.0, 1.1, 1.2, 2.0). BPMN 1.X, (X ∈ 0, 1, 2) versions did not have a clearly defined semantics nor a native serialisation format. This is why we focus on the newest major version of BPMN, namely 2.0. The BPMN 2.0 specification extends the scope and the capabilities of the BPMN 1. X in several areas (execution semantics for all BPMN elements, a wide collection of constructs, modelling interactions, etc.).

BPMN provides a graphical notation representing a business process as a Business Process Diagram (BPD). It defines four main kinds of diagrams: process, collaboration, choreography, and conversation diagrams. This thesis focuses on the two first. A process diagram is used to model the activities of a single organisation. Collaboration diagrams can be defined with different processes (for various organisations), exchanging messages and cooperating to reach a shared objective. This thesis abstracts away from data (data objects, data stores and message payloads). Therefore, message (resp. event instance) and message type (resp. event type) are used interchangeably in the sequel. For a complete and detailed description of each BPMN diagram, please refer to the official BPMN specification [3].

The following sections describe a subset of BPMN elements notation and then introduce how to employ BPMN notations as a running example for the rest of the document.

BPMN Notation

BPMN is the well-known diagrammatic notation for supporting the specification of business processes. The notational elements of BPMN are classified into four groups: Flow objects, Connecting objects, Artefacts and Swimlanes. The flow objects and connecting objects are the basic elements for constructing business processes. The extra information and the organisation perspective of a business process diagram are expressed using artefacts and swimlanes. As the artefacts and the swimlanes are unrelated to the process flows and do not have a semantics-based execution, we describe only the elements considered in the thesis.

1. Pools group a set of activities with some common characteristic, e.g., a specific role or a process participant capturing the resource perspective. They represent a participant or organisation as a process diagram that may be involved in collaboration with other processes to represent a collaboration diagram. Graphically, a pool is represented by a rectangle with a specified name referring to an organisation (see Figure 2.3).

2. Flow Objects are the basic graphical elements that allow defining the behaviour of the BPMN model. The flow objects fall into three categories: Events, Activities, and Gateways.

• Events represent facts that occur instantaneously during process execution and affect the sequencing or timing of process activities. They are drawn as circles, which may contain markers to diversify the kind of the event trigger (see Figure 2.4). A process requires a starting point and a termination point. In BPMN, these are identified by the Start events and the End events. A Start event is the start point of the process that initiates a new process instance. An End event ends the flow of activities; that will typically (under certain conditions) terminate or complete a process instance. In addition, this set of elements is called by the event because it may (optionally) trigger an event, e.g., send a message to another process or environment. Different events are triggered during the execution of a process instance, e.g., the arrival of a command order that neither starts a new process instance nor terminates one. This event affects the process flow in the sense that it must occur for the process to go on, called by Intermediate events. BPMN defines a set of trigger types (e.g., Message, Signal, Timer, etc.) It associates to each event an eventDefinition to determine its trigger type. The eventDefinition may have one or more trigger types. If its eventDefinition is empty, then the event node type is None. If the eventDefinition has more than one trigger, the event node type is Multiple (this type of event is out of the scope of this thesis). In this thesis, we focus on the following event types:

-None Start Event represents the initiating point of a process instance without any condition. -Message Start Event initiates a process instance when a message is received from an external participant.

-Timer Start Event initiates a process instance when a fixed time is elapsed.

-Message Intermediate Throw Event sends a message to an external participant.

-Message Intermediate Catch Event receives a message from an external participant.

-Timer Intermediate Catch Event represents delays expected within the process.

-Boundary Event is an intermediate event that is attached to the boundary of an activity.

There are two kinds of boundary events: interrupting intermediate events that interrupt the activity they are attached to. Whereas non-interrupting intermediate events initiate a new process path (i.e., launch activities in parallel). The behaviour of these events is based on some condition (e.g., a message reception or the deadline of a timeout).

-None End Event terminates the process instance.

-Message End Event sends a message to an external participant.

-Terminate End Event indicates that all activities in the process should be immediately ended. Furthermore, the term event in the BPMN standard has many interpretations. It denotes an event node (catching or throwing event) or an event in a closer sense (i.e., a particular occurrence of something at a specific time). In this thesis, the term event denotes an event node under the primary use of the word in the BPMN standard. The term trigger indicates the occurrence of something in case of catching. In contrast, it means a result in a throwing case.

• Activities identify work that is realised in a process. There are two kinds of activities: an elementary atomic unit of work that can not be broken down to a more acceptable level of abstraction, called Task, and compound activities whose internal details are modelled using other elements, called subprocess. Tasks are drawn as rectangles with rounded corners having a label that specify their name. Subprocess can either be represented as collapsed, i.e., as a task decorated by an +' sign, or can be expanded to show internal details (see Figure 2.5).

Activities allow applying different actions under various circumstances. For that, BPMN provides different task types. In this work, we are interested in the following types:

-Abstract Task represents the performing of an action.

-Send Task represents the performing of an action involving the sending of a message.

-Receive Task represents the performing of an action involving the receiving of a message. • Gateways are used to control the divergence and convergence of the sequence flow, particularly the activity execution order. Graphically, a gateway is drawn as a diamond with an internal marker that differentiates their routing behaviour (See Figure 2.6). There are five main types of gateways in BPMN, and we are taking into account four of them.

-Exclusive Gateway, denote by symbol is a routing point in the process flow where it is used to choose one of the sets of mutually exclusive alternative incoming or outgoing branches. The choice of the outgoing branches is based on the evaluation of a data-based condition.

-Parallel Gateway, denote by symbol, is a routing point in the process flow where it synchronises concurrent flows for all its incoming branches and creates concurrent flows for all its outgoing branches.

-Inclusive Gateway, denote by symbol, is a routing point in the process flow where it has two specific behaviours. It synchronises two or more concurrent incoming edges and creates concurrent flows for all or some of its outgoing edges according to their condition evaluation.

-Event-based Gateway, denote by symbol, is a routing point in the process flow where event occurrence (time elapsing or message receiving) determines which path to follow, and all the others are discarded.

The four gateway types (exclusive, parallel, and inclusive) can be merging, splitting, or mixed (both merging and splitting). • Sequence flow shows the execution order of flow elements. This category can be decomposed into normal sequence flows, conditional sequence flows (expressing the condition for some branch to be activated), and default sequence flows (the default branch to activate if all others (conditional ones) cannot be).

• Message flow determines the message following between pools.

• Association flow allows to associate artefacts to a flow or to connect them to an activity. The association flow is out of the scope of this thesis.

Running Example

As motivated in Chapter 1, both the specification and operational semantics support of the communication and the temporal constraints constitute fundamental challenges for the BPMN models. To help the reader get familiar with the BPMN modelling activity and discuss some of the challenges emerging in these contexts, we consider two examples consisting of two collaboration diagrams. This section presents for each of them the business scenario and the corresponding collaboration diagrams.

Travel Agency Collaboration Diagram. This example introduces a scenario concerning booking travel. We use this scenario to motivate our approach through Chapters 4 and 6. The presented example is derived from the one presented in [23]. The scenario involves two participants that act in a collaboration diagram. These are: • Customer is a person who performs the booking travel request.

• Travel agency is an application that performs the confirmation of the travel reservation. • The Travel Agency sends offers to the client (loop with an exclusive gateway) in a first subprocess.

Then, it starts a second subprocess to exchange information (booking, payment, confirmation, ticket) with the Customer.

• The Customer may reject some of the offers, and at some point, he/she may accept one (loop using two exclusive gateways).

• If so, he/she stops accepting offers, informs the Travel Agency, and sends the booking and the payment information to the Travel Agency and gets the corresponding tickets and confirmation.

The Travel Agency and the Customer rely on interrupting features to deal with the fact that the Customer stops accepting offers as soon as he/she has agreed on one.

• The Travel Agency has only a fixed number of offers to send. Therefore, if the Customer has not agreed on an offer before the end of this set, the sending of offers by the Travel Agency will stop.

In addition, the Travel Agency will send an interrupting message to the client (message boundary event on the customer offer reception task), which will interrupt the exchange subprocess (message boundary event on the second agency subprocess).

• If the Customer has accepted an offer before the end of the offers, he/she will start to send information to the Travel Agency. The Travel Agency will interrupt the sending of the set of offers and continue on the subprocess of the booking process

As one can see, the transaction between communication, interrupting features makes the overall behaviour of the collaboration challenging to grasp. Will the collaboration always reach one of its ends? Either that the client and the agency have agreed on an offer (them ending in Transaction Completed and Offer Completed, respectively) or that they have not waited for some event to happen (ending in Transaction Aborted and Offer Aborted, respectively). Will the collaboration reach one of its ends but with pending messages that have been sent but neither received nor treated? Or, worse, will the collaboration deadlock at some point depending on the choices made by the Customer and the Travel Agency, and the passage of time?

Paper Reviewing Process Collaboration Diagram. This example introduces a scenario concerning the management of a paper reviewing process of a scientific paper sending for a special issue in a journal. We use this scenario to motivate our approach through Chapter 5. The presented example is inspired by the one described in [2, Figure 4.79, Section 4.7]. The scenario involves three participants that act in a collaboration diagram. They are :

• Journal PC Chair, who performs the assignment of the submitted paper and managing the final decision. He is a person who edits the journal.

• Author, who performs the writing of the research paper and its submission. He is a person who specialises in the journal topic domain.

• Reviewer, who performs the reviewing process. He is a person with knowledge in the journal special issue topic.

Figure 2.9 presents the collaboration diagram of the reviewing procedure. For simplification, we consider only one author and only one reviewer. The collaboration starting when the submitted date is reached, and the author sends a paper to the Journal PC Chair through the submit paper send task.

• The Author will wait until the arrival of the notification response. If he/she doesn't receive a notification by 120 days from the sending date, the author withdraws the paper.

• The Journal PC Chair starts when the specified date and time, (2021-01-17 T 00:00:00), of the CFP is reached. This is reflected by the timer start event of the process at the Journal PC Chair.

Then, it waits for submissions. The receive activity is authorised until the specified close date, given as (2021-03-17 T 00:00:00). When the process receives a research paper, he/she assigns it to a Reviewer via the send task assign paper. To avoid delay for the response review process, he/she sends before the deadline date a reminder two times in a period of 15 days between. This is reflected by a non-interrupting boundary time event associated with the receive review task, (R2/ P15D / 2020-04-29 T 00:00:00).

• The Reviewer process receives a Review Request message to start. The Reviewer starts preparing a review, and he/she sends it back to the Journal PC Chair when it is ready.

• After the Journal PC Chair has received a review, he/she prepares the acceptance/rejection letter or a borderline letter if the paper requires further improvements. Then, he/she attaches the review to the notification letter and sends it to the author at the notification date and time specified in the CFP (2021-05-16 T 00:00). The Journal PC Chair must conform to the deadline before sending the notification. An intermediate timer event reflects this.

In addition to the problems introduced by the communication as cited in the first example above, this model scenario presents a different need for temporal assurance such as deadlines: Will the collaboration process review be completed on time before the publication's deadlines?. Will the response of the Reviewer arrive on time?. Also, it presents the need to use different temporal models such as an activity or a notification that must be done by a predefined date; or the author's response in the case of the second review where it must be done before a period of 15 days starting from a specific date, etc.

BPMN XML Representation

The BPMN structure is described using the BPMN meta-model under the form of class diagrams.

BPMN 2.0 is the first release that provides for all the BPMN elements an Extensible Markup Language (XML) Schema Definition (XSD) to exchange BPMN 2.0 diagrams between tools, companies, etc. Consequently, BPMN diagrams can be textually represented using an XML based notation, saved under .bpmn, which is used by several modelling tools, e.g., the Eclipse BPMN Modeller, Camunda Modeller, etc.

In general, the definition of an element in XML schema collects all its attributes, visible or invisible, graphically. As an example Listing 2.1 shows the corresponding XML fragment of the Send Task activity extracted from the collaboration diagram presented in Figure 2.8. The fragment describes two parts: the first (lines 1-5) depict the semantics information of the task (id, expression, the incoming and outgoing edges), and the second (lines 7-8) depict the localisation of the element in the diagram. We note in this example that the attributes expression and resultsVariables are invisible on the diagram. corresponding semantics and in the animation of it.

BPMN Operational Semantics

BPMN 2.0 is more than a drawing language. It supports the process execution under a business process engine. BPMN 2.0 specification extends the scope and capabilities of BPMN 1.x in several areas. Among other improvements, it describes the execution semantics for all BPMN elements. The operational semantics of BPMN defines how the process model elements shall be processed during its execution. When the execution of a business process model starts, a process instance is created. Then, nodes of a process instance are processed and executed according to the order in the control flow of the process model and its underlying operational semantics.

BPMN process is a sequence of activities leading from an initial point of the process instance to some defined endpoints. The question now is how the flow nodes and sequence flows processed within the new process instance?.

For answering this question, the BPMN standard uses the key concept of token for the description of the execution semantics of the elements. BPMN states that "a token is a theoretical concept that is used as an aid to define the behaviour of a process that has been performed." [3, p. 27]. In general, the token traverses the sequence edges, and an end event eventually consumes it. When a start event creates a new process instance, a new token of this new instance is placed on each outgoing sequence flow of the start event. The target nodes of these sequence flows will be enabled when they have received the necessary number of tokens. When the target node is enabled, it can fire and start to work and pass tokens on.

When it has fired and completed its actions, it will again produce tokens for the respective instance on its outgoing sequence flows. Figure 2.10 highlights the general concept of a token traversing the diagram according to the standard.

e.g., the activity Approve Customer is enabled by a token. If its startQuantity attribute is 1 (the default value), then in one step, it will consume the token. Then, after completion of its actual work, assuming its completionQuantity attribute is also 1, it will produce one token on its outgoing sequence flows. Therefore, the next activity, Approve Product, will be executed in the same manner.

Activities in BPMN represent the set of works that the model will perform. Activities have their instances. The instantiation for an Activity is not similar to the Process. The common behaviour of all activities is that their instantiation relies on their incoming sequence flows. According to the BPMN, a subprocess in a normal flow "is instantiated when it is reached by a sequence flow token" [3, p. 430]. It has "a unique empty start event", i.e., a Start event with a None trigger. This Start event does not wait for a trigger from outside, but it will be activated after the subprocess instantiation. So, contrary to a

Start event of a process, the start event of the subprocess does not create a new process instance as such an instance already exists, but only a new activity instance is created.

When the Activity is instantiated, it is executed according to the lifecycle depicted in Figure 2.11. The presented lifecycle model is simplified (cf. Figure 13.2, [3, p. 428]); it ignores compensating, compensated, failing, failed states (as this thesis does not support compensation and error events). In general, when a process instance starts, all its activity nodes are in an inactive state. Activities have to move through a lifecycle, starting from the state Ready after being enabled by a number, startQuantity, of tokens. If the Activity is in Ready state, it checks whether input data are available (if required) to move to Active state (a state where intended work is performed). An Activity in Ready or Active state can be Withdrawn from being able to complete in the context of a race condition. This situation occurs (i) for tasks that are followed an event-based exclusive gateway element, and one of its followed elements (task or event) completes. This causes all other tasks to be withdrawn, or (ii) for alternative paths choices as tasks after an Exclusive gateway. Afterwards, during Completing, resources can be released, and a clean-up can be made. Moreover, if an activity is in an active or completing state, an Interrupting event may be triggered and abort the Activity. This leading to terminate it. But, if the Activity is normally completed, the activity state moves from Completing to Completed state. Note that the two states Completed and Terminated are final states. The activity state can be set to Terminated from being able to complete in the context of (i) a Terminate end event is reached within a process, "Termination indicates that all Activities in the Process or Activity should be immediately ended." [3, p. 235] or (ii) an Interrupting boundary intermediate event is triggered (e.g., timer events, message events, etc.).

There are two exceptional cases when the Interrupting event is attached to a subprocess. If the Interrupting event has occurred during the execution of the subprocess, it ignores it if it is in a final lifecycle state; otherwise, all running, active or ready elements within the subprocess are interrupted (i.e., all tokens are deleted). Then, a new life cycle state is set. Indeed, if the Activity is nested (i.e., a subprocess activity contains subprocess activities, etc.), all nested Activities are interrupted recursively.

We note that BPMN standard states: "All nested Activities that are not in Ready, Active or a final state (Completed, Compensated, Failed, etc.) and non-interrupting Event subprocesses are terminated" [3, P. 429]. I.e., all nested activities that are not in Ready, Active or Completed state are terminated. However, the fact that instances in Ready or Active states should not be interrupted is inconsistent with the diagram of an activity as lifecycle [3, p.428]. For that, we consider above only nested activities in final states.

BPMN defines Gateways to control the execution ordering of the activities within a process instance. Gateways are used to express splits and/or merges in the control flow of a process. Their semantics is expected to be instantaneous (when they are triggered). As we mentioned before, there are five different gateway types in the BPMN standard while in this thesis we are interested by four: Parallel, Exclusive, Event-based, and Inclusive types (see Figure 2.6). The Exclusive and the Event-based gateways will be enabled when only one of its incoming sequence flows is enabled. Then, they will decide on which outgoing sequence flows are to be taken. The decision for the exclusive gateway depends on data evaluation, while the event-based gateway decision depends on the event triggers of the target elements. The parallel gateway will wait until all its incoming sequence flows are enabled (i.e., each incoming flow has at least one token). Then, it will be fired, and all its outgoing sequence flows will receive a token (i.e., there are no conditions for choosing paths). The Inclusive gateway may synchronise a subset, or all its incoming sequence flows depending on a set of rules and chooses one or more of its outgoing sequence flows, based on data decision to produce tokens there. The semantics of this gateway is relatively complex, and it will be detailed in Chapter 4.

During the process instance execution, the process control flow is influenced by the event occurrences. Whereas activities represent units of work that have a duration, the events are used to model something that happens instantaneously. BPMN standard distinguishes between the Start event that signals how process instances start (tokens are created), the End event that signals when process instances are completed (tokens are destroyed), and the Intermediate event (within a control flow). The Intermediate events cannot retain tokens. Therefore, the BPMN standard specifies that a token remains in the incoming sequence flow of an intermediate event until the event occurs. Once the event occurs, the token traverses the event instantaneously.

Catching events specified where the control flow within a process waits for something to happen, e.g., the arrival of a message, the occurrence of a signal, or temporal deadline has been reached. The enabling of the event depends on (i) the presence of a token on one of its incoming edges or on the activity to which the boundary event belongs (if it is of boundary type) and (ii) the availability of triggers corresponding to the event trigger type. The firing of a catching event generates a token on its outgoing edges. The firing of the Boundary event may either start an exception flow for the running instance of the activity attached to (alternative to the normal flow) or interrupt the running instance and produce a token on their outgoing or, if not exist, on the outgoing edge of the activity attached to.

Throwing events are flow nodes that throw an event trigger. They can be either Intermediate or End events. All throwing events can fire when at least one token is available on at least one of their incoming sequence flows. If Throwing events is an intermediate, it fires by throwing triggers and passing tokens to its outgoing sequence flows. In contrast, the End events consume a token without producing a new token. End events finished the flow of an instance. A Process instance completes when an end event has consumed all its tokens, and no activity is left active. Note that the Process ends abnormally when a trigger of the End event is of a Terminate type. The End event additionally ensures that all elements within the process instance are terminated (i.e., drops all tokens of the process instance).

Example 2.3.1. Process Instance. Figure 2.12 depicts a running process instance of a PC chair notification process model. The execution history state of this process instance is as follows:

• The Start event instantiated the process and completed;

• The task Receive review executed and completed previously;

• An event Notification date occurred (completed);

• AND-split gateway AND1 was executed.

• The activity Check review text quality enabled and then activated;

• The XOR-split Check Reviewer decision evaluated;

• Finally, the activity Prepare rejection letter is currently Running (in a completing state). This implies that the lower branch of the XOR-split Check Reviewer is not selected, and the activity Prepare acceptance letter is passed to the withdrawn state.

Generally, a process instance is associated with an execution history capturing all events, activities, gateways executed during its execution, referred to in this thesis by an execution trace. The execution trace for this example contains all elements marked as completed (i.e., elements terminates with the withdrawn state are skipped).

First-Order Logic (FOL)

At the core of every language is the logic that provides the fundamental concepts. Logic is the study of the principles of correct reasoning. The reasoning is a manner to obtain a conclusion from hypotheses. Correct reasoning gives nothing to the truth of the hypothesis; it only guarantees that we can deduce the truth of the conclusion from the truth of the hypothesis. For a long time, logic was associated with First-Order Logic (FOL). FOL is by now a well-understood language with high expressive power and a rich model theory. FOL and its extensions play an important role in many branches of (theoretical) computer science such as (automata theory [START_REF] Grädel | Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar[END_REF], complexity theory [START_REF] Papadimitriou | Computational Complexity[END_REF], databases [START_REF] Decker | Foundations of First-order Databases[END_REF]). FOL is a small, simple, and expressive language designed for expressing abstractions. It is used to briefly articulate the natural language statements and develop information related to objects very easily. This section presents FOL syntax and semantics briefly. The following notions and notations are fairly standard and can be found in different composition in standard texts about first-order logic, e.g., in [START_REF] Herbert | A mathematical Introduction to Logic[END_REF], [START_REF] Ebbinghaus | Mathematical Logic[END_REF], [START_REF] Fitting | First-Order Logic and Automated Theorem Proving[END_REF], or [START_REF] Van Dalen | Logic and structure[END_REF].

Syntax of First-Order Formulas

We introduce the syntax of first-order logic (FOL) based on a signature σ, a set containing constant, function, and predicate symbols, each predicate symbol with an arity. First-order formulas over a signature σ are built according to the following syntax elements, two sorts of symbols coexist in FOL:

• Logical symbols, they have a fixed meaning or use in the language -Logical operators: ¬, ∨, ∧, =⇒ , and ⇐⇒ , respectively called negation, disjunction, conjunction, implication, equivalence.

-Punctuation "(", ")", opening and closing parenthesis, plus the comma character ", ".

-Quantifiers: ∀, ∃, respectively called universal and existential quantifier.

-Variables: an infinite set of variables V.

-Constants: an infinite set of constants C.

• Non-logical symbols, they have an application-dependent meaning or use:

-Functions: for each natural number n > 0, an infinite set F n (n-ary function).

-Predicates: for each natural number n > 0, an infinite set P n (n-ary predicate). • any variable v ∈ V is a σ-Term;

• if t 1 , ..., t n are σ-Terms, and f is a function symbol f ∈ F with n-arity ar(f) = {n|n > 0}, the expression f (t 1 , ..., t n) is also a σ-Term;

Definition 2.4.3. (σ-Formula) σ-Formula can be seen as a list of symbols from the vocabulary (operators, parenthesis, variables, and constants), it is at least satisfying one of these constraints:

1. It can be an atomic σ-Formula:

• P (t 1 , . . . t n) is a formula, where the t i are σ-Terms, P is a predicate symbol from P, of arity n, with n > 0;

• t 1 = t 2 is a formula, where t 1 and t 2 are terms;

2. Or a non-atomic σ-Formula:

• a σ-formula is either: a σ-formula φ, a σ-formula ψ, a negated σ-formula ¬φ, a conjunction φ ∧ ψ, a disjunction φ ∨ ψ, an implication φ =⇒ ψ, or an equivalence φ ⇐⇒ ψ;

• a quantified σ-formula of the form ∀x.ψ or ∃y.ψ where φ, ψ are σ-formulas and x, y ∈ V are first-order variables;

Example: Consider a signature with a constant symbol 1, binary function symbol +, and a binary relation symbol <. Then x + 1 is a term and ∀x(x < (y + 1)) is a formula.

Definition 2.4.4. (Bound and Free Variables) A variable v occurs freely in a formula φ if the formula contains an occurrence of v that is not in the scope of any quantifier Q such that Q ∈ {∃, ∀}. An occurrence of a variable v in a formula φ is bound, if it lies within the scope of some quantifier Q Note that different occurrences of the same variable in a given formula can be both bound and free, e.g., variable x occurs both bound and free in the formula P (x) ∧ ∃xP (x).

Definition 2.4.5. (Close Formula) A formula is closed if it does not contain any free variables.

Definition 2.4.6. (Sub-Formula) If a σ-formula φ occurs as part of another σ-formula ψ, then φ is called a subformula of ψ. Important notes: (i) To avoid too many parentheses in formulas and simplify their readability, some parentheses may be deleted to form priority formulas. In the rest of this manuscript, we follow the convention of Operators priority order mentioned above to define the formulas in some abbreviation form (e.g., the abbreviation of the formula

((a ∧ b) ∨ c) is a ∧ b ∨ c). (ii)
In general, we speak of terms, formulas, and atoms when σ is not important or clear from the current context.

Definition 2.4.8. (Literal) A literal is a variable or its negation. For a given variable x, the positive literal is represented by x, and the negative one by ¬x.

Some formulas have remarkable structural properties. We say that they are in a normal form. To introduce the different definitions of normal forms we are interested in, we first need to introduce the concepts of cube, and clause.

Definition 2.4.9. (Cube) A cube is a conjunction of literals.

Definition 2.4.10. (Clause) A clause is a disjunction of literals. A unit clause is a clause containing precisely one literal.

There exist many normal forms, but we present here only two forms we are interested in: the conjunctive normal form and the disjunctive normal form. Example: Given the variables a, b, c ,d, e, we define the formula φ 1 = (a ∨ ¬b ∨ ¬c) ∧ (¬d ∨ e ∨ f), φ as a CNF formula with clauses (a ∨ ¬b ∨ ¬c), (¬d ∨ e ∨ f). The formula φ 2 = (a ∧ ¬b ∧ ¬c) ∨ (¬d ∧ e ∧ f) is a DNF formula where (a ∧ ¬b ∧ ¬c) and (¬d ∧ e ∧ f) are cubes.

Semantics of First-Order Logic Formulas

The following section aims to present the interpretation of the logic formulas presented for the given structures above. • I, an interpretation function that assigns elements of the FOL language to objects in the domain of the interpretation U A . More precisely:

-I interprets any n-ary predicate symbol p ∈ P of arity n ∈ N by a set of n-tuples over U A domain, such that:

I(p) : U A n → B.
We note that the set may be empty;

-I interprets any n-ary function symbol f ∈ F of arity n ∈ N, I(f) by an n-ary function over a universe domain U A , such that :I(f) :

U A n → B * ; • α : V ∪ C → U A ,

a valuation function that assigns:

-

for each constant symbol c ∈ C, an element c A of U A ; -for each variable x ∈ V, an element x A of U A ;
Example 2.4.1. Example (N, <, 0) denotes the structure with universe N, binary relation < (understood as the usual order on N), and constant 0. Note though that this convention does not specify which values are assigned to variables. Definition 2.4.14. (Evaluation of the Formula) The value of the formula depends on the value of its terms. Let t be a term, A a σ -structure, and α a variable assignment over the universe domain U A . We denote the evaluation of t under α and A by [t] α . We have:

• for a variable v ∈ V, [v] α = α(x); • for a constant c ∈ C, [c] α = c A , with c A ∈ U A . eg., x ∈ {⊤, ⊥}, [⊤] α = 1, [⊥] α = 0 ;
• for f (t 1 , ..., t n) a term defined for n > 0, f is an n -ary function and t 1 , ..., t n are terms, then

[f (t 1 , ..., t n)] α = I(f)([t 1] α , ..., [t n] α)
Based on the value it can take the formula, it can be satisfiable or unsatisfiable.

Definition 2.4.15. (Satisfaction relation) Let G and F be formulas, x a variable, A a σ-structure, α a variable assignment. We define the satisfaction relation A, α |= F (A, α satisfies F or A, α models F) by induction over the structure of formulas we have:

• A, α |= P(t1, . . . , t n) if ([t1] α , . . . , [t n] α) ∈ I(P). • A, α |= (F ∧ G) if and only if A, α |= F and A, α |= G. • A, α |= (F ∨ G) if and only if A, α |= F or A, α |= G. • A, α |= ¬F if and only if A, α ̸ |= F . • A, α |= ∃x F if and only if there exists a ∈ U A such that A, α[x → a] |= F . • A, α |= ∀x F if and only if A, α[x → a] |= F for all a ∈ U A . • A, α |= t1 = t2 if and only if [t1] α = [t2] α .
Notation. We note that if there is no confusion, the expression of the form A, It is clear from the latter that the formula's evaluation depends on its structure and the values of its variables. Further, the value of a formula depends on all the assignments of its variables. Depending on the value taken by the formula for a particular assignment, we call this assignment model or countermodel of the formula. Table 2.1 presents the different possible values of a given formula φ, regarding different logical operators meaning of the vocabulary. Given V = {x, y} a set of variables, α an assignment function that maps each variable to a value in the set B = {⊤, ⊥}. The evaluation of the formula is then obtained by replacing the variables with their values.

[v 1 → a 1 , . . . , v n → a n] |= φ(v 1 , . . . , v n) by A |= φ(v 1 , . . . , v n).
V φ x y ¬x x ∨ y x ∧ y x =⇒ y x ⇐⇒ y x ∧ ¬y ¬(x =⇒ y) (x =⇒ y) ⇐⇒ (¬y =⇒ ¬x) ⊥ ⊥ ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊤ ⊤ ⊥ ⊤ ⊥ ⊥ ⊥ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊥ ⊤ ⊤ ⊤ ⊤ ⊥ ⊥ ⊤

Verification Methods

The verification of a system is the act of determining or refuting the system's accuracy with respect to its documentation or its formal specifications. There are different methods to analyse the efficiency of the system using formal or informal methods. Formal methods consist in proving the correctness of the system using mathematical tools. Informal ones use static and/or dynamic analysis. In the following, we present a set of verification approaches, emphasising their advantages and disadvantages.

Test

To verify the correct functioning of programs, the most used method in industry is testing. It is a dynamic approach that requires running the program on a set of inputs to ensure that the produced results are consistent. The program's validation is based on the association between the tested inputs and the expected outputs of the program. These tests can be carried out on the whole program (often referred to as Integration and Validation Test) or on isolated features (unit test).

The main advantage of the test is its sureness. The achieved result is precisely the one produced by the program since it is obtained by running it. Consequently, if the analysis indicates that a result is not as expected, the verdict is reliable. However, the test is not exhaustive, it can only verify a limited number of inputs to a given program, and the concrete inputs can be large or even endless. Accordingly, if the tests find no defects, unless they are carried out exhaustively for all possible program inputs, it does not guarantee its safety.

There are various metrics to determine the quality of a program's coverage by testing [START_REF] Ammann | Introduction to Software Testing[END_REF]. These can be exploited, in combination with static analyses, to automatically generate many tests that can improve the quality of coverage and, therefore, the confidence that one can have in the program. As opposed to dynamic analyses, static analyses are performed without running the code.

In general, the test method eliminates a reasonable number of errors with moderate cost. It allows to exhibit on the performed tests set the absence of a certain number of behaviours identified as problematic or the presence of behaviours identified as intended, but not for all inputs and the behaviours defined by the general specification. For this, it is necessary to turn to formal methods.

Abstract Interpretation

Abstract interpretation [START_REF] Cousot | Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints[END_REF] is a static analysis technique [START_REF] Nipkow | Owicki/Gries in Isabelle/HOL[END_REF], reasons on all behaviours that could arise during the execution of a program to determine if they are included in the set of acceptable ones. This analysis is generally undecidable [START_REF] Landi | Undecidability of Static Analysis[END_REF] and uses an approximation based on the structure theory and the fixed-point calculus. Users analyse the behaviour on all possible inputs without executing the instructions for each of them. The principal is to solve a set of equations determined from the program, expressing its semantics. The limit of this method relates to the ability of tools to solve these equations. If there is no automatic decision procedure for their resolution, the results are still very imprecise.

Theorem Proving

Theorem proving consists of expressing the system and the desired properties as axioms and inference rules, defining a theorem. The properties are then verified on the system using a theorem prover, e.g., Coq [START_REF] Edsger | Guarded Commands, Nondeterminacy and Formal Derivation of Programs[END_REF] or Isabelle [START_REF] Paulson | Isabelle -A Generic Theorem Prover[END_REF], HOL Proof Assistants [START_REF] Nipkow | Isabelle/HOL -A Proof Assistant for Higher-Order Logic[END_REF]. The calculi used for these proofs are introduced by Hoare Logics [39]. Hoare's logics allow reasoning about programs and their properties. Hoare's triplet has the form {P } c {Q} where P and Q are logical assertions and c a sequence of instructions. It indicates that from a state where the program respects the property P , the sequence of instructions c leads to a new state where Q is respected. In Hoare's logic, it is possible to reason in terms of total or partial correctness. In total correctness, Hoare's logic is based on inference systems on the triplet mentioned above. Each program instruction and the successive composition of this instruction results in a triplet in the derivation tree. Therefore, it is desirable to automate this inference as much as possible. However, for some instructions, the calculation cannot be automated. This is particularly the case of loops for which it is necessary to indicate invariants that must be respected.

The main advantage of the theorem proving method is its usability in the case of infinite systems. However, tools using this method commonly have the disadvantage of not being completely automatic. In the case of automatic solvers, it is possible to guide them by adding intermediate assertions in the source code or additional lemmas in the knowledge base, but this requires some tools expertise to determine why the proof does not pass. It is also possible to carry out the proofs by using interactive provers. However, the proofs produced by the generators are often complex to read because of too strong or too weak simplifications made by the Verification Condition Generator (VCGen), as well as to the encoding of semantics for the target provers. This issue represents the main barrier preventing its wider adoption by the industry.

Model-Checking

Model-checking [10] is a technique for verifying information or electronic systems represented by a model. The system is presented in a finite state automaton (i.e., labelled transition system graph) from which the desired properties can be checked. Figure 2.13 shows the principle of the model checking technique. Given the model specification and the properties as inputs to the model checker, it solves the property satisfiability question with respect to the model by exploring the state space exhaustively. If the property is not verified, it generates paths invalidating the property. In this case, the user must analyse these paths to determine whether the system's error is due to its model representation or the system itself is indeed at fault.

The advantage of model-checking is the automatic nature of the verification procedure and the generation of counterexamples. Therefore, the user's work is reduced to the system's formal modelling and the properties definition. However, one of the model-checking disadvantages concerns the problem of the combinatorial explosion of state space. This problem is due to the exponential increase in the size of the system state space according to processes' number and the components' number per process [START_REF] Clarke | Model Checking and the State Explosion Problem[END_REF]. It is possible to control the combinatorial explosion by representing states symbolically and not concretely.

In the case of models where the number of states is huge, this representation may not be sufficient to allow verification. In particular, this is the case when the number of states is infinite. In this context, abstraction methods are used to build an approximate model of the verified system using only a finite number of states. This type of analysis is implemented by several tools in the literature(i.e., SPIN [START_REF] Holzmann | The SPIN Model Checker -primer and reference manual[END_REF], Cubicle [START_REF] Sylvain Conchon | Cubicle: A Parallel SMT-Based Model Checker for Parameterized Systems -Tool Paper[END_REF], UPPAAL [START_REF] Bengtsson | UPPAAL -a Tool Suite for Automatic Verification of Real-Time Systems[END_REF], TLA + [17], etc.).

Verification Languages and Frameworks

There is a wide range of formal specification languages based on various logics and other formalisms. A subset of these languages, in which we are interested, is the so-called model based formal specification languages. Their approach for specification consists of describing systems by building mathematical models. Traditionally, the system specification is expressed as a system state model. This state model is constructed using well-understood mathematical entities (e.g., sets and functions). Among the existing languages, we choose languages based on model checking verification methods: Temporal Logic of Actions (TLA +) and the Lightweight formal methods (Alloy). In the following sections, we give a brief overview of them.

TLA Logic and TLA + Language

Temporal Logic of Actions (TLA +) [17] is a formal specification language for specifying and automatically verifying concurrent and distributed systems. TLA + is based on the combination of TLA (Temporal logic of Actions) and ZF (Zermelo-Fraenkel) set theories. TLA is parametrised by an underlying first-order language. Its non-temporal fragment is based on a Zermelo-Fraenkel set theory with the axiom of choice for specifying the data structures. TLA + is a rich language with well-defined syntax and semantics for formal reasoning and is designed to write clear and expressive specifications. In the following, we give a summary of them. Section 2.6.1.1 presents the syntax and the semantics of TLA logic. Section 2.6.1.2 describes the TLA + language. Section 2.6.1.4 presents the TLA + model-checker, called TLC (Temporal Logic Checker). For a complete presentation of the TLA + language, we refer the reader to [17].

TLA Logic Syntax & Semantics

TLA is a logic proposed by Leslie Lamport [17] to describe concurrent systems. It is an extension of linear temporal logic into a logic of actions.

Figure 2.14 summarises the syntax of TLA. TLA formulas are formed using boolean operators of predicate logic, arithmetic operators, set operators, and LTL operators. The semantics of TLA is based on the concept of state. A state corresponds to a valuation of variables. It is a mapping function from a set of variables V ar to a set of values V al. The set of all possible states is the set of all possible valuations of variables, noted St. Lamport denotes by [[F]] the semantic interpretation of a syntactic object F (which can be a predicate, an action or a formula). For example, for a variable v, the semantic interpretation [[v]] is a function that assigns the variable v a value in V al. Formula. TLA formulas are built up from actions and predicates using Boolean operators (¬ and ∧ and others that can be derived from these two), quantification over logical variables (∀, ∃), the operators ′ and the unary temporal operator □ (always) of LTL.

Divers. TLA language provides a set of predefined predicates and formulas. We present them briefly in the following. Let A be an action, and vars a set of variables used in A.

• ENABLED A, expresses whether the action A can be executed in a current state s. It is evaluated to true in state s if it is possible to reach some state t from s.

• UNCHANGED vars, expresses that the variables vars remain unchanged in the state next, it is an abbreviation of vars ′ = vars.

• [A] vars is a formula that is evaluated to true if action A is executable or if the values of the variables of vars remain unchanged.

• ⟨A⟩ vars is a formula that expresses that the variables of vars will change value by executing action A.

Quantifiers in TLA. TLA has existential and universal quantification operators of the logic of predicates. Given a temporal formula φ, a finite set of constants S, the formula:

• ∀x ∈ S : φ, is true if and only if φ is true for all the value of x in S.

• ∃x ∈ S : φ, is true if and only if φ is true for at least one element x in S.

In addition, TLA defines unbounded quantifiers, but since TLC does not support this type of quantifiers, we discard them from our description.

Temporal Formula. It is a Boolean-valued expression that can contain flexible and rigid variables and temporal operators. A flexible variable can have a different value in different states of behaviour.

A rigid variable can have the same value in every state of behaviour. The behaviour of the system is an infinite sequence of states. A state is an assignment of values to all flexible variables (there are infinitely many flexible variables, but only a finite number of them can occur in any single formula). A behaviour represents a possible history of the observable universe. Terminating executions of a system are characterised by behaviours ending in an infinite sequence of stuttering steps. Stuttering steps are steps (i.e., a step is a pair of states) in which no variables in the formula change. A specification of a system should allow stuttering steps since it should allow changes to parts of the universe external to the system. All TLA formulas are invariant under stuttering, meaning that adding or removing stuttering steps does not affect whether or not a behaviour satisfies a temporal formula. Semantically, the temporal formula is true or false for a behaviour. The temporal operators of TLA can be defined in terms of the primitive operator ("always"), noted □. Let σ = ⟨s 0 , s 1 , s 2 , . . . ⟩ be a sequence of states, such as σ ∈ St ∞ and St ∞ is the collection of all behaviours.

A TLA temporal formula consists of:

• a predicate P is evaluated to true for a behaviour σ if and only if the initial state of σ is true.

• A formula □P is true for a behaviour σ if P is true for every state s i in σ. To verify that a program satisfies a particular property, we prove that it satisfies a specific temporal formula. We describe in the following the semantics of temporal operators defined from the Boolean operators and the operator always □. Given φ and ψ temporal formulas, σ a sequence of states:

• Eventually Operator, noted by ♢, is defined in terms of always operator, as the assertion of the negation of a formula does not hold forever: ♢φ = ¬□¬φ, states that formulas are not always false.] is true at any instance n in the sequence σ.

I
• Eventually-Always, noted by ♢□, is defined in terms of always and eventually, operators, asserts that a formula eventually holds and it is true in every subsequent state. I.e., ♢□ [[φ]] specifies that φ is eventually always true.

• Temporal Implication, noted by ⇝, is defined in terms of always and eventually operators, φ ⇝ ψ = □(φ =⇒ ♢ψ), asserts that when a formula being true always-eventually leads to a state where another is true. I.e., when φ is true, then the formula ψ is necessarily true in the future, without requiring that ψ remain true.

Expression of properties in TLA. In TLA, we can express safety, fairness and liveliness properties.

Safety property.

Expresses that something bad will never happen. The invariance is a safety property that is expressed in TLA by the always operator □. Given a predicate P and a specification S. The temporal formula □P will be satisfied if the following implication is evaluated to true: S =⇒ □ P .

Fairness property. A system specification is usually a disjunction of actions. Fairness allows specifying that when an action is executable, then it will be executable in the future. Lamport distinguishes two types of fairness, weak and strong fairness.

• Weak Fairness states that this action cannot continuously be enabled without being fired. The following formula expresses weak fairness:

W F vars (A) ≜ ♢□ ENABLED ⟨A⟩ vars =⇒ □♢⟨A⟩ vars
• Strong Fairness states that an action cannot be infinitely often enabled without being fired (i.e., if an action A is enabled infinitely often, then it will occur infinitely often as well). The following formula expresses strong fairness:

SF vars (A) ≜ □♢ ENABLED ⟨A⟩ vars =⇒ □♢⟨A⟩ vars
Strong Fairness property implies the corresponding Weak Fairness property.

Liveness property. expresses that something good will eventually occur. As liveliness is expressed in infinite behaviours, specifications must guarantee progress. Therefore, TLA specifies liveness through weak and strong fairness conditions.

2.6.1.2 TLA + Language TLA + language is a formal specification language that extends TLA logic by structuring it into modules.

Modules. They are used to structure complex specifications. Module declaration starts with the keyword MODULE. Each TLA + module contains a set of constants declaration specified by the keyword CONSTANTS, a set of variables declaration specified by the keyword VARIABLES, and a set of definitions in term of: actions, functions, predicates, temporal formulas, and a set of properties to check using the operator form (Op(p 1 , . . . , p n) ≜ expr). A module can extend other modules, importing all their declarations and definitions using the keyword EXTENDS.

Expression. It relies on standard first-order logic, set operators, and several arithmetic modules.

Set. TLA + is a set-theoretic language where every expression includes formulas, functions, numbers, etc., denotes a set. Table 2.2 shows a summary of TLA + operators. An overview of the syntax TLA + describes the standard constructs and operators of the language is as follows. Sequences. A sequence (or a tuple) is a TLA + function which is written under the form of:

Logic T RU E F ALSE ∧ ∨ ¬ =⇒ ≡ Sets ̸ = ∈ ̸ ∈ ∩ ∪ ⊂ \ [Set
[x ∈ S → e] [Function f such that f [x] = e for x ∈ S] [S → T] [Set of functions f with f [x] ∈ T for all x ∈ S] [f EXCEPT![e1] = e2] [Function f ′ equal to f such that f ′ [e1] = e2] [f EXCEPT![e1] ∈ S] [Set of functions f ′ equal to f such that f ′ [e] ∈ S
p 1 ∧ • • • ∧ p n [Conjunction of p 1 . . . p n] p 1 ∨ • • • ∨ p n [Disjunction of p 1 . . . p n]
• 0-tuple, is the empty sequence, noted ⟨⟩. It is the unique function having an empty domain:

⟨⟩ ≜ [x ∈ {} ↣ {}]
• n-tuple ⟨e 1 , . . . , e n ⟩, is a function whose domain of definition is the the interval of integer numbers 1, . . . , n, where ⟨e 1 , . . . , e n ⟩[i] = e i . The i th element of the sequence e, noted e[i] The sequence index starts at 1. The meaning of the n-tuple can be given by the CASE expression as follow:

⟨e 1 , . . . , e n ⟩ ≜ [y ∈ 1 . . . n → CASE (y = 1) → e 1 | . . . | CASE (y = n) → e n]
The set of all n-tuples is noted by S 1 ו • •×S n , such that the i th element is in the set S i . Several operators on sequences are defined in the standard Sequences module. Table 2.3 presents the main operators on sequences used in this thesis.

Seq(S)

[the set of all the sequences built from the elements of S] Len(S)

[the length of the sequence S] S • T

[the resulting sequence from the concatenation of S and T] Head(S)

[the first element of S] T ail(S)

[the sequence S omitting the first element S [1]] Append(S, e)

[the sequence resulting from the addition of the element e to the sequence S] SubSeq(S, m, n) Records. An r record is written under the form h 1 → e 1 , . . . , h n → e n in which each field (or component) h i is equal to e i . Access to a field is through the expression r.h i . The set of all records noted by h 1 : S 1 , . . . , h n : S n such that each field h i is in the set S i . The operator EXCEPT, defined on functions can also be used on records as follows:

[the sequence ⟨S[m], S[m + 1], . . . , S[n]⟩]
• r EXCEPT !.h = e, is a record r ′ equal to r such that r ′ .h = e.

• {[r EXCEPT !.h] ∈ S}, is a set of records r ′ equal to r such that r.h ∈ S.

Note that in TLA + , a record is a function whose definition domain is a finite set of String.

Operators. TLA + standard grammar includes a set of operators. Different from the functions, operators have not a domain of definition. They may be written under the forms: Op ≜ exp, with Op is an identifier and exp is an expression, or under the form Op(p 1 , . . . , p n) ≜ exp with p i an operator of the form Op(-, . . . , -). Op(p 1 , . . . , p n) ≜ exp defines an operator symbol Op such that Op(e 1 , . . . , e n) equals exp, where each p i is replaced by e i .

TLA + has a set of predefined operators, that are:

• CHOOSE Operator. Represents a primitive expression writing as:

CHOOSE x ∈ S : P (x)
It denotes an arbitrary fixed value x in a set S such that P (x) is true if x value exists, false otherwise.

• Boolean Operator. The Boolean operators:

T RU E F ALSE ∧ ∨ ¬ =⇒ ≡
• Set Operators. TLA + is a set theory language, has a set of theory operators. The most commonly used basic operators are the empty set {}, the pairing set {exp, exp}, the power set SUBSET s, the generalized union UNION s, the union set defined using pairs exp ∪ exp , and the intersection exp ∩ exp. TLA + also has the following set constructors:

-{exp 1 , . . . , exp 1 }, with n ≥ 1, defines the set of elements e i .

-{x ∈ S : p}, defines the set of elements x of S satisfying the property p.

-{e : x ∈ S}, defined the set of elements e such that x in S.

Arithmetic. Note that the operator symbols correspond to the standard function and predicate symbols of firstorder logic. Thus, TLA + semantics is an extension to the formal semantics of first-order logic with equality.

TLA + Specification

The dynamic system behaviour is expressed in TLA + as a transition system, with an initial state predicate and actions to describe the transitions. The TLA + specification of a system is represented by a single predicate describing the behaviour of the system, called Spec. For example, formula. 2.1 shows the definition of the Spec predicate. The main part of the TLA + specification consists of an initial predicate, named Init and an action formula, named Next, where:

Spec ≜ Init ∧ □[N ext] vars ∧ F airness (2.1)
• Init, is the initial state predicate, a proposition that holds for every state that is a valid initial state for the system.

• □[N ext] V ars , is the next-state relation, which states that every state following the initial state must either satisfy the next-state action Next or be a stuttering state.

• V ars is the set of variables required to specify the system. Variables in TLA have no types and can assume any value.

• F airness is the fairness condition of the specification.

System properties are specified using LTL. They are expressed using eventually, always-eventually, or eventually always operators, or temporal implication formula described above.

The described Spec formula asserts the safety, liveness, and fairness properties due to conjoint fairness conditions to Spec.

TLC Model Checker

The TLA model checker tool, named TLC [START_REF] Yu | Model Checking TLA + Specifications[END_REF] is used to check TLA + specifications. The TLC tool has a distributed implementation and a centralised implementation with different capabilities. TLC tests all possible combinations of actions and reports any detected violations of the system's properties. It performs a breadth-first search to traverse the state graph. It starts by generating all the initial states and adds them to the FIFO queue, then launches threads that repeatedly execute the process described below : (i) pick a state from the FIFO queue and generate all its successor states, (ii) for each successor state; check if it satisfies all the invariant properties and adds it to the end of the FIFO queue; (iii) if some successor does not satisfy some invariant property, report an error and print the corresponding counterexample. The TLA + toolbox, freely available at [START_REF] Lamport | The TLA Home Page[END_REF] contains an editor, a pretty-printer, and the TLC model checker, which enumerates states by interpreting TLA + specifications.

Alloy Logic & Language

Section 2.6.2.1 presents the Alloy logic. Section 2.6.2.2 presents the semantics of the Alloy language. Section 2.6.2.3 presents its verification tool, called Alloy Analyser.

Alloy Logic

Alloy [46], often referred to as "lightweight formal methods" [47], is a declarative modelling language based on relational logic (RL), a logic with a clear semantics based on relations. This logic provides a powerful yet simple formalism for interpreting Alloy as modelling constructs. It is based on a First-Order Logic (FOL) enhanced with the transitive closure operation to express complex structural and behavioural constraints [47]. Alloy is very strongly influenced by object-oriented modelling. It allows the user to easily classify objects, and associate properties to objects according to their classification. Figure 2.4 gives a summary of Alloy's operators token from [START_REF] Frias | Reasoning About Static and Dynamic Properties in Alloy: A Purely Relational Approach[END_REF] and updated with a subset of operators and definitions [47,[START_REF] Jackson | Alloy: A Lightweight Object Modelling Notation[END_REF]. The figure introduces the building blocks that underlie Alloy. Alloy is based on models. The structure of each model is built from typed relations and atoms.

Atom. An atom is a primitive entity that is indivisible, (i.e., it cannot be broken into several subparts); immutable (i.e., its properties do not change over time), and uninterpreted (it has no innate property).

Set. It is a well-defined collection of distinct objects.

Relation.

A relation is a structure that relates atoms. Mathematically, it is a set of tuples, each tuple consisting of a sequence of atoms. The size of the relation is the number of tuples. Further, The arity of the relation is the arity of the tuples. Thus, a set is an unary relation, 1-tuple, a scalar is a singleton (size 1) unary relation, binary relation is a relation (size 2). Informally, the term relation is used to mention a relation of arity two or more.

Constants Relation. Alloy provides three relational constants (univ, none, iden):

• none is the empty relation that contains no tuple,

• univ is the universal relation that contains every tuple,

• iden is the identity relation that maps each atom to itself.

As these constants are used in expressions with variables, they have types.

Expression. In Alloy, expressions are just like mathematical expressions, constructed by nested applications of operators to variables. All expressions denote relations, so every operator takes one or more relations and yields a relation. Operators fall into two categories: Set operators and Relational operators.

• Set operators includes the standards operators on sets (union, intersection, the difference, in, and =) writing in ASCII form. The two operators in and = are used to compare relations by testing whether the tuples of one relation also belong to another. Given A and B, two relations have the same type. The formula A in B is true when every tuple of A is also a tuple of B. The equality is the containment in both directions, A = B is true if A in B ∧ B in A are true.

• Relational operators includes (product, join, transpose, transitive closure, reflexive transitive closure, domain restriction, and range restriction) operators.

-The product A-> B of two relations is a relation resulted by taking every combination of a tuple from A and a tuple from B and concatenating them.

-The join A.B of relations A and B is a relation resulting from the combination of every tuple in A and a tuple in B, including their join, if it exists. E.g., the join of two tuple X = (z, x 1 , x n), Y = (y 1 , y n , z) is the tuple (X, Y) which starts by the second atom of X, x 1 and ends by the before last atom y n without the element z. Note that the matched atom is removed from the resulting tuple. -The transpose of a relation is its inverse. It takes the mirror image of a relation, forming a new relation by reversing the order of each tuple. It is only defined for binary relations. E.g., the transpose of the relation R = {(a 1 , b 1), (a 2 , a 2)} is˜R = {(b 1 , a 1), (a 2 , a 2)} -The reflexive-transitive closure of a relation is the smallest enclosing relation that is transitive and reflexive (that is, includes the identity relation). E.g., the transitive closure of a given relation R = {(a 1 , a 2), (a 2 , a 3), (a 3 , a 4)} is R = {(a 1 ,a 2), (a 1 , a 3), (a 1 , a 4), (a 2 , a 3), (a 2 , a 4), (a 3 , a 4)}. The reflexive-transitive closure of a relation R = {(a 1 , a 2), (a 2 , a 3), (a 3 , a 4)} is * R = {(a 1 , a 1), (a 2 , a 2), (a 3 , a 3), (a 4 , a 2), (a 1 , a 2), (a 1 , a 3), (a 1 , a 4), (a 2 , a 3), (a 2 , a 4), (a 3 , a 4)}, i.e., the set of its identity element plus the set of the transitive closure.

-The domain/range restriction. For any set A and any relation B, the domain restriction relation, A <: B, is tuples in B beginning with a member of A. The range restriction relation, B :> A, is a relation tuple in B ending with a member of A.

In addition, Alloy provides Operators to present compound (larger) formulas which are are made from smaller formulas by combining them using the standard Logical operators, and by quantifying formulas using Quantifiers that contain free variables over bindings.

• Logical operators includes negation, conjunction, disjunction, implication, bi-implication and condition which have the standard definitions (see Table 2.4).

• Quantifiers includes five operators defined in Alloy which are all, some, no, one, lone. Writing:

all A, states that for all element in the set A, some A, states that there is at least one A in the set, no A, states that the set is empty,

one A states that there is exactly one A in the set, lone A, states that there is at most one A in the set or the set is empty.

These quantifiers can be applied to variables as well as expressions. Note that the quantified variables are always bounded by an expression. Indeed, if no multiplicity quantifier is used, alloy assumes to be one.

Alloy Language

The Alloy language uses the Alloy logic with some other constructs to make modules. The module declaration starts by the keyword module. Each Alloy module consists of a number of declared constructs, the gross structural elements of an Alloy model are: modules, signatures, fields, facts, predicates, functions, assertions, commands, let expressions. All those terms will be introduced in the following.

Modules. Alloy models are divided into modules. Each module is declared on a separate file using a declaration. Some models or model fragments are used repeatedly in other models. To make reuse convenient and allow structuring of large models, Alloy enables a model to incorporate the contents of other modules using import instructions. The module system of Alloy is a simplified version of the package system of Java. Modules can be arranged in a tree and are given pathnames from the root. The names of the files containing the modules, and their locations in the directory hierarchy, must match the module names. Predicates and Functions. Are both parametrisable Alloy expressions. They are declared using the pred and f un keywords, followed by an identifier, optional parameters and a block containing Alloy expressions. The predicate specifies a configurable constraint that can be instantiated in different contexts. The function is a parametrised formula that can be applied by instantiating the parameters with expressions whose types match the declared parameter types. e.g., given the signature: Sig s and Sig t, a function has the form f un f (arg 1 : s, arg 2 : t){. . . }. The arguments present the function inputs, and the output value represents by the whole expression application. Note that there is a convention that the second argument in a function declaration is treated as the function's result. There are two predefined functions and predicates: sum and disj. The disj predicate returns true or false depending on whether its arguments represent mutually disjoint relations, and the function sum takes a set of integers and returns their sum. The declaration form of the alloy function and predicate is as follows: Assertions. Are special predicates declared with the keyword assert, defines a boolean formula that it is claimed to be always true. Its declaration form is as follows:

f ormula := !f ormula [neg] M [!F]e = ¬M [F]e f ormula&&f ormula [conjunction] M [F &&G]e = M [F]e ∧ M [G]e f ormula || f ormula [disjunction] M [F || G]e = M [F]e ∨ M [G]e f ormula => f ormula [implication] M [F => G]e = ¬M [F]e ∨ M [G]e f ormula <=> f ormula [biimplication] M [F <=> G]e = (M [F]e ∧ M [G]e) ∨ (¬M [F]e ∧ ¬M [G]e) formula => formula, formula [Conditional] M [F => G, H]e if F then G else H Quantifiers noted by Q here all v : type | formula [universal] M [all v : t] | F] = {M [F](e ⊕ v ↣ {x}) | x ∈ e(t)} F is true for every v in t. some v : type | formula [existential] M [some v : t | F] = {M [F](e ⊕ v ↣ {x}) | x ∈ e(t)} F is true for some v in t no v : type | formula [not exist] M [no v : t | F] =| {M [F](e ⊕ v ↣ {x}) | x ∈ e(t)} |= ∅ F is true for no v in t one v : type | formula [exactly one element] M [one v : t | F] = {∃!M [F](e ⊕ v ↣ {x}) | x ∈ e(t)} F is true for exactly one v in t lone v : type | formula [zero or one exists] M [lone v : t | F] = M [no v : t] ∨ M [one v : t] F is true for at most v in t Q disj x, y : type | f ormula [disjoint Keyword] M [all disj x
assertion ::= assert [param name] [type params] formula-seq
Expressions. Expressions in Alloy fall into three categories, which are determined not by the grammar but by type checking: relational expressions, boolean expressions, and integer expressions. The used term expression, in general, refers to a relational or integer expression. Therefore, constraints the formula refers to a boolean expression. The logical operators apply only to constraints, and the relational and arithmetic operators apply only to expressions. Alloy defined an exception for the two condition constructs, expressed with implies (or =>) and else, and the let syntax, which apply to all expression types.

• conditional expression takes the form :

expr ::= expr (=> | implies) expr else expr

• Let expressions. Allows a variable to be introduced, to highlight an important subexpression or to make an expression or constraint shorter by factoring out a repeated subexpression:

expr ::=let letDecl, block Or Bar letdecl ::= var = expr Commands. Are a set of instructions that order Alloy Analyser to perform an analysis and generate instances for a given Alloy module. Alloy language defines two commands, check and run, which are used as follows:

• check command used to check an assertion; its result is a sample of counter-examples in which the assertion is violated if this is found. Both commands take the assertion name or function and the scope indication in which the analysis is to be performed. The Alloy analysis is decidable only because it is performed on a finite domain. This is achieved by associating a scope to each module's signature, i.e., an upper bound to the number of atoms typed by each signature of the module. We note that presenting all the details of the Alloy language is beyond the scope of this work. We invite the reader to read the remarkable book of Jackson author on Alloy in [47].

Alloy Analyser

The simplicity of both relational logic and the language presented above as a whole makes Alloy suitable for automatic analysis. Alloy is supported by Alloy Analyser. It is a tool yielding a set of Alloy instances model whose elements are typed by concepts and relations of the meta-model defined by the Alloy module and satisfy constraints of the module. An instance is obtained by checking an assertion. It is called a counterexample if it is obtained by violated assertion checking. The Alloy Analyser can list instances or counterexamples so that it produces a different result each time.

Alloy Analyser is a bounded model checker using SATisfiability (SAT) solvers. It represents a powerful analysis tool that allows one to search for specification instances and check models' intended properties by resorting to SAT solving. It is an automatic tool that translates the alloy specification into FOL expressions as Boolean Satisfiability Problem (SAT) using the Kodkod model-finder [START_REF] Torlak | Kodkod: A Relational Model Finder[END_REF]. Then, this problem is solved by an SAT solver, e.g., SAT4J [START_REF] Le | Sat4j 2.3.2: on the Fly solver Configuration System Description[END_REF], MiniSat [START_REF] Eén | An Extensible SAT-solver[END_REF], or Berkmin [START_REF] Goldberg | BerkMin: A Fast and Robust Sat-solver[END_REF], and the result of the analysis is displayed to the user. Boolean satisfiability is the problem of finding an assignment to a boolean formula on which the whole formula is evaluated to be true. The primary analysis technique associated with Alloy is essentially a counterexample extraction mechanism based on SAT solving. Given a system specification and a statement about it, a counterexample of that statement (under the assumptions of the system description) is exhaustively researched.

Thus, the Alloy Analyser is a constraint solver that provides two types of automatic analysis the simulation and verification. (i) The simulation analysis is supported using the keyword run to produce instances of the model (Alloy specification) satisfying a condition. (ii) The verification is based on a model-finding approach using an SAT solver. To support the verification, alloy Analyser uses the keyword check to check whether an assertion holds for a specific scope of atoms. An assertion differs from a fact in that the Alloy Analyser will check an assertion to see if it is true for all the examples in the scope. In contrast, the Alloy Analyser assumes each fact is true and uses them to constrain the examples it examines. If it finds a counterexample, then the predicate is unsatisfied. If no counterexample is found, the predicate may be either valid (i.e., true for all possible examples), or it may be unsatisfied but not within the used scope.

As FOL is not decidable (and the relational logic is a proper extension of first-order logic), SAT solving cannot generally be used to guarantee consistency (or, equivalently, the absence of counterexamples for) of a theory. Then, an exhaustive search for counterexamples has to be performed up to a bound k in the model elements (signatures) to limit the domain of the interpretations. The bound is a positive integer restricting the number of instances of each instance element of the analysed system. Thus, if no counterexample is found, the assertion could still be invalid for an upper bound. In the same way, in the case of a simulation (run), if no instance is not found, the condition could be valid for an upper bound.

Therefore, this analysis procedure can be regarded as a validation mechanism rather than a verification procedure. Its usefulness for validation is justified by the exciting idea that, in practice, if a statement is not valid, there often exists a counterexample of it of small size.

Finally, It is important to note that the authors of Alloy provide the Java API on which Alloy Analyser was built. As a result, it is straightforward to integrate the analytical power of Alloy in tools.

Summary

We have presented throughout this chapter the basic notions of BPM and the main standard notation for modelling business systems BPMN. Secondly, we have presented an overview of the existing verification methods. Thirdly, we present the FOL logic, which is used in this thesis as a basic language to specify the execution semantics of the BPMN. Finally, we have presented TLA + and Alloy, which are two formal specification languages based on the FOL logic, are increasingly popular due to their simplicity and flexibility. They constitute a powerful but simple language associated with effective and automated tools. Table 2.5 summaries their particularities. In the next chapter, we describe an exhaustive overview of the verification works for the BPMN standard.

Introduction

Business process verification is a valuable phase to avoid defaults at design time rather than when running the processes over business process engines. BPMN is the most prominent notation for representing business processes due to its wide usage in academic and industrial contexts. However, since BPMN suffers from using the semi-formal definition of its execution semantics, its formalisation was a research question. This chapter aims to provide an entirely comprehensive and detailed high-level survey of the significant works on formalising and verifying BPMN models. It gives students and researchers in this domain a helpful base for their future research and guides us to evaluate our proposal regarding existing work. We conducted a systematic literature review to collect and analyse the work on business process formalisation and verification present in the literature and analysing supporting tools. We investigated 1445 papers, and we identified a count of 79 Business process verification and tools works for two kinds of business process diagrams. The authors report direct or indirect formalisation and/or its implementation using different formal languages for each of these works. Compared to prior systematic literature on business process verification and tools, this chapter extends the current knowledge [START_REF] Morimoto | A Survey of Formal Verification for Business Process Modeling[END_REF][START_REF] Wil | Business Process Management: a Comprehensive Survey[END_REF][START_REF] Fellmann | State-of-the-art of Business Process Compliance Approaches: A Survey[END_REF][START_REF] Hanh | Ontology-based Approaches for Cross-Enterprise Collaboration: a Literature Review on Semantic Business Process Management[END_REF] by analysing works based on different formalism and focused on various business process perspectives.

This chapter is organised as follows. Section 3.2 describes the protocol of our systematic review, including research objective, research questions, research strategy, how we extracted and classified our data (inclusion, exclusion criteria and quality assessment criteria). Section 3.3 describes the selected approaches for the verification of the BPMN models. Section 3.4 presents our analysis, comparison and discussion of the studies and, finally, a conclusion is given in Section 3.5.

Research Method

This section describes the review protocol we adopted for the literature search for selecting the relevant articles. We chose the approach of Petersen et al. [START_REF] Petersen | Guidelines for Conducting Systematic Mapping Studies in Software Engineering: An Update[END_REF] to conduct our systematic review. In turn, we discuss the underlying research questions, preliminary research, search strategy, inclusion, exclusion and quality assessment criteria. Figure 3.1 summarise the approach application. First, we define a set of research questions. Second, depending on the questions that we asked, we choose terms to build our search queries. Third, we use these queries in the search engine of selected databases. Fourth, after collecting the results of each database, eliminating redundant papers (i.e., journal or conference papers indexed into more than one database). Then apply the first screening phase in which we read for each article only the title, the summary, and the keywords, and we see if they can be included. Afterwards, we pass the selected papers for a second screening phase where we apply a set of inclusion, exclusion, and assessment quality criteria that we define. Finally, the output papers will pass for the analysis and the extraction of data.

Objectives

This chapter aims to accumulate an understanding of the current state-of-the-art in the verification of the business process models domain, summarise existing techniques and tools, and identify the areas of further work.

Survey questions

Describing the underlying research questions is the first step of any systematic literature review to guide the identification and analysis of studies. To achieve the objectives mentioned above, we have formulated the following questions:

• Which formal model languages are used to formalise the semantics of BPMN ?

• What are the goal(s) of this formalisation ?

• Which is the state of tool support ?

• What are the parts of BPMN being supported by the tools ?

• Which are the challenges that still need to be addressed ?

Prior Reviews on Business Process Modelling Verification

We are not the first ones to conduct a systematic review on the verification of the process models. So far, there have been several reviews about topics related to process model analysis in general (e.g., [START_REF] Morimoto | A Survey of Formal Verification for Business Process Modeling[END_REF][START_REF] Fellmann | State-of-the-art of Business Process Compliance Approaches: A Survey[END_REF][START_REF] Volker Gruhn | A Comparison of Soundness Results Obtained by Different Approaches[END_REF][START_REF] Amjad | Event-Driven Process Chain for Modeling and Verification of Business Requirements-A Systematic Literature Review[END_REF][START_REF] Groefsema | A Survey of Formal Business Process Verification: From Soundness to Variability[END_REF]). Nevertheless, none of these reviews studies the works based on the formalisation of BPMN execution semantics models and their verification tool support.

In [START_REF] Volker Gruhn | A Comparison of Soundness Results Obtained by Different Approaches[END_REF], the authors contributed in the area of Event-driven Process Chain (EPC) verification. They analyse 712 models with three tools (EPCTools, ProM plugin for EPC soundness analysis, and YAWL Editor) for checking soundness properties. In [START_REF] Amjad | Event-Driven Process Chain for Modeling and Verification of Business Requirements-A Systematic Literature Review[END_REF], the authors investigated EPC approaches and tools for addressing the problem of automating business processes. They study the modelling and verification of business requirements in the domain of EPC and discuss the verification methods used in the design of IoT systems. Unlike this work, we based on BPMN as the modelling language.

The work that comes closest to the ambition of our review is [START_REF] Morimoto | A Survey of Formal Verification for Business Process Modeling[END_REF], which provides a survey of formal verification approaches for business process models. The selected work was published before 2008 and was generally focused on BPMN or activity diagrams of UML as notations for business processes modelling. Unlike our survey, we focus only on BPMN as a modelling language and the work from 2008. For that, we can consider that this survey is complementary to their work.

The work in [START_REF] Groefsema | A Survey of Formal Business Process Verification: From Soundness to Variability[END_REF] presents an analysis of verification tools introduced in different application areas: variability (i.e., whether works based on a business process with a characteristic of supporting various versions depending on the intended use or execution context); compliance (i.e., whether process models conform with specifications), and compatibility (i.e., whether two process models conform semantically). Unlike our work, the selected work was published in [2005][2006][2007][2008], and none of them verified the order or parallel execution of Message Flows, Tasks, Events, etc., in a Collaboration. In addition, the used modelling language in the selected set of work is not restricted to BPMN.

Recently, some systematic reviews have been presented in [START_REF] Fellmann | State-of-the-art of Business Process Compliance Approaches: A Survey[END_REF], and [START_REF] Muyideen | A Systematic Literature Review on Compliance Requirements Management of Business Processes[END_REF] where they focus on BP compliance. More precisely, the authors in [START_REF] Fellmann | State-of-the-art of Business Process Compliance Approaches: A Survey[END_REF] conducted a state-of-the-art of business process compliance approaches published in [2003][2004][2005][2006][2007][2008][2009][2010][2011][2012][2013]. They classified the compliance over four dimensions (scope, lifecycle phase, formality and contribution type of compliance approaches) where the formalisation of the business process represents only a sub-dimension of the formality dimension. The authors in [START_REF] Muyideen | A Systematic Literature Review on Compliance Requirements Management of Business Processes[END_REF] presented a systematic review focusing on the management of business process compliance requirements (data flow, control flow, resource, allocation, time). They addressed works published in [2011][2012][2013][2014][2015][2016][2017]. The authors did not focus on BPMN as a modelling language.

Our literature review builds on the one in [START_REF] Morimoto | A Survey of Formal Verification for Business Process Modeling[END_REF] including the references reported in their review that were related to process modelling verification based on BPMN. Beyond that, we took into account newer works from the year 2008 to January of 2021. We have also defined our own more specific search string and research classifications for works.

Research Strategy

Given the broad nature of the research domain, finding all relevant papers by manually searching through conferences and journals would have been very time-consuming. Therefore, we opt to start the search process with an automated search. The literature collection process started by querying prominent scholarly databases. For this purpose, we first identified a list of subject terms, concepts and keywords. Next, we determined six primary keywords from our review questions: "BPMN", "Verification", "Formal semantics", "Framework", and "Approach". We then added other keywords that are synonyms or related to those five:

• an alternative terms for "BPMN" are "BPM", "Business process modelling", "Process Diagram", and "Collaboration Diagram".

• an alternative term for "Verification" is "Analysis".

• an alternative terms for "Formal semantics" are "Formalising", "Formalisation", and "Formal Methods".

• an alternative term for "Framework" is "Tool".

• an alternative term for "Approach" are "Method" and "Technique".

These terms were then combined using boolean operators to construct the key search terms such as:

• "BPMN" AND ("Formal semantics" AND "Approach") AND "Verification".

• "Business process modelling" AND ("Verification" AND "Framework").

• "Business process modelling" AND ("Verification" OR "Analysis") AND ("Framework" OR "Tool").

• "Verification" AND ("Technique" OR "Method" OR "Approach") AND "Collaboration Diagram".

As a final check, the search string was updated and re-run to reflect frequently occurring words in the titles, abstracts, keywords of relevant papers found through reference search results. Consequently, we determined that "BPMN semantics" and its related keywords must be included in the papers' title or abstract. Our focus is on all articles published in English between 2008 and January 2021. Therefore, the metadata fields we used are title, abstract and keywords. These yielded the following:

• Search string= ("Business Process Modelling" OR "BPMN" OR "BPM") AND ("Verification" OR "Analysis") AND ("Formal Semantics" OR "Formalising" OR "Formalisation" OR "Formal Methods") AND ("Technique" OR "Method" OR "Approach") AND ("Framework" OR "Tool")

• Title= "BPM" OR "BPMN" OR " Process Model" OR "Process Modelling "OR " Process Modelling" OR "Process Diagram" OR "Collaboration Diagram"

• Document Types = MEETING OR CONFERENCE OR ARTICLE

• Timespan = 2008-2021

• Search language = English
To perform an exhaustive search, we have identified five electronic sources of relevance where major conferences and journals in the domain publish their proceedings: SpringerLink1 , IEEExplore2 , ACM3 , WEB of Science4 , ScienceDirect5 , and ScienceScholar6 databases. Table 3.1 presents the number of search results per database. The literature search resulted in more than 1445 papers. The first column presents the electronic databases; the second column shows the number of articles found on each given database after searching and eliminating the redundancy papers. The third column presents the number of papers that are kept distributed against each database after the first screening phase. The fourth column presents the final number of papers preserved after the second screening phase distributed against each database. Then, the following columns present the distribution of these papers in terms of their types of Conferences, Workshops, Symposiums or Journals. The last column presents the percentage of included papers per database.

Article Selection and Inclusion and Exclusion Criteria

The collected papers were then checked for their relevance to the literature review by checking their titles and reading their abstracts to ensure that they are related to business process modelling and verification of BPMN topics. If the paper passed these preliminary checks, it was included in the pool. Those papers whose title was not relevant were immediately removed from the analysis. Initially, we identified 177 papers as potentially applicable to the research questions. Then, we manually analysed the selected articles. To obtain papers directly contributing to our research questions, we further processed the elimination of papers by considering the inclusion and exclusion criteria. Each paper satisfying at least one inclusion criterion and not meeting any exclusion criteria and satisfying all the quality assessment criteria was selected to be read in its entirety in the next step. More specifically, we removed and included papers as follows: -Papers able to answer the research questions.

-Papers that fall in business process model execution.

-Papers that fall in transformations from one language to another.

-Algorithms for the formal verification of process models for e.g., deadlock or safety.

-Papers deal with the syntax and syntactical correctness of process models.

-Papers deal with the semantics and semantic correctness of process models -Papers that are published in English language.

• Exclusion criteria -The publication was published in a language other than English.

-The full text of the publications was not available.

-The publication did not coincide with the topic of systematic research.

-BPMN was used only as a presentation tool and not as part of the research.

-Any duplicate papers, industrial bulletins, industry case studies.

• Quality Assessment criteria -The study objectives are clearly stated.

-The proposed method / technique is clearly described.

-The methodology used in the study is adequate.

-The study has a high citation.

After applying the inclusion, exclusion, and quality assessment criteria, only 79 papers remained in the set of relevant papers. The number of false positives in the initial set (papers that may have been relevant but on detailed investigation turned out not to be so) was disappointingly high. Figure 3.2 shows the distribution of selected papers per year; we can see that the subject of formalisation and verification of business process models represents a high topic in the period coinciding with the present thesis.

Papers Overview

Several works have investigated formal or semi-formal approaches to provide a method for verifying and validating BPMN business process models. This section serves as a survey for the BPMN verification methodologies in the literature. We will classify these works into five categories: approaches based on Petri Nets, Automata Theory, Process Algebras, Logic Formulas, and a Programming Language. In the following subsections, we give an overview of each work in each category. To help readers, we present in Table 3.2 and Table 3.3 an abstract definition for the languages and the technologies used among the selected works, respectively.

Approaches based on Petri Nets

Petri nets are used to formalise and verify the correctness and soundness properties of BPMN in several works. Among them, one of the earliest works that we identified is [64]. The authors propose a transformation from BPMN 1.2 into Petri nets models. They have offered a set of rules which specify how to transform one or a combination of BPMN element(s) into a Petri-net module. Firstly, they have chosen the ILog BPMN Modeller as a graphical editor to create BPMN models. Then, they have provided the Transformer [START_REF] Dijkman | Transformer. Not Found[END_REF] tool where they apply the BPMN2PNML transformation rules on BPMN models and export the resulting Petri net in the form of a PNML file. Then, they use the resulting files as input for the verification tool ProM [66] to statically check the semantics of BPMN models. With the ProM framework, soundness and other properties such as dead transitions, deadlocks, and livelocks are verified.

However, even if the work deals with collaboration elements, the formalisation as Petri nets suffers from limitations for the communication presentation, the hierarchical relation between processes and subprocesses, and the verification of internal activities within them. In [START_REF] Takemura | Formal Semantics and Verification of BPMN Transaction and Compensation[END_REF], the authors then build on their earliest work and propose formal semantics for the transaction and compensation elements of BPMN in terms of Petri nets.

In [START_REF] Ou | BPMN-based Business Process Model Feasibility Analysis: a Petri net Approach[END_REF], the authors propose an approach for the verification of business process models based on the transformation technique. They convert a BPMN model to an extended Business Process Execution Language for Web Services (BPEL4WS) model manually. Then, the BPEL4WS translated to a Petri-net model in a Coloured Petri net (CPN) XML-based representation. Then they use CPN tools to verify the model properties (deadlock and infinite loop). The proposed approach is semi-automatic since the first transformation is manual.

In [START_REF] Wolter | Verification of Business Process Entailment Constraints Using SPIN[END_REF], the authors present an approach for automated model-checking and analysis of entailment constraints (i.e., the dependency between tasks) in the context of business processes to detect deadlocks and security property violations. First, the authors annotate the BPMN business process model with security artefacts. Then, they describe formal semantics in terms of CPN. For verifying the security properties, they define a translation of a BPMN process model into the PROcess MEta LAnguage (PROMELA) in which a CPN semantics is implemented. Next, security properties are verified as a set of linear temporal logic formulae using the SPIN model checker. Finally, the authors developpe a model checking plug-in for the free web-based process modelling tool, called Oryx. This tool allows the automated translation of security annotated process models into PROMELA, the simulation and verification of security properties defined in a simple dialogue box, and the reporting of verification results back to the modeller.

In [START_REF] Remco | BPMN 2.0 Execution Semantics Formalized as Graph Rewrite Rules[END_REF], the authors provide a formal semantics for a subset of BPMN in terms of graph rewriting rules using an algebraic graph transformation approach to describe direct traceability between the statics structure. Then, in [71] the authors extend their work and propose a formalisation of a larger set of BPMN 2.0 based on in-place graph transformation rules. Then, they have documented it visually using BPMN syntax through Graph Rewrite Generator (GrGen.Net) platform, which helps to debug and simulate the execution of the business process models. The authors do not treat verification aspects, but they clearly map mathematical sets and relations to the specific graph-oriented concepts from their reference implementation.

In [START_REF] Bastias | An Automated Analysis of Errors for BPM Processes Modeled using an In-House Infosys Tool[END_REF], the authors propose an approach for detecting errors in business process models using the influx tool. First, they use influx for modelling process requirements and generating XMI files. Influx models are based on BPMN 1.0. Then, the authors introduce a method for checking both syntactic and structural properties of the generated model. To check syntactical errors and the presence of cycles in a model, they use a simulation. To check structural errors, they segregate models into Workflow-Net and Petri nets. They then use either Woflan [START_REF]The Petri-net-based workflow analyzer[END_REF], or Lola [START_REF] Ben | LOLA: Runtime Monitoring of Synchronous Systems[END_REF] to check for soundness (e.g., for the presence of deadlock and lack of synchronisation). Finally, the authors extend their work in an empirical study in [START_REF] Roy | An Empirical Study of Error Patterns in Industrial Business Process Models[END_REF] to find out syntactic and control flow error frequencies in industrial process models using graphtheoretic techniques and Petri net-based analyses. Also, they have studied the connection between errors (syntactic and control flow-related) and a set of metrics related to structural and behavioural aspects of process models. To detect control flow-related errors, they use Lola and counterexamples provided by this tool. They show that up to 92.9 % of process models are erroneous in business contexts.

In [START_REF] Roy | Diagnosing Industrial Business Processes: Early Experiences[END_REF], the authors propose a framework based on formal verification for detecting and diagnosing errors in business processes. Firstly, the authors use graph search algorithms to detect syntactic errors, remove them to get a well-formed model. Then, they apply a transformation from the well-formed model to PNs preserving soundness properties. Then, they reduce the PNs to Workflow-net for checking its soundness using the Woflan tool. Then, based on the diagnostic information given by the tool, they identify the location of errors. In [START_REF] Roy | A Formal Framework for Diagnostic Analysis for Errors of Business Processes[END_REF], the authors extend their work with rigorous proof of the results and an extensive empirical analysis of diagnosis of errors. They analyse a sample of 174 industrial BPMN models in which they identify more than 2000 errors. The authors focus on the statistical model of error probabilities at subprocesses.

In [START_REF] Mülle | A Practical Data-flow Verification Scheme for Business Processes[END_REF], the authors propose an approach to enable checking data-flow correctness for process models. The proposed work is limited to some essential control flow elements and data objects in processes without any data values. First, the authors provide an algorithm for mapping the process models in an extension of Workflow Graphs enhanced with data. Then, they provide an implementation of the mapping algorithm for BPMN, and OTX [79]7 models. Then, they provide a second mapping from the Workflow Graphs8

to PNs to support data-flow verification in a process. Next, they define a set of data-flow correctness properties (missing data, redundant data, lost data, and inconsistent data) as anti-patterns 9 . Finally, they check the correctness of these properties using Lola model checker.

In [START_REF] Ordoni | Verification of Data-Value-Aware Processes and a Case Study on Spectrum Auctions[END_REF], the authors propose a data-value-aware verification approach. They introduce a transformation algorithm from data-value-aware BPMN process models to PNs. The BPMN models are enhanced with information on data values using so-called Data-Value Enhancement Functions. These later facilitate specifying the usage of data values and their modifications during the process flow. To verify process models, they rely on the model checking of Petri Nets using the LOLA tool. In their work, they focus on data-value centred properties specified in Computation Tree Logic (CTL). Their approach is evaluated on an auction model. This approach is limited to tiny models due to state-space explosion.

Recently, the work in [81] has been extended the approach in [64] to Timed Petri Nets (TPNs) to be able to express time constraints for activities, process regions, and timer events. Besides, they tackle the detection and management of constraint violations at run-time. The authors propose this formal model to analyse the soundness of the collaboration and its temporal constraints. However, no formal verification means for these properties is given.

In [START_REF] Rachdi | Liveness and Reachability Analysis of BPMN Process Models[END_REF], the authors define a formal semantics of a subset of BPMN that covers timer events, tasks, and exclusive and parallel gateways. They propose a transformation approach from the BPMN models to TPNs to detect control flow anomalies in the model. Then, the authors check liveness and reachability properties regarding the execution time by using the Timed Petri Net Analyser (TINA) tool. The authors focus on the timer events (boundary, intermediate) with an associated duration time. According to the authors, to deal with different perspectives of BPMN, like data and communication, they would have to move to another extension of Petri Nets like Interval Timed Coloured Petri Nets (ITCPN).

In [START_REF] Meghzili | Transformation and Validation of BPMN Models to Petri Nets Models Using GROOVE[END_REF][START_REF] Meghzili | An Approach for the Transformation and Verification of BPMN Models to Colored Petri Nets Models[END_REF], the authors propose an approach for transforming BPMN models limited to a small subset of control flow element to CPN models using GRaphs for Object-Oriented VErification (GROOVE) tool. They provide a new method for verifying the preservation of the semantics and its validation by ensuring the absence of the live-lock, the improper structure and loop, and the deadlock. The authors have verified the successful termination of the transformation using the GROOVE model checker. As far as verification properties are concerned, they focus on safety and vivacity using CPN Tools.

In [START_REF] Kheldoun | Specification and Verification of Complex Business Processes -a High-Level Petri Net-Based Approach[END_REF]86], the authors propose a formal semantics for a subset of BPMN using high-level Petri nets, called RECursive Petri nets (RECATNets) and Rewrite Logic (RL). The authors provide a prototype to perform the automatic transformation from BPMN to RECATNets using a specific ATLAS transformation language. Then, the obtained RECATNets are translated into RL terms, and the Maude model-checker is used to verify proper termination and some other Linear Temporal Logic (LTL) properties. The work covers the behaviour of the subsets of BPMN elements, including multiple instantiation, cancellation of subprocesses, and exceptions. No information about the communication model is given, and only a small set of BPMN elements is covered. In addition, no time semantics is given for the timer elements mentioned. Besides, the approach is semi-automatic; neither the implementation nor benchmarking are given, and the approach is illustrated only through three simple examples.

In [START_REF] Mutarraf | Transformation of Business Process Model and Notation Models onto Petri Nets and their Analysis[END_REF], the authors propose a transformation approach for formalising a subset of BPMN elements extended with time and probabilities. The authors apply two mapping approaches, one automatic for the simulation and another manual for the verification. The authors develop a package for the mapping of BPMN models into Petri nets automatically. This transformation extends the BPMN models by additional probabilities on the gateways, time delays on tasks. Then, they analyse the resulted Petri net XML file in the General purpose Petri net simulator (GPenSIM) [START_REF] Davidrajuh | GPenSIM: a general purpose Petri net simulator[END_REF] tool. As far as verification purpose, which GPenSIM lacks, the authors apply a manual transformation from the BPMN models to PNs according to a set of defined mapping figures. Then, they analyse the transformed Petri net and verify generic properties of Petri nets (liveness, safeness, ordinary, pure, invariants, free choices, boundness) using TINA tool. In this paper, the authors use the timed Petri nets Analyser for verifying the extended Petri nets without its definition. In addition, they use for the automatic approach the GPenSIM tool, which is not a model checker. In addition, they use the TINA tool for the verification without any precision about using the Bounded Prioritised Model-checking.

In [89], the authors present a transformation approach of BPMN models into CPN. They have developed a tool called Coloured Petri Net for BPMN design (CPN4BPMN) to automatise the transformation. Their approach operates in two phases. Before applying the transformation, a BPMN design tool (such as the BPMN 2.0 designer of the Eclipse IDE) is used to partition a BPMN model into sub-models.

Then, they use the sub-models as input for the CPN4BPMN tool to generate the corresponding CPN model. Even if their work covers a large set of BPMN elements, message exchanges are not specified. The authors extend their rules in [START_REF] Dechsupa | Hierarchical Verification for the BPMN Design Model Using State Space Analysis[END_REF] to handle both structured and unstructured BPMN models.

In [START_REF] Cheikhrouhou | Formal Specification and Verification of Cloud Resource Allocation using Timed Petri-Nets[END_REF], the authors propose an approach for assisting business process designers in identifying necessary cloud resources concerning temporal and financial restrictions on the process. The authors extend BPMN models by enriching process activities with temporal constraints and required cloud resources. To perform the verification of such models, they propose an automatic generation and conversion of the enriched BPs into TPNs using Extensible Stylesheet Language Transformations (XSLT) as a transformation language. Afterwards, they check the BP using the TINA model checker. This approach is evaluated on a simple case study.

In [92], the authors propose a new approach for verifying the k-soundness10 of BPMN models taking into account cross-case data objects (i.e., data objects shared among different process instances of more than one participant). The authors based on existing works for the transformation of BPMN into CPN and introduce a set of rules for mapping BPMN elements including data objects to Hierarchical Coloured Petri nets (HCPN). Then, based on the mapping, different correlation mechanisms are defined that relate data objects to cases 11 Other transformations that have been proposed are those from BPMN to workflow models, e.g., Yet Another Workflow Language (YAWL) [START_REF] Ye | Transformation of BPMN to YAWL[END_REF][95][START_REF] Ye | Transformation of BPMN Diagrams to YAWL Nets[END_REF]. The authors provide a formal semantics of BPMN models in terms of mapping to YAWL nets. This mapping is given as an algorithm based on a set of syntactic rules. Then, they implement their proposal as a plugin, called BPMN2YAWL, integrated into the ProM platform. This plugin transforms a BPMN model into a YAWL as an XML file. This XML file then serves as input to a YAWL-based verification tool. As a proof of concept, they test the tool using simple models. As far as verification is concerned, the authors focus on deadlock freeness and soundness properties.

Approaches based on Automata Theory

Other approaches rely on automata theory to define the semantics of BPMN formally.

In [START_REF] Mohammed Kherbouche | Using Model Checking to Control the Structural Errors in BPMN Models[END_REF][START_REF] Mohammed Kherbouche | Detecting Structural Errors in BPMN Process Models[END_REF], the authors propose an approach to detect structural errors in business process models based on model checking. First, the authors translate the model in PROMELA. Then, they map it to a Kripke Structure (KS) to express the behaviour of the process models using the SPIN model checker. Once the KS is obtained, the authors check properties (absence of deadlocks, lovelock and multiple terminations) expressed in LTL formulas and determine a set of structural errors patterns. The authors use a non-deterministic automaton (as an external technique) representing the aimed model behaviour to identify structural errors. Finally, they implement their translation rules in a java plugin, called ESPIN. In their work, the authors focus on a small subset of BPMN elements (i.e., parallel, exclusive gateways, abstract tasks and none start/end events).

In [99], the authors propose an approach for verifying business process models enriched with temporal and resources constraints. First, they provide an automatic mapping from BPMN extended with static time constraints and resource annotations onto Timed Automata (TA) networks. Then, they use the UPPAAL model checker for the verification of the generated models w.r.t. deadlock and bottleneck properties.

In [START_REF] Rosa Braghetto | Performance Evaluation of Business Processes through a Formal Transformation to SAN[END_REF], the authors propose an approach for the performance evaluation of business process models.

First, the authors impose structural restrictions to assume that the models do not contain unreachable activities and can permanently terminate. Then, they propose an algorithm that allows for a transformation from restricted BPMN models to Stochastic Automata Networks (SAN). This algorithm is implemented as part of a tool called BP2SAN. Finally, for the performance analysis, the authors evaluate how the time of the process and the resources utilisation may be impacted the system workload using the generating SAN models in Performance Evaluation of Parallel System (PEPS) tool.

In [START_REF] Morales | Business Process Verification Using a Formal Compositional Approach and Timed Automata[END_REF][START_REF] Mendoza | Business Process Verification: The Application of Model Checking and Timed Automata[END_REF], the author proposes a transformation from BPMN models to TA networks. Where the behaviour of each task in the BPMN model is mapped to a TA network. The author supports communication by modelling the collaboration model as a network of several synchronised TA networks. Moreover, he requires timer events in models to be used to determine the time constraints in them. The author uses the UPPAAL tool to simulate and verify the generated TA networks. Properties of interest are expressed in Clocked Computation Tree Logic (CCTL) formulas. To support the transformation from BPMN to TA, the author uses the latest version of the BPMN2TA plugin in the BTransformer tool [START_REF] González | BTRANSFORMER -A Tool for BPMN to CSP+T Transformation[END_REF]. In these papers, the author uses the synchronous communication model, which is provided by the semantics of the TA network. However, communication in BPMN reflects the real-world collaboration between distinct business processes where this may not be respected. Also, the author uses time durations for all BPMN timer elements, which do not respect the semantics of timer BPMN elements and their types provided by the standard. Further, No transformation rules are provided in the paper.

In [104], the authors propose a formal specification and verification approach of advanced temporal constraints for business processes, based on TA networks. The authors provide a specification for relative and absolute related temporal constraints while relying on the dependencies between these constraints. Before transforming BPMN models, the authors extend them with annotations to specify time constraints. The definition of temporal constraints allows one to specify constrained process models that may encounter a deadlock situation due to inconsistencies between nested temporal constraints. Then, the authors apply a set of transformation rules given as templates between the BPMN elements and TA. Finally, they use UPPAAL model checker to perform the formal verification of the timed business processes. In this work, the authors extend the BPMN time semantics by associating time intervals to tasks, to events, and in between activities. The authors support time cycles by using an equivalent model of a loop task associated with a boundary timer event.

In [START_REF] Hoch | Verification of Business Processes Against Business Rules Using Object Life Cycles[END_REF], the authors propose an approach for the verification of BPMN models w.r.t. formalised business rules. They present a mapping from BPMN elements to asynchronous Finite State Machines (FSMs) synchronised by signals. They use the New Symbolic Model Verifier (NuSMV) model checker to verify the specified business rule properties. However, the approach covers only a tiny subset of BPMN, including the control flow elements. Moreover, no communication semantics is provided. Indeed, complex processes cannot be translated like hierarchical business processes.

In [START_REF] Mallek | Enabling Model Checking for Collaborative Process Analysis: from BPMN to 'Network of Timed Automata[END_REF], the authors propose a checking technique for the analysis of interoperability properties of collaborative processes. They present a transformation from BPMN models to TA. A repository of interoperability requirements is provided and used to detect problems in business process collaboration models. The authors focus on the application of the UPPAAL model checker to verify interoperability requirements for a given collaborative BPMN model. The formulation of interoperability requirements is given in Timed Computation Tree Logic (TCTL). In this work, the authors provide users with a set of template models to facilitate the behavioural description of their process model. To provide collaboration semantics, the authors use synchronous communication between business process templates. They propose extended semantics for the tasks, communication elements, timer events, and inclusive gateway. For the tasks, they suggest the use of resources synchronisation. The sending and the reception of messages then rely on a resource usage pattern. As far as timer events are concerned, the authors support the start and the intermediate timer events based on the clock semantics given by TA, and the timer elements are transformed to clocks associated with the start behaviour of the tasks. For inclusive gateways, the authors simulate their local semantics based on a transformation of the model to an equivalent one based on exclusive and parallel gateways.

In [START_REF] Poizat | Checking Business Process Evolution[END_REF][108][START_REF] Krishna | VBPMN: Automated Verification of BPMN Processes (Tool Paper)[END_REF], the authors propose a verification framework for business processes models, called VBPMN. The authors define a semantic with a BPMN to Labeled Transition Systems (LTSs) transfor-mation, obtained by sequencing two successive transformations. First, a transformation from BPMN to Process Intermediate Format (PIF) which is next transformed to LOTOS New Technology (LNT), (LNT having an LTS semantics), to be fed to the Construction and Analysis of Distributed Processes (CADP) verification tool. A small subset of BPMN control flow elements is selected. It includes neither communication nor temporal elements. Also, the authors use multiple transformations, which make it unsure whether BPMN semantics is respected.

In [START_REF] Ayari | A Refinement based Verification Approach of BPMN Models Using NuSMV[END_REF], the authors propose a methodology for the specification and the verification of business processes based on the use of BPMN and a refinement approach to reduce the complexity of modelling workflow systems and facilitate their understanding. First, they introduce four refinement patterns that specify alternative semantics for complex models: sequence pattern, exclusive pattern, parallel pattern, and iterative pattern. Then, they give formal semantics for the BPMN elements based on these refinement patterns and KS models. For verification purposes, the authors convert the KS models to NuSMV code. Then, they use the NuSMV model checker to verify the refinement correctness properties specified with LTL, such as refinement safety.

In [START_REF] Brumbulli | Automatic Verification of BPMN Models[END_REF], the authors propose an automatic verification tool for BPMN models. They define an executor and verifier tool based on the OBP technology [START_REF]BPMN Formalization[END_REF]. Their approach is based on three steps. Firstly they define a BPMN extractor to generate Property Sequence Chart(PSC) models from BPMN models. Then, they give a semantics for the generated PSC by transforming them to Büchi automaton (BA). Finally, to perform the verification, the authors express properties in the Generic Property Specification Language (GPSL) language [START_REF] Autili | Graphical Scenarios for Specifying Temporal Properties: an Automated Approach[END_REF]. Unfortunately, the authors do not give any details about the transformation approach in terms of formal semantics.

Approaches based on Process Algebras

Likewise, tool-supported methods that rely on process algebra as a semantic formalism for BPMN models are advocated.

In [START_REF] Peter | A Process Semantics for BPMN[END_REF], the authors present a formal semantics for BPMN with an encoding into the Communicating Sequential Processes (CSP) process algebra. They also show how this semantic model may be used to verify that one BPMN process diagram is consistent with another one. The authors extend their work in [START_REF] Peter | Verifying Business Process Compatibility (short paper)[END_REF] to verify compatibility between business participants in a collaboration using the Failure Divergence Refinement (FDR) tool. Nevertheless, the work does not provide an environment for verification. In [116] the authors again extend their work to propose a relative timed semantics for BPMN models. They augment their model by introducing the notion of relative time in the form of delays chosen non-deterministically from a range. The authors adopt a variant of the two-phase functioning approach widely used in real-time systems and coordination languages like Linda. In [117], the authors document the relationship between compatibility in the untimed and timed settings for BPMN models and present a pattern-based approach to construct BPMN property specifications.

In [START_REF] Prandi | Formal Analysis of BPMN via a Translation into COWS[END_REF], the authors propose a direct translation of BPMN models into the Calculus of Orchestration of Web Services (COWS) extended with probabilities. This approach enables the derivation of a COWS specification from XML representations of BPMN models provided by modelling applications. The authors focus in their work on quantitative properties based on probabilities on the extended model, using the PRISM model checker.

In [119], the authors propose an automated transformation from an extended BPMN to Timed CSP (CSP+T), as well as composition verification techniques for checking properties using the Failures Divergence Refinement (FDR2) model checker tool. They focus on the semantics proposed in [116]. As far as the verification properties are concerned, the authors rely on liveness and reachability.

In [START_REF] Herbert | Using Stochastic Model Checking to Provision Complex Business Services[END_REF][START_REF] Luke T Herbert | SBAT: A Stochastic BPMN Analysis Tool[END_REF], the authors present a framework, called Stochastic BPMN Analysis Tool (SBAT) for the modelling and analysis of complex business workflows. The authors extend the BPMN models with probabilistic and non-deterministic branching and reward annotations for enabling the translation into a series of Markov Decision Processes (MDP). Then, the generated models are used to check formulas expressed in the temporal logic formalism, Probabilistic Control Tree Logic (PCTL), using the stochastic model checker PRISM. The proposed framework focuses on quantitative safety requirements (timing, occurrence and order of events, reward values, transient and steady-state probabilities). It does not seem to be able to deal with qualitative requirements. In [START_REF] Thomas | Restructuring of Workflows to Minimise Errors via Stochastic Model Checking: An Automated Evolutionary Approach[END_REF], the authors extend their work and present an industrial framework, called Stochastic BPMN Optimisation and Analysis Tool (SBOAT), for the automated restructuring of stochastic workflows to reduce the impact of faults. SBOAT tool uses a stochastic model checking for evaluating the behaviour of the workflow. This latter allows for the computation of exact values of real-valued quantities modelling resources associated with the workflow.

In [START_REF] Boukelkoul | A Discrete Event Model for Analysis and Verification of Time-Constrained Business Processes[END_REF], the authors propose a model-based Discrete Event System Specification (DEVS) formalism for modelling, analysing, and checking temporal constraints in business processes at the earlier phase of design. Their approach handles a rich set of temporal properties: Intra-activity, Inter-activity, and Interprocesses time constraints. First, the authors take a BPMN model and a set of transformation rules as inputs. The transformation associated to each element where time constraints are used a control model, they obtain a set of atomic DEVS models. Then, they check the soundness of the resulted model using DEVS-Suite simulator, which is based on JAVADEVS models. Their simulation takes into account the generated control model for the authorisation of the execution. Based on the simulation outputs, they observe the behaviour of their proposed model relating to the temporal constraints and make conclusions about the properties checking. The authors rely on extended semantics for the BPMN elements to present the temporal constraints in their work. In addition, no explicit formal semantics is given. Last, their results are based on a simulation approach rather than a verification.

Approaches based on Logic Formulas

Approaches that exploit symbolic encoding as a semantic formalism for BPMN models based on symbolic verification techniques are also advocated.

In [START_REF] Vitus | Formal Analysis of BPMN Models: a NuSMV-Based Approach[END_REF], the authors propose a semantic model for BPMN 1.0. The paper introduces a semanticspreserving method for transforming a subset of BPMN notational elements into the NuSMV input language based on a set of formally defined translation rules to verify the models. NuSMV is based on symbolic model checking. For that, the correctness of the specification of the BPMN model is expressed in NuSMV using several properties expressed as CTL formulas, and that is verified automatically using the model checker.

In [125], the authors give an execution semantics of BPMN elements expressed using LTL. The formalisation is defined for a large set of BPMN 1.2 elements. They evaluate their approach on a use case with deadlock and liveness analysis. The authors use message /timer intermediate events; however, no communication or temporal semantics are given. The proposed approach gives an unambiguous definition of the execution semantics of BPMN diagrams. It could serve as a basis for the formal analysis of BPMN diagrams, including control flow elements, but no tool is presented.

In [START_REF] Kwantes | Towards Compliance Verification between Global and Local Process Models[END_REF], a BPMN formalisation in the context of conformance verification between global and local process models is provided. The authors propose a mapping from BPMN Collaboration diagrams and processes to LTL formulae. They follow the work supplied in [START_REF] Brambilla | The Role of Visual Tools in a Web Application Design and Verification Framework: A Visual Notation for LTL Formulae[END_REF] where BPMN workflow specifications are considered as possible visual alternatives for LTL formulae and an LTL semantics for BPMN 2.0 is provided. Then for the conformance verification, they use the GROOVE graph transformation tool.

The presented LTL formulae seem only capable of capturing liveness requirements but not safety and soundness ones.

In [128], the authors provide a formal specification of well-formed BPMN processes in rewriting logic using Maude. They offer new mechanisms to avoid structural issues in workflows such as flow divergence by introducing the notion of a well-formed BPMN process. They focus on data objects semantics and their use in database-related decision gateways. Then, they discuss the soundness of the well-formed BPMN models without introducing verification into practice, which is postponed as future work. The authors propose a new local semantics for the inclusive join gateway where they allow paths synchronisation. However, the latter does not represent the real semantics for this element. Last, no communication models or time elements are discussed.

In [START_REF] Ogata | Formal Modeling and Analysis of Time-and Resource-Sensitive Simple Business Processes[END_REF], the authors describe the formal specification of a Time and Resource-Sensitive simple Business process (TRSBP). A TRSBP consists of a finite set of finite sequences of activities with timing and resource constraints. It is simple because it does not explicitly have any complex control structures, such as loops. They formalise TRSBPs as a Round-based model and describe how to specify the formal TRSBP semantics in the Maude and the Alloy specification languages. The authors demonstrated that the business processes described in TRSBP can be effectively analysed with Maude and Alloy, and they demonstrate the feasibility to achieve formal analysis of TRSBPs with Alloy, while it is not with Maude. This is shared with our experience that business processes can be effectively analysed with SAT-based bounded model checking using Alloy language.

In [START_REF] Corradini | BProVe: a Formal Verification Framework for Business Process Models[END_REF][START_REF] Corradini | BProVe: Tool Support for Business Process Verification[END_REF][132], the authors present a verification tool based on the Eclipse IDE, called Business Process Verifier (BProVe). BProVe allows one to verify relevant properties for business process models automatically. It is based on the translation of a subset of BPMN models into LTS, with a native semantics provided in [START_REF] Corradini | An Operational Semantics of BPMN Collaboration[END_REF], defined according to a Structural Operational Semantics (SOS) style [START_REF] Plotkin | A Structural Approach to Operational Semantics[END_REF]. Their proposed operational semantics is implemented using Maude to use the Maude Linear Temporal Logic (LTL)

model-checker to verify properties and support the verification of safety and soundness properties. In [START_REF] Corradini | Global vs. Local Semantics of BPMN 2.0 OR-Join[END_REF] the authors focus on a particular element of BPMN which is the OR-join gateway. They propose formal semantics for the latter in terms of local and global views. In [START_REF] Fornari | Checking Business Process Correctness in Apromore[END_REF], the authors integrate their framework into Apromore [137] in the form of a plugin for the Editor environment. The authors limit the subset of supported elements and leave out aspects and constructs such as timed events, data objects, subprocesses, error handling, and multiple instances. They focus on the BPMN subset, including communication elements (send and receive), tasks and events. However, they don't give semantics for the communication model used. In [138], the authors extend their formal framework to include multiple instances and data perspectives. They also provide an associated model animator, called MIDA. It may help the process designers to visualise the behaviour of their models and debug them. In [START_REF] Corradini | Correctness Checking for BPMN Collaborations with Sub-Processes[END_REF], the authors extend their operational semantics in term of LTS to support the verification of the hierarchical processes, including subprocesses. They provide a framework, based on their operational semantics, called S3. As far as verification is concerned, the authors support an extended definition of safeness and soundness properties for collaboration diagrams, taking into account distinctive characteristics introduced by message exchanges and subprocess elements. They introduce a new property, called message relaxed soundness. These properties are defined in [140]. In [START_REF] Corradini | Collaboration vs. Choreography Conformance in BPMN 2.0: From Theory to Practice[END_REF], the authors extend their formal operational semantics to cover choreography diagrams and check the conformance degree between these choreography diagrams and the collaboration diagrams by generating their LTS. Then, they perform bi-simulation-based and trace-based conformance checks.

In [142], the authors propose an approach for the verification of BPMN models with time features. First, the authors provide an encoding of the execution semantics of a subset of time-enriched BPMN elements using rewriting-logic encoded in Maude. Next, they show how could perform real-time analysis of such BPMN processes. Specifically, they use simulations, reachability analysis and model checking, and calculate specific properties such as minimum and maximum expected response times, the maximum degree of parallelism, and synchronisation times using LTL model checking also with Maude. Finally, they evaluate their approach on an example using a prototype tool, called BPMN-MAUDE. The authors focus on the time aspects, looping behaviours (generated by split and join successive gateways), and inclusive gateways with extended semantics distinct from the one given in the BPMN 2.0 standard.

In [143], the authors extend their rewriting logic executable specification of BPMN with time and probabilities supporting the automatic analysis of stochastic properties via statistical model checking. They extend the BPMN model elements with duration times and delays for tasks, flows, and gateways branching specified with stochastic expressions. The authors provide an extended semantics for the behaviour of the BPMN elements (e.g., timeouts for tasks and stochastic delays for gateways paths and local behaviour for inclusive gateways as in the BPMN 1.0 version.) which may give a meaning distinct from the expected execution by using industrial modelling tools. The authors extend their work in [START_REF] Durán | Computing the Parallelism Degree of Timed BPMN Processes[END_REF][START_REF] Durán | A Rewriting Logic Approach to Resource Allocation Analysis in Business Process Models[END_REF] to support a subset of collaboration diagram elements, resources and the multiple executions of a process. The authors extended the BPMN specification element by associating time with flows, tasks, and rates for exclusive and inclusive split gateways. They present resources as a set of identifies associated with a quantity for each of them. The authors implement their approach in MAUDE to stochastically simulate multiple concurrent executions of a process instance that compete for the shared resources. Then, they perform automatic verification for a set of resource allocation properties (e.g., resource charge over time and usage percentage for each resource replica.). The proposed approach is illustrated with several examples using a prototype, called BPMN-R. These papers only address the collaboration models with a small subset of elements (massage catch event and send task) without any communication model details.

In [START_REF] Durán | Symbolic Specification and Verification of Data-Aware BPMN Processes Using Rewriting Modulo SMT[END_REF], the authors provide a symbolic executable rewriting logic semantics of BPMN using the rewriting modulo satisfiability modulo theories framework, called BPMN-SMT. The provided semantics is based on an enhanced extension of BPMN representation supporting conditions and data flow. They associate expressions and assignments operations to tasks and gateways branches, yet without using data objects elements. The authors use rewriting modulo axioms for driving the execution and rely on Satisfiability Modulo Theories (SMT) decision procedures for data conditions. For property checking, the authors use Maude's rewriting logic framework, focusing on deadlock freedom and the detection of unreachable states.

In [START_REF] Ligeza | AI Approach to Formal Analysis of BPMN Models: Towards a Logical Model for BPMN Diagrams[END_REF], the authors define an encoding for a subset of BPMN elements into the Prolog declarative language. They focus on a small subset of BPMN control flow elements covering a process model, extending with input, output and internal data processing. The authors analyse process models regarding external and internal consistency requirements. The external requirement covers the structure correctness of business processes. In contrast, the internal requirement covers the structure correctness of the local structure correctness of the process models and correctness criteria such as deadlock freedom, termination and determination.

In [START_REF] De | Verification of Time-Aware Business Processes Using Constrained Horn Clauses[END_REF][START_REF] De | Semantics and Controllability of Time-Aware Business Processes[END_REF], the authors propose an operational semantics for time-aware business processes. The authors propose an extension of the BPMN with duration annotations, defined as constraints over integer numbers. Then, they provide an operational semantics for the extended BPMN with respect to the temporal properties to be verified as a set of Constrained Horn clauses (CHCs). The authors use CHCs solvers (Eldarica and Z3) to check the satisfiability of such clauses. Then, they use the VeriMAP transformation system to translate the CHCs into the SMT-LIB language, in which an SMT solver is invoked to check for properties satisfiability. As far as verification properties are concerned, the authors focus on weak controllability and strong controllability that guarantee, in two different senses, that all process tasks can be completed, satisfying the given duration constraints, for all possible values of the uncontrollable durations.

In [START_REF] Szpyrka | From Process Models to Concurrent Systems in Alvis Language[END_REF], the authors propose an approach to use the Alvis modelling language for the formal analysis of BPMN models. The authors focus on the control flow elements of BPMN, taking into account or-joins as well as multiple joins, split conditions and the interaction with external participants (presented as black box pools in BPMN models). They provide a transformation of a BPMN model into an Alvis model. This mapping allows one to perform the formal verification of the BPMN models by generating automatically LTS from the Alvis models. These graphs can then be analysed based using the CADP Tool.

In [START_REF] Bryans | Formal Analysis of BPMN Models Using Event-B[END_REF], the authors propose a transformation rule of the BPMN model into a formal model written in Event-B. For the verification purpose, the authors use Rodin platform as a theorem prover for consistency conditions on BPMN models. The authors cover a large set of BPMN elements, including comprehensive modelling of control flows, data modelling, compensation, message-based communication, error and exception handling, subprocesses, looping and multi-instance activities.

In [START_REF] Ben | From BPMN2 to Event B: A Specification and Verification Approach of Workflow Applications[END_REF], the authors propose a model-driven framework that transforms a BPMN specification into a formal specification using the Event B notation. The authors use a meta-model transformation which is based on a set of mapping rules that translate the concepts of a meta-model source (BPMN) to a metamodel target (Event-B). They automate this transformation by implementing a prototype tool called BPMN2EventB. For verification purposes, the authors express properties of the system in Event-B and check them using the Rodin prover. However, no information is given about the set of BPMN elements covered by the transformation nor the properties which can be checked.

In [START_REF] Haseeb | Application of Formal Methods to Modelling and Analysis Aspects of Business Process Reengineering[END_REF], the authors propose a methodology for defining process models using the Z3 solver to verify properties by considering both syntactic and structural aspects. First, the authors introduce a metamodel of a subset of BPMN elements that covers the control flow elements for modelling a business process. Then, the meta-model of the BPMN subset is formally specified in Z specification as state-space schema to provide a generic approach in which any modelled process can be formally specified to check its syntactic and structural correctness. Next, the formal specification that has been defined is given for the selected modelling elements and their associated syntactic and structural rules. Then, the authors propose a manual translation between Z specification and Z3 solver for performing the verification. Finally, the authors validate their on a simple business process model and verify the control flow properties (deadlock, reachability, and dead task) using Z3.

In [START_REF] Calvanese | Formal Modeling and SMT-Based Parameterized Verification of Data-Aware BPMN[END_REF], the authors propose SMT based approach for formalising a data-aware extension of the BPMN standard. First, they describe a new formalism for representing read-only database schemata towards verifying integrated models of processes and data. Then, they support parameterised verification of safety properties of DABs using the Model Checker Modulo Theories (MCMT) model checker. However, no systematic evaluation is given in the paper.

Approach based on a Programming Language

Another complementary approach used programming languages and deduced the correctness of the model from the produced functional specifications.

In [START_REF] Falcioni | Direct Verification of BPMN Processes Through an Optimized Unfolding Technique[END_REF], the authors propose a Java-based verification approach for BPMN 2.0 collaboration models. They provide a precise mapping for each element of the BPMN notation to Java code. Their approach is given as an algorithm supported by a plug-in for the Eclipse IDE, called COWSLIP. Their approach allows the verification of the deadlock and the livelock properties based on the execution trace tree identification. It suffers from the BP integration problems in inter-organisational BP due to the undefined communication protocol used to interact with the processes. This forces the authors to ignore deadlocks related to communication. However, this is not really a resolution as communication is the heart of the collaborative correction lands. Table 3.2: Languages used Among the Selected Work.

Language Description

Works

Petri nets Petri Nets is a mathematical formalism for modelling, specifying, simulating, and verifying of distributed systems.

[72], [START_REF] Roy | An Empirical Study of Error Patterns in Industrial Business Process Models[END_REF][START_REF] Roy | Diagnosing Industrial Business Processes: Early Experiences[END_REF][START_REF] Roy | A Formal Framework for Diagnostic Analysis for Errors of Business Processes[END_REF], [START_REF] Mülle | A Practical Data-flow Verification Scheme for Business Processes[END_REF], [START_REF] Ordoni | Verification of Data-Value-Aware Processes and a Case Study on Spectrum Auctions[END_REF], [64], [START_REF] Takemura | Formal Semantics and Verification of BPMN Transaction and Compensation[END_REF], [START_REF] Mutarraf | Transformation of Business Process Model and Notation Models onto Petri Nets and their Analysis[END_REF] Workflow-Net is a subclass of PN that is used to model the work-flow of process activities.

[72], [START_REF] Roy | Diagnosing Industrial Business Processes: Early Experiences[END_REF][START_REF] Roy | A Formal Framework for Diagnostic Analysis for Errors of Business Processes[END_REF] Timed Petri Nets is an extension of PN with a timing interval constraint on each transition.

[99], [81], [START_REF] Rachdi | Liveness and Reachability Analysis of BPMN Process Models[END_REF], [START_REF] Mutarraf | Transformation of Business Process Model and Notation Models onto Petri Nets and their Analysis[END_REF], [START_REF] Cheikhrouhou | Formal Specification and Verification of Cloud Resource Allocation using Timed Petri-Nets[END_REF] Coloured Petri Nets is an extension of PN with coloured tokens well-suited for systems in which communication, Synchronisation and resource sharing are important. [START_REF] Ou | BPMN-based Business Process Model Feasibility Analysis: a Petri net Approach[END_REF][START_REF] Wolter | Verification of Business Process Entailment Constraints Using SPIN[END_REF][START_REF] Meghzili | Transformation and Validation of BPMN Models to Petri Nets Models Using GROOVE[END_REF][START_REF] Meghzili | An Approach for the Transformation and Verification of BPMN Models to Colored Petri Nets Models[END_REF]89,[START_REF] Dechsupa | Hierarchical Verification for the BPMN Design Model Using State Space Analysis[END_REF] Hierarchical Coloured Petri Nets is an extension of CPN with the possibility of substitution transitions to subnets.

[92] Timed Petri Nets is an extension Petri nets by associating a firing finite duration to each transition in the net.

[91], [START_REF] Mutarraf | Transformation of Business Process Model and Notation Models onto Petri Nets and their Analysis[END_REF], [START_REF] Rachdi | Liveness and Reachability Analysis of BPMN Process Models[END_REF], [81] RECATNets is an extension of PN introduced to model systems with dynamic structures.

[[START_REF] Kheldoun | Specification and Verification of Complex Business Processes -a High-Level Petri Net-Based Approach[END_REF]86] ATL is a model transformation language provides ways to produce a set of target models from a set of source models.

[[START_REF] Kheldoun | Specification and Verification of Complex Business Processes -a High-Level Petri Net-Based Approach[END_REF]86] YAWL Net is a language with a strictly defined execution semantics inspired by Petri Nets.

[[START_REF] Ye | Transformation of BPMN to YAWL[END_REF][95][START_REF] Ye | Transformation of BPMN Diagrams to YAWL Nets[END_REF] Graph Rewriting concerns the technique of creating a new graph out of an original graph algorithmically.

[[START_REF] Remco | BPMN 2.0 Execution Semantics Formalized as Graph Rewrite Rules[END_REF]71] Automata Finite State Machines is a behavioural with a finite number of states model that is used to model logic. [START_REF] Hoch | Verification of Business Processes Against Business Rules Using Object Life Cycles[END_REF] Timed Automata is a finite state machine annotated with conditions and a finite set of clocks. [START_REF] Morales | Business Process Verification Using a Formal Compositional Approach and Timed Automata[END_REF][START_REF] Mendoza | Business Process Verification: The Application of Model Checking and Timed Automata[END_REF], [104], [START_REF] Hoch | Verification of Business Processes Against Business Rules Using Object Life Cycles[END_REF], [START_REF] Mallek | Enabling Model Checking for Collaborative Process Analysis: from BPMN to 'Network of Timed Automata[END_REF] Stochastic Automata Network is a number of individual stochastic automata which is an extension of a nondeterministic finite-state machine with probabilities on the transitions. [START_REF] Rosa Braghetto | Performance Evaluation of Business Processes through a Formal Transformation to SAN[END_REF] Kripke Structure is a variation of nondeterministic automaton used in model checking to represent the behavior of a system. [START_REF] Mohammed Kherbouche | Using Model Checking to Control the Structural Errors in BPMN Models[END_REF][START_REF] Mohammed Kherbouche | Detecting Structural Errors in BPMN Process Models[END_REF], [START_REF] Ayari | A Refinement based Verification Approach of BPMN Models Using NuSMV[END_REF] Büchi automaton is a Finite State Machines which accepts infinite inputs (words). [START_REF] Brumbulli | Automatic Verification of BPMN Models[END_REF] Markov Decision Processes is a mathematical framework for modelling decision making in discrete, stochastic, and sequential environments. [START_REF] Herbert | Using Stochastic Model Checking to Provision Complex Business Services[END_REF][START_REF] Luke T Herbert | SBAT: A Stochastic BPMN Analysis Tool[END_REF][START_REF] Thomas | Restructuring of Workflows to Minimise Errors via Stochastic Model Checking: An Automated Evolutionary Approach[END_REF] Promela is a verification modelling language, allows for the dynamic creation of concurrent processes to model. It allows defining the communication via message channels to be synchronous or asynchronous [START_REF] Wolter | Verification of Business Process Entailment Constraints Using SPIN[END_REF] Generic Property Specification Language is a property-specification language that supports Linear Temporal Logic and Büchi Automata specifications. [START_REF] Brumbulli | Automatic Verification of BPMN Models[END_REF] Process Algebra COWS is a foundational calculus for web services. [START_REF] Prandi | Formal Analysis of BPMN via a Translation into COWS[END_REF] LOTOS New Technology is a formal specification language, defined based on a combination of process calculi, functional languages, and imperative languages, used to specify and verify concurrent systems. [START_REF] Poizat | Checking Business Process Evolution[END_REF][START_REF] Krishna | VBPMN: Automated Verification of BPMN Processes (Tool Paper)[END_REF] Communicating Sequential Processes is a formal language, based on message passing via channels, for describing patterns of interaction in concurrent systems. [START_REF] Peter | A Process Semantics for BPMN[END_REF][START_REF] Peter | Verifying Business Process Compatibility (short paper)[END_REF][116][117] Communicating Sequential Processes+Time is a real time specification language that extends CSP by allowing the description of complex event timings within a single sequential process. [119] Discrete Event System Specification is a modular and hierarchical formalism for modelling and analysing complex dynamic systems using a discrete-event systems. [START_REF] Boukelkoul | A Discrete Event Model for Analysis and Verification of Time-Constrained Business Processes[END_REF] NUSMV is a specification language for describing and verifying deterministic and non deterministic systems expressed mathematically as finite state systems. It allows for the definitions of bounded arrays of basic data types. [START_REF] Vitus | Formal Analysis of BPMN Models: a NuSMV-Based Approach[END_REF] Logic Formula Rewriting Logic is a logical framework for the specification of languages and systems. It supports efficient equational reasoning and specification, verification, and programming.

[128], [START_REF] Kheldoun | Specification and Verification of Complex Business Processes -a High-Level Petri Net-Based Approach[END_REF], [86], [START_REF] Corradini | An Operational Semantics of BPMN Collaboration[END_REF], [START_REF] Corradini | BProVe: Tool Support for Business Process Verification[END_REF], [132] Maude is a declarative language based on rewriting logic. [START_REF] Ogata | Formal Modeling and Analysis of Time-and Resource-Sensitive Simple Business Processes[END_REF], [130-133, 135, 136, 138-141] [[142][143][START_REF] Durán | Computing the Parallelism Degree of Timed BPMN Processes[END_REF][START_REF] Durán | A Rewriting Logic Approach to Resource Allocation Analysis in Business Process Models[END_REF][START_REF] Durán | Symbolic Specification and Verification of Data-Aware BPMN Processes Using Rewriting Modulo SMT[END_REF], [128] Linear Temporal Logic is a modal temporal logic with modalities referring to time.

[[START_REF] Kheldoun | Specification and Verification of Complex Business Processes -a High-Level Petri Net-Based Approach[END_REF]86,125], [START_REF] Ayari | A Refinement based Verification Approach of BPMN Models Using NuSMV[END_REF], [START_REF] Kwantes | Towards Compliance Verification between Global and Local Process Models[END_REF] Prolog is a logic programming language, well-suited for specific tasks that benefit from rule-based logical queries as it expressed programs as terms of relations.

[147]

Horn Clauses are a Turing-complete subset of predicate logic, allow expression parallel, concurrent, as well as sequential execution.

[[START_REF] De | Verification of Time-Aware Business Processes Using Constrained Horn Clauses[END_REF][START_REF] De | Semantics and Controllability of Time-Aware Business Processes[END_REF] Event B is a formal specification, allows modelling and system refinement at different abstraction levels, and system analysis by the use of mathematical proof to verify consistency between the refinement levels. [START_REF] Bryans | Formal Analysis of BPMN Models Using Event-B[END_REF][START_REF] Ben | From BPMN2 to Event B: A Specification and Verification Approach of Workflow Applications[END_REF] Satisfiability Modulo Theories is about checking the satisfiability of logical formulas over one or more theories expressed in classical first-order logic with equality.

[146], [START_REF] Calvanese | Formal Modeling and SMT-Based Parameterized Verification of Data-Aware BPMN[END_REF], [START_REF] De | Verification of Time-Aware Business Processes Using Constrained Horn Clauses[END_REF][START_REF] De | Semantics and Controllability of Time-Aware Business Processes[END_REF], [START_REF] Haseeb | Application of Formal Methods to Modelling and Analysis Aspects of Business Process Reengineering[END_REF] Z3 is a theorem prover based on satisfiability modulo theories. [START_REF] De | Verification of Time-Aware Business Processes Using Constrained Horn Clauses[END_REF][START_REF] De | Semantics and Controllability of Time-Aware Business Processes[END_REF][START_REF] Haseeb | Application of Formal Methods to Modelling and Analysis Aspects of Business Process Reengineering[END_REF] Z Specification is a model oriented formal specification language based on Zermelo-Fränkel axiomatic set theory and first order predicate logic. It is used for describing and modelling computing systems.

[153]

Round-based model is used to formalize distributed algorithms. It is a semi-synchronous state machine in which it takes one unit of time to complete one round. It presents common message-passing models.

[129]

Labeled Transition Systems is a form of abstract machine used to model one or more computations.

[107-109], [START_REF] Corradini | Correctness Checking for BPMN Collaborations with Sub-Processes[END_REF][START_REF] Corradini | Collaboration vs. Choreography Conformance in BPMN 2.0: From Theory to Practice[END_REF], [START_REF] Szpyrka | From Process Models to Concurrent Systems in Alvis Language[END_REF] Property Sequence Chart is a language that extends a set of UML2.0 interaction sequence diagrams. [START_REF] Brumbulli | Automatic Verification of BPMN Models[END_REF] Generic Property Specification Language is the language used by OBP2 for specifying the properties that should be verified during the analysis. [START_REF] Brumbulli | Automatic Verification of BPMN Models[END_REF] Alvis is a modelling language combines formal methods and practical modelling languages. Alvis modelling environment creates in parallel a model of [START_REF] Szpyrka | From Process Models to Concurrent Systems in Alvis Language[END_REF] the considered system and a labelled transition system (LTS graph) that is its formal representation. Time and Resource-Sensitive simple Business process Consists of a finite set of finite series of activities that have timing and resource constraints. [START_REF] Ogata | Formal Modeling and Analysis of Time-and Resource-Sensitive Simple Business Processes[END_REF] Computation Tree Logic It is a branching-time logic, defines a model of time as a tree-like structure in which the future is not determined.

[80], [START_REF] Vitus | Formal Analysis of BPMN Models: a NuSMV-Based Approach[END_REF] Probabilistic Control Tree Logic is a temporal logic that allows for probabilistic quantification of system's specification properties. [START_REF] Herbert | Using Stochastic Model Checking to Provision Complex Business Services[END_REF][START_REF] Luke T Herbert | SBAT: A Stochastic BPMN Analysis Tool[END_REF][START_REF] Thomas | Restructuring of Workflows to Minimise Errors via Stochastic Model Checking: An Automated Evolutionary Approach[END_REF] Clocked Computation Tree Logic s a propositional temporal logic that extends Computation Tree Logic (CTL) with quantitative time bounds for expressing real time properties. [START_REF] Morales | Business Process Verification Using a Formal Compositional Approach and Timed Automata[END_REF][START_REF] Mendoza | Business Process Verification: The Application of Model Checking and Timed Automata[END_REF] Timed Computation Tree Logic an extension of CTL logic, where the bound of a temporal operator is given as a pair: a lower bound and an upper bound. [START_REF] Mallek | Enabling Model Checking for Collaborative Process Analysis: from BPMN to 'Network of Timed Automata[END_REF] Structural Operational Semantics is a category of formal programming language semantics in which certain desired properties of a program are verified by constructing proofs from logical statements about its execution and procedures.

[[START_REF] Corradini | BProVe: a Formal Verification Framework for Business Process Models[END_REF][START_REF] Corradini | BProVe: Tool Support for Business Process Verification[END_REF][132][START_REF] Corradini | An Operational Semantics of BPMN Collaboration[END_REF] Others Java is a programming language.

[155] XSLT A language for transforming XML documents into other XML documents, or other formats.

[91] BPEL4WS is a language for the formal specification of business processes and business interaction protocols. [START_REF] Ou | BPMN-based Business Process Model Feasibility Analysis: a Petri net Approach[END_REF] XSLT is a language for transforming XML documents into other XML documents, or other formats such as HTML, plain text, or XSL. [START_REF] Cheikhrouhou | Formal Specification and Verification of Cloud Resource Allocation using Timed Petri-Nets[END_REF] XML is a markup language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable.

[[START_REF] Ye | Transformation of BPMN to YAWL[END_REF][95][START_REF] Ye | Transformation of BPMN Diagrams to YAWL Nets[END_REF] XMI is an Object Management Group (OMG) standard for exchanging metadata information via XML.

[72], [START_REF] Roy | An Empirical Study of Error Patterns in Industrial Business Process Models[END_REF] Table 3.3: Technologies used Among the Works.

Tool Description

Works used these technologies Alvis A formal modelling language and verification, tool set, and framework for model checking distributed concurrent systems. [START_REF] Szpyrka | From Process Models to Concurrent Systems in Alvis Language[END_REF] BTransformer A transformation java plugin for BPMN models to two outputs: CSP+T models using the sub-option BPMN2CSPT or TA network using the sub-option BPMN2TA. [START_REF] Morales | Business Process Verification Using a Formal Compositional Approach and Timed Automata[END_REF][START_REF] Mendoza | Business Process Verification: The Application of Model Checking and Timed Automata[END_REF] CPN A tool for editing, simulating, and analysing Coloured Petri nets [START_REF] Ou | BPMN-based Business Process Model Feasibility Analysis: a Petri net Approach[END_REF], [START_REF] Meghzili | Transformation and Validation of BPMN Models to Petri Nets Models Using GROOVE[END_REF][START_REF] Meghzili | An Approach for the Transformation and Verification of BPMN Models to Colored Petri Nets Models[END_REF] CADP A tool for the design, simulation and verification of asynchronous concurrent systems.

[107], [START_REF] Krishna | VBPMN: Automated Verification of BPMN Processes (Tool Paper)[END_REF] DEVS-Suite platform A modelling and simulation environment allows to construct and experiment with dynamic models based on web technology. [START_REF] Boukelkoul | A Discrete Event Model for Analysis and Verification of Time-Constrained Business Processes[END_REF] FDR A refinement checking tool for models expressed in Communicating Sequential Processes (CSP) theory. [START_REF] Peter | A Process Semantics for BPMN[END_REF][START_REF] Peter | Verifying Business Process Compatibility (short paper)[END_REF][116][117]119] GpenSIM A tool for modelling, simulation, performance evaluation, and control of discrete-event systems. [START_REF] Mutarraf | Transformation of Business Process Model and Notation Models onto Petri Nets and their Analysis[END_REF] GrGen.Net A programming productivity tool for graph transformation, offers declarative languages for graph modelling, pattern matching and rewriting, as well as rule control for [START_REF] Remco | BPMN 2.0 Execution Semantics Formalized as Graph Rewrite Rules[END_REF]71] developing at a natural level of abstraction graph-based representations.

GROOVE

A graph transformation tool is used as a modelling formalism on top of which a model checking is built, resulting graph transformation systems, allows to verify model [START_REF] Meghzili | Transformation and Validation of BPMN Models to Petri Nets Models Using GROOVE[END_REF][START_REF] Meghzili | An Approach for the Transformation and Verification of BPMN Models to Colored Petri Nets Models[END_REF], [START_REF] Kwantes | Towards Compliance Verification between Global and Local Process Models[END_REF] transformation and dynamic semantics through an (automatic) analysis.

Lola

A tool for the verification of Petri nets models.

[72], [START_REF] Roy | An Empirical Study of Error Patterns in Industrial Business Process Models[END_REF], [START_REF] Mülle | A Practical Data-flow Verification Scheme for Business Processes[END_REF], [START_REF] Ordoni | Verification of Data-Value-Aware Processes and a Case Study on Spectrum Auctions[END_REF] Maude A system supporting both equational and rewriting logic computation for a wide range of applications, including development of theorem proving tools, language [128], [142], [START_REF] Ogata | Formal Modeling and Analysis of Time-and Resource-Sensitive Simple Business Processes[END_REF] prototyping, executable specification and analysis of concurrent and distributed systems. [START_REF] Corradini | BProVe: a Formal Verification Framework for Business Process Models[END_REF][START_REF] Corradini | BProVe: Tool Support for Business Process Verification[END_REF][132][START_REF] Corradini | Correctness Checking for BPMN Collaborations with Sub-Processes[END_REF] MCMT A model checker for infinite state systems based on the integration of SMT solving and backward reachability. [START_REF] Calvanese | Formal Modeling and SMT-Based Parameterized Verification of Data-Aware BPMN[END_REF] NuSMV A symbolic model checking tool based on Binary Decision Diagrams for temporal logic.

[105], [START_REF] Vitus | Formal Analysis of BPMN Models: a NuSMV-Based Approach[END_REF] , [START_REF] Ayari | A Refinement based Verification Approach of BPMN Models Using NuSMV[END_REF] OBP A requirement verification environment, allows debugging, simulating and model checking the Domain-Specific Languages (DSLs) , it defines a GPSL language [START_REF] Brumbulli | Automatic Verification of BPMN Models[END_REF] for specifying the properties that should be verified during the analysis and enables the integration of domain specific formalisms like UML, BPMN, TLA+, Fiacre. ProM A tool performs conformance checking of a system given as Petri net.

[64] PRISM A tool for the modelling, analysis and formal verification of systems that exhibit probabilistic behaviour.

[121], [START_REF] Thomas | Restructuring of Workflows to Minimise Errors via Stochastic Model Checking: An Automated Evolutionary Approach[END_REF], [START_REF] Prandi | Formal Analysis of BPMN via a Translation into COWS[END_REF] PVeStA A statistical model checking supports statistical verification and quantitative analysis of probabilistic systems. [143] Prolog A Prolog compiler with constraint solving over finite domains.

[147] PEPS A software tool packages developed to solve and analyse Stochastic Automata Networks (SAN) models, which represents the underlying Markov chain in a compact tensor [START_REF] Rosa Braghetto | Performance Evaluation of Business Processes through a Formal Transformation to SAN[END_REF] algebra format.

Rodin

A platform empowered by a large number of plug-ins providing various analysis specialised provers, capabilities like model checking, and simulation.

[151], [START_REF] Ben | From BPMN2 to Event B: A Specification and Verification Approach of Workflow Applications[END_REF] SPIN A verification tool for multi-threaded applications.

[69], [START_REF] Mohammed Kherbouche | Using Model Checking to Control the Structural Errors in BPMN Models[END_REF][START_REF] Mohammed Kherbouche | Detecting Structural Errors in BPMN Process Models[END_REF] TINA A tool for the editing and analysis of timed Petri nets [START_REF] Mutarraf | Transformation of Business Process Model and Notation Models onto Petri Nets and their Analysis[END_REF], [START_REF] Rachdi | Liveness and Reachability Analysis of BPMN Process Models[END_REF] UPPAAL A tool for modelling, simulation and verification of real-time systems.

[99], [START_REF] Morales | Business Process Verification Using a Formal Compositional Approach and Timed Automata[END_REF][START_REF] Mendoza | Business Process Verification: The Application of Model Checking and Timed Automata[END_REF], [104], [START_REF] Mallek | Enabling Model Checking for Collaborative Process Analysis: from BPMN to 'Network of Timed Automata[END_REF] Woflan A diagnostic tool performs the analyses of Workflow processes specified in term of Petri nets.

[72], [START_REF] Roy | Diagnosing Industrial Business Processes: Early Experiences[END_REF], [START_REF] Roy | A Formal Framework for Diagnostic Analysis for Errors of Business Processes[END_REF] Z3 A Solver tool for deciding the satisfiability of formulas writing in a Satisfiability Modulo Theories (SMT) [START_REF] De | Verification of Time-Aware Business Processes Using Constrained Horn Clauses[END_REF][START_REF] De | Semantics and Controllability of Time-Aware Business Processes[END_REF], [START_REF] Haseeb | Application of Formal Methods to Modelling and Analysis Aspects of Business Process Reengineering[END_REF]

Discussion

In this section, we discuss the related work with reference to our survey questions 3.2.2.

• Which formal model languages are used to formalise the semantics of BPMN ?

We identified a total of 79 works that present formal frameworks, methods, methodologies, algorithms, or plug-ins for BPMN verification. We have classified them into five groups based on the formalisation model: Petri nets, automata, process algebras, logic formulas, and programming languages. Table 3.4 gives a summary of the research contributions. It presents the input and the output language, the used verification or simulation tool, the verification method, and the correctness properties addressed if they exist. The table shows that most of the works are based on transformation techniques rather than direct semantics. Even though such direct approaches exist, based on logic formulas, they are not generic. i.e., each new work tries to give a formal semantics according to its destination language, and it does not take into account the semantics provided by the previous works. The latter is due to their chosen formalisation language, which was not interoperable.

• What are the goal(s) of this formalisation ? Business process verification is the act of determining if a business process model is correct concerning a set of formal properties. According to the literature, this verification in the context of business process modelling may have different goals:

Properties verification. The correctness of information systems are related to the correctness of their behavioural properties. The behavioural properties of such systems are mainly classified into safety, liveness and soundness. A safety property denotes that nothing bad will happen, ever, during the execution of a system. Liveness denotes that something good will happen, eventually, during the execution of a system. The soundness property denotes the validity of a system. The formalisation of the execution semantics provides a mathematical basis for validating such properties with respect to a system specification. Among the works we surveyed which have this objective, we can cite [64,[START_REF] Takemura | Formal Semantics and Verification of BPMN Transaction and Compensation[END_REF] which present the first work define the soundness, the deadlock and the liveness of BPMN models in the sense of workflows, and [START_REF] Corradini | Correctness Checking for BPMN Collaborations with Sub-Processes[END_REF] which determine the safety and the soundness of the BPMN models in terms of collaboration.

Business compliance. This ensures that business process models are following relevant compliance requirements. Compliance is interested in whether process models conform to specifications, which can be another process model or a set of rules, such as (inter)national laws and standards. Thus, compliance verification does not aim to prove the correctness of the business process itself but merely whether it adheres to a set of rules. Among the works we surveyed which have this objective, we find [START_REF] Mohammed Kherbouche | Using Model Checking to Control the Structural Errors in BPMN Models[END_REF] that focuses on the compliance checking rules for the verification of BPMN process model soundness, and [START_REF] Mendoza | Business Process Verification: The Application of Model Checking and Timed Automata[END_REF] that focuses on the verification of business process tasks constrained by a set of business rules.

Business process models variability. Variability indicates that parts of a business process are variable or not fully defined to support different versions of the same process depending on the intended use or execution context. BPM variability aims to reduce development and maintenance efforts and check BP behaviours over a set of conditions. Among the works we surveyed, we find [START_REF] Mallek | Enabling Model Checking for Collaborative Process Analysis: from BPMN to 'Network of Timed Automata[END_REF] which has for objective equivalence checking between processes.

Compatibility between processes.

The compatibility between processes is to compare BPMN diagrams and assert correctness conditions based on a set of defined patterns. Among the works mentioned which have this objective, we can cite [START_REF] Peter | A Process Semantics for BPMN[END_REF], which addresses compatibility checking between the participants in business collaboration.

• Which is the state of tool support ?

We have identified 26 works supported by a tool, whether a framework, a prototype or a plugin. Four of them do not mention any availability link, and three others give one, but the given link is dead. We can then compare the 19 others. Table 3.5 presents the set of tools extracted from the work we surveyed. For each tool, we give its underlying formal model/language support, link, objective, and supporting analysis type. Table 3.5 shows 22/26 tools for the formalisation of BPMN with a primary goal of verification and different perspectives sighted: works aim at the analysis of the behaviour of activities and their hierarchical characteristics, of message exchanges and collaboration between processes, of process in the presence of temporal elements; works aim at the analysis of execution time; works aim at quantitative analysis for the evaluation of the performance of models; works aim at security analysis. Despite the different desired goals, the primary way to reach those goals is to have a formal model for the semantics of BPMN.

• Which are the parts of BPMN being supported by the tools ? Table 3.6 shows the BPMN features elements supported in each identified tool. The table shows that the most addressed elements are the control flow (tasks, gateways -parallel, exclusive, and inclusive-, start and end events). Looking at this subset, we find that 90% of the works support inclusive gateways with simplified semantics marked as local in the table. Only the work presented in [71] has taken into consideration the global semantics of this gateway. On the other hand, the table shows that the communication elements are less supported, and even if found, the works focus on the send and receive tasks only and ignore the other events. Finally, the table shows that the less supported elements are data and time perspectives.

• What are the challenges that still need to be addressed ? Table 3.7 describes some limitations in the existing approaches. In order to give a general response to the question, we collect the limitations presented in Table 3.7 in six points as follows:

-Lack of a Generic Formal model. We noticed that most of the approaches handle the formalisation of the BPMN semantics using a transformation approach to a formal modelling language such as Petri nets or timed automata. The availability of dedicated verification tools is possibly the main reason for such a choice. However, this kind of formalisation suffers the typical problems introduced by mapping into another model, where the formal semantics of BPMN is not given in terms of its mathematical definition but rather as transformation patterns to be assembled. Further, it is restricted to the semantic features of the target model, e.g., in the collaboration diagrams, tokens may be only on the sequence edges of the involved processes, while in its Petri nets model translation, the tokens refer to both messages and sequence edges. Such a distinction is not considered in the proposed translations because a message is rendered as a (standard) token in a place. Other approaches are given a direct formalisation in an encoding language such as Java or Maude. In such a case, the semantics provided by the translation is related to the low-level details of the encoding, possibly distinct in abstraction to the features and constructs of BPMN. This may make the verification results inaccurate since translations usually rely on their target language-related abstractions. Despite the different languages used in the literature, we find that the lack of expressiveness of these languages makes their use as a basis for a future extension of work complicated than redefinitions -Lack of Parametric Communication Support. Several works support the semantics of collaboration-related elements (collaboration diagram, sending and receiving messages). However, they perform verification based on synchronous communication models. None of these works has studied the verification of BPMN models under different configurable interaction/communication models.

-Lack of Timed Elements Support. Several works address the Timed perspective of BPMN. However, all these works focus on extending the BPMN notion to support the time constraints. No identified work has discussed the semantics of timer elements regarding the ISO-8601 standard as specified in the BPMN standard [3, P 274, Chapter 10].

-Limited subset of BPMN being supported. Complex elements such as OR join gateways, subprocesses, timer events, and the collaborations between processes, multi-instance characteristic is well supported in some works only. However, none of these works can reason on collaboration, including the semantics of all of these elements at the same time.

-BPMN Correctness Properties. Concerning verification, different properties have been defined in Petri Nets, timed automata, process calculi and other formal languages. The most known ones in the BP context are soundness and safety, defined in [177]. The soundness [149] Horn Clauses VeriMAP [START_REF] De | [END_REF] Verifying the controllability of time-aware business Process models × ✓ × Table 3.6: Embraced BPMN Features (• stands for the supported elements, --for the non-supported elements, (•) mentions that is not clear).

Start Events

None start

• Message start • ---- -- -- • • -- -- -- ------ • -- • • -- • -- -- -- -- -- -- -- Timer start (cycle) ------ -- -- ------ -- -- ------ -- -- -- -- -- -- -- -- -- -- -- -- -- Timer start (Date) ------ -- -- ------ -- -- ------ -- -- -- -- -- -- -- -- -- -- -- -- -- Timer start (Duration) ------ -- -- ------ -- -- ------ -- -- -- -- -- -- -- -- -- -- -- -- -- Message catching • • • • -- • • • -- -- • ---- -- • • • • • -- -- -- • -- • -- Message throwing • • • • -- • • • -- -- • ---- -- • • • • • -- -- -- -- -- • -- Message boundary (Interrupt.) ------ -- -- • --• -- -- • ---- -- -- -- -- -- -- -- -- -- -- -- (•) -- Message boundary (non Interrupt.) ------ -- -- • ---- -- -- ------ -- -- -- -- -- -- -- -- -- -- -- (•) Timer intermediate event • --• -- -- --• • -- -- • ---- -- • -- -- -- -- -- -- -- • -- -- -- Timer catching (Date) ------ -- -- ------ -- -- ------ -- -- -- -- -- -- -- -- -- -- -- -- -- Timer catching (Duration) ----• -- -- ------ -- -- ------ -- • -- -- -- -- -- -- -- -- -- -- -- Timer boundary (Interrupt., Date) ------ -- -- ------ -- -- ------ -- -- -- -- -- -- -- -- -- -- -- -- -- Timer boundary (Interrupt., Duration) ------ -- -- ------ -- -- ------ -- • -- -- -- -- -- -- -- -- -- -- -- Timer boundary (non Interrupt., Date) ------ -- -- ------ -- -- ------ -- -- -- -- -- -- -- -- -- -- -- -- -- Timer boundary (non Interrupt., Duration) ------ -- -- ------ -- -- ------ -- -- -- -- -- -- -- -- -- -- -- -- -- Timer boundary (non Interrupt., Cycle) ------ -- -- ------ -- -- ------ -- -- -- -- -- -- -- -- -- -- -- -- -- Error intermediate event ------ • -- • • • -- -- • --• -- -- -- -- -- -- -- -- -- -- -- -- --

End Events

None end

• -- Message end ------ -- -- • • -- -- -- ------ -- -- • • -- -- -- -- -- -- -- -- -- Terminate end ------ -- -- • ---- -- -- ----• -- • • • -- -- -- -- -- -- -- -- -- Error end ------ -- -- • ---- -- -- ------ -- -- -- -- -- -- -- -- -- -- -- -- -- Gateways Parallel (fork/join) • Exclusive fork • Exclusive join • Event based join ------ -- -- --• -- -- -- ------ -- • -- -- -- -- -- • • • -- -- -- Event based fork • ---- -- -- --• • -- -- • ---- -- • • • • • -- • • • -- -- -- Inclusive fork ----• • -- • --• • -- • --• -- • • -- -- -- • • • • • -- -- Inclusive join (local) ----• • -- ----• • -- • --• -- • -- -- -- -- • • • • • -- -- Inclusive join (global) ------ -- -- • ---- -- -- ------ -- -- -- -- -- -- -- -- -- -- -- -- -- Activities Abstract task • --• -- Send task • • • -- • --• -- -- • • --• • • • • • • -- -- -- • -- • -- Receive task • --• -- • --• -- -- • • --• • • • • • • -- -- -- -- -- • -- Embedded Sub-process • ---- -- -- • • • -- • ----• -- • -- -- -- • -- -- -- -- -- • -- Event Sub-process ------ -- -- ----• -- -- ------ -- -- -- -- -- -- -- -- -- -- -- -- -- Loop task • ---- -- -- • • • -- -- • --• -- • -- • -- -- -- -- -- -- -- • -- Loop sub-process • ---- -- -- • --• -- -- ----• -- • -- -- -- -- -- -- -- -- -- • -- Multiple instance task (static) • ---- -- -- --• • -- -- • --• -- • -- • -- -- -- -- -- -- -- (•) -- Multiple instance task (dynamic) • ---- -- -- --• • -- -- • --• -- • -- -- -- -- -- -- -- -- -- (•) -- Multiple instance sub-process (static) • ---- -- -- --• • -- -- ----• -- • -- -- -- -- -- -- -- -- -- (•) -- Multiple instance sub-process (dynamic) • ---- -- -- --• • -- -- ----• -- • -- -- -- -- -- -- -- -- -- (•) -- Data Objects Data object ------ -- -- --• -- -- -- • • -- -- -- -- • -- -- -- -- -- -- -- -- -- Data store ------ -- -- ------ -- -- • • -- -- -- -- -- -- -- -- -- -- -- -- -- -- Resources ------ -- -- ------ -- -- ------ -- -- -- -- -- -- -- -- -- • -- -- --
property consists in guaranteeing the absence of deadlock and no dead activities in the model. The safety property consists of ensuring the bounded number of tokens per sequence flow. The works mentioned above (Table 3.4) focus mainly on the verification of soundness properties related to the control flow of the business process, without considering communication aspects.

In addition, the available verification tools for BPMN can not differentiate issues concerning the control flow from those concerning the message flow.

Recently, a new reformulation of the BPMN safety and soundness properties has been defined in [140] to take into account essential collaboration features of the BPMN models, such as message passing and related soundness properties (e.g., message-relaxed soundness). Taking these relevant properties into account in the verification process permits distinguishing issues concerning the control flow from those concerning the message flow. Therefore, the safeness of a BPMN collaboration only refers to the tokens on the sequence edges of the involved processes. However, such distinction is not considered in the translation approaches, e.g., in Petri Nets translation, a message is rendered as a token in a place. Hence, a safe BPMN collaboration may be considered unsafe by relying on the Petri Nets notion.

-Lack of Empirical Evaluation.

Summary

This chapter presented a systematic literature review on the formalisation of BPMN execution semantics and the annotated verification tool support. We investigated this state of the art according to five questions. We analysed 79 works spread across five distinct formal models/languages: Petri nets, timed automata, process algebras, logic formulas, and programming languages. We have given a detailed overview of each selected work. Then, we have identified their tool support (or lack of) and their empirical objectives. Finally, we have identified their limitations to lead the thesis objectives. In the following chapters, we intend to address the gaps discovered from this research by proposing formal BPMN semantics covering the process and the collaboration diagrams. Furthermore, our research will address the gaps related to communication management, time constraints, hierarchical structure supports and the (famous) OR join gateway semantics problem. • According to the authors, the approach suffers from deficiencies that impact the proposed formalisation

• The behaviour of the message tasks and events is not properly clear

• Lack of OR-Join semantics support

• No time notion is given for the timer events

• Safeness notion differs on the Petri nets then when it is given directly on BPMN collaborations • Supports a small subset of BPMN elements

• The semantics given is based on the low-level details of the Java encoding as an execution traces

• The authors exclude some deadlock cases for the efficiency of their approach that are necessary for the collaboration correctness, e.g., waiting process that never start due to waiting messages for start event, Deadlock caused by choice before synchronisation messages • The authors mention the use of the asynchronous communication model for communication. But they do not introduce any details about its support nor its integration in the formal model

• They implement the defined LTS semantics and the correctness checking techniques in JAVA

• The proposed implementation is still a prototype that can be subject to many optimisations

• The authors verify a set of BP correctness properties using the implemented tool. However, they do not express the method checking used • Supports a small subset of BPMN elements enriched with stochastic expressions for expressing time constraints

• Event it supports communication events, it does not address their semantics nor their verification

• The authors focus on a time notion without any reference to the one given by the BPMN standard

• It addresses the formal specification and verification of quantitative aspects of processes and their resources and not the qualitative ones

• Approach address the stochastic simulation of multiple concurrent executions of a process instance that compete for the shared resources [173] symbolic RL → SMT

• Supports a small subset of BPMN elements for the modelling of a business process • Supports a small subset of BPMN elements without any precision (e.g., the authors mention the boundary event without any details with which event is associated message, time, or errors; is it interrupting or no, etc.)

• The approach does not explicitly express. No details about the semantics of the supported set of BPMN elements, nor how they are formalised

• The proposed approach is evaluated over a simple example that is not found in the folders nor the paper

• Their approach allows the multi-instantiation of the process and the activities but no details about its management in the collaboration case, nor in the simple process model due of the black token uses; which type supports the dynamic one the static one [START_REF] De | Semantics and Controllability of Time-Aware Business Processes[END_REF] CHC

• Supports a small subset of BPMN elements extended with time constraints associated to tasks

• Lack of the Or join and the subprocess elements support

• Does not support the collaboration models nor the timer elements and their time perspective with reference to ISO standard definition

• Event the work address the timer constraint perspective, it focuses only on the time constraints that task durations should satisfy

Introduction

Communication is an essential human activity to represent an exchange of messages and information among people. It is also an important organisational capability used for negotiating, discussing, and making decisions about how to coordinate and cooperate in business activities. Basically, communication may be performed 'face-to-face' (i.e., interpersonal communications) or remotely (i.e., via a communication medium). Corporate communications have an important impact on organisational success. In line with this, communications are commonly represented by the following process: "a sender transmits a message through a channel to the receiver". In this context, BPMN provides collaboration diagrams to represent communication between a set of participants. These diagrams define a precise order in which messages are sent and received. Effective communication modelling should have appropriate knowledge about the communication type on which it depends (i.e., synchronous or asynchronous type of communication). Yet BPMN does not allow these communication modes to be taken into account. In addition, BPMN suffers from a lack of standard formal semantics. This weakness can lead to inconsistencies, ambiguities, and incompleteness within the developed models. As a result, many researchers proposed formal methods to build formal description and verification models of business processes. However, one of the weaknesses of these proposals is their lack of support for modelling complex BPMN collaboration business processes involving communication models. For that, we need an expressive modelling formalism that allows, on the one hand, to specify the dynamic structure of the business processes models, and on the other hand, to check the control-flow correctness of these models while taking into account their communication model.

Thus, our efforts are to define formal semantics for a relevant fragment of BPMN collaborative models, providing a modular structure for incorporating numerous possible communication models. These models are related to message-passing behaviours between and within processes and show how one can interchange them when studying a given BPMN schema. Formalising BPMN in a mathematical language would bring many advantages: (1) giving an abstract and generalised semantics, (2) being easily implementable in different verification languages, (3) being able to perform a more efficient verification of the system, and (4) being able to extend it to take into account the organisational information associated with process models such as the perspective of time constraints (cf. Chapter 5). This chapter formalises the semantics of BPMN collaborations. It focuses on a subset of BPMN execution semantics that supports subprocesses, inclusive gateway, interaction and is parametric with respect to the communication properties. This formalisation is given in terms of First-Order Logic (FOL). This allows the translation of the process execution semantics without being linked to a particular language. The proposed semantics supports the seven point-to-point communication models [START_REF] Chevrou | A Modular Framework for Verifying Versatile Distributed Systems[END_REF] that exist when considering local, causal and global message ordering, and it is easily extensible. Furthermore, on top of these seven generic communication models applied to the whole collaboration, the proposal supports the definition and the use of ad-hoc communication models (a specific model built by assembling micro communication models that provide different constraints on sending and receiving messages).

This chapter is organised as follows. Section 4.2 provides the presentation of the model underlying the semantics. Section 4.3 summarises the basic concepts of the selected communication models needed for understanding this chapter and gives their formalisation in terms of FOL logic. Section 4.4 gives the formalisation of a subset of BPMN elements. Section 4.5 discuss the verification properties supported by the formalisation. A conclusion is given in Section 4.6.

A Typed Graph Representation of BPMN Collaborations Models

We formally reduce the representation of a collaboration diagram as a typed graph, where types corresponding to the BPMN element types are associated with nodes and edges. Thus, each node or edge in the graph corresponds to a BPMN node or edge. This work does not propose an alternative modelling notation, but it defines a Backus-Naur Form (BNF) syntax for BPMN models. • For Nodes:

BPMN Elements Type

A TYPED GRAPH REPRESENTATION OF BPMN COLLABORATIONS MODELS 69

-The set of task (T), groups the abstract task (AT), the receive task (RT), and the send task (ST) types. Formally: T = {AT, RT, ST }.

-The set of activity (A), groups the task and the sub-process (SP) types. Formally: A = T ∪ {SP }.

-The set of gateway (G), groups the parallel (AN D), the inclusive (OR), the exclusive (XOR), and the event-based (EB) gateway types. Formally: -The set of end event (EE), groups the none end event (N EE), the terminate end event (T EE), and the message end event (M EE) types. Formally:

G = {AN D,
EE = {N EE, T EE, M EE}
-The set of event (E), is the set of all event types. Formally:

E = SE ∪ IE ∪ BE ∪ EE
• For Edges:

-The set of sequence flow (SF), groups the normal sequence flow (N SF), the conditional sequence flow (CSF), and the default sequence flow (DSF) types. Formally:

SF = {N SF, CSF, DSF }
-The set of message flow (M F), is used to denote message flows.

Thus, we consider two basic disjoint sets of elements types as follows:

• T N odes denotes the set of all node types, with an added type, P , denoting processes. Formally:

T N odes = A ∪ G ∪ E ∪ {P }.
• T Edges denotes the set of all edge types. Formally:

T Edges = SF ∪ {M F }.

Graph Structure

After defining the sets of BPMN elements types, we introduce the notion of a collaboration diagram as a labelled graph.

Definition 4.2.1 (BPMN Graph). A BPMN graph is a tuple G= (N , E, M, cat N , cat E , source, target, R, msg t , attachedT o, isInterrupt) where:

• N , is the set of nodes,

• E (N ∩ E = ∅), is the set of edges,

• M, is the set of message types,

• cat N : N → T N odes , returns the type of a node, • R : N → 2 N ∪E , returns the set of nodes and edges which are directly contained in a container (process or sub-process).

cat N (n) def ≡ {t ∈ T N odes | ∀n ∈ N } • cat E : E → T Edges ,
R(n) def ≡ elems ⊆ N ∪ E if cat N (n) ∈ {P, SP } ∅ otherwise
Notation. We note R + the transitive closure of R, and R -1 the inverse of R.

• msg t : E → M returns the message associated to a message flow,

msg t (e) def ≡ m ∈ M if cat E (e) ∈ M F ∅ otherwise
• attachedT o : N → N , returns the activity to which a boundary event node is attached,

attachedT o(n) def ≡ a ∈ N if cat N (n) ∈ BE ∧ cat N (a) ∈ A ∅ otherwise
• isInterrupt : N → Bool, denotes whether a boundary event node is interrupting or not,

2125 isInterrupt(n) def ≡ b ∈ Bool ∀n ∈ N, cat N (n) ∈ BE f

alse otherwise

Example of R function application. Let's take an example to show how we dealt with the hierarchical structure of the BPMN diagrams. Consider again the example of Figure 2.8 with two process node types Customer and TravelAgency. To deal with processes P and sub-processes SP containment, we use the relation, R. If we apply the R function on the Customer process, we obtain: R(Customer) = {"StartT ravelBooking", "Requestf orOf f er", "check?", "CheckT ravelOf f er", "istheof f erinteresting?", "Inf ormtheagency", "BookT ravel", "P ayT ravel", "BookingConf irmed", "ReceivedInf ormation", "SendAbort", "T ransaction Aborted", "T icketReceived", "T ransactionCompleted", e 0 , e 1 , e 2 , e 3 , e 4 , e 5 , e 6 , e 7 , e 8 , e 9 , e 10 , e 11 } However, the application of the function on the TravelAgency process returns as result only the global nodes, i.e., the subprocess OfferSP and ExchangeSP without their contents. R(T ravelAgency) = {"StartOf f erM anagement", "Of f erSP ", "T imeOut", "StopSending Of f er", "Continue", "ExchangeSP ", "ReceiveAbord", "Of f erAborted", "Of f erCompleted", e

N =

{"Customer", "T ravelAgency", "StartT ravelBooking", "Requestf orOf f er", "check?", "CheckT ravelOf f er", "istheof f erinteresting?", "Inf ormtheagency", "BookT ravel", "P ayT ravel", "BookingConf irmed", "ReceivedInf ormation", "SendAbort", "T ransactionAborted", "T icketReceived", "T ransactionCompleted", "StartOf f erM anagement", "Of f erSP ", "T imeOut", "StopSendingOf f er", "Continue", "ExchangeSP ", "ReceiveAbord", "Of f erAborted", "Of f erCompleted", "StartOf f ers", "OtherOf f er?", "ExistM oreof f er?", "M akeT ravel, Of f er", "SendInf ormation", "Of f ersCompleted", "StartBooking", "BookingReceived", "P aymentReceived", "Conf irmBooking", "OrderT icket", "BookingCompleted"} E = {e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e22, e23, e24, e25, e26, e27, e28, "mf0, "mf1", "mf2", "mf3", "mf4", "mf5", "mf6", "mf7", "mf8"} M = {"Of f erRequest", "Of f er", "N oM ore", "Abort", "SelectOf f er", "T ravel", "Conf irmation", "P ayment", "T icket"} msgt= "mf0" → "Of f erRequest", "mf1" → "Of f er", "mf2" → "N oM ore", "mf3" → "Abort", "mf4" → "SelectOf f er", "mf5" → "T ravel", "mf6" → "P ayment", "mf7" → "Conf irmation", "mf8" → "T icket" catN = "Customer" → P, "T ravelAgency" → P, "StartT ravelBooking" → N SE, "check?" → XOR, "CheckT ravelOf f er" → RT, "istheof f erinteresting?" → XOR, "BookT ravel" → ST, "P ayT ravel" → ST, "T icketReceived" → CM IE, "BookingConf irmed" → CM IE, "ReceivedInf ormation" → BM IE, "SendAbort" → T M IE, "T ransactionAborted" → N EE, "T ransactionCompleted" → N EE, "StartOf f erM anagement" → M SE, "Of f erSP " → SP, "StartOf f ers" → N SE, "Otherof f er?" → XOR, "ExistM oreof f er?" → XOR, "M akeT ravelOf f er" → RT, "SendInf ormation" → T M IE, "StopSendingOf f er" → M BE, "Of f ersCompleted" → N EE, Continue → XOR, "ExchangeSP " → SP, "StartBooking" → N SE, "BookingReceived" → CM IE, "P aymentReceived" → CM IE, "Conf irmBooking" → ST, "OrderT icket" → ST, "EndBooking" → N EE,

"ReceiveAbord" → M BE, "Of f erAborted" → N EE, "Of f erCompleted" → N EE} catE= e0 → N SF, e1 → N SF, e2 → N SF, e3 → N SF, e4 → CSF, e5 → DSF, e6 → N SF, e7 → N SF, e8 → N SF, e9 → N SF, e10 → N SF, e11 → N SF, e12 → N SF, e13 → N SF, e14 → N SF, e15 → N SF, e16 → DSF, e17 → N SF, e18 → N SF, e19 → N SF, e20 → N SF, e21 → N SF, e22 → N SF, e23 → N SF, e24 → N SF, e25 → N SF, e26 → N SF, e27 → N SF, e28 → N SF, "mf1" → M F, "mf2" → M F, "mf3" → M F, "mf4" → M F, "mf5" → M F, "mf6" → M F, "mf7" → M F, "mf8" → M F source = e0 → "StartT ravelBooking", e12 → "StartOf f reM anagement" e1 → "Requestf orof f re", e2
→ "Check?", e3 → "checkT ravelOf f re", e4 → "isthisof f erinteresting?", e5 → "isthisof f erinteresting?" e6 → "BookT ravel", e7 → "P ayT ravel", e8 → "T icketReceived", e9 → "BookingConf irmed", e10 → "ReceivedInf ormation", e11 → "SendAbort" e13 → "StartOf f ers", e14 → "OtherOf f er?", e15 → "M akeT ravelOf f er", e16 → "ExistM oreOf f er", e17 → "SendInf ormation", e18 → "ExistM oreOf f er", e19 → "Of f erSP ", e20 → "Continue", e21 → "StartBooking", e22 → "BookingReceived", e23 → "P aymentReceived", e24 → "Conf irmBooking", e25 → "OrderT icket", e26 → "ExchangeSP ", e27 → "ReceiveAbord", e28 → "StopSendingOf f er" mf0 → "Requestf orOf f er", mf1 → "M akeT ravelOf f er", mf2 → "SendInf ormation", mf3 → "SendAbord", mf4 → "Inf ormtheAgency", mf5 → "BookT ravel", mf6 → "P ayT ravel", mf7 → "Conf irmBooking", mf8 → "OrderT icket" target= e0 → "Requestf orof f re", e12 → "Of f reSP " e1 → "Check?", e2 → "checkT ravelOf f re", e3 → "isthisof f erinteresting?", e4 → "inf ormtheAgency?", e5 → "Check?", e29 → "BookT ravel", e6 → "P ayT ravel", e7 → "T icketReceived", e8 → "BookingConf irmed", e9 → "T ransactionCompleted", e10 → "SendAbort", e11 → "T ransactionAbort" e13 → "OtherOf f er?", e14 → "M akeT ravelOf f er", e15 → "ExistM oreOf f er", e16 → "SendInf ormation", e17 → "Of f erCompleted", e18 → "OtherOf f er", e19 → "Continue", e20 → "ExchangeSP ", e21 → "BookingReceived", e22 → "P aymentReceived", e23 → "Conf irmBooking", e24 → "OrderT icket", e25 → "BookingCompleted", e26 → "Of f erCompleted", e27 → "Of f erAborded" mf0 → "StartOf f erM anegement", mf1 → "CheckT ravelOf f er", mf2 → "ReceivedInf ormation", mf3 → "ReceiveAbord", mf4 → "StopSendingOf f er", mf5 → "BookingReceived", mf6 → "P aymentReceived", mf7 → "BookingConf irmed", mf8 → "T icketReceived" BoundaryEvent = attachedT o("ReceivedInf ormation")= "CheckT ravelOf f er", isInterrupt("ReceivedInf ormation")= true attachedT o("StopSendingOf f er") = "Of f erSP ", isInterrupt("StopSendingOf f er") = true attachedT o("BoundaryEvent19y0yk9") = "ExchangeSP ", isInterrupt("ReceiveAbord") = true R(T ravelAgency)= {"StartOf f erM anagement", "Of f erSP ", "T imeOut", "StopSending, Of f er", "Continue", "ExchangeSP ", "ReceiveAbord", "Of f erAborted", "Of f erCompleted", e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e22, e23, e24, e25, e26, e27, e28} R(Customer)= {"StartT ravelBooking", "Requestf orOf f er", "check?", "CheckT ravelOf f er", "istheof f erinteresting?", "Inf ormtheagency", "BookT ravel", "P ayT ravel", "BookingConf irmed", "ReceivedInf ormation", "SendAbort", "T ransactionAborted", "T icketReceived", "T ransactionCompleted", e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}

To get the content of a subprocess, we apply the R function on it. For example: R(Of f erSP) = {"StartOf f ers", "OtherOf f er?", "ExistM oreof f er?", "M akeT ravel Of f er", "SendInf ormation", "Of f ersCompleted"} R(ExchangeSP) = {"StartBooking", "BookingReceived", "P aymentReceived", "Conf irmBooking", "OrderT icket", "EndBooking"}

If we want to extract all the nodes within a process, we use the transitive closure function as follow:

2130

R + (T ravelAgency) = {"StartOf f erM anagement", "Of f erSP ", "T imeOut", "StopSending Of f er", "Continue", "ExchangeSP ", "ReceiveAbord", "Of f erAborted", "Of f erCompleted", e , "StartOf f ers", "OtherOf f er?", "ExistM oreof f er?", "M akeT ravel, Of f er", "SendInf ormation", "Of f ersCompleted", "StartBookig", "BookingReceived", "P aymentReceived", "Conf irmBooking", "Order T icket", "EndBooking"} Example of a graph syntax. Using the example of Figure 2.8 again, the correspondence between the graphical notation of BPMN and the syntactic representation is exemplified in Table 4.1.

Auxiliary functions. For a graph G= (N , E, M, cat N , cat E , source, target, R, msg t , attachedT o, isInterrupt), we define the following auxiliary functions:

• in : N → 2 E , returns the incoming edges of a node,

in(n) = {e ∈ E | target(e) = n}
• out : N → 2 E , returns the outgoing edges of a node,

out(n) = {e ∈ E | source(e) = n}
• procOf : N → N P , returns the container process of a given node, It is important to enforce models to respect some well-formed rules before performing verification. We, therefore, define well-formed BPMN graphs as follows.

procOf (n) = {p | if and only if n ∈ R + (p)} • intype : N × T Edges → 2 E ,

Well-formed BPMN graph.

A well-formed BPMN graph satisfies the following conditions. These rules extracted from the standard [3]: • (C4) A sub-process has a unique none end event node:

∀n ∈ N SP , |R(n) ∩ {nn ∈ N, cat N (nn) = EE}| = 1
• (C5) A sub-process node cannot contain a process node:

∀n ∈ N, cat N (n) ∈ SP =⇒ ∀nn ∈ R(n), cat N (nn) ̸ = P • (C6)
For each process node, we require that:

it contains at least one initial node:

∀n ∈ N, cat N (n) = P =⇒ R(n) ∩ {nn ∈ N, cat N (nn) = SE} ̸ = ∅
it contains at least one end event node:

∀n ∈ N, cat N (n) = P =⇒ R(n) ∩ {nn ∈ N, cat N (nn) = EE} ̸ = ∅
• (C7) No looping edges: ∀e ∈ E, source(e) ̸ = target(e)

• (C8) No node isolation: ∀n / ∈ N, (cat N (n) = P) =⇒ (in(n) ̸ = ∅) ∨ (out(n) ̸ = ∅)
• (C9) A gateway that has a conditional edge must have a default edge: ∀e ∈ E, cat E (e) = M F =⇒ procOf (source(e)) ̸ = procOf (target(e))

∀n ∈ N, (cat N (n) ∈ G) ∧ (outtype(n, CSF) ̸ = ∅) =⇒ |outtype(n, DSF)| = 1
• (C13) An event-based gateway have at least two outgoing edges:

∀n ∈ N, cat N (n) = EB =⇒ |out(n)| ≥ 2
• (C14) Parallel and event-based gateways cannot have a conditional outgoing edge type:

∀n ∈ N, cat N (n) ∈ {AN D, EB} =⇒ outtype(n, CSF) = ∅ • (C15)
The outgoing edges of an inclusive or an exclusive gateway must be a combination between default sequence flows and conditional sequence flows, or all are of the normal sequence flow type:

∀n ∈ N, cat N (n) ∈ {XOR,
∀n ∈ N, cat N (n) ∈ {ST, M EE, T M IE} =⇒ |outtype(n, M F)| ≥ 1}
• (C19) Receive task has at least one incoming message flow edge:

∀n ∈ N, cat N (n) ∈ RT =⇒ |intype(n, M F)| ≥ 1
• (C20) Send task has at least one outgoing message flow edge:

∀n ∈ N, cat N (n) ∈ ST =⇒ |outtype(n, M F)| ≥ 1
It should note that we do not require a specific structure of the BPMN graph for these rules. For example, we do not require these graphs to be well-balanced (when for each splitting gateway of a given type, there is a corresponding merging gateway of the same type). One can use an exclusive splitting gateway and merge its branches using a parallel gateway. Verification will be able to detect this is an

A Communication Model Representation

This thesis focuses on the BPMN collaboration diagrams where the communication models may present the backbones element in such a model. In general, the interactions between processes or any computing systems are built based on two categories: synchronous or asynchronous communication. In synchronous communications, the transmission of a piece of information -the message -is instantaneous (i.e., the send and the receive of the data simultaneously). On the other hand, asynchronous communication splits the transmission into a send operation and a receive operation. In this Section, we consider classic communication models from the literature as well as a few variations. We integrate such models to the BPMN collaboration diagrams semantics to study the behaviour of such models in the presence of such control.

Communication Model

The interaction in the collaboration diagrams corresponds to a message passing between two processes. It corresponds to a couple of communication events: namely a send and a receive. An event or a set of communication events may occur on a process. However, each communication event can be a send event or a receive event associated with a message. Each event carries information about the type of the event (send, receive), the message, the process from where it occurs, and the process to where it will be fired. As the multi-instance characteristic is out of the scope in this thesis. We focus on one-to-one communication. In such communication, a given message is sent by a process, and it may be received by at most one process. Back to the example of Figure 2.8, it illustrates a point-to-point communication and the transmission of messages between the TravelAgency process and the consumer process. Formally, we define the peer to peer communication model using two predicates send and receive defined with (from, to, message) information as follow.

send /receive : {p 1 ∈ N | cat N (p 1) ∈ P } × {p 2 ∈ N | cat N (p 2) ∈ P } × M (4.1)

Communication Channel

Let nets be a set of communication channels. A channel is a label on messages. The content of messages is out of the scope here as we do not support data objects. A channel is not restricted to one sender and one receiver. Different processes can send messages on the same channel. Likewise, different processes can receive a message from the same channel. Yet, it is nonetheless a point-to-point communication abstraction because a given message still has exactly one sender and at most one receiver. If a single message is sent on a given channel and several peers expect to perform a reception from this channel, only one of them will be able to receive the message. The channels can be global, local to a participant, associated with a pair of communicating processes, or local to each message. Thus, depending on the configuration of the channel, a great variety of communication models arises.

Generic Communication Models

We define seven communication models which differ in the order the messages can be sent or received. They are all the possible point-to-point models when considering local ordering (per process), causal ordering, and global ordering (absolute time) [179]. There are four variants of FIFO communication, Table 4.2 gives an overview of them. In addition, there are causal communication, (Causal), pseudosynchronous communication, (RSC), and fully asynchronous communication (Bag).

FIFO pair

associates one sender with one receiver FIFO inbox associates all the senders of a unique receiver FIFO outbox associates one sender with all its destinations FIFO all associates all the senders with all the receivers

In the following, we define the structure of each model as a type called T net , where T net ∈ {bag, pair, inbox, outbox, causal, fifoall, RSC}

The models are formally defined in Table 4.3 and are explained below. To simplify the notations, we include sequences of terms (Seq[T]) and bags (Bag[T]) as a part of the usual definition of ground terms in first order logic. Indeed, we use N P to denote the subset of nodes of type P , i.e., N P = {n ∈ N | cat N (n) ∈ P }. By abuse of notation, we may write N P instead of N {P } . We also assume some standard definitions and operations on terms:

• ⟨⟩ is the empty sequence No order on message reception is imposed. Messages can overtake each other or be arbitrarily delayed. A bag or a set usually model it if messages are unique.

• Fifo pair is a queue of messages attached to each couple of processes. Formally:

pair def ≡ N P × N P → Seq[M]
Messages between a couple of processes are received in their sending order. Messages from or to different processes are independently received. More precisely, if a process P 1 sends a message m 1 to process P 2 , and later a message m 2 is sent to this same process, then m 2 cannot be received before m 1 (See Figure 4. • Fifo inbox is an input queue attached to each process, where senders put messages. Formally:

inbox def ≡ N P → Seq[N P × M]
Each process has its own unique input queue, and senders add messages to this queue without blocking. Messages are consumed from this queue in their insertion order. This means that if a process P 1 sends a message m 1 to P 3 , and later (but independently) a process P 2 sends a message m 2 to P 3 , then m 2 cannot be received before m 1 . This model is stricter than the Fifo pair as it 2210 requires a global order on the sending events (See The execution is not be FIFO inbox because the sending of proposal message precedes the executable, and the associated receptions that occur on the same process director happen in the reverse order.

• Fifo outbox is an output queue attached to each process where messages are retrieved. Formally:

outbox def ≡ N P → Seq[N P × M]
Messages from the same process are received in their sending order. If a process P sends a message m 1 and later a message m 2 (to the same process or to another one), then m 2 cannot be received before m 1 , even if the receptions occurs on distinct processes (See • Fifo All is a unique shared queue. Formally:

fifoall def ≡ Seq[N P × N P × M]
Messages are globally ordered, independently from their sender or receiver processes, and are received in the global sending order.

• Causal. Messages are received according to the causality of their sending [START_REF] Lamport | Time, Clocks and the Ordering of Events in a Distributed System[END_REF]. Formally:

V C def ≡ [N P → N] --a vector clock causal ∈ Set[N P × N P × M × V C] × [N P → V C]
If a message m 1 is causally sent before message m 2 (there exists a causal path from the sending of m 1 to the sending of m 2), then a process cannot receive m 2 before m 1 . Figure 4.8 presents a model that deadlocks with causal communication. In this example, a scientist writes a proposal, 2220 sends the proposal to the client, and sends its description to its financial department. Based on the description, the financial department computes a quote and sends it to the client. Without causal communication, the client can receive the quote before the proposal; with causal communication, the quote cannot be delivered because it causally depends on the proposal that must be received first. A usual implementation of this model uses causal histories [START_REF] Schwarz | Detecting Causal Relationships in Distributed Computations: In Search of the Holy Grail[END_REF][START_REF] Kshemkalyani | Necessary and Sufficient Conditions on Information for Causal Message Ordering and Their Optimal Implementation[END_REF] or vector/matrix logical 2225 clocks [START_REF] Raynal | The Causal Ordering Abstraction and a Simple Way to Implement It[END_REF] as presented here1 . The state of the network mnet holds a couple: the set of messages in transit (with their associated vector clock) and the vector clocks of each process. • RSC (Realisable with Synchronous Communication) is a shared, 1-sized, buffer for all processes. Formally:

net RSC def ≡ (N P × N P × M)
Send and receive events are strictly alternate. If the couple (send event, reception event) is considered atomic, this corresponds to synchronous communication [START_REF] Charron-Bost | Synchronous, Asynchronous, and Causally Ordered Communication[END_REF].

A FOL Semantics for BPMN Collaborations

To maintain traceability with the standard, we use a token-based approach to define the semantics. We formalise the way the token transit between edges and nodes that compose the collaboration diagram.

Generally, to apply model-checking techniques, the system is represented by a transition system [START_REF] Clarke | Model checking[END_REF]. It is a model that defines the states and actions that provoke transitions between these states. Mainly, there are two ways to model a system of transitions using operational or declarative languages. Transitions are expressed using assignment instructions in the operational language, either with imperative, functional language control flow (e.g., Promela, the language of the Spin model-checker) or by using variants of Diskstra's guard commands (e.g., Murphi [START_REF] David | Protocol Verification as a Hardware Design Aid[END_REF] or SMV [START_REF] Cimatti | NuSMV: a new symbolic model checker[END_REF]). Second, transitions are expressed with constraints in the declarative language, either on the complete execution or, more often, on individual steps. The idea of this idiom takes root in the first works on program verification like the specification

initnet def ≡ [p, q ∈ N P → ⟨⟩] send (f rom, to, m) def ≡ mnet ′ (f rom, to) = append(mnet(f rom, to), m) receive(f rom, to, m) def ≡ m = head(mnet(f rom, to)) ∧ mnet ′ (f rom, to) = tail(mnet(f rom, to)) Fifo Inbox initnet def ≡ [p ∈ N P → ⟨⟩] send (f rom, to, m) def ≡ mnet ′ (to) = append(mnet(to), ⟨f rom, m⟩) receive(f rom, to, m) def ≡ ⟨f rom, m⟩ = head(mnet(to)) ∧ mnet ′ (to) = tail(mnet(to)) Fifo Outbox initnet def ≡ [p ∈ N P → ⟨⟩] send (f rom, to, m) def ≡ mnet ′ (f rom) = append(mnet(f rom), ⟨to, m⟩) receive(f rom, to, m) def ≡ ⟨to, m⟩ = head(mnet(f rom)) ∧ mnet ′ (f rom) = tail(mnet(f rom))
Fifo All

Causal initnet def ≡ ∅ × [p ∈ N P → [q ∈ N P → 0]] send (f rom, to, m) def ≡ mnet ′ [1] = mnet[1] ∪ {⟨f rom, to, m, vc[f rom]⟩} ∧ mnet ′ [2] = vc with vc def ≡ [p ∈ N P → [q ∈ N P → if p = f rom ∧ q = f rom then mnet[2][p][q] + 1 else mnet[2][p][q]]] receive(f rom, to, m) def ≡ ∃msg ∈ mnet[1], msg[1] = f rom ∧ msg[2] = to ∧ msg[3] = m ∧ ¬(∃msg 2 , msg 2 ̸ = msg ∧ msg 2 [2] = to ∧ ∀p ∈ N P , msg 2 [4][p] ≤ msg[4][p]) ∧ mnet ′ [1] = mnet[1] \ {msg} ∧ mnet ′ [2] = [p ∈ N P → if p = to then Sup(mnet[2][p], m[4]) else mnet[2][p]] RSC initnet def ≡ ∅ send (f rom, to, m) def ≡ mnet = ∅ ∧ mnet ′ = {⟨f rom, to, m⟩} receive(f rom, to, m) def ≡ ⟨f rom, to, m⟩ ∈ mnet ∧ mnet ′ = ∅
of the declarative languages VDM [START_REF] Jones | Systematic software development using VDM[END_REF], Larch [START_REF] Guttag | Larch: Languages and Tools for Formal Specification[END_REF], or Z [START_REF] Spivey | Z Notation -a reference manual[END_REF], which are essentially the pre and post conditions of Hoare triplets [39].

In this section, we define the semantics of our formalism using the First Order Logic (FOL) and the declarative idiom. The execution semantics of BPMN is defined based on the transition notion. A transition is enabled first before being fired for moving from a state to another state. Thus, the enabling notion corresponds to a precondition, while the firing notion corresponds to a postcondition. In our case, a transition is said to be enabled when some preconditions are met (to allow the firing of the transition). We distinguish two cases: (i) a node is ready to start its execution, (ii) a node is ready to complete its execution. However, a transition is said to be fired when some postconditions are met (determines the node activation or completing). Thus, we distinguish two cases: (iii) firing a transition on a node that can start; (iv) firing a transition on a node that can complete. To simplify our model, we merge (i) and (iii) to define the starting action and (ii) and (iv) to determine the completing action. Thus, we describe the movement of tokens based on the node types and the two predicates, starting predicate St and completing predicate Ct defined for each node type. We note that some nodes only have a start transition (e.g., end events), and others only have a completion transition (e.g., gateways). When a node defines only one of the two predicates, the other one is considered false.

The semantics (Section 4.4.0.2) relies on a notion of state of the BPMN graph (Section 4.4.0.1) to define the St and Ct predicates. Further, the semantics is parameterised by a type T net that encapsulates the properties of the communication network using an initialisation function, initnet, and two predicates, send and receive.

State

A state of a BPMN graph gives a marking for the nodes and the edges, together with a state for the communication network. Definition 4.4.1 (State). The state of a BPMN graph is a tuple s = (mn, me, mnet) such that:

• mn : N → N, is a function assigning a natural number marking to each node.

• me : E → N, is a function assigning a natural number marking to each edge.

• mnet : T net , is the state of the communication network.

States denotes the set of all states of a BPMN graph. Definition 4.4.2 (Initial state). The initial state of a BPMN graph, denoted by s o = (mn 0 , me 0 , mnet 0), is such that:

• the start nodes of the processes hold a token, all other nodes are unmarked:

∀n ∈ N, mn 0 (n) = 1 if cat N (n) ∈ SE ∧ (∃p ∈ N, cat N (p) = P | n ∈ R(p)) 0 otherwise.
• all edges are unmarked: ∀e ∈ E, me 0 (e) = 0

• the network is empty:

mnet 0 = initnet 4.4.0.

Semantics

Here, we define the execution semantics of BPMN based on those mentioned above, St and Ct predicates for each type of node in the BPMN graph and based on its notion of state. In the semantics, let s = (mn, me, mnet) and s ′ = (mn ′ , me ′ , mnet ′) denote two states. Additionally, we consider the predicate △ that denotes marking equality but for nodes and edges given as parameters. Hence, △(X) means "nothing changes except for X":

△(X) def ≡ ∀n ∈ N \ X, mn ′ (n) = mn(n) ∧ ∀e ∈ E \ X, me ′ (e) = me(e)
Similarly, Ξ denotes that the state of the network does not change:

Ξ def ≡ mnet ′ = mnet.
Start nodes. There are two starting node types for the instantiation of the process: the none start event (N SE) and the message start event (M SE).

The behaviour of an N SE is defined only by a completing predicate. It consumes its token and generates one token on all of its outgoing sequence flow edges. If it is the initial node of a process p, it activates p by generating a token on it. When an N SE is defined within a sub-process p, its activation is conditioned by the activation of p. Formally:

∀n ∈ N, Ct(n) def ≡ cat N (n) = N SE ∧ (mn(n) >= 1) ∧ (mn ′ (n) = mn(n) -1)
∧ ∀e ∈ outtype(n, SF), (me ′ (e) = me(e) + 1)

∧         ∃p ∈ N, p = R -1 (n) ∧ (cat N (p) = P) ∧(mn(p) = 0) ∧ (mn ′ (p) = 1) ∧ △ ({n, p} ∪ outtype(n, SF) ∧ Ξ)   ∨ ∃sp ∈ N, sp = R -1 (n) ∧ (cat N (sp) = SP) ∧ △ ({n} ∪ outtype(n, SF)) ∧ Ξ      
Example. Figure 4.10 presents a process p with a none start event (nse), an abstract task (task), and a none end event (nee). It shows a token within nse node, which is represented by a green token. nse completes by consuming this token and produces one on P and its outgoing sequence flow (e1). The behaviour of a message start event (M SE) is defined by a completing predicate. An M SE is enabled if it has a token and there is a message offer on one of its incoming sequence flow edges. It completes by consuming the message, generating one token on all of its outgoing sequence flow edges, and activating the process p by generating a token on it. Formally:

∀n ∈ N, Ct(n) def ≡ cat N (n) = M SE ∧ (mn(n) = 1) ∧ (mn ′ (n) = mn(n) -1)
∧ ∀e ∈ outtype(n, SF), (me ′ (e) = me(e) + 1) ∧ ∃em ∈ intype(n, M F), (me(em) ≥ 1) ∧ (me ′ (em) = me(em) -1) ∧ receive(procOf(source(em)), procOf(n), msg t (em))

∧ ∃p ∈ N, cat N (p) = P ∧ n ∈ R(p) ∧ (mn(p) = 0) ∧ (mn ′ (p) = 1) ∧ △ (

Ending nodes

We have three ending node types for the termination of a process: none end event (N EE), terminate end event (T EE), and message end event (M EE).

The behaviour of an N EE node is defined only by a starting predicate: it is enabled if it has at least one token on one of its incoming edges. It starts by consuming this token and adding one to itself. Formally: A T EE node is defined only by a starting predicate: it is enabled if it has at least one token on one of its incoming edges. It behaves like a none end event by consuming a token from one of its incoming sequence flows and generates a token on itself. Besides, it does the additional work of dropping down all the remaining tokens of the process or sub-processes to which it belongs. Formally:

∀n ∈ N, St(n) def ≡ cat N (N) = N EE ∧ ∃e ∈ intype(n,
∀n ∈ N, St(n) def ≡ cat N (n) = T EE ∧ ∃e ∈ intype(n, SF), (me(e) ≥ 1) ∧ (mn ′ (n) = 1) ∧ ∃p ∈ N, cat N (p) ∈ {P, SP }, (n ∈ R(p)) ∧ ∀nn ∈ ((R + (p) ∩ N) \ {n}), (mn ′ (nn) = 0) ∧ ∀ee ∈ (R + (p) ∩ E), (me ′ (ee) = 0) ∧ △ (R + (p)) ∧ Ξ
Example. The left-hand side of Figure 4.13 shows the enabling of a terminate end node (tee) by the presence of a token on its incoming edge (e7). The right-hand side of the figure shows the starting execution of the node. It consumes the token from e7 and generates a token on itself. Besides, it affects all the existing executions in parallel (here e3 and e4) by dropping down all their tokens. An M EE node is defined only by a starting predicate. It is enabled to start if it has a token on one of its incoming edges. Then, it moves the token from one of its incoming edges to itself and sends a message on the network according to the configured communication model. Formally:

∀n ∈ N, St(n) def ≡ cat N (n) = M EE ∧ (mn ′ (n) = mn(n) + 1)
∧ ∃e ∈ intype(n, SF), (me(e) ≥ 1) ∧ (me ′ (e) = me(e) -1) ∧ ∃ee ∈ outtype(n, M F), (me ′ (ee) = me(ee) + 1) ∧ send (procOf(n), procOf(target(ee)), msg t (ee)) ∧ △ ({n, e, ee})

Example. Activity nodes Two kinds of activity nodes have to be taken into account: the abstract tasks (AT)

and the subprocesses (SP).

A starting and completing predicates define the behaviour of an abstract task node (AT). It is enabled to start if at least one token is present on one of its incoming edges and it does not already own a token.

Then, it starts by consuming a token from one of its incoming edges and produces one on itself. An AT node is completed by consuming one token from itself and adding one token on each of its outgoing edges. Note that an interrupting boundary event may end an abstract task (see M BE, pages 87). Formally:

∀n ∈ N, St(n) def ≡ cat N (n) = AT
∧ ∃e ∈ intype(n, SF), (me(e) ≥ 1) ∧ (me ′ (e) = me(e) -1) The behaviour of a subprocess activity SP node extends the one of an AT node with some additional conditions: when it is enabled, a sub-process adds a token to the start event it contains. It completes when at least one end event it contains has some tokens, and none of its edges or nodes is still active (i.e., owning a token). Note that, like an abstract task, a subprocess may also be ended by an interrupting boundary event (see M BE, pages 87). Formally:

∧ (mn(n) = 0) ∧ (mn ′ (n) = mn(n) + 1) ∧ △ ({n, e}) ∧ Ξ ∀n ∈ N, Ct(n) def ≡ cat N (n) = AT ∧ (mn(n) = 1) ∧ (mn ′ (n) = mn(n) -1) ∧ ∀e ∈ outtype(n, SF), (me ′ (e) = me(e) + 1) ∧ △ ({n} ∪ outtype(n, SF)) ∧ Ξ Example.
∀n ∈ N, St(n) def ≡ (cat N (n) = SP) ∧ ∃e ∈ intype(n, SF), (me(e) ≥ 1) ∧ (me ′ (e) = me(e) -1) ∧ (mn(n) = 0) ∧ (mn ′ (n) = mn(n) + 1) ∧ ∀ns ∈ (N N SE ∩ R(n)), (mn ′ (ns) = mn(ns) + 1) ∧ △ ({e, n} ∪ ({nse ∈ N, cat N (nse) = N SE} ∩ R(n))) ∧ Ξ ∀n ∈ N, Ct(n) def ≡ (cat N (n) = SP) ∧ (mn(n) = 1) ∧ (mn ′ (n) = mn(n) -1) ∧ ∀e ∈ R(n) ∩ E, (me(e) = 0) ∧ ∃n ee ∈ R(n) ∧ cat N (n ee) ∈ EE) ∧ (mn(n ee) ≥ 1) ∧ ∀nn ∈ R(n) ∩ N, (mn(nn) ≥ 1 ⇒ cat N (nn) ∈ EE) ∧ ∀nn ∈ (R(n) ∩ cat N (nn) ∈ EE), (mn ′ (nn) = 0) ∧ ∀e ∈ outtype(n, SF), (me ′ (e) = me(e) + 1) ∧ △ ({n} ∪ (R(n) ∩ {nee ∈ N, cat N (nee) ∈ EE}) ∪ outtype(n, SF)) ∧ Ξ
Example. Figure 4.17 shows the starting behaviour of the subprocess activity (SP). It starts by consuming a token from its incoming edge (e1) and generating a token on itself and on its start event (nse1). .18 shows that even if there is a token on one of the end events, here nee3, the subprocess can not execute its completing transition: to complete, SP must wait until the token on e5 has given place to one on nee1. and completing due to the presence of sending/reception predicates. All these elements require a token on one of their incoming edges to be enabled.

The ST and RT are enabled when they have a token on their incoming edges and no token on them. Then, they start executing by moving this token inside. Finally, ST completes by sending a message on all its outgoing edges regarding the chosen communication model (which affects the network state) and 2325 producing a token on all its outgoing edges.

A ST is not necessarily instantaneous as a send may block, for instance, with synchronous communication, RSC or a bounded size network. Another important point is that a boundary event, such as a timeout, can be attached to a receive or send task and not to an event. For all these reasons, we have chosen to make these tasks non-atomic. This allows distinguishing a send task from a ThrowMessageIn-termediateEvent, and a receive task from a CatchMessageIntermediateEvent. Note that the semantics in the standard is ambiguous since there are two contradictory aspects: tasks in BPMN are non-atomic while the purpose of a send task is only to send a message, which is intrinsically atomic. Formally:

∀n ∈ N, St(n) def ≡ cat N (n) = ST ∧ ∃e ∈ intype(n, T SP), (me(e) ≥ 1) ∧ (me ′ (e) = me(e) -1) ∧ (mn(n) = 0) ∧ (mn ′ (n) = mn(n) + 1) ∧ △ ({n, e}) ∧ Ξ ∀n ∈ N, Ct(n) def ≡ cat N (n) = ST ∧ (mn(n) = 1) ∧ (mn ′ (n) = mn(n) -1)
∧ ∀e ∈ outtype(n, SF), (me ′ (e) = me(e) + 1) ∧ ∃ee ∈ outtype(n, M F), (me ′ (ee) = me(ee) + 1) ∧ send (procOf(n), procOf(target(ee)), msg t (ee)) ∧ △ ({n, ee} ∪ outtype(n, SF))

Example. A receive task (RT) has a complementary behaviour to the send task (ST). It is enabled to complete only if it is active (i.e., it has a token) and it has a message on one of its incoming message flows. RT completes by consuming the message offer, updating the network state, and producing a token on all its outgoing edges. Formally:

∀n ∈ N, St(n) def ≡ cat N (n) = RT ∧ ∃e ∈ intype(n, SF), (me(e) ≥ 1) ∧ (me ′ (e) = me(e) -1) ∧ (mn(n) = 0) ∧ (mn ′ (n) = mn(n) + 1) ∧ △ ({n, e}) ∧ Ξ ∀n ∈ N, Ct(n) def ≡ cat N (n) = RT ∧ (mn(n) = 1) ∧ (mn ′ (n) = mn(n) -1)
∧ ∀e ∈ outtype(n, SF), (me ′ (e) = me(e) + 1) ∧ ∃ee ∈ intype(n, M F), (me(ee) ≥ 1) ∧ (me ′ (ee) = me(ee) -1) ∧ receive(procOf(source(ee)), procOf(n), msg t (ee)) ∧ △ ({n, ee} ∪ outtype(n, SF))

Example. The starting of the receive task activity is similar to the one presented for the abstract task in Figure 4.15. Figure 4.21 shows that the receive task activity (task) can complete if it has a token on itself and a message m1 on its incoming message flow. It completes by consuming its token, receiving the message from the network, and producing a token on its outgoing edge (e2). A throw message intermediate event (T M IE) defines only the starting behaviour. It is enabled to start if it has a token on one of its incoming edges. It starts by consuming the token from this incoming edge, sending a message on the network according to the chosen communication model, and producing a token on all its outgoing edges. Formally:

∀n ∈ N, St(n) def ≡ cat N (n) = T M IE ∧∃ein ∈ intype(n, SF), (me(ein) ≥ 1) ∧ (me ′ (ein) = me(ein) -1)
∧ ∀e ∈ outtype(n, SF), (me ′ (e) = me(e) + 1) ∧ ∃eout ∈ outtype(n, M F), (me ′ (eout) = me(eout) + 1) ∧ send (procOf(n), procOf(target(eout)), msg t (eout)) ∧ △ ({ein, eout} ∪ outtype(n, SF))

Example. It starts by consuming the token from its incoming edge (e1), producing a token on its outgoing edge (e2), and sending a message m1 on the network. A catching message intermediate event (CM IE) is an instantaneous event with only a starting transition. It is enabled if a message offer is on one of its incoming message flow edges and a token on one of its incoming sequential flow edges. It starts by consuming the token from this incoming edge, receiving the message from the incoming message flow according to choose the communication model, and producing a token on all its outgoing edges. Formally:). It starts by consuming the token from e1, receiving the message m1 from the medium, and producing a token on its outgoing edge, e2. Boundary Events A message boundary event (M BE) defines only the starting behaviour. An M BE is ready to start if it has a message offer on one of its incoming message flows and if the activity on which it is attached has a token. An M BE may have either an interrupting behaviour or a non-interrupting one. In the latter case, the M BE starts by receiving a message and generating a token on all its outgoing edges. For an interrupting behaviour, the M BE also starts by cancelling the activity to which it is attached, which is possible only if this activity is not a sub-process in a completing step. This is checked using the mayComplete predicate that is formally defined below. Cancelling an activity involves dropping all its tokens. After that, the M BE produces a token on each of its outgoing edges. Formally:

∀n ∈ N, St(n) def ≡ cat N (N) = CM IE ∧ ∃e 1 ∈ intype(n,
Auxiliary functions To formalise the semantics of a message boundary event, we define an auxiliary function.

• mayComplete(n) : {nn ∈ N, cat N (nn) = SP } → Bool, returns true if the subprocess may complete, i.e., if there are no tokens on its elements except for its end event nodes where there is at least one that holds some tokens.

∀n ∈ N, mayComplete(n) def ≡ cat N (n) = SP ∧ (mn(n) ≥ 1) ∧ ∀e ∈ (R(n) ∩ E), (me(e) = 0) ∧ ∃nn ∈ R(n), (cat N (nn) ∈ EE) ∧ (mn(nn) ≥ 1) ∧ ∀x ∈ R(n), ((cat N (x) ∈ EE) ∨ (mn(x) = 0)) St interrupting (n, act, ein) def ≡ cat N (act) / ∈ SP ∧ (mn ′ (act) = 0) ∧ △ ({act, ein} ∪ outtype(n, SF)) ∨       cat N (act) = SP ∧ mn(act) = 1 ∧¬mayComplete(act) ∧ (mn ′ (act) = 0) ∧ ∀nn ∈ R(act) ∩ N, (mn ′ (nn) = 0) ∧ ∀ee ∈ R(act) ∩ E, (me ′ (ee) = 0) ∧ △ ({act, ein} ∪ R(act) ∪ outtype(n, SF))       ∀n ∈ N, St(n) def ≡ cat N (n) / ∈ M BE ∧ ∃act ∈ N, cat N (act) / ∈ A, (act = attachedT o(n)) ∧ (mn(act) = 1) ∧ ∃ein ∈ intype(n, M F), (me(ein) ≥ 1)
∧ receive(procOf(source(ein)), procOf(n), msg t (ein)) ∧ (me ′ (ein) = me(ein) -1) ∧ ∀eo ∈ outtype(n, SF), (me ′ (eo) = me(eo) + 1)

∧ (isInterrupt(n) ∧ St interrupting (n, act, ein)) ∨ (¬isInterrupt(n) ∧ △({ein} ∪ outtype(n, SF)))
Example. Figure 4.24 presents a part of a process with a none start event nse, an abstract task task1 with an outgoing sequence flow edge e2, an interrupting boundary event (interrupt) with an outgoing sequence flow edge e4, and two abstract tasks task2, and task3. The interrupt boundary node starts by consuming a token from the activity it is attached to, receiving a message m1 from the network, and producing a token on its outgoing edge e4. Timer Event The Timer Events defines three types the timer start event (T SE), the timer intermediate catch event (T ICE), and the timer boundary event (T BE). As the semantics asynchronous, the T SE behaves precisely as a None Start Event (N SE), where the event will fire at some point. The T ICEis indistinguishable from a gateway with one input and one output (it fires at some point). Formally:

∀n ∈ N, Ct(n) def ≡ (cat N (n) = T ICE) ∃ei ∈ intype(n, ()SF), (me(ei) ≥ 1) ∧ (me ′ (ei) = me(ei) -1) ∧ ∃eo ∈ outtype(n, SF), (me ′ (eo) = me(eo) + 1) ∧ △ ({ei, eo}) ∧ Ξ
The T BE is non-deterministically activated, without fairness (it may never fire). Its semantics is 2370 close to a M BE, without the constraint on the presence of a message. Formally:

St interrupting (n, act) def ≡ (cat N (act) / ∈ SP) ∧ (mn ′ (act) = 0) ∧ △({act} ∪ outtype(n, SF))) ∨     (cat N (act) ∈ SP) ∧ ¬mayComplete(act) ∧ (mn ′ (act) = 0) ∧ ∀nn ∈ R(act) ∩ N, (mn ′ (nn) = 0) ∧ ∀ee ∈ R(act) ∩ E, (me ′ (ee) = 0) ∧ △ ({act} ∪ R(act) ∪ outtype(n, SF))     ∀n ∈ N T BE , St(n) def ≡ ∃act ∈ N, (cat N (act) ∈ A), (act = attachedT o(n)) ∧ (mn(act) = 1) ∧ ∀eo ∈ outtype(n, SF), (me ′ (eo) = me(eo) + 1) ∧ (isInterrupt(n) ∧ St interrupting (n, act)) ∨ (¬isInterrupt(n) ∧ △(outtype(n, SF))) ∧ Ξ
Gateways Gateways are atomic and define only the completing behaviour.

A parallel gateway (AN D) is ready to complete if it has at least one token on all its incoming edges. It completes by removing one token on each of these edges and producing one on all its outgoing edges. Formally. In Figure 4.27, the parallel gateway AN D2 completes only if all its incoming sequence flows edges (e4 and e5) are synchronised (i.e., own at least a token). An exclusive gateway (XOR) is ready to complete if it has at least one token on one of its incoming edges. It completes by removing this token and producing one on one of its outgoing edges, depending on conditions. Since we abstract away from data, the concerned edge is non-deterministically chosen. Formally.

∀n ∈ N, Ct(n) def ≡ (cat N (n) = AN D) ∀ei ∈ intype(n, SF), (me(ei) ≥ 1) ∧ (me ′ (ei) = me(ei) -1) ∧ ∀eo ∈ outtype(n, SF), (me ′ (eo) = me(eo) + 1) ∧ △ (intype(n, SF) ∪ outtype(n, SF)) ∧ Ξ Example.
∀n ∈ N, Ct(n) def ≡ (cat N (n) = XOR) ∧ ∃ei ∈ intype(n, SF), (me(ei) ≥ 1) ∧ (me ′ (ei) = me(ei) -1) ∧ ∃eo ∈ outtype(n, SF), (me ′ (eo) = me(eo) + 1) ∧ △ ({ei, eo}) ∧ Ξ
Example. Figure 4.28 shows that the exclusive gateway (XOR1) completes by consuming a token from its incoming edge (e1) and producing a token on one of its outgoing edges (e2 in the example). As described in the standard [3], an event-based gateway (EB) is always followed by communication elements, either receive tasks (RT) or intermediate catching message events (CM IE) in combination with intermediate catching timer event (T ICE). The firing of an event-based gateway relies on the enabling of one of these elements. Hence, an event-based gateway completes by consuming a token from one of its incoming edges and producing a token on its outgoing edge on which the event is enabled. Formally. because it has a token on its incoming edge (e1) and an incoming message for at least one of the two receive tasks. This is true for both receive tasks here. Hence, EBG completes by consuming the token from e1 and generating a token on one of its two outgoing edges (arbitrarily chosen, here e2). An inclusive gateway (OR) behaves differently from the other gateways. The activation of an OR gateway g is more complex [3,Chap. 13]. Figure 4.30 shows the standard semantics definition of the OR gateway. It is clear that this gateway has non-local semantics, and its activation may depend on the marking evolution considering the whole diagram. In more details, it can be activated only if:

∀n ∈ N, Ct(n) def ≡ (cat N (n) = EB) ∧ ∃ei ∈ intype(n, SF), (me(ei) ≥ 1) ∧ (me ′ (ei) = me(ei) -1) ∧   ∃eo ∈ outtype(n, SF), cat N (target(eo)) ∈ {RT, CM IE} ∧ ∃em ∈ intype(target(eo), M F), (me(em) ≥ 1) ∨ (∃eo ∈ outtype(n, SF), cat N (target(eo)) ∈ {T ICE})   ∧ (me ′ (eo) = me(eo) + 1) ∧ △ ({ei, eo}) ∧ Ξ Example.
• (1) it has at least one token on one of its incoming edges, and • (2) for each marked node or edge x such that there is a path -that does not pass through g -from

x to an unmarked incoming edge of g, there must also be a path -that does not pass through gfrom x to a marked incoming edge of g.

The OR gateway completes by adding a token either to the outgoing edges whose conditions are true, otherwise to its default sequence flow edge. Since we abstract from data, we chose non-deterministically to add a token either to a combination (1 or more) of the outgoing non-default edges or to the default edge.

Auxiliary functions

To formalise the semantics of an OR gateway, we define some auxiliary functions.

• P re N : N × E → 2 N , returns the predecessor nodes of an edge such that n pre is in P re N (n, e) if there is a path from n pre to e that never visits n. Accordingly, P re E : N × E → 2 E , returns predecessor edges. These two sets can be structurally computed from the BPMN graph structure, hence can be taken as constants (for a given BPMN model).

• InM inus: N → E, returns the unmarked incoming edges of a node:

InM inus(n) = {e ∈ intype(n, SF) | me(e) = 0}
• InP lus : N → E, returns the marked incoming edges of a node:

InP lus(n) = {e ∈ intype(n, SF) | me(e) ≥ 1}
• ignore E : N → 2 E , returns the set of predecessor edges of the marked incoming edges of a given node:

ignore E (n) def ≡ e∈InP lus(n)
P re E (n, e)

• ignore N : N → 2 N , returns the set of predecessor nodes of the marked incoming edges of a given node:

ignore N (n) = e∈InP lus(n) P re N (n, e)
Formally.

∀n ∈ N OR , Ct(n) def ≡ (InP lus(n) ̸ = ∅) ∧ ∀e ∈ InP lus(n), (me ′ (e) = me(e) -1) ∧ ∀ez ∈ InM inus(n), ∀ee ∈ (P re E (n, ez) \ ignore E (n)), (me(ee) = 0) ∧ (∀nn ∈ (P re N (n, ez) \ ignore N (n)), (mn(nn) = 0)) ∧         ∃Outs ⊂ outtype(n, {N SF, CSF }), (Outs ̸ = ∅) ∧ ∀e ∈ Outs, (me ′ (e) = me(e) + 1) ∧ △ (InP lus(n) ∪ Outs) ∧ Ξ   ∨ ∃e ∈ out DSF (n), (me ′ (e) = me(e) + 1) ∧ △ (InP lus(n) ∪ {e}) ∧ Ξ      
Example. Figure 4.31 illustrates the case when an OR getaway cannot be activated, despite a marked incoming edge (e3), there is a path from the marked edge e2 to an unmarked incoming edge of OR (e6 or e7) but no path from e2 to a marked incoming edge of OR. If the token on e2 had been on e1, the OR gateway could have been activated.

Communication

Transition Relation and Executions

We can now expr.

Definition 4.4.4 (Transition Relation). Let s and s ′ be two states. We say that s ′ is a successor of s, iff the predicate N ext(s, s ′) holds:

N ext(s, s ′) def ≡ n∈N (St(n) ∨ Ct(n))
We recall that states, here s and s ′ , correspond to tuples of the form (me, mn, mnet) and (me ′ , mn ′ , mnet ′), whose elements are used in the definitions of St and Ct.

The execution of the whole process is defined through the notion of trace. Definition 4.4.5 (Trace). A trace is a finite or infinite sequence of states such that σ[0] is the initial state, and ∀i ∈ 0 . . .

Len(σ) -1, N ext(σ[i], σ[i + 1]) (if the trace is finite) or ∀i ∈ N, N ext(σ[i], σ[i + 1])
(if the trace is infinite), where σ[i] denotes the i th state of the trace. The set of all the traces of the collaboration is noted T races. Definition 4.4.6 (Execution). An execution is a maximal trace, i.e., a trace that goes as far as possible. Formally, an execution σ is either an infinite trace, or a finite trace such that ¬∃s ′ , N ext(σ[Len(σ)], s ′).

The set of all the executions of the collaboration is noted Exec.

Fair Executions

A BPMN model can include loops. In that case, an execution (defined as a maximal trace) can get stuck in a loop, where only this loop progresses, and the rest of the model doesn't progress at all. Moreover, when modelling actual business activities, loops are expected to finish at some point. To prevent these infinite loops, fairness is introduced to restrain the set of executions. We use two kinds of fairness: weak fairness and strong fairness. Informally, weak fairness ensures that a transition cannot be permanently enabled and never fired. Strong fairness ensures that a transition cannot be infinitely often enabled and never fired.

Thus, fairness is a conjunction of two parts. The first part is the weak fairness on each start (St) and complete (Ct) transitions of every node: ∀n ∈ N ode : weakfair (step(n)). This property ensures that any permanently enabled transition eventually occurs. This means that no process may progress forever while others are never allowed to do so if they can. This also means that if a process contains several loops that are simultaneously live, all loops will progress (not necessarily at the same speed, but no loop can be permanently halted while another run forever).

The second part is the strong fairness on each output edge of XOR, OR, and EB gateways. Strong fairness ensures that no choice is infinitely often ignored: if a XOR, OR, or EB gateway is included in a loop, the fairness forbids the infinite executions that neveess the complete transition relation (successor relation between states) with the previously defined predicates. If some output edges. Either the loop finishes somehow, or all the choices are infinitely often taken. Consider Figure 4.32, left; as strong fairness is imposed on the two output edges of gateway choice, the execution cannot always ignore the edge (e5) leading to the ending node, and this model is sound. Consider Figure 4.32, right; as strong fairness is imposed on the output edges of gateway choice, both task1 and task2 are infinitely often chosen.

Verification Properties

Verifying a model involves checking the correctness of its properties. In the context of process modelling, properties are classified into two main classes: structural and behavioural. The structural properties relate to the type of elements and how they are connected. Such properties could be checked using a standard process modelling tool which can enforce that the model is correctly designed. The behavioural properties relate to the sequences of execution as defined by the process model. We further classify the behavioural properties into general and specific ones. The specific properties are unique to business process models, while the general properties are used in other types of models. General properties deadlocks and livelocks are common examples of general properties. Figure 4.33

shows a simple BPMN model with an XOR and an AN D gateways. The XOR gateway produces a token either on its outgoing edge e2 or e3 but not on both. As a consequence, the AN D gateway will never be enabled (its incoming edges e4, e5 will never be synchronised). Hence, this model suffers a deadlock situation. While in a deadlock, the involved activities can never be executed, and the process can never be completed. In a livelock situation, a set of activities are executed indefinitely. Specific properties Soundness is the leading property that can be checked after a process model is executed.

Wil van der Aalst developed soundness property for business processes in the context of workflow nets [START_REF] Wil | Verification of Workflow Nets[END_REF]. A workflow net has a unique terminal place. The authors defined the soundness of the WF-net by the satisfaction of the three following requirements: "(1) Option to complete: from any reachable state, it is possible to reach a state with marks on the terminal place, (2) proper completion: if the terminal place is marked, all other places are empty, (3) no dead transitions: it should be possible to execute an arbitrary activity by following an appropriate route through the WF-net". In the case of Petri nets in workflow verification, [177], and [81] prove that a workflow net is sound if and only if the corresponding shortcircuited Petri net is live and bounded. In addition, they define the safeness of a WF-net by ensuring that each place cannot hold multiple tokens at the same time.

Dumas et.al [1, p.186, ch.5] define informally the soundness of the BPMN process model by the satisfaction of the following three properties: "(1) Option to complete: any running process instance must eventually complete, (2) Proper completion: at the moment of completion, each token of the process instance must be in a different end event, (3) No dead activities: any activity can be executed in at least one process instance".

In [23], authors address BPMN collaboration models. They introduce a formal definition of safeness and soundness properties by focussing on the specificities of BPMN. "A process is safe if during its execution no more than one token occurs along the same sequence edge". The authors extend the safeness property for processes collaboration which require that "each of all the processes that involved in the overall collaboration execution is safe". On the other hand, they define the soundness of the process as follows: "A BPMN process is sound if it can complete its execution without leaving active elements and all the model elements can be activated in at least one of the execution traces". In addition, they extend the latter to define the soundness of the whole collaboration model.

Based on those definitions [1,23], we provide a set of properties that can be formally specified as follows. We recall here that a state in our formalisation of BPMN is s = (mn, me, mnet). For an execution σ = s 1 s 2 ... and a node x, we note σ[i].mn(x) the value of the marking of x at step i in σ, and domain(σ) = {1, ..., |σ|}. Definition 4.5.1 (Option to complete). Any running process must eventually be complete. A process is complete in a state if markings occur only on end events.

Completed(p, s) def ≡ ∀n ∈ R(p) ∩ N, (s.mn(n) = 0) ∨ (s.mn(n) = 1 ∧ n ∈ N, cat N (n) = EE) ∧ (∀e ∈ R(p) ∩ E, (s.me(e) = 0)) OptionT oComplete def ≡ ∀p ∈ N, cat N (p) = P, ∀σ ∈ Exec, ∀i ∈ domain(σ), σ[i].mn(p) > 0 ⇒ ∃j ∈ domain(σ), j ≥ i ∧ Completed(p, σ[j])
Definition 4.5.2 (Proper Completion). At the moment of completion, each token of the process instance must be in a different end event. A process is a sound in a state if only its end events hold at most one token, and all the other nodes (ignoring start events) and all the edges are unmarked. Formally, process p ∈ N, cat N (p) = P is sound in a state s if and only if the following predicate is true :

P roperCompletion def ≡ ∀p ∈ N, cat N (p) = P, ∀σ ∈ Exec, ∀i ∈ domain(σ), Completed(p, σ[i]) ⇒ ∀n ∈ R(p), cat N (n) = EE, σ[i].mn(n) = 1
soundP r(p, s) def ≡ ∀n ∈ R(p) ∩ N, (s.mn(n) = 0) ∨ (s.mn(n) = 1 ∧ cat N (n) ∈ {EE, SE} ∧ ∀e ∈ R(p) ∩ E, s.me(e) = 0
Definition 4.5.8 (Message-relaxed sound collaboration). A collaboration is message-relaxed sound if eventually all the processes are sound and it is stable:

msgSoundCol def ≡ ∀σ ∈ Exec, ∃i ∈ domain(σ), ∀j ∈ domain(σ), j ≥ i =⇒ ∀p ∈ N, cat N (p) = P, soundP r(p, σ[j])
Definition 4.5.9 (Collaboration soundness). A collaboration is sound if and only if, for all executions, eventually, all the processes involved in the collaboration are sound, and all the message flow edges are unmarked.

soundCol def ≡ ∀σ ∈ Exec, ∃i ∈ domain(σ), ∀j ∈ domain(σ), j ≥ i =⇒ ∀p ∈ N, cat N (p) = P, soundP r(p, σ[j]) ∧ ∀e ∈ E, cat E (e) = M F, (σ[j].me(e) = 0)
Regarding other definitions of soundness [1,23,[START_REF] Wil | Verification of Workflow Nets[END_REF], we consider a form of soundness under fairness assumptions, that could be called fair soundness.

Summary

This chapter proposes a direct formalisation in first-order logic for a subset of BPMN that includes subprocess and communication elements. We integrate a communication channel with seven communication models to parametrise the verification regarding these models. To better illustrate their impact on the properties of a BPMN model, Figure 4.34 shows a simple Travel agency collaboration model, where the communication is given by two participants, a customer and a travel agency. This collaboration represents an unsafe travel agency process: (1) it can have an unbounded number of tokens on the right of the parallel gateway; (2) observe that the partners disagree on the order of confirmation w.r.t. ticket reception. Depending on the communication model, e.g., the FIFO model choice in this model may cause a deadlock, whereas the Bag model choice removes this deadlock. Indeed, we have adopted the message relaxed property that highlights the non consumed message issue that the interactions may bring. For example, Figure 4.35 shows a collaboration example between two processes, a client and a worker. This model identifies a possible undesired behaviour where the client and the worker processes may complete correctly without a deadlock. At the same time, a cancellation message is still present on the communication channel. By conceding the message relaxed property, these processes may be seen as sound processes. Identifying such cases may become increasingly difficult and interesting when considering larger and more complex models. Also, the proposed formalisation covers the hierarchical structure by supporting subprocess elements.

These elements haven't only syntactic influence, but their presence on the process models also impact their correctness verification. To illustrate the latter, we consider Figure 4.36 and Figure 4.37. They present an extension of the running example scenario presented in Figure 2.9. For the sake of presentation, only the Journal Chair participant is reported. Figure 4.36 shows a process with prepare notification activities embedded into a subprocess, where Figure 4.37 flattens these activities into the main process. Since the property of soundness is the most commonly requested quality criteria for business processes. These two processes lead to different results with reference to this property. Figure 4.37 results on an unsound process, while the process of Figure 4.36 results on an unsound subprocess with a sound process since only one token is produced on the outgoing of the subprocess after its execution. A limitation of the proposed formal semantics and an avenue for future work arise because the formal semantics does not consider the timer elements with an explicit time notion. As an example for this limitation, T BE can never be fired in BPMN semantics (e.g., a date in the past): the non-deterministic semantics allows it to fire. This gives us an over-approximation: the non-deterministic semantics contain the same executions as BPMN semantics, plus additional ones. Thus, if the verification states that a property is verified with the non-deterministic semantics, it is necessarily verified with BPMN semantics. The reverse is not true. For instance, in the example of Figure 4.38, BPMN semantics states that the task, task2, should never be activated as its time constraint is always in the past. The non-deterministic semantics defines two executions: (i) the timeout will not fire, (ii) the timeout will fire, and the task2 will be activated.

For that, some challenging issues, like "How can temporal constraints be formalised?" and "What happens if a temporal condition can no longer be satisfied ?", are picked up in the following chapter.

• • - • R/ yyyy-mm-ddThh:mm:ssZ / PnYnMnDTnHnMnS • • - • R/ PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ssZ • • - • R/PnYnMnDTnHnMnS • • - • bounded
Rn/ yyyy-mm-ddThh:mm:ssZ/yyyy-mm-ddThh:mm:ssZ

• • - • Rn/ yyyy-mm-ddThh:mm:ssZ/PnYnMnDTnHnMnS • • - • Rn/ PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ssZ • • - • Rn/ PnYnMnDTnHnMnS • • - • timeDuration duration PnYnMnDTnHnMnS - • • •
Table 5.1: Time-related Features in BPMN and their Relation to the ISO-8601 Standard. (•) supported category in BPMN, (-) not supported .

This chapter is organised as follows. Section 5.2 introduces the support for the different BPMN timer elements using a typed graph. Section 5.3 gives a formal semantics to BPMN timer events based on an explicit time notion. To check whether our semantics is consistent, we study its support for the set of process time patterns provided in the literature in Section 5.4. Then, a summary is given in Section 5.5.

A Typed Graph Representation of BPMN Time-Related Constructs

To integrate the notion of explicit time in our formalisation, we extend the BPMN graph structure given in 4.2.1 to deal with some time constraints.

BPMN Time Elements. The BPMN standard associates three categories of time to the timer nodes:

• timeDate specifies a fixed date and time;

• timeCycle specifies repeating intervals;

• timeDuration specifies the amount of time a timer should run before firing. Table 5.1 gives a synthetic view of the time-related events in BPMN with reference to these three categories. To support the latter, we define the time categories formally, Ctime = {T date , T duration , T cycle }, and the following time structures to characterize the time constraints, timeV al = Date∪Duration∪Cycle:

• Date ⊆ N represents a date (and time) expressed in seconds with respect to a reference date (1970-01-01 T 00:00:00Z). Date refers to the timeDate of the BPMN standard. A date like 2020-12-03 T 13:52:33Z in ISO-8601 format is converted to 1, 607, 003, 553 seconds.

• Duration ⊆ N represents a time duration in seconds. This corresponds to the timeDuration of the BPMN standard. For example, a P3DT15M duration in ISO-8601 format (three days and fifteen minutes) is converted to 259, 215 seconds. Note that we do not support years and months in durations due to the ambiguity of their correspondence in seconds.

• Cycle = (N ∪ {ι}) × [Duration ∪ (Date × Duration) ∪ (Duration × Date)]
, represents a composite timing type. It defines time recurrence along with time duration, fixed start date and time duration, or a time duration and a fixed end date. The number of repetitions is either bounded or not (ι). For example, a cycle with timeDate and Duration in ISO-8601 format R2/2020-02-01 T 00:00:00Z/P15D (Two recurrences between fifteen days starting from 2020-02-01 T 00:00:00Z date) is converted to R2/1580511600/1296000.

Taking into account these categories, we redefine the set of timer element types given in 4.2.1 as follows.

• The set (T SE) of timer start event types, groups the start event with time date category (T SE d 1)

1 In T SE d , d stands for timeDate as in the ISO-8601 standard for time and date.

A TYPED GRAPH REPRESENTATION OF BPMN TIME-RELATED CONSTRUCTS101

and the start event with time cycle category (T SE c2). Formally:

T SE = {T SE d , T SE c }
• The set (T ICE) of timer catch event types, groups the timer catch event with time date category (T ICE d) and the timer catch event with time duration category (T ICE p3). Formally:

T ICE = {T ICE d , T ICE p }
• The set (T BE) of timer boundary event types, groups the interrupting (T BE ⊘) and the noninterrupting (T BE ⊕) boundary event sets T BE = T BE ⊘ ∪ T BE ⊕ , with :

-The set (T BE ⊘) of interrupting timer boundary event types, groups the timer boundary event with time date category (T BE ⊘ d) and the timer boundary event with time duration category (T BE ⊘ p). Formally:

T BE ⊘ = {T BE ⊘ d , T BE ⊘ p }
-The set (T BE ⊕) of non-interrupting timer boundary event type, groups non-interrupting timer boundary event with time date category (T BE ⊕ d), the non-interrupting timer boundary event with time duration category (T BE ⊕ p), and the non-interrupting timer boundary event with time cycle category (T BE ⊕ c). However, the time cycle category (T BE ⊕ c) may be defined based on a bound or unbound number of recurrences with some specifications: start date and end date, start date and duration (T BE ⊕ c(start)), duration and end date (T BE ⊕ c(start)), only a duration (T BE ⊕ c(p)). Formally:

T BE ⊕ c = {T BE ⊕ c(start) , T BE ⊕ c(start) , T BE ⊕ c(p) }.
Therefore, the set of T BE ⊕ is defined formally as follows:

T BE ⊕ = {T BE ⊕ d , T BE ⊕ p } ∪ T BE ⊕
• • - • R/ yyyy-mm-ddThh:mm:ssZ / PnYnMnDTnHnMnS • • - • R/ PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ssZ • • - • R/PnYnMnDTnHnMnS • • - • bounded
Rn/ yyyy-mm-ddThh:mm:ssZ/yyyy-mm-ddThh:mm:ssZ

• • - • Rn/ yyyy-mm-ddThh:mm:ssZ/PnYnMnDTnHnMnS • • - • Rn/ PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ssZ • • - • Rn/ PnYnMnDTnHnMnS • • - • timeDuration duration PnYnMnDTnHnMnS - • • •
Table 5.2: Time-Related Features in BPMN and their Relation to the ISO-8601 Standard. Supported Category: BPMN and Us (•), BPMN Only (•), and Not Supported (-).

Table 5.2 presents the timer nodes types and their timerDefinition categories supported in our work. Therefore, the formal definition of the nodes type sets presented in Section 4.2.1 is redefined as follows: Notation. We use T imer as a notation for the set of timer types, formally is defined follows:

T imer = T SE ∪ T ICE ∪ T BE Definition 5.2.1 (BPMN (Timed) Graph). (extended from Definition 4.2.1) A BPMN (timed) graph corresponds to the BPMN graph from Chapter 4 extended with a timing function: G= (N , E, M, cat N , cat E , src, tgt, R, msg t , attachedT o, isInterrupt, f time) such that: We stress that the BPMN models understudy must respect the well-formedness rules mentioned in Section 4.2.3.

• f time : {n ∈ N | cat N (n) ∈ T imer} → Ctime × timeV al,

A FOL Semantics for BPMN Time-Related Constructs

This section extends the formal semantics that we proposed in Section 4.4 to handle time constructs with associated ISO-8601 time information. We rely on a (typed) graph representation of the workflow and collaboration models where types correspond to kinds of BPMN elements as given above in Section 5.2.

To represent the global configuration of a BPMN model (workflow or collaboration) at any moment of its execution, we rely on the state notion. We extend the state definition with a global clock, a set of local clocks, and a recurrence function. Hence, the definitions for the state (Definition 4.4.1) and initial state (Definition 6.4) change as follows.

Definition 5.3.1 (State). A state of a BPMN graph G= (N , E, M, cat N , cat E , src, tgt, R, msg t , attachedT o, isInterrupt, f time) is denoted by a tuple s = (m n , m e , mnet, l c , g c , rec) such that:
• m n : N → N and m e : E → N, are marking functions, that associate a number of tokens to nodes and edges (respectively).

• mnet : T net , is the state of the communication network.

• l c : {n ∈ N | cat N (n) ∈ T imer} → N, is a local clock whose value represent the time spent on a timer node.

• g c ∈ N, is a global clock representing the current time of the whole model.

• rec : {n ∈ N | cat N (n) ∈ T BE ⊕ c } → N ∪ {ι} represents, for each activated non-interrupting timer boundary event node with a finite cycle, the number of occurrences that remains to be executed.

The set of all states of a BPMN graph is denoted by States. Definition 5.3.2 (Initial state). The initial state s o = (m n0 , m e0 , mnet 0 , l c0 , g c0 , rec) of a BPMN graph is extended as follows:

• m n0 (n), m e0 (e), and mnet 0 are initialised as before (Definition 6.4)

• The global clock is initialised to a specific date and time (w.r.t. a modelling referential 4): g c0 ∈ N;

• Local clocks are initialised to zero: ∀n ∈ N, cat N (n) ∈ T imer, l c0 (n)=0;
• Redundancy variables are initialised with the recurrence number (if it exists) else 0:

∀n ∈ N, cat N (N) ∈ T BE ⊕ c , rec 0 (n) = f time(n) ⇂ timeV al R

Semantics

Based on these changes, we define here the execution semantics of the timer event nodes based on those mentioned above St and Ct predicates. In the semantics, let s = (mn, me, mnet, l c , g c , rec) and s ′ = (mn ′ , me ′ , mnet ′ , l ′ c , g ′ c , rec ′) denote two states. Additionally, we consider all the predicate introduced in 4.4.0.2 (such as △(n), Ξ, mayComplete(n)) and we introduce two others as follows:

• run is a predicate that increases the local clock of each active timer events node and the global clock at once.

run()

def ≡ ∀n ∈ S, (l ′ c (n) = l c (n) + 1) ∧ (g ′ c = g c + 1) (5.1)
• △ t is a predicate that denotes that clocks do not change except for the local ones for the nodes in X:

△ t (X) def ≡ g ′ c = g c ∧ ∀n ∈ N T imer \ X, l ′ c (n) = l c (n) (5.2)
The formal semantics of the BPMN time-related constructs is given in the following.

Timer Start Event (T SE).

As shown in Table 5.2, we support only the timer start event with date configuration (T SE d). The behaviour of this event is defined only by a completing predicate. It is only enabled to complete if it has a token and the (global) clock has reached the given deadline date. It completes by initiating the process to which it belongs and generating a token on its outgoing edges.

Ct(n) def ≡ (cat N (n) = T SE d) ∧ (f time(n) ⇂ timeV al D = g c) ∧ (mn(n) = 1) ∧ (mn ′ (n) = mn(n) -1) ∧ ∀eo ∈ outtype(n, SF), (me ′ (eo) = me(eo) + 1) ∧ ∃p ∈ N, cat N (n) = P, n ∈ R(p), (mn(p) = 0) ∧ (mn ′ (p) = mn(p) + 1) ∧ △ ({n, p} ∪ outtype(n, SF)) ∧ △ t (∅) ∧ Ξ (5.3)
Example. Figure 5.1 presents a process p with a timer start event (start) defined a fixed timeDate (2021 -04 -16 T 00 : 00 : 00 Z), an abstract task (task), and a none end event (end). The left part of the figure shows that the start node is enabled to complete: it owns a token, the process depends on is inactive (i.e., not owns a token), and the global clock time of the model has a timeDate reference to (2021 -04 -16 T 00 : 00 : 00 Z). The start node completes by consuming this token and producing one on P and its outgoing sequence flow (e1). Timer Intermediate Catch Event (T ICE). Acts as a delay mechanism configured either by a duration (T ICE p), a fixed date (T ICE d), or a cycle (not supported in this work, see Table 5.2). Such an event waits for the specified date or duration before letting the control flow on which it is located continue.

More precisely, the behaviour of the T ICE d event is defined by a completing predicate. It is enabled to complete if it has a token on one of its incoming edges. When the global clock reaches its fixed date, it completes by consuming a token from one of its incoming edges and generating one on all its outgoing edges. Formally:

Ct(n) def ≡ (cat N (n) = T ICE d) ∧ (f time(n) ⇂ timeV al D = g c) ∧ ∃e ∈ intype(n, SF), (me(e) = 1) ∧ (me ′ (e) = me(e) -1) ∧ (∀e ′ ∈ outtype(n, SF), (me ′ (e ′) = me(e ′) + 1)) ∧ △ ({e} ∪ outtype(n, SF)) ∧ △ t (∅) ∧ Ξ (5.4)
Example. The behaviour of a T ICE p event is different due to the local clocks associated with it. A T ICE p is defined by a completing predicate. It is enabled to complete if one of its incoming edges has a token and the time of its local clock has met its deadline. It completes by consuming a token from one of its marked incoming edges, resetting its local clock, and generating a token on its outgoing edges. Formally: Timer Boundary Events (T BE). Are events attached to an activity. Such event can be either Interrupting (T BE ⊘), i.e., it interrupts the running of the activity it is attached to, or Non-Interrupting (T BE ⊕). The start of activity with timer boundary events causes the activation of local clocks for the boundary events attached to it if they exist. Both types of the T BE event are defined by a starting predicate.

Ct(n) def ≡ (cat N (n) = T ICE p) ∧ (f time(n) ⇂ timeV al P = l c (n)) ∧ (l ′ c (n) = 0) ∧ ∃e ∈ intype(n,
The Interrupting Timer Boundary Event (T BE ⊘) acts as a deadline for an activity. If the activation token remains on the activity for more than a specific duration or fixed date, the timer event interrupts the activity to which it is attached. As we separate a T BE ⊘ d which is specified with a date and a T BE ⊘ p which is specified with a duration, we give their behaviour as follows.

An Interrupting Timer Boundary Events with Date (T BE ⊘ d) is ready to start if the global clock of the model meets the fixed date and time defined on it and the activity attached to it is active (i.e., owns a token). A T BE ⊘ d starts by cancelling the activity to which it is attached to if this activity is not a subProcess in its completing step (i.e., it has at least one token on one of its elements other than its end events). An activity is cancelled by dropping all its tokens. The T BE ⊘ d then produces a token on each of its outgoing edges.

St(n) def ≡ (cat N (n) = T BE ⊘ d) ∧ (f time(n) ⇂ timeV al D = g c) ∧ isInterrupt(n) ∧ ∃act ∈ N, cat N (act) ∈ A, (act = attachedT o(n)) ∧ (mn(act) ≥ 1) ∧               cat N (act) / ∈ SP ∧ (mn ′ (act) = 0) ∧ (∀ee ∈ outtype(n, SF), (me ′ (ee) = me(ee) + 1)) ∧ △ ({act} ∪ outtype(n, SF)) ∧ △ t (∅) ∧ Ξ   ∨       cat N (act) ∈ SP ∧ ¬mayComplete(act) ∧ mn ′ (act) = 0 ∧ (∀nn ∈ R(act) ∩ N, (mn ′ (nn) = 0) ∧ (∀ee ∈ R(act) ∩ E, (me ′ (ee) = 0) ∧ (∀out ∈ outtype(n, SF), (me ′ (out) = me(out) + 1)) ∧ △ ({act} ∪ R(act) ∪ outtype(n, SF)) ∧ △ t (∅) ∧ Ξ))                   (5.6)
Example. An Interrupting Timer Boundary Events with Duration (T BE ⊘ p) is ready to start if its local clock meets its deadline and the activity attached to it is active (i.e., owns a token). It starts by cancelling the activity to which it is attached to if this activity is not a subProcess in its completing step (i.e., it has at least one token on one of its elements other than its end events). Again an activity is cancelled by dropping all its tokens. The T BE ⊘ p then resets its local clock and produces a token on each of its outgoing edges.

St(n) def ≡ (cat N (n) = T BE ⊘ p) ∧ (f time(n) ⇂ timeV al P = l c (n)) ∧ (l ′ c (n) = 0)) ∧ isInterrupt(n) ∧ ∃act ∈ N, cat N (act) ∈ A, (act = attachedT o(n)) ∧ (mn(act) ≥ 1) ∧               cat N (act) / ∈ SP ∧ (mn ′ (act) = 0) ∧(∀ee ∈ outtype(n, SF), (me ′ (ee) = me(ee) + 1)) ∧ △ ({act} ∪ outtype(n, SF)) ∧ △ t ({n}) ∧ Ξ   ∨       cat N (act) ∈ SP ∧ ¬mayComplete(act) ∧ mn ′ (act) = 0 ∧ (∀nn ∈ R(act) ∩ N, (mn ′ (nn) = 0) ∧ (∀ee ∈ R(act) ∩ E, (me ′ (ee) = 0) ∧ (∀out ∈ outtype(n, SF), (me ′ (out) = me(out) + 1)) ∧ △ ({act} ∪ R(act) ∪ outtype(n, SF)) ∧ △ t ({n}) ∧ Ξ))                   (5.7)
Example. Figure 5.5 shows the starting behaviour of an interrupting timer boundary event (Interrupt) with a duration configuration of P 10D (10 days). The left part of the figure shows that Interrupt is enabled to start: the activity it is attached to is active (task1), and its local clock meets the deadline of 10 days from its activation (864000). The right part of the figure shows that (Interrupt) starts by dropping the token of the (task1), producing a token on its outgoing sequence flow edge (e3), and resetting its local clock. Like T BE ⊘ events, the Non-Interrupting Timer Boundary Events (T BE ⊕) can be configured with a date (T BE ⊕ d), a duration (T BE ⊕ p), but also a time cycle (T BE ⊕ c). We give their behaviour separately as follows. Formally:

The Non-Interrupting Timer Boundary Events with Date (T BE ⊕ d) define the same behaviour as T BE ⊘ d without cancelling the activity that they are attached to it. The Non-Interrupting Timer Boundary Events with Duration (T BE ⊕ p) define the same behaviour as T BE ⊘ p , without cancelling the activity that they are attached to it. Formally:

St(n) def ≡ (cat N (n) = T BE ⊕ d) ∧ (f time(n) ⇂ timeV al D = g c) ∧ ¬isInterrupt(n) ∧ ∃act ∈ N, cat N (act) ∈ A, (act = attachedT o(n)) ∧ (mn(act) ≥ 1) ∧ (∀out ∈ outtype(n, SF), (me ′ (out) = me(out) + 1)) ∧ △ ({act} ∪ R(act) ∪ outtype(n, SF)) ∧ △ t (∅) ∧ Ξ (5.8) Example.
St(n) def ≡ (cat N (n) = T BE ⊕ p) ∧ (¬isInterrupt(n)) ∧ (∃act ∈ N, cat N (act) ∈ A, (act = attachedT o(n)) ∧ (mn(act) ≥ 1) ∧ (f time(n) ⇂ timeV al P = l c (n)) ∧ (l ′ c (n) = 0) ∧ (∀out ∈ outtype(n, SF), (me ′ (out) = me(out) + 1)) ∧ △ ({act} ∪ R(act) ∪ outtype(n, SF)) ∧ △ t ({n}) ∧ Ξ) (5.9)
Example. Figure 5.7 shows the starting behaviour of a non-interrupting timer boundary event (N on -Interrupt) with duration configuration to P 10D (10 days). The left part of the figure shows that non -Interrupt is enabled to start: the activity that is attached to it is active (task1), and its local clock meets the deadline of 10 days from its activation (864000). The right part of the figure shows that (N on -Interrupt) starts by producing a token on its outgoing sequence flow edge (e3) and resetting its local clock.

The Non-Interrupting Timer Boundary Events with cycle configuration (T BE ⊕ c) might be triggered multiple times while the activity it is attached to is active. The number of cycles can either be fixed or unbounded. Therefore, the time cycle definition associated with a timer event may have different configurations:

(i) A Non-Interrupting Timer Boundary Event defines a number of recurrences for the timer event separated by a period and where the first trigger is relatively done to a fixed start date (T BE ⊕ c(start)). The behaviour of T BE ⊕ c(start) is defined by starting and completing predicates as follows. The T BE ⊕ c(start) is ready to start if the activity attached to it is active, the global clock of the model meets the fixed date and time defined on it, and its local clock is inactive. It starts by activating its local clock, generating a token on its outgoing edges, and decreasing the recurrence number by one if bounded to a number n. Formally: A T BE ⊕ c(start) event is ready to complete if the activity that is attached to it is active, the local clock of the node reaches its duration, and the number of recurrences has not reached 0 if it is bounded. It completes by re-activating its local clock, generating a token on its outgoing edges, and decreasing the recurrence number by one if bounded to a number n.

St(n) def ≡ (cat N (n) = T BE ⊕ c(start)) ∧ (¬isInterrupt(n)) ∧ (rec(n) = f time(n) ⇂ timeV al R) ∧ (∃act ∈ N, cat N (act) ∈ A, (act = attachedT o(n)) ∧ (mn(act) ≥ 1) ∧ ((rec(n) = ι) ∧ (rec ′ (n) = rec(n))) ∨((rec(n) ∈ N) ∧ (rec ′ (n) = rec(n) -1)) ∧ (f time(n) ⇂ timeV al D = g c) ∧ (l c (n) = 0) ∧ (l ′ c (n) =
Ct(n) def ≡ (cat N (n) = T BE ⊕ c(start)) ∧ (¬isInterrupt(n)) ∧ (∃act ∈ N, act ∈ A, (act = attachedT o(n)) ∧ (mn(act) ≥ 1) ∧ (f time(n) ⇂ timeV al P = l c (n)) ∧ (l ′ c (n) = 1) ∧ ((rec(n) = ι) ∧ (rec ′ (n) = rec(n))) ∨((rec(n) ∈ N) ∧ (rec(n) ̸ = 0) ∧ (rec ′ (n) = rec(n) - 1
)) ∧ (∀ee ∈ outtype(n, SF), (me ′ (ee) = me(ee) + 1)) ∧ △ (outtype(n, SF)) ∧ △ t ({n}) ∧ Ξ) (5.11) Example. Figure 5.9 shows the completing behaviour of a bounded non-interrupting timer boundary event (non -InterruptC) with a two cycles configuration that starts at 2021 -04 -16 T 00 : 00 : 00 and re-executes for each period of 10 days (P 10D). The left part of the figure shows that non -InterruptC is enabled to complete: the activity it is attached to is active (task1), its local clock meets the deadline of 10 days from its activation (864000), and the recurrence number is greater than 0. The right part of the figure shows that (non -InterruptC) completes by producing a token on its outgoing sequence flow edge (e3) and re-activating its local clock. (ii) A Non-Interrupting Timer Boundary Event defines a number of recurrences for the timer event triggers separated by a period and where the last trigger is done before the fixed end date (T BE ⊕ c(end)). The behaviour of T BE ⊕ c(end) is defined only by a starting predicate. It is ready to start if the activity attached to it is active, the node's local clock reaches its duration, the global clock does not meet the fixed date and time yet, and the number of recurrences is not equal to 0 if it is bounded. It starts by re-activating its local clock, generating a token on its outgoing edges, and decreasing the recurrence number by one if bounded to a number n. Formally:

St(n) def ≡ (cat N (n) = T BE ⊕ c(end)) ∧ (¬isInterrupt(n)) ∧ (f time(n) ⇂ timeV al D ̸ = g c) ∧ (∃act ∈ N, cat N (act) ∈ A, (act = attachedT o(n)) ∧ (mn(act) ≥ 1) ∧(f time(n) ⇂ timeV al P = l c (n)) ∧ (l ′ c (n) = 1) ∧ ((rec(n) = ι) ∧ (rec ′ (n) = rec(n))) ∨((rec(n) ∈ N) ∧ (rec(n) ̸ = 0) ∧ (rec ′ (n) = rec(n) -1)) ∧ (∀ee ∈ outtype(n, SF), (me ′ (ee) = me(ee) + 1)) ∧ △ (outtype(n, SF)) ∧ △ t ({n}) ∧ Ξ) (5.12)
Example. Figure 5.10 shows the starting behaviour of a bounded non-interrupting timer boundary event (non -InterruptC) with a two cycles configuration that may re-execute twice for each period of 10 days (P 10D) before date 2021 -04 -30 T 00 : 00 : 00. The left part of the figure shows that non -InterruptC is enabled to start: the activity it is attached to is active (task1), its local clock meets the deadline of 10 days from its activation (864000), the global clock has not reached yet (2021 -04 -30 T 00 : 00 : 00), and the recurrence number is greater than 0. The right part of the figure shows that (non -InterruptC) starts by producing a token on its outgoing sequence flow edge (e3) and re-activating its local clock.

(iii) A Non-Interrupting Timer Boundary Event defines a number of recurrences for the timer event triggers separated by a period (T BE ⊕ c(p)). Only a starting predicate defines the behaviour of T BE ⊕ c(p) . It is ready to start if the activity attached to it is active, the node's local clock reaches its duration, and the number of recurrences is not equal to 0 if it is bounded. It starts by re-activating its local clock, generating a token on its outgoing edges, and decreasing the recurrence number by one if bounded to a number n. Formally: The provided semantics for the timer events also requires an extended semantics behaviour for some other non-temporal elements as follows:

St(n) def ≡ (cat N (n) = T BE ⊕ c(p)) ∧ (∃act ∈ N, (cat N (n) = A) ∧ (act = attachedT o(n)) ∧ (mn(act) ≥ 1) ∧ (¬isInterrupt(n)) ∧ (f time(n) ⇂ timeV al P = l c (n)) ∧ (rec ′ (n) = rec(n) -1) ∧ (l ′ c (n) =
Event-Based Gateway. With the introduction of the timed semantics, the semantics of the eventbased gateways must be changed. In the standard, the execution semantics of an event-based gateway is defined as a branching point where exactly one of its outgoing edges is activated, depending on which event is triggered. Then, the path to that event will be used (a token will be sent down the outgoing sequence flows of the event) [3].

In a BPMN model, an event-based gateway is followed by a receive task (RT) or an intermediate catching message event (CM IE), combined with a timer intermediate catch event (T ICE). The activation of one of the outgoing edges depends on the enabling of these elements (i.e., the reception of a message, or a specific time event being triggered). So, to handle time, we adapt the semantics of an event-based gateway as follows.

An Event-based gateway (EB) is defined only by a completing predicate. It is ready to complete if one of its incoming edges has a token, and one of its target events is enabled (i.e., the target of an outgoing edge is an RT or a CM IE that has an offer on one of its incoming message edges, or the target of an outgoing edge is an intermediate timer event with a local clock that meets a deadline or when the 2820 global clock reaches the event timeDate). The EB completes by consuming the token from one of its incoming edges and producing a token on the outgoing edge on which the event is enabled. Formally:

Ct(n) def ≡ (cat N (n) = EB)
∧ ∃ e ∈ intype(n, SF), (me(e) ≥ 1) ∧ (me ′ (e) = me(e) -1) ∧ ∃e ′ ∈ outtype(n, SF), (me ′ (e ′) = me(e ′) + 1)

∧   (cat N (tgt(e ′)) ∈ {RT, CM IE} ∧ ∃mf ∈ intype(tgt(e ′), M F), (me(mf) ≥ 1)) ∨ (cat N (tgt(e ′)) = T ICE p ∧ (l c (tgt(e ′)) ≥ f time ⇂ timeV al P (tgt(e ′)))) ∨ (cat N (tgt(e ′)) = T ICE d ∧ (g c ≥ f time ⇂ timeV al D (tgt(e ′))))   ∧ △ ({e, e ′ }) ∧ △ t (∅) ∧ Ξ (5.14)
Example. Figure 5.12 shows a collaboration diagram between two active processes (P , Q). The eventbased gateway (EB) in the process P is followed by two message catch events (F irstM sg, SecondM sg) and a timer catch event (W ait) with a 10 days (P 10D) duration configuration. The left part of the figure 2825 shows that EB is enabled to complete: its incoming edge (e2) has a token, and the target timer event of its outgoing edge (e7) is enabled to start (its local clock meets the deadline of 10 days from its activation (864000)). The right part of the figure shows that the gateway completes by consuming the token from its incoming edge (e2) and producing a token on its outgoing sequence flow edge (e7). Activity. As we saw before, the main working units in a process are the activities. We made the distinction between a composite activity, or SubProcess (SP), and an atomic activity, or Task (T). The latter can be an Abstract (AT), a Send (ST), or a Receive (RT) task. All activities have the same basic behaviour. They start by moving a token from an incoming edge to themselves. When the activity is associated with a timer boundary event that requires a local clock (T BE ⊕ p ,T BE ⊕ c(p) , T BE ⊕ c(end) , or T BE ⊘ p), there are some additional constraints w.r.t the ones described in 4.4.0.2. When an activity starts, it starts all inactive local clocks of its attached boundary events if they exist, and when it completes, it deactivates them. We give the starting and completing formula for all supported task types and the subprocess in the following. To simplify the formula, we define a specific set of timer nodes, called T imerP , that groups all-timer nodes configured with a duration as:

T imerP def ≡ {t ∈ N | cat N (t) ∈ {T BE ⊕ p , T BE ⊕ c(p) , T BE ⊕ c(end) , T BE ⊘ p }} • Abstract Task St(n) def ≡ (cat N (n) = AT) ∧ (∃e ∈ intype(n, SF), (me(e) ≥ 1) ∧ (me ′ (e) = me(e) -1) ∧ (mn(n) = 0) ∧ (mn ′ (n) = mn(n) + 1) ∧ (∀te ∈ N, (cat N (te) ∈ T imerP) ∧ (n = attachedT o(te)) ∧ (l c (te) = 0) ⇒ (l ′ c (te) = 1)) ∧ △ t ({te ∈ N, cat N (te) ∈ T imerP | (n = attachedT o(te))}) ∧ △({n, e})) ∧ Ξ (5.15) Ct(n) def ≡ (cat N (n) = AT) ∧ (mn(n) ≥ 1) ∧ (mn ′ (n) = mn(n) -1)
∧ (∀e ∈ outtype(n, SF), (me ′ (e) = me(e) + 1))

∧ (∀te ∈ N T imerP , (n = attachedT o(te)) ⇒ (l ′ c (n) = 0)) ∧ △ t ({te ∈ N, cat N (te) ∈ T imerP | (n = attachedT o(te))}) ∧ △ ({n} ∪ outtype(n, SF)) ∧ Ξ (5.16) • Send Task St(n) def ≡ (cat N (n) = ST) ∧ (∃e ∈ intype(n, T SP), (me(e) ≥ 1) ∧ (me ′ (e) = me(e) -1) ∧ (mn(n) = 0) ∧ (mn ′ (n) = mn(n) + 1) ∧ (∀te ∈ N, (cat N (te) ∈ T imerP) ∧ (n = attachedT o(te)) ∧ (l c (te) = 0) ⇒ (l ′ c (te) = 1)) ∧ △ t ({te ∈ N, cat N (te) ∈ T imerP | (n = attachedT o(te))}) △ ({n, e}) ∧ Ξ)
(5.17)

Ct(n) def ≡ (cat N (n) = ST) ∧ (mn(n) = 1) ∧ (mn ′ (n) = mn(n) -1)
∧ ∀e ∈ outtype(n, SF), (me ′ (e) = me(e) + 1) ∧ (mn(n) = 0) ∧ (mn

∧ (∀te ∈ N T imerP , (n = attachedT o(te)) ⇒ (l ′ c (n) = 0)) ∧ (∃ee ∈ outtype(n, M F), (me ′ (ee) = me(ee) + 1) ∧ send (procOf(n), procOf(target(ee)), msg t (ee)) ∧ △ ({n, ee} ∪ outtype(n, SF))) ∧ △ t ({te ∈ N, cat N (te) ∈ T imerP | (n = attachedT o(te))}) (5.
′ (n) = mn(n) + 1) ∧ △ ({n, e}) ∧ Ξ) ∧ (∀te ∈ N, (cat N (te) ∈ T imerP) ∧ (n = attachedT o(te)) ∧ (l c (te) = 0) ⇒ (l ′ c (te) = 1)) ∧ △ t ({te ∈ N, cat N (te) ∈ T imerP | (n = attachedT o(te))}) △ ({n, e}) (5.19) Ct(n) def ≡ (cat N (n) = RT) ∧ (mn(n) = 1) ∧ (mn ′ (n) = mn(n) -1)
∧ ∀e ∈ outtype(n, SF), (me ′ (e) = me(e) + 1)

∧ (∀te ∈ N T imerP , (n = attachedT o(te)) ⇒ (l ′ c (n) = 0)) ∧ (∃ee ∈ intype(n, M F), (me(ee) ≥ 1) ∧ (me ′ (ee) = me(ee) -1)
∧ receive(procOf(source(ee)), procOf(n), msg t (ee))

∧ △ ({n, ee} ∪ outtype(n, SF))) ∧ △ t ({te ∈ N, cat N (te) ∈ T imerP | (n = attachedT o(te))}) (5.20) • SubProcess St(n) def ≡ (cat N (n) = SP)
∧ (∃e ∈ intype(n, SF), (me(e) ≥ 1) ∧ (me ′ (e) = me(e) -1) ∧ (mn

′ (n) = mn(n) + 1) ∧ (∀n se ∈ R(n), (cat N (n se) ∈ N SE) ∧ (mn ′ (n se) = mn(n se) + 1)) ∧ (∀te ∈ N, (cat N (te) ∈ T imerP) ∧ (n = attachedT o(te)) ⇒ (l ′ c (n) = 1)) ∧ △ ({e, n} ∪ ({n se ∈ R(n), cat N (n se) ∈ N SE}))) ∧ △ t ({te ∈ N, cat N (te) ∈ T imerP | (n = attachedT o(te))}) ∧ Ξ (5.21) Ct(n) def ≡ (cat N (n) = SP) ∧ (mn(n) ≥ 1) ∧ (mn ′ (n) = mn(n) -1) ∧ (∀e ∈ R(n) ∩ E, (me(e) = 0)) ∧ (∃n ee ∈ R(n), (cat N () = EE) ∧ (mn(n ee) ≥ 1)) ∧ (∀nn ∈ R(n) ∩ N, (mn(nn) ≥ 1 ⇒ cat N (nn) ∈ EE)) ∧ (∀nn ∈ R(n), cat N (nn) ∈ EE) ∧ (mn ′ (nn) = 0)) ∧ (∀e ∈ outtype(n, SF), (me ′ (e) = me(e) + 1)) ∧ (∀te ∈ N, cat N (te) ∈ T imerP, (n = attachedT o(te)) ⇒ (l ′ c (te) = 0)) ∧ △ ({n} ∪ {nn ∈ R(n), cat N (n) ∈ EE} ∪ outtype(n, SF)) ∧ △ t ({te ∈ N, cat N (te) ∈ T imerP | (n = attachedT o(te))}) ∧ Ξ (5.22)
Example. Figure 5.13 shows the starting behaviour of a task (task1) and a subProcess (SP) with attached interrupting timer boundary events with a duration configuration of 10 days (P 10D), called (timeOut 1) and (timeOut 2) respectively. The left part of the figure shows that task1 and SP are enabled to start: they are inactive, and there is a token on their incoming edges. The task1 node starts by consuming a token from its incoming edge, generating one on itself, and activating the local clock of its attached timer node timeOut 1 . The SP node starts by consuming a token from its incoming edge, generating one on itself and its start event start SP , and activating the local clock of its attached timer node timeOut 2 . Figure 5.14 shows the completing behaviour of task task1 and subProcess SP . The left part of the figure shows that task1 and SP are enabled to complete: the task1 is active, SP is active, and its token has reached its end event. They are not interrupted yet. They complete by consuming their tokens, deactivating their attached local clocks the timeOut 1 and the timeOut 2 , and generating a token on their outgoing edges e2, e8 respectively. Note that the semantics of the elements that are not mentioned here (N SE, M SE, XOR, AN D, OR, N EE, T EE) have the same behaviour defined before in Chapter 4.

Transition Relation and Executions

We can now express the complete transition relation (successor relation between states) with the previously defined predicates. For simplifying the transition definition, let us consider a subset of timer nodes, called T , that groups all the timer nodes in a given graph model. Formally we define T as follows:

T def ≡ {t ∈ N | cat N (t) ∈ T imer}
Let us consider a subset of timer nodes, called S, that groups the nodes that satisfy any of the following conditions:

• a starting timer node that has a token and such as the global time date of the system has not reached the fixed time date;

• an intermediate timer node that has an inactive local clock and has a marked incoming edge, or that follows an event-based gateway with a marked incoming edge;

• a boundary timer node attached to an active activity with a local clock that is not active;

• an active timer node, whose local clock is greater than 0 and has not reached the timing limits.

Formally, we define S as follows:

S def ≡ {n ∈ N, cat N (n) = T SE | (f time(n) ⇂ timeV al < g c) ∧ (mn(n) = 1)} ∪ {n ∈ N, cat N (n) = T ICE | ∃e ∈ intype(n, SF), (l c (n) = 0) ∧ (me(e) > 0)} ∪ {n ∈ N, cat N (n) = T ICE | ∃e ∈ intype(src(intype(n, SF)), SF), (l c (n) = 0) ∧ (me(e) > 0)} ∪ {n ∈ N, cat N (n) = T BE | (l c (n) = 0) ∧ (mn(attachedT o(n)) > 0)} ∪ {n ∈ T | f time(n) ⇂ timeV al > l c (n) > 0}
Let Y be the subset of timer nodes in the BPMN graph that are ready to fire:

Y def ≡ {y ∈ T | l c (y) ≥ f time(n) ⇂ timeV al (y) ∨ g c = f time(n) ⇂ timeV al (y)}
To facilitate the reading of the transition relation, we define the following predicates:

• step defines a step of execution for a given node:

step(n) def ≡ St(n) ∨ Ct(n)
• f ztime denotes time equality for the local clock of all timer nodes given as parameter:

f ztime(Z) def ≡ ∀z ∈ Z, l ′ c (z) = l c (z)
The transition relation will be defined according to the following rules.

• If there are timer nodes that are in an active state and are enabled to be complete, they have a priority:

-They will run one by one. Each node runs according to its execution rule;

-During their execution, neither the global clock nor their local clocks can be incremented.

If no timer node is ready to complete, and there is a non-timer node that may start or complete, then:

-Any enabled node may be executed to start or complete;

-The time of all inactive timer nodes is frozen;

-The local time of all active timer nodes advances;

-The global clock of the model advances.

• If no node may be executed and there is a timer node still active and not ready to complete, time advances only.

Thus, the transition relation distinguishes two cases.

If at least a timer is ready to fire (Y ̸ = ∅), then a timer fires (it does a step), or an event-based gateway that precedes a firable timer does a step. Time does not advance, and other timers with the same expiration time can then fire, e.g., the two steps for task1 and SP in Figure 5.13. If no timer is ready to fire, all timers increase (run) and non-deterministically a step can occur (∃n, step(n)) or no step is done (△(∅) ∧ Ξ). Thus, the transition relation distinguishes two cases. If at least a timer is ready to fire (Y ̸ = ∅), then a timer fires (it does a step) or an event-based gateway that precedes a firable timer does a step. Time does not advance, and other timers with the same expiration time can then fire. If no timer is ready to fire, all timers increase (run) and non-deterministically, a step can occur (∃n, step(n)) or no step is done (△(∅) ∧ Ξ). It specifies that either a node makes a step (start or complete) or time advances, but only if no timer node is ready to complete. Let s and s ′ be two states. We say that s ′ is a successor of s, iff the predicate N ext(s, s ′) (See equation. 5.23) holds.

N ext(s, s ′) def ≡ (Y ̸ = ∅ ∧   (∃n ∈ Y : step(n) ∧ f ztime(T \ {n})) ∨ ∃n ∈ N, cat N (n) = EB, ∃eo ∈ outtype(n, SF), (tgt(eo) ∈ Y) ∧ step(n) ∧ f ztime(T)   ∨ (Y = ∅ ∧ run() ∧ f ztime(T \ S) ∧ ((∃n ∈ N : step(n)) ∨ (△(∅) ∧ Ξ)) (5.23)
States, here s and s ′ , correspond to tuples of the form s = (mn, me, mnet, l c , g c , rec) and s ′ = (mn ′ , me ′ , mnet ′ , l ′ c , g ′ c , rec ′), whose elements are used in the definitions of St and Ct.

Definition 5.3.4 (Execution). An execution is an infinite sequence of states such that σ[0] is the initial state, and ∀i ∈ N, N ext(σ[i], σ[i+1]), where σ[i] denotes the i th state of the trace. Moreover, an execution is non-Zenon with regard to time and steps: there cannot be an infinite number of steps without time advancing, and there cannot be an infinite advancement of time without steps. Formally, the non-Zenon hypothesis corresponds to weak-fairness on the left-hand part of the N ext disjunction and weak-fairness on its right-hand part. This ensures that if one node is enabled, it will eventually be done.

5.4 BPMN 2.0 and the Time Patterns: Can We Support All of Them?

The concept of a pattern was introduced by Christopher Alexander in [START_REF] Alexander | The Timeless Way of Building[END_REF] as "The Timeless Way of Building". He defined a pattern as "a three-part rule, which expresses a relation between a certain context, a problem, and a solution". Patterns characterise constructs, methods or techniques that have been encountered in practice repeatedly. Each pattern is intended to address an individual problem.

To solve more complex problems, a number of patterns may need to be combined. By classifying different patterns and the types of relations between them, patterns can more easily be combined. Moreover, with knowledge of the specific characteristics of individual patterns, one may choose the pattern most appropriate for a given situation. A pattern language helps a user move from problem to solution logically, thus allowing for many alternative paths through the design process. A pattern language is not fixed, it is built upon collected experience in a field, and as the techniques used in practice change, the pattern language may also evolve.

In the business process management field, some works have been done on identifying workflow patterns for different process perspectives control-flow, data and resources. Among them, we can find the Workflow Patterns Initiative [START_REF]Workflow Patterns home page[END_REF] which collects more than 100 workflow patterns and compares various languages and tools based on their support for such patterns. The introduction of the workflow patterns has had a significant impact on PAIS design as well as on the evaluation of PAISs and process languages [START_REF] Arthur | Modern Business Process Automation -YAWL and its Support Environment[END_REF].

Our interest in pattern collections is relative to the time patterns. Several works propose approaches to deal with the time perspective of PAISs, such as a timed workflow process model in [START_REF] Zhuge | A Timed Workflow Process Model[END_REF], process mining of temporal aspects in [START_REF] Wil | Beyond Process Mining: From the Past to Present and Future[END_REF], verification of temporal constraints in [START_REF] Eder | Time Constraints in Workflow Systems[END_REF][START_REF] Combi | Conceptual Modeling of Temporal Clinical Workflows[END_REF][START_REF] Combi | Conceptual Modeling of Flexible Temporal Workflows[END_REF], among others. However, the most complete and recent framework regarding time support in PAIS and considering time patterns in the literature was provided in [15]. The authors extend existing workflow patterns by describing time-related concepts commonly found in business processes and providing a reference system for them.

They present ten-time patterns representing temporal constraints commonly occurring in the context of time-aware processes. This section presents them all, and we discuss how BPMN supports seven of these patterns. For each pattern, we provide its description, its modelling using the BPMN standard w.r.t our interpretation, and we show how our formalisation deals with it.

Time Lags between Activities Pattern

Informal Description. It defines a minimal or maximal delay between two consecutive activities or both. The relation can be start-to-start (i.e., between the start of two activities), start-to-end formalisation, between the start of the first and completion of the second activity), end-to-start (i.e., between the completion of the first and the start of the second activity), or end-to-end (i.e., between completion of two activities). [15] Textual Specification. Using the BPMN standard, the time delay between activities may be presented using a T ICE or T BE and may support only the start-to-start and the end-to-start relations.

The relation end-to-start may be supported by a T ICE p between two activities or by a T BE ⊘ p associated with an activity as presented in • s 2 =< mn(Q) = 1, me(e3) = 0, mn(Activity 3) = 1 , mn(Activity 4) = 0, l c (T 2) = 1, g c = 2021-03-16 T 00:00:00, rec = ι > for the process Q of Figure 5.15,

• s 3 =< mn(F) = 0, me(e4) = 0, me(e5) = 0, mn(T SE) = 1, mn(Activity 5) = 0, mn(Activity 6) = 0, l c (∅) = 0, g c = 2021-03-16 T 00:00:00, rec = ι > for the process F of Figure 5.16,

• s 4 =< mn(G) = 1, me(e6) = 1, me(e7) = 0, me(e8) = 0, mn(T ICE) = 0 , mn(Activity 7) = 0, mn(Activity 8) = 0, l c (∅) = 0, g c = 2021-03-16 T 00:00:00, rec = ι > for the process G of Figure 5.16.

According to the form of the processes P , Q, F , G and the current states s 1 , s 2 , s 3 and s 4 of P's, Q's, F's, and G's instances, the execution evolves as follows:

• In Figure 5.15, the state of process P changes by executing the run() function (Formula 5.1) 864000 times (10 days in seconds). Then, the state of process P became s ′ 1 =< mn(P) = 1, me(e1) = 0, l c e2 = 1, mn(Activity 1) = 0, mn(Activity 2) = 0, l c (T 1) = 0, g c = 2021 -03 -26 T 00 : 00 : 00, recrec(∅) == ι >. This execution state takes place by applying the completing predicate (Formula 5.5) of the T 1 node, which requires the incoming edge e1 of the event to be marked by at least one token and the local clock of the event reaches its max l c (T 1) = 864000. Thus, the effects of the T 1 execution are as follows: unmarked e1, marked e2, and reset the local clock l c (T 1).

• With the same principle, the state of process Q of Figure 5.15 changes by executing the run() function (Formula 5.1) 864000 times (10 days in seconds). Then, the state of process Q became s ′ 2 =< mn(Q) = 1, me(e1) = 1, me(Activity 3) = 0, mn(Activity 4) = 0, g c (T 2) = 0, g c = 2021 -03 -26 T 00 : 00 : 00, rec(∅) = ι >. This execution state takes place by applying the completing predicate (Formula 5.7). This rule generates a token on edge e3. The latter enabled the execution of the abstract task starting predicate (Formula 5.15) for Activity 4, which results its activation.

• In Figure 5.16, the state of process F changes to s ′ 3 =< mn(F) = 1, me(e4) = 1, me(e5) = 0, mn(T SE) = 0, mn(Activity 5) = 0, mn(Activity 6) = 0, l c (∅) = 0, g c = 2021 -03 -16 T 00 : 00 : 00, rec(∅) = ι >. This execution state takes place by applying the completing predicate (Formula 5.3) of the timer start event (TSE). Next, this state enables the execution of the start predicate (Formula 5.15) of Activity 5. Then the state of the process F became s ′′ 3 =< mn(F) = 1, me(e4) = 0, me(e5) = 0, mn(T SE) = 0, mn(Activity 5) = 1, mn(Activity 6) = 0, l c (∅) = 0, g c = 2021-03-16 T 00:00:01, rec(∅) = ι >. This state allows for firing the timer event T 1 and successively executing the predicates from formulas 5.8 and 5.15. Next, the F's state became s ′′′ 3 =< mn(F) = 1, me(e4) = 0, me(e5) = 0, mn(T SE) = 0, mn(Activity 5) = 1, mn(Activity 6) = 1, l c (∅) = 0, g c = 2021-03-16 T 00:00:02, rec(∅) = ι >.

• Same as process F , the state of the process G changes to s 4 =< mn(G) = 0, me(e6) = 0,me(e7) = 0, me(e8) = 0, mn(T ICE) = 0 , mn(Activity 7) = 1, mn(Activity 8) = 1, l c (∅) = 0, g c = 2021-03-16 T 00:00:02, rec = ι >. This execution state takes place by applying the predicates from Formulas 5.8, 5.15, 5.8, 5.15 successively.

Duration

Informal Description. It specifies a maximal duration for an activity or a whole process.

Textual Specification. Using the BPMN standard, the time duration for an activity may be represented by using an interrupting boundary event attached to an activity with a duration configuration (Figure 5.17, process P). However, to define a deadline for the whole process, we may use a parallel gateway between the entire process structure and the one that defines the duration deadline. This latter has an intermediate catch event with a duration configuration and ends with a terminate end event to enforce the cancelling of all the activities and events when the deadline reaches (Figure 5.17, process Q).

Formal Semantics. Based on our textual representation, let us consider the states:

• s 1 =< mn(P) = 1, me(e1) = 0, me(e2) = 0, mn(Activity1) = 1, mn(Activity2) = 0, mn(Activity3) = 0, l c (T 1) = 1, g c = 2021-03-17 T 00:00:00, rec(∅) = ι > for the process P of Figure 5.17; • s 2 =< mn(Q) = 1, me(e3) = 0, me(e4) = 1, me(e5) = 0, me(e6) = 1, me(e7) = 0, mn(Start) = 0, According to the form of the processes P and Q and the current states s 1 and s 2 of P's and Q's instances, the execution evolves as follows:

• If the activity1 does not complete after 3 minutes (P 3M), the state of process P changes by executing the run() function (Formula 5.1) 180 times. Then, the state of the process became s ′ 1 =< mn(P) = 1, me(e1) = 1, me(e2) = 0, mn(Activity1) = 0, mn(Activity2) = 0, mn(Activity3) = 0, l c (T 1) = 180, g c = 2021-03-17 T 00:03:00, rec(∅) = ι >. This state takes place by applying the completing predicate of the completing predicate (Formula 5.7) of the T 1 node, which requires that the activity it is attached to is active and the local clock reaches its max l c (T1)=180. Thus, the effect of this execution stops activity1 at its time constraint.

• If the local clock of the process Q reaches its max time of 10 days (l c (T 2) = 864000), and there are active nodes in the process flow after Activity4, then, process Q state changes by executing the completing predicate (Formula 5.5) of the T 2 node and terminating the whole process by executing the relevant rules.

Time Lags between Arbitrary Events Pattern

Informal Description. "It enables the specification of time lags between two discrete events. The latter may be related to the execution of activities but may also be triggered by an external source not controllable. [15]" Textual Specification. Using the BPMN standard, the modelling of the discrete event that occurred based on specific conditions (e.g., exception, messages, or errors, etc.) may be represented by intermediate throwing and catching nodes, boundary nodes attached to activities, or the activity itself defines a discrete event such as receiving a message. Figure 5.18 shows an example for this pattern. It presents a case of two successive sending and receiving activities, where the maximum time lags between sending a request for a client service of an online shop and getting a response for this request should be no more than 48 hours.

Formal Semantics. Let us consider the state s 1 =< me(P) = 1, me(Q) = 0,me(e1) = 0, me(e2) = 0, me(e3) = 0, me(e4) = 0, mn(Start) = 0, mn(End1) = 0, mn(End2) = 0, mn(Send) = 0, mn(Receive) = 1, l c (T 1) = 1, g c = 2021-03-21 T 12:00:00, rec(∅) = ι > where the process P has completed the sending of the request to the process Q and starts waiting for the response (the local clock T 1 is activated). As long as the process P does not receive a message, the run() function will be executed (Formula 5.1). If the local clock T 1 reaches its maximum value, the state of process P changes to s ′ 1 =< mn(start) = 0, mn(end) = 0, me(e1) = 0, me(e2) = 0, me(e3) = 0, me(e4) = 0, me(e5) = 1,

Fixed Date Elements (Deadline) Pattern

Informal Description. It allows specifying deadlines and fixed execution elements dates; it specifies a date deadline as an earliest (or latest) start (or completion) of an activity (or a process), i.e., started after/before a fixed date, or complete before date. If the deadline is missed, the activity or process may never become active. [15] Textual Specification. Using the BPMN standard, fixed date and time configuration may be used on different events (start or intermediate) and with different formats as presented above (see Section 5.2). For example, to represent the earliest fixed starting date for an activity, we may use an intermediate catch event with a timeDate configuration as a source node for its incoming edge (Figure 5.19, process P). On the other hand, to represent the latest completing fixed date for an activity, we may use an interrupting boundary event with a timeDate configuration (Figure 5.19, Activity2, process Q). Further, this latter may represent both the latest completion fixed date for an activity and the latest starting date for the successive activity (Figure 5.19, Activity3, process Q).

With the same principle, to represent a starting fixed date for a process, we may use a timer start event with a timeDate configuration (Figure 5.20, process P). Otherwise, to present its latest fixed date, we may use an intermediate catch event with a timeDate configuration in parallel with the process structure (Figure 5.20, process Q).

Formal Semantics. Let us consider the states:

• s 1 =< me(P) = 1, me(e1) = 1, me(e2) = 0, me(e3) = 0, mn(Start) = 0, mn(Activity1) = 0, • s 2 =< me(Q) = 1, me(e4) = 0, me(e5) = 0, me(e6) = 0, me(e7) = 0, mn(Start) = 0, mn(Activity2) = 1, mn(Activity3) = 1, mn(End1) = 0, mn(End2) = 0, l c (∅) = 0, g c = 2021 -03 -19 T 07 : 00 : 00, rec(∅) = ι > for the process Q of Figure 5.19.

• s 3 =< me(F) = 0, me(e8) = 0, me(e9) = 0, mn(Start) = 1, mn(Activity4) = 0, mn(End) = 0, l c (∅) = 0, g c = 2021 -03 -19 T 07 : 00 : 00, rec(∅) = ι > for the process F of Figure 5.20.

• s 4 =< me(G) = 1, me(e10) = 0, me(e11) = 1, me(e12) = 0, me(e13) = 1, me(e14) = 0, mn(Start) = 0, mn(Activity5) = 0, mn(End1) = 0, mn(End2) = 0, l c (∅) = 0, g c = 2021 -03 -19 T 07 : 00 : 00, rec(∅) = ι > for the process G of Figure 5.20.

According to the form of the processes P , Q, F , and G and the current states s 1 and s 2 , s 3 , s 4 of P's, Q's, F's, and G's instances, respectively, the execution evolves as follows:

• In Figure 5.19, the state of process P changes by executing the run() function (Formula 5.1) until the global clock reaches the timeDate 2021-03-20 T 12 : 00 : 00. The latter enables the execution of the timer node T 1. Next, the state of the process changes by executing the completing predicate (Formula 5.4) of the T 1 event, which requires that e 1 be marked and the global clock reaches its fixed date. The state of the process became s ′ 1 =< me(P) = 1, me(e1) = 0, me(e2) = 1, me(e3) = 0, mn(start) = 0, mn(Activity1) = 0, mn(end) = 0, l c (∅) = 0, g c = 2021 -03 -20 T 12 : 00 : 00, rec(∅) = ι >. This state enables, in its turn, the execution of Activity1.

• With the same principle, if Activity2 is still active and the global clock reaches the timeDate 2021 -03 -20 T 12 : 00 : 00, the state of process Q of Figure 5.19 changes by executing the completing predicate (Formula 5.6) of the T 1 event, which requires that Activity2 be marked and the global clock reaches the fixed date. The state of the process became s 2 =< me(Q) = 1, me(e4) = 0, me(e5) = 0, me(e6) = 1, me(e7) = 0, mn(Start) = 0, mn(Activity2) = 0, mn(Activity3) = 0, mn(End1) = 0, mn(End2) = 0, l c (∅) = 0, g c = 2021 -03 -20 T 12 : 00 : 00, rec(∅) = ι >. This state enables, in its turn, the execution of Activity3 and so on.

• In Figure 5.19, when the global clock reaches the timeDate 2021 -03 -20 T 12 : 00 : 00, the state of process F changes to s ′ 3 =< me(F) = 1, me(e8) = 1, me(e9) = 0, mn(Start) = 0, mn(Activity4) = 0, mn(End) = 0, l c (∅) = 0, g c = 2021 -03 -20 T 12 : 00 : 00, rec(∅) = ι > by executing the completing predicate (Formula 5.3) of the Start node.

• With the same principle, If the global clock reaches the timeDate 2021 -03 -20 T 12 : 00 : 00 and there are active nodes in the process flow after the Activity5. Then, the state of process G changes to s ′ 4 =< me(G) = 1, me(e10) = 0, me(e11) = 0, me(e12) = 0, me(e13) = 0, me(e14) = 1, mn(Start) = 0, mn(Activity5) = 0, mn(End1) = 0, mn(End2) = 0, l c (∅) = 0, g c = 2021 -03 -20 T 12 : 00 : 00, rec(∅) = ι > by executing the completing predicate of the T 1 node (Formula 5.4). This state enables, in its turn, the execution of the End2 event.

Schedule Restricted Element Pattern

Informal Description. "It enables us to restrict the execution of a particular element by a schedule, i.e., a timetable (e.g., a bus schedule). The schedule itself is known at built-time, whereas the concrete dates are specified either at instantiation or run-time. The schedule provides restrictions on when the respective element can be executed. [15]" Textual Specification. According to the authors, this pattern can be realised using a timer that is started at process instantiation time and expires at the first endpoint of one of the respective time slots. The timer is then reset, and its expiration date is set to the following endpoint of one of the time slots. This is repeated until the respective activity (process) has been started/completed or no more valid time slots are available according to the schedule. As an example of this pattern, between Paris and Algiers, there are flights at 6:05, 10:30, 12:25, 17:35 and 20:40. In this example, the period between (6:05 and 10:30)

is different from the one between (10:30 and 12:25). Therefore, the presentation of such a pattern using the BPMN notation is not supported, as it needs a set of schedules with different periods.

Time Based Restrictions Pattern

Informal Description. It allows "to restrict the number of times a particular process element can be executed within a predefined time. [15]". This restriction may be used for a number of concurrent executions or the number of executions per time period.

Textual Specification. BPMN offers the possibility to represent several executions between them a period using a cycle timeDefinition. Such a pattern may then be simulated using a timer catch event with a cycle time definition with a timeDuration including bounded/unbounded number of executions and conditional structure. E.g., a subscriber may read only ten online articles per month for an annual subscription. If the number of readings is reached, no more books can be read in the current month (Figure 5.21). Formal Semantics. As the time intermediate catch event with a cycle definition and the data treatment are out of the scope of this thesis. Therefore, we do not support the formalisation of this pattern.

Validity Period Pattern

Informal Description. It is similar to the pattern 5.4.4. It allows expressing that an activity or process must not be started or completed before or after a particular date. I.e., its lifetime is restricted to this validity period. The respective process element may only be instantiated within a validity period.

Textual Specification. A validity period must be attached to the respective activity or process to realise this pattern respectively. Therefore, upon instantiation of the respective activity or process, its validity period needs to be checked. If the current time does not match with the activities (processes) validity period or the minimum duration of the activity (process) will result in the completion of the activity (process) being outside of the respective validity period, appropriate exception handling is required. This pattern is not supported using the BPMN notation.

Time Dependent Variability Pattern

Informal Description. "It allows varying control flow depending on the execution time or time lags between activities/events. [15]" Textual Specification. The time-dependent variability may be represented in two different ways using the BPMN standard. The first one uses the boundary events (interrupting and non-interrupting) with varying formats of time to implement variability based on the activity time execution (Figure 5.22, right). The second one uses the deferred choice pattern [START_REF] Russell | Workflow Patterns: The Definitive Guide[END_REF], which is enabled by the use of the event-based gateway structure. This gateway allows the presentation of activities in combination with time triggers. The latter way implements the variability based on time lags between activities (Figure 5.22, left). Formal Semantics. Based on our representation, the left-hand side of Figure 5.22 shows a collaboration diagram with two processes P and Q to represent a deferred choice pattern. The right-hand side of Figure 5.22 shows a collaboration diagram with three processes E, F and G to represent variability in the possible communication based on the timed execution of a process.

We represent the processes Q, F , and G with closed pools due to space restriction. Let us consider the states:

• s 1 = < mn(P) = 1, me(e1) = 1, me(e2) = 0, me(e3) = 0, me(e4) = 0, me(e5) = 0, me(e6) = 0, me(e7) = 0, me(m1) = 0, me(m2) = 0, mn(StartP) = 0, mn(Activity1) = 0, mn(Activity2) = 0, mn(EndP 1) = 0,mn(EndP 1) = 2, mn(EndP 3) = 0, l c (T 1) = 1, g c = 2021 -03 -21 T 12 : 00 : 00, rec(∅) = ι> or the process P of Figure 5.22;

• s 2 = <mn(E) = 1, me(e8) = 0, me(e9) = 0, me(e10) = 0, me(e11) = 0, me(m1) = 0, me(m2) = 0, mn(StartE) = 0, mn(Activity3) = 1, mn(Activity4) = 0, mn(Activity5) = 0, mn(EndE) = 0, l c (T 2) = 1, g c = 2021 -03 -21 T 00 : 00 : 00, rec(∅) = ι > for the process E of Figure 5.22.

According to the form of the processes P and E and the current states s 1 and s 2 of P's and E's instances, respectively, the execution evolves as follows:

• As long as the process P does not messages, the run() function will be executed (Formula 5.1). If the local clock T 1 node reaches its max of two days (l c (T1)=172800), the state of the process P changes to s ′ 1 = < mn(P) = 1, me(e1) = 0, me(e2) = 0, me(e3) = 0, me(e4) = 1, me(e5) = 0, me(e6) = 0, me(e7) = 0, me(m1) = 0, me(m2) = 0, mn(StartP) = 0, mn(Activity1) = 0, mn(Activity2) = 0, mn(EndP 1) = 0,mn(EndP 1) = 2, mn(EndP 3) = 0, l c (T 1) = 0, g c = 2021 -03 -23 T 12 : 00 : 00, rec(∅) = ι> by execution the completing predicate (Formula 5.14) of the EB node. The latter will be executed by choosing the alternative path of the timer node. Then the completing predicate (Formula 5.5) of T 1 may be executed.

• The state of process E changes to s 2 = <mn(E) = 1, me(e8) = 0, me(e9) = 0, me(e10) = 1, me(e11) = 0, me(m1) = 0, me(m2) = 0, mn(StartE) = 0, mn(Activity3) = 0, mn(Activity4) = 0, mn(Activity5) = 0, mn(EndE) = 0, l c (T 2) = 0, g c = 2021 -03 -23 T 00 : 00 : 00, rec(∅) = ι > by executing the starting predicate (Formula 5.7) of the T 2 node. This state is reached if Activity3 has not been completed within two days, the alternative path of the timer node is then chosen, and no communication is done with process G.

Cycle Element Pattern

Informal Description. "A particular process element shall be iteratively performed with a time lags between the cycles. [15]". In such a pattern, the number of cycles is either fixed (e.g., two cycles with an hour between them) or depends on some conditions. The time between the cycles may represent the minimum, maximum, or the time interval value and may realise start-to-start, start-to-end, end-to-start, and end-to-start relations between activities.

Textual Description. BPMN supports this pattern using a boundary timer event with cycle time category and duration configuration (Formal Semantics. Based on our formalisation, the data is abstracted. Thus, process Q execution is treated with non-determinism. Assuming the following states:

• s 1 = <mn(P) = 1 me(e1) = 0, me(e2) = 0, me(e3) = 0, me(e4) = 0, mn(StartP) = 0, mn(Activity1) = 1, mn(Activity2) = 0, mn(EndP 1) = 0, mn(EndP 2) = 0, l c (T 1) = 864000, g c = 2021 -03 -12 T 12 : 00 : 00, rec(T 1) = 2> for the process P of Figure 5.23.

• s 2 = <mn(Q) = 1 me(e5) = 0, me(e6) = 0, me(e7) = 0, me(e8) = 1, me(e9) = 0, me(e10) = 0, me(e11) = 0, mn(StartQ) = 0, mn(Activity3) = 1, mn(Activity4) = 0, mn(EndQ) = 0, l c (T 2) = 864000, g c = 2021 -03 -12 T 12 : 00 : 00, rec(∅) = ι> for the process Q of Figure 5.23.

According to the form of the processes P and Q and the current states s 1 and s 2 of P's and Q's instances, respectively, the execution evolves as follows:

• The state of the process P changes to s ′ 1 = <mn(P) = 1 me(e1) = 0, me(e2) = 0, me(e3) = 1, me(e4) = 0, mn(StartP) = 0, mn(Activity1) = 1, mn(Activity2) = 0, mn(EndP 1) = 0, mn(EndP 2) = 0, l c (T 1) = 1, g c = 2021 -03 -12 T 12 : 00 : 00, rec(T 1) = 1> by executing the staring predicate (Formula 5.13) of the non interrupting boundary event T 1. The latter fires the timer node, resets the local clock of the timer node T 1 to l c (T 1) = 1, and reduces the number of redundancy by 1. Then, as long as Activity1 doesn't complete, the run() function (Formula 5.1) is repeatedly executed, allowing the timer T 1 to fire one more time. If the redundancy number is unbounded, rec(T 1) = ι, this behaviour is indefinitely repeated as long as the activity is active.

• The state of the process Q changes to s ′ 2 = <mn(Q) = 1 me(e5) = 0, me(e6) = 0, me(e7) = 0, me(e8) = 0, me(e9) = 1, me(e10) = 0, me(e11) = 0, mn(StartQ) = 0, mn(Activity3) = 1, mn(Activity4) = 0, mn(EndQ) = 0, l c (T 2) = 0, g c = 2021 -03 -12 T 12 : 00 : 00, rec(∅) = ι> by executing the staring predicate (Formula 5.5) of the intermediate catch event T 2. This state enables, in its turn, the execution of Activity4 and Activity3 successively. Then, depending on the condition evaluation C (an undetermined choice in our case), a choice will be made to generate a token on e1 that activates the timer node T 2 for the second time or not.

Periodicity Pattern

Informal Description. It allows specifying periodically recurring sets of activities according to an explicitly defined periodicity rule. This periodicity rule describes the recurrence schema of the respective activity (e.g., group meetings will take place every two weeks at 11:30) as well as a particular start or exit condition (e.g., starting from next Monday until the end of the year, five times). Unlike the cycle pattern (Section 5.4.9), this pattern emphasises possible execution dates of recurrent activities but not the time lag between them. Therefore, the periodicity rule may contain one or more than one date. [15] Textual Description. BPMN standard supports this pattern by describing the time constraints with a timeCycle category. This category defines a repeated execution of the timer element with a fixed/dynamic number of iterations, depending on time lag and fixed start date, or time lag and fixed end date. Our work supports this configuration type associated with a non-interrupting event as illustrated in Figure 5.24, with two repetitions up to an ending date (process P) and two repetitions up after a starting date (process Q). Formal Semantics. Assuming the states:

• s 1 = < mn(P) = 1, me(e1) = 0, me(e2) = 0, me(e3) = 0, me(e4) = 0, mn(Activity1) = 1, mn(Activity2) = 0, mn(EndP 1) = 0, mn(EndP 2) = 0, l c (T 1) = 172800, g c = 2021-03-12 T 12 : 00 : 00, rec(T 1) = 2> for the process P of Figure 5.24.

• s 2 = < mn(Q) = 1, me(e5) = 0, me(e6) = 0, me(e7) = 0, me(e8) = 0, mn(Activity3) = 1, mn(Activity4) = 0, mn(EndQ1) = 0, mn(EndQ2) = 0, l c (T 2) = 1, g c = 2021 -03 -12 T 12 : 00 : 00, rec(T 2) = 2> for the process Q of Figure 5.24.

According to the form of the processes P and Q and the current states s 1 and s 2 of P's and Q's instances, respectively, the execution evolves as follows:

• The state of the process P changes to s ′ 1 = < mn(P) = 1, me(e1) = 0, me(e2) = 0, me(e3) = 1, me(e4) = 0, mn(Activity1) = 1, mn(Activity2) = 0, mn(EndP 1) = 0, mn(EndP 2) = 0, l c (T 1) = 1, g c = 2021 -03 -12 T 12 : 00 : 00, rec(T 1) = 1> by executing the staring predicate (Formula 5.12) of the non interrupting boundary event T 1, The latter fires the timer node, resets the local clock of timer node T 1 to l c (T 1) = 1, and reduces the number of redundancy by 1. Then, as long as Activity1 does not complete and the global clock does not reach the ending date, the run() function (Formula 5.1) is repeatedly executed, allowing the timer T 1 to fire one more time.

• The state of the process Q changes to s ′ 2 = < mn(Q) = 1, me(e5) = 0, me(e6) = 0, me(e7) = 1, me(e8) = 0, mn(Activity3) = 1, mn(Activity4) = 0, mn(EndQ1) = 0, mn(EndQ2) = 0,

l c (T 2) = 1, g c =

Introduction

The formal semantics introduced so far shows: how complex the modelling of a collaboration diagram can be, how the communication models vary and how to correctly figure out the execution of inter and intraprocesses in the presence of messages, hierarchical structures, interrupting events, and time constructs. These make the overall behaviour of the collaboration challenging to grasp. This chapter supports the presented formalisation with a tool-suite called fbpmn. This tool automatically verifies correctness properties for BPMN collaboration models and animates counterexamples when the properties are not satisfied. This tool is implemented to perform the verification using two formal specification languages, TLA + [17] and Alloy [46], that are increasingly popular due to their simplicity and flexibility, as well as the effectiveness of their companion model checkers, the TLC and Alloy Analyzer, respectively. These languages and tools are based on two different theories: TLA + is based on the explicit model checking, while Alloy is based on bounded model checking. All together, TLA + and Alloy languages support first-order logic properties. This chapter explores these two frameworks for the verification of the business process properties. While TLC interprets TLA + models as finite state machines and deploys an explicit-state model checker, Alloy Analyser converts models into propositional formulas that are passed to SAT solvers. The properties of interest are encoded in the TLA + and Alloy theories (we have implemented). They include usual correctness properties for workflows as well as those (proposed more recently [140]) that are more specific to BPMN.

This chapter is organised as follows. Section 6.2 gives an overview of the fbpmn tool, its architecture and its general principles. Section 6.3 presents the encoding of the BPMN semantics in TLA + . Section 6.4 presents the encoding of the BPMN semantics in Alloy language. Section 6.5 presents some results obtained with fbpmn tool on models, available on a publicly accessible repository. Section 6.6 provides the description of the tool's development and functionalities. Section 6.7 summarises the chapter.

fbpmn Overview

fbpmn (Formal Business Process Modelling Notation) is an open-source verification tool-chain software, based on our formalisation of BPMN collaboration diagrams, implemented using various TLA + and Alloy modules. For utilising the tool-chain, we provide a web interface at http://vacs.enseeiht.fr/bpmn/ as well as a Virtual-Box virtual machine containing a local installation of our tool-chain at https: //github.com/pascalpoizat/fbpmn. The overall overview of the fbpmn tool-suite is synthesised in Figure 6.1. Reading the figure from left to right, we have the following main components: Modelling Environnement, TLA Translator, Alloy Translator, TLA Modules, Alloy Modules, TLC Model checker, and Alloy Analyser. The figure shows an overview of the process for performing verification with the fbpmn tool. First, all the semantics rules we have defined in first-order logic are encoded in TLA (theories.tla files) and Alloy (theories.als files) languages (we will detail the content of these static models in the following sections). These files are written once for all. The Modelling Environment allows the design of BPMN models and selects properties to be verified. In principle, any BPMN editor can be used as such component, especially those compliant with the BPMN 2.0 standard such as Eclipse BPMN2 Modeler [START_REF]Eclipse BPMN2 Modeler[END_REF], Camunda Modeler [202] and Signavio Editor [203] (step (1), Figure 6.1). fbpmn takes as input a business process or a collaboration model in BPMN format. It starts by translating the model into a graph in terms of TLA + (resp. Alloy) encodings using the TLA translator (Alloy translator, respectively) (step (2), Figure 6.1). Choosing one of these translators generates a set of property and encoding model files (step (3), Figure 6.1). These generated files and theories files are then used as input for the checkers (TLC model checker or the Alloy analyser) to check the model (step (4), Figure 6.1). The latter returns results (step (6), Figure 6.1) that indicate the correctness or not of the properties on the model. fbpmn offers an animation option to generate counterexamples using these results (step (7), Figure 6.1). Indeed, it also provides the designer with the possibility to add properties manually (step (5), Figure 6.1).

In the following sections, we present : (i) our encoding of the FOL semantics in TLA + that allows one to easily parameter the communication properties and benefits from the efficient TLC model checker to verify collaborations automatically. (ii) Our encoding of the FOL semantics in Alloy allows verifying timed BPMN models.

Encoding of FOL Semantics in TLA

The expression and action fragments of TLA + are FOL-based, so the encoding of the semantics in TLA + is straightforward (459 lines of TLA + formulas).

The given FOL formalisation captures the behaviour of each of the BPMN components (nodes which can be events, activities, and gateways), and thus the behaviour of the whole BPMN model. This behaviour is defined using the concept of tokens which move from nodes to edges (and vice-versa) when specific conditions are fulfilled. The distribution of those tokens (marking) on the elements of the BPMN model describes its state. Hence, the whole behaviour is seen as a set of states reachable when specific transitions are fired.

As extensively described before, the idea here is to associate to each node (n) two predicates1 : a first predicate, St(n), which states if the node can start its execution, and thus changing its current marking 3340 before its execution (mn(n)) to another marking after its execution (mn ′ (n)). The second predicate, Ct(n), that states if the node can finish its execution and so change the current marking (mn(n)) before its termination to another marking (mn ′ (n)) after its termination. In this context, the TLA + specification of the semantics of node n is nothing but a direct translation of the St(n) and Ct(n) predicates of node n into the TLA + syntax.

3345

Example.

Let us reconsider the semantics of a None Start Event defined through the predicate Ct(n):

∀n ∈ N, Ct(n) def ≡ cat N (n) = N SE ∧ (mn(n) >= 1) ∧ (mn ′ (n) = mn(n) -1)
∧ ∀e ∈ outtype(n, SF), (me ′ (e) = me(e) + 1)

∧             ∃p ∈ N, p = R -1 (n) ∧(cat N (p) = P) ∧ (mn(p) = 0) ∧ (mn ′ (p) = 1) ∧ △ ({n, p} ∪ outtype(n, SF) ∧ Ξ)     ∨ ∃sp ∈ N, sp = R -1 (n) ∧ (cat N (sp) = SP) ∧ △ ({n} ∪ outtype(n, SF)) ∧ Ξ        
This FOL semantics is translated into a TLA + specification as follows.

nonestart_complete(n) ≜ ∧ CatN [n] = N oneStartEvent ∧ nodemarks[n] >= 1 ∧ LET p == ContainRelInv(n) IN ∨ ∧ CatN [p] = P rocess ∧ nodemarks[p] = 0 ∧ nodemarks ′ = [nodemarks except ![n] = @ -1, ![p] = 1] ∨ ∧ CatN [p] = SubP rocess ∧ nodemarks ′ = [nodemarks except ![n] = @ -1] ∧ edgemarks ′ = [e ∈ domain

FOL Expression TLA

+ expression ϕ 1 cat N (n) = N SE ϕ ′ 1 CatN [n] = N oneStartEvent ϕ 2 mn(n) ≥ 1 ϕ ′ 2 nodemarks[n] >= 1 ϕ 3 ∀e ∈ outtype(n,
∃p ∈ N, (p = R -1 (n)) ∧ (cat N (p) = P) ∧ (mn(p) = 0) ∧ (mn ′ (n) = mn(n) -1) ∧ (mn ′ (p) = 1) ϕ ′ 4 LET p == ContainRelInv(n) IN ∧ CatN [p] = P rocess ∧ nodemarks[p] = 0 ∧ nodemarks ′ = [nodemarks except ![n] = @ -1, ![p] = 1] ϕ 5 ∃sp ∈ N, (sp = R -1 (n)) ∧ (cat N (sp) = SP) ∧ (mn ′ (n) = mn(n) -1) ϕ ′ 5 LET p == ContainRelInv(n) IN ∧ CatN [p] = SubP rocess ∧ nodemarks ′ = [nodemarks except ![n] = @ -1] ϕ 6 Ξ ϕ ′ 6 N etwork!unchanged
Intuitively, the translation is done syntactically, as shown in Table 6.1. Here, we can easily observe that the translation is straightforward, and this holds for all the elements of BPMN.

3350

The resulting theories, for the translation of the whole elements, are available at https://github. com/pascalpoizat/fbpmn under theories/tla. They are:

Module PWSTypes, defines the abstract constants that correspond to the node and edge types.

Module PWSDefs, specifies the constants that describe a BPMN graph (Definition 4. One of the objectives of our FOL semantics is to be able to specify the communication behaviour as a parameter of the verification. To achieve this, all operations related to communication are isolated in a Network module. This module is a proxy for several implementations corresponding to communication models with different properties, such as their delivery order.

Generic Communication Models

We provide seven communication models which differ in the order messages can be sent or received and are all the possible point-to-point models when considering local ordering (per process), causal ordering, and global ordering (absolute time). Their formal description is provided in section 4.3.3, and their formal analysis and comparison can be found in [179].

The state of the communication model is specified with a variable net, whose content depends on the communication model. The communication actions are two transition predicates send and receive which are true when the action is enabled. These actions take three parameters, the sender process, the destination process and the type of message. Their specification depends on the communication model and is a direct translation in TLA + of the FOL formula of table 4.3. For instance, NetworkFifo specifies a communication model where the delivery order is globally first-in-first-out: messages are delivered in the order they have been sent. Its realisation is a queue, and the two predicates are:

send (f rom, to, m) ≜ net ′ = Append(net, ⟨f rom, to, m⟩) receive(f rom, to, m) ≜ net ̸ = ⟨⟩ ∧ ⟨f rom, to, m⟩ = Head(net) ∧ net ′ = T ail(net)
Ad-hoc Communication Models The communication models described in 4.3.3 are all monolithic.

This means that all the communication interactions are handled by the same communication model and that it restricts the receptions in the same way for all communication channels. In some cases, one needs to have different properties in different parts of a model. For instance, a set of processes can require FIFO All communication for their interactions, while another set does not have any constraint. Using a modular communication framework based on micromodels [START_REF] Chevrou | A Modular Framework for Verifying Versatile Distributed Systems[END_REF], we offer the possibility to implement the send and receive predicates with a combination of micro models that are applied to subsets of the channels in the BPMN collaboration. The available micromodels are the seven ordering model as above, that order the receptions with regard to the emission events; a micromodel where priorities are assigned to channels; a message capacity micromodel that limits the number of messages in transit; a bounded micromodel that limits the total number of messages that a set of channels can transport in an execution.

Consider the example in Figure . 2.8. This example has an infinite number of states as the travel agency can send an arbitrary number of the offer. Moreover, it is required that the NoMore message is received after all the Offer messages. With the monolithic communication models, this can be handled by using the FIFO Pair (or FIFO All) communication model. However, observe that the Confirmation and Ticket messages are expected by the customer in the reverse order of their emissions. Imposing FIFO ordering means that the ticket cannot be delivered before the confirmation, and this collaboration with a FIFO communication model is unsound: the customer process deadlocks without reaching the final state.

CHANNELS == {"Offer", "NoMore", "Travel", "Payment", "Abort", , "Ticket", "Confirmation"}

COMMODELS == {[name → "p2p", params → [chan → CHANNELS]], [name → "fifo11", params → [chan → {"Offer","NoMore"}]], [name → "voting", params → [chan → {"Offer"}, bound → 2]], [name → "message_cap", params → [chan → CHANNELS, bound → 4]] } COM == INSTANCE multicom WITH PEERS ← {"
A collaboration is sound if all the processes are sound and there are no undelivered messages. A process is sound if it is in a stable state where there are no tokens on its inside edges, and no tokens on its nodes, except possibly for start and end events.

SoundP roc(p)

def = ∀e ∈ R(p) ∩ E, (cat E (e) = SF) ∧ (me(e) = 0) ∧ ∀n ∈ R(p) ∩ N, (mn(n) = 0 ∨ (mn(n) = 1 ∧ cat N (n) ∈ (EE ∪ SE)) Soundness def = ♢□(∀p ∈ N, cat N (p) = P ∧ SoundP roc(p) ∧ ∀e ∈ E, cat E (e) = M F ∧ me(e) = 0) (6.2)
A collaboration is a message-relaxed sound if it is sound when ignoring messages in transit, i.e., when ignoring the Message Flow edges.

M sgRelaxedSoundness

def = ♢□(∀p ∈ N, cat N (p) = P ∧ SoundP roc(p)) (6.3)
Other generic properties are available, such as the absence of undelivered messages or the possible activation, which states that there does not exist a task node (Abstract Task, Send Task, Receive Task) that is never activated in any execution. From a business process point of view, it means that there are no tasks in the diagram that are never used. This is expressed by ∀n ∈ N, cat N (n) = T : ♢(mn(n) = 0). Actually, the invalidity of this formula confirms the satisfiability of its negation.

Last, the user can also define business model properties concerning a specific diagram. For instance, one can check that the marking of a given node is bounded by a constant e.g., (□(nodemarks["Confirm Booking"]) ≤ 1)

or that the activation of one node necessarily leads to the activation of another node e.g.,

(□(nodemarks["Book Travel "] ̸ = 0 ⇒ ♢(nodemarks["Offer Completed "] ̸ = 0))
Termination of the verification is ensured for a finite state model. When the model checker finds that a property is invalid, it outputs a counter-example trace that we animate on the BPM graphical model to help the user understand it. TLC uses a breadth-first algorithm, and this trace is minimal for safety properties. As any BPMN model is structurally finite, a model with an infinite state space is necessarily unsafe (in the sense of (6.1): some edges hold more than one token). This property is invalidated on a prefix of a trace. TLC incrementally checks invariants during the state space construction, and an unsafe model will be detected even if it would yield an infinite state space. TLC cannot check arbitrary properties on an infinite state model. Nevertheless, we can use constraints expressed on states or transitions to limit the state space (see Section 6.6.4.1).

Encoding of the Semantics in Alloy

This section details the different Alloy modules and routines to check the business process model automatically. Generally, Alloy does not provide a pre-defined way to model dynamic behaviour. Therefore, it is necessary to use the idiom traces pattern [47]. This introduces a signature to represent the system's overall state and model operations as predicates. Thus defining the relationships between the states before and after. We use the Global State variant of this pattern.

The signature and the predicate fragments of Alloy is also based on FOL. Hence, the encoding of the semantics in Alloy is straightforward (670 lines of Alloy formulas). An abstract signature defines an element type (node or edge), and the subtype relation relates these signatures (e.g., N ode ⊇ Event ⊇ IntermediateEvent ⊇ T ICE ⊇ T ICE d). A BPMN graph combines these signatures with unique elements that correspond to the graph nodes, edges, and attributes that mark the endpoints of an edge.

As extensively discusssed for the TLA + translation, each semantic rule presented in Section 5.3 yields a predicate syntactically identical to it.

Example.

Let us reconsider the semantics of a Timer Start event that may be specified with a date-time (see equation. 6.4).

Ct(n) def ≡ (cat N (n) = T SE d) ∧ (f time(n) ⇂ timeV al D = g c) ∧ (mn(n) = 1) ∧ (mn ′ (n) = mn(n) -1) ∧ ∀ eo ∈ outtype(n, SF), (me ′ (eo) = me(eo) + 1) ∧ ∃ p ∈ N, cat N (n) = P, n ∈ R(p), (mn(p) = 0) ∧ (mn ′ (p) = mn(p) + 1) ∧ △ ({n, p} ∪ outtype(n, SF)) ∧ △ t (∅) (6.4)
This predicate is translated into Alloy as follows (see Listing 6.1). The translation is syntactical, as shown in Table 6.2. Here, we can easily observe that the translation is straightforward, and this holds for all the elements of BPMN.

FOL Expression

TLA + expression ϕ 1 cat N (n) = T SE d ϕ ′ 1 n : T imerStartEvent ϕ 2 f time(n) ⇂ timeV al D = g c ϕ ′ 2 n.
(n) = P, (n ∈ R(p)) ∧ (mn(p) = 0) ∧ (mn ′ (n) = mn(n) -1) ∧ (mn ′ (p) = mn(p) + 1) ϕ ′ 5 let p = n. contains s.nodemarks[p] = 0 s ′ .nodemarks[n] = s.nodemarks[n].dec s ′ .nodemarks[p] = s.nodemarks[p].inc ϕ 6 △({n, p} ∪ outtype(n, SF)) △ t (∅) ϕ ′ 6 delta[s, s ′ , n + p, n.outtype[SequentialF low]] deltaT [s, s ′ , none]//localclockisunused
The resulting theories are available in the fbpmn repository at https://github.com/pascalpoizat/ fbpmn/tree/master/theories/alloy under theories/alloy. The latter has a set of static and dynamic modules. Static modules are those writing once for all. They are: Module PWSSyntax.als, It represents the BPMN elements syntax (edges, nodes, and time definition types). More specifically, this module contains a set of Alloy signatures for the BPMN elements needed to describe a process instance. For example, the listing in Figure 6.2 shows a set of abstract signatures focusing on the BPMN meta-model's Activity node types. Thanks to Alloy's object-oriented notation, it is natural and direct to represent a meta-model. Therefore, each metaclass corresponds to a signature and the attributes of metaclasses to relationships. Module PWSProp.als, contains a set of properties defined in Section 6.4.1.

Conversely, the dynamic modules are those generated according to the business process model and the properties to analyse. 3540 ProcessModel.als, encodes the process instance to be analysed. Figure 6.3 shows a simple process with interrupting boundary time date event. Alloy Translator component (cf. Figure 6.1) allows generating an Alloy specification as shown in Listing 6.7 for the given simple process model file. Each process element is represented as a singleton (one sig) of its equivalent type, defined in PWSSyntax.als module. As highlighted in this listing, the representation of the process in Alloy language is natural and the communication model on property satisfaction (models 001, 002, 006, 020), the use of TLA + fairness to avoid infinite loops (012, 013, 018, 020), and the use of terminate end events combined with model constraints (see Section 6.6.4.1) to deal with unsafety (006).

LTL verification is O(M * 2 F), where M is the size of the state space, and F is the size (expressed in terms of the number of involved temporal operators) of the formula. F is mainly influenced by the number of fairness constraints. Regarding M , in practice, more than the size of the BPMN schema, interleaving is the main cause of state explosion. Interleaving is directly linked to the number of processes. Thus, more than the number of nodes (which has a limited impact), the verification time is mainly impacted by the number of processes and their branching.

Experiments using the Alloy Encoding/Tooling

Experiments were conducted on a laptop with a 3.9 GHz (turbo 3.30 GHz) Intel Core i5 processor (quad-core) with 64 GB of memory. First, the processes and their properties are translated into an Alloy specification using fbpmn translator to perform the experiments. Then, this specification is given as input to the Alloy Analyser, which reduces the verification to an SAT problem. Therefore, the Alloy Analyser presents the specification to a SAT solver in CNF format. A CNF is a conjunction of clauses. Each clause is a disjunction of variables (cf. Section 2.4.11). A satisfying assignment of a SAT problem consists of a Boolean assignment to the variables such that all clauses are satisfied. It is usual to use the number of variables and clauses as a measure for a SAT problem complexity. The SAT solver used in the following is MiniSat (one of those supplied by default with the Alloy Analyser).

Results are presented in Table 6.4. The first column is the reference of the example in our archive at https://github.com/pascalpoizat/fbpmn/ under /AlloyTest/TLARepresentation/ folder. Column 2 represents the variant of the commands used (run or check). Column 2 exhibits the analysed property from Section 6.4. Column 3 depicts the limit state number used for each checked property. Columns 4 and 5 illustrate the number of variables and clauses, respectively. Columns 6 and 7 show the time to generate the CNF and to solve the SAT problem, respectively. Finally, column 8 specifies the result of the verification. Note that when there is communication, we use a bag communication model. The verification results are depicted as follows: First, if there is any counter-example, we display (CE). If an instance is found when applying the run command, we display (Instance). Lastly, If neither of these two results is available and the assertion may be valid, as expected, we show the (✓) mark. However, if the assertion is inconsistent, we display the (×) mark.

These results highlight the effectiveness of our tool w.r.t. a set of concrete models from our repository. A first conclusion is that verification is relatively fast: the solving time of one property generally takes just a few seconds per model, the longest being for model 001 that takes up to 8s even if the whole generated SAT problems present a relatively high complexity (over 14 thousand variables and over 1 million clauses).

Secondly, checking properties provides promising results since we find the results are consistent with the expected ones. More precisely, we applied different properties for each model. For example, in the model (001), which represents a collaboration, we have used the checking of the EmptyNetTermination property to ensure that the results are consistent with that obtained in the previous experiment (cf. Line 1, Table 6.3) using the TLA + translation. On the other hand, the model shows that the correct termination property is unsatisfied using 9 states and generates a counterexample. However, this property is satisfied for the same model using 25 states. This latter is due to the Alloy Analyser feature. The Alloy Analyser is based on a SAT solver that performs Bounded Model Checking (BMC). Thus, it is only able to guarantee the absence of counterexample up to some bound k. Consequently, the Alloy Analyser cannot determine, on its own, the total number of states needed to analyse the model entirely. It is up to the user to choose this bound number and that it must be greater than the number of States typically required to unfold the transition relationship completely.

Model (t002) presents a simple BPMN process that contains an Intermediate Timer Catch Event with a duration value equal to 4. Therefore, the CorrectTermination must be checked with more than nine states to give enough time for the globalclock / localclock to reach 4. Line 10 (the fourth checked property of this model) defines an empty run. This last produces a random instance of the model satisfying the facts for guaranteeing at least one model execution instance (no deadlock).

In model (t003), Line 16 shows an Instance producing of the non-simultaneous reachability of the end events (EE1A) and (EE1B) formula means that the Interrupting Timer Intermediate Event behaves as expected. However, running this formula for the model (t004) fails to find an instance (i.e., the set of clauses for which no satisfactory instance exists). The latter means that the non-interrupting Timer Finally, for model (t005), Line 25 shows that checking the EmptyNetTermination property produces a counterexample. The latter means that it is invalid by taking the Timer Intermediate Catch Event Branch. For that, both non-EmptyNetTermination and EmptyNetTermination running properties produce an Instance as both cases are reachable (i.e., the first instance means that the formula is UnSAT and there is a possibility of executing the receiving branch may be taking. But, the second one means that the timer event may be fired before the message receiving.

It is important to note that if no counterexample is found when checking a strong property (check), checking its weak equivalent will certainly find at least one instance that satisfies the property. For example, suppose no counterexample is found to go into a no safeness situation (check Safe, cf Line 1). In that case, obtain an instance such that the process safe is trivially true (run Safe, cf Line 6). Indeed, in general, to generate counterexamples during verification (check F), the Alloy Analyser attempts to find instances of the negation of the formula (i.e., [run F ≡ check ¬ F]). Thus, as a general rule, it is interesting to evaluate a weak property only when the strong property has returned a counterexample.

Current experiments have allowed us to validate our semantics on a subset of study cases models, and the implementation proved the feasibility of our approach, but unfortunately, real-life models are often out of reach of Alloy Analyzer as the number of required states for an execution exceeds its capacity. Still, verification is achieved in a reasonable time.

The fbpmn Supporting Tool

This section presents the open-source software made available at https://github.com/pascalpoizat/ fbpmn, that can be redistributed and eventually modified under the terms of the GPL2 License. We here choose to focus on parts related to the TLA + implementation of the semantics given in Chapter 4, verification using TLC, and the associated Desktop usage and Web application. These parts being more polished than the ones related to Alloy and Space BPMN support [205].

Architecture and General Principles

fbpmn tool suite for TLA + , is made up of :

• the fbpmn program and several accompanying scripts to perform verification in a single command line and to graphically animate counterexamples.

• a Web application version of the above, with a client-side front-end (for BPMN modelling and for giving communication and verification parameters) that runs in a single browser, and a server-side back-end verification engine, built around fbpmn and scripts, for which a Docker version is available

The fbpmn tool suite is centred around a command, FBPMN, that is available for Linux, OSX, and Windows (binaries are available for the first two, the latter requiring, for now, a compilation process). This command is used to transform a BPMN model into TLA + representation. fbpmn is also in charge of the computation of the P re N and P re E sets that are used in the semantics of the OR gateways since these two sets can be structurally computed from the BPMN graph structure. This generated TLA + graph module is then passed, together with modules for TLA + implementation of our well-formedness rules and semantics, to the TLC model checker, as described in the bottom of Figure 6.1.

In the case where a verification fails, TLC outputs a counter-example as a state trace that includes for each step, the state of the markings and the communication network (Definition. 4.4.1). To ease the interpretation of this by the process designer, fbpmn can also be used to generate an interactive animation of the counter-example, where one can see the marking over the BPMN model and navigate between the steps of the counterexample (Figure 6.5). The presentation layer for the counterexample animator has been achieved using the Camunda.io javascript library2 .

Desktop Modelling and Verification

For a given model, one may have different properties of interest (e.g., safety, soundness, and messagerelaxed soundness), and since several communication models are possible (e.g., the seven ones presented in Table. 4.3), it would be tedious to run fbpmn for each of the combinations. Hence, we provide the process designer with scripts (only under Linux or OSX) that ease verification. When the designer launches the fbpmn-check script, it reads a configuration directory and runs fbpmn based on the designer preferences.

Let us suppose the configuration directory is as follows.

This will yield four different properties to be checked for seven different network models, generating at most 28 counter-example traces. Running the fbpmn-logs2html script on a working directory generated by fbpmn-check, finds out these counter-examples and generates an interactive animator for each of them. It is also possible to give fbpmn-check a number of cores to use, and this value is passed to the TLC model checker.

Online Modelling and Verification

To ease the use of the fbpmn tool suite, we have implemented a Web application for it (Figure 6.4). There, the user can import, design, or export a BPMN model (this is achieved using the Camunda.io framework). Then verification parameters can be given: which properties to check, which communication models to check with, possibly model constraints (see below) for nodes and/or edges.

After retrieving the results (Figure 6.5), the user can see a textual version of counter-examples and/or animate it on the model as presented in Section 6.6.1.

The fbpmn Web application is available online at [START_REF]BPMN Formalization[END_REF] for demonstration purposes. Yet, if one is interested in it, we advocate its deployment on one's own machine or server. For this, we provide a Docker image, downloadable from our Web application at https://github.com/pascalpoizat/fbpmn/ tree/master/web.

Extensibility

Our framework can be extended as far as safeness constraints, properties to check, and communication models are concerned. Some node constraints and edge constraints are already defined in our TLA + library, e.g., the one to state that an edge should have at most two tokens on it, MaxEdgeMarking2, or the one to limit the number of tokens only on message edges MaxMessageEdgeMarking2. The most usual constraint combinator is also already defined there, ConstraintNodeEdge, which is the conjunction of the user-specified node and edge constraints. Using this, we may verify model 006 (as seen in Section 6.5), defined in file e006TravelAgency.bpmn, with a file e006TravelAgency.constraint:

CONSTANT ConstraintNode <-TRUE ConstraintEdge <-MaxEdgeMarking2 Constraint <-ConstraintNodeEdge
The user is free to extend our constraint library by extending the PWSConstraints.tla TLA + module.

New Properties

We support several properties from the literature. However, it is possible to extend this set. To do so, one has to:

1. Define a new property, say MyProperty, at the end of the main TLA + semantic module, PWSSemantics.tla;

2. Create a new file PropNNMyProperty.cfg in the fbpmn configuration directory, with NN being a number different from the existing properties there;

3. In the contents of PropNNMyProperty.cfg refer to the property name given in 1.

The definition of new properties has some limitations. First, these properties must be defined using LTL since this is the logic that is checked by TLC. Second, these properties must cope with our definition of state (Definition 4.4.1), i.e., they can be defined in terms of node markings, edge markings, and/or network markings. Properties can also refer to the types of the nodes and edges, as shown in Section 6.3.2 for the soundness property.

New Communication Models

As stated before, we support the most usual communication models to be used as parameters for the BPMN semantics. Still, one may define new models. To achieve this, one has to:

1. Define the new communication model semantics, say MyNet, in a NetworkMyNet.tla file in the fbpmn TLA + theories directory;

2. Copy one of the files in the fbpmn configuration directory to a new file NetworkNNMyNet.tla in the same directory, with NN being a number different from the existing communication models there;

3. In the contents of NetworkNNMyNet.tla changes the line of the network implementation definition to refer to the new communication model as defined in 1.

Chapter 7 Conclusion

In this chapter, we recall the objectives of the thesis in Section 7.1. We present the contributions of the work we carried out in Section 7.2, then we position this work in relation to the literature in Section 7.3.

Finally, we present our perspectives in Section. 7.4.

Objectives Remainder

The main objectives of this thesis were: (1) to provide a direct formal execution semantics for a subset of BPMN elements that supports sub-processes, communication, and time constructs and is parametric with reference to the properties of the communication; and (2) to support this formalisation with tools that automatically perform the verification of correctness properties for BPMN collaboration models. Our work, therefore, aimed at improving and facilitating the process of formal specification and verification of the business process models, which is a long and complicated task and requires a knowledge of formal tools in order to avoid an in-depth review of the code and the specification in failure after implementation.

Contributions

This thesis contributes to our objectives with the fbpmn framework enabling the modelling, the analysis and the formal specification of collaborations and time-aware models based on a well-founded set of formal semantics rules. In the following, we summarise our contributions by answering to the thesis research questions presented in Chapter 1, Section 1.2, which were:

• Q1. Does the correctness of BPMN collaboration diagrams depend on the used communication models?

• Q2. How to precisely describe the formal semantics of BPMN collaboration diagrams, taking into account different communication models?

• Q3. How to formalise the execution semantics of the BPMN time constructs, including their relation to the ISO-8601 standard format?

• Q4. What are the time process patterns supported by the BPMN standard, and does our semantics support all of them?

• Q5. How to verify such formal models?, which are the properties of interest?, and can the formal semantics of the BPMN collaborations drive the development of software tools based on BPMN collaboration diagrams?

Answering Q1 and Q2. Firstly, we have defined a direct formalisation for BPMN collaboration diagram elements. We use First-Order Logic (FOL) with natural numbers, sets, and maps. Instead of using a formal intermediary model, e.g., Petri nets or a process algebra, this choice of a simple yet expressive framework enables one to get a formal semantics that is amenable to implementation in different formal frameworks while still being close in its structured presentation to the semiformal semantics of the standard (hence it can be related to it). As far as the subset of BPMN is concerned, we have first included the generic control flow elements (i.e., gateways, tasks, and events). We have then taken constructs with complex execution semantics into account, mainly relative to our focus: creation and termination of processes based on messages or time, message and time-related intermediary events and boundary events (interrupting or non interrupting), event-based gateways, inclusive-join gateways, and subprocesses. Secondly, the provided semantics is parametric regarding the properties of the communication model. Therefore, we support seven point-to-point communication models relating to the message-passing behaviours between and within processes and define their formal semantics. These communication models are important since, as seen for example in Table 6.3, the chosen model has an impact on whether the correctness properties of a BPMN model are fulfilled or not.

Answering Q3 and Q4. Firstly, we have extended our formal semantics to support the timerelated constructs of BPMN. In the first, time semantics was abstracted in a non-deterministic way. This new semantics supports different combinations of events, time information categories (timeDate, timeDuration, and timeCycle) and the corresponding ISO-8601, descriptions as prescribed by the BPMN standard. As seen in Table 5.2, we support 13/31 time semantics features in BPMN. Secondly, we have formalised the execution semantics of a set of time patterns specified in BPMN. Many authors have underlined the importance of time patterns and a lot of effort has been made to identify the most common time-related scenarios from a business perspective, namely, Process Time Patterns [START_REF] Lanz | Workflow Time Patterns for Process-Aware Information Systems[END_REF]. These patterns were defined only in terms of textual descriptions for PAIS system in general. Our work was first to provide a graphical description of these patterns to assess the suitability of BPMN to express these common time-related scenarios. Then, to validate the provided semantics for the time constructs given in Chapter 5, as we show its suitability to cover the process time patterns expressed in BPMN. Roughly speaking, our work demonstrated that our semantics supports 7/10 from ten of these patterns.

Answering Q5. Based on the proposed FOL semantics, this thesis provides an automatic verification tool-suit, called fbpmn, for the business process collaboration models. fbpmn is based on the translation of the FOL semantics into the TLA + and Alloy languages and the use of the TLC model checker and the Alloy Analyser for the model analysis. Thus, within the fbpmn tool both standard model checking and bounded model checking techniques are integrated to effectively support verification. As far as properties of interest are concerned, fbpmn tool allows checking domain-specific properties dedicated either to workflow notations in general (e.g., soundness, safety, and deadlock-freedom) or to BPMN in particular (e.g., simple termination, correct termination, message relaxed soundness) and it allows animating counter-examples to fix erroneous models in case of checking properties fails. Further, fbpmn tool is proposed either as a desktop or as a Web application to model, check, and correct the business collaboration models. The latter provides transparency to the users with reference to the formal background.

Position with Reference to the Litterature

This section compares the most relevant attempts to formalise the semantics of BPMN, which cover the interaction and time characteristics with the work at hand.

Collaboration-Based Approaches

As shown in Chapter 3, numerous works in the literature have focused on the formalisation of BPMN and on the verification support for the collaboration diagrams and communication features in BPMN [23,71,86,89,125,128,132,138]. We add [64] due to its role as a seminal paper and [95,117] due to their representatives formal model they use. Table 7.1 gives a synthetic presentation of a comparison between these proposals and ours. The table focuses on (1) BPMN features, and (2) properties of interest that are supported by each work. This table divides the approaches between those that rely on an intermediary model and those that have the benefit of providing a direct link between BPMN constructs and the verification formalism. Our work follows this line. Further, our choice of FOL lets us implement the semantics in different tools e.g., TLA + and Alloy as here or SMT solvers for the future. As far as the BPMN coverage criteria are concerned, we can observe that we are among the approaches with high coverage. To make verification tractable, we have abstracted from the data and the multi-instance constructs, that are often related to data. Most of the work, still, support the verification of business process correctness properties or, at least, all-purpose formal properties (reachability, deadlock). To the best of our knowledge, these approaches do not support verification of BPMN models under a specific, and parametric, communication model.

Time-Based Approaches

As shown in Chapter 3, numerous works in the literature have focused on the formalisation of BPMN time-related models constructs. Among these works we select [81,99,104,116,119,142,143,[START_REF] Morales | AA Formalization Proposal of Timed BPMN for Compositional Verification of Business Processes[END_REF] for

Approach

Transformation Direct the diversity of the formal representation used. We add [START_REF] Lanz | Process Time Patterns: A Formal Foundation[END_REF] as it is the referenced work that formalises all the process time patterns in PAIS. Table 7.1 gives a synthetic comparison between these proposals and ours. The table focuses on (1) covering all the time events in BPMN, considering their categories, and (2) showing how these works support the presentation of time patterns. As far as the BPMN coverage criteria are concerned, we can observe that we are among the approaches with high coverage. A few studies address the evaluation of BPMN expressiveness with respect to its modelling elements, and most of them extend the notation in order to enhance the support of the standard towards time management constraints [99,116,119,142,143,[START_REF] Morales | AA Formalization Proposal of Timed BPMN for Compositional Verification of Business Processes[END_REF]. As highlighted in Table 7.1, most of the existing works treat time duration for activities extending BPMN by: (1) defining a non-deterministic delay for a task [116] and [99] or, (2) representing a fixed duration a specified as an [a, a] interval [81]. However, BPMN gives the possibility to represent a duration for activity using its own elements, without any extensions (see Chapter 5). In addition, and to the best of our knowledge, no work in the literature allows one to specify the semantics for the different types of time information (i.e., timeDate, timeCycle, timeDuration) associated with BPMN time-related events. In this thesis, we cover the defined set of BPMN timer events in their full generality. As an example, consider the timer boundary event with cycle type. BPMN defines the cycle type with reference to ISO standard definition, where the ISO cycle type definition represents a complex construct which may be a repetition based on a duration until date or a repetition defined by a starting date and a period, or others (Table 5.2). To the best of our knowledge, most papers do not support all the variations of this construct (see Table 7.2).

However, some works [START_REF]BPMN 2.0 Symbol Reference[END_REF], limited by the absence of a formalization, propose a simplified version of these events, e.g. every 10 minutes (a repetition on a defined period). Note that, even if the work in [START_REF] Lanz | Process Time Patterns: A Formal Foundation[END_REF] provides a very rich formal semantics for time-related process patterns in terms of temporal execution trace, it is given for PAIS systems in general and does not address their semantics with reference to the semantics of the BPMN time constructs. In addition, the proposed semantics does not enable the verification and does not show their coverage w.r.t. standard BPMN elements. Table 7.2: Comparison between Approaches Supporting BPMN Time-Constructs.

• Data constructs support. To deal with data, a direct (and usual) solution is to extend the notion of state with a substitution from variables to values, indexed by process types or process identifiers in case of multi-instance support. This is similar to what we did for the communication medium (the "substitution" in this case being limited to a single variable, mnet) and also on a recent work on adding space information to BPMN [205]. However, the treatment for unbound data (e.g., if one wants to verify a process, whatever the initialization of the data objects is, or with data stores whose content is unknown) is much more complicated. This could be tackled using approaches based on symbolic verification [173,[START_REF] Huu Nghia Nguyen | A Symbolic Framework for the Conformance Checking of Value-Passing Choreographies[END_REF][START_REF] Li | VERIFAS: A Practical Verifier for Artifact Systems[END_REF][START_REF] Calvanese | Formal Modeling and SMT-Based Parameterized Verification of Data-Aware BPMN[END_REF][START_REF] Ghilardi | Petri Nets with Parameterised Data-Modelling and Verification[END_REF].

• Multi-instance support. BPMN multi-instance constructs for processes (pool lanes) and activities (subprocesses and tasks). Supporting these constructs requires an extended format for the tokens to carry process identifiers types with possible specific indexed structures and the support of data constructs. This would be reflected in the semantic rules for the BPMN constructs and adds a degree to the complexity of the semantics. Some approaches that may be taken as references to deal with data, multi-instance activities and multi-instance pool lanes are [71,138].

Moreover, we identified some issues while experimenting timed-BPMN semantics with Alloy implementation:

• Automated time tool support. The main problem with dealing with time is fundamental. This applies as well to BPMN. With time, the state space explodes naturally. Alloy cannot handle this without any form of abstraction. Yet, one still has to find a better representation of time steps in it in order to make automated verification amenable.

• Analysis results. We have noticed two difficulties using the Alloy Analyser as a verification tool:

(1) estimate the length of traces necessary to validate a property; (2) inefficiency (difficulty to exceed twenty states). This second difficulty is the one that makes Alloy unsuitable for checking properties with time, except for small examples. Alloy is better suited for checking structural properties for dynamic ones. Therefore, we plan to study the use of other formalisms like Why3 or SMT which benefit from a symbolic representation and a high level of abstraction or formalisms like Timed Automata and Time(d) Petri nets which benefit from a strong community that focuses on analysing such models and study methods to mitigate the state space explosion explicitly.

Finally, some ideas for the improvement of the fbpmn tool would be addressed:

• Properties. The properties whose verification is supported by fbpmn tool-suite are generic ones and do not consider time aspects, but for classic time properties such as execution time (min, max).

We expect to extend the support to other time properties such as execution times average, waiting times, or synchronisation times.

• More experiments. To verify the BPMN models using the Alloy Analyser, we have chosen the default solver, Minisat, which is suitable used for small problems only. It would be useful to perform the analyses with Berkmin, which seems better for larger problems. On the other hand, during this thesis, we tested the effectiveness of our tool in terms of capacity and execution time. However, we were unable to measure the actual impact of the tool from the perspective of a user in charge of specifying and verifying a business process model. We want to integrate our tool as a plug-in in more general-purpose platforms for business processes, such as Apromore [137] or ProM [66], to expand its use and have feedbacks for improvement.

• Pattern support. The objective here is to strengthen the seven timed process pattern integration as a reference in BPMN process modelling tools. We plan to extend on a tool with the formal support of these patterns in the form of a set of rules walk-through that give confidence that they are practically applicable.

Figure 1 . 1 :

 11 Figure 1.1: The PAIS Lifecycle. (from source figure [9])

Q1:

 Does the correctness of BPMN collaboration diagrams depend on the used communication models? Q2: How to precisely describe the formal semantics of BPMN collaboration diagrams taking into account different communication models? Q3: How to formalise the execution semantics of the BPMN time constructs, including their relation to the ISO-8601 standard format? Q4: What are the time process patterns supported by the BPMN standard, and does our semantics support all of them? Q5: How to verify such formal models?, which are the properties of interest?, and can a formal semantics of the BPMN collaborations drive the development of software tools based on BPMN collaboration diagrams?

Figure 2 . 1 :

 21 Figure 2.1: BPM Lifecycle According to Weske. (from source figure [8])

Figure 2 . 2 :

 22 Figure 2.2: BPM Lifecycle. (from source figure [1])

Figure 2 . 3 :

 23 Figure 2.3: BPMN Pool.

Figure 2 . 4 :

 24 Figure 2.4: Considered BPMN Events.

Figure 2 . 5 :

 25 Figure 2.5: Considered BPMN Activities.

Figure 2 . 6 :

 26 Figure 2.6: Considered BPMN Gateways.

3 .

 3 Connecting Objects are used to connect flow objects to each other or to the artefacts. BPMN defines three main kinds: Sequence flow, Message flow, or an Association flow (Figure 2.7).

Figure 2 . 7 :

 27 Figure 2.7: BPMN Connecting objects.

Figure 2 .

 2 Figure 2.8 shows the collaboration diagram of the booking travel procedure. The collaboration starts when the Customer sends a request for an offer to the Travel agency.

1 <bpmn: 3 <bpmn

 13 sendTask id="Task1bn6n5q" name="Make Travel Offer" 2 bpmn:expression="Offre=true" bpmn:resultVariable="Offer"> id="SendTask0bw2qnzdi" bpmnElement="Task1bn6n5q"> 7 <dc:Bounds x="340" y="500" width="100" height="80" /> 8 </bpmndi:BPMNShape> Listing 2.1: Make Travel Offer XML Fragment using Camunda ModellerIn our work, we use the BPMN XML representation for parsing the diagrams and generating the

Figure 2 . 9 :

 29 Figure 2.9: Paper Reviewing Case Study.

Figure 2 . 10 :

 210 Figure 2.10: Approver Order Process. (extended from source figure [24]).

Figure 2 . 11 :

 211 Figure 2.11: Refined Activity Lifecycle. (from source figure [3])

Figure 2 . 12 :

 212 Figure 2.12: Process Instance of PC Chair Notification Process.

Definition 2 . 4 . 1 .

 241 (Signature) A vocabulary σ = (V, O, ar) comprises a non-empty set of variables V, a non-logical operator symbols O = P ∪ F contains a countable set P of predicate symbols and a countable set F of function symbols, and function ar associates to each symbol in O a non-negative integer.Note: A function symbol of arity zero is called constant symbol. A predicate symbol of arity zero is called proposition. Based on the vocabulary defined above, we now give the rules to build what we call a strict formula. To simplify the definition of formulas, we define the notion of σ-Terms: Definition 2.4.2. (σ -T erm) Given a certain fixed vocabulary σ. A σ-Term is a finite syntactic object:

Definition 2 . 4 . 7 .

 247 (Operators priority order) The priority of the different operators is given in decreasing priority order: negation (¬), conjunction (∧), disjunction (∨), implication (=⇒), and equivalence (⇐⇒). For equal priority, the left operator has a higher priority, except for the implication which is right associative (i.e., a =⇒ b =⇒ c = (a =⇒ (b =⇒ c))).

Definition 2 .

 2 4.11. (Conjunctive Normal form) A conjunctive normal form (CNF) formula is a finite conjunction of two or more clauses φ = n i=1 ψ i , where ψ = k j=1 l j is a clause, and n ∈ N. A CNF formula is possibly preceded by a quantifier prefix. A formula in CNF is Horn if every clause contains at most one non-negated literal. It is Krom if every clause contains at most two literals. Definition 2.4.12. (Disjunctive Normal form) A disjunctive normal form (DNF) formula is a finite disjunction of two or more cubes φ = n i=1 ψ i , where ψ = k j=1 l j is cube, and n ∈ N.

Definition 2 . 4 . 13 .

 2413 (σ-structure) Let σ = (V, O, ar) be a vocabulary, a σ-structure (or assignment, or a model) A = (U A , α, I) consists of:• U A , a non-empty set called universe of the structure (domain). The domain U A contains two fixed truth values, true and false, noted here by B = {⊤, ⊥};

Figure 2 . 14 :

 214 Figure 2.14: An Excerpt of TLA Syntax (figure taken from [17]).

Facts.

 Is a formula used to specify constraints properties on the model elements that should always hold in instances of the Alloy module in which they are declared. It can be considered as an assumption. The fact declaration starts with the keyword fact followed optionally by a name and a block containing a boolean-valued Alloy expression. The fact declaration form is as follows: 1190 fact ::= fact [params-name] [type-params] formula-seq

 predDecl ::= pred [this arg] param name [type params] [paraDecls] block funDecl ::= fun [this arg] para name [type params] [paraDecls]: expr expr thisarg ::= sig . | sig :: paraDecls ::= (decl,*) | [decl,*]

 check ::= check [param name] [scope] [excluded] [expect number] scope ::= for [number but] typescope, . . . typescope ::= number (sig | int) excluded ::= without global, . . . global ::= facts | constraints | param name • run command used to check a given predicate and find an instance of a function. It generates a sample of instances in which the predicate holds. run ::= run param name [scope] [excluded] [expect number]

3. 3 45 3. 3 . 1 46 3. 3 . 2 50 3. 3 . 4 51 3. 3 . 5

 34531463250345135 Papers Overview . Approaches based on Petri Nets . Approaches based on Automata Theory 48 3.3.3 Approaches based on Process Algebras Approaches based on Logic Formulas . Approach based on a Programming Language 53 3.4 Discussion . 56 3.5 Summary . 61

 Figure 3.1 gives an overview of the number of papers after each step of the article selection.

Figure 3 . 1 :

 31 Figure 3.1: Article Selection Process.

Figure 3 . 2 :

 32 Figure 3.2: Distribution of Selected Papers per Published Year (2008-2021).

 . The BPMN standard supports two different correlation types: keybased and context-based correlation mechanisms. The authors discuss several correlation mechanisms by considering combinations of basic ones: singleton/any correlation, key/context-based correlation and case-based correlation. For the verification of the k-soundness property, the authors implement a search function in CPN Tools. They provide a compiler, called fcm2cpn [93], for automatic translating process fragments to CPN tools compatible to Petri nets.

 Dead Task, Proper completion, No OR-join, and Soundness

× 161] 162]×× 93] 164]× 169] 171] 172] 174]

 16116293164169171172174 Supporting the analysis of temporal business properties and rules in BPMN diagrams based on their associated BP-task static syntax checks and semantics execution analysis (interactive model animation, trace simulation, and ✓ ✓ ✓ properties verification) with OBP technology. Formalising and visual debugging of BPMN models based on graph transformation rules. the verification of complex collaborative business processes models with data flow, control flow, multiple × ✓ × instances, and exception handling addressed using meta-modelling between BPMN and RECATNET. Deployment and analysis of BPMN models with YAWL workflow language and its verification tools. Analytical performance evaluation of business process models with SAN models. Performing quantitative probabilistic model checking of BPMN process diagrams. Performing the verification of structured and unstructured BPMN models in control flow and data flow contexts based on Performing the translating of BPMN process fragments to CPN CSP[START_REF] Wong | machine-readable CSP[END_REF] Formally analyse and compare BPMN diagrams. Adaptation of an unfolding exploration technique to support BPMN verification based on Java models. Formalising and verifying the behavioural and temporal aspects of BPMN models extends with temporal constructs. Support a formal verification of BPMN collaboration diagrams. Animating BPMN models in collaborative, multi-instance and data-based contexts Conformance checking of collaborations w.r.t. choreographies Verifying BPMN collaboration diagrams in message exchange and/or sub-processes context Checking properties of BPMN business process diagrams using the model checker CADP. real-time analysis (measures of execution time (minimum, maximum, average) or the degree of parallelism) Verification of stochastic properties on BPMN models extended with probabilistic specification of time and branching constructs. × Verification technique for identifying, optimising, analysing the allocation of resources in business processes. Symbolic analysis and verification of business process models with data support. the formalisation and verification of business process models based on meta-modelling and model transformation × ✓ × approach to avoid state number explosion and correctness validation of the transformation.

 BPMN 2.0 objects [64] [69] [101, 102] [97, 98] [111] [71] [86] [94-96] [100] [120, 121] [89] [92] [114] [155] [119] [131-133] [138] [141] [139] [109] [142] [143] [144, 145] [173] [152, 156] [149]

•

 process model with a security • Lack of OR-Join semantics support • Despite supporting communication using the intermediate message event and Promela basic building blocks are asynchronous processes with synchronous message channels. Still, no details about the communication management nor the formalisation of it is given• Difficulties with unbounded model support for the verification• Conflict on the soundness property definition with the one given at scale of business process[START_REF] Morales | Business Process Verification Using a Formal Compositional Approach and Timed Automata[END_REF][START_REF] Mendoza | Business Process Verification: The Application of Model Checking and Timed Automata[END_REF]] TA• The approach does not explicitly express. No details about the semantics of the supported set of BPMN elements• The author uses synchronous communication between the processes due to the use of TA as a formal language. Still, there is no explicit formalisation nor explication for the message exchange management, the collaborative participants, and the impact of this mode of communication on the verification • Formal representation of timing requirement is given in the work without any focus on the central semantics of the timer events and their types regarding ISO standard definitions [97, 98] KS • It supports a small subset of BPMN elements reduced to the control flow elements • It gives a local semantics for the OR-join gateway • It does not respect the standard definition semantics, e.g., the message intermediate events are treated as a none task • It does not support the communication nor the timer events • It focuses on generic properties of verification and ignores the different properties that have been defined in the context of business processes[111] GPSL → PSC → BA • It supports the interaction BPMN elements without any explicit formalisation for the communication • It applies three phases of model transformation without any proof that guarantees the passage from the input BPMN model to the last BA model without losing the basic concepts • According to the authors, the approach suffers from the limitation of the introduced graphical language PSC for describing properties • No support for the BP correctness properties • Lack of OR-Join semantics and the subprocess support [71] In-place Graph → PN • It does not provide express semantics for the communication elements • Lack of OR-Join semantics support • Lack of the timer events support • It Does not allow to apply verification techniques [86] RECATNets → MAUDE • It does not provide express semantics for the interaction elements and the their communication management • It covers the intermediate timer event elements without providing any notion of time nor supporting the ISO standard definitions • Lack of OR-Join semantics support • It does not address the business process correctness properties (safeness and soundness) [94-96] YAWL • Approach based on the version 1.1 of BPMN • Lack of OR-Join semantics support • Lack of collaboration support due to the no equivalents in the YAWL notation for the pools, lanes notations, e.g., who are the participants involved in the exchange of messages • Lack of timer event support with reference to ISO standard [100] SAN • Lack of collaboration models support • Lack of OR-Join semantics support • Lack of unbalanced workflows support • Small subset of supported BPMN elements • Extended all supported BPMN element with an average execution time and probabilities • It does not address the time semantics for the BPMN timer elements, but the performance evaluation of service time, waiting time, queue size, and resource utilisations and how the system workload may impact them • It does not address the verification of the BP correctness properties but improves the BP by identifying inefficiencies, such as bottlenecks and idle resources [120, 121] MDP → PRISM • Supports a small subset of BPMN elements extended with probabilities • Lack of inclusive and event-based gateway support • It allows the modelling of the communication elements using send and receive tasks and maps the collaborative processes to a set of synchronised modules due to the use of synchronous PRISM actions, but it does not address the impact of the synchronisation uses w.r.t the BP correctness • It does not support the timer events • It Does not address the qualitative correctness properties, but the quantitative ones [89] CPN • Lack of OR-Join semantics support • Lack of timer event semantics support • Refinement limitations regarding the deleting and adding CPN place and transition in a model • It does not support the unstructured BPMN models• According to the authors, data and control flow in the CPN model are passed along in the same arc. There is the potential for the copies of the same data to perform the same task (parallel execution). Thus, the designer should modify the task logic to choose the correct data version.• State-space generator is not sufficient for verifying the model that has a variety of the variables in a large design model • It does not address the BP correctness properties but is interested in finding Petri net properties (deadlocks and livelocks) [92] CPN • It supports a small subset of BPMN elements, mainly elements using data • It does not address the collaboration nor the time perspectives • It supports compliance verification which does not aim to prove the correctness of the business process itself but merely whether it adheres to a set of rules [114] CSP • Approach based on the version 1.1 of BPMN • Pi-calculus which is used for the formalisation is complex to understand • Lack of OR-Join semantics support • CSP language based on synchronous communication channels, Still, there is no details about the its impact on the correctness properties verification • It is based on the ILOG JViews BPMN Modeler which is not anymore available • It does not address the time perspective • They focus on the verification of the consistency checking, performed by using the FDR tool Extended the BPMN models with time notation, e.g., associate a time interval min and max duration for each activity • Lack of the event-based gateway semantic support • Lack of the timer intermediate event semantic support, only the duration time notion that is supported • It is evaluated only on a one study case • The authors support only the asynchronous communication mode for the message exchanges [155] JAVA code

[109]

 109 PIF → LNT → LTS • It supports a small subset of BPMN elements • Lack of communication, time event, and data element support • Lack of the OR-Join semantics support • It unlikely the BPMN semantic is respected through the multiple transformations • It does not address the BP correctness properties [142] RL • Supports a small subset of BPMN elements enriched with time features (e.g., timeouts for tasks and delays for branching sequence flows in gateways) to treat the time constraints, and they did not stick to the actual behaviours defined in the standard • Lack of the OR-Join and the event based gateway semantics support • Lack of communication, time event, and data element support • It does not address the verification of the BP correctness properties [143] Probabilistic RL • Supports a small subset of BPMN elements enriched with stochastic expressions for specifying the time and probabilistic branching • Lack of the OR-Join and the event-based gateway semantics support • Lack of communication, time event, and data element support • It does not address the verification of the BP correctness but the quantitative performance • The probabilistic model removes relationships of activity that have small occurrences in its BP model [144, 145] RL

Figure 4 .Figure 4 . 1 :

 441 Figure 4.1 reports the set of BPMN elements supported in this work. In addition, it highlights the syntax defining the textual notation types of BPMN collaboration models. Types of these elements are based on the following disjoint sets:

 returns the type of an edge, cat E (e) def ≡ {t ∈ T Edges | ∀e ∈ E} • source : E → N , returns the source of an edge, source(e) def ≡ {n ∈ N | e = (n, v), ∀v ∈ N } • target : E → N , returns the target of an edge, target(e) def ≡ {v ∈ N | e = (n, v), ∀n ∈ N }

 2140• (C1) No incoming sequence flow edges for start events:∀n ∈ N, cat N (n) ∈ SE =⇒ intype(n, SF) = ∅ • (C2)No outgoing sequence flow edges for end events:∀n ∈ N, cat N (n) ∈ EE =⇒ outtype(n, SF) = ∅ • (C3) A sub-process contains exactly one None Start Event and no other start event types: ∀n ∈ N SP , |R(n) ∩ {nn ∈ N, cat N (nn) = N SE}| = 1 ∧R(n) ∩ {nn ∈ N, CatN (nn) ∈ {M SE}} = ∅

 ∀n ∈ N cat N (n) = EB =⇒ (∀e ∈ outtype(n, SF), cat N (target(e)) ∈ {CM IE, RT, T ICE}) ∧ ({e ∈ outtype(n, SF) | cat N (target(e)) = RT } = ∅) ∨ ({e ∈ outtype(n, SF) | cat N (target(e)) = CM IE} = ∅) • (C16) Message flows connect the throwing elements (send task, message end event, throw message intermediate event) with catching elements (receive task, message start event, catch message intermediate event, message boundary intermediate event): ∀e ∈ E, cat E (e) ∈ M F =⇒ cat N (source(e)) ∈ {ST, M EE, T M IE} ∧ cat N (target(e)) ∈ {RT, M SE, CM IE, M BE} • (C17) Message catching elements must have at least one incoming message flow edge: ∀n ∈ N, cat N (n) ∈ {RT, M SE, CM IE, M BE} =⇒ |intype(n, M F)| ≥ 1 • (C18) Message throwing elements must have at least one outgoing message flow edge:

•

 head: Seq[T] → T : returns the head of a sequence • tail: Seq[T] → Seq[T] : returns the tail of a sequence • append: Seq[T] × T → Seq[T] : appends an element at the end of a sequence • ⊕, ⊖: Bag[T] × Bag[T] → Bag[T] : union and difference of bags • Bag is a multiset of messages. Formally: bag def ≡ Bag[N P × N P × M]

 2 and Figure 4.3 as example).

Figure 4 . 2 :

 42 Figure 4.2: A Non-FIFO Pair Execution. The sending of the theoretical research precedes the sending of the program description. Then program description is received before the theoretical research message, thus the model execution is not FIFO-Pair.

Figure 4 . 3 :

 43 Figure 4.3: A FIFO-Pair Execution. The sending of the theoretical research and the program description are received on different processes, so the execution is FIFO-Pair anyway.

Figure 4 .

 4 5 and Figure 4.4 as an example).

Figure 4 . 4 :

 44 Figure 4.4: A FIFO-Inbox Execution. The sending of proposal message precedes the executable, and the associated receptions that occur on the same process director happen in the same order.

Figure 4 . 5 :

 45 Figure 4.5: A Non-FIFO Inbox Execution. The execution is not be FIFO inbox because the sending of proposal message precedes the executable, and the associated receptions that occur on the same process director happen in the reverse order.

Figure 4 .

 4 6 and Figure 4.7 as example).

Figure 4 . 6 :

 46 Figure 4.6: A FIFO Outbox Execution. The sending of program description is sent before the theoretical research, both by Scientist process, and the associated receptions occur in this order.

Figure 4 . 7 :

 47 Figure 4.7: A Non FIFO Outbox Execution. The execution is not be FIFO outbox because even the receptions occur on different processes, the receive event of program description occurred before the receive event of theoretical research.

Figure 4 . 8 :

 48 Figure 4.8: A Non-Causal Execution. The sending of the proposal causally precedes the sending of the description which causally precedes the sending of the quote. Then the quote cannot be consumed before the proposal on the client in the causal communication model.

Figure 4 . 9 :

 49 Figure 4.9: A Non-RSC Execution. The sending of the code message is occurred precedes the reception of the proposal message. Two messages must not be in transit at the same time.

Table 4 . 3 :

 43 Encoding of the Communication Models in First-Order Logic. rom, to, m) def ≡ mnet ′ = mnet ⊕ {⟨f rom, to, m⟩} receive(f rom, to, m) def ≡ ⟨f rom, to, m⟩ ∈ mnet ∧ mnet ′ = mnet ⊖ {⟨f rom, to, m⟩} Fifo Pair

 rom, to, m) def ≡ mnet ′ = append(mnet, ⟨f rom, to, m⟩) receive(f rom, to, m) def ≡ ⟨f rom, to, m⟩ = head(mnet) ∧ mnet ′ = tail(mnet)

1 Figure 4 . 10 :

 1410 Figure 4.10: Completing Behaviour of a None Start Event. Before (left) and after (right) application of the Ct rule.

1 Figure 4 . 11 :

 1411 Figure 4.11: Completing Behaviour of a Message Start Event. Before (left) and after (right) application of the Ct rule.

 SF), (me(e) ≥ 1) ∧ (me ′ (e) = me(e) -1) ∧ (mn ′ (n) = mn(n) + 1) ∧ △({n, e}) ∧ Xi Example.

Figure 4 .

 4 12 presents the execution semantics of an end node (nee). The left-hand side of the figure shows the enabling of the nee by the presence of a token on its incoming edge (e2). The right-hand side of the figure shows the starting behaviour. It consumes the token from e2 and generates a token on 2290 it.

Figure 4 . 12 :

 412 Figure 4.12: Starting Behaviour of None End Event. Before (left) and after (right) application of the St rule.

1 Figure 4 . 13 :

 1413 Figure 4.13: Starting Behaviour of a Terminate End Event. Before (left) and after (right) application of the St rule.An M EE node is defined only by a starting predicate. It is enabled to start if it has a token on

Figure 4 . 1 Figure 4 . 14 :

 41414 Figure 4.14: Starting Behaviour of a Message End Event. Before (left) and after (right) application of the St rule.

Figure 4 . 1 Figure 4 . 15 :

 41415 Figure 4.15: Starting Behaviour of an Abstract Task activity. Before (left) and after (right) application of the St rule.

Figure 4 .

 4 Figure 4.16 shows its completing behaviour. It consumes the token from itself and generates one on its outgoing edge e2.

1 Figure 4 . 16 :

 1416 Figure 4.16: Completing Behaviour of an Abstract Task Activity. Before (left) and after (right) application of the Ct rule.

Figure 4 . 17 :

 417 Figure 4.17: Starting Behaviour of a subprocess Activity. Before (left) and after (right) application of the St rule.

Figure 4

 4 Figure 4.18 shows that even if there is a token on one of the end events, here nee3, the subprocess can not execute its completing transition: to complete, SP must wait until the token on e5 has given place to one on nee1.

Figure 4 . 18 :

 418 Figure 4.18: A Sub-Process Activity not Ready to Complete: a token is still present on one of its edges.

 2320

Figure 4 . 1 m1Figure 4 . 19 :

 41419 Figure 4.19: Starting Behaviour of a Send Task Activity. Before (left) and after (right) application of the St rule.Figure 4.20 shows the completing behaviour, task completes by consuming one token from it and by

Figure 4 . 1 Figure 4 . 20 :

 41420 Figure 4.19: Starting Behaviour of a Send Task Activity. Before (left) and after (right) application of the St rule.Figure 4.20 shows the completing behaviour, task completes by consuming one token from it and by

1 m1Figure 4 . 21 :

 1421 Figure 4.21: Completing Behaviour of a Receive Task Activity. Before (left) and after (right) application of the Ct rule.

Figure 4 .

 4 [START_REF] Lyle | Petri net theory and the modeling of systems[END_REF] shows the starting behaviour of a throw message intermediate event (Send Notif.).

1 Figure 4 . 22 :

 1422 Figure 4.22: Starting Behaviour of a Throw Message Intermediate Event. Before (left) and after (right) application of the St rule.

Figure 4 . 23 :

 423 Figure 4.23: Starting Behaviour of a Catching Message Intermediate Event. Before (left) and after (right) application of the St rule.

1 Figure 4 . 24 :

 1424 Figure 4.24: Starting Behaviour of an Interrupting Message Boundary Event (task case). Before (left) and after (right) application of the St rule.

Figure 4 .Figure 4 . 25 :

 4425 Figure 4.25 shows an interrupting boundary event interrupt attached to a sub-process SP . The interrupt event interrupts the execution of SP when it receives a message m1. It cancels the execution of the sub-process by removing all its token (the token on it and the token on node nse1), and generates a token on its outgoing sequence flow edge, e4.

Figure 4 .

 4 [START_REF] Papadimitriou | Computational Complexity[END_REF] shows that the parallel gateway AN D1 completes by consuming a token from its 2375 incoming edge (e1) and producing a token on all its outgoing edges (e2 and e3).

1 Figure 4 . 26 :

 1426 Figure 4.26: Completing Behaviour of a Splitting Parallel Gateway. Before (left) and after (right) application of the Ct rule.

1 Figure 4 . 27 :

 1427 Figure 4.27: Completing Behaviour of a Merging Parallel Gateway. Before (left) and after (right) application of the Ct rule.

1 Figure 4 . 28 :

 1428 Figure 4.28: Completing Behaviour of an Exclusive Gateway. Before (left) and after (right) application of the Ct rule.

Figure 4 .

 4 [START_REF] Ebbinghaus | Mathematical Logic[END_REF] shows a process that contains an event-based gateway (EBG), and two receive tasks (Rec.1 and Rec.2). The left-hand side of the figure shows that the event-based gateway is enabled

Figure 4 . 30 :Figure 4 . 29 :

 430429 Figure 4.30: Semantics of Inclusive Gateway According to the BPMN 2.0 Standard. (from source text [3])

1 ORFigure 4 . 31 :

 1431 Figure 4.31: Non Activable Inclusive Gateway. It has to wait for the token on e2 which is in P re E (OR, e6) and P re E (OR, e7).

Figure 4 . 32 :

 432 Figure 4.32: Use of Strong Fairness to Avoid Infinite Loops (left) and Starvation (right).

Figure 4 . 33 :

 433 Figure 4.33: BPMN Diagram with Deadlock.

Definition 4 . 5 . 3 (Definition 4 . 5 . 5 (1) 4 . 5 . 6 (Definition 4 . 5 . 7 (

 4534551456457 No dead activities). An activity is dead if no execution activates it. N oDeadActivities def ≡ ∀a ∈ N A , ∃σ ∈ Exec, ∃i ∈ domain(σ), σ[i].mn(a) ̸ = 0 Definition 4.5.4 (Undelivered messages). No messages are left in transit.N oU ndeliveredM essagesdef ≡ ∀σ ∈ Exec, ∃i ∈ domain(σ), ∀j ∈ domain(sigma), j ≥ i =⇒ ∀e ∈ M F, σ[j].me(e) = 0 Safe process). A process is safe if and only if all its sequence flow edges never hold more than one token during their execution. For p ∈ N, cat N (p) = P, Saf eP r(p) def ≡ ∀σ ∈ Exec, ∀i ∈ domain(σ), ∀e ∈ R(p) ∩ E, (σ[i].me(e) ≤ Definition Safe Collaboration). A collaboration is safe all its processes are safe. Saf e def ≡ ∀p ∈ N, cat N (p) = P, Saf eP r(p) Process soundness).

Figure 4 . 34 :

 434 Figure 4.34: Travel Agency Case Study. (Slightly adapted from an example in [23])

Figure 4 . 35 :

 435 Figure 4.35: Client/Worker Case Study.

Figure 4 . 36 :

 436 Figure 4.36: Journal chair Process (Sound).

Figure 4 . 37 :

 437 Figure 4.37: Journal chair Process (UNSound).

Figure 4 . 38 :

 438 Figure 4.38: Timer Boundary Event with an Impossible Timeout. As the timeout on task1 is later than the date imposed by the timer intermediate catch event, this timeout should never fire and task2 should never be activated.

 -mm-ddThh:mm:ssZ / yyyy-mm-ddThh:mm:ssZ

2625•

 The set of starting event types, SE = {N SE, M SE} ∪ T SE • The set of intermediate event types, IE = {CM IE, T M IE} ∪ T ICE • The set of boundary event types, BE = {M BE} ∪ T BEIn this chapter, we consider the two sets of basic elements types, T N odes and T Edges , taking into account the updated sets SE, IE, and BE.

 2630

 associates a time category and a value to the timer nodes. Notation. To denote the projection of the function f time on a component of its co-domain, we use the notation ⇂ Ctime (resp. ⇂ timeV al): for example, if f time(n) = (T, V), where T ∈ Ctime and V ∈ timeV al, then f time(n) ⇂ Ctime = T , and f time(n) ⇂ timeV al = V . Besides, when f time(n) ⇂ Ctime = T cycle , then f time(n) ⇂ timeV al = (r, d, p), with (r, d, p) ∈ Cycle. The projections ⇂ timeV al R , ⇂ timeV al P , and ⇂ timeV al D give each element, with f time(n) ⇂ timeV al R = r, f time(n) ⇂ timeV al D = d and f time(n) ⇂ timeV al P = p.

Figure 5 . 1 :

 51 Figure 5.1: Completing Behaviour of a Timer Start Event (Date). Before (left) and after (right) application of the Ct rule.

Figure 5 .

 5 2 shows the completing behaviour of a timer intermediate catching event (W ait) with dateTime configuration to (2021 -04 -16 T 00 : 00 : 00 Z). The left part of the figure shows that W ait is enabled to complete: it has a token on its incoming edge (e2), and the global clock of the diagram meets the fixed date defined on it. The right part of the figure shows that W ait completes by removing a token from its incoming edge (e2), producing a token on its outgoing sequence flow edge (e3).

Figure 5 . 2 :

 52 Figure 5.2: Starting Behaviour of a Timer Intermediate Catch Event (Date). Before (left) and after (right) application of the Ct rule.

 SF), (me(e) = 1) ∧ (me ′ (e) = me(e) -1) ∧ ∀e ′ ∈ outtype(n, SF), (me ′ (e ′) = me(e ′) + 1) ∧ △ ({e} ∪ outtype(n, SF)) ∧ △ t ({n}) ∧ Ξ (5.5) Example.Figure 5.3 shows the completing behaviour of a timer intermediate catching event (W ait) with a duration configuration set to P 10D (10 days). The left part of the figure shows that W ait is enabled to complete: it has a token on its incoming edge (e2), and its clock meets the deadline of 10 days from its activation (864000). The right part of the figure shows that (W ait) completes by removing one token from its incoming edge (e2), producing a token on its outgoing sequence flow edge (e3), and resetting its local clock.

Figure 5 . 3 :

 53 Figure 5.3: Completing Behaviour of a Timer Intermediate Catch Event (Duration). Before (left) and after (right) application of the Ct rule.

Figure 5 .

 5 4 shows the starting behaviour of an interrupting timer boundary event (Interrupt) with Date configuration to (2021 -04 -16 T 00 : 00 : 00 Z). The left part of the figure shows that Interrupt is enabled to start: the activity it is attached to is active (task1), and the global clock of the diagram meets the fixed date defined on it (2021 -04 -16 T 00 : 00 : 00 Z). The right part of the figure shows that Interrupt completes by dropping the token of the task1 and producing a token on its outgoing sequence flow edge (e3).

Figure 5 . 4 :

 54 Figure 5.4: Starting Behaviour of an Interrupting Timer Boundary Event (Date). Before (left) and after (right) application of the St rule.

Figure 5 . 5 :

 55 Figure 5.5: Starting Behaviour of an Interrupting Timer Boundary Event (Duration). Before (left) and after (right) application of the St rule.

 Figure 5.6 shows the starting behaviour of a non-interrupting timer boundary event (N on -Interrupt) with dateTime configuration to (2021 -04 -16 T 00 : 00 : 00 Z). The left part of the figure shows that N on -Interrupt is enabled to start: the activity it is attached to is active (task1), and the global clock of the diagram meets the fixed date defined on it (2021 -04 -16 T 00 : 00 : 00 Z). The right part of the figure shows that N on -Interrupt completes by producing a token on its outgoing sequence flow edge (e3).

Figure 5 . 6 :

 56 Figure 5.6: Starting Behaviour of a Non-Interrupting Timer Boundary Event (Duration). Before (left) and After (right) application of the St rule.

Figure 5 . 7 :

 57 Figure 5.7: Starting Behaviour of a Non-Interrupting Timer Boundary Event (Duration). Before (left) and after (right) application of the St rule.

 1) ∧ (∀ee ∈ outtype(n, SF), (me ′ (ee) = me(ee) + 1)) ∧ △ (outtype(n, SF)) ∧ △ t ({n}) ∧ Ξ) (5.10) Example. Figure 5.8 shows the starting behaviour of a bounded Non-interrupting timer boundary event (non -InterruptC) with a two cycles configuration that starts at 2021 -04 -16T00 : 00 : 00 and reexecutes for each period of 10 days (P 10D). The left part of the figure shows that N on -InterruptC is enabled to start: the activity that it is attached to it is active (task1), the global clock meets the starting date, its local clock is inactive, and the recurrence number is as defined equal to 2. The right part of the figure shows that non -Interrupt starts by producing a token on its outgoing sequence flow edge (e3), activating its local clock, and decrementing the recurrence number by one.

Figure 5 . 8 :

 58 Figure 5.8: Starting Behaviour of a Non-Interrupting Timer Boundary Event (Cycle) with a Fixed Start TimeDate and Duration. Before (left) and after (right) the first application of the St rule.

Figure 5 . 9 :

 59 Figure 5.9: Competing Behaviour of a non-Interrupting Timer Boundary Event (Cycle) with a Fixed Start TimeDate and Duration. Before (left) and after (right) application of the Ct rule.

Figure 5 . 10 :

 510 Figure 5.10: Staring behaviour of a Non-Interrupting Timer Boundary Event (Cycle) with a Duration and a Fixed Last TimeDate. Before (left) and after (right) application of the St rule.

 1)∧ (∀ee ∈ outtype(n, SF), (me ′ (ee) = me(ee) + 1)) ∧ △ (outtype(n, SF)) ∧ △ t ({n}) ∧ Ξ)(5.13) Example. Figure5.11 shows the starting behaviour of a bounded non-interrupting timer boundary event (non -InterruptC) with a two cycles configuration that may re-execute twice for each period of 10 days (P 10D). The left part of the figure shows that non -InterruptC is enabled to start: the activity it is attached to is active (task1), its local clock meets the deadline of 10 days from its activation (864000), and the recurrence number is greater than 0. The right part of the figure shows that (non -InterruptC) starts by producing a token on its outgoing sequence flow edge (e3), re-activating its local clock.

Figure 5 . 11 :

 511 Figure 5.11: Staring Behaviour of a Non-Interrupting Timer Boundary Event (Cycle) with a Duration. Before (left) and after (right) application of the St rule.

Figure 5 . 12 :

 512 Figure 5.12: Completing Behaviour of an Event-Based Gateway: the Timer is Ready to Fire. Before (left) and after (right) application of the Ct rule.

≡

 (cat N (n) = RT) ∧ (∃e ∈ intype(n, SF), (me(e) ≥ 1) ∧ (me ′ (e) = me(e) -1)

Figure 5 . 13 :

 513 Figure 5.13: Staring Behaviour of an Activity with Interrupting Boundary Timer Event Configured with Duration: Before (left) task1 and SP are ready to start and after (right) application of the StActivity rule twice (once for task1, once for SP .

Figure 5 . 14 :

 514 Figure 5.14: Completing Behaviour of an Activity with Interrupting Boundary Timer Event Configured with Duration: Before (left) task1 and SP are ready to complete and after (right) application of the Ct rule (twice again).

Definition 5 . 3 . 3 (

 533 Transition Relation). The transition relation is a successor relation between states.

Figure 5 . 15 .

 515 In contrast, the start-to-start relation requires two timers to be supported, where the first timer forces the start of the second timer. Therefore, we can model this pattern case using a T ICE d or a T SE d followed by an activity with T BE ⊘ d with the same time date as presented in Figure5.15.

Figure 5 . 15 :

 515 Figure 5.15: Time Lags Pattern (End-to-Start).

Figure 5 . 16 :

 516 Figure 5.16: Time Lags Pattern (Start-to-Start).

Figure 5 . 17 :

 517 Figure 5.17: Duration Time Pattern. (Maximum delay for activity (left) and Maximum delay for process (right))

Figure 5 . 18 :

 518 Figure 5.18: Time Lags between Arbitrary Events.

Figure 5 . 19 :

 519 Figure 5.19: Fixed Date Element Pattern for an Activity. Earliest start date for the Activity1 (P), Latest complete date for the Activity2 and Latest start date for the Activity3 (Q).

Figure 5 . 20 :

 520 Figure 5.20: Fixed Date Element Pattern for a Process. Latest start date (P) and Latest complete date (Q).

Figure 5 . 21 :

 521 Figure 5.21: Time Based Restrictions Pattern (Reading Article Example).

Figure 5 . 22 :

 522 Figure 5.22: Dependent Variability Pattern. Variability based on time lags between activities (left) and based on the time execution of an activity (right).

Figure 5 .

 5 23, process P), or a timer intermediate catch event with conditional gateways (Figure 5.23, process Q). The first one represents the relation start-to-start time lags between activities, and the second presents the end-to-start relation.

Figure 5 . 23 :

 523 Figure 5.23: Cycle Element Pattern. Cycle number being fixed (left) and cycle number depending on a condition C (right).

Figure 5 . 24 :

 524 Figure 5.24: Periodicity Pattern. Ending before a fixed date (left) and starting from a fixed date (right).

Figure 6 . 1 :

 61 Figure 6.1: Framework Overview.

 2.1): Node (for N), Edge (for E), Message (for M), CatN (for cat N), CatE (for cat E), ContainRel (for R), etc. 3355 This module also defines auxiliary functions such as intype(type, n), defined in TLA + as the operator intype(type, n) ≜ {e ∈ {ee ∈ Edge : target(ee) = n} : CatE[e] ∈ type}.Module PWSWellFormed, encodes the well-formedness predicates for BPMN graphs. For instance, the rule C3 (a sub-process has a unique start event node) becomes:C3_SubP rocessU niqueStart ≜ ∀n ∈ N ode : CatN [n] = SubP rocess ⇒ Cardinality(ContainRel[n] ∩ {nn ∈ N ode : CatN [nn] ∈ StartEventT ype}) = 1Module PWSSemantics, contains the semantics. It defines the variables for the marking: nodemarks(∈ [N ode → N at]), edgemarks (∈ [Edge → N at]),and net (whose type depends on the selected communication model). Then it contains a translation of the FOL formulas, where each rule yields one TLA + action, translated from the FOL semantics as explained above. The N ext predicate specifies a possible transition between a starting state and a successor state. It is a disjunction of all the actions. The full specification is then, as usual in TLA + , Init ∧ □[N ext] var ∧ Fairness, where Init specifies the initial state (Definition. 6.4), and □[N ext] specifies that N ext (or stuttering) is verified along all the execution steps. Further, the restriction to fair executions (Section 4.4.0.5) is naturally translated in TLA + . TLA + supports weak and strong fairness, defined as below for an action A: W F e (A) def ≡ □♢¬(ENABLED⟨A⟩ e) ∨ □♢⟨A⟩ e SF e (A) def ≡ ♢□¬(ENABLED⟨A⟩ e) ∨ □♢⟨A⟩ eFairness is then a conjunction of weak fairness on all actions (∀n ∈ N ode : W F var (step(n))), and of strong fairness on XOR, OR and EB transitions.

6. 3 . 1

 31 Communication as a Parameter.

/Figure 6 . 2 :

 62 Figure 6.2: An Expert of the Alloy Implementation from the Syntax.als Module Represent the Activity Signature.

Listing 6 . 2 :

 62 abstract sig Date { date : one Int } 3450 abstract sig Duration { duration : one Int } abstract sig CycleDuration extends Duration { repetition : one Int } abstract sig CycleStart extends CycleDuration { startdate : one Int } abstract sig CycleEnd extends CycleDuration { enddate : one Int } abstract sig TimerStartEvent extends StartEvent { mode : one Date} 3455 // ... An Excerpt of the Implementation of Time Structure. Module PWSDefs.als, specifies the constants that describe the BPMN graph (Definition 5.2.1) and a set of auxiliary functions. Module PWSWellformed.als, encodes the well-formedness predicates for the BPMN presented in (Section 4.2.3). 3460 Module PWSSemantics.als, contains the translation of the semantics rules of each element presented in Chapter 4.4 and those of Chapter 5.3. Each rule yields an Alloy predicate. As idiomatic in Alloy, execution is an ordered set of States, where a fact (a constraint that always holds) relates two consecutive states (in this ordering). Listing 6.3 presents the state signature used to represent a system state. Line 1, the UTIL/ORDERING module is used to create a total linear order between the different 3465 states. Each relation of the State signature (nodemarks, edgemarks, network, globalclock, and localclock) corresponds to a piece of state information as defined in the formalisation (see State Definition 5.3.1). open util/ordering[State] sig State { nodemarks : Node -> one Int, 3470 edgemarks : Edge -> one Int, network : set (Message -> Process -> Process), globalclock : one Int, localclock : (TimerStartEvent + TimerIntermediateEvent + TimerBoundaryEvent) -> one Int, } // ... 3475 Listing 6.3: State Implementation in Alloy.

 3545straightforward. Each element and concept corresponds to a new instantiation of a signature defined in the PWSSyntax.als module.

Figure 6 . 3 :

 63 Figure 6.3: A Simple Process Example with Time Date Constraint.

}Listing 6 . 7 :

 67 extends NoneStartEvent {} one sig SP1 extends SubProcess {} { contains =SE3 + AT3 + EE3} one sig TBE1time extends Date {} {date =4} one sig TBE1 extends TimerBoundaryEvent {} { attachedTo =SP1 3555 interrupting =True mode =TBE1time } one sig SE2 extends NoneStartEvent {} one sig AT2 extends AbstractTask {} 3560 one sig EE2 extends NoneEndEvent {} one sig EE1A extends NoneEndEvent {} one sig EE1B extends NoneEndEvent {} one sig f1 extends NormalSequentialFlow {} { source =SE1 extends Process {} { contains =SE1 + SP1 + TBE1 + EE1A + EE1B 3585 Representation of the Process of Figure 6.3 using Alloy.

Instance

 Intermediate Event behaves as expected.

Figure 6 . 4 :

 64 Figure 6.4: fbpmn Web Application (modelling and verification panel).

Figure 6 . 5 :

 65 Figure 6.5: fbpmn Web Application (verification results).

6. 6 . 4 . 1

 641 Model ConstraintsSome models are unsafe, i.e., the semantics can yield an infinite marking on some node(s) or edge(s). In such a case, one may rely on model constraints associated with the BPMN model to be verified. Given the model is model.bpmn, one just has to create a file model.constraint of the form: CONSTANT ConstraintNode <-<ConstraintOnNodes> ConstraintEdge <-<ConstraintOnEdges> Constraint <-<Overall constraint in terms of ConstraintNode and ConstraintEdge>

 To my father Abdesalem, who always supports me and believes in success in my life To my mother Saida, who always pries for me to succeed in my life To my brothers Ahmed, Akram, Aymen, and Amjed Thesis Context . 1 1.2 Motivation and Problem Statement 2 1.3 Research Contribution . 3 5 1.4 Thesis Structure . 5 1.5 List of Publications . 6

	1	Introduction
	Chapter content
		1.1
		To my beloved sister Manel
		To my husband Tarek
		To my nephews
		To all my family
		I dedicate this thesis to them

•

 Sara Houhou, Souheib Baarir, Pascal Poizat, Philippe Quéinnec, and Laid Kahloul. A First-Order Logic Verification Framework for Communication-Parametric and Time-Aware BPMN Collaborations. Information Systems, 2021. (Core: A) Souheib Baarir, Pascal Poizat, and Philippe Quéinnec. A Direct Formal Semantics for BPMN Time-Related Constructs. In: 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE) 2021. (Core: B, Best Student Paper Award Nominate)• Sara Houhou, Souheib Baarir, Pascal Poizat, and Philippe Quéinnec. A First-Order Logic Se-

	225
	mantics for Communication-Parametric BPMN Collaborations. In : 17th International Conference
	on Business Process Management (BPM), p. 52-68. Springer, 2019. (Core: A, Best Paper Award)
	Part I
	State of the Art

220

• Sara Houhou, Chapter 2 Background

 The question is then how to start a new process instance? To answer this question, BPMN provides Start event elements (cf. [3, p. 439]), "For single Start Events, handling consists of starting a new Process instance each time the Event occurs". So, how exactly such a Start event is triggered?. There are two main alternatives for triggering a Start event to create a new process instance: (i) triggers are directly delivered by the environment to the right Start event or (ii) triggers are issued into a Pool where Start events regularly check for appropriate triggers. The (i) represents the configuration of a None Start event. While (ii) gives flexibility for the Start event node to choose from different triggers, e.g., different messages concurrently available for a Message Start event.

Table 2 . 1 :

 21 Example of TruthTable Evaluation of a Set of Formulas.

 The value of x in-state s is denoted by s[[x]] (postfix notation used by Lamport). Using these notations, in the following, we will present some basic notions in the TLA language. State Function. A state function is a general non-Boolean expression, made up of variables and constants operators, that maps each state to a value. Semantically, the interpretation [[f]] of a state function f is a function from a set of states St to the set of values V al. Predicate. A predicate P is a Boolean expression of variables and constants operators that assigns boolean value to each state. Semantically, it is a function such that s[[P]] assigns the value true or f alse to a state s.

	Action. An action is a boolean expression containing constants, variables and primed variables (noted
	with (′) operator). Unprimed variables refer to variable values in the current state, and primed variables
	refer to their values in the next state. Thus, the action represents a relation between old states and new
	states. Semantically, the interpretation [[A]] of an action A is a function which associates to a pair of
	states (s, t) a Boolean denoted by s[[A]]t, with s and t representing respectively current state and next
	state.

 • A formula □[A] vars is true for a behaviour σ if and only if for each pair of successive states (s, t), the action [A] vars is true.Let φ be a temporal formula and σ a sequence of states. The Interpretation of σ[[φ]] is a boolean value that the formula φ assigns to σ. If the interpretation of σ[[φ]] is true, we say that the sequence σ satisfies or models the temporal formula φ, noted σ |= φ, otherwise, σ un-satisfies φ, (σ ̸ |= φ).

 .e., for a formula σ♢[[φ]], the sequence σ satisfies φ (σ |= φ) if and only if φ is true in at least one state of the sequence σ.

	• Always-Eventually, noted by □♢, is defined in terms of always and eventually operators, states
	that formulas are true infinitely often. i.e., for formula □♢φ, the sequence σ |= [[φ]] if and only if
	♢[[φ]

 THEN e 1 ELSE e 2 [Equal to e 1 if p is true, otherwise e 2] CASE p 1 → e 1 □ . . . □ p n → e n [Equal to e i if p i] Divers LETd 1 ≜ e 1 . . . d n ≜ e n INe [Equals to e in the context of definitions d 1 , . . . , d n]

]
	Records	
	e.h	[The h field of the e record]
	[h 1 → e 1 , . . . , h n → e n]	[The record whose field e is equal to e i]
	[h 1 : S 1 , . . . , h n : S n]	[Set of all records such that each field h i is in the set S i]
	[rEXCEPT!.h = e]	[Record r ′ equal to r such that r ′ .h = e]
	{[rEXCEPT!.h]2S]}	[Set of records r equal to r such that r.h ∈ S]
	Sequences	
	e[i]	[The i th element of the sequence e]
	⟨e 1 , . . . , e n ⟩	[The n-tuple whose i th element is e i]
	S 1 × • • • × S n	[Set of all n-tuples such that the i th element is in the set S i]
	Chains	
	c 1 , . . . , c 2	[A sequence of characters n characters]
	STRING	[The set of all character sequences]
	Conditional Constructs	
	IF p	

Table 2 . 2 :

 22 Summary of TLA + Operators.Functions. They are primitive objects in TLA + . Each function f in TLA + has a domain of definition, denoted DOMAIN f . The application of a function f to an expression e is written by f [e]. f [e] specifies the value of the function f for an expression e (if e is an element of DOMAIN f). The constructor of the function f is denoted by [x ∈ X → e]. The expression [x ∈ X → e] denotes the function with domain X that maps any x ∈ X to e (e.g., x ∈ N at → x + 1 is the function f such that f [1] = 2, f [3] = 4 . . .). TLA + defines EXCEPT operator. The expression [f except ![e 1] = e 2] is a function that is equal to the function f except at point e 1 , where its value is e 2 . The expression e 1 → e 2 denotes the set of all functions with domain e 1 and co-domain e 2 .

Table 2 . 3 :

 23 Sequences Module Main Operators.

-

 TLA + has a set of arithmetic expressions which are: e ::= . . . |0|1|2| . . . |Int| -e|e + e|e -e|e * e|e%e|e ÷ e|e < e Divers. TLA + language provides some constructors which are: The constructor IF p THEN e 1 ELSE e 2 , is equal to e 1 if the predicate p is true and to e 2 when p is false. In the case where there are several nested IF-THEN-ELSE constructors, it is easier to use the CASE constructor. -The constructor CASE p 1 → e 1 □ . . . □ p n → e n , is equal to e i if p i true. • LET/IN Expression. It is used to define a local expression. The general form of this constructor is as follows: LETd 1 ≜ e 1 . . . d n ≜ e n INe, with d i presents a TLA + definition. This expression equals to e in the context of definitions d 1 , . . . , d n .

	• Conditional. Two conditional constructors, inspired by conditional structures in programming
	languages :

 Sig s {f : t} where f is a field, s and t are types, f here is a total function, mapping each atom in s to exactly one atom in t, e.g., Sig Student {class : one Class}. The signature is composed of non-dividable entities called atoms, whose type is given by signatures, and of atom tuples, whose type is given by fields. A signature can also introduces sub-signature using the keyword extends,

	The general module structure is as follows: module ::= module [packageName/] moduleName import . . . paragraph . . . import ::= (open | uses) packageName [/*] paragraph ::= signature | fact | assertion | function | run | check | eval Signatures. Defines a set of atoms representing the basic entities of Alloy. The declaration of a signature is made using the keyword Sig followed by the name of the signature, which has the form Sig S{. . . }. Signature declarations may introduce fields. A field represents a relation among signatures, problem :: decl * f ormula decl :: var : typeexpr M : f orm → env → Boolean Type of Expression typeexpr := X : expr → env → value type env = (var + type) → value type-> type value = (atom × • • • × atom)+ type => typexpr atom → value Expression expr := Set Operators expr in expr [subset] M [a in b]e = X[a]e ⊆ X[b]e expr + expr [union] X[a + b]e ∪ X[b]e expr&expr [intersection] X[a + b]e ∩ X[b]e expr-expr [difference] X[a --b]e = X[a]e \ X[b]e expr=expr [equality] Relation Operators R1-> R2 [product] is the standard cartesian product expr.expr or expr[expr] [navigation (join)] X[a.b]e = {(x, z) | ∃y.(x, y) ∈ X[a]e ∧ (y, z) ∈ X[b]e} ˜expr [transpose] X[˜a]e = {⟨x, y⟩ : ⟨y, x⟩ ∈ X[a]e} expr [transitive closure] r is the smallest relation that contains r and is transitive. * expr [reflexive transitive closure] *r is the smallest relation that contains r and is both transitive and reflexive SetD <: Rel [domain restriction] creates a new relation where the domain of R is restricted to D Rel :> SetR [range restriction] creates a new relation where the range of R is restricted to R has the form Basics Logic Operator

Table 2 .

 2

	4: Summary of Alloy Logic Syntax and Semantics. (extended from [47, 48])
	Sig t extends s {. . . }. Note that sub-signatures may themselves have sub-signatures. A set of modifiers
	can precede any signature declaration: (i) the abstract keyword that enforces that no atom is directly
	typed by that signature and (ii) quantifiers operator keyword that enforces the multiplicity (i.e., the
	number of atoms typed by the declared signature). Without the multiplicity keyword, there can be any
	number of atoms typed by the signatures. The general form of the signature is as follows:
	signature ::= [static] qualifier,. . . Sig sig name [type-params] [extension] decl, . . . formula-seq
	qualifier ::= part | disj | exh
	type-paramaters

::= [type-paramater, . . .] extension ::= extends sig, . . .

Table 2 . 5 :

 25 General Comparison of the Alloy and TLA + Tools. (from source table[START_REF] Macedo | Alloy meets TLA+: An Exploratory Study[END_REF])

	Chapter
	3	Literature Review
		"	Education is what remains after one has forgotten what one has learned in school. " Albert Einstein
	Chapter content

3.1 Introduction . 41 3.2 Research Method . 42 3.2.1 Objectives . 42 3.2.2 Survey questions . 42 3.2.3 Prior Reviews on Business Process Modelling Verification 42 3.2.4 Research Strategy . 43 3.2.5 Article Selection and Inclusion and Exclusion Criteria 44

Table 3 . 1 :

 31 Number of Studies per Database.

	Electronic Data Base	Number of retrieved Papers	Number of initial Number of final Conferences Workshops Symposium Journals selected papers included papers	Percentage in final inclusion(%)
	IEEExplore	40	28	23	13	2	2	6	29.11%
	ACM Digital library	8	4	2	0	1	0	1	2.53%
	ScienceDirect	464	15	11	0	0	0	11	13.92%
	SpringerLink	872	84	21	13	5	1	2	26.58%
	WebOfScience	77	41	19	6	3	0	10	24,05%
	ScienceScholar	24	5	3	0	1	0	2	3,79
	Total	1445	177	79	32	12	3	32	100%

Table 3 . 4 :

 34 Synthesis of Verification Related Attributes. (Petri Nets (PN), Automata (A), Process Algebras (PA), Logic Formulas (LF), and Programming Language (PL))

	Properties	
	Method	
	Output Language Verification Tool	
	Year	
	Input Language	
	Work	[64, 67]
		PN

Table 3 . 5 :

 35 Synthesis of Tools.

	Tool
	Formalism
	Approach Reference

 The analysis and the evaluation of the proposals performed in most of the selected works is achieved through a case study. No benchmarks are given except for works are in Corradini. et al [165] and Duran et al [142-146]. However, Duran et al. takes as input extended BPMN models with extended notations and no available BPMN modelling tool to support them.

Table 3 . 7 :

 37 BPMN Verification Tools Limitations.

	Ref	Formal Languages	Limitations
		• Approach based on the version 1.1 of BPMN	
	[64]	PN → PNML	

Table 4 . 1 :

 41 Syntactic Representation of the Travel Agency Example.

12 , e 13 , e 14 , e 15 , e 16 , e 17 , e 18 , e 19 , e 20 , e 21 , e 22 , e 23 , e 24 , e 25 , e 26 , e 27 , e 28 }

 12 , e 13 , e 14 , e 15 , e 16 , e 17 , e 18 , e 19 , e 20 , e 21 , e 22 , e 23 , e 24 , e 25 , e 26 , e 27 , e 28

 returns a specified type of incoming edge for a given node

2135 intype(n, t) = {in ⊆ in(n) | e∈in CatE(e) ∈ t ∧ t ∈ T Edges } • outtype : N × T Edges → 2 E ,

returns a specified type of outgoing edge for a given node outtype(n, t) = {out ⊆ out(n) | e∈out CatE(e) ∈ t ∧ t ∈ T Edges }

 • (C10) No incoming message flow for send task, message end event, throw message intermediate event:∀n ∈ N, cat N (n) ∈ {ST, M EE, T M IE} =⇒ intype(n, M F) = ∅ • (C11)No outgoing message flow for receive tasks, message start event, catch message intermediate event, boundary message intermediate event : ∀n ∈ N, cat N (n) ∈ {RT, M SE, CM IE, BM IE} =⇒ outtype(n, M F) = ∅

	• (C12) A message flow edge connects two nodes of different processes:

Table 4 . 2 :

 42 FIFO Communication Models Variants.

 The properties of communication between two participants (process nodes) for a given type of message are abstracted with an initialisation function, initnet, and two transition predicates, send and receive. initnet is used to give the initial state of mnet. send and receive specify when a communication action is enabled and what effect it has on mnet. The value of mnet describes the state of the network in terms of what messages are sent but not yet received as the network evolves through time. In essence, we are modelling the pool of messages that have been sent but not yet received, possibly using a single universal queue, or by using channel-by-channel queues, or some other structures that carry information to allow and order send and receive events.Several communication models are formally described in Section 4.3.3. For instance, with the Fifo Definition 4.4.3 (Communication Model). The communication model is characterised by a function initnet : T net and two predicates send /receive defined above in 4.1.

All asynchronous communication model, messages must be delivered in the order they were sent. In this model, send (p 1 , p 2 , m) is always enabled, and adds m to mnet ; receive(p 1 , p 2 , m) is true only if m is the oldest message and thus the next one to be delivered, and the new state of mnet is its previous value minus m.

 2021 -03 -12 T 12 : 00 : 00, rec(T 2) = 1> by executing the staring predicate

	Chapter
	6	fbpmn: Formal BPMN Frame-
		work
		"	Make it work. Make it work right. Make it work right and fast. " Edsger Dijkstra, Donald Knuth, C.A.R. Hoare
	Chapter content

6.1 Introduction . 127 6.2 fbpmn Overview . 128 6.3 Encoding of FOL Semantics in TLA 128 6.3.1 Communication as a Parameter. 131 6.3.2 Mechanised Verification . 131 6.4 Encoding of the Semantics in Alloy 132 6.4.1 Mechanised verification . 137 6.5 fbpmn Evaluation . 138 6.5.1 Experiments using the TLA + Encoding/Tooling 138 6.5.2 Experiments using the Alloy Encoding/Tooling 140 6.6 The fbpmn Supporting Tool . 142 6.6.1 Architecture and General Principles . 142 6.6.2 Desktop Modelling and Verification . 142 6.6.3 Online Modelling and Verification . 144 6.6.4 Extensibility . 144 6.7 Summary . 146

Table 6 . 1 :

 61 Translation between FOL and TLA + (N SE example).

edgemarks → if e ∈ outtype(SeqF lowT ype, n) then edgemarks[e] + 1 else edgemarks[e]] ∧ N etwork!unchanged

 specific BPMN diagram is described by instantiating the constants in PWSDefs (Node, Edge. . .) from the BPMN collaboration. This is automated using our fbpmn tool. Regarding the well-formedness of the BPMN diagram, the predicates from PWSWellFormed are assumed in the model. Before checking a model, TLA + model checker checks these assumptions with the instantiated constants that describe the diagram and reports an error if an assumption is violated.TLA + model checker, TLC, is an explicit-state model checker that checks both safety and liveness properties specified in LTL. This logic includes operators □ and ♢ that respectively denote that, in all executions, a property P must always hold (□P) or that it must hold at some instant in the future (♢P). TLC builds and explores the full state space of the diagram to verify if the given properties are verified. These properties are generic properties (related to any business process diagram) or specific properties (for a given diagram). Examples of generic properties are: safeness, soundness and message-relaxed soundness[23].A collaboration is safe if no sequence flow holds more than one token:

	Customer", "Travel Agency"}
	COM ← COMMODELS,
	CHANNEL ← CHANNELS
	6.3.2 Mechanised Verification

A □(∀e ∈ E, (cat E (e) = SF) ∧ (me(e) ≤ 1))

 Listing 6.1: An Excerpt of the Timer Start Event Semantics Implementation in the Alloy Language.

	// ...
	pred State.canfire[n : TimerStartEvent] {
	n.mode in Date ∧this.globalclock ≥n.mode.date
	}
	pred completeTimerStartEvent[s, s' : State, n : TimerStartEvent] {
	s.nodemarks[n] >0
	s.canfire[n]

s'.nodemarks[n] =s.nodemarks[n].dec all~e : n.outtype[SequentialFlow] |s'.edgemarks[e] =s.edgemarks[e].inc let~p =n.~contains { s'.nodemarks[p] =s.nodemarks[p].inc delta[s, s', n + p, n.outtype[SequentialFlow]] deltaT[s, s', none] // localclock is unused } }

Table 6 . 2 :

 62 Translation between FOL and Alloy (T SE example).

Table 6 . 3 :

 63 Experimental Results.

Table 6 . 4 :

 64 Metrics from the Alloy Analyser Executed on a Subset of Examples.

Table 6 . 5 :

 65 Animation of a Counter-example (Model in Figure2.8, for Soundness with Fifo Inbox Mode) Generated with fbpmn.

Table 7 . 1 :

 71 Comparison of Tool-Supported Approaches for the Analysis of Communication in BPMN.

Figure 2.8: Travel Agency Case Study. (extended from an example in [23])

SpringerLink : https://link.springer.com

IEEExplore: http://ieeexplore.ieee.org

ACM Digital library:https://dl.acm.org/

WebofScience: https://apps.webofknowledge.com

ScienceDirect: www.sciencedirect.com

Science Scholar:https://sciencescholar.us/

OTX: is an industry-standard for modelling commissioning processes of vehicles.

Workflow graphs: represent the primary control-flow constructs of industrial process modelling languages such as BPMN, EPC and UML activity diagrams.

Anti-patterns: are specific patterns in software development that are considered bad programming practices.

k-soundness: no deadlocks, no dead transitions, and no remaining tokens property, where k is the number of process instances.

erroneous model.

A vector clock is a logical clock that tracks the causal dependencies between send and receive events. They are not to be confused with the clocks used for timing constraints in Chapter 5.

In T SEc, c stands for timeCycle as in the ISO-8601 standard for time repeating intervals.

In T ICEp, p stands for timeDuration as in the ISO-8601 standard for durations represented by P.

In some cases, the behaviour is described using only one of the two predicates.

bpmn-js: https://github.com/bpmn-io/bpmn-js

Summary

In this chapter, we have presented our fbpmn tool. We have detailed its architecture, features, verification mechanism and evaluated its practicability over a set of examples. The evaluation section demonstrates the achievement of the objectives defined in the introduction. The BPMN formalisation, its implementation, and the associated tool make it possible to verify all perspectives of business processes automatically.

To sum up, the tool proved the feasibility of our approach. However, some improvements are already under realisation (cf. 7.4). The next chapter concludes this thesis by summarising our contributions, presenting its limitation, and giving some perspectives.

thanks to you. I express my profound gratitude to Prof. Philippe Quéinnec for his collaboration, his continuous support of my PhD study and related research,

Abbreviations

List of Tables

Part II BPMN 2.0 Semantics Formalisation (Formula 5.10) of the non interrupting boundary event T 1, which fires for the first time if the global clock reaches the starting date. It reactivates the local clock of timer node T 1 to l c (T 1) = 1, and reduces the number of redundancy by 1. Then, as long as Activity1 does not complete, the run() function (Formula 5.1) is repeatedly executed, allowing the timer T 1 to fire one more time by executing the completing predicate (Formula 5.11) of the non interrupting boundary event T 1.

Summary

In this chapter, we have proposed formal semantics for the time-related constructs of BPMN with reference to the non-deterministic one in Chapter 4. This semantics supports different combinations of events, time information categories (date-times, durations, cycles) and the corresponding ISO-8601 descriptions as prescribed by the BPMN standard. Our proposal is based on a direct formalisation in First-Order Logic. In Table 5.2, we have presented the set of the supported timer elements and their relation to ISO-6801 standard. The table shows that we do not support: (i) the timeCycle type with a fixed interval of a start and end date due to the redundancy management ambiguity of this type; (ii) the timeCycle type for the starting event, which may lead to the execution of parallel multi-instance of a process (we do not support the multi-instance characteristics for the process node); (iii) the timeCycle type for the intermediate catching event. Note that the last one (iii) is under study as it is similar to the one presented for the non-interrupting boundary event.

Besides, we have studied the support with our formalisation of ten process time patterns defined in the literature for PAIS systems. First, we show that the BPMN standard may support the modelling of these patterns entirely or partially by considering the ISO-6801 standard time definitions. Then, we show that we support the formalisation of seven patterns out of the ten. Finally, as we are running bounded model-checking, we must ensure that enough steps are realized. Formally, with infinite executions, weak fairness is sufficient. As we integrate the time notion with the bounded model-checking, if moving the time forward is always possible, the execution may always take it 3525 and waste a number of steps. Our solution is to move time only if no node may be executed (deadlock) or there is a timer node still active and not ready to complete. Listing 6.6 shows the fact traces that constrains all the states. This fact is our predicate N ext (Definition 5.3.3). It represents a disjunction of the semantic rules and of time moving. Module ProcessModelCheck.als, groups the list of commands to running the Alloy Analyser w.r.t a set of properties to check. Listing 6.8 shows the commands running the property analysis. As explained in Section 2.6.2.3, there are two ways to operate the analyse with the Alloy Analyser. The run command (line 1) allows finding a model that satisfies the formula, while the check command (lines 2 to 4) allows finding a counterexample with respect to the formula. Further, it is necessary to specify a bound on each command signatures to limit the search depth. All the bounds are constrained by the process model taken as input to be analysed. For example, if the process model has ten task nodes, the bound of the activity task signature will be 10, i.e., line 1 will be equivalent to [run CorrectT ermination f or 0 but 11 State, 10 tasks]. The keyword for 0 determines that all the signatures in the analysed model have a bound of 0 by default, excluding for the signatures specified after the keyword but. E.g., in Listing 6.8 only the signature of the States number is specified. Thus, the Alloy Analyzer determines the bounds of all the signatures defined in the module example -T BEI -SP .als (Listing 6.7) to the default value 0.

Part III

Mechanised verification

Alloy comes with a tool, Alloy Analyser, a constraint solver that provides automatic simulation and verification based on a model-finding approach using a SAT solver. Two kinds of verification are available:

(1) check the structure itself; (2) check the executions. For the first, assertions ensure that the model is well-formed, e.g., a message flow connects two distinct processes. For the second, predicates on States are used to express properties on executions. We have defined a set of properties in PWSProp.als:

• Safe, a predicate that states that no edge or node ever holds more than one token. This property is expressed in Alloy as follows: • SimpleTermination, a predicate that states that every process reaches a state where an End Event owns a token. This property is expressed in Alloy as follows: • CorrectTermination, a predicate that states that the whole system reaches a state where all processes have terminated with an End Event and no token is left on other nodes or edges. This property is expressed in Alloy as follows:

fbpmn Evaluation

This section presents the evaluation of our contributions, focusing on checking properties on a set of BPMN collaboration and process models.

Experiments using the TLA + Encoding/Tooling

Experiments were conducted on a laptop with a 1.9 GHz (turbo 4.8 GHz) Intel Core i7 processor (quadcore) with 32 GB of memory. Results are presented in Table 6.3. The first column is the reference of the example in our archive at https://github.com/pascalpoizat/fbpmn/ under /models/bpmnorigin/src folder. The characteristics of a model are the number of participants, the number of nodes (incl. gateways), the number of flow edges (sequence or message flows), whether or not the model is wellbalanced (for each gateway with n diverging branches, we have a corresponding gateway with n converging branches) and whether or not it includes a loop. The communication models are asynchronous (bag), FIFO-ordered between each couple of processes (FIFO pair), globally FIFO (FIFO all), or synchronouslike (RSC). The results of the verification then follow. First, data on the resulting transition system are given: number of states, number of transitions, and the depth (the length of the longest sequence of transitions that the model checker has to explore). For each of the three correctness properties presented above, we indicate if the model satisfies it. Lastly, the accumulated time for the verification of the three properties is given. Our tool supports more verifications (see Table 7.1) and can be easily extended with new properties. We selected these three ones since they are more BPMN specific [23]. Table 6.3 presents the results for a selection of properties and models from our archive montionned above, for a variety of gateways and activities. These illustrative examples include realistic business process models (001 and 002 two client-supplier models, 040 from Figure 2.8, 017 from [108], and 020 from [138]), and models dedicated to specific concerns: termination end events and sub processes (007-011 from [23]), inclusive gateways (003, 012, 013 and 018), exclusive and event-based gateways (015 and 016).

A first conclusion is that verification is rather fast: the verification of one property generally takes just a few seconds per model, the longest being for model 020 that takes up to 53s of accumulated time for the three properties (5s for the construction of the state space). Experiments also show the effect of

Limitations & Perspectives

Formal semantics support for BPMN models is an exhaustive research area, which can be only partially covered by one thesis. Therefore, our work is subject to some limitations. Some of them were already mentioned in the summary section of each chapter. In this section, we discuss these limitations, and we give some ideas for dealing with them. Some features that play a role in full-fledged executable collaborations have been discarded here. This is the case of the data (data objects, data stores, assignments, and message payloads) and multi-instance (for activities and pool lanes) constructs. Bibliography