N
N

N

HAL

open science

Parameterised Verification from Formal Specifications of
Information Systems

Sara Houhou

» To cite this version:

Sara Houhou. Parameterised Verification from Formal Specifications of Information Systems. Sym-
bolic Computation [cs.SC]. Sorbonne Université; Université Mohamed Khider (Biskra, Algérie), 2021.

English. NNT: 2021SORUS421 . tel-03987466

HAL Id: tel-03987466
https://theses.hal.science/tel-03987466
Submitted on 14 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03987466
https://hal.archives-ouvertes.fr

h

SORBONNE
UNIVERSITE

Sorbonne Université - Ecole Doctorale EDITE de Paris
(ED130)

Université de Biskra - Departement d’informatique -
Laboratoire d’informatique intelligente (LINFT)

THESE EN COTUTELLE

pour l'obtention des diplomes de

Doctorat en Informatique de Sorbonne Université
Doctorat en Informatique de I’Université de Biskra
Spécialité: Intelligence Artificielle

Vérification paramétrée a partir des spécifications
formelles des systémes d’information

Par: Sara Houhou

Soutenue le 22/12/2021 devant le jury composé de :

Ms. Barbara Re Maitre de conférence a Camerino Université, PROS Rapportrice
M. Gwen Salaiin Professeur a Grenoble Alpes Université, LIG, CNRS Rapporteur
Ms. Béatrice Bérard Professeur a Sorbonne Université, LIP6, CNRS Examinatrice
Ms. Lamia Hamza Maitre de conférence a Bejaia Université, LIMED Examinatrice
M. Tibermacine Okba Maitre de conférence a Biskra Université, LESIA Examinateur

M. Souheib Baarir Maitre de conférence a Paris Nanterre Université, LIP6, CNRS Co-Directeur
M. Laid Kahloul Professeur a Biskra Université, LINFI Directeur
M. Pascal Poizat Professeur a Paris Nanterre Université, LIP6, CNRS Directeur

o) SORBONNE 6‘;:%;‘

UNIVERSITE ' 5HY

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY AT

SORBONNE UNIVERSITE
MOHAMMED KHIDER UNIVERSITE -BISKRA-
EcoLE DOCTORALE EDITE DE PARIS (ED130)

INFORMATIQUE, TELECOMMUNICATION ET ELECTRONIQUE

LABORATOIRE DE L'INFORMATIQUE PARIS 6 (LIP6)
LABORATOIRE D'INFORMATIQUE INTELLIGENTE (LINFTI)

Parameterised Verification from Formal
Specifications of Information Systems

By HOUHOU SARA

DOCTORAL THESIS ON COMPUTER SCIENCE

Under the supervision of :

M. Laid Kahloul Professor at Biskra Université, LINFI (Supervisor)
M. Pascal Poizat Professor at Paris Nanterre Université, LIP6, CNRS (Supervisor)
M. Souheib Baarir =~ Associate Professor at Paris Nanterre Université, LIP6, CNRS (Co-Supervisor)

Presented on 22/12/2021 in front of a jury composed of:

Ms. Barbara Re Associate Professor at University of Camerino, PROS (Reviewer)
M. Gwen Salaiin Professor at Grenoble Alpes Université, LIG, CNRS (Reviewer)
Ms. Béatrice Berard Professor at Sorbonne Université, LIP6, CNRS (Examiner)
Ms. Lamia Hamza Associate Professor at Bejaia Université, LIMED (Examiner)
M. Tibermacine Okba Associate Professor at Biskra Université, LESIA (Examiner)

ii

To my father Abdesalem, who always supports me and believes in success in my life
To my mother Saida, who always pries for me to succeed in my life

To my brothers Ahmed, Akram, Aymen, and Amgjed

To my beloved sister Manel

To my husband Tarek

To my nephews

To all my family

I dedicate this thesis to them

v

ACKNOWLEDGEMENT

% Saying thank you is more than good manners. It is good
spirituality. 29
ALFRED PAINTER

First and foremost, praises and thanks to my God, Allah, for everything.

I would like to express my sincere gratitude to my supervisors Prof. Laid Kahloul and Prof.
Pascal Poizat, and my co-supervisor Prof. Souheib Baarir, for accepting the supervision of this
thesis. Thank you for all the guidance, patience, immense knowledge, and support you gave me
at every stage in my PhD project. If I am in this stage today, it is thanks to you.

I express my profound gratitude to Prof. Philippe Quéinnec for his collaboration, his contin-
uous support of my PhD study and related research, and all the help and support he gave me in
each stage of this thesis. Thank you!

My sincere thanks also to the committee members: Prof. Gwen Salaiin, Prof. Béatrice Be-
rard, Prof. Barbara Re, Prof. Lamia Hamza, and Prof. Tibermacine Okba for accepting to
evaluate this work.

I sincerely thank all the members of the LIP6 laboratory, especially the MoVe team, for
the numerous helpful discussions during my thesis. I also thank my colleagues at the LIRMM
laboratory, especially the MAREL team, for the innumerable helpful discussions during my stay
in Montpellier. I also thank my colleagues at Paris-Nanterre University, especially Pr. Jean-
Francgois Pradat-Peyre for giving me the opportunity to teach at the SEGMI department. I
sincerely thank all the members of the LINFI laboratory and my colleagues at the computer
science department of Biskra university. Many thanks to my friends Samah Masmoudi, Dr Sara
Hamouda, Dr Anas Shatnawi, Dr Rim Saddem, Dr Nassima Benammar, Dr Khadija Bousselmi,
Dr Mostefa Bennaceur, and Dr Kamli Adel for all the help and the support they gave me in
every stage of my research study.

Words cannot express how grateful I am to my father and mother for all their sacrifices
for me. They have been with me throughout my life and whose love brought me where I am
today. I owe a lot to both of you. I am very grateful to my brothers, sister, husband, and fam-
ily members for all the support and help they provided throughout my life. Thank you very much.

Sara

vi

vil

ABSTRACT

Process models are essential aids for learning, analysis, improvement and communication of
a business process. BPMN is the leading standard in the context of business processes and
workflow modelling languages. It provides a notation that is readily understandable by business
users, ranging from the business analysts, who sketch the initial drafts of the processes, to the
technical developers responsible for actually implementing them, and finally to the staff deploying
and monitoring such processes. BPMN supports modelling using different types of diagrams,
including the collaborative diagram. This diagram provides an efficient way to describe how
several business entities, each with its internal process, can interact with one another to reach
objectives.

Even if it is a widely accepted notation, the BPMN execution semantics is defined using
natural language. This leaves room for interpretation and hampers the formal analysis of the
process models. A great effort has been devoted to proposing formal semantics for BPMN and
(fewer) providing dedicated verification tools. Still, some advanced features of BPMN, namely
subprocesses, communication or time-related constructs, are often set aside. This becomes an
issue as BPMN gains interest outside of its original scope, e.g., for the Internet of Things (IoT),
where communication and time play an essential role. The modelling of a process in BPMN
and fully guaranteeing its behaviour may be complicated in the presence of such concepts. Thus,
providing formal semantics taking into account the usual control flow-elements and subprocesses,
inter-process communication, and time-related constructs is required. Further, the complexity
of the provided process verification tools, their lack of a fully automatic support of the en-
tire verification chain, the fact that they are not integrated into a process environment, and
the impossibility for the average process modeller to express business properties, prevent their
adoption.

This thesis faces these problems by providing a first-order Logic formal semantics for the
BPMN collaboration diagrams that support the subprocesses, communication, and time con-
structs. It is parametric with reference to seven point-to-point communication models that exist
when considering local and global message ordering. To perform verification, we have imple-
mented this semantics in a tool suite called fbpmn. It allows performing the automatic verifi-
cation of correctness properties of BPMN collaboration models and animating counterexamples
if the properties are not satisfied. Our framework is built upon two different formal specifica-
tion languages for the semantics implementation. A first implementation uses TLAT language,
whose companion, the TLC checker model, supports explicit model checking. TLAT’s expres-
siveness comes from being based on ZF (set theory), first-order logic, and configurable modules.
A second implementation relies on the Alloy language, whose companion, the Alloy Analyser,
provides support for bounded model checking. Alloy’s expressiveness comes from being based on
relational logic, first-order logic enhanced with the transitive closure operation, which renders
the definition of structural properties extremely simple. Altogether, the fbopmn tool-suite, the
TLC tool, and the Alloy Analyzer may check BPMN models for workflow specific properties.
The fbpmn tool-suite is open source and freely available online.

Keywords— BPM, BPMN, Collaboration, Communication, Time, Formal Semantics, Verifica-
tion, Framework, TLAT, Alloy

viii

RESUME

Les modéles de processus sont des outils essentiels pour ’apprentissage, ’analyse, ’amélioration et la
communication autour d’un processus métier. BPMN est la norme standard pour la modélisation de
processus métiers. Il fournit une notation compréhensible par les utilisateurs métier, allant des analystes
métier qui désignent les ébauches initiales des processus aux développeurs techniques chargés de les mettre
en oeuvre, et enfin au personnel qui déploie et surveille ces processus. BPMN supporte la modélisation
a laide de différents types de diagrammes, parmi lesquels le diagramme de collaboration. Ce dernier
fournit un moyen efficace de décrire comment plusieurs entités, chacune avec son propre processus interne,
peuvent collaborer et interagir les unes avec les autres pour datteindre des objectifs.

Méme s’il s’agit d’une notation largement admise, la sémantique d’exécution de BPMN est définit en
langage naturel. Cela laisse place a l'interprétation et limite I’analyse formelle possible des modéles. Un
gros effort a été consacré a proposer une sémantique formelle pour BPMN et, dans une moindre mesure, &
fournir des outils de vérification dédiés. Cependant, certaines fonctionnalités avancées de BPMN, & savoir
les sous-processus, la communication ou les constructions liées au temps, sont souvent laissées de coté.
Cela constitue un probléme car BPMN a suscité l'intérét en dehors de son champ d’application-initial,
par exemple pour 'Internet des objets (IoT) ot la communication et le temps jouent un role important.
La modélisation d’'un diagramme BPMN; ainsi que la garantie compléte de son comportement, peuvent
s’avérer trés difficiles & assurer en présence de tels concepts. Pour cela, il est nécessaire de fournir une
sémantique formelle prenant en compte non seulement les constructions de processus habituelles, mais
également celles liées aux sous-processus, & la communication inter-processus et au temps. D’autre part,
la complexité des outils associés, leur absence de prise en charge entiérement automatique de 1’ensemble
de la chaine de vérification, le fait qu’ils ne soient pas intégrés dans un environnement de processus et
I’impossibilité pour le modélisateur moyen de processus d’exprimer des propriétés métier empéchent leur
adoption.

Dans cette thése, nous proposons des solutions & ces problémes en fournissant une sémantique formelle
en logique de premier ordre pour les diagrammes de collaboration de BPMN qui prend en charge les con-
structions liées aux sous-processus, & la communication et au temps. Cette sémantique est paramétrique
par rapport sept modéles de communication point & point qui existent lorsque l’on considére ’ordre
local et global des messages. Nous avons implémenté cette sémantique dans une suite d’outils appelée
fopmn. Elle permet d’effectuer la vérification automatique des propriétés de correction pour les modéles
de collaboration BPMN et d’animer les modéles des contre exemples lorsque les propriétés ne sont pas
satisfaites. Notre cadre logiciel est basé sur deux languages de spécification formelle différents. Une
premiére implémentation de la sémantique utilise le langage TLAT. Il est accompagné de plusieurs outils,
dont le model checker TLC qui prend en charge la vérification de modéle explicite. L’expressivité de
TLAY vient du fait qu’il est basé sur ZF (théorie des ensembles), la logique du premier ordre et des
modules paramétrables. La deuxiéme implémentation de la sémantique est basées sur le langage Alloy.
11 est accompagné d’ Alloy Analyser qui prend en charge la vérification de modéle bornée. L’expressivité
d’Alloy vient du fait qu’il est basé sur une logique relationnelle, une logique de premier ordre renforcée
par 'opération de fermeture transitive, ce qui rend la définition des propriétés structurelles extrémement
simple. Tous ces outils, I'outil fbpmn, Poutil TLC et Alloy Analyser peuvent étre utilisés pour effectuer
la vérification des propriétés spécifiques aux workflows de modéles BPMN. La suite d’outils fbpmn est
open source et disponible gratuitement en ligne.

Mot Clés— BPM, BPMN, Collaboration, Communication, Temps, Sémantique Formelle, Véri-
fication, Outil, TLAT, Alloy

I CONTENTS

Acknowledgement

Abstract

Résumé

Contents

1 Introduction

1.1 Thesis Context e e
1.2 Motivation and Problem Statement
1.3 Research Contribution e
1.4 Thesis Structure e e
1.5 List of Publications e

I State of the Art

2 Background

2.1 Imtroductiono
2.2 Business Process Management (BPM) oo oo
2.3 Business Process Modelling Language (BPMN)
2.3.1 BPMN Notation e
2.3.2 Running Example e
2.3.3 BPMN XML Representation
2.3.4 BPMN Operational Semantics
2.4 First-Order Logic (FOL) e e e
2.4.1 Syntax of First-Order Formulas
2.4.2 Semantics of First-Order Logic Formulas
2.5 Verification Methods
2.5.1 Test . . .
2.5.2 Abstract Interpretation
2.5.3 Theorem Proving
2.5.4 Model-Checking L
2.6 Verification Languages & Tools
2.6.1 TLA Logic and TLAT Language v ..
2.6.2 Alloy Logic & Language e
2.7 SUIMIATY . . . oo e e e e e e e

3 Literature Review

3.1 Imtroduction e
3.2 Research Method e
3.2.1 Objectives e e
3.2.2 Survey quUestions
3.2.3 Prior Reviews on Business Process Modelling Verification
3.2.4 Research Strategy
3.2.5 Article Selection and Inclusion and Exclusion Criteria

3.3 Papers Overview L e

vii

viii

ix

DT W N =

10
12
13
15
18
20
23
23
25
26
26
27
27
27
27
28
34
38

3.3.1 Approaches based on Petri Nets

3.3.2 Approaches based on Automata Theory,
3.3.3 Approaches based on Process Algebras o oo
3.3.4 Approaches based on Logic Formulas
3.3.5 Approach based on a Programming Language
3.4 Discussion L e e e e
3.5 SUMIMATY . . ¢ o v v o et e e e e e e e

IT BPMN 2.0 Semantics Formalisation

4 BPMN and Communication

4.1 Introduction e e e
4.2 A Typed Graph Representation of BPMN Collaborations Models
4.2.1 BPMN Elements Type e
4.2.2 Graph Structure e
4.2.3 Well-formed BPMN graph. o
4.3 A Communication Model Representation
4.3.1 Communication Model
4.3.2 Communication Channel e
4.3.3 Generic Communication Models o000
4.4 A FOL Semantics for BPMN Collaborations
4.5 Verification Properties
4.6 SUMMATY e e e e e e

BPMN and Time

5.1 Introduction e e e
5.2 A Typed Graph Representation of BPMN Time-Related Constructs
5.3 A FOL Semantics for BPMN Time-Related Constructs
5.3.1 Semantics e e e e e e
5.3.2 Transition Relation and Executions
5.4 BPMN 2.0 and the Time Patterns: Can We Support All of Them?
5.4.1 Time Lags between Activities
5.4.2 Duration e
5.4.3 Time Lags between Arbitrary Events
5.4.4 Fixed Date Elements (Deadline)
5.4.5 Schedule Restricted Element oo oo
5.4.6 Time Based Restrictions oo
5.4.7 Validity Period
5.4.8 Time Dependent Variability o oL
54.9 Cycle Element e
5.4.10 Periodicity
5.5 Summary e e e e e e

IIT From Formal Semantics to Tool Support
6 fbpmn: Formal BPMN Framework
6.1 Introduction e e e e
6.2 fbpmn Overview L
6.3 Encoding of FOL Semantics in TLA o
6.3.1 Communication as a Parameter.
6.3.2 Mechanised Verification L L o
6.4 Encoding of the Semantics in Alloy o
6.4.1 Mechanised verification e
6.5 fbpmn Evaluation. L
6.5.1 Experiments using the TLAT Encoding/Tooling

6.5.2 Experiments using the Alloy Encoding/Tooling

65

67
67
68
68
69
72
74
74
74
74
78
93
96

99

99
100
102
102
113
114
115
116
117
118
120
120
120
120
122
123
124

6.6

6.7

The fbpmn Supporting Tool
6.6.1 Architecture and General Principles L.
6.6.2 Desktop Modelling and Verification 0L,
6.6.3 Online Modelling and Verification
6.6.4 Extensibility
SUmmaryo e e e e e e

IV Conclusion and Future Work

7 Conclusion

7.1 Objectives Remainder L

7.2 Contributions e e

7.3 Position with Reference to the Litterature,

7.3.1 Collaboration-Based Approaches

7.3.2 Time-Based Approaches

7.4 Limitations & Perspectives L
Bibliography

X1

147

149
149
149
150
150
150
152

155

xii

Abbreviations

BP
BPM
BPMN
XML
FOL
TLA
LTL
CTL
FBPMN

Business Process

Business Process Management

Business Process Modeling Notation
Extensible Markup Language

First Order Logic

Temporal Logic of Actions

Linear Temporal Logic

Computation Tree Logic

Formal Business Process Modelling Notation

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2

4.1
4.2

4.3
4.4

4.5
4.6
4.7
4.8

4.9
4.10

4.11

LIST OF FIGURES

The PAIS Lifecycle. (from source figure [9]) 2
BPM Lifecycle According to Weske. (from source figure [8]). 10
BPM Lifecycle. (from source figure [1]) oo o 11
BPMN Pool. e 13
Considered BPMN Events. e 14
Considered BPMN Activities. 14
Considered BPMN Gateways. o0 vttt 15
BPMN Connecting objects. 16
Travel Agency Case Study. (extended from an example in [23]) 17
Paper Reviewing Case Study. e 19
Approver Order Process. (extended from source figure [24]). 20
Refined Activity Lifecycle. (from source figure [3]) 21
Process Instance of PC Chair Notification Process. 22
Model Checking Method. 28
An Excerpt of TLA Syntax (figure taken from [17]). 28
Article Selection Process. L 42
Distribution of Selected Papers per Published Year (2008-2021). 45
A Subset of Supported BPMN Elements. 68

A Non-FIFO Pair Execution. The sending of the theoretical research precedes the sending
of the program description. Then program description is received before the theoretical

research message, thus the model execution is not FIFO-Pair. 75
A FIFO-Pair Execution. The sending of the theoretical research and the program descrip-
tion are received on different processes, so the execution is FIFO-Pair anyway. 75

A FIFO-Inbox Execution. The sending of proposal message precedes the executable, and
the associated receptions that occur on the same process director happen in the same order. 76
A Non-FIFO Inbox Execution. The execution is not be FIFO inbox because the sending
of proposal message precedes the executable, and the associated receptions that occur on
the same process director happen in the reverse order. 76
A FIFO Outbox Execution. The sending of program description is sent before the theoret-
ical research, both by Scientist process, and the associated receptions occur in this order.

A Non FIFO Outbox Execution. The execution is not be FIFO outbox because even the
receptions occur on different processes, the receive event of program description occurred
before the receive event of theoretical research. 0L, 7
A Non-Causal Execution. The sending of the proposal causally precedes the sending of
the description which causally precedes the sending of the quote. Then the quote cannot

be consumed before the proposal on the client in the causal communication model. 78
A Non-RSC Execution. The sending of the code message is occurred precedes the reception
of the proposal message. Two messages must not be in transit at the same time. 78
Completing Behaviour of a None Start Event. Before (left) and after (right) application
of the Ctrule.. e 81

Completing Behaviour of a Message Start Event. Before (left) and after (right) application
of the Ctrule.. e e e 81

Xiv

4.12

4.13

4.14

4.15

4.16

4.17

4.18
4.19

4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.30
4.29
4.31
4.32
4.33
4.34
4.35
4.36

4.37
4.38

5.1

5.2

5.3

5.4

LIST OF FIGURES

Starting Behaviour of None End Event. Before (left) and after (right) application of the

Strule. . . .o e 82
Starting Behaviour of a Terminate End Event. Before (left) and after (right) application
of the Strule. e 82
Starting Behaviour of a Message End Event. Before (left) and after (right) application of
the Strule. e 83
Starting Behaviour of an Abstract Task activity. Before (left) and after (right) application
of the Strule. 83
Completing Behaviour of an Abstract Task Activity. Before (left) and after (right) appli-
cation of the Ctrule. L 84
Starting Behaviour of a subprocess Activity. Before (left) and after (right) application of
the Strule. e 84

A Sub-Process Activity not Ready to Complete: a token is still present on one of its edges. 85
Starting Behaviour of a Send Task Activity. Before (left) and after (right) application of

the Strule. e 85
Completing Behaviour of a Send Task Activity. Before (left) and after (right) application
of the Ctrule.. e 86
Completing Behaviour of a Receive Task Activity. Before (left) and after (right) application
of the Ctrule.. e 86
Starting Behaviour of a Throw Message Intermediate Event. Before (left) and after (right)
application of the Strule. L 87
Starting Behaviour of a Catching Message Intermediate Event. Before (left) and after
(right) application of the St rule. L 87
Starting Behaviour of an Interrupting Message Boundary Event (task case). Before (left)
and after (right) application of the Strule. 88
Starting Behaviour of an Interrupting Message Boundary Event (subprocess case). Before
(left) and after (right) application of the St rule. 88
Completing Behaviour of a Splitting Parallel Gateway. Before (left) and after (right)
application of the Ctrule. 89
Completing Behaviour of a Merging Parallel Gateway. Before (left) and after (right) ap-
plication of the Ctrule. 90
Completing Behaviour of an Exclusive Gateway. Before (left) and after (right) application
ofthe Ctrule.. o e 90
Semantics of Inclusive Gateway According to the BPMN 2.0 Standard. (from source text
[B) - - o 91
Completing Behaviour of an Event-Based Gateway. Before (left) and after (right) appli-
cation of the Ctrule. e 91
Non Activable Inclusive Gateway. It has to wait for the token on e2 which is in Preg(OR, e6)
and Preg(OR,€T). .« .« o v o i e e e 92
Use of Strong Fairness to Avoid Infinite Loops (left) and Starvation (right). 94
BPMN Diagram with Deadlock. oo 94
Travel Agency Case Study. (Slightly adapted from an example in [23]) 96
Client/Worker Case Study. 96
Journal chair Process (Sound). L L 97
Journal chair Process (UNSound). 97

Timer Boundary Event with an Impossible Timeout. As the timeout on taskl is later than
the date imposed by the timer intermediate catch event, this timeout should never fire and
task2 should never be activated. 98

Completing Behaviour of a Timer Start Event (Date). Before (left) and after (right)

application of the Ctrule. 103
Starting Behaviour of a Timer Intermediate Catch Event (Date). Before (left) and after
(right) application of the Ct rule. 104
Completing Behaviour of a Timer Intermediate Catch Event (Duration). Before (left) and
after (right) application of the Ctrule. 104

Starting Behaviour of an Interrupting Timer Boundary Event (Date). Before (left) and
after (right) application of the Strule. 105

LIST OF FIGURES XV

9.5

5.6

2.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15
5.16
5.17

5.18
5.19

5.20

5.21
5.22

5.23

5.24

6.1
6.2

6.3
6.4
6.5

Starting Behaviour of an Interrupting Timer Boundary Event (Duration). Before (left)

and after (right) application of the St rule. 106
Starting Behaviour of a Non-Interrupting Timer Boundary Event (Duration). Before (left)
and After (right) application of the Strule. 106
Starting Behaviour of a Non-Interrupting Timer Boundary Event (Duration). Before (left)
and after (right) application of the Strule. 107

Starting Behaviour of a Non-Interrupting Timer Boundary Event (Cycle) with a Fixed
Start TimeDate and Duration. Before (left) and after (right) the first application of the
Strule. . .. e 107
Competing Behaviour of a non-Interrupting Timer Boundary Event (Cycle) with a Fixed
Start TimeDate and Duration. Before (left) and after (right) application of the Ct rule. . 108
Staring behaviour of a Non-Interrupting Timer Boundary Event (Cycle) with a Duration

and a Fixed Last TimeDate. Before (left) and after (right) application of the St rule.. . . 109
Staring Behaviour of a Non-Interrupting Timer Boundary Event (Cycle) with a Duration.
Before (left) and after (right) application of the Strule. 109
Completing Behaviour of an Event-Based Gateway: the Timer is Ready to Fire. Before
(left) and after (right) application of the Ctrule. 110

Staring Behaviour of an Activity with Interrupting Boundary Timer Event Configured
with Duration: Before (left) taskl and SP are ready to start and after (right) application
of the StActivity rule twice (once for taskl, once for SP. 112
Completing Behaviour of an Activity with Interrupting Boundary Timer Event Config-
ured with Duration: Before (left) taskl and SP are ready to complete and after (right)

application of the Ct rule (twice again). 112
Time Lags Pattern (End-to-Start). 115
Time Lags Pattern (Start-to-Start). 115
Duration Time Pattern. (Maximum delay for activity (left) and Maximum delay for process

(right)) . . e 117
Time Lags between Arbitrary Events. o oL 118
Fixed Date Element Pattern for an Activity. Earliest start date for the Activityl (P),

Latest complete date for the Activity2 and Latest start date for the Activity3 (Q). . .. 118
Fixed Date Element Pattern for a Process. Latest start date (P) and Latest complete date

Q)+ o e 119
Time Based Restrictions Pattern (Reading Article Example). 120
Dependent Variability Pattern. Variability based on time lags between activities (left) and

based on the time execution of an activity (right). 121
Cycle Element Pattern. Cycle number being fixed (left) and cycle number depending on a

condition C (right). e 122
Periodicity Pattern. Ending before a fixed date (left) and starting from a fixed date (right).123
Framework Overview. e 129
An Expert of the Alloy Implementation from the Syntax.als Module Represent the Activity

Signature. e e 134
A Simple Process Example with Time Date Constraint. 136
fbpmn Web Application (modelling and verification panel). 144

fbpmn Web Application (verification results). L. 145

xvi LIST OF FIGURES

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
3.4

3.5
3.6

3.7

4.1
4.2
4.3

5.1

5.2

6.1
6.2
6.3
6.4
6.5

7.1
7.2

LI1ST OF TABLES

Example of Truth Table Evaluation of a Set of Formulas. 26
Summary of TLAT Operators. i i 31
Sequences Module Main Operators. o 32
Summary of Alloy Logic Syntax and Semantics. (extended from [47,48]). 36
General Comparison of the Alloy and TLAT Tools. (from source table [54]) 39
Number of Studies per Database. L 44
Languages used Among the Selected Work. L. 54
Technologies used Among the Works. 55
Synthesis of Verification Related Attributes. (Petri Nets (PN), Automata (A), Process

Algebras (PA), Logic Formulas (LF), and Programming Language (PL)) 57
Synthesis of Tools. L e 59
Embraced BPMN Features (e stands for the supported elements, —— for the non-supported

elements, (o) mentions that isnot clear). Lo oL 60
BPMN Verification Tools Limitations. 62
Syntactic Representation of the Travel Agency Example. 71
FIFO Communication Models Variants. 74
Encoding of the Communication Models in First-Order Logic. 79
Time-related Features in BPMN and their Relation to the ISO-8601 Standard. (o) sup-

ported category in BPMN, (=) not supported 100
Time-Related Features in BPMN and their Relation to the ISO-8601 Standard. Supported

Category: BPMN and Us (e), BPMN Only (o), and Not Supported (—). 101
Translation between FOL and TLAT (NSE example). 130
Translation between FOL and Alloy (T'SE example). 133
Experimental Results. 139
Metrics from the Alloy Analyser Executed on a Subset of Examples. 141
Animation of a Counter-example (Model in Figure 2.8, for Soundness with Fifo Inbox

Mode) Generated with fopmn.o oo o 143
Comparison of Tool-Supported Approaches for the Analysis of Communication in BPMN. 151
Comparison between Approaches Supporting BPMN Time-Constructs. 152

xviii LIST OF TABLES

10

15

20

25

30

35

40

45

CHAPTER

1
I INTRODUCTION

Chapter content

1.1 Thesis Context i i i i i i it e e e e e e e e e e e e e e 1
1.2 Motivation and Problem Statement 2
1.3 Research Contribution 3
1.4 Thesis Structure 0 i i i it e e e e e 5
1.5 List of Publications 00000000, 6

1.1 Thesis Context

Business process management (BPM) focuses on the modelling and management of business processes by
using suitable techniques that allow organisations to be more efficient and flexible in achieving their goals.
Business process models are the key instruments of BPM. They explicitly represent the BPs in terms of
their activities and the execution constraints between them. A Business Process (BP) may be automated
in whole or in part by a software system. According to the temporal and logical dependencies set in an
underlying process model, an automated business process (also known as workflow) passes information
from one participant to another for action. The system works with automated business processes called
Process-Aware Information System.

Process-Aware Information Systems (PAISs) [1] are information systems that link Information Tech-
nology to Business Processes. Dumas et al. in [2] define a PAIS as “a software system that manages and
executes operational processes involving people, applications, and/or information sources on the basis of
process models”. The term process model, by definition, refers to a business process representation using
some graphical notation. In fact, in a PAIS (cf. Figure 1.1), process modelling is the initial step of the
business process lifecycle, called design. In this step, high-level business requirements are designed as a
process or a workflow. The models can be designed at different levels of abstraction, typically through
business process modelling notations and their supporting tools. A range of graphical notations have
been proposed for business process modelling, such as Business Process Model and Notation (BPMN) [3],
Event-driven Process Chain (EPC) [4], Yet Another Workflow Language (YAWL) [5], Unified Modelling
Language (UML) [6], etc. The second phase concerns the implementation of these business process mod-
els. In this step, the process models are automated into executable processes by refining the models into
operational process specifications and joining the different process activities to concrete applications and
organisational entities. This can achieve by using PAIS systems such as Workflow Management System
(WIMS) or Business Process Management Systems (BPMSs). The third step is the ezecution of these
process models. Here, the process model can be deployed to a process engine to be executed. The final
step is the process diagnosis. Here, the operational processes are analysed to identify possible problems
and find aspects that can be improved. The feedback of this phase may be used to redesign the processes,
and the cycle continues [7, 8].

A BPMS is a system that supports the design, analysis, execution, and monitoring of business pro-
cesses based on explicit process models [8]. BPMSs originate from WIMS (i.e., an older type of PAIS),
which are focused on modelling and execution steps and did not very well support the other phases of the
BPM’s lifecycle (cf. Chapter 2.2). In contrast, BPMS fully support the entire BPM lifecycle. Further-
more, BPMSs are the automated implementation of the business process models. Thus, the incorrectness
of the process models may directly impact the core of the business operations. For that, the ability to
detect errors in the early design phase and analyse process models is likely to become a desirable fea-
ture for tools supporting process modelling. Wherefore, without tools offering modelling and automatic

50

55

60

65

70

75

80

85

2 CHAPTER 1. INTRODUCTION

diagnosis

process process
enactment design

process
implementation

Figure 1.1: The PAIS Lifecycle. (from source figure [9])

verification of process models, a modeller expert can not guarantee the efficiency and reliability of the
process models.

To tackle this problem, the development of business process systems requires a shift to formal methods
to increase the designed solution’s reliability and avoid unexpected effects after their implementation. The
use of formal methods allows the designers to verify their process design’s correctness and detect potential
errors. If it is the case, the processes can be improved before implementation. One of the techniques used
to check the correctness of such systems is Model Checking (MC) [10]. Formally describing a business
process requires tackling several challenges. Among them, the business process models need to be viewed
from several distinct perspectives: control flow, interaction, data, resource, and time. The formal model
must take into account these perspectives. Thus, this thesis proposes a formal framework for supporting
the control flow, the interaction, and the time perspectives of business processes models in BPMs based
on BPMN as a graphical modelling language. The context of this thesis supports the two fundamental
phases of the BPM’s lifecycle, which are the process Design and Analysis.

The rest of the chapter introduces the motivations behind the research presented in this thesis, the
research questions it aims to answer, the research contributions of the thesis, and finally, the thesis
structure. |

1.2 Motivation and Problem Statement

BPMN became the most prominent notation for representing business processes, thanks to its wide usage
in academic and industrial contexts [11]. It is an ISO standard notation with good tooling support
(cf. Chapter 2.3). It allows business process designers to model both intra-organisational processes
(single processes) and inter-organisational collaborations where communication coordinates processes
in different organisations. This modelling can be achieved through the use of process and collaboration
diagrams. A business process diagram in BPMN defines as a sequence of activities, events, and gateways
(also called flow element), connected by sequence flows (also called control flow), that denotes their
ordering relations. The BPMN standard defines a theoretical concept, called a token, traversed the
process structure from its start element to its end element, used as an aid for defining the process
behaviour when it is performed. The behaviour of a process element can be defined by describing how
it interacts with the tokens. Depending on the semantics of that traversed flow element, the number of
tokens in a process can vary, as they are continuously generated and consumed. As an example, a start
event generates a token, while an end event consumes one. A collaboration diagram in BPMN, defines
the interaction amongst processes, using message flow element constructs (message activities and message
events) connected by message flows. In collaboration, the behaviour of a process element triggers message
flow to produce messages and its internal behaviour.

The fact that BPMN models are implementable and integrate constructs for transmitting messages
between processes makes their analysis and ensures their correctness before using them in a real context
a challenge. However, the BPMN standard is related to using the semi-formal definition to define its
execution semantics. This semantics is described in a semi-formal language and meta-model, and it is
dispersed through the specification. This leaves room for interpretation and hampers the formal analyses
that would be desirable to find defaults at design time rather than when running the processes and collab-

90

95

100

105

110

115

120

125

130

135

1.3. RESEARCH CONTRIBUTION 3

orations over business process engines. The current state-of-the-art has already proposed a formalisation
of the BPMN execution semantics. Indeed, attention has been raised to provide formal semantics for
collaboration diagrams to capture the features of message exchanges and data (cf. Chapter 3). Despite
all these efforts, these proposals leave apart essential features to consider when dealing with collaboration
diagrams which are the communication models between the nodes of the system and its configuration
in different communication modes. Meanwhile, BPMN is gaining interest as a modelling language in
new areas, such as the Internet of Things (IoT) [12, 13] where the communication and time perspectives
present its fundamental.

The time perspective is a critical dimension to consider as it is closely related to customer satisfaction
and cost reduction [14]. Time plays a role in negotiating frequent delays in outsourcing, ensuring the
completion of activities on time and the availability of the final product on time. The business process
field is influenced by a wide range of temporal constraints, which rise from constitutional, regulatory, and
managerial rules. Thus, BPMN defines a set of time-related elements (timer flow element). Each of these
timer elements defines time information according to its kind of TimerEventDefinitions [3]. However,
this time aspect is poorly addressed in the current standard initiatives. No explicit formal semantics
for BPMN time-related features is given in the standard. Further, to associate time information to
such elements. BPMN relies on the ISO-8601 standard time definitions. The ISO-8601 standard is
too reach and its description of time information is quite complex. In general, it defines three kinds of
TimerEventDefinitions (timeDate, timeDuration, and timeCycle) with a different format of configurations.
This makes it more difficult to perform a formal analysis of process models. Indeed, the absence of
a precise semantic for BPMN timer elements reduces the models’ comprehension. For that, most of
the previous attempts of formalising the BPMN time constructs execution semantics is based on the
introduction of additional modelling features to specify the temporal aspects (cf. Chapter 3) and leave
apart the features related to time-related events in the broader sense. In addition, the BPMN model
defines different temporal constructs. This may result in a model with complex scenarios in which it
is impossible to simultaneously satisfy all temporal perspectives of the process model. To analyse such
cases and detect inconsistencies, formal semantics of the temporal concepts used for specifying the time
perspective of a BPMN process model is required. Further, a lot of effort has been undertaken to identify
the most common time constraints in the business perspective, which have been called Process Time
Patterns [15]. The time patterns provide a universal and comprehensive set of notions for describing the
temporal aspects of business processes and eliciting fundamental requirements. In the literature, works
focus on describing the time patterns semantics specification using natural language and independently
of any specific process modelling language (cf. Chapter 3). However, less attention has been paid to
assessing the suitability of BPMN to express these time patterns graphically, and no formal semantics
for these patterns specified in BPMN was provided.

For that, this research work aims to answer the following questions that are strictly related.

Q1: Does the correctness of BPMN collaboration diagrams depend on the used communication models?

Q2: How to precisely describe the formal semantics of BPMN collaboration diagrams taking into account
different communication models?

Q3: How to formalise the execution semantics of the BPMN time constructs, including their relation
to the ISO-8601 standard format?

Q4: What are the time process patterns supported by the BPMN standard, and does our semantics
support all of them?

Q5: How to verify such formal models?, which are the properties of interest?, and can a formal semantics
of the BPMN collaborations drive the development of software tools based on BPMN collaboration
diagrams?

Roughly speaking, regarding all the previous requirements, a formal framework considering precise
semantics for the communication and time, enabling an exhaustive and automatic verification of the
BPMN models is crucial before performing business processes.

1.3 Research Contribution

In light of the shortcomings mentioned above, the core objective of this thesis is to provide a systematic
methodological approach to improve the modelling of the BPMN process and collaboration diagrams. We

140

145

150

155

160

165

170

175

180

185

4 CHAPTER 1. INTRODUCTION

intend to introduce a formal framework that allows novice and experienced BPMN designers to understand
their models and properties better. The approach contributes a generic formalisation that supports the
control flow elements, communication, and time perspectives of BPMN models. Furthermore, it provides
a foundation technique for modelling and verifying the consistency of the execution semantics of the
BP models, taking into account distinctive characteristics introduced by different communication modes
and modelling with different time-aware process constructs. The main research contributions can be
summarised as follows:

e A precise formal semantics for a subset of BPMN elements, including control flow elements, subpro-
cess, message exchanges, communication modes for modelling process and collaboration diagrams,
is provided. This semantics is compliant with the operational execution semantics described in
the standard [3]. The formal semantics is defined on BPMN elements in terms of First-Order
Logic (FOL), rather than encoding into other formalisms. The FOL semantics provides a univer-
sal and comprehensive set of notions for describing business processes’ execution behaviour and
eliciting fundamental requirements. Further, to foster the use of the BPMN collaboration models
in a wide range of application scenarios (e.g., IoT systems), a modular structure for incorporating
seven generic communication models relating to message-passing behaviours between and within
processes and their formal semantics definition is provided. Moreover, the modular structure in-
cludes ad-hoc communication models (a specific model built by assembling micro communication
models that offer different sending and receiving messages constraints). The formal definition of
these models will foster the integration of the communication models into BP systems, significantly
widen the application scope of BPM.

e A precise formal semantics for BPMN time-related constructs is provided. This semantics is based
on an in-depth analysis of the time definition types (date-times, durations, and cycles) regarding
the ISO-8601 formats [16] as specified in the BPMN standard [3]. The formal semantics allows
avoiding ambiguities regarding the use of temporal concepts and helping to detect or predicate
possible inconsistencies or critical situations that may occur during run time (e.g., excessive de-
lays). Moreover, a well-founded set of time patterns representing temporal concepts in BPMN is
collected from the literature. These time patterns provide a universal and comprehensive set of
notions for describing the temporal aspects of BPMN business processes and eliciting fundamental
requirements. In particular, we discuss how the provided semantics support each time pattern’s
related BPMN process model.

e A generic framework that supports the formal semantics, including the communication models, is
provided. This framework performs the verification of correctness properties for business process
and collaboration models automatically. The implementation of the semantics is given in TLA™T [17]
and Alloy [18] as a set of theories. This corresponds to a pure syntactic transcription of the FOL
into the corresponding TLA™ \ Alloy fragments. Moreover, it supports the verification of a novel
variant of BP properties introduced for the BPMN collaboration diagrams. Moreover, intending to
give more flexibility and freedom for the designer, the framework supports an arbitrary topology of
business process models. It does not impose any syntactical restriction on the usage of the modelling
notation, such as well-structureless (e.g., the forbidden use of mixed gateways format). Farther,
the framework considers advanced aspects: (i) including the support of the ad-hoc communication
models, (ii) using the animation to illustrate situations where a BPMN schema is found to violate
a given property, and (iii) supporting two different notions of time: an abstracted version encoded
in TLAT and an explicit one encoded in Alloy.

Altogether, the results presented in this thesis aim at (1) provide a formalisation of a subset of
BPMN execution semantics that supports control flow, time, and interaction and that is parametric with
reference to the properties of the communication between participants, (2) support this formalisation
with tools that automatically perform the verification of correctness properties for the BPMN process
and collaboration models.

1.4. THESIS STRUCTURE)

1.4 Thesis Structure

This doctoral thesis is divided into four parts and seven chapters. Bibliography and appendices complete
190 these parts.

Part I - State of the Art.

e Chapter 2 - Background presents the necessary background information by introducing the
process modelling languages as well as the formal descriptions and notations used throughout the
thesis. In practice, BPMN, FOL, TLAT and Alloy languages are presented.

195 e Chapter 3 - Literature Review positions our work by reviewing the existing literature on the
formalisation of BPMN business process models addressing the support and the verification of
business processes dealing with the communication and the temporal aspects.

Part IT - BPMN 2.0 Semantics Formalisation. This part is made up of two chapters that
gathers our semantics.

200 e Chapter 4 - BPMN and Communication provides a formal semantics for the BPMN collabo-
ration diagram. First, it defines seven possible communication models relating to message-passing
behaviours between and within processes and provides their formalisation using FOL. Second, it
presents the FOL semantics of each BPMN element, taking into account these communication
models. Finally, it shows how you can interchange them when studying a given BPMN schema.

205 e Chapter 5 - BPMN and Time provides the formalisation of BPMN time construct in the
presence of an explicit version of time considering the ISO specification for date and time, time
intervals, and recurring intervals. Then, it presents its support for eight-time patterns in BPMN.

Part III - From Formal Semantics to Tool Support. This part focuses on the implementation
of the proposed formalisations.

210 e Chapter 6 - fbpmn: Formal BPMN Framework presents a framework for verifying a large
class of BPMN schemas against many classical properties. It shows the implementation of the for-
malisations into two formal languages TLA' and Alloy, the verification process, and the evaluation
of the tool under a set of experiments.

Part IV - Conclusion and Future Work. This part concludes the work.

215 e Chapter 7 - Conclusion and Future Work concludes this thesis by summarising the presented
contributions and discussing potential future extensions.

6 CHAPTER 1. INTRODUCTION

1.5 List of Publications

e Sara Houhou, Souheib Baarir, Pascal Poizat, Philippe Quéinnec, and Laid Kahloul. A First-Order
Logic Verification Framework for Communication-Parametric and Time-Aware BPMN Collabora-
220 tions. Information Systems, 2021. (Core: A)

e Sara Houhou, Souheib Baarir, Pascal Poizat, and Philippe Quéinnec. A Direct Formal Seman-

tics for BPMN Time-Related Constructs. In: 16th International Conference on Evaluation of

Novel Approaches to Software Engineering (ENASE) 2021. (Core: B, Best Student Paper Award
Nominate)

225 e Sara Houhou, Souheib Baarir, Pascal Poizat, and Philippe Quéinnec. A First-Order Logic Se-

mantics for Communication-Parametric BPMN Collaborations. In : 17th International Conference
on Business Process Management (BPM), p. 52-68. Springer, 2019. (Core: A, Best Paper Award)

Part 1

State of the Art

230

235

240

245

250

255

260

CHAPTER

2
I BACKGROUND

The only way of discovering the limits of the possible is to ven-
ture a little way past them into the impossible.

CLARKE’S SECOND Law

Chapter content

2.1 Introduction @ @ i i i ittt 9
2.2 Business Process Management (BPM) 10
2.3 Business Process Modelling Language (BPMN) 12
2.3.1 BPMN Notation 13
2.3.2 Running Example o 15
2.3.3 BPMN XML Representation 18
2.3.4 BPMN Operational Semantics 20
2.4 First-Order Logic (FOL)t iiiin.. 23
2.4.1 Syntax of First-Order Formulas 23
2.4.2 Semantics of First-Order Logic Formulas 25
2.5 Verification Methods 0 0. 26
2.5. 1 Test 26
2.5.2 Abstract Interpretation Lo 27
2.5.3 Theorem Proving oo 27
2.5.4 Model-Checking 27
2.6 Verification Languages & Tools, 27
2.6.1 TLA Logic and TLAT Language 28
2.6.2 Alloy Logic & Language 34
2.7 SUmMmary ot e e e e e e e e e e e e e e e e e e 38

2.1 Introduction

This chapter aims to provide an overall understanding of the background notations relevant to the disser-
tation content. Firstly, it presents the concepts and technologies relevant to business process management
using a business process life-cycle. Secondly, it introduces the standard modelling notation BPMN 2.0,
and it gives two BPMN collaboration diagrams scenarios to be exploited through the rest of the thesis.
Then, it presents the existing verification methods. Finally, it provides an overview of the First-Order
Logic specification, the TLAT and Alloy formal languages. These later are increasingly adopted and have
been successfully applied to complex systems (e.g., the works in [19] and [20]).

265

270

275

280

285

290

295

10 CHAPTER 2. BACKGROUND

Evaluation:
Process Mining
Business Activity Monitoring

" Evaluation
K Design:

Administration Business Process

Enactment: i Desi n & Identification and
Operation Enactment and A Ig . Modeling
Monitoring : Stakeholders nalysis

Maintenance Analysis:
: - Validation

Simulation

: Configuration : Verification

Configuration:
System Selection
Implementation
Test and Deployment

Figure 2.1: BPM Lifecycle According to Weske. (from source figure [8])

2.2 Business Process Management (BPM)

Business Process Management (BPM) is a discipline for improving and optimising business processes,
centred on the processes integration and management to achieve business goals. BPM was founded to
develop approaches to the operationalisation of business processes based on software technologies. BPM
is described by Dumas et al. as “A body of methods, techniques and tools to identify, discover, analyse,
redesign, execute, and monitor business processes to optimise their performance.[1]”. In other terms,
M.Weske define the BPM by “A Business process management includes concepts, methods, and techniques
to support the design, administration, configuration, enactment, and analysis of business processes.[21]”

BPM is about improving and managing a set of events, activities, and decisions that ultimately add
value to an organisation and its clients. These successions of events, activities, and decisions are called
processes [1]. The key instrument of BPM is the Business Process (BP) notion. M.Weske defines BP as “4
business process consists of a set of activities that are performed in coordination in an organisational and
technical environment. These activities jointly realise a business goal. Fach business process is enacted by
a single organisation, but it may interact with business processes performed by other organisations. [21]”
With the same insight, M.Dumas.et al., define a business process as “a collection of inter-related events,
activities, and decision points that involve a number of actors and objects, which collectively lead to an
outcome that is of value to at least one customer. [1]”. In general, BP is a particular type of process,
defined as a set of tasks that need to be executed in a specific order to realise one or more business goals.
The business processes describing an internal behaviour limited to one organisation are called, intra-
organisational processes. Whilst those interacting with business processes, organisations, for example,
providing information to them based on their requests, are called inter-organisational processes.

A set of phases characterises BPM, noted by a BPM lifecycle, that occurs cyclically to adapt and
improve the model. According to M.Weske [8], the lifecycle of BPM is composed of four main phases, as
shown in Figure 2.1.

e Design and Analysis. Firstly, the business process is identified, and a model representing the
process is manually designed and/or automatically elicited. The obtained process model is then
validated by assessing its formal correctness, simulating all the possible executions, estimating
costs, execution time and resources allocation. All these analyses are carried out based uniquely
on the model without actually executing the process. In addition, the model is manually inspected
to verify that all the relevant aspects characterising the process are captured in the model.

e Configuration. Once the process model is defined and validated, it is implemented. This can
be done in different ways. The process model can be refined to become executable by a BPMS
(a software component responsible for coordinating the execution of the process according to the

2.2.

300

305

310

BUSINESS PROCESS MANAGEMENT (BPM) 11

model). Alternatively, ad-hoc software that behaves according to the process model can be devel-
oped. Finally, the process model can derive a set of policies or guidelines that human operators
should follow. It is worth noting that, depending on how the process is implemented, the execution
of the process can be completely, partially or not be carried out automatically and autonomously.
Generally speaking, whenever human operators are involved in executing activities, the process is
not completely automated.

e Enactment. Once the process is implemented, it can be executed. While the process is running,
it is monitored to identify when actual executions take place (i.e., an instance of the process is
created) and terminate when activities composing the process are started and concluded, and if
exceptions occur during the execution of the process or a specific activity. This information is
usually collected and stored in log files. If the process is (partially) automated, the BPMS (or the
ad-hoc software) makes sure that activities are executed at the right time.

e Evaluation. Once the process is enacted, the real efficiency and effectiveness of the process are
assessed. For instance, the average time spent running each activity can be determined, as well as
the idle time. Possible bottlenecks in the execution and allocation of activities can be identified.
Additionally, it can be determined to which extent the process model reflects the actual execution
of the process. Such information can then be used as an input for the Design and Analysis phase,
thus completing the cycle.

)
Process

identification
~——oo

Process architecture

)

Conformance and Process

performance discovery
insights
———

As-is process
model

Process Process
monitoring analysis

=

Insights on

weaknesses a \ \ \

their impac _'_)_" @
/ /

/

Executable
process
model

- | ; By /'-
Process Process

implementation | 1, process redesign
model
ofeee oo X
| =
1
- . o — o O

Figure 2.2: BPM Lifecycle. (from source figure [1])

In [1], Dumas et al. describe the lifecycle of BPM, as shown in Figure 2.2. However, they propose a

315 slightly different classification of the phases characterising such a lifecycle. The figure distinguishes six
major management activities for business processes.

320

e Process identification. In this phase, the modeller describes the overall process organisation as
a process architecture.

e Process discovery. In this phase, the modeller use discovery techniques (e.g., observation, docu-
ment analysis, automated process discovery, etc.), modelling notations (e.g., BPMN, DMN; etc.),

325

330

335

340

345

350

355

360

365

370

12 CHAPTER 2. BACKGROUND

and tools that include (syntax, style checking, model repository management, and dictionary) for
discovering, decorticating, and capturing the process architecture as a business model. This phase
comes up with an as-is process model that describes the process (i.e., how it currently is and who
are involved in the process on a regular basis).

e Process analysis. In this phase, the modeller uses the as-is process model and the associated doc-
umentation for identifying, quantifying weaknesses (i.e., issues) and the impact on the performance
of the process by using them.

e Process redesign. In this phase, the modeller modifies the as-is process model according to the
resulting insights and weaknesses that are identified in the analysis phase and comes up with a to-be
process model. This phase is about making a trade-off between different performance dimensions,
for which we find: time, cost, quality, and flexibility. The art of the redesign phase is to improve
the model with one of these dimensions without affecting the other dimensions.

e Process implementation. In this phase the to-be process model is putting into execution. To
establish this step, two actions are required: (i) Providing an information systems infrastructure
for running the process. (ii) Educating and training people to perform the to-be process model or
putting in place a system for continuously managing the business process’s performance.

e Process monitoring. This phase concerns the process performance and conformance observation
to insight any unexpected impact of the changes made in the process. In case of the non-achieved
objectives stated in the redesign phase, the modeller can proceed with another cycle of process
discovery, analysis, redesign, and implementation.

As the main focus of this thesis is on business process design and analysis, the following sections
define a set of notions used in these phases.

2.3 Business Process Modelling Language (BPMN)

A range of graphical process modelling languages have been proposed to represent business process models
such as BPMN |[3], Petri nets (PN) [22], Event-driven Process Chains (EPCs) [4], YAWL [5], UML activity
diagrams [6], etc. Without limiting the generality of our work, we select and use BPMN as input notation.

BPMN is the leading standard in the context of business processes and workflow modelling languages.
The primary goal of BPMN is to provide a notation that is readily understandable by business users.

BPMN was released in 2004 by the Business Process Management Initiative (BPMI) [3] as a graphical
notation (partially inspired by UML Activity Diagrams) to represent the graphical layout of business
processes. BPMN is highly adopted by business analysts and has acquired a clear relevance among the
notations used to model business processes in academia and industry. The ever-increasing number of
adoptions from companies and the growing interest in this notation caused the adoption of BPMN as an
OMG standard in 2006. In 2013, BPMN 2.0 was named as an ISO/TEC standard for modelling business
processes. BPMN has different versions from (1.0, 1.1, 1.2, 2.0). BPMN 1.X, (X € 0, 1,2) versions did
not have a clearly defined semantics nor a native serialisation format. This is why we focus on the newest
major version of BPMN, namely 2.0. The BPMN 2.0 specification extends the scope and the capabilities
of the BPMN 1. X in several areas (execution semantics for all BPMN elements, a wide collection of
constructs, modelling interactions, etc.).

BPMN provides a graphical notation representing a business process as a Business Process Diagram
(BPD). It defines four main kinds of diagrams: process, collaboration, choreography, and conversation
diagrams. This thesis focuses on the two first. A process diagram is used to model the activities of a single
organisation. Collaboration diagrams can be defined with different processes (for various organisations),
exchanging messages and cooperating to reach a shared objective. This thesis abstracts away from data
(data objects, data stores and message payloads). Therefore, message (resp. event instance) and message
type (resp. event type) are used interchangeably in the sequel. For a complete and detailed description
of each BPMN diagram, please refer to the official BPMN specification [3].

The following sections describe a subset of BPMN elements notation and then introduce how to
employ BPMN notations as a running example for the rest of the document.

375

380

385

390

395

400

405

410

415

2.3. BUSINESS PROCESS MODELLING LANGUAGE (BPMN) 13

Pool Name

Figure 2.3: BPMN Pool.

2.3.1 BPMN Notation

BPMN is the well-known diagrammatic notation for supporting the specification of business processes.
The notational elements of BPMN are classified into four groups: Flow objects, Connecting objects,
Artefacts and Swimlanes. The flow objects and connecting objects are the basic elements for constructing
business processes. The extra information and the organisation perspective of a business process diagram
are expressed using artefacts and swimlanes. As the artefacts and the swimlanes are unrelated to the
process flows and do not have a semantics-based execution, we describe only the elements considered in
the thesis.

1. Pools group a set of activities with some common characteristic, e.g., a specific role or a process
participant capturing the resource perspective. They represent a participant or organisation as a
process diagram that may be involved in collaboration with other processes to represent a collab-
oration diagram. Graphically, a pool is represented by a rectangle with a specified name referring
to an organisation (see Figure 2.3).

2. Flow Objects are the basic graphical elements that allow defining the behaviour of the BPMN
model. The flow objects fall into three categories: Ewvents, Activities, and Gateways.

e Events represent facts that occur instantaneously during process execution and affect the

sequencing or timing of process activities. They are drawn as circles, which may contain
markers to diversify the kind of the event trigger (see Figure 2.4). A process requires a
starting point and a termination point. In BPMN, these are identified by the Start events
and the End events. A Start event is the start point of the process that initiates a new
process instance. An End event ends the flow of activities; that will typically (under certain
conditions) terminate or complete a process instance.
In addition, this set of elements is called by the event because it may (optionally) trigger an
event, e.g., send a message to another process or environment. Different events are triggered
during the execution of a process instance, e.g., the arrival of a command order that neither
starts a new process instance nor terminates one. This event affects the process flow in the
sense that it must occur for the process to go on, called by Intermediate events. BPMN
defines a set of trigger types (e.g., Message, Signal, Timer, etc.) It associates to each event
an eventDefinition to determine its trigger type. The eventDefinition may have one or more
trigger types. If its eventDefinition is empty, then the event node type is None. If the
eventDefinition has more than one trigger, the event node type is Multiple (this type of event
is out of the scope of this thesis). In this thesis, we focus on the following event types:

— None Start Event represents the initiating point of a process instance without any con-
dition.

— Message Start Fvent initiates a process instance when a message is received from an
external participant.

— Timer Start Fvent initiates a process instance when a fixed time is elapsed.

— Message Intermediate Throw Fvent sends a message to an external participant.

— Message Intermediate Catch FEvent receives a message from an external participant.

— Timer Intermediate Catch Event represents delays expected within the process.

— Boundary Event is an intermediate event that is attached to the boundary of an activity.
There are two kinds of boundary events: interrupting intermediate events that interrupt
the activity they are attached to. Whereas non-interrupting intermediate events initiate
a new process path (i.e., launch activities in parallel). The behaviour of these events is
based on some condition (e.g., a message reception or the deadline of a timeout).

14 CHAPTER 2. BACKGROUND

— None End Event terminates the process instance.
— Message End Fvent sends a message to an external participant.
— Terminate End Event indicates that all activities in the process should be immediately

ended.
Start Event Message Start Timer Start Event
Event 7
/
=)
Message

@ Message =
Boundary Event Boundary Event

Non-interruptin interruptin
Message Message Timer (piing) piing)

Intermediate Intermediate Intermediate
Throw Event Catch Event Catch Event
O @ / ‘\

End Event Message End Termlnate End Timer Boundary\ :/
Event Event Event (Non-

interrupting) (interrupting)

Figure 2.4: Considered BPMN FEvents.

420 Furthermore, the term event in the BPMN standard has many interpretations. It denotes
an event node (catching or throwing event) or an event in a closer sense (i.e., a particular
occurrence of something at a specific time). In this thesis, the term event denotes an event
node under the primary use of the word in the BPMN standard. The term trigger indicates
the occurrence of something in case of catching. In contrast, it means a result in a throwing

425 case.

o Activities identify work that is realised in a process. There are two kinds of activities: an
elementary atomic unit of work that can not be broken down to a more acceptable level of
abstraction, called Task, and compound activities whose internal details are modelled using
other elements, called subprocess. Tasks are drawn as rectangles with rounded corners having

430 a label that specify their name. Subprocess can either be represented as collapsed, i.e., as a
task decorated by an +’ sign, or can be expanded to show internal details (see Figure 2.5).
Activities allow applying different actions under various circumstances. For that, BPMN
provides different task types. In this work, we are interested in the following types:

— Abstract Task represents the performing of an action.
435 — Send Task represents the performing of an action involving the sending of a message.
— Receive Task represents the performing of an action involving the receiving of a message.

s

] =~
Abstract Task Send Task Receive Task
_
(SubProcess

|

Figure 2.5: Considered BPMN Activities.

e Gateways are used to control the divergence and convergence of the sequence flow, particularly
the activity execution order. Graphically, a gateway is drawn as a diamond with an internal
marker that differentiates their routing behaviour (See Figure 2.6). There are five main types

440 of gateways in BPMN, and we are taking into account four of them.

— Ezclusive Gateway, denote by ® symbol is a routing point in the process flow where it
is used to choose one of the sets of mutually exclusive alternative incoming or outgoing
branches. The choice of the outgoing branches is based on the evaluation of a data-based
condition.

2.3. BUSINESS PROCESS MODELLING LANGUAGE (BPMN) 15

445 — Parallel Gateway, denote by @ symbol, is a routing point in the process flow where it
synchronises concurrent flows for all its incoming branches and creates concurrent flows
for all its outgoing branches.

Inclusive Gateway, denote by @ symbol, is a routing point in the process flow where it
has two specific behaviours. It synchronises two or more concurrent incoming edges and
450 creates concurrent flows for all or some of its outgoing edges according to their condition
evaluation.

— FEvent-based Gateway, denote by symbol, is a routing point in the process flow where
event occurrence (time elapsing or message receiving) determines which path to follow,
and all the others are discarded.

455 The four gateway types (exclusive, parallel, and inclusive) can be merging, splitting, or mixed
(both merging and splitting).

Exclusive Split
Gateway

inclusive Join
Gateway

Exclusive Join Inclusive Split
Gateway Gateway

: :: : : Parallel Join Event Based
Parallel Split Gateway Gateway
Gateway

Figure 2.6: Considered BPMN Gateways.

3. Connecting Objects are used to connect flow objects to each other or to the artefacts. BPMN
defines three main kinds: Sequence flow, Message flow, or an Association flow (Figure 2.7).

e Sequence flow shows the execution order of flow elements. This category can be decomposed
460 into normal sequence flows, conditional sequence flows (expressing the condition for some
branch to be activated), and default sequence flows (the default branch to activate if all

others (conditional ones) cannot be).

e Message flow determines the message following between pools.

e Association flow allows to associate artefacts to a flow or to connect them to an activity. The
465 association flow is out of the scope of this thesis.

2.3.2 Running Example

As motivated in Chapter 1, both the specification and operational semantics support of the communication
and the temporal constraints constitute fundamental challenges for the BPMN models. To help the

470 reader get familiar with the BPMN modelling activity and discuss some of the challenges emerging in
these contexts, we consider two examples consisting of two collaboration diagrams. This section presents
for each of them the business scenario and the corresponding collaboration diagrams.

Travel Agency Collaboration Diagram. This example introduces a scenario concerning booking
travel. We use this scenario to motivate our approach through Chapters 4 and 6. The presented example

475 is derived from the one presented in [23]|. The scenario involves two participants that act in a collaboration
diagram. These are:

480

485

490

500

505

510

16 CHAPTER 2. BACKGROUND

[Condition)]

L
L

S
-

S
Y

Default Sequence Flow Normal Seguence Flow Condition Sequence Flow

Message Flow Association Flow

Figure 2.7: BPMN Connecting objects.

e Customer is a person who performs the booking travel request.
e Travel agency is an application that performs the confirmation of the travel reservation.

Figure 2.8 shows the collaboration diagram of the booking travel procedure. The collaboration starts
when the Customer sends a request for an offer to the Travel agency.

e The Travel Agency sends offers to the client (loop with an exclusive gateway) in a first subprocess.
Then, it starts a second subprocess to exchange information (booking, payment, confirmation,
ticket) with the Customer.

e The Customer may reject some of the offers, and at some point, he/she may accept one (loop using
two exclusive gateways).

e If so, he/she stops accepting offers, informs the Travel Agency, and sends the booking and the
payment information to the Travel Agency and gets the corresponding tickets and confirmation.
The Travel Agency and the Customer rely on interrupting features to deal with the fact that the
Customer stops accepting offers as soon as he/she has agreed on one.

e The Travel Agency has only a fixed number of offers to send. Therefore, if the Customer has not
agreed on an offer before the end of this set, the sending of offers by the Travel Agency will stop.
In addition, the Travel Agency will send an interrupting message to the client (message boundary
event on the customer offer reception task), which will interrupt the exchange subprocess (message
boundary event on the second agency subprocess).

o If the Customer has accepted an offer before the end of the offers, he/she will start to send
information to the Travel Agency. The Travel Agency will interrupt the sending of the set of offers
and continue on the subprocess of the booking process

As one can see, the transaction between commumnication, interrupting features makes the overall behaviour
of the collaboration challenging to grasp. Will the collaboration always reach one of its ends? Either
that the client and the agency have agreed on an offer (them ending in Transaction Completed and Offer
Completed, respectively) or that they have not waited for some event to happen (ending in Transaction
Aborted and Offer Aborted, respectively). Will the collaboration reach one of its ends but with pending
messages that have been sent but neither received nor treated? Or, worse, will the collaboration deadlock
at some point depending on the choices made by the Customer and the Travel Agency, and the passage
of time?

Paper Reviewing Process Collaboration Diagram. This example introduces a scenario con-
cerning the management of a paper reviewing process of a scientific paper sending for a special issue in
a journal. We use this scenario to motivate our approach through Chapter 5. The presented example is
inspired by the one described in [2, Figure 4.79, Section 4.7]. The scenario involves three participants
that act in a collaboration diagram. They are :

e Journal PC Chair, who performs the assignment of the submitted paper and managing the final
decision. He is a person who edits the journal.

e Author, who performs the writing of the research paper and its submission. He is a person who
specialises in the journal topic domain.

17

2.3. BUSINESS PROCESS MODELLING LANGUAGE (BPMN)

([€&] ur 2jdwnra up WoLf

papualra) fipngg asvy) fiouaby jpavs] :8°7 9IN31g

s N\ ()
sohglo
pajsjdwon panisosy ponisosy pajsidwon
poeldwo) Jeyo Buijoog Ad ﬁ JuswAhed Bupjoog Bunjoog pelS snujuod sieyo Uonewlou| pusg SI8JO eI JuswieBeuely
J840 Hels
4
1940 3
o1 Jepi0 |« Buryjoog wuyuod 2
9ze 5zo vze [oAE.L HEN Z1e e
= = i
; N 3
| Q | | ¢Joyo alop jsix3 190 JoulI0 | 2
| | | 1Yo | | |
| Buipueg doig
abueyox:
L @ dsebueyox3 | |) _ dS 4940 ! _
pi0qY SnI208Y | | | t t |
- - - - |
b !
128 | | _
peloay Joyo | |
| | | } } |
[j—— — === - —_ | m:: loAel] ! Luliego r— — =
wuopeuyuoy | o _ gyulpoqy | I Ow Jsanbay Jay
[gIuf19doLL wtr JuswAed 1 EL. 1840 J08|9S | ZJW| I0NON | I
! ! I I
! | j ' ' papioqy | |)
| | I I | uopoesuelL oqy pueg | I |
[| [[[| _ [
I I I I I I
I | ole | I |
| I | uonew.ou|
pajeidwon panieoay i | Bupoog | o
uonoesues | ﬁ oreye ferei veis | &
5]
1840 3
lonei] hed | |enel] yoog [}
aAel] Y09
g0 sok po 19Ael | %934D
paWIUOD PanRdBY 3L N = Kousby sy} o N 180 10} 159NbS;
Bunjoog ZBunsaisyul O 10} ¥ Ny
: 1840 8y} SI
ouge

515

520

525

530

535

540

545

550

555

560

565

1
2
3
4
5
6

7
8

18 CHAPTER 2. BACKGROUND

e Reviewer, who performs the reviewing process. He is a person with knowledge in the journal
special issue topic.

Figure 2.9 presents the collaboration diagram of the reviewing procedure. For simplification, we
consider only one author and only one reviewer. The collaboration starting when the submitted date is
reached, and the author sends a paper to the Journal PC Chair through the submit paper send task.

e The Author will wait until the arrival of the notification response. If he/she doesn’t receive a
notification by 120 days from the sending date, the author withdraws the paper.

e The Journal PC Chair starts when the specified date and time, (2021-01-17 T 00:00:00), of the
CFP is reached. This is reflected by the timer start event of the process at the Journal PC Chair.
Then, it waits for submissions. The receive activity is authorised until the specified close date,
given as (2021-03-17 T 00:00:00). When the process receives a research paper, he/she assigns it
to a Reviewer via the send task assign paper. To avoid delay for the response review process,
he/she sends before the deadline date a reminder two times in a period of 15 days between. This is
reflected by a non-interrupting boundary time event associated with the receive review task, (R2/
P15D / 2020-04-29 T 00:00:00).

e The Reviewer process receives a Review Request message to start. The Reviewer starts preparing
a review, and he/she sends it back to the Journal PC Chair when it is ready.

o After the Journal PC Chair has received a review, he/she prepares the acceptance/rejection letter
or a borderline letter if the paper requires further improvements. Then, he/she attaches the review
to the notification letter and sends it to the author at the notification date and time specified in the
CFP (2021-05-16 T 00:00). The Journal PC Chair must conform to the deadline before sending
the notification. An intermediate timer event reflects this.

In addition to the problems introduced by the communication as cited in the first example above, this
model scenario presents a different need for temporal assurance such as deadlines: Will the collaboration
process review be completed on time before the publication’s deadlines?. Will the response of the Reviewer
arrive on time?. Also, it presents the need to use different temporal models such as an activity or a
notification that must be done by a predefined date; or the author’s response in the case of the second
review where it must be done before a period of 15 days starting from a specific date, etc.

2.3.3 BPMN XML Representation

The BPMN structure is described using the BPMN meta-model under the form of class diagrams.
BPMN 2.0 is the first release that provides for all the BPMN elements an Extensible Markup Lan-
guage (XML) Schema Definition (XSD) to exchange BPMN 2.0 diagrams between tools, companies, etc.
Consequently, BPMN diagrams can be textually represented using an XML based notation, saved under
.bpmn, which is used by several modelling tools, e.g., the Eclipse BPMN Modeller, Camunda Modeller,
etc.

In general, the definition of an element in XML schema collects all its attributes, visible or invisible,
graphically. As an example Listing 2.1 shows the corresponding XML fragment of the Send Task activity
extracted from the collaboration diagram presented in Figure 2.8. The fragment describes two parts: the
first (lines 1-5) depict the semantics information of the task (id, expression, the incoming and outgoing
edges), and the second (lines 7-8) depict the localisation of the element in the diagram. We note in this
example that the attributes expression and results Variables are invisible on the diagram.

<bpmn:sendTask id="Tasklbn6nb5q" name="Make Travel Offer"
bpmn:expression="0ffre=true" bpmn:resultVariable="0ffer">

<bpmn:incoming>Flow11b0t0o</bpmn:incoming>
<bpmn:outgoing>Flowl4ugxng</bpmn:outgoing>

</bpmn : sendTask>

<bpmndi:BPMNShape id="SendTaskObw2qnzdi" bpmnElement="Tasklbn6nbq">
<dc:Bounds x="340" y="500" width="100" height="80" />

</bpmndi : BPMNShape>

Listing 2.1: Make Travel Offer XML Fragment using Camunda Modeller

In our work, we use the BPMN XML representation for parsing the diagrams and generating the

19

2.3. BUSINESS PROCESS MODELLING LANGUAGE (BPMN)

fipnyg 950 buwnawdy 4odvg :g°g 2In3rg

aozid
uopedyoN
10} Nep

Jaded
Y MeJpuim
>
c
5
I+
Jaded pueg
pue
O
x < uoiEeSIoN
620 9ze A998y |
] |
A |
I I
| Jaded |
__ _ __ _ e e L L L L __________ _ _ _ _ _ vuoeoysou _ | |
°q
| }
I —_— I
| |
| Jaya| auleploq €9 |
aledaiq 00:00:00
N 9le
| 00:00:00 mmw L LL-€0-1202 |
1 91-60-1202 ok ajeq 850|0 v 00:00
Aeq uonesunoN s 1/1-10-1202
o500) cmeney $MBIAB) 10} YA el <
puodsg c
uoneayo onal 3
" :w‘: N souejdeooe s)insal Yog MBINSY BAI909Y Jaded ubissy Jaded anleoay 3
puss aledaid 98 ze o
= — O g
o
& A g
18 = | |
00:00:00 1L 62-¥0
v eziasdre | |
Jape| uonoslas IN3g | |
sLe asedaid Japulway pueg
| go |
——
|]
T
| |
[e_ __ o _____ e -
_“MWNN_W_‘__%._: - —_ =4 MaIney ,m:_u__ Joded |
| | |
+ |
|
Jspuiwey
\M// BN | |
=)
= |
|
ysiuiy X
dSpus dsuers o
m.
gzo MaIABI WANS e MalAal asedald -]
vee €ce (443

$59001dgNs Malnay

mianal
0} jaded anieoay

570

575

580

585

590

595

600

20 CHAPTER 2. BACKGROUND

Receive token Create token J

é‘ [& Approve é [&]

Customer Approve Product

Create instance
to perform
work

Figure 2.10: Approver Order Process. (extended from source figure [24]).

corresponding semantics and in the animation of it.

2.3.4 BPMN Operational Semantics

BPMN 2.0 is more than a drawing language. It supports the process execution under a business process
engine. BPMN 2.0 specification extends the scope and capabilities of BPMN 1.x in several areas. Among
other improvements, it describes the execution semantics for all BPMN elements. The operational se-
mantics of BPMN defines how the process model elements shall be processed during its execution. When
the execution of a business process model starts, a process instance is created. Then, nodes of a process
instance are processed and executed according to the order in the control flow of the process model and
its underlying operational semantics.

BPMN process is a sequence of activities leading from an initial point of the process instance to
some defined endpoints. The question is then how to start a new process instance? To answer this
question, BPMN provides Start event elements (cf. [3, p. 439]), “For single Start Events, handling
consists of starting a new Process instance each time the Event occurs”. So, how exactly such a Start
event is triggered?. There are two main alternatives for triggering a Start event to create a new process
instance: (i) triggers are directly delivered by the environment to the right Start event or (ii) triggers
are issued into a Pool where Start events regularly check for appropriate triggers. The (i) represents the
configuration of a None Start event. While (ii) gives flexibility for the Start event node to choose from
different triggers, e.g., different messages concurrently available for a Message Start event.

The question now is how the flow nodes and sequence flows processed within the new process instance?.
For answering this question, the BPMN standard uses the key concept of token for the description of the
execution semantics of the elements. BPMN states that “a token is a theoretical concept that is used as
an aid to define the behaviour of a process that has been performed.” [3, p. 27]. In general, the token
traverses the sequence edges, and an end event eventually consumes it. When a start event creates a new
process instance, a new token of this new instance is placed on each outgoing sequence flow of the start
event. The target nodes of these sequence flows will be enabled when they have received the necessary
number of tokens. When the target node is enabled, it can fire and start to work and pass tokens on.
When it has fired and completed its actions, it will again produce tokens for the respective instance on
its outgoing sequence flows.

Figure 2.10 highlights the general concept of a token traversing the diagram according to the standard.
e.g., the activity Approve Customer is enabled by a token. If its startQuantity attribute is 1 (the default
value), then in one step, it will consume the token. Then, after completion of its actual work, assuming
its completionQuantity attribute is also 1, it will produce one token on its outgoing sequence flows.
Therefore, the next activity, Approve Product, will be executed in the same manner.

Activities in BPMN represent the set of works that the model will perform. Activities have their
instances. The instantiation for an Activity is not similar to the Process. The common behaviour of all
activities is that their instantiation relies on their incoming sequence flows. According to the BPMN, a
subprocess in a normal flow “is instantiated when it is reached by a sequence flow token”[3, p. 430]. It

605

610

615

620

625

630

635

640

645

2.3. BUSINESS PROCESS MODELLING LANGUAGE (BPMN) 21

An alternative
paths or Event
based Gateway

interrupted
Withdrawn

)

Terminated

interrupte event
interrupted trigggers or
Terminate end
event reached

closed

Enabled
(startQuantity of
token available)

started
(requeirements
available)

R

Completed

Inactive

Figure 2.11: Refined Activity Lifecycle. (from source figure [3])

has “a unique empty start event”, i.e., a Start event with a None trigger. This Start event does not wait
for a trigger from outside, but it will be activated after the subprocess instantiation. So, contrary to a
Start event of a process, the start event of the subprocess does not create a new process instance as such
an instance already exists, but only a new activity instance is created.

When the Activity is instantiated, it is executed according to the lifecycle depicted in Figure 2.11. The
presented lifecycle model is simplified (cf. Figure 13.2, [3, p. 428]); it ignores compensating, compensated,
failing, failed states (as this thesis does not support compensation and error events). In general, when a
process instance starts, all its activity nodes are in an inactive state. Activities have to move through a
lifecycle, starting from the state Ready after being enabled by a number, startQuantity, of tokens. If the
Activity is in Ready state, it checks whether input data are available (if required) to move to Active state
(a state where intended work is performed). An Activity in Ready or Active state can be Withdrawn
from being able to complete in the context of a race condition. This situation occurs (i) for tasks that
are followed an event-based exclusive gateway element, and one of its followed elements (task or event)
completes. This causes all other tasks to be withdrawn, or (ii) for alternative paths choices as tasks
after an Fxclusive gateway. Afterwards, during Completing, resources can be released, and a clean-up
can be made. Moreover, if an activity is in an active or completing state, an Interrupting event may be
triggered and abort the Activity. This leading to terminate it. But, if the Activity is normally completed,
the activity state moves from Completing to Completed state. Note that the two states Completed and
Terminated are final states. The activity state can be set to Terminated from being able to complete
in the context of (i) a Terminate end event is reached within a process, “Termination indicates that
all Activities in the Process or Activity should be immediately ended.” [3, p. 235] or (ii) an Interrupting
boundary intermediate event is triggered (e.g., timer events, message events, etc.).

There are two exceptional cases when the Interrupting event is attached to a subprocess. If the
Interrupting event has occurred during the execution of the subprocess, it ignores it if it is in a final
lifecycle state; otherwise, all running, active or ready elements within the subprocess are interrupted
(i.e., all tokens are deleted). Then, a new life cycle state is set. Indeed, if the Activity is nested (i.e., a
subprocess activity contains subprocess activities, etc.), all nested Activities are interrupted recursively.

We note that BPMN standard states: “All nested Activities that are not in Ready, Active or a final
state (Completed, Compensated, Failed, etc.) and non-interrupting Event subprocesses are terminated”
[3, P. 429]. ILe., all nested activities that are not in Ready, Active or Completed state are terminated.
However, the fact that instances in Ready or Active states should not be interrupted is inconsistent with
the diagram of an activity as lifecycle [3, p.428]. For that, we consider above only nested activities in
final states.

BPMN defines Gateways to control the execution ordering of the activities within a process instance.
Gateways are used to express splits and/or merges in the control flow of a process. Their semantics is
expected to be instantaneous (when they are triggered). As we mentioned before, there are five different
gateway types in the BPMN standard while in this thesis we are interested by four: Parallel, Exclusive,
Event-based, and Inclusive types (see Figure 2.6). The Exclusive and the Fvent-based gateways will be
enabled when only one of its incoming sequence flows is enabled. Then, they will decide on which outgoing
sequence flows are to be taken. The decision for the exclusive gateway depends on data evaluation, while
the event-based gateway decision depends on the event triggers of the target elements. The parallel
gateway will wait until all its incoming sequence flows are enabled (i.e., each incoming flow has at least
one token). Then, it will be fired, and all its outgoing sequence flows will receive a token (i.e., there are
no conditions for choosing paths). The Inclusive gateway may synchronise a subset, or all its incoming

650

655

660

665

670

675

680

22 CHAPTER 2. BACKGROUND

I»
Prepara
rejoction kother

Prepare
accoplance
tter

XORA
Check review
text quality
Needs
improvernant?
’ -

Chack reviewer
decision?

Sand
notofcation and
Teview letier

Revisa review

v Completed 4 Activated I» Completing % Withdrawn

Figure 2.12: Process Instance of PC Chair Notification Process.

sequence flows depending on a set of rules and chooses one or more of its outgoing sequence flows, based
on data decision to produce tokens there. The semantics of this gateway is relatively complex, and it will
be detailed in Chapter 4.

During the process instance execution, the process control flow is influenced by the event occurrences.
Whereas activities represent units of work that have a duration, the events are used to model something
that happens instantaneously. BPMN standard distinguishes between the Start event that signals how
process instances start (tokens are created), the End event that signals when process instances are
completed (tokens are destroyed), and the Intermediate event (within a control flow). The Intermediate
events cannot retain tokens. Therefore, the BPMN standard specifies that a token remains in the incoming
sequence flow of an intermediate event until the event occurs. Once the event occurs, the token traverses
the event instantaneously.

Catching events specified where the control flow within a process waits for something to happen, e.g.,
the arrival of a message, the occurrence of a signal, or temporal deadline has been reached. The enabling
of the event depends on (i) the presence of a token on one of its incoming edges or on the activity to which
the boundary event belongs (if it is of boundary type) and (ii) the availability of triggers corresponding
to the event trigger type. The firing of a catching event generates a token on its outgoing edges. The
firing of the Boundary event may either start an exception flow for the running instance of the activity
attached to (alternative to the normal flow) or interrupt the running instance and produce a token on
their outgoing or, if not exist, on the outgoing edge of the activity attached to.

Throwing events are flow nodes that throw an event trigger. They can be either Intermediate or End
events. All throwing events can fire when at least one token is available on at least one of their incoming
sequence flows. If Throwing events is an intermediate, it fires by throwing triggers and passing tokens
to its outgoing sequence flows. In contrast, the End events consume a token without producing a new
token. End events finished the flow of an instance. A Process instance completes when an end event has
consumed all its tokens, and no activity is left active. Note that the Process ends abnormally when a
trigger of the End event is of a Terminate type. The End event additionally ensures that all elements
within the process instance are terminated (i.e., drops all tokens of the process instance).

Example 2.3.1. Process Instance.
Figure 2.12 depicts a running process instance of a PC chair notification process model. The execution
history state of this process instance is as follows:

e The Start event instantiated the process and completed;
e The task Receive review executed and completed previously;

e An event Notification date occurred (completed);

685

690

695

700

705

710

715

720

725

2.4. FIRST-ORDER LOGIC (FOL) 23

e AND-split gateway ANDI was executed.
e The activity Check review text quality enabled and then activated;
e The XOR-split Check Reviewer decision evaluated;

e Finally, the activity Prepare rejection letter is currently Running (in a completing state). This
implies that the lower branch of the XOR-split Check Reviewer is not selected, and the activity
Prepare acceptance letter is passed to the withdrawn state.

Generally, a process instance is associated with an execution history capturing all events, activities,
gateways executed during its execution, referred to in this thesis by an execution trace. The execution
trace for this example contains all elements marked as completed (i.e., elements terminates with the
withdrawn state are skipped).

2.4 First-Order Logic (FOL)

At the core of every language is the logic that provides the fundamental concepts. Logic is the study of
the principles of correct reasoning. The reasoning is a manner to obtain a conclusion from hypotheses.
Correct reasoning gives nothing to the truth of the hypothesis; it only guarantees that we can deduce
the truth of the conclusion from the truth of the hypothesis. For a long time, logic was associated with
First-Order Logic (FOL). FOL is by now a well-understood language with high expressive power and
a rich model theory. FOL and its extensions play an important role in many branches of (theoretical)
computer science such as (automata theory [25], complexity theory [26], databases [27]). FOL is a small,
simple, and expressive language designed for expressing abstractions. It is used to briefly articulate the
natural language statements and develop information related to objects very easily. This section presents
FOL syntax and semantics briefly. The following notions and notations are fairly standard and can be
found in different composition in standard texts about first-order logic, e.g., in [28], [29], [30], or [31].

2.4.1 Syntax of First-Order Formulas

We introduce the syntax of first-order logic (FOL) based on a signature o, a set containing constant, func-
tion, and predicate symbols, each predicate symbol with an arity. First-order formulas over a signature
o are built according to the following syntax elements, two sorts of symbols coexist in FOL:

e Logical symbols, they have a fixed meaning or use in the language

— Logical operators: -, V, A, =— , and <= , respectively called negation, disjunction,
conjunction, implication, equivalence.

— Punctuation ”(”,”)”, opening and closing parenthesis, plus the comma character

”o»
— Quantifiers: V, 3, respectively called universal and existential quantifier.
— Variables: an infinite set of variables V.

— Constants: an infinite set of constants C.
e Non- logical symbols, they have an application- dependent meaning or use:
— Functions: for each natural number n > 0, an infinite set F,, (n-ary function).

— Predicates: for each natural number n > 0, an infinite set P, (n-ary predicate).

Definition 2.4.1. (Signature) A vocabulary o = (V, O, ar) comprises a non-empty set of variables V, a
non-logical operator symbols O = P UF contains a countable set P of predicate symbols and a countable
set F of function symbols, and function ar associates to each symbol in O a non-negative integer.

Note: A function symbol of arity zero is called constant symbol. A predicate symbol of arity zero
is called proposition.
Based on the vocabulary defined above, we now give the rules to build what we call a strict formula. To
simplify the definition of formulas, we define the notion of o-Terms:

Definition 2.4.2. (¢ —Term) Given a certain fixed vocabulary o. A o-Term is a finite syntactic object:

e any variable v € V is a o-Term;

730

735

740

745

750

755

760

765

770

24 CHAPTER 2. BACKGROUND

e if ¢1,...,t, are o-Terms, and f is a function symbol f € F with n-arity ar(f) = {n|n > 0}, the
expression f(ty,...,t,) is also a o-Term;

Definition 2.4.3. (o-Formula) o-Formula can be seen as a list of symbols from the vocabulary (operators,
parenthesis, variables, and constants), it is at least satisfying one of these constraints:

1. It can be an atomic o-Formula:

e P(t1,...t,) is a formula, where the t; are o-Terms, P is a predicate symbol from P, of arity
n, with n > 0;

e {1 =ty is a formula, where ¢; and t5 are terms;
2. Or a non-atomic o-Formula:

e a g-formula is either: a o-formula ¢, a o-formula v, a negated o-formula —¢, a conjunction
@ A1, a disjunction ¢ V ¢, an implication ¢ == 1), or an equivalence ¢ <= ¥;

e a quantified o-formula of the form Vz.y or 3y.2b where ¢, ¢ are o-formulas and z,y € V are
first-order variables;

Example: Consider a signature with a constant symbol 1, binary function symbol +, and a binary
relation symbol <. Then = + 1 is a term and Va(z < (y + 1)) is a formula.

Definition 2.4.4. (Bound and Free Variables) A variable v occurs freely in a formula ¢ if the formula
contains an occurrence of v that is not in the scope of any quantifier Q such that @ € {3,V}. An
occurrence of a variable v in a formula ¢ is bound, if it lies within the scope of some quantifier Q@ Note
that different occurrences of the same variable in a given formula can be both bound and free, e.g.,
variable = occurs both bound and free in the formula P(x) A 3zP(z).

Definition 2.4.5. (Close Formula) A formula is closed if it does not contain any free variables.

Definition 2.4.6. (Sub-Formula) If a o-formula ¢ occurs as part of another o-formula ¢, then ¢ is called
a subformula of).

Definition 2.4.7. (Operators priority order) The priority of the different operators is given in decreasing
priority order: negation (—), conjunction (A), disjunction (V), implication (=), and equivalence
(<). For equal priority, the left operator has a higher priority, except for the implication which is
right associative (i.e.,a = b = c=(a = (b = «¢))).

Important notes: (i) To avoid too many parentheses in formulas and simplify their readability, some
parentheses may be deleted to form priority formulas. In the rest of this manuscript, we follow the
convention of Operators priority order mentioned above to define the formulas in some abbreviation form
(e.g., the abbreviation of the formula ((a Ab)Ve) is aAbVe). (ii) In general, we speak of terms, formulas,
and atoms when o is not important or clear from the current context.

Definition 2.4.8. (Literal) A literal is a variable or its negation. For a given variable z, the positive
literal is represented by z, and the negative one by —zx.

Some formulas have remarkable structural properties. We say that they are in a normal form. To
introduce the different definitions of normal forms we are interested in, we first need to introduce the
concepts of cube, and clause.

Definition 2.4.9. (Cube) A cube is a conjunction of literals.

Definition 2.4.10. (Clause) A clause is a disjunction of literals. A unit clause is a clause containing
precisely one literal.

There exist many normal forms, but we present here only two forms we are interested in: the con-
junctive normal form and the disjunctive normal form.

Definition 2.4.11. (Conjunctive Normal form) A conjunctive normal form (CNF) formula is a finite
conjunction of two or more clauses ¢ = A, ¥;, where ¢ = \/lelj is a clause, and n € N. A CNF
formula is possibly preceded by a quantifier prefix. A formula in CNF is Horn if every clause contains at
most one non-negated literal. It is Krom if every clause contains at most two literals.

775

780

785

790

795

800

805

810

2.4. FIRST-ORDER LOGIC (FOL) 25

Definition 2.4.12. (Disjunctive Normal form) A disjunctive normal form (DNF) formula is a finite
disjunction of two or more cubes ¢ = \/I"_; ¥;, where ¢) = /\lelj is cube, and n € N.

Example: Given the variables a, b, ¢ ,d, e, we define the formula ¢ = (aV =bV —c) A (=~d VeV f), ¢
as a CNF formula with clauses (a V =bV —c¢), (=d VeV f). The formula p3 = (a A=bA—c)V (=dAeA f)
is a DNF formula where (a A —b A —¢) and (=d A e A f) are cubes.

2.4.2 Semantics of First-Order Logic Formulas

The following section aims to present the interpretation of the logic formulas presented for the given
structures above.

Definition 2.4.13. (o-structure) Let o = (V, O, ar) be a vocabulary, a o-structure (or assignment, or a
model) A = (Ua, @, T) consists of:

e U4, a non-empty set called universe of the structure (domain). The domain U4 contains two fixed
truth values, true and false, noted here by B = {T, L};

e 7, an interpretation function that assigns elements of the FOL language to objects in the domain
of the interpretation 4. More precisely:

— 7 interprets any n-ary predicate symbol p € P of arity n € N by a set of n-tuples over U4
domain, such that: Z(p) : U4™ — B. We note that the set may be empty;

— 7 interprets any n-ary function symbol f € F of arity n € N, Z(f) by an n-ary function over
a universe domain U 4, such that :Z(f) : U," — B*;

e a:VUC — Uy, a valuation function that assigns:

— for each constant symbol ¢ € C, an element c4 of U4;

— for each variable z € V, an element x 4 of U 4;

Example 2.4.1. Example (N, <,0) denotes the structure with universe N, binary relation < (under-
stood as the usual order on N), and constant 0. Note though that this convention does not specify which
values are assigned to variables.

Definition 2.4.14. (Evaluation of the Formula) The value of the formula depends on the value of its
terms. Let t be a term, A a o — structure, and « a variable assignment over the universe domain U 4.
We denote the evaluation of ¢ under a and A by [t],. We have:

e for a variable v € V, [v], = a(z);
e for a constant c € C, [c]lo = ca, With cy €Uns. eg., z € {T, L}, [Tla =1, [L]a =0;

o for f(t1,...,tn) a term defined for n > 0, f is an n — ary function and ¢, ..., ¢, are terms, then

[f(tla ey tn]a = I(f)([tl]oc; ey [tn]a)
Based on the value it can take the formula, it can be satisfiable or unsatisfiable.

Definition 2.4.15. (Satisfaction relation) Let G and F be formulas, a variable, A a o-structure, « a
variable assignment. We define the satisfaction relation A, a = F (A, « satisfies F or A, o models F') by
induction over the structure of formulas we have:

A,a = P(tL,. .. t,) if ([tLla, - -, [tn]a) € Z(P).

A,al= (FAG)if and only if A,a = F and A,a = G.

A,al= (FVG)ifand only if A,a = F or A a = G.

A,a = —F if and only if A, « £ F.

A, |= 3z F if and only if there exists a € U4 such that A, afz — a] = F.
A, =Yz F if and only if A, afx — a] = F for all a € Ua.

A, a = t1 =2 if and only if [t1], = [t2]4-

815

820

825

830

835

840

845

850

855

26 CHAPTER 2. BACKGROUND

Notation. We note that if there is no confusion, the expression of the form A, [v1 — a1,...,v, — a,]
o(v1,...,v,) by Al @(v1,...,v,). Insuch case, A = ¢ if A a = ¢ holds for every variable assignment
a over A universe domain.

Definition 2.4.16. (Model/Counter-Model of a Formula) For a given formula ¢, a o-structure A, if
A = ¢, we say that the formula ¢ is satisfiable and the o-structure A is a model of . Otherwise, ¢ is
unsatisfiable and A is a counter-model.

Definition 2.4.17. (Tautology) F is called valid if A = F for every o-structure A. Given a set of
formulas S, we write S |= F' to mean that every o-structure A that satisfies S also satisfies F. The same
relations exist in propositional logic, e.g., F' is un-satisfiable if and only if —F is valid.

It is clear from the latter that the formula’s evaluation depends on its structure and the values of
its variables. Further, the value of a formula depends on all the assignments of its variables. Depending
on the value taken by the formula for a particular assignment, we call this assignment model or counter-
model of the formula. Table 2.1 presents the different possible values of a given formula ¢, regarding
different logical operators meaning of the vocabulary. Given V = {z,y} a set of variables, « an assignment
function that maps each variable to a value in the set B = {T, L}. The evaluation of the formula is then
obtained by replacing the variables with their values.

Table 2.1: Example of Truth Table Fvaluation of a Set of Formulas.

v @
zly|@|azVy|lzAy |z = y |z <= y|lzAhwy |z = vy | (z = y) < (~y = —x)
LT 1 L T T 1 1 T
LT T T al T 1 1L 1 T
T|L| L T 1 1 1 T T T
T T]| L T T T T 1L 1 T

2.5 Verification Methods

The verification of a system is the act of determining or refuting the system’s accuracy with respect to
its documentation or its formal specifications. There are different methods to analyse the efficiency of
the system using formal or informal methods. Formal methods consist in proving the correctness of the
system using mathematical tools. Informal ones use static and/or dynamic analysis. In the following, we
present a set of verification approaches, emphasising their advantages and disadvantages.

2.5.1 Test

To verify the correct functioning of programs, the most used method in industry is testing. It is a
dynamic approach that requires running the program on a set of inputs to ensure that the produced
results are consistent. The program’s validation is based on the association between the tested inputs
and the expected outputs of the program. These tests can be carried out on the whole program (often
referred to as Integration and Validation Test) or on isolated features (unit test).

The main advantage of the test is its sureness. The achieved result is precisely the one produced by
the program since it is obtained by running it. Consequently, if the analysis indicates that a result is
not as expected, the verdict is reliable. However, the test is not exhaustive, it can only verify a limited
number of inputs to a given program, and the concrete inputs can be large or even endless. Accordingly,
if the tests find no defects, unless they are carried out exhaustively for all possible program inputs, it
does not guarantee its safety.

There are various metrics to determine the quality of a program’s coverage by testing [32]. These can
be exploited, in combination with static analyses, to automatically generate many tests that can improve
the quality of coverage and, therefore, the confidence that one can have in the program. As opposed to
dynamic analyses, static analyses are performed without running the code.

In general, the test method eliminates a reasonable number of errors with moderate cost. It allows to
exhibit on the performed tests set the absence of a certain number of behaviours identified as problematic
or the presence of behaviours identified as intended, but not for all inputs and the behaviours defined by
the general specification. For this, it is necessary to turn to formal methods.

860

865

870

875

880

885

890

895

900

905

2.6. VERIFICATION LANGUAGES & TOOLS 27

2.5.2 Abstract Interpretation

Abstract interpretation [33] is a static analysis technique [34], reasons on all behaviours that could arise
during the execution of a program to determine if they are included in the set of acceptable ones. This
analysis is generally undecidable [35] and uses an approximation based on the structure theory and the
fixed-point calculus. Users analyse the behaviour on all possible inputs without executing the instructions
for each of them. The principal is to solve a set of equations determined from the program, expressing
its semantics. The limit of this method relates to the ability of tools to solve these equations. If there is
no automatic decision procedure for their resolution, the results are still very imprecise.

2.5.3 Theorem Proving

Theorem proving consists of expressing the system and the desired properties as axioms and inference
rules, defining a theorem. The properties are then verified on the system using a theorem prover, e.g.,
Coq [36] or Isabelle [37], HOL Proof Assistants [38]. The calculi used for these proofs are introduced by
Hoare Logics [39]. Hoare’s logics allow reasoning about programs and their properties. Hoare’s triplet has
the form {P} ¢ {Q} where P and @) are logical assertions and ¢ a sequence of instructions. It indicates
that from a state where the program respects the property P, the sequence of instructions ¢ leads to
a new state where @ is respected. In Hoare’s logic, it is possible to reason in terms of total or partial
correctness. In total correctness, Hoare’s logic is based on inference systems on the triplet mentioned
above. Each program instruction and the successive composition of this instruction results in a triplet in
the derivation tree. Therefore, it is desirable to automate this inference as much as possible. However,
for some instructions, the calculation cannot be automated. This is particularly the case of loops for
which it is necessary to indicate invariants that must be respected.

The main advantage of the theorem proving method is its usability in the case of infinite systems.
However, tools using this method commonly have the disadvantage of not being completely automatic. In
the case of automatic solvers, it is possible to guide them by adding intermediate assertions in the source
code or additional lemmas in the knowledge base, but this requires some tools expertise to determine
why the proof does not pass. It is also possible to carry out the proofs by using interactive provers.
However, the proofs produced by the generators are often complex to read because of too strong or too
weak simplifications made by the Verification Condition Generator (VCGen), as well as to the encoding
of semantics for the target provers. This issue represents the main barrier preventing its wider adoption
by the industry.

2.5.4 Model-Checking

Model-checking [10] is a technique for verifying information or electronic systems represented by a model.
The system is presented in a finite state automaton (i.e., labelled transition system graph) from which
the desired properties can be checked. Figure 2.13 shows the principle of the model checking technique.
Given the model specification and the properties as inputs to the model checker, it solves the property
satisfiability question with respect to the model by exploring the state space exhaustively. If the property
is not verified, it generates paths invalidating the property. In this case, the user must analyse these
paths to determine whether the system’s error is due to its model representation or the system itself is
indeed at fault.

The advantage of model-checking is the automatic nature of the verification procedure and the gen-
eration of counterexamples. Therefore, the user’s work is reduced to the system’s formal modelling and
the properties definition. However, one of the model-checking disadvantages concerns the problem of the
combinatorial explosion of state space. This problem is due to the exponential increase in the size of the
system state space according to processes’ number and the components’ number per process [40]. It is
possible to control the combinatorial explosion by representing states symbolically and not concretely.
In the case of models where the number of states is huge, this representation may not be sufficient to
allow verification. In particular, this is the case when the number of states is infinite. In this context,
abstraction methods are used to build an approximate model of the verified system using only a finite
number of states. This type of analysis is implemented by several tools in the literature(i.e., SPIN [41],
Cubicle [42], UPPAAL [43], TLAT [17], etc.).

2.6 Verification Languages and Frameworks

There is a wide range of formal specification languages based on various logics and other formalisms. A
subset of these languages, in which we are interested, is the so-called model based formal specification

910

915

920

925

930

935

28 CHAPTER 2. BACKGROUND

M = ®

Sytem Model satisfies Property ?

\ /

Satisfiable Property ‘ ‘ Unsatisfiable Property ‘

l

‘ Counter Example ‘

Model Checker
Exploration and Verification
Algorithm

Figure 2.13: Model Checking Method.

(Formula) = (Predicate) | O[(Action) siatefunctiony] | —~(Formula)
| O[(Formula)] | (Formula) A (Formula)
(Action) = Boolean-valued expression containing constants symbols and variables with
primed and non-primed variables
(Predicate) = (Formula)with no primed variables | ENABLED (action)

(State function)/\ nonboolean expression containing constants symbols and variables

Figure 2.14: An Excerpt of TLA Syntax (figure taken from [17]).

languages. Their approach for specification consists of describing systems by building mathematical
models. Traditionally, the system specification is expressed as a system state model. This state model is
constructed using well-understood mathematical entities (e.g., sets and functions). Among the existing
languages, we choose languages based on model checking verification methods: Temporal Logic of Actions
(TLAT) and the Lightweight formal methods (Alloy). In the following sections, we give a brief overview
of them.

2.6.1 TLA Logic and TLA" Language

Temporal Logic of Actions (TLA™) [17] is a formal specification language for specifying and automatically
verifying concurrent and distributed systems. TLAT is based on the combination of TLA (Temporal logic
of Actions) and ZF (Zermelo-Fraenkel) set theories. TLA is parametrised by an underlying first-order
language. Its non-temporal fragment is based on a Zermelo-Fraenkel set theory with the axiom of choice
for specifying the data structures. TLAT is a rich language with well-defined syntax and semantics for
formal reasoning and is designed to write clear and expressive specifications. In the following, we give a
summary of them. Section 2.6.1.1 presents the syntax and the semantics of TLA logic. Section 2.6.1.2
describes the TLA" language. Section 2.6.1.4 presents the TLAT model-checker, called TLC (Temporal
Logic Checker). For a complete presentation of the TLAT language, we refer the reader to [17].

2.6.1.1 TLA Logic Syntax & Semantics

TLA is a logic proposed by Leslie Lamport [17] to describe concurrent systems. It is an extension of
linear temporal logic into a logic of actions.

Figure 2.14 summarises the syntax of TLA. TLA formulas are formed using boolean operators of
predicate logic, arithmetic operators, set operators, and LTL operators. The semantics of TLA is based
on the concept of state. A state corresponds to a valuation of variables. It is a mapping function from
a set of variables Var to a set of values Val. The set of all possible states is the set of all possible
valuations of variables, noted St. Lamport denotes by [[F]] the semantic interpretation of a syntactic
object F' (which can be a predicate, an action or a formula). For example, for a variable v, the semantic
interpretation [[v]] is a function that assigns the variable v a value in Val. The value of x in-state s is
denoted by s[[z]] (postfix notation used by Lamport). Using these notations, in the following, we will
present some basic notions in the TLA language.

940

945

950

955

960

965

970

975

980

2.6. VERIFICATION LANGUAGES & TOOLS 29

State Function. A state function is a general non-Boolean expression, made up of variables and
constants operators, that maps each state to a value. Semantically, the interpretation [[f]] of a state
function f is a function from a set of states St to the set of values Val.

Predicate. A predicate P is a Boolean expression of variables and constants operators that assigns
boolean value to each state. Semantically, it is a function such that s[[P]] assigns the value true or false
to a state s.

Action. An action is a boolean expression containing constants, variables and primed variables (noted
with (") operator). Unprimed variables refer to variable values in the current state, and primed variables
refer to their values in the next state. Thus, the action represents a relation between old states and new
states. Semantically, the interpretation [[A]] of an action A is a function which associates to a pair of
states (s,t) a Boolean denoted by s[[A]]t, with s and t representing respectively current state and next
state.

Formula. TLA formulas are built up from actions and predicates using Boolean operators (— and A
and others that can be derived from these two), quantification over logical variables (V, 3), the operators
" and the unary temporal operator OJ (always) of LTL.

Divers. TLA language provides a set of predefined predicates and formulas. We present them briefly
in the following. Let A be an action, and vars a set of variables used in .A.

e ENABLED A, expresses whether the action 4 can be executed in a current state s. It is evaluated
to true in state s if it is possible to reach some state ¢ from s.

¢ UNCHANGED wars, expresses that the variables vars remain unchanged in the state next, it is
an abbreviation of vars’ = vars.

o [A]yqrs is a formula that is evaluated to true if action A is executable or if the values of the variables
of vars remain unchanged.

o (A),ars is a formula that expresses that the variables of vars will change value by executing action

A.

Quantifiers in TLA. TLA has existential and universal quantification operators of the logic of
predicates. Given a temporal formula ¢, a finite set of constants S, the formula:

o Vx €S : ¢, is true if and only if ¢ is true for all the value of z in S.
e Jdr € S : ¢, is true if and only if ¢ is true for at least one element = in S.

In addition, TLA defines unbounded quantifiers, but since TLC does not support this type of quantifiers,
we discard them from our description.

Temporal Formula. It is a Boolean-valued expression that can contain flexible and rigid variables
and temporal operators. A flexible variable can have a different value in different states of behaviour.
A rigid variable can have the same value in every state of behaviour. The behaviour of the system
is an infinite sequence of states. A state is an assignment of values to all flexible variables (there are
infinitely many flexible variables, but only a finite number of them can occur in any single formula). A
behaviour represents a possible history of the observable universe. Terminating executions of a system
are characterised by behaviours ending in an infinite sequence of stuttering steps. Stuttering steps are
steps (i.e., a step is a pair of states) in which no variables in the formula change. A specification of a
system should allow stuttering steps since it should allow changes to parts of the universe external to the
system. All TLA formulas are invariant under stuttering, meaning that adding or removing stuttering
steps does not affect whether or not a behaviour satisfies a temporal formula.

Semantically, the temporal formula is true or false for a behaviour. The temporal operators of TLA
can be defined in terms of the primitive operator ("always"), noted 0. Let o = (sg, $1,82,...) be a
sequence of states, such as o € St* and St is the collection of all behaviours.

A TLA temporal formula consists of:

e a predicate P is evaluated to true for a behaviour ¢ if and only if the initial state of o is true.

985

990

995

1000

1005

1010

1015

1020

30 CHAPTER 2. BACKGROUND

e A formula P is true for a behaviour ¢ if P is true for every state s; in o.

o A formula O[A],qrs is true for a behaviour ¢ if and only if for each pair of successive states (s,t),
the action [A]yqrs i true.

Let ¢ be a temporal formula and o a sequence of states. The Interpretation of o[[p]] is a boolean value
that the formula ¢ assigns to o. If the interpretation of o[[¢]] is true, we say that the sequence o satisfies
or models the temporal formula ¢, noted o |= ¢, otherwise, o un-satisfies ¢, (o & ¢).

To verify that a program satisfies a particular property, we prove that it satisfies a specific temporal
formula. We describe in the following the semantics of temporal operators defined from the Boolean
operators and the operator always [J. Given ¢ and v temporal formulas, o a sequence of states:

e Fventually Operator, noted by ¢, is defined in terms of always operator, as the assertion of the
negation of a formula does not hold forever: (¢ = —[J—p, states that formulas are not always false.
Le., for a formula o [[¢]], the sequence o satisfies ¢ (o |=) if and only if ¢ is true in at least one
state of the sequence o.

o Always-Eventually, noted by [JO, is defined in terms of always and eventually operators, states
that formulas are true infinitely often. i.e., for formula 0O, the sequence o = [[¢]] if and only if
O[[e]] is true at any instance n in the sequence o.

o Fventually-Always, noted by O, is defined in terms of always and eventually, operators, asserts
that a formula eventually holds and it is true in every subsequent state. Ie., O0[[¢]] specifies that
 is eventually always true.

o Temporal Implication, noted by ~-, is defined in terms of always and eventually operators, ¢ ~
Y =0(p = Ov), asserts that when a formula being true always-eventually leads to a state
where another is true. Ie., when ¢ is true, then the formula v is necessarily true in the future,
without requiring that i remain true.

Expression of properties in TLA. In TLA, we can express safety, fairness and liveliness proper-
ties.

Safety property. Expresses that something bad will never happen. The invariance is a safety prop-
erty that is expressed in TLA by the always operator [J. Given a predicate P and a specification S. The
temporal formula COOP will be satisfied if the following implication is evaluated to true: S = O P.

Fairness property. A system specification is usually a disjunction of actions. Fairness allows speci-
fying that when an action is executable, then it will be executable in the future. Lamport distinguishes
two types of fairness, weak and strong fairness.

o Weak Fairness states that this action cannot continuously be enabled without being fired. The
following formula expresses weak fairness:

W Fyars(A) 2 OO0 ENABLED (A)yars = OO(A)pars

e Strong Fairness states that an action cannot be infinitely often enabled without being fired (i.e.,
if an action A is enabled infinitely often, then it will occur infinitely often as well). The following
formula expresses strong fairness:

SFyars(A) £ 00 ENABLED (A)yars = O0(A)yars

Strong Fairness property implies the corresponding Weak Fairness property.

Liveness property. expresses that something good will eventually occur. As liveliness is expressed
in infinite behaviours, specifications must guarantee progress. Therefore, TLA specifies liveness through
weak and strong fairness conditions.

2.6.1.2 TLAT Language

TLA™T language is a formal specification language that extends TLA logic by structuring it into modules.

1025

1030

1035

1040

2.6. VERIFICATION LANGUAGES & TOOLS 31

Modules. They are used to structure complex specifications. Module declaration starts with the
keyword MODULE. Each TLAT module contains a set of constants declaration specified by the keyword
CONSTANTS, a set of variables declaration specified by the keyword VARIABLES, and a set of definitions
in term of: actions, functions, predicates, temporal formulas, and a set of properties to check using
the operator form (Op(pi,...,pn) = expr). A module can extend other modules, importing all their
declarations and definitions using the keyword EXTENDS.

Expression. It relies on standard first-order logic, set operators, and several arithmetic modules.

Set. TLAT is a set-theoretic language where every expression includes formulas, functions, numbers,
etc., denotes a set.
Table 2.2 shows a summary of TLAT operators. An overview of the syntax TLAT describes the

standard constructs and operators of the language is as follows.

Logic

TRUE FALSE N V =
Sets

e NU C\ [Set operators|

{e1,....en} [Set consisting of the elements e; |

zeS:p [Set of elements z in S satisfying p|

e:xels [Set of elements e such that z is in S|

SUBSET S [Set of subsets of S|

UNION S [Union of all the elements of S|
Functions

flel [Application of the function f to an element e|

DOMAIN f [Domain of function f]

[z € S € [Function f such that f[z] = e for z € S|

[S —T] [Set of functions f with f[z] € T for all z € S |

[f EXCEPT![el] = e2] [Function f’ equal to f such that f'[el] = e2]

[f EXCEPT![el] € 5] [Set of functions f’ equal to f such that f'[e] € S]
Records

e.h [The & field of the e record|

[h1 = ety . hy—en | [The record whose field e is equal to e;]

[h1:S1,... hn 2 Sy | [Set of all records such that each field h; is in the set S

[rEXCEPTLh = €] [Record 7’ equal to r such that 7".h = e]

{[rEXCEPTLh)2S|} [Set of records r equal to 7 such that r.h € S|
Sequences

eli] [The i*" element of the sequence e]

(e1y..-,¢€n) [The n-tuple whose it element is ¢;]

S1 X - xS, [Set of all n-tuples such that the it" element is in the set S
Chains

Cly...,C2 [A sequence of characters n characters|

STRING [The set of all character sequences|

Conditional Constructs

IF p THEN e; ELSE es

CASE p1 —e10...0pp— en

| Equal to ey if p is true, otherwise e
[Equal to e; if p;]

Divers
LETd; £e;...d, £ ¢,INe |[Equals to e in the context of definitions dy, ... ,d,]
pLA- - Apn | Conjunction of p; ... py, |
pLV -V, | Disjunction of p; ...py |
Table 2.2: Summary of TLAT Operators.
Functions. They are primitive objects in TLAT. Each function f in TLAT has a domain of definition,

denoted DOMALIN f. The application of a function f to an expression e is written by f[e]. f[e] specifies
the value of the function f for an expression e (if e is an element of DOMAIN f). The constructor of
the function f is denoted by [z € X > e]. The expression [x € X — ¢] denotes the function with domain
X that maps any = € X to e (e.g., x € Nat — x + 1 is the function f such that f[1] =2, f[3] =4 ...).
TLAT defines EXCEPT operator. The expression [f EXCEPT ![e;] = e3] is a function that is equal to
the function f except at point e;, where its value is e5. The expression e; — es denotes the set of all
functions with domain e; and co-domain es.

32 CHAPTER 2. BACKGROUND

Sequences. A sequence (or a tuple) is a TLAT function which is written under the form of:

e O-tuple, is the empty sequence, noted (). It is the unique function having an empty domain:
() 2lze{}—{}

e n-tuple {e1,...,e,), is a function whose domain of definition is the the interval of integer numbers
1,...,n, where {(e1,...,e,)[i] = e;. The i'" element of the sequence e, noted e[i] The sequence
index starts at 1. The meaning of the n-tuple can be given by the C ASFE expression as follow:

(e1,...,en)y 2 [y€l...n = CASE (y=1) = e1|...| CASE (y =n) — ey]
The set of all n-tuples is noted by S; x - - - x S,,, such that the i*" element is in the set S;. Several operators

1045 on sequences are defined in the standard Sequences module. Table 2.3 presents the main operators on
sequences used in this thesis.

Seq(S) [the set of all the sequences built from the elements of S|

Len(S) [the length of the sequence S |

SoT [the resulting sequence from the concatenation of S and T

Head(S) [the first element of S|

Tail(S) [the sequence S omitting the first element S[1] |

Append(S, e) [the sequence resulting from the addition of the element e to the sequence S|

SubSeq(S,m,n) [the sequence (S[m], S[m +1],...,S[n])]|

Table 2.3: Sequences Module Main Operators.

Records. An r record is written under the form hy — ey, ..., h, — e, in which each field (or compo-

nent) h; is equal to e;. Access to a field is through the expression 7.h;. The set of all records noted by

hy:S1,...,h, o Sy, such that each field h; is in the set S;. The operator EXCEPT, defined on functions
1050 can also be used on records as follows:

e r EXCEPT !.h = e, is a record r’ equal to r such that r'.h = e.
o {[r EXCEPT l.h] € S}, is a set of records r’ equal to r such that r.h € S.

Note that in TLAT, a record is a function whose definition domain is a finite set of String.

Operators. TLAT standard grammar includes a set of operators. Different from the functions, oper-
1055 ators have not a domain of definition. They may be written under the forms: Op £ exp, with Op is an
identifier and exp is an expression, or under the form Op(py,...,p,) = exp with p; an operator of the
form Op(_,...,_). Op(p1,...,pn) = exp defines an operator symbol Op such that Op(ey, ..., e,) equals
exp, where each p; is replaced by e;.
TLAT has a set of predefined operators, that are:

e CHOOSE Operator. Represents a primitive expression writing as:

CHOOSE z € S : P(x)

1060 It denotes an arbitrary fixed value = in a set S such that P(z) is true if a value exists, false
otherwise.

e Boolean Operator. The Boolean operators:

TRUE FALSE N V- = =

e Set Operators. TLAT is a set theory language, has a set of theory operators. The most commonly
used basic operators are the empty set {}, the pairing set {exp, exp}, the power set SUBSET s,
the generalized union UNION s, the union set defined using pairs exp Uexp , and the intersection
1065 expNexp. TLAT also has the following set constructors:

— {exp1,...,exp1}, with n > 1, defines the set of elements e;.
— {x € S : p}, defines the set of elements x of S satisfying the property p.
— {e:z € 5}, defined the set of elements e such that x in S.

1070

1075

1080

1085

1090

1095

1100

2.6. VERIFICATION LANGUAGES & TOOLS 33

Arithmetic. TLAT has a set of arithmetic expressions which are:

ex=...|0[1]2]...|Int| — ele + e|le — e|e x e|e%ele + ele < e

Divers. TLAT language provides some constructors which are:

e Conditional. Two conditional constructors, inspired by conditional structures in programming
languages :

— The constructor IF p THEN e; ELSE eq, is equal to e; if the predicate p is true and to e
when p is false. In the case where there are several nested IF-THEN-ELSE constructors, it
is easier to use the CASE constructor.

— The constructor CASE p; — e100...0 p, — e,, is equal to e; if p; true.

e LET/IN Expression. It is used to define a local expression. The general form of this constructor
is as follows: LETd; £ e;...d, £ ¢,INe, with d; presents a TLA1 definition. This expression
equals to e in the context of definitions dy, ..., d,.

Note that the operator symbols correspond to the standard function and predicate symbols of first-
order logic. Thus, TLAT semantics is an extension to the formal semantics of first-order logic with
equality.

2.6.1.3 TLAT Specification

The dynamic system behaviour is expressed in TLA™ as a transition system, with an initial state predicate
and actions to describe the transitions. The TLAT specification of a system is represented by a single
predicate describing the behaviour of the system, called Spec. For example, formula. 2.1 shows the
definition of the Spec predicate. The main part of the TLAT specification consists of an initial predicate,
named Init and an action formula, named Nezt, where:

Spec = Init A O[Next]pars A Fairness (2.1)

e Init, is the initial state predicate, a proposition that holds for every state that is a valid initial
state for the system.

e [[Next]yars, is the next-state relation, which states that every state following the initial state
must either satisfy the next-state action Next or be a stuttering state.

e Vars is the set of variables required to specify the system. Variables in TLA have no types and
can assume any value.

e Fairness is the fairness condition of the specification.

System properties are specified using LTL. They are expressed using eventually, always-eventually,
or eventually always operators, or temporal implication formula described above.

The described Spec formula asserts the safety, liveness, and fairness properties due to conjoint fairness
conditions to Spec.

2.6.1.4 TLC Model Checker

The TLA model checker tool, named TLC [44] is used to check TLA™T specifications. The TLC tool has
a distributed implementation and a centralised implementation with different capabilities. TLC tests
all possible combinations of actions and reports any detected violations of the system’s properties. It
performs a breadth-first search to traverse the state graph. It starts by generating all the initial states
and adds them to the FIFO queue, then launches threads that repeatedly execute the process described
below : (i) pick a state from the FIFO queue and generate all its successor states, (ii) for each successor
state; check if it satisfies all the invariant properties and adds it to the end of the FIFO queue; (iii)
if some successor does not satisfy some invariant property, report an error and print the corresponding
counterexample. The TLAT toolbox, freely available at [45] contains an editor, a pretty-printer, and the
TLC model checker, which enumerates states by interpreting TLAT specifications.

1105

1110

1115

1120

1125

1130

1135

1140

1145

34 CHAPTER 2. BACKGROUND

2.6.2 Alloy Logic & Language

Section 2.6.2.1 presents the Alloy logic. Section 2.6.2.2 presents the semantics of the Alloy language.
Section 2.6.2.3 presents its verification tool, called Alloy Analyser.

2.6.2.1 Alloy Logic

Alloy [46], often referred to as “lightweight formal methods” [47], is a declarative modelling language
based on relational logic (RL), a logic with a clear semantics based on relations. This logic provides
a powerful yet simple formalism for interpreting Alloy as modelling constructs. It is based on a First-
Order Logic (FOL) enhanced with the transitive closure operation to express complex structural and
behavioural constraints [47]. Alloy is very strongly influenced by object-oriented modelling. It allows
the user to easily classify objects, and associate properties to objects according to their classification.
Figure 2.4 gives a summary of Alloy’s operators token from [48] and updated with a subset of operators
and definitions [47, 49]. The figure introduces the building blocks that underlie Alloy. Alloy is based on
models. The structure of each model is built from typed relations and atoms.

Atom. An atom is a primitive entity that is indivisible, (i.e., it cannot be broken into several sub-
parts); immutable (i.e., its properties do not change over time), and uninterpreted (it has no innate

property).
Set. It is a well-defined collection of distinct objects.

Relation. A relation is a structure that relates atoms. Mathematically, it is a set of tuples, each tuple
consisting of a sequence of atoms. The size of the relation is the number of tuples. Further, The arity of
the relation is the arity of the tuples. Thus, a set is an unary relation, 1-tuple, a scalar is a singleton (size
1) unary relation, binary relation is a relation (size 2). Informally, the term relation is used to mention
a relation of arity two or more.

Constants Relation. Alloy provides three relational constants (univ, none, iden):
e none is the empty relation that contains no tuple,
e univ is the universal relation that contains every tuple,
e iden is the identity relation that maps each atom to itself.

As these constants are used in expressions with variables, they have types.

Expression. In Alloy, expressions are just like mathematical expressions, constructed by nested ap-
plications of operators to variables. All expressions denote relations, so every operator takes one or more
relations and yields a relation. Operators fall into two categories: Set operators and Relational operators.

e Set operators includes the standards operators on sets (union, intersection, the difference, in, and
=) writing in ASCII form. The two operators in and = are used to compare relations by testing
whether the tuples of one relation also belong to another. Given A and B, two relations have the
same type. The formula A in B is true when every tuple of A is also a tuple of B. The equality is
the containment in both directions, A = B is true if A in BA B in A are true.

e Relational operators includes (product, join, transpose, transitive closure, reflexive transitive clo-
sure, domain restriction, and range restriction) operators.

— The product A— > B of two relations is a relation resulted by taking every combination of a
tuple from A and a tuple from B and concatenating them.

— The join A.B of relations A and B is a relation resulting from the combination of every
tuple in A and a tuple in B, including their join, if it exists. FE.g., the join of two tuple
X = (z,z1,2n), Y = (Y1, Yn, 2) is the tuple (X,Y") which starts by the second atom of X, x;
and ends by the before last atom y,, without the element z. Note that the matched atom is
removed from the resulting tuple.

— The transpose of a relation is its inverse. It takes the mirror image of a relation, forming a

1150

1155

1160

1165

1170

1175

1180

1185

2.6. VERIFICATION LANGUAGES & TOOLS 35

new relation by reversing the order of each tuple. It is only defined for binary relations. FE.g.,
the transpose of the relation R = {(a1,b1), (az,a2)} is R = {(b1,a1), (az,a2)}

— The reflexive-transitive closure of a relation is the smallest enclosing relation that is transitive
and reflexive (that is, includes the identity relation). E.g., the transitive closure of a given
relation R = {(a1,as), (az,as), (as,a4)} is “R = {(a1,a2), (a1, a3), (a1, as), (az, a3), (as,
a4), (a3, ag)}. The reflexive-transitive closure of a relation R = {(a1, az2), (a2, as), (a3, a4)}
is *R = {(a1, a1), (a2, a2), (as, a3), (a4, a2), (a1, a2), (a1, a3), (a1, as), (a2, az), (a2, aq),
(as, a4)}, i.e., the set of its identity element plus the set of the transitive closure.

— The domain/range restriction. For any set A and any relation B, the domain restriction
relation, A <: B, is tuples in B beginning with a member of A. The range restriction
relation, B :> A, is a relation tuple in B ending with a member of A.

In addition, Alloy provides Operators to present compound (larger) formulas which are are made from
smaller formulas by combining them using the standard Logical operators, and by quantifying formulas
using Quantifiers that contain free variables over bindings.

e Logical operators includes negation, conjunction, disjunction, implication, bi-implication and con-
dition which have the standard definitions (see Table 2.4).

e Quantifiers includes five operators defined in Alloy which are all, some, no, one, lone. Writing:

— all A, states that for all element in the set A,

— some A, states that there is at least one A in the set,
— no A, states that the set is empty,

— one A states that there is exactly one A in the set,

— lone A, states that there is at most one A in the set or the set is empty.

These quantifiers can be applied to variables as well as expressions. Note that the quantified
variables are always bounded by an expression. Indeed, if no multiplicity quantifier is used, alloy
assumes to be one.

2.6.2.2 Alloy Language

The Alloy language uses the Alloy logic with some other constructs to make modules. The module
declaration starts by the keyword module. Each Alloy module consists of a number of declared constructs,
the gross structural elements of an Alloy model are: modules, signatures, fields, facts, predicates, functions,
assertions, commands, let expressions. All those terms will be introduced in the following.

Modules. Alloy models are divided into modules. Each module is declared on a separate file using
a declaration. Some models or model fragments are used repeatedly in other models. To make reuse
convenient and allow structuring of large models, Alloy enables a model to incorporate the contents
of other modules using import instructions. The module system of Alloy is a simplified version of the
package system of Java. Modules can be arranged in a tree and are given pathnames from the root. The
names of the files containing the modules, and their locations in the directory hierarchy, must match the
module names. The general module structure is as follows:

module ::= module [packageName/| moduleName import... paragraph ...
import ::= (open | uses) packageName [/*]
paragraph ::= signature | fact | assertion | function | run | check | eval

Signatures. Defines a set of atoms representing the basic entities of Alloy. The declaration of a
signature is made using the keyword Sig followed by the name of the signature, which has the form
Sig S{...}. Signature declarations may introduce fields. A field represents a relation among signatures,
has the form Sig s {f : t} where f is a field, s and t are types, f here is a total function, mapping
each atom in s to exactly one atom in ¢, e.g., Sig Student {class : one Class}. The signature is
composed of non-dividable entities called atoms, whose type is given by signatures, and of atom tuples,
whose type is given by fields. A signature can also introduces sub-signature using the keyword extends,

1190

36

Basics

Type of Expression

Expression

Set Operators

Relation Operators

Logic Operator

Quantifiers

Term

Divers

problem :: decl * formula
decl :: var : typeexpr

typeexpr =
type

type— > type
type => typexpr

expr =

expr in expr
expr + expr
expr&expr
expr-expr
expr—expr

Ri— >Ry
expr.expr or exprlexpr|

“expr
“expr

* expr
SetD <: Rel
Rel :> SetR

formula :=

| formula
formula&& formula
formula || formula
formula => formula

formula <=> formula
formula => formula, formula
noted by @ here

all v : type | formula

some v : type | formula

no v : type | formula

one v : type | formula

lone v : type | formula

Q disj x, y : type | formula
term ;1=

var

termlvar]

univ(expr]

pr]
iden[expr]

none

[subset|
|union|
[intersection |
|difference]
lequality]

[product]

[navigation (join)]
[transpose|

[transitive closure|
[reflexive transitive closure]
|domain restriction |

[range restriction]

[neg]

|conjunction]
[disjunction]
|implication|

[biimplication|
|Conditional]

[universal]
|existential]

[not exist|

|exactly one element |
|zero or one exists |
|disjoint Keyword]|
[variable]
|application|
|universal relation|

|empty relation |
|identity relation |

CHAPTER 2. BACKGROUND

M : form — env — Boolean

X :expr — env — value

env = (var + type) — value
value = (atom x - -+ X atom)+
atom — value

M{a in ble = X[ale C X[ble
X[a+bleU X|[ble
X[a+blen X|[ble
Xla— —ble = Xlale \ X[be

is the standard cartesian product
Xa.ble ={(x,2) | y.(z,y) € X[ale A (y,2) € X[b]e}
X["ale = {(z,y) : (y,z) € X[a]e}

“r is the smallest relation that contains r and is transitive.

*r is the smallest relation that contains r and is both transitive and reflexive
creates a new relation where the domain of R is restricted to D
creates a new relation where the range of R is restricted to R

M|[!Fle = =M|Fle
M[F&&Gle = M[Fle A M[Gle
M]

M|

F || Gle = M[Fle vV M[Gle
[[F => Gle = ~M|[Fle V M|[Gle

M[F <=> Gle = (M[Fle A M[Gle) V (~M[Fle A =M[Gle)
M[F => G, H]e if F then G else H

M[allv:t]|F]=A{M[Fl(edv— {z})|zece(t)}
F is true for every v in t.

Msome v : t |F] = V{M[F](e®v— {z}) |z €e(t)}
F is true for some v in t

Mo v : t|F]=[{M[F](e®v— {z})|zce)}|=0
F is true for no v in t

Mlone v: t |F] = {3IM[Flle®v — {z}) |z €e(t)}

F is true for exactly one vin t

Mllone v: t | F]= Mo v: t]V M[one v : t]

F is true for at most vin t

M{all disj x,y: t | F]

F holds whenever x and y are given different values drawn from e

Xvle = e[v]

Xlaw)]e ={{y1,-- - yn) | o2, y1,...,yn) € e(a) A (z) € e(v)}
contains every tuple

contains no tuple

maps each atom to itself

Table 2.4: Summary of Alloy Logic Syntaz and Semantics. (extended from [47, 48])

Sig t extends s {...}. Note that sub-signatures may themselves have sub-signatures. A set of modifiers
can precede any signature declaration: (i) the abstract keyword that enforces that no atom is directly
typed by that signature and (ii) quantifiers operator keyword that enforces the multiplicity (i.e., the
number of atoms typed by the declared signature). Without the multiplicity keyword, there can be any
number of atoms typed by the signatures. The general form of the signature is as follows:

signature ::= [static] qualifier,. .. Sig sig name [type-params| [extension] decl, ...

qualifier ::= part | disj | exh
type-paramaters ::= | type-paramater, ... |
extension ::= extends sig, ...

Facts.

formula-seq

Is a formula used to specify constraints properties on the model elements that should always

hold in instances of the Alloy module in which they are declared. It can be considered as an assumption.
The fact declaration starts with the keyword fact followed optionally by a name and a block containing
a boolean-valued Alloy expression. The fact declaration form is as follows:

fact ::= fact [params-name| [type-params| formula-seq

1195

1200

1205

2.6. VERIFICATION LANGUAGES & TOOLS 37

Predicates and Functions. Are both parametrisable Alloy expressions. They are declared using
the pred and fun keywords, followed by an identifier, optional parameters and a block containing Alloy
expressions. The predicate specifies a configurable constraint that can be instantiated in different con-
texts. The function is a parametrised formula that can be applied by instantiating the parameters with
expressions whose types match the declared parameter types. e.g., given the signature: Sig s and Sig ¢,
a function has the form fun f(arg; : s,args : t){...}. The arguments present the function inputs, and
the output value represents by the whole expression application. Note that there is a convention that the
second argument in a function declaration is treated as the function’s result. There are two predefined
functions and predicates: sum and disj. The disj predicate returns true or false depending on whether its
arguments represent mutually disjoint relations, and the function sum takes a set of integers and returns
their sum. The declaration form of the alloy function and predicate is as follows:

predDecl ::= pred [this arg] param name [type params| [paraDecls| block
funDecl ::= fun [this arg] para name [type params]| [paraDecls]: expr expr
thisarg ::= sig . | sig =

paraDecls ::= (decl,*) | [decl,* |

Assertions. Are special predicates declared with the keyword assert, defines a boolean formula that
it is claimed to be always true. Its declaration form is as follows:

assertion ::= assert [param name| [type params| formula-seq

Expressions. Expressions in Alloy fall into three categories, which are determined not by the grammar
but by type checking: relational expressions, boolean expressions, and integer expressions. The used term
expression, in general, refers to a relational or integer expression. Therefore, constraints the formula refers
to a boolean expression. The logical operators apply only to constraints, and the relational and arithmetic
operators apply only to expressions. Alloy defined an exception for the two condition constructs, expressed
with implies (or =>) and else, and the let syntax, which apply to all expression types.

e conditional expression takes the form :

expr ::= expr (=> | implies) expr else expr

e Let expressions. Allows a variable to be introduced, to highlight an important subexpression or
to make an expression or constraint shorter by factoring out a repeated subexpression:

expr ::=let letDecl, block Or Bar
letdecl ::= var = expr

Commands. Are a set of instructions that order Alloy Analyser to perform an analysis and generate
instances for a given Alloy module. Alloy language defines two commands, check and run, which are
used as follows:

e check command used to check an assertion; its result is a sample of counter-examples in which the
assertion is violated if this is found.

check ::= check [param name] [scope| [excluded]| [expect number|
scope ::= for [number but| typescope, ...

typescope ::= number (sig | int)

excluded ::= without global, ...

global ::= facts | constraints | param name

e run command used to check a given predicate and find an instance of a function. It generates a
sample of instances in which the predicate holds.

run := run param name [scope| [excluded| [expect number]

1210

1215

1220

1225

1230

1235

1240

1245

1250

1255

38 CHAPTER 2. BACKGROUND

Both commands take the assertion name or function and the scope indication in which the analysis is to
be performed. The Alloy analysis is decidable only because it is performed on a finite domain. This is
achieved by associating a scope to each module’s signature, i.e., an upper bound to the number of atoms
typed by each signature of the module.

We note that presenting all the details of the Alloy language is beyond the scope of this work. We
invite the reader to read the remarkable book of Jackson author on Alloy in [47].

2.6.2.3 Alloy Analyser

The simplicity of both relational logic and the language presented above as a whole makes Alloy suitable
for automatic analysis. Alloy is supported by Alloy Analyser. It is a tool yielding a set of Alloy instances
model whose elements are typed by concepts and relations of the meta-model defined by the Alloy module
and satisfy constraints of the module. An instance is obtained by checking an assertion. It is called a
counterexample if it is obtained by violated assertion checking. The Alloy Analyser can list instances or
counterexamples so that it produces a different result each time.

Alloy Analyser is a bounded model checker using SATisfiability (SAT) solvers. It represents a powerful
analysis tool that allows one to search for specification instances and check models’ intended properties
by resorting to SAT solving. It is an automatic tool that translates the alloy specification into FOL
expressions as Boolean Satisfiability Problem (SAT) using the Kodkod model-finder[50]. Then, this
problem is solved by an SAT solver, e.g., SAT4J [51], MiniSat [52], or Berkmin [53], and the result of the
analysis is displayed to the user. Boolean satisfiability is the problem of finding an assignment to a boolean
formula on which the whole formula is evaluated to be true. The primary analysis technique associated
with Alloy is essentially a counterexample extraction mechanism based on SAT solving. Given a system
specification and a statement about it, a counterexample of that statement (under the assumptions of
the system description) is exhaustively researched.

Thus, the Alloy Analyser is a constraint solver that provides two types of automatic analysis the
simulation and verification. (i) The simulation analysis is supported using the keyword run to produce
instances of the model (Alloy specification) satisfying a condition. (ii) The wverification is based on
a model-finding approach using an SAT solver. To support the verification, alloy Analyser uses the
keyword check to check whether an assertion holds for a specific scope of atoms. An assertion differs
from a fact in that the Alloy Analyser will check an assertion to see if it is true for all the examples in the
scope. In contrast, the Alloy Analyser assumes each fact is true and uses them to constrain the examples
it examines. If it finds a counterexample, then the predicate is unsatisfied. If no counterexample is found,
the predicate may be either valid (i.e., true for all possible examples), or it may be unsatisfied but not
within the used scope.

As FOL is not decidable (and the relational logic is a proper extension of first-order logic), SAT solving
cannot generally be used to guarantee consistency (or, equivalently, the absence of counterexamples for)
of a theory. Then, an exhaustive search for counterexamples has to be performed up to a bound k in
the model elements (signatures) to limit the domain of the interpretations. The bound is a positive
integer restricting the number of instances of each instance element of the analysed system. Thus, if no
counterexample is found, the assertion could still be invalid for an upper bound. In the same way, in the
case of a simulation (run), if no instance is not found, the condition could be valid for an upper bound.
Therefore, this analysis procedure can be regarded as a validation mechanism rather than a verification
procedure. Its usefulness for validation is justified by the exciting idea that, in practice, if a statement is
not valid, there often exists a counterexample of it of small size.

Finally, It is important to note that the authors of Alloy provide the Java API on which Alloy
Analyser was built. As a result, it is straightforward to integrate the analytical power of Alloy in tools.

2.7 Summary

We have presented throughout this chapter the basic notions of BPM and the main standard notation for
modelling business systems BPMN. Secondly, we have presented an overview of the existing verification
methods. Thirdly, we present the FOL logic, which is used in this thesis as a basic language to specify
the execution semantics of the BPMN. Finally, we have presented TLA" and Alloy, which are two formal
specification languages based on the FOL logic, are increasingly popular due to their simplicity and
flexibility. They constitute a powerful but simple language associated with effective and automated tools.

Table 2.5 summaries their particularities. In the next chapter, we describe an exhaustive overview of the

2.7. SUMMARY 39

verification works for the BPMN standard.

Alloy TLAT
Modeling Relation logic First-order logic Actions + Fairness
Specification Relation logic Temporal Logic

Verification ~ Bounded model checker (Analyser) Unbounded model checker (TLC) (+ Theorem prover (TLAPS))

Table 2.5: General Comparison of the Alloy and TLA" Tools. (from source table [54])

40

CHAPTER 2. BACKGROUND

1260

1265

1270

1275

1280

1285

1290

1295

CHAPTER

3
I LITERATURE REVIEW

Education is what remains after one has forgotten what one has
learned in school. 99
ALBERT EINSTEIN

Chapter content

3.1 Introduction & @ i i i i i it ittt e e e e e 41
3.2 Research Methodo, 42
3.2.1 Objectives 42
3.2.2 Survey questions Lo 42
3.2.3 Prior Reviews on Business Process Modelling Verification 42
3.2.4 Research Strategy 43
3.2.5 Article Selection and Inclusion and Exclusion Criteria 44
3.3 Papers Overview v v i i i i e e e e e e e e e e e e 45
3.3.1 Approaches based on Petri Nets 46
3.3.2 Approaches based on Automata Theory 48
3.3.3 Approaches based on Process Algebras 50
3.3.4 Approaches based on Logic Formulas 51
3.3.5 Approach based on a Programming Language 53
3.4 Discussion v o o e e e e e e e e e e e e 56
3.5 Summary oo e 61

3.1 Introduction

Business process verification is a valuable phase to avoid defaults at design time rather than when running
the processes over business process engines. BPMN is the most prominent notation for representing
business processes due to its wide usage in academic and industrial contexts. However, since BPMN
suffers from using the semi-formal definition of its execution semantics, its formalisation was a research
question. This chapter aims to provide an entirely comprehensive and detailed high-level survey of the
significant works on formalising and verifying BPMN models. It gives students and researchers in this
domain a helpful base for their future research and guides us to evaluate our proposal regarding existing
work. We conducted a systematic literature review to collect and analyse the work on business process
formalisation and verification present in the literature and analysing supporting tools. We investigated
1445 papers, and we identified a count of 79 Business process verification and tools works for two kinds of
business process diagrams. The authors report direct or indirect formalisation and/or its implementation
using different formal languages for each of these works. Compared to prior systematic literature on
business process verification and tools, this chapter extends the current knowledge [55-58] by analysing
works based on different formalism and focused on various business process perspectives.

This chapter is organised as follows. Section 3.2 describes the protocol of our systematic review,
including research objective, research questions, research strategy, how we extracted and classified our

1300

1305

1310

1315

1320

1325

1330

42 CHAPTER 3. LITERATURE REVIEW

data (inclusion, exclusion criteria and quality assessment criteria). Section 3.3 describes the selected
approaches for the verification of the BPMN models. Section 3.4 presents our analysis, comparison and
discussion of the studies and, finally, a conclusion is given in Section 3.5.

3.2 Research Method

This section describes the review protocol we adopted for the literature search for selecting the relevant
articles. We chose the approach of Petersen et al. [59] to conduct our systematic review. In turn, we
discuss the underlying research questions, preliminary research, search strategy, inclusion, exclusion and
quality assessment criteria.

Figure 3.1 summarise the approach application. First, we define a set of research questions. Second,
depending on the questions that we asked, we choose terms to build our search queries. Third, we
use these queries in the search engine of selected databases. Fourth, after collecting the results of each
database, eliminating redundant papers (i.e., journal or conference papers indexed into more than one
database). Then apply the first screening phase in which we read for each article only the title, the
summary, and the keywords, and we see if they can be included. Afterwards, we pass the selected papers
for a second screening phase where we apply a set of inclusion, exclusion, and assessment quality criteria
that we define. Finally, the output papers will pass for the analysis and the extraction of data. Figure 3.1
gives an overview of the number of papers after each step of the article selection.

1804 Papers 1445 Papers 166 Papers 79 Papers

Define Review Define Search Perform Digital Eliminate Screening 1 Screening 2 Extract and
Questions Terms Library Search Redundancy 9 9 analyze the data
Start End

Eead and Filter papers by title, abstract and Read and Fllter papers based on

Article Selection Process

keywords Inclusion, Exclusion and Assessment

Criteria

Figure 3.1: Article Selection Process.

3.2.1 Objectives

This chapter aims to accumulate an understanding of the current state-of-the-art in the verification of
the business process models domain, summarise existing techniques and tools, and identify the areas of
further work.

3.2.2 Survey questions

Describing the underlying research questions is the first step of any systematic literature review to guide
the identification and analysis of studies. To achieve the objectives mentioned above, we have formulated
the following questions:

e Which formal model languages are used to formalise the semantics of BPMN ?
e What are the goal(s) of this formalisation ?

e Which is the state of tool support 7

e What are the parts of BPMN being supported by the tools ?

e Which are the challenges that still need to be addressed ?

3.2.3 Prior Reviews on Business Process Modelling Verification

We are not the first ones to conduct a systematic review on the verification of the process models. So
far, there have been several reviews about topics related to process model analysis in general (e.g., [55,

1335

1340

1345

1350

1355

1360

1365

1370

1375

1380

3.2. RESEARCH METHOD 43

57, 60-62]). Nevertheless, none of these reviews studies the works based on the formalisation of BPMN
execution semantics models and their verification tool support.

In [60], the authors contributed in the area of Event-driven Process Chain (EPC) verification. They
analyse 712 models with three tools (EPCTools, ProM plugin for EPC soundness analysis, and YAWL
Editor) for checking soundness properties. In [61], the authors investigated EPC approaches and tools
for addressing the problem of automating business processes. They study the modelling and verification
of business requirements in the domain of EPC and discuss the verification methods used in the design
of ToT systems. Unlike this work, we based on BPMN as the modelling language.

The work that comes closest to the ambition of our review is [55], which provides a survey of formal
verification approaches for business process models. The selected work was published before 2008 and was
generally focused on BPMN or activity diagrams of UML as notations for business processes modelling.
Unlike our survey, we focus only on BPMN as a modelling language and the work from 2008. For that,
we can consider that this survey is complementary to their work.

The work in [62] presents an analysis of verification tools introduced in different application areas:
variability (i.e., whether works based on a business process with a characteristic of supporting various
versions depending on the intended use or execution context); compliance (i.e., whether process models
conform with specifications), and compatibility (i.e., whether two process models conform semantically).
Uunlike our work, the selected work was published in [2005-2008], and none of them verified the order
or parallel execution of Message Flows, Tasks, Events, etc., in a Collaboration. In addition, the used
modelling language in the selected set of work is not restricted to BPMN.

Recently, some systematic reviews have been presented in [57], and [63] where they focus on BP
compliance. More precisely, the authors in [57] conducted a state-of-the-art of business process compliance
approaches published in [2003-2013]. They classified the compliance over four dimensions (scope, lifecycle
phase, formality and contribution type of compliance approaches) where the formalisation of the business
process represents only a sub-dimension of the formality dimension. The authors in [63] presented a
systematic review focusing on the management of business process compliance requirements (data flow,
control flow, resource, allocation, time). They addressed works published in [2011- 2017]. The authors
did not focus on BPMN as a modelling language.

Our literature review builds on the one in [55] including the references reported in their review that
were related to process modelling verification based on BPMN. Beyond that, we took into account newer
works from the year 2008 to January of 2021. We have also defined our own more specific search string
and research classifications for works.

3.2.4 Research Strategy

Given the broad nature of the research domain, finding all relevant papers by manually searching through
conferences and journals would have been very time-consuming. Therefore, we opt to start the search
process with an automated search. The literature collection process started by querying prominent
scholarly databases. For this purpose, we first identified a list of subject terms, concepts and keywords.
Next, we determined six primary keywords from our review questions: "BPMN" | "Verification", "Formal
semantics", "Framework", and "Approach". We then added other keywords that are synonyms or related
to those five:

e an alternative terms for "BPMN" are "BPM", "Business process modelling”, "Process Diagram",
and "Collaboration Diagram”.

e an alternative term for "Verification" is "Analysis”.

e an alternative terms for "Formal semantics” are "Formalising”, "Formalisation”, and "Formal
Methods".

e an alternative term for "Framework" is "Tool".

e an alternative term for "Approach” are "Method" and "Technique”.

These terms were then combined using boolean operators to construct the key search terms such as:
e "BPMN" AND ("Formal semantics”" AND "Approach") AND "Verification”.

e "Business process modelling" AND ("Verification" AND "Framework").

e "Business process modelling” AND ("Verification” OR "Analysis") AND ("Framework” OR "Tool").

1385

1390

1395

1400

1405

1410

1415

44 CHAPTER 3. LITERATURE REVIEW

o "Verification” AND ("Technique” OR "Method" OR "Approach") AND "Collaboration Diagram”.

As a final check, the search string was updated and re-run to reflect frequently occurring words in
the titles, abstracts, keywords of relevant papers found through reference search results. Consequently,
we determined that "BPMN semantics" and its related keywords must be included in the papers’ title
or abstract. Our focus is on all articles published in English between 2008 and January 2021. Therefore,
the metadata fields we used are title, abstract and keywords. These yielded the following:

e Search string= ("Business Process Modelling”" OR "BPMN" OR "BPM") AND ("Verification"
OR "Analysis") AND ("Formal Semantics” OR "Formalising”" OR "Formalisation” OR "Formal
Methods") AND ("Technique" OR "Method" OR "Approach”) AND ("Framework" OR "Tool")

o Title= "BPM" OR "BPMN" OR " Process Model" OR "Process Modelling "OR " Process Mod-
elling” OR "Process Diagram" OR "Collaboration Diagram”

e Document Types = MEETING OR CONFERENCE OR ARTICLE
o Timespan = 2008-2021
e Search language = English

To perform an exhaustive search, we have identified five electronic sources of relevance where major
conferences and journals in the domain publish their proceedings: SpringerLink', IEEExplore?, ACM?3,
WEB of Science?, ScienceDirect®, and ScienceScholar® databases. Table 3.1 presents the number of search
results per database. The literature search resulted in more than 1445 papers. The first column presents
the electronic databases; the second column shows the number of articles found on each given database
after searching and eliminating the redundancy papers. The third column presents the number of papers
that are kept distributed against each database after the first screening phase. The fourth column presents
the final number of papers preserved after the second screening phase distributed against each database.
Then, the following columns present the distribution of these papers in terms of their types of Conferences,
Workshops, Symposiums or Journals. The last column presents the percentage of included papers per
database.

Table 3.1: Number of Studies per Database.

Electronic Number of Number of initial Number of final Conferences Workshops Symposium Journals Percentage in final
Data Base retrieved Papers selected papers included papers § : ; inclusion(%)
IEEExplore 40 28 23 13 2 2 6 29.11%
ACM Digital library 8 4 2 0 1 0 1 2.53%
ScienceDirect 464 15 11 0 0 0 11 13.92%
SpringerLink 872 84 21 13 5 1 2 26.58%
WebOfScience 7 41 19 6 3 0 10 24,05%
ScienceScholar 24 5 3 0 1 0 2 3,79
Total 1445 177 79 32 12 3 32 100%

3.2.5 Article Selection and Inclusion and Exclusion Criteria

The collected papers were then checked for their relevance to the literature review by checking their titles
and reading their abstracts to ensure that they are related to business process modelling and verification
of BPMN topics. If the paper passed these preliminary checks, it was included in the pool. Those papers
whose title was not relevant were immediately removed from the analysis. Initially, we identified 177
papers as potentially applicable to the research questions. Then, we manually analysed the selected
articles. To obtain papers directly contributing to our research questions, we further processed the
elimination of papers by considering the inclusion and exclusion criteria. Each paper satisfying at least
one inclusion criterion and not meeting any exclusion criteria and satisfying all the quality assessment
criteria was selected to be read in its entirety in the next step. More specifically, we removed and included
papers as follows:

!SpringerLink : https://link.springer.com
2IEEExplore: http://ieeexplore.icee.org

3 ACM Digital library:https://dl.acm.org/
4WebofScience: https://apps.webofknowledge.com
®ScienceDirect: www.sciencedirect.com

6Science Scholar:https://sciencescholar.us/

1420

1425

1430

1435

1440

1445

3.3. PAPERS OVERVIEW 45

Distribution of Publications per Year

12 2008

2009

2010
2011
“2012
“2013
“2014
w2015

2016
“2017

2018

2019

2020

2021

Nombre of publications

Figure 3.2: Distribution of Selected Papers per Published Year (2008-2021).

e Inclusion Criteria

— Papers published between 2008-2021.

— Papers able to answer the research questions.

— Papers that fall in business process model execution.

— Papers that fall in transformations from one language to another.

— Algorithms for the formal verification of process models for e.g., deadlock or safety.
— Papers deal with the syntax and syntactical correctness of process models.

— Papers deal with the semantics and semantic correctness of process models

— Papers that are published in English language.

e Exclusion criteria

The publication was published in a language other than English.

The full text of the publications was not available.

The publication did not coincide with the topic of systematic research.

BPMN was used only as a presentation tool and not as part of the research.

— Any duplicate papers, industrial bulletins, industry case studies.
¢ Quality Assessment criteria

— The study objectives are clearly stated.
— The proposed method / technique is clearly described.
— The methodology used in the study is adequate.

The study has a high citation.

After applying the inclusion, exclusion, and quality assessment criteria, only 79 papers remained in
the set of relevant papers. The number of false positives in the initial set (papers that may have been
relevant but on detailed investigation turned out not to be so) was disappointingly high. Figure 3.2 shows
the distribution of selected papers per year; we can see that the subject of formalisation and verification
of business process models represents a high topic in the period coinciding with the present thesis.

3.3 Papers Overview

Several works have investigated formal or semi-formal approaches to provide a method for verifying and
validating BPMN business process models. This section serves as a survey for the BPMN verification
methodologies in the literature. We will classify these works into five categories: approaches based on
Petri Nets, Automata Theory, Process Algebras, Logic Formulas, and a Programming Language. In the
following subsections, we give an overview of each work in each category. To help readers, we present

1450

1455

1460

1465

1470

1475

1480

1485

1490

1495

1500

46 CHAPTER 3. LITERATURE REVIEW

in Table 3.2 and Table 3.3 an abstract definition for the languages and the technologies used among the
selected works, respectively.

3.3.1 Approaches based on Petri Nets

Petri nets are used to formalise and verify the correctness and soundness properties of BPMN in several
works. Among them, one of the earliest works that we identified is [64]. The authors propose a trans-
formation from BPMN 1.2 into Petri nets models. They have offered a set of rules which specify how to
transform one or a combination of BPMN element(s) into a Petri-net module. Firstly, they have chosen
the ILog BPMN Modeller as a graphical editor to create BPMN models. Then, they have provided the
Transformer [65] tool where they apply the BPMN2PNML transformation rules on BPMN models and
export the resulting Petri net in the form of a PNML file. Then, they use the resulting files as input
for the verification tool ProM|[66] to statically check the semantics of BPMN models. With the ProM
framework, soundness and other properties such as dead transitions, deadlocks, and livelocks are verified.
However, even if the work deals with collaboration elements, the formalisation as Petri nets suffers from
limitations for the communication presentation, the hierarchical relation between processes and subpro-
cesses, and the verification of internal activities within them. In [67], the authors then build on their
earliest work and propose formal semantics for the transaction and compensation elements of BPMN in
terms of Petri nets.

In [68], the authors propose an approach for the verification of business process models based on
the transformation technique. They convert a BPMN model to an extended Business Process Execution
Language for Web Services (BPEL/WS) model manually. Then, the BPELJ WS translated to a Petri-net
model in a Coloured Petri net (CPN) XML-based representation. Then they use CPN tools to verify the
model properties (deadlock and infinite loop). The proposed approach is semi-automatic since the first
transformation is manual.

In [69], the authors present an approach for automated model-checking and analysis of entailment con-
straints (i.e., the dependency between tasks) in the context of business processes to detect deadlocks and
security property violations. First, the authors annotate the BPMN business process model with security
artefacts. Then, they describe formal semantics in terms of CPN. For verifying the security properties,
they define a translation of a BPMN process model into the PROcess MEta LAnguage (PROMELA) in
which a CPN semantics is implemented. Next, security properties are verified as a set of linear temporal
logic formulae using the SPIN model checker. Finally, the authors developpe a model checking plug-in
for the free web-based process modelling tool, called Oryxz. This tool allows the automated translation of
security annotated process models into PROMELA, the simulation and verification of security properties
defined in a simple dialogue box, and the reporting of verification results back to the modeller.

In [70], the authors provide a formal semantics for a subset of BPMN in terms of graph rewriting
rules using an algebraic graph transformation approach to describe direct traceability between the statics
structure. Then, in [71] the authors extend their work and propose a formalisation of a larger set
of BPMN 2.0 based on in-place graph transformation rules. Then, they have documented it visually
using BPMN syntax through Graph Rewrite Generator (GrGen.Net) platform, which helps to debug and
simulate the execution of the business process models. The authors do not treat verification aspects,
but they clearly map mathematical sets and relations to the specific graph-oriented concepts from their
reference implementation.

In [72], the authors propose an approach for detecting errors in business process models using the
influx tool. First, they use influr for modelling process requirements and generating XMI files. Influx
models are based on BPMN 1.0. Then, the authors introduce a method for checking both syntactic and
structural properties of the generated model. To check syntactical errors and the presence of cycles in a
model, they use a simulation. To check structural errors, they segregate models into Workflow-Net and
Petri nets. They then use either Woflan [73|, or Lola [74] to check for soundness (e.g., for the presence
of deadlock and lack of synchronisation). Finally, the authors extend their work in an empirical study
in [75] to find out syntactic and control flow error frequencies in industrial process models using graph-
theoretic techniques and Petri net-based analyses. Also, they have studied the connection between errors
(syntactic and control flow-related) and a set of metrics related to structural and behavioural aspects of
process models. To detect control flow-related errors, they use Lola and counterexamples provided by
this tool. They show that up to 92.9 % of process models are erroneous in business contexts.

In [76], the authors propose a framework based on formal verification for detecting and diagnosing
errors in business processes. Firstly, the authors use graph search algorithms to detect syntactic errors,
remove them to get a well-formed model. Then, they apply a transformation from the well-formed model

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550

1555

3.3. PAPERS OVERVIEW 47

to PNs preserving soundness properties. Then, they reduce the PNs to Workflow-net for checking its
soundness using the Woflan tool. Then, based on the diagnostic information given by the tool, they
identify the location of errors. In [77], the authors extend their work with rigorous proof of the results
and an extensive empirical analysis of diagnosis of errors. They analyse a sample of 174 industrial BPMN
models in which they identify more than 2000 errors. The authors focus on the statistical model of error
probabilities at subprocesses.

In [78], the authors propose an approach to enable checking data-flow correctness for process models.
The proposed work is limited to some essential control flow elements and data objects in processes without
any data values. First, the authors provide an algorithm for mapping the process models in an extension of
Workflow Graphs enhanced with data. Then, they provide an implementation of the mapping algorithm
for BPMN, and OTX [79] 7 models. Then, they provide a second mapping from the Workflow Graphs®
to PNs to support data-flow verification in a process. Next, they define a set of data-flow correctness
properties (missing data, redundant data, lost data, and inconsistent data) as anti-patterns®. Finally,
they check the correctness of these properties using Lola model checker.

In [80], the authors propose a data-value-aware verification approach. They introduce a transforma-
tion algorithm from data-value-aware BPMN process models to PNs. The BPMN models are enhanced
with information on data values using so-called Data-Value Enhancement Functions. These later facili-
tate specifying the usage of data values and their modifications during the process flow. To verify process
models, they rely on the model checking of Petri Nets using the LOLA tool. In their work, they focus on
data-value centred properties specified in Computation Tree Logic (CTL). Their approach is evaluated
on an auction model. This approach is limited to tiny models due to state-space explosion.

Recently, the work in [81] has been extended the approach in [64] to Timed Petri Nets (TPNs) to
be able to express time constraints for activities, process regions, and timer events. Besides, they tackle
the detection and management of constraint violations at run-time. The authors propose this formal
model to analyse the soundness of the collaboration and its temporal constraints. However, no formal
verification means for these properties is given.

In [82], the authors define a formal semantics of a subset of BPMN that covers timer events, tasks,
and exclusive and parallel gateways. They propose a transformation approach from the BPMN models
to TPNs to detect control flow anomalies in the model. Then, the authors check liveness and reachability
properties regarding the execution time by using the Timed Petri Net Analyser (TINA) tool. The
authors focus on the timer events (boundary, intermediate) with an associated duration time. According
to the authors, to deal with different perspectives of BPMN, like data and communication, they would
have to move to another extension of Petri Nets like Interval Timed Coloured Petri Nets (ITCPN).

In [83, 84], the authors propose an approach for transforming BPMN models limited to a small subset
of control flow element to CPN models using GRaphs for Object-Oriented VErification (GROOVE) tool.
They provide a new method for verifying the preservation of the semantics and its validation by ensuring
the absence of the live-lock, the improper structure and loop, and the deadlock. The authors have verified
the successful termination of the transformation using the GROOVE model checker. As far as verification
properties are concerned, they focus on safety and vivacity using CPN Tools.

In [85, 86], the authors propose a formal semantics for a subset of BPMN using high-level Petri
nets, called RECursive Petri nets (RECATNets) and Rewrite Logic (RL). The authors provide a pro-
totype to perform the automatic transformation from BPMN to RECATNets using a specific ATLAS
transformation language. Then, the obtained RECATNets are translated into RL terms, and the Maude
model-checker is used to verify proper termination and some other Linear Temporal Logic (LTL) proper-
ties. The work covers the behaviour of the subsets of BPMN elements, including multiple instantiation,
cancellation of subprocesses, and exceptions. No information about the communication model is given,
and only a small set of BPMN elements is covered. In addition, no time semantics is given for the
timer elements mentioned. Besides, the approach is semi-automatic; neither the implementation nor
benchmarking are given, and the approach is illustrated only through three simple examples.

In [87], the authors propose a transformation approach for formalising a subset of BPMN elements
extended with time and probabilities. The authors apply two mapping approaches, one automatic for
the simulation and another manual for the verification. The authors develop a package for the mapping
of BPMN models into Petri nets automatically. This transformation extends the BPMN models by

"OTX: is an industry-standard for modelling commissioning processes of vehicles.

8Workflow graphs: represent the primary control-flow constructs of industrial process modelling languages
such as BPMN, EPC and UML activity diagrams.

9 Anti-patterns: are specific patterns in software development that are considered bad programming practices.

1560

1565

1570

1575

1580

1585

1590

1595

1600

1605

48 CHAPTER 3. LITERATURE REVIEW

additional probabilities on the gateways, time delays on tasks. Then, they analyse the resulted Petri
net XML file in the General purpose Petri net simulator (GPenSIM) [88] tool. As far as verification
purpose, which GPenSIM lacks, the authors apply a manual transformation from the BPMN models
to PNs according to a set of defined mapping figures. Then, they analyse the transformed Petri net
and verify generic properties of Petri nets (liveness, safeness, ordinary, pure, invariants, free choices,
boundness) using TINA tool. In this paper, the authors use the timed Petri nets Analyser for verifying
the extended Petri nets without its definition. In addition, they use for the automatic approach the
GPenSIM tool, which is not a model checker. In addition, they use the TINA tool for the verification
without any precision about using the Bounded Prioritised Model-checking.

In [89], the authors present a transformation approach of BPMN models into CPN. They have devel-
oped a tool called Coloured Petri Net for BPMN design (CPN4/BPMN) to automatise the transformation.
Their approach operates in two phases. Before applying the transformation, a BPMN design tool (such
as the BPMN 2.0 designer of the Eclipse IDE) is used to partition a BPMN model into sub-models.
Then, they use the sub-models as input for the CPN/BPMN tool to generate the corresponding CPN
model. Even if their work covers a large set of BPMN elements, message exchanges are not specified.
The authors extend their rules in [90] to handle both structured and unstructured BPMN models.

In [91], the authors propose an approach for assisting business process designers in identifying neces-
sary cloud resources concerning temporal and financial restrictions on the process. The authors extend
BPMN models by enriching process activities with temporal constraints and required cloud resources.
To perform the verification of such models, they propose an automatic generation and conversion of the
enriched BPs into TPNs using Extensible Stylesheet Language Transformations (XSLT) as a transforma-
tion language. Afterwards, they check the BP using the TINA model checker. This approach is evaluated
on a simple case study.

In [92], the authors propose a new approach for verifying the k-soundness'® of BPMN models taking
into account cross-case data objects (i.e., data objects shared among different process instances of more
than one participant). The authors based on existing works for the transformation of BPMN into CPN
and introduce a set of rules for mapping BPMN elements including data objects to Hierarchical Coloured
Petri nets (HCPN). Then, based on the mapping, different correlation mechanisms are defined that
relate data objects to cases ''. The BPMN standard supports two different correlation types: key-
based and context-based correlation mechanisms. The authors discuss several correlation mechanisms
by considering combinations of basic ones: singleton/any correlation, key/context-based correlation and
case-based correlation. For the verification of the k-soundness property, the authors implement a search
function in CPN Tools. They provide a compiler, called fem2cpn [93], for automatic translating process
fragments to CPN tools compatible to Petri nets.

Other transformations that have been proposed are those from BPMN to workflow models, e.g., Yet
Another Workflow Language (YAWL) [94-96]. The authors provide a formal semantics of BPMN models
in terms of mapping to YAWL nets. This mapping is given as an algorithm based on a set of syntactic
rules. Then, they implement their proposal as a plugin, called BPMN2YAWL, integrated into the ProM
platform. This plugin transforms a BPMN model into a YAWL as an XML file. This XML file then serves
as input to a YAWL-based verification tool. As a proof of concept, they test the tool using simple models.
As far as verification is concerned, the authors focus on deadlock freeness and soundness properties.

3.3.2 Approaches based on Automata Theory

Other approaches rely on automata theory to define the semantics of BPMN formally.

In [97, 98], the authors propose an approach to detect structural errors in business process models
based on model checking. First, the authors translate the model in PROMELA. Then, they map it to
a Kripke Structure (KS) to express the behaviour of the process models using the SPIN model checker.
Once the KS is obtained, the authors check properties (absence of deadlocks, lovelock and multiple
terminations) expressed in LTL formulas and determine a set of structural errors patterns. The authors
use a non-deterministic automaton (as an external technique) representing the aimed model behaviour to
identify structural errors. Finally, they implement their translation rules in a java plugin, called ESPIN.
In their work, the authors focus on a small subset of BPMN elements (i.e., parallel, exclusive gateways,
abstract tasks and none start/end events).

0% _soundness: no deadlocks, no dead transitions, and no remaining tokens property, where k is the number of
process instances.
1 Cases: different process instances

1610

1615

1620

1625

1630

1635

1640

1645

1650

1655

1660

1665

3.3. PAPERS OVERVIEW 49

In [99], the authors propose an approach for verifying business process models enriched with temporal
and resources constraints. First, they provide an automatic mapping from BPMN extended with static
time constraints and resource annotations onto Timed Automata (TA) networks. Then, they use the
UPPAAL model checker for the verification of the generated models w.r.t. deadlock and bottleneck
properties.

In [100], the authors propose an approach for the performance evaluation of business process models.
First, the authors impose structural restrictions to assume that the models do not contain unreachable ac-
tivities and can permanently terminate. Then, they propose an algorithm that allows for a transformation
from restricted BPMN models to Stochastic Automata Networks (SAN). This algorithm is implemented
as part of a tool called BP2SAN. Finally, for the performance analysis, the authors evaluate how the time
of the process and the resources utilisation may be impacted the system workload using the generating
SAN models in Performance Evaluation of Parallel System (PEPS) tool.

In [101, 102], the author proposes a transformation from BPMN models to TA networks. Where
the behaviour of each task in the BPMN model is mapped to a TA network. The author supports
communication by modelling the collaboration model as a network of several synchronised TA networks.
Moreover, he requires timer events in models to be used to determine the time constraints in them. The
author uses the UPPAAL tool to simulate and verify the generated TA networks. Properties of interest
are expressed in Clocked Computation Tree Logic (CCTL) formulas. To support the transformation
from BPMN to TA, the author uses the latest version of the BPMN2TA plugin in the BTransformer
tool [103]. In these papers, the author uses the synchronous communication model, which is provided by
the semantics of the TA network. However, communication in BPMN reflects the real-world collaboration
between distinct business processes where this may not be respected. Also, the author uses time durations
for all BPMN timer elements, which do not respect the semantics of timer BPMN elements and their
types provided by the standard. Further, No transformation rules are provided in the paper.

In [104], the authors propose a formal specification and verification approach of advanced tempo-
ral constraints for business processes, based on TA networks. The authors provide a specification for
relative and absolute related temporal constraints while relying on the dependencies between these con-
straints. Before transforming BPMN models, the authors extend them with annotations to specify time
constraints. The definition of temporal constraints allows one to specify constrained process models that
may encounter a deadlock situation due to inconsistencies between nested temporal constraints. Then,
the authors apply a set of transformation rules given as templates between the BPMN elements and
TA. Finally, they use UPPAAL model checker to perform the formal verification of the timed business
processes. In this work, the authors extend the BPMN time semantics by associating time intervals to
tasks, to events, and in between activities. The authors support time cycles by using an equivalent model
of a loop task associated with a boundary timer event.

In [105], the authors propose an approach for the verification of BPMN models w.r.t. formalised
business rules. They present a mapping from BPMN elements to asynchronous Finite State Machines
(FSMs) synchronised by signals. They use the New Symbolic Model Verifier (NuSMV) model checker to
verify the specified business rule properties. However, the approach covers only a tiny subset of BPMN,
including the control flow elements. Moreover, no communication semantics is provided. Indeed, complex
processes cannot be translated like hierarchical business processes.

In [106], the authors propose a checking technique for the analysis of interoperability properties
of collaborative processes. They present a transformation from BPMN models to TA. A repository of
interoperability requirements is provided and used to detect problems in business process collaboration
models. The authors focus on the application of the UPPAAL model checker to verify interoperability
requirements for a given collaborative BPMN model. The formulation of interoperability requirements
is given in Timed Computation Tree Logic (TCTL). In this work, the authors provide users with a
set of template models to facilitate the behavioural description of their process model. To provide
collaboration semantics, the authors use synchronous communication between business process templates.
They propose extended semantics for the tasks, communication elements, timer events, and inclusive
gateway. For the tasks, they suggest the use of resources synchronisation. The sending and the reception
of messages then rely on a resource usage pattern. As far as timer events are concerned, the authors
support the start and the intermediate timer events based on the clock semantics given by TA, and
the timer elements are transformed to clocks associated with the start behaviour of the tasks. For
inclusive gateways, the authors simulate their local semantics based on a transformation of the model to
an equivalent one based on exclusive and parallel gateways.

In [107-109], the authors propose a verification framework for business processes models, called
VBPMN. The authors define a semantic with a BPMN to Labeled Transition Systems (LTSs) transfor-

1670

1675

1680

1685

1690

1695

1700

1705

1710

1715

1720

50 CHAPTER 3. LITERATURE REVIEW

mation, obtained by sequencing two successive transformations. First, a transformation from BPMN
to Process Intermediate Format (PIF) which is next transformed to LOTOS New Technology (LNT),
(LNT having an LTS semantics), to be fed to the Construction and Analysis of Distributed Processes
(CADP) verification tool. A small subset of BPMN control flow elements is selected. It includes neither
communication nor temporal elements. Also, the authors use multiple transformations, which make it
unsure whether BPMN semantics is respected.

In [110], the authors propose a methodology for the specification and the verification of business
processes based on the use of BPMN and a refinement approach to reduce the complexity of modelling
workflow systems and facilitate their understanding. First, they introduce four refinement patterns that
specify alternative semantics for complex models: sequence pattern, exclusive pattern, parallel pattern,
and iterative pattern. Then, they give formal semantics for the BPMN elements based on these refinement
patterns and KS models. For verification purposes, the authors convert the KS models to NuSMV code.
Then, they use the NuSMV model checker to verify the refinement correctness properties specified with
LTL, such as refinement safety.

In [111], the authors propose an automatic verification tool for BPMN models. They define an ex-
ecutor and verifier tool based on the OBP technology [112]. Their approach is based on three steps.
Firstly they define a BPMN extractor to generate Property Sequence Chart(PSC) models from BPMN
models. Then, they give a semantics for the generated PSC by transforming them to Bichi automaton
(BA). Finally, to perform the verification, the authors express properties in the Generic Property Speci-
fication Language (GPSL) language [113]. Unfortunately, the authors do not give any details about the
transformation approach in terms of formal semantics.

3.3.3 Approaches based on Process Algebras

Likewise, tool-supported methods that rely on process algebra as a semantic formalism for BPMN models
are advocated.

In [114], the authors present a formal semantics for BPMN with an encoding into the Communi-
cating Sequential Processes (CSP) process algebra. They also show how this semantic model may be
used to verify that one BPMN process diagram is consistent with another one. The authors extend their
work in [115] to verify compatibility between business participants in a collaboration using the Failure
Divergence Refinement (FDR) tool. Nevertheless, the work does not provide an environment for verifi-
cation. In [116] the authors again extend their work to propose a relative timed semantics for BPMN
models. They augment their model by introducing the notion of relative time in the form of delays chosen
non-deterministically from a range. The authors adopt a variant of the two-phase functioning approach
widely used in real-time systems and coordination languages like Linda. In [117], the authors document
the relationship between compatibility in the untimed and timed settings for BPMN models and present
a pattern-based approach to construct BPMN property specifications.

In [118], the authors propose a direct translation of BPMN models into the Calculus of Orchestration
of Web Services (COWS) extended with probabilities. This approach enables the derivation of a COWS
specification from XML representations of BPMN models provided by modelling applications. The au-
thors focus in their work on quantitative properties based on probabilities on the extended model, using
the PRISM model checker.

In [119], the authors propose an automated transformation from an extended BPMN to Timed CSP
(CSP+T), as well as composition verification techniques for checking properties using the Failures Di-
vergence Refinement (FDR2) model checker tool. They focus on the semantics proposed in [116]. As far
as the verification properties are concerned, the authors rely on liveness and reachability.

In [120, 121], the authors present a framework, called Stochastic BPMN Analysis Tool (SBAT) for
the modelling and analysis of complex business workflows. The authors extend the BPMN models with
probabilistic and non-deterministic branching and reward annotations for enabling the translation into
a series of Markov Decision Processes (MDP). Then, the generated models are used to check formulas
expressed in the temporal logic formalism, Probabilistic Control Tree Logic (PCTL), using the stochastic
model checker PRISM. The proposed framework focuses on quantitative safety requirements (timing,
occurrence and order of events, reward values, transient and steady-state probabilities). It does not
seem to be able to deal with qualitative requirements. In [122], the authors extend their work and
present an industrial framework, called Stochastic BPMN Optimisation and Analysis Tool (SBOAT), for
the automated restructuring of stochastic workflows to reduce the impact of faults. SBOAT tool uses
a stochastic model checking for evaluating the behaviour of the workflow. This latter allows for the
computation of exact values of real-valued quantities modelling resources associated with the workflow.

1725

1730

1735

1740

1745

1750

1755

1760

1765

1770

1775

3.3. PAPERS OVERVIEW 51

In [123], the authors propose a model-based Discrete Event System Specification (DEVS) formalism
for modelling, analysing, and checking temporal constraints in business processes at the earlier phase of
design. Their approach handles a rich set of temporal properties: Intra-activity, Inter-activity, and Inter-
processes time constraints. First, the authors take a BPMN model and a set of transformation rules as
inputs. The transformation associated to each element where time constraints are used a control model,
they obtain a set of atomic DEVS models. Then, they check the soundness of the resulted model using
DEYVS-Suite simulator, which is based on JAVADEVS models. Their simulation takes into account the
generated control model for the authorisation of the execution. Based on the simulation outputs, they
observe the behaviour of their proposed model relating to the temporal constraints and make conclusions
about the properties checking. The authors rely on extended semantics for the BPMN elements to present
the temporal constraints in their work. In addition, no explicit formal semantics is given. Last, their
results are based on a simulation approach rather than a verification.

3.3.4 Approaches based on Logic Formulas

Approaches that exploit symbolic encoding as a semantic formalism for BPMN models based on symbolic
verification techniques are also advocated.

In [124], the authors propose a semantic model for BPMN 1.0. The paper introduces a semantics-
preserving method for transforming a subset of BPMN notational elements into the NuSMV input lan-
guage based on a set of formally defined translation rules to verify the models. NuSMV is based on
symbolic model checking. For that, the correctness of the specification of the BPMN model is expressed
in NuSMV using several properties expressed as CTL formulas, and that is verified automatically using
the model checker.

In [125], the authors give an execution semantics of BPMN elements expressed using LTL. The
formalisation is defined for a large set of BPMN 1.2 elements. They evaluate their approach on a use case
with deadlock and liveness analysis. The authors use message /timer intermediate events; however, no
communication or temporal semantics are given. The proposed approach gives an unambiguous definition
of the execution semantics of BPMN diagrams. It could serve as a basis for the formal analysis of BPMN
diagrams, including control flow elements, but no tool is presented.

In [126], a BPMN formalisation in the context of conformance verification between global and local
process models is provided. The authors propose a mapping from BPMN Collaboration diagrams and
processes to LTL formulae. They follow the work supplied in [127] where BPMN workflow specifications
are considered as possible visual alternatives for LTL formulae and an LTL semantics for BPMN 2.0
is provided. Then for the conformance verification, they use the GROOVE graph transformation tool.
The presented LTL formulae seem only capable of capturing liveness requirements but not safety and
soundness ones.

In [128], the authors provide a formal specification of well-formed BPMN processes in rewriting logic
using Maude. They offer new mechanisms to avoid structural issues in workflows such as flow divergence
by introducing the notion of a well-formed BPMN process. They focus on data objects semantics and their
use in database-related decision gateways. Then, they discuss the soundness of the well-formed BPMN
models without introducing verification into practice, which is postponed as future work. The authors
propose a new local semantics for the inclusive join gateway where they allow paths synchronisation.
However, the latter does not represent the real semantics for this element. Last, no communication
models or time elements are discussed.

In [129], the authors describe the formal specification of a Time and Resource-Sensitive simple Busi-
ness process (TRSBP). A TRSBP counsists of a finite set of finite sequences of activities with timing
and resource constraints. It is simple because it does not explicitly have any complex control structures,
such as loops. They formalise TRSBPs as a Round-based model and describe how to specify the formal
TRSBP semantics in the Maude and the Alloy specification languages. The authors demonstrated that
the business processes described in TRSBP can be effectively analysed with Maude and Alloy, and they
demonstrate the feasibility to achieve formal analysis of TRSBPs with Alloy, while it is not with Maude.
This is shared with our experience that business processes can be effectively analysed with SAT-based
bounded model checking using Alloy language.

In [130-132], the authors present a verification tool based on the Eclipse IDE, called Business Process
Verifier (BProVe). BProVe allows one to verify relevant properties for business process models automat-
ically. It is based on the translation of a subset of BPMN models into LTS, with a native semantics
provided in [133], defined according to a Structural Operational Semantics (SOS) style [134]. Their pro-
posed operational semantics is implemented using Maude to use the Maude Linear Temporal Logic (LTL)

1780

1785

1790

1795

1800

1805

1810

1815

1820

1825

1830

1835

52 CHAPTER 3. LITERATURE REVIEW

model-checker to verify properties and support the verification of safety and soundness properties. In [135]
the authors focus on a particular element of BPMN which is the OR-join gateway. They propose formal
semantics for the latter in terms of local and global views. In [136], the authors integrate their framework
into Apromore [137] in the form of a plugin for the Editor environment. The authors limit the subset of
supported elements and leave out aspects and constructs such as timed events, data objects, subprocesses,
error handling, and multiple instances. They focus on the BPMN subset, including communication ele-
ments (send and receive), tasks and events. However, they don’t give semantics for the communication
model used. In [138], the authors extend their formal framework to include multiple instances and data
perspectives. They also provide an associated model animator, called MIDA. It may help the process
designers to visualise the behaviour of their models and debug them. In [139], the authors extend their
operational semantics in term of LTS to support the verification of the hierarchical processes, including
subprocesses. They provide a framework, based on their operational semantics, called S3. As far as
verification is concerned, the authors support an extended definition of safeness and soundness prop-
erties for collaboration diagrams, taking into account distinctive characteristics introduced by message
exchanges and subprocess elements. They introduce a new property, called message relaxed soundness.
These properties are defined in [140]. In [141], the authors extend their formal operational semantics to
cover choreography diagrams and check the conformance degree between these choreography diagrams
and the collaboration diagrams by generating their LTS. Then, they perform bi-simulation-based and
trace-based conformance checks.

In [142], the authors propose an approach for the verification of BPMN models with time features.
First, the authors provide an encoding of the execution semantics of a subset of time-enriched BPMN
elements using rewriting-logic encoded in Maude. Next, they show how could perform real-time analysis
of such BPMN processes. Specifically, they use simulations, reachability analysis and model checking,
and calculate specific properties such as minimum and maximum expected response times, the maximum
degree of parallelism, and synchronisation times using LTL model checking also with Maude. Finally,
they evaluate their approach on an example using a prototype tool, called BPMN-MAUDE. The authors
focus on the time aspects, looping behaviours (generated by split and join successive gateways), and
inclusive gateways with extended semantics distinct from the one given in the BPMN 2.0 standard.

In [143], the authors extend their rewriting logic executable specification of BPMN with time and
probabilities supporting the automatic analysis of stochastic properties via statistical model checking.
They extend the BPMN model elements with duration times and delays for tasks, flows, and gateways
branching specified with stochastic expressions. The authors provide an extended semantics for the
behaviour of the BPMN elements (e.g., timeouts for tasks and stochastic delays for gateways paths and
local behaviour for inclusive gateways as in the BPMN 1.0 version.) which may give a meaning distinct
from the expected execution by using industrial modelling tools. The authors extend their work in [144,
145] to support a subset of collaboration diagram elements, resources and the multiple executions of a
process. The authors extended the BPMN specification element by associating time with flows, tasks, and
rates for exclusive and inclusive split gateways. They present resources as a set of identifies associated
with a quantity for each of them. The authors implement their approach in MAUDE to stochastically
simulate multiple concurrent executions of a process instance that compete for the shared resources. Then,
they perform automatic verification for a set of resource allocation properties (e.g., resource charge over
time and usage percentage for each resource replica.). The proposed approach is illustrated with several
examples using a prototype, called BPMN-R. These papers only address the collaboration models with a
small subset of elements (massage catch event and send task) without any communication model details.

In [146], the authors provide a symbolic executable rewriting logic semantics of BPMN using the
rewriting modulo satisfiability modulo theories framework, called BPMN-SMT. The provided semantics
is based on an enhanced extension of BPMN representation supporting conditions and data flow. They
associate expressions and assignments operations to tasks and gateways branches, yet without using
data objects elements. The authors use rewriting modulo axioms for driving the execution and rely on
Satisfiability Modulo Theories (SMT) decision procedures for data conditions. For property checking,
the authors use Maude’s rewriting logic framework, focusing on deadlock freedom and the detection of
unreachable states.

In [147], the authors define an encoding for a subset of BPMN elements into the Prolog declarative
language. They focus on a small subset of BPMN control flow elements covering a process model,
extending with input, output and internal data processing. The authors analyse process models regarding
external and internal consistency requirements. The external requirement covers the structure correctness
of business processes. In contrast, the internal requirement covers the structure correctness of the local
structure correctness of the process models and correctness criteria such as deadlock freedom, termination

1840

1845

1850

1855

1860

1865

1870

1875

1880

1885

1890

3.3. PAPERS OVERVIEW 53

and determination.

In [148, 149], the authors propose an operational semantics for time-aware business processes. The
authors propose an extension of the BPMN with duration annotations, defined as constraints over in-
teger numbers. Then, they provide an operational semantics for the extended BPMN with respect to
the temporal properties to be verified as a set of Constrained Horn clauses (CHCs). The authors use
CHCs solvers (Eldarica and Z3) to check the satisfiability of such clauses. Then, they use the VeriMAP
transformation system to translate the CHCs into the SMT-LIB language, in which an SMT solver is
invoked to check for properties satisfiability. As far as verification properties are concerned, the authors
focus on weak controllability and strong controllability that guarantee, in two different senses, that all
process tasks can be completed, satisfying the given duration constraints, for all possible values of the
uncontrollable durations.

In [150], the authors propose an approach to use the Alvis modelling language for the formal analysis
of BPMN models. The authors focus on the control flow elements of BPMN, taking into account or-joins
as well as multiple joins, split conditions and the interaction with external participants (presented as
black box pools in BPMN models). They provide a transformation of a BPMN model into an Alvis
model. This mapping allows one to perform the formal verification of the BPMN models by generating
automatically LTS from the Alvis models. These graphs can then be analysed based using the CADP
Tool.

In [151], the authors propose a transformation rule of the BPMN model into a formal model writ-
ten in Event-B. For the verification purpose, the authors use Rodin platform as a theorem prover for
consistency conditions on BPMN models. The authors cover a large set of BPMN elements, including
comprehensive modelling of control flows, data modelling, compensation, message-based communication,
error and exception handling, subprocesses, looping and multi-instance activities.

In [152], the authors propose a model-driven framework that transforms a BPMN specification into a
formal specification using the Event B notation. The authors use a meta-model transformation which is
based on a set of mapping rules that translate the concepts of a meta-model source (BPMN) to a meta-
model target (Event-B). They automate this transformation by implementing a prototype tool called
BPMNZ2FEventB. For verification purposes, the authors express properties of the system in Event-B and
check them using the Rodin prover. However, no information is given about the set of BPMN elements
covered by the transformation nor the properties which can be checked.

In [153], the authors propose a methodology for defining process models using the Z3 solver to verify
properties by considering both syntactic and structural aspects. First, the authors introduce a meta-
model of a subset of BPMN elements that covers the control flow elements for modelling a business
process. Then, the meta-model of the BPMN subset is formally specified in Z specification as state-space
schema to provide a generic approach in which any modelled process can be formally specified to check its
syntactic and structural correctness. Next, the formal specification that has been defined is given for the
selected modelling elements and their associated syntactic and structural rules. Then, the authors propose
a manual translation between 7 specification and Z3 solver for performing the verification. Finally, the
authors validate their on a simple business process model and verify the control flow properties (deadlock,
reachability, and dead task) using Z3.

In [154], the authors propose SMT based approach for formalising a data-aware extension of the
BPMN standard. First, they describe a new formalism for representing read-only database schemata
towards verifying integrated models of processes and data. Then, they support parameterised verification
of safety properties of DABs using the Model Checker Modulo Theories (MCMT) model checker. However,
no systematic evaluation is given in the paper.

3.3.5 Approach based on a Programming Language

Another complementary approach used programming languages and deduced the correctness of the model
from the produced functional specifications.

In [155], the authors propose a Java-based verification approach for BPMN 2.0 collaboration models.
They provide a precise mapping for each element of the BPMN notation to Java code. Their approach
is given as an algorithm supported by a plug-in for the Eclipse IDE, called COWSLIP. Their approach
allows the verification of the deadlock and the livelock properties based on the execution trace tree
identification. It suffers from the BP integration problems in inter-organisational BP due to the undefined
communication protocol used to interact with the processes. This forces the authors to ignore deadlocks
related to communication. However, this is not really a resolution as communication is the heart of the
collaborative correction lands.

LITERATURE REVIEW

CHAPTER 3.

o4

ls2] ‘[zL X ®IA UOIRULIOJT BJRPEJIW SuIsueypxo 10j prepuels (HNQ) dnon juouodeueyy 10olqQ ue st TINX
[96-76 *0[(RPEII-DUIDRIL PUE O[qEPROI-URIINT (30 ST JUl} JPULIOJ © Ul SJUIWNOOp SUIPODUD 10§ SO[IL JO 405 & SoUyop ey} osensue] dusIew v st TINX
[16 IS 10 3x03 ureyd ‘TN LH S¢ (OIS SJUULIO] JOU30 10 ‘SJUSWNO0P TIVX OY30 OJUI SJUOWNO0p TIVX SUIULIOJSULI 10§ ogensue] v st 11sx_ 2
89! 51000301 TOTORIONIT SSOUISTI(PR §9559001d SSOUISTI] JO T0TyRoyrads [eULIo] o) 10] ogensue] @ st SAITHdE 3
[16 “SYRULIOJ J9T[)0 10 ‘SHUAWMOOp TINX 19710 OJUI SJUSUMOOp TNX SUNILIOJsTeT) 10] afengue] v 11X
[ect “oFengue| Surmuressord e st e[
1081 “Sompanoad pue UOHUOXD S JOQE SHOWTEIS [B150] Woxy §J00id SUONISUD A Poygior oxe Weddoid © Jo sorodord polsop UIeiio0 M U] SoRURiios o5ensue] Suuessold [BuLio) Jo A1080380 © st sonueaiog [enoneIed([RImPNng
[oot “punoq soddn ue pue punoq omo] ¢ :ared ¢ se oATS st 10je10do [r10dUo) © JO PUNOG AT} IOTA ‘150[L) JO UOISuIXD TR o150 eoay, worpeinduioy) por
[z01 ‘10T “sonaadord our [val Surssoadxo 0] SPUNOQ owTy PATEIIIEND [IIM (1,0) 1807 904, uoreIndiio)) SpustXo [ordo[[eiodua) [enonmsodord v s 518077 901, uoleRINdUIo)) PaxDO])
[cz1-021 sorytodoxd uorpeoynads s uw)sAs Jo uonesyruenb ousiiqeqoid 10j SMO[[R Jer]) o180] [eioduio) € St 21807 991, [01)U0)) DIISI[IRAOL]
il los POUIILIDIOP 10U ST OINIT) O] (PIA UI SIMJONS OYI[-000) B SE 9U[} JO [9PO © SoUyap ‘L30] oW }-BUIPUeIq ¥ ST 1] 21307 o01], woneIndwoy
[6z1] “SJUTRIISTOD 9DINOSAT PUB SUIUIT) DALY JRY) SOI}IATIOR JO SOLIdS 91U JO 108 YUY © JO SISISU0)) $59001d ssoursng o[dUIls OATYISUDG-0DIMNOSIY PUL SUIL],
‘uoneIuasaIdar eIy syt st jer) ([deas §IT) Uo)sAs UON)ISURI} PO[[oqR] ® PUR Wo)SAS PIIDPISU0D o1}
log1] J0 pout © jojjered U1 $0JEI> JUAUITONAG SUIEPOI SIATY ‘SoSenSiue] Suropout [eooeid pie SPOYIOUI [RULIO] SOUqUI) dfenSiue] SuPOU © st SV
[t ‘sisAeue o) SuLmp poyLva oq pmoys yer) sorptedord oty Sutdjwads 10] g g0 Aq posn oFendue| o) st agenguer] uoneoynadg £110dord oLpuen)
[rr “sureadeIp 90uenbos UoIORINUL (g TN JO 198 ® SPUajxo Jer) afensue| v st (rer) eouanboag Apedorg
logtlftvt ‘61l ‘[601-L01 “suo1yeInduiod 910Ul 10 9UO [9POU 0} PIS SULDRUL JORIISR JO ULIOJ © S SURISAG UONISURL], pajoqer] -
[6c1 spppowr Suissed-oBessow uowwos syussald 3] punol auo 93o[durod 03 SUIN JO JIUN SUO SAYE) JI YDIYM UL SUIIBUI 0)8)S SNOUOIDUAS-[UILS © ST)] "SUIYJLIOS[e PAIN(LISIP HZI[RULIO} 0} PASTL ST [Ppout paseq-punoy 2
[(s Surnduwon Suijppouwt pue SulqLSOp 10j Pasn 1 4] '2130] oyeatpaid 10pIo ISIy pue £I1001[) J9S DIJRUIOIXE [D{URL]-0[OULIDY UO paseq aFenSue] uoryeoynads [RULIOJ PIJUILIO [9POUI ® ST uorpeoyedg 7
[ec1 ‘671 'SPT “SOLI0A1[} O[NPOUT AJI[IRYSIJES U0 poseq 10A01d WIO1001) € ST ¢ wa
lest]lovt ‘svi] ‘Tret] ‘[ort Ayrenbo [y o130 10PI0-)SIY [RIISSE[D I PossoIdXo SOLI0AT) IO 10 U0 JOAO SE[IILIOJ [BA150] JO AN[IRYSIIES o) SUBPIYD JNoqe S9L00T, [, O[UPOIY_AN[Iqeysiyes £
lest ‘16T S[OAD] JUOUIDUGOI O} U0oM}Oq ADUOISISUOD A3110A 0 Jooid [EDIJRIIOY}RUI JO OSIL O} Aq SISA[EUE WI03SAS puE ‘S[0A0] UOBOBISAE JUOIOPIP J8 JUOWOULGOL W0JSAS pue SUI[OPOU SMO[[E ‘U01FEo[Ioods [PULIo) © qjuony 5
l671 sP1 “UOIOX0 [P13UONDOS SE [[oA Se JUoLIOu0) ‘[ofpered uomssoadxo Ao[[e DI150] 0yeotpad J0 Josqus 030[dWod-BULILL, © o1e oste]) Woy
it “SUOIU[OI JO SwiIog se sureagoad possodxo 31 se soLoub [ED150] Poseq-o[il WOy JYOUI] JeY} Sy ogioods 10§ pojins-{joa ‘osensue] sunuuesord o150] v st Foo1g
loz1] ‘lot1] ‘|sgT ‘98 ‘g8 ‘ouIr) 0 SULLIMI S1yIePOt 3m 01307 [eioduIa) [epout © ST 018077 [erodwg, Teour|
[setl ‘lov-zvil ‘o101 FUNLAOI U0 postq oFenFie] oAEIEPOp ¥ ST oprery
[Tri-set ‘oet ‘et ‘ce1-oet] ‘[6et : : :
leetlTret] ‘leetl losl les] [seT “Surmressord pue ‘woneayLoA Toneoynads e SuMoseal [euonenbe JonIge s1I0ddns J] SWeIsAS pUe soBeNSUeR] Jo HONEIIdS 1) 107 SHOMIUIRT] [#150] © ST 1507 SunIMey
721 s0dA3 vyep owseq Jo sAeiie populioq Jo SUOHIUGOP o3 10§ SAO[[E 3] "SW0}SAS 03u3s 03IUY Se A[[EOlWOIel possoldxo SU0ISAS OPSIUINLIONIP UOU PUE OISIUIULIIOP SUIAJLOA PUE SUIqUOSOP 10§ 0BeNSuL] uolyeogads © St AINSON
car SUI03SAS JU0A0-030I0SIP © BUISIL SUWISAS OHUPUAD XO[dW0D SUSA[EUE puE SU[OPOW 10§ WIS[EULIO} [EIMILION] PUL JB[UPOUL © ST wonEoyodg oSS JUoAT 0jomsIq &
611 9001d [eryuonbos o[SUIS © UMM SSUTIT Ju0Ae Xo[don Jo torydiDsop ot} SUIMO[R Aq J§0) SPUQIXe JRT) e9ensue] uoneayads oury [¢ol € st 00014 [enuonbog SunEOIIUIIIO) 3
[LT71r SI03sA5 PIOLMOTOD U1 TOTRIONIY JO stwied SUIQLDSOP 10] ‘SPUTRT) ¥iA Surssed 03essom 10 poseq ‘03engie] [euLo] © St 59550001 [VHUONDOg FUNEOMNUINIO) 3=
[60T 20T SUI0)5AS JUALINONO0D AJIoA PR A7120ds 0] pasn ‘segensue] oAryesodl pue ‘soBense] [PUONOUN] Na[es s50001d JO HOMPUIGUIOD © U0 Postq pougep ‘oSensiue] Horesyods [RuLiof @ st ABopompoL, %N SOLOT &
[sT1 “S9OIAIDS (9M 10 SU[D[RD [RUOIJEPUNOJ B ST SMOD Z
[TTT “SuonEogeds BIROIY TpRE PUE o8o] [eioduo], wwour] sioddns Jeq) egensue] uonwoyads-Aodod € st SBensue] nopwoyeds A)edor] oueuan
69l SNOUOIDUASE 10 SNOUOIIIAS a(03 SUTRT) AFESSIUI BIA TOHRIIUNIINIOD o1} SUMYIP SMO[R 3] “[IPOTT 0 $9559001d JULLMITOD JO TOTYRAID AIMIRUAD S} 10] SMO[[R ‘DFenSrre] SUIPPOUT TOLRIYLIIA © ST R[owOI]
[zz1-021 *SYUDUITOIATD [R1JUIaNDIs PUe ‘OIISeID0)s “919108IP Ul SU LU UOISIOP FUI[DPOUT 10] JIOMOUIRI] [EDTJRIDYJRUL © ST 9580001] OS] AOYIRN 23
[111 *(sproa) syndur ayruyur s3dedde OIM SIUIDRIY 98)G UL © ST UojemoINE TPNE W
lor1] ‘[86 ‘L6 “WRYSAS © JO I0TARTR(1) Ju0sodol 0] SUBPTD [9POU Ul Pastt UOJRWIONIE DI)SIUIILIIIOPUOU JO UOTJRLIEA © ST omionng oydiryf m
[oot “SUOT)ISURI) Y[} UO SoNI[IqeqOId [[JIM SUIDRUI 9))$-9)TUY DI}SIUIULID}OPUOU © JO UOISUI)XD Ue ST [DIM BJRWOINE DIISLIDO)S [RUPIAIPUIL JO IDUINT © ST SIOMION BIRWONY ONSRID0IS &
[9o1]'[sot] ‘[vo1] ‘[20T ‘TOT “SYDO[O JO 198 OIUI © PUR SUOTHIPUOD [JIm POYRIOUU. QUIDRUI 9)€)S 9JIUY € S RJRWOINY POUIL],
[cot D150 [9POUL 0 PASIL SI Je[} [DPOUI S9JRIS JO IDUINT 21U B [IIM [BINOIARID(€ ST SOUIYDRY 9)€)S oHIUL]
[12 ‘0] “Aqreorunyuodie yderd reursiio we jo jno ydei§ mou v Furjead jo onbrurpo) oY) SUIDU0D Suryaoy ydean
[96-¥6 *$3ON 19 AQ poaidsul sO1JURILs UOTIDXe Pauyap A[}0LI)s © ja ofenSue] v st 19N TAMVA
[98 ‘g8 *S[OPOUL 9OINOS JO 198 ® WOIJ S[PPOUL 1981e) Jo 395 ® 9onpoid 03 sfem sopiaold oFenur| UOI)RULIOJSURI) [9POUT © ST TLY
[98 ‘g8 “SOINJONI)S DIURUAD [JIM SWAISAS [9POUL 0] POONPOINUL N JO UOISUDIXD UE S SIPNLYOHH
[18] ‘[esl'8] ‘[16 *}OU Y[} UT UOI}ISURT) [DRd 0} UonRInp 9)iuy Jully v Furerosse Aq s)joU 19 UOISUIIXD UR S S1ON 9 pouIL], W
[26 “$1OU(NS 0} SUOTJISUERI) UOINITISANS Jo Ayiqissod o) M NJD JO UOISUDIXD Ue SI SjoN 394 POINO[0)) [EIIDIRIDI =
[06 ‘68 ‘78 ‘€8 ‘69 ‘89 “queytodurl o1e SULIBYS 90IN0SAT PUE UOTJESIUONDUAS “UOIEOIUNUIOD (DIM Ul SWAISAS 10§ POYINS-[[9M SUSYO) PAINO[OD YA N] JO UOISUIIX Ue ST SJON [Jod paanoo) 5

[16] ‘[28] Tes] “T18l ‘[66

“UOIISURI) (DD U0 JUIRIISUOD [RAIIUL SUIIL) © [[JIM N JO UOISUDIXD UR §

SJON L9 pouIL],

122 °92] “[oL

“so1IA1OR §5000.d JO MOJJ-3I0M 9]} [9POUL 0} PASNL ST JeI) N JO SSRIOQUS ® §

2

JON-MOPION

28] 1291 Tr9] “[os!
‘[82] *[22-62] ‘[eL]

“swogsAs poynqLUSIp Jo Surkjuon pue ‘Suryernuw

Burdjads ‘Gur[opour 10§ WISIRULIO} [EIT)RUIAIRUL @ ST

SN 110

STOM

uonydLsa(]

a8enSuery

YAOAN PI1I9]12S Y2 mﬁcsv\ pasn %@Q@ﬁ%ﬁ@q 3¢ °2l9e L

95

lest]l67T ‘S¥T (LINS) soLI007], O[NPOIN AN[IqRYSIRS © UT SUTYLIM SR[NULIO] Jo AYI[IqRYSIyes o) SUIPIOp 10J (00} I9AJ0S Y €7
‘ozl *$19U 1139 JO uL19} ul payrads s9sse001d MOP[IOA JO sesATeue oy} suriojiod [00} orysouger uego,
L1192 [eL 13 d J 1 paypad d MOPYIO JO SISA] 1 310d [003 opsouserp v BoM
loot]‘[vo1l‘[z0T ‘10T]'|66 ‘SW0YSAS OWI)-[RDI JO UOIIROYLIDA pUR UOIYR[NIS ‘SUI[[OPOW 10] [00} Tvvddn
[z8] ‘L8 $19U 1199 paulr} Jo sisA[eure pue Suryps o1 10J [00} Y VNILL
[86 ‘6] ‘[69 ‘suoryestdde popealy)-1)[ul 10 [00) UOIYRIYLIOA Y NIdS
c1]'[1C ‘uorye[nuuIs pue ‘Sunpeypd [ppou oIy sariqeded ‘sroaoxd pestperdads sisATeue snorrea Surpraoid sur-8nyd jo raqunu o81e] ® Aq paromoduis wLIOjye urpo;
egtlfrgt [yeuus pue ‘Juppay [ppout oy saiqeden ¢ d pastreads sisA] wrea Supraoad sur-gngd jo 1oq; 31e] © 4q P d pred v POy
*JeuIIO] RIOI[R
J0su0) JoeduwIod ® UL UIRTD AONIR]\ SUIA[IopuUn oy} sjussaidal yorym ‘sppout SIIOM)ON BIRWOINY OISBYD0}G 9sA[eue pue 9A[os 0} padopasp sofexped (00} oremijos
loot] d L ureyo AONIRY SUIA]IoL [dox oy ‘sfo NVS) s N V OljseyR03g dsA[eur pue aaf padojoaap sodexoed | Jos ¥ Sddd
JAa "SUTRWIOP 991UY 10A0 SUIA[OS JUTRIISTOD M Io[Iduod Sojo1d ¥ Sofoag
*sua)sAs onysifIqeqold jo stsATeue oaryejryuenb pue uoryesyLoa reorysiye)s syroddns Surnspoyd [opow [esr)sIye)s 159,
il s onsiiqeqoad jo stsAf peypguenb | 1HeOYLIOA [ROI)ST Idns Suppoyp Ppour [eonysIyels v ViISoAd
[st] ‘ee1] ‘1t morarya(onsiiqeqord JIqIYXa Jer) SWI)SAS JO UOIJRIYLISA [RULIOJ pUR SISATeur ‘SUI[[opoW 91} I0] [00) INSTYd
[79 19U 1119 S UIAIS WAYSAS © JO SUINDID 90URMLIONUOD suLlojed [00) Woid
1Rl VL NN ‘TN 9N SWSI[euL1o] oyoads urewrop jo worjeIs8ojur o1f) So[(ruo pue SISA[euR o1} SULMp poyLoa oq pmoys jey) sertadord oty Surdjwods 10y
25RNsUR ®© souygop 1 - (¢ S9SRINSURT IYIDAQ-UIRUIO, 9() SUINO9D [opOoW puR sUlR[NUIIS ‘3uIdsnqgop smorre .wﬁvﬁ:ﬂo.zxwﬂw UOT)ROYLIOA JUOWDIINDII
[rr Fendue| 1540 gop 3 * (s78Q) seden3uer] oywodg-urewoq oy} Surpoyo ppow pue Suremus ‘urddngap smofp ! 1yeoy1t mbat y 440
lot1]* [vet] ‘[sot *0130] [eI0duIgy) 10J SUIRISRI(] UOISIA(] ATRUIF WO POsk([00) SUB{DOYD [OPOW DI[OqUIAS Y AINSOIN
H AV[IQRTORII pIemddeq pue SUIA[oS [JNS JO UOTYRISOIUI 9} UO PISB(SUWIIISAS 9)e)S dYIUUI I0] IOSIIYD [opOout NOT
Va1 {pqeyoeer premypeq pue Sua[os NG JO UOHeIdojul oYy uo poseq ¢ TUGUL 10§ 19YDOYD PO Y LINDIN
l6€T ‘ze1-0€T ‘SWSAS POINLIISIP PUR JUSLINOUOD JO sisA[eur pue uoljeoyads sjqeiniexe ‘SutdLjojord JR—
¢ ¢ ofenSuey ‘sj003 Suraoxd werosyy jo juetudofossp Surpnour ‘suorjesijdde jo oSuel opim ' 10§ uoryeindwod d180] Surrmal pue [euoryenba yjoq Surproddns welsAs ~
621l [evil(8et Fenguef ‘s[00y Sutaoad 3 3 dopeasp Sugpuput ‘suoryeoridde jo aduer apt j uoryeynd 1o[Syt pue peuonyenbs yjoq Sugrodd v e
log] “[82] “leL] “laL] *S[PPOUI §39U 1139 JO UOTYRIYLIOA dT[} 10] [00) R[0T
. . ‘sIsATeue (d1jRWOINR) UR YSNOI) SOIJURUIOS DIWRUAD pUR UOIJRULIOJSURI)
[9z1] ‘[r8 ‘e8] 1 _ 1EROI 501 HuetLp pu oneLIo] HAOOYUD
g g [opow AJL0A 0 SMO[[R ‘Sw)SAS uoryeurIojsuel) Ydelsd Surymsal “ymg s SUay [Ppour & YoM Jo doj uo wsi[euLo] SUI[[oPOW © Sk pasn sI [00) uorjeuriojsuery ydeid y
. ‘suoryejuasaidor paseq-delrd uorporIsqe Jo [0A9] TeInjeu € je Furdo[osd
[t ‘0z ! poseq-q ! 1@ JO [9A9 T ldopoasp JoONTION I
I0J 01309 SYNLI SB [[oM Sk ‘Furjrimal pue Surypjewt wreyjyed ‘Surfjopowt ydeisd 10] sefendue] aAljeIe[dop SIoHo ‘uoryeurtojsuer) yderd 1oy (00} Ayarponpord Surururerdord ’
7T 1 I o P 0 ep 1 7 [9AT [09p S10f ! & 1 71 tATyonE ! v
*SUI0)SAS JUOAQ-939IOSIP JO [OIJUOD puUE ‘UOIIeN[eAd douewLIojIdd ‘uoryenuurs ‘Suropouw I0j [00} NISued
18 PJoi P eny s et P! J I v INIS"RdH
AR "A1001]) $9850001J Terjuenbog Surjeorunmuuio)) Ul passordxo S[OPOW I0j [00) SUIKIOYD JTOWOUTOT ’
61T LIT-VIT 1 (dSD d et S Suryedt D Ul P P 71 D[9T; Jor v aad
lec1 "A80[0UTD9) (oM UO PIse(S[EPOU JTWRUAD M JUSWILIOdXe pUR JONIJSUOD 0 SMO[[R JUSWIUOIAUS Uolje[nuls pue uijppow y uuojye[d o3mng-§AHJ
¢ *SUIOYSAS JUOIINOUOD SNOUOIYOUASE JO UOTJROYLIIA PUR UOIJRINUIIS ‘USISOP 93} I0] [00)
60T1]"120T 4 ¥ yeogLion p epnurr 1Sop oY} 10§ | v davd
5Q ‘egl ¢ S19U 1139 PoIno[on) SuisA[eue pue ‘Surjenuils ‘Surjipa I0j (009
78 €8] "[89 od T 10D SUISAT P Tenur 1Ipo 1oJ | v NdD
¢ : IN uorjdo-qns a1} Juisn yIomjau 10 / uorydo-qns o1} Sursn spPpout [+ :sndino omy) 0y sppouwt NJ/ Joy urdnyd eael uoryeuriojsueI} JIoULIOJSURL
c0T 10T VILININdE uol q 1 sn 3 VL 10 LdSDTNING 1ot q 1 1st S[ep L+dSD T NINJE 0] utsny : uot & v & 0Ld
logt *SWRYSAS JUOLINOUOD POINLIISIP SULIOD [OPOW 10] YIOMOUWIRI] PUR ‘J9S [00) ‘UOIPROYLIOA pue dFendue] SU[OPOW [RULIO} Y SIATY
SOI30OUTDD) ST} POST SYIOA\ uonydrosog 1007,

PAPERS OVERVIEW

3.3.

"SYLOM Y] buowyy pasn sa1bojouyda] 1g°¢ SIqelL

56 CHAPTER 3. LITERATURE REVIEW

3.4 Discussion
1805 In this section, we discuss the related work with reference to our survey questions 3.2.2.

e Which formal model languages are used to formalise the semantics of BPMN ?

We identified a total of 79 works that present formal frameworks, methods, methodologies, al-
gorithms, or plug-ins for BPMN verification. We have classified them into five groups based on
the formalisation model: Petri nets, automata, process algebras, logic formulas, and programming

1900 languages. Table 3.4 gives a summary of the research contributions. It presents the input and
the output language, the used verification or simulation tool, the verification method, and the
correctness properties addressed if they exist. The table shows that most of the works are based
on transformation techniques rather than direct semantics. Even though such direct approaches
exist, based on logic formulas, they are not generic. i.e., each new work tries to give a formal

1905 semantics according to its destination language, and it does not take into account the semantics
provided by the previous works. The latter is due to their chosen formalisation language, which
was not interoperable.

e What are the goal(s) of this formalisation ?

Business process verification is the act of determining if a business process model is correct con-
1010 cerning a set of formal properties. According to the literature, this verification in the context of
business process modelling may have different goals:

Properties verification. The correctness of information systems are related to the correctness
of their behavioural properties. The behavioural properties of such systems are mainly classified
into safety, liveness and soundness. A safety property denotes that nothing bad will happen, ever,

1015 during the execution of a system. Liveness denotes that something good will happen, eventually,
during the execution of a system. The soundness property denotes the validity of a system. The
formalisation of the execution semantics provides a mathematical basis for validating such proper-
ties with respect to a system specification. Among the works we surveyed which have this objective,
we can cite [64, 67] which present the first work define the soundness, the deadlock and the liveness

1920 of BPMN models in the sense of workflows, and [139] which determine the safety and the soundness
of the BPMN models in terms of collaboration.

Business compliance. This ensures that business process models are following relevant com-
pliance requirements. Compliance is interested in whether process models conform to specifications,
which can be another process model or a set of rules, such as (inter)national laws and standards.

1925 Thus, compliance verification does not aim to prove the correctness of the business process itself but
merely whether it adheres to a set of rules. Among the works we surveyed which have this objective,
we find [97] that focuses on the compliance checking rules for the verification of BPMN process
model soundness, and [102] that focuses on the verification of business process tasks constrained
by a set of business rules.

1030 Business process models variability. Variability indicates that parts of a business process
are variable or not fully defined to support different versions of the same process depending on the
intended use or execution context. BPM variability aims to reduce development and maintenance
efforts and check BP behaviours over a set of conditions. Among the works we surveyed, we find
[106] which has for objective equivalence checking between processes.

1035 Compatibility between processes. The compatibility between processes is to compare
BPMN diagrams and assert correctness conditions based on a set of defined patterns. Among
the works mentioned which have this objective, we can cite [114], which addresses compatibility
checking between the participants in business collaboration.

e Which is the state of tool support ?

1940 We have identified 26 works supported by a tool, whether a framework, a prototype or a plug-
in. Four of them do not mention any availability link, and three others give one, but the given
link is dead. We can then compare the 19 others. Table 3.5 presents the set of tools extracted

SPOPATT Pue 3o[pea WILOS[Y Swp[oyun asdipy VAVL ¢10e 0z NINd4g as1] =
ASB, Pea(pue ‘AY[Iqetpesy SPo[pesq SUIAOT] IO, €7 Z 0208 2'0C NINd4 €eT
I~ Loy SuBpaY) PPON LTINS IINDIN IINS 610¢ 2'0°¢ NINd4 [7etl
10O uonyerduo)) 1adord pue dpo[pea(] 3UIAOI] WPI09Y T, uLIojye[d Urpoy [eELENNG| 610C 20°c NINdgG [9gT ‘zet]
Aypiqeronuoy) Suong pue yeop\ Suraoxd warodY, I9AT0S DHD OHD 6108-910% TOTNINdD (67T ‘8¥1]
ased Apnys e 10 sonaadord oyadg Suppay) [PPON popunog Loy 3 AANVIN 104 ¥ TH 9102 dgas-4L 62T
sortedord Ayiqeyoesy S [PPOIN PIPUNOg A0S LINS B AANVIN IINS 28 T 810 ¢'0C NINd4 [9v1]
sorp10dold pase(90IN0seY pue SUISSEO0I] dWIL], SursaT) [PPOIN [BI19SIIRIG AANVIN T 6102-810% 20¢ NINdd [erT FFT)
sorjaodord ourg, SuUBPAY) PPOI [8INSRIS VISPA PUe HANVINA Tad 8108 20 NINd4 ler]
SUISSID01J SUILT, PUR ‘SSOUSATT ‘A}ofeg SupaY) PPON TIT AANVIN T™ L10¢ 2'0°¢ NINd4 [zv1] 5
SSOUPUNOS POXE[2I-08eSSO\ PUR ‘SSIUPUNOG ‘Ssdusjey SunPaY) [PPOIN LT AANVIN SIT 020¢ ¢ 0 TNINdE l6eT]
SSOUAJRG PUE SSOUPUNOG SunBpaY) PPON I T HANYIN SOS 8105-S10% 0z NINdd [zeT-0¢1]
Apmnys aseo e 10y sonjaadord oyadg SuBpaY) [PPON davo SIT L10¢ ¢'0C NINd4 [ocT]
red-ojorduo)) pue sSOUGAIT ‘SsoUPUNOG SupAY) PPON TIT HAANVIN Td V108 0z NINd4g [sz1]
SIUOWDIMDOT SSOUIDLI0D [RYO[L) pUR (RO uorye)erdioqu] 1oR1ISqY HOTOHUd Soro1g 2102 0'¢c NINdG _541
sor)redord SSOUdAIT pue Yoo[pesa(X X TIT 210C T NINdd _mmz
ased Apnjs ® WO SUOTYIPUO,) ADUSISISUO)) SUIAOI WI0AY T, TLIojje[J urpoy ¢ TUOAL] 010z (1 V1Ad) 02 NINd9 [TeT]
ases Apwgs e 10y sonpaadord oyadg SupPaY) PPON ANSON ANSON 0105 0'T NINdd [ve1]
SIUTRISTOD DUITY S985900Id-10JU] pue ‘AYAIOR-IOU] ‘AYTAT}OR-RIYU] uorjenuIIg uriojye[d 93mg-gAH SAHAVAVI 0302 0'c NINd49 lezT]
Lyogeg oaryejyuent) SUBPAD [PPOJN P1ISLIR0}S INSTId daN 9102-¢10¢8 0eNINdd [ze1-021]
SSOUOATT Pue £397eg FULOI) [OPOTY JUWIUYY [A[[RIe] cuad I+dSD 10T 0z NINd4g ler1] ¥
Ayqryeduwiop) sassad01g SULD AHUNSISTO)) yad dso 8008 0T NWNdd [21T-FL1]
soradord aaryejrywent) SUBPAY) [PPOIN d1ISLTP0IG INSTHd SMOD L00¢ 0T NN 811
ased Apnjs e 10§ sonyaadoad oyadg Supay) PP ddo vd 020¢ 0'c NINdd [rrr]
SSOUIATT pue ‘£3oJeg HOOPAIT HOO[PeI(‘SUBPAY)) eouareambyy SuBpay) [PPON davo INT pue ST/ L10¢ 0'c NINd9 [60T]
syupuaImbay £yiiqeradorajuy S [PPON TVVddn VL ¢10T 0z NINd4g [901]
ased Apnys e 10§ sorodord oywodg SuIAY)) [PPOIN TVYVddN V1L ¥10¢ 0¢ NINdd [0t1 ‘101]
sorrodoad ouI[peap SS9001J 29 WOPaLL JO0[pPrI(] UL PPOIN TVVvVddN VL ¥10C 0'c NINdg [vo1]
SToreurId, SIANMIN PUe ‘SYPOPAL ‘SHOO[Pea(T SUY) [PPOIN NIdS SM £10¢ 0z NNdg [86°26] 7
£y1odoid £yoyeg Juotsuyeyy Suppay) [PPo ANSPN S 8102 0 NINd9 [ott]
sorjadord oy ssoutsng Suppay) [PPo ANSON SINSA 910¢ 0'¢ NINd9 [cot]
UOTYN[RAT] dOURTILIOJND] urer) AoYIR[y SutAjog Sddd NVS 1102 0z NINd4g [ooT]
SHOIUI[OF PUL SHOO[PRI SuBAY) PPON TYVddn VL 1102 0z NINd4g 66]
SSOUPUNOS-3] SUIAY) PPOIN [00T, NdD NdOH 020 2'0C NINd4 [z6l
sonodord paryued snea-ere(] SUY) [PPOIN V10T Nd 0202 0z NINd4g [08]
sonpodord suyyed-nuy SuBpaY) PPON V101 Nd 6105 0 NINdd [s2]
soradord Nd oLLUDD uoryemuIg pue JunpaY) [PPOJN INISUdD % VNIL Nd 810¢ 0'¢ NINd9 28]
(1000w} $890014-PRA(] PUE HPO[PRI(] Supay) [PPON X0q[00} YNIL.I, SN.L 810¢ 0'c NINdd [16]
$sOUPUNOG SuBpY) [PPON X0q[00} ¥NI.I, SNd.L 6102 £'0c NINd4 [18]
POPAT Pue Jopea(SuIAY)) [PPOIN 100} NdD NdD 810 0'c NINd9 68
YOO[Pea(] PUR UOIJRUIULIS], SS900I] Sunpey)) PPON TI1 AANVIN SPNILVOAY LI02-910C 0'cNINdg [98 ‘cg]
Ayoeatp pue Lyoyeg Sunpay) PPON 1003 NdD NdD 0202-9T0% 07 NIWdd [73 ‘es 2
Z AVIqeyDROY pue SSOUALT SUBDAY) [PPOJN POSIYLION] papunogy VNIL SN 910 0 NINd9 (e8]
nIu SIOLI® DIYSOUSRI(] PUR SSOUPUNOG Supay) (PPN PO PU-AM 3 Nd 9107102 0C NINdg [22 ‘92]
2 $sOUPUNOG Supay) [PPON V10T Nd €108-T10Z 07-0TNNdg [gL ‘e
w SUIOIYD HDURTLIOFUO) uonyenug wHI - Funumer yder) €102-010% 07-0TNNdg [12 ‘0L
@) Ayrmoag SUBPAY) [PPOIN NIdS NdD 6008 0'T NINd4g [69]
B doof oyruyuy pue yporpeaq 3unpoet) [PPOIN 1003 NdD NdD 800¢ 0'T NINdd [89]
) ssouUpuNog pue ‘wol-g(Q oN ‘worpduwod wdord SR, Ped ON oo[pea(SU) [PPOIN [00T, TAAVAJOM 19U TMVA 0T0Z-8008 0T NINdT [96-F6]
SPO[PAITT PUR ‘YOO[PeS(] ‘SSaupunog SupPaY) PPON Noid Nd 800¢ 0'T NINdd [29 ‘79l
~f sorprodorg POYIN [007, noryeoyLwp - o8engduer] ndinQy Ie9x ogengue nduy BROIYY
™

((14) 2b6vnbung

burwwnaborg puv ‘(J7) somuwaog 01607 (V) sviqabyy sseooid ‘() pipwoiny ‘(Nd) SN 1ad) $9Inquiiy paavjay uouvoifia) fo sisayjufig iptg S[qe],

1945

1950

1955

1960

1965

1970

1975

1980

1985

1990

1995

o8

CHAPTER 3. LITERATURE REVIEW

from the work we surveyed. For each tool, we give its underlying formal model/language support,
link, objective, and supporting analysis type. Table 3.5 shows 22/26 tools for the formalisation
of BPMN with a primary goal of verification and different perspectives sighted: works aim at the
analysis of the behaviour of activities and their hierarchical characteristics, of message exchanges
and collaboration between processes, of process in the presence of temporal elements; works aim
at the analysis of execution time; works aim at quantitative analysis for the evaluation of the
performance of models; works aim at security analysis. Despite the different desired goals, the
primary way to reach those goals is to have a formal model for the semantics of BPMN.

Which are the parts of BPMN being supported by the tools ?

Table 3.6 shows the BPMN features elements supported in each identified tool. The table shows
that the most addressed elements are the control flow (tasks, gateways —parallel, exclusive, and
inclusive—, start and end events). Looking at this subset, we find that 90% of the works support
inclusive gateways with simplified semantics marked as local in the table. Only the work presented
in [71] has taken into consideration the global semantics of this gateway. On the other hand, the
table shows that the communication elements are less supported, and even if found, the works
focus on the send and receive tasks only and ignore the other events. Finally, the table shows that
the less supported elements are data and time perspectives.

What are the challenges that still need to be addressed ?

Table 3.7 describes some limitations in the existing approaches. In order to give a general response
to the question, we collect the limitations presented in Table 3.7 in six points as follows:

— Lack of a Generic Formal model. We noticed that most of the approaches handle the
formalisation of the BPMN semantics using a transformation approach to a formal modelling
language such as Petri nets or timed automata. The availability of dedicated verification
tools is possibly the main reason for such a choice. However, this kind of formalisation suffers
the typical problems introduced by mapping into another model, where the formal semantics
of BPMN is not given in terms of its mathematical definition but rather as transformation
patterns to be assembled. Further, it is restricted to the semantic features of the target
model, e.g., in the collaboration diagrams, tokens may be only on the sequence edges of
the involved processes, while in its Petri nets model translation, the tokens refer to both
messages and sequence edges. Such a distinction is not considered in the proposed translations
because a message is rendered as a (standard) token in a place. Other approaches are given
a direct formalisation in an encoding language such as Java or Maude. In such a case, the
semantics provided by the translation is related to the low-level details of the encoding,
possibly distinct in abstraction to the features and constructs of BPMN. This may make the
verification results inaccurate since translations usually rely on their target language-related
abstractions. Despite the different languages used in the literature, we find that the lack of
expressiveness of these languages makes their use as a basis for a future extension of work
complicated than redefinitions

— Lack of Parametric Communication Support. Several works support the semantics
of collaboration-related elements (collaboration diagram, sending and receiving messages).
However, they perform verification based on synchronous communication models. None of
these works has studied the verification of BPMN models under different configurable inter-
action/communication models.

— Lack of Timed Elements Support. Several works address the Timed perspective of
BPMN. However, all these works focus on extending the BPMN notion to support the time
constraints. No identified work has discussed the semantics of timer elements regarding the
ISO-8601 standard as specified in the BPMN standard [3, P 274, Chapter 10].

— Limited subset of BPMN being supported. Complex elements such as OR join gate-
ways, subprocesses, timer events, and the collaborations between processes, multi-instance
characteristic is well supported in some works only. However, none of these works can reason
on collaboration, including the semantics of all of these elements at the same time.

— BPMN Correctness Properties. Concerning verification, different properties have been
defined in Petri Nets, timed automata, process calculi and other formal languages. The
most known ones in the BP context are soundness and safety, defined in [177]. The soundness

99

DISCUSSION

3.4.

x | M| X S[OPOUI §S9001] SSOUISI(dIRMR-OWIT) JO AN[IQRI[0IIU0D 97} SulkJin | [9L7] JVINLOA SosTe[) WIOF] l6v1]
"TUOTYRULIOJSTRI) OT[) JO UOTJRPI[RA SSOUYDIII00 PR UoIso[dxo Ioquintu aje)s proae o) ypeordde .
S ESR UOT)RULIOJSURI} [9POW pue SUI[[OPOW-R)oUL UO Pase S[PPOW $s9001d SSoUIsnq Jo UOIPeOYLIDA pue uoljesifeurio] o) 3urproddng (1] HYIORIENINGE Al logt “zatl
x | M| X ‘110ddns eyep yjim spppour ssedo0ld SSaUISN JO UOIJedYLIA PUe SISAeue dIoquAS | [FAT LINS-NINdG LINS leL1]
X | A X *$0859001d SSOUISIL(UT S9DINOSOT JO UOTIRIO[[R o) SuisATeue ‘Fuisturydo ‘Surdjrpuopt 10j anbruyoe) woneoyuo | [gLT M-NINd G apney lsvT ‘$¥1]
X | A | X | '$)jonI1psuod Surgourelq pue owr) Jo uoryeoyoads onsifiqeqold [)m papuajxe sppout NINJd 1o seredord o1)serpo)s Jo uoryedyLon | [1LT Jd-NINd 9 opney lev1]
S[Epom NJNd €| 1o . .
A (wstorrered Jo 90189p o1} 10 (9SRIVAR ‘TUNWIXRW ‘WNTTUTIT) SUIT) WOIINIOXD JO SOINSLOUT) SISA[RUR OWI)-[eol SUITLIONOJ loz1] NNdd-adnvin PN lev1] o
X | A X ‘dAVD Woayp [opout o) Sutsn swrerderp ssoooad ssoutsng NN Jo sonpaodord Sunpoy)) | [691 NINDEIA SIT® INT 60T =
X | A X 1X0JU0D $9850001d-(Ns 10/pue afueydxe aFessoul ul sureISerp UoyeIoqe[[0d NN J SUIjies | [89T €S SIT 6€1 =8
X | x| x So1dRIS09I0TD)'I'M SUOTIRIOCR[[0D JO SUDIDTD 9dURULIOJUO)) | [L9T 70 SIT W1
M x| % S1X0JU0D Pase|-RIep PUR dOURISUI-TI[NUT ‘OATIRIOQR[[0D UT spppowt N]NJE Suryewrtuy | [99T VAN SI1]¢eT
x| A2 ‘sure13eIp uorjeIoqe[[od NN Jo uoryeoyuea reutio] e poddng | [g91 JAOUdd apneN %3 ST lee1-1€1]
X | p| X '$1oN13sU00 [eIodUIa) YIM SPUSIXS S[opowt NN J(JO s10adse [erodure) pue [eImoraetaq oY) SUIAJIIOA pure SUISIRULIO] X LJSOTNINdG I+dSD 611
X | Al 2 ‘S[opoul AR TWO poseq uoryedyLoa NINJd 11oddns o) anbruype) woryeroidxa Surpjojun ue jo uonyejdepy | [F97 drsmop) ARl GGT
X | Al X ‘sureIdeIp NINJ¢ oreduioo pue ssAeue Afeutio] | [€91] | dSD 2[qepesi-ouryory dso jans
x | M| X NdD 01 sjuswideyy sseooxd NN Jo Sunje[suer) o) Surmiojnd | |6 udoguog NdDOH [z6]
‘yoroxdde juowouyor v
S EaR U0 Pase(S)X0JU0D MOJ] BIRp PUR MOJJ [0IIU0D Ul S[ppotl NINJE POINIONIJSUN PUR POINIONIS JO UOTIROYLIOA o) SUTULIOJIO] x NNEPNIO NdO l6s]
x | M| X ‘sure1derp ssoooxd NN Jo Suryoatyp [ppout ousijiqeqold aarjeiijuenb 3uruiiojo X Vs JAN [121 ‘0z1]
X | x| A ‘S[Ppow NS M spppot ssaoold ssouisng Jo uorjenyead soueuttojad reonireny | [z91] NVSedd NVS loo1]
X | A % 'S[00) UOTJROYLIOA $)T PUe dfengue] MOPI0M TMVA UM sppout NINJE Jo sisd[eue pue juowdordaq | [1971] TMVACNINDL TMVA [96-76]
: ue NJ useMm)a(SUI[[epou-ejout Juisn passaIppe Sulpuey wojdeoxs pue ‘seourISUl

A e ordiynuu ‘mop ﬂ%mﬂ/nﬂ@muwmwwﬁ :ﬂmmﬂwvoa momeuohﬁ vaﬁm:ﬁ PEQOQM:OU MMEEPMWO zwzﬁumcg wmt Surproddng [oor] PO NINdE SLANLYDHY [og]
X | x| A ‘so[I1 uoryeuriojsuer) ydeis uwo peseq sppouwr NN JH Jo SuiSsugep [ensia pue Suisiewtiof | [6G71] LAN UoHI) ydern) Sunrmayy [12]

‘A3ojourooy Uy (uoryesyriaa saryredord =
e pUR ‘TOTJRINUIIS 9DRI} ‘UOIJRUIIUR [9POUT JATIORIIUIL) SISA[RTR TOIINIOXD nozqmiuw 1:% mvmﬁﬂu xﬁM:% u%ﬁn Suruioyrs g lert] ¢ddo vd (1] g

"SYIOMIOU YT, & Sk S[opoul . m
RS JSeI—J ¢ PRYRIDOSSE I101[) U0 paseq sureideip NJNJE Ul so[ni pue sorjedold ssoutsng [erodus) jo sisAeue o) surproddng x VILeNINdd ViL leot “to1] *
x | M| X 'SIOLID [RINGONIIS JO SUDDYD d1pewony | [8GT NIdSdH Sy [86 ‘6]
X | Al A ‘Topout ssaoo1d ssoutsng uo paugoep sorjrodord AJLmMoos s$900R [0I15U00) SUIAJUDA | [LGT XA10) NdD 69
X | M| X "SOIURISS Pase(-joul Lo Suisn sppowt NJNJd 10J uorjeoyLioa pue sisfeue Surqeus] | [g9) IoULIOJSURI], Nd 79
W mua wH oA1390[q0) Ul ouEN WSRO ooworogey | yoroiddy
A
reuy 1001,

‘sj00], fo sisayqufig :g g o[qeq,

LITERATURE REVIEW

CHAPTER 3.

— — — . — — — — —_ —_ —_ - — —_ —— == - — —_ == == —_ — —_ == == S90IN0SY
— — — — — — — —_ —_ —_ —_ —_ —_ —_ . . —_ —_ —_ - == —_ —_ —_ —— == 21098 eye(]
- — — — — — — - — . - — — — . . —_ —_ —_ * —— —_ —_ —_ .= == 199(qo 'Rl

spoalqQ ereq

— (o) —— _— = = = = = = — « —— ¢ — — —_ == . * —— —— —_— - . (orureusp) sseooid-qns vouessur odiymy
- (o) J— - - J— — — — — J— . — *« —— —— —_ —_ . *« —— —_ —_ —_ - . (o1yeys) sseooxd-qns vouwressur odymy
- (o) —— —_ e e e —— « —— « —— . - . * — —_ —_— - . (orureudp) ysey ooweysur ojdrnyy
- (o) —— - - = = = = . — « —— *« —— . —_— - . * —— — — - . (o1yeys) sy eowesur oMY
—_ 0 —_ — —_ —_ —_ —_ - — —_ . — * —— — — —_ * —— . —_ —_ —_ - . ssanoxd-qus door]
- « —— — e e = = . — « —— °« —— . _ == . . « —— —— -— - . sysey door]
—— R — — e e e —— e e e e — - *« — — — _— = - sseoo1d-qng JuaAr]
- « —— —_— —— = - *« — —— —— « ¢ — — « . . * —— —— -_— - . ssaooad-qng pappaquuy
—_ . —_ —_ —_ —_ —_ o —— . . —_ —_ o —— . —_ o —— . S} OATOIY
—— . —— ° —_— —_— —_— . ° . . ° ° o —— 3 ° —— —— o —— 3 —_ ° 3 ° Jse) puag
—_— L] . L] L] L] . . . L] L) L] L] . L] . L] L] L] L] L] . L] L] —_ . &Aﬂu &Qﬂh,«mn#/\
SOIIALY

__ = — = = = = = = e —_— - - - « —— — - - —= (reqor8) wol satsnpoup
—— —— . . D) . L —— « —— °« —— . —— . ¢« —— —— - . ¢ —— —— (reoor) urof satsnpuy
- —_— . . . [. —— —— —_— . . —_— ¢ —— . —_— () o —— [—_ [e —— —— 10} SAISN[OUT
- - - . . * —— ¢« — - —— . - - . *« — —— - - . S[10J poseq JUAAT]
— — = . . ¢ —— = = - —_ ¢« —— —— —— - - —— * —— —— -_— = - utof poseq JuoAF
. ol dATSIOXG]

. . . L] L] L] . L] L] L] L] L] . . L] . L] L] . L] L] . L] L] . L] VMHC.W L>wm~:nvuhm

. L] L] L] . AﬁmO \&.HOWV erered
sAemojen)

- [- - _— e — - — - « —— — e pus I0115
_ — e = . . *« —— *« —— —— [—_— = L— —— _— = == PUo 9yeUTULIST,
— —_— = R . L T — - - —— . * —— —— —_— = - puo o8esso]\
—_— L] . L] L] L] . L] L] L] L] L] L] . L] . L] L] L] L] L] . L] L] . L] ﬁv:O O:OZ
SJULAY puy

R —_— —_— —_ —_ —_ —_ —_— —_— —_— —_— _ _ . _ . _— _— . [] [} _ L] —_—— —_—— _— JUIAD 9)RTPOULIDIUT TOLIG]
J— J— J— - - J— — - — — - — — _ - —— — — _ - - —_ — _ - —— (104D “ydnareguy wou) ArRpUNO| IOUILT,
__ - — - - = = = = —_— - e — —— —— —— (uwonjem(‘jdniwju] woU) ATRPUNOC IOWILT,
— —— —— —— — — — — — — — — — R — — — e — — —_ = == (970 *3dnarequy wou) Arepunoq Iowrg,
- . U — [[e —— _— —— == (uoryem(y ‘3dnimejuy) Arepunoq Iour,
— [—— e e e e e — = = = = —_— = —_— = —— - —— —_— = - (o7e(q “ydnimejuy) Lrepunoq roury,
— — = — e e = — « = = = _ - —_— - —— - —— * —— —— (uoryean(y) Surypyes tourL],
— - = — - = = = e _ - —_— .- = - —— - = - (oye() Suryoyes Toury,
—— —_— —_— Y —_ —_ —_ —_— —_— —_— —_— . _ _ _— . _— —_— .] _ _ _—— . —_—— L] JUOAD 9)RTPOULIDIUT IOUILT,
on __ __ __ — R P __ P P I J— e J— R _ = ° J— R . AAQ:EE:H :o:v Arepunoq a8essojy

__ (o) —— - - = = = = = _— = = = = . —_— - « — « —— — - - - (*pdnarejuy) Lrepunoq a8essojy
—_ . —_ - —— —_ —_ — —_ - . —_ —_ . . . —_ 0 . . . Surmoat]) o8essay
—_ 0 —_ . —_ —_ —_ . . 0 . . —_ —_ == . —_ —_ . . ° —_ ° . . . urypied o3essay
— _ e — e e e [_— = = = —— _— = - (uoryemn(y) jae)s IoUILT,
—— [. —— e e e e — - B — — _— = - (99e() 1ress TouIL],
- [—— —— e e e e e —_— = = = = = - - e —— —_— = = (97040 qreys TowL],
—— —_ —_ - —— —_ —_ . —— . . - . _ - ——= —— —_ —_ . . —_ —_ —_ - . 11e)S 03RSSON
L] . L] L] L] L] . L] L] . L] L] . . L] . L] L] . L] L] . L] L] . L] jIe)s ®—HCZ
SJUDAY IS

l6v1] lost ‘zetl leztl lsvt wwil levtl levtl [eot] et [tv1] [8er] [eer-1e1] [er1l lestl [pril [eel lesl (1@t ‘oz1l [ootl l96-¥6l [os] [12] [r11l 86 ‘261 [c01 ‘TOT] [69] [¥9l $399[q0 'z NN

60

(420U St 90Y] suoyuow (e) ‘Spuswae pagtoddns-uou 9y 40f —— ‘sjuW) Pagioddns ayy Lof spupis e) SaUNIDAT NN PIVLQUS :9°€ S[qel,

2000

2005

2010

2015

2020

2025

3.5. SUMMARY 61

property consists in guaranteeing the absence of deadlock and no dead activities in the model.
The safety property consists of ensuring the bounded number of tokens per sequence flow. The
works mentioned above (Table 3.4) focus mainly on the verification of soundness properties
related to the control flow of the business process, without considering communication aspects.
In addition, the available verification tools for BPMN can not differentiate issues concerning
the control flow from those concerning the message flow.

Recently, a new reformulation of the BPMN safety and soundness properties has been defined
in [140] to take into account essential collaboration features of the BPMN models, such as
message passing and related soundness properties (e.g., message-relaxed soundness). Taking
these relevant properties into account in the verification process permits distinguishing issues
concerning the control flow from those concerning the message flow. Therefore, the safeness
of a BPMN collaboration only refers to the tokens on the sequence edges of the involved
processes. However, such distinction is not considered in the translation approaches, e.g., in
Petri Nets translation, a message is rendered as a token in a place. Hence, a safe BPMN
collaboration may be considered unsafe by relying on the Petri Nets notion.

— Lack of Empirical Evaluation. The analysis and the evaluation of the proposals performed
in most of the selected works is achieved through a case study. No benchmarks are given
except for works are in Corradini. et al [165] and Duran et al [142-146]. However, Duran et
al. takes as input extended BPMN models with extended notations and no available BPMN
modelling tool to support them.

3.5 Summary

This chapter presented a systematic literature review on the formalisation of BPMN execution semantics
and the annotated verification tool support. We investigated this state of the art according to five
questions. We analysed 79 works spread across five distinct formal models/languages: Petri nets, timed
automata, process algebras, logic formulas, and programming languages. We have given a detailed
overview of each selected work. Then, we have identified their tool support (or lack of) and their
empirical objectives. Finally, we have identified their limitations to lead the thesis objectives. In the
following chapters, we intend to address the gaps discovered from this research by proposing formal
BPMN semantics covering the process and the collaboration diagrams. Furthermore, our research will
address the gaps related to communication management, time constraints, hierarchical structure supports
and the (famous) OR join gateway semantics problem.

62

CHAPTER 3. LITERATURE REVIEW

Table 3.7: BPMN Verification Tools Limitations.

Ref Formal Languages Limitations
 Approach based on the version 1.1 of BPMN
 According to the authors, the approach suffers from deficiencies that impact the proposed formalisation
 The behaviour of the message tasks and events is not properly clear
641 PN = PNML
« Lack of OR-Join semantics support
 No time notion s given for the timer events
 Safeness notion differs on the Petri nets then when it is given directly on BPMN collaborations
« Extended Business process model with a s
« Lack of OR-Join semantics support
o Despite supporting communication using the intermediate message event and Promela basic building blocks are asynchronous processes with synchronous message channels. Still, no details about the communication management nor
[69] CPN — Promela the formalisation of it is given
o Difficulties with unbounded model support for the verification
 Conflict on the soundness property definition with the one given at scale of business process
 The approach does not explicitly express. No details about the semantics of the supported set of BPMN elements
 The author uses synchronous communication between the processes due to the use of TA as a formal language. Still, there is no explicit formalisation nor explication for the message exchange management, the collaborative participants,
[101, 102 TA and the impact of this mode of communication on the verification
o Formal representation of timing requirement is given in the work without any focus on the central semantics of the timer events and their types regarding 1SO standard definitions
o It supports a small subset of BPMN elements reduced to the control flow clements
o It gives a local semantics for the OR-join gateway
(o7 98] Ks « It does not respect the standard definition semantics, c.g., the message intermediate events are treated as a none task
o It does not support the communication nor the timer events
« It focuses on generic properties of verification and ignores the different properties that have been defined in the context of business processes
o It supports the interaction BPMN elements without any explicit formalisation for the communication
« It applies three phases of model transformation without any proof that guarantces the passage from the input BPMN model to the last BA model without losing the basic concepts
[y GPSL - PSC — BA « According to the authors, the approach suffers from the limitation of the introduced graphical language PSC for describing properties
« No support for the BP correctness properties
« Lack of OR-Join semantics and the subprocess support
« It does not provide express semantics for the communication elements
« Lack of OR-Join semantics support
] In-place Graph — PN
o Lack of the timer events support
« It Does not allow to apply verification techniques
« It does not provide express semantics for the interaction elements and the their communication management
« It covers the intermediate timer event elements without providing any notion of time nor supporting the ISO standard definitions
[86/ RECATNets - MAUDE
o Lack of OR-Join semantics support
It does not address the business process correctness properties (safeness and soundness)
 Approach based on the version 1.1 of BPMN
« Lack of OR-Join semantics support
[94-96] YAWL B
« Lack of collaboration support due to the no equivalents in the YAWL notation for the pools, lanes notations, e.g., who are the participants involved in the exchange of messages
o Lack of timer event support with reference to ISO standard
o Lack of collaboration models support
« Lack of OR-Join semantics support
o Lack of unbalanced workflows support
[100] o Small subset of supported BPMN elements
« Extended all supported BPMN clement with an average execution time and probabilities
« It does not address the time semantics for the BPMN timer elements, but the performance evaluation of service time, waiting time, quene size, and resource utilisations and how the system workload may impact them
« It does not address the verification of the BP correctness properties but improves the BP by identifying inefficiencies, such as bottlenecks and idle resources
 Supports a small subset of BPMN elements extended with probabilities
o Lack of inclusive and event-based gateway
« It allows the modelling of the communication clements using send and receive tasks and maps the collaborative processes to a set of synchronised modules due to the use of synchronous PRISM actions, but it does not address the
[120, 121] MDP — PRISM impact of the synchronisation uses w.r.t the BP correctness
« It does not support the timer events
o It Does not address the qualitative correctness properties, but the quantitative ones
o Lack of OR-Join semantics support
« Lack of timer event semantics support
« Refinement limitations regarding the deleting and adding CPN place and transition in a model
- orx « It does not support the unstructured BPMN models
« According to the authors, data and control flow in the CPN model are passed along in the same arc. There is the potential for the copies of the same data to perform the same task (parallel exceution). Thus, the designer should
modify the task logic to choose the correct data version.
. pace generator is not sufficient for verifying the model that has a variety of the variables in a large design model
It does not address the BP correctn sted in finding Petri net properties (deadlocks and livelocks)
o It supports a small subset of BPMN elements, mainly elements using data
192 CPN o It does not address the collaboration nor the time perspectives
o It supports compliance verification which does not aim to prove the correetness of the business process itself but merely whether it adheres to a set of rules
 Approach based on the version 1.1 of BPMN
« Picalculus which is used for the formalisation is complex to understand
o Lack of OR-Join semantics support
[114] csp © CSP language based on synchronous communication channels, Still, there is no details about the its impact on the correctness properties verification
o It is based on the ILOG JViews BPMN Modeler which is not anymore available
o It does not address the time perspective
 They focus on the verification of the consistency checking, performed by using the FDR tool

3.5. SUMMARY

63

Extended the BPMN models with time notation, e.g.

associate a time interval min and max duration for each activity

 Lack of the event-based gateway semantic support
9] Lack of the timer infermediate event semantic support, only the duration time notion that is supported
o It is evaluated only on a one study case
 The authors support only the asynchronous communication mode for the message exchanges
o Supports a small subset of BPMN elements
o The semantics given is based on the low-level details of the Java encoding as an execution traces
_ The anthors exclude some deadlock cases for the efficiency of their approach that are necessary for the collaboration correctness, e.g., waiting process that never start due to waiting messages for start event, Deadlock caused by choice
[155] JAVA code before synchromisation messages
It does not address the BP correctness properties, but it is inerested in finding generic properties (deadlocks, livelocks)
o It is evaluated on a simple example
 Supports a small subset of BPMN elements
 Lack of OR-Join, sub-processing, time event, and data semantics support
131-133] LTS - MAUDE
 The infinite states issue produced due o the LTSs language use
 Lack of collaboration propertics support
138] LTS Approach does not enable the verification
 Small subset of BPMN element support
[141] LTS
o Approach address the conformance checking between the collaboration and the chronography models and not correctness properties verification
« It supports a small subset of BPMN elements
 Lack of OR-Join, time cvent, and data semantics support
 The authors mention the use of the model for But they do not introduce any details about its support nor its integration in the formal model
[139] LTS — JAVA
 They implement the defined LTS semantics and the correctness checking techniques in JAVA
 The proposed implementation is still a prototype that can be subject to many optimisations
o The authors verify a set of BP correctness properties using the implemented tool. However, they do not express the method checking used
o It supports a small subset of BPMN elements
 Lack of communication, time cvent, and data clement support
[109] PIF — LNT — LTS ® Lack of the OR-Join semantics support
« It unlikely the BPMN semantic s respected through the multiple transformations
« It does not address the BP correctness properties
 Supports a small subset of BPMN elements enriched with time features (e.g., timeouts for tasks and delays for branching sequence flows in gateways) to treat the time constraints, and they did not stick to the actual behaviours defined
in the standard
2] L o Lack of the OR-Join and the event based gateway semantics support
o Lack of communication, time event, and data element support
It does not address the verification of the BP correctness properties
 Supports a small subset of BPMN elements enriched with stochastic expressions for specifying the time and probabilistic branching
 Lack of the OR-Join and the event-based gateway semantics support
[143) Probabilistic RL » Lack of communication, time event, and data element support
o It does not address the verification of the BP correctness but the quantitative performance
o The probabilistic model removes relationships of activity that have small occurrences in its BP model
 Supports a small subset of BPMN elements enriched with stochastic expressions for expressing time constraints
 Event it supports communication events, it does not address their semantics nor their verification
144, 145 RL The authors focus on a time notion without any reference to the one given by the BPMN standard
o It addresses the formal specification and verification of quantitative aspects of processes and their resources and not the qualitative ones
 Approach address the stochastic simulation of multiple concurrent executions of a process instance that compete for the shared resources
 Supports a small subset of BPMN clements for the modelling of a busine:
[173) symbolic RL — SMT Lack of the Or join semantics support
It does not address the communication nor the time perspectives in terms of the BPMN standard features
 Supports a small subset of BPMN elements without any precision (e.g., the authors mention the boundary event without any details with which event is associated message, time, or errors; is it interrupting or no, ete.)
 The approach does not explicitly express. No details about the semanties of the supported set of BPMN elements, nor how they are formalised
[152, 156] Event B Mata model — RODIN o The proposed approach is evaluated over a simple example that is not found in the folders nor the paper
 Their approach allows the multi-instantiation of the process and the activities but no details about its management in the collaboration case, nor in the simple process model due of the black token uses; which type supports the
dynamic one the static one
 Supports a small subset of BPMN elements extended with time constraints associated to tasks
 Lack of the Or join and the subprocess elements support
[149] cHe

Does not support the collaboration models nor the timer elements and their time perspective with reference to IS0 standard definition

Ey

at the work address the timer constraint perspective, it focuses only on the time constraints that task d

atio

ould satisfy

64

CHAPTER 3. LITERATURE REVIEW

Part 11

BPMN 2.0 Semantics Formalisation

65

2030

2035

2040

2045

2050

2055

2060

2065

CHAPTER

4
I BPMN AND COMMUNICATION

¥ Communication is the key for any global business. 99

ANITA RODDICK

Chapter content

4.1 Introduction i e e e e 67
4.2 A Typed Graph Representation of BPMN Collaborations Models . 68
4.2.1 BPMN Elements Type oo 68
4.2.2 Graph Structure 69
4.2.3 Well-formed BPMN graph. 72
4.3 A Communication Model Representation 74
4.3.1 Communication Modelo oo 74
4.3.2 Communication Channel 74
4.3.3 Generic Communication Models o0, 74
4.4 A FOL Semantics for BPMN Collaborations 78
4.5 Verification Properties 0000000, 93
4.6 SUMIMATY . + + v v v v v v v v v e e e ottt e et e e e e 96

4.1 Introduction

Communication is an essential human activity to represent an exchange of messages and information
among people. It is also an important organisational capability used for negotiating, discussing, and
making decisions about how to coordinate and cooperate in business activities. Basically, communication
may be performed ’face-to-face’ (i.e., interpersonal communications) or remotely (i.e., via a communica-
tion medium). Corporate communications have an important impact on organisational success. In line
with this, communications are commonly represented by the following process: “a sender transmits a
message through a channel to the receiver”. In this context, BPMN provides collaboration diagrams to
represent communication between a set of participants. These diagrams define a precise order in which
messages are sent and received. Effective communication modelling should have appropriate knowledge
about the communication type on which it depends (i.e., synchronous or asynchronous type of commu-
nication). Yet BPMN does not allow these communication modes to be taken into account. In addition,
BPMN suffers from a lack of standard formal semantics. This weakness can lead to inconsistencies,
ambiguities, and incompleteness within the developed models. As a result, many researchers proposed
formal methods to build formal description and verification models of business processes. However, one
of the weaknesses of these proposals is their lack of support for modelling complex BPMN collaboration
business processes involving communication models. For that, we need an expressive modelling formalism
that allows, on the one hand, to specify the dynamic structure of the business processes models, and on
the other hand, to check the control-flow correctness of these models while taking into account their
communication model.

2070

2075

2080

2085

2090

2095

2100

68 CHAPTER 4. BPMN AND COMMUNICATION

Thus, our efforts are to define formal semantics for a relevant fragment of BPMN collaborative models,
providing a modular structure for incorporating numerous possible communication models. These models
are related to message-passing behaviours between and within processes and show how one can interchange
them when studying a given BPMN schema. Formalising BPMN in a mathematical language would bring
many advantages: (1) giving an abstract and generalised semantics, (2) being easily implementable in
different verification languages, (3) being able to perform a more efficient verification of the system, and
(4) being able to extend it to take into account the organisational information associated with process
models such as the perspective of time constraints (cf. Chapter 5).

This chapter formalises the semantics of BPMN collaborations. It focuses on a subset of BPMN
execution semantics that supports subprocesses, inclusive gateway, interaction and is parametric with
respect to the communication properties. This formalisation is given in terms of First-Order Logic
(FOL). This allows the translation of the process execution semantics without being linked to a particular
language. The proposed semantics supports the seven point-to-point communication models [178] that
exist when considering local, causal and global message ordering, and it is easily extensible. Furthermore,
on top of these seven generic communication models applied to the whole collaboration, the proposal
supports the definition and the use of ad-hoc communication models (a specific model built by assembling
micro communication models that provide different constraints on sending and receiving messages).

This chapter is organised as follows. Section 4.2 provides the presentation of the model underlying
the semantics. Section 4.3 summarises the basic concepts of the selected communication models needed
for understanding this chapter and gives their formalisation in terms of FOL logic. Section 4.4 gives the
formalisation of a subset of BPMN elements. Section 4.5 discuss the verification properties supported by
the formalisation. A conclusion is given in Section 4.6.

4.2 A Typed Graph Representation of BPMN Collaborations
Models

We formally reduce the representation of a collaboration diagram as a typed graph, where types corre-
sponding to the BPMN element types are associated with nodes and edges. Thus, each node or edge in
the graph corresponds to a BPMN node or edge. This work does not propose an alternative modelling
notation, but it defines a Backus-Naur Form (BNF) syntax for BPMN models.

4.2.1 BPMN Elements Type

Figure 4.1 reports the set of BPMN elements supported in this work. In addition, it highlights the syntax
defining the textual notation types of BPMN collaboration models. Types of these elements are based
on the following disjoint sets:

______________________ — e mmmmEmEmEmEmEmEEN b Y

‘Events (E) b | Gateways (G) | |Activities () i

| T I T T E T T eI v (T T oI T T TSI TSI b

| iStart Events (SE) b :<—|>AND @on ! | i Tasks (T) -

[il | H p p

lgONSE (=) visE bl Lo = - ;!

NN i |®XOR @B | & w8 = |
{mmmmmmmmmmmmmmmmmmmmemooeoeooe cr ! P! \ \ |

: !Intermediate Events (IE) T ! } [[[\ |

| ECMIE TMIE ¥ = i . et H% [N

i ol ettt ettt :

| e oo 1|2 - r N
mTTmmmmemSsesmomo—oo-oooooooooooo N < I | Sub Process, expanded (SP) |

é : i Boundary Events (BE) i : %‘ ‘% : — I
Z : i MBE \\\\g;, MBE (non mterrupt.)i : o | | \ / :

N e e e e e e ———— ’ = H [J

| e | o ! . e e e e . . — — — — — — — — — — — — — — — ——— J

I {End Events (EE) e N

: ' i : F|IO—" s }——’O :Sequence Flows (SF) |

! :ONEE @TEE @MEEE L s e 0| I

!} i3 §! NSF CSF DSF 1 MF

LT) o B | —_—p o—p» —+— | O-->
----------------------]

Figure 4.1: A Subset of Supported BPMN Elements.

e For Nodes:

2105

2110

2115

2120

4.2. A TYPED GRAPH REPRESENTATION OF BPMN COLLABORATIONS MODELS 69

e For

The set of task (T), groups the abstract task (AT'), the receive task (RT'), and the send task
(ST) types. Formally: T'= {AT, RT,ST}.

The set of activity (A), groups the task and the sub-process (SP) types. Formally: A =
TU{SP}.

The set of gateway (G), groups the parallel (AN D), the inclusive (OR), the exclusive (XOR),
and the event-based (EB) gateway types. Formally:

G ={AND,OR,XOR, EB}

The set of start event (SE), groups the none start event (NSE), the message start event
(MSE), and the timer start event (T'SFE) types. Formally:

SE = {NSE,MSE,TSE}

The set of intermediate event (I E), groups the catch message intermediate event (CMIFE), the
throw message intermediate event (TMIE), and the timer intermediate catch event (TICE)
types. Formally:

IE = {CMIE,TMIE,TICE}

The set of boundary event (BE) , groups the message boundary event (MBE) and the
timer boundary event (T'BE) types. Formally: BE = {MBE,TBE}. Both indeed regroup
interrupting and non-interrupting versions. A function, isInterrupt (Def. 4.2.1), is used to
make the difference.

The set of end event (EE), groups the none end event (NEE), the terminate end event
(TEE), and the message end event (M EFE) types. Formally:

EE = {NEE,TEE, MEE)}
The set of event (E), is the set of all event types. Formally:
E=SEUIFEUBFEUEE

Edges:

The set of sequence flow (SF), groups the normal sequence flow (NSF), the conditional
sequence flow (CSF), and the default sequence flow (DSF) types. Formally:

SF = {NSF,CSF,DSF}

The set of message flow (MF), is used to denote message flows.

Thus, we consider two basic disjoint sets of elements types as follows:

o T'nodesdenotes the set of all node types, with an added type, P, denoting processes. Formally:
TNodes = AUGUE U {P}.

o Tpgges denotes the set of all edge types. Formally: Tggges = SF U {MF}.

4.2.2 Graph Structure

After defining the sets of BPMN elements types, we introduce the notion of a collaboration diagram as

a labelled graph.

Definition 4.2.1 (BPMN Graph). A BPMN graph is a tuple G= (N, E, M, caty, catg, source, target,
R, msgy, attachedTo, isInterrupt) where:

e N, is the set of nodes,

e E(NNE =0),is the set of edges,

e M., is the set of message types,

70 CHAPTER 4. BPMN AND COMMUNICATION

e caty : N — Tnoges, returns the type of a node,
def
caty(n) = {t € Todes | Y € N}
o catp : B — Tgqges, returns the type of an edge,
d
catg(e) e/ {t € Tgages | Ve € E}

e source : E — N, returns the source of an edge,

source(e) = {neN|e=(n,v), Vve N}

e target : E — N, returns the target of an edge,
def
target(e) = {ve N |e=(n,v), Yn € N}

e R: N — 2NUE returns the set of nodes and edges which are directly contained in a container
(process or sub-process).

R(n) =

def |elems CNUE if catn(n) € {P,SP}
0 otherwise

Notation. We note Rt the transitive closure of R, and R~ the inverse of R.

e msg; : E — M returns the message associated to a message flow,

()def meM if catg(e) e MF
msg:(e) =
9t 1] otherwise

e attachedTo: N — N, returns the activity to which a boundary event node is attached,

¢ N if cat BE A cat A
attachedTo(n) = {a < if catn(n) € Acaty(a) €

1] otherwise

2125 o isInterrupt : N — Bool, denotes whether a boundary event node is interrupting or not,

def | b€ Bool V N, cat BE
isInterrupt(n) Ef{ € boo n € N,caty(n) €

false otherwise

Example of R function application. Let’s take an example to show how we dealt with the hierarchical
structure of the BPMN diagrams. Consider again the example of Figure 2.8 with two process node types
Customer and TravelAgency. To deal with processes P and sub-processes SP containment, we use the
relation, R. If we apply the R function on the Customer process, we obtain:

R(Customer) = {” StartTravel Booking”,” Request forO f fer”,” check?”,” CheckTravelOf fer”,
Vistheof ferinteresting?”,” Informtheagency”,” BookTravel”,” PayTravel”,
” BookingCon firmed”,” ReceivedIn formation”,” SendAbort” ,” Transaction
Aborted”,” Ticket Received”,” TransactionCompleted” , e, €1, €3, €3, €4, €5, €6,

€7,€8,€9, €10, ell}

However, the application of the function on the TravelAgency process returns as result only the global
nodes, i.e., the subprocess OfferSP and EzchangeSP without their contents.

R(TravelAgency) = {” StartO f fer Management”,” O f fer SP”,” TimeOut”,” StopSending
Of fer”,”Continue”,” ExchangeSP”,” Receive Abord”,” O f fer Aborted”,
"Of ferCompleted”, e12, 13, €14, €15, €16, €17, €18, €19, €20, €21, €22, €23, €24,
€5, €26, €27, €28 }

2130

4.2. A TYPED GRAPH REPRESENTATION OF BPMN COLLABORATIONS MODELS 71

Table 4.1: Syntactic Representation of the Travel Agency Example.

N { Customer”,” Travel Agency”,” StartTr auclBoakmg chusstfor()ffcr "check?”,” CheckTrav (’l()ffm' zs(h(’uffsnntermimg’
Infm mthes (l_] ", BookTr ," Pay’ ,” BookingCon firmed”,” Recei llnfm mation”,” Send Abort”,” i
ransactionCompleted”, I t",7Of ferSP”,” TimeOut”,” Stoy di
Abord”,” O f fer Al ,7Of ferCompl StartOf f "OtherOf fer
endIn formation”,” O f fersComplet tart Booking”,” Booking Receive: Payment Received”,
rderTicket”,” BookingCompleted”}
E = 28, "mfo, " m 17, mfa” T mfs”, T mfy”,
M 7 Confirmation”,
msg; "mfs” — 7 Abort”,"mfy7 — 7 SelectOf fer”,"m fs” — "Travel”,
"mfe”
caty= ? Custon Agency” — P,” StartTravel Booking” — E,”check? — XOR,”CheckTravelOf fer” — RT,
Yistheof ferinter, — XOR,” BookTravel” — ST,” PayTr — ST,”TicketReceived” — CMIE,
” BookingCon firm — CMIE,” ReceivedIn formation”™ — BMI SendAbort” — TMI. lansactzonAbm ted” — NEE,
7Tr anmctian(‘ompleted"’ - E,” StartO f fer Management” — M. "0,
Othuoffu - XOI{ "E Moreof fer?” — XOR,” MakeTravelOf fer” — RT,” SendInformation” — TMIE
* — MBE,”Of fersCompleted” — NEE, Continue — XOR.” ExchangeSP” — SP,” StartBooking” — NSE,
* — CMIE,” PaymentReceived” — CMIE,” ConfirmBooking” — ST.,” OrderTicket” — ST.” EndBooking” — NEE,
OfferAborted — NEE,”Of ferCompleted” — NEE}
catp ¢1— CSF,c; —» DSF.c5 —+ NSF,¢; — NSF,e5 — VSI e = NSF, oo > NSF.e;; — NSF,
e F,e — NSF,
FEz,H\SF,ngHi " — MF,
f&" = MF
source = s tO f freManagement”
e] — Reques/fum[/w N
eg — " BookT'rave 7 — PayTrm'el',ex "TicketReceived”, eg — ” BookingCon firmed”, e1g — cewed]njmmatzon Le11 — bend4bort
215 — " MakeTravelOf fer”, e — ETzs(\IorcOffc? ,e17 — Scndlnformafwn N
ego — " Continue”, ,e93 — " Payment Received”
endingO f fer”
mfo— Reques/fm ()[fm N e, .mfy — "InformtheAgency”,
mfs — 7 BookTravel”,mfs — " PayTravel” ,mf: — ”ConfirmBooking” ,mfs — ”OrderTicket”
target— co — " Request forof f
e1 = "Check? ,es — d e — isthisof ferinteresting?”,eq — "informtheAgency?’, e5s — 7" Check?”,
eg — ’PaL/vael ,e7 — "Ticket Receiv eg — Bookuqumlfumed" eg — 7 TransactzanCompletz,d" e1p — " SendAbort”, ey — " TransactionAbort”
ey — "MakeTravelOf fer” ” oreOffer ,e16 — " SendInformation”, e17 — " O f ferCompleted”,
e1s — "OtherOf fe 9 — "Continue” — " Booking Re s eived”
€3 =7 Canfir mBooking”, ea4 — " Orde 5 — 7 gCompleted’ . eas — O f ferCompleted”, ea7 — " O f fer Aborded”
mfo — 7 StartOf fer Manegement” , m fi — y 7*6(1171]0777141/1071 .mf3 — " Receive Abord”, m fy — 7 StopSendingO f fer”,
mfs — 7 BookingReceived” ,m fg — Ptzymentl?eceued mfr — Bookmq(,anfmned mfs — " Ticket Received”
BoundaryEvent attachedTo(” ReceivedIn formation”)—= " CheckTravelOf fer”, isInterrupt(” Rece Information”)= true
attachedTo(” StopSendingOf fer”) = O f ferSP”, isInterrupt(” St = true
attachedT o(” BoundaryEvent,9y0yk9”) = ExchangeSP” isInterrupt(” Receive Abor:
R(Travel Agency) {"StartOf fer M ement”,” O f ferSP”,” TimeOut”,” StopSending, O f fer”,” Continue”,” ExchangeSP”,” Receive Abord”,” O f fer Aborted”,
7O f ferComplete €14. €15 €16 €17, € ,e 31 €24, €25, €26, €27, €28}
R(Customer)= {7 StartTravel Bookin, “heckTravelOf fer stheof ferinteresting?”,” In formtheagency”,” BookTravel”,
? PayTrav ? BookingCon firmed”,” ReceivedIn formation”,” Send Abort”,” Transaction Aborted” ,” Ticket Received” ,” TransactionCompleted”
€0, €1, €9, €3, €4, €5, €6, €7, €8, €9, €10, €11}

To get the content of a subprocess, we apply the R function on it. For example:

R(OfferSP) =

{?StartOf fers”,” OtherOf fer?”,” ExistMoreof fer?”,” MakeTravel
Of fer”,” SendInformation”,” O f fersCompleted” }

R(ExzchangeSP) = {” StartBooking”,” BookingReceived”,” PaymentReceived”,” Con firmBooking”

"OrderTicket”,” EndBooking” }

If we want to extract all the nodes within a process, we use the transitive closure function as follow:

R (TravelAgency) = {” StartO f fer Management”,” O f ferSP”,” TimeOut”,” StopSending

Of fer”,” Continue”,” ExchangeSP”,” ReceiveAbord”,” O f fer Aborted”,

"Of ferCompleted”, e13, €13, €14, €15, €16, €17, €18, €19, €20, €21, €22, €23, €24,

€25, €26, €27, €28, StartO f fers”,” OtherOf fer?”,” ExistMoreof fer?”,

" MakeTravel, O f fer”,” SendIn formation”,” O f fersCompleted”,” Start Bookig”
” BookingReceived” ,” PaymentReceived”,” Con firmBooking”,” Order

Ticket”,” EndBooking” }

Example of a graph syntax. Using the example of Figure 2.8 again, the correspondence between the

graphical notation of BPMN and the syntactic representation is exemplified in Table 4.1.

Auxiliary functions. For a graph G= (N, E, M, caty, catg, source, target, R, msg:, attachedT o,

isInterrupt), we define the following auxiliary functions:

e in: N — 2F returns the incoming edges of a node,

in(n) = {e € E | target(e) =n}

e out: N — 2F returns the outgoing edges of a node,

out(n) = {e € E | source(e) = n}

72 CHAPTER 4. BPMN AND COMMUNICATION

e procOf : N — NT, returns the container process of a given node,

procOf (n) = {p | if and only if n € R (p)}

2135 o intype : N X Tgqges — 2% returns a specified type of incoming edge for a given node

intype(n,t) = {in C in(n) | /\ CatE(e) € t Nt € Trages}

ecin

o outtype : N X Tgqges — 2F returns a specified type of outgoing edge for a given node

outtype(n,t) = {out C out(n) | /\ CatE(e) €t At € Tgages}

ecout

It is important to enforce models to respect some well-formed rules before performing verification.
We, therefore, define well-formed BPMN graphs as follows.

4.2.3 Well-formed BPMN graph.

A well-formed BPMN graph satisfies the following conditions. These rules extracted from the standard
2140 [3]:

e (C1) No incoming sequence flow edges for start events:
Vn € N, caty(n) € SE = intype(n,SF) =10
e (C2) No outgoing sequence flow edges for end events:
VYn € N, caty(n) € EE = outtype(n,SF) =0
e (C3) A sub-process contains exactly one None Start Event and no other start event types:

Vn € N5P |R(n) N {nn € N, catnx(nn) = NSE}| =1
AR(n)N{nn € N, CatN(nn) € {MSE}} =10

e (C4) A sub-process has a unique none end event node:
vn € N°F |R(n) N {nn € N,caty(nn) = EE}| =1
e (C5) A sub-process node cannot contain a process node:
Vn € N,caty(n) € SP = Vnn € R(n),caty(nn) # P
e (C6) For each process node, we require that:
— it contains at least one initial node:
Vn € N,caty(n) =P = R(n)N{nn € N,caty(nn) =SE} #0
— it contains at least one end event node:
Vn € N,caty(n) =P = R(n)N{nn € N,catny(nn) = EE} # 0
e (CT7) No looping edges: Ve € E, source(e) # target(e)

e (C8) No node isolation: Vn ¢ N, (caty(n) = P) = (in(n) # 0) V (out(n) # 0)

e (C9) A gateway that has a conditional edge must have a default edge:

Vn € N, (catny(n) € G) A (outtype(n,CSF) # 0) = |outtype(n, DSF)| =1

2145

2150

4.3. A COMMUNICATION MODEL REPRESENTATION 73

(C10) No incoming message flow for send task, message end event, throw message intermediate
event:
Vn € N, caty(n) € {ST,MEE, TMIE} = intype(n, MF) =10

e (C11) No outgoing message flow for receive tasks, message start event, catch message intermediate
event, boundary message intermediate event :

Vn € N, caty(n) € {RT,MSE,CMIE,BMIE} = outtype(n, MF) =
e (C12) A message flow edge connects two nodes of different processes:

Ve € E,catgp(e) = MF = procO f(source(e)) # procO f(target(e))

e (C13) An event-based gateway have at least two outgoing edges:
Vn € N,catn(n) = EB = |out(n)| > 2
e (C14) Parallel and event-based gateways cannot have a conditional outgoing edge type:
Vn € N,catn(n) € {AND, EB} = outtype(n,CSF) =0

e (C15) The outgoing edges of an inclusive or an exclusive gateway must be a combination between

default sequence flows and conditional sequence flows, or all are of the normal sequence flow type:

Vn € N,catny(n) € {XOR,OR} = Ve € outtype(n, SF),catg(e) € {CSF,DSF}
V Ve € outtype(n, SF),catg(e) € {NSF}

e (C15) Elements that follow an event-based gateway can only be catching intermediate message
events or receive tasks or timer intermediate catch events. Additionally, one cannot have both
receive tasks and intermediate message events.

Vn € Ncaty(n) = EB = (Ve € outtype(n, SF), caty (target(e)) € {CMIE, RT,TICE})

A < ({e € outtype(n, SF) | caty (target(e)) = RT} = 0))
V ({e € outtype(n, SF) | catn(target(e)) = CMIE} = ()

e (C16) Message flows connect the throwing elements (send task, message end event, throw mes-
sage intermediate event) with catching elements (receive task, message start event, catch message
intermediate event, message boundary intermediate event):

Ve € E,catgp(e) € MF = catn(source(e)) € {ST,MEE, TMIFE}
A caty (target(e)) € {RT, MSE,CMIE,MBE}

e (C17) Message catching elements must have at least one incoming message flow edge:
Vn € N,catn(n) € {RT,MSE,CMIE,MBE} = l|intype(n, MF)| > 1
e (C18) Message throwing elements must have at least one outgoing message flow edge:
Vn € N,catn(n) € {ST, MEE,TMIE} = |outtype(n, MF)| > 1}
e (C19) Receive task has at least one incoming message flow edge:
Vn € N,catn(n) € RT = lintype(n, MF)| > 1
e (C20) Send task has at least one outgoing message flow edge:

Vn € N,caty(n) € ST = |outtype(n, MF)| > 1

It should note that we do not require a specific structure of the BPMN graph for these rules. For
example, we do not require these graphs to be well-balanced (when for each splitting gateway of a given
type, there is a corresponding merging gateway of the same type). One can use an exclusive splitting
gateway and merge its branches using a parallel gateway. Verification will be able to detect this is an
erroneous model.

2155

2160

2165

2170

2175

2180

2185

2190

74 CHAPTER 4. BPMN AND COMMUNICATION

4.3 A Communication Model Representation

This thesis focuses on the BPMN collaboration diagrams where the communication models may present
the backbones element in such a model. In general, the interactions between processes or any computing
systems are built based on two categories: synchronous or asynchronous communication. In synchronous
communications, the transmission of a piece of information - the message - is instantaneous (i.e., the
send and the receive of the data simultaneously). On the other hand, asynchronous communication
splits the transmission into a send operation and a receive operation. In this Section, we consider classic
communication models from the literature as well as a few variations. We integrate such models to the
BPMN collaboration diagrams semantics to study the behaviour of such models in the presence of such
control.

4.3.1 Communication Model

The interaction in the collaboration diagrams corresponds to a message passing between two processes.
It corresponds to a couple of communication events: namely a send and a receive. An event or a set
of communication events may occur on a process. However, each communication event can be a send
event or a receive event associated with a message. Each event carries information about the type of
the event (send, receive), the message, the process from where it occurs, and the process to where it will
be fired. As the multi-instance characteristic is out of the scope in this thesis. We focus on one-to-one
communication. In such communication, a given message is sent by a process, and it may be received by
at most one process. Back to the example of Figure 2.8, it illustrates a point-to-point communication and
the transmission of messages between the TravelAgency process and the consumer process. Formally, we
define the peer to peer communication model using two predicates send and receive defined with (from,
to, message) information as follow.

send /receive : {p1 € N | caty(p1) € P} x {p2 € N | catn(p2) € P} xM (4.1)

4.3.2 Communication Channel

Let nets be a set of communication channels. A channel is a label on messages. The content of messages
is out of the scope here as we do not support data objects. A channel is not restricted to one sender and
one receiver. Different processes can send messages on the same channel. Likewise, different processes
can receive a message from the same channel. Yet, it is nonetheless a point-to-point communication
abstraction because a given message still has exactly one sender and at most one receiver. If a single
message is sent on a given channel and several peers expect to perform a reception from this channel,
only one of them will be able to receive the message.

The channels can be global, local to a participant, associated with a pair of communicating pro-
cesses, or local to each message. Thus, depending on the configuration of the channel, a great variety of
communication models arises.

4.3.3 Generic Communication Models

We define seven communication models which differ in the order the messages can be sent or received.
They are all the possible point-to-point models when considering local ordering (per process), causal
ordering, and global ordering (absolute time) [179]. There are four variants of FIFO communication,
Table 4.2 gives an overview of them. In addition, there are causal communication, (Causal), pseudo-
synchronous communication, (RSC), and fully asynchronous communication (Bag).

Table 4.2: FIFO Communication Models Variants.

1 1
. . . . a1 18
FIFO pair associates one sender with one receiver a1
N 1
. . . . &
FIFO inbox associates all the senders of a unique receiver =l

FIFO outboxr associates one sender with all its destinations ~— 1l

S
2T
=

FIFO all associates all the senders with all the receivers

2195

2200

2205

4.3. A COMMUNICATION MODEL REPRESENTATION 75

In the following, we define the structure of each model as a type called T, where
Thet € {bag, pair, inbozx, outboz, causal, fifoall, RSC?}

The models are formally defined in Table 4.3 and are explained below. To simplify the notations,
we include sequences of terms (Seq[T]) and bags (Bag[T]) as a part of the usual definition of ground
terms in first order logic. Indeed, we use N¥ to denote the subset of nodes of type P, i.e., N¥ = {n €
N | caty(n) € P}. By abuse of notation, we may write N¥ instead of NI}, We also assume some
standard definitions and operations on terms:

e () is the empty sequence

e head: Seq[T] — T : returns the head of a sequence

e tail: Seq[T) — Seq|[T] : returns the tail of a sequence

e append: Seq|T] x T — Seq[T] : appends an element at the end of a sequence
e &, ©: Bag[T] x Bag|[T] — Bag[T] : union and difference of bags

e Bag is a multiset of messages. Formally:

d
bag 2 Bag[NF x NP x M]
No order on message reception is imposed. Messages can overtake each other or be arbitrarily
delayed. A bag or a set usually model it if messages are unique.

e Fifo pair is a queue of messages attached to each couple of processes. Formally:

pair Y NP« NP Seq[M]

Messages between a couple of processes are received in their sending order. Messages from or to
different processes are independently received. More precisely, if a process P; sends a message m;
to process P», and later a message mo is sent to this same process, then mo cannot be received
before m; (See Figure 4.2 and Figure 4.3 as example).

Instruction for

Implementation
() witeproposa () (=) ()
O o

1
| Theoretical |
Research)

Scientist

Program
Description

|
v v
Prepare
Executable
Start

implementation

Co-Sciensist

Figure 4.2: A Non-FIFO Pair Execution. The sending of the theoretical research precedes the sending
of the program description. Then program description is received before the theoretical research message,
thus the model execution is not FIFO-Pair.

Instruction

| Program
Description

Scientist

©
50

Start
implementation

Theoretical

|
T
Executable | Research

V Y,

Director

Figure 4.3: A FIFO-Pair Ezecution. The sending of the theoretical research and the program description
are received on different processes, so the execution is FIFO-Pair anyway.

76 CHAPTER 4. BPMN AND COMMUNICATION

e Fifo inbox is an input queue attached to each process, where senders put messages. Formally:

de
inboz < NP - Seq[NT x M]

Each process has its own unique input queue, and senders add messages to this queue without
blocking. Messages are consumed from this queue in their insertion order. This means that if a
process P; sends a message my to Ps, and later (but independently) a process P5 sends a message
2210 ms to Ps, then mo cannot be received before mj. This model is stricter than the Fifo pair as it
requires a global order on the sending events (See Figure 4.5 and Figure 4.4 as an example).

Scientist

]
£
g Prepare Code
=3
o
o
|
I E tabl
Proposal Xecutable
_— = |
| |
§ \V \V
o
: © @
i O ©®

Figure 4.4: A FIFO-Inbox FExecution. The sending of proposal message precedes the executable, and the
associated receptions that occur on the same process director happen in the same order.

Write Proposal

Scientist

Programmer

O—® ©—QO

Figure 4.5: A Non-FIFO Inbox Execution. The execution is not be FIFO inbox because the sending of
proposal message precedes the executable, and the associated receptions that occur on the same process
director happen in the reverse order.

Director

e Fifo outbox is an output queue attached to each process where messages are retrieved. Formally:

de
outboz < NP Seq[N* x M]

Messages from the same process are received in their sending order. If a process P sends a message

my and later a message mo (to the same process or to another one), then mo cannot be received

before my, even if the receptions occurs on distinct processes (See Figure 4.6 and Figure 4.7 as
2215 example).

4.3. A COMMUNICATION MODEL REPRESENTATION 7

Scientist

. Write Proposal @ @ .

Program — — — — — — — — — —
Description |

|
[
|
v |
O romie —@——0O
®; |
|
.

Executable — — — — — — T

O—— -5-0

Figure 4.6: A FIFO Outbox Fxecution. The sending of program description is sent before the theoretical
research, both by Scientist process, and the associated receptions occur in this order.

Theoretical
Research

@

Programmer

Director

Scientist

. Write Proposal @ @ ‘

_ frogam - _ _ _ _ [

Programmer
@
T
3
°
5]
El
(<]
-1
a
5
@

ITheoretical
I—Reﬁar&? -

O O

Figure 4.7: A Non FIFO Outbox Execution. The execution is not be FIFO outbox because even the
receptions occur on different processes, the receive event of program description occurred before the receive
event of theoretical research.

Executable — — — — —

Director

e Fifo All is a unique shared queue. Formally:

fifoall 2 SeqNP x NP x M|

Messages are globally ordered, independently from their sender or receiver processes, and are
received in the global sending order.

e Causal. Messages are received according to the causality of their sending [180]. Formally:

ve [N — N] -- a vector clock
causal € Set|[NF x NP x M x VC] x [NF = V()|

If a message m; is causally sent before message mo (there exists a causal path from the sending
of my to the sending of ms), then a process cannot receive my before m;. Figure 4.8 presents a

2220 model that deadlocks with causal communication. In this example, a scientist writes a proposal,
sends the proposal to the client, and sends its description to its financial department. Based on the
description, the financial department computes a quote and sends it to the client. Without causal
communication, the client can receive the quote before the proposal; with causal communication,
the quote cannot be delivered because it causally depends on the proposal that must be received

2225 first. A usual implementation of this model uses causal histories [181, 182] or vector /matrix logical
clocks [183] as presented here!. The state of the network mnet holds a couple: the set of messages
in transit (with their associated vector clock) and the vector clocks of each process.

LA vector clock is a logical clock that tracks the causal dependencies between send and receive events. They
are not to be confused with the clocks used for timing constraints in Chapter 5.

2230

2235

2240

78 CHAPTER 4. BPMN AND COMMUNICATION

write
proposal
| o Q _
proposal= description

+
+

Scientist

Financial
Dept
8
53
g
@
Qa
c
=}
@
T Ir
|
|
|
- = A\|r _I

gﬁ
%Q

Figure 4.8: A Non-Causal Ezxecution. The sending of the proposal causally precedes the sending of the
description which causally precedes the sending of the quote. Then the quote cannot be consumed before
the proposal on the client in the causal communication model.

e RSC (Realisable with Synchronous Communication) is a shared, 1l-sized, buffer for all
processes. Formally:

U
~

€

netrsc = (NPXNPXM)

Send and receive events are strictly alternate. If the couple (send event, reception event) is con-
sidered atomic, this corresponds to synchronous communication [184].

Scientist

Prepare
proposal

Proposal

= =

P AvA
= =
Receive Code Receive
Proposal
.

Executable

Director

Coding Send Code

Programmer

Code

O E—0

Upload

Git

Figure 4.9: A Non-RSC Execution. The sending of the code message is occurred precedes the reception
of the proposal message. Two messages must not be in transit at the same time.

4.4 A FOL Semantics for BPMN Collaborations

To maintain traceability with the standard, we use a token-based approach to define the semantics. We
formalise the way the token transit between edges and nodes that compose the collaboration diagram.
Generally, to apply model-checking techniques, the system is represented by a transition system [185].
It is a model that defines the states and actions that provoke transitions between these states. Mainly,
there are two ways to model a system of transitions using operational or declarative languages. Transitions
are expressed using assignment instructions in the operational language, either with imperative, functional
language control flow (e.g., Promela, the language of the Spin model-checker) or by using variants of
Diskstra’s guard commands (e.g., Murphi [186] or SMV [187]). Second, transitions are expressed with
constraints in the declarative language, either on the complete execution or, more often, on individual
steps. The idea of this idiom takes root in the first works on program verification like the specification

4.4. A FOL SEMANTICS FOR BPMN COLLABORATIONS

Table 4.3: Encoding of the Communication Models in First-Order Logic.

Network model

Definition

Bag

d
initnet 2 0
d
send(from,to,m) 5 mnet’ = mnet & {(from,to,m)}

d
receive(from,to,m) éf (from,to,m) € mnet
A mnet’ = mnet © {(from,to,m)}

Fifo Pair

d
initnet =2 [p,g € NP = ()]
d
send(from,to,m) &f mnet’(from,to) = append(mnet(from,to), m)

d
receive(from, to,m) 2 m = head(mnet(from,to))
A mnet'(from,to) = tail(mnet(from,to))

Fifo Inbox

d
initnet "< [p € N¥ ()]

d
send(from,to,m) ef mnet’ (to) = append(mnet(to), (from, m))

de
receive(from,to,m) =2 (from, m) = head(mnet(to))

A mnet' (to) = tail(mnet(to))

Fifo Outbox

initnet = [p € NP o (]
de
send(from,to, m) 2 mnet’(from) = append(mnet(from), (to,m))

receive(from,to,m) wf (to,m) = head(mnet(from))
A mnet'(from) = tail(mnet(from))

d
initnet =f ()

U

ef

Fifo All send(from,to,m) = mnet’ = append(mnet, { from,to, m))
d
recewe(from,to,m) ef (from,to,m) = head(mnet) A mnet’ = tail(mnet)
. def P P
initnet = P x [pe NV — [ge N — 0]
def
send(from,to,m) =
mnet'[1] = mnet[1] U {(from, to,m,ve[from])}
A mnet'[2] = ve
d
with ve [pe NP - [qge NP —
Causal if p= from A q= from then mnet[2][p][q] + 1 else mnet[2][p][q]]]
de
receive(from,to,m) =2
Imsg € mnet[1],msg[l] = from A msg[2] = to A msg[3] =m
A =(3msga, msgs # msg Amsga[2] =to A ¥p € NP msga[4][p] < msg[4][p])
A mnet'[1] = mnet[1] \ {msg}
A mnet'[2] = [p € NP — if p = to then Sup(mnet[2][p], m[4]) else mnet[2][p]]
de
initnet = 0
d
RSC send(from,to,m) 5 mnet — O Amnet’ = {(from,to,m)}

def
= (

receive(from,to, m) from,to,m) € mnet A mnet’ =)

2245

2250

2255

2260

2265

2270

80 CHAPTER 4. BPMN AND COMMUNICATION

of the declarative languages VDM [188], Larch [189], or Z [190], which are essentially the pre and post
conditions of Hoare triplets [39].

In this section, we define the semantics of our formalism using the First Order Logic (FOL) and
the declarative idiom. The execution semantics of BPMN is defined based on the transition notion. A
transition is enabled first before being fired for moving from a state to another state. Thus, the enabling
notion corresponds to a precondition, while the firing notion corresponds to a postcondition. In our case,
a transition is said to be enabled when some preconditions are met (to allow the firing of the transition).
We distinguish two cases: (i) a node is ready to start its execution, (ii) a node is ready to complete
its execution. However, a transition is said to be fired when some postconditions are met (determines
the node activation or completing). Thus, we distinguish two cases: (iii) firing a transition on a node
that can start; (iv) firing a transition on a node that can complete. To simplify our model, we merge
(i) and (iii) to define the starting action and (ii) and (iv) to determine the completing action. Thus, we
describe the movement of tokens based on the node types and the two predicates, starting predicate St
and completing predicate Ct defined for each node type. We note that some nodes only have a start
transition (e.g., end events), and others only have a completion transition (e.g., gateways). When a node
defines only one of the two predicates, the other one is considered false.

The semantics (Section 4.4.0.2) relies on a notion of state of the BPMN graph (Section 4.4.0.1) to
define the St and C't predicates. Further, the semantics is parameterised by a type T;,: that encapsulates
the properties of the communication network using an initialisation function, initnet, and two predicates,
send and receive.

4.4.0.1 State

A state of a BPMN graph gives a marking for the nodes and the edges, together with a state for the
communication network.

Definition 4.4.1 (State). The state of a BPMN graph is a tuple s = (mn, me, mnet) such that:
e mn: N — N is a function assigning a natural number marking to each node.
e me: E — N, is a function assigning a natural number marking to each edge.
e mnet : Ty, is the state of the communication network.

States denotes the set of all states of a BPMN graph.

Definition 4.4.2 (Initial state). The initial state of a BPMN graph, denoted by s, = (mng, meg, mnety),
is such that:

e the start nodes of the processes hold a token, all other nodes are unmarked:

1 ifcaty(n) € SENA(3p€ N,caty(p) =P | n€ R(p))

Yn € N,mng(n) = {0 otherwise

e all edges are unmarked: Ve € E megp(e) =0

e the network is empty: mnety = initnet

4.4.0.2 Semantics

Here, we define the execution semantics of BPMN based on those mentioned above, St and Ct predicates
for each type of node in the BPMN graph and based on its notion of state. In the semantics, let
s = (mn,me,mnet) and s’ = (mn’, me’, mnet’) denote two states. Additionally, we consider the predicate
A that denotes marking equality but for nodes and edges given as parameters. Hence, A(X) means
"nothing changes except for X":

A (X) “vn e N\ X,mn/(n) = mn(n) AVe € E\ X,me’(e) = me(e)

d
Similarly, = denotes that the state of the network does not change: = éf mnet’ = mnet.

2275

2280

2285

4.4. A FOL SEMANTICS FOR BPMN COLLABORATIONS 81

Start nodes. There are two starting node types for the instantiation of the process: the none start
event (NSE) and the message start event (MSE).

The behaviour of an NSE is defined only by a completing predicate. It consumes its token and
generates one token on all of its outgoing sequence flow edges. If it is the initial node of a process p, it
activates p by generating a token on it. When an NSF is defined within a sub-process p, its activation
is conditioned by the activation of p. Formally:

def

Yn € N,Ct(n) = caty(n) = NSE A (mn(n) >= 1) A (mn/(n) = mn(n) — 1)
A Ve € outtype(n, SF), (m (e) =me(e) + 1)
dpe N,p=R"~ /\(catN() P)

H(n)
(m () =0)A (mn'(p) = 1)
A A ({n,ptuU outtype(n SF)AZ)
dsp € N, sp=R7Y(n) A (caty(sp) = SP))
A A ({n} Uouttype(n, SF)) AN E

Example. Figure 4.10 presents a process p with a none start event (nse), an abstract task (task), and
a none end event (nee). It shows a token within nse node, which is represented by a green token. nse
completes by consuming this token and produces one on P and its outgoing sequence flow (el).

o| @ = }=O +| 0@ = }=O

nse nee nse nee

Figure 4.10: Completing Behaviour of a None Start Event. Before (left) and after (right) application
of the Ct rule.

The behaviour of a message start event (MSE) is defined by a completing predicate. An MSE is
enabled if it has a token and there is a message offer on one of its incoming sequence flow edges. It
completes by consuming the message, generating one token on all of its outgoing sequence flow edges,
and activating the process p by generating a token on it. Formally:

de
Vn € N,Ct(n) 2 caty(n) = MSE A (mn(n) = 1) A (mn'(n) = mn(n) — 1)
A Ye € outtype(n, SF), (me'(e) = me(e) + 1)
A Jem € intype(n, MF), (me(em) > 1) A (me’(em) = me(em) — 1)
A receive(procOf(source(em)), procOf(n), msg:(em))
A 3p € N,caty(p) = P An € R(p) A (mn(p) = 0) A (mn/(p) = 1)
AN ({n,p,em} U outtype(n, SF))

Example. Consider the example of Figure 4.10 again. By replacing the none start event with a message
start event (mse), we get the model in Figure 4.11. It represents the complete execution semantics
behaviour. The left-hand-side of Figure 4.11 shows that there is a token on the start node and a message
offer (m1) on the incoming message flow edge of mse. This latter completes by consuming the message
according to the chosen communication model and producing a token on the process and on all its
outgoing edges.

ms ° mse
o et task ﬁ»o o task —e2>o
m1 nee e nee
L) L)

Figure 4.11: Completing Behaviour of a Message Start Event. Before (left) and after (right) application
of the Ct rule.

Ending nodes We have three ending node types for the termination of a process: none end event
(NEE), terminate end event (TEFE), and message end event (M EE).

2290

2295

82 CHAPTER 4. BPMN AND COMMUNICATION

The behaviour of an NEFE node is defined only by a starting predicate: it is enabled if it has at
least one token on one of its incoming edges. It starts by consuming this token and adding one to itself.
Formally:

Vn € N, St(n) = caty(N) = NEE A Je € intype(n, SF), (me(e) > 1) A (me'(e) = me(e) — 1)
A (mn/(n) =mn(n) + 1) A A({n,e}) A Xi

Example. Figure 4.12 presents the execution semantics of an end node (nee). The left-hand side of the
figure shows the enabling of the nee by the presence of a token on its incoming edge (e2). The right-hand
side of the figure shows the starting behaviour. It consumes the token from e2 and generates a token on
it.

O_’WO | O e H

nee nse nee

Figure 4.12: Starting Behaviour of None End Event. Before (left) and after (right) application of the
St rule.

A TEF node is defined only by a starting predicate: it is enabled if it has at least one token on one
of its incoming edges. It behaves like a none end event by consuming a token from one of its incoming
sequence flows and generates a token on itself. Besides, it does the additional work of dropping down all
the remaining tokens of the process or sub-processes to which it belongs. Formally:

VYn € N, St(n) = caty(n) =TEE
A Fe € intype(n, SF), (me(e) > 1) A (mn/(n) = 1)
A dp € N,catn(p) € {P,SP},(n € R(p))
AVnn € ((RT(p) NN)\ {n}), (mn/(nn) = 0)
A Vee € (R*(p) N E), (me'(ee) = 0)
ANA(RY(p)) NE

Example. The left-hand side of Figure 4.13 shows the enabling of a terminate end node (tee) by the
presence of a token on its incoming edge (e7). The right-hand side of the figure shows the starting
execution of the node. It consumes the token from e7 and generates a token on itself. Besides, it affects
all the existing executions in parallel (here e3 and e4) by dropping down all their tokens.

G
task1 |0 O —>(96)
CON
neel neel
2 eb e7
o e task2 —d—P@ o
el tee tee
3 8 8
nee2 nee2

Figure 4.13: Starting Behaviour of a Terminate End Fvent. Before (left) and after (right) application
of the St rule.

An MEF node is defined only by a starting predicate. It is enabled to start if it has a token on

2300

2305

2310

4.4. A FOL SEMANTICS FOR BPMN COLLABORATIONS 83

one of its incoming edges. Then, it moves the token from one of its incoming edges to itself and sends a
message on the network according to the configured communication model. Formally:

Vn € N, St(n) déf caty(n) = MEE
A (mn'(n) = mn(n) + 1)
A Je € intype(n, SF), (me(e)
A Jee € outtype(n, M F), (me
A send(procOf(n), procOf
AN ({n,e, ee})

D A (me'(e) = me(e) — 1)

ee) = me(ee) + 1)
target(ee)), msgi(ee))

—

\|v

—

Example. Figure 4.14 shows the starting behaviour of the message end event (mee). It starts by
consuming the token from the incoming edge (e2), producing a token on itself, and sending a message
ml on the network.

mee mee
o Oﬂ> task ﬂ»@ o Oﬁ> task e2
nse m1 : nse m1
v \

Figure 4.14: Starting Behaviour of a Message End Event. Before (left) and after (right) application of
the St rule.

Activity nodes Two kinds of activity nodes have to be taken into account: the abstract tasks (AT
and the subprocesses (SP).

A starting and completing predicates define the behaviour of an abstract task node (AT'). It is enabled
to start if at least one token is present on one of its incoming edges and it does not already own a token.
Then, it starts by consuming a token from one of its incoming edges and produces one on itself. An AT
node is completed by consuming one token from itself and adding one token on each of its outgoing edges.
Note that an interrupting boundary event may end an abstract task (see M BE, pages 87). Formally:

VYn € N, St(n) = caty(n) = AT
A Je € intype(n, SF), (me(e) > 1) A (me’(e) = me(e) — 1)
A (mn(n) = 0) A (mn/(n) = mn(n) + 1)
ANA ({n,e}) NE

Vn € N, Ct(n) f caty(n) = AT A (mn(n) =1) A =
A Ve € outtype(n, SF), (me'(e) = me(e) + 1)
A A ({n} Uouttype(n, SF)) NE

>

Example. Figure 4.15 shows the starting behaviour of the abstract task task. It starts by consuming
the token from el and generating a token on itself.

|oe=1=0| |lo~@t=-0

nse nee nse nee

Figure 4.15: Starting Behaviour of an Abstract Task activity. Before (left) and after (right) application
of the St rule.

Figure 4.16 shows its completing behaviour. It consumes the token from itself and generates one on
its outgoing edge e2.

84 CHAPTER 4. BPMN AND COMMUNICATION

O+ =0 = O 5O

nse nee nse nee

Figure 4.16: Completing Behaviour of an Abstract Task Activity. Before (left) and after (right) appli-
cation of the Ct rule.

The behaviour of a subprocess activity SP node extends the one of an AT node with some additional
conditions: when it is enabled, a sub-process adds a token to the start event it contains. It completes
when at least one end event it contains has some tokens, and none of its edges or nodes is still active (i.e.,
owning a token). Note that, like an abstract task, a subprocess may also be ended by an interrupting

boundary event (see M BE, pages 87). Formally:

-

de

VYn € N,St(n) = (caty(n) = SP) A e € intype(n, SF), (me(e) > 1) A (me'(e) = me(e) — 1)
A (mn(n) = 0) A (mn/(n) = mn(n) +1)
/\VnsE(NNSEﬂR(), (m (ns) = mn(ns) + 1)

ANA ({e,n} U ({nse € N,caty(nse) = NSE} N R(n))) A=

de
VYn € N, Ct(n) 2 (caty(n) = SP) A (mn(n) = 1) A (mn’(n) = mn(n) — 1)
AYe € R(n)N E, (me(e) = 0)
A Inee € R(n) A catn(nee) € EE) A (mn(nee) > 1)
A¥nn € R(n) NN, (mn(nn) > 1= catny(nn) € EE)
A¥nn € (R(n) Neaty(nn) € EE), (mn/(nn) = 0)
A Ve € outtype(n, SF), (me'(e) = me(e) + 1)
AN ({n} U (R(n) N {nee € N, caty(nee) € EE}) U outtype(n, SF)) A=

Example. Figure 4.17 shows the starting behaviour of the subprocess activity (SP). It starts by
consuming a token from its incoming edge (el) and generating a token on itself and on its start event

2315 (nsel).

e5
0| |-|0% &%= JFOro

neel
nse nee nse o7 o8 nee
é task3 O
nee2
nee3

Figure 4.17: Starting Behaviour of a subprocess Activity. Before (left) and after (right) application of
the St rule.

Figure 4.18 shows that even if there is a token on one of the end events, here nee3, the subprocess
can not execute its completing transition: to complete, SP must wait until the token on e5 has given

place to one on neel.

4.4. A FOL SEMANTICS FOR BPMN COLLABORATIONS 85

N Ce1 1. e1OO

nse neet nee

Figure 4.18: A Sub-Process Activity not Ready to Complete: a token is still present on one of its edges.

Communication The semantics for MSE and MEE have been presented above. The remaining

2320 communicating elements, TMIE, CMIE, MBE, ST and RT require additional conditions for starting
and completing due to the presence of sending/reception predicates. All these elements require a token
on one of their incoming edges to be enabled.

The ST and RT are enabled when they have a token on their incoming edges and no token on them.
Then, they start executing by moving this token inside. Finally, ST completes by sending a message on

2325 all its outgoing edges regarding the chosen communication model (which affects the network state) and
producing a token on all its outgoing edges.

A ST is not necessarily instantaneous as a send may block, for instance, with synchronous commu-
nication, RSC or a bounded size network. Another important point is that a boundary event, such as a
timeout, can be attached to a receive or send task and not to an event. For all these reasons, we have
chosen to make these tasks non-atomic. This allows distinguishing a send task from a ThrowMessageln-
termediateEvent, and a receive task from a CatchMessagelntermediateEvent. Note that the semantics
in the standard is ambiguous since there are two contradictory aspects: tasks in BPMN are non-atomic
while the purpose of a send task is only to send a message, which is intrinsically atomic. Formally:

Vn € N, St(n) = catny(n) = ST A Je € intype(n,Tsp), (me(e) > 1) A (me'(e) =me(e) — 1)
A (mn(n) = 0) A (mn'(n) = mn(n) + 1)
AA ({n,e}) NE

Vne N,Ct(n) Y catn(n) = ST A (mn(n) = 1) A (mn’(n) = ma(n) — 1)

A Ve € outtype(n, SF), (me'(e) = me(e) + 1)

A Jee € outtype(n, M F), (me’(ee) = me(ee) + 1)
A send(procOf(n), procOf(target(ee)), msg;(ee))
A A ({n,ee} Uouttype(n, SF))

Example. Figure 4.19 presents the starting behaviour of a send task activity (task). It shows the same
starting behaviour as the one presented in Figure 4.15.

K

]
| Q0w 20O | O =0

nse ? nee nse ? nee
mi i mi

Figure 4.19: Starting Behaviour of a Send Task Activity. Before (left) and after (right) application of
the St rule.

Figure 4.20 shows the completing behaviour, task completes by consuming one token from it and by

2330

2335

2340

86 CHAPTER 4. BPMN AND COMMUNICATION

generating a token on its outgoing edge e2 and producing a message ml on the network according to the
chosen communication model.

]]
| O P=0 | O J6-O

nse ? nee nse nee
mi | mi

v

Figure 4.20: Completing Behaviour of a Send Task Activity. Before (left) and after (right) application
of the Ct rule.

A receive task (RT') has a complementary behaviour to the send task (ST). It is enabled to complete
only if it is active (i.e., it has a token) and it has a message on one of its incoming message flows. RT
completes by consuming the message offer, updating the network state, and producing a token on all its
outgoing edges. Formally:

VYn € N, St(n) Yo tn(n) = RT A Je € intype(n, SF), (me(e) > 1) A (me'(e) = me(e) — 1)
(mn(n)) A (mn'(n) = mn(n) + 1)

A ({n,e}) A

Vn € N,Ct(n) = caty(n) = RT A (mn(n) = 1) A (mn/(n) = mn(n) — 1)
A Ve € outtype(n, SF), (me'(e) = me(e) + 1)
A Jee € intype(n, MF), (me(ee) > 1) (me’(ee) = me(ee) — 1)
A receive(procOf(source(ee)), procOf(n), msg;(ee))
A A ({n,ee} Uouttype(n, SF))

Example. The starting of the receive task activity is similar to the one presented for the abstract task
in Figure 4.15. Figure 4.21 shows that the receive task activity (task) can complete if it has a token on
itself and a message m1 on its incoming message flow. It completes by consuming its token, receiving the
message from the network, and producing a token on its outgoing edge (e2).

(] [
| O=FE =0 | O J&-O

nse nee nse A nee
m m1

Figure 4.21: Completing Behaviour of a Receive Task Activity. Before (left) and after (right) application
of the Ct rule.

A throw message intermediate event (TMIFE) defines only the starting behaviour. It is enabled to
start if it has a token on one of its incoming edges. It starts by consuming the token from this incoming
edge, sending a message on the network according to the chosen communication model, and producing a
token on all its outgoing edges. Formally:

Vi e N,St(n) Y caty(n) = TMIE
A3ein € intype(n, SF), (me(ein) > 1) A (me’(ein) = me(ein) — 1)
A Ve € outtype(n, SF), (me'(e) = me(e) + 1)
A Jeout € outtype(n, MF'), (m (eout) me(eout) + 1)
A send(procOf(n), procOf(target(eout)), msg:(eout))
A A ({ein, eout} U outtype(n, SF))

Example. Figure 4.22 shows the starting behaviour of a throw message intermediate event (Send Notif.).
It starts by consuming the token from its incoming edge (el), producing a token on its outgoing edge
(e2), and sending a message m1 on the network.

2345

2350

2355

2360

4.4. A FOL SEMANTICS FOR BPMN COLLABORATIONS 87

Send Notif. Send Notif.
o O o
nse m1 nee
v

Figure 4.22: Starting Behaviour of a Throw Message Intermediate Event. Before (left) and after (right)
application of the St rule.

A catching message intermediate event (CMIFE) is an instantaneous event with only a starting
transition. It is enabled if a message offer is on one of its incoming message flow edges and a token on
one of its incoming sequential flow edges. It starts by consuming the token from this incoming edge,
receiving the message from the incoming message flow according to choose the communication model,
and producing a token on all its outgoing edges. Formally:

Vn € N, St(n) E catn(N)=CMIE

A Jey € intype(n, SF), (me(e1) > 1) A (me’(e1) = me(er) — 1)

A Yeqy € outtype(n, SF), (me'(e2) = me(ez) + 1)

A Jein € intype(n, M F), (me(ein) > 1) A (me’(ein) = me(ein) — 1)
A receive(procOf(source(ein)), procOf(n), msg.(ein))
A A ({e1,ein} U outtype(n, SF))

Example. Figure 4.23 shows the starting behaviour of a catching message intermediate event (Receive
Notif.). It starts by consuming the token from el, receiving the message ml from the medium, and
producing a token on its outgoing edge, e2.

Receive Notif. Receive Notif.
a | (O 220
nse T nee
1 mi
o

Figure 4.23: Starting Behaviour of a Calching Message Intermediate Event. Before (left) and after
(right) application of the St rule.

Boundary Events A message boundary event (M BE) defines only the starting behaviour. An M BE
is ready to start if it has a message offer on one of its incoming message flows and if the activity on which
it is attached has a token. An M BFE may have either an interrupting behaviour or a non-interrupting
one. In the latter case, the M BE starts by receiving a message and generating a token on all its outgoing
edges. For an interrupting behaviour, the M BE also starts by cancelling the activity to which it is
attached, which is possible only if this activity is not a sub-process in a completing step. This is checked
using the mayComplete predicate that is formally defined below. Cancelling an activity involves dropping
all its tokens. After that, the M BE produces a token on each of its outgoing edges. Formally:

Auxiliary functions To formalise the semantics of a message boundary event, we define an auxiliary
function.

e mayComplete(n) : {nn € N,caty(nn) = SP} — Bool, returns true if the subprocess may com-
plete, i.e., if there are no tokens on its elements except for its end event nodes where there is at
least one that holds some tokens.

Vn € N, mayComplete(n) = caty(n) = SP A (mn(n) > 1)
A Ve € (R(n)NE), (me(e) =0)
A 3nn € R(n), (caty(nn) € EE) A (mn(nn) > 1)
AVYz € R(n), ((caty(z) € EE) V (mn(z) = 0))

2365

88 CHAPTER 4. BPMN AND COMMUNICATION

_def [caty(act) & SP A (mn'(act) =0
Stinterrupting(n, act, B’Ln) = (A A(({aitim} U (outty(pe(gz, SF))))
caty(act) = SP Amn(act) =1
A—mayComplete(act) A (mn'(act) = 0)
V| AVnn € R(act) NN, (mn'(nn) = 0)
A Yee € R(act) N E, (me’(ee) = 0)
A A ({act, ein} U R(act) U outtype(n, SF))

catn(n) ¢ MBE
A Jact € N,caty(act) ¢ A, (act = attachedTo(n)) A (mn(act) = 1)
A Fein € intype(n, M F), (me(ein) > 1)

A receive(procOf(source(ein)), procOf(n), msg:(ein))

A (me'(ein) = me(ein) — 1)

A Yeo € outtype(n, SF), (me'(eo) = me(eo) + 1)

A ((isInterrupt(n) A Stinterrupting (1, act, ein)) >

V (misInterrupt(n) A A({ein} U outtype(n, SF)))

U
®
~

Vn € N, St(n)

Example. Figure 4.24 presents a part of a process with a none start event nse, an abstract task taskl
with an outgoing sequence flow edge €2, an interrupting boundary event (interrupt) with an outgoing
sequence flow edge e4, and two abstract tasks task2, and task3. The interrupt boundary node starts by
consuming a token from the activity it is attached to, receiving a message ml from the network, and
producing a token on its outgoing edge e4.

or=

nse

o o

e3
task?2 o

task2

neei neel

task3 task3

nee2

3

O ———— - — =

|
|
|
|
|
|
|
m1 nee2
o

Figure 4.24: Starting Behaviour of an Interrupting Message Boundary Fvent (task case). Before (left)
and after (right) application of the St rule.

Figure 4.25 shows an interrupting boundary event interrupt attached to a sub-process SP. The interrupt
event interrupts the execution of SP when it receives a message ml. It cancels the execution of the
sub-process by removing all its token (the token on it and the token on node nsel), and generates a token
on its outgoing sequence flow edge, e4.

o e3 O o . e3 O
|

neel : neel

e5 O : e5 O
|

nee2 :m1 nee2
o

Figure 4.25: Starting Behaviour of an Interrupting Message Boundary Event (subprocess case). Before
(left) and after (right) application of the St rule.

4.4. A FOL SEMANTICS FOR BPMN COLLABORATIONS 89

Timer Event The Timer Events defines three types the timer start event (T'SE), the timer intermedi-
ate catch event (TICE), and the timer boundary event (T BE). As the semantics asynchronous, the TSFE
behaves precisely as a None Start Event (NSE), where the event will fire at some point. The TICFEis
indistinguishable from a gateway with one input and one output (it fires at some point). Formally:

Vn e N,Ct(n) 2 (caty(n) = TICE)

Jei € intype(n, ()SF), (me(ei) > 1) A (me'(ei) = me(ei) — 1)
A Jeo € outtype(n, SF), (me'(eo) = me(eo) + 1)
ANA ({ei,eo}) NE

2370 The TBE is non-deterministically activated, without fairness (it may never fire). Its semantics is
close to a M BE, without the constraint on the presence of a message. Formally:

Stinterrupting(n, act) = (caty(act) ¢ SP) A (mn/(act) = 0) A A({act} U outtype(n, SF)))

(catn(act) € SP) A ~mayComplete(act) A (mn’(act) = 0)
A ¥nn € R(act) NN, (mn/(nn) = 0)

A Vee € R(act) N E, (me'(ee) = 0)

A A ({act} U R(act) U outtype(n, SF))

-~

\

Vn € NTBE St(n) Y Suet N, (catn(act) € A), (act = attachedTo(n)) A (mn(act) = 1)
A Yeo € outtype(n, SF), (me'(eo) = me(eo) + 1)
A < (isInterrupt(n) A Stinterrupting (1, act)))
V (misInterrupt(n) A A(outtype(n, SF)))
AN E

Gateways Gateways are atomic and define only the completing behaviour.

A parallel gateway (AN D) is ready to complete if it has at least one token on all its incoming edges.
It completes by removing one token on each of these edges and producing one on all its outgoing edges.
Formally.

Vn € N,Ct(n) = (catn(n) = AND)

Vei € intype(n, SF), (me(ei) > 1) A (me'(ei) = me(ei) — 1)
A Yeo € outtype(n, SF), (me'(eo) = me(eo) + 1)
A A (intype(n, SF) U outtype(n, SF)) N2

2375 Example. Figure 4.26 shows that the parallel gateway AN D1 completes by consuming a token from its
incoming edge (el) and producing a token on all its outgoing edges (e2 and e3).

G G
task1 task1
e2 e4 e2 e4
o \ AND1 AND2 €6 o et AND1 AND2 €6
nse e3 |) eb5 nee nse e3 |] €5 nee
task2 task2
N —

Figure 4.26: Completing Behaviour of a Splitting Parallel Gateway. Before (left) and after (right)
application of the Ct rule.

In Figure 4.27, the parallel gateway AN D2 completes only if all its incoming sequence flows edges
(e4 and e5) are synchronised (i.e., own at least a token).

2380

2385

2390

90 CHAPTER 4. BPMN AND COMMUNICATION
ed ed
o AND2 e6 a AND2
e5 nee e5 nee

Figure 4.27: Completing Behaviour of a Merging Parallel Gateway. Before (left) and after (right)
application of the Ct rule.

An exclusive gateway (XOR) is ready to complete if it has at least one token on one of its incoming
edges. It completes by removing this token and producing one on one of its outgoing edges, depending
on conditions. Since we abstract away from data, the concerned edge is non-deterministically chosen.

Formally.

VYn € N,Ct(n) &

-~

(caty(n) = XOR)

A Jei € intype(n, SF), (me(ei) > 1)

A (me'(ei) = me(ei) — 1)

A Jeo € outtype(n, SF), (me’(eo) = me(eo) + 1)
A A ({ei,eo}) NE

Example. Figure 4.28 shows that the exclusive gateway (XOR1) completes by consuming a token from
its incoming edge (el) and producing a token on one of its outgoing edges (€2 in the example).

 CEEEE— CEEEE—
task1 task1
e2 L) e e2 L) e4
a XOR1 XOR2 e6 el XOR1 XOR?2 e6
nse e3 |) e5 nee nse e3 |] €5 nee
task2 task2
| S—

Figure 4.28: Completing Behaviour of an Ezxclusive Gateway. Before (left) and after (right) application
of the Ct rule.

As described in the standard [3], an event-based gateway (EB) is always followed by communication
elements, either receive tasks (RT) or intermediate catching message events (CMIFE) in combination
with intermediate catching timer event (TICE). The firing of an event-based gateway relies on the
enabling of one of these elements. Hence, an event-based gateway completes by consuming a token from
one of its incoming edges and producing a token on its outgoing edge on which the event is enabled.
Formally.

VYn € N, Ct(n) = (caty(n) = EB)

A Fei € intype(n, SF), (me(ei) > 1) A (me’(ei) = me(ei) — 1)
Jeo € outtype(n, SF), caty(target(eo)) € {RT,CMIE}

A (A Jdem € intype(target(eo), MF'), (me(em) > 1))
V (Jeo € outtype(n, SF), cat y(target(eo)) € {TICE?})

A (me’(eo) = me(eo) + 1)

AN ({ei,eo}) NE

Example. Figure 4.29 shows a process that contains an event-based gateway (EBG), and two receive
tasks (Rec.1 and Rec.2). The left-hand side of the figure shows that the event-based gateway is enabled
because it has a token on its incoming edge (el) and an incoming message for at least one of the two
receive tasks. This is true for both receive tasks here. Hence, EBG completes by consuming the token
from el and generating a token on one of its two outgoing edges (arbitrarily chosen, here e2).

2395

2400

2405

2410

4.4. A FOL SEMANTICS FOR BPMN COLLABORATIONS 91

The Inclusive Gateway is activated if:
+ At least one incoming Sequence Flow has at least one token and
« For every directed path formed by sequence flow that:
(i) starts with a Sequence Flow f of the diagram that has a token,
(i) ends with an incoming Sequence Flow of the inclusive gateway that has no
token,
(iii) does not visit the Inclusive Gateway.

« There is also a directed path formed by Sequence Flow that:

(iv) starts with f,

(v) ends with an incoming Sequence Flow of the inclusive gateway that has a
token,

(vi) does not visit the Inclusive Gateway.

Figure 4.30: Semantics of Inclusive Gateway According to the BPMN 2.0 Standard. (from source text

[3/)

Figure 4.29: Completing Behaviour of an Event-Based Gateway. Before (left) and after (right) appli-
cation of the Ct rule.

An inclusive gateway (OR) behaves differently from the other gateways. The activation of an OR
gateway ¢ is more complex [3, Chap. 13]. Figure 4.30 shows the standard semantics definition of the
OR gateway. It is clear that this gateway has non-local semantics, and its activation may depend on the
marking evolution considering the whole diagram. In more details, it can be activated only if:

e (1) it has at least one token on one of its incoming edges, and

e (2) for each marked node or edge x such that there is a path — that does not pass through g — from
2 to an unmarked incoming edge of g, there must also be a path — that does not pass through g —
from x to a marked incoming edge of g.

The OR gateway completes by adding a token either to the outgoing edges whose conditions are true,
otherwise to its default sequence flow edge. Since we abstract from data, we chose non-deterministically
to add a token either to a combination (1 or more) of the outgoing non-default edges or to the default
edge.

Auxiliary functions To formalise the semantics of an OR gateway, we define some auxiliary func-
tions.

e Prey : N x E — 2V returns the predecessor nodes of an edge such that nP* is in Prey(n,e)
if there is a path from nP™ to e that never visits n. Accordingly, Preg : N x E — 2F, returns
predecessor edges. These two sets can be structurally computed from the BPMN graph structure,
hence can be taken as constants (for a given BPMN model).

e InMinus: N — E, returns the unmarked incoming edges of a node:

InMinus(n) = {e € intype(n, SF) | me(e) = 0}

2415

2420

2425

2430

92 CHAPTER 4. BPMN AND COMMUNICATION

e InPlus: N — E, returns the marked incoming edges of a node:
InPlus(n) = {e € intype(n, SF) | me(e) > 1}

e ignorer : N — 2F returns the set of predecessor edges of the marked incoming edges of a given
node:

d
ignoreg(n) = U Preg(n,e)
e€InPlus(n)

<

e ignorey : N — 2V returns the set of predecessor nodes of the marked incoming edges of a given
node:
ignorey(n) = U Pren(n,e)
ec€InPlus(n)

Formally.

Vn € NOF Ct(n) = (InPlus(n) # 0)
A Ve € InPlus(n), (me’(e) = me(e) — 1)
A Vez € InMinus(n),Vee € (Preg(n,ez) \ ignoreg(n)), (me(ee) = 0)
A (Ynn € (Pren(n,ez) \ ignoren(n)), (mn(nn) = 0))
A0uts C outtype(n, {NSF,CSF}), (Outs # ()
A Ve € Outs, (me'(e) = me(e) + 1)
A A A (InPlus(n) U Outs) A E
Je € out?IF (n), (me’(e) = me(e) + 1))
AN (InPlus(n) U{e}) A2

Example. Figure 4.31 illustrates the case when an OR getaway cannot be activated, despite a marked
incoming edge (e3), there is a path from the marked edge €2 to an unmarked incoming edge of OR (e6
or €7) but no path from e2 to a marked incoming edge of OR. If the token on e2 had been on el, the
OR gateway could have been activated.

Figure 4.31: Non Activable Inclusive Gateway. It has to wait for the token on e2 which is in
Preg(OR,e6) and Preg(OR,e7).

4.4.0.3 Communication

The properties of communication between two participants (process nodes) for a given type of message
are abstracted with an initialisation function, initnet, and two transition predicates, send and receive.
initnet is used to give the initial state of mnet. send and receive specify when a communication action is
enabled and what effect it has on mnet. The value of mnet describes the state of the network in terms
of what messages are sent but not yet received as the network evolves through time. In essence, we are
modelling the pool of messages that have been sent but not yet received, possibly using a single universal
queue, or by using channel-by-channel queues, or some other structures that carry information to allow
and order send and receive events.

Several communication models are formally described in Section 4.3.3. For instance, with the Fifo
All asynchronous communication model, messages must be delivered in the order they were sent. In this
model, send(pi1,p2, m) is always enabled, and adds m to mnet ; receive(p1, p2, m) is true only if m is the
oldest message and thus the next one to be delivered, and the new state of mnet is its previous value
minus m.

2435

2440

2445

2450

2455

2460

2465

2470

2475

4.5. VERIFICATION PROPERTIES 93

Definition 4.4.3 (Communication Model). The communication model is characterised by a function
initnet : Ther and two predicates send/receive defined above in 4.1.

4.4.0.4 Transition Relation and Executions

We can now expr.

Definition 4.4.4 (Transition Relation). Let s and s’ be two states. We say that s’ is a successor of s,
iff the predicate Next(s,s’) holds:

Neat(s,s') Z \/ (St(n) v Ct(n))

neN

-~

We recall that states, here s and s’, correspond to tuples of the form (me, mn, mnet) and (me’, mn/,
mnet'), whose elements are used in the definitions of St and C'.
The execution of the whole process is defined through the notion of trace.

Definition 4.4.5 (Trace). A trace is a finite or infinite sequence of states such that o[0] is the initial
state, and Vi € 0... Len(o) — 1, Next(co[i], o[i + 1]) (if the trace is finite) or Vi € N, Next(oli], oi + 1])
(if the trace is infinite), where o[i] denotes the i*" state of the trace. The set of all the traces of the
collaboration is noted T'races.

Definition 4.4.6 (Execution). An execution is a maximal trace, i.e., a trace that goes as far as possible.
Formally, an execution o is either an infinite trace, or a finite trace such that —3s’, Next(c[Len(c)], s').
The set of all the executions of the collaboration is noted Exec.

4.4.0.5 Fair Executions

A BPMN model can include loops. In that case, an execution (defined as a maximal trace) can get stuck
in a loop, where only this loop progresses, and the rest of the model doesn’t progress at all. Moreover,
when modelling actual business activities, loops are expected to finish at some point. To prevent these
infinite loops, fairness is introduced to restrain the set of executions. We use two kinds of fairness: weak
fairness and strong fairness. Informally, weak fairness ensures that a transition cannot be permanently
enabled and never fired. Strong fairness ensures that a transition cannot be infinitely often enabled and
never fired.

Thus, fairness is a conjunction of two parts. The first part is the weak fairness on each start (St)
and complete (Ct) transitions of every node: Vn € Node : weakfair(step(n)). This property ensures that
any permanently enabled transition eventually occurs. This means that no process may progress forever
while others are never allowed to do so if they can. This also means that if a process contains several
loops that are simultaneously live, all loops will progress (not necessarily at the same speed, but no loop
can be permanently halted while another run forever).

The second part is the strong fairness on each output edge of XOR, OR, and EB gateways. Strong
fairness ensures that no choice is infinitely often ignored: if a XOR, OR, or EB gateway is included in a
loop, the fairness forbids the infinite executions that neveess the complete transition relation (successor
relation between states) with the previously defined predicates. If some output edges. Either the loop
finishes somehow, or all the choices are infinitely often taken. Consider Figure 4.32, left; as strong fairness
is imposed on the two output edges of gateway choice, the execution cannot always ignore the edge (e5)
leading to the ending node, and this model is sound. Consider Figure 4.32, right; as strong fairness is
imposed on the output edges of gateway choice, both taskl and task2 are infinitely often chosen.

4.5 Verification Properties

Verifying a model involves checking the correctness of its properties. In the context of process modelling,
properties are classified into two main classes: structural and behavioural. The structural properties relate
to the type of elements and how they are connected. Such properties could be checked using a standard
process modelling tool which can enforce that the model is correctly designed. The behavioural properties
relate to the sequences of execution as defined by the process model. We further classify the behavioural
properties into gemeral and specific ones. The specific properties are unique to business process models,
while the general properties are used in other types of models.

2480

2485

2490

2495

2500

2505

2510

94 CHAPTER 4. BPMN AND COMMUNICATION

N e1 e2 e3 e5 O N el e2 x>choice
e

nse choice nee nse 5

Figure 4.32: Use of Strong Fairness to Avoid Infinite Loops (left) and Starvation (right).

General properties deadlocks and livelocks are common examples of general properties. Figure 4.33
shows a simple BPMN model with an XOR and an AN D gateways. The XOR gateway produces a token
either on its outgoing edge e2 or e3 but not on both. As a consequence, the AN D gateway will never
be enabled (its incoming edges e4, e5 will never be synchronised). Hence, this model suffers a deadlock
situation. While in a deadlock, the involved activities can never be executed, and the process can never
be completed. In a livelock situation, a set of activities are executed indefinitely.

G
task1
e2 ed
o el XOR AND e6
nse e3 |) e5 nee
task2

Figure 4.33: BPMN Diagram with Deadlock.

Specific properties Soundness is the leading property that can be checked after a process model is
executed.

Wil van der Aalst developed soundness property for business processes in the context of workflow nets
[191]. A workflow net has a unique terminal place. The authors defined the soundness of the WF-net by
the satisfaction of the three following requirements: " (1) Option to complete: from any reachable state, it
is possible to reach a state with marks on the terminal place, (2) proper completion: if the terminal place
is marked, all other places are empty, (3) no dead transitions: it should be possible to execute an arbitrary
activity by following an appropriate route through the WF-net". In the case of Petri nets in workflow
verification, [177], and [81] prove that a workflow net is sound if and only if the corresponding short-
circuited Petri net is live and bounded. In addition, they define the safeness of a WF-net by ensuring
that each place cannot hold multiple tokens at the same time.

Dumas et.al [1, p.186, ch.5] define informally the soundness of the BPMN process model by the
satisfaction of the following three properties: "(1) Option to complete: any running process instance
must eventually complete, (2) Proper completion: at the moment of completion, each token of the process
instance must be in a different end event, (3) No dead activities: any activity can be executed in at least
one process instance".

In [23], authors address BPMN collaboration models. They introduce a formal definition of safeness
and soundness properties by focussing on the specificities of BPMN. "A process is safe if during its
execution no more than one token occurs along the same sequence edge". The authors extend the safeness
property for processes collaboration which require that "each of all the processes that involved in the
overall collaboration execution is safe". On the other hand, they define the soundness of the process as
follows: "A BPMN process is sound if it can complete its execution without leaving active elements and
all the model elements can be activated in at least one of the execution traces". In addition, they extend
the latter to define the soundness of the whole collaboration model.

Based on those definitions [1, 23|, we provide a set of properties that can be formally specified as
follows. We recall here that a state in our formalisation of BPMN is s = (mn,me, mnet). For an
execution o = s18s... and a node z, we note o[i].mn(z) the value of the marking of x at step ¢ in o, and

4.6. SUMMARY 95

domain(o) = {1, ...,|o}.

Definition 4.5.1 (Option to complete). Any running process must eventually be complete. A process
is complete in a state if markings occur only on end events.

U
[y

€

Completed(p,s) = ¥n € R(p) NN, (s.mn(n) =0)V (s.mn(n) =1An € N,caty(n) = EE)
A (Ve € R(p) N E, (s.me(e) = 0))
OptionToComplete = Vp € N, catn(p) = P,Vo € Exec,Vi € domain(o), ofi].mn(p) >0 =
3j € domain(o),j > i A Completed(p, o[j])

Definition 4.5.2 (Proper Completion). At the moment of completion, each token of the process instance
must be in a different end event.

ProperCompletion déf Vp € N, catn(p) = P,Vo € Exec,Vi € domain(o),
Completed(p, o[i]) = Vn € R(p),caty(n) = EE,o[i].mn(n) =1

Definition 4.5.3 (No dead activities). An activity is dead if no execution activates it.

de
NoDeadActivities < Va e N4,30 € Exec,Fi € domain(o), ofi].mn(a) # 0
Definition 4.5.4 (Undelivered messages). No messages are left in transit.

de
NoUndeliveredMessages “ Vo e Exec,Fi € domain(o),Vj € domain(sigma),

j>i = Vee€ MF,o[j].me(e) =0

Definition 4.5.5 (Safe process). A process is safe if and only if all its sequence flow edges never hold
more than one token during their execution.

For p € N, caty(p) = P, SafePr(p) v e Exec,Vi € domain(o),Ve € R(p) N E, (o[i].me(e) < 1)

Definition 4.5.6 (Safe Collaboration). A collaboration is safe all its processes are safe.

Safe = Vp € N, caty(p) = P,SafePr(p)

Definition 4.5.7 (Process soundness). A process is a sound in a state if only its end events hold at most
one token, and all the other nodes (ignoring start events) and all the edges are unmarked. Formally,
process p € N, caty(p) = P is sound in a state s if and only if the following predicate is true :

soundPr(p, s) Yvne R(p)N N, (s.mn(n) =0)V (s.mn(n) =1 Acaty(n) € {EE,SE}
AVe e R(p)NE,s.me(e) =0

Definition 4.5.8 (Message-relaxed sound collaboration). A collaboration is message-relaxed sound if
eventually all the processes are sound and it is stable:

msgSoundCol déf Vo € Exec,Fi € domain(o),Vj € domain(o),
j>1i = Vpe€ N,caty(p) = P, soundPr(p,o[j])

Definition 4.5.9 (Collaboration soundness). A collaboration is sound if and only if, for all executions,
eventually, all the processes involved in the collaboration are sound, and all the message flow edges are
unmarked.
soundCol 2 Vo ¢ Exec,Fi € domain(o),Vj € domain(c),j > i
= Vp € N, catn(p) = P, soundPr(p,o[j])
A Ye € E,catg(e) = MF, (o]j].me(e) = 0)

Regarding other definitions of soundness [1, 23, 191], we consider a form of soundness under fairness
assumptions, that could be called fair soundness.

2515

2520

2525

2530

96 CHAPTER 4. BPMN AND COMMUNICATION

4.6 Summary

This chapter proposes a direct formalisation in first-order logic for a subset of BPMN that includes sub-
process and communication elements. We integrate a communication channel with seven communication
models to parametrise the verification regarding these models. To better illustrate their impact on the
properties of a BPMN model, Figure 4.34 shows a simple Travel agency collaboration model, where
the communication is given by two participants, a customer and a travel agency. This collaboration
represents an unsafe travel agency process: (1) it can have an unbounded number of tokens on the right
of the parallel gateway; (2) observe that the partners disagree on the order of confirmation w.r.t. ticket
reception. Depending on the communication model, e.g., the FIFO model choice in this model may cause
a deadlock, whereas the Bag model choice removes this deadlock.

Baoking
Confirmed

Ticket Received

Pay Travel

Cuslomer

Offer
Management

Transaction

is the offer Completed

interesting?
| Offer | / Ticket | Confirmation

1
O / O
Make Travel Offer|
Booking Received Payment Offer Completed

Received

Offer Needed

Travel Agency

Figure 4.34: Travel Agency Case Study. (Slightly adapted from an example in [23])

Indeed, we have adopted the message relaxed property that highlights the non consumed message
issue that the interactions may bring. For example, Figure 4.35 shows a collaboration example between
two processes, a client and a worker. This model identifies a possible undesired behaviour where the client
and the worker processes may complete correctly without a deadlock. At the same time, a cancellation
message is still present on the communication channel. By conceding the message relaxed property, these
processes may be seen as sound processes. Identifying such cases may become increasingly difficult and
interesting when considering larger and more complex models.

(] (]

Send Send Results Send Invoices

Estimate

Worker

Confirm
Cancellation

— = = | Etimate \ Cancelation Results Invoices Confirmation

- —— 3 VM= === = _ - =

1
| |
I | Receive
| | Confirmation
| Cancel |
\V; Query \V/
E Send Query
o
Receive Estimate Receive Results Receive Invoices

Figure 4.35: Client/Worker Case Study.

Also, the proposed formalisation covers the hierarchical structure by supporting subprocess elements.

2535

2540

2545

2550

4.6. SUMMARY 97

These elements haven’t only syntactic influence, but their presence on the process models also impact their
correctness verification. To illustrate the latter, we consider Figure 4.36 and Figure 4.37. They present
an extension of the running example scenario presented in Figure 2.9. For the sake of presentation, only
the Journal Chair participant is reported. Figure 4.36 shows a process with prepare notification activities
embedded into a subprocess, where Figure 4.37 flattens these activities into the main process. Since the
property of soundness is the most commonly requested quality criteria for business processes. These two
processes lead to different results with reference to this property. Figure 4.37 results on an unsound
process, while the process of Figure 4.36 results on an unsound subprocess with a sound process since
only one token is produced on the outgoing of the subprocess after its execution.

Prepare Notification

Prepare
rejection letter

acceptance
letter

EE—

Journal PC Chair

o1 02
Sort results

borderline letter

—

Check Reviews
Quality

Figure 4.36: Journal chair Process (Sound).

Prepare
acceptance

Sort results

Journal PC Chair

e13

Check Reviews
Quality

Figure 4.37: Journal chair Process (UNSound).

A limitation of the proposed formal semantics and an avenue for future work arise because the formal
semantics does not consider the timer elements with an explicit time notion. As an example for this
limitation, TBE can never be fired in BPMN semantics (e.g., a date in the past): the non-deterministic
semantics allows it to fire. This gives us an over-approximation: the non-deterministic semantics contain
the same executions as BPMN semantics, plus additional ones. Thus, if the verification states that a
property is verified with the non-deterministic semantics, it is necessarily verified with BPMN semantics.
The reverse is not true. For instance, in the example of Figure 4.38, BPMN semantics states that the
task, task2, should never be activated as its time constraint is always in the past. The non-deterministic
semantics defines two executions: (i) the timeout will not fire, (ii) the timeout will fire, and the task2
will be activated.

For that, some challenging issues, like “How can temporal constraints be formalised?” and “What
happens if a temporal condition can no longer be satisfied ?”, are picked up in the following chapter.

98

CHAPTER 4. BPMN AND COMMUNICATION

OO~ s

2011-08-14

nS€ 112:00

Figure 4.38: Timer Boundary Event with an Impossible Timeout. As the timeout on taskl is later than
the date imposed by the timer intermediate catch event, this timeout should never fire and task2 should

never be activated.

CHAPTER

5)
I BPMN AND TIME

% You may delay, but time will not. 99
BENJAMIN FRANKLIN

2555

Chapter content

5.1 Introductiont 99
5.2 A Typed Graph Representation of BPMN Time-Related Constructs 100
5.3 A FOL Semantics for BPMN Time-Related Constructs 102
2560 5.3.1 Semanticso e e e e e e e 102
5.3.2 Transition Relation and Executions. 113
5.4 BPMN 2.0 and the Time Patterns: Can We Support All of Them? 114
5.4.1 Time Lags between Activities 115
5.4.2 Duration e e 116
2565 5.4.3 Time Lags between Arbitrary Events 117
5.4.4 Fixed Date Elements (Deadline) 118
5.4.5 Schedule Restricted Element 120
5.4.6 Time Based Restrictions oo 120
5.4.7 Validity Period 120
2570 5.4.8 Time Dependent Variability 120
54.9 Cycle Element 122
5.4.10 Periodicity 123
5.5 Summary . .. o. ot e 124

2575

5.1 Introduction

Both the specification and the operational support of temporal constraints constitute fundamental chal-
lenges for any BPMS. To support the design and implementation of time-aware processes, a variety of
2580 temporal concepts (e.g., deadlines, minimum and maximum time lags, durations, and schedules) need
to be supported by the BPMS. Therefore, respective concepts have to be supported by the used process
modelling language notation, i.e., BPMN. For that, BPMN defines a set of time-related events: Timer
Start Events (TSE), Timer Intermediate Catch Events (TICE), and Timer Boundary Events (I'BE),
Interrupting or not (see 2.4). All these three kinds of events depend on a time-related condition defined in
2585 their TimerEventDefinition [3]. This, in turn, relies on the ISO-8601 standard [16] definitions. However,
the resulting expressiveness of these BPMN timer related constructs hampers the definition of formal
semantics, including them, and the provision of formal analysis means for timed process models.
To tackle the discussed challenges, this chapter presents, in complement to Chapter 4 where time was
abstracted in a non-deterministic way, an explicit semantics for time notion in BPMN. In addition, we
2500 formally assess the suitability of BPMN to support the process Time Patterns were introduced in [15].

2595

2600

2605

2610

2615

2620

100 CHAPTER 5. BPMN AND TIME

BPMN Standard TBE TBE
TimerEventDefinition 1SO-8601 TSE | TICE Interrupt | non-Interrupt
timeDate date and time | yyyy-mm-ddThh:mm:ssZ

R/ yyyy-mm-ddThh:mm:ssZ / yyyy-mm-ddThh:mm:ssZ
R/ yyyy-mm-ddThh:mm:ssZ / PnYnMnDTnHnMnS

R/ PnYnMnDTnHnMnS/yyyy-mm-ddThh:mm:ssZ
R/PnYnMnDTnHnMnS

Rn/ yyyy-mm-ddThh:mm:ssZ/yyyy-mm-ddThh:mm:ssZ
Rn/ yyyy-mm-ddThh:mm:ssZ/PnYnMnDTnHnMnS
Rn/ PnYnMnDTnHnMnS /yyyy-mm-ddThh:mm:ssZ
Rn/ PnYnMnDTnHnMnS

timeDuration duration PnYnMnDTnHnMnS

o o

unbounded

timeCycle

bounded

||o|jo|lojo|o|o|o|o|oO

o|o|lo|jo|lOo|lO|O|O|O|O

o|o|lO0O|O|lO|O|O|O]|O

Table 5.1: Time-related Features in BPMN and their Relation to the ISO-8601 Standard. (o) supported
category in BPMN, (—) not supported .

This chapter is organised as follows. Section 5.2 introduces the support for the different BPMN timer
elements using a typed graph. Section 5.3 gives a formal semantics to BPMN timer events based on an
explicit time notion. To check whether our semantics is consistent, we study its support for the set of
process time patterns provided in the literature in Section 5.4. Then, a summary is given in Section 5.5.

5.2 A Typed Graph Representation of BPMN Time-Related Con-
structs

To integrate the notion of explicit time in our formalisation, we extend the BPMN graph structure given
in 4.2.1 to deal with some time constraints.

BPMN Time Elements. The BPMN standard associates three categories of time to the timer
nodes:

e timeDate specifies a fixed date and time;
e timeCycle specifies repeating intervals;
e timeDuration specifies the amount of time a timer should run before firing.

Table 5.1 gives a synthetic view of the time-related events in BPMN with reference to these three cat-
egories. To support the latter, we define the time categories formally, Ctime = {Tyqte, Taurations Leycie }
and the following time structures to characterize the time constraints, timeVal = DateUDurationUCycle:

e Date C N represents a date (and time) expressed in seconds with respect to a reference date
(1970-01-01 T 00:00:00Z). Date refers to the timeDate of the BPMN standard. A date like 2020-
12-03 T 13:52:33Z in ISO-8601 format is converted to 1,607,003, 553 seconds.

e Duration C N represents a time duration in seconds. This corresponds to the timeDuration of
the BPMN standard. For example, a P3DT15M duration in ISO-8601 format (three days and
fifteen minutes) is converted to 259,215 seconds. Note that we do not support years and months
in durations due to the ambiguity of their correspondence in seconds.

e Cycle = (NU{:}) x [Duration U (Date x Duration) U (Duration x Date)], represents a composite
timing type. It defines time recurrence along with time duration, fixed start date and time duration,
or a time duration and a fixed end date. The number of repetitions is either bounded or not (¢). For
example, a cycle with timeDate and Duration in ISO-8601 format R2,/2020-02-01 T 00:00:00Z/P15D
(Two recurrences between fifteen days starting from 2020-02-01 T 00:00:00Z date) is converted to
R2/1580511600,/1296000.

Taking into account these categories, we redefine the set of timer element types given in 4.2.1 as
follows.

e The set (T'SE) of timer start event types, groups the start event with time date category (T'SE;')

In TSE,, d stands for timeDate as in the ISO-8601 standard for time and date.

5.2. ATYPED GRAPH REPRESENTATION OF BPMN TIME-RELATED CONSTRUCTS101

and the start event with time cycle category (I'SE.?). Formally:

TSE = {TSE,, TSE.}

e The set (TICE) of timer catch event types, groups the timer catch event with time date category
(TICE,) and the timer catch event with time duration category (TICE,?). Formally:

TICE = {TICE,, TICE,}

e The set (T'BE) of timer boundary event types, groups the interrupting (TBE?) and the non-
interrupting (TBE®) boundary event sets TBE = TBE® UTBE®, with :

— The set (TBE®) of interrupting timer boundary event types, groups the timer boundary
event with time date category (TBEY) and the timer boundary event with time duration
category (TBEY). Formally:

TBE® = {TBE,TBE?}

— The set (TBE®) of non-interrupting timer boundary event type, groups non-interrupting
timer boundary event with time date category (TBEE?), the non-interrupting timer boundary
event with time duration category (TBEE?), and the non-interrupting timer boundary event
with time cycle category (TBE®). However, the time cycle category (TTBE®) may be defined
based on a bound or unbound number of recurrences with some specifications: start date and

end date, start date and duration (TBEE%SUM))7 duration and end date (TBES?SmM)), only
a duration (TBES?p)). Formally: TBE® = {TBE? TBE® TBEEB(p)}. Therefore,

c(start)’ c(start)’
the set of TBE® is defined formally as follows:

TBE® = {TBE],TBE;} UTBE?

BPMN Standard TBE TBE
TimerEventDefinition 1SO-8601 TSE | TICE Interrupt | non-Interrupt
timeDate date and time | yyyy-mm-ddThh:mm:ssZ
R/ yyyy-mm-ddThh:mm:ssZ / yyyy-mm-ddThh:mm:ssZ o o - o
mbounded R/ yyyy-mm-ddThh:mm:ssZ / PnYnMnDTnHnMnS o o - .
R/ PnYnMnDTnHnMnS /yyyy-mm-ddThh:mm:ssZ o o - °
timeCycle R/PnYnMnDTnHnMnS o o — .
! Rn/ yyyy-mm-ddThh:mm:ssZ /yyyy-mm-ddThh:mm:ssZ o o o
bounded Rn/ yyyy-mm-ddThh:mm:ssZ/PnYnMnDTnHnMnS o o - .
Rn/ PnYnMnDTnHnMnS /yyyy-mm-ddThh:mm:ssZ o o - .
Rn/ PnYnMnDTnHnMnS o ° — °
timeDuration duration PnYnMnDTnHnMnS . . .

Table 5.2: Time-Related Features in BPMN and their Relation to the ISO-8601 Standard. Supported
Category: BPMN and Us (e), BPMN Only (o), and Not Supported (—).

Table 5.2 presents the timer nodes types and their timerDefinition categories supported in our work.
2625 Therefore, the formal definition of the nodes type sets presented in Section 4.2.1 is redefined as follows:

e The set of starting event types, SE = {NSE,MSE} UTSE
e The set of intermediate event types, [E = {CMIE,TMIE} UTICE
e The set of boundary event types, BE = {MBE} UTBE

In this chapter, we consider the two sets of basic elements types, Tnodes and Trqges, taking into
2630 account the updated sets SE, IE, and BE.

Notation. We use Timer as a notation for the set of timer types, formally is defined follows:

Timer =TSEUTICEUTBE

2In TSE., ¢ stands for timeCycle as in the ISO-8601 standard for time repeating intervals.
3In TICE,, p stands for timeDuration as in the ISO-8601 standard for durations represented by P.

2635

2640

2645

2650

2655

2660

2665

2670

102 CHAPTER 5. BPMN AND TIME

Definition 5.2.1 (BPMN (Timed) Graph). (extended from Definition 4.2.1) A BPMN (timed) graph
corresponds to the BPMN graph from Chapter 4 extended with a timing function: G= (N, E, M, caty,
catg, src, tgt, R, msgy, attachedT o, isInterrupt, ftime) such that:

e ftime:{n € N | caty(n) € Timer} — Ctime x timeVal, associates a time category and a value
to the timer nodes.

Notation. To denote the projection of the function ftime on a component of its co-domain, we use the
notation |ctime (resp. ltimevar): for example, if ftime(n) = (T,V), where T' € Ctime and V € timeVal,
then ftime(n) lctime= T, and ftime(n) liimeva= V. Besides, when ftime(n) |crime= Teycte, then
ftime(n) ltimevai= (Tv dap)a with (Tv d,p) € Cycle. The projections |imevalg, timevaip, and ltimevaip
give each element, with ftime(n) ltimevaln= "7, ftime(n) ltimeval,= d and ftime(n) |timevaip= D-

We stress that the BPMN models understudy must respect the well-formedness rules mentioned in
Section 4.2.3.

5.3 A FOL Semantics for BPMN Time-Related Constructs

This section extends the formal semantics that we proposed in Section 4.4 to handle time constructs with
associated ISO-8601 time information. We rely on a (typed) graph representation of the workflow and
collaboration models where types correspond to kinds of BPMN elements as given above in Section 5.2.

To represent the global configuration of a BPMN model (workflow or collaboration) at any moment
of its execution, we rely on the state notion. We extend the state definition with a global clock, a set of
local clocks, and a recurrence function. Hence, the definitions for the state (Definition 4.4.1) and initial
state (Definition 6.4) change as follows.

Definition 5.3.1 (State). A state of a BPMN graph G= (N, E, M, caty, catg, src,tgt, R, msgy,
attachedT o, isInterrupt, ftime) is denoted by a tuple s = (m,, m., mnet, l., g., rec) such that:

e m, : N — Nand m, : F — N, are marking functions, that associate a number of tokens to nodes
and edges (respectively).

e mnet : Ty, is the state of the communication network.

o l.:{n e N|caty(n) € Timer} — N, is a local clock whose value represent the time spent on a
timer node.

e g. € N is a global clock representing the current time of the whole model.

e rec: {n € N |caty(n) € TBE?} — N U {¢} represents, for each activated non-interrupting timer
boundary event node with a finite cycle, the number of occurrences that remains to be executed.

The set of all states of a BPMN graph is denoted by States.

Definition 5.3.2 (Initial state). The initial state s, = (Mmy,, Me,, mneto, ley, gy, 7ec) of a BPMN graph
is extended as follows:

M, (1), Meo(€), and mnety are initialised as before (Definition 6.4)

The global clock is initialised to a specific date and time (w.r.t. a modelling referential*): g., € N;

Local clocks are initialised to zero: Vn € N, catn(n) € Timer, lq,(n)=0;

Redundancy variables are initialised with the recurrence number (if it exists) else 0:
Vn € N,catn(N) € TBE? reco(n) = ftime(n) ltimevaln

5.3.1 Semantics

Based on these changes, we define here the execution semantics of the timer event nodes based on
those mentioned above St and Ct predicates. In the semantics, let s = (mn,me, mnet,l., g.,rec) and
s’ = (mn',me’,mnet’,l, g.,rec’) denote two states. Additionally, we consider all the predicate introduced

4referential: an absolute date and time

2675

2680

2685

2690

5.3. A FOL SEMANTICS FOR BPMN TIME-RELATED CONSTRUCTS 103

in 4.4.0.2 (such as A(n), E, mayComplete(n)) and we introduce two others as follows:

e run is a predicate that increases the local clock of each active timer events node and the global
clock at once.

d
run() € vn € 8, (Ln) = Ln) + 1) A (g, = ge+1) (5.1)
e /\; is a predicate that denotes that clocks do not change except for the local ones for the nodes in
X:
A(X) E gl = ge AR € NT™Er\ X1 (n) = 1(n) (5.2)

The formal semantics of the BPMN time-related constructs is given in the following.

Timer Start Event (T'SE). As shown in Table 5.2, we support only the timer start event with
date configuration (T'SE;). The behaviour of this event is defined only by a completing predicate. It is
only enabled to complete if it has a token and the (global) clock has reached the given deadline date. It
completes by initiating the process to which it belongs and generating a token on its outgoing edges.

Ct(n) Y (catn(n) = TSEq) A (ftime(n) Limevaip= ge)

) Ltim
A (mn(n) = 1) A (mn'(n) = mn(n) —1)
A Yeo € outtype(n, SF), (me'(eo) = me(eo) + 1)
A Jp € N, caty(n) = P,n € R(p), (m () 0) A (mn'(p) = mn(p) +1)
A A ({n,p} Uouttype(n, SF)) A Ag(0) A

(5.3)

Example. Figure 5.1 presents a process p with a timer start event (start) defined a fixed timeDate
(2021 — 04 — 16 T 00 : 00 : 00 Z), an abstract task (task), and a none end event (end). The left part
of the figure shows that the start node is enabled to complete: it owns a token, the process depends on
is inactive (i.e., not owns a token), and the global clock time of the model has a timeDate reference to
(2021 —04 —16 T 00: 00 : 00 Z). The start node completes by consuming this token and producing one
on P and its outgoing sequence flow (el).

[2021-04-16 T 00:00:00 2 [2021 -04-16 T 00:00:00 Z

el e2 1 el e2
o @ Task N Task
Start End Start End

2021-04-16 T 2021-04-16 T
00:00:00 Z 00:00:00 Z

Figure 5.1: Completing Behaviour of a Timer Start Event (Date). Before (left) and after (right)
application of the Ct rule.

Timer Intermediate Catch Event (I'ICE). Acts as a delay mechanism configured either by a
duration (TICE,), a fixed date (TICEjy), or a cycle (not supported in this work, see Table 5.2). Such
an event waits for the specified date or duration before letting the control flow on which it is located
continue.

More precisely, the behaviour of the TICE; event is defined by a completing predicate. It is enabled
to complete if it has a token on one of its incoming edges. When the global clock reaches its fixed date,
it completes by consuming a token from one of its incoming edges and generating one on all its outgoing
edges. Formally:

U

Ct(n) Y (caty(n) = TICE.) A (ftime(n) Limevain= ge)

A e € intype(n, SF), (me(e) = 1) A (me'(e) = me(e) — 1) (5.4)
A (Ve' € outtype(n, SF), (me'(e') = (Y+ 1))
A A ({e} Uouttype(n, SF)) A A (@)

Example. Figure 5.2 shows the completing behaviour of a timer intermediate catching event (Wait)
with dateTime configuration to (2021 — 04 — 16 7 00 : 00 : 00 Z). The left part of the figure shows

2695

2700

2705

2710

2715

104 CHAPTER 5. BPMN AND TIME

that Wait is enabled to complete: it has a token on its incoming edge (e2), and the global clock of the
diagram meets the fixed date defined on it. The right part of the figure shows that Wait completes by
removing a token from its incoming edge (e2), producing a token on its outgoing sequence flow edge (e3).

2021-04-16 T
00:00:00 Z

el o248 e3 el 2 e3
-1 O >@—C O @0
Start Wait End Start End

Wait
2021-04-16 T
2021-04-16 T
00:00:00 Z 00:00:00 Z

2021-04-16 T
00:00:00 Z

Figure 5.2: Starting Behaviour of a Timer Intermediate Catch Event (Date). Before (left) and after
(right) application of the Ct rule.

The behaviour of a TICE, event is different due to the local clocks associated with it. A TICE,
is defined by a completing predicate. It is enabled to complete if one of its incoming edges has a token
and the time of its local clock has met its deadline. It completes by consuming a token from one of its
marked incoming edges, resetting its local clock, and generating a token on its outgoing edges. Formally:

Ct(n) Y (caty(n) = TICE,) A (ftime(n) Luimevai,= le(n)) A (I(n) = 0)
A Je € intype(n, SF), (me(e) = 1) A (me’(e) = me(e) — 1)
A Ye' € outtype(n, SF), (me'(e') = me(e’) + 1)
A A ({e} Uouttype(n, SF)) A Ai({n}) ANE

Example. Figure 5.3 shows the completing behaviour of a timer intermediate catching event (Wait)
with a duration configuration set to P10D (10 days). The left part of the figure shows that Wait is
enabled to complete: it has a token on its incoming edge (€2), and its clock meets the deadline of 10
days from its activation (864000). The right part of the figure shows that (Wait) completes by removing
one token from its incoming edge (e2), producing a token on its outgoing sequence flow edge (e3), and
resetting its local clock.

(5.5)

E021-04-25 T 23:00:00 Z

[2021 -04-25 T 23:00:00 Z

o .

Start

el €2,
‘

©—0

- wait End

P10

Ec(Wai():864000

Ec‘(Wai()=0.

Figure 5.3: Completing Behaviour of a Timer Intermediate Catch Event (Duration). Before (left) and
after (right) application of the Ct rule.

Timer Boundary Events (T'BE). Are events attached to an activity. Such event can be ei-
ther Interrupting (TBE?), i.e., it interrupts the running of the activity it is attached to, or Non-
Interrupting (TBE®). The start of activity with timer boundary events causes the activation of local
clocks for the boundary events attached to it if they exist. Both types of the T'BE event are defined by
a starting predicate.

The Interrupting Timer Boundary Event (T'BE?) acts as a deadline for an activity. If the activation
token remains on the activity for more than a specific duration or fixed date, the timer event interrupts
the activity to which it is attached. As we separate a TBE(;o which is specified with a date and a TBE;O
which is specified with a duration, we give their behaviour as follows.

An Interrupting Timer Boundary Events with Date (TBEd@) is ready to start if the global clock of
the model meets the fixed date and time defined on it and the activity attached to it is active (i.e., owns
a token). A TBE? starts by cancelling the activity to which it is attached to if this activity is not a
subProcess in its completing step (i.e., it has at least one token on one of its elements other than its end

5.3. A FOL SEMANTICS FOR BPMN TIME-RELATED CONSTRUCTS 105

events). An activity is cancelled by dropping all its tokens. The TBEd® then produces a token on each
of its outgoing edges.
de
St(n) = (catn(n) = TBES) A (ftime(n) ltimevaip= ge) /\ zs]nterrupt n)
A Jact € N, catn(act) € A, (act = attachedTo(n)) A (mn(act)

A (Yee € outtype(n, SF), (me'(ee) = me(ee) + 1))
A A ({act} Uouttype(n, SE)) A A(0) A

V

)>1
caty(act) ¢ SP A (mn/(act) = 0))

caty (act) € SP A ~mayComplete(act) /\ mn’(act)

A (Ynn € R(act) NN, (m

n'(n

"(ee

(
A (Vee € R(act) N E, (me
A (Yout € outtype(n, SF), (me’

n) = 0)
) =0)

(5.6)

(out)

= me(out) + 1))

2720

2725

2730

2735

A A ({act} U R(act) U outtype(n, SE)) A A(0) A

=)

Example. Figure 5.4 shows the starting behaviour of an interrupting timer boundary event (Interrupt)
with Date configuration to (2021 — 04 — 16 7° 00 : 00 : 00 Z). The left part of the figure shows that
Interrupt is enabled to start: the activity it is attached to is active (taskl), and the global clock of the
diagram meets the fixed date defined on it (2021 — 04 — 16 7" 00 : 00 : 00 Z). The right part of the
figure shows that Interrupt completes by dropping the token of the taskl and producing a token on its
outgoing sequence flow edge (e3).

2021-04-16 T 2021-04-16 T
00:00:00 Z 00:00:00 2

Interrupt
2021-04-16 T
00:00:00 Z

Interrupt .
2021-04-16 7 L
00:00:00 Z

Figure 5.4: Starting Behaviour of an Interrupting Timer Boundary Event (Date). Before (left) and
after (right) application of the St rule.

An Interrupting Timer Boundary Events with Duration (TBEZ?) is ready to start if its local clock
meets its deadline and the activity attached to it is active (i.e., owns a token). It starts by cancelling
the activity to which it is attached to if this activity is not a subProcess in its completing step (i.e., it
has at least one token on one of its elements other than its end events). Again an activity is cancelled
by dropping all its tokens. The TBEp® then resets its local clock and produces a token on each of its
outgoing edges.

St(n) = (caty(n) = TBEZ) A (ftime(n) liimevaip= le(n)) A (l’ =0)) AisInterrupt(n)
A Jact € N, caty(act) € A, (act = attachedTo(n)) A (mn(act) > 1
caty (act) ¢ SP A (mn/(act) = 0)
A(Vee € outtype(n, SF), (me'(ee) = me(ee) + 1))
A A ({act} Uouttype(n, SF)) A A¢({n}) ANE
catn(act) € SP A =mayComplete(act) A mn'(=
A (Vnn € R(act) N N, (mn'(nn) = 0)
v A (Yee € R(act) N E, (me'(ee) = 0)
A (Yout € outtype(n, SF'), (me'(out) = me(out) + 1))
A A ({act} U R(act) U outtype(n, SF)) A A¢({n}) A

(1]

)

Example. Figure 5.5 shows the starting behaviour of an interrupting timer boundary event (Interrupt)
with a duration configuration of P10D (10 days). The left part of the figure shows that Interrupt is
enabled to start: the activity it is attached to is active (taskl), and its local clock meets the deadline of 10
days from its activation (864000). The right part of the figure shows that (Interrupt) starts by dropping
the token of the (taskl), producing a token on its outgoing sequence flow edge (e3), and resetting its
local clock.

Like TBE® events, the Non-Interrupting Timer Boundary Events (TTBE®) can be configured with a

2740

2745

2750

2755

106 CHAPTER 5. BPMN AND TIME

[2021-04-25 T 00:00:00 Z E021»04-25 T 00:00:00 Z

Ec(ln(errup():BSAOﬂO Ec‘(lnterrup():o

Figure 5.5: Starting Behaviour of an Interrupting Timer Boundary Event (Duration). Before (left) and
after (right) application of the St rule.

date (I'BEY), a duration (TBE}), but also a time cycle (I'BEZ). We give their behaviour separately
as follows. Formally:

The Non-Interrupting Timer Boundary Events with Date (TBE;G) define the same behaviour as
T BE(;o without cancelling the activity that they are attached to it.

U

St(n)) (catn(n) = TBEY) A (ftime(n) ltimevain= ge) A misInterrupt(n)

A Jact € N, caty(act) € A, (act = attachedTo(n)) A (mn(act) > 1) (5.8)
A (Yout € outtype(n, SF'), (me'(out) = me(out) + 1))
A A ({act} U R(act) U outtype(n, SF)) A De(0) A2

Example. Figure 5.6 shows the starting behaviour of a non-interrupting timer boundary event (Non —
Interrupt) with dateTime configuration to (2021 — 04 — 16 700 : 00 : 00 Z). The left part of the figure
shows that Non — Interrupt is enabled to start: the activity it is attached to is active (taskl), and the
global clock of the diagram meets the fixed date defined on it (2021 —04—16 7 00 : 00 : 00 Z). The right
part of the figure shows that Non — Interrupt completes by producing a token on its outgoing sequence
flow edge (e3).

E021-D4-1 6 T00:00:00 Z E021»04-1 6 T 00:00:00 Z

el o2 el 02
task1 task1

o start ,/’(’j‘\ endt o start ey endi
W) W)
non-Interrupt S =7 o3 ed non-Interrupt S =2 03 e
2021-04-16 T 2021-04-16 7 L task2
00:00:00Z 00:00:00Z
end2 end2

Figure 5.6: Starting Behaviour of a Non-Interrupting Timer Boundary Event (Duration). Before (left)
and After (right) application of the St rule.

The Non-Interrupting Timer Boundary Events with Duration (I'BES) define the same behaviour as
T BEI?, without cancelling the activity that they are attached to it. Formally:

U
~

€

St(n) = (caty(n) = TBEY) A (misInterrupt(n))
A (Jact € N, caty(act) € A, (act = attachedTo(n)) A (mn(act) > 1)
A (ftime(n) Liimevaip=le(n)) A (I.(n) = 0) (5.9)
A (Yout € outtype(n, SF), (me'(out) = me(out) + 1))
A A ({act} U R(act) U outtype(n, SF)) A Ai({n}) A E)

Example. Figure 5.7 shows the starting behaviour of a non-interrupting timer boundary event (Non —
Interrupt) with duration configuration to P10D (10 days). The left part of the figure shows that
non — Interrupt is enabled to start: the activity that is attached to it is active (taskl), and its local
clock meets the deadline of 10 days from its activation (864000). The right part of the figure shows that
(Non — Interrupt) starts by producing a token on its outgoing sequence flow edge (e3) and resetting its
local clock.

The Non-Interrupting Timer Boundary Events with cycle configuration (TTBE®) might be triggered
multiple times while the activity it is attached to is active. The number of cycles can either be fixed

2760

2765

2770

2775

5.3. A FOL SEMANTICS FOR BPMN TIME-RELATED CONSTRUCTS 107

E021-04-25 T 00:00:00 Z E021—04725 T 00:00:00 Z

et 2
task1
o start ,@ end1 N
W,
Non-Interrupt 77 ¢3 ed
P10D task2 .
end2

Ec(Non—lnlerrupl):&EAOOO Ec(Nor\-ln(errup():O

Figure 5.7: Starting Behaviour of a Non-Interrupting Timer Boundary Fvent (Duration). Before (left)
and after (right) application of the St rule.

or unbounded. Therefore, the time cycle definition associated with a timer event may have different
configurations:

(i) A Non-Interrupting Timer Boundary Event defines a number of recurrences for the timer event
separated by a period and where the first trigger is relatively done to a fixed start date (TBET

c(sta'rt)>'
The behaviour of TBE®

c(start)
The TBES?S tart) is ready to start if the activity attached to it is active, the global clock of the model
meets the fixed date and time defined on it, and its local clock is inactive. It starts by activating its local
clock, generating a token on its outgoing edges, and decreasing the recurrence number by one if bounded

to a number n. Formally:

is defined by starting and completing predicates as follows.

&
[y

€

St(n) = (caty(n) = TBES?SmM)) A (misInterrupt(n)) A (rec(n) = ftime(n) ltimevaig)

A (Jact € N, caty(act) € A, (act = attachedTo(n)) A (mn(act) > 1)
((rec(n) = 1) A (rec’ (n) = rec(n)))
A (V((rec(n) € N) A (rec’(n) = rec(n) — 1)) (5.10)
A (ftzme(n) LtimeValD: gc) A (lc(n) = 0) A (lé(n) =]‘)
A (Vee € outtype(n, SF), (me'(ee) = me(ee) + 1))
A A (outtype(n, SF)) A Ai({n}) A E)

Example. Figure 5.8 shows the starting behaviour of a bounded Non-interrupting timer boundary event
(non — InterruptC) with a two cycles configuration that starts at 2021 — 04 — 16T00 : 00 : 00 and re-
executes for each period of 10 days (P10D). The left part of the figure shows that Non — InterruptC' is
enabled to start: the activity that it is attached to it is active (taskl), the global clock meets the starting
date, its local clock is inactive, and the recurrence number is as defined equal to 2. The right part of the
figure shows that non — Interrupt starts by producing a token on its outgoing sequence flow edge (e3),
activating its local clock, and decrementing the recurrence number by one.

[2021-04-16T00:00:OOZ E021»U4-15T00:00:DOZ

o start ,/(j\\ end1 o start /(’j\\ end1
W) W,
non-interruptC 77 63 ” non-interruptC S 7 gmog ”
R2/2021-04-16 T . R2/2021-04-16 T LI .
00:00:00 ZP10D - 00:00:00 ZP10D .
end2 end2

Ie(non-InterruptC)=0 Ic'(non-InterruptC)=1
rec(non-InterruptC)=2 rec(non-InterruptC)=1

Figure 5.8: Starting Behaviour of a Non-Interrupting Timer Boundary Fvent (Cycle) with a Fized Start
TimeDate and Duration. Before (left) and after (right) the first application of the St rule.

A TBES?S tart) event is ready to complete if the activity that is attached to it is active, the local clock
of the node reaches its duration, and the number of recurrences has not reached 0 if it is bounded. It
completes by re-activating its local clock, generating a token on its outgoing edges, and decreasing the
recurrence number by one if bounded to a number n.

2780

2785

2790

2795

108 CHAPTER 5. BPMN AND TIME

de

Ct(n) = (catn(n) = TBES?SmM)) A (misInterrupt(n))

A (Jact € N,act € A, (act = attachedTo(n)) A (mn(act) > 1)

A (Ftime(n) Limeva,=e(m) A ([(n) = 1)

A (((rec(n) = 1) A (rec’(n) = rec(n))) > (5.11)
V((rec(n) € N) A (rec(n) # 0) A (red (n) = rec(n) — 1))

A (Vee € outtype(n, SF), (me'(ee) = me(ee) + 1))

A A (outtype(n, SE)) A Ai({n}) A 2)

Example. Figure 5.9 shows the completing behaviour of a bounded non-interrupting timer boundary
event (non — InterruptC) with a two cycles configuration that starts at 2021 —04 —16 T 00 : 00 : 00 and
re-executes for each period of 10 days (P10D). The left part of the figure shows that non — InterruptC
is enabled to complete: the activity it is attached to is active (taskl), its local clock meets the deadline
of 10 days from its activation (864000), and the recurrence number is greater than 0. The right part of
the figure shows that (non — InterruptC') completes by producing a token on its outgoing sequence flow
edge (e3) and re-activating its local clock.

E021-04-26 T 00:00:00 Z EOZ1-O4-25 T 00:00:00 Z

el e2
task1

a start ey end1 a star A\
W) A\
non-interruptC S F7 g3 o4 non-interruptC S =4
R2/2021-04-16 T task2 . R2/2021-04-16 T -1
00:00:00 ZP10D - 00:00:00 ZP10D -
end2

Ic(non-InterruptC)=864000 Ie!(non-InterruptC)=1
rec(non-InterruptC)=1 rec'(non-InterruptC)=0

Figure 5.9: Competing Behaviour of a non-Interrupting Timer Boundary Event (Cycle) with a Fized
Start TimeDate and Duration. Before (left) and after (right) application of the Ct rule.

(ii) A Non-Interrupting Timer Boundary Event defines a number of recurrences for the timer event
triggers separated by a period and where the last trigger is done before the fixed end date (TBES?M d)).

The behaviour of TBES?EM)
attached to it is active, the node’s local clock reaches its duration, the global clock does not meet the
fixed date and time yet, and the number of recurrences is not equal to 0 if it is bounded. It starts
by re-activating its local clock, generating a token on its outgoing edges, and decreasing the recurrence

number by one if bounded to a number n. Formally:

is defined only by a starting predicate. It is ready to start if the activity

U
<

€

St(n) = (caty(n) = TBES%CM)) A (misInterrupt(n)) A (ftime(n) ltimevalp, 7 e)
A (Jact € N, caty(act) € A, (act = attachedTo(n)) A (mn(act) > 1)
A(ftime(n) ltimevalp= le(n)) A (l/c(n) =1)
A (((rec(n) = 1) A (red (n) = rec(n)))) (5.12)
V((rec(n) € N) A (rec(n) # 0) A (rec’(n) = rec(n) — 1))
A (Vee € outtype(n, SF), (me'(ee) = me(ee) + 1))
A A (outtype(n, SF)) A Ae({n}) A E)

Example. Figure 5.10 shows the starting behaviour of a bounded non-interrupting timer boundary event
(non — InterruptC') with a two cycles configuration that may re-execute twice for each period of 10 days
(P10D) before date 2021 —04—30 T 00 : 00 : 00. The left part of the figure shows that non — InterruptC
is enabled to start: the activity it is attached to is active (task1), its local clock meets the deadline of 10
days from its activation (864000), the global clock has not reached yet (2021 — 04 — 30 T 00 : 00 : 00),
and the recurrence number is greater than 0. The right part of the figure shows that (non — InterruptC)
starts by producing a token on its outgoing sequence flow edge (e3) and re-activating its local clock.
(iii) A Non-Interrupting Timer Boundary Event defines a number of recurrences for the timer event
triggers separated by a period (TBES?Z))). Only a starting predicate defines the behaviour of TBES?p).
It is ready to start if the activity attached to it is active, the node’s local clock reaches its duration, and
the number of recurrences is not equal to 0 if it is bounded. It starts by re-activating its local clock,

2800

2805

2810

2815

5.3. A FOL SEMANTICS FOR BPMN TIME-RELATED CONSTRUCTS

[2021»04-16 T00:00:00Z

[2021-04-15 T00:00:002

o start

el e2
task1

/@ end1
W)
non-nterruptC S27 o3 o
R2/P10D/2021- -1 .
04-30 T 00:00:00 -

z end2

start

el e2
task1

ey end1
W)
non-interuplC o3 "
R2/P10D/2021- 1
04-30 T 00:00:00 .
z f end2

109

[c(non-lnterruptCFSGAOOO
:

Ic'(non-InterruptC)=1
ec(non-InterruptC)=2

rec'(non-InterruptC)=1

Figure 5.10: Staring behaviour of a Non-Interrupting Timer Boundary Event (Cycle) with a Duration
and a Fized Last TimeDate. Before (left) and after (right) application of the St rule.

generating a token on its outgoing edges, and decreasing the recurrence number by one if bounded to a
number n. Formally:

U
~

€

St(n) = (caty(n) = TBEE?p))

A (Jact € N, (catn(n) = A) A (act = attachedTo(n)) A (mn(act) > 1) A (—isInterrupt(n))

A (ftime(n) ltimevaip= le(n)) A (rec’ (n) = rec(n) — 1) =1)

A (Vee € outtype(n, SF), (me'(ee) = me(ee) + 1))

A A (outtype(n, SF)) A Ay({n}) AE)

(5.13)

Example. Figure 5.11 shows the starting behaviour of a bounded non-interrupting timer boundary event
(non — InterruptC') with a two cycles configuration that may re-execute twice for each period of 10 days
(P10D). The left part of the figure shows that non — InterruptC' is enabled to start: the activity it is
attached to is active (taskl), its local clock meets the deadline of 10 days from its activation (864000),
and the recurrence number is greater than 0. The right part of the figure shows that (non — InterruptC')
starts by producing a token on its outgoing sequence flow edge (e3), re-activating its local clock.

E021—04—26 T 00:00:00 Z E021—04726 T 00:00:00 Z

el e2 el e2
task1 task1

o start ,@ endt o start ey endi
W) W
non-interruptC S =7 o3 o4 non-interruptC S —gme3 o4
R2/P10D B task2 . R2/P10D A .
end2 end2

Ie(non-InterruptC)=864000 Ie!(non-InterruptC)=1
rec(non-InterruptC)=2 rec'(non-InterruptC)=1

Figure 5.11: Staring Behaviour of a Non-Interrupting Timer Boundary Event (Cycle) with a Duration.
Before (left) and after (right) application of the St rule.

The provided semantics for the timer events also requires an extended semantics behaviour for some
other non-temporal elements as follows:

Event-Based Gateway. With the introduction of the timed semantics, the semantics of the event-
based gateways must be changed. In the standard, the execution semantics of an event-based gateway
is defined as a branching point where exactly one of its outgoing edges is activated, depending on which
event is triggered. Then, the path to that event will be used (a token will be sent down the outgoing
sequence flows of the event) [3].

In a BPMN model, an event-based gateway is followed by a receive task (RT) or an intermediate
catching message event (CMIFE), combined with a timer intermediate catch event (T'ICE). The acti-
vation of one of the outgoing edges depends on the enabling of these elements (i.e., the reception of a
message, or a specific time event being triggered). So, to handle time, we adapt the semantics of an
event-based gateway as follows.

2820

2825

110 CHAPTER 5. BPMN AND TIME

An Event-based gateway (EB) is defined only by a completing predicate. It is ready to complete
if one of its incoming edges has a token, and one of its target events is enabled (i.e., the target of an
outgoing edge is an RT or a CMIE that has an offer on one of its incoming message edges, or the target
of an outgoing edge is an intermediate timer event with a local clock that meets a deadline or when the
global clock reaches the event timeDate). The EB completes by consuming the token from one of its
incoming edges and producing a token on the outgoing edge on which the event is enabled. Formally:

def

Ct(n) = (caty(n) = EB)
A 3 e € intype(n, SF), (me(e) > 1) A (me’(e) = me(e) — 1)
A 3e’ € outtype(n, SF), (me'(e') = me(e’) + 1)
(caty(tgt(e")) e {RT,CMIE} A Imf € intype(tgt(e’), MF), (me(mf) > 1))
AV (catn(tgt(e)) = TICE, A (l.(tgt(e)) > ftimelimevaip (tgt(e’))))
V (catn(tgt(e')) = TICE4 A (ge > ftime ltimevai, (tgt(e))))
AN ({e, e) ANDN(D)AE
(5.14)
Example. Figure 5.12 shows a collaboration diagram between two active processes (P, Q). The event-
based gateway (FB) in the process P is followed by two message catch events (FirstMsg, SecondM sg)
and a timer catch event (Wait) with a 10 days (P10D) duration configuration. The left part of the figure
shows that EB is enabled to complete: its incoming edge (e2) has a token, and the target timer event of
its outgoing edge (e7) is enabled to start (its local clock meets the deadline of 10 days from its activation
(864000)). The right part of the figure shows that the gateway completes by consuming the token from
its incoming edge (e2) and producing a token on its outgoing sequence flow edge (e7).

|:2021-04-16 T 00:00:00 Z Im 1 m2 [2021-04-16 T 00:00:00 Z Im 1 m2

' L
.
) ' . o '
s L Secondisg s L, Secondiieg
@6+ @+
FirstMsg FirstMsg

- wait 7 wait
P10D 7 P10D

E:(Wail):864000 Ec(Wai()=864000

Figure 5.12: Completing Behaviour of an Event-Based Gateway: the Timer is Ready to Fire. Before
(left) and after (right) application of the Ct rule.

Activity. As we saw before, the main working units in a process are the activities. We made the
distinction between a composite activity, or SubProcess (SP), and an atomic activity, or Task (T). The
latter can be an Abstract (AT), a Send (ST), or a Receive (RT) task. All activities have the same
basic behaviour. They start by moving a token from an incoming edge to themselves. When the activity
is associated with a timer boundary event that requires a local clock (TBE;?,TBES?Z)), TBES?W) Or
T BE;O), there are some additional constraints w.r.t the ones described in 4.4.0.2. When an activity starts,
it starts all inactive local clocks of its attached boundary events if they exist, and when it completes,
it deactivates them. We give the starting and completing formula for all supported task types and the
subprocess in the following. To simplify the formula, we define a specific set of timer nodes, called
TimerP, that groups all-timer nodes configured with a duration as:

de
TimerP < {t € N |catn(t) € {TBESB,TBES?p),TBES?md),TBEZ?}}

5.3. A FOL SEMANTICS FOR BPMN TIME-RELATED CONSTRUCTS 111

e Abstract Task

St(n) Y (catn(n) = AT) A (3e € intype(n, SF), (me(e) > 1) A (me'(¢) = me(e) — 1)
A (mn(n) = 0) A (mn’(n) = mn(n) + 1)
A (Vte € N, (caty(te) € TimerP) A (n = attachedTo(te)) A (I.(te) = 0) = (IL(te) = 1))
A At ({te € N,caty(te) € TimerP | (n = attachedTo(te))}) A A({n,e})) ANE
(5.15)
de
Ct(n) =) (catn(n) = AT) A (mn(n) > 1) A (mn/(n) = mn(n) — 1)
A (Ve € outtype(n, SF'), (me'(e) = me(e) + 1))
A (Vte € NTimerP (n = attachedTo(te)) = (I%.(n) = 0)) (5.16)
A At ({te € N, catN(te) € TimerP | (n = attachedTo(te))})
A A ({n} Uouttype(n, SF)) A2
e Send Task
St(n) = (caty(n) = ST) A (Je € intype(n,Tsp), (me(e) > 1) A (me'(e) =me(e) — 1)
A (mn(n) = 0) A (mn’(n) = mn(n) + 1)
A (Yte € N, (caty(te) € TimerP) A (n = attachedTo(te)) A (l.(te) = 0) = (I.(te) = 1))
AN A ({te € N, caty(te) € TimerP | (n = attachedTo(te))}) A ({n,e}) ANE)
(5.17)

U

Ct(n) =4 (caty(n) = ST) A (mn(n) = 1) A (mn/(n) = mn(n) — 1)

A Ve € outtype(n, SF), (me’(e) = me(e) + 1)

A (Vte € NTimerP (n = attachedTo(te)) = (I'.(n) = 0))

A (Jee € outtype(n, MF), (me’(ee) = me(ee) + 1) (5.18)
A send(procOf(n), procOf(target(ee)), msg:(ee))
A A ({n,ee} Uouttype(n, SF)))

A At ({te € N, caty(te) € TimerP | (n = attachedTo(te))})

2830 e Receive Task

I
<

€

St(n) = (caty(n) = RT) A (e € intype(n, SF), (me(e) > 1) A (me'(e) = me(e) — 1)
A (mn(n) = 0) A (mn/(n) = mn(n) + 1)
A (Vte € N, (caty(te) € TimerP) A (n = attachedTo(te)) A (I.(te) = 0)
= (IL(te) = 1)
A Ay ({te € N, caty(te) € TimerP | (n = attachedTo(te))}) A ({n,e})

Ct(n) Y (caty(n) = RT) A (mn(n) = 1) A (mn/(n) = mn(n) — 1)

A Ve € outtype(n, SF'), (me'(e) = me(e) + 1)
A (Vte € NTimerP (n — attachedTo(te)) = (ll(n) =0))
A (Jee € intype(n, M F), (me(ee) > 1) A (me’(ee) = me(ee) — 1) (5.20)

A receive(procOf(source(ee)), procOf(n ,msgt(ee))
A A ({n,ee} Uouttype(n, SF)))
A Ay ({te € N, caty(te) € TimerP | (n = attachedT o(te))})

e SubProcess

I
-~

St(n) € (caty(n) = SP)
A (Fe € intype(n, SF), (me(e) > 1) A (me'(e) = me(e) — 1) A (mn/(n) = mn(n) + 1)
A (Vnse € R(n), (caty(nse) € NSE) A (mn/(nge) = mn(ngse) + 1))
A (Vte € N, (catn (te) € TimerP) A (n = attachedT o(te)) = (IL(n) = 1))
AN A ({e,n} U({nse € R(n), catn(nse) € NSE})))
N A ({te € N, catn(te) € TimerP | (n = attachedTo(te))}) A2
(5.21)

2835

2840

2845

112 CHAPTER 5. BPMN AND TIME

de
ct(n) < (CatN() =S5) (mn(n) = 1) A (mn'(n) = mn(n) — 1)
A (Ve € R(n) N E, (me(e) = 0))
A (Inee € R(n), (catN() = EE) A (mn(nee) > 1))
A (Ynn € R(n) NN, (mn(nn) > 1 = caty(nn) € EE))
A (Vnn € R(n),caty(nn) € EE) A (mn/(nn) = 0)) (5.22)
A (Ve € outtype(n, SF), (me'(e) = me(e) + 1))
A (Vte € N, caty(te) € TimerP, (n = attachedTo(te)) = (I.(te) = 0))

AN A {n}U{nn € R(n),catn(n) € EE} U outtype(n, SF))
N D¢ ({te € N, catn(te) € TimerP | (n = attachedTo(te))}) A

Example. Figure 5.13 shows the starting behaviour of a task (taskl) and a subProcess (SP) with
attached interrupting timer boundary events with a duration configuration of 10 days (P10D), called
(timeOuty) and (timeOuts) respectively. The left part of the figure shows that taskl and SP are
enabled to start: they are inactive, and there is a token on their incoming edges. The taskl node starts
by consuming a token from its incoming edge, generating one on itself, and activating the local clock of
its attached timer node timeQOut,. The SP node starts by consuming a token from its incoming edge,
generating one on itself and its start event startgp, and activating the local clock of its attached timer
node timeOuts. Figure 5.14 shows the completing behaviour of task task1l and subProcess SP. The left
part of the figure shows that taskl and SP are enabled to complete: the taskl is active, SP is active,
and its token has reached its end event. They are not interrupted yet. They complete by consuming their
tokens, deactivating their attached local clocks the timeOut; and the timeQOuts, and generating a token
on their outgoing edges e2, e8 respectively.

Ec(umeOuU)0

[2021704715700 00:00Z Eomruarweran 00:012

) /
) o st 2
1

end_sP

timeOut 2 \
P10D "

Ec(nmeOul;ZFﬂ Ecu.meom,'zm

timeOut 2 \
P10D "

Figure 5.13: Staring Behaviour of an Activity with Interrupting Boundary Timer Event Configured with
Duration: Before (left) taskl and SP are ready to start and after (right) application of the StActivity
rule twice (once for taskl, once for SP.

Ec(llmeOuLi)=691200

[zozqu T00:00:00Z |:2021-04-24 T00:00:00 2

Ec‘mmeoutj)0

o o

end_sP

timeOut 2 \
Pl0D ¢

Ecmmeom,zwsewzuo ’ Ec‘(\vmeOuLZ):u

Figure 5.14: Completing Behaviour of an Activity with Interrupting Boundary Timer Event Configured
with Duration: Before (left) taskl and SP are ready to complete and after (right) application of the Ct
rule (twice again).

Note that the semantics of the elements that are not mentioned here (NSE, MSE, XOR, AND,
OR, NEE, TEFE) have the same behaviour defined before in Chapter 4.

2850

2855

2860

2865

5.3. A FOL SEMANTICS FOR BPMN TIME-RELATED CONSTRUCTS 113

5.3.2 Transition Relation and Executions

We can now express the complete transition relation (successor relation between states) with the previ-
ously defined predicates. For simplifying the transition definition, let us consider a subset of timer nodes,
called T, that groups all the timer nodes in a given graph model. Formally we define T' as follows:

d
7% {t € N | catn(t) € Timer}

Let us consider a subset of timer nodes, called S, that groups the nodes that satisfy any of the following
conditions:

e a starting timer node that has a token and such as the global time date of the system has not
reached the fixed time date;

e an intermediate timer node that has an inactive local clock and has a marked incoming edge, or
that follows an event-based gateway with a marked incoming edge;

e a boundary timer node attached to an active activity with a local clock that is not active;

e an active timer node, whose local clock is greater than 0 and has not reached the timing limits.

Formally, we define S as follows:

2 {n € N,caty(n) =TSE | (ftime(n) ltimevar< gec) A (mn(n) =1)}
U {n € N,caty(n) =TICE | Je € intype(n, SF), (l.(n) = 0) A (e(e) > 0)}
U {n € N,catn(n) = TICE | Je € intype(src(intype(n, SF)),SF), (l.(n) = 0) A (me(e) > 0)}
U {n € N,catn(n) =TBE | (I.(n) = 0) A (mn(attachedTo(n)) > 0)}
U {n e T| ftime(n) ltimevar> lc(n) > 0}

Let Y be the subset of timer nodes in the BPMN graph that are ready to fire:

def) .
{y SA | l () > ftlme(n) LtimeVal (y) Vge = ftzme(n) LtimeVal (y)}
To facilitate the reading of the transition relation, we define the following predicates:

e step defines a step of execution for a given node:

step(n) = St(n) Vv Ct(n)

e fztime denotes time equality for the local clock of all timer nodes given as parameter:
i def ,
fztime(Z) = Vz € Z,1.(2z) = l.(2)

The transition relation will be defined according to the following rules.
e If there are timer nodes that are in an active state and are enabled to be complete, they have a
priority:
— They will run one by one. Each node runs according to its execution rule;
— During their execution, neither the global clock nor their local clocks can be incremented.
If no timer node is ready to complete, and there is a non-timer node that may start or complete,
then:
— Any enabled node may be executed to start or complete;
— The time of all inactive timer nodes is frozen;
— The local time of all active timer nodes advances;
— The global clock of the model advances.

e If no node may be executed and there is a timer node still active and not ready to complete, time
advances only.

2870

2875

2880

2885

2890

2895

2900

2905

2910

2915

114 CHAPTER 5. BPMN AND TIME

Thus, the transition relation distinguishes two cases.

If at least a timer is ready to fire (Y # (), then a timer fires (it does a step), or an event-based
gateway that precedes a firable timer does a step. Time does not advance, and other timers with the
same expiration time can then fire, e.g., the two steps for taskl and SP in Figure 5.13. If no timer is
ready to fire, all timers increase (run) and non-deterministically a step can occur (In, step(n)) or no step
is done (A(@) A E). Thus, the transition relation distinguishes two cases. If at least a timer is ready to
fire (Y #), then a timer fires (it does a step) or an event-based gateway that precedes a firable timer
does a step. Time does not advance, and other timers with the same expiration time can then fire. If no
timer is ready to fire, all timers increase (run) and non-deterministically, a step can occur (3n, step(n))
or no step is done (A(Q) A Z).

Definition 5.3.3 (Transition Relation). The transition relation is a successor relation between states.
It specifies that either a node makes a step (start or complete) or time advances, but only if no timer
node is ready to complete. Let s and s’ be two states. We say that s’ is a successor of s, iff the predicate
Next(s,s") (See equation. 5.23) holds.

(In €Y : step(n) A fztime(T \ {n}))

def (Y #0A < In € N, catny(n) = EB,Jeo € outtype(n, SF),)
)A

Next(s, s) (5.23)
(tgt(eo) € Y) A step(n) A fztime(T) ’
V (Y =0 Arun() A fztime(T \ S) A ((3n € N : step(n)) V (A(D) AE))

States, here s and s, correspond to tuples of the form s = (mn, me, mnet, l., g., rec) and s’ = (mn’, me’,
mnet’ 1., g., rec’), whose elements are used in the definitions of St and Ct.

1 ver

Definition 5.3.4 (Execution). An execution is an infinite sequence of states such that ¢[0] is the initial
state, and Vi € N, Next(cli],o[i+1]), where o[i] denotes the i** state of the trace. Moreover, an execution
is non-Zenon with regard to time and steps: there cannot be an infinite number of steps without time
advancing, and there cannot be an infinite advancement of time without steps.

Formally, the non-Zenon hypothesis corresponds to weak-fairness on the left-hand part of the Next
disjunction and weak-fairness on its right-hand part. This ensures that if one node is enabled, it will
eventually be done.

5.4 BPMN 2.0 and the Time Patterns: Can We Support All of
Them?

The concept of a pattern was introduced by Christopher Alexander in [192] as “The Timeless Way
of Building”. He defined a pattern as “a three-part rule, which expresses a relation between a certain
context, a problem, and a solution”. Patterns characterise constructs, methods or techniques that have
been encountered in practice repeatedly. Each pattern is intended to address an individual problem.

To solve more complex problems, a number of patterns may need to be combined. By classifying
different patterns and the types of relations between them, patterns can more easily be combined. More-
over, with knowledge of the specific characteristics of individual patterns, one may choose the pattern
most appropriate for a given situation. A pattern language helps a user move from problem to solution
logically, thus allowing for many alternative paths through the design process. A pattern language is not
fixed, it is built upon collected experience in a field, and as the techniques used in practice change, the
pattern language may also evolve.

In the business process management field, some works have been done on identifying workflow patterns
for different process perspectives control-flow, data and resources. Among them, we can find the Workflow
Patterns Initiative [193] which collects more than 100 workflow patterns and compares various languages
and tools based on their support for such patterns. The introduction of the workflow patterns has had
a significant impact on PAIS design as well as on the evaluation of PAISs and process languages [194].
Our interest in pattern collections is relative to the time patterns. Several works propose approaches to
deal with the time perspective of PAISs, such as a timed workflow process model in [195], process mining
of temporal aspects in [196], verification of temporal constraints in [197-199], among others. However,
the most complete and recent framework regarding time support in PAIS and considering time patterns
in the literature was provided in [15]. The authors extend existing workflow patterns by describing
time-related concepts commonly found in business processes and providing a reference system for them.

2920

2925

2930

2935

5.4. BPMN 2.0 AND THE TIME PATTERNS: CAN WE SUPPORT ALL OF THEM? 115

They present ten-time patterns representing temporal constraints commonly occurring in the context of
time-aware processes. This section presents them all, and we discuss how BPMN supports seven of these
patterns. For each pattern, we provide its description, its modelling using the BPMN standard w.r.t our
interpretation, and we show how our formalisation deals with it.

5.4.1 Time Lags between Activities Pattern

Informal Description. It defines a minimal or maximal delay between two consecutive activities or both.
The relation can be start-to-start (i.e., between the start of two activities), start-to-end formalisation,
between the start of the first and completion of the second activity), end-to-start (i.e., between the com-
pletion of the first and the start of the second activity), or end-to-end (i.e., between completion of two
activities). [15]

Textual Specification. Using the BPMN standard, the time delay between activities may be presented
using a TICFE or TBE and may support only the start-to-start and the end-to-start relations.

The relation end-to-start may be supported by a TICE, between two activities or by a T’ BEg> asso-
ciated with an activity as presented in Figure 5.15. In contrast, the start-to-start relation requires two
timers to be supported, where the first timer forces the start of the second timer. Therefore, we can
model this pattern case using a TICE,; or a TSE,; followed by an activity with TBE(;o with the same
time date as presented in Figure 5.15.

E;c= 2021-03-16 T 00:00:00 E;c= 2021-03-16 T 00:00:00

Activity 3

Activity 1 Activity 2

Activity 4

Ec(T1)=-1 EC(T2)=1

Figure 5.15: Time Lags Pattern (End-to-Start).

EC= 2021-03-16 T 00:00:00 gc= 2021-03-16 T 00:00:00

w TSE 7\] TICE 7
2021-03-16 T \\@ 2021-03-16 T \\%
00:00:00 Z PN Activity 6 00:00:00 Z TS Activity 8
2021-03-16 T 20210316 T
00:00:01Z

00:00:01Z

Figure 5.16: Time Lags Pattern (Start-to-Start).

Formal Semantics. Based on our textual representation, let us consider the states:

o s;=<mn(P) =1, me(el) =1, me(e2) = 0, mn(Activity 1) = 0, mn(Activity 2) =0, [.(T1) =1,
ge = 2021-03-16 T 00:00:00, rec = ¢ > for the process P of Figure 5.15,

2940

2945

2950

2955

2960

2965

2970

2975

2980

2985

116 CHAPTER 5. BPMN AND TIME

e so=< mn(Q) = 1, me(e3) = 0, mn(Activity 3) = 1, mn(Activity 4) = 0, I.(T2) = 1, g. =
2021-03-16 T 00:00:00, rec = ¢ > for the process @ of Figure 5.15,

o s3=<mn(F) =0, me(ed) =0, me(ed) =0, mn(TSE) = 1, mn(Activity 5) = 0, mn(Activity 6) =
0, I.(0) =0, g. = 2021-03-16 T 00:00:00, rec = ¢ > for the process F of Figure 5.16,

o su=< mn(G) =1, me(e6) = 1, me(e7) = 0, me(e8) = 0, mn(TICE) = 0, mn(Activity 7) = 0,
mn(Activity 8) = 0, 1.(0) = 0, g. = 2021-03-16 T 00:00:00,7ec = ¢ > for the process G of
Figure 5.16.

According to the form of the processes P, Q, F', G and the current states si, s, s3 and s4 of P’s,
Q’s, F’s, and G’s instances, the execution evolves as follows:

e In Figure 5.15, the state of process P changes by executing the run() function (Formula 5.1) 864000
times (10 days in seconds). Then, the state of process P became sj=< mn(P) = 1, me(el) = 0,
l.e2 = 1, mn(Activity 1) = 0, mn(Activity 2) = 0, I.(T1) = 0, g. = 2021 — 03 — 26 T 00 :
00 : 00, recrec()) ==+ >. This execution state takes place by applying the completing predicate
(Formula 5.5) of the T'1 node, which requires the incoming edge el of the event to be marked by at
least one token and the local clock of the event reaches its max I.(7T'1) = 864000. Thus, the effects
of the T'1 execution are as follows: unmarked el, marked e2, and reset the local clock {.(7'1).

e With the same principle, the state of process @ of Figure 5.15 changes by executing the run()
function (Formula 5.1) 864000 times (10 days in seconds). Then, the state of process Q became
sh=< mn(Q) = 1, me(el) = 1, me(Activity 3) = 0, mn(Activity 4) = 0, g.(T2) = 0, g. =
2021 — 03 — 26 T 00 : 00 : 00, rec(@) = ¢+ >. This execution state takes place by applying the
completing predicate (Formula 5.7). This rule generates a token on edge e3. The latter enabled
the execution of the abstract task starting predicate (Formula 5.15) for Activity 4, which results
its activation.

e In Figure 5.16, the state of process F changes to sh=< mn(F) = 1, me(ed) = 1, me(eb) = 0,
mn(TSE) = 0, mn(Activity 5) = 0, mn(Activity 6) = 0, I.(0) = 0, g. = 2021 — 03 — 16 T 00 :
00 : 00, rec()) = ¢ >. This execution state takes place by applying the completing predicate
(Formula 5.3) of the timer start event (T'SE). Next, this state enables the execution of the start
predicate (Formula 5.15) of Activity 5. Then the state of the process F' became s§=< mn(F) =1,
me(ed) = 0, me(eb) = 0, mn(TSE) = 0, mn(Activity 5) = 1, mn(Activity 6) = 0, I.(0) = 0,
ge = 2021-03-16 T 00:00:01, rec(d) = ¢ >. This state allows for firing the timer event T'1 and
successively executing the predicates from formulas 5.8 and 5.15. Next, the F’s state became s’ =<
mn(F) = 1, me(ed) = 0, me(eb) = 0, mn(TSE) = 0, mn(Activity 5) = 1, mn(Activity 6) = 1,
1(0) =0, g. = 2021-03-16 T 00:00:02, rec(d) = ¢ >.

e Same as process F, the state of the process G changes to s4=< mn(G) = 0, me(e6) = 0,me(e7) =
0, me(e8) = 0, mn(TICE) = 0, mn(Activity 7) = 1, mn(Activity 8) = 1, I.(0) = 0, g. =
2021-03-16 T 00:00:02, rec = ¢ >. This execution state takes place by applying the predicates from
Formulas 5.8, 5.15, 5.8, 5.15 successively.

5.4.2 Duration

Informal Description. It specifies a maximal duration for an activity or a whole process.

Textual Specification. Using the BPMN standard, the time duration for an activity may be represented
by using an interrupting boundary event attached to an activity with a duration configuration (Fig-
ure 5.17, process P). However, to define a deadline for the whole process, we may use a parallel gateway
between the entire process structure and the one that defines the duration deadline. This latter has an
intermediate catch event with a duration configuration and ends with a terminate end event to enforce
the cancelling of all the activities and events when the deadline reaches (Figure 5.17, process Q).

Formal Semantics. Based on our textual representation, let us consider the states:

e s;=<mn(P)=1,me(el) =0, me(e2) = 0, mn(Activityl) = 1, mn(Activity2) = 0, mn(Activity3)
0,1.(T1) =1, g. = 2021-03-17 T 00:00:00, rec(d) = ¢ > for the process P of Figure 5.17;
o so=<mn(Q) =1, me(e3) =0, me(ed) =1, me(e5) = 0, me(e6) = 1, me(e7) = 0, mn(Start) =0,

2990

2995

3000

3005

3010

3015

3020

5.4. BPMN 2.0 AND THE TIME PATTERNS: CAN WE SUPPORT ALL OF THEM? 117

|E;c= 2021-03-17 T 00:00:00 E;c= 2021-03-17 T 00:00:00
o R o
' e2
Activity3
Activity1
o > D —— o
O ’
™ :
s Activity2
P3M o1 Y:
—
End2

Ec(T1)=1 ' EC(T2)=1

Figure 5.17: Duration Time Pattern. (Mazimum delay for activity (left) and Mazimum delay for
process (right))

mn(Activityd) = 0, mn(Endl) = 0, mn(End2) =0, [.(T2) = 1, g. = 2021-03-17 T 00:00:00, rec()
¢ > and @ for the process @ of Figure 5.17.

According to the form of the processes P and @) and the current states s; and sy of P’s and Q’s
instances, the execution evolves as follows:

o If the activityl does not complete after 3 minutes (P3M), the state of process P changes by
executing the run() function (Formula 5.1) 180 times. Then, the state of the process became s; =<
mn(P) =1, me(el) = 1, me(e2) = 0, mn(Activityl) = 0, mn(Activity2) = 0, mn(Activity3) = 0,
l.(T1) = 180, g. = 2021-03-17 T 00:03:00, rec(@) = ¢ >. This state takes place by applying the
completing predicate of the completing predicate (Formula 5.7) of the T'1 node, which requires that
the activity it is attached to is active and the local clock reaches its max [.(T1)=180. Thus, the
effect of this execution stops activityl at its time constraint.

o If the local clock of the process @) reaches its max time of 10 days (I.(72) = 864000), and there are
active nodes in the process flow after Activity4, then, process) state changes by executing the
completing predicate (Formula 5.5) of the T2 node and terminating the whole process by executing
the relevant rules.

5.4.3 Time Lags between Arbitrary Events Pattern

Informal Description. “It enables the specification of time lags between two discrete events. The latter
may be related to the execution of activities but may also be triggered by an external source mot control-
lable. [15]”

Teztual Specification. Using the BPMN standard, the modelling of the discrete event that occurred based
on specific conditions (e.g., exception, messages, or errors, etc.) may be represented by intermediate
throwing and catching nodes, boundary nodes attached to activities, or the activity itself defines a
discrete event such as receiving a message.

Figure 5.18 shows an example for this pattern. It presents a case of two successive sending and
receiving activities, where the maximum time lags between sending a request for a client service of an
online shop and getting a response for this request should be no more than 48 hours.

Formal Semantics. Let us consider the state s;=< me(P) = 1, me(Q) = 0,me(el) = 0, me(e2) =
0, me(e3) = 0, me(ed) = 0, mn(Start) = 0, mn(Endl) = 0, mn(End2) = 0, mn(Send) = 0,
mn(Receive) = 1, 1.(T1) = 1, g. = 2021-03-21 T 12:00:00, rec(d) = ¢ > where the process P has
completed the sending of the request to the process @ and starts waiting for the response (the local
clock T'1 is activated). As long as the process P does not receive a message, the run() function will be
executed (Formula 5.1). If the local clock T'1 reaches its maximum value, the state of process P changes
to si=< mn(start) = 0, mn(end) = 0, me(el) = 0, me(e2) = 0, me(e3) = 0, me(ed) = 0, me(ed) = 1,

3025

3030

3035

3040

3045

118 CHAPTER 5. BPMN AND TIME

¢
| request | response

End2

Ecm 1

Figure 5.18: Time Lags between Arbitrary Fvents.

mn(Send) = 0, mn(Receive) = 0, I.(T1) = 0, g. = 2021 — 03 —23 T 12 : 00 : 00, rec(d) = ¢ > by
executing the completing predicate of the boundary event 71 (Formula 5.6).

5.4.4 Fixed Date Elements (Deadline) Pattern

Informal Description. It allows specifying deadlines and fixed execution elements dates; it specifies a
date deadline as an earliest (or latest) start (or completion) of an activity (or a process), i.e., started
after /before a fixed date, or complete before date. If the deadline is missed, the activity or process may
never become active. [15]

Textual Specification. Using the BPMN standard, fixed date and time configuration may be used on
different events (start or intermediate) and with different formats as presented above (see Section 5.2).
For example, to represent the earliest fixed starting date for an activity, we may use an intermediate catch
event with a timeDate configuration as a source node for its incoming edge (Figure 5.19, process P). On
the other hand, to represent the latest completing fixed date for an activity, we may use an interrupting
boundary event with a timeDate configuration (Figure 5.19, Activity2, process Q). Further, this latter
may represent both the latest completion fixed date for an activity and the latest starting date for the
successive activity (Figure 5.19, Activity3, process Q).

With the same principle, to represent a starting fixed date for a process, we may use a timer start
event with a timeDate configuration (Figure 5.20, process P). Otherwise, to present its latest fixed date,
we may use an intermediate catch event with a timeDate configuration in parallel with the process struc-
ture (Figure 5.20, process Q).

Formal Semantics. Let us consider the states:

o s1=< me(P) = 1, me(el) = 1, me(e2) = 0, me(e3) = 0, mn(Start) = 0, mn(Activityl) = 0,

[gc =2021-03-19 T 07:00:00 E}c =2021-03-19 T 07:00:00

el e2 e3
o y @ Activity1 . o

Activity2

Start T End ™ -
2021-03-20 T R2021-03-20 T Activity3
12:00:00 12:00:00

Figure 5.19: Fized Date Element Pattern for an Activity. FEarliest start date for the Activityl (P),
Latest complete date for the Activity2 and Latest start date for the Activity3 (Q).

3050

3055

3060

3065

3070

3075

3080

5.4.

BPMN 2.0 AND THE TIME PATTERNS: CAN WE SUPPORT ALL OF THEM? 119

[gc= 2021-03-19 T 07:00:00 [gc= 2021-03-19 T 07:00:00

o

Activity5

Activity4 ®

start
2021-03-20 T
12:00:00

2021-03-20 T

12:00:00

Figure 5.20: Fized Date Element Pattern for a Process. Latest start date (P) and Latest complete date

(@)

mn(End) = 0, 1.(0) = 0, g. = 2021 — 03 — 19 T 07 : 00 : 00, rec()) = ¢ > for the process P of
Figure 5.19.

so=< me(Q) = 1, me(ed) = 0, me(ed) = 0, me(e6) = 0, me(e7) = 0, mn(Start) = 0,
mn(Activity2) = 1, mn(Activity3) = 1, mn(Endl) = 0, mn(End2) = 0, I.(0) = 0, g. =
2021 — 03 —19 7 07 : 00 : 00, rec(P) =+ > for the process Q of Figure 5.19.

sg=< me(F) = 0, me(e8) = 0, me(e9) = 0, mn(Start) = 1, mn(Activityd) = 0, mn(End) = 0,
l.(0) =0, g. = 2021 — 03 —19 T 07 : 00 : 00, rec(() = ¢ > for the process F of Figure 5.20.

sa=< me(G) = 1, me(el0) = 0, me(ell) = 1, me(el2) = 0, me(el3) = 1, me(eld) = 0,
mn(Start) = 0, mn(Activityd) = 0, mn(Endl) = 0, mn(End2) = 0, 1.(0) = 0, g. = 2021 —
03 —19 707 :00 : 00, rec(d) = ¢ > for the process G of Figure 5.20.

According to the form of the processes P, @, F', and G and the current states s; and so, s3, s4 of P’s,

Q’s, F’s, and G’s instances, respectively, the execution evolves as follows:

e In Figure 5.19, the state of process P changes by executing the run() function (Formula 5.1) until

the global clock reaches the timeDate 2021 —03—20 7" 12 : 00 : 00. The latter enables the execution
of the timer node T'1. Next, the state of the process changes by executing the completing predicate
(Formula 5.4) of the T'1 event, which requires that e; be marked and the global clock reaches its
fixed date. The state of the process became s{ =< me(P) = 1, me(el) = 0, me(e2) = 1, me(e3) = 0,
mn(start) = 0, mn(Activityl) = 0, mn(end) = 0, 1.(0) = 0, g. = 2021 — 03 — 20 T 12 : 00 : 00,
rec(P) =+ >. This state enables, in its turn, the execution of Activityl.

With the same principle, if Activity2 is still active and the global clock reaches the timeDate
2021 — 03 — 20 T 12 : 00 : 00, the state of process @ of Figure 5.19 changes by executing the
completing predicate (Formula 5.6) of the T'1 event, which requires that Activity2 be marked and
the global clock reaches the fixed date. The state of the process became so=< me(Q) = 1, me(ed) =
0, me(eb) = 0, me(e6) = 1, me(e7) = 0, mn(Start) = 0, mn(Activity2) = 0, mn(Activity3) = 0,
mn(Endl) = 0, mn(End2) = 0, I.(}) =0, g. = 2021 — 03 — 20 7" 12 : 00 : 00, rec(d) = ¢ >. This
state enables, in its turn, the execution of Activity3 and so on.

In Figure 5.19, when the global clock reaches the timeDate 2021 — 03 — 20 7" 12 : 00 : 00, the
state of process F' changes to sh=< me(F) = 1, me(e8) = 1, me(e9) = 0, mn(Start) = 0,
mn(Activityd) = 0, mn(End) = 0, I.(0) = 0, g. = 2021 — 03 — 20 T 12 : 00 : 00, rec(d) =+ > by
executing the completing predicate (Formula 5.3) of the Start node.

With the same principle, If the global clock reaches the timeDate 2021 — 03 — 20 7" 12 : 00 : 00
and there are active nodes in the process flow after the Activity5. Then, the state of process G
changes to sj=< me(G) = 1, me(el0) = 0, me(ell) = 0, me(el2) = 0, me(el3) =0, me(eld) =1,
mn(Start) = 0, mn(Activity5) = 0, mn(Endl) = 0, mn(End2) = 0, I.(0) = 0, g. = 2021 — 03 —
20 T 12: 00 : 00, 7ec(()) = ¢ > by executing the completing predicate of the T'1 node (Formula 5.4).
This state enables, in its turn, the execution of the End2 event.

3085

3090

3095

3100

3105

3110

3115

3120

120 CHAPTER 5. BPMN AND TIME

5.4.5 Schedule Restricted Element Pattern

Informal Description. “It enables us to restrict the execution of a particular element by a schedule, i.e.,
a timetable (e.g., a bus schedule). The schedule itself is known at built-time, whereas the concrete dates
are specified either at instantiation or run-time. The schedule provides restrictions on when the respective
element can be executed. [15]7

Textual Specification. According to the authors, this pattern can be realised using a timer that is started
at process instantiation time and expires at the first endpoint of one of the respective time slots. The
timer is then reset, and its expiration date is set to the following endpoint of one of the time slots. This
is repeated until the respective activity (process) has been started/completed or no more valid time slots
are available according to the schedule. As an example of this pattern, between Paris and Algiers, there
are flights at 6:05, 10:30, 12:25, 17:35 and 20:40. In this example, the period between (6:05 and 10:30)
is different from the one between (10:30 and 12:25). Therefore, the presentation of such a pattern using
the BPMN notation is not supported, as it needs a set of schedules with different periods.

5.4.6 Time Based Restrictions Pattern

Informal Description. It allows “to restrict the number of times a particular process element can be exe-
cuted within a predefined time. [15]”. This restriction may be used for a number of concurrent executions
or the number of executions per time period.

Textual Specification. BPMN offers the possibility to represent several executions between them a period
using a cycle timeDefinition. Such a pattern may then be simulated using a timer catch event with a cycle
time definition with a timeDuration including bounded /unbounded number of executions and conditional
structure. F.g., a subscriber may read only ten online articles per month for an annual subscription. If
the number of readings is reached, no more books can be read in the current month (Figure 5.21).

R10/30D

Figure 5.21: Time Based Restrictions Pattern (Reading Article Example).

Formal Semantics. As the time intermediate catch event with a cycle definition and the data treatment
are out of the scope of this thesis. Therefore, we do not support the formalisation of this pattern.

5.4.7 Validity Period Pattern

Informal Description. It is similar to the pattern 5.4.4. It allows expressing that an activity or process
must not be started or completed before or after a particular date. Ie., its lifetime is restricted to this
validity period. The respective process element may only be instantiated within a validity period.

Textual Specification. A validity period must be attached to the respective activity or process to realise
this pattern respectively. Therefore, upon instantiation of the respective activity or process, its validity
period needs to be checked. If the current time does not match with the activities (processes) validity
period or the minimum duration of the activity (process) will result in the completion of the activity
(process) being outside of the respective validity period, appropriate exception handling is required. This
pattern is not supported using the BPMN notation.

5.4.8 Time Dependent Variability Pattern

Informal Description. “It allows varying control flow depending on the execution time or time lags
between activities/events. [15]”

3125

3130

3135

3140

3145

3150

3155

5.4. BPMN 2.0 AND THE TIME PATTERNS: CAN WE SUPPORT ALL OF THEM? 121

Textual Specification. The time-dependent variability may be represented in two different ways using
the BPMN standard. The first one uses the boundary events (interrupting and non-interrupting) with
varying formats of time to implement variability based on the activity time execution (Figure 5.22, right).
The second one uses the deferred choice pattern [200], which is enabled by the use of the event-based
gateway structure. This gateway allows the presentation of activities in combination with time triggers.
The latter way implements the variability based on time lags between activities (Figure 5.22, left).
Formal Semantics. Based on our representation, the left-hand side of Figure 5.22 shows a collaboration
diagram with two processes P and @ to represent a deferred choice pattern. The right-hand side of
Figure 5.22 shows a collaboration diagram with three processes E, F' and G to represent variability in
the possible communication based on the timed execution of a process.

We represent the processes @), F, and G with closed pools due to space restriction. Let us consider
the states:

e 51 = <mn(P)=1, me(el) =1, me(e2) = 0, me(e3) = 0, me(ed) = 0, me(e5) = 0, me(e6) = 0,
me(e7) =0, me(ml) = 0, me(m2) = 0, mn(StartP) = 0, mn(Activityl) = 0, mn(Activity2) = 0,
mn(EndP1) = 0,mn(EndP1) = 2, mn(EndP3) =0, 1.(T1) =1, g. = 2021 -03—-21 T 12 : 00 : 00,
rec() = ¢> or the process P of Figure 5.22;

o 5o =<mn(E) =1, me(e8) =0, me(e9) = 0, me(el0) = 0, me(ell) = 0, me(ml) = 0, me(m2) =0,
mn(StartE) = 0, mn(Activity3) = 1, mn(Activityd) = 0, mn(Activityb) = 0, mn(EndE) = 0,
1.(T2) =1, g. = 2021 — 03 — 21 T 00 : 00 : 00, rec(d) = ¢ > for the process E of Figure 5.22.

According to the form of the processes P and E and the current states s; and so of P’s and E’s instances,
respectively, the execution evolves as follows:

e Aslong as the process P does not messages, the run() function will be executed (Formula 5.1). If the
local clock T'1 node reaches its max of two days (I.(T1)=172800), the state of the process P changes
to) = < mn(P) =1, me(el) =0, me(e2) =0, me(e3) = 0, me(ed) = 1, me(eb) = 0, me(e6) = 0,
me(e7) = 0, me(ml) = 0, me(m2) = 0, mn(StartP) = 0, mn(Activityl) = 0, mn(Activity2) = 0,
mn(EndP1) = 0,mn(EndP1) = 2, mn(EndP3) =0, 1.(T1) =0, g. = 2021—-03—-23 T 12 : 00 : 00,
rec()) = ¢> by execution the completing predicate (Formula 5.14) of the EB node. The latter will
be executed by choosing the alternative path of the timer node. Then the completing predicate
(Formula 5.5) of T'1 may be executed.

e The state of process E changes to s = <mn(E) = 1, me(e8) = 0, me(e9) = 0, me(el0) = 1,
me(ell) =0, me(ml) = 0, me(m2) =0, mn(StartE) = 0, mn(Activity3) = 0, mn(Activity4d) = 0,
mn(Activityb) = 0, mn(EndE) =0, 1.(T2) = 0, g. = 2021 —-03—23 7°00 : 00 : 00, rec(d) = ¢ > by
executing the starting predicate (Formula 5.7) of the T2 node. This state is reached if Activity3

Ec=2021-03-21 T 12:00:00

| [
e2 e5
Activity1
! EndP1
[
o et 3 6
Activity2
StartP B EndP2
“—© -

T1 EndP3 G
P2D ", :

El

kH
N

EC(T1)='1 Ec(n):1

Figure 5.22: Dependent Variability Pattern. Variability based on time lags between activities (left) and
based on the time execution of an activity (right).

3160

3165

3170

3175

3180

3185

3190

122 CHAPTER 5. BPMN AND TIME

has not been completed within two days, the alternative path of the timer node is then chosen,
and no communication is done with process G.

5.4.9 Cycle Element Pattern

Informal Description. “A particular process element shall be iteratively performed with a time lags be-
tween the cycles. [15]”. In such a pattern, the number of cycles is either fixed (e.g., two cycles with an
hour between them) or depends on some conditions. The time between the cycles may represent the
minimum, maximum, or the time interval value and may realise start-to-start, start-to-end, end-to-start,
and end-to-start relations between activities.

Textual Description. BPMN supports this pattern using a boundary timer event with cycle time category
and duration configuration (Figure 5.23, process P), or a timer intermediate catch event with conditional
gateways (Figure 5.23, process @)). The first one represents the relation start-to-start time lags between
activities, and the second presents the end-to-start relation.

I:gc=2021-03-12 T 12:00:00 E;c=2021-03-12 T 12:00:00
o o
 —
e5 e6
» 2 Activity3
Activity1
N StartQ
a G" EndP1 o ~—
1 —
no N
R2/P10D .- o4 10
Activity2 Activity4
e3
EndP2

Ec(T1)=864000 Em):sed;oo

Figure 5.23: Cycle Element Pattern. Cycle number being fixed (left) and cycle number depending on a
condition C (right).

Formal Semantics. Based on our formalisation, the data is abstracted. Thus, process @) execution is
treated with non-determinism. Assuming the following states:

o 57 = <mn(P) = 1 me(el) = 0, me(e2) = 0, me(e3) = 0, me(ed) = 0, mn(StartP) = 0,
mn(Activityl) = 1, mn(Activity2) = 0, mn(EndP1) = 0, mn(EndP2) = 0, 1.(T1) = 864000,
ge =2021 —03 —12 T 12:00: 00, rec(T1) = 2> for the process P of Figure 5.23.

e 595 = <mn(Q) = 1 me(ed) = 0, me(e6) = 0, me(e7) = 0, me(e8) = 1, me(e9) = 0, me(el0) = 0,
me(ell) =0, mn(Start@Q) = 0, mn(Activity3) = 1, mn(Activityd) = 0, mn(EndQ) =0, [.(T2) =
864000, g. = 2021 — 03 — 12 T 12 : 00 : 00, rec(@) = ¢> for the process @ of Figure 5.23.

According to the form of the processes P and @) and the current states s; and sy of P’s and Q’s
instances, respectively, the execution evolves as follows:

e The state of the process P changes to sj = <mn(P) = 1 me(el) = 0, me(e2) = 0, me(e3) =
1, me(ed) = 0, mn(StartP) = 0, mn(Activityl) = 1, mn(Activity2) = 0, mn(EndP1l) = 0,
mn(EndP2) =0, [.(T1) =1, g. = 2021 —03 — 12 T 12 : 00 : 00, rec(T1) = 1> by executing the
staring predicate (Formula 5.13) of the non interrupting boundary event T'1. The latter fires the
timer node, resets the local clock of the timer node T'1 to I.(T1) = 1, and reduces the number of
redundancy by 1. Then, as long as Activityl doesn’t complete, the run() function (Formula 5.1)
is repeatedly executed, allowing the timer 7'1 to fire one more time. If the redundancy number is
unbounded, rec(T'1) = ¢, this behaviour is indefinitely repeated as long as the activity is active.

e The state of the process @ changes to sf, = <mn(Q) = 1 me(eb) = 0, me(e6) = 0, me(e7) = 0,

me(e8) = 0, me(e9) = 1, me(el0) = 0, me(ell) = 0, mn(StartQ) = 0, mn(Activity3) = 1,
mn(Activityd) = 0, mn(EndQ) = 0, 1.(T2) =0, g. = 2021 — 03 — 12 T 12 : 00 : 00, rec(P) = 1>

3195

3200

3205

3210

3215

3220

3225

3230

5.4. BPMN 2.0 AND THE TIME PATTERNS: CAN WE SUPPORT ALL OF THEM? 123

by executing the staring predicate (Formula 5.5) of the intermediate catch event T2. This state
enables, in its turn, the execution of Activity4 and Activity3 successively. Then, depending on the
condition evaluation C (an undetermined choice in our case), a choice will be made to generate a
token on el that activates the timer node T2 for the second time or not.

5.4.10 Periodicity Pattern

Informal Description. It allows specifying periodically recurring sets of activities according to an ex-
plicitly defined periodicity rule. This periodicity rule describes the recurrence schema of the respective
activity (e.g., group meetings will take place every two weeks at 11:30) as well as a particular start or
exit condition (e.g., starting from next Monday until the end of the year, five times). Unlike the cy-
cle pattern (Section 5.4.9), this pattern emphasises possible execution dates of recurrent activities but
not the time lag between them. Therefore, the periodicity rule may contain one or more than one date. [15]

Textual Description. BPMN standard supports this pattern by describing the time constraints with a
timeCycle category. This category defines a repeated execution of the timer element with a fixed/dy-
namic number of iterations, depending on time lag and fixed start date, or time lag and fixed end date.
Our work supports this configuration type associated with a non-interrupting event as illustrated in Fig-
ure 5.24, with two repetitions up to an ending date (process P) and two repetitions up after a starting
date (process Q).

9c=2021-03-12 T 12:00:00
E}c=2021-03-12 T 12:00:00

(1] o

Activity1 Activity3

o StartP N EndP1 o ZaaN EndQ1

W) W)
T -2 T2 -
R2/P10D/ 2021- | e3 » e4 R2/2021-03-12T | e7 - e8
04-127T12:00:00 Activity2 12:00:00/P10D - Activity4
: EndP2 EndQ2

EC(T1)=17éeoo EC(T2)=1 ’

Figure 5.24: Periodicity Pattern. Ending before a fized date (left) and starting from a fived date (right).

Formal Semantics. Assuming the states:

e 51 = < mn(P) =1, me(el) = 0, me(e2) = 0, me(e3) = 0, me(ed) = 0, mn(Activityl) = 1,
mn(Activity2) = 0, mn(EndP1) = 0, mn(EndP2) =0, 1.(T1) = 172800, g. = 2021—-03—-12 T 12 :
00 : 00, rec(T1) = 2> for the process P of Figure 5.24.

o 55 = < mn(Q) = 1, me(ed) = 0, me(e6) = 0, me(e7) = 0, me(e8) = 0, mn(Activity3) = 1,
mn(Activityd) = 0, mn(EndQ1l) = 0, mn(EndQ2) =0, [.(T2) =1, g. = 2021 -03—-12 7 12: 00 :
00, rec(T2) = 2> for the process @ of Figure 5.24.

According to the form of the processes P and @) and the current states s; and sy of P’s and Q’s
instances, respectively, the execution evolves as follows:

e The state of the process P changes to s] = < mn(P) = 1, me(el) = 0, me(e2) = 0, me(e3) =
1, me(ed) = 0, mn(Activityl) = 1, mn(Activity2) = 0, mn(EndP1l) = 0, mn(EndP2) = 0,
I.(T1) =1, g. = 2021 — 03 — 12 T 12 : 00 : 00, rec(T1) = 1> by executing the staring predicate
(Formula 5.12) of the non interrupting boundary event T'1, The latter fires the timer node, resets
the local clock of timer node T'1 to [.(T1) = 1, and reduces the number of redundancy by 1. Then,
as long as Activityl does not complete and the global clock does not reach the ending date, the
run() function (Formula 5.1) is repeatedly executed, allowing the timer T'1 to fire one more time.

e The state of the process Q changes to s, = < mn(Q) = 1, me(eb) = 0, me(e6) = 0, me(e7) =
1, me(e8) = 0, mn(Activityd) = 1, mn(Activityd) = 0, mn(EndQ1l) = 0, mn(EndQ2) = 0,
1.(T2) =1, g. = 2021 — 03 — 12 T 12 : 00 : 00, rec(T2) = 1> by executing the staring predicate

3235

3240

3245

3250

124 CHAPTER 5. BPMN AND TIME

(Formula 5.10) of the non interrupting boundary event 7'1, which fires for the first time if the
global clock reaches the starting date. It reactivates the local clock of timer node T'1 to I.(T'1) =1,
and reduces the number of redundancy by 1. Then, as long as Activityl does not complete, the
run() function (Formula 5.1) is repeatedly executed, allowing the timer T'1 to fire one more time
by executing the completing predicate (Formula 5.11) of the non interrupting boundary event 7'1.

5.5 Summary

In this chapter, we have proposed formal semantics for the time-related constructs of BPMN with reference
to the non-deterministic one in Chapter 4. This semantics supports different combinations of events,
time information categories (date-times, durations, cycles) and the corresponding ISO-8601 descriptions
as prescribed by the BPMN standard. Our proposal is based on a direct formalisation in First-Order
Logic. In Table 5.2, we have presented the set of the supported timer elements and their relation to
ISO-6801 standard. The table shows that we do not support: (i) the timeCycle type with a fixed interval
of a start and end date due to the redundancy management ambiguity of this type; (ii) the timeCycle
type for the starting event, which may lead to the execution of parallel multi-instance of a process (we
do not support the multi-instance characteristics for the process node); (iii) the timeCycle type for the
intermediate catching event. Note that the last one (iii) is under study as it is similar to the one presented
for the non-interrupting boundary event.

Besides, we have studied the support with our formalisation of ten process time patterns defined in
the literature for PAIS systems. First, we show that the BPMN standard may support the modelling
of these patterns entirely or partially by considering the ISO-6801 standard time definitions. Then, we
show that we support the formalisation of seven patterns out of the ten.

Part 111

From Formal Semantics to Tool
Support

125

3260

3265

3270

3275

3280

3285

CHAPTER

FBPMN: FORMAL BPMN FRAME-
WORK

¢ Make it work.
Make it work right.
Make it work right and fast.
EDSGER DIJKSTRA, DONALD KNUTH, C.A.R. HOARE

Chapter content

6.1 Introduction e e e 127
6.2 fbpmn Overview ¢ v i i i i i it e e e e e e e e 128
6.3 Encoding of FOL Semantics in TLA 128
6.3.1 Communication as a Parameter. 131
6.3.2 Mechanised Verification L. 131
6.4 Encoding of the Semantics in Alloy 132
6.4.1 Mechanised verification L 0oL 137
6.5 fbpmn Evaluation, 138
6.5.1 Experiments using the TLAT Encoding/Tooling 138
6.5.2 Experiments using the Alloy Encoding/Tooling 140
6.6 The fbpmn Supporting Tool 142
6.6.1 Architecture and General Principles 142
6.6.2 Desktop Modelling and Verification 142
6.6.3 Online Modelling and Verification 144
6.6.4 Extensibility 144
6.7 SUMMArY . . . v v v v v e 146

6.1 Introduction

The formal semantics introduced so far shows: how complex the modelling of a collaboration diagram can
be, how the communication models vary and how to correctly figure out the execution of inter and intra-
processes in the presence of messages, hierarchical structures, interrupting events, and time constructs.
These make the overall behaviour of the collaboration challenging to grasp.

This chapter supports the presented formalisation with a tool-suite called fbpmn. This tool automat-
ically verifies correctness properties for BPMN collaboration models and animates counterexamples when
the properties are not satisfied. This tool is implemented to perform the verification using two formal
specification languages, TLAT [17] and Alloy [46], that are increasingly popular due to their simplicity
and flexibility, as well as the effectiveness of their companion model checkers, the TLC and Alloy Ana-
lyzer, respectively. These languages and tools are based on two different theories: TLAT is based on the

3290

3295

3300

3305

3310

3315

3320

3325

3330

3335

128 CHAPTER 6. FBPMN: FORMAL BPMN FRAMEWORK

explicit model checking, while Alloy is based on bounded model checking. All together, TLAT and Alloy
languages support first-order logic properties.

This chapter explores these two frameworks for the verification of the business process properties.
While TLC interprets TLAT models as finite state machines and deploys an explicit-state model checker,
Alloy Analyser converts models into propositional formulas that are passed to SAT solvers. The properties
of interest are encoded in the TLAT and Alloy theories (we have implemented). They include usual
correctuess properties for workflows as well as those (proposed more recently [140]) that are more specific
to BPMN.

This chapter is organised as follows. Section 6.2 gives an overview of the fbpmn tool, its architecture
and its general principles. Section 6.3 presents the encoding of the BPMN semantics in TLAT. Section 6.4
presents the encoding of the BPMN semantics in Alloy language. Section 6.5 presents some results
obtained with fbpmn tool on models, available on a publicly accessible repository. Section 6.6 provides
the description of the tool’s development and functionalities. Section 6.7 summarises the chapter.

6.2 fbpmn Overview

fbpmn (Formal Business Process Modelling Notation) is an open-source verification tool-chain software,
based on our formalisation of BPMN collaboration diagrams, implemented using various TLAT and Alloy
modules. For utilising the tool-chain, we provide a web interface at http://vacs.enseeiht.fr/bpmn/
as well as a Virtual-Box virtual machine containing a local installation of our tool-chain at https:
//github.com/pascalpoizat/fbpmn. The overall overview of the fbpmn tool-suite is synthesised in
Figure 6.1. Reading the figure from left to right, we have the following main components: Modelling
Environnement, TLA Translator, Alloy Translator, TLA Modules, Alloy Modules, TLC Model checker,
and Alloy Analyser. The figure shows an overview of the process for performing verification with the fopmn
tool. First, all the semantics rules we have defined in first-order logic are encoded in TLA (theories.tla
files) and Alloy (theories.als files) languages (we will detail the content of these static models in the
following sections). These files are written once for all. The Modelling Environment allows the design
of BPMN models and selects properties to be verified. In principle, any BPMN editor can be used
as such component, especially those compliant with the BPMN 2.0 standard such as Eclipse BPMN2
Modeler [201], Camunda Modeler [202] and Signavio Editor [203] (step (1), Figure 6.1). fbpmn takes as
input a business process or a collaboration model in BPMN format. It starts by translating the model
into a graph in terms of TLAT (resp. Alloy) encodings using the TLA translator (Alloy translator,
respectively) (step (2), Figure 6.1). Choosing one of these translators generates a set of property and
encoding model files (step (3), Figure 6.1). These generated files and theories files are then used as input
for the checkers (TLC model checker or the Alloy analyser) to check the model (step (4), Figure 6.1).
The latter returns results (step (6), Figure 6.1) that indicate the correctness or not of the properties on
the model. fbpmn offers an animation option to generate counterexamples using these results (step (7),
Figure 6.1). Indeed, it also provides the designer with the possibility to add properties manually (step
(5), Figure 6.1).

In the following sections, we present : (i) our encoding of the FOL semantics in TLA™" that allows
one to easily parameter the communication properties and benefits from the efficient TLC model checker
to verify collaborations automatically. (ii) Our encoding of the FOL semantics in Alloy allows verifying
timed BPMN models.

6.3 Encoding of FOL Semantics in TLA

The expression and action fragments of TLAT are FOL-based, so the encoding of the semantics in TLA™
is straightforward (459 lines of TLAT formulas).

The given FOL formalisation captures the behaviour of each of the BPMN components (nodes which
can be events, activities, and gateways), and thus the behaviour of the whole BPMN model. This
behaviour is defined using the concept of tokens which move from nodes to edges (and vice-versa) when
specific conditions are fulfilled. The distribution of those tokens (marking) on the elements of the BPMN
model describes its state. Hence, the whole behaviour is seen as a set of states reachable when specific
transitions are fired.

As extensively described before, the idea here is to associate to each node (n) two predicates!: a first

'Tn some cases, the behaviour is described using only one of the two predicates.

http://vacs.enseeiht.fr/bpmn/
https://github.com/pascalpoizat/fbpmn
https://github.com/pascalpoizat/fbpmn
https://github.com/pascalpoizat/fbpmn

6.3. ENCODING OF FOL SEMANTICS IN TLA 129

....................................

{ —— Manual
0 e | — Automatic

System Designers

e\ e New Properties.tla e New Properties.als
I

fopmn s L LT B R
Modelling ;

TLA4BPMN o :
Environnements TLA ; TLA Modules TLC Model Checker ;

Translator : e theories.tla [l G
. E ! —i—-l[model.tla Satisfied unSatisfied
' Bpmn2tla ; e Properties o
: roperties.tla v i
Camunda : E Counter Example :

Signavio

Alloy Analyzer

Alloy ; ;
\ Translator : e theories.als ¥ e :

(d < - PP PP S PP PP PP P PP TFFPPrErrs
KNl ”ﬁ) '‘Allo4BPMN Alloy Modules o E

1 3

m-@inq . bpmn2alloy

BPMN2 model.bpmn i » model.als Satisfied Counter
Moc!eler e . e Properties Example

5 properties.als

0 Model 9 Configure e Generate o Check e Add new properties e Result o Annimate

Figure 6.1: Framework Overview.

33a0 predicate, St(n), which states if the node can start its execution, and thus changing its current marking
before its execution (mn(n)) to another marking after its execution (mn'(n)). The second predicate,
Ct(n), that states if the node can finish its execution and so change the current marking (mn(n)) before
its termination to another marking (mn’(n)) after its termination.
In this context, the TLAT specification of the semantics of node n is nothing but a direct translation
335 of the St(n) and Ct(n) predicates of node n into the TLAT syntax.
Example.
Let us reconsider the semantics of a None Start Event defined through the predicate Ct(n):

Vn € N, Ct(n) = caty(n) = NSE A (mn(n) >=1) A (mn/(n) = mn(n) — 1)

A Ve € outtype(n, SF), (me'(e) = me(e) + 1)
dpe N,p=R1(n)
A(caty(p) = P) A (mn(p) = 0)
A (mn'(p) =1)
AN A ({n,p} Uouttype(n, SF) A E)
Jsp € N,sp= R™Y(n) A (catn(sp) = SP))

Viaa ({n} U outtype(n,SF)) NE

This FOL semantics is translated into a TLAT specification as follows.

nonestart _complete(n) = A CatN[n] = NoneStart Event
A nodemarks[n] >=1
A LET p == ContainRelInv(n) IN
V' A CatN[p] = Process
A nodemarks[p] = 0
A nodemarks' = [nodemarks EXCEPT ![n] =@ — 1,![p] = 1]
V' A CatN|[p] = SubProcess
A nodemarks’ = [nodemarks EXCEPT ![n] = @ — 1]
A edgemarks’ = [e € DOMAIN edgemarks —
IF e € outtype(SeqFlowType,n) THEN edgemarks|e] + 1
ELSE edgemarks|e])
A Networklunchanged

3350

3355

130 CHAPTER 6. FBPMN: FORMAL BPMN FRAMEWORK

Table 6.1: Translation between FOL and TLAY (NSE exzample).

FOL Expression TLA™ expression
¢1 | caty(n)=NSE ¢} | CatN|[n] = NoneStartEvent
¢2 | mn(n) >1 ¢y | nodemarks[n] >=1
edgemarks’ = [e € DOMAIN edgemarks —
Ve € outtype(n, SF), ; IF e € outtype(SeqFlowType,n)
¢3 (me(e) = me(e) + 1) % THEN edgemarks|e] + 1
ELSE edgemarksle] |
IpeN,(p=Rt(n) LET p == ContainRellnv(n) IN
A (caty(p) = P) A CatN|[p] = Process
o A (mn(p) =0) &y | A nodemarks[p] =0
A (mn'(n) = mn(n) — 1) A nodemarks’ =
A (mn/(p) =1) [nodemarks EXCEPT ![n] = @ — 1,![p] = 1]
Jsp € N, (sp = R-1(n)) LET p == ContainRellnv(n) IN
b5 A (cat (sp) = SP) o A CatN[p] = /SubProcess
A (mn/(n) = mn(n) — 1) A nodemarks’ =
[nodemarks EXCEPT ![n] = @ — 1]
b6 | = ¢ | Networklunchanged

Intuitively, the translation is done syntactically, as shown in Table 6.1. Here, we can easily observe
that the translation is straightforward, and this holds for all the elements of BPMN.

The resulting theories, for the translation of the whole elements, are available at https://github.
com/pascalpoizat/fbpmn under theories/tla. They are:

Module PWSTypes, defines the abstract constants that correspond to the node and edge types.

Module PWSDefs, specifies the constants that describe a BPMN graph (Definition 4.2.1): Node
(for N), Edge (for E), Message (for M), CatN (for caty), CatE (for catg), ContainRel (for R), etc.
This module also defines auxiliary functions such as intype(type,n), defined in TLA" as the operator
intype(type,n) = {e € {ee € Edge : target(ee) = n} : CatEle] € type}.

Module PWSWellFormed, encodes the well-formedness predicates for BPMN graphs. For in-
stance, the rule C3 (a sub-process has a unique start event node) becomes:

C3_SubProcessUniqueStart 2 ¥n € Node : CatN[n] = SubProcess =
Cardinality(ContainRel[n] N{nn € Node : CatN[nn] € StartEventType}) = 1

Module PWSSemantics, contains the semantics. It defines the variables for the marking: nodemarks
(€ [Node — Nat]), edgemarks (€ [Edge — Nat]), and net (whose type depends on the selected commu-
nication model). Then it contains a translation of the FOL formulas, where each rule yields one TLAT
action, translated from the FOL semantics as explained above. The Next predicate specifies a possible
transition between a starting state and a successor state. It is a disjunction of all the actions. The
full specification is then, as usual in TLAT, Init A O[Next]yqr A Fairness, where Init specifies the initial
state (Definition. 6.4), and O[Next] specifies that Next (or stuttering) is verified along all the execution
steps. Further, the restriction to fair executions (Section 4.4.0.5) is naturally translated in TLA*. TLAT
supports weak and strong fairness, defined as below for an action A:

WE.(A) < 00-(ENABLED(A),) v O0(A).
SF.(A) Y oO-~(ENABLED(A).) v O0(A),

Fuairness is then a conjunction of weak fairness on all actions (Vn € Node : W4, (step(n))), and of
strong fairness on XOR, OR and EB transitions.

https://github.com/pascalpoizat/fbpmn
https://github.com/pascalpoizat/fbpmn
https://github.com/pascalpoizat/fbpmn

3360

3365

3370

3375

3380

3385

3390

3395

6.3. ENCODING OF FOL SEMANTICS IN TLA 131

6.3.1 Communication as a Parameter.

One of the objectives of our FOL semantics is to be able to specify the communication behaviour as a
parameter of the verification. To achieve this, all operations related to communication are isolated in a
Network module. This module is a proxy for several implementations corresponding to communication
models with different properties, such as their delivery order.

Generic Communication Models We provide seven communication models which differ in the
order messages can be sent or received and are all the possible point-to-point models when considering
local ordering (per process), causal ordering, and global ordering (absolute time). Their formal description
is provided in section 4.3.3, and their formal analysis and comparison can be found in [179].

The state of the communication model is specified with a variable net, whose content depends on
the communication model. The communication actions are two transition predicates send and receive
which are true when the action is enabled. These actions take three parameters, the sender process, the
destination process and the type of message. Their specification depends on the communication model
and is a direct translation in TLAT of the FOL formula of table 4.3. For instance, NetworkFifo specifies
a communication model where the delivery order is globally first-in-first-out: messages are delivered in
the order they have been sent. Its realisation is a queue, and the two predicates are:

net’ = Append(net, {from,to, m))
net # () A (from,to,m) = Head(net) A net’ = Tail(net)

send(from,to,m) =
receive(from,to,m) =
Ad-hoc Communication Models The communication models described in 4.3.3 are all monolithic.
This means that all the communication interactions are handled by the same communication model and
that it restricts the receptions in the same way for all communication channels. In some cases, one needs
to have different properties in different parts of a model. For instance, a set of processes can require
FIFO All communication for their interactions, while another set does not have any constraint. Using
a modular communication framework based on micromodels [204], we offer the possibility to implement
the send and receive predicates with a combination of micro models that are applied to subsets of the
channels in the BPMN collaboration. The available micromodels are the seven ordering model as above,
that order the receptions with regard to the emission events; a micromodel where priorities are assigned
to channels; a message capacity micromodel that limits the number of messages in transit; a bounded
micromodel that limits the total number of messages that a set of channels can transport in an execution.

Consider the example in Figure. 2.8. This example has an infinite number of states as the travel
agency can send an arbitrary number of the offer. Moreover, it is required that the NoMore message is
received after all the Offer messages. With the monolithic communication models, this can be handled
by using the FIFO Pair (or FIFO All) communication model. However, observe that the Confirmation
and Ticket messages are expected by the customer in the reverse order of their emissions. Imposing
FIFO ordering means that the ticket cannot be delivered before the confirmation, and this collaboration
with a FIFO communication model is unsound: the customer process deadlocks without reaching the

final state.
CHANNELS == {"Offer", "NoMore", "Travel", "Payment", "Abort", , "Ticket", "Confirmation"}

COMMODELS == {|name — "p2p", params — [chan — CHANNELS | |,

[name — "fifol1", params — [chan — {"Offer","NoMore"} | |,

[name — "voting", params +— [chan — {"Offer"}, bound — 2] |,

[name — "message cap", params — [chan — CHANNELS, bound — 4]] }
COM == INSTANCE multicom WITH

PEERS < {"Customer", "Travel Agency"}

COM + COMMODELS,

CHANNEL <« CHANNELS

6.3.2 Mechanised Verification

A specific BPMN diagram is described by instantiating the constants in PWSDefs (Node, Edge...) from
the BPMN collaboration. This is automated using our fbpmn tool. Regarding the well-formedness of
the BPMN diagram, the predicates from PWSWellFormed are assumed in the model. Before checking a
model, TLAT model checker checks these assumptions with the instantiated constants that describe the
diagram and reports an error if an assumption is violated.

TLA' model checker, TLC, is an explicit-state model checker that checks both safety and liveness
properties specified in LTL. This logic includes operators [J and ¢ that respectively denote that, in all

3400

3405

3410

3415

3420

3425

132 CHAPTER 6. FBPMN: FORMAL BPMN FRAMEWORK

executions, a property P must always hold (OP) or that it must hold at some instant in the future (O P).
TLC builds and explores the full state space of the diagram to verify if the given properties are verified.
These properties are generic properties (related to any business process diagram) or specific properties
(for a given diagram). Examples of generic properties are: safeness, soundness and message-relaxed
soundness [23].

A collaboration is safe if no sequence flow holds more than one token:

O(Ve € E, (catg(e) = SF) A (me(e) < 1)) (6.1)

A collaboration is sound if all the processes are sound and there are no undelivered messages. A
process is sound if it is in a stable state where there are no tokens on its inside edges, and no tokens on
its nodes, except possibly for start and end events.

SoundProc(p) ©lve e R(p) N E, (catg(e) = SF) A (me(e) = 0)
A¥n € R(p) NN, (mn(n) =0V (mn(n) =1Acatny(n) € (EEUSE))

Soundness déf()D(Vp € N, catn(p) = P A SoundProc(p) AVe € E,catg(e) = MF A me(e) =0)
(6.2)

A collaboration is a message-relaxed sound if it is sound when ignoring messages in transit, i.e., when
ignoring the Message Flow edges.

M sgRelaxedSoundness = O0O(Vp € N, catn(p) = P A SoundProc(p)) (6.3)

Other generic properties are available, such as the absence of undelivered messages or the possible
activation, which states that there does not exist a task node (Abstract Task, Send Task, Receive Task)
that is never activated in any execution. From a business process point of view, it means that there are
no tasks in the diagram that are never used. This is expressed by Vn € N, caty(n) =T : O(mn(n) = 0).
Actually, the invalidity of this formula confirms the satisfiability of its negation.

Last, the user can also define business model properties concerning a specific diagram. For instance,
one can check that the marking of a given node is bounded by a constant e.g.,

(O(nodemarks[" Confirm Booking"]) < 1)
or that the activation of one node necessarily leads to the activation of another node e.g.,
(O(nodemarks[" Book Travel"] # 0 = O (nodemarks[" Offer Completed"] # 0))

Termination of the verification is ensured for a finite state model. When the model checker finds that
a property is invalid, it outputs a counter-example trace that we animate on the BPM graphical model
to help the user understand it. TLC uses a breadth-first algorithm, and this trace is minimal for safety
properties. As any BPMN model is structurally finite, a model with an infinite state space is necessarily
unsafe (in the sense of (6.1): some edges hold more than one token). This property is invalidated on a
prefix of a trace. TLC incrementally checks invariants during the state space construction, and an unsafe
model will be detected even if it would yield an infinite state space. TLC cannot check arbitrary properties
on an infinite state model. Nevertheless, we can use constraints expressed on states or transitions to limit
the state space (see Section 6.6.4.1).

6.4 Encoding of the Semantics in Alloy

This section details the different Alloy modules and routines to check the business process model auto-
matically. Generally, Alloy does not provide a pre-defined way to model dynamic behaviour. Therefore,
it is necessary to use the idiom traces pattern [47]. This introduces a signature to represent the system’s
overall state and model operations as predicates. Thus defining the relationships between the states
before and after. We use the Global State variant of this pattern.

The signature and the predicate fragments of Alloy is also based on FOL. Hence, the encoding of
the semantics in Alloy is straightforward (670 lines of Alloy formulas). An abstract signature defines an
element type (node or edge), and the subtype relation relates these signatures (e.g., Node O Event 2
IntermediateEvent O TICE D TICE,;). A BPMN graph combines these signatures with unique ele-
ments that correspond to the graph nodes, edges, and attributes that mark the endpoints of an edge.

3430

3435

3440

6.4. ENCODING OF THE SEMANTICS IN ALLOY 133

As extensively discusssed for the TLAT translation, each semantic rule presented in Section 5.3 yields
a predicate syntactically identical to it.

Example.
Let us reconsider the semantics of a Timer Start event that may be specified with a date-time (see
equation. 6.4).

S
~

Ct(n) = (catn(n) = TSEq) A (ftime(n) |timevain= ge)

A (mn(n) =1) A (mn/(n) = mn(n) — 1)

A Y eo € outtype(n, SF), (me'(eo) = me(eo) + 1) (6.4)
A3 p e N, caty(n) = P,n € R(p), (mn(p) = 0) A (mn'(p) = mn(p) +1)

A A ({n,p} Uouttype(n, SEF)) A A (D)

This predicate is translated into Alloy as follows (see Listing 6.1).

/)

pred State.canfire[n : TimerStartEvent] {
n.mode in Date Athis.globalclock >n.mode.date
}
pred completeTimerStartEvent[s, s’ : State, n: TimerStartEvent] {
s.nodemarks[n] >0
s.canfire[n]
s’ .nodemarks[n] =s.nodemarks[n].dec
all”e : n.outtypel[SequentialFlow] |s’.edgemarks[e] =s.edgemarks[e].inc
let™p =n. contains {
s’ .nodemarks [p] =s.nodemarks[p].inc
deltals, s’, n + p, n.outtype[SequentialFlow]]
deltaT[s, s’, none] // localclock is unused
}
}

Listing 6.1: An FExcerpt of the Timer Start Event Semantics Implementation in the Alloy Language.

The translation is syntactical, as shown in Table 6.2. Here, we can easily observe that the translation
is straightforward, and this holds for all the elements of BPMN.

Table 6.2: Translation between FOL and Alloy (TSE example).

FOL Expression TLAT expression
¢1 | catn(n) =TSE, &) | n: TimerStartEvent
. n.mode in Date
G2 | ftime(n) Limevaip= e %% && this.globalclock >= n.mode.date
¢z | mn(n) >0 @5 | s.nodemarksin| >0
Y eo € outtype(n, SF) , all e : n.outtype|Sequential Flow]
04 (me’(eo) = me(eo) + 1) & |s’.edgemarksle] = s.edgemarks|e].inc
dp € N,caty(n) = P, (n € R(p)) let p = n. contains
A (mn(p) =0) p s.nodemarks[p] =0
@5 A (mn/(n) = mn(n) — 1) ¥ s'.nodemarks[n] = s.nodemarks[n|.dec
A (mn'(p) = mn(p) + 1) s'.nodemarks[p] = s.nodemarks[p|.inc
A({n,p} U outtype(n, SF)) p deltals, s',n + p, n.outtype[Sequential Flow]]
%6 A (0) % deltaT[s, s',nonel]/ [localclockisunused

The resulting theories are available in the fbpmn repository at https://github.com/pascalpoizat/
fbpmn/tree/master/theories/alloy under theories/alloy. The latter has a set of static and dynamic
modules. Static modules are those writing once for all. They are:

Module PWSSyntax.als, It represents the BPMN elements syntax (edges, nodes, and time defi-
nition types). More specifically, this module contains a set of Alloy signatures for the BPMN elements

https://github.com/pascalpoizat/fbpmn/tree/master/theories/alloy
https://github.com/pascalpoizat/fbpmn/tree/master/theories/alloy
https://github.com/pascalpoizat/fbpmn/tree/master/theories/alloy

3445

3460

3465

134 CHAPTER 6. FBPMN: FORMAL BPMN FRAMEWORK

needed to describe a process instance. For example, the listing in Figure 6.2 shows a set of abstract
signatures focusing on the BPMN meta-model’s Activity node types. Thanks to Alloy’s object-oriented
notation, it is natural and direct to represent a meta-model. Therefore, each metaclass corresponds to a
signature and the attributes of metaclasses to relationships.

Node
/** Activities *x/

Z% abstract sig Task extends Node {}
abstract sig AbstractTask extends Task {}

Task abstract sig SendTask extends Task {}
abstract sig ReceiveTask extends Task {}

A D

Abstract Send Receive

Figure 6.2: An Ezpert of the Alloy Implementation from the Syntax.als Module Represent the Activity
Signature.

Further, Timer nodes have a constraint that can be a date, a duration, or a duration with a repetition
factor. In this last case, it can also have a starting date xor an ending date (T'SE can only have a Date,
TICE can have a Date or Duration, and TBE any one of them). These time types are translated in
Alloy by a set of abstract signatures with a mode (€ Ctime) attribute. Listing 6.2 shows an excerpt of
the implementation for the timer structure.

abstract sig Date { date : one Int }

abstract sig Duration { duration : one Int }

abstract sig CycleDuration extends Duration { repetition : one Int }
abstract sig CycleStart extends CycleDuration { startdate : one Int }
abstract sig CycleEnd extends CycleDuration { enddate : one Int }
abstract sig TimerStartEvent extends StartEvent { mode : one Date}

/7.
Listing 6.2: An FExcerpt of the Implementation of Time Structure.

Module PWSDefs.als, specifies the constants that describe the BPMN graph (Definition 5.2.1)
and a set of auxiliary functions.

Module PWSWellformed.als, encodes the well-formedness predicates for the BPMN presented
in (Section 4.2.3).

Module PWSSemantics.als, contains the translation of the semantics rules of each element pre-
sented in Chapter 4.4 and those of Chapter 5.3. Each rule yields an Alloy predicate. As idiomatic in
Alloy, execution is an ordered set of States, where a fact (a constraint that always holds) relates two
consecutive states (in this ordering). Listing 6.3 presents the state signature used to represent a system
state. Line 1, the UTIL/ORDERING module is used to create a total linear order between the different
states. Each relation of the State signature (nodemarks, edgemarks, network, globalclock, and localclock)
corresponds to a piece of state information as defined in the formalisation (see State Definition 5.3.1).
open util/ordering[State]
sig State {

nodemarks : Node -> one Int,

edgemarks : Edge -> one Int,

network : set (Message -> Process -> Process),

globalclock : one Int,

localclock : (TimerStartEvent + TimerIntermediateEvent + TimerBoundaryEvent) -> one Int,

Yy /7
Listing 6.3: State Implementation in Alloy.

3490

34951

35041
12
13
14
15
35106
17
18
19
20
35121
22
23
24
25
352@6
27
28

3525

6.4. ENCODING OF THE SEMANTICS IN ALLOY 135

Listing 6.4 shows the initial state predicate defined in the formalisation (see Initial State Definition 5.3.2).
This predicate gives the first State of the system. Line 10 shows the fact calling the initialState predicate,
allowing to initialise the first state of the system.
pred initialState [globalC : Int]{
first.edgemarks =(Edge -> 0)
let processNSE ={ n : NoneStartEvent + TimerStartEvent |n.containInv in Process } {
first.nodemarks =(Node -> 0) ++ (processNSE -> 1)
}

first.network —networkinit
first.globalclock =globalC
first.localclock =(TimerStartEvent + TimerIntermediateEvent + TimerBoundaryEvent) -> 0

}
fact init { initialState }

Listing 6.4: Initial State Predicate Implementation in Alloy.

To simplify the trace predicate, it is possible to define different functions and predicates, as shown
in Listing 6.5. The predicate step defines the set of execution steps for all the node types. It takes as
parameters s corresponding to the current state and s’ corresponding to its successor state. The predicate
deadlock defines the state where no node may be executed. The predicate someTimerlsActive determines
whether a given timer node is waiting to move the time forward and not ready to fire. Lastly, the predicate
advancetime determines when the time moves forward the global and the local clocks.

pred step[s, s’ : State, n: Node] {
n in AbstractTask implies { startAbstractTask[s,s’,n] or completeAbstractTaskl[s,s’,n] }
else n in SendTask implies { startSendTask[s,s’,n] or completeSendTask[s,s’,n] }
completeMessageStartEvent[s,s’,n] }
VI
}
Y22
pred State.someTimerIsActive {
// easy case: a local clock is counting
{ some n : TimerStartEvent |this.localclock[n] >0 Anot this.canfire[n] }
or { some n : TimerIntermediateEvent |this.localclock[n] >0 Anot this.canfire[n] }
/). ..
}
pred State.deadlock {
no n : Node {
this.canstartAbstractTask[n]
or this.cancompleteAbstractTask[n]
Y2/
}
}
Y22
pred advancetime[s, s’: State] {
all n : TimerStartEvent + TimerIntermediateEvent + TimerBoundaryEvent {
s.localclock[n] >0 implies s’.localclock[n] =s.localclock[n].inc
else s’.localclock[n] =s.localclockl[n]
}
s’.globalclock —=s.globalclock.inc
}

Listing 6.5: An FExcerpt of Predicates Implementation in Alloy.

Finally, as we are running bounded model-checking, we must ensure that enough steps are realized.
Formally, with infinite executions, weak fairness is sufficient. As we integrate the time notion with the
bounded model-checking, if moving the time forward is always possible, the execution may always take it
and waste a number of steps. Our solution is to move time only if no node may be executed (deadlock)
or there is a timer node still active and not ready to complete. Listing 6.6 shows the fact traces that
constrains all the states. This fact is our predicate Next (Definition 5.3.3). It represents a disjunction of
the semantic rules and of time moving.

fact traces {

all s: State - last {
{ (s.deadlock or s.someTimerIsActive) A~ deltals, s.next, none, none] A~ advancetime[s, s.next] }
or
{ some n : Node - Process |stepls, s.next, n] }

}
}

Listing 6.6: An Fxcerpt of Next Predicate Implementation in Alloy.

3540

3545

35603
14
15
16
17
35648
19
20
21
22
357@3
24
25
26
27
3578
29
30
31
32
35833
34
35
36
37
35888
39

136 CHAPTER 6. FBPMN: FORMAL BPMN FRAMEWORK

Module PWSProp.als, contains a set of properties defined in Section 6.4.1.

Conversely, the dynamic modules are those generated according to the business process model and
the properties to analyse.

ProcessModel.als, encodes the process instance to be analysed. Figure 6.3 shows a simple pro-
cess with interrupting boundary time date event. Alloy Translator component (cf. Figure 6.1) allows
generating an Alloy specification as shown in Listing 6.7 for the given simple process model file. Each
process element is represented as a singleton (one sig) of its equivalent type, defined in PWSSyntaz.als
module. As highlighted in this listing, the representation of the process in Alloy language is natural and
straightforward. Each element and concept corresponds to a new instantiation of a signature defined in
the PWSSyntax.als module.

Processi
@
m

EE1A

Figure 6.3: A Simple Process Fxample with Time Date Constraint.

module example_TBEI_SP

open PWSSyntax

open PWSSemantics

one sig SE1 extends NoneStartEvent {}

one sig SP1 extends SubProcess {} { contains =SE3 + AT3 + EE3}

one sig TBEltime extends Date {} {date =4}

one sig TBE1 extends TimerBoundaryEvent {} {
attachedTo =SP1
interrupting =True
mode —TBEltime

}

one sig SE2 extends NoneStartEvent {}

one sig AT2 extends AbstractTask {}

one sig EE2 extends NoneEndEvent {}

one sig EE1A extends NoneEndEvent {}

one sig EE1B extends NoneEndEvent {}

one sig f1 extends NormalSequentialFlow {} {
source =SE1
target =SP1

}

one sig f2 extends NormalSequentialFlow {} {
source —=SE3
target =AT2

}

one sig f3 extends NormalSequentialFlow {} {
source =AT2
target —EE2

}

one sig f4 extends NormalSequentialFlow {} {
source =SP1
target —EE1A

}

one sig f5 extends NormalSequentialFlow {} {
source =TBE1
target —EE1B

}

one sig Processl extends Process {} {
contains =SE1 + SP1 + TBE1l + EE1A + EEI1B

}

Listing 6.7: Representation of the Process of Figure 6.3 using Alloy.

3590

3595

3600 1

3605

3610

3615

3620

3625

3630

6.4. ENCODING OF THE SEMANTICS IN ALLOY 137

Module ProcessModelCheck.als, groups the list of commands to running the Alloy Analyser
w.r.t a set of properties to check. Listing 6.8 shows the commands running the property analysis.
As explained in Section 2.6.2.3, there are two ways to operate the analyse with the Alloy Analyser.
The run command (line 1) allows finding a model that satisfies the formula, while the check command
(lines 2 to 4) allows finding a counterexample with respect to the formula. Further, it is necessary
to specify a bound on each command signatures to limit the search depth. All the bounds are con-
strained by the process model taken as input to be analysed. For example, if the process model has
ten task nodes, the bound of the activity task signature will be 10, i.e., line 1 will be equivalent to
[run CorrectTermination for 0 but 11 State, 10 tasks]. The keyword for O determines that all the
signatures in the analysed model have a bound of 0 by default, excluding for the signatures specified after
the keyword but. E.g., in Listing 6.8 only the signature of the States number is specified. Thus, the Al-
loy Analyzer determines the bounds of all the signatures defined in the module example _TBEI_SP.als
(Listing 6.7) to the default value 0.

run {CorrectTermination} for O but 11 State

check {CorrectTermination} for O but 20 State

check {Safe} for O but 15 State expect 0
check {SimpleTermination} for O but 20 State expect 1

Listing 6.8: Commands for Checking the System.

6.4.1 Mechanised verification

Alloy comes with a tool, Alloy Analyser, a constraint solver that provides automatic simulation and
verification based on a model-finding approach using a SAT solver. Two kinds of verification are available:
(1) check the structure itself; (2) check the executions. For the first, assertions ensure that the model
is well-formed, e.g., a message flow connects two distinct processes. For the second, predicates on States
are used to express properties on executions. We have defined a set of properties in PWSProp.als:

e Safe, a predicate that states that no edge or node ever holds more than one token. This property
is expressed in Alloy as follows:

1 pred Safe {
2 all s: State, n : Node |s.nodemarks[n] <1
3 all s: State, e : Edge |s.edgemarks[e] <1
4 }
Listing 6.9: Safe Property.
e SimpleTermination, a predicate that states that every process reaches a state where an End Event

owns a token. This property is expressed in Alloy as follows:

1 pred SimpleTermination {
2 all p :Process |some s: State, n : EndEvent |n in p.contains As.nodemarks[n] >1
3 }

Listing 6.10: Simple Termination Property.

CorrectTermination, a predicate that states that the whole system reaches a state where all pro-
cesses have terminated with an End Event and no token is left on other nodes or edges. This
property is expressed in Alloy as follows:

pred CorrectTermination {
some s : State |all p : Process |some n: EndEvent {
n in p.contains As.nodemarks[n] >1
all nn :p."contains - n |(nn in EndEvent or s.nodemarks[nn] =O0)
all e : Edge |e.source =p /\e.target =p — s.edgemarks[e] =0
}
}

W N O R W N

Listing 6.11: Correct Termination Property.

o EmptyNetTerminationProperty, extends the CorrectTermination with the empty network condi-
tion. This property is expressed in Alloy as follows:

3635

3640

3645

3650

3655

3660

3665

3670

3675

3680

3685

=W N =

0 N D U

138 CHAPTER 6. FBPMN: FORMAL BPMN FRAMEWORK

}

1 /* %/

2 pred EmptyNetTermination {

3 some s : State {

4 all p : Process |some n: EndEvent {

5 n in p.contains As.nodemarks[n] >1

6 all nn : p.contains - n |s.nodemarks[nn] =0
7 all e : Edge |le.source =p Ae.target =p =—> s.edgemarks[e] =0
8 }

9 all e : MessageFlow |s.edgemarks[e] =0

10

11

}
Listing 6.12: EmptyNet Termination Property.

Other generic properties are available, such as the MaxTime predicate that states that the whole
system reaches a final state before a given maximal time, and MinTime a predicate that states that the
whole system takes at least a given minimal time to reach a final state. These properties are expressed
with the predicate NTime. A counter-example to this predicate means that at least one execution can
terminate before max time T. This answers the MaxTime property. The validity of this property responds
to the MinTime correctness property.

pred NTime [T : Int]{

some s : State |all p : Process |some n: EndEvent {
n in p.contains As.nodemarks[n] >1
all nn : p."contains - n |(nn in EndEvent or s.nodemarks[nn] =O0)
all e : Edge |le.source =p Ae.target =p — s.edgemarks[e] =0
s.globalclock >T

}

}

Listing 6.13: NTime Property.

6.5 fbpmn Evaluation

This section presents the evaluation of our contributions, focusing on checking properties on a set of
BPMN collaboration and process models.

6.5.1 Experiments using the TLA" Encoding/Tooling

Experiments were conducted on a laptop with a 1.9 GHz (turbo 4.8 GHz) Intel Core i7 processor (quad-
core) with 32 GB of memory. Results are presented in Table 6.3. The first column is the reference
of the example in our archive at https://github.com/pascalpoizat/fbpmn/ under /models/bpmn-
origin/src folder. The characteristics of a model are the number of participants, the number of nodes
(incl. gateways), the number of flow edges (sequence or message flows), whether or not the model is well-
balanced (for each gateway with n diverging branches, we have a corresponding gateway with n converging
branches) and whether or not it includes a loop. The communication models are asynchronous (bag),
FIFO-ordered between each couple of processes (FIFO pair), globally FIFO (FIFO all), or synchronous-
like (RSC). The results of the verification then follow. First, data on the resulting transition system
are given: number of states, number of transitions, and the depth (the length of the longest sequence of
transitions that the model checker has to explore). For each of the three correctness properties presented
above, we indicate if the model satisfies it. Lastly, the accumulated time for the verification of the three
properties is given. Our tool supports more verifications (see Table 7.1) and can be easily extended with
new properties. We selected these three ones since they are more BPMN specific [23].

Table 6.3 presents the results for a selection of properties and models from our archive montionned
above, for a variety of gateways and activities. These illustrative examples include realistic business
process models (001 and 002 two client-supplier models, 040 from Figure 2.8, 017 from [108], and 020
from [138]), and models dedicated to specific concerns: termination end events and sub processes (007—
011 from [23]), inclusive gateways (003, 012, 013 and 018), exclusive and event-based gateways (015 and
016).

A first conclusion is that verification is rather fast: the verification of one property generally takes
just a few seconds per model, the longest being for model 020 that takes up to 53s of accumulated time
for the three properties (5s for the construction of the state space). Experiments also show the effect of

https://github.com/pascalpoizat/fbpmn/

139

6.5. FBPMN EVALUATION

66 N X N 6¢ | ¥GIT | L¢9 || 1€1°d 20y-pe 0v0
STT'9 X X 2 G 919 | L6¢ 03y 0v0
89Z°9 N X N 8¢ crL | gse Seq M A L/gT (¢) 67 z 0%0
s9z°0T || X X 2 zs | 969z | 0ot DSY 020
SV || A N 2 zG | 799G | s€Ie e oy 020
$9L0% || A N N zS | ce0TT | 8gse Seq M x| 8/ve (9) 6¢ 7 || 020
S¢0'F N 2 N L€ 71 €6 ouou X | x| 0/9¢ (c1) ¢ T 110
SLT°E M M N T €g 9¢ Seq X | x| z/or (¢) 1 z | 910
STT'E X X 2 T LTT 89 Seq X | X | g/ot (¢) ¥1 z 10
sezog || A M 2 8T | €1¢ST | 1£9¥ ouou M oAr|o0/gT (8) 61 T 810
S€6°C M 2 N ¢T | 6F0T | LOF ouou M oAr| o0/1C (8) L1 I €10
SG8°¢ N N 2 9! LET 1. ouou M AL 0/LT (8) ¢t ! 10
sTG'g N N X 1T 60z | 00T Seq X | x| T/11 (¢) st z 110
STL'E M X X €T €Ty | 98T Seq X | x| T/1T (¢) ar z 010
S0L'E X X X 61 G6¢ | OLT Seq X | x 1/6 (¢) a1 z || 600
S0L°C N » X 61 LL i ouou X | X 0/6 (@) 11 T 800
STC'T X X X G1 ¢l v ouou X | X | 0/L (¢) 8 I 100
SeT'y X X X 8¢ 0y | L¥e 0SY
SL8'F X X X o ze6 | Tes [oy
S0Z ¥ N X X eF 996 | 0L Seq M x| g/sT (¥) 02 z | 900
SOT°¢ N N 2 9! 65 |54 ouou M x| 0/91 (9) ¥1 I €00
S0G°¢ X X 2 LT k4! €9 DSY
S19°¢ X X 2 61 cer 1. ared ojy
8LG°¢ N N 2 €T L¥T 6L Seq x| M| og/er () 91 z 200
$09°¢ X X 2 61 L¥T L2 DSY
89Z°¢ X X Y |14 191 g ared ojy
09°¢ N N 2 ¢T eLT €6 Seq X | Mg/t (¢) L1 z 100
aury 7 (¢9) 7 (z9) 7 (1°9) || madep 7 ‘suer) 7 soe)s [opowt T 7 q 7 AN/ AS 7 (*m8) sopou 7 voxd
[e109 Ayiprea oz1s G I'T wo)) SOT)SLIg)ORIRY) ‘Jol1

"SYNSIY IDIUIUWILIAT 1§°9 SR,

3690

3695

3700

3705

3710

3715

3720

3725

3730

3735

3740

140 CHAPTER 6. FBPMN: FORMAL BPMN FRAMEWORK

the communication model on property satisfaction (models 001, 002, 006, 020), the use of TLAT fairness
to avoid infinite loops (012, 013, 018, 020), and the use of terminate end events combined with model
constraints (see Section 6.6.4.1) to deal with unsafety (006).

LTL verification is O(M 2"), where M is the size of the state space, and F is the size (expressed in
terms of the number of involved temporal operators) of the formula. F' is mainly influenced by the number
of fairness constraints. Regarding M, in practice, more than the size of the BPMN schema, interleaving
is the main cause of state explosion. Interleaving is directly linked to the number of processes. Thus,
more than the number of nodes (which has a limited impact), the verification time is mainly impacted
by the number of processes and their branching.

6.5.2 Experiments using the Alloy Encoding/Tooling

Experiments were conducted on a laptop with a 3.9 GHz (turbo 3.30 GHz) Intel Core i5 processor
(quad-core) with 64 GB of memory. First, the processes and their properties are translated into an Alloy
specification using fbpmn translator to perform the experiments. Then, this specification is given as input
to the Alloy Analyser, which reduces the verification to an SAT problem. Therefore, the Alloy Analyser
presents the specification to a SAT solver in CNF format. A CNF is a conjunction of clauses. Each clause
is a disjunction of variables (cf. Section 2.4.11). A satisfying assignment of a SAT problem consists of a
Boolean assignment to the variables such that all clauses are satisfied. It is usual to use the number of
variables and clauses as a measure for a SAT problem complexity. The SAT solver used in the following
is MiniSat (one of those supplied by default with the Alloy Analyser).

Results are presented in Table 6.4. The first column is the reference of the example in our archive at
https://github.com/pascalpoizat/fbpmn/ under /AlloyTest/TLARepresentation/ folder. Column 2
represents the variant of the commands used (run or check). Column 2 exhibits the analysed property
from Section 6.4. Column 3 depicts the limit state number used for each checked property. Columns
4 and 5 illustrate the number of variables and clauses, respectively. Columns 6 and 7 show the time
to generate the CNF and to solve the SAT problem, respectively. Finally, column 8 specifies the result
of the verification. Note that when there is communication, we use a bag communication model. The
verification results are depicted as follows: First, if there is any counter-example, we display (CE). If an
instance is found when applying the run command, we display (Instance). Lastly, If neither of these two
results is available and the assertion may be valid, as expected, we show the (v') mark. However, if the
assertion is inconsistent, we display the (x) mark.

These results highlight the effectiveness of our tool w.r.t. a set of concrete models from our repository.
A first conclusion is that verification is relatively fast: the solving time of one property generally takes
just a few seconds per model, the longest being for model 001 that takes up to 8s even if the whole
generated SAT problems present a relatively high complexity (over 14 thousand variables and over 1
million clauses).

Secondly, checking properties provides promising results since we find the results are consistent with
the expected ones. More precisely, we applied different properties for each model. For example, in the
model (001), which represents a collaboration, we have used the checking of the EmptyNetTermination
property to ensure that the results are consistent with that obtained in the previous experiment (cf. Line 1,
Table 6.3) using the TLA™ translation. On the other hand, the model shows that the correct termination
property is unsatisfied using 9 states and generates a counterexample. However, this property is satisfied
for the same model using 25 states. This latter is due to the Alloy Analyser feature. The Alloy Analyser is
based on a SAT solver that performs Bounded Model Checking (BMC). Thus, it is only able to guarantee
the absence of counterexample up to some bound k. Consequently, the Alloy Analyser cannot determine,
on its own, the total number of states needed to analyse the model entirely. It is up to the user to choose
this bound number and that it must be greater than the number of States typically required to unfold
the transition relationship completely.

Model (t002) presents a simple BPMN process that contains an Intermediate Timer Catch Event with
a duration value equal to 4. Therefore, the CorrectTermination must be checked with more than nine
states to give enough time for the globalclock / localclock to reach 4. Line 10 (the fourth checked property
of this model) defines an empty run. This last produces a random instance of the model satisfying the
facts for guaranteeing at least one model execution instance (no deadlock).

In model (t003), Line 16 shows an Instance producing of the non-simultaneous reachability of the
end events (EE1A) and (EE1B) formula means that the Interrupting Timer Intermediate Event behaves
as expected. However, running this formula for the model (t004) fails to find an instance (i.e., the set
of clauses for which no satisfactory instance exists). The latter means that the non-interrupting Timer

https://github.com/pascalpoizat/fbpmn/

141

6.5. FBPMN EVALUATION

ooue)ysuy 90¢°0 L96°TC 192¢69¢ G8¢e 6 Aynqeyoesy ggHH
9ouR)SU] 065°0 6 €T 192¢69¢ G8ce 6 Aynqeypedy Vead umy
OouRISUJ 6€S°T 9r9°0€ | L600T€E ¢e9¢ 0! UOTRUTILIR T O N Ayd g
oueISUL || §9¢°0 | PIS'EE | TPLVOE 919¢ 0T uoreuIo] joNAdury | 2001
CI9) €96°0 81¢'cy [28eey 9,6V ! UOTRUTILIR T O N Ayd g
A 086'8 0LG8V | LTLLEY 700S 4! UOTYRUTULIOT,}09.LI0() oY)
A 101°6 0¢9'1v LevIey 8L6Y 4! uoryeuruioy A duig
A 9E1'9 L88'9¢ [0TTEE 919¢]! °FeS
X ge0’o 610°C 9¢80LT 0¥<e 4! d1dd PUe VIHH JO ANIGRYDRY SNOdUR)NUIIS-UON
90ure)su] 8¢C'1 6L650T 7991 6 olqeypeel JTHH uny
9ouR)SU] 600°0 L16°0 19864 80€T L olqryreal VIHH 700?
A L20°0 GEC LT898T GELT a1 UOTRUTULIST, }99.L100) POt
A L20°0 LLGT 66€€€ET 453!]! °FeS
9ouR)SUy G69°0 LG6°LC | G8C6V0C | L990C 0¢ d1dd PUe VIHH JO ANIGRYDRIY SNOdUR)NUIS-UON
90uUre)suy G640 9¢6'v 6€69¢¢ 9462 1T Ayiqeyoeay g1dd uny
oour)suy €00°0 L36°€ 6LECST e 6 Ayqeyoeay VIHH €003
N €rro 6¢6'9 GLy0ce 786¢ a1 UOTYRUTULIST, 399.LI07)
A 91°0 0T"L LYGLTE 0L6€ a1 uorjeuruLyg, djdurg PUD
A €81°0 87 0502ce 689¢ 0t °FeS
P0uRys] || 00 8670 G119 1901 8 {} uni
A €00°0 €690 87S6L LTET 0T UOTYRUIULIST, 199.LI07) 2003
A €00°0 €80 19884 8T€T 0T uoreurLIyg, djdurg 19YD
A ¢10°0 8¢E'S 90840t 68€01T]! °FeS
9ouR)SUy 16°0 LLETET | 986694 €169 1T oFes uny
Wa Vey | GOV0'ELE | €F9EITT | TLGFT 61 uoreurIof, N Aydwy
CI9) ¢0 68°¢Cl LGCIEY L8.¢ 6 UOTYRUTULIST, 399.L107)
A 96°¢ ¥0°0LE | TOVP8CT 1L6¥1 5 UOTYRUTULIST, 399.LI07) 9YD 100
A €6'8 L60°¢LE | SGTL9GCT €c6¥v1 Gc uoyeutuiIg, odurlg
A gg'¢ ¢l'61¢ €088¢cy 1026 at °FeS
nsoy (s) VS | (s) AND | sesne[) | so[qeLrep || punog sojelg fy1odorg | puewwo)) || JoY

‘§2)dwWDTS [0 125qNG D U0 PIINIRTH L2sfpUY o))y oY} wWof so1pPY F9 S[qe],

3745

3750

3755

3760

3765

3770

3775

3780

3785

142 CHAPTER 6. FBPMN: FORMAL BPMN FRAMEWORK

Intermediate Event behaves as expected.

Finally, for model (t005), Line 25 shows that checking the EmptyNetTermination property produces a
counterexample. The latter means that it is invalid by taking the Timer Intermediate Catch Event Branch.
For that, both non-EmptyNetTermination and EmptyNetTermination running properties produce an
Instance as both cases are reachable (i.e., the first instance means that the formula is UnSAT and there
is a possibility of executing the receiving branch may be taking. But, the second one means that the
timer event may be fired before the message receiving.

It is important to note that if no counterexample is found when checking a strong property (check),
checking its weak equivalent will certainly find at least one instance that satisfies the property. For
example, suppose no counterexample is found to go into a no safeness situation (check Safe, ¢f Line 1).
In that case, obtain an instance such that the process safe is trivially true (run Safe, ¢f Line 6). Indeed,
in general, to generate counterexamples during verification (check F), the Alloy Analyser attempts to
find instances of the negation of the formula (i.e., [run F = check — F]). Thus, as a general rule, it is
interesting to evaluate a weak property only when the strong property has returned a counterexample.

Current experiments have allowed us to validate our semantics on a subset of study cases models, and
the implementation proved the feasibility of our approach, but unfortunately, real-life models are often
out of reach of Alloy Analyzer as the number of required states for an execution exceeds its capacity.
Still, verification is achieved in a reasonable time.

6.6 The fbpmn Supporting Tool

This section presents the open-source software made available at https://github.com/pascalpoizat/
fbpmn, that can be redistributed and eventually modified under the terms of the GPL2 License. We
here choose to focus on parts related to the TLAT implementation of the semantics given in Chapter 4,
verification using TLC, and the associated Desktop usage and Web application. These parts being more
polished than the ones related to Alloy and Space BPMN support [205].

6.6.1 Architecture and General Principles
fbpmn tool suite for TLAT, is made up of :

e the fbpmn program and several accompanying scripts to perform verification in a single command
line and to graphically animate counterexamples.

e a Web application version of the above, with a client-side front-end (for BPMN modelling and for
giving communication and verification parameters) that runs in a single browser, and a server-side
back-end verification engine, built around fbpmn and scripts, for which a Docker version is available

The fbpmn tool suite is centred around a command, FBPMN, that is available for Linux, OSX, and
Windows (binaries are available for the first two, the latter requiring, for now, a compilation process).
This command is used to transform a BPMN model into TLAT representation. fbpmn is also in charge
of the computation of the Prey and Preg sets that are used in the semantics of the OR gateways since
these two sets can be structurally computed from the BPMN graph structure. This generated TLAT
graph module is then passed, together with modules for TLAT implementation of our well-formedness
rules and semantics, to the TLC model checker, as described in the bottom of Figure 6.1.

In the case where a verification fails, TLC outputs a counter-example as a state trace that includes
for each step, the state of the markings and the communication network (Definition. 4.4.1). To ease the
interpretation of this by the process designer, fopmn can also be used to generate an interactive animation
of the counter-example, where one can see the marking over the BPMN model and navigate between the
steps of the counterexample (Figure 6.5). The presentation layer for the counterexample animator has
been achieved using the Camunda.io javascript library?.

6.6.2 Desktop Modelling and Verification

For a given model, one may have different properties of interest (e.g., safety, soundness, and message-
relaxed soundness), and since several communication models are possible (e.g., the seven ones presented in
Table. 4.3), it would be tedious to run fbpmn for each of the combinations. Hence, we provide the process

Zbpmn-js: https://github.com/bpmn-io/bpmn-js

https://github.com/pascalpoizat/fbpmn
https://github.com/pascalpoizat/fbpmn
https://github.com/pascalpoizat/fbpmn

143

6.6. THE FBPMN SUPPORTING TOOL

‘uwdqy ypum pagnsouas) (apopy TOQUI Oft.] YIM SSAUPUNOG 40f ‘Q°F 2unbrf ul jppopy) 2]duinTa-42IUN0) D fO UOUDUIUY :G'Q SR,

e ——— B — E—] -

[I[.oyw uswihed, ', Jswojsnd,I'L.ojw |aaell,', Jewolsnd,]' [.yiw Jayo 18j9g, , 1ewoieng]’ Aousbyieaes | [[[.2iw ~ “sioWoN. . Aousbyiael]]I, 1awolsng,]]
SNjE}s HIoMIaN

PHAILCD SO UGTRLTYU) S aumg0 UmE wawalsusyy

O VTS

Roussg [anis]

= -
> ! I ! I
1990
I ! [| fupes das | [[
\.N_J L dsgbusyy L L e ! 454840 ! [
— - -] | | t t |
1=~ 1 | | =z Y l|||°.|||_ | |
i T ettt J = - o |
e I A | | 1 Zhu [RoEN [
FRLOGY S50 | 1 |) L ! |
L I T —— S AL ! | | F—_——
i " . | sl | e Qusenbay 530
| e e, m:_.__:s,r 0 » . L._:e_.g_ua i | “ |
L
'] DALy I]
| | I | | uopesuesy WOy puas | | 1
| | [| | |
I |
| - I | | | | |
I | [| v | |
I e A
pogeducg | Jie— v | Bupycon
= .__ © o e [g
s!

JawoiEny

inly B Log

chmsasan g0 30} ey

o a5

ouga

gez/ge days

uwdq'01L.8Z 1520229 Welbelp o} Jojewiuy ajdwexg Jajuno) NINdS:

JOIEWIUE 2)dWERD-12IUN0S udg) uopeajuan NWdE

) I11Y1895US"SIBA — 2UN23S 10N (2} > 000

3790

3795

3800

3805

3810

144 CHAPTER 6. FBPMN: FORMAL BPMN FRAMEWORK

eoe < [an] & vacs.enseeiht.frfbpmn/ [[+]

Docker | About

cd

9 |+

Import amodel | Export model | Verification options... | Custom commodel... | Run verification

Examples of models: I

ip. Client-supplier, Command.

If you want to receive your results by mail, enter your address here: il & MsgSound [7]

< ication semantics

Base semantics
0 PLul
—
s fﬁ Tk Rocowes Cendmoa =
. oyt [éalacp o) i
ompleted RSC

P4 ¥ n
' Custom semantics
'

@] !

o =

o] -
|

<& -
|
|

()} -
|

(=] g .

0O s =

8

i

Figure 6.4: fbpmn Web Application (modelling and verification panel).

designer with scripts (only under Linux or OSX) that ease verification. When the designer launches the
fbpmn-check script, it reads a configuration directory and runs fbopmn based on the designer preferences.
Let us suppose the configuration directory is as follows.

NetworkO1Bag.tla NetworkO4Inbox.tla NetworkO7RSC.tla Prop03Sound.cfg
NetworkO2FifoPair.tla NetworkO50utbox.tla PropOiType.cfg Prop04MsgSound.cfg
NetworkO3Causal.tla NetworkO6Fifo.tla PropO2Safe.cfg

This will yield four different properties to be checked for seven different network models, generating at
most 28 counter-example traces. Running the fbpmn-logs2html script on a working directory generated
by fbpmn-check, finds out these counter-examples and generates an interactive animator for each of them.
It is also possible to give fbpmn-check a number of cores to use, and this value is passed to the TLC
model checker.

6.6.3 Online Modelling and Verification

To ease the use of the fbpmn tool suite, we have implemented a Web application for it (Figure 6.4).

There, the user can import, design, or export a BPMN model (this is achieved using the Camunda.io
framework). Then verification parameters can be given: which properties to check, which communication
models to check with, possibly model constraints (see below) for nodes and/or edges.

After retrieving the results (Figure 6.5), the user can see a textual version of counter-examples and/or
animate it on the model as presented in Section 6.6.1.

The fbpmn Web application is available online at [206] for demonstration purposes. Yet, if one is
interested in it, we advocate its deployment on one’s own machine or server. For this, we provide a
Docker image, downloadable from our Web application at https://github.com/pascalpoizat/fbpmn/
tree/master/web.

6.6.4 Extensibility

Our framework can be extended as far as safeness constraints, properties to check, and communication
models are concerned.

https://github.com/pascalpoizat/fbpmn/tree/master/web
https://github.com/pascalpoizat/fbpmn/tree/master/web
https://github.com/pascalpoizat/fbpmn/tree/master/web

3815

3820

3825

3830

3835

6.6. THE FBPMN SUPPORTING TOOL 145

% vacs.enseeiht.fr/bopmn/

Analysis done.

Back to editor

Analysis results

The property Prop03Sound is not valid with the Network01Bag ion semantics: log, I

The property Prop03Sound is not valid with the NetworkO2FifoPair communication semantics: log, counter-example

‘The property Prop04MsgSound is not valid with the ifoPai ication semantics: log, counter-example
The property Prop03Sound is not valid with the ion semantics: log —example
‘The property Prop04MsgSound is not valid with the ication semantics: log, counter-example

ion log

Working in uploads/diagram 1594110297616 with 4 worker(s)
transformation done

<<"Processes=", 2, "Nodes=", 31, "Gateway=", 3, "SF=", 24, "MF=", 7>>
B L 11—

[X] Prop01 Type

states=353 trans=712 depth=38

[X] Prop02Safe

states=353 trans=712 depth=38

[1 Prop03Sound

states= trans= depth=

[X] Prop04MsgSound

states=353 trans=712 depth=38
rrrrrrrr — Network02FifoPair -
[X] Prop01 Type

states=297 trans=616 depth=35

[X] Prop02Safe

states=297 trans=616 depth=35

[1 Prop03Sound

states=297 trans=616 depth=

[] Prop04MsgSound

states=297 trans=616 depth=

---------- Network04Inbox -—-—-----
[X] Prop01 Type

states=297 trans=616 depth=35
[X] Prop02Safe

states=297 trans=616 depth=35

[1 Prop03Sound

states=297 trans=616 depth=

[] Prop04MsgSound

Figure 6.5: fbpmn Web Application (verification results).

6.6.4.1 Model Constraints

Some models are unsafe, i.e., the semantics can yield an infinite marking on some node(s) or edge(s). In
such a case, one may rely on model constraints associated with the BPMN model to be verified. Given
the model is model.bpmn, one just has to create a file model.constraint of the form:

CONSTANT ConstraintNode <- <ConstraintOnNodes>
ConstraintEdge <- <ConstraintOnEdges>
Constraint <- <Overall constraint in terms of ConstraintNode and ConstraintEdge>

Some node constraints and edge constraints are already defined in our TLAT library, e.g., the one
to state that an edge should have at most two tokens on it, MaxEdgeMarking2, or the one to limit the
number of tokens only on message edges MaxMessageEdgeMarking2. The most usual constraint combinator
is also already defined there, ConstraintNodeEdge, which is the conjunction of the user-specified node
and edge constraints. Using this, we may verify model 006 (as seen in Section 6.5), defined in file
e006TravelAgency.bpmn, with a file e006 TravelAgency.constraint:

CONSTANT ConstraintNode <- TRUE
ConstraintEdge <- MaxEdgeMarking?2
Constraint <- ConstraintNodeEdge

The user is free to extend our constraint library by extending the PWSConstraints.tla TLAT module.

6.6.4.2 New Properties

We support several properties from the literature. However, it is possible to extend this set. To do so,
one has to:

1. Define a new property, say MyProperty, at the end of the main TLAT semantic module, PWSSe-
mantics.tla;

2. Create a new file PropNNMyProperty.cfg in the fbpmn configuration directory, with NN being a
number different from the existing properties there;

3840

3845

3850

3855

3860

146 CHAPTER 6. FBPMN: FORMAL BPMN FRAMEWORK

3. In the contents of PropNNMyProperty.cfg refer to the property name given in 1.

The definition of new properties has some limitations. First, these properties must be defined using
LTL since this is the logic that is checked by TLC. Second, these properties must cope with our definition
of state (Definition 4.4.1), i.e., they can be defined in terms of node markings, edge markings, and/or
network markings. Properties can also refer to the types of the nodes and edges, as shown in Section 6.3.2
for the soundness property.

6.6.4.3 New Communication Models

As stated before, we support the most usual communication models to be used as parameters for the
BPMN semantics. Still, one may define new models. To achieve this, one has to:

1. Define the new communication model semantics, say MyNet, in a NetworkMyNet.tla file in the fbpmn
TLAT theories directory;

2. Copy one of the files in the fopmn configuration directory to a new file NetworkNNMyNet.tla in the
same directory, with NN being a number different from the existing communication models there;

3. In the contents of NetworkNNMyNet.tla changes the line of the network implementation definition
to refer to the new communication model as defined in 1.

6.7 Summary

In this chapter, we have presented our fbpmn tool. We have detailed its architecture, features, verification
mechanism and evaluated its practicability over a set of examples. The evaluation section demonstrates
the achievement of the objectives defined in the introduction. The BPMN formalisation, its implementa-
tion, and the associated tool make it possible to verify all perspectives of business processes automatically.

To sum up, the tool proved the feasibility of our approach. However, some improvements are already
under realisation (cf. 7.4). The next chapter concludes this thesis by summarising our contributions,
presenting its limitation, and giving some perspectives.

Part IV

Conclusion and Future Work

147

CHAPTER

7
I CONCLUSION

In this chapter, we recall the objectives of the thesis in Section 7.1. We present the contributions of the
3865 work we carried out in Section 7.2, then we position this work in relation to the literature in Section 7.3.
Finally, we present our perspectives in Section. 7.4.

7.1 Objectives Remainder

The main objectives of this thesis were: (1) to provide a direct formal execution semantics for a subset of
BPMN elements that supports sub-processes, communication, and time constructs and is parametric with
ss7o reference to the properties of the communication; and (2) to support this formalisation with tools that
automatically perform the verification of correctness properties for BPMN collaboration models. Our
work, therefore, aimed at improving and facilitating the process of formal specification and verification
of the business process models, which is a long and complicated task and requires a knowledge of formal
tools in order to avoid an in-depth review of the code and the specification in failure after implementation.

s 1.2 Contributions

This thesis contributes to our objectives with the fbpmn framework enabling the modelling, the analysis
and the formal specification of collaborations and time-aware models based on a well-founded set of formal
semantics rules. In the following, we summarise our contributions by answering to the thesis research
questions presented in Chapter 1, Section 1.2, which were:

3880 e Q1. Does the correctness of BPMN collaboration diagrams depend on the used communication
models?

e Q2. How to precisely describe the formal semantics of BPMN collaboration diagrams, taking into
account different communication models?

e Q3. How to formalise the execution semantics of the BPMN time constructs, including their
3885 relation to the ISO-8601 standard format?

e Q4. What are the time process patterns supported by the BPMN standard, and does our semantics
support all of them?

e Q5. How to verify such formal models?, which are the properties of interest?, and can the formal
semantics of the BPMN collaborations drive the development of software tools based on BPMN
3890 collaboration diagrams?

Answering Q1 and Q2. Firstly, we have defined a direct formalisation for BPMN collaboration di-
agram elements. We use First-Order Logic (FOL) with natural numbers, sets, and maps. Instead of using
a formal intermediary model, e.g., Petri nets or a process algebra, this choice of a simple yet expressive
framework enables one to get a formal semantics that is amenable to implementation in different formal
3s05 frameworks while still being close in its structured presentation to the semiformal semantics of the stan-
dard (hence it can be related to it). As far as the subset of BPMN is concerned, we have first included the
generic control flow elements (i.e., gateways, tasks, and events). We have then taken constructs with com-
plex execution semantics into account, mainly relative to our focus: creation and termination of processes
based on messages or time, message and time-related intermediary events and boundary events (inter-
3000 rupting or non interrupting), event-based gateways, inclusive-join gateways, and subprocesses. Secondly,
the provided semantics is parametric regarding the properties of the communication model. Therefore, we

3905

3910

3915

3920

3925

3930

3935

3940

3945

3950

150 CHAPTER 7. CONCLUSION

support seven point-to-point communication models relating to the message-passing behaviours between
and within processes and define their formal semantics. These communication models are important
since, as seen for example in Table 6.3, the chosen model has an impact on whether the correctness
properties of a BPMN model are fulfilled or not.

Answering Q3 and Q4. Firstly, we have extended our formal semantics to support the time-
related constructs of BPMN. In the first, time semantics was abstracted in a non-deterministic way.
This new semantics supports different combinations of events, time information categories (timeDate,
timeDuration, and timeCycle) and the corresponding ISO-8601, descriptions as prescribed by the BPMN
standard. As seen in Table 5.2, we support 13/31 time semantics features in BPMN. Secondly, we
have formalised the execution semantics of a set of time patterns specified in BPMN. Many authors
have underlined the importance of time patterns and a lot of effort has been made to identify the most
common time-related scenarios from a business perspective, namely, Process Time Patterns [207]. These
patterns were defined only in terms of textual descriptions for PAIS system in general. Our work was first
to provide a graphical description of these patterns to assess the suitability of BPMN to express these
common time-related scenarios. Then, to validate the provided semantics for the time constructs given
in Chapter 5, as we show its suitability to cover the process time patterns expressed in BPMN. Roughly
speaking, our work demonstrated that our semantics supports 7/10 from ten of these patterns.

Answering Q5. Based on the proposed FOL semantics, this thesis provides an automatic verification
tool-suit, called fbpmn, for the business process collaboration models. fbpmn is based on the translation
of the FOL semantics into the TLAT and Alloy languages and the use of the TLC model checker and
the Alloy Analyser for the model analysis. Thus, within the fopmn tool both standard model checking
and bounded model checking techniques are integrated to effectively support verification. As far as prop-
erties of interest are concerned, fbpmn tool allows checking domain-specific properties dedicated either
to workflow notations in general (e.g., soundness, safety, and deadlock-freedom) or to BPMN in partic-
ular (e.g., simple termination, correct termination, message relaxed soundness) and it allows animating
counter-examples to fix erroneous models in case of checking properties fails. Further, fbpmn tool is pro-
posed either as a desktop or as a Web application to model, check, and correct the business collaboration
models. The latter provides transparency to the users with reference to the formal background.

7.3 Position with Reference to the Litterature

This section compares the most relevant attempts to formalise the semantics of BPMN, which cover the
interaction and time characteristics with the work at hand.

7.3.1 Collaboration-Based Approaches

As shown in Chapter 3, numerous works in the literature have focused on the formalisation of BPMN
and on the verification support for the collaboration diagrams and communication features in BPMN [23,
71, 86, 89, 125, 128, 132, 138|. We add [64] due to its role as a seminal paper and [95, 117] due to their
representatives formal model they use. Table 7.1 gives a synthetic presentation of a comparison between
these proposals and ours. The table focuses on (1) BPMN features, and (2) properties of interest that are
supported by each work. This table divides the approaches between those that rely on an intermediary
model and those that have the benefit of providing a direct link between BPMN constructs and the
verification formalism. Our work follows this line. Further, our choice of FOL lets us implement the
semantics in different tools e.g., TLAT and Alloy as here or SMT solvers for the future. As far as
the BPMN coverage criteria are concerned, we can observe that we are among the approaches with
high coverage. To make verification tractable, we have abstracted from the data and the multi-instance
constructs, that are often related to data. Most of the work, still, support the verification of business
process correctness properties or, at least, all-purpose formal properties (reachability, deadlock). To the
best of our knowledge, these approaches do not support verification of BPMN models under a specific,
and parametric, communication model.

7.3.2 Time-Based Approaches

As shown in Chapter 3, numerous works in the literature have focused on the formalisation of BPMN
time-related models constructs. Among these works we select [81, 99, 104, 116, 119, 142, 143, 208] for

151

7.3. POSITION WITH REFERENCE TO THE LITTERATURE

S[opou uorjestunto,’)

asod.nd-[ersuss

SoSessoul PaIoAlfopuUN

SSOUPUNOS POXRIAI SSUI

SSOUPUNOS UOIIRIOGR][0D

Kyoyes

£31A190% pROP OU

uonye[dwos redord

9gerdwod 0y uorydo

UOTYROYLIDA

(Se11AT)OR)aDURYSUT 1)U

(sjood) eourejsur 1y

rIRD

sossaoord-qns

HAL

HHAW

HSL

HOIL

H4.L

Hd N

HIND

HINWL

HS I

L

LS

Kemoyel gy

Aemayes yo

Kemoyes3 YO X

Kemoye3 (N

sjuawd[y pojroddng

NINdgJ
S0k

odAy0101d
‘[reae jou

ap01dg
S0k

Jouwroysueay

sok

TMVACNINDG
S0k

dSD dqepest-auryey
sok

uor)Ir)
S0k

12RO NN E
‘[reae jou

NINdVdD
‘[rear jou

100,

104

opnepy

T

ST

Nd

S19N TMVA

dsO

ydeir) aoe[J-uf

SINLVOH

NdD

WSIRULIO]

0202

¥10¢

4114

810¢

8008

800¢

1T0T

€10¢

L10T

810¢

Te9X

sano

[821]

lezT]

lee1] [leal [[set]

[79]

[c6]

[211]

[12]

[9s]

6]

9OUaIJoY

pauq

uonjeurIojsued|,

oeoxddy

NN ut uoyvorunwutoy) fo sisfippuy ayp 4of soyovoiddy pajioddng-100] fo uosiundwoy) :1°) S[qel,

3955

3960

3965

3970

3975

3980

152 CHAPTER 7. CONCLUSION

the diversity of the formal representation used. We add [209] as it is the referenced work that formalises
all the process time patterns in PAIS. Table 7.1 gives a synthetic comparison between these proposals and
ours. The table focuses on (1) covering all the time events in BPMN, considering their categories, and
(2) showing how these works support the presentation of time patterns. As far as the BPMN coverage
criteria are concerned, we can observe that we are among the approaches with high coverage. A few
studies address the evaluation of BPMN expressiveness with respect to its modelling elements, and most
of them extend the notation in order to enhance the support of the standard towards time management
constraints [99, 116, 119, 142, 143, 208|. As highlighted in Table 7.1, most of the existing works treat
time duration for activities extending BPMN by: (1) defining a non-deterministic delay for a task [116]
and [99] or, (2) representing a fixed duration a specified as an [a,a] interval [81]. However, BPMN
gives the possibility to represent a duration for activity using its own elements, without any extensions
(see Chapter 5). In addition, and to the best of our knowledge, no work in the literature allows one to
specify the semantics for the different types of time information (i.e., timeDate, timeCycle, timeDuration)
associated with BPMN time-related events. In this thesis, we cover the defined set of BPMN timer events
in their full generality. As an example, consider the timer boundary event with cycle type. BPMN defines
the cycle type with reference to ISO standard definition, where the ISO cycle type definition represents
a complex construct which may be a repetition based on a duration until date or a repetition defined by
a starting date and a period, or others (Table 5.2). To the best of our knowledge, most papers do not
support all the variations of this construct (see Table 7.2).

However, some works [210], limited by the absence of a formalization, propose a simplified version of
these events, e.g. every 10 minutes (a repetition on a defined period). Note that, even if the work in [209]
provides a very rich formal semantics for time-related process patterns in terms of temporal execution
trace, it is given for PAIS systems in general and does not address their semantics with reference to
the semantics of the BPMN time constructs. In addition, the proposed semantics does not enable the
verification and does not show their coverage w.r.t. standard BPMN elements.

Table 7.2: Comparison between Approaches Supporting BPMN Time-Constructs.

Reference [116] [208] [99] [14] [209] [81] [142] ours
[119] [104] [143]
Year 2008 | 2010-2012 | 2011 | 2013-2014 2016 2017-2019 | 2017-2018 | 2020
Formalism CSP | CSP+T TA Timed Ex. Traces | Timed PN Maude FOL
TSE . . - — - - ° .
é TICE L] ° L] L] — o L] L]
& T BE non-interrupt - . - - - - o o
TBE interrupt ° . ° . - - . .
Q timeDate - - - - . - -
E timeCycle
timeDuration ° . ° . ° . °
time lag between activities . . - . ° - ° °
duration . B . . .
time lags between arbitrary events - - - - . - - .
@ fixed date element - - - - . - - .
g shedule restricted element - - - - . - - -
% time based restriction - - - - . - - —
A~ validity period . .
time dependent variability - . - - . - - .
cycle element - - - - . - - °
periodicity . .
g time duration for activities - . °
g time interval for edges - ° - . - — . —

7.4 Limitations & Perspectives

Formal semantics support for BPMN models is an exhaustive research area, which can be only partially
covered by one thesis. Therefore, our work is subject to some limitations. Some of them were already
mentioned in the summary section of each chapter. In this section, we discuss these limitations, and we
give some ideas for dealing with them.

Some features that play a role in full-fledged executable collaborations have been discarded here. This
is the case of the data (data objects, data stores, assignments, and message payloads) and multi-instance
(for activities and pool lanes) constructs.

7.4. LIMITATIONS & PERSPECTIVES 153

3985 e Data constructs support. To deal with data, a direct (and usual) solution is to extend the
notion of state with a substitution from variables to values, indexed by process types or process
identifiers in case of multi-instance support. This is similar to what we did for the communication
medium (the "substitution" in this case being limited to a single variable, mnet) and also on a
recent work on adding space information to BPMN [205]. However, the treatment for unbound

3990 data (e.g., if one wants to verify a process, whatever the initialization of the data objects is, or with
data stores whose content is unknown) is much more complicated. This could be tackled using
approaches based on symbolic verification [173, 211-214].

e Multi-instance support. BPMN multi-instance constructs for processes (pool lanes) and activ-
ities (subprocesses and tasks). Supporting these constructs requires an extended format for the
3995 tokens to carry process identifiers types with possible specific indexed structures and the support of
data constructs. This would be reflected in the semantic rules for the BPMN constructs and adds
a degree to the complexity of the semantics. Some approaches that may be taken as references to
deal with data, multi-instance activities and multi-instance pool lanes are [71, 138].

Moreover, we identified some issues while experimenting timed-BPMN semantics with Alloy imple-
4000 mentation:

e Automated time tool support. The main problem with dealing with time is fundamental. This
applies as well to BPMN. With time, the state space explodes naturally. Alloy cannot handle this
without any form of abstraction. Yet, one still has to find a better representation of time steps in
it in order to make automated verification amenable.

4005 e Analysis results. We have noticed two difficulties using the Alloy Analyser as a verification tool:
(1) estimate the length of traces necessary to validate a property; (2) inefficiency (difficulty to
exceed twenty states). This second difficulty is the one that makes Alloy unsuitable for checking
properties with time, except for small examples. Alloy is better suited for checking structural
properties for dynamic ones. Therefore, we plan to study the use of other formalisms like Why3 or

4010 SMT which benefit from a symbolic representation and a high level of abstraction or formalisms
like Timed Automata and Time(d) Petri nets which benefit from a strong community that focuses
on analysing such models and study methods to mitigate the state space explosion explicitly.

Finally, some ideas for the improvement of the fbpmn tool would be addressed:

e Properties. The properties whose verification is supported by fbpmn tool-suite are generic ones
4015 and do not consider time aspects, but for classic time properties such as execution time (min, max).
We expect to extend the support to other time properties such as execution times average, waiting

times, or synchronisation times.

e More experiments. To verify the BPMN models using the Alloy Analyser, we have chosen the
default solver, Minisat, which is suitable used for small problems only. It would be useful to perform
4020 the analyses with Berkmin, which seems better for larger problems. On the other hand, during this
thesis, we tested the effectiveness of our tool in terms of capacity and execution time. However,
we were unable to measure the actual impact of the tool from the perspective of a user in charge
of specifying and verifying a business process model. We want to integrate our tool as a plug-in
in more general-purpose platforms for business processes, such as Apromore [137] or ProM [66], to
4025 expand its use and have feedbacks for improvement.

e Pattern support. The objective here is to strengthen the seven timed process pattern integration
as a reference in BPMN process modelling tools. We plan to extend on a tool with the formal
support of these patterns in the form of a set of rules walk-through that give confidence that they
are practically applicable.

154 CHAPTER 7. CONCLUSION

CHAPTER

7
I BIBLIOGRAPHY

w0 References for Chapter 1: Introduction

4035

4040

4045

4050

4055

4060

4065

[
2]

3]

[4]

[5]

[6]

17l

18]
19]

[10]

[11]

[12]

[13]

Marlon Dumas et al. Fundamentals of Business Process Management, Second Edition.
Springer, 2018 Cited on pages 1, 10, 11, 94, 95.

Mathias Weske. Business Process Management: Concepts, Languages, Architectures. Springer,
2007 Cited on pages 1, 16.

OMG Group. Business Process Modeling Notation. 2013. URL: http://www . omg . org/
spec/BPMN/2.0.2/ Cited on pages 1, 3, 4, 12, 20, 21, 58, 72, 90, 91, 99, 109.

W.M.P. van der Aalst. “Formalization and Verification of Event-Driven Process Chains”.
In: Information and Software technology 41 (1999), pp. 639—-650. DOI: 10.1016/S0950-
5849(99)00016-6 Cited on pages 1, 12.

Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. “YAWL: Yet Another Workflow
Language”. In: Information systems 30 (2005), pp. 245-275. DOI: 10.1016/j.1is.2004.
02.002 Cited on pages 1, 12.

Marlon Dumas and Arthur H. M. ter Hofstede. “UML Activity Diagrams as a Workflow
Specification Language”. In: fth International Conference on the unified Modeling Lan-
guage. Ed. by Martin Gogolla and Cris Kobryn. 2001, pp. 76-90. DOI: 10.1007/3-540-
45441 -1_7 Cited on pages 1, 12.

Manfred Reichert and Barbara Weber. Enabling Flezibility in Process-Aware Information
Systems - Challenges, Methods, Technologies. Springer, 2012 Cited on page 1.

Mathias Weske. Business Process Management: Concepts, Languages, Architectures. Springer
Verlag Berlin Heidelberg, 2012 Cited on pages 1, 10.

Marcello La Rosa. “Managing variability in process-aware information systems”. PhD
thesis. Queensland University of Technology, 2009 Cited on page 2.

Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. “Introduction to Model
Checking”. In: Handbook of Model Checking. 2018, pp. 1-26. DOI: 10.1007/978-3-319-
10575-8_1 Cited on pages 2, 27.

Basit Mubeen Abdul et al. “ UBBA: Unity Based BPMN Animator”. In: Information
Systems Engineering in Responsible Information Systems, CAISE Forum. 2019, pp. 1-9.
DOI: 10.1007/978-3-030-21297-1_1 Cited on page 2.

Fabio Casati et al. “Towards Business Processes Orchestrating the Physical Enterprise
with Wireless Sensor Networks”. In: 84th International Conference on Software Engineer-

ing, ICSE. 2012, pp. 1357-1360. DOI: 10.1109/DCOSS.2011.5982159 Clited on
page 3.

Sonja Meyer, Andreas Ruppen, and Lorenz M. Hilty. “The Things of the Internet of
Things in BPMN”. In: Advanced Information Systems Engineering, CAiSE Workshops.
2015, pp. 285-297. DOI: 10.1007/978-3-319-19243-7_27 Cited on page 3.

http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
https://doi.org/10.1016/S0950-5849(99)00016-6
https://doi.org/10.1016/S0950-5849(99)00016-6
https://doi.org/10.1016/S0950-5849(99)00016-6
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1007/3-540-45441-1_7
https://doi.org/10.1007/3-540-45441-1_7
https://doi.org/10.1007/3-540-45441-1_7
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-030-21297-1_1
https://doi.org/10.1109/DCOSS.2011.5982159
https://doi.org/10.1007/978-3-319-19243-7_27

4070

4075

4080

4085

4090

4095

4100

4105

156

[14]

[15]

[16]
[17]

[18]

CHAPTER 7. BIBLIOGRAPHY

Saoussen Cheikhrouhou et al. “Toward a Time-centric modeling of Business Processes
in BPMN 2.0". In: The 15th International Conference on Information Integration and
Web-based Applications € Services, IIWAS. 2013, pp. 154-163. DOI: 10.1145/2539150.
2539182 Cited on pages 3, 152.

Andreas Lanz, Barbara Weber, and Manfred Reichert. “Time patterns for process-aware
information systems”. In: Requirements Engineering 19 (2014), pp. 113-141. por: 10.
1007/s00766-012-0162-3 Cited on pages 3, 99, 114, 115, 117, 118, 120, 122, 123.

IS0 8601:2004, Data elements and interchange formats — Information interchange —
Representation of dates and times. Standard. ISO, 2004 Cited on pages 4, 99.

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison Wesley, 2002 Cited on pages 4, 27, 28, 127.

Alcino Cunha. “Bounded Model Checking of Temporal Formulas with Alloy”. In: 4th
International Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z, ABZ.
2014, pp. 303-308. DOI: 10.1007/978-3-662-43652-3_29 Cited on page 4.

References for Chapter 2: Background

1]
2]
3]
4]

[5]

[6]

8]

[10]

[17]

[19]

[20]

Marlon Dumas et al. Fundamentals of Business Process Management, Second FEdition.
Springer, 2018 Cited on pages 1, 10, 11, 94, 95.

Mathias Weske. Business Process Management: Concepts, Languages, Architectures. Springer,
2007 Cited on pages 1, 16.

OMG Group. Business Process Modeling Notation. 2013. URL: http://www . omg . org/
spec/BPMN/2.0.2/ Cited on pages 1, 3, 4, 12, 20, 21, 58, 72, 90, 91, 99, 109.

W.M.P. van der Aalst. “Formalization and Verification of Event-Driven Process Chains”.
In: Information and Software technology 41 (1999), pp. 639-650. DOI: 10.1016/S0950-
5849(99)00016-6 Cited on pages 1, 12.

Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. “YAWL: Yet Another Workflow
Language”. In: Information systems 30 (2005), pp. 245-275. DOIL: 10.1016/j.1is.2004.
02.002 Cited on pages 1, 12.

Marlon Dumas and Arthur H. M. ter Hofstede. “UML Activity Diagrams as a Workflow
Specification Language”. In: 4th International Conference on the unified Modeling Lan-
guage. Ed. by Martin Gogolla and Cris Kobryn. 2001, pp. 76-90. poI: 10.1007/3-540-
45441-1_7 Cited on pages 1, 12.

Mathias Weske. Business Process Management: Concepts, Languages, Architectures. Springer
Verlag Berlin Heidelberg, 2012 Cited on pages 1, 10.

Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. “Introduction to Model
Checking”. In: Handbook of Model Checking. 2018, pp. 1-26. DOI: 10.1007/978-3-319-
10575-8_1 Cited on pages 2, 27.

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison Wesley, 2002 Cited on pages 4, 27, 28, 127.

Chris Newcombe. “Why Amazon Chose TLA +”. In: Abstract State Machines, Alloy, B,
TLA, VDM, and Z - jJth International Conference, ABZ, 2014, Proceedings. Vol. 8477.
2014, pp. 25-39. DOI: 10.1007/978-3-662-43652-3_3 Cited on page 9.

Hamid Bagheri et al. “Detection of Design Flaws in the Android Permission Protocol
Through Bounded Verification”. In: 20th International Symposium Formal Methods, FM.
2015, pp. 73-89. DOI: 10.1007/978-3-319-19249-9_6 Cited on page 9.

https://doi.org/10.1145/2539150.2539182
https://doi.org/10.1145/2539150.2539182
https://doi.org/10.1145/2539150.2539182
https://doi.org/10.1007/s00766-012-0162-3
https://doi.org/10.1007/s00766-012-0162-3
https://doi.org/10.1007/s00766-012-0162-3
https://doi.org/10.1007/978-3-662-43652-3_29
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
https://doi.org/10.1016/S0950-5849(99)00016-6
https://doi.org/10.1016/S0950-5849(99)00016-6
https://doi.org/10.1016/S0950-5849(99)00016-6
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1007/3-540-45441-1_7
https://doi.org/10.1007/3-540-45441-1_7
https://doi.org/10.1007/3-540-45441-1_7
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-319-10575-8_1
https://doi.org/10.1007/978-3-662-43652-3_3
https://doi.org/10.1007/978-3-319-19249-9_6

157

a0 [21] Mathias Weske. Business Process Management - Concepts, Languages, Architectures,

Third Edition. Springer, 2019 Cited on page 10.

[22] James Lyle Peterson. Petri net theory and the modeling of systems. Prentice Hall PTR,

1981 Cited on page 12.

[23] Flavio Corradini et al. “A Classification of BPMN Collaborations based on Safeness and

4115 Soundness Notions”. In: Proceedings of the 25th International Workshop on Expressiveness

in Concurrency, EPTCS. 2018, pp. 37-52. DOI: 10.4204/EPTCS.276.5 Cited on pages 15,
17, 94-96, 132, 138, 150, 151.

[24] OMG Group. BPMN 2.0 by Example. 2010. URL: http://www.iet.unipi.it/m.cimino/
gpa/res/BPMN_by_example.pdf Cited on page 20.

a0 [25] Erich Grédel, Wolfgang Thomas, and Thomas Wilke, eds. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001].

Vol. 2500. 2002. por: 10.1007/3-540-36387-4 Cited on page 23.
[26] Christos Papadimitriou. Computational Complezity. Addison-Wesley, 1994 Cited on
page 23.

szs 27| Hendrik Decker. “Foundations of First-order Databases”. In: Proceedings of the First Com-
pulog Net Meeting on Knowledge Bases, CNKBS’92. 1992, pp. 6-8. DOI: 10.1145/27629.

27630 Cited on page 23.
[28] Herbert B. Enderton. A mathematical Introduction to Logic. Academic Press, 1972 Cited
on page 23.
a0 [29] Heinz-Dieter Ebbinghaus, Jorg Flum, and Wolfgang Thomas. Mathematical Logic (2nd
Edition). Springer, 1994 Cited on page 23.

[30] Melvin Fitting. First-Order Logic and Automated Theorem Proving, Second Edition. Springer,
1996 Cited on page 23.

[31] Dirk van Dalen. Logic and structure (4th Edition). Universitext. Springer, 2008 Cited on
4135 page 23.

[32] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge University
Press, 2008 Cited on page 26.

[33] Patrick Cousot and Radhia Cousot. “ Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints”. In: Con-

4140 ference Record of the Fourth ACM Symposium on Principles of Programming Languages,
POPL. 1977, pp. 238-252. DOI: 10.1145/512950.512973 Cited on page 27.

[34] Tobias Nipkow and Leonor Prensa Nieto. “Owicki/Gries in Isabelle/HOL”. In: Second In-
ternationsl Conference Fundamental Approaches to Software Engineering, FASE. Vol. 1577.

1999, pp. 188-203. pOI: 10.1007/978-3-540-49020-3_13 Cited on page 27.
aus [35] William Landi. “Undecidability of Static Analysis”. In: LOPLAS 1 (1992), pp. 323-337.
DOI: 10.1145/161494.161501 Cited on page 27.

[36] Edsger W. Dijkstra. “Guarded Commands, Nondeterminacy and Formal Derivation of
Programs”. In: Communications of the ACM 18 (1975), pp. 453-457. DOIL: 10 . 1145/

360933.360975 Cited on page 27.

a0 [37] Lawrence C. Paulson. Isabelle - A Generic Theorem Prover. Springer, 1994 Cited on
page 27.

[38] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof As-

sistant for Higher-Order Logic. Springer, 2002 Cited on

page 27.

https://doi.org/10.4204/EPTCS.276.5
http://www.iet.unipi.it/m.cimino/gpa/res/BPMN_by_example.pdf
http://www.iet.unipi.it/m.cimino/gpa/res/BPMN_by_example.pdf
http://www.iet.unipi.it/m.cimino/gpa/res/BPMN_by_example.pdf
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1145/27629.27630
https://doi.org/10.1145/27629.27630
https://doi.org/10.1145/27629.27630
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-540-49020-3_13
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975

4155

4160

4165

4170

4175

4180

4185

4190

4195

4200

158

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

CHAPTER 7. BIBLIOGRAPHY

C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Communication
ACM 12 (1969), pp. 576-580. DOI: 10.1145/1562764.1562779 Cited on pages 27, 80.

Edmund M. Clarke et al. “Model Checking and the State Explosion Problem”. In: Tools
for Practical Software Verification, LASER, International Summer School 2011, Revised

Tutorial Lectures. 2011, pp. 1-30. DOI: 10.1007/978-3-642-35746-6_1 Cited on
page 27.
Gerard Holzmann. The SPIN Model Checker - primer and reference manual. Addison-
Wesley, 2004 Cited on
page 27.

Sylvain Conchon et al. “Cubicle: A Parallel SMT-Based Model Checker for Parameterized
Systems - Tool Paper”. In: 24th International Conference Computer Aided Verification,
CAV. 2012, pp. 718-724. DOI: 10.1007/978-3-642-31424-7_55 Cited on page 27.

Johan Bengtsson et al. “UPPAAL - a Tool Suite for Automatic Verification of Real-
Time Systems”. In: Hybrid Systems I11: Verification and Control. 1995, pp. 232-243. DOIL:
10.1007/BFb0020949 Cited on page 27.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. “Model Checking TLA " Specifi-
cations”. In: Correct Hardware Design and Verification Methods, 10th IFIP WG 10.5
Advanced Research Working Conference, CHARME. Vol. 1703. 1999, pp. 54-66. DOTI:

10.1007/3-540-48153-2_6 Cited on page 33.
Leslie Lamport. The TLA Home Page. 2018. URL: http://lamport . azurewebsites.
net/tla/tla.html Cited on page 33.

Mana Taghdiri and Daniel Jackson. “A Lightweight Formal Analysis of a Multicast Key
Management Scheme”. In: Formal Techniques for Networked and Distributed Systems -
FORTE 2003, 23rd IFIP WG 6.1 International Conference, 2003, Proceedings. 2003,
pp- 240-256. DOI: 10.1007/978-3-540-39979-7_16 Cited on pages 84, 127.

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2012
Cited on pages 34, 36, 38, 132.

Marcelo F. Frias et al. “Reasoning About Static and Dynamic Properties in Alloy: A
Purely Relational Approach”. In: ACM Transition Software Engineering Methodology 14
(2005), pp. 478-526. DOI: 10.1145/1101815.1101819 Cited on pages 34, 36.

Daniel Jackson. “Alloy: A Lightweight Object Modelling Notation”. In: ACM Transactions
on Software Engineering and Methodology 11 (2002), pp. 256-290. DOI: 10.1145/505145.
505149 Cited on page 34.

Emina Torlak and Daniel Jackson. “Kodkod: A Relational Model Finder”. In: Tools and
Algorithms for the Construction and Analysis of Systems, 13th International Conference,
TACAS 2007, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS, 2007, Proceedings. Vol. 4424. 2007, pp. 632-647. DOI: 10.1007/978-
3-540-71209-1_49 Cited on page 38.

Daniel Le Berre and Stéphanie Roussel. “Sat4j 2.3.2: on the Fly solver Configuration
System Description”. In: Journal on Satisfiability, Boolean Modeling and Computation 8
(2014), pp. 197-202. pOI: 10.3233/sat190098 Cited on page 38.

Niklas Eén and Niklas Sorensson. “An Extensible SAT-solver”. In: Theory and Applica-
tions of Satisfiability Testing, 6th International Conference, SAT , 2003. Vol. 2919. 2003,
pp. 502-518 Clited on page 38.

Eugene Goldberg and Yakov Novikov. “BerkMin: A Fast and Robust Sat-solver”. In:
Discrete Applied Mathematics 155 (2007), pp. 1549-1561. DOI: 10.1016/j .dam. 2006 .
10.007 Cited on page 38.

https://doi.org/10.1145/1562764.1562779
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-31424-7_55
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/3-540-48153-2_6
http://lamport.azurewebsites.net/tla/tla.html
http://lamport.azurewebsites.net/tla/tla.html
http://lamport.azurewebsites.net/tla/tla.html
https://doi.org/10.1007/978-3-540-39979-7_16
https://doi.org/10.1145/1101815.1101819
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/505145.505149
https://doi.org/10.1145/505145.505149
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.3233/sat190098
https://doi.org/10.1016/j.dam.2006.10.007
https://doi.org/10.1016/j.dam.2006.10.007
https://doi.org/10.1016/j.dam.2006.10.007

4205

4210

4215

4220

4225

4230

4235

4240

4245

[54]

159

Nuno Macedo and Alcino Cunha. “Alloy meets TLA+: An Exploratory Study”. In: CoRR
abs/1603.03599 (2016) Cited on page 39.

References for Chapter 3: Literature Review

3]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

OMG Group. Business Process Modeling Notation. 2013. URL: http://www . omg . org/
spec/BPMN/2.0.2/ Cited on pages 1, 3, 4, 12, 20, 21, 58, 72, 90, 91, 99, 109.

Shoichi Morimoto. “A Survey of Formal Verification for Business Process Modeling”. In:
8th International Conference on Computational Science, ICCS. 2008, pp. 514-522. DOTI:
10.1007/978-3-540-69387-1_58 Cited on pages 41—43.

Wil MP Van der Aalst. “Business Process Management: a Comprehensive Survey”. In:
ISRN Software Engineering 2013 (2013). DOI: 10.1155/2013/507984 Cited on page 41.

Michael Fellmann and Andrea Zasada. “State-of-the-art of Business Process Compliance
Approaches: A Survey”. In: EMISA Forum 36 (2016), pp. 4548 Cited on pages 41-43.

Hanh H Hoang, Jason J Jung, and Chi P Tran. “Ontology-based Approaches for Cross-
Enterprise Collaboration: a Literature Review on Semantic Business Process Manage-
ment”. In: Enterprise Information Systems 8 (2014), pp. 648-664. DOI: 10.1080/17517575.
2013.767382 Cited on page 41.

Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. “Guidelines for Conducting Sys-
tematic Mapping Studies in Software Engineering: An Update”. In: Information and Soft-
ware Technology 64 (2015), pp. 1-18. DOI: 10.1016/j.infsof.2015.03.007 Cited on
page 42.

Volker Gruhn and Ralf Laue. “A Comparison of Soundness Results Obtained by Different
Approaches”. In: International Business Process Management Workshops, BPM. 2009,
pp- 501-512. DOI: 10.1007/978-3-642-12186-9_47 Clited on page 43.

Anam Amjad et al. “Event-Driven Process Chain for Modeling and Verification of Business
Requirements-A Systematic Literature Review”. In: IEEE Access 6 (2018), pp. 9027-9048.
DOI: 10.1109/ACCESS.2018.2791666 Cited on page 43.

Heerko Groefsema and Doina Bucur. “A Survey of Formal Business Process Verification:
From Soundness to Variability”. In: 3rd International Symposium on Business Modeling
and Software Design, BMSD. 2013, pp. 198-203. DOI: 10.5220/0004775401980203 Cited
on page 43.

Abiodun Muyideen Mustapha et al. “A Systematic Literature Review on Compliance
Requirements Management of Business Processes”. In: International Journal of System
Assurance Engineering and Management 11 (2020), pp. 561-576. DOI: 10.1007/s13198-
020-00985-w Cited on page 43.

Remco M Dijkman, Marlon Dumas, and Chun Ouyang. “Semantics and Analysis of Busi-
ness Process Models in BPMN”. In: Information and Software technology 50 (2008),
pp. 1281-1294. poI: 10.1016/j.infsof.2008.02.006 Cited on pages 46, 47, 5457, 59, 60,
62, 150, 151.

Remco Dijkman. Transformer. Not Found. 2008. URL: https://is.tm.tue.nl/staff/
rdijkman/cbd.html:transformer Cited on pages 46, 59.

Eindhoven University of Technology Process Mining Group. Process Mining Framework
(PROM). 2020. URL: http://www.processmining.org/prom/start Cited on pages 46,
155.

Tsukasa Takemura. “Formal Semantics and Verification of BPMN Transaction and Com-
pensation”. In: Proceedings of the 3rd IEEE Asia-Pacific Services Computing Conference,
APSCC. 2008, pp. 284-290. DOI: 10.1109/APSCC.2008.208 Cited on pages 46, 54, 56, 57.

http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
https://doi.org/10.1007/978-3-540-69387-1_58
https://doi.org/10.1155/2013/507984
https://doi.org/10.1080/17517575.2013.767382
https://doi.org/10.1080/17517575.2013.767382
https://doi.org/10.1080/17517575.2013.767382
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1007/978-3-642-12186-9_47
https://doi.org/10.1109/ACCESS.2018.2791666
https://doi.org/10.5220/0004775401980203
https://doi.org/10.1007/s13198-020-00985-w
https://doi.org/10.1007/s13198-020-00985-w
https://doi.org/10.1007/s13198-020-00985-w
https://doi.org/10.1016/j.infsof.2008.02.006
https://is.tm.tue.nl/staff/rdijkman/cbd.html:transformer
https://is.tm.tue.nl/staff/rdijkman/cbd.html:transformer
https://is.tm.tue.nl/staff/rdijkman/cbd.html:transformer
http://www.processmining.org/prom/start
https://doi.org/10.1109/APSCC.2008.208

4250

4255

4260

4265

4270

4275

4280

4285

4290

4295

160

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

CHAPTER 7. BIBLIOGRAPHY

C Ou-Yang and YD Lin. “BPMN-based Business Process Model Feasibility Analysis: a
Petri net Approach”. In: International Journal of Production Research 46 (2008), pp. 3763—
3781. DOI: 10.1080/00207540701199677 Cited on pages 46, 54, 55, 57.

Christian Wolter, Philip Miseldine, and Christoph Meinel. “Verification of Business Pro-
cess Entailment Constraints Using SPIN”. In: Engineering Secure Software and Systems,
First International Symposium ESSoS. 2009, pp. 1-15. DOI: 10.1007/978-3-642-00199-
4_1 Cited on pages 46, 54, 55, 57, 59, 60, 62.
Remco M. Dijkman and Pieter Van Gorp. “BPMN 2.0 Execution Semantics Formalized
as Graph Rewrite Rules”. In: Proceedings of Second International Workshop of Business
Process Modeling Notation, BPMN. 2010, pp. 16-30. DOI: 10.1007/978-3-642-16298-
5_4 Cited on pages 46, 54, 55, 57.

Pieter Van Gorp and Remco M. Dijkman. “A Visual Token-based Formalization of BPMN
2.0 based on In-place Transformations”. In: Information and Software Technology 55
(2013), pp. 365-394. DOI: 10.1016/j.infsof.2012.08.014 Cited on pages 46, 54, 55,
57-60, 62, 150, 151, 155.

Alberto Bastias, Sidharth Bihary, and Suman Roy. “An Automated Analysis of Errors for
BPM Processes Modeled using an In-House Infosys Tool”. In: 18th Asia Pacific Software
Engineering Conference, APSEC. 2011, pp. 97-105. DOI: 10.1109/APSEC.2011.49 C(ited
on pages 46, 54, 55, 57.

The Woflan Development Team. The Petri-net-based workflow analyzer. 2004. URL: http:
//www.swmath.org/software/7028 Cited on page 46.

Ben D’Angelo et al. “LOLA: Runtime Monitoring of Synchronous Systems”. In: 12th In-
ternational Symposium on Temporal Representation and Reasoning, TIME. 2005, pp. 166—
174. por: 10.1109/TIME.2005.26 Cited on page 46.

Suman Roy et al. “An Empirical Study of Error Patterns in Industrial Business Process
Models”. In: IEEETransactions on Services Computing (2013), pp. 140-153. por: 10.
1109/TSC.2013.10 Cited on pages 46, 54, 55, 57.

Suman Roy, A. S. M. Sajeev, and Srivibha Sripathy. “Diagnosing Industrial Business
Processes: Early Experiences”. In: 19th International Symposium Formal Methods Pro-
ceedings, FM. 2014, pp. 703-717. DOI: 10.1007/978-3-319-06410-9_47 Cited on
pages 46, 54, 55, 57.

Suman Roy and A. S. M. Sajeev. “A Formal Framework for Diagnostic Analysis for Errors
of Business Processes”. In: Transactions on Petri Nets and Other Models of Concurrency
11 (2016), pp. 226-261. DOI: 10.1007/978-3-662-53401-4_11 Cited on pages 47, 54, 55,
57.

Jutta A. Miille, Christine Tex, and Klemens Béhm. “A Practical Data-flow Verification
Scheme for Business Processes”. In: Information Systems 81 (2019), pp. 136-151. por:

10.1016/j.1s.2018.12.002 Cited on pages 47, 54, 55, 57.
Geneva ISO. Switzerland: Road vehicles—Open Test sequence eXchange format (OTX).
2012. URL: https://www.iso.org/standard/53509.html Cited on page 47.

Elaheh Ordoni, Jutta A. Miille, and Klemens Bohm. “Verification of Data-Value-Aware
Processes and a Case Study on Spectrum Auctions”. In: 22nd IEEE Conference on Busi-
ness Informatics, CBI. 2020, pp. 181-190. DOI: 10.1109/CBI49978.2020.00027 Cited on
pages 47, 54, 55, 57.

Carlo Combi, Barbara Oliboni, and Francesca Zerbato. “A Modular Approach to the
Specification and Management of Time Duration Constraints in BPMN”. In: Information
Systems 84 (2019), pp. 111-144. po1: 10.1016/j.1s.2019.04.010 Cited on pages 47, 54,
57, 94, 150, 152.

https://doi.org/10.1080/00207540701199677
https://doi.org/10.1007/978-3-642-00199-4_1
https://doi.org/10.1007/978-3-642-00199-4_1
https://doi.org/10.1007/978-3-642-00199-4_1
https://doi.org/10.1007/978-3-642-16298-5_4
https://doi.org/10.1007/978-3-642-16298-5_4
https://doi.org/10.1007/978-3-642-16298-5_4
https://doi.org/10.1016/j.infsof.2012.08.014
https://doi.org/10.1109/APSEC.2011.49
http://www.swmath.org/software/7028
http://www.swmath.org/software/7028
http://www.swmath.org/software/7028
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TSC.2013.10
https://doi.org/10.1109/TSC.2013.10
https://doi.org/10.1109/TSC.2013.10
https://doi.org/10.1007/978-3-319-06410-9_47
https://doi.org/10.1007/978-3-662-53401-4_11
https://doi.org/10.1016/j.is.2018.12.002
https://www.iso.org/standard/53509.html
https://doi.org/10.1109/CBI49978.2020.00027
https://doi.org/10.1016/j.is.2019.04.010

4300

4305

4310

4315

4320

4325

4330

4335

4340

[82]

[83]

[84]

[85]

[86]

[87]

[33]

[89]

[90]

[91]

92]

(93]

[94]

195]

161

Anass Rachdi, Abdeslam En-Nouaary, and Mohamed Dahchour. “Liveness and Reach-
ability Analysis of BPMN Process Models”. In: Journal of Computing and Information
Technology 24 (2016), pp. 195-207. DOI: 10.20532/CIT.2016.1002774 Cited on pages 47,
54, 55, 57.

Said Meghzili et al. “Transformation and Validation of BPMN Models to Petri Nets Models
Using GROOVE”. In: International Conference on Advanced Aspects of Software Engi-
neering, ICAASE. 2016, pp. 22-29. DOI: 10.1109/ICAASE.2016.7843859 Cited on
pages 47, 54, 55, 57.

Said Meghzili et al. “An Approach for the Transformation and Verification of BPMN
Models to Colored Petri Nets Models”. In: International Journal of Software Innovation
8 (2020), pp. 17-49. DOI: 10.4018/1JSI1.2020010102 Cited on pages 47, 54, 55, 57.

Ahmed Kheldoun, Kamel Barkaoui, and Malika Ioualalen. “Specification and Verification
of Complex Business Processes — a High-Level Petri Net-Based Approach”. In: 15th In-
ternational Conference on Business Process Management, BPM. 2016, pp. 55-71. DOI:
10.1007/978-3-319-23063-4_4 Cited on pages 47, 54, 57.

Ahmed Kheldoun, Kamel Barkaoui, and Malika Toualalen. “Formal Verification of Com-
plex Business Processes Based on High-level Petri Nets”. In: Information Sciences 385
(2017), pp. 39-54. DOI: 10.1016/j.ins.2016.12.044 Cited on pages 47, 54, 57, 59, 60, 62,
150, 151.

Umair Mutarraf et al. “Transformation of Business Process Model and Notation Models
onto Petri Nets and their Analysis”. In: Advances in Mechanical Engineering 10 (2018),
p. 1687814018808170. poI: 10.1177/1687814018808170 Cited on pages 47, 54, 55, 57.

Reggie Davidrajuh. GPenSIM: a general purpose Petri net simulator. 2015. URL: http:
//www.davidrajuh.net/gpensim Cited on page 48.

Chanon Dechsupa, Wiwat Vatanawood, and Arthit Thongtak. “Transformation of the
BPMN Design Model into a Colored Petri Net using the Partitioning Approach”. In:
IEEFE Access 6 (2018), pp. 38421-38436. DOI: 10.1109/ACCESS.2018.2853669 Cited on
pages 48, 54, 57, 59, 60, 62, 150, 151.

Chanon Dechsupa, Wiwat Vatanawood, and Arthit Thongtak. “Hierarchical Verification
for the BPMN Design Model Using State Space Analysis”. In: IEEE Access 7 (2019),
pp. 16795-16815 Cited on pages 48, 54.

Saoussen Cheikhrouhou et al. “Formal Specification and Verification of Cloud Resource
Allocation using Timed Petri-Nets”. In: International Workshops on New Trends in Model
and Data Engineering Proceedings, MEDI. 2018, pp. 40—-49. pDo1: 10.1007/978-3-030-
02852-7_4 Cited on pages 48, 54, 57.

Stephan Haarmann and Mathias Weske. “Cross-Case Data Objects in Business Processes:
Semantics and Analysis”. In: Business Process Management Forum, BPM Forum. 2020,
pp. 3-17. DOL: 10.1007/978-3-030-58638-6_1 Cited on pages 48, 54, 57, 59, 60, 62.

Stephan Haarmann and Mathias Weske. fem2cpn. 2020. URL: https://bptlab.github.
io/fcm2cpn/ Cited on pages 48, 59.

JianHong Ye et al. “Transformation of BPMN to YAWL”. In: International Conference on

Computer Science and Software Engineering, CSSE. 2008, pp. 354-359. poI: 10.1109/
APSCC.2008.208 Cited on pages 48, 54, 57, 59, 60, 62.

JianHong Ye et al. “Formal Semantics of BPMN Process Models using YAWL”. In: Second
International Symposium on Intelligent Information Technology Application. 2008, pp. 70—
74. DOL: 10.1109/IITA.2008.68 Cited on pages 48, 54, 57, 59, 60, 62, 150, 151.

https://doi.org/10.20532/CIT.2016.1002774
https://doi.org/10.1109/ICAASE.2016.7843859
https://doi.org/10.4018/IJSI.2020010102
https://doi.org/10.1007/978-3-319-23063-4_4
https://doi.org/10.1016/j.ins.2016.12.044
https://doi.org/10.1177/1687814018808170
http://www.davidrajuh.net/gpensim
http://www.davidrajuh.net/gpensim
http://www.davidrajuh.net/gpensim
https://doi.org/10.1109/ACCESS.2018.2853669
https://doi.org/10.1007/978-3-030-02852-7_4
https://doi.org/10.1007/978-3-030-02852-7_4
https://doi.org/10.1007/978-3-030-02852-7_4
https://doi.org/10.1007/978-3-030-58638-6_1
https://bptlab.github.io/fcm2cpn/
https://bptlab.github.io/fcm2cpn/
https://bptlab.github.io/fcm2cpn/
https://doi.org/10.1109/APSCC.2008.208
https://doi.org/10.1109/APSCC.2008.208
https://doi.org/10.1109/APSCC.2008.208
https://doi.org/10.1109/IITA.2008.68

4345

4350

4355

4360

4365

4370

4375

4380

4385

162

[96]

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

CHAPTER 7. BIBLIOGRAPHY

JianHong Ye and Wen Song. “Transformation of BPMN Diagrams to YAWL Nets”. In:
Journal of Software 5 (2010), pp. 396-404. DOI: 10.4304/jsw.5.4.396-404 Cited on
pages 48, 54, 57, 59, 60, 62.

Oussama Mohammed Kherbouche, Adeel Ahmad, and Henri Basson. “Using Model Check-
ing to Control the Structural Errors in BPMN Models”. In: IEEE 7th International
Conference on Research Challenges in Information Science, RCIS. 2013, pp. 1-12. DOLI:
10.1109/RCIS.2013.6577723 Cited on pages 48, 54-57, 59, 60, 62.

Oussama Mohammed Kherbouche, Ahmad Adeel, and Henri Basson. “Detecting Struc-
tural Errors in BPMN Process Models”. In: 15th IEEE International Multitopic Confer-
ence, INMIC. 2012, pp. 425-431. DOI: 10.1109/INMIC.2012.6511490 Cited on pages 48,
54, 55, 57, 59, 60, 62.

Kenji Watahiki, Fuyuki Ishikawa, and Kunihiko Hiraishi. “Formal Verification of Business
Processes with Temporal and Resource Constraints”. In: Proceedings of the IEEE Inter-
national Conference on Systems, Man and Cybernetics, SMC. 2011, pp. 1173-1180. DOTI:
10.1109/ICSMC. 2011 .6083857 Cited on pages 49, 54, 55, 57, 150, 152.

Kelly Rosa Braghetto, Joao Eduardo Ferreira, and Jean-Marc Vincent. “Performance
Evaluation of Business Processes through a Formal Transformation to SAN”. In: 8th Fu-
ropean Performance Engineering Workshop, EPEW. 2011, pp. 42-56. DOI1: 10.1007/978-
3-642-24749-1_5 Cited on pages 49, 54, 55, 57, 59, 60, 62.

Luis E. Mendoza Morales. “Business Process Verification Using a Formal Compositional
Approach and Timed Automata”. In: XXXIX Latin American Computing Conference,
CLEI 2013, pp. 1-10. po1: 10.1109/CLEI.2013.6670616 Cited on pages 49, 54, 55, 57,
59, 60, 62.

Luis Mendoza. “Business Process Verification: The Application of Model Checking and
Timed Automata”. In: CLEI Electronic Journal 17 (2014). DOI: 10.19153/cleiej.17.2.2
Cited on pages 49, 54-57, 59, 60, 62.

Aleksander Gonzélez et al. “ BTRANSFORMER - A Tool for BPMN to CSP+T Transfor-
mation”. In: Proceedings of the 13th International Conference on Enterprise Information
Systems, ICEIS. 2011, pp. 363-366. DOI: 10.5220/0003430003630366 Cited on page 49.

Saoussen Cheikhrouhou et al. “Enhancing Formal Specification and Verification of Tem-
poral Constraints in Business Processes”. In: IEEE International Conference on Services
Computing, SCC. 2014, pp. 701-708. DOI: 10.1109/SCC.2014.97 Cited on pages 49, 54,
55, 57, 150, 152.

Ralph Hoch et al. “Verification of Business Processes Against Business Rules Using Object
Life Cycles”. In: New Advances in Information Systems and Technologies - Volume 1,
WorldCIST. 2016, pp. 589-598. DOI: 10.1007/978-3-319-31232-3_55 Cited on
pages 49, 54, 55, 57.

Sihem Mallek et al. “Enabling Model Checking for Collaborative Process Analysis: from
BPMN to 'Network of Timed Automata”. In: Enterprise Information Systems 9 (2015),
pp. 279-299. DOI: 10.1080/17517575.2013.879211 Cited on pages 49, 54-57.

Pascal Poizat, Gwen Salaiin, and Ajay Krishna. “Checking Business Process Evolution”.
In: 18th International Conference on Formal Aspects of Component Software, FACS. 2016,
pp. 36-53. DOI: 10.1007/978-3-319-57666-4_4 Cited on pages 49, 54, 55.

Ajay Krishna, Pascal Poizat, and Gwen Salaiin. “Checking Business Process Evolution”.
In: Science of Computer Programming 170 (2019), pp. 1-26. por: 10.1016/j.scico.
2018.09.007 Cited on pages 49, 54, 138.

https://doi.org/10.4304/jsw.5.4.396-404
https://doi.org/10.1109/RCIS.2013.6577723
https://doi.org/10.1109/INMIC.2012.6511490
https://doi.org/10.1109/ICSMC.2011.6083857
https://doi.org/10.1007/978-3-642-24749-1_5
https://doi.org/10.1007/978-3-642-24749-1_5
https://doi.org/10.1007/978-3-642-24749-1_5
https://doi.org/10.1109/CLEI.2013.6670616
https://doi.org/10.19153/cleiej.17.2.2
https://doi.org/10.5220/0003430003630366
https://doi.org/10.1109/SCC.2014.97
https://doi.org/10.1007/978-3-319-31232-3_55
https://doi.org/10.1080/17517575.2013.879211
https://doi.org/10.1007/978-3-319-57666-4_4
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/j.scico.2018.09.007

4390

4395

4400

4405

4410

4415

4420

4425

4430

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

163

Ajay Krishna, Pascal Poizat, and Gwen Salaiin. “VBPMN: Automated Verification of
BPMN Processes (Tool Paper)”. In: 13th International Conference on integrated Formal
Methods, 1F'M. 2017, pp. 323-331. DOI: 10.1007/978-3-319-66845-1_21 Cited on
pages 49, 54, 55, 57, 59, 60, 63,

Salma Ayari, Yousra Bendaly Hlaoui, and Leila Jemni Ben Ayed. “A Refinement based
Verification Approach of BPMN Models Using NuSMV”. In: Proceedings of the 13th
International Conference on Software Technologies, ICSOFT. 2018, pp. 563-574. DOI:
10.5220/0006914105630574 Cited on pages 50, 54, 55, 57.

Mihal Brumbulli, Emmanuel Gaudin, and Ciprian Teodorov. “Automatic Verification of
BPMN Models”. In: 10th FEuropean Congress on Embedded Real Time Software and Sys-
tems, ERTS. 2020, pp. 1-6 Cited on pages 50, 54, 55, 57, 59, 60,
62.

VeriMoB project team. BPMN Formalization. 2019. URL: http://www.obpcdl.org Cited
on pages 50, 59.

Marco Autili, Paola Inverardi, and Patrizio Pelliccione. “Graphical Scenarios for Specify-
ing Temporal Properties: an Automated Approach”. In: Automated Software Engineering
14 (2007), pp. 293-340. porL: 10.1007/s10515-007-0012-6 Cited on page 50.

Peter Y. H. Wong and Jeremy Gibbons. “A Process Semantics for BPMN”. In: Formal
Methods and Software Engineering, 10th International Conference on Formal Engineering
Methods, ICFEM. 2008, pp. 355-374. DOI: 10.1007/978-3-540-88194-0_22 Cited on
pages 50, 54-57, 59, 60, 62.

Peter YH Wong and Jeremy Gibbons. “Verifying Business Process Compatibility (short
paper)”. In: Proceedings of the Eighth International Conference on Quality Software,
QSIC. 2008, pp. 126-131. DOI: 10.1109/QSIC.2008.6 Cited on pages 50, 54, 55, 57.

Peter YH Wong and Jeremy Gibbons. “A Relative Timed Semantics for BPMN”. In:
FElectronic Notes in Theoretical Computer Science 229 (2009), pp. 59-75. pOI: 10.1016/
j.entcs.2009.06.029 Cited on pages 50, 54, 55, 57, 150, 152.

Peter Wong YH and Jeremy Gibbons. “Formalisations and Applications of BPMN”. In:
Science of Computer Programming 76 (2011), pp. 633-650. DOI: 10.1016/j.scico.2009.
09.010 Cited on pages 50, 54, 55, 57, 150, 151.

Davide Prandi, Paola Quaglia, and Nicola Zannone. “Formal Analysis of BPMN via a
Translation into COWS”. In: Proceedings of 10th International Conference Coordination
Models and Languages, COORDINATION. 2008, pp. 249-263. DOI: 10.1007/978-3-540-
68265-3_16 Cited on pages 50, 54, 55, 57.

Manuel I. Capel and Luis Eduardo Mendoza. “Automating the Transformation from
BPMN Models to CSP+ T Specifications”. In: 35th Annual IEEE Software Engineer-
ing Workshop, SEW. 2012, pp. 100-109. DOI: 10.1109/SEW.2012.17 Cited on pages 50,
54, 55, 57, 59, 60, 63, 150, 152.

Luke Herbert and Robin Sharp. “Using Stochastic Model Checking to Provision Complex
Business Services”. In: 14th International IEEE Symposium on High-Assurance Systems
Engineering, HASE. 2012, pp. 98-105. DOI: 10.1109/HASE.2012.29 Cited on pages 50,
54, 57, 59, 60, 62.

Luke T Herbert, Zaza Hansen, and Peter Jacobsen. “SBAT: A Stochastic BPMN Anal-
ysis Tool”. In: Proceedings of the ASME 2014 12th Biennial Conference on Engineering
Systems Design and Analysis, ESDA. 2014, p. 10. DOI: 10.1115/ESDA2014-20437 C(Cited
on pages 50, 54, 55, 57, 59, 60, 62.

https://doi.org/10.1007/978-3-319-66845-1_21
https://doi.org/10.5220/0006914105630574
http://www.obpcdl.org
https://doi.org/10.1007/s10515-007-0012-6
https://doi.org/10.1007/978-3-540-88194-0_22
https://doi.org/10.1109/QSIC.2008.6
https://doi.org/10.1016/j.entcs.2009.06.029
https://doi.org/10.1016/j.entcs.2009.06.029
https://doi.org/10.1016/j.entcs.2009.06.029
https://doi.org/10.1016/j.scico.2009.09.010
https://doi.org/10.1016/j.scico.2009.09.010
https://doi.org/10.1016/j.scico.2009.09.010
https://doi.org/10.1007/978-3-540-68265-3_16
https://doi.org/10.1007/978-3-540-68265-3_16
https://doi.org/10.1007/978-3-540-68265-3_16
https://doi.org/10.1109/SEW.2012.17
https://doi.org/10.1109/HASE.2012.29
https://doi.org/10.1115/ESDA2014-20437

4435

4440

4445

4450

4455

4460

4465

4470

4475

164

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

CHAPTER 7. BIBLIOGRAPHY

Luke Thomas Herbert and Zaza Nadja Lee Hansen. “Restructuring of Workflows to Min-
imise Errors via Stochastic Model Checking: An Automated Evolutionary Approach”. In:
Reliability Engineering € System Safety 145 (2016), pp. 351-365. DOI: 10.1016/j.ress.
2015.07.002 Cited on pages 50, 54, 55, 57.

Sofiane Boukelkoul, Ramdane Maamri, and Mohammed Chihoub. “A Discrete Event
Model for Analysis and Verification of Time-Constrained Business Processes”. In: Con-
currency and Computation: Practice and Ezxperience 33 (2021). DOI: 10.1002/cpe.5753
Cited on pages 51, 54, 55, 57.

Vitus S. W. Lam. “Formal Analysis of BPMN Models: a NuSMV-Based Approach”. In:
International Journal of Software Engineering and Knowledge Engineering 20 (2010),
pp. 987-1023. pOI: 10.1142/50218194010005079 Cited on pages 51, 54, 55, 57.

Vitus SW Lam. “A Precise Execution Semantics for BPMN”. In: International Journal of
Computer Science 39 (2012), pp. 20-33. DOI: 10.1109/MIC.2004.58 Cited on pages 51,
54, 57, 150, 151.

Pieter M. Kwantes et al. “Towards Compliance Verification between Global and Local
Process Models”. In: §th International Conference on Graph Transformation, ICGT. 2015,
pp. 221-236. DOI: 10.1007/978-3-319-21145-9_14 Cited on pages 51, 54, 55.

Marco Brambilla et al. “The Role of Visual Tools in a Web Application Design and
Verification Framework: A Visual Notation for LTL Formulae”. In: Web Engineering, 5th
International Conference, ICWE. 2005, pp. 557-568. DOI: 10.1007/11531371_70 Cited
on page 51.

Nissreen A. S. El-Saber and Artur Boronat. “BPMN Formalization and Verification using
Maude”. In: Proceedings of the 2014 Workshop on Behaviour Modelling - Foundations and
Applications, BM-FA. 2014, pp. 1-12. DOI1: 10.1145/2630768.2630769 Cited on pages 51,
54, 55, 57, 150, 151.

Kazuhiro Ogata, Thapana Chaimanont, and Min Zhang. “Formal Modeling and Analysis
of Time- and Resource-Sensitive Simple Business Processes”. In: Journal of Information
Security and Applications 31 (2016), pp. 23-40. DOI: 10.1016/j.jisa.2016.05.001 Cited
on pages 51, 54, 55, 57.

Flavio Corradini et al. “BProVe: a Formal Verification Framework for Business Process
Models”. In: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE. 2017, pp. 217-228. DOI: 10.1109/ASE.2017.8115635 Clited
on pages 51, 54, 55, 57.

Flavio Corradini et al. “BProVe: Tool Support for Business Process Verification”. In:
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE. 2017, pp. 217-228. DOI: 10.1109/ASE.2017.8115708 Cited on
pages 51, 54, 55, 57, 59, 60, 63.

Flavio Corradini et al. “A Formal Approach to Modelling and Verification of Business
Process Collaborations”. In: Science of Computer Programming 166 (2018), pp. 35-70.
DOL: 10.1016/5.scic0.2018.05.008 Cited on pages 51, 54, 55, 57, 59, 60, 63, 150, 151.

Flavio Corradini et al. “An Operational Semantics of BPMN Collaboration”. In: 12th
International Conference Formal Aspects of Component Software, FACS. 2015, pp. 161—
180. DOI: 10.1007/978-3-319-28934-2_9 Cited on pages 51, 54, 59, 60, 63.

Gordon D. Plotkin. “A Structural Approach to Operational Semantics”. In: Journal of
Logical and Algebraic Methods in Programming 60-61 (2004), pp. 17-139. por: 10.1016/
j.jlap.2004.05.001 Cited on page 51.

https://doi.org/10.1016/j.ress.2015.07.002
https://doi.org/10.1016/j.ress.2015.07.002
https://doi.org/10.1016/j.ress.2015.07.002
https://doi.org/10.1002/cpe.5753
https://doi.org/10.1142/S0218194010005079
https://doi.org/10.1109/ MIC.2004.58
https://doi.org/10.1007/978-3-319-21145-9_14
https://doi.org/10.1007/11531371_70
https://doi.org/10.1145/2630768.2630769
https://doi.org/10.1016/j.jisa.2016.05.001
https://doi.org/10.1109/ASE.2017.8115635
https://doi.org/10.1109/ASE.2017.8115708
https://doi.org/10.1016/j.scico.2018.05.008
https://doi.org/10.1007/978-3-319-28934-2_9
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1016/j.jlap.2004.05.001

165

aso [135] Flavio Corradini et al. “Global vs. Local Semantics of BPMN 2.0 OR-Join”. In: 44th
International Conference on Current Trends in Theory and Practice of Computer Science
Proceedings, SOFSEM. 2018, pp. 321-336. DOI: 10.1007/978-3-319-73117-9_23 (lted
on pages 52, 54.

[136] Fabrizio Fornari et al. “Checking Business Process Correctness in Apromore”. In: Infor-
4485 mation Systems in the Big Data Era Proceedings, CAiSE Forum. 2018, pp. 114-123. DOI:
10.1007/978-3-319-92901-9_11 Cited on pages 52, 5.

[137] Apromore Pty Ltd. Apromore. 2020. URL: https://apromore.org Cited on pages 52, 153.

[138] Flavio Corradini et al. “Animating Multiple Instances in BPMN Collaborations: From

Formal Semantics to Tool Support”. In: 16th International Conference on Business Process

4400 Management, BPM. 2018, pp. 83-101. DOI: 10.1007/978-3-319-98648-7_6 Cited on
pages 52, 54, 59, 60, 63, 138, 150, 151, 153.

[139] Flavio Corradini et al. “Correctness Checking for BPMN Collaborations with Sub-Processes”.
In: Journal of Systems and Software 166 (2020), p. 110594. DOI: 10.1016/j . jss.2020.
110594 Cited on pages 52, 54—57, 59, 60, 63.

a0 [140] Flavio Corradini et al. “Well-structuredness, Safeness and Soundness: A Formal Classi-
fication of BPMN Collaborations”. In: Journal of Logical and Algebraic Methods in Pro-
grammang 119 (2021), p. 100630. DOI: 10.1016/j.jlamp.2020.100630 Cited on pages 52,
54, 61, 128.

[141] Flavio Corradini et al. “Collaboration vs. Choreography Conformance in BPMN 2.0: From
4500 Theory to Practice”. In: 22nd IEEFE International Enterprise Distributed Object Comput-
ing Conference, EDOC. 2018, pp. 95-104. DOI: 10.1109/EDOC.2018.00022 Cited on

pages 52, 54, 59, 60, 63.

[142] Francisco Duran and Gwen Salaiin. “Verifying Timed BPMN Processes Using Maude”. In:

19th IFIP International Conference on Coordination Models and Languages, , COORDI-

4505 NATION. 2017, pp. 219-236. DOIL: 10.1007/978-3-319-59746-1_12 Cited on pages 52,
54, 55, 57, 59-61, 63, 150, 152.

[143] Francisco Duran, Camilo Rocha, and Gwen Salaiin. “Stochastic analysis of BPMN with
time in rewriting logic”. In: Science of Computer Programming 168 (2018), pp. 1-17. DOI:
10.1016/j.scico.2018.08.007 Cited on pages 52, 54, 55, 57, 59-61, 63, 150, 152.

asi0 [144] Francisco Duran, Camilo Rocha, and Gwen Salaiin. “Computing the Parallelism Degree of
Timed BPMN Processes”. In: Collocated Workshops of Software Technologies: Applications
and Foundations - STAF. 2018, pp. 320-335. DOI: 10.1007/978-3-030-04771-9_24
Cited on pages 52, 54, 57, 59-61, 63.

[145] Francisco Duran, Camilo Rocha, and Gwen Salaiin. “A Rewriting Logic Approach to
4515 Resource Allocation Analysis in Business Process Models”. In: Science of Computer Pro-
grammang 183 (2019), p. 102303. DOI: 10.1016/j.scico.2019.102303 Cited on pages 52,

54, 57, 59-61, 63.

[146] Francisco Duran, Camilo Rocha, and Gwen Salaiin. “Symbolic Specification and Verifica-

tion of Data-Aware BPMN Processes Using Rewriting Modulo SMT”. In: 12th Interna-

4520 tional Workshop of Rewriting Logic and Its Applications, WRLA. 2018, pp. 76-97. DOI:
10.1007/978-3-319-99840-4_5 Cited on pages 52, 54, 57, 61.

[147] Antoni Ligeza and Tomasz Potempa. “AI Approach to Formal Analysis of BPMN Models:
Towards a Logical Model for BPMN Diagrams”. In: 3rd International Workshop on Ad-
vances in Business ICT, ABICT. 2012, pp. 69-88. DOI: 10.1007/978-3-319-03677-9_5

4525 Cited on pages 52, 54, 55, 57.

https://doi.org/10.1007/978-3-319-73117-9_23
https://doi.org/10.1007/978-3-319-92901-9_11
https://apromore.org
https://doi.org/10.1007/978-3-319-98648-7_6
https://doi.org/10.1016/j.jss.2020.110594
https://doi.org/10.1016/j.jss.2020.110594
https://doi.org/10.1016/j.jss.2020.110594
https://doi.org/10.1016/j.jlamp.2020.100630
https://doi.org/10.1109/EDOC.2018.00022
https://doi.org/10.1007/978-3-319-59746-1_12
https://doi.org/10.1016/j.scico.2018.08.007
https://doi.org/10.1007/978-3-030-04771-9_24
https://doi.org/10.1016/j.scico.2019.102303
https://doi.org/10.1007/978-3-319-99840-4_5
https://doi.org/10.1007/978-3-319-03677-9_5

4530

4535

4540

4545

4550

4555

4560

4565

4570

166

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]
[158]
[159]
[160]
[161]
[162]
[163]

[164]

CHAPTER 7. BIBLIOGRAPHY

Emanuele De Angelis et al. “Verification of Time-Aware Business Processes Using Con-
strained Horn Clauses”. In: 26th International Symposium on Logic-Based Program Syn-
thesis and Transformation , LOPSTR. 2016, pp. 38-55. DOI: 10.1007/978-3-319-63139-
4_3 Cited on pages 53-55, 57.

Emanuele De Angelis et al. “Semantics and Controllability of Time-Aware Business Pro-
cesses”. In: Fundamenta Informaticae 165 (2019), pp. 205-244. por: 10.3233/FI-2019-
1783 Clited on pages 53-55, 57, 59, 60, 63.

Marcin Szpyrka, Grzegorz J. Nalepa, and Krzysztof Kluza. “From Process Models to
Concurrent Systems in Alvis Language”. In: Informatica 28 (2017), pp. 525-545. DOI:
10.15388/INFORMATICA.2017.143 Clited on pages 53-55, 57.

Jeremy W. Bryans and Wei Wei. “Formal Analysis of BPMN Models Using Event-B”.
In: 15th International Workshop Formal Methods for Industrial Critical Systems, FMICS.
2010, pp. 33—49. DOI: 10.1007/978-3-642-15898-8_3 Cited on pages 53-55, 57.

Ahlem Ben Younes et al. “From BPMN2 to Event B: A Specification and Verification Ap-
proach of Workflow Applications”. In: 43rd IEEE Annual Computer Software and Appli-
cations Conference, COMPSAC. 2019, pp. 561-566. DOI: 10.1109/COMPSAC.2019.10266
Cited on pages 53-55, 57, 59, 60, 63.

Junaid Haseeb et al. “Application of Formal Methods to Modelling and Analysis Aspects
of Business Process Reengineering”. In: Business Process Management Journal 26 (2020),
pp- 548-569. DOI: 10.1108/BPMJ-02-2019-0078 Clited on pages 53-55, 57.

Diego Calvanese et al. “Formal Modeling and SMT-Based Parameterized Verification of
Data-Aware BPMN”. In: 17th International Conference Business Process Management
Proceedings, BPM. 2019, pp. 157-175. DOI: 10.1007/978-3-030-26619-6_12 Cited on
pages 53-55, 57.

Damiano Falcioni et al. “Direct Verification of BPMN Processes Through an Optimized
Unfolding Technique”. In: 12th International Conference on Quality Software, ICQS. 2012,
pp. 179-188. pOI: 10.1109/QSIC.2012.59 Cited on pages 53, 54, 57, 59, 60, 63.

Mayssa Bessifi, Ahlem Ben Younes, and Leila Ben Ayed. “BPMN2EVENTB supporting
transformation from BPMN 2.0 to Event B using Kermeta”. In: (2021) Cited on pages 57,
59, 60, 63.

Business Process Technology research group at the Hasso Plattner Institute. Oryz. not

found. 2009. URL: http://oryx-editor.org/ Cited on page 59.
Oussama Mohammed Kherbouche, Adeel Ahmad, and Henri Basson. EPSPIN. Not Found.
2012. URL: http://epispin.ewi.tudelft.nl/ Cited on page 59.
GrGen.NET developers. GrGen.NET. 2010. URL: http://www.info.uni-karlsruhe.
de/software/grgen/ Cited on page 59.
Ahmed Kheldoun, Kamel Barkaoui, and Malika Ioualalen. BPMN Checker. Not Found.
2016. URL: -- Cited on page 59.
The YAWL Foundation. BPMN2YAWL. 2004. URL: https://yawlfoundation.github.
io/ Cited on page 59.
Kelly Rosa Braghetto. BP2SAN. 2012. URL: https://www . ime . usp . br/“kellyrb/
bp2san/ Cited on page 59.

Wong and all. machine-readable CSP. 2008. URL: http://www.cs.ox.ac.uk/peter.
wong/bpmn/index.html Cited on page 59.

Barbara et all. cowslip. 2012. URL: https://sourceforge.net/projects/cowslip/ Cited
on page 59.

https://doi.org/10.1007/978-3-319-63139-4_3
https://doi.org/10.1007/978-3-319-63139-4_3
https://doi.org/10.1007/978-3-319-63139-4_3
https://doi.org/10.3233/FI-2019-1783
https://doi.org/10.3233/FI-2019-1783
https://doi.org/10.3233/FI-2019-1783
https://doi.org/10.15388/INFORMATICA.2017.143
https://doi.org/10.1007/978-3-642-15898-8_3
https://doi.org/10.1109/COMPSAC.2019.10266
https://doi.org/10.1108/BPMJ-02-2019-0078
https://doi.org/10.1007/978-3-030-26619-6_12
https://doi.org/10.1109/QSIC.2012.59
http://oryx-editor.org/
http://epispin.ewi.tudelft.nl/
http://www.info.uni-karlsruhe.de/software/grgen/
http://www.info.uni-karlsruhe.de/software/grgen/
http://www.info.uni-karlsruhe.de/software/grgen/
--
https://yawlfoundation.github.io/
https://yawlfoundation.github.io/
https://yawlfoundation.github.io/
https://www.ime.usp.br/~kellyrb/bp2san/
https://www.ime.usp.br/~kellyrb/bp2san/
https://www.ime.usp.br/~kellyrb/bp2san/
http://www.cs.ox.ac.uk/peter.wong/bpmn/index.html
http://www.cs.ox.ac.uk/peter.wong/bpmn/index.html
http://www.cs.ox.ac.uk/peter.wong/bpmn/index.html
https://sourceforge.net/projects/cowslip/

167

[165] PRos project team. Bprove. 2017. URL: http://pros.unicam.it/bprove/ Cited on
pages 59, 61.
[166] Flavio Corradini et al. MIDA. 2018. URL: http://pros.unicam.it/mida/ Cited on
4575 page 59.
[167] PRos project team. C4. 2018. URL: http://pros.unicam.it/c4/ Cited on page 59.
[168] PROSLabTeam. S3. 2018. URL: http://pros.unicam.it/s3/ Cited on page 59.
[169] Ajay Krishna, Pascal Poizat, and Gwen Salaiin. VBPMN. 2016. URL: https://pascalpoizat.
github.io/vbpmn-web/ Cited on page 59.
asso [170] Francisco Duran and Gwen Salaiin. Maude Specification and Verification of BPMN Pro-
cesses. 2017. URL: http://maude.lcc.uma.es/MaudeBPMN/ Cited on
page 59.

[171] Francisco Duran and Gwen Salaiin. BPMN Specification. 2018. URL: http://maude.lcc.
uma.es/BPMN-P/ Cited on page 59.

asss [172] Francisco Duran and Gwen Salaiin. Resource Allocation Analysis of BPMN Processes.
2019. URL: http://maude.lcc.uma.es/BPMN-R/ Cited on page 59.

[173] Francisco Duran, Camilo Rocha, and Gwen Salaiin. “Symbolic Specification and Verifi-
cation of Data-aware BPMN Processes using Rewriting Modulo SMT”. In: 12th Interna-
tional Workshop on Rewriting Logic and its Applications, WRLA. 2018, pp. 76-97. DOI:

4500 10.1007/978-3-319-99840-4_5 Cited on pages 59, 60, 63, 153.
[174] Francisco Duran, Camilo Rocha, and Gwen Salatin. BPMN-SMT. 2019. URL: http://
maude.lcc.uma.es/BPMN-SMT Cited on page 59.

[175] Mayssa Bessifi. BPMN2FEventB. 2021. URL: https://drive.google.com/drive/folders/
1wgZCEP1tuc079aJ3gugnSJRU70HQcyp1l Clited on page 59.

ssos [176] Emanuele De Angelis et al. VeriMAP. 2014. URL: http://map.uniroma2.it/VeriMAP/
Clited on page 59.

[177] Wil M. P. van der Aalst et al. “Soundness of Workflow Nets: Classification, Decidability,
and Analysis”. In: Formal Aspects of Computing 23 (2011), pp. 333-363. DOI: 10.1007/
s00165-010-0161-4 Cited on pages 58, 94.

w0 References for Chapter 4: BPMN and Communication

[1] Marlon Dumas et al. Fundamentals of Business Process Management, Second Edition.
Springer, 2018 Cited on pages 1, 10, 11, 94, 95.

[3] OMG Group. Business Process Modeling Notation. 2013. URL: http://www . omg . org/
spec/BPMN/2.0.2/ Cited on pages 1, 3, 4, 12, 20, 21, 58, 72, 90, 91, 99, 109.

se0s [23] Flavio Corradini et al. “A Classification of BPMN Collaborations based on Safeness and
Soundness Notions”. In: Proceedings of the 25th International Workshop on Expressiveness
i Concurrency, EPTCS. 2018, pp. 37-52. DOI: 10.4204/EPTCS.276.5 Cited on pages 15,
17, 94-96, 132, 138, 150, 151.

[39] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In: Communication
4610 ACM 12 (1969), pp. 576-580. DOI: 10.1145/1562764.1562779 Cited on pages 27, 80.

[81] Carlo Combi, Barbara Oliboni, and Francesca Zerbato. “A Modular Approach to the
Specification and Management of Time Duration Constraints in BPMN”. In: Information
Systems 84 (2019), pp. 111-144. DOI: 10.1016/j.1s.2019.04.010 Cited on pages 47, 54,
57, 94, 150, 152.

http://pros.unicam.it/bprove/
http://pros.unicam.it/mida/
http://pros.unicam.it/c4/
http://pros.unicam.it/s3/
https://pascalpoizat.github.io/vbpmn-web/
https://pascalpoizat.github.io/vbpmn-web/
https://pascalpoizat.github.io/vbpmn-web/
http://maude.lcc.uma.es/MaudeBPMN/
http://maude.lcc.uma.es/BPMN-P/
http://maude.lcc.uma.es/BPMN-P/
http://maude.lcc.uma.es/BPMN-P/
http://maude.lcc.uma.es/BPMN-R/
https://doi.org/10.1007/978-3-319-99840-4_5
http://maude.lcc.uma.es/BPMN-SMT
http://maude.lcc.uma.es/BPMN-SMT
http://maude.lcc.uma.es/BPMN-SMT
https://drive.google.com/drive/folders/1wgZCEP1tucO79aJ3guqnSJRU70HQcyp1
https://drive.google.com/drive/folders/1wgZCEP1tucO79aJ3guqnSJRU70HQcyp1
https://drive.google.com/drive/folders/1wgZCEP1tucO79aJ3guqnSJRU70HQcyp1
http://map.uniroma2.it/VeriMAP/
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/s00165-010-0161-4
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
https://doi.org/10.4204/EPTCS.276.5
https://doi.org/10.1145/1562764.1562779
https://doi.org/10.1016/j.is.2019.04.010

4615

4620

4625

4630

4635

4640

4645

4650

4655

168

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185)

[186]

[187]
[188]
[189]
[190]

[191]

CHAPTER 7. BIBLIOGRAPHY

Wil M. P. van der Aalst et al. “Soundness of Workflow Nets: Classification, Decidability,
and Analysis”. In: Formal Aspects of Computing 23 (2011), pp. 333-363. DOIL: 10.1007/
s00165-010-0161-4 Cited on pages 58, 94.

Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. “A Modular Framework for
Verifying Versatile Distributed Systems”. In: International Conference on High Perfor-
mance Computing € Simulation, HPCS. 2018. DOI: 10.1109/HPCS.2018.00121 C(ited on
page 68.

Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. “On the Diversity of Asyn-
chronous Communication”. In: Formal Aspects of Computing 28 (2016), pp. 847-879.
DOI: 10.1007/s00165-016-0379-x Cited on pages 74, 151.

Leslie Lamport. “Time, Clocks and the Ordering of Events in a Distributed System”. In:
Communications of the ACM 21 (1978), pp. 558-565. DOI: 10.1145/359545.359563 Cited
on page 77.

Reinhard Schwarz and Friedemann Mattern. “Detecting Causal Relationships in Dis-
tributed Computations: In Search of the Holy Grail”. In: Distributed Computing 7 (1994),
pp. 149-174. por: 10.1007/BF02277859 Cited on page 77.

Ajay D. Kshemkalyani and Mukesh Singhal. “Necessary and Sufficient Conditions on Infor-
mation for Causal Message Ordering and Their Optimal Implementation”. In: Distributed
Computing 11 (1998), pp. 91-111. DOI: 10.1007/s004460050044 Cited on page 77.

Michel Raynal, André Schiper, and Sam Toueg. “The Causal Ordering Abstraction and a
Simple Way to Implement It”. In: Information Processing Letters 39 (1991), pp. 343-350.
DOI: 10.1016/0020-0190(91)90008-6 Cited on page 77.

Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. “Synchronous, Asyn-
chronous, and Causally Ordered Communication”. In: Distributed Computing 9 (1996),

pp- 173-191. po1: 10.1007/s004460050018 Cited on page 78.
Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT Press,
2001 Cited on page 78.

David L. Dill et al. “Protocol Verification as a Hardware Design Aid”. In: Proceedings 1992
IEEE International Conference on Computer Design: VLSI in Computer & Processors,
ICCD. 1992, pp. 522-525 Cited on page 78.

A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia and al. NuSMV: a new symbolic
model checker. 2010. URL: https://nusmv.fbk.eu Cited on page 78.

Clifford B. Jones. Systematic software development using VDM (2. Edition). Prentice
Hall, 1991 Cited on page 80.

John V. Guttag et al. Larch: Languages and Tools for Formal Specification. Springer, 1993
Cited on page 80.

J. Michael Spivey. Z Notation - a reference manual (2.nd Edition). Prentice Hall, 1992
Cited on page 80.

Wil M. P. van der Aalst. “Verification of Workflow Nets”. In: International Conference
on Application and Theory of Petri Nets, ICATPN. 1997, pp. 407-426. DOI: 10.1007/3-
540-63139-9_48 Cited on pages 94, 95.

References for Chapter 5: BPMN and Time

13l

OMG Group. Business Process Modeling Notation. 2013. URL: http://www . omg . org/
spec/BPMN/2.0.2/ Cited on pages 1, 3, 4, 12, 20, 21, 58, 72, 90, 91, 99, 109.

https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1109/HPCS.2018.00121
https://doi.org/10.1007/s00165-016-0379-x
https://doi.org/10.1145/359545.359563
https://doi.org/10.1007/BF02277859
https://doi.org/10.1007/s004460050044
https://doi.org/10.1016/0020-0190(91)90008-6
https://doi.org/10.1007/s004460050018
https://nusmv.fbk.eu
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/3-540-63139-9_48
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/

4660

4665

4670

4675

4680

4685

4690

4695

4700

169

[15] Andreas Lanz, Barbara Weber, and Manfred Reichert. “Time patterns for process-aware
information systems”. In: Requirements Engineering 19 (2014), pp. 113-141. po1: 10.
1007/s00766-012-0162-3 Cited on pages 3, 99, 114, 115, 117, 118, 120, 122, 123.

[16] 1SO 8601:2004, Data elements and interchange formats — Information interchange —
Representation of dates and times. Standard. ISO, 2004 Cited on pages 4, 99.

[192] Christopher Alexander. The Timeless Way of Building. Oxford University Press, 1979
Clited on page 114.

[193] Workflow Patterns Initiative. Workflow Patterns home page. 2017. URL: http://www .

workflowpatterns.com/ Cited on page 114.
[194] Arthur H. M. ter Hofstede et al. Modern Business Process Automation - YAWL and its
Support Environment. Springer, 2010 Cited on page 114.

[195] Hai Zhuge, To-yat Cheung, and Hung-keng Pung. “A Timed Workflow Process Model”.
In: Journal of Systems and Software 55 (2001), pp. 231-243. DOI: 10 . 1016 /S0164 -
1212(00)00073-X Cited on page 114.

[196] Wil M. P. van der Aalst, Maja Pesic, and Minseok Song. “Beyond Process Mining: From
the Past to Present and Future”. In: 22nd International Conference on Advanced Infor-
mation Systems Engineering, CAiSE. 2010, pp. 38-52. DOI: 10.1007/978-3-642-13094-
6_5 Cited on page 114.

[197] Johann Eder, Euthimios Panagos, and Michael Rabinovich. “Time Constraints in Work-
flow Systems”. In: 11th International Conference Advanced Information Systems Engi-
neering, CAiSE. 1999, pp. 286-300. DOI: 10.1007/3-540-48738-7_22 Cited on
page 114.

[198] Carlo Combi et al. “Conceptual Modeling of Temporal Clinical Workflows”. In: 14th Inter-
national Symposium on Temporal Representation and Reasoning, TIME. 2007, pp. 70-81.
DOI: 10.1007/978-3-642-13094-6_5 Clited on page 114.

[199] Carlo Combi et al. “Conceptual Modeling of Flexible Temporal Workflows”. In: ACM
Transactions on Autonomous and Adaptive Systems 7 (2012), 19:1-19:29. po1: 10.1145/

2240166.2240169 Clited on page 114.
[200] Nick Russell, Wil M. P. van der Aalst, and Arthur H. M. ter Hofstede. Workflow Patterns:
The Definitive Guide. MIT Press, 2016 Cited on page 121.

References for Chapter 6: fbpmn: Formal BPMN Framework

[17] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison Wesley, 2002 Cited on pages 4, 27, 28, 127.

[23] Flavio Corradini et al. “A Classification of BPMN Collaborations based on Safeness and
Soundness Notions”. In: Proceedings of the 25th International Workshop on Expressiveness
i Concurrency, EPTCS. 2018, pp. 37-52. DOI: 10.4204/EPTCS.276.5 Cited on pages 15,
17, 94-96, 132, 138, 150, 151.

[46] Mana Taghdiri and Daniel Jackson. “A Lightweight Formal Analysis of a Multicast Key
Management Scheme”. In: Formal Techniques for Networked and Distributed Systems -

FORTE 2003, 23rd IFIP WG 6.1 International Conference, 2003, Proceedings. 2003,
pp. 240-256. DOI: 10.1007/978-3-540-39979-7_16 Cited on pages 34, 127.

[47] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2012
Cited on pages 34, 36, 38, 132.

https://doi.org/10.1007/s00766-012-0162-3
https://doi.org/10.1007/s00766-012-0162-3
https://doi.org/10.1007/s00766-012-0162-3
http://www.workflowpatterns.com/
http://www.workflowpatterns.com/
http://www.workflowpatterns.com/
https://doi.org/10.1016/S0164-1212(00)00073-X
https://doi.org/10.1016/S0164-1212(00)00073-X
https://doi.org/10.1016/S0164-1212(00)00073-X
https://doi.org/10.1007/978-3-642-13094-6_5
https://doi.org/10.1007/978-3-642-13094-6_5
https://doi.org/10.1007/978-3-642-13094-6_5
https://doi.org/10.1007/3-540-48738-7_22
https://doi.org/10.1007/978-3-642-13094-6_5
https://doi.org/10.1145/2240166.2240169
https://doi.org/10.1145/2240166.2240169
https://doi.org/10.1145/2240166.2240169
https://doi.org/10.4204/EPTCS.276.5
https://doi.org/10.1007/978-3-540-39979-7_16

4705

4710

4715

4720

4725

4730

4735

4740

4745

170

108

[138]

[140]

[179]

[201]
[202]
[203]

[204]

[205]

206

CHAPTER 7. BIBLIOGRAPHY

Ajay Krishna, Pascal Poizat, and Gwen Salaiin. “Checking Business Process Evolution”.
In: Science of Computer Programming 170 (2019), pp. 1-26. DOI: 10.1016/j .scico.
2018.09.007 Cited on pages 49, 54, 138.

Flavio Corradini et al. “Animating Multiple Instances in BPMN Collaborations: From
Formal Semantics to Tool Support”. In: 16th International Conference on Business Process
Management, BPM. 2018, pp. 83-101. DOI: 10.1007/978-3-319-98648-7_6 Cited on
pages 52, 54, 59, 60, 63, 138, 150, 151, 153,

Flavio Corradini et al. “Well-structuredness, Safeness and Soundness: A Formal Classi-
fication of BPMN Collaborations”. In: Journal of Logical and Algebraic Methods in Pro-
gramming 119 (2021), p. 100630. DOL: 10.1016/j.jlamp.2020.100630 Cited on pages 52,
54, 61, 128.

Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. “On the Diversity of Asyn-
chronous Communication”. In: Formal Aspects of Computing 28 (2016), pp. 847-879.

DOI: 10.1007/s00165-016-0379-x Clited on pages 74, 151.
Eclipse Foundation. Eclipse BPMNZ2 Modeler. 2021. URL: https://www.eclipse.org/
bpmn2-modeler/ Cited on page 128.

Camunda services GmbH. Camunda v.7.7.0. 2018. URL: http://www.camunda.com Cited
on page 128.

Signavio GmbH. Signavio Home Page. 2021. URL: http://www.signavio.com/ Cited on
page 128.

Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. “A Modular Framework for
Verifying Versatile Distributed Systems”. In: Journal of Logical and Algebraic Methods in
Programming 108 (2019), pp. 24-46. DOI: 10.1016/j.jlamp.2019.05.008 Cited on
page 131.

Rim Saddem-Yagoubi, Pascal Poizat, and Sara Houhou. “Business Processes Meet Spatial
Concerns: the sBPMN Verification Framework”. In: 24th International Symposium on
Formal Methods (FM). 2021 Cited on pages 142, 158.

Pardi project team. BPMN Formalization. 2019. URL: http://vacs.enseeiht.fr/bpmn/
Cited on page 144.

References for Chapter 7: Conclusion

[14]

23]

[64]

[66]

Saoussen Cheikhrouhou et al. “Toward a Time-centric modeling of Business Processes
in BPMN 2.0”. In: The 15th International Conference on Information Integration and
Web-based Applications € Services, IITWAS. 2013, pp. 154-163. DOI: 10.1145/2539150.
2539182 Cited on pages 3, 152.

Flavio Corradini et al. “A Classification of BPMN Collaborations based on Safeness and
Soundness Notions”. In: Proceedings of the 25th International Workshop on Expressiveness
in Concurrency, EPTCS. 2018, pp. 37-52. DOI: 10.4204/EPTCS.276.5 Cited on pages 15,
17, 94-96, 132, 138, 150, 151.

Remco M Dijkman, Marlon Dumas, and Chun Ouyang. “Semantics and Analysis of Busi-
ness Process Models in BPMN”. In: Information and Software technology 50 (2008),
pp. 1281-1294. DOIL: 10.1016/7.infsof.2008.02.006 Cited on pages 46, 47, 54-57, 59, 60,
62, 150, 151.

Eindhoven University of Technology Process Mining Group. Process Mining Framework
(PROM). 2020. URL: http://www.processmining.org/prom/start Cited on pages 46,
155.

https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1016/j.scico.2018.09.007
https://doi.org/10.1007/978-3-319-98648-7_6
https://doi.org/10.1016/j.jlamp.2020.100630
https://doi.org/10.1007/s00165-016-0379-x
https://www.eclipse.org/bpmn2-modeler/
https://www.eclipse.org/bpmn2-modeler/
https://www.eclipse.org/bpmn2-modeler/
http://www.camunda.com
http://www.signavio.com/
https://doi.org/10.1016/j.jlamp.2019.05.008
http://vacs.enseeiht.fr/bpmn/
https://doi.org/10.1145/2539150.2539182
https://doi.org/10.1145/2539150.2539182
https://doi.org/10.1145/2539150.2539182
https://doi.org/10.4204/EPTCS.276.5
https://doi.org/10.1016/j.infsof.2008.02.006
http://www.processmining.org/prom/start

4750

4755

4760

4765

4770

4775

4780

4785

4790

[71]

[81]

[36]

[89]

[95]

[99]

[104]

[116]

[117]

[119]

[125]

[128]

[132]

171

Pieter Van Gorp and Remco M. Dijkman. “A Visual Token-based Formalization of BPMN
2.0 based on In-place Transformations”. In: Information and Software Technology 55
(2013), pp. 365-394. DOI: 10.1016/j.infsof.2012.08.014 Cited on pages 46, 54, 55,
57-60, 62, 150, 151, 153.

Carlo Combi, Barbara Oliboni, and Francesca Zerbato. “A Modular Approach to the
Specification and Management of Time Duration Constraints in BPMN”. In: Information
Systems 84 (2019), pp. 111-144. DOI: 10.1016/j.1s.2019.04.010 Cited on pages 47, 54,
57, 94, 150, 152.

Ahmed Kheldoun, Kamel Barkaoui, and Malika Ioualalen. “Formal Verification of Com-
plex Business Processes Based on High-level Petri Nets”. In: Information Sciences 385
(2017), pp. 39-54. DOI: 10.1016/j.ins.2016.12.044 Cited on pages 47, 54, 57, 59, 60, 62,
150, 151.

Chanon Dechsupa, Wiwat Vatanawood, and Arthit Thongtak. “Transformation of the
BPMN Design Model into a Colored Petri Net using the Partitioning Approach”. In:
IEEE Access 6 (2018), pp. 38421-38436. DOI: 10.1109/ACCESS.2018.2853669 Cited on
pages 48, 54, 57, 59, 60, 62, 150, 151.

JianHong Ye et al. “Formal Semantics of BPMN Process Models using YAWL”. In: Second
International Symposium on Intelligent Information Technology Application. 2008, pp. 70—
74. DOI: 10.1109/IITA.2008.68 Cited on pages 48, 54, 57, 59, 60, 62, 150, 151.

Kenji Watahiki, Fuyuki Ishikawa, and Kunihiko Hiraishi. “Formal Verification of Business
Processes with Temporal and Resource Constraints”. In: Proceedings of the IEEE Inter-
national Conference on Systems, Man and Cybernetics, SMC. 2011, pp. 1173-1180. DOTI:
10.1109/ICSMC. 2011 .6083857 Cited on pages 49, 54, 55, 57, 150, 152.

Saoussen Cheikhrouhou et al. “Enhancing Formal Specification and Verification of Tem-
poral Constraints in Business Processes”. In: IEEE International Conference on Services
Computing, SCC. 2014, pp. 701-708. DOI: 10.1109/SCC.2014.97 Cited on pages 49, 54,
55, 57, 150, 152.

Peter YH Wong and Jeremy Gibbons. “A Relative Timed Semantics for BPMN”. In:
FElectronic Notes in Theoretical Computer Science 229 (2009), pp. 59-75. DOI: 10.1016/
j.entcs.2009.06.029 Clited on pages 50, 54, 55, 57, 150, 152.

Peter Wong YH and Jeremy Gibbons. “Formalisations and Applications of BPMN”. In:
Science of Computer Programming 76 (2011), pp. 633-650. DOI: 10.1016/j.scico.2009.
09.010 Cited on pages 50, 54, 55, 57, 150, 151.

Manuel 1. Capel and Luis Eduardo Mendoza. “Automating the Transformation from
BPMN Models to CSP+ T Specifications”. In: 35th Annual IEEE Software Engineer-
ing Workshop, SEW. 2012, pp. 100-109. DOI: 10.1109/SEW.2012.17 Cited on pages 50,
54, 55, 57, 59, 60, 63, 150, 152.

Vitus SW Lam. “A Precise Execution Semantics for BPMN”. In: International Journal of
Computer Science 39 (2012), pp. 20-33. DOI: 10.1109/MIC.2004.58 Cited on pages 51,
54, 57, 150, 151.

Nissreen A. S. El-Saber and Artur Boronat. “BPMN Formalization and Verification using
Maude”. In: Proceedings of the 2014 Workshop on Behaviour Modelling - Foundations and
Applications, BM-FA. 2014, pp. 1-12. DOI: 10.1145/2630768.2630769 Cited on pages 51,
54, 55, 57, 150, 151.

Flavio Corradini et al. “A Formal Approach to Modelling and Verification of Business
Process Collaborations”. In: Science of Computer Programming 166 (2018), pp. 35-70.
DOI: 10.1016/3.5¢ic0.2018.05.008 Cited on pages 51, 54, 55, 57, 59, 60, 63, 150, 151.

https://doi.org/10.1016/j.infsof.2012.08.014
https://doi.org/10.1016/j.is.2019.04.010
https://doi.org/10.1016/j.ins.2016.12.044
https://doi.org/10.1109/ACCESS.2018.2853669
https://doi.org/10.1109/IITA.2008.68
https://doi.org/10.1109/ICSMC.2011.6083857
https://doi.org/10.1109/SCC.2014.97
https://doi.org/10.1016/j.entcs.2009.06.029
https://doi.org/10.1016/j.entcs.2009.06.029
https://doi.org/10.1016/j.entcs.2009.06.029
https://doi.org/10.1016/j.scico.2009.09.010
https://doi.org/10.1016/j.scico.2009.09.010
https://doi.org/10.1016/j.scico.2009.09.010
https://doi.org/10.1109/SEW.2012.17
https://doi.org/10.1109/ MIC.2004.58
https://doi.org/10.1145/2630768.2630769
https://doi.org/10.1016/j.scico.2018.05.008

172 CHAPTER 7. BIBLIOGRAPHY

[137] Apromore Pty Ltd. Apromore. 2020. URL: https://apromore.org Cited on pages 52, 153.

aros [138] Flavio Corradini et al. “Animating Multiple Instances in BPMN Collaborations: From
Formal Semantics to Tool Support”. In: 16th International Conference on Business Process
Management, BPM. 2018, pp. 83-101. DOI: 10.1007/978-3-319-98648-7_6 Cited on
pages 52, 54, 59, 60, 63, 138, 150, 151, 153,

[142] Francisco Duran and Gwen Salaiin. “Verifying Timed BPMN Processes Using Maude”. In:
4800 19th IFIP International Conference on Coordination Models and Languages, , COORDI-
NATION. 2017, pp. 219-236. DOI: 10.1007/978-3-319-59746-1_12 Cited on pages 52,

54, 55, 57, 59-61, 63, 150, 152.

[143] Francisco Duran, Camilo Rocha, and Gwen Salaiin. “Stochastic analysis of BPMN with
time in rewriting logic”. In: Science of Computer Programming 168 (2018), pp. 1-17. DOI:
4805 10.1016/j.scico.2018.08.007 Cited on pages 52, 54, 55, 57, 59-61, 63, 150, 152.

[173] Francisco Duran, Camilo Rocha, and Gwen Salaiin. “Symbolic Specification and Verifi-
cation of Data-aware BPMN Processes using Rewriting Modulo SMT”. In: 12th Interna-
tional Workshop on Rewriting Logic and its Applications, WRLA. 2018, pp. 76-97. DOI:
10.1007/978-3-319-99840-4_5 Clited on pages 59, 60, 63, 153.

as10 [205] Rim Saddem-Yagoubi, Pascal Poizat, and Sara Houhou. “Business Processes Meet Spatial
Concerns: the sSBPMN Verification Framework” In: 24th International Symposium on
Formal Methods (FM). 2021 Cited on pages 142, 158.

[207] Andreas Lanz, Barbara Weber, and Manfred Reichert. “Workflow Time Patterns for
Process-Aware Information Systems”. In: 11th International Workshop Enterprise, Business-

4815 Process and Information Systems Modeling, BPMDS. 2010, pp. 94-107. por: 10.1007/

978-3-642-13051-9_9 Clited on page 150.

[208] Luis E. Mendoza Morales, Manuel I. Capel Tunion, and Mariéa A. Pérez. “AA Formaliza-

tion Proposal of Timed BPMN for Compositional Verification of Business Processes”. In:

12th International Conference on Enterprise Information Systems, ICEIS. 2010, pp. 388—

4820 403. DOI: 10.1007/978-3-642-19802-1_27 Cited on pages 150, 152.

[209] Andreas Lanz, Manfred Reichert, and Barbara Weber. “Process Time Patterns: A Formal
Foundation”. In: Information Systems 57 (2016), pp. 38—68. DOL: 10.1016/j.is.2015.

10.002 Cited on page 152.
[210] Camunda Inc. BPMN 2.0 Symbol Reference. 2020. URL: https://camunda . com/bpmn/
4825 examples/ Cited on page 152.

[211] Huu Nghia Nguyen, Pascal Poizat, and Fatiha ZaiUdi. “A Symbolic Framework for the
Conformance Checking of Value-Passing Choreographies”. In: 10th International Confer-
ence on Service-Oriented Computing, ICSOC. 2012, pp. 525-532. DOI: 10.1007/978-3-
642-34321-6_36 Cited on page 153.

as30 [212] Yuliang Li, Alin Deutsch, and Victor Vianu. “VERIFAS: A Practical Verifier for Artifact
Systems”. In: VLDB Endowment Inc. 11 (2017), pp. 283-296. DOI: 10.14778/3157794.
3157798 Cited on page 153.

[213] Diego Calvanese et al. “Formal Modeling and SMT-Based Parameterized Verification of
Data-Aware BPMN”. In: 17th International Conference on Business Process Management,
4835 BPM. 2019, pp. 157-175. DOI: 10.1007/978-3-030-26619-6_12 Cited on page 153.

[214] Silvio Ghilardi et al. “Petri Nets with Parameterised Data- Modelling and Verification”.
In: 18th International Conference on Business Process Management, BPM. 2020, pp. 55—
74. DOI: 10.1007/978-3-030-58666-9_4 Cited on page 153.

https://apromore.org
https://doi.org/10.1007/978-3-319-98648-7_6
https://doi.org/10.1007/978-3-319-59746-1_12
https://doi.org/10.1016/j.scico.2018.08.007
https://doi.org/10.1007/978-3-319-99840-4_5
https://doi.org/10.1007/978-3-642-13051-9_9
https://doi.org/10.1007/978-3-642-13051-9_9
https://doi.org/10.1007/978-3-642-13051-9_9
https://doi.org/10.1007/978-3-642-19802-1_27
https://doi.org/10.1016/j.is.2015.10.002
https://doi.org/10.1016/j.is.2015.10.002
https://doi.org/10.1016/j.is.2015.10.002
https://camunda.com/bpmn/examples/
https://camunda.com/bpmn/examples/
https://camunda.com/bpmn/examples/
https://doi.org/10.1007/978-3-642-34321-6_36
https://doi.org/10.1007/978-3-642-34321-6_36
https://doi.org/10.1007/978-3-642-34321-6_36
https://doi.org/10.14778/3157794.3157798
https://doi.org/10.14778/3157794.3157798
https://doi.org/10.14778/3157794.3157798
https://doi.org/10.1007/978-3-030-26619-6_12
https://doi.org/10.1007/978-3-030-58666-9_4

	Acknowledgement
	Abstract
	Résumé
	Contents
	Introduction
	Thesis Context
	Motivation and Problem Statement
	Research Contribution
	Thesis Structure
	List of Publications

	I State of the Art
	Background
	Introduction
	Business Process Management (BPM)
	Business Process Modelling Language (BPMN)
	BPMN Notation
	Running Example
	BPMN XML Representation
	BPMN Operational Semantics

	First-Order Logic (FOL)
	Syntax of First-Order Formulas
	Semantics of First-Order Logic Formulas

	Verification Methods
	Test
	Abstract Interpretation
	Theorem Proving
	Model-Checking

	Verification Languages & Tools
	TLA Logic and Language
	Alloy Logic & Language

	Summary

	Literature Review
	Introduction
	Research Method
	Objectives
	Survey questions
	Prior Reviews on Business Process Modelling Verification
	Research Strategy
	Article Selection and Inclusion and Exclusion Criteria

	Papers Overview
	Approaches based on Petri Nets
	Approaches based on Automata Theory
	Approaches based on Process Algebras
	Approaches based on Logic Formulas
	Approach based on a Programming Language

	Discussion
	Summary

	II BPMN 2.0 Semantics Formalisation
	BPMN and Communication
	Introduction
	A Typed Graph Representation of BPMN Collaborations Models
	BPMN Elements Type
	Graph Structure
	Well-formed BPMN graph.

	A Communication Model Representation
	Communication Model
	Communication Channel
	Generic Communication Models

	A FOL Semantics for BPMN Collaborations
	Verification Properties
	Summary

	BPMN and Time
	Introduction
	A Typed Graph Representation of BPMN Time-Related Constructs
	A FOL Semantics for BPMN Time-Related Constructs
	Semantics
	Transition Relation and Executions

	BPMN 2.0 and the Time Patterns: Can We Support All of Them?
	Time Lags between Activities
	Duration
	Time Lags between Arbitrary Events
	Fixed Date Elements (Deadline)
	Schedule Restricted Element
	Time Based Restrictions
	Validity Period
	Time Dependent Variability
	Cycle Element
	Periodicity

	Summary

	III From Formal Semantics to Tool Support
	fbpmn: Formal BPMN Framework
	Introduction
	fbpmn Overview
	Encoding of FOL Semantics in TLA
	Communication as a Parameter.
	Mechanised Verification

	Encoding of the Semantics in Alloy
	Mechanised verification

	fbpmn Evaluation
	Experiments using the TLA+ Encoding/Tooling
	Experiments using the Alloy Encoding/Tooling

	The fbpmn Supporting Tool
	Architecture and General Principles
	Desktop Modelling and Verification
	Online Modelling and Verification
	Extensibility

	Summary

	IV Conclusion and Future Work
	Conclusion
	Objectives Remainder
	Contributions
	Position with Reference to the Litterature
	Collaboration-Based Approaches
	Time-Based Approaches

	Limitations & Perspectives

	Bibliography

