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Abstract

Quantum physics has revolutionised our way of conceiving nature and is now bringing
about a new technological revolution. The use of quantum information in technology
promises to supersede the so-called classical devices used nowadays. Understanding what

features are inherently non-classical is crucial for reaching better-than-classical performance.
This thesis focuses on two nonclassical behaviours: quantum contextuality and Wigner

negativity. The former is a notion superseding nonlocality that can be exhibited by quantum
systems. To date, it has mostly been studied in discrete-variable scenarios, where observables
take values in discrete and usually finite sets. In those scenarios, contextuality has been shown
to be necessary and sufficient for advantages in some cases. On the other hand, negativity of the
Wigner function is another unsettling non-classical feature of quantum states that originates from
phase-space formulation in continuous-variable quantum optics. Continuous-variable scenarios
offer promising candidates for implementing quantum computations and informatic protocols.
Wigner negativity is known to be a necessary resource for quantum speedup with continuous
variables. However contextuality has been little understood and studied in continuous-variable
scenarios.

We first set out a robust framework for properly treating contextuality in continuous variables.
We also quantify contextuality in such scenarios by using tools from infinite-dimensional
optimisation theory. This is achieved by a converging hierarchy of finite-dimensional semidefinite
programs that approximates the contextual fraction.

Building upon this, we show that Wigner negativity is equivalent to contextuality in
continuous variables with respect to Pauli measurements thus establishing a continuous-variable
analogue of a celebrated result by Howard et al. in discrete variables.

We then introduce experimentally-friendly witnesses for Wigner negativity of single mode
and multimode quantum states, based on fidelities with Fock states. They possess a threshold
expectation value indicating whether the measured state has a negative Wigner function. We
phrase the problem of finding the threshold values as infinite-dimensional linear programs, and
we derive two converging hierarchies of semidefinite programs to approximate the threshold
values.

We further extend the range of previously known discrete-variable results linking contextual-
ity and advantage into a new territory of information retrieval. We introduce a discrete-variable
communication game—called the Torpedo Game—where perfect quantum strategies stem from
negativity of the discrete Wigner function. Sequential contextuality is shown not only to be
necessary and sufficient for quantum advantage, but also to quantify the degree of advantage
for information retrieval tasks.
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Introduction

Quantum mechanics has been one of the major scientific revolutions of the 20th cen-
tury. While philosophically puzzling [EPR35, Wig95, Sch05, PBR12, Man16], it has
profoundly challenged our way of perceiving reality, giving rise to intriguing notions

such as entanglement or superposition. It has also allowed us to perform remarkably precise
calculation of properties of physical systems—especially at the particle scale. The so-called
second quantum revolution is often traced to Feynman’s idea of a “probabilistic simulator of
a probabilistic nature” [Fey82] to solve difficult problems originating from quantum physics
together with the first quantum algorithms outperforming known classical ones [DJ92, Sho94].

This gave rise to the field of quantum information built around the idea that information
may be encoded in quantum degrees of freedom of physical systems. Quantum information
processing seeks to provide an advantage over classical information processing in various fields
such as computing, communication, cryptography or sensing. To outperform standard classical
computers at certain tasks, one can attempt to harness effects at the microscopic level which
have no counterpart in classical physics.

Studying the fundamentally non-classical features of quantum mechanics is critical for
quantum information. If non-classical features can be identified at the very root of quantum
information protocols, and their advantage founded on those, then their quantumness can be
inherently guaranteed. There is a lesson that can be learnt from the dequantization of the
quantum recommendation system [KP17] that was proposed by Ewin Tang [Tan19]. If one
wants to prevent against dequantization, it is necessary to ensure that algorithms rely upon
some purely quantum phenomenon.1 This leads naturally to the following questions:

Which features of quantum physics are inherently non-classical?
Among those, which are relevant to achieving a quantum-over-classical advantage in

information processing tasks?
How non-classicality can be related in a quantified way to advantages?

1Note however that first it is still intriguing that a quantum algorithm had to be found in order to derive
a classical algorithm with an improved complexity compared to known classical algorithms; secondly purely
quantum notions will protect against dequantization but there might still exist classical algorithms that can be
as efficient; finally the quantum algorithm still retains some advantage though it was massively diminished by
Tang.
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INTRODUCTION

One of the first influential works indicating how quantum theory may depart from classical
analogues was that of Einstein, Podolsky and Rosen [EPR35] in 1935. They identified early on
that if the quantum description of the world is seen as fundamental then entanglement poses a
problem of “spooky action at a distance”. It was argued that the principle of locality, a key axiom
of Einstein’s special relativity, was in conflict with the description of the world given by quantum
mechanics. The conclusion of their paper was that quantum theory should be consistent with
a deeper or more complete description of the physical world, in which such problems would
disappear. This is known as local realism. Realism means the introduction of a hidden variable
model with hidden states describing the actual physics behind the scene. Indeed probabilistic
predictions of quantum mechanics may result from an incomplete knowledge of the true state of
a system rather than being a fundamental feature. There are other examples for this in physical
theories: for instance statistical mechanics—a probabilistic theory—admits a deeper, very
complex description in terms of classical mechanics, which is purely deterministic. Local realism
is a constraint on the hidden variables that requires that they cannot be updated from a space-like
separated region. This impossibility was further studied and instantiated as an experimentally
verifiable inequality by Bell [Bel64] in 1964 that quantum mechanics is predicted to violate. This
violation was verified experimentally e.g. [ADR82, RKM+01, GVW+15, SMSC+15, HBD+15].
This is an example of a no-go theorem: quantum physics cannot be described by a local hidden
variable model.

Local realism was further generalised2as measurement non-contextuality [KS75]. Contex-
tuality is a crucial non-classical behaviour that can be exhibited by quantum systems. The
Heisenberg uncertainty principle identified that certain pairs of quantum observables are in-
compatible, e.g., position and momentum. In operational terms, observing one will disturb the
outcome statistics of the other. Imprudent commentators will sometimes cite this as evidence
that position and momentum cannot simultaneously be assigned definite values. However, this
is not quite right and a more careful conclusion is that we simply cannot observe these values
simultaneously. To make a stronger statement requires measurement contextuality. Roughly
speaking, the meaning of words can provide an intuition for a contextual behaviour. The mean-
ing of “I had the appendix removed” varies greatly whether I am addressing a physician or my
supervisors for the present dissertation. Pre-assigning a meaning to this sentence is not possible
irrespective of the context [AS14a, AS14b]. In more operational terms, contextuality is present
whenever the behaviour of a system is inconsistent with the basic assumptions that (i) all of its
observable properties may be assigned definite values at all times, and (ii) jointly measuring
compatible observables does not disturb the global value assignments, or, in other words, these as-
signments are context-independent. Aside from its foundational importance, today contextuality

2Actually contextuality was originally considered to be similar but still a distinct non-classical feature rather
than a generalisation of nonlocality. Fine [Fin82] proved that nonlocality is a special case of contextuality for
the (2,2,2) Bell scenario and this was later generalised to any discrete-variable scenario by Abramsky and
Brandenburger [AB11]. This is a consequence of the Fine–Abramsky-Brandenburger (FAB) theorem which we
will present in Section 1.5.
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INTRODUCTION

is increasingly studied as an essential ingredient for enabling a range of quantum-over-classical
advantages in informatic tasks, which include the onset of universal quantum computing in
certain computational models [Rau13, HWVE14, ABM17, BVDB+17, ABdSZ17]. Moreover,
contextuality has been tested experimentally e.g. [ZUZ+13, HLB+06, BKS+09, KZG+09].

The importance of seminal foundational results like the Bell [Bel64] and Bell–Kochen–Specker
[Bel66, KS75] theorems is that they identify such non-intuitive behaviours and then rule out the
possibility of finding any underlying model for them that would not suffer from the same issues.
Incidentally, note that the EPR paradox was originally presented in terms of continuous variables,
whereas the CHSH model (which is what was tested experimentally from Aspect onwards)
addressed a discrete-variable analogue of it. Also frameworks for formalising contextuality
have previously only focused on discrete-variable quantum information [AB11, CSW14, Spe05].
In Chapter 2, we provide the first robust framework formalising contextuality in continuous
variables.

Quantum information with continuous variables [LB99]—where information is encoded
in continuous degrees of freedom of quantum systems—is one of the promising directions
for the future of quantum technologies [LB99]. From a theoretical point of view, quantum
information with continuous variables is described via the formalism of infinite-dimensional
Hilbert spaces. It offers different perspectives from discrete-variable quantum information.
From a practical point-of-view, continuous-variable quantum systems are emerging as very
promising candidates for implementing quantum informational and computational tasks [BVL05,
WPGP+12, COR+13, BAV+21, Wal21, Cha21]. The main reason for this is that they offer
unrivalled possibilities for deterministic generation of large-scale resource states over millions
of modes [YYK+16, YUA+13] and also offer reliable and efficient detection methods, such
as homodyne or heterodyne detection [Leo10, OE12]. Together they cover many of the basic
operations required in the one-way or measurement-based model of quantum computing [RB01],
for example. Typical implementations are in optical systems where the continuous variables
correspond to the position-like and momentum-like quadratures of the quantised modes of an
electromagnetic field. Indeed position and momentum, as mentioned previously in relation to
the uncertainty principle, are the prototypical examples of continuous variables in quantum
mechanics.

In order to handily manipulate continuous-variable states, mathematical tools initially
inspired by quantum optics have been developed such as the phase-space formalism [Moy49]
which has then been extended to discrete-variable systems [Gro06]. In this framework, quantum
states are represented by a quasiprobability distribution over phase space, like the Wigner
function [Wig32]. These representations provide a geometric intuition for quantum states [Lee91].
Quantum states are separated into two categories, Gaussian and non-Gaussian, depending on
whether their Wigner function is a Gaussian function or not. The set of Gaussian states is well-
understood [FOP05] but has limited power for computation. On the other hand characterising

3



INTRODUCTION

the set of non-Gaussian states is an active research topic [AGPF18, TZ18, ZSS18, CMG20].
The latter are essential to a variety of quantum information processing tasks such as quantum
state distillation [GC02, ESP02, Fiu02], quantum error-correction [NFC09], universal quantum
computing [LB99, GS07] or quantum computational speedup [BSBN02, CFGM21]. Within
those, an important subclass of non-Gaussian states are the states which display negativity in
the Wigner function. These two classes of states coincide for pure states—namely, non-Gaussian
pure states have a negative Wigner function. Indeed by Hudson’s theorem [Hud74, SC83], pure
states with a positive Wigner function are necessarily Gaussian states. However, this is not the
case for mixed states and the (convex) set of states with a positive Wigner function becomes
much harder to characterise [MKC09, FMJ11]. In addition to its fundamental relevance as
a non-classical property of physical systems [KŻ04], Wigner negativity is also essential for
quantum computing as quantum computations described by positive Wigner functions can be
simulated efficiently classically [ME12]. Wigner negativity is thus a necessary resource, though
not sufficient [GACFF20], for quantum computational speedup. We explore intensively how to
witness Wigner negativity, with reliable and accessible detection setup, in Chapter 4.

Knowing which characteristic lies at the source of better-than-classical performances can
both allow for comparison of quantum systems in terms of their utility, and offer a heuristic for
generating further examples of quantum-enhanced performance. This last point is highlighted
in Chapter 5 where we derive an information retrieval game with a quantum-over-classical
advantage. Since contextuality and Wigner negativity both seem to play a fundamental role
as non-classical features enabling quantum-over-classical advantages in various tasks, another
question that arises is:

What is the precise relationship between Wigner negativity and contextuality?

For discrete-variable systems of odd power-of-prime dimension, Howard et al. [HWVE14] showed
that this negativity actually corresponds to contextuality with respect to Pauli measurements,
thereby establishing the operational utility of contextuality for the gate-based model of quantum
computation (particularly in a fault-tolerant setting). This equivalence was further established
for odd dimensions [DOBV+17] and qubit systems [RBD+17, DAGBR15]. However this link
has not previously been exhibited for continuous-variable systems and this is the subject of
Chapter 3.

Thesis structure and summary of results

Chapter 1. This introductory chapter presents the notions that will be used throughout this
dissertation. It starts by giving an overview of quantum information in Section 1.1; then it gives
the necessary tools for understanding the phase-space formulation of quantum mechanics in
Section 1.2; it provides some background on measure theory in Section 1.3; it gives an overview
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Chapter 1
Frameworks and formalism

Chapter 2
Continuous-variable

contextuality
Measure theory
Contextuality
Optimisation

Chapter 3
Equivalence between
contextuality and
Wigner negativity

Measure theory
Contextuality

Wigner negativity

Chapter 4
Witnessing Wigner

negativity
Measure theory

Wigner negativity
Optimisation

Chapter 5
Quantum advantage in
information retrieval

Wigner negativity
Contextuality
Optimisation

Figure 0.1: Dependencies between the chapters of this dissertation. The black
arrows enlighten the direct dependencies between the chapters while the dashed
arrows indicate a partial dependence. Key topics in the chapters are indicated below
the title of the corresponding chapter and are colour coded. They are defined in
Chapter 1. Note that Chapters 2, 3 and 4 use the continuous-variable (or infinite-
dimensional) notions while Chapter 5 uses the discrete-variable ones. We did not
emphasise the common denominator ‘Quantum Information’ as it is a trivial link
throughout the dissertation.

of optimisation theory with a focus on infinite-dimensional linear programming in Section 1.4;
and finally, it presents the sheaf theoretic framework for contextuality [AB11] in Section 1.5.
Chapter 2. This chapter investigates what happens for measurement contextuality as presented
in [AB11]—known as the sheaf theoretic approach to contextuality—when one is dealing with
continuous-variable systems. A robust framework for contextuality in continuous-variable
scenarios is presented that follows along the lines of the discrete-variable framework introduced
by Abramsky and Brandenburger [AB11]. Crucially the Fine–Abramsky–Brandenburger (FAB)
theorem [Fin82, AB11] extends to continuous variables. We prove it in scenarios that comprise
an uncountable number of measurement labels as it will be essential for the following chapter.
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This establishes that noncontextuality of an empirical behaviour, originally characterised by
the existence of a deterministic hidden-variable model [Bel64, KS75], can equivalently be
characterised by the existence of a factorisable hidden-variable model, and that ultimately
both of these are captured by the notion of extendability. An important consequence is that
nonlocality may be viewed as a special case of contextuality in continuous-variable scenarios just
as for discrete-variable scenarios. The contextual fraction, a quantifiable measure of contextuality
that bears a precise relationship to Bell inequality violations and quantum advantages [ABM17],
can also be defined in this setting using infinite-dimensional linear programming. It is shown
to be a non-increasing monotone with respect to the free operations of a resource theory for
contextuality [ABM17, ABKM19]. Crucially, these include the common operation of binning
to discretise data which is usually employed in continuous-variable scenarios. A consequence
is that any witness of contextuality on discretised empirical data also witnesses and gives a
lower bound on genuine continuous-variable contextuality. While infinite linear programs are of
theoretical importance and capture exactly the contextual fraction and Bell-like inequalities in
which we are interested, they are not directly useful for actual numerical computations. To get
around this limitation, we introduce a hierarchy of semidefinite programs [Las09] which are
relaxations of the original problem and whose values converge monotonically to the contextual
fraction. To use the results from [Las09], we establish that we can reduce the problem to the
case of compact outcome spaces. In any case energy bounds of the experimental apparatus
provide an argument for this but it is primordial for theoretical considerations where observables
might be unbounded.
Chapter 3. Negativity of the Wigner function is a striking non-classical feature of quantum
states that is related to contextuality for discrete-variable systems [HWVE14, DAGBR15,
BVDB+17, DOBV+17]. It has been widely studied as a resource for quantum speed-up and
advantage [Ga05, VFGE12, PWB15, CB18, SHP19]. In this chapter, we extend this result and
make a connection between contextuality and Wigner negativity for continuous-variable systems.
In particular, we show that contextuality is equivalent to Wigner negativity when we allow the
measurement of all possible displacements on 2 or more continuous-variable systems.
Chapter 4. Beyond the fundamental relevance of Wigner negativity, it is also a necessary
resource for quantum speedup with continuous variables. As quantum technologies emerge, the
need to identify and characterise the resources which provide an advantage over existing classical
technologies becomes more pressing. It is therefore desirable to detect Wigner negativity. In
this chapter, we derive witnesses for Wigner negativity of single-mode and multimode quantum
states, based on fidelities with Fock states, which can be reliably measured using standard
detection setups. They possess a threshold expectation value indicating whether the measured
state has a negative Wigner function. Moreover, the amount of violation provides an operational
quantification of Wigner negativity. We phrase the problem of finding the threshold value
for a given witness as an infinite-dimensional linear optimisation problem. By relaxing and
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restricting the corresponding linear program, we derive two converging hierarchies of semidefinite
programs, which provide numerical sequences of increasingly tighter upper and lower bounds for
the sought threshold value. We further show that our witnesses form a complete family—each
Wigner negative state is detected by at least one witness—thus providing a reliable method for
experimentally witnessing Wigner negativity of quantum states from few measurements. From
a foundational perspective, our findings provide insights on the set of positive Wigner functions
which still lacks a proper characterisation.
Chapter 5. Here we focus on discrete-variable quantum information and on expanding the
range of applications for which contextuality and negativity can be linked to and used to directly
quantify quantum advantage. Random access codes have provided many examples of quantum
advantage in communication, but concern only a specific communication game. In this chapter,
we investigate a broad generalisation of those that are referred to as information retrieval
tasks. We introduce and give a detailed analysis of an information retrieval task—the Torpedo
Game—that is distinct from a random access code. We show that it admits a greater quantum
advantage than the comparable random access code. Perfect quantum strategies involving
prepare-and-measure protocols with experimentally accessible three-level systems [HXG+21]
emerge via analysis in terms of the discrete Wigner function. The example is leveraged to an
operational advantage in a pacifist version of the strategy game Battleship. We pinpoint a
characteristic of quantum systems that enables quantum advantage in any bounded-memory
information retrieval task. While preparation contextuality has previously been linked to
advantages in random access coding we focus here on a different characteristic called sequential
contextuality [MK18]. It is shown not only to be necessary and sufficient for quantum advantage,
but also to quantify the degree of advantage for any information retrieval task.

Publications

- The publication, pre-prints and work in progress on which this thesis is built are listed below.

[CEG21] “Witnessing Wigner Negativity”, U. Chabaud, P-E. Emeriau, F. Grosshans,Quantum,
5:471, June 2021.

[BDE+19] “Continuous-variable nonlocality and contextuality”, R. S. Barbosa, T. Douce, P-E.
Emeriau, E. Kashefi, S. Mansfield, arxiv:1905.08267.

[EHM20] “Quantum Advantage in Information Retrieval”, P-E. Emeriau, M. Howard, S. Mans-
field, arxiv:2007.15643

[BCE21] “Equivalence between contextuality and Wigner negativity for generalised continuous-
variable quadrature measurements”, R. Booth, U. Chabaud, P-E. Emeriau, in preparation.
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Notations

Sets:

• N is the set of the natural numbers. For n ∈ N, J0, nK denotes the list of natural numbers
between 0 and n.

• R is the set of the real numbers.
• C is the set of the complex numbers. An asterisk * adjacent to a complex number denotes

that we take its complex conjugate. S1 is the set of complex numbers of modulus 1.
• Zd is the set of integers modulo d for d a positive integer.

We add an exponent ∗ to these above sets when 0 is removed from them. For d ∈ N∗ and
K ∈ {N,R,C,Zd}, Kd denotes the Cartesian product with itself d times. For α := (αi) ∈ Kd,
K = N,C or R ,|α| =

∑d
i=1 αi.

The Kronecker delta is the function of two variables over nonnegative integers that assigns 1 if
the variables are equal and 0 otherwise. It is denoted δij . δk ∈ Kd designates the vector filled
with 0 except for a 1 at the kth coordinate.

• Ndk :=
{
α ∈ Nd | |α| ≤ k

}
for k ∈ N, d ∈ N∗.

• R[x] is the ring of real polynomials in the variables x ∈ Rd.
• R[x]k ⊂ R[x] is the set of polynomials of total degree at most k ∈ N.
• Σ2R[x] ⊂ R[x] is the set of sum-of-squares polynomials.
• Σ2R[x]k ⊂ Σ2R[x] is the set of sum-of-squares polynomials of total degree at most 2k ∈ N.

Below R is a subset of Rd for some d ∈ N∗. We implicitly consider real-valued functions.

• C(R) is the space of continuous functions on R.
• C0(R) is the space of continuous functions on R that vanish at infinity in the case where
R is not bounded.

• C∞(R) is the space of smooth (infinitely-differentiable) functions over R.
• L1(R) is the space of integrable functions over R.
• L2(R) is the space of square-integrable functions over R.
• L2′(R) is the dual space L2(R) over R which is isomorphic to L2(R).
• `2 is the space of square-summable real sequences.
• S(R) is the space of Schwartz functions over R (the space of C∞ functions that go to 0

at infinity faster than any inverse polynomial, as do their derivatives) [Sch47].
• S ′(R) is the dual space of S(R) which is the space of tempered distributions over R (i.e.

distributions that have at most a polynomial growth at infinity).
• S(N) is the space of rapidly decreasing real sequences (i.e. that go to 0 at infinity faster

than any inverse polynomial).

8
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• S ′(N) is the dual space of S(N) which is the space of slowly increasing real sequences (i.e.
that are upper bounded by a polynomial).

We add a subscript + when we take the nonnegative elements of all of the above sets (e.g. R+

denotes the nonnegative reals, S+(R) denotes the nonnegative Schwartz functions over R, etc).

• Matm(R) is the space of m×m real matrices for m ∈ N∗.
• Symm is the set of m×m real symmetric matrices for m ∈ N∗.

An exponent T on a matrix denotes its transpose while an exponent † denotes its conjugate
transpose. The symbol � stands for semidefinite positiveness.

• U = 〈U,FU 〉 denotes a generic measurable space composed of a set U and a σ-algebra
FU on U . We will use the convention of using bold font to refer to the measurable space
and regular font to refer to the underlying set.

• M(U) is the set of measures on U .
• M±(U) is the set of finite-signed measures on U (i.e. finite measures that are non

necessarily nonnegative).
• P(U) is the set of probability measures on U .
• P(X) denotes the powerset of a set X.
• V \ U = V − U = {x ∈ V |x /∈ U} denotes the difference of two sets U and V such that
U ⊆ V .

• for U ⊆ V , U c denotes the complement of U in V .

For a measurable space U , E ∈ FU , 1E (resp. 0E) denotes the function that assigns 1 (resp. 0)
to all elements of E. 1E is the indicator function on E. We use ∼= between two sets to mean
they are isomorphic. For a vector space V over a field F , V ∗ denotes the set of linear functions
V → F .3

For k ∈ N, the kth Laguerre function is Lk(x) : x ∈ R+ −→ (−1)kLk(x)e
x
2 with Lk(x) :=∑k

l=0
(−1)l
l!
(k
l

)
xl the kth Laguerre polynomial.

Quantum Information

H denotes a Hilbert space. When not explicit from the context, H is a generic separable
infinite-dimensional Hilbert space. D(H ) is the set of quantum states (i.e. positive semidefinite
operators with unit trace) over H . |ψ〉 ∈ D(H ) represents a generic pure state of H and
ρ ∈ D(H ) a generic density operator. The identity operator is denoted 1 (1n for n ∈ N∗ is the
usual n× n identity matrix) and the usual qubit Pauli operators are denoted X, Y and Z. X
and Z also designate the generalisation of their qubit counterpart to the qudit realm. It will be
explicit from the context.

3This is the same notation than the one used to remove 0 from a set but it will be clear from context which
notation we mean.
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CHAPTER 0. INTRODUCTION

Contextuality

From an operational perspective, an experimental setup can be formalised as a measurement
scenario 〈X ,M,O〉 where X is the set of measurement labels,M the set of maximal contexts,
O = (Ox)x∈X is the collection of outcome sets for each measurement. Empirical models will be
usually denoted by e and CF(e) designates its contextual fraction while NCF(e) = 1 − CF(e)
designates its noncontextual fraction.

Multi-index notation

For M ∈ N∗:
0 = (0, . . . , 0) ∈ NM

1 = (1, . . . , 1) ∈ NM

m1 = (m, . . . ,m)

mk = (mk1, . . . ,mkM )

πk =
M∏
i=1

(ki + 1)

s(m) =
(
M +m

m

)
D̂(α) = D̂(α1)⊗ · · · ⊗ D̂(αM )

|k〉 = |k1〉 ⊗ · · · ⊗ |kM 〉

〈k| = 〈k1| ⊗ · · · ⊗ 〈kM |

k ≤ n ⇔ ki ≤ ni ∀i = 1, . . . ,M

Lk(α) = Lk1(α1) · · ·LkM (αM )

Lk(α) = Lk1(α1) · · · LkM (αM )

|k| = k1 + · · ·+ kM

αk = αk1
1 · · ·α

kM
M

k! = k1! · · · km!(
n

k

)
=
(
n1
k1

)
· · ·
(
nM
kM

)
k + n = (k1 + n1, . . . , kM + nM )

eα = eα1 · · · eαM .

(1)
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Frameworks and formalism

In this chapter, we introduce the frameworks and formalism on which this dissertation is
built. Section 1.1 introduces the basic notions of Quantum Information; Section 1.2 gives
the necessary background for phase-space formalism and culminates with the expression of

the Wigner function; Section 1.3 provides the necessary notions of measure theory; Section 1.4
provides the tools for (infinite-dimensional) optimisation theory; and Section 1.5 introduces the
sheaf theoretic approach for contextuality.

1.1 Quantum information preliminaries

1.1.1 Basics of quantum information theory

We give a brief and pedestrian introduction to the basics of Quantum Information. We refer
readers to [NC11] for a more extensive introduction.

Quantum information is the field that describes the behaviour of information when encoded
in degrees of freedom of particles governed by the laws of quantum physics. The properties
of a quantum system are represented by its quantum state. Formally, pure quantum states
correspond to normalised state vectors in a separable Hilbert space H . In quantum physics
the Dirac notation is ubiquitous: a ket |ψ〉 is a vector from H which corresponds to a pure
quantum state; a bra 〈φ| is a linear form φ : H −→ C. The action of a linear form on a vector
〈φ| (|ψ〉) gives a scalar denoted 〈φ|ψ〉. It can be used to construct the projection onto the state
|ψ〉 as Pψ : |φ〉 ∈H 7→ 〈ψ|φ〉 |ψ〉 ∈H or more concisely |ψ〉 〈ψ|.

From an operational point of view, a quantum experiment can be decomposed into three
distinct steps: preparation, evolution and measurement. Note that the evolution could always be
taken into account in the measurement or the preparation though it is often easier to consider
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measurements or preparations in a fixed basis. Preparation might be used to encode classical
information; evolution to manipulate quantum information; measurements to extract classical
information again.

Quantum states. The simplest example is the two-dimensional Hilbert space C2 where
information is encoded in the so-called quantum bits or qubits. Given an orthonormal basis
{|0〉 , |1〉} of C2, a pure qubit state can be expressed as:

|ψ〉 = a |0〉+ b |1〉 =
(
a

b

)
, (1.1)

where a, b ∈ C with the normalisation condition that |a|2 + |b|2 = 1. Physically, it could for
instance model the spin of an electron for which the two possible basis states are the spin
pointing up and down; or the polarisation of a single photon where the two basis states are
vertical and horizontal polarisation. Surprisingly, quantum physics allows for superposition,
that is, it allows for complex linear combinations. That is why quantum theory is inherently
probabilistic. Quantum randomness occurs when measuring a quantum system in superposition:
in general, it is impossible to predict deterministically the outcome of such a measurement.
This is not because of a lack of knowledge of the system but rather due to the probabilistic
nature1 of quantum theory. When measuring the state defined in Eq. (1.1) in the computational
basis {|0〉 , |1〉}, we will witness outcome 0 associated to |0〉 with probability |a|2 and outcome 1
associated to |1〉 with probability |b|2 according to the Born rule that we detail shortly after.

Quantum systems may also exhibit classical randomness. In that case, we will say that the
quantum state is mixed rather than pure. Mathematically, it is represented by a semidefinite,
Hermitian operator with unit trace acting on H called a density matrix or density operator.
We write D(H ) the set of density operators. Any density operator can be written as a convex
combination of pure states. For instance, the mixed state 1

2 |0〉〈0| +
1
2 |1〉〈1| known as the

maximally mixed state is classically probabilistic: it corresponds to the state obtained by
flipping an unbiased coin; it is different from the pure superposition 1√

2(|0〉+ |1〉) whose density
matrix is 1

2 |0〉〈0|+
1
2 |0〉〈1|+

1
2 |1〉〈0|+

1
2 |1〉〈1|.

To describe the state of a global system consisting of two independent subsystems |ψ1〉 and
|ψ2〉 lying in respectively Hilbert spaces H1 and H2, we will use a tensor product structure. We
write the global state as |ψ1〉⊗|ψ2〉 = |ψ1ψ2〉 ∈H1⊗H2. However the two subsystems might not
be independent. A pure quantum state of several particles which cannot be written as a tensor
product of quantum states is said to be entangled. As an example, the state 1√

2(|00〉+ |11〉) is
entangled while the state 1

2(|00〉+ |01〉+ |10〉+ |11〉) = 1√
2(|0〉+ |1〉)⊗ 1√

2(|0〉+ |1〉) is separable.
For ensembles, a mixed state is separable when it can be written as a mixture of separable pure
states and entangled otherwise. Measurement on entangled states may give rise to correlations

1or the incompleteness. . .
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unachievable with classical systems. For a composite system ρAB ∈ HA ⊗HB, the reduced
state of the first subsystem is obtained by tracing out—that is taking the partial trace—over
the second subsystem. It is described by TrHB

(ρ). Partial trace is the unique operator that
describes part of a larger quantum system with the correct description for subsystems of the
composite system [NC11].

The fidelity2 between two arbitrary quantum states ρ and σ is defined as

F (ρ, σ) := Tr(
√√

ρσ
√
ρ)2. (1.2)

When one of the states is pure, it reduces to F (ρ, σ) = Tr(ρσ). The trace distance between two
quantum states ρ and σ is defined as

D(ρ, σ) := 1
2Tr(

√
(ρ− σ)2). (1.3)

The trace distance can be related to the maximum probability of distinguishing between two
quantum states. Fidelity and trace distance are related by 1− F ≤ D ≤

√
1− F [NC11].

Evolution. The simplest evolution of a closed quantum system is described by a unitary
transformation with a unitary operator Û such that Û Û † = 1. It is generated by a Hermitian
operator Ĥ—often called Hamiltonian—such that Û = eiĤ . The unitary evolution of a pure
state |ψ〉 results in a pure state Û |ψ〉 while for a mixed state ρ, it results in a mixed state
ÛρÛ †. Important 2-dimensional examples are given by the Pauli X gate, the Pauli Z gate and
the Pauli Y gate3:

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y =

(
0 −i
i 0

)
. (1.4)

Other important single qubit operations are the Hadamard gate H and the π
8 -gate T =

√
S:

H = 1√
2

(
1 1
1 −1

)
, T =

(
1 0
0 i

)
, S =

(
1 0
0 ei

π
4

)
. (1.5)

As an example, applying X on the state given by Eq. (1.1) yields:

X |ψ〉 = b |0〉+ a |1〉 . (1.6)

More general evolutions are given by quantum channels known as completely positive
trace-preserving (CPTP) maps. Stinespring’s dilation theorem guarantees that CPTP maps
can ultimately be lifted to unitary operations [Sti55] on a higher dimensional Hilbert space.
This can be seen as a purification of CPTP maps.

2Note that in [NC11], the fidelity is defined as the square root of Eq (1.2). There is no fundamental difference
between the two definitions.

3From a computational point of view, they correspond to the more intuitive errors that may occur: respectively
bit flip, phase flip or both.
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Measurement. Following the approach of von Neumann, a measurement is represented by a
self-adjoint operator known as an observable Ô = Ô†. An observable has a family of eigenvectors
that form an orthonormal basis for the Hilbert space. Measuring the observable yields an
outcome that corresponds to one of the eigenvalues associated to the eigenvectors comprising
the basis. The probability of obtaining each outcome follows from the Born rule. When the
state of the system is a pure state |ψ〉 it reads:

Pr(λ) = 〈ψ|Πλ |ψ〉 , (1.7)

where λ is an eigenvalue of Ô and Πλ is the projector onto the eigenspace4 associated to λ.
For qubits, Pauli operators are Hermitian and can thus be measured. As already mentioned,
measuring Z on the state given by Eq. (1.1) yields two outcomes: 0 with probability 〈ψ|Π0 |ψ〉 =
〈ψ|0〉 〈0|ψ〉 = | 〈0|ψ〉 |2 = |a|2; and 1 with probability 〈ψ|Π0 |ψ〉 = |b|2. For a mixed state ρ, the
Born rule reads:

Pr(λ) = Tr(Πλρ). (1.8)

By linearity, the expectation value of Ô can be expressed as:

〈Ô〉 = Tr(Ôρ). (1.9)

This procedure corresponds to a projection-valued measurement (PVM).
PVMs are generalised by positive operator-valued measurements (POVMs) in the same

sense that mixed states generalise the notion of pure states. A POVM is a set of positive
semidefinite matrices {Fi}i∈I that sum to the identity operator where I denotes the set of
outcomes. When the state of the system is ρ, the outcome i ∈ I is obtained with probability:

Pr(i) = Tr(Fiρ). (1.10)

A POVM reduces to a PVM when {Fi}i∈I are orthogonal projectors.

1.2 Phase-space formalism

We now turn our attention to the phase-space formulation of quantum physics, motivate its use
and introduce the so-called Wigner function. We refer readers to a recent and comprehensive
overview [RE21] for further details. This formulation is one of many possible alternative
formulations of quantum physics, e.g. Schrödinger’s wave formulation or Heisenberg, Born and
Jordan’s matrix mechanics both from 1925. The phase-space formulation is often favoured in
quantum optics applications. The Wigner function was first introduced by Wigner in 1932
[Wig32] as the Fourier transform of the spatial autocorrelation wavefunction. It can be thought
as the joint (quasi)probability distribution of position and momentum. The marginals of the

4Or more simply the eigenvector if the observable at hand is not degenerate.
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Wigner function reproduce the correct probability distribution of quadratures5 i.e. integrating
the Wigner function over position at a given momentum gives the correct probability associated
with the chosen momentum and vice versa. Crucially, it is a quasiprobability distribution
in phase-space: it sums to unity though one has to drop the nonnegativity requirement of
probability distributions. This latter requirement is critical in quantum computing applications.
We will see how Wigner functions emerge as the expectation value of a kernel6 for finite-
dimensional as well as infinite-dimensional systems. The phase-space formulation comes with a
remarkable symplectic structure [ARL14].

1.2.1 Phase-space for d-dimensional quantum states

It is possible to represent finite-dimensional quantum states as quasi-probability distributions
over a phase space of discrete points. Fix d ∈ N an odd power-of-prime. Wootters [GHW04,
Woo87] introduced a method for constructing discrete Wigner functions (DWF) based on
finite fields, wherein vectors from a complete set of mutually unbiased bases in Cd are put in
one-to-one correspondence with the lines of a finite affine plane of order d. Two orthonormal
bases are said to be mutually unbiased [Sch60] if the square of the inner product between an
element of the first basis and an element of the second basis equals the inverse of d. They are
‘unbiased’ in the following sense: if a system is prepared according to a basis state of one of the
basis, all the outcomes of the measurement with respect to the other basis are predicted to
occur with the same probability 1

d .
Gross [Gro06] singled out one particularly symmetric definition of DWF that obeys the

discrete version of Hudson’s Theorem [Hud74] that we recall after introducing the Wigner
function. We introduce the necessary tools for this construction below.

We consider a d-dimensional Hilbert space H equipped with the computational basis
{|0〉 , |1〉 , . . . , |d− 1〉}. Below all arithmetic will be modulo d. The phase-space of a single d-level
system is V = Zd × Zd—which can be thought of as an affine plane, or more precisely a toric
d× d grid. For m particles, it can be straightforwardly extended by associating a phase-space
to each particle. We extend the definition of Pauli operators X (translation) and Z (boost) to
H as follows: for all k ∈ Zd,

X |k〉 = |k + 1〉

Z |k〉 = ωk |k〉 ,
(1.11)

with ω = exp(i2π
d ). Note that, unlike the qubit case, these are not Hermitian operators anymore.

Strictly speaking they should not correspond to physical observational quantities. However their
non-degenerate eigenstates still form a complete orthonormal basis of the Hilbert space; thus
they can be used to define a von Neumann measurement. The qudit Pauli group is comprised

5Position q̂ and momemtum p̂ are known as quadrature operators since they correspond to two ‘quadratures’
of the electromagnetic field. See Subsection 1.2.2.

6Kernel is rather versatile in mathematics. Here, by kernel, we mean integral kernel.
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of Weyl operators (also known as generalised Pauli operators) which are products of powers
of these operators, e.g. XqZp for (q, p) ∈ V . The Clifford group is defined as containing the
unitaries which map Weyl operators to other Weyl operators under conjugation. A unitary U
stabilises a state |ψ〉 if U |ψ〉 = |ψ〉. A stabiliser state is the unique n-qudit state stabilised by a
subgroup of size dn of the Pauli group. Equivalently, stabiliser states may be understood as the
image of computational basis states under the Clifford group.

We introduce the displacement operator at point (q, p) ∈ V :

D̂(q, p) := ω2−1qpXqZp. (1.12)

These are known as are Gross’ Weyl operators [Gro06]. 2−1 is the multiplicative inverse of 2 in
Zd, that is 2−1 = (d+ 1)/2.

The parity operator—also known as the phase point operator at the origin—reads:

Π̂ :=
∑
k∈Zd

|−k〉〈k| . (1.13)

Parity transformation—or parity inversion—is essentially a flip in the sign of spatial coordinates.
It is physically motivated by its continuous-variable analogue though we indeed have that
Π̂ |k〉 = |−k mod d〉 for k ∈ Zd.

1.2.2 The case of continuous-variable quantum information

Before giving the expression of the Wigner function compatible with discrete and continuous
systems we need to introduce some elements of quantum information with continuous variables.
We refer readers to [ARL14, BVL05, Wal21] for extensive introductions to the material presented
here.

In the continuous-variable (CV) formalism, information is encoded in a mode (or qumode)
rather than in a finite dimensional system like a qubit or a qudit. The separable Hilbert space
H is infinite-dimensional and is equipped with a countable orthonormal basis {|n〉}n∈N known
as the Fock basis, or photon number basis in an optical context. The phase-space associated to
a single mode is now V = R2 u C and it can be straightforwardly extended to several modes.
A single-mode pure state can be expanded in the Fock basis as:

|ψ〉 =
∑
n∈N

ψn |n〉 (1.14)

where for all n ∈ N, ψn ∈ C such that
∑
n |ψn|2 = 1. A general mixed state can be expressed as:

ρ =
∑
k,l∈N

ρk,l |k〉〈l| , (1.15)

where for all k, l ∈ N, ρk,l ∈ C, ρk,l = ρ∗l,k and
∑
k ρk,k = 1.
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Ladder operators are ubiquitous in CV quantum information. Canonical adjoint operators â
and â†, known as the annihilation and creation operators, are defined by their action on the
Fock basis as:

â |n〉 =
√
n |n− 1〉 for n ∈ N∗,

â |0〉 = 0,

â† |n〉 =
√
n+ 1 |n+ 1〉 for n ∈ N.

(1.16)

These operators obey the commutation relation:[
â, â†

]
= 1. (1.17)

Note that they do not correspond naturally to physical observations since they are not Hermitian
operators. However, from them, we can define well-known observables. Position and momentum
operators—also known as the quadrature operators—are linked to these ladder operators as
follows:

q̂ = 1√
2

(â+ â†),

p̂ = 1
i
√

2
(â− â†).

(1.18)

They obey the canonical commutation relation

[q̂, p̂] = i1, (1.19)

which is one expression of the Heisenberg uncertainty principle [Hei85] i.e. that position and
momentum cannot be simultaneously measured on the same state with arbitrary precision.

The eigenstates of â are the coherent states {|α〉}α∈C:

|α〉 := e−
1
2 |α|

2 ∑
n∈N

αn√
n!
|n〉 . (1.20)

They define an overcomplete basis of H . A central operator in phase-space formulation is the
displacement operator by a value α ∈ C [WPGP+12] which reads

D̂(α) := eαâ
†−α∗â, (1.21)

or similarly for α = 1√
2(q + ip) with (q, p) ∈ V :

D̂(q, p) := eipq̂−iqp̂ = ei
qp
2 e−iqp̂eipq̂. (1.22)

Compared to the discrete-variable case in Eq. (1.12), this amounts to take the phase factor as
ω = ei with the continuous-variable generalisation of the X gate as X(q) := e−iqp̂ and of the Z
gate as Z(p) := eipq̂. This gives that D̂(q, p) = ei

qp
2 X(q)Z(p).

The coherent state of amplitude α ∈ C can be obtained by displacing the vacuum state |0〉
by an amount α:

|α〉 = D̂(α) |0〉 . (1.23)
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The coefficients of the displacement operator in Fock basis are given by [Wün98]:

〈k|D̂(α)|l〉 = e−
1
2 |α|

2
min k,l∑
p=0

√
k!l!(−1)l−p

p!(k − p)!(l − p)!α
k−pα∗l−p, (1.24)

for all k, l ∈ N and all α ∈ C.
Lastly, the parity operator is defined as:

Π̂ := (−1)â†â = eiπâ
†â =

∑
n∈N

(−1)n |n〉〈n| . (1.25)

On a particle at position q ∈ R, it acts as Π̂ψ(q) = ψ(−q) where ψ(q) = 〈q|ψ〉 and |q〉 is an
eigenstate of q̂.

1.2.3 The Wigner function

We fix M ∈ N∗ the number of modes. The phase-space is VM and it is endowed with its
vector space structure and its canonical basis. As mentioned before, the Wigner function is a
quasiprobability distribution [CG69] on VM that can be expressed as the expectation value of
a kernel—the displaced parity operator. For an operator Ô acting on M discrete-variable or
continuous-variable systems (see Table 1.1 for the comparison), the Wigner function at point
r = (q1, . . . , qM , p1, . . . , pM ) ∈ VM reads:

WÔ(r) :=
(2
c

)M
Tr(D̂(r)Π⊗MD̂(r)†Ô) (1.26)

where c = 2π for continuous-variable systems and c = 2d for a d-dimensional system and where
D̂(r) = D̂(q1, p1)⊗ · · · ⊗ D̂(qM , pM ).

Discrete variables Continuous variables

Phase-space VM (Z2
d)M (R2)M

Phase factor ω ei
2π
d ei

Displacement at (q, p) ∈ VM e
2iπ
d

2−1qpXqZp ei
qp
2 X(q)Z(p)

Parity operator
∑
k∈Zd |−k〉〈k|

∑
k∈N(−1)k |k〉〈k|

Constant c 2d 2π

Table 1.1: Comparison between quantities comprising the Wigner function of m
systems expressed in the discrete-variable setting of odd prime dimension d and in
the continuous-variable setting.

A useful relation is the link between the Wigner function and the characteristic function that
is derived using the symplectic structure of the phase-space VM . The characteristic function of
a density operator ρ is defined as:

Φρ : VM −→ R

r 7−→ Tr(D̂(r)ρ)
(1.27)
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Due to the commutation relation between position and momentum operators there is a symplectic
structure for VM . We denote Ω the symplectic form. For r1, r2 ∈ VM ,

Ω(r1, r2) = r1 · Jr2 where J =
(

0 1M

−1M 0

)
(1.28)

We have that J−1 = JT = −J . Then the Wigner function is the symplectic Fourier transform
of the characteristic function:

Wρ(r) = FT [Φρ] (−Jr) (1.29)

where the Fourier transform of a L1(VM ) function f is defined as (see table 1.1):

FT [f ] (r) :=


∑
p∈VM

(ω∗)r·pf(p) for discrete-variable systems,∫
VM

(ω∗)r·pf(p) dp for continuous-variable systems,
(1.30)

for r ∈ VM . The inverse Fourier transform is denoted FT−1 and it is defined as:

FT−1 [f ] (p) :=


1
cM

∑
r∈VM

ωr·pf(r) for discrete-variable systems,

1
cM

∫
VM

ωr·pf(r) dr for continuous-variable systems.
(1.31)

Now we turn our attention to the celebrated Hudson’s theorem [Hud74]. For continuous-
variable systems, Hudson’s theorem establishes that a pure state which has a nonnegative
Wigner function is necessarily a Gaussian state (i.e. a state whose Wigner function is a Gaussian
distribution). Its discrete-variable counterpart [Gro06] says that an odd-dimensional pure state
is nonnegatively represented in the DWF if and only if it is a stabiliser state. Hudson’s theorem
has remarkable implications, providing large classes of quantum circuit with a local hidden
variable model that enables efficient simulation [Ga05, CGaG+06, VFGE12, ME12].

The Wigner function is a quasiprobability distribution: a normalised distribution (i.e. its sum
or integral over phase space equals 1) which can take negative values. Whenever it is everywhere
nonnegative, it can be interpreted as a kind of probability distribution for the quadrature
measurements. Crucially, Wigner negativity—the fact that the Wigner distribution can be
negative in regions of phase space—is a necessary resource for quantum computational speedup.
Informally, a result from Mari and Eisert [ME12] states that if the quantum computation
(i) starts in a product state with a nonnegative Wigner function, (ii) is followed by quantum
gates that can be represented by a nonnegative Wigner function (defined through the Choi
matrix), (iii) and terminates with measurements associated with a nonnegative Wigner function
then there exists an efficient classical algorithm that simulates the computation (assuming that
local probability distributions may be sampled efficiently). This essentially amounts to sampling
directly from the Wigner distribution which, in this case, is a proper probability distribution.
This results applies in the DV and CV settings.
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From a resource theoretic point of view, negativity of the Wigner function can only decrease
under Gaussian operations [AGPF18], i.e., operations that map Gaussian states to Gaussian
states. In particular, it is invariant under displacements. It is also a robust property, since
two almost indistinguishable quantum states have similar Wigner functions. An operational
measure of Wigner negativity for a quantum state ρ ∈ D(H ) is given by its distance to the set
of states having a positive Wigner function [MKN+11]:

ηρ = inf
σ∈D(H)
Wσ≥0

D(ρ, σ), (1.32)

where D denotes the trace distance (see Subsection 1.1.1). It quantifies the operational distin-
guishability between the state ρ and any state having a positive Wigner function [NC11].

To fix ideas, the Wigner functions of Fock states {|k〉}k are given by [KŻ04]:

∀α ∈ C, Wk(α) = 2
π
Lk(4|α|2), (1.33)

where Lk is the kth Laguerre function [Sze59] defined as

∀x ∈ R+, Lk(x) := (−1)kLk(x)e
x
2 (1.34)

with Lk the kth Laguerre polynomial defined as

Lk(x) :=
k∑
l=0

(−1)l

l!

(
k

l

)
xl . (1.35)

Except for the vacuum state |0〉, all other Fock states have a Wigner function with a negative
part.

1.3 Measure theory in a nutshell

Introduced below are the necessary tools of measure theory that are used throughout this
dissertation. We refer readers to [Bil08, Tao11] for a more thorough introduction to measure
theory.

To avoid some pathological behaviours when dealing with probability distributions on
a continuum, we first need to define σ-algebras which will give raise to a good notion of
measurability.

Definition 1.1 (σ-algebras). A σ-algebra on a set U is a family B of subsets of U containing
the empty set and closed under complementation and countable unions, that is:

(i) ∅ ∈ B.
(ii) for all E ∈ B, Ec ∈ B.
(iii) for all E1, E2, · · · ∈ B, ∪∞i=1Ei ∈ B.
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Definition 1.2 (Measurable space). A measurable space is a pair U = 〈U,FU 〉 consisting of a
set U and a σ-algebra FU on U .

In some sense, the σ-algebra specifies the subsets of U that can be assigned a ‘size’, and which
are therefore called the measurable sets of U . We will use the convention of using boldface to
refer to measurable spaces and regular font to refer to the underlying set. A trivial example
of a σ-algebra over any set U is its powerset P(U), which gives the discrete measurable space
〈U,P(U)〉, where every set is measurable. This is typically used when U is countable (finite or
countably infinite), in which case this discrete σ-algebra is generated by the singletons. Another
example, of central importance in measure theory, is the Borel σ-algebra BR generated from
the open sets of R, whose elements are called the Borel sets. This gives the measurable space
〈R,BR〉. Working with Borel sets avoids the problems that would arise if we naively attempted
to measure or assign probabilities to points in the continuum. More generally, any topological
space gives rise to a Borel measurable space in this fashion. The product of measurable spaces
can be defined as follows:

Definition 1.3 (Finite product). The product of measurable spaces U1 = 〈U1,F1〉 and U2 =
〈U2,F2〉 is the measurable space

U1 ×U2 = 〈U1 × U2,F1 ⊗F2〉 ,

where U1 × U2 is the Cartesian product of underlying sets, and the so-called tensor-product
σ-algebra F1 ⊗ F2 is the σ-algebra on U1 × U2 which is generated by the subsets of the form
E1 × E2 with E1 ∈ F1 and E2 ∈ F2.

The product above is given by the box topology. In this dissertation, we will also need to
deal with measurable spaces formed by taking the product of an uncountably infinite family
of measurable spaces. In that case the box topology is no longer the most natural choice as
enlightened by Tychonoff’s theorem [Tyc30] and we will use the product topology.

Definition 1.4 (Infinite product). Fix a possibly uncountably infinite index set I. The product
of measurable spaces (Ui = 〈Ui,Fi〉)i∈I is the measurable space:

∏
i∈I
Ui =

〈∏
i∈I

Ui,
∏
i∈I
Fi

〉
= 〈UI ,FI〉 ,

where UI =
∏
i∈I Ui is the Cartesian product of the underlying sets, and the σ-algebra FI =∏

i∈I Fi is obtained via the product topology i.e. it is generated by subsets of ∏i∈I Ui of the form∏
i∈I Bi where for all i ∈ I, Bi ⊆ Ui and Bi ( Ui only for a finite number of i ∈ I.

Remarkably, the product topology is the smallest topology that makes the projection maps
πk :

∏
i∈I Ui −→ Uk continuous. This definition is more general as it reduces straightforwardly

to the case of a finite product. We can now formally define measurable functions and measures
on those spaces.
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Definition 1.5 (Measurable function). A measurable function between measurable spaces
U = 〈U,FU 〉 and V = 〈V,FV 〉 is a function f : U −→ V whose preimage preserves measurable
sets, i.e. such that, for any E ∈ FV , f−1(E) ∈ FU .

This is similar to the definition of a continuous function between topological spaces. Measurable
functions compose as expected.

Definition 1.6 (Measure). A measure on a measurable space U = 〈U,FU 〉 is a function
µ : FU −→ R from the σ-algebra to the extended real numbers R = R ∪ {−∞,+∞} satisfying:

(i) (nonnegativity) µ(E) ≥ 0 for all E ∈ FU ;
(ii) (null empty set) µ(∅) = 0;
(iii) (σ-additivity) for any countable family (Ei)∞i=1 of pairwise disjoint measurable sets,

µ(
⋃∞
i=1Ei) =

∑∞
i=1 µ(Ei).

In particular, a measure µ on U = 〈U,FU 〉 allows one to integrate well-behaved measurable
functions f : U −→ R (where R is equipped with its Borel σ-algebra BR) to obtain a real value,
denoted ∫

U
f dµ or

∫
x∈U

f(x) dµ(x). (1.36)

A simple example of a measurable function is the indicator function of a measurable set E ∈ FU :

1E(x) :=

1 if x ∈ E

0 if x 6∈ E.

For any measure µ on U , its integral yields the ‘size’ of E:∫
U

1E dµ = µ(E) . (1.37)

A measure µ on a measurable space U is said to be finite if µ(U) <∞ and it is a probability
measure if it is of unit mass i.e. µ(U) = 1. We will denote by M(U) and P(U), respectively, the
sets of measures and probability measures on the measurable space U . Note that neither M(U)
nor P(U) form a vector space. One way to recover this structure is to consider finite-signed
measures. In comparison to the definition of a measure, one drops the nonnegativity requirement
(i) in Definition 1.6, but insists that the values be finite. We denote this real vector space
M±(U). Equipped with total variation distance7 it becomes a normed vector space.

A measurable function f between measurable spaces U and V carries any measure µ on
U to a measure f∗µ on V . This is known as a push-forward operation. This push-forward
measure is given by f∗µ(E) = µ(f−1(E)) for any set E measurable in V . An important use of

7For µ, ν ∈ M±(U), the total variation distance is defined as ‖µ− ν‖ = |µ− ν|(U) = supA∈FU
|µ(A)− ν(A)|.

When the set is countable, the total variation distance is related to the L1 norm by the identity ‖µ− ν‖ =
1
2
∑

x∈U |µ(x)− ν(x)|.
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push-forward measures is that for any integrable function g between measurable spaces V and
〈R,BR〉, one can write the following change-of-variables formula∫

U
g ◦ f dµ =

∫
V
g df∗µ . (1.38)

Importantly, the push-forward operation preserves the total measure, hence it takes P(U) to
P(V ). A case that will be of particular interest to us is the push-forward of a measure µ on a
product space U1×U2 along a projection πi : U1×U2 −→ Ui. This yields the marginal measure
µ|Ui = πi∗µ, where for any E ∈ FU1 measurable, µ|U1(E) = µ(π−1

1 (E)) = µ(E × U2). In the
opposite direction, given a measure µ1 onU1 and a measure µ2 onU2, a product measure µ1×µ2 is
a measure on the product measurable spaceU1×U2 satisfying (µ1×µ2)(E1×E2) = µ1(E1)µ2(E2)
for all E1 ∈ F1 and E2 ∈ F2. For probability measures, there is a uniquely determined product
measure.

The last ingredient we need from measure theory is called a Markov kernel.

Definition 1.7 (Markov kernel). A Markov kernel (or probability kernel) between measurable
spaces U = 〈U,FU 〉 and V = 〈V,FV 〉 is a function k : U × FV −→ [0, 1] (the space [0, 1] is
assumed to be equipped with its Borel σ-algebra) such that:

(i) for all E ∈ FV , k(–, E) : U −→ [0, 1] is a measurable function;
(ii) for all x ∈ U , k(x, –) : FV −→ [0, 1] is a probability measure.

Markov kernels generalise the discrete notion of stochastic matrices.

1.4 Optimisation theory

Below we give a brief overview of the optimisation problems that arise in this dissertation. We
begin by recalling some basic definitions [BBV04]. Let E be a real topological vector space.

Definition 1.8 (Convex set). A set F ⊂ E is said to be convex if for any x, y ∈ F and
λ ∈ [0, 1], we have that λx+ (1− λ)y ∈ F .

Definition 1.9 (Convex function). Let F be a convex subset of E. f : F −→ R is said to be
convex if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for any x, y ∈ F and λ ∈ [0, 1].

If −f is convex then we say that f is a concave function.

Definition 1.10 (Cone). A set C ∈ E is a cone if for all x ∈ C and λ ∈ R+, λx ∈ C.

If C is a convex subset of E and a cone, we say that C is a convex cone.

Definition 1.11 (Proper cone). A cone C ⊂ E is a proper cone if:

• C is convex.
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• C is closed (i.e. the limit of vectors with respect to the topology on E in C belong to C).
• C is solid (i.e. it has nonempty interior).
• C is pointed (i.e. if x ∈ C and −x ∈ C then x = 0E).

A proper cone C ⊂ E induces a partial ordering on E: x ≥C y ⇐⇒ x− y ∈ C for x, y ∈ E.
Thus x =C y if x− y ∈ C and y − x ∈ C. In the rest of the manuscript, we will only deal with
proper cones that we will refer to as cones.

A convex optimisation problem is an optimisation problem in which the objective function
and the feasible set are convex. A detailed introduction to the general problem as well as
algorithmic techniques for solving it can be found in e.g. [BTN01, BBV04, HUL13]. A convex
optimisation problem can be generally expressed as:

inf
x∈F

f(x). (1.39)

F ⊂ E is called the feasible set. It is a convex subset specified by constraints: for instance linear
inequalities or semidefinite inequalities. f : E −→ R is a convex real-valued function called the
objective function. Note that the maximisation problem of optimising a concave function f can
be expressed in this form with the convex function −f . Usually, E can be embedded into Rn for
some n ∈ N∗. However, we will also consider other cases e.g. the space of real valued continuous
functions. Such problems will yield infinite-dimensional convex optimisation problems. Convex
programs have the remarkable property that a local optimum is always a global optimum. This
fact is greatly exploited by solvers such as point interior methods.

A feasible plan or feasible solution is an element x ∈ E which belongs to F i.e. an element
that satisfies all the constraints. We say that a convex optimisation program (P) is consistent if
it possesses a feasible solution. A strictly feasible solution strictly satisfies all the constraints. If
the infimum in Eq. (1.39) is attained, an optimal plan or optimal solution is a feasible plan that
reaches this value. The value of a program (P), denoted val(P), is the value returned by the
optimisation problem. It is the value reached by an optimal solution if there exists an optimal
plan. It can be infinite if the program diverges.

In particular, we will be interested in a subfield of convex optimisation known as conic
programming:

inf
Ax=C b

f(x) , (1.40)

where A is a linear operator acting on E, b ∈ E and C is a convex cone in E. Conic programming
thus consists of the optimisation of a convex function over the intersection of an affine subspace
{y ∈ E|y = Ax − b} and a convex cone C. This can be extended to constraints of the form
Ax ≥C b. We will mainly focus on linear objective functions.

Importantly conic optimisation reduces to linear programming (LP) when the convex cone
is a nonnegative orthant; and to semidefinite programming (SDP) when it is the convex cone of
positive semidefinite matrices. Remarkably, these two classes come with a duality theory: from a
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primal program expressed as a minimisation problem, one can derive a dual program expressed as
a maximisation problem. Weak duality always holds meaning that the value of the minimisation
problem is lowerbounded by the value of the maximisation problem. Furthermore when the
values of the programs agree, we have strong duality between the programs. Equivalently, we
say there is no duality gap. The latter will only hold under specific conditions that we will
detail later. There exist robust and efficient classical algorithms for solving linear programs and
semidefinite programs [BTN01, BBV04], in particular via interior point methods.

Finally we will also encounter more exotic optimisation problems where we will have to
deal with quadratic terms. Terms like xTQx for some vector x and some symmetric matrix
Q will only be convex if Q is positive semidefinite. In that case, we will deal with quadratic
SDPs. However we will often encounter optimisation problems where the objective function is
no longer convex. The resulting program will not fit in the convex optimisation category. In
particular we loose the very desirable property that a local optimum is automatically a global
optimum resulting in a numerical resolution which is often much harder.

1.4.1 Linear programming

We present below the generic form of an infinite-dimensional linear program and main results
regarding strong duality. Extensive introductions can be found in [Bar02, DT06] and we will
follow the form given in [Bar02, IV–(6.1)] for such programs.

Let E1, F1 and E2, F2 be pairs of dual topological vector spaces equipped with the weak
topology8 induced by the dualities 〈–, –〉1,2. They are defined as 〈–, –〉1 : E1 × F1 −→ R and
〈–, –〉2 : E2 × F2 −→ R.

We fix convex cones K1 ⊆ E1 and K2 ⊆ E2. Convex dual cones K∗1 and K∗2 are defined as:

K∗i = {f ∈ Fi such that ∀e ∈ Ki, 〈e, f〉 ≥ 0} .

Furthermore, we fix the linear transformation A : E1 −→ E2. We also fix its dual transformation
A∗ : F2 −→ F1 such that ∀e ∈ E1,∀f ∈ F2, 〈A(e), f〉2 = 〈e,A∗(f)〉1. Finally, we fix c ∈ F1 and
b ∈ E2. A canonical example of a (potentially infinite-dimensional) primal9 linear program can
be expressed as: 

Find e1 ∈ E1

minimising 〈e1, c〉1
subject to:

A(e1) ≥K2 b

e1 ≥K1 0 .

(LP)

8The weak topology on E1 induced by F1 and the duality 〈–, –〉1 is the weakest (or coarsest) topology on E1
that makes all the maps 〈–, f1〉1 : E1 −→ R continuous as f1 ranges over F1. And similarly for E2, F1 and F2.

9Note that the naming ‘primal’ and ‘dual’ is purely arbitrary and could be exchanged.
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Its dual problem can be expressed as:

Find f2 ∈ F2

maximising 〈b, f2〉2
subject to:

A∗(f2) ≤K∗1 c

f2 ≥K2 0 .

(D-LP)

Example. To fix ideas, let us consider an example that will be of particular importance in
this manuscript. For some Borel measurable space U of a compact Hausdorff set U , E1 and E2

are the set of finite signed measures M±(U) and F1 and F2 are the set of continuous real valued
functions on U , C(U). Note that M±(U) is indeed a concrete realisation of the topological dual
space of C(U) via the Riesz–Markov–Kakutani representation theorem [Kak41]. The duality is
then naturally given by:

∀µ ∈M±(U),∀f ∈ C(U), 〈µ, f〉 =
∫
U
f dµ. (1.41)

K1 and K2 are the convex cone of positive finite measure. K∗1 and K∗2 are then the set of
positive real-valued functions on R. We further fix A and A∗ to be the identity map. b ∈ E2 is
a fixed finite measure and c ∈ F1 a continuous function on U . Program (LP) then seeks the
infimum of the real number 〈e1, c〉1 over all finite-signed measures e1 under the constraint that
e1 is a nonnegative measure and that it is lower bounded by the finite measure b, meaning that
e1 − b is itself a nonnegative finite measure. Likewise, program (D-LP) seeks the supremum
of the real number 〈b, f2〉2 over all real-valued continuous functions f2 under the constraints
that f2 is a nonnegative function and that it is upper bounded by the continuous function c,
meaning that c− f2 is itself a nonnegative continuous function.

Weak duality. It always holds that val(LP) ≥ val(D-LP).

Strong duality. This only holds under specific conditions. It is often a very desirable property.
For instance, the computation of the contextual fraction [ABM17] (see Section 1.5.3) can be
phrased as a linear program. Its dual program provides a method for calculating the maximally
violated normalised Bell inequality which only holds because strong duality applies in this
setting.

When the problem is finite-dimensional, a sufficient condition for strong duality is that the
program has a finite value and its feasible region has an interior point. The latter is known as
Slater’s condition. More formally, it requires the existence of a strictly feasible plan i.e. a point
that satisfies the constraints with strict inequality. For instance, for problem (LP), it amounts
to the existence of a positive e1 ∈ E1 such that A(e1) > b.
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When the problem is infinite-dimensional, this becomes slightly more cumbersome. The
following theorem, expressed with notation from (LP), provides a sufficient condition:

Theorem 1.1 (Th. (7.2) [Bar02]). Suppose that the set {(A(x), 〈x, c〉1) : x ∈ K1} is closed in
E2 ⊕ R and that there exists a primal feasible plan i.e. that the primal program is consistent.
Then there is no duality gap i.e. val(LP) = val(D-LP). If val(LP) is finite then there exists a
primal optimal plan.

1.4.2 Semidefinite programming

Semidefinite programs are a generalisation of linear programs where one optimises in the
cone of semidefinite matrices rather than a positive orthant. Here we give the canonical form
of finite-dimensional semidefinite programs [VB96]. Let M,N ∈ N, b = (b1, . . . , bM ) ∈ RM ,
C ∈ SymN (the set of N ×N symmetric matrices), and B(i) ∈ SymN for all i ∈ J1,MK.

Find X ∈ SymN

minimising Tr(CTX)

subject to:

∀i ∈ 1, . . . ,M, Tr(B(i)X) = bi

X � 0 .

(SDP)

A matrix X ∈ MatM (R) is positive semidefinite, denoted X � 0, if and only if for all u ∈ RM ,
uTXu ≥ 0. Its dual semidefinite program reads:

Find y ∈ RM

maximising bTy

subject to:
M∑
i=1

yiB
(i) � C .

(D-SDP)

Compared to the very general programs given in the previous subsection, the programs given
above seem more rigid because we only account for finite-dimensional semidefinite programs
in this dissertation—a similar simpler form could be given for finite-dimensional LP. Infinite-
dimensional linear programs can either be relaxed (for instance when some constraints are relaxed
or even suppressed i.e. when the optimisation is performed on a larger search space) or restricted
(for instance when constraints are added). It turns out that with a clever choice of restrictions
and relaxations, infinite-dimensional linear programs may sometimes be approximated by
converging upper and lower hierarchies of finite dimensional semidefinite programs (which
can actually be ran on a computer). In the case of optimising over measures, it is sometimes
possible to rephrase the problem in terms of the infinite sequence of moments of the measure
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by requiring that the so-called moment matrix is positive semidefinite. We then truncate the
sequence of moment to obtain a finite dimensional semidefinite program [Las09, Las01]. This is
known as the Lasserre hierarchy (or Lasserre relaxation) that we introduce shortly after. Dual
to this vision, it is also sometimes possible to find sum-of-squares representation for continuous
real-valued nonnegative functions. Then by truncating at a certain degree of the sum-of-squares
representation, it can be rephrased as a semidefinite program [Par03, Las09].

Weak duality. It always holds that val(SDP) ≥ val(D-SDP).

Strong duality. If one of the programs has a finite value and a feasible region with an
interior point (a point that strictly satisfies all the constraints) then we have strong duality i.e.
val(SDP) = val(D-SDP).

Numerical implementation. There exist nowadays numerous software packages to solve
SDPs. A great open-source resource is the library Picos [SS12] which allows one to write
high-level SDPs in Python. It can be interfaced with robust SDP solvers such as Mosek [ApS19]
or SDPA [FKNY02]. Note that SDPA features a highly accurate multiple-precision arithmetic
SDP solver called SDPA-GMP [Nak10]. While much slower, this significantly improves accuracy
if numerical issues are critical.

1.4.3 The Lasserre–Parrilo hierarchy

Below we introduce the Lasserre–Parrilo hierarchy for relaxing infinite-dimensional linear
programs known as Generalised Moment Problems [Las01, Las09, Par03].

We start by giving insightful results: Subsection 1.4.3.1 provides results concerning the
representation of positive polynomials while Subsection 1.4.3.2 provides results to understand
when a sequence can be represented by a Borel measure.

Notation, terminology

We work in Rd for d ∈ N∗. We fixK to be a Borel measurable subspace of Rd. We use the multi-
index notation in Eq. (1), which we recall briefly. Let R[x] denote the ring of real polynomials
in the variables x ∈ Rd, and let R[x]k ⊂ R[x] contain those polynomials of total degree at most
k. The latter forms a vector space of dimension s(k) :=

(d+k
k

)
, with a canonical basis consisting

of monomials xα := xα1
1 · · ·x

αd
d

10 indexed by the set Ndk :=
{
α ∈ Nd | |α| ≤ k

}
where |α| :=∑d

i=1 αi. For k ∈ N, x ∈ Rd, we define vk(x) := (xα)|α|≤k = (1, x1, . . . , xn, x
2
1, x1x2, . . . , x

k
n)T

the vector of monomials of total degree less or equal than k.
Any p ∈ R[x]k is associated with a vector of coefficients p := (pα) ∈ Rs(k) via expansion in

the canonical basis as p(x) =
∑
α∈Nd

k
pαx

α.
10We also extend this notation to noncommutative variables in Subsection 1.4.4.
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Moment problem in probability

Given a finite set of indices Γ, a set of reals {γj : j ∈ Γ} and polynomials hj : K −→ R, j ∈ Γ
(integrable with respect to every measure µ ∈ M±(K)) the corresponding Global Moment
Problem (GMP) can be expressed as:

Find µ ∈M±(K)

maximising µ(K)

subject to:

∀j ∈ Γ,
∫
K
hj dµ ≤ γj .

(GMP)

It dual program can be expressed as:

Find λ ∈ RΓ

minimising
∑
j∈Γ

γjλj

subject to:

∀x ∈ K,
∑
j∈Γ

λjhj(x)− x ≥ 0

∀j ∈ Γ, λj ≥ 0 .

(D-GMP)

1.4.3.1 Positive polynomials and sum-of-squares

Here we present the link between positive polynomials and sum-of-squares representation so
that we can derive a converging hierarchy of restriction problems for program (D-GMP).

Definition 1.12 (sum-of-squares polynomial). A polynomial p ∈ R[x] is a sum-of-squares
(SOS) polynomial if there exists a finite family of polynomials (qi)i∈I such that p =

∑
i∈I q

2
i .

SOS polynomials are widely used in convex optimisation. We will denote by Σ2R[x] ⊂ R[x] the
set of (multivariate) SOS polynomials, and Σ2R[x]k ⊂ Σ2R[x] the set of SOS polynomials of
degree at most 2k. The following proposition hints towards the reason why it is desirable to be
able to look for a sum-of-squares decomposition: it can be cast as a semidefinite optimisation
problem.

Proposition 1.1 (Prop. 2.1, [Las09]). A polynomial p ∈ R[x]2k has a sum-of-squares decom-
position if and only if there exists a real symmetric positive semidefinite matrix Q ∈ Syms(k)

such that ∀x ∈ Rd, p(x) = vk(x)TQvk(x).

Then we will be looking at conditions under which a nonnegative polynomial can be
expressed as a sum-of-squares polynomial. This is in essence the question raised by Hilbert in
his 17th conjecture [Hil88].
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Definition 1.13 (quadratic module). For a family q = (qj)j∈{1,...,m} of polynomials, the set:

Q(q) :=


m∑
j=0

σjqj | (σj)j∈{0,...,m} ⊂ Σ2R[x]

 (1.42)

is a convex cone in R[x] called the quadratic module generated by the family q with, for
convenience, q0 = 1 added. For k ∈ N, we define Qk(q) to be the quadratic module Q(q) where
we further impose that (σj)j∈{0,...,m} ⊂ Σ2R[x]k i.e. we limit the degree of SOS polynomials.

Assumptions 1.1. Let K ⊂ Rd. We make the following three assumptions on K.

(i) Suppose K is a basic semi-algebraic set i.e. there exists a family of polynomials g =
(gj)j∈{1,...,m} ∈ R[x]m of degrees deg(gj) respectively such that:

K :=
{
x ∈ Rd | ∀j = 1, . . . ,m, gj(x) ≥ 0

}
. (1.43)

(ii) Further suppose that K is compact.
(iii) Finally suppose that there exists u ∈ Q(q) such that the level set

{
x ∈ Rd | u(x) ≥ 0

}
is

compact.

In the family of polynomials (gj)j∈{1,...,m} we add g0 = 1 for convenience.
The following theorem is the key result that we will exploit for deriving the hierarchy of

SDP restrictions for the dual program (GMP).

Theorem 1.2 (Putinar’s Positivellensatz [Put93]). Let K ⊂ Rd satisfy Assumptions 1.1. If
p ∈ R[x] is strictly positive on K then p ∈ Q(g), that is

p =
m∑
j=0

σjgj (1.44)

for some sum-of-squares polynomials σj ∈ Σ2R[x] for j = 0, 1, . . . ,m.

A proof can also be found in [Lau09].
Using the result above and Assumption 1.1, one can derive a hierarchy of SDPs [Las09]

which provide a converging sequence of optimal values towards the value of program (D-GMP):

Find λ = (λj)j∈Γ ∈ RΓ and ∀j = 0, . . . ,m, fj ∈ Σ2R[x]
k−d

deg(gj)
2 e

minimising y0

subject to:∑
j∈Γ

λjhj − 1K =
m∑
j=0

fjgj

∀j ∈ Γ, λj ≥ 0 .

(D-GMPk)
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1.4.3.2 Moment sequences and moment matrices

In this subsection, we want to understand why the program (P-CFCV) can be relaxed so
that a converging hierarchy of SDPs can be derived. The program (P-CFCV) is essentially a
maximisation problem on finite-signed Borel measures with additional constraints such as the
fact that these are proper measures (i.e. they are nonnegative). We will represent a measure
by its moment sequence and find conditions for which this moment sequence has a (unique)
representing Borel measure.

Definition 1.14 (Riesz functional Ly). Given a sequence y = (yα)α∈Nd ∈ RNd, we define the
linear functional Ly : R[x] −→ R by

Ly(p) :=
∑
α∈Nd

pαyα. (1.45)

Definition 1.15 (Moment sequence). Given a measure µ ∈ M(K), its moment sequence
y = (yα)α∈Nd ∈ RNd is given by

yα :=
∫
K
xα dµ(x) . (1.46)

We say that y has a unique representing measure µ when there exists a unique µ such that
Eq. (1.46) holds. If µ is unique then we say it is determinate (i.e. determined by its moments).

The linear functional Ly then gives integration of polynomials with respect to µ i.e. for any
p ∈ R[x]:

Ly(p) =
∑
α∈Nd

pαyα =
∑
α∈Nd

pα

∫
K
xα dµ(x) =

∫
K

∑
α∈Nd

pαx
α dµ(x)

=
∫
K
p(x) dµ(x)

=
∫
K
p dµ,

(1.47)

where we reversed summation and integration because the sum is finite since p is a polynomial.
The following theorem is often used in optimisation theory over measures as it provides a

necessary and sufficient condition for a sequence to have a representing measure.

Theorem 1.3 (Riesz-Haviland [Hav36]). Let y = (yα)α∈Nd ∈ RNd and suppose that K ⊆ Rd is
closed. Then y has a representing (nonnegative) measure i.e. there exists µ a measure on K
such that:

∀α ∈ Nd,
∫
K
xα dµ = yα

if and only if Ly(p) ≥ 0 for all polynomials p ∈ R[x] nonnegative on K.

We recall that for k ∈ N, s(k) =
(d+k
k

)
.
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Definition 1.16 (Moment matrix). For each k ∈ N, the moment matrix of order k Mk(y) ∈
Syms(k) of a truncated sequence (yα)α∈Nd2k is the s(k) × s(k) symmetric matrix with rows
and columns indexed by Ndk (i.e. by the canonical basis for R[x]k) defined as follows: for any
α,β ∈ Ndk,

(Mk(y))α,β := Ly(xα+β) = yα+β . (1.48)

Definition 1.17 (Localising matrix). Given a polynomial p ∈ R[x], the localising matrix
Mk(py) ∈ Mats(k)(R) of a moment sequence (yα)α∈Nd ∈ RNd is defined by: for all α,β ∈ Ndk,

(Mk(py))α,β := Ly(p(x)xα+β) =
∑
γ∈Nd

pγyα+β+γ . (1.49)

The localising matrix reduces to the moment matrix for p = 1. For well-defined moment
sequences, i.e. sequences that have a representing finite Borel measure, moment matrices and
localising matrices are positive semidefinite, which provides insight on the reason why problem
(P-CFCV) can be relaxed to a problem with positive semidefiniteness constraints.

Proposition 1.2. Let y = (yα)α∈Nd ∈ RNd be a sequence of moments for some finite Borel
measure µ on K. Then for all k ∈ N, Mk(y) � 0. If µ has support contained in the set
{x ∈ K | g(x) ≥ 0} for some polynomial g ∈ R[x] then, for all k ∈ N, Mk(gy) � 0.

Proof. Let y = (yα) be the moment sequence of a given Borel measure µ on K. Fix k ∈ N. For
any vector v ∈ Rs(k) (noting that v is canonically associated with a polynomial v ∈ R[x]k in
the basis (xα)):

vTMk(y)v =
∑

α,β∈Nd
k

vαyα+βvβ (1.50)

=
∑

α,β∈Nd
k

vαvβ

∫
K
xα+β dµ (1.51)

=
∫
K

 ∑
α∈Nd

k

vαx
α


2

dµ (1.52)

=
∫
K
v2(x) dµ ≥ 0 . (1.53)

Thus Mk(y) � 0.
Similarly we can prove that the localising matrix Mk(gy) is positive semidefinite when g is

a nonnegative polynomial on the support of µ. Indeed for all v ∈ Rs(k):

vTMk(gy)v =
∫
K
v2(x)g(x) dµ ≥ 0 , (1.54)

which concludes the proof.
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The following theorem, which is the dual facet of Theorem 1.2, is the key result for deriving
the hierarchy of SDP relaxations for the primal problem (P-CFCV). It provides a necessary and
sufficient condition for a sequence to have a representing measure.

Theorem 1.4 (Th. 3.8 [Las09]). Let y = (yα)α∈Nd ∈ RNd . Let K ⊂ Rd satisfy Assumptions 1.1.
Then y has a finite Borel representing measure with support contained in K if and only if:

Mk(y) � 0, ∀k ∈ N, (1.55)

Mk(gjy) � 0, ∀j = 1, . . . ,m, ∀k ∈ N. (1.56)

Using the above result and Assumption 1.1, one can derive a hierarchy of SDPs [Las09]
which provide a converging sequence of optimal values towards the value of program (GMP):

Find y = (yα)α∈Nd2k ∈ Rs(2k)

maximising y0

subject to:

∀j ∈ Γ, Ly(hj) ≤ γj
Mk(y) � 0

∀i ∈ 1, . . . ,m, M
k−ddeg(gi)

2 e(giy) � 0 .

(GMPk)

We refer readers to [Las09] for the proof of convergence of the hierarchies given by programs
(GMPk) and (D-GMPk).

1.4.4 Quadratic optimisation problems

Quadratic problems play an important role in Quantum Information since jointly optimising an
expectation value over quantum states ρ’s and PVMs {Ei}i amounts to optimising quadratic
terms like Tr(ρEi) under the constraints that these operators are positive semidefinite and that
the PVMs sum to the identity. However these terms are not convex so the resulting optimisation
problem is challenging to solve (it is NP-hard in general).

Suppose we have a maximisation problem for a nonconvex bilinear quadratic problem. One
obvious strategy to obtain a lower bound is to decompose the optimisation into two SDP sub
problems: one when the PVMs are fixed; one when the quantum state is fixed. The solution of
one sub program can then be used to fix the quantities in the other program. This is known as
a see-saw iteration algorithm and they usually provide a tight lower bound though convergence
is never guaranteed.

To obtain an upper bound on the value of the nonconvex problem, one can implement
the Navascués–Pironio–Acín (NPA) hierarchy [NPA08] and in particular the finite-dimensional
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variation known as the Navascués-Vértesi (NV) hierarchy [NFAV15] which will optimise from
outside the set of quantum correlations to provide an upper bound on the sought value. Below
we briefly introduce noncommutative polynomial optmisation (NPO) and give the NV hierarchy
associated. We focus on this variant as the dimension of the Hilbert space is bounded and this
will be required for our problems.

Consider the set S of all d-tuples of Hermitian operators X = (X1, . . . , Xd) satisfying
R = {qi(X) � 0 : i = 1, . . . ,m} where (qi)i=1,...,m are Hermitian polynomials (i.e. qi(X) is
Hermitian for X a d-tuple of Hermitian operators). Given p a Hermitian polynomial and
D ∈ N∗, a generic NPO problem can be expressed as:

Find a Hilbert space H , ψ ∈ D(H )

and X a d-tuple of Hermitian operators on H

maximising 〈ψ|p(X)|ψ〉

subject to:

dim(H ) ≤ D

∀i = 1, . . . ,m, qi(X) � 0 .

(NPO)

A sequence y = (yα) ∈ Rs(2k) admits a valid quantum representation if there exists X ⊂ B(H )
satisfying R with dim(H ) ≤ D and a pure state |ψ〉 ∈ H such that yα = 〈ψ|Xα|ψ〉. The
moment vectors y that admit a quantum representation with a dimensional constraint satisfy a
number of additional linear restrictions which depend on D. For instance for D = 1, there are
additional constraints that ensure the variables commute. Denote SkD the span of the set of
feasible sequences y = (yα) ∈ Rs(2k). The NV hierarchy is generally expressed as:

Find y = (yα)α∈Nd2k ∈ Rs(k)

maximising Ly(p)

subject to:

y ∈ SkD
y0 = 1

Mk(y) � 0

∀i = 1, . . . ,m, Mk(qiy) � 0 .

(SDP-NPOk)

The key to implement this program is to characterise the subspace SkD and [NFAV15] provide
methods to do so. It can be achieved by a randomised method where X and |ψ〉 are randomly
generated to build a basis for SkD. Another method is deterministic and involve symbolic
computations to retrieve a basis for SkD.
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1.5 Sheaf-theoretic framework for contextuality

In this section, we aim at introducing the traditional notion of contextuality as first considered
by Bell [Bel64] and Kochen and Specker [KS75]. We will define it following the later, more
general approach developed in the seminal paper of Abramsky and Brandenburger often
referred to as the sheaf-theoretic approach to measurement contextuality [AB11]—though
in the present exposition, we will not dive deeply into the sheaf structure itself. The main
ingredients are empirical models which can be thought of as providing formal descriptions
of tables of data specifying the probabilities of joint outcomes for compatible measurements.
These empirical models need an underlying abstract description of an experiment which is
given by a measurement scenario. A crucial result is the Fine–Abramsky–Brandenburger (FAB)
theorem which pinpoints a unified structure describing nonlocality and contextuality. Moreover,
contextuality can quantified using the contextual fraction [ABM17] which can be computed by
a linear program.

1.5.1 Measurement scenarios and empirical models

Measurement scenarios

An abstract description of a particular experimental setup is formalised as a measurement
scenario.

Definition 1.18 (Measurement scenario). A measurement scenario is a triple 〈X ,M,O〉
where:

• X is a finite set of measurement labels.
• M is a covering family of X i.e. it is a set of subsets of X such that ⋃C∈MC = X . We

require that each element C ∈ M is a maximal measurement context in the sense that
∀C,C ′ ∈ M such that C ⊆ C ′ then C = C ′. It represents a maximal set of compatible
measurements. No element of this family is a proper subset of another.

• O = (Ox)x∈X is a finite set of outcomes for each measurement. For some set of measure-
ments U ⊆ X , the joint outcome set is given by the product of the respective outcome
spaces: OU =

∏
x∈U Ox.

A very convenient way to picture contextuality is via bundle diagrams as introduced in
[ABK+15]. The elements of X are represented by the vertices of the base of the bundle diagram
(see green vertices in figure 1.1). The elements ofM are represented by edges (or hyperedges
in general) between those vertices (see blue lines). The outcomes (i.e. the elements of O) are
displayed in fibres above each measurement (see purple vertices). The connection to bundles is
very carefully set up in [ABK+15].
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•a1
• b1

• a2
•b2

•0

•1

• 0

• 1 • 0

• 1•0

•1

O

X
M

Figure 1.1: The example of the (2, 2, 2) Bell measurement scenario represented in
the bundle diagram format.

Example. Let us express the standard (2,2,2) Bell scenario (2 parties, 2 observables each, 2
possible outcomes). It is represented as:

X = {a1, a2, b1, b2}, M = {{a1, b1}, {b1, a2}, {a2, b2}, {b2, a1}}, ∀x ∈ X ,Ox = {0, 1}

The language of sheaves

Different conventions have been used for defining the set of sections. We will adopt the one
from [BKM21] and call a section an element of OU for U ∈ P(X ) a set of measurement labels.
Sections from OU are joint outcomes for all measurements in U . A global section is a global
assignment i.e. it is an element of OX . The sheaf E11 maps U ∈ P(X ) to E(U) = OU . It is called
the event sheaf as it assigns, to any set of measurements, information about the outcome events
that could result from jointly performing them. Note that as well as applying the map to valid
contexts U ∈ M we will see that it can also be of interest to consider hypothetical outcome
spaces for sets of measurements that do not necessarily form valid contexts, in particular
E(X) = OX , the joint outcome space for all measurements. Sheaves are widely used in modern
mathematics. See [MM92] for a comprehensive reference. They might roughly be thought of
as providing a means of assigning information to the open sets of a topological space. This is
performed in such a way that information can be restricted to smaller open sets and consistent
information on family of open sets can be uniquely ‘glued’ on their union. We are concerned with
discrete topological spaces whose points represent measurements, and the information that we
are interested in assigning has to do with outcome spaces for these measurements and probability
measures on these outcome spaces. Sheaves can be defined concisely in category-theoretic terms
as contravariant functors (presheaves) satisfying an additional gluing condition, though in what
follows we will also give a more concrete description in terms of restriction maps.

Sheaves come with a notion of restriction. Restriction arises in the following way: whenever
U, V ∈ P(X ) with U ⊆ V we have an obvious restriction map ρVU : E(V ) −→ E(U) which simply

11It is a functor E : P(X ) −→ Set
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projects from the product outcome space for V to that for U . Note that ρUU is the identity map
for any U ∈ P(X ) and that if U ⊆ V ⊆W in P(X ) then ρVU ◦ ρWV = ρWU . Already this is enough
to show that E is a presheaf. For an inclusion U ⊆ V and a section o ∈ E(V ) = OV , it is often
more convenient to use the notation o|U to denote ρVU (o) ∈ E(U) = OU , the restriction of o to
OU which selects outcomes in o that corresponds to measurement labels in U .

Additionally, the unique gluing property holds for E . Suppose that N ⊆ P(X) and we
have an N -indexed family of sections (oU ∈ OU )U∈N that is compatible in the sense that its
elements agree on overlaps, i.e. that for all U, V ∈ N , oU |U∩V = oV |U∩V . Then these sections
can always be ‘glued’ together in a unique fashion to obtain a section oN over N := ∪N such
that oN |U = oU for all U ∈ N . This makes E a sheaf. For a concise view on the reason why
contextuality might be approached by topological arguments see [Man20].

Empirical model.

An empirical model is an object that allows one to specify the probabilities of observed joint
outcomes on a given measurement scneario.

Definition 1.19 (Empirical model). An empirical model e (also called empirical behaviour)
on the measurement scenario 〈X ,M,O〉 is a family e = (eC)C∈M, where eC is a probability
distribution on the joint outcome space OC for each maximal context C. These probability
distributions further satisfy the compatibility conditions:

∀C,C ′ ∈M, eC |C∩C′ = eC′ |C∩C′ .

The notation eC |U for C ∈M and U ⊂ C is shorthand for the standard marginalisation of a
probability distribution: for t ∈ OU , eC |U (t) :=

∑
s∈OC ,s|U=t eC(s). The compatibility condition,

which requires that the marginals of these distributions agree on overlapping contexts, is
sometimes referred to as the no-disturbance condition or as the generalised no-signalling
condition. A special case is no-signalling which occurs when measurements are performed at
space-like separated regions. Compatibility then ensures that the choice of which measurement
to perform at one location does not affect the empirical prediction at another location. The
no-disturbance principle is satisfied by all empirical models that arise from quantum predictions.
Note that due to the structure inherited from probability distributions, empirical models are
closed under convex combinations.

Example. We express an empirical model for the Clauser–Horne–Shimony–Holt (CHSH)
experiment [CHSH69] on the (2,2,2) Bell scenario as the table 1.2. Note that

eCHSH = η

4e
1 + (1− η)ePR box (1.57)

where η = 1−
√

2
2 . eCHSH is an empirical model corresponding to the CHSH experiment, e1 the

one corresponding to a maximally mixed state and ePR box an empirical model for a PR box.
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A B 00 01 10 11
a1 b1 η1 η2 η2 η1
a1 b2 η1 η2 η2 η1
a2 b1 η1 η2 η2 η1
a2 b2 η2 η1 η1 η2

Table 1.2: Empirical model on the (2, 2, 2) Bell scenario specifying the probabilities
of the joint outcomes for the CHSH model with η1 = 2+

√
2

8 and η2 = 2−
√

2
8 . Here

ai and bi for i = 1, 2 represent quantum observables for CHSH with eigenvalues
relabelled as 0 and 1. Joint probabilities are obtained by the Born rule.

For instance the first row indicates that for the context C = {a1, b1}, the empirical model
assigns probability 1

2 to the local sections (0, 0) and (1, 1) in context {a1, b1}. To understand the
compatibility condition, let us focus on the first and second rows of the table. Fix C = {a1, b1}
and C ′ = {a1, b2}. Then U = C∩C ′ = {a1}. Consider any t ∈ OU : for instance the measurement
associated to a1 gives the outcome 0. For the first row, the only local sections s ∈ OC such
that s|U = t are (0, 0) and (0, 1) which, marginalised on the second outcome corresponding to
the measurement of a2, gives the outcome 0 for a1. Summing the probabilities associated to
these sections: eC |U (0) = eC((0, 0)) + eC((0, 1)) = η1 + η2 = 1

2 . With the same procedure for
the second row: eC′ |U (0) = eC′((0, 0)) + eC′((0, 1)) = η2 + η1 = 1

2 as required.

•a1
• b1

• a2
•b2

•0

•1

• 0

• 1 • 0

• 1•0

•1

Figure 1.2: Bundle diagram for the CHSH model presented in Table 1.2 on the
(2, 2, 2) Bell scenario.

We can now complete the bundle diagram 1.1 with the joint outcomes specified by the
empirical model e (see orange edges in figure 1.2). Note that bundle diagrams are often used to
witness possibilistic contextuality (i.e. logical or strong contextuality that we will define shortly)
so that it is not always necessary to represent the probabilities associated to joint outcomes.
Rather we only represent an edge between outcomes whenever the associated probability is non
zero.12

12Note, however, that for the CHSH model it would be necessary to take account of the precise probabilities
in order to witness contextuality.
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Extendability and Contextuality

Figure 1.3: A drawing inspired by M.C. Escher’s lithograph Klimmen en dalen.

We are now able to state the notion of measurement contextuality (or rather noncontextual-
ity) which is a characteristic of the empirical behaviors. Informally noncontextuality can be
thought of as an extendability property: local sections can be glued together consistently so
that the empirical data can be described from global sections only. Local predictions can then
be obtained from marginalising a probability distribution on global sections.

Definition 1.20 (Noncontextuality or extendability). An empirical model e on a measurement
scenario 〈X ,M,O〉 is said to be noncontextual (or extendable) if there exists a global probability
distribution d on global assignments OX such that ∀C ∈M, eC = d|C .

When such a global distribution d cannot be found then we say the empirical model e
is contextual. Equivalently, it is contextual when compatible local sections cannot be glued
into global sections. Contextuality thus naturally arises as the tension between local and
global consistency [AB11, BKM21]. Such tension might give rise to apparent paradoxes. This
is beautifully illustrated by M.C. Escher’s lithograph Klimmen en dalen (ascending and
descending). A drawing inspired by this is given in Figure 1.3. Locally looking at the staircase,
every character and its adjacent neighbours are going up the stairs consistently. However, taking
a global look at the staircase gives an impossible figure in 3 dimensional Euclidean geometry.
Notions of partial extendability have also been considered in [MB14, Sim17].
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A stronger version of contextuality is referred to as logical contextuality. It arises when there
exists a local section in the empirical model that cannot be obtained from a global section that
is consistent with the support of the model. This can easily be pictured on a bundle diagram.
On figure 1.4 which illustrates the Hardy paradox [Har93], the yellow path shows a local section
({1, 1} in context a1, b1) that cannot be extended consistently. Finally, strong contextuality—a
stronger form of logical contextuality—arises when no local sections can be extended to a global
one consistently i.e. when there is no global section g ∈ OX such that ∀C ∈ M, eC(g|C) > 0.
The Popescu-Rohrlich (PR) box13 [PR94] is such an example (see figure 1.5 where no path can
be extended consistently).

•a1
• b1

• a2
•b2

•0

•1

• 0

• 1 • 0

• 1•0

•1

Figure 1.4: Logical contextual
empirical model on the (2, 2, 2)
Bell scenario (Hardy model).

•a1
• b1

• a2
•b2

•0

•1

• 0

• 1 • 0

• 1•0

•1

Figure 1.5: Strongly contextual
empirical model on the (2, 2, 2)
Bell scenario (PR box).

1.5.2 The FAB theorem

Previously, we characterised noncontextuality of an empirical model by the extendability
property. Global sections are sufficient to capture noncontextual empirical behaviours via
deterministic global states that assign predefined outcomes to all measurements. This is
precisely the model referred to in the Kochen-Specker theorem [KS75]. On the other hand,
Bell’s theorem—focused on a multi-party experiment in which the parties may be spacelike
separated—identifies another classical feature: factorisability rather than determinism. Fine
unified these two notions in the case of the (2,2,2) Bell scenario [Fin82]. Later, Abramsky and
Brandenburger [AB11] showed that this existential equivalence holds for any measurement
scenario with observables with a discrete spectrum. It establishes an unambiguous, unified
treatment of locality and noncontextuality, which is captured in a canonical way by the notion
of extendability.

We begin by introducing the notion of hidden-variable models (HVM). Note that HVMs
are often referred to as ontological models [Spe05] nowadays. The latter has become widely

13Interestingly the example of these local distributions that cannot be explained by a global distribution was
already introduced in [Vor62]
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used in quantum foundations in recent years. It indicates that the hidden variable—or the ontic
state—is supposed to provide an underlying description of the physical world at perhaps a more
fundamental level than the empirical-level description via the quantum state for example. The
idea behind the introduction of HVMs is that there exists some space Λ of hidden variables
predetermining the empirical behaviour. The motivation is that hidden variables could explain
away some of the more non-intuitive aspects of the empirical predictions of quantum mechanics,
which would then arise as resulting from an incomplete knowledge of the true state of a system
rather than being a fundamental feature. There is some precedent for this in physical theories:
for instance, statistical mechanics—a probabilistic theory—admits a deeper, albeit usually very
complex, description in terms of classical mechanics, which is purely deterministic. It is desirable
to further impose constraints on hidden-variable models which will restrict the set of achievable
empirical behaviours and require that it behaves classically in some sense. In the case of Bell
locality, we require that the hidden-variable model must be local i.e. factorisable (in a sense
made precise below). However, hidden variables may not be directly accessible themselves so
we allow that we only have probabilistic information about which hidden variable pertains in
the form of a probability distribution p on Λ. The empirical behaviour should then be obtained
as an average over the hidden-variable behaviours.

Definition 1.21 (Hidden-variable model). A hidden-variable model on a measurement scenario
〈X ,M,O〉 consists of the triple

〈
Λ, p, (hλ)λ∈Λ

〉
where:

• Λ is the finite space of hidden variables;
• p is a probability distribution on Λ;
• for each λ ∈ Λ, hλ is empirical model i.e. hλ = (hλC)C∈M is a family where, for each

context C ∈M, hλC is a probability distribution on the joint outcome space OC . For each
λ ∈ Λ, hλ satisfies the following compatibility condition:

∀C,C ′ ∈M, hλC |C∩C′ = hλC′ |C∩C′ .

Crucially, our definition of hidden-variable model assumes λ-independence [Dic98] and parameter-
independence [Jar84, Shi86]. λ-independence corresponds to the requirement that the prob-
ability distribution p is independent of the measurement context. It is crucial for otherwise
every behaviour (including contextual ones) could be modelled trivially by HVMs. Parameter-
independence corresponds to the compatibility condition, which also ensures that the corre-
sponding hidden-variable behaviour satisfies no-disturbance [BK13].

A hidden-variable model
〈

Λ, p, (hλ)λ∈Λ
〉
gives rise to an empirical behaviour as follows:

∀C ∈M,∀s ∈ OC , eC(s) =
∑
λ∈Λ

p(λ)hλC(s). (1.58)

This is a valid empirical behaviour since it is a convex sum of empirical behaviours (hλ)λ∈Λ.
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As mentioned, to ensure that the hidden-variable model behaves classically we need to
impose further constraints. This motivates the notions of deterministic and of factorisable
hidden-variable models.

Definition 1.22 (Deterministic HVM). A hidden-variable model
〈

Λ, p, (hλ)λ∈Λ
〉
is said to

be deterministic if for every λ ∈ Λ and for every maximal context C ∈ M the probability
distribution hλC is a Kronecker delta i.e. there exists an assignment o ∈ OC such that hλC = δo.

Note that global sections OX can be seen as a canonical form of deterministic hidden variables,
which assign a definite outcome to each measurement, independent of the measurement context.
Each global section g ∈ OX gives raise to a Kronecker delta distribution δg. This induces a
distribution on each context that can be obtained by marginalisation; this is again a Kronecker
delta at the restriction of the global section g to the given context: δg|C = δg|C . Because the
set of global assignments is finite, we can always restrict the hidden-variable space to be of
finite dimension as an infinite-dimensional space will not capture more behaviours. This fact
will become clear from the statement of the FAB theorem.

Definition 1.23 (Factorisable HVM). A hidden-variable model
〈

Λ, p, (hλ)λ∈Λ
〉
is factorisable

if the probability assigned to a joint outcome factors as the product of the probabilities assigned
to the individual measurements i.e. for every λ ∈ Λ and for every maximal context C ∈ M,
hλC factorises as a product probability distribution. That is, for λ ∈ Λ, C ∈ M and for every
s ∈ OC :

hλC(s) =
∏
m∈C

hλC |{m}(s|{m}) =
∏
m∈C

hλm(s|{m}).

Due to the assumption of parameter-independence, we can unambiguously write hλm for hλC |{m}
as the marginalisation is independent of the context C.

We can now state the FAB theorem.

Theorem 1.5 (FAB theorem [AB11]). Let 〈X ,M,O〉 a measurement scenario with finite
number of measurement labels and finite outcome sets. Let e be an empirical behaviour on
〈X ,M,O〉. Then the following propositions are equivalent:

(1) e is extendable.
(2) e admits a realisation by a deterministic hidden-variable model.
(3) e admits a realisation by a factorisable hidden-variable model.

1.5.3 Quantifying contextuality

A more refined question than asking whether a given empirical behaviour is contextual or not
is to ask:

To what extent is a given empirical behaviour contextual?
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Indeed some fraction of the empirical model may admit a noncontextual explanation. This
allows for a quantitative statement in terms of a measure known as the contextual fraction,
originally introduced in the seminal work [AB11] and further developed in [ABM17]. Instead of
asking for a proper probability distribution on global assignments that allows the retrieval of the
empirical behaviour e by marginalisation at each context, the idea is to ask for a subprobability
distribution b (a distribution that sums to less than 1) on global sections OX explaining some
fraction of the empirical behaviour i.e. we require that ∀C ∈M, b|C ≤ eC .

We can create an empirical model by taking a convex sum of empirical behaviours i.e. for
two empirical models e and e′ on the same measurement scenario and for λ ∈ [0, 1], λe+(1−λ)e′

is again a well-defined empirical model. An equivalent way of explaining some fraction of the
empirical behaviour with a noncontextual behaviour is to ask for a convex decomposition of
the form:

e = λeNC + (1− λ)e′, (1.59)

where λ ∈ [0, 1], eNC is a noncontextual empirical model and e′ is some other (no-signalling)
empirical model. The maximum weight λ on the noncontextual part or, equivalently, the
maximum mass (i.e. the quantity 1.b =

∑|OX |
i=1 bi) of a subprobability distribution is called

the noncontextual fraction of e and denoted NCF(e) ∈ [0, 1]. It generalises the local fraction
[EPR92, BKP06, AGA+12]. The contextual fraction CF(e) is defined as: CF(e) := 1− NCF(e).
It was originally introduced in [AB11] where it was proven that a model with contextual fraction
of 1 is necessarily strongly contextual. A convex decomposition as in Eq. (1.59) with maximal
weight on the noncontextual part necessarily results in the following:

e = NCF(e)eNC + CF(e)eSC , (1.60)

where eSC is strongly contextual. Note that this decomposition might not be unique. Thus the
contextual fraction might be formally defined as:

Definition 1.24 (Noncontextual fraction). Let e be an empirical model on the scenario
〈X ,M,O〉. The noncontextual fraction of e, written NCF(e), is defined as

sup {1.b | b a subprobability distribution on OX such that ∀C ∈M,b|C ≤ eC} . (1.61)

Computing the contextual fraction as a linear program

A very convenient property is that the computation of the noncontextual fraction can be
phrased as a linear program (see Subsection 1.4.1) [ABM17]. Fix a measurement scenario
〈X ,M,O〉 (with a finite number of observables and finite spaces of outcomes). Let e be an
empirical model on that scenario. Let n := |OX | be the number of possible global assignments
and m :=

∑
C∈M |OC | be the number of total local assignments ranging over all contexts. It can
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also be expressed as m := |{〈C, s〉 s.t. C ∈ M and s ∈ OC}|. We define the incidence matrix
M as the m× n (0,1)-matrix such that:

M[〈C, s〉, g] :=

1 if g|C = s

0 otherwise,
(1.62)

ranging over contexts C ∈M, local sections s ∈ OC , and global sections g ∈ OX . Each column
corresponds to a global section and each row to a local section. To understand its action, read
the matrix column-by-column by fixing a global section g ∈ OX . For that column, the incidence
matrix assigns a 1 in a row corresponding to a local section s in context C whenever the global
section under consideration marginalises to s i.e. if g|C = s. Thus it can be seen as a table of
possible restrictions from global to local assignments.

The empirical model e can be represented as a vector ve ∈ [0, 1]m where for a given context
C ∈M and a local assignment s ∈ OC , ve[〈C, s〉] = eC(s). It is a flattened version of the tables
that are usually used to represent empirical models (see table 1.2). Then e is noncontextual (see
Definition 1.20) if there exists a global probability distribution d ∈ [0, 1]n such that Md = ve.
The computation of the noncontextual fraction of e defined in Definition 1.24 is given by the
value of the following program:

Find b ∈ Rn

maximising 1.b

subject to:

Mb ≤ ve

b ≥ 0 .

(P-CFDV)

Computing generalised Bell inequality

Definition 1.25 (Generalised Bell inequality). A generalised Bell inequality for the measure-
ment scenario 〈X ,M,O〉 is given by 〈a, R〉 where a ∈ Rm is a real vector indexed by local
assignments 〈C, s〉 for C ∈ M and s ∈ OC , and R ∈ R is a bound. For all noncontextual
empirical model e on 〈X ,M,O〉, it must hold that a.ve ≤ R. 〈a, R〉 is said to be tight if there
exists a noncontextual behaviour e that saturates the bound i.e. if a.ve = R.

For no-signalling empirical models, the quantity a.ve is upper bounded by

‖a‖ :=
∑
C∈M

max{a [〈C, s〉] |s ∈ OC}, (1.63)

which amounts, for each context C ∈M, to having a behaviour which is a Kronecker delta at
the maximal component of a for each context. Note that this behaviour might be signalling (i.e.
it might not respect the compatibility condition). We will only consider inequalities for which
‖a‖ > R for otherwise the inequality would be trivially satisfied by all models.
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Now the amount by which an empirical model e violates a generalised Bell inequality is
max{0,a.ve −R}. It is usually desirable to normalise the previous quantity in order to have a
quantity lying in the unit interval. The normalised violation of a generalised Bell inequality
〈a, R〉 by a model e is:

max{0,a.ve −R}
‖a‖ −R

. (1.64)

Importantly, an optimal solution of the dual program of (P-CFDV) (with a clever change
of variables) describes a generalised Bell inequality with maximal normalised violation by the
empirical model with bound 0. Thus a generalised Bell inequality with maximal normalised
violation for e is described by 〈a∗, 0〉 where a∗ ∈ Rm is an optimal feasible plan of the following
program with value CF(e):

Find a ∈ Rm

maximising a.ve

subject to:

MTa ≤ 0

a ≥ |M|−11 .

(B-CFDV)

We now recall the main theorem from [ABM17]:

Theorem 1.6 (Th.1 [ABM17]). Let e be an empirical model on a measurement scenario
〈X ,M,O〉. (i) The normalised violation of any Bell inequality is at most CF(e); (ii) if CF(e) > 0
then there exists a Bell inequality whose normalised violation is exactly CF(e); (iii) for any
convex decomposition of a contextual model e as e = NCF(e)eNC + CF(e)eSC , a Bell inequality,
for which the normalised violation is CF(e), is tight at eNC (provided NCF(e) > 0) and maximally
violated at eSC .

What happens for all the results presented above if we now wish to extend the support
of empirical models to spaces with continuous outcomes? This is the question we address in
the next chapter. For instance our set of measurement labels X may refer to observables like
position and momentum which in principle have a continuous spectrum (being the reals R). For
a context C including one of these observables, eC naturally becomes a probability measure
over the joint outcome set OC which necessarily comprises a continuum. Hence the need for
the frugal dose of measure theory introduced in Subsection 1.3.
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Continuous-variable nonlocality and
contextuality

To date the study of contextuality has largely focused on discrete-variable scenarios.
As a consequence, the main frameworks and approaches to contextuality are tailored
to modelling these, e.g. [AB11, CSW14, AFLS15, DKC15, Spe05]. In such scenarios,

observables can only take values in discrete, finite sets. Discrete-variable scenarios typically
arise in finite-dimensional quantum mechanics, e.g. when modelling quantum computations
with qubit systems.

Since quantum mechanics itself is infinite-dimensional, it also makes sense from a foundational
perspective to extend analyses of the key concept of contextuality to the continuous-variable
setting. Furthermore, continuous variables can be useful when dealing with iteration, even
when attention is restricted to finite-variable actions at discrete time steps, as is traditional
in informatics. An interesting question, for example, is whether contextuality arises and is of
interest in such situations as the infinite behaviour of quantum random walks.

What kind of experiments are we trying to model? Suppose that we can interact with a
system by performing measurements on it and observing their outcomes. A feature of quantum
systems is that not all observables commute, so that certain combinations of measurements
are incompatible. At best, we can obtain empirical data for contexts in which only compatible
measurements are performed, which can be collected by running the experiment repeatedly.
Contextuality then arises when the empirical data obtained is inconsistent with the assumption
that for each run of the experiment the system has a global and context-independent assignment
of values to all of its observable properties. To take an operational perspective, a typical example
of an experimental setup or scenario that we consider in this chapter is the one depicted in
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Figure 2.1 [left]. In this standard scenario extended to the continuous-variable realm, a system
is prepared in some fixed bipartite state, following which parties A and B may each choose
between two measurement settings, mA ∈ {a, a′} for A and mB ∈ {b, b′} for B. We assume
that outcomes of each measurement live in R, which typically will be a measurable subspace of
the real numbers R (with its Borel σ-algebra). Depending on which choices of inputs—which
specify a context—were made, the empirical data might for example be distributed according
to one of the four hypothetical probability density plots in R2 depicted in Figure 2.1 [right].
This scenario and hypothetical empirical behaviour has been considered elsewhere [KLFA18] as
a continuous-variable version of the Popescu–Rohrlich (PR) box [PR94].

preparation
device

measurement
device

mA ∈ {a, a′}

oA ∈ R

measurement
device

mB ∈ {b, b′}

oB ∈ R

a′

a

b b′

Figure 2.1: [Left] operational depiction of a typical bipartite experimental scenario.
[Right] Hypothetical probability density plots for empirical data arising from such
an experiment for a continuous generalisation of the PR box [KLFA18]. Cf. the
discrete-variable probability tables of [MF12, Man17].

Related work. Note that we are specifically interested in scenarios involving observables with
continuous spectra, or in more operational language, measurements having an outcome space
which is a continuum. For quantifying contextuality, we still consider scenarios featuring only
discrete sets of observables or measurements, as is typical in continuous-variable quantum com-
puting, but we prove the Fine–Abramsky–Brandenburger (FAB) theorem for uncountable sets
of measurement settings. This will be useful for Chapter 3. The possibility of considering contex-
tuality in settings with outcome spaces being a continuum has also been evoked in [TC19]. We
also note that several prior works have explicitly considered contextuality in continuous-variable
systems [PC10, HCRD10, MPP11, SCW+12, ABS+15, LFKB+17, KLFA18]. In particular
[CFRD07] presents a genuine continuous-variable Bell inequality that uses a second-order
moment approach.

Our approach is distinct from these in that it provides a genuinely continuous-variable
treatment of contextuality itself as opposed to embedding discrete-variable contextuality
arguments into, or extracting them from, continuous-variable systems. This chapter is based on
[BDE+19].
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2.1 Framework

In this section, we follow closely the discrete-variable framework of [AB11] which is presented
in Section 1.5 to develop a continuous-variable framework that allows to describe and analyse
the empirical behaviours that arise with continuous-variable systems, although some extra care
is required for dealing with continuous variables.

Measurement scenarios

We recall that an abstract description of an experimental setup is formalised as a measurement
scenario. Below we give its description for continuous-variable systems.

Definition 2.1 (Measurement scenario). A measurement scenario is a triple 〈X ,M,O〉 whose
elements are specified as follows.

• X is a (possibly infinite) set of measurement labels.
• M is a covering family of subsets of X , i.e. such that ⋃M = X . The elements C ∈M

are called maximal contexts and represent maximal sets of compatible observables. We
therefore require that M be an anti-chain with respect to subset inclusion, i.e. that no
element of this family is a proper subset of another. Any subset of a maximal context also
represents a set of compatible measurements.

• O = (Ox)x∈X specifies a measurable space of outcomes Ox = 〈Ox,Fx〉 for each measure-
ment x ∈ X . If some set of measurements U ⊆ X is considered together, there is a joint
outcome space given by the product of the respective outcome spaces OU :=

∏
x∈U Ox =

〈OU ,FU 〉 (see definition 1.3 for the finite case and definition 1.4 for the infinite case).

We consider X as general as possible (since we will need X of the form RM × RM for some
M ∈ N∗ in Chapter 3). Note that, later in the current chapter, we will restrict to finite set of
measurement labels for the quantification of contextuality.

Example. The setup represented in Figure 2.1 is described by the measurement scenario:

X = {a, a′, b, b′} , M = { {a, b}, {a, b′}, {a′, b}, {a′, b′} } , ∀x ∈ X , Ox = R , (2.1)

where R is a measurable subspace of 〈R,BR〉.
As for the discrete-variable case, the sheaf E that maps U ⊆ X to E(U) = OU is called

the event sheaf. We recall that it comes with the notion of restriction, i.e. , for U ⊆ V ∈ P(X )
there is a restriction map ρVU : OV → OU which is continuous in the product topology.

Empirical models

Definition 2.2 (Empirical model). An empirical model on a measurement scenario 〈X ,M,O〉
is a family e = (eC)C∈M, where eC is a probability measure on the space E(C) = OC for each
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maximal context C ∈M. It satisfies the compatibility conditions:

∀C,C ′ ∈M, eC |C∩C′ = eC′ |C∩C′ .

Empirical models capture in a precise way the probabilistic behaviours that may arise
upon performing measurements on physical systems. The compatibility condition ensures that
the empirical behaviour of a given measurement or compatible subset of measurements is
independent of which other compatible measurements might be performed along with them.
As mentioned for the discrete-variable framework in Subsection 1.5.1, this is known as the
no-disturbance condition. A special case is no-signalling, which applies in multi-party or Bell
scenarios such as that of Figure 2.1 and Eq. (2.1). In that case, contexts consist of measurements
that are supposed to occur in space-like separated locations, and compatibility ensures for
instance that the choice of performing a or a′ at the first location does not affect the empirical
behaviour at the second location, i.e. e{a,b}|{b} = e{a′,b}|{b}.

Note also that while empirical models may arise from the predictions of quantum theory,
their definition is theory-independent. This means that empirical models can just as well
describe hypothetical behaviours beyond what can be achieved by quantum mechanics such
as the well-studied Popescu–Rohrlich box [PR94]. This can be useful in probing the limits
of quantum theory and in singling out what distinguishes and characterises quantum theory
within larger spaces of probabilistic theories, both well-established lines of research in quantum
foundations.

Extendability and contextuality

Definition 2.3 (Noncontextuality). An empirical model e on a scenario 〈X ,M,O〉 is extend-
able or noncontextual if there is a probability measure µ on the space E(X ) = OX such that
µ|C = eC for every C ∈M.

Recall that OX is the space of global assignments. Of course, it is not always the case
that X is a valid context, and if it were then µ = eX would trivially extend the empirical
model. The question of the existence of such a probability measure that recovers the context-
wise empirical content of e is particularly significant. When it exists, it amounts to a way of
modelling the observed behaviour as arising stochastically from the behaviours of underlying
states, identified with the elements of OX . These elements deterministically assigns outcomes to
all the measurements in X independently of the measurement context that is actually performed.
If an empirical model is not extendable it is said to be contextual.

2.2 A continuous-variable FAB theorem

As in the discrete-variable setting, we characterise contextuality of an empirical model by the
absence of a global section for that empirical model. In this section, we prove a Fine–Abramsky–
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Brandenburger (FAB) theorem in the continuous-variable setting. It establishes that in this
setting there is also an unambiguous, unified description of locality and noncontextuality, which
is captured in a canonical way by the notion of extendability.

We will begin by introducing hidden-variable models in a more precise way following the
treatment given in Section 1.5.2.

Definition 2.4 (Hidden-variable model). A hidden-variable model on a measurement scenario
〈X ,M,O〉 consists of the triple 〈Λ, p, (kC)C∈M〉 where:

• Λ = 〈Λ,FΛ〉 is the measurable space of hidden variables,
• p is a probability distribution on Λ,
• for each context C ∈M, kC is a probability kernel1 between the measurable spaces Λ and
E(C) = OC satisfying the following compatibility condition:

∀C,C ′ ∈M,∀λ ∈ Λ, kC(λ,−)|C∩C′ = kC′(λ,−)|C∩C′ . (2.2)

The last ingredient can be understood as defining a function k from the set of hidden variables Λ
to the set of empirical models over 〈X ,M,O〉. The function assigns to each λ ∈ Λ the empirical
model k(λ) := (k(λ)C)C∈M, where the correspondence with the definition above is via k(λ)C =
kC(λ, –). This function must be ‘measurable’ in Λ in the sense that k(–)C(B) : Λ −→ [0, 1] is a
measurable function for all C ∈M and B ∈ FC . Hence the need for Markov kernels.

A hidden-variable model 〈Λ, p, (kC)C∈M〉 on a measurement scenario 〈X ,M,O〉 gives rise
to an empirical behaviour. The corresponding empirical model e is such that for any maximal
context C ∈M and measurable set of joint outcomes B ∈ FC ,

eC(B) =
∫

Λ
kC(–, B) dp =

∫
λ∈Λ

kC(λ,B) dp(λ) . (2.3)

Note that this definition of hidden-variable model still assumes λ-independence and
parameter-independence. As in the discrete-variable case, we may impose further constraints to
ensure that the HVM behaves classically.

Definition 2.5 (Deterministic HVM). A hidden-variable model 〈Λ, p, (kC)C∈M〉 is determinis-
tic if kC(λ, –) : FC −→ [0, 1] is a Dirac measure for every λ ∈ Λ and for every maximal context
C ∈M; in other words, there is an assignment o ∈ OC such that kC(λ, –) = δo.

In general discussions on hidden-variable models (e.g. [BY08]), the condition above, requiring
that each hidden variable determines a unique joint outcome for each measurement context, is
sometimes referred to as weak determinism. This is contraposed to strong determinism, which
demands not only that each hidden variable fix a deterministic outcome to each individual

1Recall from Section 1.3 that a probability kernel kC between Λ and E(C) is a function kC : Λ×FC −→ [0, 1]
which is: (i) a measurable function in the first argument, i.e. kC(–, B) : Λ −→ [0, 1] is measurable for every
B ∈ FC ; and (ii) a probability measure in the second argument, i.e. kC(λ, –) : FC −→ [0, 1] is a probability
measure for all λ ∈ Λ.
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measurement, but that this outcome be independent of the context in which the measurement
is performed. Note, however, that since our definition of hidden-variable models assumes the
compatilibity condition (2.2), i.e. parameter-independence, both notions of determinism coincide
[BK13].

Definition 2.6 (Factorisable HVM). A hidden-variable model 〈Λ, p, (kC)C∈M〉 is factorisable
if kC(λ, –) : FC −→ [0, 1] factorises as a product measure for every λ ∈ Λ and for every maximal
context C ∈M. That is, for any family of measurable sets (Bx ∈ Fx)x∈C ,

kC(λ,
∏
x∈C

Bx) =
∏
x∈C

kC |{x}(λ,Bx)

where kC |{x}(λ, –) is the marginal of the probability measure kC(λ, –) on OC =
∏
x∈C Ox to the

space O{x} = Ox.2

In other words, if we consider elements of Λ as inaccessible ‘empirical’ models – i.e. if we
use the alternative definition of hidden-variable models using the map k (see the remark below
Definition 2.4) – then factorisability is the requirement that each of these be factorisable in the
sense that

kC(λ)
(∏
x∈C

Bx

)
=
∏
x∈C

k{x}(λ)(Bx)

where k{x}(λ) is the marginal of the probability measure kC(λ) on OC =
∏
x∈C Ox to the space

Ox.
We now prove the continuous-variable analogue of the theorem proved in the discrete

probability setting by Abramsky and Brandenburger [AB11, Proposition 3.1 and Theorem 8.1]
(see Section 1.5.2), generalising the result of Fine [Fin82] to arbitrary measurement scenarios
with a possibly infinite number of measurement labels.

Theorem 2.1. Let e be an empirical model on a measurement scenario 〈X ,M,O〉. The
following are equivalent:

(1) e is extendable;
(2) e admits a realisation by a deterministic hidden-variable model;
(3) e admits a realisation by a factorisable hidden-variable model.

Proof. We prove the sequence of implications (1) ⇒ (2) ⇒ (3) ⇒ (1).
(1) ⇒ (2). The idea is that E(X ) = OX provides a canonical deterministic hidden-variable

space. Suppose that e is extendable to a global probability measure µ. Let us set Λ := OX ,
set p := µ, and set kC(g, –) := δg|C for all global outcome assignments g ∈ OX . This is by
construction a deterministic hidden-variable model, which we claim gives rise to the empirical
model e. Let us verify it.

2 Note that, due to the assumption of parameter independence (Eq. (2.2)), we can unambiguously write
kx(λ, –) for kC |{x}(λ, –), as this marginal is independent of the context C from which one is restricting.
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Let C ∈M and write ρXC : OX −→ OC for the measurable projection which, in the event
sheaf, is the restriction map ρXC = E(C ⊆ X ) : E(X ) −→ E(C). For any E ∈ FC , we have

kC(g, E) = δg|C (E) = δρXC (g)(E) = 1E(ρXC (g)) = (1E ◦ ρXC )(g) (2.4)

which will assign 1 if ρXC (g) = g|C ∈ E. Then, as required∫
Λ
kC(–, E) dp (2.5)

= { Λ = OX ; p = µ; kC(–, E) = 1E ◦ ρXC by Eq. (2.4) }∫
OX

1E ◦ ρXC dµ (2.6)

= { change of variables, Eq. (1.38) }∫
OC

1E dρXC∗µ (2.7)

= { marginalisation for probability measures }∫
OC

1E dµ|C (2.8)

= { integral of indicator function, Eq. (1.37) }

µ|C(E) (2.9)

= { µ extends the empirical model e }

eC(E) .

(2) ⇒ (3). It is enough to show that if a hidden-variable model 〈Λ, p, k〉 is deterministic
then it is also factorisable. For this, it is sufficient to notice that a Dirac measure δo with
o ∈ OC on a product space OC =

∏
x∈C Ox factorises as the product of Dirac measures

δo =
∏
x∈C

δo|{x} =
∏
x∈C

δρC{x}(o) , (2.10)

as the projection map ρC{x} is well-defined and continuous. Then for any
∏
x∈C Bx ∈ FC (such

that Bx ( Ox only for a finite number of x ∈ C) we have:

δo

(∏
x∈C

Bx

)
=
∏
x∈C

δo|{x}(Bx) . (2.11)

(3)⇒ (1). Suppose that e is realised by a factorisable hidden-variable model 〈Λ, p, k〉. Write
kx for kC |{x}. Define a measure µ on OX as follows: for any measurable set

∏
x∈X Ex ∈ FX

where Ex ( Ox only for a finite number of x ∈ X , the value of µ on it is given by

µ

(∏
x∈X

Ex

)
:=
∫

Λ

(∏
x∈X

kx(–, Ex)
)

dp =
∫
λ∈Λ

(∏
x∈X

kx(λ,Ex)
)

dp(λ) , (2.12)
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where the product
∏

on the right-hand side is of real numbers in the interval [0, 1]. Note that
the σ-algebra of OX is given by the product topology and it is generated by such measurable
sets; hence the equation above uniquely determines µ as a measure on OX .

Now, we show that this is a global section for the empirical probabilities. Let C ∈M and
consider a measurable set F =

∏
x∈C Fx ∈ FC with Fx ( Ox only for a finite number of x ∈ C.

Then

µ|C(F ) (2.13)

= { definition of marginalisation }

µ(F ×OX\C) (2.14)

= { definition of F and OU }

µ

∏
x∈C

Fx ×
∏

x∈X\C
Ox

 (2.15)

= { definition of µ, Eq. (2.12) }∫
Λ

(∏
x∈C

kx(–, Fx)
) ∏

x∈X\C
kx(–,Ox)

 dp (2.16)

= { kx(λ, –) probability measure so kx(λ,Ox) = 1 }∫
Λ

(∏
x∈C

kx(–, Fx)
)

dp (2.17)

= { factorisability of the hidden-variable model }∫
Λ
kC(–,

∏
x∈C

Fx) dp (2.18)

= { definition of F }∫
Λ
kC(–, F ) dp (2.19)

= { e is the empirical model corresponding to 〈Λ, p, k〉 }

eC(F ) .

Since the σ-algebra FC of OC is generated by such measurable sets F above and we have seen
that µ|C agrees with eC on these sets, we conclude that µ|C = eC as required.

2.3 Quantifying contextuality

Beyond questioning whether a given empirical behaviour is contextual or not, it is also in-
teresting to ask to what degree it is contextual. In discrete-variable scenarios, a very natural

53



CHAPTER 2. CONTINUOUS-VARIABLE NONLOCALITY AND CONTEXTUALITY

measure of contextuality is the contextual fraction [AB11] (see Section 1.5.3). This measure
was shown in [ABM17] to have a number of very desirable properties. It can be calculated
using linear programming, an approach that subsumes the more traditional approach to quanti-
fying nonlocality and contextuality using Bell and noncontextual inequalities. Indeed we can
understand the (dual) linear program as optimising over all such inequalities for the scenario
in question and returning the maximum normalised violation of any Bell or noncontextuality
inequality achieved by the given empirical model. Crucially, the contextual fraction was also
shown to quantifiably relate to quantum-over-classical advantages in specific informatic tasks
[ABM17, MK18]. Moreover it has been demonstrated to be a monotone with respect to the
free operations of resource theories for contextuality [ABM17, DA18, ABKM19].

In this section, we consider how to carry those ideas to the continuous-variable setting.
The formulation as a linear optimisation problem and the attendant correspondence with
Bell inequality violations requires special care as one needs to use infinite-dimensional linear
programming, necessitating some extra assumptions on the measurable outcome spaces.

2.3.1 The continuous-variable contextual fraction

Asking whether a given behaviour is noncontextual amounts to asking whether the empirical
model is extendable, or in other words whether it admits a deterministic hidden-variable model.
However, a more refined question to pose is:

what fraction of the behaviour admits a deterministic hidden-variable model?

This quantity is what we call the noncontextual fraction. Similarly, the fraction of the behaviour
that is left over and that can thus be considered irreducibly contextual is what we call the
contextual fraction.

Definition 2.7 (Noncontextual fraction). Let e be an empirical model on the measurement
scenario 〈X ,M,O〉. The noncontextual fraction of e, written NCF(e), is defined as

sup {µ(OX ) | µ ∈M(OX ), ∀C ∈M, µ|C ≤ eC} . (2.20)

Note that since eC is a probability measure on OC for all C ∈M it follows that NCF(e) ∈ [0, 1].
The contextual fraction of e, written CF(e), is given by CF(e) := 1− NCF(e).

This is the continuous-variable analogue of Definition 1.24.

2.3.2 Monotonicity under free operations including binning

In the discrete-variable setting, the contextual fraction was shown to be a monotone under
a number of natural classical operations that transform and combine empirical models and
control their use as resources, therefore constituting the ‘free’ operations of a resource theory
of contextuality [ABM17, DA18, ABKM19].
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All of the operations on empirical models defined for discrete variables in [ABM17] – viz.
translations of measurements, transformation of outcomes, probabilistic mixing, product, and
choice – carry almost verbatim to our current setting. One detail is that one must insist that
the coarse-graining of outcomes be achieved by (a family of) measurable functions. A particular
example of practical importance is binning, which is widely used in continuous-variable quantum
information as a method of discretising data by partitioning the outcome space Ox for each
measurement x ∈ X into a finite number of ‘bins’, i.e. measurable sets. Note that a binned
empirical model is obtained by pushing forward along a family (tx)x∈X of outcome translations
tx : Ox −→ O′x where O′x is finite for all x ∈ X.

Proposition 2.1. If e is an empirical model, and ebin is any discrete-variable empirical model
obtained from e by binning, then contextuality of ebin witnesses contextuality of e, and quantifiably
gives a lower bound CF(ebin) ≤ CF(e).

For the conditional measurement operation introduced in [ABKM19], which allows for
adaptive measurement protocols such as those used in measurement-based quantum computation
[RB01], one must similarly insist that the map determining the next measurement to perform
based on the observed outcome of a previous measurement be a measurable function. Since we
are, for now on, only considering scenarios with a finite number of measurements, this amounts
to a partition of the outcome space Ox of the first measurement, x, into measurable subsets
labelled by measurements compatible with x, indicating which will be subsequently performed
depending on the outcome observed for x.

The inequalities establishing monotonicity from [ABM17, Theorem 2] also hold for continuous
variables. There is a caveat for the equality formula for the product of two empirical models:

NCF(e1 ⊗ e2) = NCF(e1)NCF(e2).

Whereas the inequality establishing monotonicity (≥) still holds in general, the proof establishing
the other direction (≤) makes use of duality of linear programs. Therefore, it only holds under
the assumptions we will impose in the remainder of this section.

2.3.3 Assumptions on the outcome spaces

In order to phrase the problem of contextuality as a linear programming problem and establish
the connection with violations of Bell inequalities, we need to impose some conditions on the
measurable spaces of outcomes. First we suppose that we have a finite number of measurement
labels i.e. that X is finite.

From now on, we restrict attention to the case where the outcome space Ox for each
measurement x ∈ X is the Borel measurable space for a compact Hausdorff space, i.e. that the
set Ox is a compact space and Fx is the σ-algebra generated by its open sets, written B(Ox).
Note that this includes most situations of interest in practice. In particular, it includes the
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case of measurements with outcomes in a bounded subspace of R or Rn. This is experimentally
motivated since measurement devices are energetically bounded.

One may wish to relax this assumption to allow for the case of a locally compact outcome
space in order to include the case of measurements with outcomes in R or Rn. Indeed R would
be the canonical outcome space for the quadratures of the electromagnetic field. We address
this issue in Subsection 2.3.6 and show that it can be reduced to the case of a compact outcome
space. Thus the assumptions laid out here are not restrictive for the cases of interest, even
theoretical ones. To summarise we essentially have the two following assumptions for the rest
of this chapter:

(i) X is a finite set of measurement labels,
(ii) for each x ∈ X , the outcome set Ox is compact.

To obtain an infinite-dimensional linear program, we need to work with vector spaces
(see Section 1.4). However as explained in Section 1.3, probability measures, or even finite or
arbitrary measures, do not form one. We will therefore consider the set M±(Y ) of finite signed
measures on a measurable space Y = 〈Y,FY 〉. Recall that these are functions µ : FY −→ R
such that µ(∅) = 0 and µ is σ-additive. The set M±(Y ) forms a real vector space which includes
the probability measures P(Y ). When Y is a compact Hausdorff space and Y = 〈Y,B(Y )〉,
the Riesz–Markov–Kakutani representation theorem [Kak41] says that M±(Y ) is a concrete
realisation of the topological dual space of C(Y ), the space of continuous real-valued functions
on Y . The duality is given by 〈µ, f〉 :=

∫
Y f dµ for µ ∈M±(Y ) and f ∈ C(Y ).

2.3.4 Infinite-dimensional linear programming for computing the
contextual fraction

Consider an empirical model e = (eC)C∈M on a scenario 〈X ,M,O〉 satisfying the assumptions
discussed above. Calculation of its noncontextual fraction can be expressed as the infinite-
dimensional linear programming problem (P-CFCV). This is our primal linear program; its dual
linear program is given by (D-CFCV). In what follows, we will see how to derive the dual and
show that the optimal values of both programs coincide.

Find µ ∈M±(OX )

maximising µ(OX )

subject to:

∀C ∈M, µ|C ≤ eC

µ ≥ 0 .

(P-CFCV)
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Find (fC)C∈M ∈
∏
C∈M

C(OC)

minimising
∑
C∈M

∫
OC

fC deC

subject to:∑
C∈M

fC ◦ ρXC ≥ 1OX

∀C ∈M, fC ≥ 0OC .

(D-CFCV)

We have written ρXC for the projection OX −→ OC as before, and 1D (resp. 0D) for the constant
function D −→ R that assigns the number 1 (resp. 0) to all elements of its domain D; in the
above instance, to all g ∈ OX (resp. all o ∈ OC).

Analogues of these programs have been studied in the discrete-variable setting [ABM17].
Note however that, in general, these continuous-variable linear programs are over infinite-
dimensional spaces and thus not practical to compute directly. For this reason, in Section 2.5
we will introduce a hierarchy of finite-dimensional semidefinite programs that approximate the
solution of (P-CFCV) to arbitrary precision.

Retrieving the standard form of infinite-dimensional LPs

Here we express the programs (P-CFCV) and (D-CFCV) in the standard form of infinite-
dimensional linear programs as introduced in Section 1.4.1 following [Bar02]. We define the
following spaces:

• E1 := M±(OX ).
• F1 := C(OX ), the dual space of E1.
• E2 :=

∏
C∈M

M±(OC).

• F2 :=
∏
C∈M

C(OC), the dual space of E2.

The dualities 〈–, –〉1 : E1 × F1 −→ R and 〈–, –〉2 : E2 × F2 −→ R are defined as follows:

∀µ ∈ E1, ∀f ∈ F1, 〈µ, f〉1 :=
∫
OX

f dµ

∀(νC) ∈ E2, ∀(fC) ∈ F2, 〈(νC), (fC)〉2 :=
∑
C∈M

∫
OC

fC dνC ,

where, for simplicity, we have omitted C ∈M as a subscript for the families of functions. We
fix K1 to be the convex cone of positive measures in E1 = M±(OX ) and K2 to be the convex
cone of families of positive measures in E2 =

∏
C∈MM±(OC). Then K∗1 is the convex cone of

positive function in F1 = C(OX ) and K∗2 is the convex cone of families of positive functions in
F2 =

∏
C∈MC(OC).
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Let A : E1 −→ E2 be the following linear transformation:

∀µ ∈ E1, A(µ) := (µ|C)C∈M ∈ E2 .

We also define the linear transformation A∗ : F2 −→ F1 as:

∀(fC) ∈ F2, A∗((fC)) :=
∑
C∈M

fC ◦ ρXC ∈ F1 .

We can verify that A∗ is the dual transformation of A: ∀µ ∈ E1, ∀(fC) ∈ F2, we have

〈A(µ), (fC)〉2 = 〈(µ|C), (fC)〉2 (2.21)

=
∑
C∈M

∫
OC

fC dµ|C (2.22)

=
∫
OX

∑
C∈M

fC ◦ ρXC dµ (2.23)

= 〈µ,
∑
C∈M

fC ◦ ρXC 〉1 (2.24)

= 〈µ,A∗((fC))〉1 . (2.25)

Now fixing the vector function in the objective to be c := −1OX ∈ F1 and the vector in
the constraints to be b := (−(eC)C∈M) ∈ E2, the program (P-CFCV) (resp. (D-CFCV)) can be
expressed as in the standard form given in (LP) (resp. (D-LP)). Note that the minus sign in
the vectors c and b was added because we choose the primal program in the standard form to
be a minimisation problem while the primal program at hand is a maximisation problem.

Deriving the dual via the Lagrangian

We now give an explicit derivation of (D-CFCV) as the dual of (P-CFCV) via the Lagrangian
method which is widely used in optimisation theory. We do not take into account positivity
constraints as constraints in the Lagrangian because they are already satisfied in the convex
cones in which one optimises. To derive the dual program we introduce |M| dual variables—one
continuous map fC ∈ C(OC) for each C ∈ M—to account for the constraints µ|C ≤ eC . We
then define the Lagrangian L : K1 ×K∗2 −→ R as

L (µ, (fC)) := µ(OX )︸ ︷︷ ︸
objective

+
∑
C∈M

∫
OC

fC d(eC − µ|C)︸ ︷︷ ︸
constraints

. (2.26)

The primal program (P-CFCV) corresponds to

sup
µ∈K1

inf
(fC)∈K∗2

L(µ, (fC)) . (2.27)

The infimum here imposes the constraints that µ|C ≤ eC for all C ∈ M, for otherwise the
associated optimisation problem is not well-defined (or rather it necessarily has a value of

58



CHAPTER 2. CONTINUOUS-VARIABLE NONLOCALITY AND CONTEXTUALITY

minus infinity). If these constraints are satisfied, then because of the infimum over (fC) ∈ K∗2 ,
the second term of the Lagrangian vanishes yielding, as expected, the objective of the primal
problem. Expressing the dual problem amounts to permuting the infimum and the supremum.
Thus we need to rewrite the Lagrangian as:

L(µ, (fC)) = µ(OX ) +
∑
C∈M

∫
OC

fC d(eC − µ|C) (2.28)

=
∫
OX

1OX dµ+
∑
C∈M

∫
OC

fC deC −
∑
C∈M

∫
OC

fC dµ|C (2.29)

=
∫
OX

1OX dµ+
∑
C∈M

∫
OC

fC deC −
∑
C∈M

∫
OX

fC ◦ ρXC dµ (2.30)

=
∫
OX

1OX dµ+
∑
C∈M

∫
OC

fC deC −
∫
OX

( ∑
C∈M

fC ◦ ρXC

)
dµ (2.31)

=
∑
C∈M

∫
OC

fC deC +
∫
OX

(
1OX −

∑
C∈M

fC ◦ ρXC

)
dµ . (2.32)

where Eq. (2.30) is obtained by the push-forward operation and Eq. (2.31) is obtained by linearity
of the integral (and the finiteness ofM). The dual program (D-CFCV) indeed corresponds to

inf
(fC)∈K∗2

sup
µ∈K1

L(µ, (fC)) . (2.33)

The supremum imposes that
∑
C∈M fC ◦ ρXC ≥ 1OX on OX since otherwise the Lagrangian

diverges. If this constraint is satisfied, then because of the supremum the second term vanishes
yielding, as expected, the objective of the dual problem.

2.3.5 Zero duality gap

A key result about the noncontextual fraction, which is essential in establishing the connection
to Bell inequality violations, is that (P-CFCV) and (D-CFCV) are strongly dual, in the sense
that no gap exists between their optimal values i.e. val(P-CFCV) = val(D-CFCV). Strong duality
holds in finite linear programming when Slater’s conditions are met—which will be the case
for examples of interest. However it does not hold in general in the infinite-dimensional case.
Below we prove a strong duality result for our programs.

Proposition 2.2. Problems (P-CFCV) and (D-CFCV) have zero duality gap. Thus their optimal
values satisfy:

val(P-CFCV) = val(D-CFCV) = NCF(e) (2.34)

and there exists a primal optimal plan for the primal program (P-CFCV).

Proof. This proof relies on [Bar02, Theorem 7.2] (recalled in Section 1.4.1, Theorem 1.1).
Because µ0 = 0OX—the measure that assigns 0 to every measurable set of OX— is a feasible
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solution for (P-CFCV) and the noncontextual fraction lies between 0 and 1, (P-CFCV) is
consistent with finite value. Thus it suffices to show that the following cone

K = {(A(µ), 〈µ, c〉1) : µ ∈ K1} = {( (µ|C)C , µ(OX ) ) : µ ∈ K1} (2.35)

is weakly closed in E2 ⊕ R (i.e. closed in the weak topology of K1) where we recall that K1 is
the convex cone of positive measures in E1 = M±(OX ).

We first notice that the linear transformation A is a bounded linear operator and thus
continuous. Boundedness comes from the fact that, ∀µ ∈ K1,

‖A(µ)‖E2
= ‖(µ|C)C‖E2

(2.36)

=
∑
C∈M

‖µ|C‖M±(OC) (2.37)

≤
∑
C∈M

‖µ‖E1
(2.38)

= |M| ‖µ‖E1
, (2.39)

where we take the strong topology—i.e. the norm induced by the total variation distance—on
finite-signed measure spaces. It is defined as:

‖µ‖M±(U) = |µ|(U) .

We also equip the finite product space E2 =
∏
C∈MM±(OC) with the norm obtained by

summing3 the individual total variation norms. Eq. (2.38) is due to the fact that µ ∈ K1 so
this is a positive measure and thus ‖µC‖M±(OC) ≤ ‖µ‖E1

. This, of course, extends to the weak
topology.

Secondly, we consider a sequence (µk)k∈N in K1 and we want to show that the accumulation
point ((ΘC)C , λ) = limk→∞

(
A(µk), 〈µk, c〉1

)
belongs to K, where Θ = (ΘC)C ∈ E2 and

λ ∈ R. If we consider the product of indicator functions (1OC )C ∈ F2 then 〈A(µk), (1OC )〉2 =∑
C∈M µ|kC(OC) −→k

∑
C∈MΘC(OC) <∞ as ΘC is a finite measure for all maximal contexts

C ∈M. Then becauseM is a covering family of X , ∀k ∈ N, µk(OX ) ≤
∑
C∈M µk|C(OC) <∞.

Since (µk) ∈ KN
1 is a sequence of positive measures, this implies that (µk) is bounded. Next, by

weak-∗ compactness of the unit ball (Alaoglu’s theorem [Lue97]), there exists a subsequence
(µki)ki that converges weakly to an element ω ∈ K1. By continuity of A, it yields that the
accumulation point is such that ((ΘC)C , λ) = (A(ω), 〈ω, c〉1) ∈ K.

2.3.6 The case of local compactness

We now focus on cases where the outcome space might be only locally compact which include
most theoretical situations that are of interest in practice; for instance R could be the outcome
space for the position and momentum operators.

3Categorically, this is a coproduct.
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For each measurement x ∈ X , Ox is supposed to be the Borel measurable space for a
second-countable locally compact Hausdorff space, i.e. that the set Ox is equipped with a
second-countable locally compact Hausdorff topology and Fx is still the σ-algebra generated by
its open sets, written B(Ox). Second countability and Hausdorffness of two spaces Y and Z
suffice to show that the Borel σ-algebra of the product topology is the tensor product of the
Borel σ-algebras, i.e. B(Y × Z) = B(Y )⊗ B(Z) [Bog07, Lemma 6.4.2 (Vol. 2)]. Hence, these
assumptions guarantee that OU for U ∈ P(X ) is the Borel σ-algebra of the product topology
on OU =

∏
x∈U Ox. These product spaces are also second-countable, locally compact, and

Hausdorff as all three properties are preserved by finite products. When Y is a second-locally
compact Hausdorff space and Y = 〈Y,B(Y )〉, the Riesz–Markov–Kakutani representation
theorem [Kak41] says that M±(Y ) is a concrete realisation of the topological dual space of
C0(Y ), the space of continuous real-valued functions on Y that vanish at infinity.4 The duality
is given by 〈µ, f〉 :=

∫
Y f dµ for µ ∈ M±(Y ) and f ∈ C0(Y )5. Note that when Y is compact

(as treated above), we only need to consider functions in C(Y ).
Next, we show that we can approximate the linear program (P-CFCV)6 by a slightly modified

linear program defined on the space of finite measures on a measurable compact subspace of
OX . The idea is to approximate to any desired error the mass of a finite measure on a locally
compact set by the mass of the same measure on a compact subset. This naturally comes from
the notion of tightness of a measure.

Definition 2.8 (Tightness of a measure). A measure µ on a metric space U is said to be tight
if for each ε > 0 there exists a compact set Uε ⊆ U such that µ(U \ Uε) < ε.

Then we need to argue that every measure we will consider is tight. This is a result of the
following theorem:

Theorem 2.2 ([Par67]). If S is a complete separable metric space, then every finite measure
on S is tight.

For x ∈ X , Ox is a second-countable locally compact Hausdorff space, thus a Polish space i.e.
a separable completely metrisable topological space. For this reason, the above theorem applies.
We are now ready to state and prove the main theorem of this subsection.

Theorem 2.3. The linear program (P-CFCV) defined over finite-signed measures on a locally
compact space can be approximated to any desired precision ε by a linear program (P-CFCV,ε)
defined over finite signed measures on a compact space.

4A function f : Y −→ R on a locally compact space Y is said to vanish at infinity if the set
{y ∈ Y | ‖f(x)‖ ≥ ε} is compact for all ε > 0.

5This theorem holds more generally for locally compact Hausdorff spaces if one considers only (finite signed)
Radon measures, which are measures that play well with the underlying topology. However, second-countability,
together with local compactness and Hausdorffness, guarantees that every Borel measure is Radon [Fol84,
Theorem 7.8].

6Here we will still use the form of the program (P-CFCV) though throughout this subsection one has to keep
in mind that it is defined over finite-signed measures on a locally compact space rather than a compact space.
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Proof. Fix ε > 0. Let C ∈M be a given context and x ∈ C a given measurement label within
that context. Because eC is a probability measure on OC , the marginal measure eC |{x} is a
finite measure on Ox. Following Theorem 2.2, eC |{x} is tight and there exists a compact subset
Kε,C
x ⊆ Ox such that: eC |{x}(Ox \Kε,C

x ) ≤ ε. We apply this procedure7 for every context and
for all measurements in a context. We now define the compact set:

Oεx :=
⋃

C|x∈C
Kε,C
x .

The previous definition is essential to ensure a noncontextual cutoff of the outcome set which, in
turn, ensures the good definition of a compact subset for each measurement label independent
of the context. For some subset of measurement labels U ⊆ X , we define the compact set
OεU :=

∏
x∈U Oεx. For every context C ∈ M and for every measurement label x ∈ C, we

now have that Kε,C
x ⊆ Oεx and thus eC |{x}(Ox \ Oεx) ≤ ε. Note that due to the compatibility

condition, we can write eC |{x} as e{x} for any context.
Let µ be any feasible solution of (P-CFCV) defined over finite-signed measures on a locally

compact space. Due to the constraints of (P-CFCV) we have that ∀x ∈ X , µ|{x} ≤ e{x}. Then:

µ(OX \ OεX ) = µ

(∏
x∈X
Ox \

∏
x∈X
Oεx

)
(2.40)

= µ

(∏
x∈X

(Ox \ Oεx)
)

(2.41)

=
∏
x∈X

µ|{x}(Ox \ Oεx) (2.42)

≤
∏
x∈X

e{x}(Ox \ Oεx) (2.43)

≤ ε|X | . (2.44)

We now define the linear program (P-CFCV,ε) which has the same form as (P-CFCV) though
the unknown measures are taken from M±(Oε

X ) where Oε
X = 〈OεX ,B(OεX )〉. We would like to

state that (P-CFCV,ε) approximates (P-CFCV) up to ε; i.e. that their values are ε-close. The
missing ingredient from the previous chain of inequalities is that given an optimal measure
µ∗ satisfying (P-CFCV), we do not know whether an optimal solution µ∗ε of (P-CFCV,ε) is
necessarily the restriction of µ∗ to OεX . In fact, it is possible that we do not even have a unique
optimal solution. However we only need to prove that they have the same mass on OεX , i.e.
µ∗ε (OεX ) = µ∗|OεX (OεX ). By contradiction, suppose it does not hold. Then because µ∗ε is an
optimal value of (P-CFCV,ε), we must have µ∗ε (OεX ) > µ∗|OεX (OεX ). From this we construct a
new measure µ̃ on OX which equals to µ∗ε on Oε

X and µ∗ on OX \OεX . It satisfies all constraints
7Note that there exists proofs that explicitly constructs the approximating sets Kε,C

x (see [Orb11]) based
on the separability of the underlying spaces. It makes this construction feasible in practice and justifies this
approach.
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and furthermore µ̃(OX ) > µ∗(OX ). This contradicts that µ∗ is an optimal solution of (P-CFCV).
Thus necessarily µ∗ε (OεX ) = µ∗|OεX (OεX ).

The linear program (P-CFCV,ε) defined on a compact space has indeed a value ε-close to
the original program (P-CFCV).

In conclusion of this subsection, we can approximate the problem of finding the noncontextual
fraction with the assumption that the outcome spaces are locally compact spaces by the same
problem defined on compact subspaces and it suffices to restrict the study to the case of compact
outcome spaces. Thus for the rest of this chapter, we indeed restrict ourselves to compact
outcome spaces.

2.4 Continuous generalisation of Bell inequalities

The dual program (D-CFCV) is of particular interest in its own right. As we now show, it can
essentially be understood as computing a continuous-variable ‘Bell inequality’ that is optimised
to the empirical data. Making the change of variables βC := |M|−11OC − fC ∈ C(OC) for each
C ∈M, the dual program (D-CFCV) transforms to:

Find (βC)C∈M ∈
∏
C∈M

C(OC)

maximising
∑
C∈M

∫
OC

βC deC

subject to:∑
C∈M

βC ◦ ρXC ≤ 0OX

∀C ∈M, βC ≤ |M|−11OC .

(B-CFCV)

This program directly computes the contextual fraction CF(e) instead of the noncontextual
fraction. It maximises, subject to constraints, the total value obtained by integrating these
functionals context-wise against the empirical model in question. The first set of constraints—a
generalisation of a system of linear inequalities determining a Bell inequality — ensures that,
for noncontextual empirical models, the value of the program is at most 0, since any such
model extends to a measure µ on OX such that µ(OX ) = 1. The final set of constraints acts
as a normalisation condition on the value of the program, ensuring that it takes values in the
interval [0, 1] for any empirical model. Any family of functions β = (βC) ∈ F2 satisfying the
constraints will thus result in what can be regarded as a generalised Bell inequality,∑

C∈M

∫
OC

βC deC ≤ 0 , (2.45)

which is satisfied by all noncontextual empirical models.
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Definition 2.9 (Form on a measurement scenario). A form β on a measurement scenario
〈X ,M,O〉 is a family β = (βC)C∈M of functions βC ∈ C(OC) for all C ∈ M. Given an
empirical model e on 〈X ,M,O〉, the value of β on e is

〈e, β〉2 :=
∑
C∈M

∫
OC

βC deC . (2.46)

The norm of β is given by

‖β‖ :=
∑
C∈M

‖βC‖ =
∑
C∈M

sup {βC(o) | o ∈ OC} . (2.47)

Definition 2.10 (Inequality). An inequality (β,R) on a measurement scenario 〈X ,M,O〉 is
given by 〈β,R〉 where β is a form on 〈X ,M,O〉 together with a bound R ∈ R. An empirical
model e is said to satisfy the inequality 〈β,R〉 if the value of β on e is below the bound, i.e.
〈e, β〉2 ≤ R.

Definition 2.11 (Continuous Bell inequality). An inequality (β,R) is said to be a continuous
Bell inequality if it is satisfied by all noncontextual empirical models, i.e. if for any noncontextual
model d on 〈X ,M,O〉, it holds that 〈d, β〉2 ≤ R.

A continuous Bell inequality (β,R) establishes a bound 〈e, β〉2 amongst noncontextual models
e. For more general models, the value of β on e is only limited by the algebraic bound ‖β‖. A
model e reaching ‖β‖ is likely to be signalling. In the following, we will only consider inequalities
(β,R) for which R < ‖β‖ excluding inequalities trivially satisfied by all empirical models.

Definition 2.12 (Normalised violation of a continuous Bell inequality). The normalised
violation of a generalised Bell inequality (β,R) by an empirical model e is

max{0, 〈e, β〉2 −R}
‖β‖ −R

, (2.48)

the amount by which its value 〈β, e〉2 exceeds the bound R normalised by the maximal ‘algebraic’
violation.

An optimal plan β ∈ F2 for (B-CFCV) defines a continuous Bell inequality 〈β, 0〉 that is
maximally violated by the empirical model e. Note however that an optimal solution might not
be feasible—for instance the optimum might be achieved by a discontinuous function—in which
case there will exist a sequence of feasible solutions converging to such a discontinuous function.

The above definition restricts to the usual notions of Bell inequality and noncontextual
inequality in the discrete-variable case and is particularly close to the presentation in [ABM17].
The following theorem also generalises to continuous variables the main result of [ABM17] (see
Theorem 1.6).
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Theorem 2.4. Let e be an empirical model on a measurement scenario 〈X ,M,O〉. (i) The
normalised violation by e of any Bell inequality is at most CF(e); (ii) if CF(e) > 0 then for
every ε > 0 there exists a Bell inequality whose normalised violation by e is at least CF(e)− ε.

Item (ii) is slightly modified compared to the discrete analogue version because there is no
guarantee that there exists an optimal plan for the dual program (D-CFCV). In particular, its
optimal solution might be achieved by a discontinuous function that can be approximated by
continuous ones. Hence the modification of (ii) with a normalised violation ε-close to CF(e).

Proof. As in the discrete-variable case (see [ABM17] for a detailed proof), the proof follows
directly from the definitions of the linear programs, and from strong duality, i.e. the fact that
their optimal values coincide (Proposition 2.2 above).

2.5 Approximating the contextual fraction with SDPs

In Section 2.3, we presented the problem of computing the noncontextual fraction as an infinite-
dimensional linear program. Although of theoretical importance, it cannot be run to perform
the actual, numerical computation of this quantity. Here we exploit the link between measures
and their sequence of moments to derive a hierarchy of truncated finite-dimensional semidefinite
programs which are a relaxation of the original primal problem (P-CFCV). Dual to this vision,
we can equivalently exploit the link between positive polynomials and their sum-of-squares
representation to derive a hierarchy of semidefinite programs which are a restriction of the
dual problem (D-CFCV). We further prove that the optimal values of the truncated programs
converge monotonically to the noncontextual fraction. This makes use of global optimisation
techniques developed by Lasserre and Parrilo [Las09, Par03] and further developed in [Las11].
These techniques were introduced in Subsection 1.4.3 and we will use the same notations
throughout this section. Another extensive and well presented reference on the subject is
[Lau09]. In Subsection 2.5.1, we derive a hierarchy of SDPs to approximate the contextual
fraction and we show its convergence in Subsection 2.5.2.

2.5.1 Hierarchy of semidefinite relaxations for computing NCF(e)

We fix a measurement scenario 〈X ,M,O〉 and an empirical model e on this scenario. We
will restrict our attention to outcome spaces of the form detailed in subsection 2.3.3. Let
d = |X | ∈ N∗ so that OX is a Borel subset of Rd. As a prerequisite, we first need to compute the
sequences of moments associated to measures (eC)C∈M derived from the empirical model. For
C ∈M, let ye,C = (ye,Cα )α∈Nd be the sequence of all moments of eC . For a given k ∈ N which
will fix the level of the hierarchy, we only need to compute a finite number s(k) of moments for
all contexts. These will be the inputs of the program.
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Below, we derive a hierarchy of SDP relaxations for the primal program (P-CFCV) such that
their optimal values converge monotonically to val(P-CFCV) = NCF(e). We start by discussing
the assumptions we have to make on the outcome space. Then we derive the hierarchy based
on, first, the primal program and then the dual program and we further show that these
formulations are indeed dual. Finally we prove the convergence of the hierarchy.

Further assumptions on the outcome space?

We already made the assumptions mentioned in Subsection 2.3.3 for the outcome spaces O =
(Ox)x∈X noting that they are not restrictive when considering actual experimental or theoretical
applications. However we would like to meet the assumptions detailed in Assumption 1.1 for
the global outcome space OX so that both Theorems 1.2 and 1.4 apply in our setting.

Assumption 1.1 (ii) is de facto met because we already assumed that for all x ∈ X , Ox ⊂ R
is compact. Remember that, at worst, Ox is locally compact and we saw that this can be
reduced to the compact case in Subsection 2.3.6.

Let us discuss Assumption 1.1 (i). We have that OX =
∏
x∈X Ox with Ox ⊂ R compact. If

Ox is disconnected, we can always complete it into a connected space by attributing a measure
zero to the added parts for all measures eC whenever x ∈ C. Then because Ox is compact, it is
bounded and it can be described by two constant polynomials: there exists ax, bx ∈ R such that
Ox = [ax, bx]. This makes OX a polytope so in particular, it is semi-algebraic. We write it as

OX =
{
x ∈ Rd | ∀j = 1, . . . ,m, gj(x) ≥ 0

}
(2.49)

for some polynomials gj ∈ R[x] of degree 1.
As noted in [Las09], Assumption 1.1 (iii) is not very restrictive. For instance, it is satisfied

when the set is a polytope. This is the case for OX .
Thus there is no need for further assumptions than what we already assumed in Subsec-

tion 2.3.3 to apply the main results we presented in Section 1.4.3.

Relaxation of the primal program

The program (P-CFCV) can be relaxed so that a converging hierarchy of SDPs can be derived.
The program (P-CFCV) is essentially a maximisation problem on finite-signed Borel measures
with additional constraints such as the fact that these are proper measures (i.e. they are
nonnegative). We will represent a measure by its moment sequence and use conditions for which
this moment sequence has a (unique) representing Borel measure (see Subsection 1.4.3.2). We
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recall the expression of the primal program (P-CFCV):

Find µ ∈M±(OX )

maximising µ(OX )

subject to:

∀C ∈M, µ|C ≤ eC

µ ≥ 0 .

(P-CFCV)

From Subsection 1.4.3.2 which culminates at Theorem 1.4, it can be relaxed for k ∈ N∗ as:

Find y ∈ Rs(2k)

maximising y0

subject to:

∀C ∈M, Mk(ye,C − y|C) � 0,

∀j = 1, . . . ,m, Mk−1(gjy) � 0,

Mk(y) � 0 .

(PS-CFCV,k)

We consider localising matrices of order k − 1 rather than k because all gj ’s are of exact degree
1. In this way, the maximum degree with the moment matrices matches. In general we have
to deal with localising matrices of order k − ddeg(gj)

2 e. If µ is a representing measure on OX
for y then for all contexts C ∈ M, y|C can be defined through y by requiring that y|C has
representing measure µ|C . The two last constraints state necessary conditions on the variable
y to be moments of some finite Borel measure supported on OX . The first constraint is a
relaxation of the constraint µ|C ≤ eC for C ∈M. As expected, (PS-CFCV,k) is a semidefinite
relaxation of problem (P-CFCV) so that ∀k ∈ N∗, NCF(e) = val(LP-CFCV) ≤ val(PS-CFCV,k).
Moreover (val(PS-CFCV,k))k form a monotone nonincreasing sequence because more constraints
are added as k increases (so that the relaxations are tighter and tighter).

Restriction of the dual program

The program (D-CFCV) can be restricted so that we can derive a converging hierarchy of
SDPs. It is essentially the minimisation of continuous functions for which we require additional
constraints such as the fact that they are nonnegative. We will exploit the link between positive
polynomials and sum-of-squares representation that was presented in Subsection 1.4.3.1. We

67



CHAPTER 2. CONTINUOUS-VARIABLE NONLOCALITY AND CONTEXTUALITY

recall the expression of the dual program (D-CFCV):

Find (fC)C∈M ∈
∏
C∈M

C(OC)

minimising
∑
C∈M

∫
OC

fC deC

subject to:∑
C∈M

fC ◦ ρXC ≥ 1OX

∀C ∈M, fC ≥ 0OC .

(D-CFCV)

As this point we could derive the dual of program (PS-CFCV,k) and show that this is indeed a
restriction of the above program. For a more symmetric treatment, we restrict the dual program
building on Subsection 1.4.3.1 and Theorem 1.2. Instead of optimising over positive continuous
functions, we restrict them to belong to the quadratic module Q(g) and then Qk(g) for some
k ∈ N∗ further requiring that the degrees of SOS polynomials are fixed. For k ∈ N∗, we have

Find (pC)C∈M ⊂ Σ2R[x]k and (σj)j=1,...,m ⊂ Σ2R[x]k−1

maximising
∑
C∈M

∫
OC

pC deC

subject to:∑
C∈M

pC ◦ ρXC − 1OX =
m∑
j=0

σjgj .

(DS-CFCV,k)

(DS-CFCV,k) is a restriction of (D-CFCV) so that for all k ∈ N∗, we have that NCF(e) =
val(D-CFCV) ≤ val(DS-CFCV,k). Furthermore, (val(DS-CFCV,k))k form a monotone nonincreas-
ing sequence.

Proving duality for the semidefinite programs

As mentioned above, we chose to derive programs (PS-CFCV,k) and (DS-CFCV,k) using dual
arguments. These programs should therefore be dual to one another, which will immediately
provide weak duality. We prove this for completeness.

Proposition 2.3. The program (DS-CFCV,k) is the dual formulation of the program (PS-
CFCV,k).

Proof. We start by rewriting Mk(y) as
∑
α∈Nd

k
yαAα and Mk−1(gjy) as

∑
α∈Nd

k
yαB

j
α for

1 ≤ j ≤ m and for appropriate real symmetric matrices Aα and (Bj
α)j . For instance, in

the basis (xα):

(Aα)s,t =
(1 if s+ t = α

0 otherwise

)
s,t

.
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From Aα, we also extract ACα for C ∈ M in order to rewrite Mk(y|C) as
∑
α∈Nd

k
yαA

C
α . This

amounts to identifying which matrices (Aα) contribute to a given context C ∈ M. Then
(PS-CFCV,k) can be rewritten as:

Find y ∈ Rs(2k)

maximising y0

subject to:

∀C ∈M, Mk(ye,C)−
∑
α∈Nd

k

yαA
C
α � 0,

∀j = 1, . . . ,m,
∑
α∈Nd

k

yαB
j
α � 0,

∑
α∈Nd

k

yαAα � 0 .

(SDP-CFCV,k)

Via the Lagrangian, this is equivalent to:

sup
y∈Rs(k)

inf
(XC),(Yj),Z
SDP matrices

L(y, (XC), Y, (Zj)), (2.50)

with
L(y, (XC), (Yj), Z) = y0

+
∑
C∈M

Tr(Mk(ye,C)XC)−
∑
C∈M

∑
α∈Nd

k

yαTr(ACαXC)

+
m∑
j=1

∑
α∈Nd

k

yαTr(Bj
αYj)

+
∑
α∈Nd

k

yαTr(AαZ) .

(2.51)

The dual program corresponds to

inf
(XC),(Yj),Z
SDP matrices

sup
y∈Rs(k)

L(y, (XC), (Yj), Z) . (2.52)

We rewrite the Lagrangian as:

L(y, (XC), Y, (Zj)) =
∑
C∈M

Tr(Mk(ye,C)XC)

+
∑
α∈Nd

k

yα

δα,0 − ∑
C∈M

Tr(ACαXC) +
m∑
j=1

Tr(Bj
αYj) + Tr(AαZ)

 .
(2.53)
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Then the dual program of (PS-CFCV,k) reads:

Find (XC)C∈M, (Yj)j=1,...,m and Z SDP matrices

maximising
∑
C∈M

Tr(Mk(ye,C)XC)

subject to:

∀α ∈ Ndk,
∑
C∈M

Tr(ACαXC)−
m∑
j=1

Tr(Bj
αYj)− Tr(AαZ) = δα,0 .

We finally show that the above program exactly corresponds to (DS-CFCV,k). We start with
the objective. For all C ∈M, with XC a positive semidefinite matrix:

Tr(Mk(ye,C)XC) =
∑
α

∑
β

(Mk(ye,C))αβ(XC)βα (2.54)

=
∑
α

∑
β

ye,Cα+β(XC)αβ (2.55)

=
∑
α

∑
β

∫
OC
xα+β deC(XC)αβ (2.56)

=
∫
OC

vk(x)TXCvk(x) deC (2.57)

=
∫
OC

pC deC , (2.58)

with for all C ∈M, pC ∈ Σ2R[x]k a sum-of-squares polynomial via Proposition 1.1 and where
we used vk(x) the vectors of monomials of maximal total degree k.

Now, to retrieve the constraint, we multiply each side by xα and we sum for all α:∑
C∈M

Tr(
∑
α

xαACαX
C)− 1 =

m∑
j=1

Tr(
∑
α

xαBj
αYj) + Tr(

∑
α

xαAαZ) (2.59)

Recalling the definition of moment and localising matrices:∑
α

ACαx
α = vk(x)vk(x)T (2.60)∑

α

Bj
αvk(x)vk(x)T = gj(x)vk−1(x)vk−1(x)T , ∀j = 1, . . . ,m (2.61)

Thus, by Proposition 1.1, for appropriate sum-of-squares polynomials (σj)j=0,1,...,m ⊂ R[x]k−1:

Tr(
∑
α

xαACαX
C) = pC ◦ ρXC (x) (2.62)

Tr(
∑
α

xαBj
αYj) = gj(x)σj(x) (2.63)

Tr(
∑
α

xαAαZ) = σ0(x) (2.64)

This is exactly the constraint in (DS-CFCV,k) with, for convenience, g0 = 1.
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2.5.2 Convergence of the hierarchy of SDPs

Finally, we prove that the constructed hierarchy provides a sequence of objective values that
converges monotonically to the noncontextual fraction NCF(e).

Theorem 2.5. The optimal values of the hierarchy of semidefinite programs (PS-CFCV,k) (resp.
(DS-CFCV,k)) provide monotonically decreasing upper bounds converging to the noncontextual
fraction NCF(e) which is the value of (P-CFCV). That is

val(PS-CFCV,k) ↓ val(P-CFCV) = NCF(e) as k →∞ , (2.65)

val(DS-CFCV,k) ↓ val(D-CFCV) = NCF(e) as k →∞ . (2.66)

Proof. Because of the strong duality between the original infinite-dimensional linear programs
we have:

val(P-CFCV) = val(D-CFCV) = NCF(e). (2.67)

Moreover, ∀k ≥ 1, (PS-CFCV,k) is a relaxation of (P-CFCV):

val(PS-CFCV,k) ≥ val(P-CFCV). (2.68)

And ∀k ≥ 1, (DS-CFCV,k) is a restriction of (D-CFCV):

val(DS-CFCV,k) ≥ val(D-CFCV). (2.69)

Also ∀k ≥ 1, we have weak duality between (PS-CFCV,k) and (DS-CFCV,k) (by Proposition 2.3):

val(DS-CFCV,k) ≥ val(PS-CFCV,k). (2.70)

Thus for all k ≥ 1:
val(DS-CFCV,k) ≥ val(PS-CFCV,k) ≥ NCF(e). (2.71)

We already saw that (val(PS-CFCV,k))k and (val(DS-CFCV,k))k form monotone nonincreasing
sequences. We now show that (val(DS-CFCV,k))k converges to NCF(e). This is equivalent to
showing that we can approximate any feasible solution8of program (D-CFCV) with a solution
of (DS-CFCV,k) for a high enough rank k.

Fix ε > 0 and a feasible solution (fC)C∈M ∈
∏
C∈MC(O) of (D-CFCV). Then ∀C ∈ M,

fC + ε
|M| is a positive continuous function on OC . Because OC is compact (see Subsection 2.3.3)

by the Stone-Weierstrass theorem, fC + ε
|M| can be approximated by a positive polynomial.

Thus there exist positive polynomials pεC ∈ R[x] such that for all contexts C ∈ M (in sup
norm): ∥∥∥∥fC + ε

|M|
− pεC

∥∥∥∥ ≤ ε

|M|
(2.72)

8Note that program (D-CFCV) might not have an optimal solution in which case it only has an optimal
solution in the closure of the feasible set. In that case, we can always find a sequence of feasible solutions
converging to an optimal solution.
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and also:∥∥∥∥(fC + ε

|M|
− pεC

)
◦ ρXC

∥∥∥∥ < 1
|M|

min
x∈OX

( ∑
C∈M

(
fC + ε

|M|

)
◦ ρXC (x)− x

)
(2.73)

where the minimum is strictly positive as
∑
C(fC + ε

|M|) ◦ ρ
X
C > 1OX .

From Eq. (2.72), the objective derived with (pεC)C is ε-close to the original objective:∣∣∣∣∣ ∑
C∈M

∫
OC

fC deC −
∑
C∈M

∫
OC

pεC deC

∣∣∣∣∣ ≤ ∑
C∈M

∫
OC

∣∣∣∣fC + ε

|M|
− pεC

∣∣∣∣ deC (2.74)

≤ ε . (2.75)

Also from Eq. (2.73):∑
C∈M

pεC ◦ ρXC − 1 (2.76)

>
∑
C∈M

(
fC + ε

|M|

)
◦ ρXC − min

x∈OX

( ∑
C∈M

(
fC + ε

|M|

)
◦ ρXC (x)− x

)
− 1 (2.77)

≥ 0, (2.78)

so that
∑
C∈M pεC ◦ ρXC − 1OX is a positive polynomial on OX . Next, because OX is of the form

required in Assumption 1.1, by Putinar’s Positivellensatz (see Theorem 1.2),
∑
C∈M pεC◦ρXC−1OX

belongs to the quadratic module Q(g). Therefore, for a high enough rank k ∈ N, it is a feasible
solution of (DS-CFCV,k) and thus:

|NCF(e)− val(DS-CFCV,k)| ≤ ε . (2.79)

2.6 Discussion and open problems

In this chapter, we have presented a framework formalising measurement contextuality for
continuous-variable systems. We further extended the FAB theorem to those kind of scenarios.
We also studied how to quantify contextuality via the extension of the contextual fraction to
the continuous-variable realm. Its computation can be phrased as an infinite-dimensional linear
program that we can relax to derive a converging hierarchy of finite dimensional semidefinite
programs.

Logical forms of contextuality, which are present at the level of the possibilistic rather than
probabilistic information contained in an empirical model, remain to be considered (e.g. in
discrete-variable scenarios [Fri09, AB11, Abr13b, MF12]). In the discrete setting, these can be
treated by analysing ‘possibilistic’ empirical models obtained by considering the supports of the
discrete-variable probability distributions [AB11], which indicate the elements of an outcome
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space that occur with non-zero probability. It can often be easily pictured on a bundle diagram.
However the notion of support of a measure is not as straightforward, and the naïve approach
is not viable since typically all singletons have measure 0. Nevertheless, supports can be defined
in the setting of Borel measurable spaces, for instance, which in any case are the kind of spaces
in which we are practically interested in Sections 2.3 and 2.5.

Approaches to contextuality that characterise obstructions to global sections using cohomol-
ogy have had considerable success [AMB12, ABK+15, Car15, Car17, Rau16, Rou17, ORBR17,
Car18, OTR18, Man13] and typically apply to logical forms of contextuality. An interesting
prospect is to explore how the present framework may be employed to these ends, and to
see whether the continuous-variable setting can open the door to new techniques that can
be applied, or whether qualitatively new forms of contextual behaviour may be uncovered. A
related direction to be developed is to understand how our treatment of contextuality can be
further extended to continuous measurement spaces as proposed in [TC19].

Another direction to be explored is how our continuous-variable framework for contextuality
can be extended to apply to more general notions of contextuality that relate not only to
measurement contexts but also more broadly to contexts of preparations and transformations
as well [Spe05, MK18], noting that these also admit quantifiable relationships to quantum
advantage e.g. [MK18, HCB+18]. Indeed, a major motivation to study contextuality is for
its connections to quantum-over-classical advantages in informatic tasks. An important line
of questioning is to ask what further connections can be found in the continuous-variable
setting, and whether continuous-variable contextuality might offer advantages that outstrip
those achievable with discrete-variable contextual resources. Note that it is known that infinite-
dimensional quantum systems can offer certain additional advantages beyond finite-dimensional
ones [Slo16], though the empirical model that arises in that example is still a discrete-variable
one in our sense.

The present work sets the theoretical basis for computational exploration of continuous-
variable contextuality in quantum-mechanical empirical models. This, we hope, can provide
new insights and inform all other avenues to be developed in future work. It can also be useful
in verifying the non-classicality of empirical models. Numerical implementation of the programs
of Section 2.5 is of particular interest. The hierarchy of semidefinite programs can be used
numerically to witness contextuality in continuous-variable experiments. Even if the time-
complexity of the semidefinite program may increase drastically with its degree, a low-degree
program can already provide a first witness of contextual behaviour as it will provide a lower
bound on the contextual fraction.

Since our framework for continuous-variable contextuality is independent of quantum the-
ory itself, it can equally be applied to ‘empirical models’ that arise in other, non-physical
settings. The discrete-variable framework of [AB11] has led to a number of surprising con-
nections and cross-fertilisations with other fields [Abr15], including natural language [AS14b],
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relational databases [Abr13a, Bar15], logic [AH12, ABK+15, Kis16], constraint satisfaction
[AGK13, ABdSZ17] and social systems [DZK16]. It may be hoped that similar connections and
applications can be found for the present framework to fields in which continuous-variable data
is of central importance. For instance probability kernels of the kind we have used are also
widely employed in machine learning (e.g. [HSS08]), inviting intriguing questions about how
our framework might be used or what advantages contextuality may confer in that setting.
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Equivalence of Wigner negativity and
contextuality for continuous-variable
Pauli measurements

For discrete-variable systems of odd power-of-a-prime dimension, Howard et al. [HWVE14]
showed that negativity of the Wigner function actually corresponds to contextuality with
respect to Pauli measurements (with an additional ancilla system), thereby establishing

the operational utility of contextuality for the gate-based model of quantum computation—
particularly in a fault-tolerant setting. The equivalence of Wigner negativity and contextuality
was established by deriving a noncontextuality inequality using the graph-theoretic techniques
of Cabello, Severini and Winter [CSW14] which extends Kochen-Specker type state-independent
proofs to the state-dependent realm. CSW inequalities have been shown to be equivalent to the
logical Bell inequalities appearing in the sheaf theoretic approach [AB11] in [dS17]. This proof
of equivalence [HWVE14] and subsequent alternate proof requires [DAGBR15, DOBV+17]
that, as well as the system displaying Wigner negativity, a second ancillary system must be
present in order to have a sufficiently rich set of available Pauli measurements. The equivalence
was generalised to odd dimensions in [DOBV+17] and also established for qubit systems
[RBD+17, DAGBR15].

Still the Wigner function and the phase-space formulation associated were initially introduced
for continuous-variable systems and, to date, there is no link between Wigner negativity and
contextuality in the continuous-variable setting. In [BB87, BG20] it is proven that the Wigner
function is the unique phase-space quasiprobability distribution yielding the correct marginals
for every quadrature. However the link to contextuality remains unclear as it is delicate to
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exhibit the right measurement scenario [BW98]. In fact, generalising the discrete-variable
approach to the sheaf-theoretic framework for continuous-variable contextuality runs into
several problems of a functional-analytic nature. For example, since we only assume access
to measurable properties of the quantum system, already the results of [BG20] are of no use
since they implicitly assume point wise equality of marginals whereas we can only guarantee
equality almost-everywhere. On the other hand, we assume a minimal structure in the nature
of our model. In fact, assuming only the (pre-)sheaf structure for a set of measurements on
quantum systems, we prove that there is a natural hidden-variable model which relates to
the Wigner function on the phase space. This allows us to properly establish that Wigner
negativity is equivalent to contextuality with respect to generalised quadrature measurements
i.e. continuous-variable Pauli measurements. These are the most commonly used measurements
in continuous-variable quantum information, in particular in quantum optics [ARL14, Wal21].
Our result directly relies on continuous-variable contextuality as presented in the previous
chapter which generalises the well-established notion presented in [AB11].

We start by properly defining the measurement scenario we are focusing on in Section 3.1.
We provide the suitable empirical models and crucially prove that they are family of probability
measures on linear functions rather than any functions in Section 3.2. Then we prove the main
theorem in Section 3.3 and conclude with a few open questions in Section 3.4. This chapter is
based on [BCE21].

3.1 Measurement scenario under consideration

Hereafter we fix M ∈ N∗ to be the number of modes—that is, M continuous-variable systems—
and H the corresponding Hilbert space. As introduced in Section 1.2, the phase space for a
single continuous-variable mode is V = R2. The Hilbert space associated with M modes is VM .
This a 2M -dimensional symplectic R-linear space. See [SSM88] for a concise introduction to
the symplectic structure of the phase space and [DG06] for a detailed review.

From Subsection 1.2.3, the Wigner function representing the total system is a real-valued
quasiprobability distribution VM → R. It was already established in [ADVT09] that the Wigner
function must be at least a L1-function for the generalised quadrature measurements to provide
a good characterisation. The proof strategy is to use the extendability property of a suitable
noncontextual empirical model from Definition 2.3 to exhibit a global probability measure on
global value assignments. Then we show that it corresponds to the Wigner function. This step
is delicate since it requires careful functional-analytic considerations. Having achieved this, it
proves that the Wigner function must be everywhere nonnegative since it corresponds to a
global probability measure. For the other direction, a nonnegative Wigner function can be used
directly as a hidden-variable model so that the corresponding empirical model is noncontextual
[SKK+09].
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We recall some background on the symplectic structure of VM (see Subsection 1.2.3). The
symplectic form is denoted Ω: VM × VM −→ R. For r1, r2 ∈ VM ,

Ω(r1, r2) = r1 · Jr2 where J =
(

0 1M

−1M 0

)
(3.1)

We have that J−1 = JT = −J and of course J can be seen as linear map from VM to VM . A
Lagrangian vector subspace is a maximal isotropic subspace, that is, a maximal subspace on
which the symplectic form Ω vanishes. For a symplectic space of dimension 2M , Lagrangian
subspaces are of dimension M . The Lagrangian Grassmannian is the set of all Lagrangian
subspaces.

Measurement scenario

The Wigner function bears a close relationship to displacement operators as emphasised
via its link with the characteristic function in Eq. (1.29). Wigner negativity will be shown
to be equivalent to contextuality with respect to Pauli measurements in the same spirit as
[HWVE14, DOBV+17]. Following Definition 2.1, this measurement scenario corresponds to the
setting described below.

Definition 3.1. We fix the measurement scenario 〈X ,M,O〉 as follows:

• the set of measurement labels is X := VM ;
• the maximal contexts are Lagrangian subspaces of VM so that the set of maximal contexts
M is the Lagrangian Grassmannian of X ;

• for each x ∈ X , Ox := 〈R,BR〉 so that for any set of measurement labels U ⊆ X ,
OU ∼= RU can be seen as the set of functions from U to R with its product σ-algebra FU 1.

Each x = (q1, . . . , qM , p1, . . . , pM ) ∈ X specifies a point in phase-space which corresponds to
measuring the associated displacement operator D̂(x) = D̂(q1, p1) ⊗ · · · ⊗ D̂(qM , pM ). Since
a displacement operator is not self-adjoint (i.e. Hermitian) we detail below what the precise
meaning of such a “measurement” is.

Measuring a displacement operator

We will focus on a single mode since it can be straightforwardly extended to multimode
quantum states. A quadrature operator such as the position operator q̂ (see Subsection 1.2.2)
is self-adjoint and it can be expanded via the spectral theorem [Hal13] as:

q̂ =
∫
x∈sp(q̂)

x dPq̂(x) , (3.2)

1It is generated by collection of functions E from L to R such that πx(E) is a real interval for a finite number
of x ∈ X and R for the rest where πx is the projection given later in Eq (3.13).
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where the spectrum of q̂ is sp(q̂) = R and Pq̂ is the spectral measure of q̂ [Hal13, Th. 8.10]. For
E ∈ B(R), Pq̂(E) is given by [Hal13, Def. 8.8]:

Pq̂(E) = 1E(q̂) . (3.3)

Informally, it assigns 1 whenever measuring q̂ yields an outcome that belongs to E. We can
view Pq̂(E) as the formal version of the projector

∫
x∈E |x〉〈x| dx (with |x〉 a non-normalisable

eigenvector of q̂). Its functional calculus [Hal13] can be expressed as:

f(q̂) =
∫
x∈sp(q̂)

f(x) dPq̂(x) , (3.4)

for f a bounded measurable function. Then we can write the spectral measure of f(q̂) via the
push-forward operation:

∀E ∈ B(R), Pf(q̂)(E) = Pq̂(f−1(E)) . (3.5)

It follows immediately that, for s ∈ R, the spectral measure for the diagonal phase operator
eisq̂ is given, for E ∈ B(S1), by

Pexp(isq̂)(E) := Pq̂({x ∈ R | eisx ∈ E}). (3.6)

Define the rotated quadrature q̂θ := cos(θ)q̂ + sin(θ)p̂ for θ ∈ [0, 2π] and the phase-shift
operator R̂(θ) := exp(i θ2(q̂2 + p̂2)). Then

q̂θ = R̂(θ)q̂R̂(−θ), (3.7)

so that the spectral measure of q̂θ is given by

Pq̂θ(E) = R̂(θ)Pq̂(E)R̂(−θ). (3.8)

Let (q, p) ∈ R2. We can find r ∈ R+, θ ∈ [0, 2π] such that (q, p) = (−r sin(θ), r cos(θ)).
Then:

D̂(q, p) = ei(pq̂−qp̂) = eir(cos(θ)q̂−sin(θ)p̂) = eirq̂θ . (3.9)

This form allows us to deduce spectral measures for the displacement operators. For any
E ∈ B(S1), we have

PD̂(q,p)(E) = Pexp(irq̂θ)(E) (3.10)

= Pq̂θ({x ∈ R | eirx ∈ E}) (3.11)

= R̂(θ)Pq̂({x ∈ R | eirx ∈ E})R̂(−θ). (3.12)

In conclusion, “measuring a displacement operator” can be implemented with quadrature
measurements. Now measuring any multimode displacement amounts to being able to measure
arbitrary multimode quadratures; that is, any linear combination of quadratures, e.g. q̂1 +
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2p̂2θ + 5q̂Mα for arbitrary angles θ, α. First, we apply phase-shift operators R̂(θ) for each
individual mode to obtain the right rotated quadratures. Then we apply CZ gates of the form
eigq̂iq̂j for g ∈ R to pairs of modes i and j to sum them. This permits construction of the
desired linear combinations in a quadrature of a mode. It remains to measure it. This can be
implemented with standard homodyne detection. It consists of a Gaussian measurement of a
quadrature of the field, by mixing the state with a strong coherent state. Then the intensities
of both output arms are measured with photodiode detectors. Their difference yields a value
proportional to a quadrature of the input mode, which can be rotated depending on the phase
of the local oscillator. The POVM elements for homodyne detection are given by |x〉φ 〈x| for
all x ∈ R where |x〉φ is the eigenstate of the rotated quadrature operator q̂φ with eigenvalue
x. This is represented in Figure 3.1. All of these steps can be implemented experimentally
[FOP05, SHD+13].

ρ R̂ CZ

LO (φ)

−

Figure 3.1: Experimental protocol corresponding to the measurement scenario of
this chapter. It permits measurement of any linear combination of quadratures.
After phase-shift operations on individual modes and CZ gates on pairs of modes,
homodyne detection one mode of the state is implemented. The dashed line repre-
sents a balanced beamsplitter. The local oscillator (LO) is a strong coherent state.
At the hand of each arm are photodiode detectors. The difference in the intensity
yields a value proportional to a quadrature of the input mode, which can be rotated
depending on the phase of the local oscillator.

Maximal contexts

This measurement scenario is to be interpreted as follows. The measurement corresponding to
the label r ∈ X is described by the spectral measure Pr̂ for the quadrature corresponding to r.
A pair of spectral measures of self-adjoint operators is compatible, in the sense that they admit
a joint spectral measure if and only if they commute, which in turn is true if and only if the
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operators themselves commute [Hal13]. In the case of our measurement scenario, two spectral
measures associated to x,y ∈ X commute if and only if Ω(x,y) = 0. Thus, measurement labels
are compatible only when they both belong to some isotropic subspace of X . The maximal
isotropic subspaces are the Lagrangian subspaces, so each context L ∈ M corresponds to a
Lagrangian subspace.M must be the Lagrangian Grassmanian of X .

3.2 Admissible empirical models

Empirical models

We are interested in experiments arising from quadrature measurements of a quantum system.
For each context L ∈M, the set OL =

∏
x∈LR can be seen as the set of functions from L to

R with the corresponding σ-algebra constructed with the product topology. For x ∈ X , the
categorical projections are:

πx : OL −→ R

f 7−→ f(x) .
(3.13)

We restrict our attention to empirical models e = (eL)L∈M which satisfy the Born rule; i.e.
there exists some quantum state ρ ∈ D(H ) such that for all contexts L ∈M and measurable
sets U ∈ FL:

eL(U) = Tr
(
ρ
∏
x∈L

Px̂ ◦ πx(U)
)

. (3.14)

We will therefore use the notation eρ = (eρL)L∈M to make explicit the dependence with ρ.
Because of the compatibility condition, we may unambiguously write, for each x ∈ X and for
each U ∈ Fx (we write Fx for simplicity though we mean F{x}):

eρx(U) = Tr (ρPx̂ ◦ πx(U)) . (3.15)

This comes from the marginalisation eρL|x for each L ∈M such that x ∈ L.
At this stage there is a mismatch. The Wigner function is a quasiprobability distribution

over VM = X , while the extendability property of a noncontextual empirical model in the
measurement scenario presented above provides a global probability measure on OX , which can
be seen as the set of functions X → R. In general, the latter is much larger than the former. To
solve this issue, we show that we can restrict to linear value assignments so that OX can be
taken as X ∗, the linear dual of X . Because X ∗ ∼= X then there is no more mismatch between the
Wigner function and the global probability measure that exists for a noncontextual empirical
behaviour.

We first show that we can restrict to linear value assignments on Lagrangian subspaces in
Lemma 3.1. We do so by showing that the empirical model assigns a nonzero mass only to the
linear functions L→ R. We then lift this property to global value assignments in Proposition 3.1
in the same spirit as [DOBV+17].
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Lemma 3.1. Let L ⊆ X be a Lagrangian subspace. Let U ∈ FL be a Lebesgue measurable set
of functions L→ R such that πx(U) is distinct from R for a finite number of x ∈ L. Then there
exists a subset Ulin of linear functions L→ R such that

eρL(Ulin) = eρL(U) . (3.16)

Proof. First let (ek)k=1,...,M be a basis of L ∼= RM . Let P be the joint spectral measure of
{Pê1 , . . . , PêM }. For any y ∈ L, define the function

fy : L −→ R

x 7−→ x · y ,
(3.17)

where – · – is the usual Euclidean scalar product on L ∼= RM . For any x ∈ L, Px̂ is the
push-forward of P by the measurable function fx by definition of the functional calculus on M
variables. Recall that for x ∈ L, πx(U) = {f(x) | f ∈ U} ⊆ R.

Then,

Tr
(
ρ
∏
x∈L

Px̂ ◦ πx(U)
)

= Tr
(
ρ
∏
x∈L

P
(
f−1
x (πx(U))

))
(3.18)

= Tr
(
ρP

(⋂
x∈L

f−1
x (πx(U))

))
(3.19)

with ⋂
x∈L

f−1
x (πx(U)) = {y ∈ L | ∀x ∈ L, x · y ∈ πx(U)} . (3.20)

Now define

Ulin :=

L −→ R

x 7−→ x · y

∣∣ y ∈ ⋂
x∈L

f−1
x (πx(U))

 . (3.21)

By construction,⋂
x∈L

f−1
x (πx(Ulin)) (3.22)

=
⋂
x∈L

f−1
x ({x · y | y ∈ L s.t. ∀z ∈ L, y · z ∈ πz(U)}) (3.23)

=
⋂
x∈L
{α ∈ L | x ·α = x · y with y ∈ L s.t. ∀z ∈ L, y · z ∈ πz(U)} (3.24)

= {α ∈ L | ∀x ∈ L, x ·α = x · y with y ∈ L s.t. ∀z ∈ L, y · z ∈ πz(U)} (3.25)

= {α ∈ L | ∀z ∈ L, α · z ∈ πz(U)} (3.26)

=
⋂
x∈L

f−1
x (πx(U)) , (3.27)
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where Eq. (3.26) follows from that fact that ∀x ∈ L, x ·α = x · y implies α = y. Also for all
x ∈ L, πx(Ulin) ⊆ πx(U) so that we are indeed reproducing all value assignments from linear
functions of U .

Then, as claimed,

eρL(Ulin) = Tr
(
ρ
∏
x∈L

Px̂ ◦ πx(Ulin)
)

(3.28)

= Tr
(
ρ
∏
x∈L

P
(
f−1
x (πx(Ulin))

))
(3.29)

= Tr
(
ρP

(⋂
x∈L

f−1
x (πx(Ulin)

))
(3.30)

= Tr
(
ρP

(⋂
x∈L

f−1
x (πx(U))

))
(3.31)

= Tr
(
ρ
∏
x∈L

Px̂ (πx(U))
)

(3.32)

= eρL(U) . (3.33)

Now we prove that the set of global value assignments can be identified with X ∗, the linear
dual space of X .

Proposition 3.1. If M > 2 (i.e. for more than 2 modes), global value assignments are linear
functions X → R, and the set of global value assignments forms a R-linear space of dimension
2M , namely E (X ) = X ∗.

Proof. The sheaf-theoretic framework for contextuality describes value assignments as a sheaf
E : P(X )op → Meas, where E (U) is the set of value assignments for the measurement labels in
U , which can be viewed as a set of functions U → R. For any Lagrangian L ∈ M, there is a
restriction map ρXL = E (X )→ E (L) : f 7→ f |L that simply restricts the domain of any function
from X tp L. Then E (L) must coincide with the set of possible value assignments OL.

By Lemma 3.1, E (L) consists in linear functions L→ R so that E (X ) contains only functions
X → R whose restriction to any Lagrangian subspace is R-linear. Then, following [DOBV+17,
Lemma 1] (the lemma is proven for the discrete phase-space ZMd × ZMd but its proof extends
directly to RM × RM ), we conclude that if M > 2, E (X ) contains only R-linear functions
X → R, i.e. E (X ) = X ∗.

Therefore, without loss of generality, for any U ⊂ X , we can restrict OU to be the set of
linear functions from U → R. Thus, an empirical model will be a collection of probability
measures on L∗ for each L ∈ M. For a noncontextual empirical model eρ, the extendability
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property yields a global probability measure on X ∗ that we will identify with the Wigner
function of ρ in the following section.

3.3 Equivalence between Wigner negativity and contextuality

We are now ready to tackle the main proof that Wigner negativity is equivalent to contextuality
in our measurement scenario. We prove it by essentially identifying the Wigner function with the
probability density of a carefully constructed hidden-variable model. We first set up the hidden-
variable model via Proposition 3.2 and we prove the equivalence in Theorem 3.1. Crucially, for
the identification with the Wigner function, we need to ensure that the hidden-variable model is
realisable by a probability measure over hidden variables that has a density. We further require
that this density is a L1 function.

Proposition 3.2. If an empirical model eρ for the continuous-variable measurement scenario in
Definition 3.1 is noncontextual, then eρ admits a realisation by a deterministic hidden-variable
model 〈X , µr, (kL)L∈M〉 such that µr has density wµ ∈ L1(X ) with respect to the Lebesgue
measure.

Proof. By our extension of the FAB theorem (see Theorem 2.1) and Lemma 3.1, eρ is realised
by a canonical hidden-variable model (HVM) (Λ, µ, k) (see Definition 2.4), for which

• Λ = OX = X ∗ i.e. hidden variables are linear value assignments;
• each probability kernel kL : X ∗ → L∗ is deterministic and factorisable;
• µ is a probability measure on X ∗.

In the same spirit as the Riesz representation theorem [Rie09], we pick the following
isomorphism constructed with the symplectic form (see Eq. (1.28)) to identify elements from X
to elements from X ∗:

α : X −→ X ∗

x 7−→ Ω(x,−) .
(3.34)

This will be essential to take the hidden-variable space to be X rather than X ∗.
For all L ∈M, let

k̃L : X × FL −→ R

(x, E) 7−→ kL(α(x), E) = δα(x)|L(E) .
(3.35)

Note that for both (k̃L)L∈M and (kL)L we can unambiguously write k̃x and kx for a measurement
label x ∈ X because of the compatibility condition.

Fix x ∈ X . For E ∈ B(R), let

pρx(E) := Tr (ρPx̂(E)) . (3.36)
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Fix U ∈ Fx (a measurable subset of linear functions from {x} to R). We first evaluate
pρx ◦ πx(E) = eρx(E) (see Eq. (3.15)) with the HVM above (see Eq. (2.3)).

pρx (πx(U)) = eρx(U) (3.37)

=
∫

Λ
kx(–, U) dµ (3.38)

=
∫
f∈X ∗

kx(f, U) dµ(f) (3.39)

=
∫
f∈X ∗

δf |{x}(U) dµ(f) (3.40)

=
∫
f∈X ∗

δf(x)(πx(U)) dµ(f) (3.41)

=
∫
f∈X ∗

δα−1(f)·x(πx(U)) dµ(f) (3.42)

=
∫
y∈Ω(x,−)−1(πx(U))

dµ ◦ α(y) (3.43)

=
∫
y∈(x·−)−1(πx(U))

dµ ◦ α ◦ J(y) . (3.44)

Thus pρx is the push-forward of the measure µ ◦ α ◦ J on X by the linear functional (x · −)
where J is defined in Eq. (3.1). By the Lebesgue decomposition theorem [Bil08], there is a
decomposition µ ◦ α = µr + µs where µr is absolutely continuous with respect to the Lebesgue
measure dx on X and µs is singular with respect to dx. It follows that, that for any x ∈ X ,
since A = (x · −)−1(E) has non-zero dx-measure for any Borel-measurable E ⊆ R of non-zero
Lebesgue measure,

µr ◦ J(A) = µ ◦ α ◦ J(A)− µs ◦ J(A) = µ ◦ α ◦ J(A) = pρx(E). (3.45)

Then (X , µr, (k̃L)L) is a deterministic and factorisable hidden-variable model for the empir-
ical model eρ. By the Radon-Nikodym theorem [Nik30], µr has a density wµ with respect to
the Lebesgue measure dx on X . Since µr is a probability measure, wµ ∈ L1(X ).

The main result follows from identifying wµ (Proposition 3.2) and the Wigner function Wρ

as L1(X ) functions:

Theorem 3.1. Assume ρ is a density operator such that its Wigner function Wρ ∈ L1(X )
with respect to the Lebesgue measure. Let eρ be an empirical model on the measurement
scenario in Definition 3.1 for ρ according to the Born rule i.e. for any L ∈ M, for U ∈ FL,
eL(U) = Tr(ρ

∏
x∈L Px̂ ◦ πx(U)). Then eρ is noncontextual if and only if the Wigner function

Wρ of ρ is nonnegative, and in that case Wρ describes a hidden variable model for eρ.

Proof. The result holds by identifying the characteristic function of ρ, denoted Φρ (see Eq. (1.27))
with the Wigner function and with the density wµ from Proposition 3.2. For x ∈ X , we have
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that Φρ(x) = FT−1 [Wρ] (Jx) by taking the inverse Fourier transform of Eq. (1.29) with the
change of variables x→ Jx.

On the other hand, fix a noncontextual empirical model eρ satisfying the Born rule associated
to ρ and the measurement scenario in Definition 3.1. By Proposition 3.2 we have:

Φ(x) = Tr
(
D̂(x)ρ

)
(3.46)

= Tr
(
ρ

∫
λ∈R

eiλ dPx̂(λ)
)

(3.47)

=
∫
R
eiλ dpρx̂(λ) (3.48)

=
∫
X
eix·y dµr ◦ J(y) (3.49)

=
∫
X
eiJx·ywµ(y) dy (3.50)

= FT−1[wµ](Jx). (3.51)

where the second line comes from the spectral theorem; the third line via Eq. (3.36) and the fact
that the integral and the trace may be inverted by the definition of the integral with respect to
the spectral measure [Hal13]; the fourth line via the push-forward operation in Eq. (3.45); and
the two last lines comes from Proposition 3.2 and the definition of the inverse Fourier transform.2

As a result, we have FT−1[wµ](Jx) = FT−1[Wρ](Jx) and since wµ,Wρ ∈ L1(X), wµ = Wρ

almost everywhere [Fol92, Corollary 7.1]. We have that wµ is a density function of a probability
measure, so it follows that both functions must be almost everywhere nonnegative. Because the
Wigner function is a continuous function from X to R [CG69], Wρ must be nonnegative.

Conversely, a nonnegative Wigner function provides a canonical noncontextual hidden
variable model for eρ [SKK+09].

3.4 Discussion and open problems

We have seen that Wigner negativity is equivalent to contextuality with respect to continuous-
variable Pauli measurements. This raises important questions. First the present argument
requires considering a measurement scenario that comprises an uncountable family of measure-
ment labels (the entire phase-space VM ). From an experimental perspective, it is crucial to
wonder what happens if we restrict to a finite family of measurement labels and see whether we
can derive a robust version of this theorem.

Another question concerns a quantifiable relationship between contextuality and Wigner
negativity. In the previous chapter we saw that can formalise the contextual fraction [ABM17]
in continuous variables. In the next chapter, we will derive witnesses for Wigner negativity
whose violation lower bounds the distance to the set of states with a positive Wigner function. It

2The missing factor ( 1
2π )M can always be taken into account in the measure.
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would be highly desirable to establish a precise and quantified link between those two measures
of nonclassicality.

Homodyne detection is a standard detection method in continuous variables [YUA+13] and
it is the basis of several computational models in continuous-variable quantum information
[DMK+17, CDM+17, CC17, GKP01]. In [BPA+19], a continuous-variable model for fault-
tolerant, universal quantum computation using only homodyne detection is developed. It
combines Gottesman–Kitaev–Preskill [GKP01] Clifford quantum computation and Gaussian
quantum computation. This justifies the measurement scenario under consideration. Homodyne
detection is a Gaussian measurement, therefore any quantum advantage is due to Wigner
negativity being present before the detection setup. This result shows that, just like in the
discrete-variable case [HWVE14], continuous-variable contextuality supplies the necessary
ingredients for continuous-variable quantum computing.
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Witnessing Wigner negativity

In Chapter 2 we formalised a framework for defining properly contextuality in continuous-
variable systems. In Chapter 3, we showed that contextuality has a close connection with
Wigner negativity, namely that they are equivalent in the setting we presented. We now

turn to a more in-depth analysis of Wigner negativity.
As the Wigner function is a real-valued quasi-probability distribution [CG69]—a normalised

distribution which can take negative values—it cannot be sampled directly experimentally in
general. However, its marginals are proper probability distributions which can thus be sampled
using homodyne detection in the optical setting [LR09]. Alternatively, heterodyne detection
(also called double homodyne detection) allows for sampling from a smoothed version of the
Wigner function [Hus40, Ric98]. In both cases, displacing a state in phase space before the
detection is equivalent to measuring the undisplaced state directly with homodyne or heterodyne
detection and then applying a classical post-processing procedure—namely, a translation of the
classical outcome according to the displacement amplitude [CGKM20, CRW+21].

Reconstructing the Wigner function to assess whether it is negative or not is possible
via full tomographic reconstruction [DPS03]. However, such reconstructions are very costly
in terms of the number of measurements needed, and require performing a tomographically
complete set of measurements—thus usually involving multiple measurement settings. In the
continuous-variable setting the task is even more daunting, since the Hilbert space of quantum
states is infinite-dimensional [LR09, CDG+20].

Instead, another strategy is to introduce witnesses for specific properties of quantum
states [Ter01, LKCH00, MKN+11, KV12, GEH+21, CRW+21] that are more accessible exper-
imentally. These witnesses should be observables that possess a threshold expectation value
indicating whether the measured state exhibits the desired property or not. Intuitively, a witness
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for a given property can be thought of as a separating hyperplane in the set of quantum states,
such that any state on one side of this hyperplane has this property (see Fig. 4.1). In particular,
some states with the sought property may remain unnoticed by the witness. In that regard, it
is desirable to have a complete set of witnesses such that for each state exhibiting the desired
property, there exists at least one witness in the set that captures it.

Figure 4.1: Pictorial representation of a witness Ω̂ with threshold value ω for a given
property. In green: states without the property. In blue: states with the property.
In red: witness threshold value. In light blue: states with the property undetected
by the witness.

A natural choice for a witness of Wigner negativity is the fidelity with a pure state having a
Wigner function with negative values, since it is a quantity that can be accessed experimentally
by direct fidelity estimation [DPS03, CDG+20]. Building on this intuition, and given that all
Fock states—with the exception of the (Gaussian) vacuum state |0〉—have a negative Wigner
function, we introduce a broad family of Wigner negativity witnesses for single-mode and
multimode continuous-variable quantum states based on fidelities with Fock states. Furthermore
this family is complete, that is, for each state exhibiting Wigner negativity, there exists at least
one witness that will detect it. The expectation values of the witnesses are linear functions
of the state which may be efficiently estimated experimentally using standard homodyne or
heterodyne detection, thus providing a reliable method for detecting Wigner negativity with
certifiable bounds. Additionally, we show that the amount by which the measured expectation
value exceeds the threshold value of the witness provides an operational measure of Wigner
negativity as it directly lower bounds the distance between the measured state and the set of
states with positive Wigner function.

We cast the computation of the threshold values of the witnesses as infinite-dimensional
linear programs. To perform an actual numerical implementation, we can either relax or restrict
these programs. Upper and lower bounds for the threshold values of our witnesses are then given
by two converging hierarchies of finite-dimensional semidefinite programs. While we first study
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the case of single-mode quantum states and witnesses for simplicity, we then show that our
results extend to the multimode setting—when there are more than one quantum system.

This chapter may be of interest for physicists interested in characterising Wigner negativity
of quantum states—either theoretically or experimentally—and mathematicians interested in
infinite-dimensional convex optimisation theory. It is structured as follows: we give a detailed
exposition of our witnesses in Section 4.1. Section 4.2 describes the experimental procedure
for witnessing Wigner negativity of a quantum state using these witnesses, together with use-
case examples. The following Section 4.3—which deals with infinite-dimensional optimisation
techniques of independent interest—is devoted to estimating the threshold values of the witnesses:
after some technical background in Section 4.3.2, Section 4.3.3 reformulates the problem of
finding the threshold value of a witness as an infinite-dimensional linear optimisation, while
Section 4.3.4 derives two hierarchies of semidefinite relaxations and restrictions for this linear
program, yielding numerical upper and lower bounds for the threshold value. Section 4.3.5
establishes the proof of convergence of these hierarchies of upper and lower bounds to the
threshold values in their respective optimisation spaces. We introduce the generalisation to the
multimode case in Section 4.4 and conclude with a few open questions in Section 4.5. This
chapter is based on [CEG21].

4.1 Wigner negativity witnesses

We introduce the following Wigner negativity witnesses:

Ω̂a,α :=
n∑
k=1

akD̂(α) |k〉〈k| D̂†(α), (4.1)

for n ∈ N∗, a = (a1, . . . , an) ∈ [0, 1]n, with maxk ak = 1, and α ∈ C. These operators are
finite weighted sums of displaced Fock states projectors. They can be thought of as Positive
Operator-Valued Measure (POVM) elements, and their expectation value for a quantum state
ρ is given by

Tr
(
Ω̂a,α ρ

)
=

n∑
k=1

akF
(
D̂†(α)ρD̂(α), |k〉

)
, (4.2)

where F is the fidelity (see Subsection 1.1.1). This quantity can be (efficiently) directly estimated
from homodyne or heterodyne detection of multiple copies of the state ρ by translating the
samples obtained by the amplitude α in the classical postprocessing and performing fidelity
estimation with the Fock states |1〉 , . . . , |n〉 [DPS03, CDG+20].

For n ∈ N∗, each choice of (a, α) ∈ [0, 1]n × C yields a different Wigner negativity witness.
In particular, when α = 0 and only one entry of the vector a is non-zero, the expectation value
of the witness is given by the fidelity with a single Fock state.
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To each witness Ω̂a,α is associated a threshold value defined as:

ωa := sup
ρ∈D(H )
Wρ≥0

Tr
(
Ω̂a,α ρ

)
. (4.3)

Since negativity of the Wigner function is invariant under displacements, the threshold values
do not depend on the value of the displacement amplitude α and we thus write ωa (rather than
ωa,α) for the threshold value associated to the witness Ω̂a,α. This is sensible, given that the
threshold value asks for nonnegativity anywhere in phase space, so a displacement in phase
space should not change its value. Combining (i) that the threshold value associated to a
witness does not depend on the displacement parameter α and (ii) that we can always take into
account displacement via classical post-processing if one uses homodyne or heterodyne detection
associated to Ω̂a,0 [CGKM20, CRW+21], we can restrict the analysis to witnesses of the form
Ω̂a,0 that will generate the family {Ω̂a,α}α∈C. Note however that the choice of displacement
amplitude can still play an important role for certifying negativity of certain quantum states.
For instance, the most suitable witness for detecting negativity of the displaced Fock state
D̂(ei

π
4 ) |1〉 is itself i.e. Ω̂(1,0,...,0),ei

π
4 though Ω̂(1,0,...,0),0 will be used experimentally and then

classical post-processing will be applied on the samples to retrieve the displaced witness.
If the measured expectation value for an experimental state is higher than the threshold

value given by Eq. (4.3), this implies by definition that its Wigner function takes negative
values. Moreover, the following result shows that the amount by which the expectation value
exceeds the threshold value directly provides an operational quantification of Wigner negativity
for that state:

Lemma 4.1. Let ρ ∈ D(H ) Wigner negative, and fix a witness Ω̂a,α defined in Eq. (4.1),
for n ∈ N∗, a = (a1, . . . , an) ∈ [0, 1]n, and α ∈ C, with threshold value ωa. Let us further
assume that that it violates the threshold value of the witness i.e. Tr(Ω̂a,α ρ) > ωa and denote
the amount of violation as

δa,α(ρ) := Tr
(
Ω̂a,α ρ

)
− ωa. (4.4)

Then,
ηρ ≥ δa,α(ρ), (4.5)

where ηρ is the distance between ρ and the set of states having a positive Wigner function,
defined in Eq. (1.32).

Proof. We use the notations of the lemma. Let us consider the binary POVM {Ω̂a,α, 1− Ω̂a,α}.
For all σ ∈ D(H ), we write P σa,α the associated probability distribution: P σa,α(0) = 1−P σa,α(1) =
Tr(Ω̂a,α σ).
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Let σ be a state with a positive Wigner function, so that Tr(Ω̂a,α σ) ≤ ωa, by definition of
the threshold value. We have:

δa,α(ρ) = Tr(Ω̂a,αρ)− ωa
≤ Tr(Ω̂a,αρ)− Tr(Ω̂a,ασ)

= |P ρa,α(0)− P σa,α(0)|

= ‖P ρa,α − P σa,α‖

≤ D(ρ, σ),

(4.6)

where we used δa,α(ρ) ≥ 0 in the second line, ‖P − Q‖ = 1
2
∑
x |P (x) − Q(x)| denotes the

total variation distance, and we used the operational property of the trace distance in the last
line [NC11]. We finally take the infimum over σ and with the definition of ηρ (see Eq. (1.32))
that concludes the proof.

This results directly extends to the case where only an upper bound of the threshold value is
known: the amount by which the expectation value exceeds this upper bound is also a lower
bound of the distance to the set of states having a positive Wigner function.

Importantly, the family of Wigner negativity witnesses {Ω̂a,α} is complete, i.e., for any
quantum state with negative Wigner function there exists a choice of witness (a, α) such that
the expectation value of Ω̂a,α for this state is higher than the threshold value. Indeed, by
taking a = (1, 0, 1, 0, 1, . . . ), this family includes as a subclass the complete family of witnesses
from [CRW+21]. Indeed from Eq. (1.25) (definition of the parity operator), Eq. (1.26) (definition
of the Wigner function) and the completeness relation

∑
n∈N |n〉〈n| = 1, the Wigner function

of any density operator ρ ∈ D(H ) reads:

Wρ(α) = 2
π

(
1− 2Tr

(
Ω̂(1,0,1,0,... ),αρ

))
.

Thus for any state with a negative Wigner function, there exists a choice of α ∈ C such that
the witness Ω̂(1,0,1,0,... ),α with threshold value 1

2 can detect its negativity.
The threshold value in Eq. (4.3) is given by an optimisation problem over quantum states

having a positive Wigner function. This is a convex subset of an infinite-dimensional space that
does not possess a well-characterised structure. While solving this optimisation problem thus
seems unfeasible in general, it turns out that we can obtain increasingly good numerical upper
and lower bounds for the threshold value using semidefinite programming. This is developed in
Section 4.3.

The relevant programs are derived in Section 4.3.4.3 and 4.3.4.2 and their respective
convergence is proven in 4.3.5. Since these proofs introduces several intermediate forms of the
programs, we explicitly give them below to avoid confusion on which programs to implement
numerically. For n ∈ N∗, a = (a1, . . . , an) ∈ [0, 1]n, and m ≥ n, the hierarchies of semidefinite
programs that respectively provide lower bounds and upper bounds for the threshold value ωa
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associated to the witnesses {Ω̂a,α}α∈C are:

Find Q ∈ Symm+1 and F ∈ Rm+1

maximising
∑n
k=1 akFk

subject to
m∑
k=0

Fk = 1

∀k ∈ J0,mK, Fk ≥ 0

∀l ∈ J1,mK,
∑

i+j=2l−1
Qij = 0

∀l ∈ J0,mK,
∑

i+j=2l
Qij =

m∑
k=l

(−1)k+l

l!

(
k

l

)
Fk

Q � 0,

(SDPm,≤a )

and 

Find Q ∈ Symm+1 and F ∈ Rm+1

maximising
∑n
k=1 akFk

subject to
m∑
k=0

Fk = 1

∀k ∈ J0,mK, Fk ≥ 0

∀l ∈ J1,mK, ∀i+ j = 2l − 1, Aij = 0

∀l ≤ m,∀i+ j = 2l, Aij =
l∑

k=0
Fk

(
l

k

)
l!

A � 0,

(SDPm,≥a )

Let ωm,≥a = val(SDPm,≥a ) be the optimal value of (SDPm,≥a ). We show in Section 4.3 that the
sequence (ωm,≥a )m≥n is a decreasing sequence of upper bounds of ωa, which converges to ωa.
Similarly, let ωm,≤a be the optimal value of (SDPm,≤a ). We show that the sequence (ωm,≤a )m≥n
is an increasing sequence of lower bounds of ωa, which converges to ωSa—a modified threshold
value computed with Schwartz functions rather than square-integrable functions; we have
ωSa ≤ ωa, and the equality between the two values is still open.

In particular, the numerical upper bounds ωm,≥a can be used instead of the threshold value
ωa to witness Wigner negativity, while the numerical lower bounds ωm,≤a may be used to control
how much the upper bounds differ from the threshold value. We give a detailed procedure in the
following section, together with use-case examples and details on the numerical implementation.
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4.2 Procedure for witnessing Wigner negativity

4.2.1 Procedure

In this section, we describe an experimental procedure to check whether a continuous-variable
quantum state exhibits Wigner negativity using our witnesses.

Witnessing Wigner negativity:

1. Choose a suitable fidelity-based witness Ω̂a,α defined in Eq. (4.1) by picking n ∈ N∗,
a ∈ [0, 1]n and α ∈ C.

2. Run the upper bounding semidefinite program (SDPm,≥a ) for m ≥ n to get a
numerical estimate ωm,≥a .

3. Run the lower bounding semidefinite program (SDPm,≤a ) for m ≥ n to get a
numerical estimate ωm,≤a .

4. Estimate the expectation value for that witness of the experimental state from
samples of homodyne or heterodyne detection by performing fidelity estimation
with the corresponding Fock states and translating the samples by α. This yields
an experimental witness value denoted ωexp.

5. Compare the value obtained experimentally with the numerical bounds: if it is
greater than the numerical upper bound, i.e. ωexp ≥ ωm,≥a , then the state displays
Wigner negativity, and its distance to the set of Wigner positive states is lower
bounded by ωexp − ωm,≥a . Otherwise, if it is lower than the numerical lower bound,
i.e. ωexp ≤ ωm,≤a , then the witness cannot detect Wigner negativity for this state.

The main subroutine of this procedure is to estimate fidelities with displaced Fock states
using classical samples from homodyne or heterodyne detection1, in order to compute the
experimental value for a Wigner negativity witness. As already mentioned, displacement
can be achieved with classical post-processing by translating the classical samples according
to the displacement amplitude, and performing direct fidelity estimation with Fock states
[LR09, DPS03, CDG+20].

Upper and lower bounds on the threshold value of the witness are then obtained using
semidefinite programming, and comparing the experimental witness value to these bounds gives
insight about the Wigner negativity of the measured quantum state.

We give a detailed procedure for using our witnesses for detecting Wigner negativity in the
framed box. This procedure starts by the choice of a specific witness, and we explain hereafter
a heuristic method for picking a good witness.

If the experimental state is anticipated to have negativity at α, then one may use the
witness with parameters (n,a, α) with a = (1, 0, 1, 0, . . . ), which will detect negativity for n
large enough [CRW+21]. However, this may imply having to estimate fidelities with Fock states
having a high photon number with homodyne or heterodyne detection, which requires a lot of

1Actually, using a fidelity witness rather than a fidelity estimate is sufficient for our purpose.
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samples, while simpler witnesses can suffice for the task and be more efficient, as we show in
the next section. Moreover, there are cases where the state to be characterised is fully unknown.
Instead, a simple heuristic for picking a good witness for Wigner negativity is the following:

• From samples of homodyne or heterodyne detection of multiple copies of an experimental
state, estimate the expected values of witnesses in Eq. (4.1) for a small value of n and a
large set of values a and α, using the same samples for all witnesses.

• Based on these values, pick the simplest witness possible—with the smallest value of
n—that is able to witness Wigner negativity with a reasonable violation. This is done by
comparing the estimated expected values with the upper bounds on the corresponding
threshold values computed numerically. These bounds depend only the choice of the
witness parameters n,a and can even be precomputed using (SDPm,≥a ). To facilitate the
use of our methods, we have collected such bounds for a = (0, . . . , 0, 1) and n ≤ 10 in
Table 4.1. We also precomputed these bounds for n = 3 and a large number of values of
a [CE].

• Then, estimate the expected value for that witness using a new collection of samples—thus
obtaining proper error bars and avoiding the accumulation of statistical errors.

In what follows, we give a few theoretical examples for using our witnesses to detect negativity
of the Wigner function of single-mode quantum states.

4.2.2 Examples

We identify three levels of generality within our family of single-mode witnesses in Eq. (4.1):
(i) fidelities with single Fock states, (ii) linear combinations of fidelities with Fock states, and
(iii) displaced linear combinations of fidelities with Fock states.

Fidelities with Fock states are the most practical of our witnesses, since they require the
estimation of only one diagonal element of the density matrix of the measured state. The
corresponding values in Table 4.1 can be used directly by experimentalists: if an estimate of
〈n|ρ|n〉 for appropriate n is above one of these numerical upper bounds then it ensures that ρ
has a Wigner function with negative values. Moreover, by Lemma 4.1, the amount by which
the estimate of 〈n|ρ|n〉 exceeds the numerical upper bound directly provides a lower bound on
the distance between ρ and the set of states having a positive Wigner function.

For instance, if we focus on n = 3 in Table 4.1, the threshold value ω3 satisfies 0.378 ≤ ω3 ≤
0.427. Having a state ρ such that 〈3|ρ|3〉 > 0.427 guarantees that ρ has Wigner negativity. If
〈3|ρ|3〉 < 0.378 then we conclude that the witness cannot detect negativity for this state. When
the experimental state is close to a Fock state (different from the vacuum), a natural choice
for the witness thus is the fidelity with the corresponding Fock state. For instance, consider a
photon-subtracted squeezed vacuum state [OTBLG06]

|p-ssvs(r)〉 = 1
sinh r âŜ(r) |0〉 , (4.7)
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n Lower bound Upper bound

1 0.5 0.5
2 0.5 0.5
3 0.378 0.427
4 0.375 0.441
5 0.314 0.385
6 0.314 0.378
7 0.277 0.344
8 0.280 0.348
9 0.256 0.341
10 0.262 0.334

Table 4.1: Table of numerical upper and lower bounds for the threshold value ωn of
various Wigner negativity witnesses obtained using our hierarchies of semidefinite
programs at rank m up to around 30. The witnesses considered here are Fock states
projectors (photon-number states |n〉) from 1 to 10. Note that the gap between the
lower and upper bounds never exceeds 0.1. Additionally, the bounds in the first two
lines are analytical (see Section 4.3.3) and for the upper bounds, the corresponding
values obtained numerically are 0.528 and 0.551, respectively. See Section 4.2.3 and
[CE] for the numerical implementation.

where Ŝ(r) = e
r
2 (â2−â†2) is a squeezing operator with parameter r ∈ R. Its fidelity with the

single-photon Fock state |1〉 is given by:
1

(sinh r)2

∣∣∣〈1|âŜ(r)|0〉
∣∣∣2 = 1

(cosh r)3 . (4.8)

When the squeezing parameter is small, this state is close to a single-photon Fock state. In
particular, for 0 < r < 0.70, the fidelity F (p-ssvs(r), 1) in Eq. (4.8) is greater than ω≥1 = 1

2 and
our witness can be used to detect Wigner negativity of this state (see Fig. 4.2).

Another example is given by superpositions of coherent states states: we consider the cat
state [San92]

|cat2(α)〉 = |α〉+ |−α〉√
2(1 + e−2|α|2)

, (4.9)

and the compass state [Zur01]

|cat4(α)〉 = |α〉+ |−α〉+ |iα〉+ |−iα〉

2
√

1 + e−|α|2(2 cos(|α|2) + 1)
, (4.10)

where |α〉 = e−
1
2 |α|

2 ∑
k≥0

αk√
k! |k〉 is the coherent state of amplitude α ∈ C. We have

|〈2|cat2(α)〉|2 = |α|4

2 cosh(|α|2) , (4.11)

and
|〈4|cat4(α)〉|2 = |α|8/12

cosh(|α|2) + cos(|α|2) . (4.12)
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Figure 4.2: Fidelities of photon-subtracted squeezed vacuum states |p-ssvs(r)〉 with
the Fock state |1〉 with respect to the squeezing parameter r ∈ R. The dashed
grey lines delimit the intervals of parameter values where the witness |1〉〈1| can
be used to detect Wigner negativity, i.e. when the fidelity (violet curve) is above
the witness upper bound (pink line). The height difference when the violet curve is
above the pink line directly provides a lower bound on the distance between the
corresponding state and the set of states having a positive Wigner function.

For 1.63 ≤ |α|2 ≤ 2.59, the fidelity F (cat2(α), 2) in Eq. (4.11) is greater than ω≥2 = 1
2

and our witness corresponding to n = 2 can be used to detect Wigner negativity of this
state. Similarly, for 2.10 ≤ |α|2 ≤ 6.53, the fidelity F (cat4(α), 4) in Eq. (4.12) is greater than
ω≥4 = 0.441 and our witness corresponding to n = 4 can be used to detect Wigner negativity of
this state (see Fig. 4.3).

Some quantum states will remain unnoticed by all single Fock state negativity witnesses.
For example, the state ρ0,1,2 := 1

9 |0〉〈0|+
4
9 |1〉〈1|+

4
9 |2〉〈2| has a negative Wigner function but

is not detected by any of the single Fock state negativity witnesses, since the lower bounds
for n = 1, 2 in Table 4.1 are higher than 4

9 , and this state has fidelity 0 with higher Fock
states. However, it is detected by simple witnesses based on linear combinations of fidelities.
For example, with n = 2 and a = (1, 1) we find numerically that the threshold value of the
witness |1〉〈1|+ |2〉〈2| is less than 0.875 when running the corresponding program (SDPm,≥a )
for m = 7. And since Tr(ρ0,1,2(|1〉〈1| + |2〉〈2|)) = 8

9 > 0.875, this linear combination of Fock
state fidelities can indeed detect Wigner negativity for this state.

However, some quantum states with a negative Wigner function will always go unnoticed
with witnesses of the previous form because these witnesses are invariant under phase-space
rotations while the Wigner function of those states becomes positive under random dephasing.
Consider for instance the superposition

√
1− 1

s |0〉+ 1√
s
|1〉, for s > 2 (which under random

dephasing is mapped to (1− 1
s ) |0〉〈0|+ 1

s |1〉〈1|). In that case, the Wigner negativity of such
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Figure 4.3: (a) Fidelities of cat states |cat2(α)〉 with amplitude α ∈ C with the
Fock state |2〉. (b) Fidelities of compass states |cat4(α)〉 with amplitude α ∈ C
with the Fock state |4〉. The dashed grey lines delimit the intervals of amplitude
where our witnesses from Table 4.1 can be used to detect Wigner negativity of the
corresponding state. When it is below the witness lower bound (light pink line),
we are guaranteed that the witness (here |4〉〈4|) cannot be used to detect Wigner
negativity of the state.

states can still be witnessed by using the displaced version of our witnesses. In particular, if any
single-mode quantum state has a Wigner function negative at α ∈ C, then there is a choice of
n ∈ N∗ such that the witness in Eq. (4.1) defined by a = (1, 0, 1, 0, 1, . . . ) and the displacement
amplitude α detects its negativity [CRW+21]. In practice, simpler witnesses may suffice to
detect negativity, and the choice of witness will ultimately depend on the experimental state
at hand. Hereafter we discuss the heuristics for picking a good witness, with the theoretical
example of the lossy 3-photon Fock state:

ρ3,η := (1− η)3 |3〉〈3|+ 3η(1− η)2 |2〉〈2|

+ 3η2(1− η) |1〉〈1|+ η3 |0〉〈0| ,
(4.13)

where 0 ≤ η ≤ 1 is the loss parameter. Setting η = 0 gives ρ3,η = |3〉〈3| while setting η = 1
gives ρ3,η = |0〉〈0|. This state has a nonnegative Wigner function for η ≥ 1

2 . The fidelities of
ρ3,η with displaced Fock states D̂(α) |l〉 are given by:

F (ρ3,η, D̂(α) |l〉)

= (1− η)3| 〈3|D̂(α)|l〉 |2

+ 3η(1− η)2| 〈2|D̂(α)|l〉 |2

+ 3η2(1− η)| 〈1|D̂(α)|l〉 |2

+ η3| 〈0|D̂(α)|l〉 |2.

(4.14)
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Figure 4.4: Lower bounds on the violation δa,α = Tr(Ω̂a,α ρ3,η)− ωa for a lossy 3-
photon Fock state ρ3,η = η3 |3〉〈3|+3η2(1−η) |2〉〈2|+3η(1−η)2 |1〉〈1|+(1−η)3 |0〉〈0|
for a = (a1, a2, a3) with respect to the loss parameter η. Precomputed bounds
on threshold values for witnesses of the form Ω̂a = a1 |1〉〈1|+ a2 |2〉〈2|+ a3 |3〉〈3|
can be found in [CE]. We use these values to find the witness Ω̂a,α giving the
maximum lower bound δ≤a,α = Tr(Ω̂a,α ρ3,η)− ω≥a on the violation δa,α, for different
values of the loss parameter η. These optimised lower bounds are represented in
red. In blue is the maximal violation that can be detected using the witnesses
Ω̂(1,0,1),α = D̂(α)(|1〉〈1|+ |3〉〈3|)D̂†(α) [CRW+21]. In violet is the maximal violation
that can be detected using the more naive witness Ω̂(0,0,1),α = D(α) |3〉〈3|D†(α).
Note that ρ3,η has a nonnegative Wigner function for η ≥ 0.5.

where the coefficients of the displacement operator in Fock basis are given in Eq. (1.24). In an
experimental scenario, the state would be unknown and these fidelities should be estimated
using samples from a homodyne or heterodyne detection of the state translated by α, and
estimating the fidelities with Fock states [CGKM20, CRW+21].

Following the heuristic detailed in the previous section, we have determined suitable Wigner
negativity witnesses for 50 values of the loss parameter η between 0 and 0.5 as follows: for
each value η, we have computed numerically the values of the fidelities in Eq. (4.14) for
l = 1, 2, 3, and for displacement parameters α = q/10 + ip/10 for all q, p ∈ J0, 10K. Using these
values, we have computed the expectation value of the witnesses Ω̂a,α for multiple choices of
a = (a1, a2, a3) with maxi ai = 1. We have used the corresponding precomputed bounds ω≥a
on the threshold values of Ω̂a,α in [CE] to determine the witness leading to the maximal lower
bound δ≤a,α := Tr(Ω̂a,α ρ3,η)− ω≥a on the violation δa,α = Tr(Ω̂a,α ρ3,η)− ωa over the choice of
(a, α).

We have represented these violations for each value of the loss parameter η in Fig. 4.4.
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For all values of η, we find that the optimal displacement parameter is α = 0. On the
other hand, we find different optimal choices of a for different values of η. To illustrate the
usefulness of the optimisation over the choice of witnesses parametrised by (a, α), we have
also represented the violations obtained when using the witnesses Ω̂(1,0,1),α = D̂(α)(|1〉〈1| +
|3〉〈3|)D̂†(α) from [CRW+21] for all values of η. In that setting, the violations obtained quantify
how hard it is to detect the Wigner negativity of the state: a larger violation implies that a
less precise estimate of the witness expectation value is needed to witness Wigner negativity.
In particular, we obtain that our optimised witnesses always provide a greater violation to
detect negativity than the previous witnesses which will result in an easier experimental
detection. We also represented the violation obtained when using the more naive witnesses
Ω̂(0,0,1),α = D̂(α) |3〉〈3| D̂†(α) and we see that it is only useful when the loss parameter is
smaller than 0.25, while the optimised witnesses may detect negativity of the state ρ3,η up
to η = 0.5—when the Wigner functions becomes nonnegative—provided the estimates of the
fidelities are precise enough.

Overall, this procedure only amounts to a simple classical post-processing of samples from
homodyne or heterodyne detection and yields a good witness for detecting Wigner negativity.

4.2.3 Numerical implementation

Here we discuss numerical implementations of the semidefinite programs (SDPm,≤a ) and
(SDPm,≥a ). All codes are available here [CE].

We implemented the semidefinite programs with Python through the interface provided by
PICOS [SS12]. We first used the solver Mosek [ApS19] to solve these problems but, while the
size of the semidefinite programs remains relatively low for small values of n and m, binomial
terms grow rapidly and numerical precision issues arise quickly (usually around m = 12, n ≤ m
on a laptop). The linear constraints involving Qij in the semidefinite programs come from
a polynomial equality (see Lemma 4.5). While polynomial equalities are usually written in
the canonical basis, a first trick is to express them in a different basis—for instance the basis
(1, X1! ,

X2

2! , . . . )—to counterbalance the binomial terms.
However, this may not be sufficient to probe larger values of m. Instead, we used the solver

SDPA-GMP [Nak10, FKNY02] which allows arbitrary precision arithmetic. While much slower,
this solver is dedicated to solve problems requiring a lot of precision. Because our problems
remain rather small, time efficiency is not an issue and this solver is particularly well-suited.
All problems were initially solved on a regular laptop as warning flags on optimality were raised
before the problems were too large. A high-performance computer2 handling floating point
arithmetic more accurately was later used to compute further ranks in the hierarchy.

Using the semidefinite programs (SDPm,≥a ) and (SDPm,≤a ) for values of m up to around
30 and a = (0, 0, . . . , 0, 1) (where the size n of the vector a is ranging from 1 to 10), we have

2DELL PowerEdge R440, 384 Gb RAM, Intel Xeon Silver 4216 processor, 64 threads from LIP6.
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obtained upper and lower bounds for the threshold values of Wigner negativity witnesses
corresponding to fidelities with Fock states from 1 to 10, reported in Table 4.1.

We also computed upper and lower bounds on the threshold values of witnesses of the form:

Ω̂(a1,a2,a3) =
3∑

k=1
ak |k〉〈k| , (4.15)

where ∀i ∈ {1, 2, 3}, 0 ≤ ai ≤ 1 and maxi ai = 1. We focused on these particular witnesses for
experimental considerations as it is challenging to obtain fidelities with higher Fock states. We
fix one coefficient equal to 1 and vary each other ai from 0 to 1 with a step of 0.1. The resulting
bounds on the threshold values can be found in [CE] and in [CEG21].

We now turn to the mathematical proofs of our results, i.e., that the threshold values in
Eq. (4.3) can be upper bounded and lower bounded by the optimal values of the converging
hierarchies of semidefinite programs (SDPm,≥a )m≥n and (SDPm,≤a )m≥n, respectively.

The following section is rather technical as we dive into infinite-dimensional optimisation
techniques to derive the hierarchies of semidefinite programs and prove their convergence. Some
readers may want to skip directly to Section 4.4.

4.3 Infinite-dimensional optimisation

In this section we use infinite-dimensional optimisation techniques: (i) to phrase the computation
of the witness threshold value introduced in Eq. (4.3) as an infinite-dimensional linear program
in Section 4.3.3, (ii) to derive two hierarchies of finite-dimensional semidefinite programs
that upper bound and lower bound the threshold value in Section 4.3.4, and (iii) to show, in
Section 4.3.5, that the sequence of upper bounds converges to the threshold value computed
over L2(R+) functions and the sequence of lower bounds converges to the threshold value
computed over Schwartz functions (see Fig. 4.5). Given the technicalities of the proofs above,
we sketch them in Section 4.3.1 before detailing them in the following sections.

As a convention, except if specifically mentioned, we will use the terminology ‘relaxation’
and ‘restriction’ from the point of view of the primal program. We will refer to the hierarchy
of semidefinite programs providing the upper bounds as a hierarchy of relaxations because
the obtained SDP programs are indeed relaxations of the primal program (while they are
restrictions of the dual program). Likewise, we will refer to the hierarchy providing the lower
bounds as a hierarchy of restrictions.

For clarity, we treat the case where the witnesses are given by the fidelity with a single
Fock state, corresponding to the case where one entry of the vector a is equal to 1 and all the
other entries are 0. The generalisation to linear combinations of fidelities with Fock states is
straightforward by linearity.
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Figure 4.5: Hierarchy of semidefinite relaxations converging to the linear program
(LPL2

n ) and hierarchy of semidefinite restrictions converging to the linear program
(LPSn), together with their dual programs. The upper index m denotes the level of
the relaxation or restriction. On the left are the associated optimal values. The
equal sign denotes strong duality, i.e., equality of optimal values, and the arrows
denote convergence of the corresponding sequences of optimal values. Note that the
question of the closing the gap between the values of (LPL2

n ) and (LPSn) is left open.

4.3.1 Sketch of the proofs

This section aims at giving an overview of the rather technical proofs that follow. Our reasoning
can be split into the following steps:

Obtaining an infinite-dimensional linear program and its dual

• We exploit the phase-space rotational invariance of Fock states in Lemma 4.4 to express
the computation of threshold values Eq. (4.3) on states that are diagonal in the Fock
basis.

• This provides a maximisation problem which can be rephrased as an infinite-dimensional
linear program (LPL2

n ) (resp. (LPSn)) on the space of square integrable functions L2(R+)
(resp. Schwartz functions S(R+)). We denote ωL2

n its optimal value (resp. ωSn ).
• By duality, we recast this as an optimisation problem on finite-signed measures which is

given by the dual infinite-dimensional linear program (D-LPL2
n ) (resp. (D-LPSn)).

Hierarchy of relaxations

See upper part of figure 4.5.

• We relax the program (LPL2
n ): instead of optimising over positive functions, we optimise

over functions that have a positive inner product with positive polynomials of fixed degree
m. The intuition for this procedure is given by Theorem 4.1. This degree fixes a level
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within a hierarchy of relaxations. These constraints can be cast as a positive semidefinite
constraint with Lemma 4.7 and we thus obtain a hierarchy of semidefinite programs (see
(SDPm,≥n )).

• For each level m, we derive the dual program (D-SDPm,≥n ) and show that strong duality
holds in Theorem 4.1 by finding a strictly feasible solution of (SDPm,≥n ).

• We prove the convergence of the hierarchy of semidefinite relaxations towards (D-LPL2
n )3

in Theorem 4.3 by first showing that the feasible set of (SDPm,≥n ) is compact. Then, we
perform a diagonal extraction on a sequence of optimal solutions of (SDPm,≥n ) and we finally
show that this provides a feasible solution of (LPL2

n ) proving that lim
m→+∞

ωm,≥n = ωL2
n .

Convergence of hierarchy of restrictions

See bottom part of figure 4.5.

• We restrict the program (LPL2
n ) (or equivalently the program (LPL2

n )): instead of optimising
over positive functions, we optimise over positive polynomials of fixed degreem. Again, this
degree fixes a level within a hierarchy of restrictions. Using the fact that univariate positive
polynomials are sum-of-squares which can be written as a semidefiniteness constraint, we
obtain a hierarchy of semidefinite programs (see (SDPm,≤n )).

• For each level m, we derive the dual program (D-SDPm,≤n ) and show that strong duality
holds in Theorem 4.2 by finding a strictly feasible solution of (SDPm,≤n ).

• We prove the convergence of the hierarchy towards (D-LPSn) in Theorem 4.4 by first
showing that the feasible set of (D-SDPm,≤n ) is compact. This is highly nontrivial since
it requires exhibiting an analytical feasible solution of (SDPm,≤n ) which is difficult in
general and in the present case. Then, we perform a diagonal extraction on a sequence of
optimal solutions of (D-SDPm,≤n ). A technicality arises as it does not necessarily provide
a feasible solution of (D-LPL2

n ) which is why we introduce the linear program expressed
over Schwartz functions. We then show that diagonal extraction indeed provides a feasible
solution of (D-LPSn) proving that lim

m→+∞
ωm,≤n = ωSn .

4.3.2 Function spaces

We now review some function spaces which appear in the following sections, together with a
few notations.

The half line of nonnegative real numbers is denoted R+. The space of real square-integrable
functions over R+ is denoted L2(R+) and is equipped with the usual inner product:

〈f, g〉 =
∫
R+
f(x)g(x)dx, (4.16)

3By ‘convergence of the hierarchy of semidefinite relaxations towards (D-LPL
2

n )’ we mean that the sequence
obtained by taking the values of the programs in the hierarchy, and indexed by this hierarchy, converges to the
value of (D-LPL

2
n )
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for f, g ∈ L2(R+). This space is isomorphic to the space of square-summable real sequences
indexed by N denoted l2(N), by considering the expansion in a countable basis. Such a basis
is given, e.g., by the Laguerre functions [Sze59] (see Eq. (1.34)), modified here by a (−1)k

prefactor to correspond to Fock state Wigner functions. We recall here its expression

Lk(x) := (−1)kLk(x)e−
x
2 , (4.17)

for all k ∈ N and all x ∈ R+, where Lk(x) =
∑k
l=0

(−1)l
l!
(k
l

)
xl is the kth Laguerre polynomial.

These functions form an orthonormal basis: for all p, q ∈ N, 〈Lp,Lq〉 = δpq.
The space L2(R+) is also isomorphic to its dual space L2′(R+): via the Radon–Nikodym

theorem [Nik30] elements of L2′(R+) can be identified by the Lebesgue measure on R+ times
the corresponding function in L2(R+).

We write S(R+) the space of Schwartz functions over R+, i.e., the space of C∞ functions
that go to 0 at infinity faster than any inverse polynomial, as do their derivatives. S ′(R+)
is its dual space, the space of tempered distributions over R+. S(R+) ⊂ L2(R+) is dense in
L2(R+). We denote the space of rapidly decreasing real sequences by S(N) (sequences that
go to 0 at infinity faster than any inverse polynomial), together with its dual space of slowly
increasing real sequences S ′(N) (sequences that are upper bounded by a polynomial). The spaces
S(R+) and S(N) are isomorphic: any Schwartz function over R+ can be expanded uniquely in
the basis of Laguerre functions with a rapidly decreasing sequence of coefficients. Similarly,
the spaces S ′(R+) and S ′(N) are also isomorphic: any tempered distribution over R+ can be
written uniquely as a formal series of Laguerre functions with a slowly increasing sequence of
coefficients [GT71]. We extend the definition of the duality 〈–, –〉 in Eq. (4.16) to these spaces.

In order to denote nonnegative elements of these spaces, we will use the notations L2
+(R+),

L2
+
′(R+), S+(R+) and S ′+(R+). A distribution µ in L2

+
′(R+) (resp. in S ′+(R+)) satisfies: ∀f ∈

L2
+(R+) (resp. ∀f ∈ S+(R+)), 〈µ, f〉 ≥ 0.
For all m ∈ N, we define the following space of truncated series of Laguerre functions over

R+:
Rm(R+) := spanR{Lk}0≤k≤m, (4.18)

which is equal to the set of real polynomials over R+ of degree less or equal to m multiplied by
the function x 7→ e−

x
2 . We denote by Rm,+(R+) its subset of nonnegative elements.

For all s = (sk)k ∈ RN, we define the associated formal series of Laguerre functions:

fs :=
∑
k≥0

skLk, (4.19)

with the (formal) relation:
sk = 〈fs,Lk〉 , (4.20)

for all k ∈ N. We refer to s as the sequence of Laguerre moments of fs. We extend this definition
to finite sequences by completing these sequences with zeros. For m ∈ N, we also define the
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matrix As (thus omitting the dependence in m as it is always clear from the context) by

(As)0≤i,j≤m :=


l∑

k=0
sk
( l
k

)
l! if i+ j = 2l,

0 otherwise.
(4.21)

As can be seen as the Laguerre moment matrix of the measure fs. In what follows, we use
standard techniques relating to the Stieltjes moment problem [RS75], which seeks conditions for
a real sequence ν = (νk)k∈N ∈ RN to be the sequence of moments

∫
R+
xkdν(x) of a nonnegative

distribution ν over R+. We adapt these techniques to the basis of Laguerre functions, rather
than the canonical basis. We start by proving a change of basis result:

Lemma 4.2. Let µ,ν ∈ RN. For all m ∈ N, the following conditions are equivalent:

(i) ∀k ∈ J0,mK, µk =
k∑
l=0

νl
(−1)k+l

l!

(
k

l

)
,

(ii) ∀l ∈ J0,mK, νl =
l∑

k=0
µk

(
l

k

)
l!.

As a direct consequence, we retrieve the formula:

xl =
l∑

k=0
(−1)k

(
l

k

)
l!Lk(x), (4.22)

for all l ∈ N and all x ∈ R+.

Proof. (i)⇒(ii): suppose that

∀k ∈ J0,mK, µk =
k∑
p=0

νp
(−1)k+p

p!

(
k

p

)
. (4.23)

∀l ∈ J0,mK
l∑

k=0
µk

(
l

k

)
l! =

l∑
k=0

k∑
p=0

νp
(−1)k+p

p!

(
k

p

)(
l

k

)
l!

=
l∑

p=0
νp
l!
p!

(
l

p

)
l∑

k=p
(−1)k−p

(
l − p
k − p

)

=
l∑

p=0
νp
l!
p!

(
l

p

) l−p∑
q=0

(−1)q
(
l − p
q

)

= νl,

(4.24)

where we used Eq. (4.23) in the first line and the binomial theorem in the last line which
imposes l = p.

(ii)⇒(i): suppose that

∀l ∈ J0,mK, νl =
l∑

p=0
µp

(
l

p

)
l!. (4.25)
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∀k ∈ J0,mK,
k∑
l=0

νl
(−1)k+l

l!

(
k

l

)
=

k∑
l=0

l∑
p=0

µp(−1)k+l
(
l

p

)(
k

l

)

=
k∑
p=0

µp(−1)k+p
(
k

p

)
k∑
l=p

(−1)l−p
(
k − p
l − p

)

=
k∑
p=0

µp(−1)k+p
(
k

p

) k−p∑
q=0

(−1)q
(
k − p
q

)

= µk,

(4.26)

where we used Eq. (4.25) in the first line and the binomial theorem in the last line which
imposes k = p.

We prove a similar result that we will use later for proving that a pair of semidefinite
programs are indeed dual programs.

Lemma 4.3. Let u,v ∈ Rm+1. The following propositions are equivalent:

(i) ∀k ∈ J0,mK, uk =
m∑
l=0

vl

(
l

k

)
l!,

(ii) ∀l ∈ J0,mK, vl =
m∑
k=l

(−1)l+k

l!

(
k

l

)
uk.

Proof. The proof is similar to that of Lemma 4.2. Note that we could start the first sum at
l = k since

( l
k

)
= 0 for l < k but for convenience we start it at l = 0.

(i)⇒(ii): suppose that

∀k ∈ J0,mK, uk =
m∑
p=0

vl

(
p

k

)
p!. (4.27)

∀l ∈ J0,mK
(−1)l

l!

m∑
k=l

(−1)k
(
k

l

)
uk = (−1)l

l!

m∑
k=l

(−1)k
(
k

l

)
m∑
p=0

vp

(
p

k

)
p!

=
m∑
p=0

vp
p!
l!

m∑
k=l

(−1)k+l
(
p

k

)(
k

l

)

=
m∑
p=l

vp
p!
l!

p∑
k=l

(−1)k+l
(
p

k

)(
k

l

)

=
m∑
p=l

vp
p!
l!

p∑
k=l

(−1)k+l p!k!
k!(p− k)!l!(k − l)!

=
m∑
p=l

vp
p!
l!

(
p

l

) p−l∑
q=0

(−1)q
(
p− l
q

)

= vl,

(4.28)
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where we used Eq. (4.27) in the first line, the fact that
(p
k

)
= 0 if k > p in the third line,

q := k − l in the fifth line, and the binomial theorem in the last line which imposes p = l.
(ii)⇒(i): suppose that

∀l ∈ J0,mK, vl = (−1)l

l!

m∑
p=l

(−1)p
(
p

l

)
up. (4.29)

∀k ∈ J0,mK
m∑
l=0

vl

(
l

k

)
l! =

m∑
l=0

(−1)l

l!

m∑
p=l

(−1)p
(
p

l

)
up

(
l

k

)
l!

=
m∑
p=0

up(−1)p
p∑
l=0

(−1)l
(
p

l

)(
l

k

)

=
m∑
p=k

up(−1)p
p∑
l=k

(−1)l
(
p

l

)(
l

k

)

=
m∑
p=k

up(−1)p
p∑
l=k

(−1)l p!l!
l!(p− l)!k!(l − k)!

=
m∑
p=k

up(−1)p−k
(
p

k

) p−k∑
q=0

(−1)q
(
p− k
q

)

= uk,

(4.30)

where we used Eq. (4.29) in the first line, the fact that
( l
k

)
= 0 if k > l in the third line,

q := l − k in the fifth line, and the binomial theorem in the last line which imposes p = k.

Now we turn our attention to a modified Stieltjes moment condition.

Theorem 4.1. Let µ = (µk)k∈N ∈ RN. The sequence µ is the sequence of Laguerre moments∫
R+
Lk(x)dµ(x) of a nonnegative distribution µ supported on R+ if and only if

∀m ∈ N,∀g ∈ Rm,+(R+), 〈fµ, g〉 ≥ 0. (4.31)

This result is based on the well-known Riesz–Haviland theorem [Rie23, Hav36] (see Theorem 1.3).
The Riesz functional Lν for a sequence ν = (νl)l∈N ∈ RN is defined in Definition 1.14.

Proof. Let µ = (µk)k∈N ∈ RN, and suppose that the sequence µ is the sequence of Laguerre
moments

∫
R+
Lk(x)dµ(x) of a nonnegative distribution µ supported on R+. Let m ≥ 0 and

let g =
∑m
k=0 gkLk ∈ Rm,+(R+). The distribution µ is nonnegative, so by definition 〈µ, g〉 ≥ 0.

Moreover,

〈fµ, g〉 =
m∑
k=0

µkgk

=
∫
R+

m∑
k=0

gkLkdµ

= 〈µ, g〉 .

(4.32)
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Hence, for all m ∈ N and all g ∈ Rm,+(R+), 〈fµ, g〉 ≥ 0.
Conversely, let µ = (µk)k∈N ∈ RN, and suppose that for all m ∈ N and all g ∈ Rm,+(R+),

〈fµ, g〉 ≥ 0. We define the sequence ν = (νl)l∈N ∈ RN by

νl :=
l∑

k=0
µk

(
l

k

)
l!, (4.33)

for all l ∈ N.
Let m ∈ N and let P (x) =

∑m
l=0 plx

l be a nonnegative polynomial over R+. By Eq. (4.22),
for all x ∈ R+,

P (x) =
m∑
l=0

pl

l∑
k=0

(−1)k
(
l

k

)
l!Lk(x)

=
m∑
k=0

(−1)kLk(x)
(

m∑
l=k

pl

(
l

k

)
l!
)
.

(4.34)

Let gP (x) := P (x)e−
x
2 , for x ∈ R+. We have gP ∈ Rm,+(R+), so 〈fµ, gP 〉 ≥ 0. Moreover,

with Eq. (4.34)

〈fµ, gP 〉 =
m∑
k=0

µk

(
m∑
l=k

pl

(
l

k

)
l!
)

=
m∑
l=0

(
l∑

k=0
µk

(
l

k

)
l!
)
pl

= Lν(P )

(4.35)

where we used Eq. (4.33) and the definition of the Riesz functional from Definition 1.14 in the
last line. In particular, Lν(P ) ≥ 0, and this holds for all nonnegative polynomials P over R+.
By the Riesz–Haviland theorem (Theorem 1.3), this implies that ν is the sequence of moments
of a nonnegative distribution ν supported on R+.

Furthermore, we have that for all k ∈ N:

µk =
k∑
l=0

νl
(−1)k+l

l!

(
k

l

)

=
k∑
l=0

(−1)k+l

l!

(
k

l

)∫
R+
xldν(x)

=
∫
R+

(−1)k
k∑
l=0

(−1)l

l!

(
k

l

)
xldν(x)

=
∫
R+

(−1)kLk(x)dν(x)

=
∫
R+
Lk(x)e

x
2 dν(x)

(4.36)

where we used Lemma 4.2 in the first line. Hence, µ is the sequence of Laguerre moments of
the distribution µ(x) := e

x
2 ν(x) supported on R+, which is nonnegative since ν is nonnegative.
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4.3.3 Computing the threshold value as a linear program

In this section, we phrase the computation of the witness threshold value introduced in Eq. (4.3)
as an infinite-dimensional linear program, in the case where one entry of the vector a is equal
to 1 and all the other entries are 0, the generalisation being straightforward by linearity.

Formally, we fix hereafter n ∈ N∗ and we look for the witnesses threshold value ωn4 defined
as

ωn := sup
ρ∈D(H )
Wρ≥0

〈n|ρ|n〉 . (4.37)

This is the maximal values such that for all states ρ ∈ D(H ):

〈n|ρ|n〉 > ωn ⇒ ∃α ∈ C, Wρ(α) < 0. (4.38)

Let C(H ) be the set of states that are invariant under phase-space rotations:

C(H ) := {σ ∈ D(H ) : ∀ϕ ∈ [0, 2π], eiϕn̂σe−iϕn̂ = σ}, (4.39)

where n̂ = â†â is the number operator. The witnesses corresponding to the fidelity with a single
Fock state (and linear combination of Fock states) feature a rotational symmetry in phase
space, which we exploit in the following lemma.

Lemma 4.4. The threshold value in Eq. (4.37) can be expressed as

ωn = sup
σ∈C(H )
Wσ≥0

〈n|σ|n〉 . (4.40)

Proof. Let ρ ∈ D(H ). We start by applying a random dephasing to the state ρ:

σ =
∫ 2π

0

dϕ
2π eiϕn̂ρe−iϕn̂ ∈ C(H ). (4.41)

The random dephasing does not change the fidelity with any Fock state because of the rotational
symmetry in phase space of the latter (see Eq. (1.33)), that is

∀n ∈ N, 〈n|σ|n〉 = 〈n|ρ|n〉 . (4.42)

Moreover, it can only decrease the maximum negativity of the Wigner function. Indeed for all
α ∈ C,

Wσ(α) =
∫ 2π

0

dϕ
2πWeiϕn̂ρe−iϕn̂(α)

=
∫ 2π

0

dϕ
2πWρ(αeiϕ)

≥ min
ϕ∈[0,2π]

Wρ(αeiϕ)

≥ min
β∈C

Wρ(β),

(4.43)

4Here we write generically the threshold value as ωn while we use the more precise notation ωL
2

n (resp. ωSn )
to refer to its computation in the space of square integrable functions (resp. Schwartz functions).
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and taking the minimum over all α ∈ C then gives

min
α∈C

Wσ(α) ≥ min
β∈C

Wρ(β). (4.44)

In particular, applying a random dephasing to a Wigner positive state yields a Wigner positive
mixtures of Fock states, which is invariant under phase-space rotations. Hence, we can restrict
without loss of generality to states that are invariant under phase-space rotations when looking
for the maximum fidelity of Wigner positive states with a given Fock state |n〉.

Lemma 4.4 ensures that the supremum in Eq. (4.37) can be computed over states that have
a rotational symmetry in phase space. Such states σ can be expanded diagonally in the Fock
basis:

σ =
∞∑
k=0

Fk |k〉〈k| , (4.45)

with the normalisation condition
∑
k Fk = 1 and 0 ≤ Fk ≤ 1 for all k ∈ N assuring that σ is a

positive semidefinite operator. By linearity of the Wigner function:

∀α ∈ C, Wσ(α) =
∑
k

FkWk(α), (4.46)

where Wk is the Wigner function of the kth Fock state [KŻ04]:

∀α ∈ C, Wk(α) = 2
π
Lk(4|α|2), (4.47)

with Lk the kth Laguerre function, defined in Eq. (4.17). As noted before, Fock states are
invariant under phase-space rotations: their Wigner function only depends on the amplitude of
the phase-space point considered. We fix x = 4|α|2 ∈ R+ hereafter.

Computation of the threshold value over square-integrable functions.

We first consider the computation of the threshold value in Eq. (4.40) over L2(R+) functions
and we will denote the corresponding threshold value by ωL2

n . With Lemma 4.4, the computation
of ωL2

n can thus be expressed as the following infinite-dimensional linear program:

Find (Fk)k∈N ∈ `2(N)

maximising Fn
subject to∑

k

Fk = 1

∀k ∈ N, Fk ≥ 0

∀x ∈ R+,
∑
k

FkLk(x) ≥ 0.

(LPL2
n )
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The first constraint ensures unit trace of the corresponding state σ, the second one ensures
that its fidelity with each Fock state is nonnegative and thus that the state is a proper positive
semidefinite operator, and the last one ensures that its Wigner function Wσ is nonnegative.
Note that ωn > 0 for all n ∈ N∗, by considering a mixture of |0〉 and |n〉 with the vacuum
component close enough to 1. For convenience when considering the dual formulation, we use
the superscript L instead of ` in the label of the program. Even though it is formulated as an
optimisation over sequences from `2, we can equivalently see it as an optimisation over L2(R+)
functions as L2(R+) and `2 are isomorphic.

The dual linear program reads:

Find y ∈ R and µ ∈ L2′(R+)

minimising y

subject to

∀k 6= n ∈ N, y ≥
∫
R+
Lkdµ

y ≥ 1 +
∫
R+
Lndµ

∀f ∈ L2
+(R+), 〈µ, f〉 ≥ 0.

(D-LPL2
n )

Retrieving the canonical form of infinite-dimensional LP

Here we follow Subsection 1.4.1 to retrieve the standard form of infinite-dimensional linear
program as presented in [Bar02, IV–(6.1)] and see why programs (LPL2

n ) and (D-LPL2
n ) are

indeed dual programs.
Recall that via expansion on a basis of L2(R+), `2(N) and L2(R+) are isomomorphic and

that the spaces L2(R+) and L2′(R+) are isomomorphic by the Radon–Nikodym theorem. Let
us introduce the spaces:

• E1 = `2(N)× L2(R+).
• F1 = `2(N)× L2′(R+) the dual space of E1.
• E2 = R× L2(R+).
• F2 = R× L2′(R+) the dual space of E2.

We also define the dualities 〈–, –〉1 : E1 × F1 −→ R and 〈–, –〉2 : E2 × F2 −→ R as follows:

∀e1 = ((uk), f) ∈ E1, ∀f1 = ((vk), µ) ∈ F1, 〈e1, f1〉1 :=
∑
k

ukvk +
∫
R+
fdµ, (4.48)

∀e2 = (x, f) ∈ E2, ∀f2 = (y, µ) ∈ F2, 〈e2, f2〉2 := xy +
∫
R+
fdµ. (4.49)

Let A : E1 −→ E2 be the following linear transformation:

∀e1 = ((uk), f) ∈ E1, A(e1) :=
(∑

k

uk, x ∈ R+ 7→ f(x)−
∑
k

ukLk(x)
)
, (4.50)
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and A∗ : F2 −→ F1 be defined as:

∀f2 = (y, µ) ∈ F2, A∗(f2) :=
(

(y −
∫
R+
Lkdµ)k∈N, µ

)
. (4.51)

We can easily verify that A∗ is the dual transformation of A, i.e., ∀e1 ∈ E1, ∀f2 ∈ F2 we have
〈A(e1), f2〉2 = 〈e1, A

∗(f2)〉1.
Recall that L2

+(R+) is the cone of nonnegative functions in L2(R+) and `2+ the cone of
sequences in `2 with nonnegative coefficients. We will optimise in the convex cones K1 =
`2+×L2

+(R+) ⊂ E1 and K2 = {0}. The dual cones are then respectively: K∗1 = {f1 ∈ F1 : ∀e1 ∈
K1, 〈e1, f1〉 ≥ 0} and K∗2 = F2.

We can now rewrite the problem (LPL2
n ) as a standard linear program in convex cones.

We choose the vector function in the objective to be cn = ((δkn)k,0) ∈ F1 and we also set
b = (1,0) ∈ E2 for the constraints. The standard form of (LPL2

n ) in the sense of [Bar02] can be
written as follows:

Find e1 ∈ E1

maximising 〈e1, cn〉1
subject to:

A(e1) = b

e1 ≥K1 0 .

(LPL2
n )

This is expressed with an equality constraint with a slack variable rather than an inequality
constraint (see the canonical program in 1.4.1). Both formulation are equivalent. The standard
form of the dual can be expressed as follows:

Find f2 ∈ F2

minimising 〈b, f2〉2
subject to:

A∗(f2) ≥K∗1 cn .

(D-LPL2
n )

which can be expanded as program (D-LPL2
n ). Note the same derivation hold if we optimise over

Schwartz functions by considering E1 = S(N)×S(R+), E2 = S ′(N)×S ′(R+), F1 = R×S(R+)
and F2 = R× S ′(R+).

Strong duality

This will follow immediately from the proof of convergence we provide later. As a sanity check,
we use standard tools for proving strong duality as presented in 1.4.1 with Theorem 1.1.
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There is no duality gap between programs (LPL2
n ) and (D-LPL2

n ) if there is a primal feasible
plan and if the convex cone

K =
{(
A(e1), 〈e1, c〉1

)
: e1 ∈ K1

}
=
{(∑

k

uk, x ∈ R+ 7→ f(x)−
∑
k

ukLk(x), Fn
)

: ((uk), f) ∈ K1
} (4.52)

is closed in E2 ⊕ R (for the weak topology).

Proof. The null sequence and the null function provides a feasible plan for the primal problem.
Next, we consider a sequence (e1j)j = (((ujk)k)j5, (fj)j) ∈ KN

1 = `2(N)× L2
+(R+)N and we

want to show that the accumulation point (b, g, a) = limj→∞(A(e1j), 〈e1j , c〉1) belongs to K
where a, b ∈ R and g ∈ L2(R+).

For all j ∈ N, (ujk)k ∈ `2 and for all k ∈ N, ujk is bounded. Thus, for all k ∈ N, the sequence
(ujk)j is bounded and via diagonal extraction there exists φ : N→ N strictly increasing such that
(ujk)φ(j) converges. We denote ũk its limit. Since `2(N) is closed, the sequence (ũk)k belongs to
`2(N) and we have b =

∑
k ũk and a = ũn.

Now fj −
∑
k u

j
kLk −→ g so that fj −→ g +

∑
k ũkLk ∈ L2

+(R+) since L2
+(R+) is closed.

Thus, for ẽ1 = ((ũk)k, g +
∑
k ũkLk) ∈ K1, (b, g, a) = (A(ẽ1), 〈ẽ1, c〉1) and (b, g, a) ∈ K.

Note that the same proof does not hold for the problems expressed over Schwartz functions
as S(N) and S+(R+) are not closed. We will rely on the proof of convergence of the lower
bounding hierarchy of semidefinite programs to prove strong duality in this case.

Computation of the threshold over Schwartz functions

We also consider a restriction or (LPL2
n ) by optimising over Schwartz functions rather than

square integrable functions as S(R+) ⊂ L2(R+). The primal program becomes:

Find (Fk)k∈N ∈ S(N)

maximising Fn
subject to∑

k

Fk = 1

∀k ∈ N, Fk ≥ 0

∀x ∈ R+,
∑
k

FkLk(x) ≥ 0,

(LPSn)

5Because we are dealing with a sequence of sequences, we use the upper index to refer to the embracing
sequence.
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We denote its value by ωSn . Because it is a restriction of (LPL2
n ), we have that ωL2

n ≥ ωSn . Its
dual linear program can be expressed as:

Find y ∈ R and µ ∈ S ′(R+)

minimising y

subject to

∀k 6= n ∈ N, y ≥
∫
R+
Lkdµ

y ≥ 1 +
∫
R+
Lndµ

∀f ∈ S+(R+), 〈µ, f〉 ≥ 0.

(D-LPSn)

Note there is a rather strong structure with Wigner functions. In [HR21] it is shown that
the Wigner function only need to decay towards infinity faster than any polynomial to be a
Schwartz function (i.e. it also implies that all its derivatives decay towards infinity faster than
any polynomial).

Analytical solutions

Even without strong duality (it is not proven in the case of Schwartz functions), weak duality of
linear programming already ensures that the optimal value ωL2

n of (LPL2
n ) (resp. ωSn of (LPSn))

is upper bounded by the optimal value of (D-LPL2
n ) (resp. (D-LPSn)). Hence, a possible way

of solving the optimisation (LPL2
n ) is to exhibit a feasible solution for (LPL2

n ) and a feasible
solution for (D-LPL2

n ) that have the same value.
For n = 1, choosing (Fk)k∈N = (1

2 ,
1
2 , 0, 0, . . . ) gives a feasible solution for (LPL2

1 ) (resp.
(LPS1 )) with the value 1

2 , while choosing (y, µ) = (1
2 ,

1
2δ(x)), where δ is the Dirac delta function6

over R+, gives a feasible solution for (D-LPL2
1 ) (resp. (D-LPS1 )) with the value 1

2 . This shows
that ωLS1 = ωS1 = 1

2 .
Similarly, for n = 2, choosing (Fk)k∈N = (1

2 , 0,
1
2 , 0, 0, . . . ) gives a feasible solution for (LPL2

2 )
(resp. LPS2 ) with the value 1

2 , while choosing (y, µ) = (1
2 ,

e
2δ(x−2)) gives a feasible solution for (D-

LP2) (resp. (D-LPS2 )), up to a conjecture7, with the value 1
2 . This shows that ω

L2
2 = ωS2 = 1

2 .
While this approach is sensible for small values of n, finding optimal analytical solutions for

higher values of n seems highly nontrivial. Moreover, the infinite number of variables prevents
us from performing the optimisation (LPL2

n ) numerically. A natural workaround is to find
finite-dimensional relaxations or restrictions of the original problem—thus providing upper and
lower bounds for the optimal value ωL2

n , respectively. This is the approach we follow in the next
section.

6Technically δ /∈ L2′(R+), but the result holds by considering a sequence of functions converging to a Dirac
delta.

7We checked numerically the corresponding constraints |Lk(2)| ≤ 1 for k up to 103 and, considering asymptotic
behaviors, we conjecture that these hold for all k ≥ 0.
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4.3.4 Hierarchies of semidefinite programs

Semidefinite programming is a convex optimisation technique in the cone of positive semidefinite
matrices. For more details, see a brief review in Subsection 1.4.2.

4.3.4.1 Preliminaries

In this section, we introduce preliminary technical lemmas.
We recall the following standard result, which comes from the fact that any univariate

polynomial nonnegative over R can be written as a sum-of-squares:

Lemma 4.5 ([Hil88]). Let p ∈ N and let P be a univariate polynomial of degree 2p. Let
v(x) = (1, x, . . . , xp) be the vector of monomials. Then, P is nonnegative over R if and only if
there exists a real (p+ 1)× (p+ 1) positive semidefinite matrix Q such that for all x ∈ R,

P (x) = v(x)TQv(x). (4.53)

This is the univariate case of Proposition 1.1. From this lemma we deduce the following
characterisation of nonnegative polynomials over R+:

Lemma 4.6. nonnegative polynomials on R+ can be written as sums of polynomials of the
form ∑p

l=0 x
l∑

i+j=2l yiyj, where p ∈ N and yi ∈ R, for all 0 ≤ i ≤ p.

Proof. Let P be a univariate polynomial of degree p which is nonnegative on R+. Writing
v(x) = (1, x, . . . , xp), the polynomial x 7→ P (x2) of degree 2p is nonnegative on R, so by
Lemma 4.5 there exists a real positive semidefinite matrix Q = (Qij)0≤i,j≤p such that for all
x ∈ R:

P (x2) = v(x)TQv(x)

=
2p∑
k=0

xk
∑
i+j=k

Qij

=
p∑
l=0

x2l ∑
i+j=2l

Qij ,

(4.54)

where the last line comes from the fact that x 7→ P (x2) has no monomial of odd degree. Hence,
for all x ∈ R+,

P (x) =
p∑
l=0

xl
∑

i+j=2l
Qij . (4.55)

Q is a real (p+ 1)× (p+ 1) positive semidefinite matrix, so via Cholesky decomposition

Q =
p∑

k=0
y(k)y(k)T , (4.56)
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where y(k) ∈ Rp+1 for all k ∈ J0, pK. We finally obtain, for all x ∈ R+,

P (x) =
p∑
l=0

xl
∑

i+j=2l

p∑
k=0

(
y(k)y(k)T

)
ij

=
p∑

k=0

 p∑
l=0

xl
∑

i+j=2l
y

(k)
i y

(k)
j

 . (4.57)

Note that the characterisation in Lemma 4.6 differs from that of Stieltjes [RS75], which expresses
nonnegative polynomials over R+ as x 7→ A1(x)+xA2(x), where A1 and A2 are sums of squares.
This slightly slows down the numerical resolution, which does not matter given the size of the
programs considered. At the same time, this allows us to obtain more compact expressions for
the semidefinite programs.

We use the characterisation of Lemma 4.6 to obtain the following crucial result: for s ∈ RN,
the fact that the series fs defined in Eq. (4.19) has nonnegative scalar product with nonnegative
truncated Laguerre series up to degree m can be expressed as a positive semidefinite constraint
involving the matrix As defined in Eq. (4.21). Formally:

Lemma 4.7. Let m ≥ n and let s ∈ RN. The following propositions are equivalent:

(i) ∀g ∈ Rm,+(R+), 〈fs, g〉 ≥ 0,
(ii) As � 0.

Proof. By Lemma 4.6, any nonnegative polynomial over R+ of degree less or equal to m can
be expressed as a sum of polynomials of the form

∑m
l=0 x

l∑
i+j=2l yiyj . We set the row vector

Y = (y0, . . . , ym) ∈ Rm+1. Hence, any nonnegative truncated Laguerre series (the elements
of Rm,+(R+)) can be expressed as as sum of terms of the form e−

x
2
∑m
l=0 x

l∑
i+j=2l yiyj . By

linearity, it is sufficient to check that the scalar products with one of these terms are nonnegative.
Recall that for all k ∈ N and s = (sk)k ∈ RN (see Eq. (4.20)) we have

sk =
∫
R+
Lk(x)fs(x)dx. (4.58)
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Thus,

As � 0⇔ ∀Y ∈ Rm+1, Y TAsY ≥ 0

⇔ ∀Y ∈ Rm+1,
m∑

i,j=0
yiyj(As)ij ≥ 0

⇔ ∀Y ∈ Rm+1,
m∑
l=0

m∑
i+j=2l

yiyj

l∑
k=0

sk

(
l

k

)
l! ≥ 0

⇔ ∀Y ∈ Rm+1,

∫
R+

m∑
l=0

m∑
i+j=2l

yiyj

l∑
k=0

(
l

k

)
l!Lk(x)fs(x)dx ≥ 0

⇔ ∀Y ∈ Rm+1,

∫
R+

m∑
l=0

m∑
i+j=2l

yiyj

l∑
k=0

(−1)k
(
l

k

)
l!Lk(x)e−

x
2 fs(x)dx ≥ 0

⇔ ∀Y ∈ Rm+1,

∫
R+

e−x2 m∑
l=0

xl
m∑

i+j=2l
yiyj

 fs(x)dx ≥ 0

⇔ ∀Y ∈ Rm+1,

〈
fs, x 7→ e−

x
2

m∑
l=0

xl
m∑

i+j=2l
yiyj

〉
≥ 0

⇔ ∀g ∈ Rm,+(R+), 〈fs, g〉 ≥ 0,

(4.59)

where we used Eq. (4.21) in the third line, Eq. (4.58) in the fourth line and Eq. (4.22) in the
sixth line.

Using these results, we derive hierarchies of semidefinite relaxations and restrictions for the
infinite-dimensional linear program (LPL2

n ) in the following sections.

4.3.4.2 Semidefinite restrictions for computing the threshold value

A trivial way to obtain a restriction of (LPL2
n ) (or equivalently of (LPSn)) is to impose Fl = 0 for

l > m, for some m ≥ n. What is less trivial is that this yields a finite-dimensional semidefinite
program. Indeed, the constraint (4.76) becomes

∀x ∈ R+,
m∑
k=0

FkLk(x) ≥ 0, (4.60)

or equivalently:

∀x ∈ R,
m∑
k=0

(−1)kFkLk(x2) ≥ 0, (4.61)

where we used Eq. (4.17). Then, by Theorem 4.1, instead of imposing Eq. (4.61), one may
equivalently require that:

∀m ∈ N, ∀g ∈ Rm,+(R+), 〈fF , g〉 ≥ 0, (4.62)
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The restriction at rank m ≥ n can be written as:

Find F = (Fk)0≤k≤m ∈ Rm+1

maximising Fn
subject to

m∑
k=0

Fk = 1

∀k ≤ m, Fk ≥ 0

∀p ∈ N,∀g ∈ Rp,+(R+), 〈fF , g〉 ≥ 0.

(LPrestr,m
n )

We now express this program more straightforwardly as a semidefinite program. By
Lemma 4.5, writing v(x) = (1, x, . . . , xm), Eq. (4.61) is equivalent to the existence of a positive
semidefinite matrix Q = (Qij)0≤i,j≤m such that for all x ∈ R,

m∑
k=0

(−1)kFkLk(x2) = v(x)TQv(x) =
m∑
l=0

 ∑
i+j=l

Qij

xl. (4.63)

This is in turn equivalent to the linear constraints:
∀l ∈ J1,mK,

∑
i+j=2l−1

Qij = 0,

∀l ≤ m,
∑

i+j=2l
Qij = (−1)l

l!

m∑
k=l

(−1)k
(
k

l

)
Fk,

(4.64)

by identifying the coefficients in front of each monomial in Eq. (4.63). Hence, the restriction of
(LPL2

n ) obtained by imposing Fl = 0 for l > m, for a fixed m ≥ n, is a semidefinite program
given by: 

Find Q ∈ Symm+1 and F ∈ Rm+1

maximising Fn
subject to∑m

k=0 Fk = 1

∀k ≤ m, Fk ≥ 0

∀l ∈ J1,mK,
∑

i+j=2l−1
Qij = 0

∀l ≤ m,
∑

i+j=2l
Qij =

m∑
k=l

(−1)k+l

l!
(k
l

)
Fk

Q � 0.

(SDPm,≤n )

Let us denote its optimal value by ωm,≤n . Each choice of m leads to a different semidefinite
restriction of (LPL2

n ) and (LPSn), whose optimal value gets closer to ωSn as m increases (since
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a feasible solution at rank m necessary provides a feasible solution for the program at rank
m+ 1). The sequence (ωm,≤n )m≥n is thus an increasing sequence and for all m ≥ n, we have
ωm,≤n ≤ ωSn ≤ ωL

2
n .

For each m ≥ n, the program (SDPm,≤n ) has a dual semidefinite program which is given by:

Find A ∈ Symm+1,µ ∈ Rm+1 and y ∈ R

minimising y

subject to

y ≥ 1 + µn

∀k ≤ m, y ≥ µk

∀l ≤ m,∀i+ j = 2l, Aij =
l∑

k=0
µk
( l
k

)
l!

A � 0.

(D-SDPm,≤n )

Retrieving the canonical form of SDP

Here we write those SDP in the standard forms (as detailed in Subsection 1.4.2) to see why they
are indeed dual programs. In the programs (SDP) and (D-SDP) we can exchange minimisation
and maximisation if we also change the sign of the semidefinite constraint for the dual program.
We recall them below with this slight modification. For M,N ∈ N, b = (b1, . . . , bM ) ∈ RM ,
C ∈ SymN , and B(i) ∈ SymN for all i ∈ J1,MK:

Find X ∈ SymN

maximising Tr(CTX)

subject to:

∀i ∈ J1,MK, Tr(B(i)X) = bi

X � 0 .

(SDP)



Find y ∈ RM

minimising bTy

subject to:
M∑
i=1

yiB
(i) � C .

(D-SDP)

To put (SDPm,≤n ) in the standard form (SDP) we setN = 2×(m+1) andM = 1+m+(m+1).
For all r ∈ N∗ and all i, j ∈ J1, rK, let E(i,j)

r be the r × r matrix whose (i, j) entry is 1 and all
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other entries are 0. We set

X = Diagk=0,...,m(Fk)⊕Q ∈ SymN ,

C = E
(n,n)
N = E

(n,n)
m+1 ⊕ 0m+1 ∈ SymN ,

b = (1, 0, 0, . . . , 0) ∈ RM ,

B′
(0) = 1m+1 ⊕ 0m+1 ∈ SymN ,

∀l ∈ J1,mK, B′
(l) = 0m+1 ⊕

 ∑
i+j=2l−1

E
(i,j)
m+1

 ,
∀l ∈ J0,mK, B(l) = Diagk=0,...,m

(
−(−1)k+l

l!

(
k

l

))
⊕

 ∑
i+j=2l

E
(i,j)
m+1

 ,

(4.65)

with the convention
(k
l

)
= 0 when l > k. The matrix B′(0) corresponds to the constraint∑m

k=0 Fk = 1 and we denote the corresponding dual variable y ∈ R. Similarly, the matrices
B′(l) correspond to the m constraints

∑
i+j=2l−1Qij = 0, and we denote the corresponding dual

variables ν ′l ∈ R. Finally, the matrices B(l) correspond to the m+ 1 constraints
∑
i+j=2lQij =

(−1)l
l!
∑m
k=l(−1)k

(k
l

)
Fk, and we denote the corresponding dual variables νl ∈ R.

The standard form of the dual program (D-SDPm,≤n ) thus reads:

Find y ∈ R and ν,ν ′ ∈ Rm+1 × Rm

minimising y

subject to:

Diagk=0,...,m

[
y −

k∑
l=0

νl
(−1)k+l

l!

(
k

l

)]

⊕

 m∑
l=0

∑
i+j=2l

νlE
(i,j)
m+1 +

m∑
l=1

∑
i+j=2l−1

ν ′lE
(i,j)
m+1

 � E(n,n)
m+1 ⊕ 0m+1.

(D-SDPm,≤n )

Due to the block-diagonal structure of the matrices involved, the positive semidefinite constraint
above is equivalent to the following constraints:

y ≥ 1 +
n∑
l=0

νl
(−1)n+l

l!

(
n

l

)
,

∀k ∈ J0,mK \ {n}, y ≥
k∑
l=0

νl
(−1)k+l

l!

(
k

l

)
, m∑

l=0

∑
i+j=2l

νlE
(i,j)
m+1 +

m∑
l=1

∑
i+j=2l−1

ν ′lE
(i,j)
m+1

 � 0.

(4.66)

Let us define A = (Aij)0≤i,j≤m by

A :=
m∑
l=0

∑
i+j=2l

νlE
(i,j)
m+1 +

m∑
l=1

∑
i+j=2l−1

ν ′lE
(i,j)
m+1, (4.67)
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or equivalently

Aij =

νl when i+ j = 2l,

ν ′l when i+ j = 2l − 1,
(4.68)

for all i, j ∈ J0,mK. For k ∈ J0,mK, we also define

µk :=
k∑
l=0

νl
(−1)k+l

l!

(
k

l

)
∈ R. (4.69)

By Lemma 4.2, the following conditions are equivalent:

(i) ∀k ∈ J0,mK, µk =
k∑
l=0

νl
(−1)k+l

l!

(
k

l

)
,

(ii) ∀l ∈ J0,mK, νl =
l∑

k=0
µk

(
l

k

)
l!.

With Eq. (4.68) we thus have

Aij =
l∑

k=0
µk

(
l

k

)
l! when i+ j = 2l, (4.70)

and we obtain the following expected expression for (D-SDPm,≤n ):

Find y,µ ∈ R× Rm+1 and A ∈ Symm+1

minimising y

subject to:

y ≥ 1 + µn

∀k ≤ m, y ≥ µk

∀l ≤ m,∀i+ j = 2l, Aij =
l∑

k=0
µk

(
l

k

)
l!

A � 0.

(D-SDPm,≤n )

Note that the constraint y ≥ 1 + µn implies the constraint y ≥ µn.

Strong duality

We show that strong duality holds between the primal and the dual versions of this semidefinite
program. In particular, numerical computations with either of these programs will yield the
same value.

Theorem 4.2. Strong duality holds between the programs (SDPm,≤n ) and (D-SDPm,≤n ).
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Proof. We make use of Slater’s condition for (finite-dimensional) semidefinite programs: strict
feasibility of (SDPm,≤n ) implies strong duality between (SDPm,≤n ) and (D-SDPm,≤n ).

In order to obtain a strictly feasible solution, we define Q ∈ Symm+1 and F = (F0, . . . , Fm) ∈
Rm+1 by:

Q := 1
2m+1 − 1Diagk=0,...,m( 1

k! ) (4.71)

Fk := 1
2m+1 − 1

(
m+ 1
k + 1

)
(4.72)

Then Q � 0 and Fk > 0 for all k ∈ J0,mK. Moreover, we have
m∑
k=0

Fk = 1
2m+1 − 1

m∑
k=0

(
m+ 1
k + 1

)

= 1
2m+1 − 1

(
m+1∑
k=0

(
m+ 1
k

)
− 1

)
= 1.

(4.73)

We also have
∑
i+j=2l−1Qij = 0 for all l ∈ J1,mK since Q is diagonal. Furthermore, for all

l ≤ m, ∑
i+j=2l

Qij = Qll = 1
2m+1 − 1

1
l! , (4.74)

and indeed
(−1)l

l!

m∑
k=l

(−1)k
(
k

l

)
Fk

= 1
2m+1 − 1

1
l!

m∑
k=l

(−1)k−l
(
k

m

)(
m+ 1
k + 1

)

= 1
2m+1 − 1

1
l!

(
m

l

)
m−l∑
q=0

(−1)q m+ 1
q + l + 1

(
m− l
q

)

= 1
2m+1 − 1

1
l! ,

(4.75)

where we used [Gou72, (1.41)] in the last line. Therefore, (Q,F ) is a strictly feasible solution of
(SDPm,≤n ), which implies strong duality.

4.3.4.3 Semidefinite relaxations for computing the threshold value

One way to obtain a relaxation of (LPL2
n ) is to relax the constraint:

∀x ∈ R+, fF (x) =
∑
k

FkLk(x) ≥ 0. (4.76)

Instead, one may impose the weaker constraint:

∀g ∈ Rm,+(R+), 〈fF , g〉 ≥ 0, (4.77)
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for some fixed m ≥ n. This relaxation is motivated by Theorem 4.1 as it indicates that we
will indeed have convergence. We will prove this formally later. Moreover the constraint in
Eq. (4.77) only concerns the coefficients Fk for 0 ≤ k ≤ m and the other variables Fl for l > m

are only constrained by
∑
k Fk = 1 and Fl ≥ 0. Since m ≥ n and the objective is to maximise

Fn we can set all of the coefficients Fl for l > m to 0 without loss of generality. The relaxation
at rank m ≥ n can thus be expressed as:

Find F = (Fk)0≤k≤m ∈ Rm+1

maximising Fn
subject to

m∑
k=0

Fk = 1

∀k ≤ m, Fk ≥ 0

∀g ∈ Rm,+(R+), 〈fF , g〉 ≥ 0.

(LPrelax,m
n )

It is interesting to relate this program to (LPrestr,m
n ). At first glance they seem identical.

The only difference appears on the last constraint. In (LPrelax,m
n ) we require that fF has a

nonnegative inner product with all nonnegative polynomials over R+ of degree less or equal
than m multiplied by the function x 7→ e−

x
2 . In (LPrestr,m

n ) we impose the more restrictive
constraint that fF has a nonnegative inner product with all nonnegative square integrable
functions g. Of course because fF has an expansion on the Laguerre basis of fixed degree m,
only the first m+ 1 coefficients of g will contribute. This amounts to taking g ∈ Rm(R+) such
that g can be completed into a nonnegative L2(R+) function.

By Lemma 4.7, the constraint in Eq. (4.77) may in turn be expressed as a positive semidefinite
constraint on the (m+ 1)× (m+ 1) matrix AF defined in Eq. (4.21). Each choice of m thus
leads to a different semidefinite program, whose optimal value gets closer to ωn as m increases
(since the constraint (4.77) gets stronger when m increases). This gives a hierarchy of finite-
dimensional semidefinite relaxations for (LPL2

n ). The semidefinite relaxation of order m is given
by: 

Find A ∈ Symm+1 and F ∈ Rm+1

maximising Fn
subject to∑m

k=0 Fk = 1

∀k ≤ m, Fk ≥ 0

∀l ≤ m,∀i+ j = 2l, Aij =
l∑

k=0
Fk
( l
k

)
l!

∀l ∈ J1,mK,∀i+ j = 2l − 1, Aij = 0

A � 0.

(SDPm,≥n )
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Let us denote its optimal value by ωm,≥n . The sequence (ωm,≥n )m≥n is a decreasing sequence
and for all m ≥ n, we have ωL2

n ≤ ωm,≥n .
For each m ≥ n, the program (SDPm,≥n ) has a dual semidefinite program which is given by:

Find Q ∈ Symm+1,µ ∈ Rm+1 and y ∈ R

minimising y

subject to

y ≥ 1 + µn

∀k ≤ m, y ≥ µk

∀l ≤ m,
∑

i+j=2l
Qij =

m∑
k=l

(−1)k+l

l!
(k
l

)
µk

Q � 0.

(D-SDPm,≥n )

Retrieving the canonical form of SDP

To put (SDPm,≥n ) in the standard form (SDP) we set N = 2× (m+ 1) and M = 1 + (m+ 1)2.
For all r ∈ N∗ and all i, j ∈ J1, rK, recall that E(i,j)

r denote the r × r matrix whose (i, j) entry
is 1 and all other entries are 0. We set

X = Diagk=0,...,m(Fk)⊕A ∈ SymN ,

C = E
(n,n)
N = E

(n,n)
m+1 ⊕ 0m+1 ∈ SymN ,

b = (1, 0, 0, . . . , 0) ∈ RM ,

B(0) = 1m+1 ⊕ 0m+1 ∈ SymN ,

∀i, j ∈ J0,mK, B(i,j) =

Diagk=0,...,m

(
−
( l
k

)
l!
)
⊕
(

1
2E

(i,j)
m+1 + 1

2E
(j,i)
m+1

)
when i+ j = 2l,

0m+1 ⊕
(

1
2E

(i,j)
m+1 + 1

2E
(j,i)
m+1

)
otherwise,

(4.78)

with the convention
( l
k

)
= 0 when k > l. The matrix B(0) corresponds to the constraint∑m

k=0 Fk = 1, and we denote the corresponding dual variable y ∈ R. Similarly, the matrices
B(i,j) correspond to the (m+ 1)2 constraints defining the symmetric matrix A, and we denote
the corresponding dual variables Qij ∈ R, with Qij = Qji for all i, j ∈ J0,mK. We write
Q = (Qij)0≤i,j≤m. The standard form of the dual program (D-SDPm,≥n ) thus reads:

Find y ∈ R and Q ∈ Symm+1

minimising y

subject to:

Diagk=0,...,m

y − m∑
l=0

∑
i+j=2l

Qij

(
l

k

)
l!

⊕ 1
2Q � E

(n,n)
m+1 ⊕ 0m+1.

(D-SDPm,≥n )

123



CHAPTER 4. WITNESSING WIGNER NEGATIVITY

Due to the block-diagonal structure of the matrices involved, the positive semidefinite constraint
above is equivalent to the following constraints:

y ≥ 1 +
m∑
l=0

∑
i+j=2l

Qij

(
l

n

)
l!,

∀k ∈ J0,mK \ {n}, y ≥
m∑
l=0

∑
i+j=2l

Qij

(
l

k

)
l!,

Q � 0.

(4.79)

For k ∈ J0,mK, we define

µk :=
m∑
l=0

∑
i+j=2l

Qij

(
l

k

)
l! ∈ R. (4.80)

We obtain the program:

Find y ∈ R, µ ∈ Rm+1 and Q ∈ Symm+1

minimising y

subject to:

y ≥ 1 + µn

∀k ∈ J0,mK \ {n}, y ≥ µk

∀k ∈ J0,mK, µk =
m∑
l=0

∑
i+j=2l

Qij

(
l

k

)
l!

Q � 0.

(D-SDPm,≥n )

Combining Lemma 4.3 for uk = µk and vl =
∑
i+j=2lQij for all k, l ∈ J0,mK with the

previous expression of (D-SDPm,≥n ) we finally obtain:

Find y ∈ R, µ ∈ Rm+1 and Q ∈ Symm+1

minimising y

subject to:

y ≥ 1 + µn

∀k ∈ J0,mK \ {n}, y ≥ µk

∀l ∈ J0,mK,
∑

i+j=2l
Qij = (−1)l

l!

m∑
k=l

(−1)k
(
k

l

)
µk

Q � 0,

(D-SDPm,≥n )

which is the required form.

Strong duality

This proof is a direct consequence of the proof of Theorem 4.2.
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Corollary 4.1. Strong duality holds between the programs (SDPm,≥n ) and (D-SDPm,≥n ).

Proof. The program (SDPm,≥n ) is a relaxation of (LPL2
n ) and (SDPm,≤n ) is a restriction of (LPL2

n ),
so (SDPm,≥n ) is a relaxation of (SDPm,≤n ). Hence, the strictly feasible solution of (SDPm,≤n )
derived in the proof of Theorem 4.2 yields a strictly feasible solution (A,F ) for (SDPm,≥n ): we set
F = (F0, . . . , Fm) ∈ Rm+1, where for all k ∈ J0,mK, Fk := 1

2m+1−1
(m+1
k+1

)
and A = AF ∈ Symm+1,

where AF is defined in Eq. (4.21).
With Slater’s condition, this shows again that strong duality holds between the programs

(SDPm,≥n ) and (D-SDPm,≥n ).

4.3.5 Convergence of the hierarchies of semidefinite programs

From the previous sections, for m ≥ n the optimal values ωm,≥n and ωm,≤n of (SDPm,≥n ) and
(SDPm,≤n ) form decreasing and increasing sequences, respectively, which satisfy

0 ≤ ωm,≤n ≤ ωSn ≤ ωL
2

n ≤ ωm,≥n ≤ 1. (4.81)

Recall that ωL2
n is the optimal value of (LPL2

n ) while ωSn is the optimal value of (LPSn). These
sequences thus both converge. The remaining question is whether (ωm,≥n )m converges to ωL2

n

and (ωm,≤n )m converges to ωSn . In this section, we show that this is indeed the case. The problem
of proving that ωL2

n = ωSn is still open and we discuss this point later.

4.3.5.1 Convergence of the sequence of upper bounds

Theorem 4.3. The decreasing sequence of optimal values of (SDPm,≥n ) converges to the optimal
value of (LPL2

n ) that is
lim

m→+∞
ωm,≥n = ωL

2
n . (4.82)

In order to prove this theorem, we extract a limit from a sequence of optimal solutions of
(SDPm,≥n ), for m ≥ n, and we show using Theorem 4.1 that it provides a feasible solution of
(LPL2

n ).

Proof. For all m ≥ n, the feasible set of (SDPm,≥n ) is non-empty (consider, e.g., F =
(1, 0, 0, . . . , 0) ∈ Rm+1). Moreover, due to the constraints

∑m
k=0 Fk = 1 and Fk ≥ 0 for all

k ≤ m, the feasible set of (SDPm,≥n ) is compact. Hence, the program (SDPm,≥n ) has feasible
optimal solutions, for all m ≥ n, by diagonal extraction.

The matrix A in (SDPm,≥n ) is entirely fixed by the choice of F . Let (Fm)m≥n be a se-
quence of optimal solutions of (SDPm,≥n ), for m ≥ n. For each m ≥ n, we have by opti-
mality that Fmn = ωm,≥n , and the sequence (Fmn )m≥n converges. We complete each tuple
Fm = (Fm0 , Fm1 , . . . , Fmm ) ∈ Rm+1 with zeros to obtain a sequence in RN, which we still denote
Fm = (Fm0 , Fm1 , . . . , Fmm , 0, 0, . . . ) ∈ RN for simplicity.
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Performing a diagonal extraction φ on the sequence of optimal solutions (Fm)m≥n, we
obtain a sequence of sequences (F φ(m))m≥n such that each sequence (F φ(m)

k )m≥n converges when
m→ +∞, for all k ∈ N. Let Fk denote its limit, for each k ∈ N. We write F = (Fk)k∈N ∈ RN

the sequence of limits.
For all m ≥ n, F φ(m)

k ≥ 0 for all k ∈ N and
∑
k F

φ(m)
k = 1, so taking m→ +∞ we obtain

Fk ≥ 0 for all k ∈ N, and
∑
k Fk ≤ 1. Moreover,

Fn = lim
m→+∞

Fmn = lim
m→+∞

ωm,≥n . (4.83)

For all m ≥ n, we have ωm,≥n ≥ ωL
2

n , so Fn ≥ ωL
2

n > 0. In particular,
∑
k Fk > 0, so without

loss of generality we may assume that
∑
k Fk = 1 (otherwise we can always replace Fk by

Fk∑
l
Fl
> Fk).

Let fF =
∑
k FkLk ∈ L2(R+). By construction we have (see program (LPrelax,m

n )):

∀m ≥ n, ∀g ∈ Rm,+(R+), 〈fF , g〉 ≥ 0. (4.84)

Hence, by Theorem 4.1, F is the sequence of Laguerre moments of a nonnegative distribution
over R+ (the Lebesgue measure times the function fF ). In particular,

∀x ∈ R+, fF (x) =
∑
k

FkLk(x) ≥ 0. (4.85)

With the constraints Fk ≥ 0 for all k ∈ N, and
∑
k Fk = 1, this implies that F is a feasible

solution of (LPL2
n ), and in particular Fn ≤ ωL

2
n , since (LPL2

n ) is a maximisation problem. Since
we already had Fn ≥ ωL

2
n we obtain with Eq. (4.83):

lim
m→+∞

ωm,≥n = ωL
2

n , (4.86)

which concludes the proof.

This immediately implies strong duality for programs (LPL2
n ) and (D-LPL2

n ) because of the
following remarks:

(i) we have weak duality between those programs so that the optimal value ω′L2
n of (D-LPL2

n )
upper bounds the optimal value of (LPL2

n ) ωL2
n i.e. ωL2

n ≤ ω′L
2

n ;
(ii) we have strong duality between (SDPm,≥n ) and (D-SDPm,≥n ) by Corollary 4.1;
(iii) (SDPm,≥n ) is a relaxation of (LPL2

n ) so that ∀m, ωm,≥n ≥ ωL2
n ;

(iv) (D-SDPm,≥n ) is a restriction of (D-LPL2
n ) so that ∀m, ωm,≥n ≥ ω′L2

n ≥ ωL2
n ;

(v) we showed that the optimal value of the hierarchy (SDPm,≥n ) converges to ωL
2

n i.e.
limm→+∞ ω

m,≥
n = ωL

2
n .

Thus necessarily ω′L2
n = ωL

2
n .
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4.3.5.2 Convergence of the sequence of lower bounds

Theorem 4.4. The increasing sequence of optimal values of (SDPm,≤n ) converges to the optimal
value of (LPL2

n ):
lim

m→+∞
ωm,≤n = ωSn . (4.87)

As a sanity check, we will try to prove the harder result that it converges in order to ωL2
n to see

where might be the gap. The proof is similar to that of Theorem 4.3 using the dual programs:
we attempt to construct a feasible optimal solution of (D-LPL2

n ) by extracting a limit from a
sequence of optimal solutions of (D-SDPm,≤n ), for m ≥ n and then conclude using the strong
duality between (SDPm,≤n ) and (D-SDPm,≤n ), which we proved in Theorem 4.2. However, it
turns out that (D-LPL2

n ) may not have feasible optimal solutions in L2′(R+) (as anticipated
with the analytical optimal solutions for n = 1 and n = 2 from Section 4.3.3).

To deal with this issue, we have extended the formulation of (D-LPL2
n ) to a larger space

where it has feasible optimal solutions, namely the space of tempered distributions S ′(R+) (see
(D-LPSn)).

Note that the semidefinite restrictions (SDPm,≤n ) of (LPL2
n ) are also restrictions of (LPSn)

for all m ≥ n, while (LPSn) is itself a restriction of (LPL2
n ), and (D-LPSn) is a relaxation of

(D-LPL2
n ). We denote by ω′Sn the optimal value of (D-LPSn). Recall that the optimal value of

(LPSn) is denoted ωSn and that of (LPL2
n ) and (D-LPL2

n ) are denoted ωL2
n (by strong duality). By

weak duality of linear programming we thus have

ωm,≤n ≤ ωSn ≤ ω′Sn ≤ ωL
2

n , (4.88)

for all m ≥ n.
First we use a reformulation of (D-SDPm,≤n ) over Schwartz space. For all m ≥ n:

Find y ∈ R and µ ∈ S ′(N)

minimising y

subject to

∀k 6= n ∈ N, y ≥ µk
y ≥ 1 + µn

∀g ∈ Rm,+(R+), 〈fµ, g〉 ≥ 0 .

(D-SDPm,≤n )

This amounts to develop µ ∈ S ′(R+) in (D-LPSn) in the Laguerre basis with a sequence
µ ∈ S ′(N) and then relax the positivity constraint as before. Note that we only consider a
sequence µ ∈ Rm+1 in (D-SDPm,≤n ) and that by completing it with 0 we obtain automatically
a sequence from S ′(N).

Before proving Theorem 4.4, we provide a nontrivial analytical solution to the primal
program (SDPm,≤n ). Let us define F n = (Fnk )k∈N ∈ RN by
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• if n is even:

Fnk :=


1

2n
(k
k
2

)(n−k
n−k

2

)
when k ≤ n, k even,

0 otherwise,
(4.89)

• if n is odd:

Fnk :=


1

2n
( n
bn2 c

)(b
n
2 c

b k2 c
)

2

(nk)
, when k ≤ n,

0 otherwise.
(4.90)

In both cases,

Fnn = 1
2n

(
n

bn2 c

)
, (4.91)

and we have that:
Fnn ≥

1
n+ 1 (4.92)

where we used
(n
j

)
≤
( n
bn2 c
)
for all j ∈ J0, nK, summed over j from 0 to n. We extrapolated these

analytical expressions from numerical values: running (SDPm,≤n ) for several values of n and m
allowed us to deduce these sequences (we acknowledge here the great help from oeis.org).

The proof of feasibility consists in checking that the constraints of (SDPm,≤n ) are satisfied
by F n. To do so, we make use of Zeilberger’s algorithm [Zei91], a powerful algorithm for
proving binomial identities. The proof of optimality for m = n is obtained by deriving an
analytical feasible solution of (D-SDPn,≤n ) with the same optimal value. Note that the optimality
of this solution does not play a role in the proof of convergence. A word of warning as this
proof is rather long. We start by showing two results, corresponding to n even and n odd,
respectively, where we make use of Zeilberger’s algorithm, a powerful algorithm for proving
binomial identities [Zei91]. Given a holonomic function, this algorithm outputs a recurrence
relation that it satisfies, thus reducing the proof of identity between binomial expressions to
the verification that the initialisation is correct. A Mathematica notebook is available for the
implementation of Zeilberger’s algorithm [CE].

Lemma 4.8. For n ∈ N even:
n∑
k=0

(−1)kFnk Lk(x) =
n∑
l=0

xl
∑

i+j=2n−2l
pn−ipn−j , (4.93)

where:

pn−k :=



√
1

2nn!
(n
n
2

)
, when k = 0,

(−1)
k
2 2

k
2 (k2 )!

(n
2
k
2

)2
pn, when 0 < k ≤ n, k even ,

0, otherwise.

(4.94)

The coefficients pn−k (and qn−k later on) were found by hand when looking for an analytical
sum-of-squares decomposition.
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Proof. To prove the polynomial equality (4.93), we start by equating the coefficients in xl for
l ∈ J0, nK which gives:

(−1)l

l!

n∑
k=l

(−1)k
(
k

l

)
Fnk =

∑
i+j=2n−2l

pn−ipn−j

=
2n−2l∑
i=0

pn−ipn−(2n−2l−i)

=
n−l∑
i=0

pn−2ipn−(2n−2l−2i),

(4.95)

where we used pn−i = 0 for n− i < 0 in the second line. These are equalities between holonomic
functions of parameters n and l that are trivial for l > n.

• For l ≤ n even, because Fnk = 0 for k odd, Eq. (4.95) becomes:
n
2∑

k= l
2

1
l!

(
2k
l

)
Fn2k =

n−l∑
i=0

pn−2ipn−(2n−2l−2i), (4.96)

that is, taking into account the parity of l = 2s and n = 2t,

t∑
k=s

1
(2s)!

(
2k
2s

)
F 2t

2k =
2t−2s∑
i=0

p2t−2ip2t−(4t−4s−2i). (4.97)

Inserting the expressions from Eq. (4.89) and Eq. (4.94), we thus have to check the identity:

t∑
k=s

1
22t(2s)!

(
2k
2s

)(
2k
k

)(
2t− 2k
t− k

)
=

2t−2s∑
i=0

i!(2t− 2s− i)!
22s(2t)!

(
2t
t

)(
t

i

)2(
t

2t− 2s− i

)2

(4.98)

for all t ∈ N and all s ≤ t (with the convention
(k
j

)
= 0 for j > k). We ran Zeilberger’s

algorithm to show that the right-hand side and the left-hand side of Eq. (4.97) both satisfy
the following recurrence relation, for all s, t ∈ N:

2(t+ 1)2S(s, t) + (−2s2 − 4t2 + 4st+ 5s− 11t− 8)S(s, t+ 1)

+ (s− t− 2)(2s− 2t− 3)S(s, t+ 2) = 0.
(4.99)

It remains to check that the initialisation is correct. For all s ∈ N, this recurrence relation in
t is of order 2. Since the identities in Eq. (4.98) are trivial when l > n, i.e., s > t, we thus
only need to check Eq. (4.98) for (s, t) = (0, 0), (s, t) = (0, 1), and (s, t) = (1, 1), which is
straightforward: we obtain the values 1, 1 and 1

4 respectively, for both sides of Eq. (4.98).
• For l ≤ n odd, Eq. (4.95) becomes:

−
n
2∑

k= l+1
2

1
l!

(
2k
l

)
Fn2k =

n−l∑
i=0

pn−2ipn−(2n−2l−2i), (4.100)
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that is, taking into account the parity of l = 2s+ 1 and n = 2t:

−
t∑

k=s+1

1
(2s+ 1)!

(
2k

2s+ 1

)
F 2t

2k =
2t−2s−1∑
i=0

p2t−2ip2t−(4t−4s−2i−2). (4.101)

Inserting the expressions from Eq. (4.89) and Eq. (4.94), we thus have to check the identity:

t∑
k=s+1

1
22t(2s+ 1)!

(
2k

2s+ 1

)(
2k
k

)(
2t− 2k
t− k

)

=
2t−2s−1∑
i=0

i!(2t− 2s− i− 1)!
22s+1(2t)!

(
2t
t

)(
t

i

)2(
t

2t− 2s− i− 1

)2 (4.102)

for all t ∈ N and all s ≤ t (with the convention
(k
j

)
= 0 for j > k). Likewise, we ran

Zeilberger’s algorithm to show that the right-hand side and the left-hand side of Eq. (4.101)
both satisfy the following recurrence relation, for all s, t ∈ N:

2(t+ 1)2S(s, t) + (−2s2 − 4t2 + 4st+ 3s− 9t− 6)S(s, t+ 1)

+ (s− t− 1)(2s− 2t− 3)S(s, t+ 2) = 0.
(4.103)

It remains to check that the initialisation is correct. For all s ∈ N, this recurrence relation
in t is of order 2. Since the identities in Eq. (4.102) are trivial when l > n, i.e., s ≥ t, we
thus only need to check Eq. (4.102) for (s, t) = (0, 1), which is straightforward: we obtain
the value 1 for both sides of Eq. (4.102).

Now we turn to the case where n ∈ N is odd.

Lemma 4.9. For n ∈ N odd:
n∑
k=0

(−1)kFnk Lk(x) =
n∑
l=0

xl
∑

i+j=2l
qiqj (4.104)

where:

qn−k :=



√
1

2nn!
( n
bn2 c
)
, when k = 0,

(−1)
k
2 2

k
2 (k2 )! n+1

n−k+1
(bn2 c
k
2

)2
qn, when 0 < k < n, k even,

0. otherwise.

(4.105)

Proof. Unlike the case where n is even, F n is non-zero for k ≤ n odd, and the expression of Fnk
depends on the parity of k (which is not linear in k). Thus we cannot use directly Eq. (4.90) in
Zeilberger’s algorithm as we did in the previous lemma, hence the development below in order
to obtain expressions that the algorithm can take as inputs. We fix n odd and l ≤ n.
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We start by equating coefficents in xl in Eq. (4.104):

(−1)l

l!

n∑
k=l

(−1)k
(
k

l

)
Fnk =

∑
i+j=2n−2l

qn−iqn−j

=
n−l∑
i=0

qn−2iqn−(2n−2l−2i).

(4.106)

• For l even, writing l = 2s and n = 2t+ 1, the left-hand side of Eq. (4.106) becomes:

1
(2s)!

2t+1∑
k=2s

(−1)k
(
k

2s

)
F 2t+1
k

= 1
(2s)!

2t+1−2s∑
k=0

(−1)k
(
k + 2s

2s

)
F 2t+1
k+2s

= 1
(2s)!

t−s∑
k=0

((
2k + 2s

2s

)
F 2t+1

2k+2s −
(

2k + 2s+ 1
2s

)
F 2t+1

2k+2s+1

)

=
(2t+1

t

)
22t+1(2s)!

t−s∑
k=0

(2k+2s
2s

)( t
k+s
)2( 2t+1

2k+2s
) −

(2k+2s+1
2s

)( t
k+s
)2( 2t+1

2k+2s+1
)


= q2

2t+1
(2t+ 1)!

(2s)!

t−s∑
k=0

( t
k+s
)2(2k+2s

2s
)( 2t+1

2k+2s
) (

1− (2k + 2s+ 1)2

(2k + 1)(2t− 2s− 2k + 1)

)
.

(4.107)

With Eq. (4.105) and Eq. (4.106), we thus have to check the identity:

(2t+ 1)!
(2s)!

t−s∑
k=0

( t
k+s
)2(2k+2s

2s
)( 2t+1

2k+2s
) (

1− (2k + 2s+ 1)2

(2k + 1)(2t− 2s− 2k + 1)

)

=
2t+1−2s∑
i=0

q2t+1−2iq2t+1−(4t+2−4s−2i)
q2

2t+1

=−
2t+1−2s∑
i=0

22t−2s+1 (2t+ 2)2i!(2t+ 1− 2s− i)!
(2t− 2i+ 2)(4s+ 2i− 2t)

(
t

i

)2(
t

2t− 2s− i+ 1

)2

(4.108)

for all t ∈ N and all s ≤ t (with the convention
(k
j

)
= 0 for j > k). Zeilberger’s algorithm

certifies that the right-hand side and the left-hand side of Eq. (4.108) both satisfy for all
s, t ∈ N:

−32(t+ 2)3(t+ 1)2(t+ 3)S(s, t)

+ 4(t+ 3)(t+ 2)(2s2 + 4t2 − 4st− 7s+ 15t+ 14)S(s, t+ 1)

+ (−2s+ 2t+ 5)(s− t− 2)S(s, t+ 2) = 0.

(4.109)

It remains to check that the initialisation is correct. For all s ∈ N, this recurrence relation in
t is of order 2. Since the identities in Eq. (4.108) are trivial when l > n, i.e., s > t, we thus
only need to check Eq. (4.108) for (s, t) = (0, 0), (s, t) = (0, 1), and (s, t) = (1, 1). We obtain
the values 0, 0 and −8 respectively, for both sides of Eq. (4.108).
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• For l odd, writing l = 2s+ 1 and n = 2t+ 1, the left-hand side of Eq. (4.106) becomes:

−1
(2s+ 1)!

2t+1∑
k=2s+1

(−1)k
(

k

2s+ 1

)
F 2t+1
k

= −1
(2s+ 1)!

2t−2s∑
k=0

(−1)k+2s+1
(
k + 2s+ 1

2s+ 1

)
F 2t+1
k+2s+1

= 1
(2s+ 1)!

t−s∑
k=0

(
−
(

2k + 2s
2s+ 1

)
F 2t+1

2k+2s +
(

2k + 2s+ 1
2s+ 1

)
F 2t+1

2k+2s+1

)

= q2
2t+1

(2t+ 1)!
(2s+ 1)!

t−s∑
k=0

−(2k+2s
2s+1

)( t
k+s
)2( 2t+1

2k+2s
) +

(2k+2s+1
2s+1

)( t
k+s
)2( 2t+1

2k+2s+1
)


= q2

2t+1
(2t+ 1)!
(2s+ 1)!

t−s∑
k=0

(2k+2s
2s+1

)( t
k+s
)2( 2t+1

2k+2s
) (

−1 + (2k + 2s+ 1)2

2k(2t− 2k − 2s+ 1)

)
,

(4.110)

where we used that
(2k+2s

2s+1
)

= 0 for k = 0 in the third line. Note that when factorising
we introduced an indeterminate form in the last line that Zeilberger’s algorithm can re-
solve. This is necessary since the algorithm cannot deal with differences of binomial terms.
With Eq. (4.105) and Eq. (4.106), we thus have to check the identity:

(2t+ 1)!
(2s+ 1)!

t−s∑
k=0

(2k+2s
2s+1

)( t
k+s
)2( 2t+1

2k+2s
) (

−1 + (2k + 2s+ 1)2

2k(2t− 2k − 2s+ 1)

)

=
2t−2s∑
i=0

q2t+1−2iq2t+1−(4t−4s−2i)
q2

2t+1

=
2t−2s∑
i=0

22t−2s (2t+ 2)2i!(2t− 2s− i)!
(2t− 2i+ 2)(4s+ 2i− 2t+ 2)

(
t

i

)2(
t

2t− 2s− i

)2

,

(4.111)

for all t ∈ N and all s ≤ t (with the convention
(k
j

)
= 0 for j > k). Zeilberger’s algorithm

certifies that both the right-hand side and the left-hand side of Eq. (4.111) satisfy for all
s ≤ t:

−32(t+ 2)3(t+ 1)2(t+ 3)S(s, t)

+ 4(t+ 3)(t+ 2)(2s2 + 4t2 − 4st− 5s+ 13t+ 11)S(s, t+ 1)

+ (−2s+ 2t+ 3)(s− t− 2)S(s, t+ 2) = 0.

(4.112)

It remains to check that the initialisation is correct. For all s ∈ N, this recurrence relation in
t is of order 2. Since the identities in Eq. (4.111) are trivial when l > n, i.e., s > t, we thus
only need to check Eq. (4.111) for (s, t) = (0, 0), (s, t) = (0, 1), and (s, t) = (1, 1). We obtain
the values 1, 16 and 1 respectively, for both sides of Eq. (4.111).
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Having derived these identities, we prove the lemma of interest before proving the theorem on
the convergence of the lower bounding hierarchy:

Lemma 4.10. For all m ≥ n, F n is a feasible solution of (SDPm,≤n ). Moreover, it is optimal
when m = n.

Proof. The proof has three parts. In the first we focus on n even, and in the second on n odd.
In the last part, we exhibit a feasible solution of (D-SDPm,≤n ) for m = n with the same optimal
value Fnn .

• n even, m ≥ n: we check that F n defined in Eq. (4.89) satisfies all the constraints of
(SDPm,≤n ).

• For all k ∈ N, Fnk ≥ 0.
• We have

∞∑
k=0

Fnk =
n∑
k=0
even

1
2n

(
k
k
2

)(
n− k
n−k

2

)

=
n
2∑

k=0

1
2n

(
2k
k

)(
n− 2k
n
2 − k

)
= 1,

(4.113)

where the last equality follows from [Gou72, (3.90)].
• We have to show that x 7→

∑n
k=0(−1)kFnk Lk(x2) is a positive function on R. Due to

Lemma 4.5, we aim to find a sum-of-squares decomposition for this polynomial. Guided
by numerical results, we look for a polynomial P (x) :=

∑n
i=0 pix

i such that:

n∑
k=0

(−1)kFnk Lk(x2) = P 2(x2)

=
(

n∑
i=0

pix
2i
)2

=
n∑
l=0

 ∑
i+j=l

0≤i,j≤n

pipj

x2l,

(4.114)

and the sought coefficients are given by Lemma 4.8, which concludes the first part of the
proof.

• n odd, m ≥ n: similarly, we check that F n defined in Eq. (4.90) satisfies all the constraints
of (SDPm,≤n ).

• For all k ∈ N, Fnk ≥ 0.
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• Writing n = 2t+ 1, from Eq. (4.90) we have

∀s ≤ t, F 2t+1
2s = 1

22t+2

(
1− s

t+ 1

)(2s
s

)(
2t+ 2− 2s
t+ 1− s

)

∀s ∈ J1, t+ 1K, F 2t+1
2s−1 = 1

22t+2
s

t+ 1

(
2s
s

)(
2t+ 2− 2s
t+ 1− s

)
.

(4.115)

In particular, for all s ≤ t we have

F 2t+1
2s−1 + F 2t+1

2s = F 2t+2
2s , (4.116)

where F 2t+2
2s is defined in Eq. (4.89). Since F 2t+2

2s+1 = 0 for all s ≤ t, and Fnk = 0 for all
k > n, we have:

∞∑
k=0

Fnk =
∞∑
k=0

Fn+1
k

= 1,
(4.117)

where we used Eq. (4.113).
• We have to show that x 7→

∑n
k=0(−1)kFnk Lk(x2) is a positive function on R. Due to

Lemma 4.5, we aim to find a sum-of-squares decomposition for this polynomial. Guided
by numerical results, we look for a polynomial Q(x) :=

∑n
i=0 qix

i such that:

n∑
k=0

(−1)kFnk Lk(x2) = Q2(x2)

=
(

n∑
i=0

qix
2i
)2

=
n∑
l=0

 ∑
i+j=l

0≤i,j≤n

qiqj

x2l,

(4.118)

and the sought coefficients are given by Lemma 4.9, which concludes the second part of
the proof.

We thus obtained a feasible solution of (LPL2
n ) for all n ∈ N∗, which is feasible for (SDPm,≤n )

for all m ≥ n.

• Optimality for m = n: we now find an analytical solution of the dual (D-SDPn,≤n ) with
the same optimal value as the primal (SDPn,≤n ), by finding a Cholesky decomposition for the
matrix appearing in the dual program (D-SDPm,≤n ) for m = n. The coefficients of the Cholesky
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decomposition are given by the triangular matrix L with coefficients:

∀j ≤ i, l2i,2j = 2ii!
(
i

j

)

∀j ≤ i, l2i+1,2j+1 = 2i+1/2 (i+ 1)!√
j + 1

(
i

j

)
lnn = 0

lij = 0 otherwise.

(4.119)

Once again, these analytical expressions were extrapolated from numerical values. Then,
A = LLT is a positive semidefinite matrix given by:

Aij =
min(i,j)∑
k=0

likljk. (4.120)

Now lij is non-zero only when i and j have the same parity, so for all k ∈ J0,min(i, j)K, i and j
must have the same parity than k for likljk to be non-zero.

• Suppose i = 2i′, j = 2j′, i′ ≤ j′ and (i′, j′) 6= (n, n). Furthermore let l = i+j
2 .

Aij =
i∑

k=0
k even

l2i′,kl2j′,k′

=
i′∑
k=0

2i′i′!
(
i′

k

)
2j′j′!

(
j′

k

)

= 2li′!(l − i′)!
i′∑
k=0

(
i′

k

)(
l − i′

k

)
= 2ll!.

(4.121)

• Suppose i = 2i′ + 1, j = 2j′ + 1, i′ ≤ j′ and (i′, j′) 6= (n, n). Furthermore let l = i+j
2 .

Aij =
i∑

k=0
k odd

l2i′+1,kl2j′+1,k

=
i′∑
k=0

2i′+1/2 (i′ + 1)!√
k + 1

(
i′

k

)
2j′+1/2 (j′ + 1)!√

k + 1

(
j′

k

)

= 2li′!(l − i′)!
i′∑
k=0

(
i′ + 1
k + 1

)(
l − i′ − 1

k

)
= 2ll!.

(4.122)
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• Suppose n = 2t:

Ann =
t∑

k=0
l22t,2k

= 22t(t!)2
t−1∑
k=0

(
t

k

)2

= 2n(t!)2
((

2t
t

)
− 1

)

= 2nn!

1−
(
n⌊
n
2
⌋)−1

 .

(4.123)

• Suppose n = 2t+ 1:

Ann =
t∑

k=0
k odd

l22t+1,k

= 22t+1(t+ 1)!2
t−1∑
k=0

1
k + 1

(
t

k

)2

= 2nt!(t+ 1)!
t−1∑
k=0

(
t+ 1
k + 1

)(
t

k

)

= 2nt!(t+ 1)!
((

2t+ 1
t

)
− 1

)

= 2nn!

1−
(
n⌊
n
2
⌋)−1

 .

(4.124)

In both cases, A is indeed constructed as:

(Aµ)i,j =


∑l
k=0 µk

( l
k

)
l! when i+ j = 2l,

0 otherwise,
(4.125)

for µ = (Fnn , Fnn , . . . , Fnn , 1− Fnn ) with Fnn = 1
2n
( n
bn2 c

)
, and this provides a feasible solution of

(D-SDPm,≤n ) for m = n, with value Fnn . This shows the optimality of F n for (SDPn,≤n ) (and
the fact that strong duality holds between the programs (SDPn,≤n ) and (D-SDPn,≤n ), which we
already knew from Theorem 4.2).

For (D-SDPm,≤n ), we see numerically that the optimal solution is the same then for (D-SDPn,≤n ),
for a few values of m greater than n. However, this is no longer the case for higher values, for
example when n = 3 and m = 10.

We also obtain the following analytical lower bound for the optimal value of (LPL2
n ):

ωL
2

n ≥ ωn,≤n = 1
2n

(
n

bn2 c

)
∼

n→+∞

√
2
πn

, (4.126)
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which is superseded by numerical bounds when n ≥ 3 (see Table 4.1).
We now combine the reformulation of program (D-SDPm,≤n ) and Lemma 4.10 to prove

Theorem 4.4.

Proof. The feasible set of (D-SDPm,≤n ) is non-empty, by considering the null sequence, which
achieves value 1. Without loss of generality, we add the constraint y ≤ 1 in (D-LPSn) and
(D-SDPm,≤n ).

Let m ≥ n and let (y,µ) ∈ R× S′(N) be a feasible solution of (D-SDPm,≤n ). The constraint
〈fµ, x 7→ e−

x
2 〉 ≥ 0 implies µ0 ≥ 0 and thus y ≥ 0. Without loss of generality, we may set µk = 0

for k > m, since these coefficients are only constrained by µk ≤ y ≤ 1. We also have µk ≤ 1 for
all k ∈ N.

By Lemma 4.10, F l is a feasible solution of (SDPm,≤l ) for all l ≤ m, so in particular
fF l =

∑l
k=0 F

l
kLk ∈ Rm,+(R+). Hence, µ must satisfy the constraint 〈fµ, fF l〉 ≥ 0, which gives

l∑
k=0

µkF
l
k ≥ 0, (4.127)

for all l ≤ m. Thus we have, for all l ∈ J1,mK,

µl ≥ −
1
F ll

l−1∑
k=0

µkF
l
k

≥ − 1
F ll

l−1∑
k=0

F lk

= 1− 1
F ll

≥ −l,

(4.128)

where we used F ll > 0 in the first line, µk ≤ 1 and F lk ≥ 0 in the second line,
∑l
k=0 F

l
k = 1 in

the third line and Eq. (4.92) in the last line. With µk ≤ 1, we obtain |µk| ≤ k for k ∈ N∗, and
thus |µk| ≤ k + 18 for all k ∈ N. Hence, the feasible set of (D-SDPm,≤n ) is compact and the
program (D-SDPm,≤n ) has feasible optimal solutions for all m ≥ n, by diagonal extraction.

Let (ym,µm)m≥n be a sequence of optimal solutions of (D-SDPm,≤n ), for m ≥ n. By
Theorem 4.2, we have strong duality between the programs (SDPm,≤n ) and (D-SDPm,≤n ), so the
optimal value of (D-SDPm,≤n ) is given by ωm,≤n , for all m ≥ n. By optimality ym = ωm,≤n , for all
m ≥ n, and the sequence (ym)m≥n converges.

Performing a diagonal extraction φ on the sequence (µm)m≥n, we obtain a sequence of
sequences (µφ(m))m≥n such that each sequence (µφ(m)

k )m≥n converges when m→ +∞, for all
k ∈ N. Let µk denote its limit, for each k ∈ N. We write µ = (µk)k∈N ∈ RN the sequence of
limits. We also write

y := lim
m→+∞

ym = lim
m→+∞

ωm,≤n . (4.129)
8Critically this bounds does not depend on the level m of the hierarchy.
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For all m ≥ n, we have ωφ(m),≤
n ≥ µ

φ(m)
k for all k ∈ N and ω

φ(m),≤
n ≥ 1 + µ

φ(m)
n , so taking

m→ +∞ we obtain y ≥ µk for all k ∈ N and y ≥ 1 + µn. By Eq. (4.88), we have ωm,≤n ≤ ωSn
for all m ≥ n, so y ≤ ωSn .

Moreover, |µφ(m)
k | ≤ k + 1 for all k ∈ N, so taking m→ +∞ we obtain |µk| ≤ k + 1 for all

k ∈ N, which implies that µ ∈ S ′(N) [GT71]. Let fµ =
∑
k µkLk ∈ S ′(R+). We have

µk = 〈fµ,Lk〉 . (4.130)

By construction we also have:

∀m ≥ n, ∀g ∈ Rm,+(R+), 〈fµ, g〉 ≥ 0. (4.131)

By Theorem 4.1, this implies that the distribution µ := fµ(x) ∈ S ′(R+) is nonnegative, i.e.,

∀f ∈ S+(R+), 〈fµ, f〉 ≥ 0. (4.132)

With the constraints y ≥ µk for all k ∈ N and y ≥ 1 + µn, we have that (y, µ) is a feasible
solution of (D-LPSn), and in particular y ≥ ω′Sn , since (D-LPSn) is a minimisation problem. Since
y ≤ ωSn we obtain with Eq. (4.88) and Eq. (4.129):

lim
m→+∞

ωm,≤n = ωSn = ω′Sn . (4.133)

As a direct corollary of the proofs of Theorem 4.3 and Theorem 4.4 (in the same spirit than
the remark after the proof of Theorem 4.3), we obtain the following strong duality result:

Corollary 4.2. Strong duality holds between the programs (LPSn) and (D-LPSn) and between
the programs (LPL2

n ) and (D-LPL2
n ).

We thus have shown the convergence of the semidefinite hierarchies of upper and lower
bounds: (ωm,≥n )m≥n towards the optimal value of (LPL2

n ) and (ωm,≤n )m≥n towards the opimal
value of (LPSn). By linearity, these results generalise straightforwardly to the case of witnesses
corresponding to linear combinations of fidelities with displaced Fock states:

lim
m→+∞

ωm,≤a = ωSa , (4.134)

lim
m→+∞

ωm,≥a = ωL
2

a , (4.135)
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for all n ∈ N∗ and all a ∈ [0, 1]n where, as an example, ωL2
a is the value of the following program:

Find (Fk)k∈N ∈ `2(N)

maximising
n∑
k=1

akFk

subject to∑
k

Fk = 1

∀k ∈ N, Fk ≥ 0

∀x ∈ R+,
∑
k

FkL(x) ≥ 0,

(LPL2
a )

and its dual program reads:

Find y ∈ R and µ ∈ L2′(R+)

minimising y

subject to

∀k ≤ n ∈ N, y ≥ ak +
∫
R+
Lkdµ

∀k > n ∈ N, y ≥
∫
R+
Lkdµ

∀f ∈ L2
+(R+), 〈µ, f〉 =

∫
R+
fdµ ≥ 0.

(D-LPL2
a )

The relaxation is given by (SDPm,≥a ) and the restriction is given by (SDPm,≤a ).

4.3.5.3 Discussion on the possible gap between ωL
2

n and ωSn

In practice, we have two hierarchies providing numerical lower bounds and upper bounds on
the threshold value. A natural question that now arises is the following: is there a gap between
the optimal values of (LPL2

n ) and (LPSn)? This is left as an open question but we provide several
leads.

One potential direction would be to prove there is convergence at a finite rank in the
hierarchy (see [Nie13]). This would automatically implies the equivalence of the formulation in
the space of square integrable functions and in the space of Schwartz functions.

Another direction would be to prove that the upper hierarchy actually converges towards
the optimal value or (LPSn) rather than (LPL2

n ). However the limit (Fk)k of optimal feasible
solutions for (SDPm,≥n ) is only constrained by

∑
k Fk = 1 which gives that (Fk)k belongs to `2

but not to S(N) in general.
Another lead would be to prove the other direction i.e. that the upper lower hierarchy

converges towards the optimal value of (LPL2
n ) rather than (LPSn). But as we saw in the proof

above, the analytical feasible solution only ensures that for all k ∈ N, |µk| ≤ k + 1 and so that
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(µ)k ∈ S ′(N). To prove a better bound on µk so that (µ)k ∈ `2(N), we would need to exhibit
another analytical solution which seems very difficult.

Finally, we also considered proving that any feasible solution of (LPL2
n ) (resp. (D-LPSn)) can

be approximated by a feasible solution of (LPSn) (resp. (D-LPL2
n )). However the constraints

present in the programs prevent us from using standard density results.

4.4 Witnessing multimode Wigner negativity

In this section we discuss the generalisation of our Wigner negativity witnesses to the more
challenging multimode setting. Hereafter, M denotes the number of modes.

4.4.1 Multimode notations

We use the multi-index notations presented in Eq. 1. A multivariate polynomial of degree p ∈ N
may then be written in the compact form P (x) =

∑
|l|≤p plx

l, where the sum is over all the
tuples l ∈ NM such that |l| ≤ m, also known as the weak compositions of the integer m. There
are s(m) such tuples. In what follows, we will also consider sums over all the tuples l ∈ NM

such that l ≤ k, for k = (k1, . . . , kM ) ∈ NM . There are πk such tuples. In particular, for all
x ∈ RM+ and all k ∈ NM ,

Lk(x) =
∑
l≤k

(−1)|l|

l!

(
k

l

)
xl and xk =

∑
l≤k

(−1)|l|
(
k

l

)
k!Ll(x). (4.136)

Note that there are several ways of considering relaxations or restrictions of fixed degree for the
multimode case. The ‘triangle’ approach is to fix a degree m ∈ N and consider monomials of
degrees l ∈ NM such that |l| ≤ m. Another way—the ‘rectangle’ approach— is to fix a degree
m ∈ NM and consider monomials of degrees l ∈ NM such that l ≤m. The former is usually
used in literature (see [Las09]) while we will need the latter for proving the convergence of the
lower bounding hierarchy. These two procedures are interleaved and the convergence of one will
provide the convergence of the other.

We now extend a few definitions from the single-mode case. For s = (sk)k∈NM ∈ RNM , we
define the associated formal series of multivariate Laguerre functions:

fs :=
∑
k

skLk, (4.137)

where s is the so-called sequence of Laguerre moments of fs. For m ∈ N, we define the associated
s(m)× s(m) moment matrix As by

(As)i,j =


∑
k≤l sk

( l
k

)
l! when i+ j = 2l,

0 otherwise,
(4.138)

where i, j ∈ NM with |i| ≤ m and |j| ≤ m.
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The multimode Laguerre functions (Lk)k∈NM form an orthonormal basis of the space L2(RM+ )
of real square-integrable functions over RM+ equipped with the usual scalar product:

〈f, g〉 =
∫
RM+

f(x)g(x)dx, (4.139)

for f, g ∈ L2(RM+ ). We denote by L2
+(RM+ ) its subset of nonnegative elements. The space

L2(RM+ ) is isomorphic to its dual space L2′(RM+ ): elements of L2′(RM+ ) can be identified by the
Lebesgue measure on RM+ times the corresponding function in L2(RM+ ). The space L2(RM+ ) is
also isomorphic to `2(NM ) via expansion on the Laguerre basis.

Moreover, the elements of the space S(RM+ ) of Schwartz functions over RM+ , i.e., the space of
C∞ functions that go to 0 at infinity faster than any inverse polynomial, as do their derivatives,
can be written as series of Laguerre functions with a sequence indexed by NM of rapidly
decreasing coefficients S(NM ) (which go to 0 at infinity faster than any inverse M -variate
polynomial). Its dual space S ′(RM+ ) of tempered distributions over RM+ is characterised as the
space of formal series of Laguerre functions with a slowly increasing sequence of coefficients
S ′(NM ) (sequences that are upper bounded by an M -variate polynomial) [GT71]. We also
extend the definition of the duality 〈–, –〉 in Eq. (4.139) to these spaces.

For all m ∈ N, the set of series of Laguerre functions over RM+ truncated at m is denoted
Rm(RM+ ). This is the set of M -variate polynomials P (x) =

∑
|k|≤m pkx

k of degree at most m
multiplied by the function x 7→ e−

x
2 . Let Rm,+(RM+ ) denotes its subset of nonnegative elements

where the polynomial P is such that x 7→ P (x2) has a sum-of-squares decomposition.
Similarly, for m ∈ NM , the set of truncated series of Laguerre functions over RM+ with

monomials smaller thanm is denoted Rm(RM+ ) (with a bold m subscript). This is the set of M -
variate polynomials P (x) =

∑
k≤m pkx

k, multiplied by the function x 7→ e−
x
2 . Let Rm,+(RM+ )

denotes its subset of nonnegative elements where the polynomial P is such that x 7→ P (x2)
has a sum-of-squares decomposition.

4.4.2 Multimode Wigner negativity witnesses

The single-mode Wigner negativity witnesses defined in Eq. (4.1) are naturally generalised to

Ω̂a,α :=
∑

1≤k≤n
akD̂(α) |k〉〈k| D̂†(α), (4.140)

for n = (n1, . . . , nM ) ∈ NM \{0}, a = (ak)1≤k≤n ∈ [0, 1]n1···nM , with maxk ak = 1, and α ∈ CM .
Similar to the single-mode case, these POVM elements are weighted sums of multimode displaced
Fock states projectors, and their expectation value for a quantum state ρ ∈ D(H ⊗M ) is given
by

Tr(Ω̂a,αρ) =
∑

1≤k≤n
akF

(
D̂†(α)ρD̂(α), |k〉

)
(4.141)

where F is the fidelity. However, unlike in the single-mode case however, estimating this
quantity with homodyne or heterodyne detection by direct fidelity estimation is no longer
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efficient when the number of modes becomes large. Instead, one may use robust lower bounds
on the multimode fidelity from [CGKM20] which can be obtained efficiently with homodyne or
heterodyne detection. A lower bound on the estimated experimental multimode fidelity will
allow to detect Wigner negativity if it is larger than an upper bound on the threshold value
associated to a given witness.

These lower bounds are obtained as follows: given a target multimode Fock state |n〉 =
|n1〉 ⊗ · · · ⊗ |nM 〉 and multiple copies of an M -mode experimental state ρ, measure all single-
mode subsystems of ρ and perform fidelity estimation with each corresponding single-mode
target Fock state. That is, the samples obtained from the detection of the ith mode of ρ are used
for single-mode fidelity estimation with the Fock state |ni〉. Let F1, . . . , FM be the single-mode
fidelity estimates obtained and let F̃ (ρ, |n〉) := 1−

∑M
i=1(1− Fi). Then [CGKM20],

1−M(1−F (ρ, |n〉)) ≤ F̃ (ρ, |n〉) ≤ F (ρ, |n〉). (4.142)

In particular, F̃ provides a good estimate of the multimode fidelity F whenever F is not too
small. The same procedure is followed in the case of target displaced Fock states, with classical
translations of the samples in order to account for the displacement parameters.

To each witness Ω̂a,α is associated its threshold value:

ωa
9 := sup

ρ∈D(H ⊗M )
Wρ≥0

Tr
(
Ω̂a,α ρ

)
. (4.143)

With Eq. (4.142), if the value of the bound F̃ obtained experimentally is greater than ωa (or
an upper bound on it) then the multimode state ρ has a negative Wigner function.

With the same arguments as in the single-mode case, the multimode Wigner negativity
witnesses in Eq. (4.140) form a complete family and preserve the interpretation from Lemma 4.1:
the violation of the threshold value provides a lower bound on the distance to the set of multimode
states with nonnegative Wigner function. However, the limited robustness of the bound F̃ may
affect the performance of the witnesses in practical scenarios, in particular for witnesses that
are sums of different projectors. Still, we show in Section 4.4.5 the applicability of the method
with a genuinely multimode example.

We first generalise the single-mode semidefinite programming approach for approximating
the threshold values to the multimode case.

4.4.3 Infinite-dimensional linear programs

By linearity, we restrict our analysis to the case of Wigner negativity witnesses that are
projectors onto a single multimode Fock state |n〉, for n ∈ NM \ {0}. We thus consider the

9Again we write the threshold value as ωa generically and we will use the more precise notation ωL
2

a (resp.
ωSa ) to refer to the optimisation over square integrable functions (resp. Schwartz functions) on RM .
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computation of
ωn = sup

ρ∈D(H ⊗M )
Wρ≥0

〈n|ρ|n〉 . (4.144)

A similar reasoning to the single-mode case shows that the computation of the corresponding
threshold value in Eq. (4.143) may be rephrased as the following infinite-dimensional linear
program: 

Find (Fk)k∈NM ∈ `2(NM )

maximising Fn
subject to∑

k

Fk = 1

∀k ∈ NM , Fk ≥ 0

∀x ∈ RM+ ,
∑
k

FkLk(x) ≥ 0,

(LPL2
n )

where the optimisation is over square-summable real sequences indexed by elements of NM—or
equivalently square integrable functions over RM+ . Its dual linear program reads

Find y ∈ R and µ ∈ L2′(RM+ )

minimising y

subject to

∀k 6= n ∈ NM , y ≥
∫
RM+
Lkdµ

y ≥ 1 +
∫
RM+
Lndµ

∀f ∈ L2
+(RM+ ), 〈µ, f〉 ≥ 0.

(D-LPL2
n )

We denote their optimal value ωL2
n —as in the single mode case, we have strong duality which

can be proven using the same proof with standard infinite-dimensional optimisation techniques
as in Subsection 4.3.3. This will also be obtained from the convergence of the upper bounding
hierarchy of semidefinite programs. We also introduce the programs over Schwartz functions:

Find (Fk)k∈NM ∈ S(NM )

maximising Fn
subject to∑

k

Fk = 1

∀k ∈ NM , Fk ≥ 0

∀x ∈ RM+ ,
∑
k

FkLk(x) ≥ 0,

(LPSn)
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and 

Find y ∈ R and µ ∈ S ′(RM+ )

minimising y

subject to

∀k 6= n ∈ NM , y ≥
∫
RM+
Lkdµ

y ≥ 1 +
∫
RM+
Lndµ

∀f ∈ L2
+(RM+ ), 〈µ, f〉 ≥ 0.

(D-LPSn)

We denote their optimal value ωSn.
We will then derive two hierarchies of semidefinite programs, lower bounding and upper

bounding the threshold value. While our proof of convergence of the single-mode hierarchy of
upper bounds towards ωL2

n transfers easily to the multimode setting, the proof of convergence of
the hierarchy of lower bounds towards ωSn requires the analytical expression of feasible solutions
for each level of the hierarchy. We show how to construct such solutions in the multimode
case using products of single-mode feasible solutions—this requires introducing an equivalent
hierarchy of restrictions, where constraints are expressed on polynomials of M variables with
the degree in each individual variable being less or equal to m, rather than on polynomials of
degree m (that is, constraints of the form k ≤ m1 where m1 = (m, . . . ,m) ∈ NM rather than
|k| ≤ m). Along the way, we also prove strong duality of the programs involved. This is the
subject of the next subsections.

4.4.3.1 Approximating the threshold value

Hereafter, we state without proofs the technical results used to derive the semidefinite programs
and their dual programs. They are straightforward generalisation from their single-mode version
by using multi-index notations and will be given without proofs.

As mentioned there are two natural ways to obtain relaxations and restrictions by replacing
constraints on nonnegative functions by constraints on nonnegative polynomials: either by
considering polynomials P (x) =

∑
|k|≤m pkx

k of degree at most m for m ∈ N (‘triangle’
procedure), or by considering polynomials P (x) =

∑
k≤m pkx

k with monomials smaller than
m for m ∈ NM (‘rectangle’ procedure). Note that when M = 1 these two are equal.

Crucially, all the results below containing conditions of the form |k| ≤ m for m ∈ N are also
valid when replaced by conditions of the form k ≤m for m = (m1, . . . ,mM ) ∈ NM , with the
same proofs, by replacing s(m) by πm =

∏M
i=1(mi + 1).

Lemma 4.11 (Equivalent of Lemma 4.5). Let p ∈ N and let P be a multivariate polynomial
of degree 2p. Let v(x) = (xk)|k|≤p be the vector of monomials. Then, P has a sum-of-squares
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0

1

ωm1,≤
n

ωL
2

n

ωSn

ωm1,≥
n (SDPm1,≥

n ) (D-SDPm1,≥
n )

(LPL2

n ) (D-LPL2

n )

(LPSn) (D-LPSn)

(SDPm1,≤
n ) (D-SDPm1,≤

n )

Corollary 4.3
==

Corollary 4.4
==

Corollary 4.4
==

Theorem 4.7
==

Theorem 4.6ym→∞

xm→∞
Theorem 4.8

Theorem 4.6ym→∞

xm→∞
Theorem 4.8

Figure 4.6: Multimode hierarchies of semidefinite relaxations and restrictions con-
verging to the linear program (LPL2

n ), together with their dual programs. The
upper index m denotes the level of the relaxation or restriction. On the left are the
associated optimal values. The equal sign denotes strong duality, i.e., equality of
optimal values, and the arrows denote convergence of the corresponding sequences
of optimal values. The hierarchies (SDPm,≥n ) and (SDPm,≤n ) in the main text are
different from the ones appearing in the figure, but equivalent by Lemma 4.14. The
question of whether ωL2

n = ωSn is left open.

decomposition if and only if there exists a real s(p)× s(p) positive semidefinite matrix Q such
that for all x ∈ RM ,

P (x) = v(x)TQv(x). (4.145)

Lemma 4.12 (Generalisation of Lemma 4.6). Let P be a nonnegative polynomial over RM+
such that x 7→ P (x2) has a sum-of-squares decomposition. Then, P can be written as a sum of
polynomials of the form ∑

|l|≤p x
l∑

i+j=2l yiyj for p ∈ N and yi ∈ R for all i ∈ NM such that
|i| ≤ p.

Lemma 4.13 (Generalisation of Lemma 4.7). Let m ∈ N and let s = (sk)k∈NM ∈ RNM . The
following propositions are equivalent:

(i) ∀g ∈ Rm,+(RM+ ), 〈fs, g〉 ≥ 0,
(ii) As � 0.

In the single-mode case, we obtained hierarchies of SDP relaxations and restrictions
for (LPL2

n ) by replacing constraints involving nonnegative functions by constraints involving
nonnegative polynomials P of fixed degree. We then exploited the existence of a sum-of-squares
decomposition for nonnegative monovariate polynomials. In the multimode setting, the polyno-
mials involved are multivariate, so that the set of nonnegative polynomials over R of a given
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degree may be strictly larger than the set of sum-of-square polynomials [Hil88]. Instead, we
replace directly constraints involving nonnegative functions over R+ by constraints involving
nonnegative polynomials P of fixed degree such that x 7→ P (x2)10 has a sum-of-squares decom-
position, implying that the multimode semidefinite relaxations and restrictions are possibly
looser than their single-mode counterparts.

Moreover, the dimension of the semidefinite programs increases exponentially with the level
of the hierarchy m, as the number of M -variate monomials of degree less or equal to m is
given by s(m). This implies that the semidefinite programs remain tractable only for a constant
number of levels.

In spite of these observations, and following similar steps to the single-mode case (see
Subsection 4.3.4), we use Lemma 4.13 to obtain the following semidefinite relaxations providing
upperbounds on the threshold value:

Find A = (Aij)|i|,|j|≤m ∈ Syms(m) and F = (Fk)|k|≤m ∈ Rs(m)

maximising Fn
subject to∑

|k|≤m Fk = 1

∀|k| ≤ m, Fk ≥ 0

∀|l| ≤ m,∀i+j=2l, Aij =
∑
k≤l Fk

( l
k

)
l!

∀|r| ≤ 2m, r 6=2l, ∀|l| ≤ m,∀i+j=r, Aij = 0

A � 0,

(SDPm,≥n )

for all m ≥ |n|. We denote its optimal value by ωm,≥n . The corresponding dual programs are
given by: 

Find Q ∈ Syms(m), y ∈ R and µ ∈ Rs(m)

minimising y

subject to

y ≥ 1 + µn

∀|k| ≤ m,k 6= n, y ≥ µk

∀|l| ≤ m,
∑

i+j=2l
Qij =

∑
k≥l

(−1)|k|+|l|

l!

(
k

l

)
µk

Q � 0.

(D-SDPm,≥n )

Similarly, using Lemma 4.11, the semidefinite restrictions providing lower bounds for the
10We write x2 in short for x21 = (x2

1, . . . , x
2
M ).
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threshold value are given by

Find Q ∈ Syms(m) and F ∈ Rs(m)

maximising Fn
subject to∑

|k|≤m Fk = 1

∀|k| ≤ m, Fk ≥ 0

∀|l| ≤ m,
∑
i+j=2lQij =

∑
k≥l

(−1)|k|+|l|
l!

(k
l

)
Fk

∀|r| ≤ 2m, r 6= 2l,∀|l| ≤ m,
∑
i+j=rQij = 0

Q � 0,

(SDPm,≤n )

for all m ≥ |n|. We denote its optimal value by ωm,≤n . The corresponding dual programs are
given by: 

Find A ∈ Syms(m), y ∈ R and µ ∈ Rs(m)

minimising y

subject to

y ≥ 1 + µn

∀|k| ≤ m,k 6= n, y ≥ µk

∀|l| ≤ m,∀i+ j = 2l, Aij =
∑
k≤l

µk

(
l

k

)
l!

A � 0,

(D-SDPm,≤n )

for all m ≥ |n|. Like in the single-mode case, note that without loss of generality the condition
y ≤ 1, and thus µk ≤ 1 for all k, can be added to the optimisation, since setting A = 0, y = 1
and µ = 0 gives a feasible solution with objective value 1.

These are the relaxations and restrictions of (LPL2
n ) obtained by considering polynomials

of degree less or equal to m, where the optimisation is over matrices and vectors indexed by
elements of Nm with sum of coefficients lower that m. Alternatively, we may also consider
the relaxations and restrictions obtained by considering polynomials with monomials smaller
than m ∈ NM , where the optimisation is over matrices and vectors indexed by elements of Nm

lower or equal tom. Recalling the notation πm =
∏M
i=1(mi + 1), the corresponding semidefinite
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relaxations are given by

Find A ∈ Symπm and F ∈ Rπm

maximising Fn
subject to∑

k≤m
Fk = 1

∀k ≤m, Fk ≥ 0

∀l ≤m,∀i+ j = 2l, Aij =
∑
k≤l

Fk

(
l

k

)
l!

∀r ≤ 2m, r 6=2l,∀l ≤m,∀i+ j = r, Aij = 0

A � 0.

(SDPm,≥n )

for all m ≥ n. We denote its optimal value by ωm,≥n . The corresponding dual programs are
given by: 

Find Q ∈ Symπm , y ∈ R and µ ∈ Rπm

minimising y

subject to

y ≥ 1 + µn

∀k ≤m,k 6= n, y ≥ µk

∀l ≤m,
∑

i+j=2l
Qij =

∑
k≥l

(−1)|k|+|l|

l!

(
k

l

)
µk

Q � 0,

(D-SDPm,≥n )

for all m ≥ n. Similarly, the semidefinite restrictions are given by:

Find Q ∈ Symπm and F ∈ Rπm

maximising Fn
subject to∑

k≤m
Fk = 1

∀k ≤m, Fk ≥ 0

∀l ≤m,
∑

i+j=2l
Qij =

∑
k≥l

(−1)|k|+|l|

l!

(
k

l

)
Fk

∀r ≤ 2m, r 6= 2l, ∀l ≤m,
∑
i+j=r

Qij = 0

Q � 0,

(SDPm,≤n )
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for all m ≥ n. We denote its optimal value by ωm,≤n . The corresponding dual programs are
given by: 

Find A ∈ Symπm , y ∈ R and µ ∈ Rπm

minimising y

subject to

y ≥ 1 + µn

∀k ≤m,k 6= n, y ≥ µk

∀l ≤m,∀i+ j = 2l, Aij =
∑
k≤l

µk

(
l

k

)
l!

A � 0,

(D-SDPm,≤n )

for all m ≥ n.
The programs (SDPm,≥n ) and (SDPm,≤n ) respectively provide hierarchies of relaxations and

restrictions of (LPL2
n ), since the set of M -variate polynomials of degree m is included in the set

ofM -variate polynomials of degree m+1. On the other hand, there is no natural ordering in NM

of the relaxations (SDPm,≥n ) or the restrictions (SDPm,≤n ) (consider for instance m = (2, 1) and
m′ = (1, 2)). In order to obtain proper hierarchies of semidefinite programs, we thus consider
the subset of these programs where the tuple m is of the form m1 = (m, . . . ,m) ∈ NM , for
m ∈ N. We have πm1 = (m+ 1)M , and the relaxations are then given by

Find A ∈ Sym(m+1)M and F ∈ R(m+1)M

maximising Fn
subject to∑

k≤m1

Fk = 1

∀k ≤ m1, Fk ≥ 0

∀l ≤ m1, ∀i+ j = 2l, Aij =
∑
k≤l

Fk

(
l

k

)
l!

∀r ≤ 2m1, r 6=2l, ∀l ≤ m1,∀i+ j = r, Aij = 0

A � 0.

(SDPm1,≥
n )

for m ≥ maxi ni. We denote its optimal value by ωm1,≥
n . The corresponding dual programs are
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given by: 

Find Q ∈ Sym(m+1)M , y ∈ R and µ ∈ R(m+1)M

minimising y

subject to

y ≥ 1 + µn

∀k ≤ m1,k 6= n, y ≥ µk

∀l ≤ m1,
∑

i+j=2l
Qij =

∑
k≥l

(−1)|k|+|l|

l!

(
k

l

)
µk

Q � 0,

(D-SDPm1,≥
n )

for m ≥ maxi ni. Similarly, the restrictions are given by:

Find Q ∈ Sym(m+1)M and F ∈ R(m+1)M

maximising Fn
subject to∑

k≤m1

Fk = 1

∀k ≤ m1, Fk ≥ 0

∀l ≤ m1,
∑

i+j=2l
Qij =

∑
k≥l

(−1)|k|+|l|

l!

(
k

l

)
Fk

∀r ≤ 2m1, r 6= 2l,∀l ≤ m1,
∑
i+j=r

Qij = 0

Q � 0,

(SDPm1,≤
n )

for m ≥ maxi ni. We denote its optimal value by ωm1,≤
n . The corresponding dual programs are

given by: 

Find A ∈ Sym(m+1)M , y ∈ R and µ ∈ R(m+1)M

minimising y

subject to

y ≥ 1 + µn

∀k ≤ m1,k 6= n, y ≥ µk

∀l ≤ m1, ∀i+ j = 2l, Aij =
∑
k≤l

µk

(
l

k

)
l!

A � 0,

(D-SDPm1,≤
n )

for m ≥ maxi ni.
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The programs (SDPm1,≥
n ) and (SDPm1,≤

n ) are respectively relaxations and restrictions
of (LPL2

n ) obtained by considering polynomials of individual degree in each variable less or
equal to m. These programs respectively provide hierarchies of relaxations and restrictions
of (LPL2

n ), since the set of M -variate polynomials with monomials lower than m1 is included in
the set of M -variate polynomials with monomials lower than (m+ 1)1.

Note that these hierarchies of programs obtained by setting m of the form m1 capture
the behaviour of all bounds that can be obtained from the more general family of programs
indexed by m = (m1, . . . ,mM ), since m ≤ (maximi)1, i.e., the bound obtained by considering
the program indexed by (maximi)1 supersedes the bound obtained by considering the program
indexed by m. Formally, for all m = (m1, . . . ,mM ) ∈ NM ,

ωm,≥n ≥ ω(maximi)1,≥
n and ωm,≤n ≤ ω(maximi)1,≤

n . (4.146)

Finally, we show that both ways of defining the hierarchies—i.e. with m ∈ N corresponding to
programs (SDPm,≤n ) and (SDPm,≥n ) and with m1 ∈ NM corresponding to programs (SDPm1,≤

n )
and (SDPm1,≥

n )—are equivalent:

Lemma 4.14. For all m ∈ N,

ωm,≥n ≥ ωm1,≥
n ≥ ωMm,≥

n , (4.147)

and
ωm,≤n ≤ ωm1,≤

n ≤ ωMm,≤
n . (4.148)

Proof. For all m ∈ N we have (for M > 1):

{k ∈ NM : |k| ≤ m} ⊂ {k ∈ NM : k ≤ m1} ⊂ {k ∈ NM : |k| ≤Mm}. (4.149)

Geometrically We thus obtain the corresponding inclusions between sets of M -variate polyno-
mials: (i) M -variate polynomials of degree less or equal to m have all their monomials lower
than m1, and (ii) all M -variate polynomials with monomials lower than m1 have degree less or
equal to Mm. Hence,

Rm,+(RM+ )
(i)
⊂ Rm1,+(RM+ )

(ii)
⊂ RMm,+(RM+ ). (4.150)

As a consequence, (SDPm,≥n ) is a relaxation of (SDPm1,≥
n ) which is itself a relaxation of

(SDPMm,≥
n ), and (SDPm,≤n ) is a restriction of (SDPm1,≤

n ) which is itself a restriction of
(SDPMm,≤

n ).

This result implies that the two versions of the hierarchies of relaxations are interleaved
(Eq. (4.147)), and that the two versions of the hierarchies of restrictions are also interleaved
(Eq. (4.148)). As such, for any bound obtained with one version of the hierarchy at some fixed
level, a better bound can be obtained with the other version at some other level. While this
means that the hierarchies are equivalent, note that in practice it may be simpler to solve
numerically the version where the parameter space is smaller.
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4.4.4 Convergence of the multimode hierarchies

For n = (n1, . . . , nM ) ∈ NM , the sequences (ωm,≥n )m≥|n| and (ωm1,≥
n )m≥maxi ni (resp. the

sequences (ωm,≤n )m≥|n| and (ωm1,≤
n )m≥maxi ni) are decreasing (resp. increasing) sequences, lower

bounded (resp. upper bounded) by ωL2
n (resp. ωSn)). Hence, these sequences are converging.

We show in what follows that (ωm1,≥
n )m≥maxi ni (resp. (ωm1,≤

n )m≥maxi ni) converges to
ωL

2
n (resp. ωSn). By Lemma 4.14, this implies that the sequence (ωMm,≥

n )m≥maxi ni (resp.
(ωMm,≤
n )m≥maxi ni) also converges to ωn. Since this is a subsequence of the converging sequence

(ωm,≥n )m≥|n| (resp. (ωm,≤n )m≥|n|), it implies that the sequence (ωm,≥n )m≥|n| (resp. (ωm,≤n )m≥|n|)
also converges to ωL2

n (resp. ωSn).
With similar proofs to the single-mode case using multi-index notations, we obtain the

following result:

Theorem 4.5 (Generalisation of Theorem 4.1). Let µ = (µk)k∈NM ∈ RNM . Then, µ is the
sequence of Laguerre moments

∫
RM+
Lk(x)dµ(x) of a nonnegative distribution µ supported on

RM+ if and only if ∀m ∈ N,∀g ∈ Rm,+(RM+ ), 〈fµ, g〉 ≥ 0.

The proof of this theorem is identical to the univariate case, with the use of Riesz–Haviland
theorem over RM+ [Hav36] rather than R+.

With Eq. (4.150), the proof of convergence of the multimode hierarchy of upper bounds is
then obtained directly from its single-mode counterpart using multi-index notations:

Theorem 4.6 (Generalisation of Theorem 4.3). The decreasing sequence of optimal values
ωm1,≥
n of (SDPm1,≥

n ) converges to the optimal value ωL2
n of (LPL2

n ):

lim
m→+∞

ωm1,≥
n = ωL

2
n . (4.151)

With Lemma 4.14, we also obtain

lim
m→+∞

ωm,≥n = ωL
2

n . (4.152)

On the other hand, the proof of convergence of the single-mode hierarchy of lower bounds
crucially exploits analytical feasible solutions of the programs (SDPm,≤n ) in order to obtain two
results:

• Strong duality between programs (SDPm,≤n ) and (D-SDPm,≤n ) (Theorem 4.2).
• The fact that the feasible set of (D-SDPm,≤n ) is compact with coefficients bounded

independently of m (Eq. (4.128)) which exploits an analytical feasible solution of the
primal program.

In what follows, we generalise these two results to the multimode setting by obtaining multimode
analytical feasible solutions from products of single-mode ones.
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Lemma 4.15. For all m,n ∈ N with m ≥ n, suppose that Q(m,n) ∈ Symm+1 and F (m,n) =
(Fi(m,n))0≤i≤m ∈ Rm+1 are feasible solutions of (SDPm,≤n ). Let m = (m1, . . . ,mM ) ∈ NM and
n = (n1, . . . , nM ) ∈ NM with m ≥ n. Define Q := Q(m1, n1) ⊗ · · · ⊗ Q(mM , nM ) ∈ Symπm

and F = (Fk)k≤m ∈ Rπm, where for all k = (k1, . . . , kM ) ≤m, Fk :=
∏M
i=1 Fki(mi, ni).

Then, (Q,F ) is a feasible solution of (SDPm,≤n ). Moreover, if (Q(mi, ni),F (mi, ni)) is
strictly feasible for all i = 1, . . . ,M then (Q,F ) is a strictly feasible solution of (SDPm,≤n ).

Proof. With the notations of the Lemma, we show the feasibility of (Q,F ) (resp. strict fea-
sibility). We immediately have Q � 0, Fk ≥ 0 (resp. Q � 0, Fk > 0) for all k ≤ m, and
Qij =

∏M
p=1Qipjp(mp, np) for all i = (i1, . . . , iM ) ≤ m and j = (j1, . . . , jM ) ≤ m. Hence, for

all r = (r1, . . . , rM ) ≤ 2m,

∑
i+j=r

Qij =
∑

i1+j1=r1,...,iM+jM=rM

M∏
p=1

Qipjp(mp, np)

=
M∏
p=1

∑
ip+jp=rp

Qipjp(mp, np).
(4.153)

In particular, if r 6= 2l for all l ≤m, then at least one coefficient rp is odd, and the corresponding
sum gives 0 since (Q(mp, np),F (mp, np)) is feasible for (SDPmp,≤np ). In that case,

∑
i+j=rQij = 0.

Otherwise, for all l = (l1, . . . , lM ) ≤m,

∑
i+j=2l

Qij =
M∏
p=1

∑
ip+jp=2lp

Qipjp(mp, np)

=
M∏
p=1

∑
kp≥lp

(−1)kp+lp

lp!

(
kp
lp

)
Fkp(mp, np)

=
∑

l1≤k1≤m1,...,lM≤kM≤mM

M∏
p=1

(−1)kp+lp

lp!

(
kp
lp

)
Fkp(mp, np)

=
∑
k≥l

(−1)|k|+|l|

l!

(
k

l

)
Fk,

(4.154)

where we used the feasibility of (Q(mp, np),F (mp, np)) in the second line. Finally,

∑
k≤m

Fk =
∑

k1≤m1,...,kM≤mM

M∏
i=1

Fki(mi, ni)

=
M∏
i=1

mi∑
ki=0

Fki(mi, ni)

= 1,

(4.155)

since
∑m
k=0 Fk(m,n) = 1 for all m,n ∈ N with m ≥ n. This shows that (Q,F ) is a feasible

solution of (SDPm,≤n ) (resp. strictly feasible).
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A direct consequence of this construction is the following result:

Theorem 4.7 (Generalisation of Theorem 4.2). Strong duality holds between the programs
(SDPm,≤n ) and (D-SDPm,≤n ).

Proof. The proof of Theorem 4.2 gives a strictly feasible solution (Q(m,n),F (m,n)) of (SDPm,≤n )
for all m ≥ n. By Lemma 4.15, the program (SDPm,≤n ) thus has a strictly feasible solution, for
all m ≥ n. By Slater’s condition, this implies that strong duality holds between the programs
(SDPm,≤n ) and (D-SDPm,≤n ).

In particular, strong duality holds between the programs (SDPm1,≤
n ) and (D-SDPm1,≤

n ). Note
that the multimode generalisation of Corollary 4.1 is a direct consequence of Theorem 4.7:

Corollary 4.3 (Generalisation of Corollary 4.1). Strong duality holds between the programs
(SDPm,≥n ) and (D-SDPm,≥n ).

Proof. the strictly feasible solution of (SDPm,≤n ) derived in the proof of Theorem 4.7 yields a
strictly feasible solution for (SDPm,≥n ). With Slater’s condition, this shows again that strong
duality holds between the programs (SDPm,≥n ) and (D-SDPm,≥n ).

In particular, strong duality holds between the programs (SDPm1,≥
n ) and (D-SDPm1,≥

n ).
We recall the following definition from Subsection 4.3.5: for all n ∈ N, F n = (Fnk )k∈N ∈ RN

where
• if n is even:

Fnk :=


1

2n
(k
k
2

)(n−k
n−k

2

)
when k ≤ n, k even,

0 otherwise,
(4.156)

• if n is odd:

Fnk :=


1

2n
( n
bn2 c

)(b
n
2 c

b k2 c
)

2

(nk)
, when k ≤ n,

0 otherwise.
(4.157)

Let us define, for all n = (n1, . . . , nM ) ∈ Nm, F n = (Fnk )k∈NM ∈ RNM where

Fnk :=


∏M
i=1 F

ni
ki

when k ≤ n,

0 otherwise.
(4.158)

By (4.92), for all n ∈ N, Fnn ≥ 1
n+1 , so for all n = (n1, . . . , nM ) ∈ NM ,

Fnn ≥
1
πn
. (4.159)
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Like in the single-mode case, the program (SDPm,≤n ) is equivalent to

Find F ∈ Rπm

maximising Fn
subject to∑

k≤m
Fk = 1

∀k ≤m, Fk ≥ 0

fF ∈ Rm,+(RM+ ),

(SDPm,≤n )

with fF =
∑
k≤m FkLk since F ∈ Rπm . Its dual program is given by

Find y,µ ∈ R× Rπm

minimising y

subject to

y ≥ 1 + µn

∀k ≤m,k 6= n, y ≥ µk
∀g ∈ Rm,+(RM+ ), 〈fµ, g〉 ≥ 0,

(D-SDPm,≤n )

for all m ≥ n, where fµ =
∑
k≤m µkLk. Moreover, adding the condition µk ≤ 1 for all k ≤m

does not change the optimal value of the program. We enforce this condition in what follows.
With Lemma 4.10 and Lemma 4.15, we thus obtain the following result:

Lemma 4.16 (Generalisation of Lemma 4.10). For all m ≥ n, Fm (defined in Eq. (4.158)) is
a feasible solution of (SDPm,≤n ).

In particular, for all m ∈ NM ,
∑
k≤m Fmk Lk ∈ Rm,+(RM+ ). For m,n ∈ NM with m ≥ n, let

µ ∈ Rπm be a feasible solution of (D-SDPm,≤n ). Then, for all l ≤m〈∑
k≤m

µkLk,
∑
k≤l

F lkLk

〉
≥ 0, (4.160)

so that ∑
k≤l

µkF
l
k ≥ 0. (4.161)

Hence, for all l ≥m,
µl ≥ −

1
F ll

∑
k≤l
k 6=l

µkF
l
k

≥ − 1
F ll

∑
k≤l
k 6=l

F lk

= 1− 1
F ll

≥ 1− πl,

(4.162)
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where we used F ll > 0 in the first line, µk ≤ 1 and F lk ≥ 0 in the second line,
∑
k≤l F

l
k = 1 in

the third line, and Eq. (4.159) in the last line. Eq. (4.162) is the multimode generalisation of
Eq. (4.128). It is essential to prove the convergence of the lower bounding hierarchy as (i) it
proves that the feasible set of (SDPm1,≤

n ) is compact and (ii) it shows that the sequence of
optimal solutions obtained by diagonal extraction belongs to S(NM ).

With these additional results, the proof of convergence of the multimode hierarchy of lower
bounds (SDPm1,≤

n ) is then obtained directly from its single-mode counterpart using multi-index
notations:

Theorem 4.8 (Generalisation of Theorem 4.4). The increasing sequence of optimal values
ωm1,≤
n of (SDPm1,≤

n ) converges to the optimal value ωSn of (LPSn):

lim
m→+∞

ωm1,≤
n = ωSn . (4.163)

With Lemma 4.14, we also obtain

lim
m→+∞

ωm,≤n = ωSn . (4.164)

Like in the single-mode case, Theorem 4.6 and Theorem 4.8 imply strong duality between the
linear programs:

Corollary 4.4 (Generalisation of Corollary 4.2). Strong duality holds between the programs
(LPL2

n ) and (D-LPL2
n ) and between programs (LPSn) and (D-LPSn).

4.4.5 Multimode example

To illustrate the usefulness of our Wigner negativity witnesses in the multimode setting, we
consider a lossy Fock state over two-modes:

ρ1,1,η :=(1− η)2 |1〉〈1| ⊗ |1〉〈1|+ η(1− η) |1〉〈1| ⊗ |0〉〈0|

+ η(1− η) |0〉〈0| ⊗ |1〉〈1|+ η2 |0〉〈0| ⊗ |0〉〈0| ,
(4.165)

with loss parameter 0 ≤ η ≤ 1. Setting η = 0 gives ρ1,1,η = |1〉〈1| ⊗ |1〉〈1| while setting η = 1
gives ρ1,1,η = |0〉〈0| ⊗ |0〉〈0|. This state has a nonnegative Wigner function for η ≥ 1

2 .
We also consider the multimode Wigner negativity witness |1〉〈1|⊗|1〉〈1|, which is a projector

onto the Fock state |1〉 ⊗ |1〉. Solving numerically the corresponding hierarchy (SDPm,≤n ) up to
m = 3, we obtain the lower bound 0.266 and solving the hierarchy (SDPm,≥n ) up to m = 10, we
obtain the upper bound 0.320.

A direct consequence of the numerical lower bound is that tensor product states are not the
closest among Wigner positive states to tensor product states with a negative Wigner function.
Indeed, the maximum achievable fidelity with the state |1〉 ⊗ |1〉 using Wigner positive tensor
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Figure 4.7: Witnessing Wigner negativity of the lossy Fock state ρ1,1,η over two
modes using the witness |1〉〈1|⊗|1〉〈1|. The threshold value for that witness is upper
bounded by 0.320 and lower bounded by 0.266. The dashed grey line delimits the
interval of loss parameter values where the witness can be used to detect Wigner
negativity of ρ1,1,η efficiently, i.e., when the robust bound F̃ (ρ1,1,η, |1〉 ⊗ |1〉) (violet
curve) on the fidelity from Eq. (4.167) is above the witness upper bound (pink
line). When it is below the witness lower bound (light pink line), we are guaranteed
that the witness cannot be used to detect Wigner negativity of the state. The
fidelity F (ρ1,1,η, |1〉 ⊗ |1〉) is also depicted above (green curve). Note that ρ1,1,η has
a nonnegative Wigner function for η ≥ 0.5.

product states is equal to the square of the maximum achievable fidelity with the state |1〉
using single-mode Wigner positive states, that is 0.52 = 0.25 < 0.266.

We now use the upper bound to witness the Wigner negativity of the state ρ1,1η (see
Fig. 4.7). The fidelity between ρ1,1,η and |1〉 ⊗ |1〉 is given by F (ρ1,1,η, |1〉 ⊗ |1〉) = (1 − η)2,
for all 0 ≤ η ≤ 1. This fidelity is above the upper bound 0.320 on the threshold value of the
witness |1〉〈1| ⊗ |1〉〈1| when η ≤ 0.434.

However, in practice one would not obtain a precise estimate of the fidelity efficiently, but
rather a robust lower bound on the fidelity computed from single-mode fidelities, which satisfies
Eq. (4.142). In the worst case, the estimate obtained is closer to 1− 2(1− F (ρ1,1,η, |1〉 ⊗ |1〉))
than to F (ρ1,1,η, |1〉 ⊗ |1〉). When the value of this robust lower bound is greater than the
threshold value of the witness, this implies that the state has a negative Wigner function.

In the present case, the two single-mode reduced states of ρ1,1,η are the same, given by

Tr2(ρ1,1,η) = (1− η) |1〉〈1|+ η |0〉〈0| , (4.166)
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so the single-mode fidelities with |1〉 are equal for each mode and given by 1− η. Hence, the
robust lower bound on F (ρ1,1,η, |1〉 ⊗ |1〉) is given by

F̃ (ρ1,1,η, |1〉 ⊗ |1〉) = 1− 2η. (4.167)

It is above the upper bound 0.320 on the threshold value of the witness |1〉〈1| ⊗ |1〉〈1| when
η ≤ 0.340.

This example highlights the use of efficient and robust lower bounds on multimode fidelities
rather than fidelity estimates [CGKM20], in conjunction with our family of multimode witnesses
to detect Wigner negativity of realistic experimental states.

4.5 Discussion and open problems

Characterising quantum properties of physical systems is an important step in the development
of quantum technologies, and negativity of the Wigner function, a necessary resource for any
quantum computational speedup, is no exception. In this chapter, we have derived a complete
family of Wigner negativity witnesses which provide an operational quantification of Wigner
negativity, both in the single-mode and multimode settings. In the context of quantum optical
information processing, the main application of our method is in experimental scenarios, where
it leads to robust and efficient certification of negativity of the Wigner function.

What is more, our witnesses also delineate the set of quantum states with positive Wigner
function, and it would be interesting to understand whether additional insights on this set can
be obtained using these witnesses. This is of particular importance for information theoretic
notions like the recently defined quantum Wigner entropy [VHC21] where it is argued that
this is the natural measure in order to characterise quantum uncertainty in phase-space even
though it is limited to Wigner positive states.

Hierarchies of semidefinite programs (in particular with non-commutative variables [NPA08,
KMV20, KMP21]) have found many recent applications in quantum information theory. From
an infinite-dimensional linear program, we were able to use numerically both a hierarchy of
upper bounds and a hierarchy of lower bounds—thus obtaining a certificate for the optimality
of these bounds by looking at their difference—whereas this only works in specific cases for the
Lasserre hierarchy of upper bounds [Las11]. Can we find other interesting cases where we can
exploit both hierarchies? Moreover, we obtained an analytical sequence of lower bounds for
the threshold value of the program (LPL2

n ). Can we also get an analytical sequence of upper
bounds? In particular, we anticipate that Fock states |n〉 get further away from the set of
states having a positive Wigner function as n increases and that ωn = O( 1√

n
) as n→ +∞. The

question of whether the gap between the optimisation over square integrable functions and
Schwartz functions is also left open.
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Quantum advantage in Information
Retrieval

While the previous chapters focused on continuous-variable systems, we investigate
here information retrieval tasks in discrete-variable systems that require Wigner
negativity and contextuality to outperform the corresponding classical task. A well-

known information retrieval task is random access coding which involves the encoding of a
random input string into a shorter message string. The encoding should be such that any
element of the input string can be retrieved with high probability from the message string.
Such tasks have long been studied as examples in which the communication of quantum
information can provide advantage, i.e. enhanced performance, over classical information,
e.g. [ANTSV99, PPK+09, SBK+09, GHH+14, THMB15, CKKS16, ABMP18, FK19, Ga01].
However, random access coding concerns only one kind of information retrieval. In this chapter
we define a general notion of information retrieval tasks and introduce another example called
the Torpedo Game. It is similar to random access coding, but with additional requirements
involving the retrieval of relative information about elements of the input string. Taking a
geometric perspective it may also be viewed as a pacifist version of the popular strategy game
Battleship (see Fig. 5.1). Quantum strategies can be implemented in prepare-and-measure
scenarios, and outperform classical strategies for the Torpedo Games with bit and trit inputs.
In particular, quantum perfect strategies exist in the trit case and provide a greater quantum
advantage than for the comparable random access coding task [THMB15].

Critically, optimal quantum strategies emerge from an analysis in terms of the discrete
Wigner function and exploits maximumWigner negativity which has been showed to be necessary
for computational speedup [Ga05, CGaG+06, ME12]. Yet while negativity is necessary for

159



CHAPTER 5. QUANTUM ADVANTAGE IN INFORMATION RETRIEVAL

(0,
0)

(1,
0)

(2,
0)

(0,
1)

(1,
1)

(2,
1)

(0,
2)

(1,
2)

(2,
2)

z

x

LOSE

Figure 5.1: The Torpedo Game is a pacificist alternative to Battleship where the
aim is to avoid sinking Alice’s ship, depicted here in dimension 3.

advantage in the Torpedo game, it does not seem to be sufficient. To more precisely pinpoint
the source of quantum advantage we must look further. One natural candidate would be
preparation contextuality [Spe05], another signature of non-classicality that has been linked to
quantum random access codes in numerous studies [SBK+09, CKKS16, ABC+19]. It has been
shown to be necessary for advantage in a restricted class of random access codes subject to an
obliviousness constraint [HTMB17, SHP19]. Here however, we focus on a different characteristic
called sequential contextuality [MK18]. It indicates the absence of a hidden-variable model
respecting the sequential structure of a given protocol. It has already been used to explain the
promotion of linear computation with access to a qubit quantum resource to the complexity
class P in the setting of l2-MBQC [MK18, AB09, OGa17]. Subject to an assumption of bounded-
memory, we find that this characteristic is necessary and sufficient for quantum advantage, not
just in random access coding but in any information retrieval task. Moreover, we show that it
quantifies the degree of advantage that can be achieved.

As recalled in Section 1.5, contextuality can exhibit itself at the level of probability distri-
butions (e.g. quantum violations of the CHSH inequality [CHSH69]) but also at the level of
the supports of these distributions in some cases. In other words contextuality can be inferred
by a series of logical deductions about which events are possible or not, e.g. Hardy’s paradox
[Har92, Har93]. This situation has come to be known as logical contextuality [AB11]. In the
most extreme cases, known as strong contextuality [AB11], every possible event triggers such
a paradox [Man17], e.g. Popescu-Rohrlich box violations of the CHSH inequality [PR94]. For
qutrits the quantum perfect strategies we introduce for the Torpedo game display analogous
contextuality, and hence paradoxes, of this strongest form in a prepare-and-measure scenario.

Section 5.1 gives an overview of information retrieval tasks including random access coding
and the Torpedo Game. Section 5.2 provides background on discrete Wigner functions. Sec-
tion 5.3 deals with optimal classical and quantum strategies for the Torpedo Game. Finally,
Section 5.4 establishes the relationship between sequential contextuality and quantum advantage
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in bounded-memory information retrieval tasks. This chapter is based on [EHM20].

5.1 Information retrieval tasks

5.1.1 Random access codes

For n,m ∈ N∗ withm < n, an (n,m)2 random access code (RAC)—sometimes denoted n→ m—
is a communication task in which one aims to encode information about a random n-bit input
string into an m-bit message, in such a way that any one of the input bits may be retrieved from
the message with high probability. A (n,m)2 quantum random access code (QRAC) instead
encodes the input into an m-qubit (quantum) message state.

Such tasks may be considered as two-party cooperative games in which the first party, Alice,
receives a random input string from a referee. Alice encodes information about this in a message
that is communicated to the second party, Bob. The referee then asks Bob to retrieve the value
of the bit at a randomly chosen position in the input string. We will assume that the referee’s
choices are made uniformly at random.

For instance, for the (2, 1)2 RAC game [ANTSV99] an optimal classical strategy is for Alice
to directly communicate one of the input bits to Bob. If asked for this bit, Bob can always
return the correct answer, otherwise Bob guesses and will provide the correct answer with
probability 1

2 . Thus the game has a classical value of

θC2→1 = 1
2

(
1 + 1

2

)
= 3

4 .

X

Y x1 = 0
x2 = 0

x1 = 0
x2 = 1

x1 = 1
x2 = 0

x1 = 1
x2 = 1

Figure 5.2: The four red dots correspond to the four states |ψx1,x2〉 defined in
Eq. (5.1) depicted as points on the equator of the Bloch sphere.

Quantum strategies can outperform this classical bound. An optimal quantum strategy is
for Alice to communicate the qubit state

|ψx1,x2〉 = 1√
2

(
|0〉+ 1√

2
((−1)x1 + (−1)x2i) |1〉

)
(5.1)

where (x, z) is the input bit-string they have received. Bob measures in the X basis when asked
for x1 and in the Y basis when asked for x2 (see Fig. 5.2). If they obtain the +1 eigenvalue they
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return the value 1 and if they obtain the −1 eigenvalue they return 0. This yields a quantum
value for the game of

θQ2→1 = cos2
(
π

8

)
≈ 0.85 .

5.1.2 General Information Retrieval Tasks

One may also consider more general communication scenarios. In an (n,m)d communication
scenario the input is a random string of n dits and the message is a string ofm (qu)dits, for d ≥ 2.
(Q)RAC tasks have previously been considered in such scenarios, e.g. in [THMB15, CGaS08].

However, we also wish to accommodate for a much wider range of retrieval tasks regarding
the input dits. An information retrieval task in an (n,m)d communication scenario is specified
by a tuple 〈Q, {wq}q∈Q〉 where

• Q is a finite set of questions;
• The wq : Znd → Zd are winning relations which pick out the good answers to question q

given an input string in Znd . Note that there may be more than one good answer, or none.
It is assumed that inputs and outputs are endowed with the structure of the commutative
ring Zd.

Standard (n,m)d (Q)RACs are recovered when the questions ask precisely for the respective
input dits. In that case the winning relations wi reduces simply to projectors onto the respective
dits of the input string. However, other interesting tasks arise when the questions also concern
relative information about the input string, in the form of parities or linear combinations
modulo d of the input dits. A similar generalisation for d = 2, using functions rather than
relations, has been independently proposed in [DM21]. Below we introduce an example called
the Torpedo Game which is distinct from random access coding. We show that Wigner negativity
is necessary to outperform the best classical strategy. We later link this advantage to sequential
contextuality [MK18].

5.1.3 The Torpedo Game

Of particular interest here is an information retrieval task for (2, 1)d communication scenarios
where we fix the dimension to be d = 2 or d = 3. We take the game perspective and refer to
the task as the dimension d Torpedo Game (see Fig. 5.1 in dimension 3). Let x and z be the
two input bits or trits. There are 3 questions in Q = {∞, 0, 1} dimension 2 and 4 questions
Q = {∞, 0, 1, 2} in dimension 3. The labelling comes from a geometric interpretation to be
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elaborated upon shortly. Winning relations for the Torpedo Game are given by

w∞(x, z) = {a ∈ Zd | a 6= x}

w0(x, z) = {a ∈ Zd | a 6= −z}

w1(x, z) = {a ∈ Zd | a 6= x− z}

w2(x, z) = {a ∈ Zd | a 6= 2x− z} .

(5.2)

All arithmetic is modulo d = 2 or 3 depending on the considered dimension. The last winning
relation only features in the dimension 3 Torpedo game.

For d = 2, the Torpedo Game is equivalent to a (2, 1)2 (Q)RAC, but with an additional
question. Bob may be asked to retrieve either one of the individual input dits, or to retrieve
relative information about them in the form of their parity x⊕ z. Note that in dimension 2,
the winning relations are actually functions (there is only one good answer per question).

E

x z

D

q ∈ {∞, 0, 1, 2}

c

Alice Bob

j

Figure 5.3: Prepare-and-measure protocol for the dimension 3 Torpedo Game: Alice
receives trits x and z and sends a single message (qu)trit j via the encoding E .
Bob is asked a question q ∈ {∞, 0, 1, 2}, performs decoding D, and outputs c which
should satisfy the winning conditions given by wq(x, z) with high probability.

The Torpedo Game may be framed as cooperative, pacifist alternative to the popular game
Battleship, in which Alice and Bob, finding themselves on opposing sides in a context of naval
warfare, wish to subvert the conflict and cooperate to avoid casualities while not directly
disobeying orders. The input dits received by Alice designates the coordinates in which Alice
is ordered by their commander to position their one-cell ship on the affine plane of order d
for d = 2 or d = 3. We may think of the affine plane as a toric d× d grid, with x designating
the row and z the column. For instance in Fig. 5.4 we identify the top edge with the bottom
edge and the left edge with the right edge. Bob is a naval officer on the opposing side who is
ordered by their commander to shoot a torpedo along a line of the grid with slope specified by
q ∈ Q. The ∞ question requires Bob to shoot along some row, and the 0 question requires Bob
to shoot along some column, etc. However, Bob retains the freedom to choose which row, or
column, or diagonal of given slope, as the case may be. In other terms, upon receiving q Bob
must shoot along a lines qx− z = c (if q 6= ∞) or x = c (if q = ∞) but is free to choose the
constant c.
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Alice and Bob wish to coordinate a strategy for avoiding casualities, while still obeying
their explicit orders. Alice may communicate a single (qu)dit to Bob—greater communication
may risk revealing their position should it be intercepted—and based on this Bob must choose
their c in such a way that they avoid Alice’s ship.

5.2 The discrete Wigner function and information retrieval

Below we work in dimension 3 as the construction we present will only provide a deterministic
strategy for the dimension 3 Torpedo game. We will see that there exists a quantum strategy
inspired by this construction that outperforms the best classical strategy for the dimension
2 Torpedo game though it is not deterministic. Wootters’s geometric construction [GHW04,
Woo87] of discrete Wigner functions (DWF) based on finite fields is useful for visualising our
Torpedo Game as exemplified in Figure 5.4, where each distinct orthonormal basis corresponds
to a set of 3 parallel (non-intersecting) lines.

Figure 5.4: The red arrows depict the directions or slopes (∞, 0, 1, 2, respectively)
along which Bob may be asked to shoot in the d = 3 Torpedo Game. For each
direction, Bob has three possibilities, depicted by the blue lines. In the affine plane
of order 3, each of these groups of three blue cells forms a line.

We recall from Subsection 1.2.1 (see Eq. (1.13)) the expression of the phase point operator
at the origin of phase space Π̂ = Â0,0 (also called the parity operator):

Â0,0 :=
∑
k∈Z3

|−k〉〈k| ,

The other phase-point operators are found by conjugation with displacement operators (see
Eq. (1.12)). The phase-point operator at point (x, z) ∈ Z2

3 reads:

Âx,z := D̂x,zÂ0,0D̂
†
x,z . (5.3)

We recall the definition of the Wigner function (Eq. (1.26)). An example of representation of
the DWF in dimension 3 is given in Figure 5.5. For a density matrix ρ and for a phase-space
point (x, z) ∈ Z2

3, it is given by:

Wρ(x, z) = 1
d
Tr(Âx,zρ) . (5.4)
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Crucially phase operators may also be constructed from projectors onto mutually unbiased
bases (MUBs) [Woo87]. For x, z ∈ Z3:

Âx,z = Πx
∞ + Π−z0 + Πx−z

1 + Π2x−z
2 − 1 (5.5)

where Πi
q is the projector corresponding to dit value i in Bob’s qth measurement setting for

q ∈ {∞, 0, 1, 2}.
The eigenvectors of phase point operators are the objects of interest. The maximizing

eigenvectors of the phase point operators in Eq. (5.3) (and additional ones from different choices
of DWF) were used in Casaccino et al. [CGaS08] as the encoded messages of a (d + 1, 1)d
QRAC (for any odd power-of-prime dimension d). This is natural given the use of MUBs in
constructing DWFs, and prominence of MUBs in the QRAC literature [ABMP18]. If Alice
receives input kkk = (k1, k2, . . . , kd+1) ∈ Zd+1

d that they encodes in ρkkk and transmits to Bob, then
the average probability of success for the Casaccino et al. QRAC is

1
(d+ 1)dd+1

∑
kkk∈Zd+1

d

Tr
[
ρkkk(Πk1

1 + . . .+ Πkd+1
d+1 )

]
. (5.6)

where Πi
q is the projector corresponding to dit value i in Bob’s q-th measurement setting.

Since phase point operators can also be constructed using sums of projectors onto MUBs (see
Eq. (5.5)), the use of a maximizing eigenvector of a phase point operator for ρkkk is natural to
maximize Eq. (5.6).

Here we instead make use of the minimizing eigenvectors of phase point operators. The
rationale for this is two-fold (i) these eigenvectors display remarkable geometric properties with
respect to the measurements in (their constituent) mutually unbiased bases, and (ii) negativity
is the hallmark of non-classicality which has already been identified with contextuality (with
the previously mentioned caveat that an additional “spectator” subsystem was required). These
will be seen to lead to a perfect quantum strategy for the Torpedo Game, in which the goal is
to avoid certain answers.

Any state in the −1 eigenspace of phase point operators defined in Eq. (5.3) has an outcome
that is forbidden [vDH11, BBC12] in each of a complete set of MUBs. For example, let

|ψ0,0〉 = |1〉 − |2〉√
2

(5.7)

satisfying
Â0,0 |ψ0,0〉 = − |ψ0,0〉 . (5.8)

This state, which is indeed an eigenvector of A0,0 with eigenvalue -1, obeys

Tr(Π0
q |ψ0,0〉〈ψ0,0|) = 0 (5.9)

where Π0
q is the projector on the 0th eigenvector in the qth basis for q ∈ {∞, 0, 1, 2}. More

specifically, Π0
q is the projector corresponding to the ω0 = +1 eigenvector of the qth displacement
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operator from
{
D̂0,1, D̂1,0, D̂1,1, D̂1,2

}
. These displacement operators have eigenvectors leading

to mutually unbiased measurement bases q ∈ {∞, 0, 1, 2} respectively. For x, z ∈ Z3, the related
states |ψx,z〉 = D̂x,z |ψ0,0〉, which are eigenstates Âx,z |ψx,z〉 = − |ψx,z〉, obey

Tr
[
(Πx
∞ + Π−z0 + Πx−z

1 + Π2x−z
2 ) |ψx,z〉〈ψx,z|

]
= 0 . (5.10)

Eq. (5.10) implies that the probability of the relevant outcome (outcome x in the first basis, −z
in the second basis, etc.) in each of the MUBs is zero (see the winning relations of the Torpedo
game in Eq. 5.2). The general expression in Eq. (5.10) for any odd power-of-prime d is proven
in [How15, ABC08].

5.3 Optimal strategies for the Torpedo Game

Here we gather the optimal classical, quantum and (in one case) post-quantum strategies for
the Torpedo Game. The dimension 3 Torpedo game is notable for the existence of a perfect
quantum strategy due to the fact that there exist d+ 1 = 4 MUBs for this dimensions (it is
true in general for odd power-of-prime dimensions though there also exists a perfect classical
strategy for these dimensions). Te dimension 2 Torpedo Game also has a quantum advantage
though the quantum strategy is not perfect. The classical optimum is also established rigorously
for dimension 2 and 3. We obtain a quantum advantage in the two cases.

5.3.1 Optimal quantum and post-quantum strategies

Quantum perfect strategy for the dimension 3 Torpedo Game. From Eq. (5.10) it
follows that there is a perfect quantum strategy for the dimension 3 Torpedo game:

1. Upon receiving trits x and z Alice sends the following state to Bob:

|ψx,z〉 = D̂x,z |ψ0,0〉 = D̂x,z

( |1〉 − |2〉√
2

)
. (5.11)

2. Bob receives |ψx,z〉 and is asked a question q ∈ {∞, 0, 1, 2}. They measure the state in the
MUB corresponding to q and outputs the dit corresponding to the measurement outcome.

This quantum strategy wins the Torpedo Game deterministically, i.e. with probability 1. In
Figure 5.5 we also provide geometric intuition for why this strategy is perfect in dimension 3.

Optimal quantum strategy for the dimension 2 Torpedo Game. An analogous strat-
egy to the qutrit case can be employed for the qubit Torpedo Game, using message states
|ψx,z〉 = XxZz |ψ0,0〉 where |ψ0,0〉〈ψ0,0| = 1

2

(
I− (X + Y + Z)/

√
3
)
. For d = 2, while this does

not constitute a perfect strategy it still achieves an advantage over classical strategies. In
fact, it turns out to be an optimal strategy: this strategy achieves a winning probability of
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Figure 5.5: The perfect quantum strategy can be understood by plotting the discrete
Wigner function (see Eq. (1.26)) of the message state sent by Alice. In the above
qutrit case, Alice is in coordinate (x, z) = (2, 0), so Alice sends Bob the state
|ψ2,0〉 whose Wigner function is −1/3 at coordinate (2, 0) and 1/6 otherwise. Bob
measures this state along any of the four allowed directions, wherein the probability
of each outcome is given by sum of quasiprobabilities along the corresponding line.
Hence, the only outcomes with non-zero probability of occurring correspond to
lines not passing through (2, 0). Whichever outcome Bob sees, they may fire their
torpedo along the corresponding line, safe in the knowledge that it will not intersect
Alice’s ship. In this figure the solid blue lines correspond to the possible outcomes
for the q = 0 direction, but the same argument holds for all the other directions.

approximately 0.79 and we show that this is optimal. As explained in Subsection 1.4.4, this
problem is very hard in general (NP-hard) since it is a nonconvex bilinear quadratic problem.
To show it achieves 0.79, first we can leverage the fact that the (3, 1)2 (Q)RAC attributed
to Isaac Chuang is at least as hard to win as the Torpedo Game. This (3, 1)2 (Q)RAC has 3
independent inputs while the dimension 2 Torpedo game can be viewed as a modified (3, 1)2

(Q)RAC where the last input is the parity of the two first input bits. The (3, 1)2 (Q)RAC is
then a harder task and it has been shown to have an optimal quantum value of 1

2

(
1 + 1√

3

)
.

Thus we get a lower bound of 1
2

(
1 + 1√

3

)
≈ 0.79 on the optimal quantum value. To obtain

a matching upper bound, we implemented numerically the NPA hierarchy [NPA08] which is
a hierarchy of semidefinite programs converging from the exterior to the correlations arising
from quantum systems. Because the message sent from Alice to Bob is of finite dimension
we relied mostly on [NFAV15] which permits a characterisation of correlations arising from
finite-dimensional quantum systems. We found a matching upper bound proving that indeed
θQd=2 ≈ 0.79.

Perfect Post-quantum Strategy for for the dimension 2 Torpedo Game. The average
probability of success for the Casaccino et al. QRAC, see Eq. (5.6), can be maximized by using
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Figure 5.6: The qubit version of the Torpedo Game has a perfect strategy when
allowed access to post-quantum “states”. The red point on the surface of the Bloch
sphere represents the optimal message state |ψ0,0〉, achieving of a value of 0.79 for
the Torpedo game. The black point representing 1

2 (I− (X + Y + Z)) is not a valid
density matrix, but achieves a value of 1 in the Torpedo Game.

a post-quantum “state” of the form Πk1
1 + Πk2

2 + . . .+ Πkd+1
d+1 − I for any odd power-of-prime

dimension d, where scare quotes reflect the fact that, although it is Hermitian and has unit
trace, its spectrum is not necessarily nonnegative. In fact the “state” above is a phase point
operator, Âkkk, for one of Wootters’ discrete Wigner functions. Since phase point operators obey
Tr(Â1) = 1 and Tr(ÂÂ) = d then 1

(d+1)dd+1
∑
kkk∈Zd+1

d
Tr
[
Âkkk(Âkkk + 1)

]
= 1. In other words, there

is a perfect strategy by using post-quantum states. Seen in this way, phase point operators
in a (d + 1, 1)d QRAC scenario are similar to Popescu-Rohrlich [PR94] boxes in the CHSH
scenario. As such, our Torpedo Game has a perfect strategy within quantum mechanics for all
odd power-of-prime dimensions, by construction. In contrast, we saw that the qubit Torpedo
Game only has quantum value of roughly 0.79. To reach a perfect strategy, we may once again
use a phase point operator as the non-physical “state” that Alice sends to Bob, see Figure 5.6.

5.3.2 Optimal classical strategies

In what follows d ∈ N∗ is arbitrary and we derive the classical value of a generic information re-
trieval task in a communication scenario (2, 1)d. We describe an encoding map E = {pE(·|x, z)}x,z
as specifying a probability distribution over messages j ∈ Zd for each combination of inputs
x, z ∈ Zd. Similarly a decoding map D = {pD(·|j, q)}j,q specifies a probability distribution over
outputs c ∈ Zd for each combination of a message and question, j ∈ Zd and q ∈ Q respectively.

Combining an encoding E and a decoding D results in an empirical behaviour that we can
write e = {pe(·|x, z, q)}x,z,q. This is a set of probability distributions over outputs c ∈ Zd, one
for each combination of the referee variables x, z ∈ Zd, q ∈ Q such that

pe(c|x, z, q) =
∑
j∈Zd

pD(c|j, q) pE(j|x, z) . (5.12)
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By comparison, quantum mechanical empirical behaviours arise via the Born rule that is
pe(c|x, z, q) = Tr(ρx,zΠc

q).
Assuming the referee variables to be uniformly distributed, a strategy has a winning

probability given in terms of its empirical probabilities as
1

d2(d+ 1)
∑
x,z,q

pe(wq(x, z) | x, z, q) .

The classical value of the Torpedo Game can thus be expressed as

θCd = max
E,D

[ 1
d2(d+ 1)

∑
x,z,q

pe(wq(x, z) | x, z, q)
]
. (5.13)

To evaluate this expression note that it suffices to consider deterministic encodings and
decodings. In the presence of shared randomness, nondeterministic strategies can always be
obtained as convex combinations of deterministic ones and the expression is convex linear
[GBHA10]. Furthermore, for each encoding there exists a decoding that is optimal with respect
to it. This fact was also observed for one-way communication tasks with messages of bounded
dimension in [SHP19]. Thus it is possible to evaluate the classical value by enumerating over
deterministic encodings only.

Proposition 5.1. The classical value of an information retrieval task in a (2, 1)d communication
scenario can be expressed as a maximum over encodings as

θC = max
E

[ 1
d2(d+ 1)

∑
j,q

max
c

∑
(x,z) s.t.
c∈wq(x,z)

pE(j|x, z)
]
. (5.14)

Proof. Starting from Eq. (5.13),

θC = max
E,D

[ 1
d2(d+ 1)

∑
x,z,q

pe(wq(x, z) | x, z, q)
]

= max
E,D

[ 1
d2(d+ 1)

∑
x,z,q

∑
c∈wq(x,z)

pe(c | x, z, q)
]

= max
E,D

[ 1
d2(d+ 1)

∑
q,c

∑
(x,z)s.t.
c∈wq(x,z)

pe(c | x, z, q)
]

= max
E,D

[ 1
d2(d+ 1)

∑
j,q,c

∑
(x,z)s.t.
c∈wq(x,z)

pD(c|j, q) pE(j | x, z)
]

= max
E

[ 1
d2(d+ 1)

∑
j,q

max
c

∑
(x,z)s.t.
c∈wq(x,z)

pE(j | x, z)
]
,

where the last line follows by using a deterministic decoding that is optimal with respect to the
encoding.
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A useful way of representing any deterministic encoding is as a colouring of the d× d affine
plane using no more than d colours. Observe that a deterministic encoding can alternatively
be expressed as a function fE : Zd × Zd → Zd, where fE(x, z) is the message dit to be sent
(with probability 1) given inputs x, z. Thinking of the inputs as coordinates in the d× d affine
plane a deterministic encoding is equivalent to a partition of the plane into no more than d
equivalence classes, or a colouring using no more than d colours.

Optimal classical strategies for d = 2 and d = 3 Torpedo Game. In general there are
dd

2 partitions of a d× d grid. For low dimensions the expression in Eq. (5.14) can be evaluated
by exhaustive search over partitions. For dimension 2 and 3 we find

θCd=2 = 3
4 and θCd=3 = 11

12 . (5.15)

Example of strategies that attain these values are depicted below in Figure 5.7 and in Figure
5.8.

Figure 5.7: An optimal classical strategy for the d = 2 Torpedo Game. Alice uses
their bit of communication to indicate in which class of the partition that they find
themself. Classes are represented here by colours.

¬x ¬(−z) ¬(x− z) ¬(2x− z)

Figure 5.8: An optimal classical strategy for the d = 3 Torpedo Game. Alice uses
their dit of communication to indicate in which equivalence class (represented by
same coloured cells) of the large grid partition they find themselves. The smaller
grids (cf. Fig. 5.4) show where Bob chooses to shoot, given a direction and a colour.
For the first direction, when asked to shoot horizontally in the grid, notice that Bob
may avoid Alice with certainty if Alice is in either of the red or green partitions.
Lines that avoid Alice with certainty are depicted in the corresponding colour,
whereas black lines intersect with Alice’s position with probability 1

3 . Overall, this
strategy wins the Torpedo Game with probability 1

4(8
9 + 8

9 + 1 + 8
9) = 11

12 .
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5.3.3 Comparison of quantum and classical game values

Recall the optimal quantum values established in Subsection 5.3.1,

θQd=2 ' 0.79 and θQd≥3 = 1 . (5.16)

Comparing these with the classical bounds from Subsection 5.3.2 we obtain the ratios

θQd=2
θCd=2

' 1.053 and θQd=3
θCd=3

' 1.091 . (5.17)

By comparison, it was shown in [THMB15] that the classical and quantum values of the (4, 1)3

(Q)RAC are 16
27 and 0.637, respectively, giving a ratio of θQd=3/θ

C
d=3 ' 1.075. Accordingly, we

note that the d = 3 Torpedo Game admits a greater quantum-over-classical advantage than
the standard random access coding task whose optimal QRAC also exploits the 4 mutually
unbiased bases available in dimension 3.

5.3.4 Dimensional witness

The Torpedo Game can be used as a dimensional witness [BPA+08] for qubits and qutrits. In
the following, we modify slightly the setting of the game to allow the message to be of arbitrary
dimension. In particular, we no longer require that the message between Alice and Bob is of
the same dimension as the inputs. For instance, we will allow Alice to send a (qu)trit while
they receive two input bits. We will thus specify the dimension of the inputs as well as the
dimension of the message. Questions are defined as before and are fixed by the dimension of
the inputs: d+ 1 questions for inputs of dimension d.

Input
dimension

Message
dimension θC θQ

2 2 0.75 0.789
2 3 0.833 0.875

3 2 0.833 > 0.867
3 3 0.917 1

Table 5.1: Classical and quantum optimal values of the Torpedo Game when we
allow the message dimension to differ from that of the inputs. Classical values were
computed by exhaustive search. Quantum values were obtained by a combination of
a seesaw algorithm and implementation of the NV hierarchy [NFAV15] through the
interface QDimSum [TRR19]. Note that only the seesaw algorithm succeeded for
the trit-input, qubit-message Torpedo Game as the NV hierarchy does not perform
well with POVMs.

Following Table 5.1, we can use the Torpedo Game to discriminate between qubits and
qutrits. Moreover these witnesses can distinguish between classical and quantum systems of the
same dimension.
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5.4 Sequential contextuality

When quantum advantage is observed in a bounded-memory information retrieval task like a
(Q)RAC task or the Torpedo Game, it highlights a difference between the information carrying
capacities of qudits compared to dits for a fixed dimension. It can be remarked that such a
difference is a consequence of the different geometries of the respective state spaces. In this
section, however, we seek a sharper, quantified analysis of the source of the advantage in terms
of contextuality.

We will be using the notion of sequential contextuality that was introduced in [MK18]
to extend structural treatments of Bell-Kochen-Specker contextuality [AB11] to sequential
operational scenarios. As such, it is a behavioural characteristic that can arise in experiments
involving sequences of operations. While [MK18] was concerned specifically with sequences of
transformations, here we take a broader view that also includes the operations of preparation and
measurement. In the special case of prepare-and-measure scenarios, sequential noncontextuality
recovers a natural notion of classicality in terms of realisability by hidden-variables. For instance
in the bounded-memory regime we are interested in, sequential contextuality also matches the
characteristic introduced by Żukowski in [Żuk14].

We note that sequential contextuality is distinct from the notion of contextuality due to
Spekkens [Spe05], as discussed in [MK18]. It is also distinct from the analyses of [KZG+09,
ARBC09, LLS+11, GKC+10], which sought to close potential loopholes created by sequentiality
of measurements in experimental tests of the more traditional Bell–Kochen–Specker form of
contextuality. To determine its precise relationship with the latter analyses is however an
interesting open question.

The study of contextuality arose in quantum foundations, where a major theme is the
attempt to understand empirical behaviours that may appear non-intuitive from a classical
perspective, e.g. the EPR paradox [EPR35]. The typical approach is to look for a description
of physical systems at a deeper level than the quantum one at which more classically intuitive
properties may be restored. Such a description is usually formalised as a hidden-variable model
for the behaviour (sometimes also referred to as an ontological model [Spe05]). The great
significance of the celebrated no-go theorems of quantum foundations, like Bell’s Theorem
[Bel64] and the Bell–Kochen–Specker Theorem [Bel66, KS75], was to prove that certain ‘non-
classical’ features of the empirical behaviours of quantum systems are necessarily inherited by
any underlying model under minimal assumptions.

Non-classical features of quantum systems like contextuality are also increasingly investigated
for their practical utility. For instance, contextuality of the Bell–Kochen–Specker kind was shown
to be a prerequisite for quantum speed-up [HWVE14] and to quantify quantum-over-classical
advantage in a variety of information processing tasks [ABM17].

Bell–Kochen–Specker contextuality essentially concerns the statistics that arise under
varied measurements on a physical system. In contrast, our notion of contextuality concerns
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the statistics that arise from sequences of operations – preparations, transformations and
measurements – all of which can vary. As a behavioural feature, sequential contextuality signifies
the absence of any hidden-variable model that would preserve a compositional description
of operations performed in sequence. In other words, sequential noncontextuality requires
a hidden-variable model in which each operation has an independent, modular description
(as a transformation on hidden variables) such that to describe a sequence of operations one
simply composes their hidden-variable descriptions. We provide a more rigorous mathematical
description in the following subsections.

Rather than focusing on characteristics that must be inherited by all hidden-variable
models, as is common in foundational works, we also take a practical perspective and shift
focus to characteristics that must be inherited by bounded-memory models – a constraint that
matches the information retrieval problem at hand. In this respect, the significance of sequential
contextuality in what follows can also be viewed through a practical rather than a foundational
lens, as a characteristic that quantifies quantum advantage.

5.4.1 Empirical behaviours and hidden-variable Models

Recall from Section 5.3.2 that any strategy for a general information retrieval task gives rise to
an empirical behaviour e = {pe(·|i, q)}i,q (see Eq. (5.12)). In other words, for each combination
of input string i ∈ Znd and question q ∈ Q there is a resulting probability distribution over
outputs. This is true regardless of whether the strategy is classical, quantum, post-quantum,
or other (like generalised probabilistic theories [Bar07]). The combination of input string and
question fully specifies the precise operations that are performed in the sequence. This is
what we refer to as the context, just as a context in a (Bell–Kochen–Specker) measurement
scenario specifies a set compatible measurements to be performed jointly. We have also chosen
a formal description of empirical behaviour that echoes the formalism of empirical models for
measurement scenarios in [AB11] (see Subsection 1.5).

Given an empirical behaviour, one can ask whether it can be simulated by a bounded-
memory hidden-variable model. In particular we will be interested in models that respect the
sequential structure of the strategy, bearing in mind that the inputs and questions specify
a sequence of operations: either preparations, transformations, or measurements. Our main
focus is on prepare-and-measure scenarios, in which sequences arise from a combination of
a preparation and a measurement. To match the constraints of information retrieval tasks,
memory is bounded by the dimension of the message string. This is further motivated by the
Holevo bound [Hol73], according to which one can faithfully retrieve no more than n dits of
classical information from n qudits.

In a bounded-memory model, the hidden variable is restricted to take values in Zd with
d fixed by the communication scenario. A state preparation P is modelled by a probability
distribution pπ(· | P ) over the hidden-variable space Zd. Similarly, a measurementM is modelled
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by a family of probability distributions {pµ(· | λ,M)}λ over the outcome space, which, to
match the communication scenario, is also Zd. A hidden-variable model—e.g. for a prepare-
and-measure sequence of operations Mq ◦ Px,z with inputs x, z ∈ Zd and a question q ∈ Q, as
in Fig. 5.3—simulates an empirical behaviour as

pe(· | x, z, q) =
∑
λ

pµ(· | λ,Mq) · pπ(λ | Px,z) . (5.18)

Each operation is thus modelled in sequence as an operation on the hidden-variable space.
With Eq. (5.18) in mind, the bounded-memory classical strategies of Section 5.3 can also be

interpreted as bounded-memory hidden-variable models themselves. To see this, note that in
Eq. (5.12) encoding corresponds to hidden-variable preparation and decoding to hidden-variable
measurement.

The above description makes contact with the strategies and empirical behaviours of
Section 5.3 and it will be convenient for the remainder of this section to use a simplified
notation that meets the one from [MK18]. Let us work in the real vector space Zd with basis
given by the hidden-variable states. For all preparations Px,z, the probability distribution
pπ(· | Px,z) will be more concisely denoted as a probability vector λλλx,z in Zd. Deterministic
encoding will result in vectors λλλx,z indicating in which partition x, z belong to. For measurements,
we express {pµ(· | λ,M)}λ more concisely as, for each question, a choice of a d×d left stochastic
matrix1 Tq acting on λx,z. If we also denote by ex,z,q := pe(· | x, z, q) the empirical probability
vector over outcomes Zd, then Eq. (5.18) can be rewritten for each outcome c ∈ Zd in simplified
notation as the dot product

ex,z,q(c) = Tqλx,z · δc , (5.19)

where δc is the d-dimensional vector filled with zeros except for the cth coordinate which equals
1.

As mentioned in Subsection 5.3.2, it is sufficient to consider deterministic encodings and
decodings to achieve optimal strategies. As in [SHP19], if the message is of dimension d, if
there are |Q| possible questions, and if the outcome is a dit, then there are d|Q|d different
deterministic decoding strategies. This number can be calculated by enumerating the possible
choices of Tq for each question. There are dd possible binary left stochastic matrices hence dd|Q|

deterministic decoding strategies.
As our focus is on prepare-and-measure scenarios, we have not discussed hidden-variable

modelling of transformations. This can be found in [MK18]. For our main example of an
information retrieval task we have also focused on the prepare-and-measure version of the
Torpedo Game. Note, however, that it can be equivalently expressed in a sequential scenario
with fixed preparation and measurement.

1A left-stochastic matrix is a square matrix with each column summing to 1. It is furthermore binary if each
column consists of a single 1 and 0 elsewhere.
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5.4.2 Sequential contextuality in information retrieval tasks

Here we introduce a different notion of contextuality than the one presented in Section 1.5. It
concerns the sequence of operations that might be applied to a system. An empirical behaviour
is sequential noncontextual if it admits a hidden-variable model that: (i) preserves a modular
sequential description of operations, and (ii) the hidden-variable representation of operations is
context-independent. We refer readers to [MK18] for a detailed presentation of this concept.

These assumptions have been implicitly built into the above definition of hidden-variable
models displayed in Eq. (5.19). For (i), note that each operation has an individual description
at the hidden-variable level. For example, to obtain predictions for a prepare-and-measure
experiment we compose the individual hidden-variable descriptions of the preparation and of
the measurement, as in Eq. (5.19). And for (ii), note for example that regardless of which
context the preparation Px,z appears in it should be modelled by the same vector λx,z. One
could relax these assumptions, in which case it would become trivial to find a hidden-variable
model for any behaviour, but it would also entail giving up the intuitive sense of what the
model means.

If an empirical behaviour does not admit a sequential noncontextual hidden-variable model
it is said to be sequential contextual. In this chapter we will only be considering sequential
contextuality with respect to bounded-memory models, though the definition may be applied
more generally.

A useful intuition for sequential contextuality is that, within the memory constraints, for
any faithful model of the behaviour, the whole (the description of the context) is more than
the composition of its parts (the descriptions of the individual operations). A contextual model
would always involve additional memory and communication to track the context, which would
be outside of the constraints of the task – involving, e.g., a contextuality demon analogous
to Maxwell’s demon in thermodynamics. Indeed it was shown in [HCB+18] that a related
characteristic incurs a simulation cost as measured by Landauer erasure.

5.4.3 Quantified Contextual Advantage in Information Retrieval Tasks

The following proposition can be understood as a no-go theorem stating that winning the
Torpedo Game deterministically for d = 2 and d = 3 is incompatible with the assumptions of
sequential noncontexutality and bounded memory. If such a performance is observed then one
is forced to abandon at least one of the assumptions, and we note that the Holevo bound gives
an argument that perhaps the noncontextuality assumption is the weaker of these.

Proposition 5.2. For d = 2 and d = 3, strong sequential contextuality with respect to bounded
memory is necessary and sufficient to win the Torpedo Game deterministically.

Proof. Suppose a bounded-memory hidden-variable model realises an empirical model that wins
the Torpedo Game deterministically. Input-question combinations (x, z, q) label the contexts.
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Recall that the winning relation is ωq(x, z), and the winning condition for the Torpedo Game is

pe(c 6∈ ωq(x, z) | x, z, q) = 0. (5.20)

Using notations introduced in Subsection 5.4.1, the hidden-variable model must specify
probability vectors {λx,z}x,z∈Zd and left stochastic matrices {Tq}q∈Q such that

Tqλx,z · δc = 0 , (5.21)

for all x, z ∈ Zd,∀q ∈ Q and c 6∈ ωq(x, z).
As mentioned in Subsection 5.3.2, it suffices to consider deterministic strategies. Eq. (5.21)

reduces to a set of binary linear equations (36 equations for d = 3) that any sequentially
noncontextual realisation must jointly satisfy.

This cannot be possible since it would provide a perfect classical strategy for the d = 2
and d = 3 Torpedo Games, violating the optimal bounds Eq. (5.15) that were obtained by
exhaustive search. On the other hand, it is always possible to obtain a contextual realisation, by
taking context-wise solutions to Eq. (5.21): e.g. where the choice of λλλx,z is not only a function
of x and z, but also of q.

It can further be observed that if any fraction of an empirical model e can be described
noncontextually, i.e. NCF(e) = p > 0, then with an average probability at least p the empirical
model e fails in the Torpedo Game. Therefore, to win the Torpedo Game deterministically
requires strong contextuality.

An explicit noncontextual memory-bounded hidden-variable model that fails to fully realise
the empirical predictions but that satisfies the maximum of 33 out of 36 constraints—thus
reaching the maximum probability 11

12 for the Torpedo Game with input trits—from Eq. (5.21)
for d = 3 is the following. The state vectors are

λ0,0 = λ0,1 = λ1,1 = δ0 ,

λ1,0 = λ0,2 = λ2,2 = δ1 ,

λ2,0 = λ2,1 = λ1,2 = δ2 .

The measurement left-stochastic matrices are

T∞ =


0 0 1
0 1 0
1 0 0

 , T0 =


0 0 1
0 1 0
1 0 0

 , T1 =


0 1 0
0 0 1
1 0 0

 , T2 =


0 0 1
0 1 0
1 0 0

 .

This corresponds to the strategy depicted in Fig. 5.8 with the green section corresponding to
sending the message δ0, the blue one to δ1 and the red one to δ2.

We also obtain the following more general result, of which Proposition 5.2 is a special case.
This is an extension of [ABM17, Theorem 3] to the case of information retrieval tasks with
sequential contextuality rather than measurement contextuality.
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Theorem 5.1. Given any information retrieval task and strategy with empirical behaviour e,

ε ≥ NCF(e) ν

where ε is the probability of failure, averaged over inputs and questions, NCF(e) is the bounded-
memory noncontextual fraction of e with memory size d fixed by the scenario, and ν := 1− θC

measures the hardness of the task, θC being the classical value.

Proof. The empirical behaviour can be decomposed as:

e = NCF(e)eNC + CF(e)e′

where e′ is necessarily strongly contextual. From this convex decomposition, we obtain that the
probability of success using the empirical model e reads:

pS,e = NCF(e)pS,eNC + CF(e)pS,e′

where pS,eNC and pS,e′ are the average probabilities associated with empirical models eNC and
e′ respectively. At best, e′ wins with probability 1 and thus:

pS,e ≤ NCF(e)pS,eNC + CF(e)

ε ≥ NCF(e)εeNC

and εeNC = 1 − pS,eNC is the average probability of failure associated to eNC. Since eNC is
noncontextual, we know that the minimum probability of failure is ν = 1− θC , where θC is the
classical value of the game. Then εeNC ≥ ν, from which we obtain the desired inequality:

ε ≥ NCF(e)ν

This provides a quantifiable relationship between quantum advantage and sequential con-
textuality Inequalities of this form are also known to arise for a variety of other informational
tasks that admit quantum advantage, with hardness measures and notions of non-classicality
adapted to the particular task [ABM17, MK18, Wes18].

5.5 Discussion and open problems

We have formalised a class of information retrieval tasks in communication scenarios, of which
the much-studied problem of (quantum) random access coding is a special case. We showed
that quantum-over-classical advantage is explained by quantum (sequential) contextuality. We
have identified a distinct information retrieval task that we have presented as the Torpedo
Game, which admits a greater quantum-over-classical advantage than the comparable QRAC for
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qutrits by exploiting Wigner negativity. Remarkably, the qutrit torpedo strategy is maximally
contextual, meaning that no fraction of it can be explained by an underlying noncontextual
model. By choosing measurements that are associated with a particular discrete Wigner function,
Wigner negativity seems a necessary ingredient for a quantum strategy to perform better than
a classical one as the optimal quantum strategy relies on it. However post-quantum strategies
(e.g. using phase point operators) might be optimal while remaining Wigner positive. A more
thorough investigation of the precise relationship between negativity and advantage is an
interesting direction to pursue.

To obtain perfect quantum strategies for the Torpedo Game we have derived a prepare-and-
measure scenario for which quantum mechanics exhibits logically paradoxical behaviour (with
respect to noncontextual hidden variable assumptions). More generally, we have identified this
as a characteristic that quantifies quantum advantage for any bounded-memory information
retrieval task.

In the specific case of random access coding, some works have imposed obliviousness
constraints as part of the task as opposed to bounded-memory. These restrict what information
the receiver can be allowed to infer about the input string. Whereas preparation contextuality
is known to be necessary and sufficient for quantum advantage in oblivious tasks [HTMB17,
SHP19], we have shown sequential contextuality to be necessary and sufficient characteristic
for bounded-memory tasks.

Importantly, a nonlocal version of the Torpedo Game was derived after our corresponding
paper in [HXG+21], where it was also implemented experimentally. This example was employed
to certify quantum correlations allowing to test for nonlocality, steering and quantum state
tomography in a single experiment. Based on this nonlocality experiment, entanglement in
prepare-and-measure scenarios was further studied in [PTWP21].

We only restricted the analysis to dimensions 2 and 3 because as the dimension increases,
the Torpedo Game gets easier as the number of right answers to each questions grows linearly
with the dimension (there are d− 1 correct answers in dimension d). The classical optimum can
only be established rigorously for small dimensions, owing to the proliferation of possible hidden
variable assignments as the dimension increases. We have, however, found perfect classical
strategies, i.e. strategies that win with probability 1, for d = 4 up to d = 23 by randomly
generating grids (see Figure 5.9 for an example in dimension 5). We thus conjecture that the
Torpedo Game has a perfect classical strategy for dimension 4 and above.

However, we briefly comment on a possible generalisation to higher dimensions. In order
to re-instate a quantum-over-classical advantage, as we had in dimensions two and three, we
may modify the Torpedo game to make it harder to win classically. Note that the following
modifications have no effect on the quantum values, which remain θQd≥3 = 1. As previously
noted in [Gro06, vDH11], the eigenvectors of phase point operators Eq. (5.3) are degenerate:
a +1 eigenspace of dimension d+1

2 and a −1 eigenspace of dimension d−1
2 . Thus it is possible
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¬(x) ¬(−z) ¬(x− z) ¬(2x− z)¬(3x− z)¬(4x− z)

Figure 5.9: A perfect classical strategy for the d = 5 Torpedo Game. As in Figure
5.8, cells of the same color belong to the same partition. The lines that avoid Alice
are depicted below for every question Bob can be asked.

to enlarge Alice’s input from d2 to d2(d−1)
2 . Formally, let 0 ≤ ` < d−1

2 , so Alice sends Bob
|ψx,z,`〉 = XxZz (|`+ 1〉+ |−(`+ 1)〉) /

√
2, instead of just |ψx,z,`=0〉 := |ψx,z〉 as before. The

modification changes a single relation from w∞(x, z) = {a ∈ Zd | a 6= x} to

w∞(x, z, `) = {a ∈ Zd|a ∈ {x+ `+ 1, x− `− 1}},

whereas the remaining conditions persist i.e, wq(x, z, `) = wq(x, z) in Eq. (5.2) for q ∈
{0, 1, . . . , d−1}. It seems reasonable that such a game, with more restrictive winning conditions,
should be harder to win classically. Indeed, we were unable to find any perfect classical strategy
by sampling, although we cannot rule out its existence since we were unable to exhaustively
check all classical strategies. More generally, we have motivated how our perfect quantum
strategies for this information retrieval task arise from a remarkable geometric feature of
maximally negative states (c.f. Eq. (5.10)), and we expect that this insight can be further mined
for obtaining other examples of quantum advantage.
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Conclusion and outlook

Since the seminal papers of Feynman [Fey82] and Deutsch [Deu85], quantum information
scientists have asked some fundamental questions: are there computational problems that are
provably hard for classical computers but which are efficiently solvable on a quantum computer?
what really makes a quantum computer non-classical? what is the best route towards scalable
fault-tolerant quantum computers? Unable to answer any of these, in this thesis we have
considered how contextuality and Wigner negativity play a fundamental role as non-classical
features.2

In this dissertation, we have introduced a robust framework for contextuality in continuous
variables along the lines of the discrete-variable one introduced in [AB11]. The Fine–Abramsky–
Brandenburger (FAB) theorem extends to continuous-variables, even in the case where there
are an uncountably infinite set of measurement labels. The contextual fraction [ABM17] can
be defined with infinite-dimensional linear programming and it can be approximated through
Lasserre-type of semidefinite relaxations [Las09].

Thanks to the FAB theorem, we have generalised the seminal result from [HWVE14]—
namely that Wigner negativity corresponds to measurement contextuality with respect to Pauli
measurements—to the continuous-variable realm. These first two contributions have closed a
portion of the gap between discrete variables and continuous variables by showing how some
important concepts and results extend between them.

We have introduced a reliable method for witnessing Wigner negativity that can be efficiently
implemented experimentally. Each witness is associated with a threshold value that can
be computed using infinite-dimensional linear programming. Relaxing and restricting these
programs yield two converging hierarchies of semidefinite programs that provide tighter and
tighter upper and lower bounds on the threshold values for increasing ranks in the hierarchies.
Importantly, we have shown how well the hierarchies perform numerically on realistic examples.

We have then sought to extend the range of tasks for which non-classicality is known to
be a useful resource, by tying it to and using it to design information retrieval tasks with a
quantum-over-classical advantage We have introduced a game—the Torpedo Game—where
a quantum advantage can be derived for finite-dimensional systems of dimensions 2 and 3.
Crucially, the optimal quantum strategies make use of quantum states with maximally negative

2These ironic few last sentences are a pastiche of the introduction in [RT21].
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discrete Wigner functions. To pinpoint the source of quantum advantage, we have shown
that, subject to an assumption of bounded memory, sequential contextuality is necessary and
sufficient for quantum advantage in any information retrieval task and in particular the Torpedo
Game. A nonlocal version of the Torpedo Game was later derived in [HXG+21], where it was
experimentally tested to certify quantum correlations, allowing to test for nonlocality, steering
and quantum state tomography in a single experiment.

As shown in this dissertation, optimisation theory can lead to interesting results that help
answering questions arising in quantum information. It has also been used to obtain information
about the ground-state energy of a Hamiltonian [BH13] or to obtain bounds on the maximum
quantum violations of Bell inequalities [NFAV15]. It is natural to wonder what other problems
from quantum information might benefit from optimisation theory and in particular from
nonlinear polynomial optimisation with noncommutative variables [NPA07, KMV20].

Perhaps a less obvious outlook is the converse question, that is to wonder whether opti-
misation theory may benefit from quantum information from a theoretical point of view3. In
order to solve a Global Moment Problem (see (GMP)) for sparse instances with the Lasserre
hierarchy, the original problem is split into several sub-problems [WLT18, KMP21]. Solving
a sparse GMP thus amounts to solving smaller instances of the problem i.e. finding optimal
measures on reduced space and then combining the solutions into a global solution. Of course
this can only be implemented if we are certified that the solutions of the smaller problems
can be combined—or glued—consistently. In words used throughout this dissertation, this
requires that the optimal measures on sub-problems can be extended consistently to a global
probability measure. Because the smaller optimisation problems can pick out any solution of
the corresponding feasible space, being able to glue them consistently requires that the splitting
into sub-problems corresponds to a noncontextual scenario for otherwise a consistent global
measure may not exist. Interestingly, the problem of gluing measures consistently was first
introduced by Vorob’ev [Vor62] and of course it bears a close relationship to noncontextuality
[Bar14]. It is also extensively studied for optimal transport [Vil09].

It is expected that results linking contextuality and/or Wigner negativity to advantage will
continue to emerge. We have provided some answers in this dissertation, but it will be interesting
to see what other tools, results, and insights can be transferred from discrete variables to
continuous variables and vice versa.

The equivalence between contextuality and Wigner negativity in continuous variables for
at least two systems was shown using all possible Weyl measurements. Of course the set of
all possible Weyl measurements is a continuum and one has to wonder if the equivalence still
holds in a realistic experimental setting where only a finite number of measurements can be
implemented. One problem that may arise is that the fact that the Wigner function is the

3Of course having a quantum computer might help greatly for solving some optimisation problems but this
is not what we are wondering here.
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unique quasiprobability distribution yielding the correct marginal distributions can only be
established using all possible Weyl measurements [BB87, BG20].

From this equivalence, it is also very tempting to understand the precise relationship
between measures of quantumness. In particular, is there a direct link between the negativity
volume and the contextual fraction? This dissertation may provide a jumping off point for
understanding how to derive a general resource theory of non-classicality along the lines of the
resource theory of contextuality presented in [ABKM19], for which all of these measures would
be non-classicality monotones.

Also we know that the violation of the threshold value associated to a Wigner negativity
witness introduced in Chapter 4 provide a lower bound on the distance to the set of Wigner
positive states. One may wonder if there is a link between this distance and the contextual
fraction so that the aforementioned violation may provide a lower bound on the contextual
fraction. This dissertation may also be useful for understanding how to derive a general resource
theory of non-classicality.

Different and more fine-grained notions of contextuality or non-classicality can be useful
for example in obtaining an ever finer understanding of quantum advantages. Sequential
contextuality is one example that we have shown to provide a good characterisation of advantage
in information retrieval. We expect that this this notion and other finer or more generalised
notions will will continue to give rise to communication or computation tasks with a quantum-
over-classical advantage.

Finally, it is still an open question to understand precisely and quantifiably what is the non-
classical phenomenon at the root of recent, and much mediatised, demonstrations of quantum
computational advantage [AAB+19, ZWD+20]. This dissertation might provide partial answers
to start answering this very challenging question.
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