
HAL Id: tel-03987575
https://theses.hal.science/tel-03987575v1

Submitted on 14 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis for parameterized systems
Mathieu Lehaut

To cite this version:
Mathieu Lehaut. Synthesis for parameterized systems. Théorie et langage formel [cs.FL]. Sorbonne
Université, 2020. Français. �NNT : 2020SORUS341�. �tel-03987575�

https://theses.hal.science/tel-03987575v1
https://hal.archives-ouvertes.fr

Synthesis for Parameterized Systems

Mathieu Lehaut

Contents

1 Introduction 3

2 Preliminaries 9
2.1 Transition Systems . 9
2.2 Control . 12

2.2.1 Dynamic Concurrent Transition Systems 12
2.2.2 Control Problem . 15

2.3 Synthesis . 18
2.3.1 Data Words . 18
2.3.2 First-Order Logic . 19
2.3.3 Synthesis Problem . 22

3 Control 25
3.1 DPS . 25

3.1.1 Definition . 25
3.1.2 Emptiness Problem . 27

3.2 Round-bounded Behaviors . 29
3.2.1 Round-bounded semantics . 29
3.2.2 Decidability of DPS-EMPTINESSrb 30
3.2.3 PSPACE-hardness of DFS-EMPTINESSrb 43

3.3 DPG . 46
3.3.1 Dynamic Pushdown Games 46
3.3.2 Upper Bound . 49
3.3.3 Lower Bound . 67

3.4 Context-bounded Control . 71
3.4.1 Context-Bounded Runs . 71
3.4.2 Undecidabilty for Context-Bounded Runs 73

4 Synthesis 79
4.1 Preliminaries . 79

4.1.1 Executions and first-order logic 79
4.1.2 Winning triples, Synthesis, Cutoffs 81

4.2 FO2[∼, succ, <] . 83
4.3 FO[∼] . 89

4.3.1 Normal form . 89
4.3.2 Parameterized vector games 96
4.3.3 Cases of (0, 0,N) and (N,N, 0) 107
4.3.4 Case of (N, {ke}, {kse}) . 117

1

CONTENTS CONTENTS

5 Conclusion 120
5.1 Summary of our contributions . 120
5.2 Perspectives . 120

2

Chapter 1

Introduction

Parameterized Systems

The first computers were machines used to solve problems in a simple way: a single
task was solved by a single machine. However, this view certainly does not hold
today. Progress in communication networks made it possible for multiple computers
to cooperate to solve a single task, whether located next to each other or halfway
across the world. Even with a single computer, a single task can be performed by
multiple processes each supported by different cores.

Indeed, nowadays many systems are composed of a number of distinct but in-
teracting participants. For instance, a fleet of drones may cooperate in order to
explore some unknown terrain by communicating between them the data they gath-
ered. Or, imagine some kind of distributed computing where computing nodes are
located in several different data centers. They are sent parts of a problem to be
solved, and then those solutions are assembled to compute the final answer to the
initial problem. Another example would be communication protocols, where routers
collaborate in order to create efficient paths to relay data from point A to point B.
Such systems are usually called distributed systems.

One important parameter of a distributed system is the number of entities taking
part in this system. Indeed, a programmer may write different programs depend-
ing on whether there are two, ten, or more participants. However, it is not always
possible to know this number in advance. Sometimes, the number of active partic-
ipants is only known at the beginning of the execution. Sometimes, new entities
can dynamically join the system in the middle of an execution. In any case, the
system should always be able to complete the task it has been given, whatever the
number of participants. Those distributed systems called parameterized systems. In
this work, participants in a parameterized system will generally be called processes.

The main difficulty when reasoning about parameterized systems is that there
is no bound on the number of processes involved in that system. We can further
distinguish two cases of parameterized systems: when for each execution of the
system the number of processes is fixed throughout the execution (although not
known in advance), and when new processes can be added during an execution. The
former case is the parameterized case, while the latter will be called the dynamic
case. See for instance [BJK+15] for results on verification for the parameterized
case, and [BMOT05] for an example of model using dynamic creation of threads.

Moreover, we consider systems where processes may interact with an external

3

CHAPTER 1. INTRODUCTION

Figure 1.1: Illustrations of various distributed systems

environment that is not under control of the system. This uncontrollable environ-
ment can model various real-world phenomena. In the case of a drone fleet exploring
some unknown terrain, drones may be equipped with sensors that gather data about
that terrain, but obviously they cannot control whether, e.g., there is a wall right
in front of them, or if the terrain is flat and has no obstacle. For distributed com-
puting, an operator may input some data during the execution to alter the flow of
the computation.

Whatever the case is, the system needs to react to these perturbations and still
manage to fulfill its task. Systems interacting with an uncontrollable environment
are called open systems, or also reactive systems, as opposed to closed systems where
everything is controllable. The environment adds another layer of complexity when
dealing with such systems. Since it cannot be controlled, it is often modeled as an
hostile antagonist, that tries to make the system fail its task. If the system can
still fulfill its goal against an environment trying to prevent it, then we know that
the system will always accomplish its objective. Conversely, if the environment can
prevent the system from doing that, then we know that in at least one case the
system cannot fulfill its task and therefore is not correct.

Specifications, Control, and Synthesis

The different systems we described have a common point in that they have a task
that needs to be accomplished. More precisely, among all executions of a system,
only a subset of those are desirable executions, in other words, only some of the
possible behaviors of the system are deemed correct. A specification is a way to
describe such a set of correct behaviors. We say that a behavior satisfies the speci-
fication if that behavior belongs to the set of correct behaviors, with respect to this
specification.

Let us go back to the previous examples of parameterized systems. If we consider

4

CHAPTER 1. INTRODUCTION

the drone fleet that needs to investigate some terrain, then a possible specification
could say that the whole terrain needs to have been explored and that the terrain
information needs to have been passed to every drone in the fleet. If we consider a
distributed computing system, then maybe the specification ensures that the com-
puting eventually ends and that all participants agree on the correct value.

As the programmers behind every program are human (at least usually), mistakes
in the code are unavoidable, and the program written may not work as its authors
intended. Such mistakes can have many repercussions, ranging from benign bugs
that only make the user lose some time to catastrophic machine failures costing
billions in damage cost and potentially endangering human lives. Many engineering
methods have been created to mitigate those risks, ranging from code review to
unit tests, but in the end relying on the human mind always leave the possibility of
missing a mistake. Therefore, the field of automatic verification is a thriving field
of research whose main goal is to automatically ensure that programs actually do
what their authors think they do. See for instance [Esp14] for an overview focusing
on closed systems.

Among the many methods used in automatic verification, model-checking is a
popular method (see e.g., [CJGK+18, CHVB18, BJNT00]) generally defined as fol-
lows: given an abstract model M of the system and a formal specification ϕ, do
all executions of M satisfy ϕ? Usually, the model M is an abstraction of the real
system that can be checked exhaustively, which is usually not possible to do on the
real system, while the specification ϕ is often given in some kind of formal logic
describing the set of correct behaviors of M .

There are however some drawbacks to model-checking as a tool for verification.
First, the users must provide both the model and the specification given as input.
While designing specifications is usually not too complex if the formalism is easy
to use, creating a model representing a system is usually a hard task. But let us
assume that the users have both a model and a specification, and feed them to some
model-checking tool. If the tool answers that the model is correct, we are done.
However, if the tool answers negatively, then usually a counter-example is given to
the users. Then they need to understand why there is an error, tweak the system
and the model, then try again with the model-checking tool, and iterate like this
until a positive answer is received. The drawbacks are twofold: first this procedure
takes a lot of human working time in order to create and then modify the models,
and secondly the users are not even sure that they will eventually reach a correct
model. Indeed, imagine that after n iterations the model is still not correct. The
users have invested a lot of time and resources, but they are still unsure. How
can the user know whether he simply needs a few more iterations, or whether the
specification cannot actually be satisfied at all whatever the model?

To solve those problems, we turn to automatic synthesis of programs. Here, the
goal is to automatically generate a program that is correct by construction, with
respect to some specification given as input. Then there are two possible outcomes:
either a correct program exists and is output, or the specification can not be satisfied
and a negative answer is output. This solves both problems of model-checking in
that the user only has to provide the specification, and not models of the system,
and that there is no need to iterate because either there is a correct program and
the synthesis tool will output such a program, or there are none and the user will
know that their specification is simply not feasible. The drawback of this approach

5

CHAPTER 1. INTRODUCTION

is of course that generating a program from scratch is usually harder than simply
checking an existing one. To partially alleviate this hard part, we also study some
kind of intermediate method called automatic control, where a partially defined
system is also given as input. This partially defined system is such that at every
step of an execution, multiple choices for the next action are available. The goal of
this method is to generate a controller which dictates what action should be taken
in order to satisfy the specification, if such a controller exists.

The synthesis problem was first defined by Church in [Chu57] in the context
of circuit synthesis. Remember that we consider open parameterized systems that
interact with an uncontrollable environment. The synthesis and control problems
are then better described using game theory formalism: two players that we call
System and Environment play actions and build an execution while trying to re-
spectively satisfy and falsify the specification. Then the goal is to find a strategy for
System such that whatever Environment does, all resulting executions satisfy the
specification. This strategy, if it exists, can then be translated to a correct program
for the system. And if there is no such strategy, then we can negatively answer the
problem. This view actually comes from [BL69], which was the first work framing
Church’s problem into a game formalism. This led to a better understanding of
the problem, and was followed by Rabin’s works in [Rab72] using tree automata to
solve this problem. Since then, the synthesis problem has been extended in many
different directions. For instance, [HTWZ15] measures the time between a request
and its response to define optimal strategies for reactive systems. Synthesis with
a non-discrete amount of time is investigated in [JORW11]. Then many differ-
ent ways to express specifications have been studied. For example, the synthesis
problem has been studied for an extension of LTL with parameterized temporal
operators [JTZ18], for register automata and transducers [KK19, EFR19, KMB18],
for N-memory automata [BT16], and for the Logic of Repeating Values [FP18a].
Moreover, distributed synthesis for specific communication architectures were stud-
ied in, e.g., [PR90], [KV01], and [FS05]. In order to lower the inherent complexity
of this problem, underapproximation techniques were developped such as in [QR05]
and [LTKR08] in which the number of context switching is bounded, thus limiting
the space of possible executions.

To study the synthesis problem on systems with an unbounded number of pro-
cesses, we naturally turn to words on infinite alphabets, also known as data words.
Data words can be used to model executions of such systems, as the infinite alpha-
bet lets us write process identities for any number of different processes. Unlike
classical words however, there is no canonical automaton or notion of regular lan-
guages. Various approaches have been studied to specify data words languages.
Finite-memory automata (also known as register automata) are defined in [KF94].
A register automaton can store the data read in one of its registers (which come in a
fixed number), and then later check for equality between the new currently read data
value and one of the data stored in a register. A similar view is studied in [DL09]
where a freeze quantifier is added to LTL formulas which also allows to check equal-
ity between a data value and another deeper in the formula, followed by [DDG12]
where a restricted use of the freeze quantifier is suggested which only allows to state
that a data value is repeated. In [BDM+11], class automata are defined to deal with
set of data words represented by first-order formulas with two variables. Regular
expressions for data words are defined in [LTV15], called regular expressions with

6

CHAPTER 1. INTRODUCTION

memory, which are equivalent to register automata. Two other automata types
called alternating variable Büchi word automata and nominal automata are studied
in [FGS19] and [SKMW17] respectively.

The scope of this thesis is to study the synthesis and control problems for pa-
rameterized systems.

Contributions

To study the control problem, we first need a model for the partially defined systems
given as input to the problem. To that end, we define Dynamic Pushdown Systems
(shortened as DPS), a model for parameterized systems where each process comes
equipped with an unbounded stack structure. This stack structure allows us to
model various useful real-life mechanisms, such as unbounded data storing for each
process, a recursion stack for recursive function calls, or simply any last-in-first-
out data structure. Moreover, processes in a DPS share a common finite state
called global state. This global state is a way to represent communication between
processes via a shared (finite) resource, which can be found for instance in lock
mechanisms for parallel computing. Then each process can asynchronously perform
transitions depending on its local state and on the shared global state, and update
both of them. Finally, new processes can join dynamically during an execution,
without any limit on the total number of participants. An acceptance condition is
given as target states for both the global state and the state of each process, and
serves as a kind of specification for the system. Indeed, these target states represent
either a “good” state of the system that we want to reach in acceptable executions,
or reversely can be seen as sets of “bad” states that need to be avoided for an
execution to be acceptable.

Such systems are highly complex: even the problem of knowing whether there
is at least one acceptable execution is undecidable, so the control problem is even
more out of question. Therefore, we study a natural restriction on the set of possible
executions by only focusing on round-bounded executions, as defined in [LMP10a],
which imposes a fixed order on processes performing transitions during the execu-
tions. This restriction comes naturally in the context of ring architectures with
token passing for instance, where processes are organized in a round-robin fashion
and can only execute actions when they have a token, which they then pass to the
next process when they are done and so on. When considering this restriction, we
prove that the existence of an acceptable execution is PSPACE-complete. Finally,
we consider the control problem by splitting global states into System states and
Environment states, so that the owner of the current global state decides which
process performs which transition in the next step. This allows us to model the
uncontrollable part in the system. We show that the control problem is decidable,
albeit non-elementary, and that having stacks does not actually make this problem
harder (but still let us model more expressive systems).

This forms the content of Chapter 3. Most of these results were published in our
ATVA 2018 article [BLS18].

For the synthesis problem, we consider a finite alphabet of actions split into
System actions and Environment actions in order to distinguish controllable and
uncontrollable events. Unlike in the previous chapter, we consider the parameterized

7

CHAPTER 1. INTRODUCTION

case for executions: a finite set of processes is fixed before the execution and no other
processes can be involved during the execution. To allow for more precise models,
we also split that set of processes into System processes, Environment processes,
and mixed processes, with the intention that System processes can only perform
System actions, Environment processes can only perform Environment actions, and
mixed processes can do both types. The motivation behind this distinction is that
both players are not necessarily able to act with all processes. For instance, with our
drone fleet example from before, maybe only a small part of the drones are equipped
with sensors so it would not make sense to let Environment actions be performed
on processes without those.

To represent executions of the system, we use data words to model the finite but
not bounded in advance number of processes. We then consider specifications given
by formulas of first-order logic. We formalize the synthesis game as an asynchronous
game where System and Environment do not necessarily strictly alternate, instead
Environment may perform actions at any time while System must wait for Environ-
ment to let him play. Indeed, if Environment represents an uncontrollable part in
the model, then it would be slightly unnatural to enforce a System-Environment-
System-... strict alternation. To avoid pathological cases, we add a simple fairness
condition. The synthesis problem is about deciding whether there is a winning
strategy for System given a finite alphabet and a formula for the specification. This
problem is parameterized by the class of formulas used and by the cardinality of the
sets of processes. We study this problem for two natural subclasses of first-order
logic, and prove for one of these subclasses that the problem is decidable if and only
if Environment only controls a bounded number of processes (whereas the set of
System processes is still unbounded).

This is the content of Chapter 4, and the results were published in our FoSSaCS
2020 article [BBLS20].

This work is organized as follows. In Chapter 2, a few important notions for
control and synthesis are defined. Chapter 3 focuses on the control problem, with the
first section introducing the model for parameterized systems, the second introducing
the round-bounded restriction, the third section is for results for the control problem,
and the fourth studies an alternative restriction. The synthesis problem is studied
in Chapter 4, which is defined in the first section, with the following two sections
dedicated to two subclasses of first-order logic. Finally, we conclude in Chapter 5.

8

Chapter 2

Preliminaries

Let N be the set of natural numbers and N> = N \ {0}. If A is an alphabet (finite
or not), then A∗ denotes the set of finite words on A, Aω the set of infinite words on
A, and A∞ = A∗ ∪Aω is the union of both. If w = a0a1 . . . an−1 is an element of A∗

then its size, denoted by |w|, is n. If w ∈ Aω then let |w| = +∞. We denote by ε
the empty word, that is the only word of size 0. Let Pos(w) be the set of positions
of w, i.e. Pos(w) = {0, 1, . . . , n} if w is a finite word of size n, and Pos(w) = N if
w is infinite. If w = a0a1 · · · ∈ A∞ is a word and i ∈ Pos(w), then let w[i] = ai.
Finally, we say that a ∈ w if there is an i ∈ Pos(w) such that w[i] = a.

2.1 Transition Systems

As said in the introduction, we want to study open parameterized systems, that is,
systems with an unknown number of processes interacting with an external envi-
ronment. Naturally, we need a way to model those systems in order to be able to
define and solve problems about them. And first, before modeling the system as a
whole, we need a way to model what a single process is capable of. Stated in the
most general way, a process has an internal state, and depending on this state it
can execute actions which will then update its internal state.

Let us formalize this idea by the notion of transition systems. Let Σ be a finite
set of action labels.

Definition 1. A Σ-labeled transition system (short: Σ-LTS) is a tuple T = (V,E, vinit)
where:

• V is a (finite or infinite) set of nodes,

• E ⊆ V × Σ× V is the transition relation, and

• vinit ∈ V is the initial node.

Now let T = (V,E, vinit) be a transition system, we say that a node v is an
a-successor of u if (u, a, v) ∈ E, and that v is a successor of u if there is a ∈ Σ such
that v is an a-successor of u. We say that a transition system is deterministic if for
all u ∈ V and a ∈ Σ, there is at most one v ∈ V such that v is an a-successor of u.
Otherwise, we call the transition system non-deterministic.

A finite partial run is a non-empty, finite sequence of nodes ρ = v0v1 · · · vn such
that for all 0 < i ≤ n, vi is a successor of vi−1. Infinite partial runs are defined

9

2.1. TRANSITION SYSTEMS CHAPTER 2. PRELIMINARIES

q0 q1

req

req

ack

ack

Figure 2.1: Illustration of a request-acknowledgment transition system for a single
process.

similarly, except that the sequence of nodes is infinite. A finite (resp. infinite) run
is a finite (resp. infinite) partial run starting from vinit . Note that a run can be seen
as a word on the alphabet V . Let Runs(T) be the set of all runs of T .

A (labeled) transition system is effectively a way to model the computation of
a single process, in the following sense: for a given (finite or not) run ρ = v0v1 · · · ,
we say that a word w = a0a1 . . . over Σ is compatible with ρ if for all 0 ≤ i < |w|,
vi+1 is an ai-successor of vi. Intuitively, a run is the sequence of states a process
visits during an execution, while a word compatible with that run can be viewed as
a trace of the actions made by the process that ended up giving the run in question.
Note that a single run can have multiple compatible words, as a node v can be both
an a-successor and an a′-successor of the same node u for two different labels a 6= a′.

Transitions systems are used to define semantics of different models. Let us
introduce two kinds of such models: finite state machines and pushdown machines.

Definition 2. A finite state machine is a tuple M = (Σ, Q, T, q0) where Σ is a finite
alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, and T ⊆ Q× Σ×Q
is the transition relation.

The semantics of a finite state machine is the Σ-LTS TM = (Q, T, q0), so we call
a run of M a run of the underlying transition system TM , and say M is deterministic
if TM is deterministic.

Finite state machines are a natural way to model simple processes with a bounded
memory.

Example 1. Imagine a simple distributed system where an unbounded pool of
processes can receive requests and later acknowledge them. To model this kind of
actions, we introduce the alphabet Σ = {req , ack} where req is a label for a request
action and ack a label for an acknowledgement action.

We define a finite state machine M as follows, illustrated in Figure 2.1: M =
(Σ, Q, q0, T) with Q = {q0, q1}, and T = {(q0, req , q1), (q1, req , q1), (q1, ack ,
q0), (q0, ack , q0)}. Here q0 is the state of the process when there is no pending request,
while q1 is the state reached when there is one or multiple pending requests. An
example of run is ρ = q0q1q0q1q1q0, with w = req ack req req ack being a compatible
word.

However, sometimes having only a bounded memory is too restrictive for model-
ing purposes. For instance in the previous example, one acknowledgment is enough
to satisfy any number of requests, whereas one may want to simulate a process that
needs to acknowledge each request received individually.

Let us then define another model where this time the semantics is an infinite
transition system. This model has access to an unbounded memory, represented

10

2.1. TRANSITION SYSTEMS CHAPTER 2. PRELIMINARIES

as a stack. This is a data structure where symbols from a stack alphabet can be
pushed to add them into the stack, and later popped to be retrieved. However, only
the most recently pushed symbol can be popped. This is often referred to as a
Last-In-First-Out structure.

Let Act = {push, pop, int} be the set of stack actions : push when a symbol is
pushed onto the stack, pop when a symbol is popped from the stack, and int (for
internal action) when the stack is not modified.

Definition 3. A pushdown machine is a tuple P = (Σ,Γ, Q, T, q0) where Σ is a
finite alphabet, Γ is a finite stack alphabet, Q is a finite set of states, q0 ∈ Q is the
initial state, and T ⊆ Q× (Σ× Act× Γ)×Q is the transition relation.

A configuration of a pushdown machine is a pair (q, γ) ∈ Q×Γ∗: q is the current
state and γ, a word on Γ, is the current content of the stack with the first (leftmost)
letter being the most recently pushed stack symbol.

The semantics of a pushdown machine is a Σ-labeled transition system TP =
(V,E, vinit) where V = Q × Γ∗ is the set of configurations of P , vinit = (q0, ε) is
the initial configuration, and the transition function E is defined as follows, where
q, q′ ∈ V , a ∈ Σ, A ∈ Γ, and γ ∈ Γ∗:

• ((q, γ), a, (q′, Aγ)) ∈ E if there is a transition (q, (a, push, A), q′) ∈ T ,

• ((q, Aγ), a, (q′, γ)) ∈ E if there is a transition (q, (a, pop, A), q′) ∈ T ,

• ((q, γ), a, (q′, γ)) ∈ E if there is a transition (q, (a, int, A), q′) ∈ T .

Note that the stack symbol in the third case (for int transition) does not matter, so
we may write (q, (a, int,−), q′) instead for such a transition.

Let us give an example of such a pushdown machine.

Example 2. Let us imagine a slightly more complex req−ack system. Each process
first receive a start action, followed by any number of req actions, and then a stop
action to indicate that no more request is coming. Then it must do as many ack
actions as the number of req received, and finally execute a ready action to indicate
that the process is ready to receive new requests.

Let Σ = {start , req , stop, ack , ready} be the alphabet of actions as described
above. We define the pushdown machine P = (Σ, {Z,R}, {q0, q1, q2}, T, q0) with T
illustrated in Figure 2.2. Here Z is a stack symbol used to denote the bottom of
the stack, and R is used to count the number of requests. The state q0 represents
a state of the process before a start when there are no pending requests, state q1

means that the process is currently receiving requests, and state q2 means that the
requests are being acknowledged.

An example of run is

ρ = (q0, ε)(q1, Z)(q1, RZ)(q1, RRZ)(q2, RRZ)(q2, RZ)(q2, Z)(q0, ε)(q1, Z)(q1, RZ)

ending in state q1 with one pending request in the stack. A compatible word for
this run is w = start req req stop ack ack ready start req ∈ Σ∗.

Recall that our overall goal is to automatically generate open parameterized
systems that always produce correct behaviors with respect to a given objective, the
specification. Thus we need to model how the system operates as a whole. In the
next two sections, we study two different approaches:

11

2.2. CONTROL CHAPTER 2. PRELIMINARIES

q0 q1 q2
start , push, Z

req , push, R

stop, int,−

ack , pop, R

ready , pop, Z

Figure 2.2: Req-ack system with a pushdown machine.

(i) when the system is already partially defined, and the goal is to generate a con-
troller that chooses at each point what action to make among those available,
or

(ii) when the system is not defined at all, and all actions are possible at every
moment.

In both cases, the goal is to know whether it is possible to find and if it is, to
generate a program that dictates what actions the system should do depending on
what actions have been executed so far. In the first case we talk about control, while
in the second case we call this synthesis.

2.2 Control

In this section we consider the first case, where a system that is already partially de-
fined is given as an input and we want to control it in order to get correct executions.
First, let us define how we model such a system.

We introduce dynamic concurrent transition systems (DCTS), which model con-
current systems with an unbounded number of identical processes. Each process is
represented as a process transition system, and can execute actions. Those actions
are synchronized with a global transition system, which models a ressource shared
by all processes. Finally, the system can spawn new processes dynamically during
the execution without any bound. While all processes execute a copy of a transition
system, they evolve independently after being spawned.

2.2.1 Dynamic Concurrent Transition Systems

Let us now formalize this definition.

Definition 4. A dynamic concurrent transition system (short: DCTS) is a tuple
C = (Tglob, Tloc) where

• Tglob = (Vglob, Eglob, v
init
glob) is the global Σ-LTS, and

• Tloc = (Vloc, Eloc, v
init
loc) is the local (or process) Σ-LTS.

The semantics of this DCTS is a Σ-labeled transition system TC = (V,E, vinit)
defined hereafter.

First, V is the set of configurations, which will also be denoted by Conf(C): a
configuration is a tuple c = (vg, v1, . . . , vn) with n ∈ N such that vg ∈ Vglob and for

12

2.2. CONTROL CHAPTER 2. PRELIMINARIES

all i ∈ N> we have vi ∈ Vloc. Let the size of a configuration, denoted by |c|, be
the number of process nodes, which is n for the configuration above. The initial
configuration is cinit = (vinit

glob), a configuration of size 0.
If a node of a transition system represents the state of a process, then one can see

a configuration as the state of the whole concurrent system, with vg being a global
state shared by all processes while each vi represents the state of process i. Note
that while the number of processes that can appear in a configuration (that is, the
size of the configuration) is not bounded, it is always finite for a given configuration.
We refer to processes that are in the configuration as active processes.

Then, the transition relation between configurations E is defined as follows. Let
c and c′ be two configurations, a ∈ Σ and i ∈ N>. We say that c′ is an (a, i)-successor
of c if one of the following holds:

1. • c = (ug, v1, . . . , vi−1, ui, vi+1, . . . , vn),

• c′ = (vg, v1, . . . , vi−1, vi, vi+1, . . . , vn),

• vg and vi are a-successors of ug and ui in Tglob and Tloc respectively.

2. • c = (ug, v1, . . . , vi−1),

• c′ = (vg, v1, . . . , vi−1, vi),

• vg and vi are a-successors of ug and vinit
loc in Tglob and Tloc respectively.

The first kind of successors indicates that the (already active) process i made a
transition with label a, and changed the global state of the system accordingly. The
second kind instead shows how a process is activated, starting with a transition of
label a from its initial node, while updating the global state as well.

We call runs of C runs of the underlying transition system TC, which are sequences
of configurations. By abuse of notation we will denote by Runs(C) the set of runs
of C instead of Runs(TC). For any run ρ = c0c1 · · · ∈ Runs(C), we let Act(ρ) = {p ∈
N> | ∃i < |ρ| such that ci is of size p} be the set of active processes of ρ.

As said earlier, DCTS are models for parameterized systems, and therefore
Runs(C) is the set of all possible executions of such a system. But maybe not
all of those executions are acceptable in the sense of what the system is supposed to
do. Remember that we want to obtain only executions that are correct with respect
to a given objective, the specification. Therefore we have to further restrict runs so
that only those correct runs can be generated.

Here a specification will be given as an acceptance condition: let C be a DCTS,
then an acceptance condition for C is a set Acc ⊆ Conf(C)∞. A run is said to be
accepting if it is in Acc. In other words, accepting runs are the runs that satisfy the
specification.

An acceptance condition can be as general as wanted, but let us define a few
specific conditions that will be used in this thesis. First, let F = (Fglob,Floc) where
Fglob ⊆ Vglob and Floc ⊆ Vloc are two sets of accepting nodes for the global and
process transition systems. We call F an accepting profile. Intuitively, an accepting
node represents a state of a process that must be reached.

Now we say that a configuration is accepting if all its component nodes are
accepting, i.e., c = (vg, v1, . . . , vn) is accepting if and only if vg ∈ Fglob and vi ∈ Floc

for all i ∈ {1, . . . , n}. We can then define three different acceptance conditions as
follows:

13

2.2. CONTROL CHAPTER 2. PRELIMINARIES

• Reach(F) = {c0c1 · · · | ∃i ∈ N such that ci is accepting}

• Büchi(F) = {c0c1 · · · | there are infinitely many i ∈ N such that ci is accepting}

• coBüchi(F) = {c0c1 · · · | there are finitely many i ∈ N such that ci is accepting}

Obviously the latter two conditions only make sense for infinite runs, otherwise they
are trivially false and true respectively.

Intuitively, the Reach condition simply states that at some point during the run
all processes were in an accepting state, and we do not really care what happens
afterwards, while the Büchi condition asks for this to happen infinitely often. The
third condition might seem strange as it requires to completely avoid accepting states
after some point, but it may be easier to understand if we instead consider accepting
nodes as states that the system needs to avoid, i.e., ”bad” states for the processes.
Then this condition simply states that after a finite prefix we never encounter such
a bad configuration, which is often referred to as a safety condition.

Sometimes it makes more sense to look at each process individually. For instance
the specification could be that each process eventually reaches an accepting state,
but not necessarily that all processes reach it at the same time as is required by
Reach. Let us define this variation. We say that a configuration c = (vg, v1, . . . , vn)
is accepting for process p ∈ {1, . . . , n} if vp ∈ Floc. Then we define the independent
variations for the three acceptance conditions given above:

• IndReach(F) = {ρ = c0c1 · · · | ∀p ∈ Act(ρ), there is i < |ρ| such that ci is
accepting for p}

• IndBüchi(F) = {ρ = c0c1 · · · | ∀p ∈ Act(ρ), there are infinitely many i ∈ N
such that ci is accepting for p}

• IndCoBüchi(F) = {ρ = c0c1 · · · | ∀p ∈ Act(ρ) there are finitely many i ∈ N
such that ci is accepting for p}

Example 3. Let us revisit again the req − ack example mentioned in Example 1,
where processes receive requests and later acknowledge them. We have seen in that
example how to model a single process with a transition system TM derived from a
finite state machine M . Now using a DCTS we can model a parameterized system
where an unbounded number of processes can receive requests. For instance, we can
define C = (Tglob, TM) with TM as defined in Example 1 and Tglob a global transition
system modeling that req and ack actions alternate which is defined as

Tglob = ({vack , vreq}, {(vack , req , vreq), (vreq , ack , vack)}, vack)

Then we let F = ({vack , vreq}, {v0}) and we take Acc = IndBüchi(F) as an acceptance
condition, which in other words means that every process has no pending request
infinitely often. This ensures that in any accepting run, all requests are eventually
acknowledged. See Figure 2.3 for an illustration.

14

2.2. CONTROL CHAPTER 2. PRELIMINARIES

vack

vreq

v0 v1 v0 v1req ack

req

req

ack

ack

req

req

ack

ack

. . .

Figure 2.3: Illustration of a DCTS for a req − ack specification.

2.2.2 Control Problem

With a parameterized system given as a DCTS, what does “generating a program
that produces correct behaviors” means? Essentially, it means producing a function
that takes as input a configuration of the DCTS and outputs a successor configura-
tion (or equivalently, an action a and the identifier i of a process such that there is
an (a, i)-successor configuration). Furthermore, following the recommendations of
this function always produces an accepting run with respect to a given acceptance
condition.

Such a function is called a controller, as it describes how to control actions of
the system in order to obtain good behaviors. For instance, with the DCTS given
in the example above, a simple way to produce an accepting run is by a controller
that forces the first process to do a req then an ack action and then does the same
again forever.

However, we have not yet taken into account that the systems we model are open,
and that processes interact with an external actor, which we will call Environment,
that cannot be controlled by the system. This means that there must be a part inside
our model in which a controller cannot dictate actions, and where Environment can
choose what actions to do. But then we cannot expect Environment to follow a
controller as described above that always produce correct behaviors. Actually, it
is conceptually easier to assume that Environment is an antagonistic actor that
will try to make the system produce bad behaviors. Then the problem becomes
finding a controller that will choose controllable actions and that will always produce
accepting runs whatever actions are made by Environment.

Example 4. Using the req − ack system from the DCTS of Example 3, suppose
that first Environment may do a req action on some process, then the system can
execute an ack action on a process, and so on.

Then there is an easy way to build a controller that always gets an accepting
run: the controller only needs to follow each req by Environment by doing an ack
immediately on the same process. Formally, the controller is a function f such that
for any configuration c = (vreq , u1, . . . , un) where exactly one of the ui is v1 and all
others are v0, then f(c) = (ack , i).

Note that as we do not control actions by Environment, we cannot predict which
process will get a request and therefore the controller actually reacts to what Envi-
ronment does, instead of blindly following a single run.

It is important to note that the existence of an accepting behavior does not imply
the existence of a controller, as shown in the following example:

15

2.2. CONTROL CHAPTER 2. PRELIMINARIES

vack

vreq v0 v1 v2

v⊥

v0 v1 v2

v⊥

req ack
ack

req ack

req req
ack

req ack

req req

Figure 2.4: Another req − ack specification.

Example 5. Let us imagine another req − ack specification where this time, a
process can only receive at most one request, and this request must still be acknowl-
edged, otherwise the system fails. As before, Environment does the requests and
the controller decides the acknowledgements alternatively. See Figure 2.4 for an
illustration of this new system. Here v⊥ represents a failing state. The acceptance
condition is coBüchi({vack , vreq}, {v1, v⊥}). In other words, a run is accepting iff no
process ever reaches v⊥, as it is not possible to exit this state, and if all req are
eventually followed by an ack .

Accepting runs for this DCTS obviously exist: for instance, the infinite run of
the form req −ack on process 1, then req −ack on process 2, and so on is accepting.
However, the Environment could also perform two req actions on the same process,
and then whatever the continuation of the execution is then the run will not be
accepting. Since the Environment is by definition uncontrollable, no controller can
prevent this from happening, and therefore there is no controller satisfying this
specification.

With these informal examples in mind, we now formalize what we mean by
the interactions between Environment and the system, controllers, and the control
problem. To that end, we introduce the notion of two-player games on transition
systems. From now on, we shall call System the entity that can execute controllable
actions, as opposed to Environment. Those two entities will be the players in the
games.

Definition 5. A game is a tuple G = (T , Vs, Ve,Acc) where T = (V,E, vinit) is a
transition system, Vs] Ve = V is a partition of the nodes of T into system nodes
and environment nodes respectively, and Acc ⊆ V ∞ is an acceptance condition.

A play ρ of G is simply a run of the underlying TS T . Intuitively the partition
of V is used to determine whether it is System’s or Environment’s turn to play: if
the current node belongs to System then the next successor is chosen by System,
otherwise it is chosen by Environment. Note that the two players are not necessarily
alternating turns, e.g., a successor of a system node may still be a system node
which would allow System to have multiple consecutive turns. We say that a play
is maximal if either it is infinite, or it ends in a node with no successor.

A strategy for a player pl ∈ {s, e} is a partial mapping σpl : V ∗Vpl → V such that
for all ρ = v0 . . . vn with vn ∈ Vpl we have that σpl(ρ), if defined, is a successor of vn.
Intuitively, a strategy is simply a function that represents what a player will choose
whenever a choice is needed. Furthermore, a strategy must be non-blocking : if σpl
is a strategy for pl, ρ is a run ending in v ∈ Vpl, and v has at least one successor,
then σpl(ρ) must necessarily be defined. We say that a play is compatible with a

16

2.2. CONTROL CHAPTER 2. PRELIMINARIES

strategy of player pl if the choices made by pl during the play are consistent with
the strategy. Formally, a play ρ = v0v1 . . . is compatible with strategy σpl of player
pl if the following condition is satisfied: for all 0 < i < |ρ| such that vi−1 ∈ Vpl, we
have that vi = σpl(v0 . . . vi−1). Note that if we have a strategy for both System and
Environment, then there is only one play that is compatible with both strategies.

A play is winning for System if it belongs to the acceptance condition Acc. We
say that a strategy σs for System is winning if all plays compatible with this strategy
are winning. In other words, σs is winning if for all strategies σe for Environment, the
play compatible with σs and σe is winning. Finally, we say the game is winning for
System if there is a winning strategy for System, otherwise Environment is winning.

A game is said to be determined if either System has a winning strategy, or
Environment has a winning strategy. Furthermore, we say that σpl is memoryless
if, for all w,w′ ∈ V ∗ and v ∈ Vpl, we have σpl(wv) = σpl(w

′v), i.e., the strategy only
depends on the last node. It is known that games with a reachability, Büchi, or
coBüchi acceptance condition are determined and that if there is a winning strategy
for a player, then there is one that is winning and memoryless [EJ91,Zie98].

A strategy for System in a game can be viewed as a controller, as it describes
exactly what action to take (i.e., which successor to choose) depending on the current
situation and the past of the execution (only the current situation for a memoryless
strategy). Therefore, our goal of generating a controller for a system that always
produces good behaviors can be translated as generating a winning strategy for
System in the corresponding game. We can thus define the control problem in
general as follows:

CONTROL

Input: A DCTS C, a partition Cs] Ce of Conf(C), Acc ⊆ Conf(C)∞
Question: Is there a winning strategy for System in G = (TC, Cs, Ce,Acc)?

Note that we need a finite representation for all inputs, as they can be objects
with an infinite size. Therefore we will restrict ourselves to transitions systems
defined by finite state and pushdown machines, and acceptance conditions that can
be described in a finite manner, e.g., Reach, coBüchi, Büchi, or their independent
variations.

Example 6. Let us formalize the simple req − ack game defined in Example 4,
where alternatively Environment does req actions and System must do correspond-
ing ack actions. The DCTS C is the one used in Example 3 and illustrated in
Figure 2.3. The partition of configurations into Cs and Ce is as follows: a con-
figuration c = (vg, v1, . . .) belongs to System if vg = vreq , and to Environment if
vg = vack . The acceptance condition is, as in Example 3, Acc = IndBüchi(F) with
F = ({vack , vreq}, {v0}), which essentially states: for each process each req must
eventually be followed by an ack . The game is then defined as G = (TC, Cs, Ce,Acc).

The controller described in Example 4, which answers immediately to every req
by performing an ack on the same process, is equivalent to the strategy σs defined
as follows:

σs(c0 · · · cn · (vreq , u1, . . . , uk)) = (vack , v1, . . . , vk)

such that, with i = min{j | uj = v1}, we have that vi = v0 and vj = uj for all j 6= i.
In other words, this strategy performs an ack on the first process with a pending
request.

17

2.3. SYNTHESIS CHAPTER 2. PRELIMINARIES

An example of winning play that is compatible with σs is the following play:

ρ = (vack) · (vreq , v1) · (vack , v0) · (vreq , v0, v1) · (vack , v0, v0) · (vreq , v0, v0, v1) · . . .
where Environment plays a req on a fresh process each time. Another example is
the play ρ′ = (vack) · ((vreq , v1) · (vack , v0))ω where Environment only plays req on
the first process. It is easy to see that the strategy σs is winning, and therefore the
answer to the control problem for this game is positive.

2.3 Synthesis

We have seen in the last section how to define the control problem. In that section, a
partial system was given as an input to restrain the possible choices available at each
step of the execution. Then the control problem was about generating a controller
that will choose which available action to make at every moment.

But sometimes the user does not have such a system at hands. Another goal
in this context is to try to automatically generate a correct system from scratch,
with just the possible actions and the specification as an input. Then there are two
possible cases: either this attempt fails, and then the user knows that it is pointless
to even attempt to build a system with that specification. Or, it succeeds and
then the user gets a system that is by definition correct. We call this the synthesis
problem. Actually, the synthesis problem can be seen as a control problem where
the input system allows any action to be executed at any moment.

In this context, there is no proper state of the system as we had with the control
problem. Therefore, we only care about the trace of the execution that has been
performed in order to see if the specification is satisfied. To represent this execution
trace, we will use data words.

2.3.1 Data Words

Data words are a very useful model to reason with sequences of objects that cannot
be captured with only a finite set [Seg06]. Let us fix a finite alphabet Σ of actions,
and an infinite alphabet D of data values.

Definition 6. A data word is an element of (Σ×D)∞, i.e., a word w = (a0, d0)(a1, d1) · · ·
where a0, a1, . . . are actions in Σ and d0, d1, . . . are data values in D. Data words
are finite if they belong to (Σ×D)∗, or infinite if they are in (Σ×D)ω.

Note that a data value could represent an integer, a string of characters, any
measurement that needs real numbers, and so on. Here in the context of this thesis,
a pair (a, d) ∈ Σ×D models that action a was executed by the process with identifier
d. Usually, process identifiers are integers, and as such the set D will usually be N
or N>.

Example 7. Using our already presented example with requests and acknowl-
edgments, let us take Σ = {req , ack} and D = N, and let w be the data word
(req , 0)(req , 1)(ack , 1)(req , 2)(ack , 0)(ack , 2). The data word w models an execution
where the process with id 0 receives a request, then process 1 also receives a re-
quest, which it acknowledges immediately, then process 2 receives a request, process
0 acknowledges the earlier request, and finally process 2 also acknowledges its own
request.

18

2.3. SYNTHESIS CHAPTER 2. PRELIMINARIES

Example 8. Now let us imagine a system where a process receives a token, then
sends it to the next process, which then sends it to the next one and so on. Let
Σ = {rcv , send} and D = N, then a data word modeling such an execution would
be the infinite data word w = (rcv , 0)(send , 0)(rcv , 1)(send , 1)(rcv , 2)(send , 2) . . .

If data words are used to model executions of concurrent systems, then a speci-
fication denotes which one are correct executions. Therefore, a specification can be
seen as the set of data words that correspond to correct executions, hence a speci-
fication S is a set of data words, i.e., S ⊆ (Σ × D)∞. We say that a data word w
satisfies a specification S if w ∈ S.

Example 9. Going back to the system described in Example 7, one could want that
all requests are eventually acknowledged. In terms of data words, this translates as
the set S1 = {w | every (req , i) in w is eventually followed by a (ack , i)}. Then the
data word w given in Example 7 satisfies S1, while w′ = (req , 0)(req , 1)(ack , 0) does
not.

Example 10. With the system from Example 8, one possible specification would be
that every process eventually receives the token, i.e., S2 = {w | ∀i ∈ N, (rcv , i) ∈ w},
which is satisfied by the data word given in the example. Note that this specification
alone does not ensure that the informal description of the system that we gave, i.e.,
that a process can only send the token to the next one, is actually followed: the
data word w′ = (rcv , 1)(rcv , 0)(rcv , 3)(rcv , 2)(rcv , 5)(rcv , 4) . . . also satisfies S2, but
there are no send actions and the order in which processes receive the token is not
correct, which should not be possible within the system described earlier.

Now a specification can be a finite or infinite set, and so one needs a finite way of
describing such a set. To that end, we introduce first-order logic in the next section.

2.3.2 First-Order Logic

Let us first introduce first-order logic on words (over a finite alphabet) before dis-
cussing its extension to data words.

First-order logic on words. First-order (FO) logic is a powerful logic that has
been extensively studied on finite words over a finite alphabet [MP71]. In that
logic, variables are used to quantify on positions of a word. Moreover, different
predicates can be used to check various properties of the positions represented by
variables. First, there is a unary predicate for each letter of the (finite) alphabet
to check the letter at a position. Then there are binary predicates to compare two
positions: one can check that two positions are the same, that a position occurs
later in the word than another, or that a position is the direct successor of another.
Then formulas of FO logic are built from those predicates as well as the usual
logic connectors: negation, disjunction, conjunction, and existential and universal
quantifiers for variables.

Fix Σ an alphabet and V a set of variables. The formal grammar is given as
follows:

ϕ ::= a(x) | x = y | succ(x, y) | x < y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

19

2.3. SYNTHESIS CHAPTER 2. PRELIMINARIES

with x, y ∈ V and a ∈ Σ. To evaluate a formula, variables will be interpreted as
positions of a data word. A valuation is a partial function ν : V → N. If ν is a
valuation, x ∈ V and n ∈ N, then ν[x← n] is a valuation defined as:

ν[x← n](y) =

{
n if y = x,

ν(y) otherwise.

Given a word w of size n and a valuation ν such that ∀x ∈ V , ν(x) ∈ {0, . . . , n− 1},
we say that w and ν satisfy a formula ϕ, denoted as (w, ν) |= ϕ, if ((w, ν), ϕ) belongs
to the satisfaction relation defined inductively as follows:

• (w, ν) |= a(x) if w[ν(x)] = a,

• (w, ν) |= x = y if ν(x) = ν(y),

• (w, ν) |= succ(x, y) if ν(y) = ν(x) + 1,

• (w, ν) |= x < y if ν(x) < ν(y),

• (w, ν) |= ¬ϕ if (w, ν) does not satisfy ϕ,

• (w, ν) |= ϕ ∨ ϕ′ if (w, ν) |= ϕ or (w, ν) |= ϕ′,

• (w, ν) |= ∃x.ϕ if there is n ∈ N such that (w, ν[x← n]) |= ϕ.

Finally we say that w satisfies ϕ, noted w |= ϕ, if (w, {}) |= ϕ where {} denotes the
empty valuation.

More intuitively, a(x) is satisfied if there is an a at position x in w, x = y means
that x and y both refer to the same position, succ(x, y) means that y is the position
immediately following x in w, x < y means that y is a position somewhere after x
in w, and negation, disjunction, and existential quantification act as expected.

Usual notations are defined by: ϕ∧ϕ′ ≡ ¬(¬ϕ∨¬ϕ′), ϕ⇒ ϕ′ ≡ ¬ϕ∨ϕ′, ∀x.ϕ ≡
¬∃x.¬ϕ, > ≡ a(x) ∨ ¬a(x), ⊥ = ¬>. Moreover, given a formula ϕ(x1, . . . , xn, y),
we use ∃≥my.ϕ(x1, . . . , xn, y) as an abbreviation for

∃y1 . . . ∃ym.
(∧

1≤i<j≤m

¬(yi = yj) ∧
∧

1≤i≤m

ϕ(x1, . . . , xn, yi)

)

if m > 0, and ∃≥0y.φ(x1, . . . , xn, y) = >. This abbreviation expresses that there are
at least m different positions y1, . . . , ym that verify ϕ. Similarly we also use ∃=my.ϕ
as an abbreviation for (∃≥my.ϕ) ∧ (¬∃≥m+1y.ϕ) to express that there are exactly m
such positions.

A FO formula induces a language, which is the set of words that satisfy the
formula.

Example 11. For instance, the formula:

ϕ = ∀x. [a(x)⇒ (∃y.b(y) ∧ succ(x, y) ∧ (∃z.c(z) ∧ y < z))]

expresses that every a in the word is immediately followed by a b, which is followed
by a c later in the word.

20

2.3. SYNTHESIS CHAPTER 2. PRELIMINARIES

Notably, the set of languages that can be defined by FO formulas is exactly the
set of star-free languages, that is languages which can be defined with a regular
expression with complement and without the Kleene star ∗ [PP86]. Computing
whether there is a word satisfying a given first-order formula, which is known as
the satisfiability problem, has been shown to be non-elementary [Sto74]. Therefore,
various restrictions for FO logic have been studied, most notably by restricting the
set of variables to a finite amount. See e.g. [DGK08] for a survey. Extensions of the
logic have also been proposed, for instance to reason about infinite words [PP04].
Let us now focus on an extension to data words.

Extension to data words. First-order logic has been extended to data words
in [NSV04] by introducing a binary predicate ∼ that checks whether two positions
have the same data value.

Formally, the new grammar is given as follows:

ϕ ::= a(x) | x = y | x ∼ y | succ(x, y) | x < y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

The satisfaction relation is modified as follows:

• The rule (w, ν) |= a(x) if w[ν(x)] = a now becomes (w, ν) |= a(x) if w[ν(x)] =
(a, d) for some d ∈ D, and

• A new rule is added: (w, ν) |= x ∼ y if w[ν(x)] = (a, d) and w[ν(y)] = (a′, d)
for some a, a′ ∈ Σ and d ∈ D.

The first change simply reflects that we now evaluate formulas on data words and not
words, while the new rule describes the semantics of predicate ∼, which is exactly
what was explained earlier. The rest is defined as before, and we keep the usual
notations such as ∧, ⇒ and so on that were already defined.

The specification induced by a formula ϕ is the set Sϕ = {w | w |= ϕ} of data
words that satisfy the formula.

Example 12. The specification described in Example 9, which is that each req on a
process is later acknowledged by the same process, is naturally given by the formula
using the shortcuts defined above: ϕ1 = ∀x. (req(x)⇒ ∃y.(y > x ∧ y ∼ x ∧ ack(y))),
i.e., in plain English “for every position x in the data word, if the action is a req,
then there must be a position y which is later in the word, has the same data value,
and has action ack.”

Note that with the logic defined as it is, one can only compare two data values
with respect to equality: either two positions have the same data value or not. So
even if the set D of data values comes equipped with, say, a total order as is the
case with N, it is not possible to use it in formulas. Therefore properties such as
“the data word has its data values sorted” cannot be expressed.

Let us now define a few useful subclasses for this logic.

Subclasses of FO. One notable subclass of FO formulas are two-variable formu-
las: formulas that use at most two different variable symbols, although they can
be used (and reused) any number of times. Formally, the set of variables is now
the finite set V = {x, y}, and the rest of the definition is unchanged. For instance,

21

2.3. SYNTHESIS CHAPTER 2. PRELIMINARIES

the specification “there are three different data values in the word” can easily be
expressed with a formula using three variables:

∃x∃y∃z. (¬(x ∼ y) ∧ ¬(y ∼ z) ∧ ¬(x ∼ z))

but cannot be expressed with two or less variable symbols. However, two-variable
logic is not only limited to counting up to two, as two variables are enough to express
that “there are at least three a”s” by using predicate < and reusing a variable name:

∃x. [a(x) ∧ (∃y. [x < y ∧ a(y) ∧ (∃x.y < x ∧ a(x))])]

Let us denote this two-variable logic by FO2.
Moreover, one can restrict the expressive power of FO by allowing only some of

the predicates between ∼, succ, and <. Let us denote by FO = FO[∼, succ, <] the
full logic with all three predicates allowed, FO[∼] the logic where ∼ is allowed but
succ and < cannot be used, and so on. This can be combined with the two variable
restrictions, e.g. FO2[∼] formulas can use ∼ and at most two variables. Note that
FO[∼, <] is equivalent to FO as succ can be simulated using <:

succ(x, y) ≡ x < y ∧ ¬∃z.(x < z ∧ z < y)

but this is not true anymore when restricted to two variables. Moreover, not includ-
ing ∼ means that the data value part of the data word cannot be accessed, in other
words the formula can only state properties over the finite part of the data word.

2.3.3 Synthesis Problem

Recall that our overall goal is to automatically generate correct programs for open
parameterized systems, in other words programs that will respect the given specifica-
tion. Therefore, at the very least one needs to ask if there is at least one execution
that satisfies this specification. This is called the non-emptiness or satisfiability
problem, which is defined as follows:

SATISFIABILITY

Input: A first-order formula ϕ of FO[∼, succ, <]

Question: Sϕ 6= ∅?

For example, the specification ϕ1 given in Example 12 is satisfiable, with the
empty word being a satisfying word. The satisfiability problem can also be defined
for subclasses of FO as defined earlier. For instance, it has been shown that the sat-
ifisfiablity problem for the full logic is undecidable (even restricted to three variable
names), whereas FO2 is actually decidable (but with a non-elementary complexity).
Refer to [BMS+06] for results on this question.

If there is no data word satisfying ϕ, then we are certain that no program can
satisfy the specification. This happens when the specification is too constrained and
asks for something impossible, e.g., a FO formula expressing that “a data word must
contain at least three a’s but no more than one a.”

However, as we want to model open systems, satisfiability of a specification
is not enough for our purposes. To take the environment into account, we will

22

2.3. SYNTHESIS CHAPTER 2. PRELIMINARIES

fix the following assumptions. First, the alphabet of actions Σ is partitioned into
system actions and environment actions. We call the set of those actions Σs and
Σe respectively. Second, the environment may execute any of its actions at any
time, whereas the system can execute actions only when the environment allows
it. However if the environment never lets the system execute actions, then almost
no specification could be satisfied. Therefore we only consider fair runs, where the
environment can never totally prevent the system from playing.

Then the synthesis problem is about deciding the existence of a program that
dictates actions the system should play such that whatever the environment does, the
execution will satisfy the specification. The input of this problem is the specification
as well as the sets of system and environment actions, and the output is a program
as described above if one exists.

Example 13. Using the req − ack specification from Example 12, let Σs = {ack}
and Σe = {req}, that is requests are sent by the environment and the system must
acknowledge them. Then there is a way for the system to satisfy the specification
ϕ1: starting with an empty queue, whenever the environment does a req action on a
process i, add i to the queue. Then when it is possible to execute an action, dequeue
the first process in the queue and do an ack on this process. This program ensures
that every req is eventually followed by an ack on the same process, as long as the
fairness condition ensures that the system can execute one of its actions infinitely
often. Note that there are other ways to satisfy the specification.

Example 14. Now let us slightly modify ϕ1 to get another specification: let

ϕ2 = ∀x. [req(x)⇒ ∃y.(succ(x, y) ∧ y ∼ x ∧ ack(y))]

This specification requires that every req is immediately followed by an ack on the
same process. Then ϕ2 is trivially satisfied by the empty data word, or any data
word of the form (req , i1)(ack , i1)(req , i2)(ack , i2) . . . , but there is no program that
will satisfy the specification because the environment can do two req consecutively.

The last example shows that a positive answer for the satisfiability problem
does not imply a positive answer for the synthesis problem, as one cannot force the
environment to do what is necessary to satisfy the specification. Another kind of
counter-example would be a specification where System has to ”guess the future”,
such as ”There must be an a if and only if there is a b after” where a is an action
controllable by the system and b is an action made by the environment.

Now let us formally define the synthesis problem. Let ϕ be an FO formula over
Σ = Σs] Σe a finite alphabet of actions and D an infinite set of data values.

Definition 7. A strategy for the system is a mapping σ : (Σ×D)∗ → (Σs×D)∪{ε}.
A data word w = (a0, d0) . . . is compatible with σ if the following two conditions
hold:

1. for all i < |w| such that ai ∈ Σs, we have that (ai, di) = σ((a0, d0) . . . (ai−1, di−1)).

2. if w is finite, then σ(w) = ε.

Furthermore, let us define fair data words with respect to a strategy. A data word
w = (a0, d0) . . . is NOT fair with respect to a strategy σ if the following three
conditions are satisfied:

23

2.3. SYNTHESIS CHAPTER 2. PRELIMINARIES

1. w is infinite,

2. there are infinitely many i ∈ N such that σ((a0, d0) . . . (ai, di)) 6= ε, and

3. there are only finitely many i ∈ N such that ai ∈ Σs.

In all other cases, w is said to be σ-fair. Finally, a strategy σ is ϕ-winning if all data
words that are σ-compatible and σ-fair satisfy ϕ.

The general synthesis problem is defined as follows:

SYNTHESIS

Input: Σ = Σs] Σe, D, a first-order formula ϕ over Σ

Question: Is there a ϕ-winning strategy for the system?

24

Chapter 3

Controller Synthesis for Automata
Specifications

In this chapter, we study the control problem defined in Section 2.2. Recall that
for the control problem, a system that is already partially defined is given as an
input in addition to the specification. The goal is to then generate a controller that
decides which actions to execute in order to satisfy the specification.

Here, we study open distributed systems where each process has a stack that
can contain some data. Having a stack for each process in the model allows us to
model various useful real-life mechanisms, such as unbounded data storing for each
process, a recursion stack for recursive function calls, or simply any last-in-first-out
data structure. Obviously, having a stack also raises the complexity of the model,
as a process can no longer be defined as a finite state machine. This means that
we have two kinds of infinities to deal with: the number of processes is unbounded,
and each process has an unbounded memory. With such features, the general case is
undecidable. However, with some natural restrictions the control problem becomes
decidable again.

In Section 3.1, we define dynamic pushdown systems, a model to represent such
systems and whose semantics is a DCTS as defined in the previous chapter. In
Section 3.2, we discuss a restriction on the behaviors of such systems called round-
bounded behaviors. In Section 3.3, we study the control problem for those dynamic
pushdown systems. Finally in Section 3.4, we focus on another kind of restriction
called context-bounded behaviors.

3.1 Dynamic Pushdown Systems

3.1.1 Definition

A dynamic pushdown system works as follows: there is a global state shared by all
processes, that represents the state of the system. Then each active process has its
own local state and local stack. A transition by a process may access the global
state, local state and local stack of this process, but not local states or stacks of
other processes. It will then change the global state, as well as the local state and
local stack of the process making the transition. New processes can be spawned with
an empty stack during the execution. There is no bound on the number of processes
spawned during an execution, and each process acts independently, although they

25

3.1. DPS CHAPTER 3. CONTROL

share the same set of local states and transitions. Finally, accepting configurations
are based on a set of accepting global states and accepting local states, with the
stack contents of each process being ignored for that purpose. Then depending on
the acceptance condition, the goal is to either reach, repeatedly reach, or ultimately
avoid accepting configurations. Here is the formal definition.

Definition 8. A dynamic pushdown system (short: DPS) is a tuple

P = (M,P, Fglob, Floc,F)

where M = (Σ, S, Tglob, s
init) is a finite state machine, P = (Σ,Γ, L, Tloc, `

init) is
a pushdown machine over the same alphabet, Fglob ⊆ S, Floc ⊆ L, and F ∈
{Reach,Büchi, coBüchi}.

The semantics of a DPS is the DCTS (as defined in Section 2.2) CP = (M,P).
In other words, DPS are a special case of DCTS where the global transition system
is given by a finite state machine and the process transition system by a pushdown
machine. Then by abuse of notation, we will say configurations of a DPS P instead
of configurations of the underlying DCTS CP . Those configurations are of the form
c = (s, (`1, γ1), (`2, γ2), . . . , (`n, γn)) with s ∈ S, `1, . . . , `n ∈ L, and γ1, . . . , γn ∈ Γ∗.
Elements of S are called global states, and those from L are called process or local
states. The initial configuration is simply (sinit).

Finally, the acceptance condition of this DCTS is derived from the last three
elements of P : the acceptance condition is Acc(Fglob, Floc,F) = F(Fglob, {(`, γ) |
` ∈ Floc}). In other words, a configuration c = (s, (`1, γ1), (`2, γ2), . . . , (`n, γn)) is
accepting if s ∈ Fglob and `i ∈ Floc for all i ∈ {1, . . . , n}. Put simply, depending on
whether F is Reach, Büchi, or coBüchi, the acceptance condition is to either reach an
accepting configuration, repeatedly reach an accepting configuration, or eventually
always avoid accepting configurations respectively. Again by abuse of notation, what
we call accepting runs of P are runs for the underlying DCTS that are accepting
with respect to Acc as defined above.

Example 15. Let us study an example for a model of a lock system for a resource
shared by multiple processes. This resource can be read by any process, but must be
locked before being written on so that only one process can modify it at a time. We
give the following implementation of this system, and then we will check whether it
is a correct one.

Let P = (M,P, {s⊥}, {`init , `1},Reach) with M and P defined as pictured in
Figure 3.1. The idea is that the global state s⊥ can only be reached if two write
actions are made sequentially, which should not happen as only one process at a
time should be able to modify the shared resource. Therefore, there is a bug in the
implementation if one can find an accepting run of this DPS. An example of such a
run is given in Figure 3.2.

Sometimes stacks are not needed for the model, so let us also define dynamic
finite state systems, where the process transition system is given by a finite state
machine instead of a pushdown machine.

Definition 9. A dynamic finite state system (short: DFS) is a tuple

F = (Mglob,Mloc, Fglob, Floc,F)

where Mglob = (Σ, S, Tglob, s
init) and Mloc = (Σ, L, Tloc, `

init) are two finite state ma-
chines over the same alphabet, Fglob ⊆ S, Floc ⊆ L, and F ∈ {Reach,Büchi, coBüchi}.

26

3.1. DPS CHAPTER 3. CONTROL

sinit

s2

s3

s⊥ `init `1

read

lock

write

unlock write

read , int,−
unlock , pop,Lock lock , push,Lock

read , int,−

write, int,−

Figure 3.1: A DPS represented as its global finite state machine (left) and its process
pushdown machine (right). Labels are in light gray.

sinit

c0

`init ε (read , 1)
sinit

c1

`1 ε

`init ε

(read , 2)
sinit

c2

`1 ε

`1 ε

(lock , 1)
s2

c3

`1 Lock

`1 ε

(write, 1)
s3

c4

`init Lock

`1 ε

(write, 2)
s⊥

c5

`init Lock

`init ε

Figure 3.2: An example of an accepting finite run involving two processes

Its semantics is defined as the DCTS CF = (Mglob,Mloc), and its acceptance
condition F(Fglob, Floc), similarly to DPS. A configuration of a DFS is of the form
c = (s, `1, . . . , `n).

DPS are very similar to data automata introduced in [BDM+11] (or equivalently
to class memory automata from [BS10]) due to the global/local distinction, if we
forget about stacks. In fact, the only difference between DFS and data automata
is that the base automaton in data automata (corresponding to the global FSM
of a DFS) is given by a transducer. Also we do not really study the language
produced by DPS, as we are only interested in whether accepting runs exist and not
in the traces of actions that they produce. DPS are also equivalent to asynchronous
dynamic pushdown networks (ADPN) from [BESS05] in which all transitions are
global, that is, all transitions depend on both the local and global states. However,
the underapproximation they study (context-bounded executions) is stricter than
the bound on rounds from [LMP10a] that we will use in the following sections.

3.1.2 Emptiness Problem

The natural first step that comes to mind is to decide whether or not a given DPS
(or DFS) has at least one accepting run starting from the initial configuration. This
is called the emptiness problem, formalized as follows:

27

3.1. DPS CHAPTER 3. CONTROL

DPS-EMPTINESS

Input: A DPS P
Question: Is there an accepting run for P?

The variant for DFS is defined analogously.

DFS-EMPTINESS

Input: A DFS F
Question: Is there an accepting run for F?

Indeed, as we have seen in the previous example, even being able to find an
accepting run is sometimes enough to prove that the implementation is not correct.
Furthermore, if even the emptiness problem is undecidable or too hard, then it will
naturally be futile to even try to control such systems because they are too complex.
And actually, we show that this is the case.

Theorem 1. The problem DPS-EMPTINESS is undecidable, and the problem DFS-
EMPTINESS is inherently non-elementary.

Proof. For the first part of the theorem, the undecidability result is widely known
as two processes with a stack each are enough to simulate a Turing Machine even
simply with a reachability condition. See e.g. [Ram00].

For the second part, we can relate DFS to Vector Addition Systems with States
(VASS). A k-dimensional VASS is a tuple (Q, T) where Q is a finite set of control
states and T ⊆ Q × {−1, 0,+1}k × Q is the transition relation. A configuration
of a VASS is a pair (q, ν) where q ∈ Q is the current control state and ν : Nk is
a valuation for the k counters. Applying a transition changes the current control
state and change every counter individually by either adding 1, subtracting 1, or
leaving the counter unmodified, with the condition that each counter must remain
non-negative (otherwise the transition is not enabled). For instance, a transition
(q, (+1,−1, 0, 0), q′) can be applied from configuration (q, (3, 2, 1, 0)) which results
in configuration (q′, (4, 1, 1, 0)).

Now notice that a configuration c = (s, `1, . . . , `n) of a DFS essentially counts
how many processes are in each local state, of which there are a finite number.
Thus from a given DFS we can build an |L|-dimensional VASS where each counter
corresponds to a local state, and control states are the global states of the DFS.
A configuration c of a DFS as above is equivalent to the configuration (s, ν) such
that ν(k) = |{i | `i is the k-th local state}|. A transition of the DFS that makes a
process go from state ` to `′ and modify the global state from s to s′ is simulated by
a transition that subtracts 1 from the counter representing `, adds 1 to the counter
for `′, leaves the other counters unmodified, and change the control state from s to
s′. A transition that activates a new process is simulated by a +1 on the adequate
counter.

Similarly, a k-dimensional VASS can be simulated by a DFS with k+ 2 different
local states with a simple idea. Let L = {`1, . . . , `k}∪{`init , `⊥} where `1, . . . , `k are
used to simulate the k counters of the VASS, and `⊥ is a sink state used to simulate
subtractions. A transition of the VASS is then simulated as follows:

• for each counter i with a +1, spawn a new process in state `i,

28

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

• for each counter i with a −1, move a process from state `i to `⊥, and

• change the global state according to the transition.

This may require intermediate global states so that one VASS transition is simulated
by multiple (at most k) transitions of the DFS, but this causes no problem.

Therefore, VASS and DFS are equivalent. The reachability problem for VASS (or
equivalently, for Petri nets) is known to be decidable and non-elementary [May84,
LS15], so the same can be said for emptiness of DFS.

Since dynamic pushdown systems are too expressive, the next step is to try to
restrict their power in order to get decidable subclasses. This is the object of the
next sections.

3.2 Emptiness for Round-bounded Behaviors

We now study the case where we restrict behaviors to round-bounded runs, which
were first introduced in [LMP10a]. Intuitively, during a round, the first process
will do any number of transitions (possibly 0), then the second process will do
any number of transitions, and so on. Once process p + 1 has started performing
transitions, process p cannot act again in this round. A run is then said to be
B-round bounded if it can be split into at most B rounds.

This restriction comes naturally in the context of ring architectures with token
passing for instance, where processes are organized in a round-robin fashion and
can only execute actions when they have a token, which they then pass to the
next process when they are done. Moreover, the idea is that most of the time an
accepting run can be found with a low number of rounds, which can give examples
of bad behaviors as in Example 15.

For instance, the run given in Figure 3.2 is a 2-bounded run (or n-bounded for
any n > 2): there is one round from c0 to c2 with one transition from process 1
followed by one transition from process 2, and then when process 1 does another
action it means another round begins. This second round goes from c2 to the final
configuration c5, with process 1 making two transitions followed by a single transition
from process 2.

Let us first give a formal definition, and later we shall prove that the emptiness
problem for DPS is decidable under this restriction.

3.2.1 Round-bounded semantics

Formally, given a DPS P (it is defined similarly for DFS), we define extended config-
urations that contain information for counting rounds. An extended configuration
is of the form (c, p, r) where c is a configuration of the DPS of size n, p ∈ {0, . . . , n}
represents the last process that made an action (or 0 if it is not yet defined), and
r ∈ N> is the round number. The initial extended configuration is (cinit , 0, 1). If
(c, p, r) is an extended configuration and c′ is an (a, i)-successor of c, then the cor-
responding (a, i)-successor extended configuration is (c′, i, r′) with r′ = r if i ≥ p,
r′ = r + 1 otherwise.

Let B ∈ N> be a bound, and P a DPS. The B-round bounded semantics of P ,
denoted by PB, is the transition system where nodes are extended configurations

29

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

with a number of rounds r up to B included, and transitions are as described above.
Then, we say that a run ρ of P is B-round bounded if it is a run of PB, i.e., the
maximum r that appears in ρ is less than or equal to B.

Example 16. For instance, the sequence of extended configurations corresponding
to the run given in Figure 3.2 is:

ρ = (c0, 0, 1)(c1, 1, 1)(c2, 2, 1)(c3, 1, 2)(c4, 1, 2)(c5, 2, 2)

with the change of round occurring between c2 and c3. This run is indeed B-round
bounded for any B ≥ 2, as the maximum round that appears is 2.

Remark that a bound on the number of rounds does not imply a bound on the
number of processes that can appear during an execution (and vice-versa), since new
processes being spawned do not increase the round number. Moreover, even with a
fixed number of processes, the length of a run is still not bounded as a process can
execute as many actions as wanted consecutively during the same round.

The round-bounded emptiness problem is about deciding whether a given DPS
has an accepting B-round bounded run for a given B.

DPS-EMPTINESSrb

Input: A DPS P , a bound B ∈ N> (given in unary)

Question: Is there an accepting B-round bounded run for P?

Again, the variant for DFS is defined analogously:

DFS-EMPTINESSrb

Input: A DFS F , a bound B ∈ N> (given in unary)

Question: Is there an accepting B-round bounded run for F?

Let us prove that both problems are decidable, and are PSPACE-complete.

Theorem 2. DPS-EMPTINESSrb and DFS-EMPTINESSrb are PSPACE-complete.

The next two sections are devoted to the proof of this theorem. In the first one,
we give a PSPACE algorithm for DPS-EMPTINESSrb, and in the second one we
give a proof of PSPACE-hardness for DFS-EMPTINESSrb. Since DFS are a special
case of DPS, the theorem will then be proven. Note that [LMP10b] already proves
the lower bound for their model by reduction from the membership problem for
linear-bounded automata. For the sake of completeness, we will give another proof
tailored to our definitions.

3.2.2 Decidability of DPS-EMPTINESSrb

Let B ∈ N> be a bound and P = (M,P, Fglob, Floc,F). We first give an algorithm
for the simpler case where F = Reach. The other two cases of acceptance condition
will use a similar but slightly more involved idea.

30

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

Reach acceptance.
The proof will be in three parts. In the first part, we present the notion of

interface. Intuitively, an interface represents the part of a run pertaining to a single
process, while only keeping necessary information needed to coordinate with other
processes involved in the run. More precisely, nothing pertaining to local state or
stack is stored, as this information cannot be used by other processes. We show
that a collection of interfaces can represent an accepting run of the DPS if some
conditions are satisfied.

In the second part, we show that checking whether a given tuple is an interface
can be done in polynomial time. This is done by reducing the problem to the
emptiness problem for pushdown automata.

In the final part, we give the algorithm to solve DPS-EMPTINESSrb and describe
its complexity. This part uses results from the two previous parts.

Interfaces. As said just above, an interface is a collection of information used to
represent the part of a run involving a single process. More specifically, for each
round, an interface stores the global state that occured when the process first started
playing during this round, and the global state after the process performed its last
action of the round (which are the same if the process did not perform any action
and/or was not already active during this round). Moreover, an interface also stores
the starting round of the process, i.e., the first round where the process did an
action.

An interface does not store the local states and stack contents of the process, as
these cannot be accessed by other processes anyway. We simply require that there
exists such local states and stack contents such that a run can be built using the
global states stored in the interface.

Definition 10. An interface is a tuple

I = [rs, (s1, . . . , sB), (s′1, . . . , s
′
B)] ∈ {1, . . . , B} × SB × SB

satisfying the following conditions:

1. For all 1 ≤ r < rs, we have sr = s′r, i.e., before the starting round rs the
process does not change the global state.

2. There are local states `rs−1, . . . , `B ∈ L and stack contents γrs−1, . . . , γB ∈ Γ∗

such that

(i) for all rs ≤ r ≤ B there is a finite partial run of P from cr = (sr, (`r−1, γr−1))
to c′r = (s′r, (`r, γr)),

(ii) this run has length at least two (i.e., it performs at least one transition)
if r = rs,

(iii) `rs−1 is the initial local state `init , γrs−1 is the empty stack ε, and

(iv) `B ∈ Floc is an accepting local state.

We refer to the first B-tuple of I as the left interface, noted I left , and to the
second B-tuple as the right interface, noted Iright . The starting round rs of I is
referred to as rs

I .

31

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

sinit = s1
1 s2

1

`1
0, γ

1
0 `1

1, γ
1
1

`1
1, γ

1
1s1

2 s2
2

`1
2, γ

1
2

`1
2, γ

1
2s1

3
...

s1
B s2

B

`1
B−1, γ

1
B−1`

1
B, γ

1
B

I1

s3
1

`2
0, γ

2
0 `2

1, γ
2
1

`2
1, γ

2
1 s3

2

`2
2, γ

2
2

`2
2, γ

2
2...

s3
B

`2
B−1, γ

2
B−1`

2
B, γ

2
B

I2

. . .

sk1 s1
2

`k0, γ
k
0 `k1, γ

k
1

`k1, γ
k
1sk2 s1

3

`k2, γ
k
2

`k2, γ
k
2...

skB sf
`kB−1, γ

k
B−1`

k
B, γ

k
B

Ik

Figure 3.3: A run as the composition of compatible interfaces; for simplicity all
starting rounds here are 1

Interfaces are used to decompose a run of a DPS involving k processes into k
separate parts. Conversely, using k interfaces, we can build a run of a DPS as long
as those interfaces are compatible, in the sense that the starting rounds are never
decreasing (since a process cannot become active before an earlier process), and that
the global states coincide between interfaces.

Formally, we say that an interface I1 is compatible with an interface I2 if rs
I1 ≤ rs

I2
and I1

right = I2
left . Then, we say that a sequence I1, . . . , Ik of interfaces is valid if

the following conditions are satisfied:

• For all 1 < p ≤ k, Ip−1 is compatible with Ip.

• Let I1
left = (s1, . . . , sB) and Ikright = (s′1, . . . , s

′
B). Then:

– s1 is the initial global state sinit ,

– s′B is an accepting global state, and

– sr = s′r−1 for all 1 < r ≤ B.

A valid sequence of k interfaces is an abstract way to represent an accepting run
with k processes, as illustrated in Figure 3.3. This is formalized in the following
lemma.

Lemma 3. There is a (finite) accepting B-bounded run of P if and only if there is
a valid sequence of k interfaces I1, . . . , Ik for some k ≥ 1.

Proof. Given a configuration c = (s, (`1, γ1), . . . , (`k, γk)), we let proj S(c) = s, and
projL,p(c) = (`p, γp) if p ≤ k and projL,p(c) = (`init , ε) if k < p.

Let us first remark that given a run of P , the size of a successor configuration
is greater than the size of the previous one if and only if the process performing an
action is different than the previous one and it is the first time that this process
performs an action in the run. If this new process is the k-th one, then the size of
the configuration goes from k− 1 to k. In terms of interfaces, this means that rs

Ik is
the current round. Similarly, if a process p performs an action and the configuration
reached has size k > p, then necessarily p was already active before this round.
⇒ Let ρ be an accepting B-bounded run of P using k processes. Note that

ρ can be divided into ρ = ρ0ρ1 . . . ρB
′
, with B′ ≤ B, where each ρr is the part of

the run corresponding to round r, and ρ0 = ((sinit), 0, 1). For every 1 ≤ p ≤ k and

32

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

1 ≤ r ≤ B′, let n(p, r) ∈ N and (c
(p,r)
α)α≤n(p,r) be the (possibly empty) finite sequence

of configurations visited by process p during round r in the run ρ. Formally, for each
1 ≤ r ≤ B′, ρr = ρ1r · · · ρkr, with ρpr = (c

(p,r)
1 , p, r) · · · (c(p,r)

n(p,r), p, r). Note that ρpr

may be empty.
Fix a round 1 ≤ r ≤ B′, and a process 1 ≤ p ≤ k. Let p′, r′ be such that ρp

′r′ is

the last non-empty part of ρ before ρpr. Let s
(p,r)
0 = proj S(c

(p′,r′)
n(p′,r′)) and (`

(p,r)
0 , γ

(p,r)
0) =

projL,p(c
(p′,r′)
n(p′,r′)) be respectively the global state and local state reached by process p

just before process p starts in round r. Let s
(p,r)
m = proj S(c

(p,r)
m) and (`

(p,r)
m , γ

(p,r)
m) =

projL,p(c
(p,r)
m), for 1 ≤ m ≤ n(p,r). Since there is a transition from (c

(p′,r′)
n(p′,r′), p

′, r′) to

(c
(p,r)
1 , p, r) and, for all 1 ≤ m < n(p, r), there is a transition from (c

(p,r)
m , p, r) to

(c
(p,r)
m+1, p, r), then by definition, we have that c

(p,r)
1 is an (a, p)-successor of c

(p′,r′)
n(p′,r′) for

some a ∈ Σ, and, for all 1 ≤ m < n(p, r), c
(p,r)
m+1 is an (a, p)-successor of c

(p,r)
m for some

a ∈ Σ. Observe that this implies that (s
(p,r)
m+1, (`

(p,r)
m+1, γ

(p,r)
m+1)) is an (a, 1)-successor of

(s
(p,r)
m , (`

(p,r)
m , γ

(p,r)
m)), for all 0 ≤ m < n(p, r). Hence there is a finite run of P from

(s
(p,r)
0 , (`

(p,r)
0 , γ

(p,r)
0)) to (s

(p,r)
n(p,r), (`

(p,r)
n(p,r), γ

(p,r)
n(p,r))). If ρpr is empty we let s

(p,r)
n(p,r) = s

(p,r)
0

and (`
(p,r)
n(p,r), γ

(p,r)
n(p,r))) = ((`

(p,r)
0 , γ

(p,r)
0)). For all B′ < r ≤ B, for all 1 ≤ p ≤ k, let

n(p, r) = 0, and s
(p,r)
0 = s

(k,B′)
n(k,B′), and (`

(p,r)
0 , γ

(p,r)
0) = (`

(p,B′)
n(p,B′), γ

(p,B′)
n(p,B′)). In other

words, the global state stays unchanged since the end of the run ρ, and the local
state and stack of each process stays as it was at the end of their local run in the
last round B′.

For each process p, let rs
p be the smallest round 1 ≤ r ≤ B′ such that ρpr is not

empty. Thus, for all 1 ≤ p ≤ k, we define the interface

Ip = [rs
p, (s

(p,1)
0 , . . . , s

(p,B)
0), (s

(p,1)
n(p,1), . . . , s

(p,B)
n(p,B))]

From the above, we know that there exists a finite partial run of P from (s
(p,r)
0 , (`

(p,r)
0 ,

γ
(p,r)
0)) to (s

(p,r)
n(p,r), (`

(p,r)
n(p,r), γ

(p,r)
n(p,r))), for all 1 ≤ r ≤ B. Moreover, in the first round, if

a process plays, it is for the first time. By definition, (`
(p,1)
0 , γ

(p,1)
0) = projL,p(c

(p′,r′)
n(p′,r′))

with (p′, r′) = (p−1, 1) if p > 1, (0, 0) otherwise. This configuration c
(p′,r′)
n(p′,r′) is of size

< p since process p has not already played in this run, thus (`
(p,1)
0 , γ

(p,1)
0) = (`init , ε).

Since ρ is winning, every process ends in a final local state, i.e., `
(p,B)
n(p,B) is accepting,

for all p. Finally, for all r < rs
p, ρ

pr is empty. By construction then, s
(p,r)
0 = s

(p,r)
n(p,r).

All of this ensures that Ip is indeed an interface. By construction, for all process

1 < p ≤ k and for all rounds r ≥ 1 we have s
(p,r)
0 = s

(p−1,r)
n(p−1,r). Moreover, by definition

of a run of P , if a process p appears in round r, then necessarily, process p + 1
appears for the first time in round r′ ≥ r. Hence for all 1 ≤ p < k, rs

p ≤ rs
p+1 and

interface Ip is compatible with interface Ip+1. By construction, for all 1 ≤ r ≤ B,

s
(1,r)
0 = s

(k,r−1)
n(k,r−1), and because ρ is winning we also have s

(1,1)
0 = sinit and s

(k,B)
n(k,B) is

accepting, then all the conditions of the lemma are fulfilled.

⇐ Conversely, let I1, . . . , Ik be interfaces verifying the conditions. Let s(p,r) be
the r-th component of Ipleft and s′(p,r) be the r-th component of Ipright . Consider

33

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

the following partial run of P :

ρpr =

{
(s

(p,r)
1 , (`

(p,r)
1 , γ

(p,r)
1)) . . . (s

(p,r)
n(p,r), (`

(p,r)
n(p,r), γ

(p,r)
n(p,r))) if r ≥ rs

Ip ,

(s(p,r), (`init , ε)) otherwise.

with s
(p,r)
1 = s(p,r) and sp,rn(p,r) = s′(p,r) in the first case. The existence of such a run,

as well as the local states and stack contents, is ensured by the definition of an
interface. Moreover, we have that

(`
(p,r)
1 , γ

(p,r)
1) =

{
(`

(p,r−1)
n(p,r−1), γ

(p,r−1)
n(p,r−1)) if r > rs

Ip ,

(`init , ε) if r = rs
Ip

(3.1)

We build a B-bounded run ρ of P as follows. The idea is simply to rearrange
the runs ρpr defined above in order to get a run of P , as pictured in Figure 3.3. For
all 1 ≤ p ≤ k and rs

Ip ≤ r ≤ B, let ρ(p,r) be the (possibly empty) sequence of nodes

ρ(p,r) = (c
(p,r)
2 , p, r), . . . , (c

(p,r)
n(p,r), p, r)

where c
(p,r)
m = (s

(p,r)
m , (`1, γ1), . . . , (`k′ , γk′)) with:

• `p = `
(p,r)
m and γp = γ

(p,r)
m ,

• for q < p, `q = `
(q,r)
n(q,r) (i.e. the last local state of process q) and γq = γ

(q,r)
n(q,r),

• for p < q ≤ k′, `q = `
(q,r−1)
n(q,r−1) and γq = γ

(q,r−1)
n(q,r−1) (in that case, the last local

state of process q has been reached in the previous round)

For p such that rs
Ip > r, we let ρ(p,r) = ε instead, and we let ρ(0,0) = ((sinit), 0, 1).

By definition of an interface, ρ(p,r) is a partial run of P .
We show that the sequence ρ = ρ(0,0)ρ(1,1)ρ(2,1) . . . ρ(k,1)ρ(1,2) . . . ρ(k,B) is a run of

P by induction on the pair (p, r). The base case where p = r = 0 is trivial. Let
1 ≤ p < k and 1 ≤ r ≤ B and assume that ρ(0,0)ρ(1,1) . . . ρ(p,r) is a run. Let (p′, r′)
be the successor of (p, r).

• Suppose that r = r′ and p′ = p + 1 (same round, next process). Without
loss of generality, assume that ρ(p,r) and ρ(p+1,r) are not empty. Let us denote
by c = c

(p,r)
n(p,r) the last configuration of ρ(p,r) and by c′ = c

(p+1,r)
2 the first

configuration of ρ(p+1,r), we show that (c′, p+ 1, r) is a successor of (c, p, r).

If r > rs
Ip+1

, then necessarily r > 1 and |c′| = |c|. Then

c = (s
(p,r)
n(p,r), (`1, γ1) . . . (`k′ , γk′))

with
(`p+1, γp+1) = (`

(p+1,r−1)
n(p+1,r−1), γ

(p+1,r−1)
n(p+1,r−1)) = (`

(p+1,r)
1 , γ

(p+1,r)
1))

and
c′ = (s

(p+1,r)
2 , (`′1, γ

′
1) . . . (`′k′ , γ

′
k′))

with
(`′p+1, γ

′
p+1) = (`

(p+1,r)
2 , γ

(p+1,r)
2)).

34

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

such that

(`q, γq) = (`′q, γ
′
q) =

{
(`

(q,r)
n(q,r), γ

(q,r)
n(q,r)) if q ≤ p,

(`
(q,r−1)
n(q,r−1), γ

(q,r−1)
n(q,r−1)) if q > p

Since Ip is compatible with Ip+1, we have that s(p+1,r) = s′(p,r). Thus s
(p+1,r)
1 =

s(p+1,r) = s′(p,r) = s
(p,r)
n(p,r), and by definition of an interface, (s

(p+1,r)
2 , (`′p+1, γ

′
p+1))

is a successor of (s
(p,r)
n(p,r), (`p+1, γp+1)). Hence from the above equalities, the

extended configuration (c′, p+ 1, r) is indeed a successor of (c, p, r).

If r = rs
Ip+1

, then |c′| = p+ 1 = |c|+ 1 since process p+ 1 performs an action

for the first time. Then

c = (s
(p,r)
n(p,r), (`1, γ1) . . . (`p, γp))

and
c′ = (s

(p+1,r)
2 , (`′1, γ

′
1) . . . (`′p+1, γ

′
p+1)

with
(`′p+1, γ

′
p+1) = (`

(p+1,r)
2 , γ

(p+1,r)
2)

Since rs
Ip+1

= r, by definition of the interface, we know that (`
(p+1,r)
1 , γ

(p+1,r)
1) =

(`init , ε) and that (s
(p+1,r)
2 , (`

(p+1,r)
2 , γ

(p+1,r)
2)) is a successor of (s(p+1,r), (`init , ε)).

As with the other case, s
(p+1,r)
1 = s

(p,r)
n(p,r), thus (c′, p+ 1, r) is indeed a successor

of (c, p, r).

• Suppose now that r′ = r+ 1, p = k, and p′ = 1 (start of a new round). Again,
without loss of generality, suppose that ρ(k,r) and ρ(1,r+1) are not empty, and
let us denote by c = c

(k,r)
n(k,r) the last configuration of ρ(k,r) and by c′ = c

(1,r+1)
2

the first configuration of ρ(1,r+1). We show that (c′, 1, r + 1) is a successor of
(c, k, r).

Necessarily the starting round of the first process is 1, so rs
I1 < r+ 1 and have

that |c′| = |c|. Then

c′ = (s
(1,r+1)
2 , (`′1, γ

′
1), . . . , (`′k, γ

′
k))

= (s
(1,r+1)
2 , (`

(1,r+1)
2 , γ

(1,r+1)
2), . . . , (`

(k,r)
n(k,r), γ

(k,r)
n(k,r))),

and

c = (s
(k,r)
n(k,r), (`1, γ1), . . . , (`k, γk))

= (s
(k,r)
n(k,r), (`

(1,r)
n(1,r), γ

(1,r)
n(1,r)), . . . , (`

(k,r)
n(k,r), γ

(k,r)
n(k,r))).

By definition, we have that s
(k,r)
n(k,r) = s′(k,r) and s(1,r+1) = s

(1,r+1)
1 . Moreover,

since I1, . . . , Ik is a valid sequence of interfaces, then s′(k,r) = s(1,r+1). The
existence of the run ρ1r+1 and equalities 3.1 allow to conclude that (c′, 1, r+1)
is indeed a successor of (c, k, r).

35

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

The run ρ we built is by definition B-bounded. As I1, . . . , Ik are interfaces,
their last local state is accepting. Moreover, since I1, . . . , Ik is a valid sequence of
interfaces we know that the last global state is accepting. Thus ρ is accepting, which
concludes the proof of the lemma.

Observe that we have supposed in this proof that no ρ(p,r) was empty. If this
was not the case, the global state will remain the same in the different interfaces,
and the same proof applies, with tedious modifications of the indices. Again, if a
whole round is missing, or if the run does not start in round 1, then one can rewrite
the numbers of the round in a correct way, with no other modification, and with the
number of rounds even smaller than before.

Note that if there is a valid sequence of interfaces I1, . . . , Ik such that two inter-
faces Ii and Ij are equal for some i 6= j, then I1, . . . , Ii, Ij+1, . . . , Ik is also a valid
sequence of interfaces. Therefore, if there is a valid sequence of interfaces, then there
is one where all interfaces are pairwise distinct. With N = B × |S|B × |S|B being
the total number of interfaces, we deduce the following fact.

Corollary 4. There is a (finite) accepting B-bounded run of P if and only if there
is a valid sequence of k interfaces I1, . . . , Ik for some 1 ≤ k ≤ N .

Guessing an interface. The algorithm we will describe needs to be able to
guess interfaces. To that end, it will actually guess a tuple of the form I =
[rs, (s1, . . . , sB), (s′1, . . . , s

′
B)], and then check (in polynomial time) whether I is an

interface. To do that, we simply need to guess the behavior of a single process
whose global state is changed at some points, which simulates other processes doing
transitions before letting that process play again in a later round. In other words,
we check the non-emptiness of a pushdown automaton (a pushdown machine with a
set of accepting states) that simulates the actions of P on a single process and has
special transitions to change the global state from s′r to sr+1. As non-emptiness of
a pushdown automaton can be checked in polynomial time [HMRU00], whether a
given tuple is an interface can also be checked in polynomial time.

We define the pushdown automaton AI = (Σ′,Γ, Q, T, q0, {Win}) with Q =
{q0,Win} ∪ (S × L× {rs, . . . , B}), Σ′ is an arbitrary alphabet of size 1 which will
be omitted, F = {Win}, and T defined as follows.

For every A ∈ Γ, for every s, s′ ∈ S, for every `, `′ ∈ L, for every r ∈ {rs, . . . , B},
for all a ∈ Σ and act ∈ {push, pop, int},

1. ((s, `, r), (act, A), (s′, `′, r)) ∈ T if (s, a, s′) ∈ Tglob and (`, a, act, A, `′) ∈ Tloc,

2. (q0, (act, A), (s′, `′, rs)) ∈ T if (srs , a, s
′) ∈ Tglob and (`init , a, act, A, `′) ∈ Tloc,

3. ((s′r, `, r), (int,−), (sr+1, `, r + 1) ∈ T if r < B,

4. ((s′B, `, B), (int,−),Win) if ` ∈ Floc.

Intuitively, the two first kind of transitions corresponds to the transitions of P for
a single process, while the third kind non-deterministically changes the global state
from s′r to sr+1 (which, in P , corresponds to other processes acting and modifying
the global state). The third component of Q allows us to track the index of the
component of the interface we are following, which corresponds to the round being
simulated, and is increased only when performing a transition of the third kind. AI

36

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

accepts only after taking transitions of the third kind exactly B−rs times, and after
that reaching global state s′B with an accepting local state, which is the only way
to reach the final state Win through the last kind of transition. The second kind
of transition is there to ensure that the run at round rs is not empty, as this is the
only kind of transition that exits the initial state q0 which is essentially equivalent
to the state (srs , `

init , rs). Note that this automaton does not check that sr = s′r for
all r < rs, which is the last condition needed to ensure that I is an interface.

Lemma 5. I is an interface if and only if there is an accepting run of AI and
sr = s′r for all r < rs.

Proof. ⇐ Suppose there is an accepting run of AI and that sr = s′r for all r < rs.
By construction, the accepting run is necessarily of the form (q0, ε) · ρrs · · · ρB ·
(Win, γ), where, for all rs ≤ r ≤ B,

ρr = ((s1
r, `

1
r, r), γ

1
r) · · · ((sirr , `irr , r), γirr)

with

• s1
r = sr, the r-th component of I left , if r 6= rs, and

• sirr = s′r, the r-th component of Iright .

Moreover, for all rs ≤ r ≤ B − 1, `irr = `1
r+1. Finally, for all 1 ≤ i < ir,

(si+1
r , (`i+1

r , γi+1
r)) is a successor of (sir, (`

i
r, γ
′i
r)) in P , and (s1

rs , (`
1
rs , γ

1
rs)) is a suc-

cessor of (srs , `
init , ε).

To show that I fulfills the conditions for being an interface, let `r = `1
r+1 and

γr = γ1
r+1 for all rs− 1 ≤ r < B. Moreover, let `B = `iBB and γB = γiBB . Then, for all

r > rs, there is a partial run of P starting from cr = (s1
r, (`

1
r, γ

1
r)) = (sr, (`r−1, γr−1))

to c′r = (sirr , (`
ir
r , γ

ir
r) = (s′r, (`

1
r+1, γ

1
r+1)) = (s′r, (`r, γr)), and for r = rs, there is a

partial run of P starting from crs = (srs , `
init , ε) to c′rs = (s′rs , (`rs , γrs)).

Finally, by construction of AI we have that `B = `iBB ∈ Floc, and by hypothesis
we know that sr = s′r for all r < rs. So, I is indeed an interface.

⇒ Conversely, suppose I is an interface. One can build an accepting run of
AI : (q0, ε) · ρrs · · · ρB · (Win, γB) as follows. For rs ≤ r ≤ B, let

(sr, (`r−1, γr−1))(sr1, (`
r
1, γ

r
1)) . . . (srir−1, (`

r
ir−1, γ

r
ir−1))(s′r, (`r, γr))

be the run of P ensured by I. Then, when r = rs, we let

ρr
s

= ((sr
s

1 , `
rs

1 , r
s), γr

s

1) . . . ((sr
s

irs−1, `
rs

irs−1, r
s), γr

s

irs−1)((s′rs , `rs , r
s), γrs)

and for rs < r ≤ B, we let

ρr = ((sr, `r−1, r), γr−1)((sr1, `
r
1, r), γ

r
1) . . . ((srir−1, `

r
ir−1, r), γ

r
ir−1)((s′r, `r, r)γr)

which are runs of AI using only transitions of the first type.
The transition from (q0, ε) to ρr

s
is a transition of the second type, transitions

from ρr to ρr+1 are transitions of the third type, and the transition from ρB to
(Win, γB) is a transition of the fourth type which is possible because `B is accepting
by definition of an interface.

37

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

Description of the algorithm. The algorithm to solve DPS-EMPTINESSrb first
non-deterministically guesses a tuple I1 for the first process and checks that it is
actually an interface as described in the previous part. It then stores rs

I1 , I1
left , and

I1
right , which takes a polynomial amout of space.
Then, it guesses an interface I2 for the second process, checks that it is compat-

ible by comparing rs
I2 and I2

left with the previously stored rs
I1 and I1

right , and then

replaces I1
right by I2

right and rs
I1 by rs

I2 . That way, only I1
left , rs

I2 , and I2
right are

stored, and the amout of space taken is unchanged. We continue guessing compatible
interfaces, storing at each step i the values of I1

left , rs
Ii , Iiright .

Eventually, the algorithm guesses that the last process has been reached (remem-
ber that we need only up to an exponential number of interfaces by Corollary 4).
At that point, there are two halves of interfaces stored in memory: the left interface
I1

left = (s1, . . . , sB) of the first process, and the right interface Ikright = (s′1, . . . , s
′
B)

of the last process.
We accept if, for all i ∈ {1, . . . , B − 1}, we have that s′i = si+1, s1 = sinit , and

s′B ∈ Fglob. By Lemma 3, there is an accepting B-run of P . This algorithm is non
deterministic and takes a polynomial amount of space, therefore the problem is in
NPSPACE, which is equivalent to PSPACE due to Savitch’s theorem [Sav70].

Büchi and coBüchi acceptance condition.
The case where the acceptance condition F is coBüchi is trivial and not interesting

(at least with respect to the emptiness problem), since every finite run is accepting.
Let us fix a DPS P where F = Büchi. We first explain what form accepting runs
have, then give a slightly modified definition of interfaces in order to caracterize the
existence of an accepting run as we did in Lemma 3.

Necessarily, we need to handle infinite runs, as finite runs cannot be accepting.
Generally, we can distinguish three non-intersecting types of infinite runs, depending
on how many processes perform infinitely many actions:

1. No process performs infinitely many actions, so there are infinitely many pro-
cesses that perform finitely many actions each, or

2. Only one process performs infinitely many actions, or

3. At least two processes perform infinitely many actions each.

However, we can directly rule out case 3, as this case is incompatible with a round-
bounded definition. Indeed, two (or more) processes performing infinitely many
actions each necessarily means that they alternate an infinite number of times.
Therefore the number of rounds cannot be bounded.

In case 2, as with the case of Reach only a finite amount of processes are involved
in the run. The only difference is now that at some point after a finite part of the run,
one of those processes keeps performing actions forever. For the Büchi condition to
be satisfied, it means that this process must be able to repeatedly reach an accepting
global state and local state.

In case 1, there is also a finite part of the run that is played with a finite amount
of processes. However, during the last round of the run, after the last action of those
processes, a new “phase” starts where a new process is created, performs some finite
amount of actions, then another process is created, and so on. For this run to be

38

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

accepting, every process created must end in an accepting local state, and the global
state must infinitely often be accepting.

Let us formalize these two cases.

Lemma 6. Let ρ be a (necessarily infinite) accepting run of P. Then there is an
accepting extended configuration (c, p, r), a finite run ρfin ending in (c, p, r), and an
infinite partial run ρinf such that either:

1. ρinf =
∏

i≥1(ci, p, r) for some (ci)i≥1, or

2. ρinf =
∏

i≥1 ρi where ρi =
∏n(i)

j=1(cji , pi, r) are finite runs such that all pi are
pairwise distinct processes that do not appear in ρfin .

We say that a run is of type 1 if the first condition is satisfied (one process
performs infinitely many actions), and type 2 if the second is satisfied (infinitely
many processes perform finitely many actions each).

Proof. As sketched above, there are only two possible cases for ρ: either there is
some point in the run after which only one process performs actions, or during the
final round infinitely many processes join the execution.

In the first case, let ρ = ρ′ ·ρ′′ where ρ′′ is the part of ρ forming the infinite partial
run where only the last process performs actions. Since ρ is winning, it visits an
accepting configuration infinitely often, therefore there are also an infinite amount
of accepting configurations visited in ρ′′. Then ρ′′ = ρ1 · ρ2 where ρ1 ends in the
first accepting configuration visited in ρ′′ and ρ2 is the rest of the run. We then let
ρfin = ρ′ · ρ1 and ρinf = ρ2, which satisfy the condition of the lemma.

In the second case, we distinguish two cases. In the case where ρ forms only one
round, since it is winning it visits accepting configurations infinitely often. We then
take ρfin to be the prefix of ρ ending in the first accepting configuration visited, and
ρinf is the rest of ρ. In the case where ρ spans over r > 1 rounds, let P = {p1, . . . , pn}
be the set of processes involved in rounds 1 to r−1, and let ρ = ρ′ ·ρ′′ where ρ′ ends
in the last configuration (c, p, r) with p ∈ P . Now it is not necessarily true that c is
accepting, but at least all local states of processes of P must be accepting, otherwise
ρ could not be winning since those local states will not change anymore. Similarly, all
processes created in ρ′′ must also end in an accepting local state for the same reason.
Moreover, as ρ is winning, then there are infinitely many accepting configurations
visited in ρ′′. With ρ′′ = ρ1 · ρ2 where ρ1 ends in the first accepting configuration of
ρ′′, we then let ρfin = ρ′ · ρ1 and ρinf = ρ2, which satisfy the lemma.

For runs of type 1, we need to know the ending round of each process, that is
the round where the process performs its last action, in order to ensure that every
process has stopped before the one that has to perform infinitely many actions starts
doing it. Moreover, we need to know if that process can actually reach an accepting
state infinitely often. Therefore we slightly modify the definition of an interface to
take this into account:

Definition 11. A Büchi-interface is a tuple

I = [rs, re, (s1, . . . , sB), (s′1, . . . , s
′
B)] ∈ {1, . . . , B}2 × SB × SB

satisfying the following conditions:

39

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

1. For all 1 ≤ r < rs and re < r ≤ B, we have sr = s′r.

2. There are local states `rs−1, . . . , `re ∈ L and stack contents γrs−1, . . . , γre ∈ Γ∗

such that

(i) for all rs ≤ r ≤ re there is a finite partial run of P from cr = (sr, (`r−1, γr−1))
to c′r = (s′r, (`r, γr)),

(ii) this run has length at least two (i.e., it performs at least one transition)
if r = rs,

(iii) `rs−1 is the initial local state `init , γrs−1 is the empty stack ε, and

(iv) `re ∈ Floc is an accepting local state.

Definition 12. We say that a run is a 1-process run if all configurations of that run
are of size ≤ 1. Then, an accepting interface is a Büchi-interface with the following
condition added: “(v) there is an accepting 1-process partial run of P starting from
c = (s′re , (`re , γre)).”

Compatibility and valid sequences of Büchi-interfaces is defined analogously to
interfaces. We now give two lemmas that characterize the two different types of
accepting runs in terms of interfaces, as with Lemma 3:

Lemma 7. There is an accepting B-bounded run of P of type 1 if and only if there
is a valid sequence of k Büchi-interfaces I1, . . . , Ik for k ≥ 1 and there is 1 ≤ p ≤ k
such that:

• for all p′ < p, re
Ip′ ≤ re

Ip,

• for all p′ > p, re
Ip′ < re

Ip, and

• Ip is an accepting interface.

Lemma 8. There is an accepting B-bounded run of P of type 2 if and only if
there is a valid sequence of k Büchi-interfaces I1, . . . , Ik for k ≥ 1 and there are k′

Büchi-interfaces I ′1, . . . , I ′k′ such that:

• for all 1 ≤ p ≤ k′, rs
I′p = re

I′p = max{re
Ip′ | 1 ≤ p′ ≤ k},

• Ik is compatible with I ′1,

• for all 1 < p ≤ k′, Ip−1 is compatible with Ip, and

• there are p 6= p′ ∈ {1, . . . , k′} such that I ′pright = I ′p′right .

These two lemmas are illustrated in Figure 3.4 and Figure 3.5 respectively. Both
of their proofs rely on the previous Lemma 6 to decompose an accepting run into a
finite and infinite part, with Lemma 3 taking care of the finite part.

Proof of Lemma 7 (sketch). Suppose ρ is an accepting B-bounded run of P of type
1. Let ρ = ρfin ·ρinf given by Lemma 6 with ρfin ending in (c, p, r) which is accepting.
From Lemma 3, we have that there is a valid sequence of k interfaces I1, . . . , Ik corre-
sponding to ρfin . Specifically, by construction, we have that for all p′ ≤ p the ending
round re

Ip′ of interface p′ is lower or equal than r (and equal for Ip), and that re
Ip′ is

40

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

sinit s2
1

s1
2 s2

2

s1
3

...

s1
B s2

B

I1

. . .

si1 si+1
1

`i0, γ
i
0 `i1, γ

i
1

`i1, γ
i
1si2 si+1

2

`i2, γ
i
2

`i2, γ
i
2...

siB si+1
B

si+1
B−1

`iB−1, γ
i
B−1`

i
B, γ

i
B

Ii ∞

si+2
1

si+1
2

...

si+1
B−1

Ii+1

. . .

sk1 s1
2

sk2 s1
3

...

skB−1 s1
B

Ik

Figure 3.4: A run of type 1 as the composition of interfaces, here process i is the
one that plays infinitely

sinit s2
1

s1
2 s2

2

s1
3

...

s1
B s2

B

I1

. . .

sk1 s1
2

sk2 s1
3

...

skB sf
Ik

s1

. . .

I ′1
sk′−1 sf

. . .

I ′k′

Figure 3.5: A run of type 2 as a composition of interfaces

41

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

strictly lower than r if p′ > p. Moreover, we have that c = (s′reIp
, . . . , (`reIp , γr

e
Ip

), . . .).

Furthermore, since ρinf is a run starting from configuration c involving only process
p, then it can be seen as a 1-process run from configuration c′ = (s′reIp

, (`reIp , γr
e
Ip

)).

Thus Ip is an accepting interface.

Now suppose that I1, . . . , Ik is a valid sequence of interfaces and let p ≤ k such
that Ip is also an accepting interface. Again by Lemma 3, we can derive from
I1, . . . , Ik a finite run ρfin ending in an accepting configuration (c, p′, r) for some
p′ ∈ {1, . . . , k} and r ≤ B. Since p is the last process with the maximal ending
round by hypothesis, then we can deduce that p′ = p. Moreover, by construction
of ρfin we have that c = (s′reIp

, . . . , (`reIp , γr
e
Ip

), . . .). Using the fact that Ip is an

accepting interface, it is then easy to build an infinite run ρinf starting from (c, p, r)
that mimics the run given by Ip. We then let ρ = ρfin · ρinf which is an accepting
run.

Proof of Lemma 8 (sketch). Suppose ρ is an accepting B-bounded run of P of type
2, and let ρ = ρfin · ρinf given by Lemma 6 with ρfin ending in (c, p, r). Then like
in the previous proof, Lemma 3 gives us existence of a valid sequence of interfaces
I1, . . . , Ik where k is the number of processes involved in ρfin . Now ρinf =

∏
i≥1 ρi

where each ρi involve only one process that does not appear anywhere outside of ρi.
Moreover, since ρ is accepting, then accepting configurations are visited infinitely
often. In particular, since there are a finite number of global states, at least one must
be visited infinitely often. Let s be one such state, and let p < p′ be two indices such
that ρp and ρp′ end in s. We then let I ′i = [r, r, (si−1), (si)] for all 1 ≤ i ≤ p′ where
s0 is the global state of c and si is the last global state of ρi. Then all conditions of
the lemma are satisfied.

Conversely, suppose we have interfaces I1, . . . , Ik and I ′1, . . . , I ′k′ and that the
conditions of the lemma are satisfied. With Lemma 3, we obtain from I1 to Ik a run
ρinf ending in some configuration (c, p, r) such that by construction r = max{re

Ip′ |
1 ≤ p′ ≤ k}. Let si for i ≤ k′ such that I ′iright = (si), and s0 be the global state of c.
From interfaces I ′i, we can extract a run ρi = c1

i . . . c
ji
i from c1

i = (si−1, (`
init , ε)) to

cjii = (si, (`
′
i, γ
′
i)) for some accepting local state `′i and some stack γ′i. More precisely,

for i ≤ k′ and j < ji, let cji = (sji , (`
j
i , γ

j
i)). With c = (s0, ((`1, γ1), . . . , (`k, γk))), we

then define

c̄ji = (sji , ((`1, γ1), . . . , (`k, γk), (`
′
1, γ
′
1), . . . , (`′i−1, γ

′
i−1), (`ji , γ

j
i)))

and then ρ̄i = (c̄2
i , k + i, r) . . . (c̄jii , k + i, r). We then let

ρinf = ρ̄1 · . . . · ρ̄p · (ρ̄p+1 · . . . · ρ̄p′)ω

which is a valid run that is also accepting.

Checking that a tuple is a Büchi-interface can be reduced to the emptiness of a
pushdown automaton exactly like Lemma 5, and checking for an accepting interface
can be done similarly by reducing to the emptiness of a Büchi pushdown automaton.
Then using the characterization of accepting runs with Büchi-interfaces given by the
two previous lemmas, one can build an algorithm similar to the one given for Reach
acceptance that works as follows.

42

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

First, the algorithm guesses whether to look for a type 1 or a type 2 run. In
the first case, it starts guessing consecutive Büchi interfaces while only storing the
left interface of the first one and the right interface of the last one as with the
previous algorithm, but also stores the maximal ending round of these interfaces.
At some point, it then guesses an accepting interface, and checks that the maximal
ending round stored is lower than or equal to the ending round of the accepting
interface. Then it stores that ending round, and continues guessing Büchi interfaces
while checking that their ending round is strictly lower than the ending round of
the accepting interface stored earlier. Finally, it decides to stop at some point, and
checks that the right interface of the last one is compatible with the left interface of
the first one to ensure that the sequence of interfaces guessed is valid.

In the second case, it guesses a valid sequence of Büchi interfaces as described
in the Reach algorithm while also storing the maximal ending round encountered.
Once this is done, it starts guessing consecutive compatible Büchi interfaces whose
starting rounds and ending rounds are the maximum ending round, while at some
point non-deterministically storing a right interface and checking that it appears
again in another interface later.

Lemmas 7 and 8 prove the correctness of this algorithm, while the complexity is
still overall in (N)PSPACE.

3.2.3 PSPACE-hardness of DFS-EMPTINESSrb

We reduce from the non-emptiness of the intersection of a collection of finite au-
tomata A1, . . . , An, which is also known to be PSPACE-complete [Koz77].

Let A1, . . . , An be n finite automata over a finite alphabet Σ. That is, Ai =
(Qi, T i, qi0, F

i) where T i ⊆ Qi × Σ × Qi is the transition relation. We denote by
L(Ai) ⊆ Σ∗ the language of Ai, which is defined as usual. The intersection problem
asks whether there is a (nonempty) word w ∈ Σ+ such that w ∈ L(Ai) for all
i ∈ {1, . . . , n}. Without loss of generality, let us assume that qi0 /∈ F i for all Ai.

The bound B on the number of rounds will be n, the number of automata.
We construct a DFS that non-deterministically guesses a word w in the first round.
Moreover, in round i, it will check that w is accepted by Ai. To do this, each process
simulates exactly one transition of Ai on one letter of w. Each process performs one
action each round, and, to ensure that the word w is the same for each Ai, stores
the corresponding letter in its local state. The global state stores the state of the
currently simulated automaton. If we get a final state at the end of each round, it
means that each Ai accepts the same word w.

We use n copies of Σ plus two additional letters # and .: let Σ′ = {ai | a ∈ Σ, 1 ≤
i ≤ n}] {#, .}. Intuitively, the superscript i of a letter ai denotes in which round
this letter can be played, while # and . are used to start the first round and go to
the next round respectively. Formally, we define F = (Mglob,Mloc, Fglob, Floc,Reach)
with Mglob = (Σ′, S, Tglob, s

init) and Mloc = (Σ′, L, Tloc, `
init) as follows:

• S = {sinit} ∪
((⋃

i∈{1,...,n}Qi

)
× {1, . . . , n}

)
,

• Fglob = F n × {n},

• L = {`init , `#} ∪ (Σ× {1, . . . , n}),

• Floc = {`#} ∪ (Σ× {n}).

43

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

• Transitions are as follows:

Tglob Tloc
(sinit ,#, (q1

0, 1)) (`init ,#, `#)
((q, i), ai, (q′, i)) if (q, a, q′) ∈ T i (`init , a1, (a, 1)) for a ∈ Σ

((a, i), ai+1, (a, i+ 1)) for a ∈ Σ
((qf , i), ., (q

i+1
0 , i+ 1)) if qf ∈ F i (`#, ., `#)

The only technical point here is that the first process is only used to start the
next round, and does not actually take part in simulating runs of the Ai. We also
store the number of the round in the global state and each local state to ensure that
every process plays exactly once in each round.

Starting from the initial configuration, the first transition necessarily has a label
as this is the only transition leaving global initial state sinit . The first process
then has `# for local state (and will be the only one with that state as no other
is ever played again). Then some number of a1 transitions follow, spawning new
processes for each such transition, each keeping a in their respective local states as
well as the round number (which is 1). Since only letters of the form ai can be
played during round i, this prevents processes from playing more than once in the
same round. Meanwhile the global state stores the current state of automaton A1,
as well as the current round so that only letters of this round can be played. At
some point when it reaches a final state qf , a new transition becomes available that
starts the next round with a letter ., which only the first process can perform. This
signals the end of the simulation of a run of A1 and starts the second round of F
and the simulation of a run of A2, and this repeats again until An. Each time a
process performs a transition in round i, its local state update the round from i− 1
to i, and in order to be accepted, every process in a run must reach round n. This
ensures that every process performs one transition each round. Finally, when a final
state is reached in round n and all processes have played in that round, the run is
accepted.

Lemma 9. There is an accepting n-bounded run of F iff there is a non-empty word
in
⋂

1≤i≤n L(Ai).

Proof. ⇐ Suppose that there is some word w = a1 . . . ak of size k > 0 belonging to

each L(Ai). For all 1 ≤ i ≤ n, let qi0
a1−→ . . .

ak−→ qik be an accepting run of Ai. Then
we define the following n-bounded run of F :

ρ = ((sinit), 0, 1) · ρ1 · · · ρn

with ρi = (ci0, 1, i) . . . (c
i
k, k + 1, i) where

c1
j = ((q1

j , 1), `#, (a1, 1), . . . (aj, 1))

for all 0 ≤ j ≤ k and

cij = ((qij, i), `#, (a1, i), . . . , (aj, i), (aj+1, i− 1), . . . , (ak, i− 1))

for all 1 < i ≤ n and 0 ≤ j ≤ k. It is easily verifiable from the definitions that each
cij is a (aij, j + 1)-successor of cij−1 if j > 0 and that each ci0 is a (., 1)-successor of

ci−1
k for i > 1 using the fact that qik ∈ Fi for all 1 ≤ i < n. Therefore ρ is a valid run

44

3.2. ROUND-BOUNDED BEHAVIORS CHAPTER 3. CONTROL

of F . It is accepting because cnk = ((qnk , n), `#, (a1, n), . . . , (ak, n)) with qnk ∈ Fn so
(qnk , n) ∈ Fglob, and `#, (a1, n), . . . , (ak, n) ∈ Floc. It is also n-bounded because each
ρi is one round.
⇒ Let ρ be an accepting n-bounded run of F . By definition it can be split in

ρ = ρ1 · · · ρn where each ρi is the part of ρ in round i. Let us first focus on

ρ1 = ((sinit), 0, 1)(c1
0, p

1
0, 1)(c1

1, p
1
1, 1) . . . (c1

k, p
1
k, 1)

We prove by induction on j that for all 0 ≤ j ≤ k:

1. p1
j = j + 1, and

2. c1
j is of the form ((q1

j , 1), `#, (a1, 1), . . . , (aj, 1)) with q1
j ∈ Q1 and a1, . . . , aj ∈ Σ

such that q1
0

a1...aj−−−→ q1
j in A1.

• For j = 0, the only transition exiting the initial global state sinit has label #,
therefore the only local transition possible for the first process is to go to local
state `#, with global state going to (q1

0, 1). Hence p1
0 = 1 and c1

0 = ((q1
0, 1), `#)

as expected.

• Suppose properties 1 and 2 are true for some 0 ≤ j < k, so p1
j = j + 1

and c1
j = ((q1

j , 1), `#, (a1, 1), . . . , (aj, 1)) with q1
0

a1...aj−−−→ q1
j in A1. For the next

transition, since the round does not change, it means either the j+1-th process
performs another transition, or a new process is spawned. The first case is not
possible by construction, as either

– j = 0, c1
0 = ((q1

0, 1), `#), and from local state `# the only transition is
labeled by ., but there is no transition labeled by . from global state
(q1

0, 1) since q1
0 is not final, or

– j > 0, c1
j = ((q1

j , 1), . . . , (aj, 1)), and only transitions labeled by a2
j are

available from local state (aj, 1) but no transition labeled as such exit
global state (q1

j , 1).

Therefore there is some letter aj+1 ∈ Σ and a state q1
j+1 ∈ Q1 such that

(q1
j , aj+1, q

1
j+1) ∈ T 1, c1

j+1 = ((q1
j+1, 1), `#, (a1, 1), . . . , (aj, 1), (aj+1, 1)) and pj+1 =

j + 2. Since q1
0

a1...aj−−−→ q1
j and (q1

j , aj+1, q
1
j+1) ∈ T 1, then we obtain that

q1
0

a1...aj+1−−−−−→ q1
j+1 as expected.

Finally, we have that q1
k ∈ F 1, because either

• n = 1 and since ρ is accepting then necessarily (q1
k, 1) ∈ F 1 × {1}, or

• n > 1 and there is transition from (c1
k, k + 1, 1) the last configuration of ρ1 to

the first configuration of ρ2 which is of the form (c2
0, p

2
0, 2), and the only way

to start a new round is with a .-labeled transition which can only happen if
the global state is of the form (q1

k, 1) with q1
k an accepting state of A1.

Therefore we have that q1
0

a1...ak−−−→ q1
k ∈ F 1, so w = a1 . . . ak ∈ L(A1).

Using a similar reasoning, we can prove that w ∈ L(Ai) for all 1 < i < n. To
prove that in a given round i > 1 each process plays exactly once and in the same
order as round 1, the following points are needed:

45

3.3. DPG CHAPTER 3. CONTROL

• New processes cannot be spawned, because that would require a transition
with a label of the form a1 which is the only kind of transition available from
the initial local state `init , but a global state of the form (q, i) for i > 1 has no
available transition with such a label.

• A process cannot play more that once with the same arguments than in round
1.

• Suppose that process j + 1 is does not perform any transition in round i. Its
local state at the beginning of the round is of the form (aj, i−1), and the only
transition available from this local state has label ai. Transitions with labels of
the form ai are unavailable outside of round i, because the global state needs
to be of the form (q, i). Therefore, process j + 1 stays in local state (aj, i− 1)
for the rest of the run. Since this local state is not accepting, then ρ is not
accepting too, contradicting the initial hypothesis.

Moreover, as each process stored in round 1 the letter that was used, only the same
letter can be used again, ensuring that the same word is simulated in each round.
Therefore w ∈ ⋂1≤i≤n L(Ai).

This concludes the proof of Theorem 2. Now that we established the complex-
ity for the emptiness problem, the next section is dedicated to study the control
problem.

3.3 Control of Dynamic Pushdown Games

The emptiness problem is about finding an accepting run of a DPS when one is
in control in every step of the run. The natural question is now: what happens if
there is an uncontrollable part in the system? Remember that our goal is to build
a controller for systems embedded into an uncontrollable environment.

Therefore, we extend dynamic pushdown systems to a game-based setting in
order to better model interactions between the controller and the environment. Since
the emptiness problem is already too hard for unbounded DPS, in this section we
will only study round-bounded DPS.

3.3.1 Dynamic Pushdown Games

Here we define dynamic pushdown games, which are games played on dynamic
pushdown systems. A partition of the global states is given into System global states
and Environment global states, which leads us to distinguish System configurations
from Environment configurations. Let P = (M,P, Fglob, Floc,F) be a DPS with
M = (Σ, S, Tglob, s

init) and P = (Σ,Γ, L, Tloc, `
init).

Definition 13. A dynamic pushdown game (DPG) is a tuple G = (P , Ss, Se) where
S = Ss] Se is a partition of global states of P into System global states and
Environment global states.

The semantics of a DPG G is a game, as defined in Definition 5, which is the tu-
ple (TP ,Confs(P),Confe(P),Acc(Fglob, Floc,F)) such that TP is the transition system
associated with P , where a configuration c = (s, (`1, γ1), . . . , (`n, γn)) is in Confs(P)

46

3.3. DPG CHAPTER 3. CONTROL

if s ∈ Ss and in Confe(P) otherwise, and Acc(Fglob, Floc,F) is the acceptance condi-
tion of P . Dynamic finite games (DFG) are defined similarly with a DFS instead of
a DPS.

We can then define the control problem for this specific kind of games:

CONTROL-DPG

Input: A DPG G
Question: Is there a winning strategy for System in G?

CONTROL-DFG

Input: A DFG G
Question: Is there a winning strategy for System in G?

Since the emptiness problem for DPS is already undecidable, this implies that
the control problem is also undecidable, as emptiness can be seen as a special kind
of control where System controls everything. The situation is not much better for
control of DFG, which is also undecidable in the absence of bounds. Indeed, DFS
are equivalent to VASS (see proof of Theorem 1), and it has been shown that games
on VASS are undecidable. [ABd03]

Therefore, as we did for emptiness, we now define the round-bounded alternative
for these games.

Definition 14. Let G = (P , Ss, Se) be a DPG as defined above, and B ∈ N> be
a bound. Then by GB we denote the game (PB,Confs(P),Confe(P),Acc) which
is played on the B-round bounded semantics of P , and where the definition of
Confs(P), Confe(P), and Acc are lifted to extended configurations.

Round-bounded DFG are defined similarly as well.

Example 17. We give an example illustrated in Figure 3.6. The idea is as follows:
there is a finite set of different task kinds, and processes may receive tasks from
this set to be executed. Once all tasks have been received, the processes must then
execute them, in reverse order. Finally, when all processes have executed all of their
tasks, they must all shutdown.

In the game given in the illustration, in the first round Environment plays and
can start new processes, distribute any number of tasks with the associated taski

action (and possibly give multiple copies of the same task kind to the same process),
and then do that again to a fresh process, and so on, until she decides to stop (by
doing a nop action on a fresh process). Then the second round starts, where System
must do an exec action on every process. If she fails to do so, then Environment
will be able to do a fail action and the run stops immediately. Otherwise, the third
round starts and System must execute the tasks each process received in the first
round with the corresponding execi . Only when all tasks have been removed for all
processes can the fourth and last round start, in which all processes do a halt action
and then stop, and then System only does nop actions on fresh processes to get an
infinite winning run. Note that if Environment never stops creating new processes
and distributing tasks in the first round, then the infinite run is also winning for
System.

47

3.3. DPG CHAPTER 3. CONTROL

start stop

task1

. . .
taskn

nop

exec

nop

fail

nop

exec1

. . .
execn

nop

halt
nop

nop int −

start

push S

task 1

push T1

. . .
taskn
push Tn

stop

int −

fail int −

exec

int −

exec1

pop T1

. . .
execn
pop Tn

halt

pop S

Figure 3.6: Example of a DPG, with the global finite state machine (above) and
the local pushdown machine (below). Global states of Environment have a gray
background, the others belong to System. The winning condition is Büchi.

Then as long as B ≥ 4, there is a winning strategy for System, which simply
consists in doing all exec in the second round in the correct order, executing multiple
taski in the third round, and only doing a single halt when every process has no tasks
remaining. However, it is easy to see that there is no winning strategy if B ≤ 3 in
this example.

We again define the control problem for the bounded version of games:

CONTROL-DPGrb

Input: A DPG G, a bound B ∈ N> (given in unary)

Question: Is there a winning strategy for System in GB?

CONTROL-DFGrb

Input: A DFG G, a bound B ∈ N> (given in unary)

Question: Is there a winning strategy for System in GB?

Remember that for such games, if there is a winning strategy then there is one
that is memoryless. We prove that the problem CONTROL-DPGrb is decidable,
and that CONTROL-DFGrb has an inherent non-elementary complexity.

48

3.3. DPG CHAPTER 3. CONTROL

Theorem 10. CONTROL-DPGrb and CONTROL-DFGrb are decidable and inher-
ently non-elementary.

The proof of this theorem is the subject of the next two sections. Section 3.3.2
presents an algorithm for CONTROL-DPGrb via a reduction to phase-bounded
multi-pushdown games [Set09] to show decidability. Section 3.3.3 gives a hard-
ness proof with a reduction from the satisfiability problem for first-order formulas
on finite words.

3.3.2 Upper Bound

Decidability of CONTROL-DPGrb comes from decidability of games on phase-
bounded multi-pushdown systems (short: multi-pushdown games), which were first
studied in [Set09] and rely on the phase-bounded multi-pushdown automata from
[LMP07].

Multi-Pushdown Games. A multi-pushdown system is a collection of a fixed
number of stacks, on which with the usual pop, push, int as well a a zero-test zero
action can be performed, with a state from a finite set which is shared by all stacks
and can be updated when performing actions.

Intuitively, a phase is a sequence of actions in a run during which only one
fixed “active” stack can be read (i.e., either make a pop transition or a zero-test
transition), but push and internal transitions are unrestricted. There are no other
constraints on the number of transitions or the order of the transitions done during
a phase.

Definition 15. A multi-pushdown system (MPS) is a tuple

M = (κ,N, S,Γ,∆, sinit)

where the natural number κ ≥ 1 is the phase bound, N ∈ N is the number of
stacks, S is the finite set of states, Γ is the finite stack alphabet, ∆ ⊆ S × Actzero ×
{1, . . . , N} × Γ × S is the transition relation where Actzero = {push, pop, int, zero},
and sinit ∈ S is the initial state.

The semantics of a MPS is the transition system TM = (V,E, vinit) defined as
follows. A node v ∈ V is of the form

v = (s, γ1, . . . , γN , st , ph)

where

• s ∈ S is the state,

• γσ ∈ Γ∗ is the content of stack σ,

• st ∈ {0, . . . , N} and ph ∈ {1, . . . , κ} are used to keep track of the current
active stack (0 when it is undefined) and the current phase, respectively.

Given v = (s, γ1, . . . , γN , st , ph) ∈ V and v′ = (s′, γ′1, . . . , γ
′
N , st ′, ph ′) ∈ V , we

have an edge (v, v′) ∈ E if and only if there exist op ∈ Actzero, σ ∈ {1, . . . , N}, and
A ∈ Γ such that (s, op, σ, A, s′) ∈ ∆ and the following hold:

49

3.3. DPG CHAPTER 3. CONTROL

• γτ = γ′τ for all τ 6= σ,

• γσ = γ′σ if op = int, γ′σ = A · γσ if op = push, γσ = A · γ′σ if op = pop, and
γσ = γ′σ = ε if op = zero,

• if op ∈ {int, push}, then st = st ′ and ph = ph ′ (the active stack and, hence,
the phase do not change),

• if op ∈ {pop, zero}, then,

– either σ = st (σ is the current active stack), and st = st ′ and ph = ph ′,

– or st = 0, and st ′ = σ and ph ′ = ph = 1,

– or st /∈ {0, σ} and ph < κ, and st ′ = σ and ph ′ = ph + 1.

Observe that, if st = 0, by definition, ph = 1, and σ is the first active stack to
be defined. Moreover, if σ was not the current active stack, then a new phase
starts (if possible).

We also note s
op,σ,A−−−→ s′ for a transition (s, op, σ, A, s′), and we may write − instead

of A if the stack symbol does not matter, i.e. for int and zero transitions.
Finally, the initial node is vinit = (sinit , ε, . . . , ε, 0, 1), i.e. we start from the initial

state with all stacks empty.

Now we define multi-pushdown games which are simply games played on MPS.
Let M = (κ,N, S,Γ,∆, sinit) be a MPS as defined above.

Definition 16. A multi-pushdown game (MPG) overM is a tuple GM = (S0, S1, α)
where S = S0]S1 is a partition of the set of states, and α : S → Col with Col ⊆ N
a finite set is the ranking function.

Its semantics is the game (TM, V0, V1,Acc) where Vj = {(s, γ1, . . . , γN , st , ph) ∈
V | s ∈ Sj} for j ∈ {0, 1} is the partition of nodes induced by the partition of states,
and the acceptance condition is a parity condition given by α:

Acc = {ρ ∈ V ω | min(Infα(ρ)) is even}

where Infα((s0, . . .) · (s1, . . .) · . . .) = {c ∈ Col | c appears infinitely often in the
sequence α(s0)α(s1) . . . }. In other words, we look at the sequence of colors (as given
by the ranking function α) encountered during the run, and if the smallest color that
is encountered infinitely often is even then the run is winning.

We note CONTROL-MPGpb the phase-bounded control problem for MPG:

CONTROL-MPGpb

Input: A MPG GM

Question: Is there a winning strategy in GM?

Theorem 11 ([Set09, ABKS17]). CONTROL-MPGpb is decidable, and is non-
elementary in the number of phases.

50

3.3. DPG CHAPTER 3. CONTROL

(s, (`1,
xγ1), . . . , (`p−1,

xγp−1), (`p,
xγp), (`p+1,

xγp+1), . . . , (`k,
xγk), p, r)

⇓

((s, `p, f1, f2, pl, r),

xγp
(`p+1, gp+1)xγp+1

...
(`k, gk)xγk

,

yγp−1

(`p−1, gp−1)
...yγ1

(`1, g1)

, st , ph)

Figure 3.7: Encoding of a configuration in GB by a configuration in GM

The upper bound was first shown in [Set09] by adopting the technique from
[Wal01], which reduces pushdown games to games played on finite-state arenas. On
the other hand, [ABKS17] proceeds by induction on the number of phases, reducing
a (κ+ 1)-phase game to a κ-phase game.

Similarly, we could try a direct proof of our Theorem 10 by induction on the
number of rounds. However, this proof would be very technical and essentially reduce
round-bounded parameterized systems to multi-pushdown systems. Therefore, we
proceed by reduction to multi-pushdown games, providing a modular proof with
clearly separated parts.

From Parameterized Pushdown Games to Multi-Pushdown Games. We
reduce the problem CONTROL-DPGrb to CONTROL-MPGpb. Let B ∈ N> be a
bound and G = (P , Ss, Se) be a DPG where P = (M,P, Fglob, Floc,F) with M =
(Σ, S, Tglob, s

init) and P = (Σ,Γ, L, Tloc, `
init).

We build an MPG GM over an MPS M with two stacks such that System has
a winning strategy in GB if and only if System has a winning strategy in GM.

To alleviate possible confusions between the two kinds of games, players in the
multi-pushdown game GM will be refered to as Player 0 and Player 1 instead of
System and Environment respectively. In the following, given a global state s ∈ S
of the DPG, we let pl(s) ∈ {0, 1} denote the player associated with s, i.e., pl(s) = 0
if and only if s ∈ Ss. Furthermore, if pl ∈ {0, 1} stands for a player, then p̄l = 1− pl
stands for the other player.

The main idea of the reduction is to represent a configuration of GB as a node
in GM as depicted in Figure 3.7.

Stack contents of process p and of all processes p′ > p are stored in the first
stack of the MPG, while the stack contents of processes p′ < p are stored in reverse
order on the second stack. Component pl ∈ {0, 1} of the node’s state denotes the
current player. By default, it is pl(s), that is, Player 0 controls the node of GM
if it simulates a configuration controlled by System in GB, and vice-versa (we will
describe an exception to this rule later). We explain f1 and f2 further below.

The process p that has moved last is considered as the active process whose

51

3.3. DPG CHAPTER 3. CONTROL

local state `p is kept in the state of GM along with s, and whose stack content γp is
accessible on stack 1 (in the correct order). This allows the multi-pushdown game
to simulate transitions of process p, modifying its local state and stack contents
accordingly (see Basic Transitions in the formalization below).

If a player decides to take a transition for some process p′ > p, she will store `p
on stack 2 and shift the contents of stack 1 onto stack 2 until she retrieves the local
state `p′ of p′ along with its stack contents γp′ (see Figure 3.8 and Transitions for
Process Change in the formalization of M).

If, on the other hand, the player decides to take a transition for some process
p′ < p, then she stores `p on stack 1 and shifts the contents of stack 2 onto stack 1
to recover the local state `p′ and stack contents γp′ (see Figure 3.9 and Transitions
for Round Change). This may imply two phase switches, one to shift stack symbols
from 2 to 1, and another one to continue simulating the current process on stack 1.
However, 2B − 1 phases are sufficient to simulate B rounds.

There are a few subtleties: First, at any time, we need to know whether the
current node of GM corresponds to an accepting configuration in GB. To this aim,
the state component (s, `p, f1, f2, pl, r) of M contains the flags f1, f2 ∈ {3,7} where,
as an invariant, we maintain f1 = 3 if and only if {`p+1, . . . , `k} ⊆ Floc and f2 = 3 if
and only if {`1, . . . , `p−1} ⊆ Floc. Thus, a node of GM corresponds to an accepting
configuration of GB if its state is of the form (s, `,3,3, pl, r) with s ∈ Fglob and
` ∈ Floc. To faithfully maintain the invariant, every local state `q that is pushed on
one of the two stacks, comes with an additional flag gq ∈ {3,7}, which is 3 if and
only if all local states strictly below on the stack are contained in Floc. It is then
possible to keep track of a property of all local states on a given stack simply by
inspecting and locally updating the topmost stack symbols.

Second, one single transition in G is potentially simulated by several transitions
in M in terms of the gadgets given in Figures 3.8 and 3.9. The problem here is
that once Player pl commits to taking a transition by entering a gadget, she is not
allowed to get stuck. Otherwise, the simulation would end abruptly and Player 1
would win the game (because the play is finite), while it does not necessarily means
that Environment wins in G. Threfore to ensure progress, there are transitions from
inside a gadget to a sink state winp̄l that is winning for Player p̄l.

Third, suppose that, in a non-final configuration of GB, it is Environment’s
turn, but no transition is available. Then, Environment wins the play. But how
can Player 1 prove in GM that no transition is available in the original game GB?
Actually, she will give the control to Player 0, who will eventually get stuck and,
therefore, lose (cf. transitions for Change of Player below).

Let us define the MPS M = (κ,N, SM ,ΓM ,∆, s
init
M) and the MPG GM =

(S0
M , S

1
M , α) formally. We let κ = 2B − 1 (the maximal number of phases needed),

N = 2 (the number of stacks), and ΓM = Γ] (L× {3,7}).

States. The set of states is SM = {sinit
M }] Ssim] {win0,win1}] I where sinit

M is
the initial state. Moreover, Ssim = S × L × {3,7}2 × {0, 1} × {1, . . . , B}. A state
(s, `, f1, f2, pl, r) ∈ Ssim stores the global state s and the local state ` of the last process
p that executed a transition. The third and forth component f1 and f2 tell us whether
all processes p′ > p and, respectively, p′ < p of the current configuration are in a
local final state (indicated by 3). Then, pl denotes the player that is about to play

52

3.3. DPG CHAPTER 3. CONTROL

(usually, we have pl = pl(s), but there will be deviations as we said earlier). Finally,
r is the current round that is simulated. Recall that (s, `, f1, f2, pl, r) represents an
accepting configuration of G if and only if s ∈ Fglob, ` ∈ Floc, and f1 = f2 = 3. Let
W ⊆ Ssim be the set of such states. The states win0 and win1 are self-explanatory.
Finally, we use several intermediate states, contained in I, which will be determined
below along with the transitions.

The partition SM = S0
M] S1

M is defined as follows: First, we have sinit
M ∈ S0

M iff
sinit belongs to System. Concerning states from Ssim, we let (s, `, f1, f2, pl, r) ∈ Spl

M .
The sink states win0 and win1 both belong to Player 0 (but this does not really
matter). Membership of intermediate states is defined below as they are introduced.

Ranking function and end of the game. Depending on whether the acceptance
type F of the DPG is Reach, Büchi, or coBüchi, there will be slight changes to the
game GM. In all three cases, wini is a sink state that is winning for Player i for
i ∈ {0, 1}.

• If F = Reach:

For all states (s, `, f1, f2, pl, r) ∈W, we will have a transition (s, `, f1, f2, pl, r)
int,1,−−−−→

win0, which will be the only transition outgoing from (s, `, f1, f2, pl, r). Then
the ranking function α maps win0 to 0 and everything else to 1.

• If F = Büchi:
We simply define α as the function that maps every state in W and win0 to
0, with everything else mapped to 1. In this case, we do not add any special
transition from a node with state in W to win0.

• If F = coBüchi:
Here, α maps every state in W and win1 to 1, and every other state to 0.
Similarly, no transition is added in this case.

If F = Reach, we do not want any transition other than the one we added exiting a
state in W. So we need to be careful not to add any other transition that we would
otherwise add for states outside W or for the two other acceptance conditions. To
that end, let us define

S∗sim =

{
Ssim \W if F = Reach,

Ssim otherwise.

Initial Transitions. For all a ∈ Σ, for all transitions of the form (sinit , a, s′) ∈ Tglob
and (`init , (a, op, A), `′) ∈ Tloc in GB, we introduce in M a transition sinit

M

op,1,A−−−→
(s′, `′,3,3, pl(s′), 1) ∈ ∆.

Basic Transitions. We now define the transitions ofM simulating transitions of
P that do not change the process. For all states (s, `, f1, f2, pl, r) ∈ S∗sim in M, and
transitions (s, a, s′) ∈ Tglob and (`, (a, op, A), `′) ∈ Tloc in P , there is a transition

(s, `, f1, f2, pl, r)
op,1,A−−−→ (s′, `′, f1, f2, pl(s′), r) ∈ ∆ in M.

53

3.3. DPG CHAPTER 3. CONTROL

Change of Player. As we have said, when a player enters a gadget to simulate a
change of round or player, she is committed to complete the change. If no transition
in the original game is available from a configuration belonging to Player 1, in the
multi-pushdown game, that same player will have no choice but eventually taking a
transition leading to win0, allowing Player 0 to win the game GM. However, if the
blocking configuration was not winning in GB, Player 1 should win the game. To
get around this discrepancy, when Player 1 thinks she does not have an outgoing
transition (in P), she can give the token to Player 0. That is, for all (s, `, f1, f2, 1, r) ∈
S∗sim, we introduce the transition (s, `, f1, f2, 1, r)

int,1,−−−−→ (s, `, f1, f2, 0, r) ∈ ∆.

Transitions for Process Change. We define the sets I?, INP, INR used to change
the active process.

Within the same round:
For all (s, `, f1, f2, pl, r) ∈ S∗sim, we introduce, inM, the gadget given in Figure 3.8.

As we move to another process, the current local state ` is pushed on stack 2, along
with flag f2, which tells us whether, henceforth, all states on stack 2 below the new
stack symbol are local accepting states. Afterwards, the value of f2 kept in the
global state has to be updated, depending on whether ` ∈ Floc or not. Actually,
maintaining the value of f2 is done in terms of additional (but finitely many) states.
For the sake of readability, however, we rather consider that f2 is a variable and use
upd(f2, `) to update its value. We continue shifting the contents of stack 1 onto stack
2 (updating f2 when retrieving a local state). Now, there are two possibilities. We
may eventually pop a new current local state ˆ̀ and then simulate the transition of
the corresponding existing process. Or, when there are no more symbols on stack
1, we create a new process.

Formally, we have the set INP of intermediate states for a process change. For
every A ∈ Γ, s ∈ S, ` ∈ L, f1, f2, g ∈ {3,7}, pl ∈ {0, 1}, and r ≤ B such
that (s, `, f1, f2, pl, r) ∈ S∗sim, we include np(s, f1, f2, pl, r), npA(s, f1, f2, pl, r), and
np`(s, f1, f2, pl, r) in INP, and we add the transitions

1. (s, `, f1, f2, pl, r)
push,2,(`,f2)−−−−−−→ np(s, f1, upd(f2, `), pl, r),

2. np(s, f1, f2, pl, r)
pop,1,A−−−−→ npA(s, f1, f2, pl, r),

3. npA(s, f1, f2, pl, r)
push,2,A−−−−→ np(s, f1, f2, pl, r),

4. np(s, f1, f2, pl, r)
pop,1,(`,g)−−−−−−→ np`(s, g, f2, pl, r),

5. np`(s, f1, f2, pl, r)
push,2,(`,f2)−−−−−−→ np(s, f1, upd(f2, `), pl, r),

6. np(s, f1, f2, pl, r)
pop,1,(`,g)−−−−−−→?(s, `, g, f2, pl, r), and

7. np(s, f1, f2, pl, r)
zero,1,−−−−−→?(s, `init ,3, f2, pl, r)

where upd(f2, `) = 3 iff f2 = 3 ∧ ` ∈ Floc. States of the form ?(s, `, g, f2, pl, r) are
used to exit this gadget, and will be defined shortly after.

In the next round:

54

3.3. DPG CHAPTER 3. CONTROL

s `
f1 f2
j r

np

npA A ∈ Γ

np`
′′

`′′ ∈ L

?(
s ˆ̀

f ′1 f2
)

s′ `′

f ′1 f2
pl(s′) r

for all transitions
(s, a, s′) ∈ Tglob and

(ˆ̀, (a, op, A′), `′) ∈ Tloc

push 2 (`, f2) ;
upd(f2, `)

pop 1 A push 2 A

pop 1 (ˆ̀, f ′1)(
ˆ̀∈ L

f ′1 ∈ {3,7}

)

zero 1
ˆ̀ := `init

f ′1 := 3

op 1 A′

pop 1 (`′′,)
push 2 (`′′, f2) ;
upd(f2, `

′′)

win1−pl

Figure 3.8: Change from process p to some process p′ > p (staying in the same
round). All intermediate states belong to Player j; from every intermediate state,
there is an outgoing internal transition to win1−pl. Moreover, upd(f2, ¯̀) stands for
the update rule If (f2 = 3 ∧ ¯̀∈ Floc) Then f2 := 3 Else f2 := 7.

For all (s, `, f1, f2, pl, r) ∈ S∗sim such that r < B, we introduce, in M, the gadget
given in Figure 3.9. It is similar to the previous gadget. However, we now shift
symbols from stack 2 onto stack 1 and have to update f1 accordingly.

Formally, let INR the set of intermediate states for a round change. For every A ∈
Γ, s ∈ S, ` ∈ L, f1, f2, g ∈ {3,7}, pl ∈ {0, 1}, and r ≤ B such that (s, `, f1, f2, pl, r) ∈
S∗sim, we include nr(s, f1, f2, pl, r), nrA(s, f1, f2, pl, r), and nr`(s, f1, f2, pl, r) in INR, to-
gether with the following transitions:

1. (s, `, f1, f2, pl, r)
push,1,(`,f1)−−−−−−→ nr(s, upd(f1, `), f2, pl, r),

2. nr(s, f1, f2, pl, r)
pop,2,A−−−−→ nrA(s, f1, f2, pl, r),

3. nrA(s, f1, f2, pl, r)
push,1,A−−−−→ nr(s, f1, f2, pl, r),

4. nr(s, f1, f2, pl, r)
pop,2,(`,g)−−−−−−→ nr`(s, f1, g, pl, r),

5. nr`(s, f1, f2, pl, r)
push,1,(`,f1)−−−−−−→ nr(s, upd(f1, `), f2, pl, r), and

6. nr(s, f1, f2, pl, r)
pop,2,(`,g)−−−−−−→?(s, `, f1, g, pl, r + 1).

To simplify the proof of correctness, we assume that, after a transition of type 6.,
the first stack becomes the active stack, forcing a phase change so that the phase

55

3.3. DPG CHAPTER 3. CONTROL

s `
f1 f2
pl r

nr

nrA A ∈ Γ

nr`
′′

`′′ ∈ L

?(
s ˆ̀

f1 f ′2
)

s′ `′

f1 f ′2
pl(s′) r + 1

for all transitions
(s, a, s′) ∈ Tglob and

(ˆ̀, (a, op, A′), `′) ∈ Tloc

push 1 (`, f1) ;
upd(f1, `)

pop 2 A push 1 A

pop 2 (ˆ̀, f ′2)(
ˆ̀∈ L

f ′2 ∈ {3,7}

)
op 1 A′

pop 2 (`′′,)
push 1 (`′′, f1) ;
upd(f1, `

′′)

win1−pl

Figure 3.9: Go from a process p to some process p′ < p (involving a round change).
All intermediate states belong to Player j; from every intermediate state, there is an
outgoing internal transition to win1−pl. Moreover, upd(f1, ¯̀) stands for the update
rule If (f1 = 3 ∧ ¯̀∈ Floc) Then f1 := 3 Else f1 := 7.

number is always incremented by 2 after going in a round change gadget. This can
be done for instance by using intermediate states and doing dummy push then pop
transitions on stack 1.

Exiting the gadgets:
First, for all s ∈ S, ` ∈ L, f1, f2 ∈ {3,7}, pl ∈ {0, 1}, and r ≤ B, we have

?(s, `, f1, f2, pl, r) ∈ I?. For all such states, there is a transition

1. ?(s, `, f1, f2, pl, r)
int,1,−−−−→ win1−pl.

We also add

2. (s, `, f1, f2, pl, r)
int,1,−−−−→ win1−pl for all (s, `, f1, f2, pl, r) ∈ S∗sim.

These two transitions force a player to lose if there is no other transition available.
Moreover, for all (s, a, s′) ∈ Tglob and (`, (a, op, A), `′) ∈ Tloc in P , there is

3. ?(s, `, f1, f2, pl, r)
op,1,A−−−→ (s′, `′, f1, f2, pl(s′), r)

which completes the simulation of a transition from P .
Finally, when pl = 0 and pl(s) = 1, for all (s, a, s′) ∈ Tglob and (`, (a, op, A), `′) ∈

Tloc in P , there are two additional transitions

56

3.3. DPG CHAPTER 3. CONTROL

4. ?(s, `, f1, f2, pl, r)
(op,1,A)−−−−→ win0, and

5. (s, `, f1, f2, pl, r)
(op,1,A)−−−−→ win0.

These last transitions allow Player 0 to win in the case of a change of player, if a
transition was indeed available to Player 1. Otherwise, Player 0 will have no other
choice but to take the transition leading to win1.

We can now state correctness of our construction.

Lemma 12. Player 0 has a winning strategy in GM if and only if System has a
winning strategy in GB.

The rest of this section is dedicated to the proof of this lemma.
By construction, every play of GB is closely mirrored by a play of the game GM

we built (and vice-versa). Despite having more intermediate states in the gadgets,
the possible plays in GM are restricted in a way such that basically the only thing
a player can choose is a process and a transition to be executed by that process,
which corresponds to what a player can do in GB. Let us formalize this intuition by
giving a mapping π between plays of GB and plays of GM.

In the base game GB, for all configurations c, c′, round r and processes p′ < p,
there is a transition (c, p, r) −→ (c′, p′, r + 1) iff there is a transition (c, p′, r + 1) −→
(c′, p′, r + 1). Similarly, for all p′ > p, there is a transition (c, p, r) −→ (c′, p′, r)
iff there is a transition (c, p′, r) −→ (c′, p′, r). In GM, a transition from “(c, p, r)”
to “(c′, p′, r + 1)” will be simulated by a sequence of transitions corresponding to a
“dummy transition” from “(c, p, r)” to “(c, p′, r+1)” followed by an actual transition
to “(c′, p′, r + 1)”. This will be similar for p′ > p.

By abuse of notation, we say that a node v ∈ V of GM is in Ssim if v =
(sM, γ1, γ2, st , ph) with sM ∈ Ssim.

Let v = ((s, `, f1, f2, pl, r), γ1, γ2, 1, ph) ∈ Ssim be a node of GM, with

γ1 = γp · (`p+1, gp+1) · γp+1 · · · (`k, gk) · γk

γ2 = γ̃p−1 · (`p−1, gp−1) · · · γ̃1 · (`1, g1)

for some `1, . . . , `k ∈ L, γ1, . . . , γk ∈ Γ∗, and g1, . . . , gk ∈ {3,7}, where γ̃ denotes
the mirror of γ.

We let Player(v) = j denote the actual player associated with v (i.e., the pl
component of the state), and let size(γ1) = k−p and size(γ2) = p−1 be the number
of elements from L × {3,7} in each stack. Moreover, if Player(v) = 1, we denote
the configuration in which Player 1 has chosen to give the token to Player 0 by
ChangePlayer(v) = ((s, `, f1, f2, 0, r), γ1, γ2, 1, ph).

We say that v is well-defined if the following conditions are satisfied:

1. For all 1 ≤ i ≤ p− 1, gi = 3 if and only if for all 1 ≤ p′ < i, `p′ ∈ Floc,

2. For all p+ 1 ≤ i ≤ k, gi = 3 if and only if for all i < p′ ≤ k, `p′ ∈ Floc,

3. f1 = 3 if and only if for all p < p′ ≤ k, `p′ ∈ Floc,

4. f2 = 3 if and only if for all 1 ≤ p′ < p, `p′ ∈ Floc,

5. pl = pl(s), and

57

3.3. DPG CHAPTER 3. CONTROL

6. ph = 2r.

We extend this definition to nodes of I? in the following way:
(?(s, `, f1, f2, pl, r), γ1, γ2, 1, ph) is well-defined if ((s, `, f1, f2, pl, r), γ1, γ2, 1, ph) is well-
defined.

First, we define the mapping for plays π on individual nodes. We will extend
it to plays after that. For a configuration c = (s, (`1, γ1) . . . (`k, γk)) and a process
p ∈ {1, . . . , k}, we define the following flags

g<(c, p) = 3 iff `1, . . . , `p−1 ∈ Floc

g>(c, p) = 3 iff `p+1, . . . , `k ∈ Floc

and the following two stacks

τ1(c, p) = γp·(`p+1, g
>(c, p+ 1)) · γp+1 · · · (`k, g>(c, k)) · γk

τ2(c, p) = γ̃p−1 · (`p−1, g
<(c, p− 1)) · · · γ̃1 · (`1, g

<(c, 1))

Let c = (s, (`1, γ1) . . . (`k, γk)) and u = (c, p, r) an extended configuration. Its
image is defined by

π(u) = ((s, `p, g
>(c, p), g<(c, p), pl(s), r), τ1(c, p), τ2(c, p), 1, 2r)

Observe that π(u) is well-defined and is in Ssim.
Conversely, if v ∈ Ssim is well-defined, then v = ((s, `p, f1, f2, pl(s), r), γ1, γ2, 1, 2r)

with
γ1 = γp · (`p+1, gp+1) · γp+1 · · · (`k, gk) · γk
γ2 = γ̃p−1 · (`p−1, gp−1) · · · γ̃1 · (`1, g1)

We define π̂(v) = ((s, (`1, γ1) . . . (`k, γk)), p, r). π̂ is similarly defined on well-
defined nodes in I?. If v ∈ Ssim, then π(π̂(v)) = v.

Note that every reachable v ∈ Ssim in GM is either well-defined, or only fails
item 5 because pl = 0 and pl(s) = 1 (in case of a “Change of Player” initiated by
Player 1) (see Corollary 16 hereafter).

When u′ = (c′, p′, r′) is a successor of u = (c, p, r) in GB, we do not necessarily
have π(u′) successor of π(u) in GM, because of the mechanism of process or round
change. We introduce a notation to describe the (unique) part of run that allows to
go from π(u) to π(u′).

• If p < p′, we define recursively the functions nextnp
i : INP× (Γ′∗)2×{1}×N→

V ∗, for i ∈ N∗.
Let np(s, f1, f2, pl, r) ∈ INP, A ∈ Γ, ` ∈ L, g ∈ {3,7},

58

3.3. DPG CHAPTER 3. CONTROL

nextnp
i (np(s, f1, f2, pl, r), A · γ1, γ2, 1, 2r) =

(npA(s, f1, f2, pl, r), γ1, γ2, 1, 2r) · (np(s, f1, f2, pl, r), γ1, A · γ2, 1, 2r)

· nextnp
i (np(s, f1, f2, pl, r), γ1, A · γ2, 1, 2r)

nextnp
i (np(s, f1, f2, pl, r), (`, g) · γ1, γ2, 1, 2r) =

(np`(s, g, f2, pl, r)), γ1, γ2, 1, 2r) · (np(s, g, upd(f2, `), pl, r), γ1, (`, f2) · γ2, 1, 2r)

· nextnp
i−1(np(s, g, upd(f2, `), pl, r), γ1, (`, f2) · γ2, 1, 2r) if i > 1

nextnp
1 (np(s, f1, f2, pl, r), (`, g) · γ1, γ2, 1, 2r) = (?(s, `, g, f2, pl, r), γ1, γ2, 1, 2r)

nextnp
1 (np(s, f1, f2, pl, r), ε, γ2, 1, 2r) = (?(s, `0,3, f2, pl, r), ε, γ2, 1, 2r)

If 1 ≤ i ≤ size(γ1)+1, it is easy to see that nextnp
i (np(s, f1, f2, pl, r), γ1, γ2, 1, 2r)

is well defined, since the number of elements of γ1 strictly decreases at each
iteration, and since the index i decreases at each popping of an element of
L× {3,7}.

• If p > p′, we define recursively nextnr
i : INP×(Γ′∗)2×{2}×N→ V ∗, for i ∈ N∗.

Let nr(s, f1, f2, pl, r) ∈ INP, A ∈ Γ, ` ∈ L, g ∈ {3,7}:

nextnr
i (nr(s, f1, f2, pl, r), γ1, A · γ2, 2, 2r + 1) =

(nrA(s, f1, f2, pl, r), γ1, γ2, 2, 2r + 1) · (nr(s, f1, f2, pl, r), A · γ1, γ2, 2, 2r + 1)

· nextnr
i (nr(s, f1, f2, pl, r), A · γ1, γ2, 2, 2r + 1)

nextnr
i (nr(s, f1, f2, pl, r), γ1, (`, g) · γ2, 2, 2r + 1) =

(nr`(s, f1, g, pl, r)), γ1, γ2, 2, 2r + 1) · (nr(s, upd(f1, `), g, pl, r), (`, f1) · γ1, γ2, 2, 2r + 1)

· nextnr
i−1(nr(s, upd(f1, `), g, pl, r), (`, f1) · γ1, γ2, 2, 2r + 1) if i > 1

nextnr
1 (nr(s, f1, f2, pl, r), γ1, (`, g) · γ2, 2, 2r + 1) =

(?(s, `, f1, g, pl, r + 1), γ1, γ2, 1, 2r + 2)1

Similarly, if 1 ≤ i ≤ size(γ2), one can see that nextnr
i (nr(s, f1, f2, pl, r), γ1, γ2, 2, 2r+

1) is well defined as the number of elements of γ2 strictly decrease at each it-
eration and the index i decrease when an element from L× {3,7} is popped.

1Normally, the last two elements of the tuple (active stack and current phase) should be 2
and 2r + 1. But as mentioned above, we assume that after the round change, the active stack is
again stack 1, which can be achieved by pushing some element on stack 1 and popping it back
immediately. We omit the necessary intermediate states to alleviate notations.

59

3.3. DPG CHAPTER 3. CONTROL

Now we define

nextp
′

p ((s, `, f1, f2, pl, r), γ1, γ2, 1, ph)) =

ε if p = p′

(np(s, f1, upd(f2, `), pl, r), γ1, (`, f2) · γ2, 1, ph)·
nextnp

p′−p(np(s, f1, upd(f2, `), pl, r), γ1, (`, f2) · γ2, 1, ph) if p < p′

(nr(s, upd(f1, `), f2, pl, r), (`, f1) · γ1, γ2, 2, ph + 1)2·
nextnr

p−p′(nr(s, upd(f1, `), f2, pl, r), (`, f1) · γ1, γ2, 2, ph + 1) if p′ < p

Lemma 13. Given a configuration c = (s, (`1, γ1) . . . (`k, γk)) and two processes
p ∈ {1, . . . , k}, p′ ∈ {1, . . . , k + 1} such that p 6= p′, nextp

′
p (π(c, p, r)) is a run of

GM ending in the state (?(s, `p′ , g
>(c, p′), g<(c, p′), pl(s), r′), τ1(c, p′), τ2(c, p′), 1, 2r′).

Moreover, if p < p′, then r′ = r, if p > p′ then r′ = r + 1.

Proof. First we show some general properties of nextnp
i .

Let u = (np(s, f1, f2, pl, r), γ1, γ2, 1, 2r) be a node such that size(γ1) ≥ 1. Then by
definition there exists n ∈ N and A1, . . . , An and (`, g) such that γ1 = A1 · · ·An·(`, g)·
γ1
′. Then for all i ∈ N∗, we prove by induction on n that u·nextnp

i (u) = u·ρ·nextnp
i (v)

where v = (np(s, f1, f2, pl, r), (`, g) · γ1
′, An · · ·A1 · γ2, 1, 2r) and u · ρ is a valid run

ending in v. The case n = 0 is trivial as it means that ρ = ε and v = u. If n > 0,
then

nextnp
i (u) =(npA1(s, f1, f2, pl, r), A2 · · ·An · (`, g) · γ1

′, γ2, 1, 2r)

· (np(s, f1, f2, pl, r), A2 · · ·An · (`, g) · γ1
′, A1 · γ2, 1, 2r)

· nextnp
i (np(s, f1, f2, pl, r), A2 · · ·An · (`, g) · γ1

′, A1 · γ2, 1, 2r)

which by induction hypothesis can be rewritten as

nextnp
i (u) =(npA1(s, f1, f2, pl, r), A2 · · ·An · (`, g) · γ1

′, γ2, 1, 2r)

· (np(s, f1, f2, pl, r), A2 · · ·An · (`, g) · γ1
′, A1 · γ2, 1, 2r)

· ρ′ · nextnp
i (v)

with ρ′ ending in v. Let ρ = (npA1(s, f1, f2, pl, r), A2 · · ·An · (`, g) · γ1
′, γ2, 1, 2r) ·

(np(s, f1, f2, pl, r), A2 · · ·An · (`, g) · γ1
′, A1 · γ2, 1, 2r) · ρ′. Then u · ρ is a valid run of

GM because of transitions of type 2 and 3 given in the definition of INP and it ends
in node v. Moreover if i > 1 then

nextnp
i (v) =(np`(s, g, f2, pl, r)), γ1

′, An · · ·A1 · γ2, 1, 2r)

· (np(s, g, upd(f2, `), pl, r), γ1
′, (`, f2) · An · · ·A1 · γ2, 1, 2r)

· nextnp
i−1(np(s, g, upd(f2, `), pl, r), γ1

′, (`, f2) · An · · ·A1 · γ2, 1, 2r)

which again is a valid run of GM because of transitions of type 4 and 5. Finally we
can state that if i > 1 then:

nextnp
i (np(s, f1, f2, pl, r), A1 · · ·An · (`, g) · γ1

′, γ2, 1, 2r) =

ρ′′ · nextnp
i−1(np(s, g, upd(f2, `), pl, r), γ1

′, (`, f2) · An · · ·A1 · γ2, 1, 2r)

2Similarly and for simplicity, here we assume that the second stack becomes active.

60

3.3. DPG CHAPTER 3. CONTROL

Conversely, if i = 1, then nextnp
i (v) = (?(s, `, g, f2, pl, r), γ1

′, An · · ·A1 · γ2, 1, 2r), and
u·ρ·nextnp

i (v) is a valid run due to the transition of type 6. Similarly, if i = 1 and u =
(np(s, f1, f2, pl, r), γ1, γ2, 1, 2r) is a node such that size(γ1) = 0, i.e. γ1 = A1 · · ·An,
then we have that nextnp

i (u) = ρ · (?(s, `init ,3, f2, pl, r), ε, An · · ·A1 · γ2, 1, 2r) which
is a valid run of GM due to transitions of type 2 and 3 for ρ and type 7 for the last
step.

Now let c, p, p′, r defined as stated in the lemma with p < p′ ≤ k + 1, and
let π(c, p, r) = ((s, `p, f1, f2, pl(s), r), γ1, γ2, 1, 2r). By definition, we have that f1 =
g>(c, p), f2 = g<(c, p), γ1 = τ1(c, p), and γ2 = τ2(c, p).
Let u = (np(s, f1, upd(f2, `p), pl, r), γ1, (`p, f2) · γ2, 1, 2r) so that nextp

′
p (π(c, p, r)) =

u · nextnp
p′−p(u).

We show that for all 0 ≤ i < p′ − p, if we let ui = (np(s, g>(c, p + i), g<(c, p +
i + 1), pl, r), τ1(c, p + i), (`p+i, g

<(c, p + i)) · τ2(c, p + i), 1, 2r), then we have that
nextnp

p′−p−i(ui) ends in node (?(s, `p′ , g
>(c, p′), g<(c, p′), pl(s), r), τ1(c, p′), τ2(c, p′), 1, 2r).

Note that the node u defined above is u0, so proving that this property holds for
i = 0 proves the Lemma.

Suppose that i = p′ − p − 1, i.e p + i is the process immediately preceding p′.
There are two different cases to study depending on whether p′ = k + 1 or not.

1) If p′ = k+1, then p+i = k is the last process of c and therefore τ1(c, p+i) = γk,
i.e. size(τ1(c, p+ i)) = 0. Thus nextnp

1 (ui) = ρ · (?(s, `init ,3, g<(c, k+ 1), pl, r), ε, γ̃k ·
(`k, g

<(c, k)) · τ2(c, k), 1, 2r) and:

• `init = `k+1 as every new process starts in state `init ,

• g>(c, k + 1) = 3 since k + 1 is a new process so there are no processes above
it,

• ε = τ1(c, k + 1) as every new process starts with an empty stack,

• γ̃k · (`k, g<(c, k)) · τ2(c, k) = τ2(c, k + 1).

2) If p′ < k + 1, then τ1(c, p + i) = γp+i · (`p′ , g>(c, p′)) · τ1(c, p′). In that case,
nextnp

1 (ui) = ρ · (?(s, `p′ , g
>(c, p′), g<(c, p+ i+ 1), pl, r), τ1(c, p′), γ̃p+i · (`p+i, g<(c, p+

i)) · τ2(c, p+ i), 1, 2r), and

• g<(c, p+ i+ 1) = g<(c, p′),

• γ̃p+i · (`p+i, g<(c, p+ i)) · τ2(c, p+ i) = τ2(c, p+ i+ 1) = τ2(c, p′),

which satisfy the conditions stated above.
Now suppose the property holds for some i > 0. Necessarily, size(τ1(c, p +

(i − 1))) ≥ 1 since there is at least one process between p + (i − 1) and p′, and
τ1(c, p+ (i− 1)) = γp+(i−1) · (`p+i, g>(c, p+ i)) · τ1(c, p+ i). Then

nextnp
p′−p−(i−1)(ui−1) = ρ

· nextnp
p′−p−i(np(s, g>(c, p+ i), upd(g<(c, p+ i), `p+i), pl, r), τ1(c, p+ (i− 1)),

(`p+i, g
>(c, p+ i)) · γp+(i−1) · (`p+(i−1), g

>(c, p+ (i− 1))) · τ2(c, p+ (i− 1)), 1, 2r)

and as

• upd(g<(c, p+ i), `p+i) = g<(c, p+ i+ 1), and

61

3.3. DPG CHAPTER 3. CONTROL

• (`p+i, g
>(c, p + i)) · γp+(i−1) · (`p+(i−1), g

>(c, p + (i − 1))) · τ2(c, p + (i − 1)) =
(`p+i, g

>(c, p+ i) · τ2(c, p+ i),

then it can be rewritten as nextnp
p′−p−(i−1)(ui−1) = ρ · nextnp

p′−p−i(ui), meaning that
the property also holds for i− 1.

The proof for nextnr is similar.

Conversely, we show that a run between a node u ∈ Ssim and a node in I? is
necessarily of the form nextpp′(u).

Lemma 14. Let ρ̂ = ρ̂′ ·u · ρ̂′′ ·v be a finite play of GM such that u is the last state in
Ssim and v ∈ I?. Then, there exists two distinct p and p′ such that ρ̂′′ ·v = nextp

′
p (u).

Proof. Let u = ((s, `, f1, f2, pl, r), γ1, γ2, 1, ph) ∈ Ssim be well-defined, and p = size(γ2)
+ 1. By the transition relation of GM, in order to reach I? one must go through
either INP or INR. Since by hypothesis ρ̂′′ does not contain a node in Ssim, all of ρ̂′′

must occur in either INP or INR.
Suppose the former is true (the other case will, again, be extremely similar).

Necessarily, the first node in ρ̂′′ is u′ = (np(s, f1, upd(f2, `), pl, r), γ1, (`, f2) · γ2, 1, ph),
as this is the only transition from u that goes in INP (a transition of type 1 in the
description of INP).

Let us show that for all (not strict) suffixes ρ̂1 of ρ̂′′ such that ρ̂1 starts in
u1 = (np(s, f ′1, f

′
2, pl, r), γ1

′, γ2
′, 1, ph) for some f ′1, f

′
2, γ1

′, γ2
′, then there exists a k ≥ 1

such that ρ̂1 · v = u1 · nextnp
k (u1). Suppose that ρ̂1 = u1, i.e. the next node is v.

Then a transition of either type 6 or 7 has been used to go from u1 to v. However,
the kind of transition depends only on γ1

′. If γ1
′ = (`, g) · γ1

′′ then only a transition
of type 6 can be used, and if γ1

′ = ε, only a transition of type 7 can be used. In
both cases, we have that ρ̂1 · v = u1 · nextnp

1 (u1).
Now suppose that ρ̂1 = u1 · ρ̂2 with ρ̂2 non-empty. Then γ1

′ cannot be empty,
otherwise the only transition available would lead to v. Therefore there are two
cases to consider:

• If γ1
′ = A · γ1

′′, then the only available transition (type 2) leads to u′1 =
(npA(s, f ′1, f

′
2, pl, r), γ1

′′, γ2
′, 1, ph) from which the only transition (type 3) leads

to u2 = (np(s, f ′1, f
′
2, pl, r), γ1

′′, A · γ2
′, 1, ph), which corresponds to what nextnp

would do. Then by induction ρ̂2 · v = u′1 · u2 · nextnp
k (u2) for some k, so

ρ̂1 · v = u1 · u′1 · u2 · nextnp
k (u2) = u1 · nextnp

k (u1).

• If γ1
′ = (`, g) · γ1

′′, then there are two available transitions: type 4 and type
6. However, a transition of type 6 would lead to I? but this cannot happen
because we supposed that ρ̂2 is not empty. Therefore a transition of type
4 leads to u′1 = (np`(s, g, f2, pl, r), γ1

′′, γ2
′, 1, ph) from which the only possible

transition, which is of type 5, leads to u2 = (np(s, g, upd(f ′2, `), pl, r), γ1
′′, (`, g) ·

γ2
′, 1, ph). Then we have ρ̂2 · v = u′1 · u2 · nextnp

k (u2) for some k, so ρ̂1 · v =
u1 · u′1 · u2 · nextnp

k (u2) = u1 · nextnp
k+1(u1).

Therefore this property holds for ρ̂′′, i.e. ρ̂′′ · v = u′ · nextnp
k (u′) for some k ≥ 1, i.e.

by definition ρ̂′′ · v = nextp+kp (u).

We can now deduce the two following corollaries.

62

3.3. DPG CHAPTER 3. CONTROL

Corollary 15. If ρ̂ = ρ̂′ · u · ρ̂′′ · v is a finite run ending in v ∈ I? such that u is the
last node of ρ̂ in Ssim and π̂(u) = (c, p, r), then π̂(v) = (c, p′, r′) for some p′ 6= p and
r′ = r if p′ > p, r + 1 otherwise.

Proof. Using Lemma 14, ρ̂′′ · v is of the form nextp
′
p (u) for some p′ 6= p. Then by

Lemma 13 we have that π̂(v) = (c, p′, r′) with r′ = r if p′ > p, r + 1 otherwise.

Corollary 16. For every reachable node w ∈ Ssim in GM, there is a tuple (c, p, r)
such that either π̂(w) = (c, p, r) or w = ChangePlayer(u) with π̂(u) = (c, p, r).

Proof. By induction on the length of the run ρ̂ leading to w: It is easy to see in case
where ρ̂ = sinit

M · w. If ρ̂ = ρ̂′ · u · ρ̂′′ · w where u is the last node of ρ̂ in Ssim before
w, then by induction hypothesis u = π(c, p, r) for some (c, p, r). Then either:

• ρ̂′′ = ε, which means either a Change of Player occurred so the property is
satisfied, or a Basic Transition occurred in which case w = π(c′, p, r) for some
c′ successor of c, or

• ρ̂′′ ends in a node v ∈ I?, thus by the previous corollary π̂(v) = (c, p′, r′) with
r′ = r if p′ > p, r+1 otherwise. Therefore w = π(c′, p′, r′) for some c′ successor
of c.

Now we extend the definition of π on plays. We define

π((sinit), 0, 1) = (sinit
M , ε, ε, 0, 1)

and for all pairs of transitions of the form (sinit , a, s) ∈ Tglob and (`init , (a, op, A), `) ∈
Tloc, we have

π(((sinit), 0, 1) · ((s, (`, γ1)), 1, 1)) = (sinit
M , ε, ε, 0, 1) · ((s, `,3,3, pl(s), 1), γ1, ε, 1, 1)

Let ρ be a finite play of GB ending in u = (c, p, r), with p 6= 0, and u′ = (c′, p′, r′)
a successor of u. Then π(ρ · u′) is defined as follows:

• If F = Reach and ρ is already winning, then π(ρ · u′) = π(ρ).

• Else, if F = Reach and c′ is an accepting configuration, then

π(ρ · u′) = π(ρ) · nextp
′

p (π(u)) · π(u′) · (win0, τ1(c′, p′), τ2(c′, p′), 1, 2r′)ω

• Else, if u′ has no successor, then

π(ρ · u′) = π(ρ) · nextp
′

p (π(u)) · π(u′) · Ch0 · (win1, τ1(c′, p′), τ2(c′, p′), 1, 2r′)ω

where Ch0 = ChangePlayer(π(u′)) if Player(π(u′)) = 1, ε otherwise.

• Otherwise, we simply let

π(ρ · u′) = π(ρ) · nextp
′

p (π(u)) · π(u′)

63

3.3. DPG CHAPTER 3. CONTROL

We extend the mapping to infinite plays in the following way: if ρ is an infinite
play, we let π(ρ) = limρ′vρ π(ρ′).

Lemma 17. If ρ is a play of GB, then π(ρ) is a play of GM.

Proof. We show it by induction on the size of ρ. If ρ = ((sinit), 0, 1), then π(ρ) =
(sinit
M , ε, ε, 1, 1) which is a play of GM. Assume now that ρ is a finite play ending in

u = (c, p, r), and that π(ρ) is a play of GM. Let u′ = (c′, p′, r′) be such that ρ · u′ is
a play of GB.

If c is accepting and F = Reach, then ρ is winning and π(ρ · u′) = π(ρ), and by
induction hypothesis, π(ρ · u′) is a play of GM. Otherwise, π(u) ∈ S∗sim, π(ρ · u′)
starts with π(ρ) · nextp

′
p (π(u)) · π(u′) and π(ρ) ends in π(u). Let

π(u) = ((s, `p, g
>(c, p), g<(c, p), pl(s), r), τ1(c, p), τ2(c, p), 1, 2r)

and

π(u′) = ((s′, `′p′ , g
>(c′, p′), g<(c′, p′), pl(s′), r′), τ1(c′, p′), τ2(c′, p′), 1, 2r′).

• If p = p′, by definition, nextp
′
p (π(u)) = ε. Moreover, since u′ is a successor of

u in GB there is (s, a, s′) ∈ Tglob and (`p, (a, op, A), `′p) ∈ Tloc for some a ∈ Σ,

hence (s, `p, g
>(c, p), g<(c, p), pl(s), r)

(op,1,A)−−−−→ (s′, `′p, g
>(c, p), g<c, p), pl(s′), r)

in GM. Observe that in that case g>(c′, p′) = g>(c, p) and g<(c′, p′) = g<(c, p),
hence π(u′) is indeed a successor of π(u) in GM.

• If p < p′, then r = r′ and nextp
′
p (π(u)) starts with

(np(s, g>(c, p), upd(g<(c, p), `p), pl(s), r), τ1(c, p), (`p, g
<(c, p)) · τ2(c, p), 1, 2r)

which is a successor of π(u). By Lemma 13, nextp
′
p (π(u)) is a play of GM

that ends in (?(s, `p′ , g
>(c, p′), g<(c, p′), pl(s), r), τ1(c, p′), τ2(c, p′), 1, 2r). Ob-

serve that g>(c, p′) = g>(c′, p′) and g<(c, p′) = g<(c′, p′), then π(u′) is indeed
a successor of (?(s, `p′ , g

>(c, p′), g<(c, p′), pl(s), r), τ1(c, p′), τ2(c, p′), 1, 2r).

• If p > p′, then r′ = r + 1 and nextp
′
p (π(u)) starts with

(nr(s, upd(g>(c, p), `p), g
<(c, p), pl(s), r), (`p, g

>(c, p)) · τ1(c, p), τ2(c, p), 1, 2r)

which is also a successor of π(u). Again by Lemma 13, nextp
′
p (π(u)) is a play of

GM that ends in (?(s, `p′ , g
>(c, p′), g<(c, p′), pl(s), r+1), τ1(c, p′), τ2(c, p′), 1, 2r+

2). Again, one can check that π(u′) is a successor of (?(s, `p′ , g
>(c, p′), g<(c, p′),

pl(s), r + 1), τ1(c, p′), τ2(c, p′), 1, 2r + 2).

In any case, π(ρ) ·nextp
′
p (π(u)) ·π(u′) is a play of GM. Then there are two special

cases to consider:

• If now F = Reach and c′ is accepting, then by construction, g>(c′, p′) =
g<(c′, p′) = 3, s′ ∈ Fglob, `p′ ∈ Floc, hence (s′, `′p′ , g

>(c′, p′), g<(c′, p′), pl(s′), r′) ∈
W and thus (win0, τ1(c′, p′), τ2(c′, p′), 1, 2r′) is a successor of π(u′) and π(ρ ·u′)
is a play of GM.

64

3.3. DPG CHAPTER 3. CONTROL

• If u′ has no successor, π(ρ) · nextp
′
p (π(u)) · π(u′) · Ch0 is a play that ends in

a state v such that Player(v) = 0, hence (win1, τ1(c′, p′), τ2(c′, p′), 1, 2r′) is a
successor of v and π(ρ · u′) is a play of GM.

So for all finite play ρ in GB, π(ρ) is a play of GM. If ρ is an infinite play, then π(ρ)
is also a play of GM, otherwise we can find a finite prefix ρ′ of ρ such that π(ρ′) is
not a play of GM.

Conversely, we define

π̂((sinit
M , ε, ε, 0, 1)) = ((sinit), 0, 1)

and, for all plays ρ̂ and nodes v in GM,

π̂(ρ̂ · v) =

{
π̂(ρ̂) · π̂(v) if v is a well-defined node in Ssim

π̂(ρ̂) otherwise.

Lemma 18. If ρ̂ is a play of GM then π̂(ρ̂) is a play of GB.

Proof. Let ρ̂ be a finite prefix of a play of GM and assume that π̂(ρ̂) is a play of
GB. Let v be such that ρ̂ · v is a play of GM. If v /∈ Ssim, or if v is not well-
defined, then π̂(ρ̂ · v) = π̂(ρ̂) and it is then a play of GB. Otherwise, let v =
((s, `, f1, f2, pl(s), r), γ1, γ2, 1, ph). Since it is in Ssim and well-defined, by definition
of the transition relation of GM, ρ̂ necessarily ends in v′, a well-defined node of S∗sim
or of I?. Let ρ̂ = ρ̂′ · v and π̂(v) = ((s, (`1, γ1) . . . (`k, γk)), p, r), with ` = `p.

If v′ ∈ S∗sim, then v′ = ((s′, `′, f1, f2, pl(s′), r), γ′1, γ2, 1, ph), there exists a tran-

sition (s′, `′, f1, f2, pl(s′), r)
(op,1,A)−−−−→ (s, `, f1, f2, pl(s), r), and π̂(ρ̂) ends in π̂(v′) =

((s′, (`′1, γ
′
1), . . . , (`k, γk), p, r) with `′i = `i, γ

′
i = γi, for all i 6= p. By definition, there

is a pair of transitions (s′, a, s) ∈ Tglob and (`′, (a, op, A), `) ∈ Tloc for some a ∈ Σ.
Moreover, if op = push, γ1 = A · γ′1, hence by construction, γp = A · γ′p, and if

op = pop, then γ′1 = A · γ1, then γ′p = A · γp. Then π̂(v) is indeed a successor of
π̂(v′) in GB. Hence, π̂(ρ̂ · v) = π̂(ρ̂′ · v′ · v) = π̂(ρ̂′) · π̂(v′) · π̂(v) is a play of GB.

In case v′ ∈ I?, let v′ = (?(s′, `′, f1, f2, pl(s′), r), γ′1, γ2, 1, ph) and there exists a
pair of transition (s′, a, s) ∈ Tglob and (`′, (a, op, A), `) ∈ Tloc for some a ∈ Σ. In that
case, π̂(v′) = (s′, (`′1, γ

′
1), . . . , (`′k, γ

′
k), p, r) with `′i = `i, γ

′
i = γi, for all i 6= p. Then

again, if op = push, γ′1 = A · γ1, then γ′p = A · γp, and if op = pop, γ1 = A · γ′1,

then γp = A · γ′p. Let ρ̂ = ρ̂′ · u · ρ̂′′ · v′ with u the last configuration in ρ̂ in Ssim. By
Corollary 15, π̂(u) = ((s′, (`′1, γ

′
1), . . . , (`′k, γ

′
k)), p

′, r′), with either p′ < p and r′ = r
or p < p′ and r = r′+1. We then have that π̂(v) is a successor in GB of π̂(u). Hence,
π̂(ρ̂ · v) = π̂(ρ̂′) · π̂(u) · π̂(v) is a play of GB.

We are now ready to prove Lemma 12.
⇒ Let fM be a winning strategy of GM, which we assume to be memoryless

without loss of generality. We build first the function

next(v) =

fM(v) if fM(v) ∈ Ssim ∪ {win0,win1}
next(fM(v)) if fM(v) ∈ I

undefined otherwise.

that maps any node v ∈ V0 of Player 0 to the next node in Ssim according to fM(v).
Observe that if fM(v) ∈ I, fM(v) ∈ V0, by construction of the game. Moreover, by

65

3.3. DPG CHAPTER 3. CONTROL

the structure of GM, any fM-run starting from a well-defined node v ∈ V0 is of the
form v.w.v′, with w ∈ I∗ and v′ ∈ Ssim∪{win0,win1}, then next is correctly defined.

Then we define a strategy for System in GB as follows. Let (c, p, r) ∈ V0,

fP(c, p, r) =

{
π̂(next(π(c, p, r))) if next(π(c, p, r)) ∈ Ssim,

undefined otherwise.

Let ρ be a finite fP-play of GB. We show by induction on the length of ρ that
either:

• π(ρ) is an fM-play, or

• π(ρ) = w · vω where w is a fM-play and v is in state win1.

If ρ consists in one node, it is obvious. Let now ρ be an fP-play ending in
u = (c, p, r) ∈ V0, and assume that π(ρ) is an fM-play. Let fP(u) = u′ = (c′, p′, r′).
If π(ρ) is infinite, then π(ρ · u′) = π(ρ) and is immediately an fM-play. Otherwise,
π(ρ) ends in π(u), and π(ρ · u′) = π(ρ) · nextp

′
p (π(u)) · next(π(u)) · Γ, where Γ is

either ε, or of the form (win0)ω, or of the form Ch0 · (win1)ω (by definition of π). By
definition of next, there exists w ∈ I∗ such that π(c, p, r)·w ·π(c′, p′, r′) is an fM-play.
By Lemma 14, w = nextp

′
p (π(u)), which means that π(ρ) · nextp

′
p (π(u)) · next(π(u))

is a fM-play. Hence, if Γ = ε then π(ρ · u′) is an fM-play. If Γ is of the form
(win0)ω , then by definition of π we have that F = Reach and the last configuration
is accepting. Therefore, by construction of GM, the only transition available leads
to the state win0 which is a sink state, so this is the only possible choice for fM.
Finally if Γ is of the form Ch0 · (win1)ω then the second item is verified with w =
π(ρ) · nextp

′
p (π(u)) · next(π(u)) · Ch0.

Note that if the second item is verified, i.e. π(ρ) = w · (win1, . . .)
ω, then w ends

in a node π(u) ∈ S∗sim such that u has no successor. In that case, it can be verified
that no possible continuation from π(u) can avoid win1, meaning that fM can not
be winning as the play until that point is a fM-play and as there is no winning
continuation. Therefore, for any fP-play ρ of GB, π(ρ) is an fM-play of GM.

Now let ρ be a maximal fP-play and assume that it is not winning. If it is finite,
it ends in a node u without any successor and π(u) ∈ S∗sim, so π(ρ) ends with win1,
hence as explained above fM is not winning. If it is infinite, then either:

• F = Reach, so ρ never visits an accepting configuration, therefore π(ρ) never
visits a node in W, which in turn means that win0 cannot be reached and so
π(ρ) is not winning,

• F = Büchi, so ρ only visits finitely many accepting configurations, so π(ρ) also
only visits finitely many nodes in W so by definition of the ranking function
the run is not winning, or

• F = coBüchi, so ρ visits infinitely many accepting configurations, so does π(ρ)
for nodes in W, and again the run is not winning.

Then ρ is winning, and fP is a winning strategy for Player 0 in GB.
⇐ Let fP be a winning strategy of GB, we will build a strategy fM of GM. Let

ρ̂ a play of GM ending in a node of Player 0, and v be the last node in Ssim of ρ̂.
By Lemma 18, π̂(ρ̂) is a play of GB ending in a node u = π̂(v).

66

3.3. DPG CHAPTER 3. CONTROL

If π̂(ρ̂) is also an fP-play, then since fP is a winning strategy either F = Reach
and π̂(ρ̂) is already a winning play, or u must have at least one successor. In the
latter case, we let

u′ =

{
fP(π̂(ρ̂)) if u ∈ V0,

some successor of u if u ∈ V1.

By construction π̂(ρ̂) · u′ is an fP-play and we let next(ρ̂) = π(π̂(ρ̂) · u′). In the
former case, let next(ρ̂) = π(π̂(ρ̂)), i.e. ρ̂ followed by infinitely many nodes in win0.

With the previous notations, we define fM as follows:

fM(ρ̂) =

{
v′ if π̂(ρ̂) is an fP-play, with ρ̂ · v′ a prefix of next(ρ̂),

undefined otherwise.

By induction, if ρ̂ is an fM-play, then π̂(ρ̂) is an fP-play: if π̂(ρ̂) is an fP-play
then either ρ̂ · v′ is a strict prefix of next(ρ̂) in which case π̂(ρ̂ · v′) = π̂(ρ̂), or
π̂(ρ̂ · v′) = π̂(ρ̂) · u′ which is an fP-play.

Suppose there is an fM-play ρ̂ that is maximal (i.e infinite) and not winning.
That means either at some point ρ̂ reached win1 which is a sink state, or ρ̂ visits
Ssim infinitely often (as it is not possible for either player to stay in I indefinitely).

Since win1 is only accessible from nodes in V0, the first case can only happen if
there is some prefix ρ̂′ of ρ̂ such that fM(ρ̂′) leads to win1, meaning that next(ρ̂′) =
π(π̂(ρ̂′) · fP(π̂(ρ̂′))) leads to win1. By definition of π, this necessarily means that
fP(π̂(ρ̂′)) /∈ F and has no successor. As this is a maximal fP-play, necessarily π̂(ρ̂′)
must already be a winning play. In that case, by definition of next, next(ρ̂′) =
π(π̂(ρ̂′)), which leads to win0, by definition of π. Hence a contradiction.

In the second case, this means that π̂(ρ̂) is also infinite and an fP-play so it must
be winning. Then either:

• F = Reach, so π̂(ρ̂) visits some node u = (c, p, r) where c is an accepting
configuration. By definition of π̂, we can deduce that π(u) ∈W is visited in ρ̂.
Then the only possible successor of π(u) is a node in win0, hence contradicting
that ρ̂ is not winning.

• F = Büchi, so π̂(ρ̂) visits infinitely many accepting configurations, so ρ̂ visits
infinitely many nodes in W and therefore is also winning.

• F = coBüchi and similarly π̂(ρ̂) visits finitely many accepting configurations,
so ρ̂ visits finitely many nodes in W and therefore is winning.

Hence, fM is a winning strategy.
This ends the proof of Lemma 12, and therefore, that CONTROL-DPGrb is

decidable.

3.3.3 Lower Bound

We now prove that CONTROL-DFGrb is inherently non-elementary. Our lower-
bound proof is inspired by [ABKS17], but we reduce from the satisfiability problem
for first-order formulas on finite words, which is known to be non-elementary [Sto74].

For simplicity of proof, we use here a slightly different but equivalent syntax
for FO formulas than what has been given in Section 2.3.2. Let V be a countably

67

3.3. DPG CHAPTER 3. CONTROL

infinite set of variables and Σ a finite alphabet. Formulas ϕ are built by the grammar
ϕ ::= a(x) | x < y | ¬(x < y) | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∀x.ϕ where x, y ∈ V and
a ∈ Σ. Their semantics is defined as in Section 2.3.2. Without loss of generality,
we suppose that a formula ϕ is given in prenex normal form, which means that all
quantifiers are put in the front of the formula.

We build a round-bounded DFG that is winning for System if and only if ϕ is
satisfiable. In the first round of the game, Player 0 chooses a word w by creating a
different process for each letter of w, each of them holding the corresponding letter
in its local state. To prove that w is indeed a model of ϕ, the following rounds are
devoted to the valuation of the variables appearing in ϕ, ν(x) = i being represented
by memorizing the variable x in the local state of the ith process. If x appears in
the scope of a universal quantifier, the choice of the process is made by Player 1,
otherwise it is made by Player 0. The last round is used to check the valuation of
the variables. To this end, the players will inductively choose a subformula to check,
until they reach an atomic proposition: If the subformula is a disjunction ϕ1 ∨ ϕ2,
Player 0 chooses either ϕ1 or ϕ2; if it is a conjunction, Player 1 chooses the next
subformula. Finally, to verify whether a(x) is satisfied, we check that there is a
process with letter a and variable x in its local state. For x < y, we check that the
process with x in its local state is eventually followed by a distinct process with y in
its local state. This check is done during the same round, which guarantees that the
positions corresponding to x and y are in the correct order. The number of states
needed and the number of rounds are linearly bounded in the length of the formula.
Here is the formalization and proof of this idea.

Let ϕ be a formula, Cl(ϕ) the set of subformulas (non-strict) of ϕ, and Vϕ ⊂ V
the set of variables appearing in ϕ. Let us first define the DFS:

F = (Mglob,Mloc, Fglob, Floc,Reach)

with Mglob = (Σ′, S, Tglob, s
init) and Mloc = (Σ′, L, Tloc, `

init) defined as follows:

• S = {sinit ,Guess,Win} ∪ {Win-if-x | x ∈ Vϕ} ∪ {ψ | ψ ∈ Cl(ϕ)} ∪ { ψ | ψ ∈
Cl(ϕ)}
The initial state is sinit , and Fglob = {Win}.

• L = {`init , first} ∪
(
Σ× 2Vϕ

)
, with initial state `init and Floc = L.

• The transitions are as follows:

68

3.3. DPG CHAPTER 3. CONTROL

Tglob Tloc
1 (s,#,Guess) (`init ,#, first)
2 (Guess, a,Guess) (`init , a, (a, ∅))
3 (Guess,#, ϕ) (first,#, first)

4 (ψ ,#, ψ)

5 (?x.ψ,+x, ψ) for ? ∈ {∃,∀} ((a,X),+x, (a,X ∪ {x}))
6 (ψ1?ψ2,#, ψ1) for ? ∈ {∨,∧}
7 (ψ1?ψ2,#, ψ2) for ? ∈ {∨,∧}
8 (a(x), ax,Win) ((a,X), ax, (a,X)) if x ∈ X
9 (¬a(x), āx,Win) ((b,X), āx, (b,X)) if x ∈ X and b 6= a
10 (x < y,−x,Win-if-y) ((a,X),−x, (a, ∅)) if x ∈ X
11 (¬(x < y),= y,Win-if-x) ((a,X),= y, (a,X)) if y ∈ X
12 (Win-if-x,= x,Win)

Then let B = |Vϕ| + 2, and G = (F , Ss, Se) where states of the form ψ ∧ ψ′ or
∀x.ψ are in Se, and all others are in Ss.

Lemma 19. There is a winning strategy for System in G if and only if ϕ is satisfi-
able.

Proof. Given a configuration c = (s, first, (a1, X1), . . . , (an, Xn)) of size n+1, we de-
fine the associated (partial) valuation ν(c)(x) = i if x ∈ Xi, which is well defined as
there is no possible way in the game to have a single variable x in Xi and Xj if i 6= j.
Conversely, given a state s, a word w = a1 . . . an and a valuation ν, the associated
configuration is c(s, w, ν) = (s, first, (a,X1), . . . , (a,Xn)) where Xi = {x | ν(x) = i}.

⇒ Let σ be a winning strategy for System. From the initial node (which belongs
to System), σ will necessarily first do one transition of type 1, then n transitions
of type 2 (for n ∈ N), then one transition of type 3, reaching a node of the form
vϕ = ((ϕ, first, (a1, ∅), . . . , (an, ∅)), 1, 2). We fix wσ = a1 . . . an. Let σ′ be a strategy
for Environment, and ρ the winning (σ, σ′)−play. We show by recursion on the sub-
formula ψ that for all nodes vψ = (cψ, 1, r) with cψ = (ψ, first, (a1, X1), . . . , (an, Xn))
visited during ρ, we have wσ, ν(cψ) |= ψ.

First, note that if ψ is a term (or negated term), then necessarily vψ is reached
during the last round r = B = |Vϕ| + 2 as it takes one round to reach vϕ and then
|Vϕ| rounds to go through every quantifier of ϕ.

• If ψ = a(x), then as ρ is winning there is a process with local state (ai, Xi)
with ai = a and x ∈ Xi in order to perform a transition of type 8 with label
ax, in other words ν(cψ)(x) = i, so we have wσ, ν(cψ) |= ψ.

• Similarly for ψ = ¬a(x), there is 1 ≤ i ≤ n such that ν(cψ)(x) = i and ai 6= a.

• If ψ = x < y, let v1 = ((Win-if-y, . . . , (ai, ∅), . . .), i+1, B) and v2 = ((Win, . . .),
j + 1, B) such that ρ ends in vψv1v2 (transitions 10 then 12). Then we have
ν(cψ)(x) = i and ν(cψ)(y) = j. Since v1 and v2 are visited in the same round
(see note above), then i ≤ j. And since after v1 Xi = ∅, we know that i 6= j,
thus i < j.

• Similarly for ψ = ¬(x < y), we have ν(cψ)(x) = i and ν(cψ)(y) = j with j ≤ i
but this time no strict inequality.

69

3.3. DPG CHAPTER 3. CONTROL

• If ψ = ψ1 ∨ ψ2, then let i ∈ {1, 2} such that the next node has global state ψi
(transition 6 or 7), as we know recursively that wσ, ν(cψi) |= ψi and that
ν(cψi) = ν(cψ) (as no local state is changed during the transition), then
wσ, ν(cψ) |= ψi, which in turn means that wσ, ν(cψ) |= ψ.

• Similarly if ψ = ψ1 ∧ ψ2, for every i ∈ {1, 2} representing the choice of Envi-
ronment we have wσ, ν(cψi) |= ψi and ν(cψi) = ν(cψ), thus wσ, ν(cψ) |= ψ.

• If ψ = ∃x.ψ′, let v1 = ((ψ′ , . . .), i+ 1, r) with 1 ≤ i the successor node of vψ
in ρ, and v2 = ((ψ′, . . .), 1, r + 1) the successor of v1 (transitions 5 then 4).
By recursion we have that wσ, ν(cψ′) |= ψ′, and ν(cψ′) = ν(cψ)] {x → i} by
construction. Thus wσ, ν(cψ) |= ψ.

• If ψ = ∀x.ψ′, for all 1 ≤ i ≤ n we let vi1 = ((ψ′ , . . .), i + 1, r) and vi2 =

(ciψ′ , 1, r + 1) the i possible successors of vψ corresponding to Environment’s
choice. Similarly, we know that for all i wσ, ν(ciψ′) |= ψ′ and ν(ciψ′) = ν(cψ)]
{x→ i}. Thus wσ, ν(cψ) |= ψ.

From this we conclude that wσ, ν(cϕ) |= ϕ and as ν(cϕ) is the empty valuation, then
wσ satisfies ϕ.

⇐ Now suppose that ϕ is satisfied by w = a1 . . . an. We build σϕ as follows.
Let ρ be a run ending in v.

• If v = ((Guess, first, (a1, ∅), . . . , (ak, ∅)), k + 1, 1) for 0 ≤ k < n then σϕ(ρ) =
((Guess, first, (a1, ∅) . . . , (ak, ∅), (ak+1, ∅)), k + 2, 1). If k = n, then σϕ(ρ) =
((ϕ, first, (a1, ∅), . . . , (ak, ∅)), 1, 2)

• If v = (cψ, 1, r) with cψ = (∃x.ψ′, first, (a1, X1), . . . , (an, Xn)), then assuming
that w, ν(cψ) |= ψ we pick one i ≤ n such that w, ν(cψ)] {x → i} |= ψ′ and

we define σϕ(ρ) = ((ψ′ , (a1, X
′
1), . . . , (an, X

′
n)), i + 1, r) with X ′i = Xi] {x}

and X ′j = Xj for j 6= i.

• If v = (cψ, 1, r) with cψ = (ψ1 ∨ψ2, . . .), then assuming w, ν(cψ) |= ψ we know
that there is at least one i ∈ {1, 2} such that w, ν(cψ) |= ψi. We pick one such
i, and define σϕ(ρ) = ((ψi, . . .), 1, r).

• For all other cases, there is at most one transition available so σϕ is defined
unambiguously.

Let σ′ be a strategy for Environment, and ρ = v0 . . . vm the resulting (σϕ, σ
′)-play.

We show that ρ is winning.
By definition of σϕ and since v0 to vn are owned by System, we have that vn+1 =

(c(ϕ,w, ∅), 1, 2). Let k ∈ {n+ 1, n+ 3, . . . , n+ 2 · (|Vϕ| − 1)}. We have the following
two properties:

1. If vk = (c(∃x.ψ′, w, ν), 1, r) such that w, ν |= ∃x.ψ′, then by construction of

σϕ we have vk+1 = (c(ψ′ , w, ν ′), i+ 1, r) and vk+2 = (c(ψ′, w, ν ′), 1, r + 1) for

some 1 ≤ i ≤ n and ν ′ = ν] {x→ i}, and furthermore w, ν ′ |= ψ′.

70

3.4. CONTEXT-BOUNDED CONTROL CHAPTER 3. CONTROL

2. If vk = (c(∀x.ψ′, w, ν), 1, r) such that w, ν |= ∀x.ψ′, then for some 1 ≤ i ≤ n

(defined by σ′) we have ν ′ = ν]{x→ i} such that vk+1 = (c(ψ′ , w, ν ′), i+1, r)

and vk+2 = (c(ψ′, w, ν ′), 1, r + 1). By definition since w, ν |= ∀x.ψ′, we deduce
that w, ν ′ |= ψ′.

By those two properties, combined with the fact that vn+1 = (c(ϕ,w, ∅), 1, 2), we
deduce that vn+2·|Vϕ| = (c(ψ′, w, ν), 1, B) where ψ′ has no quantifiers and w, ν |= ψ′.

Let k ≥ n+ 2 · |Vϕ|, again we have two similar-looking properties:

1. If vk = (c(ψ1 ∨ ψ2, w, ν), 1, B) and w, ν |= ψ1 ∨ ψ2 then by definition of σϕ,
vk+1 = (c(ψi, w, ν), 1, B) with i ∈ {1, 2} and w, ν |= ψi.

2. If vk = (c(ψ1 ∧ ψ2, w, ν), 1, B) and w, ν |= ψ1 ∧ ψ2 then for some i ∈ {1, 2}
defined by σ′, vk+1 = (c(ψi, w, ν), 1, B). By definition of satisfiability, we also
have that w, ν |= ψi.

Using those two properties, we deduce that there exists m′ ≥ n+ 2 · |Vϕ| such that
vm′ = (c(t, w, ν), 1, B) where t is a term or a negated term such that w, ν |= t. Here
m′ depends not only on ϕ but also on both strategies σϕ and σ′. There are 4 possible
cases for t:

1. t = a(x): as w, ν |= t we know that aν(x) = a, and vm′ = (c(t, w, ν), 1, B) so
vm′+1 = (c(Win, w, ν), ν(x) + 1, B).

2. t = ¬a(x): similarly, we have vm′+1 = (c(Win, w, ν), ν(x) + 1, B).

3. t = x < y: we know that ν(x) < ν(y) so vm′+1 = (c(Win-if-y, w, ν ′), ν(x), B)
where ν ′ = ν − {{x′ → ν(x)} | x′ ∈ Vϕ}. Since ν(x) 6= ν(y), ν ′(y) = ν(y) >
ν(x). So vm′+2 = (c(Win, w, ν ′), ν(y), B).

4. t = ¬(x < y): in this case ν(y) ≤ ν(x) and we have vm′+1 = (c(Win-if-x,w, ν),
ν(y), B) and vm′+2 = (c(Win, w, ν), ν(x), B).

Every case ends in an accepting node, therefore ρ is winning.

3.4 Context-bounded Control

In this section, we show that relaxing the notion of rounds quickly leads to undecid-
ability. It should be noted that our undecidability proof also applies to the notion
of context bounds introduced in [ABQ11].

3.4.1 Context-Bounded Runs

We now define context-bounded runs. A context is less restrictive than a round. It
just requires that every process intervenes once, without fixing a particular order on
processes.

Let P = ((Σ, S, Tglob, s
init), (Σ,Γ, L, Tloc, `

init), Fglob, Floc,F) be a DPS. As with
round-bounded runs, we define extended configurations that contain necessary in-
formation to count contexts as follows: an extended configuration is of the form
v = (c, P, p, r) where:

71

3.4. CONTEXT-BOUNDED CONTROL CHAPTER 3. CONTROL

• c is a configuration of P of size, say, k,

• P ⊆ {1, . . . , k} is the set of processes that performed a transition during the
current context,

• p ∈ P ∪ {0} is the last process that performed an action (or 0 at the beginning),
and

• r ≥ 1 is the current context number.

The initial extended configuration is vinit = (cinit , ∅, 0, 1). A new context is started
only when a process that is in P \p performs an action. In other words, if (c, P, p, r)
is an extended configuration and c′ is an (a, i)-successor of c, then the corresponding
(a, i)-successor extended configuration is (c′, P ′, i, r′) with:

• P ′ = {i} and r′ = r + 1 if i ∈ P \ {p},

• P ′ = P ∪ {i} and r′ = r otherwise.

Now let B ≥ 1 be a bound. By PBcb, we denote the context-bounded semantics
which is the transition system where nodes are extended configurations with a con-
text number up to B, and transitions are defined as above. A run ρ of P is B-context
bounded if it is a run of PBcb, or in other words, if this run does not use more than
B contexts.

Relation to round-bounded runs.
Note that if a run is B-round bounded for some B, then it is trivially B-context

bounded too. Conversely for any n ∈ N, there are 2-context bounded runs that are
not n-round bounded: for instance, a run where processes 1 to n do one transition
each in the first half, followed in the second half by one transition from processes
n− 1 down to 1. Such a run is 2-context bounded (one for each half), but it needs
at least n+ 1 rounds to be done.

Context-bounded control.
Let G be a DPG and B ≥ 1 be a bound. The context-bounded game denoted by
GBcb is the game played on the context-bounded semantics of the DPS, defined in a
similar way to round-bounded games. The control problem on these games is also
defined similarly:

CONTROL-DPGcb

Input: A DPG G, a bound B ∈ N> (given in unary)

Question: Is there a winning strategy for System in GBcb?

Context-bounded games for DFG and their respective control problem CONTROL-
DFGcb are defined analogously.

72

3.4. CONTEXT-BOUNDED CONTROL CHAPTER 3. CONTROL

3.4.2 Undecidabilty for Context-Bounded Runs

We show that even for DFG, and even with a fixed bound, the control problem is
undecidable. This shows that relaxing the round-bounded constraint even a little
easily leads to undecidability.

Theorem 20. CONTROL-DFGcb is undecidable, even if we fix B = 2.

The rest of this section is devoted to the proof of this theorem.

We provide a reduction from the halting problem for 2-counter machines, whose
definition we recall in the following.

A two-counter machine (2CM) with counters c1 and c2 is given by a tuple M =
(Q, T, q0, qh), where Q is the finite set of states and T ⊆ Q×Op×Q is the transition
relation where the set of operations is defined as Op = {ci++ , ci– – , ci==0 | i ∈
{1, 2}}. As expected, ci++ increments counter ci, while ci– – decrements it, and
ci==0 checks whether its value is 0. Moreover, there are a distinguished initial state
q0 ∈ Q and a halting state qh ∈ Q.

The behavior of M is described in terms of a global transition relation over
configurations γ = (q, ν1, ν2) ∈ Q × N × N where q is the current state and ν1, ν2

are the current counter values. Every transition t ∈ T defines a binary relation `t
on configurations letting (q, ν1, ν2) `t (q′, ν ′1, ν

′
2) if there is i ∈ {1, 2} and ν ′3−i = ν3−i

such that one of the following conditions hold:

• t = (q, ci++, q′) and ν ′i = νi + 1,

• t = (q, ci– –, q′) and ν ′i = νi − 1, or

• t = (q, ci==0, q′) and νi = ν ′i = 0.

An (M -)run is a sequence of the form γ0 `t1 γ1 `t2 . . . `tn γn where γ0 = (q0, 0, 0).
The run is successful (or halting) if γn ∈ F = {qh} ×N×N. Now, the 2CM halting
problem is to decide whether there is a successful run. It is well known that this
problem is undecidable [Min67].

Let M = (Q, T, q0, qh) be a 2CM. We define a DFG G with the following intuition.
In the first context, System will simulate a run of the 2CM. The global state of the
game will be the state of the 2CM. To encode the values of the counters, there are
two local states `i and ¯̀

i for i ∈ {1, 2}, and the value of counter i will be encoded
as the number of processes with local state `i minus the number of processes with
local state ¯̀

i. To simulate a transition (q, ci++, q′), System will change the global
state from q to q′ and create a new process with local state `i. Similarly, for a
transition (q, ci– –, q′), System will change the global state from q to q′ and create
a new process with local state ¯̀

i. Finally, a transition (q, ci==0, q′) is simulated by
changing the global state from q to q′ and creating a new process with a dummy
local state `⊥ that is not counted in the encoding of the values of c1 and c2. All
local states are accepting and only qh is an accepting global state, so System wins
if she can simulate a run of the 2CM leading to qh.

However, we must ensure that System does not cheat during the simulation,
that is that System does not decrement counter i if its value is 0 or takes a zero-
test transition when its value is not 0. To that end, whenever System simulates
a decrement or a zero-test transition, we leave the possibility for Environment to

73

3.4. CONTEXT-BOUNDED CONTROL CHAPTER 3. CONTROL

Tglob Tloc
1 (q, inci, q

′) (`init , inci, `i) for all (q, ci++, q′) ∈ T
2 (q, deci, ?deci(q,q′)) (`init , deci, ¯̀

i) for all (q, ci– –, q′) ∈ T
3 (?deci(q,q′), nop, q′) (`init , nop, `⊥)

4 (?deci(q,q′), nop, vdeci1)

5 (q, zeroi, ?zeroi(q,q′)) (`init , zeroi, `⊥) for all (q, ci==0, q′) ∈ T
6 (?zeroi(q,q′), nop, q′)

7 (?zeroi(q,q′), nop, vzeroi1)

8 (vdeci1, v̄i, vdeci2) (¯̀
i, v̄i, `⊥) for all i ∈ {1, 2}

9 (vdeci2, vi, vdeci1) (`i, vi, `⊥)
10 (vdeci1, nop,win)
11 (vzeroi1, vi, vzeroi2) for all i ∈ {1, 2}
12 (vzeroi2, v̄i, vzeroi1)
13 (vzeroi1, v̄i, vzeroi3)
13 (vzeroi3, vi, vzeroi1)
14 (vzeroi1, nop,win)

Table 3.1: Transitions of F

claim that the transition was incorrectly taken. When that happens, the simulation
is stopped and a verification is started. This verification phase uses another context,
and the game always ends after this phase (thus 2 contexts are enough for the game).
If the transition was a decrement of counter i, then Environment and System will
alternately make a transition with a process in state ¯̀

i and `i respectively, with
Environment aiming to prove that there are more ¯̀

i than `i and System aiming to
disprove that. Eventually, the player who cannot make a transition anymore loses
the game. Similarly, if the transition was a zero-test, Environment will try to prove
that there is an unequal number of `i and ¯̀

i, and System will try to disprove it.
Therefore, System’s only way to win the game is to correctly simulate an accepting
run of the 2CM.

Formally, let us define F = ((Σ, S, Tglob, s
init), (Σ, L, Tloc, `

init), Fglob, Floc,Reach)
as follows.

• S = Q ∪ {win}
∪ {?deci(q,q′), ?zeroi(q,q′) | i ∈ {1, 2}, q, q′ ∈ Q}
∪ {vdecij | i ∈ {1, 2}, j ∈ {1, 2}}
∪ {vzeroij | i ∈ {1, 2}, j ∈ {1, 2, 3}},

• sinit = q0 and Fglob = {qh,win},

• L = {`init , `⊥} ∪ {`i, ¯̀
i | i ∈ {1, 2}},

• `init = `init , and Floc = L,

• and finally, transitions can be found in Table 3.1.

The DFG G is defined as G = (F , Ss, Se) with Environment states being

Se = {?deci(q,q′), ?zeroi(q,q′) | i ∈ {1, 2}, q, q′ ∈ Q} ∪ {vdeci1, vzeroi1 | i ∈ {1, 2}}

74

3.4. CONTEXT-BOUNDED CONTROL CHAPTER 3. CONTROL

and Ss = S \ Se. Finally, we take B = 2. This ends the definition of GBcb. Refer to
Figure 3.10 for an illustration.

Lemma 21. There is an accepting run in M iff System has a winning strategy in
GBcb.

Proof. To avoid possible confusions, a configuration of the 2CM M may be referred
as an M -configuration and will always be noted γ, whereas a configuration of the
game GBcb will be referred to as c. Moreover, runs of M will be denoted by ρ and
plays of GBcb by π.

For any GBcb-configuration c = (s, `1, . . . , `p) and i ∈ {1, 2}, let ni(c) = |{1 ≤ j ≤
p | `j = `i}|− |{1 ≤ j ≤ p | `j = ¯̀

i}|. Let also mini(c) = min{j | `j = `i} if it exists.
One can build from any M -run ρ a corresponding GBcb-play π(ρ) inductively in

the following way:

• π(γ0) = ((q0), ∅, 0, 1),

• if π(ρ) is defined and ends in (c, {1, . . . , p}, p, 1) with c = (q, `1, . . . , `p), then
π(ρ `t γ) =

(
π(ρ) · ((q′, `1, . . . , `p, `i), {1, . . . , p+ 1}, p+ 1, 1)

)
if t = (q, ci++, q′)(

π(ρ) · ((?deci(q,q′), `
1, . . . , `p, ¯̀

i), {1, . . . , p+ 1}, p+ 1, 1)

· ((q′, `1, . . . , `p, ¯̀
i, `⊥), {1, . . . , p+ 2}, p+ 2, 1)

)
if t = (q, ci– –, q′)(

π(ρ) · ((?zeroi(q,q′), `
1, . . . , `p, `⊥), {1, . . . , p+ 1}, p+ 1, 1)

· ((q′, `1, . . . , `p, `⊥, `⊥), {1, . . . , p+ 2}, p+ 2, 1)

)
if t = (q, ci==0, q′).

This construction is such that for any ρ ending in γ = (q, ν1, ν2), we have that π(ρ)
ends in (c, P, p, 1) with c = (q, . . .) such that n1(c) = ν1 and n2(c) = ν2. Remark
also that π(ρ) is winning for System iff qh is visited in ρ.

We define a strategy σvdec as follows. If c = (vdeci2, `
1, . . . , `p) is a GBcb-configuration

such that m = mini(c) exists (that is, there is at least one process in state `i), then
σvdec(c, P, p

′, 2) = ((vdeci1,
ˆ̀1, . . . , ˆ̀p), P∪{m},m, 2) with ˆ̀m = `⊥, and ˆ̀j = `j for all

j 6= m. In all other cases, σvdec gives an arbitrary successor node. Let c = (vdeci1, ...)
such that ni(c) ≥ 0, that is there are at least as many processes in local state `i than
in local state ¯̀

i. Then it is easy to see that σvdec is a winning strategy for System
from node (c, {1, . . . , p}, p, 1), as there will always be at least one process in state
`i for System to make a transition until Environment is forced to go from global
state vdeci1 to win because there are no more processes in state ¯̀

i. Conversely, if
ni(c) < 0, then System cannot win from (c, {1, . . . , p}, p, 1) because Environment
can force System to exhaust all processes in state `i until there are no more left and
then be stuck in vdeci2.

Similarly, one can build a strategy σvzero such that for all c = (vzeroi1, . . .),
System is winning from (c, {1, . . . , p}, p, 1) iff ni(c) = 0.

We are now ready to prove Lemma 21.
⇒ Let ρ = γ0 `t1 · · · `tk γk be an accepting M -run. We define a (memoryless)

strategy σ for System in GBcb that simulates ρ as follows:

• If (c, P, p, 1) is the last node of π(γ0 `t1 · · · `tj γj) for some j ∈ {0, . . . , k− 1},
then σ(c, P, p, 1) is its successor in π(ρ).

75

3.4. CONTEXT-BOUNDED CONTROL CHAPTER 3. CONTROL

`init `⊥

`1

¯̀
1

`2

¯̀
2

Local automaton

nop, zero1 , zero2

inc1

dec1

inc2

dec2

v1

v̄1

v2

v̄2

q q′

∀(q, ci++, q′) ∈ T
inci q q′

?deci(q,q′)

vdeci1

∀(q, ci– –, q′) ∈ T

deci nop

nop

q q′

?zeroi(q,q′)

vzeroi1

∀(q, ci==0, q′) ∈ T

nop nop

nop

vdeci1 vdeci2

win

∀i ∈ {1, 2}
v̄ i

v inop

vzeroi1vzeroi2 vzeroi3

win

∀i ∈ {1, 2}
v̄ i

v i

v̄ i

v i nop

Global automaton

Figure 3.10: Construction of GBcb. Global states belonging to Environment are drawn
with a light gray background. Not pictured: q0 is the initial global state and qh is
accepting.

76

3.4. CONTEXT-BOUNDED CONTROL CHAPTER 3. CONTROL

• If c = (vdeci2, . . .) then σ follows σvdec.

• If c = (vzeroi2, . . .) or c = (vzeroi3, . . .) then σ follows σvzero.

• Otherwise σ gives an arbitrary successor.

Suppose that σ is not winning, let σ′ be a strategy for Environment such that the
maximal (σ, σ′)-play π is not winning. There are two cases to study:

If global states vdeci1 and vzeroi1 are not visited in π for both i = 1 and i = 2, then
necessarily π = π(ρ). However as ρ is an accepting M -run, then π(ρ) is winning.

In the other case, suppose that vdeci1 is visited in π. Up until visiting vdeci1, the
play was simulating a prefix of ρ. Then necessarily π is of the form

π = π(γ0 `t1 · · · `tj γj) · ((?deci(q,q′), `
1, . . . , `p, ¯̀

i), {1, . . . , p+ 1}, p+ 1, 1)

· ((vdeci1, `
1, . . . , `p, ¯̀

i, `⊥), {1, . . . , p+ 2}, p+ 2, 1) · π′

with j < k, tj+1 = (q, ci– –, q′), and π′ is σvdec-compatible by definition of σ. More-
over, π(γ0 `t1 · · · `tj γj) ends in (c, {1, . . . , p}, p, 1) such that with c = (q, `1, . . . , `p)
and γj = (q, ν1, ν2), we have that ni(c) = νi > 0, otherwise tj+1 could not have been
taken in ρ. Therefore, ni(vdeci1, `

1, . . . , `p, ¯̀
i, `⊥) = ni(c)− 1 ≥ 0. Then because the

rest of the play π′ follows σvdec, we showed that π is a winning. The reasoning is
similar if vzeroi1 is visited instead of vdeci1.

Thus we get a contradiction, so σ is a winning strategy for System.

⇐ Let σ be a winning strategy of System in GBcb, and let π be the σ-compatible
maximal play when put against the strategy of Environment that never goes to
vdeci1 or vzeroi1. Let c0, c1, . . . be the configurations visited during π. For all j
such that cj is of the form (q, . . .), one can build a valid M -run ρ(c0, . . . , cj) that
ends in the M -configuration γ = (q, n1(cj), n2(cj)) in the following way: first we let
ρ(c0) = γ0 = (q0, 0, 0), which satisfies the conditions above. Then if ρ(c0, . . . , cj) =
γ0 `t1 · · · `tk γk has been defined with cj = (q, `1, . . . , `p) and γk = (q, ν1, ν2) which
satisfies the conditions, then there are three possible successors to consider:

• If cj+1 = (q′, `1, . . . , `p, `i) then there exists t = (q, ci++, q′) ∈ T . We then
define ρ(c0, . . . , cj+1) = ρ(c0, . . . , cj) `t (q′, ν ′1, ν

′
2) with ν ′i = νi + 1 and ν ′3−i =

ν3−i which satisfies the conditions as ni(cj+1) = ni(cj) + 1 = νi + 1 = ν ′i and
n3−i(cj+1) = n3−i(cj) = ν3−i = ν ′3−i.

• If cj+1 = (?deci(q,q′), `
1, . . . , `p, ¯̀

i) and cj+2 = (q′, `1, . . . , `p, ¯̀
i, `⊥), then let

t = (q, ci– –, q′) ∈ T . We define ρ(c0, . . . , cj+2) = ρ(c0, . . . , cj) `t (q′, ν ′1, ν
′
2)

with ν ′i = νi − 1 and ν ′3−i = ν3−i. This is a valid M -run as νi > 0, otherwise
we would have ni(cj+1) = ni(cj)− 1 = νi − 1 < 0 in which case Environment
could have chosen to go to c′j+2 = (vdeci1, `

1, . . . , `p, ¯̀
i, `⊥) which is losing for

System because ni(c
′
j+2) = ni(cj+1) < 0, contradicting that σ is a winning

strategy. Moreover, ν ′i = ni(cj+2) for i ∈ {1, 2}, so this run satisfies the
required conditions.

• If cj+1 = (?zeroi(q,q′), `
1, . . . , `p, `⊥) and cj+2 = (q′, `1, . . . , `p, `⊥, `⊥), then let

t = (q, ci==0, q′) ∈ T and ρ(c0, . . . , cj+2) = ρ(c0, . . . , cj) `t (q′, ν1, ν2). Again
this is a valid M -run because νi = 0, otherwise Environment would win by
going to c′j+2 = (vdeci1, `

1, . . . , `p, `⊥, `⊥). Since νi = ni(cj) = ni(cj+2) for
i ∈ {1, 2}, the conditions are also satisfied.

77

3.4. CONTEXT-BOUNDED CONTROL CHAPTER 3. CONTROL

Therefore, π is of the form π(ρ) for some valid M -run ρ. As π is winning, we deduce
that ρ is an accepting run of M .

78

Chapter 4

Synthesis for First-order
Specifications

In this chapter, we study the synthesis problem, which as explained in the introduc-
tion can be seen as a special case of the control problem where the partially defined
system given as input is a simple system where all actions are allowed at any time.
Therefore, an instance of the problem is simply given by a (finite) alphabet of ac-
tions and the specification. Executions here are represented as data words, and
for specifications we use first-order logic (abbreviated as FO), whose satisfiability
problem was studied in [BDM+11]. The goal is to extend these results to synthesis,
at least for fragments of the whole logic.

Moreover, in this chapter we take the parameterized approach to the problem
instead of the dynamic one: for each execution, there is a finite set of processes that
can participate in the execution, although that set is not known in advance and
there is no bound on its size. This ensures a finer control on the processes involved
compared to the dynamic case where processes can be added dynamically during an
execution. The synthesis problem we define will therefore be parameterized by two
constraints:

• the fragment of FO in which the specification is given, and

• the cardinality of the set of processes.

This chapter is organized as follows. In Section 4.1 we formally define executions
and the parameterized synthesis problem as well as important notions. Then we
study two fragments of FO in the next two sections: Section 4.2 focuses on the two-
variable fragment FO2, and Section 4.3 is about the fragment FO[∼] where only the
data equality predicate can be used.

4.1 Preliminaries

4.1.1 Executions and first-order logic

For this section, let us fix an alphabet A = As] Ae of system and environment
actions. Let us also fix P = Ps] Pe] Pse, three finite sets of system, environment,
and mixed processes respectively. We denote by T = {s, e, se} the set of process
types.

79

4.1. PRELIMINARIES CHAPTER 4. SYNTHESIS

The idea behind this partition is that both System and Environment do not
necessarily have access to all processes, but can only affect some of those: System
can only affect system and mixed processes, Environment can do the same to en-
vironment and mixed processes. This is a finer approach than declaring that all
processes are mixed processes, and allows to better model some systems. For in-
stance, with this we can model distributed computing systems where Environment
represents user inputs given during the execution of the computing, but where only
some machines accept user inputs while others cannot be interacted with directly.

Accordingly, let Σs = As × (Ps ∪ Pse) be the set of system events and Σe =
Ae × (Pe ∪ Pse) be the set of environment events, and let us denote by Σ = Σs ∪ Σe

their union. A P-execution is a word w ∈ Σ∞, or in other words, w is a data
word whose process identities are contained in P and whose actions respect process
types (system actions on system or mixed processes, and environment actions on
environment or mixed processes).

To define specifications over P-executions, we use first-order logic formulas as
defined in Section 2.3.2. However, with the logic defined as it is, one can only specify
properties over processes that perform at least one action during the execution.
Conversely, it is not possible to specify anything about processes that are not part
of the execution. So even simple properties such as “All processes must perform at
least one action” cannot be expressed. Moreover, there is no way to know what the
type of a given process is other than looking at what kind of actions this process
performed during the execution. If there is at least one system and one environment
action performed by the same process, then it is obviously a mixed process, but
what if there is only, say, system actions? Is that process a system process, or a
mixed process that simply did not perform any environment action?

With these in mind, we slightly modify the syntax of first order logic as follows:

ϕ ::= a(x) | θ(x) | x = y | succ(x, y) | x < y | x ∼ y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

with x, y ∈ V , a ∈ Σ, and θ ∈ T. The three new predicates θ(x) are used to indicate
that the process if of type θ. Here are the changes to the semantics of formulas:

• When evaluating a formula ϕ over a P-execution w, variables can be interpreted
either as a position of w or a process in P: a valuation ν is now a partial
function from V to Pos(w)∪P. Given a valuation ν and a variable x, we denote
by pνx ∈ P the process which is either ν(x) if ν(x) ∈ P, or p if ν(x) ∈ Pos(w)
with w[ν(x)] = (a, p).

• Formulas of the form a(x), succ(x, y), x < y, and x = y can only be satisfied
if x and y are interpreted as positions of w (since they do not make sense if x
and y are interpreted as processes).

• However, formulas of the form x ∼ y are satisfied if pνx = pνy .

• Finally, we add the following rule for formulas of the form θ(x):
(w, ν) |= θ(x) if pνx ∈ Pθ.

Example 18. We can now express properties such as

ϕ1 = ∀x. [s(x)⇒ ∃y.y ∼ x ∧ a(y)]

80

4.1. PRELIMINARIES CHAPTER 4. SYNTHESIS

which states that every system process of Ps has performed (at least) an a, or

ϕ2 = ∃x. [s(x) ∧ (∃y.y ∼ x ∧ a(y)) ∧ (∀y.y 6∼ x⇒ (∃z.z ∼ y ∧ b(z)))]

which states that there is a system process with an a and that every other process has
a b. Note that ϕ1 is satisfied by the P-execution w = (a, 1)(a, 2)(a, 3) if Ps = {1, 2, 3},
but not by the same execution if Ps = {1, 2, 3, 4}.

4.1.2 Winning triples, Synthesis, Cutoffs

A P-strategy for System, following Definition 7, is a mapping f : Σ∗ → (Σs ∪
{ε}). The definition of f -compatible and f -fair P-executions follow similarly: a
P-execution w = (a0, p0) . . . is f -compatible if:

1. for all i < |w| such that ai ∈ As, we have that (ai, pi) = f((a0, p0) . . . (ai−1, pi−1)).

2. if w is finite, then f(w) = ε.

and w is f -fair if at least one of the following three conditions is satisfied:

1. w is finite,

2. there are finitely many i ∈ N such that f((a0, p0) . . . (ai, pi)) 6= ε, or

3. there are infinitely many i ∈ N such that ai ∈ Σs.

Given a first-order formula ϕ and a P-strategy f , we say that f is P-winning for ϕ
is all P-executions that are f -compatible and f -fair satisfy ϕ.

Winning triples.
The existence of a P-winning strategy for a given formula does not depend on the

concrete identities of processes, but only on the cardinality of the sets Ps, Pe, Pse.
Indeed, first-order formulas can only tell whether two data values are equal, and have
no other way to handle process identities. For instance, in the previous Example 18,
one could substitute 1, 2, and 3 by any three different values in execution w and the
satisfiability of ϕ1 would be unchanged. This motivates the following definition of
winning triples for a formula.

Definition 17. Given ϕ, let Win(ϕ) be the set of triples (ks, ke, kse) ∈ NT for which
there is P = Ps] Pe] Pse such that |Pθ| = kθ for all θ ∈ T and there is a P-strategy
that is P-winning for ϕ.

Let 0 = {0} and ke, kse ∈ N. We focus on the intersection of Win(ϕ) with the
sets:

• N× 0× 0 (which corresponds to the usual satisfiability problem),

• N× {ke} × {kse} (there is a constant number of environment and mixed pro-
cesses),

• N× N× {kse} (there is a constant number of mixed processes),

• 0× 0× N (each process is controlled by both System and Environment).

81

4.1. PRELIMINARIES CHAPTER 4. SYNTHESIS

Example 19. Let As = {a}, Ae = {b}, and ϕ3 = ∀x.
(
b(x) ⇒ ∃y.(x ∼ y ∧ x <

y ∧ a(y))
)
. Formula ϕ3 essentially states that each b is eventually followed by an

a executed by the same process. Observe that if there is at least one environment
process, then it is easy to see that there can be no winning strategy for the system,
as Environment can perform a b action on an environment process on which System
cannot perform any action. Hence necessarily we must have Pe = ∅. This condition
is actually sufficient, i.e. Win(ϕ3) = N× 0×N, and we give two winning strategies
to illustrate this.

Fix P = Ps] Pse.

• For the first strategy, let Pse = {p0, . . . , pn−1} be the set of mixed processes
sorted in some arbitrary order. Then the strategy f1 maps every word w ∈ Σ∗

to (a, pi) where i is the number of occurrences of events in Σs in w. In simple
terms, this strategy plays an a on every mixed process, and repeats over and
over again. By the fairness assumption, this guarantees an infinite number of
a on every mixed process, and therefore ϕ3 is trivially satisfied.

• We can also define a more “economical” strategy. For any P-execution w,
let minP(w) be the process p ∈ Pse such that (b, p) is the earliest (w.r.t. to
position order) event of w that is not eventually followed by an (a, p), if it
exists. We then let

f2(w) =

{
(a,minP(w)) if minP(w) exists,

ε otherwise.

This strategy f2 is also winning for ϕ3, as any “pending” (b, p) is eventually
closed by f2 thanks to the fairness condition.

Example 20. LetAs = {a} andAe = {b}. We define the formula ϕ4 = (¬∃x.b(x))⇔
(∃x.a(x)), which states that there is an a action if and only if there is no b. Then
unless Pe = Pse = ∅, there is no winning strategy for System, as System can either
do nothing in which case Environment also does nothing and the execution will not
satisfy ϕ4, or System performs an a action on some process at which point Envi-
ronment replies with a b action on some process, and then System has lost. The
formula is however obviously satisfiable (as long as there is at least one process for
System to perform an a action on), therefore Win(ϕ4) = N> × 0× 0.

Synthesis problem.
The parameterized synthesis problem is defined as follows.

Definition 18. For fixed F ∈ {FO,FO2}, set of relation symbols R ⊆ {∼, succ, <},
and Ns,Ne,Nse ⊆ N, the (parameterized) synthesis problem is given by

Synth(F[R],Ns,Ne,Nse)

Input: Σ = Σs] Σe, a formula ϕ ∈ F[R] over Σ

Question: Win(ϕ) ∩ (Ns ×Ne ×Nse) 6= ∅ ?

The satisfiability problem for F[R] is defined as Synth(F[R],N, 0, 0).

82

4.2. FO2[∼, succ, <] CHAPTER 4. SYNTHESIS

Cutoff.
When dealing with parameterized systems in general, searching for a cutoff is a

popular method to try reducing the search space. In general, a cutoff is a number
such that the behavior of a system is fully known for parameters that are greater
than this number. They were introduced in [EN95] to deal with model checking on
ring architectures. For our parameterized synthesis problem in particular, a cutoff
means that if there are “enough” processes, then either System or Environment
always win. See [JB14] for an approach of parameterized synthesis using cutoffs.

Cutoffs are formally defined as follows.

Definition 19. A cutoff for a formula ϕ with respect to (Ns,Ne,Nse) is a triple
(ks, ke, kse) ∈ Ns ×Ne ×Nse such that either:

• all (k′s, k
′
e, k
′
se) ∈ Ns ×Ne ×Nse such that k′θ ≥ kθ belong to Win(ϕ), or

• all (k′s, k
′
e, k
′
se) ∈ Ns ×Ne ×Nse such that k′θ ≥ kθ do not belong to Win(ϕ).

Discovering such a cutoff is an important hint for deciding the synthesis problem.
Indeed, if there is a cutoff, then there is a simple algorithm to decide the synthesis
problem: first check the (potentially big, but) finite amount of triples below the
cutoff for a winning strategy, and if there are none then it is useless to check above
the cutoff due to its property.

Example 21. Let As = {a}, Ae = {b}, and ϕ5 = (∃x.b(x))⇔ (∃y, z.y 6∼ z ∧ a(y) ∧
a(z)), which states that there is (at least) a b action performed by Environment if
and only if there are (at least) two a actions by System. Let (Ns,Ne,Nse) = (0, 0,N).
It is easy to see that System wins with 0 mixed processes, loses if there is only 1,
and then wins again as long as there are at least 2. Therefore, (0, 0, 2) is a cutoff
for ϕ5 w.r.t. (0, 0,N).

Let us now investigate the complexity of the synthesis problem for some instances
of the parameters.

4.2 FO2[∼, succ, <]

First, we focus on first-order logic restricted to two variables, with all predicates
available. Since the satisfiability problem is decidable for a similar logic [BMS+06],
one could hope that the synthesis problem also remains decidable. However, we
show that this is not the case when considering only mixed processes.

Theorem 22. Synth(FO2[∼, succ, <], 0, 0,N) is undecidable.

Proof. To prove this, we adapt the proof from [FP18b, FP18a], which show unde-
cidability of finding a winning strategy in Logic of Repeating Values games, to our
setting. The proof is a reduction from the halting problem of two-counter machines
(2CM), which we already used in Section 3.4.2 for the proof of Theorem 20. Actually,
we only consider deterministic 2CM: we call a 2CM M = (Q, T, q0, qh) deterministic
if, from a given configuration (q, ν1, ν2), at most one transition t is firable. It is
known that the halting problem is undecidable even for deterministic 2CM [Min67].

Given a deterministic 2CM M , we write a specification formula ϕ such that a
satisfying execution encodes a correct run of M that ends in a halting configuration.

83

4.2. FO2[∼, succ, <] CHAPTER 4. SYNTHESIS

Environment has to choose the sequence of transitions of M , while System’s job is
to ensure that Environment does not make an illegal transition. The valuation of
counter c1 at any point in the run is encoded by the number of different processes
on which only System has executed actions (and not Environment). Conversely,
the valuation of c2 is the number of different processes on which only Environment
has executed actions (and not System). Both players will cooperate to ensure the
valuation is correct with respect to the sequence of transitions taken:

• If a transition increments c1, then first Environment plays on a process on
which both System and herself have already executed an action, then System
executes an action on a fresh process so that there is one more process unique
to System while the value of c2 stays unchanged.

• If a transition decrements c1, then Environment executes an action on a process
that was unique to System, and System replies on the same process, making
one process not unique for System anymore thus decrementing c1 (while c2 is
unchanged).

• If a transition tests that c1 is zero, Environment executes an action on a process
already shared by both System and Environment, and System either plays on
the same process if the transition is legal with this valuation (that is c1 is
actually zero), otherwise she plays on a process that was unique to herself so
far (proving that c1 was not zero) and instantly wins the game.

Transitions involving the other counter are encoded in a similar fashion. The formula
ensures that Environment starts the execution, and that System and Environment
alternate their actions until a halting configuration is reached. The actions of En-
vironment are the different transitions taken along the simulated run of M . The
objective of System is that a halting configuration is reached, while the objective
of Environment is that the run ends before reaching such a configuration (because
there are no more fresh processes anymore), or that the run continues forever with-
out reaching a halting configuration. One can show that there exists a halting run
of M if and only if there is some k ∈ N such that for all P = Pse of size at least k
there exists a winning P-strategy for System for ϕ.

The alphabet is partitioned in Ae = {st} ∪ T and As = {a}. Let us fix x and y
the two variables used. The formula will check that at every position of the run, two
consecutive transitions played by Environment are compatible with respect to their
starting and ending states. Moreover, one has to make sure that the first transition
played by Environment can be taken from the initial state. The first two positions
will be dummy actions, to ensure that Environment and System share at least one
process, while the simulation of the actual 2CM execution will start from the third
position.

We use shorthands First(x), Second(x), and Third(x) for the FO2[succ]-definable
formulas that say that x is the first, second, and third position in the P-execution
respectively:

First(x) ≡
(∨
b∈A

b(x)

)
∧ ¬∃y.succ(y, x)

Second(x) ≡ ∃y. (First(y) ∧ succ(y, x))

Third(x) ≡ ∃y. (Second(y) ∧ succ(y, x))

84

4.2. FO2[∼, succ, <] CHAPTER 4. SYNTHESIS

where First(y) is the formula First(x) with x and y swapped, and so on. We also
define the following useful formula:

Oldθ(x) ≡ ∃y.(y < x ∧ y ∼ x ∧
∨
b∈Aθ

b(x))

for θ ∈ {s, e} that says that the value at position x was already seen at an anterior
position of player θ. Finally, let

Fresh ≡ ∃x.∀y.(y 6= x =⇒ y 6∼ x)

be a formula that states that there is at least one fresh process, i.e. a process on
which neither player performed an action during the execution.

The specification will force Environment to play first, and then System and
Environment to play in turn until eventually a halting configuration is reached. We
give first the set of constraints Φe that Environment must satisfy, then the set of
constraints related to System.

The following formulas make up the set Φe:

• Environment does not play twice in a row:

∀x.∀y.
[

(
∨
b∈Ae

b(x) ∧ succ(x, y)) =⇒ ¬
∨
b∈Ae

b(y)

]

• Environment always executes an action when it is its turn, unless the halting
configuration is reached or there are no more fresh processes. We let Th be the
set of transitions in M whose ending state is qh:

∀x.

 ∨
b∈Ae\Th

b(x) ∧ Fresh

 =⇒ ∃y.(x < y ∧
∨
b∈Ae

b(y))

• Environment starts with an st:

∃x.(First(x) ∧ st(x))

• There is an st only in the first position:

∀x.(st(x) =⇒ First(x))

• The first transition is an initial transition (i.e. starts from an initial state):

∀x.(Third(x)⇒
∨

t is initial

t(x))

• Consecutive transitions are compatible (i.e. the ending state of the n-th one
is the starting state of the n+ 1-th):

∀x.
∧
t

(
t(x)⇒ ∀y.(succ(x, y)⇒ ∀x.(succ(y, x)⇒

∨
t′ compatible with t

t′(x)))

)

85

4.2. FO2[∼, succ, <] CHAPTER 4. SYNTHESIS

• If t increments c1, Environment plays on a process already shared by System
and Environment:

∀x.
∧

t increments c1

(t(x)⇒ Olde(x) ∧Olds(x)))

• If t increments c2, Environment must play on a fresh process:

∀x.
∧

t increments c2

(t(x)⇒ ¬Olde(x) ∧ ¬Olds(x))

• If t decrements c1, Environment plays on a process that was unique to System:

∀x.
∧

t decrements c1

(t(x)⇒ ¬Olde(x) ∧Olds(x))

• If t decrements c2, Environment must play on a process that was unique to
herself:

∀x.
∧

t decrements c2

(t(x)⇒ Olde(x) ∧ ¬Olds(x))

• If t checks that c1 is zero, Environment plays a shared value and System does
not reply with a value unique to herself:

∀x.
∧

t zero-tests c1

(t(x)⇒ Olds(x)∧Olde(x)∧∀y.(succ(x, y)⇒ ¬Olds(y)∨Olde(y)))

• If t checks that c2 is zero, Environment plays a shared value and System does
not reply with a value unique to Environment:

∀x.
∧

t zero-tests c2

(t(x)⇒ Olds(x)∧Olde(x)∧∀y.(succ(x, y)⇒ Olds(y)∨¬Olde(y)))

And now we construct the set Φs of system constraints:

• System does not play twice in a row:

∀x.∀y.(a(x) ∧ succ(x, y)) =⇒ ¬a(y)

• The first move must be played on the same process as Environment:

∀x. [Second(x)⇒ ∃y.(succ(y, x) ∧ x ∼ y)]

• If t increments c1, System must reply on a fresh process:

∀x.
∧

t increments c1

(t(x)⇒ ∃y.(succ(x, y) ∧ ¬Olds(y) ∧ ¬Olde(y)))

• If t increments c2, System replies on an already shared process:

∀x.
∧

t increments c2

(t(x)⇒ ∃y.(succ(x, y) ∧ ¬(x ∼ y) ∧Olds(y) ∧Olde(y)))

86

4.2. FO2[∼, succ, <] CHAPTER 4. SYNTHESIS

• If t decrements either counter, System replies on the same process:

∀x.
∧

t decrements c1 or c2

(t(x)⇒ ∃y.(succ(x, y) ∧ y ∼ x))

• If t zero-tests either counter, System replies on the same process

∀x.
∧

t zero-tests c1 or c2

(t(x)⇒ ∃y.(succ(x, y) ∧ (y ∼ x)))

Put together, this gives the formula

ϕ = Φe =⇒ (Φs ∧ ∃x.
∨
t∈Th

t(x))

Let us fix some finite set P of mixed processes only. For a given P-execution w,
for θ ∈ {s, e}, let Pθ(w) = {p ∈ P | (b, p) ∈ w for some b ∈ Aθ} be the set of processes
on which player θ performed an action in w. Then we let P1(w) = Ps(w) \ Pe(w) be
the set of processes unique to System, which is used to encode the value of counter
1, and similarly we let P2(w) = Pe(w) \ Ps(w) be the set of processes unique to
Environment.

Consider the P-strategy f for System such that f(st, p) = (a, p) and for each
P-execution w ending in some (t, p), f(w) = (a, p′) with p′ a process such that:

• if t increments c1, then p′ ∈ P \ (Ps(w) ∪ Pe(w)) is a fresh process,

• if t increments c2, then w[1] = (a, p′),

• if t decrements either counter, then p′ = p,

• if t zero-test counter i ∈ {1, 2}, then p′ ∈ Pi(w) if Pi(w) 6= ∅, otherwise p′ = p.

In all other cases, or if t is a transition incrementing c1 but there is no remaining
fresh process, then f returns ε. Simply put, f follows the constraints given in Φs

unless Environment tries to cheat and play a zero-test transition when a counter is
not zero, in which case System plays in a way to falsify Φe.

Consider an execution w that is f -compatible and that satisfies Φe. Let (st, t1, t2,
. . .) the sequence of actions performed by Environment. By induction, let us show
that for all n ≥ 0, γ0 `t1 · · · `tn γn, where γi is the ti-successor of γi−1, is a run of M
and that with wn the prefix of w of size 2n+ 2, we have that Pi(wn) is a set whose
size is the valuation of counter i in γn. The case of n = 0 is easy, as w0 = (st, p)(a, p)
for some process p and so P1(w0) = P2(w0) = ∅. Now suppose the affirmation is
true for some n ≥ 0, and let wn+1 = wn · (tn+1, p)(a, p

′). Since Φe is satisfied, we
know that tn+1 is compatible with tn. Let us check the different cases for tn+1:

• If tn+1 increments c1, then p ∈ Ps(wn) ∪ Pe(wn) because Φe is satisfied and
p′ ∈ P \ (Ps(wn) ∪ Pe(wn)) by compatibility with f . Therefore P1(wn+1) =
P1(wn)] {p′} had its size incremented by one and P2(wn+1) = P2(wn) is
unchanged. Moreover, as tn+1 is compatible with tn and is an incrementing
transition, then it is firable from γn, therefore γ0 `t1 · · · `tn+1 γn+1 is a run of
M .

87

4.2. FO2[∼, succ, <] CHAPTER 4. SYNTHESIS

• If tn+1 increments c2, then p ∈ P \ (Ps(wn) ∪ Pe(wn)) by Φe and p′ ∈ Ps(wn) ∪
Pe(wn) by f -compatibility, therefore P1(wn+1) = P1(wn) and P2(wn+1) =
P2(wn)] {p}. Same as above, γ0 `t1 · · · `tn+1 γn+1 is a run of M .

• If tn+1 decrements c1, then similarly since Φe is satisfied we have that P1(wn+1)]
{p} = P1(wn) and since w is f -compatible we have that p′ = p and therefore
P2(wn+1) = P2(wn). Furthermore, since P1(wn) is of size at least one as it
contains at least p, then the valuation of c1 in γn must be at least one by
induction hypothesis. Thus tn+1 is firable from γn and γ0 `t1 · · · `tn+1 γn+1 is
a run of M .

• If tn+1 decrements c2 then we have that P1(wn+1) = P1(wn) and P2(wn+1)]
{p′} = P2(wn) and that tn+1 is firable from γn.

• If tn+1 zero-tests c1, then as Φe is satisfied we have that p′ /∈ P1(wn). Because w
is also f -compatible, we deduce that P1(wn) = ∅. Therefore the valuation of c1

was 0 in γn, so tn+1 is firable from γn. Also for all i ∈ {1, 2}, Pi(wn+1) = Pi(wn)
are unchanged.

• The same reasoning in the case where tn+1 zero-tests c2 shows that the valua-
tion of c2 is indeed 0 in γn so the properties are satisfied.

Now suppose that there is a halting run of M γ0 `t1 · · · `tn γn. Let P be a finite
set of mixed processes of size > 2n + 2, f be the P-strategy defined as above, and
w be a P-execution that is f -compatible and f -fair. If w 6|= Φe then w is winning,
therefore let us suppose that w satisfies Φe. Let (st, t′1, . . . , t

′
m) be the sequence of

actions performed by Environment. Suppose there is some i such that ti 6= t′i. As
M is deterministic, this means that no transition outside of ti can be fired from γi.
Therefore either t′i is not compatible with t′i−1, t′i decrements a counter that is 0,
or zero-tests a counter that is not 0. In the first case Φe is immediately falsified,
in the second case there is no unique process for the corresponding counter so Φe

is also falsified whatever the process used by Environment, and in the third case
f is defined in such a way that its next move falsifies Φe if the transition was not
firable. Moreover, m cannot be larger than n because Environment cannot continue
playing after playing tn that leads to a halting state without falsifying Φe, and also
m cannot be lower than n because the only way for an execution to stop mid-run
and still satisfy Φe is by lack of fresh processes, but since there are more different
processes than the size of the execution this cannot be the case. Finally, f is defined
in a way that if Φe is satisfied, then Φs is also satisfied as long as there is always at
least one fresh process. Therefore, w satisfies ϕ and so f is winning.

Conversely, suppose that there is some P such that f is winning. Let w be the
P-execution that satisfies Φe resulting from Environment following its constraints
and always choosing a firable transition in M (which it can always do). This ex-
ecution is necessarily finite, because to be winning there must be a t ∈ Th in the
execution, and Environment stops performing actions after such a transition. Then
with (st, t1, . . . , tn) being the actions performed by Environment in w, we know that
γ0 `t1 · · · `tn γn where γi is the ti-successor of γi−1 is a run of M , and that tn is a
transition leading to the halting state. Thus M is halting.

88

4.3. FO[∼] CHAPTER 4. SYNTHESIS

4.3 FO[∼]
Since restricting first-order logic to two variables does not lead to decidability, we
now investigate fragments of FO where the use of some predicates is restricted.
Removing the data equality predicate∼ would mean that data values in an execution
cannot be accessed at all, since∼ is the only way to specify anything about processes.
Since we are interested in data words and not “ordinary” words, at least ∼ needs to
be kept available. Therefore, and for the rest of this chapter, we focus on first-order
logic with data equality (∼) but no immediate successor (succ) or position order
(<) predicates.

Without succ and <, formulas cannot specify anything about the relative order
between positions. For instance, one can have formulas such as

ϕ6 = ∀x. [req(x) =⇒ ∃y.(y ∼ x ∧ ack(y))]

with As = {ack} and Ae = {req} that indicates that every req has a matching ack on
the same process, but it is not possible to ask that this ack comes after the req . In
that example, a possible strategy for System to satisfy the formula would be to play
a single ack on every process and then do nothing, which works regardless of what
Environment does. This is not to say that FO[∼] formulas never require System to
actually react to what Environment does. For example, with the following formula:

ϕ7 = ∀x.
[
(∃=1y.y ∼ x ∧ req(y))⇔ (∃=1y.y ∼ x ∧ ack(y))

]
which states that there is exactly one req on a process if and only if there is exactly
one ack , a winning strategy for System must adapt to the actions of Environment.
A winning strategy for this formula would be to wait until Environment does a req
on a process and then play an ack on that process, and if Environment does another
req on that same process later then System replies with another ack .

What those two examples hint at is that FO[∼] formulas can specify for each
process and for each action the number of times that the process must perform that
action, up to some bound that depends on the formula. In the case of ϕ7, this means
that every process must either perform 1 req and 1 ack , or 0, 2 or more req and 0, 2
or more ack . An FO[∼] formula can also express that there is at least/exactly some
number of such processes, again up to some bound. Conversely, it does not seem
possible to express something more than just counting since there is no order on the
positions.

Let us give a normal form for FO[∼] formulas that formalizes those intuitions.

4.3.1 Normal form

Fix A = As] Ae an alphabet of actions. Given a data word w = (a1, p1) . . . , a
class is the subword of w containing all positions with the same data value. First
we define a formula that counts the number of occurrences of each letter in a class
up to some bound.

More precisely, for a bound B ∈ N, this number of occurences is described by
a mapping ` from A to {0, . . . , B}. This mapping is referred to as a local state (or
location). We set L = {0, . . . , B}A the set of all locations.

89

4.3. FO[∼] CHAPTER 4. SYNTHESIS

We define the formula ψB,`(y) that states that the class containing y has local
state ` as follows:

ψB,`(y) =
∧
a∈A

`(a)<B

∃=`(a)z.
(
y ∼ z ∧ a(z)

)
∧
∧
a∈A

`(a)=B

∃≥`(a)z.
(
y ∼ z ∧ a(z)

)

Remember that, as defined in Section 2.3.2, ∃≥kx.ψ(x) (resp. ∃=kx.ψ(x)) means that
at least (resp. exactly) k distinct positions x satisfy formula ψ. In plain English,
formula ψB,`(y) checks for all a ∈ A that there are exactly or at least `(a) distinct
positions in the class of y that have action a depending on whether `(a) < B or
`(a) = B respectively. We can then state our normal form for FO[∼] formulas.

Theorem 23. For every FO[∼] formula ϕ, there is a bound B ∈ N such that ϕ is
equivalent to a disjunction of conjunctions of formulas of the form

∃./my.(θ(y) ∧ ψB,`(y))

where ./ ∈ {=,≥}, m ∈ N, θ ∈ T, and ` ∈ L.

Before giving the proof, let us first give an example to illustrate this normal
form.

Example 22. Recall the previous formula:

ϕ7 =
[
∀x.(∃=1y.y ∼ x ∧ req(y))⇔ (∃=1y.y ∼ x ∧ ack(y))

]
which states that for every process, there is exactly one req iff there is exactly one
ack . Let B = 2, and L7 = {` ∈ L | (`(req) = 1 6= `(ack)) ∨ (`(req) 6= 1 = `(ack))}.
Intuitively, L7 represents the set of local states that every process must avoid to
satisfy ϕ7. Then an equivalent formula in normal form is the formula:

ϕ′7 =
∧

θ∈T,`∈L7

∃=0y.(θ(y) ∧ ψ2,`(y))

which states that no class should have a state in L7.

Let us now prove Theorem 23.

Proof. First let us give an intuition on this proof. We use two known normal-form
constructions for general FO logic.

Due to Schwentick and Barthelmann [SB98], any FO[∼] formula is effectively
equivalent to a formula of the form

∃x1 . . . ∃xn∀y.ϕ(x1, . . . , xn, y)

where, in ϕ(x1, . . . , xn, y), quantification is always of the form ∃z.(z ∼ y ∧ . . .) or
∀z.(z ∼ y =⇒ . . .). In other words, all variables quantified in ϕ must belong to
the class of y. Then by guessing the exact relation between the variables x1, . . . , xn,
one can eliminate these ending up with formulas that only talk about the class of a
given event y. Those formulas are then evaluated over multi-sets over the alphabet
T ∪ A. According to Hanf’s theorem [Han65,BK12], they are effectively equivalent

90

4.3. FO[∼] CHAPTER 4. SYNTHESIS

to statements counting elements up to some threshold. This finally leads to the
desired normal form.

Let Φ be an FO[∼] formula. Using the Schwentick-Barthelmann normal form
[SB98], we know that Φ is equivalent to a formula of the form

Φ1 = ∃x1 . . . ∃xn∀y.ϕ(x1, . . . , xn, y)

where, in ϕ(x1, . . . , xn, y), quantification is always of the form ∃z.(z ∼ y ∧ . . .) or
∀z.(z ∼ y =⇒ . . .). Since ϕ essentially talks about the class of y, we call it a class
formula (wrt. y). Let X = {x1, . . . , xn}. Without loss of generality, we assume that
none of the variables in X ∪ {y} is quantified in ϕ.

Class Abstraction. Note that, due to the variables in X, the formula ϕ may
reason about elements that are outside the class of y. Our aim is to get rid of these
variables so as to end up with formulas that talk about classes only. As the variables
in X are quantified existentially, we can basically guess the relation between them.
This is done in terms of a class abstraction, which is given by a triple C = (P,≈, λ)
where P ⊆ 2X is a partition of X (if n = 0, then P = ∅), λ : X→ A] T (recall that
T = {s, e, se}), and ≈ is an equivalence relation over X such that, for all xi, xj ∈ X

• if xi ≈ xj, then xi ∼C xj and λ(xi) = λ(xj), and

• if xi ∼C xj and xi 6≈ xj, then {λ(xi), λ(xj)} ∩ A 6= ∅,

where we write xi ∼C xj if {xi, xj} ⊆ X for some X ∈ P . Let CX be the set of all
class abstractions.

Example 23. Figure 4.1 depicts a class abstraction C = (P,≈, λ) for A = {a, b, c, d}.
The red areas represent the partition P , the blue ones represent the equivalence
classes of ≈, which refine P . Moreover, we have λ(x4) = λ(x7) = s, λ(x3) = λ(x5) =
b, λ(x9) = c, etc. The meaning of C is that x1, x4, x7, x8 are equivalent wrt. ∼,
i.e., they belong to the same process. In particular, formulas such as x1 ∼ x4 and
x3 ∼ x10 are true under this assumption. Moreover, x4 ≈ x7 means that x4 and
x7 denote identical elements. That is, the formula x4 = x7 would be true, whereas
x2 = x3 does not hold.

Given C = (P,≈, λ) and X ⊆ X, we can define the formula sat(X, C), which
checks whether the class abstraction C is consistent with a given execution as far as
variables from X are concerned:

sat(X, C) =

∧
xi∈X(λ(xi))(xi)

∧
∧

(xi,xj)∈≈∩X2

xi = xj ∧
∧

(xi,xj)∈X2\≈

xi 6= xj

∧
∧

(xi,xj)∈∼C∩X2

xi ∼ xj ∧
∧

(xi,xj)∈X2\∼C

xi 6∼ xj

Moreover, by fixing C = (P,≈, λ) and X ∈ P ∪ {∅}, we can transform ϕ into a

class formula (with respect to y)

JϕKC,X((xi)xi∈X , y)

91

4.3. FO[∼] CHAPTER 4. SYNTHESIS

x1
<latexit sha1_base64="Tjz5cnKq0NDbfox4CRri+xlrrU0=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdCUFN11WtA+opSTTaQ1NkzCZqKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9ZMwSKXjvOasufmFxaX8cmFldW19o7i51UjjTDBeZ3EYi5bvpTwMIl6XgQx5KxHcG/khb/rDMxVv3nCRBnF0KccJ74y8QRT0A+ZJoi7uum63WHLKjl72LHANKMGsWlx8wRV6iMGQYQSOCJJwCA8pPW24cJAQ18GEOEEo0HGOexRIm1EWpwyP2CF9B7RrGzaivfJMtZrRKSG9gpQ29kgTU54grE6zdTzTzor9zXuiPdXdxvT3jdeIWIlrYv/STTP/q1O1SPRxomsIqKZEM6o6Zlwy3RV1c/tLVZIcEuIU7lFcEGZaOe2zrTWprl311tPxN52pWLVnJjfDu7olDdj9Oc5Z0Dgou4flg/OjUuXUjDqPHexin+Z5jAqqqKFO3gM84gnPVtWKrMy6/Uy1ckazjW/LevgADiWQIQ==</latexit>

x2
<latexit sha1_base64="oua9N5/z13cUYscQVCJn2Djstlg=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6EoKbrqsaB9QS0mm0zqYJmEyUUsR/AG3+mniH+hfeGdMQS2iE5KcOfeeM3Pv9eNAJMpxXnPW3PzC4lJ+ubCyura+UdzcaiZRKhlvsCiIZNv3Eh6IkDeUUAFvx5J7Iz/gLf/6VMdbN1wmIgov1Djm3ZE3DMVAME8RdX7Xq/SKJafsmGXPAjcDJWSrHhVfcIk+IjCkGIEjhCIcwENCTwcuHMTEdTEhThISJs5xjwJpU8rilOERe03fIe06GRvSXnsmRs3olIBeSUobe6SJKE8S1qfZJp4aZ83+5j0xnvpuY/r7mdeIWIUrYv/STTP/q9O1KAxwbGoQVFNsGF0dy1xS0xV9c/tLVYocYuI07lNcEmZGOe2zbTSJqV331jPxN5OpWb1nWW6Kd31LGrD7c5yzoFkpuwflytlhqXqSjTqPHexin+Z5hCpqqKNB3kM84gnPVs0KrdS6/Uy1cplmG9+W9fABEIWQIg==</latexit>

x3
<latexit sha1_base64="jZWNNgAmxbhA6UoJFaAKs8BuySU=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZJW0JUU3HRZ0T6glpKk0zo0L5KJWorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/deN/Z5KizrNWcsLC4tr+RXC2vrG5tbxe2dVhpliceaXuRHScd1UubzkDUFFz7rxAlzAtdnbXd8JuPtG5akPAovxSRmvcAZhXzIPUcQdXHXr/aLJatsqWXOA1uDEvRqRMUXXGGACB4yBGAIIQj7cJDS04UNCzFxPUyJSwhxFWe4R4G0GWUxynCIHdN3RLuuZkPaS89UqT06xac3IaWJA9JElJcQlqeZKp4pZ8n+5j1VnvJuE/q72isgVuCa2L90s8z/6mQtAkOcqBo41RQrRlbnaZdMdUXe3PxSlSCHmDiJBxRPCHtKOeuzqTSpql321lHxN5UpWbn3dG6Gd3lLGrD9c5zzoFUp29Vy5fyoVDvVo85jD/s4pHkeo4Y6GmiS9wiPeMKzUTdCIzNuP1ONnNbs4tsyHj4AEuWQIw==</latexit>

x4
<latexit sha1_base64="dMAM3eNaLuM8NLWtfUk5UbhCGb4=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZJa0JUU3HRZ0T6glpKk0zo0L5KJWorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/deN/Z5KizrNWcsLC4tr+RXC2vrG5tbxe2dVhpliceaXuRHScd1UubzkDUFFz7rxAlzAtdnbXd8JuPtG5akPAovxSRmvcAZhXzIPUcQdXHXr/aLJatsqWXOA1uDEvRqRMUXXGGACB4yBGAIIQj7cJDS04UNCzFxPUyJSwhxFWe4R4G0GWUxynCIHdN3RLuuZkPaS89UqT06xac3IaWJA9JElJcQlqeZKp4pZ8n+5j1VnvJuE/q72isgVuCa2L90s8z/6mQtAkOcqBo41RQrRlbnaZdMdUXe3PxSlSCHmDiJBxRPCHtKOeuzqTSpql321lHxN5UpWbn3dG6Gd3lLGrD9c5zzoFUp20flynm1VDvVo85jD/s4pHkeo4Y6GmiS9wiPeMKzUTdCIzNuP1ONnNbs4tsyHj4AFUWQJA==</latexit>

x5
<latexit sha1_base64="wD9hXhRM1zyf7GIRcr2DF8WbNjo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZKq6EoKbrqsaB9QS0mm0xqaF8lELUXwB9zqp4l/oH/hnXEKahGdkOTMufecmXuvG/teKizrNWfMzS8sLuWXCyura+sbxc2tZhplCeMNFvlR0nadlPteyBvCEz5vxwl3AtfnLXd0JuOtG56kXhReinHMu4EzDL2BxxxB1MVd76hXLFllSy1zFtgalKBXPSq+4Ap9RGDIEIAjhCDsw0FKTwc2LMTEdTEhLiHkqTjHPQqkzSiLU4ZD7Ii+Q9p1NBvSXnqmSs3oFJ/ehJQm9kgTUV5CWJ5mqnimnCX7m/dEecq7jenvaq+AWIFrYv/STTP/q5O1CAxwomrwqKZYMbI6pl0y1RV5c/NLVYIcYuIk7lM8IcyUctpnU2lSVbvsraPibypTsnLPdG6Gd3lLGrD9c5yzoFkp2wflyvlhqXqqR53HDnaxT/M8RhU11NEg7yEe8YRno2aERmbcfqYaOa3ZxrdlPHwAF6WQJQ==</latexit>

x6
<latexit sha1_base64="7NwXBSsQAjtMwj5x+PFCsynwgr8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6koKbrqsaB9QS0mm0xqaF8lELUXwB9zqp4l/oH/hnXEKahGdkOTMufecmXuvG/teKizrNWfMzS8sLuWXCyura+sbxc2tZhplCeMNFvlR0nadlPteyBvCEz5vxwl3AtfnLXd0JuOtG56kXhReinHMu4EzDL2BxxxB1MVd76hXLFllSy1zFtgalKBXPSq+4Ap9RGDIEIAjhCDsw0FKTwc2LMTEdTEhLiHkqTjHPQqkzSiLU4ZD7Ii+Q9p1NBvSXnqmSs3oFJ/ehJQm9kgTUV5CWJ5mqnimnCX7m/dEecq7jenvaq+AWIFrYv/STTP/q5O1CAxwomrwqKZYMbI6pl0y1RV5c/NLVYIcYuIk7lM8IcyUctpnU2lSVbvsraPibypTsnLPdG6Gd3lLGrD9c5yzoFkp2wflyvlhqXqqR53HDnaxT/M8RhU11NEg7yEe8YRno2aERmbcfqYaOa3ZxrdlPHwAGgWQJg==</latexit>

x7
<latexit sha1_base64="H0ZQR1A+zFJ+wjSPB6YDqAv8xi8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIq1JUU3HRZ0T6glpKk0zo0L5KJWorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/deN/Z5KizrNWcsLC4tr+RXC2vrG5tbxe2dVhpliceaXuRHScd1UubzkDUFFz7rxAlzAtdnbXd8JuPtG5akPAovxSRmvcAZhXzIPUcQdXHXr/aLJatsqWXOA1uDEvRqRMUXXGGACB4yBGAIIQj7cJDS04UNCzFxPUyJSwhxFWe4R4G0GWUxynCIHdN3RLuuZkPaS89UqT06xac3IaWJA9JElJcQlqeZKp4pZ8n+5j1VnvJuE/q72isgVuCa2L90s8z/6mQtAkOcqBo41RQrRlbnaZdMdUXe3PxSlSCHmDiJBxRPCHtKOeuzqTSpql321lHxN5UpWbn3dG6Gd3lLGrD9c5zzoFUp20flyvlxqXaqR53HHvZxSPOsooY6GmiS9wiPeMKzUTdCIzNuP1ONnNbs4tsyHj4AHGWQJw==</latexit>

x8
<latexit sha1_base64="owSXIqGrCnS7hljQVR9QVXeOF3E=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIq2JUU3HRZ0T6glpKk0zo0L5KJWorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/deN/Z5KizrNWcsLC4tr+RXC2vrG5tbxe2dVhpliceaXuRHScd1UubzkDUFFz7rxAlzAtdnbXd8JuPtG5akPAovxSRmvcAZhXzIPUcQdXHXr/aLJatsqWXOA1uDEvRqRMUXXGGACB4yBGAIIQj7cJDS04UNCzFxPUyJSwhxFWe4R4G0GWUxynCIHdN3RLuuZkPaS89UqT06xac3IaWJA9JElJcQlqeZKp4pZ8n+5j1VnvJuE/q72isgVuCa2L90s8z/6mQtAkNUVQ2caooVI6vztEumuiJvbn6pSpBDTJzEA4onhD2lnPXZVJpU1S5766j4m8qUrNx7OjfDu7wlDdj+Oc550KqU7aNy5fy4VDvVo85jD/s4pHmeoIY6GmiS9wiPeMKzUTdCIzNuP1ONnNbs4tsyHj4AHsWQKA==</latexit>

x9
<latexit sha1_base64="nBclySFQOIEIWdBbpaH4Y6F5ARg=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIqqBspuOmyon1ALSWZTmtoXiQTtRTBH3Crnyb+gf6Fd8YpqEV0QpIz595zZu69bux7qbCs15wxN7+wuJRfLqysrq1vFDe3mmmUJYw3WORHSdt1Uu57IW8IT/i8HSfcCVyft9zRmYy3bniSelF4KcYx7wbOMPQGHnMEURd3vZNesWSVLbXMWWBrUIJe9aj4giv0EYEhQwCOEIKwDwcpPR3YsBAT18WEuISQp+Ic9yiQNqMsThkOsSP6DmnX0WxIe+mZKjWjU3x6E1Ka2CNNRHkJYXmaqeKZcpbsb94T5SnvNqa/q70CYgWuif1LN838r07WIjDAsarBo5pixcjqmHbJVFfkzc0vVQlyiImTuE/xhDBTymmfTaVJVe2yt46Kv6lMyco907kZ3uUtacD2z3HOgmalbB+UK+eHpeqpHnUeO9jFPs3zCFXUUEeDvId4xBOejZoRGplx+5lq5LRmG9+W8fABISWQKQ==</latexit>

x10
<latexit sha1_base64="4z7GfHkWJGODkfLfS32+6BMcL5E=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6EoKbgQ3FewDainJdFpj0yROJtJauvIH3OqPiX+gf+GdMQW1iE5Icubce87MvdeNfC+WlvWaMebmFxaXssu5ldW19Y385lYtDhPBeJWFfigarhNz3wt4VXrS541IcGfg+rzu9k9VvH7HReyFwaUcRbw1cHqB1/WYI4mqDdtj25q08wWraOllzgI7BQWkqxLmX3CFDkIwJBiAI4Ak7MNBTE8TNixExLUwJk4Q8nScY4IcaRPK4pThENunb492zZQNaK88Y61mdIpPryCliT3ShJQnCKvTTB1PtLNif/Mea091txH93dRrQKzENbF/6aaZ/9WpWiS6ONY1eFRTpBlVHUtdEt0VdXPzS1WSHCLiFO5QXBBmWjnts6k1sa5d9dbR8TedqVi1Z2lugnd1Sxqw/XOcs6BWKtoHxdLFYaF8ko46ix3sYp/meYQyzlBBlbxv8IgnPBvnxq0xNO4/U41MqtnGt2U8fABDLJFn</latexit>

a
<latexit sha1_base64="15zVMDodgAvv9EKQFFeX40+Ros0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6EoKgrhswT6gFknSaQ2dPMhMhFL0B9zqt4l/oH/hnXEKahGdkOTMufecmXuvn/JQSMd5LVgLi0vLK8XV0tr6xuZWeXunLZI8C1grSHiSdX1PMB7GrCVDyVk3zZgX+Zx1/PG5infuWCbCJL6Sk5T1I28Uh8Mw8CRRTe+mXHGqjl72PHANqMCsRlJ+wTUGSBAgRwSGGJIwhwdBTw8uHKTE9TElLiMU6jjDPUqkzSmLUYZH7Ji+I9r1DBvTXnkKrQ7oFE5vRkobB6RJKC8jrE6zdTzXzor9zXuqPdXdJvT3jVdErMQtsX/pZpn/1alaJIY41TWEVFOqGVVdYFxy3RV1c/tLVZIcUuIUHlA8Ixxo5azPttYIXbvqrafjbzpTsWofmNwc7+qWNGD35zjnQbtWdY+qteZxpX5mRl3EHvZxSPM8QR2XaKClvR/xhGfrwuKWsPLPVKtgNLv4tqyHDzSWj2Y=</latexit> b

<latexit sha1_base64="IVZk9NzCrARMkY+JxXQxsJlDpSc=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6EoKgrhswT6gFknSaR2aF5mJUIr+gFv9NvEP9C+8M05BLaITkpw5954zc+/105AL6TivBWthcWl5pbhaWlvf2Nwqb++0RZJnAWsFSZhkXd8TLOQxa0kuQ9ZNM+ZFfsg6/vhcxTt3LBM8ia/kJGX9yBvFfMgDTxLV9G/KFafq6GXPA9eACsxqJOUXXGOABAFyRGCIIQmH8CDo6cGFg5S4PqbEZYS4jjPco0TanLIYZXjEjuk7ol3PsDHtlafQ6oBOCenNSGnjgDQJ5WWE1Wm2jufaWbG/eU+1p7rbhP6+8YqIlbgl9i/dLPO/OlWLxBCnugZONaWaUdUFxiXXXVE3t79UJckhJU7hAcUzwoFWzvpsa43Qtaveejr+pjMVq/aByc3xrm5JA3Z/jnMetGtV96haax5X6mdm1EXsYR+HNM8T1HGJBlra+xFPeLYurNASVv6ZahWMZhfflvXwATb2j2c=</latexit>

c
<latexit sha1_base64="yMZ/s54NclCOYWnl9tTKfPuSLv8=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6EoKgrhswT6gFkmm0zo0L5KJUIr+gFv9NvEP9C+8M05BLaITkpw5954zc+/1k0Bk0nFeC9bC4tLySnG1tLa+sblV3t5pZ3GeMt5icRCnXd/LeCAi3pJCBrybpNwL/YB3/PG5infueJqJOLqSk4T3Q28UiaFgniSqyW7KFafq6GXPA9eACsxqxOUXXGOAGAw5QnBEkIQDeMjo6cGFg4S4PqbEpYSEjnPco0TanLI4ZXjEjuk7ol3PsBHtlWem1YxOCehNSWnjgDQx5aWE1Wm2jufaWbG/eU+1p7rbhP6+8QqJlbgl9i/dLPO/OlWLxBCnugZBNSWaUdUx45Lrrqib21+qkuSQEKfwgOIpYaaVsz7bWpPp2lVvPR1/05mKVXtmcnO8q1vSgN2f45wH7VrVParWmseV+pkZdRF72MchzfMEdVyigZb2fsQTnq0LK7AyK/9MtQpGs4tvy3r4ADlWj2g=</latexit>

d
<latexit sha1_base64="e/RauxKx3o6muxZtY1Y9UO6eZTE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6EoKgrhswT6gFkmm0xqaF5mJUIr+gFv9NvEP9C+8M05BLaITkpw5954zc+/10zAQ0nFeC9bC4tLySnG1tLa+sblV3t5piyTPGG+xJEyyru8JHgYxb8lAhrybZtyL/JB3/PG5infueCaCJL6Sk5T3I28UB8OAeZKo5uCmXHGqjl72PHANqMCsRlJ+wTUGSMCQIwJHDEk4hAdBTw8uHKTE9TElLiMU6DjHPUqkzSmLU4ZH7Ji+I9r1DBvTXnkKrWZ0SkhvRkobB6RJKC8jrE6zdTzXzor9zXuqPdXdJvT3jVdErMQtsX/pZpn/1alaJIY41TUEVFOqGVUdMy657oq6uf2lKkkOKXEKDyieEWZaOeuzrTVC16566+n4m85UrNozk5vjXd2SBuz+HOc8aNeq7lG11jyu1M/MqIvYwz4OaZ4nqOMSDbS09yOe8GxdWKElrPwz1SoYzS6+LevhAzu2j2k=</latexit>

⇡<latexit sha1_base64="WTalsRBT7F0aOkWCo5Z0GDFove4=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6EoKbly4qGAfYIsk6bQOzYvJRCzFnT/gVj9M/AP9C++MU1CL6IQkZ849587ce/005Jl0nNeCNTe/sLhUXC6trK6tb5Q3t1pZkouANYMkTETH9zIW8pg1JZch66SCeZEfsrY/OlXx9i0TGU/iSzlOWS/yhjEf8MCTRLW7XpqK5O66XHGqjl72LHANqMCsRlJ+QRd9JAiQIwJDDEk4hIeMniu4cJAS18OEOEGI6zjDPUrkzUnFSOERO6LvkHZXho1pr3Jm2h3QKSG9gpw29siTkE4QVqfZOp7rzIr9LfdE51R3G9PfN7kiYiVuiP3LN1X+16dqkRjgWNfAqaZUM6q6wGTJdVfUze0vVUnKkBKncJ/ignCgndM+29qT6dpVbz0df9NKxap9YLQ53tUtacDuz3HOglat6h5UaxeHlfqJGXURO9jFPs3zCHWcoYGmrvIRT3i2zi1hja3Jp9QqGM82vi3r4QNB7ZI3</latexit>

⇡<latexit sha1_base64="WTalsRBT7F0aOkWCo5Z0GDFove4=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6EoKbly4qGAfYIsk6bQOzYvJRCzFnT/gVj9M/AP9C++MU1CL6IQkZ849587ce/005Jl0nNeCNTe/sLhUXC6trK6tb5Q3t1pZkouANYMkTETH9zIW8pg1JZch66SCeZEfsrY/OlXx9i0TGU/iSzlOWS/yhjEf8MCTRLW7XpqK5O66XHGqjl72LHANqMCsRlJ+QRd9JAiQIwJDDEk4hIeMniu4cJAS18OEOEGI6zjDPUrkzUnFSOERO6LvkHZXho1pr3Jm2h3QKSG9gpw29siTkE4QVqfZOp7rzIr9LfdE51R3G9PfN7kiYiVuiP3LN1X+16dqkRjgWNfAqaZUM6q6wGTJdVfUze0vVUnKkBKncJ/ignCgndM+29qT6dpVbz0df9NKxap9YLQ53tUtacDuz3HOglat6h5UaxeHlfqJGXURO9jFPs3zCHWcoYGmrvIRT3i2zi1hja3Jp9QqGM82vi3r4QNB7ZI3</latexit>

a
<latexit sha1_base64="15zVMDodgAvv9EKQFFeX40+Ros0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6EoKgrhswT6gFknSaQ2dPMhMhFL0B9zqt4l/oH/hnXEKahGdkOTMufecmXuvn/JQSMd5LVgLi0vLK8XV0tr6xuZWeXunLZI8C1grSHiSdX1PMB7GrCVDyVk3zZgX+Zx1/PG5infuWCbCJL6Sk5T1I28Uh8Mw8CRRTe+mXHGqjl72PHANqMCsRlJ+wTUGSBAgRwSGGJIwhwdBTw8uHKTE9TElLiMU6jjDPUqkzSmLUYZH7Ji+I9r1DBvTXnkKrQ7oFE5vRkobB6RJKC8jrE6zdTzXzor9zXuqPdXdJvT3jVdErMQtsX/pZpn/1alaJIY41TWEVFOqGVVdYFxy3RV1c/tLVZIcUuIUHlA8Ixxo5azPttYIXbvqrafjbzpTsWofmNwc7+qWNGD35zjnQbtWdY+qteZxpX5mRl3EHvZxSPM8QR2XaKClvR/xhGfrwuKWsPLPVKtgNLv4tqyHDzSWj2Y=</latexit>

b
<latexit sha1_base64="IVZk9NzCrARMkY+JxXQxsJlDpSc=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZIq6EoKgrhswT6gFknSaR2aF5mJUIr+gFv9NvEP9C+8M05BLaITkpw5954zc+/105AL6TivBWthcWl5pbhaWlvf2Nwqb++0RZJnAWsFSZhkXd8TLOQxa0kuQ9ZNM+ZFfsg6/vhcxTt3LBM8ia/kJGX9yBvFfMgDTxLV9G/KFafq6GXPA9eACsxqJOUXXGOABAFyRGCIIQmH8CDo6cGFg5S4PqbEZYS4jjPco0TanLIYZXjEjuk7ol3PsDHtlafQ6oBOCenNSGnjgDQJ5WWE1Wm2jufaWbG/eU+1p7rbhP6+8YqIlbgl9i/dLPO/OlWLxBCnugZONaWaUdUFxiXXXVE3t79UJckhJU7hAcUzwoFWzvpsa43Qtaveejr+pjMVq/aByc3xrm5JA3Z/jnMetGtV96haax5X6mdm1EXsYR+HNM8T1HGJBlra+xFPeLYurNASVv6ZahWMZhfflvXwATb2j2c=</latexit>

s
<latexit sha1_base64="MgjBpINeMtGrhnHBxvC18aWXjuI=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdFl0484K9oFtkWQ6bUPzIjMRSq1bf8Ct/pb4B/oX3hlTUIvohCRnzr3nzNx73dj3hLSs15wxN7+wuJRfLqysrq1vFDe36iJKE8ZrLPKjpOk6gvteyGvSkz5vxgl3AtfnDXd4puKNW54ILwqv5CjmncDph17PY44k6rodOHIgemMxuSmWrLKllzkL7AyUkK1qVHxBG11EYEgRgCOEJOzDgaCnBRsWYuI6GBOXEPJ0nGOCAmlTyuKU4RA7pG+fdq2MDWmvPIVWMzrFpzchpYk90kSUlxBWp5k6nmpnxf7mPdae6m4j+ruZV0CsxIDYv3TTzP/qVC0SPZzoGjyqKdaMqo5lLqnuirq5+aUqSQ4xcQp3KZ4QZlo57bOpNULXrnrr6PibzlSs2rMsN8W7uiUN2P45zllQPyjbh+WDy6NS5TQbdR472MU+zfMYFZyjihp5h3jEE56NCyM17oz7z1Qjl2m28W0ZDx/mOpOt</latexit>

e
<latexit sha1_base64="KHcgWhZnR37hCf+0eLzGCl6CTkM=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdFl0484K9oFtkUk6bYfmRTIRSq1bf8Ct/pb4B/oX3hlTUIvohCRnzr3nzNx7ncgTibSs15wxN7+wuJRfLqysrq1vFDe36kmYxi6vuaEXxk2HJdwTAa9JIT3ejGLOfMfjDWd4puKNWx4nIgyu5CjiHZ/1A9ETLpNEXbd9JgdJb8wnN8WSVbb0MmeBnYESslUNiy9oo4sQLlL44AggCXtgSOhpwYaFiLgOxsTFhISOc0xQIG1KWZwyGLFD+vZp18rYgPbKM9Fql07x6I1JaWKPNCHlxYTVaaaOp9pZsb95j7WnutuI/k7m5RMrMSD2L9008786VYtEDye6BkE1RZpR1bmZS6q7om5ufqlKkkNEnMJdiseEXa2c9tnUmkTXrnrLdPxNZypW7d0sN8W7uiUN2P45zllQPyjbh+WDy6NS5TQbdR472MU+zfMYFZyjihp5B3jEE56NCyM17oz7z1Qjl2m28W0ZDx/E7JOf</latexit>

Figure 4.1: A class abstraction C = (P,≈, λ)

without variables from X \ X that “evaluates” ϕ based on the assumption that
sat(X, C) ∧ (y ∼ X) holds (in particular, sat(X, C) ∧ ¬(y ∼ X) if X = ∅) where
y ∼ X is a shorthand for

∨
xi∈X y ∼ xi. We obtain it from ϕ inductively as follows

(let θ ∈ A ∪ T):

Jθ(z)KC,X =

θ(z) if z /∈ X
> if z ∈ X and λ(z) = θ

⊥ if z ∈ X and λ(z) 6= θ

Jz = z′KC,X =

z = z′ if z, z′ /∈ X \X
> if z, z′ ∈ X \X and z ≈ z′

⊥ otherwise

Jz ∼ z′KC,X =

z ∼ z′ if z, z′ /∈ X \X
> if z, z′ ∈ X \X and z ∼C z′
⊥ otherwise

Jψ ∨ ψ′KC,X = JψKC,X ∨ Jψ′KC,X
J¬ψKC,X = ¬JψKC,X

J∃z.ψKC,X = ∃z.JψKC,X

Transformation. Given the above definitions, we can now rephrase Φ1 as follows.
Along with x1, . . . , xn, we also guess a class abstraction, which then allows us to
reason about each class separately, without looking at the variables outside a class:

Φ2 =
∨

C=(P,≈,λ)∈CX

∃x1 . . . ∃xn.

sat(X, C) (ξ1)

∧
∧
X∈P

∀y.
(
y ∼ X =⇒ JϕKC,X((xi)xi∈X , y)

)
(ξ2)

∧ ∀y.
(
¬(y ∼ X) =⇒ JϕKC,∅(y)

)
(ξ3)

In fact, we can push the quantifiers ∃x1 . . . ∃xn further inwards by replacing them

92

4.3. FO[∼] CHAPTER 4. SYNTHESIS

with ∃(zX)X∈P , which chooses one canonical representative zX per class X:

Φ3 =
∨

C=(P,≈,λ)∈CX

∃(zX)X∈P .

∧
X∈P

proc(zX) ∧
∧

X,Y ∈P
X 6=Y

zX 6∼ zY (ξ4)

∧
∧
X∈P

ϕC,X(zX) (ξ5)

∧ ∀z∅.
((

proc(z∅) ∧
∧
X∈P

¬(z∅ = zX)
)

=⇒ ϕC,∅(z∅)
)

(ξ6)

where proc(zX) =

∨
θ∈T θ(zX) and

ϕC,X(zX) = ∃(xi)xi∈X .
(

zX ∼ X ∧ sat(X, C)
∧ ∀y.

(
y ∼ zX =⇒ JϕKC,X((xi)xi∈X , y)

))
ϕC,X(z∅) = ∀y.

(
y ∼ z∅ =⇒ JϕKC,∅(y)

)
are class formulas1 with respect to zX .

Lemma 24. Formulas Φ2 and Φ3 are logically equivalent.

Proof of lemma. Fix some set P of processes. Suppose w |= Φ2, say, witnessed
by class abstraction C and valuation νX = {x1 7→ e1, . . . , xn 7→ en}. That is,
(w, νX) |= ξ1 ∧ ξ2 ∧ ξ3. Let νX denote the restriction of νX to X ∈ P . For X ∈ P ,
consider the unique process eX ∈ P such that eX ∼ ei for some xi ∈ X. Consider
the valuation νrepr = {zX 7→ eX | X ∈ P}. Let us show (w, νrepr) |= ξ4 ∧ ξ5 ∧ ξ6.

(ξ4) Clearly, we have (w, νrepr) |= ξ4.

(ξ5) LetX ∈ P . We have (w, νX) |= zX ∼ X ∧ sat(X, C). Take any e ∈ P ∪ Pos(w)
such that e ∼ eX . By satisfaction of ξ2, we have (w, νX ∪ {y 7→ e}) |=
JϕKC,X((xi)xi∈X , y). Therefore, (w, νrepr) |= ξ5.

(ξ6) Let e∅ ∈ P such that e∅ 6= eX for all X ∈ P . Moreover, let e ∈ P ∪ Pos(w)
such that e ∼ e∅. Then, e 6∼ eX for all X ∈ P so that, by satisfaction of ξ3,
we have (w, {y 7→ e}) |= JϕKC,∅(y). We obtain (w, νrepr) |= ξ6.

We conclude that w |= Φ3.

Conversely, suppose that w |= Φ3, witnessed by C and a valuation νrepr = {zX 7→
eX}X∈P . That is, (w, νrepr) |= ξ4 ∧ ξ5 ∧ ξ6. For every X ∈ P , as (w, {zX 7→ eX}) |=
ϕC,X(zX) due to ξ5, there is νX such that

(w, {zX 7→ eX} ∪ νX) |=
(

zX ∼ X ∧ sat(X, C)
∧ ∀y.

(
y ∼ zX =⇒ JϕKC,X((xi)xi∈X , y)

))
Then let νX = {x1 7→ e1, . . . , xn 7→ en} =

⋃
X∈P (νX). Let us show that (w, νX) |=

ξ1 ∧ ξ2 ∧ ξ3.

(ξ1) As ei 6∼ ej whenever ei ∈ X and ei ∈ Y for distinct sets X, Y ∈ P due to ξ4,
we get (w, νX) |= sat(X, C).

1in fact, they can be easily rewritten as a class formula

93

4.3. FO[∼] CHAPTER 4. SYNTHESIS

(ξ2) Take any X ∈ P and e ∈ P ∪ Pos(w) such that e ∼ ei for some i ∈
{1, . . . , n} such that xi ∈ X. As e ∼ eX , we obtain (w, νX ∪ {y 7→ e}) |=
JϕKC,X((xi)xi∈X , y).

(ξ3) Let e ∈ P ∪ Pos(w) such that e 6∼ ei for all i ∈ {1, . . . , n}. Let e∅ ∈ P such
that e∅ ∼ e. That is, e∅ 6∼ eX for all X ∈ P . We get (w, {z∅ 7→ e∅}) |= ϕC,∅(z∅)
from ξ6. Since e ∼ e∅, we also have that (w, {y 7→ e}) |= ϕC,∅(y). Therefore,
(w, νX) |= ξ3.

We conclude that w |= Φ2.

The formulas ϕC,X(zX), including the case X = ∅, are interesting, because they
only reason about the class determined by zX . As, with respect to ∼, any two
elements from a class are equivalent anyway, we can actually ignore ∼. A class
can then be seen as a simple multiset, or as a logical structure of degree 0 (there
is no binary relation that connects two elements from a class). By Hanf’s theorem
[Han65,BK12], we can find B ∈ N such that every formula ϕC,X(zX), including the
case X = ∅, is equivalent to a formula

ϕC,X(zX) ≡
∨

(θ,`)∈VC,X

(
θ(zX) ∧ ψB,`(zX)

)
for some sets VC,X ⊆ T × {0, . . . , B}A. Note that, for VC,X = ∅, we get ⊥. Recall
that we had defined:

ψB,`(y) =
∧
a∈A

`(a)<B

∃=`(a)z.
(
y ∼ z ∧ a(z)

)
∧
∧
a∈A

`(a)=B

∃≥`(a)z.
(
y ∼ z ∧ a(z)

)

Thus, Φ3 is equivalent to the following formula (note that the conjunct
∧
X∈P proc(zX)

is not needed anymore, as its satisfaction is guaranteed by the second line; other
changes with respect to Φ3 are highlighted in red):

Φ4 =
∨

C=(P,≈,λ)∈CX

∃(zX)X∈P .

∧
X,Y ∈P
X 6=Y

zX 6∼ zY

∧
∧
X∈P

∨
(θ,`)∈VC,X

(
θ(zX) ∧ ψB,`(zX)

)
∧ ∀z∅.

((
proc(z∅) ∧

∧
X∈P

¬(z∅ = zX)
)

=⇒
∨

(θ,`)∈VC,∅

(
θ(z∅) ∧ ψB,`(z∅)

))

94

4.3. FO[∼] CHAPTER 4. SYNTHESIS

Expanding the expression, we obtain that Φ4 is equivalent to:

Φ5 =
∨

C=(P,≈,λ)∈CX
((θX ,`X))X∈P
∈

∏
X∈P VC,X

∃(zX)X∈P .

∧
X,Y ∈P
X 6=Y

zX 6∼ zY

∧
∧
X∈P

(
θX(zX) ∧ ψB,`(zX)

)
∧ ∀z∅.

((
proc(z∅) ∧

∧
X∈P

¬(z∅ = zX)
)

=⇒
∨

(θ,`)∈VC,∅

(
θ(z∅) ∧ ψB,`(z∅)

))

Finally, Φ5 is equivalent to a formula of the desired form:

Φ6 =
∨

C=(P,≈,λ)∈CX
v=((θX ,`X))X∈P
∈

∏
X∈P VC,X

∧
(θ,`)∈VC,∅

∃≥|v|(θ,`)y.
(
θ(y) ∧ ψB,`(y)

)

∧
∧
(θ,`)

∈ (T×{0,...,B}A) \VC,∅

∃=|v|(θ,`)y.
(
θ(y) ∧ ψB,`(y)

)

where |v|(θ,`) is the number of occurrences of (θ, `) in v = ((θX , `X))X∈P , i.e.,

|v|(θ,`) = |{X ∈ P | (θ, `) = (θX , `X)}|

Then Φ6 is in normal form, which ends the proof of Theorem 23.

A direct corollary that can be inferred from this normal form is the decidability
of satisfiability for FO[∼], i.e., of the problem Synth(FO[∼],N, 0, 0).

Corollary 25. The satisfiability problem for FO[∼] is decidable. Moreover, if an
FO[∼] formula has an infinite model, then it also has a finite one.

Proof. Take a formula in normal form with its associated threshold B. A formula
of the form

ϕ./mθ,` = ∃./my.
(
θ(y) ∧ ψB,`(y)

)
is satisfied by the execution ∏

a∈A

(a, p1)`(a) . . . (a, pn)`(a)

where p1, . . . , pn ∈ Pθ are pairwise distinct and n ∈ N is such that n ./ m. As long
as there are no two inconsistent formulas for the same pair (θ, `) such as ϕ=k1

θ,` ∧ϕ=k2
θ,`

with k1 6= k2 or ϕ=k1
θ,` ∧ ϕ≥k2θ,` with k1 < k2, any conjunction of such formulas can

also be satisfied by concatenating one satisfying execution for each pair (θ, `), which
gives a finite model. Therefore, for a formula ϕ in normal form, one simply needs to
find one such conjunction without inconsistency and pick its model to get a model
of ϕ. If there are none, then ϕ is unsatisfiable.

95

4.3. FO[∼] CHAPTER 4. SYNTHESIS

Note that satisfiability for FO2[∼] is already NEXPTIME-hard, which even holds
in the presence of unary relations only [Für83,GKV97]. It is NEXPTIME-complete
due to the upper bound for FO2[∼, <] [BDM+11]. It is worth mentioning that
two-variable logic with one equivalence relation on arbitrary structures also has the
finite-model property [KO12].

Given a formula in normal form, let us call goals the clauses of the disjunction,
that is, a goal is a conjunction of formulas of the from ∃./my.

(
θ(y) ∧ ψB,`(y)

)
. The

proof just above says that to satisfy a goal, it is enough to play for every ` occurring
in the goal an execution that puts n distinct processes in local state `, for some
n ∈ N that satisfies ./ m (as long as the constraints on the various ` are consistent).
This is trivial to do when one player controls every process and has access to all
letters, but very difficult when turned to a two-player game. Indeed, System cannot
rely on Environment to play the correct amount of its actions on the correct amount
of processes and then do nothing after.

We now turn to a game formalism called parameterized vector games created in
order to better illustrate and reason on the synthesis problem for FO[∼]. This is
a turn-based game where the arena is the set of local states, and where a number
of tokens representing processes are moved from one state to another by the two
players. Its acceptance condition reflects the normal form of FO[∼] formulas.

4.3.2 Parameterized vector games

Let us start with a few remarks on FO[∼] formulas to explain the intuitions behind
the game formalism that we will present afterwards. Note that, given a formula
ϕ ∈ FO[∼] (which we suppose to be in normal form with threshold B), the order of
actions in an execution does not matter. Thus, given some P, a reasonable strategy
for Environment would be to just “wait and see”. More precisely, it does not put
Environment into a worse position if, given the current execution w ∈ Σ∗, it lets
the System execute as many actions as it wants in terms of a word u ∈ Σ∗s . Due
to the fairness assumption, System would be able to execute all the letters from u
anyway. Environment can even require System to play a word u such that wu |= ϕ.
If System is not able to produce such a word, Environment can just sit back and
do nothing, as System has no way of winning even playing by himself. Conversely,
upon wu satisfying ϕ, Environment has to be able to come up with a word v ∈ Σ∗e
such that (P, wuv) 6|= ϕ. This leads to a turn-based game in which System and
Environment play in strictly alternate order and have to provide a satisfying and,
respectively, falsifying execution.

In a second step, we can get rid of process identifiers. According to our normal
form, all we are interested in is the number of processes that agree on their letters
counted up to threshold B. That is, a finite execution can be abstracted as a
configuration c : L → NT where L = {0, . . . , B}A is the set of local states or
locations. For ` ∈ L and c(`) = (ns, ne, nse), nθ is the number of processes of type
θ whose letter count up to threshold B corresponds to `. We can also say that `
contains nθ tokens of type θ. If it is System’s turn, it will pick some pairs (`, `′) and
move some tokens of type θ ∈ {s, se} from ` to `′, provided `(a) ≤ `′(a) for all a ∈ As

and `(a) = `′(a) for all a ∈ Ae. This actually corresponds to adding more system
letters in the corresponding processes. The Environment proceeds analogously, with
tokens of type θ ∈ {e, se}.

96

4.3. FO[∼] CHAPTER 4. SYNTHESIS

Finally, the formula ϕ naturally translates to an acceptance condition F ⊆ CL

over configurations, where C is the set of local acceptance conditions, which are of
the form (./sns , ./ene , ./sense) where ./s, ./e, ./se ∈ {=,≥} and ns, ne, nse ∈ N.

We end up with a turn-based game in which, similarly to a VASS game [BJK10,
Jan15,AMSS13,RSB05,CS14], System and Environment move tokens along vectors
from L. Note that, however, our games have a very particular structure so that
undecidability for VASS games does not carry over to our setting. Moreover, existing
decidability results do not allow us to infer our cutoff results below.

In the following, we will formalize parameterized vector games.

Definition 20. A parameterized vector game (or simply game when the context is
clear) is given by a triple

G = (A,B,F)

where A = As] Ae is the finite alphabet, B ∈ N is a bound, and, letting L =
{0, . . . , B}A be the set of locations, F ⊆ CL is a finite set called acceptance condition.

Locations. Let `0 be the location such that `0(a) = 0 for all a ∈ A. For ` ∈ L
and a ∈ A, we define location ` + a ∈ L which corresponds to ` where the number
of a has been incremented by 1 (unless it was already at the bound B) by

(`+ a)(b) =

{
`(b) if b 6= a,

min(`(a) + 1, B) otherwise.

This is extended inductively for all words u ∈ A∗ and a ∈ A by ` + ε = ` and
`+ ua = (`+ u) + a.

We say that `′ is a successor of ` if there some word w ∈ A∗ such that `′ = `+w.
If w ∈ A∗s then we say that `′ is a system successor of `, and similarly `′ is an
environment successor of ` if w ∈ A∗e.

By 〈w〉, we denote the location `0 +w, i.e. the location where the count of each
letter is the same as the number of occurrences of that letter in w. Once again, note
that the order of the letters of w do not matter, for instance, 〈aabb〉 = 〈abab〉 =
〈baab〉 and so on.

For instance, the set of locations for As = {a}, Ae = {b}, and B = 2 can be
represented as in Figure 4.2: the leftmost state is `0 = 〈ε〉, and the rightmost state
is 〈aabb〉. Arrows represent the successor relation between locations, in the sense
that for instance 〈ab〉 = 〈a〉 + b. Not represented on the figure are loops for states
with at least one letter whose count is equal to the bound B, such as 〈a2〉, which
can be reached from itself by adding more a as 〈a2〉+ a = 〈a3〉 = 〈a2〉.

Configurations. As explained above, a configuration of G is a mapping c : L →
NT that maps to each location the number of tokens of each type that are in this
location. Suppose that, for ` ∈ L, we have c(`) = (ns, ne, nse). Then, for all θ ∈ T
we let c(`, θ) refer to nθ. By Conf , we denote the set of all configurations.

Transitions. A system transition (respectively environment transition) is a map-
ping τ : L×L→ (N× 0×N) (respectively τ : L×L→ (0×N×N)) such that, for
all (`, `′) ∈ L × L with τ(`, `′) 6= (0, 0, 0), `′ is a system (respectively environment)

97

4.3. FO[∼] CHAPTER 4. SYNTHESIS

ε

a

b

a2

ab

b2

a2b

ab2

a2b2

Figure 4.2: Set of locations for As = {a}, Ae = {b}, and B = 2.

successor of `. Intuitively, a transition represents the number of tokens that are
transferred from each location to each of their possible successors. Let Ts denote
the set of system transitions, Te the set of environment transitions, and T = Ts ∪ Te
the set of all transitions.

For τ ∈ T , let the mappings out τ , inτ : L→ NT be defined by

out τ (`) =
∑
`′∈L

τ(`, `′) and inτ (`) =
∑
`′∈L

τ(`′, `)

where the sum is component-wise. We say that τ ∈ T is applicable at c ∈ Conf
if, for all ` ∈ L, we have out τ (`) ≤ c(`) (again, the comparison is component-
wise). Abusing notation, we let τ(c) denote the configuration c′ defined by c′(`) =
c(`)− out τ (`) + inτ (`) for all ` ∈ L. Moreover, for τ(`, `′) = (ns, ne, nse) and θ ∈ T,
we let τ(`, `′, θ) refer to nθ.

Plays. Let c ∈ Conf . We write c |= F if there is κ ∈ F such that c satisfies all
constraints of κ: for all ` ∈ L and κ(`) = (./sns , ./ene , ./sense), we have c(`, θ) ./θ nθ
for all θ ∈ T. A c-play, or simply play, is a finite sequence

ρ = c0τ1c1τ2c2 . . . τncn

alternating between configurations and transitions (with n ≥ 0) such that c0 = c
and, for all i ∈ {1, . . . , n}, ci = τi(ci−1) and

• if i is odd, then τi ∈ Ts and ci |= F (System’s move),

• if i is even, then τi ∈ Te and ci 6|= F (Environment’s move).

The set of all c-plays is denoted by Playsc.

Strategies. A c-strategy for System is a partial mapping f : Playsc → Ts such
that f(c) is defined and, for all ρ = c0τ1c1 . . . τici ∈ Playsc with τ = f(ρ) defined,
we have that τ is applicable at ci and τ(ci) |= F . Play ρ = c0τ1c1 . . . τncn is

• f -compatible if, for all odd i ∈ {1, . . . , n}, τi = f(c0τ1c1 . . . τi−1ci−1),

98

4.3. FO[∼] CHAPTER 4. SYNTHESIS

• f -maximal if it is not the strict prefix of another f -compatible play,

• winning if cn |= F .

We say that f is winning for System (from c) if all f -compatible f -maximal c-plays
are winning. Finally, c is winning if there is a c-strategy that is winning.

Note that, if the initial configuration c is fixed, then we deal with an acyclic
finite reachability game. Indeed, the number of tokens is constant throughout any
play, so the total number of possible configurations is finite. And since tokens can
only be moved along successor locations, there is a partial order over configurations,
and therefore the game is acyclic. An immediate consequence is that, if there is a
winning c-strategy, then there is a memoryless one.

For k ∈ NT, let ck denote the configuration that maps `0 to k and all other
locations to (0, 0, 0). We set Win(G) = {k ∈ NT | ck is winning for System}.
Definition 21. For sets Ns,Ne,Nse ⊆ N, the game problem is given as follows:

Game(Ns,Ne,Nse)

Input: Parameterized vector game G
Question: Win(G) ∩ (Ns ×Ne ×Nse) 6= ∅ ?

Let us show that parameterized vector games and synthesis for FO[∼] formulas
are equivalent in the following sense.

Lemma 26. For every sentence ϕ ∈ FO[∼], there is a parameterized vector game
G = (A,B,F) such that Win(ϕ) = Win(G). Conversely, for every parameterized
vector game G = (A,B,F), there is a sentence ϕ ∈ FO[∼] such that Win(G) =
Win(ϕ). Both directions are effective.

Let us illustrate this equivalence by an example first.

Example 24. Recall from Example 22 the formula

ϕ7 = ∀x.
[
(∃=1y.y ∼ x ∧ req(y))⇔ (∃=1y.y ∼ x ∧ ack(y))

]
with As = {ack}, Ae = {req}, and its associated normal form

ϕ′7 =
∧

θ∈T,`∈L7

∃=0y.(θ(y) ∧ ψ2,`(y))

where L7 is the set of local states of the form 〈req iack j〉 ∈ L such that i = 1 6= j
or i 6= 1 = j. Recall that ψ2,`(y) is an FO[∼] formula checking that y belongs to a
process with local state ` (with a bound B = 2).

To create an equivalent game G7 = (A, 2,F), we need to define the acceptance
condition F . This acceptance condition simply mirrors the normal form ϕ′7. It has
a single element F = {κ}, with κ defined as follows:

κ(`) =

{
(= 0,= 0,= 0) if ` ∈ L7,

(≥ 0,≥ 0,≥ 0) otherwise

It is then easy to check that Win(ϕ7) = Win(G7) = N× 0× N.

The rest of this section is dedicated to the proof of Lemma 26. As an intermediate
step in the translation of the synthesis problem into games, we first consider a
normalized version of the former. In a second step, we show equivalence between
the normalized synthesis problem and games.

99

4.3. FO[∼] CHAPTER 4. SYNTHESIS

Step 1: Normalized Synthesis Problem for FO[∼]. In the normalized synthe-
sis problem, instead of being fully asynchronous, both players will alternately give a
sequence of events instead of a single one. Moreover, after every move from System,
the partial word created up to that point should satisfy the formula, whereas after
every move from Environment, the word should falsify the formula.

Let us fix, for the rest of the definitions, a sentence ϕ ∈ FO[∼]. We call a finite
P-execution w ∈ Σ∗ normalized if it is of the form w = w1 . . . wn with n ≥ 1 such
that

• for all odd i such that 1 ≤ i ≤ n, wi ∈ Σ∗s and w1 . . . wi |= ϕ,

• for all even i such that 1 ≤ i ≤ n, wi ∈ Σ∗e and w1 . . . wi 6|= ϕ.

Note that the decomposition into the wi, if it exists, is uniquely determined.
A normalized P-strategy (for System) is a partial mapping f : Σ∗ → Σ∗s such that

f(ε) is defined and, if f(w) is defined, then w ·f(w) |= ϕ. A normalized P-execution
w = w1 . . . wn is

• f -compatible if, for all odd 1 ≤ i ≤ n, we have wi = f(w1 . . . wi−1),

• f -maximal if it is not the strict prefix of an f -compatible normalized P-
execution,

• winning if w |= ϕ.

Finally, a normalized strategy is P-winning if all f -compatible f -maximal normalized
P-executions are winning.

Similarly to the initial synthesis problem, we define the normalized winning set
Winnorm(ϕ) as the set of triples (ks, ke, kse) ∈ NT for which there is P = (Ps,Pe,Pse)
such that

• |Pθ| = kθ for all θ ∈ T, and

• there is a normalized P-strategy that is P-winning.

Now, the original and the normalized synthesis problem are equivalent in the
following sense:

Lemma 27. Win(ϕ) = Winnorm(ϕ).

Proof. We say that two executions w and w′ are similar, noted w ∼ w′, if w′ is w with
the position of its events rearranged in any combination, i.e. w ∼ w′ if there exists
a letter-preserving bijection from Pos(w) to Pos(w′). Note that in FO[∼], there is
no way to write constraints on the relative order of positions. In other words, for
any ϕ ∈ FO[∼], if w |= ϕ and w ∼ w′, then w′ |= ϕ too. This is the property that
we use to prove that the synthesis problem is equivalent to the normalized one.

For the remainder of this proof, let us fix P = (Ps,Pe,Pse) and its correspond-
ing triple (ks, ke, kse). P-executions and P-strategies will simply be referred to as
executions and strategies respectively.

Win(ϕ) ⊇Winnorm(ϕ): Suppose that (ks, ke, kse) ∈ Winnorm(ϕ) and let fN be a
normalized winning strategy for System. We want to build f a winning strategy in
the Synthesis Problem.

100

4.3. FO[∼] CHAPTER 4. SYNTHESIS

The idea is to simulate fN by memorizing the word of actions given by fN and
playing it one action at a time. Meanwhile, the actions played by Environment
are stored and then processed as if they happened all at once after System finishes
playing its word, thus simulating a corresponding normalized run.

We define a function mem such that for all executions w = σ1σ2 . . . , mem(w) =
(wN , ws, we) where wN is the corresponding normalized run, ws is the word that
System must play to simulate the choice of fN , and we stores the actions played by
Environment in the meantime. It is defined as follows:

• mem(ε) = (ε, fN(ε), ε)

• If σ ∈ Σs and mem(w) = (wN , ws, we), then

mem(w · σ) =

(wN · σ,w′s, we) if ws = σ · w′s,
(wN · we · σ,w′s, ε) if ws = ε and fN(wN · we) = σ · w′s,
undefined otherwise.

• If σ ∈ Σe and mem(w) = (wN , ws, we), then

mem(w · σ) = (wN , ws, we · σ)

Then we define an auxiliary function faux:

faux(wN , ws, we) =

σ if ws = σ · w′s,
σ if ws = ε and fN(wN · we) = σ · w′s,
undefined otherwise.

Finally, we define the strategy f as f(w) = faux(mem(w)) when both faux and
mem are defined, otherwise f(w) = ε.

From these definitions, we can immediately state the following properties de-
scribing the workings of mem and f :

1. If w = w′σ is a f -compatible execution such that σ ∈ Σs and mem(w′) =
(wN , ε, we), then mem(w) = (wNweσ, σ2 . . . σn, ε) with σσ2 . . . σn = fN(wNwe).

2. If w = w′w0σ1w1 . . . σmwm is a f -compatible execution such that for all i ≤
m wi ∈ Σ∗e and σi ∈ Σs, mem(w′) = (wN , σ

′
1 . . . σ

′
n, we), for all j < m

mem(w′w0 . . . σj) 6= (∗, ε, ∗), and mem(w) = (∗, ε, ∗), then n = m, for all
i ≤ n σi = σ′i, and mem(w) = (wNσ1 . . . σn, ε, wew0 . . . wn).

3. If f(w) = ε for some f -compatible execution w then either w = ε and fN(w) =
ε, or mem(w) = (wN , ε, we) with wN and we such that fN(wN ·we) is undefined.

Let w be a finite f -compatible execution such that mem(w) = (wN , ε, we). This
execution can always be decomposed as w = w0σ0w1 . . . σmwm with wi ∈ Σ∗e and
σi ∈ Σs for all i ≤ m. We show that w can also be written as:

w = w1
0σ

1
1 . . . σ

1
n1
w1
n1
· σ2

0w
2
0σ

2
1 . . . σ

2
n2
w2
n2
· . . . · σk0wk0σk1 . . . σknkw

k
nk

where k, n1, . . . , nk ∈ N and such that if we define sj = σj0 . . . σ
j
nj

and ej = wj0 . . . w
j
nj

for all j ≤ k then:

101

4.3. FO[∼] CHAPTER 4. SYNTHESIS

• wN = s1e1s2 . . . ek−1sk,

• we = ek, and

• for all j ≤ k, sj = fN(s1e1 . . . sj−1ej−1).

We prove this by recursion on the number of prefixes w′ of w ending in an action
of System such that mem(w′) = (∗, ε, ∗), that number being k in the decomposition
above.

Let w = w0σ0 . . . σmwm a f -compatible execution with mem(w) = (wN , ε, we).
We note (wiN , w

i
s, w

i
e) = mem(w0σ0 . . . wiσi) for all i ≤ m.

Base case (k = 1). Suppose that wis 6= ε for all i < m and wms = ε. As mem(ε) =
(ε, fN(ε), ε), if we let fN(ε) = σ′1 . . . σ

′
n then by the second property of mem we have

that n = m, σi = σ′i for all i ≤ m, and that mem(w) = (σ1 . . . σn, ε, w0 . . . wm). Then
if we let s1 = σ1 . . . σn and e1 = w0 . . . wm, the decomposition holds (with k = 1).

Induction step. Suppose w = w′ · σiwi+1 . . . σmwm where w′ = w1
0σ

1
1 . . . σ

k
nk
wknk

with mem(w′) = (wN , ε, we) satisfying the conditions above. Suppose also that
wjs 6= ε for all i ≤ j < m and wms = ε. By the first property of mem, we know that
mem(w′σi) = (wN ·we ·σi, σ′2 . . . σ′n, ε) with σiσ

′
2 . . . σ

′
n = fN(wN ·we) = fN(s1e1 . . . sk ·

ek). Then using the second property, we deduce that n = m − i, σ′j+1 = σi+j
for all 0 < j ≤ n, and that mem((w′σi) · wi+1σi+1 . . . σmwm) = (w′N , ε, w

′
e) where

w′N = wN · we · σiσi+1 . . . σm and w′e = wi+1 . . . wm. So we let sk+1 = σi . . . σm and
ek+1 = wi+1 . . . wm, and all conditions of the decomposition have been satisfied.

Thanks to the decomposition we just proved, if w is a finite f -compatible execu-
tion such that mem(w) = (wN , ε, we) then we can deduce two facts: that w ∼ wN ·we

and that wN is a fN -compatible normalized execution.
Let w be an arbitrary fair f -compatible execution. We distinguish two different

cases:
If w is finite and mem(w) = (wN , ws, we), then f(w) = ε because w is fair, so

either w = ε = fN(w) in which case (P, ε) |= ϕ because fN is a normalized strategy,
or ws = ε and fN is undefined on wN · we. Moreover, we get that w ∼ wN · we

and that wN is a fN -compatible normalized execution. Since wN is a fN -compatible
normalized execution and fN is undefined on wN ·we, then necessarily wN ·we satisfies
ϕ, otherwise wN ·we would be a fN -compatible maximal normalized execution that
is not winning which would contradict that fN is winning. Therefore, since wN ·we

satisfies ϕ and w ∼ wN · we, we have that w satisfies ϕ.
If w is infinite, let wi be the prefix of size i of w and (wiN , w

i
s, w

i
e) = mem(wi).

We again distinguish two cases. If there are an infinite number of actions from
System, then there is an infinite sequence i1 < i2 < . . . such that w

ij
s = ε, which

in turn means that there is an increasing sequence of fN -compatible normalized
executions wi1N , w

i2
N , . . ., so one can find a normalized execution of arbitrary size.

This is impossible, as by Theorem 23 there is a bound on the number of letter that
can be played on a single process before the satisfiability of ϕ remains stable, that
bound being B.|Aθ| for processes of type θ ∈ T. Since the number of processes is
fixed that means there is a bound on the total number of times that an execution
can go from satisfying ϕ to not satisfying it and vice-versa, which in turn limits the
size of normalized executions.

Therefore there is a finite number of actions from System, i.e. w = w′ ·w∞e where
w′ is a finite execution ending with an action from System and w∞e is an infinite

102

4.3. FO[∼] CHAPTER 4. SYNTHESIS

execution with only actions from Environment. Let n = |w′|. By fairness of w
necessarily there is some point K > n such that f(wi) = ε for all i ≥ K. Since there
are no actions from System in w∞e , we also know that wiN = wnN and wis = wns = ε
for all i > n, and that wnN is a fN -compatible normalized execution. Thus for all
i ≥ K, wi ∼ wnN · wie and wnN · wie satisfies ϕ otherwise fN would not be winning,
therefore wi satisfies ϕ for all i ≥ K. We conclude that w is winning, and therefore
that f is a winning strategy in the Synthesis Problem.

Win(ϕ) ⊆Winnorm(ϕ): Suppose that (ks, ke, kse) ∈Win(ϕ) and let f be a winning
strategy for System. We will define fN a normalized strategy. Let w be a finite
normalized execution; note that w can also be seen as a (regular) execution. Suppose
that w is a f -compatible execution that does not satisfy ϕ. Let σ1 = f(w), σ2 =
f(wσ1), σ3 = f(wσ1σ2), and so on. As f is winning, necessarily there exists i ∈ N
such that σ1, . . . , σi are all not ε and such that wσ1 . . . σi satisfies ϕ, otherwise
wσ1σ2 . . . would be an infinite f -compatible fair execution that is not winning. We
then take the minimal i satisfying those conditions and we define fN(w) = σ1 . . . σi.
Remark that in that case, w · fN(w) is still a f -compatible execution. If (P, ε) |= ϕ,
we let fN(ε) = ε, and the remark above still holds. If w 6= ε either satisfies ϕ or is
not f -compatible, then fN is undefined.

Let w = w1
sw

1
ew

2
s . . . w

i
θ be a fN -compatible normalized execution with θ ∈ {s, e}.

Then w is also a f -compatible execution: this is true if w = ε, and if w′ is a
f -compatible execution then w′ · fN(w′) is also one as we remarked earlier, and
w′ · fN(w′) · we as well for any we ∈ Σ+

e .
Now suppose that w is also fN -maximal. If θ = s then w is winning. Otherwise,

by definition of maximal fN(w) must be undefined. fN is undefined when w is not
f -compatible or satisfies ϕ. Since w is f -compatible, it means that w must satisfy ϕ.
Thus all maximal fN -compatible normalized executions are winning, which means
that fN is a winning strategy.

Now that we have proven that the synthesis problem is equivalent to the nor-
malized version, let us use the latter to show equivalency with parameterized vector
games.

Step 2: Proof of Lemma 26 We split the lemma into two, one for each direction.

Lemma 28. For every sentence ϕ ∈ FO[∼], there is a parameterized vector game
G such that Win(ϕ) = Win(G).

Proof. We actually show that parameterized vector games are equivalent to the
normalized synthesis problem. Let ϕ be a sentence in FO[∼]. With the normal form
from Theorem 23, we suppose that there is B ∈ N and that

ϕ =
n∨
i=1

ϕi

where

ϕi =

(
mi∧
j=1

∃=kijy.(θij(y) ∧ ψB,`ij(y))

)
∧

 m̂′i∧
j=1

∃≥k̂ijy.(θ̂ij(y) ∧ ψB,ˆ̀ij(y))

103

4.3. FO[∼] CHAPTER 4. SYNTHESIS

with kij, k̂
i
j ∈ N, θij, θ̂

i
j ∈ T, `ij,

ˆ̀i
j ∈ {0 . . . B}A for all i, j ∈ N. Let L = {0 . . . B}A,

we can also assume that for all i ∈ N, any pair (θ, `) ∈ T× L appears at most once
in ∪j{(θij, `ij), (θ̂ij, ˆ̀i

j)}.
We define the parameterized vector game G = (A,B,F) where A and B are

given by ϕ, and F = {κi | 1 ≤ i ≤ n} such that for all 1 ≤ i ≤ n and ` ∈ L,
κi(`) = (./is n

i
s, ./

i
e n

i
e, ./

i
se n

i
se) where

./iθ n
i
θ =

= kij if ∃j.(θ, `) = (θij, `

i
j),

≥ k̂ij if ∃j.(θ, `) = (θ̂ij,
ˆ̀i
j),

≥ 0 otherwise.

Winnorm(ϕ) ⊆Win(G): First we show how to obtain a play from a normalized
execution. Let w be a normalized (Ps,Pe,Pse)-execution and kθ = |Pθ|. By abuse
of notation, we note ρ(w) the play corresponding to w that we are building. Let
w = w1 . . . wα with α ≥ 1 and let c0 = c(ks,ke,kse). For all p ∈ Ps ∪ Pe ∪ Pse and
β ∈ {1, . . . , α}, we define `βp that track the state of each process p after w1 . . . wβ as:

`βp (a) = |{j ∈ Pos(w1 . . . wβ) | w[j] = (a, p)}|

By convention, we also let `0
p = `0 for all p. Then let Pβθ,` be the set of processes of

type θ in state ` after w1 . . . wβ, defined as

Pβθ,` = {p ∈ Pθ | ` = `βp}

Then we define ρ(w) = c0τ1c1 . . . ταcα where for all β ∈ {1, . . . , α} and (`, `′) ∈ L2,
τβ(`, `′) = (τs, τe, τse) with τθ = |Pβ−1

θ,` ∩ Pβθ,`′ | and cβ = τβ(cβ−1).
Let w = w1 . . . wα be a normalized execution and let ρ(w) = c0 . . . cα. We prove

that for all ` ∈ L, β ≤ α, and θ ∈ T we have cβ(`, θ) = |Pβθ,`|. If β = 0 then
cβ(`0, θ) = kθ = |P0

θ,`|. If the property is true for β < α, then

cβ+1(`) = cβ(`)− out τβ+1
(`) + inτβ+1

(`)

= cβ(`)−
∑
`′∈L

τβ+1(`, `′) +
∑
`′∈L

τβ+1(`′, `)

For a given θ ∈ T, this simplifies into

cβ+1(`, θ) = |Pβθ,`| −
∑
`′∈L

(
|Pβθ,` ∩ Pβ+1

θ,`′ |
)

+
∑
`′∈L

(
|Pβθ,`′ ∩ Pβ+1

θ,` |
)

= |Pβθ,`| − |{p ∈ Pθ | p ∈ Pβθ,` ∧ p /∈ Pβ+1
θ,` }|+ |{p ∈ Pθ | p /∈ Pβθ,` ∧ p ∈ Pβ+1

θ,` }|
= |Pβ+1

θ,` |

Consequently, we can prove that w is winning iff ρ(w) is winning. Suppose there
is i ≤ n such that w1 . . . wα |= ϕi. Then by definition of the subformulas ψB,`ij ,(y),

for all (θ, `) and j such that (θ, `) = (θij, `
i
j) (respectively = (θ̂ij,

ˆ̀i
j)), there must be

at exactly kij (resp. at least k̂ij) processes of type θ in state ` i.e. |Pαθ,`| = kij (resp.

≥ k̂ij). Therefore cα(`, θ) = kij (resp. ≥ k̂ij) for all (θ, `), so cα satisfies κi thus ρ(w)
is winning. The other direction is similar.

Now suppose there is a winning normalized P-strategy f . We define a strategy
fG in G as fG(ρ) = τα if there is a f -compatible play w such that ρ = ρ(w),

104

4.3. FO[∼] CHAPTER 4. SYNTHESIS

f(w) is defined and ρ(w · f(w)) = c0 . . . ταcα. Moreover, let fG(ε) = τ1 where
ρ(f(ε)) = c0τ1c1. In all other cases, fG is undefined.

Finally, we show that fG is winning. If ρ = c0τ1c1 . . . cα is a fG-compatible play,
then inductively by definition of fG we know that there is w = w1 . . . wα such that
for all β ≤ α, c0τ1c1 . . . cβ = ρ(w1 . . . wβ). Furthermore, if ρ is fG-maximal, then
there it is not the prefix of a longer fG-compatible play. If w was not f -maximal,
there would be an execution w′ = wwα+1 that is f -compatible, but in that case ρ(w′)
would be a fG-compatible play which contradicts the maximality of ρ. Therefore w
must be f -maximal, and thus winning as f is a winning strategy. Since we proved
that w is winning iff ρ(w) is winning, then ρ is a winning play, therefore fG is a
winning strategy.

Winnorm(ϕ) ⊇Win(G): Let c0 = c(ks,ke,kse) for some ks, ke, kse ∈ N. We define Pθ =
{1, . . . , kθ} for all θ ∈ T. For all c0-plays ρ, let us build a normalized (Ps,Pe,Pse)-
execution that we note w(ρ) again by abuse of notation. Since processes in G do
not have identities, we will need to arbitrarily assign one to each of them. To that
end, we define a function mem such that for all c0-plays ρ ∈ Plays , locations ` ∈ L,
and θ ∈ T, mem(ρ, `, θ) = S with S ⊆ Pθ storing the identities of all processes in
location ` at the end of play ρ. First we fix an arbitrary total order < on L2. Then
mem is defined as follows:

mem(c0, `, θ) =

{
Pθ if ` = `0,

∅ otherwise.

and for all ρ = c0τ1 . . . cα such that mem(ρ, `, θ) is defined for all (`, θ) ∈ L× T, for
all τ applicable at cα and c = τ(cα), for all `, `′ ∈ L such that τ(`, `′) = (ns, ne, nse),
for all θ ∈ T, we define Sθ`,`′ as the nθ lowest (w.r.t. the natural order on N) elements
of

mem(ρ, `, θ) \

 ⋃
(ˆ̀,ˆ̀′)<(`,`′)

Sθˆ̀,ˆ̀′

which is always well-defined if τ is applicable as we supposed. Then we let

mem(ρτc, `, θ) = mem(ρ, `, θ) ∪
(⋃
`′ 6=`

Sθ`′,`

)
\
(⋃
`′ 6=`

Sθ`,`′

)
With that being done, we define w(ρ) recursively. Let w(c0) = ε. For all ρ =
c0τ1c1 . . . cα such that w(ρ) is defined, for all τ applicable at cα and c = τ(cα), we
let

w(ρτc) = w(ρ) ·
∏

`′=`+a1...aj ,
θ∈T

p∈mem(ρ,`,θ)∩
mem(ρτc,`′,θ)

(a1, p) · . . . · (aj, p)

We prove that for all c0-plays ρ = c0τ1 . . . cα and w(ρ) = w1 . . . wα, for all ` ∈ L,
β ≤ α, and θ ∈ T we have mem(c0τ1 . . . cβ, `, θ) = Pβθ,` with Pβθ,` defined as before. If
β = 0, for all processes p we have that `0

p = `0, so P0
θ,` = Pθ if ` = `0 and ∅ otherwise,

therefore P0
θ,` = mem(c0, `, θ). If the property holds for some β < α, then

mem(c0τ1 . . . τβ+1cβ+1, `, θ) = Pβθ,` ∪
(⋃
`′ 6=`

Sθ`′,`

)
\
(⋃
`′ 6=`

Sθ`,`′

)

105

4.3. FO[∼] CHAPTER 4. SYNTHESIS

Moreover,

Pβ+1
θ,` = Pβθ,` ∪ {p ∈ Pθ | p /∈ Pβθ,` ∧ p ∈ Pβ+1

θ,` } \ {p ∈ Pθ | p ∈ Pβθ,` ∧ p /∈ Pβ+1
θ,` }

= Pβθ,` ∪
(⋃
`′ 6=`

{p ∈ Pθ | p ∈ Pβθ,`′ ∧ p ∈ Pβ+1
θ,` }

)
\
(⋃
`′ 6=`

{p ∈ Pθ | p ∈ Pβθ,` ∧ p ∈ Pβ+1
θ,`′ }

)

If p ∈ Pθ is such that p ∈ Pβθ,`′ and p ∈ Pβ+1
θ,` for some `′ 6= `, then by definition of

w(ρ) necessarily ` = `′+a1 . . . aj and p ∈ mem(c0 . . . cβ, `
′, θ)∩mem(c0 . . . cβ+1, `, θ),

and therefore p ∈ Sθ`′,`. The reverse is also true. Therefore,

Pβ+1
θ,` = mem(c0 . . . cβ, `, θ) ∪

(⋃
`′ 6=`

Sθ`′,`

)
\
(⋃
`′ 6=`

Sθ`,`′

)
= mem(c0 . . . cβτβ+1cβ+1, `, θ)

Furthermore, it is easy to see that cβ(`, θ) = |mem(c0 . . . cβ, `, θ)| for all β, `, θ.

Therefore, as in the other direction, we have that cβ(`, θ) = |Pβθ,`|, which in turn
gives us that ρ is winning iff w(ρ) is winning.

Now suppose there is a winning strategy fG in G. We define a normalized strategy
f as f(ε) = w(c0τc1) with τ = fG(c0) and c1 = τ(c0), and for all w we define
f(w) = w′ if there is a play ρ ending in c such that w = w(ρ), fG(ρ) = τ is defined
and w(ρτc′) = ww′ where c′ = τ(c). In all other cases, f(w) is undefined. The
proof that f is a winning strategy is the same as the other direction, with the roles
of f and fG as well as w and ρ swapped, since the definitions of compatibility and
maximality are the same for the normalized synthesis and the parameterized vector
games.

Lemma 29. For every parameterized vector game G, there is a sentence ϕ ∈ FO[∼]
such that Win(G) = Win(ϕ).

Proof. Let G = (A,B,F) be a parameterized vector game, and let F = {κi |
1 ≤ i ≤ n}. As usual, let L = {0, . . . , B}A. For all ` ∈ L and 1 ≤ i ≤ n, if
κi(`) = (./is n

i
s, ./

i
e n

i
e, ./

i
se n

i
se), then for all θ ∈ T we let:

ϕi,`,θ = ∃./iθniθy.(θ(y) ∧ ψB,`(y))

which is a FO[∼] formula and then we define:

ϕ =
n∨
i=1

∧
`∈L
θ∈T

ϕi,`,θ

The proof that Win(G) = Win(ϕ) is similar to the one from Lemma 28.

This ends the proof of Lemma 26, in other words, parameterized vector games are
indeed equivalent to FO[∼] formula with respect to the synthesis problem. We use
these games to study the synthesis problem when only mixed processes are involved
(0, 0,N), and when all processes are either system or environment processes only
(N,N, 0).

106

4.3. FO[∼] CHAPTER 4. SYNTHESIS

4.3.3 Cases of (0, 0,N) and (N,N, 0)

The notion of cutoff from the synthesis problem can also be transposed to the
parameterized vector games formalism: a triple k ∈ NT is said to be a cutoff with
respect to (Ns,Ne,Nse) if either k′ is winning for all k′ ≥ k ∈ Ns ×Ne ×Nse, or k′

is not winning for all k′ ≥ k ∈ Ns ×Ne ×Nse.
Remember that the notion of cutoff is helpful to know whether the existence

of a winning strategy with respect to some parameters (Ns,Ne,Nse) is decidable.
Indeed, if there is a cutoff, then it is enough to check for all triples below the cutoff
(of which there are a finite number) the existence of a strategy for the game with
this initial configuration (which is a finite acyclic game) which can be done in a
finite amount of time. Then there is no need to check for triples above the cutoff
due to its property. All in all, this means that proving that there is a cutoff implies
that the game problem for (Ns,Ne,Nse) is decidable.

We show that there is no cutoff with respect to (0, 0,N) and (N,N, 0) by giving
two games, one for each case, without cutoffs.

Lemma 30. There is a game G = (A,B,F) such that Win(G) does not have a
cutoff with respect to (0, 0,N).

Proof. The idea is that System wins the game if there is an even number of tokens
in the initial configuration. The acceptance conditions constrain System and Envi-
ronment so that they have to move 2 tokens at the same time along a path from
the initial location to the final location, and when the tokens reach the end of the
path then the players have to do the same thing with 2 new tokens. This keeps
going until either all tokens have been moved from the initial location to the final
location, in which case System wins, or there is a single token remaining, in which
case System has no more winning move.

We let As = {a} and Ae = {b}, as well as B = 2. For k ∈ {0, 1, 2}, define
the local acceptance conditions =k = (=0 ,=0 ,=k) and ≥k = (=0 ,=0 ,≥k). Set
`1 = 〈a〉, `2 = 〈ab〉, `3 = 〈a2b〉, and `4 = 〈a2b2〉. For k0, . . . , k4 ∈ {0, 1, 2} and
./0, . . . , ./4 ∈ {=,≥}, let [./0k0 ,

./1k1 ,
./2k2 ,

./3k3 ,
./4k4] denote κ ∈ CL where κ(`i) =

(./iki) for all i ∈ {0, . . . , 4} and κ(`′) = (=0) for `′ /∈ {`0, . . . , `4}. Finally,

F =

{
[≥0 , =2 , =0 , =0 , ≥0], [≥0 , =0 , =0 , =2 , ≥0], [=0 , =0 , =0 , =0 , ≥2],

[≥0 , =1 , =1 , =0 , ≥0], [≥0 , =0 , =0 , =1 , ≥1]

}
∪Ke

where Ke = {κ` | ` ∈ L such that `(b) > `(a)} with κ`(`
′) = (≥1) if `′ = `, and

κ`(`
′) = (≥0) otherwise. This is illustrated in Figure 4.3.
There is a winning strategy for System from any initial configuration of size 2n:

Move two tokens from `0 to `1, wait until Environment sends them both to `2, then
move them to `3, wait until they are moved to `4, then repeat with two new tokens
from `0 until all the tokens are removed from `0, and Environment cannot escape F
anymore.

However, there is no winning strategy for initial configurations of size 2n+ 1 by
induction on n. Indeed, it is easy to check that there is no possible move for System
when n = 0, and when n > 0 then the only possible sequence of moves for System
and Environment necessarily move 2 tokens from the initial state to the rightmost
one, so we are left with 2n − 1 tokens in the initial locations which is losing for
System by induction hypothesis.

107

4.3. FO[∼] CHAPTER 4. SYNTHESIS

`0
<latexit sha1_base64="LJVlZJ3TRWgnUwfo9eM2v4qtCuM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFN4KbCvYBrZRkOq2xk4fJRKzFlT/gVn9M/AP9C++MqShF9IYkZ86958zcuU4o3Fha1mvGmJmdm1/ILuaWlldW1/LrG404SCLG6ywQQdRy7JgL1+d16UrBW2HEbc8RvOkMj1W+ecOj2A38czkK+YVnD3y37zJbEtXocCG6VjdfsIqWDnMalFJQQBq1IP+CDnoIwJDAA4cPSVjARkxPGyVYCIm7wJi4iJCr8xz3yJE2oSpOFTaxQ/oOaNVOWZ/WyjPWaka7CHojUprYIU1AdRFhtZup84l2Vuxv3mPtqc42or+TennESlwS+5duUvlfnepFoo8j3YNLPYWaUd2x1CXRt6JObn7rSpJDSJzCPcpHhJlWTu7Z1JpY967u1tb5N12pWLVmaW2Cd3VKPeCKioOvcU6Dxl6xVC6Wz/YL1Uo66iy2sI1dmuchqjhBDXXyvsIjnvBsnBrXxq1x91lqZFLNJn6E8fABRimRjQ==</latexit>

`1<latexit sha1_base64="8taeNaWod/7frDC/2d3BeO52NZU=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFN4KbCvYBrZRkOq2xk4fJRKzFlT/gVn9M/AP9C++MqShF9IYkZ86958zcuU4o3Fha1mvGmJmdm1/ILuaWlldW1/LrG404SCLG6ywQQdRy7JgL1+d16UrBW2HEbc8RvOkMj1W+ecOj2A38czkK+YVnD3y37zJbEtXocCG6pW6+YBUtHeY0KKWggDRqQf4FHfQQgCGBBw4fkrCAjZieNkqwEBJ3gTFxESFX5znukSNtQlWcKmxih/Qd0Kqdsj6tlWes1Yx2EfRGpDSxQ5qA6iLCajdT5xPtrNjfvMfaU51tRH8n9fKIlbgk9i/dpPK/OtWLRB9HugeXego1o7pjqUuib0Wd3PzWlSSHkDiFe5SPCDOtnNyzqTWx7l3dra3zb7pSsWrN0toE7+qUesAVFQdf45wGjb1iqVwsn+0XqpV01FlsYRu7NM9DVHGCGurkfYVHPOHZODWujVvj7rPUyKSaTfwI4+EDSImRjg==</latexit>

`2<latexit sha1_base64="rUEzca/dRiyHEIhxsLBYtuFww2I=">AAACyXicjVHLTsJAFD3UF+ILdemmkZi4IgWMyo7EjYkbTOSRACFtGbAytHU6NSJx5Q+41R8z/oH+hXfGYjTE6G3anjn3njNz5zoh9yJpWa8pY25+YXEpvZxZWV1b38hubtWjIBYuq7kBD0TTsSPGPZ/VpCc5a4aC2SOHs4YzPFH5xg0TkRf4F3Icss7IHvhe33NtSVS9zTjvFrvZnJW3dJizoJCAHJKoBtkXtNFDABcxRmDwIQlz2IjoaaEACyFxHUyIE4Q8nWe4R4a0MVUxqrCJHdJ3QKtWwvq0Vp6RVru0C6dXkNLEHmkCqhOE1W6mzsfaWbG/eU+0pzrbmP5O4jUiVuKS2L9008r/6lQvEn0c6x486inUjOrOTVxifSvq5Oa3riQ5hMQp3KO8IOxq5fSeTa2JdO/qbm2df9OVilVrN6mN8a5OqQdcVnH4Nc5ZUC/mC6V86fwgVykno05jB7vYp3keoYJTVFEj7ys84gnPxplxbdwad5+lRirRbONHGA8fSumRjw==</latexit>

`3
<latexit sha1_base64="wmZCF8Ph1XEPQLkTwg5v7uTDXyA=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFN4KbCvYBrZRkOq2xk4fJRKzFlT/gVn9M/AP9C++MqShF9IYkZ86958zcuU4o3Fha1mvGmJmdm1/ILuaWlldW1/LrG404SCLG6ywQQdRy7JgL1+d16UrBW2HEbc8RvOkMj1W+ecOj2A38czkK+YVnD3y37zJbEtXocCG65W6+YBUtHeY0KKWggDRqQf4FHfQQgCGBBw4fkrCAjZieNkqwEBJ3gTFxESFX5znukSNtQlWcKmxih/Qd0Kqdsj6tlWes1Yx2EfRGpDSxQ5qA6iLCajdT5xPtrNjfvMfaU51tRH8n9fKIlbgk9i/dpPK/OtWLRB9HugeXego1o7pjqUuib0Wd3PzWlSSHkDiFe5SPCDOtnNyzqTWx7l3dra3zb7pSsWrN0toE7+qUesAVFQdf45wGjb1iqVwsn+0XqpV01FlsYRu7NM9DVHGCGurkfYVHPOHZODWujVvj7rPUyKSaTfwI4+EDTUmRkA==</latexit>

`4<latexit sha1_base64="5k13d+ap0n7ASA8EdPLVf//gBfk=">AAACyXicjVHLTsJAFD3UF+ILdemmkZi4IkWIyo7EjYkbTOSRACHtMGBlaGs7NSJx5Q+41R8z/oH+hXfGYjTE6G3anjn3njNz5zqBcCNpWa8pY25+YXEpvZxZWV1b38hubtUjPw4ZrzFf+GHTsSMuXI/XpCsFbwYht0eO4A1neKLyjRseRq7vXchxwDsje+C5fZfZkqh6mwvRLXWzOStv6TBnQSEBOSRR9bMvaKMHHwwxRuDwIAkL2IjoaaEACwFxHUyICwm5Os9xjwxpY6riVGETO6TvgFathPVorTwjrWa0i6A3JKWJPdL4VBcSVruZOh9rZ8X+5j3RnupsY/o7ideIWIlLYv/STSv/q1O9SPRxrHtwqadAM6o7lrjE+lbUyc1vXUlyCIhTuEf5kDDTyuk9m1oT6d7V3do6/6YrFavWLKmN8a5OqQdcVnH4Nc5ZUD/IF4r54nkpVykno05jB7vYp3keoYJTVFEj7ys84gnPxplxbdwad5+lRirRbONHGA8fT6mRkQ==</latexit>

a
<latexit sha1_base64="ZVBBXXbACrSXAEeeSDZxfAsbHpk=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZJa0GVBEJct2AfUIpPptA7Ni2QilKI/4Fa/TfwD/QvvjCmoRXRCkjPn3nNm7r1e7MtUOc5rwVpaXlldK66XNja3tnfKu3udNMoSLto88qOk57FU+DIUbSWVL3pxIljg+aLrTc51vHsnklRG4ZWaxmIQsHEoR5IzRVSL3ZQrTtUxy14Ebg4qyFczKr/gGkNE4MgQQCCEIuyDIaWnDxcOYuIGmBGXEJImLnCPEmkzyhKUwYid0HdMu37OhrTXnqlRczrFpzchpY0j0kSUlxDWp9kmnhlnzf7mPTOe+m5T+nu5V0Cswi2xf+nmmf/V6VoURjgzNUiqKTaMro7nLpnpir65/aUqRQ4xcRoPKZ4Q5kY577NtNKmpXfeWmfibydSs3vM8N8O7viUN2P05zkXQqVXdk2qtVa806vmoizjAIY5pnqdo4BJNtI33I57wbF1YvpVa2WeqVcg1+/i2rIcPMZSPXA==</latexit>

b
<latexit sha1_base64="S2GtyauzeooT4GZsw007K1j095I=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVJbfOwKgrhswT6gFknSaR2aF5mJUIr+gFv9NvEP9C+8M05FKaI3JDlz7j1n5s71koAL6TivOWthcWl5Jb9aWFvf2Nwqbu+0RZylPmv5cRCnXc8VLOARa0kuA9ZNUuaGXsA63vhc5Tt3LBU8jq7kJGH90B1FfMh9VxLV9G6KJafs6LDnQcWAEkw04uILrjFADB8ZQjBEkIQDuBD09FCBg4S4PqbEpYS4zjPco0DajKoYVbjEjuk7olXPsBGtlafQap92CehNSWnjgDQx1aWE1W62zmfaWbG/eU+1pzrbhP6e8QqJlbgl9i/drPK/OtWLxBCnugdOPSWaUd35xiXTt6JObn/rSpJDQpzCA8qnhH2tnN2zrTVC967u1tX5N12pWLX2TW2Gd3VKPeAzFcdf45wH7aNypVquNmules2MOo897OOQ5nmCOi7RQEt7P+IJz9aFFVjCyj5LrZzR7OJHWA8fS26PkA==</latexit>

a
<latexit sha1_base64="ZVBBXXbACrSXAEeeSDZxfAsbHpk=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZJa0GVBEJct2AfUIpPptA7Ni2QilKI/4Fa/TfwD/QvvjCmoRXRCkjPn3nNm7r1e7MtUOc5rwVpaXlldK66XNja3tnfKu3udNMoSLto88qOk57FU+DIUbSWVL3pxIljg+aLrTc51vHsnklRG4ZWaxmIQsHEoR5IzRVSL3ZQrTtUxy14Ebg4qyFczKr/gGkNE4MgQQCCEIuyDIaWnDxcOYuIGmBGXEJImLnCPEmkzyhKUwYid0HdMu37OhrTXnqlRczrFpzchpY0j0kSUlxDWp9kmnhlnzf7mPTOe+m5T+nu5V0Cswi2xf+nmmf/V6VoURjgzNUiqKTaMro7nLpnpir65/aUqRQ4xcRoPKZ4Q5kY577NtNKmpXfeWmfibydSs3vM8N8O7viUN2P05zkXQqVXdk2qtVa806vmoizjAIY5pnqdo4BJNtI33I57wbF1YvpVa2WeqVcg1+/i2rIcPMZSPXA==</latexit>

b
<latexit sha1_base64="S2GtyauzeooT4GZsw007K1j095I=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVJbfOwKgrhswT6gFknSaR2aF5mJUIr+gFv9NvEP9C+8M05FKaI3JDlz7j1n5s71koAL6TivOWthcWl5Jb9aWFvf2Nwqbu+0RZylPmv5cRCnXc8VLOARa0kuA9ZNUuaGXsA63vhc5Tt3LBU8jq7kJGH90B1FfMh9VxLV9G6KJafs6LDnQcWAEkw04uILrjFADB8ZQjBEkIQDuBD09FCBg4S4PqbEpYS4zjPco0DajKoYVbjEjuk7olXPsBGtlafQap92CehNSWnjgDQx1aWE1W62zmfaWbG/eU+1pzrbhP6e8QqJlbgl9i/drPK/OtWLxBCnugdOPSWaUd35xiXTt6JObn/rSpJDQpzCA8qnhH2tnN2zrTVC967u1tX5N12pWLX2TW2Gd3VKPeAzFcdf45wH7aNypVquNmules2MOo897OOQ5nmCOi7RQEt7P+IJz9aFFVjCyj5LrZzR7OJHWA8fS26PkA==</latexit>

�0
<latexit sha1_base64="9L9fj283oPAy3jeoqSGrGMp0VlE=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVJbfOwKbgQ3FewD2iJJOq1j8zKZiLV05Q+41R8T/0D/wjvjKEoRvSHJmXPvOTN3rhN5PBGW9ZIxZmbn5heyi7ml5ZXVtfz6RiMJ09hldTf0wrjl2AnzeMDqgguPtaKY2b7jsaYzPJb55g2LEx4G52IUsa5vDwLe564tiGqMOwM2sS7yBatoqTCnQUmDAnTUwvwzOughhIsUPhgCCMIebCT0tFGChYi4LsbExYS4yjNMkCNtSlWMKmxih/Qd0Kqt2YDW0jNRapd28eiNSWlihzQh1cWE5W6myqfKWbK/eY+VpzzbiP6O9vKJFbgk9i/dZ+V/dbIXgT4OVQ+ceooUI7tztUuqbkWe3PzWlSCHiDiJe5SPCbtK+XnPptIkqnd5t7bKv6pKycq1q2tTvMlTqgEfydj/Guc0aOwVS+Vi+axSqFb0qLPYwjZ2aZ4HqOIENdTJ+woPeMSTcWpcG7fG3UepkdGaTfwI4/4dpCCRsA==</latexit>

�0
<latexit sha1_base64="9L9fj283oPAy3jeoqSGrGMp0VlE=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVJbfOwKbgQ3FewD2iJJOq1j8zKZiLV05Q+41R8T/0D/wjvjKEoRvSHJmXPvOTN3rhN5PBGW9ZIxZmbn5heyi7ml5ZXVtfz6RiMJ09hldTf0wrjl2AnzeMDqgguPtaKY2b7jsaYzPJb55g2LEx4G52IUsa5vDwLe564tiGqMOwM2sS7yBatoqTCnQUmDAnTUwvwzOughhIsUPhgCCMIebCT0tFGChYi4LsbExYS4yjNMkCNtSlWMKmxih/Qd0Kqt2YDW0jNRapd28eiNSWlihzQh1cWE5W6myqfKWbK/eY+VpzzbiP6O9vKJFbgk9i/dZ+V/dbIXgT4OVQ+ceooUI7tztUuqbkWe3PzWlSCHiDiJe5SPCbtK+XnPptIkqnd5t7bKv6pKycq1q2tTvMlTqgEfydj/Guc0aOwVS+Vi+axSqFb0qLPYwjZ2aZ4HqOIENdTJ+woPeMSTcWpcG7fG3UepkdGaTfwI4/4dpCCRsA==</latexit>

2
<latexit sha1_base64="hONIc/c2Sk7l7mGNG+j252v71rE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVdJW1O4KgrhswdpCLZKk0zo0LyYToRT9Abf6beIf6F94Z5yKUkRvSHLm3HvOzJ3rJQFPpeO85qyFxaXllfxqYW19Y3OruL1zlcaZ8Fnbj4NYdD03ZQGPWFtyGbBuIpgbegHreOMzle/cMZHyOLqUk4T1Q3cU8SH3XUlUq3pTLDllR4c9DyoGlGCiGRdfcI0BYvjIEIIhgiQcwEVKTw8VOEiI62NKnCDEdZ7hHgXSZlTFqMIldkzfEa16ho1orTxTrfZpl4BeQUobB6SJqU4QVrvZOp9pZ8X+5j3VnupsE/p7xiskVuKW2L90s8r/6lQvEkOc6h449ZRoRnXnG5dM34o6uf2tK0kOCXEKDygvCPtaObtnW2tS3bu6W1fn33SlYtXaN7UZ3tUp9YDrKo6/xjkPrqrlSq1cax2VGnUz6jz2sI9DmucJGrhAE23t/YgnPFvnVmClVvZZauWMZhc/wnr4ANrgj2U=</latexit>

0
<latexit sha1_base64="1UhFyz3wFngEKeQ6xiyVwmB1JV0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFQVy2YB9QiyTptA7Ni8xEKEV/wK1+m/gH+hfeGaeiFNEbkpw5954zc+d6ScCFdJzXnLWwuLS8kl8trK1vbG4Vt3faIs5Sn7X8OIjTrucKFvCItSSXAesmKXNDL2Adb3yu8p07lgoeR1dykrB+6I4iPuS+K4lqOjfFklN2dNjzoGJACSYacfEF1xggho8MIRgiSMIBXAh6eqjAQUJcH1PiUkJc5xnuUSBtRlWMKlxix/Qd0apn2IjWylNotU+7BPSmpLRxQJqY6lLCajdb5zPtrNjfvKfaU51tQn/PeIXEStwS+5duVvlfnepFYogz3QOnnhLNqO5845LpW1Ent791JckhIU7hAeVTwr5Wzu7Z1hqhe1d36+r8m65UrFr7pjbDuzqlHnBNxcnXOOdB+6hcqZarzeNSvWZGncce9nFI8zxFHZdooKW9H/GEZ+vCCixhZZ+lVs5odvEjrIcP1iCPYw==</latexit>

0
<latexit sha1_base64="1UhFyz3wFngEKeQ6xiyVwmB1JV0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFQVy2YB9QiyTptA7Ni8xEKEV/wK1+m/gH+hfeGaeiFNEbkpw5954zc+d6ScCFdJzXnLWwuLS8kl8trK1vbG4Vt3faIs5Sn7X8OIjTrucKFvCItSSXAesmKXNDL2Adb3yu8p07lgoeR1dykrB+6I4iPuS+K4lqOjfFklN2dNjzoGJACSYacfEF1xggho8MIRgiSMIBXAh6eqjAQUJcH1PiUkJc5xnuUSBtRlWMKlxix/Qd0apn2IjWylNotU+7BPSmpLRxQJqY6lLCajdb5zPtrNjfvKfaU51tQn/PeIXEStwS+5duVvlfnepFYogz3QOnnhLNqO5845LpW1Ent791JckhIU7hAeVTwr5Wzu7Z1hqhe1d36+r8m65UrFr7pjbDuzqlHnBNxcnXOOdB+6hcqZarzeNSvWZGncce9nFI8zxFHZdooKW9H/GEZ+vCCixhZZ+lVs5odvEjrIcP1iCPYw==</latexit>

�0
<latexit sha1_base64="9L9fj283oPAy3jeoqSGrGMp0VlE=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVJbfOwKbgQ3FewD2iJJOq1j8zKZiLV05Q+41R8T/0D/wjvjKEoRvSHJmXPvOTN3rhN5PBGW9ZIxZmbn5heyi7ml5ZXVtfz6RiMJ09hldTf0wrjl2AnzeMDqgguPtaKY2b7jsaYzPJb55g2LEx4G52IUsa5vDwLe564tiGqMOwM2sS7yBatoqTCnQUmDAnTUwvwzOughhIsUPhgCCMIebCT0tFGChYi4LsbExYS4yjNMkCNtSlWMKmxih/Qd0Kqt2YDW0jNRapd28eiNSWlihzQh1cWE5W6myqfKWbK/eY+VpzzbiP6O9vKJFbgk9i/dZ+V/dbIXgT4OVQ+ceooUI7tztUuqbkWe3PzWlSCHiDiJe5SPCbtK+XnPptIkqnd5t7bKv6pKycq1q2tTvMlTqgEfydj/Guc0aOwVS+Vi+axSqFb0qLPYwjZ2aZ4HqOIENdTJ+woPeMSTcWpcG7fG3UepkdGaTfwI4/4dpCCRsA==</latexit>

�0
<latexit sha1_base64="9L9fj283oPAy3jeoqSGrGMp0VlE=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVJbfOwKbgQ3FewD2iJJOq1j8zKZiLV05Q+41R8T/0D/wjvjKEoRvSHJmXPvOTN3rhN5PBGW9ZIxZmbn5heyi7ml5ZXVtfz6RiMJ09hldTf0wrjl2AnzeMDqgguPtaKY2b7jsaYzPJb55g2LEx4G52IUsa5vDwLe564tiGqMOwM2sS7yBatoqTCnQUmDAnTUwvwzOughhIsUPhgCCMIebCT0tFGChYi4LsbExYS4yjNMkCNtSlWMKmxih/Qd0Kqt2YDW0jNRapd28eiNSWlihzQh1cWE5W6myqfKWbK/eY+VpzzbiP6O9vKJFbgk9i/dZ+V/dbIXgT4OVQ+ceooUI7tztUuqbkWe3PzWlSCHiDiJe5SPCbtK+XnPptIkqnd5t7bKv6pKycq1q2tTvMlTqgEfydj/Guc0aOwVS+Vi+axSqFb0qLPYwjZ2aZ4HqOIENdTJ+woPeMSTcWpcG7fG3UepkdGaTfwI4/4dpCCRsA==</latexit>

0
<latexit sha1_base64="1UhFyz3wFngEKeQ6xiyVwmB1JV0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFQVy2YB9QiyTptA7Ni8xEKEV/wK1+m/gH+hfeGaeiFNEbkpw5954zc+d6ScCFdJzXnLWwuLS8kl8trK1vbG4Vt3faIs5Sn7X8OIjTrucKFvCItSSXAesmKXNDL2Adb3yu8p07lgoeR1dykrB+6I4iPuS+K4lqOjfFklN2dNjzoGJACSYacfEF1xggho8MIRgiSMIBXAh6eqjAQUJcH1PiUkJc5xnuUSBtRlWMKlxix/Qd0apn2IjWylNotU+7BPSmpLRxQJqY6lLCajdb5zPtrNjfvKfaU51tQn/PeIXEStwS+5duVvlfnepFYogz3QOnnhLNqO5845LpW1Ent791JckhIU7hAeVTwr5Wzu7Z1hqhe1d36+r8m65UrFr7pjbDuzqlHnBNxcnXOOdB+6hcqZarzeNSvWZGncce9nFI8zxFHZdooKW9H/GEZ+vCCixhZZ+lVs5odvEjrIcP1iCPYw==</latexit>

1
<latexit sha1_base64="IcowM9DfYqg0pxnq99TZwg0ZoAc=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRIrancFQVy2YB9QiyTptIZOkzAzEUrRH3Cr3yb+gf6Fd8ZUlCJ6Q5Iz595zZu5cP+GhVI7zmrMWFpeWV/KrhbX1jc2t4vZOS8apCFgziHksOr4nGQ8j1lSh4qyTCOaNfc7a/uhc59t3TMgwjq7UJGG9sTeMwkEYeIqohntTLDllx4Q9D9wMlJBFPS6+4Bp9xAiQYgyGCIowhwdJTxcuHCTE9TAlThAKTZ7hHgXSplTFqMIjdkTfIa26GRvRWntKow5oF06vIKWNA9LEVCcI691sk0+Ns2Z/854aT322Cf39zGtMrMItsX/pZpX/1eleFAY4Mz2E1FNiGN1dkLmk5lb0ye1vXSlySIjTuE95QTgwytk920YjTe/6bj2TfzOVmtXrIKtN8a5PaQZc1XHyNc550Doqu5VypXFcqlWzUeexh30c0jxPUcMl6mga70c84dm6sLglrfSz1Mplml38COvhA9iAj2Q=</latexit>

1
<latexit sha1_base64="IcowM9DfYqg0pxnq99TZwg0ZoAc=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRIrancFQVy2YB9QiyTptIZOkzAzEUrRH3Cr3yb+gf6Fd8ZUlCJ6Q5Iz595zZu5cP+GhVI7zmrMWFpeWV/KrhbX1jc2t4vZOS8apCFgziHksOr4nGQ8j1lSh4qyTCOaNfc7a/uhc59t3TMgwjq7UJGG9sTeMwkEYeIqohntTLDllx4Q9D9wMlJBFPS6+4Bp9xAiQYgyGCIowhwdJTxcuHCTE9TAlThAKTZ7hHgXSplTFqMIjdkTfIa26GRvRWntKow5oF06vIKWNA9LEVCcI691sk0+Ns2Z/854aT322Cf39zGtMrMItsX/pZpX/1eleFAY4Mz2E1FNiGN1dkLmk5lb0ye1vXSlySIjTuE95QTgwytk920YjTe/6bj2TfzOVmtXrIKtN8a5PaQZc1XHyNc550Doqu5VypXFcqlWzUeexh30c0jxPUcMl6mga70c84dm6sLglrfSz1Mplml38COvhA9iAj2Q=</latexit>

�0
<latexit sha1_base64="9L9fj283oPAy3jeoqSGrGMp0VlE=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVJbfOwKbgQ3FewD2iJJOq1j8zKZiLV05Q+41R8T/0D/wjvjKEoRvSHJmXPvOTN3rhN5PBGW9ZIxZmbn5heyi7ml5ZXVtfz6RiMJ09hldTf0wrjl2AnzeMDqgguPtaKY2b7jsaYzPJb55g2LEx4G52IUsa5vDwLe564tiGqMOwM2sS7yBatoqTCnQUmDAnTUwvwzOughhIsUPhgCCMIebCT0tFGChYi4LsbExYS4yjNMkCNtSlWMKmxih/Qd0Kqt2YDW0jNRapd28eiNSWlihzQh1cWE5W6myqfKWbK/eY+VpzzbiP6O9vKJFbgk9i/dZ+V/dbIXgT4OVQ+ceooUI7tztUuqbkWe3PzWlSCHiDiJe5SPCbtK+XnPptIkqnd5t7bKv6pKycq1q2tTvMlTqgEfydj/Guc0aOwVS+Vi+axSqFb0qLPYwjZ2aZ4HqOIENdTJ+woPeMSTcWpcG7fG3UepkdGaTfwI4/4dpCCRsA==</latexit>

�0
<latexit sha1_base64="9L9fj283oPAy3jeoqSGrGMp0VlE=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVJbfOwKbgQ3FewD2iJJOq1j8zKZiLV05Q+41R8T/0D/wjvjKEoRvSHJmXPvOTN3rhN5PBGW9ZIxZmbn5heyi7ml5ZXVtfz6RiMJ09hldTf0wrjl2AnzeMDqgguPtaKY2b7jsaYzPJb55g2LEx4G52IUsa5vDwLe564tiGqMOwM2sS7yBatoqTCnQUmDAnTUwvwzOughhIsUPhgCCMIebCT0tFGChYi4LsbExYS4yjNMkCNtSlWMKmxih/Qd0Kqt2YDW0jNRapd28eiNSWlihzQh1cWE5W6myqfKWbK/eY+VpzzbiP6O9vKJFbgk9i/dZ+V/dbIXgT4OVQ+ceooUI7tztUuqbkWe3PzWlSCHiDiJe5SPCbtK+XnPptIkqnd5t7bKv6pKycq1q2tTvMlTqgEfydj/Guc0aOwVS+Vi+axSqFb0qLPYwjZ2aZ4HqOIENdTJ+woPeMSTcWpcG7fG3UepkdGaTfwI4/4dpCCRsA==</latexit>0

<latexit sha1_base64="1UhFyz3wFngEKeQ6xiyVwmB1JV0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFQVy2YB9QiyTptA7Ni8xEKEV/wK1+m/gH+hfeGaeiFNEbkpw5954zc+d6ScCFdJzXnLWwuLS8kl8trK1vbG4Vt3faIs5Sn7X8OIjTrucKFvCItSSXAesmKXNDL2Adb3yu8p07lgoeR1dykrB+6I4iPuS+K4lqOjfFklN2dNjzoGJACSYacfEF1xggho8MIRgiSMIBXAh6eqjAQUJcH1PiUkJc5xnuUSBtRlWMKlxix/Qd0apn2IjWylNotU+7BPSmpLRxQJqY6lLCajdb5zPtrNjfvKfaU51tQn/PeIXEStwS+5duVvlfnepFYogz3QOnnhLNqO5845LpW1Ent791JckhIU7hAeVTwr5Wzu7Z1hqhe1d36+r8m65UrFr7pjbDuzqlHnBNxcnXOOdB+6hcqZarzeNSvWZGncce9nFI8zxFHZdooKW9H/GEZ+vCCixhZZ+lVs5odvEjrIcP1iCPYw==</latexit>

0
<latexit sha1_base64="1UhFyz3wFngEKeQ6xiyVwmB1JV0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFQVy2YB9QiyTptA7Ni8xEKEV/wK1+m/gH+hfeGaeiFNEbkpw5954zc+d6ScCFdJzXnLWwuLS8kl8trK1vbG4Vt3faIs5Sn7X8OIjTrucKFvCItSSXAesmKXNDL2Adb3yu8p07lgoeR1dykrB+6I4iPuS+K4lqOjfFklN2dNjzoGJACSYacfEF1xggho8MIRgiSMIBXAh6eqjAQUJcH1PiUkJc5xnuUSBtRlWMKlxix/Qd0apn2IjWylNotU+7BPSmpLRxQJqY6lLCajdb5zPtrNjfvKfaU51tQn/PeIXEStwS+5duVvlfnepFYogz3QOnnhLNqO5845LpW1Ent791JckhIU7hAeVTwr5Wzu7Z1hqhe1d36+r8m65UrFr7pjbDuzqlHnBNxcnXOOdB+6hcqZarzeNSvWZGncce9nFI8zxFHZdooKW9H/GEZ+vCCixhZZ+lVs5odvEjrIcP1iCPYw==</latexit> 2

<latexit sha1_base64="hONIc/c2Sk7l7mGNG+j252v71rE=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVdJW1O4KgrhswdpCLZKk0zo0LyYToRT9Abf6beIf6F94Z5yKUkRvSHLm3HvOzJ3rJQFPpeO85qyFxaXllfxqYW19Y3OruL1zlcaZ8Fnbj4NYdD03ZQGPWFtyGbBuIpgbegHreOMzle/cMZHyOLqUk4T1Q3cU8SH3XUlUq3pTLDllR4c9DyoGlGCiGRdfcI0BYvjIEIIhgiQcwEVKTw8VOEiI62NKnCDEdZ7hHgXSZlTFqMIldkzfEa16ho1orTxTrfZpl4BeQUobB6SJqU4QVrvZOp9pZ8X+5j3VnupsE/p7xiskVuKW2L90s8r/6lQvEkOc6h449ZRoRnXnG5dM34o6uf2tK0kOCXEKDygvCPtaObtnW2tS3bu6W1fn33SlYtXaN7UZ3tUp9YDrKo6/xjkPrqrlSq1cax2VGnUz6jz2sI9DmucJGrhAE23t/YgnPFvnVmClVvZZauWMZhc/wnr4ANrgj2U=</latexit>

�0
<latexit sha1_base64="9L9fj283oPAy3jeoqSGrGMp0VlE=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVJbfOwKbgQ3FewD2iJJOq1j8zKZiLV05Q+41R8T/0D/wjvjKEoRvSHJmXPvOTN3rhN5PBGW9ZIxZmbn5heyi7ml5ZXVtfz6RiMJ09hldTf0wrjl2AnzeMDqgguPtaKY2b7jsaYzPJb55g2LEx4G52IUsa5vDwLe564tiGqMOwM2sS7yBatoqTCnQUmDAnTUwvwzOughhIsUPhgCCMIebCT0tFGChYi4LsbExYS4yjNMkCNtSlWMKmxih/Qd0Kqt2YDW0jNRapd28eiNSWlihzQh1cWE5W6myqfKWbK/eY+VpzzbiP6O9vKJFbgk9i/dZ+V/dbIXgT4OVQ+ceooUI7tztUuqbkWe3PzWlSCHiDiJe5SPCbtK+XnPptIkqnd5t7bKv6pKycq1q2tTvMlTqgEfydj/Guc0aOwVS+Vi+axSqFb0qLPYwjZ2aZ4HqOIENdTJ+woPeMSTcWpcG7fG3UepkdGaTfwI4/4dpCCRsA==</latexit> 0

<latexit sha1_base64="1UhFyz3wFngEKeQ6xiyVwmB1JV0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFQVy2YB9QiyTptA7Ni8xEKEV/wK1+m/gH+hfeGaeiFNEbkpw5954zc+d6ScCFdJzXnLWwuLS8kl8trK1vbG4Vt3faIs5Sn7X8OIjTrucKFvCItSSXAesmKXNDL2Adb3yu8p07lgoeR1dykrB+6I4iPuS+K4lqOjfFklN2dNjzoGJACSYacfEF1xggho8MIRgiSMIBXAh6eqjAQUJcH1PiUkJc5xnuUSBtRlWMKlxix/Qd0apn2IjWylNotU+7BPSmpLRxQJqY6lLCajdb5zPtrNjfvKfaU51tQn/PeIXEStwS+5duVvlfnepFYogz3QOnnhLNqO5845LpW1Ent791JckhIU7hAeVTwr5Wzu7Z1hqhe1d36+r8m65UrFr7pjbDuzqlHnBNxcnXOOdB+6hcqZarzeNSvWZGncce9nFI8zxFHZdooKW9H/GEZ+vCCixhZZ+lVs5odvEjrIcP1iCPYw==</latexit>

0
<latexit sha1_base64="1UhFyz3wFngEKeQ6xiyVwmB1JV0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFQVy2YB9QiyTptA7Ni8xEKEV/wK1+m/gH+hfeGaeiFNEbkpw5954zc+d6ScCFdJzXnLWwuLS8kl8trK1vbG4Vt3faIs5Sn7X8OIjTrucKFvCItSSXAesmKXNDL2Adb3yu8p07lgoeR1dykrB+6I4iPuS+K4lqOjfFklN2dNjzoGJACSYacfEF1xggho8MIRgiSMIBXAh6eqjAQUJcH1PiUkJc5xnuUSBtRlWMKlxix/Qd0apn2IjWylNotU+7BPSmpLRxQJqY6lLCajdb5zPtrNjfvKfaU51tQn/PeIXEStwS+5duVvlfnepFYogz3QOnnhLNqO5845LpW1Ent791JckhIU7hAeVTwr5Wzu7Z1hqhe1d36+r8m65UrFr7pjbDuzqlHnBNxcnXOOdB+6hcqZarzeNSvWZGncce9nFI8zxFHZdooKW9H/GEZ+vCCixhZZ+lVs5odvEjrIcP1iCPYw==</latexit>

�1
<latexit sha1_base64="duYoH3RQpEMhhU4+UaEdYNhgQWk=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVVJbfOwKbgQ3FewD2iJJOq1j8zKZiLV05Q+41R8T/0D/wjvjKEoRvSHJmXPvOTN3rhN5PBGW9ZIxZmbn5heyi7ml5ZXVtfz6RiMJ09hldTf0wrjl2AnzeMDqgguPtaKY2b7jsaYzPJb55g2LEx4G52IUsa5vDwLe564tiGqMOwM2KV3kC1bRUmFOg5IGBeiohflndNBDCBcpfDAEEIQ92EjoaaMECxFxXYyJiwlxlWeYIEfalKoYVdjEDuk7oFVbswGtpWei1C7t4tEbk9LEDmlCqosJy91MlU+Vs2R/8x4rT3m2Ef0d7eUTK3BJ7F+6z8r/6mQvAn0cqh449RQpRnbnapdU3Yo8ufmtK0EOEXES9ygfE3aV8vOeTaVJVO/ybm2Vf1WVkpVrV9emeJOnVAM+krH/Nc5p0NgrlsrF8lmlUK3oUWexhW3s0jwPUMUJaqiT9xUe8Ign49S4Nm6Nu49SI6M1m/gRxv07poCRsQ==</latexit>

1
<latexit sha1_base64="IcowM9DfYqg0pxnq99TZwg0ZoAc=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRIrancFQVy2YB9QiyTptIZOkzAzEUrRH3Cr3yb+gf6Fd8ZUlCJ6Q5Iz595zZu5cP+GhVI7zmrMWFpeWV/KrhbX1jc2t4vZOS8apCFgziHksOr4nGQ8j1lSh4qyTCOaNfc7a/uhc59t3TMgwjq7UJGG9sTeMwkEYeIqohntTLDllx4Q9D9wMlJBFPS6+4Bp9xAiQYgyGCIowhwdJTxcuHCTE9TAlThAKTZ7hHgXSplTFqMIjdkTfIa26GRvRWntKow5oF06vIKWNA9LEVCcI691sk0+Ns2Z/854aT322Cf39zGtMrMItsX/pZpX/1eleFAY4Mz2E1FNiGN1dkLmk5lb0ye1vXSlySIjTuE95QTgwytk920YjTe/6bj2TfzOVmtXrIKtN8a5PaQZc1XHyNc550Doqu5VypXFcqlWzUeexh30c0jxPUcMl6mga70c84dm6sLglrfSz1Mplml38COvhA9iAj2Q=</latexit>

0
<latexit sha1_base64="1UhFyz3wFngEKeQ6xiyVwmB1JV0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFQVy2YB9QiyTptA7Ni8xEKEV/wK1+m/gH+hfeGaeiFNEbkpw5954zc+d6ScCFdJzXnLWwuLS8kl8trK1vbG4Vt3faIs5Sn7X8OIjTrucKFvCItSSXAesmKXNDL2Adb3yu8p07lgoeR1dykrB+6I4iPuS+K4lqOjfFklN2dNjzoGJACSYacfEF1xggho8MIRgiSMIBXAh6eqjAQUJcH1PiUkJc5xnuUSBtRlWMKlxix/Qd0apn2IjWylNotU+7BPSmpLRxQJqY6lLCajdb5zPtrNjfvKfaU51tQn/PeIXEStwS+5duVvlfnepFYogz3QOnnhLNqO5845LpW1Ent791JckhIU7hAeVTwr5Wzu7Z1hqhe1d36+r8m65UrFr7pjbDuzqlHnBNxcnXOOdB+6hcqZarzeNSvWZGncce9nFI8zxFHZdooKW9H/GEZ+vCCixhZZ+lVs5odvEjrIcP1iCPYw==</latexit>

0
<latexit sha1_base64="1UhFyz3wFngEKeQ6xiyVwmB1JV0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFQVy2YB9QiyTptA7Ni8xEKEV/wK1+m/gH+hfeGaeiFNEbkpw5954zc+d6ScCFdJzXnLWwuLS8kl8trK1vbG4Vt3faIs5Sn7X8OIjTrucKFvCItSSXAesmKXNDL2Adb3yu8p07lgoeR1dykrB+6I4iPuS+K4lqOjfFklN2dNjzoGJACSYacfEF1xggho8MIRgiSMIBXAh6eqjAQUJcH1PiUkJc5xnuUSBtRlWMKlxix/Qd0apn2IjWylNotU+7BPSmpLRxQJqY6lLCajdb5zPtrNjfvKfaU51tQn/PeIXEStwS+5duVvlfnepFYogz3QOnnhLNqO5845LpW1Ent791JckhIU7hAeVTwr5Wzu7Z1hqhe1d36+r8m65UrFr7pjbDuzqlHnBNxcnXOOdB+6hcqZarzeNSvWZGncce9nFI8zxFHZdooKW9H/GEZ+vCCixhZZ+lVs5odvEjrIcP1iCPYw==</latexit>

0
<latexit sha1_base64="1UhFyz3wFngEKeQ6xiyVwmB1JV0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFQVy2YB9QiyTptA7Ni8xEKEV/wK1+m/gH+hfeGaeiFNEbkpw5954zc+d6ScCFdJzXnLWwuLS8kl8trK1vbG4Vt3faIs5Sn7X8OIjTrucKFvCItSSXAesmKXNDL2Adb3yu8p07lgoeR1dykrB+6I4iPuS+K4lqOjfFklN2dNjzoGJACSYacfEF1xggho8MIRgiSMIBXAh6eqjAQUJcH1PiUkJc5xnuUSBtRlWMKlxix/Qd0apn2IjWylNotU+7BPSmpLRxQJqY6lLCajdb5zPtrNjfvKfaU51tQn/PeIXEStwS+5duVvlfnepFYogz3QOnnhLNqO5845LpW1Ent791JckhIU7hAeVTwr5Wzu7Z1hqhe1d36+r8m65UrFr7pjbDuzqlHnBNxcnXOOdB+6hcqZarzeNSvWZGncce9nFI8zxFHZdooKW9H/GEZ+vCCixhZZ+lVs5odvEjrIcP1iCPYw==</latexit>

0
<latexit sha1_base64="1UhFyz3wFngEKeQ6xiyVwmB1JV0=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVVIrancFQVy2YB9QiyTptA7Ni8xEKEV/wK1+m/gH+hfeGaeiFNEbkpw5954zc+d6ScCFdJzXnLWwuLS8kl8trK1vbG4Vt3faIs5Sn7X8OIjTrucKFvCItSSXAesmKXNDL2Adb3yu8p07lgoeR1dykrB+6I4iPuS+K4lqOjfFklN2dNjzoGJACSYacfEF1xggho8MIRgiSMIBXAh6eqjAQUJcH1PiUkJc5xnuUSBtRlWMKlxix/Qd0apn2IjWylNotU+7BPSmpLRxQJqY6lLCajdb5zPtrNjfvKfaU51tQn/PeIXEStwS+5duVvlfnepFYogz3QOnnhLNqO5845LpW1Ent791JckhIU7hAeVTwr5Wzu7Z1hqhe1d36+r8m65UrFr7pjbDuzqlHnBNxcnXOOdB+6hcqZarzeNSvWZGncce9nFI8zxFHZdooKW9H/GEZ+vCCixhZZ+lVs5odvEjrIcP1iCPYw==</latexit>

�2
<latexit sha1_base64="9Xm0D1Duiu9YV+f3mYa1ijjc6HM=">AAACyXicjVHLSsNAFD2Nr1pfVZdugkVwVdIHPnYFN4KbCvYBbZFkOq2xaRKTiVhLV/6AW/0x8Q/0L7wzTkUpojckOXPuPWfmznVCz42FZb2mjLn5hcWl9HJmZXVtfSO7uVWPgyRivMYCL4iajh1zz/V5TbjC480w4vbQ8XjDGZzIfOOWR7Eb+BdiFPLO0O77bs9ltiCqPm73+aR4mc1ZeUuFOQsKGuSgoxpkX9BGFwEYEgzB4UMQ9mAjpqeFAiyExHUwJi4i5Ko8xwQZ0iZUxanCJnZA3z6tWpr1aS09Y6VmtItHb0RKE3ukCaguIix3M1U+Uc6S/c17rDzl2Ub0d7TXkFiBK2L/0k0r/6uTvQj0cKR6cKmnUDGyO6ZdEnUr8uTmt64EOYTESdylfESYKeX0nk2liVXv8m5tlX9TlZKVa6ZrE7zLU6oBH8s4+BrnLKgX84VSvnRezlXKetRp7GAX+zTPQ1Rwiipq5H2NRzzh2Tgzbow74/6z1EhpzTZ+hPHwAajgkbI=</latexit>

Figure 4.3: Acceptance conditions for a game with no cutoff with respect to (0, 0,N)

Lemma 31. There is a game G = (A,B,F) such that Win(G) does not have a
cutoff with respect to (N,N, 0).

Proof. We define G such that System wins only if she has at least as many processes
as Environment. The idea is that System must play an a on a fresh process, then
Environment does a b on another fresh process, System does another a on the earlier
process, Environment does another b on its process, and then both players start again
with two new processes. Any player that does not follow this loses, and System also
wins if there are no tokens remaining in the initial location.

Formally, let As = {a}, Ae = {b}, and B = 2. As there are no shared processes,
we can safely ignore locations with a letter from both System and Environment. We
set F = {κ1, κ2, κ3, κ4} where

κ1(〈a〉) = (=1 ,=0 ,=0) κ2(〈a〉) = (=1 ,=0 ,=0) κ3(〈a〉) = (=0 ,=0 ,=0)

κ1(〈b〉) = (=0 ,=0 ,=0) κ2(〈b〉) = (=0 ,≥2 ,=0) κ3(〈b〉) = (=0 ,≥1 ,=0) ,

κ4(`0) = (=0 ,=0 ,=0), and κi(`
′) = (≥0 ,≥0 ,=0) for all other `′ ∈ L and i ∈

{1, 2, 3, 4}. Conditions κ1 to κ3 force players to follow the protocol explained earlier,
and κ4 ensures that System wins if all tokens are succesfully moved from the initial
location. The strategy for System that follows this protocol wins as long as there
are at least as many system tokens as there are environment tokens in the initial
configuration, and conversely it is easy to check that no strategy wins when this is
not the case.

Note that the absence of a cutoff does not imply undecidability of the game
problem. However, we prove that in the case of (0, 0,N), the game problem is
actually undecidable.

Theorem 32. Game(0, 0,N) and Synth(FO[∼], 0, 0,N) are undecidable.

Proof. We once again provide a reduction from the halting problem for 2-counter
machines (2CM) to Game(0, 0,N). Refer to the proof of Theorem 20 for a definition
of 2-counter machines.

We fix a 2CM M = (Q, T, q0, qh). Without loss of generality, let us assume that
q0 6= qh. Let As = Q ∪ T ∪ {a1, a2} and Ae = {b} with a1, a2, and b three fresh
symbols. We consider the game G = (A,B,F) with A = As] Ae, B = 4, and F

108

4.3. FO[∼] CHAPTER 4. SYNTHESIS

defined below. Let L = {0, . . . , B}A be the set of locations. Since there are only
processes shared by System and Environment, we alleviate notation and consider
that a configuration is simply a mapping c : L → N, instead of mapping each
location to a triple (ks, ke, kse) whose first two components are always necessarily
0. From now on, to avoid confusion, we refer to configurations of the 2CM M as
M -configurations, and to configurations of G as G-configurations.

Intuitively, every valid run of M will be encoded as a play in G, and the accep-
tance condition will enforce that, if a player in G deviates from a valid play, then
she will lose immediately. At any point in the play, there will be at most one pro-
cess with only a letter from Q played, which will represent the current state in the
simulated 2CM run. Similarly, there will be at most one process with only a letter
from T to represent what transition will be taken next. Finally, the value of counter
ci will be encoded by the number of processes with exactly two occurrences of ai
and two occurrences of b (i.e., c(〈a2

i b
2〉)).

To increase counter ci, the players will move a new token to 〈a2
i b

2〉, and to
decrease it, they will move, together, a token from 〈a2

i b
2〉 to 〈a4

i b
4〉. Observe that, if

ci has value 0, then c(〈a2
i b

2〉) = 0 in the corresponding configuration of the game. As
expected, it is then impossible to simulate the decrement of ci. Environment’s only
role is to acknowledge System’s actions by playing its (only) letter when System
simulates a valid run. If System tries to cheat, she loses immediately.

Encoding an M-configuration. Let us be more formal. Suppose γ = (q, ν1, ν2)
is an M -configuration and c a G-configuration. We say that c encodes γ if

• c(〈q〉) = 1, c(〈a2
1b

2〉) = ν1, c(〈a2
2b

2〉) = ν2,

• c(`) ≥ 0 for all ` ∈ {`0} ∪ {〈q̂2b2〉, 〈t2b2〉, 〈a4
i b

4〉 | q̂ ∈ Q, t ∈ T, i ∈ {1, 2}},
• c(`) = 0 for all other ` ∈ L.

We then write γ = m(c). In simple terms, there must be one process in the location
〈q〉 corresponding to the state q of the 2CM, as many processes in 〈a2

i b
2〉 as the

valuation νi of counter ci, and then the rest of processes are either in the initial
location `0 or in states of the form 〈q̂2b2〉, 〈t2b2〉, or 〈a4

i b
4〉 which are “sink states”

for processes previously used for the simulation but that are not needed anymore.
Let C(γ) be the set of G-configurations c that encode γ. We say that a G-

configuration c is valid if c ∈ C(γ) for some γ.

Simulating a transition of M . Let us explain how we go from a G-configuration
encoding γ to a G-configuration encoding a successor M -configuration γ′. Observe
that System cannot change by herself the M -configuration encoded. If, for instance,
she tries to change the current state q, she might move one process from `0 to 〈q′〉,
but then the G-configuration is not valid anymore. We need to move the process in
〈q〉 into 〈q2b2〉 and this requires the cooperation of Environment.

Assume that the game is in configuration C encoding γ = (q, ν1, ν2). System
will pick a transition t starting in state q, say, t = (q, c1++, q′). From configuration
c, System will go to the configuration c1 defined by c1(〈t〉) = 1, c1(〈a1〉) = 1, and
c1(`) = c(`) for all other ` ∈ L.

109

4.3. FO[∼] CHAPTER 4. SYNTHESIS

If the transition t is correctly chosen, Environment will go to a configuration
c2 defined by c2(〈q〉) = 0, c2(〈qb〉) = 1, c2(〈t〉) = 0, c2(〈tb〉) = 1, c2(〈a1〉) = 0,
c2(〈a1b〉) = 1 and, for all other ` ∈ L, c2(`) = c1(`). This means that Environment
moves processes in locations 〈t〉, 〈q〉, 〈a1〉 to locations 〈tb〉, 〈qb〉, 〈a1b〉, respectively.

To finish the transition, System will now move a process to the destination state
q′ of t, and go to configuration c3 defined by c3(〈q′〉) = 1, c3(〈tb〉) = 0, c3(〈t2b〉) = 1,
c3(〈qb〉) = 0, c3(〈q2b〉) = 1, c3(〈a1b〉) = 0, c3(〈a2

1b〉) = 1, and c3(`) = c2(`) for all
other ` ∈ L. In other words, System moves one process from `0 to the location 〈q′〉
corresponding to the destination state of t, and then move the only process in 〈tb〉,
〈qb〉, 〈a1b〉 to 〈t2b〉, 〈q2b〉, and 〈a2

i b〉 respectively.
Finally, Environment simply adds a b to the last three mentionned processes

and moves to configuration c4 given by c4(〈t2b〉) = 0, c4(〈t2b2〉) = c3(〈t2b2〉) + 1,
c4(〈q2b〉) = 0, c4(〈q2b2〉) = c3(〈q2b2〉) + 1, c4(〈a2

1b〉) = 0, c4(〈a2
1b

2〉) = c3(〈a2
1b

2〉) + 1,
and c4(`) = c3(`) for all other ` ∈ L. Observe that c4 ∈ C((q′, ν1 + 1, ν2)).

Other types of transitions will be simulated similarly. To force System to start
the simulation in γ0, and not in any M -configuration, the configurations c such that
c(〈q2

0b
2〉) = 0 and c(〈q〉) = 1 for q 6= q0 are not valid, and will be losing for System.

Acceptance condition. It remains to define F in a way that enforces the above
sequence of G-configurations. Let

LX ={`0} ∪ {〈a2
i b

2〉, 〈a4
i b

4〉 | i ∈ {1, 2}} ∪ {〈q2b2〉 | q ∈ Q} ∪ {〈t2b2〉 | t ∈ T}
be the set of elements in L whose values do not affect the acceptance of the con-
figuration. By [`1 ./1 n1, . . . , `k ./k nk], we denote κ ∈ CL such that κ(`i) = (./ini)
for i ∈ {1, . . . , k} and κ(`) = (=0) for all ` ∈ L \ {`1, . . . , `k}. Moreover, for a set of
locations L̂ ⊆ L, we let L̂ ≥ 0 stand for “(` ≥ 0) for all ` ∈ L̂”.

First, we force Environment to play only in response to System by making System
win as soon as there is a process where Environment has played more letters than
System. Let Ls<e =

{
` ∈ L |

(∑
α∈As

`(α)
)
< `(b)

}
. For all ` ∈ Ls<e, we let

κ` = [` ≥ 1, (L \ {`}) ≥ 0]

which is satisfied as long as at least one process is in location `, and we let Fs<e =⋃
`∈Ls<e

κ`.
If γ is not halting, the configurations in C(γ) will not be winning for System.

Hence, System will have to move to win. We distinguish two cases: one for the very
first transition taken, and another for all other transitions.

For all transitions t = (q0, op, q′) ∈ T such that op ∈ {ci++, ci==0}, we let

κt =

{
[〈q0〉 = 1, 〈t〉 = 1, 〈ai〉 = 1, `0 ≥ 0] if op = ci++

[〈q0〉 = 1, 〈t〉 = 1, `0 ≥ 0] if op = ci==0

and F0 =
⋃
t=(q0,op,q′)∈T κt. Note that to satisfy this condition, there can be no

process in any state of LX, ensuring that this can only be satisfied at the very
beginning of the simulation.

For all t = (q, op, q′) ∈ T , we let

κq̂(q,t) =

[〈q〉 = 1, 〈t〉 = 1, 〈ai〉 = 1, 〈q̂2b2〉 ≥ 1, (LX \ {〈q̂2b2〉}) ≥ 0] if op = ci++

[〈q〉 = 1, 〈t〉 = 1, 〈a3
i b

2〉 = 1, 〈q̂2b2〉 ≥ 1, (LX \ {〈q̂2b2〉}) ≥ 0] if op = ci– –

[〈q〉 = 1, 〈t〉 = 1, 〈a2
i b

2〉 = 0, 〈q̂2b2〉 ≥ 1, (LX \ {〈q̂2b2〉, 〈a2
i b

2〉}) ≥ 0] if op = ci==0

110

4.3. FO[∼] CHAPTER 4. SYNTHESIS

and F(q,t) =
⋃
q̂∈Q κ

q̂
(q,t).

Whether the transition was the first transition of the run or not, Environment
then needs to reply by adding a b on all three (respectively two if the transitions was
a zero-test) processes on which System performed an action. Let t = (q, op, q′) ∈ T .

• If op = ci++, let L1 = {〈q〉, 〈qb〉}, L2 = {〈t〉, 〈tb〉}, L3 = {〈ai〉, 〈aib〉}, and
L3
X = {(〈q〉, 〈t〉, 〈ai〉), (〈qb〉, 〈tb〉, 〈aib〉)}. We let

F e
(q,t) =

{
[`1 = 1, `2 = 1, `3 = 1, LX ≥ 0] | `1 ∈ L1, `2 ∈ L2, `3 ∈ L3

and (`1, `2, `3) /∈ L3
X

}
This means that F e

(q,t) is not satisfied if either Environment does nothing on
all three processes mentionned earlier, or if Environment performs a b on all
three. This will ensure that Environment has no choice but to play a b on all
three processes.

• Similarly if op = ci– –, let L1 = {〈q〉, 〈qb〉}, L2 = {〈t〉, 〈tb〉}, L3 = {〈a2
i b

2〉, 〈a3
i b

2〉},
and L3

X = {(〈q〉, 〈t〉, 〈a2
i b

2〉), (〈qb〉, 〈tb〉, 〈a3
i b

2〉)}. Then

F e
(q,t) =

{
[`1 = 1, `2 = 1, `3 = 1, LX ≥ 0] | `1 ∈ L1, `2 ∈ L2, `3 ∈ L3

and (`1, `2, `3) /∈ L3
X

}

• Finally if op = ci==0, let L1 = {〈q〉, 〈qb〉}, L2 = {〈t〉, 〈tb〉}, L2
X = {(〈q〉, 〈t〉), (〈qb〉, 〈tb〉)},

and then

F e
(q,t) =

{
[`1 = 1, `2 = 1, LX ≥ 0] | `1 ∈ L1, `2 ∈ L2 and (`1, `2) /∈ L2

X

}
For the next step, System must perform the same action on the three (resp. two)

processes, as well as move a process from `0 to 〈q′〉 corresponding to the ending state
of transition t. For all t = (q, op, q′) ∈ T , let

F(q,t,q′) =

{[〈q2b〉 = 1, 〈t2b〉 = 1, 〈a2

i b〉 = 1, 〈q′〉 = 1, LX ≥ 0]} if op = ci++

{[〈q2b〉 = 1, 〈t2b〉 = 1, 〈a4
i b

3〉 = 1, 〈q′〉 = 1, LX ≥ 0]} if op = ci– –

{[〈q2b〉 = 1, 〈t2b〉 = 1, 〈q′〉 = 1, LX ≥ 0]} if op = ci==0

For the final step, Environment must again perform a b on the three (resp. two)
previous processes, and must not do the same on the process in location 〈q′〉. Given
a transition t = (q, op, q′), we let

κt¬〈q′b〉 =

[〈q′b〉 = 1, LX ∪ {〈q2b〉, 〈t2b〉, 〈a2

i b〉} ≥ 0] if op = ci++

[〈q′b〉 = 1, LX ∪ {〈q2b〉, 〈t2b〉, 〈a4
i b

3〉} ≥ 0] if op = ci– –

[〈q′b〉 = 1, LX ∪ {〈q2b〉, 〈t2b〉} ≥ 0] if op = ci==0

which forces Environment not to play a b on the process in q′. Then

• if op = ci++, we let

F e
(q,t,q′) = κt¬〈q′b〉 ∪

[〈q′〉 = 1, 〈q2b〉 = 1, 〈t2b〉 ≥ 0, 〈a2

i b〉 ≥ 0, LX ≥ 0],
[〈q′〉 = 1, 〈q2b〉 ≥ 0, 〈t2b〉 = 1, 〈a2

i b〉 ≥ 0, LX ≥ 0],
[〈q′〉 = 1, 〈q2b〉 ≥ 0, 〈t2b〉 ≥ 0, 〈a2

i b〉 = 1, LX ≥ 0]

111

4.3. FO[∼] CHAPTER 4. SYNTHESIS

• if op = ci– –, we let

F e
(q,t,q′) = κt¬〈q′b〉 ∪

[〈q′〉 = 1, 〈q2b〉 = 1, 〈t2b〉 ≥ 0, 〈a4

i b
3〉 ≥ 0, LX ≥ 0],

[〈q′〉 = 1, 〈q2b〉 ≥ 0, 〈t2b〉 = 1, 〈a4
i b

3〉 ≥ 0, LX ≥ 0],
[〈q′〉 = 1, 〈q2b〉 ≥ 0, 〈t2b〉 ≥ 0, 〈a4

i b
3〉 = 1, LX ≥ 0]

• if op = ci==0, we let

F e
(q,t,q′) = κt¬〈q′b〉 ∪

{
[〈q′〉 = 1, 〈q2b〉 = 1, 〈t2b〉 ≥ 0, LX ≥ 0],
[〈q′〉 = 1, 〈q2b〉 ≥ 0, 〈t2b〉 = 1, LX ≥ 0]

}
Then after those 4 steps the new G-configuration is valid and encodes the t-successor
of the previous M -configuration.

The last remaining part states that if the winning state qh is reached, then
System can win by playing another qh on the process in location 〈qh〉. From there,
all G-configurations reachable by Environment will still be winning for System. For
all t ∈ T \ {qh}, ` ∈ {〈q2

h〉, 〈q2
hb〉, 〈q2

hb
2〉}, let

κ(t,`) = [` = 1, 〈t2b2〉 ≥ 1, LX \ {〈t2b2〉} ≥ 0]

which states that there is one process with two qh and some number of b, and at
least another process in location 〈t2b2〉 for some transition t (which ensures that at
least one transition has been simulated). Then we let Fqh =

⋃
t,` κ(t,`).

Putting all those parts together, the acceptance condition of G is

F = Fs<e ∪ F0 ∪
⋃

t=(q,op,q′)∈T

(
F(q,t) ∪ F e

(q,t) ∪ F(q,t,q′) ∪ F e
(q,t,q′)

)
∪ Fqh

Note that a correct play can end in three different ways: either there is a process
in 〈qh〉 and System moves it to 〈q2

h〉, or System has no transition to pick, or there
are not enough processes in `0 for System to simulate a new transition. Only the
first kind is winning for System.

We now show that there is an accepting run in M if and only if there is some
k ∈ N such that c(0,0,k) is winning for System.

⇒ Suppose there is an accepting run ρ : (q0, 0, 0) `t1 (q1, ν
1
1 , ν

1
2) `t2 · · · `tn

(qn, ν
n
1 , ν

n
2) with qn = qh for M , and fix some k ≥ 3n+ 1. Without loss of generality,

we can assume that the configurations γ0, . . . , γn visited in ρ are pairwise different.
The memoryless strategy f for System that faithfully simulates ρ is formally defined
as follows. In the following, a transition (q, op, q′) ∈ T is written q

op−→ q′.

Initialization. Let c0 be the initial G-configuration.

• If t1 = q0
ci++−−−→ q1, we let τ1 be defined by τ1(`0, 〈q0〉) = 1, τ1(`0, 〈t1〉) = 1,

τ1(`0, 〈ai〉) = 1, and τ1(`, `′) = 0 for all other `, `′ ∈ L.

• If t1 = q0
ci==0−−−→ q1, we let τ1 be defined by τ1(`0, 〈q0〉) = 1, τ1(`0, 〈t1〉) = 1,

and τ1(`, `′) = 0 for all other `, `′ ∈ L.

We then let f(c0) = τ1.

112

4.3. FO[∼] CHAPTER 4. SYNTHESIS

Simulation of a new transition. For 0 < j < n, for any k-configuration c ∈
C((qj, ν

j
1, ν

j
2)), we let f(c) = τj+1, with τj+1 defined as follows.

• If tj+1 = qj
ci++−−−→ qj+1, then τj+1(`0, 〈tj+1〉) = 1, τj+1(`0, 〈ai〉) = 1, and

τj+1(`, `′) = 0 for all other `, `′ ∈ L.

• If tj+1 = qj
ci−−−−−→ qj+1, then τj+1(`0, 〈tj+1〉) = 1, τj+1(〈a2

i b
2〉, 〈a3

i b
2〉) = 1 and

τj+1(`, `′) = 0 for all other `, `′ ∈ L.

• If tj+1 = qj
ci==0−−−→ qj+1, then τj+1(`0, 〈tj+1〉) = 1, and τj+1(`, `′) = 0 for all

other `, `′ ∈ L.

Note that if c ∈ C((qj, ν
j
1, ν

j
2)) then c /∈ C((qj′ , ν

j′

1 , ν
j′

2)) for j′ 6= j as we assumed
that γj 6= γj′ , therefore f(c) is well-defined.

Second step of the simulation of a transition. Let c be a k-configuration
such that c(〈qb〉) = 1 for some q ∈ Q, c(〈tb〉) = 1 for some t ∈ T , c(〈a2

i b
2〉) ≥ 0,

c(〈a4
i b

4〉) ≥ 0 for i = 1, 2, c(〈t2b2〉) ≥ 0 for all t ∈ T , c(〈q2b2〉) ≥ 0 for all q ∈ Q,
c(`0) > 0 and c(`) = 0 for all other ` ∈ L. We define f(c) = τ with τ defined as
follows.

• If t = q
ci++−−−→ q′ and c is such that c(〈aib〉) = 1. Then τ(〈qb〉, 〈q2b〉) = 1,

τ(〈tb〉, 〈t2b〉) = 1, τ(〈aib〉, 〈a2
i b〉) = 1, τ(`0, 〈q′〉) = 1 and τ(`, `′) = 0 for all

other `, `′ ∈ L.

• If t = q
ci−−−−−→ q′ c is such that c(〈a3

i b
3〉) = 1, then τ is defined by τ(〈qb〉, 〈q2b〉) =

1, τ(〈tb〉, 〈t2b〉) = 1, τ(〈a3
i b

3〉, 〈a4
i b

3〉) = 1, τ(`0, 〈q′〉) = 1 and τ(`, `′) = 0 for
all other `, `′ ∈ L.

• If t = q
ci==0−−−→ q′, τ(〈qb〉, 〈q2b〉) = 1, τ(〈tb〉, 〈t2b〉) = 1, τ(`0, 〈q′〉) = 1 and

τ(`, `′) = 0 for all other `, `′ ∈ L.

Other cases. If ρ is a partial play ending in c ∈ C(γn), then f(c) is the update
function τ such that τ(〈qn〉, 〈q2

n〉) = 1 and τ(`, `′) = 0 for all other `, `′ ∈ L.
And for any other configuration, f is undefined.

We show that f is winning by contradiction: suppose there is a winning strategy
fe for Environment. Let π = c0τ

′
0c
′
0τ1c1 . . . be the maximal play compatible with f

and fe. We show the following by recursion:

Lemma 33. For all 0 < j ≤ n, c2j ∈ C(γj) and c2j(`0) ≥ k − (3j + 1)

Intuitively, this lemma states that ρ correctly simulates ρ and that there are
always enough process in `0 for System to do his transitions.

Proof. We prove it by induction on j.
Base step (c2 ∈ C(γ1)): c0 = c(0,0,k) is the initial configuration. Suppose that

t1 = q0
c1++−−−→ q1, then by definition of f , c′0(〈q0〉) = 1, c′0(〈t1〉) = 1, c′0(〈a1〉) = 1,

c′(`0) = k − 3 > 1, and c′0(`) = 0 for all other ` ∈ L. Since c′0 |= κt1 and thus
c′0 |= F0, fe(c

′
0) = τ1 is defined, otherwise fe is not winning. Then,

• If τ1(`0, 〈bm〉) ≥ 1 for m ≥ 1, then c1 |= Fs<e.

113

4.3. FO[∼] CHAPTER 4. SYNTHESIS

• If τ1(〈q0〉, 〈q0b
m〉) = 1 or τ1(〈t1〉, 〈t1bm〉) = 1 or τ1(〈a1〉, 〈a1b

m〉) = 1 for some
m > 1, then c1 |= Fs<e too.

• Else if τ1(〈q0〉, 〈q0b〉) = 0, or if τ1(〈t1〉, 〈t1b〉) = 0 or if τ1(〈a1〉, 〈a1b〉) = 0, then
c1 |= F e

(q0,t1).

Hence τ1(〈q0〉, 〈q0b〉) = τ1(〈t1〉, 〈t1b〉) = τ1(〈a1〉, 〈a1b〉) = 1, and for all other ` ∈ L,
τ1(`0, `) = 0 and c1(〈q0b〉) = c1(〈t1b〉) = c1(〈a1b〉) = 1, c1(`0) = k − 3 and c1(`) = 0
for all other ` ∈ L.

Following the definition of f , c′1(〈q2
0b〉) = c′1(〈t21b〉) = c′1(〈a2

1b〉) = c′1(〈q1〉) = 1,
c′1(`0) = k − 4 > 0, and c′1(`) = 0 for all other ` ∈ L. Since, c′1 |= F(q0,t1,q1), fe = τ2

is defined.
Again we look at all possible transitions for Environment:

• As before, if τ2(`0, 〈bm〉) ≥ 1 for m ≥ 1, then c2 |= Fs<e.

• If τ2(〈q2
0b〉, 〈q2

0b
m〉) = 1 or τ2(〈t21b〉, 〈t21bm〉) = 1 or τ2(〈a2

1b〉, 〈a2
1b
m〉) = 1, for

m > 2, then c2 |= Fs<e.

• If τ2(〈q2
0b〉, 〈q2

0b
2〉) = 0, or if τ2(〈t21b〉, 〈t21b2〉) = 0 or if τ2(〈a2

1b〉, 〈a2
1b

2〉) = 0, then
c2 |= F e

(q0,t1,q1).

• Finally, if τ2(〈q1〉, 〈q1b〉) = 1 then c2 |= F e
(q0,t1,q1) and if τ2(〈q1〉, 〈q1b

m〉) = 1, for

m > 2, then c2 |= Fs<e.

Thus, necessarily, c2(〈q2
0b

2〉) = c2(〈t21b2〉) = c2(〈a2
1b

2〉) = c2(〈q1〉) = 1, c2(`0) = k − 4,
and c2(`′) = 0 for all other `′ ∈ L. Hence, c2 ∈ C(q1, 1, 0), and c2(`0) ≥ k−(3∗1+1) =
k − 4.

If t1 = q0
c2++−−−→ q1, the proof is identical, but with a2 replacing a1. If now

t1 = q0
ci==0−−−→ q1, the proof goes along the same lines, without difficulty.

Induction step: Let 0 < j < n and γj = (qj, ν
j
1, ν

j
2), and suppose that c2j ∈ C(γj)

and c2j(`0) ≥ k − (3j + 1) ≥ 3. There are six cases depending on the type of tj+1.
Without loss of generality, we consider here only the three cases involving c1.

I If tj+1 = qj
c1++−−−→ qj+1 then γj+1 = (qj+1, ν

j
1 + 1, νj2). Following f , we obtain

that c′2j(〈tj+1〉) = 1, c′2j(〈a1〉) = 1, c′2j(`0) = c2j(`0) − 2 and c′2j(`) = (c2j)(`) for all
other ` ∈ L.

With the same arguments as in the base case, the only possibility is that fe(c
′
2j) =

τ2j+1 with τ2j+1(〈qj〉, 〈qjb〉) = 1, τ2j+1(〈tj+1〉, 〈tj+1b〉) = 1, τ2j+1(〈a1〉, 〈a1b〉) = 1 and
τ2j+1(`, `′) = 0 for all other `, `′ ∈ L. This yields the configuration c2j+1(〈qjb〉) = 1,
c2j+1(〈a1b〉) = 1, c2j+1(〈tj+1b〉) = 1, c2j+1(〈qj〉) = c2j+1(〈a1〉) = c2j+1(〈tj+1〉) = 0
and c2j+1(`) = c′2j(`) for all other ` ∈ L.

By definition of f , the action of System leads to c′2j+1 defined by c′2j+1(〈q2
j b〉) =

c′2j+1(〈t2j+1b〉) = c′2j+1(〈a2
1b〉 = c′2j+1(〈qj+1〉) = 1, c′2j+1(〈qjb〉) = c′2j+1(〈tj+1b〉) =

c′2j+1(〈a1b〉 = 0, c′2j+1(`0) = c2j+1(`0)− 1 = c2j(`0)− 3, and c′2j+1(`) = 0 for all other
` ∈ L.

Finally, again as in the base case, we necessarily have that fe = τ2j+2 such
that τ2j+2(〈q2

j b〉, 〈q2
j b

2〉) = 1, τ2j+2(〈t2j+1b〉, 〈t2j+1b
2〉) = 1, τ2j+2(〈a2

1b〉, 〈a2
1b

2〉) = 1.
Hence, c2j+2(〈q2

j b
2〉) = c2j(〈q2

j b
2〉) + 1, c2j+2(〈t2jb2〉) = c2j(〈t2jb2〉) + 1, c2j+2(〈a2

1b
2〉) =

c2j(〈a2
1b

2〉) + 1, c2j+2(〈qj+1〉) = 1, c2j+2(`0) = c2j(`0)− 3 and c2j+1(`) = c2j(`) for all
other ` ∈ L.

114

4.3. FO[∼] CHAPTER 4. SYNTHESIS

Since c2j ∈ C(γj) and γj+1 = (qj+1, ν
j
1 + 1, νj2) it is easy to verify that c2j+2 is

indeed in C(γj+1). Moreover, c2j+2(`0) = c2j(`0)− 3 ≥ k − (3(j + 1) + 1).

I If tj+1 = qj
c1−−−−−→ qj+1, then we know that νj1 ≥ 1. Since c2j ∈ C(γj), we deduce

that c2j(〈a2
1b

2〉) ≥ 1. Following f , c′2j(〈tj+1〉) = c′2j(〈a3
1b

2〉) = 1, c′2j(`0) = c2j(`0)− 1,
c′2j(〈a2

1b
2〉) = c2j(〈a2

1b
2〉)− 1 and c′2j(`) = c2j(`) for all other ` ∈ L.

To avoid reaching configurations in Fs<e or in F e
(qj ,tj+1), Environment necessarily

updates the configuration to c2j+1(〈tj+1b〉) = c2j+1(〈a3
1b

3〉) = c2j+1(〈qjb〉) = 1, and
c2j+1(`) = c′2j(`) for all other ` ∈ L.

Again, the strategy defined for System leads to the configuration c′2j+1(〈q2
j b〉) =

c′2j+1(〈t2j+1b〉) = c′2j+1(〈a4
1b

3〉) = c′2j+1(〈qj+1〉) = 1, c′2j+1(〈tj+1b〉) = c′2j+1(〈a3
1b

3〉) =
c′2j+1(〈qjb〉) = 0, c′2j+1(`0) = c2j+1(`0)−1, and c′2j+1(`) = c2j+1(`) for all other ` ∈ L.

Finally, the only possible move for Environment is c2j+2(〈q2
j b

2〉) = c′2j+1(〈q2
j b

2〉)+
1, c2j+2(〈t2j+1b

2〉) = c′2j+1(〈t2j+1b
2〉)+1, c2j+2(〈a4

1b
4〉) = c′2j+1(〈a4

1b
4〉)+1, c2j+2(〈q2

j b〉) =
c2j+2(〈t2j+1b〉) = c2j+2(〈a4

1b
3〉) = 0 and c2j+2(`) = c′2j+1(`) for all other ` ∈ L.

From this, we deduce that c2j+2(〈qj+1〉) = c′2j(〈qj+1〉) = 1, c2j+2(〈a2
2b

2〉) =
c2j(〈a2

2b
2〉), and c2j+2(〈a2

1b
1〉) = c2j(〈a2

1b
2〉)−1. Moreover, we have that c2j+2(〈q2

j b
2〉) ≥

0, c2j+2(〈t2j+1b
2〉) ≥ 0, c2j+2(〈a4b4〉) ≥ 0, c2j+2(`0) = c2j(`0) − 2 ≥ 0 by induction

hypothesis, and for all other ` ∈ L, c2j+2(`) = c2j(`). Since c2j ∈ C(γj), this implies
that c2j+2 ∈ C(γj+1), as expected. Also, c2j+2(`0) ≥ k−(3j+1)−2 ≥ k−(3(j+1)+1).

I If tj+1 = qj
c1==0−−−−→ qj+1, then νj1 = 0 = c2j(a

2
1b

2). The proof goes along the
same lines as before. Now the sequence of configurations is necessarily: c′2j(〈tj+1〉) =
1, c′2j(`0) = c2j(`0)− 1, and c′2j(`) = c2j(`) for all other ` ∈ L.

Then c2j+1(〈tj+1b〉) = c2j+1(〈qjb〉) = 1, c2j+1(〈tj+1〉) = c2j+1(〈qj〉) = 0, and
c2j+1(`) = c′2j(`) for all other ` ∈ L.

Then we have c′2j+1(〈qj+1〉) = c′2j+1(〈t2j+1b〉) = c′2j+1(〈q2
j b〉) = 1, c′2j+1(〈tj+1b〉) =

c′2j+1(〈qjb〉) = 0, c′2j+1(`0) = c2j+1(`0)−1, and c′2j+1(`) = c2j+1(`) for all other ` ∈ L.
Finally, c2j+2(〈t2j+1b

2〉) = c′2j+1(〈t2j+1b
2〉) + 1, c2j+2(〈q2

j b
2〉) = c′2j+1(〈q2

j b
2〉) + 1,

c2j+2(〈t2j+1b〉) = c2j+2(〈q2
j b〉) = 0, and c2j+2(`) = c′2j+1(`) for all other ` ∈ L.

One can check that c2j+1(`0) = c2j(`0)−2 ≥ k−(3j+1)−2 ≥ k−(3(j+1)+1) ≥ 0
and that c2j+2 ∈ C(γj+1).

With this lemma, we know that c2n exists and c2n ∈ C(γn). By definition of f ,
c′2n(〈q2

n〉) = 1, c′2n(〈qn〉) = 0 and, for all other ` ∈ L, c′2n(`) = c2n(`). But this time,
there are no more possible transition for Environment:

• Moving the process in 〈q2
n〉 to 〈q2

nb
m〉 for some m ≥ 1 leads to a configuration

either in Fqh or in Fs<e if m ≥ 3.

• Moving any other process leads to a configuration in Fs<e too.

Therefore the play is winning for System and we get a contradiction, there is no
winning strategy for Environment. Thus f is a winning k-strategy for System. The
same strategy f also work for any k′ > k, which completes the first direction of the
proof.

⇐ Suppose that there is a constant k ∈ N and f a winning k-strategy for
System.

Lemma 34. For any f -compatible play ρ = c0τ0c
′
0τ
′
0c1τ1c

′
1τ
′
1c2 . . . τ2nc2n, there exists

a run γ0 `t1 γ1 `t2 . . . γn of M such that c2i ∈ C(γi), for all 1 ≤ i ≤ n.

115

4.3. FO[∼] CHAPTER 4. SYNTHESIS

Proof. Let ρ = c0τ0c
′
0τ
′
0c1τ1c

′
1τ
′
1c2 . . . τ2nc2n be a f -compatible play, not necessarily

maximal. From c0, the only winning configurations reachable for System, without
any past action of Environment are the ones in κt ∈ F0 for some transition t ∈ T
of the form t : q0

ci++−−−→ q1 or t : q0
ci==0−−−→ q1. Let t1 be the transition such that

c′0 ∈ κt1 (since they are mutually exclusive, t1 is well-defined). For simplicity,

assume that t1 : q0
c1++−−−→ q1, but the other cases are similar. From c′0, there is only

one configuration reachable by Environment which is not winning for System: the
one where there is exactly one process in locations 〈t1b〉, 〈q0b〉, 〈a1b〉. Now that the
transition t1 has been selected, the only winning configuration reachable by System
is c′1 such that c′1(〈t21b〉) = c′1(〈q2

0b〉) = c′1(〈a2
1b〉) = c′1(〈q1〉) = 1, c′1(`0) ≥ 0, and

c′1(`) = 0 for all other ` ∈ L. Indeed, all other winning configurations require moves
of Environment to be reached, or require that Environment has never played. Now,
the first accepting condition prevents Environment to play b on any new process,
or to play several b on processes that have already played. Moreover, if she plays b
on the process already in the location 〈q1〉, the configuration reached is in F e

(q0,t1,q1
).

The only possibility to leave the set of winning configurations is then to reach c2

defined by c2(〈q1〉) = c2(〈a2
1b

2〉) = c2(〈t21b2〉) = c2(〈q2
0b

2〉) = 1, c2(`0) = k − 3 and
c2(`) = 0 for all other ` ∈ L. Hence, c2 is valid and m(c2) = (q1, 1, 0) = γ1. Moreover,
γ0 `t1 γ1.

Let now j < n and suppose that we have built γ0 `t1 γ1 · · · `tj γj with γi =
(qi, ν

i
1, ν

i
2) = m(c2i) for all 1 ≤ i ≤ j. From the valid configuration c2i such that

c2i(〈q2
0b

2〉) > 0, the only winning configurations reachable by System are the ones in
F(qj ,t) for some t starting in qj. Let tj+1 be the transition such that c′2i ∈ F(qj ,tj+1).

Assume for example that tj+1 : qj
c1−−−−−→ qj+1.

Then c′2j(〈tj+1〉) = c′2j(〈a3
1b

2〉) = 1, c′2j(`0) = c2j(`0)−1, c′2j(〈a2
1b

2〉) = c2j(〈a2
1b

2〉)−
1, and c′2j(`) = c2j(`) for all other ` ∈ L, with c2j(`) 6= 0 implies that ` ∈ LX since
c2j is valid.

As before, in order to reach a non winning configuration, the only possibil-
ity for Environment is to go to c2j+1 such that c2j+1(〈tj+1b〉) = c2j+1(〈a3

1b
3〉) =

c2j+1(〈qjb〉) = 1, c2j+1(〈tj+1〉) = c2j+1(〈qj〉) = c2j+1(〈a3
1b

2〉) = 0, and c2j+1(`) =
c′2j(`) for all other ` ∈ L.

Again, the only winning configuration System can reach without the help of
Environment is c′2j+1 such that c′2j+1(〈t2j+1b〉) = c2j+1(〈a4

1b
3〉) = c2j+1(〈q2

j b〉) = 1,
c2j+1(〈qj+1〉) = 1, c2j+1(〈qj+1b〉) = c2j+1(〈a3

1b
3〉) = 0, and c2j+1(`) = c′2j(`) for all

other ` ∈ L.
Finally, the analysis of all the winning conditions shows that Environment can-

not play anything else that c2j+2(〈t2j+1b
2〉) = c2j(〈t2j+1b

2〉) + 1, c2j+2(〈a4
1b

4〉) =
c2j(〈a4

1b
4〉) + 1, c2j+2(〈q2

j b
2〉) = c2j(〈q2

j b
2〉) + 1, and c2j+2(`) = c′2j+1(`) for all other

` ∈ L.
In particular, c2j+2(〈qj+1〉) = 1, c2j+2(〈a2

1b
2〉) = c2j(〈a2

1b
2〉) − 1, c2j+2(〈a2

2b
2〉) =

c2j(〈a2
2b

2〉). Hence, c2j+2 is valid, and m(c2j+2) = (qj+1, ν
j
1 − 1, νj2) = γj+1, with

γj `tj+1
γj+1.

Assume now that there is no accepting run of M and consider a maximal f -
compatible play π. Since π is winning, it ends in a configuration reached by System,
so it is of the form π = c0τ0 . . . c2n . . . c

′
m with m ∈ {2n, 2n + 1}, for some n ∈

N, and c′m |= F . By Lemma 34, we have the corresponding run γ0 `t1 γ1 `t2
· · · `tn γn, with c2n ∈ C(γn) and γn not a halting configuration. An analysis of the

116

4.3. FO[∼] CHAPTER 4. SYNTHESIS

possible moves of System in that case shows that c′2n(〈t〉) = 1 for some transition
t ∈ T . But from such a configuration, Environment can easily reach a non winning
configuration, by playing b on every location where the number of b is strictly smaller
than the number of letters of System. Again, System moves to configuration c′2n+1,
which is winning. According to the precise definition of c′2n+1, there is only one
possibility for System: c′2n+1(〈t2b〉) = 1, c′2n+1(〈q′〉) = 1 for some q′ ∈ Q, and possibly
c′2n+1(〈a2

i b〉) = 1 or c′2n+1(〈a4
i b

3〉) = 1. In any case, Environment can still reach a non
winning configuration by playing b on all these locations. Then, either the play is
not maximal, or it is not winning, both of which contradict our hypotheses. Hence,
there is an accepting run of M .

This ends the proof of undecidability of Game(0, 0,N), and therefore also proves
the undecidability of Synth(FO[∼], 0, 0,N) since they are equivalent by Lemma 26.

Whether Game(N,N, 0) is decidable or not is left open. Now obviously the
last proof heavily uses the fact that there is an unbounded number of processes
Environment can affect. Therefore a natural question is to ask whether the game
problem becomes decidable when there is only a fixed number of Environment and
mixed processes. This case, which is the last we study, is the focus of the next
section.

4.3.4 Case of (N, {ke}, {kse})
We show that when Environment can affect only a fixed number of processes, then
any game has a cutoff, and therefore the game problem is decidable. Let us fix
ke, kse ∈ N the number of Environment and mixed processes respectively. The
number of System processes is, of course, still unbounded.

Theorem 35. Given ke, kse ∈ N, every game G = (A,B,F) has a cutoff with respect
to (N, {ke}, {kse}). More precisely: Let K be the largest constant that occurs in F .
Moreover, let Max = (ke +kse) · |Ae| ·B and Ncut = |L|Max+1 ·K. Then, (Ncut, ke, kse)
is a cutoff of Win(G) with respect to (N, {ke}, {kse}).

The intuition is that when there is a “large enough” number of System processes,
then if System can win then she can also win with one more System process by
somehow emulating the previous winning strategy. Since this additional process
cannot be affected by Environment, then this new strategy must also be winning.

Proof. We will show that, for all N ≥ Ncut,

(N, ke, kse) ∈Win(G)⇔ (N + 1, ke, kse) ∈Win(G)

The main observation is that, when c contains more than K tokens in a given
` ∈ L, adding more tokens in ` will not change whether c |= F . Given c, c′ ∈ Conf ,
we write c <e c if c 6= c′ and there is τ ∈ Te such that τ(c) = c′. Note that the
length d of a chain c0 <e c1 <e . . . <e cd is bounded by Max . In other words, Max
is the maximal number of transitions that Environment can do in a play. For all
d ∈ {0, . . . ,Max}, let Confd be the set of configurations c ∈ Conf such that the
longest chain in (Conf , <e) starting from c has length d. For instance, the initial
configuration c(N,ke,kse) is in ConfMax , and Conf0 is the set of configurations where

117

4.3. FO[∼] CHAPTER 4. SYNTHESIS

all Environment and mixed tokens are in locations with the maximum number of
Environment actions.

We claim that the following proposition holds: Suppose that c ∈ Confd and ` ∈ L
such that c(`) = (N, ne, nse) with N ≥ |L|d+1 · K and ne, nse ∈ N. Set ĉ ∈ Confd
such that

ĉ(`′) =

{
(N + 1, ne, nse) if `′ = `,

c(`′) otherwise.

Then,

c is winning for System ⇐⇒ ĉ is winning for System.

To show the claim, we proceed by induction on d ∈ N. In each implication, we
distinguish the cases d = 0 and d ≥ 1. For the latter, we assume that equivalence
holds for all values strictly smaller than d.

For τ ∈ Ts and `, `′ ∈ L, we let τ [(`, `′, s)++] denote the transition τ̂ ∈ Ts given
by τ̂(`1, `2, e) = τ(`1, `2, e) = 0, τ̂(`1, `2, se) = τ(`1, `2, se), τ̂(`1, `2, s) = τ(`1, `2, s) +
1 if (`1, `2) = (`, `′), and τ̂(`1, `2, s) = τ(`1, `2, s) if (`1, `2) 6= (`, `′). We define
τ [(`, `′, s)– –] similarly (provided τ(`, `′, s) ≥ 1).
⇒ Let f be a winning strategy for System from c ∈ Confd. Let τ ′ = f(c) and

c′ = τ ′(c). Note that c′ |= F by definition of a strategy.
Now, since there is a “large” amount of tokens in state ` in configuration c,

then whatever System chose for the next transition, there is a state `′ which is a
successor of ` (possibly ` itself) and which ends up with a “large” amount of tokens
in c′. Formally, since c(`, s) = N ≥ |L|d+1 ·K, there is `′ ∈ L such that ` + w = `′

for some w ∈ A∗s and c′(`′, s) = N ′ ≥ |L|d ·K. Indeed, as there are |L| local states
in total, at least one of them must have at least N/|L| tokens after the transition is
applied.

We show that ĉ is winning for System by exhibiting a corresponding winning
strategy f̂ from ĉ that will carefully control the position of the additional token.
First, set f̂(ĉ) = τ̂ ′ where τ̂ ′ = τ ′[(`, `′, s)++]. Let ĉ′ = τ̂ ′(ĉ). We obtain ĉ′(`′, s) =
N ′ + 1. Note that, since N ′ ≥ K, the acceptance condition F cannot distinguish
between c′ and ĉ′. Thus, we have ĉ′ |= F .

Case d = 0: As, for all transitions τ̂ ′′ ∈ Te, we have τ̂ ′′(ĉ′) = ĉ′ |= F , we reached
a maximal play that is winning for System. We deduce that ĉ is winning for
System.

Case d ≥ 1: Take any τ̂ ′′ ∈ Te and ĉ′′ such that ĉ′′ = τ̂ ′′(ĉ′) 6|= F . Let τ ′′ = τ̂ ′′ and
c′′ = τ ′′(c′). Note that ĉ′′(`′, s) = ĉ′(`′, s) = N ′ + 1 and c′′(`′, s) = c′(`′, s) =
N ′ because a transition from Environment cannot move System tokens, and
c′′, ĉ′′ ∈ Confd− for some d− < d. As f is a winning strategy for System from
c, we have that c′′ is winning for System.

By induction hypothesis, ĉ′′ is winning for System, say by winning strategy f̂ ′.
We let

f̂(ĉ τ̂ ′ ĉ′ τ̂ ′′ π) = f̂ ′(ρ)

for all ĉ′′-plays ρ. For all unspecified plays, let f̂ be undefined. Altogether,
for any choice of τ̂ ′′, we have that f̂ ′ is winning from ĉ′′. Thus, f̂ is a winning
strategy from ĉ.

118

4.3. FO[∼] CHAPTER 4. SYNTHESIS

⇐ Suppose f̂ is a winning strategy for System from ĉ. Thus, for τ̂ ′ = f̂(ĉ) and
ĉ′ = τ̂ ′(ĉ), we have ĉ′ |= F . Recall that ĉ(`, s) ≥ (|L|d+1 · K) + 1. We distinguish
two cases:

1. Suppose there is `′ ∈ L such that ` 6= `′, ĉ′(`′, s) = N ′+1 for some N ′ ≥ |L|d·K,
and τ̂ ′(`, `′, s) ≥ 1. Then, we set τ ′ = τ̂ ′[(`, `′, s)– –].

2. Otherwise, we have ĉ′(`, s) ≥ (|L|d ·K)+1, and we set τ ′ = τ̂ ′ (as well as `′ = `
and N ′ = N).

Let c′ = τ ′(c). Since ĉ′ |= F , one obtains c′ |= F .

Case d = 0: For all transitions τ ′′ ∈ Te, we have τ ′′(c′) = c′ |= F . Thus, we reached
a maximal play that is winning for System. We deduce that c is winning for
System.

Case d ≥ 1: Take any τ ′′ ∈ Te such that c′′ = τ ′′(c′) 6|= F . Let τ̂ ′′ = τ ′′ and
ĉ′′ = τ̂ ′′(ĉ′). We have c′′ = ĉ′′[(`′, s) 7→ N ′], ĉ′′ = c′′[(`′, s) 7→ N ′ + 1], and
c′′, ĉ′′ ∈ Confd− for some d− < d.

As ĉ′′ is winning for System, by induction hypothesis, c′′ is winning for System,
say by winning strategy f ′. We let

f(c τ ′ c′ τ ′′ π) = f ′(π)

for all c′′-plays π. For all unspecified plays, let f be undefined. Again, for any
choice of τ ′′, f ′ is winning from c′′. Thus, f is a winning strategy from c.

This concludes the proof of the claim and, therefore, of Theorem 35.

Corollary 36. Let ke, kse ∈ N be the number of environment and the number of
mixed processes, respectively. The problems Game(N, {ke}, {kse}) and Synth(FO[∼
],N, {ke}, {kse}) are decidable.

In particular, by Theorem 35, the game problem can be reduced to an exponen-
tial number of acyclic finite-state games whose size (and hence the time complexity
for determining the winner) is exponential in the cutoff and, therefore, doubly expo-
nential in the size of the alphabet, the bound B, and the fixed number of processes
that are controllable by the environment.

119

Chapter 5

Conclusion

The scope of this work was to study the control and synthesis problems for open
parameterized systems.

5.1 Summary of our contributions

In the first half of this thesis, we studied the control problem for dynamic pushdown
systems. As in the general case even emptiness is undecidable for such systems, we
restricted ourselves to round-bounded executions, which is a natural restriction that
can be found in many real-life scenarios. We showed that the control problem is
decidable under this restriction by a reduction to phase-bounded multi-pushdown
games, and then we showed that the problem is inherently non-elementary. Finally
we showed that even slightly relaxing this round restriction to another restriction
that we call context-bounded executions immediately leads to undecidability.

In the second half, we focused on the synthesis problem for specifications given
in some fragments of first-order logic. This synthesis problem is parameterized by
the FO fragment used and by the cardinality of the sets of processes involved in
executions. First we proved that the synthesis problem is undecidable for FO with
two variables when only mixed processes are involved. Then, we studied FO with
only the data equality predicate by giving a normal form for those formulas and
translating them into a game formalism more suited for reasoning. Thanks to these
results, we showed that synthesis for this fragment is undecidable again when only
mixed processes are involved, but that when the environment can only affect a finite,
bounded number of processes then the problem becomes decidable.

5.2 Perspectives

In both cases, our results lead to various possible future works. In the case of the
control problem, it would be interesting to see if our results may be used for model
checking branching-time properties. Indeed, such games are heavily used in that
context (see for instance [LS02]), so that we could use some variant of branching-
time logic such as in [Kar16] and then reduce the model-checking problem to a
dynamic pushdown game. It would also be interesting to study the relation between
our control problem and the parameterized population control problem as defined

120

5.2. PERSPECTIVES CHAPTER 5. CONCLUSION

in [BDG+18] where one player chooses an action to perform in a non-deterministic
automaton and the other player resolves the non-determinism for a number of agents.

In the case of synthesis, it would be nice to have tight bounds in the decidable
cases for the complexity of the decision algorithm. Furthermore, several open cases
are left which are interesting in their own. For instance, we did not explore whether
the synthesis problem for FO2 becomes decidable again when we restrict the num-
ber of processes controlled by Environment, as in the case with FO[∼]. Since the
satisfiability problem (i.e. with no Environment) is decidable [BDM+11], there is a
gap with our undecidability result, so finding the exact boundary between the two
(or at least reducing that gap) would be interesting. Also, one possible lead is to
try to extend these results to the dynamic case, as our results crucially rely on the
fact that there is a finite number of processes in each execution.

More generally, our results here build strategies for the system as a whole, that is,
our strategies have a global view of the whole system and then tell each process what
actions to perform. It would be interesting to synthesize strategies for individual
processes, which may only have some partial information on the state of the system.
For instance, maybe a process can only observe its own past actions and those of
other processes it has synchronized with, or only the actions of its neighbors for
some kind of fixed architecture. See, e.g., the works in [FO17, BFHH19] in the
case of a fixed number of processes, and [JB14] for parameterized systems over ring
architectures. This problem could also be related to parameterized games where the
number of adversaries is not fixed such as in [BBM19]. A possible goal for the future
is to work toward a more general case with dynamic creation of processes and with
relaxed architecture constraints.

121

Bibliography

[ABd03] P. A. Abdulla, A. Bouajjani, and J. d’Orso. Deciding monotonic games.
In CSL’03, volume 2803 of LNCS, pages 1–14. Springer, 2003.

[ABKS17] M. F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan. Par-
ity games on bounded phase multi-pushdown systems. In NETYS’17,
volume 10299 of LNCS, pages 272–287, 2017.

[ABQ11] M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for
concurrent programs with dynamic creation of threads. Log. Methods
Comput. Sci., 7(4), 2011.

[AMSS13] P. A. Abdulla, R. Mayr, A. Sangnier, and J. Sproston. Solving parity
games on integer vectors. In CONCUR’13, volume 8052, pages 106–120.
Springer, 2013.

[BBLS20] Béatrice Bérard, Benedikt Bollig, Mathieu Lehaut, and Nathalie Sz-
najder. Parameterized synthesis for fragments of first-order logic over
data words. In FoSSaCS, pages 97–118, 2020.

[BBM19] Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. Con-
current parameterized games. In 39th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019.

[BDG+18] Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, Hugo Gimbert,
and Adwait Amit Godbole. Controlling a population. arXiv preprint
arXiv:1807.00893, 2018.

[BDM+11] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin.
Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27,
2011.

[BESS05] Ahmed Bouajjani, Javier Esparza, Stefan Schwoon, and Jan Strejček.
Reachability analysis of multithreaded software with asynchronous com-
munication. In International Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 348–359. Springer,
2005.

[BFHH19] Raven Beutner, Bernd Finkbeiner, and Jesko Hecking-Harbusch. Trans-
lating Asynchronous Games for Distributed Synthesis. In Wan Fokkink

122

BIBLIOGRAPHY BIBLIOGRAPHY

and Rob van Glabbeek, editors, 30th International Conference on Con-
currency Theory (CONCUR 2019), volume 140 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 26:1–26:16, Dagstuhl, Ger-
many, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[BJK10] T. Brázdil, P. Jancar, and A. Kucera. Reachability games on extended
vector addition systems with states. In ICALP’10, Part II, volume 6199
of LNCS, pages 478–489. Springer, 2010.

[BJK+15] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha
Rubin, Helmut Veith, and Josef Widder. Decidability of parameter-
ized verification. Synthesis Lectures on Distributed Computing Theory,
6(1):1–170, 2015.

[BJNT00] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili.
Regular model checking. In International Conference on Computer
Aided Verification, pages 403–418. Springer, 2000.

[BK12] Benedikt Bollig and Dietrich Kuske. An optimal construction of Hanf
sentences. J. Applied Logic, 10(2):179–186, 2012.

[BL69] Julius R. Büchi and Lawrence H. Landweber. Solving sequential con-
ditions by finite-state strategies. Transactions of the American Mathe-
matical Society, 138:295–311, April 1969.

[BLS18] Benedikt Bollig, Mathieu Lehaut, and Nathalie Sznajder. Round-
bounded control of parameterized systems. In International Symposium
on Automated Technology for Verification and Analysis, pages 370–386.
Springer, 2018.

[BMOT05] Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili. Regular
symbolic analysis of dynamic networks of pushdown systems. In Inter-
national Conference on Concurrency Theory, pages 473–487. Springer,
2005.

[BMS+06] Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin,
and Claire David. Two-variable logic on words with data. In 21st
Annual IEEE Symposium on Logic in Computer Science (LICS’06),
pages 7–16. IEEE, 2006.

[BS10] Henrik Björklund and Thomas Schwentick. On notions of regularity for
data languages. Theoretical Computer Science, 411(4-5):702–715, 2010.

[BT16] B. Brütsch and W. Thomas. Playing games in the Baire space. In Proc.
Cassting Workshop on Games for the Synthesis of Complex Systems and
3rd Int. Workshop on Synthesis of Complex Parameters, volume 220 of
EPTCS, pages 13–25, 2016.

[Chu57] Alonzo Church. Applications of recursive arithmetic to the problem of
circuit synthesis. In Summaries of the Summer Institute of Symbolic
Logic – Volume 1, pages 3–50. Institute for Defense Analyses, 1957.

123

BIBLIOGRAPHY BIBLIOGRAPHY

[CHVB18] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick
Bloem. Handbook of model checking, volume 10. Springer, 2018.

[CJGK+18] Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled,
and Helmut Veith. Model checking. MIT press, 2018.

[CS14] J.-B. Courtois and S. Schmitz. Alternating vector addition systems with
states. In MFCS’14, volume 8634 of LNCS, pages 220–231. Springer,
2014.

[DDG12] Stéphane Demri, Deepak D’Souza, and Régis Gascon. Temporal logics
of repeating values. J. Log. Comput., 22(5):1059–1096, 2012.

[DGK08] Volker Diekert, Paul Gastin, and Manfred Kufleitner. A survey on small
fragments of first-order logic over finite words. International Journal of
Foundations of Computer Science, 19(03):513–548, 2008.

[DL09] S. Demri and R. Lazić. LTL with the freeze quantifier and register
automata. ACM Transactions on Computational Logic, 10(3), 2009.

[EFR19] Léo Exibard, Emmanuel Filiot, and Pierre-Alain Reynier. Synthesis
of Data Word Transducers. In Wan Fokkink and Rob van Glabbeek,
editors, 30th International Conference on Concurrency Theory (CON-
CUR 2019), volume 140 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 24:1–24:15, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and deter-
minacy. In Proceedings of FOCS’91, pages 368–377. IEEE Computer
Society, 1991.

[EN95] E Allen Emerson and Kedar S Namjoshi. Reasoning about rings. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 85–94, 1995.

[Esp14] J. Esparza. Keeping a crowd safe: On the complexity of parameterized
verification. In STACS’14, volume 25 of Leibniz International Proceed-
ings in Informatics, pages 1–10. Leibniz-Zentrum für Informatik, 2014.

[FGS19] Hadar Frenkel, Orna Grumberg, and Sarai Sheinvald. An automata-
theoretic approach to model-checking systems and specifications over
infinite data domains. J. Autom. Reasoning, 63(4):1077–1101, 2019.

[FO17] Bernd Finkbeiner and Ernst-Rüdiger Olderog. Petri games: Synthesis
of distributed systems with causal memory. Inf. Comput., 253:181–203,
2017.

[FP18a] D. Figueira and M. Praveen. Playing with repetitions in data words
using energy games. In Proceedings of LICS’18, pages 404–413. ACM,
2018.

[FP18b] Diego Figueira and M Praveen. Playing with repetitions in data words
using energy games. arXiv preprint arXiv:1802.07435, 2018.

124

BIBLIOGRAPHY BIBLIOGRAPHY

[FS05] Bernd Finkbeiner and Sven Schewe. Uniform distributed synthe-
sis. In 20th Annual IEEE Symposium on Logic in Computer Science
(LICS’05), pages 321–330. IEEE, 2005.

[Für83] Martin Fürer. The computational complexity of the unconstrained lim-
ited domino problem (with implications for logical decision problems).
In Egon Börger, Gisbert Hasenjaeger, and Dieter Rödding, editors,
Logic and Machines: Decision Problems and Complexity, Proceedings of
the Symposium ”Rekursive Kombinatorik” held from May 23-28, 1983
at the Institut für Mathematische Logik und Grundlagenforschung der
Universität Münster/Westfalen, volume 171 of Lecture Notes in Com-
puter Science, pages 312–319. Springer, 1983.

[GKV97] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision
problem for two-variable first-order logic. Bulletin of Symbolic Logic,
3(1):53–69, 1997.

[Han65] W. Hanf. Model-theoretic methods in the study of elementary logic.
In J. W. Addison, L. Henkin, and A. Tarski, editors, The Theory of
Models. North-Holland, Amsterdam, 1965.

[HMRU00] J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman. Introduction
to Automata Theory, Languages and Computability. Addison-Wesley
Longman Publishing Co., Inc., 2nd edition, 2000.

[HTWZ15] Florian Horn, Wolfgang Thomas, Nico Wallmeier, and Martin Zimmer-
mann. Optimal strategy synthesis for request-response games. RAIRO
- Theor. Inf. and Applic., 49(3):179–203, 2015.

[Jan15] P. Jancar. On reachability-related games on vector addition systems
with states. In RP’15, volume 9328 of LNCS, pages 50–62. Springer,
2015.

[JB14] S. Jacobs and R. Bloem. Parameterized synthesis. Log. Methods Com-
put. Sci., 10(1), 2014.

[JORW11] Mark Jenkins, Joël Ouaknine, Alexander Rabinovich, and James Wor-
rell. The church synthesis problem with metric. In Marc Bezem, editor,
Computer Science Logic, 25th International Workshop / 20th Annual
Conference of the EACSL, CSL 2011, September 12-15, 2011, Bergen,
Norway, Proceedings, volume 12 of LIPIcs, pages 307–321. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[JTZ18] Swen Jacobs, Leander Tentrup, and Martin Zimmermann. Dis-
tributed synthesis for parameterized temporal logics. Inf. Comput.,
262(Part):311–328, 2018.

[Kar16] A. Kara. Logics on data words: Expressivity, satisfiability, model check-
ing. PhD thesis, Technical University of Dortmund, 2016.

[KF94] M. Kaminski and N. Francez. Finite-memory automata. Theoretical
Computer Science, 134(2):329–363, 1994.

125

BIBLIOGRAPHY BIBLIOGRAPHY

[KK19] Ayrat Khalimov and Orna Kupferman. Register-Bounded Synthesis. In
Wan Fokkink and Rob van Glabbeek, editors, 30th International Con-
ference on Concurrency Theory (CONCUR 2019), volume 140 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 25:1–25:16,
Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik.

[KMB18] Ayrat Khalimov, Benedikt Maderbacher, and Roderick Bloem.
Bounded synthesis of register transducers. In Shuvendu K. Lahiri and
Chao Wang, editors, Automated Technology for Verification and Anal-
ysis - 16th International Symposium, ATVA 2018, Los Angeles, CA,
USA, October 7-10, 2018, Proceedings, volume 11138 of Lecture Notes
in Computer Science, pages 494–510. Springer, 2018.

[KO12] E. Kieronski and M. Otto. Small substructures and decidability issues
for first-order logic with two variables. J. Symb. Log., 77(3):729–765,
2012.

[Koz77] D. Kozen. Lower bounds for natural proof systems. In Proceedings of
SFCS’77, pages 254–266. IEEE Computer Society, 1977.

[KV01] Orna Kupferman and MY Vardi. Synthesizing distributed systems.
In Proceedings 16th Annual IEEE Symposium on Logic in Computer
Science, pages 389–398. IEEE, 2001.

[LMP07] S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-
sensitive languages. In LICS’07, pages 161–170. IEEE Computer Soci-
ety Press, 2007.

[LMP10a] S. La Torre, P. Madhusudan, and G. Parlato. Model-checking parame-
terized concurrent programs using linear interfaces. In CAV’10, volume
6174 of LNCS, pages 629–644. Springer, 2010.

[LMP10b] S. La Torre, P. Madhusudan, and G. Parlato. Model-checking pa-
rameterized concurrent programs using linear interfaces. Techni-
cal Report 2142/15410, University of Illinois, 2010. Available at
http://hdl.handle.net/2142/15410.

[LS02] M. Lange and C. Stirling. Model checking games for branching time
logics. J. Log. Comput., 12(4):623–639, 2002.

[LS15] Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vec-
tor addition systems. In 2015 30th Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 56–67. IEEE, 2015.

[LTKR08] Akash Lal, Tayssir Touili, Nicholas Kidd, and Thomas Reps. Inter-
procedural analysis of concurrent programs under a context bound. In
International conference on Tools and algorithms for the construction
and analysis of systems, pages 282–298. Springer, 2008.

[LTV15] Leonid Libkin, Tony Tan, and Domagoj Vrgoc. Regular expressions for
data words. J. Comput. Syst. Sci., 81(7):1278–1297, 2015.

126

BIBLIOGRAPHY BIBLIOGRAPHY

[May84] Ernst W Mayr. An algorithm for the general petri net reachability
problem. SIAM Journal on computing, 13(3):441–460, 1984.

[Min67] Marvin L. Minsky. Computation: Finite and Infinite Machines. Pren-
tice Hall, Upper Saddle River, NJ, USA, 1967.

[MP71] Robert McNaughton and Seymour A Papert. Counter-Free Automata
(MIT research monograph no. 65). The MIT Press, 1971.

[NSV04] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state ma-
chines for strings over infinite alphabets. ACM Transactions on Com-
putational Logic (TOCL), 5(3):403–435, 2004.

[PP86] Dominique Perrin and Jean-Eric Pin. First-order logic and star-free
sets. Journal of Computer and System Sciences, 32(3):393–406, 1986.

[PP04] Dominique Perrin and Jean-Éric Pin. Infinite words: automata, semi-
groups, logic and games. Academic Press, 2004.

[PR90] Amir Pneuli and Roni Rosner. Distributed reactive systems are hard
to synthesize. In Proceedings [1990] 31st Annual Symposium on Foun-
dations of Computer Science, pages 746–757. IEEE, 1990.

[QR05] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of
concurrent software. In International conference on tools and algorithms
for the construction and analysis of systems, pages 93–107. Springer,
2005.

[Rab72] Michael O. Rabin. Automata on infinite objects and Church’s problem.
Number 13 in Regional Conference Series in Mathematics. American
Mathematical Soc., 1972.

[Ram00] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is
undecidable. ACM Trans. Program. Lang. Syst., 22(2):416–430, 2000.

[RSB05] Jean-François Raskin, Mathias Samuelides, and Laurent Van Begin.
Games for counting abstractions. Electr. Notes Theor. Comput. Sci.,
128(6):69–85, 2005.

[Sav70] Walter J Savitch. Relationships between nondeterministic and deter-
ministic tape complexities. Journal of computer and system sciences,
4(2):177–192, 1970.

[SB98] Thomas Schwentick and Klaus Barthelmann. Local normal forms for
first-order logic with applications to games and automata. In Annual
Symposium on Theoretical Aspects of Computer Science, pages 444–454.
Springer, 1998.

[Seg06] Luc Segoufin. Automata and logics for words and trees over an infinite
alphabet. In International Workshop on Computer Science Logic, pages
41–57. Springer, 2006.

127

BIBLIOGRAPHY BIBLIOGRAPHY

[Set09] A. Seth. Games on multi-stack pushdown systems. In LFCS’09, volume
5407 of LNCS, pages 395–408. Springer, 2009.

[SKMW17] Lutz Schröder, Dexter Kozen, Stefan Milius, and Thorsten Wißmann.
Nominal automata with name binding. In Javier Esparza and Andrzej S.
Murawski, editors, Foundations of Software Science and Computation
Structures - 20th International Conference, FOSSACS 2017, Held as
Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings,
volume 10203 of Lecture Notes in Computer Science, pages 124–142,
2017.

[Sto74] L. J. Stockmeyer. The Complexity of Decision Problems in Automata
Theory and Logic. PhD thesis, MIT, 1974.

[Wal01] I. Walukiewicz. Pushdown processes: Games and model-checking. Inf.
Comput., 164(2):234–263, 2001.

[Zie98] W. Zielonka. Infinite games on finitely coloured graphs with applica-
tions to automata on infinite trees. TCS, 200(1-2):135–183, 1998.

128

	Introduction
	Preliminaries
	Transition Systems
	Control
	Dynamic Concurrent Transition Systems
	Control Problem

	Synthesis
	Data Words
	First-Order Logic
	Synthesis Problem

	Control
	DPS
	Definition
	Emptiness Problem

	Round-bounded Behaviors
	Round-bounded semantics
	Decidability of DPS-EMPTINESSrb
	PSPACE-hardness of DFS-EMPTINESSrb

	DPG
	Dynamic Pushdown Games
	Upper Bound
	Lower Bound

	Context-bounded Control
	Context-Bounded Runs
	Undecidabilty for Context-Bounded Runs

	Synthesis
	Preliminaries
	Executions and first-order logic
	Winning triples, Synthesis, Cutoffs

	FO2[,succ,<]
	FO[]
	Normal form
	Parameterized vector games
	Cases of (0, 0, N) and (N, N, 0)
	Case of (N, {ke}, {kse})

	Conclusion
	Summary of our contributions
	Perspectives

