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I NTRODUCT ION

Contents
1.1 Machine learning and Big data . . . . . . . . . . . . . . . . . . . . 1

1.2 Extreme Classification . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Structure of the document . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Machine learning and Big data

Sharing videos, photographs or more generally multimedia content is today a common
practice. This behavior is promoted by information technologies progress and the general-
ized access to the greatest number to multiple devices, such as smartphones or laptops.
For the past twenty years, the stream of content did not stop increasing, besides, most of
the time content is stored and in free access for a large number of users. For instance,
during the year 2019, on average, six thousand messages (tweets) seconds were published
on the twitter platform. Also, website content has widely grown, such as the online
encyclopedia Wikipedia, which today counts more than 51 million articles. Therefore, one
problem remains, how can users efficiently retrieve contents?
Today, seeking for an article or more globally content, is obtained by entering queries

consisting of relevant keywords in search engines. For the most specific searches, search
engines will suggest that users pick topics from a list of keywords.
Unfortunately, there are few documents where keyword information is explicitly given,

thus in most of the search engines an upstream algorithm has to process images, text or
other types of data to retrieve relevant keywords. Retrieving keywords is at the origin
of many applications, such as previously stated for information retrieval but also in
information organization tasks: for instance sorting content thematically.

However, the excessive number of data to process prevents human annotation because
of cost and efficiency reasons. For this aim, many automatic annotation approaches were
developed to deal with the classification task. Despite the efforts, the diversity, the size
and more largely the complexity of the data prevent previous approaches to scale to the
size of corpora.

1



2 introduction

To achieve the development of efficient methods, the last ten years have seen the rise
of machine learning approaches which, thanks to a previously annotated set of documents
train a parametric function that is able to retrieve these keywords or categories.

Today, machine learning methods produce the state-of-the-art in image recognition
or segmentation, automatic translation, recommendation systems, sentiment analysis
or text classification. Nevertheless, the classical techniques do not pass the scale when
considering huge number of possible keywords.

In this thesis, we, therefore, propose to address the multiple challenges of automatic
classification when the number of possible categories is numerous. The associated domain
which aims to address this challenge is known as extreme classification, which characterizes
the task of classification when we consider more than several thousand or millions of
classes possible. We addressed those challenges through the lens of representation learning,
an emerging approach to address challenges associated with extreme classification. Before
going further and introducing the contributions and the flow of the thesis, let first describe
extreme classification challenges and its different associated tasks.

1.2 Extreme Classification

Extreme classification aims to efficiently retrieve correct annotations for complex and
large corpus. Consequently, the following challenges are addressed:

• Storage complexity : All automatic classification approaches rely on storing
data or function parameters. Thus, elements stored have to be contained in classical
contemporary devices.

• Prediction time complexity : The time consumed by algorithms to get classes
has to be shorter as possible. Typically, in industries the objective is to reduce
the computing resources while obtaining accurate annotation. Today, classical
classification algorithms mainly classify in linear time according to the number of
labels, extreme classification oriented methods have to develop sub-linear time
methods.

• Learning time complexity : Similarly to prediction time the learning time should
be as fast as possible. However, contrary to prediction, computing capacities are
frequently greater.

• Accuracy : Predicted labels must be accurate and relevant for each document.
Typically, accuracy of the model will be evaluated by its capacity to retrieve correct
annotations on an already annotated set named test set (different from the one use
for training the classifier).



1.2 extreme classification 3

A major drawback with standard methods is the prediction time according to the number
of labels which mainly scale linearly with it. This issue can be handled using additional
constraints to reduce prediction time and storage. For instance, ensuring sparsity using
linear classifiers reduces the number of parameters and consequently the number of
operations. Despite reducing the number of parameters, such methods still consider as
many predictors (or classifiers) as there are classes. To alleviate processing time one can
consider “divide and conquer” paradigm. The main idea of divide and conquer paradigm
relying on partitioning whether the features or label space, thus, classifiers only focus on
a sub-part of the data.
On the other hand, having accurate prediction is as important as prediction time

complexity. However, in many cases reducing complexity negatively impact accuracy.
Therefore, the objective is generally to consider a trade-off between those two challenges,
optimizing both accuracy and inference time.

The classification tasks

If approaches mainly differ according to the addressed challenge, it also depends on the
considered tasks (or schemes of classification). In extreme classification different objectives
are addressed depending on the task. We can define three classification schemes:

• eXtreme Mono-Label (XMoL) classification : Each document is annotated
with a unique label. For instance, for the ImageNet classification task, a dataset of
pictures, the objective is to predict the class describing at the best each image.

• eXtreme Multi-Label (XMuL) classification: Each document is annotated with
one or several labels. For instance, retrieve all items on an image, or finding all
topics of a document.

• eXtreme Missing-Label (XMiL) classification : Each document is annotated
with one or several labels, but the paradigm differs from XMuL because of the corpus
partially labeled. For instance, in the context of images where only a small subset
of items already labels images, the objective is then to predict the missing items.
Thus labels are considered as potential features contrary to XMuL where none of
the labels are given.

Take care of distribution

Each of extreme classification schemes have to deal with specific problems. In mono-
label setting, occurrences of labels could drastically differ, such that some labels are
observed much more than others. We refer to this issue by unbalanced labels distribution.
Labels distribution has a direct impact on performances, particularly if the real distribution
of labels differs from the one used to train the classifier. Fortunately, on considered
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datasets it is rarely the case and training set, evaluation set and test set have similar
distributions of labels.
The real issue caused by labels distribution balance is when we address multi-label

classification. In this last setting we often observe important unbalance, leading to have
in real corpus labels annotating more than half of the training examples and others only a
few number of examples. Classifiers should be thus carefully designed to ensure not only
predicting most frequent classes.

Representation Learning

Neighbor search algorithm consists in finding closest neighbors considering a specific
metric and space. In classification, documents are lying in a space named features space,
one assertion is that close documents considering a distance or a similarity in the space
implies that those document are closely related in terms of content. With this last prior
one could expect that documents having close representation will have similar annotation.
However, it is not necessarily the distance associated with the features space (such as l2
distance in Euclidean space) that is the most relevant. Besides, depending on the size of
the feature space, nearest neighbor search can be time consuming, for instance images
can be represented with pixel values vectors that could lead to very high prediction time.
Representation learning methods aim to tackle those two issues by embedding the

features space in a low-dimensional one and ensuring that closely embedded documents
are similarly labeled. Moreover, neighborhood-based search prediction still could predict
rare labels since a document may lie close to a document labeled by underrepresented
labels. Although often reaching the top performances, greedy neighbor search is time
consuming even when embedded in lower space. Indeed, prediction suggests comparing an
embedded example to predict with a large set of already known representations. However,
this issue can be addressed using an approximate neighbor search.

1.3 Contributions

The objective of the thesis is the study of representation approaches with the objective
to find efficient solutions to the extreme classification challenges. We mainly focused on
two of these challenges, the prediction time complexity and the prediction accuracy ones.

At the beginning of the PhD few methods proposed modern approaches to deals with
large-scale classification with representation based methods. Representation approaches
were relying on the labels/features space dimensionality reduction paradigm. The objective
consists in finding the best low size representation of documents or labels and consequently
reducing the time complexity. Once a document is projected, one should retrieve labels
through an algorithm or a function involving at least as many operations as there are
labels. We can split embedding methods into two parts, the embedding process also



1.3 contributions 5

named encoding and the reconstruction one often referred as the decoding process or the
decoder.

Mostly, previous approaches considered Euclidean embeddings of the feature space.
At the beginning of the PhD, this principle was known as the Labels/Features space
dimensionality reduction. It generally reduces the complexity from O(NK) to O(Nc+ cK)
with N the number of features, K the number of classes and c the size of the representation
(NC for the encoder and cK for the decoder). However, one should notice that considering
a finite number of representations and a hash function from representation space to an
index would lead to a very fast decoding process. In this last eventuality storing for
each representation the label associated will allow a constant decoding time. Thus, the
only time complexity bottleneck is the encoding function and the application of the hash
function. Learning a binary representation of documents is a possible application of the
previous principle. Indeed, considering a space of low dimension, would allow enumerating
and storing all possible combinations (considering c as the binary vectors size will lead
to 2c possible codes). Ou first contribution in section 3.1 studies binary embeddings to
fasten prediction time according to the stated principle. However, when the dimension
of the representation space becomes too large, this last decoding method is intractable
as the number of codes increases exponentially with c. Fortunately, it is still possible to
obtain sub-linear time classification. For instance, considering the frame of representation
learning and neighbor search could lead to time efficiency prediction using buckets based
neighbor search. Then, the last remaining question relies on how to learn those binary
vectors. Designing it randomly would obviously lower performances particularly in neighbor
search decoding. To handle this, we propose an end-to-end learning procedure that learn
both encoder and decoder jointly.

Following the same principle of finding efficient structure representation for time-
efficient label prediction, we proposed an end-to-end approaches to address multi-label
setting. In multi-label corpus, subsets of labels are co-dependent i.e. labels that are
correlated because they always or often occur together. Consider those subsets to learn a
classifier should lead to improve performances. The main idea of the second contribution
is thus to discover those subsets and for a given document to retrieve subsets that most
likely labels it. Similarly to the previous proposal, learning the encoder (part of the model
that aims to select subsets) and label partitions (subsets of co-dependent labels) together
would rely on better performances. Under certain conditions, it is then possible to retrieve
the annotations in sub-linear time by aggregating the selected label sets.

Today the accuracy challenge is mainly tackled considering continuous representations
learning approaches. Particularly recent works such as SLEEC (Kush Bhatia et al. 2015)
or AnnexML (Tagami 2017a) reached top performances on a vast majority of corpora.
Those algorithms embed closely in the representation space documents which are similar
w.r.t their labels. Subsequently, inference is based on fast neighbor search decoding by
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comparing documents representation of the training set and representation of documents
to predict. One should thus imagine using labels and document representation together.

However, embed labels and documents together need to ensure that each of the
representations of the document is close to their labels representations. If labels are
organized as a hierarchy, intuitively we would organize labels embedding as a graph
and thus consider a graph distance. Hyperbolic embeddings is known as a great choice
to correctly represent graph organized data, particularly due to the similarity between
graph distance and hyperbolic distance. In a first study, we proposed to verify ability
of hyperbolic embeddings in describing correctly structured types of data. To this end,
the contribution deal with hyperbolic embedding applied to graph community detection
and classification. For this aim, we introduce an expectation-maximization algorithm
to fit a hyperbolic Gaussian Mixture model, having two objectives: agglomerate node
representation of the same communities and retrieve communities.

Nonetheless, classification of communities does not allow to assess it efficiency to
deal with large-scale classification but to validate its ability to embed structured data.
We introduce hyperbolic embedding for large-scale corpus by embedding labels and
documents together. Prediction considering neighbor search on labels and examples
remains difficult. We will show that even optimizing a cost having this objective will
lead to lower performances than relying on a neighbor search only based on documents.
However we clearly show that it helps to structure the documents representation. In this
last contribution, we proposed several costs for learning representations into hyperbolic
space and different approximation of the documents embedding function. We show through
many experiences that hyperbolic space is relevant for embedding extreme classification
types of data.

1.4 Structure of the document

In the first chapter 2, the section 2.1.3 introduces corpus characteristics and discusses
of their sizes, their features and the organization of labels to figure out what the extreme
classification challenges rely on. In the same section, we also describe the different ways
classification tasks are evaluated and discuss the pros and the cons of the different metrics.
The section 2.2.1 will provide an overview of the different classification schemes and
usual methods to face it. Then, the bibliography of the approaches developed to face
extreme classification challenges is examined. Representation learning type of approach is
particularly interesting for us since we developed three contributions based on it. Thus,
the section 2.3.1 describes current state-of-the-art representation based approaches to
deal with the tasks : firstly by describing those based on fastening prediction such as
ECOC and then those based on prediction accuracy with mainly continuous representation
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approaches. This chapter concludes introducing recent approaches to learn hyperbolic
embedding and gives tools to understand optimization process in section 2.1.2.

The chapter 3 presents the first two contributions of this thesis. The first contribution
learning binary embedding for fast prediction is described in the section 3.1: its modelization
is given in section 3.1.1, its evaluation on different large corpus in section 3.1.5 and in the
section 3.1.6 a discussion on the advantages of the method. Addressing the multi-label
setting in proposing the atoms network that learns subset of co-dependent labels is
described in 3.2. The section 3.2.2 proposes evaluation of experiments to validate the
model’s performances and a discussion on future improvements to improve the trade-off
between prediction performances and prediction time complexity .

In chapter 4, we introduce the second objectives of this thesis: obtaining better
structured representation by introducing hyperbolic embeddings for graph communities
detection and classification. The chapter is organized as follows : 1)The description
of the tools used to develop the methods in section 4.1.1; 2)The presentation of the
Expectation/Maximization algorithm for learning Gaussian Mixture Model in hyperbolic
space in section 4.1.2; 3)The presentation of the embedding process and the joint
community and node embedding optimization in section 4.2.

In the subsequent section, we evaluate the approach over two tasks the first dealing with
community detection (section 4.3), and the second addressing community classification
(section 4.4.1) on real graphs. We finally discuss the advantages of hyperbolic manifolds
to embed structured data and their usefulness in multi-label application tasks (section
4.4.2).

With the validation obtained in previous chapter, we now address the extreme classifi-
cation challenge using hyperbolic manifolds in chapter 5. We present two tasks, the first
one being the classification using K-NN approaches by : 1) proposing a framework that
embeds both documents and labels in the hyperbolic space in section 5.2; 2) proposing
an approach for documents embedding within hyperbolic manifold relying on label vector
similarities (section 5.3).

We finally in chapter 6 conclude by reminding the different contributions and discussing
of their advantages and drawback (section 6.1). To conclude in section 6.2), we discuss
potential improvement and impacts of the proposed approaches.
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Before going further in the contributions and introducing the three main contribution
of this thesis, we will first introduce the extreme classification task by presenting corpus,
challenges and evaluations. We then introduce historical methods to handle binary classi-
fication (two classes classification), multi-class classification and multi-label classification.
We continue the discussion of related works by describing more specific methods that
address the different challenges of the Extreme Classification: the prediction time efficiency,
the storage efficiency and, of course, the prediction accuracy. As we particularly address
the Extreme Classification tasks over the representation learning paradigm, we dedicate
an entire section to present with deeper precision those approaches, detailing particularly
methods concerning hyperbolic representations.

We finally conclude by a discussion on the current state-of-the-art and what would be
interresting to explore to tackle Extreme Classification remaining challenges.

9
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2.1 The large scale classification task

In this first section, the objective will be to make the reader aware of extreme clas-
sification challenges. In order to make an idea of the challenges, understanding the
characteristics of corpora will be the first matter of interest for us. The description below
will spot the difficulties encountered when facing such task, such as those related to the
data distribution or to the extremely large number of labels. We then introduce metrics
to evaluate classification performances and how it differs from usual classification metrics,
we particularly outline the multi-label setting where evaluation using simple accuracy
metric is irrelevant.
However, before discussing those two points it is necessary to provide notations for

corpus, labels and features. Thus, the following section will formalize notations which we
will endeavor to maintain all along this document.

2.1.1 Notations

For all classifications methods whether addressing mono or multi-label tasks, we define
a set referring to the considered corpus as D. In supervised classification D is a set of
tuples D ⊂ F×Y where F is called the features space and Y = {0, 1}K the label space.

For each tuple (x, y) ∈ D we refer as x being the features of an example and the label
vector of an example as y. We say that an example (x, y) is labeled or annotated with
j only if the jth component of the label vector is equal to one, i.e. yj = 1. However
the nature of labels space differs between mono and multi-label dataset, in mono label
corpus an example can be annotated with only one unique class thus each label vector

get only one component to one, i.e. ∀(x, y) ∈ D,
K
∑

i=1
yi = 1, in multi-label there is no

such restriction. A classifier is then a function from the features space to the label space
f : F → {0, 1}K.
For convenience in the following, we also define the label matrix being the concatenation

of label vectors for the dataset D such that :

LD =

 y1,1 . . . y1,K
... . . . ...

y|D|,1 . . . y|D|,K

 (2.1)

2.1.2 Corpus

An extreme classification corpus is firstly characterized by the large number of labels to
discriminate, generally we start considering a corpus to be "extreme" from ten thousand
different labels. It could be, moreover, pertinent to consider lower corpus sharing common
properties with extreme corpus (such labels distribution). Firstly, we should remark that
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mono-label and multi-label corpus do not address the same challenges, mono-label corpus
examples are not explicable with many labels, thus, do not make use of correlation between
labels. Thus the principal difficulty in mono-label remains to make accurate prediction
with scalable time and storage.

Dataset Avg documents/labels #labels #train
MNIST 6000 10 60,000
IMAGENET 1281.2 1,000 1,281,167
ALOI 108 1000 108,000
DMOZ 7.6 12294 93805

Table 2.1 – Statistics of mono-label corpora

In the table 2.1, we show statistics of mono-label corpus, showing that the main
difficulty relies on handling the size of the labels space and the number of documents for
each label (particularly for ALOI and DMOZ corpora).

However, the real challenging task is to address multi-label classification where taking
into account distribution and dependencies over labels are mandatory. According to the
table 2.2 describing different multi-label corpora, we can notice that a corpus could get
more examples than labels (as Wiki10-31K ) and similarly only a few examples for each
label (for instance in the Amazon-670K corpus).

Dataset Avg documents/labels Avg labels/documents #labels #train
Delicious 312 19.03 983 12,920
RCV1-2K 1,218 4.79 2,456 623,847
EURLex-4K 449 5.37 3,993 15,539
Wiki10-31K 8.52 18.64 30,938 14,146
Delicious-200K 72.29 75.54 205,443 196,606
WikiLSHTC-325K 17.46 3.19 325,056 1,778,351
Wikipedia-500K 24 4.77 501,070 1,813,391
Amazon-670K 4 5.45 670,091 490,449

Table 2.2 – Extreme multi-label corpus characteristics

In addition to the low number of examples for each label, labels are rarely represented
equally in each corpus, leading to have over and underrepresented classes.

2.1.3 Discussion on distribution and corpora size

Figure 2.1 shows the percentage of examples in the dataset labeled with each label,
sorted by frequency from the most infrequent to the most common ones, in the wiki10
and delicious datasets. In each dataset, the distribution seems to follow a power law
distribution with few labels concerning a high percentage of examples, on the contrary
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(a) delicious (b) wiki10

Figure 2.1 – Percentage of examples annotated by each label of the dataset, sorted by
ascending frequency for the delicious and the wiki10 datasets.

label name frequency
wikipedia 80.7%

wiki 41.9%
reference 28.3%
history 18.7%

(a) head labels

label name occurences
musc 1

articulation 3
boards 5
banality 7

(b) tail labels

Table 2.3 – Examples of frequent/infrequent labels for the wiki10 dataset

most labels having very few examples. A direct consequence is that predicting head labels
- labels that occur frequently - is an easy task (e.g. in the wiki10 dataset, more than 80%
of the examples are annotated with the label wikipedia), however, predict with accuracy
tail labels is much more difficult.
Therefore, some algorithms such as AnnexML (Tagami 2017a) focus on tail labels

classification. Moreover, heads or tails labels are frequently meaningful (see table 2.3),
head labels generally correspond to more general concepts (history is a global concept)
and at the contrary tail labels represent more specific ones. This fact underlies that
it should exist in those corpora a hierarchy or more generally a taxonomy over labels.
Thus trained classifiers must be robust to overfitting and aware of labels correlation and
distribution to accurately annotate documents.

2.1.4 Evaluation metrics

For mono-label classification, evaluation is mainly performed by the accuracy metric.
The Accuracy measures the percentage of classes correctly predicted :

accuracy(D, f ) =
1
|D| ∑

(x,y)∈D
1 f (x)=y (2.2)



2.1 the large scale classification task 13

with

1 f (x)=y =

{
1 f (x) = y
0 f (x) 6= y

Contrary to mono-class classification task, the multi-label one cannot be evaluated
using accuracy as in general finding accurately all the labels that annotate an example
will fail and thus give only little information on the performances of the classifier. In
multi-label classification, using precision (percentage of correctly predicted labels over a
number of inferred labels), recall (percentage of correctly predicted label over the amount
of truth labels) can reflect the algorithm performances. Unfortunately, those metrics are
not straight forward for the extreme multi-label classification task for at least two reasons:
1) the majority of algorithms are not designed to output a set of predicted labels but
only a score for each label; 2) the number of labels is too large to expect to predict the
exact label set, which usually leads to poor performances indicators having a very low
and meaningless score. In order to have a good estimation of algorithms performances,
the community mainly prefers ranking metrics as precision@k or Discounted cumulative
gain@k. In this section we present different evaluation metrics with their advantages and
their inconvenience. Moreover we now consider as output of a classifier f a score on each
label and no more a set of labels, i.e. f : F → RK and denote ŷ the resulting vector.
Those evaluation metrics often consider ranking in their formula, let’s define the rank
function for a vector ŷ ∈ RK returning the set of indexes corresponding to the labels with
the highest score:

rankn(ŷ) = arg max
S⊂N,|S|=n

∑
i∈S

ŷi (2.3)

Precision at n (P@k): supposing that there is at least n labels to predict for a given
example, the precision at n indicates the average number of correct labels among the first
n predicted labels.

p@k(ŷ, y) =
1
n ∑

l∈rankn(ŷ)
yl (2.4)

Propensity Scored at n (PS@k): Very similar to precision, this metric takes into
account the label distribution and the hierarchy of labels :

PS@k(ŷ, y) =
1
n ∑

l∈rankn(ŷ)

yl
pl

(2.5)

With pl the propensity score for a label l (Jain et al. 2016) which is a factor mainly
depending on the number of occurrences of the labels in the dataset.
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Discounted cumulative gain at k (DCG@k): The discounted cumulative gain takes
into account the rank order of the prediction, intuitively error on top of the ranked vector
will lead to lower the score more importantly than errors at the end of the ranked vector:

DCG@k(ŷ, y) =
1
n ∑

l∈rankn(ŷ)

yl
log(1 + rank(l))

(2.6)

With rank(l) the rank of the lth label.

normalized Discounted Cumulative Gain (nDCG@k):

nDCG@k(ŷ, y) =
DCG@k

min(k,l)
∑

l=1

1
log(1+l)

(2.7)

(PSDCG@k):

PSDCG@k(ŷ, y) =
1
n ∑

l∈rankn(ŷ)

yl
pl log(1 + rank(l))

(2.8)

(PSnDCG@k):

PSnDCG@k(ŷ, y) =
PSDCG@k

min(k,l)
∑

l=1

1
log(1+l)

(2.9)

Many other metrics are commonly used in large scale multi-labels classification,
particularly by mixing the objectives of the metrics previously presented such as nDCG@k,
PSDCG@k (merge propensity score with DCG or PSnDCG@k (merge propensity and nDCG).
For more details reader can refer to the Extreme Classification Repository(K. Bhatia et al.
2016).

2.2 Adressing classification challenges

Addressing classification tasks has been widely studied: in this section, we will describe
algorithms and previous methods having as objective classification. Firstly, we will
introduce historical algorithms and classical schemes for learning multi-class classifiers.
We then introduce today’s approach and recent improvements to deal with classification
tasks, particularly with the task-oriented models addressing classification for specific data
such as images or raw texts.

Thirdly, we will describe approaches that directly address large-scale challenges such as
taking into account prediction time or label correlation. We finally conclude and introduce
the next section on the representation approaches to face large-scale classification.
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2.2.1 Early multi-class classification

Binary classification. One of the first historic cases of classification involving machine
learning was the mono-label binary classification task: datasets contain exactly two different
possible annotations, each corresponding to one or the other class. In a large majority of
case the representation of examples (image, text) is characterized by a vector, for instance
we could consider an image as the vector containing value of pixels; for a text document,
we can consider each word as an index and represent a document by a one-zero vector of
words (one for index of words occurring in the document).

Thus, to handle binary classification one may consider a separator represented by a
hyperplane with on one side of the hyperplane examples annotated with one class and
on the other side examples annotated with the other. Retrieving a hyperplane with such
property is the aims of the perceptron proposed by Rosenblatt 1958, one of the first
machine learning approach for classification.
However, this approach suffers from low generalization ability, generalization being

the capacity of the model to adapt to new data that has never been seen during the
training phase. Finding the best hyperplane that guarantees that the separator is as far
as possible from both classes is a solution to handle the generalization issues. Thankfully,
the approach proposed by Boser et al. 1992 allowed to find the optimal margin between
examples and thus, retrieve the best separator. This last approach known as Support
Vector Machine (SVM) is still considered up to date and led to many applications this last
decade.

More generally, classical scheme of classification consists of optimizing an objective
function based on a loss function l and a regularization terms Ω( f ) to minimize:

E( f ) =
N

∑
(x,y))

l( f (x), y) + Ω( f )

Where f could be a linear function ( f (x) = W.xt + b) corresponding thus to a
hyperplane and Ω( f ) regularizations on the weight of the function f . Moreover a wide
range of loss has been studied such as hinge loss, mean square error or logistic loss.
Considering y equal to 1 or -1 for the first and respectively the second class, we can define
the usual losses:

• hinge loss : l( f (x), y) = max(0, 1− y. f (x))

• mean square error : l( f (x), y) = ( f (x)− y)2

• logistic based loss : l( f (x), y) = log(1 + e−y ḟ (x))

To optimize those error functions different optimization process could be used, when
the error function is convex one can void the derivative and look for a closed-form solution.
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However, in many cases the objective function does not get a closed-form solution and an
approximation of the solution can be obtained by using a gradient descend algorithm.

Multi-class classification. If those approaches work initially for binary classification,
we can easily apply minor transformation in order to make them work for the multi-class
setting.
The "one versus" scheme of classification is one of the solutions: learning a set of

binary classifiers each one classifying one class against one or several others. Mostly,
linear or SVM classifiers are used as those base classifiers. Two different approaches of
this scheme are often designed to handle multi-class classification : the one-versus-one
and the one-versus-all approaches. The first learns for each possible couple of classes a
binary classifier (total of K2 classifiers) and the second learns for each class one classifier
that discriminates the considered class against all others (total of K classifiers). For the
first approach, one-versus-one prediction is obtained by aggregating results of classifiers
and then select the predicted class according to a criterion (for instance using a majority
vote : the class that get the highest number of votes is the one predicted). For the
one-versus-all, the prediction is mostly obtained by selecting the class which the classifier
respond with the most confidence. In this last scheme learning binary classifiers with
a joint error function is more pertinent, for instance optimizing log-likelihood based on
softmax modelization of probabilities:

l( f (x), y) =
K

∑
i=0
−yilog

 e f (x)i

K
∑

k=1
e f (x)k

 (2.10)

On specific multi-class corpus labels may derive from a taxonomy and correspond to a
hierarchy over labels such that each class corresponds to a leaf in the hierarchy. Thus,
learning classifiers (using binary classifiers) that correspond to nodes in the taxonomy is a
relevant approach. This last approach is still in use and particularly time efficient, we will
latter review those methods in the section 2.2.3.

Nevertheless, those methods mainly consider learning linear separators, and in the
general case we do not observe linearly separable feature space (representation of data in
a vector space). To handle this issue one can use neighborhood based classifiers such as
K Nearest Neighbors (K-NN), where the prediction function f relies on finding closest
neighbors in the feature space. Similarly, one could associate to each part of the space a
class using non-linear regions, for instance the K-Means algorithm that associate each
example in the feature spaces to a centroid (barycenter of vectors). The centroids are
thereafter associated with specific classes (or eventually sets of classes).
Modeling a probability function P(Y|X) when noticing that data follow a specific

distribution is viable, for instance using a Gaussian Mixture prior to model this probability.
Another common way to handle non-linearity rely on modifying the feature space, i.e.
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applying on original feature space a function g : F → F′ such that data are embedded
in a space where they are linearly separable. Recent approaches trending is to consider
the prediction function f as a more complex function not necessarily linear, the domain
of learning non-linear functions is often referred to deep learning and those functions as
neural networks. The g function can be thus handcrafted for kernel approaches or learned
such its output get the desired properties for representation approaches.

We surely could continue to cite methods; however, it is not the aims of the current
section. Readers would notice the rich panel of approaches to face the different automatic
classification issues, in this document we could not give an extensive description of the
domain. However, some of the methods mentioned above will be described with further
details later (K-NN, neural networks and representation methods).

Multi-label classification. In multi-label setting, each example can be annotated
with many classes, fortunately multi-class approaches could easily be derived for this
last scheme. For instance, one could use the one-versus-all or the binary relevance (one
classifier for each label stating if it labels a document or not) scheme of classification
selecting all classes that respond positively in each classifier (using for instance a threshold
over scores returned by classifiers). However, another information is important, some
classes appear more a less frequently together. The idea of co-dependent classes refers as
the labels correlation in the rest of this document. However for linear based algorithms
the loss function cannot be the same since many classes must be selected in the output
vector. Losses such as log-softmax (equation 2.10) is no more relevant as its aim relies
on setting one component to one and the others close to zero. Multi-label loss such as
binary cross entropy logits (equation 2.11) will be thus preferred; seamlessly optimizing
likelihood but with a different model for estimate probabilities:

l( f (x), y) = −
K

∑
i=0

yilog(σ( f (x)i)) + (1− yi)log(1− σ( f (x)i)) (2.11)

Similarly to multi-class mono-label scheme, handling non-linearity could rely on equiva-
lents approaches: K-NN, K-Means or Gaussian Mixture Model (GMM). However, different
aggregations must be designed to select no more one but many classes (do not only
predict the most likely).

Robust classification. Another difficulty when addressing classification is to ensure
robustness of algorithms. Considering any of the above scenarios, a solution would rely
on learning several times each classifier and then aggregate predictions. This principle is
implemented in bagging methods or in boosting one’s (Schapire et al. 2000): Bagging
relies on learning a set of weak classifiers and subsequently aggregate classifiers prediction;
Boosting methods rely on a similar principle in the way of learning a set of weak classifiers,
but contrary to bagging classifiers are learned sequentially, thus allowing designing
classifiers that sequentially correct previous classifiers weaknesses.
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Additionally, ensure classifier robustness can be handled easily in an OVA scheme in
learning more classifier than classes. Instead of learning for each class a unique classifier,
one can learn classifiers for a subset of classes against another such that the number
of classifiers is higher than the number of classes, and each class can be retrieved by
merging selected subsets (for instance using the intersection of selected subsets). The
framework proposing to handle classification using this process refer to Error Correcting
Output Coding (see section 2.3.1).

Robust classifications for generic corpus (data independent) is largely and still studied
yet. For instance, an extensive review of general classification approaches in An up-to-date
comparison of state-of-the-art classification algorithms (C. Zhang et al. 2017) is given.
However, some frameworks or architectures are more effective to deal with specific types
of data. As today most approaches rely on deep learning approaches (learning non-linear
functions), we think introduce those approaches is mandatory to understand the current
state-of-the-art.

2.2.2 Classification and current applications

The Multi-Layer Perceptron Multilayer perceptron (or neural networks) offers an
alternative to one-layer linear models described above, having several advantages over
linear methods. Particularly, the ability to capture non-linear separation and contrary to
kernel methods learning parametrized non-linearity. The principle remains simple, it relies
on stacking linear function and non-linear ones (considering the perceptron as the linear
function):

f : F → RK

x 7→W.x + b

The multilayer perceptron relies on learning a more complex function which is the
composition of basic functions : f = gn ◦ gn−1 ◦ · · · ◦ g2 ◦ g1 with gi parametric functions
(gi will refer as a layer of the neural network). Moreover, gi function cannot be only linear
functions, since composition of linear functions still is linear. Generally, those functions
are defined by a non-linearity ψ named activation and a linear function such that:

gi : Rdi−1 → Rdi

x 7→ ψi(Wi.x + bi)

A main drawback of learning such function is the optimization that largely relies on the
gradient descent algorithm using chain rules in order to back propagate gradient through
layers. As generally learning such function introduce a non-convex objective, minimization
of a loss function rarely converge on a global minimum. Despite this last issue, plenty
of classification applications rely on neural networks and in a vast majority of case it
participates to largely improve state-of-the-art performances.
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Neural networks and applications. Handwritten digits mono-class classification with
the design of layer function based on learning convolution weights named Convolutional
Neural Networks (CNN by Fukushima et al. 1982; LeCun et al. 1989; Lecun et al. 1998
) largely participate in the popularity of those approaches in tackling kernel based
methods. However, it is in the last decade that neural networks raised in interest with
scalable methods for scene image classification with the ImageNet classification challenge
(Krizhevsky et al. 2012). This last one achieved a huge improvement compared to the other
methods. In multi-label setting, CNN approaches have succeeded to great improvement
by using bounding box (Wei et al. 2014) or more generally region based CNN instead of
whole images.

Image classification is not the only challenge that neural networks tackled, those last
years numerous approaches emerged to face many diverse tasks. For instance, raw text
classification or more generally sequential data is today addressed with neural networks.
In text classification, neural networks are largely dominating the classification task, more
particularly raw data can be processed in a sequential way using Recurent Neural Network
RNN (P. Liu et al. 2016), CNN (Kim 2014) or using both (Lai et al. 2015; J. Liu et al.
2017).

Moreover, those approaches do not solely tackle the classification task, they also
provide state-of-the-art in image generation (Kingma et al. 2013; Goodfellow et al. 2014),
video prediction, automatic translation (Bahdanau et al. 2014) or even in text generation
(Vaswani et al. 2017). It would be too long to be extensive in the descriptions of neural
methods and applications. As our contributions do not focus predominately on neural
networks architecture, we redirect the interested reader to literature. However, if those
methods remain effective in a large range of applications and also for classification purpose,
the cost for prediction (time, memory) is important. Indeed, since in most of the case
the last layer relies on a linear function, the complexity is frequently at least linear to
the number of labels. Thus, neural networks approaches based on classical scheme of
classification still are costly addressing the time complexity challenge.

2.2.3 Efficient time complexity approaches for XML

Even if multi-labels classification task has been a widely studied field of research,
provided methods suffer many issues, with mainly the time complexity facing a large
number of data. Competitions to tackle time complexity and performance issues such
as the Large-Scale Hierarchical Text Challenge (LSHTC Partalas et al. 2015) provided
several benchmarks to deal with classification considering a huge number of labels. In this
section we briefly describe algorithms designed to face large-scale multi-class classification
challenges (prediction times, storage and accuracy). Those approaches can be split in
three main paradigms:
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1. One-versus-All paradigm : Using sparse weight/representation computing for fas-
tening prediction.

2. Divide and Conquer paradigm : Dividing the task such that each classifier address
only subsets of classes or providing specific classifier organization (intuitively tree of
classifiers).

3. Representation Learning paradigm : Learning an embedding function from F to
F′ such that dim(F) >> dim(F′) given a richer or task-specific representation of
data.

In this section we will successively explicit the different approaches, we first start with
the OVA based approaches. We then present the Divide and Conquer approaches (also
named hierarchical approaches) and gives their strength and weakness. Finally, we present
representation approaches and mixed ones that attempted to merge the advantages of
each. As our works are mainly contributing to the later one type of approach, we deeply
analyze previous works in representation learning for classification in section 2.3.3.

2.2.3.1 OVA based approaches

In order to reduce processing time as well as storage, many works rely on sparse
parameters learning algorithms. The principle is the following: make a maximum of weight
in the parametrized function to zero, hence, only non-zero parameters are stored and
used for calculation. Learning sparse linear models can be performed using restriction on
weights, in that way two types of approaches lead, one learning sparse weights through
regularization terms (such as l1 based losses) or those pruning weights after the training
step.

For examples the PD-Sparse algorithm (I. E. H. Yen et al. 2016) proposes an optimiza-
tion algorithm to leverage sparsity called Fully-corrective Block Coordinate Frank Wolf
algorithm. This algorithm reduces training time by taking into account sparsity induced
by an l1, l2 regularization (using elastic net methods (Zou et al. 2005)). The authors
proposed an improvement of PD-Sparse named PPD-Sparse (I. E. Yen et al. 2017) taking
advantage multi-cores for efficient training in adapting loss function to be optimized using
parallel computation.
The method named DISMEC (Babbar et al. 2016) aims to solve the task in the

OVA framework improving storage/time/performance efficiency by offering the following
contributions: 1) Exploiting parallelization during training, leading to decrease significantly
training time; 3) Faster prediction and lower storage by inducing sparsity into the model,
with a method to prune weights. The authors noticed that an extremely large number
of weights are in the neighborhood of zero, and show that pruning them do not lead to
drastically lower prediction performances while broadly decreasing storage and processing
time.

Learning subset of classifiers. The Error correcting output coding (ECOC (Kong
et al. 1995)) approach can be considered as an OVA derived algorithm or a time-efficient
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extension of OVA. The principle is the following: each label is represented by a predefined
code (discrete representation), then, the framework relies on learning C (the size of
the representation) classifiers such that the concatenation of the classifiers outputs lead
to retrieve the labels code. If the original aim of the approach was to perform better
multi-class classification by using codes size larger than the labels space, at a later stage
the objective become to be time efficient by using smaller latent space (Puget et al.
2015). This last kind of approach can be interpreted as OVA but also as a representation
approach, thus we will deeper describes this framework in section 2.3.1. Those approaches
led to the Ground Testing (Ubaru et al. 2017) framework (GT) where each bit corresponds
to a set of labels allowing to efficiently deals with multi-label classification.

If OVA framework is often associated with prediction accuracy performances, in Extreme
Classification those methods are time consuming (excepting ECOC framework) as most
of the time involves as many linear functions as there are classes (K). On the contrary
methods relying on the Divide and Conquer paradigm offer much better time complexity,
often having a prediction time being logarithmic w.r.t the number of classes. In the
following section, we present those methods and their main advantages to leverage extreme
classification challenges.

2.2.3.2 Divide and conquer paradigm

Divide and Conquer framework consists in dividing classification into low costly classifi-
cation tasks.

One way to achieve this purpose is to use hierarchical structures as binary tree structure
allowing a theoretical prediction time logarithmic according to K the number of classes.

This framework relies on dividing recursively the label or feature space, learning classifier
for each of those subdivisions and inferring an example applying those classifier sequentially
until reaching a leaf.

The hierarchical classification scheme. More formally, let consider G(V, E) a
directed graph with V the nodes, E the edges and |V| = N, for each node :

• L = {l1, l2, . . . lN} correspond to a set of labels subset associates to each node i.e.
li = {li,1, li,2, . . . li,|li|} with li,k is a set of labels.

• A = { f1, f2, . . . fN} such that fi : F → {0, 1}|li|

We add the following constraints:

(vi, vj) ∈ E ⇐⇒ lj ∈ li (2.12)

li = {
⋃

j

lj|(vi, vj) ∈ E} and {
⋂

j

lj|(vi, vj) ∈ E} = ∅ (2.13)
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Intuitively we just describe the parents’ children relation such that each child has a label
subset that is included in the parent label’s subset and that all children have disjoint labels
set. We also said that the hierarchy is strict when ∀ fi ∈ A, ∀x ∈ F ‖ fi(x)‖ = 1 meaning
classifiers select one unique child. We also define the arity of hierarchical classifiers, the
classifier is said having arity k when ∀ fi ∈ F, |li| = k.

Hierarchical classifiers. One of the main challenges when addressing classification
within the hierarchical frameworks is finding the partition of labels i.e. finding an
appropriate set L. In few applications the hierarchical information or the label taxonomy
is well defined such that the set L is explicitly given in the data information. However
it is rarely the case, thus the main objective is to find an adequate criterion in order to
partition the labels or feature space. One can use criteria based on entropy (C4.5 Quinlan
2014). Different criteria have been developed each one correcting or adding information
to others, for instance Rokach et al. 2008 proposed criterion measuring incorrect labeled
examples and correct the sets accordingly. However if tree classifiers are rather fast
in prediction according to the number of classifiers, each classifier can be time costly
according to the number of considered features. To accelerate that process, one can use
the projection of data to learn a less costly classifier i.e. using a feature space F′ such
that dim(F′) << dim(F). In this way, S. Bengio et al. 2010 proposed to embed features
into a low-dimensionality space that preserve label similarities.

Node balance. Another difficulty is to ensure the balance between edges of the vertices.
In certain cases having unbalanced trees can lead to use a linear number of classifiers to
get prediction. In order to fit to the data distribution and ensure balance in each node, the
LOMTree algorithm Choromanska et al. 2014 proposes an online building tree algorithm
based on entropy based criteria with logarithmic depth. To avoid to create orphan nodes
(nodes with none or few examples/classes associated) the authors proposed a swapping
node algorithm allowing to swap nodes to a more convenient path.

The limitation of binary trees. Previous tree architecture was mainly defined using
binary trees i.e. each node get exactly two children, thus labels subset for a node li is
decomposed into two subset li = {ll

i , lr
i }. Involving to mainly create balanced binary tree

(number of right sub-nodes equals more or less number of left) and allow to mostly focus
on the partition criterion. Thus possibly obtain a non-natural distribution i.e. cannot
ensure that we can equally divide into two equal partitions with respect to the number of
labels or examples.

If mainly hierarchical approaches are based on binary trees, recent works proposed to
extend to more complex structure such as Jernite et al. 2016. This works propose to learn
trees with any chosen arity suggesting maximizing likelihood of examples representation.
In all previous methods leaf nodes are corresponding to one unique label, otherwise

multi-label classification cannot use those straight forward structure.
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Figure 2.2 – Examples of forest for multi-label classification as performed in MLRF al-
gorithms, each leaf corresponding to a subset of labels. The prediction is
then obtained by merging labels of each leaf reached in the tree classifiers
(typically a vote) in order to obtain a rank over the labels.

Multi-Label hierarchical classification. Dealing with multi-label setting, hierarchi-
cal approaches need some adaptation. One can imagine to associate to each node a label
and then predicts according to the path from the root to the leaf. However this method
gets some limitation particularly when the hierarchy is not strict and is unknown, and
learning ensemble of hierarchical classifier is frequently preferred (named forest). It is
the way addressed by MLRF hierarchical classifier (Agrawal et al. 2013) a multi-label
large-scale algorithm using in addition a forest of trees. In addition, MLRF considers
associating to each leaf of the hierarchy not a unique label but a set of labels (illustrate in
figure 2.2). In this works each tree is learned until a node contains less than log(K) labels.
For inference, authors proposed to aggregate each leaf reached to get score on each label
and thus produce a ranking. Indeed, as describe in section 2.1.4, ranking metrics are
often preferred to strict accuracy. For tree construction, the criterion remains simple, left
side and right side are decided by a separator over the features by minimizing left-hand
side and right-hand side probability to get a label i.

In a more general way, divide and conquer paradigm mainly rely on finding partitions.
Indeed, reducing for each example the number of labels candidates will speed up the
prediction. The general framework LPSR introduced by Weston et al. 2011b address the
partitioning problems considering any type of classifiers. The purpose of this works is
to reduce the number of labels to compare with. In each node the objective consists of
partitioning the feature space F such that examples lie in different partitions, thus each
partition is associate to only a small number of labels. To partitions the space the authors
consider a label scorer, i.e. a function taking an example and a label and produces a score
for a label (can be a classifier or directly the ground truth). This last approach relies on
new criteria for partitioning, authors proposed a hierarchical application of the partitioning
method using a linear label-scorer (Weston et al. 2011a), which allows fastening prediction
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time up to 61× without loss of significative performance loss compared to the others
approaches.

The ranking objective. One of the issues of optimized objective functions rely on
optimizing an accuracy cost and not a ranking one. Thus, an error on the first-ranked label
and on the nth one will get the same meaning according to the cost function. Intuitively,
there is less consequences make an error for a label ranked at the tail of the predicted
label vector compared to one in the head of the predicted label vector. Some metrics
take into account the rank of the prediction such as the nDCG (see section 2.1.4). It is
one of the issues stated by (Prabhu et al. 2014). This issue has been thus addressed
in (Y. Wang et al. 2013) proposing a new partitioning formulation directly optimizing a
ranking loss leading to improve significatively prediction performances.

Tail labels prediction. Multi-label corpus often relies on two types of labels, the
head labels, labels that occur in numerous examples and tail labels occurring in only few
ones. The vast majority of approaches are thus relying on predicting accurately head
labels that are much easier to retrieve since classifiers are merely better at generalizations
when considering a lot of examples to learn with. Thus, an improvement of previous
methods have been presented in PfastreXML (Jain et al. 2016) promoting tail labels (few
represented ones) classification and using loss based on propensity score function (refer
section 2.1.4 for details on the metric).
If PfastreXML and FastXML tree building algorithms allow obtaining a good purity

in each leaf in maximizing ranking loss function, the prediction procedure is not directly
equivalent to the optimized loss. In FastXML the prediction procedure is a K-nearest
neighbor search using training documents reaching the same leaf as support for the
prediction. In order to tackle the issues, a recent work offers a new partition method
named Graph Partitioning Tree GPT (Tagami 2017b) leading to partitioning nodes while
keeping most of the neighbors (with respect to the labels) in the same partition. The
approach relies on building a graph of tail labels nearest neighbors and learning the linear
partitioner in each node in maximizing probability of neighbors reaching the same child
node. This process led to improve performances on an important number of large-scale
datasets.
The recent proposed method CRAFTML (Siblini et al. 2018) reached the top per-

formances of hierarchical multi-label classification by using forest like classifiers using
both, label projection (using k-means for children construction) and feature projection to
partition the nodes and learns efficient classifiers.
Recently the method PARABEL suggests learning an algorithm that halfway rely on

trees and One-vs-all approaches by learning hierarchical model where examples can fall in
several children (relaxing the 2.13 constraint). Each leaf corresponds to a set of labels
and examples can join several of them. They also introduce a new building tree algorithm
based on hierarchical k-means LPSR. In order to get final prediction, a multi-class SVM
is learned on each leaf then they aggregate the score obtained by the SVM leafs.
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Figure 2.3 – Examples of Bloom filters process for multi-label classification. Each labels
get an associated code, classifiers from features space returns a code vector.
The prediction is depicted in the figure in removing successively classes where
bits are positive (gray circles) in labels representation and negative (white
circles) for example representation.

Close to the Divide and Conquer paradigm, Bloom filters (Bloom 1970) offers another
approach based on dividing label space: this approach consists similarly to ECOC learning
a set of binary classifiers such that all positive bits appear on the label representation (see
figure 2.3). The work proposed in (Cisse et al. 2013) relies on Bloom Filter for extreme
classification. Authors introducing a new hash function for label representation based on
label co-occurrences instead of randomized ones and show performance improvements
compared to Binary Relevance approaches.

Tree cascade error. In missing-label classification tree architecture is similarly em-
ployed. The work SwiftXML (Prabhu et al. 2018a) provides a tree construction to leverage
multi-label classification issues using in each node classifiers features and labels as input.

Although that all hierarchical approaches efficiently address prediction time complexity
challenges, many of them are not robust to internal nodes misclassification. Indeed,
any error on a node will often lead to wrong prediction (excepting in PARABEL where
classifiers redundancy is allowed between same depth nodes). Mostly, hierarchical method
classifiers making a unique error will frequently lead to a "cascade of errors". To reduce
this risk and improve robustness some hierarchical methods rely on computing nearest
neighbors on the leaves such as the FastXML approach or rely on learning large forest
of classifiers. Indeed, nearest neigbhor based algorithms are often considered as robust
and still in use in classification in important industrial application. To improve those
neighbors based classifiers, ensuring that similar examples (according to their labels)
are lying close (according to a chosen metric) in neighbor search space should provide
better performances. Hopefully, this is the aim of representation based approaches, those
approaches are consequently reaching top accuracy performances. In the following section,
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we will give an overview of representation classification methods (we will introduce them
deeper in section 2.3) .

Representation learning for XML

In search of solving the miss-classification issues caused by the "cascade error" in
hierarchical classification, representations learning is identified as an effective solution.
Representation learning aims to map an input space (or feature space F) to a latent one
such that the embedding space gets better properties in order to perform classification.
In most cases, the objective is to find a m mapping function from the input space to
another space, the label’s prediction is then processed using for example Nearest Neigbhor
Search or Linear Classifier (for linear classification, an objective should be to find a
mapping function to a space where documents are linearly separable). More formally
let have m : F → F′ with F′ the representation space (typically but not only RM),
sY : Y × Y → R a similarity between label vector, and sR : F′ × F′ → F′ a similarity
function on the representation space. In most cases the objective rely on finding m such
that ∀(x1, y1), (x2, y2), (x3, y3) ∈ D:

sY(y1, y2) ≥ sY(y1, y3) =⇒ sR(m(x1), m(x2)) ≥ sR(m(x1), m(x3)) (2.14)

With this constraint, arg max
yj

sR(m(xi), m(xj)) ensure that yj is the closest label

vector from yi. A legit question is why preferring a representation space instead of the
feature space F. The objective is twofold :

• Two examples in the feature space are not necessarily close in terms of labels
similarity. Thus constraining a representation space to respect the constraint 2.14
will lead to better prediction performances.

• Generally, the size of the feature space is large (see section 2.1.2), thus learning
classifiers from a lower representation space if dim(F′) << dim(F) will drastically
reduce processing time.

Those two objectives are addressed in the vast majority of works. Early approaches
to decrease the dimension are mainly focused on finding an embedding of label vectors
preserving a label similarity (named label space dimension reduction). To deal with, a first
idea would be to project label vectors using a linear function that preserve label similarity.

ml : {0, 1}K → F′

y 7→Wty

To retrieve labels one should first map input (from feature space) to label representation
(m f : F → F′) and finally design a reconstruction method to get labels from representation
space (m−1

l inverse of the ml function). This approach is proposed in (Hsu et al. 2009)
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in sampling a random linear function under several constraints. If this last method works
efficiently, it is due to the low dimensionality of representation space. Moreover, the
distribution is chosen according to the sparsity of the label space Y to guarantee an
isometry between Y and F′. Despite reducing the time computational cost, a main
drawback relies on processing m−1

l which is based on a time costly matching pursue
algorithm.

Low rank labels representation for fast reconstruction. A simple increase of
efficiency could be to design faster reconstruction method such as linear function. Partic-
ularly, as the label matrix LD is very sparse, we can consider it low rank i.e. the label
matrix can be written on a basis of size |F′| << K. As it is low rank it should be possible
to find a singular value decomposition LD = UΣVt and UtLD = ΣVt (U is K× K, and
V is N × N, both are orthogonal) with null singular value. This assumption has been
largely studied those last two decades in numerous works. Particularly, the methods PLST
(Tai et al. 2012) address representation through this principle encoding labels based on
the main labels space directions.

The main idea of the paper relies on using instead of random projections the M singular
vector associate to the M largest singular values such embedding is given by ml = Ut

1:MLD.
To decode the embedded vector one can use the inverse linear transformation (Ut

1:M)−1

which in this particular case is U1:M.
Despite a well grounded approaches nothing guarantee that the regression to learn m f

should accurately approximate the representation space. Thus the improvement CPLST
(Y.-n. Chen et al. 2012) proposed to learn representation being aware of the feature space
in learning the projection of the label matrix and a regressor jointly. Those approaches
refer to the domain known as label/feature space dimensionality reduction. Recently an
extensive review of those methods has been proposed by Siblini et al. 2019.

Overfitting. Overfitting when addressing extreme classification is a common issue to
a large range of model, particularly in embedding methods. Thus restraining feature
space to only relevant features is a key point to avoid overfitting. Similarly to previous
approaches, one can approximate the feature space with a low rank assumption, and thus
only considering principal components of F. This solution is proposed in the method LEML
(Yu et al. 2013) using additionally to the decomposition a regularization terms on the
trace of the low rank matrix. In addition authors showed that the approach can efficiently
work in missing labels setting thanks to the increase of stability and generalization.

Tail label awareness. Moreover the storage still is costly and SVD computation
for such a large matrix remains a real bottleneck to perform the training step. A final
drawback is the tail label awareness. Indeed projecting the label space while keeping
only the largest eigenvectors associate to largest eigenvalue leads to discard the tail
label information. This drawback is stated by Akbarnejad et al. 2016, showing that it is
particularly problematic in the missing-label setting.
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Time consuming methods. Despite reducing the dimensionality of the feature space,
all related methods still apply a reconstruction which is at least linear to the number of
labels. To tackle this issue actual approaches are considering using different embeddings
for a sub-region of the feature/label space in addition to decoding approximation to ensure
low time complexity (Kush Bhatia et al. 2015).

Divide and conquer and representation approaches. Recent representation based
methods rely on Label Space Dimensionality Reduction but also address divide and
conquer paradigm jointly. Indeed, first splitting the input or output space and then learn
representation for each of the generated subset should fasten the prediction.

The SLEEC (Kush Bhatia et al. 2015) algorithm proposal relies on dividing the feature
space, allowing performing classification on extremely large label space. It also contributes
to learn representation where instead of using linear reconstruction function, K-NN based
algorithm is preferred leading to better prediction performances. The main contribution
of SLEEC are the following: 1) Drastically reduce the learning/inference time by using
K-Means algorithms to split data; 2) Using K-NN on the learned representation for
examples in the same partition in order to improve performances; 3) Design a new method
for learning labels-features dependent embedding using label neighborhood. Moreover, to
ensure prediction robustness the method makes use of several learners which prediction
are aggregated. Most of recent approaches rely on the following principle: 1) split the
input/label space; 2) learning embedding on document/label subsets; 3) process prediction
based on nearest neighbors search.

Using the K-NN for prediction does not directly lead to lower time complexity. The
complexity depends on the amount of training examples rather than the number of labels.
Fortunately, the number of examples is not exceeding much the number of labels in
multi-label extreme classification corpora (see section 2.1.2), moreover, speed up can be
obtained with approximated nearest neighbors search.

Thus, the paper AnnexML (Tagami 2017a) does not consider the low rank assumption
as it is rarely the case for large label space, particularly when the number of labels per
examples is large. The approach uses stochastic gradient to optimize the constraint 2.14,
efficients neighbor searches and labels based partitions. Contrary to SLEEC, partitions
depend on the correlation of labels based on the cosine similarity between label vectors and
it learns classifiers to associate each example to a partition. The speed up is then obtained
by neighbors search approximation in the representation space such as the tree search or
graph search. Prediction complexity is additionally lowered by the post-partitioning of the
features space.

Learning efficiency. If learning hierarchical classifiers is pretty fast due to the partition
of the label space (classifiers are considering only a small number of classes), on the contrary
the training step in representation approaches could be time consuming considering the
loss optimized over all possible labels.
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To tackle the learning time complexity issue one could use the negative sampling
principle : considering a random batch of negative labels for loss processing (used in
Tagami 2017a). More recently the works SNM (Reddi et al. 2018) proposed a new loss
family (named Ordered Weighted Loss) closely related to negative sampling approaches.
This loss family involves many theoretical guarantee such being a valid surrogate of the
0/1 retrieval loss. Moreover, it empirically demonstrates the effectiveness of the approach
in obtaining state-of-the-art results in terms of prediction performances and convergence
speed.

Deep Neural Network for XML. If mainly linear functions are used to map input to
representation space, deep learning framework offer the possibility to learn more complex
function. Such a neural network DXML (W. Zhang et al. 2017) proposes to learn examples
representation using a multilayer perceptron (MLP) or Deep Walk (Perozzi et al. 2014)
proposes networks for graph representation.

Moreover, deep neural networks can directly deal with raw features such as a sequence of
words. Thus methods based on CNN or RNN can lead to better prediction performances
since they consider sequences. This last kind of approach is proposed in BOW-CNN (J. Liu
et al. 2017) using CNN for classification and an adapted loss function for training. Although
very good prediction performances and representation allowing lower computational cost,
those algorithms still are linear wrt. the number of labels.

Structure of the representation space. Obtained pertinent representation structure
should be characterized by how well the constraint 2.14 is respected. Recent works showed
that for different data structure, embedding using specific manifold and metrics could
help to get better structure of the representation space. Particularly, hyperbolic manifold
(Nickel et al. 2017; B. Chen et al. 2019; Ganea et al. 2018) theoretically and empirically
proved their robustness for embedding data such as graph structured ones or hierarchical
ones. Moreover, a large amount of eXtreme classification corpus respect a hierarchical
structure regarding labels (see section 2.1.4) we thus believe that using such embedding
in the multi-label classification task would improve performances.



Method Main Principle Inference time depends on
ECOC Learning a binary code for each labels Number of examples/size of codes
DISMEC (Babbar et al. 2016) OVA, Sparse weight Sparsity/Number of labels
PDSparse (I. E. Yen et al. 2017) OVA, Sparse weight Sparsity/Number of labels
Slice (Jain et al. 2019) OVA logarithmic to the number of labels
K-NN Nearest Neighbors Number of examples
KD-TREE Nearest Neighbors Logarithmic WRT number of examples
LSH Nearest Neighbors Sub linear to the number of examples
FastXML (Prabhu et al. 2014) Hierarchical Logarithmic w.r.t labels/Number of trees
PfastreXML (Jain et al. 2016) Hierarchical Logarithmic w.r.t labels/Number of trees
SwiftXML (Prabhu et al. 2018a) Hierarchical MLML Logarithmic w.r.t labels/Number of trees
CRAFTML (Siblini et al. 2018) Hierarchical Logarithmic w.r.t labels/Number of trees
PARABEL (Prabhu et al. 2018b) Hierarchical OVA Sublinear w.r.t labels/Number of trees (few needed)
PLST (Tai et al. 2012) Representation Number of labels
CPLST (Y.-n. Chen et al. 2012) Representation Number of labels
LEML (Yu et al. 2013) Representation, MLML Number of labels
SLEEC (Kush Bhatia et al. 2015) Representation, clustering linear w.r.t Number of examples
AnnexML (Tagami 2017a) Representation, clustering sub-linear w.r.t Number of examples
DEFRAG (Jalan et al. 2019) Representation, clustering

Table 2.4 – Methods summary with the type of approach and their prediction time.
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2.3 Learning embeddings for eXtreme classification

In the contributions we focused on representations approaches for extreme classification
type of corpora. We indeed believe that properties of representation based methods make
it a good challenger to efficiently tackle extreme classification challenges. In addition,
this kind of approach today stands at the state of the art in prediction performances. In
this section we present the different approaches to face large-scale classification through
embedding methods. We first introduce the error correcting output coding (ECOC) based
approaches which despite do not perform the best propose many interesting qualities
particularly regarding the prediction time. We then present large scale embedding methods
using Euclidean space and subsequently explain and give insight on the construction of
the representation space. Finally, we present hyperbolic space as two of our works rely on
this kind of embedding. In the meantime, we present recent hyperbolic approaches and
explain their advantages in order to embed multi-label data.

2.3.1 Faster proccessing and discret representations

A particular type of representation approach relies on learning discrete examples repre-
sentation. The benefits of those approaches mainly rely on the decoding time. Their low
embeddings size and the properties of discrete and finite representation space make it
faster at the decoding step. If in this document we refer to those methods as embedding
based approaches those approaches could be similarly viewed as one-versus-all type of
approaches.

Error Correcting Output Codes :

At the origin of the ECOC in machine learning, the aim was to associate with each
labels a large binary vector to ensure robustness. Later approaches have reduced the
representation size such that using representation size to be smaller than the number of
labels to discriminate.

To understand the main principle, consider a partition formed by multiple-linear separa-
tors such that in each partition there is only elements annotated with one unique class.
In some case the number of separator is insufficient to ensure this property, thus more
of them are needed to respect it. Figure 2.4 depicts the concept, where neither class is
separable using two linear separators but are using three.

However, we should remark that to encode K labels only log(K) partitions are necessary.
Hence, subsequent work relied on this property by learning few classifiers. The principle
in this case relies on choosing for each class a code word of size T with T << K, K
being the number of classes. After that for each "bits" of the code word learns a binary
classifier that split the data into two or more groups. For prediction, one can compute
the output of the T classifiers and associate the closest class code. Different methods are
thus proposed to associate the tuples made up of classes and codes such as maximizing
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Figure 2.4 – The initial concept of ECOC, learning more classifier than classes to handle
the non-separability of documents according to their classes.

Table 2.5 – Example of trichotomy based ECOC
Label C1 C2 . . . CT
1 1 0 . . . -1
2 0 0 . . . -1
3 -1 1 . . . -1
...

...
... . . . ...

K 1 -1 . . . -1

the hamming distance between code vectors. To sum up the principle of ECOC learning
we can decompose the procedure as following :

1. For each class chose a code word.

2. Learn for each component of the code word a classifier.

3. Predict using similarity search the closest codeword.

Lowering complexity. Theoretically, a low size for representation is sufficient since
only a logarithmic number of components are required to encode K elements. However,
the ideal case does not really apply facing real data. In practice the methods involve
C× log(K) classifiers keeping the complexity in O(log(K)). Compared to one vs. all
classifiers that need O(K) learning ECOC is clearly efficient.

Extend to trichotomies. A variation of previous ECOC could be to consider ternary
codes, two values for partitioning and one for unconsidered examples, this ECOC approach
is proposed by Allwein et al. 2000 considering only a subset of classes for each classifier (a
partition is not covering all the space). In this case,this partitioning is named trichotomy
and the code matrix is of the form M = {−1, 0, 1}C×K.
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Multi-label and the ECOC principles :

In multi-label setting the ECOC counterpart could be seen as the Group Testing
methods. Similarly, the objective is to train M classifiers where each of them code for a
subset of potential labels. The objective is then to learn classifiers where each one code for
a small number of labels, i.e., let A ∈ {0, 1}M×K (called the ground testing matrix) with
Aij = 1 meaning that the ith group gets the labels j. The lines of the matrix are k-sparse
(having at most k non-zero entries). Thus the objective is to learn a classifier which is
positive for a group if it contains the labels, the representation is then the selection vectors
(concatenation of classifiers prediction). The prediction is thus obtained by aggregating
selected groups, this method is typically implemented in Ubaru et al. 2017, who randomly
constructing the ground testing matrix (under certain guarantees on the structure).
If those methods are seldom used, we believe that it could lead to address multi-

label challenges with efficiency in time and precision. Despite discrete based learning
approaches are appealing, optimization can be difficult since it is not possible to use
standard optimization methods such as gradient descents based. Moreover, considering low
representation size or a few number of classifiers will not lead to a sufficient expressiveness
since only two decisions are possible (-1, 1). On the counterpart using continuous
representation methods (learning representation for each example in Rn) is much more
informative and methods based on it are more robust to errors.

2.3.2 XML based continuous representation

Although reducing time complexity is quite necessary when facing the large-scale
challenge, learning correlations between documents could turn out to be important
especially for multi-label settings. Capturing dependencies between labels could be difficult
with the expressiveness of binary based representation. Today, multi-label classification
is led by representational approaches using Euclidean space for representations in low-
dimensional space. The objectives of those methods rely on capturing similarities between
documents to ensure similarly labeled documents to have a close representation according
to the optimized metric. To this end, those last years many methods have been developed
such as label space reduction, sparse representation or low dimensionality embedding.

Label space reduction :

The label space reduction consists of learning compressed representations of labels. If
Y ⊂ {0, 1}N×K correspond to the label matrix for all elements of the considered dataset,
then label space reduction methods assume that it exists in a matrix U ⊂ RK×C where
C << K that describe the labels. Then, the representation of each label’s vectors is
given by ri = UtYi and decoded by (Ut)−1ri. The objective of classification is now to
learn regressor f : RM → RC that best approximate label representations of UtY.
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To ensure that this decomposition is possible, previous works consider that the label
matrix is low rank, i.e rank(Y) < K (PLST Tai et al. 2012). The principle relies on SVD
decomposition where Y is expressed as Y = UΣVt where instead selecting the entire
matrix U to get labels representation, only the M first vectors of the matrix corresponding
to the eigenvectors with the highest eigenvalues Σ are selected. Finally, the prediction for
an example xi is given by Ut−1

1:M f (xi).
However, although those methods success to obtain label representation that well

describes labels space, no guarantee are given to learn the regression successfully (function
f ). The CPLST (Y.-n. Chen et al. 2012) proposes to improve PLST through the addition
of feature information. The approach introduces a method to learn both together, the
representation of label space and the regressor. In this work the representation is given

by V1:mZ where Z = Y − 1
N

N
∑

i=1
Yi and V is obtained by SVD ZtHZ = UΣV with

H = XX+ (X+ the pseudo-inverse of X).
Applying this method to get representation consists of minimizing the following problems:

min
W,VVt=I

∥∥XWt − ZVt∥∥2
F +

∥∥Z− ZVtV
∥∥2

F

Ensuring to find a compromise between label representation and regressor. Finding best
representation for labels is not the only objective of XML, but also ensuring that decoding
time is low. Partitioning the feature space can lead to better representation and faster
decoding. This last drawback is addressed in the SLEEC approach (see further).

The K-NN algorithms :

Another approach to face classification relies on K-nearest neighbor algorithm: finding
for each sample its neighbors in features space and associate labels with respect to
the neighborhood. Those approaches are originally suited for mono-label algorithms
(Dasarathy 1991). The Multi-label approach based on the K-NN algorithm is based on
aggregating labels of the neighborhood (M.-L. Zhang et al. 2005; M.-L. Zhang et al.
2007). Those methods are particularly robust when the number of examples is sufficient.
Moreover, this classification approach does not need any learning or optimization process
to produce rank or labels. However, those models can be particularly inefficient in time
complexity with large features space or excessive numbers of examples. Meanwhile, a large
number of works have studied this issue and many proposals allow decreasing processing
time. To this end, those methods are today often coupled with Divide and Conquer
approaches or considering low-dimensional embeddings.

In addition to K-NN in standard Euclidean space, we can reduce complexity in specific
space such as hamming ones. For instance, (M. Norouzi et al. 2012) proposed a fast
approximated search for hamming space based on splitting data into buckets. Same
authors latter introduce construction of buckets producing an exact search (Mohammad
Norouzi et al. 2013) in root square complexity regarding the number of examples. Typically,



2.3 learning embeddings for extreme classification 35

Representation cluster II

Representation cluster I

cluster I
cluster II

Figure 2.5 – Principle of representation methods to face the eXtreme classification. First
partitioning the input space and then learn representation on each partition.

this last approach can be used in order to boost decoding time for ECOC based approaches
using K-NN as decoder.

SLEEC Algorithm :

The SLEEC algorithm (Kush Bhatia et al. 2015) addresses the multi-label representation
challenges by: 1) taking into account co-occurrences of document labels; 2) make faster
the prediction steps using a K-Means partitioning based algorithms. This framework
obtained the state-of-the-art results in 2015 and is still competitive with most recent
approaches. The principle is the following :

1. Partitioning the space using K-means

2. Finding embeddings by minimize for each partition
∥∥YtY− ZtZ

∥∥2
F + λ ‖Z‖1. Then

Z ∈ Rn×m is the embedding matrix (e.g. each row of the matrix corresponds to
the embedding of a unique document)

3. Find a mapping linear function defined by the matrix V such that :

min
V
‖Z−VX‖2

F + λ ‖V‖2
F + µ ‖VX‖1

For the first minimization (finding embedding matrix), the authors proposed to learn it
using a Singular Value Projection (SVP) approach (low rank gradient descent algorithm).
In addition Z is designed to be sparse by optimizing the L1 regularization involving set to
zero non-decisive weights. The second minimization is provided by the ADMM algorithm
(Sprechmann et al. 2013). To predict examples, the authors rely only on the naive K-NN
approaches, the prediction time being drastically reduced by the upstream partitioning : a
K-Means algorithm on feature space.

Similarly to the PLST algorithm reviewed in the previous section, the procedure to learn
embedding and regressor involves two different steps. potentially leads to find a suboptimal
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regression function. However, accumulating sparse linear functions and partitioning the
feature space leads to drastically lowering the time complexity. As partitioning is performed
with the K-Means algorithm on the feature space, clustering do not necessarily regroup
examples that are similarly labeled. This issue is tackled in the AnnexML framework.

AnnexML :

Tagami 2017a propose to address SLEEC main issues stated in the previous section
: the partitioning considering only the documents features and the low rank prior. It
proposes a new supervised algorithm for partitioning and introduce a relevant loss to
preserve documents similarities. One of the main contributions is a new partitioning
algorithm taking into account labels by learning a clustering classifier which aims to
regroup similarly labeled examples (with respect to cosine distance between label vectors).
Thus, it ensures that similarly labeled examples lie in the same partition. Authors also
provide adapted approximate neighbors search to fasten the prediction time merging Graph
and Tree search.

Once partitioned, optimization is done using a gradient descent maximizing the cosine
similarity on embedding. To this end, authors propose to model the conditional probability
of two examples :

P(xj|xi) =
ecos(zi ,zj)

∑
k∈N i

c∪{j}
ecos(zi ,zk)

With N i
c the negative set of examples for the partition c, zi representation of documents

and xi associate document in features space. At the best of our knowledge, AnnexML
still produces the state-of-the-art performances on several large-scale corpora. We will
accurately describe the method in the last chapter (chapter 5) since we propose a similar
embedding construction in the last contribution.

Despite embedding approaches produce state-of-the-art performances on a large variety
of corpus, it remains unclear which paradigm is the best for large-scale classification.
Indeed, the performance of the different type of approaches will depend on the structure
of label/example space in the corpus. Typically, tree-based classifiers better perform
on corpus within a tree structure among labels. However, recent approaches state the
relevance of hyperbolic embedding for structured data representation, particularly in low
dimensions compared to its Euclidean counterparts.
Indeed we deeply believe that those manifolds are fitted to capture complex data

structure, particularly when a taxonomy among labels or examples exists. In this thesis,
we proposed two works based on this geometry with the aim of dealing with structured
representations. In the following section, we dispense hyperbolic geometry basics and
describe improvement and application of the machine learning community in this field.
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2.3.3 Representation learning and hyperbolic space

Learning representation is intimately connected to a prior of data structure. It has
been assumed that some representation spaces are better to capture some structure than
others. Particularly, recent research has allowed representation learning within Riemannian
manifolds, thanks to recent advances in projected gradient descent. More particularly,
recent works demonstrated the usefulness of hyperbolic manifold to accurately represent
data structure as graphs or hierarchies.

2.3.3.1 The hyperbolic space

We call hyperbolic manifolds Riemannian manifolds with constant negative curvature
usually denoted as Hn for the n-dimensional Hyperbolic manifold. One of the representa-
tions of the manifold is the hyperboloid defined by z2 − x2 − y2 = −R2 in R3 . In this
thesis we will work on the hyperbolic space through the Poincaré Disk (Ball) model (isom-
etry of the hyperboloid model). The Poincaré Ball model is defined by an n-coordinate

system such that the manifold is an open ball i.e x ∈ {y|
n
∑

i=0
y2

i < c} = Bn(0, c) (in

the following we fix c = 1) and the associated metric tensor gh = 2
1−||x||gx. This

Riemmannian manifold is denoted by the couple (Bn, gh) (manifold and its Riemmannian
metric). To go further in Riemannian geometry and understand concepts more deeply,
readers could take a look at the introduction Rouvière 2016.

In this document we propose to make use of the Poincaré ball model, where distance,
logarithmic and exponential map are defined in closed form.

From hyperboloid model to Poincaré ball: To convert a point from Poincaré ball
model representation to the hyperboloid one, the following formula is defined:

xi =



2yi

1−
n
∑

i=0
y2

i

∀i ∈ {1, 2, . . . , n− 1}

1+
n
∑

i=0
y2

i

1−
n
∑

i=0
y2

i

for i = n

And reversely transformation from the Hyperboloid to the Poincaré ball is processed by
:

∀i ∈ {1, 2, . . . , n− 1} yi =
xi

1 + xn

The figure below 2.6 shows geodesics in the hyperbolic space, the first one using the
hyperboloid model, the second using the Poincaré ball model.



38 extreme classification previous and current approachs

(a) Geodesic in the Hyperboloid model (b) Geodesic in the Poincare disk model

Figure 2.6 – Same geodesic (orange line) in the hyperboloid and Poincaré disk model

Poincaré Ball Distance : The distance in the Poincaré ball model is defined for two
points (vectors) x, y ∈ Bn(0, 1) by :

d(x, y) = cosh−1
(

1 + 2
‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
(2.15)

The distance below is intimately similar to trees graph distance, considering the example
given by Sa et al. 2018, let have x, y ∈ Bn(0, 1) and the ratio of distance d(x,y)

d(x,0)+d(y,0) ,
when the norm of either x or y tends to one, then the ratio increase. We depict the ratio
according to the norm in the figure 2.7b. In a case of trees, this ratio is equals to one
when considering the central point at the root of the two other points. In hyperbolic
space when the point is close to the boundary, we get closer to the graph distance.
In figure 2.8 the hyperbolic embedding of a simple tree graph is depicted, in the

hyperbolic representation we would notice that embedded point preserve the hierarchy
order in low dimensionality (i.e. point at a distance d are closer to d± 1 than d± 2 in
the graph is preserved considering Poincaré ball distance).

Thus, hyperbolic space is a great choice to embed data such as graph structured ones,
hyperbolic distance having similarities with graph distance for extremum points.

2.3.3.2 Application Background

Using hyperbolic space to capture structured information is not a new idea. Several
works from the beginning of the year 2017 have provided methods to capture hierarchical
information in the Riemannian manifolds. Embedding WordNet (a hierarchical corpus of
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(b) Distance ratio

Figure 2.7 – Figure depicting similarity between Poincaré distance and graph distance.
The first figure (2.7a) giving the partial geodesics between two points of
similar norms, showing curvature. The second figure (2.7b) compares the
ratio d(x,y)

d(0,x)+d(0,y) using Hyperbolic distance (blue curve) and Euclidean
distance (orange curve). Notice that this figure is inspired by the paper
Representation Tradeoffs for Hyperbolic Embeddings (Sa et al. 2018).

(a) Tree to embed (b) Embedding of tree in hyperbolic space

Figure 2.8 – Representation of hierarchical data using the Poincaré disk representation.
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English words) has been provided by Nickel et al. 2017 proposing a new approximation of
gradient descent algorithm using retraction (refer to figure 2b in the appendix). One of
the main conclusions of the study is the ability of hyperbolic space to capture hierarchical
information using low-dimensional embedding contrasting with Euclidean requirements for
same performances.

In the continuity of those works (Sa et al. 2018) proposed a new approach for embeddings
hierarchical data, extending the 2-dimensional embedding algorithm to larger dimensions
in addition to the hyperbolic counterpart of Principal Component Analysis (reducing
dimensions with respect to the main direction of data). Although this method outperforms
previous state-of-the-art ones, the full hierarchy of the data is required thus restricting its
application field.

Works mentioned above evaluate on toy data. Real life tasks have recently been
addressed such as the GloVe language model adapted for the hyperbolic space in Poincaré
GloVe (Tifrea et al. 2018). Empirical results tackled GloVe Euclidean embeddings for
words similarity (looking to the neighborhood of embeddings), analogy (which d is c what
b is to a) and hypernym classification (labeling embeddings e.g. "amphibians, alligators
..." correspond to "reptile") showing that even in non-hierarchical application hyperbolic
embedding could provide competitive performances.
Deep neural architectures and their optimizations on the Poincaré model have been

recently introduced in Hyperbolic Neural Network (Ganea et al. 2018), given a method
to perform logistic regression and to embed sequential data by proposing hyperbolic
counterpart of many neural layers.
In the mean times, embeddings approaches mapping usual neural layers to Poincaré

Ball Model have been developed such as in question answering tasks in (Tay et al. 2017).
Mathieu et al. 2019a proposes the hyperbolic counterpart of the VAE defining conse-

quently the hyperbolic Gaussian distribution.
A recent trending task using hyperbolic representation is the embedding of graph

structured data, such as transposing graph neural networks for node representation (Q. Liu
et al. 2019) or convolutional neural networks (Chami et al. 2019).

In classification, the Hyperbolic Interaction Model (B. Chen et al. 2019) has provided
efficient methods for multi-label classification learning metric pairing labels and documents
hyperbolic representation. To embed text sequential data Ganea et al. 2018 make use of
hyperbolic recurrent neural networks.

With a large panel of works, hyperbolic space proofs its efficiency in many applications
over the last two years. Programming libraries for optimization and visualization recently
emerged such as geoopt 1 and geomstats 2 easing the machine learning applications relying
on non-Euclidean manifolds.
However, approaches for classification or embeddings large corpus of structured data

has not been efficiently established yet.

1. https://geoopt.readthedocs.io/en/latest/index.html
2. https://github.com/geomstats/geomstats
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2.3.3.3 Learning representation within hyperbolic manifolds

Thanks to various theoretical advances, the optimization in Riemannian manifolds is
possible today. The current optimization approaches are based on projected gradient
descent. The general principle relies on computing a gradient on the tangent space at
a point and then to project it via the exponential map to the manifold. It will also
be necessary to introduce new concepts such as parallel transport when one wants to
introduce a "memory" of previous gradient updates. For instance, Bécigneul et al. 2018
developed an adaptive gradient descent such as Adam or AMSGrad for hyperbolic space .
We will give in the appendix of this document the definitions and formulas necessary for
these optimizations (in appendix 2). In the associated works, we will mostly use this last
kind of optimization to perform the optimization of the representations.

2.4 An uncompleted challenge

Extreme classification has been a challenging task those previous years. In the curse
to tackle those challenges, three different paradigm exist : One-versus-all with sparsity
or some versus some with the ECOC; the divide and conquer paradigm and hierarchical
classification; the representation approaches. Today, methods from all those paradigm
get pro and con arguments, OVA strengths being the prediction accuracy, hierarchical
ones naturally tackling time complexity challenge and representation methods relying on
low learning complexity and prediction accuracy.
However, few representation methods proposed approaches to efficiently capture the

structure of labels or examples taking into account co-dependencies of labels or the label
hierarchical prior. Representation of data in a compliant space can be one of the solutions,
particularly in involving different spaces fitting the structure. In this thesis we propose to
tackle those challenges introducing first a stochastic method to face the representation
challenge by embedding feature space in a discrete space. To tackle the multi-label setting
we proposed a method learning dictionary of co-dependent labels, with representation
being the binary vector that aims to select the relevant label subsets. In the following
chapters, we study the hyperbolic manifold and demonstrate its relevance to capture
efficiently complex structured data. Finally, we study approaches addressing eXtreme
Multi Label classification challenges through hyperbolic embedding, with these studies we
showed the benefits of this Riemanian space to efficiently capture and represent multi-label
data structure.
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The first work presented in this chapter addressed the extreme mono-label classification
based on binary representations. Similarly to ECOC, the contribution is based on learning
a mapping function from the feature space to a set of codes in {0, 1}c corresponding
to classes. Considering binary representations, we drastically lower the time complexity
thanks to fast nearest neighbor search that could theoretically reach

√
N binary vectors

comparison (with N the number of training examples) to produce the prediction. Contrary
to existing Error Correcting Output Coding (ECOC ) approaches, we do not attribute
each class code randomly but integrate the discovery of codes in the learning step. In this
chapter, we first present the DSNC (Deep Stochastic Neural Code) model for mono-label
classification. Then, we propose an extension of the algorithm for multi-label classification.
However, in multi-label setting, the DSNC approach did not succeed getting competitive
performances. In order to tackle this issue, we present leads we started to develop such
as a binary dictionary model that is optimized similarly to DSNC. This approach relies on
grouping co-dependent labels and classify by selecting most relevant set of labels.

For both proposed approaches, we evaluate the models on real large scale datasets and
discuss their performances and drawbacks.

43
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3.1 DSNC : learning binary codes for fast classifi-
cation

When facing classification within a large number of classes, one challenge is to keep
the inference complexity at a reasonable level. Classical approaches frequently have
an inference complexity which is linear with the number of categories, leading to the
prohibitive processing time for a large-scale corpus. Even if parallelized techniques or use
of GPUs can drastically decrease this computation time, the complexity remains very high,
especially when the final application gets low computational resources. One approach to
lower complexity would rely on using fewer classifiers than the number of classes, as it is
in the ECOC framework.

In the ECOC framework (Berger 1999), a binary code is associated with each category,
and a function is learned to map each input to one possible code. Since defining binary
codes of size log K is sufficient 1 to encode K classes, the resulting number of classifiers
will be O(log K). But those approaches suffer from two main drawbacks: (1) choosing
which code to associate to each category is usually handcrafted, even by using random
codes or by using complex heuristics (Zhong et al. 2010; Zhong et al. 2013) that need a
heavy learning process. (2) Even if codes are carefully chosen, the performances of the
resulting techniques are usually lower than classical one-vs-all approaches. Learning the
mapping corresponds to train multiple binary classifiers such that each classifier output
corresponds to a partition of the classes.

In this first contribution, we propose a new model named Deep Stochastic Neural Codes
(DSNC ). The objective is to address the two discussed drawbacks, by learning jointly
codes to associate with each class and the mapping function from feature space to codes
in an end-to-end fashion.
Initially the aim of learning such codes is to infer the labels in constant time. Indeed,

considering a finite number of code vectors and the label associated to each code, one
can decode (associate a code to a class) storing all possible combinations of the codes
and classes. Thus inference consists to retrieve the code for a document and then find in
the stored table the corresponding class. Unfortunately, having a too large binary space
dimensionality makes the enumeration of codes intractable.
Thus, we propose several methods to retrieve class from codes. Using K-nearest

neighbor search reported the best trade-off between performances and time complexity.
If K-NN search is often time consuming as it involves comparing each example to a
large set of other examples, many approximate algorithms have improved their efficiency.
Particularly, hashing methods split the search space into several partitions (Indyk et al.
1998; Gionis et al. 1999) uses linear separators to partitions the space (refer to figure
3.1). To even go faster, one can recursively partition the search space such that final
search space contains very few examples thus leading to a few number of comparisons

1. concrete experiments are usually made with codes of size k log K where k is a factor such that
k ≈ 10
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(kd-tree Bentley 1975; Jo et al. 2017). Improving those principles to make data dependent
partitions such as maximizing the collisions of close examples within the same hash is still
studied to better approximate neighbor search (Andoni et al. 2013; Andoni et al. 2015).

h2

h1

h1(x) h2(x) Bucket

≤0 ≤0

>0 ≤0

>0

>0

≤0

>0

11→b1

01→b2

10→b3

00→b4

Figure 3.1 – The main principle of LSH algorithms, each point belongs to a bucket
depending on the sign of linear functions h1 and h2. K-NN is then performed
only on samples from the same bucket. In the original work hi are considered
as random hyperplane.

Moreover exact efficient methods have been developed for particular latent space such in
hamming ones, useful for instance for the search in Bag of Words (BOW) representation.
This being the case in M. Norouzi et al. 2012 which takes advantage of finite and discrete
properties to accelerate K-NN processing using hashing index. Considering binary space
to perform exact neighbor search based on dividing data into bucket codes (Mohammad
Norouzi et al. 2013) drastically accelerate the decoding process.

Additionaly to the decoding the other problem is how to design the codes. At the
contrary to most existing neural approaches using continuous derivation to learn the
mapping, the proposed model integrated stochastic units to efficiently sample the code
space. Our model is based on a deep neural network where one of the hidden layers
is a stochastic layer in which each neuron can take the value 0 or 1 only. Since our
architecture involves a discrete non-differentiable layer, we propose a learning algorithm
based on the Straight Through estimator proposed in (Y. Bengio et al. 2013). Results
on different datasets show the effectiveness of the approach in terms of inference time
complexity along with accuracy performances making this algorithm competitive when
facing a large number of classes.

The contributions are thus threefold:

• We propose a new family of discrete deep neural networks aiming at classifying
when the number of categories is large by learning to map inputs to binary codes,
and codes to categories.
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• We present an end-to-end learning algorithm that do not need any a priori heavy
process, the model being able to decide by itself which code to associate to which
category.

• We show that this model is competitive with classical techniques in terms of accuracy
while keeping a low inference complexity.

3.1.1 Proposed approach
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Figure 3.2 – DSNC model architecture, x the input features vector, φ the modeled
Bernoulli distribution according to x, bx the binary code sampled from the
Bernoulli distribution and dθ the decoder of binary codes (see section 3.1.3)

Usually in classification, large deep learning architectures represent the current state-of-
the-art methods when facing a specific type of data. However these usual approaches
are rarely time-efficient. In this section we present our model which can be compared to
a multi-layer perceptron using a discrete latent space. This property leads to efficiently
decoding the latent vectors, we will describe the different decoding approaches in section
3.1.3.

The main difficulty of the model remains in learning an encoder and a decoder considering
a binary layer. In the main part of the literature, an usual way is to learn encoder and
decoder independently. On the contrary we learn the two functions in a joint way. Moreover
all along the learning step we consider the binary representation obtained by sampling
over a distribution, thus it gives the advantage of the exploration of the representation
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space. We describe the learning procedure inspired by REINFORCE (Williams 1992) in
the section 3.1.4.

Let consider Rn and Y = [0, 1]K as the input space and the output categories. We
attempt to find a function f such that f gives the probability that for an input x ∈ Rn

we obtain a category y ∈ Y. The function f in our case relies on three different steps.
The first one corresponds to the encoding step which from the feature space predicts a
vector corresponding to the parameters of a binary code distribution. The second step
consists in sampling a code from this distribution. The last step named decoding, takes a
code as input and outputs a class.

Figure 3.2 summarize the different steps: the encoder that from an input feature vector
firstly produce a vector in [0, 1]c that correspond to Bernoulli distributions parameters;
sampling according to the distributions a binary vector bx, the decoder which from bx

produces a class.

3.1.2 Deep Stochastic Neural Code : Encoding

The encoder transforms the input data from the input space F ⊂ Rn to a vector in
B ⊂ [0, 1[c corresponding to parameters p of c independant Bernoulli binary distributions.
We denote in this paper eφ the encoder parametrized by weights φ, bx the binary vector
drawn according to the distribution parametrized by eφ(x). More precisely we model :

eφ :Rn → [0, 1[c

x 7→ σ(W · x + a)

With σ typically given by σ(x) = 1
1+e−x .

Once parameters obtained, we sample over the c defined Bernoulli distributions leading
to get a binary vector in {0, 1}c i.e. bx ∼ qφ(b|x). We recall the Bernoulli distribution
probability mass function is given by :

M(b, p) =

{
p if b = 1
(1− p) if b = 0

The probability of a code relying on the c Bernoulli distributions parametrized by encoder
outputs is thus:

qφ(b|x) =
c

∏
i=1

bieφi(x) + (1− bi)(1− eφi(x))

However, during the inference step we replace the sampling by an hard-sigmoid function
on the Bernoulli parameters as we so not need exploration in this step.
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3.1.3 Deep Stochastic Neural Code : Decoder

Once the code obtained, the last step consists of decoding a binary vector to produce a
label vector in Y, we refer this step as the decoding step. We introduce the three variants
of the decoder function in this section. In the following, we will denote the decoder by dθ.

Linear decoding. We refer our first method as linear-decoding which consist of using
a linear function from codes to a probabilistic vector of classes. If this method still is
linear according to the numbers of labels, it allows verifying the validity of learned codes.

w argmax

Figure 3.3 – Linear decoding of binaries code, we learn a linear multi-class classifier taking
as input code parametrized by a matrix W ∈ Rc×K. Prediction is then given
for a code bx by l = arg max Wtbx + a

Hash decoding. The second decoding method uses a dictionary containing all the
possible codes (2c) and associate each code to class. If we know classes and codes for the
documents of the training set, we do not know the classes of codes associated with no
training examples. To this end, the linear decoding method is used to get for each code
the associated label vector. When the size of the codes is small, we can enumerate all
possible codes and apply the linear decoder on them to get the associated classes. More
formally, for each code b ∈ {0, 1}c we store the couple code/class (b, arg max Wtb + a)
into a table. However, considering too large code size involve too much memory needs,
thus we consider this last decoding scheme available only when codes size is lower than
30. This decoding method is very fast as we just have to look at the table to directly
obtain the prediction (see appendix .1).

K-NN decoding. The last decoder process involves the nearest neighbors search
algorithm: in this context we will consider the training codes as the known codes, and
the test set as a query set. We can notice that potentially some training documents can
be encoded with same codes, in practice there are fewer codes to compare than training
examples. To ensure that similarly labeled documents codes are close to each other,
we will present in section 3.1.4 a regularization term in the loss. The K-NN decoding
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Figure 3.4 – Hashing decoding of binaries code, each code is associated with one class
only by forwarding each example using the linear decoding method, then all
couples (code, label) are stored in a hash map (or code being interpretable
as integers a table could also work). Predicting examples is then performed
by looking at the labels associated with the code of an example to label.

approach takes advantage of fast nearest neighbor search using the bucket-based algorithm
(Mohammad Norouzi et al. 2013). In this particular case the decoding time complexity
relies on the number of training examples. Depending on the dataset considered, the
K-NN time complexity can be drastically lowered.

Distance
With

Train Codes

Figure 3.5 – K-NN decoding of binaries code, for each training examples we stored couples
(code, label). For prediction we compute the distance of a testing code to
stored ones. With a bucket-based methods (Mohammad Norouzi et al. 2013)
the number of comparisons is drastically lowered.

Complexity. For all models, we consider using a linear encoder from the feature space
F ⊂ Rn to the Bernoulli space [0, 1]c, thus encoder time complexity is in O(nc). The
first decoder we considered is a one-against-all based model, which consists of using k
classifiers which take into account a class against all others. We implemented it using a
linear layer using the loss presented in section 3.1.4. This type of classifier considers a
matrix of size c× K, the decoding time complexity is thus in O(cK). This first decoding
remains linear to the number of labels. In the end the complexity of this model is in
O(nc + cK).
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In extreme classification, methods like ECOC use an efficient way to deal with the
performance/time complexity trade-off. ECOC encodes the data into predefined bits
codes (one by classes), and decodes them similarly to our methods using nearest-neighbors
search with different metrics (as hamming distance). The encoder complexity involves c
classifiers, and the decoding function get a maximum of k comparison between binary
vectors of size c. However an important panel of methods to efficiently perform the
nearest neighbors search has been previously proposed. Mohammad Norouzi et al. 2013
proposes a method using a hamming distance in O( c

√
k

log2 k ). The complexity of the overall

model is O(nk + c
√

k
log2 k ).

With our approach three different complexities can be achieved according to the three
different decoding approach. The linear one has similar computation time than an MLP
considering the same numbers of layers (for one hidden units O(nc + ck)). This method
does not allow a sub-linear inference, but can be performed faster due to the use of binary
operation instead of floating ones.
The second approach involving a hashing function allowing our model to decode in

O(1) and have an overall complexity in O(nc). However this method is not scalable
when considering a large size for codes.

The last decoding function involves the nearest neighbor search, achieving at least
similar complexity to ECOC. We get multiple codes for each class contrary to the ECOC
which mainly considers one code for each class. Let r be the numbers of different codes
used which admits the following upper bound r < min(2c, |D|). Inferring the classes
of the training set allows obtaining a decoding complexity of O( c

√
r

log2 r ). At the end, the

complexity of this method is O( c
√

r
log2 r ) + nc.

3.1.4 Learning procedure

In this section we describe the procedure to learn the binary encoder, presenting the
REINFORCE algorithm and the Straight-Through estimator.

Learning through gradient descent. Learning such a model needs to fit over the
data eφ and dθ functions. Thus the error associates to this model can be written as :

J(φ, θ) = E(x,y)∼DEbx∼qφ(b|x)L(dθ(bx, y)) (3.1)

With bx the binary representation vector sampled over the Bernoulli distributions qφ(b|x)
with parameters eφ(x) and L the loss function. In our particular case the negative log
likelihood through log-softmax modeling of the probabilistic label vector (see equation
2.10).
Considering the probability of a code according to its document features qφ(b|x) =

c
∏
i=1

[
bieφi(x) + (1− bi)(1− eφi(x))

]
we can now estimate the gradient of the error
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function using the REINFORCE procedure. Thus, an approximation of the gradient of
the error using an M trail Monte Carlo approximation is obtained by:

∇φ,θ J(φ, θ) =
1
M

M

∑
i=1

∑
(x,y)∈D

bx∼qφ(b|x)

[∇φ(log(qφ(b|x))L(dθ(bx), y) +∇θL(dθ(bx), y)]

(3.2)

With D the training dataset containing tuples (x, y) ∈ F×Y respectively the input
data and the categories. The theoretical proof of the gradient approximation below will
be found in (Williams 1992).
However REINFORCE approach involves a long learning time and does not scale

well in a large action space. More recent alternative methods have been developed to
approximate such gradient problem. To approximate the gradient we propose to use a
variant of the Straight-Through-Estimator (STE Y. Bengio et al. 2013) which obtained
better performances than reinforce approach over the handwritten number (MNIST )
classification task.

The STE allows us to estimate the gradient over a non-differentiable function according
to an error function L. The principle relies in considering sampling for the forward step
and gradient of the identity during the backward one. Thus the update of the parameters
is produced as follows:

θt+1 = θt − ∑
(x,y)∈D

bx∼qφ(b|x)

∇θtL(dθt(b
x), y) (3.3)

φt+1 = φt − ∑
(x,y)∈D

bx∼qφ(b|x)

∇bxL(dθ(bx), y)∇φt(eφt(x)) (3.4)

Although the Straight-Through estimator is a biased estimation of the gradient, con-
vergence is obtained at a reasonable time while with REINFORCE algorithm optimization
becomes intractable to obtain acceptable convergence (especially when the number of
codes is large).

Structured Latent Space. Our third decoding method uses the nearest-neighbor
search approach. It is better in this case to ensure similar labeled documents are close to
each other in the representation space. Thus, we propose to use in addition a regularization
function which ensures that similar examples in terms of label have similar codes. To
guarantee it, we propose to minimize the intra-class distance and maximize the inter-class
distance. Let consider the two following sets :

Dintra = [((xi, yi), (xj, yj)) ∈ D2|yi = yj]

Dinter = [((xi, yi), (xj, yj)) ∈ D2|yi 6= yj]
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With this configuration we now consider the error function :

J(φ, θ) =E(x,y)∼DEbx∼qφ(b|x)L(dθ(bx, y))

+ βE[(xi ,yi),(xj ,yj)]∼Dintra
L2(eφ(xi), eφ(xj)) (3.5)

− γE[(xi ,yi),(xj ,yj)]∼Dinter
L2(eφ(xi), eφ(xj)) (3.6)

Where the minimization of the intra-class distance is represented by the 3.5 and the
maximization of the inter-class distance is represented by 3.6 and β, γ the coefficient
associates to each of those additional loss functions. In the following of the section, we
will refer equations 3.5 and 3.6 as structure losses.

3.1.5 Protocol and experiments

Datasets. In order to validate the proposed model, we selected three datasets with a
large number of categories.

The first one named ALOI (Galar et al. 2013) is a dataset of 1000 classes of sift features
extracted from image objects. It remains a simple dataset to fit but which is non-linearly
separable. We split the dataset into train/validation/test randomly with respectively 80%,
10% and 10% of data.

The second ones namely the DMOZ dataset composed of short text description in
a bag of word embedding. This dataset contains 12294 classes and a large vocabulary
input size. We also split DMOZ into sub-dataset of 1000 classes. We name that last
dataset DMOZ-1K. For both DMOZ datasets, for training performances we deleted few
documents containing more than 500 words.

The last dataset is IMAGENET designed for the imagenet-2012 classification contest
of 1000 image categories. Instead of using raw images, we got the features from the
pre-trained model resnet-152 (He et al. 2016).

Optimizer and training methods. Poor performances have been shown using the
REINFORCE approach for learning the models, thus all the experiments below are trained
with the STE gradient estimator. We train all the models using an adaptive gradient
descent optimizer namely Adam (Kingma et al. 2014) since it leads to a better convergence.
The encoder and decoder functions experimented are linear ones. For the classification
loss, we choose the negative log-likelihood criterion

l(dθ(bx, y) = −
k

∑
i=0

yilog

 edθ(bx)i

K
∑

j=0
edθ(bx)j


In mono-label setting, one should notice that only one of the terms is non-zero.
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Evaluation. We report on this chapter the evaluation of the models through accuracy
on the different datasets. We also compare our model to others usual methods with
the MLP as the multilayer perceptron using one hidden units, the ECOC methods as
the random ECOC classifier and the OAA as the one-against-all classifier. We also give
performances depending on the use of the structure loss during the learning step.

Table 3.1 shows the accuracy obtained for the test set. We denote two variants of our
model in the tables, the letter R means that we regularize to minimize the intra-class
and maximize the inter-class distance, the letters NN means that we used to decode the
nearest neighbors search. Using low dimensionality in the first two rows of each column
can use the constant decoding time named hash-decoding. If the time is constant, it
remains difficult in this particular setting to obtain competitive performances. To perform
better we require larger dimensionality. In this setting all our experiments tackle the
random-code based approach for a similar complexity excepting for Imagenet corpus.
However none of the methods presented outperform the deep MLP model with the same
configuration thought the gap is relatively small on dmoz-12k. As we can observe in the
table, in the case of dmoz, using the regularization helps to improve the results of the
two decoding approaches. On the contrary on ALOI data, performances tend to be a
little lower with the regularization method. Because of the non-linear separability of ALOI
classes, the baseline ECOC drastically fails, indeed contrary to others datasets only 128
features describe each image. In this last case our method benefits of having many codes
for a class, as regularization lowering this effect, performances are better without using it.

DSNC Analysis

binary code quality In this section we describe the influence of the code size and the
regularization over the latent learned binary space. The distance intra-class and inter-class
are summarized in table 3.2 with the label yes/no informing about the use of the structure
losses during the learning step.

distance R/size 24 36 60 100 200

intra-class (train)
YES 1.1± 1 2± 2 2.8± 3 8.82± 6 18.4± 11
NO 2.3± 1 4.9± 2 10.9± 3 23± 5 59.3± 10

inter-class (train)
YES 11.78± 0 17.5± 0 29.4± 0 47± 1 94.4± 2
NO 11.6± 0 16.8± 0 26.6± 0 40.8± 1 72.3± 2

N codes
YES 8k 13k 15k 24k 26k
NO 15k 23k 28k 29k 30k

intra-class (test)
YES 4.8± 3 7.4± 4 12.1± 6 20.1± 10 37± 19
NO 5.9± 3 9.4± 4 16.6± 6 29.6± 9 63.9± 17

inter-class (test)
YES 10.8± 1. 16.8± 1 27.0± 2 45.0± 3 90.8± 5
NO 10.5± 1. 15.5± 1 25.6± 2 41.6± 4 80.6± 9

Table 3.2 – DMOZ-1K distance intra-class (test-dataset)
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Table 3.1 – Accuracy of the proposed model DSNC and the two baselines on the different
datasets. The gray background indicates a constant decoding time.
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Table 3.2 shows that the regularization process allows us to get an accurate nearest
neighbor decoding method. As a side effect of the loss, we show that the number of
training codes is lower when using the structure losses, allowing us to get a better speedup
for the decoding step.

Complexity Although our model did not reach the performance of MLP model, it
has a much lower complexity. Figure 3.6 presents the theoretical time complexity to
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decode using the nearest neighbor search for the DMOZ-12k dataset. However only
codes of size lower than 24 allow storing the entire table of codes and classes and allow
constant decoding times. Performances for such dimensionality do not allow to get
relevant performances for both random-code method and DSNC.

Figure 3.6 – Complexity comparison for DMOZ-12K

Using very short codes our model is equivalent to the ECOC approach, however, when
considering codes size greater than 60 our model performs better results in a lower time
than ECOC model. The MLP and OAA (dotted line) methods are close of ours models
using a large code size. However, the K-NN decoding approach performs better in terms
of prediction time. To conclude our model achieves a good trade-off between accuracy
(higher than random ECOC method) and time complexity (better than all other tested
models).
In figure 3.7 we show the t-SNE representation of a sub-sample of 60 classes of the

ALOI dataset, using the latent binary representation learned by the DSNC model. Each
color represents a class and a class can have multiple representations as more than one
code is learned per class. The interesting fact is that codes seem to be grouped by color
constituting small compact clusters. This figure tends to confirm the previous analysis of
the latent space: the proposed model is able to discover codes which keeps intra-class
distance low and it guarantees separability between classes.

DSNC for Multi-Label classification limits and results :

We now propose to evaluate the models in the multi-label setting. However some
changes are required to make it work in this setting. We first change the learning decoder
function that is now given by dθ(x) = σ(Wθbx), where σ(x) = 1

1+e−x . Instead using
the negative log-likelihood criterion, we use the binary cross entropy based loss:

L(dθ(bx), y) = y.log(dθ(bx)) + (1− y).log(1− dθ(bx))
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Figure 3.7 – t-SNE representation of the class codes for a sub-sample of 60 classes of
ALOI dataset. Codes of a same class are represented by the same color.

In order to get the label vector using the K-NN decoding scheme, we merged all the
label vectors of the 10 closest neighbors by summing them.

The results obtained with DSNC in multi-label settings are reported in the table 3.3,
we added for comparison the algorithm SLEEC (Kush Bhatia et al. 2015), one of the
state-of-the-art multi-label representation method. As reported our methods in multi-label
setting do not perform well, the results did not succeed tackling the baselines in each
configuration.

Table 3.3 – Multi-label results for Mediamill using multi-label DSNC
Precision@k SLEEC MLP DSNC-STE

Linear decoding
P@1 87.4 85.2 83.5
P@3 73.45 69.8 67.6
P@5 59.17 53.5 58.4

kNN decoding
P@1 87.4 84.9 85.2
P@3 73.45 70.3 69.8
P@5 59.17 61.3 60.6
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3.1.6 DSNC: Discussion

The presented contribution is a stochastic neural network architecture for multi-class
classification, which learns jointly a function to map stochastically an input to a binary
code and a decoder function which associates codes to classes. The stochastic mapping
between the input space and the latent binary space allows to efficiently exploring the
code space but introduces a non-differentiable layer.
The Straigh-Through estimator is used to approximate the gradient and to learn the

parameters. In addition, a regularization is proposed to achieve a better structure of the
latent space, with fewer and more compact codes. Thanks to the finite discrete property
of the latent space, the proposed model is able to retrieve the class associated with each
code with a negligible constant time for small code size and in the generic case with a
sublinear time w.r.t. to the number of classes. Experiments show the benefits of our
model in terms of accuracy and time complexity. However, today a vast majority of tasks
rely on Multi-label data, where documents are annotated with a set of classes and the
proposed methods did not obtain good results under multi-label setting. Thus, still using
binary properties we propose a new model to fit the multi-label setting in the next section.

3.2 Atoms Network : Learning class code-words

In multi-label classification setting documents are annoted with many classes, thus, it
often exists classes that are strongly correlated. Often, documents describing a similar
topic will share a large number of labels without being labeled in exactly the same way. For
instance, a document describing algorithm could be labeled with different words such as
"science", "computer science", "algorithm", "machine learning", "optimization" and so
on. It is obvious then that lots of documents will share set of labels, for instance to continue
the previous example all algorithms will at least label with "science", "computer science",
"algorithm". In the previous section we did not explicitly introduce those correlations,
which leads to perform poorly in multi-label setting. Capturing these correlations is
important. Moreover the vast majority of hierarchical approaches structure are precisely
based on this dependency among labels. However, multi-label corpus with a strict
hierarchical structure are uncommon in real life datasets, thus, most of the hierarchical
methods are using many classifiers named forests of classifiers. On the other hand, a
lot of documents share a fixed set of sub-labels. In this section we propose a framework
that aims to predict the subset of correlated labels for a document. The method consists
of transforming an example into a set of atoms that describe it, this approach shares
similarities with dictionary learning methods where the objective is to subdivide information
into many simple ones. More recently a similar framework named Ground Testing Matrix
(Ubaru et al. 2017) has been proposed with as objectives finding subset of classes and
learn classifiers to select the appropriate subsets. Those methods get several advantages,
particularly in prediction speed where aggregating selected subsets can be performed time
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efficiently. However, building the matrix of subsets is a complex task. In the following we
introduce a new approach based on learning in a end-to-end way classifiers and atoms.

In this section we present the research conducted inspired by dictionary learning
methods. The main idea consists to learn a set of atoms, such that each atom corresponds
to a probability distribution over a subset of correlated labels. The process can be sum-up
into two steps, the first one relies on selecting the most likely subsets of labels for a
particular example, the second step consists of the aggregation of the subsets of labels.
With this process we can ensure a faster prediction mainly correlated with the size of the
support of the atoms, i.e., the number of labels encoded by the atoms with a non-zero
probability. In order to allow better prediction, we also introduce two kinds of subsets,
positive subsets which correspond to the most likely classes of an example, and negative
subsets corresponding to the most unlikely classes for example. The main advantage
of the approach is to provide control of the time complexity of the inference process
by controlling the sparsity of the atoms and thus the number of labels for each atom.
The following section presents the procedure to learn both the atom dictionary and the
decomposition over the dictionary using a gradient descent based algorithm.

3.2.1 Model Description

Formulation. Let D = F×Y the training set, with xi ∈ F ⊂ Rn the features of the
example i and yi ∈ Y ⊂ {0, 1}K the associated label vector considering L labels such that
yil = 1 if the example i belongs to the lth class and 0 otherwise. For the classification
task, we are looking for a function f : F → Y that predicts the label vector from the
description of an example. Our method involves learning atoms: each atom aj models
a probability vector of labels considering only a certain number of labels. In practice,
the atoms are grouped in a sparse matrix of dimensions A× K with A the number of
considered atoms. We also consider a function g : X → [0, 1]A mapping example x to a
distributions vector modeling P(aj|x) ∀j ∈ {0, 1, ..., A}. In practice we modeled P(aj|x)
by a linear layer with a sigmoid activation :

P(aj|x) = σ(Wx)j = (
1

1 + eWx )j

To predict, we first map the input to the probability vector using g, then we select the
most likely subsets using a threshold or sampling according to the policy P(aj|x). Finally,
we aggregate the label vectors in order to get a score for each label using the sum of label
probabilities. In order to guarantee the positivity of the learned matrix, we use in practice
different activation functions such as rectifier linear units (relu) or sigmoid. Once the
model learned, the hard value of those activation can be directly replaced in the matrix.
To extend the expressivity of the model we use in practice two matrices containing

atoms. The first one contains the set of labels which potentially belong to the example
(positive set), and the second one on the contrary contains subset which has to be removed
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Algorithm 3.1 Atoms Network prediction
1: procedure predict(x, t)
2: labels← {}
3: for j ∈ {1, 2, . . . A} do
4: if P(a+j |x) = ( 1

1+eW+x )j > t then

5: labels← labels ∪ l+j
6: end if
7: end for
8: for j ∈ {1, 2, . . . A} do
9: if P(a−j |x) = ( 1

1+eW−x )j > threshold then

10: labels← labels− l−j
11: end if
12: end forreturn labels
13: end procedure
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Figure 3.8 – Architecture of the dictionary atoms model. 1) From input get a probability
vector which corresponds to the probability of selecting a subset of classes
corresponding to the example; 2) sample which subset will be selected
according to the previous distribution; 3) Merge the labels corresponding to
the labels of selected subset

from the selected ones in the positive set. We denote as a+ the matrix of potential labels
and a− the other one. We also consider two functions g+ (resp. g−) having as purpose
to select the positive subset (resp. the negative subset). This process is summed up in
the figure 3.9. The intuition behind this architecture is to predict potential labels with
a+ and offering potential correction with a−, it thus allows to cover larger combination
possibilities with a lower number of atoms. We also expect that splitting atoms into two
categories will allow retrieving correlations over the labels once the model learned: in the
positive a+ atoms, the labels highly correlated will appear, and at the contrary negative
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Figure 3.9 – Architecture of the atom dictionary which models the positive and negative
atoms

atoms will more likely contains uncorrelated labels. All the prediction process is summed
up in the algorithm 3.1 and the figure 3.8.

Controlling complexity through sparsity: The time complexity of the inference of
the presented model is directly correlated to the number of selected subsets in average for
each example, but also depend on the number of classes belonging to each subset. Let
consider S < A the average number of selected atoms, and K the average number of labels
in each subset, considering that we use uniformly each atom, then the average complexity
of the model is in O(NA + SK). We consider that the real bottleneck complexity is
due to the large number of labels, thus we need in the model to minimize K. In order
to guarantee the complexity, we will ensure during the learning phase to have the less
possible number of labels in each subset, which is equivalent to ensure sparsity of the
matrix a+, a−.
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Learning: Using a sampling procedure to construct the label vector, the function to
optimize can be written as the minimization of the expected value over the training set of
a loss function which depends on the sampled subset:

arg min
g+ ,g− ,a+ ,a−

E(x,y)∈D Es+i ∼g+(x)
s−i ∼g−(x)

∆(r((s+i )
ta+, (s−i )

ta−), y) (3.7)

with r the aggregation function, s+ (resp. s−) the positive sampled selection vector (resp.
the negative sampled selection vector). Different methods can be used to optimize this
loss function, we selected according to the previous contribution (see section 3.1) the
Straight-Through (Y. Bengio et al. 2013) gradient estimator. The STE allows processing
a gradient for a Bernoulli sampling layer, thus the model can be optimized by the usual
gradient descent algorithm. The error function associated with this optimization problem
will be named Ec (for classification error).

Ensuring sparsity: The sub-linear time complexity according to the number of classes
is obtained by controlling the sparsity of the dictionary. We experiment several methods
to control the trade-off between sparsity and expressiveness.

In the case of relu activation for both matrices a− and a+, the values lower than 0 are
set to zero; in case of the sigmoid activation, we use a threshold to replace low value by
zeros in both matrices. However without any more constraints, nothing guarantee to get
a large number of zero values. To resolve the issue, we propose different constraints based
on different regularization terms. The first regularization term we use allows controlling
values of atoms matrices by adding a penalization term on the matrices a+/a−, we refer
to the cost as Ea+/Ea− :

Ea+ = λa+
A

∑
i=0

(αa+ −
1
L

|L|
∑
j=0

a+ij )
2

With αa+ ∈ [0, 1] a parameter corresponding to the mean value wished for atoms impacting
directly the numbers of high values in the a+ matrix. In a similar way, we can use a
similar cost for the negative matrix a− (parameter αa−).

Moreover, constraining the numbers of atoms used for example can influence the sparsity
of atoms: indeed, limiting the number of selected atoms ensures that few atoms allow
describing labels of an example. It does not allow easy correction using other atoms and
thus encourages the sparsity. The corresponding error function is thus :

Es+ = λs+ ∑
x,y∈D

(αs+ −
1

|g+(x)|
|g+(x)|
∑
i=0

g+(x)i)
2

With α+s ∈ [0, 1] a hyper-parameter controlling the significance of the sparsity over
the positive selection vector s (e.g number of selected atoms), we can apply similarly this
regularization on g−. We refer to these terms as Es+ (res Es−).
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Avoiding atoms redundancy: Our objective is to classify using a minimal number
of possible atoms. Avoiding redundancy between atoms is thus an important feature. We
need to find a loss which allows measuring correlation between atoms. An intuitive way
to do it is to minimize the matrix product of atoms matrices with their-self, ensuring the
orthogonality of the atoms. The constraint:

Er = λr(a+.(a+)t + a−.(a−)t)

is added to the overall cost function.

3.2.2 Results and Analysis

In this section we evaluate our methods on different extreme multi-labels datasets (refer
to section 2.1.2). However it is still difficult to apply this approach on very large datasets
such as DeliciousLarge or Wiki10 due to the number of classes, thus the presented
experiments concern mainly middle size datasets such as Delicious. We compare our
method to several other algorithms reported by the Extreme Classification Repository
(K. Bhatia et al. 2016). Most of Extreme classification models are improved by considering
ensemble methods, in the second part we look at the performances when using ensemble
of atoms networks and compare performances with state-of-the-art ones. We also explore
the specificity of the model and we study the influences of the different constraints in
terms of performances but also on the structure of the inferred atoms. Finally, we discuss
the weakness of the presented approach.

DSNC prediction performances. In order to leverage our model performances we
compare the methods to different state-of-the-art methods, such as SLEEC, one-versus-all
(OVA) and most common label baseline (MC ) which associates to each example the
most common labels of the training set. We also use the naive baseline consisting of
associating for each example the k most common labels. We use for our model two kinds
of configurations: the best without any sparsity constraints and the best with sparsity
constraints which guarantee to have on average 95% of sparsity for a+, a−.

Dataset/Clf SLEEC(15) OVA AN (No constraint) AN (95% sparsity) MC
Delicious 68/64/56 65/59/53 64/58/53 60/55/50 40/38/35
Mediamill 88/73/59 84/67/53 88/69/54 70/49/38 85/64/50

Table 3.4 – Proposed approaches versus SLEEC (One classifier) and OVA

Ensemble learning: State-of-the-art methods such as SLEEC, FastXML or AnnexML
use ensemble classifiers in order to improve the results. The next table presents our ap-
proach using an ensemble of classifiers (AN for Atoms Network). In practice representation
methods (SLEEC, AnnexML) use 15 classifiers.
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0% sparsity (a+ , a−)
Dataset/Clf SLEEC(15) AN(1) AN(5) AN(10)
Delicious 68/64/56 64/58/53 65/59/54 65/59/54
Mediamill 88/73/59 88/69/54 89/69/54 89/70/56

95% sparsity (a+ , a−)
Dataset/Clf SLEEC(15) AN(1) AN(5) AN(10)
Delicious 68/64/56 60/55/50 64/58/54 64/58/53
Mediamill 88/73/59 70/49/38 74/50/37 70/50/38

Table 3.5 – Dictionary learning with ensemble learning versus SLEEC

Table 3.5 compares results of Atoms Network to SLEEC using different number of
classifiers, it shows that increasing the number of classifiers up than 5 do not allow
improvement of the results. We also compare our methods with and without sparsity,
with sparsity we remove lot of labels in the atoms such each atoms get only few classes
in it thus accelerate the merging of selected vectors, however, sparsity drastically lower
the performances.

3.2.3 Constraint analysis

Threshold Dictionaries: In these experiments we show the robustness of our method
on the sparsity constraints. In the table 3.6 we summarize results obtained by using
a threshold on both atoms matrix a+/a− to guarantee a sparsity on those matrices.
However, although sparsity of matrices allows decreasing time complexity it does not
correspond to the overall sparsity: the number of used atoms can be extremely large such
that there is no zero values in the final aggregated vector. The table shows the obtained
results and the effective sparsity (corresponding to the sparsity of the output label vector)
when we use only the constraints Ea+ and Ea− with αa+ = αa− = 0.05.

a+/a− sparsity P@1 P@3 P@5 effective sparsity
0% 64 59 54 0%
20% 64 59 54 0%
50% 63 58 54 1.5%
95% 61 56 51 66%
99% 50 45 41 85%

Table 3.6 – Sparsity/Precision depending on the threshold of the matrix a+ and a− on
delicious dataset (2 learners on delicious)

A parameter that can influence the sparsity is the use of the Es constraint depending
on the αs factor, which limits the number of selected atoms for each example. In the
figure 3.10 we show the results of the variation of the αs parameter (αs− = αs+ in this
experiments) with αa+ = αa− = 0.05. We can especially observe that using higher
hyper-parameter value αs allows to be more stable when the sparsity increases (i.e., higher
threshold).
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Figure 3.10 – Precision (@1,@5) and sparsity of the output depending on the selection
constraint αs (delicious)

Large unbalanced datasets. Although the model can be considered as competitive
in terms of precision performances on Delicious, the performances are lower for large
datasets especially when there are fewer examples per label. We show the issue with
an experiment on the Wiki10 dataset reported in the table 3.7 with the precision at
1,3 and 5, compared to SLEEC algorithm and the naive baseline which attributes to all
examples the label vector containing the label scores sorted by label frequency. We notice
that precision at 1 decreases with the increase of dimensionality when the precision at
5 increases, the first intuition is that using low dimensionality will enforce the learning
procedure to mostly design atoms containing head labels.

AN(unconstrained) SLEEC MC
50 80/50/37 86/73/63

80/50/37100 79/49/38 –
200 77/50/40 –

Table 3.7 – Atoms Network comparison performances (p@1/p@3/p@5) on wiki10 dataset
with our model without sparsity constraint (AN), the SLEEC baseline and
most common label baseline (MC)

3.2.4 Atoms Network : Discussion

In this works we design a new approach to face multi-label challenges with the aims to
create subsets of correlated labels. The process is thus two folds, first design two matrices
containing positive and negative atoms i.e., subset of correlated labels and subsets of
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uncorrelated labels, secondly learning classifiers to adequately select for each example
atoms (label subset). Finally, prediction is then obtained by merging the selected atoms
by aggregating positive atoms and withdraw negative labels according to negative atoms
selection. To this end, we propose an end-to-end learning approach based on discrete
optimization using the Straigh-Through estimator introduced by (Y. Bengio et al. 2013).
With this contribution we tested the validity of the following intuition : can we learn
the set of correlated labels for large-scale multi-label corpora. At the current state of
the work, it is still unclear if it is feasible as the methods could be improved with recent
optimization process, change in architecture and aggregation methods for atoms. On
large corpus such as wiki10 it is still difficult to tackle the state-of-the-art methods and
even to beat the most common baseline using only a restricted number of labels subset.
However, this work needs to be taken further condering for instance optimization methods
from the non-negative matrix factorization area or different architecture.

3.3 Better capture structured data

In this chapter we proposed two new approaches to tackle the time complexity challenge
of extreme classification. The first approach aims to embed data into a binary space and
proposes different methods to retrieve classes from discretes embeddings allowing very
fast decoding processes in constant time or sub-linear time according to the number of
training examples codes. However, the approach fails to reach competitive performances
under the multi-label setting. This first work has been published at the ICONIP 2017
conference (Gerald et al. 2017).
The second contribution is still based on learning binary representation. Its objective

is to learn subsets of correlated labels and to select for each example the appropriate
subset. The selector is in this case a binary representation (1 if subset is selected else
0). To this end we proposed a gradient based optimization algorithm which aims to
learn in end-to-end way both selector and subsets. However, this approach did not allow
us to tackle the state-of-the-art. Capturing efficiently structured data and embedding
is the key point to obtain higher performances. Generally, representation approaches
efficiently capture dependencies over labels mostly considering continuous representation
of documents. In the following chapters we study continuous embedding to efficiently
capture correlation, particularly using hyperbolic representation space well adapted to
capture structure we are interested in.
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In the previous work we have highlighted the importance of considering the data structure
for multi-label classification. However the proposed methods still lack in capturing labels
correlations. If learning binary embeddings or dictionaries with binary atoms remains a
difficult task regarding its optimization or its expressivness, recently hyperbolic embeddings
have shown their strengh to represent efficiently structured data. As discussed in section
2.3.3, the hyperbolic space gets relevant properties to embed hierachical or graph structures
since the metric preserves hierarchical or graph distance. In this chapter we propose
to explore hyperbolic embeddings for capturing structured data by proposing to embed
graph into hyperbolic space. We introduce an unsupervised approach learning a Gaussian
Mixture Model in hyperbolic space with two objectives. The first is to be able to clusterize
in the space and the second to help to structure the embedded space.

4.1 Embedding Graph Data within Poincaré Ball
Model

The present contribution is concerned with learning Graph Structured Data (GSD).
Examples of such data include social networks, hierarchical lexical databases such as
Wordnet (Miller 1995) and Lexical entailment’s datasets such as Hyperlex (Vulić et al.

67
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2016). In the state-of-the-art, one can distinguish two different approaches to cluster this
type of data. The first one applies pure clustering techniques on graphs such as spectral
clustering algorithms (Spielmat 1996), power iteration clustering (Lin et al. 2010) and
label propagation (Zhu et al. 2002). The second one relies on two-step and may be called
Euclidean clustering after (Euclidean) embedding. First, it embeds data in the Euclidean
space using techniques such as Nod2vec, Graph2vec and DeepWalk and then applies
traditional clustering techniques such as K-means algorithm. This approach appeared
notably in (Zheng et al. 2016; Tu et al. 2016; D. Wang et al. 2016). More recently
the ComE algorithm (Cavallari et al. 2017) achieved state-of-the-art performances in
detecting communities on graphs. The main idea of this algorithm is to alternate between
embedding and learning communities through Gaussian mixture model.

Learning GSD received significant achievement in recent years thanks to the discovery of
hyperbolic embeddings. Although, for several years it has been speculated that hyperbolic
spaces would better represent GSD than Euclidean space (Gromov 1987; Krioukov et al.
2010; Boguñá et al. 2010; Adcock et al. 2013), it is only recently that these speculations
have been proven effective through concrete studies and applications (Nickel et al. 2017;
Chamberlain et al. 2017; Sa et al. 2018). As outlined by (Nickel et al. 2017), Euclidean
embeddings require large dimensions to capture certain complex relations such as the
Wordnet noun hierarchy. On the other hand, this complexity can be captured by a simple
model of hyperbolic geometry such as the Poincaré disc of two dimensions (Sa et al.
2018) due to the similarity of hyperbolic distance with graph distance (see figure 2.7
in section 2.3.3). Additionally, hyperbolic embeddings provide better visualization of
clusters on graphs than Euclidean embeddings (Chamberlain et al. 2017). Recently, deep
learning methods for graph structured data have been transposed using hyperbolic space.
Hyperbolic Graph Neural Networks (Q. Liu et al. 2019) or Hyperbolic Convolutional Neural
Networks (Chami et al. 2019) provided competitive results compared to their Euclidean
counterpart.

Given the success of hyperbolic embedding in providing faithful representations, it seems
relevant to set up an approach that applies pure hyperbolic techniques in order to learn
nodes and more generally community representation on graphs.

Hyperbolic representation of hierarchies and graphs. Figure 4.1 presents an
example of hyperbolic representation of a tree, with figure 4.1b the embeddings of the
hierarchy depicted in figure 4.1a. As we can notice, contrary to Euclidean counterpart
leaf nodes are far from each other. Secondly, norms of nodes embeddings have a specific
meaning, deeper a node is in the graph greater its norm is.
This motivation is in line with several recent works that have demonstrated the

effectiveness of hyperbolic tools for different applications in brain computer interfaces
(Barachant et al. 2012), computer vision (Said et al. 2017) and radar processing (M.
Arnaudon et al. 2011). In particular Barachant et al. 2012 used the concept of Riemannian
barycenter on the space of covariance matrices to classify brain computer signals. Said
et al. 2017 introduced Expectation-Maximization (EM) algorithms for symmetric positive
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(a) Tree to embed (b) Embedding of tree in hyperbolic space

Figure 4.1 – Representation of hierarchical data using the Poincaré disk representation.

definite matrices space and then applied it to classify patches of images. Marc Arnaudon
et al. 2013 used the Riemannian median on the Poincaré disc to detect outliers in Radar
data.

Motivated by the success of hyperbolic embeddings on one hand and hyperbolic learning
algorithms on the other hand, we propose in this work the adaptation of ComE approach
to the hyperbolic space. Two different applications are targeted:
Unsupervised learning on GSD. We present a scheme to learn communities based

on Poincaré embeddings (Nickel et al. 2017) and Gaussian mixture model. To this end
we derive the theorical Riemannian EM algorithm proposed in Said et al. 2018 for the
hyperbolic space.
Supervised learning on GSD. We propose a supervised framework that uses

community-aware embedding of graphs in hyperbolic spaces. To evaluate this framework
we propose three different tools to retrieve the communities: distance to the Riemannian
barycenter, Riemannian Gaussian Mixture Models (GMM) derived from (Said et al. 2018)
and a Riemannian logistic regression proposed in (Ganea et al. 2018). For both unsuper-
vised and supervised frameworks, the proposed methods are evaluated on real-data social
networks. We also make comparisons with the ComE approach (Cavallari et al. 2017)
and recent geometric methods (Cho et al. 2018). Moreover, this last application concerns
the multi-label classification task, thus allow us to validate the relevance of hyperbolic
spaces for classification.
This work is organized as follows. In the first section, we describe tools giving the

definition of Gaussian Mixture Model in Riemannian manifolds (section 4.1.1). In
section 4.1.2 we describe and derive the hyperbolic Gaussian Mixture Model Expectation-
Maximization algorithm relying on the theorical Riemannian GMM defined in Said et al.
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2018. The introduction of the learning algorithm for embedding graph structured data in
hyperbolic space is introduced in section 4.2. In section 4.3 and section 4.4.1, we provide
experiments, comparisons with state-of-the-art and discussion of both supervised and
unsupervised evaluation. Finally in section 4.5 we discuss perspectives of the proposed
approach.

4.1.1 Riemannian GMM

Gaussian distributions have been extended to manifolds in various ways (Skovgaard
1984; Pennec 2006; Said et al. 2018). In this chapter we rely on the recent definition
provided in (Said et al. 2018) as it comes up with an efficient learning scheme based on
Riemannian mixture models. In the next section, these models will be applied to learn
communities on graphs. The same distribution was particularly used in (Mathieu et al.
2019b) to generalize variational-auto-encoders to the Poincaré Ball. Moreover (Ovinnikov
2019) proposed an extension of Wasserstein auto-encoders to manifolds based on the
same definition of Gaussian distributions. Those works rely on the calculation of a mean
and a variance for defining Gaussians of the mixture. In this section, we first describe the
formulation of the barycenter, then we introduce the expression of the GMM as well as
the tools necessary for its calculation.

Barycenter

As a Riemannian manifold of negative curvature, Bm enjoys the property of existence
and uniqueness of the Riemannian barycenter (Afsari 2011). More precisely, for every set
of points {xi, 1 ≤ i ≤ n} in Bm, the empirical Riemannian barycenter

µ̂n = argminµ∈Bm

(
n

∑
i=1

d2(µ, xi)

)
exists and is unique. Several stochastic gradient algorithms can be applied to numerically
approximate µ̂n (Bonnabel 2013; M. Arnaudon et al. 2011; M. Arnaudon et al. 2011;
M. Arnaudon et al. 2014).

Gaussian Mixture Model

Given two parameters µ ∈ Bm and σ > 0, respectively interpreted as theoretical mean
(or barycenter) and standard deviation, the Riemannian Gaussian distribution G(µ, σ) on
Bm, is given by its density:

f (x|µ, σ) =
1

ζm(µ, σ)
exp

[
−d2(x, µ)

2σ2

]
A first interesting and practical property is that ζm(µ, σ) the normalization factor does
not depend on µ (Said et al. 2018):
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ζm(µ, σ) = ζm(0, σ) = ζm(σ) =
∫

Bm
exp

[
−d2(x, 0)

2σ2

]
dv(x)

A more explicit expression of ζm(σ) has been given recently in Mathieu et al. 2019b as
follows:

ζm(σ) =

√
π

2
σ

2m−1

m−1

∑
k=0

(−1)kCk
m−1e

p2
k σ2

2

(
1 + erf(

pkσ√
2
)

)

with pk = (m− 1)− 2k and er f the error function with er f (x) = 2√
π

∫ x
0 e−t2

dt .
Figure 4.2 displays some plots of the function σ 7→ ζm(σ).

0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10
Dimension m

2
3
4
5
10

Figure 4.2 – Normalization coefficient σ 7→ ζm(σ) for different values of the dimension
m of the Poincaré ball

Recall Maximum Likelihood Estimation (MLE) of the parameters µ and σ, based on
independent samples x1, . . . , xn from G(µ, σ) given as follows:

• The MLE µ̂n of µ is the Riemannian barycenter of x1, . . . , xn.

• The MLE σ̂n of σ is

σ̂n = Φ

(
1
n

n

∑
i=1

d2(µ̂n, xi)

)

where Φ : R+ −→ R+ is a strictly increasing bijective function given by the inverse
of σ 7→ σ3 × d

dσ
log ζm(σ).

We show in figure 4.3 density of two hyperbolic Gaussians in the Poincaré ball model.
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Figure 4.3 – Visualization of two Gaussians within the Poincaré ball model, with the red
points being the Gaussian mean.

4.1.2 EM for Hyperbolic Gaussian Mixture Model :

In this section, we describe the proposed Expectation-maximization algorithm for learning
a hyperbolic Gaussian mixture model, firstly by describing the Expectation procedure, and
then the Maximization one. One should first remark its similarity with Euclidean GMM,
except in the calculation of the normalization factor where no closed form is provided.

Estimate Gaussian Mixture :

Riemannian EM algorithm introduced in Said et al. 2018 has similarities with the usual
EM on Euclidean spaces. It is employed to approximate distributions on manifolds by a
mixture of standard distributions. We recall the density F of GMM on the Poincaré ball

F(x|µ, σ) =
K

∑
k=0

πk f (x|µk, σk)
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where x ∈ Bm, πk the mixture coefficient, µk, σk the parameters of the k-th Riemannian
Gaussian distribution. The Riemannian EM algorithm computes the GMM that best fits a
set of given points x1, . . . , xN. This is done by maximizing the log-likelihood of the joint
probability of observing each point under the hypothesis that observations are independent.
Given an initialization of π, µ and σ, performing EM numerically translates to alternating
between Expectation and Maximization steps. Fitting a Gaussian mixture model on
Riemannian manifolds have some similarities with its Euclidean counterpart. The main
complexity is that there are no known closed forms for the log-likelihood maximization of
the mean and standard deviation.

Expectation :

The expectation step estimates the probability of each sample xi to belong to a particular
Gaussian cluster. The estimation is based on the posterior distribution P(zi = k|xi), i.e.,
the probability that the sample xi is drawn from the k-th Gaussian distribution:

wik = P(zi = k|xi) =
πk × f (xi|µk, σk)

N
∑

j=0
πj × f (xi|µj, σj)

(4.1)

Maximization

The maximization step estimates the mixture coefficient πk, mean µk and standard
deviation σk for each Gaussian component of the mixture model.

Mixture coefficient. The mixture coefficients are computed by :

πk =
1
N

N

∑
i=1

wik (4.2)

Mean. Updating the µ parameter relies on estimating weighted barycenters. For this,
it is required to approximate the weighted barycenter µ̂k of the k-th cluster:

µ̂k = arg min
µ

N

∑
i=1

wikd2(µ, xi) (4.3)

via Riemannian optimization. We will use algorithm 4.1 (Marc Arnaudon et al. 2013)
which has proven effective for radar applications. This algorithm returns an estimate of
µ̂k, it can be view as a gradient descent using the logarithmic map to get gradient on the
tangent space and the exponential map to project it on the manifold (see appendix 2).

Standard deviation. The MLE of the standard deviation of the Gaussian distribution
is previously defined in Section 4.1.1. Thanks to the property of Φ being strictly increasing
and bijective, estimation σk can be given by solving the following problem :
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Algorithm 4.1 Barycenter computation
Require : W = (wik) weight matrix, {x1, · · · , xN} a subset of Bm, ε convergence
rate (small), λ barycenter learning rate
1: Initialisation of µ0

k
2: do

3: µt+1
k ← Expµt

k

(
λ 2

N
∑

i=1
wik

N
∑

i=1
wikLogµt

k
(xi)

)
4: while d(µt

k, µt+1
k ) > ε . t is the iteration index return µt+1

k

σ̂k = arg min
σs

∣∣∣∣∣∣∣∣∣

 1
N
∑

i=0
wik

N

∑
i=0

d2(µk, xi)wik

−Φ−1(σs)

∣∣∣∣∣∣∣∣∣ (4.4)

An inverted search is used to find an approximation of σk by computing its values for a
finite number of σs. To compute Φ−1(σs) which involves the term d

dσ logζm(σ) we use
automatic differentiation algorithms provided by the used pytorch library (Paszke et al.
2019).

4.2 Hyperbolic Embedding of Structured Data

Dataset in this chapter differs from the previous one used. In this chapter we will
consider a graph G(V, E), with V the set of nodes and E a set of edges such that
E ⊂ V ×V. Each node i ∈ V is labeled by one or many communities represented by a
vector yi ∈ {0, 1, . . . , k}.

To embed hierarchical or graph data using Poincaré Ball representation on can use the
following loss (Nickel et al. 2017):

∑
(i,j)∈E

e−d(φi ,φj)

∑
k∼U(V)

e−d(φi ,φk)

With U(V) the uniform distribution over nodes.
However, in this work we will take into account different order of proximity and

considering communities with a GMM prior.

Learning Graph representation

This section generalizes community embedding and detection of graphs to the Rie-
mannian setting. The goal of embedding GSD is to provide a faithful and exploitable
representation of the graph structure. It is mainly achieved by preserving first-order
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proximity that enforces nodes sharing edges to be close to each other. It can additionally
preserve second-order proximity that enforces two nodes sharing the same context to be
close (i.e. nodes that are neighbors but not necessarily directly connected).

First-order proximity. To preserve first-order proximity we adopt a loss function
similar to (Nickel et al. 2017):

O1 = − ∑
(vi ,vj)∈E

log(σ(−d2(φi, φj))) (4.5)

with σ(x) = 1
1+e−x the sigmoid function and φi ∈ Bm the embedding of the i-th node of

V.

Second-order proximity. In order to preserve second-order proximity, the representa-
tion of a node has to be close to the representations of its context nodes. To this end
we introduce φ′i the embedding of the nodes in context. For this, we adopt the negative
sampling approach (Mikolov et al. 2013) and consider the loss:

O2 = − ∑
vi∈V

∑
vj∈Ci

[
log(σ(−d2(φi, φ′j))) + ∑

vk∼Pn

log(σ(d2(φi, φ′k)))
]

(4.6)

with Ci the nodes in the context of the i-th node, φ′j ∈ Bm the embedding of vj ∈ Ci

and Pn the negative sampling distribution over V given by Pn(v) =
deg(v)3/4

∑
vi∈V

deg(vi)3/4 . Notice

that we get two different representations one for node embeddings φ and another for
context embeddings φ′. Differentiate nodes to context embeddings has firstly been
introduced in Perozzi et al. 2014.

4.2.1 Learning Embedding with communities

Since we want to learn embeddings for the purpose of community detection and
classification, we need to ensure that embedded nodes belonging to the same community
are close. Therefore, similarly to the statement made in ComE Cavallari et al. 2017 we
connect node embeddings (first and second-order proximity via the minimization of O1
and O2) together with community GMM prior using a loss function O3. The latter is
named the community loss, which we write as:

O3 = −
|V|
∑
i=1

K

∑
k=0

wiklog

 1
ζm(σk)

e
− d2(xi ,µk)

2σ2
k


This loss gets as objective to bring closer each point to its Gaussian which is associated

during the Expectation-maximization procedure. As we can observe in the figure 4.4 all
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embedded point will follow the geodesics between the two Gaussian if optimized until
reaching convergence. However we do not want all point to be placed along the geodesics,
thus we stop the O3 optimization before reaching the convergence.

(a) Before learning (b) After convergence

Figure 4.4 – Visualize the impact of the O3 loss over embeddings considering two Gaussian.
For this figure we took two random hyperbolic Gaussian and sample point
into hyperbolic space. We then compute for each point their probability to
belong to each Gaussian and finally applied the O3 loss until convergence.

To solve the community and graph embedding jointly we therefore minimize the final
loss function:

L = α.O1 + β.O2 + γ.O3

with α, β, γ the weights of respectively first, second-order and community losses.

Optimization :

We now show the gradient computations for the loss functions O1, O2 and O3. Following
the idea of Ganea et al. 2018, we use the Riemannian Gradient Descent (RGD) algorithm,
which first computes the gradient on the tangent space and then project the new values
on the ball

φt+1 = Expφt

(
−η

∂O{1,2,3}
∂φ

)
(4.7)
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where φ is a parameter, t ∈ {1, 2, · · · } is the iteration number and η is a learning rate.
Marc Arnaudon et al. 2013 introduced the formula giving the gradient of dp(φi, φj) (p
being the exponent applied on the distance generally p = 2) where φi, φj ∈ Bm :

∇φi d
p(φi, φj) = −p× dp−1(φi, φj)×

Logφi
(φj)

d(φi, φj)
(4.8)

Using the chain rule, the gradient of a loss function involving hyperbolic distance
h = g ◦ dp (g being a differentiable function) can be computed as follows considering φj
fixed:

∇φi h = g′(dp(φi, φj))∇φi d
p(φi, φj)

where the expression ∇φi d
p(φi, φj) is given in Equation (4.7). In the attached code

(discussed in the Appendix), optimization is performed by redefining the gradient of the
distance and then using usual auto-derivation tools provided by PyTorch backend.

To avoid division by d(φi, φj), which becomes computationally difficult when φi and φj
are close, we adopt p = 2 which experimentally revealed to be numerically more stable.
Explicit forms for the gradient of O1, O2 and O3 are as follows:

Update based on O1.

O1 = − ∑
(vi ,vj)∈E

log(σ(−d2(φi, φj)))

Recall that O1 maintains first-order proximity by preserving the distance between directly
connected nodes (vi, vj) ∈ E with embeddings (φi, φj). The gradient of O1 with respect
to φi is

∇φiO1 = −2× Logφi
(φj)× σ(d2(φi, φj))

In this last formula, we used the fact that log(σ(−x))′ = −σ(x). By symmetry
∇φjO1 = −2× Logφj

(φi)× σ(d2(φi, φj)).

Update based on O2.

O2 = − ∑
vi∈V

∑
vj∈Ci

[
log(σ(−d2(φi, φ′j))) + ∑

vk∼Pn

log(σ(d2(φi, φ′k)))
]

The updates φi, φ′j and φ′k the embedding of vi, vj and vk where vi is a node, vj belongs
to the context Ci of vi and vk a negative sample vi are given as follows:

• Update of φ′j is done exactly as in O1 since it occurs only in the first term of the
sum.
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• Update of φ′k is based on the gradient computation

∇φ′k
O2 = −2× Logφ′k

(φi)× σ(−d2(φi, φ′k))

• Update of φi is based on the gradient computation

∇φiO2 = ∑
vj∈Ci

[
− 2× Logφi

(φ′j)× σ(d2(φi, φ′j))

+
nneg

∑
k=1

(
2× Logφi

(φ′k)× σ(−d2(φi, φ′k))
) ]

where nneg is the number of negative samples.

Update based on O3.

O3 = − ∑
vi∈V

K

∑
k=0

wiklog

 1
ζm(σk)

e
− d2(φi ,µk)

2σ2
k



The updates of wik, µk and σk were detailed in subsection 4.1.2. The update of φi
uses the formula

∇φiO3 =
K

∑
k=0

wik

2σ2
k
∇φi(d

2(φi, µk))

To optimise the parameters we use the RGD algorithm (Equation 4.7) and its adaptive
counterpart RAMSGrad (Algorithm .4 proposed in Bécigneul et al. 2018). We observed
better performances using the adaptive methods which is used in the last section to
perform experiments.

Hyperbolic community learning algorithm Algorithm 4.2 presents a high level
scheme for learning community-aware embeddings of graph data on hyperbolic space.
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Algorithm 4.2 Community learning and detection on hyperbolic space
Require : G(V, E) graph data, K number of communities, m dimension of hyperbolic
space, lr, α, β, γ learning rates, l random walk length, nw number of walks from some node,
nc context size, nneg number of negative samples, max_iter1,2 node and community
embedding, respectively, community detection maximum iterations
Ensures : φ node embeddings, (µ, σ, π) GMM components: mean, standard deviation
and mixture coefficients
1: Initialisation of φ, µ, σ, π randomly from a uniform distribution with fixed bounds
2: for iter<max_iter1 do
3: for (i, j) ∈ E do
4: Update φi, φj via RGD based on α.O1
5: end for
6: for p ∈ P do
7: for i ∈ p do
8: Update φi and all φj in the context of i via RGD of β.O2
9: . Select context and negatively sampled nodes of size nc and nneg by

generating nw Random walks of length l from each node as in DeepWalk Perozzi
et al. 2014

10: end for
11: end for
12: for iter<max_iter2 do
13: Update µ, σ, π . By alternating between Expectation and Maximisation steps

as described in Subsection 4.1.2
14: end for
15: end for

4.3 Community detection

The previous section showed how to learn community-aware embeddings of graph data
where Gaussian mixture models on hyperbolic space are used to model communities. To
assess the relevance of the learned embeddings we designed an unsupervised community
detection and a supervised node classification experimental frameworks. We propose
several ways to assign each node of the graph to one of the K communities. This will allow
us in the next section to experimentally evaluate the usefulness of the learnt embeddings
for prediction and node classification tasks.

In this section, we provide experimental results and compare them with recent works
from the literature 1.

1. The package implementing our algorithms will be made publicly available online in the near future.
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We present experiments on DBLP 2 a library of scientific papers graph, Wikipedia 3 a
graph built on Wikipedia dump, BlogCatalog 4 a blog social network graph and Flickr 5 a
graph based on Flickr users. We also experiment on several low scale datasets shown in
Table 4.1 and provide visualisations of the learned embeddings when the dataset allows it.

Table 4.1 – Characteristics of the datasets used for experimental evaluation. |V| the
number of nodes, |E| the number of edges, K the number of communities
and ML whether or not the dataset is multi-label (whether or not a node can
belong to several communities).

Corpus |V| |E| K ML
Karate 34 77 2 no
Polblogs 1224 16781 2 no
Books 105 441 3 no
Football 115 613 12 no
DBLP 13,184 48,018 5 no
Wikipedia 4,777 184,812 40 yes
BlogCatalog 10,312 333,983 39 yes
Flickr 80,513 5,899,882 195 yes

Hyper-parameters selection Some parameters used for learning the embedding are
difficult to know a priori. Therefore, we performed several grid-search to tune the hyper-
parameters producing the best cross-validation performances in terms of conductance,
defined below, when running our algorithm and the baseline ComE. In particular the
parameters λ, the learning rate, c, the size of the context window and t, the number
of negative sampling nodes appeared to be the most influencing on results. For our
algorithm 6, parameters c and t were selected from the set {5, 10}, β and α ∈ {0.1, 1},
γ ∈ {0.01, 0.1} and λ from [1e − 2, 1e − 4]. For all experiments, we generated, for
each node context considering 10 random walks, each of length 80. For the first 10
epochs, embeddings are trained using only O1 and O2 and then using the complete loop
as described in Section 4.2.1.
As for running the algorithm of ComE, the tested parameters are λ ∈ {0.1, 0.01},

β ∈ {1, 0.1} and γ ∈ {0.1, 0.01}. All others parameters are the ones set by default. 7

2. https://aminer.org/billboard/aminernetwork
3. http://snap.stanford.edu/node2vec/POS.mat
4. http://socialcomputing.asu.edu/datasets/BlogCatalog3
5. http://socialcomputing.asu.edu/datasets/Flickr
6. For Flickr dataset we only run one experiment for each parameter, moreover, the number of

parameters tested is lower than those tested for others datasets
7. ComE code available at https://github.com/vwz/ComE
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• Hyperbolic K-Means (H-K-Means): K-Means finds K cluster centroids and label
points by minimising the intra-cluster variances. Based on the notion of Riemannian
barycenter, Algorithm 4.3 illustrates Riemannian K-means.

Algorithm 4.3 Hyberbolic K-Means
Require : K number of clusters, {φi} ⊂ Bn×m node embeddings, max_iter maximum
iterations
Ensures : I labels of each sample, µ cluster centroids
1: Initialisation of centroids µ ⊂ BK×m randomly from a uniform distribution
2: for t ∈ {1, 2, 3, . . . max_iter} or convergence do
3: for i ∈ {1, 2, . . . , n} do
4: It

i ← arg minj d(µj, φi)
5: end for
6: for k ∈ {1, 2, . . . , K} do
7: Update barycenter µk ← RiemanianBarycenter({φj|Ij = k}
8: end for
9: convergence← True iff ∀i ∈ {1, 2, . . . , n}, It−1

i = It
i

10: end for

• Hyperbolic Expectation-Maximisation (H-EM): We apply several EM iterations to
obtain a well converged GMM. Then, the probability for a node to belong to some
community (modelled by one component of the GMM) is computed. Each node is
then labelled with the community giving it the highest posterior probability.

4.3.1 Complexity and Scalability

Complexity With |V| the number of nodes and |E| the number of edges, the time
complexity of embedding GSD for first and second-order proximity are respectively in
O(|E|) and O(|V|). Assuming a fixed number of iterations for all gradient descent
computations, performing embedding and Riemannian barycenter based K-means has
O(|V|.m.K + |E|) complexity thus is in O(|V|+ |E|) for large graphs. Similarly, the
time complexity of community embedding with EM loop is in O(|V|+ |E|).

Scalability The GSD embedding update process for O1 and O2 in Bm is a linear
function of m. Therefore, embedding the GSD scales well to large datasets. To accelerate
updates of O1, O2, O3, we use batch gradient descent algorithm mainly for large datasets.
Although run-times of Riemannian K-means and EM are higher than their Euclidean

versions the number of iteration remains similar. Notice that the computation of the
normalisation factor ζm(σ) makes fitting hyperbolic GMM computationally challenging,
this can be visually perceived in Figure 4.2. Thus, numerically we have to deal with the

out of bound numbers due to the terms e
(m−1)2σ2

2 . To keep the computation time-bounded,
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we fixed a finite number of values for σ for which we pre-computed ζm. To avoid the out
of bound issue we restricted our work to 10 dimensions while increasing the floating-point
precision.

Evaluation metrics We use three performance metrics to assess the relevance of the
proposed hyperbolic approach for learning communities on graphs.
• Conductance: measures the number of edges shared between separate clusters. The

lower the conductance is, the less edges are shared between clusters. Let Ci be the set of
nodes for the cluster i, A the adjacency matrix of the GSD, the mean conductance MC
over clusters is given by:

MC =
1
K

K

∑
i=1

∑
j∈Ci ,k/∈Ci

Ajk

min

(
∑

j∈Ci ,k∈V
Ajk, ∑

j/∈Ci ,k∈V
Ajk

) (4.9)

• NMI : Let Aij be the number of common nodes belonging to both the predicted
cluster i and the real cluster j, |V| being the number of nodes, Ap

i the number of elements
in the i-th predicted cluster and At

i the number of elements in the i-th real community.
The NMI is given by:

NMI =

−2
K
∑

i=0

K
∑

j=0
Aijlog

(
Aij|V|
Ap

i At
j

)
K
∑

i=0
Ap

i log
(

Ap
i
|V|

)
+

K
∑

j=0
At

jlog
(

At
j
|V|

) (4.10)

• Precision@1 : Since the real labels of communities are known, we propose a supervised
measure derived from the precision metric that uses the true community labels. A problem
we encountered is that we do not know which label to associated with each community.
For small number of communities, all possible combinations are computed and the best
performance is reported. This solution is not tractable when the number of communities
grows. A greedy approach is then used: the predicted labels of the largest cluster is first
associated to the known true label of the dominant class, similarly the second largest cluster
is associated to the second dominant class with known labels and so on. The process is
repeated until all clusters are treated. Finally, for mono-label datasets, the Precision@1
corresponds to the mean percentage of the correctly guessed labels. For multi-label
datasets (node can belongs to several communities), an element is considered correctly
labelled if the inferred community corresponds to one of its true known communities.

Community Detection Results. In this paragraph we present the unsupervised
experiments based on K-Means and EM algorithm. For each dataset we perform 5
experiments. The average mean of the performance metrics are shown in Table 4.2.
For the three corpora DBLP, BlogCatalog and Flickr we obtained better results with

Hyperbolic clustering methods with only few exceptions. Although hyperbolic embedding
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Table 4.2 – Unsupervised community detection performances for Hyperbolic K-Means
(H-KM) and Expectation-Maximisation (H-EM) in comparison with state-of-
the-art method ComE.

Precision@1 Conductance NMI

Dataset m H-KM H-EM ComE H-KM H-EM ComE H-KM H-EM ComE

DBLP
2 78.5±1.8 78.6±4.8 75.9 6.8±4.2 6.7±4.4 10.1 66.1±3.4 66.2±5.8 55.9
5 79.6±2.4 81.2±2.1 87.5 4.6±3.4 4.8±3.8 5.8 71.3±2.4 69.7±2.1 62.0
10 71.4±13.1 81.5±0.1 80.4 6.0±4.6 5.2±4.0 5.6 65.4±8.9 69.3±0.6 56.6

Wikipedia
2 8.6±0.8 16.1±4.0 9.3 96.6±3.0 96.6±5.1 94.7 6.9±0.8 5.5±2.1 6.3
5 9.7±0.4 10.1±0.7 10.7 93.7±3.4 93.8±4.4 91.2 8.8±0.3 8.6±0.3 8.0
10 9.3±0.3 11.9±1.1 11.1 91±4.1 90.5±4.7 89.6 8.6±0.0 8.6±0.1 7.7

BlogCatalog
2 8.1±0.2 9.8±0.3 7.5 92.5±6.0 93.1±8.1 93.6 4.4±0.0 4.1±0.0 3.4
5 13.4±0.3 12.6±0.7 12.7 88.4±6.6 87.8±0.5 87.6 10.4±0.5 10.1±0.5 10.5
10 18.9±0.6 16.5±0.8 15.8 85.9±7.5 84.7±7.8 86.7 14.6±0.2 14.0±0.3 13.3

Flickr
2 8.0±0.2 12.9±0.8 6.4 93.5±10.0 94.4±13.0 96.4 24.8±0.6 24.7±0.5 21.7
5 13.0±0.1 13.4±0.1 10.8 89.7±12.8 89.7±13.9 91.6 31.8±0.1 31.8±0.1 29.5
10 13.8±0.1 14.0±0.2 13.3 89.5±12.1 88.2±14.5 89.3 32.7±0.1 32.7±0.1 33.1

seems to perform better than Euclidean embedding, it remains inconclusive which of
H-EM or H-KM is better suitable: for DBLP, Wikipedia and Flickr the H-EM approach
showed better results, however for BlogCatalog K-Means algorithm performed better.

4.4 Community classification

Assuming to know the communities of some nodes, the objective is to predict the
communities of unlabelled nodes while using the computed community-aware embedding.
The nodes are split into a test set and a validation set. We will use three different methods
to predict the labels of the validation set:

• Hyperbolic Barycenters (H-B): This method uses a supervised version of K-Means
by computing the Riemannian barycenter of nodes known to belong to a given
community. Each barycenter is considered as a cluster centroid representing the
community. Then nodes from the validation set are associated to the communities
of the n nearest barycenters (depending on the considered Precision@n discussed in
the next section).

• Hyperbolic GMM (H-GMM) Given the known labels of the train data, a GMM is
estimated. The parameters of the GMM are obtained by applying one maximisation
step given the train nodes (Section 4.1.2) using the following estimate:

wik =
yi,k

K
∑

k=0
yi,k
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with yi,k = 1 if node i belongs to the community k and yi,k = 0 otherwise. To
predict the community k̂ of a given node embedded as xi ∈ Bm, we use Bayes
decision rule:

k̂ = argmaxkP(k|xi) = argmaxkwik f (xi|µ̂k, σ̂k)

with µ̂k, σ̂k the estimated parameters of the k-th Gaussian distribution.

• Hyperbolic Logistic Rregression (H-LR) In order to further compare the baseline
ComE with our proposed method developed in this paper, we propose similarly to
Cavallari et al. 2017 to learn a classifier. For the baseline ComE, we use the usual
Euclidean logistic regression. For its Riemannian version we rely on the hyperbolic
logistic regression proposed in Ganea et al. 2018. From this paper, recall that for a
given hyper-plane Ha,p defined by a point p ∈ Bm and a tangent vector a ∈ TpBm,
the distance of a given x ∈ Bm to Ha,p is:

d(x, Ha,p) = sinh−1
(

2| < −p⊕ x, ak > |
(1− || − p⊕ x||2)||ak||

)
(4.11)

Then, the probability of a node x to belong to the community k is modelled by

P(z = k|x) = σ
(
sign(−p⊕ x)d(x, Ha,p)

)
(4.12)

with z the community latent variable.

4.4.1 Community Classification Results

In this section, experiments in the supervised framework are presented. We will evaluate
the three ways to predict labels explained previously in section 2.1.4: H-B, a supervised
version of K-Means based on the Riemannian barycenter, H-GMM, hyperbolic Gaussian
mixture models, or H-LR, hyperbolic Logistic Regression (LR) based on geodesics. For all
experiments we apply a 5-cross-validation process with 20% of the dataset for validation.
The Precision@1 is reported for mono-label datasets (i.e., each element belongs to a
unique community), additionally Precision@3 and 5 are reported for multi-label datasets
(i.e., each element can belong to several communities). Table 4.3 reports the mean and
standard deviation of the Precision over 5 runs.
H-B and H-GMM outperform H-SVM and H-LR when the number of communities is

large (e.g., the football dataset). We empirically show that geodesics separators are not
always suited for classification problems. Differences in results between H-SVM and H-LR
are mainly due to the quality of the learned embeddings. Indeed, Cho et al. 2018 uses
embeddings preserving first and second-order proximity only without taking into account
community awareness.
Table 4.3 shows that the proposed embedding method often obtains better or similar

performances for the different datasets especially in low dimensions. H-GMM is particularly
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Table 4.3 – Results for the different classification methods. With : H-B the supervised
hyperbolic K-Means based on hyperbolic barycenter; H-GMM the supervised
hyperbolic Gaussian mixture model; H-LR the regression logistic in hyperbolic
space; ComE Cavallari et al. 2017.

Dataset Dim H-B H-GMM H-LR ComE

DBLP

2 86.6±1.6 88.7±1.1 82.9±8.0 75.3
5 90.0±0.5 90.9±0.5 91.2±0.6 89.8
10 90.2±0.5 90.7±0.4 91.6±0.5 90.1

Wikipedia

2 4.9/1.6/1.0 45.1/28.2/21.5 47.2/28.7/21.3 47.2/28.5/21.1
5 5.1/1.7/1.1 45.1/28.6/21.3 47.4/29.1/21.5 47.2/28.7/21.8
10 8.3/2.8/1.7 44.6/29.1/21.4 47.5/29.6/21.9 48.1/29.6/22.1

BlogCatalog

2 3.8/2.8/4.0 17.5/12.6/10.8 16.8/12.6/10.7 16.2/12.5/10.7
5 13.3/5.9/5.5 25.1/15.8/12.6 24.8/16.0/12.6 25.9/16.4/12.8
10 23.0/9.2/7.2 33.1/19.3/14.4 35.5/20.2/15.0 34.1/19.3/14.4

Flickr
2 5.9/2.5/1.7 23.3/14.3/10.8 18.7/11.2/8.4 20.3/12.3/9.3
5 12.8/4.8/3.1 26.8/16.5/12.6 28.3/16.4/12.2 26.6/15.5/11.7
10 14.8/5.4/3.5 26.3/16.3/12.7 31.4/18.3/13.6 31.1/17.9/13.3

advantageous for DBLP and Flickr with superior performances when using two dimensional
embedding. Using Riemannian logistic regression outperforms the baseline for Flickr and
DBLP in 5 dimensions and reaches similar performances for the remaining datasets,
demonstrating the effectiveness of our method to learn community representations. Notice
that for DBLP, results of ComE in 128 ( 92%) dimensions are comparable to our results
in only 10 dimensions. However, for Wikipedia and BlogCatalog, ComE remains better in
128 dimensions reaching respectively 49% and 43% of Precision@1.

Convergence and sensibility to initialisation Convergence for node embedding is
based on the number of epochs assumed sufficient when the value of the loss function is
quasi-constant. The community detection algorithm is sensitive with respect to the initial
parameters used for embedding and initial values of EM algorithm as well. Relying on
previous works, for the embedding, we considered initialisation suggested in Nickel et al.
2017. For the EM algorithm, we perform a K-means initialisation to deduce initial means
while variances are random.

Table 4.4 – Performances obtained by our method compared to Hyperbolic-SVMCho et al.
2018 (H-SVM) for small-scale datasets for 2-dimensional embedding. Results
are the means for 5-folds cross-validation for 5 experiments.

Dataset H-SVM H-B H-GMM H-LR

Karate 86±3 92±11. 91±11. 87±15.
Polblogs 93±1 95±0.9 95±0.9 96±1.2
Books 73±4 83±8.3 83±7.5 82±7.4

Football 24±3 80±7.8 79±8.0 39±11.
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Hyperbolic SVM Comparison To support the relevance of the proposed classifier
approaches, we compare in Table 4.4 our results with Hyperbolic SVM Cho et al. 2018.
The performances are reported for embedding of small datasets in two dimensions, using
5 folds cross-validation. In terms of hyper-parameters, the context size is set to 3 for
Football and 2 for the other datasets. The reported results are directly taken from the
H-SVM paper (where 5 folds cross-validation are used as well).

4.4.2 Discussion on Hyperbolic graph embeddings

In this section, we discuss and give insight regarding the reasons why a classification
algorithm could be suitable or not for a dataset. Additional experiments and comparisons
are provided to explain why some datasets obtain poor performances regardless of the
used classification algorithm. We propose therefore to compare our method with the
baseline of the Most Common Community (MCC, described next). This comparison will
illustrate difficulties for classification algorithms to deal with GSD exhibiting imbalanced
community distributions when embedded in low dimensions.

In particular, it is the case for Wikipedia and Blogcatalog datasets where some commu-
nities contain a single node. Finally, thanks to the visualization of the predictions of the
different supervised algorithms, we justify the relevance of using Gaussian distributions in
some situations for classification rather than classifiers based on geodesics such as the
Logistic Regression.

Comparison with Most Common Community (MCC)

In this section, we comment on the results and discuss the reasons related to classification
algorithms and datasets that led to low performances for two-dimensional representations.
In particular, these situations produce low performances in the unsupervised setting which,
however, achieve better scores in the supervised one. The main intuition explaining this
performance gap is the tendency of supervised classification methods to annotate all
nodes with the most common community in the dataset (i.e., the community that labels
the highest number of nodes). To better illustrate this claim, we propose to visualize in
Table 4.5 the Most Common Community baseline (MCC). The MCC baseline associates
each node with the community withdrawn from the probability distribution of the known
true labels and can be seen as a naive classification method. Formally, the probability
vector of the known labels ŷ is written :

ŷ =

N
∑

i=1
yi

N
∑

i=0

K
∑

k=0
yik

(4.13)

where yik = 1 if the true label of node vi is k and 0 if not, and yi the labeling vector
of node vi (i.e., the k-th component of yi is 1 if vi belongs to the community k).
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Table 4.5 – Precisions at 1, 3, 5 for HLR (Hyperbolic Logistic Regression) for 2 and 10
dimensional embeddings, MCC-CV (mean of the most common community
using 5-cross validation sets) and MCC-A (most common community for the
entire dataset)
Dataset HLR (2D) HLR (10D) MCC-CV MCC-A
Karate 87 - 53.3 50.0
PoolBlog 96 - 52.0 51.9
Books 82 - 46.6 46.6
Football 39 - 2.6 11.3
DBLP 79 92 38.1 38.0
Wikipedia 47/29/21 47/30/22 47/28/20 47/28/20
BlogCatalog 17/13/11 35/20/15 16/12/10 16/12/10
Flickr 19/11/8 - 17/10/7 17/10/7

Table 4.5 empirically demonstrates that in 2 dimensions the HLR method is unable
to efficiently capture the community structures of Wikipedia and BlogCatalog since it
performs equally the same as MCC. Moreover, for Wikipedia the most common community
labels nearly half of the graph nodes as shown in Figure 4.5. Taking a closer look at the
same Figure, we notice how community distributions are largely unbalanced for Wikipedia
and BlogCatalog. Furthermore, for Wikipedia some communities are represented by a
single node, making this dataset particularly difficult for classifiers to capture the least
represented communities. On the contrary, the fact that communities of DBLP are more
uniformly distributed contributes in achieving better performances with HLR in only two
dimensions.

4.4.2.1 Visualization :

In this part, visualizations of the learned embeddings and prediction of the different
classification algorithms are shown. Then advantages and disadvantages of each classifier
are discussed.

Figure 5 shows the learned embeddings for the graph datasets Karate, PoolBlog, Books,
Football and DBLP where the color of each node corresponds to its real community.
Notice how the embedding lead to clear separate clusters, allowing for classification
algorithms to efficiently retrieve communities.
However, when visually comparing the results of GMM and HLR in figures 4.6 and 6

(refer to the annex), notice how HLR struggles to find geodesics separating accurately
communities of Football. Indeed, the learned two-dimensional embeddings are non-
separable using geodesics for Football. This difficulty is, however, better handled by
GMM. Moreover, HLR performances on Football achieve ≈ 39% while reaching ≈ 80%
with GMM, thus supporting the benefit of making use of classification with Gaussian
distributions.
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Figure 4.5 – The distributions ŷ of communities for DBLP, Wikipedia and BlogCatalog
dataset

4.5 Hyperbolic embeddings and structured data

In this chapter, we presented a methodology that combines hyperbolic graph embed-
dings and clustering techniques together for applications to community detection and
classification. To this end, we designed a framework to learn community-aware embed-
dings on the Poincaré Ball. To assess the relevance of a hyperbolic approach to learn
communities, we experimented with both supervised and unsupervised applications of
this framework. We used adaptations to the Riemannian setting of clustering algorithms
K-Means, expectation-maximization and Logistic Regression. We proposed as well an
analysis while visualizing the learned representations to explain why certain types of
classification algorithms perform better than others in some situations.
Our proposed method was compared with state-of-art ComE (its counterpart in the

Euclidean space). Our approach provided better or similar results when using the same
number of dimensions. Today,this work is being reviewed at the IPM conference. A
preliminary version of the paper is available on arxiv (Gerald et al. 2019b). This work
allowed us to contribute to the Geomstats python library (Miolane et al. 2020a).

In upcoming work, we plan to adapt the presented approach to handle larger dimensions
to learn communities on even larger graphs, held back today by difficulties for correctly
scaling the normalization factor of Gaussian distributions on hyperbolic space.

Complementing previous work on hyperbolic embedding, we have empirically supported
the effectiveness of these approaches on large real-structured data. Moreover, the topology
of hyperbolic spaces is particularly relevant for hierarchical data, as demonstrated by the
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(a) karate

Figure 4.6 – Hyperbolic embeddings colored according to regression logistic prediction for
karate, polblog, books, football and dblp graphs

work of Nickel et al. 2017. Thus, the representation of hierarchically structured data such
as labels in multi-label classification tasks is relevant within the hyperbolic space.

Moreover, we point out that hyperbolic embeddings can possibly be used in classification
tasks, reaching similar or better performances than the Euclidean counterpart. However,
in the proposed framework, embeddings are not conditioned by the labels vector but only
using edge information on the contrary of embeddings based classification approaches. In
addition we did not consider a feature space and its mapping function to a hyperbolic
representation. We thus propose in the next chapter to address classification, firstly by
considering embedding documents and labels in a same space and secondly in learning
parametric function from a feature space describing examples to the hyperbolic space.
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In the past chapter, we adressed the detection and classification of structured data
through hyperbolic representation. As multi-label classification based on representation
learning often depends on the discovery of the latent structure, we strongly believe that
hyperbolic embeddings instead of Euclidean embeddings could lead to better representation.
Moreover, hyperbolic embeddings demonstrated to works better in low dimension than
the Euclidean counterpart, thus, partially contributing to alleviate the prediction times
and the storage.
Although previous classification task showed its relevance for graph embeddings, we

still do not know how it can perform adressing the large-scale multi-label classification
challenges.
In this chapter, we address the multi-label classification task using hyperbolic em-

beddings. Contrary to graph embeddings, multi-label classification involves additional
information. In graph embeddings we only have edge information to embed nodes, in
multi-label classification we have labels and documents information. To make an analogy
with graph, labels can be considered as the nodes and edges as the association of labels
occuring togethers in documents. For documents we have at our disposal the features
describing a document. To map the documents to the hyperbolic space, we have to
learn a projection. The latter involving learning a parametric function from the space
of features of the documents to their hyperbolic representation (representation space).

91
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To this end, likewise related works, we base our training scheme learning the mapping
(function projecting features to the embedding space) function with gradient descent op-
timization. However, we would exploit together the information of labels and the features
of documents. In the first proposal, we embed labels and documents in a hyperbolic space
and learn their representation using distance of examples to their labels. To learn the
projection from features space to hyperbolic space we propose different approximations.
If this method reaches satisfying performances for some corpus, it drastically failed

on datasets with numerous underrepresented labels. Being difficult to get accurate label
representation in this case, we propose different improvements such as directly integrate
in the learning process example neighborhood (based on labels similarity). In most cases,
labels representation is consistent and have interesting properties and retrieve hierarchy
from these representations could endorse learning tree-like classifiers. We then discuss
ongoing works whose final objective is to retrieve labels hierarchy or a label graph.

5.1 Classification based continuous embeddings

In this section we recall main approaches addressing large-scale multi-label classification
through continuous embedding. We give deeper insight on how and why state-of-the-
art methods work. We then present briefly the hyperbolic counterpart and discuss its
advantages and drawback.

5.1.1 Learning representation for classification

Representation in classification got as the main objective finding a projection that make
similarly labeled documents close to each other. To this end the objective mostly relies
on maximizing a similarity metric between documents with similar topics. More formally,
let be sl a similarity on label vectors and se a similarity in the embedded space and
f : F → F′ a projection function (map function) in the target space. Typical objective is
subsquently to design a constraint that preserve label vectors similarity in the embedding
space:

∀(xi, yi), (xj, yj), (xk, yk) ∈ D, se( f (xi), f (xj)) ≤ se( f (xi), f (xk))

⇐⇒

sl(yi, yj) ≤ sl(yi, yk) (5.1)

The constraint above ensure that K-NN decoding methods get the closest neighbors in
terms of labels. If embeddings similarity is often designed using negative distance or scalar
product, finding a relevant label vector similarity is the key point to guarantee performance
competitiveness. Mostly state-of-the-art methods rely on a set of similar document label
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vector N (i) containing the M closest neigbhors according to a similarity. This similarity
mainly relies on the number of common labels, typically the cosine distance.
Various objective functions has been designed to get similar labels and embedding

similarity. For instance one can minimize the difference between representations and labels
similarities (Kush Bhatia et al. 2015):

min
f

E(xi ,yi)∈D ∑
j∈N (i)

(yt
i yj − f (xi)

t f (xj))
2

With N(i) set of examples close to the ith example in terms of label vector similarity.
However, minimize (yt

i yj − f (xi)
t f (xj))

2 is equivalent to add the constraint se(xi, xj) =
sl(yi, yj) to the constraint 5.1, adding thus an additional difficulty.
In order to handle this issue, one can only make closer examples with similar labels in

ensuring dissimilar examples to be far from each other. The most common solution relies
on triplet loss :

min
f

E(xi ,yi)∈D ∑
j∈N (i)

k/∈N (i)

(se( f (xi), f (xk))− se( f (xi), f (xj)))

We often prefer when the number of labels is large, modeling the likelihood (Tagami
2017a) instead of the triplet loss, allowing to more efficiently push back negative examples
:

min
f

E(xi ,yi)∈D ∑
j∈N (i)

ese( f (xi), f (xj))

ese( f (xi), f (xj)) + ∑
k/∈N (i)

ese( f (xi), f (xk))
(5.2)

However, considering all examples that do not belong to the neighbor set is intractable
in terms of computation time, commonly we only sample few (about 5 to 10) negative
examples. In addition to the representation learning, a main issue is the prediction time
complexity when relying on K-NN algorithms for prediction. To tackle this issue split
the input space using for instance K-Means (SLEEC from Kush Bhatia et al. 2015) or
partition based classifiers (AnnexML from Tagami 2017a).

In this chapter we propose to adjust the main idea using instead of Euclidean embedding,
a representation lying in the hyperbolic space.

5.1.2 Hyperbolic embeddings for classification

Paying attention to label organization in extreme classification corpus, we noticed that
labels are often organized hierarchically. To convince the reader, in the corpus wiki10
one should notice first that label distribution looks similar to an exponential distribution
(see figure 5.1). In all the corpus, we have common labels (head labels) and rare labels
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Figure 5.1 – Labels distribution on wiki10

(tail labels) which should correspond to the specificity of labels: head labels are general
concepts and tails are specific concepts (we have a similar discussion in chapter 2 section
2.1.3). However, we cannot assert that labels describe a strict hierarchy.

Those similarities with hierarchical structures are thus making hyperbolic space a logic
candidate to embed labels. We can design a framework embedding both labels and
examples in the same space and predict labels according to closest labels of an example
in this space. Which leads to optimize the following cost :

min
f

E(xi ,yi)∼D ∑
j∈{l|yil=1}

es( f (xi),rj)

es( f (xi),rj) + ∑
k∈{l|yil=0}

es( f (xi),rk)
(5.3)

Where unlike equation 5.2 we make use of distance between representation of an example
f (xi) and representation of a label rj. Of course, learning a parametric function and
optimizing representation of labels cannot be performed as in Euclidean space, we thus
optimize through algorithms based on projecting embeddings on the manifold. This
projection technique shares similarities with the one proposed in Tay et al. 2017, we will
give further details in following sections.

In figure 5.2 we depict 2 dimensional labels embeddings on the Wiki10 corpus consid-
ering the joint learning of labels and examples. One should first notice that indeed labels
are organized by their frequency: more points are red colored more they represent an head
labels, on the contrary more they are yellow more they represents tail labels. However, it
remains difficult to associate documents embeddings to their labels. Indeed, if documents
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Figure 5.2 – Embedding wiki10 subset of labels into hyperbolic space

embeddings are close to the center, K-NN can not output tail labels, on the contrary
documents on the boundary will be far from head labels. As the gradient will be stronger
for labels close to the bound of the ball, documents will mostly be closer to the bound than
to the origin. In section 5.2 we thus report results considering only K-NN predictor among
examples, it show that indeed similarly annotated documents are embedded close to each
others. However, a question remains: is it necessary to embed labels since prediction
based on labels representation do not produce competitives performances ? Similarly to
labels topology, it should exist an organization between documents, particularly on the
corpora based on articles like Wikipedia ones. It is thus pertinent to use the classical
learning scheme consisting of constraining examples to be close according to a criterion
mainly based on a label vector similarity. This last classification approach is studied in
section 5.3.

Using Hyperbolic instead of Euclidean space raised several difficulties, especially
training parametric projection function such as linear ones. If learning embeddings is quite
well defined making use of Riemannian Gradient Descent, learning parametric function
to project documents remains difficult. Several works proposed solutions; such as in
Hyperbolic Neural Networks (Mathieu et al. 2019a; Q. Liu et al. 2019; Chami et al. 2019).

Many representation learning algorithms rely on two steps learning, learning embeddings
and then learning mappings. We propose to also study this last scheme, using thus the
classical Riemannian optimization algorithm for learning embeddings and learning a linear
approximation for the latter step. That allows us to evaluate embeddings and mapping
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(learning the parametric function f ) independently and thus better target the performance
bottleneck.

As described below, in this section we are motivated by hyperbolic embeddings for
learning representation that keep at most as possible the structure of the labels and
therefore examples. We exploit two different tracks, one relying on learning together
label/example representation, the second based on more classical representation learning
schemes. In a final section we discuss and sumarize proposed approaches, we also extends
the discussion to the labels embeddings.

5.2 A joint labels/examples hyperbolic embedding

As motivated in the previous section, large-scale classification corpus could rely on
a label taxonomy, in most cases organized as a hierarchy. At the top of the hierarchy
general concept are expressed such domain like "history", "geography", "mathematics" or
"information technologies" on the contrary labels on the bottom of the hierarchy are more
specific such as "pythagoras", "python" or "revolutions" (sampled on wiki10 corpus). As
a strict hierarchy does not exist, we rather prefer to speak of an acyclic graph.

One of the difficulties dealing with those annotation is the label redundancy : some
labels have close or same meaning. For instance, we could retrieve labels "game" and
"games" in the wiki10 corpus and examples could be labeled with the one or the latter
without any obvious reason. Thus, corpora are frequently noisy, learning representation of
labels alleviate this issue by having labels with same meaning close to each other.

Hyperbolic representation learning related works showed its efficiency to embed struc-
tured data within limited representation size. However most of the works stated it on
small corpora with a strict hierarchy and a clean annotation and labels (Nickel et al. 2017;
Sa et al. 2018).

In this section we study the ability of hyperbolic embeddings to tackle large-scale
classification without any prior on the hierarchical structure of data. To this end, we
design a framework that aims learning labels and examples embedding in a same space. We
thus expect label embeddings to draw the hierarchical structure of data. For documents
we expect their representation being closer to the boundaries

In order to learn these representations jointly, we design a loss that aims to set closer
the embedding of an example and the embedding of a label when a label annotate an
example. For prediction, two choices can be considered: 1) retrieving neighbor labels of
examples, and then annotate the examples with the n closest labels; 2) considering label
vectors of closest documents representations and aggregate labels of closest documents
(the documents of the training set are stored for the prediction).
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Notations :

We mainly preserve previous notations, with D ⊂ F×Y the dataset of tuple containing
features vectors and label vectors. Contrary to previous proposition, we get here two types
of embedding, label embeddings are denoted by the exponent l such that rl

j is the label
representation of the label j and the example representation denoted by the exponent e
such that re

i it is the representation of the ith example. We also need a projection from the
features space to the representation space f : F → F′, F′ being the embedded space. Let
f be a linear function (unless otherwise specified) represented by the matrix Θ ∈ Rn×m

with n = dim(F) and m the dimension of the representation space. Moreover unless
specified, we would consider F′ = Bm(0, 1) i.e. the m-dimensional centered ball within a
radius of one. Lastly, we will also need for each example a negative sampling set as use
in the previous section. We denote it by N e

(i) when it is a set of examples and N l
(j) for

labels, we further give details on the construction of those sets.

Loss function :

In this part we propose a similar loss to equation 5.2, however, instead of processing
distances between representation of examples, we use distance of the representation of an
example to the representation of one of its labels. Let N l

(j) = {k|yjk = 1} the label set
such that (xj, yj) ∈ D; the proposed loss for a document representation re

j = fθ(xj) and
a label i is given by:

l(re
j , i) = −log


e−αdh(re

j ,rl
i) ∑

k/∈N l
(j)

e−αdh(re
j ,rl

k)

+ e−αdh(re
j ,rl

i)


With dh the Poincaré hyperbolic distance defined with the equation 2.15.

The intuition is the following: each example must be closer to its labels than other
labels. The loss function becomes intractable when the number of labels is high due
to the set N l

(j), common practice to leverage this issue consists of sampling negative
examples. In practice, we sample for each pair of examples about 5 to 10 negative labels
according to uniform distribution (due to the extremely large number of labels it is unlikely
to sample a positive label). As frequent labels (labels occurring in many documents) are
more frequently updated and must be closer to most examples, their representation will
be closer to the origin of the ball (using Poincaré ball representation). At the opposite,
rare labels should be close to the boundary of the ball.
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Optimization

If optimization methods for Riemiannian manifolds are well known considering only
embeddings, learning a parametric function fθ from the features space to the hyperbolic
one is still difficult. In order to take into account the slope of the space curvature, we
base optimization on the approximate gradient descent algorithm presented in the chapter
2.1.2. We also need to ensure that the computed vector fθ(x) remains in the ball, to
do so we project the output of the linear function onto the ball by normalizing vectors
having a norm greater than one :

π(x) =

{
x

‖x‖+ε
if ‖x‖ ≥ 1

x otherwise
(5.4)

Considering at a step t of the algorithm the representation vector lt
i of the i-th label,

the update of the representation at t + 1 is given by :

rl,(t+1)
i = rl,t

i − η

(1−
∥∥∥rl,t

i

∥∥∥2

2
2

)2

∇rl,t
i

l(xj, i)

With η the learning rate. In a similar way, the update of the parameter θt of the
mapping function fθ is given by the following rule :

θt+1 = θt − η∇θt re,t
j

(1−
∥∥∥re,t

j

∥∥∥2

2
2

)2

∇re,t
j

l(xj, i)

with re,t
j = π( fθt(xj))

Inference step

To annotate a new example x, we embed the example to the representation space
with π( fθ(x)). Then an approximate K Nearest Neighbor Search according to the
hyperbolic distance d is performed to retrieve the closest training examples. The number
of occurrences of each label associated to embedding within the neighborhood of π( fθ(x))
representation is aggregated and ranked accordingly. The most relevant labels correspond
to the most occurring labels in the neighborhood, with the highest apparition frequency. We
also experimentally noticed that performances did not decrease when considering a naive
clustering while speeding up the inference (choose centroids among the representations of
the training examples to construct the clusters).

This last approximate search allows largely decrease the inference time. In the remainder
of this paper, we will use N

3000 random clusters by default.
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5.2.1 Evaluation

Experimental settings :

All evaluated datasets are real-world corpora based on Wikipedia annotations (Wiki10-
31K, WikiLSHTC-325K ), web page annotations (Delicious-200K ) or web market items/query
annotations (AmazonCat-13K, Amazon-670K ). The datasets have major differences: the
Wikipedia and the web page description dataset have a hierarchical label organization
while the two amazon datasets have a flatter label organization; statistics of those datasets
are depicted in the section 2.1.2.
The table 5.1 shows the results of the proposed approach (Hyp) compared to the

state-of-the-art results. Reported results come from the K. Bhatia et al. 2016 except
for the state-of-the-art algorithm (AnnexML) for which the results are those reported
in Tagami 2017a. Following their experimental settings, the predictions are made by an
ensemble of models, averaging the vote of 15 different models. The performances differ
widely with respect to the nature of the dataset: on Wiki10 and delicious-200K, our
method is very close to the best results; on the other datasets, there is a gap between
the performances of our approach and the others. The main difference between the two
sets of corpora is the hierarchical latent organization of the labels: the performances are
better with our approach when such hierarchical organization is deep like for Wiki10 or
Delicious. At the contrary, results with more flat hierarchies like Amazon did not succeed
in reaching competitive performances.

Effect of the embedding dimension Poincaré ball model is known for the ability
to efficiently embed hierarchical elements in a low-dimensional space. We design an
experiment to verify this hypothesis by training our model using different embedding sizes
and by comparing it to the AnnexML algorithm without pre-partitioning (corresponding
in fact to a Euclidean embedding). The table 5.2 shows the results for the wiki10 corpus.
For low dimensions (5 or 10), our approach slightly outperforms the Euclidean embedding
especially in the case of a single learner. With the growth of the number of dimensions,
Euclidean embedding tends to outperform our approach.
The dimension of the embedding space is crucial in the case of extreme classification,

as it is a key factor for the inference time: the k-nearest neighbor algorithm used for
the prediction is linear with respect to the embedding size, thus the complexity of the
inference step can be drastically improved if a very low embedding size is sufficient for
good prediction performances.

5.2.2 Discussion

Reported performances of learning shows that hyperbolic embeddings can perform
at least similarly to Euclidean methods. However, the reported experiments show that
for large-scale datasets the method is often lower than other approaches. Then, we
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Dataset Hyp SLEEC Parabel FastXML PfastreXML AnnexML

amazonCat
P@1 89.8% 90.5% 93.0% 93.1% 91.8% 93.6%
P@3 73.5% 76.3% 79.16% 78.2% 78.0% 78.4%
P@5 58.7% 61.5% 64.5% 63.4% 63.7% 63.3%

wiki10
P@1 85.6% 85.9% 84.3% 83.0% 83.6% 86.5%
P@3 72.9% 73.0% 72.6% 67.5% 68.6% 74.3%
P@5 62.4% 62.7% 63.4% 57.8% 59.1% 64.2%

Delicious-200K
P@1 46.5% 47.85% 47.0% 43.07% 41.72% 46.6%
P@3 40.8% 42.21% 40.1% 38.66% 37.83% 40.8%
P@5 37.8% 39.43% 36.6% 36.19% 35.58% 37.8%

WikiLSHTC-325K
P@1 43.2% 54.8% 65.0% 49.8% 56.0% 63.4%
P@3 26.5% 33.4% 43.2% 33.1% 36.8% 40.7%
P@5 19.4% 23.9% 32.1% 24.5% 27.1% 29.8%

Amazon-670K
P@1 31.1% 35.1% 44.9% 37.0% 39.5% 42.0%
P@3 28.1% 31.3% 39.8% 33.3% 35.8% 36.7%
P@5 26.0% 28.7% 36.0% 30.5% 33.1% 32.8%

Table 5.1 – Results of our approach (Hyp) compared to several state-of-the-art approaches.
For SLEEC and AnnexML, the predictions are made by aggregating the label
vote of 15 different models. FastXML and PfastreXML aggregate 50 trees
prediction. AnnexML merging 1 to 3 classifiers results. All reported results
come from the Extreme Classification repository, except for AnnexML for
which the reported results are those of the original paper.

can extend the model to get better performances in several ways: 1) New optimization
process have reported better performances in Riemiannian spaces with adaptative gradient
descent methods; 2) In this works we use an embedding method that from feature space
representation of points produces Poincaré points which set the method not formally
hyperbolic; 3) Taking into account directly a similarity measure on examples as it is
common in other methods should increase performances. We address those improvements
in the following section.

5.3 Examples based hyperbolic embedding

In this section we propose a variation of the previous method by taking into account
into the learning procedure example similarity. If labels/examples embedding previously
proposed seems to work, it does not allow tackling state of the arts methods, particularly
working only on Wiki10 and Delicious-200K corpora. The first assumption: decoding
using labels examples neighbor search did not work. We can thus unconsider learning
label representation and only focus on learning representation of documents. Moreover,
learning the projection function fθ is difficult, since this one relies on approximation of



5.3 examples based hyperbolic embedding 101

#Learners # Dimensions Hyperbolic Euclidean
1 5 78.9/54.1/43.1 77.02/53.5/42.5
3 5 81.3/60.0/50.0 81.1/59.2/48.7
6 5 81.1/61.5/52.0 81.3/60.3/50.4
9 5 81.2/61.8/52.6 81.2/60.6/50.7
12 5 81.2/61.8/53.0 81.2/60.6/50.9
15 5 81.2/61.6/53.1 81.2/60.6/50.9
1 10 81.5/61.6/50.9 79.1/61.4, 50.4
3 10 82.8/66.5/56.0 83.0/66.2/55.0
6 10 82.6/67.4/57.5 83.2/67.3/56.9
9 10 82.6/67.6/57.7 83.1/67.5/57.4
12 10 82.5/67.4/57.7 83.1/67.4/57.6
15 10 82.6/67.6/58.0 83.1/67.5/57.5
1 25 82.9/67.7/57.1 82.5/67.8/57.5
3 25 84.8/70.1/59.7 84.8/71.0/60.5
6 25 84.6/71.0/60.3 85.6/71.7/61.5
9 25 84.5/71.0/60.5 85.5/77.9/61.7
12 25 84.5/71.1/60.7 85.8/71.9/61.7
15 25 84.6/71.3/60.7 85.8/72.0/67.9

Table 5.2 – Influence of the size of the representations and the number of aggregated
models for the Wiki10-31K corpus for the precision @1,3,5. Hyperbolic refers
to our approach, Euclidean refers to a Euclidean embedding similar to the
AnnexML algorithm without pre-clustering.

the Riemannian Gradient Descent using the projection π. Dividing the learning process
into two different steps, by first learning the representation and the second, learning
the parametric function to project the docyments to their representation have many
advantages. First, we can more easily state which of the two processes is struggling,
secondly, we get more freedom in selecting the mapping function, such as using linear
regression on embeddings.

In this section we report ongoing results obtained by this approach, proposing different
losses to tackle the classification challenges.

Learning Representation

Example similarity loss. In order to ensure similarly annotated documents are close
to each other in the representation space, we first need a metric computing a label vector
similarity. An usual approach is to consider cosine label similarity between each labels
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vector documents. In practice we consider the set N e
(j) composed by the 10 closest

neigbhors according to cosine similarity of labels :

N e
(j) = arg max

S⊂I,|S|=C,j/∈S
∑
k∈S

yj.yt
k∥∥yj

∥∥ ‖yk‖

With C a hyper-parameter if not precised we consider C = 10. However, computing
each of those sets became intractable for a large size vector yi and a large number of
examples. To alleviate the computing process we should first remark that example share
some labels, named head labels (see section 2.1.2), those labels are thus not pertinent for
finding closest neighbors according to cosine label distance. Thus we remove head labels
from labels vectors using the AnnexMl proposed procedure, consisting in preserving only
labels respecting the following condition :

L

∑
j=1

nj(nj − 1)
2

≤ αN, n1 ≤ n2 ≤ . . . ≤ nL

With α a hyper parameter empirically chosen, ni the number of occurrences of the label i
in the training set.
Considering F′ ∈ BN×R as the matrix of embedded documents, where re

i i ∈ Z
correspond to the Poincaré representation of ith document in D, we defined the following
loss function :

LE = E(xi ,yi)∼D ∑
j∈N e

(i)

e−dh(re
i ,re

j )

e−d(re
i ,re

j ) +
B
∑

k∼U(1,2,...,|Dtrain|)
e−dh(re

i ,re
k)

We minimize this loss using Riemannian Approximate Gradient Descent (algorithm .3).

Locality loss. One of the main difficulties using negative sampling process is that
there are few chances to be informative at a certain step. Uniformally sampling examples
will lead at a certain point only considering already far examples when in reality we want
to get further negative examples close to the representation. To do so we propose an
additional loss that at each step compute a negative neighborhood based on the 50 closest
neighbors. Let N r

(i) being a set containing closest documents index according to their
projection in the hyperbolic space. The objective is thus to move away documents in N r

(i)
that have disimilar annotation. More formally:

N r
(i) = arg min

S′⊂I,|S′|=50,j/∈S′
∑
k∈S

dh(re
i , re

j )

Then N̄ e
(j) is the set of local negative examples

N̄ e
(j) = arg min

S⊂I,|S|=10,j/∈S
∑

k∈N r
(j)

yj.yt
k∥∥yj

∥∥ ‖yk‖
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Thus the overall loss function to minimize is given by:

LL = E(xi ,yi)∼D ∑
j∈N e

(i)

e−d(zi ,zj)

e−d(zi ,zj) + ∑
k∼N̄ e

(j)

e−d(zi ,zk)

Learning embedding function :

To learn embedding function f : F → Bn we use a linear function and update the
weight using usual gradient descent. To avoid having points out of the manifold we thus
project using the function π defined in equation 5.4. To learn the mapping we minimize
the following cost :

L f = E(xi ,yi)∼Dd( f (xi), zi)

Where d is a distance, typically l2, the scalar product (maximized in this case) or in
our work dh the Poincaré ball hyperbolic distance.

5.3.1 Prediction performances

As an ongoing work, we present preliminary experiments on only three corpora. In the
table 5.3 below, we reported precision scores using our methods and the different learning
costs described previously. We observe clear improvement using the local loss, particularly
on precision at 3 and 5 on wiki10. Those result thus shows that hyperbolic embeddings are
suited to the extreme classification problems. However, we did not succeed in obtaining
good performances for more complex corpora. Particularly using the locality based loss is
difficult since finding neighbors of examples could be extremely time costly in regard to
the number of documents in the training set.

Dataset EE EE+O AnnexML AnnexML (15)(Tagami 2017a)
Wiki10-31K 84.5/71.0/60.1 85.4/73.0/62.4 83.9/71.8/61.4 86.5/74.3/64.2
WikiLSHTC 37.7/21.1/15.3 - - 63.4/40.7/29.8
Amazon670K - 21.7/19.7/18.4 - 42.1/36.7/32.8

Table 5.3 – Precision scores at 1/3/5 for our method compared to AnnexML (State-of-
the-Art XML representation). All the scores are given for one learner except
for last column where Tagami 2017a results are reported for 15 learners. EE
meaning example/example loss and O locality loss

5.3.2 Ensembling

In order to consolidate the process of prediction, representation methods (also valid for
tree approaches) mostly use the ensembling approach. In our specific case, we ensemble
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several models by summing the scores labels vector of each model, thus the final label
vector for an example considering sit the score vector for example i obtained by the model
t ∈ 1, 2, . . . n is :

si =
n

∑
t=1

sit

#learners P@ nDCG@ PsnDCG
Representation-size = 50

1 84.7/72.6/62.1 84.6/75.4/67.4 12.0/12.3/12.7
3 86.4/73.6/63.0 86.4/76.6/68.5 11.9/12.3/12.7
6 86.4/73.8/63.0 86.4/76.7/68.5 11.8/12.3/12.6
9 86.4/73.9/63.4 86.4/76.9/68.8 11.8/12.3/12.7

Representation-size = 10
1 82.6/68.2/57.3 82.6/71.5/63.1 11.0/11.1/11.2
3 84.9/70.1/59.5 84.9/73.5/65.3 10.9/11.1/11.4
6 85.1/70.8/60.2 85.1/74.1/65.9 10.8/11.2/11.4
9 85.3/71.0/60.5 85.3/74.3/66.1 10.8/11.2/11.5

Table 5.4 – Results obtained by ensembling multiple learners and different embeddings
dimensionality. To evaluate we use different metrics, the precision, the nDCG
and the PsnDCG described in the section 2.1.4

In the table 5.4 below, we show the results obtained with the presented method using
at most 9 models, prediction being aggregate by the previous formula. First we should
remark that performances do not necessarily increase using more learners, particularly
within 50 dimensional embeddings, performances only increase up to 3 learners, this result
is encouraging showing that the model does not need large ensembling to perform well.

Propensity score. One could also notice that the PsnDCG decreases using sev-
eral learners. However it is intuitively explainable, since this measure relies on infre-
quent labels, aggregating examples will lead to increase the score of the most common
ones. For this last metric, we approximitavelly perform as well as SLEEC (reaching
11.14/11.86/12.4 aggregating 15 models), but get much lower performances than the
PFastreXML (19.02/18.34/18.43) tree approaches that directly optimize this metric. We
should to compare fairly to SLEEC running it for only one learner.

Precision and Negative Cumulated gain. For the precision and negative cumulated
gain, we reach performances that are similar to the state of the Art AnnexML and better
than SLEEC using fewer learners.

Low dimensionality. However, we do not observe a real gain using lower-dimensional
embeddings as hyperbolic embedding usually does. At the current state of this works it
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not clear yet what is the main issues to get better embeddings within low dimensionality.
However, we noticed during the learning step several differences between training and
testing loss: for all experiments learning the mapping function will lead at a certain step
to decrease performances on the validation (see figure 5.3); however, continuing the
optimization will lead to better convergence and performances for the training set. To
this end, we use early stopping mechanism, stopping optimization when best precision is
reached on the validation set.

Iteration

Figure 5.3 – Learning and overfitting for the mapping part. Validation decrease whereas
the training performances still increase.

An interpretation of the problems is not the expressiveness of the space using low
dimensional embedding but it could be due to overfitting effect. There are several solutions
that could reduce this behavior, one could be to use different models for mapping and
optimizing using hyperbolic parametric function. However, there is no at the best of
our knowledge efficient methods for learning non-sequential parametric function from
bag-of-word (or more generally fixed sparse features space). The second approach would
rely on using regularization methods, however, using usual l2 within the current mapping
model is meaningless.

5.3.3 Discussion

In this section we proposed to consider the classical framework for multi-label classifi-
cation involving example/example similarity for learning embeddings such as SLEEC or
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AnnexML. At the current state of the work, we show that learning embeddings within
hyperbolic space could efficiently work on specific corpus. However, learning a mapping
function from Bag-of-words features space remains difficult and no well-defined methods
are today designed to make it work efficiently in hyperbolic space.

5.4 Discussion and perspective

In this last chapter, we studied different approaches to achieve representation based
multi-label classification. We modeled a joint labels and documents embeddings, validated
at the CAP conference in 2019 (Gerald et al. 2019a). This first approach demonstrates
that hyperbolic embedding based approach can address the classification task. The joint
embedding first idea relies on labels/documents representation using K-NN predictor.
This first decoding method did not allow competitive results, leading to consider the
classical scheme of prediction using documents representation based K-NN instead. In a
second direction, we improved the framework considering optimization of a ranking loss
on documents and incorporate a loss relying on the embedding locality. This proposal
produced state-of-the-art results on Wiki10 corpus, but at the price of a very time costly
training procedure. This last work is not achieved yet, and we are today considering many
improvements.
We currently prospect to use the representations of labels in different classification

schemes. Indeed, within hyperbolic space, the norm of elements is meaningful: labels
embedded close to the origin tend to correspond to general concepts and on the contrary
labels close to the bound to specific concepts. Thus, if labels are describing a taxonomy
or a hierarchy we should expect to have tree depth represented by distance to the origin
while keeping similar labels close to each other.

We are currently looking at method to retrieve hierarchy from the hyperbolic embedding
space to eventually building hierarchical classifiers on the top of the hierarchy.

At the current state of our work, we began evaluating label based representation using
Mean-Rank metric :

1
|V|

|V|
∑
i=0

1
|{(vi, vj) ∈ E}| ∑

(vi ,vj)∈E
|{vk|d(ri, rk) ≤ d(ri, rj), (vi, vk) /∈ E}|

With G(V, E) the graph composed of labels sharing an edge if occurring in a same
document. The current results are shown in the figure 5.5, showing that in low dimension
hyperbolic embeddings outperform Euclidean embeddings.

Moreover, we believe that it should be possible to exploit the label structure to retrieve
taxonomy and eventually to design the structure of hierarchical classifiers. Several
applications need knowledge on the structure often represented with graphs. If the
majority of corpora rely on a taxonomy among labels this information remains unknown,
however, retrieving this structure should be possible using labels hyperbolic representation.
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Space / Dim 2 5 10 20 50
Poincaré Ball (Hyperbolic) 3654 1924 1610 1448 1388
Euclidean 5520 3173 1709 920 448

Table 5.5 – Comparison of Mean Rank between hyperbolic and Euclidean Space on the
Wiki10 dataset

A remaining question is the ability of designing efficient classifier having as prior knowledge
the label representation. If intuitively, performances in terms of mean rank and design of
the space tend to show that the we obtained a better structure of labels using hyperbolic
space, building a classifier on it still is difficult. Unpublished recent works have started
to propose algorithms for reconstructing hierarchical structure beyond labels. With this
structure we should be in capacity to build a hierarchical classifier having small classifier at
each node (a node corresponding to a label). We thus tested several approaches to rebuild
this structure, for instance choosing an arity n for a tree and selecting from a parent
node the n closest labels further away from the root. Different roots can be designed
such selecting the root as the origin of the ball or the centroids of labels representation.
Similarly, we could also select parents/children using occurrences of each label, thus for a
parent node, select the n closest label representations such that those labels occur less in
the corpus.

At the current state of the work, none of the current approaches have given significant
performances yet, however, current results on the labels structure encouraging us to look
further for more effective approaches.
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In this thesis the studied representation learning approaches to tackle extreme clas-
sification challenges. We mainly focus on two of these challenges the time complexity
and the prediction accuracy. To this end we proposed new learning concepts with the
binary and atoms networks, and studied hyperbolic embeddings to deal with the extreme
classification task.

In this conclusion we first review the different contribution proposed. In a following
section, we discuss of what challenges remains, and accordingly how can we improve the
proposed approaches. We finally discuss of extreme classification’s trending approaches,
how it evolved during those last four years and the future directions of the domain.

6.1 Contributions and adressed challenges

In this manuscript we studied the extreme classification through representation learning
approaches, we proposed three main contributions addressing two different classification
challenges. In the first chapter (chapter 3) we proposed a method based on learning binary
representation of documents having as the main objective to lower the time complexity.
Results on middle size mono-label corpora show the interest of the approach, performing
better than ECOC based on K-NN decoding and being faster to decode than Multi-layer
perceptron models. Results particularly show that learning binary codes or partition leads
to a better tradeoff between accuracy and time complexity performances than selecting
codes randomly. However, we encounter difficulties adapting the algorithm for multi-label
settings. In order to take into account labels correlations, we introduced the Atoms
Network. This last proposal evaluated on small datasets offered interesting performances
but without tackling state-of-the-art methods. However, a similar recent framework named
Ground Testing Matrix started to works efficiently.

Based on matrix testing decoding technic we strongly believe that the proposed approach
could lead to better performances with some optimization improvements (see section 6.2).

109
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On the other hand expressiveness of binary representation is not sufficient when the
objective is to represent complex relation. Particularly, the labels of extreme multi-label
classification corpora often include a hidden taxonomy such as graph or tree structure.
Considering this prior, recent approaches based on Riemannian Geometry raised our
interest as they proved their efficiency to embed taxonomy and more particularly graph
structures. To render the ability of hyperbolic space to represent structured data we
proposed a graph embedding method to address the community embedding tasks. For this
purpose we introduced a hyperbolic transposition of maximization expectation algorithm
to fit a hyperbolic Gaussian Mixture model. Finally, we proposed two tasks on learned
embeddings: a community detection task and a classification task based on hyperbolic
geometry clustering and hyperbolic geometry classifiers. Experiments demonstrate the
efficiency of hyperbolic space to embed such data. Moreover, results show the approach
is particularly efficient in low dimensional space with few exceptions. Besides, these
works have allowed us to contribute to the Geomstats (Miolane et al. 2020b) information
geometry python library in implementing the geometry of the Poincaré ball model and its
associated clustering algorithms.

In the chapter 4, we proposed a framework to learn embeddings for extreme classification
using hyperbolic space. For this last contribution, we first embedded labels and examples
jointly where labels embeddings are used to structure the space. Secondly, similarly to
usual approach we also considered cost over examples based on their label similarities to
design a more accurate representation space which embeds only the examples. Presented
results on large-scale corpora show their efficiency particularly on the corpus based on
Wikipedia: wiki10.

6.2 Remaining challenges

Despite our studies and novel approaches proposed during this PhD, many challenges
are remaining in order to tackle large-scale classification challenges. Indeed, many
improvements of the proposed methods could be envisaged.

Binary embedding and imitation learning. The DSNC model suffer from a major
drawback, the optimization process is an approximation of a gradient descent. If in the
preliminaries experiments we designed optimization based on the REINFORCE, this latter
strugles to converge efficiently. It is well known that policy gradient methods have a long
exploration step. With the number of possible codes to explore, the convergence using
directly REINFORCE based optimization is thus intractable. Netherveless, having a good
initialization could make it works and converge faster. With the straigh-through estimator
we potentially have a better initialization, thus one track to explore would be to use STE
as initialization and to continue the learning using the policy gradient framework.



6.2 remaining challenges 111

The Ground testing challenges. Parallel to the atoms network model, the ground
testing framework have been proposed. Those two methods are pretty similar, they
mainly differ in decoding process and construction of the atoms. If nor the proposed
framework and ground testing approaches produce state-of-the art performances, it should
be improved. A first simple approach consists of highly increase the number of atoms,
since even with a large number of atoms decoding could be time efficient. A second
should be to better build the atoms (or the ground testing matrix), for instance taking
into account additional losses to explicitly preserve similar labels in atoms. Recently,
unpublished approaches have been proposed considering this framework, however still
learning selectors and atoms separately. The resulting ideas could be exploited to better
build atoms matrix, such as clustering on the labels correlation matrix.

Hyperbolic embedding and hiearchical structure. The ability of hyperbolic rep-
resentations to correctly represent graph structures makes them a good choice for extreme
classification challenge. Despite good results in our approaches and in the state of the
art, parametric methods for transforming documents from the feature space into their
hyperbolic representations remain currently inefficient. Related work on hyperbolic neural
network learning is today built on approximations which may lead to poor performances
compared to their Euclidean counterpart. In our work, we have indeed used two processes
: the first well defined is the learning of representation the second corresponding to the
learning of an embedding function being approximated by considering the normalization
of the embedded documents. On the latter, it would be important to evaluate several
solutions, the first one considering the features space as a hyperbolic space (embeddings
each feature) and thus calculating the representation by means. However this solution
suffers from the fact that we do not have a closed form for the means within the Poincaré
model.

In Ganea et al. 2018, authors proposed the counterpart of linear neural layer. This
last proposal relies on the decomposition of the linear output in the direction and the
values (this last one is normalized to ensure being in the ball). At the current state of our
works, we tested this linear layer without reaching competitive performances. However,
this last one takes as input a vector lying in the hyperbolic space where in our case
documents features are not. Many solutions are imaginable to apply this layer: projecting
the input feature vector to the hyperbolic space and apply the linear hyperbolic layer
on it, computing the barycenter of documents words in the hyperbolic space or using
Euclidean representation first and project it to the hyperbolic space using the exponential
map (apply then linear hyperbolic layer). We started to experiment the first approach.
The second approach as stated above is intractable relying on the exact expression of the
barycenter, however, we could consider approximated barycenter calculation. The last
approach has a main drawback, it can not render more information than one encoded by
the Euclidean representation; thus, a solution is to consider larger Euclidean representation
than hyperbolic one. We plan to experiment with these three approaches soon.
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On the other hand sequential models are well defined by the Hyperbolic Neural Net-
works paper which opened a new field of research using sequential data of documents.
Thus, exploring large-scale classification within sequential neural networks could improve
performances of hyperbolic representation for classification (a large portion of Extreme
Classification corpus could be transformed as sequential data using text order).

To sum up in this thesis we explored representation based methods to address the
large-scale classification challenges. With the first approach, we proposed a novel method
to fasten prediction thanks to binary documents representation. With the second method,
we proposed to take into account structure of the labels and the documents to produce
accurate representations using hyperbolic space. With those contributions we show that
those approaches can turn effective.

6.3 Discussion on the advance of the domain

During the last four years, many improvements have been realized in the machine
learning domain. Particularly, deep learning approaches changed the rules in machine
learning: first, in image classification thanks to the CNN and later with the Residual
Networks which alleviate the vanishing gradient issue for very deep neural networks. In
text classification, attention redefined the paradigm with memory networks, later the self
attention proposed in transformer networks greatly improved performances. Extreme
classification challenges can make use of those new technologies considering sequential
representation of text rather than bag-of-word. At the best of our knowledge only few use
it today. However, recent works based on BERT (Chang et al. 2019b) or using pre-trained
transformers (Chang et al. 2019a) have been proposed for extreme classification.

In a close future, we can reasonably expect important changes in extreme classification
approaches, particularly by including deep learning progress on raw data. However,
deep learning methods often rely on a specific data structure at the contrary of current
approaches which rely on already processed features of data. The strengh of proposed
approaches and state-of-the-art approaches is the generality of the framework, however
specific deep learning methods could lead to perform better. For future works, it would
be interresting to explore extreme classification considering more data driven deep neural
architectures.
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1 Decoding Algorithm DSNC

In this section we depict the hashing based algorithm (algorithm .1) described in the
chapter 3.

Algorithm .1 Decoding Through Hashing
1: procedure Storage(W)
2: L = []
3: for i ∈ [0, 1, . . . , 2c − 1] do
4: v← (i//2c−1 mod 2, i//2c−2 mod 2, . . . , i//20 mod 2)
5: k← arg max(Wvt)
6: L← L + [k]
7: end for
8: end procedure
9: procedure Prediction(x, e, L)

10: r ← e(x)
11: i← rc−1 × 2c−1 + rc−2 × 2c−2 + · · ·+ r0 × 20 return L[i]
12: end procedure

2 Riemannian Manifold and Hyperbolic space

In this part of the appendix we provide details on Riemannian manifolds, with deeper
insight about hyperbolic space.

2.1 Riemannian Manifold

2.1.1 Tangent Space

An important concept when we are working with Riemannian manifold is the tangent
space concept. Tangent space corresponds to the space generated by a tangent vector
to the manifold considering a base point. The tangent space at a point x ∈ M is noted
TxM for tangent space of manifold M in x. In Riemannian geometry the operation
mapping a point to the tangent space on a point x is named the logarithmic map operator
denoted Logx. Inversely the operator mapping a vector v on TxM is named exponential
map denoted Expx. Those operators are an important concept allowing moving a point
in manifold, by applying transformation in the tangent space and then mapping tangent
vector to the considered manifold.

In the specific case of Poincaré Ball model we first have to define the Moëbus addition
:
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Tx(M)x

y

Logx(y) v

Expx(v)

Figure 1 – Illustrating the principle of tangent space with the two operators exponential
and logarithmic map.

⊕ : Bn ×Bn → Bn

(x, y) 7→ x⊕ y
(1)

With for x, y ∈ Bn :

x⊕ y =
(1 + 2(x.y) ‖y‖2)x + (1− ‖x‖2)y

1 + 2(x.y) + ‖x‖2 ‖y‖2 (2)

Then the logarithmic map Logx : Bn → TxM for a point y ∈ Bn is given by :

Logx(y) = (1− ‖x‖2)tanh−1(‖(−x⊕ y)‖) −x⊕ y
‖−x⊕ y‖ (3)

And exponential map Expx : TxM→ Bn for v ∈ TxM:

Expx(v) = x⊕
(

tanh
( ‖v‖

1− ‖x‖2

) v
‖v‖

)
(4)

In the figure 1 we pictured the action of both logarithmic and exponential map on a
manifoldM.

2.1.2 Optimization

Optimization methods in Riemannian manifold rely on the tangent space concept,
initially proposed in "Stochastic Gradient Descent on Riemannian Manifolds" Bonnabel
2013 (Riemannian Stochastic Gradient Descent (RSGD)). Computing gradient descent or
ascent step on the tangent space at a point is first done by computing the gradient of an
error function on the tangent space at the same point to finally remap it to the considered
manifold using the exponential map operator. More recently, Nickel et al. 2017 proposed
hyperbolic embedding method on the Poincare Ball model based on a different optimization
process based not on an exact method but on approximation of the exponential map
applied on a rescaled gradient. However, many drawbacks can be addressed such that
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update can lead to have a point outside of the manifold (corrected by using a projection
that normalizes point to have a l2 norm lower than one), or not only specific to this method
the computation time of a step as it involves much more calculation than Euclidean
gradient descent. To reduce calculation time, learning Poincaré representation can be
performed on one of hyperbolic homeomorphism such as the hyperboloid model Wilson
et al. 2018. However, all those approaches do not take into account previously applied
gradient (previous step applied on the same weight) while recent Euclidean counterparts
rely on adaptive methods leading to whether faster retrieve local minima or reach better
convergence. The lack of adaptive methods for Riemannian manifolds has recently been
addressed in the "Riemannian Adaptive Optimization Methods" (Bécigneul et al. 2018)
paper proposing the Riemannian counterpart of two leading Euclidean methods Adam
and AMSGrad.

Algorithm .2 Exact Poincare Ball RSGD
algorithm
1: procedure step(xt, yt, f , η)
2: g f ← ∇dB(xt ,yt) f (dB(xt, yt))

3: gdB ← −
logxt (yt)

dB(xt ,yt)

4: ∇TxtB
xt f (dB(xt, yt))← g f gdB

5: xt+1 ← expx(η∇TB
xt

)
6: end procedure

Algorithm .3 Approximate Poincare Ball
PRSGD algorithm
1: procedure step(xt, yt, f , η)
2: ge ← ∇xt f (dB(xt, yt)

3: r ← (1−‖xt‖2
)2

4 )
4: xt+1 ← proj(xt − ηrge)
5: end procedure

The algorithms .3 (Riemannian Stochastic Gradient Descent) and .2 (Projected Rie-
mannian Stochastic Gradient Descent) refer respectively to the methods introduced in
Bonnabel 2013 and Nickel et al. 2017. For the projected method, we refer to proj as the
projection defined by :

proj(x) =

{
x
‖x‖ − ε, if ‖x‖ ≥ 1

x otherwise

the figure 2 depict two proposed gradient descent approaches minimizing squared

distance between the point x =

( −0.8
0.4

)
and y =

( −0.5
0.5

)
. If the latter method

(PRSGD) suffer from precision, its main advantage relies on the computation speed in
avoiding the exponential map computation. If we should think that original gradient
methods will rely on better convergence, experiments shown in adaptive methods paper
Wilson et al. 2018 empirically demonstrate that in particular case the projected gradient
descent may lead to better optimum.

Parallel Transport.

Definition .1 (Parallel Transport). Let consider Xγ : I → Rm a C∞ class application,
that for each t ∈ I associate a tangent vector to the manifoldM at γ(t) (a geodesic)
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(a) Gradient Descent using exact exponential
map

(b) Gradient Descent using retraction (Nickel
et al. 2017)

Figure 2 – Compareason of Riemannian gradient descent algorithm proposed in Bonnabel
2013 for figure 2a and Nickel et al. 2017 for figure 2b. In both figure we
minimize the squared hyperbolic distance between two points.

Figure 3 – Visualization of exact and approximated RSGD

v = Xγ(t) ∈ Tγ(t)M (Xγ is named a vector field along geodesic γ). Thus considering

Xγ(t0) = v0, if
∇Xγ(t)

dt = 0 ∀t ∈ I (covariant derivative or orthogonal projection on
the tangent space at the point γ(t) of the derivative), then Xγ(t) is called the parallel
transport of v0 along γ.

Figure 4 – Visualization of parallel transport of a vector (red) along a geodesic (blue) on
the Poincaré disk.
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Intuitively, imagine an object goes along a geodesic in (M, gm), parallel transport
can be thought as a vector having same direction and norm to the point a view of the
object moving along the geodesic. For instance, in the hyperboloid model R3 for extrinsic
point of view (R3 coordinate system) transporting a vector v along a geodesic will lead
to a similar vector at all point of the geodesics. In the Poincaré ball model (see figure 4)
due to the distortion of the space, the transported vector from an extrinsic point of view
will change in norms and direction but for the intrinsic point of view (local observator)
still represent the same vector (length according to the distance and direction from the
geodesic are preserved).

Optimization within adaptative methods. For recent adaptative methods the key
point to make it work rely on parallel transport, i.e. transport a vector from a point x to
another y. In Euclidean adaptive methods, the update often relies on the previous gradient
such that the applied vector update is a combination of current gradient gt and previous
gradient combination mt−1, i.e. update at a step t is given by mt = β1mt−1 + (1− β1)gt.
However, Euclidean space as no curvature such that it is not necessary to adapt the vector
to the current weight. Parallel transport translates vectors along geodesics, in the case of
Poincare Ball transporting vector along a geodesic will modify the direction of the vector.
Φx→y(v) denote the transport of a vector v from x to y (based on the unique geodesic
going through x and y). From the connection between gyrovector and hyperbolic space
proposed by Ungar 2008, parallel transport can be written :

Φx→y(v) = gyration(y,−x, v)
λx

λy
(5)

With λx the conformal factor in our case λx = 2
1−‖x‖2 , and the operator gyration given

in Ungar 2008 by the equation 1.27.

Algorithm .4 Poincare Ball RAMSGrad
1: procedure step(xt, yt, f , η, β1, β2, mx

t , vx
t , τx

t )
2: g f ← ∇dB(xt ,yt) f (dB(xt, yt))

3: gdB ← −
logxt (yt)

dB(xt ,yt)

4: ∇TxtB
xt f (dB(xt, yt))← g f gdB

5: mx
t+1 ← β1τx

t + (1− β1)∇
TxtB
xt f (dB(xt, yt))

6: vx
t+1 ← β2vx

t + (1− β2)
∥∥∥∇TxtB

xt f (dB(xt, yt))
∥∥∥2

7: xt+1 ← expxt(−η
mx

t+1√
vx

t+1
)

8: τt+1 ← Φxt→xt+1(m
x
t+1)

9: end procedure
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3 Community embedding additional visualization

In this part of the appendix, we report the additional community embeddings classifica-
tion visualization. In the figure 5 we report 2 dimensional hyperbolic embeddings with
color referring to the real community of classes. In the figure 6 we report 2 dimensional
hyperbolic embeddings with color referring to the prediction according to gaussians of
the mixtures. The figure 7 show embeddings nodes colored by the hyperbolic logistic
regression (geodesics base separator). One should notice that in 2 dimensional embeddings
GMM behave better than using geodesics separator.

(a) karate

Figure 5 – Hyperbolic embeddings colored according to ground truth for karate, polblog,
books, football and dblp graphs
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(a) karate

Figure 6 – Hyperbolic embeddings colored according to gmm prediction for karate, polblog,
books, football and dblp graphs



132

(a) karate

Figure 7 – Hyperbolic embeddings colored according to regression logistic prediction for
karate, polblog, books, football and dblp graphs
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