
HAL Id: tel-03987634
https://theses.hal.science/tel-03987634v2

Submitted on 14 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic services for assisting users to augment data in
the context of analytic data sources

Rutian Liu

To cite this version:
Rutian Liu. Semantic services for assisting users to augment data in the context of analytic data
sources. Databases [cs.DB]. Sorbonne Université, 2020. English. �NNT : 2020SORUS208�. �tel-
03987634v2�

https://theses.hal.science/tel-03987634v2
https://hal.archives-ouvertes.fr

École Doctoral Informatique, Télécommunications et Électronique – EDITE (ED130)

Semantic Services for Assisting Users to Augment
Data in the Context of Analytic Data Sources

Rutian Liu

Angela Bonifati Professeur Université Lyon 1 Reviewer
Sofian Maabout Maître de Conférences (HDR) Université de Bordeaux Reviewer
Jérôme Darmont Professeur Université Lyon 2 Examiner
Marie-Jeanne Lesot Maître de Conférences (HDR) Sorbonne Université Examiner
Bernd Amann Professeur Sorbonne Université Examiner
Stéphane Gançarski Maître de Conférences (HDR) Sorbonne Université Examiner

June 24, 2020

Rutian Liu

Semantic Services for Assisting Users to Augment Data in the Context of Analytic Data Sources, June

24, 2020

Reviewers: Angela Bonifati and Sofian Maabout

Supervisors: Bernd Amann (Sorbonne Université), Stéphane Gançarski (Sorbonne Université)

and Eric Simon (SAP France)

Sorbonne Université

CNRS – LIP6 UMR 7606

4, place Jussieu

75252 Paris

Remerciements

This work was supported by SAP France with a CIfRE convention N. 2016/0644.

I owe my thanks for contributions to this thesis to a great many persons. First of all, I would

like to thank my Ph.D. supervisors, Bernd Amann and Stéphane Gançarski, for their great support,

guidance, valuable comments, suggestions in this thesis. They helped me a lot both scientifically

and personally. I would also like to express my deep gratitude to my industrial supervisor, Eric

Simon, for giving me the opportunity to do research at SAP France and providing invaluable

inspiration for this thesis. It was a great privilege and honor to work and study under his

guidance.

Thanks are also due to my great colleagues at SAP that helped me with implementations, and

allowed me to use the datasets for experiments.

Last, but certainly not least, I would like to thank my family for all their support. Especially,

my mother for her comprehension. They all kept me going, and this thesis would not been

possible without them.

iii

Contents

1 Introduction 1

1.1 The Role and Evolution of Analytics . 1

1.2 Main Challenges . 4

1.2.1 Relationship extraction . 6

1.2.2 Avoid row multiplication . 7

1.2.3 Avoid incorrect and ambiguous reduction 7

1.2.4 Avoid incomplete merge . 8

1.3 Research Contributions . 10

1.4 Organization of the Manuscript . 11

2 Data Model 13

2.1 Model Overview . 13

2.2 Analytic Tables . 15

2.2.1 Preliminaries . 15

2.2.2 Hierarchical dimension tables . 16

2.2.3 Dimension identifiers and attribute graphs 18

2.2.4 Capturing hierarchy properties with attribute graphs 23

2.2.5 Multidimensional fact tables . 25

2.2.6 Aggregable attributes in analytic tables . 28

2.3 Table Relationships . 31

2.3.1 Join and attribute mapping relationships 31

2.3.2 Derived relationships . 33

2.3.3 Relationships in drill-across OLAP queries 35

2.4 Conclusions . 37

3 Schema Augmentations and Quality Guarantees 39

3.1 Schema Augmentations . 39

3.2 Natural Schema Complement . 42

3.3 Reduction Queries . 43

3.4 Quality Criteria of Schema Augmentations . 47

3.4.1 Propagation of aggregable properties . 47

iv

3.4.2 Non-ambiguous aggregable attributes . 57

3.4.3 Complete merge results . 59

3.4.4 Summarizability revisited . 66

4 Architecture and Algorithms 71

4.1 SAP HANA Architecture . 71

4.2 Dimension and Fact Identifier Computation . 77

4.2.1 Computation of attribute graphs . 78

4.2.2 Dimension and fact identifiers . 81

4.2.3 Maintaining dimension identifiers . 83

4.3 Schema Complement Computation . 84

4.3.1 Schema complement graph . 84

4.3.2 Finding schema augmentations . 85

4.3.3 Unit conversions . 88

4.4 Reduction Query Generation . 89

4.5 Merge Query Manager . 91

4.6 Extension to Heterogeneous Data Sources . 96

4.7 Conclusions . 97

5 State of the art 99

5.1 Introduction . 100

5.1.1 Schema and data integration . 100

5.1.2 Drill-across and summarizability . 101

5.1.3 Schema augmentation . 102

5.2 Schema Integration . 102

5.2.1 Approach . 102

5.2.2 Examples . 103

5.3 Schema Matching Discovery . 105

5.3.1 Heuristic schema matching discovery . 106

5.3.2 Reliable schema matching discovery . 107

5.4 Mediation-based Data Integration . 109

5.4.1 Approach . 109

5.4.2 Examples . 110

5.5 Schema Augmentation and Entity Complement 115

5.5.1 Schema augmentation approaches for web tables 115

5.5.2 Entity complement approaches . 119

5.6 Drill-across Queries in Multi-dimensional Databases 121

5.6.1 Drill-across queries using conformed dimensions 122

5.6.2 Drill-across queries using compatible dimensions 125

5.7 Summarizable Analytic Tables . 128

5.7.1 Summarizability in statistical data models 129

5.7.2 Summarizability in multidimensional data models 136

5.7.3 Conclusion on summarizability . 148

5.8 Summary . 149

6 Applications and Experiments 153

6.1 Performance Tests . 153

6.1.1 Attribute graph computation . 153

6.1.2 Dimension identifier computation . 158

6.2 Validation with Real Datasets . 158

6.2.1 Business use case . 159

6.2.2 Feature engineering use case . 166

7 Summary and Perspectives 173

7.1 Summary . 173

7.2 Future Work Directions . 174

7.2.1 Schema matching discovery . 174

7.2.2 User-specified augmentation and reduction operation suggestion 175

References 177

A SQL Query examples 183

A.1 Queries to compute attribute graph . 183

A.2 Query to detect changes on attribute graph . 187

A.3 Query for ambiguity annotation . 188

A.4 Query to complete merge. 189

A.5 Query for unifying units. 190

B Propositions and Proofs 193

List of Figures 199

List of Tables 201

1Introduction

Contents

1.1 The Role and Evolution of Analytics . 1

1.2 Main Challenges . 4

1.2.1 Relationship extraction . 6

1.2.2 Avoid row multiplication . 7

1.2.3 Avoid incorrect and ambiguous reduction 7

1.2.4 Avoid incomplete merge . 8

1.3 Research Contributions . 10

1.4 Organization of the Manuscript . 11

In this chapter, we introduce the notion of analytic datasets, their role and evolution within

the digital evolution of companies and organizations (Section 1.1). Then, in Section 1.2, we

show four main challenges that arise when business users want to customize analytic datasets to

their needs. Finally, we list the major research contributions of this thesis in Section 1.3.

1.1 The Role and Evolution of Analytics
Business Intelligence (BI) comprises the technologies to produce, process and analyse business

information in enterprises. BI analysts heavily rely on trusted and well documented datasets,

called analytic datasets (or sometimes analytics), which comprise multidimensional facts that

hold measures and refer to one or more hierarchical dimensions [1]. BI platform vendors provide

sophisticated tools that use analytic datasets for managed data reporting, interactive analysis, KPI

monitoring, prediction and visualization. More recently, self-service BI tools emerged to enable

business users and data scientists to create customized analytics and powerful visualizations (see

e.g., [2], [3], [4], [5]).

Traditionally, analytic datasets are created by the IT department in the form of data warehouses

and data marts [6], or by enterprise application software vendors in the form of predefined and

customizable analytic models. Analytic datasets are built from the operational data hold by the

transactional databases of an enterprise or organization. More than a decade ago, most of the

analytic data was physically stored apart from operational datasets into decision support systems.

Complex data extraction, transformation, and load (ETL) processes were used to periodically read

1

operational data and update the corresponding analytic data in the decision support systems.

In the recent years, there has been a trend to create analytic data, next to the operational

data on which they depend, in the form of views with the goal of providing real-time analytic

capabilities. For example, SAP provisions thousands of predefined and customizable analytic

datasets, also known as “virtual data models” for various business application domains (e.g.,

SCM, CRM, ERP) [7], [8]. These datasets are defined as views over the transactional data stored

and managed by the SAP S4/HANA business suite and carry information, including sophisticated

measures, which is easily understandable by business users, and ready for consumption by BI

tools.

Creating analytic datasets is a complex, tedious and time intensive activity which involves

design and implementation tasks at multiple levels of the architecture of an information system.

First, analytic data models must be designed according to the needs of business users and

analysts in different application domains. There, the proper definition of dimensions (aka master

data) and measures is essential. Then analytic data must be created from operational data,

which involves the definition of possibly complex data integration processes. A key aspect is the

governance of the quality of the analytic data because they must form a trusted foundation on

which decision-making processes can rely. This involves the creation of data cleaning processes

(e.g., duplicate record elimination, enforcement of business rules). Finally, the definition of

analytic datasets may be layered, where one layer adds specific business logic to the previous

one, to obtain very customized analytics.

The slow process of creation of analytics has been confronted to a profound evolution of

enterprises towards a digital transformation, whereby the ability to perform fine-grain analysis

of business data and take a prompt action according to perceived changes, is becoming a key

to business success. This digital transformation impacts how analytic data are created. Firstly,

business users need to combine analytic data obtained from operational systems with data

coming from external sources, including Internet of Things (IoT) data or market signal data.

Business users also require access to detailed data to refine their analysis. Secondly, business

users need to continuously adjust the definition of the analytics they use to monitor their business

so that they can rapidly adapt to changes. This need is aggravated by the increasing number of

users who need to customize the analytics they are working with. For instance, operational BI

gives every “operational worker” (e.g., clerc, maintenance supervisor, etc) insights needed to

make better operational decisions (including access to detailed data on-demand). In addition,

data scientists are empowered to conduct data analysis projects which require the preparation of

datasets that match their analysis needs.

IT organizations cannot sustain the pace of the growing needs of business users, analysts, and

data scientists in this digital transformation of enterprises and organizations. Recently, agile data

2 Chapter 1 Introduction

preparation and integration tools [9], [10], [11] have emerged to empower business users and

data scientists to easily create their own high-quality analytic datasets from transactional data and

existing analytic datasets. These data preparation tools can extract structured information from

unstructured data, partially automate data cleaning and transformation operations and perform

data integration tasks like record linkage and duplicate elimination. However, another typical

requirement of business users or data scientists is to augment the schema of an existing analytic

dataset with new attributes from one or more semantically related datasets. These attributes may

represent additional details on dimensions or new measures. This kind of schema augmentation

is a critical need in many data integration scenarios like data mashup generation and feature

engineering. Despite the importance of this task, existing data preparation tools provide a limited

support for schema augmentation of analytic dataset. This lack of assistance compels business

users to re-define multiple times similar analytic datasets in a possibly inconsistent manner or

to depend on their IT department to create customized datasets. This creates an important

bottleneck in the IT organization and significantly slows down the production of customized

analytic datasets.

Addressing the problem of agile and trusted analytic schema augmentation for specific BI tasks

is a major business opportunity for several reasons. First, companies generally manage large

collections of analytic datasets, which keep growing with the need for new business data analysis

tasks. At the scale of a large company, the use of agile data preparation tools considerably

increases the number of available analytic datasets with respect to those provided by enterprise

software application vendors or those created by the IT organization. Second, many semantic

relationships between analytic datasets, which are essential to support schema augmentation,

can be accurately and automatically extracted from dataset definitions. Indeed, as mentioned

before, analytic datasets are often defined over other datasets using queries, scripts, or views. For

example, in BI applications supported by SAP, it is common to find analytic datasets with five or

more levels of nested view definitions. By parsing these view definitions it is for example possible

to discover the dimensions shared by different analytic datasets. Third, complex data analysis

scenarios of analytic datasets are generally supported by rich and carefully designed metadata,

such as the correspondence between the table attributes and the hierarchical dimension levels or

the units and currencies of measure attributes. These metadata that can also be exploited during

an assisted schema augmentation process. Finally, IT organizations and business users invest time

to create analytic datasets containing high quality for business process optimization and decision

making. Reusing these clean datasets and their metadata for schema augmentation is therefore

worthwhile. For all these reasons, analytic datasets are a “gold mine” of high-quality and

interrelated data that is relevant to business users and data scientists, although under-exploited

by current data preparation tools.

1.1 The Role and Evolution of Analytics 3

1.2 Main Challenges

The manual augmentation of an analytic dataset is often a cumbersome and error-prone

process, raising multiple challenges. Imagine a simple use case with two analytic datasets

represented by two fact tables, SALES and DEM(ographics), and three dimension tables

SALESORG, TIME and REGION .

An example analytic dataset is shown in Table 1.1. Dimension table names are in italic

font to distinguish them from fact tables. Underlined attributes are tuple identifiers (primary

key attributes) and dimension tables represent hierarchical dimensions. The fact table SALES
contains three attributes STORE_ID, CITY and COUNTRY from dimension SALESORG and attribute

YEAR from dimension TIME. The fact table DEM contains three attributes CITY, STATE, COUNTRY

from dimension REGION and attribute YEAR from dimension TIME. Notice that attribute

STORE_ID is unique in SALES, attributes CITY, STATE, COUNTRY and YEAR are unique in DEM.

Figure 1.1.: View definition of tables SALES and DEM

In our example all tables are defined as views over transactional data as shown on Figure 1.1.

Dimension tables are represented by rounded rectangles and fact tables by square rectangles. A

data analyst now might want to complement the information about stores in table SALES by

adding their states. This can be achieved by augmenting the schema of SALES with STATE of

dimension SALESORG which yields a new fact table view SALES_SALESORG.

This view can be materialized by a left-outer join with SALESORG using the following query

(the result is shown in Table 1.2):

Listing 1.1: Query QSALES_SALESORG

SELECT STORE_ID , CITY , STATE , COUNTRY, YEAR , AMOUNT

FROM SALES

LEFT OUTER JOIN SALESORG

ON SALES . STORE_ID = SALESORG . STORE_ID

AND SALES . CITY = SALESORG . CITY

AND SALES .COUNTRY = SALESORG .COUNTRY

4 Chapter 1 Introduction

Table 1.1.: Tables SALES, DEM, SALESORG, REGION , TIME

(a) SALES

STORE_ID CITY COUNTRY YEAR AMOUNT(M)

s1 Oh_01 Dublin USA 2018 3.2
s2 Ca_01 Dublin USA 2018 5.3
s3 Ir_01 Dublin Ireland 2018 45.1

(b) DEM (Demographics)

CITY STATE COUNTRY YEAR POP(K) UNEMP(%)

d1 Dublin Ohio USA 2018 61 2.5
d2 Dublin California USA 2018 42 3.1
d3 Dublin - Ireland 2018 527 5.7
d4 San Jose California USA 2018 1,035 2.3

(c) SALESORG

STORE_ID CITY STATE COUNTRY

Oh_01 Dublin Ohio USA
Ca_01 Dublin California USA
Ir_01 Dublin - Ireland

(d) REGION

CITY STATE COUNTRY CONTINENT

Dublin Ohio USA North America
Dublin California USA North America
Dublin - Ireland Europe
Paris - France Europe
Berlin - Germany Europe

(e) TIME

DATE WEEK MONTH YEAR

1/1/2018 1 1 2018
2/1/2018 1 1 2018
3/1/2018 1 1 2018
.

Table 1.2.: SALES_SALESORG

STORE_ID CITY STATE COUNTRY YEAR AMOUNT(M)

s1 Oh_01 Dublin Ohio USA 2018 3.2
s2 Ca_01 Dublin California USA 2018 5.3
s3 Ir_01 Dublin - Ireland 2018 45.1

1.2 Main Challenges 5

The goal of this thesis is to propose solutions for assisting users in creating such augmented

views. In particular, we will show that by exploiting available schema metadata (view definitions,

constraints) extended by other user-defined metadata, it is possible to automatically generate

for a given table, a set of useful and correct schema augmentations. These assisted generation

process must solve various challenges we will describe below.

1.2.1 Relationship extraction

A first challenge for controlled schema augmentation is to discover the relationships between

analytic datasets that can be used for identifying relevant schema augmentation paths. Many

useful relationships can be extracted from the definitions of analytic dataset and the FK-PK

constraints in transactional data. It is for instance possible to analyze the existing view definitions

as illustrated in Figure 1.1 to extract all shared dimension attributes which define different

relationships between fact tables and the dimension tables. In our example scenario, tables

SALES and DEM are for example naturally related through their common attribute YEAR

which comes from the same dimension TIME. Similarly, attributes CITY, STATE and COUNTRY in

dimension SALESORG and dimension REGION are semantically equivalent, i.e. have the

same meaning in both tables.

Assume a data analyst who wants to build a new analytic table SALES_DEM by augmenting

the schema of dataset SALES with the measure attributes POP(ulation) and UNEMP(loyment rate)

of dataset DEM.

SALES_DEM (STORE_ID, CITY, COUNTRY, YEAR, AMOUNT, POP, UNEMP)

The extracted relationships can be used to define the left-outer join predicates for the material-

ization query of view SALES_DEM:

Listing 1.2: Query QSALES_DEM

SELECT STORE_ID , CITY , COUNTRY, YEAR , AMOUNT, POP , UNEMP

FROM SALES

LEFT OUTER JOIN DEM

ON SALES . YEAR = DEM. YEAR

AND SALES . CITY = DEM. CITY

AND SALES .COUNTRY = DEM.COUNTRY

6 Chapter 1 Introduction

1.2.2 Avoid row multiplication

The second challenge we address in our thesis is to detect and possible avoid row multiplication

when merging two tables. Row multiplication can be detected by comparing the identifiers of

analytic datasets.

In our example, assume that fact tables SALES and DEM contain the tuples shown in

Tables 1.1a and 1.1b. Then, the left outer join query QSALES_DEM returns the augmented table

SALES_DEM as shown in Table 1.3. The left outer-join operation results in multiplying some

rows in SALES (STORE_ID is not an identifier in the merged table). For example, the two tuples s1

and s2 in SALES are multiplied into four tuple t1, t2, t3, t4 in SALES_DEM. This is because the

join attributes YEAR, CITY and COUNTRY do not constitute a unique identifier in dataset DEM.

Table 1.3.: SALES_DEM

STORE_ID CITY COUNTRY YEAR AMOUNT(M) POP(K) UNEMP(%)

t1 Oh_01 Dublin USA 2018 3.2 61 2.5
t2 Oh_01 Dublin USA 2018 3.2 42 3.1
t3 Ca_01 Dublin USA 2018 5.3 61 2.5
t4 Ca_01 Dublin USA 2018 5.3 42 3.1
t5 Ir_01 Dublin Ireland 2018 45.1 527 5.7

This row multiplication of SALES, however, is undesirable for many application scenarios,

like feature engineering, data enrichment or data analysis. For these applications, the goal then

is to monitor the schema augmentation process in order to keep the number of rows in Sales
constant. This controlled schema augmentation avoiding row multiplication leads to the notion

of schema complement introduced in [12].

1.2.3 Avoid incorrect and ambiguous reduction

A possible solution to avoid row multiplication is to reduce the attributes in the identifier of the

target table by applying queries like aggregation, pivot and filter. We call these queries producing

tables with less identifier (key) attributes reduction operations. For example, a possible reduction

operation aggregates the measures of table DEM grouped by attributes YEAR, CITY, COUNTRY

before performing the left outer join. Then, the result table identifier is defined by the attributes

YEAR, CITY and COUNTRY (without attribute STATE) and the following merge will generate exactly

one tuple for each tuple in table SALES.

However, when looking at the result produced by an aggregation reduction in more detail,

we can identify a third challenge concerning the correctness of aggregated attribute vales. We

consider mainly two sub-problems to assure that and aggregation query computes a correct

1.2 Main Challenges 7

result. First, it is not always possible to apply any aggregation function to a given measures. For

example, the population POP in table DEM can be summed and averaged which is not possible

for the unemployment rate UNEMP which can only be aggregated by MAX and MIN. Furthermore,

after applying function AVG on the population POP, we also need to determine which aggregation

functions are applicable to the new averaged POP value in future operations.

Secondly, we want to detect ambiguous aggregated values automatically. Formally, a value is

ambiguous if it is not possible to identify the correct entity to which it refers in some dimension.

For example, suppose that the previous aggregation (reduction) query on table DEM computes

the sum of attribute POP and the minimum of attribute UNEMP grouped by YEAR, CITY and COUNTRY.

The result table AGG_DEM is shown in Table 1.4. We can now show that the cities related

to the values of attributes SUM_POP and MIN_UNEMP in AGG_DEM cannot be identified anymore

since attribute STATE has been removed. For example, r1.SUM_POP in AGG_DEM aggregates the

values d1.POP and d2.POP from table DEM with the population of two different cities “Dublin”

in “Ohio” and “California” which might lead to an incorrect interpretation by the user. We call

r1.SUM_POP in AGG_DEM ambiguous with respect to table DEM. Observe that the ambiguity of

an aggregated value depends on contents of table DEM and the aggregated values for Dublin in

Ireland and San Jose are not ambiguous.

Table 1.4.: AGG_DEM

CITY COUNTRY YEAR SUM_POP(K) MIN_UNEMP(%)

r1 Dublin USA 2018 103 2.5
r2 Dublin Ireland 2018 527 5.7
r3 San Jose USA 2018 1,035 2.3

Continuing the previous example, a left outer join between fact table SALES and the reduced

table AGG_DEM over attributes YEAR, CITY, COUNTRY produces a new fact table SALES_AGG_DEM
as shown in Table 1.5. The ambiguous values of SUM_POP and MIN_UNEMP are brought to the new

fact table and any further operations on SALES_AGG_DEM might compute an incorrect result.

Therefore, ambiguous measure values should be detected and controlled, e.g., by assigning a

null value to SUM_POP and MIN_UNEMP for tuples r1 and r2 in table AGG_DEM and tuples a1 and

a2 in table SALES_AGG_DEM or by adding a new Boolean attribute IS_AMBIGUOUS to indicate

that these tuples contain ambiguous values.

1.2.4 Avoid incomplete merge

Another solution to avoid row multiplication is to augment the start table by a sequence

of joins until the common attributes between the start table and the target table contain the

identifier of the target table. For instance, we can add attribute STATE to fact table SALES by

8 Chapter 1 Introduction

Table 1.5.: SALES_AGG_DEM

STORE_ID CITY COUNTRY YEAR AMOUNT(M) SUM_POP(K) MIN_UNEMP(%)

a1 Oh_01 Dublin USA 2018 3.2 103 2.5
a2 Ca_01 Dublin USA 2018 5.3 103 2.5
a3 Ir_01 Dublin Ireland 2018 45.1 527 5.7

applying a left outer join between fact table SALES and dimension table SALESORG to get

SALES_SALESORGS (Table 1.6). Then, the common attributes YEAR, CITY, STATE and COUNTRY

between table SALESALES_SALESORGS and dimension DEM form the identifier of DEM
and the left outer join will return a new fact table SALES_SALESORG_DEM without row

multiplication.

Table 1.6.: SALES_SALESORG_DEM

STORE_ID CITY STATE COUNTRY YEAR AMOUNT(M) POP(K) UNEMP(%)

b1 Oh_01 Dublin Ohio USA 2018 3.2 61 2.5
b2 Ca_01 Dublin California USA 2018 5.3 42 3.1
b3 Ir_01 Dublin - Ireland 2018 45.1 527 5.7

However, in this case we face our fourth challenge we call incomplete merge. For exam-

ple, suppose we want to compare the values of attribute AMOUNT with the population POP in

each STATE or COUNTRY. For this we sum the population POP over STATE and COUNTRY in table

SALES_SALESORG_DEM. For example for the state of “California”, the total population would

be 42K in SALES_SALESORG_DEM. However this value is incorrect, since the population

of the city of “San Jose” in DEM does not appear in fact table SALES and its augmented

table SALES_SALESORG_DEM (the correct total population of “California” with respect to

table DEM is 1, 077K). We will call table SALES_SALESORG_DEM incomplete with respect to

dimension DEM.

Observe that table SALES_SALESORG_DEM could be repaired by adding a tuple b4 with a

null value for attribute STORE_ID as shown in Table 1.7. Because only one tuple is added and null

values are allowed in the key attributes, the identifier of Table 1.7 is still STORE_ID. In general

case when several tuples are added, the identifier of the repaired SALES_SALESORG_DEM
would be the same as if we apply a schema augmentation between SALES and DEM which

contains all dimension attributes STORE_ID, CITY, STATE, COUNTRY and YEAR.

One goal of the thesis will be to automatically detect and possibly repair such incomplete

merge results.

1.2 Main Challenges 9

Table 1.7.: SALES_SALESORG_DEM′

STORE_ID CITY STATE COUNTRY YEAR AMOUNT(M) POP(K) UNEMP(%)

b1 Oh_01 Dublin Ohio USA 2018 3.2 61 2.5
b2 Ca_01 Dublin California USA 2018 5.3 42 3.1
b3 Ir_01 Dublin - Ireland 2018 45.1 527 5.7
b4 - San Jose California USA 2018 - 1,035 2.3

1.3 Research Contributions
SAP – as the the market leader in enterprise application software, helping companies to

manage business operations and customer relations (over 437 000 clients in 190 countries 1),

has addressed the challenges of allowing business users prepare their own datasets for several

years. It’s in this context that this thesis is carried as an industrial Ph.D. project which collaborates

with the computer science research laboratory LIP6. The objective of this research is to facilitate

the operation of extending an initial dataset with columns from other datasets, and to measure

and share the new dataset.

This thesis presents a new solution for business users and data scientists who want to augment

the schema of analytic datasets with attributes coming from other datasets related through

relationships. This is achieved by automatically extracting relationships, discovering related

datasets and computing correct, non-ambiguous and complete schema augmentations or schema

complements.

More specifically, we make the following technical contributions for solving all challenges

presented before.

• We introduce attribute graphs as a novel concise and natural way to define literal functional

dependencies over the level types of hierarchical dimensions from which we can easily

infer unique identifiers in both dimension and fact tables. (See Section 2.2.2 in Chapter 2).

• We give formal definitions for schema augmentation, schema complement and merge query

in the context of analytic tables. We then present several reduction operations that are used

to enforce schema complements when schema augmentation yields a row multiplication

in the augmented dataset. These operations extend previous contributions on schema

augmentation and schema complement (e.g., [12], [13], [14]) to the case of analytic

datasets. (See Sections 3.1 to 3.3 in Chapter 3).

• We define formal quality criteria for schema augmentations, schema complements and

merge queries. These criteria are used to define algorithms to control the correctness,

1https://www.sap.com/france/about/customer-stories.html

10 Chapter 1 Introduction

https://www.sap.com/france/about/customer-stories.html

non-ambiguity and and completeness of generated schema augmentations. (See Section 3.4

in Chapter 3).

• We describe the implementation of our solution as a REST service within SAP HANA

platform and provide a detailed description of our algorithms. We separate the generic

part of the algorithms from the specific implementation optimizations done by leveraging

the capabilities of SAP HANA database. (See Chapter 4).

• We evaluate the performance of our algorithms to compute unique identifiers in dimension

and fact tables, and analyze the effectiveness of our REST service using two application

scenarios. (See Chapter 6).

1.4 Organization of the Manuscript
The remaining of the thesis is structured in following chapters.

Chapter 1 introduces few background foundations that the thesis starts with. In particular, the

chapter investigates the four challenges that we are facing to automate the schema augmenta-

tions while ensuring the data quality, namely, extract relationships between tables, avoid row

multiplications when joins, avoid incorrect and ambiguous reductions, and avoid incomplete

merge. These challenges are then formalized and discussed in Chapter 3.

Chapter 2 describes the formalisation of the data models we proposed for our approaches.

We use an extended multidimensional data models that contain common terminologies like

Dimensions, Facts, etc., and also new definitions that are adapted to our needs like Attribute

Graph, Aggregable Properties, etc.. In particular, the extracted and derived relationships resolve

the first challenge – extract relationships explained in Chapter 1. The presented data models are

essential for data quality guarantees and schema augmentation discoveries.

In Chapter 5, we begin our discussion of previous researches done for integrating schemas.

There are various operations that perform schema integration, we introduce four fundamental

approaches for schema integration as: Schema Integration, Data Integration, Schema Complement

and Drill-across Queries. Our focus in this chapter is to state whether our approach is still

applicable in their contexts.

Chapter 3 presents our solutions that address the rest three challenges introduced in Chapter 1.

We propose a general schema integration approach as Schema Augmentation that performs a

left-outer join between two related tables, and introduce Reduction Queries that transform Schema

Augmentation into Schema Complement. We give formal definitions for ambiguity values and

incomplete merge, follow by propositions to detect and solve these problems.

1.4 Organization of the Manuscript 11

Chapter 4 introduces our implementation. We introduce the architecture of the system that

implements our approaches and algorithms for the solutions described in Chapter 3. All the

algorithms are implemented as REST services on SAP HANA.

Chapter 6 describes several experimental results. We first evaluate the performances of

constructing attribute graphs and computing dimension identifiers. We then validate our imple-

mentations in the two case studies, it shows how our approach can position and help to improve

the user’s experience in a real-world scenario.

Finally, we conclude with a brief conclusion and some perspectives in Chapter 7.

Appendix A lists several SQL queries used to construct attribute graphs and construct reduction

and merge quires. Appendix B shows the proofs of a part of the propositions proposed in the

thesis, the rest of the proofs are detailed in the context.

12 Chapter 1 Introduction

2Data Model

Contents

2.1 Model Overview . 13

2.2 Analytic Tables . 15

2.2.1 Preliminaries . 15

2.2.2 Hierarchical dimension tables . 16

2.2.3 Dimension identifiers and attribute graphs 18

2.2.4 Capturing hierarchy properties with attribute graphs 23

2.2.5 Multidimensional fact tables . 25

2.2.6 Aggregable attributes in analytic tables 28

2.3 Table Relationships . 31

2.3.1 Join and attribute mapping relationships 31

2.3.2 Derived relationships . 33

2.3.3 Relationships in drill-across OLAP queries 35

2.4 Conclusions . 37

In this chapter, we first explain the foundations of our data model which extends the relational

data model with analytic tables that comprise dimension and fact tables. We define arbitrary

value hierarchies that are instances of hierarchy types and describe how they are modeled using

dimension tables. We introduce the novel concept of attribute graphs representing dependencies

among the attributes of a dimension table, which are used to compute the identifiers of dimension

tables. We then formally define fact tables and some constraints over the schema of both fact

and dimension tables, called aggregable properties. We then introduce two forms of semantic

relationships between tables, which are join and attribute mapping relationships, and define how

to derive new relationships using fusion and composition operations.

2.1 Model Overview
In this thesis, we consider analytical databases in which tables are separated into non-analytic

tables and analytic tables. Non-analytic tables correspond to standard relational tables storing

data created using statements like in Example 2.1. An analytic table or analytic view is defined

by a query over non-analytic and analytic tables. Attributes in an analytic table are categorized

13

into two types: dimension attributes and measures. Dimension attributes describe subjects,

like, CUSTOMER_NAME, ADDRESS, PHONE_NUM, BRAND. Dimension attributes can form a hierarchy.

For example, dimension attributes CITY, STATE, COUNTRY can form a hierarchy CITY → STATE →
COUNTRY. Measure attributes store numeric values about the subject behaviors or characteristics,

like, ORDER_AMOUNT, POPULATION, QUANTITY.

Example 2.1. The SQL statement below shows the definition of a table PRODUCT with five

attributes: PRODUCT_SKU, PRODUCT_NAME, BRAND_NAME, WEIGHT and SUBCATEGORY_ID. The attribute

PRODUCT_SKU is the primary key of the table and the attribute SUBCATEGORY_ID is a foreign key

referring to the primary key of another table SUBCATEGORY.

Listing 2.1: Crate table statement QP RODUCT

CREATE TABLE PRODUCT

(

PRODUCT_SKU INT NOT NULL ,

PRODUCT_NAME VARCHAR(255) ,

BRAND_NAME VARCHAR(255) ,

WEIGHT DOUBLE(24 ,3) ,

SUBCATEGORY_ID INT NOT NULL ,

PRIMARY KEY (PRODUCT_SKU) ,

FOREIGN KEY (SUBCATEGORY_ID) REFERENCES SUBCATEGORY(SUBCATEGORY_ID)

)

Following this distinction of attributes, analytic tables are categorized into two types: dimen-

sion tables and fact tables. An analytic table is a dimension table if it only contains dimension

attributes describing the same kind of subjects. For example, table CUSTOMER with at-

tributes CUSTOMER_NAME, PHONE_NUM, ADDRESS, CUSTOMER_ID is a dimension table describing

customers. An analytic table is a fact table if it contains at least one measure. For example,

table CUSTOMER_AGE with a measure AVG_AGE and dimension attributes GENDER, COUNTRY,

PROFESSION is a fact table.

Example 2.2. Figure 2.1 details the definitions of two analytic views: SALES and PROD.

Dimension tables are represented by bold rounded rectangles, fact tables by bold square rectan-

gles and non-analytic tables by square rectangles. SALES is a fact table defined by a star join

between a non-analytic table ct_SALES and dimensions TIME, PROD and STORE. PROD

is a dimension defined as a projection of the join result between the three non-analytic tables.

Figure 2.2 illustrate the relationships between analytic tables and non-analytic tables. A

dimension table can be defined as a view built from other dimensions and non-analytic tables,

and a fact table can be defined as a view built from other fact, dimension and non-analytic tables.

14 Chapter 2 Data Model

(a) Fact table SALES (b) Dimension PROD

Figure 2.1.: Examples of definitions of analytic tables

Dimension attributes in fact tables always refer to the dimension they come from according to the

view definition. In this thesis, we assume that all analytic tables are defined as non materialized

views.

Dimensions Fact tables

Non-analytic
tables

Analytic tables

build

refers to

build build

bu
ild

build

Figure 2.2.: Relations between analytic tables and non-analytic tables

2.2 Analytic Tables

In this section, we define more formally the notions of hierarchy, dimension table and fact

table.

2.2.1 Preliminaries

We start from the standard relational database definitions where a relation or table T is defined

as a finite multiset of tuples over a set of value domains S = {A1, . . . , An}, called attributes,

where each value domain may contain a specific null marker. We call the attribute set S the

schema of T [15]. Given an attribute A in the schema of T and a tuple t ∈ T , we use t.A to

denote the value of A in t. By extension, we use t.X for a set of attributes X. Then, for two tuples

t1 and t2, t1.A = t2.A is true if both t1.A and t2.A are equal non-null values; false if t1.A and t2.A

are different non-null values; and unknown otherwise (i.e., if either one of t1.A or t2.A, possibly

2.2 Analytic Tables 15

both, are null markers). By extension, for a set of attributes X, t1.X = t2.X is true if t1.A = t2.A

is true for every A ∈ X; false if t1.A = t2.A is false for some A ∈ X, and unknown otherwise.

Two tuples are considered duplicates if all non-null attributes are equal and any null marker in

one tuple is matched by a null marker in the other tuple; otherwise the tuples are distinct. The

two constraints that are frequently used to restrict the data stored in a table are primary key

constraints where a set of non-null attributes can uniquely identify the tuple within a table, and

foreign key constraints where a set of attributes in one table refer to the primary keys of another

table.

2.2.2 Hierarchical dimension tables

We consider a multidimensional data model in which each dimension consists of hierarchies of

values defined by hierarchy types. We first introduce the notions of hierarchy type and hierarchy

and then show how hierarchies are represented in dimension tables.

Definition 2.1 (Hierarchy Type). A hierarchy type H = (L,4) is a set of level types L =
{L1, . . . , Ln} that is organized by a partial order 4. Li is called a child level type of Lj if there

exists an edge Li 4 Lj and Li 4∗ Lj denotes that Li is a descendant level type of Lj . We call all

types Li where there exists no type Lj such that Lj 4 Li or Li 4 Lj , respectively the lower and

the upper bounds of H.

Example 2.3. Consider the hierarchy types in Figure 2.3. An arc from A to B means that A 4 B.

Hierarchy type (a) GEOGRAPHY has one bottom level type CITY and one top level type

CONTINENT . Hierarchy type (b) TIME has two top level types WEEK and Y EAR.

Figure 2.3.: Hierarchy types

Hierarchies are common in multidimensional data model. For example, [6] introduced

different types of hierarchies and characterized a hierarchy as a cascaded series of many-to-one

relationships which form a directed graph with only one upper bound. We release this restriction

and accept that a hierarchy type can have several lower and upper bounds.

A hierarchy type can have multiple hierarchy instances.

Definition 2.2 (Hierarchy instance). A hierarchy instance (hierarchy) H = (N,≤) of hierarchy

type H = (L,4) is a set of values N and a partial order ≤ where N contains for each level type

Li ∈ L a non empty subset of values Ni ⊆ N such that each order relation vi ≤ vj preserves

16 Chapter 2 Data Model

the ancestor/descendant relation 4∗ between the corresponding hierarchy types Li and Lj , i.e.,

vi ∈ Ni, vj ∈ Nj ⇒ Li 4∗ Lj .

Each level type Li represents a domain Ni of values related to the values of the domains Nj of

other level types Lj , the domains of different level types are not necessarily disjoint. We also

assume that (N,≤) is transitively reduced, i.e., there is no pair of nodes that is connected by an

edge and a sequence of two or more edges.

(a) Hierarchy instance of GEOGRAPHY (b) Hierarchy instance of TIME

Figure 2.4.: Hierarchy instance examples

Example 2.4. A partial view of hierarchy instances of type GEOGRAPHY and TIME are

respectively shown in Figures 2.4a and 2.4b.

Hierarchies can naturally be represented by tables where each level type corresponds to a

unique attribute of the table. These tables are called dimension tables or, more simply, dimen-

sions.

Definition 2.3 (Dimension table). Any hierarchy H = (N,≤) of type H = (L,4) defines a

dimension table D(S) with a one-to-one mapping φ : L → X from level types Li ∈ L to a

subset of attributes X ⊆ S in the schema of T such that for each maximal path v1.v2. · · · .vk in

N1×N2×· · ·×Nk inH there exists a tuple t ∈ T where t.φ(L1) = v1, t.φ(L2) = v2, · · · , t.φ(Lk) =
vk and t.Aj = null for all other attributes in X.

The dimension table attributes that have a one-to-one mapping to a hierarchy are called the

dimension attributes and the remaining attributes are called detail attributes. Each detail attribute

provides descriptive information of one or more-dimension attributes, like product description,

customer age, etc.

Example 2.5. Dimension table REGION in Table 2.1 represents an instance of hierarchy type

GEOGRAPHY. Each attribute of GEOGRAPHY is mapped to the level type with the

same name. Each tuple represents a maximal path in the hierarchy instance and may have null

markers (denoted with “-”) for some attributes. Here, city ‘Dublin’ is a child value of states

2.2 Analytic Tables 17

‘Ohio’, ‘California’, ‘Ontario’, and of countries ‘Ireland’ and ‘Belarus’. Table REGION also contains

one detail attribute TIME_ZONE which describes the time zone of each city identified by (CITY,

STATE, COUNTRY).

Table 2.1.: Dimension table REGION

CITY STATE COUNTRY CONTINENT TIME_ZONE

Miami Florida United States North America UTC − 5
Vancouver British Columbia Canada North America UTC − 8
Dublin Ohio United States North America UTC − 5
Dublin California United States North America UTC − 8
Dublin - Ireland Europe UTC0
Dublin Ontario Canada North America UTC − 5
Dublin - Belarus Europe UTC + 2
Palo Alto California United States North America UTC − 8
Paris - France Europe UTC + 1
- - - Antarctica -

We adopt a Closed World Assumption [16] for dimensions, which means that we assume that a

dimension table provides a complete information. So, if a value does not occur in the dimension

table, it does not exist. For example, if dimension REGION lists cities in the three continents

of "North America", "Europe", and "Antarctica" then we assume that dimension table REGION

contains all the cities that exist in these continents.

2.2.3 Dimension identifiers and attribute graphs

Null markers in dimension attributes represent non applicable values. This semantics is

different from other interpretations where null values represent missing or unknown values

and are considered as placeholders for non-null values. We consider null markers as regular

values and apply the same literal equality semantics as in SQL unique constraints (see e.g.,[15]):

two attribute values t1.A and t2.A are literally equal, denoted by t1.A ≡ t2.A, iff t1.A = t2.A or

both values are null markers. Observe that t1.A = t2.A implies t1.A ≡ t2.A but the opposite is not

true. Literal equality naturally extends to sets of attributes and leads to the notion of Literal

Functional Dependencies (LFD) [17]. Let X and Y be two sets of attributes in a schema S, an

LFD X 7→ Y holds for some table T over S iff for any two tuples t1, t2 of T , when t1.X ≡ t2.X
then t1.Y ≡ t2.Y. Note that if X does not contain any nullable attribute (which is for instance

enforced in SQL for primary key or unique attributes), the LFD X 7→ Y is equivalent to the

Functional Dependency with Nulls (NFD) X → Y [18]. A set of LFDs on a schema S expresses

semantic properties constraining the possible “valid” tables over S.

18 Chapter 2 Data Model

Example 2.6. Given a table T (A, B) in Table 2.2 with two tuples t1, t2 such that a NFD A→ B and

a LFD A 7→ B both hold for T . Assuming that tuples t3, t4, t5, t6, t7 are inserted to T sequentially,

the two types of dependency will respond differently. t3.A is a null value which is not allowed for

the determinant in NFD, so A→ B is not applicable for of t3, but the insertion of t3 is accepted

by A 7→ B. t4 is rejected by both A → B and A 7→ B because there exists already a tuple t1 such

that t1.A = t4.A but t1.B 6= t4.B; the same argument is applied to reject t5. For t6, A → B is still

not applicable and t6 is rejected by A 7→ B, because there exists already t3 where t3.A ≡ t6.A and

t3.B 6≡ t6.B. Similar to t6, A→ B is also not applicable for t7, and the insertion of t7 is rejected by

A 7→ B.

Table 2.2.: Differences between LFD and NFD

A B A→ B A 7→ B
NFD LFD

t1 a1 b1 Y Y
t2 a3 - Y Y

t3 - b1 NA Y
t4 a1 b2 N N
t5 a1 - N N
t6 - b2 NA N
t7 - - NA N

Y: Accept; N: Reject; NA: Not applicable

As the previous example shows, the notion of primary key, which follows NFD semantics,

cannot be used to state that attribute A identifies each tuple in the table. We therefore introduce

the notion of dimension identifier, which is based on LFDs, and makes it possible declare A as the

dimension identifier of the table.

Definition 2.4 (Dimension identifier). Let X ⊆ S be the set of dimension attributes in a schema

S and L be a set of LFDs defined on X. Then, K ⊆ X is a dimension identifier of S if K is a

minimal set such that K 7→ S holds for any instance T over S satisfying all LFDs in L.

Example 2.7. If the only LFD defined on the schema of REGION, is: (CITY, STATE, COUNTRY)

7→ CONTINENT, then the left-hand side of the LFD is the dimension identifier of REGION.

Most analytic data models assume that dimensions contain a single lowest attribute which

is a primary key and therefore also plays the role of a dimension identifier. For example, the

Dimensional Normal Form introduced by [19] imposes the constraint that the bottom-level

attribute in the hierarchy is always the identifier of the dimension. [20] enforces a linear

structured hierarchy (i.e., each attribute in the hierarchy has at most one attribute as the parent

level) such that the identifier of a dimension is the bottom-level attribute in the hierarchy. With

2.2 Analytic Tables 19

the goal of keeping the number of attributes in a dimension identifier minimal, [6] suggests

the usage of a surrogate key, which is a dimension attribute that contains a system-generated

identifier for the dimension, like CUSTOMER_ID, TIME_ID.

These constraints simplify the problem of determining the identifier of a dimension but they

provide insufficient knowledge to determine the dimension identifier when some dimension

attributes are projected out. For example, the bottom-level attribute STORE_ID in dimension

STORE is a dimension identifier. Now, assume that STORE_ID is projected out of the dimension

table, we cannot determine what is the new identifier in the resulting table. Such a projection

occurs when we want to record facts that refer to a higher level of the dimension than STORE_ID,

such as the cities in which there are stores. We therefore need to capture the literal functional

dependencies (LFD) that exist within a dimension table if we want to re-calculate dimension

identifiers when attributes are projected out of the dimension table.

Although LFDs provide a formal system to define a set of logical and structural constraints

over dimension tables, their practical use for characterizing a set of valid dimension tables is

limited. The number of LFDs might rapidly increase for non-linear hierarchy types and the

rule-based syntax does not exploit the hierarchical type structure to help user in defining validity

constraints. We thus introduce the notion of attribute graph which is a graph representation for

LFDs in dimension tables, and characterizes all its possible “valid” hierarchy instances in a simple

and natural way. We show in Section 4.2.1 how attribute graphs can automatically be extracted

from dimension tables and, in Section 4.2, how to efficiently compute dimension identifiers from

attribute graphs.

Definition 2.5 (Attribute graph). An attribute graph over some attribute hierarchy A = (S,4)
is a directed labeled graph D = (S,R , λR ,⊥,>), where S is the set of attributes in A, ⊥ and >
are two special attributes with empty domains (by definition, t.⊥ ≡ t.> ≡ null for all tuples),

R ⊆ (S∪{⊥,>})2 is a set of edges and λR : R → {+,1, f} is an edge labeling function such that

there exists an edge:

1. (Ai, Aj) ∈ R for each edge Ai 4 Aj in A;

2. (⊥, Ai) ∈ R for each lower bound in A and

3. (Ai,>) ∈ R for each upper bound in A.

There might exist also other edges (Ai, Aj) ∈ R between any two nodes connected by a path in D.

In the following we denote by R (Ai, Aj) = l an edge (Ai, Aj) ∈ R labeled by l = λR (Ai, Aj).

The edge labeling function λR : R → {+,1, f} assigns to each edge a unique label encoding

the presence of functional and literal functional dependency constraints between the connected

20 Chapter 2 Data Model

attributes of a dimension table. These constraints are formalized in the following definition of

valid dimension tables.

Definition 2.6 (Valid dimension table). A dimension table T with schema S is valid with respect

to some attribute graph D = (X,R , λR ,⊥,>) where X ⊆ S, if both of the following conditions

hold in T :

1. If there exists a tuple t ∈ T such that t.Ai is not null, then there exists either an edge

R (⊥, Ai) in D or an edge R (Ak, Ai) in D such that t.Ak is not null.

2. For all tuples t1, t2 in T and all edges R (Ai, Aj) in D the following holds:

a) If R (Ai, Aj) = f , then t1.Ai ≡ t2.Ai implies t1.Aj ≡ t2.Aj;

b) If R (Ai, Aj) = 1, then t1.Ai = t2.Ai implies t1.Aj ≡ t2.Aj .

Observe that by Definition 2.6, R (Ai, Aj) = f is equivalent to Ai 7→ Aj and Ai → Aj implies

R (Ai, Aj) = 1 whereas R (Ai, Aj) = 1 does not imply Ai → Aj . Consequently, if some dimension

table T is valid w.r.t. an attribute graph D, it is also valid w.r.t. to all attribute graphs obtained

by replacing f edge labels by 1 edge labels and 1 edge labels by + edge labels. We can also see

that all edges R (⊥, Ai) are labeled by + or f . Indeed, ti.⊥ ≡ tj .⊥ holds for all couples (ti, tj),
and either ti.Ai ≡ tj .Ai also holds for all couples (ti, tj), i.e. R (⊥, Ai) = f or not, i.e. R (⊥, Ai) = +
(ti.Ai ≡ tj .Ai does not hold for at least one couple). Symmetrically, all edges R (Ai,>) are labeled

by f since ti.> ≡ tj .> for all tuples ti and tj .

Example 2.8. Figure 2.5 shows an attribute graph for hierarchy type GEOGRAPHY that is

validated by dimension table REGION . The lower and upper bound attributes are respectively

CITY (connected to node ⊥) and CONTINENT (connected to node >). The arc labels of attribute

graph have the following semantics. First, since the arc R (STATE, COUNTRY) is labeled by 1, for

each non-null value of attribute STATE, we can determine a unique value of attribute COUNTRY.

Second, R (COUNTRY, CONTINENT) = f states that the attribute COUNTRY literally determines the

attribute CONTINENT. Third, the tuples with the same value of CITY can have different values

for STATE (R (CITY, STATE) = +) and for COUNTRY (R (CITY, COUNTRY) = +) and no value for STATE

(arc R (CITY, COUNTRY) "skipping" attribute STATE). Finally, there exists a single continent without

countries, states and cities, which is represented by the arc R (⊥, CONTINENT) with label f .

Figure 2.5.: Attribute graph of dimension REGION

2.2 Analytic Tables 21

Example 2.9. Figure 2.6 (a) shows an attribute graph that is validated by dimension table

WAREHOUSE. The lower and upper bound attributes are respectively WH_ID (connected to

node ⊥) and COUNTRY (connected to node >). Attribute WH_ID literally determines CITY and

STATE since both arcs R (WH_ID, CITY) and R (WH_ID, STATE) are labeled by f . Arcs R (CITY, COUNTRY)
and R (CITY, STATE) are labeled by +, which signifies that tuples with the same value for CITY can

have different values for STATE and COUNTRY. Figure 2.6 (b), Figure 2.6 (c), Figure 2.6 (d) and

Figure 2.6 (e) show the attribute graphs for dimensions STORE, PROD, TIME and TAX

respectively.

Figure 2.6.: Attribute graphs of dimensions WAREHOUSE, STORE, PROD, TIME and TAX

Attribute graphs capture a set of LFDs and can be used to infer dimension identifiers for the

valid dimension tables.

Proposition 2.1. Let D = (S,R , λR ,⊥,>) be an attribute graph, the subset of all attributes in S

with at least one + labeled in-edge and no f labeled in-edge is a dimension identifier for all valid

dimension tables with attributes S.

Proof see Appendix B on Page 193.

Example 2.10. In the attribute graph of Figure 2.5, all attributes except attribute CONTINENT

have one + in-edge and no f in-edge. By Proposition 2.1, the dimension identifier for dimension

REGION is therefore {CITY, STATE, COUNTRY}. In the attribute graph of Figure 2.6 (a), attributes

CITY and STATE have a label f in-edge and the identifier of WAREHOUSE is {WH_ID, COUNTRY}.
Similarly, from the attribute graphs in Figure 2.6, dimension STORE, PROD, TIME and TAX

have dimension identifiers STORE_ID, PROD_SKU, DATE and TAX_NO respectively.

22 Chapter 2 Data Model

2.2.4 Capturing hierarchy properties with attribute graphs

We now show how attribute graphs can capture three well-known semantic hierarchy properties

introduced in [21]. We present the definitions of strict, onto and covering hierarchies and show

how these definitions can be reformulated and verified using attribute graphs.

Definition 2.7 (Onto hierarchy). Let H = (N,≤) be a hierarchy of hierarchy type H = (L,4),
Ni, Nj ⊂ N be two domains of values of level types Li, Lj ∈ L respectively such that Li 4 Lj ,

and Li 6= ⊥. The value mapping from Ni to Nj is said to be onto in H if ∀vb ∈ Nj ,∃va ∈ Ni such

that va ≤ vb. If all possible value mappings in H are onto, H is said to be an onto hierarchy.

Example 2.11. The hierarchy of Figure 2.4b (Page 17) is onto since all possible value mappings

are onto. The hierarchy in Figure 2.4a, (Page 17) is not onto: the mapping from COUNTRY to

CONTINENT is not onto since there exists a value “Antarctica” of type CONTINENT that has no child in

type COUNTRY. Observe that the existence of this non-onto mapping from COUNTRY to CONTINENT

is possible since there exists an edge R (⊥, CONTINENT) in the attribute graph of Figure 2.5.

The following proposition provides a new definition of onto hierarchies using attribute graphs.

Proposition 2.2. Let D = (S,R , λR ,⊥,>) be an attribute graph over an attribute hierarchy

A = (S,4). Let T of schema S be the dimension that is valid with respect to D. The hierarchy A

is an onto hierarchy if ∀Ai ∈ S, R (⊥, Ai) ∈ R , then @Aj ∈ S,R (Aj , Ai) ∈ R .

Proof. We prove by contradiction that the hierarchy A is not onto when ∀Ai ∈ S, R (⊥, Ai) ∈ R ,

@Aj ∈ S,R (Aj , Ai) ∈ R .

By the definition of onto hierarchy, A is not onto, there exists at least one value vt ∈ Nt such

that there is no value in Ns is the child value of vt, where Ns, Nt are the domain values of

attributes As, At ∈ S respectively and R (As, At) ∈ R , As 6= ⊥. Consequently, vt of attribute At has

no descendent value in A, i.e., vt is a leaf node. In the dimension table T , vt of attribute At is

encoded as tuples t ∈ T where t.At = vt, since vt has no descendent value, ∀Ak ∈ S, Ak 4∗ At, t.Ak
is null. By item 1 in Definition 2.6, there exists an edge R (⊥, At) in R . Therefore, the existence

of R (⊥, At) and R (As, At) contradicts the assumption that when R (⊥, At) ∈ R , R (As, At) does not

exist.

Therefore, the hierarchy A is onto if ∀Ai ∈ S, R (⊥, Ai) ∈ R , @Aj ∈ S,R (Aj , Ai) ∈ R .

Hierarchies without paths of domain values which can “bypass” a level type are called covering

hierarchies.

2.2 Analytic Tables 23

Definition 2.8 (Covering hierarchy). LetH = (N,≤) be a hierarchy of hierarchy type H = (L,4),
Ni, Ni+1, . . . , Nk be a sequence of at least three domain values in N such that their corresponding

level types are Li 4 Li+1 4 . . . 4 Lk. If there exists a pair of values vi ∈ Ni, vk ∈ Nk such that

vi ≤ vk, then the sequence Ni+1, . . . , Nk is said to be non-covering with respect to Ni. A hierarchy

H with no non-covering sequence, is called a covering hierarchy.

Example 2.12. The hierarchy instance of Figure 2.4a is non-covering since the sequence (STATE,

COUNTRY) is non-covering with respect to CITY: the value ‘Dublin’ of domain (attribute) CITY is

directly connected to a value ‘Ireland’ of domain COUNTRY (‘Dublin’ ≤ ‘Ireland’) and domain STATE

is “bypassed” and optional. Observe that in the attribute graph of Figure 2.5, there exists a path

connecting attributes CITY 4 STATE 4 COUNTRY and an edge R (CITY, COUNTRY) skipping attribute

STATE. The hierarchy instance in Figure 2.4b is covering.

Proposition 2.3. Let D = (S,R , λR ,⊥,>) be an attribute graph over an attribute hierarchy

A = (S,4). Let T (S) be a dimension that is valid with respect to D. The hierarchy A is a covering

hierarchy if ∀Ai, Aj ∈ S, when R (Ai, Aj) ∈ R , then @Ak ∈ S,R (Ai, Ak) ∈ R .

Proof. By the definition of covering hierarchy, a hierarchy is covering if it does not contain non-

covering sequence, or “bypassed” level, this is equivalent with every attribute in the hierarchy

only has one parent attribute. Therefore, if R (Ai, Aj) ∈ R , Ai will not have other parent attribute,

and R (Ai, Ak) can not exist in R .

Onto and covering hierarchies mainly characterize dimension tables without null markers

and are called complete hierarchies in [22]. In addition, the last notion of strict hierarchies

characterizes hierarchies without many-to-many child-parent relationships between domain

values.

Definition 2.9 (Strict hierarchy). Let H = (N,≤) be a hierarchy of hierarchy type H = (L,4),
Ni, Nj ⊂ N be two domains of values of level types Li, Lj ∈ L respectively such that Li 4 Lj .

The value mapping from Ni to Nj is said to be strict in H, if ∀va ∈ Ni, there exists only one value

vb ∈ Nj such that va ≤ vb. If all possible value mappings from any two domains of values in N

of H are strict, H is said to be a strict hierarchy.

Example 2.13. As shown in Figure 2.4a, the mapping from CITY to STATE is not strict since there

is a value ‘Dublin’ that has more than one parent in STATE, e.g., ‘California’ and ‘Ohio’. And the

edge R (CITY, STATE) is labeled + in the attribute graph of Figure 2.5. Therefore, the non-covering

and non-onto hierarchy in Figure 2.4a is also not strict and the hierarchy instance shown in

Figure 2.4b is strict, covering and onto.

24 Chapter 2 Data Model

Proposition 2.4. Let D = (S,R , λR ,⊥,>) be an attribute graph over an attribute hierarchy

A = (S,4). Let T of schema S be the dimension that is valid with respect to D. The hierarchy A

is a strict hierarchy if ∀Ai, Aj ∈ S, when R (Ai, Aj) ∈ R , then R (Ai, Aj) = f .

Proof. By the definition of strict hierarchy, a hierarchy is strict if every child-parent value mapping

is strict. We have ∀vi ∈ Ni, there exists one and only one value vj ∈ Nj such that vi ≤ vj where

Ni, Nj are domain values of attributes Ai, Aj ∈ S respectively and Ai 4 Aj . Then, in the dimension

table T , we get ∀ta, tb ∈ T, ta 6= tb, if ta.Ai ≡ ta.Ai, then ta.Aj ≡ tb.Aj . By item 2.a in Definition 2.6,

R (Ai, Aj) = f .

Hierarchy type
H = (L,4)

Hierarchy instance
H = (N,≤)

Attribute graph
D = (S,R, λR,⊥,>)

Dimension table
D (A1, . . . , An)

Ni contains value of Li
≤ preserves 4

R built from ≤

R inherit from 4

L
i maps to Ai

N
i =

d
om

(A
i)m

in
im

iz
ed
≤

Compute dimension identifier

Figure 2.7.: Relations between hierarchy, dimension table and attribute graph

By Propositions 2.2 to 2.4 attribute graphs capture all three hierarchy properties strict, onto

and covering. More exactly, these propositions provide sufficient conditions to decide if a valid

dimension table is strict, onto and/or covering.

We summarize the relationships between hierarchy types, hierarchies, dimension tables and

attribute graphs in Figure 2.7. A hierarchy type can have multiple hierarchy instances where all

value mappings preserve the child-parent relationships in the hierarchy type. Each hierarchy

instance yields a unique dimension table whose schema contains one dimension attribute for each

level type. Attribute graphs reflect the child-parent relationships of hierarchy types and define

subsets of valid hierarchy instances. They can be used to compute the dimension identifiers of

dimension tables (hierarchy instances).

2.2.5 Multidimensional fact tables

We now introduce fact tables that associate measures with dimensions to represent facts.

Definition 2.10 (Fact table). A fact table over a set of dimensions D1, · · · , Dn is a table T (S)
where schema S contains a non-empty subset Xi of dimension attributes from dimension Di,

and a non-empty set of attributes Z representing one or more measures. The active domain of

2.2 Analytic Tables 25

each dimension attribute T.A ∈ Xi is a subset of the active domain of Di.A. Each measure is

represented by one attribute having the role of Value and a possibly empty group of attributes

having the role of Detail. The Value attribute of a measure carries the actual value while the

Detail attribute provide optional auxiliary information on the measure.

Example 2.14. We give below an example of three fact tables SALES, SALES_SUM, and

INVENTORY that are built from two non-analytic tables ct_SALES and ct_INVENTORY.

Measure attributes are in italics. SALES is defined as a view over the non-analytic table

ct_SALES and dimensions PROD, TIME and STORE. It describes the daily sales of products

in different stores. SALES contains dimension attributes PROD_SKU and BRAND from dimension

PROD, attribute and YEAR from dimension TIME and attributes CITY, STATE and COUNTRY from

dimension STORE. Measure AMOUNT in table SALES is associated with a detail attribute

CURRENCY that describes the currency of the AMOUNT value, e.g, USD, EUR.

ct_SALES (PROD_SKU, BRAND, DAY, MONTH, YEAR, STORE_ID, CITY, STATE, COUNTRY,

AMOUNT, CURRENCY)

ct_INVENTORY(PROD_SKU, BRAND, MONTH, YEAR, WH_ID, CITY, STATE,

COUNTRY, TAX_NO, RATE, TAX_DESC, QTY_ON_HAND, TAX_AMT)

SALES (PROD_SKU, BRAND, YEAR, CITY, STATE, COUNTRY, AMOUNT, CURRENCY)

SALES_SUM (YEAR, COUNTRY, SUM_AMOUNT, CURRENCY)

INVENTORY (PROD_SKU, BRAND, MONTH, YEAR, WH_ID, CITY,

COUNTRY, TAX_NO, RATE, TAX_DESC, QTY_ON_HAND, UNIT)

Table SALES_SUM describes total sales for each country and is defined over fact table SALES
from where it inherits dimension attribute YEAR from dimension TIME and attribute COUNTRY

from dimension STORE. Its measure attribute SUM_AMOUNT also has a detail attribute CURRENCY

that provides the currency of the SUM_AMOUNT value.

Table INVENTORY is defined over non-analytic table ct_INVENTORY and dimensions

WAREHOUSE, TIME, TAX and PROD. Its measure attribute QTY_ON_HAND has a detail

attribute UNIT that describes the unit of the QTY_ON_HAND value, e.g., K or 1, 000, M or 1, 000, 000.

As shown by the previous example, we make the additional assumption on fact tables that

each measure attribute can be associated with a specific Unit or Currency detail attribute to

control the application of aggregation functions.

Similar to dimension tables, we define fact identifiers which capture LFDs in a fact table.

26 Chapter 2 Data Model

Definition 2.11 (Fact identifier). Let K ⊆ S be a set of dimension attributes in the schema of a

fact table T (S) and L be a set of LFDs defined on S. Then, K is a fact identifier of S if K 7→ S

holds for any instance T over S satisfying all LFDs in L.

We suppose that each measure in a fact table is determined by a subset of the dimension

attributes of the table. Importantly, and unlike many other multidimensional models [19], [23],

[24], [25], a measure can depend on a subset of the dimensions of a fact table. Then, fact

identifiers are determined by LFDs between dimension attributes and attribute graphs can be

used to compute fact identifiers of their valid tables as stated in the following proposition.

Proposition 2.5. Let T (S) be a fact table defined over a set of dimensions D1, · · · , Dn and

K1, . . .Kn be the dimension identifiers of D1∩S, . . . , Dn∩S respectively. Then K = K1∪. . .∪Kn

is a fact identifier of T , and K is a minimal identifier if all dimensions in T are mutually

independent, i.e., for any pair of dimensions Di, Dj , 0 6 i, j 6 n, i 6= j in T , Di 67→ Dj and

Dj 67→ Di.

Proof. Let SD ⊂ S the set of dimension attributes in T and S − SD be measure attributes. We

have SD 7→ (S − SD).

K1, . . . ,Kn are the dimension identifiers of D1 ∩ S, . . . , Dn ∩ S respectively, and we have

K1 7→ D1 ∩ S, . . . ,Kn 7→ Dn ∩ S. By Armstrong union axiom for LFDs, we get (K1 ∪ . . .∪Kn) 7→
(D1 ∩ S) ∪ . . . ∪ (Dn ∩ S) = SD. By transitivity of LFD’s, we get (K1 ∪ . . . ∪Kn) 7→ (S − SD),
and then by union of LFDs, we have (K1 ∪ . . . ∪Kn) 7→ S. Thus, K is a fact identifier.

Two dimension identifiers Ki, Kj , i 6= j are independent, if there exists no attribute A ∈ Kj

such that Ki 7→ A. Then, it is easy to show that if all Ki are minimal and mutually independent,

K1 ∪ . . . ∪Kn is a minimal fact identifier of T .

Example 2.15. Consider fact tables SALES, SALES_SUM and INVENTORY introduced in

Example 2.14. In SALES, for the dimension attributes from dimension PROD we have

PROD_SKU 7→ {PROD_SKU, BRAND}, for the dimension attributes from dimension TIME we

have {YEAR} 7→ {YEAR}, and for the dimension attributes from dimension STORE we have

{CITY, STATE, COUNTRY} 7→ {CITY, STATE, COUNTRY}. Therefore, by taking the union of all identifiers,

the fact identifier of SALES is {PROD_SKU, YEAR, CITY, STATE, COUNTRY}. Similarly, fact identifiers

of SALES_SUM and INVENTORY are defined by the underlined attributes. If all dimensions

are mutually independent, these fact identifiers are minimal, i.e., no proper subset is also a fact

identifier.

SALES (PROD_SKU, BRAND, YEAR, CITY, STATE, COUNTRY, AMOUNT)

SALES_SUM (YEAR, COUNTRY, SUM_AMOUNT)

2.2 Analytic Tables 27

INVENTORY (PROD_SKU, BRAND, MONTH, YEAR, WH_ID, CITY, COUNTRY, TAX_NO,

RATE, TAX_DESC, QTY_ON_HAND)

2.2.6 Aggregable attributes in analytic tables

Any attribute of an analytic table is a priori aggregable (using an aggregate query) along some

dimension attributes, however it does not necessarily aggregate with all aggregation functions

along all dimension attributes.

Example 2.16. In the schema of fact table SALES, measure AMOUNT is aggregable using function

SUM along all dimension attributes. Dimension attribute PROD_SKU is aggregable using function

COUNT or COUNT_DISTINCT along all dimension attributes but no other meaningful function

is applicable to that attribute. In fact table INVENTORY, measure QTY_ON_HAND is not aggregable

along the TIME dimension, i.e. summing the quantity of products QTY_ON_HAND over all months

or all years is meaningless. In other words, an aggregation that sums up QTY_ON_HAND must have

attributes MONTH and YEAR in the group by clause.

The issue of reasoning on the "semantic aggregability" of attributes has been identified and

extensively studied for statistical and OLAP databases [26]. Focused on the aggregate function

SUM, the notion of additivity was proposed in [6] as: “if a measure in a fact table can be summed

along any dimension associated to the fact table then it is additive”. Measures in fact tables are

then classified into three categories: fully-additive measures can be summed along any dimension

associated, semi-additive measures can be summed along some, but not all, dimensions, and

non-additive measures cannot be summed along any dimension. Additional special cases of

additivity, such as temporal additivity, have also been considered in [27].

We generalize the additivity approach of [6], [27] and [20] by considering any type of

aggregate function. Our model enables the designer of an analytic table to declare for each

attribute and each applicable aggregation function the maximal set of dimension attributes along

which this aggregation can be computed. Clearly, if some attribute A is aggregable along a set of

dimension attributes X, then it is also aggregable along any subsets of X. In the following we

denote by aggA(F,X) the aggregable property of A and state that property aggA(F,X) holds in

T if X is the maximal set of attributes along which A is aggregable using F in T . We give the

following formal definition for aggregable properties aggA(F,X).

Definition 2.12 (Aggregable Property). Let SD be the set of dimension attributes in an analytic

table T over schema S, A be an aggregable attribute in S and F be an aggregation function on A.

Aggregable property aggA(F,X), X ⊆ SD, holds in T if

1. all aggregations along any subsets of X are considered as meaningful by the user;

28 Chapter 2 Data Model

2. If A is a measure attribute, X contains: (1) the minimal subset of dimension attributes

U ⊆ SD such that U 7→ A and (2) all attributes B ∈ SD such that U 7→ B

3. F is applicable to A.

Example 2.17. Considering Example 2.16, attribute QTY_ON_HAND depends on all dimensions, so

the (supposed) minimal set of attributes U is {PROD_SKU, MONTH, YEAR, TAX_NO}, if dimensions

are mutually independent. However, aggregating QTY_ON_HAND along the attributes of dimension

TIME is considered meaningless to the user, and by item 1 in Definition 2.12 attributes MONTH

and YEAR must be removed from U . All other dimension attributes are determined by U . We

then state that aggQTY_ON_HAND(SUM, Z) holds in INVENTORY where Z contains all dimension

attributes of INVENTORY except attributes MONTH and YEAR.

Example 2.18. Consider now a fact table PRODUCT_LIST (PROD_SKU, COUNTRY, BRAND, YEAR,

QTY) over dimension MKT_PROD and TIME, which describes the quantity of products issued

every year as shown in Table 2.3. In dimension MKT_PROD, assume that we have the attribute

graph displayed in Figure 2.8. Suppose that the measure attribute QTY only depends on the

minimal set of attributes U = {PROD_SKU, YEAR}. Then, since no other dimension attribute is

determined by U , aggQTY(SUM, U) holds in PRODUCT_LIST. Here, the same fact about “cz-

tshirt-s” is recorded twice, once for each brand. If we wanted to consider facts to be independent

from each other, then we would assume that QTY depends on the minimal set of attributes

U = {PROD_SKU, BRAND, YEAR}. That is, each quantity would be recorded separately for each

brand and they could be added along dimension MKT_PROD.

Table 2.3.: PRODUCT_LIST

PROD_SKU BRAND COUNTRY YEAR QTY

coca-zara-tshirt-s COCA COLA United States 2017 5 000
coca-zara-tshirt-s ZARA Spain 2017 5 000
coca-33cl-can COCA COLA United States 2017 10 000

Figure 2.8.: Attribute graph of dimension MKT_PROD

To determine applicable aggregation functions for aggregable attributes, different catego-

rizations have been proposed in previous works. One factor that is used to classify attributes

is their semantic meaning. For instance, [28] introduced a statistic classification that divides

measurement attributes into four types: 1) Nominal attributes, which are un-ordered categor-

ical attributes like CLASS_TYPE and can only be aggregated using function COUNT. 2) Ordinal

attributes, which are ordered categorical attributes, like IQ_SCORE, and aggregable with function

2.2 Analytic Tables 29

MIN, MAX, COUNT, other functions like SUM and AVG are not suggested because the numeric

difference between values might not correctly reflect the "semantic" difference, e.g., the differ-

ence of IQ scores from 115 to 100 does not have the same meaning as the difference from 100

to 85. 3) Interval attributes, which are measure attributes with equal value intervals but don’t

have an absolute zero, like TEMPERATURE, zero degrees Fahrenheit and zero degrees Celsius are

different temperatures, and neither indicates the absence of temperature. An interval attribute

can be aggregated by function MAX, MIN, COUNT, AVG. 4) Ratio attributes, which are numerical

values with an absolute zero, like WEIGHT and SALES, can be aggregated by any aggregation

function. Another criteria that is used to classify attributes is their aggregation behaviour. For

instance, [21], [29] classified measures into three types: measures that can be (a) summed, (b)

averaged, or (c) counted.

The previous categorizations of measures rely on some external knowledge and explicit user

effort for classifying every aggregable attribute of an analytic table. To reduce the user effort, we

provide a default categorization that can automatically be extracted from the schema metadata.

The two categories NUM and DESC are inferred from the (SQL) data type of attributes. A third

category STAT are numerical values that result from the use of some aggregation functions.

Table 2.4 describes the six common SQL aggregation functions applicable to each category.

Table 2.4.: Categories of aggregable attributes

Category Properties

NUM • Numerical values
• Applicable functions: SUM, AVG, COUNT, COUNT_DISTINCT, MIN, MAX

DESC • Descriptive or categorical values
• Applicable functions: COUNT, COUNT_DISTINCT

STAT • Numerical statistical values
• Applicable functions: COUNT, COUNT_DISTINCT, MIN, MAX

Table 2.5.: Category of the domain and the co-domain for common aggregation functions

Functions Applicable category Category of the co-domain

SUM,MIN,MAX NUM NUM
COUNT,COUNT_DISTINCT NUM,DESC,STAT NUM
AVG NUM STAT

Example 2.19. Attribute STORE_ID of data type string in dimension table STORE, or in fact

table SALES, is an aggregable attribute of category DESC which can only be counted. Attributes

AMOUNT and QTY_ON_HAND in tables SALES and INVENTORY are both of category NUM. Thus,

by default, both attributes can be summed up unless a user-defined aggregable property is

specified, as in Example 2.17 for attribute QTY_ON_HAND.

30 Chapter 2 Data Model

If A is an attribute of T for which no aggregable property is defined by a user, we use the

default category of A to define which aggregation function F is applicable to A and state that a

default aggregable property aggA(F,Z) holds in T where Z is the set of all dimension attributes

of T (by default, A literally depends on all dimension attributes). We assume that any knowledge

of the categorization of measures is translated into aggregable properties (as done e.g., in [20]).

For this purpose, aggregable properties of fact tables can be manually edited by the user.

2.3 Table Relationships

2.3.1 Join and attribute mapping relationships

In this section, we describe two kinds of semantic relationships, join relationships and attribute-

mapping relationships, that can exist between analytic tables. Both kinds of relationships identify

pairs of equivalent attributes in two tables. They can be defined manually by the business user

or extracted from the view definitions of analytic tables and from the foreign key constraints

contained in the analytic schema.

Definition 2.13 (Join relationship). A join relationship R (T1, T2) between two tables T1 and

T2 is defined by a non-empty set of equality atoms {P1, · · · , Pk} where each Pi is of the form

T1.A = T2.B. It relates all pairs of tuples in T1 and T2 satisfying the predicate P1 ∧ · · · ∧ Pk, i.e.,

the set of all tuples joined by the query T1 ./P1∧···∧Pk
T2.

Example 2.20. Fact table SALES of Example 2.14 is a view over dimensions PROD, TIME

and STORE and a non-analytical table ct_SALES. As shown in Figure 2.1a, the view defines

a star join connecting ct_SALES and the dimension tables. The analysis of the view definition

yields three join relationships between ct_SALES and each dimension table.

Join relationships might also exist between non-analytic tables (i.e., tables that are neither

dimension nor fact tables) through foreign key constraints in the table schema definitions.

Definition 2.14 (Attribute mapping relationship). Let T1 and T2 be two tables such that T1 is

derived from T2 using a query Q and auxiliary tables: T1 = Q (T2, Ti, · · · , Tn) with n ≥ 0. Query

Q defines an attribute mapping from T2.B to T1.A, denoted by T2.B � T1.A, if for all possible

values x ∈ dom(A) and all possible instances of T2, Ti, · · · , Tn:

σA=x(Q (T2, Ti, · · · , Tn)) = σA=x(Q (σB=x(T2), Ti, · · · , Tn))

An attribute mapping relationship R (T1, T2) between T1 and T2 is a non-empty set of attribute

mappings from T1 to T2.

2.3 Table Relationships 31

Example 2.21. As shown in Figure 2.1b, Page 15, dimension PROD is a view over three non-

analytic tables defined as PROD = πX(PRODUCT ./P1 SUBCATEGORY ./P2 CATEGORY),
where X is the set of attributes in PROD, and P1, P2 are join predicates. This view defines

for each attribute in Ai ∈ X, an attribute mapping PROD.Ai � T.Ai between PROD and the

corresponding non-analytic table T ∈ {PRODUCT,SUBCATEGORY,CATEGORY}.

In Example 2.20, the view query for fact table SALES defines an attribute mapping relationship

between table SALES and the three dimension tables PROD, TIME and STORE, as well as

the non-analytic table ct_SALES.

Each relationship R (T1, T2) between two tables T1(S1) and T2(S2) defines a partial mapping

µR from attributes A of T1 to attributes B of T2 where µR (T1.A) = T2.B if (i) R is a join

relationship containing an atom T1.A = T2.B or (ii) R contains an attribute mapping T1.A� T2.B

or T2.B� T1.A. Relationship R is well-formed if µR is a one-to-one mapping.

Example 2.22. Consider a fact table ORDER recording detail descriptions for orders from

different stores and customers. ORDER has two attributes ORDER_DAY, SHIP_DAY, each one

referring to attribute DAY of dimension TIME. A single attribute mapping relationship

R (ORDER, T IME) mapping the two ORDER attributes to the same attribute TIME.DAY,

µR (ORDER.ORDER_DAY) = TIME.DAY, µR (ORDER.SHIP_DAY) = TIME.DAY, is not a one-to-

one mapping and therefore not well-formed. Thus, two distinct relationships R 1(ORDER, T IME)
and R 2(ORDER, T IME) are needed, one for ORDER_DAY and the other for SHIP_DAY.

Given a relationship R (T1, T2) between two tables T1(S1) and T2(S2), when T1 or T2 is an

analytic table, we refer to common dimension attributes as the set of dimension attributes that

are both in the schema of T1 and T2, noted Y = S1 ∩D S2. When T1 and T2 are two non-analytic

tables, we refer to common non-analytic attributes as the set of attributes that are both in the

schema of T1 and T2, noted Y = S1 ∩D S2 = S1 ∩ S2. For the sake of simplicity, and unless

specified differently, we shall use in the following the name common attributes and expression

Y = S1 ∩D S2 for common dimension attributes or common non-analytic attributes between two

tables, and we assume that any relationship R (T1, T2) defines a natural mapping µR (T1.A) = T2.A

for all attributes A in Y = S1 ∩D S2.

Example 2.23. In Example 2.20, the common non-analytic attributes for the join relation-

ships R (CATEGORY, SUBCATEGORY) and R (PRODUCT, SUBCATEGORY) are respec-

tively {CATEGORY_ID} and {SUBCATEGORY_ID}. Similarly, the attribute mapping relationship

R (PROD, SUBCATEGORY) of Example 2.21 between dimension table PROD and non-

analytical table SUBCATEGORY has common dimension attributes {PROD_SKU, BRAND}.

32 Chapter 2 Data Model

Relationship R (SALES, ct_SALES) described in Example 2.21 is an attribute mapping be-

tween attributes {PROD_SKU, BRAND, YEAR, CITY, STATE, COUNTRY, AMOUNT, CURRENCY}. Within those

attributes, AMOUNT and CURRENCY are not dimension attributes, so the common dimension

attributes between SALES and ct_SALES are {PROD_SKU, BRAND, YEAR, CITY, STATE, COUNTRY}.

Figure 2.9 shows a graph of relationships issued from previous examples. Dimension tables are

represented by rounded rectangles, fact tables by bold square rectangles, and non-analytic tables

by square rectangles. Each node contains its identifier (ID), and edges indicate relationships

labelled with their common attributes. Edges with solid lines are relationships extracted from the

analytic scheme while edges with bold dashed lines are user-defined relationships. For instance,

a designer has defined a join relationship between dimensions STORE and WAREHOUSE

with common attributes CITY, STATE and COUNTRY which did not exist in the analytic schema.

Figure 2.9.: Examples of relationships

2.3.2 Derived relationships

It is possible to derive new relationships by the composition and the fusion of existing rela-

tionships. For example, in Figure 2.9, there is no direct relationship (solid-line edge) between

fact tables INVENTORY and SALES. However, both tables share dimension tables PROD and

TIME which can be composed to derive a new relationship represented by the dashed-line

edge.

Proposition 2.6. Composition of relationships. Let R 1(T1, T2) and R 2(T2, T3) be two well-formed

relationships between tables T1, T2 and T3 with respective common attributes Y1 and Y2. If

2.3 Table Relationships 33

Y3 = Y1 ∩D Y2 6= ∅, then there exists a well-formed relationship R 3(T1, T3) that is a composition

of R 1(T1, T2) and R 2(T2, T3) with common attributes Y3.

Proof see Appendix B on Page 194.

Example 2.24. In Figure 2.9, relationships R (SALES_SUM, STORE) and R (STORE,

WAREHOUSE) are composed to yield R (SALES_SUM, WAREHOUSE) with common

attribute COUNTRY. Similarly, R (SALES_SUM, WAREHOUSE) and R (WAREHOUSE,

INVENTORY) are composed to generate R (SALES_SUM, INVENTORY) with common at-

tribute COUNTRY.

The fusion of two different relationships between the same pair of tables can produce a new

relationship between the same tables.

Proposition 2.7. Fusion of relationships. Let R 1(T1, T2) and R 2(T1, T2) be two well-formed

relationships between two tables T1 and T2 with respective common attributes Y1 and Y2. If

∀A ∈ Y1 ∩D Y2, µR 1(A) = µR 2(A) then there exists a well-formed relationship R 3(T1, T2) that is

a fusion of R 1(T1, T2) and R 2(T1, T2) with common attributes Y3 = Y1 ∪Y2.

Proof see Appendix B on Page 196.

Given a set of well-formed relationships R 0(T1, T2), · · · ,R n(T1, T2), n ≥ 0 between two tables

T1, T2 with respective common attributes Y0, · · · ,Yn. We refer the union of Y0, · · · ,Yn as the

common attributes of T1 and T2.

Example 2.25. In Figure 2.9, relationships R (SALES, PROD) and R (PROD, INVENTORY)

are composed to yield R 1(SALES, INVENTORY) with common attributes {PROD_SKU, BRAND}.
Similarly, R (SALES, TIME) and R (TIME, INVENTORY) are composed to generate

R 2(SALES, INVENTORY) with common attribute {YEAR}. Finally, R (SALES, STORE),

R (STORE, WAREHOUSE) and R (WAREHOUSE, INVENTORY) are composed to pro-

duce R 3(SALES, INVENTORY) with common attributes {CITY, COUNTRY}. Then the fusion of

R 1(SALES, INVENTORY), R 2(SALES, INVENTORY) and R 3(SALES, INVENTORY) yields

R ′(SALES, INVENTORY) with common attributes {YEAR, PROD_SKU, BRAND, CITY, COUNTRY}.
However, the fusion of the two relationships R 1(ORDER, TIME) and R 2(ORDER, TIME) in

Example 2.23 is not possible because µR 1(DAY) 6= µR 2(DAY) (both relationships map two different

attributes ORDER.ORDER_DAY and ORDER.SHIP_DAY to the same attribute TIME.DAY.

Besides the composition and fusion of relationships, we consider a special case of derived

relationships that are defined over lookup tables.

34 Chapter 2 Data Model

Definition 2.15 (Lookup Table Relationships). Let T1(S1), T2(S2), T (S) be three tables such that

there exist two well-formed relationships R 1(T1, T) and R 2(T2, T) with respectively common

attributes Y1 and Y2. A relationship R (T1, T2) over the table T (S) is a non-empty set of at-

tribute mappings from T1 to T2 using the mapping function f(x) : T1.Y1 = πY1(σY2=x(T)), x ∈
dom(T2.Y2). Table T is referred to as a lookup table.

Proposition 2.8. Let T1(S1), T2(S2), T (S) be three tables such that there exist two well-formed

relationships R 1(T1, T) and R 2(T2, T) with respectively common attributes Y1 and Y2. Let

R (T1, T2) be the relationship over the lookup-table T (S), if Y1 7→ Y2 and Y2 7→ Y1 hold in T ,

then R (T1, T2) is a one-to-one mapping relationship.

Proof. We prove by contradiction that assume R (T1, T2) is not a one-to-one mapping relationship.

Let f(x) = T1.Y1, x ∈ dom(T2.Y2) be the mapping function of R (T1, T2). Let t be a tuple of T1,

then there exist two tuples ta, tb in T2 such that t.Y1 = f(ta.Y2) = f(tb.Y2) and ta 6≡ tb. By

R 1(T1, T) and R 2(T2, T), we now that there exist two tuples t′a, t
′
b in T such that t′a.Y1 ≡ t′b.Y1 ≡

t.Y1, t′a.Y2 ≡ ta.Y2 and t′b.Y2 ≡ tb.Y2. Because Y1 7→ Y2 holds in T , we obtain t′a.Y2 ≡ t′b.Y2

which contradicts the assumption that ta 6≡ tb. Therefore, when Y1 7→ Y2 and Y2 7→ Y1 hold in

T , the relationship R (T1, T2) is a one-to-one mapping relationship.

Example 2.26. Consider the two dimension tables STORE and WAREHOUSE in Figure 2.9.

Let COUNTRY_CODE (COUNTRY_NAME, 2_CHAR, 3_CHAR, UN_CODE) be a table storing country

names of different formats including the full name, 2-char code, 3-char code and a three-digit nu-

meric code (ISO 3166-1 1). Every attribute in COUNTRY_CODE forms a key (identifier). Sup-

pose we have R (COUNTRY_CODE, STORE) and R (COUNTRY_CODE,WAREHOUSE)
be two well-formed relationships respectively of the form COUNTRY_CODE.COUNTRY_NAME�

WAREHOUSE.COUNTRY, COUNTRY_CODE.2_CHAR � STORE.COUNTRY. Then there ex-

ists a relationship R (STORE,WAREHOUSE) over the table COUNTRY_CODE where

attribute mappings is STORE.COUNTRY = f(WAREHOUSE.COUNTRY) and the map-

ping function f is defined as f(x) = π2_CHAR(σCOUNTRY_NAME=x(COUNTRY_CODE)),
x ∈ dom(WAREHOUSE.COUNTRY). Because COUNTRY_NAME 7→ 2_CHAR and 2_CHAR 7→
COUNTRY_NAME hold in COUNTRY_CODE, the relationship R (STORE,WAREHOUSE) is

a one-to-one mapping relationship.

2.3.3 Relationships in drill-across OLAP queries

In the context of “drill-across” queries, [6], [30] focus on relationships between fact tables

through conforming dimensions and [31] studies Fact-to-Dimension (FD) relationships, Fact-to-Fact

1https://en.wikipedia.org/wiki/Country_code

2.3 Table Relationships 35

https://en.wikipedia.org/wiki/Country_code

(FF) relationships and Dimension-to-Dimension (DD) relationships. We now explain how these

three kinds of relationships are represented using our definitions.

Fact-to-Fact (FF) relationships. When a fact table T is defined over another fact table T0,

or T and T0 are defined over a common dimension D, there exists, an FF attribute-mapping

relationship between table T and T0. The dimensionD is called conformed dimension [6] between

T and T0. For example, fact table SALES_SUM is defined as a view that computes the SUM of

AMOUNT group by COUNTRY, MONTH from SALES. An attribute-mapping (FF) relationship between

SALES and SALES_SUM is extracted from the view definition with common attributes COUNTRY,

MONTH. Since SALES and INVENTORY have dimensions PROD and TIME in common, there

also exists an attribute-mapping (FF) relationship between SALES and INVENTORY through

conformed dimensions PROD and TIME.

Dimension-to-Dimension (DD) relationships. Dimensions can also be defined over other di-

mension tables, and thus DD attribute-mapping relationships can be extracted from the view

definition of dimensions. For example, dimension table ALL_STORES is a view defined as a

union of two dimensions that have the same dimension attributes:

ALL_STORES = CHAIN_STORES ∪ INDEP_STORES

Here, an attribute mapping (DD) relationship between ALL_STORES and each operand

dimension of the union is extracted from the view definition. DD Join relationship can also be

explicitly defined by the user. As shown in Figure 2.9, the user has defined three natural join

predicates on attributes CITY, STATE and COUNTRY, which are shared between dimensions STORE

and WAREHOUSE. These dimensions are not “conformed”, but their relationship defines a

so-called "integrated" dimension in [30].

Since we also take non-analytic tables into consideration, there are other types of relationships

involving non-analytic tables that were not discussed in [30] and [1].

Analytic-to-Non-analytic (AN) relationships. The view definitions of dimension and fact tables

also refer to non-analytic tables and define AN attribute-mapping relationships between di-

mension or fact tables and non-analytic tables. For example, dimension PROD, introduced in

Example 2.21, defined an attribute mapping relationship between PROD and three non-analytic

tables.

Non-analytic to Non-analytic (NN) relationships. NN Join relationship can be inferred from

foreign key (PK-FK) constraints between non-analytic tables. For example, in the definition

of non-analytic dataset ct_SALES, PROD_SKU is the primary key of the non-analytic dataset

36 Chapter 2 Data Model

PRODUCT and a NN join relationship between ct_SALES and PRODUCT is extracted with

common attribute PROD_SKU.

2.4 Conclusions
To conclude this chapter, we summarize the data and related metadata introduced in this

chapter. Dimensions and measures are two standard notions which frequently appear in analytic

data models. In our data model, we take the general definitions of dimension tables, fact

tables and hierarchy as introduced in [6]. We do not consider data evolution or time-dependent

dimensions that track historical data with the help of historical tables or timestamp attributes,

as it was done for instance in [21]. We also assume that all data is valid and accessible until it

is deleted. We release certain constraints on the hierarchy structure and table identifiers and

enable non-linear hierarchies with multiple bottom and top level attributes. We also release the

restriction that the bottom level attribute in a hierarchy is the dimension identifier. We extend the

previous models and make them more flexible through three new notions: (1) attribute graphs

which represent LFDs over dimension attributes; (2) dimension / fact identifiers for analytic tables

with null-values; (3) aggregable properties which describe and check the validity of aggregation

operations on fact tables.

Table 2.6 lists the main metadata we need and indicate how they are obtained. We distinguish

between data and metadata that can be user-defined, automatically computed from other data

or metadata and derived by default rules. Most human effort is required on the definition

of dimension and fact tables (analytic schemas) with a careful description of their attribute

graphs. We shall see in Section 4.2.1 that attribute graphs can also be automatically computed

from complete or sampled dimension tables. This substantially reduces the human-effort for

enabling schema augmentations and complements to defining analytic schemas and aggregable

properties.

Table 2.6.: Summary of data model concepts

Metadata Source

Dimension and fact tables User-defined
Attribute graphs User-defined or computed
Dimension identifiers Computed
Fact identifiers Computed
Aggregable properties User-defined or default rule
Relationships User-defined or computed

2.4 Conclusions 37

3Schema Augmentations and Quality
Guarantees

Contents

3.1 Schema Augmentations . 39

3.2 Natural Schema Complement . 42

3.3 Reduction Queries . 43

3.4 Quality Criteria of Schema Augmentations . 47

3.4.1 Propagation of aggregable properties 47

3.4.2 Non-ambiguous aggregable attributes 57

3.4.3 Complete merge results . 59

3.4.4 Summarizability revisited . 66

In this chapter, we present our methods that deal with the challenges introduced in Section 1.2.

We first introduce the notion of schema augmentation and merge query in Section 3.1, then in

Section 3.2 we present natural schema complements which are a subclass of schema augmentations

without row multiplication. Row multiplication can be avoided by applying reduction queries

(Section 3.3) which are a new feature with respect to existing work in schema complements

(see Related Work Chapter 5). In Section 3.4, we introduce our solutions for tackling the quality

problems of incorrect and ambiguous reduction and incomplete merge. We introduce a formal

framework for ensuring the quality of the merge results and show how these quality guarantees

relate to the notion of summarizability.

3.1 Schema Augmentations
We first introduce a general case which is to augment a table with new attributes from other

tables, this augmentation is called schema augmentation.

Definition 3.1 (Schema augmentation). Let T0(S0) and T (S) be two tables related by a relation-

ship R with a set of common attributes Y = S0 ∩D S. Then table T is a schema augmentation to

source table T0 with respect to R .

Schema augmentations are easy to find using the well-formed relationships. By definition,

two tables are mutual schema augmentation to each other when they are related through a

well-formed relationship and their common attributes Y is not empty.

39

Example 3.1. Consider the tables and the relationships shown in Figure 2.9. Table INVENTORY
is related to table SALES through a relationship with common attributes {PROD_SKU, BRAND, YEAR,

CITY, COUNTRY}. Therefore, SALES and INVENTORY are mutual schema augmentation to each

other.

Schema augmentations are used to extend one of the two related tables with new attribute

values from the other table. This extension is computed through merge queries defined as

follows:

Definition 3.2 (Merge query). Let T (S) be a schema augmentation to an analytic table T0(S0)
with respect a relationship R and a set of common attributes Y. Then the merge of T0 and T

is a left-outer join query Q = ΠX(T0 ./P1∧···∧Pk
T), where k = |Y | is the number of common

attributes of R , Π is a duplicate elimination projection and the following conditions hold:

1. For each Ai ∈ Y, ∃Pi such that Pi = (T0.Ai = T.Ai) ∨ (T0.Ai = null ∧ T.Ai = null) (marked

null is literal value).

2. If all common attributes are dimension attributes, and there exists a pair of common

attributes A1, A2 ∈ Y in T0 such that T0.A1 4 T0.A2 ∧ T.A1 � T.A2, then X = S0] S else

X = S0 ∪ S (] denotes disjoint union).

In the following, we will abbreviate Q = ΠX(T0 ./P1∧···∧Pk
T) to Q = T0 ./Y T .

Item 1 manages the join predicates in the merge query when there is presence of nulls, because

equality in standard SQL semantics is undefined for null values. Item 2 checks if the structure

of the hierarchy in T0 is preserved after merging common attributes. When the dimensions of

common attributes are not compatible (do not mutually preserve the hierarchical relationships),

the merge query keeps the common attributes separately for each table and applies disjoint

union.

In the following, we will refer to the result of a merge query through a schema augmentation

as an augmented merge table.

Example 3.2. Considering tables in Figure 2.9 on Page 33, table INVENTORY is a schema

augmentation to SALES with respect to common attributes: Y= {PROD_SKU, BRAND, YEAR, CITY,

COUNTRY}. After comparing the schema of these two tables, the merge query can add some

or all new attributes from table INVENTORY (MONTH, WH_ID, TAX_NO, RATE, TAX_DESC and

QTY_ON_HAND) to table SALES and vice-versa (AMOUNT).

40 Chapter 3 Schema Augmentations and Quality Guarantees

SALES(PROD_SKU, BRAND, YEAR, CITY, STATE, COUNTRY, AMOUNT)

INVENTORY(PROD_SKU, BRAND, MONTH, YEAR, WH_ID, CITY,

COUNTRY, TAX_NO, RATE, TAX_DESC, QTY_ON_HAND)

Formally, a merge query between SALES and INVENTORY through schema augmentation

is expressed as SALES ./Y INVENTORY where Y is the set of common attributes, and the

augmented merge table does not duplicate the common attributes. The augmented merge

table preserves all rows in SALES (with possible row duplication) and contains all attributes in

INVENTORY and SALES (the merge query does not apply a projection). The symmetric merge

query INVENTORY ./Y SALES preserves all tuples in table INVENTORY and has the same

schema.

After merging a table with a schema augmentation, the identifier of the augmented merge

table might change. The following proposition describes how to compute the identifiers of

augmented merge tables.

Proposition 3.1. Let T ′0(S′0) be a merge of table T0(S0) with a target schema augmentation T (S).
Let K be the identifier of T0 and Snew ⊆ S′0 − S0 be the set of dimension attributes added to T0

in the merge. Then, for all minimal subsets Knew ⊆ Snew where Knew 7→ Snew, K ∪Knew is an

identifier of T ′0.

Proof. Let K′ = K ∪ Knew. We prove K′ 7→ S′0 by contradiction. Assume that K ′ is not the

identifier of T ′0, then there exist two tuples t1, t2 ∈ T ′0 and an attribute B ∈ S0 such that

t1.K′ ≡ t2.K′ but t1.B 6≡ t2.B. We distinguish between two cases:

– Case one: B ∈ S0: We know that K ⊂ K′ and K 7→ S0. Then by t1.K′ ≡ t2.K′ we have

t1.K ≡ t2.K and t1.B ≡ t2.B which contradicts our assumption.

– Case two: B ∈ Snew: We know that Knew ⊂ K′ and Knew 7→ Snew. Then by t1.K′ ≡ t2.K′ we

have t1.Knew ≡ t2.Knew and t1.B ≡ t2.B which contradicts our assumption.

Therefore, we conclude K′ 7→ S′0.

Example 3.3. Consider the merged result SALES′ in Example 3.2. Then, the identifier of SALES
is K = {PROD_SKU, MONTH, YEAR, CITY, STATE, COUNTRY} and Snew = {MONTH, WH_ID, TAX_NO, RATE,

TAX_DESC}. We have Knew = {MONTH,WH_ID, TAX_NO} such that Knew 7→ Snew. Thus, the identifier

of SALES′ is K ∪Knew ={PROD_SKU, MONTH, YEAR, CITY, STATE, COUNTRY, WH_ID, TAX_NO}.

3.1 Schema Augmentations 41

3.2 Natural Schema Complement

Merge queries might join one tuple in the source table with several tuples in the schema

augmentation table. This tuple duplication might lead to unexpected results. For example, in the

merge results of Example 3.2, tuples in SALES will be duplicated because of the newly added

dimension attributes MONTH, WH_ID. As we explained in Section 1.2, row multiplication may

produce unexpected or erroneous results. For example, an aggregation query that computes the

sum of quantity-on-hand over all warehouses will produce a wrong result when it is applied on

table SALES′ after the augmentation of SALES with table INVENTORY. To better control the

schema augmentation process, we introduce new restrictions that can be applied for filtering

and transforming schema augmentations before merging them with a source table.

The notion of schema complement that merges two tables and brings new attributes without

row multiplications, which solves our second challenge “row multiplication” in Section 1.2, was

initially proposed in [12]. In this section, we explain our extensions of the original definition of

schema complement by considering LFDs and well-formed relationships between tables.

Definition 3.3 (Natural schema complement). Let T (S) be a schema augmentation of T0(S0)
with a set of common attributes Y = S0 ∩D S. Table T is a natural schema complement to a table

T0 with respect to R if Y 7→ S.

The merge of T0 and T through natural schema complement follows Definition 3.2 for merging

schema augmentations. We refer to the result of a merge query through a natural schema

complement by natural merge table.

Proposition 3.2. Let table T (S) be a natural schema complement of a table T0(S0) with respect

to a set of common attributes Y = S ∩D S0, let T ′0(S′0) be the natural merge table of T and T0,

then for each tuple t in T0 there exists exactly one tuple t′ in T ′0 such that t.S0 ≡ t′.S0.

Proof. The proof for this proposition is straightforward.

We first show that if K is an identifier in T0, then it is also an identifier in T ′0. Let Snew = S′0−S0

be the set of attributes added to T0 in the merge, then by Proposition 3.1, the identifier of T ′0
is K ∪Knew where Knew 7→ Snew. By Definition 3.3, Y 7→ S and K 7→ Y, by transitivity we get

K 7→ S. Because Snew ⊆ S, we get K 7→ Snew. Finally, K 7→ S0 ∪ Snew = S′0, K is the identifier of

T ′0.

Second, we show that no tuples in T0 are lost in T ′0. This is guaranteed by the definition of

merge query which uses left-outer join for augmenting table T0.

42 Chapter 3 Schema Augmentations and Quality Guarantees

By Propositions 3.1 and 3.2, we now know that when T is a natural schema complement of a

table T0, the identifier of T0 is also the identifier of the natural merge table of T0 and T .

Example 3.4. Consider the tables and relationships shown in Figure 2.9 (Page 33), the non-

analytical table PRODUCT is a schema augmentation to dimension table PROD with respect

to two common attributes {PROD_SKU, BRAND}. It is also a natural schema complement since

the common attribute PROD_SKU is a primary key in PRODUCT. By comparing their schemas,

PRODUCT can bring new details to PROD like WEIGHT and PRODUCT_NAME.

PRODUCT{PROD_SKU, PRODUCT_NAME, BRAND, WEIGHT, SUBCATEGORY_ID}

PROD{PROD_SKU, BRAND, SUBCATEGORY, CATEGORY}

The natural merge PROD ./PROD_SKU PRODUCT produces exactly one tuple for each tuple

in dimension PROD

Considering tables INVENTORY and SALES of Example 3.1, their common attributes do

not contain an identifier of SALES. Therefore SALES is not a natural schema complement to

INVENTORY.

3.3 Reduction Queries

When T is a schema augmentation but not a natural schema complement of T0 (the common

attributes do not literally determine all attributes of T), it is still possible to transform T into

a natural schema complement by applying some query. In this section, we introduce reduction

operations which “reduce” the attributes in the identifier of T .

Definition 3.4 (Reduction query). Let T (S) be a table with identifier K. A query Q (T) producing

the table T ′(S′) is called a reduction of T on a subset of attributes K′ ⊆ S′ if K′ ⊂ K is a proper

subset of K and K′ 7→ S′ holds in T ′ (K′ is an identifier of T ′). The attributes in K−K′ are called

the reduced attributes.

Since K′ ⊂ K, every partitioning (group-by) of T by K′ contains one or more tuples. The effect

of a reduction query Q (T) on K′ is to reduce each partition into a single tuple.

Example 3.5. Consider the fact table SALES with identifier K = {PROD_SKU, YEAR, CITY, STATE,

COUNTRY}. A query SALES′ = Q (SALES) that filters COUNTRY = “USA” is a reduction of SALES
on attributes K′ = K − {COUNTRY}. K′ is the identifier of SALES′ and COUNTRY is the reduced

attribute.

3.3 Reduction Queries 43

There exists a great variety of reduction queries. In our work, we focus on three common

types of reduction queries: aggregate, filter and pivot.

Definition 3.5 (Aggregate reduction). Let T (S) be an analytic table with dimension attributes

SD ⊆ S and identifier K ⊆ SD, A be an aggregable attribute in S, and F be an aggregation

function such that aggregable property aggA(F,Z) holds in T (A can be aggregated along any

subset of Z). We denote by Q (T) = AggT (F(A) | X) where SD − Z ⊆ X ⊆ SD, an aggregate

query on table T that aggregates A using aggregation function F with group-by attributes X. We

call a query Q (T) = AggT (F(A) | K′) an aggregate reduction of T on attributes K′ when K′ ⊂ K,

and call K−K′ the reduced attributes.

Note that the SQL group-by operator implements literal equality semantics for null values

(null values are not distinct).

Example 3.6. Consider a table T (S) in Table 3.1a with dimensional attributes A1, A2 from D1 and

A3 from dimension D2, and {A1, A3} forming an identifier K of T . Suppose that the aggregable

property aggM(SUM, {A1, A2, A3}) holds in T . The result of Q 1 = AggT (SUM(M) | {A3}) is shown

in Table 3.1b. Q 1 reduces the identifier of T by dropping A1 from the group-by attributes. Thus,

Q 1 is an aggregate reduction of T on {A3}, the identifier is K ′ = {A3} in the result table, and

attribute A1 is the reduced attribute. The result of another aggregate query Q 2 = AggT (SUM(M) |
{A1, A3}) is shown in Table 3.1c. However, since Q 2 does not reduce the identifier of T , Q 2 is

not an aggregate reduction.

Table 3.1.: Examples of aggregate queries

(a) Input table T

T A1 A2 A3 M

a1 b1 c1 x1
a1 b1 c2 x2
a2 b1 c1 x3
a2 b2 c2 x4

(b) Aggregate Q 1

Q 1 A3 SUM(M)

c1 x1 + x3
c2 x2 + x4

(c) Aggregate Q 2

Q 2 A1 A3 SUM(M)

a1 c1 x1
a1 c2 x2
a2 c1 x3
a2 c2 x4

Definition 3.6 (Filter reduction). Let T (S) be a table with identifier K ⊆ S. We denote by

Q (T) = FilterT (P | X), P = {P1 ∧ · · · ∧ Pi}, a filter query that filters T by a set of predicates

P on attributes X of T . We call query Q (T) = FilterT (P | K − K′) a filter reduction of T on

attributes K′, when K′ ⊂ K and for each attribute A ∈ K−K′, there exists a predicate Pi ∈ P of

the form A = vi, vi ∈ dom(A), and K−K′ are called the reduced attributes.

Example 3.7. Reconsider the table T (S) in Table 3.1a with key K = {A1, A3}. The result of the

filter query Q 3 = FilterT ({A1 =‘a1’} | {A1}) is shown in Table 3.2a. Q 3 reduces the identifier

of T by applying a filter on A1. Q 3 is a filter reduction of T on {A3}. The identifier of the

44 Chapter 3 Schema Augmentations and Quality Guarantees

result table is {A3} and attribute A1 is the reduced attribute. The result of another filter query

Q 4 = FilterT ({A2 =‘b1’} | {A1}) is shown in Table 3.2b. A2 is not in the identifier of T and the

identifier remains the same after applying Q 4. Q 4 is not a filter reduction.

Table 3.2.: Examples of filter queries

(a) Filter Q 3

Q 3 A1 A2 A3 M

a1 b1 c1 x1
a1 b1 c2 x2

(b) Filter Q 4

Q 4 A1 A2 A3 M

a1 b1 c1 x1
a1 b1 c2 x2
a2 b1 c1 x3

Definition 3.7 (Pivot reduction). Let T (S) be a table with identifier K ⊆ S and A be an attribute

in S. We denote by Q (T) = PivotT (A | X), where X ⊂ S − {A}, a pivot query which pivots

attribute A over X. The result is a table T ′, with identifier K−X, whose schema contains every

attribute of S − {X, A} and an attribute A_vx for each value vx in the domain of T.X. The value

t.A of each tuple t ∈ T such that t.X = vx is a value in the attribute A_vx of the unique tuple t′ in

T ′ such that t.(S − {X, A}) = t′.(S − {X, A}). We call query PivotT (A | K−K′) a pivot reduction

of T on attributes K′ when K′ ⊂ K, and K−K′ are called the reduced attributes.

Example 3.8. Reconsider the table T (S) in Table 3.1a. The result of pivot query Q 5 = PivotT (M |
A1) that pivots attribute M over A1 is shown in Table 3.3a. The schema of the resulting table T ′,

with identifier K− A1, has every attribute of S− A1 and one attribute Mv for each value v of T.A1,

that is, two new attributes M_a1,M_a2. The value t.M of each tuple t ∈ T such that t.A1 = v is a

value in the attribute M_v of the unique tuple t′ in T ′ such that t.({A2, A3}) = t′.({A2, A3}). Since

A1 = K− {A3}, Q 5 is a pivot reduction of T on attribute {A3}, the identifier of the result is {A3}
and attribute A1 is the reduced attribute. The result of another pivot query Q 6 = PivotT (M | A2)
is shown in Table 3.2b. Since A2 6∈ K, Q 6 is not a pivot reduction.

Table 3.3.: Examples of pivot queries

(a) Pivot Q 5

Q 5 A2 A3 M_a1 M_a2

b1 c1 x1 x3
b1 c2 x2 x4

(b) Pivot Q 6

Q 6 A1 A3 M_b1 M_b2

a1 c1 x1 -
a1 c2 x2 -
a2 c1 x3 -
a2 c2 - x4

The above definitions of aggregate and pivot reductions can be generalized by replacing

attribute A with a set of attributes.

3.3 Reduction Queries 45

We now establish the condition under which a query over T , consisting of a sequence of nested

reduction operations, forms a reduction query that computes a schema complement to a given

table.

Proposition 3.3. Let T0(S0) and T (S) be two tables such that T is a schema augmentation to T0

with common attributes Y and K is an identifier of T . Let Q (T) = Q n(Q n−1(. . . (Q 1(T)) . . .)), n >
0 be a sequence of nested queries applied on T such that query Q i is a reduction query on

attributes Yi. When Yn ⊆ Y, then Q (T) is a reduction query of T on Yn and Q (T) is a natural

schema complement to T0.

Proof. We prove by induction.

n = 1: Let T1(S1) be the table produced by Q (T) = Q 1(T), we prove that T1 is a natural

schema complement to T0. Because Q 1(T) is a reduction query on Y1, by Definition 3.4, we

have Y1 is the identifier of T1 and Y1 ⊂ K. When Y1 ⊆ Y, since Y1 7→ S1 we also have Y 7→ S1,

so T1(S1) is a natural schema complement of T0(S0).

Induction step: Let Tn(Sn) be the table produced by Q (T) = Q n(Q n−1(. . . (Q 1(T)) . . .)),
assume that Tn is a natural schema complement to T0, that is, Y 7→ Sn.

Let Tn+1(Sn+1) be the table produced by Q n+1(Tn), we prove that Tn+1 is a natural schema

complement to T0 following the same reasoning as before. Because Q n+1 is a reduction query

on Yn+1, we have: Yn+1 is the identifier of Tn+1 and Yn+1 ⊂ Yn since Yn is the identifier of

Tn. When Yn+1 ⊆ Y, since Yn+1 7→ Sn+1 we also have Y 7→ Sn+1, so Tn+1(Sn+1) is a natural

schema complement of T0(S0).

Q.E.D. Q (T) is a natural schema complement to T0.

Example 3.9. Fact tables SALES and INVENTORY in the relationship graph of Figure 2.9

have common attributes Y = {PROD_SKU, BRAND, YEAR, CITY, COUNTRY}. INVENTORY is a

schema augmentation (formally, all schema complements are also schema augmentations

by definition) but not a natural schema complement to SALES, since Y is not a fact

identifier of INVENTORY. We can then define several reduction queries that transform

INVENTORY into a natural schema complement of SALES. The key of INVENTORY is

K = {PROD_SKU,MONTH, YEAR,WH_ID, COUNTRY, TAX_NO} and each of the following reduction

queries on attributes K′ = Y ∩ K = {PROD_SKU, YEAR, COUNTRY} reduces attributes K − K′ =
{MONTH,WH_ID, TAX_NO}:

• Aggregate reduction on measure attribute QTY_ON_HAND:

Agg INVENTORY(AVG(QTY_ON_HAND) | {PROD_SKU, YEAR, COUNTRY})

46 Chapter 3 Schema Augmentations and Quality Guarantees

• Filter reduction on MONTH, WH_ID and TAX_NO:

Filter INVENTORY(MONTH = “Jan” ∧WH_ID = “1234” ∧ TAX_NO = “abcd”)

• Pivot reduction on measure attribute QTY_ON_HAND:

Pivot INVENTORY(QTY_ON_HAND | {MONTH,WH_ID, TAX_NO})

Finally, it is also possible to reduce table SALES into a natural schema complement

of table INVENTORY using nested reduction queries. The identifier of SALES is K =
{PROD_SKU, YEAR, CITY, STATE, COUNTRY} and we must reduce attributes K − Y = {STATE}. This

can be done by a reduction query Q 1(SALES) = Filter SALES({STATE = “Ohio”} that applies

a filter reduction on SALES, which reduces attribute STATE. Or a pivot reduction query

Q 2 = Pivot Q 1(SALES)({AMOUNT} | {STATE}) pivoting measure AMOUNT over attribute STATE, which

reduces STATE.

3.4 Quality Criteria of Schema Augmentations
We explained in Section 1.2 that inaccuracies can occur when applying reduction queries and

merging schema augmentations. In the following section, we introduce formal quality criteria for

schema augmentations and show how these criteria are guaranteed by our system. We present

different issues related to summarizability and propagation of aggregable properties, ambiguous

reduction and incomplete merge and illustrate how these issues can be solved. Section 3.4.1

introduces the notion of summarizability for the correct propagation of aggregated attribute

values. Sections 3.4.2 and 3.4.3 deal with the generation of ambiguous and incomplete attribute

values during the construction of schema augmentations (and schema complements).

3.4.1 Propagation of aggregable properties

A first quality issue concerns determination of the aggregable properties of new attributes A

added to the schema of a table T0 after a merge with a table T . In particular, it is critical to infer

the aggregable property of A that holds in the augmented table to avoid incorrect aggregations

on that augmented table. This raises two problems:

• The first problem is to define the aggregable properties of new attributes which are computed

by some reduction queries. These properties include the identification of the applicable

aggregate functions and the set of dimension attributes along which each new attribute

can be aggregated in the query result before merging.

3.4 Quality Criteria of Schema Augmentations 47

• The second problem is to define the aggregable properties of the new attributes in the

augmented table obtained after merging the source table with the reduction query result.

Propagation of aggregable properties through reduction queries

To address the first problem we first must determine which aggregate functions are applicable to

A′ in the result T ′ = Q (T) of a reduction query Q over T . This falls into one of the following

cases:

1. If A′ = A is an attribute of T and F is applicable to A in T , F is also applicable to A′ in T ′.

2. If A′ holds pivoted values of an attribute A of T and F is applicable to A in T , then F is also

applicable to A′ in T ′.

3. If A′ = F(A) is the result of applying some aggregation function F over an attribute A in T ,

then the aggregate functions G that are applicable to A′ are determined by the category of

the co-domain of function F using Table 2.5.

Filter and pivot reduction operations do not change the type of the aggregable attribute, so

an aggregable property that holds in T still holds in T ′ when T ′ is the result of a filter or pivot

reduction of T . However, an aggregate reduction may change the category of the aggregable

attribute. For example, while an attribute of category NUM in T is still of category NUM in T ′

when F = SUM, it becomes of category STAT when F = AVG. This change is detected using

the classification in Table 2.5 (on Page 30).

The following example illustrates the previous case analysis.

Example 3.10. Suppose that an attribute A′ = AVG(A) contains values that are aggregated from

attribute A using the average function AVG (case 2). According to Table 2.5, statistical functions

like AVG and STDEV have the domain category NUM, the co-domain category STAT and the

aggregation functions that can be applied on A′ are COUNT, MIN and MAX. Assume now that

attribute A′ = COUNT(A) contains values that are aggregated from attribute A using the function

COUNT. Function COUNT has the domain category NUM, DESC or STAT and co-domain

category NUM. By default, functions that can be applied on A′ are SUM, AVG, COUNT, MIN
and MAX.

The identification of all applicable aggregation functions F is not sufficient for defining the

aggregable properties of some attribute A′ in the result T ′ of a reduction query. To define the

aggregable property aggA′(F,X′) that holds for A′ and function F, we must also determine the

maximal set of attributes X′ along which aggregation is correct. If A′ is an attribute in the result

48 Chapter 3 Schema Augmentations and Quality Guarantees

of a filter of pivot reduction query, we define the following propagation rules for determining

X′

Definition 3.8 (Propagation of aggregable properties with filter and pivot). Let T ′(S′) = Q (T)
be the result of a filter or pivot reduction query Q (T) over an analytic table T (S) and SD be

the set of dimension attributes in T . Then the aggregable properties of the attributes in T ′ are

obtained as follows:

1. If Q is a filter reduction then S′ = S, and for every aggregable attributeA if aggA(F,X),X ⊆
SD, holds in T then aggA(F,X) also holds in T ′.

2. If Q is a pivot reduction of the form PivotT (A | Z),Z ⊂ S − {A}, such that aggA(F,X),X ⊆
SD, holds in T then if A′ is a new attribute that holds pivoted values of A, then aggA′(F,X′)
holds in T ′ where X′ = X − Z. Otherwise if A′ is an attribute of S′ ∩ S such that

aggA′(F,X),X ⊆ SD, holds in T then aggA′(F,X) also holds in T ′.

Example 3.11. Consider fact table PRODUCT_LIST in Table 3.4. Attribute QTY has NUM
values and can be summed along all dimension attributes except YEAR, i.e. aggQTY(SUM | X)
where X = {PROD_SKU, BRAND, COUNTRY} holds for attribute QTY.

Table 3.4.: Table PRODUCT_LIST

PROD_SKU BRAND COUNTRY YEAR QTY

cz-tshirt-s COCA COLA United States 2017 5 000
cz-tshirt-s COCA COLA United States 2018 7 000
cz-tshirt-s ZARA Spain 2017 5 000
cz-tshirt-s ZARA Spain 2018 7 000
coca-can-33cl COCA COLA United States 2017 10 000

Let T ′ = Filter PRODUCT_LIST({YEAR = ‘2017’}). Table T ′ has the same schema as table

PRODUCT_LIST and, by rule 1 above, aggQTY(SUM | X) still holds in T ′.

Let T ′ = PivotPRODUCT_LIST(QTY | BRAND) be a query producing two attributes QTY_COCACOLA

and QTY_ZARA with values from attribute QTY. Then, by rule 2 above, aggQTY_COCACOLA(SUM |
X′) and aggQTY_ZARA(SUM | X′) hold in T2 where X′ = X− {BRAND} = {PROD_SKU, COUNTRY}.

For attributes that are produced by an aggregate reduction query, we define the following

propagation rule.

Definition 3.9 (Propagation of aggregable properties with aggregation). Let T (S) be an analytic

table with dimension attributes SD ⊆ S, and aggA(F,X) be an aggregable property that holds

in T . Let T ′ = AggT (F(A) | Z) where SD − X ⊆ Z, and let G be a default applicable aggregate

3.4 Quality Criteria of Schema Augmentations 49

function defined for the co-domain of function F (Table 2.4). Then the aggregable properties of

the attributes in T ′ are obtained as follows:

1. aggF(A)(G,X′) holds for attribute F(A) in T ′ with X′ = X ∩ Z.

2. for every attribute A′ ∈ Z, if aggA′(F,X) holds in T then aggA′(F,X′) holds in T ′ with

X′ = X ∩ Z.

Example 3.12. Consider table PRODUCT_LIST in Example 3.11. Attribute PROD_SKU is of cat-

egory DESC and can be aggregated with functions COUNT and COUNT_DISTINCT along all

other dimension attributes. This is formalized by the aggregable properties aggPROD_SKU(COUNT |
X) and aggPROD_SKU(COUNT_DISTINCT | X) where X = {PROD_SKU, BRAND, COUNTRY, YEAR}.
Now, let PRODUCT_LIST_COUNT = AggPRODUCT_LIST (COUNT(PROD_SKU) | Z) where Z =
{BRAND, COUNTRY, YEAR}. The result is shown in Table 3.5 (the aggregated attribute has been

renamed into NB_PRODUCTS).

Table 3.5.: Table PRODUCT_LIST_COUNT

NB_PRODUCTS BRAND COUNTRY YEAR

1 COCA COLA United States 2017
1 COCA COLA United States 2018
1 ZARA Spain 2017
1 ZARA Spain 2018
1 COCA COLA United States 2017

Suppose now that one wants to compute the total number of products per brand by summing

NB_PRODUCTS by brand. Since COUNT does not eliminate duplicates, we obtain the same re-

sult as if we counted all products for each brand directly from table PRODUCT_LIST. Now

suppose that we applied function COUNT_DISTINCT instead of COUNT to compute table

PRODUCT_LIST_COUNT. Then it is easy to see that this time the sum over NB_PRODUCTS

is different from counting the number of distinct products per brand directly from table

PRODUCT_LIST. We study this issue in the following section.

Enforcing summarizable attributes in aggregable properties

Summarizability is a property that characterizes the equivalence between the aggregation

results computed from an intermediate aggregated result and the results directly obtained

from the original table. We introduce the notion of summarizable attributes and show how

new propagation rules for aggregable properties can be used to enforce the summarizability of

aggregable attributes.

50 Chapter 3 Schema Augmentations and Quality Guarantees

Definition 3.10 (Summarizable attribute). Let T (S) be an analytic table and A be an aggregable

attribute such that aggA(F,X) holds in T for an aggregate function F, where X is a set of

dimension attributes in T . Let T1 = AggT (F(A) | Z1), S−X ⊆ Z1. If for any subset Z2 ⊂ Z1, there

exists an applicable aggregate function G such that the equation

AggT1
(G(F(A)) | Z2) = AggT (F(A) | Z2)

holds, then A is said to be summarizable with respect to Z1 and function F using function G.

Attribute summarizability is strongly related to the notion of distributivity of aggregation

functions.

Definition 3.11 (Distributive aggregation function). Let F be an aggregation function applicable

to a set of domain values V. If for any partitioning V1, . . . ,Vn, n ≥ 1 of V, there exists an

aggregate function G such that F(V1 ∪ . . . ∪Vn) = G(F(V1) ∪ . . . ∪ F(Vn)) then F is said to be

distributive using function G over (any partitioning of) V .

If F is distributive using function G over any subset of its domain, we say that F is distributive

using function G. If F = G, we simply say that F is distributive. It is easy to show that functions

SUM,MIN and MAX are distributive and function COUNT is distributive using function SUM
whereas function COUNT_DISTINCT is not distributive using function SUM. Function AVG is

distributive over sets containing only two elements or where all elements are identical.

Finally, we say that F is distributive using function G on attribute T.A with partitioning

attributes Z if F is distributive using function G over any partitioning of T.A defined by Z or any

subset of Z. The following proposition relates the definition of distributive functions to the notion

of summarizable attributes.

Proposition 3.4 (Function distributivity and attribute summarizability). Let T (S) be an analytic

table with dimension attributes SD ⊆ S and an aggregable attribute A such that aggA(F,X)
holds in T . If F is distributive using function G on attribute T.A with partitioning attributes

Z ⊇ SD −X then A is summarizable with respect to Z and function F using function G.

Proof. Suppose that aggA(F,X) holds in T and T1 = AggT (F(A) | Z1). To prove that A is

summarizable with respect to Z1 and F using function G, we prove that for any subset Z2 ⊂ Z1,

the following equation holds:

AggT (F(A) | Z2) = AggT1
(G(F(A)) | Z2) (3.1)

3.4 Quality Criteria of Schema Augmentations 51

First, it is obvious that both tables T and T1 contain the same Z2 values and therefore, the

result tables in Eq. (3.1) contain the same tuples with distinct Z2 values. We now show that

for each pair of tuples t ∈ AggT (F(A) | Z2) and t′ ∈ AggT1
(G(F(A)) | Z2) where t.Z2 = t′.Z2,

we also have t.G(F(A)) = t′.F(A). Let x = t.Z2 and V(x) = σZ2=x(T) be the partition of T on

attributes Z2 corresponding to the partition identifier x. Then, for tuple t ∈ AggT (F(A) | Z2)
we obtain t.F(A) = F(V.A). There also exists a set of tuples t′i ∈ T1, i ≥ 1 where t′i.Z2 = x.

For each tuple t′i, there exists a partition Vi = σZ1=x(T) of T on Z1 attributes, such that

V = V1 ∪ . . . ∪ Vn and t′1.F(A) = F(Vi.A) All these tuples t′i have the same Z2 value (by

assumption) and will be aggregated to form a single tuple t′ in AggT1
(F(F(A)) | Z2) whose value

for attribute G(F(A)) = G(F(V1.A)∪ . . .∪F(Vn.A)). Since F is distributive using function G, this

expression is equal to F(V1.A ∪ . . . ∪Vn.A) = F(V.A). Thus, tuples t and t′ are equal.

Example 3.13. Recall the fact table PRODUCT_LIST in Table 3.4 of Example 3.13.

Function COUNT is distributive using function SUM on attribute PROD_SKU with

partitioning attributes Z = {BRAND, COUNTRY, YEAR}, therefore PROD_SKU is summariz-

able with respect to Z and COUNT using function SUM. Indeed, if Z2 =
{COUNTRY, YEAR} and T1 = AggPRODUCT_LIST (COUNT(PROD_SKU) | Z), the equation

AggPRODUCT_LIST (COUNT(PROD_SKU) | Z2) = AggT1
(SUM(COUNT(PROD_SKU)) | Z2) holds.

However, as shown in Example 3.11, COUNT_DISTINCT is not a distributive function using

function SUM and we cannot apply the same propagation rule as for function COUNT.

The following proposition presents a sufficient condition for COUNT_DISTINCT to be dis-

tributive using function SUM.

Proposition 3.5 (Summarizability with COUNT_DISTINCT and SUM). Let T (S) be an

analytic table with a set of dimension attributes SD and an aggregable attribute A. Let

T1 = AggT (COUNT_DISTINCT(A) | Z1) where Z1 ⊆ SD. If Z2 ⊂ Z1 and the literal func-

tional dependency Z2 ∪ {A} 7→ Z1 holds in T , the following equation is true:

AggT1
(SUM(COUNT_DISTINCT(A)) | Z2) = AggT (COUNT_DISTINCT(A) | Z2) (3.2)

We say that attribute A (in T) is summarizable with respect to Z1 and COUNT_DISTINCT
using function SUM with partitioning attributes Z2. If Eq. (3.2) holds for any subset Z2 ⊂ Z1, we

say that attribute A is summarizable with respect to Z1 and COUNT_DISTINCT using function

SUM.

Proof. The previous proposition mainly states that A is summarizable with respect to Z1 and

COUNT_DISTINCT using function SUM with partitioning attributes Z2 if all tuples in some

partition V ⊆ T generated by attributes Z2 ⊆ Z1 which have the same value for attribute A

52 Chapter 3 Schema Augmentations and Quality Guarantees

are assigned to the same sub-partition Vi ⊆ V generated by attributes Z1. This avoids double

counting of distinct A values when taking the SUM of COUNT_DISTINCT over the partitions

generated by attributes Z1. We first show by contradiction that when Z2∪{A} 7→ Z1−Z2 holds in

T , all tuples in some partition W generated by attributes Z2 with the same value for attribute A

are assigned to the same sub-partition Vi ⊆ V generated by attributes Z1. Let V(x) be a partition

of T which contains all tuples t such that t.Z2 = x. Then there exists a partitioning V0 . . . ,Vn,

n ≥ 0 of W(x) defined by attributes Z1. Suppose that there exist two tuples t ∈ Vi and t′ ∈ Vj

where i 6= j and t.A = t′.A. Then, since i 6= j, we have t.Z2 = t′.Z2 = x, t.A = t′.A and t.Z1 6= t′.Z1

which is in contradiction with Z2 ∪ {A} 7→ Z1 − Z2. Then, if di is the number of distinct A values

in some partition Vi ⊆ T , we can easily show that
∑n
i=0 di is the number of distinct A values in

partition W (x).

Example 3.14. Consider the fact table PRODUCT_LIST in Table 3.4 and a query T1 =
AggPRODUCT_LIST(COUNT_DISTINCT(PROD_SKU) | Z1) where Z1 = {BRAND, COUNTRY}. . For

attribute PROD_SKU, we have {PROD_SKU, BRAND} 7→ COUNTRY. Therefore, PROD_SKU is summariz-

able with respect to Z1 and COUNT_DISTINCT using function SUM with partitioning attribute

Z2 = {BRAND}. Also, since we have {PROD_SKU,QTY} 7→ YEAR, we can say that QTY is summariz-

able with respect to Z1 = {PROD_SKU, YEAR} and COUNT_DISTINCT using function SUM with

partitioning attributes Z2 = {PROD_SKU}. The same is true for QTY and Z1 = {BRAND, COUNTRY}
with Z2 = {BRAND} or Z2 = {COUNTRY}.

Given a table T ′ = AggT (F(A) | Z) which is the result of an aggregate reduction query, and

a function G that is applicable to F(A), we now introduce a new definition to determine the

subset of dimension attributes X such that aggF(A)(G,X) holds in T ′. This definition refines

the propagation rule 1 in previous Definition 3.9 (case of attribute F(A)) by exploiting the

distributivity property of F.

Definition 3.12 (Propagation of aggregable properties with aggregation preserving summariz-

ability). Let T (S) be an analytic table with dimension attributes SD ⊆ S and aggregable property

aggA(F,X). Let T ′ = AggT (F(A) | Z) be the result of an aggregate reduction query where

SD − X ⊆ Z. The aggregable property aggF(A)(G,X′) holds for attribute F(A) in T ′ and all

default applicable aggregate functions G defined for the co-domain of function F (Table 2.4)

where X′ is defined as follows:

1. if F = COUNT_DISTINCT and G = SUM, then X′ is a maximal subset of X ∩ Z1 such

that (SD −X′) ∪ {A} 7→ Z.

2. if F is distributive using G then X′ = X ∩ Z.

3. otherwise X′ = ∅.

3.4 Quality Criteria of Schema Augmentations 53

Example 3.15. Consider table PRODUCT_LIST in Example 3.11 with aggregable prop-

erty aggPROD_SKU(COUNT | X) where X = {PROD_SKU, BRAND, COUNTRY, YEAR}. Let

PRODUCT_LIST_COUNT = AggPRODUCT_LIST(COUNT(PROD_SKU) | Z) where Z =
{BRAND, COUNTRY, YEAR} (Table 3.5 in Example 3.11). By Item 2 in Definition 3.12, the aggregable

property aggCOUNT(PROD_SKU)(SUM | X′) holds for X′ = X ∩ Z = {BRAND, COUNTRY, YEAR}.

Example 3.16. Assume table T ′ = AggPRODUCT_LIST(COUNT_DISTINCT(PROD_SKU) | Z)
where Z = {BRAND, COUNTRY, YEAR} (T ′ is equal to PRODUCT_LIST_COUNT in Example 3.11).

To infer the aggregable properties of attribute COUNT_DISTINCT(PROD_SKU) using rule 1, we must

compute all maximal subsets X′ ⊆ X∩Z where (SD−X′)∪{A} 7→ Z. First, it is easy to show that

YEAR cannot be determined by SD−YEAR∪{PROD_SKU}, i.e. YEAR 6∈ X′. For X′ = {BRAND, COUNTRY},
BRAND and COUNTRY cannot be determined by {YEAR, PROD_SKU}. Finally, for X′1 = {BRAND} and

X′2 = {COUNTRY}, we can show that the following two LFD are true in table PRODUCT_LIST:

{PROD_SKU, COUNTRY, YEAR} 7→ {BRAND, COUNTRY, YEAR}

{PROD_SKU, BRAND, YEAR} 7→ {BRAND, COUNTRY, YEAR}

Thus, X′1 and X′2 are the two possible maximal subsets of X∩Z. And by Item 1 in Definition 3.12,

we obtain two aggregable properties: aggCOUNT_DISTINCT(PROD_SKU)(SUM | {BRAND}) and

aggCOUNT_DISTINCT(PROD_SKU)(SUM | {COUNTRY}).

Example 3.17. Assume table T ′ = AggPRODUCT_LIST(COUNT_DISTINCT(PROD_SKU) | Z)
where Z = {COUNTRY, YEAR}. We can show that there exists no subset of X′ ⊆ Z
where (SD − X′) ∪ {A} 7→ Z. First, as before, it is easy to show that YEAR cannot

be determined by SD − YEAR ∪ {PROD_SKU}, i.e. YEAR 6∈ X′. For X′ = {COUNTRY}, LFD

{PROD_SKU, YEAR} 7→ {COUNTRY, YEAR} does not hold in PRODUCT_LIST. Then, by Rule 1

above aggCOUNT_DISTINCT(PROD_SKU)(SUM | ∅), i.e. attribute COUNT_DISTINCT(PROD_SKU) is

not aggregable. The same is true for Z = {BRAND, YEAR}.

The following proposition declares that the propagation rules in Definition 3.12 are correct

with respect to attribute summarizability.

Proposition 3.6 (aggregable properties and summarizability). Let T (S) be an analytic table

with dimension attributes SD ⊆ S and T1 = AggT (F(A) | Z1) be the result of an aggregate query.

Let G be a default applicable aggregate function defined for the co-domain of function F such

that aggregable property aggF(A)(G,X′) holds in T1 with X ′ 6= ∅. Then the following equation

holds for all Z2 such that SD −X′ ⊆ Z2 ⊂ Z1:

AggT (F(A) | Z2) = AggT1
(G(F(A) | Z2) (3.3)

54 Chapter 3 Schema Augmentations and Quality Guarantees

Proof. We examine all the cases provided by Definition 3.12 to define aggF(A)(G,X′). When

F = COUNT_DISTINCT and G = SUM, we first show that Z2 ∪ {A} 7→ Z1 for all Z2 where

SD − X′ ⊆ Z2 ⊂ X ∩ Z1. By Item 1 of Definition 3.12, X′ is the maximal subset of X ∩ Z1 such

that (SD − X′) ∪ {A} 7→ Z1. Then, when Z2 is such that SD − X′ ⊆ Z2 we have Z2 ∪ {A} 7→ Z1.

Then, by Proposition 3.5, Equation (3.3) holds for all Z2 where SD −X′ ⊆ Z2 ⊂ X ∩ Z1.

When F is distributive using function G, it is distributive over any partitioning of T.A defined

by Z1 or any subset Z2 of Z1. By Proposition 3.4, T.A is then summarizable with respect to Z1

and F using function G, and by Definition 3.10, Equation (3.3) holds for any subset Z2 ⊂ Z1.

When none of the previous cases holds, X ′ = ∅ and we obtain SD ⊆ Z2 ⊂ Z1 which is

impossible, i.e. Z2 does not exist and F (A) is not aggregable.

Example 3.18. Consider table PRODUCT_LIST in Example 3.11 with aggregable prop-

erty aggCOUNT(PROD_SKU)(SUM | X′) with X′ = {BRAND, COUNTRY, YEAR}. Then,

by Proposition 3.6, the following equation holds for any valid aggregation T1 =
AggPRODUCT_LIST(COUNT(PROD_SKU) | Z1) and any subset of attributes Z2 ⊂ Z1:

AggT (COUNT(A) | Z2) = AggT1
(SUM(COUNT(A) | Z2) (3.4)

Now, assume that table T1 is defined as in Example 3.16 with two aggregable proper-

ties aggCOUNT_DISTINCT(PROD_SKU)(SUM | {BRAND}) and aggCOUNT_DISTINCT(PROD_SKU)(SUM |
{COUNTRY}) for attribute COUNT_DISTINCT(PROD_SKU). We can conclude that the following

equation holds for Z2 = {BRAND, YEAR} and Z2 = {COUNTRY, YEAR}:

AggT1
(COUNT_DISTINCT(A) | Z2) = AggT1

(SUM(COUNT_DISTINCT(A) | Z2) (3.5)

Propagation in merge query results

The above Definition 3.12 and Definition 3.8 introduced the propagation rules of the aggregable

properties after applying a reduction query. We now consider the problem of determining the

aggregable properties of the attributes after a merge. The following proposition states which

aggregable properties hold for attribute A in the augmented table T ′0, knowing the aggregable

properties of A that hold in the used schema augmentation T .

Proposition 3.7. Let T ′0(S′0) be a merge of table T0(S0) with a target schema augmentation T (S).
Then the following aggregable properties hold for all aggregable attributes A ∈ S′0:

3.4 Quality Criteria of Schema Augmentations 55

1. If aggA(F,V) holds in T0 and A ∈ S′0 ∩ S0 is an attribute in table T0, then aggA(F,V)
holds in T ′0 when T is a natural schema complement to T0. Otherwise, A is not aggregable

anymore in T ′0 (aggA(F, ∅) holds T ′0).

2. If aggA(F,V) holds in T and A ∈ S′0 − S0 is an attribute in table T , then aggA(F,V ∩ S′0)
holds in T ′0 when T is a natural schema complement to T0. Otherwise, A is not aggregable

anymore in T ′0 (i.e., aggA(F, ∅) holds in T ′0).

Proof. Let aggA(F,X) be the aggregable property of A in T ′0, i.e. X ⊆ S′0 is the maximal set of

dimension attributes such that A can be aggregated along X with function F in T ′0.

Case one: A ∈ S′0 ∩ S0. A is an attribute in T0. Let U0 ⊆ S0 be a minimal subset of attributes

where U0 7→ A in T0, by Definition 2.12, we obtain V ⊆ U0.

1. When T is a natural schema complement to T0, the identifier of S0 is still the identifier

of S′0. Therefore, we still have U0 7→ A in T ′0 and V ⊆ S′0. Because A is not an attribute

in T , aggregation along attributes in S′0 − S0 is not meaningful, we obtain that V is the

maximal set of dimension attributes such that A can be aggregated along with function F

in T ′0, X = V. The aggregable property of A in T0 is still aggA(F,V).

2. When T is not a natural schema complement to T0. By Proposition 3.1, the identifier of S0

is no more the identifier of S′0, that tuples in T0 will be duplicated because of the joins with

T , then it’s not longer meaningful to aggregate A in a duplicated T0. Therefore, aggA(F, ∅)
holds in T ′0.

Case two: A ∈ S′0 − S0. A is an attribute in T . Let U ⊆ S0 ∩D S be a minimal subset of

attributes where U 7→ A in T and V ⊆ U.

1. When T is a natural schema complement to T0. Because V∩ S′0 ⊆ V ⊆ U, we conclude that

V ∩ S′0 ⊆ X. Because A is not an attribute in T0, aggregation along attributes in S0 −V is

not meaningful and we obtain V ∩ S′0 is the maximal set of dimension attributes such that

A can be aggregated along with function F in T ′0, X = V ∩ S′0. The aggregable property of

A in T0 is aggA(F,V ∩ S′0).

2. When When T is not a natural schema complement to T0. Follow the same reasoning of

Case one, it’s not meaningful to aggregate A in T ′0. Therefore, aggA(F, ∅) holds in T ′0.

56 Chapter 3 Schema Augmentations and Quality Guarantees

Example 3.19. Suppose that SALES′ is the natural merge of SALES with table INVENTORY
in Figure 2.9 (on Page 33) reduced by the aggregate query Agg INVENTORY(AVG(A) | X) where

A = QTY_ON_HAND and X = {PROD_SKU, YEAR, COUNTRY}. Function AVG is applied on A that trans-

forms A from category NUM to attribute AVG(A) of category STAT. Then, only COUNT,MIN
and MAX are applicable on AVG(A) by default. Because aggA(AVG,V) holds in INVENTORY
for V = {PROD_SKU, YEAR,WH_ID, CITY, COUNTRY, TAX_NO}, then by item 2 in Proposition 3.7,

aggAVG(A)(COUNT,V′) holds in SALES′ where V′ = {YEAR, COUNTRY} (V ′ only contains di-

mension attributes which are necessary to determine attribute AVG(A)).

3.4.2 Non-ambiguous aggregable attributes

As illustrated in Section 1.2, an attribute value can be ambiguous with respect to a non-strict

dimension hierarchy. Remind that ambiguity occurs when it is not possible to identify a unique

path (entity) in the dimension for the attribute value.

The next definition states that a schema augmentation T (S) may contain ambiguous attribute

values with respect to a dimension D if S misses some attributes of D which are necessary to

distinguish two tuples of T that are literally equal on their D attributes.

Definition 3.13 (Ambiguous analytic table). Let T (S) be an analytic table over a dimension

D(SDT). Let X = S ∩ SDT be the set of attributes in S from dimension D and X∗ = {Aj ∈ SDT |
∃Ai ∈ X, Ai 4∗ Aj} be the ancestors of all attributes in X in the hierarchy type of D. Table T is

said to be non-ambiguous with respect to D if the literal functional dependency X 7→ X∗ holds in

T ./X D and ambiguous otherwise.

In the following, X∗ is called the closure of X in D. When X 7→ X∗, for each tuple t in T , the

value set t.X can identify a unique path in the hierarchy instance graph, and therefore, its value

is not ambiguous. We also say that a table T is ambiguous if it is ambiguous with respect to at

least one dimension and non-ambiguous otherwise.

Example 3.20. Fact table SALES contains attributes X = {CITY, STATE, COUNTRY} from dimension

STORE (Figure 2.9), the partial hierarchy instance is shown in Figure 3.1. Because X∗ = X, then

X 7→ X∗ holds in table SALES ./X STORE. Therefore, SALES is not ambiguous with respect

to STORE. Now suppose that SALES_2 only contains two attributes X1 = {CITY, COUNTRY}
from dimension STORE. Then X∗1 = {CITY, STATE, COUNTRY} and X1 7→ X∗1 does not hold in

SALES_2 ./X STORE, e.g., given a value pair (“Dublin”, “United States”) of attributes (CITY,

COUNTRY), we can not identify a unique path from CITY to COUNTRY in the partial hierarchy shown

in Figure 3.1. In this case, SALES_2 is ambiguous with respect to dimension STORE.

3.4 Quality Criteria of Schema Augmentations 57

Figure 3.1.: Partial hierarchy in dimension STORE

We can show that merge queries over two non-ambiguous tables generate non-ambiguous

results. Consider two tables T1 and T2 that are non-ambiguous with respect to a common

dimension D with common attributes X1,X2 respectively, i.e. both literal functional dependencies

X1 7→ X∗1 and X2 7→ X∗2 hold in D. Then, by composition of literal functional dependencies,

X1 ∪X2 7→ X∗1 ∪X∗2 holds in T1 ./P T2.

When reduction queries are applied, it may happen that a reduction query generates an

ambiguous schema complement from a non-ambiguous input table (because the reduction query

reduces some dimension attributes). The next proposition defines a sufficient condition for

reduction queries to produce non-ambiguous schema augmentations.

Proposition 3.8. Let T (S) be a non-ambiguous analytic table with respect to a dimension D of

schema SDT . Let T ′(S′) = Q (T) be a reduction of T . Let X = S ∩ SDT and X′ = S′ ∩ SDT . If

X′ 7→ X holds in D, then T ′ is non-ambiguous with respect to D.

Proof. Let X′ = S′ ∩ SDT and X′∗ = {Aj ∈ SDT | ∃Ai ∈ X′, Ai 4∗ Aj}. To prove that T ′ is not

ambiguous w.r.t. D, we must show that X′ 7→ X′∗ holds in T ′ ./X′ D (Definition 3.13).

We first show that X′ 7→ X′∗ holds in T ./X D. Let X∗ = {Aj ∈ SDT | ∃Ai ∈ X, Ai 4∗ Aj}.
Since T is non-ambiguous, we know that (a) X 7→ X∗ holds in T ./X D. Since X′ 7→ X holds

in D, X′ ⊆ X and πX(T ./X D) ⊆ πX(D), we also obtain (b) X′ 7→ X holds in T ./X D. By

transitivity of 7→ and (a) and (b), we obtain (c) X′ 7→ X∗ holds in T ./X D, and since X′∗ ⊆ X∗,
(d) X′ 7→ X′∗ holds in T ./X D.

We now show that πSD
(T ′ ./X′ D) ⊆ πSD

(T ./X D). Since X′ 7→ X holds in D and X′ ⊆ X ⊆
SD, we know that πSD

(πX′(T) ./X′ D) = πSD
(T ./X D) and since πX′(T ′) ⊆ πX′(T), we obtain

(e) πSD
(T ′ ./X′ D) ⊆ πSD

(T ./X D).

Then, from (d) and (e), we can conclude that X′ 7→ X′∗ holds in T ′ ./X′ D

From Proposition 3.8 we can directly conclude that any filter reduction over a non-ambiguous

tables generates a non-ambiguous table, because filter reductions do not modify the schema

of the table, we have X′ = X, S′ = S and thus X′ 7→ X holds in all dimensions D. However,

58 Chapter 3 Schema Augmentations and Quality Guarantees

for pivot and aggregate reduction queries we still must check if X′ 7→ X′∗ holds in T ′ ./X′ D

(Definition 3.13) to guarantee non-ambiguity (X′ 7→ X holds in D is a sufficient but not a

necessary condition for non-ambiguity).

Example 3.21. Fact table INVENTORY contains attributes X = {WH_ID, CITY, COUNTRY} from di-

mension WAREHOUSE. X∗ = {WH_ID, CITY, STATE, COUNTRY} is the schema of WAREHOUSE

and X 7→ X∗ holds in INVENTORY ./X WAREHOUSE. Therefore, table INVENTORY is not

ambiguous with respect to WAREHOUSE. Now, let T be the result of an aggregate reduction

as Agg INVENTORY(AVG(QTY_ON_HAND) | X′) where X′ = {CITY, COUNTRY}. Using Proposition 3.8,

X′ 7→ X does not hold in D. Thus, T might be ambiguous with respect to WAREHOUSE.

We then check whether the condition X′ 7→ X′∗ holds in T ./X′ WAREHOUSE, where

X′∗ = {CITY, STATE, COUNTRY}. Based on the attribute graph in Figure 2.6 (on Page 22), X′ 7→ X′∗

does not hold, and T is ambiguous with respect to WAREHOUSE

3.4.3 Complete merge results

The third quality problem we presented in Section 1.2.4, Page 8, concerns merge queries which

might produce results which are incomplete with respect to the original schema augmentation

table. A merge is incomplete, if the result of an aggregation of some attribute in the merged table

is different from the result of the same aggregation on the original target schema augmentation.

We start with an example and then provide a formal definition.

Example 3.22. Consider the two analytic tables T0 and T below in Table 3.6 related by a

well-formed relationship R with common attributes A1, A2 from dimension D1, and B1, B2 from

dimension D2. The two attribute graphs validated by D1 and D2 are shown in Figure 3.2.

Identifiers of T0 and T are K0 = {A1, A2, B1, B2} and K = {A1, A2, B1, B2} respectively. Clearly, T

is a natural schema complement to T0 with respect to R . However, merging T0 with T with a

left outer join yields a table T ′0 containing tuples t5 and t6 augmented by two new null valued

attributes A3 and M (there’s no matching tuple in T). The results are shown in Table 3.6. By

Proposition 3.7, if aggregable property aggM(F, {A1, A2, A3, B1, B2}) holds in T , it also holds in

T ′0. Then, a valid aggregation query Agg(F(M) | {A2, B2}) will generate a null value for partition

(b1, e1) in the merge T ′0 while the same query has value F({y1, y4}) for the same partition in T .

This possibly undesirable situation occurs because T ′0 is not a complete merge with respect to T .

Figure 3.2.: Attribute graphs of dimensions D1, D2

3.4 Quality Criteria of Schema Augmentations 59

Table 3.6.: Example of incomplete merge

T0 A1 A2 B1 B2

t5 a1 b1 d1 e1
t6 a2 b3 d3 e3

T A1 A2 A3 B1 B2 M

t1 a1 b1 c1 d2 e1 y1
t2 a1 b2 c2 d2 e1 y2
t3 a2 b1 c1 d2 e3 y3
t4 a1 b1 c1 d3 e1 y4

T ′
0 A1 A2 A3 B1 B2 M

t′5 a1 b1 - d1 e1 -
t′6 a2 b3 - d3 e3 -

Definition 3.14 (Candidate completion tuples). Let T ′0 be the merge of T0 and T that are related

by a relationship R with a set of common attributes Y. Let Ytop ⊆ Y be the set of the “highest”

attributes of Y in the corresponding attribute hierarchies. We can define the following two tables

T ct ⊆ T and T cand ⊆ T :

• the natural semi-join T ct = T nY T
′
0, where Y = ∧i(T.Ai = T ′0.Ai) for each Ai ∈ Y, is called

the completion table of T with respect to T ′0.

• the natural semi-join T cand = T nYtop T ′0, where Ytop = ∧i(T.Ai = T ′0.Ai) for each Ai ∈ Ytop,

is called the candidate completion table of T with respect to T ′0.

Example 3.23. In Example 3.22, we have Y = {A1, A2, B1, B2} and Ytop = {A2, B2}. Then

completion table and candidate completion of T with respect to T ′0 are T ct = T nY T
′
0 = ∅ and

T cand = T nYtop T ′0 = {t1, t4}.

It is easy to see that T ct ⊆ T cand for any result of an augmented merge of T with T0. The

completeness of merge queries can now be defined by comparing the candidate completion table

with the completion table.

Definition 3.15 (Complete merge). Let T be a schema augmentation to T0 with respect to a

relationship R having a set of common attributes Y. The merge result T ′0 of T0 and T is said to

be a complete merge with respect to T if T ct = T cand.

Proposition 3.9. Let T ′0(S′0) be the natural merge of T0(S0) and T (S) with respect to a set

of common attributes Y. Let A be an aggregable attribute in S such that aggA(F,Y) holds

in T . Let Ytop ⊆ Y be the set of highest attributes of Y. Let Q (T) = AggT (F(A) | X) and

Q (T ′0) = AggT ′0(F(A) | X), Ytop ⊆ X, be two valid aggregation queries. If T ′0 is a complete merge

with respect to T , then for any two tuples t1 ∈ Q (T), t2 ∈ Q (T ′0), if t1.X ≡ t2.X, we have

t1.F(A) ≡ t2.F(A).

Proof. By item 2 in Proposition 3.7, the aggregable property aggA(F,Y) of A still holds in T ′0.

Let V0,V′0,V be the set of all dimension attributes in T0, T ′0 and T respectively. Because Q (T ′0)
and Q (T) are valid aggregation, by Definition 2.12, we have X ⊇ V′0 − Y, X ⊇ V − Y and

V′0 = V0 ∪V. Therefore, we have V0 ⊆ V which means T contains all dimension attributes of T0.

60 Chapter 3 Schema Augmentations and Quality Guarantees

We proceed by contradiction. There exist two tuples t1 ∈ Q (T), t2 ∈ Q (T ′0) such that

t1.X ≡ t2.X, but t1.F(A) 6≡ t2.F(A). This suggests that we cannot get the same value set of A in

the partition of tuples t1.X in T and the partition of tuples t2.X in T ′0.

We distinguish two possible cases: (case 1) the partition of tuples t2.X in T ′0 contains more

tuples than the partition of tuples t1.X in T , and (case 2) partition of tuples t1.X in T contains

more tuples than the partition of tuples t2.X in T ′0.

Case 1. Let ta ∈ T ′0 be a tuple in the partition of t2.X in T ′0 and ta.A is not null, that there

does not exist a tuple tb ∈ T such that ta.Y ≡ tb.Y and ta.A ≡ tb.A.

Because A is an attribute in T and V0 ⊆ V, we have V0 ∩V = Y = V0. When ta.A is not null

then by definition of a merge there must exist one and only one tuple in T that matches ta on Y.

Therefore, we have a contradiction.

Case 2. Let ta ∈ T be a tuple in the partition of t1.X in T , that there does not exist a tuple

tb ∈ T ′0 such that ta.Y ≡ tb.Y and ta.A ≡ tb.A. This means that for any tuple tc ∈ T , if tc.X ≡ ta.X,

we have tc.Y 6≡ ta.Y.

Because Ytop ⊆ X, we obtain tc.Ytop ≡ ta.Ytop. By Definition 3.14 that candidate completion

table joins T with T ′0 on Ytop attributes, we get tc ∈ T cand. By Definition 3.14 that completion

table joins T with T ′0 on Y attributes and tc.Y 6≡ ta.Y, we have tc 6∈ T ct. Thus, T ct 6= T cand which

contradicts the assumption that the merge of T ′0 is complete.

By above proposition and proof, we show that when a natural merge is complete, we get the

same result for an aggregate query over an aggregable attribute of T grouped by some set of

attributes containing the highest common dimension attributes, when it is applied on T ′0 or on

T . The augmented merge is not considered in this proposition, since the augmented merge will

duplicate tuples in T0, it’s obviously we can not guarantee that aggregation queries on T ′0 and T

return the same results.

However, an implicit assumption of the conditions of Proposition 3.9 is that T0 has no more

dimension attributes than T . Otherwise, the same valid aggregate query cannot be expressed on

T ′0 and T .

Example 3.24. Continuing with Example 3.23, since T cand 6= T ct, we can conclude that T ′0 is

not a complete merge with respect to T . Figure 3.3a shows the partial hierarchy instances of

dimensions D1 and D2 that appear in T and T0: bold arcs are the value pairs that exist in T0 and

dashed arcs are the value pairs that do not exist in T0 but exist in T . The two value node that

3.4 Quality Criteria of Schema Augmentations 61

surrounded by a red rectangle: b1 in A2, e1 in B2 are the domain values from Ytop that T and T0

have in common.

For better illustration, we create an artificial hierarchy instance, shown in Figure 3.3b, which

combines attributes A2, B2 and A1, B1 together. Bold arcs are the value pairs that exist in T ′0 and

dashed arcs are the value pairs that do not exist in T ′0 but exist in T . We can see that T ′0 is not

complete with respect to T because the child values of A1B1 below value node “b1e1” in A2B2 are

not completely included in T ′0. This explains why an aggregation query Agg(F(M) | {A2, B2}) will

not produce the same result on each table.

(a) Hierarchy instance of D1, D2 (b) Combined hierarchy instance

Figure 3.3.: Partial hierarchy instances

When a merge is not complete, it is sometimes possible to complete it with a set of missing

tuples, i.e. those tuples that are in T cand but not in T ct. The following proposition states how it

is possible to complete the result of an incomplete merge query.

Proposition 3.10. Let T be a schema augmentation to T0 with respect to a relationship R having

a set of common attributes Y. Let T ′0(S′0) be the merge of T0 and T and Tmiss = T cand − T ct

be the set of all tuples in T that lost in the merge with T0. For all dimensions Di(SDi) in Y,

0 ≤ i ≤ n, such that SDi ∩ (S0 − S) 6= ∅, when the LFD (SDi ∩ S) 7→ (SDi ∩ S0) holds, we define

a completion table T com(S′0) as:

T com = ΠS′0
(Tmiss ./SD0∩S D0 ./ · · · ./SDn∩S Dn) (3.6)

Then

Q m(T0, T) = T ′0 ∪ T com (3.7)

is a complete merge of T0 and T with respect to T .

62 Chapter 3 Schema Augmentations and Quality Guarantees

Proof. We first prove that ΠS(T com) = ΠS(Tmiss). We propagate the projections in Equation (3.6)

and get:

T com = Tmiss ./SD0∩S (ΠS′0
(D0)) ./ · · · ./SDn∩S (ΠS′0

(Dn)) (3.8)

Let D′i(S′Di
) = ΠS′0

(Di) be the projection on Di, then we have S′Di
= S′0 ∩ SDi = (SDi ∩ S0) ∪

(SDi ∩ S), therefore we have S′Di
∩ S = SDi ∩ S. By the condition that (SDi ∩ S) 7→ (SDi ∩ S0),

we obtain (SDi ∩ S) 7→ (SDi ∩ S0) ∪ (SDi ∩ S) which means D′i is a natural schema complement

to Tmiss. Equation (3.6) is a natural merge of Tmiss and dimension tables D′0, . . . , D
′
n. By the

definition of natural schema complement, the natural merge of Tmiss and D′i does not duplicate

tuples in Tmiss, the number of tuples in Tmiss is the same with T com. Therefore, we have

ΠS(T com) = ΠS(Tmiss).

We now prove that TQ m is a complete merge. Let T ct and T cand are the completion table and

candidate completion table of T and T ′0 as defined in Definition 3.14. We use Definition 3.15 to

prove that TQ m = Q m(T0, T) is a complete merge w.r.t. to T :

T ctQ m
= T ./Y Q m(T0, T) = T ./Ytop Q m(T0, T) = T candQ m

We can replace Q m(T0, T) with the right-hand side of Equation (3.7) and then replace T com

with the right-hand side of Equation (3.7) to obtain:

T ctQ m
= T nY (T ′0 ∪ T com)

= T ct ∪ (T nY T
com)

(3.9)

Because ΠS(T com) = ΠS(Tmiss), we can safely replace T com by Tmiss in Equation (3.9):

T ctQ m
= T ct ∪ (T nY T

miss) (3.10)

When we replace Tmiss with Tmiss = T cand − T ct, we obtain:

T ctQ m
= T ct ∪ (T nY (T cand − T ct))

= T ct ∪ ((T nY T
cand)− (T nY T

ct))
(3.11)

3.4 Quality Criteria of Schema Augmentations 63

By Definition 3.14, it is easy to show that T ct ⊆ T cand ⊆ T . We then obtain T nY T ct = T ct

and T nY T
cand = T cand and continue with Equation (3.11):

T ctQ m
= T ct ∪ (T cand − T ct)

= T cand
(3.12)

We apply the same simplification on T candQ m
as

T candQ m
= T nYtop (T ′0 ∪ T com)

= T cand ∪ (T nYtop T com)

= T cand ∪ (T nYtop Tmiss)

= T cand ∪ (T nYtop (T cand − T ct))

= T cand ∪ ((T nYtop T cand)− (T nYtop T ct))

(3.13)

Similarly, we obtain T nYtop T ct = T ct and T nYtop T cand = T cand and continue with Equa-

tion (3.13):

T candQ m
= T cand ∪ (T cand − T ct)

= T cand

= T ctQ m

(3.14)

By T ctQ m
= T candQ m

, we can conclude that Q m is a complete merge with respect to T .

In the above proposition, table Tmiss identifies the tuples of T cand that are missing in T ′0

to get a complete merge. For each dimension that exists both in T0 and T , Equation (3.6)

complements the tuples of Tmiss with values of dimension attributes that exist in T0 but not

in T . The computation of T com avoids generating null values for these attributes and can be

skipped if Y already contains all the dimension attributes in T0. Before computing T com, the

condition (SDi ∩ S) 7→ (SDi ∩ S0) makes sure that tuples in Tmiss do not get duplicated in the

computation.

Example 3.25. Consider again table SALES and INVENTORY from Figure 2.9 (Page 33).

INVENTORY is a schema augmentation to SALES, assuming an aggregate reduction is applied

on INVENTORY that reduces attribute WH_ID as Agg INVENTORY(SUM(QTY_ON_HAND) | X), X =
{PROD_SKU, BRAND,MONTH, YEAR, CITY, COUNTRY}. The result is shown in Table 3.7b. An natural

merge of SALES with reduced INVENTORY using tuples shown in Table 3.7a will yield SALES′

that contains tuple t1 augmented by new null valued attributes WH_ID and QTY_ON_HAND (there’s

not matching tuple in INVENTORY). If we compute T cand and T ct as defined in Definition 3.14,

64 Chapter 3 Schema Augmentations and Quality Guarantees

we have T ct = ∅ and T cand = {t2}, by Definition 3.15, the merge result SALES′ is not complete.

For dimension STORE in Table 3.7c, we have SSTORE ∩ SSALES = {CITY, STATE, COUNTRY},
SSTORE ∩ SINV ENTORY = {WH_ID, CITY, COUNTRY}, the condition proposed in Proposition 3.10

that (SSTORE ∩ SINV ENTORY) 7→ (SSTORE ∩ SSALES) does not hold. Similarly, the condition

does not hold for dimension TIME. Therefore, we can not compute the completion table,

otherwise, we introduce new STATE values that neither exist in SALES nor in INVENTORY.

Table 3.7.: Examples of table SALES, INVENTORY and STORE

(a) Table SALES

SALES(T0) PROD_SKU BRAND YEAR CITY STATE COUNTRY AMOUNT

t1 i7-32g-black Apple 2017 San Jose California United States 660,000

(b) Table INVENTORY′

INVENTORY′ (T) PROD_SKU BRAND MONTH YEAR CITY COUNTRY QTY_ON_HAND

t2 i7-32g-black Apple Jan 2017 Dublin United States 12,000

(c) Table STORE

STORE STORE_ID CITY STATE COUNTRY

st_01 Dublin Ohio United States
st_02 Dublin California United States

Example 3.26. Resuming Example 3.22, we obtain Tmiss = T cand − T ct = {t1, t4}. Besides, for

dimensions D1, D2 we have SD1∩(S0−S) = SD2∩(S0−S) = ∅, the condition in Proposition 3.10

to compute the completion table checks. Thus, we have T com = {t1, t4} and Q m returns tuple

t5, t6 augmented with M = null and A3 = null completed by tuples t1 and t4 from T . Q m is a

complete merge of T0 and T with respect to T .

Table 3.8.: Complete merge of T0 and T

Q m A1 A2 A3 B1 B2 M

t′5 a1 b1 - d1 e1 -
t′6 a2 b3 - d3 e3 -
t1 a1 b1 c1 d2 e1 y1
t4 a1 b1 c1 d3 e1 y4

Based on the previous definitions, we can extend item 2 in Proposition 3.7 by considering the

complete merge result as follows.

Proposition 3.11. Let T ′0(S′0) be a natural merge of table T0(S0) with a target schema augmen-

tation T (S). Let Y0,Y1 be the set of all dimension attributes in T0 and T respectively. Let A be an

aggregable attribute in T such that aggA(F,V) holds in T . Then the aggregable property hold

for A in S′0:

3.4 Quality Criteria of Schema Augmentations 65

1. When T ′0 is a complete merge and Y0 ⊆ Y1, then aggA(F,V ∩ S′0) holds in T ′0.

2. Otherwise, aggA(F, ∅) holds.

Proof. By item 2 in Proposition 3.7, when T ′0 is a natural merge of T0 and T , we have aggA(F,V∩
S′0) holds in T ′0. Therefore, the first item in the proposition is obviously true. We now discuss the

second item. We separate two cases:

Case 1. When T ′0 is a complete merge and Y0 6⊆ Y1. By the proof of Proposition 3.9, we know

that when T contains all dimension attributes of T0 (Y0 ⊆ Y1), we can get the same aggregation

of A values on T and T ′0 if we aggregate group by the same set of dimension attributes. Therefore,

when Y0 6⊆ Y1, aggregations of A on T ′0 can not be guaranteed to obtain the same result as

aggregation on T , thus, aggregations on T ′0 should be avoided in case of producing inconsistent

values with respect to T and we have aggA(F, ∅) holds in T ′0

Case 2. When T ′0 is not a complete merge. It is not ensured that aggregations on attribute A

applied on T ′0 are correct. Therefore, aggA(F, ∅) holds in T ′0.

More precisely, Proposition 3.11 only can be applied for computing the aggregable properties

of attributes when a completion table is computed to complete the merge of T0 and T .

Example 3.27. Continuing with Example 3.25, the aggregable property of attribute QTY_ON_HAND

in INVENTORY′ is aggQTY_ON_HAND(SUM,X), X = {PROD_SKU, BRAND, CITY, COUNTRY}. Because

the merge of SALES and INVENTORY′ is not complete, aggregation in SALES′ would miss

QTY_ON_HAND values. For example, a summation of inventory by brand and year of ‘United States’

in SALES′ will miss the inventory of warehouse ‘oh_01’, and thus computes a wrong result.

Therefore, aggregations on QTY_ON_HAND in SALES′ are not meaningful and we conclude that

the aggregable property of QTY_ON_HAND in SALES′ is aggQTY_ON_HAND(SUM, ∅).

3.4.4 Summarizability revisited

Summarizability [20], [23], [25], [32] is the ability of “correctly computing aggregate values

with a coarser level of detail from values with a finer level of detail”. In this section, we first

explain our definition of summarizability and then show how we can ensure summarizability for

reduction queries and merge queries. In Chapter 5, we compare our definition and conditions

with previous work on summarizability.

Example 3.28. Consider table T from Table 3.6 (copied below for clarity) and assume that

aggM(SUM | {A1, A2, A3, B1, B2}) holds in T . We apply two nested aggregation queries Tagg1 =
AggT (SUM(M) | {A2, A3, B2}) and Tagg2 = AggTagg1

(SUM(M) | {A3}). The final result is shown in

66 Chapter 3 Schema Augmentations and Quality Guarantees

Table 3.10. We can show that query Tagg2 is equivalent to query Tagg3 = AggTagg1
(SUM(M) | {A3}).

The property that any repeated application of an aggregate query Ti+1 = AggTi
(F (A) | Xi),

Xi ⊂ Xi+1, 0 ≤ i ≤ n is equivalent to a single application of AggT0
(F (A) | Xn) is called

summarizability (by Definition 3.10 attribute A is summarizable with respect to Xn and function

SUM using function SUM).

T A1 A2 A3 B1 B2 M

a1 b1 c1 d2 e1 y1
a1 b2 c2 d2 e1 y2
a2 b1 c1 d2 e3 y3
a1 b1 c1 d3 e1 y4

Table 3.10.: Result of aggregation queries on T

(a) Table Tagg1

A2 A3 B2 SUM(M)

b1 c1 e1 y1 + y4
b2 c2 e1 y2
b1 c1 e3 y3

(b) Table Tagg2

A3 SUM(M)

c1 y1 + y3 + y4
c2 y2

Example 3.29. Continuing Example 3.28 where Z1 = {A2, A3, B2} and F= SUM. We can see

that for any subset Z2 of Z1, Z2 ⊂ Y1,Ztop2 ⊆ Ztop1 , AggTagg1
(F(M) | Z2) = AggT (F(M) | Z2) and M

is summarizable with respect to Z1 and function SUM. But M is not summarizable with respect

to Z1 and function COUNT.

We now extend the notion of summarizability as the ability of “correctly computing aggregate

values from a merged result with respect to the table before the merge”. Definition 3.10 and

Proposition 3.4 define the summarizability and the propagation of aggregable properties for new

attributes computed by aggregate queries before merging the result with some other table. The

following definition considers the summarizability of these attributes after a complete merge.

Definition 3.16 (Summarizable attribute in a merge table). Let T ′0(S′0) be the merge of T0(S0)
and T (S) with respect to a relationship R with a set of common attributes Y. Let A be an

aggregable attribute in T such that aggA(F,X),X ⊆ Y holds in T . Let Q 1 = AggT (F(A) |
Y1), S −X ⊆ Y1 be an aggregate query over T and T ′Q 1 = T0 ./ Q 1 be a complete merge of T0

and Q 1. If for any Y1 such that Ytop
1 = Ytop, where Ytop and Ytop

1 are the set of the highest level

attributes of Y,Y1 respectively, we have

πS(AggT ′0(F(A) | Y1)) = πS(T0 ./ AggT (F(A) | Y1))

then A is said to be summarizable in the merge of T0 and T with respect to X and function F.

3.4 Quality Criteria of Schema Augmentations 67

In the complete merge result T ′0, all tuples of T0 that cannot be joined over Y with tuples in T

T will have null values for any aggregable attribute A that comes from T . Therefore, we only

consider table T for computing aggregations along Y for attribute A. The condition Ytop
1 = Ytop

guarantees that the aggregations are computed from a lower level to a higher level and they only

aggregate values within the same partial hierarchy instance below T.Ytop.

The following proposition states that summarizability can be guaranteed for complete merge

table and distributive aggregation functions.

Proposition 3.12. Let T ′0(S′0) be the merge of T0(S0) and T (S) with respect to a relation-

ship R with a set of common attributes Y. Let A be an aggregable attribute in T such that

aggA(F,X),X ⊆ Y holds in T . If T ′0 is a complete merge, then A is summarizable in the merge

of T0 and T with respect to X and function F.

Proof. By Definition 3.16, we prove that for an arbitrary Y1 ⊇ S − X, Q 1 = AggT (F(A) | Y1),
T ′Q 1 = T0 ./ Q 1 is a complete merge of T0(S0) and Q 1 with respect to common attributes Y1.

We have

πS(AggT ′0(F(A) | Y1)) = πS(T0 ./ Q 1) (3.15)

Because attribute A is aggregable in T (S) and all tuples in T ′0− (T ′0nY T) will have null values

for A, the left expression in Equation (3.15) can be replaced by:

πS(AggT ′0(F(A) | Y1)) = πS(AggT ′0nYT
(F(A) | Y1))

= AggπS(T ′0nYT)(F(A) | Y1)
(3.16)

Let T ct, T cand be respectively the completion table and candidate completion table of T and T ′0
as defined in Definition 3.14. We have πS(T ′0 nY T) = T nY T

′
0 = T ct. Because T ′0 is a complete

merge, we have T ct = T cand = T nYtop T ′0. This allows us to continue with the previous equation:

πS(AggT ′0(F(A) | Y1)) = AggT cand(F(A) | Y1)

= AggTnYtopT ′0
(F(A) | Y1)

= AggT (F(A) | Y1)nYtop T ′0

= Q 1 nYtop T ′0

(3.17)

68 Chapter 3 Schema Augmentations and Quality Guarantees

Let T ctQ 1 and T candQ 1 be respectively the completion table and candidate completion table of Q 1

and T ′Q 1 = T0 ./ Q 1 as defined in Definition 3.14. Because T ′Q 1 is a complete merge of T0 and

Q 1, we have T ctQ 1 = T candQ 1 , and

πS(T ′Q 1) = T ctQ 1 = T candQ 1

= Q 1 nYtop
1
T ′Q 1

(3.18)

Because Ytop
1 = Ytop, to prove Equation (3.15) is now the same as proving:

Q 1 nYtop
1
T ′0 = Q 1 nYtop

1
T ′Q 1 (3.19)

which is essentially proving that πYtop
1

(T ′0) = πYtop
1

(T ′Q 1).

By the nature of left-outer join no tuples in T0 will be removed and the complete merge does

not add new domain values for Ytop(Ytop
1) (the complete merge only brings new domain values

for Ytop − Y). Therefore, we have T ′0.Y
top
1 = T0.Ytop

1 and T ′Q 1 .Y
top
1 = T0.Ytop

1 . Thus, we can

conclude πYtop
1

(T ′0) = πYtop
1

(T ′Q 1) == πYtop
1

(T0 ./ Q 1), i.e. A is summarizable in the merge of T0

and T with respect to X and function F, when T ′0 is a complete merge.

3.4 Quality Criteria of Schema Augmentations 69

4Architecture and Algorithms

Contents

4.1 SAP HANA Architecture . 71

4.2 Dimension and Fact Identifier Computation . 77

4.2.1 Computation of attribute graphs . 78

4.2.2 Dimension and fact identifiers . 81

4.2.3 Maintaining dimension identifiers . 83

4.3 Schema Complement Computation . 84

4.3.1 Schema complement graph . 84

4.3.2 Finding schema augmentations . 85

4.3.3 Unit conversions . 88

4.4 Reduction Query Generation . 89

4.5 Merge Query Manager . 91

4.6 Extension to Heterogeneous Data Sources . 96

4.7 Conclusions . 97

The contributions presented in this paper have been implemented within the SAP HANA

platform [33], a main-memory relational database system, as a REST application service. In this

chapter, we give a brief introduction to the architecture and explain several main components in

Section 4.1. Then in Sections 4.2 to 4.5, we explain in details the REST API of our services, their

inputs and outputs and the processes.

4.1 SAP HANA Architecture

Analytic tables in SAP HANA are defined as non-recursive information views [34] over non-

analytic tables and/or previously defined information views, using a DAG of operators (e.g.,

union, join, projection, aggregate). As shown in Figure 2.1 on Page 15, dimension and fact tables

can be either defined as arbitrary views over non-analytic tables or as project-union views over

other analytic views, and hierarchy types are part of the definition of these views. The definition

of these information views also includes to verify the role played by dimension attributes

or measure attributes as defined in Sections 2.2.2 and 2.2.5. We extended the information

71

view framework by first enabling the definition of new metadata which are the declaration of

aggregable properties of measures in fact tables, and attribute graphs for dimensions.

The extended HANA architecture is depicted in Figure 4.1. White squared boxes are new

components that implement the algorithms described in Sections 4.2 to 4.5, white rounded

boxes are components that store all the metadata described in Chapter 2, whereas grey boxes

are existing HANA components that have been extended.

Figure 4.1.: Architecture overview

SAP HANA platform also provides schedulable metadata crawlers that asynchronously extract

metadata from HANA tables and views, or remote datasets using the wrapper framework to

connect to remote data sources. Extracted metadata are translated into a standard representation

based on a rich Entity-Relationship metadata model. Crawlers extract semantic concepts beyond

the basic metadata returned by wrappers, such as dimensions and measures in the case of

analytical data (e.g., remote data warehouses or HANA calculation views), as well as relationships

such as fact-dimension relationships extracted from cube definitions, or attribute mapping and

join relationships extracted from the analysis of analytic queries or views. When aggregable

properties of attributes are not provided, default values are used (see Section 2.2.6), when

72 Chapter 4 Architecture and Algorithms

attribute graphs are not given, we compute attribute graphs based on the Definition 2.5 (see

Section 4.2.1).

Extracted metadata are periodically checked and asynchronously stored by the Metadata

Loader into the Metadata Catalog and asynchronous data profiling processes – not portrayed

in the architecture diagram – are used to post-analyze the table instances discovered by the

crawlers, and enrich the Metadata Catalog accordingly (e.g., add join relationships for common

types).

External data are access by the extractors using the definition of external datasets to extract

their semantic properties such as multidimensional concepts in the case of data source systems

storing analytic data (e.g., data warehouses) as well as semantic relationships between datasets.

Thus, both external data and HANA data are mapped to a common data model.

We now focus our descriptions on the main components and APIs that discover schema

complements between datasets and compute merge queries.

All the metadata we crawled or computed from the dataset are stored in Metadata Catalog,

those metadata are grouped as following.

• Table Schemas stores the table representations of local and remote tables or views. Tables

information and attributes information are stored separately in two tables.

– Each table or view is represented by a tuple (t_id, loc, t_type), where t_id is the unique

identifier of the table, loc is the physical location of the table, and t_type is the table

type (i.e., fact, dimension, or non-analytic), a dimension table or a non-analytic table.

For example, fact table SALES is described by the tuple: (T1, “SYSTEM”.“SALES”,

fact).

– Each attribute is described by a tuple (a_id, a_name, a_role, dataType, t_id, a_ref),

where a_id is the unique identifier of the attribute, a_name is the attribute name,

a_role is the role it plays as a dimension attribute or a measure (i.e., id or detail

for dimension attribute, value or detail for measure attribute), dataType is its data

type, and the table t_id the attribute belongs to. When the attribute is of role detail,

a_ref stores the attribute identifier of which this attribute is associated with. For

example, measure attribute AMOUNT in table SALES is of role value and is described

by the tuple: (“T1”.“AMOUNT”, AMOUNT, value, decimal, T1, -). Measure attribute

CURRENCY in SALES is of role detail for attribute AMOUNT, CURRENCY is describe by the

tuple: (“T1”.“CURRENCY”, CURRENCY, detail, varchar, T1, “T1”.“AMOUNT”).

4.1 SAP HANA Architecture 73

• Aggregable attributes are also described in Agg Measures with detail information of their

aggregable properties.

– Each aggregable attribute is represented by a tuple (a_id, func, a_source, t_id), where

a_id is its unique identifier, func is the last aggregate function applied on the attribute,

a_source is the attribute identifier of which it’s computed from, and t_id is the table

id of a_source (the source attribute should in a non-analytic table). For example,

attribute AMOUNT in table SALES is described by the tuple: (“T1”.“AMOUNT”, SUM,

“T12”.“AMOUNT”, T12), (T12 is table ct_SALES).

– An aggregable attribute might have several different aggregable properties for differ-

ent aggregable functions. The set of aggregable properties of one attribute a_id are

encoded as a set of tuples of the form (a_id, func, a_ids), where func is the aggre-

gate function, a_ids is the set of dimension attributes such that a_id can aggregate

along with using func. For example, the aggregable property of AMOUNT for func-

tion SUM in SALES is aggAMOUNT(SUM, Z), Z = {PROD_SKU, BRAND,MONTH, YEAR,

CITY, STATE, COUNTRY}. This aggregable property is encoded as: (“T1”.“AMOUNT”,

SUM, {“T1”.“PROD_SKU”, “T1”.“BRAND”, “T1”.“YEAR”, “T1”.“CITY”, “T1”.“STATE”,

“T1”.“COUNTRY”}).

• Attribute Graph stores dimension hierarchies that are defined in analytic tables and the

corresponding satisfied attribute graphs.

– The metadata of each hierarchy in dimensions is encoded by a tuple (h_id, t_id, loc),

where h_id is the hierarchy identifier, t_id is the related dimension table id, loc is

the physical localtion of the hierarchy table (see Section 4.2.1). For example, the

hierarchy in dimension WAREHOUSE is described by the tuple: (1, T6, “SYS-

TEM”.“WAREHOUSE.hier.warehouse”).

– The attribute graph that the dimension table satisfies is stored in two tables, one for

the nodes in attribute graph and another for the edges. For a detailed example of the

two tables see Section 4.2.1.

• Identifiers stores the primary keys and fact / dimension identifiers of the tables in Table

schemas.

– As illustrated in Section 2.2.5, a table can have more than one identifier. Each

identifier is encoded by a tuple (k_id, t_id, type,min) where k_id is the unique id of

the identifier, t_id is the table id, type is the type of the identifier (i.e., computed

identifier, extracted primary key, or inferred primary key), and min states whether

it is the minimum identifier in the table. For example, the primary key of table

74 Chapter 4 Architecture and Algorithms

PRODUCT is describe by the tuple: (K9, T9, extracted, true). We show in Section 4.2

that besides extracting primary keys and computing dimension / fact identifiers, we

can also obtain an identifier by inferring primary keys.

– The composition of each identifier is stored in another table separately. Each identifier

is represented by a set of tuples of the form (a_id, k_id, length,min_id) where a_id

stores the attribute id in the identifier with id k_id, length stores the size of the

identifier, min_id refers to the minimal identifier in the table (null if itself is the

minimal identifier). For example, the primary key of PRODUCT consists of one

attribute PROD_SKU, then there is a tuple as: (“T9”.“PROD_SKU”, K9, 1, -).

• Relationships stores all relationships between tables in Table schemas. These relation-

ships are either extracted from the definition of the information views or non-analytic

tables, or derived relationships computed using composition and fusion of relationships as

Propositions 2.6 and 2.7, or user-defined relationships.

– As stated in Section 2.3, there could exist multiple relationships between two tables.

Each relationship is described by a tuple (r_id, t_origin, t_des, type), where r_id is

the unique id of the relationship, t_origin and t_des are respectively the table id

of the source table and the target table of the relationship, type is the relationship

type (i.e., join relationship, attribute mapping relationship, computed relationship, or

user defined). For example, the relationship between SALES and WAREHOUSE is

represented by the tuple: (R 16, T1, T6, extracted).

– A relationship contains one or multiple matchings between attributes of the source

and the target table. Each relationship is encoded by a set of tuples of the form

(r_id, a_origin, a_des, length), where r_id is the relationship id, a_origin, a_des are

respectively the attribute id in the n source and the target table, and length is the

number of the matchings exist in the relationship. For example, the relationship

between SALES and WAREHOUSE contains three attribute matchings, one match-

ing SALES.COUNTRY = WAREHOUSE.COUNTRY is encoded by the tuple: (R 16,

“T1”.“COUNTRY”, “T6”.“COUNTRY”, 3).

• Schema complement graph (SC Graph) is a directed graph that connects tables in Table

schemas by their complement types (natural schema complement or schema augmentation).

The graph is computed based on relationships we have (Detail see Definition 4.1). We

store the tables and edges of SC Graph separately in two tables.

– Nodes in SC Graph represent tables (analytic tables or non-analytic tables), each node

in represented by a tuple (n_id, type, t_id, k_id,−) where n_id is the unique id of the

4.1 SAP HANA Architecture 75

node, t_id is the table id that the node represents, k_id is the minimal identifier of the

table, and type stores the type of the tuple describes (i.e., table or edge). Because edges

in SC Graph contain a label indicates the complement type and associated relationship.

Edges in SC Graph are represented by a tuple (e_id, type,−,−, r_id) where e_id is

the unique id of the edge, and r_id is the relationship id the edge associates with. For

example, table SALES is a node in the SC Graph and is represented by the tuple: (1,

table, T1, K1, -). Table T1 (SALES) is a schema augmentation to T2 (INVENTORY)

with respect to relationship R 12, there exist an edge E(T1, T2) in SC Graph which is

encoded in the tuple: (2, edge, -, -, R 12).

– The connections between nodes and edges in SC are also encoded into a table.

Each tuple is of the form (origin_id, des_id, side, type), where origin_id, des_id are

respectively the source and the target id, side describes the side (i.e., “O” for original

side and “D” for Destination side), and type stores the complement type. Each edge

in SC Graph is encoded by two tuples which connects the start table to the edge and

the edge to the destination table. For example, the edge E(T1, T2) describe above

is encoded by the two tuples: (1, 2, O, AUG), (2, 3, D, -), 3 is the node id for table

INVENTORY.

Metadata Catalog stores every information we need for computing identifiers, finding schema

complements and computing merge queries.

Metadata Loader manages the insertions and updates of the metadata of tables. When a new

dimension table or a new fact table is crawled, Metadata Loader is notified with new Extracted

Metadata, and Table schemas, Attribute Graph, Identifiers, Agg Measures and Relationships in

Metadata Catalog are updated with new metadata. Identifier Builder is then called to compute a

new identifier, if the attribute graph is not given, it computes the attribute graph and finally stores

the attribute graph and computed identifiers into Attribute Graph and Identifiers respectively. If

the attribute graph of a dimension table is updated and a new dimension identifier is computed,

then the fact identifier of every fact table that contains dimension attributes of this dimension will

be recomputed. When the newly crawled table is defined as a view over other tables which are

not extracted into Metadata Catalog or partially extracted, those missing tables will be crawled

by Crawlers first, and Metadata Loader will load and process metadata of the new extracted

table until all the missing tables are stored in Metadata Catalog. When a new non-analytic

table is crawled, the PK declaration is extracted directly from its definitions and used to update

Identifiers, Identifier Builder is also called to verify whether this PK could be inferred to analytic

tables. When relationships are added or updated in Relationships, SC Graph Builder applies

Propositions 2.6 and 2.7 that runs recursively to compute if there are relationships which could

be derived or merged and passed the results to Relationships. Modified relationships are then

76 Chapter 4 Architecture and Algorithms

used to update SC Graph. Besides, Metadata Loader processes Declare Metadata API calls from

client, which enables designers to declare relationships between tables which are passed to the

SC Graph Builder. It also supports the declaration of all metadata (Attribute Graph, Agg Measures

and Relationships) generated during the merge of an analytic table with a schema complement,

which are then passed to the Identifier Builder and the SC Graph Builder accordingly.

Metadata Loader maintains the correctness and consistency of the data stored in Metadata

Catalog, we now introduce other components that collaborate with APIs and response to user’s

requests.

The Schema Complement Finder component processes a Get Schema Augmentation API

call. It takes a start table name T0 as input and returns a list of schema complements and

augmentations T with their relationships from T0 to T and a set of attributes in T that could be

augmented to T0. Those schema complements and augmentations are found by traversing the

SC Graph and comparing the Table schemas (see Section 4.3).

SC manager takes the Reduction Query Generator API call which contains a target schema

augmentation table, and a set of user actions to reduce the identifier of the target table as

inputs. Using the Reduction Query sub-manager, it returns a reduction query and a description of

aggregated attributes in the query. The algorithm to generate such reduction query is described

in Section 4.4. The SC Manager uses a Natural Query sub-manager to compute a query of a path

from the starting table to the target schema complement table.

Finally, the Merge query manager takes the Merge Schema Augmentation API call which

has a start table, a target schema augmentation table, and several preferences of the merge

query as inputs, it returns as output a final merge query with a list of computed metadata

properties (see Section 4.5). The Merge Query Generator sub-manager cooperates with Natural

Query to detect ambiguous values in the target schema augmentation and create a complement

query if needed. Using Metadata Propagator sub-manager, the metadata of the merged result

is propagated correctly, such that the result could be added to Metadata Catalog using Declare

Metadata API.

4.2 Dimension and Fact Identifier Computation

In this section we describe the implementation details of constructing an attribute graph from

dimension tables and computing dimension and fact identifier from an attribute graph. Attribute

graphs and identifiers are the keys for finding schema complement and detecting ambiguous

values, they play a central role in our work.

4.2 Dimension and Fact Identifier Computation 77

4.2.1 Computation of attribute graphs

As explained before, attribute graphs are metadata that are provided as a form of constraints

over dimension tables and are fundamental information to compute identifiers and ensure

non-ambiguity.

We encode attribute graphs into two tables ATtribute Graph Node (ATGN) and ATtribute Graph

Edge (ATGE). Their schema are respectively:

ATGN (DT_ID, ATT_NAME, LEVEL_NUM, OPTIONAL)

ATGE (DT_ID, ATT_NAME, PARENT_ATT_NAME, LABEL)

Each hierarchy in a dimension table is identified by a distinct DT_ID value. Table ATGN stores

attribute nodes, with their level in the hierarchy and whether they can take null values (OPTIONAL

= 1). Table ATGE stores all edges in attribute graphs where LABEL can take values: ‘+’, ‘1’, ‘f ’. In

both tables, attribute names with value ‘__bot’ or ‘__top’ represent the two special attributes ⊥
or > respectively.

Example 4.1. Table 4.1 shows tuples that encode the attribute graph of dimension

WAREHOUSE in Figure 2.6 (a) (Page 22).

Table 4.1.: Attribute graph for dimension WAREHOUSE

(a) ATGN

DT_ID ATT_NAME LEVEL_NUM OPTIONAL

1 __bot 0 0
1 WH_ID 1 0
1 CITY 2 0
1 STATE 3 1
1 COUNTRY 4 0
1 __top 5 0

(b) ATGE

DT_ID ATT_NAME PARENT_ATT_NAME LABEL

1 __bot WH_ID +
1 WH_ID CITY f
1 CITY STATE +
1 WH_ID STATE f
1 STATE COUNTRY 1
1 CITY COUNTRY +
1 COUNTRY __top f

When an attribute graph has not been defined by a user over the hierarchy of a dimension

table, Algorithm 1 provides the option to efficiently compute it from a given dimension table

78 Chapter 4 Architecture and Algorithms

using the indexing scheme of SAP HANA, called Hierarchy Table (HT) [35], which encodes the

nodes of a hierarchy instance represented in a dimension or a fact table.

Hierarchy table

In SAP HANA, the nodes of a hierarchy instance represented in a dimension, or a fact table,

are encoded using an indexing scheme into a corresponding Hierarchy Table (HT, for short)[4].

HT encodes the structure of hierarchy from the definition of hierarchy type and distinguishes

nodes in the hierarchy instance by the unique node values which is the complete path to the

top-level node value, and contains information about its parent node, its level (or attribute)

name, whether it is a leaf node, its level number in the hierarchy, etc. Given a dimension with

unknown hierarchy, a hierarchy table can be used to build the attribute graph that satisfies the

dimension using SQL queries.

Example 4.2. Node ‘Dublin’ of ‘Ohio’ in the hierarchy of GEOGRAPHY in Figure 2.4a (Page 17)

is encoded as one tuple in HT (attribute names are on the left) shown in Table 4.2. It contains

information about its path from the top-level node, its parent node, its attribute name, whether

it is a leaf node, and its level number in the hierarchy.

Table 4.2.: A tuple from hierarchy table

Attribute name Value

NODE [North America].[United States].[Ohio].[Dublin]

PRED_NODE [North America].[United States].[Ohio]

NODE_VALUE Dublin

ATT_NAME CITY

IS_LEAF 0

LEVEL_NUM 4

Use this hierarchy table, we can build attribute graph satisfies the related dimension table

using Algorithm 1 (detail SQL queries see Appendix A.1).

The algorithm follows the Definitions 2.5 and 2.6 (Pages 20 and 21) computing an attribute

graph using queries that are linear with respect to the size of the dimension table. A user can

then inspect the result and relax some constraints (e.g., switch a label 1 or f edge to label +, or

remove an edge with label f) to reflect cases not captured by the dimension table.

4.2 Dimension and Fact Identifier Computation 79

Algorithm 1 Attribute Graph Generation (ATG)
input: HT : hierarchy table of the hierarchy

id: unique id of the hierarchy

1. Initialization. All attributes in ATGN are initialized with OPTIONAL = 0; edges having
PARENT_ATT_NAME = > are initialized with LABEL = f ; edges having ATT_NAME = ⊥ are
initialized with LABEL = +.

2. Find all attributes (except bottom level attributes ⊥) in HT that have ‘IS_LEAF = 0’ and add
an additional edge from ⊥.

3. Update ATGN by marking all attributes that are nullable with OPTIONAL = 1.

4. For each (ATT_NAME, PARENT_ATT_NAME) pair in ATGE, if for a NODE_VALUE value for the same
attribute ATT_NAME, there are more than one PRED_NODE values for PARENT_ATT_NAME, then
mark the edge with label +. If there is only one single value in PARENT_ATT_NAME then mark
the edge with label f .

5. For each + labeled edge (ATT_NAME, PARENT_ATT_NAME) in ATGE where ATT_NAME is optional
in ATGN, if for all non-null NODE_VALUE values for the same attribute ATT_NAME, there is
only one PRED_NODE value for PARENT_ATT_NAME then update the edge with label 1.

Example 4.3. We illustrate the algorithm using Table 2.1 (Page 18) which is a hierarchy instance

of type GEOGRAPHY. With an API call ATG(HT, 2), the attribute graph satisfies dimension

REGION (DT_ID = 2) is constructed in following steps.

1. In step 1, ATGN is initialized with 6 nodes: ⊥, CITY, STATE, COUNTRY, CONTINENT and >
with LEVEL_NUM = 0, 1, 2, 3, 4, 5 respectively and OPTIONAL = 0 by default. ATGE is initial-

ized with 6 edges: (⊥, CITY), (CITY, STATE), (STATE, COUNTRY), (CITY, COUNTRY), (COUNTRY,

CONTINENT) and (CONTINENT, >), edges (⊥, CITY) and (CONTINENT, >) are labeled by f and

+ respectively.

2. In step 2, value ‘Antarctica’ of attribute CONTINENT has IS_LEAF = 1 in HT , and CONTINENT

is not a bottom level node. Thus, an edge (⊥, CONTINENT) is added to ATGE, because in

CONTINENT, there is only one node value is leaf node, the edge is labeled by f .

3. In step 3, attributes CITY, STATE and COUNTRY have null values in their NODE_VALUE, they are

updated to OPTIONAL = 1 in ATGN.

4. In step 4, child-parent value mappings of all the edges are checked, edge (CITY, COUNTRY)

is updated to label + in ATGE, the other edges are updated to label f in ATGE.

5. Step 5 checks the mappings of edges (CITY, STATE) and (STATE, COUNTRY) which are labeled

+ edges with ATT_NAME being optional, and (STATE, COUNTRY) is updated to label 1 in ATGE.

We show the final results of ATGN and ATGE on Table 4.3.

80 Chapter 4 Architecture and Algorithms

Table 4.3.: Attribute graph for dimension REGION

(a) ATGN

DT_ID ATT_NAME LEVEL_NUM OPTIONAL

2 __bot 0 0
2 CITY 1 1
2 STATE 2 1
2 COUNTRY 3 1
2 CONTINENT 4 0
2 __top 5 0

(b) ATGE

DT_ID ATT_NAME PARENT_ATT_NAME LABEL

2 __bot CITY +
2 CITY STATE +
2 STATE COUNTRY 1
2 CITY COUNTRY +
2 COUNTRY CONTINENT f
2 CONTINENT __top f
2 __bot CONTINENT f

4.2.2 Dimension and fact identifiers

Given an attribute graph over some attribute hierarchies, a dimension identifier for all valid

tables with respect to that attribute graph could be computed using the CDI algorithm as

Algorithm 2.

The worst-case time complexity of the CDI algorithm is linear in the size (number of nodes

and edges) of attribute graph D.

Example 4.4. We apply function CDI(D,X) on dimension REGION of Table 2.1 where D is

the attribute graph computed in Example 4.3, X is all attributes of REGION . dimId is firstly

initialized with all attributes of REGION , and only CONTINENT is removed, because it has a label

f in-edge. In Line 10, we get the result dimension identifier dimId is {CITY, STATE, COUNTRY}.

By Proposition 2.5 (Page 27), the fact identifier of a fact table T (S) defined over a set of

dimensions D1(SD1), . . . , Dn(SDn) is computed by the union of the identifiers of each group

of dimension attributes occurring in the fact table. The identifiers of each group of dimension

attribute are also computed using CDI algorithm with the attribute graph of the dimension

Di, i ∈ [1, n] and the set of dimension attributes in the fact table S ∩ SDi as inputs.

Example 4.5. We compute the fact identifier for fact table INVENTORY which is defined over

dimensions WAREHOUSE, TIME, TAX and PROD with attribute graphs shown in Fig-

ure 2.6 (Page 22). We first compute the identifier of dimension attributes from WAREHOUSE

4.2 Dimension and Fact Identifier Computation 81

Algorithm 2 Compute Dimension Identifier (CDI)
input:

D: Attribute graph of dimension table with schema S
X: A subset of S

output:
dimId: identifier of X

1: begin
2: Initialize: dimId← X
3: for Attribute A in dimId do
4: if (A has one label f in-edge from X in D) or
5: (A only has label 1 in-edges from X in D)
6: then
7: dimId← dimId− {A}
8: end if
9: end for

10: return dimId
11: end

by CDI(D,X) where D is the attribute graph of WAREHOUSE, X = {WH_ID, CITY, COUNTRY}
are the set of dimension attributes from WAREHOUSE occur in INVENTORY. dimId is first

initialized with attributes of X, CITY is removed because it has a label f in-edge starting from

WH_ID, and the result dimId is K1 = {WH_ID, COUNTRY}. Similarly, we compute the identifiers

of dimension attributes from TIME, TAX and PROD. They are K2 ={YEAR}, K3 ={TAX_NO}

and K4 ={PROD_SKU} respectively. Therefore, the fact identifier of INVENTORY is the union of

K1,K2,K3 and K4, K = {PROD_SKU, YEAR,WH_ID, COUNTRY, TAX_NO}.

However, the fact identifier computed by Proposition 2.5 (Page 27) might not be minimal.

When the fact table is defined as a view from a non-analytic table for which we know the primary

key, if all attributes of this key have an attribute mapping relationship into a (strict) subset of the

fact identifier attribute, this subset is also a fact identifier for the fact table, we refer this subset

as inferred key.

Example 4.6. As explained in Example 2.14 (Page 26) that fact table INVENTORY is de-

fined as a view over non-analytic table ct_INVENTORY, assuming that the primary key of

ct_INVENTORY is Kct = {PROD_SKU, YEAR, WH_ID, COUNTRY}.

ct_INVENTORY(PROD_SKU, BRAND, YEAR, WH_ID, CITY, STATE, COUNTRY,

TAX_NO, RATE, TAX_DESC, QTY_ON_HAND, TAX_AMT)

Each attribute of the primary key has a corresponding attribute mapping with one attribute of

the initial fact identifier K ={PROD_SKU, YEAR, WH_ID, COUNTRY, TAX_NO } computed by algorithm

82 Chapter 4 Architecture and Algorithms

CDI as given in Example 4.5. Kct is strictly included in K, so Kct can be inferred as an inferred key,

and INVENTORY now have two identifiers K, Kct where Kct is the minimal key. It implicitly

follows that dimension TAX depends on the other dimensions of that fact table.

4.2.3 Maintaining dimension identifiers

An update of a dimension table may violate the attribute graph constraints defined for that

table, and the dimension identifier generated from that attribute graph may also be affected.

Thus, when a non-analytic table is updated, and a dimension table T is defined over it, we

check the consistency of the attribute graph and the validity of the dimension identifier. If

the test fails, the update must be rejected and the attribute graph of T can be inspected for

further investigation. Since dimension tables are not frequently updated, the test entails a small

overhead in the transaction processing workload. In addition, the test is efficiently done using

Hierarchy Tables. (Detail query see Appendix A.2)

A strong assumption is that dimension table is viewed as an append-only table, we only detect

and apply changes to the attribute graph that are caused by insertions, i.e., new optional nodes,

new edges and edges whose labels are changed into either 1 or +.

Table 4.4 shows the impacts on dimension identifiers caused by different changes on the

in-edges of an attribute A of the attribute graph. Notice that the only operations allowed on the

table is insertion, so the new in-edge added to A is either an edge start from ⊥ or an edge start

from its descendent. For a new label f in-edge of A, its impact on dimension identifier can not

be identified immediately that when it’s an edge starting from ⊥, then A cannot be removed

from identifier because it’s not an in-edge from attributes in the hierarchy. When it’s an edge

starting from its descendent, then A can be removed from identifier. When a label f in-edge of

A is changed to label 1 or +, the effects on dimension identifier need to recompute, whether A

should be added to dimension identifier depends on if A still has label f in-edge.

Table 4.4.: Effects on dimension identifiers by attribute graph

A has f in-edge A only has 1 in-edges Other cases

f in-edge changes to 1 Recompute No effect -

f in-edge changes to + Recompute - -

1 in-edge changes to + No effect Add A No effect

new f in-edge No effect No effect Recompute

new 1 in-edge No effect No effect No effect

new + in-edge No effect Add A No effect

-: Not exist

4.2 Dimension and Fact Identifier Computation 83

4.3 Schema Complement Computation

4.3.1 Schema complement graph

As explained in Section 4.1, the Metadata Catalog contains the native relationships that are

extracted from the definition of tables or explicitly declared by a user, and the derived relationships

obtained using composition and fusion. From these relationships, schema augmentations could

be discovered by exploring a Schema Complement graph defined as follows.

Definition 4.1 (Schema Complement graph). Let T = {T0, T, · · · , Tn} be a set of tables and

R = {R jk, · · · ,R nm} be a set of relationships between tables in T , where R jk ∈ R is a

relationship between Tj and Tk. A Schema Complement (SC) graph for T and R is a directed

property graph SC = (T ,E) connecting the tables in T by a set of labeled edges E where:

1. for each R jk ∈ R there exist two edges E(Tj , Tk) and E(Tk, Tj).

2. each edge E(Tj , Tk) is labeled by a complement type E .CT : if the common attributes of

R jk contain the identifier of Tk then, E .CT = ‘NAT’ (natural edge) else E .CT = ‘AUG’

(augmentation edge).

Figure 4.2.: SC graph example for Figure 2.9

Example 4.7. Figure 4.2 shows a partial SC graph for the relationships of Figure 2.9 (Page 33).

Every relationship results in two edges of the SC graph, each edge is labelled with a reference to

a relationship and its CT label. Nodes represent tables with their identifiers (ID).

We use the term connected for tables which are connected by any path in a SC graph. A table T

is said to be reachable from T0, if they are connected through a sequence of natural ‘NAT’ edges

followed by at most one augmentation ‘AUG’ edge. For example, T1 and T6 are connected, but T6

is not reachable from T1 because the path from T1 to T6 contains two ‘AUG’ edges. T1 and T2 are

connected and T2 is reachable from T1.

84 Chapter 4 Architecture and Algorithms

4.3.2 Finding schema augmentations

We now introduce the Get Schema Augmentation API which accepts a source table T0 that

user wants to augment as input, explores SC graph and returns an array of schema augmentation

tables for T0 as {(Ti, T ype,Attrs, Paths), . . .}. Each schema augmentation table Ti in the result is

reachable from T0, and the returned value contains the schema name Ti, Type: the complement

type of Ti (schema augmentation or natural schema complement), Attrs: new attributes with

respect to T0 and Paths: all the possible paths start from T0 to Ti that contain at most one ‘AUG’

edge. We use an example for illustration.

Example 4.8. In Figure 4.2, INVENTORY (T2) is a schema augmentation to SALES (T1). In

a Get Schema Augmentation call with input table T1, T2 will be returned as one of the schema

augmentation tables for T1. Table 4.5 shows the information of T2 returned by the API. There

are two paths provided in the result that connect SALES to INVENTORY, note that there exists

another path SALES→ STORE → WAREHOUSE → INVENTORY in Figure 4.2. It is not

returned in the result because this path contains two ‘AUG’ edges.

Table 4.5.: T2 in the result

PARAMETER NAME VALUE

Name INVENTORY
Type schema augmentation

Attrs {MONTH,WH_ID, TAX_NO, RATE, TAX_DESC,QTY_ON_HAND}
Paths SALES→ INVENTORY (default)

SALES→ STORE →WAREHOUSE → INVENTORY (path1)

Get Schema Augmentation API is implemented by function Compute Schema Augmentation

(CSA). CSA is a recursive function that takes two inputs: (T0, SC), and returns two outputs as

described below:

4.3 Schema Complement Computation 85

Algorithm 3 Compute Schema Augmentation (CSA)

input:

T0: start table

SC : schema complement graph contains all nodes that connect to T0

output:

result: [(Ti, CT,Attrs, rid), . . .]
– Ti: schema augmentation table to T0

– CT : complement type

– Attrs: new attributes

– rid: a relationship with Ti being the destination table

altEdges: [(Ti, CT, rid), . . .]: list of optional relationships

Traversal step: Traversal all edges in SC that start from T0. For each edge E(T0, Ti) in SC that

starts from T0, verify if Ti is visited before.

• If Ti is visited, add (Ti,E(T0, Ti).CT,R (T0, Ti)) to altEdges.

– E(T0, Ti).CT is the complement type of E(T0, Ti);

– R (T0, Ti) is the relationship related to E(T0, Ti).

• If Ti is not visited, then mark it as visited, add (Ti,E(T0, Ti).CT,Attrs,R (T0, Ti))to result
and continue with Recursive step.

– E(T0, Ti).CT is the complement type of E(T0, Ti);

– Attrs is the set of new attributes in Ti with respect to T0. If T0 has never been

augmented by T before, any attribute in T that is not in common with T0 is considered

to be new. Otherwise, attributes in T0 that come from previous schema augmentations

with T will not considered as new attributes.

– R (T0, Ti) is the relationship related to E(T0, Ti).

Recursive step: Recall CSA(Ti, SC). When the complement type of E(T0, Ti) is ‘NAT’, call

CSA(Ti, SC) and append the results to result, altEdges.

The Traversal step records all possible paths to a schema augmentation table Ti while avoids

infinite loops during traversal by the annotation of visited. When multiple paths exist from T0

to Ti, the relationship added to result will be then set to the default path. The Recursive step

continues the exploration only for ‘NAT’ edges and extend result and altEdges.

86 Chapter 4 Architecture and Algorithms

Our implementation of the CSA algorithm leverages the SAP HANA graph engine [36] which

supports various graph algorithms over graph data stored in a columnar table storage (using a

table of nodes and a table of edges). We use the GET_NEIGHBORHOOD algorithm of the graph

engine instead of calling the Recursive step to compute the set of all tables that are reachable

from T0. The GET_NEIGHBORHOOD performs a breadth-first search, the returned reachable

tables are ordered according to their depth with respect to T0, we store those tables and their

complement types in Reachable. Then, we select all edges whose start node is T0 or a table in

Reachable with complement type ‘NAT’ and destination node is in: T0 ∪Reachable. Edges are

ordered by their start tables according to the sequence of Reachable, when edges are sharing the

same start table, they are ordered by their destination tables. Ordered edges are stored in Edges.

Finally, we perform Traversal step for edges in Edges. Given the edges ordering according to

their depth with respect to T0, algorithm CSA always returns the shortest path to a given table

in result. The use of a clever exploration strategy is left open for future work. However, in

the final result, schema augmentations are returned sorted according to the depth-first search

exploration of the SC graph.

Example 4.9. We illustrate our iterative implementation of algorithm CSA with input table T1

on Figure 4.2 and the SC of Figure 4.2.

1. First, GET_NEIGHBORHOOD computes all tables which are reachable from T1 in SC by a

sequence of NAT edges and followed by at most one AUG edge. We obtain Reachable =
{(T3, NAT), (T4, NAT), (T2, AUG), (T6, AUG)}.

2. The next step retrieves the list of edges connecting nodes in T1 ∪Reachable, ordered by

the sequence of Reachable: Edges = [E(T1, T3),E(T1, T4),E(T1, T2),E(T3, T2),E(T4, T6)].
Notice that edge E(T4, T1) is not selected because it starts from T4 whose complement type

is ‘AUG’.

3. The algorithm then processes each edge in Edges sequentially as follows.

• For edges E(T1, T3),E(T1, T4),E(T1, T2), their destination tables T3, T4, T2 have not

been visited yet, the set of new attributes Attrs3, Attrs4, Attrs2 are respectively

computed for T3, T4, T2 with respect to T1, along with their complement type and

related relationships are added to Result.

• For edge E(T3, T2), the destination table T2 is already visited, its complement type

and related relationship R 23 is added to altEdges.

• For the last edge E(T4, T6), the destination table T6 is not visited, the set of new

attributes Attrs6 is computed for T6 with respect to T4 using related relationship R 46,

then added to Result.

4.3 Schema Complement Computation 87

Finally, we get Result = {(T3, NAT,Attrs3,R 13), (T4, NAT,Attrs4,R 14),
(T2, AUG,Attrs2,R 12), (T6, AUG,Attrs6,R 46)} and altEdges = (T2, AUG,R 23).

Using the output of CSA, for each schema augmentation table, we construct a default path to

the source table T0 using the relationships in Result, and alternative paths are constructed using

the relationships in altEdges.

Example 4.10. Continuing Example 4.9, default paths are constructed using relationships in

Result as: T1 → T3 for (T3, NAT,Attrs3,R 13), T1 → T4 for (T4, NAT,Attrs4,R 14), T1 → T2

for (T2, AUG,Attrs2,R 12), and T1 → T4 → T6 for (T6, AUG,Attrs6,R 46). The path from T1 to

T6 is constructed by appending R 46 after the path from T1 to T4 computed before. There is an

additional relationship for table T2 in altEdges which means there is another path from T1 to

T2. This additional relationship is between T2 and T3, by appending it to the default path from

T1 to T3, we obtain the alternative path for T2 as: T1 → T3 → T2. By default, to augment T1

with attributes from T2, the default path which uses only R 12 is selected when generating the

merge query as T1 ./ T2, but user can still manually select the alternative path which consists of

R 13,R 23 and obtain the merge query as T1 ./ T3 ./ T2.

4.3.3 Unit conversions

Incompatibility between a start table T0 and a target schema augmentation table T occurs

when the two tables contain different measure units, statics scales, measurement details, etc.,

a major part of these are produced during data production which are out of our control. We

mainly discuss here the incompatible measure units.

Before any further operations, i.e., applying reduction query, merging two tables, units and

currency of T0 and T should be unified. We use built-in SQLScript functions in HANA for

units and currency conversion (function CONVERT_CURRENCY and CONVERT_UNIT) [37].

Conversions are computed in simple queries with attribute to be converted, source unit, target

unit as mandatory parameters. When it’s a currency conversion, the reference date is also

mandatory.

Example 4.11. Consider the fact table SALES with aggregation attribute AMOUNT, as explained

in Section 2.2.5, an attribute CURRENCY with role detail is associated with AMOUNT to describe the

currency of the amount value. A CONVERT_CURRENCY call can convert AMOUNT values into EUR

using the convert rate of ‘2013-09-23’ as follows:

Listing 4.1: Query to convert currency

SELECT CONVERT_CURRENCY(

AMOUNT => AMOUNT,

88 Chapter 4 Architecture and Algorithms

"SOURCE_UNIT" => CURRENCY,

"SCHEMA" => ’ SYSTEM ’ ,

" TARGET_UNIT " => ’ EUR ’ ,

"REFERENCE_DATE" => ’ 2013−09−23 ’)

AS CONVERTED_AMOUNT

FROM SALES ;

Example 4.12. Consider the non-analytic table PRODUCT as introduced in Example 5.2 in

Chapter 5, Page 110. It contains an attribute WEIGHT which records the products’ weight using

unit gram(g), a CONVERT_UNIT call can convert values of WEIGHT into pounds(lbs) as follows:

Listing 4.2: Query to convert unit

SELECT CONVERT_UNIT(

"QUANTITY" => WEIGHT,

"SOURCE_UNIT" => ’ G ’ ,

"SCHEMA" => ’ SYSTEM ’ ,

" TARGET_UNIT " => ’ LB ’)

AS CONVERTED_WEIGHT

FROM PRODUCT;

Besides the build-in functions, the conversion could also be done by referring conversion

factors in [38], [39]. When the unit is not provided in the table, we assume that measures in

two tables have the same unit.

4.4 Reduction Query Generation

The Compute Schema Augmentation (CSA) API returns a set of schema augmentations for a

source table T0. Assume that a user selects a schema augmentation table T with complement

type ‘AUG’ and relationship path R 1(T0, T1), · · · ,R n(Tn−1, T), n >= 1 as a schema augmentation

for T0. Let Yn be the set of common attributes of Tn−1 and T , and K be the identifier of T .

Then, by Proposition 3.3 a natural schema complement to T0 can be obtained by reducing all

attributes in K−Yn through one or a sequence of nested reduction queries. Table 4.6 shows the

reduction actions that a user can express on each attribute A of K−Yn and their impact in terms

of reduction queries. Without loss of generality, we consider here that each user action reduces a

single attribute of K−Yn.

4.4 Reduction Query Generation 89

Table 4.6.: User actions to create a reduction query

User action Impact on reduction query

Filter defines a set FilP of filter predicates Ai = vi, vi ∈ dom(Ai); yields a filter reduction;

Pivot defines a set of attributes PivA that are pivoted as columns; yields a pivot reduction;

Remove defines a set of attributes RemA which are removed from the result of the reduction

query; yields an aggregate reduction;

Aggregate defines a set AggA of aggregated attributes Fi(Ai); yields an aggregate reduction

We now introduce the Reduction Query Generation (RQG) API which takes five inputs: (T ,

FilP , PivA, RemA, AggA), and returns two outputs as described below:

Algorithm 4 Reduction Query Generation (RQG)

input:

T : destination schema augmentation table

FilP : a set of equality predicates of the form A = v for filtered attributes A ∈ K
PivA: a set of pivoted attributes

RemA: a set of attributes removed from K

AggA: a set of aggregated attributes of the form F (A) where A ∈ S

output:

Q : reduction query

AggA′: aggregated attributes of the form F (A) in Q

Preparation: Verify inputs and order reduction operations. The reduction process is separated

into three optional reduction steps whose execution depends on the user input. Filter and Pivot

are executed, respectively, when FilP and PivA are not empty. Aggregate is executed when

RemA or AggA is not empty. The default ordering of reduction operations is: 1) Filter, 2) Pivot,

3) Aggregate.

Step 1: Apply filter reductions. A filter reduction query Q Fil = FilterT (FilP) is created on the

target schema augmentation table T and executed.

Step 2: Apply pivot reductions. A pivot reduction query Q Piv is generated over the result of

query Q Fil. It is of the form Pivot Q F il
(Xval | PivA), where Xval is the set of aggregable attributes

in T .

90 Chapter 4 Architecture and Algorithms

Step 3: Apply aggregate reductions and detect if the result is ambiguous. First, each aggregate

Fi(Ai) inAggA is checked for correctness with respect to the aggregable properties of the attribute

Ai and attributes RemA. Then, an aggregate query Q Agg is generated over the result of query Q

generated in the previous Filter and Pivot reduction steps. It is of the form: AggQ(Fi(Ai), . . . | X),
where each Fi(Ai) belongs to AggA or to the new attributes whose values were pivoted in Q ,

and X = K−RemA− PivA.

Step 4: Generate final reduction query. The output reduction query Q is generated by the

previous Filter, Pivot and Aggregate reduction steps. AggA′ is the set of aggregable attributes

containing attributes from input AggA and attributes whose values were pivoted in the pivot

reduction query step (i.e., the Xval attributes). This set is needed for the propagation of

aggregable properties (see Section 2.2.6 Page 28). The identifier K′ of the result of Q (T) is

K ′ = K −FilA−RemA−PivA where K is the identifier of T , RemA and AggA are defined in

Table 4.6 and FilA corresponds to the attributes in the filter predicates FilP .

Example 4.13. Continue with Example 4.9, T2 = INVENTORY is returned as a schema

augmentation to T1 = SALES. When augmenting the schema of T1 with T2, a reduction

query can be expressed as an RQG call: RQG(T2, ∅, ∅, RemA, {SUM(QTY_ON_HAND)}), where

RemA = {MONTH,WH_ID}. Because PivA and FilP are empty, a single aggregate reduction is

executed: Q Agg = AggT2
(SUM(QTY_ON_HAND) | X), X = {PROD_SKU, YEAR, CITY, COUNTRY}. Indeed,

X is a subset of the identifier of T2 and attributes MONTH and WH_ID have been reduced. Thus, the

RQG call finally returns a reduction query Q Agg and {SUM(QTY_ON_HAND)} as a single aggregated

attribute.

Example 4.14. An alternative way to reduce INVENTORY when augmenting the schema of

SALES is to use an RQG call: RQG(T2, {WH_ID =“Oh_01”}}, {MONTH}, ∅, ∅) on the SC graph of

Figure 4.2. Because AggA and RemA are empty, only filter and pivot reductions are applied. A

filter reduction is first created in step 1 as Q Fil = FilterT1({WH_ID =“Oh_01”}). In step 2, the

pivot reduction is applied on the result of Q Fil as Q Piv = Pivot Q F il
({QTY_ON_HAND} | {MONTH}).

Thus, the RQG call returns a query Q Piv, and an empty set of aggregated attributes.

4.5 Merge Query Manager
Suppose that a user selects a table Tdest returned by the Compute Schema Augmentation

API call as a schema augmentation to a table T0 with respect to a path of relationships

R 1(T0, T1), · · · ,R n(Tn−1, T), n >= 1. We now introduce the Merge Schema Augmentation

(MSA) API, which takes five inputs (T0, T , path, noamb, comp) and returns one merge query

4.5 Merge Query Manager 91

Q as described below. The input table T is defined as follows. When the chosen schema aug-

mentation Tdest has not been reduced, the input T is equal to Tdest with a set of new attributes

Xnew and Rn(Tn−1, T) = Rn(Tn−1, Tdest) maps to an edge in the schema complement graph

SC . Otherwise, T = Q red(Tdest) represents the reduction query Q red over Tdest obtained as an

output of the Reduction Query Generation (RQG) API call, and Rn(Tn−1, T) corresponds to a

natural schema complement edge (CT = ‘NAT’). The Boolean parameter noamb is true when no

ambiguous value must appear in a merged result and the Boolean parameter comp is true when

the merge must be complete.

Algorithm 5 Merge Schema Augmentation (MSA)

Inputs:

T0: starting table

T : destination table Tdest or a reduction query Q red

Xnew: attributes in T that will be merged to T0

path: {R 1(T0, T1), · · · ,R n(Tn−1, T)}
noamb: true when result must be non-ambiguous

comp: true when merge must be complete

Output:

Q : final merge query

An MSA call is processed in three steps detailed thereafter.

Step 1: Create query Q a to update ambiguous tuples in T .

• When flag noamb = false, this step does not check for ambiguous results and returns

Q a = T .

• When flag noamb = true, we first check if T is non-ambiguous. By Definition 3.13,

detecting if T contains ambiguous values requires computing for each dimension D(SD)
used in T , the identifier of the ancestors X∗(D) of the dimension attributes XD = S ∩ SD.

This identifier is computed over the attribute graph of dimension D restricted to the

attributes in X∗(D) and using Proposition 2.1.

– When T is not ambiguous for each dimension D in T w.r.t. Proposition 3.8, then we

return Q a = T .

– Otherwise, when T is detected as possibly ambiguous with respect to a dimension D,

we build a query Q a which replaces the measure values of all ambiguous tuples in T

by null values. A tuple t in T is detected as ambiguous if there exists a dimension D

and two tuples t1, t2 ∈ D such that t1.X∗D 6≡ t2.X∗D and t1.XD ≡ t2.XD ≡ t.XD. For

92 Chapter 4 Architecture and Algorithms

this, query Q a joins the result of T with each dimension table D on their common

attributes XD to obtain all X∗D attribute values, and nullifies (invalidates) all measure

attributes of all tuples t where the size of the partition corresponding to tXD
is greater

than 1.

Step 2 (optional): Create a query Q c to compute a completion table for the merge of T0 with T .

• When flag comp = false, this step does not compute completion tuples and returns Q c = ∅.

• When flag comp = true. By Proposition 3.10, we first check condition for T0(S0) and T (S)
that whether the LFD (SDi ∩ S) 7→ (SDi ∩ S0) holds for all dimension Di with schema SDi

in S0 ∩D S.

– When the condition does not hold, we return Q c = ∅.

– When the condition holds, we compute the completion table Q c = T com as defined in

Proposition 3.10 for T0 and Q a of Step 1.

Step 3: Create the final query Q merging T0 with the results of Steps 1 and 2.

• Create a query Q path to merge T0 with the sequence of natural schema complements

T1, · · · , Tn−1 represented by R 1(T0, T1), · · · ,R n−1(Tn−2, Tn−1) in parameter path. Let Yi

be the common attributes in relationship R i. Then, Q path = T0 ./Y1 T1 · · · ./Yn−1 Tn−1.

• Merge Q path with Q a as Q ′ = πS′0
(Q path ./Yn Q a), where S′0 is the schema of T0 augmented

with the new attributes Xnew coming from Q a.

• Finally, add Q c (obtained from Step 2) to the previous result Q ′ and the final result is

Q = Q ′ ∪ Q c.

Example 4.15. Consider a merge schema augmentation call

MSA(T1,Q (T2), {SUM(QTY_ON_HAND)}, {R 12}, true, true) on the SC graph of Figure 4.2

(T2 = INVENTORY is a schema augmentation to T1 = SALES), and Q (T2) is the output of

the RQG call in Example 4.13. Since Q (T2) is a reduction query, we add a natural complement

edge R (T1,Q (T2)) with CT = ‘NAT’ to the SC graph.

4.5 Merge Query Manager 93

Generate non-ambiguous result Q a. The input noamb = true, we build query Q a to update

ambiguous tuples in Q (T2). By Proposition 3.8, we verify the ambiguities for each dimension in

Q (T2).

• For dimension PROD, XD = {PROD_SKU}, X∗D = {PROD_SKU, SUBCATEGORY, CATEGORY}, we

have XD 7→ X∗D, Q (T2) is not ambiguous with respect to dimension PROD.

• For dimension TIME, XD = {YEAR}, X∗D = {YEAR}, we have XD 7→ X∗D, Q (T2) is not

ambiguous with respect to dimension TIME.

• For dimension WAREHOUSE, XD = {CITY, COUNTRY}, X∗D = {CITY, STATE, COUNTRY}, we

have XD 67→ X∗D, Q (T2) is ambiguous with respect to dimension WAREHOUSE.

We generate Q a that joins Q (T2) with dimension table WAREHOUSE and sets aggregated

measure attribute t.SUM(QTY_ON_HAND) to null for all ambiguous tuples t ∈ Q (T2). A tuple

t is ambiguous when its value pair of CITY, COUNTRY contains more than one STATE value in

WAREHOUSE. For example, suppose that WAREHOUSE contains two tuples t1 and t2 with

the same values for attributes CITY, COUNTRY and different STATE values, (Dublin, Ohio, United

States) and (Dublin, California, United States). Query Q (T2) contains one tuple t with CITY,

COUNTRY value being (Dublin, United States), then t is ambiguous, Q a will set the aggregated

SUM(QTY_ON_HAND) value in t to null.

Generate the completion table Q c. The input comp = true, we build query Q c to compute the

completion table for T1 and Q a. We first check the LFD condition. For dimension PROD, TIME,

the common attributes between each dimension and Q a can determine the common attributes

between each dimension and T1. But this condition does not hold for dimension STORE, as

explained in Example 3.25 on Page 64. Therefore, we do not compute the completion table T com,

and return an empty table Q c.

Generate final merge query Q . The path used to merge T1 and Q a contains only one rela-

tionship R(T1,Q a) with complement type ‘NAT’, so we get Q path = T1. The query for natural

merge T1 and Q a is Q ′ = πS′(T1 ./Y Q a))), where S′ contains the schema of T1 augmented with

attribute SUM(QTY_ON_HAND). Finally, we obtain Q = Q ′ ∪ Q c.

Query Q is returned by this MSA call, and it is a non-ambiguous, complete merge of T1 and

Q (T2).

The complete workflow of augmenting the source table T1 with attributes from T2 is shown in

Figure 4.3. Given a source table T1, Get Schema Augmentation API first returns a list of schema

augmentation tables where each schema augmentation table contains its complement type, new

94 Chapter 4 Architecture and Algorithms

attributes it can bring, and paths connect to the source table. For a target table T2 that is schema

augmentation to T1, user can use Reduction Query Generation API to generate a reduction query

Q (T2) that transforms T2 into a natural schema complement to T1. Finally, using Merge Schema

Augmentation API, a final merge result T ′1 is generated which naturally merges T1 with Q (T2),
T ′1 is non-ambiguous and complete.

Figure 4.3.: The complete workflow of merging T1 and T2

The following lemmas and proposition state that the RQG and MSA API compute a correctly

merge result.

Lemma 4.1 (Composition of natural schema complements). Let T (S) be a natural schema

complement to T0(S0) with respect to relationship R 0(T0, T) on attributes Y0, and T1(S1) be a

natural schema complement to T with respect to relationship R 1(T, T1) on attributes Y1. Then

T1 is also a natural schema complement to the natural merge of T0 and T , i.e., T0 ./Y0 T .

Proof. Let T ′0(S′0) be the natural merge of T0 and T , T ′0 = T0 ./Y0 T .

There exists an attribute mapping relationship R ′(T ′0, T) on common attributes Y′ = S′0 ∩D S,

and Y1 ⊆ Y′. And there exists a well-formed relationship R ′1(T ′0, T1) on attributes Y1 ∩D S′0
by the composition of relationships R ′(T ′0, T) and R 1(T, T1). Because T1 is a natural schema

complement to T , we have Y1 7→ S1 and Y′ 7→ S1. Therefore, T1 is a natural schema complement

to T ′0.

Lemma 4.2 (Composition of schema complement and schema augmentation). Let T (S) be a

natural schema complement to T0(S0) with respect to relationship R 0(T0, T) on attributes Y0,

and T1(S1) be a schema augmentation to T with respect to relationship R 1(T, T1) on attributes

Y1. Then T1 is a schema augmentation to the natural merge of T0 and T , i.e., T0 ./Y0 T .

4.5 Merge Query Manager 95

Proof. Let T ′0(S′0) be the natural merge of T0 and T , T ′0 = T0 ./Y0 T .

There exists an attribute mapping relationship R ′(T ′0, T) on common attributes Y′ = S′0 ∩D S,

and Y1 ⊆ Y′. By the composition of relationships R ′(T ′0, T) and R 1(T, T1), there exists a well-

formed relationship R ′1(T ′0, T1) on attributes Y1 ∩D S′0. Therefore, T1 is a schema augmentation

to T ′0.

Proposition 4.1. Let query Q be the result of a MSA(T0, T , path, true, true) call with a start

table T0(S0), a target schema augmentation table T (S) and a path of relationships: path =
R 1(T0, T1), · · · ,R n(Tn−1,Q a), n >= 1. If R n(Tn−1,Q a) maps to an augmentation schema

complement edge (CT = ‘AUG’), then Q computes a augmented merge of T0 with Q a (without

ambiguous values). Otherwise, R n(Tn−1,Q a) maps to a natural schema complement edge

(CT = ‘NAT’) and Q computes a natural merge T0 with Q a.

Proof. We ignore steps 1 and 2 in a MSA call. Step 3 returns merge query Q = πS′0
(Q path ./Yn

Q a), where S′0 is augmented S with attributes from Q a, Q path = T0 ./Y1 T1 · · · ./Yn−1 Tn−1

and Yi is the common attributes in relationship R i. By Algorithm 3, every relationship in

R 1(T0, T1), · · · ,R n−1(Tn−2, Tn−1) maps a SC edge with CT = ‘NAT’ in SC . By Lemma 4.1, Q path

is a natural merge of T0 with its natural schema complements T1, · · · , Tn−1. Also by Lemma 4.1,

if R n(Tn−1, T) maps a SC edge with CT = ‘NAT’ in SC , then Q a is a natural schema complement

to the result of Q path and Q computes the natural merge of Q path and T . Finally, by the

same lemma, since Q path is a natural merge of T0, Q is a natural merge of T0 and Q a. By

Lemma 4.2, if R a(Ta−1, T) maps to an augmentation SC edge with CT = ‘AUG’, then Q a is a

schema augmentation to the result of Q path and Q computes the augmented merge of Q path

and Q a (and an augmented merge of T0 and Q a).

4.6 Extension to Heterogeneous Data Sources
There exist different types of data sources except the analytic views in SAP HANA, we now

explain how our implementations could be generalized to heterogeneous data sources outside of

SAP HANA. SAP HANA implemented a solution called SAP HANA Smart Data Integration and SAP

HANA Smart Data Quality (SAP HANA SDI) to access heterogeneous data sources, to provision,

replicate, and transform these data into table-based dataset in SAP HANA [40].

There are various data sources supported by SAP HANA SDI, includes SAP systems like SAP

ABAP, SAP ASE database, SAP ECC and SAP HANA; databases like Apache Impala, Hadoop, IBM

DB2, Microsoft SQL Server, Oracle and PostgreSQL; data preparation tools like Teradata; flat

files like SharePoint, Microsoft Excel and PST files; even social media web site like Twitter and

Facebook. To connect to source systems that no adapter is provided, SAP HANA also allows users

96 Chapter 4 Architecture and Algorithms

to write their own adapters in JAVA using the Adapter SDK (Documentations of the Adapter SDK

see 1).

Each data source works with its specific adapter inside SDI, these adapters function like

a bridge that provides a connection between the source system and SAP HANA as shown in

Figure 4.4. User can preserve the connection to a source system as a remote source, objects inside

the source system are then converted into HANA datatypes as virtual tables in the remote source.

User are allowed to access objects in the remote source using two ways:

• A real-time data access. SAP HANA stores the schemas of virtual tables, any SQL queries

that operate on virtual tables will then be translated and executed into an equivalent

statement in the source system side.

• A snapshot data access. SAP HANA replicates the schemas of virtual tables and stores

locally a snapshot of the data, SQL queries can be directly operate inside SAP HANA.

Figure 4.4.: An overview of different adapters for SAP HANA

4.7 Conclusions
To conclude this chapter, we summarize the algorithms introduced in this chapter. As described

in Chapters 2 and 3, dimension / fact identifier and attribute graph play an important role

when defining natural schema complement, detecting ambiguous and guaranteeing complete

merge. We first present in Section 4.2.1, algorithm Attribute Graph Generation (ATG) that

computes an attribute graph for a given dimension, followed by algorithm Compute Dimension

Identifier (CDI) in Section 4.2 that computes the dimension identifier from an attribute graph.

With the knowledge of identifiers and the relationships (see Section 2.3), we introduce the

notion of Schema Complement Graph which captures the types of connections between tables

1https://help.sap.com/viewer/e974128d984d4bfeaa0c0b582ce24d79/2.0_SPS04/en-US

4.7 Conclusions 97

https://help.sap.com/viewer/e974128d984d4bfeaa0c0b582ce24d79/2.0_SPS04/en-US

(i.e., schema augmentation or natural schema complement), and algorithm Compute Schema

Augmentation(CSA) in Section 4.3 that explores schema complement graph and finds schema

augmentations for a given source table. To merge the source table with a selected schema

augmentation, we present algorithm Reduction Query Generation (RQG) in Section 4.4 which

generates reduction queries to convert a schema augmentation into a natural schema complement

and algorithm Merge Schema Augmentation (MSA) in Section 4.5 that merges source table and

target table in a non-ambiguous, complete manner. All these algorithms are implemented in SAP

HANA as REST APIs, and we show in Section 4.6 that using SAP HANA SDI, our implementations

can be easily generalized to different input data sources.

98 Chapter 4 Architecture and Algorithms

5State of the art

Contents

5.1 Introduction .100

5.1.1 Schema and data integration . 100

5.1.2 Drill-across and summarizability . 101

5.1.3 Schema augmentation . 102

5.2 Schema Integration .102

5.2.1 Approach . 102

5.2.2 Examples . 103

5.3 Schema Matching Discovery .105

5.3.1 Heuristic schema matching discovery 106

5.3.2 Reliable schema matching discovery 107

5.4 Mediation-based Data Integration .109

5.4.1 Approach . 109

5.4.2 Examples . 110

5.5 Schema Augmentation and Entity Complement115

5.5.1 Schema augmentation approaches for web tables 115

5.5.2 Entity complement approaches . 119

5.6 Drill-across Queries in Multi-dimensional Databases 121

5.6.1 Drill-across queries using conformed dimensions 122

5.6.2 Drill-across queries using compatible dimensions 125

5.7 Summarizable Analytic Tables .128

5.7.1 Summarizability in statistical data models 129

5.7.2 Summarizability in multidimensional data models 136

5.7.3 Conclusion on summarizability . 148

5.8 Summary .149

99

5.1 Introduction
The following chapter positions the contributions of this thesis with respect to the related work

on different approaches of schema integration. The first part from Section 5.2 to Section 5.5

summarizes the historical evolution from early schema integration approaches, which required

an important expertise and user effort to solve data heterogeneity issues, to recent “as-you-go”

schema augmentation solutions for rapidly identifying and assembling semantically related

datasets into customized user views. The second part, starting from Section 5.6, presents the

relevant related work on data quality issues encountered by the assembly of multi-dimensional

datasets.

5.1.1 Schema and data integration

The problem of discovering and merging related datasets has been studied for a long time in a

variety of contexts. The first studies occurred in the area of database schema integration [41],

which consists of integrating a given set of database schemas into a unified representation, usually

called an integrated or global schema. The integration of different user views in a proposed

database is also called view integration [41]. Two distinct tasks are involved in schema integration.

The first task consists in selecting and analyzing the local database schemas according to specific

information requirements. The second task is to compare the selected schemas.

The relationship of schema integration with the problem studied in this thesis is the following.

Given a set of analytic schemas, a global schema then integrates all information contained in

the analytic schemas and the schema designer defines all schema mapping queries to populate

the global schema. Finally, a user can query the global schema and obtain answers that contain

related data coming from one or more tables. We can see that with this approach the design

and implementation effort rapidly become inefficient and complex for relating data coming

from a large number tables. The number of mapping queries might rapidly increase and need a

good knowledge of all available source schemas. This makes the schema integration approach

inappropriate for the use cases considered in this thesis. Nevertheless, our approach shares

some tasks with the the main schema steps integration including schema comparison, conforming,

merging and restructuring that we describe in Section 5.2.

The data integration approach [42], [43] tries to solve some limitations of the schema integra-

tion approach, and in particular the issue of generating semantic mapping queries. Compared

to schema integration, data integration is not driven by a given set of data sources but defined

according to the requirements of a database application. The data integration workflow starts

by the creation of a mediated schema independently of some existing source schemas. Similar to

schema integration, data integration methods also rely on a preliminary schema matching [44],

100 Chapter 5 State of the art

[45] (see Section 5.3) phase to detect the relationships between the source schema elements

(tables, attributes) and the mediated schema elements and the inter-source data dependencies.

These schema matchings are used to iteratively suggest schema mappings for instantiating the

mediated schema from the source data. Data integration systems are capable to interpret these

schema mappings to either transform queries over the mediated schema into queries over the

source data (view-based data integration) or to materialize the schemas into a physical database

on which can be directly queried (data warehouse integration approach [46].

The problems studied in this thesis are closer to the data integration problem than to the

schema integration problem (see Section 5.4 for examples). Assume a set of analytic tables,

called source tables, for which some inter-table dependencies are known. Then a user can

specify a mediated schema, called target schema, and express the schema matchings that exist

between source schema elements and the target schema elements. The main specificity of our

approach is that the user explores and specifies table relationships (schema matchings) which

are partially defined in analytic schemas and metadata like foreign key constraints, queries and

view definitions. The chosen relationships are used to generate a mediated target schema by

augmenting a start source table with other source tables and also serve to generate merge queries

which correspond to schema mappings in the general data integration model. The final result is

a target view over the source tables that can be queried by the user.

More recently, new approaches have been proposed to support data integration capabilities "as

you go", using the notion of dynamic schema complement [12] (Section 5.5). These approaches

are user-driven and assist users in the construction of new datasets by assembling existing

datasets. Starting from a given source dataset, the system suggests to the user other datasets

whose schemas augment the schema of the source dataset with new attributes and whose data

items are related to the data items of the source dataset. Not surprisingly, like in data integration,

these methods require some knowledge about the inter schema dependencies that exist between

the source dataset and the candidate datasets for schema augmentation. The approach developed

in this thesis fall into this category and we shall position it with respect to the data integration

approaches.

5.1.2 Drill-across and summarizability

Finally, in the context of OLAP systems, a lot of work have been done to determine under

which conditions the data contained in different OLAP cubes could be combined using so-called

drill-across queries[6]. Given a set of fact tables, Drill-across operation contains possibly sub-

queries that aggregate fact tables to get a unified cardinalities and dimensionality. We shall

first see in Section 5.6 how these conditions compare to the data quality guarantees that our

proposed method provides when schema augmentation is applied to analytic datasets. We shall

5.1 Introduction 101

then position our work with respect to the problem of summarizability for aggregate tables,

which provides conditions to guarantee that a correct computation of coarse-level aggregates

can be obtained from fine-grain aggregates.

5.1.3 Schema augmentation

In this thesis, we focus on the approach called schema augmentation which improves the schema

complement approach in a multidimensional context. This approach explores the relationships

between dataset which are extracted automatically from the metadata of the analytic schemas

like foreign key constraints, queries and view definitions. Starting from a given source dataset,

the system relies on the relationships and discovers target datasets that are schema complements

to the source dataset or could be transformed into schema complements to the source datasets.

The query that is used to tranform a schema complement is called reduction query. A user chooses

one target dataset to generate the merge query which is a left-outer join between the source

dataset and the target dataset (or reduced target dataset). The schema mappings between the

source dataset and the target dataset are automatically inferred from the relationships. We see

in Section 5.5 the steps of the approach with respect to data integration, in Chapter 3 the formal

definition of the schema augmentation approach and reduction query. The final result is a new

dataset that consists of the source dataset and the new attributes from the target dataset.

5.2 Schema Integration

5.2.1 Approach

Schema integration [47] is the process of generating one or more integrated schemas from

existing schemas. These schemas represent the semantics of the databases begin integrated and

are used as input to the integration process. [41] provides a comparative review of schema

integration issues using the Entity-Relationship (ER). In this seminal work, schema integration

includes the notions of view integration and database integration. View integration is a design

process generating a global conceptual description of a proposed database from multiple user-

views whereas database integration produces a global schema of a collection of heterogeneous

databases (with different data models and structures).

Our approach is more related to the notion of view integration which consists of four separate

steps.

Step 1: Pre-integration : select and analyze the local schemas to be integrated according to

specific information requirements.

102 Chapter 5 State of the art

Step 2: Schema comparison : compare the selected schemas and detect possible semantic

and syntactic conflicts (schema matching)

Step 3: Conforming schemas : resolve the detected conflicts to enable schema merging. The

schema integration process involves the user to discover and deal with the different naming

and strucutural conflicts [41].

Step 4: Merging and restructuring : create and, if necessary, restructure the final integrated

schema. Two strategies might be applied for the integration of multiple schemas. Binary

strategies merge two schemas in each step whereas N-ary strategies can merge three or

more schemas at a time.

5.2.2 Examples

Example 5.1. We now illustrate the use of a binary view integration strategy by an example.

Step 1: Pre-integration : Consider the schemas of the two non-analytic tables ct_STORE and

ct_WAREHOUSE which are used to define the dimension tables STORE and WAREHOUSE

as shown in in Figure 2.9, Page 33. Both tables defined an attribute ID as their primary key:

ct_STORE (ID, STORE_ID, CITY, STATE, COUNTRY, STORE_NAME, WEB_SITE, PHONE)

ct_WAREHOUSE(ID, WH_ID, CITY, STATE, COUNTRY, WH_NAME, SQ_FT, PHONE)

The two schemas ct_STORE and ct_WAREHOUSE can be integrated as follows into a new

schema ct_STORE_WH.

Step 2: Schema comparison : The schema integration process involves the user to discover and

deal with the different naming and structural conflicts [41]. For example, the user has to compare

the attribute names and their domain values to verify whether two attributes are comparable in

both schemas. Functional dependencies can also be used to identify possible structure conflicts

generated by different key attributes. Name conflicts mainly appear for equivalent attributes

with different names (synonym attributes) or non-equivalent attributes with the same name

(homonym attributes). The attributes ID, PHONE, CITY, STATE and COUNTRY in both schemas are

homonyms. The values of attribute ID in the two schemas are not comparable, since ID identifies

a stores in table ct_STORE and warehouses in table ct_WHAREHOUSE. The user decides that

attribute PHONE is also not comparable and all other homonym attributes describe the same

concept. This results in the following schema matchings identified by the user:

5.2 Schema Integration 103

ct_STORE.CITY ∼= ct_WAREHOUSE.CITY

ct_STORE.STATE ∼= ct_WAREHOUSE.STATE

ct_STORE.COUNTRY ∼= ct_WAREHOUSE.COUNTRY

Structure conflicts might, for example, appear through the existence of conflicting functional

dependencies between equivalent attributes in both schemas. The functional dependencies in

our two schemas are unknown and it is impossible to solve structure conflict.

Step 3: Conforming schemas : This step consists in resolving the conflicts identified in the

previous step. The name conflict for attribute ID in ct_STORE and ct_WAREHOUSE can

be resolved by adding a prefix to the attribute name in both schemas: CT_WAREHOUSE_ID for

warehouse id and CT_STORE_ID for store id. The same prefix is added by the user to attribute

PHONE to distinguish between warehouse phone numbers and store phone numbers. The user

continues to conform the two schemas

by (1) moving the matching attributes CITY, STATE and COUNTRY in ct_STORE and

ct_WAREHOUSE from their original schemas into a new shared entity named LOCATION
and (2) by creating a relationship through an artificial location identifier LOCATION_ID. The

intermediate schema is shown in Figure 5.1. We use our graphical notations in the examples

instead of the ER graphical notations originally used in [41]. Observe that all entities now have

distinct attributes except LOCATION_ID which defines the relationships between the three tables.

Figure 5.1.: Transformed schemas and their relationships

Step 4: Merging and restructuring : The result of the design phase are the two transformed

source schemas which are semantically related through a named relationship LOCATION. This

can be understood in two different ways. One interpretation is to consider each table instance of

the global schema as a view over the source schemas. The other interpretation is the existence of a

join relationship between the two source schemas on attributes CITY, STATE and COUNTRY. The user

adopts the second interpretation and merges ct_STORE and ct_WAREHOUSE through their

common entity LOCATION to produces the following final global schema ct_STORES_WH:

ct_STORES_WH(CT_STORES_ID, STORE_ID, CITY, STATE, COUNTRY, STORE_NAME, WEB_SITE,

104 Chapter 5 State of the art

CT_STORES_PHONE, CT_WAREHOUSE_ID, WH_ID, WH_NAME, SQ_FT,

CT_WAREHOUSE_PHONE)

Observe that all previous steps require human decisions and SQL programming efforts to

generate the final table.

[41] proposes the three quality metrics to evaluate the resulting integrated schema. The

first quality criteria is completeness and correctness which validates if the integrated schema is

able to represent correctly all information described by the initial schemas. In our example,

the completeness and correctness criteria are ensured since every attribute in ct_STORE and

ct_WAREHOUSE is kept in ct_STORES_WH and there exist no functional dependencies that

restrict the information that can be stored in the merged schema. The second criteria is

minimality, which means that there are no redundant attributes in the integrated schema. This is

ensured through the creation of the intermediate table LOCATION which factorizes the location

attributes of both source tables. The last criteria is understandability, which reflects the facility

of applying the different transformations to produce the integrated schema. Evaluating the

understandability of the resulting global schema also requires human’s judgement because there

exists no quantitative and objective understandability score for global schemas. In our example,

since the only schema conforming operation was to create table LOCATION, we can assume

that if schemas ct_STORE and ct_WAREHOUSE were understandable, then ct_STORES_WH
should also be understandable.

5.3 Schema Matching Discovery
As shown in the previous section, schema integration is a complex and time consuming task,

mostly because it requires important user interaction for detecting and resolving semantic and

syntactic conflicts between the source schemas. The goal of schema matching is to assist the

users in the detection of semantic relationships the elements of different schemas. An abundant

literature [44], [45], [46], [48] has proposed techniques that automatically discover schema

matchings which reduce the user efforts required for schema and data integration. For instance,

schema matching techniques can automatically discover join relationships using a combination

of attribute name matching, data type matching and data instance matching. In this section, we

mention a few techniques that could also be leveraged in our approach.

Schema matchings are classified as one-to-one matchings between two attributes (e.g.,

TIME.YEAR ∼= ALL_SALES.YEAR), and many-to-many matchings between multiple attributes

(e.g., PERSON.NAME ∼= STUDENT.FIRST_NAME + STUDENT.LAST_NAME). In this thesis, we focus

on one-to-one schema matchings.

5.3 Schema Matching Discovery 105

We can mainly distinguish between two schema matching approaches [46] discovering either

heuristic schema matchings through similarity computations or reliable schema matchings by

extracting information from schema metadata.

5.3.1 Heuristic schema matching discovery

A common approach to estimate if two attribute from different schemas match (are compatible)

is to apply some similarity measure. Similarities can be computed by comparing the attribute

names, schema names, domain values, etc. We follow the categorization of [46] to discuss

several similarity-based schema matching techniques in more detail. Providing an exhaustive

description of the many techniques that have been published is out of scope of this chapter.

Name-basedmatching: The most intuitive way to match two table attributes by comparing their

names. To measure the similarities between attribute names, string-matching algorithms like edit

distance, Soundex or Jaccard measure [49] can be used. For example, consider attribute PHONE

in table ct_STORE of schema Example 5.1 and Jaccard measure J(x, y) = |Bx ∩By|/|Bx ∪By|
between the bigram sets Bx and By of x and y respectively. Suppose we have attributes PHONE,

ID and WH_ID. Then we can extract the following sets of bigrams for each attribute:

BPHONE = {P, PH,HO,ON,NE,E}

BID = {I, ID,D}

BWH_ID = {$W,WH,H_, _I, ID,D$}

The Jaccard-measure between ct_STORE.PHONE and each attribute in ct_WAREHOUSE then

are J(PHONE, ID) == 0, J(PHONE,WH_ID) = 0 and J(PHONE, PHONE) = 1. Besides string-matching

algorithms, there are various other ways to compute similarities between attribute names [46].

A more detailed discussion is out of the scope of this thesis.

Instance-based matching: Attributes also can be matched by comparing their value domains.

A simple way is again to apply Jaccard measure [49] which estimates the overlap between two

sets. For example, consider attribute CITY in table SALESORG shown in Table 1.1 on Page 5

and Jacccard measure J(A, B) = |N(A) ∩N(B)|/|N(A) ∪N(B)| between the domain value sets of

106 Chapter 5 State of the art

attributes A and B. Suppose we have table REGION shown in Table 1.1. We extract the domain

value sets for each attribute in REGION :

N(CITY) = {Dublin, Paris,Berlin}

N(STATE) = {Ohio, California}

N(COUNTY) = {USA, Ireland, France,Germany}

N(CONTINENT) = {NorthAmerica,Europe}

The Jarccard-measure between SALESORG.CITY and each attribute in REGION are:

J(SALESORG.CITY, REGION.CITY) = 1/3, J(SALESORG.CITY, REGION.STATE) = 0,

J(SALESORG.CITY, REGION.COUNTY) = 0, J(SALESORG.CITY, REGION.CONTINENT) = 0.

A threshold t should be defined such that when the similarity of two attributes value do-

mains is higher than t, we might conclude that these two attributes match based on their

instance. For example, when t = 0.2, we could infer a schema matching as: ct_STORE.CITY ∼=
ct_WAREHOUSE.CITY.

Combined matching: Most of schema matching approaches adopt combined matching to

compute similarities. Two attributes might have the same name but disjoint value domains.

For example the domain of attribute PHONE in table WAREHOUSE might be disjoint from

the domain of attribute PHONE in table STORE, or, inversely, two attributes might contain the

same domain values but have different names. The general architecture of combined matching

systems [46] includes several name-based and instance based matchers producing different

similarity matrices between schema elements. These matrices are processed by a combiner which

produces a single matrix using some aggregation function (avg, min, max or weighted-sum).

The produced matrix is transformed by a constraint enforcer which exploits external domain

knowledge to improve the reliability. For example, product names more likely match with item

names than city names. Finally, the enforced matrix is filtered by a match selector which selects a

subset of matches. A simple selection strategy might select all matches above a certain threshold.

Other strategies formulate the selection as an optimization problem like searching the subset of

matchings which maximize the total similarity score and matching each attribute at most once.

5.3.2 Reliable schema matching discovery

Heuristic matching strategies can apply a rich set of similarity-based matchers for different

data types. However, they represent at least two drawbacks. A first issue is their efficiency.

Instance-based matching algorithm need to compare the domain values for several pairs of

attributes in two schemas, which rapidly becomes very costly. The second issue concerns the

5.3 Schema Matching Discovery 107

quality of the obtained matchings. Similarity computations only provide approximate schema

matchings with limited reliability guarantees for the produced matchings.

Other approaches exploit user-defined table constraints like foreign key constraints to infer

schema matchings. The produced schema matchings are created based on user-defined logical

schema constraints and more reliable than approximate similarity-based schema matchings. In

this thesis, we only consider reliable schema matchings. Schema matchings are inferred by

existing implementation of metadata extractor which analysis user-defined schema metadata

and queries. (See Section 4.1 in Chapter 4).

Table constraints. PK-FK constraints defined in relational data models can be inferred as

schema matchings. For example, consider the source schema in Example 5.2. The PK-FK con-

straints defined between tables PRODUCT and SUBCATEGORY on attribute SUBCATEGORY_ID

and between table SUBCATEGORY and CATEGORY on attribute CATEGORY_ID directly define

the following reliable constraints:

PRODUCT.SUBCATEGORY_ID ∼= SUBCATEGORY.SUBCATEGORY_ID

CATEGORY.CATEGORY_ID ∼= SUBCATEGORY.CATEGORY_ID

View definitions. Relational and analytic schemas also might contain views which are defined

by queries over other tables and views. As shown in Section 2.1, queries define attribute

mappings between the view table and the query tables. For example, consider the source schema

in Example 5.3, fact table (view) SALES is defined by a query over dimension tables TIME and

SALESORG. From this query, we can derive one-to-one attribute mappings between SALES
and each dimension table:

SALES.STORE_ID ∼= SALESORG.STORE_ID

SALES.CITY ∼= SALESORG.CITY

SALES.COUNTRY ∼= SALESORG.COUNTRY

SALES.YEAR ∼= TIME.YEAR

Conformed dimensions [6] and compatible dimensions [30] between fact tables also introduce

schema matchings. In Example 5.8, conformed dimension PROD between fact tables SALES
and INVENTORY generates the following schema matchings:

SALES.PROD_SKU ∼= INVENTORY.PROD_SKU

SALES.BRAND ∼= INVENTORY.BRAND

SALES.PROD_SKU ∼= PROD.PROD_SKU

SALES.BRAND ∼= PROD.BRAND

INVENTORY.PROD_SKU ∼= PROD.PROD_SKU

INVENTORY.BRAND ∼= PROD.BRAND

108 Chapter 5 State of the art

5.4 Mediation-based Data Integration

5.4.1 Approach

As explained in Section 5.1.1, data integration methods are not driven by a given set of data

sources but defined according to the information requirements of a database application. A data

integration workflow proceeds in three steps:

Step 1: Define a mediated schema: specify the schema of the mediated table for some specific

application needs.

Step 2: Specify schema matchings: discover schema matchings between the elements (at-

tributes, tables) of the mediated schema and the source schemas.

Step 3: Infer schema mappings: infer schema mappings from the specified schema match-

ings.

These steps can be interleaved until a complete schema mapping is obtained for the mediated

schema. The notion of completeness here means that an instance of the mediated schema that

fulfills all its integrity constraints can be computed using the schema mapping. For more details,

we refer the reader to [43], [46].

The schema augmentation problem can be considered from a data integration perspective.

Based on the data model introduced in Chapter 2 we can define the data integration steps as

follows:

Step 1: Define mediated schema: In our model, the mediated schema corresponds to a source

schema extended by some new attributes. The data integration process starts by choosing

one start table, e.g. PRODUCT and a set of additional information items/attributes, e.g.

STOCK, which should be added to the start table.

Step 2: Specify schema matchings: In our schema augmentation approach, we use reliable

schema matchings (Section 5.3) which are formally captured by join relationship and

attribute mapping relationship as described in Section 2.3. Thus, schema matching speci-

fication corresponds to extracting and inferring join and attribute mapping relationships

which connect the start table with other source schemas that can provide the required

additional attributes. These other tables are called target table candidates.

Step 3: Infer schema mappings: This step consists in selecting a subset of candidate target

tables where each table can provide one or more new attributes. Thus, schema mappings

correspond to merge queries which join the start table with the selected target tables

5.4 Mediation-based Data Integration 109

to instantiate the mediated schema. Formally, this step corresponds to find and merge

schema augmentations using the exploration of a schema complement graph as described in

Chapter 3.

We provide a few examples to facilitate the comparison of data integration solutions with the

approach proposed in this thesis.

5.4.2 Examples

Example 5.2. Suppose a user wants to generate a simple dataset of one table with information

about products like their brand, category, and the amount sold per year.

Step 1: Define mediated schema: The user defines a mediated schema consisting of a single

table SALES_PRODUCTS:

SALES_PRODUCTS(PROD_SKU, BRAND, YEAR, CATEGORY_NAME, SUBCATEGORY_NAME, AMOUNT)

Step 2: Specify schema matchings: The source schema contains the following tables SALES,

PRODUCT, CATEGORY and SUBCATEGORY from Figure 2.9 on Page 33:

SALES (PROD_SKU, BRAND, YEAR, CITY, STATE, COUNTRY, AMOUNT)

PRODUCT (PRODUCT_SKU, PRODUCT_NAME, BRAND_NAME, WEIGHT, SUBCATEGORY_ID)

CATEGORY (CATEGORY_ID, CATEGORY_NAME)

SUBCATEGORY (CATEGORY_ID, SUBCATEGORY_ID, SUBCATEGORY_NAME)

The underlined attributes represent the primary key in each table.

Using the schema complement approach, the user will first choose a "start" table that contains

all key attributes of the mediated schema (table). In our case, the only possible start table is

SALES, which contains both key attributes PRODUCT_SKU and YEAR of table SALES_PRODUCTS.

Figure 5.2 shows the start table and the existing join relationships (solid lines) which are

extracted from foreign key constraints and view definitions of the source schema. Schema

matchings between the mediated schema and the source schemas that would be used to infer

schema mappings are indicated by dashed arrows.

Table 5.1 shows the schema matchings specified between the source schemas and target

(mediated) schema using the notation of [44]. Attributes of table SALES_PRODUCT are matched

with attributes of SALES, SUBCATEGORY and CATEGORY, we call this set of schemas a

cover of the mediated schema [46].

110 Chapter 5 State of the art

Figure 5.2.: Join relationships and schema matchings

Table 5.1.: Schema matchings from Figure 5.2

SALES.PROD_SKU ∼= SALES_PRODUCT.PROD_SKU

SALES.BRAND ∼= SALES_PRODUCT.BRAND

SALES.YEAR ∼= SALES_PRODUCT.YEAR

SALES.AMOUNT ∼= SALES_PRODUCT.AMOUNT

SUBCATEGORY.SUBCATEGORY_NAME ∼= SALES_PRODUCT.SUBCATEGORY_NAME

CATEGORY.CATEGORY_NAME ∼= SALES_PRODUCT.CATEGORY_NAME

We can observe, for each attribute of SALES_PRODUCT, there exists one and only one

matching between SALES, SUBCATEGORY and CATEGORY, we call them a minimal

cover of the mediated schema. Therefore, the schema matchings PRODUCT.PRODUCT_SKU ∼=
SALES_PRODUCT.PROD_SKU, PRODUCT.BRAND ∼= SALES_PRODUCT.BRAND are not shown in Fig-

ure 5.2, since attributes SALES_PRODUCT.PROD_SKU and SALES_PRODUCT.BRAND already match

with attributes PRODUCT_SKU and BRAND of table SALES.

There is a difference between our schema augmentation approach and the more general

data integration. In schema augmentation, the user selects a minimal cover of the mediated

schema, whereas data integration uses several covers of the mediated schema [46]. This

restriction reduces the complexity of the schema mapping queries (see below) generated by

schema augmentation and avoids complex data data fusion operations [50].

Step 3: Infer schema mappings: Given a set of selected schema matchings, schema mapping

inference consists in generating a merge query for populating the mediated schema. In our

example, all attributes can be provided by tables SALES, CATEGORY and SUBCATEGORY.

However, as we can see in Figure 5.2, table SALES is not directly related to the category

dimension tables and we also need table PRODUCT to find all categories and sub-categories of

5.4 Mediation-based Data Integration 111

a product. A suggested schema mapping then consists of performing a left outer-join between

tables SALES, PRODUCT, CATEGORY and SUBCATEGORY, followed by a projection on the

attributes of SALES_PRODUCTS. A left outer-join is used to keep all products in table SALES
(the primary key attribute PROD_SKU of the target table is matched with attribute PROD_SKU in

table SALES). The outer join might generate null values for non-key attributes (due to missing

tuples in the other tables). If there exists a constraint indicating that all attributes of the mediated

schema must be non-null, an inner join can be applied instead, but this would result in missing

certain products in the mediated schema.

Example 5.3. As a second data integration scenario, we use the example in Section 1.2 on

Page 4.

Step 1: Define mediated schema: The user defines a mediated schema consisting of a single

table SALES_DEM which extends an existing table SALES:

SALES_DEM (STORE_ID, CITY, COUNTRY, YEAR, AMOUNT, POP, MIN_UNEMP, MAX_UNEMP)

Step 2: Specify schema matchings: The source schema consists of the following five tables

SALES, DEM, SALESORG, TIME and REGION .

SALES (STORE_ID, CITY, COUNTRY, YEAR, AMOUNT)

DEM (CITY, STATE, COUNTRY, YEAR, POP, UNEMP)

SALESORG (STORE_ID, CITY, STATE, COUNTRY)

TIME (DATE, WEEK, MONTH, YEAR)

REGION (CITY, STATE, COUNTRY, CONTINENT)

The join relationships between these source tables are as depicted in Figure 5.3 by solid lines.

Schema matchings between the elements (tables, attributes) of the mediated schema and the

elements of source schema that would be used are indicated by dashed arrows.

Table SALES_DEM does not contain a matching to the attribute STATE of table DEM which

is the identifier of DEM. Since measure attributes POP and UNEMP depend on this attribute, the

schema matching “reduces” table DEM by aggregating the two measures POP and UNEMP along

attribute STATE. For this, we extend our notations of schema matchings with aggregate functions

(see Table 5.2).

The schema matchings between SALES_DEM and SALES, DEM shown in Table 5.2 is a

minimal cover of the mediated schema, there exist no other schema matchings between attributes

STORE_ID, CITY, COUNTRY of table SALESORG and SALES_DEM, or attributes CITY, COUNTRY

112 Chapter 5 State of the art

Figure 5.3.: Join relationships and schema matchings

Table 5.2.: Schema matching extracted from Figure 5.3

SALES.STORE_ID ∼= SALES_DEM.STORE_ID

SALES.CITY ∼= SALES_DEM.CITY

SALES.COUNTRY ∼= SALES_DEM.COUNTRY

SALES.YEAR ∼= SALES_DEM.YEAR

SALES.AMOUNT ∼= SALES_DEM.AMOUNT

SUM(DEM.POP) ∼= SALES_DEM.POP

MIN(DEM.UNEMP) ∼= SALES_DEM.MIN_UNEMP

MAX(DEM.UNEMP) ∼= SALES_DEM.MAX_UNEMP

of table REGION and SALES_DEM. When specifying the schema matchings with aggregate

functions, a first challenge for the user is to choose the correct aggregation functions that can

be applied to the attributes of the source tables. Specifically, the user must know that POP can

be summed and averaged, but UNEMP can only compute a maximal or minimal value because it

describes an unemployment ratio. The capability of aggregation is called aggregable properties

introduced in Section 2.2.6 on Page 28 which can assist user during the “reducing” process.

Step 3: Infer schema mappings: Assuming that the above matchings are correctly specified,

then {SALES,DEM} is a cover of the mediated schema selected by the user (table TIME is not

necessary since join attribute YEAR appears in both tables). The corresponding schema mapping

is a nested query which first joins SALES with DEM on their common attributes YEAR, CITY,

COUNTRY followed by an aggregation of attributes POP and UNEMP grouped by all other attributes

of SALES_DEM, i.e. STORE_ID, CITY, COUNTRY, YEAR, AMOUNT.

Listing 5.1: Data integration approach of joining SALES with DEM

5.4 Mediation-based Data Integration 113

SELECT SALES . STORE_ID , SALES . CITY , SALES .COUNTRY, SALES . YEAR , SALES .AMOUNT,

AVG(DEM. POP) AS POP ,

MIN(DEM.UNEMP) AS MIN_UNEMP,

MAX(DEM.UNEMP) AS MAX_UNEMP

FROM SALES LEFT OUTER JOIN DEM

ON SALES . CITY = DEM. CITY

AND SALES .COUNTRY = DEM.COUNTRY

AND SALES . YEAR = DEM. YEAR

GROUP BY STORE_ID , CITY , COUNTRY, YEAR , AMOUNT

Because attribute STORE_ID of SALES does not exist in table DEM and STORE_ID is the key

attribute of SALES, the left-outer join between SALES and DEM duplicates the values of

POP and UNEMP in the left-outer joins. Therefore, the schema mappings generates incorrect

values for attributes POP in SALES_DEM (MIN_UNEMP and MAX_UNEMP are computed by function

MINand MAX, they are not effected by the duplication). Existing data integration methods

are neither detecting nor resolving this problem. This is yet another difference between our

schema augmentation approach and the general data integration approaches, we generate the

corresponding schema mapping by first reducing DEM using an aggregation of attributes POP

and UNEMP, then joins SALES with the reduced DEM. The corresponding schema mapping

generated in our schema augmentation approach is as follows:

Listing 5.2: Schema augmentation approach of joining SALES with DEM

SELECT SALES . STORE_ID , SALES . CITY , SALES .COUNTRY, SALES . YEAR ,

SALES .AMOUNT, AGG_DEM. POP , AGG_DEM.MIN_UNEMP, AGG_DEM.MAX_UNEMP

FROM SALES LEFT OUTER JOIN

(SELECT CITY , COUNTRY, YEAR ,

AVG(DEM. POP) AS POP ,

MIN(DEM.UNEMP) AS MIN_UNEMP,

MAX(DEM.UNEMP) AS MAX_UNEMP

FROM DEM

GROUP BY CITY , COUNTRY, YEAR

) AGG_DEM

ON SALES . CITY = AGG_DEM. CITY

AND SALES .COUNTRY = AGG_DEM.COUNTRY

AND SALES . YEAR = AGG_DEM. YEAR

An alternative way to generate the mediated schema of Listing 5.2 using data integration

approach is to define an intermediate table: AGG_DEM, the intermediate table stores the result

of an aggregation on DEM that computes AVG(POP), MIN(UNEMP) and MAX(UNEMP) groups by

CITY, COUNTRY, YEAR. Then schema matchings between the mediated schema SALES_DEM and

114 Chapter 5 State of the art

AGG_DEM can be specified between attributes POP, MIN_UNEMP and MAX_UNEMP. Finally, the

schema mappings is inferred as a left-outer join between SALES and AGG_DEM.

The previous examples show that data integration techniques facilitate the generation of

schema mappings mainly by requiring a user to select schema matchings or providing a minimal

cover of the mediated schema. Data integration approach also deal with the cases when several

minimal covers are provided, a schema mapping would be generated for each minimal cover

then combined into one large query using union. A similar approach called Entity Complement

which also takes a combination of schema mappings will be introduced in Section 5.5.2.

Obviously, the methods presented before for the discovery of schema matching and the

generation of schema mappings can reduce the human effort. More sophisticated methods have

been proposed to refine the suggested schema mappings such as the exploitation of examples, as

described in [43]. However, with respect to our requirements explained in Chapter 1, the work

required for the user is still beyond what is expected.

5.5 Schema Augmentation and Entity Complement

5.5.1 Schema augmentation approaches for web tables

Schema augmentation is a special approach for data integration which does not require the

creation of a mediated schema. Thus all tables are part of a source database schema. A schema

augmentation workflow proceeds in three steps:

Step 1: Select start table: the user selects a start table whose schema will be augmented using

the schema of other source tables.

Step 2: Find candidate tables: the user explores the suggested schema matchings and finds a

set of matching candidate tables, called target tables, that can provide new attributes to

the schema of the start table.

Step 3: Generate augmented table: the schema mapping queries between the start table and

a selected candidate target table are generated. These mapping queries connect both

tables through a "path" of matching tables. The merge mainly consists of performing a left

outer-join between the start table, the matching tables and the target table.

More generally, schema augmentation can be applied to any kind of database table, materi-

alized or virtual (defined by a view). We now introduce several specific schema augmentation

approaches.

5.5 Schema Augmentation and Entity Complement 115

Schema complements for web tables

Originally, the idea of schema complement was developed in the context of web tables [12] with

the idea of “adding as many properties as possible to the entities of a given table while preserving

the consistency of its schema”. Schema complement is a special case of schema augmentation

where the augmented source table has the same number of tuples as the start table. The method

proposed in [12] is limited to what we call natural schema complement in Section 3.2 on Page 42.

The key to determine if a target table is a schema complement to some start table is that the

attributes in the target table which match with the start table, called common attributes, are a

key in the target table. Then, by applying left outer joins, the merge of the start table with a

schema complement table preserves all tuples in the start table without any duplication.

Example 5.4. Assuming that we have a schema contains the two tables ct_STORE and

ct_WAREHOUSE presented before in Example 5.1 on Page 103, and assume that their pri-

mary keys are respectively, (STORE_ID) and (WH_ID, COUNTRY).

Step 1: Select start table: User selects ct_STORE as the start table.

Step 2: Find candidate tables: The techniques presented in [12] are able to discover that the

domains of the attributes CITY, STATE, COUNTRY in ct_STORE and ct_WAREHOUSE are largely

overlapping and therefore are comparable (match). Schema matchings are defined for these

attributes as follows:

ct_WAREHOUSE.CITY ∼= ct_STORE.CITY

ct_WAREHOUSE.STATE ∼= ct_STORE.STATE

ct_WAREHOUSE.COUNTRY ∼= ct_STORE.COUNTRY

The common attributes between ct_STORE and ct_WAREHOUSE are CITY, STATE, COUNTRY,

but these attributes do not functionally determine all attributes in ct_WAREHOUSE. There-

fore, ct_WAREHOUSE is not a schema complement to ct_STORE and since there is no other

candidate table, we can not complement table ct_STORE.

Example 5.5. In our second scenario, suppose that we have the same source tables as in

Example 5.2, the identifier of each table being indicated by underlined attributes.

Step 1: Select start table: User selects SALES as the start table.

116 Chapter 5 State of the art

Step 2: Find candidate tables: The schema matchings are already known as specified in Exam-

ple 5.2 as shown in Figure 5.2. Table PRODUCT is a candidate schema complement to SALES,

and since their common attributes PROD_SKU and BRAND contains the primary key PROD_SKU of

PRODUCT (functionally determine all attributes of PRODUCT), table PRODUCT is a schema

complement to start table SALES.

Step 3: Generate augmented table: The corresponding schema mapping is a merge query that

takes a left outer-join of table SALES with PRODUCT on their common attributes PROD_SKU

and BRAND. The result of the merge is an augmented table SALES_CAT with the new attributes

SUBCATEGORY_ID and SUBCATEGORY_NAME.

Notice that the other candidate table SUBCATEGORY is not a schema complement to

SALES. However it becomes a schema complement to the augmented table SALES_CAT
since there exists a schema matching between SALES_CAT and SUBCATEGORY on attribute

SUBCATEGORY_ID which is the primary key of SUBCATEGORY. Similarly, after merging SALES
with SUBCATEGORY and adding the new attributes SUBCATEGORY_NAME and CATEGORY_ID, ta-

ble CATEGORY also becomes a schema complement and can be merged to add attribute

CATEGORY_NAME.

After three iterations, the final augmented SALES_PRODUCTS corresponds to the mediated

schema of Example 5.2 with the guarantee that there exists exactly one tuple in the augmented

table for each tuple in SALES (no tuple duplication).

Compared to schema integration (Section 5.2) which integrates an arbitrary number of source

schemas with a pre-defined mediated schema, schema complement builds the new integrated

schema incrementally. Instead of defining a mediated schema containing all attributes (Step 1), it

starts from a start table and uses schema matchings (Step 2) to identify the target tables that can

provide new attributes. By incrementally extending the start table with new attributes from the

target tables, the final result is a complete mediated schema which can be expressed by a single

schema mapping query that contains a set of selected source tables. This schema complement

process always makes sure that the common attributes between the start table and the target

table are a key of the target table. This avoids that the left-outer join generates duplicates for the

tuples in the start table. However, this restriction also reduces the number of candidate target

tables which can be merged with the start table. For example, it cannot address the use case of

Example 5.3 on Page 112, because it does not support merge queries with aggregation.

The second goal of building schema complements is to bring a maximum number of new

attributes and values. In particular, the approach proposed in [12] is able to populate new

attributes describing the same concept from different tables. For example, if ct_STORE is the

5.5 Schema Augmentation and Entity Complement 117

start table, it is possible to map new attributes CITY_NAME and CITY_NAME_ENG with the same

domain values to a single attribute CITY through schema complements and to populate this

attribute with the values from both domains. On the other hand, two attributes with the same

name but describe different concepts (name conflict) are mapped to two different attributes by a

adding a prefix to the attribute names.

In conclusion, the schema complement approach proposed in [12] can be considered as an

efficient solution to build new tables integrating data from different other source tables with

minimal user interaction. Moreover, if the key attributes of schemas and relationships between

schemas are known, data integration using schema complement becomes a completely automatic

task. However, because of the restriction that common attributes should contain the identifiers

of target tables, schema complement is not able to deal with target tables that are need to be

reduced, like applying an aggregation.

Keyword-based schema complement discovery

The OCTOPUS system [51] implements a series of integration-related operations like search,

extraction, data cleaning and integration within web tables. The integration operation EXTEND

enables users to “find related tables that can be joined to add new attributes to a table”.

Compared to schema complement[12], which automatically detects and adds a maximum

number of attributes to the start table, EXTEND requires two user-defined parameters to control

the augmentation process. Given a start table T , an attribute name A and a keyword k, a web

search engine returns a set of candidate tables extracted from the web pages containing keyword

k. The candidate tables are ordered by the probability of co-occurring with keyword k and by

the Jaccard distance between their attributes and attribute name A. Finally, the highest scored

schema matchings between the candidate attributes and attribute name A are selected to build

schema mappings.

Example 5.6. Consider the source schema in Example 5.2, Page 110. Given the start ta-

ble PRODUCT, the attribute SUBCATEGORY_ID and a keyword “name”, an augmented schema

generated by EXTEND is PRODUCT′ with a new attribute whose name is similar to “name”

and is related to SUBCATEGORY_ID. Firstly, search operation returns two candidate tables

SUBCATEGORY and CATEGORY that respectively contain attributes with the keyword

“name”: SUBCATEGORY_NAME and CATEGORY_NAME. By computing the compatibility between the

values in SUBCATEGORY_ID of table PRODUCT and each attribute in tables SUBCATEGORY
and CATEGORY, attribute SUBCATEGORY_ID in table SUBCATEGORY is more related be-

cause the FK-PK constraints, all the values of PRODUCT.SUBCATEGORY_ID are contained

118 Chapter 5 State of the art

in SUBCATEGORY_ID.SUBCATEGORY. Therefore, PRODUCT′ can be generated by joining

PRODUCT with SUBCATEGORY on SUBCATEGORY_ID.

The InfoGather system introduced in [13] proposed an operation ABA (Augmentation By

Attribute name) which corresponds to algorithm JoinTest used by the previous EXTEND opera-

tor [51]. Given a start table T , an ABA operation performs a merge query that augments the

start table with the specified new attribute A. This query is noted as Q (K, A) where K is the key

attribute of start table T , A is the new attribute name. Schema matchings between the start table

and the target table are detected when the target table contains K as the key attribute and the

domain values of the two key attributes overlap. Besides, tables containing attribute A are also

considered as target tables. Target tables are then ordered by their matching scores with the

start table (i.e., percentage of matched values of K). The final schema mapping query applies

left outer join of the start table and the target table with the highest score on the key attribute K.

Although ABA operation restricts the key of the start table (and the target table) to consist only

of one attribute, this could be generalized to a set of attributes.

Other systems like Data Civilizer [14] propose a similar operation called extend attribute

which describes queries that extend the start table T with new attributes that do not exist in

T . Data Civilizer constructs a schema matching graph called linkage graph and stores schema

matchings that are computed using similarity computations (schema level and entity level),

PK-FD constraints, inclusion dependencies, etc.

5.5.2 Entity complement approaches

Entity complements for web tables

Schema augmentation generates schema mapping queries using left outer joins for adding new

attributes to the tuples of some existing source table. This kind of "vertical" schema augmentation

can be combined with "horizontal" entity/data completion approaches which consist in adding

new tuples by union.

Entity complement was first introduced in the context of Web tables in [12] with the idea of

“providing complementary sets of entities to the source schema by union”. For taking the union

of two tables, their schemas must be union compatible, i.e. contain the same number of attributes

with compatible types. The entity complement workflow is similar to the schema complement

workflow:

Step 1: Select start table: the user selects a source table to be complemented.

5.5 Schema Augmentation and Entity Complement 119

Step 2: Find candidate tables: the user explores the schema matchings and selects the candi-

date tables that are related to the start table and contain new tuples which are related to

the tuples in the start table. If necessary, the candidate tables are made union compatible

with the start table (essentially by removing irrelevant attributes through projection).

Step 3: Generate complemented table: schema mappings are merge queries that take the

union of the start table and the target tables.

Example 5.7. Consider the source schema with the following tables:

SALES_SUM (COUNTRY, YEAR, AMOUNT)

INTERNET_SALES (COUNTRY, YEAR, AMOUNT)

SALESORG (STORE_ID, CITY, STATE, COUNTRY)

TIME (DATE, WEEK, MONTH, YEAR)

REGION (CITY, STATE, COUNTRY, CONTINENT)

Step 1: Select start table: The user selects SALES_SUM as the start table to be complemented.

Step 2: Find candidate table: Figure 5.4 depicts the join relationships between the source

tables in solid lines. As we can see, table INTERNET_SALES contains all the attributes of table

SALES_SUM. Therefore, table INTERNET_SALES can complete SALES_SUM with internet

sales.

Figure 5.4.: Schema matchings between source schemas

We then can extract the following to schema matchings for SALES_SUM and

INTERNET_SALES (dashed arrow in Figure 5.4):

120 Chapter 5 State of the art

Table 5.3.: Schema matching specified in Figure 5.4

SALES_SUM.COUNTRY ∼= INTERNET_SALES.COUNTRY

SALES_SUM.YEAR ∼= INTERNET_SALES.YEAR

SALES_SUM.AMOUNT ∼= INTERNET_SALES.AMOUNT

Step 3: Generate complemented table: The final schema mapping is a simple query that

performs a union of SALES_SUM with table INTERNET_SALES.

Listing 5.3: Union of SALES_SUM and INTERNET_SALES

SELECT COUNTRY, YEAR , AMOUNT

FROM SALES_SUM

UNION

SELECT COUNTRY, YEAR , AMOUNT

FROM INTERNET_SALES

The entity complement process enriches the entities in the start schema without modifying

the schema. The previous example shows that when schema matchings and mappings are

known, an entity complement can be easily applied by some user without some specific expertise.

We can compute the above result using data integration approach by specify the schema of

SALES_SUM as the mediated schema. However, INTERNET_SALES might have overlapping

values for attribute COUNTRY and YEAR with SALES_SUM. Therefore, the simple union generates

conflicting amount values for the same country and year. This is a well known problem which can

be solved using data fusion [50] instead of simple set union. In this thesis, we to solve the data

fusion problem using schema augmentations. The schema mapping generated is a left-outer join

query that joins table SALES_SUM with INTERNET_SALES on common attributes COUNTRY

and YEAR. The result table contains a new attribute INTERNET_AMOUNT which stores internet sales

amount from INTERNET_SALES.

This alternative method can be generalized for all the entity complement applied between

fact tables. It replaces entity complement by a schema augmentation that joins on the common

dimension attributes and adds the measures as new attributes to the source table.

We do not discuss entity complement in the context of dimension tables, also called master

tables in data warehouses, because merging their tuples usually entails a governance process that

includes processing steps like duplicate elimination and data fusion. This process also requires

human expert interaction.

5.6 Drill-across Queries in Multi-dimensional Databases

5.6 Drill-across Queries in Multi-dimensional Databases 121

5.6.1 Drill-across queries using conformed dimensions

Another similar notion which has been studied in multidimensional databases is the drill-across

operation (or multipass query). Drill-across operations are widely supported by many BI products

and platforms for OLAP cubes (fact tables). Initially described in [6], drilling across corresponds

to the operation which “combines performance measurements from different business processes

in a single report”. Drill-accross operations join two or more sub-queries sharing the same

identifiers (keys). These identifiers correspond to conformed-dimensions [6] identifying the

entities on which two fact tables can be joined. Kimball et al. [6] detailed different types of

conformed dimensions. Dimensions with the same dimension keys, attribute column names,

attribute definitions and attribute values are called identical conformed dimensions (it is implicitly

assumed that parent-child mappings are preserved also). Usually, identical conformed dimensions

are built from the same non-analytic table or obtained by duplication. When one dimension

only contains a subset of the attributes or rows of some base dimension, the dimension with

less attributes or rows, is called shrunken conformed dimension. Identical conformed dimensions

can be joined directly, while shrunken conformed dimensions are obtained by some aggregation

(rollup) or filtering with respect to their base dimensions.

Drill-across queries are generated by the following steps.

Step 1: Select start and target tables: the user selects a source table and some target fact

tables.

Step 2: Infer conformed dimensions: the user identifies the schema matchings between the

dimensions in the start table and the target tables. The matching dimensions are called

conformed dimensions.

Step 3: Generate schema mapping: infer the schema mapping which is a merge query that

joins the start table and the target tables using the conformed dimensions. The join query

might be applied to the result of sub-queries that aggregate or filter some tables according

to their shrunken conformed dimensions.

The formulation of drill across queries requires the identification of conformed dimensions.

Example 5.8. To illustrate the concept of conformed dimensions, consider the two fact tables

SALES and INVENTORY in Figure 2.9 on Page 33.

Step 1: Select source and target tables. The user selects table SALES as the start table and

INVENTORY as the target table.

122 Chapter 5 State of the art

Step 2: Infer conformed dimensions. Table INVENTORY has four dimensions TAX,

PROD, WAREHOUSE and TIME and table SALES has three dimensions STORE,

PROD and TIME. As shown in Figure 5.5, both tables share dimension attributes

PROD_SKU and BRAND from the same dimension table PROD and therefore have the same

domain. Therefore, PROD is identical conformed dimension which can be directly used

to formulate drill-across queries. Both tables also share dimension attribute YEAR from

dimension table TIME. However, table INVENTORY also contains attribute MONTH from

dimension table TIME. Therefore attribute YEAR is a shrunken conformed dimension

in table INVENTORY which must be aggregated along attribute MONTH before joining

with table SALES. Consider now dimension WAREHOUSE in table INVENTORY

Figure 5.5.: Fact tables SALES and SALES_SUM

and dimension STORE in table SALES. Both dimensions share attributes CITY, STATE

and COUNTRY describing the same concepts in both dimensions. However, deciding if

these two dimensions are conformed dimensions also depends on their domain values.

If WAREHOUSE only contains warehouses situated in North America while STORE

contains stores in all English speaking countries, the domain values of CITY, STATE and

COUNTRY in the two dimensions have a non-empty intersection but are not identical. Thus,

WAREHOUSE and STORE are not considered to be conformed and they cannot be

used in the drill-across query.

Step 3: Generate schema mapping. The previous step identifies the two dimensions TIME

and PROD as conformed dimensions, but not WAREHOUSE and STORE. Therefore,

is it not possible to directly apply a merge between the two tables and we first need to

reduce the dimensions in tables SALES and INVENTORY.

5.6 Drill-across Queries in Multi-dimensional Databases 123

We can relate the two notions of drill-across queries and schema augmentation. Suppose

that we want to augment the schema of SALES with the measure attributes of INVENTORY to

compare a product’s sales amount with its inventory level. By definition, schema augmentation

mainly consists in generating the following outer-join (merge) query between the source table

and its augmentation table:

Listing 5.4: Schema augmentation approach to join SALES with INVENTORY

SELECT SALES . PROD_SKU, SALES .BRAND, SALES . YEAR ,

SALES . CITY , SALES . STATE , SALES .COUNTRY, SALES .AMOUNT,

INVENT .QTY_ON_HAND

FROM SALES LEFT OUTER JOIN

(SELECT PROD_SKU, BRAND, YEAR , CITY , COUNTRY,

AVG(QTY_ON_HAND) AS QTY_ON_HAND

FROM INVENTORY

GROUP BY PROD_SKU, BRAND, YEAR , CITY , COUNTRY

) INVENT

ON SALES . PROD_SKU = INVENT . PROD_SKU

AND SALES .BRAND = INVENT .BRAND

AND SALES . YEAR = INVENT . YEAR

AND SALES . CITY = INVENT . CITY

AND SALES .COUNTRY = INVENT .COUNTRY

Suppose that we want to achieve schema augmentation using drill across queries. As defined

before, drill-across operations are only possible through conformed dimensions. This has two

consequences in our augmentation scenario. First, non-common dimensions must be removed

from each fact table (which entails to "rolling-up" the facts of each table). Second, the two fact

tables must have the same granularity on their common dimensions PROD and TIME, which is

not the case since SALES records total sales for every year and INVENTORY records inventory

levels for every month. To align the granularity of the two fact tables on TIME, the facts of

INVENTORY must be rolled up to the YEAR level. Thus, two separate pre-processing queries

Q (SALES) and Q (INVENTORY) must be defined and executed on each fact table to enable a

drill-across operation. In this case, Q (SALES) and Q (INVENTORY) are aggregation query that

computes the sum of the sales amount and average of inventory quantity on hand respectively

grouped by PROD_SKU, BRAND, YEAR (the result is shown in Figure 5.6). Then a new fact table

SALES_INVENTORY is created using an outer-join over Q (SALES) and Q (INVENTORY) in

Figure 5.6 through dimensions PROD and TIME.

Listing 5.5: Drill-across query over SALES and INVENTORY

SELECT PROD_SKU, BRAND, YEAR , SUM_AMOUNT, AVG_QTY_ON_HAND

FROM Q(SALES) AS Q_SALES FULL OUTER JOIN Q(INVENTORY) AS Q_INVENTORY

ON Q_SALES . PROD_SKU = Q_INVENTORY . PROD_SKU

124 Chapter 5 State of the art

Figure 5.6.: The integration of SALES and INVENTORY

AND Q_SALES .BRAND = Q_INVENTORY .BRAND

AND Q_SALES . YEAR = Q_INVENTORY . YEAR

SALES_INVENTORY (PROD_SKU, BRAND, YEAR, SUM_AMOUNT, AVG_QTY_ON_HAND)

In the drill-accross query scenario, the two queries Q(SALES) and Q(INV ENTORY) in the

FROM clause have to be defined by the user who wants to extend the schema of SALES with

attributes from INVENTORY. In particular, the aggregation function to apply on the measure

attributes must be properly selected. Furthermore, in comparison with the approach proposed

in this thesis, drill-across queries are more restrictive since they are limited to conformed

dimensions.

In the schema augmentation framework, drill-across queries can be simulated as a special

case with some restrictions. The first restriction is that the start and candidate tables are

necessarily fact tables. Schema matchings in drill-across queries are limited to identical and

shrunken conformed dimensions. Thus, other heuristic (similarity- and value-based) and reliable

(FK-PK constraints) schema matchings which can be used in schema augmentation but do

not lead to conformed dimensions are also excluded in the drill-across query scenario. Both

restrictions reduce many opportunities to combine fact and dimension tables with respect to

schema augmentation operations.

5.6.2 Drill-across queries using compatible dimensions

Paper [30] describes a framework for applying drill-across queries in the context of heteroge-

neous data sources. Drill-across queries are only allowed through compatible dimensions, which

reduces the limitation imposed by conformed dimensions. Two dimensions are compatible if they

match "perfectly" by satisfying three properties:

5.6 Drill-across Queries in Multi-dimensional Databases 125

1. coherency: the matching preserves the hierarchy levels;

2. soundness: the matching preserves the domain values of each level;

3. consistency: the matching preserves the child-parent value mappings between hierarchy

levels.

We illustrate the notion of compatible dimensions in the following example.

(a) Two matched dimensions

(b) Loosely coupled approach (c) Tightly coupled approach

Figure 5.7.: Two approaches to formulate compatible dimensions

Example 5.9. Consider the drill-across query scenario in Example 5.8 merging tables SALES and

INVENTORY of Figure 2.9 on Page 33. Table SALES_INVENTORY does not contain dimension

STORE (it is reduced by aggregation) because this dimension does not conform to dimension

WAREHOUSE. Dimension STORE is not compatible with dimension WAREHOUSE since

the domain values of the shared attributes are not identical (soundness condition).

We now illustrate the two ways for building compatible dimensions between WAREHOUSE

and STORE presented in [30]. The source table and target table are the same as in Example 5.8,

126 Chapter 5 State of the art

so Step 1 is identical. We then continue with step 2, inferring schema matchings between SALES
and INVENTORY. Because PRODUCT and TIME are conformed dimensions, they are also

compatible dimensions. The main goal is then to transform dimensions WAREHOUSE and

STORE into compatible dimensions. The schema matchings between the two dimensions are

shown in Figure 5.7a.

Step 2: Infer conformed dimensions

Loosely coupled approach: The loosely coupled approach generates query expressions to prop-

agate common tuples between WAREHOUSE and STORE for creating a perfect match.

Observe that the matching is consistent and coherent. We therefore must create a query

that makes the matching sound. This can be obtained by the following two semi-join query

expression applied on STORE (D1) and WAREHOUSE (D2):

E1(D1) = πCITY,STATE,COUNTRY(D1nCITY D2)

E2(D2) = πCITY,STATE,COUNTRY(D2nCITY D1)

Queries E1(D1) and E2(D2) project both tables on the common attributes CITY, STATE,

COUNTRY. Because the matching between WAREHOUSE and STORE is consistent, it

is sufficient to match both dimension tables on the lowest level attribute CITY within the

three matching attributes and we also can conclude that E1(D1)=E2(D2). The two result

dimensions shown in Figure 5.7b are now compatible.

Tightly coupled approach: The second approach to build compatible dimensions is called

tightly coupled approach which is obtained by deriving the union of WAREHOUSE

and STORE as a new dimension. This can be obtained by applying a outer join which

generates a new bottom level attribute STORE_ID_WH_ID, the new bottom level attribute is a

concatenation of values in STORE_ID and WH_ID.

Listing 5.6: Query QD

SELECT CONCAT(STORE_ID , WH_ID) AS STORE_ID_WH_ID ,

STORE_ID , WH_ID,

CITY , STATE , COUNTRY

FROM STORE JOIN WAREHOUSE

ON STORE . CITY = WAREHOUSE. CITY

AND STORE . STATE = WAREHOUSE. STATE

AND STORE .COUNTRY = WAREHOUSE.COUNTRY

The new dimension is shown in Figure 5.7c, and a perfect match of dimensions

WAREHOUSE and STORE.

5.6 Drill-across Queries in Multi-dimensional Databases 127

Step 3: Generate schema mapping. The schema mapping is built by joining Q 2(SALES) and

Q 2(INVENTORY) using conformed dimensions PROD and TIME, and compatible dimen-

sions E1(D1), E2(D2) as shown in Figure 5.8a (or D as shown in Figure 5.8b). Q 2 aggregates

group-by attributes PROD_SKU, BRAND, YEAR, CITY and COUNTRY.

Listing 5.7: Query to generate SALES_INVENTORY_2

SELECT PROD_SKU, BRAND, YEAR , CITY , COUNTRY, SUM_AMOUNT, AVG_QTY_ON_HAND

FROM Q2(SALES) JOIN Q2(INVENTORY)

ON Q2(SALES) . PROD_SKU = Q2(INVENTORY) . PROD_SKU

AND Q2(SALES) .BRAND = Q2(INVENTORY) .BRAND

AND Q2(SALES) . YEAR = Q2(INVENTORY) . YEAR

AND Q2(SALES) . CITY = Q2(INVENTORY) . CITY

AND Q2(SALES) .COUNTRY = Q2(INVENTORY) .COUNTRY

The result table SALES_INVENTORY_2 has the following schema:

SALES_INVENTORY_2 (PROD_SKU, BRAND, YEAR, CITY, COUNTRY, SUM_AMOUNT, AVG_QTY_ON_HAND)

Compatible dimensions using the loosely or tightly coupled approaches relax the restriction

for conformed dimensions that domain values and attribute names must be identical. New

schema matchings can be found using the two approaches for creating compatible dimensions

by generating new hierarchies. In the loosely coupled approach, the dimension hierarchies are

reduced to the set of common attributes and all other attributes are removed (for example,

attribute WH_ID in WAREHOUSE and attribute STORE_ID in STORE are removed). Removing

attributes is a significant modification of the existing dimensions that also has a string impact

on the related fact tables which must be examined by the data experts. In the tightly coupled

approach, all attributes of all dimensions are preserved which might result in a complex hierarchy

(for example D). As we will discuss in Section 5.7, complex hierarchy structures also introduce

new issues for correctly aggregating data over these structures. In addition, drill-across queries

using compatible dimensions are still restricted to fact tables.

5.7 Summarizable Analytic Tables
The notion of summarizability was introduced in the context of analytic tables with two

different but related perspectives, which are the statistical and multidimensional (OLAP) data

modeling perspectives. A common problem is to define correctness conditions for the computation

of an aggregate query over an analytic table. In this section, we are mainly interested in

conditions that are expressed over a database schema or an aggregate query. We review existing

approaches, compare each proposition with our work, and emphasize the original contributions

128 Chapter 5 State of the art

(a) Integration using dimensions E1(D1) and E2(D2)

(b) Integration using dimension D

Figure 5.8.: The integration of SALES and INVENTORY using compatible dimensions

of our work. To facilitate comparisons, we use the notations for analytic tables introduced in this

thesis to describe the propositions made in previous works.

5.7.1 Summarizability in statistical data models

The notion of summarizability was initially defined by Rafanelli and Shoshani [52] for statistical

databases and later refined in [23]. In this context, base data, also referred to as "micro-data",

describe all the details about the objects or individuals over which a summarization operation

can be applied to produce a so-called statistical object, also referred to as "macro-data". Using

the terminology defined in this thesis, base data can be modelled as either a non-analytic table

or a fact table that has the finest possible granularity, summarization operations are aggregate

queries with a semantics that ignores group-by attributes having null values, and a statistical

object can be modeled as a fact table that results from a summarization operation over the base

data. However, specific assumptions are made on a fact table. Firstly, all facts in a fact table have

5.7 Summarizable Analytic Tables 129

the same granularity, which means that all measure attributes depend on all the dimensions

of a fact table, and not a subset of those dimensions. Secondly, all dimensions in a fact table

are independent (that is, no dimension functionally depends on other dimensions). Thirdly, a

measure attribute A is associated with the list of summary functions (i.e., aggregate functions)

that can be applied to A. Dimensions, in the statistical data model of [23], are restricted to strict

hierarchy types, that is, each attribute of a dimension has at most one parent attribute in the

hierarchy type. Hierarchy types have a single bottom and top level attribute.

Summarizability is defined as the property of a statistical data model which “guarantees

correct results of summary operations over statistical objects”. More precisely, suppose we

have a statistical object modeled as a fact table T (S) and a summarization query1 Q over T ,

Q = Agg∗T (F (A)|X), where A is a summary attribute in S, F is a function "applicable" to A (this

notion will be explained below), X is a set of dimension attributes in S, and Agg∗ denotes a

summarization operation that does not consider tuples with null values in X attributes. We

shall say that attribute A is summarized along the dimension attributes that are not in X. We

also assume that T is itself built using a summarization query from a base table T0. Then, the

summarizability property consists of defining conditions under which the summarization query Q

is correct, which means that there exists a function G such that: Agg∗T0
(F (A)|X) = Agg∗T (G(A)|X).

Thus, summarizability is formulated at the level of a given summarization query.

Three necessary conditions are proposed by Lenz and Shoshani in [23] to check whether a

summarization query Q = Agg∗T (F (A)|X), as defined above, is correct. Let SD be the set of

dimension attributes for dimension D in S, and S>D be the bottom level attribute of SD. The

conditions defined in [23] are:

1. Disjointness. For each dimension D along which summarization is done in Q, the child-

parent value mappings between the dimension attributes of D in T0 should be many to

one. This could be expressed by requiring that the corresponding edges in the attribute

graph of dimension D are labelled as f .

2. Completeness with respect to F (A). For each dimension D of T the domain of values of each

attribute in SD in T , must be complete, that is: (1) the attribute values of S>D contains all

possible values with respect to T0, as required by F (A), and (2) every value of a dimension

attribute that is a child level of S>D must map to a parent value in S>D within T0.

3. Applicable summary function. Summary function F (A) should be "applicable" with respect

to all dimensions along which summarization is done in Q .

1We use the expression "summarization query" to distinguish it from aggregation query, which uses the SQL semantics
for null values.

130 Chapter 5 State of the art

We comment each condition. The first condition imposes that each hierarchy along which

summarization is done is strict, which actually implies that the lowest level attribute of each

dimension is the identifier of the dimension. In the original formulation of [23], the disjointness

condition is expressed over the attributes of D in T0 that are sub-levels of the attributes of SD−X
but the authors also impose, by definition of a statistical object, that the hierarchy of attributes

in SD is strict. We then grouped all conditions in our formulation of the first condition. In our

work, we address the problems raised by non-strict hierarchies by propagating the aggregable

properties of an aggregable attribute after an aggregation is done (see Proposition 3.6). Note

that a related problem, is the detection of ambiguous analytic tables (see Definition 3.13) and

ambiguous queries. We however do not reject ambiguous queries as [23] do by imposing strict

hierarchies in T , but instead nullify summary attribute values for those tuples that are ambiguous

in the result of an aggregate query. This will be illustrated later.

The second condition on completeness has multiple facets. One is the interpretation of expres-

sion "all possible values" in item (1) of the condition. Take for instance table STORE_SALES
shown in Table 5.7a, how do we know that all possible values are listed in the domain of attribute

STORE_ID? One interpretation is that we have an external knowledge of whether the list of all

values listed in the base table T0 from which the statistical object T is built is complete. The

other interpretation is that the only possible values are exclusively those listed in the base table

T0. We used this later interpretation. In our work, we assume the existence of a dimension table,

like SALESORG, that contains all stores. We therefore adopt a Closed World Assumption [16]

on the dimension table: the only dimension values that exist are those listed in the dimension

table.

Another facet of the completeness condition is that item (1) is asserted with respect to a

summarized attribute F (A). This means that the user who is formulating query Q must decide

whether completeness is needed or whether the values listed in T are sufficient to compute a

summary attribute. In our work, we follow a similar approach by providing the option to the

user to decide if completeness must be enforced during a merge (see algorithms in Section 4.5).

However, our completeness requirement is weaker as we shall see in Example 5.11 below.

Finally, the third facet of the completeness condition is captured in the condition of item

(2). It implies that the bottom level dimension attributes in T are mandatory. We do not have

such a restriction in our work due to our interpretation of nulls and our use of (SQL) aggregate

operations that handle null values as regular values.

The third condition in the definition focuses on testing the compatibility between the type

of dimensions and the type of measures used in T . The following types of measures are

distinguished: stock (i.e., a simple value at a particular point in time), flow (i.e., cumulative

5.7 Summarizable Analytic Tables 131

values over a period) and value-per-unit (i.e, determined value for a fixed time). Dimensions can

be of type temporal or non-temporal. When a measure attribute A is aggregated using a given

function over some dimension D, the types of A and D should be compatible with respect to

that function. For instance, let us consider the two common aggregate functions: SUM and AVG.

Measure attribute ANNUAL_INCOME is a measure of type flow so it can be summed and averaged

over both temporal and non-temporal dimensions. Attribute BALANCE of credit cards is a measure

of type stock, so it cannot be summed up over temporal dimensions like TIME, but it can be

averaged over non temporal dimensions. Finally, attribute ITEM_PRICE is of type value-per-unit, so

it cannot be summed over any dimension but it can be averaged. In our work, the third condition

of [23] is captured by our more general notion of "aggregable property" but we leave open the

method by which aggregable properties are obtained.

We now illustrate the possible correctness issues that arise when a summarization query is

expressed over a fact table and draw a comparison with our work.

Table 5.4.: Table PRODUCT_LIST

PROD_SKU BRAND COUNTRY YEAR QTY

cz-tshirt-s COCA COLA United States 2017 5 000
cz-tshirt-s COCA COLA United States 2018 7 000
cz-tshirt-s ZARA Spain 2017 5 000
cz-tshirt-s ZARA Spain 2018 7 000
coca-can-33cl COCA COLA United States 2017 10 000

Example 5.10. Consider the base table PRODUCT_LIST (PROD_SKU, COUNTRY, BRAND, YEAR,

QTY) defined over dimension MKT_PROD and TIME whose instance is displayed on Ta-

ble 5.4. We assume that all products are listed in PRODUCT_LIST. Suppose that we define

a statistical object PRODUCT_SUM (BRAND, YEAR, TOTAL) built using a summarization query:

Agg∗PRODUCT_LIST (COUNT_DISTINCT(PROD_SKU)|BRAND, YEAR), whose result is displayed on

Table 5.5.

Table 5.5.: Table PRODUCT_SUM

BRAND YEAR TOTAL

COCA COLA 2017 2
COCA COLA 2018 1
ZARA 2017 1
ZARA 2018 1

Now, consider a summarization query:

Q1 = Agg∗PRODUCT_SUM (SUM(TOTAL)|BRAND)

132 Chapter 5 State of the art

that aggregates TOTAL along dimension YEAR. The disjointness condition of [23] is obviously

satisfied by dimension TIME. However, aggregable attribute TOTAL is of type stock, which means

that, by the third condition of [23], it cannot be summed up along a temporal dimension like

TIME. Indeed, the number of distinct products by brand reported by query Q1 (e.g., value 2

for brand ZARA) would be different from the number directly computed from PRODUCT_LIST
(e.g., 1 for brand ZARA). Hence, query Q1 is considered to be incorrect.

Now, consider another query:

Q2 = Agg∗PRODUCT_SUM (SUM(TOTAL)|YEAR)

Here, the disjointness condition is not satisfied since for dimension MKT_PROD the product

“cz-tshirt-s” maps to different BRAND values. Again, the number of distinct products by year

reported by query Q2 (e.g., value 2 for year 2018) would be different from the number directly

computed from PRODUCT_LIST (e.g., 1 for year 2018). Hence, query Q2 is also considered to

be incorrect. Thus, no further summarization of PRODUCT_SUM is possible.

By comparison with our work, the same result is obtained by observing that the answer

to the following question is negative: "In PRODUCT_LIST, is PROD_SKU summarizable with

respect to COUNT_DISTINCT and X = {BRAND, YEAR}"? Per Proposition 3.5, the answer

would be positive if: (1) aggPROD_SKU(COUNT_DISTINCT, {PROD_SKU, COUNTRY}) holds in

PRODUCT_LIST, and (2) the literal functional dependency SD −X 7→ X, where SD is the set

of dimension attributes, holds in PRODUCT_LIST. Condition (1) is verified since PROD_SKU is

aggregable using COUNT_DISTINCT along any dimension attribute. However, SD−X, which is

{PROD_SKU, COUNTRY}, does not determine X, and therefore condition (2) is not satisfied. Hence,

we conclude that PRODUCT_SUM enables incorrect summarization operations (by comparison

to PRODUCT_LIST).

Table 5.6.: Table PRODUCT_LIST

PROD_SKU BRAND COUNTRY YEAR QTY

cz-tshirt-s-17 COCA COLA United States 2017 5 000
cz-tshirt-s-18 COCA COLA United States 2018 7 000
cz-tshirt-s-17 ZARA Spain 2017 5 000
cz-tshirt-s-18 ZARA Spain 2018 7 000
coca-can-33cl COCA COLA United States 2017 10 000

We can also detect which aggregation query is correct over PRODUCT_SUM by computing

the aggregable properties on attribute TOTAL using propagation rules (see Proposition 3.6).

For instance, take query Q1. As explained before, aggPROD_SKU(COUNT_DISTINCT, X ′)
holds in PRODUCT_LIST, where X ′ contains all dimension attributes of PRODUCT_LIST.

5.7 Summarizable Analytic Tables 133

So if S is the schema of PRODUCT_LIST, X ′ ∩ S = {BRAND, YEAR}. The dimension

attributes of PRODUCT_SUM that are not determined by the dimension attributes of

PRODUCT_LIST not in PRODUCT_SUM is: K = {BRAND, YEAR}, so X = X ′ ∩ S − K = ∅,
and aggTOTAL(COUNT_DISTINCT, ∅) holds in PRODUCT_SUM. However, suppose that table

PRODUCT_LIST is such that a given product gets a different PROD_SKU every year (so the table

could look like Table 5.6), then the LFD PROD_SKU 7→ YEAR would hold in PRODUCT_LIST
and we would have: K = {BRAND}, hence aggTOTAL(COUNT_DISTINCT, YEAR) holds in

PRODUCT_SUM and query Q1 is now correct. We currently do not check LFD across di-

mensions and require that such an aggregable property is explicitly provided by the user to

enable query Q1 (the default empty set is currently automatically generated).

Example 5.11. Consider another statistical object modeled by a fact table STORE_SALES
shown in Table 5.7a where STORE_ID, CITY, STATE and COUNTRY are attributes of dimension

SALESORG, attribute YEAR is from dimension TIME and attribute AMOUNT represents the

sales amount of each store. This table is computed using a summarization query from table

SALES (PROD_SKU, BRAND, MONTH, YEAR, STORE_ID, CITY, STATE, COUNTRY, AMOUNT). We assume

that AMOUNT is a measure of type flow which can be summed over any dimension. We also

suppose also that all possible values for the dimension are listed in a table SALESORG with

STORE_ID as a dimension identifier.

Table 5.7.: Fact and dimension table

(a) STORE_SALES

STORE_ID CITY STATE COUNTRY YEAR AMOUNT

Oh_01 Dublin Ohio USA 2017 3.2
Ca_01 Dublin California USA 2017 5.3
Oh_01 Dublin Ohio USA 2018 8.2
Ca_01 Dublin California USA 2018 6.3
Pa_01 Paris - France 2017 45.1

(b) SALESORG

STORE_ID CITY STATE COUNTRY

Oh_01 Dublin Ohio USA
Ca_01 Dublin California USA
Ca_02 Palo Alto California USA
Pa_01 Paris - France

Consider a summarization query:

Q1 = Agg∗STORE_SALES(SUM(AMOUNT)|CITY)

134 Chapter 5 State of the art

that adds all amounts by city (so, aggregate along dimension attributes of SALESORG and

TIME). The result is displayed in Table 5.8a. The disjointness condition of [23] is not satisfied

since for dimension SALESORG city “Dublin” maps to different STATE values.

By comparison with our work, we would propagate the aggregable property of

AMOUNT from SALES to STORE_SALES using rule Proposition 3.6 case 1, which yields

aggAMOUNT(SUM, {AMOUNT, X}), where X is the set of dimension attributes in STORE_SALES
since function SUMis distributive using SUM. Hence, we consider AMOUNT to be summarizable

with respect to SUMand X. However, we would say that the summary value for the tuple with

city “Dublin” is ambiguous (because it would add up the amounts of stores “Oh_01” and “Ca_01”).

Thus, we would return a null value for SUM(AMOUNT) while the tuple for “Paris” that is not

ambiguous will be returned with aggregated value 45.1 (See Table 5.9a).

Table 5.8.: Results of summarization queries

(a) Q 1(STORE_SALES)

CITY SUM(AMOUNT)

Dublin 23
Paris 45.1

(b) Q 2(STORE_SALES)

STATE SUM(AMOUNT)

Ohio 11.4
California 11.6

To illustrate the completeness issue, consider now the following query:

Q 2 = Agg∗STORE_SALES(SUM(AMOUNT)|STATE)

that adds all amounts by state (see Table 5.8b. Assuming that SUM(AMOUNT) requires a complete

answer, the second condition of [23] is not satisfied by item (1) since attribute STORE_ID does

not contain all stores for STATE ‘California’. Indeed, Q 2 is considered to return an incorrect

SUM(AMOUNT) value for ‘California’ because STORE_SALES "misses" the sales amount of store

Ca_02. However, if STORE_SALES is supposed to contain all sales for the current month (i.e.,

Ca_02 did not sell anything) we could consider that item (1) of the completeness condition is

not violated for SUM(AMOUNT) in query Q 2.

To compare with our work, if STORE_SALES was only containing sales for state ‘Ohio’,

we would consider query Q 2 to be complete because no city is missing from state ‘Ohio’ in

SALESORG. The completeness condition of [23] would still not be satisfied.

Item (2) of the second condition is also not satisfied because city ‘Paris’ does not map to a

parent value in attribute STATE. Indeed, if we add all amounts in the result of Q2 we get a value

of 23 which is obviously not the correct total amount. In our context, the result of Q2 would

contain a tuple with an amount value of 45.1 for value of state null (See Table 5.9b). Hence,

completeness would not be compromised.

5.7 Summarizable Analytic Tables 135

Table 5.9.: Results of aggregation queries

(a) Q 1(STORE_SALES)

CITY SUM(AMOUNT)

Dublin -
Paris 45.1

(b) Q 2(STORE_SALES)

STATE SUM(AMOUNT)

Ohio 11.4
California 11.6
- 45.1

5.7.2 Summarizability in multidimensional data models

In a multidimensional database context, summarizability refers to the property that “the

correct computation of higher-level aggregates over a fact table can be obtained from previously

available lower-level aggregates over the same table”. There, the definition of summarizability is

equivalent to the definition we introduced in Definition 3.10 on Page 51. Given a summarization

query Q = Agg∗T (F (A)|X) over a fact table T , we want to know if A is summarizable with respect

to F and X, that is, higher-level aggregates F (A) can be computed correctly from the result

of Q using any query Q ′ = Agg∗Q (F (A)|X′), where X ′ ⊂ X and A is the name of the attribute

computed by F (A) in Q . While [23] is interested to characterize which query Q ′ is correct, the

summarizability conditions for an attribute with respect to a function and a set of dimension

attributes is interested to capture properties that will make any query Q′ correct. We shall see

that it is however possible to characterize summarizability at the level of a query when the

general property does not hold.

In this context, we review different solutions that have been proposed to either detect if an

aggregation over a fact table is summarizable, or process an aggregation query in such a way

that future incorrect aggregations are prevented.

Other solutions propose an alternative modeling of analytic data, or methods to modify the

representation of dimension data, to enforce summarizability of aggregation queries. We do not

consider these solutions in the following sections and a survey can be found in [26].

Conditions over hierarchies and functions

In [21], [29], Pedersen et al. use a more general data model for analytic data than the model

of [23]. As we did before, we describe the data model of [21] using our notations and we

ignore very specific concepts that were introduced to deal with time-varying dimensions and

precision.

136 Chapter 5 State of the art

In [21], dimensions can include multiple hierarchies, that is, the hierarchy type associated with

a dimension can be non-strict. Fact tables are also generalized as follows. There is no distinction

of measure attributes in a fact table. Any attribute is aggregable, or can be a summary attribute

using the terminology of [23]. This specificity has however no impact on the summarizability

conditions since we are interested in characterizing queries over fact tables in which aggregated

attributes are indicated. Thus, we shall ignore that specificity in the rest. Facts in a fact table are

defined over all dimensions but some values of dimension attributes may not be characterized

and hence have a null value. Dimensions in a fact table can have mutual dependencies, that is,

the value of one dimension can depend on the values of other dimensions. Finally, each attribute

is associated with the type of aggregate function that can be applied to it. More specifically, [21]

distinguishes between three types of aggregation functions:

1. Σ functions, which are applicable to data that can be added together,

2. Φ functions, which are applicable to data that can be used for average calculations, and

3. c functions, which are applicable to data that can only be counted.

Considering the standard aggregation functions, we have Σ = {SUM,COUNT,AVG,MIN,
MAX}, Φ = {COUNT,AVG,MIN,MAX} and c = {COUNT}. The aggregation types are

ordered in increasing order as: c, Φ, Σ.

Given a summarization query Q = Agg∗T (F (A)|X) over a fact table T , we want to know if A is

summarizable with respect to F and X, that is, higher-level aggregates F (A) can be computed

correctly from the result of Q using some query Q ′ = Agg∗Q (F (A)|X′), where X ′ ⊂ X and A is

the name of the attribute computed by F (A) in Q . Note that this requires that both Q and Q ′

are correct queries in the sense of [23]. However, the characterization of summarizability is

expressed with respect to the summarization operation done in Q .

Given a summarization query Q = Agg∗T (F (A)|X) over a fact table T , the conditions proposed

by Pedersen et.al. in [21] to determine if A is summarizable with respect to F and X are the

following. We denote XD as the set of dimension attributes for dimension D in X.

1. Function F must be applicable to A, that is, F must belong to the aggregation type of A.

2. Function F must be distributive over the domain of values in A.

3. For every dimension D, all the paths from the bottom level attribute up to the attributes

XD must be strict in D (Definition 2.9 on Page 24).

4. For every dimension D, all the hierarchies up to the attributes XD must be onto (Defini-

tion 2.7 on Page 23) and covering (Definition 2.8 on Page 24).

5.7 Summarizable Analytic Tables 137

We now comment each condition and draw comparisons with the conditions of Lenz and

Shoshani [23] and our work. The first condition of [21] assumes, like in [23], that we know

the functions that are applicable to an aggregable attribute. However, the notion of aggregation

type goes further since it also partially captures the notion of applicable function as defined in

[23]. This is partially done because, unlike [23] which considers the temporality of dimensions,

an aggregation type is not defined with respect to the type of dimensions along which a

summarization can be performed. For the same reason, the notion of aggregation type is weaker

than our notion of aggregable property (Definition 2.12) that specifies the maximum number of

dimensions along which an aggregation function can be applied.

The second condition uses a definition of distributive function that is more restrictive than our

Definition 3.11 because it requires that F is such that for any two sets, V1 and V2, F (V1,∪V2) =
F (F (V1) ∪ F (V2)). Thus, functions like COUNTare discarded. Otherwise, the second condition

is similar to our Proposition 3.4. It also relates to the third condition of [23], as shown previously

in [20], which compares the categorization of measures of [23] with the notions of additive and

semi-additive measures.

The third condition given by the strictness requirement is similar to the first condition of [23].

The same comparison we made with our work before also applies to this condition.

In the fourth condition, the onto and covering requirements are related to a semantics of

aggregation that ignores null values in group-by attributes. These requirements are equivalent

to item (2) of the second condition (completeness) of Lenz and Shoshani [23] but does not

cover item (1) which is ignored in [21]. Indeed, suppose that store ‘Pa_01’ is removed from both

STORE_SALES and SALESORG in Example 5.11. Then, according to the definition of [21],

AMOUNT is summarizable with respect to SUM and grouping attribute STATE. Therefore query Q2

is considered to be correct while it does not meet item (1) of the completeness condition of [23].

In our work, we assume a standard SQL semantics of aggregation which treats a null value as a

regular value, so the previous anomalies targeted by the onto and covering requirements do not

exist.

Multidimensional normal forms

Several works proposed multidimensional normal forms for analytic tables that provide guaran-

tees for the correctness of summarization queries [19], [24]. These normal forms can be used

to design dimension and fact tables over which correct summarization queries can be easily

detected and evaluated.

138 Chapter 5 State of the art

We first describe the multidimensional data model considered by these previous works using

our terminology and notations. Dimensions are instances of hierarchy types that satisfy some

constraints: the levels of a hierarchy type can be either mandatory or optional and there exist a

single bottom level type and an implicit top level type, called ALL. In the attribute graph defined

over the attribute hierarchy of a dimension, an optional level corresponds to an attribute that can

be bypassed and whose value in a dimension table can be null. The hierarchy in each dimension

is strict (in the sense of NFD), that is, each arc in the attribute graph of the dimension between

two attributes Ai and Aj , such that Ai 4 Aj , is labelled with a 1. A dimension is also associated

with a (possibly empty) set of context dependencies: let Ai and Aj be two dimension attributes of

a dimension D such that Ai is optional, Aj 6= ALL, and Ai 4 Aj . If c ∈ dom(Aj) and c 6= null,

then (Ai, Aj , c) is a context dependency for D stating that for every tuple t of the dimension

table, t.Aj = c⇔ t.Ai 6= null. Intuitively, the interpretation of a context dependency is that Aj
plays the role of a discriminating attribute in the hierarchy and value c is the discriminating

value to indicate when the optional attribute Ai has a non-null value. Note that the use of an

equivalence (⇔), in the above formula, is quite strong since it forces the existence of a single

discriminating value.

A fact table is defined over a set of dimensions at the finest level of detail, that is, all dimension

attributes of a dimension are included in the schema of the fact table, and each measure in the

fact table is determined (in the sense of NFD dependencies) by the set of bottom level dimension

attributes in each dimension. We assume for simplicity here that, unlike [24], measures do not

depend on each other, which does not limit the generality of the conditions for summarizability

discussed later in this section. In addition, summarizability constraints in [24] express which

measure in a fact table may be aggregated along what dimension hierarchy according to what

aggregation function whereas [19] uses the same categorization of measure attributes as [23].

However, unlike the aggregable properties proposed in this thesis, no formal treatment of

summarizability constraints is provided in [24].

By comparison with [23], fact tables here model "micro data" because they represent facts at

their lowest level of granularity. Note that although fact tables in [21] can represent facts at a

coarser granularity, their summarizability conditions impose that the bottom level dimension

attributes of each dimension determine (in NFD sense) measure attributes. Next, as in [21] and

unlike [23], non-strict hierarchy types are allowed as well as optional dimension attributes. In

[21], fact tables allowed dimensions that are mutually dependent but, as said before, this has no

impact on summarizability. The novelty of [19], [24] in comparison with [21] is the addition of

context dependencies to the data model.

5.7 Summarizable Analytic Tables 139

Table 5.10.: PROD_SALES

PROD_SKU SUBCATEGORY CATEGORY BRAND AMOUNT

p_01 Video projector video Epson 42
p_02 TV video Philips 58
p_05 TV video Samsung 90
p_03 Radio audio Philips 45
p_04 CD-player audio Samsung 5

In [19], the following multidimensional normal form, called MNF, is proposed for a fact table

(we actually combined in our definition below the conditions originally expressed as Dimensional

Normal Form and Multidimensional Normal Form in [19]).

Let T be a fact table defined over a set of dimensions with a measure (summary) attribute A.

Table T is in Multidimensional Normal Form (MNF) if the following conditions are satisfied:

1. For each dimension of T , (1) dimension attributes are all mandatory attributes, and (2)

the values of the bottom level dimension attribute in the dimension are complete.

2. All dimensions are mutually independent, i.e., there is no NFD between any two dimension

attributes of two distinct dimensions.

3. The set of (unique) bottom level attributes of all dimensions functionally determines (FD)

attribute A.

Example 5.12. Fact table STORE_SALES of Table 5.7a on Page 134 is not in MNF since

condition 1 is violated (e.g., STATE is optional). The fact table PROD_SALES displayed in

Table 5.10 (using dimension PROD(PROD_SKU, SUBCATEGORY, CATEGORY, BRAND) whose attribute

graph is depicted in Figure 2.6 on Page 22) is in MNF if we assume that all products are listed in

the table.

Let T be a fact table in MNF, and Q = Agg∗T (F (A)|X) be a summarization query over T . Then,

using the same definition of summarizability as before (on Page 137), A is summarizable with

respect to F and X if F is applicable to A with respect to any subset of X in the result of Q .

Here, the notion of applicability of F to A can be expressed using either the categorization of

attributes [19] or the summarizability constraints on A [24], the later being more ambiguous as

we stated earlier.

We now comment each condition in the definition of MNF. In the first condition, item (1) is

equivalent to the conditions on hierarchies expressed by [21]. Indeed, if all dimension attributes

are mandatory they cannot have null values and all NFD become FD between attributes, which

implies that the hierarchy is strict. Since there are no null values, all hierarchies are also covering.

140 Chapter 5 State of the art

The third condition of the definition implies that all the hierarchies are also onto since bottom

level attributes cannot have null values by definition of FD. Item (2) of the first condition is

analogous to the completeness condition of [23]. Here again, the means to test this requirement

are left unspecified and seem to require some external knowledge. Note that in [24], this point

on completeness is simply dismissed. Finally, the second condition is not really needed for

summarizability; it has been added to assure that dimensions do not share dimension attributes.

Note that in [24], this condition is expressed by requiring that for every measure A of T , the

bottom level dimension attributes in the schema of T form a primary key in T and there is no

other primary key for A.

Since the conditions provided by MNF for summarizability are similar to the previous work of

[23] and [21], the same remarks apply for the comparison with our work.

The previous definition of MNF is quite restrictive since the data model allows fact tables to

have optional dimension attributes which are forbidden by MNF. The next definition extends

MNF to a so-called Generalized Multidimensional Normal Form (GMNF) as follows. We describe

here the slightly more general definition of [24].

Let T be a fact table defined over a set of dimensions with a measure (summary) attribute

A, T is in Generalized Multidimensional Normal Form (GMNF) if the following conditions are

satisfied:

1. For each dimension D of T : (1) for every optional dimension attribute Ai of D, there exists

a context dependency (Ai, Aj , c) in D, (2) the values of the bottom level dimension attribute

in D are complete.

2. All dimensions are mutually independent, i.e., there exists no NFD between any two

dimension attributes of two distinct dimensions.

3. The set of (unique) bottom level attributes of all dimensions functionally determines (FD)

attribute A.

We comment these conditions. Item (2) of the first condition, as well as the second and

third conditions are inherited from MNF. The true difference is brought by item (1) of the first

condition. It constrains the semantics of every optional dimension attribute Ai so that there exists

at an upper level an attribute Aj that plays the role of discriminator for Ai. Note that Aj can itself

be an optional attribute, in which case there will again be a context dependency (Aj , Ak, c
′) in

D. Eventually, the discriminator attribute will be a mandatory attribute since by definition of

context dependency, the upper level attribute cannot be ALL.

5.7 Summarizable Analytic Tables 141

Table 5.11.: PROD_NEW_SALES

PROD_SKU SUBCATEGORY CATEGORY VIDEO_RES BRAND AMOUNT

p_01 Video projector video 1920x1080 Epson 42
p_02 TV video 3840x2160 Philips 58
p_05 TV video 3840x2160 Samsung 90
p_03 Radio audio - Philips 45
p_04 CD-player audio - Samsung 5

Example 5.13. Consider an extended version of the product dimension PROD_NEW , whose

attribute graph is depicted in Figure 5.9, in which a new attribute VIDEO_RES is added such that

VIDEO_RES 4 CATEGORY and PROD_SKU 4 VIDEO_RES. Consider the fact table PROD_NEW_SALES
over PROD_NEW whose instance is displayed in Table 5.11.

Figure 5.9.: Attribute graph of PROD_NEW

Now, assume that we have a context dependency associated with PROD_NEW :

(VIDEO_RES, CATEGORY, ‘video’). Then, table PROD_NEW_SALES is in GMNF if we assume that

all products are listed in the table. It is easy to see that conditions 2 and 3 are satisfied on the

attribute graph. Condition 1 is also satisfied because the only optional attribute VIDEO_RES has an

upper level discriminating attribute with value ‘video’.

Suppose that we add another optional attribute LED_TECH to PROD_NEW such that:

LED_TECH 4 VIDEO_RES, LED_TECH 4 SUBCATEGORY and PROD_SKU 4 LED_TECH. This leads to a

new dimension PROD_NEW2 whose attribute graph is depicted in Figure 5.10. If we add a

context dependency associated with PROD_NEW2: (LED_TECH, SUBCATEGORY, ‘TV’), then table

PROD_NEW_SALES2, defined over PROD_NEW2, with an instance displayed in Table 5.12,

is still in GMNF.

Figure 5.10.: Attribute graph of PROD_NEW

142 Chapter 5 State of the art

Table 5.12.: PROD_NEW_SALES2

PROD_SKU SUBCATEGORY CATEGORY VIDEO_RES LED_TECH BRAND AMOUNT

p_01 Video projector Video 1920x1080 - Epson 42
p_02 TV Video 3840x2160 LED UHD 4K Philips 58
p_05 TV Video 3840x2160 OLED UHD 4K Samsung 90
p_03 Radio Audio - - Philips 45
p_04 CD-player Audio - - Samsung 5

As a final example, fact table STORE_SALES of Table 5.7a on Page 134 is not in GMNF since

condition 1 is violated. The optional STATE has a null value for different countries and it is not

possible to create a single context dependency for attribute STATE using either attribute COUNTRY

or CONTINENT.

Similarly to MNF, we can now define summarizability for fact tables in GMNF as follows. Let

T be a fact table in GMNF, and Q = Agg∗T (F (A)|X) be a summarization query over T . Then, A is

summarizable with respect to F and X if :

1. F is applicable to A with respect to any subset of X in the result of Q .

2. One of the two conditions hold:

a) X does not contain any optional dimension attribute, or

b) if X contains an optional attribute Ai then let (Ai, Aj , c) be the associated context

dependency, a filter condition: Aj = c must be applied on T before the summarization

query is applied

In other words, summarizability holds provided that a subset of the fact table is considered,

and this subset is given by the context dependencies of the dimensions over which the fact table

is defined.

Example 5.14. Consider a summarization query Q 1 that adds AMOUNT in table

PROD_NEW_SALES2 grouped by CATEGORY and BRAND. Then AMOUNT is summarizable with

respect to SUM and X = {CATEGORY, BRAND} because SUM is still applicable to the resulting

AMOUNT attribute and X only contains mandatory attributes. Consider another summarization

query Q2 that adds AMOUNT in table PROD_NEW_SALES2 grouped by VIDEO_RES and BRAND.

Then, provided that PROD_NEW_SALES2 is first filtered with a filter: CATEGORY = ’Video’ before

applying Q2, then AMOUNT is summarizable with respect to SUM and X ′ = {VIDEO_RES, BRAND}.

We now compare GMNF with our work in the same context. Going back to Example 5.14,

attribute AMOUNT is determined (in LFD sense) by the minimal subset of dimension attributes

5.7 Summarizable Analytic Tables 143

{PROD_SKU}, which in turns determines all other dimension attributes of PROD_NEW_SALES2.

Since SUM is applicable to AMOUNT, by Definition 2.12 on Page 28, aggAMOUNT(SUM, Z) holds in

PROD_NEW_SALES2, where Z is the set of all dimension attributes of PROD_NEW_SALES2.

Consider first query Q1 of Example 5.14. By Proposition 3.4 on Page 51, attribute AMOUNT

is summarizable with respect to SUM and X = {CATEGORY, BRAND} since X ⊂ Z and SUM is

distributive. Consider now query Q2, since X ′ = {VIDEO_RES, BRAND} is a subset of Z, attribute

AMOUNT is also summarizable with respect to SUM and X ′, without requiring any pre-filtering of

PROD_NEW_SALES2. The reason why this happens is our usage of SQL aggregation operations

that considers null values as regular values. Indeed, the result of Q2 is displayed in Table 5.13,

and it is easy to see that the summarizability condition is satisfied.

Table 5.13.: Query result of Q2

VIDEO_RES BRAND AMOUNT

1920x1080 Epson 42
3840x2160 Philips 58
3840x2160 Samsung 90
- Philips 45
- Samsung 5

Reasoning over constraints on dimensions

In [25], the conditions for summarizability use constraints that are expressed over dimensions

and generalize the idea of context dependencies introduced in [19], [24].

As before, we first describe the multidimensional data model of [25] using our notations.

Dimension hierarchies always have one top level attribute called ALL and possibly multiple

bottom level attributes. As in [19], [21], [24], a dimension attribute can have multiple parent

dimension attributes in the hierarchy (dimensions are called "heterogeneous"), and there can

be both, mandatory and optional dimension attributes. Every child-parent attribute mapping

should be functional (i.e., every value only maps to one parent value), which means that an NFD

dependency holds between any pair of attributes Ai, Aj where Ai 4 Aj . As in [19], [24], fact

tables are defined over dimensions at the finest level of detail, that is, the schema of the fact

table includes the bottom level attributes of the dimensions. Measure attributes are determined

by all the dimensions and can only be aggregated using distributive functions (defined as in our

Definition 3.11 on Page 51). Dimensions are also supposed to be mutually independent in a

fact table. These later requirements are more restrictive than in our data model since we allow

measures that only depend on a subset of dimensions.

144 Chapter 5 State of the art

Table 5.14.: PROD_NEW

PROD_SKU SUBCATEGORY CATEGORY VIDEO_RES BRAND

p_01 Video projector Video 1920x1080 Epson
p_02 TV Video 3840x2160 Philips
p_05 TV Video 3840x2160 Samsung
p_03 Radio Audio - Philips
p_04 CD-player Audio - Samsung

In [25], Hurtado et.al. define summarizability as a property of dimensions. The rationale

is that if we can characterize summarizability for dimensions, then any fact table built over

summarizable dimensions will have summarizable measures. Let D be a dimension, X a subset

of dimension attributes, and B a dimension attribute in D such that Ai 4 B for some attribute

Ai of X. The notion of summarizability is formalized by the equivalence of two summarization

queries. Attribute B is summarizable from X in D if and only if for every fact table T defined

over D and distributive aggregate function F using G we have:

Agg∗T (F (M)|B) = Agg∗T ′(G(M)|B) (5.1)

where M is a measure attribute in T , and T ′ = Agg∗T (F (M)|X′ ∪ B),X′ ⊆ X.

The summarizability condition can then be expressed independently of the fact tables which

refer to these dimensions, as follows. Attribute B is summarizable from X in D if and only if for

every bottom level attribute A⊥ of D, we have: ΠA⊥,B(D) =
⋃
Ai∈X(ΠA⊥,Ai(D) ./Ai ΠAi,B(D)).

Here, Π denotes a duplicate elimination projection and ./ denotes a null-eliminating join. We

illustrate this condition below.

Example 5.15. Consider the product dimension PROD_NEW in Table 5.14.

Then attribute CATEGORY is summarizable from X = {SUBCATEGORY} because

ΠPROD_SKU,CATEGORY(PROD_NEW) = ΠPROD_SKU,SUBCATEGORY(PROD_NEW)
⋃

ΠSUBCATEGORY,CATEGORY(PROD_NEW). However, attribute CATEGORY is not summarizable

from X = {VIDEO_RES} because the join between ΠPROD_SKU,VIDEO_RES(PROD_NEW) and

ΠVIDEO_RES,CATEGORY(PROD_NEW) eliminates products ’p_03’ and ’p_04’.

The above definition of summarizability relates to our definition 3.10 as follows. An attribute

B is summarizable from X in D if and only if for any fact table T defined over D such that a

measure attribute M depends on the bottom-level attributes of D and F is a distributive function

using G over the partitions of A, then M is summarizable with respect to X ∪ B and F for a

subset the subset of attributes {B}. Thus, instead of enforcing equation 5.1 for every subset of

X ∪B as in our definition (where it is denoted Z2), it is only enforced for {B}.

5.7 Summarizable Analytic Tables 145

Consequently, the summarizability definition of Hurtado et al. could be used, as in [23], to

characterize correct summarization queries. Let T be a fact table resulting from a summariza-

tion query over a table T0 and having a measure attribute M . Let Q = Agg∗T (F (M)|X) be a

summarization query over a T , then Q is correct if every attribute B of a dimension D in X is

summarizable from XD −B in D.

To check summarizability, Hurtado et al. propose to specify constraints on dimensions and

then transform the summarizability problem into the problem of verifying the satisfaction of a

set of dimension constraints by some dimension schema. Let Ai be dimension attributes of a

dimension D, the following types of constraints are introduced.

1. D |= 〈Ai, Ai+1, ..., Aj〉 means that for every attribute value v of Ai, there exists a path in D

from v to a value of Aj going through a value of Ai+1. We shall say that Ai rolls up to Aj

2. D |= 〈Ai, ..., Aj = k〉 means that for every attribute value v of Ai, there exists a path in D

from v to an attribute value v′ of Aj if and only if v′ = k

Constraints can then be composed using the usual Boolean logical connectives. Now, assume

that a set of constraints have specified on the schema of D. To determine if attribute B is

summarizable from X in D, one must determine if, for each bottom level attribute A⊥ of D, the

following constraint is satisfied :

D |= 〈A⊥, ..., B〉 =⇒ (〈A⊥, ..., A1, ..., B〉 ⊕ ...⊕ (〈A⊥, ..., An, ..., B〉)

where X = {A1, ..., An} and ⊕ denotes an exclusive disjunction.

We use the following examples to illustrate the use of constraints to determine summarizabil-

ity.

Example 5.16. Consider dimension PROD_NEW whose hierarchy type is displayed in Fig-

ure 5.11. All the child-parent mappings in PROD_NEW are functional except for attribute

VIDEO_RES. Thus, the two following constraints (a) and (b) are expressed on PROD. Note that

constraint (a) is equivalent to the context dependency of [19], [24].

Constraint Meaning

(a) A value of PROD_SKU rolls up to VIDEO_RES and CATEGORY

only for the ’Video’ value of CATEGORY

(b) All other attributes directly roll up to their parent attribute

146 Chapter 5 State of the art

(a) Hierarchy type of PROD_NEW

(a) 〈PROD_SKU, VIDEO_RES, CATEGORY =′ V ideo′〉
(b) 〈Ai, Aj〉, for all edges (Ai, Aj) in the hierarchy

type

(b) Constraints on PROD_NEW

Figure 5.11.: The dimension schema of PROD_NEW

To determine if CATEGORY is summarizable from X = {SUBCATEGORY} we must determine if the

following constraint can be satisfied:

PROD |= 〈PROD_SKU, . . . , CATEGORY〉 ⇒ 〈PROD_SKU, SUBCATEGORY, CATEGORY〉

Using the constraints we have 〈PROD_SKU, SUBCATEGORY〉 and 〈SUBCATEGORY, CATEGORY〉, which can

be composed. Therefore, the condition holds and CATEGORY is summarizable from X.

Example 5.17. we now consider a variation of the previous example in which VIDEO_RES has

now SUBCATEGORY for parent in the hierarchy type. A disjunction constraint is now expressed

for constraint (a), which cannot be expressed in [24]. In this example, SUBCATEGORY is not

summarizable from VIDEO_RES.

(a) Hierarchy type of PROD_NEW

(a) 〈PROD_SKU, VIDEO_RES, SUBCATEGORY = ’TV’ 〉 ⊕
〈PROD_SKU, VIDEO_RES, SUBCATEGORY = ’Video
projector’ 〉

(b) 〈Ai, Aj〉, for all other edges (Ai, Aj) in the hierar-
chy type

(b) Constraints on PROD_NEW

Figure 5.12.: The dimension schema of PROD_NEW

It is clear that the data model and constraints proposed by [25] subsume the data model with

context dependencies of [19], [24]. We can then generalize the summarizability property for

queries as we did before for tables which are in GMNF.

To conclude the comparison with our work, it must be noted that the method Hurtado et al.

has several limitations. First, it does not accept non-strict hierarchies: dimension attributes can

be optional but when they have a non-null value, their value maps to a single parent value in

5.7 Summarizable Analytic Tables 147

the hierarchy. Second, it does not accept measures that do not depend on all dimensions. Third,

the method does not take into account the notion of completeness captured by item (1) in the

completeness condition of [23]. We already explained how this notion is captured in our work.

Last, the expression of comprehensive dimension constraints can be labor-intensive.

5.7.3 Conclusion on summarizability

The above works on summarizability were mostly focused on the conditions that the value

mappings between attributes should be one-to-one and the domain values of each attribute should

be complete [23]. Other works also concentrate on type compatibility between measures and

dimensions. [6] captured the ability of summing up measures and classified measures as additive,

semi-additive and non-additive. Aggregations using function SUM can be applied on additive

measures safely, and cannot be applied on non-additive measures. Semi-additive measures

cannot be aggregated along all dimension attributes. For example, in fact table SALES_SUM,

measure SALES_SUM is additive whereas attribute QTY_ON_HAND in table INVENTORY is semi-

additive because it can not be summed up over temporal attributes like YEAR. [27] provides a

detailed case analysis for possible factors impacting additivity.

[20] combined the classifications of [23] and [27] and introduced a new classification of

measures defining five measure types : tally, semi-tally, reckoning, snapshot and conversion factor.

For example, attribute SUM_SALES in SALES_SUM is tally since it it is summarizable over any

dimension and attribute QTY_ON_HAND in INVENTORY is reckoning measure since it is only

summarizable over non-temporal dimensions. Attribute STOCK_PRICE is a snapshot measure and

TEMPERATURE is conversion factor measure (both are not summarizable).

[32] separated summarization problems into schema level problems (e.g., non-strict hierarchy),

data level problems (e.g., imprecision on measure values) and computation level problems

(e.g., type compatibility[23]). [26] makes a survey on summarizability issues and classifies

summarizability solutions into two axes: 1) solutions which give guidelines for designing complex

multidimensional structures and 2) solutions for summarizability problems over existing complex

multidimensional structures.

We introduce our solutions in Sections 3.4.1 to 3.4.3 and propose a new way to enforce summa-

rizability even when the hierarchy is non-strict, non-covering and non-onto. The summarizability

conditions proposed in [29] require that hierarchies should be strict, covering and onto to avoid

double counting during aggregation. In our model, this corresponds to the problem of ambiguity

where the aggregation groups cannot identify a unique path in the hierarchy. Aggregations that

are ambiguous can be detected and ambiguous values can then be annotated (see Section 3.4.2).

148 Chapter 5 State of the art

Whether the aggregate functions are distributive is expressed using aggregable properties provid-

ing additional information on the aggregable dimensions (see Section 3.4.1). Furthermore, we

consider the problem of incomplete merge and propose a solution to complete the domain values

by adding missing tuples (see Section 3.4.3). This issue has not been discussed in previous works

on summarizability.

5.8 Summary

Table 5.15 gives a global summary for the four approaches mentioned above and our approach.

For each approach, Table 5.15 lists its input metadata, the required user actions, and the final

result. Optional input items and user actions are in italic. = Besides, the possibilities of automate

the process are also discussed, there are three steps considered: discovering schema matchings

between schemas, inferring schema mappings using known schema matchings, and generating

the final query to create the desired schema.

Schema integration: Schema integration approach takes a set of source schemas as input and

generates a unified, global schema that represent all the source schemas. The integration is

mainly a manual process which heavily relies on the human understanding of the source schemas

to identify and solve semantic and structural conflicts. The solutions to solve conflicts are various

and human decisions are almost needed in every schema integration step. For example, to

solve schema conflict of two schemas containing different identifiers, the identifier of the global

schema could either be the union or the intersection of the two identifiers. The generation of

such a global schema therefore needs actions of users with a deep knowledge of the respective

source schemas.

Data integration: Data integration approach reduces human effort by automating the detection

of schema matchings and the definition of schema mapping queries. The approach takes a set

of source schema as input, user is then required to specify the schema of the mediated table.

Schema matchings between source schema and the mediated table can be either given as input

or detected automatically. Within a set of schema matchings, the system can suggest schema

mappings which can be selected and adapted by the user.

Schema complement: Schema complement approach completely automates the schema match-

ing, schema mapping and query generation steps by exploiting semantic metadata like functional

dependencies. The approach reduces user interaction to the selection of a source table and a

desired target table with new attributes. The outcome is to create a merge query that joins the

source and target tables.

5.8 Summary 149

Drill-across queries: Drill-across approach also automates the schema matching, schema map-

ping and query generation steps by analyzing source schemas and building schema matchings

through conformed dimensions. Users must express a drill-across query that takes at least two

fact tables as input and returns a new target table which is the merge of the input fact tables.

Schema Augmentation: Schema augmentation approach is an extension of the schema com-

plement approach. The schema matchings can be automatically obtained from different kinds

of metadata (foreign-key dependencies, view definitions and user queries) in form of join and

attribute mapping relationships. The schema mapping and merge query generation steps are

completely automated. The user just selects a start table and a desired target table with new

attributes.

150 Chapter 5 State of the art

Ta
bl

e
5.

15
.:

C
om

pa
ri

so
ns

of
fo

ur
sc

he
m

a
an

d
da

ta
in

te
gr

at
io

n
ap

pr
oa

ch
es

A
pp

ro
ac

he
s

In
pu

t
M

et
ad

at
a

R
eq

ui
re

d
U

se
r

A
ct

io
ns

A
ut

om
at

is
at

io
n

op
po

rt
un

it
ie

s
R

es
ul

t
Sc

he
m

a
Sc

he
m

a
M

er
ge

m
at

ch
in

gs
m

ap
pi

ng
s

qu
er

y

Sc
he

m
a

In
te

gr
at

io
n[

41
]

–
A

se
t

of
so

ur
ce

sc
he

m
as

–
A

na
ly

si
s

so
ur

ce
sc

he
m

as
–

So
lv

e
co

nfl
ic

ts
be

tw
ee

n
sc

he
m

as
–

M
er

ge
(o

r
tr

an
sf

or
m

)
sc

he
m

as

N
o

N
o

N
o

A
un

ifi
ed

,g
lo

ba
ls

ch
em

a
w

hi
ch

co
ul

d
re

pr
es

en
t

al
lt

he
so

ur
ce

sc
he

m
as

M
ed

ia
ti

on
-b

as
ed

D
at

a
In

te
gr

at
io

n[
42

],
[4

3]
–

A
se

t
of

so
ur

ce
sc

he
m

as
–

Sc
he

m
a

m
at

ch
in

gs
be

tw
ee

n
so

ur
ce

sc
he

m
a

an
d

m
ed

ia
te

d
ta

bl
e

–
D

efi
ne

th
e

sc
he

m
a

of
th

e
m

e-
di

at
ed

ta
bl

e
–

In
fe

r
sc

he
m

a
m

ap
pi

ng
s

N
o

Ye
s

Ye
s

A
qu

er
y

th
at

m
er

ge
s

th
e

so
ur

ce
sc

he
m

as
an

d
ge

n-
er

at
es

th
e

m
ed

ia
te

d
ta

-
bl

e

Sc
he

m
a

C
om

pl
em

en
t[

12
]

–
A

so
ur

ce
ta

bl
e

–
A

se
t

of
so

ur
ce

sc
he

m
a

–
Se

le
ct

ta
rg

et
ta

bl
e

Ye
s

Ye
s

Ye
s

A
n

au
gm

en
te

d
so

ur
ce

ta
-

bl
e

w
it

h
ne

w
at

tr
ib

ut
es

fr
om

ta
rg

et
ta

bl
e

D
ri

ll
A

cr
os

s[
6]

–
A

se
t

of
so

ur
ce

sc
he

m
as

–
A

se
t

of
di

m
en

si
on

s
us

ed
in

th
e

so
ur

ce
so

ur
ce

sc
he

m
as

–
Se

le
ct

at
le

as
t

tw
o

so
ur

ce
fa

ct
ta

bl
es

Ye
s

Ye
s

Ye
s

A
ne

w
fa

ct
ta

bl
e

co
n-

ta
in

s
al

lt
he

m
ea

su
re

s
of

so
ur

ce
fa

ct
ta

bl
es

Sc
he

m
a

A
ug

m
en

ta
ti

on
s[

53
]

–
A

so
ur

ce
ta

bl
e

–
A

se
t

of
so

ur
ce

sc
he

m
a

an
d

m
et

ad
at

a
of

th
es

e
sc

he
m

as
–

H
ie

ra
rc

hy
de

fin
ed

in
th

e
sc

he
m

as
–

A
gg

re
ga

bl
e

pr
op

er
ti

es
of

at
-

tr
ib

ut
es

–
Se

le
ct

ta
rg

et
ta

bl
e

–
C

ho
os

e
re

du
ct

io
n

op
er

at
io

ns
–

Se
le

ct
ne

w
at

tr
ib

ut
es

–
Se

le
ct

th
e

pa
th

to
m

er
ge

Ye
s

Ye
s

Ye
s

A
n

au
gm

en
te

d
so

ur
ce

ta
-

bl
e

5.8 Summary 151

6Applications and Experiments

Contents

6.1 Performance Tests .153

6.1.1 Attribute graph computation . 153

6.1.2 Dimension identifier computation . 158

6.2 Validation with Real Datasets .158

6.2.1 Business use case . 159

6.2.2 Feature engineering use case . 166

In this chapter, we describe the experiments we carried out using the implementation of

our framework discussed in Chapter 4. The experiments covered both the efficiency of the

implementation and the validation of our approach.

6.1 Performance Tests
The performance experiments evaluate the performance of the implementation of the attribute

graph generation algorithm ATG (Algorithm 1, page 80 and the dimension identifier computa-

tion CDI (Algorithm 2, page 82). The experiments are conducted on a HANA instance with 250
GB of main memory and 300 GB of disk space.

6.1.1 Attribute graph computation

The ATG algorithm takes a hierarchy table (HT) as input and computes the attribute graph

by applying a sequence of SQL queries (the steps are described in in Section 4.2.1 and the

SQL queries are described in Appendix A.1). The hierarchy table HT is the only input and the

performance of ATG mainly depends on the size, the number of null values and the number of

attributes in HT.

Each hierarchy table HT is an encoding of a dimension table and its size depends on the size

of the dimension table, the size of the attribute active domains (distinct values for each attribute),

the number of distinct child-parent value mappings in the hierarchy instance etc. More formally,

we can identify the following four parameters that have an effect on the size of HT :

1. The size of the input dimension table (number of rows);

153

2. The number of hierarchy nodes / dimension attributes (without ⊥ and >);

3. The number of +-edges in the resulting attribute graph;

4. The total number of edges in the resulting attribute graph.

To evaluate the performance impact of each parameter, we generated several sets of hierarchies

(dimension tables), where for each set we vary one parameter.

Experiment 6.1: Varying the dimension table size

The size of the hierarchy table HT increases along with the size of the dimension table and we

expect that the ATG computation time should increase proportionally.

We generate six dimension tables for this experiment. To measure only the influence of the

table size, we enforce that the dimension table does not contain any null values and the resulting

attribute graphs all have a strict linear structure. Then, the attribute graph of a hierarchy with n

nodes (attributes) has exactly n− 1 edges and all edges are labeled by f . The tuple generation

algorithm for each attribute in the hierarchy a new unique value, which is the concatenation of

its parent-attribute value with a randomly generated numeric value in the interval [0, 9999]. This

randomized process produces linear hierarchies with no null values where each attribute literally

determines its parent attribute (the corresponding attribute graph only contains f -edges).

Example 6.1. The generated tuples of a dimension table T with attributes L1 4 L2 4 L3 4 L4 4 L5

are shown in Table 6.1. Each value is computed by its parent value concatenating a random

numeric value in the interval [0, 9999].

Table 6.1.: A dimension table with a strict linear structured hierarchy

L1 L2 L3 L4 L5

t1 63.789.266.7426.2629 63.789.266.7426 63.789.266 63.789 63
t2 99.729.575.186.7874 99.729.575.186 99.729.575 99.729 99

. . .

The computation time of the six linear dimension tables with 5 attributes is shown in Figure 6.1.

The result shows that the computation time increases linearly with the input dimension table

size. As detailed in Appendix A.1, SQL query used to compute the attribute graph is a one-pass

procedure using simple selections and joins, so the computation time of SQL query increases

together with the size of the table that the query applied.

154 Chapter 6 Applications and Experiments

5K 10
K

50
K

10
0K

50
0K

1.1
M

100

101

102

C
om

pu
ta

ti
on

ti
m

e
(s

)

Figure 6.1.: Computation time for different dimension table size (number of rows)

Experiment 6.2: Varying the number of dimension attributes

In this experiment, we control the number of dimension attributes in the dimension table.

When the number of dimension attributes grows, the total amount of distinct attribute domain

values in the dimension table also grows and will increase the size of the HT which causes the

augmentation of the attribute graph’s computation time.

We use the same tuple generation process as in Experiment 1 for producing dimension tables

with a strict linear hierarchy. Each attribute then has an active domain of the same size which

corresponds to the number of tuples in the table. We reuse the two dimension tables with 10K
and 50K rows and five attributes (nodes) generated for Experiment 1 and generate four other

dimension tables by augmenting the number of attributes. We obtain two sets of tables with 10K
and 50K rows respectively, where each sets contains three dimension tables with respectively 5,

10 and 20 attributes.

The computation time for each table is shown in Figure 6.2. The result shows that the

computation time increases linearly with the number of attributes in the dimension table. HT

describes for each node in the complete paths from the bottom level attribute value to the top

level attribute value. Then, for a strict linear hierarchy, each new attribute increases the size of

HT by the number of attribute values and, since the number of the complete paths remains the

same (10K rows or 50K rows), HT grows linearly. Since the performance of TGTG increases

linearly with the size of HT , in our experiments it also grows linearly with the number of

attributes. We can conclude that for linear strict hierarchies, the performance of ATG mainly

depends on the size of HT and is independent of the number of attributes.

Experiment 6.3: Varying the number of +-edges

In the third set of experiments, we relax the condition of strictness (each value has a single

parent) and allow attribute values to have several parent values. This introduces +-edges in the

6.1 Performance Tests 155

5 Nodes 10 Nodes 20Nodes

1
5

15

30

60

C
om

pu
ta

ti
on

ti
m

e
(s

)

Table with 10K rows
Table with 50K rows

Figure 6.2.: Computation time for different number of nodes

corresponding attribute graphs and increases the size of the HT table (the number of non-strict

child-parent value mappings in the hierarchy leads to the augmentation of the complete paths to

the top level attribute value for certain domain values). To achieve non-strictness, we modify the

generation of the dimension table with 10K rows over 10 attributes and generate five dimension

tables with an increasing number of +-edges in the result attribute graphs. These +-edges are

simply created by removing the parent prefix of the values for certain attributes.

Example 6.2. Tuples of a dimension table T with attributes L1 4 L2 4 L3 4 L4 4 L5 are shown

in Table 6.2. The attribute values of L3 are generated without concatenating its parent values.

Then, for example, t3 and t4 share the same value of L3 but have different values for attribute L4.

Consequently, the edge (L3, L4) is a +-edge.

Table 6.2.: A dimension table with one +-edge

L1 L2 L3 L4 L5

t3 63.789.266.7426.2629 63.789.266.7426 266 63.789 63
t4 10.124.266.1924.9275 10.124.266.1924 266 10.124 10

. . .

We generate 5 dimension tables which contain contain 10K rows over 10 attributes with

respectively 0, 2, 4, 6, 8 +-edges. Figure 6.3 shows the performance evolution for additional

+-edges. We can see that, contrary to the previous experiments, where the computation time

increased with the size of the HT table, in this experiment the time for computing the attribute

graph decreases with the number of +-edges. This result can be explained by the fact that the

number of distinct attribute values of certain attributes decreases. Based on the SQL query

shown in Appendix A.1 Step 4 (Page 185), when the number of distinct attribute values of certain

attributes decreases, the number of partitions by attribute values decreases and the intermediate

tables becomes smaller (e.g., time to compute PLUS_EDGE_WITH_NULL), this decreases the

computation time for Step 4 in Algorithm 1 (Page 80). Since there are no nullable attributes,

Step 5 in Algorithm 1 is ignored.

156 Chapter 6 Applications and Experiments

0 2 4 6 8

2

3

4

5

C
om

pu
ta

ti
on

ti
m

e
(s

)

Figure 6.3.: Computation time for different number of +-edges

Experiment 6.4: Varying the numbers of attribute graph edges

Finally, we relax the constraint of linearity and generate dimension tables producing attribute

graphs with a varying numbers of optional edges.

To avoid the impact of +-edges, we enforce the resulting attribute graphs to only contain

f -edges and 1-edges. We generate two sets of dimension tables with 10 and 20 attributes

respectively, and augment the number of edges for each set. The number of edges is modified by

introducing null values for some attribute which produces additional optional attribute graph

edges that jump over this attribute. The table generation still follows the same rules as in

Experiment 1 (page 154) where attribute values are a concatenation of their parent values and a

random numeric value between [0, 9999]. The only change consists in introducing random null

values. To ensure that the additional edge created by some null values is a f -edge, non-null

attribute values are a concatenation of their first non-null ancestor value concatenated with the

symbol ‘-’ and the randomly generated numeric values.

Example 6.3. Some tuples of a dimension table T with attributes L1 4 L2 4 L3 4 L4 4 L5 are

shown Table 6.3. The first tuple generates an f -edge from attribute L2 to attribute L3 and the

second tuple and additional edge from attribute L2 to L4 because of the null value in attribute L3.

Tuple t6 contains a null value for L3 and t6.L2 uses ‘10.124.-’ to represent its parent value where

‘-’ represents the null value in L3 and ‘10.124’ represents the value of L4 concatenated with the

value of L5. Each value of L2 and each non-null value of L3 contain their unique concatenated

parent values. The edge (L3, L4) has label 1 and both edges (L2, L3) and (L2, L4) have label f .

There is no label +-edge in the attribute graph generated by T .

Table 6.3.: A dimension table with one additional edge

L1 L2 L3 L4 L5

t5 63.789.266.7426.2629 63.789.266.7426 63.789.266 63.789 63
t6 10.124.-.1924.9275 10.124.-.1924 - 10.124 10

. . .

6.1 Performance Tests 157

We generate 8 dimension tables containing 10K rows over 10 and 20 attributes respectively.

Figure 6.4 shows the performance evolution for hierarchies with different additional edges. The

number of additional edges is the difference between its actual edge number and n − 1 (n is

the total attribute number). The size of the HT will augment proportionally the number of

edges in the result attribute graph, and we might expect that the computation time of generation

attribute graph will increase in consequence. However, as the results show, the computation

time slightly decreases with the number of additional edges. Similar to Experiment 3, this result

can be explained by the fact that the number of attribute values of certain attributes decreases,

which decreases the computation time for Step 4 in Algorithm 1. Because there are nullable

attributes, Step 5 in Algorithm 1 can not be ignored, the decrease of time here is less significant

than Experiment 3.

0 1 2 3 4 8 9

3

5

13

15

C
om

pu
ta

ti
on

ti
m

e
(s

)

Table with 10 nodes
Table with 20 nodes

Figure 6.4.: Computation time for different number of additional edges

Finally, for hierarchies of less than 10 nodes and less than 50K rows, which corresponds to a

large number of real use cases, the computation of an attribute graph takes less than 20 seconds.

For a dimension table with a very large sample size of 1.1M rows and 5 nodes, the computation

of the attribute graph takes 67 seconds, which is still acceptable for a system background call.

6.1.2 Dimension identifier computation

Algorithm 2 (page 82) computes the dimension identifier Y for a set of attributes X such that

Y 7→ X (CDI) using the attribute graph D of a dimension table. It is obvious that the performance

of CDI only depends in the attribute graph D and is independent of the size of the dimension

table.

We tested the performance of CDI with 20 different attribute graphs containing 5 to 20 nodes

and 4 up to to 28 edges. With X equal to the set of all attributes (nodes), all dimension identifiers

are computed in less than 9 milliseconds with a variation of 2 milliseconds.

6.2 Validation with Real Datasets

158 Chapter 6 Applications and Experiments

6.2.1 Business use case

Our second series of experiments evaluates the practical usage of our REST services imple-

menting Algorithm 3 for Computing Schema Augmentations (CSA), Algorithm 4 for Reduction

Query Generation (RQG), and Algorithm 5 for Merging Schema Augmentations(MSA) described

in Chapter 4. The experiments are done on an SAP server with 2 TB of main memory and 1 TB

of disk space.

Business Dataset

We use the dataset extracted from a real-world business intelligence application running for a

worldwide clothing company which performs retail store stock analysis, customer analysis and

customer segmentation. The application contains 42 information views representing dimension

tables, and 145 carefully optimized information views representing fact tables.

We categorize the fact table views into the following four types:

• first-level views (22 views) are the views defined as star joins between a non-analytic table

storing facts (possibly completed by using left-outer joins with other tables providing

details) and dimension tables.

• join views (72 views) are the views defined using a sequence of joins (mostly left-outer joins)

or star joins among analytic and non-analytic tables, possible contain some aggregations.

They are also called hand-craft views and denoted by HCV.

• union views (36 views) are the views defined by the union of two or more analytic tables.

• aggregation views (15 views) are the views defined by aggregation and projection queries

on other fact tables.

Example 6.4. Figure 6.5 shows four different types of views defined in the business application.

Dimension tables are represented by bold rounded rectangles, fact tables by bold square rectan-

gles, database tables by regular square rectangles, and intermediate tables by dashed rectangles.

Intermediate tables store temporary results during the view constructions (e.g. TEMP_1 stores

the temporary result of the join between ct_LINEITEM and ct_TRANSACTION).

Fact table TRANSACTION shown in Figure 6.6a is a first-level view, it is defined as a star join

between the non analytic table ct_TRANSACTION and five dimension tables CUSTOMER,

WORKSTATION , TIME, TRANSACTION and STORE. Fact table POSDM_TRANS
shown in Figure 6.6b is a join view, it contains a sequence of joins between tables ct_LINEITEM,

ct_TRANSACTION, ct_ITEM_DISCOUNT, ct_ITEM_TAX and ct_WEB_ORDER, followed

6.2 Validation with Real Datasets 159

Figure 6.5.: Constructions of views

(a) First-level view: TRANSACTION (b) Join view: POSDM_TRANS

(c) Union view: SALES (d) Aggregation view: AGG_WEB_ORDER

by a star join with dimension tables dPROD, dTIME, dCUST and dSTORE, there are aggre-

gations applied on table ct_ITEM_DISCOUNT and ct_ITEM_TAX. Fact table sales shown in

Figure 6.6c is a union view, it is defined by a union between three fact tables POSDM_SALES,

POSDM_DISCOUNT and POSDM_TAX. Fact table AGG_WEB_ORDER shown in Figure 6.6d

is an aggregation view, it is defined as an aggregation on the fact table WEB_ORDER.

Data preparation

In our first experiment, we select a user-defined join view, also called Hand-Crafted View (denoted

by HCV), as a target and verify if we can generate an equivalent view (denoted by GV for

Generated View) by iteratively extending a first-level start view (table) through possibly several

schema augmentation steps, each of which consisting of a sequence of CSA - RQG - MSA API calls.

At each iteration, we simulate a user who selects a suggested target schema augmentation, and

possibly defines a filter condition on some attributes of the target table or adds some calculated

attributes after the merge.

We illustrate our protocol with the example of an Hand-Crafted View (HCV) – POSDM_TRANS
defined as Figure 6.6b. The definition of the HCV starts from a non-analytic table ct_LINEITEM,

160 Chapter 6 Applications and Experiments

performs a sequence of left-outer joins with four non-analytic tables storing different facts:

ct_TRANSACTION, ct_ITEM_DISCOUNT, ct_ITEM_TAX and ct_WEB_ORDER, followed

by a star-join with dimension tables TIME, PRODUCT , STORE and CUSTOMER.

Before running our experiment, we first extracted the attribute graphs of all dimension tables

(dTIME, dLINEITEM, dWORKSTATION, dTRANS, dSTORE, dPROD, dTAX, dORDER,

dCUSTOMER and dDISCOUNT) and of five first-level views corresponding to the non-analytic

tables used in HCV:

• LINEITEM is defined over the non-analytic table ct_LINEITEM and dimensions dTIME,

dLINEITEM, dWORKSTATION, dTRANS, dSTORE and dPROD, with two measures

QUANTITY and SALES_AMOUNT.

• TRANSACTION is defined over the non-analytic table ct_TRANSACTION and dimen-

sions dWORKSTATION, dTIME, dTRANS, dSTORE and dCUSTOMER, with measure

TOTAL_COST.

• ITEM_DISCOUNT is defined over the non-analytic table ct_ITEM_DISCOUNT
and dimensions dTIME, dLINEITEM, dWORKSTATION, dTRANS, dSTORE and

dDISCOUNT, with measure DISCOUNT_AMOUNT.

• ITEM_TAX is defined over the non-analytic table ct_ITEM_TAX and dimensions

dTIME, dLINEITEM, dWORKSTATION, dTRANS, dSTORE and dTAX, with measure

TAX_AMOUNT.

• WEB_ORDER is defined over the non-analytic table ct_WEB_ORDER and dimensions

dTIME, dSTORE, dORDER and dCUSTOMER, with two measures ORDER_AMOUNT and

SHIPPING_COST.

We also define the aggregable properties of all measure attributes (SALES_AMOUNT, QUANTITY,

DISCOUNT_AMOUNT, etc.) using the rules defined in Section 2.2.6.

The first-level views; the dimension tables and the underlying non-analytic tables are crawled

to extract all direct and derived relationships (including PK-FK relationships) and to compute

the dimension and fact identifiers, as explained in Section 4.2. An extract of the resulting SC

graph among analytic tables is shown in Figure 6.7.

Figure 6.8 gives a partial view of the SC graph for the analytic tables joined in the HCV.

The table cardinalities range from 1.4M rows (WEB_ORDER) to 23M rows (ITEM_TAX and

LINEITEM). We use the notation WEB_ORDER(D5, D8) to state that the fact identifier of

table WEB_ORDER is the union of dimension identifiers of dimension D5 and D8. For clarity,

the figure does not show the edges corresponding to derived relationships. In particular, all five

6.2 Validation with Real Datasets 161

Figure 6.7.: Complete SC graph for analytic tables

fact tables are pairwise connected by derived SC edges as shown in Figure 6.7. The primary keys

of non-analytic tables are propagated to the corresponding fact tables (views) to account for the

dependencies between dimensions, e.g. in WEB_ORDER, the dependency as {D5, D8} 7→ D7
is propagated from the primary key of ct_WEB_ORDER.

Figure 6.8.: Partial SC graph for analytic tables

Experiment 6.5: Controlled Generation of Hand-Crafted View HCV

The goal of this experiment is to show that an expert can use our schema complement workflow

to generate a view (GV) which is equivalent to the pre-selected hand-crafted view (HCV).

162 Chapter 6 Applications and Experiments

We apply our schema augmentation REST service workflow to generate the view GV starting

from the first level fact table LINEITEM. This table is merged with other tables in eight

successive schema augmentation steps illustrated by numbered arcs in Figure 6.8. The final

result GV should produce the same table (schema and contents) as HCV.

GV is generated in 8 steps where each steps merges the result of the previous step with a new

dataset:

1. Step 1 adds some attributes from dimension dCUSTOMER (D7) by a "natural" merge (the

SC edge in Figure 6.7 from LINEITEM to TRANSACTION has label “NAT”).

2. In steps 2 and 3, LINEITEM is complemented with measure attribute DISCOUNT_AMOUNT

from table ITEM_DISCOUNT and measure attribute TAX_AMOUNT from table ITEM_TAX.

Both SC edge connecting LINEITEM to these two tables in Figure 6.7 have label “AUG”.

Table ITEM_DISCOUNT is first transformed by an aggregate reduction over attributes

from dimension D10 : dDISCOUNT into a natural schema complement of the result of step

1 before being merged. The same "reduce and merge" step is applied to table ITEM_TAX
which is first reduced over attributes from dimension D6 into a natural schema complement

before being merged with the result of step 2.

3. Step 4 adds attributes from dimension D8 : dORDER. The SC edge from LINEITEM to

WEB_ORDER has label “AUG” with common attributes from dimensions D3 : dTIME
and D5 : dSTORE. We define a relationship between dimensions D4 : dTRANS and

D8 : dORDER (dotted line in Figure 6.8) and compute the augmented merge with table

WEB_ORDER.

4. Steps 5 to 8 add the attributes from dimensions D7 : dCUSTOMER, D3 : dTIME,

D5 : dSTORE and D9 : dPROD by a sequence of natural merge operations.

Finally, we compare the number of rows and the values of the hand-crafted view HCV and

the generated view GV generated by the previous steps over the real-world dataset. Both view

definitions compute the same result and we conclude that we were able to rebuild the hand-

crafted view in a structured and controlled way using our REST services. In particular, we can

also formally state that GV satisfies the quality criteria introduced in Section 3.4 which were not

guaranteed by HCV .

Experiment 6.6: Materalization Cost : GV versus HV

Our second use-case experiment compares the computation performance of the original view

HCV and the generated view GV using SQL queries. The performance measures were done

6.2 Validation with Real Datasets 163

on a server with 2 TB of main memory and 1 TB of disk space. We might expect that the

materialization of GV takes more time than the materialization of HCV since the HCV SQL query

directly accesses the non-analytic tables and might benefit from the existing indexes on these

tables.

We first compared the time necessary for a complete materialization of both views and can

observed that the computation of GV is 1.5 times slower than the computation HCV which

confirms our initial assumption. Secondly, we applies a series of aggregation queries with

random combinations of dimension attributes and aggregable attributes on HCV and GV. The

performance results are more open to discussion. In 17% of the cases, GV performs 1.15 to 3.1
faster than HCV, and in 74% of the cases, HCV performs 1.1 to 4.5 faster than GV. In the rest of

cases, both have similar performance.

(a) Execution plans of Q 1

(b) Execution plans of Q 2

Figure 6.9.: Query execution plans comparisons

In order to better understand the factors causing these performance variations we compared

the execution plans of the queries generated for GV and HCV. In Table 6.4 shows the execution

164 Chapter 6 Applications and Experiments

times of two simple aggregation queries in HCV and GV and we can see that both queries have

an opposited behavior when executed on GV and on HCV. Their execution plans are shown in

Figures 6.9a and 6.9b. The query plans are deployed and executed on two different HANA query

Table 6.4.: Performance of Q 1,Q 2 in GV and HCV

Q 1 Q 2

HCV (in s) 10.33 2.61
GV (in s) 3.53 10.144

engines, an analytic query engine (solid green box) and a non-analytic query engine (dashed

orange box). By comparing the execution plans with the execution time in Table 6.4, we observe

that query plans using both engines take more time than queries executed in a single engine:

query plan Q 1(HCV) uses both engines and costs 8 seconds more than query plan Q 1(GV)
which is executed only on one engine. This difference is probably related to the additional

overhead for switching between these to engines. We can conclude that the performance

variations are mainly caused by the optimization strategy and the switching overhead for plans

using both query engines.

Observations

Experiments 5 and 6 illustrate that our REST-based schema augmentation workflow can be used

to regenerate for a randomly chosen join-view HCV (which represents half of the fact tables of

the considered application) an equivalent view (GV) with comparable execution performance.

This is a very positive result since it illustrates that our schema augmentation workflow can assist

business users to build complex views by manipulating analytic views with meaningful attributes.

By contrast with our solution, the creation of an HCV requires a strong programming (SQL) and

data modeling expertise to manually build these views and a precise knowledge of the database

schema to express the join conditions, to decide when a pre-aggregation is necessary, to identify

useful measure attributes and to choose which aggregation functions are applicable to them. The

preliminary price to pay for our approach is the creation of all the necessary first-level views.

However, this overhead is rapidly amortized with the number of join views in the application. In

addition, it is possible to capitalize on the SC graph for the definition of future views.

Illustration of ambiguous value detection

As another substantial advantage, our REST service provides quality guarantees that

are difficult to fulfill by the developer of an HCV view. To illustrate this point, sup-

6.2 Validation with Real Datasets 165

Figure 6.10.: Attribute graph in dimension STORE

pose that the aggregated view AGG_WEB_ORDER shown in Figure 6.6d is created as:

AggWEB_ORDER(SUM(ORDER_AMOUNT) | X ∪ A_STORE) where X = {DATE, CUSTOMER_NO} and

A_STORE is the set of the dimension attributes of dimension dSTORE whose validated attribute

graph is depicted on Figure 6.10. Now suppose that an expert wants to extend an HCV with

a new measure attribute SUM(ORDER_AMOUNT) by joining HCV with AGG_WEB_ORDER on

attributes X ∪ JA_STORE, where JA_STORE is a subset of A_STORE. The choice of the attributes in

JA_STORE strongly influences the correctness of the obtained result, and in particular the existence

of ambiguous values. Table 6.5 shows the cases of ambiguous values for SUM(ORDER_AMOUNT),
depending on the attributes contained in JA_STORE, that would be detected by our RQG API if

AGG_WEB_ORDER was selected as a target schema augmentation.

Table 6.5.: Detection of ambiguous values

Attributes in JA_STORE Is ambiguous Missing attributes

PLANT, CCOUNTRY, CENTITY N -
CENTITY, CCLUSTER, CSREGION, CREGION N -
CCOUNTRY, CSREGION Y CCLUSTER
CCLUSTER, CREGION Y CSREGION

6.2.2 Feature engineering use case

In the following experiment, we validate again the usage of our REST service in a feature

engineering application.

166 Chapter 6 Applications and Experiments

Feature Engineering Dataset

We perform the experiment in a predictive analysis application of a retail bank where data

analysts want to predict whether clients without a credit card will obtain a card within 3 months

following a given reference date.

The application uses tables from a publicly available database PKDD [54]. The tables are related

through PK-FK relationships as shown in Figure 6.11. Each account has both static characteristics

(e.g. date of creation, branch address) stored in table ACCOUNT and dynamic characteristics

(e.g. debited and credited payments, account balance) stored in table TRANSACTION. Table

CLIENT describes characteristics of persons who can use and own accounts. Clients and accounts

are related by table DISPOSITION: one client can use several accounts and one account can by

used by several clients, but each account can only be owned by one client. Table CREDIT_CARD
describes the credit cards that are issued for an account. Tables GEOCODE and TIME provide

detailed geographical and time information.

Figure 6.11.: Relationships for the bank retail database

The application development includes a feature engineering step to build a training dataset.

This training dataset is reused as input information for further operations during the prediction

analysis. The training dataset is built by starting from a table describing a CLIENT entity and

a reference date. The developer augments this table with as many new attributes (denoted by

features) as possible through a sequence of database queries. The goal is to better describe the

past behaviours of their client entities, for example, the amount and balance of their credit card

during the past 12 months, whether they got a new card in the past three months, etc). The

final feature dataset is denoted by FEAT. The augmentation queries include joins, calculated

projections, filters, aggregations and pivot operations.

6.2 Validation with Real Datasets 167

Data Preparation and Experiments

The goal of our experiment is to verify if a data scientist can semi-automatically generate a view

GV that is equivalent to FEAT by iteratively extending the dimension table representing a client

entity through several schema augmentation steps.

In our experiment, the script of SQL queries used to build the training dataset (FEAT) consists

of around 1, 500 lines of code comprising many sub-queries involving 16 joins and 132 expressions

to compute measure attribute values.

Before running our experiment, we first created 6 dimension tables, denoted by dACCOUNT,

dGEO, dCLIENT, dCARD, dTIME and dTRANSACTION, and 3 fact tables over the bank

retail database tables as:

• TRANS is defined over database table TRANSACTION and dimensions dTIME,

dACCOUNT and dTRANSACTION and has two measures AMOUNT and BALANCE.

• ACC_DISPO is defined over database table DISPOSITION and dimensions dCLIENT
and dACCOUNT.

• CARD_DISPO is defined over a join of tables CREDIT_CARD and DISPOSITION, and

over dimensions dCLIENT, dTIME and dCARD.

The attribute graphs of the dimension tables and the aggregable properties of measures for

the fact tables are defined manually. Finally, all tables are crawled by the HANA Crawlers to

extract all direct and derived relationships (including PK-FK relationships) and to compute the

dimension and fact identifiers. The resulting SC graph is shown in Figure 6.12.

Figure 6.12.: SC graph for the analytic tables

168 Chapter 6 Applications and Experiments

Experiment 6.7: Feature Table View Generation

The view generation process starts from the dimension table dCLIENT(CLIENT_ID, GEO_ID,

BIRTH_DATE, SEX, ...), which identifies a client entity, and applies a sequence of schema complement

/ augmentation steps as indicated by the numbered arrows in the SC graph of Figure 6.12.

1. In Step 1 performs a natural merge of dCLIENT and dGEO using common attribute GEO_ID

(“NAT” edge in Figure 6.12).

2. In step 2 applies an augmented merge of the previous table with fact table ACC_DISPO
using the common attribute CLIENT_ID to add attribute ACCOUNT_ID (“NAT” edge in Fig-

ure 6.12). This step multiplies the rows in dCLIENT.

3. In step 3, the resulting table is augmented with detail attributes from dimension

dACCOUNT through a “NAT” edge using the common attribute ACCOUNT_ID.

4. In step 4, measures from fact table TRANS are added. The SC edge from dCLIENT to

TRANS is labeled “AUG” with common attribute ACCOUNT_ID. To apply a natural merge

of augmented dCLIENT with TRANS, a reduction query that reduces attributes DATE,

TRANS_ID is executed. The following user-defined actions have also been executed:

a) User actions: a filter on attribute DATE pre-selects the facts within the 12 months

preceding a user-given reference date; the attribute TRANS_TYPE is pivoted as a column

with values coming from measures AMOUNT and BALANCE.

b) Reduction operations: A calculated attribute MONTH(DATE) (transaction month) is

pivoted as a column with values from measures AMOUNT and BALANCE; the attribute

TRANS_ID is removed by an aggregation reduction.

The two operations are injected in the reduction query generation over table TRANS. The

final query is used to be merged with data set dCLIENT.

5. In Step 5, a new measure attribute that gives the number of credits cards for each client is

added from table CARD_DISPO. The SC edge from dCLIENT to CARD_DISPO has label

“AUG” and common attribute CLIENT_ID. A reduction query is applied on CARD_DISPO that

removes DATE and computes an aggregated CARD_ID using aggregation function COUNT .

Then a natural merge is computed between the previously augmented dataset dCLIENT
and the reduced fact table CARD_DISPO.

The final result table GV has 156 attributes of which 135 are measures. Both, the generated

table GV and the user defined table FEAT, are identical. We show in Figure 6.13 the complete

definition of GV where each temprorary result represents a step in the view generation process.

6.2 Validation with Real Datasets 169

Figure 6.13.: Construction of GV

Observations

Our semi-automatic view generation process has several advantages versus the manual creation

of table FEAT. First, the schema augmentations required to build table FEAT are successfully

suggested by our CSA API and the order in which they are returned matches pretty well the user

needs. Second, the simple user actions in steps 4 and 5 yield complex reduction queries involving

filter, pivot, and aggregate operations through the RQG API. Isolating the reduction actions in the

generation process provides a great flexibility. For instance, in Step 4, the filter conditions could

be changed to select facts within the 2 years preceding the reference date, or the pivot operations

could be changed to WEEK(DATE). Third, the formal aggregable properties on fact table TRANS
enables a fine control of which aggregate functions can be applied to measures AMOUNT and

BALANCE in Step 4. For instance, function SUM cannot be applied to BALANCE. Finally, our method

for propagating aggregable properties controls the dimensions with respect to which measure

COUNT(CARD_ID) can be aggregated after Step 5 since the measure only depends on CLIENT_ID.

Note that our REST service could be directly applied to an SC graph consisting only of the

retail database tables (i.e., without creating any dimension or fact table) and would still produce

table FEAT as result. However, working directly with database tables has two main drawbacks.

170 Chapter 6 Applications and Experiments

First, the user must understand the operational data model of the database that carries many

attributes that are irrelevant for business data analysis. Second, the benefits of metadata such as

the separation of dimension and measure attributes and the definition of aggregable properties

would be lost.

6.2 Validation with Real Datasets 171

7Summary and Perspectives

Contents

7.1 Summary .173

7.2 Future Work Directions .174

7.2.1 Schema matching discovery . 174

7.2.2 User-specified augmentation and reduction operation suggestion . . . 175

7.1 Summary

In this thesis, we present a complete solution for discovering and merging schema augmenta-

tions for analytic and non-analytic tables. We introduce attribute graphs to describe the logical

structure of hierarchical dimensions and aggregable properties to express the capability of aggrega-

tion for each attribute. Attribute graphs capture the functional (FD) and literal functional (LFD)

dependency constraints in analytic tables and define an efficient data structure for computing

dimension and fact identifiers. We introduce schema augmentation graphs which facilitate the

process of discovering candidate augmentation tables (schemas) for extending some given start

tables. Our model includes the definition of three reduction operations to transform schema

augmentation tables into natural schema complement tables. We also introduce formal quality

conditions to check the correctness of the target augmentation table by detecting ambiguity and

incompleteness issues with respect to the underlying dimensions and start table. We also present

a number of algorithms for validating and repairing schema augmentation tables before merging

them with the start table. The theoretical model and the is completely implemented in SAP

HANA and accessible through an API interface. We also validated the performance and usability

of our model through a series of experiments and different application scenarios.

Our schema augmentation approach generalizes the existing state of the art on schema

complements and drill-across queries. It only requires the source schema definitions and some

automatically generated and user-defined attribute metadata (aggregable properties) to detect

schema augmentations and produce correctly aggregated schema complements. It reduces

the assumptions enforced by previous approaches on the input datasets and accepts non-strict,

non-covering and non-onto dimension hierarchies with multiple top-level attributes.

173

7.2 Future Work Directions

The results of this thesis opens several directions for future work.

7.2.1 Schema matching discovery

Our work only considers reliable one-to-one schema matchings defined by attribute mapping

relationships, join relationships and derived relationships. The discovery of the relationships

are embedded into the metadata loader as explained in Chapter 4. One perspective of our

work is to extend our approach to other types of schema matchings that can be discovered

automatically through heuristic methods [12], [14], [46], [51]. Whereas heuristic schema

matching algorithms introduce uncertain table relationships, they can produce new interesting

schema augmentation candidates which are not detected through reliable schema matchings.

Many-to-many relationships also are a challenge for our approach, since they require the

generation of more sophisticated schema mapping queries including data fusion operators.

Example 7.1. For example, consider the dimension STORE from Figure 6.10 on Page 166 and

a non-analytic table COUNTRY_CODE with tuples as shown in Table 7.1:

Table 7.1.: Table STORE and COUNTRY_CODE

(a) STORE

PLANT CENTITY CCOUNTRY CCLUSTER CREGION

9044 XAGNER CHINA CHINA ASIA
1159 ROZAS SPAIN SPAIN & PORTUGAL EMEIA
1029 RENNES FRANCE FRANCE & BELGIUM EMEIA

(b) COUNTRY_CODE

COUNTRY_NAME 2_CHAR 3_CHAR UN_CODE

SPAIN ES ESP 724
FRANCE FR FRA 250
CHINA CN CHN 156
PORTUGAL PT PRT 620

Using the instance-based matching described in Section 5.3 on Page 105, we

could compute the Jaccard similarities between attribute domains of STORE and

COUNTRY_CODE to discover possible schema matchings. Then, a potential

schema matching is STORE.CCOUNTRY ∼= COUNTRY_CODE.COUNTRY_NAME with score

J(STORE.CCOUNTRY,COUNTRY_CODE.COUNTRY_NAME) = 0.75.

174 Chapter 7 Summary and Perspectives

7.2.2 User-specified augmentation and reduction operation
suggestion

In our current implementation, the user selects the start table and a candidate target table

for generating a merge query. When necessary, for transforming a target table into a schema

complement, the user specifies the reduction operations for each attribute that needs to be

reduced. The manual choice of the target table and the reduction operations introduces more

flexibility and control, but requires from the user some basic knowledge about the schema of the

target table.

On future goal of our schema augmentation service is to assist users in their choice by

generating ranked lists of candidate target tables and recommended reduction operations. The

ranking criteria could be various and based on user-defined keywords or data-specific criteria

like the data coverage of the common attributes or the distance of the target table from the

start table in the schema complement graph. Reduction operations could be proposed based

on the user preferences, on the user action history or on the desired data types of the reduced

attributes.

Example 7.2. Consider table INVENTORY of Figure 2.9 on Page 33 as the start table. All other

tables in Figure 2.9 are schema augmentation candidates for table INVENTORY. We could rank

these tables as follows:

• Dimension tables TIME, PROD, WAREHOUSE, TAX, STORE get higher scores

when the user wants to augment INVENTORY with new dimension attributes.

• Fact tables SALES, SALES_SUM get higher scores when the user wants to augment

INVENTORY with new measures.

• WAREHOUSE, PROD, TIME, TAX, SALES, SALEs_SUM get higher scores when

the user prefers the “closest” target tables.

• SALES gets the highest score when the user prefers the “most similar” target tables (SALES
has five attributes common with INVENTORY).

Assuming STORE is selected as the target table, attribute STORE_ID must be reduced. The

system might suggest ranking among the three reduction operations based on the following

observations. An aggregate reduction could count the number of stores grouped by CITY, STATE,

COUNTRY. A second possible reduction could be to pivot table STORE by attribute STORE_ID.

However, since STORE_ID is the dimension identifier, a pivot reduction would produce a new

column for each store, and each tuple would have only one new column with a non-null value.

Finally, filter reduction would produce a result table with a single tuple (store). The final ranking

7.2 Future Work Directions 175

would put pivoting at the end of the list (two many columns with many null values) and probably

prefer aggregation to filtering except if the user is interested into a particular store.

176 Chapter 7 Summary and Perspectives

Bibliography

[1] C. S. Jensen, T. B. Pedersen, and C. Thomsen, Multidimensional databases and data

warehousing. 2010.

[2] (). Business Intelligence and Analytics Software, [Online]. Available: https://www.

tableau.com/ (visited on 01/10/2019).

[3] (). Power BI | Interactive Data Visualization BI Tools, [Online]. Available: https://

powerbi.microsoft.com/en-us/ (visited on 01/10/2019).

[4] (). Data Analytics for Modern Business Intelligence | Qlik, [Online]. Available: https:

//www.qlik.com/us (visited on 01/10/2019).

[5] (). Sap Analytics Cloud, [Online]. Available: https : / / www . sapanalytics . cloud/

(visited on 03/09/2020).

[6] R. Kimball and M. Ross, The data warehouse toolkit. 3rd: John Wiley & Sons, 2013, ISBN:

978-1-118-53080-1.

[7] SAP. (). The virtual data model in sap s/4hana, [Online]. Available: https : / /

help . sap . com / viewer / 6b356c79dea443c4bbeeaf0865e04207 / 1809 . 000 / en - US /

8573b810511948c8a99c0672abc159aa.html (visited on 08/26/2019).

[8] A. Pattanayak, “High performance analytics with sap hana virtual models,” Journal of

computer and communications, vol. 5, no. 07, pp. 1–10, 2017.

[9] Trifacta. (). Data Wrangling Tools & Software | Trifacta, [Online]. Available: https:

//www.trifacta.com/ (visited on 01/10/2019).

[10] (). Paxata | Self-Service Data Preparation for Data Analytics, [Online]. Available: https:

//www.paxata.com/ (visited on 01/10/2019).

[11] (). SAP Agile Data Preparation and Transformation Solution, [Online]. Available: https:

//www.sap.com/products/data-preparation.html (visited on 01/10/2019).

[12] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee, F. Wu, R. Xin, and C. Yu, “Finding

related tables,” in Proceedings of the 2012 ACM SIGMOD international conference on

management of data, ACM, 2012, pp. 817–828.

177

https://www.tableau.com/
https://www.tableau.com/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/
https://www.qlik.com/us
https://www.qlik.com/us
https://www.sapanalytics.cloud/
https://help.sap.com/viewer/6b356c79dea443c4bbeeaf0865e04207/1809.000/en-US/8573b810511948c8a99c0672abc159aa.html
https://help.sap.com/viewer/6b356c79dea443c4bbeeaf0865e04207/1809.000/en-US/8573b810511948c8a99c0672abc159aa.html
https://help.sap.com/viewer/6b356c79dea443c4bbeeaf0865e04207/1809.000/en-US/8573b810511948c8a99c0672abc159aa.html
https://www.trifacta.com/
https://www.trifacta.com/
https://www.paxata.com/
https://www.paxata.com/
https://www.sap.com/products/data-preparation.html
https://www.sap.com/products/data-preparation.html

[13] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri, “InfoGather: Entity augmentation

and attribute discovery by holistic matching with web tables,” en, in Proceedings of the

2012 international conference on Management of Data - SIGMOD ’12, ACM Press, 2012,

pp. 97–108, ISBN: 978-1-4503-1247-9. DOI: 10.1145/2213836.2213848.

[14] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker, A. K. Elmagarmid, I. F.

Ilyas, S. Madden, M. Ouzzani, and N. Tang, “The Data Civilizer System,” in Cidr, 2017.

[15] J. D. Ullman, H. García-Molina, and J. Widom, Database system: The complete book, 2nd ed.

Prentice Hall, 2008.

[16] (). Closed World Assumption, [Online]. Available: https://en.wikipedia.org/wiki/

Closed-world_assumption (visited on 03/01/2019).

[17] A. Badia and D. Lemire, “Functional dependencies with null markers,” The computer

journal, vol. 58, no. 5, pp. 1160–1168, 2014.

[18] P. Atzeni and N. M. Morfuni, “Functional dependencies in relations with null values,” Inf.

process. lett., vol. 18, no. 4, pp. 233–238, 1984, ISSN: 0020-0190. DOI: 10.1016/0020-

0190(84)90117-0.

[19] W. Lehner, J. Albrecht, and H. Wedekind, “Normal forms for multidimensional databases,”

in Scientific and statistical database management, 1998. proceedings. tenth international

conference on, IEEE, 1998, pp. 63–72.

[20] T. Niemi, M. Niinimäki, P. Thanisch, and J. Nummenmaa, “Detecting summarizability in

OLAP,” Data & knowledge engineering, vol. 89, pp. 1–20, 2014, ISSN: 0169023X.

[21] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson, “A foundation for capturing and querying

complex multidimensional data,” Information systems, vol. 26, no. 5, pp. 383–423, 2001,

ISSN: 03064379. DOI: 10.1016/S0306-4379(01)00023-0.

[22] A. Shoshani, “OLAP and statistical databases: Similarities and differences,” in Proceedings

of the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems,

ACM, 1997, pp. 185–196.

[23] H.-J. Lenz and A. Shoshani, “Summarizability in OLAP and statistical data bases,” in

Proceedings of the ninth international conference on scientific and statistical database man-

agement (SSDBM ’97), 1997, pp. 132–143.

[24] J. Lechtenbörger and G. Vossen, “Multidimensional normal forms for data warehouse

design,” Information systems, vol. 28, no. 5, pp. 415–434, 2003.

[25] C. A. Hurtado, C. Gutierrez, and A. O. Mendelzon, “Capturing summarizability with

integrity constraints in OLAP,” ACM transactions on database systems, vol. 30, no. 3,

pp. 854–886, 2005, ISSN: 03625915.

178 Bibliography

http://dx.doi.org/10.1145/2213836.2213848
https://en.wikipedia.org/wiki/Closed-world_assumption
https://en.wikipedia.org/wiki/Closed-world_assumption
http://dx.doi.org/10.1016/0020-0190(84)90117-0
http://dx.doi.org/10.1016/0020-0190(84)90117-0
http://dx.doi.org/10.1016/S0306-4379(01)00023-0

[26] J.-N. Mazón, J. Lechtenbörger, and J. Trujillo, “A survey on summarizability issues in

multidimensional modeling,” Data & knowledge engineering, vol. 68, no. 12, pp. 1452–

1469, 2009, ISSN: 0169023X.

[27] J. Horner, I.-Y. Song, and P. P. Chen, “An analysis of additivity in OLAP systems,” in

Proceedings of the 7th ACM international workshop on data warehousing and OLAP, ACM,

2004, pp. 83–91.

[28] S. S. Stevens, “On the theory of scales of measurement,” Science, vol. 103, no. 2684,

pp. 677–680, 1946.

[29] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson, “Extending practical pre-aggregation in

on-line analytical processing,” in Proceedings of the 25th international conference on very

large data bases, ser. VLDB ’99, San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 1999, pp. 663–674, ISBN: 1558606157.

[30] R. Torlone, “Two approaches to the integration of heterogeneous data warehouses,”

Distributed and parallel databases, vol. 23, no. 1, pp. 69–97, 2008, ISSN: 0926-8782,

1573-7578.

[31] A. Abelló, J. Samos, and F. Saltor, “On relationships offering new drill-across possibilities,”

in Proceedings of the 5th ACM international workshop on data warehousing and OLAP, ACM,

2002, pp. 7–13.

[32] J. Horner and I.-Y. Song, “A taxonomy of inaccurate summaries and their management

in OLAP systems,” in International conference on conceptual modeling, vol. 3716, Berlin,

Heidelberg: Springer, 2005, pp. 433–448.

[33] J. Lee, M. Muehle, N. May, F. Faerber, V. Sikka, H. Plattner, J. Krueger, and M. Grund,

“High-performance transaction processing in SAP HANA,” IEEE data eng. bull, vol. 36, no.

2, pp. 28–33, 2013.

[34] SAP HANA modeling guide. SAP, 2019. [Online]. Available: https://help.sap.com/doc/

227fc55c4fc44a43b43752d6b127bdf3/2.0.04.

[35] R. Brunel, J. Finis, G. Franz, N. May, A. Kemper, T. Neumann, and F. Faerber, “Supporting

hierarchical data in SAP HANA,” in Data engineering (ICDE), 2015 IEEE 31st international

conference on, IEEE, 2015, pp. 1280–1291.

[36] M. Paradies, C. Kinder, J. Bross, T. Fischer, R. Kasperovics, and H. Gildhoff, “GraphScript:

Implementing complex graph algorithms in SAP HANA,” in Proceedings of DBPL 2017,

Munich, Germany: ACM Press, 2017, pp. 1–4.

[37] In, SAP HANA SQL and system views reference, SAP, 2016, pp. 88–99.

[38] (). Unit converter, [Online]. Available: https://www.unitconverters.net/.

[39] E. Roschke, “Units and conversion factors,” 2001.

Bibliography 179

https://help.sap.com/doc/227fc55c4fc44a43b43752d6b127bdf3/2.0.04
https://help.sap.com/doc/227fc55c4fc44a43b43752d6b127bdf3/2.0.04
https://www.unitconverters.net/

[40] (). SAP HANA smart data integration and SAP HANA smart data quality - SAP help

portal, [Online]. Available: https://help.sap.com/viewer/p/HANA_SMART_DATA_

INTEGRATION (visited on 01/10/2019).

[41] C. Batini, M. Lenzerini, and S. B. Navathe, “A comparative analysis of methodologies for

database schema integration,” Acm computing surveys (csur), vol. 18, no. 4, pp. 323–364,

1986.

[42] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin, “Data-driven understanding and refinement

of schema mappings,” in Proceedings of the 2001 acm sigmod international conference on

management of data, 2001, pp. 485–496.

[43] R. J. Miller, L. M. Haas, and M. A. Hernández, “Schema mapping as query discovery,”

in Proceedings of the 26th international conference on very large data bases, ser. VLDB

’00, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000, pp. 77–88, ISBN:

1558607153.

[44] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema matching,”

The vldb journal, vol. 10, no. 4, pp. 334–350, 2001.

[45] Z. Bellahsene, A. Bonifati, and E. Rahm, Eds., Schema Matching and Mapping, en. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011. DOI: 10.1007/978-3-642-16518-4.

[46] A. Doan, A. Halevy, and Z. Ives, Principles of data integration, 1st. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 2012, ISBN: 0124160441.

[47] S. Ram and V. Ramesh, “Schema integration: Past, present, and future,” Management of

heterogeneous and autonomous database systems, pp. 119–155, 1999.

[48] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller, “Table union search on open data,”

en, Proceedings of the vldb endowment, vol. 11, no. 7, pp. 813–825, Mar. 2018, ISSN:

21508097.

[49] P. Jaccard, “The Distribution of the Flora in the Alpine Zone.1,” en, New phytologist, vol.

11, no. 2, pp. 37–50, 1912, ISSN: 1469-8137. (visited on 11/28/2019).

[50] J. Bleiholder and F. Naumann, “Data fusion,” Acm computing surveys (csur), vol. 41, no. 1,

pp. 1–41, 2009.

[51] M. J. Cafarella, A. Halevy, and N. Khoussainova, “Data integration for the relational web,”

Proceedings of the vldb endowment, vol. 2, no. 1, pp. 1090–1101, 2009.

[52] M. Rafanelli and A. Shoshani, “Storm: A statistical object representation model,” in

International conference on scientific and statistical database management, vol. 420, Berlin,

Heidelberg: Springer, 1990, pp. 14–29. DOI: 10.1007/3-540-52342-1_18.

[53] R. Liu, E. Simon, B. Amann, and S. Gançarski, “Discovering and merging related analytic

datasets,” Information systems, vol. 91, p. 101 495, 2020.

180 Bibliography

https://help.sap.com/viewer/p/HANA_SMART_DATA_INTEGRATION
https://help.sap.com/viewer/p/HANA_SMART_DATA_INTEGRATION
http://dx.doi.org/10.1007/978-3-642-16518-4
http://dx.doi.org/10.1007/3-540-52342-1_18

[54] (). Home page of pkdd discovery challenge, [Online]. Available: https://sorry.vse.

cz/~berka/challenge/PAST/index.html.

Bibliography 181

https://sorry.vse.cz/~berka/challenge/PAST/index.html
https://sorry.vse.cz/~berka/challenge/PAST/index.html

ASQL Query examples

A.1 Queries to compute attribute graph
The following SQL queries computing an attribute graph from a given hierarchy table.

Step 1: Extract nodes and edges from hierarchy table.

INSERT INTO ATGN(ATT_NAME, LEVEL_NUM, OPTIONAL)

SELECT DISTINCT ATT_NAME, LEVEL_NUM, 0

FROM HT

INSERT INTO ATGE(ATT_NAME, PRED_ATT_NAME)

SELECT DISTINCT A .ATT_NAME AS ATT_NAME,

B .ATT_NAME AS PRED_ATT_NAME,

FROM HT AS A INNER JOIN HT AS B

ON A .PRED_NODE = B .NODE

BOTTOM = SELECT TOP 1 ATT_NAME FROM ATGN

ORDER BY LEVEL_NUM ASC

TOP = SELECT TOP 1 ATT_NAME FROM ATGN

ORDER BY LEVEL_NUM DESC

INSERT INTO ATGE(ATT_NAME, PRED_ATT_NAME, LABEL)

VALUES (‘ __bot ‘ , BOTTOM, ’+ ’)

INSERT INTO ATGE(ATT_NAME, PRED_ATT_NAME, LABEL)

VALUES (TOP , ‘ __top ‘ , ’ f ’)

In this step, nodes and edges defined in the hierarchy type are extracted and stored in ATGN,

ATGE table.

Step 2: Find additional edges.

183

TERM = SELECT DISTINCT ATT_NAME FROM HT

WHERE IS_LEAF = 1 AND ATT_NAME != :BOTTOM

INSERT INTO ATGE(ATT_NAME, PRED_ATT_NAME)

SELECT DISTINCT ’ _ _ b o t ’ AS ATT_NAME,

ATT_NAME AS PRED_ATT_NAME,

FROM :TERM

NEW_MAPPINGS = SELECT DISTINCT

NODE,

NODE_VALUE,

LEFT(PRED_NODE,

LOCATE_REGEXPR(START ’ (\ . \ [\]) * $ ’ IN PRED_NODE) −1)

AS PRED_NODE,

ATT_NAME

FROM HT

WHERE NODE_VALUE != ’ [] ’

AND PRED_NODE LIKE ’ %[] ’

NEW_EDGES = SELECT DISTINCT

A .ATT_NAME,

B .ATT_NAME AS PRED_ATT_NAME

FROM :NEW_MAPPINGS AS A

INNER JOIN HT AS B

ON A .PRED_NODE = B .NODE

INSERT INTO ATGE(ATT_NAME, PRED_ATT_NAME)

SELECT DISTINCT ATT_NAME AS ATT_NAME,

PRED_ATT_NAME AS PRED_ATT_NAME,

FROM :NEW_EDGES

In this step, additional edges are extracted and stored. TERM contains new edges start from

⊥, and NEW_EDGES contains new edges start from attributes except ⊥.

NULL values in HT table are represented by ‘[]’ node, e.g., a tuple that represents STATE

in (‘Dublin’, ‘-’, ‘Belarus’, ‘Europe’) will have ‘[Europe].[Belarus].[]’ and ‘[]’ as NODE and

NODE_VALUE value respectively.

Step 3: Find null-able attributes.

TERMLEVEL = SELECT MAX(LEVEL_NUM)

184 Chapter A SQL Query examples

FROM ATGN

WHERE ATT_NAME IN

(SELECT DISTINCT PRED_ATT_NAME FROM ATGE

WHERE ATT_NAME = ’ _ _ b o t ’)

UPDATE ATGN

SET OPTION = 1

WHERE LEVEL_NUM < TERMLEVEL

UPDATE ATGN

SET OPTION = 1

WHERE ATT_NAME IN

(SELECT DISTINCT ATT_NAME FROM HT

WHERE NODE_VALUE = ’ [] ’)

Mark attributes contain null values to optional.

Step 4: Find label + and f edges.

MAPPING_WITH_NULL =

SELECT A .ATT_NAME AS ATT_NAME,

A .NODE_VALUE AS NODE_VALUE,

B .ATT_NAME AS PRED_ATT_NAME,

B .NODE_VALUE AS PRED_VALUE

FROM HT AS A INNER JOIN HT AS B

ON A .PRED_NODE = B .NODE

UNION

SELECT A .ATT_NAME,

A . NODE_VALUE,

B .ATT_NAME AS PRED_ATT_NAME,

B .NODE_VALUE AS PRED_VALUE

FROM :NEW_MAPPINGS AS A INNER JOIN HT AS B

ON A .PRED_NODE = B .NODE

PLUS_EDGE_WITH_NULL =

SELECT DISTINCT ATT_NAME,

NODE_VALUE,

PRED_ATT_NAME,

COUNT (DISTINCT PRED_VALUE) AS OCCURENCE

FROM :MAPPING_WITH_NULL

A.1 Queries to compute attribute graph 185

GROUP BY ATT_NAME, NODE_VALUE, PRED_ATT_NAME

HAVING COUNT (DISTINCT PRED_VALUE) > 1

PLUS_EDGE_WITHOUT_NULL =

SELECT DISTINCT ATT_NAME,

NODE_VALUE,

PRED_ATT_NAME,

COUNT (DISTINCT PRED_VALUE) AS OCCURENCE

FROM :MAPPING_WITH_NULL

WHERE NODE_VALUE != ’ [] ’

GROUP BY ATT_NAME, NODE_VALUE, PRED_ATT_NAME

HAVING COUNT (DISTINCT PRED_VALUE) > 1

LABEL_F =

SELECT DISTINCT ATT_NAME, PRED_ATT_NAME

FROM :MAPPING_WITH_NULL

MINUS

SELECT DISTINCT ATT_NAME, PRED_ATT_NAME

FROM : PLUS_EDGE_WITH_NULL

LABEL_ONE =

SELECT DISTINCT ATT_NAME, PRED_ATT_NAME

FROM : PLUS_EDGE_WITH_NULL

MINUS

SELECT DISTINCT ATT_NAME, PRED_ATT_NAME

FROM :PLUS_EDGE_WITHOUT_NULL

LABEL_PLUS =

SELECT DISTINCT ATT_NAME, PRED_ATT_NAME

FROM :PLUS_EDGE_WITHOUT_NULL

LABEL_F, LABEL_PLUS and LABEL_ONE contain label for each edges, table ATGE is then

updated label f , + and 1.

UPDATE ATGE SET LABEL = ’+ ’

FROM ATGE A, : LABEL_PLUS B

WHERE A .ATT_NAME = B .ATT_NAME

AND A .PRED_ATT_NAME = B .PRED_ATT_NAME

UPDATE ATGE SET LABEL = ’ f ’

FROM ATGE A, : LABEL_F B

WHERE A .ATT_NAME = B .ATT_NAME

AND A .PRED_ATT_NAME = B .PRED_ATT_NAME

186 Chapter A SQL Query examples

UPDATE ATGE SET LABEL = ’ 1 ’

FROM ATGE A, : LABEL_ONE B

WHERE A .ATT_NAME = B .ATT_NAME

AND A . PRED_ATT_NAME = B .PRED_ATT_NAME

A.2 Query to detect changes on attribute graph

Check new label ’+’ edges

TEMP = SELECT A .ATT_NAME AS ATT_NAME,

A .NODE_VALUE AS NODE_VALUE,

B .ATT_NAME AS PRED_ATT_NAME,

B .NODE_VALUE AS PRED_VALUE

FROM HT A

JOIN HT B ON A .PRED_NODE = B .NODE

JOIN ATGE C ON A .ATT_NAME = C .ATT_NAME

AND B .ATT_NAME = C . PRED_ATT_NAME

WHERE C . LABEL = ’ 1 ’ OR C . LABEL = ’ f ’

PLABELS = SELECT ATT_NAME,

NODE_VALUE,

PRED_ATT_NAME,

COUNT (DISTINCT PRED_VALUE) AS OCCURENCE

FROM TEMP

GROUP BY ATT_NAME, NODE_VALUE, PRED_ATT_NAME

HAVING COUNT (DISTINCT PRED_VALUE) > 1

PLABELS contains edges that are changed to label ’+’.

Check new optional attributes

OPTNODE = SELECT DISTINCT ATT_NAME

FROM HT LEFT OUTER JOIN ATGN

ON HT.ATT_NAME = ATGN.ATT_NAME

WHERE HT. OPTIONAL = 0

AND ATGN.NODE_VALUE = ’ [] ’

OPTNODE contains new optional nodes that were not optional before but now contain null

values after the update.

A.2 Query to detect changes on attribute graph 187

Detect new edges

TERNODE = SELECT DISTINCT ATT_NAME

FROM

(

SELECT DISTINCT ATT_NAME FROM HT

WHERE IS_LEAF = 1 AND ATT_NAME != :BOTTOM

)

WHERE ATT_NAME NOT IN

(

SELECT DISTINCT PARENT_ATT_NAME

FROM ATGE

WHERE ATT_NAME = ’ \ b o t ’

)

NEW_EDGE =

SELECT DISTINCT A .ATT_NAME AS ATT_NAME,

B .ATT_NAME AS PRED_ATT_NAME,

FROM HT

MINUS

SELECT DISTINCT ATT_NAME,

PRED_ATT_NAME

FROM ATGE

TERNODE contains new bottom level nodes, new edges from ⊥ to attributes in TERNODE are

added to ATGN. NEW_EDGE contains new cross-level edges. The labels of new edges could be

determined using Step 4 in Section A.1.

A.3 Query for ambiguity annotation
Let T (S) be an analytic table over a dimension D(SD). Let X = SD ∩ S and X′ = {Aj ∈ SD |
∃Ai ∈ X, Ai 4∗ Aj}. Let A be an aggregable attribute in T such that an aggregate query using

function F on A group by Y,Y ⊆ S is applicable. An unambiguous aggregation query on T is

applied as:

NON_ABG = SELECT Y ,

F(A) AS A_F ,

CASE

WHEN COUNT (DISTINCT W) > 1 THEN 1

ELSE 0

188 Chapter A SQL Query examples

END AS IS_AMBIGUOUS

FROM T

GROUP BY Y

NON_ABG shows the normal case that dimension attributes in X′ are also in table T , where

W = K−X,K 7→ X′.

There is another case that W * S, and dimension D is related to T with a set of common

attributes YD = SD ∩ S, the unambiguous aggregation query on T is applied as:

NON_ABG = SELECT Y ,

F(A) AS A_F ,

CASE

WHEN COUNT (DISTINCT D.W_ncom) > 1 THEN 1

WHEN COUNT (DISTINCT W_com) > 1 THEN 1

ELSE 0

END AS IS_AMBIGUOUS

FROM T LEFT OUTER JOIN D

ON T . Y_D = D. Y_D

GROUP BY Y

Where W_com = W ∩ S, W_ncom = W − S. The query can be extended with additional left

outer joins when T contains multiple dimensions.

Example A.1. Consider the aggregation query Q (T1) on table SALES generated in Example 4.15

on Page 93. Q (T1) is ambiguous with respect to dimension STORE, we then replace ambiguous

measure values by null values with following query:

SELECT PROD_SKU, YEAR , CITY , COUNTRY,

CASE

WHEN COUNT (DISTINCT D. STATE) > 1 THEN n u l l

ELSE SUM(AMOUNT)

END AS SUM(AMOUNT)

FROM Q(T1) LEFT OUTER JOIN SALES

ON Q(T1) . CITY = D. CITY

AND Q(T1) .COUNTRY = D.COUNTRY

A.4 Query to complete merge.
Let T0(S0) and T (S) be two analytic tables related by a well-formed relationship R with a set

of common attributes Y. Let Ytop be the set of highest level dimension attributes of Y. The query

to complete merge is defined as:

A.4 Query to complete merge. 189

PREPARE_TUPLES = SELECT T0 . S0 ,

T .NEW_ATT

FROM T INNER JOIN T0

ON T . Y_TOP = T0 . Y_TOP

MATCHED_TUPLES = SELECT T0 . S0 ,

T .NEW_ATT

FROM T INNER JOIN T0

ON T . Y = T0 . Y

COMPLETE_TUPLES = SELECT S0 ,

NEW_ATT

FROM : PREPARE_TUPLES

MINUS

SELECT S0 ,

NEW_ATT

FROM :MATCHED_TUPLES

COMPLETE_TUPLES contains tuples to complete the merge of T0 and T , by Proposition XXX,

they are tuples in candidate completion tuples but not completion tuples. NEW_ATT are the set

of attributes of T that will be augmented to T0.

When there exits a dimension D of schema SD such that SD ∩Y ⊂ SD ∩S0, and D is related to

T2 with common attributes YSD
. Additional join with D will be carried to fill values for attributes

in SD ∩ S0.

COMPLETE_TUPLES_WITH_DIMENSION = SELECT B . S0 ,

A . S0_ncom ,

B .NEW_ATT

FROM :COMPLETE_TUPLES B INNER JOIN D A

ON A . Y_D = B . Y_D

Where S0_ncom = SD ∩ S0.

A.5 Query for unifying units.
Let T be a table with a set of dimensional attributes D = {A1, . . . , An}, and M =
{M1, . . . ,Mk} be a set of aggregable attributes in T . Let Mi ∈ M such that Mi has values

in multiple units. Let T_convert(ORIGIN_UNIT, TARGET_UNIT, RATE, DATE) be a unit conver-

sion table. Let UStandard, d be unit and conversion date respectively which are provided by

user. The preparatory query applied on T to convert units of Mi is defined as:

190 Chapter A SQL Query examples

SELECT D,M1, ,M(i −1) ,M(i +1), ,Mk,

T . Mi AS OR_Mi ,

Mi . UNIT AS OR_Mi . OR_UNIT ,

T . Mi * T_convert . FACTOR AS Mi ,

UStandard AS Mi . UNIT

FROM T INNER JOIN T_convert

ON Mi . UNIT = T_convert . ORIGIN_UNIT

AND T_convert . TARGET_UNIT = UStandard

AND T_convert . DATE = d

A.5 Query for unifying units. 191

BPropositions and Proofs

Proposition 2.1. Let D = (S,R , λR ,⊥,>) be an attribute graph, the subset of all attributes in S

with at least one + labeled in-edge and no f labeled in-edge is a dimension identifier for all valid

dimension tables with attributes S.

Proof. Literal functional dependencies correspond to functional dependencies where null values

are considered as constants (t.A ≡ t′.A iff t.A = t′.A or t.A and t′.A are both null) and, under this

interpretation, the Armstrong’s axioms for functional dependencies also hold for literal functional

dependencies.

Let W = S−XD be the subset of S such that for all A ∈W, A has no + in-edges or at least one

f in-edge. We first prove that the literal functional dependency S −W 7→ S holds for all valid

dimension tables of D. For this, it is sufficient to prove that:

(1) For all attributes Ai ∈W , there exists a subset of attributes Si ⊆ S − {Ai} where Si 7→ Ai.

Since attribute graphs (and the corresponding attribute dependencies) are acyclic, we can

define a partial order ≤ over attributes in W such that each attribute Ai ∈W only depends on

attributes Ak ≤ Ai. Then, from Sk ⊆ Si and the transitivity of 7→ and if for all attributes Ai ∈W ,

S − {Ai} 7→ Ai follows S −W 7→ S.

For proving (1), we distinguish two cases which separate the attributes in W into two classes.

Let Ai ∈W and Si = {Ak ∈ S | (Ak, Ai) ∈ R }. By the definition of W, for each Ai there exists at

least one Ak ∈ Si where R (Ak, Ai) = f (case one) or for all Ak ∈ Si : R (Ak, Ai) = 1 (case two).

–Case one: Let Ai ∈W and Ak ∈ Si such that R (Ak, Ai) = f . By the definition of attribute graph

and label f edges, R (Ak, Ai) = f is equivalent with Ak 7→ Ai.

–Case two: Let Ai ∈ W and for all Ak ∈ Si : R (Ak, Ai) = 1. For any two tuples t1, t2 ∈ T , there

exists at least one attribute in Ak ∈ Si where t1.Ak is not null. Then, if t1.Si ≡ t2.Si, there exists

at least one attribute Ak ∈ Si such that t1.Ak = t2.Ak and since R (Ak, Ai) = 1, we get t1.Ai ≡ t2.Ai.

We now prove by contradiction that S −W is minimal, i.e. there exists no subset Y ⊂ S −W
where Y 7→ S. Assume that S −W 7→ S but S −W is not minimal. Then there exists at least one

attribute Ap ∈ S −W, such that (S −W− Ap) 7→ S. By the definition of W and Ap /∈W, Ap has at

least one + in-edge and Ap doesn’t have f in-edges. Let Ak ∈ S such that R (Ak, Ap) = +. Then we

193

can build a valid dimension table (hierarchy) T where there exists a couple of tuples t1, t2 ∈ T
(paths in the hierarchy T) such that t1.(S− Ap) ≡ t2.(S− Ap), and t1.Ak 6≡ t2.Ak, i.e. S− Ap 67→ Ak.

Then, S −W− Ap 67→ Ak, which is in contradiction with (S −W− Ap) 7→ S.

Therefore, S −W is the minimal set such that S −W 7→ S.

Proposition 2.6. Composition of relationships. Let R 1(T1, T2) and R 2(T2, T3) be two well-formed

relationships between tables T1, T2 and T3 with respective common attributes Y1 and Y2. If

Y3 = Y1 ∩D Y2 6= ∅, then there exists a well-formed relationship R 3(T1, T3) that is a composition

of R 1(T1, T2) and R 2(T2, T3) with common attributes Y3.

Proof. We prove that there exists a relationship between T1 and T3 and the relationship is

well-formed. We distinguish four cases by the types of relationships between R 1(T1, T2) and

R 2(T2, T3) with common attributes Y1 and Y2.

– Case 1: R 1(T1, T2) and R 2(T2, T3) are both join relationships. By definition, for all attributes

A ∈ Y3 = Y1 ∩Y3, T1.A = T2.A and T2.A = T3.A. Then by transitivity of equality, T1.A = T3.A, i.e.,

there R 3(T1, T3) is a join relationship with common attributes Y3.

– Case 2: R 1(T1, T2) is a join relationship and R 2(T2, T3) is an attribute mapping relationship. We

first consider the case where all attributes A ∈ Y3 = Y1 ∩ Y3, T1.A = T2.A and T2.A � T3.A.

By definition, T2.A� T3.A indicates that there exists a query Q 23 and a set of tables such that

T3 = Q 23(T2, T
′
1, · · · , T ′n) and ∀y ∈ dom(A):

σA=y(Q 23(T2, T
′
1, · · · , T ′n))

= σA=y(Q 23(σA=y(T2), T ′1, · · · , T ′n))
(B.1)

We prove that T1.A � T3.A, i.e., there exists a query Q 13 and a set of tables such that

T3 = Q 13(T1, T
′′
1 , · · · , T ′′m)) and ∀y ∈ dom(A):

σA=y(Q 13(T1, T
′′
1 , · · · , T ′′m))

= σA=y(Q 13(σA=x(T1), T ′′1 , · · · , T ′′m))
(B.2)

Since R 1(T1, T2) is a join relationship, there exists a table T ′ such that T2 = πS2(T1 ./ T
′).

Then, by replacing T2 in Equation (B.1) and by T1.A = T2.A, we get:

σA=y(Q 23(πS2(T1 ./ T
′), T ′1, · · · , T ′n))

= σA=y(Q 23(σA=y(πS2(T1 ./ T
′)), T ′1, · · · , T ′n))

(B.3)

194 Chapter B Propositions and Proofs

Assuming Q 13 = Q 23(πS2(T1 ./ T
′), T ′1, · · · , T ′n), by replacement in Equation (B.3), we get:

σA=y(Q 13(T1, T
′, T ′1, · · · , T ′n))

= σA=y(Q 23(σA=y(πS2(T1 ./ T
′)), T ′1, · · · , T ′n))

(B.4)

Finally, by pushing all selections into the joins of the right side of Equation (B.3), we obtain:

σA=y(Q 23(πS2(σA=y(T1) ./ T ′), T ′1, · · · , T ′n))

= σA=y(Q 13(σA=y(T1), T ′, T ′1, · · · , T ′n))
(B.5)

which corresponds to T1.A� T3.A.

We follow the same reasoning for proving that T1.A = T2.A implies T3.A� T2.A, T3.A� T1.A.

– Case 3: R 1(T1, T2) is an attribute mapping relationship and R 2(T2, T3) is a join relationship. We

can follow a similar rewriting process as in Case 2 to prove for all attributes A ∈ Y3 = Y1 ∩Y3

that if T2.A = T3.A, then T1.A� T2.A implies T1.A� T3.A and T2.A� T1.A implies T3.A� T1.A.

– Case 4. R 1(T1, T2), R 2(T2, T3) are both attribute mapping relationships. We consider the

case where for all attributes A ∈ Y3 = Y1 ∩ Y2, T1.A � T2.A and T2.A � T3.A. Then there

exist two queries Q 12 and Q 23 over a set of tables such that T2 = Q 12(T2, · · · , T ′m), T3 =
Q 23(T2, T

′
1, · · · , T ′n) and ∀y ∈ dom(A):

σA=y(Q 12(T1, · · · , T ′n))

= σA=y(Q 12(σA=y(T1), · · · , T ′n))
(B.6)

and

σA=y(Q 23(T2, · · · , T ′m))

= σA=y(Q 23(σA=y(T2), · · · , T ′m))
(B.7)

We prove that T1.A � T3.A, i.e., there exists a query Q 13 and a set of tables T3 =
Q 13(T1, · · · , T ′k) such that ∀y ∈ dom(A),

σA=y(Q 13(T1, · · · , T ′k))

= σA=y(Q 13(σA=y(T1), · · · , T ′k))
(B.8)

195

By replacing T2 by Q 12 in Equation (B.7), we obtain:

σA=y(Q 23(T2, · · · , T ′m))

= σA=y(Q 23(Q 12(T1, · · · , T ′n), · · · , T ′m))
(B.9)

By pushing the selection σA=y, we obtain:

σA=y(Q 23(Q 12(T1, · · · , T ′n), · · · , T ′m))

= Q 23(σA=y(Q 12(T1, · · · , T ′n), · · · , T ′m))
(B.10)

Then, by applying Equation (B.6), we obtain:

σA=y(Q 23(Q 12(T1, · · · , T ′n), · · · , T ′m))

= Q 23(σA=y(Q 12(σA=y(T1), · · · , T ′n)), · · · , T ′m)
(B.11)

By pulling the first selection σA=y out from Q 23, we obtain:

σA=y(Q 23(Q 12(T1, · · · , T ′n), · · · , T ′m))

= σA=y(Q 23(Q 12(σA=y(T1), · · · , T ′n)), · · · , T ′m)
(B.12)

Now let Q 13(T1, · · · , T ′n, · · · , T ′m) = Q 23(Q 12(T1, · · · , T ′n)), · · · , T ′m). Then, we obtain from

Equation (B.12):

σA=y(Q 13(T1, · · · , T ′n, · · · , T ′m))

= σA=y(Q 13(σA=y(T1), · · · , T ′n, · · · , T ′m))
(B.13)

Therefore, we have for all attributes in Y3 = Y1 ∩ Y2, T1.A � T3.A, i.e. R − 3(T1, T3) is an

attribute mapping relationship with common attributes Y3.

Proposition 2.7. Fusion of relationships. Let R 1(T1, T2) and R 2(T1, T2) be two well-formed

relationships between two tables T1 and T2 with respective common attributes Y1 and Y2. If

∀A ∈ Y1 ∩D Y2, µR 1(A) = µR 2(A) then there exists a well-formed relationship R 3(T1, T2) that is

a fusion of R 1(T1, T2) and R 2(T1, T2) with common attributes Y3 = Y1 ∪Y2.

Proof. We can apply a similar case study as in the proof of Proposition 2.6. Assume that R 1(T1, T2)
and R2(T1, T2) are two natural mapping relationships with common attributes Y1 and Y2, i.e.

∀A ∈ Y1 ∩ Y2, A = νR 1(A) = νR 2(A). We prove that there exists a well-formed relationship R 3

196 Chapter B Propositions and Proofs

between T1 and T2 with common attributes Y3 = Y1 ∪ Y2. We distinguish three cases by the

types of both relationships R 1(T1, T2) and R 2(T1, T2).

– Case 1: R 1(T1, T2) and R 2(T1, T2) are both join relationships. By definition, for all attributes

A ∈ Y3 = Y1 ∪ Y2, T1.A = T2.A, i.e. there exists a join relationship R 3(T1, T3) with common

attributes Y3.

– Case 2. R 1(T1, T2), R 2(T1, T2) are both attribute mapping relationships. By definition, for all

attributes A ∈ Y3 = Y1 ∪ Y2, T1.A � T2.A, i.e. there exists an attribute mapping relationship

R 3(T1, T3) with common attributes Y3.

– Case 3: R 1(T1, T2) is a join relationship and R 2(T1, T2) is an attribute mapping relationship.

Then, by Case 2, for showing that R 3(T1, T2) is an attribute mapping relationship it is sufficient

to show that R 1(T1, T2) is an attribute mapping relationship. We show more generally that any

join relationship is also an attribute mapping relationship. By definition, R1(T1, T2) is a join

relationship with common attributes Y1, i.e., for all A ∈ Y1, T1.A = T2.A and T2 = Q 12(T1, T2) =
πS2(T1 ./Y T2) where S2 is the schema of T2 and Y ⊆ S2. Then, ∀y ∈ dom(A):

σA=y(Q 12(T1, T2))

= σA=y(πS2(T1 ./Y1 T2))

= σA=y(πS2(σA=y(T1) ./Y1 T2))

= σA=y(Q 12(σA=y(T1), T2))

(B.14)

Therefore, R is an attribute mapping relationship.

197

List of Figures

1.1 View definition of tables SALES and DEM . 4

2.1 Examples of definitions of analytic tables . 15

2.2 Relations between analytic tables and non-analytic tables 15

2.3 Hierarchy types . 16

2.4 Hierarchy instance examples . 17

2.5 Attribute graph of dimension REGION . 21

2.6 Attribute graphs of dimensions WAREHOUSE, STORE, PROD, TIME and TAX 22

2.7 Relations between hierarchy, dimension table and attribute graph 25

2.8 Attribute graph of dimension MKT_PROD . 29

2.9 Examples of relationships . 33

3.1 Partial hierarchy in dimension STORE . 58

3.2 Attribute graphs of dimensions D1, D2 . 59

3.3 Partial hierarchy instances . 62

4.1 Architecture overview . 72

4.2 SC graph example for Figure 2.9 . 84

4.3 The complete workflow of merging T1 and T2 . 95

4.4 An overview of different adapters for SAP HANA 97

5.1 Transformed schemas and their relationships . 104

5.2 Join relationships and schema matchings . 111

5.3 Join relationships and schema matchings . 113

5.4 Schema matchings between source schemas . 120

5.5 Fact tables SALES and SALES_SUM . 123

5.6 The integration of SALES and INVENTORY . 125

5.7 Two approaches to formulate compatible dimensions 126

5.8 The integration of SALES and INVENTORY using compatible dimensions 129

5.9 Attribute graph of PROD_NEW . 142

5.10 Attribute graph of PROD_NEW . 142

5.11 The dimension schema of PROD_NEW . 147

199

5.12 The dimension schema of PROD_NEW . 147

6.1 Computation time for different dimension table size (number of rows) 155

6.2 Computation time for different number of nodes . 156

6.3 Computation time for different number of +-edges . 157

6.4 Computation time for different number of additional edges 158

6.5 Constructions of views . 160

6.7 Complete SC graph for analytic tables . 162

6.8 Partial SC graph for analytic tables . 162

6.9 Query execution plans comparisons . 164

6.10 Attribute graph in dimension STORE . 166

6.11 Relationships for the bank retail database . 167

6.12 SC graph for the analytic tables . 168

6.13 Construction of GV . 170

200 List of Figures

List of Tables

1.1 Tables SALES, DEM, SALESORG, REGION , TIME 5

1.2 SALES_SALESORG . 5

1.3 SALES_DEM . 7

1.4 AGG_DEM . 8

1.5 SALES_AGG_DEM . 9

1.6 SALES_SALESORG_DEM . 9

1.7 SALES_SALESORG_DEM′ . 10

2.1 Dimension table REGION . 18

2.2 Differences between LFD and NFD . 19

2.3 PRODUCT_LIST . 29

2.4 Categories of aggregable attributes . 30

2.5 Category of the domain and the co-domain for common aggregation functions . . . 30

2.6 Summary of data model concepts . 37

3.1 Examples of aggregate queries . 44

3.2 Examples of filter queries . 45

3.3 Examples of pivot queries . 45

3.4 Table PRODUCT_LIST . 49

3.5 Table PRODUCT_LIST_COUNT . 50

3.6 Example of incomplete merge . 60

3.7 Examples of table SALES, INVENTORY and STORE 65

3.8 Complete merge of T0 and T . 65

3.10 Result of aggregation queries on T . 67

4.1 Attribute graph for dimension WAREHOUSE . 78

4.2 A tuple from hierarchy table . 79

4.3 Attribute graph for dimension REGION . 81

4.4 Effects on dimension identifiers by attribute graph 83

4.5 T2 in the result . 85

4.6 User actions to create a reduction query . 90

201

5.1 Schema matchings from Figure 5.2 . 111

5.2 Schema matching extracted from Figure 5.3 . 113

5.3 Schema matching specified in Figure 5.4 . 121

5.4 Table PRODUCT_LIST . 132

5.5 Table PRODUCT_SUM . 132

5.6 Table PRODUCT_LIST . 133

5.7 Fact and dimension table . 134

5.8 Results of summarization queries . 135

5.9 Results of aggregation queries . 136

5.10 PROD_SALES . 140

5.11 PROD_NEW_SALES . 142

5.12 PROD_NEW_SALES2 . 143

5.13 Query result of Q2 . 144

5.14 PROD_NEW . 145

5.15 Comparisons of four schema and data integration approaches 151

6.1 A dimension table with a strict linear structured hierarchy 154

6.2 A dimension table with one +-edge . 156

6.3 A dimension table with one additional edge . 157

6.4 Performance of Q 1,Q 2 in GV and HCV . 165

6.5 Detection of ambiguous values . 166

7.1 Table STORE and COUNTRY_CODE . 174

202 List of Tables

	Titlepage
	Remerciements
	Introduction
	The Role and Evolution of Analytics
	Main Challenges
	Relationship extraction
	Avoid row multiplication
	Avoid incorrect and ambiguous reduction
	Avoid incomplete merge

	Research Contributions
	Organization of the Manuscript

	Data Model
	Model Overview
	Analytic Tables
	Preliminaries
	Hierarchical dimension tables
	Dimension identifiers and attribute graphs
	Capturing hierarchy properties with attribute graphs
	Multidimensional fact tables
	Aggregable attributes in analytic tables

	Table Relationships
	Join and attribute mapping relationships
	Derived relationships
	Relationships in drill-across OLAP queries

	Conclusions

	Schema Augmentations and Quality Guarantees
	Schema Augmentations
	Natural Schema Complement
	Reduction Queries
	Quality Criteria of Schema Augmentations
	Propagation of aggregable properties
	Non-ambiguous aggregable attributes
	Complete merge results
	Summarizability revisited

	Architecture and Algorithms
	SAP HANA Architecture
	Dimension and Fact Identifier Computation
	Computation of attribute graphs
	Dimension and fact identifiers
	Maintaining dimension identifiers

	Schema Complement Computation
	Schema complement graph
	Finding schema augmentations
	Unit conversions

	Reduction Query Generation
	Merge Query Manager
	Extension to Heterogeneous Data Sources
	Conclusions

	State of the art
	Introduction
	Schema and data integration
	Drill-across and summarizability
	Schema augmentation

	Schema Integration
	Approach
	Examples

	Schema Matching Discovery
	Heuristic schema matching discovery
	Reliable schema matching discovery

	Mediation-based Data Integration
	Approach
	Examples

	Schema Augmentation and Entity Complement
	Schema augmentation approaches for web tables
	Entity complement approaches

	Drill-across Queries in Multi-dimensional Databases
	Drill-across queries using conformed dimensions
	Drill-across queries using compatible dimensions

	Summarizable Analytic Tables
	Summarizability in statistical data models
	Summarizability in multidimensional data models
	Conclusion on summarizability

	Summary

	Applications and Experiments
	Performance Tests
	Attribute graph computation
	Dimension identifier computation

	Validation with Real Datasets
	Business use case
	Feature engineering use case

	Summary and Perspectives
	Summary
	Future Work Directions
	Schema matching discovery
	User-specified augmentation and reduction operation suggestion

	References
	SQL Query examples
	Queries to compute attribute graph
	Query to detect changes on attribute graph
	Query for ambiguity annotation
	Query to complete merge.
	Query for unifying units.

	Propositions and Proofs
	List of Figures
	List of Tables

