
HAL Id: tel-03987730
https://theses.hal.science/tel-03987730v2

Submitted on 14 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thread scheduling in multi-core operating systems : how
to understand, improve and fix your scheduler

Redha Gouicem

To cite this version:
Redha Gouicem. Thread scheduling in multi-core operating systems : how to understand, improve
and fix your scheduler. Operating Systems [cs.OS]. Sorbonne Université, 2020. English. �NNT :
2020SORUS052�. �tel-03987730v2�

https://theses.hal.science/tel-03987730v2
https://hal.archives-ouvertes.fr

Ph.D thesis in Computer Science

Thread Scheduling in Multi-core

Operating Systems

How to Understand, Improve and Fix your Scheduler

Redha GOUICEM

Sorbonne Université
Laboratoire d’Informatique de Paris 6

Inria
Whisper Team

P H . D . D E F E N S E : 23 October 2020, Paris, France

J U RY M E M B E R S :
Mr. Pascal Felber, Full Professor, Université de Neuchâtel Reviewer
Mr. Vivien Quéma, Full Professor, Grenoble INP (ENSIMAG) Reviewer
Mr. Rachid Guerraoui, Full Professor, École Polytechnique Fédérale de Lausanne Examiner
Ms. Karine Heydemann, Associate Professor, Sorbonne Université Examiner
Mr. Etienne Rivière, Full Professor, University of Louvain Examiner
Mr. Gilles Muller, Senior Research Scientist, Inria Advisor
Mr. Julien Sopena, Associate Professor, Sorbonne Université Advisor

A B S T R A C T

In this thesis, we address the problem of schedulers for multi-core
architectures from several perspectives: design (simplicity and correct-
ness), performance improvement and the development of application-
specific schedulers. The contributions presented are summarized as
follows:

• Ipanema, a domain-specific language dedicated to thread sched-
ulers for multi-core architectures. We also implement a new
abstraction in the Linux kernel that enables the dynamic addi-
tion of schedulers written in Ipanema.

• a series of performance and bug tracking tools. Thanks to these
tools, we show that the Linux scheduler, CFS, suffers from a
problem related to frequency management on modern proces-
sors. We propose a solution to this problem in the form of a patch
submitted to the community. This patch allows to significantly
improve the performance of numerous applications.

• a scheduler model in the form of a “feature tree”. We imple-
ment these features independently in order to offer a new fully
modular scheduler. This modular scheduler allows us to study
exhaustively the different combinations of features, thus paving
the way for the development of application-specific schedulers.

iii

R É S U M É

Dans cette thèse, nous traitons du problème des ordonnanceurs pour
architectures multi-coeur en l’abordant sous plusieurs angles: celui
de la conception (simplicité et correction), celui de l’amélioration des
performances et enfin celui du développement d’ordonnanceurs sur
mesure pour une application. En résumé, les contributions présentées
sont les suivantes:

• Ipanema, un langage dédié au développement d’ordonnanceurs
de processus pour multi-coeur. Nous implémentons également
au coeur du noyau Linux une nouvelle abstraction permettant
d’ajouter dynamiquement un nouvel ordonnanceur écrit en
Ipanema.

• une série d’outils de recherche de bogues de performance. Grâce
à ces outils, nous montrons que l’ordonnanceur de Linux, CFS,
souffre d’un problème lié à la gestion de la fréquence sur les
processeurs modernes. Nous proposons une solution à ce prob-
lème sous la forme d’un patch soumis à la communauté. Ce
patch permet d’améliorer significativement les performances de
nombreuses applications.

• une modélisation des ordonnanceurs sous forme d’un “feature
tree”. Nous implémentons ces fonctionnalités de façon indépen-
dantes afin de proposer un nouvel ordonnanceur entièrement
modulaire. Cet ordonnanceur modulaire nous permet d’étudier
exhaustivement les différentes combinaisons de fonctionnalités
ouvrant ainsi la voie au développement d’ordonnanceurs spéci-
fiques à une application donnée.

v

A C K N O W L E D G M E N T S

Although this thesis bears my name, it is the result of four years
of collaborations, discussions and support from fellow researchers,
colleagues, friends and family. Research is not the work of solitary
individuals but a collaborative enterprise carried out at one’s desk,
but also during coffee breaks or family dinners. Without further ado,
let’s thank everyone that was involved in the making of this work.

First, I would like to thank the reviewers, Pascal Felber and Vivien
Quéma, for the time they dedicated to carefully reading and evaluating
this thesis. I would also like to thank the examiners, Rachid Guerraoui,
Karine Heydemann and Etienne Rivière, for accepting to be part of
this jury.

This thesis would not have been possible without the guidance and
supervision of Gilles Muller and Julien Sopena. Gilles, your expertise
in writing papers and bringing the right people together has made
this thesis easier than it could have been. I will strive to maintain the
rigor in clearly expressing one’s ideas that I learned from working
with you. Despite the difficult circumstances of the last two years,
you were always there and available when I needed help. Julien, you
are one of the people that sparked my interest for systems and for
research. Working with you every day has been a pleasure, with its
share of ideas, each one crazier than the other, but always relevant. I
will never be grateful enough for all the things I learned from you,
as a scientist and as a human being. A huge thanks to both of you
for these four exciting years. You both taught me how to make good
systems research and I hope I will live up to your expectations.

I would also like to address a special thanks to Julia Lawall who was
not officially my advisor, but still tremendously helped me improve
my writing and critical thinking during these four years.

Another special thanks to my co-authors who accompanied me in
all this work, Baptiste Lepers, Jean-Pierre Lozi and Nicolas Palix. It has
been great to work with each one of you and share all these productive
discussions that improved the quality of my work.

The life of a Ph.D. student can be stressful and make you want to
give up. When these times arrive, having a cohesive group of people
around you is of the utmost importance. This spirit of cohesion is
particularly powerful at the LIP6, and more particularly among the
three teams I spent most of my time with, Whisper, Delys and MoVe.

vii

When I started my Ph.D., I was welcomed by extraordinary people
that made my integration easy. I would really like to thank Antoine,
Gauthier and Damien who have been mentors for me and many other
students I think. I hope I was as good a teacher to new students as
you were to me.

I would also like to thank all the other Ph.D. students and interns
that I had the pleasure to share my days with: Alexandre, Arnaud,
Bastien, Cédric, Célia, Daniel, Darius, Denis, Dimitrios, Florent, Fran-
cis, Gabriel, Guillaume, Hakan, Ilyas, Jonathan, Laurent, Lucas, Lu-
dovic, Lyes, Marjorie, Maxime, Pierre, Saalik, Vincent, Yoann.11 In order not to offend

anyone, the list is sorted
alphabetically :)

I also particularly appreciated the good atmosphere between senior
researchers and students. I would like to thank all of them for the
knowledge they passed on to me as teachers and/or as colleagues. To
Jonathan, Luciana, Marc, Pierre, Pierre-Évariste and Swan, thanks for
everything.

A special thanks to Karine Heydemann who helped me choose
which master to apply to when I was a bit lost. I still remember that
discussion from nearly 7 years ago now, and I am thankful for it.

In addition to all my friends from the lab, I would also like to
thank the other ones that had no idea whatsoever of what research in
computer science meant but still supported me. Liazid, Manil, Sami, in
addition to the laughs, I really know that if I need help in any matter,
you would be among the first ones to answer, and I am grateful for
that. Thanks to all my teammates from the LSC Handball, with whom
we kept a strong bond a team spirit, be it in victory or defeat. Without
you, I might have become a little bit crazy at times.

Another special thanks to Ilyas and Maxime for all these moments
of laughs and computer science. I am happy to count you among my
friends since we met on the benches of University.

And last, but not least, I would like to thank my family for their
unwavering support since always. Mom, Dad, I will never be able
to repay you for all you did for me. You always pushed me to work
hard and I am glad I listened to you. To my brothers Djelloul, Hichem,
Mourad, and my sister Amel, thank you for helping me become the
man I am now and supporting me all these years.

These acknowledgments have proved to be longer and more serious
than I initially intended before starting writing. For once, I have tried
not to make jokes for more than five minutes straight, and that is
a challenge I would probably not have been able to overcome four
years ago. Again, thanks to each and every one of you, and if I forgot
anyone, please forgive me, it was probably unintentional.

viii

TA B L E O F C O N T E N T S

1 introduction 1

1.1 Scheduler Development 2

1.2 Performance Enhancement 3

1.3 Application-Specific Schedulers 3

1.4 Outline . 4

2 thread scheduling 5

2.1 Execution Entities . 5

2.2 Hardware Resources . 6

2.3 Thread Scheduling . 10

2.4 Scheduling in the Linux Kernel 18

2.5 General-Purpose Operating System Schedulers 24

2.6 User-Level Schedulers 36

2.7 Hypervisor Schedulers 39

2.8 Conclusion . 41

3 writing schedulers with ipanema 43

3.1 The Ipanema Tool Chain 44

3.2 The Domain-Specific Language Approach 45

3.3 The Ipanema DSL Through Policies 50

3.4 Scheduler as a Kernel Module 54

3.5 Property Verification . 59

3.6 Evaluation . 62

3.7 Conclusion . 67

4 frequency-informed scheduling decisions 69

4.1 Example of a Performance Bug in CFS 69

4.2 Monitoring and Visualization Tools 70

4.3 Investigating the Performance Bug 74

4.4 Dynamic Frequency Scaling 78

4.5 Handling Frequency Inversions in CFS 86

4.6 Evaluation . 88

4.7 Discussion . 102

4.8 Conclusion . 103

5 feature-oriented scheduler analysis 105

5.1 Feature Analysis of CFS 106

5.2 Feature Model of a Scheduler 110

5.3 Feature Evaluation . 115

5.4 Finding the Best Scheduler for an Application 128

5.5 Conclusion . 129

ix

x table of contents

6 conclusion 131

6.1 Scheduler Development 131

6.2 Performance Enhancement 132

6.3 Application-Specific Schedulers 133

publications 135

produced software 136

bibliography 139

index 161

acronyms 162

1
I N T R O D U C T I O N

In 1951, the Ferranti Mark 1 and the UNIVAC computers were re-
leased. These two machines were the first commercialized Turing-
complete machines, able to execute arbitrary programs in the form
of punched tapes. Due to their high cost, such machines were only
purchased by government agencies, universities and large companies.2 2 The most popular

computer in the 1950s, the
IBM 650, cost $500,000

($4.76 million as of 2020).

They executed a large number of different programs, ranging from
scientific computing to accounting and national census.

These machines were operated by human operators that loaded code
and data into the machine, waited for the computation to complete
and retrieved the result. These operators were fundamental in their
proper functioning as they ensured the order in which programs
should be executed. This was the first form of scheduling.

Over the years, with the increased processing power of computers,
the cost of human operations became important compared to the
computing time. To minimize this cost, computer designers sought
to make the scheduler a part of the computer and replace human
operators. With the introduction of operating systems (OSs) in 1955,
the first software schedulers appeared as a central component of
resource management in computers.

Since then, a large number of scheduling algorithms have been
developed. They target different workloads and performance objec-
tives. Some server applications need to minimize the latency of their
requests, while batch applications need to maximize their through-
put. On personal computers and smartphones, interactivity is of the
utmost importance for users. Embedded devices, on the other hand,
can have strict requirements in terms of quality of service and respect
of deadlines.

Schedulers have also been influenced by the evolution of the un-
derlying hardware components of computers, be it central processing
units (CPUs), memory or input/output (I/O) devices. The appearance
of multi-core processors extended the job of the scheduler. In addi-
tion to managing when a program should be executed, it must also
choose on which core it should execute. Non-uniform memory access
(NUMA) architectures, heterogeneous processors and memory hierar-
chies further complicate the problem of correctly allocating computing
resources.

1

2 introduction

The diversification of workloads and user requirements as well as
the dazzling evolution of hardware have always been driving forces
in the development of schedulers. Combining both the hardware
complexity and the software requirements drastically hardens the
decision-making process of the scheduler and increases the complexity
of its design.

In this Ph.D. thesis, we study thread scheduling and how it af-
fects the performance of applications. We aim at providing new tools
for scheduler developers that help them in their work. Our work
can be divided into three axes: scheduler development, performance
enhancement and application-specific schedulers.

1.1 scheduler development

The first axis, scheduler development, aims at easing the develop-
ment of new schedulers in OSs while maintaining a high level of
safety. Developing a scheduler is difficult since it involves multiple
areas of expertise: scheduling theory, low-level kernel development
and hardware architecture. This highly increases the probability of
mistakes in the development process. Errors in the scheduling algo-
rithm can lead to important properties being violated unbeknownst
to the developer. Implementation mistakes due to the difficulty of
developing in an OS kernel are frequent and can cause system crashes.
Lastly, a bad knowledge of hardware architecture can lead to ineffi-
cient scheduling policies because of factors such as memory latency
or heterogeneous computing units.

Our objective is to remove the need for the kernel development
expertise by providing an easy-to-learn high-level domain-specific
language (DSL) that will be compiled into C code usable in Linux.
Our compiler contributes to the safety of the code by forbidding
illegal operations and by automatically generating code such as lock
management. The abstractions of the DSL will also encompass the
hardware topology to help developers take that into account. We also
want to avoid algorithmical errors by allowing formal verification of
scheduling properties to be semi-automatically performed through
our DSL.

In addition, we also provide a new feature to Linux, Scheduler as a
Kernel Module or SaaKM. With this feature, we enable users to insert,
at run time, new scheduling policies. Each application can then decide
which policy to use. The C code generated by our Ipanema compiler
is compatible with SaaKM.

Thanks to SaaKM and our DSL, we develop and test multiple sched-
ulers, such as a simplified version of the Linux scheduler that performs
similarly to the original on the set of applications we evaluate. We also

1.2 performance enhancement 3

develop a version of this scheduler proven to be work-conserving that
outperforms the original on some applications.

1.2 performance enhancement

The second axis, performance enhancement, aims at helping sched-
uler developers finding performance bugs. These bugs do not cause
crashes but silently eat away at performance. They are therefore hard
to notice and solve. There are two ways of detecting such bugs: pro-
ducing a better scheduler that does not suffer from this bug, or using
profiling tools that highlight the bug.

We design monitoring tools to efficiently profile the behavior of
schedulers, and visualization tools to easily track performance bugs
and identify their origin. These tools enable us to record scheduling
events at run time without disturbing application behavior and with a
high resolution. They also allow us to visualize specific data such as
the CPU usage of each core, their frequency or all scheduling events.

With these tools, we detect a new problem, frequency inversion,
that stems from modern per-core dynamic frequency scaling and the
scheduler unawareness of CPU frequency in its thread placement
decisions. This problem triggers situations where high frequency cores
are idle while low frequency cores are busy. After finding the root
cause of this problem, we propose two solutions for Linux to solve the
problem and thoroughly evaluate them. The best solution has been
submitted to the Linux community for review.

In addition, we also provide a detailed analysis of the behavior of
the frequency scaling algorithm on multiple CPUs. This analysis was
possible thanks to our monitoring tools and further strengthens our
belief that schedulers must account for the frequency of cores.

1.3 application-specific schedulers

The third and last axis, application-specific schedulers, aims at help-
ing software developers use the best possible scheduler for their appli-
cation instead of always using the default scheduler of the OS. Even
though general-purpose schedulers try to be generic and offer good
performance for most workloads, they are not able to always offer
the best performance. This is mainly due to two major problems: the
structure and size of their code, and the necessary configuration.

The structure and size problem is prominent in general-purpose
schedulers such as Linux’s CFS. They tend to be large, with a consid-
erable number of features. These features also tend to be intertwined,
be it in terms of code or impact. This increases the likelihood of safety
or performance bugs, and hardens the maintenance of the code.

The choice to be generic also creates a fundamental problem: since
the expectations of users differ and are sometimes conflicting, it is

4 introduction

impossible to always satisfy everyone. To overcome this problem, most
general-purpose schedulers are configurable through static configura-
tions at compile time or dynamically at run time. Due to the difficulty
of finding the correct configuration for a given workload, most users
just use the default values provided by their OS. For more advanced
users, there also exist a multitude of user-provided configurations and
tips on system administrator forums on the internet.

We propose to start building an actual modular scheduler from
scratch. To do so, we develop a feature model of a scheduler where
each feature is implemented independently, making it easy to extend.
This model also allows for an evaluation of each feature separately
from the others. With such an evaluation, we propose methodologies
to find the most adapted features for a given workload. Finally, we
propose methodologies to build application-specific schedulers from
this data.

1.4 outline

The remaining of this document is organized in five chapters. Chap-
ter 2 presents the technical background and the state-of-the-art on
thread scheduling. It lays off the needed knowledge to understand
our contributions. Chapter 3 presents our first contribution, Ipanema,
a DSL for schedulers. We present the design of the language, its tool
chain and an evaluation of multiple policies we implement in Ipanema.
Chapter 4 presents our second contribution, the identification of a
new problem, frequency inversion, and strategies to solve it. This
problem stems from modern implementations of frequency scaling
on CPUs and current general-purpose schedulers’ behavior during
thread placement. We present the problem through a detailed case
study and propose two strategies to solve this problem in Linux that
we extensively evaluate on multiple machines. Chapter 5 presents our
last contribution, a feature model of a thread scheduler. This model
is designed with the objective of evaluating scheduler features indi-
vidually in order to design application-specific schedulers. We present
various methodologies that help finding the best suited scheduler for
a given application. Finally, Chapter 6 concludes this thesis with a
summary of our work and contributions, and discusses future work
and perspectives.

2
T H R E A D S C H E D U L I N G

This chapter aims at defining basic concepts regarding thread schedul-
ing used throughout this thesis, and giving the reader the necessary
technical background to understand our contributions. The thread
scheduler is the component of a system that manages the allocation
of computing resources to software. In this chapter, we first define
the hardware and software resources managed by thread schedulers.
We then describe in details what are thread schedulers and how they
operate. Finally, we describe how thread scheduling is implemented
in various systems, with a focus on Linux.

2.1 execution entities

In operating systems theory, multiple concepts describe software and
how it should be executed: threads, processes, tasks, . . . Computer
scientists tend to mix these terms, usually without loss of meaning in
their context. However, in this thesis on scheduling, using one term
instead of another would be a mistake and lead to misunderstandings.
The following definitions will be used throughout this thesis to avoid
such misunderstandings. Figure 2.1 summarizes the hierarchy between
each decribed entity.

thread. A thread is the entity that executes instructions, and the
smallest entity manipulated by the thread scheduler. It is usually
represented as an instruction pointer (IP), a stack pointer (SP) and
registers. When allocated a computing resource by the scheduler, a
thread executes the instruction pointed to by its IP. Threads can be
handled at the kernel or at the user level. Kernel threads are managed
by the OS’s kernel while user threads are manipulated by user level
programs such as language runtimes or libraries. Ultimately, user level
threads are mapped to kernel threads in order to be scheduled by
the OS’s kernel. In this thesis, the term thread will be used for kernel
threads unless otherwise stated.

process . A process represents a set of resources comprising a
memory mapping, file descriptors, sockets, . . . A process is used by at
least one thread. If multiple threads share a process, communication

5

6 thread scheduling

Program

Process

Thread

Process

Thread Thread

Figure 2.1: Illustration of a program with multi-threaded processes.

is simplified thanks to the shared resources. Communicating between
processes, on the other hand, is more heavyweight and relies on the
use of inter-process communication mechanisms provided by the OS.

program . A program, or application, is a set of one or more
processes, containing one or more threads, that cooperate in order to
fulfill a common objective. For example, a web browser that spawns
one process per tab is still considered as a single program.

Tasks

The term task has various meanings depending on the context.
It is used as a synonym to thread or process in Linux. In the Java
language, it is either a synonym for thread (when using the Thread

class) or a unit of work that can be performed by any thread (when
using the Executor interface). Due to this ambiguity, the term task
will not be used in this thesis.

2.2 hardware resources

The thread scheduler is the software component that manages the
computing units in a system. These computing units have immensely
evolved since the beginning of computing. Figure 2.2 shows the hard-
ware topology of a modern machine. In this topology, there are exe-
cution units (cores), memory accelerators (caches) and main memory.
Some of these components are shared while others are exclusive.
All these interactions make the allocation of computing resources
a complex job for the scheduler. We present the different hardware
components, their possible interactions and impact on the thread
scheduler.

2.2.1 The Core: an Execution Unit

A core, also called a hardware thread, is the smallest computing unit
found in a processor chip. It executes the instructions of a single thread

2.2 hardware resources 7

L1
L2

L1
L2

core core
φcore

core core
φcore

core core
φcore

core core
φcore

core core
φcore

core core
φcore

L1

L1

L1

L1

L2

L2

L2

L2

L3 RAM

Figure 2.2: A single node 8-core machine, with two threads per physical core
(ϕcore) and three levels of caches.

of execution at a time. This is the actual resource the thread scheduler
manages, allocating it to software threads for given periods of time.

A core is usually composed of a set of registers and computing
units. The registers store data used by the running thread as well as
metadata used to manage the thread, such as its instruction pointer or
its stack pointer. The computing units perform various computations
such as arithmetic operations (arithmetic logic unit (ALU)), floating-
point operations (floating-point unit (FPU)) or address calculations
(address generation unit (AGU)).

chip-level multiprocessing . Since the 1950s, a large num-
ber of innovations in computer architecture improved the individual
performance of cores. Instruction-level parallelism techniques, such
as instruction pipelining, speculative execution [19] or out-of-order
execution [80], have no impact in terms of scheduling, besides execut-
ing instructions more efficiently. Thread-level parallelism techniques,
however, change the way the thread scheduler operates by allowing
multiple threads to run at the same time. Chip-level multiprocessing
(CMP) implements thread-level parallelism by integrating multiple
cores into a single chip. Each core is identical and can therefore exe-
cute a different thread independently. With CMP, the scheduler can
now choose to run multiple threads at the same time.

Core
Registers

APU FPU
AGU

Chip

Core
Registers

APU FPU
AGU

Chip
Core

Registers

APU FPU
AGU

Core
Registers

APU FPU
AGU

Chip
Core

Registers

Single core

CMP

SMT

Figure 2.3: Thread-level
parallelism implementa-
tions.

simultaneous multithreading . Early on, computer architects
noticed that all computing units were not used at the same time, lead-
ing to a waste of computing resources. To solve this, they introduced
simultaneous multithreading (SMT) [160]. The idea of SMT is to run
multiple threads on the same physical core by duplicating part of
the hardware, mainly registers. These duplicates are called logical
cores. For example, Intel®’s most common implementation of SMT,
Hyper-Threading [85], allows to run two threads per core, i. e. for n
physical cores, 2n logical cores are available. In this thesis, we will use
the term core to refer to logical cores, since schedulers place threads

8 thread scheduling

on this kind of core. SMT has an impact on thread scheduling because
some operations will be impossible to perform simultaneously by two
cores sharing the same computing units. Figure 2.3 summarizes the
difference between CMP and SMT.

asymmetrical architectures . Some processor chips also fea-
ture cores with different capabilities. These asymmetrical architec-
tures3 can have cores specialized in a certain type of computations3 Also called

heterogeneous
architectures.

like video or audio decoding [71, 86, 145]. Another use of this type
of architecture is energy management on embedded devices. For ex-
ample, the ARM® big.LITTLE architecture [11] has a set of low power
and low performance cores (LITTLE) and a set of more powerful and
power-hungry cores (big). Using cores from one or the other set has
considerable impact on performance and energy consumption.

The implementation of dynamic voltage and frequency scaling
(DVFS) technologies can also be seen as a form of asymmetry. Indeed,
if each core can run at a different frequency, they all have a different
processing power available. This will be discussed in more details in
Chapter 4.

2.2.2 Caches: a Memory Access Accelerator

When cores perform their computations, they usually work with data
available in the main memory. Accessing this memory is a frequent
operation in software, thus leading researchers to improve memory
access efficiency. A widespread way of doing so is to place small
hardware caches between cores and main memory. Caches are faster
than main memory but are more expensive. The goal is to exploit two
properties: temporal locality [182] and spatial locality [109].

Temporal locality specifies that recently accessed data has a high
probability of being accessed again in the near future. To exploit this
property, caches are used to keep recently accessed data close to cores
using them.

Spatial locality specifies that when a piece of data is accessed,
neighboring data has a high probability of being accessed in the near
future. To exploit this property, when a piece of data is loaded into
a cache, adjacent data is also loaded for future accesses. As a result,
computer architects design memory hierarchies with fast and small
caches close to cores, and slower but larger caches farther from cores
and closer to memory. This is visible in Figure 2.2 with three levels of
caches available.

Caches can also be used to easily share data between cores. In
our example, there are two levels of caches exclusive to a single
physical core (L1 and L2) and one level that is shared between all
cores (L3). Sharing is beneficial when multiple cores access the same
data, removing the need to load it from main memory again and

2.2 hardware resources 9

again. However, if all cores use different data, they compete for the
same cache locations, leading to data evictions, and subsequent main
memory accesses. This phenomenon is called cache thrashing. Cache
sharing or thrashing has an impact on scheduling decisions since
different thread placements can induce more or less sharing and
thrashing.

2.2.3 Main Memory: a Potential Bottleneck

Even though caches reduce the number of memory accesses, main
memory is still a critical resource. Some accesses cannot be cached and
some access patterns make caching an inefficient optimization. For
these reasons, main memory is still a potential performance bottleneck.

symmetric multiprocessing . The coupled use of a multi-core
design (CMP and/or SMT) and cache hierarchies connected to a single
main memory is called symmetric multiprocessing (SMP).4 These 4 Multiple definitions exist,

including or excluding
caches, but we will use this
one for the remainder of
this thesis [43].

architectures use an interconnect to link all their components, from
caches to main memory and I/O devices.5 One main characteristic of

5 The interconnect can be a
shared system bus or a
point-to-point interconnect.

these systems is that accessing memory has the same cost, regardless
of the core doing the access. These SMP architectures greatly improve
performance by allowing multiple threads to run concurrently with
fast memory accesses.

With the rising number of cores, the number of requests to main
memory has drastically increased. At the same time, technologies be-
hind main memory evolved more slowly than those behind processors.
With more than a dozen cores, main memory cannot keep up with the
number of requests and respond in an acceptable time.

non-uniform memory architecture . One way to solve this
problem is to apply on main memory the same recipe that was applied
on cores: duplication. Instead of having a single main memory that
serves all cores, the machine is split into nodes, as illustrated in
Figure 2.4. A node can be seen as an SMP system, with a set of cores,
caches and its own main memory. The objective is to limit the number
of cores that access the same main memory concurrently. Ideally, each
node is a closed system where cores only access the main memory of
their node, i. e. local memory.

Nonetheless, a system where each node is fully isolated is hardly
possible. Some data must be shared between nodes for multiple rea-
sons, including data from the OS or large-scale applications that have
threads spanning multiple nodes. Nodes are therefore connected to
each other to allow cores on a given node to access the memory of
another node, i. e. remote memory.

Remote accesses are not as fast as local accesses since they must
go through additional interconnections. These non-uniform memory

10 thread scheduling

Node 0 Node 3

Node 2Node 1

(a) 4-node Intel® Broadwell machine (1 hop).

Node 0 Node 4 Node 5

Node 6 Node 2

Node 1

Node 3 Node 7

(b) 8-node AMD® Bulldozer machine (2 hops).

Figure 2.4: Topologies of two NUMA machines. Shortest routes from node 1

to node 2 are highlighted.

access (NUMA) architectures come in multiple flavors, with different
degrees of uniformity between access times. Figure 2.4a shows a fully
connected NUMA architecture where all remote accesses roughly
take the same time to complete under the same level of contention.
Figure 2.4b, on the other hand, shows a topology where nodes are not
fully connected. If a thread on node 1 wants to access data on node 2,
the shortest routes are two hops long, going through one node on the
way. The five possible routes are highlighted in Figure 2.4b. The longer
the distance between two nodes, the longer it takes to access memory.
The use of such routes can lead to contention on the interconnect,
mitigated by routing algorithms implemented in hardware. Software
can also help mitigation by placing threads and memory on the best
nodes possible.

2.3 thread scheduling

We now have a clear picture of the computing resources, i. e. cores,
and the entities that use them, i. e. threads. In order to manage these
cores and allocate them to threads, we need a component that will
handle this job. The thread scheduler is this component. The design
of a scheduler can be expressed as the answer to four questions:

• Which thread should run?

• When should it run?

• Where should it run?

• Why should it run?

2.3 thread scheduling 11

The thread scheduler’s job is to answer these four questions. In this
section, we first provide some early history of scheduling. We then
detail the generic model commonly used to define threads, the ins and
outs of each question, and how schedulers answer to these questions.

2.3.1 Early History

In the early days of computing, mainframes did not have OSs. Op-
erators manually inserted their programs and data in the form of
punch cards or magnetic tapes, waited for the computer to perform all
needed computations, and retrieved the results printed by the machine.
In the 1950s, as mainframes became more and more fast, the cost of
human operations became important compared to the computing time.
Pioneers of computing set out to solve this problem by automating
these operations: OSs were born.

The first OSs6 used a monoprogramming paradigm, where a single 6 The first OS, GM-NAA
I/O, was released in 1955

by General Motors for the
IBM 704 computer [146].

application could run at a time, with no means to switch between
applications until their completion. The completion time of a program
depends on its own execution time as well as the completion times of
the programs running before it. The order in which programs would
be scheduled was manually chosen by a human operator.

Later on, in the 1960s, multiprogramming OSs made their appari-
tion, with IBM’s OS/360 leading the way. The MVT variant of this
OS, released in 1964 for the large machines of the System/360 family,
introduced time-sharing. This allowed multiple programs to run at
the same time, as well as interactive usage of computers. Developers
were now able to write programs with a text editor while batch jobs
were running in the background. The software component that gov-
erns how computing resources are shared between application, the
scheduler, was born.

2.3.2 The Thread Model

As stated previously, a thread is the smallest schedulable entity in
a system. During its lifecycle, it goes through multiple states that
depend on the code it is running. It is in a running state when using
a computing resource, ready when waiting for a computing resource,
or blocked when waiting on an external resource such as reading an
I/O device. This behavior is best modeled as the finite state machine
shown in Figure 2.5. All transitions of this finite state machine can lead
to the intervention of the scheduler. Election determines which thread
should run next on a core, while preemption or yield determines when
a thread should stop using a core. These transitions can be triggered
by the application, e. g. by yielding the CPU through a system call, or
by the scheduler itself.

12 thread scheduling

READY RUNNING

election

preemption, yield

termination

sleep, I/O, waitend of sleep, I/O, wait

creation

BLOCKED

Figure 2.5: Finite state machine modeling a thread.

The decision to change the currently running thread can be taken at
various times. Non-preemptive schedulers7 are triggered only when7 Also called cooperative

schedulers. the running thread relinquishes the use of the processor, be it due to a
blocking operation, e. g. an I/O operation, or a willing yielding, i. e.
calling the yield() system call. In this setup, the scheduler only de-
cides which thread should run, but not for how long. This will depend
on the selected thread’s behavior. This type of scheduler was used
in old OSs but was dismissed because malicious or bugged threads
could hang the machine by never blocking, e. g. executing an infinite
busy loop. However, non-preemptive scheduling presents the benefit
of simplicity. Applications do not need to worry about being inter-
rupted, easing the development process. Non-preemptive schedulers
are still used in controlled setups such as embedded systems where
all running applications are known.

Most modern general-purpose schedulers allow thread preemption.
This means that the scheduler is not only called when the running
thread stops using the processor, but also when the OS wants to. For
example, the scheduler can be triggered when the running thread
exits a system call or after handling a hardware interrupt. This design
gives more opportunities of scheduling out a malicious or bugged
thread that would otherwise hog a core. Even in a sane environment,
preemption enables the scheduler to schedule a waking up thread if
its priority is higher than the currently running thread’s priority.

Another usage of preemptive scheduling is the implementation of
time-sharing policies. In order to allocate the processor to a thread
for only a given period of time, time-sharing schedulers usually pe-
riodically trigger a timer interrupt. During each interrupt, or tick,
the scheduler evaluates if the currently running thread should still
be scheduled until the next tick. If not, the election mechanism is
triggered to choose a new thread to run. This is an essential feature of
interactive systems like personal computers or smartphones. It is also
essential in shared servers where different clients should be able to
use the processing resources fairly.88 Fairness is not a synonym

for equality, it can be
weighted depending on

multiple factors.

2.3 thread scheduling 13

2.3.3 Election

Originally, CPUs only had a single core, and the scheduler was only
responsible for deciding which thread should run on the core and
when. Different strategies can be put in place for this purpose, such
as fairly assigning the same time to every thread, or prioritize some
threads over others. Usually, general-purpose OSs choose fair ap-
proaches because the main goal is to provide good performance for
every application. However, the behavior of each application is differ-
ent, and treating each thread equally might not be in the best interest
of overall performance.

Applications are traditionally classified into two categories: I/O-
bound and CPU-bound. I/O-bound applications frequently perform I/O
operations and relinquish using the processor. I/O operations can be
accesses to storage or network, or waiting for a keyboard press from
the user. These applications usually require to use the CPU frequently
but shortly, and aim at low latency. CPU-bound applications, on the
other hand, tend to mostly use the processor without performing I/O
operations. They usually require long consecutive periods of time
to use the CPU to minimize the cost of context switching between
threads and improve cache usage, and aim at high throughput.

In the real world, applications can exhibit both behaviors: an appli-
cation can have different phases that are either CPU- or I/O-bound.
For example, a web browser is I/O-bound when waiting for user
input (e. g. a URL) and CPU-bound when processing the content of a
webpage to display it to the user. The duality of these behaviors can
also be seen in multithreaded applications where some threads are
I/O-bound while others are CPU-bound.

With these two classes of threads in mind, the thread scheduler
of a general-purpose OS must try to satisfy all threads equally. This
is done through various algorithms and heuristics that, depending
on the thread’s behavior, determine its needs and the best decision
to fulfill them. For example, I/O-bound threads will have a higher
chance of being selected than CPU-bound threads because they use the
CPU for very short periods of time. However, the number of threads
to satisfy and their differing needs make it a hard job for the scheduler
to fairly provide the best possible performance for all threads.

In a specific OS, as opposed to a general-purpose OS, fairness is not
necessarily a concern. For example, real-time OSs tend to implement
unfair strategies to ensure that operations are performed in a timely
manner deterministically. For example, the Electronic Brakeforce Distri-
bution technology [26] in modern cars computes the force to apply on
each wheel of the vehicle depending on multiple factors (force on the
pedal, speed, road condition, . . .). If this computation is too slow, the
data collected by the sensors becomes obsolete, and braking not as
efficient as it should have been. Real-time system engineers therefore

14 thread scheduling

choose a deadline before which the computation must complete at
all costs. The thread scheduler of computer systems running such
applications does not care for fairness between threads, but instead
care for the respect of all deadlines.

2.3.4 Placement Management

With multi-core architectures, the thread scheduler must also decide
where, i. e. on which core, a thread should be executed. This new role
adds a whole new complexity to thread scheduling, not only because
of these new resources to allocate, but also because of the way in
which these resources are interconnected. While cores are exposed as
independent resources, they still share hardware at different levels, as
described in Section 2.2. These resources include computing resources
(SMT), caches, main memory and interconnects. When shared by
multiple cores, they are subject to contention. Scheduling decisions
directly affect the level of contention on every shared component,
placing the thread scheduler at the center of resource management.

Resolving the contention problems of these modern architectures at
the scheduler level is done in various ways. One way to solve cache
contention is to spread threads across cores sharing the minimum
number of caches. This will improve the performance of the applica-
tions if threads a thrashing each other’s data from the caches. However,
when threads share data, doing this could reduce the performance and
increase the contention on interconnects and memory controllers. This
is due to the fact that data would need to be accessed from memory
and the traffic due to cache coherence protocols will increase. Similarly,
taking advantage of shared caches in a collaborative application might
induce contention on the shared SMT hardware, caches, as well as on
the local memory controller.

As is the case with time management, placement management must
take advantage of multiple hardware technologies aimed at improv-
ing performance, with each improvement potentially deteriorating
the performance of another piece of hardware. General-purpose OSs
must find the best compromise in order to achieve the best overall
performance for all running applications.

Heterogeneous architectures also introduce complexity in terms of
thread placement. As presented earlier, asymmetrical architectures
have cores with different capabilities, and the scheduler must take
them into account. For example, on ARM® big.LITTLE architectures,
the scheduler must decide to favor either performance or energy
saving by placing threads on big or LITTLE cores.

For all these reasons, thread placement is an essential component
of the scheduler. It is also a very complex one due to its particularly
close relation to hardware.

2.3 thread scheduling 15

2.3.5 Scheduling Properties

As described on various occasions previously, a scheduler ensures a
set of properties that affects its performance. A scheduler developer
must ask himself why he is developing a scheduler to deduct which
properties must be enforced. A property is not inherently good or bad,
it is the targeted applications and use cases that make a property good
or bad for a given setup.

liveness . Liveness9 ensures that a thread requiring computing 9 Also called freedom from
starvation.resources, i. e. a ready thread, will get access to a computing resource

in finite time [148]. This is desirable in general-purpose OSs where no
thread should be starved from using the processor. Note that this does
not mean that the application necessarily makes progress, as poorly
coded applications might get stuck in busy loops or livelocks. From
the point of view of the scheduler, this is still considered as progress.

fairness . Fairness ensures that all threads are given the same
amount of computing resources. Again, it is usually a desirable prop-
erty in a general-purpose OS scheduler. The level of fairness between
threads can also have a large impact on performance. Being “too”
fair would mean context switching between threads more frequently,
thus wasting valuable computing resources. Fairness should not be
confused with equality: all threads must not have the same allocated
CPU time, it also depends on the thread’s requirements.

Fairness can be provided by proportional share schedulers such
as Fair Share Schedulers [76, 92] or Lottery Scheduling [178]. These
schedulers are largely inspired or influenced by network queueing
algorithms [15, 46]. Patel et al. [135] improve fairness with scheduler-
cooperative locks. Zhong et al. [194] do a similar thing in virtualized
environments.

priority. Some systems schedule threads by strict priority: the
thread with the highest priority must run before all other threads. With
this type of scheduler, high priority threads have a high probability
of running quickly and perform their work uninterrupted by other
threads. In these priority-based schedulers, when multiple threads
share the same priority, there must be a way to select which one should
run. This choice is usually done in a round robin fashion.

Unix-based systems expose priority through the nice value, although
it is sometimes only used as a parameter in proportional share sched-
ulers. Priority-based scheduling is also proposed for hard or soft
real-time systems [74, 104, 154].

resource sharing . On systems with SMP or NUMA architec-
tures, contention on shared hardware can quickly become a perfor-

16 thread scheduling

mance bottleneck. To address this issue, schedulers can take the usage
of such shared resources into account and schedule threads in a way
that minimizes contention. This can be done by avoiding to run two
threads that use the same hardware resource at the same time, or by
placing threads on distant cores to avoid resource sharing altogether.
On the other hand, sharing can be beneficial in some cases. For ex-
ample, two threads working on the same data benefit from sharing
caches, thus diminishing the number of memory accesses performed.

Multiple approaches were proposed regarding different shared
resources. Systems featuring SMT have been studied to minimize
contention due to this technology [7, 134, 161]. Various work focus
on memory contention [9, 155, 188] or shared caches [57, 58]. Other
approaches propose different heuristics to detect and avoid contention
or use beneficial sharing [120, 162, 163, 192, 195].

interactivity. A large number of applications require good per-
formance in terms of latency or interactivity. For example, user inter-
faces must react quickly to inputs so that the end user does not notice
lag. Databases and servers also have request latency requirements to
fulfill in order to be responsive.

Automated approaches that estimate the requirements of applica-
tions on the fly based on system observations have been proposed [14,
42, 50, 147, 164]. Redline [190] improves the performance of interactive
applications by allowing users to specify requirements to the sched-
uler without modifying the application. Other solutions propose to
provide an application programming interface (API) to applications
so that they can communicate their requirements to the scheduler at
run time [3, 101, 150].

work conservation. On multi-core systems, another interesting
property is work conservation. A work-conserving scheduler leaves
no core idle if there is a ready thread available on the system. This
can be seen as either a good or bad property, even from a purely
performance-oriented point of view. Using all cores might increase
contention on shared resources [56], but it also increases the com-
puting power available for threads. The benefits of this property is
application-specific. Most general-purpose schedulers try to achieve
work conservation, although not necessarily at all times due to the
induced scheduling cost.

real-time . In real-time contexts, a usually desirable property is
the respect of deadlines. Real-time applications perform tasks that
must complete before a given time called a deadline. Real-time schedul-
ing algorithms, such as Earliest Deadline First (EDF) [110] or deadline
monotonic scheduling [12] enforce deadlines for applications if the sys-

2.3 thread scheduling 17

tem is sized correctly, i. e. it is possible to run all applications without
exceeding deadlines.

energy. Embedded systems could also require to keep a low en-
ergy consumption. This can be solved at the scheduler level at the
expense of performance. This type of systems can also disable clock
ticks to save energy on idle cores. The scheduler must therefore be
adapted to work on these tickless systems.

Prekas et al. [141] improve energy proportionality, i. e. the quantity
of energy consumed compared to the work performed. Merkel et
al. [120] use co-scheduling and dynamic voltage and frequency scaling
(DVFS) to improve performance and save energy.

pairing properties . Some of these properties are contradictory
with one another. For example, it is not possible to be work-conserving
and to lower energy consumption by not using some cores. Similarly,
fairness can be unwanted in a real-time context, where respecting
deadlines is of the utmost importance.

Conversely, pairing some properties can be highly beneficial for
some workloads. In a real-time context, reducing contention over
shared resources can allow threads to respect their deadlines more
easily [18].

2.3.6 The Place of Thread Scheduling in a Computer System

The operating system is the interface between hardware resources
and software. It is responsible for the management and allocation of
hardware resources to software that require them. Those resources
include, but are not limited to, memory devices, input/output devices
and cores. OSs are commonly divided into two parts, kernel and user
spaces, each having its own address space.10 The boundary between 10 Single address space

approaches exist, such as
the Singularity OS [79]

both spaces depends on the chosen kernel architecture: a monolithic
design will embed all OS services in kernel space, while a microkernel
approach will push the maximum number of services away from
kernel space towards user space. "A concept is tolerated inside

the microkernel only if
moving it outside the kernel,
i.e., permitting competing
implementations, would
prevent the implementation of
the system’s required
functionality."
— Liedtke Jochen [107]

Thread scheduling can be performed at different levels of the OS,
and even outside of it. Most general-purpose OSs, such as Linux,
FreeBSD or Windows, implement scheduling at the kernel level. An-
other approach would be to implement it as a user space service
of the OS. Thread scheduling can also be done by user applica-
tions themselves. This is the case with multiple threading libraries
like OpenMP [44]. Some languages, most notably Go [48], expose
lightweight threads (goroutines in Go) that are scheduled by the
language’s runtime. These user level schedulers either exploit capa-
bilities offered by the underlying OS scheduler to manage thread

18 thread scheduling

ordering and placement, or add a new layer of scheduling above the
OS scheduler.

Finally, in a similar way, virtualized environments can also add
a layer of thread scheduling. The hypervisor allocates a number of
virtual CPUs (vCPUs) to each hosted virtual machine (VM), and each
VM sees these vCPUs as physical CPUs. Therefore, the hypervisor
schedules vCPUs on physical CPUs, while each VM schedules threads
on vCPUs.

From these layered schedulers arise multiple problems. First, one
layer does not necessarily know that other layers exist, most notably
with virtualization. This means that schedulers in VMs may take deci-
sion with incorrect informations relayed by the hypervisor unknow-
ingly. Second, each layer may take decisions independently, leading
to conflicts between each layer. These challenges make it difficult to
achieve the best possible performance, with multiple schedulers acting
without communication between them.

Cluster scheduling

Computation can also be managed at the cluster level. The goal
of this cluster scheduler is to place jobs on machines. Each machine
will then perform scheduling locally. This topic will not be covered
since it is out of the scope of this thesis.

2.4 scheduling in the linux kernel

With this understanding of the general principles of thread scheduling,
we can now dive into the description of production schedulers used
every day. In this thesis, all contributions are implemented in the
open source GNU/Linux environment. More precisely, the scheduler
subsystem is located in the Linux kernel. We provide a tour of this
subsystem in order to better understand the contributions of this
thesis.

2.4.1 Overview

The Linux kernel, and the distributions that use it, are Unix-like sys-
tems that implement a large part of the Portable Operating System
Interface (POSIX) [81] standards. More precisely, in terms of thread
scheduling, the POSIX.1 standard defines scheduling policies, thread
attributes and system calls that allow users to interact with the sched-
uler.

scheduling policies . The standard requires three scheduling
policies, i. e. scheduling algorithms, to be implemented: SCHED_FIFO,
SCHED_RR and SCHED_OTHER. Through specific system calls, threads

2.4 scheduling in the linux kernel 19

can change from one policy to another during their execution. As
their name suggests, SCHED_FIFO and SCHED_RR respectively imple-
ment First-In First-Out and round-robin algorithms to select which
thread to run. They are mainly used for real-time applications. The
SCHED_OTHER policy, is implementation-defined and can be whatever
the OS developers want it to be. It is usually used to implement a fair
policy in general-purpose OSs. More details on these policies will be
provided in the following sections.

thread attributes . Two mandatory thread attributes are de-
fined by the POSIX standard: the thread priority and the nice value.
These two terms have very similar meanings and are often confused.
However, they define two different concepts that are important to
dissociate.

Priority reflects the importance of a thread, and therefore the rel-
ative urgency of a thread to be scheduled compared to others. The
higher the priority, the most chance a thread has to run. Priority can
evolve over time, as seen fit by the scheduler, to reflect a thread’s
behavior. For example, as previously stated, a widespread decision is
to raise the priority of I/O-bound threads while reducing the priority
of CPU-bound ones.

The nice value is a handicap a thread can impose on itself regarding
the use of the processing resources. A high nice value means that the
thread is not in great need of using the processor and prefers to let
other threads use it instead. This value is thus a hint given by threads
to the scheduler that specifies their scheduling needs. Threads can
increase their nice value to communicate their lack of urgency to use
the processor to the kernel.11 11 On most systems, any

thread can increase its nice
value, but decreasing it
requires elevated
privileges.

system calls . The interaction between threads and the scheduler
is also driven by multiple system calls. The only mandatory one
directly related to scheduling is sched_yield(). It allows a running

thread to relinquish its ownership of the processor resource. Other
system calls transition a thread to a blocked state, most notably
those accessing I/O devices such as storage or network devices. Such
system calls are defined by the POSIX standards, but not directly as
scheduler-related system calls. Their impact on scheduling is more a
side effect needed for performance than a direct interaction. If they
did not trigger scheduling events, blocked threads would keep the
ownership of the processor even though they cannot use it. There are
also other system calls that remain optional, such as the ones used to
move from one scheduling policy to another or to manage real-time
policies.

20 thread scheduling

TASK_RUNNING TASK_RUNNING

TASK_INTERRUPTIBLE
TASK_DEAD

currentready

schedule

preemption, yield
exit

sleep,
I/O,
wait

wakeup,
end of I/O,
wait

fork/clone

TASK_UNINTERRUPTIBLE

reaped

Figure 2.6: Thread states in Linux.

2.4.2 Threads

In the Linux kernel, each thread is represented by a set of variables em-
bedded in a structure (struct task_struct). These variables include
the thread’s address space, a pointer to its parent, file descriptors,
pending signals, as well as statistics such as its execution time or the
number of bytes accessed through I/O devices. From now on, we only
focus on scheduler-related attributes.

From the scheduler subsystem’s point of view, a thread is defined
by its state. As seen in Section 2.3.2, these states can be seen as states
of a finite state machine while scheduler functions can be seen as
transitions. Figure 2.6 shows the finite state machine used in Linux.
Although similar to the three-state thread model presented earlier,
there exists some differences between the generic and the Linux model.

Runnable threads in the runqueue are in the TASK_RUNNING state,
tagged as ready in the figure. This is the equivalent of the ready state.
The currently running thread is also in the TASK_RUNNING state, tagged
as current. This is equivalent to the running state. Transitioning from
the former to the latter is done when the schedule() function is called,
while the reverse transition is due to preemption (exhausted time slice
or higher priority thread available) or yielding.

Threads in the TASK_INTERRUPTIBLE state sleep until they are woken
up, e. g. end of I/O or reception of a non-masked signal, whereas
threads in the TASK_UNINTERRUPTIBLE state behave in the same way
except they ignore signals altogether. Going into one of these states
means that a running thread went to sleep or is waiting for a resource
(I/O, lock) to be available. When the resource becomes available, the
thread goes back to a ready state, ready to use the CPU.

The TASK_DEAD state is a temporary state used at thread termination.
When in this state, the thread will no longer be executed. Its metadata
are kept in memory until its parent thread reaps it. This is necessary
to pass the return value of a terminated thread or to know how this

2.4 scheduling in the linux kernel 21

struct rq
core = 0

threads =
current =

struct rq
core = 3

threads =
current =

struct rq
core = 4

threads =
current =

struct rq
core = 5

threads =
current =

struct rq
core = 1

threads =
current =

struct rq
core = 2

threads =
current =

Figure 2.7: Distributed design of the Linux scheduler, with threads migrating
to balance load (core 0 → 3 and 1 → 2), or waking up on idle
cores (core 4).

thread terminated, e. g. normally or because of an exception. Threads
in this state are colloquially called zombies.

Each thread also has policy-specific variables for each scheduling
policy in Linux. For example, the real-time policy SCHED_DEADLINE

stores a deadline and a period. On the other hand, the SCHED_OTHER

policy computes a load that reflects the weight a thread has on the
computing resources. These policy-specific variables will be discussed
in more details in the sections describing each policy.

2.4.3 Runqueues

The Linux scheduler, just as the kernel in general, was originally
designed for single-core machines. All subsystems were designed in
a centralized way, with no concurrent accesses to scheduling data in
mind.12 When SMP support was introduced in 2006 with Linux v2.6, 12 On single core machines,

disabling interrupts is
enough to avoid
concurrency problems
between threads.

a Big Kernel Lock (BKL) was used for mutual exclusion. This solution
scaled poorly and led kernel developers to move from this BKL to
more fine-grained locking and designs that were able to scale with the
number of cores.13 13 This BKL removal

process took 9 years to
complete [16, 37].

For the thread scheduler, this materialized by making it a distributed
system: each core maintains a runqueue (a struct rq) that contains,
among other things, the currently running thread and a set of runnable
threads that are waiting for the CPU resource. Figure 2.7 shows this
distributed design. Each core takes its scheduling decisions locally, as
if it was operating on a single core machine. This reduces contention
on locks, since each runqueue has its own lock and locking multiple
runqueues is rarely needed. This distributed scheduler architecture
also favors cache locality by design.

However, such a distributed design can lead to situations where
work is unequally distributed among cores, as seen in Figure 2.7. To
mitigate this, threads can be migrated by the scheduler from one
core to another. This can happen because of particular thread-related
events, e. g. thread creation or unblock after an I/O, or because of
scheduler-triggered actions, e. g. periodic load balancing.

22 thread scheduling

2.4.4 The Scheduling Class API

The Linux kernel provides an internal application programming in-
terface (API) that allows developers to implement a thread scheduler
in the kernel: scheduling classes. It consists of a set of functions to
implement, described in Table 2.1. The core code of the scheduler
subsystem14 does all the generic work that is common to all schedul-14 Defined in the

kernel/sched/core.c file. ing policies. This includes acquiring and releasing locks, changing
thread state, enabling and disabling interrupts, . . . Outside of this
generic code, each policy has its own code that implements different
scheduling algorithms.

To illustrate the interactions between generic and policy-specific
code, we describe the creation of a thread, be it with the fork() or
clone() system call. First, the data structures representing the parent
thread’s state are copied to create the child thread. This includes
the struct task_struct, the file descriptors, the page table address
for multithreaded applications, etc. . . Attributes are then correctly
initialized, e. g. the PID and PPID. Note that by default, a thread
inherits its parent’s scheduling policy. These operations are performed
by the copy_process() function. When all is correctly set up, the
thread scheduler is now able to make this new thread runnable.

The wake_up_new_task() function is responsible for making the
newly created thread runnable. Let T be this newly created thread
and ST its associated scheduling class (e. g. SCHED_OTHER, SCHED_FIFO),
here is the initial wakeup algorithm:

1. Lock T and disable interrupts.

2. Call the select_task_rq() function of ST in order to choose on
which core T will be enqueued. Let this core be Cdst.

3. Lock Cdst.

4. Call the enqueue_task() function of ST in order to actually put
T in the runqueue of Cdst.

5. Unlock Cdst, T and enable interrupts.

Only steps 2 and 4 involve policy-specific code. The rest is provided
as is by the scheduler subsystem.

Providing this internal API allows developers to implement thread
schedulers without reimplementing generic code and also helps mini-
mizing the number of bugs. Indeed, developing in the Linux kernel
is difficult, and it is hard to have a big picture understanding of all
mechanisms involved. This lack of understanding could lead develop-
ers to do things improperly, such as incorrectly handling interrupts or
locks.

2.4 scheduling in the linux kernel 23

Function Description

enqueue_task(rq, t) Add thread t to runqueue rq

dequeue_task(rq, t) Remove thread t from runqueue rq

yield_task(rq) Yield the currently running thread on the CPU of rq

check_preempt_curr(rq, t) Check if the currently running thread of rq should be pre-
empted by thread t

pick_next_task(rq) Return the next thread that should run on rq

put_prev_task(rq, t) Remove the currently running thread t from the CPU of rq

set_next_task(rq, t) Set thread t as the currently running thread on the CPU of rq

balance(rq) Run the load balancing algorithm for the CPU of rq

select_task_rq(t) Choose a new CPU for the waking up/newly created thread t

task_tick(rq) Called at every clock tick on the CPU of rq if the currently
running thread is in this scheduling class

task_fork(t) Called when thread t is created after a fork()/clone() system
call

task_dead(t) Called when thread t terminates

Table 2.1: Scheduling class API in the Linux v5.7 kernel. Only a subset
of functions are presented and some function parameters were
omitted for conciseness.

caveats of this internal api . Despite all its benefits, the
scheduling class internal API still suffers some problems. First, the
behavior of every function of the API is not strictly defined. For
example, the enqueue_task() implementations currently available
throughout the kernel can enqueue one, multiple or no thread in the
runqueue. This means that in this function, anything can happen. This
greatly limits the possibilities for static analysis tools or formalization
in order to prove the correctness of the scheduler.

meta-scheduler . As stated previously, Linux complies with a
large portion of the POSIX standards, including parts involving thread
scheduling. To this end, it implements multiple scheduling policies
that we describe in the following sections. However, this also means
that if multiple policies have a runnable thread, a choice must be made
by Linux to determine which policy has the highest priority. Linux
chooses a simple fixed-priority list to determine this order. Figure 2.8
shows this priority list. When a thread is scheduled out, the scheduler
subsystem will iterate over this list and call the pick_next_task()

function of each class until a thread is returned.

24 thread scheduling

stop dl rt fair idle

Figure 2.8: Priority list of Linux’s scheduling classes.

2.5 general-purpose operating system schedulers

In this section, we present multiple general-purpose schedulers im-
plemented in production OSs like Linux or Windows. We emphasize
more on Linux since the contributions presented in this thesis are
implemented on this OS. We present historical schedulers of Linux
as well as the current one, CFS. We also present some competing
schedulers that live outside the Linux mainline code.

2.5.1 Former Linux Schedulers

For a rather long time, Linux used a very simple scheduler, with the
idea that thread scheduling was easy and not a problem.

Let’s face it — the current scheduler has the same old basic
structure that it did almost 10 years ago, and yes, it’s not optimal,
but there really aren’t that many real-world loads where people
really care. I’m sorry, but it’s true.

And you have to realize that there are not very many things that
have aged as well as the scheduler. Which is just another proof
that scheduling is easy.

— Linus Torvalds, 2001 [173]

Reality proved to be a little bit different, and the Linux scheduler
became a performance problem for many users. This led to multiple
rewrites of the scheduler over the years. We now present the multiple
schedulers that existed in Linux before the current one.

2.5.1.1 Round-Robin Scheduler

The first versions of Linux used a simple round-robin scheduler.
Runnable threads are stored in a linked list and each thread is as-
signed a fixed time slice. When a thread completes its time slice or
switches to a blocked state, the next thread in the list is elected. Un-
surprisingly, this design works poorly in an interactive setup such
as a desktop computer. Indeed, I/O-bound threads usually run very
briefly and very frequently, i. e. they do not use their time slice, while
CPU-bound threads use their whole time slice. This leads to unfairness
between these two types of threads with a round-robin policy.

This information is extracted from the source code of earlier Linux
versions. A full reconstruction of the git history of the Linux project
is available at: https://github.com/mpe/linux-fullhistory.

https://github.com/mpe/linux-fullhistory

2.5 general-purpose operating system schedulers 25

T0 T1 T2 T3 Xtasks

runnable

X

Figure 2.9: Data structures of the O(n) scheduler in Linux.

2.5.1.2 The O(n) Scheduler

To solve the unfairness between batch and interactive threads, the
Linux community introduced the O(n) scheduler in Linux v2.4 in
2001. The overall idea is that the scheduler assigns a time slice to each
thread on the system. To do this, the scheduler divides time in epochs.
At the end of each epoch, the scheduler reallocates a time slice to each
thread and gives a bonus to threads that did not consume their whole
time slice during the previous epoch.15 All threads, runnable or not, 15 The bonus is equal to

half the time remaining in
the thread’s time slice.

are stored in a linked list, the tasks list. Runnable threads are also
part of the runnable list, as shown in Figure 2.9. When the OS needs
to choose a new thread to run, the O(n) scheduler iterates through
the runnable list and computes a goodness score for each thread. This
goodness is computed with various metrics, such as the nice value or
the time already consumed from its allocated time slice. The thread
with the highest goodness is the one that will be given access to the
core.

Thanks to the goodness metric, this new scheduler was quite fair
between threads, and interactivity was no longer penalized. However,
the major caveat of this new scheduler is the algorithmic complexity of
its operations. While the previous scheduler performed all operations
in constant time, this new scheduler iterates through all runnable
threads when choosing a new thread to run. This meant that the
duration of the election depended on the number of runnable threads,
hence the name of this scheduler, O(n).

2.5.1.3 The O(1) Scheduler

With the advent of multi-core architectures and multithreaded pro-
gramming, the complexity of the O(n) scheduler became prohibitive.
The O(1) scheduler, as well as proper support for SMP architectures,
was introduced in 2003 with Linux v2.6 to solve this problem. This
description is derived from code reading and from the excellent Linux
Kernel Development (2nd Edition) book from Robert Love [111].

As shown by Figure 2.10, a runqueue consists of two priority arrays,
i. e. arrays of lists, with 140 entries each: the active and expired arrays.
Each entry corresponds to a different priority level: 0 to 99 are real-
time priorities and 100 to 139 are normal priorities.16 When a new 16 These 40 levels of

normal priorities are
mapped to the nice value
that ranges from -20 to 19.

thread must be elected by the scheduler, the highest priority thread
in the active array is selected. In our example, T0 would be the first
thread to be elected. When a thread uses all its time slice, it is moved

26 thread scheduling

active expired

realtime
normal

139
138

0
1

99
100

...

...

101

139
138

0
1

99
100

...

...

101

139 139

T9

T4

T6T3

T5

T0

T8

T1

T7

T2

Figure 2.10: Data structures of the O(1) scheduler in Linux.

from the active to the expired priority array, its time slice is recomputed,
and another thread is scheduled. When the active array is empty, both
arrays are swapped: expired becomes active and vice versa. The time
slice allocated to a thread depends on its priority, as shown by Table 2.2.
This new design allows for good balance between interactive and

Nice Time slice

+19 5 ms

0 100 ms

-20 800 ms

Table 2.2: Time slice allo-
cations in O(1).

batch threads, thanks to priorities, and does so while maintaining a
good O(1) algorithmic complexity, thanks to priority arrays.

smp support. The SMP support in the scheduler consists of mov-
ing from a centralized runqueue to distributed runqueues, each core
scheduling threads locally without knowledge of other cores. This
distributed scheduler architecture brings new challenges. From now
on, since each core only schedules the threads in its runqueue, threads
can be asymmetrically distributed among cores. One core could have
10 threads to schedule while another one could have only one single
thread to schedule, leading to unfairness between threads depending
on the core they are placed on. To solve this problem, the scheduler
performs load balancing by migrating threads between cores in order
to even the number of threads of all cores. This balancing is performed
on two occasions: (i) when a core becomes idle, i. e. no runnable thread
is locally available, (ii) periodically, every millisecond when the system
is idle, every 200 ms otherwise. Load balancing is done with a work
stealing approach: each core does its own balancing and tries to steal
threads from the busiest core on the system. To reduce the cost of
this balancing and the number of migrations, balancing has some
constraints: threads are migrated only if the imbalance between cores
exceeds 25%, and cache-hot threads, i. e. threads in the active array, are
less likely to be migrated than other threads, i. e. threads in the expired
array.

2.5 general-purpose operating system schedulers 27

2.5.2 Completely Fair Scheduler

The Completely Fair Scheduler (CFS) is the default scheduler in Linux
since 2007, with version 2.6.23. The general idea behind this scheduler
is to “model an ideal, precise multi-tasking CPU on real hardware” [29].
The meaning behind this is that CFS aims at emulating an ideal CPU
that would execute all runnable threads in parallel, allocating each
thread the exact same computing power simultaneously. For example,
if 4 threads are runnable, each thread should be allocated 25% of
the CPU power at all times. However, since real hardware provides a
finite number of cores that can simultaneously run one thread each,
CFS has to model such an ideal hardware. We will first describe how
CFS manages the allocation of CPU time to threads, and then detail
the thread placement strategy of CFS. Most of the information of
this section is extracted from the Linux v5.4 kernel source code and
from Robert Love’s excellent book, Linux Kernel Development, Third
Edition [112].

2.5.2.1 Election in CFS

As described previously, Linux opts for a distributed scheduler de-
sign, where each core is responsible for scheduling its threads, and
balancing happens periodically or because of events such as a thread
waking up or a core becoming idle. CFS applies its general idea to
each core separately, and each core is “split” between its threads. Each
thread is assigned a time slice17 that depends on the number of threads 17 Also called a quantum.

present in the core’s runqueue and the thread’s weight. This weight
depends directly on the nice value of the thread.18 The higher the 18 This nice-to-weight

mapping is hardcoded in
the kernel. A high weight
means a low nice value and
a high priority.

weight, the longer the allocated time slice. This way, each thread in the
runqueue of a core gets assigned a portion of the CPU time this core
offers, thus emulating an ideal CPU, while still maintaining a form of
priority-based scheduling.

When the CFS scheduling class is asked for a thread to schedule,
the currently running one is scheduled out, and CFS chooses the
thread that needs the CPU the most to strive towards an ideal CPU.
To this end, CFS introduces the notion of vruntime. The vruntime of
a thread represents the time a thread has executed, in nanoseconds,
adjusted by its weight. For the same real execution time, the vruntime
of a thread with a small weight will increase faster than the one of a
thread with a large weight. When election time comes on a given core,
CFS will choose the thread with the lowest vruntime on this core, and
the scheduled out thread’s vruntime is updated to reflect its last usage
of the CPU and the thread is put back in the runqueue. However, these
operations can be costly with the wrong data structure. With CFS,
threads are stored in a red-black tree [73] ordered by vruntime. The
leftmost thread in the tree is the one with the lowest vruntime, and
scheduled out threads are inserted in their correct position to keep

28 thread scheduling

the structure sorted. All these operations are performed efficiently, in
O(log n) complexity.

Additionally, since CFS is a preemptive scheduler, the election pro-
cedure is not only called because the currently running thread relin-
quishes its core, i. e. calls the yield() system call. A thread can be
preempted if it used up all its time slice. This condition is checked at
every tick. Another preemption reason is the waking up of a thread
with a higher priority than the currently running one.

2.5.2.2 Thread Placement in CFS

The decentralized architecture of the Linux scheduler can lead to
performance below basic expectations. Indeed, a situation where a
core has 4 threads in its runqueue while all other cores have none
is a waste of resources. This introduces the need to balance threads
between cores. To do so, CFS introduces the notion of load used to
represent how much a thread uses a core.

load. The load of a thread corresponds to how much time it was
runnable compared to the time it could have been runnable, weighted
by its weight. Therefore, a thread that spends half its time sleeping will
have a load of 50%, no matter how long it actually ran. However, the
behavior of a thread can change over time. Because of this, the more
time passes, the less this cumulative load has meaning.

The notion of average load is therefore introduced to account for
the current and past load values differently [38]. Time is divided into 1

millisecond periods, and load is computed for each period. The average
load Lavg is based on the load of the current period L, the previous
average load and a constant y:

Lavg = L + y× Lavg

With y < 1, the current load has more impact on the average load than
older load values that decay every millisecond. The value of y has been
chosen such that y32 = 0.5, meaning that the weight of a given load is
halved every 32 millisecond in the average load.19 When the CPU is not19 An informed reader

might wonder how this is
done in kernel space where

floating operations are
frowned upon: large
integers are used to

approximate these
computations.

used by a process during a period, the average load therefore decreases.
In order to decide if threads must be migrated from one core to

another, CFS can compute the imbalance between cores with these
metrics. CFS triggers its migration mechanisms on two types of occa-
sions:

• Thread-related scheduling events: thread creation (fork() or
clone()), program replacement (exec()), thread unblocking
(transition from (UN)INTERRUPTIBLE to RUNNING),

• Core-related scheduling events: when a core becomes idle, i. e.
no more runnable thread available, or periodically.

2.5 general-purpose operating system schedulers 29

The first type only places the thread concerned by the event, while the
second can migrate a bulk of threads at once. Additionally, each one
of these occasions perform balancing differently, especially regarding
the hardware topology of the machine (see the Hardware topology insert
for more information).

Hardware Topology

CPU0
CPU1

LLC

DRAM

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

CPU8
CPU9

LLC

DRAM

CPU10
CPU11

CPU12
CPU13

CPU14
CPU15

NUMALLCSMT

Figure 2.11: Scheduling
domains of a 4-socket
NUMA machine.

During the boot of the kernel, Linux queries the hardware
to fetch hardware information, such as which cores share SMT
capabilities or caches, as well as the topology of the NUMA in-
terconnect. From this information, Linux builds a model of the
topology in the form of scheduling domains. Figure 2.11 shows the
scheduling domains built for a 4-socket NUMA machine. Each
domain is tagged by its hardware particularity: SMT means that
cores in this domain share SMT capabilities, LLC means that cores
share an last level cache and NUMA means that memory access times
may not be uniform in this domain. This topological information
is used to change the minimal imbalance needed for periodic load
balancing:

• 10% imbalance for an SMT domain,

• 17% for an LLC domain,

• 25% for NUMA domains.

thread placement. Thread creation, i. e. fork() and clone()

system calls, is an ideal time to migrate a thread. Indeed, the created
thread most likely won’t share much data with its parent, meaning
that ensuring cache sharing between these two threads is unimportant.
This means that this newly created thread can be placed on any core
of the machine. In practice, CFS will try to find the idlest CPU in terms
of load on the whole machine.20 Program replacement, i. e. exec() 20 On multi-hop NUMA

machines, the search will
not go beyond a certain
number of
hardware-defined hops.

system call family, is also a great opportunity for migration since the
thread will change its code and data, and therefore does not need any
of its previously loaded cache lines. Placement behavior is the same
as for thread creation.

When a thread goes from a blocked state to a runnable state, i. e.
(UN)INTERRUPTIBLE → RUNNING, CFS must determine on which core
the thread should be enqueued. Since the thread has run, and has
probably fetched code and data in the caches of the core previously
used, it is beneficial to try to keep it close to its previous core. CFS will
search for an idle core in the LLC domain. If one is found, the thread
will be placed on this idle core. Else, the previous or waker core will
be selected, depending on which will be the most quickly available.

30 thread scheduling

idle balancing . Another good opportunity for thread balancing
is when a core becomes idle. Indeed, a core becoming idle has no
thread to run, and can therefore perform more heavyweight work
to balance cores on the machine. When a call to schedule() returns
no runnable thread, CFS performs idle balancing, which consists
in stealing work from other cores and placing it on this newly idle
core. The search for stealable threads is performed in each scheduling
domain where the newly idle core is present, from the smallest to the
biggest. As soon as the newly idle core has threads to run, it will stop
stealing threads and perform a new election. Note that threads can be
stolen in bulk in order to even out the imbalance between cores.

load balancing . Finally, as a last safety net, CFS periodically
performs load balancing in all scheduling domains. Unlike idle bal-
ancing, periodic load balancing does not stop when all cores are not
idle. Its goal is to minimize the imbalance between all scheduling
domains, whatever the level of the domain. Since this operation can
be costly and not very scalable, periodic load balancing is performed
concurrently in each domain, at different times.

Balancing a domain means evening out the average load of each of
its child domains. For example, balancing an LLC domain DLLC means
that all SMT domains within DLLC have a similar average load. The
period between each balancing of a domain depends on the number of
cores in the domain: a domain with N cores will be balanced every N
milliseconds. This period can be extended if consecutive balancing fail,
i. e. the load is already balanced and no thread migration is performed.
The period is capped to a maximal value of 2N and reset when a
balancing succeeds.2121 The maximal value can

be modified at run time in
the procfs.

2.5.2.3 Other Miscellaneous Features

In addition to the general features of CFS presented earlier, there are
other smaller features with the sole objective of optimizing specific
patterns. Here is a description of two of these features, presented as
an example.

group scheduling . CFS features group scheduling to extend
fairness. The default behavior of CFS is to ensure fairness between all
threads. However, on a multi-user system, a situation where user A
runs 2 threads and user B runs 98 threads is going to be detrimental
to user A that will be given only 2% of CPU time. To solve this issue,
group scheduling considers groups of threads when allocating CPU
time. This is done at the user level, i. e. each user gets an equal share
of the CPU, and this share is then divided among the user’s threads,
but also at the process, TTY and cgroup levels.

2.5 general-purpose operating system schedulers 31

cache nice tries . Another optimization aimed at improving
cache locality is cache nice tries. In order to prevent cache-hot threads
from being migrated easily, the scheduler can migrate these threads
only after failing to balance multiple times consecutively. For example,
to migrate a cache-hot thread from a NUMA node to another, it will
take two consecutive failures before being able to do the migration.

2.5.3 Other Scheduling Policies in Linux

The Linux kernel features other scheduling policies in addition to
CFS. Some are defined by the POSIX standard, i. e. SCHED_FIFO and
SCHED_RR, while others are specific to Linux, i. e. SCHED_DEADLINE,
SCHED_BATCH and SCHED_IDLE [115].

If you recall Figure 2.8, you will notice that there are more policies
than scheduling classes. Indeed, some classes implement multiple
policies. The rt scheduling class contains both the SCHED_FIFO and
SCHED_RR policies, while the fair class implements SCHED_BATCH and
SCHED_IDLE in addition to CFS. Note that the idle scheduling class
is different from the SCHED_IDLE policy. It is only used by a special
thread, called the idle thread, that is executed when nothing else is
runnable. Its job is to activate architecture-specific features to lower
the energy usage of the CPU.

sched_fifo. The SCHED_FIFO policy implements a priority-based
First-In First-Out (FIFO) scheduler. When a thread must be chosen to
run, the first thread from the highest priority FIFO list is selected. If
a higher priority thread becomes available, it preempts the currently
running one. There is also no concept of time slice, threads relinquish
the CPU by yielding it, blocking or if a higher priority thread wakes
up. In the latter case, the thread is not moved to the end of its list,
while in the other cases, it will be.

sched_rr . The SCHED_RR policy implements a priority-based al-
gorithm similar to O(1), with one list per priority level. It is actually
exactly the same code as SCHED_FIFO, with the exception of the addi-
tion of time slices. The selection is performed in a round-robin fashion,
with fixed time slices that can be configured through the procfs.22 22 The default value is

100 ms.When a thread is preempted by a higher priority thread, the remaining
of its time slice stays untouched, the thread is allowed to finish it when
scheduled again.

sched_deadline . This policy implements a deadline real-time
scheduler based on global Earliest Deadline First (EDF) [110] and
Constant Bandwidth Server (CBS) [2]. This category of schedulers is
usually used for real-time periodic tasks. When a thread uses this
policy, three values must be specified by the user: a runtime, a deadline

32 thread scheduling

and a period. The runtime corresponds to the estimated completion
time of the task.23 The deadline is the time before which the task23 For hard real-time tasks,

this value usually
corresponds to the

Worst-Case Execution Time
(WCET) [181].

should complete, relative to its start time. For each window of time
of a duration equal to period, the task should be run once. Naturally,
these values must be chosen such as runtime ≤ deadline ≤ period. The
policy then computes the order of execution of all its threads in order
to fulfill all deadlines. For this to be possible, the scheduler performs
an admittance test when a new thread wants to use this policy.

a note on starvation. The three previously presented strategies
are considered real-time policies. A misuse of one of these policies
can cause a starvation for all threads with a lower priority on the
system, thus effectively freezing the machine. For example, a high
priority infinite loop, may it be due to a bug or a malign attack,
would hog the CPU and be hard to kill. To avoid this, the scheduler
subsystem provides a safety net with two configuration variables
that can be tweaked through the procfs: sched_rt_period_us and
sched_rt_runtime_us. The ratio between the latter and the former
gives the maximum percentage of time allocated to real-time threads.
The remaining is given to “normal” threads, giving them a chance to
act and fix the state of the system if necessary.

sched_batch . This policy uses the same algorithm as CFS, except
that it will consider threads as CPU-intensive. This means that a small
penalty will be applied in terms of interactivity, i. e. threads waking
up will not be placed in a favorable position in the red-black tree.
However, the allocated time slice will be longer, thus reducing the
number of preemptions due to an expired quantum.

sched_idle . This policy is used for very low priority tasks that
should not disrupt the execution of any other thread. The threads in
this policy will be scheduled only if no other thread is runnable. This
is useful for users with long running background tasks and interactive
tasks running together, e. g. a compilation and a web browser.

2.5.4 Brain Fuck Scheduler and Multiple Queue Skiplist Scheduler

Although CFS tries to maximize performance for all types of applica-
tions and hardware, it is a difficult task to achieve. Therefore, there
exists other schedulers for the Linux kernel that target more specific
use cases. The most famous one is the Brain Fuck Scheduler (BFS),
developed by Con Kolivas,24, and its successor, the Multiple Queue24 Kolivas is a kernel

hacker that largely
contributed in the

development of schedulers
in Linux (he was credited

by Ingo Molnar as an
inspiration for CFS)
although his actual

profession is
anesthesiologist.

Skiplist Scheduler (MuQSS). Kolivas developed these schedulers with
one single target in mind: desktop machines with a limited number of
cores. The focus was put on maximizing interactivity and simplicity
in its design.

2.5 general-purpose operating system schedulers 33

2.5.4.1 Brain Fuck Scheduler

The Brain Fuck Scheduler (BFS) [96], first released in 2009, is an
alternative to CFS aiming at using a simple algorithm, devoid of
tunable parameters, that performs well on desktop machines with
up to 16 cores. Threads are stored in a global priority array.25 When 25 There is no expired array

as in O(1).election time comes, if a real-time priority thread is available, the one
with the highest priority is selected. If none is available, Brain Fuck
Scheduler (BFS) iterates through all runnable threads on the system
and picks the one with the earliest deadline. The deadline of a thread is
derived from its priority and the last time the thread used up its time
slice. All threads are allocated the same fixed time slice of 6 ms.26 26 This time slice value is

the only tunable of BFS,
with a file in the sysfs.

Having a centralized runqueue and a deadline-centered approach
is supposed to improve the overall performance of desktop systems
that mostly run interactive applications. In 2013, a user benchmarked
and compared BFS with CFS on 7 different machines with 1 to 16

cores [69]. The benchmarks focused on three workloads: compilation,
compression and video encoding. Overall, both schedulers perform
equally, the largest difference in performance being 8% in favor of
BFS. CFS developers also compared their work with BFS, noticing
no performance difference [125]. This shows that a simpler scheduler
does not equate a worse scheduler. In addition, BFS is used in produc-
tion Linux distributions such as GalliumOS [62], PCLinuxOS [136] or
Zenwalk [191].

2.5.4.2 Multiple Queue Skiplist Scheduler

With desktop machines having more and more cores, having a single
global runqueue for all cores became a bottleneck for BFS, due to
the contention on the runqueue lock. To work past this contention
issue, Kolivas designed an evolution of BFS: the Multiple Queue
Skiplist Scheduler (MuQSS) [97]. The idea is to keep the general ideas
behind BFS, i. e. earliest deadline first election and no load balancing,
with scalable data structures for modern multi-core hardware. The
single global runqueue design was changed to a per-core runqueue
design in order to reduce the complexity of the lookup operation on
the previous implementation. The linked list data structure is also
replaced by priority-ordered skip lists [143]. When a core needs a new
thread to schedule, it will check the first thread of each runqueue, i. e.
the thread that most likely would have the earliest deadline27 without 27 The definition of a

thread’s deadline is similar
to the one used in BFS.

holding any lock, and select the thread with the earliest deadline
among these threads.

Hardware topology awareness is also accounted for in MuQSS
thanks to thread placement at wakeup time, as well as some optimiza-
tions in the election process. When a thread wakes up, the choice of
its future runqueue will depend on multiple factors such as core idle-
ness, cache hotness or the number of threads already in the runqueue.

34 thread scheduling

Additionally, at election time, when runqueues are scanned, a higher
priority will be given to idle cores or cores sharing caches. Balancing
is only done during these two occasions, there is no active balancing
algorithm like in CFS.

2.5.5 FreeBSD’s ULE Scheduler

FreeBSD is a general-purpose UNIX-like OS. It is the most widespread
distribution of the Berkeley Software Distribution (BSD) family. Un-
til 2003, FreeBSD implemented a modified version of the historical
4.3BSD scheduler [118]. This scheduler is a time-sharing priority-based
scheduler. Priorities are computed with an estimation of the recent
CPU usage and the nice value of the thread. Fairness is ensured only
among threads with the same priority, with a round robin election
scheme and fixed time slices of 100 ms. FreeBSD added the support
for SMP architectures, as well as a real-time scheduling class. Due to
its algorithmic complexity, this scheduler does not scale with a large
number of threads.

In 2003, the new ULE scheduler [149] was introduced in FreeBSD.2828 The name ULE comes
from the last three letters

of schedule and was the
username used for testing
purposes by the developer.

ULE heavily relies on the distinction between I/O- bound and CPU-
bound applications. ULE determines the interactivity of each thread
based on the time spent running and the time spent voluntarily sleep-
ing during the last five seconds. This score, in addition to the nice
value of the thread, is used to compute the thread’s priority and classify
threads as interactive, batch or idle.

With this classification in mind, each core has three runqueues
sorted by priority, one for interactive threads, one for batch threads and
one for idle threads. The interactive runqueue has one FIFO list per
priority, in a similar fashion to the priority arrays of the O(1) scheduler
in Linux (see Section 2.5.1.3). The batch runqueue, on the other hand,
is sorted by runtime, weighted by the nice value, in a similar fashion
to CFS (see Section 2.5.2.1). The idle runqueue, finally, contains threads
that want to run only if nothing else is available, among them the idle
thread.

When choosing the next thread to schedule, each runqueue is in-
spected in the aforementioned order until a thread is found. Interactive
threads have absolute priority over batch threads, which means that
batch threads may face starvation. However, developers see this as
a minor problem since interactive threads sleep more than they run,
leaving time for batch threads to run.

When scheduled, a thread can execute for a given time slice that
does not depend on its priority, but only on the number of threads on
its core. A budget of 10 ticks is equally shared among threads, with
each thread getting a minimum of one tick to execute. At every clock
tick, ULE checks if the allocated time slice has been used and forces a

2.5 general-purpose operating system schedulers 35

preemption if it is the case. Preemption can also happen if a higher
priority thread wakes up.

In terms of load balancing, ULE only tries to even out the number of
threads per core. When placing a newly created or unblocking thread,
ULE behaves in a similar manner to CFS. It tries to place the thread
close topologically to its previous or its parent’s core. In addition, ULE
balances the number of threads per core periodically. Unlike CFS, only
one thread is migrated at a time.

related publication. We published a comparison of CFS and
ULE to determine which one was the best [23]. We did this by im-
plementing ULE in Linux. The results showed that neither scheduler
was better than the other. Depending on the workload, the winner
was different. This shows that there is no silver bullet in terms of
general-purpose scheduling. The detailed results of this publication
will not be presented in this thesis.

2.5.6 Windows Scheduler

The Windows OS provides some information about its thread sched-
uler in its online documentation [123]. Unfortunately, since the source
code is not available, we are not able to give more precise information
or check that the provided information is valid. The general ideas
of the Windows scheduler are the same since at least Windows XP,
released in 2001.

Windows implements a priority-based scheduling algorithm with
priorities ranging from 0 to 31. It uses the same kind of algorithm
as ULE for interactive threads. All threads with the same priority are
scheduled in a round robin fashion. When choosing a thread, the
scheduler checks all priority levels, from highest to lowest priority,
until a thread is found. When a thread with a higher priority than the
one running becomes available, preemption is triggered.

The priority of a thread is computed with two criteria: its priority
class and its priority level within the class. There are 6 priority classes
containing 7 priority levels each.29 For example, by default, a thread 29 Multiple pairs of class

and level can map to the
same priority, hence the
difference between the 42

combinations and the 32

priority values.

is in the NORMAL class with the NORMAL level, which corresponds to a
priority of 8. Threads are able to choose their priority class and level
by themselves, which means that the Windows scheduler relies on
developers to be responsible when choosing the priority they wish to
use.

Regarding thread placement on SMP systems, it is not clear from
the documentation whether there is a single shared data structure
containing all threads or if threads are distributed like in CFS or
ULE. The only information stated is that threads can run on all cores,
unless developers decide to use a subset of cores by setting a specific
thread affinity. Additionally, threads can specify an ideal processor to the

36 thread scheduling

scheduler. This value does not guarantee that this core will be used
for the thread, it is merely a hint given to the scheduler.

Regarding NUMA architectures, the Windows scheduler tries to
place threads close to the memory they are using. Memory is allocated
on the local node by default, so the thread should stay on the same
node during its execution. However, if memory must be allocated on
a remote node, e. g. the local memory is full, the thread will run on
another node if it uses memory from that said node.

In addition to its kernel scheduler, Windows offers a particular fea-
ture since Windows 7, User-Mode Scheduling (UMS) [124]. The idea
is to allow developers to schedule the threads of their application by
themselves, without relying on the kernel at all. The application em-
beds its own thread scheduler and is able to perform context switches
without going through the kernel. The only interaction between the
kernel scheduler and the UMS happens when a thread wakes up: the
kernel scheduler notifies the UMS of this event and lets it process it.
In this context, the kernel scheduler’s job is only to allocate CPU re-
sources to the process, and the UMS will take the scheduling decisions
within the process.

2.6 user-level schedulers

In addition to thread scheduling at the OS level, there exists multiple
ways to perform thread scheduling at the user level. Some program-
ming languages offer threading by design while others offer threading
through the use of specific libraries. Regardless of the way threading
is offered, it gives an opportunity to perform scheduling. This can be
implemented with different thread mapping models that define the
interaction between user level and kernel level threads. In this section,
we present these thread mapping models and detail a few examples
of user level schedulers.

2.6.1 Thread Mapping Models

When implementing threading in a runtime system (language or
library), the interaction with the underlying OS threads is a key design
choice. In the following, we will distinguish both types of threads:
threads managed by the OS will be called kernel threads while threads
managed by the runtime system will be called user threads.

The easiest and most common mapping model is the 1:1 mapping,
where each user thread is mapped to a kernel thread. In this model,
the threading system completely relies on the OS to manage threads.
All scheduling decisions are taken at the OS level. This model requires
OS support in order to be able to create threads.

Another model is the N:1 mapping where all user threads are
mapped to a single kernel thread. In this model, the OS has no knowl-

2.6 user-level schedulers 37

edge of the existence of user threads. The runtime system must manage
its threads and perform context switches. This approach can be used
on OSs that do not support the creation of threads. Another possi-
ble advantage is the reduced cost of context switching in user space,
without the need to go back and forth into kernel space [8, 166].30 The 30 This argument is

questionable since no
recent study shows this
difference on modern
processors or modern OSs.

major limitation of this model is that a single user thread is able to
run at a time. This does not allow to exploit processors featuring SMT
or SMP.

The M:N mapping maps multiple user threads (M) to multiple
kernel threads (N). This approach is a combination of the two previous
models. The goal is to let the runtime system manage its threads while
taking advantage of multiple kernel threads, allowing multiple threads
to run simultaneously. Such systems must implement a scheduler that
decides which user thread runs on which kernel thread. This model
is more complex than the previous ones because it contains two
schedulers with limited means of communication. This can lead to
subpar performance when both schedulers do not coordinate correctly
in their respective decision making. This hybrid model is extensively
used in runtime systems at the language or library level.

In runtime systems that do not fully rely on the OS for thread
management, user threads are sometimes called green threads. One
general caveat of green threads is the handling of blocking operations.
When a blocking operation is performed by a green thread, the un-
derlying kernel thread is blocked, effectively blocking all other green
threads sharing it. This can be solved by the use of more complex
asynchronous I/O operations and wait-free algorithms.

Fibers are another type of thread that fully rely on cooperative
multi-threading instead of preemptive multi-threading. The concept
of fibers is similar to coroutines in programming languages theory.
Fibers can be implemented in user space with minimal OS support,
with an N:1 or N:M threading model.

Note that for user level schedulers to be efficient, support from
the OS is necessary. The user scheduler needs to be notified by the
kernel of any scheduler-related event that might influence scheduling
decisions. This was brought to light by Anderson et al. [8] in their
work on scheduler activations.

2.6.2 Language Runtime Systems

With the different threading models in mind, we present some lan-
guage runtime systems that provide threading natively. These runtime
systems range from fully fledged VMs to language standard libraries.
We mainly focus on N:M model implementations since they usually
provide more complex schedulers.

38 thread scheduling

java . The Java VM specification does not specify how threading
should be implemented, it is implementation-defined. Most Java VMs,
including HotSpot, the “official” VM maintained by Oracle, use a
1:1 threading model [54, 77, 87, 88, 99, 169]. The discontinued Java
VM JRockit [131] provides both a 1:1 mapping and an N:M mapping
when using Thin Threads. Unfortunately, no details on the scheduling
algorithm are provided in the documentation.

haskell . The Glasgow Haskell Compiler (GHC) provides a run-
time system that implements an N:M threading model [116]. The
runtime creates one kernel thread per core, and schedules its green
threads on them. Green threads sharing a kernel thread are scheduled
in a round robin fashion. The GHC runtime also provides load balanc-
ing mechanisms: green threads are not indefinitely bound to the same
kernel thread. When a GHC runqueue contains more than one thread
and other runqueues are empty, green threads are migrated to avoid
having idle cores. Additionally, the GHC runtime does not migrate
threads on wake up to favor cache locality.

go. The Go runtime system implements an N:M threading model [93,
177]. When a Go application starts, the runtime creates one kernel
thread per core and assigns an execution environment to each one.
When the program starts a goroutine,31 it is assigned to an execution31 A goroutine is a green

thread in Go dialect. environment. Each execution environments features a cooperative
FIFO scheduler for its goroutines. Context switches can be triggered
by the program with the go keyword, when executing a system call,
when using a synchronization primitive or when the garbage collector
is executing. When an environment has nothing to run, it tries to steal
goroutines from other environments on the system. Goroutines can
also be migrated to avoid blocked kernel threads. Ongoing work on
the Go runtime aims at implementing preemptive scheduling [34, 35].

other languages . Many programming languages provide a run-
time system with threading models similar to what we already pre-
sented. Erlang [63], Dyalog APL [52] natively support green threads
with an N:M model. Python [170], Racket [171], PHP [140], Lua [114],
Tcl [167], Julia [89] support an N:1 threading model, usually by sup-
porting coroutines. Note that some of these languages provide an
API to create kernel threads, enabling developers to implement an
N:M threading model. Some languages are specifically designed for
parallel computing, usually targeting High Performance Computing
(HPC) applications on supercomputers, such as X10 [30], Chapel [27]
or Fortress [102]. Fibers are natively supported by languages like Crys-
tal [41], or even through an OS interface in Windows [121]. The UMS
feature of Windows presented in Section 2.5.6 is also a form of N:M
mapping provided by the OS.

2.7 hypervisor schedulers 39

2.6.3 Threading Libraries

In addition to runtime systems natively provided by languages, exter-
nal libraries also implement such threading models. These libraries
use different models and interface themselves in different ways with
programming languages. Some act as normal libraries and provide
support for coroutines. Others act as language extensions used to
express parallelism and generate multi-threading at compile time.

coroutine libraries . Most libraries provide support for corou-
tines in an N:M threading model. Python has the greenlet [70] and
stackless [172] libraries among others. Kotlin provides coroutines
through a first-party library [25]. In C, the GNU Portable Threads [55],
State Threads [156] and Protothreads [51] libraries implement corou-
tines in a N:1 model. These libraries usually use a simple round robin
algorithm to select which coroutine should run next.

language extensions . Cilk [61] extends C and C++ with new
constructs that express parallelism. For example, the spawn keyword in
front of a function call causes this function to be run in another thread
asynchronously. Cilk also features loop parallelization and vectoriza-
tion of array operations. Threading is managed with an N:M model,
with a work stealing strategy to even the load of each underlying
kernel thread. OpenMP [44] provides pragmas for C, C++ and Fortran
to express parallelism. These pragmas are used to tag loops or code
blocks as candidates for parallelization. The runtime environment
then distributes work between multiple kernel threads. The behavior
of the runtime can be customized with environment variables in order
to decide how threads are moved between cores.

Some work on these systems was also proposed to enhance their
resource management. Callisto [75] and SCAF [40] extend OpenMP
with a scheduling layer that manages resources across concurrent jobs.
This approach allows these systems to reduce the interference between
OpenMP applications and improve overall performance.

2.7 hypervisor schedulers

Hypervisors can be classified into two categories: type-1 hypervisors
that run directly on hardware and type-2 hypervisors that run on
top of an OS [139]. Type-2 hypervisor do not need to implement a
scheduler since they can rely on the underlying OS to do this job.
Type-1 hypervisor, however, must implement a scheduler since it is a
feature needed to use the computing resources, i. e. cores.

40 thread scheduling

2.7.1 Production Hypervisors

type-1 . VMware ESXi [168], Xen Credit [185] and Credit2 [186]
and Microsoft Hyper-V [122] hypervisors implement proportional fair
share algorithms and load balancing similar to what is implemented
in CFS. Xen also provides a real-time scheduler with RTDS [187].
Oracle VM Server [165] implements a priority-based scheduler. Nu-
tanix AHV [130] relies on Qemu/KVM for the virtualization part,
and only manages the placement of vCPUs on cores. It tries to opti-
mize performance by minimizing contention on storage and network
devices.

type-2 . The QEMU/KVM hypervisor creates one thread per vCPU
and lets Linux do the scheduling [176]. VirtualBox [132], Parallels [133],
bhyve [179] provide no information in their documentations about
scheduling. We therefore assume that they do nothing in terms of
scheduling and rely on the underlying OS. This is not a surprise to see
this trend in type-2 hypervisors because scheduling is difficult, not
necessary to implement in this setup and might clash with the existing
OS scheduler. A project from Samsung, CFS-v [158], modifies the
Linux scheduler and QEMU/KVM to improve the I/O performance
of VMs at the expense of some computing performance.

2.7.2 Research Prototypes

Researchers mainly focus on type-1 hypervisors, usually in the context
of cloud computing. In this context, the main problem is to respect
VMs’ applications requirements, such as tail latencies, and maximize
resource utilization. Indeed, a simple way to improve the performance
of applications with regards to latency-related metrics is to over-
provision the VMs. This solution is adequate from the perspective of
the client, but induces a waste of resources, and therefore money, for
the cloud provider.

Tableau [175] uses real-time techniques to guarantee minimal CPU
usage and maximal bounds on scheduling delays. RTVirt [193] pro-
poses cross-layer scheduling where the guest and the host cooperate
to improve the performance of time-sensitive applications. Other sys-
tems flatten the scheduling hierarchy: guests communicate informa-
tion to the host, and the host performs all scheduling operations [49,
103]. Conversely, recent work leverage the hierarchy of schedulers for
real-time tasks, arguing that this is a more realistic and applicable
approach [1].

2.8 conclusion 41

2.8 conclusion

In this chapter, we presented a wide range of schedulers that try to
achieve different goals. The scheduler code rapidly becomes large and
complex, as more features are implemented. These features can be
needed to handle a new hardware characteristic or to respect a given
scheduling property. From what we observed and learned, we identify
three axes of improvement: scheduler development, performance
enhancement and application-specific schedulers.

scheduler development. Developing a scheduler is a diffi-
cult task that requires knowledge of scheduling, hardware and low-
level kernel programming. This complexity increases the likelihood
of producing incorrect code. The incorrectness can be located in the
scheduling algorithm itself, e. g. one could think that the algorithm
is work-conserving while it is actually not. It can also be located in
the implementation of the scheduler and cause crashes or undefined
behaviors at run time.

This first axis aims at easing the development of new schedulers by
alleviating the risk of making mistakes. We can do this by providing a
complete tool chain containing a DSL and its compiler. From this high
level abstract language, the compiler could generate efficient low-level
C code for Linux. In addition, we could also add a verifier to our tool
chain to formally verify that some scheduling properties cannot be
violated. This axis is treated in Chapter 3.

performance enhancement. In addition to the safety bugs
previously mentioned, schedulers are also highly subject to what we
could call performance bugs. They do not cause actual crashes, but they
silently eat away at performance. This makes it very difficult to notice.
The only way of noticing them is to produce another scheduler that
performs better or use profiling tools that highlight the problem.

The second axis aims at providing profiling and visualization tools
that enable scheduler developers to detect performance bugs, identify
the source of the problem and direct them toward a solution. This axis
is treated in Chapter 4, with a highlight on a performance bug related
to dynamic frequency scaling on modern processors.

application-specific schedulers . One implication of the two
problems we will address in the first two axes is the difficulty to
develop schedulers. Producing a correct scheduler that performs well
is a challenge that discourages most developers. Because of this, there
is a very limited number of schedulers developed, and the ones in
general-purpose OSs aim at being generic, thus becoming extremely
large and complicated, e. g. CFS. It also becomes difficult to evaluate
the impact of specific features on a specific workload since most

42 thread scheduling

features are intertwined. We cannot know which feature is beneficial
and which is detrimental to the performance of an application.

The third axis aims at helping end users choose the best possible
scheduler for their application. We propose a feature-based model of
a scheduler that allows each feature to be evaluated individually and
multiple methodologies to find the best combination of features for a
specific application. This axis is treated in Chapter 5.

3
W R I T I N G S C H E D U L E R S W I T H I PA N E M A

The scheduler is a core component of the operating system (OS).
Thread ordering and placement performed by the scheduler highly
influence the performance of applications on the system. These deci-
sions are also vital to efficiently use hardware resources. The scheduler
code itself can also be a source of performance. For example, Google
data centers spend up to 6% of all CPU cycles executing scheduler
code [90].

However, writing a scheduler is a daunting task. Indeed, a poorly
designed scheduler can have a negative impact on performance and
provoke crashes or cause the system to hang. It also requires good
low-level programming skills since schedulers are implemented in
kernel space. These skills should also include debugging in the kernel,
since it is a non-trivial operation that requires knowledge of the OS
and of the debugging tools associated.32 These difficulties limit the 32 For Linux, that would be

gdb and kgdb, as well as
various monitoring
facilities like ftrace and
perf.

development of new schedulers and incite developers to implement a
single generic scheduler like CFS in Linux.

From these two observations, even if writing specific schedulers
were highly beneficial in terms of performance, it is seldom done
because of the difficulties it begets. In order to remove this barrier, we
propose a set of tools that will ease the development of new, safe and
efficient schedulers: a domain-specific language (DSL), a verifier and
a new feature in Linux, scheduler hot-plugging.

We first propose Ipanema, a DSL tailored to write scheduling poli-
cies. The idea is to allow developers that are not expert in kernel
programming to write custom policies for their applications. By de-
sign, the language exposes high-level abstractions to the developer
so that he can focus on the scheduling policy rather than on the
difficulties of low-level kernel programming.

When developing a scheduler, as well as any other software, ascer-
taining that the code does what the programmer wanted is useful.
This means that we should be able to verify a set of properties on the
code, like the ones presented in Section 2.3.5. We propose a verifier
to formally verify scheduling properties on the policies written in
Ipanema. Our DSL approach and our tool chain allow us to ease the
verification process of such properties.33 33 In this thesis, we will not

go into details on the
verification aspects of this
work.

43

44 writing schedulers with ipanema

Event interface

C kernel module WhyML code Proof library

Ipanema policy

Ipanema

compiler

Front-end

WhyMLC

Proofs

Why3

Linux kernel

SaaKM API3.4

3.2
&
3.3

3.5

Figure 3.1: The Ipanema tool chain, with the DSL in blue, the execution
system in red and the verification system in purple. Related
sections of this chapter are also indicated.

Finally, to ease the simultaneous use of multiple custom policies, we
implement a new feature in Linux, Scheduler as a Kernel Module,
or SaaKM. This new feature, in the form of a scheduling class, allows
users to insert and remove scheduling policies at run time. This helps
in the development phase by reducing compile times since it is no
longer necessary to recompile a complete kernel binary every time the
scheduler is modified. For end users, it allows to easily change the
scheduler used for different applications at will.

3.1 the ipanema tool chain

As explained before, we have two objectives: easing the development
process of schedulers and allowing to prove properties on the schedul-
ing algorithm. To achieve this, we use the tool chain presented in
Figure 3.1. The tool chain is composed of three parts glued together
by the Ipanema compiler (in green): the DSL (in blue), the execution
system (in red) and the verification system (in purple).

the dsl . Scheduler developers write scheduling policies with the
Ipanema DSL. The language and the abstractions behind it will be
presented in Section 3.2, followed by code excerpts from two policies
in Section 3.3. Policies are then passed to the Ipanema compiler’s
front end that will translate it into an internal representation. At this
stage, early safety checks are performed to enforce rules set by the
design of the DSL. From this internal representation, the compiler
generates code for two different targets: C and WhyML.

execution system . The C target is used to generate a Linux
kernel module, in C, for the execution system. This module complies

3.2 the domain-specific language approach 45

with a specific API we define, SaaKM. It must be compiled with a
standard C compiler like gcc and inserted at run time in a custom
Linux kernel. This customized kernel is a standard kernel with an
additional scheduling class, SaaKM, with an event-based API close
to Ipanema’s events, that allows policies to be compiled separately
from the kernel and added at run time. The SaaKM API and policy
management tools are presented in Section 3.4

verification system . The second target generates WhyML code,
an ML-like imperative language supported by the state-of-the-art
Why3 program verification platform [20]. This WhyML code is then
used in the verification system, in addition to a hand-written proof
library. This library consists of proof skeletons where the generated
WhyML code can be inserted at specific locations. The resulting
WhyML code is then executed by Why3. If the verified property does
not hold, Why3 produces a counter-example that exhibits a violation
of the property. We briefly present the verification aspects of this work
in Section 3.5 but we do not dwell on this subject since it is out of the
scope of this thesis.

related work . While this DSL-based approach with an execution
and a verification back end is novel in schedulers, similar approaches
were proposed for other subsystems. Cogent [4] is a DSL aimed at
writing file systems. It uses a similar approach with two back-ends,
one for execution and one for verification.

3.2 the domain-specific language approach

To fulfill both objectives of ease of development and property verifica-
tion previously stated, we choose the DSL approach. The restrictions
enforced by design in the language will prevent developers from intro-
ducing bugs in their code. The abstractions exposed by the DSL allow
developers to fully focus on the scheduling aspects of their develop-
ment by not having to worry about low-level issues. Furthermore, the
compiler automatically generates the generic parts of the code. For
example, concurrency is a major difficulty in programming, all the
more so in kernel code. With the DSL approach, we can leverage the
design of our language to automatically generate lock management
code, and prevent illegal lockless modifications to shared variables.

Another good property of the DSL approach is to ease the generation
of proofs based on the code. Indeed, the design of the language forces
the developer to write its code in a certain way. The ensuing uniformity
in the written code makes it easier to extract parts of the code and
insert them in proof skeletons.

Instead of developing a DSL from scratch, we build upon the
Bossa [127] DSL that targets the development of schedulers on sin-

46 writing schedulers with ipanema

Event Description

T
hr

ea
d

ev
en

ts

new Thread creation with fork() or clone() system call.

tick Periodic clock tick when a thread is running.

schedule Thread election.

yield Voluntary yielding with the yield() system call.

block Thread is not runnable anymore (I/O, sleep, . . .).

unblock Thread wakes from a blocked state.

exit Thread termination.

C
or

e
ev

en
ts

balancing Periodic rebalancing between cores. Triggered after every tick.

newly_idle No runnable thread available. Last opportunity to avoid idleness by
stealing threads on other cores.

enter_idle No runnable thread available and thread stealing failed.

exit_idle New runnable thread available on an idle core.

core_entry Core insertion (at startup or with vCPUs).

core_exit Core removal (at shutdown or with vCPUs).

Table 3.1: List of Ipanema events sorted by category (thread or core).

gle core machines. We therefore extend Bossa to handle multi-core
machines and develop the Ipanema DSL. In this section, we give an
overview of the Ipanema DSL, detail the abstractions used in Ipanema
and present some policies.

3.2.1 The Ipanema Language

The Ipanema DSL, as its predecessor Bossa, is an event-based language.
The developer writes a set of handlers that will be called upon when
something happens on the system that necessitates the scheduler to
act. There are two categories of events: thread and core events. Thread
events are related to a specific thread while core events are related to
a specific core. Table 3.1 lists these events. For example, when a thread
performs a blocking I/O operation, the block event will be triggered
and the corresponding code in the Ipanema scheduling policy will
be executed. Each event has a particular semantic enforced by design.
This semantic can be represented as two finite state machines: one for
threads and one for cores. These finite state machines will be detailed
in Section 3.2.2.

Basically, a developer writing a new scheduling policy with Ipanema
will define the thread and core attributes and event handlers. Thread
attributes are per-thread variables solely used by the policy. For exam-
ple, if one implemented CFS in Ipanema, three attributes would be
needed: vruntime, weight and load.34 As for core attributes, we would34 See Section 2.5.2.

3.2 the domain-specific language approach 47

READY RUNNING

schedule

tick, yield

exit

blockunblock

new

BLOCKED

BEFORE TERMINATED

balancing

Figure 3.2: Thread finite state machine in Ipanema.

need to at least maintain a runqueue for ready threads and a reference
to the running thread. In addition, one could maintain the core’s load
as the sum of its threads’ loads. Events would then use these attributes
to change threads’ states, with respect to the abstractions presented in
Section 3.2.2.

A considerable advantage of using a DSL compared to C code is
that complex operations can be handled automatically. For example,
the compiler is able to automatically generate lock management on
shared variables. Illegal situations can also be detected at compilation
time and therefore avoided. For example, when a thread completes
a blocking I/O operation, it should not be placed in a blocked state
again, but in a runnable state.

3.2.2 Abstractions

As explained previously, Ipanema features a set of abstractions that
define the behavior of multiple components of the scheduler. They
help constrain what the developer can or cannot do with the language.
They also ease the process of proving properties. Ipanema provides
four major abstractions: threads, cores, topology and load balancing.

threads . Threads are defined by a finite state machine greatly
inspired by the one presented in Section 2.3.2. Figure 3.2 shows the
one used in Ipanema. The states are the same as the generic three-state
thread model presented earlier, with the addition of two new states:
before and terminated that represent threads before their creation,
i. e. while being initialized, and after their termination, i. e. zombies.
All transitions are tagged with one or multiple events. This means that
this transition can only be performed during these specified events.
Conversely, an event can only happen during a transition that is tagged
by it.

48 writing schedulers with ipanema

ACTIVE

enter_idle

exit_idle
core_exitcore_entry

INACTIVE

core_exit core_entry

newly_idle

Figure 3.3: Core finite state machine in Ipanema.

cores . Cores are also defined by a finite state machine pictured in
Figure 3.3. Currently, we only have two states, active and inactive

cores, and transitions also correspond to Ipanema events. Active cores
have work to perform, i. e. there is at least one ready or running

thread on this core. On the other hand, inactive cores have no work
to perform, and failed to steal work from other cores during the
newly_idle event. We also allow cores to “appear” and “disappear”
of the machine with the core_entry/exit handlers. These handlers
are used for two reasons:

• when the policy is inserted (resp. removed) in the kernel, each
core is initialized (resp. destroyed) with the core_entry (resp.
core_exit) handler,

• when running in a VM, the hypervisor can add or remove
vCPUs.

hardware topology. Topology is also an important abstraction
that allows scheduling policies to manage threads while accounting
for SMT, cache locality and NUMA architectures. Our topology ab-
straction is influenced by the one of Linux. Cores are divided into
domains that are organized in a hierarchical way, as shown in Fig-
ure 3.4. Each domain is tagged with a set of flags that express the
relationship between the cores of a domain: SMT means that cores of
this domain share computing hardware, LLC means that they share
a last-level cache and NUMA means that accesses to memory are not
uniform in this domain. In our DSL, we allow developers to redefine
the topology for their needs. For example, the second level of the
topology in Figure 3.4, tagged as LLC, could be removed if we wish to
ignore cache locality altogether.

load balancing . Load balancing is a particular event in that it
involves multiple cores at the same time. This can lead to complex
locking mechanisms that must be hidden from the developer. To do
so, we split load balancing into three phases as depicted in Figure 3.5.

3.2 the domain-specific language approach 49

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7SMT | LLC SMT | LLC

LLC LLC

NUMA NUMA

Figure 3.4: Topology of an 8-core 2-node NUMA machine in Ipanema.

phase 1 . When a balancing event is triggered on core dst, it will first
look at all cores and check which ones have stealable work. In
this first phase, the developer only writes the can_steal_core()

function. For example, we could define a core as stealable if it
has more threads than src, using core attributes defined in the
Ipanema policy. Stealable cores are stored in the stealable_cores
set.

phase 2 . A core must then be selected among these stealable cores.
The developer only writes the select_core() function that does
the choice and the stop_steal condition to abort balancing.

phase 3 . Finally, the actual stealing takes place. First, threads are
removed from the targeted core with the core’s lock held. Steal-
able threads are chosen with the steal_thread() function sup-
plied by the developer, and stealing continues until the con-
dition stop_steal_core becomes true. When enough threads
have been removed, the lock on the target core is released. Then,
a lock is taken on src and all stolen threads are added to its
runqueue. Note that there might be incoherence between the
observation phases 1 and 2, and the action phase 3. Indeed, the
first phases are performed lockless, which means that the data
used to choose a core to steal from can change before the stealing
is actually done. Phase 3 might therefore fail if, for example, no
threads are available anymore due to blocking events happening
concurrently.

The three phases described here suppose that we check all cores of
the machine and do not account for hardware topology. Ipanema does
support hierarchical balancing, following the topology defined by the
developer, by adding two additional phases analogous to phases 1 and
2 at the domain level: can_steal_group() and select_group(). They
are also performed with no locks held. The former filters the domains
from which threads could be stolen, mirroring phase 1, while the latter
chooses the domain from which threads will be stolen, mirroring phase
2. We won’t detail these phases further because they behave in the
exact same way as phases 1 and 2, except they operate on domains
instead of cores.

50 writing schedulers with ipanema

P
H

A
S
E
 1

P
H

A
S
E
 2

P
H

A
S
E
 3

src

dst

steal_for(dst):
 stealable_cores = {}
 foreach c in all_cores
 if can_steal_core(c, dst)
 stealable_cores.add(c)
 while !empty(stealable_cores) && !stop_steal
 src = select_core(stealable_cores)
 stealable_cores.del(src)
 tmp_rq = {}
 foreach t in src.runqueue
 if steal_thread(t, src, dst)
 src.runqueue.del(t)
 tmp_rq.add(t)
 if stop_steal_core
 break
 foreach t in tmp_rq
 dst.runqueue.add(t)

Figure 3.5: Load balancing phases in Ipanema.

3.3 the ipanema dsl through policies

Now that we have defined the abstractions upon which Ipanema is
built, let’s see practical examples of scheduling policies written with
our DSL. In this section, we will present various aspects of the Ipanema
language through policies we implemented and tested.

3.3.1 CFS-like Policy

First, we present excerpts of a CFS-like policy, cfs.ipa. This policy is
a simplified version of the default Linux scheduler. We first present
the thread and core attributes specific to this policy. We then present
some event handlers of this policy.

attributes . Listing 3.1 presents the definition of a thread and
a core in this policy. Threads are defined (lines 2–7) by their load,
vruntime, last date of scheduling (last_sched) and the core they are on
(cpu). The system keyword means that this field is not managed by
the developer but automatically modified in the generated C code. In
this case, the cpu field always references the core where the thread is
currently located, with no need to explicitly modify it.

Cores are defined in two parts: the definition of per-core metadata
(lines 10–13) and how threads are stored (lines 15–22). In terms of
metadata, a core is defined by its id (attributed by the system), its load
(cload), the smallest vruntime that a thread has on this core and the set
of domains the core is a part of. Threads are stored into four categories,
each one tagged by a state defined in the thread finite state machine.
There is a single running thread, current, and a set of ready threads
sorted by vruntime in ascending order. This set is implemented as a
red-black tree for performance, but Ipanema allows for other data

3.3 the ipanema dsl through policies 51

structures such as FIFO queues. The last two categories, blocked and
terminated, are untyped because no thread is stored in them.

1 / / A t t r i b u t e s
2 thread = {
3 time vruntime ;
4 time l a s t _ s c h e d ;
5 i n t load ;
6 system core cpu ;
7 }
8

9 core = {
10 system i n t id ;
11 i n t cload ;
12 set <domain> sd ;
13 time min_vruntime ;
14

15 threads = {
16 RUNNING thread current ;
17 shared READY set <thread > ready : order = {
18 lowest vruntime
19 } ;
20 BLOCKED blocked ;
21 TERMINATED terminated ;
22 }
23 }

Listing 3.1: Thread and core definitions in the cfs.ipa policy.

events . With these attributes defined, we can now write the event
handlers. Listing 3.2 presents some handlers for this policy. The vari-
able target represents the thread concerned by the event, now() and
first() are helper functions provided in the standard library of the
language. They respectively return the current time in nanoseconds
and the first element of a set, with respect to the order specified, i. e.
in this case, the thread with the lowest vruntime in the ready state.

The tick event (lines 2–10) checks if the thread has used all its time
slice. If not, the thread continues its execution; else, the metadata of
the thread is updated with user-defined functions not represented
here, and the thread is placed in the ready runqueue, and removed
from the running state. Upon detecting the absence of a running

thread, the schedule event will be triggered.
The block event (lines 12–17) updates the blocking thread’s meta-

data in the same fashion as the tick event and places the thread in the
blocked state. In this policy, this state is untyped, and therefore not
backed by a data structure. This means that a blocked thread cannot
be referenced until it wakes up, in the unblock event.

The schedule event (lines 19–25) retrieves the first thread in the
ready state, updates some metadata and makes it the currently run-
ning thread. This thread will now be able to use the core and execute
its code upon returning to user space.

52 writing schedulers with ipanema

1 / / Event h a n d l e r s
2 On t i c k {
3 time curr_quanta = now () − t a r g e t . l a s t _ s c h e d ;
4

5 i f (curr_quanta > max_quanta) {
6 update_thread (t a r g e t) ;
7 update_load (t a r g e t) ;
8 t a r g e t => ready ;
9 }

10 }
11

12 On block {
13 update_thread (t a r g e t) ;
14 update_load (t a r g e t) ;
15

16 t a r g e t => blocked ;
17 }
18

19 On schedule {
20 thread p = f i r s t (ready) ;
21

22 p . l a s t _ s c h e d = now () ;
23 min_vruntime = p . vruntime ;
24 p => current ;
25 }

Listing 3.2: A subset of the events of the cfs.ipa policy.

3.3.2 ULE-like Policy

Listing 3.3 shows an excerpt of a ULE-like policy in Ipanema. Through
this policy, we present the load balancing abstraction and how it
translates into Ipanema code.

First, we need to present some thread and core attributes used in
load balancing. Lines 1–25 show the definitions of threads and cores.
The important thing to note regarding threads is that their load always
equals 1. We use the load to count the number of threads on the core
because ULE uses this metric to balance cores. Other attributes, like
slptime, are mainly used to determine priority.

Cores are defined by an id and a cload, as in the CFS-like policy. In
addition, a boolean, balanced, is used during load balancing to deter-
mine if a core has recently participated in a work stealing operation, be
it as a source or a target. Threads are stored similarly to the CFS-like
policy, except for ready threads. They are stored in two queues, real-
time and timeshare, implemented as FIFO doubly linked lists. Threads
with the REGULAR priority (see line 4) are stored in the latter, while
all other threads are stored in the former. When a schedule event is
triggered, the realtime queue is always checked before the timeshare
queue.

3.3 the ipanema dsl through policies 53

1 thread = {
2 system thread parent ;
3 i n t load = 1 ;
4 i n t prio ; / * INTERRUPT , REGULAR, INTERACTIVE * /
5 core l a s t_cpu ; / * l a s t cpu t h e t h r e a d e x e c u t e d on * /
6 i n t s l i c e ; / * t i m e s l i c e * /
7 time rt ime = t i c k s _ t o _ t i m e (0) ; / * runt ime * /
8 time s lpt ime = t i c k s _ t o _ t i m e (0) ; / * s l e e p t ime * /
9 time l a s t _ b l o c k e d = t i c k s _ t o _ t i m e (0) ; / * l a s t b l o c k * /

10 time l a s t _ s c h e d u l e = t i c k s _ t o _ t i m e (0) ; / * l a s t s c h e d u l e * /
11 }
12

13 core = {
14 system i n t id ;
15 i n t cload ;
16 bool balanced ;
17

18 threads = {
19 RUNNING thread current ;
20 shared READY queue<thread > r e a l t i m e ;
21 shared READY queue<thread > timeshare ;
22 BLOCKED set <thread > blocked ;
23 TERMINATED terminated ;
24 }
25 }
26

27 s t e a l = {
28 can_s tea l_core (core src , core dst) {
29 dst . balanced ? f a l s e :
30 s r c . balanced ? f a l s e :
31 s r c . cload > dst . c load
32 } => s t e a l a b l e _ c o r e s
33

34 do {
35 s e l e c t _ c o r e () {
36 f i r s t (s t e a l a b l e _ c o r e s order = { highest cload })
37 } => b u s i e s t
38

39 s t e a l _ t h r e a d (core here , thread t) {
40 i f (b u s i e s t . c load − here . cload >= 2) {
41 here . balanced = true ;
42 b u s i e s t . balanced = true ;
43 i f (t . pr io == INTERRUPT || t . pr io == INTERACTIVE)
44 t => here . r e a l t i m e ;
45 e lse
46 t => here . t imeshare ;
47 }
48 } u n t i l (here . balanced)
49 } u n t i l (t rue)
50 }

Listing 3.3: Load balancing in the ule.ipa policy.

The load balancing operations are defined in lines 27–50. We can see
the three phases defined in Section 3.2.2 with the can_steal_core(),
select_core() and steal_thread() functions. The first phase ex-
cludes cores that already participated in a load balancing and cores

54 writing schedulers with ipanema

that have fewer threads than the stealing core. The second phase se-
lects the core with the largest number of threads among the remaining
cores. Finally, the last phase steals a single thread if and only if the
imbalance between both cores decreases after the thread migration,
with a priority given to realtime threads. Note that phases 2 and 3

are surrounded by a loop because some policies could need to steal
threads from multiple cores. Here, the condition always breaks the
loop, so only a single core can be targeted.

3.4 scheduler as a kernel module

As presented in Section 2.4.4, the Linux kernel provides a way to
develop schedulers: the scheduling class internal API. In this section,
we present the scheduling class we implement in Linux to allow users
to hot plug schedulers at run time as kernel modules instead of having
them built-in the kernel binary. We also present how to interact with
this new scheduling class and use it.

3.4.1 Extending the Scheduling Class Model for the Linux Kernel

First, we assess the limitations of the current internal API of Linux,
the scheduling class API. Then, with these limitations in mind, we
propose a new internal API, Scheduler as a Kernel Module or SaaKM,
that will allow us to easily use new scheduling policies in Linux.

3.4.1.1 Limitations of the Current Internal API

The scheduling class internal API allows developers to implement
schedulers in Linux, as presented in Section 2.4.4. However, schedulers
developed with this API must be embedded in the kernel binary.
Schedulers compiled in the binary are always present and cannot
be added or removed at run time from the system. This limitation
precludes developers to distribute new scheduling policies easily, they
must distribute a complete kernel binary. This also means that, for
end users, adding schedulers to Linux increases the size of the kernel
binary. For developers, the development process becomes more tedious
because a complete kernel must be recompiled for each modification.
When debugging, this quickly becomes inconvenient.

Second, when studying the scheduling class internal API, we felt like
the API was not developed to enable the implementation of any sched-
uler, but only to accommodate for the existing schedulers in Linux.
Indeed, handlers are not precisely specified, with a sparse documenta-
tion that does not cover them all.35 For example, the enqueue_task()35 As of Linux v5.4, only 7

out of 24 handlers are
documented, and quite

briefly.

handler is documented as follows:

3.4 scheduler as a kernel module 55

stop SaaKMdl rt fair idle

sched0 sched1 sched2 sched3

Kernel binary
Kernel modules

Figure 3.6: Architecture of the scheduler subsystem in Linux with our new
SaaKM scheduling class.

Called when a task enters a runnable state. It puts the schedul-
ing entity (task) into the red-black tree and increments the
nr_running variable.

However, this description is biased by the implementation of CFS,
as other scheduling classes do not necessarily use red-black trees.
Moreover, this description seems to indicate that the handler should
insert a single thread into the runqueue. However, this is not really
the case since the SCHED_DEADLINE policy does not enqueue the thread
under specific conditions.36 36 When the thread’s

allocated time slice is
exhausted.

3.4.1.2 The SaaKM Scheduling Class

We choose to implement a new scheduling class that allows users to
implement thread schedulers as kernel modules and plug them into
the scheduler subsystem. Figure 3.6 shows the new architecture of the
scheduler subsystem with our new scheduling class. As previously
explained in Section 2.4.4, scheduling classes are organized in a singly
linked list, sorted by priority. Now, when the scheduling subsystem
needs a new thread to schedule, i. e. the pick_next_task() function is
called, it will, as usual, iterate through each scheduling class to check
if a runnable thread is available. When the SaaKM scheduling class
is reached, it will iterate through each of its registered scheduling
policies (kernel modules) to find a runnable thread. If none is found,
the idle thread will be scheduled. We use a static priority between
our scheduler modules, as is done originally in Linux. Implementing
a form of meta-scheduling is a possible future work we did not explore.

SaaKM’s priority

We place SaaKM policies at the lowest priority, excluding the idle

class. The reason behind this is that we do not want to hinder the
normal behavior of the system when not using custom schedulers.
Additionally, multiple subsystems in Linux use CFS and assume
that only real-time threads have a higher priority. Using a SaaKM

policy that would hog some CPUs might cause some essential
kernel threads to be starved from CPU time and break the system.
One example of such a thread is the one managing the read-copy-
update (RCU) synchronization mechanism in the kernel.

56 writing schedulers with ipanema

Function Description

T
hr

ea
d

ev
en

ts

new_prepare(thread) Called when a thread is created, with the fork() or
clone() system calls. Returns the core where thread

should be placed.

new_place(thread, core) Called after new_prepare(), with core locked. Must
place thread on a runqueue of core.

tick(thread) Called when a clock tick happens with thread run-
ning.

yield(thread) Called when thread uses the system call yield().

block(thread) Called when thread must block (I/O, sleep, . . .).
Must remove thread from its runqueue.

unblock_prepare(thread) Called when thread wakes from a blocked state. Re-
turns the core where thread should be placed.

unblock_place(thread, core) Called after unblock_prepare(), with core locked.
Must place thread on a runqueue of core.

terminate(thread) Called when thread terminates. Must remove it from
any runqueue.

C
or

e
ev

en
ts

schedule(core) Called when a new thread should be scheduled on
core, i. e. there is no running thread.

balancing(core) Called periodically (at every tick) for periodic rebal-
ancing.

newly_idle(core) Called after schedule() if no thread is available for
scheduling. May try to steal threads from other cores.

enter_idle(core) Called after newly_idle() if core still has no thread
to run. Must put core in idle state.

exit_idle(core) Called when core is idle and a new thread becomes
available on core. Must put core in active state.

core_entry(core) Called when a new core appears on the machine.
Should setup core.

core_exit(core) Called when core disappears from the machine.
Should move out all threads from core and put them
on other cores.

Table 3.2: List of functions in the SaaKM internal API.

3.4 scheduler as a kernel module 57

In order to be available to threads, a scheduler module must register
itself with the SaaKM scheduling class. To do so, it must implement
the set of functions defined in Table 3.2. The SaaKM scheduling class
will then call each of these functions at the right time, holding the
right locks, to allow the scheduler module to perform the needed
operations. These events are split into two categories, thread events and
core events. This is a similar split as the one we defined for the events
of the Ipanema DSL in Section 3.2.

For example, when a thread is created, be it with the fork() or the
clone() system call, the new_prepare() function will be called with
the lock on the struct task_struct held. This handler is the first
function of the scheduler module called when a thread starts using
this scheduler. This means that a scheduler module should initialize
the per-thread metadata it will use for scheduling. This handler must
also return the core on which the newly created thread should be
placed. Indeed, a newly created thread has not been allocated a core
to be scheduled on yet. When this core is returned, the scheduling
class and the common part of the scheduler subsystem will perform
generic operations and lock the chosen core. Then, the new_place()

handler will be called, and the scheduler module will be responsible
for placing the newly created thread on the core returned by the
new_prepare() handler, in a runqueue. The scheduler subsystem will
then release both the core’s and the thread’s respective locks.

3.4.2 Live Management of Schedulers

With a SaaKM-enabled kernel, users can use schedulers in the form of
kernel modules that can be inserted and removed at run time. Threads
can then use these newly inserted schedulers through different means:

• a system call already available in Linux, sched_setattr, in order
to do it programmatically inside the code,

• user space tools we provide, saakm_start and saakm_setpolicy,

• a cgroup interface specific to SaaKM.

But first, before using a policy, users must compile the kernel mod-
ule through the Linux kernel’s build system, using the modules rule
of the kernel’s Makefile.

kernel insertion and removal . As soon as your kernel mod-
ule containing your scheduling policy has been compiled, you can
insert it at run time with the insmod shell command. After doing
this, you can check the list of available SaaKM policies by reading the
/proc/saakm/policies file. Let’s assume that we have three policies
named policyA, policyB and policyC. Inserting them and reading the
content of the aforementioned file will give this output:

58 writing schedulers with ipanema

redha@localhost:~:$ insmod policyA.ko policyB.ko policyC.ko

redha@localhost:~:$ cat /proc/saakm/policies

0 policyA 0

1 policyB 0

2 policyC 0

Each line contains an identifier, the name of the policy and the number
of threads currently using the policy. The identifier is used when
switching to a given policy. As for the removal of a policy, it is per-
formed with the rmmod shell command. Note that removing a policy
will fail if any thread is currently using the policy.

the system call interface . Linux contains multiple schedul-
ing classes to choose from, and provides a set of system calls that
allow threads to switch to and from each of them. These system calls
ultimately use the same code, but offer a different prototype. The most
complete one is sched_setattr. We can use it to switch to the SaaKM

scheduling class and provide the identifier of the policy we wish to
use. This is how it can be used to switch a thread to policyB:

struct sched_attr attr = {

.sched_policy = SCHED_SAAKM,

.sched_saakm_policy = 1 // id of policyB

};

sched_setattr(0, &attr, 0);

the user space tools . If a complete program should be launched
with a SaaKM policy, we also developed a user space tool, saakm_start.
This tool uses the sched_setattr system call to switch to the policy
passed as an argument before starting the program. In order to launch
the ls program with policyB, one would run:

redha@localhost:~:$ saakm_start 1 ls

foo/ bar/ file.txt

redha@localhost:~:$

If a user wants to change the policy of a currently running thread,
the sched_setattr system call permits to do it. The first parameter
of this system call is the process identifier (PID) of the thread that
should change its scheduling policy. In saakm_start, we used the
value 0 in order to change the current thread’s scheduling policy. The
saakm_setpolicy user space tool we provide is a wrapper for this
system call. It takes two arguments: the target PID and the identifier
of the destination SaaKM policy. Let’s say we want the thread with the
PID 1337 to use policyC as a scheduler. We would do the following:

3.5 property verification 59

redha@localhost:~:$ saakm_setpolicy 1337 2

redha@localhost:~:$

the cgroup interface . Managing a large number of threads
with the previous tools is cumbersome. Moving a bulk of threads
from one policy to another would mean to move each thread individ-
ually from one policy to another. To facilitate this process, needed for
the performance-driven feature search approach presented earlier in
Section 5.4.2, we implement a cgroup interface for SaaKM.

The usage of this interface is simple: users need to create a directory
in the cgroup pseudo file system, usually located in /sys/fs/cgroup/,
under the SaaKM directory. The newly created directory will already
contain the saakm.policy_id and tasks files. The former is used to
write the SaaKM policy identifier to be used in this cgroup.37 The latter 37 A value of -1 is

equivalent to the use of
CFS.

is used to read or write the list of threads in this cgroup, i. e. their PIDs.
Writing a list of PIDs in this file will trigger a change of scheduling
policy in bulk, with a single write system call.

3.5 property verification

In addition to the Ipanema DSL and the execution system, SaaKM, we
also collaborate with researchers from the University of Sydney and
CNAM38 to provide a facility to formally verify properties on the 38 Conservatoire National

des Arts et Métiers, Paris,
France

scheduling algorithm. As previously shown in Figure 3.1, this verifica-
tion system consists of a compiler back end and a proof library that,
when used together with the Why3 platform [20], verify scheduling
properties. In this section, we will provide an overview of the verifica-
tion of the work conservation property. We will not provide a detailed
explanation of the formal verification part since it is out of the scope
of this thesis. We first explain the general verification process and then
give some insights about how we verified work conservation.

3.5.1 Overall Process

The general idea of the verification process is to write a skeleton of
the proof in WhyML, the language processed by Why3. This skeleton
contains all the generic parts of the proof. The specific parts of the
proof should be extracted from the Ipanema code and inserted in the
skeleton. This is done by the second back end of the Ipanema compiler
that generates WhyML code. The completed WhyML code is then
passed to the Why3 program that will check if the property holds. If
it does not, it will provide a set of states that violate the property, i. e.
a counter-example.

60 writing schedulers with ipanema

3.5.2 Work Conservation

As defined previously in Section 2.3.5, work conservation is the prop-
erty that if a core on the machine is overloaded, i. e. has more than
one thread, then no core is idle, i. e. has nothing to run. The property
must hold at all times, i. e. after any scheduling event. For events that
only affect a single thread, e. g. thread creation or unblock, we only
want to check that if the destination core is overloaded, then no core
is idle. For events that can affect multiple threads, e. g. load balancing,
we want to be sure that if any core on the system is overloaded, no
core is idle.

Both definitions describe instantaneous work conservation (WC).
However, on a real multi-core system, events are happening concur-
rently. It is therefore difficult to ensure that no core is idle if cores can
become idle simultaneously. This is especially true for load balancing
where long critical sections in mutual exclusion would be needed. This
is not possible if we want to keep a good level of performance.

A possible workaround would be to prove eventual work conserva-
tion (EWC). This property specifies that if events no longer occur, i. e.
the system is stable, work conservation will eventually be achieved
in the future. On real systems, such a stable situation never happens.
This solution also fails to capture situations where work conservation
violations are due to events happening concurrently.

To work around the problems of both properties, we propose a
stronger property than eventual work conservation, concurrent work
conservation (CWC). This property uses slightly different definitions
of overloaded and idle that account for concurrent blocking and un-
blocking events. An overloaded core during a scheduling event is a
core with more than one thread where no unblocking event happened
during the scheduling event studied. A similar redefinition of an idle
core is also provided.

Instantaneous work conservation is the strongest property of all
three. Proving it proves the other two. Conversely, eventual work
conservation is the weakest, meaning that proving it does not prove
the other two. Therefore:

WC > CWC > EWC

We choose to prove CWC because it is the strongest property we can
prove that has a practical use.

We use the constrained structure of the Ipanema DSL to ease the
proving effort. The events and the phases of load balancing give a
prior knowledge of the locking scheme of the scheduler. With this
information, we know when the state of the system is consistent and
when it is not. For a more detailed description of the proof, please
refer to this published work [105].

3.5 property verification 61

3.5.3 Implications of Verification on the DSL

As previously hinted, the Ipanema DSL was designed with verification
in mind. The constraints we force on developers have the objective of
easing the verification process. For example, the load balancing is split
into three phases in order to inject smaller more specific pieces of code
into the proof skeletons. Even if this leads to a bit more complexity
for the developer, the gains outweigh the losses. In our opinion, the
ability to be sure that a scheduling property holds is worth a few
more lines of code. For example, a work conservation bug in ULE,
the scheduler of FreeBSD, remained undetected for three years before
being fixed [22]. In Linux, work conservation bugs were also found by
Lozi et al. [113].

3.5.4 Related Work

The conventional approach to improve the correctness of kernel code
is testing. The Linux Testing Project [108] and community testing are
used to detect bugs in the Linux kernel. Additionally, the Linux Kernel
Performance project [33] is used to detect performance regression
problems, and other tools detect abnormally long system calls [138,
157]. With these tools, a large number of bugs or regressions have
been detected. However, they cannot be used to detect subtle bugs that
rarely happen, such as concurrency bugs or hardware-specific bugs.

Model checking has also been used to find bugs that lead to
crashes [128] or deadlocks [189]. Using model checkers on schedulers
is challenging because of the combinatorial blow up of the state space
due to the number of scheduling events that happen on a machine
with a large number of cores and threads.

Finally, in the recent years, formal verification of OSs is becoming
a large trend. Formal techniques have been applied to verify complete
OSs such as SeL4 [94], CertiKOS [72] or Hyperkernel [129]. It has also
been used on more specific parts of OSs such as file systems [31, 32,
159].

3.5.5 Conclusion

In order to demonstrate the ability of our DSL to ease the formal
verification of scheduling properties, we propose to prove work con-
servation. In this collaborative work, we provided the definition of
the concurrent work conservation property as well as the design of
the Ipanema DSL. From now on, if we say that a scheduling policy is
proven work-conserving, it means that we proved concurrent work
conservation for this policy.

62 writing schedulers with ipanema

3.6 evaluation

In this section, we evaluate policies implemented in Ipanema on
multiple applications to determine if Ipanema is suitable to be used
in production environments. We compare multiple Ipanema policies
inspired by CFS and FreeBSD’s ULE to the default Linux scheduler.
We also evaluate policies proven work-conserving by our verification
tool chain. As a reminder, a work-conserving scheduler does not let
cores be idle if any core has more than one runnable thread.

In addition to showing that Ipanema policies can be as efficient as
policies written directly in C, we also want to demonstrate that we
do not add unwanted overhead due to excessive locking for example.
More specifically, in the policies proven to be work-conserving, we for-
bid concurrent load balancing as is performed in CFS. Our evaluation
shows that this is not a performance problem on our test applications.

3.6.1 Experimental Setup

system setup. The evaluation is performed on a 4-socket 160-core
machine equipped with an Intel® Xeon E7–8870 v4 processor, 512 GiB
of memory, running a Debian Buster OS. We remove the effects of
dynamic frequency scaling by using the performance scaling governor.
This governor forces the use of the maximal frequency on all cores.3939 More details on dynamic

frequency scaling are
available in Chapter 4.

We modify a Linux v4.19 kernel to add support for our Ipanema
schedulers through the SaaKM interface presented in Section 3.4.

policies . We evaluate our Ipanema tool chain by evaluating five
different scheduling policies:

• CFS is the vanilla CFS scheduler of Linux v4.19, used as a baseline
comparison. It is the only tested scheduler directly written in C.

• CFS-CWC is a simplified and slightly modified version of the
algorithm of CFS proven to be work-conserving.

• CFS-CWC-FLAT is the same algorithm except that it does not ac-
count for the hardware topology.

• ULE and ULE-CWC are simplified versions of the scheduler of
FreeBSD, ULE. The latter is slightly modified and proven to be
work-conserving.

benchmarks . For our experiments, we use various workloads
from the NAS benchmark suite [13], as well as a kernel compilation
and a sysbench OLTP benchmark [98]. We run all experiments 12 times
and present the mean of these runs and their standard deviation.

We exclude I/O intensive benchmarks from the NAS suite because
they exhibit a high standard deviation on our machine. We keep only

3.6 evaluation 63

CFS ULE CFS-CWC CFS-CWC-FLAT ULE-CWC

BT.B CG.C EP.C FT.C IS.A LU.B SP.B UA.B
0
1
2
3
4
5
6
7
8
9

Ex
ec

ut
io

n
tim

e
in

 s

 5
.4

0s
 1

3%
 1

3%
 1

1%
 1

3%

 7
.7

0s
 8

%
 2

%
 6

%
 6

%

 2
.4

4s
 2

6%
 2

3%
 2

3%
 2

4%

 9
.8

8s
 3

9%
 3

6%
 3

1%
 3

3%

 3
.4

4s
 0

%
 -0

%
 0

%
 0

%

 6
.2

4s
 1

6%
 6

%
 1

6%
 1

7%

 6
.9

9s
 2

8%
 2

3%
 2

6%
 2

9%

 6
.7

5s
 3

%
 -5

%
 5

%
 3

%

MG.D
0

10
20
30
40
50
60
70
80
90

 8
7.

10
s

 1
2%

 1
4%

 1
2%

 9
%

Figure 3.7: Execution time of the NAS benchmarks with 160 threads on CFS
and custom Ipanema policies. Lower is better.

applications dominated by computations and synchronization, e. g.
barriers. These applications are challenging for our work-conserving
schedulers because they contain barriers that wake up a large num-
ber of threads simultaneously. In these situations, CFS exhibits work
conservation issues that our policies solve.

The two other benchmarks do not exhibit work conservation prob-
lems, but they are useful to evaluate potential overheads of Ipanema.
They produce a very large number of scheduling events, with threads
blocking and waking up constantly. This behavior stresses the sched-
uler code and locking facilities we implement. A limited overhead
on these benchmarks is a good indication of the efficiency of our
approach.

The sysbench OLTP is a scriptable database benchmark. We run
it with two databases, MySQL 8.0.15 and MongoDB 4.1.8, with a
mix of read and write OLTP queries to evaluate request latency and
throughput. The benchmark and the database share the machine, and
the database is stored in memory in a ramfs partition.

The kernel compilation benchmark is a parallel batch workload that
compiles the Linux kernel using the make program. We compile a min-
imal kernel, with a configuration generated with the make defconfig

command. We perform the compilation in memory to avoid long I/Os
on the disk.

3.6.2 Performance Results of NAS

We first evaluate the performance of our Ipanema policies on the
NAS benchmarks. Figure 3.7 shows the mean execution time of each
benchmark for CFS and the performance difference as compared to
CFS for the Ipanema policies. The MG.D benchmark is represented
alone for readability because it has a longer execution time than other
benchmarks.

Overall, our Ipanema schedulers perform better than vanilla CFS.
We compute the geometric mean of all benchmarks for each policy

64 writing schedulers with ipanema

(a) Execution with vanilla CFS.

(b) Execution with CFS-CWC.

Figure 3.8: First 0.8s of the execution of NAS FT.C

to evaluate the overall improvement. As compared with CFS, we ob-
serve a 15.5% improvement for ULE, 11.8% for CFS-CWC, 14.0% for
CFS-CWC-FLAT and 14.4% for ULE-CWC.

The performance improvement of both CFS inspired policies is
largely due to work conservation at thread creation time. We verify
this by logging the number of threads per core at all times during
the benchmark with ftrace, a low overhead tracing facility built in
the Linux kernel [152]. Figure 3.8 shows a visualization of the logged
values for CFS and CFS-CWC during the first 0.1 s of the execution of
the FT.C benchmark. Gray lines represent cores with only one thread,
red lines represent cores with more than one thread, i. e. overloaded
cores. If no line is displayed, the core is idle.

The execution with vanilla CFS, represented on Figure 3.8a, shows
that cores are overloaded (in red) while other cores are idle (no line)
at the beginning of the execution. It takes CFS 0.44 s to achieve work
conservation, and small placement errors keep violating the property
from time to time afterwards. This is due to the NUMA heuristics
of CFS that avoid using remote nodes. At the very beginning, all
threads are created on a single node (cores 120–159) that is completely
overloaded. Shortly after, a second node (cores 40–79) steals a group
of threads. It is only after 0.2 s of execution that the remaining two
nodes decide to initiate load balancing and steal work.

With CFS-CWC, represented on Figure 3.8b, no core is overloaded
after the 0.08 s mark. The modifications of this scheduler that make
it work-conserving overrule the NUMA heuristics to achieve work

3.6 evaluation 65

conservation faster. Note that on both figures, we clearly see the
barriers, where all cores become idle, and that they are way shorter
on our work-conserving scheduler than on CFS.

3.6.3 Performance Results on Other Workloads

We now evaluate our Ipanema policies on scheduler-intensive work-
loads, the compilation of the Linux kernel and sysbench OLTP. Fig-
ure 3.9 shows all the results.

kernel compilation. We perform the kernel compilation with
different numbers of concurrent jobs, ranging from 32 to 256. Results
are shown on Figure 3.9a. On our machine, for all configurations up
to 128 jobs, our CFS-like schedulers slightly improve performance as
compared to CFS. With more jobs, they become equivalent to CFS.
The small gains in performance are explained by the thread placement
strategy when a thread is unblocked. The work-conserving policies
are more aggressive than CFS when it comes to using idle cores. This
is useful on a lightly loaded machine, i. e. with fewer than 160 jobs
on our machine. When the machine becomes really loaded, there are
fewer idle cores available, so being aggressive has no real impact
on performance. Overall, there are no large performance differences
between vanilla CFS and our Ipanema policies, with at most a 6% gain
with our policies.

sysbench oltp. We then benchmark a database workload with
sysbench OLTP on two different database engines: MySQL and Mon-
goDB. These workloads are highly demanding in terms of locking
and produce a very large number of scheduling events due to threads
frequently blocking and unblocking. Figures 3.9b and 3.9d present
the performance in terms of throughput while Figures 3.9c and 3.9e
present the 95

th percentile of response times. For MySQL, CFS and our
Ipanema policies perform quite similarly in terms of throughput and
latency, with a maximal difference of 8.2%. For MongoDB, all sched-
ulers also perform similarly, with at most a 3% difference. As with
the kernel compilation, these differences are likely due to placement
decisions when threads are unblocked.

3.6.4 A Note on the Code Size

One of the major advantages of using our DSL is the small number of
lines of code needed to write a scheduler. Table 3.3 shows the number
of significant lines of code of the policies we evaluate.40 For CFS, we 40 Blank lines and

comments are not
included.

show the number of lines of the scheduling policy of the original
CFS in the kernel source code. For the Ipanema policies, we show the
number of lines in the Ipanema code and the number of lines of the

66 writing schedulers with ipanema

CFS ULE CFS-CWC CFS-CWC-FLAT ULE-CWC

32 64 80 128 160 256
of tasks

0

10

20

30

40

50

60

Ex
ec

ut
io

n
tim

e
in

 s

(a) Linux kernel compilation time
(lower is better)

32 64 128 256 512
of clients

0

2k

4k

6k

8k

10k

12k

Re
qu

es
ts

 in
 k

/s
(b) sysbench OLTP with MySQL 8.0.15

(higher is better)

32 64 128 256 512
of clients

0
20
40
60
80

100
120
140
160
180
200
220

Re
sp

on
se

 T
im

e
in

 m
s (

95
th

)

(c) sysbench OLTP with MySQL 8.0.15

(lower is better)

32 64 128 256 512
of clients

0

1k

2k

3k

4k

5k

6k

7k

8k

Re
qu

es
ts

 in
 k

/s

(d) sysbench OLTP with MongoDB 4.1.8
(higher is better)

32 64 128 256 512
of clients

0

10

20

30

40

50

60

70

80

90

Re
sp

on
se

 T
im

e
in

 m
s (

95
th

)

(e) sysbench OLTP with MongoDB 4.1.8
(lower is better)

Figure 3.9: Performance of vanilla CFS, ULE, CFS-CWC, CFS-CWC-FLAT
and ULE-CWC.

3.7 conclusion 67

Policy Ipanema C

CFS 7 5,712

CFS-CWC 360 1,006

CFS-CWC-FLAT 242 791

ULE 272 851

ULE-CWC 245 898

Table 3.3: Size of the code of the tested Ipanema policies in Ipanema and in
generated C. The first line, CFS, shows the number of lines of the
vanilla scheduler of Linux.

generated C code. Our policies are much smaller than the original
CFS. This is also the case when comparing to the original code of ULE
from FreeBSD that amounts to 2,087 lines. Even after adding the 1,527

lines of code of the SaaKM scheduling class, our policies are drastically
smaller than CFS. In terms of performance, however, our policies are
on par or better than CFS on most of the applications we tested.

3.7 conclusion

Writing a thread scheduler is a difficult task. It requires knowledge
of scheduling algorithms and hardware capabilities, as well as hard
to acquire kernel programming skills. With Ipanema, we propose a
DSL-based approach that removes this last requirement. With its high-
level abstractions, it also simplifies the translation of the scheduling
algorithm to safe executable code usable in production environments.
Additionally, our language enables to semi-automatically formally
verify algorithmic properties.

We believe that Ipanema could be leveraged to ease the development
of application-specific scheduling policies in existing OSs. We also
believe that it could be a useful teaching tool in OSs courses.

future work . In the current state of our Ipanema tool chain,
there are two axes for future contributions. The first one is to extend
our proof library in order to verify new properties such as thread
liveness. The second axis is to faithfully write existing schedulers in
Ipanema and formally verify scheduling properties. This could lead to
the discovery of bugs in existing schedulers such as CFS and attempts
to fix them. More specifically, the latter axis would also lead to add
new features to the Ipanema DSL. For example, we could add new
data structures to store threads in addition to red-black trees and
FIFO queues. We could also add more depth to the core states in
order to manage other architectural attributes such as frequency or

68 writing schedulers with ipanema

temperature. This would add more flexibility to our language and
allow for the implementation of more policies, existing or novel.

On top of Ipanema, in SaaKM, we could also work on a meta-
scheduler to arbitrate between policies. For now, we only implement
a static priority list. In the future, we wish to enable developers to
write meta-schedulers that would schedule schedulers. This could be
performed through the Ipanema DSL with new abstractions.

submission to the linux community. Our work on the SaaKM

internal API was not submitted to the Linux kernel community. It is
not for lack of desire to do so, but because we know it will never be
merged.

There was work on schedulers that tried to be integrated in the
mainline code, but never achieved to do so. The reason behind this
is that Linus Torvalds refuses to have multiple schedulers in Linux.
The rationale is that scheduling is not that hard, so one scheduler
should be enough. Additionally, having multiple schedulers means
that improvements in one scheduler might never be merged into the
other schedulers, and the development effort would be scattered across
schedulers.

During the discussion on the (failed) merging of Con Kolivas’ work
in 2007, some developers raised the idea of having pluggable sched-
ulers, like with SaaKM. Here is Linus Torvalds’ answer:

I absolutely detest pluggable schedulers. They have a huge down-
side: they allow people to think that it’s ok to make special-case
schedulers. And I simply very fundamentally disagree.

If you want to play with a scheduler of your own, go wild. It’s
easy (well, you’ll find out that getting good results isn’t, but
that’s a different thing). But actual pluggable schedulers just
cause people to think that "oh, the scheduler performs badly
under circumstance X, so let’s tell people to use special scheduler
Y for that case".

And CPU scheduling really isn’t that complicated. It’s way
simpler than IO scheduling. There simply is no excuse for not
trying to do it well enough for all cases, or for having special-case
stuff.

— Linus Torvalds, 2007 [174]

It is clear to us that there is no way our code will ever be merged.

related publications . The work described in this chapter has
been the subject of two publications in international conferences [105,
106] and one in a national conference [67].

4
F R E Q U E N C Y- I N F O R M E D S C H E D U L I N G D E C I S I O N S

In the previous chapter, we presented Ipanema, a DSL that enables
scheduler developers to avoid safety bugs and formally verify schedul-
ing properties. In addition to these potential bugs, schedulers are
subject to another type of problem, performance bugs. These silent
bugs eat away at performance but do not crash the machine. They are
thus difficult to notice, except by accident while modifying the sched-
uler and obtaining better performance, or because of the performance
of a competing scheduler. In Linux, this happened with the release of
BFS that triggered changes in CFS that improved interactivity [95].

In this chapter, we propose multiple monitoring and visualization
tools that will help developers detect, identify and solve such perfor-
mance bugs. We will illustrate our methodology through an example:
the discovery, study and resolution of the frequency inversion prob-
lem in CFS.

4.1 example of a performance bug in cfs

While developing the Ipanema language presented in Section 3.2, we
implemented multiple scheduling policies for testing purposes. One
of them was the localipa policy. Its design was simple: (i) for time-
sharing and load balancing, behave in the same fashion as CFS albeit
simplified; (ii) for thread placement, always place the waking (or new)
thread where it (or its parent) previously resided. This policy was
supposed to have poor performance due to its blatant violation of the
work conservation property: using a single core instead of multiple
ones is intuitively a bad idea. However, while running benchmarks, we
discovered that reality was not that simple. Indeed, some applications,
leader among them the compilation of the Linux kernel, proved to be
executed faster with the localipa policy than with CFS.

In order to understand why the localipa policy outperforms CFS,
we need tools to monitor the operations of the scheduler. These tools
should help us understand the differences between both schedulers
when executing this compilation. With this knowledge, we should be
able to find out how to improve CFS and match the performance of
localipa.

69

70 frequency-informed scheduling decisions

4.2 monitoring and visualization tools

Monitoring the operations of the Linux scheduler is a complicated
task. First, the monitoring should be performed in the kernel since
the monitored code resides there. Second, it must avoid the probe
effect at all costs. This is important not only because of the time taken
to execute the monitoring code, but also because the execution of
this code could alter the decisions of the scheduler, rendering the
monitoring useless.

Finally, users should be able to easily interpret the results. This
requires visualization tools that are able to handle a large number
of events efficiently. These tools should also provide customization
options in order to allow users to look for specific patterns of events
or specific data.

After a quick presentation of existing tools, we propose new tools
that helped us better understand the behavior of schedulers. More
specifically, our tools allowed us to discover a new performance bug
in Linux, frequency inversion, and to devise new strategies in CFS to
fix the problem.

4.2.1 Existing Tools

Before introducing our new tools, we first present existing tools and
their pros and cons. These tools can be classified into two categories,
tracing and visualization tools. The former are used to collect data while
the latter are used to display the collected data to users.

4.2.1.1 Tracing Tools

The Linux kernel provides multiple tracing facilities to understand
the behavior of the kernel. The procfs pseudo file system exposes
kernel space data to user space through files that can be read from. For
example, the /proc/schedstat file contains, for each CPU, information
such as the number of times the yield system call was executed, the
number of context switches or the time spent waiting by tasks. Such
files are used by various user space utilities such as htop [126] or
ps [142]. The information usually available in these files is either
aggregate values or snapshots of the current state of the system. They
cannot be used to trace all the operations of the scheduler.

The ftrace facility allows users to trace specific events in the kernel
with minimal overhead. These events, called tracepoints, are hard-coded
in the kernel source code. In the scheduler, there are 24 events as
of Linux v5.7, including sched_process_fork or sched_wakeup. This
facility can be controlled from user space through files located in
the /sys/kernel/debug/tracing/ directory or with the trace-cmd

command line utility [153]. In addition, ftrace can be used to record
the number of calls and the time spent in any function of the kernel. It

4.2 monitoring and visualization tools 71

can also generate call graphs that are useful to find out how a function
is called at run time.

The perf utility [137] can also be used to monitor the operations in
the kernel. In addition to the support of tracepoints, perf supports
software events such as page faults and hardware events such as cache
misses.

Finally, the eBPF virtual machine embedded in the kernel can be
used to trace the kernel [59]. Users can write probes that are compiled
to eBPF byte code and inserted in the kernel at run time. These probes
can be inserted at various predefined places in the kernel code such as
tracepoints, hardware events or before or after any function call.41 A 41 There are some

exceptions that are tagged
as notrace in the kernel
code.

set of tools using eBPF, bpftrace tools, is available and covers a variety
of use cases, from measuring I/O latency to scheduling latency [24].

4.2.1.2 Visualization Tools

When traces are recorded with the aforementioned tools, they still
need to be presented in a way that eases the discovery of performance
problems. Some of the tracing tools offer aggregate values that sum
up results or human-readable interfaces, text or graphical. The ftrace

and perf facilities provide the logs of events in a formatted text output,
while procfs files usually offer aggregate values in text format.

KernelShark [151] is the official graphical viewer of traces generated
by ftrace. It has a powerful filtering engine that helps visualizing
only relevant events. SchedViz [65] is a tool developed by Google that
also uses the output of ftrace but is more focused on the scheduler. It
offers scheduler related views that expose problems due to NUMA or
antagonisms between threads [64]. Trace Compass [53] is a graphical
viewer that supports a large number of trace formats from kernel space,
e. g. ftrace or perf, and from user space, e. g. gdb or user-defined
traces. This enables developers to trace both sides of the system and
correlate application-level events and kernel-level events.

4.2.2 Our Tools

In terms of tracing events related to the scheduler, we choose to use the
existing ftrace facility. There are two main reasons for this choice: the
negligible overhead and the ease of use. Indeed, ftrace has the small-
est overhead among existing solutions. We also tried to implement a
minimal event tracer in the kernel. The limited number of features
allowed for efficient operations with minimal critical sections. Our
implementation and ftrace performed similarly in terms of overhead.
We therefore preferred ftrace since it provides more features and it
is an official component of Linux, with various tools developed for it.

In terms of visualization, we were not satisfied by existing tools for
two reasons. First, they were difficult to customize, making it difficult
or even impossible to add new types of visualizations. Second, no tool

72 frequency-informed scheduling decisions

Figure 4.1: Size of the runqueues during a kernel compilation.

scaled correctly when handling traces from a big server machine with
160 cores. Existing tools either crashed or took way too long to display
the traces because of the enormous number of events.

We therefore set out to develop a new tool that is programmable
and scales to large machines. We propose SchedDisplay, a tool with a
Python API that allows developers to easily change the data displayed
and add new features. In order for our tool to scale to large traces,
we only treat data that is in the displayed area and rely on the Bokeh
library [21] for interactive visualization and the Datashader library [45]
for rendering. Traces can also be exported in svg or pdf format, as is
the case of the figures in this chapter.

We now present three examples of visualizations we implement in
SchedDisplay to better understand the behavior of schedulers. The
first one traces the size of the runqueues, the second one monitors the
frequency of the CPU and the third one displays scheduler-related
events, e. g. thread creations, wakeups, . . .

4.2.2.1 Runqueue Size

This first tool is inspired by the one developed by Lozi et al. [113] and
traces the number of threads in each runqueue. Instead of using a
custom tracing facility as they did, we add a new tracepoint in the
kernel. This tracepoint is triggered every time a thread is enqueued or
dequeued from a runqueue and reports the new size of the runqueue.

Figure 4.1 shows an example of such a trace. The X-axis represents
time while each line on the Y-axis represents a core. If the core has
no thread in its runqueue, i. e. the core is idle, no line is drawn. The
line is blue if a single thread is present on the core, purple if two
threads are present and red if more threads are present. The tool can
easily be customized to change the ranges of runqueue sizes and to

4.2 monitoring and visualization tools 73

Figure 4.2: Example of the scheduler events visualization.

select which are displayed. With such a visualization, we can easily
discern the phases of an application where the machine is overloaded
or underused.

4.2.2.2 Monitoring the Frequency

The previous tool assumes that all cores are equivalent. Two threads
on core 1 is the same as two threads on core 12. This is, however, not
entirely true on modern CPUs. With frequency scaling technologies,
two cores might have a different computing power at a given time. If
core 1 is running at 1 GHz and core 12 at 4 GHz, the two threads on
core 12 will execute faster than those on core 1.

To monitor this, we add a new tracepoint, sched_tick, that records
every clock tick in the system. In this tracepoint, we record the cur-
rently running thread’s PID, the flag that indicates if a new election
should be performed and the current frequency of the core. Figure 4.3
shows the evolution of the frequency of a 160-core machine during a
compilation. We will come back to this example with more details in
Section 4.3.1.

4.2.2.3 Scheduler Events

Finally, our last tool allows us to better understand the behavior
of the scheduler itself by displaying scheduler-related events. These
events are collected through tracepoints and include thread creations,
blocking events or wakeups. Figure 4.2 shows an example of such a
trace. With this representation, we can find sequences of related events
that are problematic. This will be particularly useful to find the root
cause of the problem we discover.

In addition to events directly related to the scheduler, we can vi-
sualize any tracepoint recorded with ftrace. We can therefore use
this tool to make correlations with other parts of the kernel such as

74 frequency-informed scheduling decisions

synchronization mechanisms or any system call. Additionally, we can
also use this facility to trace events from our SaaKM scheduling class
presented in Chapter 3.

4.3 investigating the performance bug

4.3.1 Preliminary Investigation

We start our investigation by running the compilation of the Linux
kernel while recording scheduler events with ftrace. Figure 4.3 shows
the trace of this compilation with 320 jobs on a 4-socket 160-core Intel®

Xeon E7–8870 v4 server with CFS and localipa. The X-axis represents
time while each line on the Y-axis represents a core. This figure depicts
the frequency of the core recorded at each tick.

execution with cfs . First, let’s detail the behavior of this compi-
lation with CFS on Figure 4.3a. We observe that the application can be
split into three phases A, B and C, as outlined in the figure.

Phase A corresponds to preparatory scripts that parse the configura-
tion options of the kernel and generate headers and other files needed
for the compilation. This phase is not very parallel, with fewer than
ten cores running concurrently most of the time. When cores are not
idle (white), they mostly run at a low frequency (less than 2.1 GHz).
Note that there is a quick parallel burst around 2 seconds when all
cores run at a high frequency.

Phase B corresponds to the compilation of files from their textual
representation (C language) to binary language (assembly). Each file
is compiled independently, making this phase highly parallel. The
machine is overloaded and all cores run at a high frequency, between
2.1 GHz and 2.6 GHz.

Finally, phase C corresponds to linkage and generation of the final
binary file. The behavior is close to phase A, with only a few cores
used. Again, we see a short burst of activity at the end. This burst is
due to the compilation of modules.

execution with localipa . Now, let’s see how this compilation is
different with the localipa scheduler on Figure 4.3b. Note that the X-axis
is at scale with the previous figure, the grayed out area corresponds
to the time after the completion of the compilation.

We still distinctly see the three phases A, B and C. However, phase
A is faster with this scheduler. We can observe that fewer cores are
usually running compared to CFS albeit at a higher frequency. This
is due to the Intel® Turbo Boost technology that allows some cores
to run at very high frequencies if other cores are idle. This idleness
is expected since this scheduler always places threads locally and
violates the work conservation property. Threads are spread only

4.3 investigating the performance bug 75

(a) With CFS

(b) With localipa

Figure 4.3: Execution trace of the compilation of the Linux kernel with 320

jobs on our 160-core Intel® Xeon E7–8870 v4 server.

when idle or periodic load balancing is performed, which happens
rarely. As with CFS, phase C is similar to phase A.

Phase B behaves exactly like CFS and completes with the same
duration. Since the machine is overloaded (320 jobs for 160 cores), load
balancing is efficient and always finds threads to steal, minimizing
idleness.

conclusions . In this benchmark, localipa outperforms CFS in the
phases when the machine is underutilized, i. e. A and C. In these
phases, localipa seems to take advantage of higher core frequencies
than CFS by using fewer cores. The question that arises is why cores
run at such low frequencies with CFS even though only a few threads
are running. To find out what the reason behind this behavior is, we

76 frequency-informed scheduling decisions

Idle

Busy

Frequencies

1.2 GHz

(1.2, 1.7] GHz

(1.7, 2.1] GHz

(2.1, 2.6] GHz

(2.6, 3.0] GHz

0.975 1.000 1.025 1.050 1.075

Time in seconds

160

140

120

100

80

60

40

20

0

C
o
re

Figure 4.4: Zoom over a 100 ms period of phase A with CFS.

concentrate on phase A and analyze the scheduling events that lead
to this inefficiency.

4.3.2 The Frequency Inversion Problem

The traces we collect contain a large number of events related to
scheduling, making it difficult to skim through all this information. To
ease this process, we focus on a small window of time at the beginning
of the experiment, during phase A. By doing this, we will pinpoint
the exact problem behind the performance issue of CFS and the origin
of this problem.

the problem . Figure 4.4 shows the same frequency data as previ-
ously, but only on a 100 ms period. In addition to the frequency, the
thickness of the line represents the idleness of the core. If the line is
thin, no thread is runnable on this core, i. e. the core is idle. If the line
is thick, at least one thread is runnable on this core, i. e. the core is
busy.42 For example, just after the 1.000 s mark, a thread is placed on42 This representation is a

combination of the
runqueue size and

frequency visualization
produced thanks to our

scriptable tool.

core 50. This core remains busy until just before the 1.025 s mark. It
then stays idle until the end of the displayed period of time.

On this figure, we notice that every time a core becomes busy, i. e.
the line becomes thicker, the core is running at a low frequency. This
makes sense since an idle core should have a low frequency to save
energy. However, we also notice that cores become idle again before
the frequency is raised to a high value. The frequency attains its
maximum value when the core is idle again. This change of frequency
happens too late to be useful.

4.3 investigating the performance bug 77

Another peculiarity is observable in this figure: there seems to never
be two threads running concurrently. This means that the execution
that happens during this window of time is actually sequential. How-
ever, instead of using only a single core, which would have been
enough, CFS uses more than a dozen cores.

The combination of these two phenomena triggers our problem.
Idle cores are used to run a thread, and just before the frequency
reaches a high value, the computation is moved to another idle and
low frequency core, making the previous one idle again, but at a high
frequency. Consequently, the frequencies at which both cores operate
are inverted as compared the actual load on the cores. We call this
problem frequency inversion.

source of frequency inversions . We have now identified the
problem from which CFS suffers. In order to fix this problem, we must
find its origin. To this end, we study the scheduler-related events that
happen during the studied window of time. Figure 4.5 shows a subset
of the events happening during this period. We display only three
events for clarity:

• FORK: The fork()/clone() system call is being called on this
core, i. e. the parent’s core,

• WAKEUP NEW: A newly created thread is being placed on this core,
i. e. child’s core, following a FORK event,

• BLOCK: A thread is going into a blocked state.

We also display the idleness of cores on the figure. When a black line
is present, the core is busy, i. e. the core has at least one runnable
thread. Since we show the same time window as in Figure 4.4, black
lines map the thick lines of the previous figure.

On the frequency trace, we already figured out that this part of
the execution is sequential but still runs on multiple cores. We now
analyze the events that happen when these changes of core take place.
We can see that each time there is a black line break, i. e. a migration
of the work from one core to another, there is a fork() followed by a
blocking event on the first core. This is a classic fork()/wait() pattern
used in many applications. Here, it is the make program that spawns a
thread per job to perform and waits for them to complete. Since this
phase is sequential, only one thread at a time is working.

When a thread is created with the fork() system call, CFS searches
for the least loaded core to place this new thread on it. In this under-
utilized machine, this corresponds to an idle core. When this child
thread is placed on its core, the parent immediately calls the wait()

system call, blocks and leaves its core idle.
This behavior would not be a problem if the frequency was able

to immediately scale to the actual load on the core. However, we

78 frequency-informed scheduling decisions

Busy core

WAKEUP NEW

FORK

BLOCK

160

140

120

100

80

60

40

20

0

C
o
re

0.975 1.000 1.025 1.050 1.075

Time in seconds

Figure 4.5: Scheduling events over the 100 ms period of phase A with CFS.

previously saw that this was not the case. CFS acts as if all cores
are equal, but this becomes less and less true, even on homogeneous
architectures because of frequency scaling.

how do we solve this problem? With the frequency inversion
problem identified, we need to find a solution. In order to be able
to do so, we first need to better understand how dynamic frequency
scaling works. With this information, we will be able to devise the
best strategy to adopt to mitigate frequency inversions.

4.4 dynamic frequency scaling

On modern processors, the frequency can dynamically change in order
to increase performance or save energy. The former is straightforward:
a higher frequency means that more instructions can be executed per
second. The latter comes from the relation between energy consump-
tion and frequency:

P = C×V2 × f

where P is the power consumed, C is the capacitance of the circuit (a
constant for a given chip), V is the operational voltage and f is the
operational frequency.4343 This formula can be

inferred from Ohm’s law. There is a linear relation between frequency and power consump-
tion. Dividing the frequency by two automatically divides the energy
consumed by two. In addition to this relation, voltage and frequency
are also closely related. Higher frequencies require a higher voltage,
while low frequencies require a lower voltage. Combined with the

4.4 dynamic frequency scaling 79

quadratic relationship between power consumption and voltage, re-
ducing frequency is a good way of lowering the energy consumed by
the CPU.

Most CPU vendors implement dynamic voltage and frequency scal-
ing (DVFS) mechanisms. We will present implementations from multi-
ple vendors and how Linux leverages DVFS. Finally, we will evaluate
the frequency transition latency (FTL) on multiple CPUs from Intel®

and AMD®.

4.4.1 Frequency-related Technologies on Intel® Platforms

Since the early 2000s, Intel® introduced multiple technologies related
to the operating frequency of its processors. The Enhanced Intel Speed-
Step Technology (EIST) [82], introduced in 2005, allows the software to
change the frequency of a whole processor chip dynamically through
Performance States (or P-States) levels. Each P-State level is associ-
ated with a given voltage and frequency range. This means that the
software (e. g. the OS) can choose a P-State depending on various
metrics such as the load of the system, or whether the user wants
the highest possible performance, regardless of the energy usage. In
Linux, the subsystem responsible for this control is called CPUFreq (we
will provide more details about this in Section 4.4.3).

In 2015, Intel® introduced the Speed Shift [78] technology that gives
frequency and voltage control back to the hardware. With this tech-
nology, the OS can choose to let the processor decide by itself the best
target voltage and frequency for the current workload. This allows
for faster and more precise frequency changes, with P-States being
replaced by a non-discrete range of possible frequencies. As with EIST,
frequency is managed at the chip granularity.

Finally, in 2019, with its Cascade Lake microarchitecture, Intel®

announced the Speed Select Technology [47] that enables per-core
frequency control instead of per-chip control. However, even though
this feature was only announced for the new Cascade Lake processors,
we observed different per-core frequencies on an older Xeon processor
from the Broadwell generation released in 2016. This feature might
have already existed on processors targeted for servers without being
marketed by Intel®.

Two other technologies boost the maximum performance of some
cores at the expanse of others: Turbo Boost [83] and Thermal Velocity
Boost [180]. Turbo Boost increases the frequency of a subset of cores
beyond their base frequency for a short period of time if other cores
are inactive. Thermal Velocity Boost gives another small boost over
Turbo Boost if the temperature of the computer case is low.

80 frequency-informed scheduling decisions

4.4.2 Frequency-related Technologies of Other Vendors

amd. Like Intel®, AMD® implements technologies to boost the max-
imal frequency of a CPU when possible. Turbo Core [5] and Precision
Boost [6] technologies allow cores to exceed their normal frequency
depending on the number of active cores, temperature and power
consumption. All AMD® CPUs since the introduction of the Zen mi-
croarchitecture in 2017 feature per-core dynamic frequency scaling.

In terms of frequency control, AMD® also features P-states that
allow the OS to dynamically choose the frequency depending on the
workload and on the user-defined policy.

arm . ARM® also implements a DVFS mechanism controlled by the
OS through Operating Performance Points (OPPs). OPPs are similar
to P-states: they are a tuple containing a frequency and a voltage. The
set of available OPPs is implementation-specific.

In terms of DVFS granularity, it seems that frequency is managed
at the chip level. Even though we did not find clear evidence in the
official documentation of this, we infer this information from various
documentation on how to use the CPUFreq interface of Linux on ARM®

chips. These documentation usually instruct to modify the policy
of core 0 in order to change the policy of all cores. However, we
found a marketing document for a Snapdragon chip using the ARMv7

architecture that specifically mentions per-core DVFS [144]. Per-core
DVFS might therefore be an implementation-specific feature.

Note that we distinguish per-core DVFS from the heterogeneous
big.LITTLE architecture found on many ARM® chips. In this type of
chips, the different frequencies are due to the different kind of cores
present, not to a specific per-core management of DVFS.

4.4.3 Dynamic Frequency Scaling in the Linux Kernel

In the Linux kernel, dynamic voltage and frequency scaling (DVFS) is
managed by the CPUFreq [183] subsystem with two mechanisms: the
CPU scaling governor and the CPU scaling driver. The former determines
the targeted frequency and voltage of the processor, and the latter is
an architecture-specific component that interacts with the hardware to
enact the governor’s decision.

4.4.3.1 CPU Scaling Driver

The CPU scaling driver is the architecture-specific component of the
OS that is responsible for changing the processor’s frequency and
voltage. Depending on the hardware, this is done at the chip or at the
core level. Such drivers must implement a set of handlers called by
other subsystems. Such handlers include getting or setting the cur-
rent frequency, suspending the CPU, or activating boost frequencies.

4.4 dynamic frequency scaling 81

Usually, these drivers control the hardware by reading or writing to
hardware registers. These drivers are only responsible for the commu-
nication between the kernel and the hardware, they are not supposed
to determine the frequency that should be set.

4.4.3.2 CPU Scaling Governor

The CPU scaling governor is the component that determines which
frequency should be used. It holds multiple algorithms that input
system information, e. g. CPU load, and hardware capabilities, i. e.
through the CPU scaling driver, and outputs a desired frequency. The
Linux kernel provides generic governors, each having a different goal.

The performance governor always requests the maximum frequency
available44 when enabled and does not dynamically change the fre- 44 Hardware-defined by

default, but a lower limit
can be set by the user.

quency. The goal of this governor is to maximize performance regard-
less of the energy expended and the system load.

The powersave governor, on the other hand, always requests the
lowest possible frequency when enabled, and does not dynamically
change the frequency either. The goal of this governor is to save energy
at the expense of performance.

The ondemand governor dynamically changes the frequency pro-
portional to the system load. The system load is estimated as the
proportion of time the CPU was not idle. This estimate is recomputed
periodically. If the estimated system load is 75%, the selected fre-
quency will be 75% of the range between the maximum and minimum
frequencies. The goal of this governor is to provide good performance
when needed and save energy otherwise.

Finally, the schedutil governor dynamically changes the frequency
depending on the CPU load estimated by the thread scheduler. When
running a real-time thread, i. e. using the rt or dl scheduling classes,
the frequency will be set to the maximum value. Otherwise, the next
frequency Fnext is computed with the formula:

Fnext = 1.25× Fcurr ×
Lcurr

Lmax

where Fcurr is the current frequency, Lcurr is the current load computed
by CFS and Lmax is the maximum possible load. The goal is the same
as for the ondemand governor, but the metric that quantifies the load
of the processor is supposed to be better since it is derived from more
precise data coming from the scheduler.

These governors are generic implementations that work on any
underlying scaling driver. However, some scaling drivers redefine
the behavior of some governors in order to use certain hardware
features. For example, Intel® redefines the powersave governor in its
intel_pstate driver [184]. It no longer statically sets the lower fre-
quency, and instead lets the hardware decide the frequency that should
be used. On modern Intel® processors, the hardware determines the

82 frequency-informed scheduling decisions

current CPU usage and sets a frequency accordingly, in the same vein
as the ondemand governor.

4.4.4 Limits of Hardware Reconfiguration

All these hardware technologies configure the hardware (voltage,
frequency) in order to match the software requirements. However, our
case study, the compilation of the Linux kernel, shows that this is not
sufficient to make the best of our hardware. Indeed, these hardware
reconfigurations are not instantaneous and lead to bad processing
power usage by the OS (especially the thread scheduler). We present
a characterization of the reconfiguration delays by measuring the
frequency transition latency (FTL), and study this latency on multiple
CPUs.

4.4.4.1 Frequency Transition Latency

Relying on hardware reconfiguration technologies such as EIST means
that, ideally, the frequency of all cores should be the best one possible
at any given time. This implies that reconfiguration should instanta-
neously mirror the load of a core. Mazouz et al. [117] studied the time
Intel® processors took to change their frequency. They measure the
hardware delay between the command and the actual change of fre-
quency. The delay depends on the source and destination frequencies,
but they all are in the order of tens of microseconds. Yet, our previous
frequency traces seem to show that this is underestimated. Therefore,
we set to measure the FTLs of our hardware.

Mazouz et al. define the FTL as the duration a core takes to go from
one frequency to another. In this work, we define the FTL a little bit
differently. In addition to the hardware transition latency, we include
the decision-making process in the FTL. We wish to measure the time
it takes for a core to reflect the software load on the frequency. This
means that decisions taken by the scaling governor are also measured.
We also differentiate two types of latency: the rising latency FTLR and
the decreasing latency FTLD. FTLR is the time a core takes to go from
its lowest to its highest frequency, while FTLD is the converse. This is
important because one might be different from the other depending
on the goals of the governor, i. e. energy versus performance.

4.4.4.2 Measuring the Frequency Transition Latency

In order to measure the FTL on real hardware, we need precise fre-
quency monitoring tools. We develop frequency_logger1, that mon-
itors the frequency of a given core at a given interval of time. The
frequency (freqcurrent) is computed by reading two model-specific reg-

1 Available at: https://github.com/rgouicem/frequency_logger

https://github.com/rgouicem/frequency_logger

4.4 dynamic frequency scaling 83

isters (MSRs), aperf and mperf, and multiplying their ratio with the
processor’s base frequency (freqbase):

freqcurrent =
APERF
MPERF

× freqbase

Each core has its own set of MSRs. The aperf register continuously
increments in proportion to the current frequency while the mperf

register continuously increments in proportion to a fixed frequency,
hence the previous formula. The timestamps are recorded with the
rdtsc x86 instruction that returns the number of elapsed cycles since
boot at a fixed frequency, which can then be converted to nanoseconds.

In order to ensure that the measurement has no side effect on the
experiment, the thread running frequency_logger should not run on
the monitored core. Additionally, we make sure that the monitored
and monitoring cores do not share computing hardware (SMT), since
the activity of the monitoring thread might raise the frequency of the
monitored thread.

To measure the FTL, we run the following microbenchmark, de-
picted in Figure 4.6:

1. Run frequency_logger pinned on core 0, set up to monitor core
1 every millisecond,

2. Sleep B ms on core 1,

3. Run an infinite loop on core 1 for D ms,

50

250

400

0
co

re
 0

co
re

 1

Ti
m

e
 (

m
s)

sl
e
e
p

sl
e
e
p

lo
o
p

fr
e
q
u
e
n
cy

_l
o
g
g
e
r

Figure 4.6: Execution of
frequency_logger.

4. Sleep A ms on core 1 again.

The values of B, D and A depend on the tested processor. We choose
the smallest possible values while allowing the processor to meet the
maximum frequency in the rising phase and the minimum frequency
in the decreasing phase. This experiment exhibits two FTLs: a rising
FTL (FTLR) accounting for the duration between the start of the loop
and the time the core attains its maximum frequency, and a decreasing
FTL (FTLD) accounting for the duration between the end of the loop
and the time the core attains its lowest frequency stably.

4.4.4.3 Study of Frequency Transition Latencies

We run our microbenchmark on multiple machines and report the
results in Table 4.1. Our machines include servers, desktops and lap-
tops, with mostly Intel® CPUs. We run these experiments with the
powersave governor for all Intel® CPUs and with the schedutil gov-
ernor for the AMD® CPU. This choice is due to the implemented
policies of these governors, as explained in Section 4.4.3.2. For this
FTL measure to be meaningful, we need a governor that will dy-
namically change the frequency to meet the software requirements.
The powersave governor on Intel® processors does so, as does the

84 frequency-informed scheduling decisions

Frequency (GHz) FTL (ms)

Market CPU Model Cores Base Min Max FTLR FTLD

Server Intel® Xeon E7–8870 v4 160 2.1 1.2 3.0 29 98

Server Intel® Xeon E5–2699 v4 88 2.2 1.2 3.6 378 69

Desktop Intel® Core i7 8086K 12 4.0 0.8 5.0 26 81

Desktop AMD® Ryzen 5 3400G 8 3.7 1.4 4.2 194 51

Laptop Intel® Core i5 8350U 8 1.7 0.4 3.6 134 25

Laptop Intel® Core i7 7500U 8 2.7 0.4 3.5 168 224

Table 4.1: Frequency transition latencies of multiple CPUs.

schedutil governor on all CPUs. However, the powersave governor
produces shortest FTLs than the schedutil governor on our Intel®

machines, hence the choice to use the former when possible.
Figure 4.7 shows the evolution of the frequency during the afore-

mentioned scenario on every tested machine. Vertical lines indicate the
start and the end of the busy loop. We can observe that each machine
has a different behavior, depending on its targeted market, i. e. server,
desktop or laptop, and its product line, i. e. entry level, mainstream or
high-end.

ultra high-end. Among our tested CPUs, two can be categorized
as ultra high-end products, the Intel® Xeon E7–8870 v4 and the Intel®

Core i7 8086K (Figures 4.7a and 4.7c). Since they are both targeted for
high performance, they both have a very short FTLR and minimize
the time spent busy at a low frequency. They also have a fairly long
FTLD in order to still be at a high frequency if new work becomes
available. These models favor performance over energy.

mainstream . We also have two mainstream processors, the AMD®

Ryzen 5 3400G and the Intel® Core i5 8350U (Figures 4.7d and 4.7e).
These products are more balanced than high-end models. The FTLD

is shorter than with high-end models and the FTLR slightly longer.
The frequency takes longer to match an increasing load and goes
back to a lower power mode faster. Even though these processors are
more balanced than high-end models, we note that the balance leans
towards saving energy (FTLR > FTLD).

outliers . The Intel® Core i7 7500U processor is a high-end laptop
CPU (Figure 4.7f). It is quite balanced in its frequency behavior, with
similar FTLD and FTLR values, but has very high latencies. It still
leans towards performance, as suggested by its high-end product

4.4 dynamic frequency scaling 85

current base min maxFrequency:

start endWorkload:

29 ms

98 ms

(a) Server with Intel® Xeon E7–8870 v4.

378 ms

69 ms

(b) Server with Intel® Xeon E5–2699 v4.

26 ms

81 ms

(c) Desktop with Intel® Core i7 8086K.

194 ms

51 ms

(d) Desktop with AMD® Ryzen 5 3400G.

134 ms

25 ms

(e) Laptop with Intel® Core i5 8350U.

168 ms

224 ms

(f) Laptop with Intel® Core i7 7500U.

Figure 4.7: Measures of frequency transition latencies.

86 frequency-informed scheduling decisions

placement. We are, however, not quite sure of the reason behind these
long FTLs.

The Intel® Xeon E5–2699 v4 processor is a high-end server CPU
(Figure 4.7b). This model has a particular behavior considering its
placement amid other Intel® processors. Instead of going straight from
minimum to maximum frequency, we observe a long plateau at the
base frequency. It reaches the base frequency in 38 ms only, then
maintains this frequency for 341 ms before using the highest possible
frequency. Again, we do not have a convincing explanation for this
behavior, especially when comparing it to other older and more recent
Intel® CPUs.

4.5 handling frequency inversions in cfs

Now that we have precisely identified the frequency inversion problem,
we develop new thread placement strategies that we implement in CFS.
We propose two placement strategies: one that drastically changes
the behavior of CFS, and another that only slightly changes CFS’s
behavior.

4.5.1 Slocal : The Local Placement Strategy

Our first strategy is Slocal and consists of implementing a similar
placement strategy as our localipa policy, but integrated in CFS. We
modify CFS so that when a thread is created45 or wakes up, it is45 A thread creation might

be due to a fork() or a
clone() system call.

placed on the same core as the thread that created it or woke it up.
In the context of the fork()/wait() pattern described earlier, this
strategy ensures that the created thread is more likely to run on a
core operating at a high frequency. This is because the parent thread
was active on the same core, increasing the likelihood of this core’s
frequency to have been increased already. Furthermore, since the
parent thread calls the wait() system call shortly after calling fork(),
both threads will share the same core for a limited period of time.

In the context of a producer-consumer application, when a producer
wakes a consumer, the Slocal strategy will place the woken thread on
the same core as its waker. And, as with the fork()/wait() pattern,
the consumer will most likely be placed on a high-frequency core
due to the activity of the producer thread. The time during which
both threads will share the same core will also be limited because the
producer is likely to block or terminate after waking a consumer. This
could happen if the shared buffer is not big enough to allow both
threads to run or if producing is faster than consuming (or the other
way around).

Although this strategy seems to be beneficial for workloads resem-
bling our case study, performance will be seriously hurt in other
situations. For both patterns exhibited previously, if the parent thread

4.5 handling frequency inversions in cfs 87

or the producer thread does not block or terminate promptly (with the
wait() system call for example), the core where both threads reside
will be overloaded for a certain period of time. The periodic load
balancer of CFS mitigates this by eventually migrating one of these
two threads to an idle core if any is available. However, waiting for
the next periodic load balancing could be quite long. In CFS, load
balancing is performed hierarchically, with varying periods depending
on the level in the hierarchy: cores in the same cache domain are more
frequently balanced than cores residing on different NUMA nodes.
These periods vary from 4 to 320 milliseconds on our 4-socket NUMA
server.

In terms of implementation, although this strategy significantly
changes the behavior of CFS, it only required the modification of three
lines of code in the scheduler. The patch for Linux v5.4 is available
here: https://gitlab.inria.fr/whisper-public/atc20.

4.5.2 Smove: The Deferred Thread Migration Strategy

Our Slocal strategy’s major flaw is core oversubscription, even though
it is mitigated by load balancing. To fix this flaw while keeping the
benefits of local placement, we design the Smove strategy. In CFS, when
a thread is created or woken, the scheduler decides on which core it
should run and places it immediately. Our Smove strategy uncouples
the decision and the migration in order to take advantage of a high-
frequency core. To do so, we save the decision of CFS and defer the
actual migration.

Let Twakee be the newly created or waking up thread, Twaker the
thread creating or waking up Twakee, Cwaker the core where Twaker is
running and CCFS the destination core chosen by CFS. The normal
behavior of CFS is to directly enqueue Twakee in the runqueue of
CCFS. In Smove, we delay this migration to allow Twakee to run on a high-
frequency core if CCFS is running at a low frequency. If CCFS is running
at a frequency higher than the CPU’s minimal frequency (i. e. the core
is not idle frequency-wise), we enqueue Twakee in CCFS’s runqueue
immediately. This is the default behavior of CFS. Otherwise, we arm
a high-resolution timer interrupt that will perform this migration in
D µs and enqueue Twakee in Cwaker’s runqueue. If Twakee is scheduled
on Cwaker before the interrupt is triggered, we cancel the timer.

The rationale behind Smove is to avoid waking low-frequency cores if
the task can be performed quickly when placed locally, i. e. on a core
that is likely to run at a high frequency. Indeed, Twaker is running at
the time of the decision, meaning that Cwaker is likely to run at a high
frequency.

The delay D can be changed at run time by writing to a special file
in the sysfs pseudo-filesystem. We choose a default value of 50 µs,
which is close to the delay between a fork() and a wait() system

https://gitlab.inria.fr/whisper-public/atc20

88 frequency-informed scheduling decisions

call during our Linux kernel build experiment. Varying this delay
D between 25 µs and 1 ms did not have significant impact on the
benchmarks of Section 4.6. The frequency threshold used to determine
if a core is idle frequency-wise (defaults to the minimal frequency of
the CPU) can also be changed through the sysfs if this frequency is
not appropriate for the CPU used.

In terms of implementation, the Smove strategy required to add or
modify 124 lines of code in CFS. The patch for Linux v5.4 is available
here: https://gitlab.inria.fr/whisper-public/atc20.

4.6 evaluation

In this section, we evaluate both Slocal and Smove strategies against CFS.
Our objective is to compare the performance and energy usage of both
strategies and evaluate the improvements as compared to CFS.

We run a large number of applications from two established bench-
mark suites, Phoronix [119] and NAS [13], as well as other applications,
such as hackbench (a popular benchmark in the Linux kernel scheduler
community) and sysbench OLTP (a database benchmark).

We run these experiments on a server grade 4-socket NUMA ma-
chine with Intel® Xeon E7–8870 v4 processors and a desktop machine
with an AMD® Ryzen 5 3400G CPU, as presented in Table 4.2.46 Slocal

46 Of the six machines
presented in Table 4.1,

these two are the only ones
capable of per-core

frequency scaling.

and Smove were both implemented in the Linux v5.4 kernel, and com-
pared against the same unaltered version.

We run all experiments 10 times. We measure energy consumption
with the running average power limit (RAPL) feature that exposes the
consumed energy through hardware registers. The server machine
exposes energy consumed by the CPU package and the dynamic
random access memory (DRAM), while the desktop machine only
exposes that of its CPU package consumption. We choose to include
the DRAM consumption for the server machine in order to have the
most precise value possible.

While the energy consumption is always presented in joules (J), the
performance metric varies from one benchmark to another (latency,
execution time, throughput), with inconsistent units. For better read-
ability, all the following graphs show the improvement in terms of
performance and energy compared to the mean of the 10 runs with
CFS. Therefore, higher is always better, regardless of the unit. The
raw value of the mean for CFS is displayed on the top of the graphs,
alongside the benchmark’s unit.

To demonstrate that our work is orthogonal to the governor used, we
evaluate our strategies using both the powersave and the schedutil

governors. As presented in Section 4.4.3.2, the powersave governor
on Intel® machines lets the hardware decide which frequency should
be used with regards to the current load. The schedutil governor
is the latest governor designed by the Linux community that takes

https://gitlab.inria.fr/whisper-public/atc20

4.6 evaluation 89

Server Desktop

CPU model Intel® Xeon E7–8870 v4 AMD® Ryzen 5 3400G

Cores (SMT) 80 (160) 4 (8)

NUMA nodes 4 1

Minimum frequency 1.2 GHz 1.4 GHz

Base frequency 2.1 GHz 3.7 GHz

Max Turbo frequency 3.0 GHz 4.2 GHz

Memory 512 GB 8 GB

OS Debian 10 (buster) Arch Linux

Table 4.2: Configurations of our experimental machines.

advantage of metrics from the scheduler to select the best frequency.
We do not evaluate the performance or ondemand governors, since the
former fixes the frequency while the latter is not supported on our
Intel® CPU.

First, we present the complete results on the Intel® server machine
and summarize the results on the AMD® desktop machine. We then
detail some particularly interesting results, either because our strate-
gies perform well with these benchmarks (kbuild), or because they
expose the shortcomings of our strategies (mkl, hackbench). Finally,
we discuss the potential overhead of the Smove strategy.

4.6.1 Execution with the powersave Governor

We first consider the execution under powersave. Figure 4.8a shows
the performance and energy consumption improvements of Slocal
and Smove as compared to CFS on both machines. We consider that
improvements or deteriorations that do not exceed 5% to be on par
with CFS.

performance . Both Slocal and Smove strategies perform well over-
all, with respectively 27 and 23 out of 60 applications outperforming
CFS. As expected, the best observed results for these policies are seen
on benchmarks that extensively use the fork()/wait() pattern, and
therefore exhibit a large number of frequency inversions. In the best
case, Slocal and Smove respectively improve performance by up to 58%
and 56% on perl-benchmark-2. This benchmark measures the startup
time of the perl interpreter, and therefore greatly benefits from avoid-
ing frequency inversions since it mostly consists of fork()/wait()
patterns. In terms of losses, both strategies deteriorate the performance
of only three applications, but on very different scales. Slocal deterio-

90 frequency-informed scheduling decisions

Slocal Smove

−80 −80
−60 −60
−40 −40
−20 −20

0 0
20 20
40 40

Pe
rfo

rm
an

ce
 (%

)

ha
ck

be
nc

h-
10

00
0

ap
ac

he
-0

na
s_

bt
.B

-1
60

c-
ra

y-
0

kb
ui

ld
-a

ll-
80

na
s_

ua
.B

-1
60

de
ep

sp
ee

ch
-0

re
di

s-
1

m
kl

-d
nn

-7
-1

pe
rl-

be
nc

hm
ar

k-
1

no
de

-o
ct

an
e-

1
sc

im
ar

k2
-2

ap
ac

he
-s

ie
ge

-5
go

-b
en

ch
m

ar
k-

3
sc

hb
en

ch
-6

-7
na

s_
sp

.B
-1

60
go

-b
en

ch
m

ar
k-

2
na

s_
cg

.C
-1

60
ol

tp
-m

ys
ql

-8
0

bu
ild

-ll
vm

-0
na

s_
lu

.B
-1

60
sc

im
ar

k2
-1

m
kl

-d
nn

-7
-2

sc
im

ar
k2

-4
sc

im
ar

k2
-3

sc
im

ar
k2

-6
gi

t-0
ph

pb
en

ch
-0

sc
im

ar
k2

-5
ao

be
nc

h-
0

go
-b

en
ch

m
ar

k-
4

ap
ac

he
-s

ie
ge

-2
op

en
ss

l-0
na

s_
ep

.C
-1

60
na

s_
m

g.
D-

16
0

go
-b

en
ch

m
ar

k-
1

ap
ac

he
-s

ie
ge

-4
na

s_
cg

.C
-8

0
kb

ui
ld

-a
ll-

16
0

kb
ui

ld
-a

ll-
32

0
ru

st
-p

rim
e-

0
ol

tp
-m

ys
ql

-1
60

ol
tp

-m
ys

ql
-3

20
na

s_
ep

.C
-8

0
ap

ac
he

-s
ie

ge
-3

bu
ild

-li
nu

x-
ke

rn
el

-0
na

s_
lu

.B
-8

0
na

s_
ua

.B
-8

0
co

m
pr

es
s-

7z
ip

-0
na

s_
ft.

C-
16

0
na

s_
bt

.B
-8

0
na

s_
m

g.
D-

80
kb

ui
ld

-s
ch

ed
-3

20
kb

ui
ld

-s
ch

ed
-1

60
kb

ui
ld

-s
ch

ed
-8

0
ap

ac
he

-s
ie

ge
-1

na
s_

sp
.B

-8
0

llv
m

cm
ak

e
na

s_
ft.

C-
80

pe
rl-

be
nc

hm
ar

k-
2

−40 −40

−20 −20

0 0

20 20

40 40

En
er

gy
 im

pr
ov

em
en

t (
%

)

3.
80

 s
85

18
.5

7
rq

/s
4.

69
 s

14
.5

5
s

36
.8

4
s

6.
38

 s
19

3.
03

 s
1.

04
e+

6
rq

/s
6.

60
 m

s
1.

71
e-

1
s

2.
93

e+
4

po
in

ts
25

7.
35

 M
flo

ps
1.

95
e+

4
tr/

s
1.

78
e+

6
ns

/o
p

1.
08

e+
5

us
ec

5.
50

 s
1.

58
e+

4
ns

/o
p

7.
35

 s
1.

58
e+

4
tr/

s
12

6.
89

 s
5.

63
 s

51
0.

72
 M

flo
ps

15
66

.5
0

m
s

10
3.

60
 M

flo
ps

99
1.

23
 M

flo
ps

68
4.

51
 M

flo
ps

8.
54

 s
4.

86
e+

5
po

in
ts

51
7.

47
 M

flo
ps

45
.2

8
s

8.
1e

+5
 n

s/
op

1.
57

e+
4

tr/
s

1.
48

e+
4

sig
ns

/s
2.

53
 s

84
.3

0
s

3.
e+

10
 n

s/
op

1.
88

e+
4

tr/
s

12
.6

7
s

31
.0

8
s

31
.1

3
s

4.
39

 s
1.

03
e+

4
tr/

s
81

29
.1

0
tr/

s
3.

59
 s

1.
74

e+
4

tr/
s

34
.5

0
s

6.
62

 s
5.

67
 s

2.
2e

+5
 m

ip
s

7.
80

 s
7.

65
 s

86
.0

9
s

6.
45

 s
6.

44
 s

6.
47

 s
21

51
.7

1
tr/

s
6.

31
 s

26
.9

2
s

10
.2

0
s

4.
67

e-
3

s

12
85

.1
0

J
4.

01
e+

4
J

28
28

.4
9

J
1.

51
e+

4
J

1.
46

e+
4

J
33

00
.5

5
J

4.
73

e+
4

J
99

16
.9

7
J

85
06

.2
8

J
2.

76
e+

4
J

1.
58

e+
4

J
1.

53
e+

4
J

6.
30

e+
4

J
1.

5e
+4

 J
2.

35
e+

4
J

30
43

.9
1

J
1.

11
e+

4
J

43
88

.8
5

J
46

93
.3

7
J

7.
18

e+
4

J
30

15
.9

1
J

1.
52

e+
4

J
1.

24
e+

4
J

1.
52

e+
4

J
1.

53
e+

4
J

1.
5e

+4
 J

96
66

.2
0

J
1.

23
e+

4
J

1.
51

e+
4

J
1.

83
e+

4
J

1.
42

e+
4

J
1.

09
e+

4
J

1.
87

e+
4

J
12

14
.3

5
J

4.
74

e+
4

J
1.

46
e+

4
J

3.
47

e+
4

J
63

30
.5

4
J

1.
31

e+
4

J
1.

32
e+

4
J

86
31

.8
0

J
47

80
.1

8
J

48
44

.1
8

J
15

35
.5

4
J

2.
03

e+
4

J
2.

66
e+

4
J

31
95

.0
4

J
26

34
.4

1
J

5.
05

e+
4

J
45

11
.3

9
J

35
68

.7
6

J
4.

45
e+

4
J

17
15

.6
2

J
17

13
.9

0
J

17
19

.9
2

J
1.

03
e+

4
J

30
77

.0
6

J
67

22
.5

6
J

49
38

.7
7

J
24

6.
97

 J

(a) Comparison with CFS using the powersave governor.

−80 −80
−60 −60
−40 −40
−20 −20

0 0
20 20
40 40

Pe
rfo

rm
an

ce
 (%

)

ha
ck

be
nc

h-
10

00
0

ap
ac

he
-0

na
s_

bt
.B

-1
60

c-
ra

y-
0

kb
ui

ld
-a

ll-
80

na
s_

ua
.B

-1
60

de
ep

sp
ee

ch
-0

re
di

s-
1

m
kl

-d
nn

-7
-1

pe
rl-

be
nc

hm
ar

k-
1

no
de

-o
ct

an
e-

1
sc

im
ar

k2
-2

ap
ac

he
-s

ie
ge

-5
go

-b
en

ch
m

ar
k-

3
sc

hb
en

ch
-6

-7
na

s_
sp

.B
-1

60
go

-b
en

ch
m

ar
k-

2
na

s_
cg

.C
-1

60
ol

tp
-m

ys
ql

-8
0

bu
ild

-ll
vm

-0
na

s_
lu

.B
-1

60
sc

im
ar

k2
-1

m
kl

-d
nn

-7
-2

sc
im

ar
k2

-4
sc

im
ar

k2
-3

sc
im

ar
k2

-6
gi

t-0
ph

pb
en

ch
-0

sc
im

ar
k2

-5
ao

be
nc

h-
0

go
-b

en
ch

m
ar

k-
4

ap
ac

he
-s

ie
ge

-2
op

en
ss

l-0
na

s_
ep

.C
-1

60
na

s_
m

g.
D-

16
0

go
-b

en
ch

m
ar

k-
1

ap
ac

he
-s

ie
ge

-4
na

s_
cg

.C
-8

0
kb

ui
ld

-a
ll-

16
0

kb
ui

ld
-a

ll-
32

0
ru

st
-p

rim
e-

0
ol

tp
-m

ys
ql

-1
60

ol
tp

-m
ys

ql
-3

20
na

s_
ep

.C
-8

0
ap

ac
he

-s
ie

ge
-3

bu
ild

-li
nu

x-
ke

rn
el

-0
na

s_
lu

.B
-8

0
na

s_
ua

.B
-8

0
co

m
pr

es
s-

7z
ip

-0
na

s_
ft.

C-
16

0
na

s_
bt

.B
-8

0
na

s_
m

g.
D-

80
kb

ui
ld

-s
ch

ed
-3

20
kb

ui
ld

-s
ch

ed
-1

60
kb

ui
ld

-s
ch

ed
-8

0
ap

ac
he

-s
ie

ge
-1

na
s_

sp
.B

-8
0

llv
m

cm
ak

e
na

s_
ft.

C-
80

pe
rl-

be
nc

hm
ar

k-
2

−40 −40

−20 −20

0 0

20 20

40 40

En
er

gy
 im

pr
ov

em
en

t (
%

)

3.
73

 s
88

15
.3

1
rq

/s
4.

91
 s

14
.6

1
s

36
.9

2
s

6.
40

 s
22

0.
24

 s
9.

6e
+5

 rq
/s

6.
71

 m
s

1.
72

e-
1

s
2.

86
e+

4
po

in
ts

25
2.

60
 M

flo
ps

1.
97

e+
4

tr/
s

1.
88

e+
6

ns
/o

p
1.

08
e+

5
us

ec
6.

20
 s

1.
63

e+
4

ns
/o

p
7.

25
 s

1.
37

e+
4

tr/
s

12
6.

45
 s

5.
81

 s
50

9.
83

 M
flo

ps
15

66
.7

6
m

s
10

3.
17

 M
flo

ps
99

1.
57

 M
flo

ps
68

5.
91

 M
flo

ps
8.

71
 s

4.
85

e+
5

po
in

ts
51

8.
96

 M
flo

ps
45

.2
4

s
8.

51
e+

5
ns

/o
p

1.
8e

+4
 tr

/s
1.

47
e+

4
sig

ns
/s

2.
53

 s
83

.8
7

s
3.

27
e+

10
 n

s/
op

1.
91

e+
4

tr/
s

12
.7

4
s

31
.2

6
s

31
.2

4
s

4.
41

 s
1.

06
e+

4
tr/

s
82

05
.5

0
tr/

s
3.

51
 s

1.
78

e+
4

tr/
s

34
.8

6
s

6.
72

 s
5.

80
 s

2.
19

e+
5

m
ip

s
7.

62
 s

8.
29

 s
87

.1
4

s
6.

71
 s

6.
73

 s
6.

71
 s

18
35

.5
9

tr/
s

6.
77

 s
32

.7
1

s
10

.3
9

s
4.

79
e-

3
s

12
46

.0
4

J
3.

79
e+

4
J

28
97

.5
9

J
1.

39
e+

4
J

1.
47

e+
4

J
33

19
.4

0
J

5.
29

e+
4

J
87

35
.1

9
J

72
50

.0
4

J
2.

65
e+

4
J

1.
46

e+
4

J
1.

41
e+

4
J

6.
15

e+
4

J
1.

33
e+

4
J

2.
22

e+
4

J
33

52
.0

2
J

1.
03

e+
4

J
43

18
.9

6
J

41
44

.4
8

J
7.

19
e+

4
J

30
81

.4
4

J
1.

39
e+

4
J

1.
12

e+
4

J
1.

41
e+

4
J

1.
41

e+
4

J
1.

41
e+

4
J

85
07

.3
5

J
1.

11
e+

4
J

1.
41

e+
4

J
1.

70
e+

4
J

1.
22

e+
4

J
95

66
.5

0
J

1.
74

e+
4

J
11

96
.2

3
J

4.
74

e+
4

J
1.

41
e+

4
J

3.
36

e+
4

J
63

23
.3

1
J

1.
32

e+
4

J
1.

32
e+

4
J

73
84

.7
2

J
44

31
.5

9
J

45
04

.9
0

J
14

99
.2

8
J

1.
96

e+
4

J
2.

58
e+

4
J

32
04

.8
9

J
26

65
.5

2
J

4.
92

e+
4

J
44

33
.7

2
J

37
49

.4
2

J
4.

50
e+

4
J

17
76

.6
4

J
17

80
.8

0
J

17
75

.0
0

J
93

23
.8

7
J

32
51

.0
7

J
81

24
.3

5
J

50
15

.5
5

J
24

7.
28

 J

(b) Comparison with CFS using the schedutil governor.

Figure 4.8: Performance and energy improvement of Slocal and Smove as com-
pared to CFS, on the Intel® Xeon E7–8870 v4 server.

4.6 evaluation 91

rates mkl-dnn-7-1 by 80% and nas_lu.B-160 by 17%, while Smove has
a worst-case deterioration of 8.4% on hackbench.

energy. Overall, both Slocal and Smove improve energy usage. Out
of our 60 applications, we improve energy consumption by more than
5% for 16 and 14 applications, respectively, compared to CFS. Most of
the improvements are seen on benchmarks where performance is also
improved. In these cases, the energy savings are most likely due to
the shorter execution times of the applications. However, we also see
some improvements on applications where the performance is on par
with that of CFS. This is due to the fact that we avoid waking up cores
that are in low power states, therefore saving the energy necessary to
power up and run those cores. In terms of loss, Slocal consumes more
energy than CFS on only one application, nas_lu.B-160. This loss is
explained by the bad performance of Slocal on this application. This
benchmark’s metric is its runtime, and increasing the runtime without
correspondingly reducing the frequency increases the energy con-
sumption. Smove consumes more energy than CFS on two applications:
hackbench, because of the performance loss, and deepspeech that has
too high a standard deviation for its results to have significance.

overall score . To compare the overall impact of our strategies,
we compute the geometric mean of all runs, where each run is normal-
ized to the mean result of CFS. Smove has a performance improvement
of 6%, a reduction in energy usage of 3% and an improvement of 4%
with both metrics combined. Slocal has similar overall scores (always
5%), but its worst cases suggest that Smove is a better option for a
general-purpose scheduler. These small differences are expected be-
cause most of the applications we evaluate perform similarly with CFS
and with our strategies. We also evaluate the statistical significance of
our results with a t-test. With p-values of at most 3 · 10−20, we deem
our results statistically significant.

4.6.2 Execution with the schedutil Governor

Next, we consider execution under the schedutil governor. Before
evaluating Slocal and Smove with this governor, we compare it with the
powersave governor. Figure 4.9 shows the performance and energy
improvements of the schedutil governor compared to the powersave

governor with CFS. We omit raw values since they are already available
in Figures 4.8a and 4.8b.

Overall, we observe that the schedutil governor deteriorates the
performance of most applications while improving energy usage. This
indicates that this new governor is more aggressive in terms of power
savings than the one implemented in hardware by Intel®. This is
probably due to this governor having a longer FTLR and shorter FTLL

92 frequency-informed scheduling decisions

−20 −20

−10 −10

0 0

10 10

20 20

Pe
rfo

rm
an

ce
 (%

)

ha
ck

be
nc

h-
10

00
0

ap
ac

he
-0

na
s_

bt
.B

-1
60

c-
ra

y-
0

kb
ui

ld
-a

ll-
80

na
s_

ua
.B

-1
60

de
ep

sp
ee

ch
-0

re
di

s-
1

m
kl

-d
nn

-7
-1

pe
rl-

be
nc

hm
ar

k-
1

no
de

-o
ct

an
e-

1
sc

im
ar

k2
-2

ap
ac

he
-s

ie
ge

-5
go

-b
en

ch
m

ar
k-

3
sc

hb
en

ch
-6

-7
na

s_
sp

.B
-1

60
go

-b
en

ch
m

ar
k-

2
na

s_
cg

.C
-1

60
ol

tp
-m

ys
ql

-8
0

bu
ild

-ll
vm

-0
na

s_
lu

.B
-1

60
sc

im
ar

k2
-1

m
kl

-d
nn

-7
-2

sc
im

ar
k2

-4
sc

im
ar

k2
-3

sc
im

ar
k2

-6
gi

t-0
ph

pb
en

ch
-0

sc
im

ar
k2

-5
ao

be
nc

h-
0

go
-b

en
ch

m
ar

k-
4

ap
ac

he
-s

ie
ge

-2
op

en
ss

l-0
na

s_
ep

.C
-1

60
na

s_
m

g.
D-

16
0

go
-b

en
ch

m
ar

k-
1

ap
ac

he
-s

ie
ge

-4
na

s_
cg

.C
-8

0
kb

ui
ld

-a
ll-

16
0

kb
ui

ld
-a

ll-
32

0
ru

st
-p

rim
e-

0
ol

tp
-m

ys
ql

-1
60

ol
tp

-m
ys

ql
-3

20
na

s_
ep

.C
-8

0
ap

ac
he

-s
ie

ge
-3

bu
ild

-li
nu

x-
ke

rn
el

-0
na

s_
lu

.B
-8

0
na

s_
ua

.B
-8

0
co

m
pr

es
s-

7z
ip

-0
na

s_
ft.

C-
16

0
na

s_
bt

.B
-8

0
na

s_
m

g.
D-

80
kb

ui
ld

-s
ch

ed
-3

20
kb

ui
ld

-s
ch

ed
-1

60
kb

ui
ld

-s
ch

ed
-8

0
ap

ac
he

-s
ie

ge
-1

na
s_

sp
.B

-8
0

llv
m

cm
ak

e
na

s_
ft.

C-
80

pe
rl-

be
nc

hm
ar

k-
2

−20 −20

−10 −10

0 0

10 10

20 20

30 30

En
er

gy
 im

pr
ov

em
en

t (
%

)

Figure 4.9: Performance of schedutil as compared to powersave with CFS
on the Intel® Xeon E7–8870 v4 server machine.

than the powersave governor. This behavior gives us the intuition
that frequency inversions may be more frequent with the schedutil

governor.
Keeping this information in mind, we now evaluate our strategies

with this new governor. Figure 4.8b shows the improvement in terms
of performance and energy consumption of our strategies compared
to CFS when using the schedutil governor.

performance . Slocal and Smove outperform CFS on 22 and 20

applications out of 60 respectively. The applications concerned are the
same that were improved with the powersave governor. In terms of
performance losses, however, Slocal is more impacted by the schedutil

governor than Smove, with 7 applications performing worse than CFS
versus only 2. Overall, this is quite similar to what we observe with the
powersave governor. This means that, even if the schedutil governor
privileges saving power over performance, it has only a minimal
impact on the performance of our strategies. This reinforces the idea
that we solve a different problem than scaling governors with our
strategies.

energy. The overall improvement in terms of energy usage of
schedutil with CFS would suggest that we might see the same trend
with Slocal and Smove. And indeed, the results are quite similar to what
we observe with the powersave governor.

overall score . The geometric means with this governor are the
following for schedutil and Smove: 6% for performance, 4% for energy
and 5% with both metrics combined. Slocal has similar results (2%,

4.6 evaluation 93

Slocal Smove

−80 −80

−60 −60

−40 −40

−20 −20

0 0

20 20

40 40

P
e
rf

o
rm

a
n
ce

 (
%

)

h
a
ck

b
e
n
ch

-4
0

0

h
a
ck

b
e
n
ch

-2
0

0
0

re
d
is

-1

h
a
ck

b
e
n
ch

-1
0

0
0

n
a
s_

b
t.

B
-8

n
a
s_

b
t.

B
-1

6

n
a
s_

b
t.

B
-4

a
p
a
ch

e
-s

ie
g
e
-2

sc
im

a
rk

2
-6

m
kl

-d
n
n
-7

-2

n
a
s_

e
p
.C

-1
6

sc
im

a
rk

2
-5

sc
im

a
rk

2
-3

n
a
s_

e
p
.C

-8

sc
h
b
e
n
ch

-6
-7

sc
im

a
rk

2
-1

c-
ra

y
-0

co
m

p
re

ss
-7

zi
p
-0

n
o
d
e
-o

ct
a
n
e
-1

a
p
a
ch

e
-s

ie
g
e
-3

n
a
s_

e
p
.C

-4

n
a
s_

cg
.C

-4

n
a
s_

cg
.C

-1
6

n
a
s_

cg
.C

-8

n
a
s_

sp
.B

-1
6

n
a
s_

lu
.B

-4

a
p
a
ch

e
-s

ie
g
e
-4

n
a
s_

ft
.C

-4

g
o
-b

e
n
ch

m
a
rk

-4

n
a
s_

u
a
.B

-8

a
p
a
ch

e
-s

ie
g
e
-5

n
a
s_

sp
.B

-4

p
h
p
b
e
n
ch

-0

sc
im

a
rk

2
-4

n
a
s_

u
a
.B

-1
6

n
a
s_

ft
.C

-1
6

g
o
-b

e
n
ch

m
a
rk

-3

n
a
s_

sp
.B

-8

n
a
s_

lu
.B

-8

ru
st

-p
ri

m
e
-0

n
a
s_

u
a
.B

-4

n
a
s_

ft
.C

-8

m
kl

-d
n
n
-7

-1

n
a
s_

lu
.B

-1
6

sc
im

a
rk

2
-2

o
p
e
n
ss

l-
0

p
e
rl

-b
e
n
ch

m
a
rk

-1

kb
u
ild

-a
ll-

1
6

a
p
a
ch

e
-0

a
o
b
e
n
ch

-0

kb
u
ild

-a
ll-

8

g
o
-b

e
n
ch

m
a
rk

-2

d
e
e
p
sp

e
e
ch

-0

kb
u
ild

-a
ll-

4

g
it

-0

g
o
-b

e
n
ch

m
a
rk

-1

kb
u
ild

-s
ch

e
d
-8

kb
u
ild

-s
ch

e
d
-1

6

kb
u
ild

-s
ch

e
d
-4

p
e
rl

-b
e
n
ch

m
a
rk

-2

llv
m

cm
a
ke

a
p
a
ch

e
-s

ie
g
e
-1

1
.4

2
e
-1

 s

7
.2

2
e
-1

 s

1
.5

7
e
+

6
 r

q
/s

3
.6

5
e
-1

 s

5
4

.5
4

 s

5
9

.0
7

 s

5
0

.1
0

 s

3
.6

2
e
+

4
 t

r/
s

4
3

1
.0

3
 M

fl
o
p

s

1
.7

1
e
+

4
 m

s

1
8

.1
9

 s

6
6

1
.5

4
 M

fl
o
p

s

1
1

1
0

.7
9

 M
fl
o
p

s

1
7

.9
2

 s

1
.4

4
e
+

6
 u

se
c

4
9

5
.2

9
 M

fl
o
p

s

1
3

4
.7

9
 s

1
.6

6
e
+

4
 m

ip
s

3
.9

1
e
+

4
 p

o
in

ts

2
.9

9
e
+

4
 t

r/
s

3
3

.7
8

 s

5
3

.7
4

 s

5
4

.6
5

 s

5
3

.3
9

 s

6
1

.5
3

 s

3
2

.0
1

 s

2
.8

7
e
+

4
 t

r/
s

5
1

.5
9

 s

2
.5

7
e
+

6
 n

s/
o
p

5
8

.8
7

 s

2
.7

9
e
+

4
 t

r/
s

5
8

.9
5

 s

5
.3

5
e
+

5
 p

o
in

ts

1
2

0
.8

4
 M

fl
o
p

s

6
1

.2
4

 s

8
2

.9
5

 s

9
.8

9
e
+

6
 n

s/
o
p

6
1

.4
0

 s

3
3

.0
2

 s

8
2

.5
1

 s

6
0

.0
8

 s

8
1

.3
2

 s

2
8

.4
5

 m
s

1
0

5
5

.5
4

 s

1
5

5
.1

3
 M

fl
o
p

s

8
6

0
.5

9
 s

ig
n
s/

s

1
.5

7
e
-1

 s

2
6

2
.3

8
 s

2
.2

4
e
+

4
 r

q
/s

3
6

.7
3

 s

2
6

0
.0

7
 s

7
1

5
1

.7
0

 n
s/

o
p

1
1

6
.1

1
 s

3
5

0
.3

6
 s

6
.0

8
 s

2
.8

e
+

1
0

 n
s/

o
p

7
.7

3
 s

7
.9

8
 s

9
.6

0
 s

2
.4

9
e
-3

 s

2
0

.9
6

 s

4
8

2
0

.6
2

 t
r/

s

Figure 4.10: Performance improvement of Slocal and Smove compared to CFS
on the AMD® Ryzen 5 3400G desktop machine.

6% and 4% respectively), but the worst cases are still too detrimental
for a general-purpose scheduler. These results are also statistically
significant with p-values of at most 3 · 10−20. From these results with
both governors, we conclude that our strategies to prevent frequency
inversions are useful with any governor that dynamically scales the
frequency of cores.

4.6.3 Evaluation on the Desktop Machine

We also evaluate our strategies on the smaller 8-core AMD® desktop
CPU presented in Table 4.2. In contrast to Intel® CPUs, the powersave

governor on AMD® CPUs always uses the lowest available frequency.
Since we need frequency to vary for our strategies to make sense, this
governor is not usable in our context. We therefore use the schedutil

governor on this machine.

performance . As shown in Figure 4.10, we observe the same
general trend as on our server machine. Slocal and Smove behave simi-
larly when there is improvement, and Smove behaves better on the few
benchmarks with a performance degradation. We measure at worst an
11% slowdown and at best a 52% speedup for Smove, with an aggregate
performance improvement of 2%. Additionally, Smove improves the
performance of 7 applications by more than 5% while only degrading
the performance of 4 applications at the same scale.

The Slocal strategy gives the same results regarding the number of
improved and degraded applications, but suffers worse edge cases. Its
best performance improvement is 42% while its worst deterioration is
25%, with an aggregate performance improvement of 1%.

We conclude that even if there is no major global improvement, Smove

is still a good strategy to eliminate frequency inversions on machines

94 frequency-informed scheduling decisions

with smaller core counts. Our performance results are statistically
significant, with p-values of 5 · 10−4 for Smove and 3 · 10−2 for Slocal .

energy. When we measured the energy consumption on this ma-
chine, all results had a large variance on all three strategies (CFS, Slocal
and Smove). We did not observe such a variance on our Intel® machine.
After some investigation, we suspect that these results are due to the
lack of support for the RAPL hardware counters for AMD® CPUs in
Linux. Due to this problem, we do not present energy results for this
machine.

4.6.4 In-Depth Analysis of Some Benchmarks

We now present a detailed analysis of specific benchmarks that either
performed particularly well or particularly poorly with our solutions.
We analyze the trace of the kernel compilation as a favorable bench-
mark, in echo to our case study in Section 4.1. We then analyze the
traces of mkl and hackbench because they expose specific problems
of Slocal and Smove respectively. In this section, we only present traces
obtained with the powersave governor on the Intel® server machine.
Our observations still stand with the schedutil governor.

4.6.4.1 Kernel Compilation

The kernel compilation benchmark is the same one presented in the
case study in Section 4.1. In the previous results, it is referenced as
kbuild-all-320. Figure 4.11 shows the traces with CFS, Slocal and
Smove. During the mostly sequential phases with multiple cores run-
ning at a low frequency on CFS (0-2 s, 2.5-4.5 s, 17-27 s), Slocal and Smove

use fewer cores at a higher frequency. Both Slocal and Smove behave
similarly and avoid frequency inversions due to the fork()/wait()
pattern. For Slocal , this is done by always placing new threads locally.
For Smove, as the waker thread calls wait() shortly after the fork(), the
Smove timer does not expire and the woken threads remain on the local
core running at a high frequency, thus avoiding frequency inversions.
As a result, phase A, as described in Section 4.1, is executed in 4.4
seconds on CFS and in only 2.9 seconds with Smove.

For a clearer a picture of the improvement, Figure 4.12 shows the
compilation of the scheduler subsystem of the Linux kernel only
(previously referenced as kbuild-sched-320). Here, the highly parallel
phase is much shorter than with a complete build, as there are fewer
files to compile, making the sequential phases of the execution more
visible. Again, we see that with Slocal and Smove, fewer cores are used, at
a higher frequency. This shows that both strategies solve the frequency
inversion problem due to the fork()/wait() pattern and behave
similarly to the localipa policy presented in the beginning of this
chapter.

4.6 evaluation 95

(a) With CFS

(b) With Slocal

(c) With Smove

Figure 4.11: Execution trace when building the Linux kernel version 5.4
using 320 jobs.

96 frequency-informed scheduling decisions

(a) With CFS

(b) With Slocal

(c) With Smove

Figure 4.12: Execution trace when building the scheduler subsystem of the
Linux kernel version 5.4 using 320 jobs.

4.6 evaluation 97

(a) CFS (b) Slocal

(c) Smove

Figure 4.13: Number of threads per core during the execution of
mkl-dnn-7-1.

4.6.4.2 MKL

The second application we study in more detail is mkl-dnn-7-1, a
benchmark of the Intel® Math Kernel Library for Deep Neural Net-
works. This benchmark is the worst-case scenario for Slocal : all threads
keep blocking and unblocking, therefore avoiding periodic load bal-
ancing and keeping running on the same set of cores. Thus, threads
that are sharing a core with another thread will tend to remain there
with the Slocal strategy. Figure 4.13 shows the number of threads on the
runqueue of each core with all three schedulers with the powersave

governor. A black line indicates that there is one thread in the run-
queue, and a red line indicates that there is more than one, i. e. the
core is overloaded. CFS spreads the threads on all cores rapidly, and
achieves a balanced machine with one thread per core in less than 0.2
seconds. On the other hand, Slocal tries to maximize core reuse and

98 frequency-informed scheduling decisions

oversubscribes 36 cores. This leads to never using all cores, achieving
at most 85% CPU utilization with multiple cores overloaded. This is a
persistent violation of the work conservation property, i. e. no core is
idle if a core has more than one thread available in its runqueue.

Interestingly, in our experiment, the balancing operations that spread
threads are due to system or daemon threads, e. g. systemd, that wake
up and block immediately, thus triggering an idle balancing from the
scheduler. On a machine with nothing running in the background,
we could have stayed in an overloaded situation for a long period of
time, as ticks are deactivated on idle cores, removing opportunities
for periodic balancing. We can see the same pattern on nas-lu.B-160,
another benchmark that does not work well with Slocal . Smove solves
the problem by migrating, after a configurable delay, the threads that
overload cores to available idle cores.

4.6.4.3 Hackbench

As a part of the Linux Test Project [108], this microbenchmark is largely
used in the Linux kernel scheduler community for testing purposes.
It creates groups of threads that communicate through pipes. This
behavior makes this benchmark volatile, with a very large number of
scheduling events happening.
hackbench-10000 is the worst application performance-wise for the

Smove strategy. This microbenchmark is particularly stressful for the
scheduler, with 10,000 running threads. However, the patterns exhib-
ited are interesting to better understand the shortcomings of Smove and
give insights on how to improve our strategies.

This benchmark has three phases: thread creation, communication
and thread termination. Figure 4.14 shows the frequency of all cores
during the execution of hackbench with CFS, Slocal and Smove. The first
phase corresponds to the first two seconds on all three schedulers. A
main thread creates 10,000 threads with the fork() system call, and all
children thread immediately wait on a barrier. With CFS, child threads
are placed on idle cores that become idle again when the threads
arrive at the barrier. This means that all cores remain mostly idle. This
also leads to the main thread remaining on the same core during this
phase. However, Slocal and Smove place the child threads locally, causing
oversubscription of the main thread’s core and migrations by the load
balancer. The main thread itself is thus sometimes migrated from core
to core. When all threads are created, the main thread releases the
threads waiting on the barrier and waits for their termination, thus
beginning the second phase.

During this phase, the child threads communicate by reading and
writing into pipes. CFS tries to even out the load between all cores,
but its heuristics give a huge penalty to migrations across NUMA
nodes, so a single node runs at a high frequency (cores 0, 4, 8, . . .
share the same node on our machine) while the others have little work

4.6 evaluation 99

(a) CFS

(b) Slocal

(c) Smove

Figure 4.14: Execution trace of hackbench-10000.

to perform and run at lower frequencies. This phase finishes at 2.8
seconds. The remainder of the execution is the main thread reaping
its children and terminating.

Slocal packs threads aggressively, leading to long runqueues in the
second phase, and therefore facilitating load balancing across nodes
because of the large induced overload. However, Slocal still does not

100 frequency-informed scheduling decisions

use all cores, mainly avoiding running on SMT pairs of cores (cores n
and n + 80 are SMT siblings on our machine). Slocal runs the second
phase faster than CFS, terminating it at 2.5 seconds, because it uses
half of the cores at a high frequency all the time, and many of the
other cores run at a medium frequency.

On the other hand, Smove performs poorly in the second phase, com-
pleting it at 3.4 seconds. The behavior seems very close to that of
CFS, with one core out of four running at a high frequency. However,
Smove results in more idleness or lower frequencies on the other cores.
This is due to Smove placing threads locally: many threads contend for
the local core; some are able to use the resource while others are mi-
grated when the timer interrupt is triggered. The delays cause idleness
compared to CFS, and the migrations leave cores idle, lowering their
frequency compared to Slocal . Additionally, when threads are migrated
because of timers expiring, they are all placed on the same core, and
oversubscribe it. For hackbench, choosing the middle ground is the
worst strategy. We can also note that load balancing is not able to
mitigate this situation because of the high volatility of this workload.
This problem was also demonstrated by Lozi et al. [113] on a database
application with CFS.

This hackbench setup is an extreme situation that is unlikely to hap-
pen in real life, with a largely overloaded machine (10,000 threads) and
a highly volatile application. This microbenchmark is only interesting
to study the behavior of our strategies. Still, overall, Smove gives better
performance than Slocal .

4.6.4.4 Conclusion

These three applications showed the best-case scenario with the kernel
compilation and the worst-case scenario for Slocal and Smove with
mkl-dnn-7.1 and hackbench. For these two applications, the latter is
an extreme situation that is unlikely to happen while the former shows
a weakness of Slocal that is inherent to this strategy by design. This is
one of the reasons that lead us to think that Smove is a better strategy
overall since it does not have such problems. However, Smove requires
more configuration with the delay D and the frequency threshold. It
also introduces the use of high-resolution timers that could be a new
source of overhead. This calls for an evaluation of such an overhead if
it exists.

4.6.5 Scheduling Overhead of Smove

The Smove strategy uses mechanisms that can possibly induce an over-
head for applications. It is necessary to evaluate the impact our strate-
gies can have because of how they are implemented, and not because
of the decisions they make. We identify two possible sources of over-

4.6 evaluation 101

Threads
Latency

Timers triggered
vanilla with timers

64 78 77 2971

128 86 84 13910

192 119 144 63965

256 2292 3188 93001

512 36544 36544 512

768 60224 60480 959

1024 76416 76928 1290

Table 4.3: Latency of schbench (99.5th percentile, in µsec) and number of
timers triggered.

head: querying the frequency of all cores and using high-resolution
timers.

querying the frequency. As explained in Section 4.4.4.2, query-
ing the frequency of a core consists in reading two hardware registers
and performing some arithmetic operations, as the current frequency
is the division of these two registers times the base frequency of the
CPU. Even though this is a very small amount of computation com-
pared to the rest of the scheduler, we minimize it further by querying
this information at every tick instead of every time it is needed. In our
benchmarks, we notice no difference in performance with or without
querying the frequency at every tick.

timers . In Smove, a timer is armed every time a thread is created
or wakes up. Not all of these timers will actually be triggered, some
will be canceled if the thread is scheduled. To evaluate the potential
overhead of these timers, we run schbench on two versions of Linux:
the vanilla v5.4 kernel and a modified version with timers armed
under the same condition as with Smove. Here, however, the timer
handler does not migrate the thread as in Smove. We choose schbench

because it performs the same workload as hackbench but provides, as
a performance evaluation, the latency of the messages sent through
pipes instead of the total completion time. Table 4.3 shows the results
of this benchmark.

Overall, the 99.5th percentile of latency is the same for both versions
of the kernel, except for 256 threads where timers have a negative im-
pact. We can also observe that the number of timers triggered increases
with the number of threads but drops after 256 threads. This behavior
is expected: more threads means more wake-ups, but when the ma-
chine starts being overloaded, all cores run at high frequencies, and

102 frequency-informed scheduling decisions

the timers are less frequently armed. This tipping point arrives around
256 threads because schbench threads constantly block, meaning that
typically fewer than 160 threads are runnable at a time.

conclusion. Both potential sources of overhead proved to not
cause perceptible performance change on our set of benchmarks. This
makes us confident in our belief that Smove has no side effect due
to its implementation. Additionally, there is a potential side effect
we did not evaluate regarding the use of timers. There might be an
overhead on other subsystems that make use of timers in the kernel,
without impacting applications. Unfortunately, we find no good way
of correctly evaluating this. Even if there was such a side effect, we
think it would not be a problem since the performance of applications
would not be hurt.

4.7 discussion

As previously stated, our proposed solutions Slocal and Smove are pur-
posefully simple. We now discuss other more complex solutions to the
frequency inversion problem. We also discuss some related solutions
that could have an impact on the frequency inversion problem.

pool of high frequency cores . A possible solution would be
to keep a pool of cores running at a high frequency even though no
thread is running on them. This would allow threads to be placed
on an idle core running at a high frequency instantaneously. This
pool could, however, waste energy and reduce the maximal frequency
attainable by busy cores. The former is due to the fact that idle cores
are put in sleep states to save energy. The latter is due to how Turbo
frequencies work, both on Intel® and AMD® architectures: the maximal
Turbo frequency diminishes when the number of active cores increases.

Additionally, sizing this pool could be tricky. The relation between
the number of active cores and the maximal Turbo frequency is
hardware-dependent and can also be influenced by thermal considera-
tions. The energy/performance gain trade-off is also unclear.

tweaking the placement heuristic . Changing more deeply
the placement algorithm of CFS to account for the frequency of all
cores is another possible solution. This would require the addition
of a new frequency heuristic in addition to the existing ones, e. g.
cache or NUMA locality. This raises the question of which heuristic
should have more impact than others on the decision. For example,
the trade-off between using a core running at a higher frequency and
using a cache-hot core is not clear, and may vary greatly according to
the workload and the hardware architecture.

4.8 conclusion 103

frequency model . As previously explained, the frequency of
one core can have an impact on the frequency of other cores in the
system. The relationship between the frequencies of cores is hardware-
specific, and can also be impacted by environmental causes such as
the temperature, or software behavior such as the use of AVX-512

instructions. If the scheduler were to take frequency-related decisions,
it would need to account for the impact its decisions would have
on the frequency of all cores. To do this, an accurate model of the
frequency behavior of the CPU would be needed. Unfortunately, such
models are not currently available and would probably be difficult to
create.

child runs first. CFS has a feature that may seem related to our
solutions: sched_child_runs_first. At thread creation, this feature
assigns a lower vruntime to the child thread, giving it a higher priority
than its parent. If CFS places the child thread on the same core as its
parent, the thread will preempt the parent; otherwise, the thread will
just run elsewhere. This feature does not affect thread placement and
thus cannot address the frequency inversion problem.

Interestingly, using this feature in combination with Smove would
defeat Smove’s purpose by always canceling the timer. The strategy
would then resemble Slocal , except that the child thread would always
preempt its parent.

turbosched. IBM currently develops the TurboSched [39] feature
to maximize the usage of Turbo frequencies. The idea is to place small
jitter tasks on busy cores instead of waking up idle cores. This way,
the maximal Turbo frequency is not reduced because of the growing
number of active cores. This is similar to what we do with our Slocal
strategy. However, TurboSched only applies this strategy on threads
that have been manually tagged by the user, while we apply our
strategies on all threads automatically.

4.8 conclusion

In this chapter, we presented the frequency inversion problem in Linux.
This problem occurs on multi-core processors with per-core dynamic
frequency scaling. Frequency inversion leads to inefficient usage of
high frequency cores and may degrade performance. We propose
two strategies, Slocal and Smove to prevent this issue in the Linux v5.4
scheduler, CFS. Both strategies only require small changes to the
scheduler code, making it easy to port them to other versions of Linux.
The evaluation of our strategies on a diverse set of 60 applications
shows that solving the frequency inversion problem: (i) significantly
improves performance on a large number of applications, (ii) does not
significantly degrade the performance of applications not disturbed by

104 frequency-informed scheduling decisions

frequency inversions. As per-core dynamic frequency scaling becomes
a standard feature on latest generation processors, we believe that our
work will target most future machines.

We also provide an experimental methodology to evaluate the fre-
quency transition latency of a processor with a given scaling governor.
We show that depending on the targeted market of the processor, the
behavior of the frequency scaling algorithm differs greatly, and that
changing the frequency of a core is all but instantaneous.

future work . In order to best use the frequency of each core, we
believe that the scheduler should be fully aware of this information.
However, since the decisions of the scheduler can have an impact on
the future frequencies of the cores, a model of the frequency behavior
of the CPU is necessary. This model would be used to predict the
frequency from multiple inputs such as the number of active cores,
the FTL, the temperature or the instruction set used. Indeed, all of
these characteristics have an impact on the frequency.

There is also room for improvement in the scaling governor and
in the duration of hardware reconfiguration. As a matter of fact, if
the FTL was instantaneous, the frequency inversion problem would
automatically disappear.

On a side note, we could also try to tie this work to our Ipanema
DSL presented in Chapter 3. This could be done in the form of a
formal proof that a scheduler cannot provoke frequency inversions.
This would however require a precise model of the frequency behavior
of the CPU.

related publications . The work described in this chapter has
been the subject of two publications in an international workshop and
an international conference [28, 66].

5
F E AT U R E - O R I E N T E D S C H E D U L E R A N A LY S I S

As exposed in the previous chapters of this thesis, the thread sched-
uler is a core component of the OS that impacts the performance of
applications. The variety of scheduling approaches shows that there
exists numerous scheduling needs that require different solutions.
These needs are influenced by the workloads and the hardware they
are executed on.

In Chapter 3, we proposed Ipanema, a DSL that eases the develop-
ment of schedulers. With these new tools, we should be able to quickly
develop schedulers tailored for a given application. However, being
able to easily write a scheduler does not help in writing the good
scheduler for an application. This requires knowledge of the behavior
of the application and a lot of testing.

In Chapter 4, we proposed tools to help detect and fix performance
bugs in Linux, with the example of frequency inversion. Our experi-
mental results showed that our solutions enhanced the performance
of most applications. However, some applications showed no improve-
ment, and some even saw their performance worsened. This showed
that performance enhancements in the scheduler algorithm are not
inherently good for all applications. Some applications require more
specific scheduling algorithms to perform well.

Multiple studies available online show that the same application can
achieve a different level of performance depending on the OS used,
and by extension the scheduler used [60, 100]. Academic researchers
also show such results on production OSs [23]. As a software developer,
it is not an easy task to choose which scheduler would provide the
best performance for a given application. Usually, developers settle
for the default scheduler to ensure portability across platforms. But
ideally, each application would use the scheduler that obtains the best
possible performance.

In this chapter, we set out to produce a methodology with this
exact purpose. Creating an application-specific scheduler requires
knowledge of the behavior of the application as well as of the hardware
it will be executed on. It also requires the ability to evaluate which
feature of a scheduler is beneficial or detrimental to the application
performance.

105

106 feature-oriented scheduler analysis

We first demonstrate the impossibility of doing this feature eval-
uation with CFS. We propose to do this in a more generic way, not
using the code base of CFS. We model schedulers as feature trees with
independent features. We then use this model to evaluate features
individually and create application-specific schedulers tailored for
a given application running on a given hardware. We finally devise
various methodologies to build the most efficient scheduler for an
application from this feature model.

5.1 feature analysis of cfs

The scheduler of Linux, CFS, is a general-purpose scheduler that does
not target a particular type of application. It is supposed to perform
well on all workloads. To do this efficiently, in addition to its core
algorithm, CFS implements a large number of smaller features. These
features optimize specific code patterns that are not generic to all
applications. We presented some of these features in Section 2.5.2.3.

Since CFS is generic, performs well with most applications and
already has a large number of features, it seems like a good idea to
build our schedulers from its code. To do this, we need to isolate
each feature of CFS and evaluate them individually. While doing this,
we faced three problems: (i) the size of the code base of CFS, (ii) the
number of actual schedulers after the preprocessing phase, and (iii)
the overlap between features.

5.1.1 Size of the Code Base

The scheduler subsystem of the Linux kernel is a complex piece of soft-
ware. It has greatly evolved over the years, with multiple algorithms
succeeding each other: round robin, O(n), O(1) and CFS. Figure 5.1
shows the evolution of the number of lines of code of CFS since its
introduction in Linux v2.6.23 in 2007. We use the cloc tool [36] to
count the number of lines of code and comments, excluding blank
lines. Note that this is only an approximation of the real numbers since
we only process files that are exclusively devoted to the scheduler.
Scheduler-related code that is present elsewhere is not counted.

At the time of its introduction, CFS was relatively small, with 6,706

lines of code. In version 5.7, the subsystem amounts for 26,213 lines of
code.47 In the span of 14 years between the two versions, the size of47 This is the last released

version as of June 2020. the code base of the scheduler was multiplied by 3.9. The evolution is
quite steady, with a few hundred new lines per version overall.

We can see two exceptions to this steadiness: versions 2.6.25–26

and versions 3.13–14. Both couples of versions introduce more than a
thousand lines per version. The former introduces group scheduling
that we presented in Section 2.5.2.3, while the latter introduces the
deadline scheduling class presented in Section 2.5.3.

5.1 feature analysis of cfs 107

v2
.6

.2
4

v2
.6

.2
6

v2
.6

.2
8

v2
.6

.3
0

v2
.6

.3
2

v2
.6

.3
4

v2
.6

.3
6

v2
.6

.3
8

v3
.0

v3
.2

v3
.4

v3
.6

v3
.8

v3
.1

0
v3

.1
2

v3
.1

4
v3

.1
6

v3
.1

8
v4

.0
v4

.2
v4

.4
v4

.6
v4

.8
v4

.1
0

v4
.1

2
v4

.1
4

v4
.1

6
v4

.1
8

v4
.2

0
v5

.1
v5

.3
v5

.5
v5

.7

0

5000

10000

15000

20000

25000

30000

35000

Nu
m

be
r o

f l
in

es

code
comment

Figure 5.1: Number of lines of the scheduler subsystem of Linux since the
introduction of CFS.

The large code base of CFS and its 14 years of steady small additions
make it difficult to parse in order to identify every feature manually.
The fact that the Linux kernel is a non-trivial piece of low-level C code
does not favor this enterprise either.

5.1.2 Static Configuration

The Linux kernel supports a large number of hardware with different
capabilities. It can also be largely tweaked to change its behavior. This
is done with static configuration options in the form of macros that
are defined (or not) and the use of #ifdef or #ifndef blocks. In the
scheduling class of CFS alone, i. e. the kernel/sched/fair.c file, there
are 14 different configuration macros in use as of Linux v5.7. The total
number of possible configurations is at most 16,384, assuming there
are no dependencies between macros.48 48 We compute the sum of

the 0-to-14 combinations
for a set of 14 elements.

All these combinations are actually the number of schedulers we can
generate from the code base of CFS, without code modification, only
with static configuration options. Depending on the configuration, the
resulting code can have different sizes, as shown in Figure 5.2. The
number of lines of the kernel/sched/fair.c file, after preprocessing
the static configuration options, ranges from 2,280 to 9,848 depending
on the configuration.

This shows that CFS is polymorphic: it is not one single scheduler,
but a multitude of schedulers. Identifying features is furthermore
complicated by this since they might be implemented differently
depending on the selected configuration options.

108 feature-oriented scheduler analysis

2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of lines

0

200

400

600

800

1000

Nu
m

be
r o

f p
re

pr
oc

es
se

d
fil

es

Figure 5.2: Distribution of the size of the kernel/sched/fair.c file of Linux
v5.7 depending on the configuration options used.

5.1.3 Overlapping Features

Finally, even if we are able to identify each feature of CFS, analyzing
their performance individually requires to be able to isolate them. This
is unfortunately impossible since each feature is not implemented as
a separate piece of code. There are multiple occurrences of features
that are theoretically distinct, i. e. one could be used without the other
and vice versa, but their interwoven code makes it impossible to
distinguish one from the other.

To illustrate this, let’s only consider the features that can be enabled
with a configuration macro. Figure 5.3 shows, for each configuration
option, the lines that are enabled only with the option set in green
and the lines enabled only with the option unset in red. We can
observe that some areas of code are enabled only with a given set of
configuration options enabled, creating a form of dependency between
features.

We also notice that some features are intertwined with different
features across the file. For example, the CONFIG_FAIR_GROUP_SCHED

option, that enables group scheduling, activates different lines of code
when combined with CONFIG_SCHED_HRTICK, CONFIG_CFS_BANDWIDTH
or CONFIG_SMP.

All these overlaps and dependencies between features makes them
difficult to isolate. Note that the problem gets much harder with
features that cannot be enabled or disabled through configuration
options. Indeed, we have no way of identifying the exact code that
is related to a feature, unless we go through the complete history of
commits to find out.

5.1 feature analysis of cfs 109

0 2000 4000 6000 8000 10000
Line of code

CONFIG_64BIT
CONFIG_CFS_BANDWIDTH

CONFIG_FAIR_GROUP_SCHED
CONFIG_HAVE_SCHED_AVG_IRQ

CONFIG_JUMP_LABEL
CONFIG_NO_HZ_COMMON

CONFIG_NUMA_BALANCING
CONFIG_PREEMPTION

CONFIG_SCHED_DEBUG
CONFIG_SCHED_HRTICK

CONFIG_SCHED_SMT
CONFIG_SCHEDSTATS

CONFIG_SMP
CONFIG_UCLAMP_TASK

Figure 5.3: Span of influence of each configuration option in the
kernel/sched/fair.c file of Linux v5.7. Green lines are included
if the option is set, red lines are included if the option is not set.

Impact of SMPs on the code base

An interesting observation we can make in Figure 5.3 is that
most of the code in this file is related to SMP architectures. Even
lines 1500–3500 that do not require the CONFIG_SMP are actually
related to multi-core systems. Indeed, the CONFIG_NUMA_BALANCING

option is required for these lines, and this option only makes
sense on NUMA architectures, that are necessarily multi-core
architectures.

The dependency between these two options is managed
by the configuration tool of the kernel, Kconfig. Setting the
CONFIG_NUMA_BALANCING option is impossible if the CONFIG_SMP

option is not set.

5.1.4 Conclusion

Considering the three problems previously described, it seems dif-
ficult, if not impossible, to perform a feature analysis of CFS. The
quantity and complexity of the code, the large number of configu-
ration options as well as the intertwined features render the feature
isolation inconceivable. Additionally, some features can be configured
at run time with different values, making the performance analysis
even harder.

The impossibility to perform this analysis on CFS motivates us to
create a model of a thread scheduler. The main objective of such a
model would be to isolate features by design. This would allow us
to evaluate and understand the individual impact of each feature on
the performance of applications. With this knowledge, we will then

110 feature-oriented scheduler analysis

be able to build application-specific schedulers with the best features
for a given application.

5.2 feature model of a scheduler

The formalization of thread schedulers first requires a thorough study
of multiple ones. Our study targets the schedulers of general-purpose
OSs such as CFS and ULE. We expose multiple recurring features
in all studied schedulers. These features are implemented in various
ways in order to achieve different performance goals.

We first describe the type of model we use, the feature model. We
then describe the model we develop to describe schedulers.

5.2.1 Feature Model

We choose the feature model described by Kang et al. [91] to represent
as a formalism the recurring features in the general-purpose OSs
we study. This model describes a system as a set of features and
sub-features that can be mandatory, optional or alternatives.

Figure 5.4 shows an example of such a model in the form of a
feature tree. A feature tree is a representation of a feature model. Each
node represents a feature and each level of the tree increases the level
of detail of the features. There are three possible relationships between
a node and its children:

• mandatory: all children must be implemented to implement the
parent feature. In our example, implementing A requires the
implementation B and F.

• optional: multiple children can be implemented to implement
the parent feature (or). Implementing F requires the implemen-
tation of G or H, or both, or none.

B

C ED

A

F

G H

Mandatory
Optional
Alternative

Figure 5.4: Example of
feature tree with manda-
tory, optional and alter-
native features.

• alternative: only a single child must be implemented to im-
plement the parent feature (xor). Implementing B requires the
implementation of a single feature among C, D and E.

With this type of model, we can easily express sets of features with
relationships between them.

5.2.2 The Scheduler Feature Model

From our experience and the previous scheduler study in Chapter 2,
we build a model that represents a thread scheduler in the form
of a set of features. Figure 5.5 shows the resulting feature model
in the form of a feature tree. We also annotate the feature model
with two notations: fixed and variable features. Fixed features (solid

5.2 feature model of a scheduler 111

CFS

ULE

Alternative

Optional

Mandatory

Variable feature

Fixed feature

Scheduler

Election Time slice

Dispatcher

Timing

Choice of src/dst
Event

Load metric

Idle

Executor

Placement distance

Period

new/unblockImbalance formula

nrRun nrRunBlock usedTime

SMT LLC all

all node core

Infinite Fixed Split

RBtree Linked list

FIFOvruntime

Figure 5.5: Feature tree of a thread scheduler as defined in this chapter.

red circle) are always enabled with a single implementation either
because not having them does not make sense in our setup or because
they use discrete configuration values that we fix to minimize the
experimentation time. Variable features (dashed green circle), on the
other hand, have multiple possible implementations that vary in the
schedulers we will generate.

Our study of existing thread schedulers exposed two main features:
the choice of which thread runs on a core (election) and for how
long (time slice). In addition to these features, we must take into
consideration the OS’s design at the scheduler level. In our case, we use
the Linux kernel to implement our schedulers. On multi-core systems,
Linux instantiates one runqueue per core, thus raising the need for a
mechanism that places threads on cores. The thread placement policy
is determined by the dispatcher. This feature has four sub-features: load
metric, timing, executor and choice of source and destination.

The features that are the closest to what CFS or ULE implement
are marked with the corresponding OS logo. The rest of this section
describes these features in detail.

112 feature-oriented scheduler analysis

5.2.2.1 Election.

This feature determines how the scheduler chooses the next thread
to run on a core. On each core, threads are stored in a runqueue. We
study two possible election mechanisms: choosing the thread that has
run the least in the runqueue (vruntime) or the thread that arrived first
in the runqueue.

The first mechanism is implemented by sorting threads by ascending
runtime in the runqueue, i. e. the thread with the lowest execution
time has the highest priority. This allows the scheduler to be fair to
interactive threads that need to be scheduled frequently for a short
period of time. We implement two versions of this mechanism: one that
uses a red-black tree [73] (called rbtree) and one that uses a circular
doubly linked list (called linked list). In both versions, threads are
sorted by runtime. Red-black trees provide insertion, deletion and pop
operations with an O(log n) average complexity, but may be costly
because of the rotations needed to keep the tree balanced. Sorted
doubly linked lists provide deletion and pop operations in constant
time, but insertion is more costly (O(n)) because the list needs to be
traversed to place the thread in the correct location and keep the list
sorted. CFS implements this mechanism with a red-black tree.

The second mechanism is implemented using a FIFO (First-In First-
Out) circular doubly linked list. A FIFO provides insertion, deletion
and pop operations in constant time. Since threads are not sorted by
runtime but follow a first-in first-out pattern, latency sensitive appli-
cations may be delayed if there are a lot of threads in the runqueue.
ULE implements a variant of this feature with two FIFO lists, one for
interactive threads and one for batch threads.

5.2.2.2 Time slice.

When a thread is given the right to run on a core, it owns this right for
a duration called a time slice. The time slice feature determines how
this duration is computed. We consider three alternatives: infinite, fixed
and split.

The infinite time slice alternative disables preemption. Context
switches are driven by the thread voluntarily yielding the CPU or
being blocked waiting for a resource. This is present in cooperative
scheduling policies.

The fixed alternative allocates the same time slice for all threads. We
fix the time slice to 10 ms for our experiments.

The split alternative allocates a time slice that depends on the num-
ber of threads present in the runqueue with the following formula:

timeSlice =

X ms if |threads| > T
Y

|threads| ms otherwise

5.2 feature model of a scheduler 113

CFS and ULE both implement this feature with different values for
X, Y and T (on our testing systems, X = 3, Y = 24 and T = 8 for
CFS; X = 4, Y = 25 and T = 6 for ULE). Our implementation of this
feature follows the definition used by CFS. If the core is overloaded,
i. e. more than 8 threads in the runqueue, each thread is allocated a
3 ms time slice. Otherwise, each thread is allocated an equal share of
a 24 ms period.

5.2.2.3 Dispatcher

The dispatcher feature determines the thread placement policy of the
scheduler. This includes the metric used to compare runqueues, where
to place threads, when threads are migrated and by whom.

load metric . This feature is used to measure the amount of work
available on a core. This metric allows the dispatcher to compare cores
and decide if threads should be migrated from one core to another. We
consider three alternative metrics: nrRun, nrRunBlock and usedTime.

nrRun measures the load of a core as the number of threads in the
runqueue, i. e. runnable threads, as implemented in ULE.

nrRunBlock takes into account the number of runnable threads as
well as the number of threads that blocked last on this core. This
allows the scheduler to keep track of threads that blocked on a core
and will eventually wake up on it. This can be useful when blocked
threads wake up immediately since it prevents the scheduler from
migrating a distant thread to balance a load that would have been
immediately balanced anyway. However, threads that stay blocked for
a long time will weigh on the load and may prevent balancing even if
there is no runnable thread in the runqueue.

usedTime defines the load of a thread as the proportion of time the
thread spent runnable (runnableTime) regarding its allocated time slice
(timeSlice). This alternative also takes previous loads into account to
smooth the load over time: 80% of the load corresponds to the previous
load while 20% depends on the values runnableTime and timeSlice at
computation time. This is a simplified version of the decaying load
average of CFS. Therefore, the load of a thread at time t (loadt) is
computed as follows:

loadt = 0.8 loadt−1 + 0.2
runnableTime

timeSlice

timing . This feature is used in the dispatcher to choose at which
moment threads are migrated among cores. We divide this feature
into two sub-features: period and event.

The period feature determines if a load balancing operation should be
triggered periodically and, if so, the period between those operations.
Since the range of values for the period is quite large (from 0 to 264− 1
nanoseconds on a 64-bit machine) and not all values are meaningful

114 feature-oriented scheduler analysis

(triggering a load balancing operation every nanosecond might be a
little excessive), we choose to fix this feature: all generated schedulers
perform a periodic load balancing every n milliseconds, where n is
the number of cores on the machine, following the behavior of CFS.4949 In reality, CFS balances

cores hierarchically, and
the value of n is the

number of cores in the
subset of cores being

balanced.

The event feature triggers migrations when a core has no more
threads to run (idle event) or when a thread is created or wakes up
from a blocking operation like a synchronous I/O (new/unblock event).
These two features are optional, which means that they can both be
enabled at the same time, or both disabled.

The idle feature determines if idle balancing is enabled or disabled.
When an idle event occurs, i. e. a core has no more thread to execute,
the scheduler can either reduce the power consumption of this core by
letting it enter a lower power state or perform idle balancing to try to
keep it busy. In the latter case, a load balancing operation is triggered
on this core to allow it to find pending work on another core.

As for the new/unblock event, the scheduler can migrate the thread
concerned at this moment. In our schedulers, this event is always
enabled because we target multi-core systems. The choice of the des-
tination core of the thread is determined by the placement distance
feature presented later on.

executor . The periodic load balancing algorithm distributes work
among cores. In order to do that, load balancing events are triggered
periodically on the cores of the machine. The executor alternatives
determine the cores that perform load balancing operations.

The all alternative allows each core to perform periodic load balanc-
ing operations to balance itself with another core of its own choosing.
All cores can do this in parallel but may take conflicting migration
decisions and fail to balance correctly.

The core alternative allows only one core to perform load balancing
for all the cores of the machine. Therefore, no conflicting decisions
are taken, at the expanse of serializing the whole balancing process
and increasing the number of remote memory accesses on NUMA
machines.

The node alternative allows only a single core per NUMA node
to perform load balancing operations. This core performs a load
balancing operation for each core in the node. On an n-node machine,
n load balancing operations can take place in parallel, thus minimizing
the probability of conflicts. This alternative is a good compromise
between all and core alternatives.

choice of source/destination. This feature determines how
the source and destination cores of a migration are determined. For
migrations due to the load balancing algorithm (either periodic or
after an idle event), the destination is the core for which the load
balancing is executed. The source, however, is determined by the

5.3 feature evaluation 115

imbalance formula sub-feature that defines if two cores need to be
balanced. We currently fix this feature and consider that if at least
one migration between the source core and a potential destination
core can reduce the imbalance between these cores, then they are
unbalanced.50 All our schedulers choose the most loaded core among 50 The imbalance

considered here regards
the load metric defined in
Section 5.2.2.3.

those unbalanced cores as the source.
For migrations due to a new or an unblock event, the source is

the current position of the thread (or of the thread’s parent for new
threads), and the destination is determined by the placement distance
sub-feature. In most cases, it should be beneficial to keep a thread
close to its most recently used core because the data it was using may
still be available in this core’s hardware caches. However, this can
lead to a load imbalance between cores if threads are always kept on
the same subset of cores. The placement distance feature determines
how far away from its previous location a thread can be migrated. We
implement three alternatives: a thread can only be placed on an SMT
sibling (SMT), a core in its last level cache domain (LLC), or any core
on the entire machine (all). The core selected is the least loaded core
among the cores that respect the placement distance.

5.3 feature evaluation

Now that we have defined an extendable feature model able to cap-
ture a large number of features found in general-purpose schedulers,
we evaluate the impact of each of these features on the performance
of applications. To do so, we implement each feature described in
our model independently and generate all possible combinations of
features. With the current state of our model, we are able to gener-
ate 486 schedulers by combining the 16 features that have variable
implementations (idle and the sub-features of election, time slice, load
metric, executor and placement distance). The generated schedulers use
the SaaKM API presented in Section 3.4.

With this new collection of schedulers available, we can evaluate the
performance of individual features on given applications. Additionally,
we perform a stability analysis that will help us detect variability in
the performance of applications due to the scheduler.

5.3.1 Experimental Setup

For our experiments, we use a set of 20 applications from five bench-
mark suites that we select based on two criteria: application behavior and
execution time. The former criterion helps us consider a large number
of different behaviors and make sure we cover most existing work-
loads. The latter stems from a practical problem: the large number of
schedulers we evaluate and the small number of machines available

116 feature-oriented scheduler analysis

to us makes it impossible to evaluate applications with long execution
times. We evaluate on the following applications:

• 7 applications from PARSEC [17]:
blackscholes, bodytrack, canneal, facesim, ferret,
fluidanimate and streamcluster

• 7 applications from the Phoronix benchmark suite [119]:
build-linux-kernel, compress-7zip, c-ray,
john-the-ripper-md5, openssl, stockfish and x264

• hackbench from the Linux Test Project [108]

• oltp (MySQL), mutex and memory from sysbench [98]

• bayes and nutchindexing from the HiBench benchmark suite [84]
using Apache Hadoop [10]

Table 5.1 presents the behavior of these applications and the per-
formance results we use as a baseline. We split the data into three
categories: threads, behavior and performance.

threads . A first characteristic is the number of threads used by
each application. The max nr column reports the maximum number of
threads for the benchmark while the creation rate column reports when
and how threads are created. These two characteristics are important
because they have a major impact on the occupation of the CPU
resources and on the pressure on the scheduler.

The maximum number of threads is statically selected for each
benchmark. For the PARSEC applications and oltp, we use the setup
with the best performance under CFS. For the HiBench applications,
we use the tiny inputs (adapted for a single machine Hadoop cluster)
with an equal number of map and reduce threads, with the total
number of threads matching the number of hardware threads on our
machines. For the Phoronix applications, we use the default settings
of the benchmark suite (usually the number of hardware threads on
the machine or a multiple of that number).

behavior . We profile certain metrics when running our applica-
tions with CFS to determine their “default” behavior and check that
we evaluate our approach on different types of applications. We peri-
odically (every second) sample multiple metrics: CPU usage (system
and user), the number of blocking events per second (interactivity),
the number of context switches or the number of migrations. Due
to the lack of space, we only report two metrics in the table. The
20 applications we select were chosen due to the diversity of their
behavior regarding these metrics.

5.3 feature evaluation 117

Threads Behavior Performance

Application Max nr
Creation

rate
CPU usage

Blocking
events

Metric CFS CFS + Pin

bayes 24

3 peaks at
80

low (10%)
medium
(1,500/s)

time (s)↘ 116.2± 3.36% 634.9± 0.64%

blackscholes 24 at startup
half low (10%)

half high
(100%)

low (100/s) time (s)↘ 39.8± 0.41% 39.7± 0.54%

bodytrack 16 at startup
medium

(45%)
medium
(8,000/s)

time (s)↘ 43.1± 1.75% 43.3± 2.59%

buildkernel 24 400/s
half low (5%)

half high
(100%)

medium
(5,00/s)

time (s)↘ 19.8± 4.37% 7

canneal 12 at startup
half at 5%,
half at 50%

medium
(3,000/s)

time (s)↘ 60.6± 0.53% 59.6± 0.53%

compress7zip 24

4 peaks at
35

4 high peaks
(80–100%)

(half the time)

4 medium
peaks

(9,000/s)
Mips↗ 33.5k± 0.77% 22.7k± 3.57%

cray 384 at startup high (100%) low (75/s) time (s)↘ 115.3± 0.40% 122.0± 0.06%

facesim 16 at startup
low to

medium
(20–40%)

medium
(6,000/s)

time (s)↘ 168.9± 0.71% 169.9± 0.80%

ferret 12 at startup
medium

(70%)
medium
(1,000/s)

time (s)↘ 42.2± 0.94% 42.9± 1.01%

fluidanimate 16 at startup
medium

(50%)
medium
(1,000/s)

time (s)↘ 89.2± 2.43% 83.4± 1.40%

hackbench 1000 at startup high (80%)
high

(100,000/s)
time (s)↘ 0.6± 6.43% 7

johntherippermd5 24 at startup high (100%) low (100/s) checks/s↗ 303.5k± 0.83% 307.2k± 0.59%

memory 256 at startup high (100%) low (200/s) time (s)↘ 9.9± 0.52% 9.9± 0.73%

mutex 256 at startup high (100%) low (300/s) time (s)↘ 8.8± 0.74% 8.93± 0.84%

nutchindexing 24 50–120/s low (10%)
medium
(1,000/s)

time (s)↘ 3.3± 9.12% 3.4± 3.57%

oltp
(latency 95th)

64 at startup
medium

(70%)
high

(150,000/s)
time (s)↘ 56.6± 2.08% 58.7± 3.55%

oltp
(avg latency)

64 at startup
medium

(70%)
high

(150,000/s)
time (s)↘ 28.0± 3.59% 28.8± 2.37%

oltp
(throughput)

64 at startup
medium

(70%)
high

(150,000/s)
tr/s↗ 2, 290.5± 3.57% 2, 218.0± 2.40%

openssl 24 at startup high (100%) low (65/s) sign/s↗ 734.8± 0.31% 745.6± 0.57%

stockfish 24 25/s high (100%) low (100/s) nodes/s↗ 19.4M± 1.12% 19.4M± 1.66%

streamcluster 12 10/s high (100%)
medium
(5,000/s)

time (s)↘ 108.8± 1.73% 96.8± 3.20%

x264 24 at startup low (10%)
medium
(2,500/s)

fps↗ 32.1± 5.53% 29.26± 2.55%

Table 5.1: Application behavior and performance with CFS and threads
pinned. (↗ higher is better ↘ lower is better 7 timeout)

118 feature-oriented scheduler analysis

performance . We also report the performance of each application.
For most applications, the performance metric is the execution time
in seconds. However, some applications have a different performance
metric, such as the frame rate for x264 or the number of MD5 checks
per second for johntherippermd5. Also, oltp appears three times
because it provides three performance metrics (average latency, 95

th

percentile latency and throughput).
We present the performance metrics when run with CFS as well

as when run with CFS with each thread pinned to a core in a round-
robin fashion. The former is for comparison purpose only. The latter,
however, shows the performance of CFS when disabling the dispatcher
feature. The applications with no result (marked 7 in the table) took
too long to run and reached a timeout (more than 100 times the
duration of the run with CFS). We observe that only streamcluster

gains more than 5% of performance when pinning threads to cores,
whereas four applications (bayes, compress, fluidanimate and x264)
lose more than 5% in terms of performance. This means that for 13

applications out of 20 (we count oltp once), the placement strategy of
CFS has no impact on performance.

setup. We run our experiments on a cluster of eight identical
machines equipped with a 2-socket Intel® Xeon E5645 (12 physical
cores, 24 cores with SMT enabled) and 64 GiB of RAM. All machines
run a Debian 8 OS, our customized Linux v4.19 kernel and all our
benchmarks and dependencies installed. Each application is always
run on the same machine to avoid discrepancies due to hardware
differences. For each scheduler (CFS and pinned CFS included), each
application is run 10 times.

scheduler generation. We generate our 486 schedulers from
the feature model presented in Section 5.2.2. In this model, we have
16 variable feature implementations, i. e. the leaves of the feature
tree. In Section 5.1, we showed that the feature analysis of CFS was
made impossible by multiple factors, most notably by the overlapping
code of multiple features. When implementing the features from our
model, we pay particular attention not to have this flaw. Each feature is
implemented independently and is compatible with all other features
of the model, except among alternatives.

With this many schedulers, a possible experimental problem would
be the time needed to run all experiments. Each application is executed
10 times with every generated scheduler, as well as CFS and CFS with
pinned threads. Even with a cluster of eight machines, this takes a very
long time to run. Changing the scheduler between executions also
becomes a real problem if they are implemented with the scheduling
class internal API of Linux. We remove this problem by using the
SaaKM internal API we developed in Chapter 3. With SaaKM-enabled

5.3 feature evaluation 119

schedulers, we can add and remove scheduling policies at run time,
with no need to reboot the machine or compile hundreds of kernels.

5.3.2 Methodology Overview

After running each application with all 486 generated schedulers as
well as CFS 10 times, we can use the results gathered to analyze the im-
pact of each feature on performance independently. This information
is necessary to understand which features improve the performance
of a given application and, ultimately, build application-specific sched-
ulers. Before presenting our methodology in detail, we outline the
general idea behind the two main phases of this methodology: stabil-
ity analysis and feature impact analysis.

stability analysis . When drawing conclusions from data gath-
ered experimentally, one must first assess the statistical validity of said
data. Indeed, if the performance of a given scheduler is not consistent
among its 10 runs, it is incorrect to infer a meaningful performance
measure from this data. This leads us to design a stability analysis of
our schedulers. The primary goal of this analysis is to exclude sched-
ulers that have results with a low statistical significance for further
analysis. A secondary goal is to assess the stability of applications.
This is made possible by the fact that we have a large number of
schedulers to test with.

feature impact analysis . With unstable data out of the way,
we can now study the impact of each feature on performance indepen-
dently. The general idea is to isolate a set of features that guarantee
good results on a given application. This analysis is performed in
multiple steps, from shrinking the number of studied schedulers to
only the best ones, to isolating features that best represent these best
schedulers.

5.3.3 Stability Analysis

The goal of the stability analysis was to ascertain the statistical validity
of our results. Instability can come in multiple flavors: (i) a scheduler
is unstable across multiple runs of a given application, (ii) a scheduler
is unstable whatever the application.

To evaluate the stability of a scheduler for a given application, we
compute the standard deviation of the 10 runs of each scheduler (σs

for the scheduler s). We then compute the median (mσ) and standard
deviation (σσ) of these standard deviations to define a threshold τ, and
build the set of stable schedulers S and the set of unstable schedulers
U as follows:

τ = mσ + 2σσ S = {s, σs < τ} U = {s, σs ≥ τ}

120 feature-oriented scheduler analysis

Median s Threshold CFS

0 5 10 15
Standard deviation

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

 sc
he

du
le

rs

(a) bodytrack

0.0 0.5 1.0 1.5 2.0
Standard deviation

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

 sc
he

du
le

rs

(b) nutchindexing

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Standard deviation

0%

20%

40%

60%

80%

100%

Pr
op

or
tio

n
of

 sc
he

du
le

rs

(c) x264

Figure 5.6: Cumulative distribution of the standard deviation of generated
schedulers.

The factor in the definition of τ is determined experimentally to maxi-
mize the size of the set of stable schedulers S and obtain good results
in subsequent analyses. Figure 5.6 represents cumulative histograms
of the standard deviation of our generated schedulers on three appli-
cations: bodytrack, johtherippermd5 and x264. We also represent the
median mσ, the threshold τ and the standard deviation with CFS as a
reference.

stability of generated schedulers . Overall, most generated
schedulers are stable for all applications. As shown with bodytrack

and nutchindexing in Figures 5.6a and 5.6b, most schedulers have a
standard deviation below the τ threshold. For subsequent analyses, we
will only use the schedulers present in S and exclude the ones present
in U because of their instability. Since the number of schedulers in U
is negligible compared to the number of schedulers of S, we will not
lose much information. When analyzing the impact of each scheduler
feature in Section 5.3.4, only schedulers present in S will be used.

5.3 feature evaluation 121

stability of cfs . Regarding the stability of CFS, we note that
for 5 out of 20 applications (fluidanimate, johntherippermd5, memory,
nutchindexing and x264), CFS is less stable than the majority of the
generated schedulers (i. e. σCFS > mσ). Worse, for x264, CFS is con-
sidered unstable because its standard deviation is higher than the
threshold τ, as shown in Figure 5.6c. This means that some applica-
tions, e. g. x264 in our case, are qualified as unstable in general when
it is actually the scheduler that renders them unstable.

unstable features . With our feature model and our experimen-
tal results, we also wish to study the impact of given features on the
stability of the generated schedulers. The simplest way to do this is to
look for similarities among the schedulers of the U sets of all applica-
tions. Unfortunately, with the current state of our model, all features
are fairly distributed among the unstable schedulers. This means that
no feature induces instability by itself. We presume that instability is
due to combinations of features. However, we were not able to find
enough evidence with our data set to consider this presumption a
certainty.

5.3.4 Feature Impact Analysis

With the results of our stability analysis, we can now analyze the im-
pact of each feature on performance. The general idea is to extract, for
a given application, the good and the bad features. Good features have
a high probability of improving the performance of the application
while bad features have a low probability of doing so.

The feature impact analysis is split into six phases: data processing,
finding the best schedulers, isolating the best features, constructing
the scheduler frame, validating the frame and refinement of the frame.
At the end, we will have a set of rules regarding features that define
what a good scheduler is for a given application, as well as metrics
that evaluate the quality of these rules.

We now present the methodology to find these features and apply
it on the results of the facesim application as an example.

5.3.4.1 Data Preprocessing

Before analyzing our experimental data, we must first discard the
unstable schedulers, i. e. schedulers in the U set. Due to their instability,
these schedulers have no statistical significance when evaluating the
performance of a feature. Once these schedulers are discarded, we can
simplify the problem by merging all runs of a scheduler into a single
value instead of ten: the mean of the ten runs. This simplification
is correct since the remaining schedulers are stable, i. e. they have a
negligible variability. Let A be this set of schedulers.

122 feature-oriented scheduler analysis

150

200

250

300

350

400

450

Pe
rfo

rm
an

ce
 [l

ow
er

 is
 b

et
te

r]

(a) Raw data set.

150

200

250

300

350

400

450

Pe
rfo

rm
an

ce
 [l

ow
er

 is
 b

et
te

r]
(b) Pruned data set.

Figure 5.7: Preprocessing phase with the facesim data set. The orange back-
ground spans the results of CFS. (lower is better)

example . Figure 5.7 depicts the preprocessing phase of the method-
ology in the form of swarm plots. Figure 5.7a shows all executions
with all schedulers: there are 4,860 points.51 The orange background51 We have 486 schedulers

and each is run 10 times. represents the range of results with CFS. We can observe that the per-
formance of our generated schedulers spans a large range of values,
with a large number outperforming CFS.

Figure 5.7b shows the data set after removing unstable schedulers
and reducing each scheduler to a single point. In this example, 30

schedulers were removed due to their instability (6.17% of the total).
After reducing each scheduler to its mean performance, only 456

points remain from the original 4,860. Despite this reduction, the
overall shape of this swarm plot is the same as with the raw data set.
This confirms that we did not lose significant information with this
preprocessing phase.

5.3.4.2 Finding the Best Schedulers

Good and bad features are defined with regards to their probability
of improving the application performance. We therefore put our focus
on the schedulers that achieve the best performance. We first select a
subset of the schedulers in A that are close to the best performance
achieved.

Let bestA be the performance of the best scheduler for a given
application. We arbitrarily decide that a scheduler “close” to bestA
has at most a 10% difference in performance. Let P be the subset of
schedulers close to the best, defined as:

P = {x ∈ A, |x− bestA| ≤ 0.1 bestA}

5.3 feature evaluation 123

R B
150

200

250

300

350

400

450

Pe
rfo

rm
an

ce
 [l

ow
er

 is
 b

et
te

r]

Figure 5.8: Finding the best schedulers for the facesim data set. The orange
background spans the results of CFS. (lower is better)

However, this is not enough to extract a compact subset of sched-
ulers. With this definition of P, on some experiments, the standard
deviation among schedulers of P is high. This means that schedulers
are spread across the 10% performance range. We wish to refine our
set of best schedulers and only keep the ones closest to the best while
accounting for the standard deviation of P (σP). We build the set of
best schedulers B such as:

B = {x ∈ P, |x− bestA| ≤ |worstP − σP|}

With this formula, the higher the standard deviation σP, the fewer
schedulers we keep in B.

example . We now build the subsets of best schedulers P and B
from the preprocessed data set A. The best scheduler for facesim, i. e.
the one with the lowest execution time, completed in 155 seconds.
We therefore have bestA = 155. The set of schedulers at most 10%
away from bestA in terms of performance, P, contains all values with
a performance between bestA = 155 and bestA + 10% = 170.5. This
set contains 197 schedulers, which amounts to 40.53% of all tested
schedulers.

In order to build the set B, we compute the standard deviation of P,
σP = 4.79. We then exclude the schedulers that are too far away from
bestA while accounting for σP and build B. The new set B contains 140

schedulers, which amounts to 28.81% of the total. Figure 5.8 depicts
this selection. The blue swarm represents schedulers in B while the
gray swarm represents the remaining schedulers. In this example, all
schedulers in B outperform CFS, depicted by the orange background.

124 feature-oriented scheduler analysis

5.3.4.3 Isolating the Best Features

With the set of best schedulers B extracted, we can now select the
features with a positive impact on the performance of the application.
We do this by counting the number of occurrences of each feature in
B. If a feature is present in more than 80% of the schedulers in B, we
deem it to be a good feature. If it is present in less than 20% of the
schedulers in B, it is deemed to be a bad feature.

For example, an alternative feature such as the load metric has three
implementations: nrRun, nrRunBlock and usedTime. If we had a dis-
tribution in B of 45–10–45% for each feature, that would mean that
nrRunBlock is a bad feature and the other two are neither good nor
bad. Note that with our thresholds, if a feature is deemed to be good,
all other alternative features are necessarily deemed to be bad. We call
the set of good and bad features a scheduler frame.

example . We count the number of occurrences of each feature
in the subset of schedulers B. Table 5.2 summarizes the results. For
the facesim data set, only one feature, idle, has been categorized as a
good feature. All other features are roughly equally represented in B.
Therefore, the resulting scheduler frame only contains a single feature,
idle.

5.3.4.4 Scheduler Frame

From this scheduler frame representing the good and bad features
common to the best schedulers (B), we can categorize our schedulers
more precisely. Let F be the subset of schedulers in A that fit in the
scheduler frame. We group the best schedulers that fit in the frame as
the set FB. The remaining schedulers that are neither best nor fit in
the scheduler frame are in the category R such that:

FB = F ∩ B R = A \ (F ∪ B)

We now have four categories that encompass all schedulers of A:
FB, F, R and B.

• FB: schedulers fitting the frame among the best schedulers

• F: remaining schedulers fitting the frame

• B: remaining schedulers among the best schedulers

• R: remain schedulers

example . With the resulting scheduler frame, we are now able to
build the sets of schedulers F and FB. The set F that represents sched-
ulers fitting into the frame contains 236 schedulers, which amounts to
48.56% of all schedulers. Among the best schedulers (B), 124 fit into

5.3 feature evaluation 125

Election
RBtree Linked list FIFO

44 (31.43%) 48 (34.29%) 48 (34.29%)

Time slice
Infinite Fixed Split

47 (33.57%) 46 (32.86%) 47 (33.57%)

Load metric
nrRun nrRunBlock usedTime

54 (38.57%) 33 (23.57%) 53 (37.86%)

Placement distance
SMT LLC all

33 (23.57%) 54 (38.57%) 53 (37.86%)

Executor
all node core

36 (25.71%) 51 (36.43%) 53 (37.86%)

Idle
no yes

16 (11.43%) 124 (88.57%)

Table 5.2: Number of occurrences of each feature in B for the facesim data
set. Good features are in green, bad features in red.

the scheduler frame and are placed into the set FB, which amounts to
25.51% of all schedulers.

Figure 5.9a shows the distribution among the four sets FB, F, R
and B. To improve clarity, schedulers in FB are not depicted in F
and B and vice versa. Therefore, each scheduler only appears once.
Graphically, we observe that most best schedulers seem to fit in the
frame since most schedulers in B are now in FB. This indicates a high
representativeness. However, we also observe that F contains a lot of
bad schedulers that fit the frame. This indicates that our frame might
not be very precise.

5.3.4.5 Validation

We need to evaluate the quality of the scheduler frames we build. We
do this by measuring two metrics: representativeness and precision.

Representativeness (R) is the percentage of schedulers fitting the
scheduler frame among the schedulers of B:

R =
|FB|
|B|

This metric allows us to evaluate if the best schedulers, i. e. schedulers
in B, indeed implement the features described by the scheduler frame.

Precision (P) is the percentage of schedulers fitting the scheduler
frame in B among all the schedulers fitting the frame (F):

P =
|FB|
|F|

126 feature-oriented scheduler analysis

R F B FB
150

200

250

300

350

400

450

Pe
rfo

rm
an

ce
 [l

ow
er

 is
 b

et
te

r]

(a) With initial scheduler frame.

R F B FB
150

200

250

300

350

400

450

Pe
rfo

rm
an

ce
 [l

ow
er

 is
 b

et
te

r]

(b) After scheduler frame refinement.

Figure 5.9: Distribution of schedulers among the four sets FB, F, R and B for
the facesim data set. The orange background spans the results of
CFS. (lower is better)

This metric allows us to quantify the number of false positives, i. e. the
schedulers that fit in the frame but do not provide good performance.
For both metrics, the higher the value the better.

example . To validate our observations, we must compute the rep-
resentativeness R and the precision P of our scheduler frame. With
the facesim data set, we obtain the following values:

R = 88.57% P = 52.54%

As observed graphically in Figure 5.9a, we obtain a high representa-
tiveness and a low precision. This application is a good candidate for
the scheduler frame refinement phase.

5.3.4.6 Scheduler Frame Refinement

Our objective is to extract the features that make a scheduler good for
a given application. Therefore, having too many false positives defeats
our purpose. Precision is of the utmost importance and should be
maximized, even at the expense of representativeness. When precision
is too low, we need to refine the scheduler frame to improve it. For the
moment, we consider that below 80%, precision is insufficient.

The refinement we propose slightly differs from our strategy to iso-
late the best features. We iteratively constrain the frame until precision
reaches the 80% threshold. At each iteration, we compute, for each
feature, the ratio of its number of occurrences in FB compared to its
number of occurrences in F. This ratio represents the potential of a

5.3 feature evaluation 127

feature to be a false positive. The feature with the lowest ratio is added
to the scheduler frame as a bad feature, and the set F is recomputed
with the new frame.

example . For this phase, our starting scheduler frame contains
only one rule: idle must be in the scheduler. After the first iteration of
the refinement process, the feature with the highest potential of being
a false positive is the load metric nrRunBlock. The new scheduler frame
contains two rules: idle must be in the scheduler and nrRunBlock must
not. This first iteration does not give this frame a precision greater
than 80%, so we run the algorithm again. After the second iteration,
we add a new rule to the scheduler frame: the placement distance SMT
must not be in the scheduler. We now have a frame with three rules
and a precision of 99.07%. The representativeness, however, dropped
from 88.57% to 76.43%.

Figure 5.9b depicts the new sets FB, F, R and B after the refinement
phase. We observe that F only contains a single scheduler, accordingly
to the very high precision of 99.07% we have after refinement. The
set FB also shrunk a little as compared to before the refinement
(Figure 5.9a), with schedulers returning to the B set. Again, this is
consistent to the lower value of the representativeness. Overall, after
refinement, we have a scheduler frame that precisely defines good
schedulers for the facesim application. Having the features in the
frame seems to guarantee good performance. However, the converse is
not true: not fitting the frame does not mean having bad performance,
as shown by the schedulers remaining in B.

5.3.4.7 Conclusion

Our methodology enables us to define, for a given application on a
given system, the set of scheduler features that work best. We are then
able to evaluate the quality of this set of features we call a scheduler
frame in terms of precision and representativeness. With these two
values, we can then refine our scheduler frame to optimize its quality.

We apply our methodology on the data collected from an application
from the PARSEC benchmark suite, facesim. We show that with our
methodology, we are able to find a set of three rules that precisely
represent the schedulers that perform best on this application.

In addition to a better understanding of the impact of features on
the performance of applications, the scheduler frame could be used
for different purposes in the future. One major possibility is to use it
in the training set of machine learning tools in order to automatically
create the best scheduler possible for a given application. This is made
possible thanks to our modular implementation of our feature model.

128 feature-oriented scheduler analysis

5.4 finding the best scheduler for an application

Another possible use of the collection of schedulers we generated is to
find the best scheduler for a given application. When this scheduler
is found, the SaaKM API presented in Section 3.4 can be leveraged to
use this scheduler each time the application is run. For example, in
cloud environments where a large number of different applications are
executed on the same machine, we could always use the best scheduler
for every application by changing it on the fly to match the currently
running application.

Finding this best scheduler can however be a long process. We
present two possible approaches to do this: brute-force search and
performance-driven search. This part is still a work in progress, so
we will not present any experimental results.

5.4.1 Brute-force Search

This first approach is straightforward: run every generated sched-
uler and pick the one exhibiting the best performance results. This
approach has the advantage of always producing the best possible
scheduler among the ones tested. However, the large number of sched-
ulers to test is an obstacle to such an approach.

For example, in our model, we have 486 generated schedulers with
our subset of features. Using the brute-force search, users would have
to run their application at least 486 times. For applications with long
execution times, this is impractical. Add the fact that multiple runs
must be performed to have confidence in the results of the search, and
this approach becomes completely unusable. To give an idea, running
all applications 10 times with all 486 schedulers, plus CFS and CFS
with pinned threads, took 1,925 hours (80 days) of machine time.

The growth of the model also makes the number of schedulers, and
thus the number of experiments, grow exponentially. Adding a single
feature doubles the number of generated schedulers, consequently
doubling the experimentation time. Brute-force search is therefore
only tractable for users that are able to distribute the search across
multiple machines and accept to temporarily disrupt the performance
of their application during the process.

5.4.2 Performance-driven Feature Search

Bypassing the limitations of the brute-force approach requires to
drastically reduce the number of runs needed to find the best scheduler.
For statistical significance reasons, reducing the number of runs per
scheduler is not a viable option. The only parameter we can work with
is the number of schedulers we test. One way to do this is to drive the
search depending on the results of the schedulers already tested.

5.5 conclusion 129

Thanks to our model, features are compartmentalized and can be
tested individually. With a few runs of a small number of schedulers,
we can start to decide whether a feature has a positive or a nega-
tive impact on the performance of the tested application. With this
information, we can avoid exploring the complete space of possible
schedulers and only focus on a subset of schedulers. We can do this
by leveraging the methodology presented in Section 5.3.4.

This type of strategy enables users to rapidly find a satisfying
solution to their problem, i. e. a good scheduler for their application.
However, by not testing all schedulers, we might miss the actual best
scheduler. We can only find a good solution, not necessarily the best
one.

This performance-driven search could be furthermore enhanced
by learning the impact of individual features with certain types of
workloads. When testing schedulers, we could collect, in addition
to performance metrics, metadata that allows characterization of the
workload, e. g. number of threads, I/O- or CPU-bounded applica-
tion, . . . Using all this data, we could build a model that predicts
the performance of given features on a workload based on previous
experiments. There exists multiple machine learning tools adapted for
such problems. This is currently a work-in-progress.

5.5 conclusion

Analyzing the performance of a scheduler is difficult. More precisely,
evaluating each feature of a scheduler is challenging because of the
way schedulers are written. We show that the features of CFS are too
intertwined to allow for an evaluation of each one individually.

To get around this problem, we propose a model of a scheduler in
the form of a feature model. This model describes a scheduler as a set
of features linked by dependency rules. We implement each feature in
isolation so that they can be used interchangeably. Thanks to SaaKM,
we then execute a large number of applications on the 486 schedulers
we generate from our model.

With the results of our experiments, we analyze the stability of the
generated schedulers as well as of CFS. We show that some applica-
tions were thought to be unstable when the instability came from CFS
and not the application.

We also propose a methodology to evaluate the performance of each
feature individually on a given application. With this methodology, we
are able to build a scheduler frame that describes the set of desirable
and undesirable features for an application.

Finally, we propose two approaches for end users to build an
application-specific scheduler easily. This part is an ongoing work.

130 feature-oriented scheduler analysis

future work . The current model is limited, with less than twenty
implemented features. We wish to extend it and add more features
from existing schedulers, as well as novel features.

We also wish to apply our feature evaluation methodology on more
applications, with more features. This would allow us to evaluate our
ability to use this data as a training set for our approaches to build
application-specific schedulers.

Finally, we are currently working on the performance-driven feature
search describe in Section 5.4.2. The two main areas of research are the
machine learning approach as well as correlating application behavior
to features.

related publication. The work described in this chapter has
been the subject of a publication in a national conference [68].

6
C O N C L U S I O N

In the last couple decades, increasing the processing power of com-
puters is a synonym for increasing the number of computing units.
Multi-cores took over the CPU market in a few years. With the mul-
tiplication of computing resources comes a greater need to correctly
allocate threads to cores, a job carried out by the scheduler. However,
improper scheduling incurs poor resource utilization and therefore
subpar performance. Ultimately, this leads to user disappointment.
Thread schedulers are at the center of the performance of modern
systems.

Developing a thread scheduler is a daunting task. The dazzling
evolution of the hardware lead to an increased complexity in its un-
derstanding. Software applications, on the other hand, are more and
more diverse, leading to a large number of different performance re-
quirements. General-purpose OSs schedulers struggle to be as generic
as possible and fail to succeed in this illusory enterprise.

In this thesis, we studied a variety of existing schedulers and pointed
out three axes of improvement: scheduler development, performance
enhancement and application-specific schedulers. For each axis, we
provide contributions that will help scheduler developers produce
new schedulers and end users get the best performance for their
applications.

6.1 scheduler development

contributions . We propose Ipanema, a domain-specific lan-
guage (DSL) that eases the development of new schedulers with a
focus on code correctness and the possibility to formally verify prop-
erties on the scheduling algorithm. Alongside the DSL, we provide a
complete tool chain with a modified Linux kernel that features sched-
uler hot-plugging through the SaaKM kernel API and a compiler that
generates efficient kernel modules in C and proofs in WhyML.

Thanks to the expressiveness of our DSL, we write scheduling
policies inspired by CFS and ULE with a smaller code footprint. The
CFS-like policies are 5.7× smaller than the original and the ULE-like
policies are 2.5× smaller than their original counterpart. Among those
policies, some are also proven work-conserving.

131

132 conclusion

We evaluate the generated C code of our policies on a set of applica-
tions including compilation, databases and HPC. Overall, our policies
perform similarly or better than the vanilla CFS, comforting us in the
idea that we can produce schedulers that are compact, efficient and
verified in Ipanema.

future work . We propose two areas of improvement for this work.
The first one consists of extending the proof library with new prop-
erties such as thread liveness or freedom from frequency inversions.
The second area focuses on faithfully reproducing existing production
schedulers in Ipanema in order to formally verify if they are algorith-
mically correct. This may lead to the discovery of unknown bugs in
schedulers like CFS or ULE, and attempts to fix them. However, doing
this would require to add new features to the Ipanema language and
standard library. For example, new data structures for thread storage
will be needed, as well to new methods that allow developers to query
the architectural state of cores, e. g. frequency.

At a higher level, we also think that interesting work could be
done on a meta-scheduler. With our SaaKM API, multiple scheduling
policies can live in the kernel. As with Linux scheduling classes, we
only implement a static priority list to arbitrate between policies. In
the future, we wish to be able to change the arbitration between
scheduling policies. This could be done through an extension of the
abstractions defined in the Ipanema DSL.

6.2 performance enhancement

contributions . In order to enhance performance, we implement
a set of monitoring and visualization tools that record events in the
kernel at a high resolution and display them in a scalable and script-
able graphical interface. Thanks to these tools, we discover a novel
problem on modern processors, frequency inversion. On CPUs fea-
turing per-core dynamic voltage and frequency scaling (DVFS), we
can have situations when idle cores run at high frequencies while
busy cores run at low frequencies. This mismatch between load and
frequency is due to the long frequency transition latencies (FTLs) of
processors and to the scheduling algorithms of general-purpose OSs
that do not correctly account for the frequency of cores. We give a
detailed analysis of this problem and propose two solutions for Linux.
Our best solution, Smove provides up to 56% improvement and a worst
deterioration of 8.4% on a set of 60 diverse applications we evaluate.
Overall, we significantly improve the performance on a large number
of applications and do not significantly degrade the performance of
applications not disturbed by frequency inversions. The Smove solution
has been submitted to the Linux kernel community.

6.3 application-specific schedulers 133

In addition to these enhancements, we provide a detailed analysis
of the FTL for multiple CPUs as well as a methodology to measure it.
We show that the frequency scaling algorithm largely depends on the
CPU model and targeted market. We also show that frequency scaling
is all but instantaneous, and should be accounted for when designing
schedulers.

future work . With our work on frequency inversions, we believe
the schedulers should account for the frequency of individual cores
not treat them as equals. However, the decisions of the scheduler can
also have an impact on the frequency of cores. We need an accurate
model of the frequency behavior of the CPU to predict this impact and
act accordingly. This model should account for multiple parameters
that impact the frequency such as the number of active cores, the FTL,
temperature and instruction set.

Another possible way of solving frequency issues regarding the
scheduler would be to improve scaling governors and reduce the
duration of hardware reconfiguration. Indeed, in a perfect setup, the
FTL would be instantaneous, and most problems regarding frequency
would disappear, starting with frequency inversions.

6.3 application-specific schedulers

contributions . From the expertise we accumulate in our work,
we define a feature model representing a scheduler. From this model,
we are able to implement each feature independently. We can then use
any feature to build modular schedulers, in accordance with the rules
of the model.

In addition to the model, we propose multiple methodologies to
evaluate the generated schedulers and their features individually.
We propose a stability analysis that helped us discover that some
application known as unstable were not intrinsically unstable: it was
CFS that created this instability.

We also propose a methodology to evaluate features individually
and extract a set of good and bad features for a given application. We
call this set a scheduler frame.

Finally, thanks to the modular implementation of our feature model,
we can start designing application-specific schedulers in an auto-
matic manner. We propose two approaches to do so. The first one is a
brute-force approach allowed by the modular implementation of our
feature model that allows us to build all possible combinations. The
second one aims at converging towards an efficient scheduler with-
out testing all combinations of features. The evaluation methodology
proposed can be used to guide this search.

134 conclusion

future work . In order to improve the usability of our methodol-
ogy, we need to extend the number of features we implement. With a
larger number of features, we could craft more specific schedulers for
applications.

Improving the performance-driven feature search is also essential. In
our opinion, the most promising approach is to use machine learning
techniques. A model would be trained with a large number of applica-
tions exhibiting various application patterns. With this trained model,
we could quickly find a well-suited scheduler for a given new applica-
tion with only a few runs to determine its behavior. The training set
used would also include the scheduler frames we introduced.

P U B L I C AT I O N S

During this thesis, countless papers were submitted in international
and national conferences and workshops. Here is the list of the ones
that were accepted.

international conference papers

• Baptiste Lepers, Willy Zwaenepoel, Jean-Pierre Lozi, Nicolas
Palix, Redha Gouicem, Julien Sopena, Julia Lawall, and Gilles
Muller. “Towards Proving Optimistic Multicore Schedulers.”
In: Proceedings of the 16th Workshop on Hot Topics in Operating
Systems, HotOS 2017, Whistler, BC, Canada, May 8-10, 2017. Ed.
by Alexandra Fedorova, Andrew Warfield, Ivan Beschastnikh,
and Rachit Agarwal. ACM, 2017, pp. 18–23. doi: 10.1145/
3102980.3102984. url: https://doi.org/10.1145/3102980.
3102984.

• Justinien Bouron, Sebastien Chevalley, Baptiste Lepers, Willy
Zwaenepoel, Redha Gouicem, Julia Lawall, Gilles Muller, and
Julien Sopena. “The Battle of the Schedulers: FreeBSD ULE
vs. Linux CFS.” In: 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018. Ed. by
Haryadi S. Gunawi and Benjamin Reed. USENIX Association,
2018, pp. 85–96. url: https://www.usenix.org/conference/
atc18/presentation/bouron.

• Damien Carver, Redha Gouicem, Jean-Pierre Lozi, Julien Sopena,
Baptiste Lepers, Willy Zwaenepoel, Nicolas Palix, Julia Lawall,
and Gilles Muller. “Fork/Wait and Multicore Frequency Scal-
ing: a Generational Clash.” In: Proceedings of the 10th Workshop
on Programming Languages and Operating Systems, SOSP 2019,
Huntsville, ON, Canada, October 27-30, 2019. ACM, 2019, pp. 53–
59. doi: 10.1145/3365137.3365400. url: https://doi.org/10.
1145/3365137.3365400.

• Redha Gouicem, Damien Carver, Jean-Pierre Lozi, Julien Sopena,
Baptiste Lepers, Willy Zwaenepoel, Nicolas Palix, Julia Lawall,
and Gilles Muller. “Fewer Cores, More Hertz: Leveraging High-
Frequency Cores in the OS Scheduler for Improved Application
Performance.” In: 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020. Ed. by Ada Gavrilovska
and Erez Zadok. USENIX Association, 2020, pp. 435–448. url:
https://www.usenix.org/conference/atc20/presentation/

gouicern.

135

https://doi.org/10.1145/3102980.3102984
https://doi.org/10.1145/3102980.3102984
https://doi.org/10.1145/3102980.3102984
https://doi.org/10.1145/3102980.3102984
https://www.usenix.org/conference/atc18/presentation/bouron
https://www.usenix.org/conference/atc18/presentation/bouron
https://doi.org/10.1145/3365137.3365400
https://doi.org/10.1145/3365137.3365400
https://doi.org/10.1145/3365137.3365400
https://www.usenix.org/conference/atc20/presentation/gouicern
https://www.usenix.org/conference/atc20/presentation/gouicern

136 conclusion

• Baptiste Lepers, Redha Gouicem, Damien Carver, Jean-Pierre
Lozi, Nicolas Palix, Maria-Virginia Aponte, Willy Zwaenepoel,
Julien Sopena, Julia Lawall, and Gilles Muller. “Provable mul-
ticore schedulers with Ipanema: application to work conser-
vation.” In: EuroSys ’20: Fifteenth EuroSys Conference 2020, Her-
aklion, Greece, April 27-30, 2020. Ed. by Angelos Bilas, Kostas
Magoutis, Evangelos P. Markatos, Dejan Kostic, and Margo
Seltzer. ACM, Apr. 2020, 3:1–3:16. doi: 10 . 1145 / 3342195 .

3387544. url: https://doi.org/10.1145/3342195.3387544.

national conference papers

• Redha Gouicem, Julien Sopena, Julia Lawall, Gilles Muller,
Baptiste Lepers, Willy Zwaenepoel, Jean-Pierre Lozi, and Nico-
las Palix. “Ipanema : un Langage Dédié pour le Développe-
ment d’Ordonnanceurs Multi-Coeur Sûrs.” In: Compas 2017:
Conférence d’informatique en Parallélisme, Architecture et Système.
Sophia Antipolis, France, June 2017. url: https://hal.sorbonne-
universite.fr/hal-02111160.

• Redha Gouicem, Julien Sopena, Julia Lawall, Gilles Muller,
Baptiste Lepers, Willy Zwaenepoel, Jean-Pierre Lozi, and Nico-
las Palix. “Understanding Scheduler Performance : a Feature-
Based Approach.” In: Compas 2019: Conférence d’informatique en
Parallélisme, Architecture et Système. Anglet, France, June 2019.
url: https://hal.archives-ouvertes.fr/hal-02558763.

https://doi.org/10.1145/3342195.3387544
https://doi.org/10.1145/3342195.3387544
https://doi.org/10.1145/3342195.3387544
https://hal.sorbonne-universite.fr/hal-02111160
https://hal.sorbonne-universite.fr/hal-02111160
https://hal.archives-ouvertes.fr/hal-02558763

P R O D U C E D S O F T WA R E

linux kernel development

• Ipanema-enabled kernel, with the SaaKM scheduling class:
https://gitlab.inria.fr/ipanema-public/ipanema-kernel

• Frequency inversion patches (Slocal and Smove):
https://gitlab.inria.fr/whisper-public/atc20

frequency-related tools

• frequency_logger:
https://github.com/rgouicem/frequency_logger

• Per-core DVFS tester:
https://github.com/rgouicem/percoreDVFStester

visualization tools

• SchedDisplay:
https://github.com/carverdamien/SchedDisplay

137

https://gitlab.inria.fr/ipanema-public/ipanema-kernel
https://gitlab.inria.fr/whisper-public/atc20
https://github.com/rgouicem/frequency_logger
https://github.com/rgouicem/percoreDVFStester
https://github.com/carverdamien/SchedDisplay

B I B L I O G R A P H Y

[1] Luca Abeni, Alessandro Biondi, and Enrico Bini. “Hierarchical
scheduling of real-time tasks over Linux-based virtual ma-
chines.” In: J. Syst. Softw. 149 (2019), pp. 234–249. doi: 10.1016/
j.jss.2018.12.008. url: https://doi.org/10.1016/j.jss.
2018.12.008 (cit. on p. 40).

[2] Luca Abeni and Giorgio C. Buttazzo. “Integrating Multimedia
Applications in Hard Real-Time Systems.” In: Proceedings of the
19th IEEE Real-Time Systems Symposium, Madrid, Spain, December
2-4, 1998. 1998, pp. 4–13. doi: 10.1109/REAL.1998.739726. url:
https://doi.org/10.1109/REAL.1998.739726 (cit. on p. 31).

[3] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and Jonathan
Walpole. “Analysis of a Reservation-Based Feedback Sched-
uler.” In: Proceedings of the 23rd IEEE Real-Time Systems Sympo-
sium (RTSS’02), Austin, Texas, USA, December 3-5, 2002. IEEE
Computer Society, 2002, pp. 71–80. doi: 10.1109/REAL.2002.
1181563. url: https://doi.org/10.1109/REAL.2002.1181563
(cit. on p. 16).

[4] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah,
Peter Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima,
Japheth Lim, Thomas Sewell, Joseph Tuong, Gabriele Keller,
Toby C. Murray, Gerwin Klein, and Gernot Heiser. “CoGENT:
Verifying High-Assurance File System Implementations.” In:
Proceedings of the Twenty-First International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS ’16, Atlanta, GA, USA, April 2-6, 2016. 2016, pp. 175–
188. doi: 10.1145/2872362.2872404. url: https://doi.org/
10.1145/2872362.2872404 (cit. on p. 45).

[5] AMD. AMD - Turbo Core Technology. url: https://www.amd.
com/en/technologies/turbo-core (cit. on p. 80).

[6] AMD. AMD Ryzen™ Technology: Precision Boost 2 Performance
Enhancement. url: https://www.amd.com/en/support/kb/faq/
cpu-pb2 (cit. on p. 80).

[7] James H. Anderson, John M. Calandrino, and UmaMaheswari
C. Devi. “Real-Time Scheduling on Multicore Platforms.” In:
12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2006), 4-7 April 2006, San Jose, California, USA.
IEEE Computer Society, 2006, pp. 179–190. doi: 10.1109/RTAS.
2006.35. url: https://doi.org/10.1109/RTAS.2006.35 (cit.
on p. 16).

139

https://doi.org/10.1016/j.jss.2018.12.008
https://doi.org/10.1016/j.jss.2018.12.008
https://doi.org/10.1016/j.jss.2018.12.008
https://doi.org/10.1016/j.jss.2018.12.008
https://doi.org/10.1109/REAL.1998.739726
https://doi.org/10.1109/REAL.1998.739726
https://doi.org/10.1109/REAL.2002.1181563
https://doi.org/10.1109/REAL.2002.1181563
https://doi.org/10.1109/REAL.2002.1181563
https://doi.org/10.1145/2872362.2872404
https://doi.org/10.1145/2872362.2872404
https://doi.org/10.1145/2872362.2872404
https://www.amd.com/en/technologies/turbo-core
https://www.amd.com/en/technologies/turbo-core
https://www.amd.com/en/support/kb/faq/cpu-pb2
https://www.amd.com/en/support/kb/faq/cpu-pb2
https://doi.org/10.1109/RTAS.2006.35
https://doi.org/10.1109/RTAS.2006.35
https://doi.org/10.1109/RTAS.2006.35

140 bibliography

[8] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska,
and Henry M. Levy. “Scheduler Activations: Effective Kernel
Support for the User-Level Management of Parallelism.” In:
Proceedings of the Thirteenth ACM Symposium on Operating System
Principles, SOSP 1991, Asilomar Conference Center, Pacific Grove,
California, USA, October 13-16, 1991. Ed. by Henry M. Levy.
ACM, 1991, pp. 95–109. doi: 10.1145/121132.121151. url:
https://doi.org/10.1145/121132.121151 (cit. on p. 37).

[9] Christos D. Antonopoulos, Dimitrios S. Nikolopoulos, and
Theodore S. Papatheodorou. “Scheduling Algorithms with Bus
Bandwidth Considerations for SMPs.” In: 32nd International
Conference on Parallel Processing (ICPP 2003), 6-9 October 2003,
Kaohsiung, Taiwan. IEEE Computer Society, 2003, pp. 547–554.
doi: 10.1109/ICPP.2003.1240622. url: https://doi.org/10.
1109/ICPP.2003.1240622 (cit. on p. 16).

[10] Apache Hadoop. url: https://hadoop.apache.org/ (cit. on
p. 116).

[11] ARM - Technologies - ARM big.LITTLE. url: https://www.arm.
com/why-arm/technologies/big-little (cit. on p. 8).

[12] Neil C. Audsley. Deadline Monotonic Scheduling. 1990 (cit. on
p. 16).

[13] David H. Bailey, Eric Barszcz, John T. Barton, D. S. Browning,
Robert L. Carter, Leonardo Dagum, Rod Fatoohi, Paul O. Fred-
erickson, T. A. Lasinski, Robert Schreiber, Horst D. Simon, V.
Venkatakrishnan, and Sisira Weeratunga. “The NAS parallel
benchmarks - summary and preliminary results.” In: Proceed-
ings Supercomputing ’91, Albuquerque, NM, USA, November 18-22,
1991. 1991, pp. 158–165. doi: 10.1145/125826.125925. url:
https://doi.org/10.1145/125826.125925 (cit. on pp. 62, 88).

[14] Scott A. Banachowski and Scott A. Brandt. “Better Real-Time
Response for Time-Share Scheduling.” In: 17th International Par-
allel and Distributed Processing Symposium (IPDPS 2003), 22-26
April 2003, Nice, France, CD-ROM/Abstracts Proceedings. IEEE
Computer Society, 2003, p. 124. doi: 10.1109/IPDPS.2003.
1213246. url: https://doi.org/10.1109/IPDPS.2003.1213246
(cit. on p. 16).

[15] Jon C. R. Bennett and Hui Zhang. “WF2Q: Worst-Case Fair
Weighted Fair Queueing.” In: Proceedings IEEE INFOCOM ’96,
The Conference on Computer Communications, Fifteenth Annual
Joint Conference of the IEEE Computer and Communications Soci-
eties, Networking the Next Generation, San Francisco, CA, USA,
March 24-28, 1996. IEEE Computer Society, 1996, pp. 120–128.
doi: 10.1109/INFCOM.1996.497885. url: https://doi.org/10.
1109/INFCOM.1996.497885 (cit. on p. 15).

https://doi.org/10.1145/121132.121151
https://doi.org/10.1145/121132.121151
https://doi.org/10.1109/ICPP.2003.1240622
https://doi.org/10.1109/ICPP.2003.1240622
https://doi.org/10.1109/ICPP.2003.1240622
https://hadoop.apache.org/
https://www.arm.com/why-arm/technologies/big-little
https://www.arm.com/why-arm/technologies/big-little
https://doi.org/10.1145/125826.125925
https://doi.org/10.1145/125826.125925
https://doi.org/10.1109/IPDPS.2003.1213246
https://doi.org/10.1109/IPDPS.2003.1213246
https://doi.org/10.1109/IPDPS.2003.1213246
https://doi.org/10.1109/INFCOM.1996.497885
https://doi.org/10.1109/INFCOM.1996.497885
https://doi.org/10.1109/INFCOM.1996.497885

bibliography 141

[16] Arnd Bergmann. Killing the Big Kernel Lock. 2010. url: https:
//lwn.net/Articles/380174/ (cit. on p. 21).

[17] Christian Bienia. “Benchmarking Modern Multiprocessors.”
PhD thesis. Princeton University, Jan. 2011 (cit. on p. 116).

[18] Antoine Blin, Cédric Courtaud, Julien Sopena, Julia L. Lawall,
and Gilles Muller. “Maximizing Parallelism without Exploding
Deadlines in a Mixed Criticality Embedded System.” In: 28th
Euromicro Conference on Real-Time Systems, ECRTS 2016, Toulouse,
France, July 5-8, 2016. IEEE Computer Society, 2016, pp. 109–
119. doi: 10.1109/ECRTS.2016.18. url: https://doi.org/10.
1109/ECRTS.2016.18 (cit. on p. 17).

[19] R. T. Blosk. “The Instruction Unit of the Stretch Computer.”
In: Papers Presented at the December 13-15, 1960, Eastern Joint
IRE-AIEE-ACM Computer Conference. New York, NY, USA: As-
sociation for Computing Machinery, 1960. isbn: 9781450378710.
doi: 10.1145/1460512.1460539. url: https://doi.org/10.
1145/1460512.1460539 (cit. on p. 7).

[20] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and
Andrei Paskevich. “Why3: Shepherd Your Herd of Provers.”
In: Boogie 2011: First International Workshop on Intermediate Ver-
ification Languages. https://hal.inria.fr/hal- 00790310.
Wrocław, Poland, Aug. 2011, pp. 53–64 (cit. on pp. 45, 59).

[21] Bokeh documentation. url: https://bokeh.pydata.org/ (cit. on
p. 72).

[22] Justinien Bouron. [PATCH] Fix bug in which the long term ULE
load balancer is executed only once. 2017. url: https://bugs.
freebsd.org/bugzilla/show_bug.cgi?id=223914 (cit. on
p. 61).

[23] Justinien Bouron, Sebastien Chevalley, Baptiste Lepers, Willy
Zwaenepoel, Redha Gouicem, Julia Lawall, Gilles Muller, and
Julien Sopena. “The Battle of the Schedulers: FreeBSD ULE
vs. Linux CFS.” In: 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018. Ed. by
Haryadi S. Gunawi and Benjamin Reed. USENIX Association,
2018, pp. 85–96. url: https://www.usenix.org/conference/
atc18/presentation/bouron (cit. on pp. 35, 105).

[24] bpftrace: High-level tracing language for Linux eBPF. url: https:
//github.com/iovisor/bpftrace (cit. on p. 71).

[25] Andrey Breslav and Roman Elizarov. Kotlin Coroutines. url:
https://github.com/Kotlin/KEEP/blob/master/proposals/

coroutines.md (cit. on p. 39).

https://lwn.net/Articles/380174/
https://lwn.net/Articles/380174/
https://doi.org/10.1109/ECRTS.2016.18
https://doi.org/10.1109/ECRTS.2016.18
https://doi.org/10.1109/ECRTS.2016.18
https://doi.org/10.1145/1460512.1460539
https://doi.org/10.1145/1460512.1460539
https://doi.org/10.1145/1460512.1460539
https://hal.inria.fr/hal-00790310
https://bokeh.pydata.org/
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=223914
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=223914
https://www.usenix.org/conference/atc18/presentation/bouron
https://www.usenix.org/conference/atc18/presentation/bouron
https://github.com/iovisor/bpftrace
https://github.com/iovisor/bpftrace
https://github.com/Kotlin/KEEP/blob/master/proposals/coroutines.md
https://github.com/Kotlin/KEEP/blob/master/proposals/coroutines.md

142 bibliography

[26] Gunther Buschmann, Hans-Thomas Ebner, and Wieland Kuhn.
“Electronic Brake Force Distribution Control - A Sophisticated
Addition to ABS.” In: International Congress & Exposition. SAE
International, Feb. 1992. doi: https://doi.org/10.4271/
920646. url: https://doi.org/10.4271/920646 (cit. on p. 13).

[27] David Callahan, Bradford L. Chamberlain, and Hans P. Zima.
“The Cascade High Productivity Language.” In: 9th International
Workshop on High-Level Programming Models and Supportive Envi-
ronments (HIPS 2004), 26 April 2004, Santa Fe, NM, USA. IEEE
Computer Society, 2004, pp. 52–60. doi: 10.1109/HIPS.2004.
10002. url: http://doi.ieeecomputersociety.org/10.1109/
HIPS.2004.10002 (cit. on p. 38).

[28] Damien Carver, Redha Gouicem, Jean-Pierre Lozi, Julien Sopena,
Baptiste Lepers, Willy Zwaenepoel, Nicolas Palix, Julia Lawall,
and Gilles Muller. “Fork/Wait and Multicore Frequency Scal-
ing: a Generational Clash.” In: Proceedings of the 10th Workshop
on Programming Languages and Operating Systems, SOSP 2019,
Huntsville, ON, Canada, October 27-30, 2019. ACM, 2019, pp. 53–
59. doi: 10.1145/3365137.3365400. url: https://doi.org/10.
1145/3365137.3365400 (cit. on p. 104).

[29] CFS Scheduler Documentation. url: https://www.kernel.org/
doc/Documentation/scheduler/sched-design-CFS.txt (cit.
on p. 27).

[30] Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christo-
pher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von
Praun, and Vivek Sarkar. “X10: an object-oriented approach to
non-uniform cluster computing.” In: Proceedings of the 20th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2005, October 16-
20, 2005, San Diego, CA, USA. Ed. by Ralph E. Johnson and
Richard P. Gabriel. ACM, 2005, pp. 519–538. doi: 10.1145/
1094811.1094852. url: https://doi.org/10.1145/1094811.
1094852 (cit. on p. 38).

[31] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang,
Atalay Mert Ileri, Adam Chlipala, M. Frans Kaashoek, and
Nickolai Zeldovich. “Verifying a high-performance crash-safe
file system using a tree specification.” In: Proceedings of the
26th Symposium on Operating Systems Principles, Shanghai, China,
October 28-31, 2017. ACM, 2017, pp. 270–286. doi: 10.1145/
3132747.3132776. url: https://doi.org/10.1145/3132747.
3132776 (cit. on p. 61).

[32] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala,
M. Frans Kaashoek, and Nickolai Zeldovich. “Using Crash
Hoare logic for certifying the FSCQ file system.” In: Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP

https://doi.org/https://doi.org/10.4271/920646
https://doi.org/https://doi.org/10.4271/920646
https://doi.org/10.4271/920646
https://doi.org/10.1109/HIPS.2004.10002
https://doi.org/10.1109/HIPS.2004.10002
http://doi.ieeecomputersociety.org/10.1109/HIPS.2004.10002
http://doi.ieeecomputersociety.org/10.1109/HIPS.2004.10002
https://doi.org/10.1145/3365137.3365400
https://doi.org/10.1145/3365137.3365400
https://doi.org/10.1145/3365137.3365400
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/3132747.3132776
https://doi.org/10.1145/3132747.3132776
https://doi.org/10.1145/3132747.3132776
https://doi.org/10.1145/3132747.3132776

bibliography 143

2015, Monterey, CA, USA, October 4-7, 2015. 2015, pp. 18–37. doi:
10.1145/2815400.2815402. url: https://doi.org/10.1145/
2815400.2815402 (cit. on p. 61).

[33] Tim Chen, Leonid I Ananiev, and Alexander V Tikhonov.
“Keeping kernel performance from regressions.” In: Linux Sym-
posium. Vol. 1. 2007, pp. 93–102 (cit. on p. 61).

[34] Austin Clements. runtime: non-cooperative goroutine preemption.
2018. url: https://github.com/golang/go/issues/24543
(cit. on p. 38).

[35] Austin Clements. runtime: clean up async preemption loose ends.
2020. url: https://github.com/golang/go/issues/36365
(cit. on p. 38).

[36] cloc: cloc counts blank lines, comment lines, and physical lines
of source code in many programming languages. url: https://
github.com/AlDanial/cloc (cit. on p. 106).

[37] Jonathan Corbet. The real BKL end game. 2011. url: https://
lwn.net/Articles/424657/ (cit. on p. 21).

[38] Jonathan Corbet. Per-entity load tracking. Jan. 2013. url: https:
//lwn.net/Articles/531853/ (cit. on p. 28).

[39] Jonathan Corbet. TurboSched: the return of small-task packing. 2019.
url: https://lwn.net/Articles/792471/ (cit. on p. 103).

[40] Timothy Creech, Aparna Kotha, and Rajeev Barua. “Efficient
multiprogramming for multicores with SCAF.” In: The 46th
Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-46, Davis, CA, USA, December 7-11, 2013. Ed. by
Matthew K. Farrens and Christos Kozyrakis. ACM, 2013, pp. 334–
345. doi: 10.1145/2540708.2540737. url: https://doi.org/
10.1145/2540708.2540737 (cit. on p. 39).

[41] Crystal Language Reference - Concurrency. url: https://crystal-
lang.org/reference/guides/concurrency.html (cit. on p. 38).

[42] Tommaso Cucinotta, Fabio Checconi, Luca Abeni, and Luigi
Palopoli. “Self-tuning schedulers for legacy real-time applica-
tions.” In: European Conference on Computer Systems, Proceedings
of the 5th European conference on Computer systems, EuroSys 2010,
Paris, France, April 13-16, 2010. Ed. by Christine Morin and
Gilles Muller. ACM, 2010, pp. 55–68. doi: 10.1145/1755913.
1755921. url: https://doi.org/10.1145/1755913.1755921
(cit. on p. 16).

[43] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. “Par-
allel computer architecture - a hardware / software approach.”
In: Morgan Kaufmann, 1999, p. 32. isbn: 978-1-55860-343-1 (cit.
on p. 9).

https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/2815400.2815402
https://doi.org/10.1145/2815400.2815402
https://github.com/golang/go/issues/24543
https://github.com/golang/go/issues/36365
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://lwn.net/Articles/424657/
https://lwn.net/Articles/424657/
https://lwn.net/Articles/531853/
https://lwn.net/Articles/531853/
https://lwn.net/Articles/792471/
https://doi.org/10.1145/2540708.2540737
https://doi.org/10.1145/2540708.2540737
https://doi.org/10.1145/2540708.2540737
https://crystal-lang.org/reference/guides/concurrency.html
https://crystal-lang.org/reference/guides/concurrency.html
https://doi.org/10.1145/1755913.1755921
https://doi.org/10.1145/1755913.1755921
https://doi.org/10.1145/1755913.1755921

144 bibliography

[44] Leonardo Dagum and Ramesh Menon. “OpenMP: an industry
standard API for shared-memory programming.” In: Computa-
tional Science & Engineering, IEEE 5.1 (1998), pp. 46–55 (cit. on
pp. 17, 39).

[45] Datashader documentation. url: https://datashader.org/ (cit.
on p. 72).

[46] Alan J. Demers, Srinivasan Keshav, and Scott Shenker. “Anal-
ysis and Simulation of a Fair Queueing Algorithm.” In: SIG-
COMM ’89, Proceedings of the ACM Symposium on Communica-
tions Architectures & Protocols, Austin, TX, USA, September 19-22,
1989. Ed. by Lawrence H. Landweber. ACM, 1989, pp. 1–12.
doi: 10.1145/75246.75248. url: https://doi.org/10.1145/
75246.75248 (cit. on p. 15).

[47] John DiGiglio, David Hunt, Ai Bee Lim, Chris MacNamara,
and Timothy Miskell. Intel® Speed Select Technology – Base Fre-
quency - Enhancing Performance. 2019. url: https://builders.
intel . com / docs / networkbuilders / intel - speed - select -

technology- base- frequency- enhancing- performance.pdf

(cit. on p. 79).

[48] Alan A.A. Donovan and Brian W. Kernighan. The Go Program-
ming Language. 1st. Addison-Wesley Professional, 2015. isbn:
0134190440 (cit. on p. 17).

[49] Michael Drescher, Vincent Legout, Antonio Barbalace, and
Binoy Ravindran. “A flattened hierarchical scheduler for real-
time virtualization.” In: 2016 International Conference on Em-
bedded Software, EMSOFT 2016, Pittsburgh, Pennsylvania, USA,
October 1-7, 2016. Ed. by Petru Eles and Rahul Mangharam.
ACM, 2016, 12:1–12:10. doi: 10.1145/2968478.2968501. url:
https://doi.org/10.1145/2968478.2968501 (cit. on p. 40).

[50] Kenneth J. Duda and David R. Cheriton. “Borrowed-virtual-
time (BVT) scheduling: supporting latency-sensitive threads in
a general-purpose schedular.” In: Proceedings of the 17th ACM
Symposium on Operating System Principles, SOSP 1999, Kiawah
Island Resort, near Charleston, South Carolina, USA, December
12-15, 1999. Ed. by David Kotz and John Wilkes. ACM, 1999,
pp. 261–276. doi: 10.1145/319151.319169. url: https://doi.
org/10.1145/319151.319169 (cit. on p. 16).

[51] Adam Dunkels. Protothreads. url: http://dunkels.com/adam/
pt/index.html (cit. on p. 39).

[52] Dyalog Programming Reference Guide - Threads. url: http://help.
dyalog . com / latest / index . htm # Language / Introduction /

Threads/Multithreading%20Overview.htm (cit. on p. 38).

[53] Eclipse. Trace Compass. url: https : / / www . eclipse . org /

tracecompass/ (cit. on p. 71).

https://datashader.org/
https://doi.org/10.1145/75246.75248
https://doi.org/10.1145/75246.75248
https://doi.org/10.1145/75246.75248
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-enhancing-performance.pdf
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-enhancing-performance.pdf
https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-enhancing-performance.pdf
https://doi.org/10.1145/2968478.2968501
https://doi.org/10.1145/2968478.2968501
https://doi.org/10.1145/319151.319169
https://doi.org/10.1145/319151.319169
https://doi.org/10.1145/319151.319169
http://dunkels.com/adam/pt/index.html
http://dunkels.com/adam/pt/index.html
http://help.dyalog.com/latest/index.htm#Language/Introduction/Threads/Multithreading%20Overview.htm
http://help.dyalog.com/latest/index.htm#Language/Introduction/Threads/Multithreading%20Overview.htm
http://help.dyalog.com/latest/index.htm#Language/Introduction/Threads/Multithreading%20Overview.htm
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/

bibliography 145

[54] Eclipse OpenJ9 Documentation - Java Dump. url: https://www.
eclipse.org/openj9/docs/dump_javadump/#threads (cit. on
p. 38).

[55] Ralf S. Engelschall. GNU Pth - The GNU Portable Threads. url:
https://www.gnu.org/software/pth/ (cit. on p. 39).

[56] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. “A
Non-Work-Conserving Operating System Scheduler for SMT
Processors.” In: Proceedings of the Workshop on the Interaction be-
tween Operating Systems and Computer Architecture, in conjunction
with ISCA (Vol. 33). 2006, pp. 10–17 (cit. on p. 16).

[57] Alexandra Fedorova, Margo I. Seltzer, Christopher Small, and
Daniel Nussbaum. “Performance of Multithreaded Chip Mul-
tiprocessors and Implications for Operating System Design.”
In: Proceedings of the 2005 USENIX Annual Technical Conference,
April 10-15, 2005, Anaheim, CA, USA. USENIX, 2005, pp. 395–
398. url: http://www.usenix.org/events/usenix05/tech/
general/fedorova.html (cit. on p. 16).

[58] Alexandra Fedorova, Margo I. Seltzer, and Michael D. Smith.
“Improving Performance Isolation on Chip Multiprocessors via
an Operating System Scheduler.” In: 16th International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT
2007), Brasov, Romania, September 15-19, 2007. IEEE Computer
Society, 2007, pp. 25–38. doi: 10.1109/PACT.2007.40. url:
http://doi.ieeecomputersociety.org/10.1109/PACT.2007.

40 (cit. on p. 16).

[59] Matt Fleming. A thorough introduction to eBPF. 2017. url: https:
//lwn.net/Articles/740157/ (cit. on p. 71).

[60] FreeBSD 12.0 Performance Against Windows & Linux On An Intel
Xeon Server. Dec. 2018. url: https://www.phoronix.com/scan.
php?page=article&item=freebsd-12-windows (cit. on p. 105).

[61] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. “The
Implementation of the Cilk-5 Multithreaded Language.” In:
Proceedings of the ACM SIGPLAN ’98 Conference on Programming
Language Design and Implementation (PLDI), Montreal, Canada,
June 17-19, 1998. Ed. by Jack W. Davidson, Keith D. Cooper,
and A. Michael Berman. ACM, 1998, pp. 212–223. doi: 10.
1145/277650.277725. url: https://doi.org/10.1145/277650.
277725 (cit. on p. 39).

[62] GalliumOS: A fast and lightweight Linux distro for ChromeOS
devices. url: https://galliumos.org/ (cit. on p. 33).

[63] Getting Started with Erlang - Concurrent Programming. url: https:
//erlang.org/doc/getting_started/conc_prog.html (cit. on
p. 38).

https://www.eclipse.org/openj9/docs/dump_javadump/#threads
https://www.eclipse.org/openj9/docs/dump_javadump/#threads
https://www.gnu.org/software/pth/
http://www.usenix.org/events/usenix05/tech/general/fedorova.html
http://www.usenix.org/events/usenix05/tech/general/fedorova.html
https://doi.org/10.1109/PACT.2007.40
http://doi.ieeecomputersociety.org/10.1109/PACT.2007.40
http://doi.ieeecomputersociety.org/10.1109/PACT.2007.40
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://www.phoronix.com/scan.php?page=article&item=freebsd-12-windows
https://www.phoronix.com/scan.php?page=article&item=freebsd-12-windows
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/277650.277725
https://galliumos.org/
https://erlang.org/doc/getting_started/conc_prog.html
https://erlang.org/doc/getting_started/conc_prog.html

146 bibliography

[64] Google. Google Open Source Blog – Understanding Scheduling Be-
havior with SchedViz. 2019. url: https://opensource.googleblog.
com/2019/10/understanding- scheduling- behavior- with.

html (cit. on p. 71).

[65] Google. SchedViz: A tool for gathering and visualizing kernel schedul-
ing traces on Linux machines. url: https://github.com/google/
schedviz (cit. on p. 71).

[66] Redha Gouicem, Damien Carver, Jean-Pierre Lozi, Julien Sopena,
Baptiste Lepers, Willy Zwaenepoel, Nicolas Palix, Julia Lawall,
and Gilles Muller. “Fewer Cores, More Hertz: Leveraging High-
Frequency Cores in the OS Scheduler for Improved Application
Performance.” In: 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020. Ed. by Ada Gavrilovska
and Erez Zadok. USENIX Association, 2020, pp. 435–448. url:
https://www.usenix.org/conference/atc20/presentation/

gouicern (cit. on p. 104).

[67] Redha Gouicem, Julien Sopena, Julia Lawall, Gilles Muller,
Baptiste Lepers, Willy Zwaenepoel, Jean-Pierre Lozi, and Nico-
las Palix. “Ipanema : un Langage Dédié pour le Développe-
ment d’Ordonnanceurs Multi-Coeur Sûrs.” In: Compas 2017:
Conférence d’informatique en Parallélisme, Architecture et Système.
Sophia Antipolis, France, June 2017. url: https://hal.sorbonne-
universite.fr/hal-02111160 (cit. on p. 68).

[68] Redha Gouicem, Julien Sopena, Julia Lawall, Gilles Muller,
Baptiste Lepers, Willy Zwaenepoel, Jean-Pierre Lozi, and Nico-
las Palix. “Understanding Scheduler Performance : a Feature-
Based Approach.” In: Compas 2019: Conférence d’informatique en
Parallélisme, Architecture et Système. Anglet, France, June 2019.
url: https://hal.archives-ouvertes.fr/hal-02558763 (cit.
on p. 130).

[69] graysky. CPU Schedulers Compared. url: http://repo-ck.com/
bench/cpu_schedulers_compared.pdf (cit. on p. 33).

[70] greenlet: Lightweight concurrent programming. url: https:/ /

greenlet.readthedocs.io/ (cit. on p. 39).

[71] Michael Gschwind, H. Peter Hofstee, Brian K. Flachs, Martin
Hopkins, Yukio Watanabe, and Takeshi Yamazaki. “Synergistic
Processing in Cell’s Multicore Architecture.” In: IEEE Micro
26.2 (2006), pp. 10–24. doi: 10.1109/MM.2006.41. url: https:
//doi.org/10.1109/MM.2006.41 (cit. on p. 8).

[72] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman)
Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. “Cer-
tiKOS: An Extensible Architecture for Building Certified Con-
current OS Kernels.” In: 12th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI 2016, Savannah,

https://opensource.googleblog.com/2019/10/understanding-scheduling-behavior-with.html
https://opensource.googleblog.com/2019/10/understanding-scheduling-behavior-with.html
https://opensource.googleblog.com/2019/10/understanding-scheduling-behavior-with.html
https://github.com/google/schedviz
https://github.com/google/schedviz
https://www.usenix.org/conference/atc20/presentation/gouicern
https://www.usenix.org/conference/atc20/presentation/gouicern
https://hal.sorbonne-universite.fr/hal-02111160
https://hal.sorbonne-universite.fr/hal-02111160
https://hal.archives-ouvertes.fr/hal-02558763
http://repo-ck.com/bench/cpu_schedulers_compared.pdf
http://repo-ck.com/bench/cpu_schedulers_compared.pdf
https://greenlet.readthedocs.io/
https://greenlet.readthedocs.io/
https://doi.org/10.1109/MM.2006.41
https://doi.org/10.1109/MM.2006.41
https://doi.org/10.1109/MM.2006.41

bibliography 147

GA, USA, November 2-4, 2016. Ed. by Kimberly Keeton and
Timothy Roscoe. USENIX Association, 2016, pp. 653–669. url:
https://www.usenix.org/conference/osdi16/technical-

sessions/presentation/gu (cit. on p. 61).

[73] Leonidas J. Guibas and Robert Sedgewick. “A Dichromatic
Framework for Balanced Trees.” In: 19th Annual Symposium
on Foundations of Computer Science, Ann Arbor, Michigan, USA,
16-18 October 1978. IEEE Computer Society, 1978, pp. 8–21. doi:
10.1109/SFCS.1978.3. url: https://doi.org/10.1109/SFCS.
1978.3 (cit. on pp. 27, 112).

[74] Michael González Harbour, Mark H. Klein, and John P. Lehoczky.
“Fixed priority scheduling periodic tasks with varying execu-
tion priority.” In: Proceedings of the Real-Time Systems Symposium
- 1991, San Antonio, Texas, USA, December 1991. IEEE Computer
Society, 1991, pp. 116–128. doi: 10.1109/REAL.1991.160365.
url: https://doi.org/10.1109/REAL.1991.160365 (cit. on
p. 15).

[75] Tim Harris, Martin Maas, and Virendra J. Marathe. “Callisto:
co-scheduling parallel runtime systems.” In: Ninth Eurosys Con-
ference 2014, EuroSys 2014, Amsterdam, The Netherlands, April
13-16, 2014. Ed. by Dick C. A. Bulterman, Herbert Bos, Antony
I. T. Rowstron, and Peter Druschel. ACM, 2014, 24:1–24:14. doi:
10.1145/2592798.2592807. url: https://doi.org/10.1145/
2592798.2592807 (cit. on p. 39).

[76] Gary J. Henry. “The UNIX system: The fair share scheduler.”
In: AT&T Bell Lab. Tech. J. 63.8 (1984), pp. 1845–1857. doi: 10.
1002/j.1538-7305.1984.tb00068.x. url: https://doi.org/
10.1002/j.1538-7305.1984.tb00068.x (cit. on p. 15).

[77] HotSpot Runtime Overview. url: https://openjdk.java.net/
groups/hotspot/docs/RuntimeOverview.html (cit. on p. 38).

[78] Brett Howse. Examining Intel’s New Speed Shift Tech on Sky-
lake: More Responsive Processors. Nov. 2015. url: https : / /

www.anandtech.com/show/9751/examining-intel-skylake-

speed-shift-more-responsive-processors (cit. on p. 79).

[79] Galen C. Hunt and James R. Larus. “Singularity: rethinking
the software stack.” In: Operating Systems Review 41.2 (2007),
pp. 37–49. doi: 10.1145/1243418.1243424. url: https://doi.
org/10.1145/1243418.1243424 (cit. on p. 17).

[80] Wenwei W. Hwu and Yale N. Patt. “HPSm, a High Perfor-
mance Restricted Data Flow Architecture Having Minimal
Functionality.” In: Proceedings of the 13th Annual Symposium
on Computer Architecture, Tokyo, Japan, June 1986. Ed. by Hideo
Aiso. IEEE Computer Society, 1986, pp. 297–306. url: https:
//dl.acm.org/citation.cfm?id=17391 (cit. on p. 7).

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.1109/SFCS.1978.3
https://doi.org/10.1109/REAL.1991.160365
https://doi.org/10.1109/REAL.1991.160365
https://doi.org/10.1145/2592798.2592807
https://doi.org/10.1145/2592798.2592807
https://doi.org/10.1145/2592798.2592807
https://doi.org/10.1002/j.1538-7305.1984.tb00068.x
https://doi.org/10.1002/j.1538-7305.1984.tb00068.x
https://doi.org/10.1002/j.1538-7305.1984.tb00068.x
https://doi.org/10.1002/j.1538-7305.1984.tb00068.x
https://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html
https://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html
https://www.anandtech.com/show/9751/examining-intel-skylake-speed-shift-more-responsive-processors
https://www.anandtech.com/show/9751/examining-intel-skylake-speed-shift-more-responsive-processors
https://www.anandtech.com/show/9751/examining-intel-skylake-speed-shift-more-responsive-processors
https://doi.org/10.1145/1243418.1243424
https://doi.org/10.1145/1243418.1243424
https://doi.org/10.1145/1243418.1243424
https://dl.acm.org/citation.cfm?id=17391
https://dl.acm.org/citation.cfm?id=17391

148 bibliography

[81] IEEE Standard for Information Technology–Portable Operating Sys-
tem Interface (POSIX(R)) Base Specifications. IEEE Std 1003.1-2017

(Revision of IEEE Std 1003.1-2008), Jan. 2018. url: https://
pubs.opengroup.org/onlinepubs/9699919799/nframe.html

(cit. on p. 18).

[82] Intel. Enhanced Intel® SpeedStep® Technology for the Intel® Pen-
tium® M Processor. Mar. 2004. url: http://download.intel.
com/design/network/papers/30117401.pdf (cit. on p. 79).

[83] Intel. Intel® Turbo Boost Technology 2.0 - Higher Performance When
You Need It Most. url: https://www.intel.com/content/www/
us/en/architecture-and-technology/turbo-boost/turbo-

boost-technology.html (cit. on p. 79).

[84] Intel HiBench - HiBench is a big data benchmark suite. url: https:
//github.com/intel-hadoop/HiBench (cit. on p. 116).

[85] Intel® Hyper-Threading Technology. url: https://www.intel.
com/content/www/us/en/architecture- and- technology/

hyper-threading/hyper-threading-technology.html (cit. on
p. 7).

[86] Introducing AMD Ryzen™ Desktop Processors with Radeon™ Vega
Graphics: The Next Step in Computing. url: https://www.amd.
com/en/partner/amd-ryzen-radeon-vega (cit. on p. 8).

[87] JamVM. url: http://jamvm.sourceforge.net/ (cit. on p. 38).

[88] JikesRVM - Chapter 14: Core Runtime Services. url: https://
www.jikesrvm.org/UserGuide/CoreRuntimeServices/index.

html#x17-18500014.3 (cit. on p. 38).

[89] Julia 1.5-DEV Documentation - Control Flow. url: https : / /

docs.julialang.org/en/latest/manual/control-flow/#man-

tasks-1 (cit. on p. 38).

[90] Svilen Kanev, Juan Pablo Darago, Kim M. Hazelwood, Parthasarathy
Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David M. Brooks.
“Profiling a warehouse-scale computer.” In: Proceedings of the
42nd Annual International Symposium on Computer Architecture,
Portland, OR, USA, June 13-17, 2015. Ed. by Deborah T. Marr
and David H. Albonesi. ACM, 2015, pp. 158–169. doi: 10.1145/
2749469.2750392. url: https://doi.org/10.1145/2749469.
2750392 (cit. on p. 43).

[91] Kyo Kang, Sholom Cohen, James Hess, William Novak, and
A. Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Tech. rep. CMU/SEI-90-TR-021. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1990. url:
http://resources.sei.cmu.edu/library/asset-view.cfm?

AssetID=11231 (cit. on p. 110).

https://pubs.opengroup.org/onlinepubs/9699919799/nframe.html
https://pubs.opengroup.org/onlinepubs/9699919799/nframe.html
http://download.intel.com/design/network/papers/30117401.pdf
http://download.intel.com/design/network/papers/30117401.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/HiBench
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.amd.com/en/partner/amd-ryzen-radeon-vega
https://www.amd.com/en/partner/amd-ryzen-radeon-vega
http://jamvm.sourceforge.net/
https://www.jikesrvm.org/UserGuide/CoreRuntimeServices/index.html#x17-18500014.3
https://www.jikesrvm.org/UserGuide/CoreRuntimeServices/index.html#x17-18500014.3
https://www.jikesrvm.org/UserGuide/CoreRuntimeServices/index.html#x17-18500014.3
https://docs.julialang.org/en/latest/manual/control-flow/#man-tasks-1
https://docs.julialang.org/en/latest/manual/control-flow/#man-tasks-1
https://docs.julialang.org/en/latest/manual/control-flow/#man-tasks-1
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/2749469.2750392
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

bibliography 149

[92] Judy Kay and Piers Lauder. “A Fair Share Scheduler.” In:
Commun. ACM 31.1 (1988), pp. 44–55. doi: 10.1145/35043.
35047. url: https://doi.org/10.1145/35043.35047 (cit. on
p. 15).

[93] William Kennedy. Scheduling In Go : Part II - Go Scheduler. 2018.
url: https://www.ardanlabs.com/blog/2018/08/scheduling-
in-go-part2.html (cit. on p. 38).

[94] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June An-
dronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. “seL4: formal verifica-
tion of an OS kernel.” In: Proceedings of the 22nd ACM Sym-
posium on Operating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009. Ed. by Jeanna Neefe
Matthews and Thomas E. Anderson. ACM, 2009, pp. 207–220.
doi: 10.1145/1629575.1629596. url: https://doi.org/10.
1145/1629575.1629596 (cit. on p. 61).

[95] Con Kolivas. Re: BFS vs. mainline scheduler benchmarks and
measurements. 2009. url: https://lore.kernel.org/lkml/
200909101102.56615.kernel@kolivas.org/ (cit. on p. 69).

[96] Con Kolivas. FAQs about BFS. url: http://ck.kolivas.org/
patches/bfs/bfs-faq.txt (cit. on p. 33).

[97] Con Kolivas. MuQSS - The Multiple Queue Skiplist Scheduler. url:
http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt

(cit. on p. 33).

[98] Alexey Kopytov. Sysbench - Scriptable database and system per-
formance benchmark. url: https : / / github . com / akopytov /

sysbench (cit. on pp. 62, 116).

[99] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy
Nisbet, John Mawer, and Mikel Luján. “Heterogeneous Man-
aged Runtime Systems: A Computer Vision Case Study.” In:
Proceedings of the 13th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE 2017, Xi’an, China,
April 8-9, 2017. ACM, 2017, pp. 74–82. doi: 10.1145/3050748.
3050764. url: https://doi.org/10.1145/3050748.3050764
(cit. on p. 38).

[100] Martin Kováčik. PostgreSQL benchmark on FreeBSD, CentOS,
Ubuntu Debian and openSUSE. Dec. 2017. url: https://redbyte.
eu/en/blog/postgresql-benchmark-freebsd-centos-ubuntu-

debian-opensuse/ (cit. on p. 105).

[101] Charles Krasic, Mayukh Saubhasik, Anirban Sinha, and Ashvin
Goel. “Fair and timely scheduling via cooperative polling.” In:
Proceedings of the 2009 EuroSys Conference, Nuremberg, Germany,
April 1-3, 2009. Ed. by Wolfgang Schröder-Preikschat, John

https://doi.org/10.1145/35043.35047
https://doi.org/10.1145/35043.35047
https://doi.org/10.1145/35043.35047
https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part2.html
https://www.ardanlabs.com/blog/2018/08/scheduling-in-go-part2.html
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://lore.kernel.org/lkml/200909101102.56615.kernel@kolivas.org/
https://lore.kernel.org/lkml/200909101102.56615.kernel@kolivas.org/
http://ck.kolivas.org/patches/bfs/bfs-faq.txt
http://ck.kolivas.org/patches/bfs/bfs-faq.txt
http://ck.kolivas.org/patches/muqss/sched-MuQSS.txt
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench
https://doi.org/10.1145/3050748.3050764
https://doi.org/10.1145/3050748.3050764
https://doi.org/10.1145/3050748.3050764
https://redbyte.eu/en/blog/postgresql-benchmark-freebsd-centos-ubuntu-debian-opensuse/
https://redbyte.eu/en/blog/postgresql-benchmark-freebsd-centos-ubuntu-debian-opensuse/
https://redbyte.eu/en/blog/postgresql-benchmark-freebsd-centos-ubuntu-debian-opensuse/

150 bibliography

Wilkes, and Rebecca Isaacs. ACM, 2009, pp. 103–116. doi: 10.
1145/1519065.1519077. url: https://doi.org/10.1145/
1519065.1519077 (cit. on p. 16).

[102] Sun Labs. Fortress GitHub repository. url: https://github.com/
stokito/fortress-lang (cit. on p. 38).

[103] Adam Lackorzynski, Alexander Warg, Marcus Völp, and Her-
mann Härtig. “Flattening hierarchical scheduling.” In: Proceed-
ings of the 12th International Conference on Embedded Software,
EMSOFT 2012, part of the Eighth Embedded Systems Week, ESWeek
2012, Tampere, Finland, October 7-12, 2012. Ed. by Ahmed Jer-
raya, Luca P. Carloni, Florence Maraninchi, and John Regehr.
ACM, 2012, pp. 93–102. doi: 10.1145/2380356.2380376. url:
https://doi.org/10.1145/2380356.2380376 (cit. on p. 40).

[104] John P. Lehoczky. “Fixed Priority Scheduling of Periodic Task
Sets with Arbitrary Deadlines.” In: Proceedings of the Real-Time
Systems Symposium - 1990, Lake Buena Vista, Florida, USA, De-
cember 1990. IEEE Computer Society, 1990, pp. 201–209. doi:
10.1109/REAL.1990.128748. url: https://doi.org/10.1109/
REAL.1990.128748 (cit. on p. 15).

[105] Baptiste Lepers, Redha Gouicem, Damien Carver, Jean-Pierre
Lozi, Nicolas Palix, Maria-Virginia Aponte, Willy Zwaenepoel,
Julien Sopena, Julia Lawall, and Gilles Muller. “Provable mul-
ticore schedulers with Ipanema: application to work conser-
vation.” In: EuroSys ’20: Fifteenth EuroSys Conference 2020, Her-
aklion, Greece, April 27-30, 2020. Ed. by Angelos Bilas, Kostas
Magoutis, Evangelos P. Markatos, Dejan Kostic, and Margo
Seltzer. ACM, Apr. 2020, 3:1–3:16. doi: 10 . 1145 / 3342195 .

3387544. url: https://doi.org/10.1145/3342195.3387544
(cit. on pp. 60, 68).

[106] Baptiste Lepers, Willy Zwaenepoel, Jean-Pierre Lozi, Nicolas
Palix, Redha Gouicem, Julien Sopena, Julia Lawall, and Gilles
Muller. “Towards Proving Optimistic Multicore Schedulers.”
In: Proceedings of the 16th Workshop on Hot Topics in Operating
Systems, HotOS 2017, Whistler, BC, Canada, May 8-10, 2017. Ed.
by Alexandra Fedorova, Andrew Warfield, Ivan Beschastnikh,
and Rachit Agarwal. ACM, 2017, pp. 18–23. doi: 10.1145/
3102980.3102984. url: https://doi.org/10.1145/3102980.
3102984 (cit. on p. 68).

[107] Jochen Liedtke. “On micro-Kernel Construction.” In: Proceed-
ings of the Fifteenth ACM Symposium on Operating System Prin-
ciples, SOSP 1995, Copper Mountain Resort, Colorado, USA, De-
cember 3-6, 1995. Ed. by Michael B. Jones. ACM, 1995, pp. 237–
250. doi: 10.1145/224056.224075. url: https://doi.org/10.
1145/224056.224075 (cit. on p. 17).

https://doi.org/10.1145/1519065.1519077
https://doi.org/10.1145/1519065.1519077
https://doi.org/10.1145/1519065.1519077
https://doi.org/10.1145/1519065.1519077
https://github.com/stokito/fortress-lang
https://github.com/stokito/fortress-lang
https://doi.org/10.1145/2380356.2380376
https://doi.org/10.1145/2380356.2380376
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1145/3342195.3387544
https://doi.org/10.1145/3342195.3387544
https://doi.org/10.1145/3342195.3387544
https://doi.org/10.1145/3102980.3102984
https://doi.org/10.1145/3102980.3102984
https://doi.org/10.1145/3102980.3102984
https://doi.org/10.1145/3102980.3102984
https://doi.org/10.1145/224056.224075
https://doi.org/10.1145/224056.224075
https://doi.org/10.1145/224056.224075

bibliography 151

[108] Linux Test Project - Testing Linux, one syscall at a time. url: https:
//linux-test-project.github.io/ (cit. on pp. 61, 98, 116).

[109] John S. Liptay. “Structural Aspects of the System/360 Model
85 II: The Cache.” In: IBM Syst. J. 7.1 (1968), pp. 15–21. doi:
10.1147/sj.71.0015. url: https://doi.org/10.1147/sj.71.
0015 (cit. on p. 8).

[110] C. L. Liu and James W. Layland. “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment.” In: J.
ACM 20.1 (1973), pp. 46–61. doi: 10.1145/321738.321743. url:
http://doi.acm.org/10.1145/321738.321743 (cit. on pp. 16,
31).

[111] Robert Love. Linux Kernel Development (2nd Edition). Novell
Press, 2005. isbn: 0672327201 (cit. on p. 25).

[112] Robert Love. Linux Kernel Development (3rd Edition). Addison-
Wesley Professional, 2010. isbn: 0672329468 (cit. on p. 27).

[113] Jean-Pierre Lozi, Baptiste Lepers, Justin R. Funston, Fabien
Gaud, Vivien Quéma, and Alexandra Fedorova. “The Linux
scheduler: a decade of wasted cores.” In: Proceedings of the
Eleventh European Conference on Computer Systems, EuroSys 2016,
London, United Kingdom, April 18-21, 2016. Ed. by Cristian Cadar,
Peter R. Pietzuch, Kimberly Keeton, and Rodrigo Rodrigues.
ACM, 2016, 1:1–1:16. doi: 10.1145/2901318.2901326. url:
https://doi.org/10.1145/2901318.2901326 (cit. on pp. 61,
72, 100).

[114] Lua 5.1 Reference Manual - Coroutines. url: http://www.lua.
org/manual/5.1/manual.html#2.11 (cit. on p. 38).

[115] Linux Programmer’s Manual. sched(7) – Linux manual page. url:
https://man7.org/linux/man-pages/man7/sched.7.html

(cit. on p. 31).

[116] Simon Marlow, Simon L. Peyton Jones, and Satnam Singh.
“Runtime support for multicore Haskell.” In: Proceeding of
the 14th ACM SIGPLAN international conference on Functional
programming, ICFP 2009, Edinburgh, Scotland, UK, August 31 -
September 2, 2009. Ed. by Graham Hutton and Andrew P. Tol-
mach. ACM, 2009, pp. 65–78. doi: 10.1145/1596550.1596563.
url: https://doi.org/10.1145/1596550.1596563 (cit. on
p. 38).

[117] Abdelhafid Mazouz, Alexandre Laurent, Benoît Pradelle, and
William Jalby. “Evaluation of CPU frequency transition la-
tency.” In: Comput. Sci. Res. Dev. 29.3-4 (2014), pp. 187–195. doi:
10.1007/s00450- 013- 0240- x. url: https://doi.org/10.
1007/s00450-013-0240-x (cit. on p. 82).

https://linux-test-project.github.io/
https://linux-test-project.github.io/
https://doi.org/10.1147/sj.71.0015
https://doi.org/10.1147/sj.71.0015
https://doi.org/10.1147/sj.71.0015
https://doi.org/10.1145/321738.321743
http://doi.acm.org/10.1145/321738.321743
https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1145/2901318.2901326
http://www.lua.org/manual/5.1/manual.html#2.11
http://www.lua.org/manual/5.1/manual.html#2.11
https://man7.org/linux/man-pages/man7/sched.7.html
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1007/s00450-013-0240-x
https://doi.org/10.1007/s00450-013-0240-x
https://doi.org/10.1007/s00450-013-0240-x

152 bibliography

[118] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and
John S. Quarterman. The Design and Implementation of the 4.4BSD
Operating System. USA: Addison Wesley Longman Publishing
Co., Inc., 1996. isbn: 0201549794 (cit. on p. 34).

[119] Phoronix Media. Phoronix Test Suite – Linux Testing & Bench-
marking Platform, Automated Testing, Open-Source Benchmarking.
url: http://www.phoronix-test-suite.com (cit. on pp. 88,
116).

[120] Andreas Merkel, Jan Stoess, and Frank Bellosa. “Resource-
conscious scheduling for energy efficiency on multicore proces-
sors.” In: European Conference on Computer Systems, Proceedings
of the 5th European conference on Computer systems, EuroSys 2010,
Paris, France, April 13-16, 2010. Ed. by Christine Morin and
Gilles Muller. ACM, 2010, pp. 153–166. doi: 10.1145/1755913.
1755930. url: https://doi.org/10.1145/1755913.1755930
(cit. on pp. 16, 17).

[121] Microsoft Docs - Fibers - Win32 apps. url: https://docs.microsoft.
com/fr-fr/windows/win32/procthread/fibers (cit. on p. 38).

[122] Microsoft Docs - Managing Hyper-V hypervisor scheduler types.
2018. url: https://docs.microsoft.com/en- us/windows-
server/virtualization/hyper-v/manage/manage-hyper-v-

scheduler-types (cit. on p. 40).

[123] Microsoft Docs - Scheduling - Win32 apps. 2018. url: https :

//docs.microsoft.com/en-us/windows/win32/procthread/

scheduling (cit. on p. 35).

[124] Microsoft Docs - User-Mode Scheduling. 2018. url: https://docs.
microsoft.com/en- us/windows/win32/procthread/user-

mode-scheduling (cit. on p. 36).

[125] Ingo Molnar. BFS vs. mainline scheduler benchmarks and measure-
ments. 2009. url: https://lkml.org/lkml/2009/9/6/136
(cit. on p. 33).

[126] Hisham Muhammad. htop. url: https://github.com/hishamhm/
htop (cit. on p. 70).

[127] Gilles Muller, Julia L. Lawall, and Hervé Duchesne. “A Frame-
work for Simplifying the Development of Kernel Schedulers:
Design and Performance Evaluation.” In: Ninth IEEE Interna-
tional Symposium on High Assurance Systems Engineering (HASE
2005), 12-14 October 2005, Heidelberg, Germany. IEEE Computer
Society, 2005, pp. 56–65. doi: 10.1109/HASE.2005.1. url:
https://doi.org/10.1109/HASE.2005.1 (cit. on p. 45).

http://www.phoronix-test-suite.com
https://doi.org/10.1145/1755913.1755930
https://doi.org/10.1145/1755913.1755930
https://doi.org/10.1145/1755913.1755930
https://docs.microsoft.com/fr-fr/windows/win32/procthread/fibers
https://docs.microsoft.com/fr-fr/windows/win32/procthread/fibers
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types
https://docs.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types
https://docs.microsoft.com/en-us/windows/win32/procthread/scheduling
https://docs.microsoft.com/en-us/windows/win32/procthread/scheduling
https://docs.microsoft.com/en-us/windows/win32/procthread/scheduling
https://docs.microsoft.com/en-us/windows/win32/procthread/user-mode-scheduling
https://docs.microsoft.com/en-us/windows/win32/procthread/user-mode-scheduling
https://docs.microsoft.com/en-us/windows/win32/procthread/user-mode-scheduling
https://lkml.org/lkml/2009/9/6/136
https://github.com/hishamhm/htop
https://github.com/hishamhm/htop
https://doi.org/10.1109/HASE.2005.1
https://doi.org/10.1109/HASE.2005.1

bibliography 153

[128] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R.
Engler, and David L. Dill. “CMC: A Pragmatic Approach to
Model Checking Real Code.” In: 5th Symposium on Operating
System Design and Implementation (OSDI 2002), Boston, Mas-
sachusetts, USA, December 9-11, 2002. 2002. url: http://www.
usenix.org/events/osdi02/tech/musuvathi.html (cit. on
p. 61).

[129] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan
Johnson, James Bornholt, Emina Torlak, and Xi Wang. “Hy-
perkernel: Push-Button Verification of an OS Kernel.” In: Pro-
ceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017. ACM, 2017, pp. 252–269.
doi: 10.1145/3132747.3132748. url: https://doi.org/10.
1145/3132747.3132748 (cit. on p. 61).

[130] Nutanix Bible - Book of AHV. url: https://nutanixbible.com/
#anchor-book-of-ahv (cit. on p. 40).

[131] Oracle Docs - Using WebLogic JRockit 8.1 SDK - Selecting and
Running a Thread System. url: https://docs.oracle.com/cd/
E13188_01/jrockit/docs81/userguide/threads.html (cit. on
p. 38).

[132] Oracle VM VirtualBox. url: https://www.virtualbox.org/
(cit. on p. 40).

[133] Parallels Desktop 15 for Mac. url: https://www.parallels.com/
products/desktop/ (cit. on p. 40).

[134] Sujay Parekh, Susan Eggers, Henry Levy, and Jack Lo. Thread-
sensitive scheduling for SMT processors. Tech. rep. 2000 (cit. on
p. 16).

[135] Yuvraj Patel, Leon Yang, Leo Prasath Arulraj, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, and Michael M. Swift.
“Avoiding scheduler subversion using scheduler-cooperative
locks.” In: EuroSys ’20: Fifteenth EuroSys Conference 2020, Her-
aklion, Greece, April 27-30, 2020. Ed. by Angelos Bilas, Kostas
Magoutis, Evangelos P. Markatos, Dejan Kostic, and Margo
Seltzer. ACM, 2020, 9:1–9:17. doi: 10.1145/3342195.3387521.
url: https://doi.org/10.1145/3342195.3387521 (cit. on
p. 15).

[136] PCLinuxOS. url: https://www.pclinuxos.com/ (cit. on p. 33).

[137] Perf Wiki. url: https://perf.wiki.kernel.org/index.php/
Main_Page (cit. on p. 71).

[138] Sharon E. Perl and William E. Weihl. “Performance Assertion
Checking.” In: Proceedings of the Fourteenth ACM Symposium
on Operating System Principles, SOSP 1993, The Grove Park Inn
and Country Club, Asheville, North Carolina, USA, December 5-8,

http://www.usenix.org/events/osdi02/tech/musuvathi.html
http://www.usenix.org/events/osdi02/tech/musuvathi.html
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://nutanixbible.com/#anchor-book-of-ahv
https://nutanixbible.com/#anchor-book-of-ahv
https://docs.oracle.com/cd/E13188_01/jrockit/docs81/userguide/threads.html
https://docs.oracle.com/cd/E13188_01/jrockit/docs81/userguide/threads.html
https://www.virtualbox.org/
https://www.parallels.com/products/desktop/
https://www.parallels.com/products/desktop/
https://doi.org/10.1145/3342195.3387521
https://doi.org/10.1145/3342195.3387521
https://www.pclinuxos.com/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

154 bibliography

1993. 1993, pp. 134–145. doi: 10.1145/168619.168630. url:
https://doi.org/10.1145/168619.168630 (cit. on p. 61).

[139] Gerald J. Popek and Robert P. Goldberg. “Formal Requirements
for Virtualizable Third Generation Architectures.” In: Commun.
ACM 17.7 (1974), pp. 412–421. doi: 10.1145/361011.361073.
url: http://doi.acm.org/10.1145/361011.361073 (cit. on
p. 39).

[140] Nikita Popov. Cooperative multitasking using coroutines (in PHP!)
2012. url: https://nikic.github.io/2012/12/22/Cooperative-
multitasking-using-coroutines-in-PHP.html (cit. on p. 38).

[141] George Prekas, Mia Primorac, Adam Belay, Christos Kozyrakis,
and Edouard Bugnion. “Energy proportionality and workload
consolidation for latency-critical applications.” In: Proceedings
of the Sixth ACM Symposium on Cloud Computing, SoCC 2015,
Kohala Coast, Hawaii, USA, August 27-29, 2015. Ed. by Shahram
Ghandeharizadeh, Sumita Barahmand, Magdalena Balazinska,
and Michael J. Freedman. ACM, 2015, pp. 342–355. doi: 10.
1145/2806777.2806848. url: https://doi.org/10.1145/
2806777.2806848 (cit. on p. 17).

[142] ps(1) — Linux manual page. url: https://www.man7.org/linux/
man-pages/man1/ps.1.html (cit. on p. 70).

[143] William Pugh. Concurrent Maintenance of Skip Lists. Tech. rep.
USA, 1990 (cit. on p. 33).

[144] Qualcomm. MSM8X60/APQ8060 – Snapdragon™ Dual-Core Mo-
bile Processor. 2011. url: https://www.qualcomm.com/media/
documents/files/snapdragon- msm8x60- apq8060- product-

brief.pdf (cit. on p. 80).

[145] Quick Reference Guide for Intel® Core™ Processor Graphics. url:
https://software.intel.com/content/www/us/en/develop/

articles/quick- reference- guide- to- intel- processor-

graphics.html (cit. on p. 8).

[146] Milos Rancic. The World’s First Computer Operating System Im-
plemented at General Motors Research Labs in Warren, Michigan
in 1955. 2007. url: https://millosh.wordpress.com/2007/
09 / 07 / the - worlds - first - computer - operating - system -

implemented-at-general-motors-research-labs-in-warren-

michigan-in-1955/ (cit. on p. 11).

[147] Melissa A. Rau and Evgenia Smirni. “Adaptive CPU Schedul-
ing Policies for Mixed Multimedia and Best-Effort Workloads.”
In: MASCOTS 1999, Proceedings of the 7th International Sym-
posium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 24-28 October, 1999, College Park,
Maryland, USA. IEEE Computer Society, 1999, pp. 252–261.

https://doi.org/10.1145/168619.168630
https://doi.org/10.1145/168619.168630
https://doi.org/10.1145/361011.361073
http://doi.acm.org/10.1145/361011.361073
https://nikic.github.io/2012/12/22/Cooperative-multitasking-using-coroutines-in-PHP.html
https://nikic.github.io/2012/12/22/Cooperative-multitasking-using-coroutines-in-PHP.html
https://doi.org/10.1145/2806777.2806848
https://doi.org/10.1145/2806777.2806848
https://doi.org/10.1145/2806777.2806848
https://doi.org/10.1145/2806777.2806848
https://www.man7.org/linux/man-pages/man1/ps.1.html
https://www.man7.org/linux/man-pages/man1/ps.1.html
https://www.qualcomm.com/media/documents/files/snapdragon-msm8x60-apq8060-product-brief.pdf
https://www.qualcomm.com/media/documents/files/snapdragon-msm8x60-apq8060-product-brief.pdf
https://www.qualcomm.com/media/documents/files/snapdragon-msm8x60-apq8060-product-brief.pdf
https://software.intel.com/content/www/us/en/develop/articles/quick-reference-guide-to-intel-processor-graphics.html
https://software.intel.com/content/www/us/en/develop/articles/quick-reference-guide-to-intel-processor-graphics.html
https://software.intel.com/content/www/us/en/develop/articles/quick-reference-guide-to-intel-processor-graphics.html
https://millosh.wordpress.com/2007/09/07/the-worlds-first-computer-operating-system-implemented-at-general-motors-research-labs-in-warren-michigan-in-1955/
https://millosh.wordpress.com/2007/09/07/the-worlds-first-computer-operating-system-implemented-at-general-motors-research-labs-in-warren-michigan-in-1955/
https://millosh.wordpress.com/2007/09/07/the-worlds-first-computer-operating-system-implemented-at-general-motors-research-labs-in-warren-michigan-in-1955/
https://millosh.wordpress.com/2007/09/07/the-worlds-first-computer-operating-system-implemented-at-general-motors-research-labs-in-warren-michigan-in-1955/

bibliography 155

doi: 10.1109/MASCOT.1999.805062. url: https://doi.org/10.
1109/MASCOT.1999.805062 (cit. on p. 16).

[148] Michel Raynal. Concurrent Programming - Algorithms, Principles,
and Foundations. Springer, 2013. isbn: 978-3-642-32026-2. doi:
10.1007/978-3-642-32027-9. url: https://doi.org/10.
1007/978-3-642-32027-9 (cit. on p. 15).

[149] Jeff Roberson. “ULE: A Modern Scheduler for FreeBSD.” In: Pro-
ceedings of BSDCon 2003, San Mateo, California, USA, September
8-12, 2003. Ed. by Gregory Neil Shapiro. USENIX, 2003, pp. 17–
28. url: http://www.usenix.org/publications/library/
proceedings/bsdcon03/tech/roberson.html (cit. on p. 34).

[150] Michael Roitzsch, Stefan Wachtler, and Hermann Härtig. “At-
las: Look-ahead scheduling using workload metrics.” In: 19th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, RTAS 2013, Philadelphia, PA, USA, April 9-11, 2013. IEEE
Computer Society, 2013, pp. 1–10. doi: 10.1109/RTAS.2013.
6531074. url: https://doi.org/10.1109/RTAS.2013.6531074
(cit. on p. 16).

[151] Steven Rostedt. KernelShark. url: https://kernelshark.org/
(cit. on p. 71).

[152] Steven Rostedt. Linux Kernel Documentation - ftrace - Function
Tracer. url: https://www.kernel.org/doc/Documentation/
trace/ftrace.txt (cit. on p. 64).

[153] Steven Rostedt. trace-cmd: utilities for Linux ftrace. url: https:
//github.com/rostedt/trace-cmd (cit. on p. 70).

[154] Saowanee Saewong, Ragunathan Rajkumar, John P. Lehoczky,
and Mark H. Klein. “Analysis of Hierar hical Fixed-Priority
Scheduling.” In: 14th Euromicro Conference on Real-Time Systems
(ECRTS 2002), 19-21 June 2002, Vienna, Austria, Proceedings. IEEE
Computer Society, 2002, pp. 173–181. doi: 10.1109/EMRTS.
2002.1019197. url: https://doi.org/10.1109/EMRTS.2002.
1019197 (cit. on p. 15).

[155] Dongyou Seo, Hyeonsang Eom, and Heon Y. Yeom. “MLB: A
Memory-aware Load Balancing for Mitigating Memory Con-
tention.” In: 2014 Conference on Timely Results in Operating
Systems, TRIOS ’14, Broomfield, CO, USA, October 5, 2014. Ed.
by Ken Birman. USENIX Association, 2014. url: https://
www.usenix.org/conference/trios14/technical-sessions/

presentation/seo (cit. on p. 16).

[156] Gene Shekhtman and Mike Abbott. State Threads Library for In-
ternet Applications. url: http://state-threads.sourceforge.
net/ (cit. on p. 39).

https://doi.org/10.1109/MASCOT.1999.805062
https://doi.org/10.1109/MASCOT.1999.805062
https://doi.org/10.1109/MASCOT.1999.805062
https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1007/978-3-642-32027-9
https://doi.org/10.1007/978-3-642-32027-9
http://www.usenix.org/publications/library/proceedings/bsdcon03/tech/roberson.html
http://www.usenix.org/publications/library/proceedings/bsdcon03/tech/roberson.html
https://doi.org/10.1109/RTAS.2013.6531074
https://doi.org/10.1109/RTAS.2013.6531074
https://doi.org/10.1109/RTAS.2013.6531074
https://kernelshark.org/
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://github.com/rostedt/trace-cmd
https://github.com/rostedt/trace-cmd
https://doi.org/10.1109/EMRTS.2002.1019197
https://doi.org/10.1109/EMRTS.2002.1019197
https://doi.org/10.1109/EMRTS.2002.1019197
https://doi.org/10.1109/EMRTS.2002.1019197
https://www.usenix.org/conference/trios14/technical-sessions/presentation/seo
https://www.usenix.org/conference/trios14/technical-sessions/presentation/seo
https://www.usenix.org/conference/trios14/technical-sessions/presentation/seo
http://state-threads.sourceforge.net/
http://state-threads.sourceforge.net/

156 bibliography

[157] Kai Shen, Ming Zhong, and Chuanpeng Li. “I/O System Per-
formance Debugging Using Model-driven Anomaly Character-
ization.” In: Proceedings of the FAST ’05 Conference on File and
Storage Technologies, December 13-16, 2005, San Francisco, Califor-
nia, USA. 2005. url: http://www.usenix.org/events/fast05/
tech/shen.html (cit. on p. 61).

[158] Hyotaek Shim and Sung-Min Lee. CFS-v: I/O Demand-driven
VM Scheduler in KVM. 2014. url: https://www.linux-kvm.
org/images/e/ee/03x06-CFS-v.pdf (cit. on p. 40).

[159] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi
Wang. “Push-Button Verification of File Systems via Crash Re-
finement.” In: 12th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2016, Savannah, GA, USA, Novem-
ber 2-4, 2016. 2016, pp. 1–16. url: https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/sigurbjarnarson

(cit. on p. 61).

[160] Mark K. Smotherman, Edward H. Sussenguth Jr., and Russell J.
Robelen. “The IBM ACS Project.” In: IEEE Annals of the History
of Computing 38.1 (2016), pp. 60–74. doi: 10.1109/MAHC.2015.
50. url: https://doi.org/10.1109/MAHC.2015.50 (cit. on
p. 7).

[161] Allan Snavely and Dean M. Tullsen. “Symbiotic Jobscheduling
for a Simultaneous Multithreading Processor.” In: ASPLOS-IX
Proceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems, Cam-
bridge, MA, USA, November 12-15, 2000. Ed. by Larry Rudolph
and Anoop Gupta. ACM Press, 2000, pp. 234–244. doi: 10.
1145/356989.357011. url: https://doi.org/10.1145/356989.
357011 (cit. on p. 16).

[162] Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen.
“Data Sharing or Resource Contention: Toward Performance
Transparency on Multicore Systems.” In: 2015 USENIX Annual
Technical Conference, USENIX ATC ’15, July 8-10, Santa Clara, CA,
USA. Ed. by Shan Lu and Erik Riedel. USENIX Association,
2015, pp. 529–540. url: https://www.usenix.org/conference/
atc15/technical-session/presentation/srikanthan (cit. on
p. 16).

[163] Sharanyan Srikanthan, Sandhya Dwarkadas, and Kai Shen. “Co-
herence Stalls or Latency Tolerance: Informed CPU Scheduling
for Socket and Core Sharing.” In: 2016 USENIX Annual Techni-
cal Conference, USENIX ATC 2016, Denver, CO, USA, June 22-24,
2016. Ed. by Ajay Gulati and Hakim Weatherspoon. USENIX
Association, 2016, pp. 323–336. url: https://www.usenix.
org/conference/atc16/technical-sessions/presentation/

srikanthan (cit. on p. 16).

http://www.usenix.org/events/fast05/tech/shen.html
http://www.usenix.org/events/fast05/tech/shen.html
https://www.linux-kvm.org/images/e/ee/03x06-CFS-v.pdf
https://www.linux-kvm.org/images/e/ee/03x06-CFS-v.pdf
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://doi.org/10.1109/MAHC.2015.50
https://doi.org/10.1109/MAHC.2015.50
https://doi.org/10.1109/MAHC.2015.50
https://doi.org/10.1145/356989.357011
https://doi.org/10.1145/356989.357011
https://doi.org/10.1145/356989.357011
https://doi.org/10.1145/356989.357011
https://www.usenix.org/conference/atc15/technical-session/presentation/srikanthan
https://www.usenix.org/conference/atc15/technical-session/presentation/srikanthan
https://www.usenix.org/conference/atc16/technical-sessions/presentation/srikanthan
https://www.usenix.org/conference/atc16/technical-sessions/presentation/srikanthan
https://www.usenix.org/conference/atc16/technical-sessions/presentation/srikanthan

bibliography 157

[164] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan Mc-
Namee, Calton Pu, and Jonathan Walpole. “A Feedback-driven
Proportion Allocator for Real-Rate Scheduling.” In: Proceedings
of the Third USENIX Symposium on Operating Systems Design and
Implementation (OSDI), New Orleans, Louisiana, USA, February
22-25, 1999. Ed. by Margo I. Seltzer and Paul J. Leach. USENIX
Association, 1999, pp. 145–158. url: https://dl.acm.org/
citation.cfm?id=296820 (cit. on p. 16).

[165] Honglin Su. Oracle VM 2.2 New Feature: CPU Scheduling Priority
and Cap. 2009. url: https://blogs.oracle.com/virtualization/
oracle- vm- 22- new- feature:- cpu- scheduling- priority-

and-cap (cit. on p. 40).

[166] Minyoung Sung, Soyoung Kim, Sangsoo Park, Naehyuck Chang,
and Heonshik Shin. “Comparative performance evaluation
of Java threads for embedded applications: Linux Thread vs.
Green Thread.” In: Inf. Process. Lett. 84.4 (2002), pp. 221–225.
doi: 10.1016/S0020-0190(02)00286-7. url: https://doi.
org/10.1016/S0020-0190(02)00286-7 (cit. on p. 37).

[167] Tcl8.6.10/Tk8.6.10 Documentation - Tcl Commands - coroutine. url:
http://www.tcl.tk/man/tcl8.6/TclCmd/coroutine.htm

(cit. on p. 38).

[168] The CPU Scheduler in VMware vSphere 5.1. Tech. rep. VMware.
url: https://www.vmware.com/content/dam/digitalmarketing/
vmware / en / pdf / techpaper / vmware - vsphere - cpu - sched -

performance-white-paper.pdf (cit. on p. 40).

[169] The Kaffe Virtual Machine. url: https://github.com/kaffe/
kaffe (cit. on p. 38).

[170] The Python Standard Library - Coroutines and Tasks. url: https:
//docs.python.org/3.7/library/asyncio-task.html (cit. on
p. 38).

[171] The Racket Reference. url: https://docs.racket-lang.org/
reference/eval-model.html#%28part._thread-model%29 (cit.
on p. 38).

[172] The Stackless Python programming language. url: https://github.
com/stackless-dev/stackless/wiki (cit. on p. 39).

[173] Linus Torvalds. Re: Just a second ... 2001. url: https://lore.
kernel . org / lkml / Pine . LNX . 4 . 33 . 0112151603180 . 4493 -

100000@penguin.transmeta.com/ (cit. on p. 24).

[174] Linus Torvalds. Re: [ANNOUNCE] RSDL completely fair star-
vation free interactive cpu scheduler. 2007. url: https://lore.
kernel.org/lkml/Pine.LNX.4.64.0703082226530.10832@

woody.linux-foundation.org/ (cit. on p. 68).

https://dl.acm.org/citation.cfm?id=296820
https://dl.acm.org/citation.cfm?id=296820
https://blogs.oracle.com/virtualization/oracle-vm-22-new-feature:-cpu-scheduling-priority-and-cap
https://blogs.oracle.com/virtualization/oracle-vm-22-new-feature:-cpu-scheduling-priority-and-cap
https://blogs.oracle.com/virtualization/oracle-vm-22-new-feature:-cpu-scheduling-priority-and-cap
https://doi.org/10.1016/S0020-0190(02)00286-7
https://doi.org/10.1016/S0020-0190(02)00286-7
https://doi.org/10.1016/S0020-0190(02)00286-7
http://www.tcl.tk/man/tcl8.6/TclCmd/coroutine.htm
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vsphere-cpu-sched-performance-white-paper.pdf
https://github.com/kaffe/kaffe
https://github.com/kaffe/kaffe
https://docs.python.org/3.7/library/asyncio-task.html
https://docs.python.org/3.7/library/asyncio-task.html
https://docs.racket-lang.org/reference/eval-model.html#%28part._thread-model%29
https://docs.racket-lang.org/reference/eval-model.html#%28part._thread-model%29
https://github.com/stackless-dev/stackless/wiki
https://github.com/stackless-dev/stackless/wiki
https://lore.kernel.org/lkml/Pine.LNX.4.33.0112151603180.4493-100000@penguin.transmeta.com/
https://lore.kernel.org/lkml/Pine.LNX.4.33.0112151603180.4493-100000@penguin.transmeta.com/
https://lore.kernel.org/lkml/Pine.LNX.4.33.0112151603180.4493-100000@penguin.transmeta.com/
https://lore.kernel.org/lkml/Pine.LNX.4.64.0703082226530.10832@woody.linux-foundation.org/
https://lore.kernel.org/lkml/Pine.LNX.4.64.0703082226530.10832@woody.linux-foundation.org/
https://lore.kernel.org/lkml/Pine.LNX.4.64.0703082226530.10832@woody.linux-foundation.org/

158 bibliography

[175] Manohar Vanga, Arpan Gujarati, and Björn B. Brandenburg.
“Tableau: a high-throughput and predictable VM scheduler
for high-density workloads.” In: Proceedings of the Thirteenth
EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26,
2018. Ed. by Rui Oliveira, Pascal Felber, and Y. Charlie Hu.
ACM, 2018, 28:1–28:16. doi: 10.1145/3190508.3190557. url:
https://doi.org/10.1145/3190508.3190557 (cit. on p. 40).

[176] Virtual-machine scheduling and scheduling in virtual machines. 2019.
url: https://lwn.net/Articles/793375/ (cit. on p. 40).

[177] Dmitry Vyukov. Scalable Go Scheduler Design Doc. 2012. url:
https://docs.google.com/document/d/1TTj4T2JO42uD5ID9e89oa0sLKhJYD0Y_

kqxDv3I3XMw/edit?usp=sharing (cit. on p. 38).

[178] Carl A. Waldspurger and William E. Weihl. “Lottery Schedul-
ing: Flexible Proportional-Share Resource Management.” In:
Proceedings of the First USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Monterey, California, USA,
November 14-17, 1994. USENIX Association, 1994, pp. 1–11. url:
http://dl.acm.org/citation.cfm?id=1267639 (cit. on p. 15).

[179] Welcome to bhyve - The BSD Hypervisor. url: https://bhyve.
org/ (cit. on p. 40).

[180] WikiChip. Thermal Velocity Boost (TVB) - Intel. url: https://en.
wikichip.org/wiki/intel/thermal_velocity_boost (cit. on
p. 79).

[181] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas
Holsti, Stephan Thesing, David B. Whalley, Guillem Bernat,
Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and
Per Stenström. “The worst-case execution-time problem - overview
of methods and survey of tools.” In: ACM Trans. Embedded Com-
put. Syst. 7.3 (2008), 36:1–36:53. doi: 10.1145/1347375.1347389.
url: https://doi.org/10.1145/1347375.1347389 (cit. on
p. 32).

[182] Maurice V. Wilkes. “Slave Memories and Dynamic Storage
Allocation.” In: IEEE Trans. Electronic Computers 14.2 (1965),
pp. 270–271. doi: 10.1109/PGEC.1965.264263. url: https:
//doi.org/10.1109/PGEC.1965.264263 (cit. on p. 8).

[183] Rafael J. Wysocki. CPU Performance Scaling. 2017. url: https:
//www.kernel.org/doc/html/v5.4/admin-guide/pm/cpufreq.

html (cit. on p. 80).

[184] Rafael J. Wysocki. intel_pstate CPU Performance Scaling Driver.
2017. url: https://www.kernel.org/doc/html/v5.4/admin-
guide/pm/intel_pstate.html (cit. on p. 81).

[185] Xen Wiki - Credit Scheduler. url: https://wiki.xenproject.
org/wiki/Credit_Scheduler (cit. on p. 40).

https://doi.org/10.1145/3190508.3190557
https://doi.org/10.1145/3190508.3190557
https://lwn.net/Articles/793375/
https://docs.google.com/document/d/1TTj4T2JO42uD5ID9e89oa0sLKhJYD0Y_kqxDv3I3XMw/edit?usp=sharing
https://docs.google.com/document/d/1TTj4T2JO42uD5ID9e89oa0sLKhJYD0Y_kqxDv3I3XMw/edit?usp=sharing
http://dl.acm.org/citation.cfm?id=1267639
https://bhyve.org/
https://bhyve.org/
https://en.wikichip.org/wiki/intel/thermal_velocity_boost
https://en.wikichip.org/wiki/intel/thermal_velocity_boost
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1109/PGEC.1965.264263
https://doi.org/10.1109/PGEC.1965.264263
https://doi.org/10.1109/PGEC.1965.264263
https://www.kernel.org/doc/html/v5.4/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/v5.4/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/v5.4/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/v5.4/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v5.4/admin-guide/pm/intel_pstate.html
https://wiki.xenproject.org/wiki/Credit_Scheduler
https://wiki.xenproject.org/wiki/Credit_Scheduler

bibliography 159

[186] Xen Wiki - Credit2 Scheduler. url: https://wiki.xenproject.
org/wiki/Credit2_Scheduler (cit. on p. 40).

[187] Xen Wiki - RTDS-Based-Scheduler. url: https://wiki.xenproject.
org/wiki/RTDS-Based-Scheduler (cit. on p. 40).

[188] Di Xu, Chenggang Wu, and Pen-Chung Yew. “On mitigat-
ing memory bandwidth contention through bandwidth-aware
scheduling.” In: 19th International Conference on Parallel Archi-
tectures and Compilation Techniques, PACT 2010, Vienna, Aus-
tria, September 11-15, 2010. Ed. by Valentina Salapura, Michael
Gschwind, and Jens Knoop. ACM, 2010, pp. 237–248. doi:
10.1145/1854273.1854306. url: https://doi.org/10.1145/
1854273.1854306 (cit. on p. 16).

[189] Junfeng Yang, Paul Twohey, Dawson R. Engler, and Madanlal
Musuvathi. “Using Model Checking to Find Serious File System
Errors (Awarded Best Paper!)” In: 6th Symposium on Operating
System Design and Implementation (OSDI 2004), San Francisco,
California, USA, December 6-8, 2004. 2004, pp. 273–288. url:
http://www.usenix.org/events/osdi04/tech/yang.html

(cit. on p. 61).

[190] Ting Yang, Tongping Liu, Emery D. Berger, Scott F. Kaplan, and
J. Eliot B. Moss. “Redline: First Class Support for Interactivity
in Commodity Operating Systems.” In: 8th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2008,
December 8-10, 2008, San Diego, California, USA, Proceedings.
Ed. by Richard Draves and Robbert van Renesse. USENIX
Association, 2008, pp. 73–86. url: http://www.usenix.org/
events/osdi08/tech/full_papers/yang/yang.pdf (cit. on
p. 16).

[191] Zenwalk GNU Linux. url: http://zenwalkgnulinux.blogspot.
com/ (cit. on p. 33).

[192] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo
Gokhale, and John Wilkes. “CPI2: CPU performance isolation
for shared compute clusters.” In: Eighth Eurosys Conference
2013, EuroSys ’13, Prague, Czech Republic, April 14-17, 2013. Ed.
by Zdenek Hanzálek, Hermann Härtig, Miguel Castro, and
M. Frans Kaashoek. ACM, 2013, pp. 379–391. doi: 10.1145/
2465351.2465388. url: https://doi.org/10.1145/2465351.
2465388 (cit. on p. 16).

[193] Ming Zhao and Jorge Cabrera. “RTVirt: enabling time-sensitive
computing on virtualized systems through cross-layer CPU
scheduling.” In: Proceedings of the Thirteenth EuroSys Conference,
EuroSys 2018, Porto, Portugal, April 23-26, 2018. Ed. by Rui
Oliveira, Pascal Felber, and Y. Charlie Hu. ACM, 2018, 27:1–
27:13. doi: 10.1145/3190508.3190527. url: https://doi.org/
10.1145/3190508.3190527 (cit. on p. 40).

https://wiki.xenproject.org/wiki/Credit2_Scheduler
https://wiki.xenproject.org/wiki/Credit2_Scheduler
https://wiki.xenproject.org/wiki/RTDS-Based-Scheduler
https://wiki.xenproject.org/wiki/RTDS-Based-Scheduler
https://doi.org/10.1145/1854273.1854306
https://doi.org/10.1145/1854273.1854306
https://doi.org/10.1145/1854273.1854306
http://www.usenix.org/events/osdi04/tech/yang.html
http://www.usenix.org/events/osdi08/tech/full_papers/yang/yang.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/yang/yang.pdf
http://zenwalkgnulinux.blogspot.com/
http://zenwalkgnulinux.blogspot.com/
https://doi.org/10.1145/2465351.2465388
https://doi.org/10.1145/2465351.2465388
https://doi.org/10.1145/2465351.2465388
https://doi.org/10.1145/2465351.2465388
https://doi.org/10.1145/3190508.3190527
https://doi.org/10.1145/3190508.3190527
https://doi.org/10.1145/3190508.3190527

160 bibliography

[194] Alin Zhong, Hai Jin, Song Wu, Xuanhua Shi, and Wei Gen.
“Optimizing Xen Hypervisor by Using Lock-Aware Schedul-
ing.” In: 2012 Second International Conference on Cloud and Green
Computing, CGC 2012, Xiangtan, Hunan, China, November 1-3,
2012. Ed. by Jianxun Liu, Jinjun Chen, and Guandong Xu. IEEE
Computer Society, 2012, pp. 31–38. doi: 10.1109/CGC.2012.115.
url: https://doi.org/10.1109/CGC.2012.115 (cit. on p. 15).

[195] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova.
“Addressing shared resource contention in multicore proces-
sors via scheduling.” In: Proceedings of the 15th International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2010, Pittsburgh, Pennsylvania, USA,
March 13-17, 2010. Ed. by James C. Hoe and Vikram S. Adve.
ACM, 2010, pp. 129–142. doi: 10.1145/1736020.1736036. url:
https://doi.org/10.1145/1736020.1736036 (cit. on p. 16).

https://doi.org/10.1109/CGC.2012.115
https://doi.org/10.1109/CGC.2012.115
https://doi.org/10.1145/1736020.1736036
https://doi.org/10.1145/1736020.1736036

I N D E X

Brain Fuck Scheduler, BFS, 33

Chip-level multiprocessing,
CMP, 7

Completely Fair Scheduler,
CFS, 27

CPU Scaling Driver, 80

CPU Scaling Governor, 81

CPUFreq, 79, 80

Dynamic Frequency Scaling,
DFS, 78

Enhanced Intel SpeedStep
Technology, 79

Frequency Inversion, 76

Frequency Transition Latency,
FTL, 82

Intel Speed Shift, 79

Linux Round-Robin scheduler,
24

Multiple Queue Skiplist
Scheduler, MuQSS, 33

Non-Uniform Memory Access,
NUMA, 9

O(1), 25

O(n), 25

Preemption, 12

SaaKM, 54

Scheduling class, 22

Simultaneous multithreading,
SMT, 7

Speed Select Technology, 79

Time sharing, 12

ULE, 34

161

A C R O N Y M S

AGU address generation unit. 7

ALU arithmetic logic unit. 7

API application programming interface. 16, 22, 23, 38, 45, 54, 56, 68,
72, 115, 118, 128, 131, 132

BFS Brain Fuck Scheduler. 32, 33, 69

BKL Big Kernel Lock. 21

BSD Berkeley Software Distribution. 34

CBS Constant Bandwidth Server. 31

CFS Completely Fair Scheduler. 3, 24, 27–35, 40, 41, 43, 46, 50, 52,
55, 59, 62–65, 67, 69, 70, 74–78, 81, 86–100, 102, 103, 106–114,
116–123, 126, 128, 129, 131–133

CMP chip-level multiprocessing. 7–9

CPU central processing unit. 1, 3, 4, 11, 13, 15, 18–21, 23, 24, 27–32, 34,
36, 40, 43, 55, 70, 72, 73, 79–84, 86–89, 93, 94, 98, 101, 103, 104,
112, 116, 129, 131–133

DRAM dynamic random access memory. 88

DSL domain-specific language. 2, 4, 41, 43–48, 50, 57, 59–61, 65, 67–69,
104, 105, 131, 132

DVFS dynamic voltage and frequency scaling. 8, 17, 79, 80, 132, 137

EDF Earliest Deadline First. 16, 31

EIST Enhanced Intel SpeedStep Technology. 79, 82

FIFO First-In First-Out. 31, 51, 52, 67

FPU floating-point unit. 7

FTL frequency transition latency. 79, 82–86, 104, 132, 133

GHC Glasgow Haskell Compiler. 38

HPC High Performance Computing. 38, 132

I/O input/output. 1, 9, 11–13, 19–21, 24, 34, 37, 40, 46, 47, 62, 63, 71,
114, 129

IP instruction pointer. 5, 7

LLC last level cache. 29

MSR model-specific register. 82, 83

MuQSS Multiple Queue Skiplist Scheduler. 32, 33

NUMA non-uniform memory access. 1, 9, 10, 15, 29, 31, 36, 48, 64, 71,
87, 88, 98, 102, 109, 114

162

Acronyms 163

OPP Operating Performance Point. 80

OS operating system. 1–6, 9, 11–15, 17–19, 24, 25, 34–41, 43, 61, 62, 67,
79, 80, 82, 105, 110, 111, 118, 131, 132

PID process identifier. 22, 58, 59, 73

POSIX Portable Operating System Interface. 18, 19, 23, 31

PPID parent process identifier. 22

RAPL running average power limit. 88, 94

RCU read-copy-update. 55

SMP symmetric multiprocessing. 9, 15, 21, 25, 26, 34, 35, 37, 109

SMT simultaneous multithreading. 7–9, 14, 16, 29, 37, 48, 83, 100, 115,
118

SP stack pointer. 5, 7

UMS User-Mode Scheduling. 36, 38

vCPU virtual CPU. 18, 40, 46, 48

VM virtual machine. 18, 37, 38, 40, 48

WCET Worst-Case Execution Time. 32

	Table of Contents
	1 Introduction
	1.1 Scheduler Development
	1.2 Performance Enhancement
	1.3 Application-Specific Schedulers
	1.4 Outline

	2 Thread Scheduling
	2.1 Execution Entities
	2.2 Hardware Resources
	2.3 Thread Scheduling
	2.4 Scheduling in the Linux Kernel
	2.5 General-Purpose Operating System Schedulers
	2.6 User-Level Schedulers
	2.7 Hypervisor Schedulers
	2.8 Conclusion

	3 Writing Schedulers with Ipanema
	3.1 The Ipanema Tool Chain
	3.2 The Domain-Specific Language Approach
	3.3 The Ipanema DSL Through Policies
	3.4 Scheduler as a Kernel Module
	3.5 Property Verification
	3.6 Evaluation
	3.7 Conclusion

	4 Frequency-Informed Scheduling Decisions
	4.1 Example of a Performance Bug in CFS
	4.2 Monitoring and Visualization Tools
	4.3 Investigating the Performance Bug
	4.4 Dynamic Frequency Scaling
	4.5 Handling Frequency Inversions in CFS
	4.6 Evaluation
	4.7 Discussion
	4.8 Conclusion

	5 Feature-oriented scheduler analysis
	5.1 Feature Analysis of CFS
	5.2 Feature Model of a Scheduler
	5.3 Feature Evaluation
	5.4 Finding the Best Scheduler for an Application
	5.5 Conclusion

	6 Conclusion
	6.1 Scheduler Development
	6.2 Performance Enhancement
	6.3 Application-Specific Schedulers

	 Publications
	 Produced Software
	 Bibliography
	 Index
	 Acronyms

