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RÉSUMÉ EN FRANÇAIS

This dissertation begins with a summary in
French. The rest of this document is written in
English, and starts at page 8.

La compilation à la volée (ou compilation just-in-time) est une technique pour exécuter des
programmes à la popularité grandissante. Les compilateurs à la volée (ou JITs) existent depuis
les années 1960 [Aycock 2003], mais leur usage a été particulièrement démocratisé pour les lan-
gages dynamiques comme Python [PyPy 2022], JavaScript [V8 2022], Julia [Julia 2022], R [R
2022], Lua [LuaJIT 2022] ou Matlab [MathWorks 2022]. Aujourd’hui, des JITs sont aussi util-
isés pour des langages statiques comme Java [HotSpot 2022] ou encore le langage eBPF dans
le noyau Linux [eBPF 2022]. Les JITs o�rent une performance remarquable pour les langages
dynamiques, et pour cette raison la plupart des navigateurs web modernes utilisent des JITs
pour exécuter les programmes trouvés sur les pages web visitées. Firefox utilise SpiderMon-
key [Firefox 2022b], Google Chrome et Chromium utilisent V8 [V8 2022], et le moteur WebKit
de Safari utilise JavaScriptCore [WebKit 2022]. Tous ces exemples utilisent de la compilation
à la volée pour exécuter des programmes JavaScript.

Ces navigateurs web cumulent des milliards d’utilisateurs. Mais à cause de leur complexité,
leurs JITs sont exposés à de nombreux bugs et vulnérabilités. De telles vulnérabilités sont trop
nombreuses pour être listées exhaustivement ici [Firefox 2022a]. Si un attaquant connaît une
faille dans un JIT, il peut créer et distribuer un programme JavaScript qui l’exploite. Par exem-
ple, l’équipe Project Zero a trouvé des programmes exploitant des bugs dans JavaScriptCore
pour faire exécuter du code malveillant par Safari [Project Zero 2019; 2020]. Cette équipe a
également trouvé des exemples de programmes exploitant des vulnérabilités de Google Chrome
avant qu’elles n’aient pu être corrigées [Project Zero 2021a]. Ces attaques peuvent avoir de
graves conséquences, comme l’attaque visant l’entreprise CoinBase [Coinbase 2019] qui ex-
ploitait un bug de SpiderMonkey pour récupérer des données con�dentielles. Pourtant, les
navigateurs web sont incontournables aujourd’hui, y compris pour des utilisations sensibles
qui ne peuvent tolérer de bugs.
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Les méthodes formelles pour garantir l’absence de bugs Les navigateurs web et leurs
JITs ne sont pas les seuls exemples de programmes sensibles, et de nombreuses techniques
ont été conçues pour trouver ou empêcher des erreurs logicielles aux conséquences graves. La
méthode la plus intuitive consiste à tester un programme sur un ensemble d’entrées généré
ou choisi aléatoirement. Le test peut trouver de nombreuses erreurs, mais ne peut pas garantir
l’absence de bugs sans tester toutes les entrées possibles du programme, ce qui s’avère souvent
impossible.

Pour des garanties plus fortes, lesméthodes formelles visent à prouver des propriétés de pro-
grammes. Avec des abstractions ou des modèles appropriés, il est possible de raisonner math-
ématiquement sur un programme sans l’exécuter. Par exemple, l’analyseur statique Astrée a
été utilisé pour garantir l’absence d’une catégorie de bugs dans le logiciel de commande de vol
électrique primaire de deux types d’avion Airbus [Delmas and Souyris 2007]. Les méthodes
formelles incluent de nombreuses techniques, comme l’analyse statique, le model-checking
ou la véri�cation déductive de programme.

La véri�cation déductive consiste à représenter des dé�nitions et des raisonnements math-
ématiques dans un assistant de preuve. Les assistants de preuve sont des programmes pour
énoncer et véri�er des preuves avec une rigueur mathématique. Ils sont soit automatiques
comme Why3 [Filliâtre 2012] et F∗ [Swamy et al. 2013], soit interactifs comme Coq [Coq 2022],
Isabelle/HOL [Nipkow et al. 2002] et ACL2 [Kaufmann et al. 2000]. Contrairement aux preuves
faites à la main, il est impossible d’oublier un cas dans une preuve écrite avec un assistant. Si
on fait con�ance à un assistant de preuve, l’utiliser pour écrire et véri�er une preuve apporte
alors une grande assurance et élimine le besoin de la véri�er à la main.

Pour raisonner mathématiquement sur des exécutions de programmes en utilisant des
méthodes formelles comme la véri�cation déductive de programme, il faut dé�nir des séman-
tiques formelles, une description rigoureuse des comportements d’un programme. Des séman-
tiques formelles ont été dé�nies pour plusieurs langages de programmation, comme C [Nor-
rish 1998, Blazy and Leroy 2009, Krebbers and Wiedijk 2011], JavaScript [Bodin et al. 2014] ou
WebAssembly [Watt et al. 2021]. Pour prouver des propriétés de programme, on peut utiliser
la sémantique formelle de ce programme et des logiques de programmes. Par exemple, une
primitive cryptographique écrite en C a été prouvée correcte en Coq à l’aide de la sémantique
formelle de C et une logique de programme appelée logique de séparation [Appel 2015].

Compilation formellement véri�ée Pour faire con�ance à un programme qui s’exécute
sur un ordinateur, il faut non seulement faire con�ance au code source de ce programme, mais
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aussi à son mécanisme d’exécution. Par exemple, de nombreux langages de programmations
sont compilés statiquement. Compiler statiquement un programme consiste à le transformer
avant de l’exécuter en code natif, le code qu’un processeur peut exécuter. Dans le cas de la
compilation statique, il faut s’assurer que le compilateur n’a pas introduit de bugs dans les
programmes qu’il transforme. Pour véri�er cette propriété, il est possible d’utiliser des méth-
odes formelles pour prouver que cette transformation préserve la sémantique formelle d’un
programme compilé.

Il s’agit alors de compilation formellement véri�ée. CompCert [Leroy 2009a], CakeML [Ku-
mar et al. 2014] et VeLLVM [Zhao et al. 2012] sont des exemples de compilateurs formellement
véri�és. Par exemple, CompCert compile des programmes écrits en C vers de l’assembleur pour
plusieurs architectures cibles, comme x86, ARM, PowerPC et RISC-V. CompCert est écrit en
Coq, et le code Coq qui transforme le programme peut être extrait en un programme exécutable
en OCaml. CompCert contient également une preuve Coq mécanisée qui relie la sémantique
formelle du programme compilé à celle du programme d’entrée du compilateur. Les compila-
teurs sont des programmes complexes et leur véri�cation formelle est particulièrement ardue.
Cependant, cette véri�cation est la manière la plus sûre de garantir que la compilation n’a pas
introduit de bugs.

La plupart des compilateurs ne sont pas véri�és, et en conséquence se privent de cette
garantie. Des tests seuls ne su�sent alors pas à trouver tous les bugs de compilation, comme
le montre une étude dédiée à la détection de bugs dans les compilateurs C en utilisant des
programmes d’entrée générés aléatoirement [Yang et al. 2011]. Des centaines de bugs ont été
ainsi trouvés dans GCC et LLVM, deux principaux compilateurs C, mais aucun bug n’a été
trouvé dans la partie formellement véri�ée de CompCert. Ces résultats suggèrent que tester
un compilateur n’est pas su�sant pour éviter les bugs de compilation, et que leur véri�cation
formelle apportent une garantie inégalée.

Compilation à la volée Traditionnellement, les langages de programmation ont longtemps
été soit compilés, soit interprétés. Pour intérpréter un programme, on utilise un interprète, un
autre programme qui lit, traduit puis exécute les instructions du programme d’entrée une à une
jusqu’à la �n de son exécution. L’interprétation est usuellement plus lente que l’exécution de
programmes compilés, mais permet de commencer l’exécution instantanément sans traduire
l’intégralité du programme à exécuter.

La compilation à la volée est un autre mécanisme d’exécution qui mélange compilation et
interprétation. Sa particularité est de mélanger exécution et optimisation du programme exé-
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cuté. Par exemple, certains JITs commencent par interpréter le programme, puis des parties du
programme sont graduellement compilées vers du code natif pendant l’exécution. L’exécution
dand un JIT est donc un mélange d’interprétation et d’exécution de code natif dynamiquement
généré.

Les JITs sont des logiciels particulièrement complexes utilisant des techniques spéci�ques
modernes. Premièrement, les JITs contiennent souvent des interprètes et des compilateurs
statiques entiers (parfois même plusieurs compilateurs statiques, comme dans le cas de We-
bKit [WebKit 2014]) et des mécanismes supplémentaires pour orchestrer leur interaction. De
plus, les JITs utilisent des optimisations et techniques qui leur sont propres pour des temps
d’exécution encore plus rapides. Par exemple, de nombreux JITs modernes utilisent des op-
timisations spéculatives pour spécialiser le code compilé dynamiquement. Cette spéculation
consiste à prédire le comportement futur du programme, et utiliser cette prédiction pour pro-
duire du code spécialisé plus rapide.

Malgré leurs vulnérabilités et leur utilisation grandissante, les JITs ont fait l’objet de peu
de travaux de véri�cation formelle par rapport aux compilateurs statiques traditionnels. Ce
manque de formalisation s’explique par plusieurs raisons. Premièrement, les JITs sont plus
récents et plus complexes que les compilateurs statiques. Deuxièmement, il n’existe pas de
manière standard de concevoir un JIT, et chaque implémentation se distingue par ses com-
posants (tous les JITs ne contiennent pas d’interprète, comme les premières versions de V8
qui compilaient tout code exécuté), ses optimisations ou son architecture. En�n, les techniques
spéci�ques aux JITs comme l’optimisation spéculative sont souvent reléguées au rang de dé-
tails d’implémentation, sans documentation ni abstraction su�sante à leur formalisation.

Contenu de cette thèse La rapidité d’exécution ne doit pas être synonyme de bugs. De tels
bugs dans des JITs pourraient avoir de graves conséquences. Dans cette thèse, nous démon-
trons que des méthodes formelles peuvent être appliqués aux JITs pour garantir leur correc-
tion. Comme les JITs réutilisent des techniques issues de la compilation statique, nous réutil-
isons des techniques de preuves de compilation statique formellement véri�ée pour prouver
la correction de JITs. Dans nos travaux, nous développons des prototypes de JITs véri�és et
exécutables.

Nous apportons les contributions suivantes:

Formalisation des JITs: Nous concevons une architecture pour JITs modernes, contenant
chaque élément clé et présentant une spéci�cation claire de chaque composant. Notre
architecture contient un mélange d’interprétation et de compilation dynamique avec
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des optimisations spéculatives. Nous proposons une sémantique formelle pour les pro-
grammes manipulés par des JITs contenant de la spéculation, un mécanisme rarement
documenté.

Nouveaux dé�s de véri�cation Nous identi�ons quatre nouveaux dé�s dans la véri�-
cation formelle des JITs. Premièrement, les optimisations dans un JIT sont dynamiques,
ce qui n’est pas le cas des compilateurs traditionnels. Nous adaptons la technique de
simulation utilisée dans CompCert pour permettre ces optimisations. Deuxièmement,
les optimisations spéculatives sont une particularité des JITs. Nous proposons donc des
preuves de correction de plusieurs optimisations spéculatives en utilisant la séman-
tique formelle dé�nie plus tôt. Troisièmement, certains composants d’un JIT moderne
(comme l’appel de code natif) ne peuvent pas être entièrement écrits dans le langage de
programmation pur d’un assistant de preuve comme Coq. Nous concevons un encodage
spéci�que pour représenter et raisonner sur un JIT impur en Coq. En�n, les JITs doivent
générer du code natif, et se reposent souvent sur des compilateurs statiques. Nous mon-
trons qu’il est possible de réutiliser le code et la preuve de correction de CompCert dans
un JIT.

Nouvelles techniques de preuve: Pour chacun de ces dé�s, nous proposons des preuves
de correction. Toutes nos preuves ont été mécanisées dans l’assistant de preuve Coq.
Nous prouvons un théorème qui garantit que l’exécution d’un programme par un JIT
est conforme à la sémantique formelle du programme exécuté.

Un JIT véri�é et exécutable: Notre développement de JIT en Coq peut être extrait en
OCaml et exécuté. Nous avons ainsi développé un prototype de JIT qui exécute des
programmes en possédant toutes les caractéristiques des JITs modernes, tout en étant
accompagné d’une preuve formelle mécanisée de correction.

Notre travail démysti�e les techniques complexes utilisées par les JITs modernes. Notre
développement nous permet d’a�rmer que, bien qu’aussi intimidante que pour les compila-
teurs statiques, la véri�cation formelle de JITs est réalisable.
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Chapter 1

INTRODUCTION

1.1 Motivation

Just-in-Time compilation is a technique to execute programs which has seen its popular-
ity rise in recent years. Just-in-Time compilers (or JITs) have existed since the 1960s [Aycock
2003], but their use has grown greatly for dynamic languages such as Python [PyPy 2022],
JavaScript [V8 2022], Julia [Julia 2022], R [R 2022], Lua [LuaJIT 2022] or Matlab [MathWorks
2022]. JITs are also used for static languages such as Java [HotSpot 2022], and other use cases
such as eBPF in the Linux kernel [eBPF 2022]. The performance o�ered by JITs for dynamic lan-
guages explains that today, most modern web browsers use JITs to execute the programs they
�nd on the Web. Firefox uses SpiderMonkey [Firefox 2022b], Google Chrome and Chromium
use V8 [V8 2022] and the WebKit engine of Safari uses JavaScriptCore [WebKit 2022], and all
of them use Just-in-Time compilation to execute JavaScript programs.

Together, these web browsers have billions of users, but being complex software, their JITs
are exposed to many bugs and vulnerabilities. Such vulnerabilities are too numerous to list
exhaustively [Firefox 2022a]. For instance, the Project Zero team has found malware using JIT
bugs in JavaScriptCore to execute malicious code on Safari [Project Zero 2019; 2020]. The team
has also reported on Chrome vulnerabilities that were exploited before the bugs were reported
and �xed [Project Zero 2021a]. The nature of web browsers exposes them to an adversarial set-
ting, as their JITs may execute any input program found on the Web. Attackers knowing a JIT
vulnerability can design a JavaScript program that targets it. For instance, bugs in SpiderMon-
key have been exploited in a phishing attack against the Coinbase company [Coinbase 2019].
Emails were sent to company workers containing a link that, when opened with Firefox, would
execute a program exploiting the JIT bugs to install malware on the company computers. Yet,
web browsers are used greatly in our everyday lives and sometimes for sensitive applications
that cannot su�er from bugs.
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Formal Methods to Guarantee the Absence of Bugs Web browsers and JITs are not the
only examples of sensitive software, and many techniques have been developed to �nd or
prevent software bugs that could have dramatic consequences. For instance, one can simply
test any program on a set of manually picked or randomly generated inputs. Testing can catch
many errors, but cannot guarantee the absence of bugs without checking all possible program
inputs, a task often impossible.

For stronger guarantees, formalmethods have emerged to prove properties about programs.
In essence, with carefully chosen abstractions and models, one can mathematically reason
about a program without executing it for a particular input. For instance, the static analyzer
Astrée has been used to guarantee the absence of a particular type of bugs in the �ight control
software of Airbus A340 planes [Delmas and Souyris 2007]. Formal methods include various
techniques, such as static analysis, model-checking or deductive program veri�cation.

Deductive veri�cation is the act of mechanizing mathematical de�nitions and reasoning in
a proof assistant. Proof assistants are either automatic like Why3 [Filliâtre 2012] or F∗ [Swamy
et al. 2013], or interactive such as Coq [Coq 2022], Isabelle/HOL [Nipkow et al. 2002] or
ACL2 [Kaufmann et al. 2000]. These are software designed to conduct and check mathematical
proofs with mathematical rigor. Unlike in pen-and-paper proofs, this eliminates the possibil-
ity of forgetting edge cases. Using a proof assistant confers a lot of con�dence in a proof, as
one only needs to trust the proof assistant to be convinced of the rigor of the proof and not
manually check it.

To mathematically reason about program executions, formal methods like deductive pro-
gram veri�cation de�ne and reason on formal semantics, a mathematical and rigorous descrip-
tion of program behaviors. The task of de�ning formal semantics has been done for many pro-
gramming languages, including C [Norrish 1998, Blazy and Leroy 2009, Krebbers and Wiedijk
2011], JavaScript [Bodin et al. 2014] or WebAssembly [Watt et al. 2021]. Given a program and
its formal semantics, one can reason about the program behaviors using program logics. For
instance, a cryptographic primitive written in C has been proved correct in Coq using the C
formal semantics and a program logic called separation logic [Appel 2015].

Formally Veri�ed Compilation However, to trust a program being executed on a com-
puter, one must not only trust the source code of the program, but also the mechanism that
executes it. For instance, many programming languages are compiled ahead of time, meaning
that they are transformed before their execution into native code, the code that a computer
processor executes. In that case, when executing a compiled program, one has to trust that the
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compiler did not introduce any bugs in the program. Otherwise any analysis or veri�cation
performed on the source program semantics would be rendered useless by a compiler that
changes the behavior of the program it produces. Compilers transform a program from a lan-
guage to another and one can use formal methods to prove that this transformation preserves
the behavior of the input program.

This is called formally veri�ed compilation. Examples of formally veri�ed compilers include
CompCert [Leroy 2009a], CakeML [Kumar et al. 2014] and VeLLVM [Zhao et al. 2012]. For in-
stance, CompCert compiles C programs to assembly for several target architectures, including
x86, ARM, PowerPC and RISC-V. CompCert is written in Coq, and the Coq code that consti-
tutes the compiler can be extracted to an equivalent OCaml program and run independently.
CompCert also comes with a mechanized Coq proof that relates the formal semantics of the
compiled program to the formal semantics of the input program of the compiler. Compilers are
complex and large software and while their formal veri�cation is a daunting task, it provides
a way to guarantee compilation correctness with the highest assurance.

Most compilers are not veri�ed, but cannot then guarantee that the compiled program
behaves as speci�ed by the input program. And despite all the testing ahead of time compilers
go through, compilation bugs still �nd their way. For instance, Yang et al. [2011] conducted a
study dedicated to �nding bugs in various C compilers using randomly generated programs.
Hundreds of bugs were found in GCC and LLVM, two of the most widely used C compilers,
while no bug was found in the formally veri�ed part of CompCert. These results con�rm
that testing is not enough to avoid compilation bugs and that formal methods and formal
veri�cation bring substantial guarantees to compilation.

Just-in-Time Compilation Traditionally, programming languages were either compiled
or interpreted. With interpretation, one uses an interpreter, another program that reads, trans-
lates and executes instructions of the input program until execution �nishes. Interpretation
typically results in slower execution times than compilation, but faster start-up as there is no
need to transform the entire program before executing it.

Just-in-Time compilation is yet another mechanism to execute a program, reusing tech-
niques from both compilation and interpretation. In essence, Just-in-Time compilers inter-
leave execution and optimization of the program to execute. 1 For instance, many JITs start
with interpretation, but the parts of the program that are run often are gradually compiled

1. Others sometimes use “Just-in-Time compilers” to refer only to the optimization part of that process. In
this work, a JIT means the entire engine, including both execution and optimization.
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to native code during execution. The execution part of the JIT then interleaves interpretation
and execution of dynamically generated native code.

JITs are complex software relying on cutting-edge techniques. First, they often contain
entire interpreters and compilers (sometimes several of them, like the four-tier compilation
design used in WebKit [WebKit 2014]) and a precise interplay between all their components.
Second, they also use JIT-speci�c optimizations and features for faster execution times. For
instance, many modern JITs use speculative optimizations to specialize the code they dynam-
ically compile. This feature consists in trying to predict (or speculate on) the future behavior
of the program, and use these predictions to produce faster code.

Despite their vulnerabilities and their growing use, JITs have been scarcely formalized and
the topic of very few formal veri�cation works, compared to standard ahead of time compi-
lation. This lack of formalization can be explained by several reasons. First, JITs are more re-
cent, more complex and less understood than traditional compilers. Second, the design space
of modern JIT compilers is particularly large and ungoverned by any standard. There is no
common way to do speculative optimizations, no common set of components (earlier V8 ver-
sions did not use interpretation for instance, but compiled everything), no common architec-
ture across all modern JITs. Finally, JIT-speci�c features like speculation are often relegated to
implementation details that are neither clearly abstracted nor documented.

1.2 Thesis and Contributions

Fast program executions should not come with bugs and vulnerabilities. With so many pro-
gram executions relying on Just-in-Time compilation, we believe that formal methods should
be used to guarantee the correctness of JITs. Bugs in JITs can be dangerous and more e�orts
should be dedicated to prevent them. JITs are also in dire need of demysti�cation if one ever
wants strong guarantees on their execution. In that perspective, we investigate in this work
the formal veri�cation of Just-in-Time compilation.

Because modern JITs are huge pieces of software, we believe that formal veri�cation e�orts
should �rst focus on proving the correctness of model JITs that capture the essence of JIT
compilation, instead of the insurmountable task of fully verifying a rapidly evolving modern
JIT used in production. As JITs reuse standard compilation techniques to generate native code,
we also argue that formally veri�ed JITs should reuse formally veri�ed ahead of time compiler
proofs and techniques to alleviate the proof burden of such complex software. Just like the Coq
code of CompCert can be extracted to OCaml and executed, formally veri�ed JITs should also
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be executable to run programs.
This document presents our solutions to develop and prove the correctness of JITs. Specif-

ically, we present the following contributions:

JIT formalization: We introduce an architecture design for modern JITs, that clearly
speci�es the role of each component and their interplay. It includes dynamic compi-
lation and interpretation, but also JIT-speci�c features like speculative optimizations.
We also give precise program semantics to pieces of code containing speculation, a JIT
feature that has been mostly undocumented.

New Veri�cation Challenges: We identify four main JIT-speci�c veri�cation challenges,
listed in Section 1.2.1. We argue that these capture the essence of what separates the
formal veri�cation of JITs from the formal veri�cation of standard ahead of time com-
pilers.

New Proof Techniques: We develop new proof techniques for proving correct each of
these new veri�cation challenges.

Veri�ed and Executable JIT: Every proof presented in this work has been mechanized
in Coq. This results in an executable and formally veri�ed JIT. It comes with a correct-
ness theorem that states that executing a program with the JIT produces a behavior that
corresponds to the program formal semantics.

Our formal work demysti�es the complex mechanisms involved in JIT compilation, and
our developments show that formally veri�ed JIT compilation is feasible.

1.2.1 Four JIT-Speci�c Veri�cation Challenges

The four JIT-speci�c veri�cation challenges that we tackle in this work are the following:

Dynamic Optimizations JITs optimize and compile parts of their programs dynamically,
during their executions. The program being executed at some point in time depends
on what dynamic optimizations have been made before and cannot be known before
execution.

Speculation Modern JITs speculate on the future behavior of the code they compile. They
produce specialized code relying on assumptions that are checked during execution.
This can lead to signi�cant speed-ups, but requires complex mechanisms like deopti-
mization when the predictions are wrong. Deoptimization consists in manipulating the
execution stack to switch from the execution of optimized code back to the execution
of the original code.
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E�ectful JITs Some JIT components simply cannot be written in the pure programming
languages of proof assistants like Coq. This includes calling native code that has been
generated dynamically, or the use of global shared data-structures when execution is
split between interpretation and native executions. For instance, a JIT execution stack
and its heap are manipulated by both its interpreter and its dynamically generated na-
tive code.

Proof Reuse for Native Code Generation JITs reuse techniques from standard compi-
lation when generating native code dynamically. Formally veri�ed JITs should reuse
proofs and proof techniques of formally veri�ed ahead of time compilers. For instance,
we reuse the simulation methodology of CompCert to modularly prove compiler trans-
formations correct, as well as its proved algorithms to generate native code.

These challenges are key to the feasible formal veri�cation of modern JITs that speculate
and generate native code. We design new proofs and proof techniques to solve each of these
veri�cation challenges.

1.2.2 Collaborations and Publications

Unless listed here, everything presented in this document and the artefacts is the work of
the author of this thesis, advised by Sandrine Blazy and David Pichardie.

Our work on speculative optimizations was done in collaboration with Olivier Flückiger
and Jan Vitek. In particular, the CoreIR language (Section 5.1) was designed conjointly with
them. The evaluation of the pure JIT presented in Section 8.3.3 was conducted by Olivier Flück-
iger. This includes the unveri�ed Lua Lite frontend, the unveri�ed LLVM backend and the
performance comparison of Figure 8.4.

Two JIT upgrades were implemented in collaboration with Roméo La Spina, as part of his
Master’s project. The �rst one is the liveness analysis mentioned in Section 5.2.1. The second
one allowed the inlining pass presented in Section 5.2.6 to trigger more often than in our
original version. All other Coq proofs were developed by the author of this thesis.

Parts of the work described in this thesis have been presented at the following conferences:

CoqPL 2020 Our project was �rst presented at the CoqPL workshop:
Towards Formally Veri�ed Just-in-Time Compilation [Barrière et al. 2020].

POPL 2021 A �rst version of our formally veri�ed JIT has been the subject of an article
at a peer-reviewed conference. The objective of this �rst work is to understand and for-
malize speculative optimizations in JITs. It includes our solutions to solve the �rst two
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challenges of Section 1.2.1: this JIT optimizes dynamically and performs speculation.
Chapter 5, Sections 4.5 and 8.3.3 borrow from this publication.
Formally Veri�ed Speculation and Deoptimization in a JIT Compiler [Barrière et al. 2021].
Its development is available as an artefact:
https://github.com/Aurele-Barriere/CoreJIT.

POPL 2023 Next, we have extended our work to solve the two remaining challenges. We
present a methodology to develop an e�ectful JIT that reuses CompCert and its proofs
to dynamically generate native code. Chapters 6 and 7 borrow from this publication.
Formally Veri�ed Native Code Generation in an E�ectful JIT
or: Turning the CompCert backend into a formally veri�ed JIT compiler [Barrière et al. 2023].
Its development is available as an artefact:
https://github.com/Aurele-Barriere/FM-JIT.

1.3 Outline

This document is organized as follows: Chapter 2 presents Just-in-Time compilation. In
particular, we present the speculation technique used in many modern JITs, and previous work
on JIT formalization and formal veri�cation. Chapter 3 presents the formally veri�ed C com-
piler CompCert. In particular, we present its simulation framework that we reuse to prove the
correctness of formally veri�ed JITs. Chapter 4 presents our approach to developing formally
veri�ed JITs. This approach is designed to allow the reuse of proof techniques from CompCert.
In this chapter, we also introduce our solution to the �rst JIT-speci�c veri�cation challenge,
dynamic optimizations. In Chapter 5, we present CoreIR, the intermediate language that our
JIT is executing, optimizing and compiling. This language is designed to support speculative
optimizations. We then present our solution to the second JIT-speci�c veri�cation challenge
by implementing and verifying speculative optimizations in a JIT. Chapter 6 discusses the third
JIT-speci�c veri�cation challenge and introduces our solution, using a free-monadic encoding
of e�ectful JITs. Chapter 7 then shows how we can reuse the CompCert backend and its proof
to tackle the last JIT-speci�c veri�cation challenge. This results in formally veri�ed JITs that
dynamically generate native code using CompCert. Finally, Chapter 8 shows that the vari-
ous proof techniques we introduced are composable, and discusses our formally veri�ed JIT
implementations. Chapter 9 concludes and presents possible future work.

After the conclusion, there is an appendix on page 153 containing, for each de�nition pre-
sented in this document, a link to the corresponding de�nition in our developments.
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Chapter 2

BACKGROUND ON JUST-IN-TIME

COMPILATION

Using a standard compiler is useful to produce fast programs. One �rst writes one’s pro-
gram in a high-level language, then trusts the compiler to produce semantically equivalent
code in the assembly language of the target architecture. While transforming the program,
most standard compilers are optimizing compilers, in the sense that they include optimization
passes, code transformations that make the resulting program execute faster. In that setting,
every piece of the program is transformed before the execution even starts. For that reason,
these standard compilers can be referred to as static compilers or ahead of time compilers.

On the other hand, using an interpreter is useful to start executing a program quickly, as
there is no need to translate the entire program. While interpretation is slower, interpreters
typically have a faster startup. Moreover, as an interpreter has access to dynamic informa-
tion while still working on its source code (and not a compiled version), interpretation leads
to better diagnostics of run-time errors in general. Interpreters are often used for dynamic
languages, whose ease-of-use and conciseness are popular among developers.

Just-in-Time compilers try to o�er the best of both worlds. In a JIT, programs start by be-
ing interpreted, but code that might be run frequently (loop bodies or hot functions) may be
compiled and optimized dynamically. When encountering such code, the JIT can then simply
execute the compiled version, then go back to the interpreter for the rest of the execution.
As a result, a JIT interleaves interpretation, compilation and execution of compiled code. This
allows JITs to be much faster than interpreters alone, while still bene�ting from low startup
times. As compilation happens during program execution in JITs, fast compilation times are de-
sired. Compiling only the frequently run code avoids spending compilation time on the entire
program. At its inception, the main advantage of using JITs was to save memory space, as one
did not need to compile the entire program and save the entire output of a compiler [Aycock
2003]. Today, by mixing various techniques, JITs bring �exibility and trade-o�s. For instance,
some JITs like JavaScriptCore [WebKit 2014] have multiple compilers, some performing ag-
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for (int i=0; i< length ; i++) {
sum[i] = a + array[i];
product [i] = a * array[i];

}

Figure 2.1 – A simple loop where types stay the same

gressive optimizations, and others that are less optimizing but quicker to execute, and can use
one or the other depending on how much they think some code is going to be run later.

2.1 Speculation in Just-in-Time Compilers

Another advantage of Just-in-Time compilation is the possibility of speculative optimiza-
tions. By speculating on the behavior of the compiled code, this technique can cause signi�-
cant speedups. As optimizations happen dynamically in a JIT, the parts of the program that
are compiled are usually compiled after they have been run enough times to be considered
as hot code, code that is likely to be executed a lot. In these �rst executions of the code, JITs
typically use pro�ling to record information about the program execution. That information
can be leveraged to speculate on the future program behavior at compile time. Pro�lers are
an essential component of modern JITs. Their role is to observe the code being interpreted.
Using their observations, they determine what the hot code is. In JITs with speculation, they
also suggest likely invariants of the code that the JIT optimizers should speculate on.

Speculation in JITs can be reminiscent of pro�le-guided optimizations in ahead of time
compilers [Pettis and Hansen 1990]. To use pro�le-guided optimizations, the program is com-
piled a �rst time, called instrumentation compilation. Then, test runs of the compiled program
are executed and pro�ling information is gathered about these test executions. Finally, the
program is compiled a second time, using this pro�ling information to generate code that is
particularly optimized for the expected behavior. In contrast, the pro�ling information used by
JITs is gathered dynamically, during the beginning of the program execution. The dynamicity
of optimizations in JITs eliminates the need for both the instrumentation compilation and the
test executions.

2.1.1 Speculative Optimization Example

For instance, consider the code Figure 2.1. If the language is dynamically typed, the inter-
preted code corresponding to an iteration might need to check the type of a and array, then
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if (a is int && array[i] is int) {
sum[i] = int_add (a, array[i]); }

else if (a is float && array[i] is float) {
sum[i] = float_add (a, array[i]); }

else if (a is string && array[i] is string ) {
sum[i] = string_add (a, array[i]); }

else { error "Wrong addition "; }

if (a is int && array[i] is int) {
product [i] = int_mult (a, array[i]); }

else if (a is float && array[i] is float) {
product [i] = float_mult (a, array[i]); }

else if (a is string && array[i] is string ) {
product [i] = string_mult (a, array[i]); }

else { error "Wrong multiplication "; }

i = i+1;

Figure 2.2 – The interpreted instructions of Figure 2.1

use the correct addition and product primitives. Simple programs end up having complex con-
trol �ows. This might lead to the instructions of Figure 2.2 for each iteration. Executing a
program containing such code with a JIT, one starts by interpreting the loop. But if the loop is
executed often, a pro�ler might suggest to optimize and compile it. When the JIT compiles the
loop, it has already been executed some number of times. If during the previous executions,
the pro�ler has detected that a and array[i] were always integers, then we can reasonably
speculate that this will be the case for the next executions as well. One way to speed up future
executions is to produce and compile the code on Figure 2.3. In that code, a and array[i] are
assumed to be integers, which greatly simpli�es the next instructions.

This simpli�ed example captures what many modern JITs do. They produce code that re-
sembles the one on Figure 2.3. In the next execution of the loop, the new code is executed.
The assumptions are checked at run-time, and if they hold, execution can proceed in this new
optimized version. Of course, the next execution may execute the loop for other types. In that
case, the JIT should go back to interpreting the original version as in Figure 2.2, slower but
correct for any type. As a result, the assume instructions of Figure 2.3 are more than simple
assertions. The process of going back to the original version is typically called deoptimization
and is described in section 2.1.2.

Speculation is used a lot in JITs, especially for dynamic languages. JITs can speculate on
various aspects of an execution, including types and values. For instance, in JavaScript without
speculation, all arithmetic results are boxed. This boxing consists in wrapping any primitive
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assume (a is int );
assume (array[i] is int );

ai = array[i];
sum[i] = int_add (a, ai);
product [i] = int_mult (a, ai);
i = i+1;

Figure 2.3 – The optimized iteration of the loop of Figure 2.1, with speculative optimization

value in an Object. This has the advantage of giving developers the opportunity to use meth-
ods on primitive values, for instance converting an integer to a string using the corresponding
method. However, when such methods are not used, this boxing leads to many unnecessary
instructions to box, typecheck and unbox every value during arithmetic operations. With type
speculation however, most boxing and typechecking can be eliminated, as shown in the SPUR
JIT [Bebenita et al. 2010]. JavaScriptCore is another example of a JIT using type speculation
for better performance [WebKit 2020]. Some JITs speculate on other kinds of behaviors. For
instance, the HotSpot compiler can make assumptions about the class hierarchy before com-
piling [Paleczny et al. 2001]. However, without formal veri�cation, the complexity associated
with speculation can lead to vulnerabilities. For instance, V8 speculates on some variable types
to best decide how to represent them in a compact way (representing small unboxed integer
values on 31 bits for instance). But the incorrect removal of an assumption check can lead to
dangerous exploits, even allowing attackers to execute arbitrary code [Project Zero 2021b].

2.1.2 Deoptimization and On-Stack Replacement

While speculation leads to speed-ups if the pro�ler correctly predicted the future behavior
of the program, there is no guarantee that future calls to the optimized code will behave as
predicted. For instance, maybe the next call to the loop of Figure 2.3 will be with a string value
for a. In that case, when executing the specialized code, the �rst assumption check will fail.
The JIT must then �nd a way to return to the interpreter.

This is called deoptimization, as one goes from an optimized, specialized version of some
code to a more generic and less optimized version. In a setting where assumptions can be
inserted anywhere in optimized code, this requires a technique known as on-stack replacement.
One needs to remove the current stackframe corresponding to the execution of the specialized
code (often machine code for modern JITs), and replace it with a stackframe for the interpreter
executing the original version.
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Figure 2.4 – Timeline of a JIT execution

Inlining is a standard compiler optimization where one substitutes a function call with
the code of the function itself. While it requires more space as it copies instructions from a
function to another, it can speed up some executions as function calls can sometimes hinder
performance. It also enables other optimizations to perform better, when they use intraproce-
dural analyses that do not inspect the code of called functions. Deoptimization can be made
even more di�cult when combining inlining and speculation: if an assumption was inlined
in a function and fails, one must reconstruct an extra interpreter stackframe for the original
version of the caller function. Examples of on-stack replacement with inlining are given in
section 5.2.6.

Implementing on-stack replacement is a di�cult and language-speci�c task, where one
needs to manipulate the execution stack. One way to do so is to have failing assume instruc-
tions jump to some arbitrary low-level compensation code outside of the function that will
reconstruct the missing stackframe. Another way consists in augmenting the speculative in-
struction assume with deoptimization metadata, a representation of the deoptimization infor-
mation needed to reconstruct the interpreter environment. With such an approach, used for
instance in Graal [Duboscq et al. 2013] or Sourir [Flückiger et al. 2018], the synchronization
between optimized and nonoptimized code is made explicit in the function. We �nd the lat-
ter approach more elegant to de�ne formal semantics of speculation and deoptimization in
Chapter 5.

Imagine a program that consists of �ve invocations of the function F, where the �rst four
calls have the same arguments and the last one di�ers. Figure 2.4 shows a possible execution
with a JIT that generates an optimized version of F after three invocations and then deopti-
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mizes in the last call. After the �rst three calls, the JIT decides to optimize function F. It adds
in the JIT program a new version of F called F_Opt, specialized for the value of the arguments
that have been seen so far. This new version starts with an assume, and then contains special-
ized code. On the fourth call, the JIT can simply execute this new version. The dynamic check
holds, as the fourth call also executes F with the same arguments. For the �fth call however, the
dynamic check fails because the arguments have changed, and deoptimization is performed
to go back to executing the original version of F.

Note that on-stack replacement has another optional use in JITs that can lead to speedups.
For deoptimization, one uses on-stack replacement as an exit from compiled code, to go from
more optimized code to less optimized code. But some function-based JITs also use on-stack
replacement as an entry into compiled code. For instance, if a function has not been optimized
yet, but is stuck in a loop for a long time, some JITs compile the function before the loop termi-
nates, and use on-stack replacement to jump into the optimized code and �nish the function
execution there. This use was introduced in SELF [Hölzle and Ungar 1994], but is now also
used in HotSpot, in the Jikes RVM [Fink and Qian 2003], in JavaScriptCore [WebKit 2014] or
V8 [V8 2021b]. While on-stack replacement as an exit is required for the correctness of de-
optimization, on-stack replacement as an entry is an optional JIT-speci�c optimization. A JIT
without on-stack replacement as an entry can simply wait for the next function call to jump
into compiled code. Our work focuses on on-stack replacement as an exit for deoptimizations.

2.2 Various JIT Designs

There is no standard way to build a JIT. Some JITs have interpreters, while some do not, like
earlier versions of V8 that compiled everything. Most modern JITs use speculations, but some
may not and compile hot code without specializing it. Some modern JITs have several tiers
of compilation. For instance, V8 and SpiderMonkey �rst use a baseline compiler to generate
bytecode, then use an optimizing compiler. Many WebAssembly interpreters like Wasm3 or
those used in JITs rewrite the code before interpreting it, but others do not. With such a clear
absence of standards, JITs are hard to compare and formalize. The development of our formally
veri�ed JIT is guided by some design choices that we present here.

Intermediate Representation Just like standard compilers, when transforming code, JITs
do not usually go directly from the source language to the target language. They instead go
through various intermediate languages, including bytecodes, called intermediate representa-
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tions or IRs. This allows more modular transformations. IRs in JIT are sometimes represented
as simple control-�ow graphs (CFGs), where instructions correspond to nodes of the graph and
point to their successors (like in the DFG compiler of JavaScriptCore). Some JITs use other rep-
resentations that extend CFGs, like SSA [Rosen et al. 1988] (used in CraneLift for instance) or
Sea-of-Node [Click and Cooper 1995] (used in HotSpot or the TurboFan compiler of V8). In
this work, we focus on simple CFG representations. This design choice is not speci�c to JITs,
and also appears in static compilers. Our use of simple CFGs allows us to stay close to the
program semantics of CompCert RTL, introduced in Chapter 3.

Granularity JITs can also be distinguished by the granularity of the code they decide to
compile. For instance, function-based JITs compile entire functions (like HotSpot or SELF),
some compile only basic blocks (like QEMU). Others, called trace-based JITs, compile execu-
tion traces (like TraceMonkey), where a trace usually refers to a simple sequence of program
instructions. Similarly, some region-based JITs like HHVM [Ottoni 2018] compile regions, gen-
eralizing traces to potentially interprocedural pieces of code that can contain branches. In this
work, we focus on nontracing function-based JITs, compiling entire functions. This choice
makes the reuse of formally veri�ed standard compilers easier.

Speculation Points The use of speculation in JITs can also be classi�ed in two categories.
Some insert explicit speculation points in the optimized code, like the assume instruction of
the example on Figure 2.3. This allows to speculate anywhere in a function, but requires com-
plex deoptimization techniques. Another approach called contextual dispatch [Flückiger et al.
2020], consists in generating several versions of a function with di�erent assumptions. For
instance, one could have one version of a polymorphic function specialized for integers, and
another version specialized for strings. This restrains where speculation can happen (only at
the beginning of functions), but avoids the need for deoptimization, as the JIT always dispatch
to a version that corresponds to its current context. This approach has been used by Julia,
dispatching functions specialized with the types of their arguments [Bezanson et al. 2018]. In
this work, we choose to investigate the veri�cation of the speculation point approach (using
instructions like assume in Figure 2.3), to demystify and formalize the complex mechanisms
of deoptimization and on-stack replacement in modern JITs.

Pro�ling Heuristics Pro�ling and hot code detection heuristics occur in various degrees of
complexity. Many function-based JITs simply use thresholds to determine when a function is
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hot. Thresholds are used for instance in HotSpot [HotSpot 2022], where after a given number
of calls, a function is considered hot. Others have tried more complex approaches. For instance,
taking into account not only the number of time a function is called, but also how many loop
iterations have happened during these calls, or an estimate of the time and space the function
would require to compile. This has been investigated in the PAYJIT policy [Brock et al. 2018],
which scales thresholds with function sizes. V8 also has varying thresholds depending on the
function size and other analyses. In JavaScriptCore [WebKit 2020], the threshold for compiling
a function is scaled by a complex formula, (0.825914+0.061504×

√
S + 1.02406)×2R × M

M−U where
S represents the size of the function, R the number of times it has already been compiled 1, M
represents an amount of executable memory left and U an estimate of the total memory used
after compiling the function. Such heuristics come from experiments on benchmarks rather
than formal correctness arguments. In this work, the pro�ler heuristics we implemented were
simple unscaled thresholds. However, as explained in Section 4.3, our proofs could support
any other kind of heuristics.

2.3 Related Work on JIT formalization

JITs have been scarcely formalized so far. Yet, some other contributions have started in-
vestigating the issue of formalizing some parts of modern JITs.

For instance, focusing on the range analysis Javascript JITs perform, a DSL to write and
prove the correctness of range analysis in JITs has been developed, called VeRA [Brown et al.
2020]. This tool uses a SMT solver to automatically prove that some range analysis is correct.
VeRA has been used to write several range analyses used in Firefox and prove them correct.
This also allowed to �nd a bug in an existing analysis of Firefox, that was consequently �xed.
Compared to using interactive proof assistants, using SMT solvers allows the automatic prov-
ing of some properties. However, some properties are either di�cult to express in the logics
used in SMT solvers, or too di�cult to be automatically proved. While a SMT solver is adapted
to prove the correctness of a range analysis, the formal veri�cation of entire JITs would bene�t
from the expressive speci�cation language of interactive proof assistants like Coq.

For trace-based JITs, Guo and Palsberg [2011] focus on the soundness of trace optimiza-
tions. Sound trace optimizations may di�er from standard ones. Indeed, when optimizing a
trace, the rest of the program is not known to the optimizer. As such, optimizations such as

1. A function can get re-compiled from scratch if its speculations triggered deoptimization too many times.
This comes with other complex heuristics to decide when to throw away an optimized version.
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dead store elimination are unsound when optimizing a trace: a store might seem useless in the
trace itself, but actually impacts the semantics of the rest of the program. Similarly, new opti-
mizations can be done in this context: free variables of the trace can be considered constant for
the entire trace. To characterize sound and unsound optimizations, the authors de�ne formal
semantics for trace recording and bail-out mechanism for speculative optimization. Finally,
they de�ne a bisimulation-based criterion for sound optimization. Checking for soundness
then reduces to checking that the criterion is satis�ed. Then, a theorem proves that using such
sound optimizations, program semantics are observationally equivalent whether tracing is
performed or not. While the formal framework introduced in this work successfully expresses
and proves some of the correctness properties that a trace-based JIT should satisfy, this is not
enough to develop formally veri�ed executable JITs. The framework is not implemented and
proofs are not mechanized.

Myreen [2010] presents another work that targets the formal veri�cation of an entire JIT,
and not just one of its components. It contains a JIT for a stack-based bytecode, and in par-
ticular targets the challenge of dynamically generating x86 code. Proofs are mechanized with
HOL4, and the result is an executable JIT which dynamically generates native code for each
called function. To that end, this work de�nes semantics for self-modifying x86 code, and a
program logic to reason about such code. When x86 code is generated, it contains jumps to a
code generator that may modify the x86 code that called it. This work successfully addresses
the �rst JIT-speci�c challenge of Section 1.2.1. In particular, the JIT can compile code to x86
dynamically and this process is interleaved with execution. The last JIT-speci�c veri�cation
challenge, reusing existing proofs of native code generation, is also handled successfully. This
JIT reuses a previous proof-producing (but nonoptimizing) compiler [Myreen et al. 2009] to
generate x86 code equivalent to a bytecode instruction. However, some JIT-speci�c features
could be di�cult to implement and prove using this approach, such as speculation and on-
stack replacement or interleaving multiple tiers of execution (interpretation and native code
execution). Self-modifying code is one way to implement JITs, but JITs can also generate sev-
eral versions of the same function instead of modifying existing code. We believe that our work
proposes a design more typical of modern JITs, with JIT-speci�c features like speculation and
enabling reasoning about the precise interoperability between interpretation and execution of
machine code.

Others have explored the formal veri�cation of BPF JITs. The BPF (Berkeley Packet Fil-
ter) bytecode language provides an interface for �ltering packets in a kernel. For instance,
an application can request a packet by providing a BPF �lter, a program in a restricted lan-
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guage that the Linux kernel then executes with a BPF engine and decides if the packets gets
downloaded and executed or not. This architecture can also be used to �lter system calls that
can be accepted or denied by the kernel. BPF engines can interpret the bytecode, but can also
decide to compile it to native code instead for e�ciency. This is the case in the eBPF imple-
mentation [eBPF 2022] that extends the BPF architecture. Such BPF engines can be called BPF
JITs, as the kernel uses the BPF engine to compile the code dynamically, as it receives it. First,
Jitk [Wang et al. 2014] is a formally veri�ed BPF JIT, which consists in several components. A
new input language, SCPL, is used by applications to specify system call policies. This input is
transformed into the BPF bytecode language. Then, the BPF code is transformed to Cminor, an
intermediate language of CompCert (see Chapter 3), where it can be compiled to native code.
These transformations are formally veri�ed and mechanized in Coq and Jitk can be extracted
to OCaml. Later, work on Jitterbug [Nelson et al. 2020] also presents a formally veri�ed BPF
JIT, where proofs are automated using SMT solvers. Jitterbug is written in a subset of C that
can more easily be integrated in the Linux kernel. However, both of these work only formally
verify the compilation component of a JIT, and not an entire JIT architecture, including the
kernel code that calls the compiler and receives its result. Their correctness theorems resemble
the one of a static compiler. BPF is also a restricted language and for instance, both of these
work only compile terminating programs. There is no speculation, and the compiled code is
not interleaved with other execution engines: it only interacts with the rest of the kernel when
returning. While these restrictions make sense for a BPF JIT, in this work we aim at formally
verifying not only the compilation part of a JIT, but an entire architecture that calls this com-
piler and may use speculation or interleave the native code execution with interpretation.

Finally, focusing on speculations, semantics preservation proofs for speculative optimiza-
tions were �rst studied in the Sourir intermediate representation [Flückiger et al. 2018]. Sourir
introduced formal semantics for speculative instructions like the assume of Figure 2.3, and ar-
guments for the correctness of inserting and manipulating them. This is an important step
in demystifying speculation in JITs. Our own formalization of speculation in Chapter 5 uses
speculative instructions inspired by this design and has been done in collaboration with two
of the authors behind Sourir, Olivier Flückiger and Jan Vitek.

We believe that the formal veri�cation of JITs should draw inspiration from the exist-
ing work on formally veri�ed ahead of time compilers. In the next Chapter, we present the
CompCert compiler, a C compiler developed and proved using the Coq proof assistant. The
methodology for developing formally veri�ed JITs that we present in this work is inspired by
CompCert and reuses some of its proofs and techniques.
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Chapter 3

BACKGROUND ON THE COMPCERT

COMPILER

3.1 A Formally Veri�ed C Compiler

CompCert [Leroy 2006; 2009a, Leroy et al. 2016] is the �rst commercially available opti-
mizing static compiler that is formally veri�ed. It compiles C programs into assembly pro-
grams, for the following target architectures: ARM, PowerPC, RISC-V and x86 (32 or 64 bits).
CompCert includes several optimizations to produce fast executable programs. CompCert is
an industrial-strength compiler: the performance of the compiled programs is similar to using
GCC at optimization level 1 (with the -O1 �ag). CompCert supports almost every feature of
the ISO C99 standard version of C. The supported subset is called CompCert C.

CompCert is a cornerstone of formally veri�ed compilation. Due to the handling of a real-
istic language, C compilers are large and complex pieces of software, and their formal veri�ca-
tion is challenging. For instance, CompCert C contains 22 di�erent kinds of expressions, and
38 semantic rules to describe its behaviors. The x86 assembly language contains 177 di�erent
instructions. CompCert contains tens of thousands lines of both Coq code and proofs. Instead
of verifying an existing compiler, CompCert follows a “software-proof” codesign, where the
compiler is developed from scratch in Coq along with its proof. The compiler can be extracted
to OCaml. This results in an OCaml program that can be compiled and run to compile realistic
C programs.

Most of the compiler is written in the speci�cation and programming language of Coq,
Gallina. These parts of the compiler can be directly proved correct in Coq. Some transforma-
tions however, like register allocation, make use of a technique known as translation validation,
where the transformation itself is written in OCaml, and not veri�ed. A validator written and
proven in Coq then checks a posteriori that the output of the OCaml transformation is correct.
This can be useful when the validator is easier to prove correct than the transformation itself.
However, the validator could reject the output of the transformation, in which case compila-
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tion would fail. When using CompCert, the possibility of compile-time errors cannot be ruled
out. In practice, the validator can be evaluated on a test suite to check experimentally that it
does not reject correct transformations [Rideau and Leroy 2010].

CompCert Architecture CompCert can be decomposed into several parts. Its architecture
can be seen on Figure 3.1. Each box represents an IR of the compiler. First, a parser converts
a C program into the abstract syntax tree (AST) representation of CompCert C code. ASTs
are used to represent programs in Coq in all of CompCert. Parsing is formally veri�ed since
CompCert 2.3 [Jourdan et al. 2012].

Second, a compiler transforms that CompCert C AST into an assembly AST. This is the
most signi�cant part of CompCert, and is entirely veri�ed. This Coq transformation can be
decomposed into a sequence of transformations, called passes. CompCert includes many such
passes, decomposing the correctness of the compiler into modularly composable correctness
arguments of each pass. There are two kinds of passes, lowering passes and optimizing passes.
Lowering passes consist in translating a program in some intermediate representation to an
equivalent one in the next IR. CompCert contains 11 IRs, from CompCert C to assembly. Di�er-
ent IRs have di�erent properties. For instance, CompCert C allows side-e�ects inside expres-
sions, but this is not the case in Clight. The lowering pass that generates Clight then consists in
moving side-e�ects out of expressions. This allows all following IRs to avoid reasoning about
expressions with side-e�ects.

On the other hand, optimizing passes stay within the same IR, but transform the code into
a more e�cient one. Most optimizing passes happen at the Register Transfer Language (RTL)
level in CompCert. RTL is a standard compiler IR where values are stored in an unbounded
number of pseudo-registers. The RTL code is represented with a simple CFG (control-�ow
graph), where each instruction is associated to a label. Register allocation, assigning pseudo-
registers to machine registers, is done later in the lowering pass that generates LTL code from
RTL. Optimizations done in CompCert are detailed in Section 3.1.1.

In this work, we distinguish the frontend compiler, that transforms CompCert C programs
into RTL programs, from the backend compiler, that optimizes RTL and generate assembly
programs. 1 In Chapter 7, we present how to reuse the backend part of the CompCert compiler
in a JIT, from RTL to x86 assembly.

Finally, a third part consists in assembling and linking the generated assembly AST. Some

1. Note that in CompCert’s parlance, the “backend” starts at the Cminor level. However, in this work, “back-
end” refers to the part that we reuse for native code generation in a JIT and starts at the RTL level.
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Figure 3.1 – CompCert Architecture
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main () {
x3 = 37
x2 = 13
x1 = x3 + x2
x4 = x1

}

main () {
x3 = 37
x2 = 13
x1 = 50
x4 = 50

}

Figure 3.2 – A RTL program before and after the constant propagation optimization

unveri�ed OCaml code prints the assembly AST into an assembly �le. That �le can be assem-
bled (transformed into native code) and linked with other libraries, using the linker from gcc
for instance. Note that these last steps are unveri�ed, although the Valex tool has been devel-
oped to perform translation validation for PowerPC and ARM assembling and linking in the
commercial release of CompCert [AbsInt 2015]. Also, the CompCert theorem is restricted to
whole programs that have been entirely compiled at once with CompCert, while C compilers
are sometimes used to compile incomplete programs that are then linked to libraries compiled
independently.

3.1.1 CompCert Optimizations

In RTL, CompCert can perform several optimizations like constant propagation. In constant
propagation, one performs static analysis to �nd out possible simpli�cations. For instance,
registers that are known to be constant can be replaced by their value directly. An example is
shown on Figure 3.2. In that program, static analysis can automatically �nd that at the time
of the addition, x3 contains value 37 and x2 contains 13. The constant propagation pass of
CompCert performs that analysis, and then simpli�es expressions using the known values.
The result, on the right, has removed the addition entirely.

To perform the static analyses needed by optimizing passes such as Constant Propaga-
tion, Common Subexpression Elimination and Dead Code Elimination, and even some low-
ering passes like Linearization, CompCert includes a module implementing the Kildall algo-
rithm [Kildall 1973]. This algorithm describes a �xpoint solver for data�ow inequations, and
can be used to de�ne various data�ow intraprocedural analyses, like a liveness analysis (for
each program point, deciding what registers contain values that may be needed in the rest
of the execution), or a value analysis (approximating for each program point the set of pos-
sible values a register can hold). This module, that we reuse in our JIT mechanization, comes
with Coq correctness properties that help prove correct the code transformations using static
analyses de�ned with it.
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Another standard compiler optimization performed by CompCert is inlining. As described
in Section 2.1.2, inlining consists in replacing some function calls with the code of the called
function itself, copying the instructions.

3.1.2 The CompCert Theorem

CompCert comes with a Coq proof of correctness. This proof states that compilation did not
introduce any bugs in the program. To do so, CompCert �rst de�nes semantics for CompCert
C, and each of the target assembly languages. The theorem is a semantic preservation property
that compares these semantics. To reason modularly about each pass, CompCert also de�nes
the semantics of each intermediate language of Figure 3.1, and include theorems (as seen later
in Figure 3.9 for instance) to compose the correctness arguments of each pass.

Small-Step Operational Semantics The semantics of languages in CompCert are de�ned
with small-step operational semantics, also called transition semantics. Small-step semantics
are described with a type representing semantic states, and containing the current state of
execution (for instance the value assigned to each register, the state of the memory and the
current instruction pointer), along with a small-step transition relation. This relation (noted
→) represents elementary steps of the program execution. It relates every semantic state to its
possible next semantic states, and each step is associated with a trace of observable I/O events
(e.g., calls to external library functions). CompCert also de�nes transitives closures star →∗

(any number of steps) and plus →+ (a strictly positive number of steps) from the generic →.
CompCert includes a generic notion of small-step semantics shared across all its languages.

A simpli�ed version of it is shown in Figure 3.3, a Coq record containing everything to de�ne
the behaviors of a program. The type state represents semantic states, and step represents
the small-step transition relation →, where step s1 t s2 holds when s1

t
←←←→ s2, meaning that

there is an elementary step from the semantic state s1 to semantic state s2, associated with
the trace t of observable events. To de�ne when the execution of a program starts and stops,
some semantic states are noted as initial or �nal according to the predicates initial_state and
final_state. Additional omitted �elds of this record are more speci�c to the semantics of the
C language (like a global environment containing available function de�nitions), and are not
relevant to this work.

Program Behaviors CompCert then associates a set of possible behaviors to a program
given its language small-step semantics. Behaviors represent sequences of observable events
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Definition Semantics {state: Type}
( step: state → trace → state → Prop)
( initial_state: state → Prop)
( final_state: state → int → Prop) :=

{| state := state;
step := step;
initial_state := initial_state;
final_state := final_state

|}.

Figure 3.3 – Simpli�ed small-step semantics in CompCert

that can be emitted by a program while following the small-step transition relation. Behaviors
exist in three possible forms: termination, divergence and going-wrong. A terminating behavior
is a sequence of semantic steps that starts on an initial state and ends on a �nal state, associated
to the �nite list of events observed. Diverging behaviors are similar except that the sequence
of steps is in�nite and the list of observed events can be either �nite or in�nite. Going-wrong
behaviors are sequences of steps ending on a semantic state that does not have a successor
according to the small-step transition relation.

The type of observable events in CompCert is shared by all IRs. This means that the be-
haviors of an assembly program can be compared to the behaviors of a CompCert C program
for instance. Note that multiple behaviors can be associated to a single program, as small-step
semantics can be nondeterministic, meaning that there can exist multiple di�erent steps from
the same semantic state. C (and CompCert C) programs are notably nondeterministic as they
do not specify the evaluation order of expressions.

The CompCert Theorem The �nal CompCert correctness theorem relates behaviors of
a CompCert C program to the behaviors of the corresponding compiled assembly program.
Figure 3.4 contains two versions of that theorem. Here, the de�nitions Asm.semantics tp and
Csem.Semantics p are small-step semantics records as in Figure 3.3, where transitions follow
the code of their respective programs t and tp.

The �rst, more generic theorem can be read as follows: for any program p, if compilation
succeeds and produces assembly program tp, then any behavior beh of tp improves a behavior
beh’ of p, written behavior_improves beh’ beh. Behavior improvement (a form of behavior re-
�nement) means that either the behaviors are equal, or if p goes wrong, tp is allowed to avoid
going wrong and can instead have any behavior after the point where p went wrong (while
still having the same observable trace of events up to this point). C compilers can produce and

40



Background on the CompCert Compiler

Theorem transf_c_program_preservation:
∀ p tp beh,
transf_c_program p = OK tp →
program_behaves (Asm.semantics tp) beh →
∃ beh’, program_behaves (Csem.semantics p) beh’ ∧ behavior_improves beh’ beh.

Corollary transf_c_program_is_refinement:
∀ p tp,
transf_c_program p = OK tp →
( ∀ beh, program_behaves (Csem.semantics p) beh → not_wrong beh) →
( ∀ beh, program_behaves (Asm.semantics tp) beh →

program_behaves (Csem.semantics p) beh).

Figure 3.4 – CompCert Correctness Theorems

optimize code with the assumption that the source C code always has a behavior according
to the C99 standard. Some realistic C programs however have an unde�ned behavior accord-
ing to the standard, but programmers still expect them to be compiled in a certain way. With
behavior improvement in its speci�cation, CompCert can compile these programs as expected.

The second theorem is a corollary. Since behavior improvement allows di�erent behaviors
only when the source program p contains going-wrong behaviors, we deduce that if p has
a safe behavior (not going-wrong) then any behavior beh of the compiled program is also
a behavior of p. This is often the most interesting case, where we can be ensured that the
assembly program behavior is exactly a behavior of the source program. One can use static
analyzers like Verasco [Jourdan et al. 2015] to prove that a C program has safe behaviors.

Note that in both theorems, the fact that p has been compiled to tp is expressed with the
hypothesis transf_c_program p = OK tp. This transf_c_program function could also return an
error, instead of an assembly program. This means that the CompCert theorems allow the
compiler to fail to produce a program, for instance if a validator rejects a translation. The
theorems are vacuously true in that case. For ahead of time compilation, this is not an issue,
as compilation and execution are typically independent.

3.2 The Simulation Framework of CompCert

In order to prove such theorems about program behaviors, CompCert uses a simulation
methodology. Simulations de�ne a relation between two programs (a source and a target pro-
gram) and their small-step semantics. Simulations are used to prove the correctness of passes
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that transform the source program into the target program. Simulations come in two forms in
CompCert: forward and backward simulations. Intuitively, a backward simulation states that
any target program behavior can be matched locally with a similar behavior in the source
program. And a forward simulation states that any source program behavior can be matched
locally with a similar behavior in the target program.

Backward Simulations The standard technique to prove the correctness of a code transfor-
mation in formally veri�ed C compilation is to prove a backward simulation, as shown in Fig-
ure 3.5. Given a source program P1 (in a language L1) and its transformed target program P2 (in
a language L2), each step in P2 with a trace t must correspond to transitions in P1 with the same
trace t and preserve as an invariant a relation ≈ between semantic states of P1 and P2. As seen
on the right of the diagram, it is possible to match a step of the target program P2 with no step
at all in the source program P1, this is called a stuttering step. This is useful if the transforma-
tion increases the number of steps in the code, for instance by adding instructions, or splitting
a high-level instruction into several low-level ones. However, a backward simulation should
rule out the case of in�nite stuttering, where in�nitely many consecutive steps in P2 are sim-
ulated by no step at all in P1. To avoid this case, the theorem uses a measure over the states of
L2 that strictly decreases in cases where stuttering happens. 2 It is generically noted m(⋅) and is
speci�c to each compiler pass. It can be de�ned using natural numbers, or any other type with
a well-founded order. To prove a backward simulation, one must also prove that the transfor-
mation preserves progress, as seen on Figure 3.6. Progress preservation means that when two
semantic states are matched with the invariant s1 ≈ s2 and there exists a step in P1 starting from
s1, then there also exists a step in P2 starting from s2. In CompCert’s parlance, both the diagram
and progress preservation together are denoted by backward_simulation (sem1 P1) (sem2 P2),
where semi de�nes the semantics of Li . As illustrated by many published proofs conducted
within CompCert, the gist of proving a simulation for an optimization or lowering pass re-
lies on designing a suitable matching relation ≈ and measure m(⋅), speci�c to this pass, then
proving the preservation of the relation ≈ for each possible semantic step.

Backward simulations are useful in CompCert because they imply behavior preservation.
Looking at the diagram of Figure 3.5, one can see how locally, every behavior of the target
program can be matched to a behavior of the source program. In fact, the correctness theorem
of Figure 3.4 is obtained with a backward simulation between a CompCert C program and its

2. Technically in CompCert, the measure is not de�ned on semantic states but instead each matching relation
rule comes with an index on which the measure is de�ned. The version presented here simpli�es the presentation
of our invariants.
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s1 s2

s′1 s′2

∨

s1 s2

s′2
with m(s′2) < m(s2)

≈

t+ t
≈

≈

no event≈

Figure 3.5 – A backward simulation diagram. Solid lines are hypotheses and dashed lines are
conclusions. On the left of each diagram are the source program and its current state s1; the

target program and its current state s2 are on the right. Horizontal lines represent the
matching relation ≈, and vertical lines the semantic steps.

s1 s2

s′1 s′2

≈

Figure 3.6 – Progress preservation in a backward simulation. Solid lines are hypotheses and
dashed lines are conclusions.

compiled assembly program. A backward simulation can hold even if the code transformation
removed some behaviors of the source program, as long as the remaining behaviors match the
source ones, and that progress is preserved. Backward simulations can also be composed, and
this allows to prove code transformations modularly.

Forward Simulations In general however, backward simulations are rather di�cult to prove.
One explanation is that one needs to reason in one direction to prove the diagram of Figure 3.5
(constructing steps of P1 from P2 steps), and in the other direction when proving the preser-
vation of progress of Figure 3.6 (constructing steps of P2 from P1 steps).

For that reason, it is easier to prove a forward simulation between two semantics. To prove a
forward simulation, it su�ces to prove the diagram on Figure 3.7. Steps of the source program

s1 s2

s′1 s′2

∨

s1 s2

s′1
with m(s′1) < m(s1)

≈

t + t
≈

≈

no event ≈

Figure 3.7 – A forward simulation diagram. Solid lines are hypotheses and dashed lines are
conclusions. On the left of each diagram are the source program and its current state s1; the

target program and its current state s2 are on the right. Horizontal lines represent the
matching relation ≈, and vertical lines the semantic steps.
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Lemma forward_to_backward_simulation:
∀ L1 L2,
forward_simulation L1 L2 → receptive L1 → determinate L2 →
backward_simulation L1 L2.

Figure 3.8 – CompCert forward-to-backward theorem

are matched with steps of the target program. Note that there is no need to prove progress
preservation, as it is implied by the forward simulation diagram. This makes forward simula-
tions easier to prove than backward ones.

However, a forward simulation on its own is not enough to imply a behavior preservation
theorem like the one of CompCert. Just like a backward simulation can hold when removing
behaviors from the source program, a forward simulation can hold when adding new behav-
iors to the target program. Even if a forward simulation holds, the target program could have
additional behaviors that are not behaviors of the source program. However if the target pro-
gram is deterministic, then either the source program is safe, in which case it is matched to the
target behavior according to the forward simulation diagram because there exist a sequence of
source steps; or the source program is not safe and has a going-wrong behavior (reaches a point
from which there is no possible step), in which case the target program behavior improves the
source one. Using this reasoning, CompCert proves and uses the forward-to-backward theorem
of Figure 3.8. Given two small-step semantics L1 and L2, if L1 is receptive and L2 is determinate,
then a forward simulation implies a backward simulation between L1 and L2. Receptiveness
means that progress is independent of the external environment, which holds for the lan-
guages of CompCert. Determinacy is a weaker version of determinism. Small-step semantics
are determinate when di�erent semantic steps are possible from a semantic state only when
they have di�erent observable events. If L is determinate, then s

t
←←←→ s1 ∧ s

t
←←←→ s2 implies s1 = s2.

The full determinacy de�nition used in CompCert also includes some additional properties,
for instance that each small step emits at most one observable event, or the uniqueness of
initial semantic states. These other properties hold for the semantics used in CompCert or the
ones we de�ne in this work.

As shown on Figure 3.9, forward simulations can be composed, and are then used exten-
sively in CompCert. To avoid dealing with nondeterminism, CompCert starts with a backward
simulation between CompCert C and Cstrategy, the same language where an evaluation strat-
egy for expressions has been chosen. This can only be done with a backward simulation, as
some source behaviors are removed. Next, all following passes are proved correct with forward
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Lemma compose_forward_simulations:
∀ L1 L2 L3, forward_simulation L1 L2 → forward_simulation L2 L3 →
forward_simulation L1 L3.

Figure 3.9 – Composing forward simulations

simulations. These forward simulations can be composed, and using the theorem of Figure 3.8,
one can construct for free a backward simulation between Cstrategy and the compiled assem-
bly program. The target assembly languages of CompCert are determinate. This backward
simulation can be composed with the very �rst one, and the result is a backward simulation
between CompCert C and assembly. This simulation implies the correctness theorems of Fig-
ure 3.4.

In conclusion, forward simulations are usually the simplest way of proving a compiler pass
correct, as long as it can be used to construct a backward simulation using the theorem on Fig-
ure 3.8. Backward simulations are more generic and can hold even when removing behaviors
of the source program, but require more proof e�orts. In a language like C, nondeterminacy
only arises in the order of evaluation of expressions, and CompCert uses Cstrategy to discard
this issue as soon as possible.

In this work, we reuse multiple CompCert components to prove JITs correct in Coq. First,
we reuse the simulation framework. This includes the small-step semantics de�nition of Fig-
ure 3.3, but also the backward and forward simulations presented in Figures 3.5 and 3.7, as
well as some useful theorems related to them, such as the forward-to-backward theorem of
Figure 3.8. For instance, we de�ne small-step semantics for JITs in the following Chapter. Each
code transformation done by our formally veri�ed JIT is proved correct with a backward sim-
ulation. We also reuse the behavior library that associates behaviors to small-step semantics.
In particular, this allows us to prove in Chapter 4 a behavior preservation property that re-
sembles the correctness theorem of CompCert (Figure 3.4). We also reuse the Kildall module
discussed in Section 3.1.1 to de�ne various analyses in our JIT. In Chapter 5, we use it to de�ne
several data�ow analyses. In Section 5.2.3, we de�ne a Constant Propagation pass that closely
resembles the one of CompCert. Finally, the entire CompCert backend for the x86 architecture
is reused in Chapter 7 to generate native code dynamically in a formally veri�ed JIT. We pro-
duce RTL programs, and use the CompCert backend to generate equivalent x86 programs. We
then reuse its proof scripts to prove the correctness of a JIT that generate native code.
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Chapter 4

DESIGNING FORMALLY VERIFIED JITS

In this Chapter, we present our approach to develop formally veri�ed JITs. We �rst focus
on building an architecture for JITs that clearly separates the role of each component. The
architecture captures the essence of realistic JITs with speculation and native code genera-
tion. We then describe what the correctness theorem of a JIT should look like. Finally, we
present our solution to the �rst JIT-speci�c veri�cation challenge introduced in Section 1.2.1:
the formal veri�cation of a JIT with dynamic optimization. This results in a methodology to
reduce the problem of verifying an entire JIT to proving the correctness of its optimizer, with
a speci�cation resembling those of static compilers.

4.1 A formalized JIT Architecture

The �rst step in formalizing and verifying JITs consists in identifying what constitutes a
JIT. There is no standard architecture and no standard set of components across modern JITs,
but there are similarities. Components of modern JITs fall into three main categories: execution,
optimization and monitoring. Execution in a JIT can take multiple forms. First, many JITs use
interpreters as a way to start executing code quickly. But as many JITs dynamically generate
native code, another way to make progress in a JIT execution can be to call native code. Op-
timizations include speculative optimizations (see Section 2.1), standard optimizations (like
constant propagation or inlining), or generating native code (which typically speeds up the
next executions). Finally, JITs need mechanisms and components to orchestrate the interleav-
ing of execution and optimization. This constitutes the monitoring category 1, from pro�lers
that suggest optimizations and speculations, to the interfacing needed to interleave both levels
of execution.

Our generic JIT architecture is shown in Figure 4.1. It contains all the previously mentioned
categories. First, a monitor is in charge of gathering information and compilation hints about
the program execution using a pro�ler, and regularly suggests functions to be optimized. This

1. Sometimes called control, for instance in JavaScriptCore [WebKit 2020].
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1. Monitor

Pro�ler,
Dispatch

3. Optimization

Middle-end
Compiler,
Speculation

Backend
Compiler,

Native Code Generation

2. IR Execution

Interpreter

4. Native Execution

Run Native

Figure 4.1 – Key components of our JIT design

monitor then calls the relevant JIT component among three possible ones: either optimization
(3.), or dispatching execution to either the interpreter (2.) if the function to execute has not
been compiled, or calling the corresponding native code (4.) if it has been. We follow a two-
tiered optimizer design, where a �rst compiler called amiddle-end compiler inserts speculation
in the program and specializes the optimized function. The resulting optimized function (that
may contain speculations) is then fed into a backend compiler, that generates native code. In
our development, this backend compiler reuses the backend compiler of CompCert presented
in Chapter 3.

To the best of our knowledge this resembles the architecture of modern JITs with a few
deliberate exceptions, either design choices or simpli�cations, that we list here.

A simple common IR JITs typically have a common language that serves as the input of
both interpretation and various compilation tiers. In our work, this IR is represented by a sim-
ple CFG representation, that can be directly interpreted. Some JITs rather interpret some byte-
code, or even rewrite their code before interpreting it. This is the case for most WebAssembly
interpreters like Wasm3 [Wasm3 2022] or the one in JavaScriptCore, as the structured control-
�ow of WebAssembly makes it di�cult to interpret e�ciently without rewriting [Titzer 2022].
Our IR, CoreIR, resembles CompCert’s RTL and is fully presented in Chapter 5. Our design
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Function Fun1 ( ) :
l1 : i ← 1 l2
l2 : max ← 11 l3
l3 : b ← i < max l4
l4 : Cond b l5 l7
l5 : r ← Call Fun2 ( i ) l6
l6 : i ← i + 1 l3
l7 : Return r

Function Fun2 ( x ) :
l1 : y ← x ∗ x l2
l2 : Print y l3
l3 : Return y

Figure 4.2 – An example CoreIR program computing the 10 �rst squares

focuses on function-based JITs that compile entire functions of CoreIR. CoreIR is a simpli�ed
version of RTL (making easier the reuse of CompCert to generate native code in Chapter 7),
augmented with speculative instructions. An example of a CoreIR program is given in Fig-
ure 4.2. Instructions are associated to labels and include the label of their successors. There
are branches (Cond), function calls (Call) and output values (Print). The �rst function is a
loop that calls Fun2 with an argument ranging from 1 to 10, and Fun2 prints the square of its
argument. The observable behavior of a CoreIR program is de�ned by the sequence of values
printed by the Print instructions, and that sequence of outputs must be preserved by the JIT.
The IR used by modern JITs for realistic dynamic languages can be more complex. However, a
simpler language allows us to focus on the JIT-speci�c veri�cation challenges of Section 1.2.1,
and could be extended with more features.

Two separate compilers In JITs with speculation, the separation between middle-end and
backend is not always made as explicit as in our design. This design choice allows us to clearly
separate the correctness arguments used for proving the correctness of speculation from the
ones used for native code generation. This is reminiscent of how the Turbofan compiler of V8
starts compilation by specializing the code to compile using speculations [Meurer 2017]. As in
Sourir [Flückiger et al. 2018], we believe that the logic involved in inserting and manipulating
speculation should not be tied to implementation details and deserves its own formalization,
especially with veri�cation as a goal.

Our design only includes a single backend compiler to generate native code. Even though
some JITs include several such compilers (see Section 2.2) to choose between more or less
aggressive optimizations, we believe that this does not change the way JITs should be formally
veri�ed. The interaction between several execution engines is already showcased with both
the interpreter and the execution of native code.
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A monitor and its synchronization interface Some JITs may not have such a delimited
notion of monitoring and dispatch, and instead directly implement them in the other com-
ponents. For instance, the interpreter may contain code that directly calls the pro�ler and
optimizer or directly jumps to native code on function calls. Backend compilers of JITs may
generate native code that directly reconstructs the interpreter stackframe on deoptimization.
In our design however, execution systematically returns to a monitor component at each syn-
chronization point: function calls, function returns and deoptimization triggers. These points
de�ne a synchronization interface between the di�erent JIT components, the moments in an
execution where the JIT can switch between its various components. For JITs with on-stack
replacement as an entry (as explained in Section 2.1.2), one would need to add other synchro-
nization points in the middle of loops that may trigger it. Without this feature, a function-
based JIT only needs to switch components when changing function (calls and returns), or
when deoptimizing. We believe that this monitor component represents an abstraction layer
that better separates the di�erent mechanisms of a JIT execution and facilitates their formal
veri�cation. This allows to modularly verify the mechanism that chooses between compo-
nents, independently from the veri�cation of an interpreter, whose speci�cation can simply
consists in executing CoreIR code according to its semantics.

4.2 JITs as Coq State Machines

A JIT resembles an interaction loop in that it executes or optimizes the code until the
program �nishes. For that reason, JITs in Coq can be implemented as transitions on a state
machine, to be looped until the end of program execution. Figure 4.3 shows the state ma-
chine that describes how the JIT alternates between its components, from IR execution, to
optimization and native execution. To implement a JIT in Coq, we choose to de�ne a function
representing the transitions of this state machine and calling the relevant JIT component. For
instance, one transition corresponds to the interpreter, and another transition corresponds to
the optimizer. This transition function returns the next state of the state machine. From the
state that corresponds to the monitor, this depends on what the pro�ler suggests for instance.
Most transitions can be represented as terminating Gallina functions. Note however that some
transitions called impure (like calling native code) cannot be represented in Gallina. Gallina
is a pure functional language without mutable data-structures or the possibility to call arbi-
trary native code. This is discussed in Chapter 6, for now we consider that every transition is
a terminating Gallina function.
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MONITOR
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OPTIMIZATION
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Figure 4.3 – A JIT architecture as a state machine

De�ning a JIT as a Coq function encoding transitions of a state machine has several advan-
tages. First, this is a simple way to allow the execution of possibly nonterminating programs.
In Gallina, it can be di�cult to write and reason on nonterminating functions. One must al-
ways prove the termination of recursive functions. While corecursion is a Coq feature allowing
to write some nonterminating programs, reasoning on such de�nitions often implies writing
coinductive proofs for which support is more limited than traditional structural induction [Hur
et al. 2013]. This is not an issue for ahead of time compilers like CompCert: the entire com-
piler can be written as a terminating function, regardless of the compiled program’s behaviors.
However, JITs stay active during the entire program execution and may not terminate if the
program they execute diverges. By breaking down the JIT behavior into a sequence of termi-
nating steps (the transitions of the state machine), we can simply de�ne the transition function
in Coq, extract it to OCaml, and write a simple OCaml program that loops the transition un-
til a �nal state is reached. This small piece of OCaml code diverges when the JIT execution
diverges. The issue of nontermination when executing a diverging program with a JIT has
been delegated to this small OCaml loop. While it is not veri�ed in Coq, it is small and simple
enough to manually audit.

For instance, one can de�ne inductively in Coq a type jit_state, representing the di�erent
states of Figure 4.3, and also containing all the data used by the JIT (for instance, the CoreIR
code). De�ning JITs in Coq then amounts to de�ning a function representing its transitions,
of type jit_step: jit_state -> (trace * jit_state), where trace is the type of observable
events emitted during a JIT step. The OCaml loop can then be written as on Figure 4.4, where
final_state is another extracted function that returns true if the program execution has �n-
ished (when returning with an empty execution stack).
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let rec jit_loop (js:jit_state) =
if ( final_state js) then

printf "End of Execution"
else

let (t, next) = jit_step js in
print_trace t;
jit_loop next

Figure 4.4 – OCaml looping of extracted JIT transitions

Algorithm 1: The jit_step function
input : jit_state js = (jp, es, ps)
output: The output trace and the next jit_state
match es with

case MONITOR synchro =>
let newps = profiler ps synchro;
match optim_policy newps with

case OPT =>
return no_trace, (jp, OPTIMIZATION synchro, newps)

case NO_OPT =>
return no_trace, (jp, DISPATCH synchro, newps)

end
case OPTIMIZATION synchro =>

let newjp = optimizer ps jp;
return no_trace, (newjp, DISPATCH synchro, ps)

case DISPATCH synchro =>
let is = create_interpreter_state synchro;
return no_trace, (jp, IR_EXECUTION is, ps)

case IR_EXECUTION is =>
let (t, result) = interpreter is;
match result with

case synchro =>
return t, (jp, MONITOR synchro, ps)

case new_is =>
return t, (jp, IR_EXECUTION new_is, ps)

end
end
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JIT step example For instance, Algorithm 1 shows a simpli�ed version of such a jit_step

function where there is no native code execution. In this version, JIT states are implemented
with tuples js = (jp, es, ps) where jp is the current JIT program being executed and es

is the current execution state. Execution states are a pair containing one state of the state
machine of Figure 4.3, and either an interpreter state is when in the IR_EXECUTION state, or a
synchronization point synchro otherwise (as de�ned earlier, a function call, a function return or
a deoptimization). Finally, ps is the current pro�ler state, the data manipulated by the pro�ler.

While in the MONITOR state, the JIT calls the pro�ler, and decides to go to either the opti-
mization or dispatch state depending on the suggestion of the pro�ler. The functions profiler

and optim_policy are described in Section 4.3. Then, when in the OPTIMIZATION state, the JIT
updates its current program by calling its optimizer. During the DISPATCH phase, the JIT con-
structs a state of the interpreter. If the current synchronization point synchro is a function call,
the JIT creates an interpreter state corresponding to the entry of the called function. When
this is a function return, the JIT looks up the top stackframe to know which function to return
to. 2 When this synchronization point is a deoptimization, the JIT reconstructs an interpreter
state corresponding to the execution of the original version of the function being executed.
This reconstruction follows the rules described in the semantics of CoreIR, in Section 5.1.2.
Note that on this simpli�ed example, the dispatch always constructs an interpreter state as
there is no native code execution. Native code execution requires a di�erent kind of jit_step

function that is described in Chapter 6. Finally, during interpretation, an interpreter function
produces an observable trace and its next state. If a synchronization point has been reached,
the JIT execution goes back to the monitor. Otherwise, the JIT stays in the IR_EXECUTION state.

JIT semantics Another advantage of de�ning JITs as transitions of a state machine is that
it allows for a simple de�nition of small-step semantics for the JIT execution. Semantic states
are exactly the type jit_state, and the step transition relation (→) corresponds to executing
the jit_step function. Figure 4.5 shows a simple rule that shows how the jit_step function
can be turned into a small-step transition relation with a single rule. In the rest of this chapter,
we write jit_sem p for the small-step semantics de�ned by the small-step transition relation
of Figure 4.5 and whose initial state contains the code of CoreIR program p.

2. In this simple example with no native code execution, the JIT execution stack can be part of the interpreter
states and synchronization points. Later in Chapter 6, the stack is handled di�erently when it contains both
interpreter and native code stackframes.
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jit_sem
jit_step js1 = (t, js2)

js1
t
←←←→ js2

Figure 4.5 – The JIT small-step semantic rule

4.3 Pro�ling as External Heuristics

To decide what and when to optimize, modern JITs use sometimes complex, empirical and
language-dependent heuristics, as discussed in Section 2.2. Instead of trying to verify such
mechanisms, we argue that what the pro�ler suggests should only impact the performance of
the JIT, but not its correctness. In other words, a JIT execution should be correct even if the
pro�ler suggests optimizing functions that will never be called, or suggests speculations that
will never hold.

The task of verifying a JIT should not hinder itself with the veri�cation of empirical heuris-
tics. For this reason, we de�ne the pro�ler heuristics in our Coq development as a collection
of external parameters. This means that the JIT proof of correctness assumes nothing more
than the existence of such parameters. During extraction, these external parameters can be
implemented in OCaml. This allows us to easily change heuristics without even modifying
the proofs.

Parameter profiler_state: Type.
Parameter initial_profiler_state: profiler_state.
Parameter profiler: profiler_state → synchro_point → profiler_state.
Parameter optim_policy: profiler_state → jit_status.

Figure 4.6 – External Parameters for Pro�ling

In Coq, our pro�ler is de�ned using a simple interface of parameters, shown in Figure 4.6. A
parameter profiler_state type is de�ned. The jit_state type always holds the current pro�ler
state. This pro�ler state contains the data used by the pro�ler, and can be freely implemented.
To help de�ne the initial state of the JIT, we require an initial pro�ler state. Every time exe-
cution comes back to the monitor on a synchronization point (call, return or deoptimization),
the pro�ler updates its internal state with the profiler parameter. Finally, the pro�ler can
suggest optimizations with optim_policy. Its return type, jit_status, either recommends no
optimization, and the monitor then proceeds with execution, or contains a list of suggested op-
timizations. This includes what to speculate on, and the identi�ers of the functions to optimize
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and compile.
For instance, optim_policy may return OPT [(F3,InsertAssume l5 (x1=x8)); (F3,Backend)]

if it wishes to optimize function F3 by inserting an Assume instruction speculating that register
x1 is equal to x8 at label l5 (see Section 5.2.2), then calling the backend compiler to generate
native code for that function.

Note that with this methodology, the JIT cannot always do what the pro�ler recommends.
For instance, if the pro�ler always suggests optimizing and never executing, the JIT could
get stuck in an optimization loop. The monitor is in charge of deciding when to follow the
pro�ler recommendations. This is detailed in section 4.5. The bene�ts of clearly separating
these parameters from the rest of our JIT development instead of implementing them in Coq
is that our correctness results do not depend on the implementation of such heuristics, which
should only impact performance, but not correctness.

4.4 A JIT Correctness Theorem

CompCert simulations state that any behavior of a compiled program matches at least
one behavior of its source program. While the program of a JIT dynamically evolves during
execution, one can still prove a similar correctness theorem if we compare the semantics of the
input CoreIR program to the small-step semantics jit_sem describing the behavior of the JIT
executing a program. Just like the theorem of Figure 3.4 is proved with a backward simulation
in CompCert, we can reuse the CompCert simulation framework to prove JIT correctness.

Backward Simulation Mechanized in the POPL21 artefact
Backward simulation relating the behavior of the JIT executing a program p (including
execution, pro�ling and dynamic optimizations) to the behavior of the CoreIR semantics
of p.

Theorem jit_simulation:
∀ ( p: program),

backward_simulation (CoreIR_sem p) (jit_sem p).

Simulation 1 – JIT backward simulation (pure version)

We �rst prove the Backward Simulation 1, where CoreIR_sem corresponds to the small-step
semantics of CoreIR. As de�ned in Figure 4.5, this jit_sem semantics contains every transition
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of the JIT, including interpretation or optimization. Note that so far, we have assumed that
every transition of the JIT was pure. This can be true for a JIT that does not generate and
execute native code and instead only interprets CoreIR, like the one we �rst developed for our
POPL21 article [Barrière et al. 2021]. However, for JITs with impure state machine transitions,
we must modify the jit_sem de�nition and Simulation 1 accordingly. This is done later in
Chapter 6, Simulation 11.

Every simulation described in our methodology for the formal veri�cation of JITs is repre-
sented with such a box, with a short description and a simpli�ed version of the Coq theorem
present in our development. These Simulations are all listed on page 15. In the electronic ver-
sion of this document, the Mechanized keyword in the top right of the box contains a link
to the corresponding Coq proof. Like other de�nitions, these links are also available in the
appendix, on page 153.

After proving the simulation, Figure 4.7 then corresponds to the �nal correctness theorem
of our Coq JIT. This theorem is obtained using existing CompCert proofs that establish a be-
havior preservation theorem from a backward simulation, meaning that proving Simulation 1
constitutes our main veri�cation work. This jit_correctness theorem strongly resembles the
one from CompCert (Figure 3.4), only replacing the semantics of the compiled program with
the semantics jit_sem. The de�nitions program_behaves and behavior_improves are directly im-
ported from CompCert, as presented in Chapter 3.

Note that the JIT semantics are not allowed to go wrong if the program p does not go
wrong. In particular, if the compilation of a function fails (analyses de�ned with the Kildall
CompCert module are allowed to fail if the analysis does not converge for instance), then the
JIT must cancel the optimization and keep interpreting safely. While the entire compiler is
allowed to fail in the case of ahead of time compilation, failure to dynamically generate code
in a JIT should not crash the entire execution.

Having a correctness theorem so close to CompCert’s has several advantages. First, we
avoid reproving existing results of formally veri�ed compilation that apply to JITs. For in-
stance, the entire simulation framework of CompCert can be reused, including the small-step
semantics and simulation de�nitions, but also the proof that constructs a behavior preser-
vation property from a backward simulation. Second, by reusing backward simulations, we
facilitate the reuse of the CompCert backend as a backend compiler for our JIT in Chapter 7.
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Theorem jit_correctness:
∀ p beh, program_behaves (jit_sem p) beh →
∃ beh’, program_behaves (CoreIR_sem p) beh’ ∧ behavior_improves beh’ beh.

Figure 4.7 – JIT Correctness Theorem

4.5 Dynamic Optimizations

As established in the previous section, a good way to prove a JIT correct is to prove a back-
ward simulation between the CoreIR small-step semantics of the program to execute, and the
small-step semantics of the JIT executing that program. This ensures behavior preservation
and thus that the JIT did not introduce any bugs while executing its program. However, this
simulation cannot be built in the same way as in a static compiler like CompCert. In all the se-
mantics de�ned by CompCert, the program being executed is a parameter that does not change
during execution, while in a JIT, the program being executed changes at every optimization
step. In the CompCert theorem of Figure 3.4, both p, the source program, and tp, the compiled
program, are known. Before execution however, there is no way to predict what code will be
executed in the JIT, as it is dependent on what optimizations are done and when.

In this section, we tackle the �rst JIT-speci�c veri�cation challenge introduced in Sec-
tion 1.2.1: proving the correctness of a JIT with dynamic optimizations. The main challenge
is to de�ne the invariant for Simulation 1, such that it de�nes an appropriate speci�cation for
the optimizer of the JIT.

4.5.1 The Nested Simulations Technique

In a JIT, the program being executed can be seen as some data manipulated by the opti-
mizer. As such, our jit_state de�nition contains the current program of the JIT. When de�n-
ing jit_step, the optimizer transition is the only one modifying that part of the JIT semantic
states, for instance when creating a new optimized version of a function. For this section, we
extend the JIT semantic state jit_state to be a tuple js = (jp, es, n, ps), where jp is the
current JIT program being executed. es is the current execution state, containing either a syn-
chronization point (call, return or deoptimization), or the state of an execution engine (for
instance, an interpreter state). States of execution engines contain the current mapping of the
registers, the contents of the memory and the execution stack. Then, n is a bound on the num-
ber of optimizations. It decreases each time the JIT calls the optimizer. This allows to avoid
the in�nitely stuttering case where the pro�ler always suggests optimizing. When it reaches
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p

s

Original Program

jp

es

n

JIT state js

≈int

Internal sim ≈int

Figure 4.8 – External simulation relation s ≈ext js i� 1) there exists an (internal) backward
simulation between jp and p using relation ≈int and 2) s is matched with es using ≈int .

0, the monitor discards the pro�ler suggestions and simply stops calling the optimizer. Finally,
ps is the current pro�ler state, and gets updated when calling the pro�ler. As this pro�ler state
is not relevant to the proof, we omit it from most �gures of this section.

To prove Simulation 1 (called external in this section), one needs to de�ne a simulation
invariant. Such an invariant must be adapted to our JIT setting, relating semantic states of
CoreIR to JIT semantic states of type jit_state. Intuitively, this invariant should state that at
any moment during the JIT execution, the optimizer, while having modi�ed the program, did
not change its behavior. Or in other words, that the current program of the JIT jp is in some
way equivalent to the original program p fed to the JIT. Intuitively, this equivalence comes from
the fact that jp has been obtained by gradually transforming p during the optimization steps of
the JIT. To express this equivalence, we choose to use yet another simulation relation (called
internal), between the current JIT program jp and the original program p. In short, we prove an
external backward simulation whose invariant contains another backward simulation, which
we call the internal simulation. As the JIT program gets optimized during JIT execution, the
internal simulation changes to re�ect that. This is our nested simulations technique to solve
the JIT-speci�c issue of dynamic optimizations.

Figure 4.8 shows a graphical representation of this invariant, used later in Figure 4.10 to il-
lustrate the proof. In the �gure, (Internal sim ≈int ) means that there exists an internal backward
simulation using internal invariant ≈int between the two programs pointed by the arrow.

We show a (simpli�ed) de�nition of the invariant ≈ext of the external simulation on Fig-
ure 4.9. 3 The relation ≈ext is the simulation invariant of the JIT execution, relating CoreIR

3. The full mechanized version also includes some additional properties that we omit here for brevity. For
instance, the measure should correspond to a well-founded order, and the invariant relation should match �nal
semantic states. These properties are identical in the CompCert simulations and in our internal ones.
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internal-sim

(1) ∀s, if s is a function call synchronization state then s ≈int s
(2) Progress Preservation (Figure 3.6):
∀s1 s′1 t s2, s1 ≈int s2 ∧ s1

t
←←←←←→
p
s′1 implies

∃ t ′ s′2, s2
t′
←←←←←←←←←←→
jp

s′2
(3) Simulation Diagram (Figure 3.5):
∀s1 s2 s′2 t, s1 ≈int s2 ∧ s2

t
←←←←←←←←←←→
jp

s′2 implies

(∃ s′1, s1
t
←←←←←→
p
+s′1 ∧ s′1 ≈int s′2) or (s1 ≈int s′2 ∧ mint(s′2) < mint(s2) ∧ t = ∅)

backward_internal_simulation ≈int mint p jp

external
s ≈int es backward_internal_simulation ≈int mint p jp

s ≈ext (jp, es, n, ps)

Figure 4.9 – De�ning the external simulation relation ≈ext

semantics states s of the original program p to JIT states (jp, es, n, ps). According to the (exter-
nal) rule, s ≈ext (jp, es, n, ps) when there exists an internal simulation between p and jp using
some invariant ≈int , and s ≈int es. We use rule (internal-sim) to de�ne our internal backward
simulations. This rule has three preconditions, numbered (1) to (3). These simulations resem-
ble the backward simulations of CompCert, with a small di�erence we explain below. With
this rule, we de�ne backward_internal_simulation ≈int mint p jp, meaning that programs p and
jp are simulated using internal invariant ≈int and measure mint . The invariant ≈int relates se-
mantic states of p to semantic states of jp. It depends on what transformations have been done
so far by the JIT optimizer. We use the notation s1

t
←←←←←→
p
s′1 to mean that there exists a step in the

semantics of p between semantic states s1 and s′1 with an observable trace t . Condition (2) cor-
responds to the progress preservation property of Figure 3.6; the existence of a semantic step
in the p should imply the existence of a step in jp. Similarly, condition (3) corresponds to the
simulation diagram of Figure 3.5; semantic steps in jp should either be stuttering steps with a
decreasing measure, or should be matched with similar steps in p. In the case of a stuttering
step in the simulation diagram, there should not be any observable events, and we use ∅ to
denote the empty trace.

Note that the internal simulation relates the semantics of two known programs, p and
jp. In that simulation, the semantics of jp are de�ned without any dynamic optimizations. If
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jp contains only CoreIR code, then it is simply the CoreIR semantics. If the JIT has produced
native code, we de�ne mixed semantics in Chapter 7 that interleave semantics of CoreIR being
interpreted with the semantics of the native code being executed.

The de�nition of backward internal simulations of Figure 4.9 is almost identical to the
backward simulation de�nition used in CompCert. For instance, assumptions (2) and (3) are
exactly the backward simulation diagram and progress preservation de�nitions presented in
Section 3.2. The only change appears when initializing the simulation invariant, in condition
(1). In the CompCert de�nition, the invariant is required to relate initial states of the simulated
semantics. In a dynamic setting however, the JIT execution steps into its new program from
the state where it called its optimizer. As a result, we require the invariant to relate any syn-
chronization state where an optimization can happen. In our implementation of the monitor,
optimizations are only possible at function calls synchronization states.

4.5.2 Proving the External Backward Simulation

As a result, if a JIT step consists in executing (for instance calling the interpreter) to update
the current execution state es, we can use the internal simulation to deduce that this behavior
matches some behavior from s of p, and that the new execution state es′ is also matched with
the same simulation relation ≈int to a new semantic state s′ of p. This follows from the back-
ward simulation diagram (condition (3) of Figure 4.9) of the internal simulation. This case is
depicted on the top left of Figure 4.10, where the dashed lines are deduced from the invariant,
and interpreter correctness is required to exhibit state s′. Note that, according to the back-
ward simulation diagram, the step from es to es′ could be matched with a stuttering step in
the original program, as seen on the top right of the Figure. In that case, we use the decreas-
ing measure of mint of the internal simulation to build a decreasing measure for ≈ext (see the
paragraph below).

If the JIT step is an optimizing one, calling the dynamic optimizer to update the current JIT
program jp, then we prove that this corresponds to a stuttering step in our external backward
simulation. Since in that step the JIT simply optimized without executing anything, it makes
sense that this corresponds to no progress at all in the source semantics. Proving preservation
of the ≈ext invariant amounts to proving that the new program jp’ is also related to p with
an internal backward simulation, as seen on the bottom of Figure 4.10. Since backward sim-
ulations compose, and jp is simulated with p from the invariant, it su�ces to show that the
dynamic optimizer will produce a program jp’ that is itself simulated with jp with an internal
backward simulation. We compose this new simulation with the previous one (using invari-
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Figure 4.10 – The external simulation diagram. Solid lines are hypothesis and dashed lines
are conclusions. Pro�ler states ps are omitted.
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ant relation ≈int ) and get a new internal backward simulation (with an invariant relation ≈′int )
relating jp’ to p. We use condition (1) of Figure 4.9 to prove that es is still matched with s with
the new internal invariant ≈′int .

Measures and Stuttering Steps Stuttering in our external simulation can happen in two
cases: during optimization steps and when execution is matched with stuttering. Informally,
we know that in the �rst case, the number n in our JIT states decreases, so we can use it to
build a decreasing order. In the second case, we know that the current internal simulation
comes with its own measure mint(⋅) de�ned on execution states that decreases (according to
the simulation diagram of Figure 3.5). We de�ne here a measure mext(⋅) de�ned on JIT states
for our simulation that strictly decreases on both cases of stuttering, ensuring that the JIT
execution cannot get stuck. We de�ne the following measure: mext(jp, es, n, ps) = (n,mint(es)),
and compare its elements with a lexicographic order. In our implementations, we must use
dependent types to represent the invariant of the external simulation, as the type of mint(⋅)
may change as we compose internal simulations.

Progress Preservation As shown in Figure 3.6, part of proving a backward simulation con-
sists in proving that the target semantics preserves execution progress. For execution steps,
progress preservation directly comes from the progress preservation of the internal simulation
(condition (2) of Figure 4.9). For optimizing steps however, we need to prove that calling the
optimizer never fails. Some optimization passes in our compilers can fail (for instance, trying
to insert a speculation at a label that does not exists, or trying to speculate on a unknown reg-
ister value), but in these cases, the JIT detects the failure, cancels the optimization and keeps
its current program.

4.5.3 A JIT Optimizer Speci�cation

This nested simulations proof is at the core of the veri�cation of our JIT design. This tech-
nique has several advantages. First, it successfully reuses the simulation framework of Comp-
Cert. Our backward internal simulations are almost identical to the ones used in CompCert,
except for condition (1), which has been straightforward to prove for the code transformations
we present in this work.

Second, it also helps us de�ne clear speci�cations of JIT components. For instance, to reuse
the internal simulation when using the interpreter, we must prove that any step of the inter-
preter corresponds to a step in the CoreIR semantics. More importantly, we see in the bottom
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Backward Simulation Mechanized
Using the nested simulations technique, to prove the correctness of a JIT with dynamic
optimizations, it su�ces to show that the optimizer is proved correct with an internal
backward simulation. This theorem relates the semantics of a program before and after
optimization.

Theorem optimizer_correct:
∀ jp ps jp’,
optimizer ps jp = jp’ →
backward_internal_simulation jp jp’.

Simulation 2 – Dynamic optimizer correctness in a JIT

of Figure 4.10 that proving our dynamic optimizer correct amounts to proving an internal
backward simulation. This optimizer speci�cation is shown on Simulation 2, where ps is any
pro�ler state. This speci�cation is designed to bear a striking resemblance with the Comp-
Cert correctness theorem, allowing us to reuse most of the methodology used to prove static
optimization passes. In this theorem, the JIT-speci�c issue of dynamic optimization has been
removed as the backward simulation is proved using semantics without optimizations. Since
backward simulations compose, we can use this speci�cation for both the middle-end and
backend compilers of our JIT. In conclusion, to prove the �nal JIT correctness theorem of
Figure 4.7, we prove Simulation 1. This simulation includes semantics that contain dynamic
optimizations. Thanks to the nested simulation technique, we know that Simulation 2 implies
Simulation 1, and Simulation 2 resembles the speci�cation of a formally veri�ed static com-
piler.

Chapter 5 shows how we prove such a backward simulation for a middle-end compiler
with speculation, and Chapter 7 shows how we can prove such a backward simulation for a
backend compiler reusing the CompCert backend. As explained in Section 4.4, the approach
presented here has limitations: it requires that every JIT transition is a pure and terminating
Gallina function. In Chapter 6, we extend the formalism presented in this section to handle
impure and nonterminating JIT transitions.
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Chapter 5

FORMALLY VERIFIED SPECULATIVE

OPTIMIZATIONS

As seen in Chapter 2, modern JITs use speculation. This allows to focus the compilation
e�orts only on the most likely path that has been predicted. Despite being used in many JITs,
speculation is often handled with ad hoc and language-speci�c implementations that can hide
the already complex logic of specialization and deoptimization. We argue that designing JITs
would bene�t from a formal abstraction of speculation and deoptimization, and that such an
abstraction is a necessary step towards the formal veri�cation of JITs.

In this Chapter, we present a new high-level intermediate representation, CoreIR, that
makes deoptimization and speculation explicit and separates the insertion of deoptimization
points from the subsequent speculation checks. CoreIR is inspired by CompCert’s RTL [Leroy
2009a] and Sourir [Flückiger et al. 2018], another IR with support for speculation.

Insertion and manipulation of speculation is then de�ned as CoreIR transformations, that
constitute the core of the middle-end compiler of our JIT design. This approach to speculation
follows the architecture of the Ř JIT [Flückiger et al. 2019], where R programs are JIT compiled
by IR rewriting. In our work, such IR transformations can be proved correct with simulations,
just like the passes of CompCert.

At its core, reasoning about speculation in a program requires reasoning about several be-
haviors: when the speculation holds and when it does not. As a result, nondeterministic seman-
tics are particularly adapted to represent the behavior of speculation points. However, nonde-
terminism typically prevents the reuse of the forward-to-backward methodology of CompCert
(Figure 3.8). In our proofs, we show how we can still reuse this technique for standard passes
like constant propagation that preserve the nondeterminism of speculation.
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5.1 CoreIR, an IR with Speculation

In order to formally verify the logic behind speculation used in modern JITs, we choose
to use a language with speculative instructions: instructions that are designed to represent
speculation. This representation allows us to insert speculation points anywhere in a func-
tion. Having dedicated instructions is reminiscent of the speculate instruction of JavaScript-
Core [WebKit 2020], the assume instruction of Sourir [Flückiger et al. 2018], the OSRPoint
instruction of JikesRVM [Soman and Krintz 2006], the checkpoint, framestate and deoptimizeIf
nodes of V8 [V8 2022] or the guard and FrameState nodes of Graal [Duboscq et al. 2013].

In our design, we use two separate speculative instructions that represent di�erent aspects
of speculation and are presented in details below. We �nd that this separation makes the for-
mal veri�cation of speculation more modular. In short, one instruction Assume, contains the
dynamic check that must be evaluated to see if a speculation holds, while the other, Anchor,
expresses the synchronization to the version one must deoptimize to if the speculation fails.
Some of the designs cited above use a third instruction to contain the deoptimization meta-
data (see section 2.1.2). As explained below, in our language the metadata is contained in both
Anchor and Assume instructions.

In CoreIR, functions can have up to two versions: the original one, Base, and an optimized
one, Opt where speculation may have been inserted. In our JIT design, the Base version always
contains the original version of the function, and is never modi�ed. When beginning the ex-
ecution, each function only has this single Base version. But as the middle-end compiler gets
called by the JIT, it adds new speculation in the function. It does so by creating, specializing
and optimizing the Opt version.

Two CoreIR instructions are related to speculation, Anchor and Assume, and can only be in-
serted in the Opt versions. The Anchor instruction represents a potential deoptimization point,
i.e., a location in an Opt version where the correspondence with its Base version is known to the
compiler and thus deoptimization can occur. For instance, in Anchor F.l [r ← r+1] the target
F .l speci�es the function (F) and label (l) to jump to, the mapping [r ← r+1], called a varmap,
describes how to create the state of the baseline version from the optimized state. Namely, how
to reconstruct the value of each register that is live at the target instruction label. As we will
see later, this mapping becomes more elaborate with inlining as multiple stackframes must be
synthesized, resulting in complex proof invariants.

Anchors are inserted �rst in the optimization pipeline, when creating the Opt version and
before any optimizations are done to this new version. Choosing where to insert them is impor-
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tant as they determine where speculation can happen. Speculation itself is performed by insert-
ing Assume instructions. To illustrate this second instruction, consider Assume x=1 F.l [r ← r’+1]

which expresses the expectation that register x has value 1. When the instruction is executed,
if x has any other value, we say that the assumption failed and deoptimization is triggered. If
this occurs, the currently executing function is discarded and control is transferred to the Base

version of F at label l, furthermore register r in that function is given the value r’+1 where r’

is evaluated in the Opt environment. Unlike anchors, assumes can be inserted at any time by
the middle-end compiler once the Opt version has been created. To add an Assume, the pro-
�ler suggests what to speculate on and the location of an existing Anchor, and the middle-end
compiler can insert the Assume next to it (possibly skipping some instructions, as shown in
Section 5.2.5). If there is no anchor, then the assumption cannot be made and the insertion is
canceled.

Illustrative Example All examples in this Chapter use a simpli�ed concrete syntax for
CoreIR. We omit labels when they refer to the next line and assume versions to start with the
instruction on the �rst line. Moreover, we use the shorthand ‘Anchor F.l [a ,b]’ to represent
the varmap ‘Anchor F.l [a ← a, b ← b]’, and ‘Assume ... l’ to denote an Assume instruction
with identical metadata as the Anchor instruction at label l.

Function F ( x , y , z ) :
Version Base :

d ← 1
l1 : a ← x ∗ y

Cond ( z == 7 ) l2 l3
l2 : b ← x ∗ x

c ← y ∗ y
Return b+c+d

l3 : Return a

(a) Baseline

Function F ( x , y , z ) :
Version Base :

. . .
Version Opt :

l4 : Anchor F . l1 [x , y , z , d ←1 ]
c ← y ∗ y
Assume [z=7 , x=75] l4
Return 5626+c

(b) Optimized
Figure 5.1 – Example of speculation

Figure 5.1 shows an example of how a middle-end compiler could manipulate CoreIR. As-
sume that, for the program in Figure 5.1(a), a pro�ler detected that at label l2 of function F

registers z and x always have values 7 and 75. Function F can thus be specialized. Figure 5.1(b)
adds an Opt version to F where an anchor has been added at l4. In order to deoptimize to the
baseline, the anchor must capture all of the arguments of the function (x, y, z) as well as the
local register d: these are all live registers needed to continue the execution of Base from l1.
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The compiler could then be able to notice that d is not used anymore in the optimized version.
It can remove it from Opt, but in that case the anchor must remember its value to reconstruct
it when deoptimizing, hence the d ← 1 in the deoptimization metadata.

The speculation is done by Assume [z=7, x=75] l4 which speci�es what is expected from
the state of the program and the anchor above. The optimized version has eliminated dead code
and propagated constants. If the speculation holds, then this version is equivalent to Base. In
this new version, the irrelevant computation of a has been removed and x∗x is speculatively
constant folded. While in this particularly simple example, the overhead of checking validity
of the speculation might negate the bene�ts of the optimization, a single speculation may sim-
plify many operations at once in a bigger function. If the speculation fails, then the execution
should return to Base, at label l1, and reconstruct the original environment. This involves for
instance materializing the variable d. As we see here, Assume does not have to be placed right
after an Anchor instruction. This will cause deoptimization to appear to jump back in time and
some instructions (here, c ← y ∗ y) will be executed twice. It is up to the compiler to ensure
these re-executed instructions are idempotent. For instance, in section 5.3.5, we show how our
formally veri�ed middle-end can guarantee that inserting an Assume after a branch is correct.

Using Anchors The role of anchors is subtle. Maintaining the mapping between a Base and
Opt versions is far from trivial as the optimized code gradually drifts away from its base, one
transformation at a time. For the middle-end compiler, an anchor marks a point where it knows
how to reconstruct the state needed by Base given the currently live registers in Opt. To be
able to reconstruct that state, the anchor keeps portions of the state alive longer than needed
in Opt, and, as the compiler optimizes code, the varmap is updated to track relevant changes
in the code. Thus, the cost of an Anchor is that it acts as a barrier to some optimizations and
may increase register pressure. Once the compiler has �nished inserting assumes, all anchors
can be deleted (see Section 5.2.4). They will not be used in the �nal version of the function
sent to the backend compiler.

For our proofs, anchors have yet another role. They justify the insertion of Assume instruc-
tions (see Section 5.2.1). For this, we give the Anchor instruction a nondeterministic semantics,
an anchor can randomly choose to deoptimize from Opt to Base. Crucially, deoptimization is
always semantically correct at an anchor, nothing is lost by returning to the baseline code ea-
gerly other than performance. An inserted Assume is thus correct if it follows an Anchor and the
observable behavior of the program is unchanged regardless which instruction deoptimizes.
One bene�t of having anchors is that the assumes they dominate can be placed further down
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the instruction stream. The compiler must make sure that the intervening instructions do not
a�ect deoptimization. This separation is important in practice as it allows a single Anchor to
justify speculation at a range of di�erent program points. Initially the varmap of an Assume

instruction will be identical to its dominating Anchor, but, as we will show shortly, this can
change through subsequent program transformations. To sum up, in our middle-end compiler,
the Anchor instruction is a helper for speculation and reasoning about correctness of specula-
tion that is removed in the last step of the optimization pipeline.

5.1.1 CoreIR Syntax

CoreIR is inspired by CompCert’s RTL [Leroy 2009b]. Its formal syntax is given in Fig-
ure 5.2. Code is represented by control-�ow graphs with explicit program labels l. Each in-
struction i explicitly lists its successor(s). The instructions operate over an unbounded number
of pseudo-registers, r , holding integer values v. Operations assign an expression to a register.
A single operation instruction can contain several such assignments, which are meant to be
evaluated in parallel. A program is a map from function identi�ers to functions. Each function
f has a default Base version V , its original version, and one optional optimized version Opt.
This version may deoptimize back to its baseline if speculation fails. Versions contain code and
an entry label. Base versions do not use the Anchor and Assume instructions. The deoptimiza-
tion metadata in those operations consists of the function identi�er and label where to jump to
(F .l) along with a varmap (r1 ← e1,… , rn ← en) indicating that the value of target register ri is
that of expression ei . The metadata can contain information to synthesize additional function
frames as if they called the function to deoptimize to, in which case we also specify the register
that will hold return value of the call. Examples of speculative instructions synthesizing such
extra stackframes are shown in Section 5.2.6. The list of expressions in an Assume represents
what the instruction is speculating on, and is called the guard of the Assume. Some simpli�ca-
tions have been made to avoid tying the development to any particular language; these include
the addressing modes and the arithmetic operations. CoreIR programs can interact with the
heap by storing and getting integer values with Store and Load. The arithmetic operations
are generic and constitute a subset of the operations of CompCert RTL. CoreIR programs can
output values with the Print instruction.
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Expressions:
e ∶∶ = r + r | r − r | r ∗ r | r % r Binary Arithmetic

∣ r + v | r − v | r ∗ v | − r Unary Arithmetic
∣ r < r | r = r | r = v Relational
∣ r | v Register or value

Instructions:
i ∶∶ = Nop l Noop

∣ (r1 ← e,… , rn ← en) l Operations
∣ Cond e lt lf Branch
∣ r ← Call f (e1,… , en) l Call
∣ Return e Return
∣ r ← Load e l Memory load
∣ e ← Store e l Memory store
∣ Print e l Output value
∣ Anchor deop l Deoptimization anchor
∣ Assume (e1,… , en) deop l Speculation

Metadata:
vm ∶∶ = r1 ← e1,… , rn ← en Varmap
syn ∶∶ = f .l r vm Stackframe
deop ∶∶ = f .l vm (syn1,… , synn) Deopt metadata

Programs:
V ∶∶ = l ↦ i Code
F ∶∶ = {(r1,… , rn), l, V , option V } Function
P ∶∶ = f ↦ F Program

Figure 5.2 – Syntax of CoreIR

5.1.2 CoreIR Semantics

The small-step semantics of a CoreIR program P is detailed in Figure 3.3. We de�ne its
judgment as S V l R M

t
←←←→ S′ V ′ l′ R′ M ′, where t is a trace of observable events, and a semantic

state consists of a stack S, the current version V , the current label l, registers R and a memory
heap M . A stack is a sequence of frames (r , V , l, R) containing the register r where the result
will be stored, the caller V , the return label in the caller l, and the registers to restore R.
Sequences of frames can be concatenated with the operation ++, which adds some frames to
the execution stack. [] denotes the empty stack. States can also be �nal (vf inal , M), in case the
main function has returned, and then only contain a value and a memory. The memory heap
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Nop
V [lpc] = Nop lnext

S V lpc R M → S V lnext R M

Op
V [lpc] = r1 ← e1,… , rn ← en lnext (e1, R) ↓ v1 … (en, R) ↓ vn

S V lpc R M → S V lnext R [r1 ← v1… rn ← vn] M

ConT
V [lpc] = Cond e lt lf (e, R) ↓ true

S V lpc R M → S V lt R M

ConF
V [lpc] = Cond e lt lf (e, R) ↓ f alse

S V lpc R M → S V lf R M

Call

V [lpc] = r ← Call f (e1,… , en) lnext
current_version P f = V ′ init_regs (e1,… , en) R f = R′

S V lpc R M → (r , f , lnext , R ++ S) V ′ entry (V ′) R′ M

Ret
V [lpc] = Return e (e, R) ↓ v

(r , V ′, lnext , R′ ++ S) V lpc R M → S V ′ lnext R′ [r ← v] M

RetFinal
V [lpc] = Return e (e, R) ↓ vf inal

[ ] V lpc R M → (vf inal , M)

Print
V [lpc] = Print e lnext (e, R) ↓ v

S V lpc R M
v
←←←←←←←←→ S V lnext R M

Load
V [lpc] = r ← Load e lnext (e, R) ↓ a M[a] = v

S V lpc R M → S V lnext R [r ← v] M

Store

V [lpc] = e1 ← Store e2 lnext (e2, R) ↓ v
(e1, R) ↓ a M ′ = M[a ← v]

S V lpc R M → S V lnext R M ′

Ignore

V [lpc] = Anchor f .l vm (st1… stn) lnext
deopt_regmap vm R = R′ synthesize_frame R (st1… stn) = S′

S V lpc R M → S V lnext R M

Deopt

V [lpc] = Anchor f .l vm (st1… stn) lnext
deopt_regmap vm R = R′ synthesize_frame R (st1… stn) = S′

S V lpc R M → (S′++ S) (base_version f ) l R′ M

AssumePass
V [lpc] = Assume (e1… en) f .l vm (st1… stn) lnext (e1… en, R) ⇓ true

S V lpc R M → S V lnext R M

AssumeFail

V [lpc] = Assume (e1… en) f .l vm (st1… stn) lnext (e1… en, R) ⇓ f alse
deopt_regmap vm R = R′ synthesize_frame R (st1… stn) = S′

S V lpc R M → (S′++ S) (base_version f ) l R′ M

Figure 5.3 – CoreIR small-step operational semantics
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is a �xed-size array of integer values, de�ned by a type mem_state, a constant representing the
initial memory state and two operations over memory states provided as partial functions for
accessing values (M[a]) and updating them (M[a ← v]). Option types are used to represent
potential failures, like out-of-bounds accesses. When a rule does not emit any event, the empty
trace is omitted. The only rule that emits an event corresponds to the execution of Print. The
judgment for evaluating an expression e with the register map R is (e, R) ↓ v. Similarly, lists
of expressions can be evaluated as true or false, noted (e1 … en, R) ⇓ b.

For readability, we use identi�ers to name functions. In the semantics, a function has to
be found in the program when called. V [lpc] denotes the instruction at label lpc of version
V , and R[r ← v] is the update to register map R where r has value v. The function called
current_version returns the current version of a function (the optimized version if it exists, the
base otherwise), in the CoreIR program P . entry returns the entry label. To initialize registers of
function f , we write init_regs (e1,… , en) R f , where the expressions are evaluated in R. When
deoptimizing, we need to reconstruct a register state with the mapping of the instructions.
This is done with function deopt_regmap. The function base_version simply returns the Base

version of a function, given its identi�er. Finally, synthesize_frame creates the stackframes to
synthesize during deoptimization.

If R contains value 17 for register r1 and value 3 for r3, then deopt_regmap [r1, r2 <- r3 + 2]

R will create a new register mapping R′ where r1 has value 17, r2 has value 5 and all other regis-
ters are unde�ned. To create additional frames, synthesize_frame R [F.l retreg vm] will create
the stackframe (retreg, F , l, R′) where R′ is the result of deopt_regmap vm. At the next Return

instruction, this will tell the execution to return to function F , at label l, with registers R′

where retreg has been set to the return value of the function. Additionally, synthesize_frame

can create multiple stackframes if given multiple syntℎ metadata (see Section 5.2.6).

Most instructions have a standard semantics. Nop instructions represent a simple jump to
another label. Operations modify the current register map and move to the next label. Multiple
assignments are performed in parallel, evaluating every expression in the current register map
before modifying it. The Cond branches evaluate their condition and jump to the correspond-
ing label. To perform a call, one must create a new register map with the arguments. When
returning from a call, one uses the data contained in the last stackframe. If the execution stack
is empty, a �nal semantic state is reached. The (Print) rule is the only one with an observable
event, corresponding to the value of its argument. Store and Load instructions are the only
instructions using the current memory heap M , either inserting new values at a given address,
or loading a value from the memory to a register.
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Anchor is the only nondeterministic instruction of CoreIR. The semantics of an Anchor

is such that execution proceeds either with the next label (Ignore), or with a transition (i.e.,
a deoptimization) to unoptimized code (Deopt). This is a helper instruction used during opti-
mizations such as the speculation insertion pass and all Anchor instructions are removed at the
end of optimizations. Note that both rules share the same preconditions, even if the result of
deopt_regmap is not needed in the (Ignore) rule; this ensures that both rules can always be used
in the same conditions. Proving a backward simulation relating programs with anchors then
implies behavior preservation, independently of the rules chosen when executing anchors.

Di�erences with Sourir The role of this new instruction is to capture what Sourir [Flück-
iger et al. 2018] referred to as transparency invariant: Given an Anchor instruction it is always
correct to add more assumptions, since the Anchor ensures matching states at both ends of de-
optimization for all executions. Assume however behaves deterministically, only deoptimizing
if the guard fails (AssumeFail). These instructions are not removed by the middle-end com-
piler, and Chapter 7 shows how they can be compiled to native code that correctly implements
deoptimization and on-stack replacement. Sourir did not feature anchors, instead Assume in-
structions had to be inserted �rst in the optimization pipeline, for the same reason that our
anchors are inserted �rst: in general it is easier to justify a synchronization between Opt and
Base when they are identical. Then, the compiler was able to insert new speculation by adding
expressions to the guards of existing assumes. Instead, we �rst insert anchors when Opt and
Base are identical, then allow the insertion of new assumes next to these anchors.

The separation in two speculative instructions that appear in CoreIR but was not in Sourir
has two main advantages. First, it allows us to clearly separate the two roles of speculative
instructions: maintaining a synchronization between Opt and Base versions, and checking
the assumptions. Second, nondeterministic semantics are an easier way to de�ne and mecha-
nize the transparency invariant while reusing the CompCert simulation framework. And the
Anchor/Assume separation helps us con�ne this nondeterminism to an instruction that gets re-
moved at the end of middle-end compilation. Previously in Sourir [Flückiger et al. 2018], their
transparency invariant required a bisimulation, using an invariant with a particular property:
semantic states at an Assume had to be related to the deoptimization target state. This de�-
nition was incompatible with the simulation framework of CompCert and the simplicity of
its forward-to-backward technique (Figure 3.8) that we reuse in Section 5.3.3. We believe that
this separation has made the mechanization of speculative transformations easier, while in
contrast Sourir only contained pen-and-paper proofs.
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5.2 Manipulating Speculative Instructions

In this section, we present the di�erent passes that compose our formally veri�ed middle-
end compiler. The transformations include inserting Anchor instructions, inserting Assume

instructions, standard constant propagation, inlining and removing Anchor instructions. All
these passes create or modify the Opt version of CoreIR functions. When suggesting optimiza-
tions, the pro�ler suggests a list of middle-end passes to perform. The pro�ler can suggest an
optimization any number of times (constant propagation can sometimes �nd more simpli�-
cations after being run several times), including zero. They can be performed in any order,
except for two exceptions. First, Anchor instructions can only be inserted when creating the
Opt version, before any more optimizations are applied. Also, removing Anchor instructions
always happens at the very end, so that when the middle-end compiler is �nished, the JIT is
left with a deterministic program, and the backend compiler presented in Chapter 7 does not
have to compile anchors to native code.

5.2.1 Anchor Insertion

Anchor insertion must be run as the �rst pass in the optimization pipeline as it relies on a
fresh copy of the base version, before any changes are made by other optimizations. No other
pass presented in this work has this requirement. Intuitively, deoptimization points are easy to
add when the Opt version is a simple copy of the Base one. Given a function and a list of labels,
this pass creates a copy of the base version of the function, and inserts Anchor instructions at
every label in the list. The Anchor instructions are a prerequisite for the later speculation pass,
called assume insertion (as Assume instructions are inserted next to anchors). The pro�ler can
suggest to insert Anchor instructions anywhere in a function. Selecting good locations for the
insertion is the role of the pro�ler, and is out of scope of this work. Good locations may include
the beginning of a function, to create a version specialized for some value of the arguments, or
before a loop whose control-�ow could be simpli�ed with speculation. In any case, we allow
the �exibility of inserting speculation points anywhere.

The following sections feature a running example with a Function F and its two versions,
shown on Figure 5.4. The second version was obtained by inserting an Anchor instruction after
the Call instruction. The two versions do not di�er except for that instruction.

The deoptimization target of the Anchor points to the base version of F, at l1, where the
instruction was inserted. The deoptimization metadata includes everything needed to recon-
struct the original environment. This is done according to the varmap [a ,t], which is syntactic
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Function F ( a ) :
Version Base :

t ← Call G ( a , 0 )
l1 : Return a ∗ t

Version Opt :
t ← Call G ( a , 0 )

l2 : Anchor F . l1 [a , t ]
Return a ∗ t

Figure 5.4 – Running example, after Anchor insertion

sugar for [a ← a, t ← t] and denotes that expression a is evaluated in Opt’s environment and
bound to a in Base’s environment; the same applies to t. Since the rest of the code is unchanged,
it su�ces to reconstruct the values of each de�ned register with their current values. Further
optimization passes that would want to modify these values should also modify them in the
deoptimization metadata to keep the synchronization between the two versions. The metadata
is constructed using an analysis of live and de�ned registers in the current environment. In
this example, the analysis sees that both a and t are live registers after the Call instruction
as their values are used in the �nal Return statement. Both registers are also de�ned after the
Call instruction (t has been assigned the return value of the function call, and a is a parame-
ter to the function). As a result, the deoptimization metada of the new Anchor captures both
registers.

The analyses used to �nd live and de�ned registers at a particular program point are im-
plemented using the Kildall module of CompCert (as introduced in Section 3.1.1). Capturing
in the deoptimization metadata a register that is not de�ned (meaning that it has not been
assigned any value in that function) would be a mistake: the inserted Anchor would have no
semantics since it evaluates the registers used in the metadata to reconstruct a new register
mapping. That code transformation would not preserve progress (Figure 3.6) of the program
it is applied to. Capturing nonlive registers (registers that are not used for the remaining of
the Base version) would not be an issue for correctness, but deoptimization would reconstruct
useless register values. In a �rst version, we simply captured the de�ned registers, but later
implemented the liveness analysis. In our experiments, the cost of performing the analysis has
been outweighed by the bene�ts of reduced register pressure.
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5.2.2 Assume Insertion

Using these Anchor instructions, the middle-end compiler is able to insert Assume instruc-
tions. Unlike Anchor Insertion, this pass can happen at any time during the optimization
pipeline, as long as anchors have been inserted already. The pro�ler may provide the label
of an Anchor, and a guard expression, and the optimizer will try to insert an Assume with that
guard right after that Anchor instruction. Another version of this pass, where the Assume is
not directly after the Anchor, is presented in Section 5.2.5. In our example a request that can
be satis�ed would be to add the speculation t=0 at label l2, as depicted on Figure 5.5.

Version Opt :
t ← Call G ( a , 0 )

l2 : Anchor F . l1 [a , t ]
Assume t=0 l2
Return a ∗ t

Figure 5.5 – Running example after Assume insertion

The required metadata is copied from the Anchor instruction. As syntactic sugar to avoid
repetition we just refer to the Anchor by l2, to denote that the metadata is identical. Since
the pro�ler can suggest any guard to insert in an Assume instruction, the middle-end compiler
must ensure that this guard may not introduce bugs in the program. In practice, this means that
the guard must evaluate successfully, without errors. The Assume insertion pass thus includes
an analysis to make sure that the guard will evaluate to some boolean value. In this case,
checking that register t has a value is enough. We reuse the same de�ned analysis as used in
the previous Anchor insertion pass. The semantics of the Anchor justi�es that the execution
will be equivalent to the original one whether the Assume deoptimizes or succeeds.

5.2.3 Constant Propagation

This next optimization pass is a standard data�ow analysis seen in many compilers. It
closely resembles the constant propagation pass from CompCert presented in Chapter 3, and
reuses its Kildall �xpoint solver library. If a register can be statically known to contain a value,
it will get replaced. Expressions and instructions can be simpli�ed. Other similar passes from
CompCert with similar data�ow analyses (like Dead Code Elimination) could be reused, using
the same veri�cation technique shown in Section 5.3.3. We chose this particular compiler pass
because of the added bene�t of its interaction with the Assume instruction.
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Version Opt :
t ← Call G ( a , 0 )

l2 : Anchor F . l1 [a , t ]
Assume t=0 l2
Return 0

Figure 5.6 – Running example after constant propagation

Its interaction with the Assume instruction turns it into a speculative optimization. When
constant propagation analyses an optimized version containing Assume instructions, it knows
that the control �ow will remain in that version only if the guard holds. Our previous example
can thus be further optimized by transforming the return expression using the speculation,
as in Figure 5.6. This also showcases how the Assume instruction is not handled like a simple
branch. One limitation of the constant propagation pass of CompCert is that it cannot use the
condition of a branching instruction to update its branches di�erently. For instance, a program
containing the branch if (t == 0) will not replace t by 0 inside the true branch. However
Assume is not a branching instruction for an intraprocedural analysis like the one used in
constant propagation. Upon seeing Assume (t = 0), we de�ne our analysis to set t to 0 for the
next instructions. These instructions will only be reached if the Assume did not deoptimize.

Another feature of constant propagation in CoreIR is its ability to simplify deoptimization
metadata. For instance, an instruction Anchor F.l [x] could be simpli�ed to Anchor F.l [x ← 3]

if the analysis shows that register x will hold value 3 at that point.

5.2.4 Removing Anchors

Anchor instructions are used to justify Assume insertion, but should not be executed. After
all optimization wishes have been treated by the middle-end compiler, this pass removes all
Anchor instructions, and replaces them with Nop instructions. In the resulting function, shown
in Figure 5.7, the original version has been kept intact, and a new optimized version has been
inserted.

5.2.5 Delayed Assume Insertion

So far we have not used the full �exibility of Assume insertion provided by Anchor instruc-
tions. For that we slightly modify our running example and de�ne a new function in the left of
Figure 5.8. In this variant there is an additional condition on register a, in�uencing the result
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Function F ( a ) :
Version Base :

t ← Call G ( a , 0 )
l1 : Return a ∗ t

Version Opt :
t ← Call G ( a , 0 )
Assume t=0 F . l1 [a , t ]
Return 0

Figure 5.7 – Running example after removing the Anchor

value. We would like the pro�ler to have as much freedom as possible for inserting assump-
tions. This means for example being able to insert assumptions at l1, l2, and l3. As seen in
section 5.2.2 this could be achieved by preprocessing this version to include an Anchor at each
of those labels. But, such an approach would have downsides, since additional deoptimization
points constrain optimizations and unnecessarily bloat the code. Instead it is su�cient to place
an Anchor at l1, and show that we can use it to justify Assume instructions at l2 and l3. As a
concrete example, Figure 5.8 shows a valid use of the Anchor by a delayed Assume.

Version Base :
t ← Call G ( a , 0 )

l1 : Cond a=0 l3 l2
l2 : Return a ∗ t
l3 : Return 1

Version Opt :
t ← Call G ( a , 0 )
Anchor F . l1 [a , t ]
Cond a=0 l3 l2

l2 : Assume t=0 F . l1 [a ← 0 , t ]
Return 0

l3 : Return 1

Figure 5.8 – Example of delayed Assume insertion

In case this assumption fails, the execution travels back in time to F .l1 executing the con-
dition at l1 a second time. Since the condition is a silent operation and does not alter any
registers referenced later, the behavior is preserved. Therefore a single Anchor instruction can
serve all possible locations for Assume instructions in this example. The delayed Assume in-
sertion pass allows the pro�ler to suggest arbitrary locations for an assumption. It features a
veri�cation step that rejects all requests where the in-between instructions cannot be proved
to be noninterfering. For now, this checker only accepts conditions, but could be extended
with other instructions, like operations that do not modify the registers used in the deopti-
mization metadata. To explore the handling of other instructions, one could draw inspiration
from the su�cient conditions of Sourir [Flückiger et al. 2018] to move an instruction over an
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Assume. They require instructions that do not modify the deoptimization metadata, contain no
side-e�ects or function calls, and have the Assume as only predecessor instruction.

5.2.6 Inlining with Speculations

Our middle-end compiler also features an inliner, a standard compiler optimization. We
chose this optimization as it shows how speculation can make some standard transformations
and their formal veri�cation more complex. In particular, inlining Assume and Anchor has to be
done with caution. Consider the program on Figure 5.9, where inlining of G in the Opt version
of F simply replaces the Call instruction with the code of G. If the Assume instruction in G fails
and deoptimizes, it returns to the original version of G. But if the Assume of G inlined into F

fails, the execution would return to the original version of G, which upon returning skips the
rest of the execution of F, and thus does not behave as the original program.

Function F ( a , b ) :
Version Base :

a ← a ∗3
a ← Call G ( a , b )
. . .

l1 : Return a

Version Opt :
a ← a ∗3
a ← Call G ( a , b )
Anchor F . l1 [a , b ]
. . .
Return a

Function G ( c , d ) :
Version Base :

l2 : Return 2 ∗ c

Version Opt :
Assume c=32 G . l2 [c ]
Return 64

Figure 5.9 – CoreIR program where the call to G should be inlined in F

The solution is to use the Anchor instruction right after the call in Opt. This is where the
deoptimization metadata of CoreIR really shines: we can copy the metadata from the Anchor

to synthesize a stackframe for the original version of F. We �rst initialize the parameters of the
inlined call (c and d). The Return instruction of G is now replaced by a simple assignment to
the return register of the Call, a. If the Assume fails, we deoptimize to the original version of G.
The result is shown on Figure 5.10. The interesting part is the rest of the metadata F .l1 a [a ,b]

allowing deoptimization to reconstruct an additional stackframe that returns to F at label l1,
return register a, and using a varmap [a ,b]. For our inlining pass to be correct, it needs the
Call instruction to be followed by an Anchor. The middle-end compiler checks that this is the
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case, and cancels the optimization if there is no such instruction.

Function F ( a , b ) :
Version Opt :

a ← a ∗3
c ← a
d ← b
Assume c=32 G . l2 [c ] , F . l1 a [a , b ]
a ← 64
Anchor F . l1 [a , b ]
. . .
Return a

Figure 5.10 – Synthesizing an extra stackframe for a correct speculative inlining

5.3 Formal Veri�cation of Speculation Manipulation

While the proofs of internal simulations closely resemble those of a static compiler, some
complexity is added by the dynamicity of optimizations. In the static case, optimizing the entire
program ahead of time means that in the optimized execution, any call to any function f will be
replaced by a call to a function f_opt. In the dynamic case, function f and its original version
may be part part of the execution stack before their optimization. Optimizations change the
program, but not the stack. In that case, executing f in the source program can be both related
to executing f_opt (when doing a new call), or f (when returning from the stack) in the new
program. In practice, this means adding a single case to our matching inductive relations ≈ in
the correctness proofs of our transformations.

Internal backward simulations can also be composed. Our optimization passes can thus be
proved independently, each with a backward simulation. This allows for modular correctness
arguments: inserting an Anchor is correct for other reasons than inserting an Assume. The
next sections present the simulation proofs for the six optimization passes of our middle-end
compiler. In terms of complexity, these simulation proofs resemble the ones that can be found
in CompCert. The main novel di�culties come from the handling of speculative instructions
and nondeterminism.
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Backward Simulation Mechanized
Relates the semantics of a source program p to the semantics of the program newp, where
function fid has been augmented with a new Opt version with Anchor instructions inserted
at each of the labels contained in lbllist.

Theorem anchor_insertion_correct:
∀ p fid (lbllist:list label) newp,

insert_anchors fid lbllist p = OK newp →
backward_internal_simulation p newp.

Simulation 3 – Correctness of Anchor insertion

5.3.1 Correctness of Anchor Insertion

This pass (see section 5.2.1) is proved with an internal backward simulation, shown in
Simulation 3. Since the pass adds new instructions, an optimized program execution will take
additional steps. These additional steps are stuttering steps of the simulation, meaning that
the simulation invariant ≈ sometimes relates two consecutive states of the target execution
(both the Anchor and its next instructions).

We describe the simulation invariant that can be used to prove correct the insertion of
Anchor instructions. Let Vbase be the version where Anchor instructions are inserted, and Vopt

the version after the insertion. In Vopt , some instructions have been replaced by an Anchor, and
moved to a fresh (i.e. unused) label. We write V #lpc to denote the instruction at label lpc in ver-
sion V . We write ∅ when there is no such instruction. The invariant ≈ comes in four di�erent
shapes and is de�ned in Figure 5.11. It relates semantic states of CoreIR before and after the
transformation. The (re�) case states that outside of the modi�ed version, the execution should
be identical, except for di�erences in the stack explained below. As our JIT transformations
always target a single version of a function, all our simulation invariants include a similar case.
The (opt) invariant relates semantic states when executing the version with the new Anchor

instructions. After passing an Anchor without deoptimizing, we use the (fresh) case to relate
the label where the instruction has been moved to its original one. After deoptimizing at a
newly inserted Anchor, semantic states are matched with the (deopt) case. By “agreeing”, we
mean having the exact same value on the set of live registers. During deoptimization, non-
live registers are not captured by the Anchor and execution may end up in a state where less
registers are de�ned than in the source execution. Note that in the Coq mechanization of the
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re�
S1 ≈stk S2 V ≠ Vopt

(S1 V lpc R M) ≈ (S2 V lpc R M)

opt
S1 ≈stk S2

(S1 Vbase lpc R M) ≈ (S2 Vopt lpc R M)

fresh
S1 ≈stk S2 Vbase#lf resℎ = ∅ Vbase#lpc = Vopt#lf resℎ

(S1 Vbase lpc R M) ≈ (S2 Vopt lf resℎ R M)

deopt
S1 ≈stk S2 R1 and R2 agree on the live registers of Vbase at label lpc

(S1 Vbase lpc R1 M) ≈ (S2 Vbase lpc R2 M)

Figure 5.11 – Invariant relation ≈ for Anchor insertion, transforming Vbase into Vopt

frame-same
V ≠ Vopt

(r , V , lpc , R) ≈sf (r , V , lpc , R)

frame-opt
(r , Vbase , lpc , R) ≈sf (r , Vopt , lpc , R)

frame-deopt
R1 and R2 agree on the live registers of Vbase at label lpc

(r , Vbase , lpc , R1) ≈sf (r , Vbase , lpc , R2)

stack-nil
[] ≈stk []

stack-cons
f1 ≈sf f2 s1 ≈stk s2
f1++s1 ≈stk f2++s2

Figure 5.12 – Stack invariant for Anchor insertion
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proof, the invariant is slightly more complex, due to how data�ow analyses like liveness are
implemented in CompCert using its Kildall algorithm implementation. The (opt) case mention
the analysis transfer function, so that we can infer that R1 and R2 agree on the live registers
after deoptimization.

Since a version has been modi�ed, the execution stack vary in both executions. This is
described by the stack invariant ≈stk , de�ned in Figure 5.12. This de�nition consists in �rst
de�ning an equivalence relation on CoreIR stackframes, written ≈sf . We then de�ne ≈stk using
the (stack-nil) and (stack-cons) rules, stating that matching execution stacks are sequences
of matching stackframes according to ≈sf . As seen in the (frame-opt) rule, after the insertion
some stackframes of Vbase may be replaced with stackframes of Vopt . This happens when the
transformed version contained Call instructions. For function calls outside of the transformed
version however, stackframes should be identical (frame-same). If we encounter a Call after
having deoptimized from a newly inserted Anchor, the register mapping in the stackframes
may vary (frame-deopt), but should agree on the live registers captured by the deoptimization.

Since there is a stuttering step at each inserted Anchor, we de�ne the following measure
on the semantic states of the transformed program:

m(S Vopt lpc R M) = 1 if Vopt#lpc is an inserted Anchor

m(S V lpc R M) = 0 otherwise.

Function F
Version Base:

l1: instr1

l2: instr2

Function F
Version Opt:

l1: Anchor F_base.l1 vm [] fresh

fresh: instr1

l2: instr2

Version Base:

l1: instr1

l2: instr2

≈ (opt)

≈ (fresh)

≈ (re�)

≈ (opt)

≈ (deopt)

de
op

tim
iza

tio
n

tar
ge

t

Figure 5.13 – Example of ≈ relation for Anchor insertion

An example of this invariant ≈ is depicted in Figure 5.13, where the optimization inserted
an Anchor at label l1. The original program on the left has a single version for function F,
while the program after the Anchor insertion pass now has an optimized version F_opt of F.

83



Formally Veri�ed Speculative Optimizations

The new Anchor instruction can either go on or deoptimize, and in both cases, the invariant is
preserved. The instruction instr1 has been moved to a fresh (i.e. unused) label. Moreover, the
deoptimization metadata includes the varmap vm, that assigns to each live and de�ned register
its current value. To show preservation of the invariant, we prove that deoptimizing using this
metadata preserves the contents of the live registers, as expected.

With this invariant, this simulation relates multiples behaviors (deoptimization or ignoring
the Anchor) in the target program to a single behavior in the source one. This shows that
combining the backward simulations from CompCert and the nondeterministic semantics of
anchors is su�cient to capture the possibility of deoptimization expressed by the anchor.

5.3.2 Correctness of Assume Insertion

This pass (see section 5.2.2) is also proved with an internal backward simulation, shown
in Simulation 4. The pro�ler suggests a guard (a list of expressions speculated to be true) and
the location of an Anchor instruction. As the middle-end compiler should not have to trust
the pro�ler, it checks that the suggested label actually corresponds to an Anchor, and runs our
analysis to ensure that the guard will evaluate without errors. If the analysis succeeds, the
Assume is inserted right after the Anchor. Inserting an Assume instruction next to an Anchor

means adding a speculation check in the optimized execution, also represented by a stuttering
step in the proof.

Backward Simulation Mechanized
Relates the semantics of source program p to the semantics of program newp, where the Opt
version of fid has had an Assume inserted immediately after the Anchor located at label
lbl. The Assume speculates on the expression guard.

Theorem assume_insertion_correct:
∀ p fid guard lbl newp,

insert_assume fid guard lbl p = OK newp →
backward_internal_simulation p newp.

Simulation 4 – Correctness of immediate Assume insertion

We de�ne in Figure 5.14 our invariant relation ≈, when inserting an Assume in a version
Vsrc . We name Vopt the version obtained after insertion. The new instruction is inserted at an
unused label lf resℎ, after an Anchor at label lanc . The Anchor is modi�ed to point to that fresh
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re�
S1 ≈stk S2 V ≠ Vopt

(S1 V lpc R M) ≈ (S2 V lpc R M)

opt
S1 ≈stk S2 lpc ≠ lf resℎ

(S1 Vsrc lpc R M) ≈ (S2 Vopt lpc R M)

spec

S1 ≈stk S2 Vsrc#lanc = Anchor deop lnext
Vopt#lanc = Anchor deop lf resℎ Vopt#lf resℎ = Assume guard deop lf resℎ

(S1 Vsrc lanc R M) ≈ (S2 Vopt lf resℎ R M)

Figure 5.14 – Invariant relation ≈ for Assume insertion, transforming Vsrc into Vopt

frame-same
V ≠ Vopt

(r , V , lpc , R) ≈sf (r , V , lpc , R)

frame-opt
(r , Vsrc , lpc , R) ≈sf (r , Vopt , lpc , R)

stack-nil
[] ≈stk []

stack-cons
f1 ≈sf f2 s1 ≈stk s2
f1++s1 ≈stk f2++s2

Figure 5.15 – Stack invariant for Assume insertion
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label in the case where it does not deoptimize. The new Assume speculates on the expression
guard and only uses registers that are de�ned at lanc according to an analysis.

The (re�) case serves the same purpose as in the previous invariant: outside of the op-
timized version, execution should encounter the same semantic states. Inside the optimized
version, the same semantic states should be matched (opt) until the Anchor used for the inser-
tion is reached. At which point, both the Anchor and the Assume of the optimized version are
matched with the Anchor of the source version, with (opt) and (spec) respectively. Just like in
the invariant of Section 5.3.1, execution stacks S1 and S2 can di�er by substituting stackframes
of Vsrc with stackframes of Vopt . The corresponding stack invariant is shown on Figure 5.15.

The stuttering is handled with the following measure:
m(S V lpc R M) = 1 if V = Vopt and lpc = lanc
m(S V lpc R M) = 0 otherwise.

The simulation proof uses the nondeterminism of the Anchor insertion as a way to guaran-
tee behavior equivalence regardless of the validity of the guard. For instance, if the speculation
check fails in the optimized execution and the inserted Assume deoptimizes, then this behavior
is related to the source behavior where the Anchor deoptimizes. Since the inserted Assume and
the Anchor used for the insertion share the same deoptimization metadata, they deoptimize to
the same semantic state.

5.3.3 Correctness of Constant Propagation

This pass (see section 5.2.3) closely resembles CompCert’s constant propagation, but with
some added interaction with the speculative instructions. For this proof, we successfully reuse
the forward-to-backward methodology of Figure 3.8 that is used extensively in CompCert and
allows simpler simulation proofs. However, the CoreIR semantics (see Figure 5.3) is not deter-
minate (as de�ned on Chapter 3): the Anchor instruction can take two di�erent steps that both
produce a silent trace (outputting no event). For many optimization passes, it is important for
the Anchor steps to be silent, as the behavior of Anchor should not be observable. For instance,
a pass such as Anchor insertion would not be correct otherwise: it inserts new Anchor steps
into the optimized execution but should not change the observable behavior of the program.

To circumvent this issue, we de�ne a new temporary semantics called loud semantics for
the Anchor instructions. The Anchor rules are simply augmented with a visible distinct event,
as shown in Figure 5.16. Intuitively, an optimization pass such as constant propagation does not
change the behavior of Anchor instructions: any behavior of an Anchor in the source program
will behave just as the same Anchor in the optimized program. Apart from this observable

86



Formally Veri�ed Speculative Optimizations

V [lpc] = Anchor f .l vm st1… stn lnext
deopt_regmap vm R = R′ synthesize_frame R st1… stn = S′

S V lpc R M
GoOn
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ S V lnext R M

V [lpc] = Anchor f .l vm st1 … stn lnext
deopt_regmap vm R = R′ synthesize_frame R st1… stn = S′

S V lpc R M
Deopt
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ (S′++ S) (base_versionP f ) l R′ M

Figure 5.16 – Loud semantic rules for Anchor instructions

event, the rules are identical to those in Figure 5.3. Making these behaviors explicit in the
semantics allows us to comply with determinacy and still preserve a program behavior. On
these new semantics, we can use the forward-to-backward methodology. Finally, we show that
a backward simulation on loud semantics implies a backward simulation on silent semantics.
In the end, we prove the theorem of Figure 5.17.

Theorem fwd_loud_bwd:
∀ psrc popt,
forward_internal_loud_simulation psrc popt →
backward_internal_simulation psrc popt.

Figure 5.17 – From forward loud simulations to backward simulations

Using this methodology, the correctness proof for constant propagation then consists in
proving a forward simulation, as shown in Simulation 5. This simulation closely resembles
the constant propagation proof in CompCert. Its invariant relation is similar to the one used
in CompCert, with an additional case resembling the (re�) case of Sections 5.3.1 and 5.3.2 to
relate functions that have not been targeted by the transformation. Our other optimization
passes have to be proved with backward simulations as they do not preserve the new observ-
able events of Figure 5.16. However, this proof suggests that most standard nonspeculative
optimization passes could be implemented in our middle-end compiler and proved just as in
a static compiler. Note that this simulation, as well as the ones used for the correctness of de-
layed assume insertion Section 5.3.5 and inlining 5.3.6, have only been mechanized in the �rst
pure version of our JIT [Barrière et al. 2021]. As future work, we could adapt our proof scripts
to our current impure JIT implementation. This is discussed later in Chapter 8.
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Forward Simulation Mechanized in the POPL21 artefact
Relates the loud semantics of source program p with target program newp, where the Opt
version of function fid has been optimized with constant propagation.

Theorem constprop_correct_loud:
∀ p fid newp,

constant_propagation fid p = OK newp →
forward_internal_loud_simulation p newp.

Simulation 5 – Correctness of constant propagation

Comparison with Mixed Simulations Simulations on loud semantics can be reminiscent
of the mixed simulations introduced in Pilsner [Neis et al. 2015]. Such simulations have also
been implemented and used in CompCertM [Song et al. 2020], a variant of CompCert. Mixed
simulations are another way to deal with nondeterminacy while still proving simulations in a
forward manner. In essence, mixed simulations are simulations in which the invariant relation
can be preserved either in a forward manner (see Figure 3.7) or in a backward manner (see
Figures 3.5 and 3.6) depending on the current semantic state. The choice between a forward
or a backward reasoning is done locally instead of choosing one direction for the entire proof.
Then, one can use a theorem similar to the forward to backward theorem of Figure 3.8 to
prove that a mixed simulation also implies the existence of a backward simulation. To do so,
one needs to prove determinacy of the target program semantics only at the semantic states
where forward reasoning is applied. When nondeterminacy is con�ned to a few instructions,
this allows to prove most of the simulation in a forward manner.

The main di�erence with our approach is that a backward reasoning must still be applied at
the nondeterminate steps. Using a forward simulation on loud semantics, every step is proved
correct in a forward manner. Proving every step in the same direction reduces the number
of intermediate lemmas; we tried both approaches for this proof and the loud semantics re-
sulted in a simpler and more concise proof. In contrast, mixed simulations are more general
(as general as backward simulations) and can be used to prove correct more transformations
than forward simulations on loud semantics. For instance, the correctness of Anchor Insertion
in Section 5.3.1 could be proved using mixed simulations (instead of the backward we wrote)
using a backward reasoning only for the Anchor steps. However, this proof cannot be done
using loud semantics as new observable events are inserted into the program.
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5.3.4 Correctness of Removing Anchors

This pass (see section 5.2.4) is also proved with an internal backward simulation (Simula-
tion 6). As it simply replaces Anchor instructions with Nop instructions, its correctness comes
from the fact that the behavior of one such Nop instruction matches one of the possible behav-
iors of the Anchor: the (Ignore) rule of Figure 5.3, the one that goes on in the execution of the
optimized version.

Backward Simulation Mechanized
Relates the semantic of p and newp, where newp is p where every Anchor instruction has
been replaced with a Nop instruction.

Theorem remove_anchors_correct:
∀ p newp,

remove_anchors p = newp →
backward_internal_simulation p newp.

Simulation 6 – Correctness of removing Anchors

5.3.5 Correctness of Delayed Assume Insertion

This pass (see section 5.2.5) is similar to the previous Assume insertion pass in its proof.
However, an execution of the optimized program where the inserted Assume deoptimizes should
be related to an execution of the source where the Anchor deoptimized earlier. To this end, it
is essential that no side-e�ect occurs between an Assume and its Anchor. Our development,
for instance, proves that it is safe to have a branch between the two speculative instructions.
This allows to specialize di�erent branches in di�erent manners, and showcases that some in-
structions can remain between anchors and assumes. This pass is also proved with a backward
simulation shown in Simulation 7.

In our simulation invariant ≈ presented in Figure 5.18, the optimized function stays matched
to the Anchor until the guard of the Assume is evaluated. But to be able to catch up if the guard
of the Assume succeeds, we also include in our invariant that for any step taken between the
Anchor and the Assume in the optimized version, there exists a corresponding step in the source
version that ends up in a matching state. In the example in Figure 5.18, the Cond instruction of
the optimized program is matched to both Anchor and Cond instructions of the source program.
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Backward Simulation Mechanized in the POPL21 artefact
Relates the semantics of source program p to the semantics of program newp, where the
Opt version of fid has had an Assume inserted in the true branch of the Cond instruction
following the Anchor located at label lbl. The Assume speculates on the expression guard.

Theorem assume_delay_correct:
∀ p fid guard lbl newp,

insert_assume_delay fid guard lbl p = OK newp →
backward_internal_simulation p newp.

Simulation 7 – Correctness of delayed Assume insertion

In the in-between states, we are then proving two simulation diagrams at once: each of these
states is related both to the Anchor (in dashed lines), and to a corresponding state that has
executed the same instructions. That way, if the Assume fails, then we deoptimize to the exact
same semantic state in both the source and optimized versions, and the in-between instruc-
tions did not emit any observable event. And if the Assume succeeds, then the preservation of
the invariant has been constructed in a way to catch up in the source version.

Source Function

l1: Anchor tgt vm sl

l2: Cond e ltrue lfalse

ltrue: instr

Optimized Function

l1: Anchor tgt vm sl

l2: Cond e fresh lfalse

fresh: Assume guard tgt vm sl

ltrue: instr

Figure 5.18 – The ≈ relation for delayed Assume insertion

In addition, the middle-end compiler checks that the Cond instruction used for the delay
is strictly dominated by the Anchor, so that every execution going through the new Assume

has seen the Anchor. To show that deoptimizing from the new Assume instruction goes to
the same state as if the execution deoptimized at the Anchor instruction, we show that the
Cond instruction does not have any observable behavior, and does not change the evaluation
of the deoptimization metadata. This part would need to be adapted if we were to extend
this optimization pass to other instructions (delaying the Assume after an Op instruction for
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instance). As in the previous proof, we also check that the inserted guard in the Assume will
evaluate without errors.

5.3.6 Correctness of Inlining with Speculations

Backward Simulation Mechanized in the POPL21 artefact
Relates the semantics of p and newp, where in newp the Call instruction at label call_lbl
in function fid has been inlined. The inlined code is the code from the Opt version of the
called function, possibly containing speculative instructions.

Theorem inlining_correct:
∀ p fid call_lbl newp,

optimize_inline fid call_lbl p = OK newp →
backward_internal_simulation p newp.

Simulation 8 – Correctness of inlining with speculative instructions

This pass (see section 5.2.6) must check that the inlined call is followed by an Anchor in-
struction, and use its metadata to synthesize an additional stackframe in the optimized pro-
gram. Such a manipulation of the speculative instructions requires complex invariants. This
pass is proved with an internal backward simulation (Simulation 8).

Our ≈ invariant comes in three shapes. The semantic states might represent the execution
of the same version (re�). The target state might be in the new inlined version while the source
one is in the caller function (caller). And the target state might be in the new version while the
source one is in the function that we inlined (callee). In the last two cases, we design invariants
to represent that the environment of the new version with inlining holds the environments of
both the caller and the callee functions.

Consider Figure 5.19, where we show on a simpli�ed example how this invariant can be
preserved. We abbreviate Assign args the instruction that assigns each parameter of G to the
corresponding expression of the list args. On the left, the source execution starts in the caller
function F. As the execution progresses in F, we use the caller invariant. When the source
calls into the callee function G, we show that the callee invariant holds: the new Assign args

instruction successfully updates the optimized environment, which now contains the regis-
ter mappings of both F and G. If a speculative instruction deoptimizes in the inlined code, it
also deoptimizes in G. The optimized execution now deoptimizes back to the original version
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Function F:
l1: instr0
l2: retreg ← Call G args

Function G:
l1: instr1
l2: Assume gd G.l2 vmg slg

Original Function Gbase:
Stack: (retreg, F, l3, R)
l2: instr2
l3: Return e

Function F:
l3: Anchor F.l3 vm []

Original Function Fbase:
l3: instr3

New Function F with G inlined:
l1: instr0
l2: Assign args
l1 ’: instr1’
l2 ’: Assume gd’ G.l2 vmg’ slg’+(F.l3,retreg,vm)

Original Function Gbase:
Stack: (retreg, Fbase, l3, Rdeopt)
l2: instr2
l3: Return e

Original Function Fbase:
l3: instr3

caller

cal
lee

re�

re�

Deopt

Deopt

Deopt

Figure 5.19 – Matching a deoptimization in the inlined code

Gbase. The new metadata that has been inserted synthesizes a new stackframe, pointing to
Fbase. When the execution of Gbase �nishes, we prove that returning into that synthesized
stackframe matches the behavior of the source where we return to function F, and use the
Anchor after the call to deoptimize once more into Fbase. This example only focuses on deop-
timization, but many other behaviors must be matched. For instance if the Assume succeeded,
then one needs to prove that stepping out of the inlined code ensures a new caller invariant.
Or if another Call happens during the inlined part, the optimized version now has one less
stackframe than the source in its stack. Expressing and preserving an invariant where stack-
frames can be matched in multiple ways makes this correctness proof the most complex one
of our middle-end compiler. However, this optimization allows us not only to inline Assume

speculations, but also to inline Anchor instructions and use them later to insert new specula-
tions.
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5.4 A Formally Veri�ed JIT Middle-end Compiler

Finally, we prove the correctness of the entire middle-end compiler which can use the
transformations presented earlier. Its correctness theorem is shown in Simulation 9, where ps

is any pro�ler state (providing the list of optimization wishes). Being speci�ed with a backward
internal simulation, it matches the speci�cation presented in Simulation 2, allowing its reuse
in nested simulations so that it can be called dynamically. As we can see later in Chapter 7, this
simulation can be composed with the similar Simulation 16 specifying the backend compiler,
to get the correctness of the entire optimization step of our JIT.

Backward Simulation Mechanized
Given a pro�ler state ps that can be used to produce a list of optimizations, this theorem
relates the semantics of p, to the semantics of newp where all the suggested optimizations
have been performed.

Lemma middle_end_correct:
∀ p ps newp,

middle_end ps p = newp →
backward_internal_simulation p newp.

Simulation 9 – JIT middle-end correctness

Figure 5.20 shows how the simulations presented in this Chapter can be composed to-
gether to obtain Simulation 9. The boxes p1 to p7 on the Figure represent the current program
of the JIT as it gets transformed by the middle-end compiler. The exact passes that are per-
formed by the middle-end compiler and their order can vary, and depend on what the pro�ler
suggests at the time of the optimization. There are two exceptions however: the Anchor inser-
tion and Anchor removal passes must be performed respectively at the beginning and the end
of middle-end compilation. In the Figure, we depict an arbitrary order of middle-end passes,
showcasing all of them. Performing these middle-end passes is the only moment where our
JITs use the Anchor instructions. The nondeterminism of anchors explains why Simulations 3,
4, 7, 8 and 6 are proved with backward simulations. For constant propagation however (and
any standard optimization not using the nondeterminism of Anchors), we have shown in Sec-
tion 5.3.3 that we can prove a forward simulation on the loud semantics of p5 and p6, and
construct a backward simulation using the theorem on Figure 5.17.

Speculation is a di�cult yet essential feature of modern and e�cient JITs. Our designs
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p1 p2 p3 p4 p5 p6 p7

p5
loud

p6
loud

Anchor
insertion

Assume
insertion

Delayed
Assume
insertion Inlining

Constant
propagation

Remove
Anchors

Sim. 3 Sim. 4 Sim. 7 Sim. 8 Sim. 6Fig. 5.17

Sim. 5

Sim. 9

Forward simulation

Backward simulation

Using a simulation to construct another

99K

Language of the function being optimized:

CoreIR CoreIR without anchors

Figure 5.20 – Middle-end Correctness

for CoreIR and the middle-end show that it is possible to formally reason about speculation
and deoptimization, the second JIT-speci�c veri�cation challenge introduced in Section 1.2.1.
CoreIR was designed to not be tied to any particular language, and the main ideas behind
the speculative instructions semantics and the correctness arguments exposed in our proofs
of section 5.3 could be used with any other mechanized intermediate language. Its similari-
ties with CompCert RTL allow us in Chapter 7 to connect the middle end to the backend of
CompCert.

In particular, we showed that nondeterministic semantics are a natural and simulation-
compatible way to express what compilers expect when inserting speculation. While nonde-
terminism is often seen as an burden for formally veri�ed compilation (as seen in section 3.1,
the very �rst pass of CompCert removes it), the loud simulation methodology of section 5.3.3
shows that for standard passes that preserve the amount of speculative nondeterminism, we
can reuse the forward-to-backward methodology used in CompCert.
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Chapter 6

FORMAL VERIFICATION OF IMPURE COQ

JITS

The design introduced in Chapter 4, where every transition of the JIT is a pure and ter-
minating Coq function, is good enough for simple JITs with only interpretation and without
native code generation. However, it fails to address two challenges that modern JITs typically
rely on for speedups: generating native code and interleaving native code execution with in-
terpretation. Having multiple ways to execute code (running native code and interpretation)
typically help JITs in �nding the right balance between execution time, startup time and mem-
ory consumption.

JITs that generate and execute native code contain components that cannot be written in
the pure functional programming language of Coq, Gallina. First, they must install and run the
native code that has been generated. By code installation, we mean converting to machine code
the assembly code that a backend compiler has produced (using an assembler), and writing
it in a portion of the memory that is then given executable permissions. To the best of our
knowledge, neither of these operations can be programmed in Gallina, the pure functional
programming and speci�cation language of Coq. Extending CompCert to include a formally
veri�ed assembler has been investigated before in CompCertELF [Wang et al. 2020]. This ahead
of time compiler produces machine code, but does not write it in memory nor execute it.
Second, a JIT with native code generation interleaves the execution of two languages, the IR
and the native code. Both share some data structures (i.e., an execution stack and a heap). Stack
manipulation is made particularly di�cult with on-stack replacement as one needs to be able to
synthesize an interpreter stackframe. There is little hope of de�ning mutable, global Coq data-
structures that once extracted can also be accessed and modi�ed by native code. In Coq every
object is immutable, and Coq proofs rely on the implicit assumption of that immutability. As a
result, Coq proofs cannot guarantee anything about the execution of a Coq function extracted
to OCaml where we modify the machine representation of extracted data-structures. In the
rest of this work, all such components that cannot be written in Coq, whether it is global and
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shared data-structures manipulation, native code installation or running native functions, are
called impure components.

In this Chapter, we tackle the third JIT-speci�c veri�cation challenge introduced in Sec-
tion 1.2.1: designing and proving correct in Coq an impure JIT. Any JIT generating native code
requires such impure components. This challenge is thus key to develop formally veri�ed but
realistic JITs in Coq with native code generation and execution. In Chapter 7, we will show
how using the solution presented in this Chapter, we can reuse the CompCert proof to de-
velop and prove a formally veri�ed JIT backend compiler. Here, we propose a methodology
that extends the design of Chapter 4 to delimit, specify and reason on the impure e�ects of a
JIT.

6.1 A Monadic Encoding for Impure JITs

6.1.1 The Need for a New Extraction Methodology

A static compiler like CompCert is written as a pure and terminating Coq program. Hence,
it is a prime candidate for a traditional extraction work�ow: one can write a compiler as a Coq
function, then one can extract that function to an equivalent executable OCaml function. This
OCaml code can then be compiled and executed independently. However, JITs are impure
and e�ectful programs. Yet, these impure parts (e.g., calling native code or interacting with
global data-structures) are not the only things a JIT does. A JIT must also translate code (with
its backend compiler), interpret code, and orchestrate its components (with its monitor). All
these remaining parts, making up for most of a JIT’s work, can be written in a pure functional
language and can be formally veri�ed. In this section, we are tasked with the challenge of
verifying in Coq a program that can only be partially written in Coq.

In Figure 6.1, we revisit the design presented in Figure 4.1, while identifying the impure
parts of a JIT with native code generation. In a pure JIT with only interpretation, the execution
stack and the heap could be de�ned as Coq immutable data-structures and their modi�cation
could be considered as pure manipulations. However, when interleaving interpretation with
native code execution, such data-structures become shared across the two execution engines.
JIT memory manipulation is then considered impure in our design. As a result, while most
of the monitor can be written in Coq, it still needs some impure stack manipulation, for in-
stance to inspect the top stackframe and decide whether to call the interpreter or native code
on a function return. The interpreter also needs to manipulate the stack or the heap, for in-
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1. Monitor

Pro�ler,
Dispatch

Stack manipulation

3. Optimization

Middle-end
Compiler
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Compiler,

Native Code Generation
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2. IR Execution

Interpreter
Stack, heap manipulation

4. Native Execution

Run Native
Stack, heap manipulation

Pure and Terminating

Impure

Figure 6.1 – Pure and impure components of a JIT with native code generation
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stance when interpreting a Store instruction, which modi�es the heap. Both the middle-end
and the backend compilers can be considered as entirely pure, as they simply transform AST
representations of code. The output of the backend compiler is an assembly AST, just like the
output of the CompCert backend. However, writing and assembling that AST in the memory
and making it executable is an impure component, just like running the installed code.

6.1.2 JITs as Incomplete Coq Programs

In order to develop impure JITs with native code generation, we must accept that these im-
pure components cannot be written in Coq and extracted to OCaml. Our solution is to de�ne
a small set of primitives for everything that cannot be written in Coq in a JIT (i.e., the pink
boxes of Figure 6.1): manipulation of shared data-structures, native code installation and na-
tive code execution. These simple primitives are not implemented in Coq, but can be speci�ed
using Coq functions on an abstract model of the JIT memory. We need a formalism to encap-
sulate and delimit these impure e�ects such that our Coq proofs can reason on these abstract
speci�cations, but our extracted JIT can use other implementations of the primitives. We use a
variation of free monads, a pure functional encoding of e�ectful programs [Swierstra 2008], to
represent in Coq a program such as the JIT with unimplemented primitives. Free monads have
been used for years in pure functional languages to represent incomplete programs. The free
monad de�nition used to write an impure JIT is de�ned in Section 6.3. In short, our encoding
contains all the pure parts of a JIT, and its calls to some unimplemented impure primitives.
Primitives can be called from both native code and components de�ned in Coq, allowing the
interoperability that JITs intrinsically need. For instance, when a CoreIR function calls a func-
tion that we dynamically compile, we can generate native code that uses such a primitive to
push the return value to the stack before returning to the JIT monitor. The monitor may now
pop that value using another primitive, then call the interpreter again on the CoreIR function
with that return value.

There are two ways to supplement such incomplete Coq programs: Coq speci�cations and
impure implementations. First, primitive speci�cations allow us to reason on the behavior of
an e�ectful JIT with multiple languages and shared data-structures, as if the JIT was entirely
programmed in Coq. Speci�cally, using an abstract model of the JIT memory and an abstract
speci�cation of the primitives, we can rede�ne the JIT semantics of Figure 4.5, and reprove the
behavior preservation theorem of Figure 4.7, even in the presence of impure components. This
abstract model of the JIT memory contains an abstract model of the three disjoint portions of
the memory the JIT uses: its execution stack, its heap and the executable memory where the
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native code are installed. In Section 6.2, we present state and errors monads, which provide
a good formalism to encode in a pure functional language all of our primitive speci�cations.
For the JIT, we can write pure Coq monadic functions working on an abstract model of the
JIT memory to specify each primitive. Next, Section 6.4 shows how we can �ll the holes of an
incomplete program with such primitive speci�cations.

Second, to get an impure executable JIT from such an incomplete program, we must move
away from Coq. We can extract the incomplete JIT to an incomplete OCaml program. In
OCaml, where e�ects are possible and other languages can even be called, we can de�ne im-
pure implementations of each primitive, working on actual shared data-structures and really
calling native code. For instance, we call native code and C implementations of the global mu-
table data-structures from OCaml. In Section 6.5, we show that both the incomplete program
and the primitive implementations can be composed together to get an executable impure
program.

Our methodology allows to develop Coq JITs that come with a correctness proof, but can
also be extracted and completed with primitive implementations to be executable. Using speci-
�cations, we can reason about impure programs in Coq that cannot be entirely written in Coq.
If one trusts these primitive implementations to match their speci�cation, the Coq correct-
ness property extends to the executable JIT. Using free monads not only has the advantage of
clearly identifying and specifying the various e�ectful components of a JIT, it also allows us to
switch between di�erent speci�cations of our data-structures. This is the re�nement method-
ology of Section 6.6, facilitating the proofs of a multi-language program such as our JIT. The
meta-theory needed to reason about our free monad implementation is very lightweight (a few
hundred Coq lines). In particular, we only ever use free monads to write terminating compu-
tations, which eliminates the need for coinductive reasoning. We show in Section 6.7 that our
monads can be used in conjunction with the small-step semantics framework of CompCert
to reason about possibly in�nite behaviors, and possibly diverging transitions of the JIT state
machine of Section 4.2.

There are two main drives behind our chosen formalism. First, the meta-theory used to
reason about e�ectful programs should be as simple and lightweight as possible, to not hinder
already di�cult proofs. Second, our formalism should be entirely compatible with CompCert
so that we can reuse its simulation framework, which already handles proof composition and
diverging executions. In the end, this free monad formalism could be used for any veri�cation
work trying to extend the CompCert simulation framework to e�ectful programs. We com-
pare our methodology to other existing monadic encodings for impure program veri�cation
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in Section 6.8.

6.1.3 A Minimal Interface of JIT Impure Primitives

Since their implementation has to be trusted, we keep the smallest possible interface of
impure primitives that a JIT with native code generation requires. Our impure JIT uses the
following impure primitives:

• HeapGet x to get the heap value at address x.
• HeapSet x y to set x in the heap at address y.
• Push x, to push a value x on the stack.
• Pop, to pop a value from the top of the stack.
• Push_IRSF sf to add an interpreter stackframe sf to the stack.
• OpenSF to get the top stackframe of the stack.
• Install_Code asm to install some native code asm generated by a JIT backend compiler.
• Load_Code fun_id to load some installed native code for function fun_id.
• Check_installed fun_id to check if some function fun_id has been compiled.
• Print x to print some value x.
In static compilation, one simply generates code that modi�es the memory, while in a JIT

the memory is a data-structure directly modi�ed during execution. HeapSet and HeapGet are
used to modify and access the heap. These primitives are called by the IR interpreter when
interpreting MemSet and MemGet instructions. Also, when compiling a function that con-
tained such instructions, we generate native code that calls HeapSet and HeapGet so that ex-
ecuting a compiled function has the same e�ect on the JIT heap as interpreting its original
version.

The JIT execution stack contains both interpreter stackframes and stackframes for the
native code. Stackframes for the native code consist in 64-bit integers pushed on top of the
stack, while interpreter stackframes are Coq records (containing values for the CoreIR registers
for instance). The native code we generate uses the Pop and Push primitives to add or get
integers from the stack, for instance to get function arguments, or push return values. When
deoptimizing, the native code also pushes its deoptimization metadata to the stack using Push,
so that the monitor can reconstruct the corresponding interpreter stackframe. The monitor
uses both primitives when calling a native function (pushing arguments), or when returning
from a native call (popping the return value), or after native-code deoptimization (popping
the deoptimization metadata before creating the corresponding stackframe). But the stack also
contains interpreter stackframes, that can be pushed by the interpreter with Push_IRSF when
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an interpreted function calls another. Technically, we could design our interpreter such that
it uses stackframes made of 64-bit integers as well, and then use the Push primitive for both
native and interpreter stackframes. Such an interpreter would be more di�cult to write and
prove correct than our current version using these Coq records, which closely follows the
CoreIR semantics. Having a dedicated primitive also shows that our design is not tied to a
particular interpreter implementation. After a function return, the monitor uses OpenSF to get
the top stackframe, and dispatches execution accordingly.

Finally, our JIT with native code generation must also install the generated native code.
The optimizer uses Install_Code to allocate some space in the memory, write machine bytes
and make that memory executable. The implementation of this primitive is discussed in Sec-
tion 8.3.2. The addresses of these allocations are stored, and Load_Code can then be used when
running native code to return the address of the machine code corresponding to a function
identi�er. Check_Installed is used by the monitor to decide if it should call the interpreter or
the native code for function calls.

As JITs di�er from static compilers in their need to do e�ectful impure computations, this
list already sheds some light on the way a formally veri�ed JIT should be designed. The impure
e�ects of our Coq JIT are restrained to that small list of impure primitives. Everything else done
by the JIT can be written directly in the pure programming language of Coq.

6.2 An Existing Solution for Specifying E�ects: State and

Error Monads

A standard way to encode e�ects in pure functional languages is to use monads. For e�ects
that consist in computations modifying and accessing a global state, one can use the state
monad [Wadler 1992]. In our JIT, we use a variation of the state monad that also includes
errors: our primitives may modify a global state, but also fail (for instance, when trying to pop
an empty stack). That state and error monad de�nition can also be found in CompCert. The
CompCert de�nition of state monads that we reuse is on the left of Figure 6.2. Intuitively, a state
monad of type smon A represents computations that either return a value of type A and possibly
change the global state, or fail. The smon type is parameterized by a type state representing
global states, which contain a model of the stack, heap, and executable codes. The type sres

represents the possible return values of the monads. Such state monads are executable Coq
functions, taking as argument an initial global state, and returning its return value as well as
the new global state (or an error).
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Definition smon (state A:Type) : Type :=
state → sres state A.

Inductive sres (state A:Type) : Type :=
| SError : errmsg → sres state A
| SOK : A → state → sres state A.

Definition sret state A (x:A) : smon state A :=
fun (s: state) ⇒ SOK x s.

Definition sbind state A B (f: smon state A)
( g: A → smon state B) : smon state B :=
fun (s: state) ⇒ match (f s) with

| SError msg ⇒ SError msg
| SOK a s’ ⇒ g a s’
end.

Figure 6.2 – De�ning the Coq state and error monad

Like all monads, state monads come with helpful constructors sret and sbind to build
complex monadic computations, as de�ned on the right of Figure 6.2. The constructor sbind

sequentially chains together monadic computations, constructing entire programs that may
have global e�ects. For instance, executing sbind f g in some global state s �rst executes f on
s. If that computation succeeded and returned a value a and modi�ed the global state to s’,
then we execute g on a and s’.

At �rst, one could think about writing a JIT as a state monadic computation whose state
contains a model of the stack, the heap and the generated native codes. However, extracting
such a JIT to OCaml would only produce a pure OCaml program, because Coq extraction
only targets a pure subset of OCaml. With such an approach, there is little hope of getting an
executable JIT that installs and calls actual native code. In order to develop executable impure
JITs, we can instead use the free monad formalism presented in the next Section. To sum up,
state monads are a great formalism to specify primitives that modify a global state, but this is
not enough to implement an e�ectful executable JIT.

6.3 A Solution to Write Impure JITs in Coq: Free Monads

Since the primitives cannot be written in Coq, an impure Coq JIT is an incomplete Coq
program. Free monads are a convenient formalism to write incomplete programs, namely pro-
grams with some holes left to represent the primitives that have not yet been implemented.
Free monads provide a DSL to write such programs given a list of primitives that they may
use. Such incomplete programs will either be completed with speci�cations of the primitives
(Section 6.4), or with impure implementations of the primitives (Section 6.5). First, we induc-
tively de�ne the list of primitives our free monad de�nition uses as on the left of Figure 6.3.
We see that one possible primitive is Prim_Push, taking an int as argument and not returning
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Inductive primitive: Type → Type :=
| Prim_Push: int → primitive unit
| Prim_Pop: primitive int
| Prim_HeapSet: int → int →
primitive unit
| Prim_HeapGet: int → primitive int
...

Inductive free (T :Type) : Type :=
| pure (x : T) : free T
| impure R (prim : primitive R)

( cont : R → free T) : free T
| ferror (e : errmsg) : free T.

Figure 6.3 – De�nition in Coq of free monads

Fixpoint fbind X Y
( f: free X) ( g: X → free Y) : free Y :=

match f with
| pure x ⇒ g x
| impure R prim cont ⇒

impure prim (fun x ⇒ fbind (cont x) g)
| ferror e ⇒ ferror e
end.

Definition fret X (x:X) : free X := pure x.

Definition fprim R (p:primitive R) : free R :=
impure p fret.

Notation "’do’ X ← A ; B" :=
( fbind A (fun X ⇒ B)).

Definition backend_and_install (f:function) :
free unit :=

(* generating RTL *)
do f_rtl ← fret (IRtoRTL f_spec);
(* using the CompCert backend *)
do f_x86 ← fret (backend f_rtl);
(* impure computation *)
fprim (Prim_Install_Code f_x86).

Figure 6.4 – Free monadic constructors and using them to write an e�ectful JIT

any value.
E�ectful computations are de�ned on the right of Figure 6.3. A term of type free T is

called a free computation; it encodes a function that computes some value of type T, possibly
using some primitives. The computation is either a pure computation, not using any primitive,
an error, or an impure computation. Such an impure computation calls an unimplemented
primitive prim, and then a continuation cont encodes the rest of that computation (possibly
using other primitives), given the return value of the primitive. The CoreIR program that the
JIT executes may have a going-wrong behavior, and errors help us de�ne such going-wrong
behaviors of the JIT, for instance if the program tries to call a function that is not de�ned. This
simple type is quite easy to manipulate. For instance, one can write proof tactics (using the
Coq proof tactics language LTac) that automatically check that some free computation only
uses a subset of primitives and this helps us prove that the interpreter does not install any new
native code.

Free monads are monads, and as such come with the monadic constructors on the left of
Figure 6.4. Binding impure free computations entails adding primitives to the continuation.
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These constructors allow us to de�ne complex free computations, such as all the components
of our impure JIT. For instance, the backend computation is detailed on the right of Figure 6.4.
This code compiles and installs some function. First we call IRtoRTL, a Coq function we wrote
which generates RTL code (see Section 7.1). This is a pure computation, using no primitive
(hence the fret). We then call the CompCert backend, a pure Coq function that generates some
equivalent x86 code. Finally, we call primitive Prim_Install_Code, that installs the generated
code in an executable portion of the memory. While this looks like a simple program, backend

is a pure function containing all of the CompCert backend passes, from RTL to x86. Here,
the free monad encoding is used to orchestrate complex pure transformations with calls to
the impure interface. To be executable, such a computation requires an implementation for
Prim_Install_Code, discussed in Section 8.3.2.

The entire JIT can be represented this way. As explained in Chapter 4, we can de�ne
a Coq function representing the transitions of the JIT state machine of Figure 4.3. How-
ever, to describe the impure e�ects of the transitions, we change the jit_step signature to be
jit_step: jit_state -> free (trace * jit_state), allowing JIT transitions to call JIT primi-
tives. Since we changed that signature, the JIT small-step semantics de�nition of Figure 4.5
has to be updated, this is done in the next Section, Figure 6.7.

6.4 Monadic Speci�cations and Semantics of FreeMonads

Our impure JIT is an incomplete Coq program, written using free monads and lacking
some implementation for the primitives it uses. In order to derive its semantics jit_sem, we
specify each primitive using a state and error monadic speci�cation (with the de�nitions of
Section 6.2). Since our primitives work on global data-structures and may fail, the state and
error monad is adequate for specifying them. We de�ne in Figure 6.5 a monadic speci�cation as
a record containing an initial global state and a state-monadic computation for each primitive,
called Prim_X for each primitive X of the list given Section 6.1.3. This record is parameterized
by the type mstate of global states, containing a pure model of the stack, the heap, and the
executable installed code of the JIT. The initial state is a global state that models the initial
contents of the JIT memory: an empty stack, an empty heap, and no native code has been
installed yet. This is used to de�ne the initial state of the JIT small-step semantics. Moreover,
we de�ne get_prim to access the corresponding speci�cation of a primitive with its arguments.
An example of speci�cation is given in Figure 6.8 for the heap_get primitive.

Furthermore, to �ll the holes of incomplete programs, a function called free_to_state in
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Record monad_spec (mstate:Type): Type :=
mk_mon_spec {

init_state : mstate;
prim_push: int → smon mstate unit;
prim_pop: smon mstate int;
prim_heapset: int → int → smon mstate unit;
prim_heapget: int → smon mstate int
... }.

Definition get_prim R S (p:primitive R)
( i: monad_spec S): smon S R :=

match p with
| Prim_Push x ⇒ (prim_push i) x
| Prim_Pop ⇒ (prim_pop i)
| Prim_HeapSet x y ⇒ (prim_heapset i) x y
| Prim_HeapGet x ⇒ (prim_heapget i) x
...

Figure 6.5 – Coq monadic speci�cations of representative primitives

Fixpoint free_to_state (A S:Type) (f:free A) (i:monad_spec S): smon S A := match f with
| pure a ⇒ sret a
| ferror e ⇒ fun (s ⇒ SError e)
| impure R prim cont ⇒ sbind (get_prim prim i) (fun r:R ⇒ free_to_state (cont r) i)

end.

Figure 6.6 – Turning free computations into state and error computations

Figure 6.6 transforms any free monad computation f into a state monad computation. It simply
replaces recursively any call to a primitive prim by its speci�cation. It uses get_prim to get the
primitive speci�cation, and the continuation of an impure computation is bound to the result
using the state-monad bind.

Now that free computations can be completed with primitive speci�cations, we can de�ne
the small-step semantics of the entire JIT. State and error monadic computations are executable
Coq functions, so one can execute the one corresponding to the JIT transitions. The semantics
states of the JIT execution contain both a jit_state (js1), the data that can be written and
manipulated in Coq (a state of Figure 4.3 also including the CoreIR functions), and a state
of the state-monadic speci�cation mstate (ms1), a model of the data structures that we cannot
write in Coq. Note that the contents of the memory (stack, heap and native codes) are no longer
represented in the jit_state as in Section 4.5.1, but they are now represented by the mstate

type. One simply goes from one of such state to another according to the execution of the state-
monad computation given by completing the JIT free transitions jit_step. This is de�ned by
a single small-step semantic rule shown in Figure 6.7, where i is a monadic speci�cation, and
t is the observed trace. In the �gure, we omit the types A and S, implemented respectively with
jit_state * trace and the mstate type of i. These new small-step JIT semantics replace the
ones de�ned in Figure 4.5, allowing impure JIT e�ects.
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jit_sem
free_to_state (jit_step js1) i ms1 = SOK (js2, t) ms2

(js1, ms1)
t
←←←→ (js2, ms2)

Figure 6.7 – The JIT small-step semantic rule

i n t 6 4 _ t heap_ge t ( i n t 6 4 _ t x ) {
a s s e r t ( x < HEAP_SIZE ) ;
i n t 6 4 _ t v a l = j i t _ h e a p [ x ] ;
return v a l ;

}

Definition heap_get (x:int) : smon int :=
fun s ⇒

if ( Int.lt x heap_size) then
SOK (PMap.get (pos_of_int x) (heap s)) s

else SError ("MemGet out of memory range").

Figure 6.8 – A C primitive implementation and its Coq monadic speci�cation, that reuses
CompCert libraries Int (to compare 64-bit integers) and PMap (associating values to positive

addresses).

6.5 An Impure Implementation for an E�ectful JIT

Using the free monad encoding, impure JITs can be completed with monadic speci�cations,
but we can also extract impure JITs to OCaml and complete them with impure and e�ectful
implementations of the primitives. The result is e�ectful OCaml JITs that can be executed. We
write C functions for interacting with our global data-structures. For instance, Figure 6.8 shows
the C implementation for the heap access primitive. On the right is its monadic speci�cation
used in the JIT semantics. While the C function accesses some global array jit_heap, the
speci�cation accesses a map contained in its monadic state s. Both the global array and the
monadic state s are unchanged and the primitive fails for out-of-bound accesses.

Next, Figure 6.9 shows an interpreter of free monad computations in OCaml, where the
function exec_prim prim executes the C function corresponding to the primitive prim. This free
interpreter directly interprets the incomplete program itself, without resorting to the state

let rec free_interpreter (f: A free) : A = match f with
| Coq_pure (a) → a
| Coq_ferror (e) →

print_error e; failwith "Free monad error"
| Coq_impure (prim, cont) →

let x = exec_prim prim in
free_interpreter (cont x)

end.

Figure 6.9 – Executing free computations in OCaml
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monadic speci�cations and free_to_state. Running our free computation jit_step through
this free_interpreter until the program execution �nishes, we get an executable JIT in OCaml
that calls e�ectful primitives.

6.6 Facilitating the Correctness Proofs with Re�nement

We now have a methodology to write an impure JIT, specify its impure components, and
extract it to an executable program. The next task consists in proving the JIT correct. In this
Section, we develop a methodology to make the proof easier.

In our approach there is a small list of JIT-speci�c functions to manually audit: our primi-
tives implementations must match their speci�cations. One could then try to write speci�ca-
tions that closely match what the impure implementation is doing, but in practice that monadic
speci�cation can be hard to reason with in the JIT correctness proof. In particular, for a fast
access to the stack using only Pop and Push in the generated native code, one would like the
execution stack to be a simple array of integers. However, when writing our proof invariants,
it would be simpler if these integers were structured in several lists, each list corresponding to
a speci�c stackframe. Moreover, in the �nal executable implementation, the execution stack
is split in two parts: one that holds the interpreter stackframes, and one that holds the integer
stackframes. This splitting makes the C implementation of the Pop and Push primitives sim-
pler. Some simulation invariants (e.g., in Simulations 13 or 15) are however easier to write if
there is a single stack containing both interpreter and native stackframes. Then, proving the
compilation of a function correct simply requires substituting its future stackframes instead
of moving them from one structure to the other.

We argue that an advantage of using free monads is the ability to switch between di�erent
monadic speci�cations. One can then de�ne a monadic speci�cation that is close to the actual
primitive implementations (called prim_spec), and another reference monadic speci�cation (or
ref_spec), with which proofs are easier to conduct. In this section, we show that once we prove
that prim_spec re�nes ref_spec, then the correctness theorems about the JIT semantics using
the reference speci�cation can be propagated to the JIT semantics using prim_spec. We use this
technique to switch between two speci�cations of the execution stack: an unstructured stack
of integers, close to the C implementation, and a reference one where the stack is structured
for easier stack invariants. Figure 6.10 shows the (simpli�ed) types representing the monad
state of both speci�cations. On the left, for the reference speci�cation, the stack is a list whose
elements contain either interpreter or structured native stackframes. On the right however,
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Definition ASM_stackframe : Type := list int.

Record ref_state: Type := mkrefs {
ref_stack:

list (IR_stackframe + ASM_stackframe);
ref_heap : heap;
ref_codes: asm_codes;

}.

Definition ref_spec:
monad_spec ref_state := ...

Record prim_state: Type := mkprims {
prim_stack: list int
prim_irstk: list IR_stackframe;
prim_heap : heap;
prim_codes: asm_codes;

}.

Definition prim_spec:
monad_spec prim_state := ...

Figure 6.10 – Monadic states of the two primitive speci�cations

the state of prim_spec has split the stack. One list prim_irstk contains the interpreter stack-
frame, and the second prim_stack is a list of integers containing the concatenation of every
native stackframe. This re�nement methodology takes advantage of free monads to modularly
separate the correctness arguments for stack manipulation and stack representation.

The bene�t is a more modular reasoning: �rst we prove correct the JIT using ref_spec,
then we prove the re�nement. The full proof architecture used in our JIT is later shown in
Figure 8.1. So, as composing CompCert simulations facilitates modular proofs, instead of re-
developing new proof techniques for modularity, we de�ne our re�nement relation so that
we can reuse the simulation composition technique of CompCert. More precisely, a monadic
speci�cation i re�nes another j if there exists a relation ≃ between monad states of i and monad
states of j (written si ≃ sj ) such that for each primitive p,

∀si sj s′i args r , si ≃ sj ∧ pi args si = SOK r s′i →

∃s′j , s′i ≃ s′j ∧ pj args sj = SOK r s′j

where pk is the state monad for p in the monadic speci�cation k, si and s′i are monad states
of i, sj and s′j are monad sates of j and args are arguments for the primitive p (for instance,
an int for Push). When such a relation exists, we say that i re�nes j and write i ≃ j. This
de�nition purposely resembles the forward simulation de�nition of CompCert, but relating
primitive executions instead of small-step semantics. We then prove the re�nement theorem
of Simulation 10, using the re�nement relation to build the simulation invariant of a forward
simulation.

As the JIT behavior is deterministic, that forward simulation is used to construct a back-
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Forward Simulation Mechanized
Given two monadic speci�cations i and j and a program p, relates the semantics of the JIT
executing p using i with the semantics of executing p with j. jit_sem is the JIT small-step
semantics de�ned on Figure 6.7, using a monadic speci�cation.

Theorem refinement:
∀ ( prog_state istate jstate:Type) (p:prog)

( i: monad_spec istate) (j:monad_spec jstate),
refines i j →
forward_simulation (jit_sem p i) (jit_sem p j).

Simulation 10 – Re�nement theorem for switching speci�cations

ward simulation. Using that theorem on a Coq JIT and the two monadic speci�cations dis-
cussed above, we prove the main correctness theorem about jit_sem with the reference spec-
i�cation, and then propagate that correctness theorem to the JIT semantics using prim_spec,
without additional proof e�ort. Proving the re�nement (prim_spec ≃ ref_spec) is straightfor-
ward. In practice, while proving that an unstructured stack (prim_stack and prim_irstk in Fig-
ure 6.10) corresponds to a structured stack (ref_stack) is not a di�cult thing, its justi�cation
should not hinder the proofs of every program transformation.

6.7 Nonatomicity of Transitions: Small-Step Semantics of

x86 to the Rescue

As in the backend_and_install example of Figure 6.4, almost every transition of the JIT
state-machine of Figure 4.3 is written as a terminating function of type free T for some return
type T. Such transitions are called atomic: they describe an elementary computation done by
the JIT. However, more than e�ectful transitions, a JIT compiler may also include nonterminat-
ing transitions. This only happens when calling the native code corresponding to a compiled
CoreIR function: the JIT may have compiled and executed a nonterminating function. These
transitions are called nonatomic, as they represent a possibly in�nite sequence of elementary
transitions of the generated native code.

This is not an issue with the IR interpreter which can be de�ned with some arbitrary fuel
(i.e., an integer limiting its maximum number of steps) and return regularly to the monitor
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Inductive nasm_transition (State Trace:Type): Type :=
| Atomic: free (Trace ∗ State) → nasm_transition
| LoadAndRun: nasm_transition.

Figure 6.11 – Nonatomic State Machine de�nition
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Figure 6.12 – Giving small-step semantics to nonatomic transitions in a NASM

only to be called again. But the dynamically generated native code may be stuck in a loop
without any return, call or deoptimization, and the fuel technique cannot be used to represent
such an in�nite execution. This possibly diverging transition cannot be speci�ed like our other
primitives in Section 6.4, with a terminating free computation. In this section, we modify one
last time the way transitions are represented to allow nonterminating and e�ectful transitions
without fuel. Then, we modify the JIT semantics jit_sem of Figure 6.7 accordingly.

One solution could be to extend our free monad de�nition to a coinductive structure
to represent and reason about possibly nonterminating e�ectful programs, like Interaction
Trees [Xia et al. 2020]. However, this would require coinductive reasoning on such transitions.
On the other hand, the CompCert simulations are already equipped to reason about nontermi-
nating executions, as long as such executions are de�ned by small-step semantics. Moreover,
x86 semantics in CompCert are already speci�ed with executable small-step semantics, loop-
ing a function that computes the next semantic state. 1 As a result, the nonatomic transitions
of the JIT can be decomposed into several atomic small steps of CompCert x86 semantics. This
has two advantages: not only can we avoid writing coinductive proofs in Coq and instead reuse
those of CompCert, but this also facilitates in Chapter 7 the reuse of the CompCert correctness
theorem, expressed in terms of these x86 semantics, without modifying it.

To specify such native calls, we �rst de�ne a JIT as a NonAtomic State Machine (or NASM),

1. More precisely, most of x86 semantics are de�ned with a function in CompCert. External calls are speci�ed
with an inductive nonexecutable parameter. However, in the subset of x86 that our JIT generates, the only such
calls are calls to our JIT primitives that we can specify as usual with Coq state-monadic functions.
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jit-step

jit_step (js1) = Atomic transition
free_to_state transition i ms1 = SOK (t, js2) ms2

(js1, ms1)
t
←←←→ (js2, ms2)

start

jit_step (js) = LoadAndRun
free_to_state start_ i ms1 = SOK (xs) ms2

(js, ms1) ←→ (xs, ms2, js)

x86-step
free_to_state (step_ xs1) i ms1 = SOK (t, xs2) ms2

(xs1, ms1, js)
t
←←←→ (xs2, ms2, js)

end

xs = F inal (r)
free_to_state (end_ js1 r) i ms1 = SOK (js2) ms2

(xs, ms1, js1) ←→ (js2, ms2)

Figure 6.13 – The small-step semantic rules for the NASM JIT with primitive speci�cation i

whose transitions, de�ned on Figure 6.11, are either atomic steps or a possibly in�nite se-
quence of native code steps. In that de�nition, Trace is the type of observable events, and
State is the type of state-machine states. Now, every transition of the JIT state machine can
be represented with the type nasm_transition jit_state trace, meaning that any transition
of the JIT is either an atomic transition represented by its free-monadic computation, or a
nonatomic transition. Finally, the JIT state machine itself can now be represented with a Coq
function jit_step of type jit_step: jit_state -> nasm_transition jit_state trace, replac-
ing the previous signature introduced in Section 6.3 which only allowed atomic transitions.

Next, to give small-step semantics to a NASM, we specify the call to native code with three
free-monadic computations step_, start_ and end_ as pictured on Figure 6.12. Moreover, we ex-
tend the JIT small-step semantics de�nition of Figure 6.7 with rules that execute start_ when
seeing a LoadAndRun transition (building an initial x86 semantic state), then loop step_ until a
�nal x86 semantic state is reached, and execute end_ to get back to the next JIT state. This new
small-step semantics de�nition for the JIT as a NASM is presented on Figure 6.13. Semantic
states of the new semantics come in two shapes. When in a square state of Figure 6.12, seman-
tic states are pairs (js, ms) containing a jit_state and a state of the monadic speci�cation i
(with a model of the shared data-structures). When in a round state of Figure 6.12, semantic
states are (xs, ms, js) where xs is a x86 semantic state, ms is a state of i, and js is the jit_state

that was reached before calling the native code. Rule (jit-step) of Figure 6.13 is the same rule as
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previously de�ned on Figure 6.7. When a JIT transition is atomic, we simply use the monadic
speci�cation i to get a state monadic function corresponding to the transition, and execute it
to obtain an observable trace t and the new semantic state. When a JIT transition consists in
calling native code (LoadAndRun), we begin with rule (start), using the start_ monadic function
to construct an initial x86 semantic state xs of the called native program. start_ is a monadic
function using the primitive Load_Code, and returning the initial state of the x86 program ac-
cording to its semantics de�ned in CompCert. Then, we follow the x86 semantics using rule
(x86-step). The step_ function is the small-step transition of x86, as de�ned in CompCert. We
simply extend it so that every call to one of our primitives is speci�ed with its monadic e�ect.
Note that while executing x86, js is unchanged. This means that we trust the generated native
code not to modify the current JIT data. For instance, we trust that our generated native code
is not going to modify the current CoreIR functions, or even the current pro�ler state. Finally,
rule (end) is used when x86 execution has reached a �nal state. We use the function end_ and
the return value of the native code to construct the next JIT state. In our implementation, this
is always a MONITOR state. In the case of a diverging native execution, no �nal x86 semantic
states is ever reached, and these new JIT semantics will remain in x86 semantic states. In that
case, the entire JIT behavior of the small-step semantics shown in Figure 6.12 is diverging.
Such behaviors are intended. The behavior of a JIT that compiles and executes a diverging
function should be diverging.

Finally, we extend the OCaml free_interpreter of Figure 6.9 so that it loads and calls
native code when seeing a LoadAndRun transition. As discussed in Section 8.2, we trust that
our three monadic speci�cations start_, step_ and end_ correspond to what our modi�ed free
interpreter is doing when calling native code.

With these simple de�nitions unfolding native calls according to their CompCert x86 se-
mantics, one can de�ne small-step semantics for the entire JIT even in the presence of e�ectful
and nonatomic transitions. The �nal JIT correctness theorem of Figure 4.7 is then modi�ed to
feature these new small-step semantics. The result is shown on Figure 6.14, where this version
of jit_sem is the version shown in Figure 6.13 and includes both e�ectful and nonterminating
transitions. To prove this new theorem, we once again prove the backward simulation shown
on Simulation 11, replacing Simulation 1.
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Backward Simulation Mechanized
Replaces the Simulation 1 for e�ectful JITs. Backward simulation relating the behavior of
the JIT executing a program p to the behavior of the CoreIR semantics of p. jit_sem rep-
resents the JIT small-step semantics, including optimizations and nonatomic transitions.
prim_spec is the monadic speci�cation of the primitives.

Theorem jit_correctness_simulation:
∀ p,

backward_simulation (CoreIR_sem p) (jit_sem p prim_spec).

Simulation 11 – JIT backward simulation (impure version)

Theorem jit_correctness:
∀ p beh, program_behaves (jit_sem p prim_spec) beh →
∃ beh’, program_behaves (CoreIR_sem p) beh’ ∧ behavior_improves beh’ beh.

Figure 6.14 – Impure JIT correctness theorem, where prim_spec is a primitive speci�cation.

6.8 Related Work on Impure Program Veri�cation

Our work is not the �rst Coq mechanization about e�ectful programs. There are various
ways to go around the limitations of Gallina and Coq extraction to pure OCaml. For instance,
other Coq developments [Pit-Claudel et al. 2020; 2022] entirely avoid the extraction from Coq
to OCaml to produce e�ectful veri�ed programs. They directly transform a functional speci-
�cation into a fully linked assembly program represented as a Coq term. This approach suc-
cessfully removes Coq extraction from the trusted code base of a veri�ed e�ectful program,
but comes with slower compilation times and more restrictions on the input language. Mod-
ifying Coq extraction so that it can produce e�ectful OCaml programs has also been inves-
tigated for programs using mutable arrays [Sakaguchi 2018]. Programs are written using a
state monad encoding, and the improved extraction produces e�cient OCaml code using mu-
table data-structures. In contrast, our formalism allows us to use extraction to OCaml without
modi�cations, but only translating the pure parts of the program. The Impure library [Boulmé
2021] has also provided a way to monadically encode nondeterministic functions in Coq as
parameters that can be implemented with nondetermistic OCaml functions after extraction. It
de�nes a calculus of weakest-preconditions to reason about such nondeterministic programs.

One way to reason about monadic encodings of e�ectful programs consists in de�ning
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appropriate program logics. The Ynot project [Nanevski et al. 2008] also de�nes a Coq ex-
tension to reason about impure programs. Ynot has been used to formally verify a database
management system for instance [Malecha et al. 2010]. Impure e�ects are represented using
a monadic encoding and axiomatized with Hoare and separation logic predicates. Proofs can
be conducted in these program logics. In several F∗ developments, the Dijkstra monad has
been used to encode several kinds of e�ects and corresponding program logics. E�ects can
be speci�ed with an ad hoc speci�cation monad relating their postconditions and precon-
ditions [Maillard et al. 2019]. In Coq, recent work [Nigron and Dagand 2021] has explored
de�ning a separation logic to reason about freshness in monadic programs. In particular, this
has been used to revisit an existing proof of CompCert in the SimplExpr module. In this exper-
iment, de�ning the separation logic introduces a more complex framework (for instance, they
include the entire MoSel framework [Krebbers et al. 2018]), but this increased complexity can
then lead to a more concise proof than the existing one in CompCert. In our developments
we do not de�ne program logics or use preconditions and postconditions relations, and our
primitives are instead speci�ed with executable state-monadic functions, which facilitates the
reuse of the CompCert simulation framework for our JIT small-step semantics.

Other veri�cation work using monads has also been conducted in other proof assistants.
For instance, a monadic approach is followed in Isabelle/HOL for the veri�ed seL4 microker-
nel [Cock et al. 2008], in order to re�ne monadic functional speci�cations into a C implementa-
tion. Impure e�ects are also modeled with state-monadic computations. The main di�erence
with our work lies in the way seL4 obtains veri�ed executable programs. Instead of using
program extraction, the approach followed by CompCert and our work, they write a speci�-
cation of the program in a subset of Haskell that can be translated into Isabelle/HOL. Then,
they rewrite the program in C and prove equivalence between the C implementation and the
Isabelle/HOL speci�cation [Klein et al. 2014]. Using program extraction allows us to avoid
rewriting the pure parts of the JIT, which are automatically converted to OCaml, but requires
trusting the extraction mechanism.

Other contributions have explored using variations of free monads in Coq before us, but
our version was designed to be lightweight and compatible with CompCert. FreeSpec [Letan
and Régis-Gianas 2020] uses a free monadic de�nition similar to ours to encode programs with
e�ects, and uses this formalism to verify a minimal web server. Their de�nition is more general
in the sense that one can compose several interfaces of primitives, each interface describing
the interaction with a data-structure. We could imagine having several interfaces as well, such
as one for the heap, one for the stack and one for the executable codes, instead we used a single
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interface containing all three data-structures. Having multiple interfaces makes the free monad
de�nition more complex but produces interesting lemmas for free, for instance automatically
proving that using a stack primitive has no e�ect on the heap. Our monadic de�nitions mainly
di�er in the way primitives are speci�ed. Our use of state monads allows to simply de�ne
small-step operational semantics à la CompCert.

Interaction Trees [Xia et al. 2020] are a coinductive variant of free monads. They have been
used to de�ne the semantics of a subset of LLVM [Zakowski et al. 2021], or to reason about
transactional objects, a type of concurrent data-structures [Lesani et al. 2022]. Like in our ap-
proach, computations using interaction trees can be extracted to OCaml and executed using
e�ectful event handlers, much like our free_interpreter, where events include the calls to
e�ectful primitives. Their use of a coinductive structure allows interaction trees to represent
diverging computations with some added monadic constructors, at the only cost of develop-
ing a library for coinductive reasoning. Coinductive reasoning can be di�cult to work with in
Coq. We entirely avoid this issue by breaking down what a JIT does into small, atomic com-
putations (the transitions of Figure 4.3). Even possibly diverging transitions can be broken
down themselves into small steps (Figure 6.12). Finally, our lightweight monadic library does
not have the slightest coinductive proof but we rather reuse one of CompCert, going from a
simulation to the jit_correctness theorem of Figure 6.14. Interaction Trees are an impressive
framework for the veri�cation of e�ectful diverging programs, but we chose to rely on existing
CompCert proof techniques to model diverging behaviors.

Our re�nement methodology is also reminiscent of many other work using re�nement to
prove the correctness of a concrete implementation using a more convenient abstraction. For
instance, Isabelle includes a re�nement framework for programs encoded in a nondetermin-
ism monad [Lammich 2012]. This framework has been used to re�ne abstract formalizations
of algorithms to more concrete implementations using e�cient data-structures, for instance
to verify network �ow algorithms [Lammich and Se�dgar 2019]. In contrast, our re�nement
methodology is designed speci�cally for the novel interaction between the free monad formal-
ism and the CompCert simulation framework we presented in this Chapter. Our re�nement
de�nition purposely resembles a CompCert forward simulation so that it can be used to pro-
duce a simulation (Simulation 10).
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Chapter 7

FORMAL VERIFICATION OF A JIT
BACKEND COMPILER

The task of producing native code from a language such as RTL or CoreIR is not a sim-
ple one. One must for instance allocate pseudo-registers to either real machine registers or
the memory (spilling the registers). To produce fast code, register allocation requires com-
plex algorithms and complex veri�cation techniques [Rideau and Leroy 2010]. One must also
move away from the CFG representation, to build a code representation where instructions
are ordered linearly and nonbranching instructions are expected to jump to their successor.
As seen in Chapter 3, the CompCert backend not only contains optimizations, but also con-
tains formally veri�ed algorithms to produce native code from RTL code, for various target
architectures.

JITs with native code generation need similar algorithms: for a given function, they must
create some equivalent assembly code. Modern JITs have reused techniques from ahead of time
compilation, and even entire ahead of time compilers. Many JITs have used LLVM as a native
backend, and LLVM even provides a JIT infrastructure, MCJIT [LLVM 2022], explaining its
popularity among JITs. Examples of JITs using LLVM include the WebKit JIT until 2016 [We-
bKit 2014], the Mono .NET framework [Mono 2022], MCVM for Matlab [Chevalier-Boisvert
et al. 2010] or the Ř JIT for the R programming language [Flückiger et al. 2020]. OSRKit [D’Elia
and Demetrescu 2016] even explores the encoding of on-stack-replacement in LLVM. Before
we developed the formally veri�ed JIT backend presented in this Chapter, the evaluation of
our �rst pure Coq JIT (shown in Section 8.3.3) also included LLVM as backend to generate
native code from CoreIR. However, this backend was not part of the formal Coq model and, as
a result, was unveri�ed.

In this Chapter, we tackle the �nal JIT-speci�c veri�cation challenge introduced in Sec-
tion 1.2.1: reusing the formally veri�ed optimizations and native code generation of a static
compiler in a formally veri�ed JIT. In particular, we reuse the backend compiler of CompCert
and its proof, from RTL to x86-64 assembly. As explained in Chapter 3, CompCert includes
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backends for other architectures. For simplicity, we only reuse the one for x86-64, although
we believe that reusing the others should not generate new technical di�culties. We show that
by slightly transforming CoreIR to use custom calling conventions, we can reuse the proof of
the CompCert backend, in order to prove the correctness of the native code generation in a
veri�ed JIT. Intuitively, one could think that we can directly use this backend dynamically to
transform some parts of the JIT program, and then because it generated “equivalent” code, the
JIT execution semantics should not change. However, this is not as straightforward.

First, the CompCert backend correctness theorem is established by relating the seman-
tics of an x86 program to the semantics of a RTL one. This means that our dynamic backend
compilation step should be split into two passes: �rst generating a piece of RTL for a given
function, then using the CompCert backend to generate some x86 from that RTL function. To
prove these passes modularly, we need to reason about the intermediate program, where some
RTL has been generated but not yet compiled. To reason about our backend compilation step
modularly, we de�ne mixed semantics in Section 7.2 that include semantic states for CoreIR,
x86 but also RTL. These semantics are used to specify each step of the backend compilation of
our JIT.

Second, the correctness theorem of CompCert states that the observable behavior of a
program is preserved. Nothing in this theorem is related to the e�ects on the memory, that are
indeed not preserved by the CompCert backend. In fact, the backend goes from an abstract
stack in RTL (a list of RTL stackframes), to an actual execution stack allocated in the memory
handled by CompCert. This is an issue for our impure JIT. We want to be sure that every
modi�cation to the heap done by each RTL function will be compiled to some x86 code that also
modi�es the heap similarly, otherwise executing the rest of the program after that function
may di�er. To avoid that issue while not modifying the code of the CompCert backend, we
make the generated code interact with the JIT stack and the JIT heap only through external
calls to 5 of the JIT primitives of Section 6.1.3: HeapGet, HeapSet, Push, Pop and Print. This
means not relying on CompCert to compile any CoreIR function call, but instead generating
RTL code that uses our primitives. We then de�ne custom calling conventions relying on our
primitives that the generated code uses. For instance, even though CompCert only compiles
programs with no arguments, our solution consists in generating RTL programs that start
by popping their arguments o� the stack. These conventions also ensure that the generated
native code always returns to the monitor on function calls, which may then decide to either
execute or optimize the called function. In the end, the native programs we generate may use
the CompCert memory to spill registers, however we do not use the stack and heap handled

118



Formal Veri�cation of a JIT Backend Compiler

by CompCert, but rather the shared data-structures handled by the JIT and all its components,
and manipulated by the free monads of Chapter 6.

This clear separation between the stack handled by CompCert and the stack handled by
the JIT using the primitives may produce nonoptimal code at times. For instance, live registers
that are spilled on the CompCert stack may have to be also copied and saved on the JIT stack
by our custom calling conventions on a function call. However, this allows us to reuse the
CompCert backend proof without modifying any of the backend code itself. In the future, we
could imagine adapting CompCert register allocation so that it directly uses the JIT stack using
the Push and Pop primitives, removing these redundant copies.

Our backend compilation process consists in two steps. For a given CoreIR function to
compile, we �rst generate several RTL programs. Then we compile each of them using the
CompCert backend. In this chapter, we describe this compilation process and how we prove it
correct in our formally veri�ed JIT. We describe how we generate RTL programs from CoreIR
functions in Section 7.1. In particular, we need to change the calling conventions to produce
code that interact with the stack using our JIT primitives. Then, we de�ne the mixed semantics
in Section 7.2. These describe the behaviors of the programs our JIT manipulates, possibly
containing pieces of CoreIR, x86 and RTL. In our nested simulation methodology presented in
Chapter 4, these semantics are used for the internal simulations of Section 4.5.1. We can then
prove correct the two main passes of our backend compilation JIT step. Section 7.3 proves a
backward simulation for our RTL generation pass, and Section 7.4 shows how we can reuse the
backward simulation of CompCert to prove a backward simulation for the pass that generates
native code.

7.1 Splitting RTL Programs to Directly Reuse CompCert

Proofs

CompCert only allows the compilation of complete programs and uses its own calling
conventions. By generating several pieces of code that interact with the stack only through our
JIT primitives, we demonstrate that both CompCert and its theorem can be used for formally
veri�ed native code generation in our JIT.

To reuse the CompCert backend with custom calling conventions that use the JIT stack, we
split our CoreIR functions at function calls when generating RTL. The only JIT primitives that
need to be called from that RTL code are HeapGet, HeapSet, Push, Pop and Print. The �rst two
are used to interact with the heap. Stack primitives Pop and Push are used to save and restore
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Figure 7.1 – Transforming CoreIR function F_base into two RTL functions F_call and F_cont
using custom calling conventions to return to the monitor between calls.

the live environment, but also store return values or function arguments. The last one is used
when compiling CoreIR functions with Print instructions so that the compiled code has the
same observable behavior.

Figure 7.1 shows how to split each function F before compiling it. When our JIT decides
to optimize F, it �rst splits its original version F_base in two functions: F_call corresponding
to the beginning of the function, and F_cont, its continuation after the call. We add primitives
to these functions that save and restore the environment (the live registers). Finally, F_call

and F_cont can be compiled with a backend that preserves the primitive calls. Each one is de-
�ned as a whole RTL program. After optimization, the JIT will start by calling the compiled
function F_call. When it encounters the call to function G, the generated native code returns
to the JIT monitor, which may now optimize or simply execute G. When this call returns, the
monitor calls the continuation function F_cont. This way of transforming CoreIR functions is
reminiscent of writing code in a trampolined style [Ganz et al. 1999], where a function exe-
cution regularly comes back to a scheduler which then decides how to call its continuation.
Trampolining has been used to interleave function executions, and here we use this trans-
formation to interleave the execution of the generated native code with the execution of the
other components of the JIT. At each function call, the monitor decides which JIT component
to call (the optimizer, the interpreter or even another compiled function) before returning to
the compiled function by executing a continuation program.

Figure 7.2 shows an example of a CoreIR function being compiled. The Fun1 function does
a computation, then calls another function Fun7, then does another computation and returns.
When generating RTL, because there is only one call in Fun1, we split the function into two
RTL programs. The �rst one ($1) starts by getting the function argument (reg1/x8) o� the
stack. After an instruction for the computation, it performs a call by �rst saving the live reg-
ister x8 on the stack. It then completes the current stackframe by pushing the identi�er of the
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Function Fun1 ( reg1 ) :
reg2 ← reg1 + 4
reg3 ← Call Fun7 ( reg2 )
reg3 ← reg1 + reg3
Return reg3

(a) A CoreIR function

$1 ( ) {
/ / G e t t i n g c a l l argument

x8 = " Pop " ( )
x9 = x8 + 4 ( i n t )

/ / S av ing l i v e env i r onmen t
x1 = " Push " ( x8 )

/ / Comp l e t i ng t h e s t a c k f r ame
x1 = " Close " ( 1 , 2 )

/ / Pu sh ing c a l l argument
x1 = " Push " ( x9 )

/ / Number o f a rgument s
x1 = " Push " ( 1 )

/ / C a l l e d f u n c t i o n i d e n t i f i e r
x1 = " Push " ( 7 )
x7 = RETCALL
r e t u r n x7

}

$2 ( ) {
/ / G e t t i n g r e t u r n v a l u e

x10 = " Pop " ( )
/ / R e s t o r i n g l i v e env i r onmen t

x8 = " Pop " ( )
x10 = x8 + x10

/ / Pu sh ing r e t u r n v a l u e
x1 = " Push " ( x10 )
x7 = RETRET
r e t u r n x7

}

(b) Two Generated RTL programs correspond-
ing to Fun1

# Genera ted by CompCert
$2 :
l e a q 32(% r s p ) , %rax
movq %rax , 0(% r s p )
movq %rbx , 8(% r s p )
c a l l _Pop
movq %rax , %rbx
c a l l _Pop
l e a l 0(% eax ,% ebx , 1 ) , % e d i
c a l l _Push
movl $RETRET , %eax
movq 8(% r s p ) , %rbx
addq $24 , %r s p
r e t

(c) The x86 program for the continuation

Figure 7.2 – Compilation of a function Fun1 by our JIT backend
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current function and the label of the call (to identify the corresponding continuation function).
Close is simply implemented by several calls to Push. After that, we push the call arguments,
the number of arguments, and the identi�er of the function we want to call (Fun7). Finally, we
return with the constant RETCALL, returning to the monitor but indicating that the function
wants to call another one. The monitor may now pop the function identi�er and decide to
optimize or execute Fun7. After the call to Fun7, its return value has been pushed to the stack.
The execution then follows with the second program $2; it starts by getting the return value
of Fun7, and restores the live register x8 that was pushed earlier. Finally, it ends by return-
ing another constant, RETRET to indicate to the monitor that the execution has �nished. The
CompCert backend then provably preserves the calls to JIT primitives, as seen on the x86 code
produced for the second RTL program of Figure 7.2.

During the RTL generation pass, Assume instructions are compiled as branches. If the spec-
ulation holds, we proceed in the rest of the program. Else, we push the deoptimization metadata
on the stack and return with another constant RETDEOPT. If deoptimization occurs, we return
to the monitor which will read that data from the stack and reconstruct the corresponding
interpreter state. Finally, we do not need to handle Anchor instructions when transforming
CoreIR to RTL. These instructions were only used by the middle-end to insert speculation and
are removed by the pass presented in Section 5.2.4 before calling the backend compiler.

7.2 Mixed Semantics: InterleavingPieces of ExecutionsRe-

lated to Multiple Languages

To prove the correctness of our two code generation passes of the JIT backend, we prove
a simulation for each pass. As these passes temporarily generate RTL code, we need to de-
�ne semantics for programs containing CoreIR, RTL, and x86 code. This allows us to reason
about the intermediate state of the program between the two passes, where RTL has been
generated but not yet compiled to x86. Note that such programs with pieces of RTL are never
executed by the JIT, which waits until the backend compilation has entirely �nished (if the
second pass fails, the RTL is also discarded). The semantic states of these mixed semantics
include the semantic states of each of these three languages semantics. To interface them, we
also de�ne three generic states forming a synchronization interface: CallState, ReturnState
and DeoptState. Succinctly, each function call, return or deoptimization goes through shared
synchronization states; this is shown on Figure 7.3. This closely mimics what the JIT state ma-
chine described in Chapter 4 does when it executes multiple languages. In essence, this mixed
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CallState / ReturnState / DeoptState

RTLx86 IR

Figure 7.3 – Semantic states of the mixed semantics

semantics matches exactly the JIT behavior, except that it contains neither optimizing steps
nor pro�ling but only execution. As shown in Section 4.5, using our nested simulation tech-
nique to prove the backend compiler correct using these semantics is enough to then prove
correct the entire JIT with dynamic optimizations.

Figure 7.4 shows representative simpli�ed rules of the mixed semantics. We omit it in the
Figure, but all mentions of free_to_state use the reference speci�cation ref_spec introduced
in Section 6.6. The semantic states are pairs, of one mixed state of Figure 7.3 and one monadic
state of the reference monadic speci�cation (containing the JIT stack and the heap). By de�ni-
tion, the execution remains in a language according to its semantics until reaching a function
call, a return or a deoptimization. For instance, in rule (step x86), we follow the execution of the
x86 semantics. On any instruction that is not an external call, the monadic state is unchanged.
There is a similar rule reusing RTL semantics, (step RTL). However, we extend both semantics
with monadic rules when calling JIT primitives. For instance, in rule (push x86), if the current
x86 instruction calls the primitive Push, we update the monadic state ms with the execution of
the primitive speci�cation. We move to the next x86 state s’ with function next_state, mov-
ing to the return address and putting the return value in the right register. This de�nition
resembles the external call semantics de�ned in CompCert. Along with (step x86), these rules
form the modi�ed x86 small-step semantics that we also use to specify the step_ function of
Section 6.7.

When the x86 or RTL semantics reach a �nal state, we move to the corresponding syn-
chronization state. For instance in (x86 return), upon seeing the constant RETRET, we move to a
ReturnState. In our x86 and RTL programs, the return value is pushed on the stack, so we move
to a state that does not contain the return value itself, but rather some indication (OnStack) that
it has to be popped. In rule (call x86), we see one way to go from a synchronization state to
a x86 state. If we were about to call function f with some arguments args, and see that f had
been compiled to some native program p, then we would push arguments to the stack and
move to the initial semantic states of p, mimicking the behavior of the monitor and extending
it to RTL executions. The free-monadic computation push_args simply corresponds to using
the Push primitive on each argument of the list args. Just like Push, it returns an element of
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step x86 s →x86 s’ not external call
(s, ms) → (s’, ms)

step RTL s →RTL s’ not external call
(s, ms) → (s’, ms)

push x86

find_instr(s) = Call Prim_Push [v]
free_to_state (Prim_Push v) ms = SOK retval ms’

next_state (s, retval) = s’
(s, ms) → (s’, ms’)

x86 return s →x86 Final RETRET
(s, ms) → (ReturnState OnStack, ms)

call x86

free_to_state (Prim_Load_Code f) ms = SOK p ms
free_to_state (push_args args) ms = SOK tt ms’

(CallState f args, ms) → (initial_state p, ms’)

Figure 7.4 – Some representative rules of the mixed semantics

type unit tt but modi�es the JIT stack contained in ms.
Mixed semantics include other similar rules for CoreIR and RTL. A �nal rule also steps from

a ReturnState to a �nal semantic state if the stack is empty. While CallStates and ReturnStates
step to any of the three languages, DeoptStates always reconstruct an interpreter state for
CoreIR. Finally, all rules depicted on Figure 7.4 are silent and produce an empty trace. The only
time an observable behavior is produced is when executing the primitive Prim_Print, either
when calling it from x86 or RTL, or when interpreting a CoreIR Print instruction. These are
the observable events preserved by the JIT execution.

Using this de�nition, we can de�ne the small-step semantics of a program containing mul-
tiple languages. We write mixed_sem (p, rtl, nc) the small-step semantics, de�ned as in Fig-
ure 3.3 where the small-step transition relation is the mixed step partially presented in Fig-
ure 7.4. This corresponds to the semantics of a program which contains CoreIR functions in p,
an optional set of RTL programs corresponding to a function in rtl, and installed x86 programs
in nc.

Equivalence with CoreIR semantics These semantics de�ne the behaviors of every pro-
gram our JIT manipulates, including the temporary programs in-between the two backend
compilation steps, where RTL has been generated but not yet compiled to x86 using the Comp-
Cert backend. The JIT correctness theorem however, as seen in Figure 6.14, uses the CoreIR
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semantics (as de�ned on Figure 5.3) to specify the correctness of the JIT. These CoreIR seman-
tics do not use monadic states or monadic computations, but are de�ned to be the simplest
possible description of how a CoreIR program should behave. It is important to make sure
that on simple CoreIR programs, the mixed semantics we de�ned here using monadic compu-
tations match the expected CoreIR semantics. To that end, we prove Simulation 12, showing
that the behavior of a CoreIR program as de�ned by the mixed semantics matches its CoreIR
semantics. Later, Section 8.1 shows how this proof helps us construct the �nal JIT correctness
theorem of Figure 6.14.

Backward Simulation Mechanized

Relates the mixed semantics of a CoreIR program p, without any RTL (None) and without
any x86 programs (nocode) to the CoreIR semantics of p.

Theorem input_mixed:
∀ p,

backward_simulation (CoreIR_sem p) (mixed_sem (p, None, nocode)).

Simulation 12 – Equivalence of the CoreIR and mixed semantics on CoreIR programs

7.3 Correctness of RTL Generation

To generate native code from CoreIR, we proceed in two steps: �rst generating RTL, then
transforming RTL programs into x86 ones. The �rst backend compilation pass generates sev-
eral RTL programs for a given CoreIR function F: one program for the entry of F, and one
continuation program for each function call in F. The generated code must contain the calls to
JIT primitives that are going to be preserved by the CompCert backend and used by the native
code. This means that this pass stops producing interpreter stackframes but instead uses na-
tive stackframes. Proving this pass correct then means proving correct the change of calling
conventions in a function.

In practice, this �rst step is also conducted in two parts: we �rst generate RTLblock, a lan-
guage we designed where labels of the CFG can be associated to basic blocks of RTL instruc-
tions (instead of single instructions like in RTL). Basic blocks in RTLblock contain a (possibly
empty) list of nonbranching RTL instructions to be executed sequentially, then end on an exit
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instruction. An exit instruction is either a simple jump (Nop) to the next basic block, a branch
that points to two basic blocks, or a return. We then transform that RTLblock code into RTL
code, unfolding the basic blocks. To that end, we extended the mixed semantics of Section 7.2
to also include the semantics of RTLblock. Using RTLblock as an intermediate language be-
tween CoreIR and RTL allows us to have simpler invariants, where every CoreIR instruction
is matched with a single basic block of RTLblock. Both steps are proved correct with forward
simulations that we can use to construct backward simulations (using Figure 3.8) since the
mixed semantics of programs without Anchor instructions is deterministic.

Forward Simulation Mechanized

Proving the correctness of transforming a CoreIR function (with function identi�er fid)
into several RTLblock programs rtlblock. The CoreIR and x86 codes (p and nc) are un-
changed by this transformation.

Theorem block_gen_correct:
∀ p nc fid rtlblock,

rtlblock_gen fid p = OK rtlblock →
forward_internal_simulation (p, None, nc) (p, Some rtlblock, nc).

Simulation 13 – Correctness of RTLblock generation

We �rst prove Simulation 13, relating the semantics of the current JIT program before and
after adding new RTLblock programs corresponding to a CoreIR function. This theorem proves
that splitting CoreIR functions and using our JIT primitives to interact with the JIT stack and
heap preserves the behavior of the entire program. Building our invariant is crucial to proving
the simulation. There are three main cases in the invariant for the transformation of a func-
tion F to RTLblock. First, because we are only compiling a single function, we need to relate
identical semantic states when outside of that function (re�). However, even in that case, the
execution stack can di�er: some interpreter stackframes for F may have been replaced with
equivalent native stackframes containing the live registers at the time of the call. Another pos-
sible case of the invariant (rtlb) happens when executing one of the new RTLblock programs
(either the entry or one of the continuations). RTLblock semantic states are related to Cor-
eIR semantic states. The two states must agree on live registers (not all registers, as only the
live ones are restored after a call). Finally, the synchronization states (Callstate, Returnstate or
Deoptstate) di�er when reached from RTLblock or CoreIR. In RTLblock (but also in RTL and

126

https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/IRtoRTLblock_proof.v#L1615


Formal Veri�cation of a JIT Backend Compiler

Callstate F [Fargs]

RTLblock Function F entry:
Pop Fargs

l1: instr1
l2: Push env, F, l2

Push Gargs, G
Return RETCALL

Callstate OnStack

Returnstate 32

RTLblock Continuation F.2:
Pop (return value)
Pop env

l3: instr3

Callstate F [Fargs]

CoreIR Function F:
l1: instr1
l2: Call G (Gargs)

Callstate G [Gargs]

Returnstate 32

CoreIR Function F:
l3: instr3

re�

rtlb

synchro

re�

rtlb

∗ Execution of G ∗ Execution of G

Figure 7.5 – Preservation of the invariant while transforming Function F to RTLblock

x86), the arguments of such synchronization states (like call arguments, the return value or
the deoptimization metadata) have been pushed to the stack instead of directly given by the
interpreter. A last invariant case synchro expresses that.

Figure 7.5 showcases an example of the invariant preservation in our simulation proof.
The execution on the left corresponds to executing the program before F is transformed to
RTLblock. Before calling the transformed function F, semantic states are related with the re�
invariant. Then, we prove that the beginning of the execution of F in CoreIR matches its
execution in RTLblock using the rtlb invariant, even though in RTLblock the arguments have
to be popped �rst. As we see a function call to G (at l2), the CoreIR interpreter simply builds
a Callstate containing the arguments. In RTLblock however, we need to push that to the stack
and end on a di�erent Callstate. Both are related with the synchro invariant. Execution of G
then proceeds; when it returns after several steps, the source execution simply goes back in the
middle of the CoreIR F. On the RTLblock side, we show that by going into the corresponding
continuation program F.2 and popping the return value and environment o� the stack, we
get to semantic states matched with the rtlb invariant.

We then prove Simulation 14, replacing each RTLblock program with an RTL one. Since
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Forward Simulation Mechanized
The flatten function transforms each RTLblock program into equivalent RTL programs.

Theorem flatten_correct:
∀ p nc rtlblock rtl,
flatten rtlblock = OK rtl →
forward_internal_simulation (p, Some rtlblock, nc) (p, Some rtl, nc).

Simulation 14 – Correctness of RTL generation from RTLblock

the language of RTLblock instructions is a strict subset of RTL instructions, the transforma-
tion is rather straightforward. The main complexity lies in transforming the CFG with fresh
instructions labels for each instruction of the RTLblock basic blocks.

7.4 Correctness of Native Code Generation

Backward Simulation Mechanized
Relates the mixed semantics of (p, Some rtl, codsrc), a program containing the RTL rep-
resentation of a function, to the mixed semantics of (p, None, codopt), the program where
that RTL has been compiled to native and installed in the native codes. Monad states are
pairs (sh, codsrc), where sh is a model of the stack and heap, and codsrc and codopt model
the executable memory.

Theorem native_gen_correct:
∀ p rtl asm sh codsrc codopt,

rtl_backend rtl = OK asm →
free_to_state (Prim_Install_Code asm) ref_spec (sh, codsrc) = SOK tt (sh, codopt) →
backward_internal_simulation (p, Some rtl, codsrc) (p, None, codopt).

Simulation 15 – Correctness of native code generation

To prove correct the pass that uses the CompCert backend to transform RTL into x86,
most of the e�ort lies in reusing CompCert simulations, relating x86 and RTL semantics, to
construct a backward simulation on mixed semantics, as shown on Simulation 15. Note that
this pass transforms at once each RTL program (one for the compiled function entry, and one
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ms rtl_1

ms rtl_2

ms’ rtl_3

ms’ rtl_4

x86_1 ms

x86_2 ms’

∼: simulation invariant
∗: 0 or several steps
↓: mixed semantics step99K : x86 or RTL step

4.
silent ∗

5.
silent

4.
silent ∗

1.
silent

3.
∗ silent

3.
Push

3.
∗ silent

2.
Push

∼

∼

Figure 7.6 – Preserving a primitive call in the mixed semantics

for each continuation). The JIT then installs the resulting x86 programs using the Install_Code

primitive, which modi�es the monadic state to include the new executable programs.

We �rst de�ne a simulation invariant that relates two states of the mixed semantics (rtls, ms)
and (x86s, ms) where rtls and x86s are semantic states of respectively RTL and x86, related by
a CompCert simulation. Since the programs have the same e�ects, the monadic state ms must
be identical in both executions. Next, we prove a backward simulation: every semantic step of
the mixed semantics after calling the CompCert backend is related to some steps of the mixed
semantics before calling the backend.

For instance, Figure 7.6 illustrates one of the interesting cases of the proof: when the mixed
step (1.) of the compiled program is calling the Push primitive (rule (push x86) of Figure 7.4).
We prove that this corresponds to a step (2.) with an observable behavior in the x86 semantics.
Then, using the CompCert backward simulation, we know that this step is matched by some
steps in RTL semantics. These RTL steps emit the same behavior and can be split into three
parts (3.) around the nonsilent step. We prove that silent RTL steps correspond to silent mixed
steps (4.), and that the RTL call at state rtl_2 corresponds to a silent mixed step (5.) where
the monadic e�ect of Push has been applied, turning ms into ms’ just like it did on the x86 side.
Finally, we have proved that the single silent step on the right can be matched with steps on
the left that have the same monadic e�ect and thus preserve the invariant. We then prove the
entire backward simulation on mixed semantics. Outside of the compiled code, the invariant
is simply re�exive.
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p1 p2 p3 p4

RTLblock
generation

RTL
generation

x86
generation

Sim. 15Fig. 3.8 Fig. 3.8

Sim. 13 Sim. 14

Sim. 16

Forward simulation

Backward simulation

Using a simulation to construct another

99K

Language of the function being optimized:

CoreIR without anchors

RTLblock

RTL

x86

Figure 7.7 – Backend correctness

In summary, the CompCert backend speci�cation provides us with a simulation stating
that each x86 step is related to steps of its corresponding RTL program. In that simulation,
external calls to JIT primitives like Push are part of the observable behavior, and are preserved
by compilation. In contrast, only Print produces an observable event in the mixed semantics.
This CompCert simulation is not exactly Simulation 15: what we want to build for the JIT
backend to be correct is a simulation relating mixed semantics, the semantics of entire pro-
grams that not only contain the function being compiled, but also every other function of the
current JIT program. We proved that we could construct this mixed semantics simulation by
using the CompCert simulation exactly on the parts that were compiled.

7.5 A Formally Veri�ed JIT Backend Compiler

Finally, the simulations we proved in this Chapter can be composed, as seen on Figure 7.7.
The boxes p1 through p4 represent the di�erent stages the current JIT program goes through
during the backend compilation phase. The color of the boxes represent the language of the
function being compiled. The other functions contained in the program can be in either CoreIR
or x86 (these other functions may have been compiled by previous calls to the backend). Note
that the two forward simulations used for proving the correctness of RTLblock and RTL gener-
ation can be used to construct backward simulations using the forward-to-backward theorem
from CompCert (Figure 3.8), because the mixed semantics are determinate. The only nondeter-
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minate instruction of CoreIR, Anchor, is removed by the middle-end compiler (see Section 5.2.4)
before feeding a function to the backend compiler. The correctness of native code genera-
tion, Simulation 15, however reuses the backend simulation of the CompCert backend and is
a backward simulation itself. The result of that simulation composition is the backend_correct

theorem of Simulation 16, where ps is a pro�ler state that contains a compilation suggestion.

Backward Simulation Mechanized
Given a pro�ler state ps that can suggest functions to be compiled, this theorem relates the
mixed semantics of a program before and after compiling some of its functions. The back-
end generates RTL temporarily, but the JIT program before and after calling the backend
has no RTL (None) as it gets removed after code installation. sh models the JIT stack and
heap, while codsrc and codopt model the executable memory and contain the x86 functions.

Theorem backend_correct:
∀ p ps sh codsrc codopt,

free_to_state (jit_backend p ps) ref_spec (sh, codsrc) = SOK tt (sh, codopt) →
backward_internal_simulation (p, None, codsrc) (p, None, codopt).

Simulation 16 – JIT backend correctness

In that theorem, the free-monadic computation jit_backend uses its pro�ler state ps to get
its suggestion, a function identi�er. The corresponding CoreIR function is compiled as fol-
lows. jit_backend begins by calling rtlblock_gen to produce several RTLblock programs cor-
responding to that CoreIR function (proved correct with Simulation 13). Then it uses flatten

to transform these programs into RTL programs (proved correct with Simulation 14). Then, it
calls rtl_backend to use the CompCert backend and produce a x86 program for each of these
programs (proved correct with Simulation 15). Finally, it uses the Install_Code primitive to
install these x86 programs in the executable portion of the JIT memory. It does not return
any value (its return value is tt of type unit), but that last step modi�es the x86 codes of the
JIT (codsrc becomes codopt). As a result, the backward_internal_simulation relates the mixed
semantics of the CoreIR program p and its native codes before compilation, to the mixed se-
mantics of the same program p where the new native codes have been installed. Note that
on both sides of the simulation, the programs contain no RTL (None). As a result, the internal
simulation used to specify the backend relates executions that only contain CoreIR and x86.
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Additional Axioms to reuse CompCert The CompCert theorem only holds for complete
programs, where every piece of code has been compiled as a whole. This is not the case of
the functions compiled by our JIT with native code generation. We add three simple axioms
in our Coq development to still reuse the CompCert theorem. The �rst one strengthens an ex-
isting axiom of CompCert, specifying that calls to our JIT primitives have a precise annotated
behavior in CompCert semantics, leaving unchanged the memory handled by CompCert. We
also assume that for each primitive and compiled function, there exists a place in CompCert
memory where they have been allocated. In practice, primitives have been compiled outside of
the memory modeled by CompCert, as part of the JIT C library. But the RTL semantics de�ned
in CompCert, designed for traditional ahead of time compilation, do not handle this case. As
a result, we axiomatize that primitives are allocated in the CompCert memory, but then edit
the generated x86 code to jump to the actual addresses of the primitives. These axioms are not
incomplete proofs, but consequences of the need of CompCert to model a view of the com-
plete memory. This issue is reminiscent of separate compilation where several programs have
di�erent views of the memory, but is out-of-scope of our work. CompCert supports a kind
of separate compilation using its Linking module. Currently we are not using this module to
link our generated native code with the primitives but instead edit the generated code after
compilation. Separate compilation is not a JIT-speci�c need, and its formal veri�cation can
involve new proof techniques [Stewart et al. 2015, Song et al. 2020] that we could investigate
for our JIT as future work.

Last, we include a simple axiom that could be proved by unfolding CompCert code trans-
formations: the CompCert backend does not generate any new built-in call that is not already
in the RTL programs we create. We currently need this property because our step_ function
of Section 6.7 does not handle built-ins functions in the x86 semantics. This is due to the fact
that such built-ins are the only part of the x86 semantics speci�ed in a relational way in the
CompCert de�nitions. We can either trust or prove this lemma, or modify our small-step se-
mantics of Figure 6.12 to specify step_ with a relation instead of a free monadic function. In our
experiments, we have validated that the x86 code we generate does not contain any built-in
function call.
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Chapter 8

ASSESSMENT

In the previous Chapters, we have presented all our proof techniques for the formal ver-
i�cation of JITs. The result is a methodology for developing formally veri�ed and executable
e�ectful JITs with dynamic optimizations, speculation and native code generation. While the
Coq JIT we have developed is minimal, we believe that our work establishes a foundation for
the feasible veri�cation of realistic JITs.

In this Chapter, we �rst present the modularity of our work in Section 8.1. In particular,
we show how every proof and technique presented in this work can be composed together.
Next, Section 8.2 presents the full trusted code base of our work, the code and assumptions
that are not formally veri�ed in our proofs and should either be trusted or veri�ed using other
methods. Finally, we discuss our Coq JIT implementation in Section 8.3.

8.1 Composing all Simulations

All our simulations and proof techniques have been designed in such a way that allows
them to be combined. This is shown on Figure 8.1, where we see how all of our proofs can be
combined for the formal veri�cation of an impure JIT with dynamic optimizations, speculation
and native code generation.

On the top of the Figure is represented the correctness of the JIT optimizer. An optimization
step in our JIT design consists in calling the middle-end compiler, then calling the backend
compiler. The boxes p1 to p10 on the Figure represent the current program of the JIT as it gets
transformed during such an optimization step of the JIT. Each transformation is proved correct
with a backward internal simulation. JITs that generate native code interleave the execution
of several languages, and as a result these backward simulations relate the mixed semantics
(see Section 7.2) of the programs p1 through p10. Whenever possible, we reuse the forward-
to-backward reasoning introduced in CompCert (Figure 3.8) to prove a forward simulation
instead (which is easier to prove) and deduce a backward simulation for free. This can be done
for any transformation that preserves every behavior of its source program and when the
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target semantics are determinate.

The correctness of the middle-end compiler has been presented earlier in Figure 5.20. The
order of the transformations can vary depending on what the pro�ler suggests, except for An-
chor insertion and Anchor Removal. We depict here an arbitrary order showcasing all transfor-
mations of Chapter 5. Then, the correctness of the backend compiler has been shown earlier in
Figure 7.7. Since Anchors have been removed when the backend compiler is called, the mixed
semantics are deterministic which allows to prove Simulations 13 and 14 in a forward manner.

This results in multiple backward simulations that can be composed together. The proofs
of Simulations 9, 16 and 2 simply consist in composing the backward simulations of their re-
spective components. Then, using the nested simulation technique presented in Section 4.5.1,
we can prove that there also exists a backward simulation between the mixed semantics of p
(without dynamic optimizations) and the JIT semantics of p (adding dynamic optimizations).
Because our JIT optimizer is proved correct with a backward simulation, this technique allows
us to prove the correctness of a JIT that interleaves such optimizations with execution. All the
previous optimizer proofs have used the reference speci�cation of the primitives, which allows
for simple proof invariants. Using our re�nement methodology, we can prove Simulation 10,
which relates the JIT semantics using the reference speci�cation to the JIT semantics using
the primitive speci�cation, closer to the actual primitive implementation. Since the JIT has
deterministic semantics, one can use the forward-to-backward methodology once again. As
initially, the program executed by the JIT only contains CoreIR, we show using Simulation 12
that the CoreIR semantics of p match its mixed semantics. Doing so allows to relate the JIT
semantics to CoreIR semantics which are simpler than the mixed semantics, making the �nal
correctness theorem of the JIT, shown in Figure 6.14, easier to read and understand. The theo-
rem does not mention mixed semantics, but simply states that behaviors of the JIT are related
to behaviors of the CoreIR semantics of the program they execute.

The �nal simulation consists in composing the three bottom backward simulations of Fig-
ure 8.1. This is Simulation 11, a backward simulation between the JIT semantics executing
a program p with the primitive speci�cation, and the simple CoreIR semantics of p. Using a
proof from CompCert, we can deduce the �nal behavior preservation theorem of the JIT, as
seen on Figure 6.14. Our proof architecture leverages the power of the simulation framework
of CompCert. Each optimizer transformation has been proved modularly, and our architecture
could feasibly be extended with new optimizations or new features.
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8.2 Trusted Code Base

While most of our JIT development is proved correct in Coq, there is still some code that
has to be trusted in order to fully trust the OCaml executable JIT. Some of it is inherent to
developments mechanized in Coq: for instance, one needs to trust the Coq kernel itself when it
checks our proofs, and one needs to be convinced by the statement of our correctness theorem
about behavior preservation (Figure 6.14). Similarly, some of it is inherent to running OCaml
programs: one needs to trust the OCaml runtime and compiler. Below, we list the trusted code
base that is speci�c to our development.

• The Coq to OCaml extraction of the JIT.
• The OCaml function that loops the JIT step (Figure 4.4 for instance) should correspond

to the JIT semantics. This is a just a few lines of code repeatedly calling the free inter-
preter until reaching a �nal state.

• The free interpreter of Figure 6.9. This calls C functions from OCaml.
• The primitive implementations should correspond to their monadic speci�cations (Fig-

ure 6.8).
• The call to native code should correspond to the three monadic speci�cations start_,

step_ and end_ of Section 6.7.

Our use of unsafe OCaml code for the free interpreter Our free interpreter de�nition,
that needs to be trusted, uses the Obj.magic OCaml function. In Figure 6.9, this is used in the
implementation of the exec_prim function. Obj.magic allows to cast any OCaml data to any
type. It can be considered unsafe and dangerous because it allows to write OCaml code that
entirely bypasses the type system and the guarantees it provides.

However, our current free-monadic approach requires bypassing the OCaml type system
due to limitations of Coq extraction. The primitive:Type -> Type inductive type of Figure 6.3
de�nes all the primitives the JIT can use. Each primitive constructor conveniently includes
the types that the primitive expects and the type that the primitive returns. For instance,
Prim_Push: int -> primitive unit means that the primitives expects an int as argument and
returns a value of type unit.

However, when this inductive type is extracted to OCaml, it results in an OCaml algebraic
data type that does not contain the return type of each primitive. For instance, Prim_Push gets
extracted to the type constructor Prim_Push of Int.int. This means that the exec_prim func-
tion that we mention in the free interpreter de�nition of Figure 6.9 cannot be typed correctly
in OCaml without resorting to Obj.magic, because its return type should be exactly the return
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type of the primitive it executes. This issue is not surprising as the inductive data types that
can be de�ned in Coq are more expressive than the algebraic data types of OCaml. Obj.magic

allows us to bypass the limitations of the OCaml type system, When auditing our free inter-
preter however, particular care must be given to checking that our primitive implementations
return the correct types.

There are two possible ways to remove Obj.magic from our implementation. First, we could
remove the primitive type from our Coq de�nitions. We would change the free type of Fig-
ure 6.3 so that there are as many variations of the type constructor impure as there are primi-
tives. For instance, we would de�ne impure_Push (i:int) (cont: unit -> free T), to encode a
free-monadic impure computation that starts by calling primitive Push. This solution extracts
well to OCaml algebraic data types, but implies less elegant free monad Coq library and proofs.

But OCaml also includes GADTs (generalized algebraic data types) [Xi et al. 2003], that are
more expressive than algebraic data types and expressive enough to represent the primitive

type. If Coq extraction was able to generate such a GADT for the primitive type, we would
have an implementation of the free_interpreter that does not use Obj.magic. We have vali-
dated this by manually modifying the extracted code to use a GADT. But until Coq extraction
is able to automatically generate GADTs, this solution requires manual work every time we
extract the JIT from Coq to OCaml.

Monadic speci�cations and primitive implementations The task of verifying that the
primitive implementations comply with their monadic speci�cations is out of scope of our
work. We have focused our e�orts on proving correct exactly the parts of the JIT that are
extracted to OCaml, given a speci�cation of the rest. This orthogonal veri�cation work could
be done with the help of program logics. For instance, VST [Appel 2015] allows to prove that
a C function implementation corresponds to a Coq speci�cation, using Separation Logic. As
future work, we could try using VST to prove correct our C primitives. We would �rst need to
transform our state-monadic speci�cations into separation logic predicates.

Note that there are a few examples where the monadic speci�cations may not exactly
match their implementations. One solution can be to use another primitive speci�cation, even
closer to the C implementation than prim_spec, then use the re�nement methodology once
again. For instance, consider the JIT stack of integers we use to communicate with the native
code. We currently model this stack of integers with a Coq list, but we could re�ne that to an
array and a counter which more closely resemble the C implementation. However, re�nement
cannot solve some issues that we discuss here. First, even in the prim_spec speci�cation, the

137



Assessment

stack is assumed to be in�nite. In practice, we have implemented it as a �nite array of 64-bit
integers. This is not a JIT-speci�c issue, and CompCert also assumes to be working with an
in�nite memory. There exists a CompCert variant [Wang et al. 2019] that allows reasoning
about bounded stack usage.

Second, in the formal model, the native code is represented by its x86 AST, just like in
CompCert. In practice however, we call an assembler to generate machine bytes for the native
code. These machine bytes are installed in the memory, not the x86 AST. This is not a JIT-
speci�c issue, and we decided to go as far as CompCert goes in our formal model, at the cost
of trusting the assembler.

Also, in its monadic speci�cations, the primitive that installs code never fails. In practice
however, our installation could fail if we ran out of memory for the dynamically generated
code. We could solve this issue by allowing the primitive speci�cation to nondeterministically
fail and in such cases cancel the optimization step. In our experiments so far, we have never
encountered this issue.

Finally, we also need to trust that calling the native code is correctly speci�ed with the three
monads of Section 6.7, start_, step_ and end_. The step_ function simply reuses the CompCert
x86 semantics, with an exception for primitives as seen on Figure 7.4. In our experiments, we
did not �nd any bugs with the execution of native code linked with primitives.

8.3 Our Coq JIT implementation

The results presented in this work have been mechanized. In this Section, we present our
implementation and its evaluation. As indicated in Chapter 4, we �rst developed a strictly pure
JIT that featured dynamic optimizations and speculation in CoreIR. However, it contained no
formally veri�ed native code generation and used an interpreter to execute everything. Its
correctness theorem is shown on Figure 4.7 and is obtained using Simulation 1.

This development was then extended with the support for impure computations and a
formally veri�ed backend, using the methods described in Chapter 6 and 7. Its correctness
theorem is shown on Figure 6.14 and is obtained using Simulation 11. While developing this
new version, some simpli�cations have been made. For instance, the proofs of the middle-end
passes of Chapter 5 have to be adapted to the new mixed semantics. This adaptation does not
require new correctness arguments and we can reuse the same simulation invariants, but it
still requires some rewriting of the proof scripts. This was done for a minimal set of middle-end
transformations to insert speculation: anchor insertion, assume insertion and anchor removal.
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Pure JIT Impure JIT
Coq code 13 000 20 000
OCaml code 500 700
CompCert Coq code 9 500 16 000
CompCert OCaml code 0 46 000
CoreIR parser 400 400
C code 0 400

Figure 8.2 – Number of lines of codes of our JIT implementations

As future work, we could adapt the constant propagation, inlining and delayed assume inser-
tion passes. The middle-end passes we already adapted to the impure setting show that it is
possible to compose the correctness arguments of Chapter 5 to the ones of the following Chap-
ters, as seen on Figure 8.1. Some simpli�cations to CoreIR have also been made in that new
development to facilitate backend compilation. For instance, function calls now expect a list of
CoreIR registers as arguments, instead of a list of expressions. This is closer to the RTL syntax.
We have also removed the possibility of synthesizing extra stackframes in the deoptimization
metadata, since we have not reimplemented inlining yet.

8.3.1 Implementation and Proof Reuse

Our JITs have been designed to be executable. To this end, we have not only developed Coq
proofs of correctness, but also OCaml or C code that interacts with the extracted Coq code.
Figure 8.2 presents the number of lines of code we wrote or reused in our JIT implementations.
The Coq code category contains the code we wrote speci�cally for the JITs. This includes both
functions and proofs. The OCaml code category consists in code that executes the extracted
Coq code. This includes the free_interpreter of Figure 6.9 or our pro�ler.

Next, we have included a lot of Coq and OCaml code from CompCert. For the �rst pure
JIT, we only included a few Coq libraries, for instance the simulation framework or the Kildall
�xpoint solver. Our impure JIT however includes the entirety of CompCert 3.11 for the x86-64
target architecture. We believe that including the other CompCert target architectures would
be possible. Some of that included code is not used by the JIT, like the frontend that generates
RTL, but it was easier to integrate the entire project. Some of that super�uous code could
however become useful when adding features to our JITs. For instance, we have also included
the Flocq library for �oating point arithmetic [Boldo and Melquiond 2011] that comes with
CompCert 3.11, even though our JIT currently only works with integer values.
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We have also used the Menhir OCaml parser generator library [Pottier and Régis-Gianas
2022] to write simple CoreIR parsers. The parser is the �rst thing used by our JITs, and it
generates the AST representation of CoreIR that is used in our Coq development. Finally, we
wrote some C code for our impure JIT, as discussed in Section 8.3.2.

8.3.2 Our C library of Impure Primitives

We wrote a C implementation for all the JIT primitives used by the impure JIT, that the
OCaml free interpreter of Figure 6.9 can call. 1 Each of the stack and heap primitives uses a
global array of 64-bit integers, and resembles its monadic speci�cation (see Figure 6.8).

The primitives to install code are more involved and use system calls. The implementa-
tion of Install_Code allocates memory with mmap, writes into it after assembling the output
of CompCert, then makes it executable but nonwritable with mprotect. JITs typically need
this change of permissions to comply with the write xor execute security policy, expressing
that in order to prevent some attacks memory pages cannot be both writable and executable.
For instance, Firefox supports write xor execute protection for the code that is dynamically
generated [de Mooij 2015].

We use the elf library 2 to get the binary code of the assembled �le. Our C library of
primitives is compiled with CompCert 3.11.

8.3.3 Evaluation

The JIT prototypes we presented have no ambition to be compared to industrial JITs used
to execute real-world programs, but rather allow us to showcase our proof techniques to han-
dle the four JIT-speci�c veri�cation challenges of Section 1.2.1. Nevertheless, we can run our
JITs on some example programs to validate our intuitions. In this section, we present some
experiments to answer the following questions. Does the unveri�ed code (see Section 8.2) be-
have as expected? Do our JITs trigger dynamic optimizations during execution? A JIT that
would always call the interpreter could be correct, but we want to see our middle-end and
backend compilers in action. Can we observe speedups due to the middle-end speculation?
Can we observe speedups due to generating native code?

1. Available here: https://github.com/Aurele-Barriere/JIThm/tree/master/c_primitives.
2. Dcoumented here: https://man7.org/linux/man-pages/man5/elf.5.html.
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local function fib(n)
if n<2 then return n end
return fib(n -1)+ fib(n -2)

end

(a) Fibonacci in Lua Lite

Function fib ( n_val , n_tag )
Version Opt :

Assume ( n_tag =3 ) F . l [ n_tag , n_val ]
Cond n_tag=3 l2 l1

l1 : Call DynamicTypeError ( . . . )
l2 : . . .

(b) Speculating that n is an integer in CoreIR

Figure 8.3 – Speculating on the type of Lua Lite variables

Evaluating the pure JIT One common usage of speculation in modern JITs is speculating
on the type of the variables of the program they execute [WebKit 2020, Meurer 2017]. CoreIR
is minimal by design and its registers only contain integer values, but it can be the target for
a higher-level language with multiple types. To evaluate the practicality of CoreIR, we imple-
mented an unveri�ed frontend for Lua Lite, an ad hoc subset of Lua. This subset includes a
subset of Lua values (nil, booleans, integers, tables with integer indices), no closures, no meth-
ods, and only programs where function call targets can be statically resolved. These choices
are not fundamental. The frontend models Lua values as tuples of integers, where the �rst
value holds a type tag and the second value the actual value. Speculating on the type of a Lua
Lite variable then amounts to speculating on the value of the corresponding CoreIR register
containing its type tag. In our experiments, we hand-craft pro�ler hints to speculate on these
type tag registers.

An example is given on Figure 8.3, showing a Lua Lite function and the beginning of the
corresponding CoreIR function after inserting speculation. The assumption n_tag=3 (specu-
lating that n is an integer) allows the subsequent constant propagation pass to remove all
type checks from n<2, as well as n-1 and n-2. We therefore observe a three-fold reduction of
executed condition instructions in optimized code in this program.

Our pure JIT does not include a formally veri�ed backend compiler, but the bene�ts of in-
serting speculative instructions are better observed in synergy with other optimizations. As a
result, the �nal ingredient for our pure JIT evaluation is an unveri�ed backend, which consists
in a translation pass from CoreIR to LLVM IR. Equipped with the LLVM backend and its pow-
erful optimizer, we were able to evaluate this extended JIT on two Lua Lite example programs.
The �rst one is the Fibonacci example from Figure 8.3a and the second is an implementation
of gnome sort. This implementation of the sorting algorithm is able to sort arrays where the
contents are nil, booleans, or integers. In the benchmark we only pass arrays of integers and
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1

3

10

jit jit_static lua luajit

fib2

3

10

30

jit jit_static lua luajit

gnome_sort

Figure 8.4 – Performance comparison of Lua Lite execution, runtime in seconds

we make the pro�ler speculate on this type.
The results are shown on Figure 8.4. We ran those benchmarks in the following con�gu-

rations: (jit) the pure JIT with the unveri�ed Lua frontend and the unveri�ed native backend;
(jit_static) the same as the former, but disabling speculative optimizations; (lua) the o�cial
Lua interpreter version 5.3.5; (luajit) the JIT compiler for the Lua language version 2.1.0. We
ran the programs 10 times on a Laptop with a i7-7600U CPU at 2.80GHz, stepping 6, microcode
version 0xc6 and 16 GB of RAM. The reported run times in seconds are measuring one execu-
tion of the whole process, including startup and compilation. In the case of fib2 it consists of
one call to fib(39), in the case of gnome_sort sorting an array of length 46, 20000 times.

For Fibonacci we observe that the speculative optimizations do not yield large gains, de-
spite removing all but a third of all type checks in the optimized version. The reason is that
those type checks can be removed by common subexpression elimination as well, which in
fact LLVM does, therefore the similarity in performance is as expected. For gnome sort, we
observe a large gain by speculative optimizations. Here the speculation happens in a loop on
values loaded from the heap and the data shows that a nonspeculating compiler such as our
LLVM backend cannot optimize this code well without the speculation. In this light, we can
see how our design for speculation in synergy with the LLVM optimizer can lead to speedups.
If our pure JIT outperforms luajit in this example, this is expected since we do not have support
for actual lua tables, but instead only for the subset that uses integer keys and can therefore
be represented as arrays.

This evaluation of our pure JIT prototype shows that our approach to speculation can bring
speedups to some program executions.
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Evaluating the impure JIT While our impure JIT contains a formally veri�ed backend
compiler, it also contains unveri�ed primitive implementations. Executing the impure JIT on
some example programs helps us validate that these implementations behave as expected, and
shows how native code generation can provide important speedups.

Modern JIT compilers generate native code dynamically to execute faster than simply us-
ing an interpreter and this is true of our impure JIT as well. For instance, we have used it
to execute the program shown in Figure 8.5. This program prints the �rst prime numbers.
Function Fun1 calls Fun2 for each value of n between 2 and 100000. Then, Function Fun2 tests
naively if n is prime and only prints its value if it is. The test is done with a loop checking
that n is not divisible by any number i where i ≤

√
n. This program is the example program

where we saw the most speedups from generating native code. Our impure JIT dynamically
compiles Fun2 after the �rst two calls, and the whole execution is 40 times faster than execu-
tion with only interpretation. Of course, these speedups are only as good as the pro�ler and
real programs may require better heuristics. When compiling a function that is barely called
after, like increasing the pro�ler threshold so that Fun2 of Figure 8.5 is only compiled for its
very last call, we can observe a small execution time overhead due to calling the optimizer for
instance.

Function Fun1 ( ) :
n ← 2

l1 : Cond ( n < 100000 ) l2 l3
l2 : x ← Call Fun2 ( n )

n ← ( n + 1 ) l1
l3 : Return n

Function Fun2 ( n ) :
i ← 2

l1 : Cond ( ( i ∗ i ) < ( n + 1 ) ) l2 l4
l2 : Cond ( n % i ) l3 l5
l3 : i ← ( i + 1 ) l1
l4 : Print n
l5 : Return 0

Figure 8.5 – Printing prime numbers in CoreIR

We wrote and executed other example programs to test every implementation of the prim-
itives of Section 6.1.3. We also tested every possible case of our custom calling convention: an
interpreted function calling a compiled function, a compiled function calling an interpreted
function. . .We tried executing programs that already contain Assume instructions to show that
our backend successfully handles deoptimizations, or that use the JIT heap. This evaluation of
our impure JIT demonstrates that our implementation of the impure components matches its
speci�cation used in the proofs. Just like in modern JITs, generating native code in our Coq
JIT can bring substantial speedups.
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Chapter 9

CONCLUSION

9.1 Summary

Modern JITs are complex and large pieces of software, relying on advanced techniques.
Such complexity comes with many opportunities for implementation or logic bugs. As a result,
it is di�cult to write a JIT, and even more di�cult to write one correctly. Formal veri�cation,
while particularly time consuming, can provide the strong guarantee that a program does not
contain bugs. In that perspective, the formal veri�cation of Just-in-Time compilation appears
essential.

There is however one key obstacle: if the formal veri�cation of even simple programs can
be challenging and time consuming, then the task of formally verifying a modern JIT like the
ones used in web browsers seems insurmountable at �rst. They include many components
and there is no existing formalization of their interplay. We believe that this work has taken
valuable �rst steps towards the feasible veri�cation of modern JITs. While our mechanized
work simply consists in formally veri�ed proof-of-concept prototypes, it provides key insights
to make the formal veri�cation of JITs look only as intimidating as the formal veri�cation of
ahead of time compilers.

In particular, we have taken special care to reuse both the proof scripts and the proof
techniques of CompCert. This compatibility is important; there is a vast literature of formal
veri�cation work extending and reusing CompCert and some of them can be relevant to the
optimizer part of a JIT. We have carefully selected JIT-speci�c features that separate JITs from
ahead of time compilers, and provided new proof techniques to handle them. Our proofs are
designed to be composed modularly, suggesting that our JIT design can reasonably be extended
with new JIT features.

Formalizing JIT prototypes is insightful on its own. It de�nes clear speci�cations of their
various components and demysti�es the interplay between them. For instance, code trans-
formations using speculative instructions are not trivial to write correctly. Even standard op-
timizations like inlining then require more complex invariants, such as the one shown on
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Figure 5.19. Giving formal semantics to these speculative instructions and mechanizing some
code transformations as in our formally veri�ed middle-end compiler sheds some light on the
way a JIT should handle speculation, deoptimization and on-stack replacement.

Chapter 4 has presented the architecture of our JIT design. This architecture orchestrates
the various components that can be found in modern JITs. To the best of our knowledge, this
is the �rst time a JIT formalization models all these components together. Our state machine
representation is convenient to describe small-step semantics for our JIT, which then allow a
JIT speci�cation theorem to resemble the one of CompCert. Finally, Section 4.5 presents our
solution to the �rst JIT-speci�c veri�cation challenge: dynamic optimizations. This separates
JITs from ahead of time compilers, because such static compilers theorems typically relate the
behaviors of two known programs, while the program executed in a JIT changes along its
execution. Intuitively, an invariant of the JIT execution should state that the current program
executed by a JIT is equivalent in some sense to the original program. Our nested simulation
technique expresses exactly that, while reusing the simulation framework of CompCert.

In Chapter 5, we have investigated the second JIT-speci�c challenge: speculative opti-
mizations. Speculation has shown to be particularly impactful to execute dynamic languages
faster, and many modern JITs speculate on some aspect of the execution. We have given for-
mal semantics to speculative instructions resembling the ones used in modern JITs, and we
have mechanized the correctness proofs of code transformations that insert and manipulate
them. These proofs resemble the ones used in CompCert, and we can even reuse the time-
saving forward-to-backward reasoning for some standard optimizations. While we could im-
plement even more speculative optimizations in our middle-end, the transformations we se-
lected (inserting anchor and assumes, constant propagation and inlining) are enough to gen-
erate speedups in some programs. Modern JITs need deoptimization when speculating, and to
the best of our knowledge this work is the �rst mechanized implementation of this feature.

In Chapter 6, we presented our solution to the third JIT-speci�c challenge: proving the
correctness of e�ectful JITs. Modern JITs require components that cannot be entirely written
in the pure functional programming language of Coq. This includes installing and executing
dynamically generated native code, or the manipulation of shared data-structures that must
be modi�ed by both the native code and the rest of the JIT. We want our JIT to perform these
operations while still being formally veri�ed in Coq. As a result, we need to represent our JIT
in such a way that the correctness proof uses Coq speci�cations, but the JIT code can also
be extracted to an OCaml program that calls e�ectful C implementations instead. We decided
to use a methodology based on free monads that clearly delimit the impure parts of the JIT
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from the rest that can be written in Coq. This led to small adjustments to the de�nitions and
theorems presented in Chapter 4. Once again, our de�nitions are designed to be compatible
with the CompCert simulation framework, and especially the re�nement technique that we
use to simplify proof invariants.

Chapter 7 then presented our approach to the �nal JIT-speci�c challenge: reusing already
existing proofs of native code generation. Native code generation has already been mecha-
nized in formally veri�ed static compilers like CompCert. The task of formally verifying a JIT
can be made substantially easier if one can reuse these existing proofs. Reusing the backend of
CompCert had been an objective from the start, and motivated the use of its simulation frame-
work in our solutions to the previous challenges. However, compiling functions of a JIT with
the CompCert backend still required some work, as it is designed to compile entire programs.
Our solution consists in splitting functions into several pieces of code that we can each feed
to the CompCert backend. We have de�ned custom calling conventions that orchestrate these
pieces of code with the rest of the JIT execution, and support deoptimization of native code.
This results in a formally veri�ed JIT reusing the CompCert backend to dynamically generate
native code.

Finally, we have shown in Chapter 8 that all the techniques presented in this work can
be composed together. One main objective of our work was to produce not only an abstract
models of JITs, but also an executable JIT that can run actual programs. We presented our Coq
JIT implementations that can execute programs written in a minimal language, but also come
with a Coq proof of correctness. Our implementation captures essential features of modern
JITs, but one can imagine even more features to add to our existing work. In Section 9.2, we
present potential short and long-term improvements to our work.

9.2 Perspectives

While our methodology for formally veri�ed JITs successfully handles the four JIT-speci�c
veri�cation challenges of Section 1.2.1, we could improve it in various ways. In this section,
we present possible avenues for amelioration that we have not yet implemented or veri�ed.

For instance, we could try to write better pro�ling heuristics. Currently, our prototype
pro�lers simply record the number of each function call, the values of the functions argu-
ments, and we provided in our pure JIT implementation a way to manually annotate CoreIR
programs to tell the pro�ler what to record at a given program point. We used such annota-
tions to speculate on the types of Lua Lite variables (see Section 8.3.3). Pro�ling in modern
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JITs however is completely automatic and usually more closely tied to interpretation. For in-
stance, in JavaScriptCore, the interpreter directly modi�es some counters (called case �ags or
case counts) that the pro�ler uses to suggest speculation [WebKit 2020]. We could modify our
design such that the interpreter itself calls external pro�ling parameters as it executes a CoreIR
function and try to model the behaviors of modern JIT pro�lers. As explained in Section 4.3,
this would only impact performance, and no modi�cation to our proofs would be needed. A
more realistic pro�ler would allow us to conduct a better performance evaluation of our design
and implementation. We could then measure more precisely the bene�ts of di�erent specula-
tive optimizations, and their interactions with other optimizations contained in the backend
compiler.

Our middle-end compiler could also be extended. For instance, we could avoid copying the
deoptimization metadata from anchors to assumes by having a dedicated instruction to contain
this metadata that other speculative instructions can refer to. This would correspond to the
Framestate node used in Graal for instance [Duboscq et al. 2014], and we could insert it with
anchors during the �rst middle-end pass (Section 5.2.1). Also, our delayed Assume insertion of
Section 5.2.5 allows to insert speculations at di�erent points while using a single Anchor. Keep-
ing the number of anchors down is convenient, because as explained in Section 5.1 anchors
may increase register pressure and reduce the e�ciency of other optimizations. We could ex-
tend this delayed Assume insertion pass to allow other instructions than branches between
assumes and anchors, which would allow a single anchor to be used for even more assumes.
Combined with a standard dead code elimination pass, we could then recreate the motivating
example of Figure 5.1. Other contributions have also investigated di�erent ways to manipulate
speculative instructions. For instance, reordering the speculation checks can bring execution
speedups [Odaira and Hiraki 2005], which also corresponds to the predicate hoisting used in
Sourir [Flückiger et al. 2018]. It would be valuable to provide formally veri�ed implementa-
tions for such optimizations.

Our mechanized work could also bene�t from some proof engineering improvements. In
particular, we ended up having several versions of the CompCert small-step semantics and
simulation libraries, identical except for a few di�erences. For instance, the original frame-
work from CompCert is used to prove the backend compiler, but we also have another version
for the internal simulations that we use to specify the correctness of the entire JIT optimizer
step. The original version contains a few features that are tied to the C language semantics. In
this version, small-step semantics for instance contain a symbol environment that we do not
need when describing our JIT semantics. Also, the internal simulations di�er from the ones in
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CompCert when matching initial states, as discussed in Section 4.5.3. Instead of using a mod-
i�ed copy of the libraries, it would be better to write a more general library, of which both
copies are instantiations. In particular, our work has shown that the small-step and simulation
framework of CompCert can be used for other purposes than compiling the C language, and
it could be valuable to have a generic library available for other veri�ed program transforma-
tions.

9.2.1 Recompilation and Contextual Dispatch

Currently in our proof methodology, a JIT cannot remove the optimized version of a func-
tion. For instance, one cannot remove the native code that has been installed using the prim-
itive Install_Code, and one cannot remove the current Opt version of a CoreIR function (the
middle-end can modify it using its various passes, but not remove it). However, removing pre-
viously optimized version of a function can be helpful in JITs with speculative optimizations.
If prior speculations turn out to be wrong too often, a JIT can recompile the function from
scratch using new speculations [WebKit 2020].

This limitation of our prototypes comes from the fact that we prove correct our JIT opti-
mizer step with a backward simulation on deterministic semantics. When calling functions our
JIT has a deterministic behavior, it always calls the most optimized function. As a result, when
the optimizer added a new native code version of a function, our nested simulation invariant
simply guarantees that the new program, calling the new native codes, is simulated with the
original program of the JIT. But our invariant says nothing about executing the same program
that would however execute the original CoreIR version of the function instead of the native
code. If we knew that this behavior was also simulated with the original program behavior,
we could safely remove the native codes. According to our current invariant, the only correct
way to return to the original version is by deoptimizing.

One simple way to extend our methodology would be to de�ne the mixed semantics such
that it chooses nondeterministically between the di�erent versions of a function. As a re-
sult, removing an optimized version could be proved with a backward simulation, as it simply
consists in removing one of the multiple possible behaviors of the mixed semantics. Just like
speculation needed nondeterministic semantics to represent the possibility of deoptimization,
we would use nondeterministic semantics to represent the possibility of choosing either ver-
sion of a function. And we could reuse the loud semantics principle of Section 5.3.3 to enable
the forward-to-backward reasoning, adding observable events to function calls. It would be
interesting to generalize the loud semantics methodology to formally verify recompilation in
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our JIT.
We also believe that nondeterministic semantics for function calls could be a simple way

to implement and verify the contextual dispatch approach mentioned in Section 2.2, another
approach to speculation (instead of speculation points like Assume and Anchor inside of the
function code). One could extend our JIT design so that functions can hold multiple optimized
versions, such that each version has been specialized for a particular call context (for instance,
a given value of its arguments). Each version would be annotated with a CoreIR expression
describing the call context for which it is specialized, just like the context predicates used in the
Ř JIT for contextual dispatch [Flückiger et al. 2020]. Contextual dispatch requires simpler in-
variants from the JIT execution, it su�ces to know that the JIT can call any version compatible
with the current call context. To capture this, the mixed semantics would nondeterministically
choose between all the versions that are allowed given the current call context. The proof of
adding a new specialized version could then resemble the proof of inserting an Anchor instruc-
tion. On function calls, the monitor of the JIT would evaluate the expressions annotating each
version to determine which versions are correct in the current call context, and choose the
most specialized one. While contextual dispatch only allows specialization to happen at the
beginning of a function (instead of anywhere in its code with the Assume instruction), it would
allow di�erent specializations to coexist in our JIT instead of the single optimized version we
have currently.

In summary, we could further investigate the bene�ts of using nondeterminism to repre-
sent speculative JIT invariants. This would allow to verify both recompilation and contextual
dispatch, speculative techniques that are used in modern JITs, but that our current work has
not formalized yet.

9.2.2 Direct Calls and Builtins

One may wonder if our synchronization interface, going back and from the monitor at
each function call, can be a bottleneck for execution. In our pure JIT experiments, we used
an unveri�ed optimization when compiling a call to another already compiled function: we
asked the LLVM backend to generate a direct call to that function, without going back to
the monitor. This means that going back to the monitor is only needed when going to the
interpreter is needed, and execution can stay at the native level as long as possible.

We believe that a similar optimization with our veri�ed backend could be possible to im-
plement and verify. When producing RTL code, we could compile function calls as branches.
We could ask the RTL code to use the primitive Check_Installed to see if the function to call
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has been compiled already. If the function has not been compiled, we would return to the
monitor as described in Section 7.1, pushing live registers to the JIT stack and returning the
RETCALL value. If however the function is compiled, we could instead generate a RTL program
that calls the native function at a speci�c address, as returned by primitive Load_Code.

This would require some modi�cations in our mixed semantics de�nition, as currently
only calls to primitives are allowed in the RTL and x86 code we generate. In practice, this
would mean using a mix of our custom calling convention when returning to the monitor, and
CompCert calling conventions when doing such direct calls. As a result, for the correctness of
RTL generation, we would need an invariant where part of the JIT execution stack is found
in the RTL semantic state. While this is probably a nontrivial implementation and proof, we
believe that this could be possible in our impure JIT, where we have already formalized and
mechanized native code generation and execution.

Similarly, using external calls in the native code for each stack and heap interaction could
be detrimental to execution times, although we have not yet evaluated this. Using these exter-
nal calls allowed us to de�ne a clear interface of the impure e�ects of the JIT. One can imagine
possible optimizations, either inlining x86 implementations of the primitives as an additional
step of the backend, or de�ning custom builtin functions at the RTL level that CompCert can
also inline and compile. Having de�ned semantics for native code execution in a JIT compiler,
such optimizations could be proved correct in our impure JIT.

In summary, interactions between the dynamically generated code in JITs and their other
components represent a large area of design and optimizations for JITs. For instance, the V8
engine has recently changed the way native code calls builtins functions, to better exploit the
branch prediction mechanism used by microprocessors [V8 2021a]. Our veri�ed JIT method-
ology has presented a simple interface that could be modi�ed or extended to model and reason
about such low-level interactions in JITs.

9.2.3 Formally Veri�ed JITs for Realistic Languages

CoreIR is a language that we designed to be simple enough to ease the burden of formal
veri�cation, but still allowing us to showcase interesting features of modern JITs. It comes with
an interpreter, is close enough to CompCert RTL to make compilation easier, and has support
for speculative optimizations with dedicated instructions. We believe that all the correctness
arguments that we presented in our various proofs could also be adapted to a more realistic
language. Dynamic languages like JavaScript or Python are typical examples of languages for
which just-in-time compilation is used. While the JSCert project [Bodin et al. 2014] includes
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a Coq interpreter for JavaScript, the lack of existing formally veri�ed Coq compilers for these
languages would slow down the task of reusing our work for these languages. But any lan-
guage equipped with a Coq interpreter and a Coq compiler could use our work to develop a
formally veri�ed JIT.

For instance, recent work has formalized in Coq the semantics of WebAssembly [Watt
et al. 2021]. This work describes an on-going work on a Coq interpreter for WebAssembly,
and mentions that one could possibly link that mechanization of the semantics to a CompCert
intermediate language, in order to have formally veri�ed compilation. If these two tasks are
completed, one could reuse the techniques we developed to obtain a formally veri�ed JIT for
WebAssembly. This would however require additional work. For instance, adapting the cus-
tom calling convention to save and restore the new WebAssembly interpreter stackframes.
Similarly, a translation from full WebAssembly programs to full RTL programs (or any other
intermediate language of CompCert) is not enough. In order to use the JIT calling conven-
tions, one would also need to split the functions at function calls, like we did in Section 7.1.
WebAssembly is a realistic language used extensively on the Web, and major browsers en-
gines such as V8, JavaScriptCore, SpiderMonkey and ChakraCore include JITs not only for
JavaScript but also for WebAssembly.
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APPENDIX – RELATING THE

DEVELOPMENT TO THE DISSERTATION

All de�nitions and proofs presented in this document have been implemented and mech-
anized. The electronic version of this Chapter contains links to the relevant de�nitions. We
have presented two JIT implementations, available here:
https://github.com/Aurele-Barriere/CoreJIT
https://github.com/Aurele-Barriere/JIThm.

The �rst one is the pure JIT containing the full middle-end optimizer, but not the formally
veri�ed backend. The second one is the impure JIT containing the formally veri�ed backend
optimizer. As explained in Section 8.3, it contains some but not all of the middle-end optimizer
of CoreJIT. We provide links to both developments when applicable.

Chapter 4

Figure 4.4 Pure JIT OCaml loop Pure JIT
Algorithm 1 The jit_step function Pure JIT Impure JIT
Figure 4.5 Pure JIT small-step semantic rule Pure JIT
Figure 4.6 Pro�ling parameters Pure JIT Impure JIT
Section 4.3 Pro�ler implementation Pure JIT Impure JIT
Simulation 1 Pure JIT backward simulation Pure JIT
Figure 4.7 Pure JIT correctness theorem Pure JIT
Figure 4.9 Backward internal simulation Pure JIT Impure JIT
Figure 4.9 External simulation invariant Pure JIT Impure JIT
Section 4.5.2 Nested simulation measure Pure JIT Impure JIT
Simulation 2 Optimizer backward simulation Pure JIT Impure JIT
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Figure 5.2 CoreIR syntax Pure JIT Impure JIT
Figure 5.3 CoreIR semantics Pure JIT Impure JIT
Section 5.2.1 Anchor insertion Pure JIT Impure JIT
Section 5.2.1 Liveness analysis Pure JIT Impure JIT
Section 5.2.1 De�ned registers analysis Pure JIT Impure JIT
Section 5.2.2 Assume insertion Pure JIT Impure JIT
Section 5.2.3 Constant propagation Pure JIT
Section 5.2.4 Removing Anchor Pure JIT Impure JIT
Section 5.2.5 Delayed Assume insertion Pure JIT
Section 5.2.6 Inlining Pure JIT
Simulation 3 Correctness of Anchor insertion Pure JIT Impure JIT
Figure 5.11 Invariant of Anchor insertion Pure JIT Impure JIT
Figure 5.12 Stack invariant of Anchor insertion Pure JIT Impure JIT
Simulation 4 Correctness of Assume insertion Pure JIT Impure JIT
Figure 5.14 Invariant of Assume insertion Pure JIT Impure JIT
Figure 5.15 Stack invariant of Assume insertion Pure JIT Impure JIT
Figure 5.16 Loud semantics rules Pure JIT
Figure 5.17 Loud forward to backward theorem Pure JIT
Simulation 5 Correctness of constant propagation Pure JIT
Simulation 6 Correctness of removing Anchors Pure JIT Impure JIT
Simulation 7 Correctness of delayed Assume insertion Pure JIT
Figure 5.18 Invariant of delayed Assume insertion Pure JIT
Simulation 8 Correctness of inlining Pure JIT
Figure 5.19 Invariant of speculative inlining Pure JIT
Simulation 9 Correctness of the middle-end optimizer Pure JIT Impure JIT
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Section 6.1 List of JIT primitives Impure JIT
Figure 6.2 State and error monad Impure JIT
Figure 6.3 Free monad Impure JIT
Figure 6.4 Free monadic constructors Impure JIT

154

https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/specIR.v#L70
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/IR.v#L58
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/specIR.v#L400
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/IRinterpreter.v#L100
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/framestate_insertion.v#L103
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/anchor_insertion.v#L110
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/liveness.v#L190
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/liveness.v#L158
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/def_regs.v#L165
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/def_regs.v#L171
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/assume_insertion.v#L77
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/assume_insertion.v#L84
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/const_prop.v#L385
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/lowering.v#L35
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/anchor_removal.v#L35
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/assume_insertion_delay.v#L84
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/inlining.v#L299
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/framestate_insertion_proof.v#L1030
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/anchor_insertion_proof.v#L1142
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/framestate_insertion_proof.v#L322
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/anchor_insertion_proof.v#L350
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/framestate_insertion_proof.v#L226
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/anchor_insertion_proof.v#L248
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/assume_insertion_proof.v#L366
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/assume_insertion_proof.v#L536
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/assume_insertion_proof.v#L98
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/assume_insertion_proof.v#L112
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/assume_insertion_proof.v#L13
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/assume_insertion_proof.v#L27
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/specIR.v#L513
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/internal_simulations.v#L881
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/const_prop_proof.v#L1210
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/lowering_proof.v#L307
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/anchor_removal_proof.v#L377
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/assume_insertion_delay_proof.v#L463
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/assume_insertion_delay_proof.v#L110
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/inlining_proof.v#L2030
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/inlining_proof.v#L1078
https://github.com/Aurele-Barriere/CoreJIT/blob/8740d4149be649d0746d9f0d2d759b387a8f3246/src/coqjit/optimizer_proof.v#L97
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/middle_end_proof.v#L452
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/monad.v#L145
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/monad_impl.v#L17
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/monad.v#L158
https://github.com/Aurele-Barriere/JIThm/blob/ad3ae5a3d6759a070195815e321df1b372d982b9/coqjit/monad.v#L167


Figure 6.5 Monadic speci�cation Impure JIT
Figure 6.5 get_prim Impure JIT
Figure 6.6 free_to_state Impure JIT
Figure 6.7 Atomic small-step rule Impure JIT
Figure 6.8 Heap access (C implementation) Impure JIT
Figure 6.8 Heap access (monadic speci�cation) Impure JIT
Figure 6.9 Free interpreter Impure JIT
Figure 6.9 exec_prim Impure JIT
Section 6.6 Primitive speci�cation prim_spec Impure JIT
Section 6.6 Reference speci�cation ref_spec Impure JIT
Section 6.6 prim_spec ≃ ref_spec Impure JIT
Figure 6.10 ref_state Impure JIT
Figure 6.10 prim_state Impure JIT
Section 6.6 Re�nement de�nition Impure JIT
Simulation 10 Re�nement theorem Impure JIT
Figure 6.11 NASM transitions Impure JIT
Figure 6.13 NASM semantics Impure JIT
Section 6.7 Impure jit_step function Impure JIT
Section 6.7 Speci�cations step_, start_ and end_ Impure JIT
Simulation 11 Impure JIT backward simulation Impure JIT
Figure 6.14 Impure JIT correctness theorem Impure JIT

Chapter 7

Simulation 12 Equivalence of CoreIR and mixed semantics Impure JIT
Section 7.1 JIT primitives that are external calls in the native code Impure JIT
Figure 7.3 Mixed semantics states Impure JIT
Figure 7.4 Mixed semantics rules Impure JIT
Section 7.3 RTLblock syntax Impure JIT
Section 7.3 RTLblock semantics Impure JIT
Section 7.3 Generating RTLblock Impure JIT
Simulation 13 Correctness of RTLblock generation Impure JIT
Figure 7.5 Invariant of RTLblock generation Impure JIT
Section 7.3 Generating RTL from RTLblock Impure JIT
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Simulation 14 Correctness of RTL generation Impure JIT
Simulation 15 Correctness of native code generation Impure JIT
Section 7.4 Native code generation invariant Impure JIT
Section 7.5 jit_backend Impure JIT
Section 7.5 Primitive behavior axiom Impure JIT
Section 7.5 Primitive allocation axiom Impure JIT
Section 7.5 No built-ins axiom Impure JIT
Simulation 16 Correctness of the backend compiler Impure JIT

Chapter 8

Section 8.2 How using GADTs would avoid Obj.magic Impure JIT
Section 8.3.2 Library of C primitive implementations Impure JIT
Figure 8.3 Fibonacci in Lua Lite Pure JIT
Section 8.3.3 Gnome sort in Lua Lite Pure JIT
Figure 8.4 Reproducing the Lua Lite experiments Pure JIT
Figure 8.5 Printing prime numbers in CoreIR Impure JIT
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Titre : Vérification Formelle de Compilation à la Volée

Mot clés : Vérification formelle, Compilation à la volée, Coq, CompCert

Résumé : La compilation à la volée est une
technique pour exécuter des programmes, où
l’exécution est mélangée à des optimisations.
Les compilateurs à la volée se distinguent par
leur efficacité, mais aussi par leur complexité.
Par exemple, ils réutilisent des techniques va-
riées : certains contiennent des interprètes
pour exécuter leur programme, mais aussi
des compilateurs traditionnels pour générer
du code machine optimisé. Ils utilisent éga-
lement des techniques qui leur sont propres
comme la spéculation, qui consiste à prédire
le comportement futur du programme et gé-
nérer du code particulièrement rapide si cette
prédiction s’avère vrai.

Cette grande complexité peut être à l’ori-
gine de bugs. Cette thèse s’attelle à leur vé-
rification formelle, dans le but de dévelop-
per des compilateurs à la volée dont on peut
prouver formellement qu’ils se comportent
comme spécifié par la sémantique du pro-
gramme qu’ils exécutent. Nous présentons
des preuves de correction des techniques
principales qu’ils utilisent, comme la spécula-
tion, les optimisations dynamiques ou la géné-
ration de code machine. Nous réutilisons des
techniques de preuves issues de compilateurs
traditionnels vérifiés comme CompCert. Nos
preuves sont toutes vérifiées mécaniquement
dans l’assistant de preuve Coq.

Title: Formal Verification of Just-in-Time Compilation

Keywords: Formal Verification, Just-in-Time Compilation, Coq, CompCert

Abstract: Just-in-Time compilation is a tech-
nique to execute programs, where execution
is interleaved with optimizations. Just-in-Time
compilers often produce fast executions, but
are particularly complex. For instance, they
reuse various existing techniques: some con-
tain both interpreters to execute programs and
traditional compilers to generate optimized
machine code. They also use ad hoc tech-
niques like speculation, which consists in pre-
dicting the future behavior of the program to
generate specialized code that executes par-
ticularly fast if the prediction holds.

This great complexity can lead to bugs.
This thesis tackles their formal verification, to
develop Just-in-Time compilers in such a way
that one can formally prove that they behave
as prescribed by the semantics of the program
they execute. We present correctness proofs
for their main features, including speculation,
dynamic optimizations and machine code gen-
eration. We reuse proof techniques from for-
mally verified traditional compilers like Comp-
Cert. All our proofs have been mechanized in
the Coq proof assistant.
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